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PREFACE.

TaE favourable reception accorded to the Trestise on
Practical Shipbuilding and Laying O, which I had the
honour of contributing to this Series three years ago, has
encouraged me to venture upon the present work. The
literature of Naval Architecture in the English language is
not at all commensurate with the importance and magnitude
of the shipbuilding industries of Great Britain, and that
literature which exists is practically beyond the reach of
most of those who desire and need acquaintance with it.
Without particularising the special defects in this respect of
existing books on the Theory of Naval Architecture, it may
be said that either they are too large and costly, or written
too obscurely to place them within the pecuniary or mental
grasp of the majority of students, draughtsmen, and workmen.

In preparing the present work, it has been my object to
adapt it for the student who possesses simply a knowledge of
elementary mathematics, and at the same time to provide
for the requirements of those whose studies have been much
more advanced. The former will find all the information
necessary to enable him to perform the usual calculations of
the drawing office, expressed in formule, or by rules easily
applied; while the latter will be enabled, by following out
the investigations by which these formulee and rules have
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been obtained, to gather a tolerably clear idea of the prin-
ciples upon which they are based.

In offering this work to Naval Architects, it is hardly
necessary for me to say that I have been indebted to those
who have written before me for a large proportion of the
ideas which it contains. It would, indeed, be impossible to
write usefully upon a science which has been brought to its
present state by the contributions of so many minds without
being under such obligations.

An effort has been made to simplify the problems in-
volved in calculating the stability of ships by separating the .
calculations relating to the form of the vessel from those
relating to.her weight, and the position of her centre of
gravity. A few alterations have been made in the usual
nomenclature of the subject with a view to greater exacti-
tude of expression. Some of these alterations were suggested
by a recent writer in Naval Science. To what extent success,
or the contrary, has attended my attempts to secure those
very desirable objects—simplicity and accuracy, it will be
for the reader to decide. At all events, it is hoped that a
work based upon such a plan as the author himself would
have desired when a student will be of service to the young
naval architect by simplifying his studies, and to the draughts-
man and shipbuilder by helping them in their daily duties.

S. J. P. THEARLE,
LoNDoN, February 1877,
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THEORETICAL NAVAL ARCHITECTURE.

INTRODUCTION.

THE work of the Naval Architect is to design a floating
structure, stable, seaworthy, and strong; capable of being
propelled with facility either by the wind, by steam, or some
other motive power, and adapted for the particular service
in which it is to be employed, whether as a fighting ship
or for carrying merchandise or passengers. In every case
certain qualities, viz., stability, sea-worthiness, strength,speed,
stowage, and accommodation, have to be fulfilled in a varying
ratio according to the purpose for which the ship is intended.
In a ship of war certain other qualities have to be obtained,
such as power of carrying and fighting guns, and sometimes
invulnerability ; these too being provided in different ratios
of importance according to the duties the ship has specially
to perform. It is the art of securing these qualities, and
apportioning them in the several degrees necessary to secure
the maximum efficiency of the ship in her peculiar vocation,
that constitutes the functions of the Naval Architect, and
renders his duties among the most difficult and onerous that
fall into the hands of man to perform; requiring, as they do,
a knowledge of some of the most complex and abstruse
physical laws, and a wise discrimination in applying experi-
mental data. :

The development of the science of Naval Construction has
been very slow until within the last century, netwithstand-
ing that Naval Architecture has a history dating back almost
as far as that of land architecture. Indeed, until the appli-
cation of iron to shipbuilding, no considerable improvement
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could be observed in the mode of constructing ships during
several centuries. The advances that have been made during
the past twenty years, especially in regard to war ships, are
far greater than can be traced during at least one hundred
and fifty years previously. But, while the growth in the
mechanical or building branches of the art have been most
important, resulting, as they have, from the rapid develop- |
ment of new resources, and the bringing of powerful forces
of nature more under our control, it is to the enlargement
of our knowledge in the scientific—or, as it is termed, the
theoretical department—that we should attribute a large
share of the credit for the unparalleled rapidity of our advances; |
. a8 by it we have been guided safely, in the wide departures
from the old lines of experience and routine, into modes of |
construction which have been rendered mecessary by the
altered circumstances of the present day. ‘

It is to the French that we are indebted for the first
definite and consistent application of scientific truths to
Naval Construction; and, until within recent years, the prin-
cipal text-books on naval science were written by French-
men. The superiority over our own ships in point of
sailing and sea-going qualities displayed by ships of war
which we had captured from the French, during the wars
of the last century, caused our own mnaval architects to
frequently build upon the French models; and this con-
tinued until, in the year 1811, we began, in earnest, the
scientific study of Naval Architecture. From that time,
until the present day, England has not been without highly
trained men, into whose hands she could confide the respon-
sible task of providing her with trustworthy and suitable
ships for the several departments of her warlike and mercan-
tile navies.

It has already been stated that a ship should fulfil &
number of conditions, some of these being more prominent
than others; in each case prominence being given to those
qualities which are essential for the service the ship is especi-
ally intended to perform. 'We purpose in the following pages
to discuss these several qualities, and show how the posses-
sion of each is to be obtained. This discussion will necessarily
involve statements and explanations of scientific truths and
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mathematical formule, also illustrations of calculations which
have to be made in the application of those truths and
formulz. .

In considering the ZTheoretical Principles of Naval Archi-
tecture, we propose to treat the several branches of the
inquiry in the following order:—

1

S e

Calculations relating to the forms and dimensions of
ships.

. Calculations relating to the weights and centres of

gravity of ships.

. Calculations relating to the strengths of ships.
. Calculations relating to the propulsion of ships by sails.
. Calculations relating to the propulsion of ships by steam

engines.
Calculations relating to the steering of ships.



PART I

CALCULATIONS RELATING TO THE FORMS
AND DIMENSIONS OF SHIPS,

—_—

CHAPTER 1.
CALCULATION OF AREAS AND VOLUMES.

Buoyancy — Stability — Hydrostatical Principles — Displacement —
Areas of Plane Surfaces—Trapezoidal Rule—Simpson’s 1st Rule:
Proofs—Fractional Intervals—Simpson’s 2nd Rule—One-twelfth
Rule—Worked Examples—Centre of Gravity of a Plane Area—
Centres of Gravity of various Figures—Principle of Moments—
Centre of Gravity of a Plane Area bounded by a Curve—Volumes
of Solids—Volume of a Solid bounded by a Plane and a Curved
Surface — Calculation of Displacement — Centres of Gravity of
Solids—Centre of Gravity of a Volume bounded by a Curved
Surface and a Plane—Curve of Areas of Midship Section—Of
Sectional Areas—Of Tons per inch of Immersion—Of Displace-
ment — lanation of a Displacement Sheet — Geometrical
Method — Woolley’s Rule — Proof — Centre of Buoyancy by
Woolley’s Rule—éeometrical Application of Woolley’s Rule—
Angular Measurement of Areas—Volumes and Moments of
Wedge-shaped Solids — Moments of Inertia — Examples—Co-
efficients of Fineness—Table of Co-efficients of Fineness.

.1. The essential qualities sought for in a ship are that she
shall be able to float and carry a cargo of some kind with
safety; and that, too, at a certain speed when under the
influence of a propelling force. In order to do this, it is
requisite that she shall possess buoyancy, stability, and
strength; also that she shall be of such a form as to move
through the water without an undue expenditure of force.
‘We purpose, considering in this and the next division of the
subi~~t, the two first of these qualities; and leave the discus-
- *-+ength and speed for succeeding chapters.
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2. Buoyancy is that quality whereby a ship, or any other
floating body, is enabled to support a certain weight: in the
case of a ship, it is necessary that that weight should be
carried without her sinking too deeply in the water or float-
ing too lightly on it.

3. Btability is that quality, governed both by the form
of the ship, and the positions of the weights carried, whereby,
when she is inclined out of the upright position, she immedi.
ately seeks to recover herself; and, in passing, it may be
remarked that this amount of stabﬂxty should be sufficient
to prevent her from heeling, whether under the influence of
the wind or waves, to such an extent as to endanger her
safety, or produce inconvenience; and, at the same time,
should not be so great as to produce abruptness in her move-
ments sufficient to strain or damage the structure or its con-
tents. The influence of the positions of the weights carried
upon the stability of a ship will be considered in Part IL;
for the present, we propose to confine ourselves to a discus-
sion of the influence of a ship’s form upon her buoyancy and
stability.

4. Hydrostatical Principles.—A body floating in a fluid,
in a state of equilibrium, t.e., with no disposition to sink
deeper, or rise higher with regard to the surface of the fluid,
displaces & volume of that fluid exactly equal to its own
weight. For instance, suppose a cubical block of wood,
each of whose edges is one foot long, when placed in fresh
water to sink to a depth of six inches, so that exactly one
half of its volume is immersed, and then to float in a state of
repose; we at once conclude that, bulk for bulk, the wood
weighs just half as much as the water. In other words,
taking the weight of a cubic foot of water at 1000 ounces,
the cubic foot of wood weighs 500 ounces ; for that is the
weight of the half of a cubic foot of water that would fill the
space occupied by the portion of the block of wood that is
immersed.* Should the block of wood sink until the surface

* As a fact, it should be here observed that a cubical block of
wood, which weighs a half that of an equal volume of water, will
not float in equilibrium in the manner here supposed, with one of its
sides horizontal, but with one of its angular points upwards. _This
can be verified by experiment.
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of its uppermost face is level with that of the water, we con-
clude that, bulk for bulk, the wood and water weigh the
same. ’

This may be proved experimentally in the following manner:
Fill a bowl with water, and place it in a dish capable of con-
taining water. Then gently place any body, that will float,
upon the surface of the water. In sinking to its proper depth
of immersion, it will displace a certain quantity of the fluid,
which will flow over the edge of the bowl into the dish.
‘When the body is in equilibrium, remove it; and by weigh-
ing the body, and then the whole of the water that flowed
over the edge into the dish, their weights will be found to be
the same. Replace the body, and load it until it sinks deeper
into the fluid; weigh the water that again flows over the edge
of the bowl, and its weight will be found to be the same as
that of the material with which the body was loaded.

Before passing on, it should be remarked that in the case
of the cubical block that sank to half it depth in the fluid,
the wood of which it was composed was bulk for bulk half as
heavy as water; assuming that the water was distilled, then
it is said of the wood that its specific gravity is § or -5; the
term specific gravity meaning the ratio of the weight of any
body to that of an equal volume of distilled water. In the
second case, when the wood weighed the same as an equal
volume of water, its specific gravity was unity. Should the
body sink to the bottom of the’fluid, its specific gravity is
determined by placing it in a bowl full of water, and com-
paring its weight with the weight of the fluid that flows
over; the volumes being evidently identical. By this it will
be seen that the specific gravity of a floating body is less
than unity, while that of a body that sinks is greater than
unity. The accompanying table of specific gravities of
materials used in the construction of ships is given, not
because of its immediate use at this part of our subject, but
- because of its bearing upon the principles under considera-
tion. The figures are given upon the authority of Professor
Rankine.
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TABLE OF SPECIFIC GRAVITIES OF MATERIALS USED IN
THE CONSTRUCTION OF SHIPS.

Specific Specific
MATERIALS, Gravity. MATERIALS, Gravity.
Pure Water=1. Pure Water=1.
TIMBER. METALS.
Cedar, .......ccovvvnen. *486 | Brass, cast, ............. 7'8 to 84
Cowdie,................. 579 | Copper, cast,..... ..... 86
Elm,......cccoveeeeeee. 544 s sheet, ......... 88
Fir, Red Pine, ......... *48 to 7 s  hammered,... 89
»» SPruce, ........... *48 to 7 | Iron, cast, average, ... 7°11
»» -American Yellow ,» wrought,average 17‘69
LT . 14
" Imch,..f .......... 78 t0 7°9
Greenheart, ........... *00 6'8to 72
um Vite, ........ 65 to 1°33,
Mahogany, Honduras, '26
..... ‘85
or;z eeenesearanenneen ‘92
Oak, European, ...... 69 to 99
,» American Red,
Teak, Indian,......... 66
” ican,........ 98

It must, however, be clearly understood that it is not
easential to the buoyancy of a vessel that she should be con-
structed, even in part, of materials having a specific gravity
less than unity. All that is necessary is that the volume of .
water displaced, when floating at the required depth, should
be of the same welght as that of the vessel and her contents.
As an illustration, we may cite the common phenomena of a
porcelain tea-cup or a glass bottle—the materials of each of
which have a higher specific gravity than water—floating so
long as no more than a certain weight of water, or any other
substance is contained in them. The buoyancy depends upon
the form as well as the specific gravity of the floating body, and
it is to the former quality that we now wish to direct attention.

6. Displacement.—The weight of any body floating at
rest in a fluid being equal to that of a quantity of the fluid,
equal in volume to the portion of the body that is immersed,
it consequently follows that if we want to know the weight
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of the body, we can determine it by first calculating that
volume in terms of some unit of measurement—say a cubic
foot—and then multiplying the volume by the weight of a
cubic foot of the fluid. Now it happens that in the case of
fresh-water, at its ordinary temperature, a cubic foot of it
weighs 1000 ounces, or 624 pounds avoirdupois; in other
words, 3584 cubic feet weigh 1 ton. Salt-water being some-
what denser, 35 cubic feet are found to weigh 1 ton.

It will thus be seen that when the immersed portion of a
floating body is of some regular form, admitting of the appli-
cation of a simple rule or formula in the determination of its
volume, the problem of calculating the weight of the body,
by the knowledge of this law, is of a very easy character.
This was exemplified in the case of the floating cube of wood
already referred to. But the bottom of an ordinary ship is
not of this regular and well-known form, and, consequently,
the problem of determing the volume of displacement, or the
“ displacement,” as it is usually termed, requires the applica-
tion of one or other of several rules, which have been investi-
gated by the aid of principles, founded upon the integral
calculus, and which are given in such forms as to admit of
ready use, without requiring, on the part of the calculator,
a knowledge of those principles upon which they are founded.
The two principal of these rules are known as “ Simpson’s*
1st and 2nd Rules,” while another is known as ¢ Woolley’s
Rule.” In each case the name is that of the inventor of the
formula. These rules we shall presently state. ;

It must first, however, be understood that displacement |
calculations are made for two purposes :—F%rst, In order to
insure, when designing a vessel, that there is a sufficient
volume in the portion of the ship when immersed up to a
certain height, chosen for the level of the water surface, that
the weight of an equivalent volume of water may be«s great |
as that of the total weight which the ship and the cargo she
has to carry is expected to have. ‘

Second, In order that when a ship is afloat, we may deter-
mine, accurately, the total weight of herself and the cargo on
board,; it being obviously quite impracticable, if not impossible,
to determine that weight in any other way, with certainty.

* These are sometimes known as Stirling’s Rules,
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The elementary principles of buoyancy being thus estab-
lished, and the reasons given for obtaining the volume, and
thence the weight of displacement, we will proceed to explain
how that volume is determined in the case of a ship. It is,
however, necessary to first consider the areas of plane sur-
faces, such as those obtained by cutting transverse slices off
a ship, and then advance to the discussion of the modes of
obtaining the volume of the whole body immersed.

6. Areas of Plane Surfaces Bounded by Straight Lines.
—The simplest form of plane area that we have to measure
is that of a square (fig. 1), or rectangle (fig. 2), which, it is

A . D

B B i C
Fig.1 Fig. 2.

hardly necessary to say, is obtained by multlplymg together
two of its adjacent sides, as AB and AD ; these being equal
in the case of the square.

The next form is that of A
the triangle (fig. 3); and
since, in the cases we
have to consider, it can
always be measured in
any way thought desir-
able, its area is simply
found by multiplying one
side, as BC, by the per- D
pendicular AD, drawn Fig. 3.
to it from the opposite angle, and then div1ding the product

7 717

Fig. 4.
by 2. The rhombus (fig. 4) and rhombowl (ﬁg 5), can each
4B B
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be divided into two equal triangles, and so calculated; or,
which is the same thing, the area in each case is found by
multiplying either of its sides, say BC, by the perpendicular
distance EF, between that side and the side parallel to it.
The trapezoid (fig. 6), is a four-sided rectilineal, or straight
lined, plane figure, only two of
whose sides are parallel. Its area
is obtained by adding together the
lengths of the two parallel sides,
AD and BC, and dividing the
i sum by 2, then multiply this re-
B . ¢ sult by the perpendicular distance
EF between these sides, and the

Fig. 6. product is the area. This pro-
cess is equivalent to obtaining the mean breadth of the
figure, and multiplying it by the length; or, in other words,
obtaining the area of the equivalent rectangle. The area of
the trapezium (fig. 7), and that of any other irregular recti-
lineal plane figure (as in fig. 8), is obtained by dividing

Fig. 7. Fig. 8.
the area into triangles, each of which can be calculated in
the manner already described, and then summing the
results. -

7. Areas of Plane Surfaces wholly or partially bounded
by Curved Lines.—There is a great number of plane figures,
wholly or partially bounded by curved lines, the areas of
which can be determined by simple rules; for instance, the
circle, segments and sectors of circles, ellipses, parabolas, etc.
For our purpose, however, in calculating the areas of such
plane figures as are given Wy the sections of a ship, we do
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not concern ourselves with these simple figures, each of which
is measured by a separate rule; but attend rather to a rule,
or rules, apphcable to all plane surfaces bounded by curved
lines, and giving results which, while more or less approxi-
mate, can always be depended upon for a close degree of
accuracy, if sufficient pains are taken in their application.
As we shall see presently, these rules are #rue only for certain
figures; nevertheless the assumption of their universal accu-
racy for all curves in a ship’s form is not productive of a
greater degree of error than is admitted in measuring with a
scale from an ordinary drawing.

Tt is hardly necessary to state that the two “ dimensions,”
or directions for measurement of plane areas, are termed
““length” and “breadth.” 'We will now dispense with these
terms, and use in their stead two others which are necessarily
employed in the measurement of curved areas. These are
“ ordinate” and “ abscissa.” In figs. 1, 2, 4, and 5, BC and
ABare usually termed the length and breadth; in the nomen-
clature now to be used, AB will be an “ordinate,” and BC
an “abscissa.” In Algebraical language, BC is generally
known as z, and AB as .

In fig. 9, adjoining, ABCD is a trapezoid, the sides AB
and CD bemg parallel.
According to the rule

y given, the area of

this figure is obtained by T
adding ABand CD together,
and then multiplying half |* % ¥

of their sum by BC. In
Algebraical language, AB Beomm e mm == —-ap - =>E
would be termed “the ordi- Fig. 9.

nate y,,” and CD—*the ordinate y,”; also BC would be
styled “an abscissa x.” Consequently, this rule expressed
in a formula would appear thus :—

Area:y%x.

Similarly, if another trapezoid be comstructed, such as
DCEF, having CE in a straight line with BC, and the side
DC common to the two figures; then styling EF as y,, and
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CE as 2, the area of DCEF is equal to ¥23¥22. Hence the
area of the whole figure ABEF is equal to

31'—;'!3z+”——;l‘z, ereeresrernnnieenn (4)
Let BC=CE, or z=2x,, and the area becomes
M&éﬂbx ............................ ®)

This simple case will serve to familiarise the student
with the meaning of the terms absctssa and ordinate; also
of the symbols used to express them, and the manner in
which they are employed in expressing the value of an
area.

In preparing a plane area for calculation in this manner,
the ordinates are always drawn perpendicular to the abscissa,
and they are spaced either all equidistant, or else some of the
ordinates are a multiple, such as one-half of the distance

apart from each other; so that the abscisse are either all
equal, or perhaps a fow are some multiple of the other
abscisse. -

8. Trapezoidal Rule for Plane Areas.—It will, no doubt,
have already suggested itself to the student, that the area of
a plane surface, bounded by a straight line ‘and & curve, can
be easily approximated to by dividing it into a sufficient
number of trapezoids, as in fig. 1, Plate I. Suppose the
area be required of the plane surface ABECD, bounded by
the straight line 4.0 and the curve BEC'; also, for simplicity
sake, by two end ordinates 48 and CD. Divide the base
AD into a certain number of equal parts at a,b,c,F,d, etc.,
and draw the ordinates aﬂby,ch,FE,dIc, etc., to the curve;
these we shall hereafter term dividing ordinates. Then by con-
sidering each of the figures BAaf, fabg, gbch, etc., as a trape-
zoid, and summing their areas, we obtain a result which is
less than the true area of ABECD, by the collective areas of
the small spaces enclosed between the ticked straight lines
Bf, fg, gh, etc., and the curve BEC. Tt is evident that by

g 8 sufficient number of ordinates we may obtain, in
this way, an area which will differ from the true one by as

|
|
|
|
|
|



SIMPSGY’s FIEEY ETIZ 21

Small an amount as we plesse. Alsn, thet in the case of 2
very flat or nearly straight ourve, fewer ordinates ave requirved
than if the curve is very comvex or ooncave. Agmn, whem
a portion of the curve 13 mare coneave ar oouvex than the
remainder, in order the better to approximate to the area,
the ardinates should be closer at that part tham elsewheme.
wmhgmd&eaﬁmmg:b,m,mﬁ&ls
Plate L, be expressed by the srmbcls 5.3, 9y cic, and the
abscisss or oommon interval between the ordimates, viz., s
or ab, etc., be expressed by x. mﬂnbfim“l‘(B)’mm
7, the total area of the traperaids beoomnes

E 2 +%;+,tz+ 3 +”;+’53+E_21;+_’/"

adding, we get
(’, +29, 12y, + 29, +2y; + 20, +29:+ Y );““““‘m

.1.”;"3: i)

-+
(y: "-]»,,4»,,4'1“"!/;"’,5""”)’ ............ ©

and by chocsing a sufficient number of ardinates, and thereby
reducing the size of each trapescid, we may make this expres-
sion ropresca, as nearly as we please the arce of the fgure

Written out, formula (C) may be stated in the following
rule, termed the trapezoidal rule:—

Drvide the base into a sxfficient sumber of oqual parts, and
draw and measwre ordinales af the points of divisson. Add
m«amwwmmmwdmﬂd-

convexity or concavity of the curve at sume parts, to intro-
duce intermediate ordinates at such places, then the areas of
these lesser trapezoids, also of the portion made up of the
others, must be calculated separately. For further particulars
on the mode of dealing with subdivided areas, the student is
referred to Art 12, where the mode of expressing the total
ammndlaaae,bymefolmnh,ls

9. Simpson’s First Rule —The basis of Simpson’s rules
for the calculation of plane areas is founded upon an assump-
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tion, which is practically true for the curves met with in a
ship’s hull, viz., that they are members of the group known
as parabolic. The term parabolic, as here used, has a wider
meaning than that of the ordinary parabola of the conic sec-
tions. In the sense the term is here employed, it refers to
all curves, any ordinate of which can be expressed by means
of one or more terms, each of which is proportional to some
power of the abscissa corresponding to that ordinate. The
parabolic curve is said to be of the second order, the third
order, etc., according to the exponent of the highest power
of the abscissa.

Simpson’s First Rule, however, is founded upon the assump-
tion that the parabola is of the second order,* and therefore
that of the conic sections. The result obtained by its
application to the curves of ships is found sufficiently
correct for all practical purposes. We will now proceed
to investigate it by a simple method, based upon a funda-
mental property of the parabola of the second order, which

property it is not necessary to demonstrate in a work of this |
kind.

10. S8impson’s First Rule—Proof First.—A parabola of
the second order is a curve, such that the area of any one of
s segments i3 two-thirds of the product of the base and
deflection of that segment. Another property of the common
parabola is, that the deflection of any arc is proportional to
the square of its base.

In fig. 2, Plate L., let CKD be a portion of the arc of a
parabola PK@Q upon the base PQ. Join CD, and through
the points € and D draw 04 and DB, ordinates perpendi-
cular to the base PQ. Bisect AB at E; also bisect AZ and
EB at F and @, respectively. Through the points # and @
draw the ordinates FH and GL perpendicular to PQ. Join
CK and KD. Then KO, the length of the ordinate EX
intercepted between the chord C'D and the curve, is termed
the deflection of the arc CKD, also MH and NL are the
deflections of the arcs CHK and KLD, respectively. The
property just stated, viz., that the deflection of any arc s

* Mr. C. W. Merrifield has shown that Simpson’s First Rule is

also true for a cubic parabola, or A})arabola of the third order. See
Transactions of the Institution of Naval Architects, Vol. VL,
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proportional to the square of its base, will beperhaps better
understood when we put it thus:
OK : HM :: AB* : AE?
and since AB: AE :: 2 :1
. AB? : AE? :: 4 :1
‘s OK:HM :: 4:1
OK

and thus HM = T

Similarly, NL = 95 = HM.

Suppose it be required to ﬁnd the area of the figure
ACKDB, bounded by the base 4B, the two end ordinates
AC and BD and the parabolic curve CKD. Employing the
trapezoidal rule, stated at Art. 8, and using only one divid-
ing ordinate, viz., EK; the area we obtain is that of the two
trapezoids formmg the right-lined figure ACMKN DB, which
is less than the true area by the sum of the areas of the
parabolic segments CHK and KLD. Again, if we use
three dividing ordinates, we obtain the area of the figure
ACHELDB, composed of four trapezoids, which is less than
the true area by the sum of the four parabolic segments
CH, HK, KL, and LD. This latter result is more nearly
true than the former, inasmuch as it includes the areas of
the two triangles CHK and KLD, which were neglected in
the former. It will readily be seen that by bisecting the
portions 4 F, FE, EG, etc., of the base, and so erecting four
intermediate ordna.tes we a.pproa.ch the true area by the sum
of the four triangles in the segments CH, HK, KL, and LD;
and by increasing the number of the ordinates mdeﬁmtely, we
shall approach the truth as nearly aswe please. Hence the area
of ‘the whole figure ACKX.DB is made up of the following:—

Trapezoid ACDB + triangle CKD tnan le CHK +triangle KLD
pez:tnmgleamaegmenta 3 LD +ete., ete.
Neglecting the trapezoid ACDB for the present, we will find
the sum of the areas of all the triangles, such as are drawn
in the figure, which, in the limit, compose the parabolic
segment CKD.
The area of the triangle CKD is equal to

ABx KO
2
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Also the areas of the triangles CHK and KLD are each
equal to

AD EM 4B N,

2 2 2 2

but HM:NL:‘—)I-.'

Therefore the areas of the triangles are each equal to
AB OK_ABxOK

2 g 16 °

and the sum of the two:ABgox,
area CKD

P
Similarly, it may be shown that the sum of the areas of the
triangles in the segments CH, HK, KL, and LD, is equal to
one-fourth the sum of the areas of the triangles CHK and
KLD, or one-=sixteenth the area of the triangle CKD, and
80 on.

Hence we have for the area of the parabolic segment
ABXKO (14 §4-fp+ e+ xb+eto).

By adding together a sufficient number of terms of this
endless series, we can approach the true area of the parabolic
segment as nearly as we please.

The limit of the series can be found exastly as follows:—
If we take the fraction § of any unit, and add to it § of the
remaining quarter, or y3%; then $ of the remaining sixteenth
or 4%, and 8o on, we obtain successively the sums:

4, 1%, 83, 483, ete,

which obviously approach nearer and nearer to unity, and
may be made to approach as near to unity as we please by
carrying on the series far enough. Therefore the limit of the
sum of the endless series,

2+ +dctalstete, is 13
and dividing by 3, we find that the limit of the sum of the

endless series,
$+ 5+t gie +eto,

whence it follows that their sum=
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is one-third. Consequently, the exact area of the parabolic

segment is
ABxKO 2x ABx KO
T(l +3)= —3
as already stated.
Hence the area of the whole figure ACKDB is equal to

AC+BD

ABx =area of trapezoid,
added to 2(ABxKO)=......parabolic segment.
But §(ABxKO)= AE(EK -F0)
A +BD)
) X

'=4AB (EK -
Hence whole area

=ABxAC+BD

+34B (ER -AC+BD
- AB2(§EK +AC(+BD) f 2.

6 -
AE ’t
=ATB (AC+4EK +BD). = ?( Ac»4£ <1 82)

The same result may be demonstrated when the parabolic
arc is concave, by taking A,Z B, parallel to AEB, as the
base, finding the area 4,CKDB,; and then subtracting tho
parabolic segment CKD from the trapezoid, 4,CDB,.

This is the basis of Simpson’s First Rule. In the proof we
have given, there is only one dividing ordinate; in order to
obtain the rule in its general form, we have to place, side by
side on a common base, a number of such elementary parabolic
areas, as shown by fig. 2, Plate I., and then determine an
expression which will represent the area of the whole para-
bolic figure. In fig. 1, Plate I, let PRS7'Q be a parabolic
figure on base P@, and divided by the equidistant ordinates
b,¢,d, etc.; @ and g being the two end ordinates, and the
common interval 4. Then the area of the space included
between the ordinates :

a and c=3h(a+4b+c)
between c¢ and e=gh(c+4d+e)
between e and g=3h(e+4f+g).

Adding these areas together we obtain
Total area PRSTQ=3}/(a+4b+2c+4d+2e+4f+g),

which is the rule for seven ordinates; and, similarly, the
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value of the area, in terms of any other odd number of equi-
distant ordinates and their common intervals, may be ex-
pressed by a similar formule.

Simpson's First Rule may therefore be thus stated :—

Divide the base into any even number of equal lengths,
and through these points draw ordinates to the curve, which
ordinates will consequently be odd in number. Multiply the
length of each of the even ordinates by 4, and that of each
of the odd ordinates by 2, except the first and last, or bound-
ing ordinates, which multiply by unity. The sum of these pro-
ducts, multiplied by one-third of the common interval between
the ordinates, will give the area required.

The proof we have given depends upon the integral calculus,
although the notation of that branch of mathematics is not
employed. This will be seen by the assumption made regard-
ing the limit of the sum of the series § + ¢ + 4%, etc., which
we have, for very good reasons, taken as unity, without
rigidly demonstrating such to be the case.

The nature of the problem is such as to necessitate the
employment of the calculus in an exact demonstration. This
we now proceed to give. (See fig. 2, Plate II.)

11. Simpson’s First Rule—S8econd Proof.—To find the
area of the plane figure BCEGH, bounded by the base BH,
the parabolic curve CEZ@, and the end ordinates BC and GH.
Draw the three dividing ordinates 0D, AE, and KF, so that
there are five equidistant ordinates, which we will term
a, 3, v, 6, and &.

Consider the curve CEG as a portion of the parabola,
whose equation is

y=a+br+cxt.
Let O be the origin of co-ordinates, and let
BO=0A=AK=KH=hA
Then the area CBA=_/ ydz, of
3
area.=£: (a+bz+cz’)dz=2(ah+%~
B XGPS 1) NN )
Now when =0  y=a=@ (as seen by the figure)
x=h y=a+bh+chi=y
z=-h y=a-bht+chi=a
o' &+ y=2(a+ch?)
and 48 =4a,
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Hence, adding
) &+48+9=2(3a+ch?),.......covrvenne veee(2)
and the area  CBAE by (1) and (2)

3(¢+4ﬁ+‘r)
Similarly, the area EAHG=§(7+43+.),

.~ the whole area CBHG:%(.+4/3+27+43+:),
which proves the Rule.

A very ingenious demonstration, due to Mr. F. K. Barnes,
will be found at page 9 of Shipbuilding, Theoretical and
Practical, which is too lengthy for insertion here.

12. Practional Intervals.—As already mentioned (Art. 8),
when a portion of the bounding curve has very great or sudden
convexity or concavity, it is desirable, with a view to greater
accuracy, to draw ordinates at one-half, or even one-fourth
the common interval apart. In such a case, in order to
express the total area in terms of the common interval, and
the lengths of the ordinates, the multipliers must be altered
in the following manner. In fig. 3, Plate II., the curve
RST is very concave between S and 7, with regard to the
base PQ. Leta,d,c,d, e,beanoddnumberofeqmdmtant
ordinates, A being the common interval. Draw the ordinate
S lmdway between ¢ and d, the ordinate g midway between
d and e, the ordinate % midway between d and g, and the
ordinate / midway between g and e, so that we have nine
ordinates. Then the area of the space enclosed between

a and c=-%(a+4=b+c)
¢ and d:—:-(c+4,f+d)

h
%(d+4k+g)
g and e:E(g+4l+e).

dand g=

Summing these results, we have
Total area PRETQ=-; h (a+4b+c+ ¢ +of+5 d d itEt y+g+l+ ;)

(a+4b+ +9+7 3 k! +l+4)
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If a quadrant of a circle (see fig. 4, Plate IL.) of a certain l
radius, say 12 feet, be divided by 9 ordinates in this manner,
and the lengths of these ordinates be carefully measured and
substituted in this formula, the area so obtained will be112:93
square feet; whereas the area obtained by taking w=
3:1416 will be 113-1. Thus an error of 113:1 -112:93="-17
or ‘16 per cent. is made by applying Simpson’s First Rule
in such an extreme case, using the number of intermediate
ordinates shown in the figure.

13. Simpson’s Second Rule for Plane Areas.—This rule
is founded upon the assumption that the bounding curve is
a parabola of the third order, ¢.c., one whose equation may
be expressed thus,

y=a+bx+cx? +dzd.

Let ABCD (fig. 1, Plate IIL), be a plane area, bounded
by a base 4D, two end ordinates 4 B and C'D, and a parabolic
curve of the third order, BHZC. Divide 4 D into three equal
parts, each equal to %, at the points Z and F, and draw
through these points the ordinates G and FH. Let the
lengths of the four ordinates be represented by a, b, ¢, and d.

Then area ABCD=3$k(a +3b+ 3c+d).

This may be proved by a somewhat similar demonstration
to that givén of the First Rule at Art. 11. It is not neces-
sary to state the proof here, the more 50 as the rule does not
generally give quite so close an approximation to the true
area as the First Rule.

It will be readily seen that, by dividing the base up into
six equal lengths, and drawing ordinates through the divisions,
we have two elementary figures as above; and if a, b, ¢, d, ¢,
J, and g be the ordinates, and 4 the common interval,

Then area=3k (a+3b+3c+d)+ 3k (d+3e+3f+g)
=3h (a+3b+3c+2d+3e+3f+9),
from which the Second Rule may be thus stated :—

Divide the base into equal lengths so that their number
may be a multiple of 3, and draw ordinates through the divid-
ing points and the extremities of the base, so that their total
number, when divided by 3, gives a remainder of 1. Call
the 4th, 7th, 10th, etc., ordinates, dividing ordinates; and
the others, except the endmost, intermediate ordinates,
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Add together the endmost ordinates, twice the dividing
ordinates, and three times the intermediate ordinates; multiply
the sum by three-eighths of the common interval: the product
will be the required area, nearly.

14. Area of Subdivision of a Parabolic Figure.—It is
sometimes required to calculate separately the area of one of
the two subdivisions (see fig. 2, Plate I.) into which an
elementary parabolic figure ACKDB is divided by the middle
ordinate £K. For example, supposing it is required to
calculate separately the area of the subdivision ACKE; let
AC be called the near end ordinate, and BD the far end
ordinate, then the rule will be as follows:—70 eight times the
middle ordinate, add five times the near end ordinate, and sub-
tract the far end ordinate; multiply the remainder by one-
twelfth of the common interval: the product will be the area
required.

The truth of this will be readily seen by considering that
the area is made up of the trapezoid ACOE, and the half
segment CKO. For the area of the half segment CKO is

equal to’
% (EK-‘AC;BD) (See Art. 10), ‘i//, CA,’

and the area of the trapezoid ACOZF is equal to
: AB (AC+0E) _ A8 Ac A8
a 2_4;'3_14-2_»,‘,@;'9 A2]3 g /- 2 “ N
A s=5 (3AC+BD). 0»0£=§(ﬂ"’ y
Hence area of figure ACKE
=47 (x-4942) A2 (3 ac+BD)

=“*ﬁ3(5 AC+8 EK-BD)

=‘_‘l—f (54c+s EK-BD)

This is sometimes known as the five-eight rule.

15. Example of the Application of S8impson’s First Rule.
—The following example will illustrate the application of
Simpson’s First Rule for measuring a plane area bounded by
a curve,
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Let the avea of the figure ACB (fig. 2, Plate II1.) be required,
of which the base AB is 40 feet long. Divide AB into a
certain even number of, say 8, equal lengths, each of which
will therefore measure 5 feet. Erect ordinates through these
points ; these will necessarily be 9 in number, including the
end ordinates; and therefore fitted for the application of
Simpson’s First Rule. Measure the lengths of these ordinates,
which lengths we will suppose to be represented by the
dimensions marked against them in the diagram.

Numbers of Btm'ron'n Lengths of | Functions of
Ordinates. | Multipliers.| Ordinates. Ordinates.
1 1 2 2
2 4 35 1490
3 2 52 104
4 4 66 26-4
b 2 68 136
6 4 67 26'8
7 2 58 116
8 4 47 188
9 1 16 16
1234

___5=Common Interval
Divisor by Rule=3)6170
" 205°66= Area, nearly.

In proceeding to apply the Rule as in the above table, four
columns are ruled, and as many rows as there are ordinates.
The first column shows the distinguishing numbers of the
ordinates; the second column contains S8impson’s Multipliers,
arranged in their proper order, and opposite to their respec-
tive ordinates; the third column contains the lengths of the
respective ordinates, numbered in the first column; and the
fourth column contains what is termed “ the functions of the
ordinates,” 1.e., the products of the ordinates and their respec-
tive multipliers.

The sum of the figures in the fourth column is 123-4, and
this has to be multiplied by one-third the common interval,
which, in this case, is 5 feet. Hence, 1234 is multiplied by
5 ft. and divided by 3; thus giving 205°6 sq. ft., which is the
area required, nearly.
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Some calculators, in order to reduce the figures in the fourth
column, use as multipliers the figures 4,2, 1,2, . . . 2, 4,
instead of 1,4, 2,4, . . 4,1, and consequently the sum
8o obtained has to be multiplied by 2 after being multiplied
by one-third of the common interval.

16. Example of the Application of Simpson’s Second
Rule.—In this case the number of divisions of the base must
be a multiple of ‘3, and there will, of course, be one more
ordinate than division.

Divide the base AB (fig. 3, Plate III.) into, say 6, equal
lengths, each being 5 ft.,, also draw the ordinates and

measure them as before.
- 2d Rale _/;/ RV
Numbersof| Simpson’s | Len ¢ | Functions of
Oriinaten, | Matthyioms.| Oriioates | “Ordinaton || Py trask
S S
1 1 21 21 / 2.1
2 3 36 108 « 14,4
3 3 53 159 - 106
4 2 56 112 L4 22.9
5 3 54 162 S 70,9
6 3 50 150 & 20 0O
7 1 25 26 / 2. &
ve %
737
5=Common Interval
368 5 ,}I L/’ [y ‘ .
3 3 y
8)1105'5

'138°19= Area, nearly.

The arrangement of the columns is the same as in the pre-
ceding example; the number of ordinates and the multipliers
being different according to the Rule. The sum of the figures
in the fourth column is 737, which is multiplied by three-
eighths of the common interval, or § x 5 ft., and gives 13819
ft. which is the area, nearly.

17. Example of the Application of the Trapezoidal
Rule.—We will use the same diagram and dimensions as in
Art. 16,
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Sumbers of | Multipliers.| Ordinates, * Functions of
1 3 211 105
2 1 36 360
3 1 53 530
4 1 56 560
5 1 54 540
6 1 50 500
7 3 25 125
2

) 7 5=Common Interval
1360 = Area, approximately,
The area found by this rule is thus 136 sq. ft., whereas by
Simpson’s Second Rule it was found to be 13819 sq. ft. If
the area be determined by the First Rule, the result will be
138 5q. ft. Simpson’s Rules thus practically agree, and as the
First Rule can be depended upon to, at least, the same degree
of accuracy as the Second, we may take 138 as the area.
Thus it will be seen that in this case the use of the Trape-
zoidal Rule involves an error of 138 — 136 = 2 sq. ft., or about
1'5 per cent. 'With a curve of greater convexity or concavity
the error would, of course, be still more.
18. Example of the Application of the Rule for Sub-
division of a Parabolic Figure.—(See Art. 14.) In fig. 2,
Plate L, let AC=53, EK =72, BD=3-1, and AE=8.

Then area ACKE:% (s EK+5 AO-BD)

8 . E_aa) _ 2.87=
=13 (57 6+265-3 1) = 3 x87=88 5q. ft.
By treating the figure as a trapezoid—
8 fro.ra) _
Area=3 (7 2+5 3) = 50sq. ft.

The Trapezoidal Rule thus being relatively in error,
58 — 50 = 8 sq. ft., or 14 per cent. in this particular case.

19. Centres of Gravity of Plane Areas.—The centre of
gravity of a plane area, termed its geometrical centre of gravity,
is that point at which, if the surface is uniformly weighted, it
can be poised in equilibrium. To illustrate our meaning, we
may consider the plane as the surface of a sheet of metal
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having a uniform thickness, then the centre of gravity of a
plate of any form is that point where the plate, if supported
thereat, will balance or remain poised in a state of equili-
brium. In all our considerations regarding the centre of
gravity of a plane area the surface is supposed to be heavy,
and the weight of every unit of the area to be the same.

20. Centres of Regular Figures.—It will at once be seen
that the geometrical centre of gravity* of a circular plane area
isits centre. Also, that the geometrical centre of gravity
of a square or rectangular area is the point where the two
diagonals intersect; for as each diagonal cuts the figure into
two similar and equal parts, the centre of gravity must be in
each diagonal; and, therefore, at the point common to the
two, or where they intersect. The same is true of a rhombus
or rhomboid. The centre of gravity of a regular polygon is
the centre of the circumscribed circle; for since every diameter
of the circle passing through the angular points of the
polygon cuts the latter into two similar and equal parts,
therefore the centre of gravity of the figure must lie in each
diameter, and consequently at the point common to them all,
or the centre of the circumscribed circle. The circumseribed
and inscribed circles being concentric, the centre of gravity
of the latter circle is also that of the regular polygon.

The Centre of Gravity of & Triangle is found in the
following manner:—Bigect two sides and join the points of
bisection with the opposite angles, then the point of intersection
of the two lines 8o drawn 18 the centre of gravity of the triangle.

Let ABC (fig. 1, Plate IV.) be the surface of a triangular
plate of uniform weight; bisect BC in £, and join AE; draw
ceb parallel to CEB, cutting AE at any point e. Then, by
similar triangles—

ce : CE :: Ae : AE

and be : BE :: Ae : AE

.. ce : CE :: be : BE

but CE=BE, .:. ce=be
Hence AE bisects every line in the triangle drawn parallel
to BC. Therefore each of the strips similar to ceb, into which
we may suppose the triangle to be divided, will balance on

* Hereafter the geometrical centre of gravity will be understood
to be me;nt when referring to forms without weight. o

B
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AE, ;nd consequently the centre of gravity must be in the
line A E.

Bisect AC in F, and join BF; let this cut AZ in G. Then,
as before, the centre of gravity must be in BF; but it has
been shown to be in 4%, therefore @, the intersection of A%
and BF, is the centre of gravity.

This point @ is situated at one-third the length of AE from
the point E. To prove this, join ZF. Then, because CE =
BE and CF=AF, therefore EF is parallel to AB and 4B =
2FE; also by similar triangles—

AB : EF :: AG : EG;
EG= }AG orEG—iAE.

Hence, to find the centre of gravity of a triangle, bisect any
side, join the point of bisection with the opposite angle, and
the centre of gravity lies a third of the way up this line.

It will be useful to observe that the centre of gravity of
a triangle coincides with the centre of gravity of three equal
weights placed at the angular points of the triangle. For, to
find the centre of gravity of .three equal weights placed at
the points 4, B, C, respectively (see fig. 1, Plate IV.), we
join CB and bisect it in Z; then Z is the centre of gravity of
the weights at C and B. Suppose these weights collected at
E, then join AZ, and divide AZ in G, so that £G may be
to AG as the weight at 4 is to that of the two at &, that is
a8 1 : 2; then @ is the centre of gravity of the three equal
welghts From the construction, @ is also the centre of
gravity of the triangle ABC, as already shown,

21. Centre of Gravity of & Trapezium.—From this we
may proceed to determine the centre of gravity of a trapezium
by drawing a diagonal, and thus dividing it into two triangles.
The centre of gravity of these are found, and the points joined
by a straight line. Next, the other dm.gonal is drawn, and
the centres of gravity of the two resulting triangles are joined
by a straight line. As the centre of gravity of the trapezium
is in each of these straight lines, it is evidently the point of
their intersection.

The ordinary mode of oonstructmg the figure is, however,
as follows:—Let ABCD (fig. 2, Plate IV.) be a trapezium;
draw the diagonals AC, BD intersecting at . Let AZ be
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greater than EC, and BE greater than £D. Take AF=EC,
and BG=ED. Setoff ES=} EF,and ET=} EG; draw
SO parallel to BD, and 70 parallel to AC; their intersection
O is the centre of gra.v1ty of the trapezium. It is evident if
we join GF, then O is also the centre of gravity of the tri-
angle EGF.

The following is the proof of the accuracy of this construc-
tion. It will be observed that it is required to demonstrate
that the lines LM and NP joining the centres of gravity of
the two sets of triangles, into which the diagonals successively
divide the trapezmm are parallel to AC and BD respectively;
also that SO=3 EG and 70=1% EF

Since HL= AH and HM =} HC, therefore LM is
parallel to AC. Sl.mﬂa.rly, NPis pa.ra.llel to BD. This gives
the first requirement.

Again, since BG=ZED, and BH=HD, ... GH=HE.
Similarly, FK = KE. Also, because LM is parallel to AC,
and HM =} HC, ... HT=} HE,and TE=% HE=1} GE.
Similarly, SE =} EF, whence the construction.

The centre of gravity of the trapezium being coincident
with that of the triangle EF@, a very simple mode of deter-
mining the point by construction is to bisect EF and EG at
K then H respectively; then joining FH and GK, their point
of intersection is O, the centre of gravity of the triangle, and
therefore of the trapezium.

22. The Centre of Gravity of a Trapezoid is easily found
in the following manner: Let 4BCD (fig. 3, Plate IV.) be a
trapezoid, 4D and BC being the parallel sides. Bisect AD
in £, and BC in F, and join EF. Then divide EZF 4t the

poth 50 that G - GF,:?Q*FD A1AD +RC
G is the centre of gravity of the trapezmd. The truth of
this is too obvious to need a proof here.
23. The Centre of Gravity of an Ellipsoid is evidently at
its centre, or at the intersection of the major and minor axes.
24. Principle of Moments.—In obtaining the centres of
gravities of the plane areas already examined, we have de-
pended merely upon the symmetry of the ﬁgures, whereby we
were enabled to draw two lines, each of which contained
.the centre of gravity, the latter being therefore situated at
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the intersection of these lines. We shall presently show
how to determine the centre of gravity when there are no
symmetrical conditions to assist us. Consequently, we must
have recourse to the elements of statical equilibrium as enun-
ciated in the principles of moments. The forces we have to
consider being those due to gravity, they are therefore parallel,
and act in the same direction; a condition which materially
simplifies our investigations.

The moment of a weight about any point is the product of
the weight into the perpendicular distance of its line of
action from that point (see fig. 4, Plate IV.). Let the
weight W act at the point 4, perpendicular to the straight
line 4B, then the moment of the weight about the point
Bis Wx AB.

If there is more than one weight acting at different points
on the straight line, perpendicular to it, then the sum of the
products of the weights into the distances of their points of
application from B is the total moment acting about that
point. For instance, W, W,, and W, (fig. 5, Plate IV.) acting
at the points 4, C, D, respectively, have a total moment about
B=W.AB+ W,.CB+ WoDB. Tt will be readily seen that
the three weights W, W,, and W, may be applied at some
point in the line, so that their moment may be equal to the
sum of the three moments as they are at present situated.
Let « be the distance of that point from B; then

(W, +W, +W, )=W,.AB+W,.CB+W,.DB
W,.AB+W,.CB+W,.DB
W, +W, +W,

from which 2 may be readily found by substituting the values
of Wy, Wy, Ws, and AB, CD, and DB. If P be the position of
the point so found, then P is the centre of gravity of the
weights; being the point where all the weights collected have
the same statical effect as when they were situated as shown
in the figure.

In the figure, 4B, CB, and DB are the leverages of the
several weights; B is the point about which, it is said, moments
are taken, and x(W,+ W,+ W,) is the resultant moment.
Moments may be taken about any other point as weM as B,
For instamce, suppose we happen to fix upon P as he point

@xr=




CENTRE OF GRAVITY OF A PLANE AREA. 37

:'hth?)ut which moments are taken, then in that case x=zero;

W,.AP=W,.CP+W,.DP.
‘When the point, about which moments are taken, is situated
between any of the points of application of the weights,
then the distances measured on one side of that point are
considered positive, and on the other side negative. If the
sum of the moments on one side of the point is equal to that
of those on the other, then the weights are in equili¥rium
about that point, and it is therefore their common centre of
gravity, as in the above case, when the moments are taken
about P. But if the sum of one set of moments is in excess
of the other, then the centre of gravity is on that side upon
which the greater moments are. For instance, in fig. 6,
Plate IV., in which the weights W;, W,, W, W,, act at the
points 4, B, C, and D, respectively, on the straighs line 4.D;
then, taking moments about any point P,

(W,.AP+W,.BP) - (W,.CP+W,.DP)

is the resultant moment. Let @ be the centre of gravity of

the weights; then

PG(W, + W, + W, +W,)=(W,.AP+W,.BP) - (W,.CP+W,.DP)
pG= (Wi-AP+W,.BP) - (W,.CP+ W, .DP)

A W, + W, + Wy + W,

If W,.AP+ W,.BP is greater than W .CP + W,.DP, the
point @ will be between P and 4; but if less, then the
point G will be between P and D. In the figure, we have
assumed the latter case.

The value of P@ is usually expressed as the Algebraioal
sum of the moments about P, divided by the sum of the
weights; the Algebraical sum being the collective value of the
moments when affected by their proper sigus, .., plus or
minus.

25. Centre of Gravity of Plane Figure hounded by a
Curve.—To apply the preceding results in obtaining the
centre of gravity of a plane figure, such as is commonly met
with in Naval Architecture, and to which we have been
:pplying Simpson’s Rules for finding its area, we proceed as

ollows:—

First observe that the figures are in almost every case
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symmetrical about a middle line, so that knowing the centre
of gravity is somewhere in that line, we have to determine
where it is.

Let ACBD in fig. 1, Plate V., be a plane figure, sym-
metrical about a middle line 4B, then we know the centre
of gravity of the area is in AB, also that the centre of
gravity of the half area ACB, is in the ordinate passing
through that point* In accordance with our previous defini-
tion, the area 1s assumed to be uniformly weighted, such as
a sheet of metal of uniform thickness. Divide the straight
line 4B into an even number of equal parts, and draw the
ordinates aa,, bb,, cc,, etc., through the points of division.

+ There is thus (including the end ones), an odd number of
ordinates, the value of the end ordinates being in this case
zero, Assume each of the ordinates to be a narrow strip, so
that they each have a weight, the latter being therefore in
proportion to the length of the ordinate. Now, if we merely
wished to find the centre of gravity of these strips, it would
be the same as finding the centre of gravity of nine weights,
acting at the points 4, a, b, ¢, d, etc., the values of the
weights being zero, aa,, bb,, cs,, dd,, etc., respectively. It
is evident that if the ordinates be very close together, the
sum of their moments, about any point on 4B, would
approximate very closely to the total moment of the area
ACB about the same point; and by increasing the divisions
of the line 4B, thereby increasing the number of ordinates
and reducing the breadths of the strips they represent,
we may make the approximation as close as we please. It
is here that Simpson's Rules come to our aid, as by assum-
ing the curve ACB to be parabolic, the Rules give us the sum
of the areas of all the very narrow strips represented by the
ordinates when the latter are very close together. Hence,
if we multiply every ordinate by its distance from the point
about which the moments are taken, and consider the results
80 obtained as the ordinates of a new curve, then the area
enclosed by that curve, and the straight line 4B, will repre-
sent the moment of the area 4ACB about the point.

It will be observed that as the ordinates are equidistant,
the distance of every ordinate from any of the points A, a, b,
etc., is & multiple of the common interval; hence, to simplify

ool peety 0 KB,
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the work, the multiple only is used in applying the Rule, the
result being afterwards multiplied by the common interval.

Let the lengths of the ordinates in feet be those given in
the figure, the common interval being 4 ft. Taking moments
about B, the following is the mode of obtaining the centre
of gravity of the area:—

Number of] Bimpeon‘s Tength of | Function of | Multiplier | Funotion of
Ordinate. | Multiplier. | Ordinate. Ordinate. - |for Leverage.| Moment.
1 1 0 0 0 0
2 4 25 100 1 100
3 2 43 86 2 17-2
4 4 51 204 3 612
5 2 55 110 4 440
6 4 54 216 5 108-0
7 2 48 96 6 576
8 4 40 160 7 1120
9 1 0 0 8 0
972, 4100
__ 4 4
$3)388°8 . 3)1640-0
sq. ft. 129-6=Area . 54662
918664
129-6)2186°64 =moment
1687 ft.

Hence the centre of gravity of the area is 16-87 ft. from B,
or ‘87 from d, on the side of the latter nearest 4.

It will be seen that the multipliers for leverage, 0, 1, 2, 3,
ete., represent the number of fimes the common interval of 4
ft. that the ordinates B, gg,, ff;, ¢e,, etc., are respectively from
B, the point about which moments are taken. If the actual
leverages were inserted in the fifth column instead of 0, 1,
2, 3, 4, etc., the figures would be 0, 8, 12, 16, etc., and the
figures in the fifth column would be 0, 40, 68-8, 2448, 176,
etc.; instead of using these large numbers we afterwards
multiply by 4, and so obtain the total moment 2186-64. It
may be further remarked that 546-66 represents the area of
a plane surface, whose ordinates are multiples of the moments
of the ordinates 0, 2-5, 43, etc., about the point B, that is,
whose ordinates are 0, 2:5, 8:6, 15°3, ete.



40 THEORETICAL NAVAL ARCHITECTURE.

It is usual to avoid multiplying the sums of columns Nos.
4 and 6 by } the common interval, as it is a needless process,
one product having afterwards to be divided bv the other.
In the above case the work would be:—

41090
4

97-2)1640°0
1697 .

Again, in practice, it is customary to still further reduce
the figures employed in the calculation by taking moments
about an ordinate near the middle of the length of 4B. As,
for instance, taking moments about dd,, or No. 5 ordinate.

Numberof| Simpeon’s | Length of | Function of | Multiplier | Funotion of
Ordinate. | Multiplier. | Ordinate, Ordinate. |for Leverage.| Moments.
1 1 0 0 4 0
2 4 25 100 3 300
3 2 43 86 2 172
4 4 51 204 1 %()_4_
5 2 55 1190 0 67°6
6 4 54 216 1 216
7 2 48 96 2 19-2
8 4 40 160 3 430
9 1 0 0 4 (/]
972 888
676
212
4
972)84'8
87 ft.

Here we have two sets of moments, one positive and the
other negative ; their difference, or Algebraical sum, is 21-2,
which, multiplied by 4 and divided by 97-2, gives ‘87 ft., the
distance of the centre of gravity of the area from ordinate
No. 5 or dd;, and on the side of it nearest to 4, which is the
same result as was obtained before. In this case, the largest
multiplier for leverage being 4, the figures in the sixth
column are not so large as when the multipliers continually
increased to 8. The saving of labour is more apparent in
such large areas as are met with in actual practice.
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In the preceding examples, Simpson’s First Rule has been
applied ; t];m same method is adopted with the Second Rule,
the number of the ordinates being, of course, different.

In the case of intermediate ordinates being used, the
multipliers are, of course, fractional; as for instance, 0, §, 1,
13, 2, 3, 4, etc., where two sets of half intervals occur next
to the ordinate about which moments are taken. Examples
of this kind will be given hereafter.

26. Volumes of Solids.—The rules for finding the volumes
of regular solids are to be found in any work on Mensuration,
so that we shall simply state a few of those most usually
required, before proceeding to examine the method of finding
the volume of such a solid figure as that of the immersed
body of a ship.

27. Volume of a Sphere.—Multiply the cube of the dia-

meter by 5236 = ’.6'. ; or the cube of the radius by 4:1888 =4—;-'

28. Volume of Ellipsoid.—Multiply the product of the three
axes by ‘5236, or the product of the three semi-axes by 4-1888.

29. Volume of Pyramid or Cone.—Multiply the area of
the base by one-third of the height—the height being
measured perpendicular to the base,

80. Volume of a Solid Figure hounded by a Plane and a
Curved Burface.—Such a figure is to be found in the case of
the immersed body of a ship, the bounding plane being that
of the water surface.

The body has first to be divided into a number of segments
by equidistant parallel planes, which are perpendicular to
the bounding plane. 7The area of each plane section 13 found
by either of Simpson’s Rules, and the results are treated as the
ordinates of a new curve, the common interval being the per-
pendicular distance between the planes; the area of this curve
8 the volume of the figure. It is evident that the ordinates
of the new curve being in square measure, the area of the
curve will therefore be in cubic measure.

In calculating the volume of the immersed body of a ship
by this method, the figure being symmetrical about the longi-
tudinal vertical middle line plane of the ship, only one-half
of the body is calculated. It is unimportant whether the
dividing planes are drawn parallel to the water plane or per-
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pendicular to both the water and middle line planes. In the
former case, the bounding curves of the areas are ¢ water
lines,” and in the latter “square stations” (see Shipbuilding
and Laying Off, p. 17).* It is usual to calculate the volume
by using both sets of dividing planes, in order that one result
may check the other, and so prevent inaccuracy. The vertical
dividing planes in a large ship are generally spaced from
about five to seven times the distance apart that is considered
requisite for the horizontal dividing planes.

31. Example of Calculation of Volume of a Ship’s Dis-
placement.—As a first example of the method of calculating
the volume of a ship’s displacement, we will assume that the
areas of the sections at the dividing planes are already found;
those of the endmost sections are evidently zero.

In (fig. 2, Plate V.) showing the immersed body of a small
vessel, ADBC is the water plane, and 4B its middle line.
This latter is divided into 8 equal lengths, each equal to 4 ft.,
and sections of the body are made by planes passing through
these divisions, perpendicular to 4B and the plane ADBC.
The half areas of these planes in square feet are marked upon
the figure; those at the extremities 4 and B being zero.

Number of | Half Area | Simpson’s |Function of
Secti of Becti Multipliers.| Half Area.
1 0 1 0
2 15 4 60
3 25 2 50
4 30 4 120
5 32 2 64
6 28 4 112
7 23 2 46
8 13 4 52
9 0 1 (1}

504
4
3)2016

675 =Half Volume

1344 ="Total Volume

in cubic feet.

* Wm. Collins, Sons & Co.’s Advanced Science Series; also Elemens
tary Laying Of, p. 18.
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‘When the vessel floats to this water plage, she therefore
displaces 1344 cubic feet of water (see Art! ¥}, and as 35 of
these weigh 1 ton, hence 1—-33-45—4 = 384 tons is the weight of
the vessel and its contents at that time. The same result
would be obtained by cutting the body into segments by
equidistant planes, parallel to the water plane, and using their
areas and common interval in the rule instead of those of
the vertical sections.

It will be observed that Simpson’s First Rule is that which
we employed in the example just given, as it is the one com-
monly used in practice; the other may, however, be adopted,
by dividing the figure into the requisite number of divisions.

The volume of displacement is generally obtained direct in
one calculation; the data given being the lengths of equi-
distant ordinates of the several sectional areas, their common
interval, and the common interval between the sectional areas.

32. Centres of Gravity of Solids.—In speaking of the
centre of gravity of a solid, we suppose the latter to be a
homogeneous body, <.e., of uniform density; then its centre of
gravity is that point at which, if the body were suspended, it
would balance or be in equilibrium. In other words, it is that
point where, if all the matter composing the body be concen-
trated, it has the same statical effect as when the body is in
its ordinary condition. In the next division of this work,
we shall refer also to the centre of gravity of a body com-
posed of a number of other bodies, each of a certain weight
(a8, for instance, the hull of a ship), in which case the centre
of gravity is that point where, if all the bodies could be
collected, they would have the same statical effect as when
distributed in their respective positions.

83. Centres of Gravity of Special Solids.—The centre of
gravity of a sphere is evidently at its centre; for, as all planes
passing through that point cut the sphere into two equal

. parts, the centre of gravity of the sphere must be in each of
such planes, and therefore at their common intersection, viz.,
the centre of the sphere.

The centres of gravity of all regular solids, bounded by
planes, such as the tetrakedron, hexahedron, octahedron, ete.,
are evidently at the centres of their circumscribing spheres.
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The centres of gravity of all cylinders are at half their
heights, measured from ‘the centre of gravity of the base of
the cylinder.

The centre of gravity of a pyramid or cone is at one-fourth
its height, measured from the centre of gravity of its base.
That of & hemisphere is at a distance from the centre of its
base equal to three-eighths the radius of the sphere.

84. Centre of Gravity of a Symmetrical Solid, bounded
by a Ourved Surface and a Plane.—We will now show how
to obtain the position of the centre of gravity of such a
homogeneous body as that represented by the volume of a
ship's displacement. The figure is first divided by two sets
of equidistant parallel planes, each set perpendicular to the
other, such as we have just employed in determining its
volume. In that case it was stated that the two sets of
planes might be used, in order that the result obtained by
using one set could act as a check upon the result obtained
by using the other; but, in the present calculation, it is
necessary to use the two sets, in order that the position of
the centre of gravity may be fixed, by having its distances
from two planes at right angles to each other; knowing, at
the same time, it is in the longitudinal vertical middle line
plane of the body or ship.

Referring to fig. 2, Plate V., consider the body (or im-
mersed portion of the ship) to be divided by a series of equi-
distant parallel planes as there shown, whose areas are as
marked in the several sections. Then, by the same reason-
ing a8 was employed at Art. 25, it will be seen that the
centre of gravity of the whole volume coincides with that of
all the infinitely thin slices into which it can be cut by an
infinite number of such planes as are shown. So that by
taking the planes sufficiently numerous, and therefore close
together, we may, by obtaining the position of the centre of
gravity of these planes, approach as closely to the true centre
of gravity of the whole volume as we please. Simpson’s
Rules again come to our aid, as by their use we, in fact, inter-
polate the values of the moments of those thin slices which
can be cut between the sections drawn in the figure, in the
same way as when calculating the volume we, in reality by
the rule, interpolated the volumes of these thin slices,
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Hence, to obtain the longitudinal position of the centre of
gravity (t.e., the position on the line 4B at which a section
would pass through the centre of gravity), we multiply the
areas of the sections by their perpendicular distances from
the parallel plane, about which moments are taken (termed
the axis), and then, having affected these by Simpson’s multi-
pliers, we obtain the total moment of the volume about that
axis, [If the moment so found be divided by the volume,
the result gives the perpendicular distance of the centre of
gravity of the volume from the plane about which moments
were taken. As in the case of finding the centre of gravity
of a plane area, it is not necessary to multiply the areas by
their perpendicular distances from the axis, but by the com-
mon multiple of that distance, which is the numerical num-
ber of the plane ares, reckoning from the axis. The result
is afterwards multiplied by the common interval between
the planes, and this gives the actual distance of the centre
of gravity.

36. Example of Method of Calculating Position of
Centre of é)ravity in one Direction.—Using the areas
given on fig. 2, Plate V., and taking moments about No. 5
section,

Numbers of| Areas of | Simpeon’s (Functions| Multipliers |Functionsof]
Bections. |Sections.| Multipliers.| of Areas, | for Leverage. [ Moments,
1 0 1 0 4 0
2 15 4 60 3 180
3 25 2 50 2 100
4 30 4 120 1 @ :
5 32 2 64 0 |40
6 28 ¢ 112 1 112
7 23 2 46 2 92
8 13 4 52 3 156
9 0 1 0 4 0
604 360
400
40
_ 4Common Interval
504)160
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The figures in the above table will be readily understood
by the student, if attention has been given to the preceding
pages. The result shows that the centre of gravity of the
volume is in a plane parallel to the planes of section in the
figure, and at a distance of *3 feet from section 5, on the side
of it nearest 4, qr, in other words, the plane will cut the line
AB at a point distant 15-7 feet from }

36. To Fully Determine the Position of the Centre of
@ravity, we must discover at what perpendicular distance
from the line 4B the point is in that plane. To do this we
divide the figure by a series of equidistant planes parallel to
the water plane, the number of dividing planes being in
accordance with the rule. Then, finding the areas of these
planes, and taking moments about the water plane 4DB, we
find at what distance from the line 4B the horizontal plane
is that contains the centre of gravity, the calculation being
performed in a similar manner to that first shown.* By
this means the position of the centre of gravity is fixed, as
we know that it is in the longitudinal vertical middle line
plane of the ship. '

The two processes we have just described are performed
simultaneously in actual practice, one tabular form serving
for the calculation of the areas of all the vertical and longi-
tudinal sectional areas, the volume of the figure and the two
distances (longitudinal and vertical) necessary to fix the
position of the centre of gravity. Other properties, which
will be referred to hereafter, are also calculated on the same
sheet of paper, commonly termed the ¢ Displacement Sheet,”
a specimen of which is given at Table No. 1 in the accom-
panying volume.

It is well, perhaps, to observe that in the case of the
volume of the immersed portion of a ship (which, as we
have previously stated, is termed the displacement), its
tentre of gravity is termed ‘the centre of gravity of dis-
placement,” or “centre of buoyancy,” the reason for the
latter name will be given in the next chapter.

8%. Curves of Areas of Midship Section.—It is often

* The Algebraical expression for the moment in this case is
/ / 2%dxdy, while f f x*dydz represents that in Art. 34.
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necessary to know the area of the immersed midship section
at any mean draught of water. It is at once seen that it
would be quite impracticable to do this by expressing in
figures the several areas to water lines very close together,
as the results would be very numerous; and, besides, if the
area to any line, Wetween two consecutive water lines at
which areas are known, were required, it would have to be
interpolated by the draughtsmen, and might be incorrect.
It is therefore usual to draw upon the back of the ¢ displace-
ment sheet” what is termed “a curve of areas of midship
section,” and this is done in the following manner.

The areas of the midship section to the several horizontal
ordinates or water lines are calculated by one or other of
Simpson’s Rules, or the rule given at Art. 14; the particular
rule employed being such as is required by the number of
ordinates in each case. A base line is then drawn to scale
to represent the total draught of water that may reasonably
occur. The scale may be any, suited to the dimensions of
the “displacement sheet;” that of the sheer draught being
usually adopted. Points are taken in this line to represent
the positions of the water lines, and ordinates are drawn from
the points. Distances are then measured to scale upon these
ordinates equal to the areas of the midship section up to the
respective water lines; the scale being so many square feet, say
50 or 100 to a quarter or half inch. The curve drawn through
these points is termed the “curve of areas of midship section.”
It is at once seen by reference to the specimen curve shown
by fig. 1, Plate VL, that the area of midship section to any
draught of water can be readily determined by the simple use
of a scale.

In consequence.of these areas being calculated from the
midship section of a ship at a certain “¢rim,” t.e., draught of
water at bow and stern, it is not strictly accurate when we
use the mean draught at any other trim; and in cases where
the ship is considerably deeper at the bow or stern than
when the calculation was made, a correction has to be made
in accordance with the circumstances of the case.

88. Curve of Bectional Areas.—The late Mr. Peake in-
troduced the use of curves for calculating the displacement
from the areas of the vertical sections, or square stations, by
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drawing to scale a base representing the length of the ship,
drawing ordinates therefrom at the points corresponding to
the positions of the squate stations, and measuring to scale
upon these ordinates the areas of the respective sections. The
curve drawn through these points was termed the ¢ curve of
sectional areas,” and the area of it represented to scale the
volume of the displacement. (See fig. 2, Plate V1.)

89. Tons per Inch of Immersion. —When & ship is float-
ing at a certain draught of water, the load required to sink
her to a deeper draught is, of course, the weight of the
additional water displaced. If the increase of draught be
small, especially in the neighbourhood of the load water
line, the additional volume of displacement is equal to the
area of the load water plane multiplied by the increase of
draught. It is therefore customary to state upon the “dis-

‘ placement sheet” the number of tons required to sink the
ship to a parallel depth of one inch when floating at any
draught of water parallel to a certa.m line. This is called the
“ tons per inch of immersion;” and it is sometimes expressed
graphically as a “curve of tons per inch of immersion.”

Let A be the area in square feet of a certain water plane,

then ﬁ = the number of tons to sink the ship 1 inch when

floating at that water plane.

Either the figures obtained from the values of 4 at certain
equidistant parallel draughts are stated in a table, or else a
curve is drawn in the following manner (see fig. 1, Plate
VIL)—Draw a base line representing to scale the total mean
draught; draw ordinates through the points on this line repre-
senting the positions for which the values of 4 have been
obtained (usuallly the water lines); and set off to scale the
values of 4 on the respective ordinates, the curve drawn
through the points so obta.ined is termed the  curve of tons
per inch of immersion.”

40. Curve of Displacement.—The displacement paper shows
the total displacement to the load water line; it is, however,
customary to supplement this information with calculations,
made upon the same sheet, of the displacement of the ship
when floating to each of the water lines which are employed
in calculating the total displacement. By referring to the
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specimen Displacement Sheet, given in Table No, 1, these
calculations will be seen. In determining the several volumes
of displacement, the various rules already given are required.
For instance, the displacement as high as No. 2 water line
(the next below the load water line) is usually obtained by
deducting the volume included between these two water lines
from the total volume of displacement, the former being cal-
culated by means of the five-eight rule, stated at Art. 14,

The displacement as high as the next water line (No. 3) is
found by treating the areas of the load and two succeeding
water planes by Simpson's First, or one-third, rule, and the
result deducted from the total volume gives the displacement
in cubic feet to No. 3 water line. For the volume as high as
the next water line (No. 4), the three-eight rule is required,
for the next the one-third, and so on.

It is usual to give these several calculations on the Dis-
placement Sheet, and then tabulate them as shown.

As is evident, such calculations merely furnish the dis-
placement of the ship when floating at the several water lines
used in the calculation. It is, however, very necessary that
we should know the displacement at every intermediate
parallel draught of water, and for this purpose it is customary
to construct from the preceding data a curve termed the
 Qurve of Displacement.” A base line is drawn representing
to any convenient scale the whole draught of water, and
ordinates representing the water lines are set up at their
proper positions. Distances are measured upon the ordinates
representing to scale the displacement in tons to the several
water lines, and a curve is drawn through the points so
obtained.

Tt will be seen that besides its primary purpose this curve
serves a8 a check upon the accuracy of the several calculations
of displacement to the water lines, as in ordinary cases the
curve should be fair or continuous.

‘When this curve is drawn, we are enabled to determine,
by measurement, the displacement at any draught of water
from the keel to the load line, and by following the curve
of the batten we are also able to tell, very nearly, the dis-
placement, to some distance above the load line. (See fig. 2,
Plate VII.)

48 D
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This curve of displacement being calculated and drawn to
parallel draughts of water, it is not strictly accurate for an
alteration of trim; but, by experience, it is found sufficiently
trustworthy for all the ordinary variations which occur in
the trim of an equipped ship, especially near the load water
line. The minimum alteration of trim which will necessitate a
separate calculation being made by means of a new set of water
lines, varies with the form of the vessel; it being clear that
when the fore and after bodies are made unlike in form, the
necessity becomes more imperative than when there is a
similarity between these bodies. In the case, too, of an over-
hanging stern becoming immersed by the change of trim, the
calculation from parallel draughts would be misleading. These
points must be left to the discretion of the calculator.

It will be remarked that the curve of displacement is the
geometrical integration of the curve of sectional areas referred
to in Art. 38. Farther on, at Art. 42, will be found a method
of obtaining these curves by a geometrical process, recom-
mended by Mr. Scott Russell,

Plate VIIL shows the general manner of arranging the
curves already referred to on the back of the ordinary dis-
placement sheet, so as to keep all the particulars of this kind
together.

41. General Explanation of Displacement 8heet.—Before
proceeding further, we will explain the details of an ordinary
¢ displacement sheet,” a specimen of which is given on Table
I. Tt is necessary, however, to state that this sheet usually
includes other calculations, such as that of the transverse and
longitudinal metacentres, etc., as will be seen by referring to
the Table; these will be considered in their proper places.

The specimen calculation shown is that of a vessel whose
displacement is 620 tons. The draught of water in this case
is 10 ft. forward and 12 ft. aft, and the lowest water line is
drawn at 8 ft. below the L.W.L., thus leaving a portion of
the body (termed an “appendage”) to be calculated separately.
This “appendage ” is, therefore, 2 ft. deep forward, and 4 ft.
deep aft. In order to calculate the volume of the main por-
tion of the body, .c., between the load and fifth water lines
by Simpson’s First Rule, the depth of 8 feet is divided into
four equal parts, thus giving five water planes. Again, since
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the after perpendicular is situated at the after side of the
rudder post, and this being a single screw ship, the length of
the immersed body, measured from the fore ordinate (or ‘5
feet abaft the fore perpendicular) to the after ordinate (which
is at the after side of the body post) is 141 ft. This length
is divided into ten equal divisions by eleven dividing planes
(including the endmost). Hence the number of ordinates of
both the vertical and horizonal sections is odd, being five in
the former and eleven in the latter case, the common intervals
being 2 ft. and 14°1 ft. respectively.

‘We will suppose the body, half-breadth, and sheer plans to
be drawn with the lines contained in these sections; we have
next to measure off the lengths of the ordinates and insert
them in a tabular form, as shown by Table I. Referring to
the example before us, it will be seen that the ordinates of the
water lines are arranged successively in vertical columns, these
ordinates being usually and preferably measured in the half-
breadth plan. When the ordinates of the water lines are
thus set down, the ordinates of the vertical sections will be
found arranged successively in horizontal rows. It need
hardly be mentioned, in explanation to the student of “ Lay-
ing Off,” that this is owing to the same ordinates appearing
in both the body and half-breadth plans. For instance, 12
feet is the breadth of the fourth W.L., at No. 5 vertical
section; and in the same way, 12 feet is the breadth of No,
5 vertical section at the fourth W.L.

In the specimen calculations, the lengths of the ordinates
are shown in ordinary type, while the dark figures in the
tabular form are the products obtained in the calculation.

