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PKEFACE.

This book is intended to give an elen^entary account of the

dynamical theory of heat as applied to the expansion of gases

and vapours, which shall be intelligible without any previous

knowledge of the Differential and Integral Calculus.

It is based almost exclusively on three works, gamely:

i. Eankine's Manual of the Steam-Engine.

ii. Zenner's GnmdzUge der Mechanischen Warmetheorie,

(of which there is a French Translation), and

iii. Clerk MaxweJFs Theory ofHeat,

The last of these treats of the whole theory of heat and

its historical developrqent in an elementary manner, but

more from a scientific than an engineering point of view.

The two former, while written for engineers, cannot be

read by one who is not familiar with the C^,lculus.

It is hoped that this book will prove itself adapted to the

wants of engineering student^ who may not be able to follow

the reasoning of Rankine ai^d Zenner.

Leven, Feb. 1877.
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ELEMENTAEY TREATISE ON HEAT

AS

APPLIED TO STEAM.

CHAPTER I.

GENERAL DESCRIPTION OF THOSE EFFECTS OF HEAT WHICH
ARE TO BE CONSIDERED AND A METHOD FOR THEIR
GRAPHIC REPRESENTATION.

1. Heat and Energy. Heat is a form of energy re-

siding in all substances, which energy can under certain con-

ditions be transformed into external work; on the other

hand, work expended in certain ways produces, or is trans-

formed into, heat.

Our object here is to investigate the more important
laws of the transformation of the energy of heated substances

into external work, w^hen those substances are fluids either

wholly or partly in the gaseous state.

These laws have a special interest, because it is upon
such a transformation that the working of the steam-engine
depends.

Since heat and work are convertible forms of the same
energy, therefore quantities of heat may properly be ex-

pressed in terms of the quantities of external work to

which they are equivalent.

2. Unit of work. The upit which we shall apply for

the measurement of work,lihd ^therefore also of heat, is the
foot-pound ; that is to say, the quantity of work expended

S. H. 1



2 DIAGRAM OF ENERGY.

in moving a mass of one pound througli a distance of one
foot against the action of a constant force whose intensity is

equal to the mean force of gravity.

8. Classification of Phenomena. The effects of heat
which we are to consider may conveniently be divided into

three classes, namely, the phenomena of Sensible Heat, of

External Work, and of Internal Work.

4. Sensible Heat. All heated bodies have a tendency
to communicate heat to other bodies within their influence,

and to receive heat from them in return.

The condition that determines which of these tendencies

shall predominate is called Temperature,

In the interchange of heat between two bodies, if there

be thermal equilibrium so that each receives back as much
heat as it gives out to the other, and, on the whole, neither

of them gains or loses by its communication with the other,

then the two are said to be at the same temperature.

If one body loses heat which the other gains, the former

is said to be at the higher and the latter at the lower

temperature.

Heat cannot be transferred from one body at a lower

to another at a higher temperature, except by the aid of a

machine and the expenditure of mechanical force.

When a body gains a sufficient quantity of heat its tem-

perature tends to rise, and when it loses heat in sufficient

quantity the temperature tends to fall.

Thus, when two bodies at different temperatures are

brought into communication and left to themselves, the

transfer of heat from the body at the higher to that at the

lower temperature will continue until, either by the lowering

.of the temperature of the former, or the rise of the tem-
perature of the latter, or by both processes, thermal equi-

librium is reached, and the bodies are brought to the same
temperature.

Our senses are directly affected by differences of tem-

perature, and hence that part of the energy of a heated
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substance which manifests itself in raising the temperature

is spoken of as Sensible Heat.

The sensations thus produced are not capable of having
definite numerical values assigned to them, and it would be
impossible to construct a scientific theory of heat from them
alone.

5. External Work. Heat, however, has other phe-

nomena besides those of temperature; for instance, when
heat is communicated to any substance, it tends to produce

a change of volume ; or, if the substance be so confined that

the volume cannot alter with sufficient freedom, the heat

supplied produces an alteration in the pressure of the sub-

stance against the confining structure. It is on these circum-

stances that all our present calculations are based.

A few substances have their volumes diminished, under
certain circumstances, by the communication of heat; the
most noteworthy example of this being, that when ice is

converted into water by heat, the volume diminishes, and the
water itself continues to decrease in volume as more heat
is supplied to it, until its temperature has been raised to

a point somewhat above the temperature of melting, after

which it again expands.

In the majority of cases, however, and in all those which
we are about to investigate, the communication of heat to

a substance tends to increase its volume ; or, if that cannot
expand with sufficient freedom, causes an increase of pres-

sure.

By observations of these changes of pressure and volume
differences of temperature also are measured ; some of the

different systems of measurement will be described later on.

When a substance expands against pressure it performs

work, whose amount in foot-pounds is found by multiplying

the amount of the pressure in pounds into the distance

in feet through which the point of application of that pres-

sure is forced back.

Thus, when the energy of heat is spent in causing ex-

pansion against pressure, it is converted into External Work.

1—2



4 DIAGRAM OF ENERGY.

Of course, energy which has been so transformed no longer
exists in the substance in the form of heat, and therefore
cannot affect its temperature.

6. Internal Work. The energy which does remain in

the substance, does not all necessarily show itself in the
form of Sensible Heat by affecting the temperature.

A part of the energy of heat in every known substance
is expended in producing molecular changes other than those
upon which the temperature directly depends.

Such energy is said to be absorbed in performing In-
ternal Work.

In some cases these molecular changes make an entire

change in the physical constitution of the substance, as when
ice becomes water by fusion, or when water becomes steam
by evaporation, but in general their results are not so obvious.

7. Hypothetical Apparatus. Since we are to investi-

gate the effects of Heat upon fluids wholly or partly gaseous,

by means of calculations based upon the measurement of

their pressures and volumes, it will be well to have ideas of

such measurements as simple and definite as possible.

With a view to this let us suppose one pound weight of

such a fluid to be enclosed in a cylinder. Let the cylinder

be fitted with a piston capable of moving in it without
friction, and whose weight is so small that it may be neg-

lected. Let the area of this piston be one square foot, so

that the volume of the pound of fluid expressed in cubic

feet may be numerically equal to the distance of the piston

from the bottom of the cylinder in linear feet. It follows

that the pressure of the fluid in pounds per square foot will

be sensibly equal to the external pressure on the piston in

pounds, so long as this does not alter suddenly.

In order to examine the effects of heat upon the fluid, we
will suppose moreover that the piston and sides of the

cylinder are impervious to heat, and that the end of the

cylinder is formed of a substance through which heat passes

without any impediment; but that it also can be made
impervious to heat, when necessary, by the application of a
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cover which will prevent heat from passing in any direction

to or from the fluid in the cylinder. Of course, no apparatus

fulfilling these conditions can really be constructed, but
it is necessary to make some such assumption in order to

free our calculations from the disturbing influences which
are met with in the actual observation of the effects of heat.

8. Graphic representation of pressures and volumes.
In order to represent graphically the pressure and volume
of the fluid in this cylinder at any given moment, draw two
lines OX, OY (fig. 1) at right angles to one another; on
OX take a point M such that the distance OM shall

represent according to any given scale the distance of the

piston from the bottom of the cylinder in feet ; through M
draw a straight line parallel to Y^ and on it take a distance

MA to represent according to any given scale the amount
of the external pressure on the piston in pounds. Then, by
Art. 7, the distance OM represents also the volume of the

fluid in cubic feet, and the distance MA represents its

pressure in pounds on the square foot. Thus the position

of the point A on the diagram indicates the condition of the

fluid with regard both to pressure and volume.

But it is found that with each condition of the pressure

and volume per pound of any given fluid there is associated

a definite condition in respect of Sensible Heat and of

Internal Work ; so that the position of the point A on the
diagram defines in these respects also, the thermal condition

of the fluid whose pressure and volume it represents.

In the same way the condition of the fluid at some other

time may be represented by the point B, and any series of

changes undergone in passing from the state represented by
the point A to that represented by the point B may be
indicated by a line APQB, such that the condition of the
fluid at each moment during the changes is represented by
a point on that line.

For convenience, we may speak of the state represented

by any point A ov B sls the state A or B, and the fluid when
undergoing the changes represented by any line APQB may
be said to change according to that line. Also the series of

changes themselves may be termed the operation AP QB,
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9. Representation of External Work. The peculiar

value of this mode of representing graphically the pressure

and volume of the fluid depends upon the results of the

following proposition.

A
\ FIC.I.

V'
<?'x Q

>
The external work done by the fluid during any such

operation as APQB is represented by the area included

between the curve APQB, the line OX, and two straight lines

parallel to OY drawn through A and B, the points which
represent the initial and final states of the fluid.

The unit of area employed must be a rectangle, one side

of which is a line equal to that which represents the motion
of the piston through a distance of one linear foot, and the

other side a line representing a change of pressure in the

fluid of one pound on the square foot, since the unit of work
is the foot-pound.

Through B draw BN parallel to OF to meet OX in N,
then the number of such units of area in the area MAPQBN
is equal to the number of foot-pounds of external work done
by the fluid in the operation APQB.

Let the straight line MN be divided into any number of

equal parts, and let RShe one of those parts. Through R
and 8 draw RP, SQ parallel to OY to meet the curve APQB
in P and Q. Also through P and Q draw PF

, QQ parallel

to OX to meet BQ produced, and PR in P' and Q' respec-

tively.

Then the line PF represents the changes which would
take place while the piston moved through the space RB,
if the pressure should remain constantly equal to the pres-

sure in the state P.
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In this case the external work would evidently be equal

to the product of the constant pressure into the space

through which the piston moved, and would be represented

by the area BPP'S. In the same way if the pressure

throughout the motion of the piston were equal to that in

the state Q,- then the external work would be represented by
the area BQ QS.

The work actually performed in the operation PQ is

represented by an area intermediate between RPFS and
RqQS.

But if the number of equal parts into which MN is

divided be indefinitely increased, and the distance RS
consequently diminished indefinitely, the areas RPP'S and
RQ'QS may be made to differ by a quantity less than any
assigned quantity, and to become ultimately equal to one
another, and to the area RPQ8.

Therefore when the distance RS is sufficiently small,

the work done by the fluid during the operation PQ is

ultimately represented by the area RPQS.

Therefore summing up the amounts of work done by
the fluid in driving the piston through the spaces repre-

sented by each of the small parts such £is RS into which
MN is divided, we find that the total work performed during
the whole operation APQB is represented by the sum of all

the small areas such as RPQS, that is to say, by the area
MAPQBN. From this property such a diagram is called a
Diagram of Energy.

It is evident that if the changes had taken place in the
reverse order, and the fluid had been compressed from the
state B according to the curve BQPA till it was brought to
the state J., then the same area would represent the work
done upon the fluid by the external forces producing the
compression.

In order to distinguish between the two cases we may
consider areas to have a positive sign when they represent
work done by the fluid, and a negative sign when they
represent work performed upon the fluid by external forces.



8 DIAGRAM OF ENERGY.

Thus areas will be positive or negative according as the

curve representing the operations performed is described

from left to right or from right to left.

Since a number of units of work is to be represented by
an equal number of units of area, it will be convenient to

speak of quantities of work as being 'equal' to the areas

representing them.

10. Cycle of Operations. When the fluid after under-
going a series of changes returns at last to exactly the same
state as that from which it started, the process is called a

Cycle of Operations.

If in such a cycle the fluid pass through a series of

changes, and afterwards return to its original state by passing

through the same series in the reverse order, then, on the

whole, as much work will have been performed upon the

fluid in the second series as was done by it in the first series

of changes, and the positive and negative areas will exactly

balance one another. If, however, the fluid after passing

through one series of changes be brought again to its original

state by means of a diflerent series, the cycle of operations

will be represented on the diagram of energy by a closed

curve.

FIG 2.

7v if

Let ABGD be such a curve, then if the fluid expand
from A to G according to the curve ABC, and be compressed

again from C to A according to the curve CDA, the work
done by the fluid during the expansion will be represented

as before by the area MABCN, and the work done upon the

fluid by external forces by the area MAD CN,
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Therefore the balance of work given out by the fluid

will be represented by the area AB CD.

In the same way if the fluid expand according to the

curve ABC, and be compressed according to the curve CBA,
so that the cycle is performed in the reverse order, the
balance of work expended upon the fluid during the cycle

will be represented by the same area ABCD, which will

then, according to our convention for expressing such work,

be considered negative.



CHAPTER II.

GENERAL PROPERTIES OF ADIABATIC AND ISOTHERMAL
LINES.

11. Adiabatic Curves. Suppose a cylinder, such as

that above described, to have the non-conducting cover

applied to its end, so that no heat can pass to or from the
enclosed fluid, and let the external force acting on the
piston be gradually increased, then evidently the volume of

the fluid will be diminished, and the series of changes which
takes place may be represented by a certain curve on the
diagram of energy.

If again the pressure be diminished the same changes
will be reproduced in the reverse order, and may be repre-

sented by the same curve drawn in the opposite direction.

The general form of this curve may be seen from the

consideration that as the pressure increases, the volume
must diminish without limit, but can never be actually

reduced to nothing ; the curve, therefore, gradually ap-

proaches nearer to F as the distance from OX increases,

but can never touch Y,

In the same way, since the fluid in the cylinder was
supposed to be at least partly in the gaseous state, the

pressure will diminish as the volume increases without
limit, but we have no reason to suppose that it would ever

entirely vanish, so that the curve when produced indefinitely

in the other direction continually approaches OX, but can
never reach it.

Such a curve representing the changes of pressure and
volume which can take place in a fluid when heat is not

allowed to pass through the walls of the containing vessel,
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is called a 'Curve of no Transmission/ or an 'Adiabatic

^Curve.' (From a, not, and SLa(3atvetv, to pass through.)

12. Intrinsic Energy. Let A and B be two points

on the indefinitely extended curve ABcj), which is an adia-

batic for the fluid contained in our cylinder. Through A
and B draw AM, 5^ parallel to OY and meetmg OX m
M and I^ respectively.

When the fluid is in the state J., it is capable of perform-

ing a certain definite quantity of work in virtue of the energy

of the heat which it possesses and which causes it to be in

the condition represented by the point A.

The total amount of this power of doing work is called

the IntrinsiG Energy of the fluid in the state A.

In expanding from the state A to the state B without

transfer of heat to or from external sources, the fluid per-

forms a quantity of work equal to the area MABN\ and

since it has not received any additional energy from external

sources during the process, its remaining intrinsic energy

when in the state B must' be less than its intrinsic energy

in the state A by the same amount.

By sufficiently expanding the fluid from the state A,
according to the adiabatic curve, we may make its remain-

ing intrinsic energy after expansion as small as we please

;

and at the same time the quantity of work done will become
as nearly as we please equal to the area included between
the straight line AM and the straight line and curve MNX
and AB(f>, when these are indefinitely extended.

Hence the whole work which the fluid is capable of

performing in virtue of the heat it possesses in the state

A, or, in other words, the intrinsic energy of the fluid in
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the state A, is equal to the indefinitely extended area

XMA<I).

It may be as well to remind the reader that an area

is not necessarily infinitely large because it is indefinitely

extended, but has often a fixed limit which it can never
exceed, however far the lines enclosing it be produced. In
the present instance, there is evidently such a limit, for a
fluid cannot be supposed capable of performing an infinite

quantity of work in virtue of the heat which it possesses in

any given state Avhatever.

13. Area representing Heat absorbed. When the
fluid is in the state -4, let the non-conducting cover be re-

moved from the end of the cylinder and heat supplied in

any manner, causing the fluid to undergo a definite series

of operations.

Let these changes be represented by the line A CD on
the diagram (fig. 8), and through D, the point representing

the final state of the fluid, draw the adiabatic curve I)(f>\

Then the total heat absorbed by the fluid during the

operation A CD is equal to the indefinitely extended area

(j)AGD(f)' enclosed between the curve ACD and the two
adiabatics Acf) and D(j).

For, through D draw the straight line DP parallel to

OF to meet OX in P.

The work performed by the fluid during the operation

ACD is equal to the area MAGDP. And the whole work
which the fluid in the state D is capable of performing

without receiving any farther supply of heat is equal to the

area XPD(j>,

Thus the whole, work which the fluid, starting from the

state A and absorbing heat during the operation A CD, is

capable of performing is equal to the area XMACDcj)',

But the fluid in the state A had already the intrinsic

energy XMAcj).

Therefore subtracting this from X2fA CD^\ we find that

the additional energy necessary to render the fluid capable

of performing the work XMACD(f)' is equal to the area

(f>ACDci>',
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Now the only energy supplied to the fluid in addition to

the amount which it possessed in the state A, is that which
it received in the form of heat during the operation A CD.

Therefore the heat absorbed by the fluid during the

operation A CD is equal to the area (j)A CD(f>.

14. Isothermal lines. There is no transfer of heat to

or from the fluid during its expansion or compression ac-

cording to an adiabatic curve, but it must not be supposed

from this that the Sensible Heat, and with it the tempera-
ture of the fluid, remains constant.

It is found that all gaseous fluids, doing work by ex-

panding against external forces without absorbing heat, have
their temperatures lowered in the process.

This indeed might be expected, since energy which
existed in the fluid in the form of heat leaves it and becomes
transformed into external work during expansion.

Let there be applied to the end of the cylinder a body
whose temperature is kept constant. If the external pres-

sure on the piston be now diminished, and the fluid allowed

to expand, its temperature will tend to fall, and heat will

then flow from this external body to the fluid ; and by
making the expansion sufficiently gradual we may keep
the temperature of the fluid as nearly as we please equal
to that of the source of heat. In the same way, if the fluid

be compressed, heat will flow from it to the external body,

and if the process be gradual, the temperatures of the two may
be kept sensibly equal, and the changes undergone by the
fluid during compression will be sensibly the same as those

which took place during expansion, but in the reverse order.

The line by which these operations are represented on
the diagram of energy is called an ' Isothermal Line.' (From
XcFo<;, equal, Oep/jiov, heat, or in this case ' temperature.')

Considerations similar to those from which we found
the general form of Adiabatic Curves, show that Isothermal
Lines also gradually approach the lines OX, OY, as the
distance from increases, but can never touch them.

Also, since heat is absorbed by a gaseous fluid in ex-
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panding according to an isothermal line, therefore its intrinsic

energy will not decrease so rapidly as when the expansion

takes place according to an adiabatic. Hence at the point

where the two curves meet, an isothermal will be more nearly

horizontal than an adiabatic.

15. Camot's Cycle. Suppose now that we have two
bodies B, and S, which can be kept constantly at two fixed

temperatures ; R being at the lower, and ;8' at the higher

temperature.

Let the fluid in our cylinder be at the same temperature

as the body i?, and let its state be indicated by the point

A. Then first let the non-conducting cover be placed on
the end of the cylinder and the piston forced down so that

the fluid is compressed without transfer of heat till its

temperature has risen to that of the body S, the operation

being represented by the adiabatic curve AB.

Secondly, let the cover be removed, the body 8 applied

to the end of the cylinder, and the fluid allowed to expand,

at the same time absorbing heat from the body B so that its

temperature remains constant.

Let this expansion be represented by the isothermal line

BC.
Thirdly, let the non-conducting cover be replaced on the

end of the cylinder and the fluid farther expanded from -the

state G to the state D, but this time without transfer of

heat, according to the adiabatic GB, the temperature falling
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in the process till at D it is equal to' that of the body R, and
therefore the same as in the initial state A.