At the head of the calculation are stated the principal
dimensions of the ship, including the draught of water, also
the spacing of the water lines and the vertical sections; the
intersection of the latter with the former being the ordinates
which are measured. We have, also, a record of the positions
of the extreme ordinates with regard to the perpendiculars,
and of the middle ordinate with regard to a square station
on the drawings, <.e., the joint or side of a frame. This record
will enable a future calculator to reproduce the lines used in
this case, or accurately apply the results obtained therefrom
in any other kind of calculation made upon the ship.
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As already stated, the foremost ordinate in this particulad-
caleulation is situated at -5 feet abaft the fore perpendicularg.
this is done in order that, by neglecting the portion of the..
body on the fore side of that ordinate, a proper allowance may:
be made for having assumed the whole of the fore foot of the.
ship to extend forward to the same ordinate instead of bemg .
rounded away. The first ordinate of No. 5 water line is _
considered nil for the same reason. This is a point which is
decided by the experience of the calculator. In any specm.L
case, as that of a ram-shaped bow, an actual ca.lculatlon should
be made of the volume before the ordinate, and also of that-
which is to be deducted, owing to the curvature given to the .
Jower part of stem. The same remark applies to the other
portions either not included in the main piece of displacement :
when they belong to the body, or included when they should "
not be, such as shaft tubes, propeller brackets, screw aper- .
ture, eto. -

The first column on the left hand side of the specimen .
sheet contains the numerical names of the ordinates stated ..
in succession; it being observed that in this case, in order to
determine with reasonable accuracy the volumes at the highly .
ourved parts of the bow and stern, a half ordinate is added .
at each extremity, viz., Nos, 1} and 10% (See Art. 12,) )

The second column contains Simpson’s Multipliers for the -
First Rule, the number of ordinates being odd. It will be .|
seen that the half ordinates cause a modification in the .
multipliers such as has already been explained. .

Passing over for the present the portion of the calculation .
referring to the “appendage,” we find five columns, each
headed with the number of the respective water line, followed -
by its proper Simpson’s Multiplier. The ordinates, as ,
measured from the half-breadth plan, are then placed in their |,
proper order. '

It has been already stated at Art. 36 that, in practice, the
volume of displacement is calculated mmulta.neously from the ,
areas of both the water planes and vertical sections, and that
the results thus obtained serve to check each other. This ',
will be seen in the specimen calculation. Considering the
numbers now in the tabular form as consisting of colummns
only, each ordinate in a column is multiplied by the Simpson’s |
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Multiplier for that column, and the product is written im-
mediately below the ordinates, as shown in dark figures.
This being done for all the columns, the products in the rows
thus produced are added together, and the sums written in
the same row and in the column headed ¢ Functions of
Areas.” Similarly, considering the numbers in the tabular
form as consisting of rows only, each ordinate in a row is
multiplied by Simpson’s Multiplier for that row, and the
product is written down on the right hand side of the ordinate,
as shown in dark type. This being done for all the rows,
the products in the columns thus produced are added together
and the sums written in the same column, and in the row
at the left of which is written “ Functions of Areas.” We
thus have two sets of functions of areas, the former being
those for obtaining the areas of the vertical sections, and the
latter for obtaining the areas of the water planes. In the
former case, the area of the water plane is obtained by multi-
plying its function by 2* x 2 ft.; and in the latter, the area
of the vertical section is obtained by multiplying the function
of the area by Z* x 14-1 ft, The displacement, however, is
found without any such intermediate calculation. The column
and row of  Multiples of Areas” are the products of the
functions in the adjacent columns and rows when multiplied
by their respective Simpson’s Multipliers, as the sums of these
two sets of multipliers are such that we have to multiply each
of them by £ x 2 ft. x } x 14°1 ft., in order to obtain the volume
of displacement in cubic feet; it is therefore evident that if the
preceding work is done correctly, they will agree. In the
example given, this is found to be the case; therefore the
sum of each set of Multiples of Areas being 3178, as
shown, the volume of the main portion of the displacement
is thus equal to 1991546 cubic feet, which, when divided by
35 (35 cubic feet of sea water weighing 1 ton), gives 569-013
tons, which is the weight of a quantity of sea water equal in
volume to the portion of the ship inclosed between the fore-
most and aftermost vertical sections from the load to the fifth
water lines.

Before showing howthe volume and weight of the remainder

* The 2 here is for both sides of the ship, the ordinates being
merely those of half the immersed body.
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of the displacement is obtained, we will proceed with the
calculation for the position of the centre of gravity of the
portion of the displacement already found. This point is
generally styled the “centre of buoyancy ” (or C.B.) of the
main portion of the displacement.

In the specimen calculation, the position of this centre of
buoyancy is determined with regard to the middle ordinate
(No. 6), and moments are taken about that vertical section.
In the column headed “multipliers for leverage,” it will be
seen that opposite each ordinate is written the numerical
order of its position with regard to No. 6, or, in other words,
the number of times 14'1 feet that the ordinate is distant
from the section about which moments are taken. Thus, the
multipliers opposite ordinates Nos. 14 and 10 are in both
cages 4}; each of these vertical sections being 44 x 14°1 ft. =
6345 ft. from No. 6. )

The reason for using the multipliers in preference to the
actital distances, and the manner in which the actual distances
are afterwards included in the work, have been explained in
Art. 25. The column headed “ Moments” contains the pro-
ducts of the ¢ Multiples of Areas” and their respective
¢ Multipliers for Leverage.” The moments before and those
abaft No. 6 ordinate are totalled separately, and the difference
between the totals, viz., 82:5 is a function of the preponder-
ance of the forward over the after moments. The actual
resultant forward moment is

141 2

826 x 5 *3* 141 x 2=7289'7 cubic feet

acting at a leverage of 1 foot, or 7232'7 = 2082 foot tons.

In the above exproassion,l_‘i;_l X % is the product of one-third of

each of the common intervals, as required by Simpson’s Rule
for a volume; 14-1 is the factor (previously neglected) of the
“ multipliers for leverage,” and 2 is for both sides of the ship.
There is, however, no advantage, but rather the contrary, in
calculating the exact moment, for since the total 3178 of the
“ multiples of areas” is in the same terms as 82'5 x 14°1; the
former being the same function of the volume that the latter
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is of the resultant moment; i‘.herefor«a82%;;?—l =366 feet,
is the horizontal distance of the centre of buoyancy of the 569
tons of displacement before No. 6 ordinate. This is proved
by mutiplying 569 tons by ‘366 feet, which gives 2082 foot
tons—the same result as before.

Similarly, the vertical position of the same centre of buoy-
ancy with regard to the load water line is found as shown at
the foot of the tabular form. The sum of the functions of
‘moments (or “ moments” as they are generally styled) is, in

this case, 56063 ; hence 56(;6178 = 3-528 feet, the distance

of the C.B. of 569 tons of displacement below the load water
line.

There now remains to be calculated the volumes of dis-
placement and positions of the centres of buoyancy of the
portions of the immersed body not included in the calculation
already made. The principal of these is the volume below
the tifth water line, not including the keel. On the left hand
side of the sheet this calculation will be seen. In the column
headed ¢ half areas,” are stated the half areas of the portions
of the vertical sections, at the several ordinates, between the
fifth water line and upper side of keel. These are calculated
by the simple rules of Mensuration, the figures being usually
trapezoidal or approximately so. After the preceding descrip-
tion of the calculation for the main portion, the figures in the
other columns do not require explanation. It must, however,
be remarked that as the figures refer to areas and not linear
dimensions as in the prevmus case, the total 159 ‘65 has

merely to be multiplied by 3 , and a.fterwards by 2, in

order to obtain the volume for both sides of the ship in cubic
feet. In regard to the moments, the figures 322:185 and
15955 aro in the same terms, and, therefore, Sari® = 2-019
feet is the horizontal position of the centre of buoyancy of the
appendage from No. 6 erdinate; it being in this case on the
side.

Immediately below the calculation just alluded to will be

found those for the volume and weight of the displacement

e
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of the few minor portions of the immersed body not yet
estimated. These, in this case, consist of the rudder and
rudder post, bilge keels, wood keel, a continuation of the
keel under the aperture, and the body post. These are
calculated by the elementary principles of Mensuration, and
the weights in tons are found by dividing the volumes by 35.
Their centres of buoyancy, including the vertical position of
that of the principal appendage, can easily he obtained by
simple measurement.

‘We have now to collect the results already found, and from
them determine the total displacement; also the}longitudinal
and vertical positions of its centre of buoyancy. Immediately
beneath the calculation regarding the main portion of the
displacement, the total result is given. The total displace-
ment being merely the sum of the several components, it is
found to be 620-158 tons of sea water, or 21705:563 cubic ft.
The positions of the centres of buoyancy with regard to No. 6
ordinate are stated in the column headed “leverage,” and the
moments of the components are given in the next two columns
—one being for the forward, and the other for the after mo-
ments. The resultant after moment is found to be 352 foot-
tons, and this being divided by the total displacement, 620158
tons, gives ‘056 feet, the distance abaft No. 6 ordinate at
which the centre of buoyancy of the total displacement is
situated. The two remaining columns show the distances of
the centres of buoyancy of the several components below the
L.W.L., and their moment about that line respectively. All
these moments being on the same side of the axis about which
moments are taken, their sum (2449 foot tons) is the total
moment of the displacement about the L.W.L. Hence,
o = 305 foot, tho distance below the L.W.L. at which
the C.B. of the total displacement is situated. Thus having
the vertical and horizontal positions of the point, it is fully
determined, and we are now able to use this knowledge in
our future calculations.

An explanation of the curve of areas of midship section
was given at Art. 37; at the lower hand corner of the
specimen calculation will be found Ahe work required in
determining the ordinates for constrycting the curve in this

FSHTA
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case. The area of the whole midship section to the L.W.L.
is found calculated on the extreme right of the calculation
for the centre of buoyancy of the whole displacement; the
value 15845 there employed being obtained from the column
headed *functions of areas,” and in the row belonging to
No. 6 ordinate, which is situated at the fullest part of
the ship. This function of the midship sectional area is
multiplied by one-third the common interval between the
water lines, viz, 2 feet, which gives 105-63, to this is
added the half sectional area of the “appendage” at ordinate
6 (see column of “half areas,”) also those of the keel and
bilge keels; the total, 117-78 sq. ft., when multiplied by 2
for both sides, giving 235-56 sq. ft., the total area of the
midship section. In obtaining the areas as high as the
several water lines below the load line, the areas of the
portions included between the latter and the respective water
lines are calculated, and the results are deducted from the
whole area. The five-eighth rule is employed for the area
as high as the second W.L., the one-third for the area to the
next, and the three-eighth rule for that to the fourth W.L.;
the areas of the keel and appendage added together being
the area to the fifth W.L. The mode of constructing the
curve with the ordinates thus found has already been ex-
plained in Art. 37, and the curve itself is shown by fig. 1,
Plate VI.

A “curve of sectional areas” may be constructed by deter-
mining the areas of the vertical sections at the other ordi-
nates, in the same manner as already done for that at No.
6—the midship section. See fig. 2, Plate VL

At the middle of the right hand side of the Table is
shown the mode of obtaining the “ tons per inch of immer-
sion” at the several water lines. The “ functions of areas”
of the several water lines, as found in the row at the foot of
the tabular form, are multiplied by one-third of 141 (the
common horizontal interval), which gives one-half the areas
of the respective water planes in square feet, or, if considered
as cubic feet, it represents a slice having a surface of that
area, and one foot thick, Hence, upon dividing by 12 and
35, we obtain the weight of such a volume of sea water
having that area, but only an inch thick; and multiplying by
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2 we obtain the weight of both sides. The “tons per inch”
at the several water lines in this case are shown on the sheet ;
the mode of constructing the “ curve of tons per inch” was
explained at Art. 39.

‘We have now to explain the portion of the specimen cal-
culation referring to the ¢ curve of displacement.” As stated
at Art. 40, the displacement when the ship is floating at each
of the several water lines has first to be calculated, and ordi-
nates are then drawn to a certain scale representing the
several displacements. The displacement to the L.W.L.,
viz., 620-158 tons, has already been obtained. At the foot
of the right hand side of the specimen sheet will be seen the
calculations for the remaining water lines. As in the case of
the areas of midship section, the displacements between the
L:-W.L. and the other water lines are first calculated; and the
results deducted from the total displacement give the displace-
ment below the several lines. The five-eighth rule is employed
for the second water line, the one-third rule for the third, and
the three-eighth rule for the fourth water line; while the dis-
placement to the fifth water line consists of the sum of the
displacements of the appendage, wood keel, rudder, posts, etc.
If there were seven instead of five water lines, the one-third
rule would be used for the displacement to the fifth, and the
three-eighth rule for that to the sixth water line, while the
displacement to the seventh W.L. would be found similarly
to the fifth in the present example. When the several
displacements are calculated, the curve of displacement
is constructed in the manner explained at Art. 40. (See
fig. 2, Plate VIL, also Plate VIIL.) The remainder of the
calculations shown on the specimen sheet will be explained
hereafter.

42. Geometrical Method.—We will now show how the
displacement, centre of buoyancy, etc., are determined by a
purely geometrical process, based upon the principles already
discussed. The curves of the water lines and vertical sections
are assumed to be parabolas of the second order, as in
Simpson’s First Rule. It will be remembered that at Art.
10, this parabola was defined as “a curve such that the area
of any one of its segments is two-thirds of the product of the
base, and deflection of that segment.” Referring to fig. 2,
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Plate I, the area of ACHKE is made up of the trapezoid
ACKE, together with the parabolic segment CHX.

HenoeareaACHKE:AC;KExAE+§HMxAE

= AE(MF + §HM)
Similarly, aresa EKLDB=EB(GN +3LN)=AE(GN +3LN).

Hence, whole ares ACKDB=AE | (MF+§ HM)+(GN+ %LN) }
If then a point O, fig. 1, Plate IX,, be taken so that
OM=ZHM* and a point P, such that PN =2LN.
Then area ACKDB=AE(FO+GP).

From this it is seen that FO+ GP is a multiple of the
area ACKDB, so that a line £Q = FO + P4 will represent

the area to a certain scale. For instance, if A& =4 ft., and

EQ is found to measure 9 ft., then we know that the area is
4 x 9 =36 sq. ftr, or that 9 ft. is the area of the curved space
on the scale of 3 in. =1 sq. ft.t This is the principle upon
which the geometrical calculations we are about to consider

are based. The distance EQ is set off upon the middle ordi- -

nate, or that ordinate produced, for the sake of convenience
in further calculations, as will be seen hereafter. In order
to keep the geometrical construction within the limits of an
ordinary sheet of paper, the scale of length of the new ordi-
nates, such as £Q, is reduced ; for instance, ZE may represent
the area, where ZR =1EQ; only in thab case the scale would
be 1} in. =1 sq. ft., or upon the supposition contained in the
foot note the scale would be 5% in. =1 sq. ft., in other words,
1 in. =32 8q. ft.

The preceding illustration is for an elementary case of
three ordinates; referring to Plate X., a more general example
will be seen, in which certain other curves are constructed
by a continuation of the principle.

* If the curve is convex, with regard to the base line, as in fig. 2,
Plate IX., then the chord and the point O will be on the other side
of the curve, and the length OM must be deducted from FM, or in
other words, OH must be added to FH instead of being deducted
from it as in fig. 1.

+ This is upon the snlzfosition that the ordinates AC, EK, BD,
and the absciss® AX and EB are drawn to full size, if they are

already upon a reduced scale, say % in. to a ft., then the scale of £Q
will be ¢ in, =1 sq. ft.

v

¢
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Fig. 2, on Plate X., is the half-breadth plan of a ship, and,
for simplicity sake, it is constructed with five water lines,
the lowest being at the keel ; and five ordinates, the endmost
being at the extremities of the bow and stern. In this way the
whole of the immersed body is represented in the plan; the
common distance between the water lines being given. It
is perhaps unnecessary to state that to secure these conditions
the ship is assumed to be floating at “an even keel,” and
that her extremities are perpendicular to the L.W.L.; by
this assumption, we are not bothered with appendages of any
kind. In actual practice, allowances can easily be made for
these, and represented in the curves. Fig. 1 in the Plate
shows only one of the water lines, viz., the L.W.L.; the mode
of working with the others is exactly similar, but they are not
repeated in this figure, in order to avoid confusion of
lines.*

The first curve to be determined is that termed the “curve
of areas of water lines,” this being constructed from ordinates
equal, to scale, to these areas. Beginning with the L.W.L.,
drawn in fig. 1; chords are drawn joining the upper extre-
mities of adjacent ordinates (this process has already been
explained ; the chords are omitted in Plate X.), the abseisss
are bisected and intermediate ordinates drawn through the
bisections to points situated at two-thirds the deflections of
the arcs cut by the chords, measuring from the latter. The
sum of the lengths of these intermediate ordinates is obtained
by means of a strip of paper applied to each ordinate in suc-
cession, the measurements upon the strip being adjacent to
each other. This length is set off upon No. 1 original ordi-
nate produced, so that it now serves for L.W.L. as well. In
the figure it is drawn to half size to suit the dimensions of
the drawing; and it is such, that if measured with the scale
to which the drawing is made, and then multiplied by 2, and
by the common interval between the original ordinates, the
result is the half area of the water plane. The functions of
the areas of the other water planes are found by measure-

* It will be observed by reference to the figure that the same
lines serve for the ordinates of the half-breadth plan and for water
lines; this is done for convenience’ sake, it being remembered that
the common interval used for the ordinates is 40 ft., while that for
the water lines is 3 ft.
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ment with a strip of paper in a similar manner, and half the
lengths so found are set off upon Nos. 2, 3, 4, and 5* original
ordinates (produced if required), which now serve for Nos.
2, 3, 4, and 5 water lines. A line passed fairly through the
points thus found is the curve of areas of water planes. To
determine from it the half area of any other water plane
than those used, an ordinate must be drawn through a point
on the base line representing the position of the water plane
with regard to the others, and the length of this ordinate to
the curve must be multiplied by 2, and by the common
interval between the vertical section ordinates. For instance,
if these ordinates (Noa 1, 2, etc.) are 40 ft. apart, and if
the length of an original ordinate of the curve of areas at
No. 2 W.L (which is a draught of, say, 9 ft., the total
draught being 12 ft. in this case) is, measured with the scale,
23 ft.; then:
23 x 2 x 40=1840 sq. ft. for one side only,
or 3680 eq. ft., the total area of No. 2 water plane.

A curve of areas of vertical sections can be obtained in a
similar manner, by using the body instead of the half-
breadth plan; observing that the nature of the curvature
in the body plan is such as to render less accuracy
probable.

‘We next proceed to construct a curve of displacement by
means of the curve of areas of water planes just drawn.
Retaining the original and intermediate ordinates already in.
the figure, but produced, if necessary; draw the chords of the
curve of areas as before, and discover the points at two-thirds
the deflections of the arcs from the chords. Next consider
that the total displacement is the sum of the areas of all the
water lines that can be conceived at an infinitely small
distance apart, or, in other words, that the total displacement
is the area of the space inclosed by the curve of areas of
water lines, the base line, and No. 1 ordinate. Hence, with
& strip of paper, measure the sum of the
‘mediate ordinates to the points already
total length will be a function of the

In fact, if we call the length so found /,

* The area at No. 5 is nothing, as the sh
o projecting keel,
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between water lines = 4, and tht'a. horizontal interval between
ordinates = %, then
Ux2x h x k=% displacement.

Thus if
1="73 ft. when measured with the scule,
h=3 ft. and k=40 ft.
73 x 2 x 40 x 3=17,520 cubic ft.
or 35040 cubic ft.=1001 tons=total displacement.

In the curve of displacement drawn, the distances set off
upon the ordinates are half the results of the measurements;
this being done in order to keep the figure within bounds.
A similar reduction in scale is also found desirable in prac-
tice. 'This half length is then set off upon No. 1 ordinate
(produced, if necessary), and, as shown, represents the total
displacement to scale.

For the displacement as high as No. 2 water line, the area
of the curve enclosed by No. 2 ordinate is similarly measured,
and half the length is set off upon that ordinate, and so on
with the others. The area to the fifth water line is, of course.
nothing. A line drawn fairly through the points thus
obtained, as shown, is the curve of displacement; being (if
drawn upon the same scale) identical with the curve con-
structed from the results of the displacement sheet. ’

A curve of displacement can also be constructed from the
curve of vertical areas, and the total displacement shown
thereby will be the same as that given by the curve just
drawn. The remainder of such a curve is, however, practically
useless for the purpose of determining displacements, as the
length of an ordinate gives the displacement included between
an extremity of the vessel and a vertical section at that
ordinate. -

We have next to show how to obtain the position of the
centre of buoyancy from these results. By the aid of the
curves already determined, we are enabled to construct another
curve from which we can determine the position, vertically,
of the centre of buoyancy, when the ship is floating at any
line, parallel to the load line, between the latter and the keel.
This is done by constructing a curve, the ordinates of which
represent to scale the leverage, about either the keel or the
L.W.L,, of each of the water planes used in the sheer draught,
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- Supposing we take moments about the L. W.L., and construct
such a curve (known as the “curve for vertical moment”),
then the area of the space enclosed by the curve, the base,
and any ordinate, is a known multiple of the moment of dis-
placement to the corresponding water line about the L.W.L.
Hence, dividing the moment by the volume of displacement,
up to the line in question, the quotient is the distance of the
centre of buoyancy of that displacement below the L.W.L.

To construct the ¢“curve for vertical moments” (we will first
take moments about the L.W.L.): multiply the first ordinate
of the curve of areas of water lines by 0; the second by 1;
third by 2, and so on; and pass a curve through the points
so found: such a line will be the “ curve for vertical moments.”
It is such that any ordinate of it is a known multiple of the
moment of the area of a water plane at that ordinate, about
the LW.L. In this case, when we take moments about the
L.W.L, the curve cuts the base line at the first and fifth
ordinates, the latter being each=0. As will be seen by the
figure, when moments are taken about the keel, the curve
cuts the base line at the keel, or fifth water line, only.

Next, to construct the ¢ curve of vertical moments,” draw
the chords of the curve just obtained, joining the extremities
of the ordinates; also, draw the intermediate or half ordinates
as used in constructing curves of areas and displacement, and
stop them at two-thirds the deflections of the arcs, measured
from the chords. Then, by the aid of a strip of paper, obtain
the sum of the lengths of these intermediate ordinates, and
set off the total upon ordinate No. 5 produced ; also the sums
of the lengths of the half ordinates between Nos. 1 and 4
ordinate, and set off the result upon No. 4, and so on. In
fig. 1, where the curves are shown, only half the lengths are
set off in order to keep the figure within reasonable propor-
tions. A curve passed through the points thus found is the
“ curve of vertical moments.” We will now give an instance
of the mode of using this curve, in obtaining the vertical
position of the centre of buoyancy to any water line, say at 3
ft. below the L.W.L., or at No. 2 W.L. The length of this
ordinate when measured with a scale is found to be, say, 70
foet.

% T0x2x2x40x 3 x3x2=201,600 foot cubic feet,
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=moment of displacement to second W.L., about L.W.L.
But displacement to second W.L. is 850 tons = 29,750 cubic

feet ; therefore

201,600 .
20750 = 68 feet,

which is the depth below the L.W.L. of the centre buoyancy
of the displacement when the ship floats at No. 2 water line.

In the above expression the figure 2 is used twice in order
to allow for the two reductions in scale which have been made
in order to keep the diagram small; 40 is the horizontal com-
mon interval; 3 is the vertical common interval, which is used
twice, viz., once for volume and once for leverage; and the
last 2 is for both sides of the ship.

Sometimes, for the sake of convenience, separate curves
are constructed for the fore and after bodies; in which case,
the sums of the moments and displacements for the water line
in question, as found from the two sets of curves, must be
used. Plate XI. shows the curves of the fore and after
bodies of a vessel constructed in this way. It will be observed
that the curves are drawn upon a prepared sheet, ruled, so
8s to enable a calculator to work without a scale. Being
divided into a number of large squares, the side of each of
which is equal to 5 ft. on a } inch scale,* and each of these
squares being again subdivided into squares, ‘each of whose
sides is 1 foot, a very close degree of accuracy can be obtained
in setting off distances and dividing or multiplying ordinates
without the aid of either compasses or scale.

The curves shown on Plates X. and XT. are those obtained
from water lines, and while they give all the information we
need regarding the displacement, the only information which
they contain regarding the position of the centre of buoyancy
is its distance from the L.W. plane. In order to obtain its
longitudinal position, it is necessary to construct the curve
of areas of vertical sections as already explained, and from
this determine, by an analagous process to that just gone
through, the longitudinal position of the centre of buoyancy

* Plate X, is drawn upon % of the usual scale, to get the diagram
within the limits of the page. Usnally there are 400 squares instead
of 100, and the side of each stl)a.rexsl in. instead of # in. as shown.
This ruled sheet was devised by Mr. C. W. Merrifield, F.R.S.
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with regard to any vertical section about which it may be
thought convenient to take moments.

The geometrical method of obtaining the displacement and
centre of buoyancy, while furnishing in a compact form a
quantity of information, readily extracted if required, yet
occuples longer time in construction than is taken about an

ordinary displacement sheet for the same ship, and although
more labour is required in extracting from the latter par-
ticulars regarding various draughts of water than in the case
of the geometrical method, yet for general use in the drawing
office the displacement sheet is the preferable of the two, as
it contains all that is usually required, and in such a form
that it can be used at once. Nevertheless, the geometrical
sheet, such as is partly shown by Plate X1, is a valuable
adjunct which might with great advantage be more generally
used than it is at present.

43. Dr. Woolley’s Rule.—A Rule has been devised by Dr.
‘Woolley, late Director of Education to the Admiralty, for
the purpose of obtaining the displacement direct from the
ordinates without going through the intermediate process of
determining the functions of the areas of the water planes or
vertical sections.

Fig. 1, Plate XII., shows a solid bounded by a curved
surface, and five planes which intersect at right angles. The
immersed body of a ship is made up of a number of such
solids. This elementary solid is divided into four parts by
two planes at right angles to each other, and dividing the
rectangular base into four equal parts. The intersections of
these planes with the sides, base and curved surface give nine
vertical ordinates, marked a,, a,, ay, b,, b, etc., in the figure.
Let p and ¢ be the sides of one of the recta.ngles of the base,
or if the base be a portion of the vertical middle line plane
of a ship, then p and ¢ will be the vertical and horizontal com-
mon intervals. The volume of this solid is found thus:—

0 1 0 0 b5 O
2 1 |x 2_:;_” becomes | a; 2b; ¢, |x 2%’-’
0 1 o 0 b 0

4B ‘ B
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The nine numbers enclosed in the square on the left are
the multipliers by the Rule, arranged in order; these are
multiplied by the ordinates in order, as shown by fig. 1,
Plate XTI. ‘
Thus, ¢, x0=0 b, x1=by ¢, x0=0

ayxl=a, by x2=2b, cgxl=c,
agx0=0 by x1=bg ¢s x0=0.

The sum of the products multiplied by 2%2 is the volume

required. For instance, let
a,=3 b,=6 ¢,=6
a,=4 b,=6 ;=5
as=5 by=6 cy=4

Then the products enclosed in the preceding square are

0- 6-0
40125 | x 23X gronih) 826
0- 60

The multipliers of Simpson’s First Rule, if expressed ina |
similar manner, would be

1 4 !
4 16 4 x%’
1 4 1

and the products, by using the same ordinates, would be

RN
'3246
€

6 9% 20 x§$=@4+144+30)§=264,
5 24 4
\

which is the Bﬂl‘;‘e result as above; only, as will be observed,
after a greater twxpenditure of labour, by reason of the
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magnitude of the multipliers in Simpson’s a8 compared with
‘Woolley’s Rule.

So far, we have only been considering the application of
‘Woolley’s Rule to an elementary solid, divided by two planes,
at right angles to each other. From the preceding, however,
an expression is readily found by which a volume of displace-
ment can be calculated with any odd number of vertical
sections and water lines. For instance, let us take a case of
b water lines and 9 vertical sections; we have then eight

elementary solids arranged as below :—

No.1 No.8No.83 No.3 No4 No§ No.5No.6 No.7 No.7 No.8 No.9

LWL [ 010|010]|010]| 010
2WL (121 |121]121]|1¢21
WL | o10|010]|010(| 010 2pq
SWL [ 010|010 |010|010]| 38
4WL | 121 (121|121 ]|1¢21
WL '010{010 010|010
which, when combined, appears thus—

No.1. No.8 No.8, No.4d No.5 No.6 No7 No8 No.b?9
LWL | 0°1 0 1 0 1 0 1 0
2WL |1 2 2 2 2 2 2 2 1
3WL |0 2 0 2 0 2 0 2 o0 x?%q
4WL |1 2 2 2 2 2 2 2 1
WL |0 1 0 1 0 1 0 1 o0

From this example it will be seen how to express the
multipliers for any odd numbers of vertical stations and water
lines,

44. Proof of Woolley’s Rule.—For the benefit of the
advanced student, we now propose giving a proof of the rule
just stated. Referring to fig. 1, Plate XIL, let O be the
origin and 0X, 0Y and 0Z the axes of co-ordinates,
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The general expression for the volume of the solid is=

[[ﬁwyda

It is assumed that the curved surface is that of a cubic
paraboloid, the general equation for which is

z2=a+bx+ ol +dy+eyf +fry+gaty+ hoy? + kxd + ly3,
Let p be the common interval along the axis 0X, and q
that along the axis 0.
Then we have—when

= 0.y= q.z=a;=a+dg+eq? + lg°

T= 0.Yy=~-q.z2=ay;=a - dq+ eq? - iy®

= 0.y= o0.z2=@a,=a

L= p.y= 0.2=by=a+bp+cp? + kp*

T= p.y= q.z2=by=a+ + cp® + dg + eq? + fpq
+9p%q + hpg® + kp® + g

T=P-Y=-q.2=by=a+bp+cp? - dg+eq? - fpq
- 9p’q + hpg? + kp* - Ig®

z=2.y= o.z=¢;, =a+2p+4pip b kpd

z=2p.y= q.2=1¢; =a+ 2bp + 4cp* + dg £ eq? +

2fpq + 49pq + 2hpg® + 8kp® + Ig®
w=2p.y=-q.z=c2,f=a+4g2;g)+ ? -
.y 2IPei— 49P°q + 2hpg® + 8kpY - Ig®
But the volume of a solid

=/ [ [t
-/ J ety

and this particular volume
’ 4
) AT

=/ @t bt et b dy eyt +foy gty + Tyt 4 ket 4 1y)ddy,

=_/0’P(2aq-i-2bxq+2cz’q+§eq'+%qu’+2bc’q)dm

=4apq+4bp’q+l—;cp’q+§epq’+§hp’q°+3kp‘q .

=2 (12 a+ 12bp+16cp’+4eq’+4hpq’+24kp’)\'
# bub 0,40, +2D, +b, + 69 = 1 (the above expression in bracketa.)

as may be deduced from the values of ay, b, b,, etc., which

have been already found. N N

Taebyr25,5 64+ Cp =(°,)+(a +bprep ~d\j\.‘ eg -}7‘{\‘ 97"1\

v b g kpr - ) kb By hjY) (o bpre

T Ly S Y N R A AR
Ca +6bP 3 g owPr Q24 49 s
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Hence we have—
Volume = 2Lq (@g+0,+2b,+b5+¢,)

Or, arranging the ordmates a8 they stand upon the base of
the solid—

0 5 O
29 x| a, 2
3 2 2 Cy
0 5 O

from whence, by using only the multlphers, we get the general
expression—

0.1.0
1. 1.2.1
3

0.1.0

45. Centre of Buoyancy by Woolley’s Rule.—The preced-
ing result has been obtained upon the general assumption
that the curved surface is a cubic paraboloid; as may be seen
by looking into the investigation, the same result would have
been obtained if the equation to the ordinary paraholoid had
been used, that equation being

2=a+bx+cx? +dy+ey? +fxy.

‘We will now show how to obtain the co-ordinates of the
centre of buoyancy by Woolley’s Rule, using the above equa-
tion to the surface.

First, to find the longitudinal position of the centre of
buoyancy. Referring to fig 2, Plate XTI. (which represents
the base of the solid shown by fig. 1), we will take moments
about the plane of YZ, which is represented by the line a,a,,
a, being the origin,

Let T be the distance of the centre of gravity from that
plane,

Then Volume x T= [P [:mdxdy
14
=-/o-l ./_:w(“ + bz + ca? + dy + ey? + fay)dwdy.
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Integrating between the limits we have
Volume x T:%p’q (3a +45p + 6¢p? +eq?)

But if the equation
z=a+bz+cx?+dy+ey? +fxy
represent the surface, we find by equating the co-efficients, as
in the last Art., that
(b, +2b, +b5)+2x ¢y =6a+8bp+12cp? +2eq?.

Hence Volume x T:gp’q{(b, +2b,+b,)+2¢,}

) ?épq{at'l'(bx‘l'ﬂ’ﬁ +ba)+ic!} g
Or T=p% x0+ (b, +2b, +b5)x1+c,x2
T g H (b +2by+bs) +eg
a form which the reader will probably recognise, being that
which we have previously employed, only with Simpson’s
instead of Woolley’s Multipliers. *
The value of T, expressed in a form fit for the immediate
substitution of the lengths of the ordinates, is—

2
§p‘q{(b, +2by +b,) + 2¢, }

0 5, O
0 2, 2,
0 5 0
T=rx =
a;, 2, ¢,
0 b O

* Should the similarity not be obvious, it may be desirable to point
out that the functions of the first set of ordinates are multiplied by
zero, those of the second by unity, and of the third by 2, the same as
when taking moments in the centre of buoyancy calculation upon the
ordinari;iisplacement sheet. This is what we might have expected,
but we have here proved it independently. If there were a greater
number of sections, the multipliers would continue thus:—3, 4, 5, etc.
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the sum of the upper products being divided by that of the
lower.

As an example, we will substitute the values of the ordin-
ates, and the common intervals given in the preceding Art.

0 6 O
0 12 10
0 6 O 24
T=3x _0-_6__0 =3 x 3= 34y from the plane YZ.
4 .12 . 6
0.6.0

Using Simpson’s Multipliers we shall get

0 24 12
0 96 40
0 24 8 204
T=3x 3 2 6 =3xl—9-8=3ﬁ-fromtheplaneYZ
16 96 20
5 24 4

which is the same result as before,

The other co-ordinate of the centre of buoyancy, <.e., its
distance, measured from the plane ZX, may be found in a
similar manner, only that it is preferable in this case to shift
the origin to ag in fig. 2, or, which is the same thing, to O,,
fig. 1, and thus find the distance of the centre of buoyancy
from the plane Z,X,. The result will be similar to that given
above. Let 7 be the distance, then

0 agy 0
0 2, 2,
0 ¢y 0
T=qx
e I

a, 2b, ¢y
[o by O
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which, in the example already employed, gives

0 4 0
0 12 12
_— 0 5 0 33
L =4x o Ei——O_ =4x3—3=4£romthephnez,xl,
4 12 5
0O 6 0

which happens in this case to be in the plane containing the
ordinates a,, b,, and c,, or the plane ZX. '
The application of Simpson’s Rule gives

0 16 6
0 9 48
0 20 12 108
T,=4x s 2 o =4 X9 = 4 from the plane Z,X,,
16 96 20
5 24 4

which again confirms the result by Woolley’s Rule.

From the results obtained by the use of the elementary
solid, we may readily write down the multipliers by which the
centre of buoyancy is found in a case where any odd number
of ordinates is given in either direction. In the example
with which we conclude Art. 43, the distance of the centre
of buoyancy, from vertical section No. 5, is found by first
multiplying the ordinates by the following multipliers given
in order, and then multiplying the difference between the
moments on the two sides of No. 5 by the common interval,
and dividing the result by the sum of the products given for
the displacement at the end of that Article. It will be
observed that in the upper parts of the following tabular
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(2]

forms, the multipliers by Woolley’s Rule are affected by the
multipliers for leverage similarly to the method when Simp-

son’s Rule is employed.

,l

=px

T

=gx

also Tl
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The distance in this latter case being measured from the
L.W.L. In both the above, the order of the water lines and
vertical sections is the same as in Art. 43.

46. Geometrical Application of Woolley’s Rule.—Mr.
C. W. Merrifield has suggested a convenient and practicable
mode of applying Woolley’s Rule for the volume of displace-
ment. Fig. 3 of Plate XII. represents the half-breadth plan
of a ship, from the L.W.L. to the keel; there are five water
lines and seven ordinates, including the two endmost, which
in this case are each zero. The lowest water line is placed at
the keel, for the sake of simplicity. At the intersections of
the water lines and ordinates, the respective Woolley’s multi-
pliers are written down. Then take a long strip of paper,
having a clean straight edge, and with a sharp pencil measure
off upon it the length of every ordinate which has a number
at the head of it on the plan, taking twice those marked 2,
and neglecting those marked zero. Each ordinate is to begin
on the strip where the previous one ends, so that the whole
length on the strip will represent the sum of the ordinates
when affected by their proper multipliers. The measurements
are obtained by actually applying the strips to the ordinates,
in the same way as we have already constructed the displace-
ment and moment curves (see Art. 42). It only remains to
multiply the total length of the strip (when measured by the
scale) by two-thirds of the product of the length and depth
intervals, and the displacement is obtained in cubic feet.

As it is not possible to obtain the areas of the water planes
and vertical sections with Woolley’s Rule, the latter is not often
used in ship calculations. It is, however, peculiarly adapted
for rapidly obtaining the volume of displacement and position
of the centre of buoyancy in the preliminary stages of a
design; but for obtaining all the particulars calculated upon
a displacement sheet, Simpson’s Rules are better suited, and
invariably employed.

47. Angular Measurement of Areas.—The area of a figuro
bounded by a curve and two intersecting straight lines, such
as WSW,, fig. 3, Plate V., may be found in the following
manner :—Divide the angle WSW, into an even number of
equal intervals by radiating lines Sw,, Sw,, and Sw, Measure
the lengths of the radinting ordinates, S W,2 Swy, Sw,, Swy, and
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SW,, and, treat their half squares as the ordinates of a new
curve. Multiply these half squares by their respective Stmpson’s
Multipliers, as in the one-third rule, and then multiply the
sum of the products by one-third the circular measure * of the
angular interval between the radiating ordinates; tlw result
will be the area required.

For instance, let the values of SW, Swl, Sw,, Swg, and
SW,, be b, 52, 57, 64, and 7-3, respectively; also let the
common angu]ar interval be 5 degrees the area will be
calculated thus:—

}gaxsxm.f Ordinates, Harl‘f_ )S.qu,res of lgfga}):?p’l ancsi;m of
1 50  12°500 1 12-500

2 52 13520 4 54080

3 67 16245 2 32-490

4 64 20480 4 81920

5 73 26645 1 26645
207635

circular measure of 5°= 02908

3 _—
Area of WSW, = 6-038
48, Explanation of the preceding.—Let .S = and WSW;
=0. Consider an indefinitely small angle W.Sw, which will
thus be d6. Then Ww,=rd0, and therefore the area of

W, = 5 xrao="3.
Hence the whole area WSW;, made up of an infinite number
2
of these elementary areas, is equal to / L2-d0. Now the
area of a plane figure bounded by a curve and rectangular
ordinates and abscissa is f ydz, and this expressed by

Simpson’s Frst Rule is—g (a, + 4b, + ¢;); whence we see by
analogy that / ;—’dO expressed by that rule is

4 (a,? 4b,7 ¢yt
slz*2 72
* The circular measure of any angle is found by multiplying the
number of degrees in it by ‘01745.
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This may be rigidly demonstrated by using the polar equation
to the parabola.

49. Volumes of Wedge-shaped Solids.—The volumes of
solids of a wedge form, such as PW,7T (fig. 3, Plate V.),
bounded by a curved surface PWW,P, and two planes
PWST and P,W,ST meeting at a straight edge S7'; and
having cross sections such as WSW;, may be found in the
following manner:—Divide the angle W.SW, between the
bounding planes into an even number of equal intervals by
an odd number of radiating planes which meet at the line
ST, as shown by p,w, ST, pw,ST, etc. Divide the line
S7 into an even number of equal divisions, and through
these points of division draw planes, such as RR, U, perpen-
dicular to the bounding planes, and to the line S7. The
intersections of these perpendicular planes with the radiating
planes will give ordinates which are to be treated as follows:—
Find the half squares of the ordinates for each plane PWST,
p,w, ST, etc., and treat them as the ordinates of a new curve,
the area of which find by Stmpson’s Rule in the ordinary
way. (As will be seen, the ordinates for the plane P,W,ST'

are ,S, R,U, P,T; their half squares being Ez—i RU,

2
D 3
and 2 5 T\ Next treat the areas* thus Jound in the same

manner as the half squares were treated in Art. 47, and the
result will be the volume of the wedge. Thus if 4, 4,, 4,
4,, and A, are the areas found for the planes by using the
half squares of their ordinates, then

(A, +4A,+2A,+4A,+A,) ;
is the volume of the wedge.

As an illustration of the practical application of the rule:
suppose 50, 55, 62, 71, and 82, to be the areas found by
using ordinates equal to the half squares of the actual ordi-
nates of the planes PWIST, p,w,ST, p,w,ST, etc., respectively,
then to find the volume,

* It may be noticed in passing that these areas are equivalent
to tg«; moments of the respective radiating planes about the
axi1s . )
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Area by using . 5
oglerof | o™ Simpen's | puscion.
1 50 1 50
2 55 4 220
3 62 2 124
4 71 4 284
5 82 1 82
760
circular measure of 5° 02908
3 221

=volume of wedge.

50 Moments of Wedge-shaped Solids.—The moment of
a wedge-shaped solid, such as is shown by fig. 3, Plate V.,
may be found with regard—

1. To a transverse sectional plane, such as WSW,.

' 2. To a longitudinal plane AC, through its ed"e, and
perpendicular to one of the radmtmg planes P Wle

3. To a longitudinal radiating plane P, ¥ 6&'

In the first case, the areas of the transverse sections, such
as WW,S, RR,U, PP,T, have to be calculated by the rule
given i.n Art. 47, and these areas and the whole volume of
the wedge treated in the manner described in Art. 34.

In the second case: Divide the solid in the manner de-
scribed in Art. 49 when determining its volume. Treat
each of the longitudinal sections PWST, p,w,ST, p,w,ST, as
follows :—Measure its ordinates (as W,S, R U, P 1’), and com-
pute the third parts of their cubes; treat those quantities as
the ordinates of a new curve, and find its area. Then multiply
each area by the cosine* of the angle made by the plane to which
the area corresponds with the plane that is perpendicular to the
one about which moments are taken; and by the multiplier
corresponding to 8 position, according to Stmpson’s Rule.
Add together these products, and multiply their sum by one-
third of the common angular interval in circular measure;
the result will be the moment required. In fig. 3, Plate V.,
P W8T is « the plane perpeadicular to the one about which
moments are taken; ;" AC being the latter. The cosines used

* Chambers’ Tables of Logarithms, etc., contains a table of the
values of the sines, cosines, and tangents of angles,
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in this case are those of the angles WiSW,, w,SWy, w,SW,,
wySW,, and zero.

In the third case, proceed as inAhe second case, multiply-
ing by the sines of the angles instead of the cosines. .

51. Explanation of the Preceding.—The proof of the first
case has already been gone into in an analagous question.
(See Art 34.)

‘With regard to the second case, consider an elementary
wedge Pw, ST containing an indefinitely small angle d6, and
of an indefinitely small thickness dx. Let the whole angle
WSW, be 60; also, let W.§=r, then, as stated in Art. 47, the

2
area WSw, = erl Now, its centre of gravity is distant g'r

from S, therefore the moment of this elementary area about
H&S is
Ac

2 r? 73
3T cos Ix 5‘”" 3 cos ddd.

Hence the moment of the elementary wedge Puw,ST about
#o s
AC /’-;—; cos ddxdd,

and thus the moments of the whole wedge is

f /‘%3 cos ddxds

The Algebraical expression for the moment of a solid
measured rectangularly, about the plane 4C, is

S S wyiyde.

If we compare this expression with the rule given in Art.
34 for the moment of a solid about a plane, the reason for the
rule given for the second case in the preceding article will be

apparent.
The expression for the third case is

/ /’C:; sin ddadd.

We do not purpose giving an example of the practical
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application of these rules at present, as in the next chapter we
shall have occasion to make frequent reference to them in
consequence of their great importance in calculating the
stability of a ship.

52. Moments of Inertia.—As the moments of inertia of
plane figures and solid bodies are frequently required in
solving the problems of stability and strength of ships, we
purpose devoting a small space to the consideration of the
modes of obtaining their value for some of the elementary
forms which occur in our investigation.

As in the case of simple moments, when considering the
moment of inertia of a plane, it is supposed to be a uniformly
weighted surface, or a thin sheet of some heavy material;
also, solids are supposed to be homogeneous. In other words,
the geometrical moments of inertia are referred to.

1. If the mass of every particle of a material system be
multiplied by the square of its distance from a straight line,
the sum of the products so formed is called the moment of
tnertia of the system about that line.

2. If M be the mass of a system, and X be such a quantity
that #K2 is its moment of inertia about a given straight
line, then K is called the radius of gyration of the system
about that line.

3. If two straight lines Ox, Oy, be taken as axes, and if
the mass of every particle of the system be multiplied by its
two co-ordinates x, y, the sum of the products is called the
product of inertia of the system about these two axes.

4. The moment of inertia of a body or system of bodies
about any axis is equal to the moment of inertia about a
parallel axis, through the centre of gravity, plus the moment
of inertia of the whole mass collected at the centre of gravity
about the original axis.

5. The product of inertia about any two axes is equal to
the product of inertia about two parallel axes through the
centre of gravity, plus the product of inertia of the whole
mass collected at the centre of gravity about the original axis.*

*These five statements which are here given as definitions (although
oDnlyXa the first three are strictly such) are taken from Routh’s Rigid

mics,
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53. Moments of Inertia of Certain Figures.—The follow-
ing are values of the geometrical moments of inertia for
several figures about the axis mentioned:—

1.) A Rectangle about an axis in its plane,
through its centre of gravity and parallel
to the shorter side— _ bt . Ah?
Length of longer side=% - 12 T 12
Length of shorter side=5
Area of rectangle=A4 =bh.

(2.) A Rectangle about an axis in its plane,
through its centre of gravity, and parallel b%h _ AR?
to the longer side— - 172 712
Dimensions as before.
(3.) A Square about an axis in its plane, through
its centre of gravity and parallel to either ht AR
side— : =12 12
Side of square=A
Area=A=h3.
(L) A Circle about a diameter—
Diameter=h _wht | AR?
2 = = ==
. Area=A =%_ ‘ 64 16
(3.) dn Ellz‘lpze about its longer axis—
nger axis=h xhsdb  Ah?
Shorter axis=5 == = e
xbh 6 6
Area=A= T.
(G.) An Ellipse about its shorter axis— _ T _ Al
imensions as before. = 64 T 16
(7.) A Sphere about a diameter—
Diameter=»A _wht E
Volume= V= Zrh, T 60 T 10
(8.) An Ellipsoid about an axis—
The axes being b, &, and .
__wbhl B4 ge
Volume= V=§ wbhl. = 120 (a2 +12).

The result is given about the axis b. -
The others may be obtained by observing) _ ¥
the symmetry of the expyression. z 20 (B2+%)
(9.) A Cube about any axis through its centre
of gravity—
Side of cube=% =
Volume= V'=#3,

o3

Vhe
6
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54. Specimen Investigations.—The determination of these
moments of inertia involves a o>
knowledge of the integral cal- 1
culus, and, as the subject is an :
extensive one, we have omitted !
the solutions of the problems
and merely given the results. Y; S

(1.) As aspecimen investiga-
tion, we will, however, show how
the moment of inertia of a rect-
angle is obtained, about an axis
in its plane passing through its Fig. 10.
centre of gravity,and parallel to either of its sides. (See fig.10.)

Let h=the longer side.
,» b=the shorter side.
,» w=the weight of a unit of area.
9,7, is the axis about which the moment of inertia is found.

Consider a small strip of the rectangle parallel to y,y,
whose breadth is infinitely small, or dx, and let == the dis-
tance of this strip from the axis.

Then the area of the strip is bdz,
and its weight =wbdz.
Its moment of inertia=wbxzdz,
and the moment of inertia of the half of the rectangle on one
side of ¥y,

]
P

-0 >

A
=wb f, Taidz.
and integrated between the limits this becomes
T
24

Hence the moment of inertia of both sides of the rectangle

about the axis is
wbh?

12

Neglecting w, as we merely require the geometrical moment
of inertia, we have

M. of I. of rectangle:bl—hg-’,

which is the result already given.
4n r
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(2.) Hereafter we shall have frequent occasion to use the
moment of inertia of a plane figure, bounded by a curve and
straight line, about that straight line. The following method
is employed in determining it:—

#
c

dz

B

e-f->

Fig. 11,

Let ABC (fig. 11) be such a figure, represented in practice
by a half-load water plane, AC being the middle line. Re-
quired, the geometrical moment of inertia of the area ABC
about the axis AC,

Consider an infinitesimal element of the area, whose length
is dy, and breadth dw, the element being distant y from AC,

The area of this element is dady.
» It moment of inertia is y?dedy.
and the moment of inertia of the whole area 4BC =

/ﬁ'dxdy = % yide.

* The second integration is performed by the aid of Simpson’s
Rule, by taking the cubes of the ordinates of the curve and
treating them as the ordinates of a new curve; one-third the
area of this curve is the geometrical moment of inertia of the
area ABC, about the axis AC; or, multiplying by two for
both sides, two-thirds the area is the moment of inertia of the
whole water plane about AC.

65. Co-efficients of Fineness.—If there are two veasels of
similar form, but of different dimensions, so that every ordi-
nate of every water plane or transverse section in one of them
bears a uniform proportion to the corresponding ordinate in
the corresponding water plane or transverse section of the
other, then it is evident that the displacements of these vessels
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are to each other in the ratio of the products of their lengths,
breadths, and draughts of water; that is, of the rectangular
solids or parallelopipedons circumscribing their immersed
bodies. Hence if the displacement of a vessel is found to be
some fraction of that of the circumscribing parallelopipedon,
the displacement of any other vessel of similar form, but of
different dimensions, may be found by multiplying the product
of her length, breadth, and draught of water by that fraction.
The fraction referred to is termed the co-¢fficient of fineness of
digplacement.

Similarly, the ratio between the area of a water plane or
transverse section to that of the circumscribing rectangle is
termed the co-efficient of fineness of the water plane or trans-
verse section in question. Hence, having found the value
of this co-efficient, for any water plane or transverse section
in one vessel, the area of the corresponding water plane or
transverse section in another vessel of similar form is found
by multiplying the product of the principal dimensions of the
plane or section by the co-efficient.

The co-efficients of area usually employed are those of the
midship section and load water plane.

Co-efficient of Fineness of Displacement.—The value of
this co-efficient is a very good criterion of the fineness of the
immersed body, even in comparing vessels having slightly
different ratios of length, breadth, and draught of water. Also,
in the preliminary stages of a design when it is decided what
degree of fineness shall be given to the vessel with a view of
obtaining a certain speed; by knowing the co-efficients of
fineness of other vessels of about the same size, which have
attained the required speed with about the same propelling
power a8 it is contemplated employing, we are enabled to deter-
mine at once, with a tolerable degree of accuracy, what dis-
placement is available with the proposed length, breadth, and
draught of water. It should be remarked that the mean
draught of water is always employed, also the length and
breadth at the load water line.*

* Strictly speaking, when the ship is not floating at an even keel,
it is incorrect to say ‘‘circumscribing parallelopipedon ;” we should
rather say ‘“a solid of the same length, breadth, and mean depth ag
the displaced body.” v
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The value of this co-efficient generally ranges from °5 to -7,
a common value being about 6.

56. Co-efficient of Fineness of Water Lines.—The co-
efficient for the load water line is most commonly required,
being the ratio of the area of the load water plane to that of
its circumscribing rectangle. Its value commonly ranges from
*7 to 8.

The co-efficient of fineness of any other water line is also
the ratio of its area to that of its circumscribing rectangle,
the value of the co-efficient diminishing as the water lines are
farther from the load water line.

§%7. Co-efficient of Fineness of Midship Section.—This
affords a more valuable criterion of the speed which will pro-
bably be obtained with a certain propelling power than does
that of the load water line. More will be said on this subject
in Part IV. Its value usually varies between ‘6 and ‘9; a
common value being ‘8.

58. Mean Co-efficient of Fineness of Water Lines.—The
mean co-efficient of fineness of all the water lines of a ship is
* obtained as follows:—Multiply the greatest immersed area of
midship section by the length of the load water line, and
divide the displacement by the product.

The co-efficient of fineness of the displacement is equal to
the product of the co-efficient of fineness of the midship sec-
tion, multiplied by the mean co-efficient of fineness of the
water lines.

By consulting the following table it will be seen that the
co-efficient of fineness of displacement is generally greatest in
vessels having the greatest ratio of length to breadth, even
although the latter have bodies better adapted for high speed,
this being due to the greater length of midship body in such
vessels. In the same way, the co-efficients of fineness of the
water lines of long vessels having very fine bows and sterns
sometimes exceeds those of much bluffer but shorter vessels.
The small co-efficient for the midship sections of the wooden
vessels is due to the very rising floor which they have—the
midship sections of modern war and merchant steam-ships
being usually much flatter and fuller in this respect, in
order to carry the engines low, and obtain greater displace-
went.
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59. TABLE OF CO-EFFICIENTS OF FINENESS.
] fé wg | ¥4¢
26 | 83 | &%
CLAsSS OF SmIp. s ] - i 28
AERE
3 & i1 & | & | &3
ft.
Pacific 8. N. Co... 2140 | 609 | 77 | 86
Royal Mail Co... 210 | 590 | 76 | -84
Natxonal Line Co... 22:0 | 659 | 80 [ 88
Anchor Line................ ’ 2140 | 687 | 84 | -85
Armour-clad Frigate..... 3250 | 590 | 252 | *637 | -82 [ -90
Turret Ship................. 32000| 750 | 240 | 674 79 | -92
Line of Battle Ships (3
decks) .......oooeeeninnnnn 2600 | 610 | 255 | ‘537 | ‘82 | 76
Line of Battle Ships (2
decks).......oooeeeiiennn. 2380 | 558 | 238 | 530 84 | ‘66
Wood Frigate.............. 2510 | 520 | 21'3 | 453 | ‘79 | -64
IronUnarmoured Frigate| 337°3 | 503 230 | 490 | 73 | 79
Composite Sloop........... 16000 | 31'3| 130 | 495 76 | 79




CHAPTER II
THE METACENTRE AND SURFACE STABILITY.

The Metacentre—Transverse Metacentre—Surface Stability—Fixed
Metacentre—To obtain Position of Transverse Metacentre—
Metacentric Surface Stability—Calculation for Transverse Meta-
centre Explained—More Exact Calculations of Surface Stability
—Intersections of Water Planes—Method of Measurement—
Specimen Calculation—Dynamical Stability—Dynamical Surface
Stability—Specimen Calculation—Surface of Flotation—Centre
of Flotation—Axis of Level Motion—Curve of Buoyancy—Sur-
face of Buoyancy—Metacentric—Longitudinal Metacentre—
Calculation for Longitudinal Metacentre Explained — Longi-
tudinal Metacentric Surface Stability — Comparative Surface
Stabilities of Different Vessels.

60. The Metacentre.—If a vessel, floating upright in still
water, be inclined, the centre of buoyancy will evidently
move in the same direction as that in which the ship is
heeled. Supposing the angle of inclination to be indefinitely
small, then the point where the vertical, drawn through the
centre of buoyancy in the inclined position, intersects that
drawn through the centre of buoyancy when the ship is up-
right, is termed the mefacentre. When the ship is inclined
transversely the point is termed the ¢ transverse metacentre,”
and when inclined longitudinally, it is styled the “longitudinal
metacentre.” The term metacentre is usually employed when
referring to the transverse metacentre; but when the longi-
tudinal metacentre is referred to, the latter name is invari-
ably used.

* 61. Transverse Metacentre.—The name metacentre was
first given to the point by Boguer, a French mathematician
and writer on Naval Architecture. Although, strictly
speaking, the term is only applicable when the angle of
inclination is indefinitely small, yet it has now obtained a
wider meaning, being often used to denote the point of
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intersection at any finite angle of heel. As we shall pre-
sently show, it is only in the case of bodies of a certain
special form that the position of the intersection remains
fixed for all inclinations. In ordinary ships the point is
practically fixed up to about 15 degrees, and for some
ranges beyond that angle the intersections in well-formed
ships are always higher. In the following pages, the
term “metacentre” will refer to the intersection at an in-
definitely small angle of heel, being the limiting position to
which the intersection continually comes closer and closer as
the angle of heel is indefinitely diminished. By the term
“ fixzed metacentre” will be meant the point of intersection
when it is fixed, or assumed to be fixed, for different angles
of heel. 'When the point is not supposed to be fixed, but is
considered (as it usually does), to vary in position for differ-
ent inclinations, then the point will be termed the ¢ skifting
metacenire.”

‘We will now consider the influence of the position of the
metacentre upon the stability of the ship. Fig. 1, Plate
XIII., represents a transverse section of a ship at amidships,
WL being the load water line, and B the centre of buoyancy
when the ship is upright; W,Z, is the load water line when
the ship is inclined through a certain angle. For the present,
we will consider the angle as being of appreciable magnitude.
It will be observed that the intersection S of these two lines
is not at the middle line of the ship, but at the side of it,
towards which the ship is inclined;* the mode of obtaining
the position of this point § will be a subject for future con-
sideration. When the ship is inclined, a portion of the
section, viz., LSL,, becomes immersed, while another portion
of the section, viz., WST;, emerges from the water. These
areas LSL, and WSW, are transverse sections of two wedge-
shaped portions of the ship’s body, which are named respec-
tively the “wedges of immersion and emersion,” and some-
times the “ in and out.” Since the displacement of the ship
remains the same however she may be inclined, the volumes
of these wedges are consequently equal.

As the alteration in the form of the immersed portion of

* This is the usual position of the point S i in ordinary ships when
inclined at moderate angles,
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the body is due to the transference of the volume contained
by the wedge W.SW, to the other side of the ship in the form
of the wedge LSL,, it consequently follows that the alteration
in the position of the centre of buoyancy will also be due to
the shifting of these volumes. Let Z and I be the centres
of buoyancy of the wedges of emersion and immersion,
respectively; and join EI. Through B draw BB, parallel
to £I,, then the new position of the centre of buoyancy will
be somewhere in the line BB,.

Let V=the known volume of either wedge,
and D=the volume of the whole displacement.

Then by a simple rule of statics,
VxEI=Dxuz,

where 2 is the distance of the new centre of buoyancy from

B along BB,, v
x EL

D
Hence if a distance BB, be set off equal to «, then B, is the
centre of buoyancy in the inclined position.

Through B, draw B, M perpendicular to W,L,, intersecting
BM at the point M, then if the angle BMB, be indefinitely
small, M is the metacentre; if the angle is less than about
15 degrees, the point M is a good approximation to the
metacentre, but in every case when the inclination is some
finite angle the point A/ will have a different position for
each angle, and be termed a shifting metacentre.

Through B draw BN perpendicular to B;Af, and through
L and I draw EH and IK perpendiculars to the new water
line ¥, L,. Now suppose the centre of gravity of the weight
of the ship and her contents to be at the point B, this weight,
now that the ship is inclined, will act downwards in the
direction BO, perpendicular to W L,; hence there are in this
case two forces, constituting @ couple, acting upon the ship,
viz., her weight (which is equal to the displacement), down-
ward through B, and the upward pressure of the water (also
equal to the displacement), through B,. This couple—which
evidently tends to “right” the ship, or restore her to the
upright position—is equal to

D xBN.

Wherefore z=
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If the centre of gravity of the ship is below the point B, the
““ righting moment” will evidently be greater than D x BN,
and if the centre of gravity is above the point B, the right-
ing moment is less. The latter becomes continually less
until the centre of gravity coincides with 3, when it is zero;
while, if above M, the couple is a negative or upsetting one.
These statements are made at this stage in order to show the
importance of the point /.

62. Surface Stability.—By surface stability is meant that
tendency of a vessel, when inclined, to return to the upright
position, which is due to her form, irrespective of the influence
due to her centre of gravity not coinciding with the centre
of buoyancy. For instance, referring to fig. 1, Plate XIIL,,
the moment of surface stability at the inclination shown is
equal to

D x BN, or Dx BM sin BMB,.........ccccu... (1)
‘When the centre of gravity coincides with B, this is tho
whole moment of stability at that inclination; but if the
centre of gravity is below B, then the whole moment of
stability is in excess of the surface stability, and if above,
then it is less.

Since DxBB; =V x EI
... DxBN =V xHK,.......c0vvvuneee (2

whence V x HK is another expression for the moment of
surface stability at that inclination.

63. Fixed Metacentre.—It was stated at Art. 61, that it
is only in the case of bodies of a certain form that the inter-
sections, given by different angles of heel, coincide with the
metacentre itself, the point M being in that case termed the
fixed metacentre. It will be readily seen that the case re-
ferred to is that of a body with circular cross sections having
their centres in one longitudinal axis. We will now show
how to obtain the value of B in such a case.

Fig. 2, Plate XIII., represents any cross section of a vessel,
such that in the vicinity of the water line, and throughout
the whole of the angle of heel considered, the curvature is
that of a circle described about the point 0. We will first
show how to obtain the moment of surface stability for a foot
in length of such a ship, from which we will deduce the value
of BM. In this figure, WL and W, L, are the upright and
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inclined load water lines, as before. In the act of heeling
the wedge W.SW, is taken from, and the equal wedge LSL,
is added to the displacement. Now as only that portion of
the cross section which is circular emerges from or is im-
mersed in the water up to the extent of heel contemplated
by us, we may neglect for the present all that portion of the
displacement in the foot of length which is not contained
within the cylindrical surface W¥;PQLL,, and consider the
operation of heeling as equivalent to that of substituting
the segment W,QL, for the equal segment WPL. Hence
the required moment of surface stability is equal to the
difference between the moments of the equal segments WPL
and W,QL,, relatively to the longitudinal plane passing
through OQ), the latter being perpendicular to the inclined
water line. But the moment of the segment W,QL, about
that plane is zero, and the moment of the segment WPL is

TN SRS 1 T —— @)

which result is expressed thus:—

L. The moment of surface stability per foot of length is
equal to two-thirds the cube of the half-breadth multiplied by
the sine of the angle of heel.

From this we proceed to determine the surface stability of
the whole vessel by remembering that it is composed of the
surface stabilities of all the vertical layers, such as we have
been considering. By the application of Simpson’s Rule we
have the following :—

II. Divide the length of the load water line into a convenient
number of intervals, and measure the half-breadths; treat the
cubes of those half-breadths as if they were the ordinates of a
new curve, two-thirds the area of that curve multiplied by the
sine of the angle of heel will give the surface stability.

Let A=area of curve so obtained,
,y #=angle of heel,
then § A sin /=moment of surface stability.
But D x BM sin 4=moment of surface stability,
. 3 Asind=DxBMsin,

and BM:%,

which result is expressed thus:—
IIL. Two-thirds of the area of the above curve, divided by
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the volume of displacement, is equal to the height of the fived
transverse metacentre above the centre of buoyancy.

In Algebraical langusge,

2
BM = 5/ yidz .
‘D

The moments computed by L and IL are expressed in
cubic feet of sea water, at a leverage of one foot; divided by
35 they are reduced to foot-tons,

Now, it happens that two-thirds of the area, whose ordi-
nates are the cubes of the ordinates of the half water plane,
is the geometrical moment of inertia*® of that water plane about
its middle line; hence Rule ITL. may be expressed thus:—

IV. Divide the moment of nertia of the load water plane
by the volume of the displacemens, the quotient will be the
height of the fixed tranverse metacentre above the centre of

ney.

64. To obtain the Position of Transverse Metacentre.—
In the preceding investigation the ship has been assumed to
have circular transverse sections throughout the extent of
the inclination, and from this an expression has been found
for the height of the fixed transverse metacentre.

‘We now purpose showing that the same expressions and
rules are also true for the height of the actual transverso
metacentre above the centre of buoyancy, the conditions in
this case being, of course, an ordinary form of vessel and an
indefinitely small angle of heel.

In this case, the line denoted by the point S (fig. 1, Plate
XTII.) continually approaches the longitudinal axis 4 of the
upright water plane. The transverse sections /7S/7] and
LSL, of the wedges of emersion and immersion continually
approach closer and closer to an equality with a triangle
whose base is 4 #; whose height is 4 /7, multiplied by the
sine of the angle of inclination, and consequently whose arca

is equal to 23, multiplied by that sine. The sum of the mo-

ments of these sections approximate closer and closer to
double the moment of the said triangle, relatively to the

* Seo Art. 54,
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vertical plane through #0,; which double moment is equal
to the area of the triangle, multiplied by 4 4 /7, or equal to
2 A3, multiplied by the sine of the angle of heel, which is
the expression (3) on page 90. From this we obtain Rules
IL. and III. (Art. 63), in the manner already stated, only
that in Rule III. the word “fixed” may be omitted, as the
expression is now seen to be true for the height of the true
metacentre above the centre of buoyancy.

The result just obtained being true for a vessel of any form
at an indefinitely small angle of heel, we will now consider
in which direction error occurs when the height of metacentre
so found is used as the height of the shifting metacentre for
any finite inclination of inconsiderable amplitude. If the
convexity of the curvature of the cross sections in the vicinity
of the load water line is greater than that giving a fixed
metacentre, as shown by ab, fig. 2, Plate XIII., the actual
wedges of immersion and emersion will be smaller than the
assumed wedges, and therefore the moment of surface stability
as expressed by Rule IL., Art. 63, is less than the assumed
moment ; consequently, the actual position of the shifting
metacentre is below the approximate position. This error is
on the unsafe side, and will not occur in a skilfully designed
vessel.

On the contrary, if the convexity is flatter (as shown by
ab,, fig. 2, Plate XTIIL.) the actual wedges are larger than
the assumed wedges, and therefore the actual moment of
surface stability is greater than the assumed moment, thus
causing the true position of the shifting metacentre to be
above the approximate position. This error is on the safe
side, and usually occurs in a well designed vessel.

66. Metacentric Surface Stability.—When the surface
stability is calculated by means of the height of metacentre
above centre of buoyancy, it is useful merely as affording a
comparison of the surface stability of the ship with others of
the same type whose qualities are known. For being true
only for an infinitely small inclination, or at the furthest to
the extent of 10 or 15 degrees, it furnishes us with no idea
of the surface stability of the ship beyond that range, which
stability, by reason of singularity in the vessel's form, may
soon attain & maximum, and wapidly disappear. The result
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obtained by its use is termed the initial surface stability, and
the mode of obtaining it is termed the metacentric method.
66. Transverse Metacentre Calculation Explained. —We
will now show how the result of the preceding investigation
is applied in actual practice to obtain the height of metacentre
above centre of buoyancy. Referring to the specimen calcula-
tion shown in Table I.: upon the right hand side of the
sheet will be seen a number of columns of figures headed
¢ Metacentres.” The first three columns merely repeat the
numbers of ordinates, Simpson's multipliers, and the ordinates
of the load water line, which are found in the adjacent calcula-
tion of displacement. The next two columns have the word
“ Transverse,” at their head, and it is to these we now wish
to call attention. The first of these contains the cubes of the
ordinates of the water line, and it may here be remarked that
these cubes can be readily found by reference to Barlow's
Tables, which, together with Chambers’ Logarithms, should
be in the possession of every naval architect. The next
column, headed “ Functions of Cubes,” are the products of
the cubes of the ordinates and their respective Simpson’s
multipliers, these being obtained in order that we may deter-
mine the area of the curve whose ordinates are the cubes of
the ordinates of the load water line. The sum of these

functions multiplied by MT'I = 47, or one-third the common

interval between the ordinates, gives 2579548, which is the
area of the curve just referred to. This area being again
multiplied by £ gives the moment of inertia of the load
water plane, which, being divided by the total displacement,
expressed in cubic feet, results in 7-92 feet, the height of the
transverse metacentre above the centre of buoyancy.

The centre of buoyancy having been already found to be
3-95 feet below the load water line, therefore the transverse
metacentre is 792 ft. — 395 ft. = 397 ft. above the load water

line. This quantity, if multiplied by 620 tons—the displace-

ment—and again by the sine of the angle of heel, will give
the metacentric surface stability at that angle of inclination.
In a vessel of ordinary form, this will practically agree with
the true surface stability, as calculated in the manner to be
explained hereafter, if the angle is within about 15 degrees.
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67. More Exact Calculations of Surface Stability.—The
method of calculating the surface stability by means of the
height of metacentre above centre of buoyancy is due to
Boguer, and was considered for some considerable time to be
sufficient for the purpose of the Naval Architect. Attwood,
however, showed that the method was incorrect for large
inclinations, and gave a formula for determining the surface
stability at all angles, which formula has been put into a con-
venient form for calculation by Mr. F. K. Barnes, and still
remains in use.

By the method we are now about to explain, the value
V x HK (i.e., the moment of the wedges of immersion and
emersion about the plane represented by the line MB,) is
calculated, and then, if required, the length of BM at that
angle may be readily found by dividing the result by the
product of the displacement and the sine of the angle of
heel. The rule may be stated thus:—Divide the moment of
the wedges of vmmersion and emersion by the displacement
and the sine of the angle of heel, the quotient will be the height
of the shifting metacentre above the centre of buoyancy.

It will thus be seen that D x BNV represents the surface
statical stability in both the metacentric and Attwood’s
methods, the difference between them being that whereas in
the former M is considered a fixed point, by the latter method
the point M varies with every different inclination, its posi-
tion being governed by the moment of the wedges.

Bince D x BN=¥ X gg
X
o BN_—D—.

BX is styled the lever of surface statical stability; being
the arm of the righting couple at the inclination in question,
the position of the centre of gravity being assumed to coin-
cide with B (see Art. 62).

68. Intersections of Water Planes.—In fig. 1, Plate XIII.
the intersection § of the inclined with the upright load water
planes is shown on the right of the middle line plane repre-
sented by the line BM, or towards the immersed side of the
vessel. That is the direction in which it is found in ordi-
nary well-formed ships at moderate angles of heel. The
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determination of the exact position of the axis, represented
by &, is evidently a work of some difficulty, as it must be so
situated on the line WWZ that the volume of the wedge STV,
shall be equal to that of the wedge LSL,; this being so in
order that the displacement may remain unaltered.

In practice, especially when calculating the stability at a
great many different angles of heel, it is not found desirable
%o obtain any trial position, such as s in fig. 1, Plate XTIV,
but to draw all the lines representing the inclined water
planes through the point 4, the necessary corrections being
made in the calculation. Should it, however, be desired to
determine the position of s, an approximate position for the
intersection is first chosen (see fig. 1, Plate X1V.), the general
practice being to take 4s =02 foot x degrees in angle of heel.
A line w,8l, is then drawn through that point, at the required
inclination ; this will cut off a pair of trial wedges Wsw, and

Z3sL, whose contents, it may be remarked, have to be cal-
culated as a necessary part of the process in determining the
statical surface stability. (See preceding Art) If the
volumes of these wedges prove to be unequal, then a correc-
tion must be made as follows:—

If the trial wedge of immersion is the greater, then the
assumed position of w,sl; is too high.

If the trial wedge of emersion is the greater, then tho
assumed position is too low.

The perpendicular distance s¢ of the corrected position
from the assumed positien is

__Difference of volumes of wedges
" Area of inclined water section °

The denominator of this fraction is easily found when caleu-
lating the moment of the wedges, as will be seen presently.
If § is the true position of the intersection,

st

_ st
*=gin angle of heel
69. Method of Measurement.—Fig. 2, Plate XIV., shows
the body plan of a vessel, #L being the load water line in
the upright position; it is required to find the moment of
surface stability when the vessel is inclined through an
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angle LS, L,, so that # L, is then the load water line. We
will suppose the trial distance of the point of intersection of
the water line to be already set off from 4, on each side, at
S, and §,, then the intersections of S;Z and S,Z, with the
vertical sections give the ordinates of the bounding planes of
the fore body portion of the wedge of immersion (measuring
from S,), and the intersections of S,W and S,W, with the
vertical sections give the ordinates of the after boéy portion
of the same wedge (measuring from S,). Similarly, the
intersections of S,Z and S,Z, give the ordinates of the fore
body portion of the wedge of emersion (measuring from S,),
and those of S, 7 and S, W, those of the after body portion
of that wedge (measuring from S;). The trace w,/, of an
intermediate sectional plane, bisecting the angle LS L, is
shown; angles not exceeding 20 degrees will not usually
require more than one such intermediate section. In the
next chapter we shall consider a case where a considerable
number of intermediate sectional planes are required.

‘We have thus six sets of ordinates to be measured, viz.,
three to each wedge. Upon each of these six sets the follow-
ing operations are performed. (See Arts. 47 to 51.)

1. Treat their half squares as the ordinates of a new
curve, and find its area by Simpson’s First Rule. Let the
results of this operation be termed, 4,, 4,, 4,, for the wedge
of immersion, and A, 4,, 4, for the wedge of emersion.
Then,

Volume of wedge of immersion=(A, +4A,+A;)x angular interval

angular interval
3

If these volumes are unequal, their difference, divided by
the area of the inclined water plane, gives the thickness st
(fig. 1, Plate XIV.) of the layer between the assumed and
the true positions of the inclined water plane. The area of
the inclined water plane is found by the method stated in
Arts. 15 and 41; observing, however, that the plane consists
in general of two unequal portions, one on each side of the
longitudinal axis.

2. Multiply each of the before-mentioned half squares by
the longitudinal distance of the ordinate from the foremost

Volume of wedge of emersion=(A,+4A;+A4) x
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cross section; treat the products as the ordinates of a new
curve, and find its area. Let the results of this operation
be termed B,, B,, B, for the wedge of immersion, and B,, B;,
Bg for the wedge of emersion. Then the moments relatively
to the foremost cross section—

Of the wedge of immersion=(B,; +4B, +B;) x w

Of the wedge of emersion=(B,+4B; +B,) xs_.gﬂ__:;nhsﬂil.

The work will be much simplified if moments are taken
about the midship cross section, treating the area on one
side (say forward) as positive, and the other as negative; in
this case B,, B,, etc., will each be the difference between two
areas, taking care to retain the proper Algebraical sign. (See
Art. 25).

‘With regard to the use of these results, when obtained,
it is only necessary at present to state that if the moments
of these wedges about any chosen section are unlike, it
shows that their centres of gravity are not in the same cross
section, and therefore that the centre of buoyancy of the ship
is moved forward or aft, as the case may be, when the ship
is inclined. Hence in this case transverse heeling is neces-
sarily accompanied with longitudinal heeling also, or, in
other words, with an alteration of trim.

3. Treat the third part of the cubes of the ordinates as
the ordinates of a new curve, and find its area. Let the
results of this operation be termed C,, C,, C;, for the wedge
of immersion, and C,, C;, C; for the wedge of emersion. Then
the moment of surface statical stability

={C;+Cy+4(C,+C;) cos } angle of heel

+(C, +C,) cos angle of heel } x a'-ﬁu—hf‘,;mﬂl.

70. Specimen Calculation.—Table IIL. contains a calcula-
tion of the moment of surface stability of a ship when in-
clined at an angle of 16 degrees; also of the pitching moment
due to that inclination. Plate XV. shows the body plan of
the same ship, the vertical sections of which are 29-5 feet
apart, and the whole displacement 5976 tons. It will be
seen that half intervals are taken right forward and aft, for

4n G
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which the proper multipliers are shown, both according to
Simpson’s Rule and as required for leverage. In this
example no trial position of the inclined water plane has
been found, but it is drawn so as to intersect the upright
water plane at the middle line of the latter; this being the
practice usually adopted as it is simpler, besides which equally
correct results can be obtained when the ¢ correction for the
layer” is made. This “layer,” it will be remembered, is the
volume included between the inclined water plane, as drawn
in the figure, and the plane in its correct position.