Lastly, by compressing the fluid, while heat is given

out to the body i?, so that the temperature may remain
constant, it will be possible to complete the cycle, and to

bring the fluid back, according to the isothermal DA, to the

initial state A.

Such a series of operations is called " Carnot's Cycle,"

because Carnot first made use of it in calculating the effects

of heat.

The body S is referred to as the source of heat, and the

body R as the refrigerator.

16. Reversibility of Carnot's Cycle. One important

property of this cycle is that it is reversible; in other

words, the very same series of changes can be produced in

the reverse order, an amount of work being thus performed

upon the fluid, equal to that which was done by the fluid in

the original cycle.

This reversing of the cycle could not have been effected if

in any part of it heat had been allowed to pass from a body
at a higher temperature to another at a sensibly lower one
without performing any external work ; for, as we have
said, the heat could not be returned from the body at the

lower temperature to that at the higher one without an
expenditure of work, and therefore more work would have
to be performed upon the fluid in the reversed cycle, than
was done by it in the original one, and the two cycles would
not coincide.

If the temperatures of the source of heat and of the

refrigerator be constant, 'Carnot's Cycle' and *a reversible

cycle' are equivalent terms, since it is evident that no other

cycle could be performed which should have this property.

17. Quantities of Heat absorbed and rejected in

Carnot's Cycle. In any cycle, since the fluid returns at last to

the state from which it started, none of the heat absorbed

can be permanently expended in producing changes in the

fluid, but all must either be converted into external work, or
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rejected in the form of heat. Thus, if the quantity of heat
absorbed be m foot-pounds, and the heat rejected be n foot-

pounds, the external work performed must be {m — n) foot-

pounds.

Also in a reversible cycle, if the temperatures of the
source of heat and the refrigerator be fixed, the ratio of

the quantities of heat absorbed and rejected is thereby de-

termined. For if not, let two fluids in passing through
reversible cycles with the same source of heat S and re-

frigerator R, absorb m foot-pounds of heat, but let the first

reject n foot-pounds, while the second rejects some other

quantity of heat.

Let this second fluid now pass through another reversible

cycle in which it absorbs as before m foot-pounds of heat

from B, but rejects n foot-pounds to the refrigerator, which
must therefore be a body at a different temperature from
that of B. Let R' be such a body. We have then two
fluids passing through reversible cycles, both receiving m
foot-pounds of heat from a source >S^, and both rejecting n
foot-pounds, but the first giving out heat to a refrigerator R,
and the second to a refrigerator E, where R and R are at

different temperatures.

Suppose that R is at the higher temperature. Now let

the cycle of the first fluid be reversed so that it shall absorb

n foot-pounds of heat from the body R and give out m foot-

pounds to the body S, {m — n) foot-pounds of work being
therefore expended on the fluid during the process.

But by supposition the second fluid absorbs from >Si, m
foot-pounds of heat, the same quantity which the first now
rejects, and gives out n foot-pounds to the body R'\ per-

forming in the process a quantity of work equal to that which
is expended upon the first fluid.

The result of the supposed operations is therefore that

on the whole no work has been expended on the two fluids,

and yet 7i foot-pounds of heat have been transferred from a

body R to another body R' at a higher temperature, which
is impossible.

Therefore the second fluid cannot in a reversible cycle

reject n foot-pounds of heat to a refrigerator at any other
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temperature than that of R, and hence must reject n foot-

pounds to a body at this temperature; that is to say, when
the temperatures of B and R are fixed and also the quantity

of heat to be absorbed, these determine the quantity which
must be rejected.

Let the lines ADF, BCE (fig. 4) be the isothermals of

a given fluid at temperatures equal to those of R and S re-

spectively; and let ABCD represent a cycle in which m foot-

pounds of heat are absorbed, and n foot-pounds rejected.

Let another cycle DGEF be now performed in which a

similar quantity of heat is absorbed; therefore a similar

quantity of heat must also be rejected, since the quantity of

heat rejected is not dependent upon the nature of the fluid.

Thus, in the whole cycle ABEF we have a quantity of

heat equal to 2m foot-pounds absorbed, and 2w foot-pounds

rejected. And the same may be proved of any other

multiple of m and n.

From this it is evident that if the temperature of the

source of heat and of the refrigerator be fixed, the ratio of

the quantities of heat absorbed and rejected in a reversible

cycle is thereby determined irrespective of the nature of the

fluid which performs the cycle.

18. Absolute scale of temperatures. Hitherto we have
only spoken of temperatures as being either equal, or higher

and lower, without considering by how much one tempera-
ture is higher than another. A scale is required by which
to name degrees of temperature and thus to fix a standard
of comparison for the temperatures of bodies which cannot
be directly compared with one another.

Such a scale must of course be consistent with itself, but
is otherwise quite arbitrary. Different scales have been
proposed, and are in use, depending for the most part on the
expansion which accompanies the increase of the sensible

heat of some particular substance. It is desirable for

scientific purposes to have a scale which shall be independent
of the peculiarities of any single substance, and shall have a
definite relation to some property common to all substances.

Of such scales the one which has been found by far the

S. H. 2
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most advantageous depends upon the property of Carnot's

Cycle, which we have just demonstrated. It is called the

scale of absolute temperatures, and may be thus defined.

The numbers expressing degrees of absolute temperature are

proportional to the quantities of heat absorbed and rejected

at those temperatures in a reversible cycle.

ric ^.

Let BA^^ and CD(f)^ be indefinitely produced adiabatic

curves and AD, BG isothermals; then the numbers expressing

on the absolute scale the temperatures of the fluid which
correspond to the isothermal lines AD and BG, are propor-

tional to the indefinitely prolonged areas (f)^AD(j)^ and ^^BG(I>^.

Let these numbers be denoted by Tj and Tg, therefore

Tj _ areac/>^^7)(^2

Tg area<^ji^C^2
*

From this it follows that

Tj — Tj _ area (t)^BC(f>^ — (l)^AD(t)^ _ area ABCD
Tg a^vesi (j>^B C4>2 area (^^i? 0^2*

So that we may put the definition of absolute tempera-

tures into the following form, which is very often useful:

The difference of the absolute temperatures of receiving

and rejecting heat in Carnot's cycle is to th6 temperature at

which heat is received, as the work done in the cycle is to the

whole heat received.
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The essential part of the absolute scale is the ratio of the

numbers expressing degrees of temperature, the numbers
themselves, or, what is the same thing, the size of the degrees

may be fixed arbitrarily. For convenience this is so de-

termined that between two standard temperatures there

shall be the same number of degrees on the absolute scale as

on the scales in ordinary use. The standard temperatures
fixed upon are those of melting ice and of water boiling under
a pressure of 29*922 ins. of mercury, which is the average
atmospheric pressure. On Fahrenheit's scale there are 180
.degrees in this interval, on the centigrade scale 100 degrees.

19. Absolute zero of temperature. Since the ratios of

the numbers expressing degrees of absolute temperature are

fixed, therefore the scale must have a fixed zero point which
will be denoted by t = 0, whatever be the actual numbers
used to express other temperatures. As we approach the

value T = 0, that is to say, as the quantities of heat rejected

in a cycle become smaller, the isothermals approach nearer

to the line OX, and at last sensibly coincide with it, so that

the zero of the absolute scale corresponds to a temperature
at which no substance would exercise any expansive power,

or be capable of performing any work whatever in virtue of

possessing heat. In other words, the temperature t=0
corresponds to the absolute privation of heat.

Of course such a temperature could never be experienced,

but we shall show later on how an estimate is made of the

interval between this zero point and the temperatures with
wiiich we have to deal experimentally.

20. The Thermodynamic function. The property of

a substance which remains constant throughout such changes
as are represented by an isothermal line is the temperature.

A scale has now been established according to which we
may denote any difference of two temperatures by a defi-

nite numerical value.

In the same way that property of a substance which re-

mains constant throughout the changes represented by an
adiabatic curve is called the Thermodynamic function.

2—2
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A scale is required according to which we may express

differences of Thermodynamic function by definite numerical

values, just as differences of temperature are expressed.

As in the measurement of temperatures, so here any
arbitrary scale might be taken, but the only one which can

be of use to us is determined as follows:

The difference between the numerical values of the ther-

modynamic /mictions correspojiding to any two adiabatics

is equal to the quotient of the number of foot-pounds of heat

absorbed or i^ejected in passing according to any isothermal

line from one of these adiabatics to the other, divided by the

number denoting the degree of absolute temperature corre-

sponding to that isothermal.

Let BA<j)^, CI)(f>^ (fig. 5) be adiabatics, and let </>j, cp^

represent the numerical values of the thermodynamic func-

tions to which they correspond. Also let AB, BC be isother-

mals corresponding to the temperatures t^ and r^.

Then by definition

i\ B'Tesi (h^ADcf) SLTesL^^BGcj)

(92 -9i)= ^ =
,:

•

Therefore the quantities of heat absorbed and rejected in

the operations, BG and DA are equal to T^{<f)^ — (j)^ and

•^1 (</>2 - ^d respectively.

From this it follows that

area^^OT=(T,-Tj(c^,-(^J,

or, the work done in Carnot's Cycle is numerically equal to

the product of the difference of the temperatures multiplied

into the difference of the thermodynamic functions of the

fluid during the operations.



CHAPTER III.

SPECIFIC HEAT AND EVAPORATION.

21. Heat absorbed at constant volume. Consider now
the communication of heat to a substance while its volume
is kept constant.

The only case with which we have to deal is that in

which the substance tends to expand with heat, and since

this tendency is restrained there must evidently be an increase

of pressure. Thus, on the diagram of energy, the changes

produced will be represented by a straight line parallel to

OF, and whose length represents this increase of pressure.

Since there is no expansion therefore no external work
is performed in the process, and the whole heat absorbed

goes to increase the intrinsic energy of the substance, as is

evident from a figure.

All known substances, have their temperatures raised by
absorbing heat at constant volume, such rise being denoted

on the diagram of energy by the intersection of the line re-

presenting the changes produced, with successive isothermals

corresponding to higher temperatures.

The numerical ratio of the quantity of heat abscfrbed by
one pound of the substance, to the difference of temperature

produced in the process, is called the Specific Hictt at

constant volume of the substance ; and when the quantity

of heat is expressed in foot-pounds, as has been done here,

the ratio is called the Dynamical Specific Heat at constant

volume. This latter is usually denoted by the symbol K^.

Since the ratio is not constant for all states of a sub-

stance, it is necessary that the changes produced in the
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operation from which it is calculated in any particular case,

should be so small that the ratio does not sensibly alter

throughout them, and in giving the value of the specific

heat, the state of the substance durino^ these chano^es should

be also given, if the statement is to be accurate.

22. Heat absorbed at constant pressure. Take next

the case of a substance receiving heat at constant pressure.

This is the most usual condition under which the effects

of heat are observed, since the changes of pressure necessary

to modify sensibly its effects upon solids and most liquids

would be very great; and it is found that even in gaseous

fluids, those changes can be most accurately observed which
take place at constant pressure.

On a diagram of energy such changes are of course re-

presented by a straight line parallel to OX, whose length

corresponds to the change of volume which takes place, and
whose distance from OX represents the intensity of the con-

stant pressure.

The external work done during the operation is equal to

the product of the pressure into the increase of volume. If

the volume decrease, work must have been done upon the

substance durinor the changre.

Most substances, and probably all, in passing through

certain states, absorb heat at constant pressure without having

their temperature raised, until a certain definite quantity of

heat has been absorbed.

When heat does produce an alteration of temperature in

a substance, the ratio of the quantity absorbed to the rise in

temperature is called the Specific Heat at constant pres-

sure of the substance, or when the quantity of heat is

expressed in foot-pounds, the Dynamical Specific Heat at

constant pressure. This is generally denoted by the sym-
bol Kp.

The specific heat at constant pressure, like that at con-

stant volume, varies in different states of a substance : hence

the changes produced in the operation from which the spe-
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cific heat is calculated, must be so small that the ratio is

sensibly constant throughout.

When the specific heat of a solid or liquid is spoken of,

the specific heat at constant pressure is to be understood, as

it is not generally possible to observe or calculate the specific

heat at constant volume, except in the case of gases.

23. Joule's Equivalent. Specific Heat is termed Drj-

namical when the quantity of heat considered is expressed

in foot-pounds, because the older unit of measurement was not

the foot-pound, but that amount of heat which, acting on a
pound of water at or near its temperature of greatest density,

will raise its temperature through one degree Fahrenheit.

This quantity of heat is still called the British Thermal
Unit, and when expressed in foot-pounds, is numerically

equal to the Dynamical Specific Heat of water at or about
its greatest density, which is found to be at a temperature of
39 '1 Fahrenheit. The British Thermal Unit is equivalent to

772 foot-pounds of heat.

Hence, if the Specific Heat of a substance, according to

this unit, be given, the Dynamical Specific Heat is found by
multiplying it by 772. This number is known as Joule's

Equivalent, because it was first accurately determined by
the experiments of Dr Joule.

24. Dilatability. When the temperature of a substance
is raised by the absorption of heat at constant pressure, there
is another relation to be considered, namely, the ratio of the
change of volume of one pound of the substance to the rise

of temperature. This is called the Dilatability.

Like the specific heat, the dilatability is not constant for

all states of a substance, and therefore it must be calculated

for any given state of the substance from changes which are

so small that throughout them the ratio does not alter

sensibly.

In any given state of a substance the dilatability is nu-
merically equal to the ratio of the difi'erence of thermodynamic
function to the corresponding difference of pressure when the
substance undergoes any very small change according to an
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isothermal line, but these ratios have opposite signs, the one
being positive when the other is negative. This may be
proved as follows.

Let figure 6 represent, on a large scale, a small portion

of the diagram of energy. Let a pound of the substance be
initially in the state A, and let its pressure and volume be
equal to p and v respectively.

Also let BA(j), ADt be the adiabatic and isothermal

through A^ and let them correspond to the thermodynamic
function </> and the temperature t.

Let AB represent a very small compression of the sub-

stance without transfer of heat, during which the tempe-
rature undergoes the very small change from t to t\ and AD
represent a very small expansion at constant temperature,

during which the thermodynamic function increases from </>

to (p' , and the pressure falls from p to p.

\n \C
FIC.Q

\\ \\ M
jj

^i^x-.\ \
/. \ ^ ^\^

v'

V \ ^V^
\ Ti

Let BCt and CB(^' be the isothermal and adiabatic for

the temperature t, and thermodynamic function <jfe'.

The differences (r' - r) and ((/>' -
<f>)

are supposed to be so

small that the isothermals and adiabatics of the figure are

sensibly parallel straight lines throughout that part of their

length which is under consideration.

Through D draw a straight line KBL corresponding to

the constant pressure p and cutting the isothermal for tem-

perature T in K.
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Through A draw AL a. line of constant volume v to meet
KDL in X, and AM a line of constant pressure p to meet
BCt' in M.

Through M draw ilO/" a line of constant volume to meet
KDL in -?^, and let the volume represented by it be v.

Then AM is the increase of volume (v — v) which takes

place during a rise of temperature (t' — t) at constant pres-

sure p.

1/ —~ v ,

Thus -7 is the dilatability of the substance in the

state A.

Also AL is the fall of pressure {p —p) which accompanies

an increase of thermodynamic function (<^' — (/>) at constant

temperature r.

Therefore , or -,

—~ is the ratio which is to be
p-p

. PrP
proved equal to the dilatability.

Now the parallelogram ABCD is equal to the parallelo-

gram AMKD on the same base AD and between the same
parallels AD, BK.

Again, this parallelogram ADKM is equal to the rect-

angle ALNM upon the same base ^J/and between the same
parallels AM, LK.

Therefore the rectangle ALNM is equal to the paral-

lelogram ABCD,

But ABCD represents one of Garnet's cycles, and its area

is therefore equal to (t — t) (<^' — </>).

Therefore the rectangle (AL) (AM) = (t - t) (<^' - <p).

But AL = p —jy and AM= v — v.

Therefore (p —p) {v —v) = (r — r) (^' — <^), and therefore

—, (p = const.) = — ,
^

, (r = const.) Q.E.D.
T —T -^ ' p — p ^ ^

The geometrical proof of the proposition is taken from
Professor Maxwell's Theory of Heat,
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25. Evaporation at constant pressure. It has been
mentioned that under certain conditions substances may
absorb heat at constant pressure without having, their tem-
peratures raised in the process. This takes place during the
change of the substance from the solid to the liquid state by
fusion, or from the liquid to the gaseous state by evaporatiou.

The latter is the process which is of importance in the

present connexion.

Keturning then to the pound of fluid contained in the

cylinder as above described, suppose for the moment that it

is all in the liquid state under a given pressure p.

If this pressure be maintained constant while heat is

communicated, the temperature will continuously rise until

it reaches a certain point, which is the highest that the par-

ticular fluid under consideration can attain at pressure p
without passing into the gaseous state.

This is called the Boiling Point of the fluid at the given

pressure.

Let the volume of the liquid be now equal to Vj^, and let

its state be represented by the point B on the diagram of

energy (fig. 7).

If a farther quantity of heat be absorbed while the pres-

sure still remains constant, a portion of the fluid must be

converted from the liquid to the gaseous state, and as all

known fluids expand in undergoing such a change, the total

volume of the contents of the cylinder will thus be increased.

At the same time there will be no alteration in the tem-

perature of the fluid and, in fact, that part of it which is not

evaporated will undergo no change whatever.

If yet more heat be absorbed the portion of the fluid

which has been evaporated will remain unaltered, but a

farther portion will be evaporated, and the process may be

continued until at last the whole pound of fluid has been

brought into the state of gas.

Let its volume then be equal to Vg, and its state be repre-

sented by the point S on the diagram.

A gaseous fluid while in the state which it assumes im-

mediately on evaporation is known as Saturated Vapour,
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When a fluid is undergoing evaporation or condensation

it does not generally separate itself at once into two distinct

parts, the one liquid and the other wholly gaseous; but small

drops of liquid are held in suspension in the vapour for some
time, causing the well-known cloudy appearance among
vapours which are themselves transparent gases. These

small drops tend to settle upon and damp the surface of any
solid cooler than themselves with which they, come in con-

tact. To mark its freedom from any such admixture of

li(|uid, a fluid in the state S is called 'Dry' Saturated

Vapour.

On the other hand, fluid which is passing through an

intermediate state between B and 8 is sometimes spoken of

as Supersaturated Vapour; not that the vapour itself is in

any way ditferent from dry saturated vapour, but to mark
the fact that it carries with it small drops of liquid in sus-

pension.

If after the fluid has arrived at the state S, it absorb any
more heat at constant pressure, the whole mass will be capa-

ble of simultaneous alteration, and its temperature will rise

in the usual manner.

The fluid is then called Super-heated in contradistinction

to 'Saturated' vapour.

26. Latent Heat of Evaporation. It was in the process

of evaporation at constant pressure tliat it was first observed

that heat might be absorbed by a substance without producing

any rise of temperature ; and as the nature of heat was not

understood, the whole heat absorbed was supposed to lie

hid in the vapour, no account being taken of the external

work performed during the process, which is evidently equal

to {Vg—Vi)) p. Hence the name Latent Heat of Evapora-
tion was applied to the whole amount of heat which disap-

pears in the process of evaporation at constant pressure, and
the name is still retained for convenience, although it would
perhaps have been more accurate to have applied the name
only to that part of the heat which actually remains hidden
in the vapour, having been absorbed in performing internal

work during the operation.
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Taking the term however in its accepted sense, let L be
the latent heat at pressure p of the pound of fluid, and let

e be the quantity of heat which actually effects the evapora-
tion by performing internal Avork. Then since the external

work is equal to (Vg— V^) p, and there is no increase of

sensible heat ; therefore

L = e-h{V,-V,)p.

Putting Vs — Vj) — u, so that u denotes the change of

volume undergone by one pound of the fluid in the process

of evaporation, we get

L = e +pii.

The quantity of heat represented by e will be referred

to as the Internal Heat of Evaporation.

Since the process of evaporation is effected not by a
simultaneous alteration of the whole mass of fluid, but by
successive alteration of small portions, therefore it is evident

that any portion xL of heat will evaporate a portion a? of a

pound of fluid and produce an alteration of volume, equal to

au cubic feet, and other effects in the same proportion.

27. Relation of L to the pressure, temperature an d
volume. A relation between the latent heat of evaporation

and the pressure, temperature and change of volume of a fluid

may be found as follows.

14'

r

FIG.T.
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a> A<X^^ sr-~—-r/

d X

Let J ^/S'2" and A'B'S'T be two isothermals correspond-

ing to the temperatures t and t where the difference

(r — T ) is very small.

Let the portions BS and B' 8' represent the changes

undergone by the fluid during evaporation at the constant

pressures jo and p\ then^ —p will also be very small.
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In BS take two pointsM and iV representing the volumes

V and v\ where (v' — v) is again very small, and through M
and N draw adiabatics MM' and NN' cutting FS' in 31'

and N'.

Since the interval between these adiabatics, and the

length of the portions MM\ NN' with which we have to deal

are very small, we may consider MM' and iW as sensibly

parallel straight lines. Therefore the area MNN'M' is sen-

sibly a parallelogram and its area equal to {p — p) (v —v).
And this is equal to the work done in the cycle MNN'M',

Also the heat absorbed in the expansion from M to N
is proportional to the change of volume effected, and is

equal to

MN
J.

V —V J

But the work done in a reversible cycle between the tem-
peratures T and T is to the heat absorbed at temperature

T as T — t' is to T. Therefore

{p —p) (v —v) _T — T

u

therefore L — t ~—
, u (1),

T —

T

an equation which is true only when the quantities p—p
and T — t' are very small.

28. Curve of Saturation. Let a series of isothermals be
drawn, as A^B^S^T^, A^^B^S/f^, ... (fig. 8) of which the por-

tions A^B^, A^B^,... represent the changes of pressure and vo-

lume of the fluid at constant temperature in the liquid state,

B^S^, B^8^, ... the process of evaporation, and S^T^, SJl^^, ...

the expansion of the super-heated vapour at constant tem-
perature. A curve drawn through the points S^, 8^, ... will

represent the changes which may be undergone by the fluid

while it remains entirely in the state of saturated vapour.
It is therefore known as the Curve of Saturation. The
volume of all fluids in the state of saturated vapour decreases
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as the pressure and temperature increase, and thus the curve
of saturation slopes downwards from left to right, as shown
in the figure.

On the other hand, the volume of every liquid at the
boiling point increases with the pressure and temperature.
Therefore a curve drawn through the series of points

B^j B^,... will slope in the opposite direction to the curve
of saturation, and the two will approach each other as the

pressure increases, and at length meet. The physical in-

terpretation of this is that at a certain temperature the
liquid and gaseous states become continuous, there being
no marked separation, such as that observed in the ordinary

processes of evaporation and condensation, between them.
This is called the Critical Temperature of the fluid. Above
this temperature the fluid retains the properties of a gas

under any pressure however great.

It is supposed that the permanent gases resist conden-

sation into the liquid form, because the lowest temperatures

which we are able to produce are still above their critical

temperatures.

For certain substances the critical temperature has been
accurately determined, for instance, that of carbonic acid

is at ST*?*^ Fahr., and the corresj^onding pressure of saturation

is about 74 atmospheres.

There are a few substances, however, which can readily

be brought to the critical temperature. Water reaches it

at about 773° Fahr. The corresponding pressure of satura-

tion has not been yet determined ; but both temperature

and pressure are far higher than those met with in the

practical applications of steam.

29. Curves of constant weight of vapour. When a

pound of fluid, instead of being all in the state of liquid or

of vapour, consists of a mixture in which there is a given

weight of each, its changes may be represented by a Curve

of constant weight of vapour.

Let X be the proportion of vapour ; then the volume of
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tlie mixture is evidently equal to cpF, + (1 — x) F^, and there-

fore to \\ 4- ^ (F. - V,) or V, + xu.

A '

IA* /

Uf
t

1

Ij / FIG 8

j|fl»

\
\

\
\

\C3

^ -ra_
-r*

fs* . ^
^

fa.
-^C' ^/ -t;

Hence if the form of the curves B^B^... and S^S^... be
known, that of C^G^... the curve of constant weight x of

vapour can at once be found by making

SA ACr._
B^i^^ BA

— X.

If these curves are considered as a series, the curves

B^B^.,. and S^S,^... may be looked on as the limits of the

series when x = i) and x = l respectively.



CHAPTER IV.

HYPERBOLIC AREAS.

30. Hyperbolic areas. In order that we may obtain

our results without being dependent upon the methods of the

Calcuhis, it is necessary to obtain a geometrical solution of

a problem which is usually solved by integration.

We shall have frequent occasion to refer to it in our

calculations, and may state it thus.

Frohlem.

Let OX, F be two straight lines intersecting at right

angles in 0. Let AB be a curve such that the perpendi-

cular distance of any point in it from the line OX is in-

versely proportional to the n^^ power of the perpendicular

distance of the same point from the line Y.

flG.9,

OX.
Let A2[, BX be straight lines drawn perpendicular to
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It is required to find an expression for the area of the

space included between the curve, the line OX, and any two
lines such as AM, BN drawn perpendicular to OX.

Divide the straight line MN into any number m of equal

parts ; let RS be one of these parts, and through R and /S'

draw RPy SQ parallel to OY to meet the curve in F and Q.

Through A, P, ft B draw AK, FT, QU, BL parallel to OX
to cut OY in K, T, U and L, and let BL cut AM in the

point W,

Put AK=x^, AM=y^,

BL = x^, BN^y^,

ON x^= — = r.OM x^

Also FT=^x, FR = y,

QU = x\ QS^y.

Since P is a point on the curve we have by supposition
G

y=-n, where c is a constant. Hence the rectangle FT. TUX

OTx{y- y) is equal to ex ( -^ 7^)

.

\X X J

In the same way the rectangle Q8 . 8R or

y' {x--x)=-^,{x -x).
X

Dividing one by the other we get

FT, TU_ X {y^y') "" \x^
" ^"j

(1).

S. H.

QB.SR ' y{x--x)~ 1 / ' N

x'^x'' 1 ^'•-aj"

1 , , , a;"-*" X--X "'•'
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Now x"'=[x-\-{x -x)Y,

and this expanded according to the binomial theorem be-

comes

ic'" =aj" + wo;"-^ [x' - a?) + "^i^^) aj""^ {al - xf +
I-

Substitnting this value of a;'" in equation (1) we get

By increasing tw, the number of parts into which MN is

divided, each of these parts can be made as small as we
please, and may ultimately become less than any assigned

limit. And when {x — x) becomes indefinitely small the

higher powers, {x — xf and others, become indefinitely small

in comparison with (x' — x). Thus the series

nx"" '-\-—T^—^ a;" ' {x - ic) + ...

may be made to differ from wa;""^ by a quantity less than

any given limit, and is ultimately equal to nx"" \

Substituting this value for the series in equation (2) we
have

PT.TU ^

when SR and therefore TU are very small.

There are then a series of m rectangles of which PT. TU
is the type, and another series of m corresponding rectangles

of which QS. SB is the type, and each rectangle of the first

series bears to the corresponding rectangle of the second

series the ratio n to 1. Therefore the sum of the first

series is equal to n times the second series of rectangles.

But as m is increased and SB diminished indefinitely,

the area of the rectangle QS . SB approaches to equality with

the area BPQS and may be made ultimately to differ from

it by a quantity less than any given quantity, and the same

is true of each of the other m — 1 rectangles of the series.
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Therefore in the limit when m is indefinitely increased,

the sum of the series of rectangles of which Q8 . SR is the

type, becomes equal to the area MABN.

And in the same way the sum of the series of rectangles

of which PT. TU is the type, may be shown to be ultimately

equal to the area KABL.

mi p area KABL

Therefore

areaKABL - areaMABN
area MABN = 72-1,

areaMABN=-^^ (area KABL - area MABN)...{Z),

it area KABL — x^i^^ — y^ + area ABW,

id area MABN= y^ {x^- x^ + area ABW,

Therefore, from equation (3),

area MABN^~ {x, (y^-y^) -y, {x, - x,)],

area MABN^"^^^^^ (4),71—1 ^ ^

or again,

^e.MABN=^^{^^-^:) (5).

Equation (4) may be put in other forms by writing

^1

for instance,

r"-»-l
area MABN^:.^,\^f—\ = x,y,^-^ (6).

3-2
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The results of equations (4) and (5) are perfectly general,

and true whatever may be the value of n, but when n is put
equal to unity the expressions take the indeterminate form

TT , and must be put into another shape to be of any use.

In order to effect this put r""' = {1 + (r- 1)}""*, and
expand according to the binomial theorem ; therefore

r'-' = l+(,.-l)(r-l)+^"-^^"-')(r-l)'

Substituting this value in equation (6),

area MABN = x^^ \{r-\)+"^^ (r - 1)'^

which is true whatever be the value of n.

Therefore putting ti = 1 in this equation,

area MABN= x^A{r'-l)-^—^ + ^ ^
^ - ^-^ + ...k

where the series is the well-known one for the Naperian
logarithm of r. (See Appendix.)

Therefore area MABN= x^y^log^r, when n = l. But
by hypothesis the curve AB is such that for every point

Hence xy = c= x^y^, when w = 1.

And therefore

areaif^J5iV=cloger (7).
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And thus the required expression has been found for the

area in all cases. Q.E.F.

31. Small quantities of the form —s—

•

Corollary. It has been shown in the course of the

foregoing solution that the area MABN is equal to the sum
of the series of indefinitely small parallelograms of which

Q8 . SR is the type, and which lie between the limits OM
I^-_and ON, This series is ultimately equal to the series of

^small parallelograms of which PR . RB is the type.

Now the value of QS . SR is y' {x —x)otc.—7^- ; and
X

the value of PR . RS is y [x —x)otc,—„
— •

The limits OM and ON are equal to x^^ and x^ respec-

tively, and the area MABN is equal to

n-1

or if 71 = 1, then

{cc^'
" ^^) ' ^^ equation (5)

area MABN = c log.— , by equation (7).

Therefore, in all cases, the sum of the whole series of

£C 'T* O* ^— Of*

indefinitely small quantities of the form —;j— or

included between the limits x =

is equal to

which are included between the limits x = x^ and x^x^^

n-l V<"' <"V

'

X
or if 71 = 1, the same series becomes equal to loge —

.

Of course the successive terms of the series must be of

the forms

X —X X —X
X
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or else ~lr~ "^ "^^ '^ " "

We have supposed, for convenience, that the successive

quantities {x" — x), (x —x),.., are all equal, but this is not

necessary. In order that the sum of the series may have

the above values it is sufficient that the quantities (x" — x),

[x —x),,,. be each indefinitely small, and that their sum be

equal to x^ — x^.



CHAPTER V.

A PERFECT GAS.

32. Hjrpothesis of a Perfect Gas. We have now con-

sidered tlie most important of the thermal relations which

hold universally for all fluids when they are either partly or

wholly in the gaseous state.

In order to obtain special results from these general

relations, it will be necessary to have some more particular

knowledge of the properties of the substances dealt with,

than is included in the general definition of a liquid or

gaseous fluid.

As the simplest case we take first the calculation of the

thermal relations of an hypothetical substance which is

spoken of as a Perfect Gas.

The hypothesis may be stated thus.

In any given volume of a perfect gas, the pressure, the

sensible heat and the internal work bear constant ratios to

the whole quantity of heat which the gas possesses, that

is to say, are proportional to its intrinsic energy, and are

independent of the weight of gas which may be present in

the given space.

If the gas contained in any given volume, have {h + k)

foot-pounds of heat of which k foot-pounds are sensible heat,

and have in consequence a pressure p, then the gas contained
in n equal volumes at equal pressure p must have n{h + k)

foot-pounds of heat of which 7ik foot-pounds are sensible

heat. Therefore the intrinsic energy and sensible heat of

any quantity of a perfect gas are proportional to the volume
it occupies when the pressure is constant.
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But this energy and sensible heat are, by hypothesis,
proportional to the pressure when the volume is constant.

Therefore, in general, the intrinsic energy and sensible

lieat possessed by any quantity of a perfect gas are propor-
tional to the product of the volume it occupies multiplied

into its pressure.

33. Relations of the Adiabatic Curves. Let A and B
represent two states of the gas at equal volume, and at pres-

sures p and np respectively. Let BAK be the line of con-

stant volume cutting OX in K, and let A Ccj) be the adiabatic

through the point A,

Through B draw a curve BDcf/ such that if any line

DCL be drawn parallel to OY cutting the curve BBcp^ in I),

the adiabatic AC(j) in C, and the line OX in L, then

DL_BK
CL~ AK n.

Therefore the indefinitely prolonged area XKBj) is to the

area XKA(j> sls BK to AK,

Hence the area XKB(j) represents the intrinsic energy

of the gas in the state B. Therefore in expanding according

to the curve BD<f>\ the gas must on the whole absorb as

much heat as it rejects. Suppose then that in expanding

to a given state D it absorb a certain quantity of heat, it

follows that in expanding according to the curve Dc^) it must

reject an equal quantity of heat. But this is impossible, for

the area XLB<f) is to the area XLCcj) as LI) to LG, and

therefore the area XLD(f> is equal to the intrinsic energy
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of the gas in the state D. Therefore at no part of the curve

can the gas either absorb or reject heat,, in other words, BD(f>'

is the adiabatic through the point B.

Hence if any two adiabatics be drawn, and also lines of

constant volume as KAB and LCD cutting them in A^ B
and G, D, and the line OX in K and L, then

CL ^DL
AK BK '

therefore

AK-CL _ BK- BL
AK ~ BK '

Or, when a perfect gas is expanded from one given volume
to another according to an adiabatic curve, the fall of pres-

sure is proportional to the initial pressure.

Again, let A and B represent two states of the gas in

which the pressure is p^ and the volumes v^ and nv^ re-

spectively.

and

Let BAK be the line of constant pressure p^, and let AG
be the adiabatic through the point A. When the gas is

expanded to the state (7, let the pressure and volume be

The gas in the state B may be considered as consisting

of n volumes each equal to v^, and since, by hypothesis, the

actual weight of gas in each equal volume does not affect the

pressure and intrinsic energy, therefore each of these n

volumes may be considered to contain - th of the quantity

of gas whose state is represented at A, and yet the expan-
sion of each, according to the adiabatic curve, will be exactly
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the same as that represented by A 0. Thus, when the gas
has been expanded till the pressure has fallen top^? each of

the n volumes will have increased to v^. Therefore, if BD
be the adiabatic through B, and D CL the line of constant

pressure through G cutting BD in D, we shall have

DL BK
GL'^^'AK'

therefore also

GL DL
AK~ BK*

and therefore

GL-AK DL-BK
AK BK

That is to say, when the gas is expanded according to an
adiabatic curve from one given pressure to another, the in-

crease of volume is proportional to the initial volume.

Thirdly, let A and a represent any two states of the gas

for which the pressures and volumes are P, F, and jp^ v,

respectively. Let A<pj^ and acf)^ be adiabatics, and let B
be any point on the adiabatic -4^^.

A

cK\\^«o
^^^^^^^^Tt"^

^0*

X

If the pressure and volume in the state B be mP, nV,
we shall prove that on the adiabatic a(f>^ a point may be found

for which the pressure and volume are mp and nv.

Let G be the intersection of the line of constant volume
through A with the line of constant pressure through a.

Therefore the pressure and volume in the state G are p, V.
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Through C draw the adiabatic C<^\ and through B
draw BB parallel to F to cut (7</)' in D. Also through D
draw Dh parallel to OX to cut a(^^ in h.

Then the volume at the point D is equal to the volume

at the point B, namely n V.

And since AB and CD are adiabatics and that the pres-

sures at A, B and G are P, mP and p respectively ; therefore

the pressure at the point B is equal to mp.

Again, the pressure at the point b is also mp, and because

CD and ab are adiabatics and that the volumes at the points

C, D and a are V, nV and v, respectively ; therefore the

volume at the point b is nv.

Thus a point b has been found on the adiabatic through

a for which the pressure and volume are mp and nv. Q.e.f.

Corollary. Now whatever be the ratio of the initial

intrinsic energies in the two expansions AB and ab, the final

intrinsic energies will have the same ratio ; since

PV^ mP.nV
pv mp . nv

It follows that if the intrinsic energies of the gas in any
two states be equal, and if in expanding from these two
states according to the adiabatic curves the gas perform equal

quantities of work, so that the intrinsic energies at the end
of the expansion are again equal, then the fall of pressure

during these two expansions will be proportional to the

initial pressures and the increase of volume proportional to

the initial volumes.

34. Isothermal Lines. Equal quantities of sensible

heat are those which produce equal temperatures in equal

weights of any particular substance. But, by Art. 32, the

sensible heat of a perfect gas is constant when its intrinsic

energy is constant. Therefore if a given weight of a perfect

gas undergo any series of changes in which the product of its

pressure and volume does not vary, the temperature will

remain constant. That is to say, the isothermal lines of a
perfect gas are curves for which pv = constant.
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Such a curve is known in geometry as a rectangular
hyperbola, and the lines OX, OY on the diagram of energy
are its asymptotes.

Let AB be part of an isothermal line, and let the pres-

sures and volumes of the gas in the states A and ^ be p^, v^

and jL>2, ^2* Thus for any point on the curve

FIC.I3:

Draw AK, BL parallel to OX to meet Y in K, L and
draw AM, 5^ parallel to 07 to meet OX in M, N,

Then we have shewn above that

area MABN^p^^ (loge v^ — log^ vj

= i?l^l loge ^' = i^iV, loge ^ ,

and area MABX is equal to the work done by the gas in

the expansion from A to B according to the isothermal line.

It is evident also that in the same way

area KABL =p^v^ (logei?i - logei^J

=i^A lc>ge — = area MABN,
P^

Again, since in the expansion AB the gas performs the

work MABN, and that nevertheless its intrinsic energy is

unaltered

:
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I

Therefore the heat absorbed during the expansion must

be equal to the work done.

Let <^j, (^2 ^® ^^® thermodynamic functions at A and B,

and T the temperature corresponding to the isothermal AB.

Therefore the heat absorbed in the expansion is t (^j- (/>J.

Therefore

-^
{<t>.

- ^i) =Pi'^i loge
!; = Pi'^i ^^g«^'' .(1).

35. Absolute Temperature. Equal quantities of sen-

sible heat acting upon equal masses of any given substance

produce, as we have said, equal temperatures ; but since our

scale of temperature is arbitrary, it still remains to be proved

that it is so constructed that proportionate quantities of

sensible heat acting on equal masses of a perfect gas produce

proportionate temperatures, that is to say, temperatures

denoted by numbers having the same proportion as the

quantities of sensible heat ; this we proceed to do.

Let AB, CD be isothermals corresponding to the tem-
peratures T and r, and let A G, BD be adiabatics for which

the thermodynamic functions are (p^ and cp^.