The angle of inclination being small, only one intermediate
plane is drawn, so that the angles of the wedges are bisected.
‘We have thus the upright, intermediate, and inclined water
planes. The calculations referring to each of these is given
under its vespective heading, each calculation being termed
a “ preliminary table;” the fourth set of calculations, which
combines the results obtained in the preliminary tables, and,
by the application of the several rules, determines the moment
of surface stability, etc., is termed a * combination table.”

Referring to the preliminary table for the ¢ upright water
plane,” it will be seen that the several values 4,, B, C),
4,, B,, C,, mentioned in the preceding Article, may be at once
determined by multiplying the sums of the “functions of
squares,” and of the ‘longitudinal moments” by 4 and then
by 3 the common longitudinal interval, also the sums of the
“functions of cubes” by 4, and then by 4 the longitudinal
interval. Similarly, the values of 4,, B,, Oers’ B, Oy, may be
found from the preliminary table for the “ intermediate water
plane,” and those of A, B;,C4, 4g, By, Cg, from the prelimi-
nary table for the “inclined water plane.” In practice, these
multiplications are, however, performed afterwards on the
“combination table.” In consequence of the intersections
of the planes being taken at the middle line of the upright
water plane, the values of 4, and 4,, B, and B,, C; and C,
are severally equal.

It is unnecessary to explain the several columns of figures in
the preliminary tables, as they at once follow from the direc-
tions given in the preceding Article. Proceeding then to the
combination table, we will notice first the calculation for the
volumes of the wedges, which, if found unequal, will render
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a corresponding correction necessary in the calculation for the
moment of surface stability. The calculation shown for the
difference of these volumes is evidently equivalent to the

expression
Angular inferval “"'3’"“”‘1 { (A +4A,+A,) - (A +4A,+4,) ;

The result is found in this case to be 1736 cubic feet.

At the bottom of the combination table will be found a
calculation for the true volume of a wedge, t.e., approximately,
half the sum of the two unequal wedges, or

Angolar Ilerval (A, +48,+4,+A,+4A, +4,).

This is found to be 22,358 cubis feet, or 639 tons.

In order to determine the correction which must be made
in computing the moment of surface stability, in consequence
of the inclined water plane being drawn above its true posi-
tion (thus producing unequal wedges, as just shown), it is

that we should know the distance of the centre of
gravity of the “layer ” from the axis. It will be readily seen
that the distance of the centre of gravity of the inclined water
plane, as drawn from the point 4, is also, approximately,
the distance of the centre of gravity of the layer from that
point; we will therefore now call attention to the calcula-
tion on the combination table for the centre of gravity of
the inclined water plane. We have, first, the functions of
the ordinates of that plane copied from the preliminary table,
added together and multiplied by one-third the longitudinal
interval, thus giving the area of the inclined plane. Next,
the difference of the sums of the functions of squares of the
ordinates on the two sides, divided by two, gives the function
of the resultant moment of the inclined plane about the axis
through 4, and this, when multiplied by one-third the
common interval, gives the total resultant moment. Conse-
quently, we have this moment divided by the area, giving
-887 ft., which is a close approximation to the distance of
the centre of gravity of the layer from the axis. The volume
of the layer, being the excess of one wedge over the other, is
1736 cubic feet; hence the correction for surface statical sta-
bility, rendered necessary by drawing the inclined water
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plane through 4, as shown in Plate XV., is 1736 x ‘887 =
1540 cubic feet, at a leverage of one foot. The use made of
this result will be seen presently.

‘We will now consider the main calculation, viz., that for
the surface statical stability at 16 degrees. Referring to that
part of the combination table, it will be at once seen that
the operations performed are such as are indicated by the
expression

§C,+C.+4 (Co+C,) cos 8° +(C, +C,) cos 16° % ‘%.

It will be observed that the correction for the layer is
deducted from the result obtained by using the above expres-
sion. The rule for making this correction is as follows:—If
the centre of gravity of the layer lies towards that side for
which the assumed wedge is the greater, then deduct the
correction; if it lies towards the opposite side, add the cor-
rection,

The displacement of the vessel in this case is equal to
209,156 cubic feet; hence, after making the correction, the
remainder is divided by that number, which gives 3:247 feet,
the value of BN (fig. 1, Plate XIIL.) when BMB, is 16
degrees. This results from the formula stated at Art. 62:

Dx BN:\‘Trx ]Hiﬁ
X
BN=. )
V x HK being equal to 679,284 cubic feet, at a leverage of
one foot, and D being equal to 209,156 cubic feet.

Since BM sin BMB, =BN

.. BM=__BN _ 327 3247
' sin BMB, ~ &in 16° ~ 2756
BM=11'78,

a value which is very nearly the same as would be obtainea
by the method given in Rule IL, Art. 63, the angle, viz., 16
degrees, being not very large.
The actual moment of surface stability at this angle is
D x BN or 5976 tons x 3247 feet =19,404 foot-tons.
‘We will now examine the last result found in the com-
bination table, viz., the longitudinal positions of the centres



DYNAMICAL STABILITY. 101

of gravity of the wedges. Here again the headings of the
several columns will be readily seen to be in accordance with
the expression given in the last Article for the moments of
the wedges about the foremost vertical section, viz., for the
wedge of immersion—

(B, +4B,+B,)x &
and for the wedge of emersion—

(B, +4B; +B,) x l»g".

It will be observed, however, that the factor l_g_ is not

longitudinal interval
3

employed; as it is, together with » required

in determining the volumes of the wedges; and, since tho
moment must be divided by the volume, to determine the
centre of gravity, the labour of multiplying would be supor-
fluous. (See calculation for centre of buoyancy, Table I1.)
Hence the sum of the products of longitudinal moments,
divided by the sum of the products of the functions of
squares, gives a quantity which, when multiplied by the
common longitudinal interval, results in the distance of the
centre of gravity of the wedge from the foremost cross section.
This operation being performed for each of the wedges, gives
a result showing that the centre of gravity of the wedge of
immersion is 47 feet abaft that of emersion.

From this it is seen that heeling the ship to 16 degrees
causes the centre of buoyancy of a volume of the displacement
equal to that of one of the wedges to travel aft 4:7 feet, thus
depressing the bow and raising the stern. The actual
moment producing this effect is evidently tho displacement
of a wedge multiplied by 47 feet. 'We have calculated the
volumes of the twe assumed wedges at the bottom of tho
combination table, and divided their sum by two, thus obtain-
ing a close approximation to that of one of the actual equal
wedges—the result is 639 tons.

Hence, 639 x 4:7=3003 foot-tons, the pitching moment
produced by heeling the ship traversely through 16 degrees.

71. Dynamical Stability.—An important advantage result-
ing from the exact method of calculating stability, iﬁb"
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determining the actual volume of the transferred wedge at
any given angle, is seen in the fact that we are thereby
enabled to calculate the dynamical stability at that angle.
By dynamical stability is meant the mechanical work which
is performed in forcing a vessel to heel over to a given angle.
That work is performed partly in raising the vessel’s centre
of gravity and partly in depressing her centre of buoyancy.
The latter of these effects is evidently due to the vessel’s form,
and is, therefore, styled dynamical surface stability; it is this
portion of the mechanical work that we have to consider in
the present chapter,

72. Dynamical Surface Stability.—The depression of the
centre of buoyancy can be conveniently measured from the
surface of the water, which evidently remains in a constant
position however the vessel may be inclined. Referring to
fig. 1, Plate XV, it will be seen that the depression of the
centre of buoyancy is 4,B,—A4B. Suppose the inclined
water plane to pass through the point 4, as in Plate XV,
in that case the depression is 4,B, — 4B, and therefore the
true depression 4,B, — 4B is equa.l1 to

A,B,-AB-A,A,
=A,N+NB, -AB-A,A,

=NB, - AB (1-cos BMB,)- A A,

=NB, - AB versin BMB, - A A,
But the dynamical surface stability is .D (4,B, — 4B), which
is thus equal to D (B, — AB versin BMB, ~ 4,4.), in which
expression the value of D (NB, - 4,4,) remains to be deter-
mined.

Now D x NB, is equal to the difference in the moments,
relative to the inclined water plane, of the displacement in its
&rfiiginal shape WPL, and in its new shape W,PL,; which

ifference is equal to the arithmetical sum of the moments

of the wedges of immersion and emersion relatively to the

inclined water plane #,L,. If Z and I are the centres of

buoyancy of the wedges, and ¥ the volume of one of them, then
D xNB, =V (EH+IK).

‘We will now proceed to show how the value of the right
hand side of this equation is calculated for any specific case,
so that by dividing the result by .D the value of N B, can
be obtained, |
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In the third case considered in Arts. 50 and b1, it was
shown how the moment of a wedge about ono of its lungi-
tudinal radiating planes may be determined; tho Algebruical
expression for the same being

S S sin sazan

By referring to Art. 69, and fig. 2, Plato XIV., it will bo
seen that this expression, when put into the necessary form
for the application of Simpson’s Rule—using the nomencla-
ture there explained—is equal to

§4(C, +C5) sin § angle of heel+(C, +0,) sin anglo of hocl t x

angular interval

73. 8pecimen Calculation.—On Table II. will be found
a specimen calculation of the dynamical surface stability at
an inclination of 16° of the ship whose statical surface stability
at that angle has already been calculated. As will be seen,
the immediate purpose of this calculation is to find the values
of NB, and 4,4, (fig. 1, Plate XVI). The only differenco
between this calculation and that for statical surface stability
is in substituting the sines for the cosines of the inclination
in the fifth column, and in obtaining the value of 4,4,, which
is also required in order to make the correction for the layer.
‘With regard to this correction, it will be seen that we have
to find the moment of the layer about the inclined water plane;
to do which, we must know its volume and the distance of
its centre of gravity from the aforesaid plane. The volume
(18278 cubic feet) has already been found, and the distance
of its centre of gravity may be safely taken at one-half its

thickness, or 2522, Tho thickness 4,4, is obtained by divid-

ing the volume of the wedge by the area of the inclined water
plane (14,690'7 square feet), the result giving ‘12 feet.
Hence, 4,4, is equal to ‘12 feet, and the correction is ‘06 x
1827-8 =109°7 cubic feet, lifted one foot. This correction is
deducted in every case. Having made the deduction, and
divided by the displacement in cubic feet, we obtain the value
of NB,=-45. The value of 4B is obtained from the ordinary
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displacement sheet; in the present case it is 8:2 feet. 4,4sve
hag been found to be ‘12 feet, and versin 16 degrees is ‘0387im-

Hence, D(NB, ~ AB versin 16°—A,A,) ently
= 5976 (45 - 317 - '12) ‘body,
=5976 x 02=119°5 foot-tons of mechanical work, , Itis

which is the dynamical surface stability or the work perfond some-
due to the vessel’s form, in forcing her over to an inclim will be
of 16 degrees.

As will be seen hereafter, the centre of gravity is raisénclined
foot, thus making the whole mechanical work 5976 x 1irdinal
717 foot-tons, which is the dynamical stability. 'We may herethe
remark that when the dynamical stability is calculated, and ~
not the dynamical surface stability, the depression of B and
the elevation of the centre of gravity are not measured from
the surface of the water, but the increase in the distance of
the centre of gravity from B, over that from B is calculated
in one operation. This will be explained more fully in the
next chapter.

74. Surface of Flotation.—Suppose a vessel to be con-
tinually inclined in every possible direction between a direct
transverse and a direct longitudinal inclination, so that succes-
sive load water planes or planes of flotation make indefinitely
small angles with each other when drawn upon the vessel’s
body and sheer plans, and suppose a curved surface to touch
all these planes of flotation, so as to be an enwvelope of the
planes, then such a surface is called the surface of flotation.

Fig. 2, Plate X'VL., represents the midship section of a
vessel which, when upright, floats at the water line WL.
Let wl, w,l,, W,L,, be successive water lines, the angles be-
tween them being indefinitely small, then the curve 4 # which
touches them will be a transverse vertical section of- part of
the surface of flotation. Similarly, if the consecutive water
lines be drawn upon the sheer plan, a curve touching them
will be the longitudinal middle line vertical section of the
surface of flotation. Between these two extreme sections,
any number of other sections of the same surface may be
conceived.

75. Centre of Flotation.—Z%e point of contact of the sur-
face of flotation with any water plane or plane of flotation is
the centre of gravity of that plane.
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tfotation indefinitely close to each other, i.e., inclined to
In@other at an indefinitely small angle, so that their points
that-tact with the surface of flotation may be considered to
the pée with each other at #. Hence the straight line of
the cufitersection will be at such an indefinitely small dis-

The bm F that it may be considered to traverse that point.
mannenis pair of water planes will contain between them a
centre indefinitely thin wedges, viz., a wedge of emersion
in thi] and a wedge of immersion , FZ,, and the volumes of
mese must necessarily be equal to each other. But the
volume of either of these wedges is proportional to the
moment of the bounding plane of flotation relatively to the
line of intersection at F. (See Art. 49, foot-note.) Therefore
these moments are equal to each other, and hence the line of
intersection at F passes through the centre of gravity of the
water planes #,L,. And since there may be an infinite
number of planes of flotation between a direct longitudinal
and a transverse heel, all of which planes make the same in-
definitely small angle with the plane w,/,; therefore there
are an infinite number of lines of intersection, all of which
contain the centre of gravity of the plane #,Z,. The point
common to all these intersecting lines must be on the surface
of flotation, and it is likewise the centre of gravity of the
plane of flotation; which proves the proposition. This centre
of gravity is termed the centre of flotation.

76. Axis of Level Motion.—When the vertical transverse
section of the surface of flotation is a circle, the centre of that
circle is in a line termed the axis of level motion. The axis
itself is a horizontal line in the middle line longitudinal
vertical plane, when the ship is upright, and is so situated
that it is at the same height above the water surface when
the ship has heeled to a certain angle as when she is upright.

7. Curve of Buoyancy.—This name is given to the curve
containing all the positions of the centre of buoyancy which
occur when a ship is continuously heeled in a transverse
direction (see BB, fig. 2, Plate XVI). This does not take
into consideration the effect produced by the change of trim
which ships of ordinary form undergo when so inclined. It
has, however, been found that in such cases the modifications
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in the positions of the centre of buoyancy, tending to remc®
it from a transverse plane, are not of sufficient practical &~
portance to deserve consideration. The curve is evid #4y
symmetrical with regard to the middle line 4P of the#0dy,
as shown by B,BB,, and is of an elliptical character/ 1t is
often termed the “locus of centres of buoyamcy,” ar{ some-
times the “metacentric involute,” for a reason whicl Wil be
seen presently. b

78. Burface of Buoyancy.—Supposing the ship fclined
continually in every direction between a direct longit¥ al
and a transverse heel, then.the surface containing all "8
different positions of the centre of buoyancy is termed the
“ surface of buoyancy,” and sometimes the ¢ metacentric sur-
JSace” The curve of buoyancy B, BB, (fig. 2, Plate XVL.) is
a transverse vertical section of a portion of this surface.

79. Metacentric.—At Art. 61, it was stated that the term
metacentre is only strictly applicable to the point M when the
angle of inclination from the upright position is indefinitely
small. In the same way, if the ship is floating at any finite angle
of inclination with regard to the upright position, and then he
further inclined through an indefinitely small angle, the point
where the verticals, through the centre of buoyancy, in these
conditions, intersect, will be in a curve termed the ¢ meta-
centric.” In other words, while the metacentre is the centre
of curvature, at the origin, of the locus of centres of buoyancy,
i.e., at the point where it cuts the vertical through the centre
of buoyancy when the ship is upright, the metacentric is the
locus of the centres of curvature corresponding to the different
points in the locus of the centres of ‘buoyancy as the ship is
inclined. Hence the metacentric is the locus of the meta-
centres, the latter term being applied to the centres of curva-
ture of the locus of centres of buoyancy in every condition
of the ship, including the upright one. This is not a strictly
accurate use of the term,as will be seen by our previous defini-
tion, but it has gradually crept into use, and it is now very
common to speak of the metacentric as the ““locus of meta-
centres.” In the following pages, we shall always refer to
it as the metacentric.

In order to determine the form of this curve, or the position
of the point in it equivalent to any finite angle of heel, two
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operations are necessary. In the first place, we have to find
the height of this point above the centre of buoyancy at that
inclination, that is, the length of the radius of curvature at
that inclination; and in the second place, we have to find
the position of the centre of buoyancy, that is, the point in
the curve of buoyancy corresponding to the given inclination.

The length of the radius of curvature is found in a similar
manner to that in which the height of metacentre above the
centre of buoyancy in the upright position is obtained; only,
in this case, the moment of inertia of two unequal planes
must be calculated, instead of one symmetrically divided
plane, as before. (See Arts. 63 and 64, also Table 1.) The
position of the inclined water plane is found in the manner
described at Art. 68 and Table II. The displacement is,
of course, constant.

To obtain the position of the centre of buoyancy, we have
merely to remember that as the ship is inclined, the centre of
buoyancy becomes shifted in the same direction; and the
line joining it with the centre of buoyancy in the upright
position is parallel to the line joining the centres of the
immersed aud emerged wedges. Further, BB, (fig. 1, Plate

XIIL) is equal to 20 where 8 is the angle of inclination;

and the mode of determining the value of BA for any angle
is stated at Art. 70. Hence, having the height of a point
in the metacentric measured from the corresponding centre
of buoyancy, and having the position of the latter known, the
whole metacentric can be drawn, by a repetition of the pre-
ceding processes, for as many other angles of inclination as
may be found necessary to obtain a complete and fair curve.

From the preceding it will be seen that the metacentric
is the evolute of the curve of buoyancy, and, consequently,
the latter is the metacentric involute. (See Art. 77.)

In fig. 2, Plate X VL., B,BB, is the curve of buoyancy,
B being the centre of buoyancy in the upright condition,
B, the centre of buoyancy corresponding to the inclined
water plane W,L,, while B, is the point corresponding to the
same inclination in the opposite direction, the curve being
thus symmetrical about 4P. M, MM, is the metacentric,
M being the true metacentre, and M, and M, the centres of
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curvature of the curve of buoyancy at the points B, and B,,
respectively. The curve B,BB, is seen to be of an elliptical
character, while the metacentric M; MM, is a cusp of which
MB is a tangent.*

80. Longitudinal Metacentre.—A definition of the longi-
tudinal metacentre was given in Art. 60, at the commence-
ment of this chapter. The method of obtaining this point is
" based upon the same principles as those by which we have
found the position of the transverse metacentre. There are,
however, certain differences in the two cases, due to the form
. of ships, which cause modifications in the actual calculations;
so that it is necessary we should examine the longitudinal
metacentre separately.

The first point of difference that we notice is, that whereas
the transverse curve of flotation is cut symmetrically by the
longitudinal vertical middle line plane of the ship, so that we
have no occasion to determine the transverse position of the
centre of flotation;t in the case now under consideration,
owing to the two ends of the ship being unlike, we have no
means of determining that point without actual calculation.

The next point of difference is seen in the fact that, as we
still continue to use the ordinates of the load water plane, in
order to determine its moment of inertia, and as that moment
of inertia must be calculated about a transverse axis through
the centre of flotation, we must adopt a different arithmetical
process in calculating it, as the ordinates are now parallel
instead of perpendicular to the axis.

Also, that as we do not know where the centre of flotation
is until it is calculated, and as it is found convenjert to make
the calculation simultaneously with that for the moment of
inertia, it is usual to first calculate the latter about an
assumed axis (generally the middle ordinate), and then trans-
fer the moment of inertia to the centre of flotation. (See
Art. 75.)

* For further details regarding the metacentric and the curve of
buoyancy, the student is referred to an interesting paper on the sub-
ject by Messrs. White and John, to be found in%ol. XII. of the
Transactions of the Institution of Naval Architects.

t In Art. 75, it was shown that every small angular displacement
of a ship from the upright position takes place about an axis travers-
ing the centre of flotation,
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The moment of inertia of a plane figure relatively to one
of its ordinates is calculated as follows: —

Multiply each ordinate by its proper multiplier, according
to Simpson's Rule; then multiply each of the products by the
sgquare of the number of whole intervals that the ordinate in
question 18 distant from the ordinate taken as an axis of
moments; multiply the Algebraical sum of these products by
one-third of the cube of a whole interval: the product will be
the moment of inertia required.

If the centre of flotation is previously known, then the
moment of inertia should be calculated about an axis, parallel
to the ordinates, through that point; but if its position is
not known, the middle ordinate is a convenient axis about
which to calculate. Having obtained the moment of inertia
about that axis, subtract from it the product of the area of
the water plane into the square of the distance of the centre
of flotation (as found in the course of the calculation) from
the chosen axis; the remainder will be the required moment
of inertia about the centre of flotation, and this being divided
by the displacement in cubic feet, will give the height of the
longitudinal metacentre above the centre of buoyancy.

8l. Longitudinal Metacentre Calculation Explained.—
On Table 1., under the heading ¢ Metacentres” and * Longi-
tudinal,” will be seen a calculation of the longitudinal meta-
centre which we will now explain.

The column headed *functions of ordinates,” contains the
products of the ordinates of the load water plane, and the
respective Simpeon’s multipliers. The next column contains
the several multipliers for moments, according to the positions
of the respective ordinates, with regard to No. 6, about which
the moment of inertia is calculated. It will be remembered
that we must use the squares of these distances, in order to
get the functions for moment of inertia; but it is found con-
venient to use these several multipliers twice instead of their
squares once, as by so doing we have in the third column a
series of functions for moments by which we can obtain the
centre of gravity of the load water plane, i.e., the centre
of flotation, to which point the moment of inertia has after-
wards to be transferred. At the foot of the third column
will be seen the calculation for the centre of gravity of the
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load water plane, which is found to be 3'5 feet abaft No. 6
ordinate, in this case. An explanation of this work is given
in Art. 25.

In the fifth column are ranged the several functions for
moment of inertia about No. 6 ordinate, and their sum is
given at the foot. Aswill be seen, this is multiplied in three
operations by one-third the cube of the longitudinal interval,
according to the rule. The half area of the load water plane
is then multiplied by 3:6%, and the result being deducted
from that previously obtained, gives the moment of inertia
of the half plane about the centre of flotation, which is then
multiplied by 2 for the whole moment of inertia. Dividing
by 35, we have the result in foot-tons, and then dividing by
the displacement expressed in tons we obtain 181:71 ft., the
height of the longitudinal metacentre above the centre of
buoyancy. The latter being already found to be at 3-95 ft.
below the load water line, the difference between 18171 ft.
and 3-95 ft. is 177-76 ft., the height of the longitudinal
metacentre above the load water line.

82. Longitudinal Metacentric Surface Stability.—This
is rarely obtained, being of little use to the naval designer.
As, however, it shows that portion of the longitudinal stability
of the vessel at a small inclination, which is due to her form,
it is deserving of a passing notice. The same considerations
apply in this case as were dwelt upon when discussing trans-
verse metacentric surface stability. If the angle of inclina-
tion, that is, the pitch or scend be very small, say about 1 or 2
degrees, then calling the displacement D, the angle of pitch
0, and BM the height of longitudinal metacentre above centre
buoyancy, the moment of longitudinal metacentric surface
stability at that angle is

DxBMsin d.....ccovivinn vnnererninn (I)
If the centre of gravity of the vessel coincides with the point
B, the above is the whols moment of longitudinal metacentric
stability at that angle; ordinarily, a deduction has to be made
from expression (I) for the actual longitudinal stability; but
this will be considered in the next chapter.

As the longitudinal inclinations of a ship are usually very
small, compared with the transverse, and therefore of far less
importance when considering her safety or efficient working,
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it is not customary to calculate the longitudinal stability by
any other than the metacentric method; so that when it is
- desired to know the effect on the trim which is due to adding
or shifting weights, and so altering the form of the immersed
body of the ship, it is usual to determine the height of the
longitudinal metacentre in the condition the ship is at the
time of the change, and use that result in making the calcu-
lation. Should the change of immersion or trim be consider-
able, 80 as to alter the height of the longitudinal metacentre,
then the height of the latter, when the ship is at the new
draught of water, is used. This subject will be considered
more fully in the next chapter.

83. Comparative Surface Stability of different Vessels.
—The moments of the surface stabilities of vessels having
load water planes of similar form, but of different size (z.c.,
when it only requires an alteration in the scale of the draw-
ing to make the load water planes identical), are propor-
tional to their lengths and the cubes of their breadths. This
follows from the considerations in the former portions of this
chapter.

Again, since the displacements of the vessels are propor-
tional ¢o their lengths, breadths and mean draughts of water,
therefore the heights of their metacentres above their centres
of buoyancy are proportional to the squares of the breadths
divided by the mean draughts of water.



PART II

CALCULATIONS RELATING TO THE WEIGHTS
AND CENTRES OF GRAVITY OF SHIPS.

CHAPTER III.
STABILITY AND TRIM.

Centre of Gravity—Metacentric Statical Stability—Exact Calcula-
tions of Statical and Dynamical Stability—To find the Centre
of Gravity by Experiment—Specimen galculation—Alteration
of Trim by Shifting Weights—Moment to alter Trim one inch—
Alteration of Trim by adding a Weight—When Weight is incon-
siderable—When considerable—Effect on Trim by admission
of Water in different ways—Effect on Stability by moving a
Weight—By adding or removing a Weight—By admitting Water
in different ways.

84. QGeneral Considerations.—Hitherto we have dis-
cussed the statical and dynamical qualities of a vessel as
affected by her form, without considering the effects due to
the centre of gravity of the weight of the vessel and her con-
tents not being situated at the centre of buoyancy; hence
our investigations have been chiefly of a geometrical cha-
racter. In this division of the subject, we purpose consider-
ing the modifications of the preceding results due to the
floating body, being composed of a great number of parts,
having different specific gravities, and irregularly disposed
within the shell whose form invests it with the qualities we
have already examined.

‘We will commence by assuming, for the present, that the
vessel has a certain known weight, and that the position of
the centre of gravity of that weight is known. This weight
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is the sum total of the weights of all the items composing
the hull and equipment of the vessel: and its centre of
gravity is that of all these weights, each acting at its own
centre of gravity wherever it is situated. Tue manrer of
calculating the total weight and determining the pesition of
its centre of gravity will be shown in the next chajpter.

85. Centre of @ravity.—It was stated in Art. 4, that a
body floating in a liquid, in a state of ejuilibrium, displaces
a volume of the liquid whose weight is exactly equal to that
of the body. We will now show that not only is this so,
but that the centre of gravity of the fluating body must be
in the same vertical line as the centre of gravity (..., centre
of buoyancy) of the liquid displaced; and if the kxly is at
any time floating in such a position that these conditions are
not fulfilled, it is not in a state of equilibrium, but will seek
to float in such a position that the centres of gravity of the
body and of the displaced liquid are in a vertical line.

Fig. 1, Plate XVIL, represents a transverse section of a
body floating in water, /7L, being the load water line when
in a certain inclined position: G is the centre of gravity of
the body, and B, that of the water displaced. 'When in this
position the weight of the floating body acts vertically down-
wards, in the direction of the line GP,, perpendicular to
W,L,; also the resultant upward pressure of the surrounding
fluid acts vertically upwards through the centre of gravity
B, of the displaced water along the line B M. Since the
weight of the body and that of the fluid are necessarily equal,
each of these forces is equal to D, the weight of the displaced
water. Through @ draw GZ perpendicular to B, J/, then
these two equal forces constitute a couple, whose arm is (7,
the tendency of which, as shown by the arrows, is evidently
to turn the floating body in such a way that L, approaches
L, and W, approaches WW. When that happens, the line
MB coincides with A/B,, and GZ becomes zero; hence the
couple vanishes. Should W;, then, pass W, and be above it,
and therefore L, be below L, there will exist a couple, whose
arm will be on the other side of A/B, tending to make WL
and WL, also MB and MB, again coincide; and so there
will be no equilibrium while GZ has any value. Hence B,
must be in the line BAf for the body to float at rest. This

4B i3
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proves the statement for positions of the floating body, as
shown in a transverse section; fig. 2, Plate XVII., shows
the same longitudinally, the same reasoning being applicable
in both cases; and so it may be proved for any deviations in
skew directions (7.e., between direct transverse and longi-
tudinal inclinations of the floating body), that to obtain
equilibrium it is necessary B and @ shall be in the same
vertical line.

But there is yet another condition which must be fulfilled
before the body will float in stable equilibrium. In figs. 1
and 2, Plate XVIIL, @ is shown between M and B, but it
does not necessarily follow that it always occupies that
relative position, although in a well-designed ship it is
essential that it should do so, as we shall now see. Referring
to fig. 1, Plate XVIII. (which is exaggerated in order to
illustrate more clearly), it will be seen that @ is above X,
and therefore GZ is on the opposite side of MB to that
where it is seen in fig. 1, Plate XVII., when the ship is
heeled in the same direction. As a result of this position of
@, the couple is found to act in a contrary direction to that
in the latter case, tending, in the present example, to cause
the ship to incline still farther from, instead of restoring it
to the upright position. The couple, in this case, is evidently
an wupsetting one, instead of a righting couple, as in Plate
XVII. As already said, it is only in an ill-designed or
badly stowed ship that this can occur, nevertheless it is
necessary to notice the result of such a position of @, as
although when the vessel is upright, and GP and MB,
coincide with /B, the arm of the couple GZ vanishes, and
the vessel is in a state of equilibrium; yet when she is in-
clined but to the slightest extent, an upsetting couple is
produced which tends to increase the ship’s heel, and finally
upset her. When the ship is floating at rest, perfectly up-
right, with @ in the position, relatively to B, shown by fig.
1, Plate X'VIII,, she is said to be in a state of unstable equi-
librium, and, when inclined ever so slightly, continues to
heel until she upsets; in the event of the water not being
able to get inside, she will incline until she arrives in such
a position that the centre of gravity is below her metacentre,
when she will be in a state of stable equilibrium, Hence
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the necessary conditions for a body to float at rest in a state
of stable equilibrium are :—

1. That she shall displace & volume of water whose
weight is equal to that of the body.

2. That the centre of gravity of the body and that of the
displacement shall be in the same vertical line,

3. That the centre of gravity of the body shall bo below
the metacentre.

In Plates XVII. and fig. 1, Plate XVIII, tho angles
BMB, are shown of considerable amplitude, in ordor to
obtain a distinct figure; the term metacentre just employed
is, however, used in its exact signification, the extent of tho
inclination not affecting the truth of the proposition.

The derivation of the term “metacentre” is at onco sug-
gested by the preceding considerations, as it means the limit,
beyond which the ship’s centre of gravity may not rise, in
order to have stable equilibrium.

86. Metacentric Statical Stability.—In the last chapter
we investigated expressions for that part of a ship'’s stuticnl
stability which is due to her form, t.e., ker surface statical
stability. Two modes of obtaining this were obtained, ono
being inexact, except for very small angles of heel, and uso-
ful only as a means of instituting comparisons between
vessels of a similar type; this was termed metacentric surface
statical stability. Another and exact method was also in.
vestigated, whereby the surface statical stability could bo
found for any finite angle of heel. We now purpose con-
sidering what modifications in these results are nccossary,
owing to the vessel having the attribute of weight, which
may be considered as centred or acting at a certnin point
which is not the centre of buoyancy. First, then, wo will
direct our attention to metacentric statical stability, At Art.
62, it was shown that the moment of surface stability is
D x BN, or DxBM sin BMB, (see fig. 1, Plate XVIIL),
this being true at the angle BAM/B, when that angle is vory
small. It is based upon the assumption that M (tho actual
metacentre) is unaltered in height above the load wator line
when the ship is inclined to that angle, and hence the ex-
pression is termed the “ metacentric surface statical stability.”
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But the actual moment of statical stability, whether calcu-
lated by the metacentric or by the exact method, will differ
from this according to the position of the centre of gravity
of the ship. If that centre of gravity is above the centre of
huoyancy the moment is less, and if below, it is greater than
the moment of surface stability.

In fig. 2, Plate XVIIL, G 18 the centre of gravity in its
usual position, viz., a little below the load water line, and
therefore between the metacentre and centre of buoyancy.
Through G draw GP perpendicular to the new water line
W,L,, cutting BN at O, also draw GZ perpendicular to M B,.
Now, as already seen, the moment due to the vessel's form,
tending to restore the ship to the upright position, is /) x BN ;
but as the weight of the ship acts at G instead of B, and
in the direction of the vertical line G'P, directly the ship is
inclined from the upright position to that shown, there is an
upsetting moment D* x BO brought into play. Hence the
resultant righting moment is the difference between the right-
ing moment D x BN (due to the form of the body immersed),
and the upsetting moment D x BO, which is equal to D
(BN-B0O)=D x GZ; and this is the moment of statical
stability at the angle BMB,, as found by the metacentric
method. It will be at once seen that at the same angle of
inclination the resultant righting moment becomes greater
as @ approaches B, and decreases as G’ approaches M.

‘We will now see what happens when @ is below B. Still .
referring to the figure: @, is the centre of gravity, and the
perpendicular BO, upon the vertical G,P; is now on the
other side of #B. Hence in this case both the moment due
to form and that to the centre of gravity not coinciding
with the centre of buoyancy are of a righting tendency, and
thus th; tzota.l moment of statical stability is D(BN + BO,)
= D X .

Next consider the case when G'is about M, as shown by G,
in the same figure. Here the righting moment due to form
is D x BN as before, but the upsetting moment due to &, not
coinciding with B is D x BO,, which is in excess of the right-
ing moment by the moment Dxw 0;=D x GyZ,. Hence in
this case the total moment is negative, and the ship is con-

* D being equal to I the weight of the ship.
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sequently in a state of unstable equilibrium when upright,
and continues to heel when slightly inclined until she

upsets.

87. Use of the Metacentric Method. —The moment of
statical stability determined by the process described in the
preceding article is based upon the assumption that, for the
inclination considered, M remains at a constant distance from
G. As stated at Art. 66, this is practically true in vessels of
ordinary form up to an inclination of from 10 to 15 degrees;
but as the method does not take into account the form of the
body, except as regards the moment of inertia of the load
water plane and the total displacement, the result for greater
angles is incorrect, the error for some little distance being
usually on the safe side. But with vessels of low freeboard,
such as monitors, or if there be any irregularity of form above
or below the load water line, the metacentric method affords
ns no information regarding the stability of the vessel except
as regards the initial righting moment. It does, however,
afford a valuable means of predicating the stability of a vessel
by comparing the moment so found —or usually the distance
G M—with that of another vessel of similar type. Hence it
is usual in preparing a design to determine as nearly as is
possible in the early stages of the work the positions of M
and @, so that the designer may, by paying at the same time
due attention to the height of the vessel's side and its form,
be guided in obtaining the required stability; the exact ex-
tent of which, at every finite angle of inclination, up to
the upsetting point, can be only discovered by a laborious
process (see Arts. 70 and 131) when the design is more fully
matured.

Until the last few years, it has not been usnal even in
H.M. Service to calculate the statical stability by any other
than the metacentric method, as in consequence of the simi-
larity in the types of the shlps then built, and the experience
acquired regarding them, it was possible to obtain the qualities
required by merely knowing the initial statical qualities of
the ship when inclined. As we shall see hereafter, it was
found almost as undesirable for the distance GM to be very
great as it was to be small; for in the former case the vessel
laboured very heavily in a cross sea, while in the latter she
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was crank. A usual value was from 3 to 5 feet in large
vessels, and rather more for those of the smaller size, the
maximum value being about 6 feet.

The conditions of a ship for war, and one for mercantile
purposes, as regards calculating their stabilities, are very
different. The weights carried by the former and their
positions are nearly constant, and can be anticipated in the
design ; but the cargo of a merchant ship is of a very varying
character. Hence it is impossible to fix the position of the
centre of gravity of the latter, or to say what value of G/
she will have. The metacentric method is usually adopted,
and such a value of BM is chosen, as has been found safe
and desirable in other ships. The stevedore is depended
upon to stow the cargo in the best method, so as to ensure
that the ship shall be stable and roll easily.

88. Exact Caloulations of Statical Stability.—In Arts.’
67 to 70, we investigated an exact method of determining
surface statical stability at any finite angle of inclination by
calculating the moments of the transferred wedge. This
being that portion of the resultant statical stability which is
due to the vessel’s form, we have, therefore, the same correc-
tion to make as before in determining the real statical stability.
At Art. 67, it is shown that, at any angle, D x BN = V+ HK

or BN =V xDHK

where D is known, and ¥V x HK is the moment of the wedges
us calculated at Art. 70. Hence having BN known, and BO
= BG@ sin BMB, also known, GZ the lever of statical stability
is found as before, and thus the moment D x GZ is determined.

89. Dynamical Stability.—At Art. 72, the moment of
dynamical surface stability was shown to be equal to V (EH
+IK) see fig, 1, Plate XVL.; this being the work due to
the depression of the centre of buoyancy in the course of
heeling the ship to the angle BMB,. We will now find the
whole dynamical stability, which is the work performed in
both raising the centre of gravity and depressing the centre
of buoyancy, and is therefore the product of displacement
into the difference of level of her centres of gravity and
buoyancy produced by heeling.
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Referring to fig. 1, Plate XVI,, it will be seen that its

value is _

D(ZB, -GB),
Z being the foot of the perpendicular from @ upon MB,. But
ZN =GB cos BMB,; hence,

Dynamical stability =D (GB cos BMB, + NB, -GB

Y 2D (NB, 'GB vetsin BMB,),
In the specimen calculation shown by Table II., and explained
at Art. 73, Dx V(EH +IK) or D x NB, has been shown
in that case to be equal to 5976 x 45 foot-tons of mechanical
work. The known position of @ in this ship is such that GB
=8-529 feet, and the versed sine of 16 degrees is ‘0387.

Hence, GB versin GMB, =8°529 x *0387="33 ;
and, therefore, the dynamical stability at that angle is
5976 (45 - *33)=5976 x *12="T17"1 foot-tons of mechanical work.

The following approximation has been given for the dyna-
mical stability at a given angle of heel:—Multiply the dis-
placement by the height of the metacentre above the centre of
gravity and by the versed sine of the angle of heel.

The value of a knowledge of the dynamical stability of a
ship will be apparent when we consider the question of sails
and sail power. For as the wind does not always exert a
steady pressure upon the sails such as would be counteracted
by a statical moment, but often strikes them in sudden gusts,
causing the vessel to suddenly heel over, it is desirable to
know the dynamical stability of the ship, and so ensure that
it requires the expenditure of a sufficient amount of mechanical
work to incline her to an angle which is within the limits of
her maximum stability. So that while a knowledge of the
statical stability of a ship is very necessary in order that she
may be known to be capable of resisting a steady heeling force
and of returning to the upright position when inclined to a
considerable angle, yet as she is oftener under the influence
of dynamical than statical moments, it is of great importance
that her dynamical qualities should be known.

90. Experimental Method of Finding the Centre of
@ravity.—The importance which is attached to the position
of this point in a ship has already been dwelt upon. Hitherto,
however, we have used an assumed position in our investiga-
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tions; we will now see how its whereabouts is determined
experimentally after the ship is built and equipped. It should
be first remarked that although it is impossible, or nearly so,
to determine the exact position of the centre of gravity before
the vessel is built, yet that position is approximately known in
every vessel designed for the Royal Navy before the drawings
are put into the builder’s hands. This knowledge is sometimes
obtained by comparison with a ship already built and the
position of whose centre of gravity is known, if that ship is
similar to the one designed; due allowances being made for
the differences which may exist. Or else a detailed calcula-
tion is made, such as will be referred to in Chap. IV., and if
this calculation is performed with care by an experienced
person, and the work checked by another, or if two inde-
pendent calculations be made by two calculators, the result
is found to be very trustworthy, especially as regards the
vertical position of the centre of gravity. In every case, the
centre of gravity is determined by experiment after the vessel
is built, and the results thus obtained prove most valuable
criterions by which to judge the accuracy of the results
obtained by calculation for other and similar ships.

The method by experiment is founded on that rule in
statics which is stated at Art. 61, which may be thus ex-
pressed: If the centre of gravity of any part of a body be
shifted in a given direction through a given distance, the
centre of gravity of the whole body is shifted in a parallel
direction through a distance smaller than the given distance,
in the same proportlon that the weight of the shifted part is
smaller than the weight of the whole body.

In fig. 1, Plate XIX., M represents the metacentre, the
position of which has already been calculated. MP is the
upright axis, and it is therefore known that the centre of
gravity is somewhere in that line; we have to find its depth
below the point .

Let @ be the centre of gravity of any heavy body of weight
IV resting in the position shown when the vessel is upright,
and let that body be now shifted across the deck to the other
side of the ship, so that b is the new position of its centre of
gravity. The ship will consequently heel over to a certain
angle which may be accurately measured. Let PMP, be that
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angle, so that the new centre of gravity is now somewhere
in the line MP,; also, call the displacement D.
Through M draw MT parallel to ab, and of such a length

that 2T _ W and through 7 draw 76, parallel to MG, cut-

ting MP, at the point G,; this point will be the new centre
of gravity of the whole vessel. Through @, draw @G parallel
to ab, then @ will be the original centre of gravity of the
vessel when upright.

Since MT_W
ab _\]%r
MT:]_) ab=GG

But MG =GG, cot BMB, = ¥ -ab cot BMB,.

Hence, having the angle BMB, determined by experiment,
M@ is readily found.

In performing the experiment, it is necessary that several
precautions should be observed. The ship should be floating
in still water as in a basin or dock, and it is desirable that
the weather should be calm, as otherwise the pressure of the
wind upon the side of the ship would produce an error in the
calculation. Should there be any wind, the ship should be
placed so that it will blow in the direction of her length.
An accurate account should be taken, immediately before the
experiment, of the positions of such portions of the ship as
are not in their proper position; also of the items of the hull
or equipment that are not on board, and the positions and
weights of materials not belonging to the ship which are on
board at the time. The hold should be pumped dry before
the experiment; loose materials, such as coal, should be pre-
vented from shifting, and the crew should be made to remain
perfectly steady at their proper posts while the inclination is
being observed. It is also necessary to measure the inclina-
tion of the ship by plumb lines at two or three positions in
her length, say at the fore, main, and after hatches (if the
ship is so constructed that vertical lines through these can
reach the keelson), and take the mean of the inclinations so
observed, as it does not necessarily happen that the ship
inclines about a longitudinal axis, although if the centre of
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gravity of the ballast* is placed in the same transverse section
of the ship as that containing the centre of buoyancy, the
inclination should be the same throughout. As already
stated, it is desirable that the ballast or other weights used
in inclining the ship should at first be so placed that the ship
is upright throughout her length. This is generally done by
placing equal weights on each side of the ship in such posi-
tions that the above result is attained. The draught of water
forward and aft is then observed, and from this the displace-
ment, position of centre of buoyancy, and the height of meta-
centre at the time of the experiment can be calculated. The
positions of the centres of gravity of the weights are now
carefully measured, after which the ship is inclined by shift-
ing them across the deck in different ways.

In the example which we shall presently give, it will be
seen that the order of procedure is as follows :—The whole of
the ballast on one side is first transferred to the other side of
the ship, and the distance through which its centre of gravity
is moved is carefully measured; when the ship ceases to
oscillate the inclination is observed. Next, the weights are
restored to their original position, when the ship should again
be upright. If she is not, the slight deviation is recorded.
This completes the first experiment. The ballast is then
moved over to the other side of the deck so as to incline her
in an opposite direction to that in the first experiment, and
when the distance through which its centre of gravity is
shifted has been carefully measured, and the ship is at rest,
the inclination is again observed. The weights are once more
restored to their original positions, when the ship should
again be upright; if she is not, the deviation is recorded.
This completes the second experiment. Should these experi-
ments give slightly different values of M@, as is usually the
case, the mean of the two is taken as correct. In order to
reduce to a minimum the errors in the experiments, which
result from the ship not being perfectly steady, or by reason
of the distances through which the centres of gravity of the
weights are moved not being accurately measured, etc., it is
now usual to make at least four experiments, and sometimes

* Pig-iron ballast is the most convenient weight to employ when
performing this experiment.
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as many as six; this being done by shifting first & half and
then the whole of the ballast on one side to the other, and
afterwards doing the same on the other side of the ship. It
is easy to see that by varying the quantity of ballast moved,
or the distance moved through, several experiments may be
made; and that by increasing the number of observations
the resulting average value of G approaches more nearly
to the truth.

91. Specimen Calculation of @M by Experiment.—The
example we are about to give was furnished by Mr. F. K.
Barnes to the Institution of Naval Architects in 1866, and
is contained in Vol. VII. of the Transactions of that Society.

The Valiant was inclined in the Steam Basin at Portsmouth on the
. 28th July 1865.

Wind.—Slight breeze, blowing in the direction of the fore and aft
axis of the ship.

The Ship had her lower masts and topmasts on end, was rigged
completely, had lower yards in place, in place, topsail yards on
the caps, top-gallant masts struck; one top-gallant yard was lashed
up the lower rigging, and the other against inside berthing above
upper deck; spare spars on deck; spare screw on upper deck, for-
ward (weight 3} tons); anchors stowed; chain in lockers and gangers
in place; run out on main and upper decks; shot stowed round
hatchways, not any in lockers ; boom boats stowed, the other boats
not on board; sails not on board; bowsprit in place, and jib-boom
Tun in.

Ballast for Experiment.—100 tons of pig-iron ballast was placed on
the upper deck, 60 tons on each side; stowed from the fore side of
the after capstan to the fore side of the funnel.

Men on Board during Experiments.—60 labourers, to move the
ballast, etc., and 47 artificers employed in various parts of the ship;
also, 11 men of the ship’s company.

Coals on Board during Experiments.—Coal in fore bunkers stowed
up to deck ; in after bunkers, up to deck nearly in one corner. Total
weight about 120 tons,

Draught of Water during Experiment.—

Forward, .......ccocovvvenrnniennnnns 22 ft. 7% in.
-\ 4 AP 24 ft. 91 in.
Mean, ............. ereeee.23 ft. 8% in.
Displacement,................. v00..6019°6 tons.

In the First Experiment.—The ship was inclined by moving 50 tons
of ballast through 39 ft. 6 in., from starboard to %ort, which gave an
inclination of 254 inches by fore plumb, and 24} by after one.

A
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The ship plumbed well when the ballast was restored to its original
position.*

In the Second Experiment.—The ship was inclined by moving 50
tons of ballast through 39 ft. 6 in., from the port side to starboard.
ixfxclina.tion in 25 feet was 24F inches by fore plumb, 25 inches by

ter one.

Taking the mean of the inclinations, as taken from the two plumbs
in each experiment, we have

GM:vﬁvab cot BMB,. (See fig. 1, Plate XIX.)

50 . 4x25x12 o
= m x 395 x m— 8917 feet.

The separate values of GM found by the two experiments are
3-879 ft. and 3'956 ft., the mean of these bemng 3:917 ft., as
above.

The following values of G}, as found by the experiments,
in four other iron-clad ships of H.M. fleet, are given by Mr.
Barnes in the same paper:—

Minotaur, ......... b rerrereerieens 1002293 feet,.
arrior, ..... e 4449,

Achilles, ..........coveviiviine venn. 2:566 ,,

Prince Consort,............ ceeeerns 6635 ,,

Having made the necessary corrections in order to obtain
the value of GM when the ballast is removed, the ships are at
their load draughts, and in proper sea going condition, the
following are the results:—

Valiant, ............... rrereeer e 4610 feet.
Minotaur, .... ...3879 ,,
Warrior, ......cccooveeveeereenvnnnnan. 4678 ,,
Achilles, .. ......... .....3088 ,,
Prince Consort,........... ..6°010 ,,

which results, as we shall see hereafter, afford valuable means
of comparing not only the stabilities of the several ships, but
also their rolling tendencies and their general efficiency as
gun platforms. We may first remark in passing that the
value of GM for the Achilles is rather below the average,
while that for the Prince Comsort is considerably above.
Indeed, as a matter of fact, the height of metacentre, above

* It will be seen that in these experiments only two plumbs were

cmployed ; it is, however, now customary to use three, as stated in
the text.
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entre of gravity, differs very little for well-designed war
vessels of all sizes, being about 3} to 4} feet, and, in general,
is greatest in the smallest vessels.

In vessels for which that height is exactly the same, the
moments of stability at equal angles of heel are obviously
proportional to the displacements.

92. Position of Centre of Gravity, Longitudinally.—It
is perhaps unnecessary to state that the longitudinal position
of the centre of gravity, when the ship is floating at rest, is
at once found by observing the draught of water, and then
calculating the longitudinal position of the centre of buoyancy
from the ship’s drawings to that water line; the centre of
gravity will, of course, be in the transverse vertical section
which contains the centre of buoyancy. Knowing that
the centre of gravity is in the longitudinal vertical middle
line plane of the ship, when she is floating upright, and
having found its vertical and longitudinal position, the point
is fully determined.

938. Alteration of Trim due to Shifting Weights already
on Board.—The effect upon the trim of a ship, caused by
shifting weights already on board in a longitudinal direction,
will now occupy our attention. In fig. 2, Plate XIX., @ is
the centre of gravity, and B the centre of buoyancy of a ship
floating in equilibrium at the load water line VL. The
displacement D is known, also the value of BM, M being
considered fixed during the small alteration of trim that we
shall consider. A weight P, already on board, is shifted
forward through a distance d, so that the ship then floats at
the line W, LZ,, intersecting WL at the point §; and the two
water lines intersect the fore and after perpendiculars of the
ship at the points W, W,, and L, L, respectively. It is
required to find the lengths WW, and LL,, which together
constitute the alteration in trim. -

Now Pxd=DxGG,,
where GG, is the distance which the centre of gravity of the
ship is moved forward by shifting the weight . As the point
M is considered fixed, a perpendicular to W,Z, through G,
also passes through M. The inclination being small, the
point § is a very close approximation to the centre of gravity
of the load water plane,
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Suppose a foot and ton to be the units of measnrement‘:1
and weight.
Since the angles WiSW,, LSL;, and GM@, are equal, we
have by the property of similar triangles,
WS _ LS MG
WW, LL, GG,
. WS+SL _ WL _ MG
‘" WW,+LL, WW,+LL, GG,
But

GG, = PS d.

Hence
WL _MGxD
WW,+LL, Pxd’

and
WW,+LL, = W———J‘éz’]‘)d) ..................... (1)
But the terms on the right-hand side of this equation are
all known, hence the total alteration of trim, viz., WW, + LL,
is also determined
To find the separate values of WW, and LL,, we have—
WS : LS=WW, : LL,
SL _ LL,
WS+SL™WW, +LL,

SL _LL, (MG x D)

and from (l) W‘—L——W—,m,
hence
_SL(Pxad)
LL, = WG D oo e 2)
Similarly,
_SW (Pxd)
WW’__—MGxD [UUURPRRRRRRRNN - ) |

and as SL and SW are known by reference to the displace-
ment sheet, the values of LL, and W W, are determined. If
S is at the middle of the length between perpendiculars, then

SL:SW:W-;—L,

‘WL (P xd)

hence
LL; =WW,= m .
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As AN ExaMrLE,* suppose #L =150 ft., MG =177-41 ft.,
D =620-158 tons; also, let #.S=T73 ft., and LS=TT7 ft.
Let a weight of 61°1 tons be moved forward a distance of
10 ft.; then P =611 tons, and d =10 ft.

In this case,
_ TIx6L1x10 _TT,. ..
Ll =058 x 17741~ 180 & =0k in-
_ 73x6111x10 _73 . _..,.
W= go0-158 % 17741 180 o= 413 in
and

WW,+LL,=5%&%+4}$=10 in. a

. in
Hence the original draught of water being...... { ig 8 i‘t’.:w“"d'

ft. in. in. ft. in.
The new draught is............. {ig 81'455%2{? ?’;: i;(}:.ward.

94, Moment to alter Trim one inch.—It is usual in H.M.
cervice to calculate upon the ordinary displacement sheet
the moment required to alter the trim one inch, the method
of obtaining which depends upon the investigation just gone
through.

In this case W, + LL, =1 in, = {; foot.

Hence the equation,

_MGxD
WW,+LL, Pxd

becomes o

MG xD

Exd=15 WL
Using the values in the displacement sheet (Table I.)
Px d=l77'4l x 620°158

12 x 150

‘Which is the moment required to alter the trim of this ship
by one inch when she is floating at her load water line.
Hence knowing this moment to alter trim, we are at once in
a position to say what effect the shifting a weight, already on
board, in a horizontal direction has upon the trim of the ship.
It must, however, be remembered that if the shifted moment
is sufficient to cause a very considerable alteration of trim,

* These values, except .S and SL, are taken from the Displace-
ment Sheet, Table [,

=611 foot-tons.
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the value of M@ will change, owing to the different form and
area of the load water plane; in that case an approximation
to the trim is first found, then the value of GM is calculated
for the new water plane, and by this the moment to alter
trim at the approximate line is obtained. The alteration of
trim found by using this new value will give a very good
approximation to the actual line. The trim found by using
the moment calculated for the load water line is, howevel,
usually sufficiently correct for all purposes in actual practice.

95. Effect on the Trim by adding & Weight—I. If
the weight 18 inconsiderable.—Let P be the weight added,
and !/ be its distance in a horizontal direction from the trans-
verse section containing the centre of gravity of the load
water plane. Also let # be the moment to alter trim one

s g . P.
inch, and 7' be the tons per inch immersion. Then 7y is the

extra immersion in inches. Suppose, first, that the weight
P is placed in the transversé section whlch contains the
centre of gravity of the loa,d water plane, then the ship will

sink to a parallel depth of + mches ; for the horizontal moment

of the added weight about the transverse plane, containing
the centre of gravity of the ship, is the same as the moment
of the added displacement about that plane. But in this
case the weight P is placed at a horizontal distance 7 from
that position; hence the alteration of trim is due toa moment
of Px!l. Since P is small compared with D, it is not con-
sidered sufficient to increase M@ or the displacement very

considerably, hence we have
P]; l—alteratxon of trim in inches,
and

P—'%-l_ WW, =LL, approximately.

Hence if the distance 7 is measured on the fore side of the
centre of gravity of the load water plane, then calling the
original draught of water

{ E?:ward_% and the new draught { th);'w ”df %'
- +*1
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we have approximately
P Pxl

P Px!

Yl =Y+ ‘,IT - ﬁ.

In the example already considered (see Table I.), suppose
1{=61'1 ft., and P =10 tons; also taking 7'="7-65 tons, and
F =611 foot tons, as there given, the values of X and Y are
10 ft. and 12 ft., respectively.

ft. in. in, in ft. in

10 10611 i
X,=10 0+7735+ 2%61°1 =10 06} forward

10 10x61°1

Yi=12 O+ =g e

=11 8} aft.

If instead of taking /W, = LL, = o' wo used their exact

values, due to the centre of gravity of the load water plane
being abaft the middle of the length between perpendiculars,
Then, as already seen,

1 =10 ft. + 1} in, + 41} in. =10 ft. 6¢; in. forward
Y, =12 ft. + 1§ in. - 5% in. =11 ft. 8}} in. aft.

I1. If the weight 18 not inconsiderable.—In this case we
are not justified in assuming that M@ (fig. 2, Plate XIX.)
remains unaltered, or that D + P is not materially greater
than D. We will commence by supposing that the weight
is momentarily placed in the transverse plane which contains
the centres of gravity of the load water line; then the ship
commences to sink parallel to her former draught. But as she
gets deeper in the water two things happen—in the first place,
the centre of gravity of the successive load water planes move
awayfrom the crosssection containing that at the load draught,
owing to the alterations in the forms of the planes; and in
the second place, the areas of these planes alter (usually by in-
creasing), and so cause the tons per inch of immersion to vary.
Hence we have to find the position of the centre of gravity
of the water plane at which the vessel floats in equilibrium,
and the mean tons per inch of immersion between the original
and final load water planes (it being still assumed that the
weight is placed momentarily, as already stated). These are

4B : I
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found by a process which is necessarily tentative, and which
we now proceed to examine. 7' being the tons per inch at

the load draught, and P the weight added; !,.;7 is approxi-
mately the depth of immersion. Draw a line on the sheer
draught parallel to the load water line, and at a distance —f_,—J.

inches above it, and calculate the area and the position of
the centre of gravity of this line. In making the calculation
for the new water plane, we obtain the tons per inch at the
new immersion; this latter may, however, be found very
nearly by continuing the curve of tons per inch to the
required draught by means of a penning batten. Having
these two extreme values of the tons per inch, a mean
value may be found, especially if the curve is referred to.

Let 7' be the new value, then —% will be a close approxima-

tion to the actual mean distance the vessel sinks in the
water. Let ¢ be the distance of the centre of gravity of
original load water plane from the transverse section con-
taining the centre of gravity of the ship, and ¢, be the dis-
tance of the new centre of gravity, as just found. Draw a
line on the sheer draught joining these points, then by bisect-
ing the portion of this line between the original load water

line and the line distant % from it, we get a good approxi-

mation to the position of the centre of buoyancy of the added
displacement.  Call the distance of this point from the
transverse plane containing the centre of gravity of the
ship ¢,; then P (c,—c) is the moment to alter trim due to
the form of the ship between the new and original load water
planes; it being still assumed that the weight P is placed
momentarily in the transverse plane containing the centre of
gravity of the original load water plane. This moment is
usually an upward after one, as the form of the vessel above
the load water line is generally fuller aft than it is forward,
it is thus equivalent to placing a weight P at a distance ¢, — ¢
on the fore side of the centre of gravity of load water plane,
or a downward fore moment.

But instead of the weight being placed as assumed, sup-



_EFFECT ON THE TRIM BY ADDING A WEIGHT. 131

pose it really situated at a distance /, say, on the fore side of
the centre of gravity of the load water plane. Now to find
the additional effect on the trim when in this position, we
must determine the new value of GM. This will evidently
differ from the original value to an extent governed by three
conditions, viz., 1st, the difference in the length of BM due
to an altered load water plane, and an increased displacement;
2nd, an altered depth of B below the original load water
plane; and 3rd, the altered vertical position of the centre of
gravity. The 1st and 2nd conditions will together fix the
change in the height of A above the original load water line,
and, taken in connection with the altered position of @, with
regard to that line, will give the new value of GM.

Two points must here be noticed, one of which is that it
is always desirable to refer all vertical measurements to the
original load water line, as by so doing mistakes are pre-
vented; the second is, that in finding the value of BM, and
the distance of B from the water line, we suppose the new
load water plane is parallel to the original. We are com-
pelled at present to do this, as we do not know the actual
trim; but as the moments of inertia of the assumed and real
lines do not usually differ widely, and as the height of B is
generally very little affected by the supposition, we are
enabled in this way to get a good approximation to the
moment for altering trim at the new line, and by the aid
of this the new load water line can be closely approximated
to. When this approximate trim is found, the moment to
alter trim can be found from that line, and if it differs much
from that assumed, we can make a closer approximation to
the real trim. It is thus seen that, as already remarked, the
process is ‘tentative; nevertheless, as the form of a ship’s
body does not alter very considerably within the limits due
to shifting or placing ordinary portable weights on board, a
very close approximation can be found to the real trim with-
out continuing the process beyond that indicated above.

The preceding remarks will have almost sufficiently ex-
plained the work involved in finding the change of draught
and trim due to placing a weight on board. We have first
the new BM to find by using the parallel draught due to

.

the weight being assumed to be placed at the centre of }gr:pf"



132 THEORETICAL NAVAL ARCHITECTURE.

of the load water line. *To do this we have to perform the
work already described at Art. 66, using the ordinates of the
assumed parallel line. Next we have to find the new distance
of B below the original load water line. The ship evidently
sinks until the additional displacement is equal to the weight
added. The centre of buoyancy of this added displacement
will be nearly midway between the two parallel water lines,
being rather nearer the new line than the old one. Let D
be the original displacement; P the weight added; I the
distance of B below original water line; p the distance of
centre of buoyancy of added displacement above that line, as
Jjust found; and « the distance of the new centre of buoyancy
from the same line. Then
z(D+P)=DxI-Pxd
DI-Pd

T DrP

If M B, is the new value of MB, then M,B, —x is the
height of M, above the original load water line.

We have now to find the new position of G, which is
evidently determined in the same way as that of B, it being
known at what distance, above or below, the original water
line the added weight is placed. In this way a new value
of GM is found: term it Gy M,. From this new value we
determine the new value of the moment to alter trim, using
P + D instead of D. We then proceed as before by calcu-
lating the moment, either before or abaft, of the added weight
in its true position about the centre of gravity of the new
load water plane; this moment being divided by the “tons
to alter trim,” gives the alteration of trim in inches, which
must be set off in the manner already explained. If the
alteration of trim is considerable, enough to affect the height
of M, above B, or B, below the original load water line, then
a repetition of the preceding work must be gone through,
using now the trim just found.

‘When the alteration of trim, as affected by shifting the
weight to its true position, is found, we must make the
allowance due to the change in position of the centre of
gravity of the water plane, as found in the early stage of
the question; i.e., the change of trim due to a fore moment
of P (cy—c).
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As an example, suppose D =4000 tons, P =100 tons, T}
=20 tons. Then T = 190 =5 in. the added immersion.

Let B M, at the new line, as found by calculation, be 210
fu., and let the B of 4000 tons be at § ft. beneath the load
water line. Then
4000 x 8 - 100 x 2

#="go00+100 oM
which is the distance of B, below the original load water
line. Hence 210-7'8=2022 ft. the height of M, above
that line.

Suppose @ to be originally at the water line, and, by adding
the weight, to rise to ‘2 above that line; then MG, is 202-2
—2=200 ft.

The ship is, say, 200 ft. between perpendiculars. Then

M,G,; x (P+D)_ 200 x 4100

T I2x WL T 12x200
which is the moment to alter trim one inch at the assumed
line.

Let the weight P be now placed in its true position, viz.,
at T1-3 ft. abaft the centre of gravity of the load water plane;
also let the value ¢, — ¢ (the distance of the centre of buoyancy
of the added displacement abaft the centre of gravity of the
load water plane) be 3 ft.

Then 100 (71-3 - 3-0) = 6830 foot-tons after moment. But
the moment to alter trim one inch is 3416 foot-tons, hence

=20 in. is the alteration of trim. Suppose this to bo

divided at the bow and stern in the ratio of 9:11. Then
the alteration forward is 9 in. and aft 11 in. Moreover, the
added immersion is 5 in.

If the draught of water, before the weight was placed on
board, was

=341'6 foot-tons,

Then the new draught will be

18 ft. +6 in. -9 in. =17 ft. 8 in. forward
20 ft. +5 in. + 11 in. =21 ft. 4 in. aft.

This is, of course, a first approximation, but will not differ
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materially from the truth if the vessel is of ordinary form.
If considered desirable, values of GM and of the “tons to
alter trim” at the newly found line can be calculated, and
corrections made if they are found to differ materially from
the values used.

96. Effect on the Trim by admitting Water into the
8hip.—In considering this question, we will assume that the
ship is divided into water-tight compartments by transverse
bulkheads, so as to localise the water which is admitted ; for,

-owing to the fluid property of the weight thus added, it
would otherwise distribute itself over the inside of the ship
until its level was parallel to that of the water surface out-
side. In this latter case there would be a change of trim
due to the position which the centre of gravity of the admit-
ted water would occupy, and to the altered position of the
centre of buoyancy of the whole displacement; but as the
case is rarely met with in practice, owing to the space occu-
pied by the cargo or other contents of the vessel (causing the
distribution of the admitted water to be very irregular and
difficult of calculation), and to the usual presence of bulk-
heads, it is not necessary to dwell any further upon it.

There are three principal conditions in which a ship may
be considered to be placed by the admission of water into
her interior.

1. When any compartment 18 filled with water which i8 not
in communication with the sea.

2. When any compartment 18 partially filled with water
which i8 not in communication with the sea.

3. When any compartment has water in it which 8 in frce
communication with, and which can rise to the level of the sea.

‘We will now consider the ¢rim of the ship in each of these
three conditions.

1. In this case the water, being confined, cannot change its
form or position, and hence has the same effect upon the
trim of the ship as any solid body of the same weight, and
in the same position. The water carried in tanks for the
use of the crew or passengers, also any other liquid carried
in barrels or tanks, are instances of this kind. A more
general case is that of water ballast carried in cellular spaces,
or such & compartment as an iron-cased magazine when
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entirely flooded. The double bottoms and smaller compart-
ments of a ship when fitted with an iron crown, and filled
with water by flooding cocks, are also examples of this kind.

When the sron crown of such a compartment i8 below the
water level the condition of communication with the sea does
not affect the question, as the water being unable to alter its
form or change its position, it may be considered either as a
weight carried or a loss of an equivalent displacement at
that part. (See B, fig. 1, Plate XX.)

2. In this case (see D, fig. 1, Plate XX.), the water being
free to alter its form, and therefore its centre of gravity being
free to move within certain limits, the problem becomes
more complicated; and that, too, just in proportion to the
horizontal area of the compartment containing the water.
Still, as the weight remains constant, we are enabled by a
tentative process to arrive at a close approximation to the
alteration of trim produced; it being remembered that, in all
these conditions, we imagine the ship to be floating at rest in
still water when the compartment is partially filled. It will
be easily seen that if we start by assuming the level of the °
water admitted to be parallel to that of the sea, we can deter-
mine the position of its centre of gravity in that position,
and then, by the process described in the preceding Article,
find the alteration of trim produced upon that supposition.
Then if we draw a line, parallel to the new load water line,
for the surface of the water in the compartment (taking care
that the volume remains constant), and then find the altera-
tion in trim due to shifting the centre of gravity of the water,
the result will be a close approximation to the real trim. If
the area of the compartment be large, compared with the
size of the ship, it may be necessary to make a second or
third correction; but this must be left to the discretion of the
calculator.

Instances of the kind just named are found in the cases of
bilge water, and ballast tanks or double bottoms when only
partially filled. Grain or coal cargoes, when the hold is not
filled and due precautions against shifting are not taken, are
instances which apprommate somewhat to that considered.

3. We have finally to consider a case (see 4 and C, fig. 1,
Plate XX.) which has often occurred, and for which due



136 THEORETICAL NAVAL ARCHITECTURE.

provision will be made in every properly constructed ship.
It is such a case as occurs when water is admitted into one
of the compartments of a ship by a hole in the bottom. Now
it is evident that the trim is affected by such an accident in
proportion as the compartment pierced is near either of the
extremities of the ship. Consequently, in Her Majesty’s
ships the compartments at the bow and stern are made as
small as is convenient, and when two consecutive transverse
bulkheads near the extremities are not sufficiently close to-
gether, an iron water-tight flat, below the level of the water
line, is fitted between the bulkheads so as to place the ship
when pierced below that flat in the first condition considered
in this Article (see B fig. 1, Plate XX.), and, if pierced above,
in a far less dangerous condition than if the flat were not there.
In the case we are now considering (4 and C, fig. 1, Plate
XX.) the water flows freely into the ship through an aperture
in the side, and rises to the level cf the sea. It may be that
the whole compartment is filled to that level from the keel
-upwards, or the hole is above a water-tight flat; the principle
" is the same in both cases, the effects differing only in degree.

It will be seen that the ship is then in the same condition
as if the displacement due to the volume of the admitted
water were removed from that part of the immersed body at
which the filled space is situated. If the whole compartment
is filled from the keel to the surface of the sea (C, fig. 1,
Plate XX.), the result is the same as if the ship consisted of
two pieces distant from each other the length of the compart-
ment, yet tied rigidly together by the decks and sides, and if
the water is admitted above a water-tight flat (see 4, fig. 1,
Plate XX.), the two pieces are joined further by a buoyant
block beneath the surface. In both cases the same considera-
tions are involved—the weight carried, and therefore the
displacement remain constant, the centre of buoyancy is
shifted, while the moment of inertia of the load water line is
diminished. The depth of immersion is, of course, increased,
in order that the displacement may be the same as it was
before the support due to the portion of the immersed body,
now filled with water, was removed. We have given, then, the
volume of the space filled as high as the original load water
line, and the position of its centre of buoyancy, the area of
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the portion of the load water line included between the
bounding bulkheads of the compartment, also the total dis-
placement and the position of its centre of buoyancy before
piercing the side of the compartment, to find the new trim
and immersion. The solution of this problem is also neces-
sarily a tentative one.

‘We have first to find the depth to which the ship sinks,
supposing the centre of buoyancy of the admitted water is in
the transverse section which contains the centre of gravity
of the load water line; that is, supposing the ship sinks to a
line parallel to the load line. Let ¥V =volume of water
admitted as high as original load water line, 7'=tons per
inch of immersion at that line, found by neglecting the area of
the load water plane between the bounding bulkheads of the

compartment filled. Then -,; is an approximation to the

depth in inches through which the vessel sinks. If the “tons per
inch ” remain constant through the increased immersion, then

V. . o
7718 the exact depth; if not, a second approximation must be

made by using the new line in a somewhat similar manner to
that described in preceding Art. If the additional immersion
is considerable, so as to alter the form of the load water plane,
and therefore shift* its centre of gravity, the position of the
latter must be computed, and the usual forward moment due
to the fullness of the ship aft must be obtained in the manner
likewise explained in the preceding Article. Let this be V'
(c,—c), using the same symbols to indicate this movement of
the centre of gravity of the plane as before. Now, consider-
ing the centre of buoyancy of the water admitted to be in its
real position, viz., at a distance / on the fore side (say) of the
centre of gravity of the load water plane, we bave ¥ x [ =the
fore moment produced, and l_’;_l = the distance the centre of
buoyancy is moved forward.

Now, in order to determine the effect upon the trim due

* The centre of gravity of the load water plane is already shifted
from the position it occupied prior to the loss of area between the
bounding bulkheads of the compartment filled. It is with regard to
these already shifted positions that we determine the new position
due to extra immersion.
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to a forward moment of ¥V x /, we must find the value of F, or
the moment to alter trim one inch in the new condition, and
hence we require the new value of M@. To do this, we must
find the moment of inertia of the effective load water plane
(<.e., the new load water plane minus the part of it in the filled
compartment), and then divide by D in the ordinary way.
For example, if in the ship whose longitudinal metacentre is
calculated upon Table I. a compartment extending from
ordinate 8 to ordinate 10 is filled with water so as to practi-
cally cut it off from the ship in the way we are considering,
then, supposing the ordinates of the load water line to be
unchanged, we should have to multiply the ordinates 138,
128, and 10°3 by Simpson’s multipliers 1, 4, and 1, and then
by the same multipliers for moments and moments of inertia
as are used in the Table, and, finally, treat the sum of the
functions similarly to those of the whole plane, and deduct
the result from 112,693-68 (see Table I.), whereupon
dividing the remainder by the displacement 62058, which
remains unaltered, the quotient would be the value of BM
in the new condition of the ship. The vertical position of
B has next to be found, to do which we must find the centre
of buoyancy of the water in the compartment to the height
of the original load water line; having found which, the new
position of B, vertically, is determined in the manner de-
scribed on page 132. From this the height of M above G is
at once found, as the position of @ does not change. Having
MG—the value of F, is found from the equation
- i%g‘:z‘v% (See Art. 94, and fig. 2, Plate XIX.)
where WL is the length between perpendiculars.
But the total moment altering the trim is
Vxl+V(c,-c),
and thus the total alteration of trim in inches,
Vxl+V(c,-c)
[
which in ordinary cases, where the extra immersion is not

very great, becomes
Vxt
-
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The addéd immersion being ;: then supposing the original
draught of water to be

Forward = A.

Aft = B.
the new draught is (supposing the alteration to be equal
forward and aft).

V  Vxl
' Forward = A+T+W,_
V Vxl
Aft = B+—T""§F;o

Should the alteration of trim be considerable, it may be
necessary to use the above result as a first approximation,
and obtain the values of F; and 7T for a new load line,
starting with this approximate line as a basis. From this a
suificiently correct result for all practical purposes will be
obtained.

97. Effect on the B8tability by moving a Weight
already on Board.—As the stability of a ship increases as
the value of MG increases, hence as the point 3 remains
constant while the draught and trim is unaltered, it is evident
that by moving a weight, already on board, in a vertical direc-
tion, the value of MG, and therefore the stability, is increased
if the weight is lowered and decreased if the weight is raised.

If, however, the weight is moved longitudinally as well as
vertically, the height of 3/ above the water line will vary
according to the form of the new load water plane and the
alteration in the depth of the centre of buoyancy. Usually
it requires a considerable moment to be produced by the
longitudinal movement to cause any very appreciable differ-
ence in the height of M above the load water plane; hence,
practically, it is sufficient to say that the movement of a
weight on board a ship increases or diminishes the stability
according as the new position, occupied by the weight, is
below or above the level of its original position.

98. Effect on the Stability by adding or removing a
Weight.—If the weight added or removed is considerable,
the surface stability must be calculated (see Art. 70) to the
new load water line, the latter being determined by the method
explained in Art. 95. Then the new position of the centre of

-
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gravity of the ship must be found, and the eorrection due to its
position made in the manner shown in Art. 88, whereupon
we have the actual statical stability in the new condition
with the weight added or removed.

To find the new position of the centre of gravity—Let d
be the distance of the original position below the load water
line, and @ the distance of the added weight P below that
line, then d, the distance of the new centre of gravity below
the original load line is

For mederate alterations of lading, it is unnecessary to go
through this laborious process, as there is an easier method
of finding the alteration of stability with sufficient accuracy.
This method, due to Mr. F. K. Barnes, we now proceed to
give in the words of that gentleman.*

“Since the positions of the centres of gravity of ships are
in general but roughly approximated to, it becomes important
to be able to dispense with the knowledge of the exact position
of the centre of gravity of a ship, and to compare the stability
under given conditions with the stability under other con-
ditions; the difference of the two cases being known.

“In fig. 2, Plate XX.—Let /L represent the water line
of a ship, G her centre of gravity, B her centre of buoyancy.

“Let the ship be now inclined about the fore and aft
horizontal axis through an angle 7. Let B’ be her new centre
of buoyancy.

“Through B’ draw B'M vertical, and cutting the original
vertical through B in the point f. Also through B and ¢
draw BP and GZ, respectively, perpendicular to B'M.

“Then if /7 represent the displacement of the ship—

Stability = WxGZ
W x GM sin I
W x(BM-BG) sin I
‘W.BM sin I - W.BG sin I

“Now W.BM sin I=W.BP=b.4., where A represents
the volume of either of the wedges of immersion or emersion,
and b the distance between the centres of gravity of these
wedges.

* See Shipbuilding, Theoretical and Practical, p. 54.

i
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¢ Suppose the ship to be once more upright; and let a
weight w (the same unit being taken as for the displacement
W) be placed on board of her, causing her to sink in the
water until W,Z, becomes the new water line.

““ Let the distance of the common centre of gravity of the
weight or weights w added, above the original centre of
buoyancy, be represented by a.

“Let also ¢ represent the distance of the centre of gravity
of the additional displacement, above the original centre of
buoyancy.

“Let B, and G, represent the new centres of buoyancy
and gravity, respectively, of the ship.

“ Let the ship be now inclined as before, about a fore and
aft axis, through the angle I. The centre of buoyancy is
found at a point B’}

“Through B, draw B\ M, vertical, cutting the original
vertical BGM in M; and through B, and @, draw B, P, and
G, Z,, respectively, perpendicular to ﬁ’lMl.

¢ The stability is now represented by—

(W +0) G,Z, =(W+w) G, M, sin I
=(W+w) (B,M, -B,G,) sin I
=(W+w) B,M, sin I - (W-+w) B,G, sin I......(A)

“But (W +w) (B, M, sin I)=(W +w) B P,=b4,, where
A, represents the volume of either of the wedges of immersion
or emersion, corresponding to the water line W,Z,, and &,
represents the distance between the centres of gravity of
those wedges.

Again B,G, =BG +GG, -BB,;

.*. (W+w) B,G; =W.BG +w.BG+ (W +w) GG, — (W +w)BB,.

But w.BG + (W +w) GG, =the moment of the weights added (w).

about the original centre of buoyancy =wa.

Also (W +w) BB, =the moment of the additional displacement
about the original centre of buoyancy =we.

“Substituting these values for their respective quantities
in equation (A); the stability of the ship at the inclination
I corresponding to the water line W,L,—

=b,A;-W.BGsinI-w(a-c¢)sinL........... (B)

¢ The stability corresponding to the water line WZ, when
the inclination of the ship is / from the upright. position—

=bA-W.BGsin L......ccovvmerrnrinna. ©)
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‘Subtracting equation (C) from (B) it is found that the
difference of the stabilities of the ship under the conditions
above stated— | :
=bA;-bA-w(a—c)sinI.................. (D)

“Ships are commonly of such a form in the neighbourhood
of the load water line, that, with a slight increase in the
draught of water, the form of the new load water section is
nearly the same as that of the original load water section.

¢ Also if the ship be inclined about a fore and aft axis,
. through the same angle, the wedges of immersion respectively
corresponding to the two draughts of water will be very
nearly the same; that is, see equation (D),

’b, A, is practically equal to bA;
and the difference in the stability of the ship at the two
draughts of water becomes = —w (a—¢) sin /.

“Consequently, if the centre of gravity of the weights
added be situated in the same horizontal plane as the centre
of gravity of the additional displacement (that contained be-
tween the water lines W,Z, and WLZ), in which case a=c¢,
the stability of the ship will be the same at the two draughts
of water.

“If the centre of gravity of the weights added be above
the centre of gravity of the additional displacement, i.e., if
a be greater than ¢, the stability will be diminished by the
quantity w (a—c) sin I. If the centre of gravity of the
weights added be below that of the additional displacement,
in which case c is greater than a, the stability is increased
by the quantity w (¢ - a) sin L

“If ¢c—a=GM, the height of the metacentre above the
centre of gravity will not be altered by the additional
lading.” :

The author then proceeds to show that,  In a ship floating
at a given draught of water, if some of her weights have to
be removed, the alteration in the stability by the removal
of the weights can also be ascertained in the same manner.”
The following are the results obtained :

«If the ship be of such a form as to give

bA=b,A,.
Then w (@ - ¢) sin 7 will represent the increase in the stability
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by the removal of the weights. That is, when a is greater
than ¢, or the centre of gravity of the weights removed is
situated above the centre of gravity of the diminished dis-
placement (between WL, and WL), the stability of the ship
i8 increased by the removal of the weights.

“When the centre of gravity of the weights removed is
situated in the same horizontal plane as that of the diminished
displacement, the stability is the same as it was before the
weights were removed.

“When the centre of gravity of the weights removed is
situated below that of the diminished displacement, in which
case ¢ is greater than a, the stability of the ship is diminished,
by the removal of the weights w, by the quantity w (c —a)
sin I. If ¢ — a = GM, the height of the metacentre above the
centre of gravity is not altered by the removal of the weights.”

As already stated, when the weight or weights added cause
the ship to sink to such a depth that there is a material
alteration in the form of the load water plane, and hence in
the forms of the wedges of immersion and emersion, it becomes
a laborious task to calculate the stability in the new condition.
As, however, it i8 not so much the actual stability that is
required as the relation between the altered and the original
stabilities, an easy method of determining this alteration has
been suggested by Mr. F. K. Barnes.* This method we will
now state in the author’s words:—

“In ships of a common form the ratio of the stability of
one ship to that of another will be always substantially the
same for ordinary equal inclinations, and nearly the same as
the ratio of their stabilities when the inclination is evanescent.
In the latter case the points in which the verticals through
the centres of buoyancy corresponding to the inclined posi-
tions cut the original verticals through the centres of buoy-
ancy corresponding to the upright position, are the meta-
centres.

¢ Referring to fig. 2, Plate XX., suppose the angle I to
be exceedingly small; then the points M and M, are the
metacentres corresponding to the water lines WZ and W,L,,
respectively.

« Using the same notation as before, and taking the case

* Shipbuilding, Theoretical and Practical, p. 56.
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where the weights w (measured in cubic feet of sea-water),
are put on board of the ship whose displacement in cubic feet
of sea-water is W—
The stability corresponding to the water line WZ

=W (BM-BG) sin I,

and the stability corresponding to the water line W, Z, is
=(W+w) (B,M-B,G,)sin I,

and these may be represented relatively by

W.BM - W.BG and

(W +w) B,M, - (W +w) B,G,, respectively.

“Now W.BM may be obtained from the table used for
calculating the height of the metacentre corresponding to the
water line W L. (See Table 1.)

¢ Let this quantity be represented by M.

“ Also (W +w) B, M, may be taken from the table in which
was calculated the height of the metacentre corresponding to
the water line W,L,. Let thls quantity be represented by
M, then as before

B,G,=BG+GG, - BB,

and (W +u)B,G, = W. BG +w.BG + (W +w)GG, — (W +w)BB,
=W.BG+w(a-c),

where o is the distance of the centre of gravity of the
additional weights w put on board above the original centre
of buoyancy; and c is the distance of the centre of gravity
of the displacement between the water lines WL and W,L,
above the original centre of buoyancy.

¢ The stability of the ship in the two conditions may there-
fore be represented by

- W.BG,
and M, -W. BG w(a— c) respectively,
and the alteration in the stability, by the addition of the
weights, may be represented by
M,-M-w(a-c).

¢ And if the position of & be known or assumed, the pro-
portionate loss or gain of stability will be readily found.”

99. Effect on the Stability by admitting Water into the
Ship.—In considering this question we must make the same
assumptions with regard to the division of the ship into
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water-tight compartments, as when considering the effect on
the trim (see Art. 96), with the further addition of longi-
tudinal divisions which do not affect the principles involved
in calculating the trim or longitudinal stability.

I. If the water is admitted into a compartment with a
water-tight crown so as to fill it, then if the crown is always
below the level of the sea, whether the water in the compart-
ment is in free communication with the sea or not, its effect
upon the stability is the same as that of any solid body of
the same weight whose centre of gravity is similarly situated.
(See preceding Article.)

II. If the compartment is not filled, and the water is not
in free communication with the sea, the centre of gravity of
the water moves towards the same direction as that to which
the ship is inclined, and thus the upsetting moment due to
the position of the centre of gravity of the weights in the
ship is increased. The determination of this upsetting
moment at any angle of heel involves a calculation of the
moment due to the position of the weights previously in the
ship added to the upsetting moment due to the weight and
position of the centre of gravity of the water in the hold
when at that angle. The positions of B and A will also be
affected by the increased immersion, and thus the surface
stability at the particular angle must also be calculated anew.

An instructive method of considering the question is to
determine the initial stability of the ship in the case under
notice. A comparison of this with the initial stability, as
determined by the metacentric method in the normal condi-
tion of the ship without water in the compartment, will
give a criterion whereby the stability of the ship may be
judged. Any investigation of this kind, however, neglects
the dynamical effect of the rolling of the water from side to
side, which causes the ship to heel over farther than a statical
consideration of the question would provide for; the dyna-
mical effect being, indeed, the great source of danger in any
case of shifting cargoes of a fluid or semi-fluid character.
This dynamical effect is beyond the reach of prior calculation,
as the period of the vessel’s rolling cannot be predicted with
certainty. -

To determine the value of G in a case of this kind, we

4B K
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may proceed as follows:—Fig. 3, Plate XX., shows a trans-
verse section of a ship which is supposed to be inclined
through a small angle 6, the figure being purposely exag-
gerated for the sake of clearness. WL is the upright and
WL, the inclined load water planes when the water is in
the ship; the angle being supposed to be small, these planes
are similar in form and of equal area. w! is the surface of
the water in the hold when the ship is upnght and wl, is
its inclined surface. The whole dlspla,cement is termed D,
and d is the volume of the water in the hold. The centre of
buoyancy of the former is shown at B, and of the latter at b,
while their positions in the inclined condition are shown at
B, and b, respectively. M is the metacentre obtained by a
perpendicular from B,, and m that obtained by a perpen-
dicular from &, in the inclined conditions. It will be
remembered. that a small angle of inclination is being con-
sidered. The centre of gravity of the ship is shown at G.

Usmg the symbol o« to represent the expression “varies

" we find
Moment of stability at angle ¢ oc (D.GM - dGm)
D(BM - BG) - d(bm - bG)
ocDBM d.bm - (D.BG - d.bG).
But using the expression I, to represent the moment of inertia
of the load water plane, and I, that of the plane of the sur-
face of the water in the hold, we have
D.BM=I;
and d.bm= I
u]soDBG d.0G= (D d)pG,

where (3 is the centre of buoyancy of the displacement between
WL and wl.

Hence moment of stability « I, - I, - (D - d)8G

] NN — 1 2
and the virtual GM= D-d

The moment of stability at an angle 6, so small that m and

M may be considered fixed, is .
GM(D - d) sin 4.

It is obvious that this investigation affords only as much

information as can be obtained by the use of the meta-
centric method; besides which, the water in the hold being
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free to move, the actual stability at a small angle of heel will
be less than the above unless the vessel is inclined very slowly.

ITI. If the compartment is filled with water to the level
of the sea—with which it is in free communication by means
of a hole in the bottom, and its motion as the ship heels is not
constrained by a water-tight crown, but its surface is always
at the same level as that of the sea—then the ship is in the
same condition as if the portion of the immersed body be-
tween the bounding bulkheads was removed, and support
due to the displacement of that portion taken away (see Art.
96). In this case the ship sinks deeper into the water until
the volume of displaced water above the original water line,
outside the bounding bulkheads, is equal to the volume of
displacement lost by admitting water into the compartment.

In a paper read before the Institution of Naval Architects,
in the year 1867, Mr. F. K. Barnes has investigated the
effects on the stability of a vessel, of which the transverse
vertical sections are all equal rectangles, due to filling water-
tight compartments with water, using different ratios between
the depth or draught of water and the breadth of the vessel.
These investigations are of three kinds, viz., for compart-
ments bounded by transverse and longitudinal water-tight
bulkheads, and by horizontal water-tight flats. As the paper
is too lengthy for complete insertion, we will content our-
selves with stating the results arrived at therein. It must
be remembered that in each case the compartment is supposed
to be quite empty before the water is admitted—that being
the most unfavourable supposition—also that the thickness
of the sides and frames are neglected, these being supposed
to be of iron. The centre of gravity is also assumed to be
above the centre of buoyancy, as is the case in nearly all ships.

First,when a ship is divided into water-tight compartments
by transverse vertical bulkheads, the distance between which
are yix, &, %, and } the length of the ship—a separate
result being obtained for each case.

““ When the breadth is equal to the depth, and to twice the
depth, the height of the metacentre above the under side of
keel is greater after the compartment is injured than it was
before. Consequently, also, the stability of the ship is in all
these cases greater after the compartment is injured than it
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was before. It follows, therefore, that if sufficient freeboard
be given to such ships to admit of their immersion being
increased to the extent due to the volume of any one or more
of its compartments, they will be quite safe when the com-
partments are injured.

It also follows that ships of the above form and relative
proportions would be lost by going down bodily in the water
and losing their freeboard, and not from losing their stability
and turning over.

“The same remark is practically applicable to the case in
which the breadth is equal to three times the depth.

“ Where the breadth is equal to four times the depth, the
metacentre falls slightly betwcen the limits taken ; but it
rises again as the bulkheads are placed nearer the extremities
of the ship, 7.e., when they are more than half the length of
the ship apart.

“ As the breadth increases above this in proportion to the
depth, the relative depression of the metacentre by injury to
the compartments will be increased; but it must be borne
in mind that in such cases the metacentre, before injury to
the compartments, would be exceedingly high.

“The Second case is that of an iron ship divided into water-
tight compartments by longitudinal vertical bulkheads.”
Two bulkheads are chosen, each being taken at the several
distances of 35, v %, and 4* the breadth of the ship,
measuring from her side, and a communication is assumed to
be “made from side to side, so that when the compartment
on one side is filled, the compartment on the other side is
also filled.” The results are as follow :—‘ Where the breadth
is equal to the depth, the height of the metacentre above the
bottom of the vessel is greater after the compartments are
filled than it was before; and since, from the suppositions we
have made, the centre of gravity of the ship itself is unaltered,
the ship, if stable before the compartments are filled, will be
more stable after they are filled.

“ When the breadth is equal to twice the draught of water,

* When the bulkheads are each at one-half the breadth of the
vessel from the side, they coincide at the middle line, and thus the
vessel is filled with water. The centre of buoyancy and metacentre
then coincide at an infinite distance above the keel.
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the metacentre descends when the vertical longitudinal bulk-
head is very close to the ship’s side, and it reaches its lowest
position when the bulkheads are fixed somewhere between
one-fourth and one-tenth of the ship’s breadth from the ship’s
side. .

“From this position, as the bulkheads are placed nearer
to the middle line, the metacentre continually rises as they
approach the middle line. The same remarks apply when
the breadth is equal to four times the draught of water ; but
the lowest position of the metacentre will not be reached
until the bulkheads are relatively much nearer to the middle
line than when the breadth of the ship is equal to twice the
draught of water.”

The Third case is that of a ship divided into water-tight
compartments by horizontal flats, each compartment being
made to communicate with the upper deck of the ship by
means of small water-tight trunks.

The simplest condition is when a compartment between
any two horizontal flats becomes suddenly filled with water.
This case has already been considered.

“If any of the lower compartments of such a ship were to
become filled, it is evident that the stability would always
be greater after the compartment was filled than it was be-
fore, and would increase with the size of the compartment,
and also with the distance of its centre of gravity below the
water.”

The case remaining “is that in which a ship, divided into
water-tight compartments by horizontal flats, has one of these
compartments only slighly injured.” We have already re-
ferred to this condition; the results which Mr. Barnes has
investigated are as follows:—

“ When the upper surface of a horizontal flat, situated at
the load water section in a ship of the usual form (of which
the centre of gravity is above the centre of buoyancy), be-
comes covered only to a slight depth with water, the ship
will not swim with its longitudinal diametrical plane vertical,
since the equilibrium of the ship when that plane is vertical
is one of instability.

“The same is also true of a ship with its sides vertical
throughout, at whatevcr height the water-tight flat, which is
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covered with water, may be situated, provided the centre of
gravity is above the centre of buoyancy; and more generally
still when, under similar circumstances, the moment of inertia
of the plane of the surface of the water on any deck about a
longitudinal axis is equal to or greater than that of the load
water section about its longitudinal axis.

“Such ships, in the condition above described, would
generally have two positions of stable equilibrium, one on
each side of what is the upright position before the water is
on the deck, and the inclination of the two positions of
equilibrium to the upright position would increase with the
quantity of water on the deck.”



CHAPTER 1IV.

CALCULATIONS OF THE WEIGHTS AND CENTLES
OF GRAVITY OF SHIPS.

Preliminary Calculations: A imation to Wej, of Hull—To
Centre of Gravity—To of Buoyancy—To valuc of GM.
Detailed Calculations: Armour — Backing — Deck Plating —
Bottom Plating—Expansion of Bottom—Bottom Planking—
Deck Bea.ms—g ting—Flats—Bulkheads—Transverse Framing
Method with Curves—Longitudinal Frames—Fittings.

100. Arithmetical Calculations of the Weights and
Centres of Qravity of Ships.—When a ship is built,
equipped, and afloat, her weight is accurately determined by
calculating the weight of the volume of water displaced by
the ship when floating at the observed draught of watcr.
The sheer draught used in this calculation should be copied
from the mould loft floor, as the lines there drawn represent
the actual form of the ship with greater accuracy than the
lines on the construction sheer draught. To ensure still greater
accuracy, the form of the body is sometimes copied from
the ship when on the building slip, or when in dock; but
owing to the difficulty of “ taking off” the ship in this way,
and the liability to error in the process, the lines on the
mould loft floor are generally employed, the work being
simpler, and the result usually as accurate.

The centre of gravity of the ship being in the transverse
section of the ship which contains the centre of buoyancy,
and the position of the latter having been calculated from
the drawings just referred to (see Table 1.), the longitudinal
position of the former is therefore at once known.

The vertical position of the centre of gravity is found by
the method described at Art. 90.

If the ship is incomplete when the draught of water is
observed, and the experiments made, or if it is desired to
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obtain her weight and the position of her centre of gravity,
when any of the items of the equipment are removed, the new
displacement, and the new position of the centre of gravity
are found by the methods described in the preceding chapter.

In this chapter we propose considering the method of cal-
culating the weight and position of the centre of gravity of
a ship from her drawings befors she ts built, or even the
design is given to the builder; in order to ensure that she
shall float at the required draught and trim, and have the
requisite stability when equipped and afloat.

101. Preliminary Calculations.—We may here remark
that in the earliest stages of a design it is necessary that the
designer should know, approximately, the weight of the pro-
posed ship, and the position of its centre of gravity. This
is not the place to notice the considerations which influence
the naval architect in deciding upon the protection, arma-
ment, speed, stability, etc., necessary for the ship of war; or -
the accommodation for passengers, cargo space, speed, etc.,
for the merchant ship which he is designing. Even the ratio
of length to breadth, and the most suitable draught of water
are also questions which involve considerations of such im-
portance, and demand so much space, that due justice could
not be done to them in the limits of this small volume.
Indeed, it rarely becomes the duty of the naval architect to
make a thorough investigation of these principles in fixing
upon his dimensions, for he is usually aided by the experience
obtained from other vessels which partake, in some respect
or another, of the characteristics of the intended vessel.
Even the question of the scantlings employed in the con-
struction, upon which the weight entirely depends, is usually
settled by reference to other vessels whose behaviour at sea
is known, and whose strength has been proved; although
the skilful designer is always on the alert to make such im-
provements in the sizes and arrangements of the materials
employed as shall reduce the weight, while the strength of
the vessel is at least retained at its original amount. In the
merchant navy the scantlings are usually fixed by the Rules
of Lloyd’s Register of Shipping, or of the Liverpool Registry.

In explaining the manner in which the designer proceeds
to determine approximately the weight of a ship that he is



PRELIMINARY CALCTLATIONS. 153

about to design, and the position of its centre of gravity we
will take the case of an ironclad ship, as that will include all
the considerations that ever occur in any vessel whatever.

Let us suppose then that it is required to design an iron-
clad vessel for any special kind of service, and that by the
aid of experience already acquired, it is believed that a certain
number of guns, protected by a certain thickness of armour
and backing, with armoured decks of a specified thickness,
also ammunition, stores of all kinds, engines and boilers to
give the required speed, and coals enough to last a certain
time at that speed, can be carried by a ship of a certain length,
breadth, and draught of water, having lines sufficiently fine
to render the required speed possible, and sufficiently stable
to be seaworthy and safe. 'We have to discover whether
such a belief is accurate.

The question of engines, boilers, coals, fineness of lines, and
speed, will be considered in Part V.; but at present we
will take it for granted that these are determined, and i¢
remains to be discovered whether the weights can be carried
upon the trial displacement, and whether their common centre
of gravity is suitably situated for the required stability and
trim.

The question of scantlings can be readily settled by refer-
ence to specifications of ships of similar character already
built, making any alterations suggested by experience, or
rendered necessary by circumstances.

The available displacement is approximately found by
multiplying together the proposed length, breadth, mean
draught of water, and a co-efficient of fineness of displace-
ment thought suitable for a vessel of the kind being designed,
in order to attain the required speed. A Table of these co-
efficients for typical vessels is given in Art. 59.

For the purposes of calculation it is desirable to divide the
total weights in a ship into two divisions, viz., Aull and
equipment. The former includes all that composes the ship
proper, without masts, rigging, anchors, cables, etc. The
latter consists, as the name implies, of the stores and outfit,
including provisions, rigging, guns, ammunition, and cargo.
The Aull of an ironclad is again subdivided into the Aull
proper and armour. The former consists of the structural
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parts of the ship, and the latter of the protective material,
such as armour plates, backing, and protective deck plating.
The Aull proper is the first element whose weight and centre
of gravity is calculated. This is generally the largest item
of the total weight even in an ironclad ship, while in a
merchant vessel it includes everything but the equipment.
102. Approximation to Weight of Hull.—An excellent
approximation to the weight of hull proper is obtained by
means of a comparison with the corresponding weight in a
vessel of similar description and scantlings already built; the
latter being, of course, found by deducting from the displace-
ment at any draught those weights which do not belong to the
hull proper. This approximation is found by multiplying the
girth of each vessel around the upper deck, sides, and bottom,
at midships, by her length on the load water line; then use the
ratio: As the girth of the vessel already built is to the girth of
the proposed vessel, so is the weight of hull proper in the former
to that required of the latter. In the case of an armoured
vessel, or one in which items occur which do not occur in
the vessel whose weight — neglecting the equipment — is
known; or when there are fittings or weights of any kind in
the construction of the known ship which will not be required
in that proposed; it is usual to calculate the weights of these
portions in the case selected and deduct them from the total
weight of the hull, and then, using this weight, by the aid of
the ratio just referred to, the weight of the corresponding
portion of the structure of the proposed vessel may be
approximately found. For instance, in the case of an
armoured ship whose weight it is required to determine
approximately in the early stage of a design. Suppose the
total weight of another ironclad ship of rather different
dimensions, but of about the same scantlings as that which
is to be designed is known., First, deduct from the total
displacement all the weights constituting the equipment;
and the remainder will be the weight of the hull of the
ship. Next calculate the weights of armour, backing,
protective deck plating, and any other portions of the_ship
which do not belong to the hull proper, and deduct these;
the remainder will be a weight of hull which can be used
for comparison. Obtain the products of the lengths and
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girths in the two cases, viz., those of the known ship and
of the design, and by means of the ratio thus found deter-
mine the weight of hull proper in the proposed ship. Where-
- upon knowing the extent and thickness of armour, backing,
etc., proposed for the intended ship, their weights can be
calculated, and then when added to the approximate weight
of hull proper, found by using the ratio, the total weight
of the hull is determined. By adding to this the weights
required for equipping the ship for her intended - service, the
total displacement which is necessary to float the proposed
vessel, at the draught of water fixed upon, is at once known.
By comparing this result with the displacement already
found, we are able to discover whether the designer’s inten-
tions are feasible, and if the displacement is not enough,
we have then to find how much the ship must be either
lengthened widened, deepened, or the lines filled out, accord-
ing to circumstances, in order to get the necessary displace-
ment; or how the weight of the hull or equipment may
be reduced.

103. Approximation to position of Centre of Gravity.—
‘While making the preceding preliminary calculations for the
approximate weight of hull of the proposed ship, we might
at the same time have determined, approximately, the position
of its centre of gravity. The methods and artifices adopted in
making the several calculations will be referred to hereafter
in this chapter; we are now merely pointing out the means
by which approximate results may be found, which will be
sufficiently correct to enable the designer to proceed with the
drawings, etc., of the vessel, without having to make any
considerable alterations or modifications when the results of
the detailed calculations are known.

The position of the centre of gravity of the somewhat
similar ship is supposed to be known, so that having her
drawings before him, the calculator is able to determine pretty
accurately the positions of the centres of gravity of the
several items of the equipment, also of the armour, backing,
protective deck plating, etc., which he removes from the
ship in order to reduce her to a state whereby a comparison
may be instituted with a similar part of the intended ship.
By this means the height of centre of gravity above the under
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side of keel,* also its longitudinal position with reference to
the middle of her length on the load water line, may be found
in the stripped and therefore comparable state. Then for the
height of the centre of gravity of the similar portion of the
intended ship above the under side of keel institute this
ratio: As the depth of the known vessel from upper deck
to under side of keel is to the depth, similarly measured, in the
design, so is the height of centre of gravity above keel in the
known vessel to the similar height in the design. Also for the
longitudinal position of the centre of gravity: As the length
on the load water line of the known ship is to the length, simi-
larly measured, of the design, so is the distance, on the fore or
after side of the middle of the length, of the centre of gravity
in the known vessel to the similar distance in the design. It
may be remarked in passing that this centre of gravity is
almost invariably abaft the middle of the length on the load
water line. It is necessary that the two vessels should have
about the same trim, or else this ratio will not be useful.
As already remarked, these are merely approximate positions ;
but they are generally very trustworthy. By taking into
account the vertical and longitudinal positions of the centres
of gravity of the armour, backing, etc., also of the items of
the equipment, the vertical and longitudinal positions of the
centre of gravity of the complete ship is approximately found.

104. Approximate position of Centre of Buoyancy.—
In order that the preceding knowledge may be useful to the
designer, it is necessary that the position of the centre of
buoyancy of his design may also be approximately known;
for unless the centres of gravity and buoyancy are in the
same transverse section, the ship will not float at the intended
trim.

For the longitudinal position of the centre of buoyancy, a
similar method may be used as for the centre of gravity:
As the length, on the load water line, of the known ship is
to the distance of the centre of buoyancy from the middle of
the length, so is the length on the load water line of the
design to the position of its centre of buoyancy with regard
to the middle of its length. Should the centres of gravity

* By the term keel, as employed in this chspter, must be under-
stood a flat keel plate, as of an iropclad, unless 1t is otherwise stated,
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and buoyancy not be in the same section, then it shows that
either the form of the body must be altered, or else that
weights on board must be so shifted as to produce a change
of moment, in the required direction, equal to the product of
the displacement and the distance between the two centres.
In this case also it is necessary that the ships should have
similar trims. For the vertical position of the centre of
buoyancy: As the mean draught of the known ship is to the
height of its centre of buoyancy above under side of keel,
g0 is the mean draught of design to the similar height of
its centre of buoyancy. It need hardly be remarked that
this method will not give a good approximation unless the
bodies of the two vessels are tolerably similar.

105. Approximate Value of GM.—If it be desired to
push our approximate calculations still further, and find the
stability which the new ship may be expected to have, the
value of G may be approximately found in the following
manner:—Draw a load water line, by the aid of the length,
breadth, and co-efficient of fineness given; and then calculate
its moment of inertia about the middle line axis, as explained
at Art. 66. Divide this result by the approximate displace-
ment, the quotient will be an approximate value of B.I/;
and the approximate positions of B and G having been
already determined, a good idea of the value of GAf is thus
found. D x GM sin 6, will be a very good approximation
to the moment of statical stability, when 6 is less than 15

degrees.

106. Detailed Calculations — Defensive Materials.— I.
Armour Plating, Weight of.—This is the heaviest and at
the same time one of the simplest items of a ship’s hull
to calculate. Except when fitted under the counter, it has
usually either a flat or a developable surface. Being of
such thick and heavy material, great accuracy is necessary in
taking the measurements; consequently, the form of the
portion of the vessel that is covered with armour should be
carefully copied from the sheer draught. An expansion of the
armour surface should be made, and the edges of the strakes
of plating as well as the butts of the plates drawn thereon.
The thickness of each plate should be marked on the expan-
sion. It is hardly possible that the wrrangement of butts
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made by the calculator should agree exactly with that after-
wards adopted at the ship; nevertheless, the difference will
not, in general, be sufficient to introduce any error of im-
portance. It is desirable that a copy of this expansion
should be furnished to the builder, in order that the arrange-
ment adopted at the ship shall agree, as closely as circum-
stances will permit, with that originally contemplated. In
constructing this expansion, it is desirable that the load water
line should be developed straight thereon, for convenience in
calculating the vertical position of the centre of gravity. The
expansion will usually be of a very simple character, so that it
is not necessary to explain the mode of preparing it; especially
as the question of making an expansion of a ship’s surface
will be explained in Art. 111.

The average weight of a cubic foot of iron being 480 lbs.,
the weight of each plate, or an area of uniform thickness, is
easily found by multiplying 40 lbs. by the number of inches
the armour plate is thick, the result being the weight per
square foot of the plating of that thickness. To the result
so found must be added a percentage for the points of the
bolts and the nuts; this percentage varies from about 2 per
cent. for plates of 9 in, thick and upwards, to 5 per cent.
for plates of 4 in.

10%. Armour Plating, Centre of Gravity of.—In calcu-
lating the positions of the centres of gravity of the component
parts of a ship’s hull, it is desirable to measure vertical dis-
tances from the load water line, and horizontal distances from
the midship section. With regard to the armour plating,
for the sake of greater simplicity and accuracy it is recom-
mended that all the measurements for moments be taken
from the sheer draught, and not from the expansion drawing.
To do this the edges and butts should be drawn upon the
sheer plan, and the butts at the bow and stern marked upon
the half-breadth plan. Transverse armour bulkheads should
be drawn, with their edges and butts, in the body plan. If
this be done the distances of the centres of the plates, both
vertically and longitudinally, from the lines of reference can
be readily measured. The weights and distances of the
centres of gravity of the plates, both vertically and longi-
tudinally, are then entered uvon a tabular form (as shown by
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Table ITL), together with those of the other items in the hull,
in order to obtain the total result.

108. IL. Backing behind Armour—Weight and Centre
of Gravity of —These are obtained in a similar manner to
that stated for the armour in the preceding Anrticle, except
that the cubic contents of the several thicknesses of backing
are calculated, and not the superficies. A weight of 56 lbs.
per cubic foot is usually allowed for teak ; this weight including
the bolts used in securing the backing. It should be remarked,
however, that although 54 1lbs. is often allowed, yet when
the teak is not well seasoned 60 lbs. is nearer the truth.

109. III. Protective Deck Plating is a very considerable
item as regards weight in the construction of recent iron-clad
ships.

As this is not a treatise on practical shipbuilding, we will
not examine the purpose for which this plating is put into
the ship; we have merely to take the drawings which show
such protective deck plating, and estimate its weight and
the position of its centre of gravity. This is very readily
done, as the area and longitudinal position of the centre of
gravity of a surface of uniform thickness is at once found
by the use of Simpson’s Rule. If there is any sheer in the
deck, or round up to the beam, the vertical position of the
centre of gravity of a surface of uniform thickness is found
by multiplying each ordinate of the area by the vertical dis-
tance of its centre of gravity from the load water line; the
sum of the products being divided by the sum of the ordinates
will give the distance of the centre of gravity of the wholo
surface from the line in question. If different parts of a deck
have different thicknesses of plating, the sum of the moments
of the different thicknesses, divided by the total weight, gives
the vertical position of the common centre of gravity. It is,
however, desirable to make a separate entry in the tabular
form for each thickness of plating. Deck plating of one inch
thick and upwards may be usually considered as being fitted
for protective purposes in contradistinction to the plating
which is laid upon the beams for purely structural purposes.

The preceding remark is made in order that the calculator
may be able to properly classify his results; as armour, back-
ing, and protective deck plating do not constitute part of the



160 THEORETICAL NAVAL ARCHITECTURE.

hull proper, but are rather the mail or defensive burden which
the ship has to carry. This distinction is necessary, inas-
much as in preparing a design, a principal object is to carry
the equipment and protective material as economically as
possible, consistent with the necessary strength. Besides this,
as already mentioned, it is not possible to estimate the weight
of one vessel from that of another, or institute comparisons
between the efficiency, in this respect, of different ships
without knowing the weight of the material composing the
hull proper, separately from that of the weights carried. The
weights of the protective materials in unmasted ironclads
now in existence in the Royal Navy range from about 50 to
70 per cent. of the weights of the structural materials, while
in full-rigged ironclads the percentages range from about 22
to 38.

110. Structural Weights—Bottom Plating.—This is the
heaviest element in the hull of an iron ship, whether for war
or mercantile purposes; its preponderance over the other
elements being more marked in the latter than in the former.
By the term bottom plating we include not only that part of
the shell of the ship that is below the water, but also the plat-
ing of the ship’s side, except the armour already considered.
It must, however, be remarked that whereas in merchant
ships and unarmoured ships generally, the mode of plating the
side and bottom is the same; in iron-clad vessels, the side
plating is generally flush, while the bottom is lap jointed.

There are two princip&l methods of calculating the weight of
a ship’s bottom and side plating, viz., by means of an expan-
sion drawing and by measurement from the sheer draught.
The second is by far the preferable course, both as regards the
weight and centre of gravity; for owing to the undevelopable
nature of the surface it is impossible to obtain a sufficiently
good approximation to the area, also the vertical position of
the centre of gravity cannot be easily calculated from such a
drawing. The method by measurement is therefore that
generally used, one or two different modes of procedure being
adopted, as we shall show presently. We will, however, first
show how expansion drawings of a ship’s bottom are con-
structed.

# 111. Expansion of Bottom.—The best method is by cut-

P
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ting and fitting a sheet of thin and flexible paper so as to
exactly cover the surface of a model of the ship. This method
is not possible without the model, and as that is not usually
made in the early stages of a design, we may pass it over
without further notice. It is, however, evident that the
result, so far as the area is concerned, is very accurate, and
the centre of gravity may be readily and correctly calculated
from the model itself, if the edges of the plates are drawn
thereon.

For an approximation to the expansion of the surface the
following method is often adopted:—Draw a number of
diagonal lines* in the body plan of the sheer draught, about
the same distance apart at the midship section as the level
lines, the diagonal lines being as nearly as possible square to
the square stations. Draw in the half-breadth plans the
rabatments of these lines. Then bend some narrow strips of
paper around these lines, and mark upon the strips the inter-
sections of the several square stations, also the stem and stern
post. Next, bend some narrow strips around the square
stations in the body, and mark upon them the intersections
of the several diagonal lines, also the middle line of the keel.
Then draw a straight line on a sheet of paper to represent the
middle line of keel, and set off upon it the positions of the
several square stations. Pin the keel extremity of each
square station strip of paper to the position of that square
station on the keel line. Next, pin the first diagonal strip
of paper to the midship section strip, with the corresponding
points on them together, and keep the midship section strip
square to the keel line. Also, pin the diagonal strip to the
other square station strips with the respective points coin-
cident, the whole being pinned to the sheet of paper and
drawing board. Proceed similarly with the other diagonal
strips, observing that it will be necessary to bend and distort
the square station (except the midship station) and diagonal
strips in order that the respective spots on both may coincide
and lie flat on the paper. When all the strips are pinned
down, a pencil line drawn round the boundaries will then
inclose an approximation to the area of the bottom. Pencil
lines drawn against the sides of the square station strips will

ZLevel lines are often used instead of diagonal lines.
B L



162 THEORETICAL NAVAL ARCHITECTURE.

show the positions of the respective square stations when the
bottom is approximately developed in this way. -

In No. 3 of the Annual of the Royal School of Naval
Architecture will be found a method of making an expansion
of a ship’s bottom suggested, we believe, by Mr. Crossland,
one of the chief constructors of the Navy. In explaining his
method the writer says:—

¢The ordinary mode of making an expansion of the bottom plah‘n%
or planking—for obtaining the area of its surface, which consists o
taking the lengths of a series of level lines, and of a series of trans-
verse sections, and making their intersections meet on a flat surface
by means of two sets of strips of paper—is a very troublesome busi-
ness, and the process is not correct in principle. e water lines and
sections, if traced on the model, would divide the surface into a
number of four-sided figures, having their sides inclined at different
angles. To represent any one of those figures on a flat surface it
would be necessary to measure the lengths of the four sides, and at
least one of the angles between them. In the usual way of making
the expansion, the sides are correctly measured, but no means are
adopted for obtaining the angle referred to. The angles in the
expanded drawing are determined by making all the quadrilaterals
fit into one another and form one continuous area. And these angles
do not correspond to those on the surface of the model. In my
o¥yinion, an approximation of the area may be drawn out in the form
of an expansion which is as nearly correct as an ordinary drawing
can be made, and on a perfectly obvious and simple plan.

‘“For instance, let ab and (ﬁg. 1, Plate XXI.) be two sections.
Draw be and ad as nearly perpendicular as possible to both sections,
at such a distance apart that ab and c¢d may be regarded as nearly
‘straight lines. Then these lines, when traced on the surface of the
model, will be very nearly perpendicular to each other. To find the
area of the inclosed space, therefore, it will be only necessary to
obtain the lengths of bc and ad, and then construct the figure thus:
Make (in fig. 2) AD=true le:gth of ad ; draw AB and DC perpen-
dicular to AD; make AB=ab, and DC=cd; join BC. This figure
will re%resent very nearly the area (not the form) of the surface, in-
closed by the four lines on the model.

‘‘To apply this to the curved surface of a ship, draw in the body
a series of curved lines, at convenient distances, square to the sec-
tions at the other points of intersection, as shown in fig. 1, Plate XX1.
Then run off the true I s of these lines as bent diagonals, Then
begin with the lowest, and set off on the stations the square breadths
of the lowest strip. Draw a line thro:ag]h the point thus obtained,
and apply the lengths of the first diagonal on this line, starting from
the midship section, and setting off the expanded positions of the
stations. second set of breadths must be set off from these points
perpendicular to the line just drawn, and a new line through the
second line of points so got. The length of the second expanded line
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must be set off on the line last drawn and the intersections of the
sections marked as before. This will add to the drawing the area of
the second strip of the bottom, counting from below. This operation
must, of course, be repeated till the whole expansion is completed.
A water line can be put upon this expansion, observing by measuring
its distance above or below any of the curved diagonals in the body,
and transferring these measurements to the expansion, as shown in
fig. 2. The nature of the construction will be understood by com-
paring the points lettered in the figs.

AD = ad.
AB = ab.
‘DC = de.
CB = cb.

“Fig. 3 on the same Plate represents the expansion of the bent
diagonals. The area of this expansion up to the water line is 5387
square feet. The area of the same, calculated by taking the mean
girth and multiplying by the length, is 533-7 square feet.

The writer further says: —

¢ This method of constructing the area of the bottom is applicable
to any ordinary form of bottom,” and in his opinion ‘‘it does not
involve more labour than the usual plan,” which has already been
described.

‘When an expansion drawing is made, the several strakes of
plating can be shown upon it, also their thicknesses, where-
upon the weight can be found by the ordinary rules of men-
suration. It is obviously impossible to calculate the position
of the centre of gravity from an expansion.

112. Calculation for Area of Bottom Plating without an
Expansion.—The method usually adopted for calculating the
weight and the position of the centre of gravity of the plat-
ing on a ship’s sides and bottom is by measurement taken
from the sheer draught, as we shall now proceed to explain.

‘We shall assume that the plating is in zones or belts of
different thicknesses; and, moreover, that the thicknesses of
some of the belts are varied towards the extremities of the
ship. 'We will suppose that the boundaries of these belts of
plating are drawn in the body plan (see fig. 1, Plate XXII.)

Two modes of procedure may then be adopted, viz., either
to calculate the weight and position of the centre of gravity
of each area with uniform thickness; or else to commence by
finding the weight and centre of gravity of the whole surface,
supposing it to consist of plating of the minimum thickness.
If the latter method is adopted, we have to add the result of
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the calculation for the weight and centre of gravity of the
surface (except that part which is of the minimum thickness),
supposing it to be of a thickness equal to the difference
“between the minimum and next thickness. And so on by
successively clothing the surface until the whole plating is
accounted for, the weight and moment (both vertically and
longitudinally) of the bottom plating is obtained.

Suppose the area of the whole surface is required: Care-
fully measure the girths of the plating at all the square
stations, add them together, and divide the sum by the
number of girths, the quotient will be the mean transverse
girth of the plating. Run off in the half-breadth plan a
number of rabatted diagonal lines, as explained in Art. 111,
and measure the length of each one of them. Add the
lengths together, divide the sum by the number of diagonal
lines employed, the quotient will be the mean longitudinal
girth. Multiply the mean transverse by the mean longi-
tudinal girth, and the product is an approximation to the
area of the bottom.

Should the area of a belt or zone of plating be required,
the girths of the portions of the square stations included in
the belt are measured, and the mean breadth of the belt thus
obtained; while the mean lengths of the diagonal lines on
the belt is taken as the mean length of the belt, Their pro-
duct is the area of the belt. Having the area of the surface
of any thickness of plating, its weight is found by allowing
480 1bs. per cubic foot which gives 40 lbs. per square foot
for 1 in. plating, 30 lbs. for £ in., 20 lbs. for } in., and so on
for other thicknesses. A percentage must be added to this
result to allow for the butts, laps, and liners; the percentage
varying with the thickness of the plating. On Table IV,
will be found a list of the percentages for different thicknesses;
should the lengths or breadths of the plates employed differ
from those by which this list of percentages was prepared,
a correction must-be made for the laps and butts, it being
evident that the proportionate weights of the latter diminish
as the lengths and breadths of the plates increase. The above
percentage having been added, about 3 per cent more is added
to the whole, in order to allow for the heads and clenches
of the rivets.
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118. Calculation for Centre of Gravity of Bottom Plating.
—1I. Longitudinally.—The longitudinal position of the centre
of gravity of bottom plating is found in the manner we are
about to explain. .Whether the first or second mode of
calculating the weight of the bottom plating is adopted, in
either case the method of calculating the longitudinal posi-
tion of the centre of gravity, which we are about to describe,
may be used, the results giving either the longitudinal posi-
tions of the centres of gravity of the whole surface, considered
as of the minimum thickness, also of the surfaces of the added
layers; or else the centre of gravity, longitudinally, of each area
having a uniform thickness. For instance, referring to fig. 1,
Plate XXTII., we may find the longitudinal position of the
centre of gra.vity of the whole area of the bottom, consider-
ing it to be }” thick, also of the area DEQEF considered }”
thick; of GHOHK considered 3” thick; of LMOMN con-
sidered 3’ thick; of DLRP considered i” thick; and KSTN
considered 1" thick.

Or, again, we may find the longitudinal position of the
centre of gravity of each of the belts or zones, ABEFC,
PEHKF, QHMTS, LMOMN, DLRP, KSTN (see fig. 1,
Plate XXTII.). In either case, having the weight of each
piece or area, and the longitudinal position of its centre of
gravity, the longitudinal position of the centre of gravity of
the whole is easily found.

To find the posltlon (Iongltudma.lly) of the centre of gravity
of the whole or part of the area of a ship’s bottom: Measure
the transverse girths as for the area; multiply each girth by
the number representing the order of its position on either
side of the square station of reference, or that about which
moments are taken, and divide the Algebraical sum of the
products by the sum of the girths; the quotient, multiplied
by the common interval between the square stations at which
the girths are measured, gives the distance of the centre of
gravity from the square station of reference. The centre of
gravity is, of course, on that side of the square station which
has the excess of moment.

For instance, referring to fig. 1, Plate XXIL., to find the
centre of gravity of the whole surface of the bottom, suppos-
ing it to be of uniform thickness, Suppose the girths to be



166 THEORETICAL NAVAL ARCHITECTURE.

as below; then for the longitudinal position of the centre of
gravity :—

Num‘s,:,: 8{‘ E.qnne Half girth, Mull‘:i';;l::;l“for Products.
No. 1, - - - 252 6 151-2
y 2, - - - 284 5 1420
2y 3y - - - 313 4 1252
s 4 - - - 335 3 1005
» B - - - 350 2 70-0
» 6, - - - 355 1 35°6
AR 358 0 6244
» 8 - - - 358 1 358
w 9 - - - 356 2 712
» 10, - - - 351 3 105-3
” ll) - .- 340 4 136:0
0 12, - - - 342 5 1710
w13 - - - 300 6 180-0
4294 699-3

6244

429'4)74°90

174

The common interval between the square stations is 20 ft.
.. '174 x20=3"5 ft. abaft No. 7 station,

the position of the centre of gravity of the whole bottom,
supposing it to be of uniform thickness. In a ship with a
full midship section, and fine lines forward and aft, where
there is much variation in the girths, greater accuracy will
be obtained by affecting the half girths with Simpson’s
multipliers before using the multipliers for leverage, in the
same way a8 we find the centre of gravity of a plane area.

There is a slight error admitted into the previous result,
owing to an assumption upon which the method is based
being somewhat erroneous. Fig. 2, Plate XXII., represents
part of a half-breadth plan of a ship; referring to it we shall
see that the area of bottom plating between consecutive
square stations increases as we proceed from the midship
section to forward and aft. Now in the method we have
just explained, it is assumed that the girth of each station,
say No. 2 in the figure, is a fixed multiple of the area em-
braced between a square station BC, half way between Nos.
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1 and 2, and a square station 4D, half way between Nos. 2
and 3. Now, a8 a matter of fact, as is seen, the ratio be-
tween the girth and the area is a varying one, the areas
increasing, relatively, for some distance, as we proceed from
midships in either direction. What makes the assumption at
all trustworthy is, that we assume the midship section as our
station of reference, and the obliquity of the surface of the
bottom with regard to the planes of the square stations is
nearly symmetrical on either side of dead flat. For instance,
in ships of ordinary form, 4,B, is about equal to 4B, and E, F;
to EF; and thus the excesses in area nearly balance one
another. Experience shows that 4,B, and E,F are usually
slightly in excess of 4B and EF respectively, and hence the
longitudinal position of the centre of gravity, as found by
" this method, is slightly on the fore side of the true position.

A modification of the preceding method is adopted when
the water or diagonal lines of the fore and after bodies are
very unlike. The breadth XX, equal to the room and space,
is measured at the midship section, and is taken as the unit
of breadth throughout. The lengths of 4B, FE, etc., and DC
are measured; and the sum of the lengths divided by the
number of measurements, gives the mean room and space,
measured on the yun, of the bottom. This quantity, divided
by the length XX, gives a multiple for the girth at station
2. Each girth is then multiplied by its multiple, and the
results are used in the same way as the girths in the preced-
ing description.

II. Vertically.—To find the vertical position of the centre
of gravity of the whole surface of a ship’s bottom, supposing
it to be of plating uniformly thick ; or to find the vertical
position of the centre of gravity of any belt or zone of plating
of uniform thickness.

Use the same square stations as before, and find the centre
of gravity of the curve of each section, or that part of
it included in the belt or zone of plating. To find the posi-
tion of the centre of gravity of a curve proceed as follows :
In fig. 1, Plate XXTII., 4CB is the form of square station
No. 2. Bisect the curve at the point C, and join AC and
BC. Bisect AC and BC at the points % and @ respectively,
from which points draw ZD and GF perpendiculars to 4C



163 THEORETICAL NAVAL ARCHITECTURE.

and BC, cutting the curves at the points D and F. Take
DK=%*ED and HF =% GF, and join HK. Bisect HK
at L, which will be a close approximation to the centre of
gravity of the curve ACB. Similarly, find by construction
the centre of gravity of each of the other curves of the square
stations (see L, for station 11). In order to test the accuracy
of the constructions, a line should be passed through the
centres of gravity in each body, and if these centres are cor-
rectly found, the lines will be fair curves, as shown by
00 and 0,0,.

Next measure the vertical distance of each centre of gravity
from the water line W W, as shown by LM, L, M;, and multiply
the length of each girth by the distance of its centre of gravity
from the water line, either above or below it. Divide the
Algebraical sum of the products by the sum of the girths, and
the result will give the distance of the centre of gravity of
the whole surface from the load water line.

As an example, we will choose the case for which we have
already found the longitudinal position of the centre of gravity.

Vertical distances of
mber of . CG from LWL, Producta.
SqI:::e Station, | Helf Girtha.

Above. Below. Above. Below.

No. 1,- - 252 5 — 12°6 —_—
g 2, - 284 — 12 —_ 340
9 By - = 313 — 25 — 783
o 4 - 335 -_ 36 - 1206
y By - - 350 — 42 — 1470
sy 6, - - 355 — 45 —_ 1598
’ 7) - - 358 —_— 46 — 1650
w 8- - 35'8 — 46 —_ 1650
y 9 - 356 — 45 —_ 1602
s 10, - - 351 — 4-1 — 1440
5 11, - - 340 —_ 30 —_ 1020
e 12, - - 342 —_ 15 — 513

yy 13, - - 300 12 — 360 —_
4294 486 13272
486
1278'6

* This fraction has been found by experience to be nearly true for
seotions of ordinary form.
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142;79-%8,-: = 298 feet = the distance of the centre of gravity of the
plating on the bottom below the load water, the plating being
supposed of uniform thickness.

It will be at once seen that this method can be applied in
either of the modes already referred to by which the weight
of the bottom plating is calculated. Having found the weight
and vertical position of the centre of gravity of all the belts,
zones, ete., of uniform thickness, the results are combined,
and the total weight and moment found in the usual manner.

114. Weight and Centre of Gravity of Sheathing, Bottom
Planking, etc.—These are found in a similar manner to that
already described in the preceding Article.

The following is a list of the average weights per cubic
foot of the different kinds of wood used in shipbuilding, also
of the metals commonly employed :—

Steel, - - - - 4901bs. Oak, English, - - 561bs.
Iron, Cast, - - - 444 ,» Italian, - - 60 ,,
»» Wrought, - - 480 ,, . Afnca.n, - 60 ,,
Copper, - - - 550 ,, ,» Dantzic, - - 45,
a.s - - - 710 ,, Tir, Dantzic, - 36 ,,
ch, - - - - 440 ,, ' Rxga., - - 40 ,,
B!’&SS, - = - 520 ” ” arCho - - ’
Teak, - - - 52, s» Red Pine, - - 36,,
Honduras Mahogany, 38 ,, ,» Yellow Pmo, - 34,
Elm, - 53 ,, Cork, - - 16 ,,

The various weights given above refer to timber in a fit
condition to work into a ship. 'When green, or after being
in the water some time, they will weigh about 10 per cent.
heavier; on the other hand, when thoroughly dry, they will
weigh in many cases 4 per cent. less.

In calculating the weight of wood work, it is usual to add
a sufficient percentage to the weight per cubic foot, to allow
for the fastenings. The percentage required will vary from
about 3 to 4 per cent. for deck fastenings, and backing behind
armour to as much as from 8 to 10 per cent., for sheathing
on a ship’s side and bottom when the fastemngs are closely
spaced.

115 Deck Beams, Plating, and Flats.—The weights of
the beams, plating, and flat, for each deck, should be calcu-
lated successively, as, when the area of the surface of the
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deck is found, the weights of the beams, flat, etc., are readily
obtained.

To find the area of a deck surface we proceed in the same
way as when calculating that of a water plane, by dividing
the length into a sufficient number of equal intervals, measur-
ing the ordinates thereat, and then calculating the area by
Simpson’s Rule. The centre of gravity of the area should be
found at the same time, in the same way as for a water plane.

116. Beams.—Having the area of the beam surface, the
number of feet running of beams required for it is at once
found by dividing the area by the spacing between the beams,
No deduction is made for hatchways except when they are un-
usually large, as in the case of the boiler hatches on the lower
decks of some ships. The carlings generally cover whatever
is saved in beams by ordinary hatches, and it is usual to
make a further allowance for carlings by adding a length of
beam equal to that of the deck, and when the deck supports
guns, it has been found by experience necessary to add twice
the length of the deck for carlings. 'When, however, there
are hatchways of considerable size, deductions must be made
for them, more especially with regard to the longitudinal
position of the centre of gravity of the beams. Hence, in
such cases, instead of assuming the centre of gravity of the
beams and carlings to coincide with that of the deck surface,
the moment due to the absence of beams at such places must
be deducted.

In addition to the allowance for carlings, the weight of the
beam arms must be taken into account. In order to determine
their exact weight, divide the area of the deck by its length,
and the quotient will be the mean length of the beams.
Calculate the weight of such a beoam, and that of its arms,
and find the ratio between them; this ratio, if used for the
beams of the whole deck, will be found to amount to about 12
per cent. of their weight in ships of the Royal Navy, and about
6 to 8 per cent. in merchant ships. Table V. contains a list
of the weights per lineal foot of the Butterly Co.’s Tee Bulb
and Angle Beams, for which information we are indebted
to the courtesy of the makers. Particulars are also given in
the same Table for calculating the weights per foot of length
of vlate bulb, which is commonly used for beams. Table
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VI. contains the weights of angle or T irons of the dimen-
sions which usually occur in ships.

117. Deck Flats.—The area and centre of gravity of the
beam surface are also those of the surface of the deck flat,
when the latter is of uniform thickness and of the same
material throughout. This is, of course, on the supposition
that the flat extends to the surface of the outer plating. If
the flat, as it usually does, stops against the reverse frame,
or a gutter water-course, a strip of parallel width must be
deducted on each side. Removing this parallel strip will not
practically alter the position of the centre of gravity, and the
slight change can be readily allowed for. Having the area
of the surface, the volume of the flat in cubic feet is at once
found, and its weight obtained. The additional weight due
to certain strakes of plank being thicker or of harder wood
than the others, also the weight due to the extra thickness of
the waterways, must be taken into account with their effect, if
any, upon the position of the centre of gravity. No deduction
is made for hatchways of the ordinary size, but when they
are of exceptional dimensions, as in the case of the boiler hatch
in the lower decks of some ships, the areas are deducted, and
the alteration in weight and moment due to them are allowed
for. The reason for not making a deduction for the smaller
hatchways is in consequence of the coamings, head-ledges,
and gratings, which are not calculated, but are taken as about
equal in weight to the deck flat which would be fitted if the
hatchways were not there.

118, Deck Plating and Stringers.—These are calculated
in a similar way to deck flats; the necessary percentage for
edge strips and butt straps for the several thicknesses when
worked in this way will be found in Table IV.

119. Vertical Position of Centre of Gravity of Decks.—
Owing to the sheer usually given to decks, and the variable
breadths of the deck at different positions in the curve of the
sheer, it is not possible to measure direct from the profile of
the ship the vertical distance of the centre of gravity of the
deck from the water line. By experience, it is found that a
very good approximation to the vertical position of the centre
of gravity of the beams, deck plating, and flat of any deck is
found by measuring one-third the half length of the ship on
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the fore side of the midship section, and measuring the dis-
tance from the water line to two-thirds the round of the beam
above the beam at side line at that position. The beam at
side line being at the upper surface of the beam, one-half the
thickness of the deck must be added to this distance for the
centre of gravity of the deck flat when the deck is above the
load water line, and deducted when it is below. Similarly,
about one-third the depth of the beam is added or subtracted,
as the case may be, for the centre of gravity of the beams.

The more accurate method is to multiply the half breadth
of the deck at each of the equidistant ordinates by the dis-
tance of the centre of gravity of the deck flat or beam at that
ordinate from the load water line. Divide the sum of the
products by the sum of the half breadths, and the quotient
will be the distance of the centre of gravity of the whole
deck from the water line.

120. Transverse and Longitudinal Bulkheads.— The
areas of these are found from drawings of them by the aid
of Simpson’s Rule; and their centres of gravity by the same
means. Knowing the weight per square foot of the material
composing them, their total weights are readily found, after
allowing for the butt straps and edge strips, by using the per-
centages for bulkhead work given in Table IV. Bulkheads
are usually of thicker material at the bottom than at the top;
consequently, the separate areas of the thick plating inust be
found, and the extra weight, due to the thickness in excess
of that at the top, added. Also the effect of the extra
thickness on the position of the centre of gravity must also
be allowed for., The weight of angle or T iron stiffeners is
found by dividing the area of the bulkhead by the spacing
apart of the stiffeners, and multiplying the quotient by the
weight per foot of the angle or T iron. Allowance must
also be made for the angle irons connecting the bulkhead to
the sides of the ship, which can be easily measured, and their
weights then calculated by the use of Table VI.

It must be particularly noticed that in all riveted iron
work, 3 per cent of the total weight of the material must be
added, to allow for the heads and clenches of the rivets.

The bulkhead work is very considerable in the hold, em-
bracing—besides the transverse bulkheads—the magazines,



MERCHAXY SHIP FRAMES. 73

shell rooms, shaft passages, chain lockers, and often the store
rooms; such of these as have iron crowns, stifiened by angle
iruns, are calcnlated similarly 1o the bulkheads.

121 Transverse Framing —In a werchant vessel, the
transverse framing is usually of uniform chavacter through-
out, each consisting of frame and reverse angle irons, and a
floor plate. In an armour clad, the transverse framing is of
a very variable character, that below the armour or sub-
merged armour-deck being of 2 totally distinet character to
that above. Also the frames behind the armour are different
from either of the other kinde The unarmoured ships of
the Royal Navy, while not framed in so variable 8 way as
the ironclads, have, nevertheless, framework of a more con-
plex character than ordinary merchant ships. We will
therefore eonsider the different classes of framing separately.

122. Merchant Ship Frames.—The midship section and

ification ecomtain instructions regarding the points of
termination of the reverse angle irons and floor plates. With
this data curves are drawn in the body plan representing the
boundaries at which the angle irops and floor plates stop
throughout the length of the ship. Equidistavt stetions, in
sufficient number, are chosen, and 2 sketch made of the trans-
verse frame at each of these sections, showing how it is con-
structed. The weight of angle irons (see Table VL), and
plates in each of these is carefully calculated, and the woment
of the whole about the load water line determined. Two
curves are then eonstructed, viz., one of weights, and the other
of vertical moments. The curve of weights is drawn by set-
ting off from a base line ordinates representing to scale the
weights of the respective frames; the distance between the
ordinates being that between the several stations drawn to
some known scale. The area of this curve, found by Simpson’s
Rule, divided by the length of the base of the curve, and
multiplied by the total number of frames, gives a function
(according to the scale of the curve) of the total weight of
the framing, and the ecentre of gravity of the area is that of
the centre of gravity of the frames, longitudinally. An
excellent test of the accuracy of the several calculations for
the weights of the frames at the stations chosen is afforded
by the batten when it is bent to pass through the extremities

-
-
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of the ordinates; if it refuses to pass fairly through these
points, it shows that an error has been made in one or more
of the calculations, the extent of which error is thus known,
and we are aware in what part of the calculation to look
for it.

The curve of vertical moments is drawn by setting off on the
same ordinates lengths representing to scale the moments of
the respective frames about the load water line. The area of
this curve, divided by the area of the curve of weights, when
both are reduced to the same scale, gives the distance of the
centre of gravity of the frames from the load water line. It
will frequently happen that some of the moments are positive,
and others negative with regard to the water line, in that
case some parts of the curve of moments will be above, and
others below the base line. In finding the total moment,
the smaller area is deducted from the larger, and the differ-
ence divided by the total area of the curve of weights, both
being reduced to the same scale. The centre of gravity will
be on that side of the water line upon which there is the
excess of moment.

‘Whenever there are additional frames, as under the engines
and boilers, or whenever these frames are of stronger and
heavier make than elsewhere, a separate calculation should
be made for the excess, both as regards weight and moment.

123. Transverse Frames below Armour.—The preceding
description of the mode of calculating the weight and position
of the centre of gravity of the transverse frames of a merchant
ship, requires but little modification to be applicable to the
transverse frames below armour of an ironclad; or to the
transverse frames of an unarmoured ship.

In a ship of war with a double bottom, which armoured ships
invariably have, there are at least three groups of frames, viz.,
those within, and those before and abaft the double. bottom.
All three of these contain frames of at least two kinds, viz.,
bracket and water-tight, and, in wake of the engines and
boilers, solid pierced frames are usually fitted.

Transverse sections of the ship’s framing have first to be
constructed on paper, at intervals of about 16 ft. apart; these
being at midships, at the extremities of the double bottom,
at a few frame spaces from the stem and stern post, and at
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intermediate places. To construct these sections, the posi-
tions of the longitudinals given in the midship section are
transferred to the body plan, and the sight edges of the
longitudinals drawn in that plan in some such a way as they
will be built in the ship. The scantlings and taper of the
Iongitudinals, given in the specification, determine the depths
of the frames, so that their inner edges may be thereby drawn.
The sketches of the sections are first made as if they were
all bracket frames, and the same sketches will serve for
afterwards determining the weights of the solid and water-
tight frames by making the necessary alteration in coloured
pencil. The load water line must be drawn across each
section.

‘When calculating the weights of the details of each frame,
their moments about the load water line can also be obtained.
Thus by putting the weights of plates and angle irons in
one column, and the corresponding moments opposite to them
in another, two summations give us the weight of a frame
and its moment about the load water line. If the solid
frames are numerous, the weights and vertical moments of
several equidistant frames in the space where this variety occurs
are also calculated in a similar manner; but if only a few of
these frames are fitted, it will be sufficient to subsequently
make a correction for the additional weight and moment
due to the particular frame being constructed in this way.
The water-tight frames being usually one-fourth or fifth of
the whole number in the double bottom space, it is necessary
to determine the additional weights and moments due to the
frames calculated in that space being so constructed. Out-
side the double bottom, where they are less numerous, it is
sufficient to subsequently make a correction, based upon the
comparison discovered in calculating those within that space,
for the additional weight and moments for these frames.

Curves can now be constructed in the same way as before,
with the exception that now we have a greater number. Fig.
2, Plate XXIII. shows the curves of weight and moment
for the transverse frames below armour of an iron-clad ship.
The scales of these curves, which are drawn to one-eighth the
usual size, are marked upon the Plate. The manner of using
the curves was explained in the previous Article.
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124. More Extensive Application of Curves.—While
treating of the method of calculating weights and moments
by the aid of curves, we may remark that the peculiarities
of the framing of an iron-clad ship limits considerably
the extent of their possible application. When all the
frames are of the same character, and the beams, deck-flats,
etc., are uniform, not only the weight and moment of the
frames, but also those of the hull proper can be represented
by two curves drawn in the following manner :—

The weight and moment of a section of a ship, including
plating, planking, beams, and frames, for the length of a
room and space, is calculated in a manner similar to that
just described. The beams include their proportionate
amount of carlings; the framing includes longitudinals, keel,
keelsons, hold stringers, inner bottom, etc., and the plating
includes its proportion of butt straps, laps, etc., all being
computed for the length of the room and space. Transverse
bulkheads, works in hold, fittings on decks and éopsides,
stem, sternpost, rudder and fittings, etc., cannot be included
in the curve, as these being irregularly distributed, would
produce such discontinuities as not only to prevent a curve
from passing fairly through the points determined, but also to
destroy that check on the accuracy of the calculation for each
section, which is one of the great advantages of the method.

Sections are taken at equidistant intervals, .if possible;
about ten to fifteen sections should be taken in ordinary
cases, according to the length of the ship, and where there
is a long midship body one section will serve for a consider-
able length of that body. Curves are constructed from these
results, as already described, and the total weights and
moments determined therefrom. In calculating the weight
at each section, care should be taken to make separate totals
of the weights of plate, angle, beam, or other iron, and of the
wood-work embraced therein, and to express the value of
each of these in regular succession on each ordinate, so that
if the weights of these several materials are afterwards re-
quired for the purpose of estimating the probable cost of the
ship, they can be found by passing curves through the points
on the ordinates for these items, and calculating the areas
of the belts or spaces between the curves.
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125. Transverse Frames above and behind Armour.—
The framing at these parts of an armoured ship is of a very
simple character, and does not require special consideration
after the preceding description. Neither is any separate
explanation necessary regarding the manner of calculating
the weight and position of the centre of gravity of the frames
of unarmoured ships of the Royal Navy.

126. Longitudinal Frames.—The weight and moments
of the longitudinal frames are found by first drawing both
the sight and inner edges of these frames in the body plan,
the necessary taper being found by reference to the specifica-
tion. By considering the portions of each longitudinal in
the double bottom, and before and abaft it separately, the
calculation is much simplified. The length of the longi-
tudinal, or a portion of it, is given very nearly by the length
of a rabatted diagonal line, drawn as closely as possible to
the longitudinal. When considered in separate pieces, with
a little experience, a calculator is enabled to approximate,
by inspection, very closely to the vertical position of the
centre of gravity of each piece of these frames. Care must
be taken to make the requisite deduction from the weight,
in consequence of the man and lightening holes. These can
generally be expressed in the form of a percentage determined
for a certain length of a longitudinal, and applied for the others.
The manner of calculating the longitudinal position of the
centre of gravity is similar to that for a belt of bottom plating.

The preceding are the portions of the work which are of
the greatest magnitude, and present the greatest difficulties
to the calculator.

127%. Fittings.—In calculating the weights of the numerous
fittings in a ship, and the wood-work in the hold, consider-
able practical experience is necessary, in order to arrive at
correct weights and moments. The fittings contained in a
completed ship are far more considerable than a glance at o
design would suggest. The only satisfactory way of getting
at the weights of these items is by referring to the records
of weights kept in building a similar ship, or one such thut
a comparison can be instituted. In the Royal Dockysrds
such records are kept, and they prove of invaluable service
in the preparation of after designs on this account. ,’

48 114
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There is, however, an element of uncertainty necessarily
inseparable from all calculations of the weights and centres
of gravity of ships. Whatever care is taken in calculating
the principal portions of the ship, and whatever accuracy is
obtained so far, in the result, there still remains a consider-
able weight of work in the form of fittings, which it is almost
impossible for the calculator to value accurately. These
consist of anchor and boat fittings, works in connection with
the rigging, and fittings of all kinds throughout the vessel,
the nature of which varies with different ships, and the
weight with different practical supervisors. It is well known
that two ships built at different yards from the same draw-
ings, will vary in immersion and trim, this being due, in a
large degree, to the different opinions which shipbuilders
form of the scantlings necessary for fittings whose dimensions
are not specified. Some officers are heavy, and others light-
handed in this respect. Again, materials such as cement,
paint, oakum, pitch, etc., which amount to a great weight,
will be used to a different extent by different workmen, and -
under different circumstances. On account of the difficulties
attendant upon a calculation of these items, it is usual to
base estimates thereon upon the quantities used in ships
actually built. If the ships are of the same class and size,
then the weights may be taken the same; but if different,
then they must be varied proportionately to the respective
differences which cause these variations in the two ships.
For instance: cabins will vary with the complement of
officers; mess tables and stools with that of the crew; paint
with the products of the lengths and greatest transverse
girths of the two ships; oakum with the dimensions of the
decks and other caulked surfaces; boat fittings wili vary
with the number and weights of the boats; anchor fittings
with the weight of the anchors and cables, and so on.

But while pointing out the elements of uncertainty that
necessarily exist in all calculations of this class, it must be
stated that these should not at all vitiate the result. For
owing to these indeterminate items being distributed all over
the ship, they should not materially affect the trim, nor the
vertical position of the centre of gravity. The displace-
ment should not be in error more than 1 to 2 per cent. in
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iron-clad ships, nor from 4 to 5 per cent. in small vessels,
from these causes. It is usual to add about 3 to 5 per cent.,
the percentage being greatest in the smallest ships, of all
_ weights in the hull except armour and other protective

portions, to the result of the calculation, to cover items
which may, perchance, be incorrectly estimated, or not taken
into account at all. This percentage, being supposed uni-
formly distributed, is taken at the centre of gravity of the
ship.

In making calculations, such as this chapter refers to,
great care is necessary to prevent errors, sometimes of great
magnitude, occurring. A mistake, slight in itself and easily
made, will sometimes affect the result to such a degree as to
ruin a ship built upon designs based thereon. It is conse-
quently highly important that separate and independent
calculatious should be made by two persons, simultaneously
if possible, and if not, one very soon after the other, and
before the building of the vessel is materially advanced,

A



CHAPTER V.
CURVES OF STABILITY.

Metacentric Curves—Curves of Statical and Dynamical Stability—
Specimen Calculations—The Body Plan—Measuring the Ordi
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raught.

128. Metacentric Curves,—By metacentric curve, or ¢
of metacentres, is meant the curve passing through th -
tremities of ordinates, whose lengths are equal to the he”
of the transverse metacentres above the underside of k
successive parallel draughts of water. For instance, ™
the method investigated at Arts. 63 to 66, the heig® -~  ~
M above the underside of keel at successive parallel dr
of water be obtained, and set off to scale as ord™
the abscissse being the distances, to scale, betwe -~
respective water lines, then the curve passing throv -~ _
extremities of these ordinates is the metacentric
the ship at that trim. It will be seen that these cur
vary slightly for the same ship at different trims; but
of ordinary form the characters of the curves wil!
stantially the same within the limits of alteratior “—
which usually occur. It is usual to calculate and

the metacentric curve of a ship at her usual load £
| 3

parallel draughts, although as the ship lightens
the trim will vary according to the form of th
the longitudinal position of the weights which a
removed to increase or diminish the draugh
There is thus an element of error admitted, a
does not really represent the actual positions
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M at the several draughts of water. However, as the curve
is not taken as representing the actual positions of A, but
merely close approximations thereto (which they really
are), and as it is only consulted within such small limits of
the draught of water that mo practical error can occur in
vessels of ordinary form, it affords a valuable criterion
whereby the tendency of the surface stability to increase or
decrease at successive draughts may be discovered, and a
sufficiently correct representation of the actual increase or
decrease of surface stability at the small variations of draught
which are commonly experienced when at sea.

In addition to the information afforded by these curves,
with regard to the surface stability, they are rendered of
more practical value by setting off upon the ordinate at any
draught of water the position of the centre of gravity, as
determined by experiment (see Art. 90), or as calculated for
the ship at any time when floating at that draught. It need
hardly be said that a ship may, at different times, float at
the same mean draught of water, or even at the same trim
and draught, and yet have the centre of gravity at a different
height. However, the variations in the vertical position of
the centre of gravity are usually very small in a ship of war
at the same draught of water, and if a record be kept of the
actual equipment or cargo on board at the time the experi-
ment or calculation was made, a correction can readily be
made for the true vertical position of the centre of gravity
at any other time. Without the position of the centre of
gravity being known at any draught, the metacentric curve
merely shows the tendency to stability due to the vessel’s
form, but by carefully recording on the diagram the positions
of the centre of gravity, at different draughts, which have
been observed from time to time, it is very easy to fix, with
tolerable accuracy, the positions of that point at intermediate
or at closely adjacent draughts.

It will be seen that in order -
the centre of gravity, so as to b
necessary that the position of tk
to the point M at every draught
sented on the diagram. This is ¢
convenient manner by drawing
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shown by fig. 1, Plate XXIV. A number of parallel lines
are drawn at distances apart equal, to scale, to the distances
between the water lines employed; and a line is drawn cut-
ting these parallel lines at an angle of 45 degrees. Ordinates,
perpendicular to the water lines, are-drawn through the
points of intersection of this line at 45 degrees with the
several water lines; and the distances of the centres of buoy-
ancy bencath the latter (obtained by previous calculation)
are set off below the points of intersection of the diagonal
line with the respective water lines, to the same scale as
before, and a curve drawn through the points so obtained is
called the curve of centres of buoyamcy. The respective
values of BM, B M,, B,M,, etc., are then set off from these
points B, B,, B,, etc., to t%me same scale, and a curve drawn
through the points so obtained is termed the metacentric
curve, or curve of metacentres. If it be required to know
the value of BM at any mean draught of water between
the limits of the water lines used, the line representing
that draught must be drawn in its proper position, to
scale, and & perpendicular to the water lines drawn
through the point of intersection of the line representing
the draught of water with the line at 45 degrees; the
distance on this line between the curve of metacentres and
that of centres of buoyancy will be the value of BM at
that draught. If a moderately stiff penning batten is used
in getting in the curves, the latter may be continued for a
short distance on either side of the extreme water lines on
the diagram, and so values of BM, at greater or less draughts
of water than those employed in constructing the curves, may
be obtained with a considerable degree of accuracy.

The reason for drawing the line at 45 degrees is evident,
as by so doing not only is the curve of metacentres kept
within the limits of a moderately small diagram, but the
scale of the abscissse thus becomes the same as the scale of
the draughts of water and of the ordinates. The curves are
also by this means constructed in such a way as to simplify
the interpolation of intermediate water lines, and thus
enables us at once to obtain the value of BM at any inter-
mediate draught of water.

It may be remarked that, for vessels of ordinary form, the
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curve of cantres of buoyancy is concave with regard to a
horizontal line at the keel, being practically straight between
the light and load lines, and making an angle which varies
between 28 and 38 degrees with the horizontal. The curve of
metacentres is usually of the character shown in the figure,
the value of BM usually increasing very rapidly as the
draught diminishes. This is especially the case in vessels
having a very flat floor; as the moment of inertia of the
water plane remains very considerable while the displace-
ment becomes almost zero. If, however, the vessel has a
very rising or a hollow floor, the curve of metacentres is
flatter, being, indeed, in some cases slightly concave with
regard to the water lines in the diagram. The old gun brigs
of H.M. Navy are examples of ships having this kind of
curve; at least, within the limits of draught between which
the curve is usually constructed. (See fig. 2, Plate XXIV.)

It is usual in H.M. Service to construct these curves on
the scale of half an inch to a foot.

In fig. 1, Plate XXIV.,, the points @, ¢;, G, etc., repre-
sent the positions of the centre of gravity as found at different
times when the ship was at those draughts of water, or as
calculated from the known position at some particular
draught. The values GM, G, M,, G,M,, are measures of the
leverage of statical stability at the load, second, and third
water lines respectively. In the case shown by fig. 1, G\ M,
is about equal to GM; this is very often the case, as near the
load draught the position of @, with regard to the load water
line rising somewhat, the few weights, such as coals or storcs,
removed to reduce the draught, being generally a little below
the centre of gravity, while at the same time the metacentric
curve at that point is usually nearly parallel to the water
linea  As the ship lightens still more the point G continues
to rise, while the metacentre curve still remains nearly flut.
This continues until @ rises slower than the curve, and then
the value of GM increases, as shown by G/ M, at the fifth
water line, It must, however, be rememberetf that as the
moment of statical stability at a small angle of inclination 0
is D x GM sin 6, that moment is usually greatest ut or sbout
the load draught, owing to the value of ) heing groater thun
at the lesser draughts.
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It is perhaps necessary to remind the student that these
curves are only useful for determining the metacentric statical
stability, as the values of BM are absolutely true only for an
infinitely small angle of heel. However, in ships of ordinary
form, they afford sufficient data for determining the statical
stability up to 10 or 15 degrees of inclination, correctly
enough for all practical purposes.

Fig. 2, Plate XXIV., shows metacentric diagrams for
different ships, which may be taken as types of the various
forms met with in practice.

129. Curves of Statical Stability.—In Arts. 70 and 73,
we showed how the statical and dynamical surface stability
of a ship can be calculated at any given angle of heel. If
the values of BN (see fig. 1, Plate XVL.), for successive
angles of heel between the upright position and that inclina-
tion at which BA becomes zero, are set off to scale as ordi-
nates from a base line, the abscissse of which represent to
scale the angular intervals chosen, then a curve passed
through the extremities of these ordinates would be termed
a “ curve of statical surface stability.” Similarly, if the ordi-
nates are drawn to scale, so as to represent the successive
values of VB, — AB versin 60— 4,4,, the abscisse being as
before, a curve passed through the extremities of the ordinates
would be a “curve of dynamical surface stability.” Such
curves, however, would not be of much practical use, as they
would merely indicate the tendency to stability due to the
vessel's form alone. Hence, while they would represent the
possible qualities of the ship, no information would be afforded
regarding her actual qualities. Nevertheless, the fact must
not be lost sight of that to a very large degree the range of
a vessel's stability is governed by her form, and no disposition
of weights in a badly formed ship will compensate for that
badness of form. Indeed, the limits within which the position
of the weights in a war ship are necessarily restricted render
the form of the vessel an element of the greatest importance
in regard to the range and magnitude of her stability.