Let the pressures and volumes for the points A, B and C
be />j, v^\ p^, v^, and mp^, nv^. Because AB and CD are iso-

thermals, therefore the intrinsic energy of the gas in the

state A is equal to that in the state B, and again the

no. 14.
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intrinsic energy in the state G is equal to that in the

state D.

Therefore, if the gas be expanded according to the adia-

batic curve A G, and again according to the curve BB, the

fall of pressure and increase of volume in the two expansions

will be proportional to the initial pressures and volumes
respectively.

Therefore the pressure and volume for the point D are

Now PjV^ loge — is the work done in expanding from

Ato B according to the isothermal AB, and the heat absorbed

in the expansion is t (</>2— ^i)»

.
Therefore

In the same way from the expansion GB we get

mp, . nv, log,^ = t'
{(f>,

-
(^J,

or mp,.,71V, log, ^2 == t'(.^,-<t>^

Therefore

^
T = i'.^i =. PA
t' mp^ . nv^ mp^.nv^'

or the numbers expressing the temperatures of a perfect gas

are proportional to the products of the pressures and volumes

of the gas at these temperatures.

But the quantity of sensible heat in the gas is also pro-

portional to the product of the pressure and volume.

Therefore different quantities of sensible heat acting on

a given quantity of a perfect gas produce proportionate

absolute temperatures.

Since temperatures are proportional to the products of

the pressures and volumes in a perfect gas, therefore if
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Pof ^o» "^0 ^^ ^^^ pressure, volume, and temperature in any-

given state wliicli may be taken as a standard, then in all

other states of the gas

This is the fundamental equation of perfect gases, and
indeed they are often defined as being substances for which
such an equation holds good ; the only other essential

character of a perfect gas being that its Specific Heat is con-

stant. This we proceed to prove.

36. Specific Heat. The Specific Heat of any substance
at constant volume, is the ratio of the change of its intrinsic

energy to the change of temperature at constant volume
(see § 21, p. 21). But in a perfect gas the intrinsic energy
bears a constant proportion to the temperature. Therefore
the Specific Heat at constant volume is constant.

To find the relation between the specific heats at constant

volume and at constant pressure ; let A and B be two
points on a line of constant pressure p^, for which the volumes
and temperatures are v^, r^ and v.^, r^.

FIG .13.

Through A and B draw AM, BN parallel to OF to meet
OX in M and N.

Through A draw the isothermal A C cutting BN in C,

and through A, B and G draw the adiabatics Ad)., B6.,

0<t)\
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Let tlie specific heat at constant volume be denoted by
K^, and the specific heat at constant pressure by /i^.

Therefore

jjr area<^'CT<^2 j^ , . ,> n-oj.K^ = ~_ ~ , or I\ (tjj - T^ = area ^ CB^^.

In the same way

^ area 4) AB(^
, a -n,K =

^ _^ >
or K^ (t, - tJ = area <j>,A^(t>,.

But the area ^^ABcf)^ is equal to the sum of the three

areas (j)^ACcj)\ ABCsmd cp'CBcf)^, and of these the area (jy^ACcf)'

is equal to the area MACN, since one represents the heat

received and the other the work done in the expansion AC.
To each of these add the area ABG.

Therefore area <^^^C</)' + area ^4^(7 = rectangle MABN.
Therefore area <f)^AB(f)^-=^rQcidiXig\Q iIO^i\^+area (^' CB^^,

and therefore

K,{t,-t,)=p,(v,-v^)+K^{t,-t,) (1),

but p,v, =^^ T„ and p^v^ =P^ T„

so that ^.(^-^0='^^°(T,-r.).

Substituting this in equation (1) and dividing out by

(^a-Tj, we get

K^ =m + K, (2).

Since -^-^-^ is constant as well as K^, this equation shows

that Kp is also constant. Q.E.D.

We may put (2) in the form

i'o^.
•^0

=A>ir, (3)
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K^
or, if we denote tlie ratio -^ by the symbol 7 we may write

for equation (3)

1) w.—=-^.(7
To

i
87. Differences of Thermodynamic Function. Let^

nd B be two points on a line of constant volume for which
he pressures, temperatures, and thermodynamic functions

are_p,, t^, 0„ and^^' '^2' <^2' respectively.

Let the straight line AB h^ divided into any num-
ber n of equal parts of which PQ is one, and let the pres-

sures, temperatures, and thermodynamic functions in the

states P and Q be 'p, r, </> and 'p\ r, (j)'. Through A, P, Q and'

B draw the adiabatics JL</>^, P^, Qcj)' and B^.^, and through P
draw the isothermal Pli cutting the adiabatic Qcj}' in P.

The area

and area

<fPPf=T(^'-<^),
^PQ0' = /C(t'-t)

But if n, the number of parts into which AB is divided,

be increased indefinitely, and thus each part such as PQ
be indefinitely diminished, wema}^ make the area ^PB(f>'
as nearly as we please equal to the area (pPQcj)', so that
ultimately,

S. H, 4
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or. 4>'-<j> = K,'L^ (1);

an equation whicli holds only wlien the differences (j>—(j>

and T —T are very small.

In order to find the relation which holds between (^ and r
when these differences are considerable we must take the
sum of a number of such quantities.

Now the sum of all the n quantities of the form {cf/ — (j>)

between the limits <j)^ and <f}^
is evidently equal to

{(f>^
— ^J.

And by Art. 31, p. 37, the sum of the n quantities of the

form between the limits r^ and t^ is equal to lege— , or,... "^1

smce the pressure varies in proportion to the temperature,

tolog/-^
Pi

Therefore

i'f>,-<l>,)
= Klog.l^ = K,\og.^ (1),

"when the volume is constant.

Again, if in any two states of the gas the temperature t
IS the same, w^hile the pressures, volumes and thermodynamic
functions are p^, v^, 4>^, and p^, v^, <j)^ respectively, we have by
equation (1) of Art. 34, p. 45,

T {i>,
-

<^i) ^i'i^i loge^ = p^v^ log, 2i

.

Therefore (^^_<fj =^log.l^

but ^^ = ^^""-^ = i?; _ z;, by Art. 36.

Therefore

('^.-<^.) = (^,-^,)log.J'=(^,-^.)log.| (2),

when the temperature is constant.
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By combining equations (1) and (2) we can find the

difference of the thermodynamic functions for any two states

of the gas.

Let A and B represent any two states of the gas for

which the pressures, volumes, temperatures and thermo-

dynamic functions are jp^, v^, r^, ^j, and p^tV^y r^, (j)^.

Through the point A draw the isothermal AC, and
through B draw BC parallel to OF cutting the isothermal

AG in G.

Let (j/ be the thermodynamic function for the point G,

and through AB and G draw the adiabatics -4^^, Bcp^, C<f>\

Then since -4 (7 is an isothermal, therefore

*'-*x=(^p-^Jiog4;;

and since jBC is a line of constant volume, therefore

Adding these two equations together, we get

^,-<i,, = K.\ogJ^ + {K^-K,)\og,'^ (3),

which may also be written thus,

K<^,-<f.=Z.{log.^^+(7-l)log.^} (4).

If the pressures at A and B are equal we have

and therefore (3) becomes

when the pressure is constant.

^,= K^\og,l^ = K,\os.l: (5),

4-2
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Again, since

therefore

log.f + log.^^ = log.^^ (6),

or log, ^^ = log, ^^- log, ^^ (7;

By substituting in equation (3) the value of log, -^ ta;ken

jErom (7) we get the form

(^.-•^j =-s;iogc5' - i^-^.) iog.f (8),

and by substituting in (3) the value of log, ^ taken from (6)

we find

•^1

{c!>,-<f>,)=KM^^-f + KJog/^.., (9),
1 jTI

(^,-.^J=Z-.(7log,^^ + log.J) (10).

88. Form of the Adiabatic Curve. Since equation

(10) of the last article is universally true, take for the lower

limit a point for which
Pj^
= l, ^1 = 1, and (j)^—F] and for

2^2^ ^2> ^2 P^t Vy ^' ^' therefore

or ^v'^ = e\^v~f (11)= X Kv~)

is the equation between the pressure, the volume, and the

thermodynamic function of a perfect gas.

It foUows that fcr all points on any given adiabatic

curve

pv = constant (12).
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And therefore the work done in an expansion according to

the adiabatic curve from pressure and volume 2?,^^ to 'p^^^ is

equal to

7-1 '

by equation (4), Art. 30.

Again, since 'p^^f —jp^^ by equation (12),

therefore, by taking the logarithms of these,

logf + 7log^^ = (13).

But log^ + log -^ = log -2 by equation (6)

;

V\ ^1 '^1

and subtracting this from equation (13),

(7-l)log;i = log^'....^. (14).

Also multiplying (13) by '^
~

,

therefore (7-l)log-2 = '^^log^^ (15).

Therefore, taking (14) and (15) out of the logarithmic
form, we have

l'(Sf"'&" <"'

as the relations which hold between the pressures, volumes,
and temperatures of any two points on the same adiabatic.
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PEEMANENT GASES AND THERMOMETEY.

S9. Conditions of approximation to 'Perfect Gas.'

No substance is known which corresponds exactly to the
definition of a Perfect Gas; but all gaseous substances ap-

proximate to it more or less closely, and in general the more
nearly as their pressures are diminished and their tempe-
ratures raised, that is to say, as they are removed farther

from condensation into the liquid form.

Hence the name of a ' Perfect Gas.*

It has been mentioned that there are some gases which
at ordinary pressures and temperatures are so far removed
from the liquid state, that no combination of pressure and
cold which has yet been applied to them has sufficed to con-

dense them, and which are therefore known as permanent
gases.

As might be expected, these are the substances which
approach most nearly to the condition of perfect gases.

When a gaseous substance approaches condensation its

difference from a perfect gas becomes well marked at ordi-

nary pressures, but at very low pressures even saturated

vapour follows the gaseous laws pretty closely, so that

Bankine considers the vapour of water at 32° Fahr., although

saturated, to be sensibly a perfect gas.

At this temperature the pressure of saturation is calcu-

lated to be about 12"3 lbs. on the square foot, or 0'085 lb.

on the square inch.
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40. Properties of Air, All the permanent gases follow

very nearly the same thermal laws. We may take air as an
example of the whole class of substances.

Let p^i\ be the product of the pressure and volume of air

at some given temperature between 40° and 50" Fahr. and
when^j = l atmosphere.

IB Then in a series of experiments at constant temperatures
'* between these limits Regnault found that the values of the

product 2^v Sit greater pressures stood thus :

p = atmospheres
pv

pv

2
4
8

16

1-00122

1-00352

1-00683

1-01004

0-9988

0-9965

0-9932

0-9901

1

and when the temperature is higher the value of pv remains
even more nearly equal to that ofp^v^.

Thus for moderate differences of pressure the value of

pv may be considered as sensibly constant.

If two vessels, one of which contains compressed air,

while the other has had the air exhausted from it, have a
communication opened between them, the air in expanding
rapidly, so as to fill both vessels, will neither receive nor
reject heat, nor, again, will it perform external work.

Therefore the intrinsic energy of the air will be the same
at the end as at the beginning of the expansion.

But in making such experiments Dr Joule found that
when the air had come to rest in the apparatus its tem-
perature was almost exactly the same as it had been before
the expansion, and therefore the product of the pressure and
volume was also nearly the same.
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Hence the intrinsic energy of air must remain very nearly

constant during expansion according to an isothermal line.

. Experiments also go to show that when air is expanded
according to an adiabatic curve from one given volume to

another the fall of pressure is nearly proportional to the
initial pressure, and that when air is expanded in the same
way from one given pressure to another, the increase of

volume is proportional to the initial volume approximately.

Hence it may be shown, as in the case of a perfect gas,

that for air — is nearly constant.
T

Similar results have been obtained with regard to the

other permanent gases.

If Tq be taken to denote the absolute temperature of

melting ice, and p^v^ be the product of the pressure and
volume of a pound of air at that temperature, then it is

found that

^^« = 53-21.

It is also found, as in the case of a perfect gas, that the

specific heats of the permanent gases are sensibly constant.

The value of the specific heat of air at constant pressure

was found by M. Regnault from direct experiments to be
0'2379 of that of water at its temperature of greatest den-

sity. The specific heat of water has already been given as

equal to 772 foot-pounds, therefore the dynamical specific

heat of air at constant pressure is

Z^ = 0-2379x772 = 183G.

But for a perfect gas by equation (2), Art. 36,

7-0

and thus for air 183'6 = 53-21 +K nearly.

Therefore K„ = 130-4,

and ^^ = 7 = 1-408.
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The same results were obtained previously by Rankine,

who took the value of 7 from certain experiments on the

velocity of sound in air, and deduced from it the specific

heats of air by means of the equation -^-^ = K^{y — 1) given

at (4) in Art. 36, and thus found that

53-21 = 0-408 Z",,

or Z^ = 130-4, as before.

41. The Air Thermometer. Suppose a glass tube of

uniform bore closed at one end, to have a certain quantity

of air confined in it by a drop of mercury which acts as a
piston, so that allowing for the irregularities of the expansion

of the glass itself under varying temperature, the distance

of the mercury from the bottom of the tube is proportional

to the volume of the included air.

This is called an Air Thermometer, and a scale of tem-
perature such that on it equal temperatures are those which
cause the mercury to move through equal spaces under
constant pressure, is called the scale of the air thermometer.
It is evidently very nearly the same as the absolute scale,

and we shall show in the next article how the two may be
compared.

If such an instrument be brought first to the temperature
of meltinoj ice, and then to that of water boilino^ under a
pressure of 29'905 mches of mercury, which is the standard
atmospheric pressure, the ratio of the distances of the drop
of mercury from the bottom of the tube at the two tem-
peratures will be as 1 : 1'3665.

Let the distance between the two readings of the ther-

mometer at these temperatures be divided into 180 equal
spaces; this being the number of degrees into which the
same interval of temperature is divided according to Fah-
renheit's scale ; let the marking be continued in both di-

rections till the whole tube is divided into lengths each
equal to one of these 180 divisions, and let the marks be
numbered successively beginning with zero at the bottom of

the tube.

Then, if the pressure remain constant when the instru-
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ment is brought to any temperature, the reading will be the
number denoting that temperature on the scale of the air

thermometer.

Because the portion of the tube included between the
marks for the freezing and the boiling point is equal to
0'3665 of the portion below the mark for the freezing point,

and that the former portion contains 180 equal divisions,

1 on
therefore the latter portion must contain ,, .-^^^^ = 491*13 of^ 0'3o6o

these divisions, that is to say, the number denoting the tem-
perature of melting ice on the scale of the air thermometer
is 491 '13, and that denoting the boiling point of water is

therefore 671*13. Also the zero of Fahrenheit's scale, which
is 32 degrees of his thermometer below the freezing point,

is about 45913° on the air thermometer.

42. Zero of absolute temperature and of the air ther-

mometer. At temperatures within the range of our ex-

periments it has been found that the value of — is very

nearly constant for air, and hence the scale of the air ther-

mometer at these temperatures cannot be very different from
the absolute scale.

In order however to complete the comparison it is im-

portant to find whether their zero points agi'ce, and if not,

to determine the difference between them, neither of which

can of course be found by direct experiment.

Joule and Thomson ascertained that there is a small

difference, and determined its value by means of another

and more accurate form of the experiment, which we have

already mentioned in showing that the intrinsic energy of

air at constant temperature is nearly constant.

The method may be explained as follows.

Suppose a cylinder to be fitted with two pistons one at

each end, while the space between them is divided into two
chambers by a porous plug.

At the commencement of the experiment let there be

a pound of air on one side of the plug having pressure.
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volume, and intrinsic energy p, v and /while the piston is

close to the plug on the other side. Now let the pressure on
this piston be made equal to p', where p' is less than p, and
thus let the air be forced through the plug, its volume and
intrinsic energy per povmd after passing through being v
and /'. When the whole pound of air has passed through
the plug the work which has been done upon it by the
piston acting with a pressure p through a space v will be
pv, and thus the intrinsic energy of the air must have been
increased by this amount. In the same w^ay the work done
by the air in forcing out the other piston with a pressure
p' through a space v' must have diminished its intrinsic

energy by the quantity p'v.

FJG.ie.

X iijiiii:

r^
II

^:v: ^
Thus the result of the whole process is that

T — I+pv—pv\
or T +jpv=I+pv (1).

In a perfect gas, since the intrinsic energy is proportional

to the product of the pressure and volume, while both are

constant at constant temperature, this relation could only

hold if the temperature of the gas were unaltered by passing

through the plug, that is to say, the cooling effect due to

the expansion without communication of heat would be
exactly balanced by the heating effect of the work done
during the expansion v/hen this work is all expended in

generating heat in the gas by means of the friction of its

molecules.

All known gases however undergo a small change of

temperature in the process : in hydrogen there is a slight

rise of temperature. Air and all other known gases are

somewhat cooled.

Let the absolute temperatures of the pound of air before

and after passing the plug be t and r, and let these tem-
peratures according to the scale of the air thermometer be
denoted by t and t\



GO PERMANENT GASES AND THERMOMETRY.

The difference t — t is always very small, so that we may
safely write

although the actual values of t and r are not yet exactly

known.

First, suppose the difference of pressures^— jp' to be very
small.

Y

K .A

d\ flV^"
Let the point A on the diagram of energy represent the

state of the air before passing through the plug, and B its

state afterwards.

Through A draw AC the isothermal for the absolute

temperature t, and through A and B draw AK, BL parallel

to OX cutting OY'm K and Z, and AM, ^iV parallel to OF
cutting OX in M and K

Produce LB to cut ACm C, and let the volume for the

point C be equal to v".

Through A, B and G draw adiabatics A^, B(j)' and C^",

and let Acp cut BL in L>.

Since the change of pressure from the state A to the

etate B has been supposed very small, and since we know
that the change of temperature is again very small in com-
parison with the change of pressure, therefore we may
consider that the results do not differ appreciably from those

of the change represented by the lines AC, CB, whatever

may be the real process of expansion.
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The heat absorbed by the gas in expanding according to

the isothermal line from the state A to the state G would be

T (</)"-</)), which is represented by the area (j)AC(t>"; and

the heat given out by the gas in changing from the state

to the state B at constant pressure would be ir^(T — t),

which is represented by the area (j^BGcj)".

Subtracting this from the area ^A G(j>" we see that the

whole heat absorbed by the air in the processes AB, BG
would be represented by the area A GD together with the

area ^DB<j>, and be equal to t(<^" —
(f>)
— K^{t — t ).

But since T -\-pv = I+pv by (1), therefore area XOLBcji"

= area XOKA(j).

Subtracting from each the common area XOLDcj) we
have area cpDB^' = area KADL,

Add to each of these the area A GD.

Therefore the heat absorbed is represented by the area

KACL,

Also since by supposition the change of volume from A
to C is very small and the volume at B intermediate between
the two we may write

area KA GL = {p— p') v\

so that t(</)" - <^)
- K^{t-t) = (p -p)v\

K,{t-r)=T(ct>''-<P)-{p-p')v (2).

It was shown in Chap. ill. Art. 24, that the dilatability

of a substance at constant pressure is numerically equal to'

the ratio which a small change of thermodynamic function

bears to the accompanying small change of pressure at con-

stant temperature, but is of opposite sign. In the present

case this latter ratio is shown by the operation AG to be
I _ Iff

,

equal to ~—^ , and from the operation 5 6^ the dilatability

is evidently equal to———r

.

Hence f-v' £-J.
T—

T

p-p
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and therefore --

—

-j- = ^ % »

Since the volume is proportional to the temperature
when the pressure is constant, therefore this becomes

Substituting this value of {<^" — </>) in equation (2), there-

fore K,{t-f)=T{p-p')'^-{p-p')v;

or ir,(<-o = 5'(i'-p')(r-«')...

But ~~r = -^*' very nearly, therefore we get
"0

J

Kit-f)=^-f ^(T-0 (3).
h P

an equation which is true only when the change of

pressure p —p' undergone by the air in passing the plug is

very small.

When the change of pressure is considerable the result

must be found by summing up the results of a number of

small changes, such as we have just investigated.

If in this case the initial and final pressures and tem-
peratures be Pj^,

t^ and p^, t^ it is found that t^ — t^ is still very

small when (^^ —p^ is large.

Thus no appreciable error will be introduced if we con-

sider T and t' in the left-hand member of (3) to be constant

quantities and to represent the same temperature, which is a

mean between t^ and t^.

Also the sum of the whole number of small quantities

of the form -—>- between the limits p^ and p^ is equal to

log, ^^ by Art. 31.

Therefore we may write equation (3) in the form

^,(«.-g=-fiog-f-'(^-o-
h P%
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Hence transposing and suppressing the accent on t' which
is no longer necessary we get

,=t+^ML:<L (4);

'-fMog.^^

which shows that the zero of absolute temperature is rather

lower than that of the air thermometer.

It was shown in Art. 41 that the zero of the air ther-

mometer is 491 •13*' below the freezing point of water; ex-

periments on the principle which has just been explained

show that the zero of absolute temperature is 492'66'' below
the freezing point.

It should be noticed that when investigating the pro-

perties of thermal lines on the diagram of energy, we sup-

posed the fluids under consideration to expand against or be
compressed by external forces which at each instant differed

infinitesimally from the expansive force of the fluids them-
selves.

The experiments described in Article 40 and in the
present article deal with the action of a gas when the ex-
ternal pressure during some part of the experiment is much
less than the expansive force of the gas. This process is

termed the free expansion of gases.

The geometrical form of the calculations in this article

is due to Professor Maxwell, and is taken from his work on
the 'Theory of Heat.'

43. Thermometer filled with liqiiid. The reading of
an air thermometer depends upon the external pressure as
well as upon the temperature, and this makes its use in
ordinary practice impossible.

On this account thermometers are generally used whose
reading depends upon the expansion of some liquid, mostly
mercury.

The tube of the thermometer is filled with liquid at a
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temperature higher than any at which it is afterwards to be.

used, and is then hermetically sealed.

When the thermometer cools there is a very nearly

perfect vacuum in the tube above the surface of the liquid,

and the readings of the instrument are independent of ex-

ternal pressure.

It is usual to have the tube enlarged at the bottom into

a bulb so as to contain in a convenient compass a quantity of

liquid which would fill a great length of tube if it were all of

uniform bore.

All known liquids expand more rapidly at high tempera-
tares than at lower ones ; hence if a thermometer containing

liquid be graduated at equal intervals, and made to corre-

spond at 32'^ and 212*^ Fahr. with the air thermometer, the

readings for intermediate temperatures would be somewhat
below, and for all other temperatures above the readings of

the air thermometer.

Regnault found that when the air thermometer marks
630" above the freezing point, the reading of the mercurial'

thermometer is Gol'Q*^ from the same point, showing a
difference of 22'.

Not only does the liquid in a thermometer expand more
rapidly as the temperature rises, but the glass tube itself

does the same, and the two inequalities tend to neutralise

one another, and make the divergence of the mercurial

thermometer from the absolute scale smaller than it would'

otherwise be.

Hence for all practical purposes connected with heat-

engines, as Rankine remarks, the mercurial thermometer
made of common glass may be considered as coinciding

sensibly with the absolute scale for temperatures not ex-

ceeding 500° Fahr.

For measuring low temperatures thermometers are some-

times filled with spirits of wine, but their scale differs more
than that of the mercurial thermometer from the absolute

scale of temperature.



CHAPTER YII.

STEAM.

44. Steam-gas. Steam, when moderately superheated,

behaves very nearly as a permanent gas, and it approaches
more closely to the perfectly gaseous state as it departs from
the condition of saturated vapour, and as the pressure di-

minishes. At very low pressures even saturated vapour
does not differ sensibly from a perfect gas.

The specific heat of steam-gas at constant pressure is

0'48 times that of water at its temperature of greatest

density.

Thus the dynamical specific heat

/i'^ = 0-48x772 = 871.

Also if Tq denote the temperature of melting ice, at which
temperature the saturated vapour of water is sensibly a

perfect gas,

i^o%_ 42141 _

the value of p^v^ being calculated from the chemical com-
position of water.

Hence K, = K^ -^« = 285-5,

and fy =—^ = 1-3^ very nearly.

A result which is confirmed by other experiments.

Let p^, Vj, <^j and p^, v^, ^^ be the pressures, volumes,

and thermodynamic functions of steam-gas in any two states
;

then, by equation (9) Art. 37,

S. H. 5
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(*. -*x) = 3n log. ^^ + 285-5 log,^^

And again, if p^, v^, Tj and p^, v^, r^ be the pressures,

volumes, and temperatures of steam-gas for any two points

on the same adiabatic, we have by equation (16) Art. 88,

Thus the form of the adiabatic curve is given by the
equation pv^"^ = constant ; and the work done by one pound
of steam in expanding according to such a curve from the
state jo^Vj to p^v^ is equal to

0-3 •

The form of the isothermals for steam-gas is of course
approximately a rectangular hyperbola, as in the case of the
permanent gases.

45. Total heat of Gasification. The volume of water
in the liquid state is so small as to be neglected in com-
parison with its volume in the state of perfectly gaseous
steam, and therefore the isothermals for liquid water coincide

sensibly with the line of no volume Y,

Again, the heat absorbed or given out by water in passing

from one pressure to another according to an isothermal line

may also be neglected ; that is to say, the intrinsic energy
of the liquid is sensibly constant at constant temperature.

F10.Z0,

Let A and B represent two states of the liquid at any
given temperature t^ but at diiBferent pressures.
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Thus the intrinsic energy in the states A and B is sensibly

the same.

In each case let the pressure be kept constant and heat

supplied till the fluid has been brought to the perfectly

gaseous form at the temperature r, and let K, L now repre-

sent the states of the fluid.

Through K and L draw KM, LN parallel to OF to meet
OX in 71/ and JV.

Therefore the rectangles OAKM and OBLN are equal,

and represent the external work done by the fluid in the

processes AK and BL respectively.

Also the intrinsic energies in the statesK and L are equal,

and we saw that the intrinsic energies in the initial states

A and B were equal. Therefore the external work done,

and the change of intrinsic energy produced in the two
processes AK and BL are equal, and therefore also the heat
absorbed in the process AK\^ equal to that absorbed in the

process BL.

Therefore, in general, if water be raised from the liquid

state at one given temperature to the perfectly gaseous state

at another given temperature, the pressure being constant

throughout the process, the heat absorbed is independent
of the intensity of the constant pressure.

But at very low pressures the saturated vapour of water
is sensibly a perfect gas, so that the heat absorbed in con-
verting liquid water into the perfectly gaseous form at such
pressures, is equal to the latent heat of evaporation.

Let Tq be the temperature of melting ice, and L^ the
latent heat of evaj)oration at this temperature.

Then the heat absorbed in converting liquid water at r^,

into a sensibly perfect gas at the same temperature is equal
to L^. Also the heat absorbed in raising the gas so formed
from the temperature r^ to the temperature r at constant
pressure is equal to K^, (r - rj. So that the whole heat
absorbed in raising water from the liquid state at r^ to the
perfectly gaseous state at t is equal to L^^ + iT^ (r — tJ, the
pressure being constant during the process.

5—2



68 STEAM.

Tliis quantity is conventionally named the " total heat of

gasification."

The value of Lq is found to be 842872, and we saw that

ir^= 371, therefore

L, + K^[t- t,) = 842872 + 371 (r - 492-66)

is the total heat of gasification.

46. Steam in other states than that of steam-gas.
The thermal properties of steam when mixed with water

differ very considerably from those of a perfect gas, and at

ordinary pressures the saturated vapour and even the slightly

superheated vapour of water are found to be by no means
perfectly gaseous.

No systematic investigation has yet been made of the

thermal laws of steam in this last-named condition when it

is in a state intermediate between that of saturated vapour

and of perfect gas; but the behaviour of saturated steam

both when dry and when mixed with liquid water has been
most carefully observed, and the results formulated.

A simple hypothesis with regard to the nature of a perfect

gas has been a sufficient basis on which to construct a

connected series of thermal laws expressing very closely the

results of actual experiments upon the various substances

classed as nearly perfect gases.

No such basis has been found for the laws of saturated

vapour and its mixture with liquid water ; and we are there-

fore dependent on formulae which simply condense the results

of experiment without implying any connecting hypothesis and

which are known as empirical formulse. These being mostly

constructed for temperatures measured by thermometers

containing mercury and marked with the ordinary scales, it

will often be convenient to use one of these scales here.

We shall use the letter T to denote temperatures mea-

sured according to Fahrenheit's scale, in which the tempera-

ture of melting ice is marked 32", and the temperature of

water boiling under standard atmospheric pressure is marked
212^
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Fahrenheit's scale is therefore connected with the abso-

lute scale by the equation

T=T-460-C6 (1).

47. Specific heat of liquid water. Before examining

the thermal laws of vapour it will be necessary to find the

heat absorbed in raising liquid water from one given tem-

perature to another.

The specific heat of most solids and liquids is not constant,

but increases as the substance expands.

Thus the specific heat of liquid water is least at 39"1"

Fahr., which is the temperature of greatest density.

As has been said before, Dr Joule determined its dy-

namical sj)ecific heat at this temperature to be 772.

The method employed in obtaining this result was, to

expend a measured quantity of work entirely in producing
heat by friction in a known weight of water, when the ratio

of the work expended to the rise in temperature was found
to be 772 foot-pounds of work per pound of water raised

through one degree of temperature on Fahrenheit's scale.

Experiments made by Eegnault show that the specific heat
at other temperatures is given by the formula

A"=772[l +0-000000309 (T- 89-1)'} (1),

or /i=772 + 0'000238548(r-391)' (2).

That is to say, the heat necessary to raise one pound of
liquid water through a very small interval of temperature
(T'-T) is equal to

772 (r-T) + 0-000238548 (T-S9'iy {T - T) (3).

For convenience we may v/rite

T - 39-1 = e, and T - 39-1 = 6'.

Therefore r--T=e'-d, and (3) becomes

772 (^'-6>) + 0-000238548^' (^'-^) (4).

In order to find the quantity of heat necessary to raise

one pound of water through a considerable interval of tem-
perature from T^ to T^, it is necessary to add together all the
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series of small quantities of the form given in the expression

(3) which are included between the limits of temperature
T^ and T^^ or, what is the same thing, all the series of small

quantities of the form given in the expression (4) which are

included between the limits 6^ and 6^.

Now the sum of all the small quantities {ff — 6) between
these limits is evidently equal to

{fi^
— d^, and the small

ff
Q

quantity 6"^ {6' — 6) may be written in the form .

But by Art. 31, Chap. IV., the sum of all the small quan-
6' — Q

titles of the form ' rv,r~ included between the limits 6^ and 6^

is equal to

and putting ti = — 2, this becomes

Writing for 6^ and 6^ their values, we get for the sum of

all the small quantities of the form given in (3) between the
limits T^ and T^

772 (2;-TJ +|x 0-000238548 {(2;~39-lT-(r-39171,

or 772 [(T,- rj +0-000000103 {(2;-39-l)'-(r-391)^].

The heat absorbed by one pound of liquid water in rising

from the temperature of melting ice to the temperature T
will be denoted by h.

Therefore by putting 32' for T^ and T ioi T^, we get

A=772[(r-32)+0-000000103[(r-391)'+(7-iy}]...(5).

48. Total heat of evaporation. The total heat of gasifi-

cation has been defined as being the whole heat necessary to

raise one pound of water from the liquid state at the tempera-

ture of melting ice to the perfectly gaseous state at any given

temperature T, the pressure being constant during the

operation.
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It has been shown to be equal to

or 842872 + 371(^-32).

The heat necessary to raise one pound of water to the

state of saturated vapour under the same conditions is called

the total heat of evaporation, and will be denoted by H,

The value of H has been determined by the experiments

of E-egnault, and is expressed by an empirical formula of the

same form as that for the total heat of gasification. Accord-

ing to this

JT= 842872 + 235 (1^-32) (1).

49. Latent heat of evaporation. The process during

which the total heat of evaporation H is absorbed, consists of

two parts, namely, first the raising of the pound of water in

the liquid state from 32^ Fahr., the temperature of melting

ice, to the given temperature T, and secondly the evaporation

of this water at constant pressure and temperature from the

state of liquid to that of saturated vapour.

By equation (5) Art 47, the quantity of heat absorbed in

the first of these operations is

h = 772 [{T- 32) + 0-000000103 [{T- 391')' + (M)'}],

and the quantity of heat absorbed in the second operation is

that which has been spoken of in Art. 26, Chap, ill., as the
latent heat of evaporation and denoted by L,

Hence we have
L^H-h (1),

therefore L = 842872 + 235 {T- 32)

-772 [{T- 32) + 0-000000103 ((r-39-l)'+ (7-l)')]...(2),

or

i=860056-537r-0-000079516{(r-39-l)'+(7-l)'}...(3).

Equation (3) expresses very accurately the results of

experiment, but is rather complicated.

In dealing 'with steam-engines the range of temperatures
of saturated steam generally met with is from about 100*^ Fahr.
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to 350" Fahr., whicli corresponds to a range of pressures of

saturation from about ygth of an atmosphere to 9 atmo-
spheres ; and between these limits the latent heat of evapo-

ration is expressed very nearly by the simpler formula

L = a-PT. (4),

where a = 861250 and ^ = 546.

It is sometimes convenient to have this in the form

L = ol'-^t (5),

where cl =1112770, and /3 = 546 as before.

50. Relation between pressure and temperature of

saturation. The pressures of saturation corresponding to

various temperatures were determined by Regnault from a

series of experiments, the results of which have been ex-

pressed in various empirical formulae.

The form given by Eankine is

log,,p =^---3 (1),
T T

which is simpler than that given by Regnault himself, and
corresponds very accurately with the results of his experi-

ments when
A = 8-28203 ;logB = 3*4414752 and log C = 5-5839751.

These values are slightly different from those given by
Rankine, because the absolute zero of temperature has here

been taken at — 460*66. These constants substituted in

equation (1) give the value of p in pounds on the square

foot. If the value of p be required in pounds on the square

inch, the first constant must be diminished by log, ^ 144,

and will then be equal to 6*12367 instead of 8-28203 as

before. The other two constants remain unaltered.

From equation (1) it follows that the inverse formula

giving the temperature in terms of the pressure of satura-

tion is

i-V a ' ' 40' 20

where ,-^,= 0-0036014 and j^ = 0*0000130.
2 (7 4 G^
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51. Curves of Saturation and constant weight of

vapour. If the volumes of one pound of saturated vapour

at difterent pressures and temjDeratures could be accurately

determined by experiment, an empirical formula could be at

once constructed which would give the form of the curve of

saturation, but as this has not yet been found possible the

volumes are determined indirectly, by means of formulae,

already given.

Let />j, p^ be pressures of saturation corresponding to

temperatures t^,t^\ therefore from (1) of Art. 50,

los,.P.-l«s.l.,-(f-D + (§-§);

Now the sum of all the small quantities of the form

-—— between the limits 'p^ and p^ is equal to log^-^^ by

Art. 31,
"^^

If we put ^1 —p and p^ =p, then the only small quantity

of this form between the given limits is the one -— - .

P

Therefore loge S =^-—^ when {p-p) is very small, so

that we may write (1) in the form

when {p — p') and therefore also (t — r ) are very small.

\ 1 T — T
But - - - =

, , and by making (t -- r) small enouo^h

9

this may be made to differ as little as we please from ^^^^ .

T

Thus ultimately —,— = -~
,

T T T
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In the same way

1 1 __t'-t'' _ {t-t'
) JT + r') _ 2t(t-t') _2(r-T')

ultimately.

And substituting these values in (2)

^-^' =| + ¥)(-T')log.lO,

x^: =
2-3026(f+?g^ (3),

when (p —p') and (t—t) are very small.

But from equation (1) of Art. 27, Chap, ill.,

LU= 7,

T — T

and from equation (4) of x^rt. 49,

L = a'-fiT.

Therefore u = ^~ ""

(4).

2-3026(1+5)^

Strictly speaking u is the difference between the volumes of

water in the forms of liquid and of saturated vapour, but the

former is so small that it may be neglected in comparison
with the latter, and we may write approximately

a - I3t ,.,

^B 2(7n
^'^^

2-3026 (f-f 5)^
for the volume of one pound of saturated vapour at the

temperature r and pressure p. From this with the help of

equation (1) Art. 50, which gives loge_p=^ , any

number of points can be found on the curve of saturation for

aqueous vapour.

Again, in the evaporation of a given weight a; of a pound
of water at constant pressure the change of volume pro-

duced is xu, and when x does not differ very greatly from
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unity the volume of liquid water will still be so small that

it may be neglected in comparison with the volume of

vapour, and thus for any point on the curve of constant

weight of vapour x we may write

2-3026(- +.3026
(f+^l).

The relations between pressure and volume involved in

the above formulae are very complicated, but by calculations

of numerical results from these formulse it has been found
that the curve of saturation up to pressures of about 16
atmospheres corresponds very closely with the curve given

by the equation

^?;" = constant (7)

,

where ?2= = 1*0646, according to Zeuner, while Ean-

17
kine uses the approximate value n= ~.

Denoting by v the volume of one pound of saturated

vapour, the curve of constant weight of vapour x is evidently

p (^v)" = constant (8),

when X is not very much less than unity. This also becomes
j9?;" = constant when v is put for the volume of the mixture
of water and vapour under consideration.

52. Areas bounded by the curve of saturation. Let A
and B be two points on the curve of saturation, and let the
corresponding pressures, volumes and temperatures be jj^, v^, r^

and jpgj ^2» '^2 respectively.

Through A and B draw AK, BL parallel to OX and AM,
J5iY parallel to OY,

Then since the form of the curve of saturation is given
by the equation pv" = constant, the area

^~ n-1 ~ 00646 '

since n = 1-0646.
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In the same way

area KABL = n .-^-^——-^ = ^-^-^——-S _/iii^^ 2

?i-l ^1 0-0607

**

K *

\ ^'^^'•

\ p

\ nX
L

^- B

C »4 ti a N X

The value of this latter area can also be found in a simple

form without assuming the equation pv^ = constant, as we
proceed to show.

The comparison of the numerical values obtained by the

two methods affords a test of the accuracy of this equation.

Let the straight line KL be divided into any number m
of equal parts and let TU be one of these parts.

Through T and U draw TF, UQ parallel to OX to meet
the curve of saturation in P and Q, and let the pressures,

volumes and temperatures for the points P and Q be 2^, v, t and

p, v', t'. When ??i is indefinitely increased and the distance

TU therefore indefinitely diminished, we have ultimately

aTe^TPQU={p-p)v.