At Art. 86, it was shown that when the centre of gravity
is above the centre of buoyancy (its usual position), BG sin
6 must be deducted from the value of BN (the lever of sur-
face statical stability), in order to obtain the actual righting
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sver at that angle. Tf the centre of gravity is below the
centre of buoyancy, B@ sin 6 must be added. The conven-
tional expression for BN + B@ sin 0 is GZ (see fig 1, Plate
XVIL). As will be seen by reference to fig. 2, Plate X VIIL,,
for the same value of BN, there may be any number of dif-
ferent values of GZ, both positive and negative, between the
possible lowest and highest positions of @ in the ship; so
that, while a curve of surface statical stability may show
considerable amplitude and range, yet if G is above M, there
will be no statical stability at all, but a continually increas-
ing upsetting couple. Again, if BN for any angle be so
small as to represent comparatively small surface stability,
yet if @ is sufficiently low in the ship, the actual stability
may be considerable up to a large angle of inclination. But,
as already stated, in a war ship such exaggerated positions
of @ are impossible, and in a merchant vessel, if the stability
is secured by a very low centre of weight in the lading, the
behaviour of such a vessel as regards rolling and straining is
very unsatisfactory. In every case the stability should be
chiefly obtained by form, and the centre of gravity should be
as near as possible to the load water line. 'We shall consider
these points more minutely in a future chapter.

The length of GZ at any angle being the lever of statical
stability at that inclination, if ordinates be set off from a base
line so as to represent to scale the successive values of GZ
at the different angles of heel between the upright position
and 90 degrees, the abscisse representing to scale the angular
intervals between the inclinations at which G'Z is calculated,
then a curve passed through the extremities of these ordinates
is termed a “ curve of statical stability.” When this curve is
drawn, the length of the ordinate at the point on the base
line corresponding with any given angle—read by the proper
scale—multiplied by the displacement, gives the moment of
the righting or upsetting couple at that angle. The units
employed are usually a foot and a ton. In constructing the
curve, positive values of G'Z are set off above the base line,
and negative values below.

Plate XXV. shows curves of statical stability for the
-geveral classes of ships named; these may be regarded as
types of the various kinds of curves that occur in practice.
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An examination of these curves will prove very instructive
to an experienced eye, as they reveal certain important facts
in connection with the form of the ship, and height of the
centre of gravity, and enable the naval architect to predict ¢
with certainty regarding the power of the ship to stand up
under sail. Table VII. contains specimen calculations for ordi-
nates of a curve of statical stability which are similar to the
calculations for the surface statical stability at a finite angle
which are given in Table II. The calculations shown in
Table VII. are extracted from the appendix to the paper by |
Messrs. White and John, contained in Vol. XTI of the Zrans- ¢
actions of the Institution of Nawval Architects, which paper
has already been referred to; and the work in them is
arranged in the manner usually adopted when calculating
the stability at a number of successive angles for the purpose
of constructing a curve of statical stability. As the calcula-
tions for the curve of dynamical stability are included in the
same Tables, we will defer our explanation of them until we
have briefly alluded to these curves. Plate XXVI. shows
the body plan of the vessel to which these curves relate.
130. Curves of Dynamical Stability.—In Art. 72 it was
shown that the dynamical surface stability at any angle 0 is
equal to D(V B, — 4 B versin 6 — 4,4,), (seefig. 1, Plate XV1.);
and in Art. 89 the dynamical stability at that angle was
found to be D(XV B, — GB versin 6). The object of the calcu- ‘
lation for the ordinate of the curve of dynamical stability at
any angle is to find the value of VB, at that angle, and from
this is deducted the product of the constant value GB (which
is determined by the position of the centre of gravity), and
the variable quantity versin 0, the difference being the whole
distance that the centre of buoyancy is depressed and the
centre of gravity elevated in inclining the ship over to that |
angle. Thus D(NVB, - GB versin 0) is the mechanical work
performed in inclining the ship. e have repeated these
explanations, already given in Chap. IIL, in order that the !
student may readily follow what we have now to say regard- |
ing the curve of dynamical stability. The curve is con-
structed in the ordinary way. Having the values of D(V B, —
@B .versin ) for a number of successive angles of heel ; these
values are set off to scale as ordinates from a base line,
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the abscisse of which represent to scale the angular distances
between the inclinations at which ordinstes sre obtained.
A curve drawn through the extremities of the ordinstes is a
curve of dynamviosl stability. If it be required to know the
work performed in inclining the ship to sny intermediste
angle between those calculated, the ordinate to the ocwrve
from the point on the base representing the position of that
angle is measured with the proper scale, and the product of
the length of the ordinate and the displacement of the ship
is the total work perfamed. Plate XXVIL shows some
curves of dynamical stabilitv. The ordinates continumally
increase until the statical heeling moment becomes vero, after
which, as the ship no longer offers resistance to beeling, but
rather seeks to incline still farther, the work performed is
negative, and the ordinates begin to diminish. The curve
of dynamical stability crosses the base line at a point corre-
sponding with such an angle that the work performed in
inclining the ship to her angle of vanishing statical stability
has been equalled by the work which would have been re-
quired to prevent her inclining from that point to the angle
referred to.

The dynamical stability at any angle being the total work
performed in heeling the ship to that angle, it is therefore
the sum of the infinite number of moments of statical stabi-
lity at all the infinitely close intermediate angles between
that position and when upright 1In other words, the
dynamical stability at any angle is the integral of the
statical stability. This is graphically represented in a very
intelligible manner by the area of the curve of statical stabi-
lity included between the origin of the curve and its ordinato
at the angle in question. Thus, the dynamical stability at
any angle may be readily calculated from the curve of statical
stability, by simply finding the area of the portion of that
curve up to the given angle, by means of Simpson's Rule,
and multiplying the result by the displacement.

algebraically, if Af = the statical stability at any
angle 6, and U the dynamical stability,

Then U= / M s, _
We shall presently show how the work of such a calcula-

o
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tion is performed. It is, however, necessary to first explain
the ordinary calculations for the curves of statical and dyna-
mical stability given in Table VIL

131. Specimen Calculations for Curves of Statical and
Dynamical 8tability.—I. The Body Plan.—The first opera-
tion when proceeding to calculate the curve of stability of a
ship is to prepare a suitable body plan. In the first place,
the stations must be perpendicular to the load water line
in order that the water lines may appear straight in the body
plan. This is the invariable mode of preparing sheer draughts
at the Admiralty, and the practice is very common in mer-
chant yards. The stations should be from about one-twelfth
to one-fourteenth of the length of the vessel apart, and, at
the extremities, one or two stations at half intervals should
be drawn. If the body is a full one, two such stations should
be drawn at each extremity; but if the lines are of the
ordinary character, one at each end will be sufficient (see
Plate XXVL.). In drawing these stations, the form of the
section should be completed across the uppermost continuous
deck, the upper line being drawn to the round of that deck.
Whenever there are recesses or embrasures in the side of the
ship, water-tight elevations, such as breastworks, raised cen-
tral batteries, etc., the section through such should show
their exact external form. It is further necessary to have
carefully drawn sheer and half-breadth plans, showing the
forms of all irregularities as they appear in those plans, in
order that their volumes, moments, etc., may be accurately
calculated. In drawing the stations when there are any such
irregularities of the deck and side as have been mentioned,
it is the usual and by far the best way to draw the sections
as if the side and deck were continuous, and first calculate
to the continuous lines. The corrections due to the irregu-
larities are afterwards treated as “appendages,” as likewise
are the portions of the bow and stern before and abaft the
extreme stations. .

Having these plans ready, the next thing to be done is to
draw the radiating lines representing the load water plane
at equiangular inclinations, on the supposition that all these
water planes pass through the longitudinal axis of the upright
load water plane, The magnitude of the angular interval is
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generally governed by that of the angle with the upright
water plane which is made by the water plane when the
ship is so inclined that the edge of the upper deck at amid-
ships is just at the surface of the water. This is chosen as
one of the angles at which the stalility is calenlated; for as
the edge of the deck is a point of censiderable discontinuity
in the surface of the ship, it is desirable 10 make it what 15
termed a “siop point in the integration,” when applying
Simpeon’s Rule. This will be further explained presently.
In the example shown by Plate XX VL, this angle is seen to
be32degmu,andmada’ﬂntunterphneatthtangie
may be multiplied by 1, in affecting the water planes by the
multipliers—

1.

.

4
it is necessary that 32 degrees should be divided into
evepnnmbeofintawk,topodncem

the sections are written down in the first column of each of
th;aeetablegand the lengths of the ordinates in the second
column.

The ordinates for the load water plane are the same as
would be inserted in a displacement sheet. Those of the
wutaphneatﬁdegteafort.helmmasedvedgeareobhined

of the scale at the point from which

by keeping one extremity
thehnuudnte,andtudmgoﬂ'themtenechonsf
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stations of the fore and after bodies with the line at 8 degrees
above the upright water plane, and those for the emerged
wedge by reading off the intersections of the stations of the
fore and after bodies with the line at 8 degrees below the
upright water plane. This process is performed separately
for every angle, it being observed that where the radiating
lines cut the deck the distances must be measured to such
intersections; also remembering what has been already said,
that the projections beyond and depressions beneath the con-
tinuous surface are afterwards treated as appendages, and
thus the intersections of the radiating planes must be con-
sidered at where the boundary of the section would be if the
irregularity did not exist. It will be observed that, in the
tables, we have given the measurements and calculations up
to 32 degrees only, the remainder of the calculation being
omitted from wapt of space, and because the portion given
sufficiently illustrates the method of arranging the work in
the calculations.

133. IIL. Preliminary Tables.—The Preliminary Tables
will be found to be arranged very similar to that shown in
Table IL, only that no notice is now taken of the longi-
tudinal moments of the wedges, it being no part of the
present calculation to determine the effect of a transverse
heel upon the longitudinal trim of the ship. In every other
respect, except the relative position of the tables for immersed
and emerged wedges, the arrangement is the same. It will
however be noticed that in the Preliminary Tables now
under consideration, the division by 3—peculiar to Simpson’s
1st Rule—is made in order to at once reduce the number of
figures as much as possible, and thus make the remainder of
the work less laborious. Also, the summation of the func-
tions of cubes is there made, in order that the calculation for
the total moments of the wedges may be proceeded with at
once on the subsequent calculation.

134, IV. Combination Tables is the name given to the
subsequent calculations just alluded to. Their object is fo
determine from the sums of the functions of the ordinates,
and those of their squares and cubes, the volumes and
moments of the assumed wedges of immersion and emersion,
- also the grea and the position of the centre of gravity of the
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assumed inclined water plane. By these are found the thick-
ness, volume, and centre of gravity of the “layer” of dis-
placement, which is added or removed in order to obtain the
true volumes of the wedges, and the actual position of the
inclined water plane. In this way the correction in moment
is made, which is necessary owing to the water plane being
assumed to pass through the longitudinal axis of the upright
water plane. These results, together with the corrections
due to appendages, before the value of GZ at any angle can
be determined, completes the work of the Combination Table,
‘We will now consider these operations in detail.

135. V. Volumes of Assumed Wedges.—The sums of the
functions of the squares of the ordinates of each of the radia-
ting planes contained in the wedges of immersion and emer-
sion having been found in the Preliminary Table, and divided
by 3, as already mentioned; these values are inserted in the
proper column in the Combination Table (see Table VIL.),
in the row corresponding to the number of degrees which the
radiating plane’is inclined to the upright water plane. They
are then affected by the proper Simpson’s Multiplier, and
these new functions are added together. This is done for
each wedge. The lesser result is then deducted from the
greater, and the remainder is a function of the excess in
volume of one assumed wedge over the other. The differenco
is divided by 2, according to the rule given at Art. 49, and
then after being multiplied by the longitudinal interval, and
one-third the angular interval in circular measure, the result
is the excess in volume of one wedge over the other.

136. VL Moments of Assumed Wedges for Statical
Stability. —We have next to determine the sum of the
moments of the assumed wedges about the longitudinal
middle line plane of the ship. The sums of the functions of
cubes of ordinates for both the immersed and emerged wedges,
already divided by 3 on the Preliminary Table, are inserted
in their respective rows, and affected by Bitapson’s Multiplier,
The products resulting are then multiplied bytheq:uitﬂu
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interval in circular measure, and again by the longitudinal
interval between the ordinates, the result is the moment of
the assumed wedges for statical stability. Corrections have
to be made before the moment of the true wedges is deter-
mined.

137. VII. Area of Inclined Water Plane.—We have next
to find the area of the inclined water plane, as the excess in
volume of one wedge over the other, divided by this area,
gives the thickness of the layer, which must be added or
removed, in order that wedges of equal volume shall remain.
The area of the inclined water plane is readily found from
the sums of the functions of the ordinates of the portion of
the water plane belonging to each wedge, which have already
heen found in the Preliminary Table. The sum of these
functions (already divided by 3), multiplied by the longi-
tudinal interval, gives the total area of the water plane in
question. The excess in volume of one wedge over the other,
divided by this area, gives a very close approximation to the
thickness of the layer which must be added or removed. If
the wedge of immersion is the greater of the two, the layer
is removed, and vice versa. It will be readily seen that half
the thickness of the layer must be a very close approximation
to the vertical position of its centre of

138. VIII. Centre of Gravity of Inchned Water Plane.
—The distance of the centre of gravity of the inclined water
plane from the longitudinal axis of the upright water plane
is a sufficiently close approximation to the distance of the
centre of gravity of the layer from that point when the layer
is not very thick. To find the distance of the centre of
gravity of the inclined water plane from the point in question,
we must find the difference in the moments of the two sides
of that plane about the longitudinal axis of the upright water
plane, and divide that difference by the area of the inclined
water plane. The difference of the moments of the two sides
of that plane are found by taking the difference between the
halves of the sums of the functions of the squares of the
ordinates of the two sides, and multiplying it by the longi-
tudinal interval; the sums having been already divided by 3.
This resultant moment divided by the area of the inclined
water plane, gives the distance of its centre of gravity from
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the axis about which moments were taken. The centre of
gravity will, of course, be towards that side which has the
excess of moment. As already mentioned, the distance of
the centre of gravity of the layer from the longitudinal
middle line plane approximates very closely to the distance
thus found, when the layer is not very thick. Should, how-
ever, the layer be so thick that, in the judgment of the
calculator, the distance of the centre of gravity of the inclined
water plane from the axis is not a sufficiently good approxi-
mation to the true distance of the centre of gravity of the
layer from that axis, a closer approximation may be obtained
in the following manner: Draw the actual inclined water
line upon the body plan, so that the drawing will then con-
tain the upper and lower bounding planes of the layer.
Calculate the distance of the centre of gravity of the true
inclined water plane from the middle line of the body in the
same way as the distance of the centre of gravity of the
assumed inclined water plane has been obtained; and mark
the pogitions of these two centres of gravity upon the body
plan. Join the two points, and bisect the joining line; the
perpendicular distance of the point of bisection from the
middle line of the body will be a close approximation to the
distance required.

139. IX. Statical Correction for Layer.—The assumed
position of the inclined water plane being in error, and a
layer of displacement having to be added or removed; in
other words, volume having to be transferred from one wedge
to the other, in order to make them equal, we have now to
determine the necessary correction in moment due to this
assumption. This correction obviously consists of the moment
of the excess of volume about the longitudinal middle line
plane, or, in other words, the product of the excess into the
distance of the centre of gravity of the layer from the axis of
the upright water plane. If the centre of gravity of the layer
lies toward that side for which the assumed wedge is the
greater, then deduct the correction; if it lies toward the

opposite side, add the correction.

140. X. Statical Correction for Appendages.—In addition
to the correction just referred to, other corrections have fre-
quently ;: be made in consequence of appendages not hg=i~e

f

i
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hitherto been taken into account in the calculation. The
nature of some of these appendages has already been referred
to in Art. 131, others occur very often at the bow and stern
of the ship beyond the extreme ordinates. In every case
the volume of the portion of the appendage included in every
angle of inclination, both as regards the immersed and
emerged wedges, must be calculated. It is generally possible
to guess very closely to the position of the centres of gravity

- of an appendage, and the moment of the latter is found by
multiplying its volume by the distance from the axis of the
upright water plane of a perpendicular from the centre of
gravity of the appendage upon the inclined water plane. If
the appendage adds to the volume of either of the wedges, the
moment due to it must be added when making the correction ;
but if the appendage is a negative one, produced by an em-
brasure or some other recess in the side, the moment due to
it must be deducted.

Corrections in the thickness of the layer, and in the area
and position of the centre of gravity of the inclined water
plane have also to be frequently made in consequence of
appendages which were not previously taken into account.
Care must be taken to include the correction due to the
appendages, both in the excess in volume of one wedge over
the other, and in the excess in moment of area of one side
of the inclined water plane over that of the other side, before
determining the correction jfor layer, referred to in the pre-
ceding Article. The way in which these several corrections
are included in the calculation is shown on the Combination
Table for 32 degrees,

141, XI. Values of BN and GZ.—The various correc-
tions having been made for the moments of the wedges, the
corrected moment is divided by the displacement in cubic
feet, the result being the value of BN (see fig. 2, Plate
XVIIL), for the reasons given at Art. 88.

From this BGsiné has to be deducted, 6 being the angle of
inclination, the remainder is the value of GZ for that angle.
The values of GZ for successive angles of inclination are the
ordinates of the curve of statical stability.

The ordinates of a curve of stability are usually drawn to
a scale of one quarter of an inch for every tenth part of a
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foot in the value of G'Z, and the abscisse to a scale of one
quarter of an inch for every degree of inclination.

142. XTI. Check Spot at 90 Degrees.—As a check upon
the accuracy of the curve, it is usual to calculate the value
of GZ at an angle of 90 degrees* by an independent method.
This is very desirable, as the figures in the severai Combina-
tion Tables being copied from one to the other, an error made
in one table will be repeated throughout all those which
follow, unless great care is taken. The method we are about
to explain is very simple, and the work may be rapidly
performed. Should there be an error in the curve, this
separate calculation will be sure to discover it, and whether
error is discovered or not, the satisfaction derived from
the check is worth the trouble involved in the work of
making it.

Referring to fig. 1, Plate XX VIII,, the body plan there
shown is that of a ship which is heeled over to an angle of
90 degrees with the usual upright position; so that the new
water line is W, Z,. Suppose B, to be the position of the centre
of buoyancy when inclined at that angle, then the couple,
tending to right the ship or upset her still farther, is D x GZ
where GZ is (as usual) the perpendicular from the centre of
gravity upon the vertical through the new centre of buoy-
ancy. If the vertical, through the new centre of buoyancy,
cuts the middle line of the ship on the side of @, farthest
from the upright water line, then the couple is an upsetting
one, and the value of GZ is negative. This case is shown
by Plate XXVIII. If the vertical is on the other side of
@, the couple is a righting one, and the value of GZ is
positive.

The problem to be solved is to find the position of B,
with regard to the upright water plane WL, that is, the dis
tance ZA4; we are not concerned with its distance from the
middle line of the ship. In order to determine the value of
ZA, the easiest way is to use the curve of tons per inch of

* This is in an ordinary case when QZ has neithe
nor a negative value at that angle; in the case
freeboard, whose range of stability does not exceed,
a check spot is found at an angle near that at whic
found to vanish,
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immersion. From this curve can be readily calculated the}
arens of the half water planes as high as the load line, and}
if there is no discontinuity in the side of the ship, the curve
can be accurately continued to the upper deck by simpl
bending a batten to the curve already drawn, and allowingi
its extremity to spring fairly. If this cannot be relied upon’
for the portion of the ship above the load water line, a water
line above the load line should be run off in the half-breadth.
plan, and its arca and tons per inch calculated. With this
additional data, the curve can be continued to the upper deck.
Next, water lines should be drawn in the body plan above
the load line, the same distance apart as those already used
in calculating the curve of tons per inch. This will leave an
appendage between the upper water line and the deck. Should
this appendage be inconveniently large, it will be better to
draw in a new set of water lines, commencing at the upper
deck at side on the midship section, and drawing them equi-
distant. The half areas of these water lines are at once
found from the curve of tons per inch.

It will be observed that in using these half areas we are
supposing that AP is the load water plane when the ship is
inclined. Should there be a layer, it is allowed for after-
wards.

By means of the half areas of water planes, the displace-
ment and position of the centre of buoyancy of the ship, .
supposing her to float at the line PA, are readily found by
Simpson’s Rule, and by taking moments in the usual way.
Allowance must then be made for the appendage above the 1
highest water line, and at other parts of the ship, according
to the circumstances of the case; and after taking everything 1
into account, the total displacement to the line 4P is found,
and the distance of the centre of buoyancy of that displace-
ment from either of the water lines. |

Should the displacement so found be less than that of the
ship, it shows that she will sink deeper, and therefore a layer
has to be added; should the displacement, however, be greater,
the contrary is indicated.

We will suppose the usual case, viz., that the total dis-
placement is greater than that of the ship when floating at the
line 4P, We have then to calculate the area of the vertical
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longitudinal middle line plane of the ship from the keel to
upper deck. Divide the difference between the displace-
ments, expressed in cubic feet, by the area thus found, and
the result will be a close approximation to the thickness of
the layer 44, Should 44, be sufficiently large to cause
the water line W,L, to differ in area much from the middle
line plane 4P, the actual area of W L, should be found,

and a correction made in the value of AA1 The distance of
the centre of buoyancy of the layer from the line WL is
readily found, and the correction in the position of the centre
of buoyancy of the whole displacement with regard to WZ
can then be made. The value of AG@ being thus found, the
distance GZ is at once known for an inclination of 90 degrees.
If the work is accurately performed, and the curve of stability
correctly drawn, the value of GZ will agree with the ordinate
of the curve at that angle.

143. Curve of Dynamical Stability.—The same Prelimi-
nary Tables are used as for the curve of statical stability.
The Combination Tables given on Table VII. show on the
right hand side the separate work for the curve of dynamical
stability. As will be seen, the additional work consists in
multiplying the products of the sums of functions of cubes
by the sines instead of the cosines of the inclinations which
the radiating planes make with the plane at the particular
angle under consideration. The reason for this course of
procedure is explained at Art. 51. The sum of the results of
these multiplications is divided by 3, and then by the proper
fraction of the angular interval, according to the particular
rule for integration which is adopted. This is again multi-
plied by the longitudinal interval, after which the corrections
for the appendages and layer have to be made.

The correction for appendages is obtained by using the
volumes of appendages obtained for the statical curve. The
moment of an appendage for dynamical stability is found by
multiplying its volume by the perpendicular distance of its
centre of gravity from the inclined water plane, at the angle
under consideration. If the appendage is a positive one, i.c., a
projection on the surface of the ship, the correction must be an
additive one in all cases; and if it consists of an indent, such
as an embrasure, etc., the correction is a subtractive one,
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The correction for the layer has now to be made. The ‘
manner of finding the thickness of the layer is given at Art.
137. For all practical purposes, the centre of gravity of the
layer may be taken at the middle of its thickness; hence to
find the dynamical correction, the volume of the layer is 1
multiplied by half its thickness, and this correction is always
a subtractive one.

These corrections having been made, the result is divided |
by the volume of displacement in cubic feet, and the result
is the value of B,V for that angle. 'We have only to deduct
from this the value of B@ versin 6 (6 being the angle under
consideration), and the result is the lever of dynamical
stability, or the distance through which the displacement is
- lifted in inclining the ship from the upright position to that
angle. The curve of dynamical stability is constructed with
these ordinates similarly to the curve of statical stability.
Plate XXVIIL, fig. 2, shows the curves of statical and
dynamical stability of the ship shown by Plate XX V1., the
calculations for which are made in Table VIL

144. Geometrical Mode of Calculating Dynamical
Stability.—At Art. 130, we indicated the method by which
the curve of dynamical stability is calculated and constructed
from the curve of statical stability. . As we there stated, the
dynamical stability at any angle is the integral of the
statical stability; or the area of the curve of statical stability
included between the origin of the curve and its ordinate at
the angle in question. The process of geometrical integra-
tion was explained at Art. 42. In order to apply the method
there explained to finding the area of a curve of statical
stability, it must be remembered that the abscisse of such a
curve cannot be measured with a scale in the same way as
the ordinates ; for while the latter are drawn to some specific
scale, the former merely inform the calculator regarding the
number of degrees whose circular measure has to be taken
into account.

For instance, suppose the ordinate of the curve of dynami-
cal stability at 40 degrees be required for the ship whose
curve of statical stability is given in fig. 2, Plate XX VIII.
The problem before us is to find the area of the curved surface
A B(, the lengths of the ordinates in feet being shown by the
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scale on the diagram, and the common interval is the circular
measure of 10 degrees. Hence we proceed as follows:—

0° 0x1= 0
10° 5 x 4= 20
20° 12 x 2= 2:4
30° 21 x4= 84
40° 28x1= 28

3)156
52

The cu‘cular measure of 10 degrees is *1746.
1746 x 52 = *908.

Hence ‘908 feet is the length of CD, the ordinate at 40
degrees of the curve of dynamical stability. The ordinates
of this curve will continue to increase until that angle of
inclination is attained, at which the statical stability vanishes;
when the dynamical stability will be a maximum. After
this the ordinates diminish until a point is attained, at which
the area of the curve of statical stability below the base line
is equal to that above it—when the dynamical stability will
be zero. The work done by the ship herself in completing
the capsize is then equal to the work done to incline her
before the point of vanishing stability was attained—or where
she commenced to offer opposition to returning to the upright
position rather than to being inclined still farther.

145. Curve of Statical Stability at Light Draught.—If
a ship when at sea always floated at the same mean draught
of water—even although the trim varied somewhat—the
curve of stability at the load draught and trim would represent
the condition of the ship in that respect, with a sufficient
degree of accuracy for all useful purposes. But it happens
that the longer a ship is at sea the less her mean immersion
becomes, until all consumable stores are gone. In the case
of a steam ship this condition is still further affected by
burning the coals, and the boilers and engine condensers being
emptied of their water. It need hardly be pointed out that
in this “ordinary light condition,” as it is termed in the
Royal Navy, the curve of stability of the ship is very diffe-
rent to that in the load condition. The alteration in the
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curve is due to two causes—1st, to the change in the position
of the centre of gravity; and 2nd, to the change in the
relative forms of the portions of the body that are in the
water and out of it. o
The “ ordinary light condition ” is that condition in which

a ship has—

1. The boilers empty.

2. The fresh water tanks empty.

3. All provisions consumed.

4. No water in the engine condensers.

5. All coals consumed.

6. All consumable stores used.

The consumable stores referred to are taken as onehalf of
the weights of the engineers’, gunner’s, carpenter’s, and
boatswain’s stores. This is, of course, a very improbable
condition; but as it represents the worst conceivable condi-
tion, it is desirable to know the curve of stability at such a
time, for then we are aware what are the limits of its phases
between the load and the lightest probable draughts of water.

In most vessels the removal of the weights above named,
causes the centre of gravity of the ship to rise, with regard to the
underside of keel. Consequently, in ordinary cases the range
of the curve of stability will be less in the light than in the
load condition. If, however, the vessel in the load condition
has a very low freeboard, it is quite possible that the increase
of freeboard, due to the removal of the weights, will more
than compensate for the raising of the centre of gravity,
especially if the weights removed were originally stowed
tolerably high in the vessel. In any case, the curve of
stability is not so much reduced in a ship of low as in one
of high freeboard by placing her in the usual light condition.

Having the curve of stability in the load condition, the
curve in the light condition may be deduced from it by the
following method, without going through all the labour of
calculating a separate curve by independent means.

The first thing to be done in this calculation is to find the
centre of gravity of the ship when the weights already named
are removed. The mode of doing this is shown at page 140.

The corrections to be made in the known curve are of a
twofold character, as already stated, viz, that due to the
change of mean draught; and that due to the vertical rise of
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the centre of gravity. The alteration of trim is not taken
into account, it being found by experience that the curve is
not affected by the small changes of this kind that usually
occur. The weight of the stores removed from the ship,
divided by the “tons per inch of immersion” at the load
draught, gives a first approximation to the distance between
the load and light water lines. A mean between the tons
per inch of immersion at the light line thus found, and the
load tons per inch gives a very close approximation to the
real tons per inch of immersion to be used. It is, perhaps,
hardly necessary to say that the tons per inch at the assumed
light line is found by reference to the “curve of tons per
inch of immersion” (see Art. 39). The weight removed,
divided by the mean tons per inch, gives the actual distance
of the light line below the load line in the body plan. In
_ fig. 1 of Plate XXIX., WL is the load line, and WL, is the
light line thus found for a certain assumed case;-the layer
of displacement between 7L and W,L, being equal to the
weight of the consumable stores.

Let D = the total displacement of the fully-equipped vessel,
and d = the weight removed ; also let D, =the light displace-
ment. Then

D,+d=D.
In the tigure, G is the posmon of the centre of gravity of
the fully-equipped ship, and @, is the centre of gravity of the
ship in the light condition, so that the centre of gravity has
risen through the distance GG,.

Now suppose the vessel inclined through an angle 6; it is
required to determine the length of the arm of the righting
couple at that angle, in order to construct the curve of
stability for the lightened ship; it being known that GZ
is the length of the arm at that angle in the load condition.

From the original calculation for the curve of stability of
the fully-equipped ship, the position of the load water line
in the inclined condition at the angle 6 is known. Let wi
be that line. Again, the area of a plane AA,, passing through
the middle point 4, and inclined at the angle 6, was also
found in the original calculation. Thus a first approxima-
tion to the distance of the inclined light line w,l,, below
the inclined load line w?, is at once found by dividing the
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displacement d of the layer by the area of the plane Ak,.
This distance is termed the “ thickness of the layer.” If it
be desired, the actual volume of this layer, and the distance
of its centre of gravity from the line 4R, drawn through 4,
perpendicular to %A}, can be found by calculating the areas
and centres of gravity of equidistant sections of the layer,
and integrating them by Simpson’s Rule in the ordinary way.
If the volume is found unequal to d, corrections may then
be made in the value of ¢—the thickness of the layer—until
a perfect equality results. Such a calculation is, however,
never needed in practice for finding the statical stability, as
there cannot be an appreciable error in the perpendicular
distance of the centre of gravity of the layer from the line 4 R,
if we assume that the centre of gravity of a plane, midway
between wl and w,l,, is also the centre of gravity of the layer.
This assumption is commonly made in these calculations.

Let a be the perpendicular distance of the centre of gravity

C of the layer, found in this way, from the line AR. Also
let BN be the perpendicular from the upright centre of
buoyancy B of the fully-equipped ship upon B, M, the vertical
through the centre of buoyancy when the ship is inclined
through an angle 8; and let BNV, be the perpendicular upon
B,M,, the vertical through B,, the centre of buoyancy of the
lightened ship at the same angle.

Then BN -BA sin §=RN,
and a+ (BN -BA sin §)=CA+RN.

Consequently, taking moments about A£B,, we have
d{a+(BN - BA sin 4} =D, x NN,
d{a+(BN -BA sin ¢)}
D,
It should here be remarked that it often happens that the
line B, M, and sometimes the point C, are on different sides

of AR at different angles of heel; and so the signs in the
expression

or NN;=

{a+(BN-BA sin ¢)}

should be carefully considered for each angle.
~ Having the value of ¥¥,, we know that of BNV,
Since BN,=BN+NN,
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for BN is found from the original stability calculation.
Again, it should be remarked that the signs of this expres-
sion should be carefully noticed for every angle of heel, as
M B, may at some angles be on the other side of MB,.
Having BN, we know the value of ¢,Z,, gince
G,Z,=BN, - BG, sin ¢.

The value of BN, should be calculated for each of the angles
of heel at which the value of GZ was found in the original
stability calculation for the load condition; in order that the
value of G,Z, may be found for the same angles.

Fig. 2, Plate XXIX., shows two curves of statical stability
for the same vessel, one being in the load, and the other in the
light condition. The effect of removing the stores already
cnumerated, in the case of an ordinary ship, upon the height
and extent of the curve is shown by this figure. In this
example the maximum value of GZ is about 35 ft., and this
is attained at an angle of 51 degrees; the stability vanishing
at 86 degrees. In the light condition the maximum value
of GZ, is attained at an inclination of 54 degrees, being
then 3 ft.; while the stability vanishes at 79 degrees. Two
facts will be noticed here, viz., 1st, that owing to the greater
freeboard in the light condition, the maximum stability is
attained at an inclination of 3 degrees greater than when she
is fully equipped, although owing to the centre of gravity
being raised, the leverage is 6 in. less; 2nd, that owing to
the elevation of the centre of gravity when the ship is light,
the stability vanishes at an inclination of 7 degrees less than
when fully equipped.

By a similar process the curve of stability can be found
when the ship is floating at a deeper draught than that for
which the original curve was calculated.
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146. Still Water Rolling.—When a ship, floating in
still water, has been forcibly inclined out of her normal or
upright position of equilibrium, a certain force is required to
retain her in the inclined condition. If that force is suddenly
removed, she at once seeks to restore the statical equilibrium
that had been thus destroyed. In returning to the normal
position a certain amount of mechanical work is accumulated
which carries the ship beyond the upright position to an angle
of inclination on the opposite side. If the return motion
of the ship is unresisted, the angle to which she inclines on
the opposite side of the upright position is the same as that
at which she was inclined before the force which kept her
there was removed. The ship then commences a return
motion which results in an oscillation of the same amplitude
as before; and so the rolling continues ad infinitum. This
hypothetical case is termed “wunresisted rolling in still water.”
It need hardly be stated that the friction of the water on the
ship’s bottom, the irregularities of her form, and the resist-
ance of the atmosphere, all tend to diminish the force which
causes the motion, and therefore continually reduce the
amplitude of the oscillation until the ship ultimately arrives
at & state of rest in her normal position of uprightness.
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The similarity between the cases of a ship and a simple
pendulum is obvious. There is, however, this difference
between them, that whereas the pendulum oscillates about a
certain fixed point, a ship when rolling oscillates about a
point which travels in a certain path, governed by the form
of the vessel, and the position of her centre of gravity.

The study of unresisted rolling is instructive only in so far
as we can gather from it the principles which govern the
rolling of a ship under the circumstances which actually
occur. By the application of the principles which regulate
the motion of a pendulum, we are enabled to determine many
facts regarding the rolling of ships, on the supposition that
their oscillations are unvestrained. The actual amount of
resistance offered to that motion in a real case is difficult,
and, in fact, impossible, to determine by calculation before-
hand; but by taking account of the time which elapses before
the ship comes to a state of rest, the resistance can be experi-
mentally determined. This resistance has not only the effect
of finally extinguishing the rolling motion, but also of
diminishing the extent of rolling and lengthening the periodic
time. The late Professor Rankine has proved that the fluid
resistances offered to & vessel's motion, in the form of friction,
and by volumes of water being set in motion by the keel,
bilge keels, and sharp parts of the body, cause the extent of
rolling to be diminished nearly in geometrical progression, at
a rate increasing with the amount of resistance, and diminish-
ing with the increase of the vessel's moment of inertia. Also
that the period of the oscillation is increased to an extent
which would follow if the radius of gyration were increased
in a particular ratio, which ratio varies directly as the
amount of resistance exerted, and inversely as the distance
which the metacentre is above the centre of gravity.

Such rolling as we have been considering, wherein the ship
is supposed to be floating in still water, and merely under the
influence of the resistances we have named, is termed * free
rolling.” Even this case, including as it does more usual con-
ditions than those we started with, is still never met with in
practice; at least to such an extent as to render it worthy of
our consideration upon its own merits only. The cases of
rolling which are of the greatest importance, by reason of
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their general occurrence, are those of a ship among waves,
where, in addition to the resistances already named, the
motion of the vessel is further inflnenced by that of the par-
ticles of water in which she floats. The rolling motion com-
municated to a ship by waves is termed ¢“forced rolling,” and
the movements of the ship are termed ¢ forced oscillation.”
‘We will first discuss the question of free rolling, in order that
we may be able to establish certain principles to guide us in
dealing with the complex—and as yet scarcely understood—:
problem of forced oscillations, and the compound motions of
a ship among waves.

14%. The Revolving Pendulum.—In considering the oscil-
lations of ships it is convenient to compare them to the motion
of a revolving pendulum,* and express the rolling properties
of the ship in terms of those of an equivalent revolving pen-
dulum whose time of revolution is the same as the period of
the ship’s oscillation. It should be here observed that by the
period of the oscillation is meant the time occupied by a
complete or double oscillation which brings the body back to
the same position and condition as when it started.

The principles of the pendulum are discussed in every
treatise on dynamics, consequently we do not propose to con-
sider them here, but shall content ourselves with merely
stating the results of such investigations and taking them as
demonstrated.

‘When a body is constrained to revolve in a circle with a
uniform speed, the deflecting force which impresses a circular
instead of a rectilinear motion is equal to

Wyt

where W =the weight of thegr body, v=its velocity, #=the
rg«%ig;; of the circle, and g the accumulating force of gravity
( If A represents the angular velocity in circular measure,
then v=Ar,
and the deflecting force expressed in these terms =
WA _ WA
gr - 322°
* Such as the governor of a steam engine. -
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It is usually more convenient to express the speed of
revolution by means of revolutions per second. Let S=the
number of revolutions per second. Then A =248, and the
deflecting force =

4WS2x2r _ W82
g = -8154°

If 8=the number of revolutions per minute, the abovo

expression becomes

W82y
2935 °
In fig. 1, Plate XXX., C'4 represents a revolving pendulum

* consisting of a weight ¢ hung from the point 4, and swing-

ing round the vertical axis 4B, in a circle whose radius is CB.
AB is the height of the pendulum, which, therefore,
diminishes as the angle C.4 B increases.
If a force is communicated to the weight, it is by means of
the rod or string 4C; hence the tension of that string or rod

_ is equal to-the-swm of the weight and the deflecting force.

Therefore, if P = deflecting force, and W= welght
P: W=CB: AB;
WS WS2xCB

But P=——'8154 =gt
. AB__Wx(?B_W><'8154xP
* T P T PxWx§? 7. L

LS o
T ) ,L L: AB = 881554 = ¢ BSPE
nwe>

This result may be represented by the following rules:—

1. To find the height in feet of a revolving pendulum which
makes a given number of revolutions per second: Divide
*8154 by the square of the number of revolutions per second;
or divide 2935 by the square of the number of revolutions per
minute.

II. To find the number of revolutions made in a given time
by a revolving pendulum of a given height: Divide ‘8154
by the height in feet, and the square root of the quotient gives
the number of revolutions per second; or, divide 2935 by the
height in feet and the square root qf the quohent gives the
number of revolutions per minute.

<

K

S~

;r‘-
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148. Isochronous Oscillations.—When the period of the
oscillation of a body is the same, whether the oscillation be
large or small, the oscillation is said to be isochronous. On
the supposition that the rolling motion of a ship is of this
character, the height of its equivalent pendulum may be found
by means of the following ratio; it being observed that the
necessary condition of isochronous rolling is that the righting
moment of the ship shall be proportional to the angle at which
she is inclined.*

Let M =the righting moment at an angle 4,

»» I=the moment of inertia of the ship,
s» h=the height of equivalent pendulum;

Then, M : I=4:Fh;

h=&\.. %\E ............... (A)

Having the value of A, the number of oscillations per second
or minute may be found by the Rules given in the preceding
Article.

By means of formula(A)the height of the equivalent pendu-
lum may be found for oscillations not exceeding 10 degrees
each way, or for a total amplitude of 20 degrees; as up to
this inclination the righting couple is generally almost pro-
portional to the angle of heel. In the following remarks the
oscillations of ships will be treated as isochronous, as the error
thus introduced is so slight as not to be of any practical im-
portance, provided the oscillation does not exceed 15 or 20
degrees each way.

Professor Rankine has shown in a paper read before the
Institution of Naval Architects in 1864, that the conditiony
for an isochronous rolling ship is, that *the metacentric
evolute is the involute of a circle described about the centre
of gravity and through the metacentre; and, consequently,
the metacentric involute is the involute of the involute of
that circle.” In other words, the metacentric (see Art. 79)
is the involute of a circle passing through the metacentre, and
whose centre is the centre of gravity, so that the curve of
buoyancy (see Art. 77) is the involute of the involute of that

* From this it is evident that the curve of stability is a straight
lino up to that angle of inclination at which the rolling ceases to be
isochronous, .
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circle. It is evident that for small inclinations this condition
is practically fulfilled in all cases.

149. Free Oscillations.—A ship is capable of three kinds
of free oscillations, viz., rolling, ar cscillation about a longi-
tudinal axis; pitcking, or oscillation about a transverse axis;
and dipping, or vertical oscillation with regard to the surface
of still water.

150. Axis of Rotation—Rolling, when not accompanied
by pitching nor dipping, is performed about 2 longitudinal axis,

Instead, however, of this axis being fixed, like the point of
ion of a pendulum, it has a motion which, in the case
ofnnremstedorﬁeemﬂmg,sudluwemnowoonmdenng
is easily determined. Suppose the surface of flotation (see
Art. 74) and the surface of the still water to become rigid
without friction, so that the former may roll or slide freely
upon the latter without being interfered with by the body of
the vessel, but only subjected to the forces of weight and
buoyancy actmg through their respective centres. The con-
dition is then exactly analogous to that of a ship rolling freely
in still water and influenced by the resistances which actually
occur in such a case. We have rimnlv tha case of a emaath
solid body without weight
plane under the action of «

In fig. 2, Plate XXX
is shown, of which HP is
water line in the uprigh
inclined, so that W,L, is t
a transverse section of th
point of contact of the e
position of the water line

to be in such a cond
tion FAF, is rolling upe
Being under the influence
motion of the centre of gra:
consequently, at any insta
is rotating will be found i
instantaneous direction of
the surface of flotation wit
the plane of the latter, and
From this, it follows that -

4B
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the line SO drawn through the point of contact perpendicular
to the water plane. Having GO and SO the co-ordinates of
the point, therefore O is the position of the instantaneous
axis corresponding to the inclined position of the ship shown
in the figure. By tracing the locus of the point O, it will be
found to be a curve of the character 0,GO passing through
the centre of gravity.

151. Relation between a Ship and her Equivalent Pen-
dulum.—In Art. 148 we stated that

Ie

h= &_ = M
But the value of 7—or the moment of inertia of a ship about
a longitudinal axis—is equal to her displacement, multiplied
by the square of her transverse radius of gyration. This
follows from the principles of moments of inertia enunciated
at Art. 52. Expressed algebraically this will be

I=Dxk?

k being the length of the radius of gyration. Also the
moment of the righting couple is very nearly equal to the
displacement multiplied by the height of metacentre above
centre of gravity, multiplied by the angle of heel in circular
measure, Expressed algebraically—

M=DxGMx4.

But k=

aM DA 8 . &
o e e R
=%¥=% putting m for GM.

Hence we have the following rule:—

Divide the square of the ship's transverse radius of gyration
by the height of her metacentre about her centre of gravity;
the quotient will be the height of her equivalent pendulum for
rolling.

By Rule IIL, Art. 147, we have, calling 7' the time in
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seconds in which the complete roll from port to starboard
is made,

%
§L5__

815 m

152. Geometrical Method of finding 4.—Professor Ran-
kine has given a simple geometrical construction for finding
the height of the equivalent pendulum. In fig. 3, Plate XXX.,
let G represent the ship’s centre of gravity, and M her meta-
centre. Perpendicular to GM draw G'E equal to the transverse
radius of gyration. Join MR; and perpendicular to it draw
RP, cutting M@ produced in P: GP will be the height of
the eqmva.lent pendulum required.

Professor Rankine also adds the following: To represent
a compound pendulum, which shall have not only the same
period of oscillation with the ship, but the same statical and
dynamical stability, proceed as follows:—About M (fig. 3,
Plate XXX.), with a radius equal to GR, draw a circular
arc, cutting the straight line R@ in two points B, B, equi-
distant from G. Conceive that MBB represents a light

frame, hung from the point M; and that it is
loaded by having one half of the weight of the ghip concen-
trated at each of the points B, B; the triangular frame, so
suspended and loaded, will be the compound pendulum
required.

153. To find the Radius of Gyration.—It is a very
difficult problem to determine the radius of gyration of
a ship by measurement and calculation. The hull and
equipment consist of so many items of different form and
specific gravity that the task is impracticable. But by
experiment, after the ship is built and equipped, the length
of the radius of gyration is readily determined from the
observed period of the ship’s free rolling. The length being
once determined for any ship, a very close approximation
can be made for that of another ship of similar character by
simply making allowance for the differences in the weights

and positions of the principal elements in the hull and eq;
ment, In this way the designer is able to predwi?w
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tolerable accuracy the length of the radius of gyration of a
new design, provided he knows its length in another ship of
similar form and construction.

The experiment for finding the length of t.he radius of
gyration is conducted in the following manner: The ship,
floating in still water, is forcibly inclined through a moderate
angle, say 5 to 10 degrees, and then allowed to roll freely.
The number of double rolls, or complete oscillations from
side to side, in a convenient interval of time is then counted,
and the time, divided by the number, gives the period of
rolling.

L. Multiply the square of the pertod in seconds by ‘815, and
the result will be the height of the equivalent pendulum in feet.

II. Multiply the height of the equivalent pendulum by the
height of the ship’s metacentre above her centre of gravity;

" the product will be the square of her radius of gyration.

If T =the period of rolling as observed. Then, using the
nomenclature already adopted in this chapter, Rule I. will
be expressed thus—

h="815T?
and Rule I
k*=mh
=816 mT3.

The first formulse agrees with Rule I. of Art 147, while the
second is identical with the formulse already given in Art.
151.

154. Regulation of the Period of Rolling.—A glance
at the expression for the period of free rolling

k2

T= ‘816 m
shows that 7' increases as % increases, but diminishes as m
becomes greater. From this we see that to increase the
period of rolling either or both of two expedients may be
adopted ; the length of the radius of gyration may beincreased;
the distance between the centre of gravity and metacentre
may be diminished; or both of these changes may be made.
The reverse of these alterations, of course, produces a con-
trary effect. The radius of gyration is increased in length
by what is termed “winging out the weights,” i.e,, by
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spreading out the principal weights farther from the middle
line of the ship. Consequently, placing armour on the sides
of ships increases the period of rolling considerably beyond
what it would be if the same weights were distributed uni-
formly as in unarmoured ships. As we shall see hereafter,
there is an advantage to be obtained in a ship’s behaviour -
among waves by increasing her period of rolling, and, conse-
quently, the system of armour plating the sides of ships
lends itself very usefully in attaining that end.

The distance between the metacentre and centre of gravity
may be diminished or increased by changes in both the form
and stowage of the ship. Widening the ship at the load
water line, or fineing the form below, raises the metacentre
with regard to the underside of keel, and vice versa. Also
giving a rising floor raises the centre of buoyancy with regard
to the underside of keel; and giving a flat floor or barge-like
form to the body lowers the centre of buoyancy. By com-
bining these two sets of changes, it is possible to raise or
depress the metacentre with regard to the water line or
underside of keel. But changes in form are not so readily
accomplished as changes in stowage, as the shape of the
vessel is usually influenced by other considerations than
those of stability or rolling. So that we may say the period
of rolling of a ship is diminished by raising the centre of
gravity, and vice versa.

It is, however, obvious that a reduction in the value of
GM (or m in our formulw), causes a loss of stability, and it
may happen that the value of m, which is best adapted for
slow and steady rolling, is too small to ensure the requisite
stability in a low-sided or heavily-rigged ship. Consequently,
the best mode, if practicable, of increasing the period of a
ship’s rolling is to increase the length of the radius of gyra-
tion, which is accomplished by “ winging out the weight.”

155. Effect of “ Winging out the Weights.”—Suppose
a pair of equal weights to be originally situated with their
centres of gravity at equal distances on opposite sides of the
longitudinal vertical middle line plane of the vessel, and that
they are shifted out at greater, but still equal, distances in a
horizontal direction from that plane; to find the increase in
the length of the ship’s radius of gyration,
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From the square of the new distance of the centre of gravity
of cither weight from the middle line, subtract the square of
the original distance; multiply the rvemainder by the sum of
the shifted weights, and divide by the displacement; the square
root of the quotient will be the increase of the ship’s transverse
radius of gyration.

Expressed algebraically—

Let D =displacement.
5 W =each weight.
» | =original distance of the @ of each weight from middle line.
s»» & —new distance of the & of each weight from middle line.
»» Kk =original radius of gyration.
;> K =new radius of gyration.

Then K - k= {2_W. (ll;-l?)}%
Hence K=k+ {mg_‘_m }i

156. Pitching.—As rolling is the name given to the trans-
verse oscillations of a ship about a longitudinal axis, so pitck-
ing 'designates the longitudinal rolling about a transverse axis.

The same principles are involved in the two kinds of oscil-
lation, between which there may be any number of directions
in which oscillations may take place. In point of fact, direct
rolling or pitching are rarely observed, as even in still water
one motion gives rise to the other, owing to the difference in
the forms of the wedges of immersion and emersion. The
oscillatory motion of a ship is generally in a diagonal direction.

The term pitching, as here employed, denotes the complete
or double oscillation, but in practice the lowering of the bow
and raising of the stem is spoken of as pitching, the other
half of the oscillation, which consists of raising the bow and
lowering the stern, is termed scending. '

The principles which regulate the pitching oscillations, and
the rules applying to them, are the same as for rolling, and
therefore do not require separate treatment. Instead of the
height of the transverse metacentre above the centre of
gravity, that of the longitudinal metacentre is substituted ;
and instead of the transverse radius of gyration we use the
longitudinal radius; the latter being a quantity which, if
calculated, would be found by multiplying each weight in the
ship by the square of its distance from a transverse axis
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through the centre of gravity, adding together the products,
dividing by the displacement, and taking the square root of
the quotient.

15%. Regulation of Period of Pitching.—As we shall see
hereafter, it is generally desirable that the period of a ship’s
pitching should be as short as possible, or, in other words, that
she should be “lively.” As in the cases of rolling there are
two modes of producing this, viz., by shortening the length
of the longitudinal radius of gyration, or by increasing the
height of the longitudinal metacentre above the centre of
gravity. There are difficulties in the way of making a change
in the period by the latter course of procedure. In the first
place, the height of a ship’s longitudinal metacentre above
her centre of gravity is usually so great that a very consider-
able lowering of the centre of gravity would be necessary in
order to produce an appreciable change. And, secondly, an
increase in the height of the longitudinal metacentre above
the centre of buoyancy is only effected by filling out the lines
at the bow or stern; and as by so doing the speed is consider-
ably reduced, it is evident that there are great objections to
that course. The only practicable manner then of producing
“liveliness” in pitching, is by stowing the principal weights
as close lengthwise to the centre of gravity of the ship as
possible.

158. Still Water Resistance to Rolling.—Hitherto we
have supposed no resistance to be offered by the water to a
ship’s oscillatory motions; we shall now consider the effect of
the passive resistances of the water upon the surface of the
ship’s bottom. By such resistance we do not include the
statical forces which tend to right or upset a vessel, but the
resistances to her motion whatever the direction of that motion
may be. The observed effect of passive resistance upon free
rolling is to diminish the amplitude of the roll and cause the
oscillations to gradually diminish in extent and finally become
extinguished.

The resistance of a fluid to the motion of a body immersed
in it consists of two parts: one of these is the effect of the
resistance of the fluid particles to sliding past each other, and
the other is the waste of mecha.mcal work in producing eddies
in the fluid.
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The first of these is proportional to the velocity of the
motion of the body, and the second is proportional to the
square of that velocity.

These resistances vary with the form and nature of the
surface of the ship’s bottom. It is evident that the tendency
to reduce the extent of roll, and to increase the period of
rolling, is greater when the ship has a rising floor, deep keel
and bilge keels, than if she had a flat floor, rounded bilges,
and an absence of keels.

The experiment by which the length of the transverse
radius of gyration is determined also furnishes the data for
determining the resistance, if the ¢ rate of extinction” of the
rolling is observed at the samne time. Professor Rankine, in
a paper communicated to the Institution of Naval Architects
in 1864, says:—* By means of suitable experiments on the
rolling of a ship in smooth water two quantities may be
determined: the square of her radius of gyration, and a
quantity which may be called the leverage of keelrcsistance;
being the length of the lever at which the whole weight of the
ship would have to act, in order to exert a moment equal to
the moment of the resistance opposed by the water to the
keel, when the angular velocity of rolling is unity.

“I. Let the ship be forcibly heeled over, and set free to
roll; observe the periodic time of rolling by counting the
complete oscillations or double rolls in a certain number of
seconds; observe also the greatest angle of heel at the com-
mencement of the experiment, and also after the lapse of a
certain time in seconds, taking care to measure those angles
by observations of fixed objects, or by an instrument of the
gyroscope kind (like that invented by Prof. Piazzi Smyth),*
and not by a plummet or level. :

“IIL Divide the hyperbolic logarithm of the ratio in which
the original angle of heel exceeds the diminished angle, by
the time in seconds (or the common logarithm by the time in
seconds x "4343), the quotient will be a number which we
may call the exponent.

* Mr. W. Froude, F.R.S., has invented a very ingenious apparatus
which is su¥erior to the gyroscope in point of accuracy, and which
automatically records the motion of the vessel. See T'rans. Institution
of Naval Architects, 1873, p. 179.
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“III. To find what the periodic time would be in the
absence of keel resistance: Multiply the square of the actual
periodic time of a double roll in seconds and fraction of a
second, by the square of the exponent above mentioned, and
divide the product by 3948 (4x2), to the quotient add 1, then
by that sum divide the square of the actual periodic time, the
result will be the square of the periodic time of unresisted
rolling.

“IV Multiply the square of the periodic time of unresisted

-rolling by the constant ‘815 ( o in feet), the product will

be the length of the corresponding simple pendulum in feet.
«V. Multiply that length by the height of the ship’s meta-
centre above her centre of gravity; the product will be the
square of her radius of gyration.
“VI. Multiply the square of the radius of gyration by the

exponent (Rule I1.), and divide by 16-1 (% in feet) ; the quo-

tient will be the leverage of keel resistance in feet.

“ Experiments and calculations of the kind just described
are most likely to give accurate and consistent results at
moderate angles of heel (say not exceeding about 10 degrees),
for it is only under that condition that the resistance to roll-
ing can be treated as approximately proportional to the angular
velocity of rolling. The test whether the angles of heel are
small enough is simply their diminishing sensibly in geome-
trical progression.”

Professor Rankine was of opinion that the efficiency of
bilge keels was very doubtful, but Mr. Froude found by
cxpenment.s made with two vessels, each of over 1000 tons
displacement, one of which was without bilge keels, while the
other hed a pair, each 100 feet long and 3 fect 6 inches wide,
that the rolling of the vessel with bilge keels was barely half
that of the other, although both vessels were loaded to oscil-
late in the same time, and were nearly alike in form.

159. Dipping is the name given to the vertical oscillatory
motion of a ship which is produced by rolling and pitching.
On this account it has been termed a secondary oscillation;
pitching, when produced by rolling, being another instance
of an oscillation produced by another oscillation.
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Dipping produced by rolling results from the form of the
vessel's body in the neighbourhood of the water line being
such that when the vessel is inclined the centre of gravity is
at a greater or less distance from the water surface than when
she is upright. If the side of the vessel flares out above the
water, the inclined water plane cuts the original in a straight
line on that side of the vertical longitudinal middle line plane
towards which the ship is inclined, and thus the centre of
gravity is at a greater distance from the surface of the water
than when the ship is upright. Consequently, mechanical
work in opposition to gravity is performed in the inclination,
equal to the whole weight of the ship multiplied by the
distance through which the centre of gravity is raised, and
vertical oscillatory motion is set up by the dynamical effect
of the fall due to gravity which follows. Such a motion is
undesirable, and can occur to an injurious extent only in a
badly formed vessel such as we have described. Fig. 2, Plate
XV1I., illustrates the kind of section which produces such
uneasiness ; the vertical motion being due to the distance
which the axis of level motion (see Art. 76) is above the
centre of gravity. In well stowed ships the centre of gravity
is generally near the load water line; consequently, in order
to secure a steady motion when rolling, the form of the sec-
tions of the body should be such that the axis of level motion
is near the load water line. When that axis traverses the
centre of gravity, the latter point is, of course, immovable,
and the ship has no vertical motion at all.

Dipping produced by pitching is influenced by the same
principles as already mentioned, which in this case may be
expressed thus: Dipping is produced by pitching when the
centre of gravity of the load water plane is not in the same
transverse section as the centre of buoyancy.

160. Period of Dipping.—The period of a ship’s dipping
oscillations is usually shorter than those of pitching, and
much shorter than those of rolling. Should the periodic
time of dipping be about half that of rolling, the extent of
the alternate dipping and rising goes on increasing until the
acceleration is balanced by the resistance of the water, and
then it becomes permanent so long as rolling continues. In
such cases the axis of level motion no longer keeps at a con-
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stant height above the water surface, but acquires a vertical
oscillatory motion also, and the centre of gravity attains its
greatest elevation about a quarter of a period after the
instant of greatest heel. Consequently, every particle in
the ship, above and below the centre of gravity, describes a
curve thus: oo.

161. Waves.—Before the principles which regulate the
motions of a vessel when floating among waves can be dis-
covered, it is first necessary to know the character and laws
of wave motion.

‘Waves are of two principal kinds, which may be styled:
solitary and gregarious. The tidal wave, and the wave which
is raised by the bow of a ship when she is in motion, are
instances of the solitary wave. The common sea-wave,
familiar to all who will read this book, is an instance of the
gregarious wave. The waves which follow a paddle steamer
are other examples of the same kind. In the case of the
solitary wave, we have a body of water heaped upon the
surface of the sea, and wholly above the level of the latter;
while in the case of the common sea-wave the level of still
water is very nearly midway between the highest and lowest
points in the surface of the wave.

162. Wave Form.—In the ordinary sea-wave, the form
alone has a translatory motion; the particles of water merely
revolving in orbits of a certain character while the wave is

ing. The particles may also have a translatory motion,
but if so it is altogether independent of the wave forces, and
is due to currents of some kind. In the case of the solitary
wave, however, each particle comes to a state of rest at a
short distance in advance of its original position.

The waves which we have to consider are those of the
ordinary kind, in which wave follows wave in a continuous
succession. The surface of the sea, when disturbed by wind,
assumes an undulatory form, which, while the wind is blow-
ing, is of a rather complex character, consisting as it does of
waves superposed upon waves, the shorter upon the longer.
The smaller irregularities of the surface do not, however,
affect the problem that we have to discuss, as they do mnot
generally have a very marked effect upon a floating body of
the dimensions of a ship; at least, not anything approaching
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to the same degree as the main undulatory sweep forming
the wave proper. We shall consider the wave to be of the
character exhibited by a ¢ ground swell” after a storm, when
the wind has subsided.

The summit of a wave is termed the “crest,” and the
lowest point in its surface is termed the *trough.” The
“height” of a wave is the vertical distance from crest to
trough. The greatest height which has been accurately
measured in the open sea is 30 ft.; but there can be little
doubt that during storms in the Atlantic, waves are some-
times engendered which exceed that height. The level of
still water is, as we have said, nearly midway between crest
and trough. If a transverse section of the wave surface is
a curve of sines, the bed of still water is just midway; but
if, as is generally assumed, the curvature is trochoidal, the
level of still water is rather nearer the trough than the
crest. The length of the wave is the horizontal distance
between consecutive crests or consecutive troughs. The
greatest length which has been accurately measured is
500 feet.

163. Wave Motion.—The changes of form which the sur-
face of water undergoes when waves are traversing it, shows
that there must necessarily be, at least, a vertical motion
among the particles. Closer observations show that there is
also a backward and forward motion among the particles of
water. The exact character of the combined vertical and
horizontal motions of a particle of water in a wave is not
fully understood, but experimental researches go to show
that in deep water, z.c., water sufficiently deep to prevent
any resistance to wave motion being offered by the surface of
the bottom, the backward and forward motion is equal to
the vertical motion, and it would therefore appear that each
particle of water has a circular orbit. In shallow water the
horizontal motion is greater than the vertical, the difference
increasing as the water shallows, and thus the particles in
this case have orbital motion of a flattened oval character.
Assuming, then, that each particle of water in the wave re-
volves in a circular orbit, it follows that the combined effect
of this motion, with the translatory motion of the wave form,
causes the surface to assume a curvature of which a trans-
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verse section will be either a trochoid, curve of sines, or
some other curve of that family.

Theories on this subject have, in some cases, been based
upon a supposition that the curve is that of the trochoid,
and in others that it is a curve of sines. General support
seems to be given to the former hypothesis, which we shall
therefore adopt, especially as by so doing several phenomena
pertaining to wave motion are more readily accounted for
thereby.

In consequence of the nature of the motions among the
particles which generate the ordinary sea-wave, the latter
has been styled the oscillatory wave.

164. Form of Wave Surface.—We shall consider the
wave to bein deep water, and therefore that the motions of
the particles are unaffected by the sea bottom. Professor
Rankine fixes the minimum depth of what can be thus
considered as deep water at five-twelfths the length of the
wave.

In Plate XXXIT., consider a straight line Cy,C; to repre-
sent the length of a wave. Divide the line C,,C, into any
number of equal parts, say six, at the points C|, C,, C,, ete.,
and let the points C,, C,, C,, etc., be the centres of the orbits
of seven particles on the surface of the wave. With each of
these points as a centre, and with a radius equal to half the
height of the wave, sweep circles. Let the particle in the
middle orbit be at the crest of the wave, then the particles
on the orbits whose centres are C, and Cg will be in the
trough, and will, in fact, be in similar positions. Through
C; draw C,P; upwards, perpendicular to C,Cq, and at C,
and C4 draw C P and CyPy perpendiculars downwards to
meet the arcs of the circles. Then P; will be a particle on
the crest, also P, and P, will be particles in consecutive
troughs of the wave. Since P, is at the lowest part of its
orbit, and P, at the highest, the particles in the circles whose
centres are C, and C, will be at intermediate positions in
their orbits. Also since C,C,=C,C,=C,Cs, and because
there are 180 degrees between the positions of P, and Py,
therefore P, is at 60 degrees, and P, at 120 degrees from the
position of }’o. Similarly, P, and P, are at 60 degrees and
120 degrees respectively from Pp. Thus Py, P, P, P, etc,,
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are points in the surface of a wave of length C,C, and height
equal to 2 CgPy.

It is perhaps unnecessary to state that the curve, traced
by a point which is within or without the circumference of
a circle that rolls upon a straight line, is a #rockoid; hence
the surface of a wave, when generated in this way, has a
trochoidal curvature.

If a circle be swept with either of the points C, C,, etc., as
a centre, and with a radius bearing the ratio to the length of
the wave of about 7: 22, then the circumference of this circle
will be equal to the length of the wave. Let A4 B, be the
diameter of this circle. Draw 4,4, touching the circle and
parallel to C,Cs. Through C,, &l, C,, etc., draw perpendi-
culars, meeting 4,4, at the points 4 » 4y 4, ete., 8o that
A4, is the length of the wave, then the curve of the wave
surface is traced out by the point P, as the large circle rolls upon
the line 4,4, from 4, to 4, Between each pair of con-
secutive points 4, 4,, 4,, etc., the tracing point P revolves
through an arc of 60 degrees.

165. Motion of Wave Surface.—Suppose, at any instant,
the positions of former horizontally equidistant particles are
asshown by P, P,, P,, etc. (Plate XXX]I.), and that the
motion of the wave, and, therefore, of the rolling circle, is that
indicated by the arrow at the top of the figure. Suppose
the rolling circle to move from 4, to 4,, then each of the
particles represented by the points P, P,, P,, etc., will move
through an arc of 60 degrees in the direction shown by the
curved arrows, and the wave surface will then be as shown by
the ticked line.

By observing this motion of the particles, and the change
in the position of the wave which accompanies it, the follow-
ing facts will be noted : A particle in the trough of the wave
is moving backwards, on the front slope upwards, on the crest
forwards, and on the back slope downwards.

166. Form and Motion of Sub-Surfaces.—The motion of
the particles of water for the whole depth to which the wave
influence extends is of the same character as at the surface,
but the extent of the motion diminishes very rapidly in going
downwards. The length of the wave remains constant to
whatever depth its influence extends, but the radii of the
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orbits of the particles diminish in geometrical progression.*
The curve marked Py, Py, P'y, P'y, etc. (Plate XXXL.), is the
form of a transverse section of the surface in which particles,
at that depth below the original level of the water, move,
This curve is likewise trochoidal, but much flatter than the
surface curve. The motion is similar to that at the surface.

167. Sub-Surfaces of Uniform Pressure.—The surfaces of
horizontal layers of water, when the latter is still, are surfaces
of uniform pressure. The same condition of equilibrium is
preserved when the particles of water are in their orbital
motion, the surfaces which were originally level being now
of a trochoidal form; P, P, P, etc. (Plate XXXI.), is
such a surface. The trochoidal character merges into a plane
at that depth where the water below is uninfluenced by the

g wave.

168. Direction of the Resultant Pressure.—In order that
the resultant of the pressures on a particle at the surface
of a fluid should be in a certain line, it is necessary that the
surface should be at right angles to that line. In still water,
the resultant line being necessarily perpendicular, the surface
is necessarily level. In undulating water, the resultant has
that amount of obliquity which the motion of the particles
prescribe, and therefore the surface must of necessity be as much
out of level as the resultant is out of perpendicular. Conse-
quently, the resultant of the forces acting upon a particle of
water at the surface of a wave is perpendicular to a tangent
to the water line ‘at that point. In other words, whatever
tendency a body floating on the surface of a wave—i.e., but
slightly immersed in the wave—has to keep its axis of equi-
librium vertical in still water, is exerted to keep it normal
to the surface of the wave.

169. Effective Wave Surface.—Each of the particles of
water at every sub-surface of uniform pressure is under the in-
fluence of two forces, viz., gravity and a rotating force, which
have a resultant acting, as we have seen, normal to the sub-
surface. Hence a body floating in the wave is under the
influence of the resultant forces at every sub-surface it meets,

* This law is based upon the necessary Lfeometrical continuity of

the wave water; a proof of it by Mr. C. W. Merrifield, F.R.8., is given
in No, 3 of the 4anual of the Royal School of Naval Architecture,
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These forces act in different directions; there are an infinite
number of the resultant forces—one for each of the infinite
number of sub-surfaces—between the water surface and the
keel, and the directions of the resultants vary continuously
between that of the surface normal and the normal to the
lowest sub-surface. It was for some time assumed that the
resultant pressure due to all these resultant forces acted
through the centre of gravity of the ship’s displacement, and
that it was the resultant force acting on a particle in the sub-
surface of uniform pressure passing through the centre of
buoyancy ; the particle being supposed to be at the centre of
buoyancy. Hence the sub-surface of uniform pressure pass-
ing through the centre of buoyancy was considered to be the
effective wave surface, and the curvature of its trochoid gave
the effective wave slope at any point in that surface.

In a paper communicated to the Institution of Naval
Architects, in 1873, Mr. Froude has shown that, except in
special cases, this is not so. He says: ¢“Independently of,
and besides that which may be called the normalising force,
inherent in the wave slope, impressed on a stable floating
body which rests upon it, the floating body may be so shaped
as to experience from the molecular forces, on which the
internal structure of the wave depends, a separate force of
rotation, the operation of which is dependent on the elevation
of the centre of gravity, and which may thus modify to almast
any assignable extent the effect of the general normalising
force.” The investigation is a somewhat lengthy one, but it
goes to show that the position of the effective wave surface
varies with the form, dimensions, and position of the centre
of gravity of the weights of the ship. Mr. Froude says:
¢ We might, if we pleased, so proportion and weight a ship of
this form,* that in waves of a certain proportionate dimension
she would experience no disturbing force in the waves passed
under her.,” He shows that the effective wave surface may
in some cases pass-through the underside of the keel, and be
even wholly below the vessel. For further particulars on this
subject the student is referred to Vol. XIV. of the Transactions
of the Institution of Naval Architects, page 96, et. seg. We

*The form here referred to is somewhat similar to that of a Thames

arge,
L4
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may, however, remark that the dimensions of a ship are
generally so small compared with that of the whole body of
water set in motion by the passing wave, that for ordinary
calculations the surface of the wave is usually assumed to be
the effective wave surface.

170. Internal Structure of a Wave.—Suppose a body of
still water to be divided into cubical blocks by an imaginary
series of horizontal and vertical planes, each set being equi-
distant, then a section of the Llcck made by a vertical plane,
perpendicular to both of the sets of dividing planes, will be
divided into a series of equal rectangles. Now, suppose a
trochoidal wave to traverse this block of water in the direc-
tion of the section, each of the particles of water in that
section will have a circular motion in the plane of the section,
and at any instant the figures which were previously rect-
angles will now be distorted, the distortion occurring as far
below the surface as the wave influence extends, and diminish-
ing as we proceed downwards. In Plate XXXII., the
curved lines shown are originally vertical and horizontal
planes as they appear in the section we have made. Particles
which were in plane surfaces of equal pressure are now in
trochoidal surfaces of equal pressure, and particles which
were originally in vertical lines are now in lines which are
inclined to the vertical at the surface, and each sub-surface
at practically the same angle that the surface and respective
sub-surface 18 inclined to the horizontal at that point. The
area of a figure, such as PSP{P;I*, is equal to the area
of the rectangle, bounded by the corresponding vertical and
horizontal lines when the water was still, and thus such a
figure shows the amount of distortion which a block of water at
any part undergoes when the wave is passing. Considering the
spaces between the vertical dividing planes it will be observed
that, as the crest of the wave approaches a vertical column of
water the latter lengthens and narrows, while, as the crest
passes, it shortens and widens; in both cases
water remaining the same. Between these
the columns have a swaying motion like the ¢
field as the wind passes over them, with this
the columns of water undergo alterations of le
ness in addition to the bend in their form. Th:

4B
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columns of water and change in form of the blocks into which
a wave may be supposed to be divided is very interesting, as
by observing it we are enabled to judge of the character of the
impressed forces upon a ship or other floating body immersed
in the wave; for the conditions of dynamical equilibrium
are such that the floating body seeks to conform to the same
laws of motion which govern the particles displaced by the
body. This may be seen by placing a board or raft upon the
surface of the wave as at 4, Plate XXXII., the motion of
the wave in the direction shown causes the board to follow
in the direction of the surface particles, as indicated by the
curved arrow. If, however, the board were very thin and
weightless, having no stability, so that it would float edge-
wise a8 at B, it would follow the motion of the originally
vertical column of water in which it floats, and therefore the
direction of its motion would be opposite to that of the board
at 4. By combining the two, as shown at C, the one motion
modifies the other, and the position of the compound float at
any moment will be somewhere midway between those which
would have been occupied by the flat and vertical boards if
floating separately.

The condition of the midship body of a ship as low as the
bilge is similar to that of the raft 4, and the condition of
the keel, sharp parts of the floor, deadwood, stem, and stern
post, is analogous to that of the board B. Hence the ship
is under two sets of forces, each of which tends to modify the
effect of the other. It is thus seen how important is a know-
ledge of the internal structure or mechanism of a wave, in
order to determine the character of the form and arrange-
ment of the weights in a ship which is required to be sea-
worthy when floating in that wave.

171. Period of a Wave.—As we have already said, the
length of a wave is the horizontal distance between conse-
cutive crests or hollows. The period of a wave is the time
which a wave-length occupies in passing a given point.

When the particles composing a wave revolve uniformly
in circular orbits, the only forces acting upon them are the
centrifugal and that of gravity. Now the normal to a tro-
choid at any point passes through the point of contact of the
rolling circle with the straight line under which it rolls..
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Hence the conditions of equilibrium in a trochoidal wave are
satisfied if the radius of the rolling circle bears the same
ratio to that of the orbit of any particle as gravity bears to
the centrifugal acceleration of that particle.

Let T be the periodic time, N
,» r=the radius of the orbit of a surface particle.
»» R=the radius of the orbit of rolling circle.

Then if v is the velocity of the particle

and the centrifugal acceleration is
v? _4rir
T T
4m2r
But R:r=g: ;,2
T2g
ir?’
which is the expression for the length of a revolving pen-
dulum, whose time is 7), as shown at Art. 147.
The wave length is, of course, = 2xR
T’g
T2’

and the number of waves which pass a particular spot in a

given time ¢ is
t ¢ ,;
W—— g,
T 21!'/\/R

The speed of the wave’s advance is found by dividing the
total length of these waves by ¢,

Saarnny —
:.}.x_t g 2R
t 2n R X"

= WyR

whence R=

Also since
T 2

41r’

R=
T21rl\/R )

which is the periodic time of the wave
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172. Rules and Formul® for Waves.—The following
rules for waves in deep water are given in Rankine's Ship-
building, and may be deduced from the preceding investi-
gations:—

I. Height of equivalent pendulum (or radius of rollmg
circle) in Teet—

= T—"_ 8154 T?;
where T represents the periodic time of the wave in seconds,
II. Length of wave in feet
=27R=62832xR
=62832 x eqmvalent pendulum
or =06'2832x°8154T?
. L =51233T?,

where L is the length of the wave, and, like R, is expressed
.in feet, while 7' is expressed in seconds.

Also, if ¥ =the velocity of advance of the wave in feet per
second—

21rV’ \'Al
and L=27R== —é—_g 1233-

Again, L=VxT.

. . v .
III. Since Z, the length of wave in feet, =g7933 and since
it is also=V'x 7.
, v
e Vx T—gq—23—3,
. _and V=51233xT.
Aga'ln) V= ,\/ gR
=4 {322 x equivalent pendulum. }
Also since
Ve
L=g1om
. V= ~/{5'l233XL}
Once more; since
L=VxT

L
. 'V_"f'
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IV. Velocity of advance of wave in knots |~ L“"""‘/
Co®Y _ |.Lqf v

Loy bv “Tess= "
V. Velocity of advance of wave in miles an hour
é?_._- Y Sy =V,x 1151
Jt o

VI. Sine of steepest slope of surface of wave = (approxi-

wately). A S bgonsm
If h=xthe lingdh of wave, -
then h=2r, }\

and sine of steepest slopg ﬁ' 1 \,‘("
Y

Also since

.3
and sine of steepest slope= —;—’-r

_31416xA
=22

(The angle of slope in degrees is roughly equal to SOh)

VII. The velocity v of the particles at the surface
=V xsine of steepest slope of surface.

The following rules are not deducible from any investigations
we have given, but are stated by Professor Rankine as the
results of more intricate calculations, such as are beyond the
scope of this work; we, however, append the results in the
words of Professor Rankine.

VIIL “To find the ratio in which the orbits and velocities
of the particles are diminished at a given depth below the
surface: Divide the given depth by the equivalent pendulum;
the natural number answering to the quotient in a table of
hyperbolic logarithms will be the reciprocal of the ratio
required.

“The following approximate rule is very nearly correct:

“The orbits and velocities of the particles of water are
diminished by one-kalf, for each additional depth below
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the surface equal to oneninth of a wavelength. TFor
example :— .
Depths in fractions of a wave-length: 0, 3, 3, 3, ete.
Proportionate velocities and diameters: 1, &, #, 3, etc.

IX. “To find how high the centre of the orbit of a given
particle is above the level of that particle in still water:
Divide the square of the diameter of the orbit by eight times
the equivalent pendulum of the waves; or divide the square
of the velocity of the particle in feet per second by 644, for
the height in feet.

X. “To find the mechanical energy in a layer of water
agitated by wave motion: Multiply the weight of the layer
by twice the height at which the centres of the orbits of its
particles stand above the positions of these particles when
the water is still.

¢ One-half of this energy consists in motion, and the other
half in elevation.

XI. “To find the mechanical energy of a mass of water of
a given horizontal area and unlimited depth, agitated by
waves: Multiply the area by one-siwteenth part of the square
of the height of the waves, and by the heaviness of the fluid
(64 1bs. per cubic foot for sea water).

XII. “To find the mechanical energy of one wave-length
of a layer of water of a given breadth and thickness: Multiply
together the breadth and thickness of the layer, the square
of the diameter of the orbits of the particles in it, the heavi-

ness of the fluid and the constant, 15708 = ()"

Table VIIL contains a list of the periods and lengths of
waves in deep water, arranged according to their velocities in
knots. This table is the work of Professor Rankine.

173. Rolling of a Ship among Waves.—Having thus con-
sidered the character and properties of sea waves, we will now
proceed to discuss the rolling motion of a ship when in what
is termed a “sea-way,” .c., when floating among the waves

. that are met with in the open sea in deep water.

174, Passive Heaving.—As we have already remarked,
every particle of a body floating in water undergoing wave
motion is under the influence of the same forces as would act

™upon the water it displaces, and thus, if the dimensions of
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the floating body are indefinitely small, it will revolve in the
same orbit as the surface particles. Suppose a ship to be in
the same condition as the surface particle, that is, suppose
her to be without stability, so that her centre of gravity,
metacentre, and centre of buoyancy coincide at one point;
also, suppose the distortion in the configuration of the water
a3 the wave passes to be neglected, then such a ship has no
tendency to oscillate freely in still water, and when among
waves, under the above limitation, every particle in the ship
would move in the same orbit as the particles in the effective
wave surface. Such a case as this is, necessarily, never met
with, yet in every vessel there is a tendency for her centro of
gravity, and, indeed, every particle in her, to move in such a
way; and they rea.lly would do so were there not other forces
tending to modify that motion. Passive heaving is the namo
given to this rotatory motion which the waves tend to impress
upon a ship. "When the horizontal component of this heaving
motion takes place with different velocities, or in oppositedirec-
tions, at the bow and stern, the vessel swerves from side to side,
and is said to ““yaw.” The forces producing thLis motion are
greatest when the vessel’s course is inclined to the direction
of the waves. She then “yaws” from the wind in mounting
thecrest,and towards the wind when descending into the trough,

175. Passive Rolling.—We will now consider the ship
floating amid waves to have very great stability but small
snertia; that is to sy, her tendency to maintain her upright
position when in still water is very great, and her equivalent
pendulum very short. Such a ship will seck to keep her axis
of equilibrium in the direction of a normal to the effective
wave surface throughout the whole period of the passing wave.
This tendency will be modified to some extent by the change
in the position and shape of the originally vertical columns
of water, which will eanse the vessel 1o deviate somewhat at
anymshntfmmatmlynmm.l position. The successive
positions occupied by that axis causes the vessel to roll, the
period of the oscillation being equal to that of the wave, while
its amplitude is governed by the slope of the effective wave
surface. This is termed passive or forced rolling.

If the vessel is Boating on the surface, and therelore nob
influenced by the ehauge in the configuration of the water 25

-
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the wave passes, it will float like the raft shown at 4, Plate
XXXII., with its surface a tangent to that of the wave,
and therefore its axis of equilibrium normal to the wave
surface.

If, however, the vessel floats deeply in the wave, it is also
under the influence of the forces which cause a change in the
direction and form of the originally vertical columns of water.
For instance, a thin, light board of little inertia and no
stability, if floating upright on its edge in still water, will
follow the direction of the originally vertical columns of water
as a wave passes, as shown by B, Plate XX XTI., and therefore
roll against the waves. A ship may be considered as a case
analagous to that of a raft and vertical board combined, and
80, as already explained, the instantaneous position of a ship
of great stability and small inertia, floating among waves,
deviates somewhat from the true normal to the effective wave
surface.

The tendency of a ship to roll with the waves, and with
her axis of equilibrium normal to the effective wave surface,
is due to gravity, centrifugal force, and pressure, and is termed
stiffness.

The action on the bottom which tends to make her roll
against the waves like the board B, is called keel resistance.
Professor Rankine and Mr. Froude have shown “ that there
is an essential difference hetween the two sets of forces before
mentioned, in consequence of which, though conflicting, they
are not directly opposed, viz., That the stiffness is an active
force which tends not only to prevent the ship from deviating
from a position upright to the effective wave surface, but to
restore her to that position after she has left it, with a force
proportional to her deviation ; while the keel resistance is
merely a passive force, opposing the deviation of the ship from
the position of the originally vertical columns of water with
a force depending, not on that deviation, but on the velocity
of the relative motion of the ship and the particles of water,
and not tending to restore the ship to any definite position.
Hence those two kinds of forces cannot directly counteract,
but only modify, each other’s effects.”

176. Rolling in a Sea-way.—From the preceding it will
be seen that the actual rolling motion of a ship is compounded
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of the passive rolling, due to the wave pe:iod and slope, and
of her frec oscillations, the character of which is governed by
her stability, keel resistance, inertia, and the varied resist-
ances caused by eddies, etc., in the fluid, which can be deter-
mined only by experiment.

The problem of determining the properties of this complex
motion is a very intricate one. All we know upon the subject
at present is due to the experimental researches and mathe-
matical applications of Mr. Froude, F.R.S. Many theories,
more or less ingenious, have been propounded at different
times by mathematicians and naval architects, but nothing
certain can be obtained without making such careful experi-
mental researches as those to which Mr. Froude has devoted
so many years of his life. The late Professor Rankine
successfully applied his great mathematical skill to the solu-
tion of many of the most intricate problems in this branch
of physical science. But it rests with experimental philoso-
phers such as Mr. Froude, and the careful observations of
naval officers, to solve problems, concerning which the data
we possess is still very meagre. The subject is gradually
becoming clearer and our knowledge more certain, but at this
stage of the inquiry, and in a book such as this, it is not
desirable to look closely into the investigations which have
hitherto been made. Although a great deal of light has been
thrown upon the subject during the last fifteen years, yet
even now the mathematics of the question are based upon
suppositions which remain to be verified, and some of which
are known to be only approximately correct.

An eminent authority, who signed himself J. C. in the
Annual of the Royal School of Naval Architecture for 1872,
referring to the question of stability in connection with a
ship’s rolling, after calling attention to the number of inac-
curacies which exist in the present state of the theory on this
subject, says: “ At present I do not see a way to overcome
these objections and difficulties, nor should I regard either
method of investigation as affording trustworthy means of
calculating the precise amount of stability which would be
required for new designs. The only safe guide in this matter
is, in my opinion, found in experience with successful ships,
and in designing new vessels it appears desirable to provide
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that amount and range of stability which have been proved
sufficient in ships that have been thoroughly tried.”

Notwithstanding the uncertainty existing on the subject
which prevents us from assigning exact quantitative values,
yet the qualitative conditions are sufficiently well under-
stood, and enough experiments have been verified, to enable
certain rules to be laid down for the guidance of the naval
architect in determining the stability, inertia, keel resistance,
etc., which it is necessary a ship should possess in order to
behave well in a sea-way.

We have already said tha.t the actual rolling of an ordinary
ship in a sea-way is composed of two sets of oscillations, viz.,
those due to the period of the waves, and those due to the
form of the vessel and the arrangement of her weights.

Suppose, then, a vessel in still water, rolling without resist-
ance at the rate of n oscillations per minute, and a series of
waves to pass her in a direction perpendicular to her length
at the rate of » waves per minute, the first wave meeting her
at the commencement of an oscillation. It is evident that
the period of the set of oscillation set up by the waves being
the same as those of the ship in still water, each wave as it
passes gives an impulse which adds to the amplitude of the
oscillations, until at last the ship rolls completely over. At
sea the oscillations would be first set up by the waves, and
if the period of the ship’s unresisted oscillation accorded with
them, each wave would add to the rolling motion communi-
cated by its predecessors. From this we see that it is highly
undesirable that the wave period and that of the ship’s free
rolling should coincide; and, in order that the forced rolling
among waves may not be frequent and considerable, it is
desirable to lengthen the period of free rolling when in still
water as much as possible.

The mathematics of the problem of a ship’s rolling are of
a too lengthy and difficult a character for insertion in a work
of this kind, The whole subject is thoroughly investigated
in the volumes of the Transactions of the Institution of Naval
Architects, especially those of 1861, 1863, and 1864, to which
the student who requires more complete information is re-
ferred. We will content ourselves here by gwmg a sum-
mary of the results arrived at.
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1. The permanent rolling motion of a vessel having very

great stability, and very little keel resistance, is governed by
the motion of the effective wave surface like the raft 4, in
Plates XXXII. and XXXTIT. Such a vessel will roll with
the waves, at the rate of one oscillation for every wave period,
being upright when on the crest and in the trough of the
wave, while the inclination between these points will vary
with the slope of the effective wave surface; her angle of
heel at any point being the slope of the effective wave sur-
face at that point. Thus the greatest angle of heel is equal
to the greatest slope.
« II. When the period of a ship’s unresisted rolling in
still water is to the period of the waves as,/2is to 1, the
permanent rolling is wholly governed by the motion of the
originally vertical columns of water, and the ship will roll
against the wave similarly to the board B, in Plates XX XTI
and XXXITI., making one oscillation per wave period. In
this case the ship is upright when on the crest and trough
of the wave, and her inclination between these positions
varies with the slope of the surface of the wave; the inclina-
tion of the vessel to the vertical at any point being practi-
cally equal to the slope of the wave at that point.

III. When the period of a ship’s unresisted rolling in
still water bears to the period of the wave a lesser ratio than

A/2:1, she is upright before the crest and trough of the
wave pass her, see C,, C,, and C,, Plate XXXIII., and her
greatest angle of heel is greater than the greatest slope of the
effective wave surface. See C, and Cj in the same Plate.

IV. When the period of a ship’s unresisted rolling is
equal to that of the waves, the greatest angle of permanent
rolling occurs. The less the keel resistance the more the
angle of roll exceeds the slope of the waves, and when the
keel resistance is zero, the rolling becomes infinite; or, in
other words, the ship turns right over.

V. When the period of a ship’s unresisted rolling bears
to the period of the waves a greater ratio than ,/2 :1, she
is upright after the crests and troughs of the waves pass
her, as shown by D, D,, and D,, Plate XXXIII., and her
greatest angle of heel is less than the greatest slope of the
waves, as shown by D, and Dy
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17%. Stiffness and Steadiness.—We have already defined
sliffness as that quality of a vessel, due to great stability,
which causes her to seek to accompany the motions of the
effective wave surface, with her axis of equilibrium normal
to that surface. A period of free rolling, much less than
that of passive rolling, gives great stiffiess, as seen in the
preceding Article.

Steadiness is the tendency of a vessel to keep truly upright
in a sea-way. Hence a ship that is very stable is not likely
to be very steady, unless there are special features in the
design, such as large bilge keels, or a certain form of the
body or arrangement of the weights.

A period of free rolling exceeding ,/2 times that of pas-
sive rolling is favourable to steadiness, provided that period
of free rolling is produced by winging out the weights and
increasing the inertia of the ship, and not by reducing the
stability to an insufficient amount.

The action of the water on a deep keel, bilge keels, a sharp
floor, or fine extremities below water, tends to diminish the
rolling produced by the period of the waves and that of the
ship’s free oscillations coinciding or being nearly equal. It
must, however, be noticed that when the period of free
rolling is very long the deep keel, bilge keel, etc., have a
contrary effect.

The motion of the vessel through the water is conducive
to steadiness if her course is near to the wind, and wvice versa.
A deep draught of water is also favourable in many respects
to steadiness. It should also be remarked that a steady
pressure of wind on the sails is very conducive to a steady
motion.

As a result of what has gone before, we see that a ship
should only have that amount of stability which is essential
for her safety, as an excess of stability tends to make the
vessel roll rapidly, and to synchronise with the periods of the
waves she is likely to meet. If, however, great stability
must necessarily be given to a ship her stiffness should be
reduced, and therefore her steadiness promoted, by winging
out her weights, so as to lengthen the period of her free
oscillations. Attention should also be given to the form of
the vessel's body in the neighbourhood of the water line, so
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that the axis of level motion may not be far above the centre
of gravity.

178. Penods of Oscillations of Certain Ships.—The
subjoined Table gives the periods of the oscillations of certain
typical ships in the English, French, and American Navies.
The particulars would be more complete if we knew the
lengths of the radii of gyration; but as the mowment of
stability up to about 10 or 15 degrees can be expressed with
tolerable accuracy for most ships by the form G M sin 6, we
include in the list the values of GMf for these vessels. The
connection between those values and the periods of rolling
will be noticed; although in the absence of particulars con-
cerning the moments of inertia of the ships the relations are
not in every case very clear.

Class of Vessel. Valuoof GM. | pFPerfodof
ft. seconds.
french two-decked iron-clad ship
Magenta, .........c.ccocevueeuerninannnn 325 146
French armoured frigates, of Flandre
Class, oieiniieiiiere e, 425 12:0
English u-onclad, Prince Consort,....... 600 105
s» . modern ironclad, of Sultan
275 177
400 135
14:00 54
325 11'5
375 10°5
350 75
\
- [
J4 -
A

X



PART IIL

CALCULATIONS RELATING TO THE STRENGTH
OF SHIPS.

—————

CHAPTER VIL
LOCAL STRENGTH.

Definitions—Properties of Bodies under Stress—Intensity of Stress
—Classes of Stress—Local Stresses—Diameters and Spacing of
Rivets—Butt Straps—Edge Connections—Strengths of Butt
Straps—Strength of a Shift of Plates—Strength of Pillars—
Beams—Shearing Stress—Bending Moment—Bending Moments
and Shearing Stresses for various kinds of Loading and modes
of Support—Resistance to Bending—Specimen Calculations—
The Deflections of Beams—Examples—Strength of Bent Pillars
—Twisting Moments. : :

179, General Considerations.—In no department of Naval
Architecture has such great advances been made during
late years as in that relating to the combination of materials,
80 ag to obtain the greatest strength with the least weight.
This has been chiefly due to the introduction of iron as a
material for ship construction, and the strides which have
been made in the manufacture of that metal in forms suited
for ship construction. Improvements have also been made
in the construction of wood ships, whereby it has been
" possible to build them of great length, and render them
sufficiently rigid to resist the great vibration and the strain-
ing effects produced by powerful engines. These improve-
ments, however, have consisted more in the form of iron
strengthenings efficiently disposed, than in a superior
mode of combining the wooden components of the hull. In
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fact, the characteristic feature of ship construction during the
past twenty years has been the superseding of wood in favour
of iron. True it is that owing to the rapid fouling of the
bottoms of iron ships, which up to the present time it has
been found impossible to prevent for any considerable period,
wood ships are still preferred for certain trades. Neverthe-
less, we believe it is only where iron and coal are relatively
dear that ships constructed wholly of wood are built in any
considerable number. In other places,ships which are required
to make long voyages are sometimes built on the composite
system, wherein all the advantages of the metal-sheathed
wooden bottoms are obtained, combined with the superior
lightness and strength which are found in framing of iron.
In the Royal Navy, large vessels which are required to keep
the sea for a considerable time, without going into dock to
have their bottoms cleaned, are built of iron, in order to
obtain the strength which that material affords when well
combined, while the iron bottoms are sheathed with wood
and then with copper, zinc, or Muntz's metal, in order to
obtain the same freedom from fouling which is found in
wooden ships. From this it will be seen that in considering
the strength of ships, our attention should be chiefly directed
to the combinations of iron. This we shall keep in view
throughout the following remarks.

180. Definitions.—In explaining the meanings of certain
terms, which we shall have occasion to employ, we shall
closely follow the definitions used by the late Professor
Rankine, than whom no one has contributed more to the
science of the strength of materials as applied to shipbuilding.

Elasticity is that property of a body by which it retains,
and seeks to retain, a certain determinate volume and figure
at a given pressure and temperature.

Stress means the intensity of the force which tends to
alter the form of a solid body; it is also the equal and
opposite resistance offered by the body to the change of form.

Strain is the measure of the alteration of form which a
solid body undergoes when under the influence of a given .
stress.

Properties of bodies under stress.—The shape of a body
when not under the influence of a stress is its unstrained or
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JSree shape. A body becomes strained under the influence
of a stress, and if upon the removal of the stress it returns
to its unstrained form, it is said to be perfectly elastic; if it
remains of the strained form, or only partially recovers its
original form, it is said to be imperfectly elastic, soft, ductile,
or plastic. No bodies are perfectly elastic, but for many the
imperfection of elasticity below certain limits of stress is so
small as to be of no importance in practice.

Set is the permanent strain or alteration of shape which
remains in an imperfectly elastic body after a stress has been
removed.

Stiffness is measured by the intensity of the stress required
to produce a certain fixed quantity of strain.

Pliability is the inverse of stiffness, and is measured by the
quantity of strain produced by a certain fixed stress.

Strength is the utmost amount of stress which a solid body
can bear without breaking.

Elastic strength is the utmost amount of stress which a
body can bear without set.

Proof strength is the utmost stress which a body can bear
without suffering any diminution of its stiffness and strength.
A stress exceeding the proof strength of the material, a.lthough
it may not produce instant fracture, produces fracture eventu-
ally by long continued application and frequent repetition.

Working strength is the utmost stress to which it is con-
sidered safe to subject & body during its ordinary use as part
of a structure.

Ultimate strength is the stress required to produce fracture
in some specified way.

Z'actors of safety are of three kinds:—

I The ratio in which the breaking load exceeds the proof
load.

II. The ratio in which the breaking load exceeds the
working load.

IT1. The ratio in which the proof load exceeds the work-
ing load.

“Unless otherwise stated—when the term “factor of safety”
is used—it is to be understood in the second of these senses.

The following Table, due to the late Professor Rankine,
gives examples of those fuctors which ocour in practice.
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EXAMPLES OF FACTORS OF SAFETY.

Breaking ans Proof Load
MATERIAL. Load - = REMARKS.
- Working ‘Working
Proof Load. Load. Load.
Strongest steel, ....... 13
Ordmﬁ steel and
wrought iron,....... 2 3 13 | Steady loads
Do. do...... 2 4106 2to3 | Moving ,,
‘Wrought iron riveted
structures, .......... 3 6 2
‘Wrought ironboilers, 2 8 4
Cast iron,............... 2t03 3 to4 |about 1} | Steady ,,
Do. .coeernnnnnnn 3 6to8 2 to 2§ | Moving ,,
Tunber, average,..... 3 about 10 3%

Ultimate strain is the utmost strain or alteration of shape
which a body can bear without breaking.

Proof strain is the utmost strain which a body can bear
without injury.

Spring or Resilience is the quantity of work or mechanical
energy which is required to produce the proof strain, and is
one-half of the product of the proof stress of the body by its
proof strain.

C

.d e F
Fig. 12.

In explanation of the above, it may be remarked that, as
the body suffers no injury, the strain produced by any stress,
up to and including the proof stress, is about proportional to
that stress. In fig. 12, ABis the proof stress, and the ordinate
BC the proof strain. Ad, Ae, Af, are other stresses to which
dg, ek, and fk are corresponding strains, so that AghiC is a

48 Q
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straight line.* Now, the whole work done by the stresses in
producing the strains between A and BC is evidently the
area of the triangle ABC or 9}—]30, which is, therefore, the
amount of work which must be applied to produce the
strain BC.

181. Measure of Direct Strain.—When a body is under
the influence of an extensive or compressive stress, such as a
pull or thrust, so as to produce a certain strain, then the ratio
of the amount of strain to the original length of the body
strained is termed the measure of direct strain. In testing
the proof strength of iron or steel it is usual to make two
marks on the test sample six inches apart, then when the
piece is broken the distance between the marks is again
measured, and the amount of strain is thus determined. The
ratio of the strain to six inches is the measure of the direct
breaking strain. Should the body be tested only to the proof
strain, then the ratio is the measure of the direct proof strain.
If the body is under a compressive stress, the ratio of the
contraction to the original length would also be the measure
of direct strain..

Supposing a length of six inches to stretch to six-and-a-
quarter inches, then the extension would be g = *0416. This
is true whether the breaking strain be reached or not. In
order to form a better idea of the qualities of the material
subjected to the stress, the amount of direct strain produced
by each pound on the square inch of direct stress is calculated,
this being termed the direct extensibility or compressibility of
the body, as the case may be. For instance, suppose a direct
stress of 44,800 pounds on the square inch stretches a bar six
inches long until it measures six-and-a-quarter inches, then

¥ X 7abon = Tovizes = 00000093,
which is the extensibility of the material under experiment.
The term pliability is used to comprehend both extensibility
and compressibility. .

In most substances the extensibility and compressibility are
nearly uniform and equal to each other for stresses not exceed-
ing the proof stress. When the proof stress is exceeded the

* This is nearly true for most materials,
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pliability increases very rapidly, and the fact of its doing so
in any test is a proof that the stress is great enough to weaken
the material.

Modulus of Elasticity.—If the stress does not exceed
the proof stress, then the reciprocal of the direct pliability is
termed the modulus of elasticity. For instance, suppose a
pull of 22,400 pounds per square inch causes a bar of iron to
lengthen by 1%+ of its original length, then 22,400 x 1300 =
31,120,000 pounds per square inch is the modulus of elasticity
of the iron in question. In this example the proof stress is
not reached, and thus the modulus is far greater than would
be given by the reciprocal of the direct pliability in the pre-
ceding case where the material is supposed to have broken
under the stress.

Table IX. gives values of the modulus of elasticity of
different substances as found by experiment, and recorded in
Professor Rankine’s « Useful Rules and Tables.”

Intensity of Stress means the amount of stress in units
of force, divided by the number of units of area in the surfuce,
over which it acts. For instance, if a bar whose section is 1
square foot be subjected to a direct pull of 64} tons, then,
calling 1 square inch the unit of area, and 1 lb. the unit of
force, the intensity of the stress is %52 =1000.

Classes of Stress.—There are three principal kinds of
simple stresses, viz.:—

L Thrust or Compression.
I1. Pull or Tension.
II1. Shear or Tangential Stress.
The first is such as acts upon a vertical pillar supporting a
load, the second such as acts upon a rod hanging vertically
and supporting a load at its extremity, and the third is such
as acts upon a rivet connecting two lap-jointed plates when
the plates are being pulled asunder or pushed over each other
by forces acting along their common surfaces.

Besides the above there are certain compound stresses, the

principal of which are—
1. Twisting.
I1. Tranverse or Bending.
The former of these is such as an engine shaft is subjected to,
and the latter is represented by a loaded beam.
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There are many combinations of these which occur, but
their effects may be generally investigated by resolving them
into their elementary stresses.

182. Local and Structural Strengths.—In considering
the principles regulating the strength of materials as applied
to shipbuilding, we shall divide the stresses to which a vessel
may be subjected into two classes, viz.: first, Local Stresses;
and second, Structural Stresses.

The first of these divisions will include the strength of
riveted joints and other connections which unite the innu-
merable pieces of which a ship’s hull is composed, also the
power to resist local stresses possessed by different parts of
the structure, such as pillars, beains, ete.

The second division will relate to the qualities necessary
to insure the requisite strength in the whole structure, con-
sidered as one piece, so that it may be able to resist the
stresses to which the ship is liable.

183. Local Stresses.—The hull of an iron ship is composed
of a great number of plates and angle-irons which are joined
together with rivets. The plates are either lapped over each
other in order to connect them, or else they are united by
means of other pieces of plate in the form of straps and strips.
The name of straps is given to the pieces of plate which join
the butts of plates while those which join the edges are called
strips. Angle-irons (when not welded together) are joined
by short angle-iron straps, and plates are riveted to angle-
irons by causing one of the flanges of the latter to lie against
the face of the plate. But in all these modes of disposing the
parts joined together rivets are the joining mediums. For
the characteristics of the several kinds of rivets employed, see
the work on Practical Naval Architecture in this Series.

In estimating the strength of a riveted joint, we assume
the force to be in the form of a pull or thrust acting in the
plane of the surfaces in contact and square to the joint.
Under these circumstances the tendency is to shear the rivets
or else break one of the plates joined, or the joining strap if
any is used. In order that the joint may be efficient it is a
necessary condition that the resistance of the rivets to shear-
ing, and that of the plates to breaking, should be equal; for,
as the strength of the whole is that of its weakest part, any
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excess of strength at one point over another is of no value,
A riveted joint can never be so strong as a continuous plate;
but as the plates composing a ship are mostly weakened by
holes, elsewhere than at their butts, in order to connect them
to the other parts of the structure, we have to get a joint
whose strength approximates closely to that of the plates at
their weakest section; and to insure that the riveting is of
such a character, and so arranged at that joint, that there is
no more tendency of the rivets to shear than of the iron be-
tween the rivet holes to break, and vice versa.

In order to make such a calculation, and thereby arrange
the riveting, it is necessary that we should know the resist-
ance per unit of area which iron offers to breaking by exten-
sion or compression, and which a rivet offers to shearing.
These resistances vary with the quality of the materials. The
Admiralty standard of tensile strength for BB iron is 22 tons
per square inch in the direction of the grain, and 18 tons per
square inch across the grain. Iron of B quality is required
to stand tests of 20 and 17 tons with and across the grain
respectively. Wrought irou offers about 4 the resistance to
compression that it does to extension. The resistance of
rivets to shearing is about the same as the tensile strength of
iron of the same quality. For instance, the shearing strength
of a 3-inch rivet of Lowmoor or Bowling iror is about 10 tons,
which is equal to 22} tons to the square inch. Although the
best Admiralty irvon is required to stand a tensile strain of 22
tons to the square inch before breaking, it must nevertheless
be remembered that the strength of this iron in the vicinity
of the rivet holes is reduced by the punching process to about
18 tons per square inch, which is the value we shall employ
when referring to punched work.

184. Diameters of Rivets.—The first thing-to be considered
when joining iron plates together is the diameter of the rivet
to be used. This is fixed by two considerations: First, the
minimum size of the hole that can be punched in a plate of
the given thickness;* and second, the rivet must be of such a
diameter that it shall be on the point of shearing just before

* This only applies to Funched holes; when drilled, as in the best
boiler work, the size of the rivet is mot influenced by this con-
sideration.
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the iron between the rivet and the butt of the plate is being
forced out.

The first of these conditions is the lesser in point of
importance, seeing that a hole can be punched readily, pro-
v}ded its diameter is at least equal to the thickness of the
plate.

‘With regard to the second condition, it must be remem-
bered that joints have usually to be watertight, to insure
which, the rivet must not be far away from the butt or edge
of the plate, or else the joint cannot be caulked; the usual
practice is to place the rivet rather more than its own
diameter from the edge.

Let d=diameter of the rivet,
t=thickness of the plate
to find the maximum ratio between d and ¢. Since the
shearing strength of a § in. rivet =10 tons. Therefore the
shearing strength of a rivet d inches in diameter

_160 .,
——g—d tons.

Let the strength of the iron in the wake of the holes be 18
tons per square inch.
Stress required to force out the bearing surface—

=18 x 2dt=36d¢ tons.

Supposing the rivet on the point of shearing when the iron
" is on the point of bursting out in front of the rivet: then
160

frdp D
9 d? =36d¢

160d =324¢
or d:t::2:1

From which we see that the diameter of the rivet should
never be more than twice the thickness of the plate. This
result is followed out in practice; and the experience of our
best shipbuilders has led them to adopt a tolerably uniform
ratio of d to ¢ for each thickness of plate. The following
Table shows the diameters of the rivets for the several thick-
nesses of plate, as required by Lloyd’s and the Liverpool
Rules, also the practice of H.M. Dockyards. The sizes are
given in sixteenths of an inch:—
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TABLE OF DIAMETERS OF RIVETS FOR DIFFERENT
THICKNESSES OF PLATES. we 1{ .

Diameters of Rivets.
Thicknesses of Plates.
Lloyd’s Rules. | Liverpool Rules, | H.M. Dockyards.
5 10 8 8
6 10 10 10
7 10 10 12
8 12 12 12
9 12 12 14
10 12 13 14
11 14 14 14
12 14 14 16
13 14 15 16
14 16 16 18
15 16 17 18
16 16 18 18

As will be seen by reference to this Table, it is found in
practice desirable to use a larger rivet in proportion to the
thickness of the plate when the latter is small than when it
ig large. 'We have already shown that the rivet should never
have a greater diameter than is equal to twice the thickness of
the plate, and we see by the Table that Lloyd’s Rules require
& in. rivets for % in. plates. Other practices do mnot differ
materially from this. But when the plate is 1 in. thick the
diameter of the rivet is 1 in., by Lloyd’s Rules, and 1} in.
by the Liverpool and Admiralty Rules. In investigating
the strengths of riveted joints, we shall use the diameters
required by Lloyd’s Rules, as they are those most commonly
adopted, and do nct deviate materially from other practices.
185. Spacing of Rivets.—In spacing rivets, we are often
limited by the necessary conditions for the work being water-
tight. In order to secure this quality it is requisite that the
rivets shall be sufficiently close together, and near the edge
of the plating to enable the joint to be caulked, and then
remain rigid when subjected to water pressure, or any other
stress to which it is liable. It is evident that if the plates
are thin the rivets should be closer together, in order to make
the joint watertight, than when the plates are thick; but on
no account should the rivets be so close to the edge as to
cause the resistance offered by the iron between the rivet
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hole and the edge of the plate to be inferior to the shearing
strength of the rivet; nor should the rivet holes be punched
so close together as to seriously cripple the iron between the
rivet holes. As we have already said, the ordinary practice
is to punch the holes rather more than the diameter of the
rivet from the edge of the plate. With regard, however, to
the spacing of the rivets (or the  pitch,” as it is sometimes
termed), in order to secure watertightness, it is found by
experiment that the holes should not be more than 3%
diameters of the rivet from centre to centre in very thin
plates, and about 4} to 5 diameters in plates of the ordinary
thickness employed in the bottoms and sides of ships. The
diameter of the rivet is fixed by the thickness of the plate,
in accordance with the Table given in Art. 184.

Lloyd’s Rules require a spacing of 4} diameters; the Liver-
pool Register requires 4 diameters; while the Admiralty
practice is to space the rivets 4% to 5 diameters apart in edges
and butts of bottom and bulkhead plating, and 6 to 6
diameters apart in watertight work elsewhere.

Calculations based solely upon the necessary equality
between the tensile strength of the iron left between the
punched holes and the shearing strength of the rivet, give
results which differ materially from the above practices when
the joints and butts are single riveted, and show a somewhat
smaller pitch for double riveted work than is commonly
practiced in ship work. Such calculations are based upon
the assumption, to a considerable extent borne out by experi-
ment, that the tensile strength of BB iron, after being
punched for watertight work, is 18 tons to the square inch
instead of 22 tons, as in the unwounded material; also that
the shearing strength of a rivet is 22 tons per square inch
of its sectional area.

‘We will now make such an investigation for a single riveted

Joint connecting two plates.
Let ¢t=the thickness of either of the plates in inches.
,» d=the diameter of the rivet in inches.
,» p=the pitch of the rivets in inches.

Then p -- d=distance between consecutive rivet holes,
and (p — d) t=sectional area of the iron between these holes.

2
Also 'T =sectional area of a rivet.
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Assume 22 tons per square inch to be the shearing strength
of a rivet; and 18 tons per square inch to be the tensile
strength of the iron in the line of rivet holes after punching.
Then, in order that the rivet shall be on the point of shear-
ing, just as either of the plates is about to break between the
rivet holes, we have—

0 2
22xd =18t (p-d)

4
2
or p=d+ 1»136’%
2
=d+ ‘96(%-.

To apply this result to a specified case, suppose the plates
connected to be each % in. thick, and the rivets therefore £
in, in diameter (see Table in Art 184). Then—
p=$+108=183 in. :
or 1'83 x 4=2'44 diameters,

instead of 4 to 5 diameters, as is the common practice in
ship work.

Next suppose the joint to be double riveted. Then the
strength of either of the plates in the line of rivet holes re-
mains the same, while the resistance to shearing is doubled.

Hence 11xd?*=18¢(p-d)

2
or p:d-l-%

2
:d+1‘92£lt—

Applying this, again, to the case of } in. plates and # in.
rivets, we have——
2="75+2'16=291 in.
or 291 x $=3'88 diameters.
which is rather less than the spacing adopted in practice.
If the joint were treble riveted, we should have
p="15+324=399 in.
or 3°99x 4=>5"32 diameters.
which is a spacing rather in excess of what is desirable for
watertight work.
These results would seem to indicate that the ordinary pitch
is too open for single riveted work, but on the other hand it
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must be remembered that single riveting is never adopted for
butt straps in cases where great strength isrequired. The result
for double riveted work is rather below the ordinary practice,
in which it would appear that the rivets are not so strong as
the iron between the holes. It is, however, rather significant
that in all the cases on record of an iron ship breaking, the
fracture—when it takes place at the joints and butts—is
almost invariably produced by the iron breaking between the
rivet holes; and cases in which the rivets have been sheared
are very rare. If the holes in the plates were exactly oppo-
site to each other in all cases, and the riveting well performed,
it is very probable that 22 tons per square inch is a fair
allowance for the resistance to shearing; but with the drift
punch, used so often as it unfortunately is, it is impossible
to insure that the intended diameter of the rivet will not be
exceeded. Besides this, it seems very likely, considering the
frictional resistance to separation which is offered by the
surfaces of the plates in contact when pressed together by
the contraction of the rivet in cooling, that the allowance of
22 tons per square inch of rivet section does not represent
the total resistance to fracture by shearing.

186. Number of Rows of Rivets.—As we have already
indicated, the object of the shipbuilder in arranging the rivets
of the butts of bottom plating, stringers, deck plating, etc.,
is not to unite the plates so as to make the connection as
nearly as possible equal in strength to the plates themselves,
but to make the strength at the joint at least equal to that
at the weakest section of the plate elsewhere, as, for instance,
where it is riveted to the frames, beams, etc. Any stronger
connection is unnecessary. Also, in joining the edges of
adjacent plates, it must be remembered that the frames and
beams assist the edge fastenings in uniting the plates of
bottom and deck respectively. Consequently, the edges of
plating have never more than a double row of rivets, while
sometimes three and even four rows are put in the butt straps.
The usual practice is to put double riveting in both edges and
butts, but in some cases the edges are single, while the butts
are double, riveted. Mr. J. Scott Russell has built some
ships with single riveted edges and butts, but these vessels
were constructed on the longitudinal principle, wherein both
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the edge and butt riveting are succoured—the former by the
transverse, and the latter by the longitudinal, framing. It
will thus be seen that in arranging the local fastenings at any
part of a ship, attention must be given to the mode of
construction, in order that the strengl;h of the connection
may not be much, if at all, in excess of the strength of the
parts connected, such additional strength being, of course,
unnecessary.

187. Butt Straps.—Butt straps are of two kinds—single
and double. Single butt straps are usually of the same thick-
ness as the plates they connect, but in some cases they have
been made a little thicker. Double butt straps are fitted one
on each side of the plates joined, and the thickness of each
strap is made about {4 to } inch more than the half thickness
of the plates, in order that one or both of the straps may not
break by the iron being forced away in front of the rivets. As
we have said, the riveting in butt straps is of different kinds,
as single, double, treble, etc. 'The riveting is also arranged in
two different styles, viz., chain and zig-zag,; in each of these
styles some of the rivets are at times omitted in order to
obtain more uniform strength. The question of watertight-
ness, or otherwise, considerably modifies the spacing and the
omission, or the contrary, of any of the rivets.

Plate XXXTV. shows specimens of the different kinds of
riveting employed in butt straps. 4, B, and C are single,
double, and treble chain riveted straps respectively. D and £
are respectively double and treble zig-zag riveted straps. F, G,
and K are specimens of treble chain riveted straps with rivets
omitted where they are not necessary for caulking, while &
is a treble zig-zag riveted strap with rivets omitted for the
same reason. L and M are sections of double riveted single
and double straps respectively.

Single butt straps are usually employed to connect plates
already weakened by holes, or in cases where very great longi-
tudinal strength is not required, while double butt straps are
used in order to obtain as nearly as possible the same strength
as in the unpierced plate. There is often some inconsistency in
their use in ships: as, for instance, a watertight longitudinal
is weakened by holes in the wake of the watertight frame as
much as the other longitudinals; yet while single butt straps,
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double riveted, serve for the latter, double butt straps, some-
times treble riveted, are used in the former. There is more
reason for the use of double butt straps in a vertical keel, as
in that case the loss of strength due to the close pitch of the
riveting which connects it to the watertight frames is restored
by the double angle-irons at the bottom of the keel and by an
additional flat keel plate. It is perhaps hardly necessary to
say that the advantage in the use of a double butt strap is
that every rivet must be sheared twice that would only be
sheared once in breaking the joint having a single strap. :

The relative merits of chain and zig-zag riveting (see Plate
XXXIV.) appears to be more a question of experiment than
calculation, depending as it does upon the relative binding
and frictional resistances between the surfaces of the plates
joined; also, the relative watertightness of the joints and the
relative strengths of the iron in the neighbourhood of the
punched holes. Apart from these considerations, the whole
question resolves itself into one of putting enough rivets to
get shearing resistance equal to the tensile strength of the
iron between the holes, and this is altogether independent of
the pattern which the rivets assume when worked.

188, Edge Connections.—These are of two kinds—lap and
jump joints. In Plate XXXV, 4, B, and C are specimens
of lap joints, while D, Z, and ¥ show the jump joint edge
connections, and G and H show sections of the two. As will
be seen, the weight of the material used in joining the plates
is twice as much for the same kind of riveting in the jump
as compared with the lap joints, while the resistance offered
toa pull is the same in each case. The jump joints, when the
edges are closely fitted, offer far greater resistance to com-
pressive stresses; for while the edges are in contact, there
is no tendency whatever to shear the rivets. As, however,
the pulling stresses on side plating are the most frequent, and
as the power to resist these constitutes the actual strength of
the connection, the jump joint connections are not used for
strengthening purposes so much as to get a flush surface.
Jump jointed work is usually found in deck plating, inner
bottoms, and topside plating of war ships. 4, in Plate
XXXYV., shows a single riveted lap, B a double chain riveted
lap, and C a double zig-zag riveted lap; while D, %, and ¥
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are respectively single, double chain, and double zig-zag
riveted jump joints.

189. Strength of Butt Straps.—This subject has already
been briefly considered in Art. 185 ; we now propose to discuss
the question somewhat more in detail. As will be seen by
what has already been said, the strength of any riveted joint
cannot exceed that due to the iron left between the row of
rivet holes nearest the butt or edge of either of the plates con-
nected, unless some of the rivets are omitted in that row and
not in the others, which is a case we do not propose to con-
sider at present. Assume 18 tons per square inch to be the
tensile strength of the iron between the rivet holes, and con-
. sider the portion of the butt connection which extends from
midway between two consecutive rivets to midway between
the next two (i.e., from aa to bb, figs. 1, 2, and 4, Plate
XXXVL).

Using the same nomenclature as in Art. 185, we have for
the strength of the iron in either of the plates through the
line of rivet holes nearest the butt

=18t (p-d).

Hence if p and d have the same values in all the butt con-
nections, the strengths of the latter are equal so far as the
plates are concerned. But d hasa constant value for each value
of ¢ in ship work, hence the only variation in the strength of
the plates which can occur must be due to the pitch of the

rivets. If the ratio of p to p—d is as 4 to 3, that is,if’Z;—“’

=3, then the strength of the plate through the line of holes
is three-fourths that of the plate elsewhere, supposing the iron
not to be impaired by punching. Making allowance for the
tensile strength of the iron being reduced from 22 tons to 18
tons per square inch, then the fraction which the strength of
the pierced is of the unpierced plate is  x 3§ =$7="61.
This is the maximum “efficiency ” which any butt connection
can have in which the rivets are spaced four diameters from
centre to centre, and the strength of the plate is reduced from
22 to 18 tons per square inch by punching.

But this “effictenoy” can only exist when the shearing
strength of the rivet or rivets is at least equal to the tensile

~



254 THEORETIOAL NAVAL ARCHITECTURE.

strength of the iron between the holes. If the one rivet is
equal to the strength of the plate between consecutive holes,
doubleriveting is unnecessary when the pitch is fourdiameters;
and, if adopted, the pitch must be increased in order to obtain
the requisite equality. 'To a greater degree the same remark
applies to treble riveting.

2
The area of the rivet section is - , and its shearing strength

has been assumed to be 22 tons per square inch. Hence,
117d? :
2

is the strength of the rivet in the single riveted butt.

!.172£=18z(p-d)
where p = 4d and ¢ is constant
hence lllovgd’ =108td
t_q.
d= T 312¢,

‘Which shows that in order for a single riveted butt strap,
with rivets spaced four diameters apart, to have an efficiency
of ‘61, the diameter of the rivet must be 312 times the thick-
ness of the plate. The impracticability of this condition has
been already shown. We have proved that under no circum-
stances should the diameter of the rivet be more than twice
the thickness of the plate ; and we have also shown that it is
a necessary condition that the rivet should not be less than
its diameter from the edge of the plate. Suppose the thick-
ness of the plate to be } inch, it would require a rivet rather
more than 1} inches in diameter, and placed at rather more
than 1} inch from the edge of the plate, in order that the
efficiency of the joint may be -61. The impossibility of
caulking the joint and other practical difficulties quite pre-
clude such a la;lge rivet from being used.

The universal size of rivet used for } inch plates is § inch,
and a pitch of four diameters would cause these rivets to be
spaced three inches from centre to centre. :

Substituting these figures in the expression for the strength
of the rivet, we have

ll‘"'dg=!—lx T X 9:%’#:9‘72 tons,

¢ 2 16 32
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and for the strength of the iron between the rivet holes we
have
18 x % (3-4)=2025 tons, i
which shows that the rivet is not half so strong as the plate
Jjoined, and that the efficiency of the joint is really
972
2025

Had there been two rows of rivets, then the strength ot
the rivets would have been 2 x 9:72=19'44 tons, and the
efficiency of the joint would then have been

1944 . _ .

2035 % 61 =59 nearly.
The efficiency of a single riveted butt connection with a four
diameter spacing cannot thus exceed ‘3, nor that of a double
riveted butt exceed ‘59, if the plates are } inch thick and
the rivets § inch in diameter.* Had we started with } inch
plates and 4 inch rivets, we should have ohtained an efficiency
of -39 for single riveting, and ‘61 for double riveting; the
rivets in the case of double riveting heing stronger than the
plate. But had we started with a 1 inch plate and a 1 inch
rivet, the efficiency when single riveted would have been
scarcely ‘2, and when double riveted only °39. Indeed, it
would require three rows of rivets before the strength of the
riveting would at all approach that of the iron between the
holes.

These investigations point to the following conclusions in
regard to single butt connections, when rivets are used of the
diameters given in the Table on p. 247 :—

1. That a closer pitch should be adopted in single than in
double riveted butts ; and in double than in treble riveted
butts.

2. That with a 4 diameter pitch the efficiency of a single
riveted butt joint is very small, especially when the plates
are thick.

3. That with a 4 diameter pitch the efficiency of a double
riveted butt joint is about at the maximum for that pitch
when the plates are not more than } inch thick, and the value
of the strap may be improved by increasing the spacing to

* This is upon the supposition that punching the plate reduces its
fensile strength from 22 tons to 13 tons per square inch,

% *61="3 nearly.
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4} diameters in the case of very thin plates, if that pitch
will permit of satisfactory caulking. But the efficiency is
very low when thick plates are used ; and at least three com-
plete rows of rivets are necessary in order to obtain the effi-
ciency due to the pitch.

4. That other things being the same it is desirable to put
larger rivets in plates of more than § inch in thickness than
are now commonly used.

It will be observed by referring to figs. 1, 2, and 4 of
Plate XXXVT,, that if the rivets are the stronger, the frac-
ture will take place as follows :—In fig. 1, by either the plates
or the strap breaking through either of the lines of holes ax
or yy; in figs. 2 and 4 by one of the plates breaking through
the line of holes a2, or 7,y,, or the strap breaking through
either zx or yy. If, however, the rivets are the weaker, the
fracture will occur by all the rivets shearing on one side of
the butt. It is evident that the fracture will never take
place by the plate or strap breaking along either of the
middle rows of rivets on the two sides of the butt (see
fig. 4), as in addition to fracturing the plate or strap (which
are as strong there as through the other lines of rivet holes),
a row of rivets must also be sheared to break the connection.

The efficiency of the single strap connection might be con-
siderably increased by using four rows of rivets—or quadru-
ple riveting—and omitting alternate rivets in the rows nearest
the butt and the edges of the strap (see fig. 3, Plate XXXV1.).
It is hardly necessary to say that the efficiency of the strap,
with a pitch of four diameters, would not be at all increased
by using four entire rows, as the strength of the plates in
the lines of rivet holes would still remain the same.

Considering a breadth equal to two rivet spacings (see fig.
3), and reckoning the tensile strength of the iron between
the widely spaced rivet holes at 20 tons per square inch, we
have for the strength of the plate

20“2? - d)’
and for the strength of the rivets

33nd2.
If t=%, d=%, and p=3,
then the strengl:h of the plate=10 x 53 =525 tons,
and of the rivets =583 tons,
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The efficiency of the joint is nearly ‘8 ; but this butt strap
cannot be caulked.
- In cases where it is desired to obtain a higher efficiency
than is possible with a single strap having a four diameter
pitch, double butt straps are often employed; the advantage
of using which is found in the fact that the rivets must be
sheared twice instead of once, as in the single strap; the
strength of the plate between the holes remaining the same
as before, unless alternate rivets are omitted. By this double
shear the efficiency of the strap becomes that due to the pitch,
or p%d_ ; no reduction occurring by reason of the relative
weakness of the rivets, as is the case with single and, gene-
rally, with double riveted single straps. In order to obtain
an equality of strength between the plates and straps through
the lines of rivet holes, the straps should each be one-half
the thickness of the plates. But in practice it is usual to
make the straps rather more than half—say by one-sixteenth
to one-eighth of an inch—as in that way the size of the rivet
employed is not so disproportionate to the thickness of the
strap, and it is not then necessary to allow so much distance
between the outer rows of rivets and the edges of the straps,
in order to prevent one of the latter breaking away in front
of the rivets. It is unnecessary to investigate the strengths
of single or double riveted double straps when no rivets are
omitted, as the strength of the rivets is nearly doubled, and
hence in ‘excess of the strength of the plates or straps through
the lines of rivet holes. The efficiency of the double riveted
double strap might, however, be increased by reducing the
size of the rivets, and keeping the spacing the same. In this
way, if the straps are each rather more than } inch thick, the
rivets § inch, and the spacing 3 inches, we should have for
the strength of either of the plates or of the two straps—

18¢ (p - d) =9 x 23 =21°4 tons,
and the strength of the rivets

22xd? =27 tons.

The efficiency of this connection is *65.

The advantage of double butt straps is, however, chiefly
found when at least treble riveting is used, and certain
rivets g;e omitted. It must, however, be remembered that

B B
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it is impossible to get a caulk when these rivets are
omitted; but that is unimportant, for joints of such an
efficiency are not usually required where water-tight work is
essential. By referring to fig. 5, Plate XXXVL,, it will be
seen that the butt connectlon there shown may be broken
in five different ways, viz..—(1) By a plate breaking through
either of the rows of rivet holes yy or ,y,; (2) by the two
straps breaking through either of the rows of rivet holes xx
or xyxy; (3) by all the rivets shearing on one side of the
butt; (4) by a plate breaking through either of the rows
of rivet holes zz or %2;, and shearing the rivets in the
line 2 or z;x;; (5) by the straps breaking through either of
the rows of rivet holes 2z or 2,2, and shearing the rivets in
the line yy or ;. The weakest of these modes of fracture
is evidently that which would occur, and which fixes the
strength of the strap.

In investigating the resistances to fracture by each of these
modes, we shall assume the pitch to be 4 diameters, where
alternate rivets are not omitted; and, therefore, 8 diameters
elsewhere. We shall also consider the diameters of the
rivets to be in accordance with Lloyd’s Rules, and the thick--
ness of each strap to be nine-sixteenths of the thickness of
the plates joined. Considering a length of the strap equal
to twice the pitch of rivets, we have the strength by
1st mode of fracture=20¢(2p — d)

9 " 45t
2nd ,, ’» =-x 20¢(2p - d)=?(2p—d)

8rd ,, ' ....4x221rd x2=44nd
ah ,, —lst(2p-°d)+—-i’-x2 =36¢(p— d) + 11xds
6th ,, ” =2 g x18u2p- 2d)+22”d x2=—2-t(2p—d)+1hd=

Aasume t=3%, d=§, p=3.
Then strength by
1st mode=10(6 - 2) =51'25 tons

md ,, =26-1 =%

3rd ,, -4)(20 =80 ”
4th ,, =18(3-%)+20=605 ,,

5th ,, =%(3 -3)+20=65%6 ,,
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The strength of this connection is therefore 51-25 tons; and
since the strength of the unpierced plate is
2p x t x 22=66 tons,
. 5195

the efficiency of the strap is 6 = 8.

Had we started with the supposition that the iron between
the rivet holes—when the latter are spaced 6 inches apart—
'was uninjured by punching, the efficiency of the strap would
have been § =-83.

A greater uniformity in the strengths of the strap by the

several modes of fracture would have been obtained had the
pitch been a little greater. .
_ In the above investigation it will again be seen that the
maximum strength of any connection by single or double
butt straps, however riveted, is the strength of the plate in
either of the lines of rivets yy or %,,, and thus the strongest
strap connection is that wherein there is only one rivet in
that line; it being assumed that the total number of rivets
in the straps is sufficient, and that the strap or straps are of
the proper thickness. Mr. E. J. Reed, in his Shipbuilding
tn Iron and Steel, has given the particulars of a calculation
made by Mr. N. Barnaby, the present Director of Naval
Construction, of the stresses required to fracture a butt
strap, the form and riveting of which are based upon the
principles just referred to.

¢The &lates united to form the tie are § inch thick and 24 inches
wide, with double butt straps each % inch thick, riveted with 1 inch
rivets, arranged as shown by a in Plate XXXVIL, it being obvious
that the use of extra thickness in the butt straps must in this case
be resorted to, because the str;:gth of the straps through the line of
holes next the butt has to be e equal to the strength of the plate
through the single rivet hole. The ordinary rule observed in ship-
building is carried into effect here, all the rivet holes being a diameter
clear of the edges and butts, The tensile strength of the unpunched

late is assumed to be 22 tons per square inch of section, and hence
1t follows that we have—
Breaking strength of the unpunched tie=24" x 1§" x 22 tons=330tons.

“The butt may be fractured by breaking either the plate or the.
butt strape, and shearing the rivets. There are altogether ten modes
of fracture which we propose to examine, commencing with those in
which the plate is broken, observing that although the plates or
straps might break in other ways, these ten modes appear sufficient
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for the present investigation, as they apparently comprise all the
weakest cases. In these investigations we take the double
shearing strength of a 1 inch rivet at 32 tons. The simplest mode
of fracture is that illustrated by b, Plate XXXVIL, where the plate
has been broken through the single rivet hole. As there is only this
one hole in the breadth of the plate, it will be fair to assume that the
iron in the line of fracture retains its full strength of 22 tons per
square inch. The effective breadth of the xi]l:te is reduced by the
rivet hole to 23 inches, and we consequently have for Mode I:—
Breaking strength=23" x }§" x 22 tons =316 tons._

¢ A second mode of fracture is shown by ¢ in Plate XXXVII.,where
the plate has been broken across two rivet holes, and the single rivet
has ﬁeen sheared twice. In this case also it may be fairly assumed
that the tensile strength of the iron in the line of fracture is almost
unchanged by the punching of the two holes. The effective breadth
of the plate 18 reduced to 22 inches by the two rivet holes, and we
thus obtain Mode II.:— :

Breaking strength of plate=22" x 13" x 22 tons=303 tons
Added for double shear of one rivet,............. =32 ,,
Total breaking strength,.........=335 ,,

¢ A third mede of fracture is given in d, Plate XXXVII., where
the plate has been broken through three rivet holes, and three rivets
have been sheared twice. In this case the tensile strength of the
iron in the line of fracture may be considered to have been reduced
to 20 tons per square inch. The effective breadth of the plate is 21
inches, and we have for Mode III. :— . :

Breaking strength of plate=21" x {§” x 20 tons=263 tons
Added for double shear of three rivets, .........= 16 »
Total breaking strength,........=359 ,,

“ A fourth mode of fracture is illustrated by e, Plate XXXVII.,
where the plate has been broken through the row of rivet holes
nearest the butt, and the remaining six rivets on that side of the
butt have been sheared twice. Here, as the pitch of the rivets is
about 4 diameters, it will be proper to take 18 tons as the tensile
strength of the iron in the line of fracture. The effective breadth
of the plate is reduced to 19 inches, and we obtain for Mode IV.:—

Breaking strength of plate=19" x $§” x 18 tons =214 tons
Added for double shear of six rivets,............. =182 ,,
Total breaking strength,.........=406 ,,
¢ A fifth mode of fracture consists in shearing twice the eleven
rivets on one side of the butt, and this gives for Mode V.:—
Breaking strength =11 x 32=2352 tons.
¢“ Before proceeding to consider the other cases of fracture in which

the straps are broken across, it may be well to state that we shall
aggume 18 tons per square inch to be the tensile strength of the iron
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in all the lines of fracture, the breadth of the straps being pro-

rtioned in such a manner as to bring all the rivets within a
diameter of the edges, as before described.

‘¢ A sixth mode of fracture is illustrated by f, Plate XXXVII,,
where the straps have been broken across the single rivet hole, and
the remaining ten rivets on that side of the butt iave been sheared
twice. Remembering that there are double straps, each % inch
thick, and that the effective breadth of the straps along the line of
fracture is 2 inches, we obtain for Mode VI.:—

Breaking strength of straps=2 x 2” x 1%" x 18 tons= 41 tons
Added for double shear of ten rivets, ................ =320 ,,

Total breaking strength, ......... =361 ,,

‘A seventh mode of fracture is shown by g, Plate XXXVII.,
where the straps have been broken through two rivet holes, and the
eight rivets between the fracture and the butt have been sheared
twice. The total breadth of the strap at this part is 8 inches, and its
effective breadth is therefore 6 inches, thus giving for Mode VII.:—

Breaking strength of straps=2x 6" x y%" x 18 tons=122 tons
"Add for double shear of eight rivets,.................=256 ,,

Total breaking strength, ......... =378 ,,
¢ An eighth mode of fracture is given in &, Plate XXXVII., where
the straps have been broken through three rivet holes, and the five
rivets nearest the butt have been Sxeared twice. The total breadth
of the strap is here 12 inches, and the effective breadth 9 inches; we
thus obtain for Mode VIIL.:—

Breaking atrength of straps=2x 9" x 1%” x 18 tons =182 tons
Added for double shear of five rivets, ............... =160 ,,

Total breaking strength, ......... =342 ,,

¢ Another mode of fracture is shown by &, Plate XXXVII,,
where the straps have been broken through the five holes nearest
the butt. The effective breadth of the strap is here 19 inches, and
we obtain for Mode IX.:—

Breaking strength=2 x 19” x y%" x 18 tons =385 tons.

““The remaining mode of fracture is shown by [, Plate XXXVII.,
where the straps have been broken, as in Mode VIIL, and the plate
has been broken through the line of holes nearest the butt; we thus
have for Mode X.:—

Breaking strength of straps as in Mode VIII, =182 tons
” v plate as in Mode IV. =214 ,,

Total breaking strength, ...... =39 ,,

f“lt will be seen f:h?mﬁt;m&mglu ]:lh:; in all the various moltlies
of fracture, except the first, the breaking strength is ter than
the of the unpunched tie plate, and tgt:: theg‘:t:ength of
the butt is, consequently, less than the strength of the tie by one
rivet hole only.”
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190. Strength of a Shift of Plates.—In investigating the
cfficiency of plate connections at their butts and edges, the
most profitable method is to consider a complete shift of
plating, <.e., the strength in the weakest section of butted
plates and the plates which intervene between two con-
secutive buttstin the same transverse section. Apart from
dther lines of relative weakness, the strength of such a sec-
tion will vary with the number of “ passing strakes,” 7.e., the
number of strakes between consecutive butts in that section.
Adjacent strakes being always butted at some multiple of
the frame or beam spacing apart, and the lengths of the
plates being limited to the capabilities of the rolling mills,
or the price the builder is willing to pay, the problem
of obtaining the best shift of butts has excited some
ingenuity. In these attempts two things have been
arrived at, one being to get a maximum number of passing
strakes between consecutive butts in the same transverse
section; and the other being to prevent the butts of adjacent
strakes being so close together as to make a weak step-
shaped section, or, in other words, to prevent the plating
breaking along these adjacent butts and the edge riveting
between them. Plate XXXVIIL shows specimens of
different shifts of butts that have been adopted. Fig. 1 is
termed the brick shift, for reasons which are obvious; this
method was common when it was difficult to get plates long
enough for any other arrangement. Fig. 2 is the diagonal
shift in common use on our principal shipbuilding rivers.
Figs. 3, 4, etc., are other shifts which have been adopted in
vessels for the Royal Navy.

‘We will now investigate the strength of a diagonal shift
of butts, such as is shown by fig. 2, Plate XXXVIII. In
this arrangement there are two passing strakes between con-
secutive butts, hence it will be necessary to calculate the
strength of the butted plate in conjunction with the plate
above and the plate below it. As the outer plates in the
case we are about to consider are narrower than the inner,
in order to give an appearance of uniform width on the
outside; and as the butt straps of the inner strakes are the
same Wwidth as the plates, while those of the outer are less
by twice the lap; it is evident that, in investigating the
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strength ot the shift, we must consider two cases: (1) an
outer strake butt in connection with the inner strake on
either side of it; and (2) an inner strake butt in connection
with the outer strake on either side.

Plate XXXTIX. shows a portion of the bottom plating of
an iron vessel, @ and ¢ being outer, and b and d inner strakes.
‘We will first investigate the strength of the strakes b, ¢, and
d, taken together, and then that of the strakes a, b, and ¢,
taken together.

The plates and butt straps are all } inch thick, and the
outer strakes are 3 feet 3 inches wide, while the inner strakes
are 4 feet wide; the breadth of the lap being 41 inches. The
rivets are § inch in diameter, and spaced as shown on the
Plate.

First, then, considering the three strakes, b, ¢, and d, the
middle one of which is butted as shown. Neglecting the
rivet holes at the water-tight frames, which will be alluded to
presently, there are six possible modes of fracture:—

1. By the plates being broken through the line of rivet
holes of the frame 4 B; the line of fracture is shown.

2. By the plates b and d, and the butt strap of ¢ breaking
in the manner shown by the line XX; the plates breaking
through edge rivets, and the butt strap in the row of rivets
EF nearest the butt.

3. By the plates b and d breaking in the line XX, as
before, but all the rivets on one side of the butt shearing
instead of the butt strap breaking in the line ZF.

4. By the plates b and d breaking through the line of the
frame rivets 4B; and the edge rivets between the butt and
the frame, also the rivets on one side of the butt strap being
sheared.

5. By the plates b and d breaking along the line of holes
AB, as before, and the edge rivets between the butt and the
frame being sheared, also the butt strap being broken in the
line of holes EF.

6. By the plates b and d breaking as before in the line 4B,
and then the edge rivets between 4B and GH being sheared,
and the plate ¢ broken in the line of rivet holes GH.

The strength of unpunched iron will be taken at 22 tons
per sauare inch, and this will be emploved when a plate is
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broken across through its edge rivets; elsewhere, owing to
the punching, a tensile strength of 18 tons per square inch
will be used. The single shearing strength of a §” rivet will
be taken at 10 tons.

First Mode.

ft. ft. in. ft. ft.
Length of plates b, ¢, and d, broken=4+3 3+4=11

Deduct for rivet holes in line AB=29 x 5:%:—’ =1 9% )
N 9 53=11325
Area of section=11325 x ‘5="56625 sq. in.
Breaking stress =56625 x 18=1019 tons.

Second Mode.

ft. ft. ft in.

Length of plates b and d broken..................=4+4 =8 3

Deduct for rivet holes in line XX............... =8x4=0 6
7 6=90in.

Area of section... =90 x ‘5=45 sq. in.’ i
Breaking stress of plates... =451>:, 212n.=990 tons.
Length of butt stra{) broken=2 6
Deduct for rivet holes 9x2 =0 6%

1 113=2325 in.
Area of section=2325 x *5=11"625 sq. in.
Breaking stress of butt strap=11625x 18= 209 tons.

Add for plates,.......c. voeveeriirereniriiiiinnens = 99 ,,
Total......ccoeevinier rveneeneenenenns 1199 ,,
Third Mode.
g;eaking stres;ttilf pflates band d (asé)efo;e)il. ............... = 990 tons
earing strength of rivets on one side of the ) _ _
butt strap, ...oeeeiiiiiiiieiiiie e % =18x10= 180 ,,
Total....c.unuerireieenrrrereeccenennesernns 1170 ,,
Fourth Mode.
Length of plates b and d broken,
Deduct for rivets in line AB ...............

.Area of section...=81 x ‘5=40' sq. in.

glxl-ea.king :E;‘ess, g =40'5x18= 729 tons
"Shearing strength of rivets in) _ _

- edges and butt strap,......... =46x10= 460 ,,

1
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Fifth Mode.
Breaking stress of plates b and d (as before), v....ccuvennnne = 729 tons
Breaking stress of gutt strap (as before), .........ccoeeeeenns = 209 ,,
Sheari)i:g strength of rivets between AB and% =28x10= 280 ,
PR N
) ]~ POt 1218 ,,
Sizth Mode.
Breaking stress of plates b and d (as before).............. . £'°i=729 tons.
n,
Length of plate ¢ broken, ........c.cccoovviieinicnniinnne =3 3
Deduct for rivets in plate ¢ .................. 13x 2:329=0 93
2 5}=29%in.
Area of section...=2925+ ‘5=14625 sq. in.
JSBrea.king stress oﬁ sefctign=l4'625 x18.......= 263 tons
hearing stren, of e rivets ) _ _
between ABoand Gy, =20x10= 200 ,,
Add for plates b and d,...........coeeeeveennnnn. =179 ,
Total.......cocevviviiiiiiiriiiniiiiiniens 1192 ,,

These results show a tolerable uniformity of strength, the
butt connection being stronger than the plates themselves
in the line of rivets connecting them to the bracket frames.
The close riveting in the water-tight frame (see Plate
XXXIX.), would render a section thereat much weaker than
elsewhere, were it not that the strength is restored by means
of the wide liners s s, having a row of rivets on each side of
the frame.

‘We will next investigate the strength of the butted plate
b in connection with the plates @ and ¢ on either side of it.
It is unnecessary to again particularise the several possible
modes of fracture, as they are similar to those already con-
sidered for the other butt connection. )

First Mode.

ft. in, ft. ft. in. ft. in
Length of plates a, b, and ¢, broken=3 3+4+3 3=10 6
Deduct for rivet holes in line CD......... =28x§=21=1 9

8 9=105in,
Area of section......=105x '5=52'5 sq. in.
Breaking stress ..... =525 x 18=945 tons,



266 THEORETICAL NAVAL ARCHITECTURE.

‘Second Mode.
ft. in. ft. in. ft. in.
Length of plates a and ¢, broken........=3 3+3 3=6 6
Deduct for rivet holes in the line X, Xl .=10xg= 7%
5 105="70} in.

Area of section="705x '5=3525 sq. in
Breaking stress of plates= 35'25 x 22=775 tons.

in.
Length of butt strap broken _4 0
Deduct for rivet holes 16 x £= 1_0_
3 0=361i m
Area of section of strap= 36 x '5=18 8q
Breaking stress of strap=18 x 18= 324 tons

Add for plates...........cceeuunen- =715 ,, .
Total.....c.covvvieennns 1099 ,,
Third Mode.
Breaking stress of plates a and ¢, as before.................. = 775 tons.
Shearing stress of rivets on one side of the strap=32 x 10— 320 ,,
Total......ccovveriviiieriiiineniiiniieneenns 1095 ,,
Fourth Mode.
ft. in. ft. in. ft. in.
Length of plates @ and ¢, broken..= 3 3+3 3 =6 6
Deduct for rivets in line CD........ =18x2=0133=1 1}
5 4 4 =64} in.
Area of section ............... =645x 5= 3225 8q. in.
glx;ea.hng stress.. ST —)32 25 x 18= 580 tons
rearing stren of rivets ) _ _
in edges amﬁmtt straps § =52x10= 520 ,,
. e 1100,
F fth Mode.
Breaking stress of E lates @ and c, as before ..................= 580 tons
ISB;eakmg stress of ?ttdstrap, as lffore T = 324 ,,
earing strength of e rivets between _
gt of ego Tivets belmeen O j=28x10= 220 ,
Total......covvrnieririieennnniniiseeenne 1184 ,,
Sixth Mode.
Breaking stress of plates a and ¢, as before............. W h:580 tons
Length of plate b, broken... =4 0
Deduct for nvets 1
3 0=36 inches.
Area of section............ceuuveiiinnens =36x *5=18 8q. in.
]SB;eakmg stress (;f sfecison ............ =18x18= 324 tons
earing strength of edge rivets) _ _
betweon CD and M. 2 =20x10= 200 ,,
Add for plates @ and c.........ocoeeuinrnnnannns = 580
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191. Strength of Pillars.—We now approach a subject
regarding which we are not able to arrive at such exact con-
clusions as when considering the strength of combinations of
plates subjected to tensile stresses. This is due to the fact
that the resistance of any material in the form of a pillar to
compressive forces is of a compound character, and it is
impossible to predicate with accuracy in what particular
mode rupture will take place. We are therefore, to a great
extent, obliged to investigate the subject experimentally with
different materials, made into pillars of different proportions
both as regards sectional area and ratio of length to diameter.

The resistance to compression, when the limit of proof
stress is not exceeded, is about the same as the resistance to
extension, and is expressed by the same modulus of elasticity.
‘When that limit is exceeded, the irregular alterations under-
gone by the figure of the substance render the precise deter-
mination of the resistance to compression difficult, if not
impossible. Crushing may take place (1). by the material
splitting into fragments, separated by smooth surfaces whose
general direction is parallel to that of the crushing force; (2)
by one part of the material skearing or sliding over the other;
(3) by bulging or lateral swelling and spreading; (4) by buck-
ling or crippling; and (5) by cross breaking.

The 1st and 2nd modes of crushing are exemplified by
such materials as glass and hard earthenware; the 2nd by
cast ironm, stone, etc.; the 3rd by wrought iron ; the 4th by
timber, wrought iron, and bars longer than those which give
way by bulging; while the 5th is the mode of fracture of
pillars in which the length greatly exceeds the diameter. It
i8 caused by the pillar first yielding sideways and then being
broken as a beam.

" Competent authorities have stated that, in order to deter-
mine the true resistance of substances to compression, experi-
ments should be made on blocks the proportion of whose
length to diameter is not less than 3 to 2.

In wrought iron the resistance to the direct crushing of
short blocks is from § to $ the tenacity, and the resistance
of most kinds of timber to crushing when dry is from } to %,
while that of cast iron is six times the tenaeity.

Pillars whose lengths exceed their diameters in consider-
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able proportions, such as is always the case in a ship, do not
give way by crushing, but by bending sideways and breaking
across, being crushed at one side of the pillar and torn
asunder at the other side. Professor Rankine says,* “There
does not yet exist any complete theory of this phenomenon.
The formul® which have been provisionally adopted are
founded on a mode of investigation partly theoretical and
partly empirical.” He then gives an investigation from
which results the following : —
Let P=the load on a long pillar,
,» S=its sectional area, )

then one part p, of the iptensity of the greatest stress is
simply— P
=g

Another part is that which arises from bending, which will
take place in that direction in which the pillar is most
flexible, that is, in the direction of its least diameter, if the
diameters are unequal :—
Let h=that diameter,
»» b=the diameter perpendicular to it,
1y U=the length of the pillar;
also, let p,=the greatest stress produced by bending,
Pi? 3
then p, « §ii X Pijas
that is, the additional stress due to bending is to the stress dus
to direct pressure in a ratio which increases as the square of
the proportion in which the length of the pillar exceeds the
least diameter.
Let f be a co-efficient of strength representing the whole in-

tensity of the greatest stress on the material of the pillar, then

R (Lo W— o

in which a is a constant co-efficient to be determined by
experiment.
Hence the following is the strength of a long pillar:—
S8

* Applied Mechanics, p. 360.
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The following values of f and a are given for the ultimate
strength of plllars JSixzed at the ends by flat heads and
heels.

MATERIAL. ,b’l“’:e‘}‘:ﬁm Multiplier .|  Form of Pillar.
Cast iron, ............... 80,000 o Hollow cylinder.
‘Wrought iron,..... ...| | 36,000 nw' Solid rectangle.
»”» 29 eeenniens V0T Thin square tube
or cell.

»» 1 eeeneeens . P L] Solid cylinder.
” 3y eereaen T Thin cylindrical

tube.
. 3y eeeerenen 1890 Angle-iron.
» 9y eeeseenes 590 Cross- sha.ped
section.
Timber (average),.... 6,500 o5" Solid rectangle.

For pillars jointed a¢t both ends, multiply the values of a
given in the Table by 4.

For pillars fized at one end and jointed at the other, multiply
the values of @ given in the Table by 2.

In using the preceding formule for pillars, the following
factors of safety should be employed : for cast iron, 8; wrought
iron, 6; and timber, 10.

192. Beams.—A beam is a combination of material so
placed in the structure that it supports a load at one or more
points in its length, while i% is itself supported at one or
more other points. The direction of the load being in the same
line as that in which the supporting force acts (the directions
being usually vertical), a mechanical couple is set up which
tends to rack or shear, and to bend the beam. We will
consider some of the ordinary cases of a horizontal beam
subject to the influence of vertical parallel forces, these con-
sisting of the load or loads acting downwards, and the sup-
po reaction or reactions acting upwards.

Firstly, Take the case of a weightless beam 4B supported
at its ends 4 and B, and loaded at an intermediate point ¢/

* These three values of a are the results of experiments; the others
have been inferred from the second by the probable supposition that
they are proportional to the flexibility.
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(fig. 1, Plate XL.); W is the given load, also P and P, are
the reqmred supporting forces—

Then W=P+P; .ccocvver cerene e . i)

also PxAB=WxBC, ......... .. ........(2)

and PyxAB=WxAC.....c.ecoo.......(3)

From (2) P:lei@ ................... @
AC

from 3) P,=Wx-5

Secondly, Take the case of a weightless beam 4B loaded at
a point 4, fixed at the point B, and supported at an inter-
mediate pomt C. Let W be the load at 4, W, the required
downward force at B, necessary to hold the beam in place,
and P the required supporting force at C.

Then W=P-Wii.iiiiriinneninnans (1)

alsc PxCB=WxAB,.....................(2)

and W;xCB=WxAC. .................. (3)
AB,

From (2) P=Wx; OB oo (4)
AC

from (3) W,=Wx; OB oo (5)

From this we will proceed to show how to determine the
shearing stress and bending moment at any given cross section
of the beam.

193. Shearing Stress.——The shearing stress at any cross
section of the beam AB (fig. 1, Plate XL.), between the
points 4 and C is equal to the force P, while the sheari
stress at any cross section between C' and B is equal to the
force P,. Similarly, the shearing stress at any cross section
between 4 and C (fig. 2, Plate XL.) is equal to the load
W; and that at any cross section between B and (' is eqna.l
to the load W

The tendency of these shearing stresses is to rack or
tort the beam; the racking action upon the two »
each beam into which the point € divides it being
direction.

If the beam is loaded at several points in <
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C, D, E, F, ete. (fig. 3, Plate XL.), and supported at the
ends as at 4 and B. The magnitude of the resultant load is

W, +W,+ W3+ W, + Wi+ We=W, say.
Wa x AX=W,x A0+ Wy x AD+W,x AE+ W, x AF

+Wyx AG+Wgx AH,
Therefore :
AX__Wl x AC4+W,x AD+W x AE+W, x AF+W;x AG+Wyx AR
- W, + W+ W3+ W, + W+ W

which gives the point of application X of the resultant load.
Hence having the magnitude of W, and the distance of the
point X from A or B, we are able, as before, to find the
values of P, and P,

‘We can now determine the shearing stress on any division
of this beam. The shearing stress at any cross section in
the division 4C is equal to the force P,; that at any cross
section in the division CD is P, — W,; at any division in DE
it is P, — W, - W,, and so.on. In general terms, the shear-
ing stress on any division of this beam 8 the resultant of the
Jorces acting upon the beam between that division and either
extremity. It must be particularly noticed that to find this
resultant the forces are distinguished as positive and negative,
according to their direction, so that by their successive
subtraction the shearing stresses at the different divisions are
found one after another. In carrying out this process, a
point will at length be reached where the load is greater than
the shearing stress on the previous division, so that the shear-
ing stress on the next division is negative. Such a point is
seen in X, fig. 3, Plate XI.., the direction of the racking
action being reversed there. The remaining shearing stresses
are found by adding, instead of subtracting, the successive
loads, the stresses so found being negative, or contrary in
direction to the positive shearing stresses on the other side
of the point X.

194. Bending Moment.—Besides the shearing action just
alluded to, the load upon a beam, supported at each end,
tends to bend it so that it assumes a convex-form on the
side towards which the direction of the load acts. For in-
stance, the tendency of the beam, shown by fig. 1, Plate XL.,
is to become arched in some such a manner as is shown by
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the ticked line, the points A and B where the beam rests
being, of course, fixed. Again, the beam shown by fig. 2,
Plate XL., which is fixéd at a point between two loads,
bends in a contrary direction, the point C' being stationary,
and the convexity as shown by the ticked lines. In both
cases the bending is produced by a drooping of the portions
at which the loads are placed.

The magnitude of the bending moment at any cross section
of either end of the beam is equal to the product of the force
at that end of the beam, between which and the point C' the
section is situated, into the distance of the section from that
end. For instance, the bending moment at any section D of
the beam (fig. 1, Plate XL.) between 4 and C is equal to
P x AD. That at C is equal to P x AC, which, as we already
know, is equal to P, x BC, and that is consequently the
maximum bending moment. It is important to notice here
that this is the point of reverse racking, and where the
shearing stress is zero. From what has been said it follows
that the bending moments at 4 and B are zero.