By equation (1) Art. 27, Chap. IIL,

Therefore

T V-P
T — T

{p-p)u=^ L,

or, neglecting the volume of liquid water,
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and by equation (4) Art. 49,

Therefore {p -p') v = d ,
^^^^ - /? (t- t) (1),

an equation which is true only when p —p and t — t' are

very small.

Adding together the whole of the series of m quantities

such as (p —p) V included between the limits 2h'^i ^-nd p^v,^,

the sum is evidently equal to the whole area KABL,

Adding together the corresponding series of m quantities
IT- rr

of the form a • — ^ (t — t) between the limits Tj and r^,

T — r'
we get for the sum of the small quantities such as a!

the expression a log^ - ; while the sum of the small quanti-

ties such as /3 (r — t ) is equal to ^ (r^ — t^).

Therefore from equation (1),

area7i^^Z = a'log,-^-yS(Ti-T.,) (2),

or putting for a and ^ their numerical values from Art. 40,

area KABL = 1,112,770 loge -' - 546 (r, - rj (3).

53. Adiabatics of a mixture of water and saturated
vapour. In a mixture of a liquid with its saturated vapour
the isothermals coincide with lines of constant pressure, so

that the only important thermal lines whose form remains to

be investigated are the adiabatics.

Let AB^ represent an adiabatic of a mixture of liquid

water with aqueous vapour, and let the pressures, volumes
and temperatures for the points A and By be p, v, t and

p\ V, T respectively.

Also let the weight of vapour in the mixture when in the
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states A and B he x and x. Througli A and B draw AM,
BN parallel to T to meet OX in M and K

As in Art. 47, let A be the quantity of heat necessary to

raise one pound of liquid water from the temperature of

melting ice to the temperature t.

Neglecting the small quantity of external work done by
the expansion of the water during the process, the whole
quantity of heat li may be considered as remaining in the

liquid, and as an increase of intrinsic energy.

r/C 22.

Again, as in Art. 26, let e be the internal heat of evapora-

tion of one pound of water at temperature r, then the inter-

nal heat of evaporation of a weight x of water will be xe.

Thus the total increase of the intrinsic energy of the

fluid during the process of having its temperature raised

from that of melting ice to r, and then having a portion x
evaporated at constant temperature t, is A + xe.

In the same way when the pound of fluid undergoes a
similar process in which the ultimate temperature is r and
the weight of vapour x, the increase of intrinsic energy dur-

ing the process may be denoted by h' + xe.

Thus the difference of the intrinsic energy of the fluid in

the states A and B is

{h-h')+{xe-'xe').

And this difference is evidently equal to the area MABN,

Now suppose that the change of state from A to -2 is

very small, therefore the area MABN is sensibly equal to
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p {v — v), or, neglecting the change in the volume of liquid

water produced by change of temperature,

area MABN—p' {x'u — xu),

where u and u' are, as before, the differences between the

volumes of liquid water and of saturated vapour at the

temperatures t and t .

But we saw that

area MABN ={h- Ji) + {xe - x'e).

Therefore

Qh - Ji) + {xe - xe) +^' {xu - xu') =0 (1),

which by the addition and subtraction of xpu becomes

{h - li) + [x (e-^pu) - x{e' +p'u')}- x(p ''p')u = 0....(2).

But e+2J'i(' =L the latent heat of evaporation at tem-
perature T, by Art. 26, and e' +pu' = L' the latent heat of

evaporation at temperature t'.

Therefore we may write (2) in the form

{h-h') + {xL-xL')'-x{p-p')u = (3).

Now by equation (1) Art. 27, L = t ^ u.

Therefore i^(P-.p')u-.= xL — xL — xL — ,

T T

And (3) becomes
f

(A--A')-f {xL--x'L')-xL + xL- = 0.

Therefore (h -K) -x'r + xL- = 0.
T

TllPTPfoTP
h- h' x'L xL

JL ilt/X OUJi C
T t' t

(4).

This equation is only true when the change from the

state F to the state Q is very small. But when (r — r) is

small (h — h') is equal to the specific heat of water at tempe-
rature T multiplied by the change of temperature (t — r'),

and from equation (1) of Art. 47 we see that this is equal to

772 {1 + 0-000000309 (r' - 499-76)^1 (r - r),
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or {772 + (499-76)' x 0*000238548

- 2 X 0-000238548 x 499*76 t' + 0-000238548 r"} (r - r').

Thus we may write for convenience

and substituting this in equation (4)

(^?-^-.+V)(-T') = (^'-^) '.(0),

when (t — t') is very small.

Next suppose the change of state from one point to

another on the adiabatic to be considerable. Let the change
of temperature be from r^ to r^, let the latent heat of

evaporation at these temperatures be L^ and L^, and let the
quantities of vapour in the mixture change from a?j to x^.

To find the form which the equation (5) will take in this

case we must add up on each side of the equation all the
series of small quantities included between these limits, and
by a process similar to that followed in finding the total heat
necessary to raise liquid water from T^ to T^, Art. 47, we find

that the sum of the three series of small quantities of form
similar to those on the left-hand side of the equation is

while the sum of the series of small quantities of form
similar to that on the right-hand side of the equation is

evidently

'x^Lo x,L,

Thus when the change indicated is considerable equation

(5) becomes

l-.log,^ - ^,(r, - T,) + I {r,\- r/)
=("i;^-^)"(6).

If we consider the specific heat of liquid water to be
constant, and put for its mean value 775, we shall have
instead of (6) the simpler form
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775 log. ^=f^^--'^') (7),

which for most purposes is a sufficiently close approximation

to the more exact equation.

The value of L is known in terms of the temperature by
Art. 49, so that if the quantity of vapour x^ in the mixture

be given for that point on an adiabatic where it cuts the

isothermal corresponding to Tj, then from equation (7) the

quantity of vapour x.-^^ can be found, which must be in the

mixture when it has been expanded according to the adia-

batic curve till the temperature has fallen to t^.

Again, when r^, x^, r^smdi x^ are known it is possible to

find from them the values of p^, v^, p.^ and v^, and thus any
number of points on the adiabatic may be obtained. The
calculation of the form of an adiabatic in this manner is even
more complicated than the exact calculation of curves of

constant weight of vapour as given in Art. 52, but from
numerical results of the above formulae it has been found
that the adiabatic curves also correspond very closely with an
equation of the form

pv"" = const (8)

,

when the quantity of vapour x in the mixture does not differ

very greatly frorn unity.

For the value of n in this equation Rankine gives the

constant quantity 7i = -^ as being convenient for calculation

and a sufficiently close approximation for most purposes.

Zeuner for greater exactness gives

n = l-035 + ^-,

where x is the proportion of vapour in the mixture at the
commencement of the expansion, and finds that the results

agree very closely with those of the exact formulae when x
is not less than 0"7.

The quantity x has been spoken of as a fraction not
much less than unity; in connexion with this it must be

S. H. 6
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noted that the formulae above cannot be applied in any case
where the value of x becomes greater than unity, for the
only interpretation which could be put upon such a value
would be that the vapour had become superheated ; now the
formulae of this article are true only for saturated and 'super-
saturated' vapour.

54. Comparison between curves of constant weight of
vapour and adiabatics. Take one pound of saturated steam
whose pressure and volume are p^ and v^.

First let this steam be expanded in such a manner that
the whole of it remains in the state of saturated vapour;
that is to say, let the expansion be according to the curve of
saturation; and let the pressure fall during the process topg*

By equation (7) of Art. 51 the volume must increase from

Secondly let this steam be expanded from pressure p^ to

p,„ according to the adiabatic curve.

Since the steam is initially all in the form of saturated

vapour, x = l and equation (8) of the last article takes the

form
^y,(io35+oi)= constant,

which may be written p^'^^^v = constant.

Therefore when the pressure falls from p^^ to p.^ the
/r)\ 0-881

volume must increase from v^ to ^i (— J •

But — is greater than unity.

C'p\

0-9393
^

/^\ 0-881

—
1 is OTeater than v,[ — ]

So that when steam initially in the form of dry saturated

vapour is expanded without gain or loss of heat according to

the adiabatic curve, the volume after expansion is always

less than the volume of dry saturated steam at the same
pressure.
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Therefore a portion of the steam must be condensed
during the expansion.

It follows that in order to maintain the whole of the
fluid under consideration in the state of saturated vapour
while undergoing expansion, a certain quantity of heat must
be supplied from external sources.

In the same way if a pound of fluid consisting of a mix-
ture of water and saturated steam initially in the proportion

of 3 to 7, be expanded according to the adiabatic curve, the

equation giving the form of this curve will be

<p^ao35+o-o7) = constant =:pv^'^^^

which may be written p0'905 ^ _ constant.

Therefore if the initial pressure and volume bep^ri and
/p \ 0-905

the final pressure _p2J the final volume will be ^if--) .

AVhereas if the weight of vapour in the mixture had been
kept constant during the expansion the final volume would

('p
\ 0-9393

— as before.

Here again the volume after expansion according to the

adiabatic curve is less than the volume of a constant weight
of vapour, but the difference between the two is not so great

as when the whole of the fluid was initially in the state of

saturated vapour, that is to say, the condensation during the

expansion is less than in the case of saturated vapour.

When the proportion of vapour in the mixture is less

than 0'7 of the whole the approximate formulae do not apply,

but it has been found by calculating the volumes from the

more exact formulae that the condensation caused by ex-

pansion from one given pressure to another,,according to the

adiabatic curve, is less as the proportion of vapour initially

in the mixture diminishes, and that when the initial weight
of vapour is somewhat less than half the weight of the whole
quantity of fluid operated upon there is a contrary effect,

6—2
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some of the liquid being evaporated during any expansion

according to the adiabatic curve.

These results, first arrrived at by Kankine and Clausius

from calculation, have since been verified by experiment.

It must be remembered that these calculations are only-

applicable when vapour expands against a pressure sensibly-

equal to its elasticity, or, what' is the same thing, when the

pressure does not alter suddenly from one value to a sensibly

different value, but passes through all the intermediate

degrees of intensity.

If the pressure alter suddenly from a greater to a less

intensity the vapour will expand without doing the whole

external work of which it is capable, and tend to become
superheated or to evaporate any liquid with which it is

mixed, if no heat be given out in the process of expansion.

This is called the "free expansion" of vapour, and may-

be produced by forcing it through a small orifice or a porous

plug, as described in Art. 42, Chap. VI.

55. Mixture of gases and vapours. Let a closed vessel

A, partly filled with liquid, have one cubic foot of space above

the surface of the liquid filled with the saturated vapour of

that liquid at pressure p^ the temperature of the whole being

denoted by r.

Let another closed vessel B, whose total capacity is one

cubic foot, contain a quantity of some different gaseous fluid

at pressure 2^2 ^^^ ^^ temperature also equal to t.

Now let the gas contained in the vessel B be forced into

the vessel A, the temperature being kept constant during the

process.

It is found that this does not cause any alteration of the

quantity of vapour in the vessel A, but that the pressure

upon its sides becomes equal to (p^ +^2) by the addition of

the gas.

Thus it is necessary to molecular equilibrium that a

definite weight of vapour be present in each cubic foot of

space so long as there is liquid to supply such vajDour.
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This weight depends only upon the temperature and is

not altered by the presence of any other gas or gases in the

same space.

As an exception to this rule, it was found by Regnault that

the weight of vapour is somewhat increased by the presence

of another gaseous substance when the two have a tendency

to chemical combination.

Although the presence of another gas does not alter the

ultimate state of equilibrium of a vapour, yet it materially

alters both the process of attaining equilibrium and the time

occupied in this process.

Thus, let a vessel A containing only a liquid and its own
vapour at pressure p^^ have a communication opened with

another vessel B in which there is a perfect vacuum. Then
the pressure will at once fall throughout the whole liquid

mass, and there will be in every part of it a sudden formation

of vapour which will rush to fill the fresh space to which it

now has access, that is to say, the liquid wdll boil.

The same thing will take place, though less suddenly,

if there be in the vesselB a quantity of some different gas at

a pressure lower than ^h.

If on the other hand the vessel B contains some other

gaseous substance at a pressure equal to or greater than ^j,

then on the opening of the communication between A and B
there will be no fall of pressure throughout the liquid, and
therefore no formation of vapour within its mass.

In this case the equilibrium of the vapour can only be
restored slowly by the formation of fresh vapour at the

surface of the liquid, and by its gradual diffusion among the

other gas throughout the space to which it has access.

It follows that a liquid will not boil at any given tempera-
ture unless the total pressure on its surface be lower than the

pressure of saturation for its vapour at that temperature;

but that evaporation from the surface of the liquid continues

until the pressure caused by its own vapour is equal to this

pressure of saturation, that is to say, until the whole space

with which it is in communication is occupied by the proper

weight of saturated vapour.
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56. Conditions of ebullition. In order that a liquid

may boil, the vapour in forming bubbles in the mass of the
liquid must overcome not only the pressure on the surface

and that due to a certain depth of liquid, but also the cohesion
of the liquid itself.

In consequence of this, if heat be applied to a liquid con-

tained, at a given pressure p, in a vessel with a smooth inner

surface, and there be little or no movement of the liquid, its

temperature may be raised considerably above the tempera-
ture of saturation of vapour for the pressure p without
causing ebullition, but any roughness of surface in the vessel

or any considerable disturbance of the liquid makes it boil,

and then vapour is given off till the temperature of the
liquid is brought again to the temperature of saturation.

In ordinary circumstances water has a certain quantity
of air mixed with it, but by long continued boiling, or some
other processes, this air may be more or less expelled from
it, and then the water may much more easily be raised

considerably above the temperature of saturation for its

pressure.

When water in this state does begin to boil the ebullition

is very violent, and even explosive. It has sometimes been
supposed, but not proved, that certain explosions of steam
boilers may be caused in this way, especially where surface

condensation is employed and the water thus evaporated and
condensed many times successively without being exposed to

the air or having an opportunity of absorbing any.

Again, when Avater is not pure, but contains some salt or

other such substance from which the water must separate

before evaporating, the temperature rises above that of

saturation and remains so as long as heat continues to be
applied. The important instance of this for our purpose is

that of the brine which is supplied to the boilers of marine
engines. Hankine gives an estimate that the boiling point

of brine rises about 1*2 Fah. above that of pure water for

every -rj^nd of its weight of salts dissolved in it. Also that

ordinary sea water contains on an average about -g^oud of its

w^eight of salts and that the water in marine boilers should

not be allowed to contain more than from /^ nds to
f.j

nds of

salts.
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Whatever be the temperature of the liquid, the tempera-

ture of the vapour which rises from it is always exactly the

temperature of saturation for the pressure.

Hence in measuring the boiling point of water the

thermometer should not be placed in the liquid but exposed

to the vapour rising from it, otherwise the experiment can-

not be depended on as accurate.



CHAPTER yill.

SOME PROPERTIES OF HEAT ENGINES.

57. Perfect elementary Heat Engine. Looking now to

macLines by which the conversion of heat into external work
is utilised, it will be seen from what has been said in Chap.
II. that the engine which would give the simplest theoretical

results would be one in which the working fluid should pass

through its series of changes according to Carnot's Cycle.

Suppose any engine to obtain its heat from a source at

the constant temperature t^ and to reject heat to a re-

frigerator at the temperature Tj, also let the extreme values

of the thermodynamic function of the fluid during the cycle

be <^i and (j)^. Then since the temperature at which heat
is absorbed cannot be higher than that of the source of

heat, nor the temperature at which heat is rejected lower
than that of the refrigerator, therefore whatever be the
cycle performed the external work done cannot be greater

than (Tg — tJ (<^2 ~ 0i) which is the work done in a reversible

cycle. Also no smaller quantity of heat can be rejected

than Tj(</)2 — ^j), and it is evident that if more heat be re-

jected less work must be done in the cycle.

Again, if the heat rejected be equal to Tj(</)2— ^J, but the

work done in the cycle be different from (r^ — tJ (02 — ^J,
then let this work be equal to {q — rj

((fy^
—

</)J,
where

q must be less than t^. In this case the heat absorbed

from the source cannot be less than q, and therefore

the ratio of the work done to the heat absorbed during

the cycle cannot be greater than , that is to say

than (-?)•
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But in a reversible cycle the ratio of the work done to

T ^ T f T" \
the heat absorbed is —^ ~ or (1 ^

, and this is greater

than (1 — ^j since T2 is greater than g.

Therefore the ratio of the work performed to the heat

absorbed by the engine is greatest when its cycle is re-

versible.

The ratio of the work performed to the heat absorbed is

called the Efficiency of an engine.

Therefore, of all engines having the source of heat and
the refrigerator at the same constant temperatures, that

engine will have the highest efficiency whose cycle is re-

versible.

No such engine can be actually constructed, but it serves

as a useful basis of comparison for the results given by
other engines, and is referred to as a Perfect Elementary

Heat Engine.

58. Condition of Maximum Efficiency. If there be no
available source capable of supplying at constant tempera-
ture the whole quantity of heat to be absorbed during the

cycle, it may be necessary for an engine to obtain different

parts of its supply of heat at different temperatures.

For instance, let there be two sources at temperatures t.-^

and Tg, capable of supplying at these temperatures the
quantities of heat r^d^.-^— <f>^

and t^{(I>3— (p.^ respectively.

Let these quantities be represented on the diagram of

energy by the indefinitely produced areas (j>^AB^., and

Suppose that the whole heat rejected by the fluid can
be absorbed by a refrigerator at the constant temperature
Tj, and let EFG be the isothermal 'corresponding to this

temperature, and cut A^^, (702> ^^z ^^ ^> i^and E.

With these temperatures of absorbing and rejecting heat
the highest possible efficiency would be obtained by means
of two perfect elementary heat engines, one of which should
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perform the cycle ABFG and the other the cycle CDEF,
and the combined efficiency of these two engines, that is to

r»c.23

say, the ratio of the whole work performed to the whole
heat absorbed, would be

The very same result will be obtained from the single

engine absorbing heat partly at the temperature t^ and
partly at the temperature T3, if it perform a cycle such as

that represented by ABCDEG, which is evidently a re-

versible cycle.

Therefore in this case also the condition of maximum
efficiency is that the cycle of the engine should be reversible.

The same reasoning evidently applies both when there

are any number of different temperatures of absorbing heat,

and when there are different temperatures of rejecting heat.

Suppose then that the number of different temperatures

at which heat is absorbed and rejected during a cycle be
indefinitely increased, and the quantities of heat absorbed or

rejected at each temperature and also the difference between
two successive temperatures be indefinitely diminished.

Such a cycle may be made to differ as little as we please

from, and ultimately to coincide with, a reversible cycle in
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which the temperatures of the source of heat and of the

refrigerator gradually vary.

Thus in the figure let pq, p'q, p"q"... be adiabatics and

pr'j pV... and 5g', s'g"... isothermals corresponding to the

temperatures t^, t^'... and t^, t/... of absorbing and rejecting

heat.

Then if the number of adiabatics drawn in the spaceABC
be indefinitely increased, and the differences of temperature

(t^' — Tg) . . . and (t/ — Tj) . . . therefore indefinitely diminished,

while the quantities of heat absorbed and rejected at each

r»G.24.

temperature also become indefinitely small, then the cycle

ptrprp"... q'sqsq... may be made to differ as little as we
please from the cycle ABGy and ultimately to coincide with it.

But the condition necessary that the cycle represented

hy prp'rp" ... q'sqsq... may be one which gives the maximum
efficiency is that the temperatures of absorbing and rejecting

heat must be equal to the temperatures of the source and
the refrigerator in each operation, that is to say, that the
cycle must be reversible.

Therefore also the condition that the cycle ABC may be
such as to give the greatest possible efficiency is that it must
be reversible.

And the same condition evidently holds for any cycle

whatever.
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59. Regenerators. As an instance of the variation of

temperature in the source of heat and refrigerator we may
mention the application to engines of what is called a
"Kegenerator."

Essentially this is any body which serves to absorb heat
from the working fluid and thus act as a refrigerator during
one part of the cycle, while it acts as a source of heat during
another portion of the cycle by returning to the fluid the
heat which it had before absorbed.

The usual form of a regenerator is a long chamber nearly
filled with thin plates of metal, so placed as to offer as little

resistance as possible to the passage of the fluid.

After receiving its supply of heat from the source, the
fluid is passed from one end of the chamber to the other

between the interstices of the thin plates, and has its

temperature gradually reduced by giving up to the metal a
certain portion of its heat.

On arriving at the other end of the chamber the fluid is

passed into the refrigerator and loses such of its heat as is

to be permanently rejected, after which it is again passed
through the regenerator in the opposite direction, and lastly,

put again into communication with the source of heat.

In the first passage through the regenerator the fluid is

at a higher temperature than the metal plates and thus gives

off heat, raising to the highest temperature that part of the

regenerator at which it enters, and being gradually cooled

down till it arrives at the other end.

In the return passage, after rejecting more heat to the

refrigerator, the fluid is at a lower temperature than even

the coolest part of the regenerator, and absorbs heat from

the plates with which it comes in contact there.

As its temperature rises it passes forward to the other

end of the regenerator, absorbing heat on its way till it passes

again through the end at which it entered, where the plates

are at a temperature little lower than that to which the

fluid is raised by the source of heat.

It follows from Art. 58 that the most perfect results

would be obtained from a regenerator in which the tempera-
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ture of the metal at any point should never differ by a finite

quantity from that of the fluid when passing that point. In

such a case the portion of the cycle performed in the re-

generator would be sensibly reversible, and the same quantity

of heat which was given out by the fluid in its first passage

would be absorbed in the return passage; so that the efficiency

of the engine would not be less than that which would have

been obtained if the cooling and heating had been effected,

as in the Perfect Elementary Heat Engine, entirely by
expansion and compression; such efficiency however is not

obtained from actual regenerators.

The practical advantage aimed at by the employment of

a res^enerator is the reduction of the size .of the enoine

necessary to perform a given quantity of work.

When the difference of temperature between the source

of heat and the refrigerator is great, the cylinder of an engine

must be very large if the whole change of temperature of

the working fluid from one to the other is to be produced by
means of expansion.

The engines to which regenerators have been applied are

mostly those in which the working fluid is air, because one
great objection to the employment of air engines has
always been the large size of cylinder required for performing-

a given quantity of work.

In such engines the loss of efficiency by the use of

the regenerator is estimated by Rankine at between 5

and 10 per cent, of the total heat absorbed, in the most
favourable instances.

60. Elementary Air engine. As numerical examples,
calculations are given of the results which would be obtained
1st from a perfect elementary Heat engine; 2nd, from a
perfect engine with a regenerator, the working fluid in each
case being air.

Let ABCD represent the cycle of an elementary Air
engine, and let the pressures and volumes for the points
A, B, C and D be p^v^, p^v^, p^v^, and p^v^ respectively.

Let
(f)j, <^2 be the thermodynamic functions for the adia-

batics AD and BC,
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ric . 2S

Let Tj the absolute temperature of the refrigerator be
550'^ and t^ that of the source of heat be 990^, which are equal

to 89'34*' and 529-34'^ Fah.

Let the quantity of heat absorbed at the temperature

Tg be 24750 ft.-lbs., and let p^ the lowest pressure in the

cycle be equal to the standard atmospheric pressure, namely
2116*4 lbs. per sq. foot.

In Chap. YI. Art. 40, we saw that for air

•&!^« = 53-21 and 7 = 1-408,
To

1 ^v

so that T = 2-451 and —^- = 3-451.
7-1 7-1

Starting then with ^pg = 2116*4 lbs., we get

v.=
53*21

Ih

53*21 X 550

2116-4
= 13*83 eft.

Y

A =B f^)""' = 2116-4 X (1^^= 1C090 lbs.

". = "s
f)'"'

= 13-83 X
dJ'^

= 3-274 c. ft.



^2

^1

= 1-G nearly

1\
= l-^i^. = 25744 lbs.

^1
= ^2 _

1-6
2-046 c.ft.

Ih ^4 B
= ^^2 =

5 -^^i

1-6,
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Again, by Art. 34, Chap. V., the heat absorbed is" equal

toi),v,log.^.

Therefore jp,v, log^ {^\ or p^v., log. (rA = 24750,

therefore log. g) = i^olr^4 == ^"^^^^^

therefore

and

also

therefore p, = l-Gj^g = 3486-2 lbs.

z;, = :i^ = 8-64 eft.

The heat rejected is to the heat absorbed as t^ to t^,

5
therefore heat rejected = g x 24750 = 13750 ft.-lbs.

And therefore the work done in the cycle is

24750 - 13750 = 11000 ft.-lbs.

or ^ of one Horse Power per stroke per minute.
o

The efficiency of the engine is evidently

24750 - 13750 ^ T,-T, _ 4

24750 ~ T^ ~9*

It will be seen that in such an engine the ratio of the

greatest to the least volume is about 7 to 1, while the

corresponding ratio of the least to the greatest pressure is

about 1 to 12.
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61. Air engine with regenerator. Compare with tliese

the results given by a perfect air engine working between
the same limits of temperature, absorbing the same quantity

of heat and doing the same work, but performing its cycle

with the help of a regenerator.

We will suppose that the volume of the air is not altered

during its passages through the regenerator, and that the

highest pressure and therefore the least volume of the air

during the cycle are the same as p^v^, the highest pressure

and least volume in the cycle of the previous article.

Let ABCD represent the cycle of this engine, and as

before let p^v^, p^v^, p^v^ and p^v^^ be the pressures and volumes
for the points A, B, C and B,

A y\ nc. 26.

D . ^v

x^^ ^- a

.
^^^'v^^

9

Then since by hypothesis the circumstances of absorbing

lieat are the same as in the last example, therefore

^, = 257H -^1 = 2-046,

;?,= 16090, 2;, = 3-274,

as before, and hence

p^=-''p, = lx 16090 = 8939; v, = v, = 3-274,
"^2 9

p^ = Tip^=^x 25744 = 14302 ; v, = v, = 2046,

but we saw that -'' = 1*6.



SOME PKOPERTIES OF HEAT ENGINES, 97

Thus in the engine with a regenerator the greatest and
least volumes are in the proportion of only 1'6 to 1, and the

greatest volume is less than ^^^ of the greatest volume in the

cycle of an engine without a regenerator, and in which the

least volume is the same.

The greatest and least pressures are in the proportion of

3 to 1.

62. Diagrams of energy from diflferent apparatus.
The cycles of actual heat engines are seldom if ever per-

formed wholly in a single chamber or vessel, but whatever
be the number of separate apparatus employed, the work
done in each may be indicated by a diagram representing on
a fixed scale the pressures and volumes of the whole mass of

fluid acted upon in that apparatus.

By combining all the diagrams a figure will be obtained

representing the whole work performed by the engine during
the cycle.

If the weight of fluid acted on in all the apparatus be
constant and equal to m pounds, then the combined diagram
may evidently be considered either as the diagram of m
pounds of fluid drawn to the given scale of pressures and
volumes, or as the diagram of one pound of fluid drawn 'to

the same scale of pressures but to a scale of volumes m times
as large as the given scale, and isothermals or adiabatics may
be drawn and compared with any of the lines of the figTire

accordingly.

Of course in the latter case the work done by one pound
of fluid must be multiplied by m to find the work done by
the whole m pounds.

Yery often however the weight of fluid acted on is not
the same in all the apparatus, for instance, the w^eight of

fluid in a steam-boiler is greater than that in the cylinder.

In such cases if the weight of fluid in one apparatus be
m pounds and in another apparatus n pounds, then in the

combined diagram the line indicating the changes in the

latter apparatus may be considered as part of the diagram

S. H. 7
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76

of one pound of fluid to a scale of volumes — times as great

as the scale to which the diagram of a pound of fluid in the

former apparatus is drawn.

Thus the scales of the two parts of the diagram being
different, lines which are drawn as isothermals or adiahatics

with reference to one part of the diagram will not neces-

sarily have the same significance with regard to the other

part of the diagram.

The area of the diagram will however still show the work
done by the whole mass of fluid employed.

63. Fluid acting as a cushion. The difference of

weight of fluid acted upon in different parts of the cycle

must be produced by some portion of the fluid always re-

maining in one apparatus and not passing forward to un-
dergo the same cycle of operations as the rest of the fluid.

The portion which remains in any vessel after the rest

has passed forward must evidently complete a cycle of its

own, independent of the remainder of the cycle of the rest

of the fluid.

If this cycle could be entirely separated from that of the

rest of the fluid, the diagram of any engine could be reduced
to a series of diagrams of constant weight of fluid such as we
have been considering.

This is not generally possible, but sometimes it can be
seen from the circumstances of the case that the fluid re-

maining in a vessel must, during expansion, pass in a reverse

order through the same or nearly the same series of changes
as during compression, thus giving out no work on the whole.

In such cases the fluid is said to act as a cushion, and
its diagram is easily separated from that of the working
fluid, if it undergo one series of changes by itself. For let

AB represent the changes undergone by the whole of the

fluid, and CD the. changes undergone by that portion which
acts as a cushion. Through A and C draw AGK to meet
OF in Z, and through B and D draw BDL to meet OY
in L,
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Then, by supposition, when the state of the whole fluid

is represented by A, the pressure of that part which acts as

a cushion is the same as when the latter is in the state

represented by C. Therefore the pressure of the fluid for

the point A is the same as the pressure for the point C,

that is to say, the straight line ^ is 'parallel to OX, And
in the same way it may be shown that BD is parallel to OX.

Also when the volume of the whole fluid is equal to AK
the volume of cushioning fluid is equal to CK.

Cutting off therefore from KA a portion AA' — KC, we
have for the volume of the remaining or working fluid the

line KA',

In the same way if any straight line PQR be drawn
parallel to OX to cut AB, CD, KL in P, Q and R respec-

tively, and from PR a part PP' be cut ofl" equal to QB,
the remainder BP' will be equal to the volume of the work-
ing fluid at the pressure OR,

Thus the series of changes undergone by the working
fluid alone may be represented by a curve B'P'A drawn
through the series of points obtained in the same way as P',

It is evident, from the construction of such a curve, that the
area KA'FB'L, included by it, is equal to the area CAPBDQ
included between the two original curves APB and CQD,

7—2



CHAPTER IX.

THE STEAM-ENGINE.

64. Indicator diagrams. The ideal form of the indi-

cator diagram taken from the cylinder of an ordinary steam
engine resembles that shown at ABODE in figure 28. In
this A represents the pressure and volume of the steam

r A a

\

\ \ FIC.2a
\

\
\

£

Vv
\

\\ —^-_C
o O'

in the cylinder at the moment when the piston commences
its stroke. At this moment the communication between the

cylinder and the boiler is open and remains open until the

portion AB of the diagram has been described, so that AB
is a line whose form depends upon the expansion of the

whole mass of fluid in the boiler as well as in the cylinder.

This expansion being very small compared with the total

volume of the fluid should be effected without sensible

alteration of pressure, and the ideal form of the portion AB
of the diagram is thus a straight line parallel to OX,
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When the piston has swept through a volume equal

to AB the communication between the cylinder and the

boiler is closed, and the steam in the cylinder allowed to

expand separately throughout the remainder of the stroke,

this expansion being represented by the curve BC, after

which the exhaust valve is opened and the steam allowed

to escape from the cylinder.

We have supposed the cycle to be so arranged that at the

end of this expansion, which is also the end of the forward

stroke, the pressure shall be equal to that against which the

piston is forced during the return stroke. The latter pressure

is called the "back pressure," and is generally sensibly

constant during that portion of the return in which the

exhaust valve remains open.

Shortly before the end of the return stroke the exhaust

valve is usually closed, and the small quantity of steam re-

maining in the cylinder is compressed by the piston during
the rest of the stroke ; this compression being indicated in

the diagram by the line DE.

When the piston has arrived at the end of the stroke,

the pressure and volume of the steam remaining in the

cylinder being denoted by the point E, the communication
with the boiler is again opened, and the entering steam
quickly raises the pressure in the cylinder to that repre-

sented by the line AB.

In this operation the steam which had remained in the

cylinder is of course compressed, and we may suppose its

changes to be represented by the dotted line EF, while the
fresh steam from the boiler fills up the volume represented

by FA.

The forward stroke of the piston now recommences, and
the series of operations is repeated as before.

65. Clearance and Cushioning. In all engines there

must be some space between the end of the cylinder and the

piston even when the latter is at the extremity of its stroke

;

also the steam-valve, or valve regulating the admission of

steam from the boiler, is seldom quite close to the end of the
cylinder. All the space which remains at the end of the.
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stroke between tlie piston and the steam-valve is called the
"clearance." It is this space which is represented in the
figure by the distance between the point A and the line OY.

In order to draw the line F in its proper position with
regard to the indicator diagram the clearance must be mea-
sured, but if such measurement is not to be had, the space
may be taken roughly as probably equivalent to the volume
swept through by the piston in from one to two inches of the
stroke. The clearance should of course be taken into ac-

count in calculating the ratio of expansion during the opera-

tion BCj ei thing which is very often neglected.

It is evident from what has gone before that the whole
of the clearance is not filled with fresh steam from the boiler

at each stroke, but that it is at least partly occupied by
steam which had been enclosed in it when the exhaust valve

was shut towards the end of the previous return stroke.

By shutting the valve at the proper point of the stroke

a quantity of steam may be enclosed sufiicient to fill the

whole clearance at the same pressure as that of the steam
from the boiler, thus producing a diagram such as that shown
at B'A.

If we suppose the cylinder to be formed of non-conducting

material the curves B'A and BC must be adiabatics, and if

the temperature as well as the pressure of the steam are the

same for the point i>' as for the point G, then the steam
which passes through the process D'A in being compressed,

must pass in reverse order through the same series of changes

during expansion, and thus corresponds exactly to our defi-

nition of cushioning steam.

In actual engines this would be only approximately the

case, and when instead of passing through the process B'A
the steam is only partly compressed by the piston as shown
by the curve BiJ, it must evidently absorb heat from the

fresh steam which enters from the boiler and completes the

compression as shown by the dotted curve BF, so that this

curve must be more perpendicular than an adiabatic.

In giving up the heat so absorbed, before returning to

the state E the &t3am may do a certain quantity of work,
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I

and thus] perform other functions besides acting as a cushion

to reduce the shock to the machine in reversing the motion

of the piston. That however is the principal office of this

steam, and hence the name of cushioning steam is applied

to it.

The curve BC indicates the changes of pressure and
volume undergone by the whole mass of steam in the cylinder,

but the diagram of the steam which enters from the boiler

may be found very approximately by the process given in

Art. 63, Chap. viii.

For this purpose the form of the curve EF must be esti-

mated, but generally no great error will be introduced if it

be considered to coincide sensibly with an adiabatic.

After being separated from the diagram of the cushioning

steam, the diagram of the working steam which enters ar

r/c.29.

the beginning of each stroke from the boiler will resemble
that shown at ABCI), (fig. 29).

Here AB and DC represent the same volumes as FB
and DC in the previous figure (fig. 28), and if BM, CN be

ON
drawn through B and G parallel to OF the ratio yyrrwill

represent the real ratio in which the working steam is ex-

panded.
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66. Completion of the cycle. The rejection of heat
by the steam after leaving the cylinder may be effected in two
ways, either by exposing it in a closed vessel called the con-
denser to the action of cold water, as in a condensing engine,

or by allowing the steam to escape into the open air and
carry off with it the whole of the heat it contains in the
state C, as is done in a non-condensing or, as it is sometimes
called, a high-pressure engine.

In the latter case the back pressure is simply the pres-

sure of the atmosphere increased by whatever pressure is

necessary to force the steam through the passages by which
it leaves the cylinder.

In the former case the back pressure shown in the
diagram is the pressure in the condenser, but a pump, called

the air-pump, must be used to keep the condenser from being
filled, and strictly the diagram of the work done by this

pump should be subtracted from the diagram of the work
done by the engine, but in practice it is usually included in

the estimate of this work.

In whichever way the heat is rejected, a pump, called the

feed-pump, must be employed to raise water from tlie pres-

sure at which it was left after condensation to that of the

boiler, and force it into the boiler, but the volumes of liquid

water are so small that the diagram of the feed-pump could

not be shown on the engine-diagram, and the small quantity

of work done by this pump is also generally included in the

estimate of the useful work of the engine.

This completes the cycle, which commences again by the

heating and evaporation of the water in the boiler at a pres-

sure which is sensibly constant, as shown at AB,

67. Ideal condensing^ engine. As an example of the

application of previous results we may now find the quanti-

ties of heat which would be absorbed and rejected, and the

quantity of work which would be done on the supposition

that the cylinder is formed of non-conducting material, and
that the steam supplied to it from the boiler is in the state

of dry saturated vapour. We shall also suppose that water

is returned to the boiler at the temperature at which heat is

rejected.
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Let T^y T^ denote the temperatures of the condenser and
of the steam from the boiler, in degrees Fahr., and r^, r^ their

absolute temperatures.

Then by Arts. 48 and 49, Chap, vil., the heat absorbed
in raising one pound of water from T^ to T^ and evaporating
it at Tjj is equal to

Of these two expressions the former is the simpler, and
in finding an approximate value there is a smaller error

introduced by taking the specific heat of water as constant,

since between 32 and T^ the specific heat varies less rapidly

than between T^ and T^. Using this formula then, we find

for the numerical value of the heat absorbed by one pound
of water, on the supposition that the specific heat of water
is constant between 32 and 2\ and equal to 772,

H^-K=^ 842872 + 235 (T^ - 32) - 772 [T^ - 32).

Also since the cylinder was supposed to be impervious
to heat, therefore the expansion curve represented hy BG
(fig. 29) must be an adiabatic, and therefore during the
expansion a portion of the steam will be condensed, as shown
by Art. 54, Chap. vii. We shall suppose that at the end
of the expansion the water thus produced falls to the tem-
perature Tj, along with the expanding steam. By equation

(7) Ai't. 54, the weight of steam remaining uncondensed at

the end of the expansion will be ic of a pound for each pound
of fluid, where

775 log, -^ = -^-^^ nearly.
"^2 '^2 "^1

Therefore the quantity of heat rejected by the engine
when this remaining steam is condensed is xL^, where

^^1 = '^i\~- 775 log, -4 nearly.
2

Therefore

J.
(1112770 -546t„

1 '1

r
-77olo-.j}.



106 THE STEAM-ENGINE.

The pressures of the steam at the temperatures r^ and
Tg must be found from equation (1) of Art. 50, Chap, vii.,

namely

and the volumes of one pound of steam at these tempera-
tures, from equation (6) of Art., 51, which gives

1112770- 546 T
v =

2-3026 (^+^^')^

68. Efficiency of ideal condensing engine. The effi-

ciency of such an engine as we have supposed, would evi-

dently be

if we take the back pressure as being due only to the

pressure of condensation for the temperature T^ and neglect

the power expended in working the pumps.

In order to compare this efficiency with that of a perfect

heat-engine working between the same limits of temperature

we will give a definite numerical value for these limits.