Referring to fig. 2, Plate XL., the bending moment at D
is equal to W x 4D, and consequently the maximum bending
moment is at C, where W x AC = W, x BC; also that the
bending moments at 4 and B are zero.

From these two cases it will be seen that the same results
follow, both for shearing stresses and bending moments,
whether the beam rests at each end, and is loaded at an
intermediate point, or is loaded at each end and rests at an
intermediate point; also that the direction of the convexity
is always in that of the intermediate force.

‘When the beam is loaded at several intermediate points,
as in fig. 3, Plate XL., the bending moment at 4 is zero, that
at C is equal to P, x AC; at the point D it is P, x AC +
(P,— W,)CD; also at the point Z the bending moment is
P x AC + (P, - W))CD + (P, — W, — W,)DE, and 5o on. At
the point X where the shearing stress 1s zero, and the rack-
ing force changes direction, the bending moment is at a
maximum, for the same result is found as if we started from
B. By starting from 4, as above, and computing the bend-
ing moment at B, we shall find it to be zero, in consequence
of the shearing stress at #, viz., P, — W, - Wy~ W3- W, and
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all the succeeding stresses being negative, and X being the
point where the resultant load acts.

The general rule for calculating the bending moment at a
cross section through any given loaded point of a beam is as
follows :—Multiply each shearing stress by the length of the
division on which it acts, then the bending moment at any
given loaded point is equal to the algebraical sum of the pro-
ducts corresponding to the divisions which lie between that
point and ewther end of the beam.

195. Numerical Example.—For the distances AC, CD,
DE, EF, etc., in fig. 3, Plate XL., substitute the following
lengths in feet, viz., 4, 4, 5, 6, 5, 3, and 3 feet respectively;
also for W,, W,, W,, W,, etc., substitute in tons as follows:
2, 5, 3, 4, 6, 1, respectively. (See fig. 4, Plate XL.)

Taking moments about the extremities of the beam—
_1x3+6x6+4x11+3x17+5x22+2x26

b 4+4+5+6+5+3+3
_3+36+44+51+110+52_ 296
P _2x4+5x8+3x13+4x19+6x24+1x27
’_8 40 394;:+126;75+3%1-3
_8+40+39+76+144+27_334
= 32%6 2—9630 =114 tons,
Also “=W=£=I% feet
B = Brarar6r1 21 ~1oH »
Then for the shearing stresses— tons.
Shearing stress on division 4C, ....... + 9 =P,
Load 88 C, vevvevererereerneruesenrrnns -2
Bhearing stress on division CD,........ + T
P TS ) R -5
Shearing stress on division DE, .......+ 2{}
Load at B, ...coovvvvvvvnnnininnnnnne o -3
Shearing stress on division EF, 7
Load at F,....cooovvvennvnnrnnnnnns 4
Shearing stress on division F@, 48
P - R -6
Shearing stress on division GH, -104%
at Hyuvovvovereeieieeniven e, -1
-11%=P,.

Shearing stress on division &B, .......
4B .
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NEXT FOR THE BENDING MOMENTS AT THE
LOADED POINTS.

Points. |Shearing Stross,| LeN€th of | progucts, | Bending Momenta.
tons, feet. oot-tons. foot-tons.
A 0
+ 913 4 +3975
C 39%
+ 43 4 +31%
D 701#
+ 212 5 +1dp
E e 854 greatest
. s 6 REY) b X.
- S 5 -203¢
G 6313
-10% 3 -308%
H i - i 338
- - K ey
B 0

196, Graphical Representation of Preceding.—Fig. 5,
Plate XL., represents graphica]ly the preceding results. The
line 4B represents the beam shown by figs. 3 and 4. C, D,
E, F, etc., are the same loaded points, and loaded smhrlv
to those shown by fig. 4. An ordinate of length equal to 9-}-,
tons to some scale, drawn anywhere between the points 4
and C, represents the shearing stress on that division.
Similarly, an ordinate representing to scale 7}3 tons, may
be drawn anywhere between C and D, to indicate the shear-
ing stress on any section of the division C'D, and so on. Be-
tween E and F, the shearing stress having changed sign, the
ordinate will be drawn on the opposite side of the line 4B,
and so we proceed until an ordinate of length equal to 113
tons to scale represents the shearing stress on any section of
the division HB of the beam. By thus drawing an ordinate
of the proper length at each extremity of each division, and
joining the extremities of the ordinates, we get a series of
rectangles, as shown in the figure. It will be at once seen
that the bending moment at any of the loaded points is equal
to the algebraical sum of the areas of the rectangles between
that point and either extremity of the beam, treating the
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rectangles on one side of the line 4B as positive, and on the
other side as negative. It is obvious that the areas of the
rectangles on one side of the line are together equal to those
on the other side. If we start from 4 and draw ordinates
from the points C, D, E, F, @, and H, each of which repre-
sents to some scale the algebraical sum of the areas between
that point and 4, we shall find that the lengths of these
ordinates are as found in the preceding Article, viz., 39%,
7014, 854%, 84y%, 6313, and 33.% tons respectively. If
we join the extremities of these ordinates with straight lines,
we are able to determine the bending moment at any cross
section between the loaded points, by drawing an ordinate
from that section to the line joining the extremities of the
two adjacent ordinates, and measuring its length to the
required scale. The reason we join the extremities with
straight lines, and do not pass a curve through them, is be-
cause the bending moments vary between each pair of loaded
points in proportion to the distance from the point we start
from, and thus the variation is indicated by a straight line.

19%. Distributed Load.—We will now consider the more
general case met with in actual practice, viz., that of a load
distributed continuously over the whole length of the beam,
the latter being supported, as before, at the two ends. In
considering the load in this case we will use its intensity, i.e.,
the load in units of weight per unit of length of the span.
This intensity varies continuously.

In fig. 1, Plate XLI., 4B is the axis of the beam, sup-
ported at 4 and B; this is supposed to be loaded continuously
with loads of varying intensity. Ordinates are drawn repre-
senting in length, to scale, the intensities of the loads at the
points on the beam where the ordinates are situated, and a
curve ADFB is drawn through the extremities of these
ordinates. This line is termed the curve of loads. By
calculating the area of the space enclosed by this curve and
the line 4B, we have, to scale, the total load /# on the beam;
also, the area A DFEA represents to scale the total load on
the length A Z of the beam.

To determine the supporting pressures at the extremities A
and B: find first the position, longitudinally, of the centre
of gravity of the area ADFB; this will give the point @,
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which is the centre of gravity of all the loads on the beam.
Having, then, the total load and the position of its centre of
gravity, we know by the preceding investigations that the
upward pressure P at the point 4 is

_WxGB

P Pwae
X

and that Pl = —AB ° . N

Next, to find the shearing stresses.—At the points 4 and B
draw ordinates AH and BK in opposite directions, repre-
senting to scale the magnitudes of the two supporting forces
Pand P,. These are drawn in opposite directions, for, being
the shearing stresses at the points 4 and B, they act in
contrary directions, one being considered positive and the
other negative. For the shearing stress at any point in the
span, say C: measure by Simpson's Rule, as before, the area
of the space 4CD, and deduct the result from the value of P,
the remainder will be the shearing stress at C. Calculate in
a similar manner the shearing stresses at a sufficient number
of other points in the span, and set off ordinates representing
to scale the magnitude of these stresses. At a certain point
in the length these differences of the areas, starting from 4,
will become zero and then negative. Pass a curve ALXK
through the points so found; this is the curve of shearing
stresses, and is such that, by drawing ordinates to it from any
point in the axis of the beam, the length of that ordinate is,
to scale, the magnitude of the shearing stress on the cross
section at that point. The point X, where the curve of
shearing stresses crosses the axis, is the point of reverse
racking which was explained in Art. 193. The direction
of the racking force at any section is shown by the position
of the ordinate, either above or below the axis 4B.

To find the bending moments.—The areas AHX and BXK
are, of course, equal. Either of them represents to scale the
magnitude of the bending moment at the point X, which is
there at a maximum. The bending moment at any other
cross section of the beam, say at C, is represented to scale by
the area of A HL( between that section and the extremity of
the beam which is on the opposite side to it that X is. If

P
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the cross section is on the other side of X, then the bending
moment at that section is represented by the area of the space
enclosed by an ordinate to the curve of shearing stresses at
that point and that portion of the curve and axis which
is on the side of the ordinate nearest the extremity B. By
calculating the bending moments in this way at a sufficient
number of points on AB, and drawing from those points
ordinates representing to scale the magnitudes of the bending
moments, a curve drawn through the extremities of these
ordinates is termed the curve of bending moments, and is such
that the bending moment at any cross section, say C, in the
length of the beam is given to scale by the length of the
ordinate CM to the curve of bending moments from that
point. The maximum ordinate is, of course, that from the
point X or OX, which represents to scale either of the equal
areas AHX or BKX.

198. Distributed Load and Support.—The case now to
be considered is not met with in any local connection or
support in the ship, but is represented by the ship herself
when floating in the water. We consider it at this place
rather than in the next chapter, in consequence of the
intimate relation which the investigation bears to that just
gone through. The loads considered consist of the weight of
the ship and her cargo and equipment, the intensities of which
are found in units of weight per unit of length of the ship,
say in tons per foot of length. These intensities in a
merchant vessel vary with a tolerable approach to continuity
throughout the length of the ship. The supporting forces
are the upward pressures of the water, their intensities
being the displacements of the vessel in tons per foot of
her length. Right forward and aft the weights carried
are considerably in excess of the supporting pressures of the
water. Proceeding towards midships the weights and pres-
sures approach equality, after which the displacement per foot
of length exceeds the weight, until about amidships a maxi-
mum difference is obtained. From thence to aft the condi-
tions are reversed, so that there are two points of maximum
excess of weight over support, one point of maximum excess
of support over weight, and two points where the difference is
zero. This is a common casc; of course, instances may occur,
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as in an ironclad, where the differences are of another character,
The differences of the intensities of weight and support having
been found at a sufficient number of points in the length of
the beam, as we now consider it, these differences are set off
as ordinates at the proper points, being drawn above or below
the axis of the beam according as the support is in excess of
the weight or vice versa. A curve drawn through the ex-
tremities of the ordinates is termed the curve of loads. (See
CDEFG, fig. 2, Plate XLI.)

‘We have now to consider the beam whose axis is 4B sub-
jected to the influence of loads throughout the whole of its
length, which loads vary continuously in their intensities ;
the intensity of the load at any point in its length being
represented in magnitude by the length of the ordinate from
the axis 4B to the curve of loads at that point. The direc-
tion of the load, whether upward or downward, is represented
by the position of the ordinate, ¢.e., whether above or below
the axis. The loads at the extremities 4 and B act down-
ward, and are represented in magnitude by the ordinates 4 C'
and BG respectively. At D and F the load is zero, and at
X the load is in the form of an upward pressure whose
magnitude is represented by the ordinate Z.X.

As the ship is floating in equilibrium at a certain line, the
sum of the upward forces must be equal to that of the down-
ward forces; hence the areas of the figures ACD and #B@ are
together equal to the area DEF. For the same reason the
moments of the upward and downward forces about a trans-
verse axis, through the points 4 or B, must be equal to each
other. In other words, the sum of the moments of the arcas
ACD and FBG about an ordinate through either 4 or B will
be equal to the moment of the area DEF about that ordinate.
Otherwise the trim of the vessel would be altered.

To find the shearing stress at any point, we construct
a curve of shearing stresses from the curve of loads
in the following manner:—The area of the curve of loads
between any point and an extremity of the axis 4B is the
shearing stress at that point; observing that portions of the
area above the line 4B are considered positive, and those
below negative. For it will be observed that the beam is
now supported at the points D and F, and therefore the
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shearing stresses are at a maximum at those points, while
their racking actions are in contrary directions. Hence the
shearing stress at the point D is equal to the algebraical sum
of all the loads on either side of it; that is, equal to the area
ACD, or, which is the same thing, the area DEF minus the
area FGB. The ordinate DH, representing to scale either of
those areas, is therefore the shearing stress at the point JD.
Similarly, the ordinate #K which is drawn equal, to scale,
to either the area FGB or the area DEF minus the area
ACD, represents the shearing stress at the point F; being
drawn below the axis to show that the racking action is of
a contrary direction to that at D. At the point X where
the ordinate ZX to the curve of loads cuts off an area DEX"
equal to the area 4.DC, and the area ZXF equal to the area
FB@, the shearing stress is zero. Also at the points 4 and
B, where the area ACD + FBG — DEF = zero, the shearing
stresses are also zero. In this way, by constructing a suffi-
cient number of ordinates, the curve of shearing stresses
AHXKB is drawn, whereby the shearing stress at any point
in the length of the beam may be measured.

To find the bending moment at any point, we proceed as
follows: Measure the area between an ordinate to the curve
of shearing stresses at that point and that end of the beam
between which and the point X the given point is situated.

The point X being the point of reverse racking, where the
shearing stress is zero, is, as we have already shown, the
point of maximum bending moment, the latter being equal
to either of the areas AHX or BKX. The bending moment
at any point D between X and the extremity 4 is, as before,
equal to the area AHD, and so on. Similar conditions hold
good on the side of X towards the extremity B. By finding
the bending moment in this way at a sufficient number of
points in the axis 4B, and setting up ordinates representing
the results, to scale, a curve drawn through the extremities
of the ordinates is termed the curve of bending moments, and
is such that the bending moment at any intermediate point
is found by measuring the length of the ordinate from that
point to the curve.

199. Algebraical expression for the preceding.—Refer-
ring to fig. 1, Plate XLII., APC is a curve of loads, and AB
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the axis of the beam. Consider an indefinitely short length
da of the beam, the load upon which is P, that is, P is the
intensity of the load on a length dz; then F, the shearing
stress on that section or short length dx, is represented by
the expression—

F= Pl i)

the limits of the integration being between 4 and the dis-
tance from 4 to the section, along the axis 4B,

[ ]
Hence g:P ...................................... 2)

Agai.n, referring to fig 2, on the same Plate, AB is the
axis of the beam, as before, and AFC is the curve of shear-
ing stresses. Suppose the shearing stress on a section of the
beam distant = from the point 4 is F; also that the bending
moment on that section is M. Then the bending moment
on a section indefinitely near to it, or at a distance =+ dw
from the point 4, is M + dM. It is also equal to M + Fdz.

Hence M+dM M+ Fdz
' dM=Fdx

200. Bending Moments and Shearing Stresses for
various Modes of Loading, etc., considered Algebraically.

1. Beam fixed at one end and loaded at the other.

Find the sectional area mnecessary for the flanges of an
T-shaped beam 20 ft. long and 15 in. deep to support a ton
weight at one of its ends, the other being fixed.

‘Working stress : tension=4 tons, compression=2 tons.

Figs. 3 and 4, Plate XLIL, represent this beam: fig, 3
being an elevation, and fig. 4 a section. Consider the equi-
librium of a section at X.

To preserve equilibrium there must be two equal forces
T and H acting in the directions shown by the arrows; also
a vertical force of 1 ton at the section. The horizontal
forces are due to the extensive and compressive effect of the
bending moment, while 1 ton is the uniform shearing stress.
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Yet 2 be the distance in inches of the section X from the
loaded extremity;
Then Tx15=xx1

z
T = 1—5.
When =240 inches,
T =21-iﬁo= 16 tons of extension;

also H=16 tons of compression.
But 4 tons is the working extensive stress per sq. inch,
and 2 tons is the working compressive stress per sq. inch;

1{-:4 8q. inches area of CEFD,

and -156 =8 8q. inches area of GKLH.

" The web MOPN has to be simply strong enough to resist
a shearing stress of 1 ton.

2. Beam supported at its ends and loaded in the middle.

A beam 4B (see fig. 5, Plate XLII) is supported at its
ends and loaded in the middle with 10 tons, find the bend-
ing moment and shearing stress at any point; also the
maximum bending moment; the length of the beam being
20 feet.

Let AB=2a. Consider any vertical section at X distant
o from the middle point O of the beam. Taking moments
about that point

M=5(a-x),
w’hgsh increases as z diminishes, and is therefore a maximum
at O.
Hence M=6a=>5x 120=600 inch tons.

The shearing stress at any cross section between 4 and O,
"and between B and O is 5 tons.

3. Beam supported at its ends and loaded uniformly.

Supposing the beam 20 feet long, as before, and the total
load to be 10 tons. Hence the intensity of the load is 7%
ton, the unit of length being one inch.

Consider the case generally, and then substitute the parti-
cular values, (See fig. 6, Plate XLIL)

Let 2a=1length of beam in inches;
,» w=intensity of load.
Shearing stress at X=wa - w(a -z)=F
o F=wa,
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Hence F is greatest at the points of support where it is
equal to wa, and diminishes to zero at the extremities of the

beam.

For the bending moment at X, taking moments
about that point,

M=wa(a - z) - w(a-z)}(a-x)

=wa? - wax - jw(a? - 2ax +x3)

_wa? —wr?
2

=g(a ~-z)(a+x).

=5(a-a?)

The greatest bending moment is at the middle;

for M:'zg(a’ -?) is & maximum when =0,

in that case M="’—;‘-’=,x,xax14400=3oomch-ms,

which is one-half the maximum bending moment when the
whole load is concentrated at the middle, as shown by
Example 2 in this Article.

‘Without pursuing these investigations any farther, we
will now state in a tabular form the values of M and F for
beams under various conditions, as given by Professor

Rankine.

201. Beams fixed at One End only.—« is the distance of
the section from the fixed extremity, ¢ is the length of the
projecting part of the beam.

SHEARING Force F.

Bexpine MoMENT M.

EXAMPLE.
Anywhere F. | Greatest Fy. [Anywhete M. Greatest M.

I. Loaded at ex-

treme end with W -W W --aW - W
II. Uniform load of —wc-x)?| —wc?

intensity w, i....... | ~@(¢=%) -we 2 2
III. Uniform load

of intensity w, and -Wy(e- ‘;’) we?

additional load at | - W, - w(c-2) | - W, —we | =% =2)" | - Wy <

the extreme end 2

N.B.—The negative signs indicate downward forces and

| GU—
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distances measured to the right, while positive signs indicate
upward forces and distances measured to the left.

202. Beams supported at Both Ends.—2c being the total
span and « the distance of the section from the middle point
O of the beam :—

'l

SHEARING ForcE F. . BexpiNG MoMENT M.
EXAMPLE,
Anva‘v‘here Gri:;t;‘s:‘Fl Anywhere M. Grﬁt;{st; Mo
Iv. Smﬁle load W ’
dle,........ w W
Left of O,..... 3 b3 (c-2)W CW—M
. w —2 | g =M
Right of 0,...] - W -3 “
V. Single load W
applied at z,,....
Left of « (c+z)W| (c+ax,)W(c+x,) (c-x)W|y (cZ-a)W
Byenee 2 2 ( 2c W M2c
. —(c—z))W|—(c -z, )W|lc~,) (c+2)W|( =M, at x,
Right of z,,... % o0 %
VI. Uniform load 2 _ 2 o2
of Intensity w,.. we we m?_z_) %:-= o

203. Bending Moment in terms of Load and Length.—
The maximum bending moment may be conveniently ex-
pressed in terms of the total load W and unsupported length
{ of a beam by means of a formula whose general form is—

My=mWi
where m is a numerical factor.

For beams fixed at one end [ =c; and for beams supported
at both ends /=2c¢=the span; for a uniform load W =1l
‘We then have the following values of the factor m:—

1. Beam fixed at one end and loaded at the other...............

II. Beam fixed at one end and loaded uniformly............ .....

IV. Beam supported at both ends and loaded in the middle...
V. Beam supported at both ends, loaded at x, from

‘I
the middle..........ceeiiiiiiiniiiii i(l - l:
VI. Beam supported at both ends, uniformly loaded...

ﬂ-\./.n-u.p--
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204. Resistance to Bending.—Theobserved effect of a
load upon a beam is a tendency to flexure or bending, the
form of the curvature being governed by the form of the
beam and the mode of loading it. If the beam is of uniform
section, and is subjected to a uniform bending moment, not
exceeding the limits of elasticity of the material, the curva-
ture will closely approximate to that of an arc of a circle.

Referring to Plate XLIIL., fig. 1 represents a portion of a
beam, a section of which is shown by fig. 2. Under the
influence of a bending moment the beam assumes the form
shown by fig. 3.* In this state there is a tendency to
rupture, at the upper part of the beam by an extensive stress,
and at the lower part by a compressive stress. Consequently,
between the upper and lower sides there must be some layer
which is neither stretched nor compressed. This layer is called
the neutral surface, and the line in which it cuts any trans-
verse section of the beam is termed the neutral axis of that
section. Let MU, fig. 1, N NV, fig. 3, be that neutral sur-
face, and N,NV,, fig. 2, the neutral axis. In fig. 1, ab and cd
are two transverse sections of the beam, and are thus parallel
to each other. 'When the beam is bent, these sections stand
in the directions a,b, and ¢,d,, being still normal to the upper
and lower edges of the beam. Produce a,b, and ¢,d, to meet
at the point O, then O is the centre of curvature of the beam.
‘We will now show that the neutral axis &,,, fig. 2, passes
through the centre of gravity of the section.

Consider the stress on a layer PP in fig. 1. 'When the beam
is bent this layer assumes the form P,P,, and it cuts the
section of the beam in the line P, P,. If &,V, does not pass
through the centre of gravity of the section, draw the hori-
zonta] line Sz passing through that point; we have now to
show that S&,=0. The section being symmetrical, draw the
middle line Sy, and consider it to be the axis of y, and the
line Sz to be the axis of « for rectangular co-ordinates:—

Let SP,=y,
and SN,=y;
o PN,=y+y=P)N,.

* * The curvature is purposely exaggerated in order that the figure
may be clear,
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Now, NV, being the neutral surface, therefore P, P, ~ V| N,
is the extension of the layer PP.
Call ON, (the radius of curvature of the beam) p

PP, NN, PP -NN,
pry+y P y+y

Let a=the extension of the layer PP per unit of length,
and p=the intensity of the resistance of that layer to extension;
also E=modulus of elasticity of the material composing the beam.
Then p=Ea.
But P,P;, - N)N, is the actual extension;
.*. PP, - N,N,; =«N,N; =2NN.
Again NN, = I:l_Pl "Ilel
T v+y '
1 « P

Then

E -
and p= = (y+3)-

'We have now to find the value of y + .
Now, the stress on a small element of the layer P,P,

=pdxdy;
p may be here either positive or negative, ‘.., either an
extensive or a compressive stress.

At the neutral axis
S [ pazay=0;
?ff(yw)dwdy:o;
Hencs, / /(y+9)dady=0,
and since y passes through the centre of gravity of the section
v f [ ydady=0 also,

Hence, / f Jdxedy=0;

or, J f _/ dxdy=0; g being a constant;

s g=0,
which shows that SN,=0;
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and, therefore, the centre of gravity of the section is in the
neutral axis,

But p=§(y+m.

and this, as we have already explained, is independent of
the sign of p, and is true, therefore, for layers above and
below the neutral axis.

Again, the stress upon a small element of a layer P P, is
as we have shown pdaedy, and its moment about the axis of x
through the centre of gravity of the section is

pydxdy.
Let Jf, = the whole moment of the layer about that axis,

then M. = _/ _/ pydady
=2/ [vasy

But / _/ y2dazdy = moment of inertia of a transverse section
of the beam about the axis of .

Let this be termed I,
M= E-I
4 ' :

M=/ f pudedy
. = ];3 A f wydedy

But f f aydxdy is the product of inertia of the section about
the axis of z and 7.

Similarly,

Denote this by K,
M, = EK,
P

In fig. 4, let SR represent graphically the moment of inertia
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M, and SL represent M, ; then SK represents the direction
and magnitude of the resultant moment.
Let M =this resultant moment,
then 1]:“{ =A/M2+M?
=7 VI +K?

Hence 2 = L = E

Yy NI*+K3? T ?
also tanl:% gives the direction of the resultant axis SK.
‘When the stress is perpendicular, or in the line of the axis of

¥, as is the usual case, then K =0, or, in other words, there
i8 no tendency to bend the beam other than in a vertical plane;

5

The stress on any layer of a beam may be calculated when
its bending moment and the dimensions and shape of the
section are known by one of these equations, viz.:—

p_M,
T
and by the other p_E
vy

we are able to determiné the radius of curvature when the
modulus of elasticity is also known.

205. Specimen Calculations.—I. Consider the case of a
beam of rectangular section, as in fig. 7, Plate XLII., under
the influence of a bending moment M, to find the stress on
any particle P distant PV from the neutral axis,

Let A=area of the section,
» h=its depth,

Zm b Lo davn
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Suppose # = 6 inches and 4 =12 square inches, 50 that the
beam is 2 inches thick ; also, take M at 12 foot-tons = 144
inch-tons, and consider the point P at the upper side of the

beam, and therefore y = g =3

- _12x144x3
then pr= —12)(—3-6—— =12 tons.

which is the tensile stress per square inch at the upper side
of the beam. The section being rectangular, and therefore
symmetrical about the neutral axis, the compressive stress
per square inch at the under side of the beam is also 12 tona.
Equation (A) shows that the value of p varies with the dis-
tance of P from the neutral axis.

II. Find the minimum radius of curvature of a bar whose
section is 2 inches square, the stress being restricted to 9000
lbs. per square inch, and Z = 24,000,000.

and  p=2666% in. =222 ft. 23 in.,
which is the radius of curvature of the beam.

N.B.—In the preceding investigations it has been assumed
that the beam is bent in the arc of a circle; this i8 true only
when the transverse dimensions are small compared with the
length. It 8 also true only in this case up to the limits of
elasticity of the material, beyond this the assumption is merely
approximate.

III. What must be the diameter of a circular bar 10 feet
long, supported at both ends, and loaded at the middle, to
carry a load of 314 tons; the greatest stress not to exceed 4
tons per square inch ?
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In this case the greatest bending moment is—
M=3E210 10 (uce At 203)

Now %;—:
313x10x12
4 4

o ars

4
W 1'3:37;—‘0—300

4r ~

r="/300=6"7 inches.

206. Beam of I-shaped Section.— In the preceding
examples of the application of the formule for finding the
intensities of the stresses on sections of beams when loaded,
also for determing their radii of curvature, we have chosen
simple cases wherein the value of I is readily computed.
Such examples as the foregoing do not occur frequently in
actual practice, for the simple reason that the material in
them would not be economically distributed. For as the
stress is greatest at the greatest distance from the neutral
axis, and is nothing at that axis, it is evident that with a
given quantity of material, we should so form the section of
the beam as to provide the greatest resistance where the
greatest stress will occur. Besides this, in order to ensure
that the beam shall bend in the direction of the bending
moment, and not buckle or twist in such a way as to impair
its efficiency, it is desirable to so dispose the material as to
give sufficient lateral stiffness, and place the stiffening parts
where they will also afford resistance to the greatest tensile
and compressive forces. Also should the material be such as
to offer different resistances to tensile and compressive stresses,
the parts of the beam should be so disposed as to make the
intensities of these stresses, as nearly as possible, uniform.
Hence the I-shaped section in one or other of its modifica-
tions is that generally adopted for beams. The vertical

portion of the beam is termed the web, and the two horizontal
" parts are known as the upper and lower flanges. Sometimes
the beam is rolled in one piece, or welded in the form shown;
but wl;e; its depth is considerable, the beam is made

T
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of a plate web, and double angledirons at the upper and
lower edges. Beams of sufficient strength, and very con-
venient form for ships, are made thus (see fig. 13), with a
bulb - shaped lower edge;

these are known as T-b':lb,
plate-buldb and amgle-iron,
and angle-bulb beams. The
flanges are formed at the

upper edges to receive the

Fig. 13. fastenings of the deck, and

the bulb at the lower edge is found to be sufficient to provide
the necessary lateral stiffness at that part,and at the same time
give, with the flanges, enough substance to the beam to resist
the extensive or compressive stresses to which it is subjected.
Specimen caleulation for 1-shaped beam.—1.Consider the case
of a beam having the two flanges equal (see fig. 8, Plate XLLII.).

Let A =area of section of each flange,
,» C=area of section of web,
,» h=distance from centre to centre of flanges.

Since the flanges are equal, the neutral axis of the gection

is midway between them, or at a distance of 0l > from the
centre of either.

Moment of inertia of upper flange about neutral s,xxs_.fi—i"—a
_Ah?
” ” lower 5 " _-_
_ Ch’
” ”» web ” . » - -1_2—
- I_Ah’ Clz
_-(A+ )
But g:?
Let f=the working intensity of stress for the material in
the beam— then p=f
and y=§;
. M=1¥
oo M=1 7 o
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And by substituting the values of 4, f, 4, and C, in any
particular case, the working bending moment can be obtained.

2. Consider the case in which the flanges are not equal
(see fig. 9, Plate XLIL.)—

Let A =area of section of upper flange,
» B= ”» ” lower ,,
» C= ”» ” web

‘We must first find the position of the neutral axis—

Let y, =distance of neutral axis from centre of B,
sy Ya= y ’ ')
:, h2=y1+y2=c'liatanoe between centres of A and B,

Taking moments about the neutral axis—
then Ay,+C (g - yl) =By,

or Ay,+C ('1/-"—“—:-?1)= By,

Let y:y=K::1
Then B=KA+3(K-1)C....c.covvuvrrrreinnnnnn (1)

By the aid of this equation we are able to arrange the
portions of the section so that the neutral axis may be in
any required position; that position being governed by the
relative compressive and extensive resistances offered by the
material.

Next, let f; and f, be the intensities of the working
stresses which the material is able to bear in the lower and
upper tlanges, respectively,

then '{‘5.=é
Ys %
and fo=Kf3

I 3/2‘37;
futfs _fotfa _Sa(1+K)
Nty kTR

M=f,,(1+K)%........................(2)
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We have now to find the moment of inertia of a transverse
section of the beam about the neutral axis. This is evidently

I=Ayl+Byl 4 lcm-+c—"(y, —y)

I=h? %(1+K)’ (l+K)’ 12 4(1+K)¥

Substituting the value of B given in equation (1), and then
substituting this value of I in equation (2), we have after
reduction

M=foh{AR+}(2ZK -1)C}.cecrerereenernnns ..(3)

Numerical examples.—1. The web of an I-beam is of the
same area as the smaller flange; what should be the pro-
portion between the flanges, in order that the intensities of
the stresses upon them may be as 4 : 1?

By equation (1)
B=KA+}(K-1)C
in this case,
' K=4
C=A
.. B=4A+3A=5}A.

2. Find the dimensions of a T wrought-iron beam 20 seet
long, and 10 iriches deep to support a load of 2 tons at the
middle; the working intensities of stress being 3 tons for
compression and 5 tons for extension,

Here K=§,
also M_W-l—Qxfm_li’Oinchtons.

But by equation (3)—
M=/f3h{AK +}(2K - 1)C}
In this case—
A=0

fs=3
fa=5and k=10;
. 120=3x10{}(¥ -1)C}
whence C=7% =104 &q. inches.
By equation {1)—
v 0 B=KA+4(K-1)0

=3(§-

=§C= 3}3{1 inches.



DEFLECTIONS OF BEAMS. 293

3. Find the maximum load which a wrought-iron beam of
I-shaped section will support when uniformly distributed;
the length of the beam being 10 feet; the area of each flange
being 6 square inches—that of the web 4 square inches,
and the depth from centre to centre of flange being 6
inches. '

Here M= WI.120W

D=2 W inch
) s inch tons.

@
H!g

Ah? , BR?, ch?
I=Z+%*w
" where A=B=6 square inches,
C=4 square inches,
k=6 inches.

Hence I=5 ’;36+4 ;‘236= 108+ 12=120

120W

S_W
20~ 8

.

<N

the value of p for wrought-iron is 36,000
36000_W
3 78
.*. W=96,000 pounds=43 tons nearly.
4. Find the maximum load in the above case when the
area of each flange is 3 square inches. Ans. 52,800 Ibs.

207. The Deflections of Beams.—The expression 2=F,

Y
whereby the deflection or curvature of a beam when loa,de’d
may be calculated has been already obtained; we will now
show how this expression is applied. As previously stated,
the expression is only true when the curvature of the beam
is that of a eircular arc, and is approximately true when the
curvature is not quite circular.

Let AB, in fig. 1, Plate XLIV., be the axis of a beam,
whick is supposed to be fixzed at A and loaded at B with a
wetght W. Under these circumstances the centre line, or
locus of the neutral axis AB assumes the curvature shown
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by AB,. Consider any point P in AB, and draw PN per-
pendicular to it.

Let A be the origin of co-ordinates.

» PN=y

” =z

Since p is the radius of curvature of the arc 4B,
dﬂ

%1+( )g

Now if p be very great, as it usually is, then the inclina-
tion of the tangent to the arc is very small; hence %:O.

1 df
’

Now at the point P

" where a=4B

There is no constant in the integration, for when z=o0

ZZ 0. Making #=a, and calling %:t&n t=¢ in the limit,
where ¢ represents the deflection of the beam, we have

Wa?
2E.1

Hence the inclination or deflection varies as a?, or as the
square of the distance of the point P from 4. TFor the

tan i=
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actual depression of the beam at any point, integrating
again
W(iaz? - 32°)
VY="TET

Again there is no constant, as the curve passes through
the origin as before.

Making =« we have for the depression at the loaded
extremity of the beam

_Wat
Y=3E1
which varies as the cube of the distance from B to 4.

Next, suppose the beam to be loaded uniformly and sup-
ported at its ends, as in fig. 2, Plate XLIV. The same equa-
tions hold, and the origin is now at the centre of the beam.

Hence dy_M
& =BT
But in this case
M=3w(a? - 2?), where w is the intensity of the load;
dy_jw(a’ -z?)

*tde?T  EI
Integrating—
dy _ gt"”(““’” -3)
dz™ EI

which gives the slope of the beam at any point.

When z=aq, dy ZE.SI '

The second integration gives
% ( a’z? 2‘

W'hen z=a
_ 5wa*
Y=24E1
Next suppose the beam fixed at both ends, and loaded
uniformly, as in fig. 3, Plate XLIV. In this case there are
two points of contrary flexure in the beam as at C,C. At
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these points p=c hence M =0, and the condition of the
middle of the beam is the same as if the beam were sup-
ported at the points CC. Take O, the centre of the beam,
a8 the origin. Let OC=r. Then the bending moment at
the point C is

M=3w(r?-2?).

To find the deflection of the beam we must substitute this
value in the equation

But r is an unknown quantity.
Now, when #=a, or when the point is at the extremity
of the beam

then %:0

for the beam is horizontal at 4 and B.
22
5 t@— ‘}w(r x 3)
WaT T EI

(re-)

=—x7 =0

o 3r?=at
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Proceeding by the same process as before we are able to
obtain both the depression and the deflection ; for

2T E.I E.I
aly °
d_,,_*"’( 373
da™ E.I
when 2=¢a dy 0 as before, the beam bemg horizontal at A,
or =0 ; then { B, and
d wa® _ { the tangent of the inclination at
. When z:- then d’;,y_m { thg: length of the beam.
h dy w al the tangent of the inclination
when w—j then Ga=9 /5 5= 1 8t tho points G,0.
Again, since a2 w'
’ dy 1]'w(
a,’x’ zt
oo M
SOYETTET O
When z=a
Y=DEL

208. ExampLE 1.—Find the deflection of a wrought-iron
bar whose section is one inch square, and whose length is 10
feet, when under its own weight; the weight of wrought-iron
being 480 lbs. per cubic foot, and the modulus of elastlclty
29, 000 000; the bar being supported at its ends. (See fig. 2
Plate XLIV. )

iw(a’ I\f,)
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In the foregoing,

e

y=PN
z=0N
a=0B=60 inches

. . . 480 _ 5
w=the weight of 1 cubic inch of iron= 1728~ 18 Ibs.
E=:29,000,000 1bs.
I=g2
_ 5 x 1% x12,960,000 _

U= 5425,000,000 % 7 o
which is the deflection when P is at B, that is, the greatest
deflection of the beam.

For the inclination of the beam, substitute @ = 60 inches in
the equation for tan z,

. wal
0o then tan 3—3—197'1‘
%5 x 216, T
= : —— = ‘008 =tangent of the inclination of the beam
3 x 29,000,000 x 7 at A or B to be horizontal.

Having solved the problem, we will briefly notice one or
two particulars of interest with reference to the question—

. . bwat*
The deflection is SET
2
Now %:%:%’L in this case.

Let the greatest stress in a section of this beam be termed
Jf; and for y write gh; where g is a certain fraction (for in-
stance g =} in a beam of symmetrical section), and % = depth
of the beam, 4 s

p_J _3wa
then ':'7 _-970— —I—‘
2If

. e W= ;’a&‘
. Swa*
But deflection= UET

5a3f

or, say, d= m

4_5 ' a
a 12gE° 7"
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Now f, g,and Z are given quantities for any beam. It
is thus seen that beams having a given ratio of deflection to
span have also a corresponding ratio of depth to span, and vice
versw. Hence in designing a beam for a uniform load, as
in this case, we should choose such a ratio of depth to span
as would give the necessary stiffness.

ExanpLE 2.—A bar of cast-iron whose section is 1 inch
square, and which is 54 inches long, is loaded in the middle
with a weight of 336 lbs., the deflection was found to be
1-27 inches; find the modulus of elasticity of the bar.

Here M=3W(a-xz)
dy_M _3iW(a-2)

dz? E.I EI

w?
@ }W(ax - E
dz E.I
azi w'
(5%
- E.I
N _Wa?
when z=a y_——_GE.I =%
But y,=127;
also 'W=336,
and I=1l!9
. 1.0m_336x27% 336x27°
o o 127—_6X'I,_,E - %E
_G672x27° _
E= T 10,414,944 1bs.

By actual experiment in the above case it was found that
the breaking load of the bar was 508 lbs., hence the trial
load was two-thirds of the breaking load. This accounts
for the low value of the modulus, the average value for
cast-iron being 17,000,000. It ought not to have been
tried beyond a load of 100 1bs., and then the modulus would
have been much greater.

209. Strength of Bent Pillars.—The cases we are about
to consider are such as davits, catheads, etc., which are sub-
jected to a compound stress resulting from a compressive
force and a bending moment.
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1. Take the case of a bar bent into two arms at right
angles to each other, one of which is fixed upright, and the
other is therefore horizontal, the latter supporting a weight
at its extremity (see fig. 4, Plate XLIV.).

Let A4 be the area of a section of the upright bar at P,
and let b be the length of the horizontal arm, W being the
weight at its extremity.

The intensity p of the compressive force at P is

w
P= 7o
and the bending moment is
M=Wb.

This bending moment produces a stress whose intensity
My_ Wby

PETET
at any point distant y from the neutral axis of the section.
Thus the total effect of the load is the sum of these in-
dividual effects, and the actual intensity of the stress is

_W , Wiy
p—z"i' I

and the dimensions of the post are made such that p shall
not exceed a given amount.

If we consider the bending moment constant, the bar will
be bent into an arc of a circle (see fig. 5, Plate XLIV.).
Draw through the point P, NPK perpendicular to AN.
Then

M=W.PK
when PN is very small compared with PK, or when PK is
nearly equal to B,C,.

‘When compression and bending are combined with ex-

tension, _—
p=x % Ty H

where H is the thrust on the pillar, and M is the bending
moment, either compressive or extensive, at the point con-
sidered.
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Suppose the upright post to have a square section whose
side is A, then ’
W My
atT
W Wbk

= (145

h!

hence W = 22
60
1+ -
h

from which equation, if p is given, and % and b known, the
load W can be determined.

Next, for the stress at any point in the transverse section
of bent bar (see fig. 6, Plate XLIV.),

1]

p

_H My
p"‘li 1°
Now H = Wsin ¢;

;. p= W sin ¢ + My
A I’
from which p is found by substitution, as before. 'When the
stress is calculated for the compressed side of the bar, the
positive sign is used, and wvice versa.

210. Twisting Moments.—Moments of this kind have to
be resisted by rudder heads, crank shafts, etc.

“*The twisting moment, or moment, of torsion, applied to a bar, is
the moment of a pair of equal and opposite coupgea applied to two
cross sections of the bar, in planes perpendicular to the axis of the
bar, and tending to make the portion of the bar between the cross
sections rotate in opposite directions about that axis,” *

As the bar is uniform in figure, and the twisting moment
is likewise uniform, the stresses on all cross sections of the
bar are the same; also, if the bar is a circular cylinder, the
stresses on all the particles at the same distance from the axis
of the bar are the same.

In the bar shown by fig. 7, Plate XLIV. (where the two
opposite couples are shown), suppose C' to be one side of a
circular layer of an infinitely small thickness dx. The twist-
ing moment causes the material in one face of the layer to be

* Rankine’s Applied Mechanics, p. 353.
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twisted through a small angle compared with the material in
the other face. Let d¢ be this angle. Consider two particles,
one on each surface, at the same distance » from the axis of
the cylinder, which points were originally opposite to each
other; then the twisting moment causes them to be shifted
from each other through a distance ».di. Hence the material
in the layer between these two points is in a state of distor-
tion in a plane perpendicular to the radius r.

This distortion may be expressed thus—

S = di
= 2.5 dz’
and § varies proportionally to the distance of the particle
from the axis. There is thus a shearing stress at each point
of the cross section at C', whose direction is perpendicular to
the radius, and whose intensity is proportional to the distance
of the point from the axis.
Let g = this shemng stress,

Q= Er

To determine the strength of such a bar or axle let » = the
intensity of the shearing stress which the material of the bar
is able to resist. This value may be either the wltimate
resistance, proof resistance, or working resistance, according as
the bar is to broken, tested, or used for working.

Let , = the external radius of the bar, then p is the value
of ¢ at the distance 7, from the axis; or

p_"n

q_r
=2

¢="

Conceive the cross section C to be divided into narrow
concentric rings, the breadth of each being dr. Let » be the
mean radius of one of these rings, then its area = 2xrdr. The
shearing stress is equal to

: 2wpridr

n

* E is the co-efficient of transverse elasticity; its value for wrought-
iron is about 9,000,000 lbs. per square inch, while for cast-iron it is
about 2,800, 000 lbs and for brass about 5, 300 000 1bs,
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and the leverage of this stress relatively to the axis of the
cylinder is ». Hence the moment of the stress in this ring
is equal to
2wpridr
rn ;
and the moment of the stress on the whole section
M= 2mp Ipsdp
7 Jo
3
= 27‘2_1 = moment of torsion.
If the bar or axle is hollow, 7, being the radius of the hollow,
the integration will be between the limits

r=ryand r=r;
then M=M),
2r,
Substituting the value of , and expressing the dimensions
in terms of the diameters d, and d,—

s
For a solid axle M=15il‘.

For a hollow axle M:p(di‘?"'_),
5'1d,

The following are working values of p:—

For cast-iron,................ 5000 1bs. per square inch.
For wrought-iron, .........9000 lbs. ’



CHAPTER VIIL
STRUCTURAL STRENGTH.

STILL WATER STRESSES—Curve of Buoyancy—Of Weight of Hull —
Of Lading—Of Weights—Of Loads—Of Shearing Stresses—Of
Bendin, ]&oments—SmEssns AMONG WAVES—Curve of Buoyancy
—Of Shearing Stresses and Bending Moments—Table of certain
Maximum Bending Moments and Shearing Stresses—Application
of preceding Results—Neutral Axis of a Ship—Equivalent Girder
—ﬁoment of Inertia of a Section—Specimen Calculation—Mr.
John’s Investigations.

211, Struotural Strength of Ships.—Having considered
the conditions of stress and strain of the several components
of a ship’s hull, we will now devote our attention to the ship
as a whole, and examine the nature of the stresses to which
she is subjected both in still water and when among waves
of her own length. In each case we assume the ship to be
floating in a state of equilibrium, so that the volume of dis-
placement represents a weight of water equal to that of the
ship.

212. Still Water Stresses.—Commencing, then, with the
stresses which a ship has to resist when floating in still water.
It will be readily seen that, although the weight of water dis-
placed is equal to that of the ship and her contents, it by no
means follows that this equality exists, in regard to the portion
of the displacement and of the ship between any two transverse
sections. Indeed, the contrary is the case; for at amidships
the weight of water displaced by a given length of the ship
is usually considerably in excess of the weights of that por-
tion of the vessel and her contents. Consequently, at the
extremities the weight of a certain length exceeds the dis-
placement of that length. Between the part or parts of the
vessel in which there is excess of buoyancy over weight, and
the part or parts in which the weight exceeds the buoyancy,

s
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there are evidently sections of the ship at which the two are
equal, and these are termed water-borne sections. It will
thus be seen that a ship having two such water-borne sec-
tions, viz., one at each extremity of a certain length of the
midship body, is in the condition of a beam supported at two
points and subjected to vertical forces, those between the
points being upward, and those on the other side of the points
being downward. We have thus to consider a ship in the
character of a beam loaded and supported in different ways,
according to the form of the vessel and the arrangement of
her stowage, or nature of her construction. 'We shall neglect
all local considerations, and regard the materials of the ship
as being combined in a proper manner, considering only the
arrangement of the material and the scantlings employed, in
order to discover whether these are sufficient to withstand
the stresses whose intensities we shall calculate.

In Vols. I and I of Naval Science* will be found the
results of calculations of this kind, made upon certain of Her
Majesty’s ships selected as types of classes. These were
calculated at the Admiralty ; and having been published by
Mr. Reed, after having been read before the Royal Society,
we are enabled to refer to them in this work.

The resultant forces acting upon the vessel are the differ-
ences of two sets; one of which—the forces due to the
buoyancy of the ship—acts upwards, and the other, due to
the weight of the vessel, her engines, and lading, acts down-
wards. The differences of these forces are at some parts of
the ship’s length positive, t.c., the downward forces are in
excess; and at other parts the differences are negative, t.e.,
the upward forces predominate. Again, at the water-borne
sections the two are equal, as already mentioned.

The geometrical method, or method by curves, as explained
in Articles 197, et seq., of the last chapter, is adopted in
these calculations.

218. Curve of Buoyancy.—This is the first and the most
readily obtained curve. The ship’s length is divided into
intervals about 20 feet apart, and the areas of the cross
sections of these, a8 high as the load water-line, are calculated.
These areas may be readily obtained from the ordinary dis-

. * Edited by E. J. Reed, C.B., and Dr. Woolley.
B U

A



306 THEORETICAL NAVAL ARCHITECTURE.

placement sheet, taking the sections at the ordinates used in
that calculation. Considering these sections as the sides of
slices 1 foot in thickness, the displacement of each slice is at
once obtained in tons by dividing its area by 35. These results
-are set up to scale as ordinates, to a base line representing
the length of the ship on a convenient scale, say one quarter
of an inch to a foot, and at the positions of the respective
sections. A curve passed through the extremities of these
ordinates is the curve of buoyancy. Such curves are denoted
. by the letters DD, etc., in figs. 1, 2, 3, and 4, Plate XLV,
which show the curves of buoyancy for H.M. ships Mino-
taur, Victoria and Albert, Bellerophon, and Audacious. It
is hardly necessary to say that the areas of these curves,
allowing for the scale of the drawing, is the displacement of
the ship. In other words, the curve of buoyancy is a curve
of sectional areas, or a scale of displacement constructed from
vertical instead of horizontal areas. (See Art. 38.) .

214. Curve of Weight of Hull. —We next construct a
curve of weight of hull. This is obtained by aid of the
calculation explained at Art. 124. The weights of frame
space lengths of the hull, at intervals of about the same dis-
tance apart as those used for the curve of buoyancy, are ob-
tained, including the frames, beams, proportion of carlings, a
frame space length of bottom plating, deck plating, stringers,
deck flats, bulkheads, internal fittings, ete. These results
are set up as ordinates on the same scale as the displacement
ordinates, and from a base line of the same length as before.
‘When armour is used in the construction of the ship in the
form of batteries or bulkheads, it is necessary to set off the
weights of the latter in the form of rectangles whose bases
are equal to scale, to the lengths of the ship upon which the
armour is placed, taking care to place them in their correct
positions. It will frequently be impossible to pass a con-
tinuous curve through the extremities of the ordinates of the
hull and the upper sides of these rectangles, in which case the
curve must pass so a8 to include areas outside the rectangles
equal to the areas lost by the curve being within the rect-
tangles; taking care that the moments of the area of the
curve about the base line and any ordinate are, respectively,
the same as the moments of the curve of the hull proper
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added to those of the rectangles about the base and that ordi-
nate. (See the curves of weights of hull of the Bellerophon
and Audacious, marked by the letters H,, etc., in figs. 3 and
4 of Plate XLV.) The points, PP, and the curve in the
vicinity of these points, indicate what we mean by the pre-
ceding explanation, it being remembered that there are
armour-plated bulkheads and central batteries at those posi-
tions in the two ships. As there are usually greater discon-
tinuities in the weights of the equipment and lading than in
the weight of hull, and as the two curves of hull and contents
are added together to obtain the curve of weights, it is desir-
able not to draw a curve such as H H, but add the ordinates
and rectangles representing the hull to the ordinates and
rectangles representing the weights of the equipment, etc.,
and then draw a curve in the manner already explained,
which will be the curve of weights. (See Art. 216.)

215. Curve of Lading.—The weights of equipment, etc.,
carried by a ship, are very irregularly distributed as regards
their intensity, and it is therefore impossible to consider the
ship divided into blocks of a fixed length in determining a
curve which shall represent in effect the distribution of these
weights. Sometimes, as in the case of coal in a coal bunker,
we have a heavy load occupying a length of about 100 feet ;
and again we have another heavy weight, as the chain cable
in a locker, resting upon a very small length of the vessel.
Hence, before constructing a curve of lading or curve of

upon the base line a series of
‘nother, representing to scale the
the ship in the form of engines,
d with bases equal to the lengths
erally occupy, all being in their
nally. As already stated, it is
10 ordinates representing, to the
hull, and then draw a curve to
effect as the diagram thus pro-
is adopted in drawing the curve
st Article. Great care must be
ea of the space inclosed by the
the space bounded by the limit-
; also that the moments of the
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two are alike, both about any ordinate and about the base
line.

216. Curve of Weights. —The curve just produced is termed
the curve of weights, and its area is equal to the total weight
of ship and contents, and therefore equal to the area of the
curve of buoyancy. An ordinate of this curve, at any position
in the length of the base, represents to scale the weight of a
foot long of the hull and contents at that part of the vessel.
These curves are marked W W, etc., in figs. 1, 2, 3, and 4 of
Plate XLV. It will be noticed that these curves are drawn
on the same side of the base as the curve of buoyancy, although
the forces act in opposite directions. This is of no moment
at present, and is merely done to show that the area of the
curved space bounded by DD, etc., is equal to that bounded
by WW, etc. Moreover, it should be remarked that, as each of
the vessels is floating in equilibrium, the centres of gravity
of these two curves for each ship will be on the same
ordinate.

217. Curve of Loads.—This curve shows the total result-
ant force acting upon the vessel, the ordinate of it at any
point in the length being, to scale, equal to the load per
foot in length of the ship at that point, and its direction
shows the character of the load, t.e., whether upward or
downward. The curveis obtained in the following manner :
—The difference between the ordinate of the curve of buoy-
ancy and that of the curve of weights at any point in the
length of the vessel is set off as an ordinate of the curve of
loads ; if the ordinate of the curve of buoyancy is in excess,
then the ordinate is measured upward, and vice versa. Figs.
1, 2, 3, and 4, Plate XLV, show the curves of loads,
marked LLL, etc., of the Minotaur, Victoria and Albert,
Bellerophon, and Audacious. In the case of the second-
named vessel (see fig. 2) this curve, commencing at the
bow A, is below the axis 4B, showing that the weights
at that portion of the vessel are in excess of the buoyancy.
The curve crosses the axis at Z,, where there is a water-
borne section, and thus no load. Between R, and R,
the curve is above the axis, showing that the buoyancy is
there in excess of the weights; at R, there is another water-
borne section. It will be observed that the curve of loads
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erosses the axis four times in all. The same remarks hold
good with regard to figs. 3 and 4, but the curve of loads in
the Minotaur (fig. 1) only crosses the axis twice.

As the ships are all floating in equilibrium, the sum of the
upward forces is equal to that of the downward forces ; hence
the total area inclosed by the several loops of the curve of
loads above the line AB is equal to the total area of the
loops below that line. Again, the common centre of gravity
of all the loops is in the same ordinate as contains the ceutre
of gravity and centre of buoyancy of the ship. The effect of
the armoured bulkheads and battery of the Audacious is
clearly shown in the curve of loads of that vessel (fig. 4) by
the form of the centre loop below the axis, which indicates
heavy weights centred at two points.

218. Curve of Shearing Stresses.—(See VTV, etc., figs.
1, 2, 3, and 4, Plate XLVL) The curve of loads just
described shows the manner in which the ship, considered as
a beam, is loaded and supported. In figs. 2, 3, and 4 we
have four points of support, and in fig. 1 we see two points
of support. Starting, then, with the beam loaded in the
manner shown by such a curve, we will proceed to construct
a curve, the ordinate of which, at any point, shall be a
measure of the shearing stress at that point, and shall also
show the relative direction of that stress.

As was shown in Art. 193, the maximum intensities of the
shearing stress are always found at the points of support.
Also, in the same Art., it was shown that the shearing
stress on any division of a beam 80 loaded is the resultant
of the forces acting upon the beam between that division and
either extremity. It was also explained that this shearing
stress is the algebraical sum of all the forces acting upon the
beam between that point and either extremity, the forces
being distinguished as positive or negative according to their
direction. Hence, to construct the curve of shearing stresses
in any specific case, we proceed as follows :—Referring to
the case of the Minotaur (fig. 1, Plate XLVL), and com-
mencing at the bow 4: for the length of the ordinate of the
curve at any point between 4 and R, we find the area of the
curve between the ordinate and the point 4, and set off this
area, to scale, upon the ordinate, which then represents the
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magnitude of the shearing stress at that point. In fig. 1
the ordinates are drawn below the axis at this end of the
ship, consequently, after passing the point of reverse racking,
the ordinates will be measured above the line. This is a
matter of no importance, it being necessary only that the
ordinates should have the correct relative sign. 8till refer-
ring to fig. 1, it will be seen that the first point of maximum
shearing stress is at the ordinate B Ry, through R,, which
represents to scale the area of the loop ALR,, of the curve
of loads. As the latter curve changes sign at the point R,,
the areas on the left of that point inclosed between it and
any ordinate must be deducted from the area R,LA4, and
then we arrive at a, the point of reverse racking. On the
left of @ we can start afresh ; and, to determine the shearing
stress at any point between a and R, we have simply to find
the area of the curve of loads inclosed by an ordinate through
the point and the point a, observing that this ordinate will
be set off above 4 B. At R, we reach a second point of
maximum shearing stress, and from thence the areas between
any ordinate and £, must be deducted from the area between
an ordinate of the curve of loads at a and the point R,, for
the shearing stress at the point in question : this deduction
is continued until at length the shearing stress becomes zero
at B.

From the preceding it will be seen that the area of the
curve of loads between 4 und R, is equal to that between R,
and a; also that the area between R, and B is equal to the
area between R, and a.

In the Victoria and Albert, Bellerophon, and Audacious
(see figs. 2, 3, and 4, Plate XILVI.), there are four points of
maximum shearmg stress (Rv R,, Ry, and R,), two positive
(B, and £,), and two negative (£, and R,) ; hence there are
three points of reverse racking, a, b, and ¢. It is perhaps
unnecessary to point out that there must in any case be an
odd number of points of reverse racking and an even number
of points of maximum shearing stress, half of which will be
of opposite sign to the other half. |

In finding the areas of these curves the geometrical mode |
of integration explained
loads is constructed wit!
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shearing stresses is constructed by means of ordinates placed
midway between the others, and therefore also 20 feet apart.
The scales adopted are any that will suit the convenience of
the calculator ; the scale of A8 in the fitures is 3 inches =
200 feet, and the scale of the curve of loads is 3 square
inches = 4000 tons, while the scale of the curve of shearing
stresses i8 1 inch =400 tons.

219. Curve of Bending Moments.—The bending moment
at any point in the length of a beam being the sum of all
the shearing stresses between that point and either extremity,
it follows that the ordinate of the curve of bending moments
is determined from the curve of shearing stresses in the same
way a8 the ordinate of the latter curve i1s obtained from the
curve of loads. It is unnecessary to repeat the explanation
of the mode of performing the process of geometrical inte-
gration; it will, however, be instructive to consider a specific
case.

Again, referring to fig. 1, Plate XLVI., where MM repre-
sents the curve of bending moments as integrated from the
curve of shearing stresses VV7V, it will be seen that, if we
commence at 4, the ordinates of the curve of bending
moments oontmua.lly get greater as they include more and
more of the area of the loop 4E,a of the curve of shearing
stresses, until at length a maximum is attained at the
ordinate aa,* through the point a. From thence repeated
deductions are made, as more and more of the area of the loop
aR,B is taken from the area of the loop aR,4,, until at
length the ordinate at the point B is zero.

In the cases of the vessel shown by fig. 2 of the same
Plate, it will be noticed that the curve of bending moments
crosses the axis, producing three points of maximum bending
moment, two being above and the other below the axis, and
one of the former in excess of the other. This shows that a
portion of the ship near amidships is subjected to a sagging
bending moment, and on either side of it the bending moment

here is a hogging moment
de the ship in such a manner as

and abaft it separately water-
f water-borne division ;” b and c,
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throughout the vessel's length when she is floating n still
water, and in this case it amounts to only 170 foot-toms,
while the excess of weight over buoyancy amounts to 210
tons. In almost every case the moment of the downward
forces is greater than that of the upward, and thus the
tendency is to hog. This is due to the moment of the com-
paratively heavy extremities, which counteracts the excess of
weight over buoyancy at intermediate places. For instance,
in the Audacious the excess of weight over buoyancy amounts
at one place to 265 tons, yet there is no sagging moment,
but a hogging moment at that place of 3400 foot-tons.!

The scale of the curves of bending moments, in figs. 1, 2, 3,
and 4 of Plate XLVL, is 1 inch = 16,000 foot-tons.

220. Stresses when among Waves.—Hitherto we have been
considering the stresses upon a ship when she is floating at
rest in still water; the results 8o obtained are useful inasmuch
uy they afford valuable data for comparing different vessels,
especially since the work of obtaining them is of a compara-
tively simple character. It is, however, obvious that they do
not furnish any information regarding the maximum shear-
ing stress and bending moment which a ship may have
to resist when performing an ocean voyage. Indeed, it is
impossible by any calculation to predict the exact stresses
which a ship may undergo during a voyage, inasmuch as the
state of the sea is continually varying, so that she may
encounter waves of all possible dimensions in a short space
of time, and thus her curve of loads may assume a variety of
forms. It is evident that there are two conditions in which
the maximum stresses possible are exerted, viz., when she is
on the crest and in the hollow of a wave of her own length,
tho stresses in each of these conditions being greater as the
height of the wave is increased.

"The result of observations made by Mr. Froude shows that
the height of sea waves is usually about one-fifteenth to one-
twentieth part of their length. A series of calculations have
been made at the Admiralty, the results of which will be
quoted presently, for the stresses upon ships of different
lengths, in which the height of a wave 400 feet long is taken
as 25 feet, and that of a wave 300 feet long is taken as 20 feet.

‘When the vessel is on the crest of a wave (see fig. 1, Plate
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XLVIL.), it is evident that hogging strains are developed,
and when in the hollow (see fig. 2, Plate XLVIL) that
sagging strains are set up.

In these investigations it is assumed—

1st. That for the moment the ship’s vertical motion may
be neglected.

2nd. That for the moment the ship is in a position of
hydrostatical equilibrium.

3rd. That the methods of calculating bending and shearing
stresses, previously used for still water, may be employed
here also, in order to approximate to the momentary stresses.

221. Curves of Buoyancy when among Waves.—To
obtain these curves it is first necessary to draw the water-
lines of the vessel in the two conditions, viz., on the crest
and in the hollow of a wave of her own length. These
water-lines will of course be the curve of the wave (see

" Art. 164).

We have to draw this curve in such a position on the
ship as to cut off a volume of displacement equal to the
weight of the vessel, and having its centre of buoyancy in
the same longitudinal position as the centre of buoyancy of
the displacement in still water. This is a tentative process;
a first approximation to its position is made, and then, by a
calculation and subsequent corrections, the exact position of
the curve is found, An experienced calculator will approxi-
mate very closely to the accurate position, leaving but a
small correction to be made after calculation.

Having the line drawn, the displacement per foot of length
at equidistant sections is calculated, as in the still-water con-
dition, and a curve of buoyancy constructed in the same way
as before.

It will be observed that two such calculations must be
made, one for the crest and the other for the hollow of the
wave. Fig. 3 of Plate XLVIL shows the curves of buoyancy
of the Minotaur when on the crest and in the hollow of a
wave of her own length—400 feet and 25 feet high (see figs. 1
and 2). FF in fig. 3 is the curve of buoyancy when on the
crest of the wave, and GG is the curve when in the hollow.
The scale of the curves is 3 square inches=16,000 tons;

.Sinches along AB is equal to 400 feet. WW is the
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curve of weights, which is also drawn to the same scale.
Fig. 4, Plate XLVIL, and fig. 3, Plate XLVIII., show
similar curves for the Bellerophon and Victoria and Albert,
drawn upon the same scale as those of the Minotaur. These
curves were calculated at the Admiralty, and have been pub-
lished in Nawal Science.

222. Curves of Shearing Stresses and Bending Moments
among Waves.—Having the curves of weight and buoyancy,
the construction of the curves of shearing stresses and bend-
ing moments is very simple, the methods being the same as
was explained for still water. Fig. 1 of Plate XLVIIL
shows these curves for the crest of the wave, and fig. 2 those
for the hollow, in the case of the Minotaur; the scale of the
diagram being one-half that of Plate XLVI., which shows
the still-water curves. In these figures the scale of the curve
of loads is 3 square inches=8000 tons: 3 inches along 4B
is equal to 400 feet. The scale of the curve of shearing
stresses, V'V, is'1 inch =800 tons, and that of the curve of
bending moments, MM, 1 inch = 32,000 foot-tons. It will
be observed that when this vessel is on the crest of the wave
there is a hogging moment at every point in her length, the
maximum moment being at amidships; also, when she is in the
hollow of the wave there is a sagging moment throughout
the whole of her length, except a small portion right forward,
where there is a slight hogging moment. The maximum sag-
ging moment is also at amidships. The sagging moments are,
however, much smaller than the hogging moments. The
characters of the curves are very much the same in the other
two vessels (see figs. 5 and 6, Plate XLVIL., and figs. 4 and
b5, Plate XLVIIL), but it will be observed that in the Vic-
toria and Albert the sagging moments exceed the hogging,
and in the Bellerophon they are about equal. It should be
remarked that all these curves are drawn to the same scale.

The results shown by these diagrams are useful, inasmuch
that they point out the relative magnitudes of the maximum
hogging and sagging stresses in ships of types so distinct as
are those of the vessels considered. The Minotaur is an
instance of a long vessel heavily armoured throughout her
entire length ; the Bellerophon of a vessel armoured to a slight
extent throughout, but especially so at amidships, where there
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is a heavy armour-plated battery, with guns, etc. ; while the
Victoria and Albert is a vessel of the character of a full-
powered merchant steamer, with a light hull and heavy
machinery, but not of such extreme proportions as ocean
passenger steamers usually are. Thus the two first are
useful in judging of the moments of stress to which war
ships are subjected, while, as supplementary information to
the third case, we give at Art. 229 other particulars regard-
ing vessels of the mercantile marine.

The period of a wave 400 feet long and 25 feet high is
rather less than 9 seconds of time; that is to say, such a
wave travels a distance equal to its length in that time;
hence the changes from the hogging to the sagging stresses
ocenr at intervals of about 43 seconds. The period of a wave
300 feet long and 20 feet high is rather less than 8 seconds, so
that the changes in stress occur at intervals of about 4 seconds.

223. Table of Maximum Bending Moments and Shear-
ing Stresses.—The subjoined table of maximum bending
moments and shearing stresses, determined from the Mino-
taur, Bellerophon, and Victoria and Albert, which are deduced
from the curves already explained and other calculations, are
published in Vol. IL. of Naval Science. The moments are
given in terms of the displacement of the vessel multiplied
by her length, and the shearing stresses are in terms of the
displacement. In this form they may be readily applied
to determine the approximate values of the same for ships of
the same types.

VICTORIA AND

MINOTAUR, BELLEROPHON. "ALBERT.
CONDITIONS, Shearing| Bending | Shearing| Bending | Shearing | Bending
Stress, | Moment.| Stress. | Moment.| Stress. |Moment.
: Displace-|y: Displace-| r: Displace-
Dn’fpll:;w ment X D:]l;’lre’ ment X Dlx:slztce- ment X
ent. | length. * | length. b | Jength.
In still water, ...o.ooeiiniin '2’1 '513- 31'3‘ T‘;‘B’ ]13' I?’l‘v
On a wave crest,.......... 3} . Vr o Tr Ex
In a wave hollow,.........| ¢ e o Fes + 73
Supported at extremities| 4 % 3 3 ¥
Supported at middle,..... % °r 3 <5 3 %3
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The displacements of the Minotaur, Bellerophon, and Vie-
toria and Albert are respectively about 9800, 7500, and
2300 tons.

Mr. W. John, of Lloyd's Register of British and Foreign
Shipping, in a paper read by him before the Institution of
Naval Architects in 1874, gave, as the result of calcula-
tions made by him upon the strength of merchant steamers,
that the ordinary limit of maximum hogging moments is
D x g4th length, and of maximum sagging moments D x g;th
length. Up to the present time there have been so few cal-
culations of this kind made upon merchant vessels that we
are unable to provide further data.

224. Application of the preceding Results.—The infor-
mation furnished by these curves is of no value unless we
know the intensities of the stresses which they cause the
various portions of the structure to endure ; in the same way
that it is of no use to know the principal bending moments
on a loaded beam unless we know the form and dimensions of
its section, as without the latter we are not aware whether the
intensity of the principal stress is within the working limit
of the material of which the beam is made. Considering the
ship then as a beam or girder, the maximum bending moment
to which it is subjected being known, we have next to find
the tensile stress in tons per square inch on the material
farthest from the neutral axis.

225. Neutral Axis of & Ship.—By taking moments about
the water line or underside of keel, the vertical height of the
centre of gravity of the material composing the midship
section is soon found. The operation consists simply of
multiplying the effective sectional area of each plate, angle-
iron, etc. (disposed longitudinally and contributing to the
longitudinal strength of the ship), by the distance of its
centre of gravity from the axis about which moments are
taken ; the algebraical sum-of these products, divided by the
sum of the areas, gives the distance of the centre of gravity
from that axis. If moments are taken about the underside
of keel, all the products will be arithmetically added; but if
about the load water-line, the algebraical sum, or the differ-
ence of the sums of the products above and below the axis
will be divided by the sum of the areas. The direction in
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which the centre of gravity is set off from the axis will be
determined by the sign of the algebraical sum,

We have stated {hat the effective sectional area of the
plates, angle-irons, etc., is used. By this is meant that the
weakest section of the sbip is taken, and a deduction is made
for the material removed in the rivet holes. As stated in
the last chapter, the weakest section of a ship is through a
line of frame rivets; and as the rivets in a water-tight or bulk-
head frame are spaced closer than elsewhere, the section is
taken at such a frame. It is true that the strength is partly
made up by means of the wide liners already referred to;
nevertheless, in order that the result may not err on the
unsafe side, it is usual to choose a water-tight frame, on the
supposition that the wide liners do not make it quite so strong
as a section of the ship at the other frames. In order to get
the effective sectional area, one-sixth of the total sectional
area of the iron work is deducted where the work is water-
tight, and one-eighth of the sectional area of deck plating and
stringers when riveted to beams so as not to be water-tight.
The effective strength of wood deck flats is also reckoned,
three-eighths of the sectional area being deducted for butts
and fastenings (viz., one-fourth for butts and one-eighth for
fastenings), and then, to bring the remaining five-eighths to
represent an equivalent strength of iron, one-sixth of the
five-eighths, or five forty-eighths only, is reckoned of the total
sectional area. Plate XTLIX. shows a section of an iron ship
with the neutral axis drawn through the centre of gravity of
its efiective sectional area.

226. Equivalent @irder.—The neutral axis is sometimes
drawn in another way—by constructing a girder which shall
represent the sectional area of the material of the ship’s
section, grouped symmetrically about the middle line of the
section as a central axis. Plate L. shows the equivalent
girder for an unarmoured ship of war. The materials in the
two decks are represented by the two uppermost flanges,
which are situated in the same positions as the decks. ‘I'he
upper deck is plated all over, and the lower one has merely
a stringer. The web of the girder is made of the materials
composing the sides and bottom, concentrated at the middle
line, the block at the bottom being due to grouping the effec-
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tive sectional areas of the bottom plates, keelson, side keel-
sons, etc., below the turn of the bilge. By taking moments
about any part of this figure its centre of gravity is found to
be at G'; hence the horizontal line drawn through that
point is the neutral axis. When the ship is subjected to
hogging moments the portion of the section above the neutral
axis is under tension, and the portion below under com-
pression ; and when it is subjected to sagging stresses the
conditions are reversed.

It will be readily seen that, while the presence of rivets
weakens a section as regards its resistance to extensmn, it is
not so when the stress is a compressive one, as in that case,
if the rivets fill the holes, they resist compression as much
ag the plate. Hence, supposing this girder to be subjected
only to hogging moments, the lower pa.rt of it is smaller than
the real equivalent, as in constructing it the same deductions
were made for rivet holes as elsewhere. Similarly, if the
moments are always of a sagging character, the upper part is
smaller than the real equivalent. On this account some
calculators have constructed two equivalent girders for a
ship, one for hogging and the other for sagging moments.
In the former case no deductions are made below where it is
expected the neutral axis will come (and its position can be
very closely approximated to, while, if a slight error be made
in the guess, 1t does not muck interfere with the result), and
in the latter no deductions are made from the material above
the assumed axis. There is, of course, a separate meutral
axis for each case.

227. Moment of Inertia of the Section.—In order to
obtain the intensity of the stress on any part of the section
we apply the formula

p_M

VT
hence we have to find the value of I, or the moment of
inertia of the section about the neutral axis. The unit of
area employed is a square inch, while distances are measured
in feet.

For the moment of inertia of the section we may either

calculate direct from the drawing (the usual method, as
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the girder is rarely constructed), or else calculate from
the eqmvalent girder. If we calculate from the section
of the vessel, the moments of inertia of the several parts are
found by multiplying the sectional areas of plates, etc., dis-
posed horizontally by the squares of their distances from the
neutral axis, while the moment of inertia of a plate disposed
vertically is found by multiplying the area of its section by
the square of the distance of its centre of gravity from the
neutral axis, and adding thereto one-twelfth the area x the
square of its breadth. The sum of these results is the total
moment of inertia of the section. A similar course is pur-
sued if we calculate the moment of inertia from the equivalent
girder, the work being simpler in the latter case when once
the girder is constituted. Having the value of I for the
section, and the total bending moment known, the intensity
of stress at any part of the section is readily found.

228. Specimen Calculation.—Suppose a certain vessel,
when on the crest of a wave, is subjected to a hogging
moment of 50,000 foot-tons, the moment of inertia of her
effective section about the neutral axis is 150,000 (units of
measurement as in the last Art.), find the tension in tons
per square inch on the upper deck plating, which is 18 feet
above the neutral axis.

P_ M
Yy

Lﬂ/ 50,000x18_ .,
=T T 150,000

229. Investigations by Mr. John.—In the paper read by
Mr. W. John, of Lloyd’s Register, which we have already
alluded to in this chapter, a list is given of results of calcu-
lations made upon a number of vessels of the mercantile
marine, which shows that in such extreme cohditions, as on
the crest or in the hollow of waves of their own length, the
maximum tension per square inch, on the upper works of
some of these vessels, is far beyond that which has been
hitherto considered desirable. The factor of safety for
wrought-iron under tension is considered by many authorities
to be 5, so that, allowing 20 tons to the square inch as the
ultimate strength of the iron, the maximum tension on a
wrought-iron structure should not exceed 4 tons per square



inch. As will be seen by reference to the subjoined list of
results, this tension is doubled in the cases of some very
long ships now in existence, so that it appears either that
the conditions which these figures refer to rarely occur, or
else that such a high factor of safety as 5 is unnecessary. ‘
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Maximum Tension on the Maximum Tension on the

Tonnage r Works in' tons Tonnage M
of Veasel. UPP"W i of Veasel, UPW;Y:;{‘:: tons ‘

100 1-67 800 459

200 2-36 900 480

300 309 1000 519

400 355 1500 534

500 ‘395 2000 590

600 372 2500 7-08

700 457 3000 809 1
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PART IV.

CALCULATIONS RELATING TO PROPULSION OF
SHIPS BY SAILS.

‘CHAPTER IX.

Masts—Yards—Sails—Rigs—Sailing—Real and Apparent Motion of
the Wind—Effective Impulse of the Wind—Trim of Sails—
Eﬂ'ect of the Position of Centre of Gravity (Longltudmally) on a

Qualities—Centre of Effort—Speed under Sail—
Staglht{mun er Sail—Steady Impulse and Small Inclination—
Steady Impulse and any Inclination—Effect of a Gust of Wind.

230. General Remarks.—The only means of propelling a
vessel, with which mankind was acquainted until within the
last half century, consisted of either rowing by hand or
being blown by the action of the wind. Even as recently as
the fifteenth century the war vessels of many of the countries
of Europe were propelled by rowers, who were seated on
board the vessels upon one or more tiers of benches. The
labour of continuous rowing was 8o great that prisoners were
forced to perform the work ; the name ¢ galley slave,” given
to these unfortunate creatures, being familiar at the present
day. With the rapid development of war ships during the

ary to devise arrange-
table to propel these
came into use which,
oresent day. Indeed,
ritecture has so much
ig of ships ; for, if we
for reducing manual
ned almost unaltered
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It would not be consistent with the character of this
work to diseuss at length the question of the rigs and relative
proportions and shapes of sails, as that subject is an exten-
sive one, and belongs rather to the province of the practical
rigger. We purpose rather to investigate the relation of
sail power to speed and stability; and also to consider the
mathematics connected with sail arrangement in regard to
the manceuvring qualities of a ship.

It is necessary, however, to explain the meaning of the
terms we shall employ, and show by illustrations the nature
of the several kinds of sails and rigs.

231. Masts.—The sails of a ship are kept at their proper
elevation above the deck by means of masts, to which are sus-
pended the yards, booms, etc., and to these latter the sails are
immediately attached. Each mast is generally made up of
several lengths which lap against and are attached to each
other by caps. The number of masts in a vessel is governed
by the rig: cutters have one mast; schooners,* brigs, and
brigamtines have two ; barques and ships have three; while
some exceptionally long vessels have four or more masts. In
vessels having two masts, the one nearest the bow is usually
named the jforemast and the other the mainmast. When a
vessel has three masts, they are styled—commencing at the
bow—the foremast, mainmast, and mizen mast respectively.
In addition to the mast or masts, there is usually a bowsprit,
which is similar in form to a mast, but projects forward,
beyond the bow, in a more or less horizontal direction, to
support the sails before the foremast, usually styled the
head sails.