Let T^ = 106-34' and T^ = 295-34'.

Therefore t^ = 567 and r^ = 756.

Hence we have

H^ = 842872 -t- 235 x 263-34,

thus IT, = 842872 + 61785 = 904657,

and \ = 772 x 74-34 nearly = 57391.

Therefore the whole heat absorbed is equal to

904657 - 57391 = 847266 foot-pounds.
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Also for the heat rejected we have

^ ^^^ (1112770 - 546 X 756
,
^^. , 4)

^A = 567

1

^^ + 77o log.
3|

= 567 {925-918 + 775 x 0-2877}

= 567 (925-918 + 222-967) = 567 x 1148*885

;

therefore xL^ = 651420 nearly.

and
//, - A, - xL^ _ 847266 - 651420

H^-\ ~ 847266

_ 195846

_

" 847266
-^'^'^^•

The efiSciency of a perfect engine between the same
limits would have been

-^Uli or 1|? =1 = 0-25.
Tg 7o6 4

But we have supposed the cycle of our condensing

engine to be the same as that of a perfect heat-engine in all

respects, except only that the water is raised from T^ to T^

by heat communicated to it at the temperature T^,

It follows that in this process there is a loss of heat

equal to about 0*019 of the whole heat expended, or about

-
——

- =0-08, which is nearly j^^*^ of the heat which has been

utilized in the cycle.

This loss might be avoided by condensing only a portion

of the steam, and then compressing the mixture of steam
and water, by means of a pump, till its temperature and pres-

sure should be equal to that of the steam in the boiler to

which it is returned, the compression being of course sup-

posed to take place without transfer of heat.

It has been mentioned in Art. 54, Chap, vii., that if more
than about half the fluid is in the state of water before the
compression commences, then a farther quantity will be con-
densed during the process.
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Hence a sufficient quantity of fluid must be left in the
form of vapour to allow the compression to be completed
before the whole is condensed.

69. Expansion curves of actual engines. In the cal-

culations of the last two articles the expansion curve has been
supposed to be an adiabatic starting from a point in the curve
of saturation. In actual steam-engines this is never the case,

for various reasons, some of which may be mentioned.

First, the steam at the commencement of the expansion
is very seldom in the form of dry saturated vapour.

In passing from the boiler to the cylinder, the steam
carries over with it a quantity of liquid water in the form of

finely divided spray, which can only be got rid of by being

evaporated in some way during the passage to the cylinder.

Even if a heating apparatus be employed for this purpose,

tlie steam at the commencement of the expansion will not

necessarily be free from liquid water, for the sides of the

cylinder, instead of being made (as was supposed above) of

non-conducting material, consist really of metal which must
be at a lower temperature than the entering steam, since it

has just before contained steam at the temperature of the

end of the expansion in the previous stroke. The entering

steam will therefore have its pressure and temperature
lowered, and will be partly condensed unless it had been not

only dried but considerably superheated on its way to the

cylinder.

Second, whatever be the initial state of the steam, the

expansion cannot follow the adiabatic curve, because the

cylinder is not formed of non-conducting material.

If the motion of the piston be very slow there may be
time for fresh steam to enter the cylinder until its sides are

raised to the temperature, and the steam to the pressure,

of the supply. In this case when the steam begins to cool by
expansion, heat will flow from the metal of the cylinder, and
thus the expansion curve will be less perpendicular than the

adiabatic, and will rise above it throughout its whole length.
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" If, as is usual, the communication with the boiler is cut

off before the sides of the cylinder have been raised to the

temperature of the entering steam, then there will be a flow

of heat from the steam to the metal until the two come to

the same temperature, and thus during the earlier part of

the stroke the expansion curve will be more perpendicular

than the adiabatic, and will fall below it.,

As the stroke proceeds the steam will be cooled by expan-
sion and the metal of the cylinder heated until they both
come to the same temperature. The direction of the flow of

heat is then changed, for the steam continues to be cooled, by
further expansion, below the temperature of the metal, and
must therefore absorb instead of giving out heat.

In this way the expansion curve during the latter part of

the stroke will become more horizontal than an adiabatic,

and will rise above it. This alternate heating and cooling of

the steam must cause a loss of efiiciency, because the heat
taken from the steam in the earlier part of the stroke, even
if returned to it in the latter part, does not produce its full

effect, but is returned only in time to be rejected by tliQ

exhaust steam.

Third, there seems generally to be a farther loss when
working with steam which is in the form of saturated vapour
at the commencement of its expansion, arising from the for-

mation of water in the cylinder.

The water formed during the earlier part of the stroke

and at the higher temperature, does not readily part with
its heat while the steam is being cooled by expansion, and
thus tends to make the expansion curve fall below the
adiabatic, while at the end of the stroke the water which is

expelled from the cylinder along with the exhaust steam
carries away with it an undue quantity of heat.

There may be also a farther loss if some of the partially

cooled water remain in the clearance space, as it will then
assist the metal of the cylinder in abstracting heat from the
steam which enters from the boiler at the commencement of

the next stroke. The loss caused by the formation of water
in the cylinder is so serious that, in order to prevent it, cylin-
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ders in whicli the ratio of expansion is to be considerable are

provided with a "steam-jacket," or outer casing, filled with
steam direct from the boiler.

By this arrangement, any water which is formed in the
cylinder at the commencement of the stroke is re-evaporated

by the heat supplied to the sides of the cylinder from the
steam in the jacket.

Of course water is formed in the jacket, but this is

allowed to drain away without interfering with the working
of the engine, and it is found that a considerable economy of

heat results.

The expansion curve of an engine with a steam-jacket

will throughout rise somewhat above that of another engine

because the temperature of the sides of the cylinder is kept
higher in the one than in the other.

Again, in what are called "compound" engines, the steam
after being partly expanded in one cylinder is transferred to

another for farther expansion.

Neither cylinder of a compound engine is exposed to

temperatures so different as those of the beginning and end
of the whole expansion, and thus a certain amount of loss is

avoided.

On the other hand, there is generally a certain loss of

power during the transfer of the steam from one cylinder to

the other.

70. Approximate exj)ansion curve. It is sometimes
assumed that an engine with a steam-jacket will have an
expansion curve approximating to the curve of saturation,

and that an eugine whose cylinder is not steam-jacketed, but

is covered with material of low conducting power, to prevent

the escape of heat, will have its expansion curve approxi-

mately the same as an adiabatic.

The curves actually obtained are so different that it is

scarcely worth while to use such complicated calculations as

those of the curve of saturation and the adiabatic in arriving

at Avhat, after all, is only a rough approximation to the real

form.
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from, either of these curves, and is so much more easily

calculated that it is generally taken as the best approximate

expansion curve.

The hyperbola is more nearly horizontal throughout than
the curve of saturation, and still more than the adiabatic,

that is to say, it rises above these curves.

It follows that in the earlier part of the stroke the

hyperbolic curve will rise above the expansion curves of all

engines except those which move very slowly indeed, or

(what has nearly the same effect) work with a very small

ratio of expansion.

In the latter part of the stroke, however, the expansion

curves of most engines are found to rise up to, or even above
the hyperbola drawn through the point of the diagram at

which the expansion commenced.

Thus liBC (fig. 30) be an hyperbolic curve, then the usual
form of expansion curve will be represented by a line some-
what resemblinor the dotted curve BK,

7 1 . Calculation of results from approximate expansion
curve. If we take ABCD as our approximation to the

diagram of the working steam in an engine, separated from
that of the cushioning steam, we get for the work done
during the forward stroke the area OABCN, which is equal

to the rectangle OA, OM, together with the area MBCN,
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And for the work done against the steam during the return

stroke, the rectangle OD . ON,

In most engines, however, the expansion of the steam is

not continued till its pressure falls to that which is to be
overcome during the return stroke, as this would require

too large a cylinder. Therefore, after a certain amount of

expansion the exhaust valve is opened and the pressure

allowed to fall as suddenly as possible to equality with the

back pressure.

The form of our approximate diagram will therefore be
represented by ABCC'D , where C is the pressure of the end
of the expansion, CC represents the sudden fall of pressure

when the exhaust valve is opened, and CB' is the line of

constant pressure drawn during the return stroke.

Let PjV^, ^2^2' Pi^a ^® ^^® pressures and volumes for the

points B, Cf C respectively, and let — , the ratio of expansion,

be equal to n
Also let T^ be the temperature of the steam in the state

C at the end of the expansion, and T^ the temperature of the
feed water.

Then the work done by the steam during the forward

stroke according to this approximation, is

J>,Vj+j9,'yjloger = p,v,(l + loger) (1),

and if p^ be the mean intensity of the pressure throughout
the forward stroke, then

_ p,^,(l+log,r) _ l+loge^
P».-

^^
~Px ^ »

and ^^l+J^M
(2).

p, r

Also the work done against the steam in the return

stroke is p^v^, so that the total useful work given out is

V,v^{l + \og,r)-p^v^ (3).

The heat rejected may without material error be found

by subtracting the work represented - by DCCD' from the
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whole quantity of heat which would be rejected if the return
stroke were performed according to the line CD.

This latter quantity of heat is called by Rankine the
heat of release, and is evidently that which would be absorbed
in raising water from the temperature T^ to T.^, and evapo-
rating it at that temperature.

Using the notation of Arts. 47 and 48, Chap. VIL, this

heat of release is therefore equal to H^—h^, where

IT, = 842872+235(^,-32),

^while A^^may with sufficient accuracy for the purpose be put
^qual to 772 (

T^ - 32) per lb. of steam.

Therefore the total heat rejected per lb. of steam is

842872 + 235 {T^ - 32) - 772 (T, - 32) - v, {p, -'P,)....{^),

The heat absorbed is to be found by adding to this the

quantity of heat converted into w^ork before the release of

the steam, as shown by the area ABGD (fig. 30), and is

equal to

and since i?!^! —p^v^, this may be written

Heat absorbed = H^ — h^ +Pi^i loge^ (5),

and therefore the efficiency of the steam is

P{i\(l-\-loger)-p,v^

Kankine points out that in ordinary engines when the
feed water is supplied between 100^ and 120^ Fahr., the

numerical value of the heat of release is very nearly

H,-K = 15p,v (7),

from which we should get

Heat absorbed = p^v^ (15+ loger) (8),

and efficiency of steam - Pi^t(l+lQgeO
-fi^2^

/m
• P^V^{l0 +l0ge^)

S. H. 8
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72. Modifications of indicator diagrams. One or two
matters remain to be noticed in connexion with the actual

indicator diagrams of steam-engines.

Whatever be the mechanism of the engine the valve

regulating the admission of steam occupies a finite time in

passing between its positions of full open and absolutely

closed.

During part of this time the orifice through which the

steam enters the cylinder must be very small, and the pres-

sure of the steam will thus be diminished in passing through it.

This is called "wire-drawing" the steam.

It is a case of what was mentioned in Art. 54, Chap. Vll.,

as the free expansion of steam, and there is a tendency to

cause superheating, but its effect on the diagram in pro-

perly constructed engines is too small to be noticed.

What is visible is the rounding off of the corner at B
(figs. 31) and (32) between the lines of admission and ex-

pansion.

Thus the hyperbolic curve PQ fig. (32), which is to be
used as an approximation to the real figure, should be drawn
through a point h on the line of constant pressure Ah, cor-

responding to a part of the stroke rather before the steam-

valve is perfectly shut.

In the same way the gradual opening and closing of the

exhaust valve causes a certain rounding of the corners of the

diagram at C and C\ and again at D' (fig. 31).

The gradual fall of pressure about the point (7 is of course

only produced if the exhaust valve be opened a little before

the end of the forward stroke. Otherwise the expansion

curve ends sharply at the end of the stroke, but the fall of

back pressure about C is even more gradual than that shown
in the figures.

In actual diagrams there are generally also undulations

in the curves, especially with fast-moving engines.

These are probably caused partly by variations in the

pressure of the steam itself, but chiefly by vibrations of the

spring of the instrument used in taking the diagrams.
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It is best to consider the true diagram as consisting of

lines drawn half-way between the top and bottom of these

undulations.

Thus the actual diagram of an engine may resemble the
figure ABGC'D'EA (fig. 31).

Taking the dotted lines EF, FA to represent the opera-
tions of the entering steam in compressing the cushioning

f _/Ly^\-/r

X ric 31.

\ N^

t
^\^^^__^^""^^^c

D' c

steam, the remaining dotted lines serve to show the form of

the diagram when cleared of undulations.

Again, taking the diagram as shown by the dotted lines

and separating the diagram of the working from that of the
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cushioning steam we get a diagram of somewhat the form
shown at ABCG'UA fig. (32).

The dotted line PhQ is the hyperbolic curve, and the
distance FA represents that part of the clearance which is

filled at each stroke with fresh steam.

It may be mentioned here that the temperature and
pressure in the condenser of an engine do not satisfy the

equation \og^ip=A ^ of Art. 50, because there is always

air in the condenser as well as steam and water, and this

raises the pressure above that due to saturated vapour
alone.

73. GrapMc construction for ~ ^Mj^ Eankine

gives the following graphic construction for finding ^^,

which may be used when tables are not at hand.

Draw any straight line AB and produce BA to 6',

making AG= --j- .

From centre C with radius CB describe a circle, and

through A draw AI) perpendicular to AB to cut the circle

inD.
BA

Divide BA in E so that BB= , and through E draw

EF parallel to AB to cut the circle BFB in F. '

EF 1 + lo^.r
Then 3^ nearly.
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And since by equation (2) of the last article

A. _ l+jogej^

therefore -r-^ =-^ when ^T. = - .

WW
In reality -r^ is somewhat too large when r is large,

1 + loc T
and too small when r is small, but equal to— ^^

, when

r = 3"o nearly.

74. The rectangular hyperbola. Given one point on

a rectangular hyperbola, any number of other points may be

found graphically as follows.

FIG. 34

K, K» ^a r*

Let Pj be the given point, draw Pj]^ parallel to OF to

to meet OX in V^. Produce XO to X' and from OX cut off

0Z7j equal to V^P^. Bisect U^V[ in C^, and from centre (7i

with radias Cj^i draw a circle cutting OY in S. In XX
take any number of other points c^c^c..., and with centres

C/3C4. . . and radii c„s, c^s, c^s.

.

. describe circles cutting XX in

u,v„ u,r, u,v,...

Through V^V^V^ draw lines parallel to OY, and from
these cut off parts V^P^, F3P3, V,P,... equal to OU^, OU,, OU,...

respectively.

Then evidently F, x V,P, = OV^x V,P, = OV,xV,P,= ...

= {08y\ and therefore P^P^P^,,. are points on the hyperbola.
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NAPIERIAN LOGARITHMS.

The usual method of finding the value of e the base of Na-
pierian Logarithms and the series for the Napierian Logarithm
loge r, are here given, as completing Chap. iv.

and expanding by the Binomial Theorem we have

x(x-l){x-2) . ,,3 x(x-l)(x-2)(x-3) , ,,,
+ ^2.-6 (^-1)+—

|4
^ -^(r-ir+....

which by re-arrangement can be written

r'=l+a!{(r-l)-J(r-ir + i(r- 1)^-1 (r-l)'+...}

+ terms involving a;*, x^ and higher powers of x.

This shows that r* can be expanded in a series beginning with

1 and proceeding in ascending powers of a;; we may therefore

suppose that

r^ = 1 + c^x + c^x^ + CgCc* + CiX'^ + ...

where c^ c^ Cg-.-are quantities which do not depend on Xj and which
therefore remain unchanged however x may be changed ; also

c, = (r-l)-\{r-iy + l{r-iy-\{r-iy+...

while Cg Cg... are at present unknown; we proceed to find their

values.

Changing x into x + y, we hate

^,'r-^y^
I ^

c^
(x + y) + c^{x + yf + c^ (x + yf + ...

= l+c^y + cy + cy+...

+ {c, + 2c^y + 3cy+...)x

4- terms involving x^ and higher powers of x,

but r'+v =^ r'r^ = r^l + c^x + c^x^ + c^x^ + ...}

= r^ + cj'^x + c^r^x^ + c^r^x^ + . . ..
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Since the two expressions for ?'*'*"^ are identically equal we
may assume that the co-efficients of x in the two expressions are

equal ; therefore c^ + 2c^ + 3c^y' + ic^^^ + . . . = c^r^.

But Cjr^ = c,{l +Cj2/ + cy + cy+ ...}.

Assuming again that in these identically equal series the co-

efficients of the corresponding powers of y are equal, therefore

2^. = ore.-h
3^3 =

= ^,^«» or Cg
3 1.2.3'

4c, =
-<^A^ or C4

4

r'=l + o.x +-^ + ^+^+...
Since this is true for all values of x, take x such that c^x = 1

or a; = -
; therefore

^>
1

ci 1 1 1 1 1
^^l-^^+|2^;3-^[4^••'

The sum of this series is approximately equal to 2*718281 828. .

.

and is generally denoted by e. It is the base of the Napierian
1

system of logarithms. "We have then 7^^ — €, therefore r - c^'i and
Cj = logg r. That is to say,

, . .. {r-iy (r-iy (r-iy

Again put r = 10'', therefore log^^ r = x.

Now since r=l(y = e% therefore c^ - log^ (10''), and therefore

Cj = X loge 10, or loge T = log^^ r X loge 10.

Also since 10* = €% therefore x = logj„ (c'^i) and x = c^ log^^ e, or

logj^r = loger logjo e, but logj^jC = 04342945 nearly; therefore

log,„r = 0-4342945 log, rand log, 10 = , = 2-3025851 nearly:

therefore log, r = 2 -3025851 log^, r.
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Logarithms to base

N. Log. IN.

j

Log. N. Log. N.

1

Log.

1 O'OOOOO 26 3-25810 51 3-93183 76 4-33073

2 0-69315 27 3-29584 52 3-95124 77 4-34381

3 1-09861 28 3-33220 53 3-97029 78 4-35671

4 1-38629
!
29 3-36730 54 3-98898 79 4-36945

5 1-60944
i 30 3-40120 55 4-00733 80 4-38203

6 1-79176 31 3-43399 56 4-02535 81 4-39445

7 1-94591 32 3-46574 57 4-04305 82 4-40672

8 2-07944 33 3-49651 58 4-06044 83 4-41884

9 2-19722 34 3-52636
[

59 4-07753 84 4-43082

10 2-30258 35 3-55535 1 60 4-09434 85 4-44265

11 2-39789 36 3-58352
i

61 4-11087 86 4-45435

12 2-48491 37 3-61092
1

62 4-12713 87 4-46591

13 2-56495 38 3-63759
i

63 4-14313 88 4-47734

14 2-63906 39 3-66356 64, 4-15888 89 4-48864

15 2-70805 ' 40 3-68888 ' 65 4-17439 90 4-49981

16 2-77259 41 3-71357 QQ 4-18965 91 4-51086

17 2-83321 42 3-73767 67 4'20469 92 4-52179

18 2-89037 43 3-76120 68 4-21951 93 4-53260

19 2-94444 44 3-78419 69 4'23411 94 4-54329

20 2-99573 45 3-80666 70 4-24850 95 4-55388

21 3-04452 46 3-82864 71 4-26268 96 4-56435

22 3-09104 ' 47 3-85015 72 4-27667 97 4-57471

23 3-13549 48 3-87120 73 4-29046 98 4-58497

24 3-17805 49 3-89182 74 4-30407 99 4-59512

25 3-21888 50 3-91202 75 4-31749 100 4-60517

7.

cambuidge: piunted by c. j. clay, m.a., at the university press.
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