Each mast is made up of several parts, except in some

ery small vessels, where it is found convenient to make the
whole length of one spar. Without going into the technical
details of what masts are peculiar to particular rigs, we will
merely state that the lowest length and the principal piece
of each mast is termed the lower mast; thus we have the fore-
lower mast, main-lower mast, etc, ; above this there is the
topmast ; thus we have jfore topmast, etc.; and again,

* There is a style of rig upon three masts, which give the vessels

carrying it the name of three-masted achooners (see fig. 1, Plate 54),
while another is termed a three-masted brigantine.
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above the topmast, is the topgallant mast, and sometimes
the 7oyal mast. Generally, however, the topgallant and
royal masts are in one piece, the latter portion being termed
the royal pole. Beyond the bowsprit there is sometimes a
Jibboom, and again beyond that a flying jibboom.

The portion of the lower mast between the lower extremity
which heels on the step in the ship and the uppermost
wedging deck (i.e., the uppermost deck which receives the
wedges that tighten the mast in place), is termed the housing,
and the place where the shrouds are collected on the mast is
termed the kounds. On the upper extremity of the lower
mast is the lower cap, through which the topmast passes,
the lower extremity of the latter resting on the trussel trees
near the hounds. The length from the hounds to the cap is
termed the head of the lower mast. The head of the topmast
is the length from the crosstrees on the topmast to the top-
mast cap. Through the latter the topgallant mast passes,
resting on the crosstrees. The topgallant and royal masts
are usually of one spar, the place where the former ends
and the latter commences being termed the stop. The
portion of the bowsprit inside the ship is termed the Aousing
of the bowsprit, and the portion of the jibboom between the
bowsprit cap and its after extremity is styled the housing of
the jibboom.

Except in the cases of some unusual rigs, the masts of a
ship incline aft, the inclination being known as the rake.
The rake is least to the foremast and is greatest to the
mizen mast. The deviation of the bowsprit from the hori-
zontal is termed the steeve.

282. Yards.—The horizontal spars to which square sails
are hung are termed yards. The lowest yards of the fore
and mainmasts are termed the fore lower yard and main lower
yard respectively, while the lowest yard on the mizen mast
is styled the crossjack yard. Square sails are rarely hung

to the last mentioned, it being used only for stretching
and working the sail above. The other yards to each mast
are known as the fore, etc., topsail yards, fore, etc., top-
gallant yards, and fore, etc., royal yards.

Each yard is longer than the sails attached to it, the addi-
tional length at each extremity being termed the yard arm.

/



324 THEORETICAL NAVAL ARCHITECTURE.

To each extremity of the yard arm a ring is attached, through
which passes a small spar termed a studdingsail boom,
which carries a studdingsail, and which laps against the
yard arm. It should be here remarked that these studding
sails are not part of what is termed the plain sail of the ship.

Besides the preceding, there is a spar which points upwards,
at an angle with the mast, its lower extremity, when in
place, being near the hounds. These spars are known as

gaffs ; they support the upper sides of the fore and main °

trysails, and on the mizen 1ast they support the driver.
At the lower extremity of the latter is a doom which reaches
over the stern, and is known as the driver boom.

233. Sails.—Sails are divided into two principal classes,
viz., square sails and jfore-and-aft sails. The former are
most efficient when sailing free, <.e., before the wind, or, in
other words, away from the wind. Their mean position is
transverse or across the ship, and they can be braced to a
considerable angle on either side of that position to suit
the direction of the wind, but cannot be braced right fore-
and-aft.

Fore-and-aft sails are best for sailing close to the wind,
or for manceuvring ; their mean position is nearly right fore-
and-aft, and they can be moved to a considerable angle on
either side of that position. Some of these sails are necessary
for certain manceuvres, especially going about, or changing
the direction of the ship so as to receive the wind from the
opposite side. Hence, although some small vessels are wholly
without square sails, all vessels have fore-and-aft sails.

The rig of a ship is said to be square or fore-and-aft accord-
ing as the principal sails are either square or fore-and-aft.

‘We have mentioned the principal rigs as being those
of the cutter, schooner, brigantine, brig, barque, and ship.
In addition to these there are certain combinations or
modifications of these rigs, which are adopted in special cases
for certain services, some of which are shown by figs. 1 and 2
of Plate LIV. In long steam vessels are found various com-
binations of the schooner, brigantine, brig, and barque rigs ;
these being adopted in consequence of sail being but an
auxiliary power of propulsion. In such vessels four or more
masts are sometimes used in conseqence of the great length

|

|
!
|
!
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of the deck, and the desire to have light and easily handled
sails and spars. The Great Eastern is a remarkable illustra-
tion of this, that vessel having no less than six masts, two
of which are square rigged and the remainder fore-and-aft
rigged.

§quare sails are of the form shown by fig. 1, Plate LI
They are four-sided, and generally stand symmetrical with
regard to the mast, as shown in the figure, which shows the
usual form of these sails.

Fore-and-aft sails are of various shapes. Figs. 2 and 3 of
Plate LI show the general forms, fig. 2 representing such
sails as are hung between the foremast and the bowsprit, .e.,
Jibs, flying jibs, ete. TFig. 3 is the shape of the principal sails
of a cutter and schooner, while in a barque and ship rig they
are known as ¢rysails when on the fore and main masts, ana
drivers or spankers when on the mizen mast. Their general
name is gaff sail, being hung to a gaff. Figs. 4 and 5 show
two kinds of gaff-topsails, the former being what is termed a
lug-sail and the latter a shoulder-of-mutton sail. Staysails
(sometimes hung on the stays of the masts) are of the shape
shown by fig. 2.

234. Rigs.-—We will briefly explain by means of illustra-
tions the nature of the principal kinds of rigs. Fig. 1, Plate
LII., shows a cutter, all the sails of which are fore-and-aft.
a is the mainsail, b the gaff-topsail, ¢ the foresail, and d
the jib. @, ¢, and d are what is termed the plain sail, and
are those generally taken into account in estimating the trim
of the sails and the proportionate sail power of the vessel.
In addition to @, ¢, and d, a variety of other sails, including
some square sails, are occasionally carried in light winds.

Fig. 2, on the same Plate, is a schooner, f is the fore stay-
sail, a the foresail, g the jib, d the fore topsail, e the fore top-
gallant satl, b the mainsail, and ¢ the main gaff-topsail. A
Jlying jib and other sails are sometimes carried in addition to
those shown.

Fig. 3 is a brigantine, which differs from a schooner, inas-
much as the former carries a course, or lower square sail, on
the foremast, and has likewise a fop instead of a crosstree at
the head of the lower foremast. Brigantines also usually
have a fore topgallant mast. In the Plate, a is the foresail,
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d the fore topsail, and e the fore topgallant saw ; b is the main-
sail or driver, and h is the jsb. These constitute the plain
sail of the vessel. Of the others ¢ is the gaff-topsail, & the
Jore trysail, g the fore topmast staysail, f the fore staysail, and
and % the fore royal sazl.

Fig. 4, Plate LIL, is a brig, a is the jib, b the fore course,
¢ the fore topsail, d the fore topgallant sail, e the main course,
S the main topsail, g the main topgallant sail, and h the
driver. These are the plain sail, by which the calculations
regarding the sails are made. % and [ are the fore and main
royal sails respectively, and m and n are fore topmast stay-
sail and fore staysail respectively. As will be seen, all
these sails, except a, m, n, and A, are square.

Fig. 1, Plate LIII., shows a barque. In this rig ¢ is the
Jtb, b the fore course, c the fore topsail, d the fore topgallant
sail, e is the main course, f° the main topsail, g the main top-
gallant sail, b is the driver, and k& the main gaf-topsarl.
These are all the plain sail of the ship. Of the other sails
shown, those marked / and i are the flying jib and the fore
topmast staysail respectively, and » and o are the fore and
main royals. A fore stay sail and a trysail upon the fore
and main masts are also carried and used at certain times;
these are omitted in the figure, but are similar to the cor-
responding sails on the fore mast of the brig. It should
here be remarked that in the schooner, brigantine, brig, and
barque, sails are carried upon the stays to the several masts,
and are termed stay sails (see fig. 2, Plate LIIL, and fig. 3,
Plate LIV.).
 Fig. 2, Plate LIIIL, shows a ship rig of the kind known
as a clipper. It is very common in fast-sailing ships of the
mercantile marine, of which the fig. shows a good specimen.
Commencing right forward, a, b, ¢, d, and e are the flying
Jtb, outer and inner jibs, fore topmast staysail, and fore staysail
respectively. Of the lower sails £, /, and ¢ are fore, main,
and maizen courses respectively. Each of the topsails is in
two parts ; for instance, g is the upper and g, the lower fore
topsail, and similarly with regard to the square sails on the
other topmasts. Also, the top gallant sails are each in two
parts, & and A,, being the upper and lower topgallant sails
respectively. The yard between the two parts of the sail is
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made 80 as to roll up the portion of the sail above it when it is
desired to reef, i.c., reduce the area of sail carried ; the opera-
tion being performed by a reefing apparatus on deck. %, o,
and ¢, are royals; and p is what is sometxmestermedasky—
scraper, being carried only in very light winds. In some
ships a corresponding sail is also carried on the fore mast.
Tt will be observed that Qd royal sail is carried on the mizen
mast in the example shown, Dut this is not always the case.
The sail marked » is the driver, and v, w, and z show stay-
sails, which are often carried on more stays than in this
example. Trysails are also carried when running close to
the wind; while in all the rigs studding sails are carried
upon booms at the ends of the yards, when running free.

A more usual style of ship rig, especially in the royal
navy, is shown by fig. 3, Plate LIV. The sails marked a to
A inclusive bear the same names as the corresponding
similarly lettered, in the barque rig shown by fig. 1, Plate
LIIL; kis the mizen topsail and ! the mizen topgallant
sail. These are the plain sail of the ship, and their collective
area is given in the table of references above the figure.
The following are the names of the other sails shown: m is
the flying 7ib, n the fore topmast staysail, and o the fore stay-
sail, while p, g, and r are, respectively, the fore, main, and
mizen royals. 8 to0 &, inclusive, are staysails which, as
already mentioned, are carried in the other rigs, but not
shown. The fore and main trysails are shown by ¢, and ¢,.

Figs. 1 and 2 of Plate LIV. are examples of rigs often met
with in steam ships. In addition to these there are various
modifications and combinations of the schooner, brig, barque,
and ship rigs, adopted in such vessels to suit the requirements
of particular cases, sail power being merely an auxiliary to

‘a vessel's motion through
an angle with that of the
a writer in Naval Science
riages on a railway when
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he force of the wind can
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a tendency to move in that direction : for the shape of the
immersed portion of the vessel's body is such that less
resistance is offered to motion in the direction of the keel
than in any other direction. Consequently, although the
component of the force acting at right angles to the keel may
be greater than that in the direction of the keel, yet, owing
to the lesser resistance offered to the latter force, it is in general
more effective in propelling the ship than the other com-
ponent. In the case of a carriage on a railway there is no
other motion possible but in the direction of the rails,
but in the case of a ship, although the resistance to broad-
side is much greater than to fore and aft motion, yet
when the wind is blowing so obliquely with regard to
the plane of the sails that only a small portion of its force
acts in a longitudinal direction, the vessel makes what
is termed leeway very rapidly, and that, too, in propor-
tion as the immersion of the vessel is small. Leeway always
occurs unless the vessel is running free; but with a strong
wind abeam, and a good spread of fore-and-aft sail well
trimmed, this can be reduced to a small amount. The usual
ratio of leeway to headway varies from about one-fifth to
one-tenth, the former fraction being rarely reached. This
causes the direction of the ship’s course to make an angle
with the line of keel, which angle is termed the angle of
leeway, and varies from about 53° to 11° (see fig. 1, Plate
LYV., where the arrows show the direction of the wind and
that of the vessel’s course is drawn as a ticked line).

236. Real and Apparent Motion of the Wind.—By the
real motion of the wind is meant its motion relatively
to the earth; by its apparent motion is meant the motion
relatively to the ship when she is sailing. It is, of course,
the apparent motion with which we are concerned in con-
sidering the question of sailing.

In Fig. 2, Plate LV., AC represents in direction and mag-
nitude the real velocity of the wind, and 4D represents
similarly the velocity of the ship. Through C draw CB equal
and parallel to AD and join AB, then 4B represents in
direction and magnitude the apparent velocity of the wind.

237. Effective Impulse of the Wind.—In fig. 3, Plate
T.V., K2f is the line of a vessel’s keel, AB is a sail braced
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round so as to make an angle a with KM ; PC represents
the apparent direction and velocity of the wind, PC making
an angle 0 with the sail. Resolving the velocity PC into its
two components, one perpendicular and the other in the
plane of the sail, we have PC sin 6, the effective velocity
of the wind. This is represented by RC in the figure.
The pressure of the wind per unit of area of the sail is equal
to the change of momentum of the particles of air produced
by the action of the sail in each second. Hence this pressure
acts in the direction RC, and is equal in amount to

- WV PCsin 4
RS B -—-—' WV 329 . .
The weight of air acting upon the sail in a second is the
product of the apparent velocity, the density and the sec-
tional area of the wind-current. This sectional area was for
some time assumed to vary with sin 6 ; with this assumption
the impulse varies as sin?6. Experience has, however, shown
that the impulse diminishes much more slowly than the
square of the sine of the angle, as is seen by the speed with
which vessels can sail close to the wind. Part of this speed
is, however, no doubt due to the fact that the apparent
velocity of the wind is greater than the real when the wind
is before the beam, 4.¢., blows from an angle on the fore side
of a perpendicular to the middle line of the ship. Again, it
must be remembered that the surfaces of sails are not flat,
but more or less hollow, also the direction of the current of
wind on a sail is more or less modified by the influence of
other sails in its vicinity.

In fig. 3, Plate LV., if R(C represent the impulse perpen-
dicular to the sail, then RC' sin « = NC is the component of
the impulse which moves the ship in the direction KM, while
RC cos a=RN is the component which produces leeway and
tends to heel the ship over.

The result of experience is that, when the sails are braced
to the most efficient angle, as deduced from practical trials
with the vessel, the forward effect of the wind varies propor-
tionately to the square of the velocity of the apparent wind,
and to half the versed sine of the angle between the ship’s
course and the apparent direction of the wind.

238. Trim of Sails.—The principles upon which the area
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of the sails for any given vessel is determined wil be con-
sidered presently; we will, for the present, assume that the
area of sails is given, and will now show how to arrange the
masts and the sails upon them in such a way that the wind
shall cause the vessel to pursue a rectilinear course, when
the wind blows across that course, instead of her rotating
about an axis,

The motion of a vessel at starting is due to the excess of
the impulse of propulsion over the resistance of the fluid in
which she moves; the speed of the vessel continues to in-
crease until the two forces are equal, and then she moves
with the uniform velocity due to the constant application of
the propelling. force.

If the propelling force and the resistance act through the
same transverse section of the ship, the motion is rectilinear,
and if the forces are applied at different vertical heights in
that section the ship will heel over, until such an angle
is reached that the moment of stability of the ship is equal
to the inclining moment of the wind on the sails.

The centre of application of the propelling force is at the
centre of gravity of the sails; usually termed the “centre of
¢ffort,” while the centre of application of the resistance of
the water when the ship is not running before the wind is a
point termed the ¢ centre of lateral resistance,” which varies in
position with the speed of the ship, her form below water,
and other conditions of a somewhat complicated character.
Hence this point is not determinate. It is usual, however,
to consider it to be situated at some fraction of the ship’s
length before the centre of gravity of her immersed longi-
tudinal vertical middle line plane; the fraction varying
according to the ratio of the vessel’s length to her breadth
and to her form bel
given in Table X. 1
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in the same transverse section, the motion of the ship will be
rectilinear. If, however, they are not in the same transverse
section a couple is produced which causes the ship to rotate
about some axis.

A pair of equal and opposite impulses acting in parallel
lines (that is, the impulse of a couple), give no motion to the
-centre of gravity of the body they act upon; but cause
the body as a whole to rotate about its centre of gravity.
Hence a ship whose centre of lateral resistance is not in the
transverse section which contains the centre of effort of the
sails, rotates instantaneously about her centre of gravity.

If the centre of effort is on the fore side of the centre of
lateral resistance, the ship rotates in the same direction as
the wind blows, or, in other words, she falls off from the wind
and goes to leeward. Such u ship is said to be leewardly,
and to carry lee helm. In order to sail the required course
it is necessary to put the rudder round to windward, and,
therefore, the helm to leeward.

If the centre of effort of the sails is abaft the centre of
lateral resistance the ship rotates in an opposite direction to
the wind, or, in other words, she flies up to the wind, and
sails to windward of the desired course. Such a ship is said
to be ardent and to carry weather helm, as it is necessary in
order to sail the required course that the rudder should be
put round to leeward, and therefore the helm should be put
to windward.

By the term “ centre of lateral resistance,” as here employed,
must be understood the true centre of lateral resistance,
wherever that point may be situated. As already stated, it
is usual to draw a vertical line through the centre of gravity
of the immersed middle line plane of the ship, and assume
that the centre of lateral resistance is at some fraction of the
ship’s length before that point. In fig. 3, Plate LIV., which
shows the sail plan of a ship-rigged vessel, a vertical line is
shown through the centre of gravity of the middle line plane,
and the centre of effort of the sails is at 15°9 feet abaft that
vertical line; so that in the case there shown the true centre
of lateral resistance is about 16 feet on the fore side of the
centre of gravity of the immersed longitudinal vertical
middle line plane of the ship.
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Even if it were desirable, it is difficult, if noi; impossible,
to 8o trim the sails as to ensure that there is never a rotating
couple. The plain sails, whose centre of effort is calculated,
are not often all set together, and when they are, other sails
are often set with them; in short, it cannot be ensured that
the computed centre of effort of the sails is the real centre
of effort at all times when the ship is sailing. As will be
seen presently, when showing how to determine that point,
the centre of effort being calculated upon the supposition that
the sails are all braced right fore and aft, its position, with
the same sail set, does not vary with square sails placed
symmetrically in regard to the axis about which they rotate,
but it does vary considerably with fore and aft sails, such as
the jib, driver, etc., when standing at any other angle.
Again, the variations in the position of the centre of lateral
resistance at different speeds, already alluded to, prevent us
from being able to fix its position under all circumstances.
From these considerations it will be seen that the naval
architect must have recourse to experience gained by observ-
ing other vessels, in order to arrange his sails efficiently.
The influence of the position of the ship’s centre of gravity
on her manceuvring capabilities have also to be taken into
account; and data of this character obtained from other ships
must also be referred to, as will be seen in the next Article.

The plain sail is so arranged as to ensure that, under ordi-
nary circumstances, the centre of lateral resistance is a little
on the fore side of the centre of effort, and thus that the ship
shall carry a little weather helm. This is desirable, as the
-ordinary manceuvres under sails consist of tacking, or sailing
up in the wind and changing her course in this way, so as to
receive the wind from the opposite side of the ship. Hence
it is necessary that the ship should carry a little weather
helm, as by putting the helm to leeward both rudder and
sails act together in changing the course of the ship, and
putting her on the other tack.

This ardent tendency must not, however, be excessive, ag
the necessity ¢
duce the speed

Should a ve
fault may be
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may be increased or the head sail diminished, or both; or
the trim of the ship may be altered by shifting weights
farther forward, and so immersing her more deeply at the
bow and dmmshmg the draught at the stern ; in this way
the centre of lateral resistance is moved to the fore side of
the centre of effort instead of being abaft it as before.

Should a vessel be too ardent the converse of either of
these operations will correct the fault. It is worthy of re-
mark that the rake of the masts is sometimes increased to
diminish leewardliness, and vice versa.

The motion of the centre of lateral resistance with varying
speed, already alluded to more than once, is illustrated in
sailing a boat close to the wind. 'When the wind drops, the
boat, even if ordinarily ardent, makes leeway very rapidly,
and the desired course cannot be kept ; but if a sudden breeze
springs up, the boat at once, without the rudder being touched,
flies up in the wind’s eye, and unless checked by the helm,
will go about on the other tack. This is due to the pressure
of the water against the leeward bow of the boat being in-
creased relatively to that on the after part, and thus the
centre of lateral resistance moves forward. It will be readily
seen that this excess of pressure forward increases with the
bluffness of the fore body; hence the centre of effort must
be placed farther forward as the fulness of the fore body below
water i8 increased.

In the old sailing ships of the Royal Navy the centre of
effort of the sails was situated at about one-fourteenth of the
ship’s length before the centre of gravity of the immersed
middle line plane; in the fast wooden steam frigates built
before the armour-clads it was about one-twentieth to one-
twenty-fourth before, and in the iron steam frigate Incon-
stant, whose form below water, especially forward, is much

8 already referred to, it is only
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of Naval Architects, and were contributed by Mr. J. G.
‘Wildish, of the Admiralty. '

240. Effect of the Position of Centre of Gravity (Longi-
tudinally) on & 8hip’s Sailing Qualities.—The influence
which the relative positions of the centres of gravity and
lateral resistance of a ship have upon her manceuvering
qualities, when under sail, has not attracted much atten-
tion, Except when a vessel is pitching or scending, or
when her trim is altered by the pressure of the wind on
her sails, her centre of gravity and buoyancy are in the
same transverse section ; that being a fundamental condition of
her hydrostatioal equilibrium. The position of the centre of
lateral resistance being governed by the extent and character
of the immersed surface of the vessel, and that of the centre
of buoyancy by the volume inclosed within that surface, it is
evideht that two vessels of the same dimensions, draught,
trim, and displacement, may have these points at very dif-
ferent distances apart. In the old sailing ships of the Royal
Navy the centre of buoyancy—and therefore the centre of
gravity—was usually before the middle of the length of the
load water-line, the distances varying from one-fiftieth to
one-hundredth of the length. The determination of the posi-
tion was governed by considerations of speed and longitudinal
stability, and its effect upon the sailing qualities of the ship
do not appear to have been noticed. This was of very little
importance at that time, as the ships were short and easily
influenced by the rudder. With the introduction of long
steam ships, also fully rigged, the question became of more
moment, a8 the power of the rudder in such ships is rela-
tively less. Whether by design or not we are unable to say,
but it happens that in the majority of the long steam
frigates, which succeeded the sailing ships, the centre of
buoyancy was placed much farther aft, and in those which
sail best the point is as much abaft the middle of the length
88 it was formerly before it. An opinion has long been held
by many that a short fore body and a long after body is best
adapted for speed, but it appears from the results of these
ships that no loss of speed resulted when under sail, while
the advantages in tacking are very marked in the case of such
ships when compared with those ships of the same dimen-
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sions in which the centre of buoyancy is before the middle
of the length. We will now investigate the cause of these
resulta.

Suppose the force of the wind perpendicular to the
gails to be P, and the angle which the plane of the sails
makes with the keel of the ship to be a. So long as the
ship pursues a steady rectilinear course the force of propul-
s=ion is P gin a acting on the centre of effort, and this must
ve balanced by an equivalent force on the ship's bottom,
acting through a point in the same transverse section as that
which contains the centre of effort, i.e., through the centre
of lateral resistance. Now, imagine the action of the wind
to suddenly cease, the mechanical work accumulated in the
ship will cause her to continue to move in her course, and
thus P sin a will continue to act at the first instant, but
instead of doing so through the centre of effort it will now
act through the centre of gravity of the ship, where the
mechanical work may be supposed to be accumulated. Hence
& couple is set up, the resistance against the ship’s bottom
still acts at the same point as before, while the force moving
the ship acts before or abaft that point, according as the
centre of gravity (or centre of buoyancy) of the ship is before
or abaft the centre of effort. In a brief period the ship loses
speed and the centre of lateral resistance moves slightly aft.
The effect of this couple is to produce a rotatory motion in
the ship about an axis through her centre of gravity. The
velocity with which the ship commences to turn is propor-
tional to the moment of P sin a (acting through the centre
of lateral resistance) about the centre of gravity, divided
by the moment of inertia of the ship. If, the instant after
the wind ceases, the centre of lateral resistance and the centre
of gravity are in the same transverse section, the ship does
not commence to rotate, and only does so afterward by reason
of the centre of lateral resistance moving slightly aft, owing to
the reduction in the vessel's speed. Hence, in this case, the

remains unaltered, and afterwards
¢ original course. If the centre of
3 of lateral resistance, the instant
ship commences to rotate to leo:
of gravity is abaft the ocentre of
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lateral resistance she commences to rotate in the opposite
direction, or to windward.

In tacking, the helm is placed to leeward, and therefore
the rudder to windward, so as to cause the vessel to turn
towards the direction from whence the wind blows. Then
the head sail is eased off and the driver is hauled amid-
ships 8o as to increase the efficiency of the sternmost sail, as
she turns, and diminish that of the foremost. As the s}:up
continues to turn, all the sails lose their power in maintaining
headway, and they do not assist in turning any more until
they “ draw ” on the opposite tack. Hence the only forces
then available to turn the ship are the impulse of the water
on the rudder and that on the ship's bottom. Now the
action of the rudder after the ship has commenced to turn is
found, by the strain on the tiller, to be very slight; and if
ever the rudder has afterwards to be resorted to, it is in the
case of a vessel which “ goes about” badly. Thus it is seen
that the magnitude and direction of the moment of rotation
already alluded to, due to the position of the centre of gravity,
and therefore to the centre of buoyancy, is of great importance ;
for if the centre of gravity is abaft the centre of lateral
resistance, and the impulse of the rudder is not sufficient to
counteract the opposite tendency to turn, the ship will be
very difficult, if not impossible, to tack; whereas, if the
centre of gravity is before the centre of lateral resistance, the
ship may be tacked by means of the sails alone.

241. Centre of Effort.—This term has been already fre-
quently used, and it has been understood to refer to the
centre of application of the propelling impulse of the wind
on the sails. As the manner in which the wind meets
the sails, when the latter are braced so as to be at an acute
angle with the wind, is not fully understood, it is impossible
to determine the centre of effort exactly. For all practical
purposes, however, it is taken at the centre of gravity of the

surface of the sails. Only the plain sadl is taken into account,
and in calculating the position of the point the yards, sheet.s
etc., are supposed to be all braced and hauled into a fore-and.
aft line, The sail plans shown by Plates LIL to LIV, repre-
sent the sails in this condition.

The first thing to be dome is to find the geometrical
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centre of gravity of each sail. The methods of finding these
points for areas of the kind are given at Arts. 20 to 22.
Moments are taken about the load water-line for the vertical
position, and about a vertical line through the centre of
gravity of the immersed vertical longitudinal middle line
plane for the longitudinal position of the centre of effort.
The area of each sail is multiplied by the distance of its
centre of gravity above the load water-line, and the sum of
these products divided by the sum of the areas gives the
vertical distance of the centre of effort above the load
water-line. A similar course is pursued for its longitudinal
position, only that the difference of the products on both
sides of the vertical line is divided by the sum of the areas,
the distance being set off on that side of the line upon which
is the excess of moments. This is invariably found to be on
the fore side, but as the centre of lateral resistance is usually
at a still greater distance on that side of the vertical line, the
tendency is usually in the direction of ardency (see fig. 3,
Plate LIV.).

242. Speed under 8ail.—The impossibility of determining
the proportion of the force of the wind which acts perpen-
dicular to a sail, especially when the sail is braced to an
angle of less than 60 degrees with the apparent direction of
the wind, also renders it impossible to determine the total
propelling force acting upon a vessel under sail. If it were
possible to determine the fluid resistance, direct and frictional,
opposed to a vessel when she has attained her maximum
speed under a certain area of sail, with the wind blowing at
a certain angle to her keel and at a certain pressure per
square foot, the proportion which the propelling component
of that pressure bears to the whole could be readily deter-
mined. But the present state of our knowledge regarding
the resistance of fluids and the varying frictional character of
the surface of a ship’s bottom renders this problem insoluble.
Hence, in order to determine the probable speed of a ship

er to the performance of
r surface, and whose area

3 offered to a ship’s motion
e surface of her Lottom.
X
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Hence if there are two vessels of similar form but of different
dimensions, then assuming the frictional nature of {the sur-
faces of their bottoms to be the same in both cases, the areas

. of sail to produce a given driving or propelling force under
the same conditions of wind, weather, etc., will be propor-
tionate to the areas of the immersed surfaces of their bottoms.
If the vessels are similar the areas of these surfaces will vary
as D} : D,;# where D and D, are the displacements of the
vessels. Let 4 and A4, be the areas of plain sail so deter-
mined for vessels whose displacements are D and .D; respec-
tively. Then, if S and S| be the speeds of the two vessels
having thus proportionate propelling powers,

A\t A\}
S:Sl=(§):(]§)

b b
p¥ pp
If the speeds are required to be the same
AY A}
pd D,:
or Ali = AD 1§
D}
A = Ay_g,

which gives the area of plain sail rejuired in order that.a
vessel of given displacement may attain a given speed ; the
area of plain sail to enable a vessel of similar form, ete., and
of given displacement to sail at that speed under similar cir-
cumstances being known, It is a necessary condition for the
above that the lengths of both the vessels do not fall short of
the lowest limits which experience shows to be suited for
that speed.

Another kind of resistance is that due to the vessel’s bulk
being moved through the water at a given speed, and forcing
the water away on all sides in the same manmer as if she
were excavating a canal for herself. This resistance varies as
the areas of the immersed midship sections, or ag M to 7, ) say.
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‘With this assumption, the speeds of two vessels of similar
form whose areas of plain sail are 4 and 4, will vary thus:

S : Sl=§ : éé_,
eI VR
and if § is equal to S}
M,
A1= ITI.

A gain, the work performed in moving ships at a given speed,
irrespective of friction or form, varies as the weight or as the
displacement. By this mode of comparison, in order that tho
ships may have the same speed,

D,

A = Ay

As will be seen by the notes on fig. 3, Plate LIV, it is usual
to give each of these three values, viz., area of plain sail per
unit of p8, M and D, upon every Admiralty sail drawing,
as three valuable criterions whereby the speed of the ship
under sail may be determined.

243. Stability under Sail—I. Steady impulse and small
inclination of ship.—In fig. 3, Plate LV., PC represents in
direction and magnitude the apparent velocity of the wind,
and, as already shown, RC is the component normal to the
sail, also NC is the propelling component, while BV is the
transverse component that produces heeling and leoway. If
RC =P, then NC = P sin a,and RN =P cos a. Let § =the
angle of the ship’s heel under the steady pressure of the wind
whose intensity is P cos o acting horizontally. Let D = the
displacement, 4 the area of sail, GM the height of transverse
metacentre above centre of gravity, and C'L the height of the
centre of effort above the centre of lateral resistance. Tho
"heeling moment of the wind is 4 x P cos a cos § x CL, and
the moment of statical stability of the ship at the angle 6
(supposing 6 so small that the value of G/ remains constant)
is D x GM sin 6. Hence, if the ship is inclined steadily with
a uniform pressure of the wind,

yAxP cos « cos #x CL=D x GM sin 4.

Tt is usual when fixing the area of plain sail which a shi
ghall carry to assume the heeling component of the l)I‘V
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of the wind to be 1 Ib. per square foot, and the angle 6 is
fixed at 4 degrees.

Hence A x CL=D* x GM sin 4°.

The figures on the right hand side of this equation being
known, those on the other side are easily determined. The
value of C'L will be governed by the height of the rig
generally, it being evident that for the same value of 4 there
may be considerable variations in the length of CL. It may
here be remarked that the point L, or the centre of lateral
resistance, is situated at about a half of the mean draught of
the ship; but it is usual to measure C'L from the centre of
effort to the water-line, which gives a length of about an
eighth less than the real value.

For purposes of comparison it has been usual in the Royal

. DxGM . .
Navy to obtain the value of -A’(—XG@ for each ship, and use it

as a measure of her efficiency to stand up under the pressure
of wind on her canvas. It, of course, represents the initial
power of a ship to resist the inclining force of the wind on
her sails, and in most cases has been found to range between
15 and 25 when the ship is at her load draught.

44. II. Steady impulse and any angle of inclination.—
For comparisons at finite angles of inclination the curve of
stability is referred to. As will be remembered, this curve
represents by its ordinates the arm of the righting couple at
every angle of heel, until the stability vanishes. Thus if it
be required to know what angle the ship will be inclined by
a steady pressure of the wind at any given intensity; if P
be that intensity of pressure in pounds per square foot,
A x P x CL is the total heeling moment in foot-pounds; and
if D = the displacement in pounds, -A%XCE is the length of
GZ, or the arm of the righting couple necessary for the ship
to remain steady, inclined at the required angle, and by re-
ferring to the curve, the angle at which the value of GZ is
equal to that required, is the angle at which the ship will be
inclined.

In this expression, by using 4 x P x C'L we have neglected

* D is here expressed in pounds avoirdupois.
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the reduction in the effective heeling pressure of the wind
due to the sails being inclined away from the upright position.
At small angles the diminution in the effective pressure
would be very slight indeed, owing to the “bellying of the
sails.” We have previously mentioned that the effective
pressure of the wind has been variously taken to vary as the
sine, and the sine squared of the angle of incidence, which
angle is, of course, the compliment of the angle of heel.
Some experiments made by the Royal Academy of Paris
show that neither of these assumed variations is correct,
although that of the sine squared is practically so at angles
of incidence varying from 60° to 90°, or angle of heel varying
from 30° to 0°. As the wind pressure rarely heels a ship
beyond the former angle, it is sufficient for our purpose if we
take the ““sine squared ” variation as correct. Mr. Wildish,
whose paper has already been quoted in this chapter, has
given therein curves representing the effective pressures of
the wind at every angle of incidence, obtained by the sine
and sine squared assumptions and the curve as found by the
Academy of Paris in their experiments with regard to the
oblique impulses of fluids (see Plate LVI,, fig. 2). This last
curve explains what we have stated in Art. 237, with refer-
ence to the remarkable effective impulse of the wind when
sailing “ close hauled,” a phenomenon with which all sailors
and many landsmen are familiar.

In fig. 1 of the same Plate will be found another series of
curves calculated for three typical ships, viz., the Inconstant,
a fast corvette, the Monarch, a high-sided armoured frigate,
and the Cuptain, a turret ship of low freeboard. The curves
marked C, C, C, are the curves of stability of these ships, the
ordinates being the righting levers; those marked 4, 4, 4, are
the curves of absolute stability of the same ships, the ordi-
nates in this case representing the actual moments of stability
at the different angles; while the curves marked B, B, B,
represent the absolute powers of the ships to carry sail, the
ordinates representing the ratios of the absolute moments of
stability to the moments of the sails at the several angles of
inclination, In these last-mentioned curves the effects of the

1 several angles of heel has
1 by the Paris experimental
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curve. It should be remarked that in these curves it is
assumed that the masts have no rake, and that the yards are
braced square to the direction of the wind.

245. IIL. Effect of & Gust of Wind.*—The knowledge
of a ship’s statical stability at any particular angle, and
therefore the area of sail she can carry, so as not to exceed
an angle of safety with a steady pressure of the wind of a
known intensity, is not sufficient to determine the question
of her freedom from or liability to capsizing. In practice
the problem must be considered dynamically, as it frequently
happens that a vessel is one moment becalmed and the next
she is caught by a gust of wind which, if suddenly applied,
would have the effect of heeling her over to, approximately,
twice the-angle which the same force would keep her to if
steadily applied. Really sudden gusts of wind are perhaps
never met with, nevertheless a ship when passing a headland,
behind which she has been shielded from the wind, suddenly
becomes exposed to the full intensity of a steady breeze; and
even when on the open sea she is frequently assailed by a
blast of some minutes duration, exceeding in force the wind
under the influence of which she was previously steadily
inclined.

Fig. 1, Plate LVII., represents the curve of absolute
stability of a ship; the ordinates being proportional to the
righting moments at the several angles from zero to 60°, at
which angle the stability vanishes. Suppose this ship ex-
posed suddenly to the action of a steady breeze producing a
heeling moment of sail pressure equal to 6000 foot-tons, The
ship at once begins to heel over, and at 15 degrees { this heel-
ing moment is exactly balanced by the righting moment of
the ship. If the pressure had been very gradually applied
the ship would remain inclined at this angle, but in the
present case the vessel will not stop here, as the mechani-
cal work done while the ship has been inclining to this
angle is represented by the area of the rectangle Oapb,

* The ideas contained in the following remarks are suggested by
a paper contributed to No. 1 of the dnnual of the Royal School of
Naval Architecture, by the Principal, C. W. Merrifield, F.R.S.

+ The diminution of the heeling force, due to the oblique impulse

of the wind on the sails when the ship is inclined, is neglected in the
following considerations.

|
|
|
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whereas the work absorbed by the ship, .., the dynamical
stability at that angle, is represented by the area of the figure
Ospb ; hence mechanical work has been accumulated equal to
the area Ospa. The ship will therefore continue to heel over
until this work has been expended. This occurs when the
ship has gone over to 26 degrees, when the area ptr is
equal to the area aOsp, or, in other words, when the area
Oprc—the dynamical stability at 26 degrees—is equal to the
area of the rectange Oatc, for it must be remembered that the
wind has been steadily blowing all the time. The ship will
then begin a return oscillation under the influence of a right-
ing moment represented by ¢r or pb.

Next, suppose that the steady pressure of the wind is
equal to a heeling moment of 12,000 foot-tons, and that the
wind is again suddenly applied. At 20 degrees the heeling
moment i balanced by the righting moment, and if the wind
had gradually increased to this force, the ship would remain
inclined at that angle. But in this case mechanical work
has been performed by the sudden application of the wind,
which is represented by the area of the rectangle Odme, of
which only the portion represented by the area of the figure
Opme has been consumed, consequently there remains
mechanical work represented by the area of the figure Opmd,
which must also be consumed before the vessel ceases to heel.
This occurs at 50 degrees, where the area of the rectangle
Odfh is equal to the area of the figure OpMfh. The rect-
angle emfh represents the work done by the wind while the
inclination has been taking place. The work done in heeling
her to the statical angle of 20 degrees has now been con-
sumed, and the vessel is inclined at 50 degrees. But her
moment of stability at 50 degrees is the same as at 20 degrees;
hence, while the wind blows at this pressure the ship cannot
right herself, whereas the smallest addition to the heeling
moment, or a slight wave disturbance, will cause her to go
right over and capsize.

In the preceding observations many things have not been
taken into account which would tend to reduce the extent of
the heel produced by a suddenly applied breeze of wind. For
instance : the reduction in pressure due to oblique impulse
of the wind, also the friction of the water on the ship’s bottom
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and the resistance due to bilge or otherkeels; on the other hand,
the effect of waves, which would at one moment tend to right,
and at the next to upset the ship, must not be lost sight of.
Again, the wind has been supposed to come suddenly upon
the ship and last long enough to capsize her. Now this is
contrary to general experience, which teaches us that—
especially on the ocean—the maximum force of the wind is
not at once attained. Consequently, instead of graphically
representing the dynamical heeling moment of the wind by
a straight line, such as at or df (fig. 1, Plate LVIL.), parallel
to the base line, it should rather be represented by a curve
Omf, as in fig. 2 of the same Plate. If this curve could be
accurately drawn, so as to represent the worst possible case
that could be encountered, then all we have to do is to ensure
that the curve of absolute stability is such that the area
mMMf is greater than the area Opmd.

If the effect of waves is taken into account, and their
amplitude is known, then since the effect of the wave is to
alternately right and incline the ship, we should take the
worst view of the case, and consider only the latter effect,
which would be to make the curve of absolute stability fall
within the other, as showed by the ticked lines Opym M, V..
Then the area of m, Mf, should be greater than that of Oplmld
‘We have, however, no data at present for constructing such
a curve as that shown by the ticked line.




PART V.

CALCULATIONS RELATING TO PROPULSION OF
SHIPS BY STEAM ENGINES.

——

CHAPTER X.

Reaction of the Water—Slip, etc.—Experiments on H.M. Ship
GQreyhound—Law of Resistance—Comparative Performances of
Steam Ships—Constants of Performance—The Measured Mile—
Mean Speed—T'rials at varied Speeds— Negative Slip.

246. Steam Propulsion.—The application of the steam
engine to marine propulsion has not only caused great changes
in the forms of ships and their modes of construction, but has
also contributed a great element of exactness in regard to
calculations of their speeds. The sailing ship is dependent
upon the direction and velocity of the winds, which are ever
varying, so that it is impossible to predict what speed the
vessel will make under any other circumstances than the
most favourable. But when steam is the motive power, it
is so far under our control that, so long as the engines are in
working order and the coals hold out, a definite propelling
power can be relied upon,

247. Reaction of the Water—S8lip, etc.—There are several
modes of applying the work developed by a steam engine in
propelling a vessel; the principal of which are the screw and
paddlewheel. All propellors act by driving water in the
opposite direction to that of the ship’s motion, and it is the
reaction of the water so driven back which, being transmitted
through the propeller to the bearings of the'shaft, and thence
to the vessel, drives her ahead. Hence when the vessel is
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moving with a uniform velocity the reaction of the water is
equal to the resistance offered to the ship.

Now if the propeller were acting in an unyielding medium,
the speed of the ship would be the same as the fore and aft
speed of the propeller. In the case of a paddle-wheel pro-
peller the speed of the ship would be the same as that with
which the paddle floats rotate; and in the case of a screw
propeller, the speed of the ship per minute would be the pro-
duct of the number of revolutions per minute, and the pitch
of the screw. But water is not an unyielding medium, and
hence the propeller really forces back the water it meets,
with a certain velocity relatively to still water. This velocity
is termed the slip. The velocity of the backward current of
water relatively to the ship is the sum of the slip and the
vessel's speed, and this is termed the velocity of the propeller.

The efficiency of a propeller is the proportion which the
useful work, performed in driving the vessel, bears to the
whole energy expended in moving the propeller. If there
were no friction in the machinery and shaft bearings, and no
action of the propeller on the water, except that of driving
it right astern, then the efficiency of the propeller would be
simply the ratio of the speed of the vessel to that of the pro-
peller.  But unfortunately there is considerable friction
among the parts of the engine and at the shaft bearings,
there is also the air-pump duty, and in addition there are
transverse and vertical motions imparted to the water, and
resistances overcome, which reduce the efficiency to a small
fraction.

248, Experiments on H.M.8. Greykound.—Some experi-
ments recently made on H.M.S. Greyhound, by Mr. Froude,
have yielded valuable information regarding the efficiency of
propellers.* The Greyhound is a screw sloop of about 1200
tons displacement, her length between perpendiculars being
172 feet 6 inches, breadth extreme 33 feet 2 inches, and mean
draught of water 13 feet 9 inches. These experiments were
made by towing the vessel with H.M.S. Active, the stress
on the tow rope being registered with a dynamometer. At
the same time the speed of the ship was accurately observed,

* See Mr. Froude’s paper in Vol. XV, of the Z'ransactions of the
““stitution of Naval Architects.
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also the power indicated by the engines, and the speed of
the screw.

Law of Resistance.—It was found in the case of this
vessel that up to about 8 knots per hour the resistance is
almost exactly proportional to the square of the speed,
and that it is expressed by the term 88 V2% ; being about
6600 pounds or 2% tons at 8 knots. Above 8 knots it
increases more rapidly, so that at 12:8 knots—the highest
speed attained—instead of being only 14,400 pounds, as it
would have been if the law had been unchanged, it has
“risen to 24,000 lbs., or nearly 10§ tons.

The result of experiments at lighter displacements showed
that with 19} per cent. less displacement, 16} per cent. less
area of immersed midship section, and 8 per cent. less wetted
surface, there was a reduction of 10} per cent. in the resist-
ance, thus showing that near the load draught the resistance
does not increase. so rapidly as the displacement—a most
valuable fact from an economieal point of view. Mr. Froude
says in his summary of the results: ‘ Lightening, and so
diminishing the displacement of the ship, did not seem in
the case of the Greyhound to be proportionately advantage-
ous. This result, so far as it goes, indicates a superiority as
regards resistance in deep rather than broad ships.”

The following results are interesting, as exhibiting the
small amount of resistance that ships offer. The actual
towing strains on the Greyhound were as follows, at the
several speeds named :—

At 4 Rnots, civvviviiinii e

Y 99 cecesssrsscsisciniransersence
9 ”» ..

Mr. Froudo says in his paper i—

‘A comparison between the indicated horse-power of the Grey-
hound, when on her steam trials, and the resistance of the ship, as
determined by the dynamometer, shows that, making allowance for
the slip of the screw, which is a legitimate expenditure of power,
only about 45 per cent. of the power exerted by the steam is usefully
employed in propelling the ship, and that no less than 58 per cent. 18
wasted in friction of engines and screw, and in the detrimental reac-
tion of the propeller on the stream-lines of the water closing in
around the stern of the vessel.”
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Mr. Froude further remarks in a foot note—

‘¢ This last-mentioned cause of waste in the propulsion of ships is
one to which I have for a long time past repeatedly called attention,
.. The subject is of immense importance; for, making every
allowance for the power employed in overcoming friction of engines
and screw, there remains in the case of the Greyhound some 40 per
cent. of waste, an amount the true cause of which is certainly worthy
of investigation.”

In the last sentence Mr. Froude refers to the action of the
screw, when close to the stern of a vessel, in diminishing the
hydrodynamic pressure of the water against the *run,” and
thus causing an increase in the head resistance of the vessel.
This is especially the case in a ship with a full stern or
“run;”’ and it is seen by the preceding figures to be con-
siderable even in the Greyhound, which has a tolerably fine
“run,”

The following table is very instructive, as it shows a com-
parison between the apparent thrust of the propeller and the
actual resistance of the ship. Mr. Froude has imported into
the comparison the results of a trial of the Mufine, a sister
ship to the G'reyhound, at precisely the same displacement.
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786 1245 | 20,830 [ 10,770 517

Greyhaund, crerieiinae 453 1039 14,390 6,200 431
. 770 1230 | 20,650 9,440 | -457
M‘ut:nc,...t............. 398 952 11,380 4,770 419

249. Comparative Performances of Steamships. — As
mentioned in the previous chapter, the surface frictional
resistances of ships at a given speed are proportional to the
cube roots of the squares of the displacements, provided the
lengths of the vessels do not fall short of the lowest limit -
suited for that speed. It has been usual to assume that
under the same limitations the engine power increases as the
cube of the speed. By reference to the list of actual towing
strains on the Greyhound, at different speeds between 4 and
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12 knots per hour, which are given in the preceding Article,
it will be seen that at the low speeds, from 4 to 8 knots, the
resistances varied as the squares of the speeds, but beyond
that velocity the resistance increased at a much more rapid
rate. For instance, if the ratio between the resistances at
8 and 10 knots were as the cubes of the speeds, then 2-5
tons being the towing strain at the former speed, 49 tons
would be the strain at the latter speed, whereas the experi-
ment showed that 4-7 tons were required, thus showing that
the resistance increased nearly as the cubes. Again, if the
ratio were as the cubes, the towing strain at 10 knots being
4-7 tons, therefore 8:1 tons would-be the strain at 12 knots,
whereas the result showed 90 tons. Thus we see that the
rate of increase of the resistance from 10 to 12 knots is
greater in this ship than from 8 to 10 knots. It will be
found that, when a vessel is steaming at a speed for which
her length and lines are adapted, the ratio of the increase, or
diminution of the resistance at speeds slightly greater or less
than that speed, is as the squares of the speeds; and if
the vessel is driven at a much higher speed, the rate of
increase is given by the cubes, and even higher powers, while
if driven at a speed not much in excess of that for which she
is adapted, the rates of increase of resistance will be some-
where between that of the cubes and the squares of the
speeds. The results given by the experiments on the Grey-
hound show that her lines are best adapted for a speed of
from 7 to 8 knots,

It is usual in ordinary calculations to consider that the
resistance of a vessel varies as the square of her velocity, and
therefore that the power required to produce that velocity
varies as the cube, and that the useful effect of the engine,
that is, the effect which remains after deducting the power
absorbed in overcoming friction, working air-pumps, ete.,
bears a constant ratio to the power developed in the cylinder,
known by the term “indicated horse-power.” As ships are
_ usually driven at a higher speed than their lines are intended
for, it is probable that the power required usually varies
as a higher power than the cube of the speed. In practice,
however, it is assumed that if D% is multiplied by the cube
of the speed and divided by the indicated engine power,
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a quotient will be obtained whose magnitude is a test of
the comparative economy of power in different vessels as
the result of the whole combination of ship, propeller, and
engine. This quotient is termed the constant for dis-
placement. If the displacement is expressed in tons, the
speed in knots per hour, and the engine power in indicated
horse-power, the value of this constant ranges from about
200 to 260 in good examples. Table XI. gives the values
-of this constant for displacement of different vessels, as
determined by trials on the measured mile at different spceds.
The algebraical expression for this constant is—

_S. ><D"r

C=3up,

where the denominator represents the indicated horse-power.

In determining the indicated horse-power which will be
required to drive at a given speed a vessel whose design is
being prepared, supposing that speed to be within the
ordinary limit to which such a vessel may be economically
driven, it is usual to refer to the constant of performance of
a vessel of similar formand similarly propelled when upon
trial at the measured mile, at a time when she made
about the same speed as it is required the vessel being
designed shall make. Then if S is the required speed, D
the displacement of the proposed vessel, and C; the con-
stant chosen—

3
. _ s'xpi
Since G4 = 7475~
. 38 2
S x D3
o . I-H.P.:- C‘

Another constant is used for the same purpose by supposing
that the resistance varies as the area of midship section.
The basis of this assumption was given in the last chapter;
as already stated, it is founded on the supposition that the
resistance due to forcing the water out of the vessel's way as
she excavates her course, varies in vessels of similar form as
the areas of the immersed midship sections, Terming this
constant C,, then
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8'xM
C"'—I.]E[.]?.s
S xM

Ca

If the selected case whose constants of performance both
of displacement and midship section are used is a good
one for comparison, then the values of I.H.P., determined
from D% and M, will be very nearly equal ; in which case it
is usual to take the mean of the results in deciding upon the
indicated horse-power which will be required for the intended
speed. Table XI., already referred to, gives the values of
C,, and C;, for the several ships therein named.

As will be evident by referring to the expressions for
these constants, low speeds with the same values of D and
I.H.P. produce low constants, and if the IL.H.P. for any
speed is excessive, the constant is also low. Thus, con-
sidering the speed attained with a certain horse-power as a
criterion of a vessel's efficiency, a low constant is an indica-
tion of a fault in the ship, propeller, or engines. Of late
years it has been found desirable to keep the lengths of
armoured ships within the limits which are economically
necessary for their speeds, this being done to increase their
handiness, reduce their first cost, and the cost of mainten-
ance. These ships show low constants, and although this
seems to indicate a fault in the dimensions of the vessels, yet
there is no fault in reality, as such results were contemplated
and provided for in the engine-power; it being considered
more desirable to propel the ships uneconomically than to
secure economy of propulsion at the cost of handiness and a
large expenditure of money (see constants of Bellerophon, as
compared with those of Hvmalaya, Northumberland, and
Warrior, in Table XT.)

250. The Measured Mile.—When a ship is built and
engined, her speed is determined by trial at a measured
“knot” or nautical mile. This is done for the twofold pur-
pose of discovering the power indicated by the engines and
the speed of the ship. In the event of the former not being
80 great as was contemplated, or as engines of the particular
description should develop, alterations are made, followed by

.. LHP.=
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other trials, until the requirements of the engineer are
realised. These alterations may affect the nature and pitch
of the propeller, as well as the evaporative power of the
boilers and the efficiency of the engines. The measured mile
trial is necessarily more an engineer’s than a shipbuilder’s
question ; nevertheless the latter is deeply interested in the
result, in order that he may discover therefrom whether the
constants used in the design are suitable, and that he may
obtain constants for reference in designing future vessels.
Having designed for a certain speed with the development
of a given horse-power, it is a matter of importance to him
to discover whether with that power the form and dimensions
of the vessel are such as to give the desired speed. It is
also important to discover the consumption of fuel per indi-
cated horse-power per hour, both with full and half boiler
power, in order to know how many days of such full steam-
ing the bunker capacity will permit, and the distance which
the coal stowage will drive the ship. At the measured mile
trials, too, it is usual to determine the steering qualities of
the ship, by measuring the diameter of the circle in which
she turns when the helm is hard over. Also, in the case of
twin screw vessels, the power of the propellers to turn the
ship when acting alone is observed. The slip and general
efficiency of the propeller are likewise discovered on these
trials.

The limits of the measured mile are known to the pilot by
his observing when certain landmarks are in a line with each
other, the mile being so set off that at its beginning and
termination certain objects on the shore are thus situated
with regard to each other. The exact time during which
the vessel is running the mile being observed, the rate in
knots per hour is readily found. The ship commences to
steam at full power some time before reaching the beginning
of the course, and the object aimed at is to steam with
uniform speed throughout until the vessel is ¢ off the mile.”
Owing to the currents which continually flow in different
directions along our shores, the speed due to the engine
power is always either increased or diminished by the move-
ment of the sea due to these currents; consequently runs are
made upon the mile in both directions of its length, and the
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mean speed of an even number of runs gives the speed due to
the engines only. The same precaution eliminates the effect
of the force due to the wind on the vessel's hull and rigging.

If the speed of the current and force of the wind were
uniform throughout the whole of the trials, the mean of two
runs would give the same result—the same boiler-power
being supposed to be developed—as the mecan of any other
even number. But owing to the length of time occupied by
these trials such is never the case, for a ship may commence
to run aided by a slack current, and make her last run while
retarded by a strong current in the same direction. In fact
the forces, and even the directions of the currents, within
limits, are continunally varying ; if by some law, that law is
unknown, and consequently, in order to eliminate the eflect
of these currents and that of the wind, the mean of the
means of all the speeds of an even number of runs is taken
by a method based upon the calculus of finite differences.

For instance, suppose a vessel makes six runs upon a
measured mile, three with the current and three against,
with the following results as regards spécd :—

Knita
Istrun, .. ......... oo e e, 164
Ond o 111
Brd et et eriiins 15:3
ath ,, e, 120
Bth oo o 142
6th ,, e 12°8

These figures are arranged as follows, and the means of con-

secutive speeds continually found until only one mean remains,

which is taken as the true speed of the ship in still watcr,
Knota,

Ist,....16°4
1375 ,

ond, ...1141 g ...13475

1320 ...13:430
3rd,....153 { 13425

.1365 ...13:400
4th,....120 z 13375

.1310) { 13337
5th,... 142 { 13300

..13:50
Gth,....12-8

6)81°3
1363
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The mean speed is thus found to be 13:39 knots, whereas ‘
the average speed is 1363 knots. In the merchant service
the latter would frequently be accepted as the speed of the
ship, but the Admiralty and some of the principal shipbuild-
ing firms take the former result. The difference, in this
case amounting to about a quarter of a knot per hour, is
important. Sometimes the method by differences gives a
higher result than that of the average, but in any case the
Admiralty method is superior in accuracy to the other.

In the example just given, by finding the differences
between the real speed of the ship and the observed speed
on the mile during the several runs, we shall find that the
speeds of the current in the line of the ship’s course during
the tiials were as follow :—

1st run,. .... 301 knots with the ship.

2nd ,, . ... 229 ,, against ,, ‘
3rg ' . 1'9£l) 5 With ’

4% 13 , inst

5th ., B 1 with

6th ,, 59 ,, against ,,

So that the speed of the current in the direction of the course
wasg diminished during the trials from 3:01 to ‘59 knots per
hour; also that the speeds of the current aiding the ship were
3-01, 1'91, and ‘81 knots, or a mean of 191 knots ; while the |
speeds retarding the ship were 2:29, 1-39, and *59 knots, or a
mean of 1-42 knots. Thus the ship received more assistance
than she suffered retardation from the current, and conse-
quently the average of the speeds gave more than the real
speed of the ship in still water. Had the first run been
against the tide and the last with it, the variation in the
speed of the current being the same as in the example, the
average would have given a lower value than the true speed.
Hence, if all the trials of a ship are made in the space of
about four hours, commencing on the full strength of a tidal
current and ending just at high or low water; if the first
runis made with the tide, the result by the method of
averages will represent the ship’s speed to be better than it
really is, whereas if the first run is made against the tide, the
result is worse than the truth. It is quite within the range
of possibility that engineers and shipbuilders have ere now
taken advantage of this fact,
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251. Steam Trials at Varied Speeds.—Mr. Denhy, the
shipbuilder of Dumbarton, has discarded the conventional
system of measured mile trials at full speed and half-boiler
power, and now tries each of his ships at four or even five
speeds, thereby obtaining data from which a curve of indi-
cated horse-power can be constructed representing its value
from the lowest to the. highest speeds. By the ordinary
measured mile trials only two spots in the curve can be
determined, and these at comparatively high speeds, leaving
no information regarding the lower speeds. At tho annual
meetings of the Institution of Naval Architects in April
1876, Mr. W. Froude, F.R.8,, read a paper upon the subject,
in which he gave the results of some investigations which he
had made regarding the ratios of indicated to effective horse-
power as elucidated by these trials on certain ships. The
results are 8o important that this chapter would be incompleto
without some reference to these ingenious investigations into
the several resistances which subtract from the work per-
formed in the cylinders before it is effectively employed in
propelling the ship.

Mr. Froude truly says that the ¢so-called constants of
performance are invariably variable and tnconsistent,” being
based, as we bave already said, upon the assumption that
resistance must vary as the square of the speed, and horse-
power as its cube, Mr. Denny's trials furnish important
information regarding engine friction, and explain very
clearly the sources of that diminution from the indicated
power of the engines, which results in only about 37 to
40 per cent. of the whole power delivered being usefully
employed.

Mr. Froude says—

“I have always felt that the system of reducing the results of
steam trials to indicated horse-power, though no doubt furnishing a
true expression in a commercial sense of the relative merits of the
ship under trial, tended, nevertheless, to cloud the real significance
of the record, viewed as suggestive of those specialities of form or
condition which have really governed the ship’s performance, not .
only becaunse indicated horse-power includes in one large term the
merits of the ship, the engine, and the propeller, but because the
term into which it groups these items is complicated by the intro-
duction of the speetf?;ctor. instead of repreaenting them under their
more elementary form of force simply. With this view, ever since
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I have entered into such investigations, I have invariably converted
the horse-power term to a force term by simply dividing it by a speed
factor; and, as shaping the reduction into its most natural aud oppo-
site form, I have adopted as the divisor the speed of the propeller,
expressed, not by its revolutions nakedly, but by its revolutions x
its pitch, that is to say, the virtual travel of the force delivered by
the propeller. The result thus obtained from the indicated horse-
power I have termed ‘indicated thrust;’ it is, in fact, the thrust
which the propeller would be exerting if the force of the steam
were em‘ployed wholly in creating thrust, instead of partly in over-
coming friction, driving the air-pump, and overcoming other colla-
teral resistances. Indicated thrustis simply a constant multiple of the
mean steam pressure on the piston; and if this were given in the
records of the trials, indicated thrust is ’

mean piston pressure x total piston travel per revolution
pitch of propeller
when, however (as is commonly the case), the L. H.P. alone is given,
then the expression for indicated thrust is

33,000 x L.H.P.
pitch x revolutions™

““ When decomposed into its constituent parts, indicated thrust is
resolved into several elements, which must be enumerated and kept
in view.

‘‘These elements are:—1. The useful thrust, or ship’s true resist-
ance. 2. The augmentation of resistance, which, as I have pointed
out in many previous papers, is due to the diminution which the
action of the propeller creates in the pressure of the water against
the stern end of 5163 ship. 3. The equivalent of the friction of the
screw blades in their edgeway motion through the water. 4. The
equivalent of the friction due to the dead weight of the working
parts, piston packings, and the like, which constitute the initial or
slow speed friction of the engine. 5. The equivalent of friction of
the engines due to the working load. 6. The equivalent of air-pump
and feed-pump duty.

It is probable that 2, 3, and 4 of the above list are all very nearly
proportional to the useful thrust; 6 is probably nearly proportional
to the square of the number of revolutions, and thus, at least at the
lower speeds, approximately to the useful thrust; 5 probably remains
constant at all speeds, and for convenience it may be regarded as con-
stant, though perhaps in strict truth it should be termed ¢initial fric}
tion.” If, then, we could separate the quasi-constant friction from the
indicated thrust throughout, the remainder would be approximately
proportional to the ship’s true resistance.”

He constructs a curve which he terms a thrust curve (see
fig. 1, Plate LVIIL.), representing to scale by its ordinates the
indicated thrust at the speeds between the lowest at @ and

H
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the highest at e. The speed represented at a is about 3 to
5 knots. It will be observed that this curve at the lowest
end refuses to pass through the thrust zero, but tends towards
a point representing a considerable amount of thrust. Mr.
Froude justly concludes—

¢ That this apparent thrust at the zero of speed when there can be
no real thrust, is the equivalent of what I have termed initial friction;
so that if we could determine correctly the point at which the
curve, if 1I;rolon%ed to the speed zero, would intersect the axis OY
(fig. 2, Plate LVIIL), and if we were to draw a line through the
intersection paraliel to the base, the height which would be thus cut
of® from the thrust ordinates would represent the deduction to he
made from them in respect of constant or initial friction, and the
remainders of the ordinates between the new base and the curve
would, as has been explained, be approximately proportional to the
ship’s true resistance.”

Starting from the experimentally derived fact that with
tolerably well-shaped ships of such dimensions as those he is
dealing with,* the resistance at such low speeds as from 3 to
5 knots varies as the power 187 of the speed. He says:—

““Hence, on this assumption, the lower end of the thrust curve,
when divested of .the constant friction equivalent, should be a para-
bola in which the ordinate is as the power 187 of the abscissa; and
since, as we have seen, the entire thrust, exclusive of the initial fric-
tion, is proportionate, at least at the slow speeds, to the true resist-
ance curve, the problem to be solved is the very simple geometrical
one of 80 drawing a parabola of this order, in connection with the
axes of co-ordinates of the diagram, that it shall meet or join the
existing thrust curve with an identical tangential direction. The con-
struction bﬁ which this is effected is extremely simple; at the point
p, fig. 2, Plate LVIIL, near the lower end of the thrust curve, draw
the tangent p’ p”; draw the vertical at A’ so as to cut the space ok
into segments having the ratio indicated by the figured quantities,
thus making oh=187 ok’; draw a line parallel to oX through the
point where this vertical cuts the tangent; the dpoint where this line
cuts the thrust axis is the vertex of the required curve.

- - - - - - L]

“Fig. 3, Plate LVIIL., shows the process as completed from the
records of the trials of Mr. Denny’s ship, the Merkara. In this
diagram the curve of I.H.P., the curve of slip, and the curve of con-
stants, are also shogm. N Jveed

*On comparing five curves thus analysed, it appears that the con-
stant friction is equivalent to from } to { of the gross load on the

* The Merkara : length, 360 fect; breadth, 37 feet; draught, 16}
feet; displacement, 3980 tons.
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engine when working at its maximum speed and power. And it is
not irrational to accept this relation provisionally as the basis of an
empirical formula, since the constant friction depends to a large extent
on the diameter and weight of the working parts of the engine, and
these must be apgtoximately proportionate to the intended maximum
strain, subject, of course, to some allowance for the variation which
exists in the types of engine in use. I must admit that the propor-
tion a&)pears to me to be unexpectedly large, but the process by which
it is determined is, I think, so certain and definite that I cannot
doubt the general soundness of the conclusion deduced by it; and
that conclusion seems to me to be one of very high importance and
significance, namely, that a screw engine when working, even at
its most moderate and economical speed, must be understood to be
throwing away in the one element of this friction alone, not_indeed
+ of its maximum power, for the engine may be now working at
reduced speed, but a power due to # of its maximum load. Thus, in
the case of the Merkara, when the ship is steaming at 5 knots in a
smooth sea, one-half of her whole expenditure of power is due to this
circumstance. The question of the aﬁportionment of this large
amount of inevitable friction between the several working parts of
the engine, and of the proportionate degree in which it attaches to
different types of engines, as well as the extent to which the evil is
remediable, are inquiries of great importance, but they are more or
less out of my reach, and are at all events beyond my present pur-
pose, which 1s satisfied by the proof—an irresistible proof as it
appears to me—that the evil does exist to about the degree named.”

The power due to the ship’s net resistance Mr. Froude
designates “effective horse-power,” using the symbol E.H.P.
The horse-power due to the ship’s progress (excluding slip) is
styled S.H.P. Experiments made with models by Mr.
Froude show that the horse-power due to (1) is 40 to 50 per
cent. of the ship’s net resistance :—he takes it at 40 per cent.,

“Hence H.P. due to (1)=0'4 E.H.P.
The result of his experiments for determining the water
Jriction of the screw shows that
H.P. due to (2)=0'1 E.H.P.
As already investigated from the curves found by the steam
trials, (3) is equal to } of the total load on the engines, when
working with the maximum intended speed and pressure—
Hence H.P., due to (3)=0143 S.H.P.

The friction due to working load of engine at maximum

Bpeed is, he says, about the same as the dead load friction,
So that H.P. due to (4)=0-143 S.H.P.
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For the airpump resistance he takes the mean of Tred-
gold’s values, viz., 0°075.,

‘ Thus H.P. due to (5)=0'075 S.H.P.

Combining these results he has:

Horse-power due to net resistance .... E.H.P.
Augmentation due to net resistance.......=0'4 E.H.P.
Screw friction due to net resistance.......=0'1 E.H.P.

NIRRT

Constant friction of engines................. 0'143 S.H.P.

Friction due to working load of engines 0143 S.H.P.

Air-pump resistance ............coeeennrinnnns 0075 S.H.P.
or S.H.P.=15E.H.P. +-361 S.H.P.

so that *639 S.H.P=1'5 E.H.P.

15 .
or S.H.P.= o BHP.=2347 EHP.

To this must be added the slip='1 S.H.P.; the whole
making the I.H.P.

111 S H.P.
2:582 E.H.P.
100
=337 E.H.P.
or E.H.P.=-387 L.H.P.

“This conclusion,” says Mr. Froude, ‘““agrees very fairly with
what, as I have already pointed out, more general experience has led
me to adc:ft as an average expression of the relation between indi-
cated and effective horse-power, namely, that at high speed the
former is about 2'7 times the latter, or the latter 374 per cent. of
the former.”

252. Negative Slip.—Among other interesting results
of the observations on trials of ships upon the measured mile
is the remarkable one that sometimes the speed of the ship
has been found to exceed that of the screw propeller.* That
is to say, the product of the pitch of the screw and the
number of revolutions in a given time has been exceeded by
the actual distance the ship has moved through during that
time. Hence there has not only been an absence of slip, in
the ordinary sense of the term, observed upon these occasions,
but the ship has actually moved faster than the speed due
to the pitch of the propeller. This phenomenon has been
termed negative slip. Various theories have been offered in
explanation of this singular result. Among these it hag

* See cases of Jumna and Northumberland in Table XI.
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been conjectured that the screw has been temporarily bent |
80 a8 to increase its pitch beyond the angle at which it was
set, and that when the pressure has been removed the elas-
ticity of the material composing the propeller has enabled it
to recover its original form. From want of evidence, and
by reason of the improbability of the theory, it has not been
accepted by competent authorities. Another theory which
received considerable support at one time, and is even men-
tioned as the real cause of the phenomenon in Murray’s Ship-
building, is that there is a body of water following the ship
in these cases, and that the screw working in a body of water
having a forward velocity communicates a velocity to the
ship over and above that due to the pitch and number of
revolutions of the screw. That there frequently is a body
of water following in the wake of vessels having ill-formed
after bodies, is a fact well known to naval architects, and it
has already been alluded to in this chapter. Indeed, there
is very little doubt that this is a great element in the resist-
ance of most ships, but as the propeller can only act upon
a small portion of the following stream, the small additional
velocity which can in this way be communicated to the ship
is quite inadequate to account for the large percentages of
“negative slip” which have been observed in some cases.
The explanation offered by Mr. E. J. Reed in a paper read
before the Institution of Naval Architects in 1866, and
which was first suggested by Mr. J. B. Crossland of the
Admiralty, is no doubt the true one. Mr. Reed attributes
it to the elasticity of the water. He says, ““ All former dis-
quisitions upon this subject have proceeded upon the assump-
tion that the water is practically inelastic, and that the
motion imparted to the water against which the screw pro-
peller strikes is equal, and only equal in velocity to the
velocity of the screw; whereas a little reflection will suffice
to show that this can hardly be the case, and that, on the
contrary, it is most probable that the water, struck by a
high-speed screw, is driven off at a much greater velocity
than that of the screw, and that the momentum imparted to
it is proportionate to this velocity.” It should be added that
in cases of negative slip the pitch is usually small, and there-
fore the velocity of the engine great.
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CALCULATIONS RELATING TO THE STEERING
OF SHIPS.
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CHAPTER XI.

Steering—The Rudder—Principle of the Rudder—Angle of Maxi-
mum Efficiency—Angle of Maximum Kfficiency with regard to
Power Applied—Usual Angle of Rudder—Areas of Rudders—
Ratio of i"ressure and Velocity—The Balanced Rudder.

253. Steering.—The operation of guiding and changing
the direction of a ship’s motion through the water is termed
steering. A ship may be to some extent steered by sails, as
already explained in Chapter IX., also as mentioned in the
preceding chapter, her course may be altered by the proper
use of twin screws when she is propelled by steam power.

2564. The Rudder.—But by far the most eflicient, trust-
worthy, and, indeed, ancient mode of governing the direction
of a ship’s motion is by the rudder. The rudder is commonly
- hung to the stern of the vessel, but in some cases when a
vessel is double-ended, t.e., intended to move with either
cxtremity foremost, a rudder is hung both at the bow
and stern. The immersed part of a rudder has usually
the form of a flat plate in a v
twrning into different angular po
nearly vertical axis. In the com
it is at the stern, that axis is ai
rudder where it is hung to the
hinge connections termed “ pintle
is termed the “balanced rudder,’
the axis is usually at one-third the
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its forward edge, and the rudder turns on a pivot at its lower
end, where it is supported by the projecting after-end of the
keel.

255. Principle of the Rudder.—In order that the rudder
may be employed in turning a ship, it is necessary that the
latter shall have motion, and that it maybe efficiently employed
it is necessary that the speed of the ship shall be sufficient to
cause the water to act upon the face of the rudder with enough
pressure to turn the vessel. It is also necessary for efficiency
that the motion of the water striking the rudder should consist
of a steady flow astern relatively to the motion of the ship.
Hence it is requisite that the lines of the after body should
be fair and fine, so as not to drag a volume of water after
the vessel, or set the particles in motion in any other way
than directly astern; in proportion as the flow of the stream
meeting the rudder deviates from a fore and aft direction, the
action of the rudder will fail to be efficient.

‘When the rudder is right fore and aft, it forms part of the
after body of the ship, and being symmetrical, with regard to
the middle line longitudinal plane of the vessel, it offers no
other than surface resistance to her motion, and this resist-
ance being balanced does not interfere with the rectilineal
motion of the ship. But when the rudder is put over to any
angle it deflects the particles of water which it meets on that
side of the ship. The pressure due to meeting these particles
of water with the velocity of the ship’s motion may be re-
solved into two components, one in the direction of the ship’s
motion and the other perpendicular to it. The first simply
diminishes the ship’s speed, whereas the other tends to drive
her sideways, but acting through a point abaft the centre of
the lateral resistance to this sideway motion of the ship, a
mechanical couple is set up which causes her to rotate about
her centre of gravity. If the rudder is turned to the port
side, as shown by 4C, fig. 1, Plate LIX., then the action of
the rotating couple is to turn the bow of the ship likewise to
port, as shown by the arrow B;; her instantaneous motion
being about her centre of gravity G.

Referring to fig. 1, Plate LIX., we will now proceed to exa-
mine the action of the rudder more minutely. 4.2 is the middle
line of the ship, AC is the breadth of the rudder, which is



ANGLE OF MAXIMUM EFFICIENCY. 363

inclined at an angle  to the line of the ship’s keel. Let ¥ be
the velocity of the ship in knots, and therefore the velocity
of the stream which meets the rudder, supposing the direction
of that stream to be right astern. The effect of the pressure
due to the velocity of this stream upon the rudder may be
supposed concentrated at the centre of pressure of the rudder
surface. For all useful purposes this dentre of pressure may
be safely assumed to coincide with the centre of gravity of
the surface of the rudder. Suppose then VP to represent
the line of action of the resultant pressure in the direction
opposite to that of the ship's motion. The component of the
velocity V of the stream, normal to the surface of the rudder,
is V sin 6, and if K is the resistance on a unit of surface
moving perpendicular to itself with a velocity of one knot,
the intensity of the normal pressure produced is K. V2 sin? 6;
supposing that the pressure varies as the square of the
velocity. As we shall hereafter see, experiments show that
the pressure does not really vary with so great a ratio as the
square; the assumption is, however, on the safe side when
calculating the stresses on the rudder head.

The normal intensity of pressure may be resolved into two
components, viz., a longitudinal component XK. V2 sin36, which
is the direct head resistance offered by the rudder when
at an angle 0 with the middle line, and X.V2 sin2 6 cos 0
which gives her sideway motion. This latter pressure acts
in the direction 7'P, and after a short time is balanced by an
equivalent pressure against the side of the vessel through
the centre of lateral resistance Z. The effect of this couple
isto cause the vessel to rotate about an axis through her
centre of gravity, while at the same time she moves forward
with a velocity somewhat' less than ¥V, owing to the head
resistance of the rudder at that angle. Hence the ship turns
in a circle, the smallness of the diameter of which, and the
shortness of the time in which the circle is turned, being a
criterion of the efficiency of the steering apparatus which, as
already stated, it is one of the objects of a steamship’s trial
on the measured mile to determine.

256. Angle of Maximum Efficiency.—To determine the
angle at which a rudder exerts its maximum efficiency, we
wmust consider two distinct problems.
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L. When the steering force within the vessel, either from
manual, steam, hydraulic, or any other motive power, is not
limited, to determine at what angle a rudder has the greatest
turning power.

II. When a given force is applied, to determine at what
angle the rudder is most efficient and what breadth the rudder
should have.

We will now consider these problems separately.

25%7. Absolute Angle of Maximum Efficiency.—Firstly,
then, we will consider the case when the power applied in
turning the rudder is not limited.

Again, suppose the velocity of the stream in knots is F,
and that it flows directly astern. As already shown (see
fig. 1, Plate LIX.), the intensity of the normal pressure
is K.V? sin? 6. The turning moment of this pressure is
K.V? sin? 0 x R@, where R is the perpendicular from the
centre of gravity upon PR, Hence the turning moment

M=K.V? sin? /x RQ
=K.V? sin? ¢x P,G cos ¢
=K.P,G.V? sin® ¢ cos 4

Hence, since P,G is practically of constant length for all
angles of the rucfder, M varies as sin%60 cos 6. Therefore also
when M is a maximum,
M _d
de = de
=2 sin ¢ cos? ¢-sin® =0;
. 2cos? 4=gin? ¢

sin? 4 cos l)

tan? ¢=2
¢=tan —14,/2
=542 degrees,

which is the theoretical maximum angle of a rudder’s
efficiency in turning a ship when the power applied in turn-
ing the rudder is not taken into account.

258. Angle of Maximum Efficiency with regard to the
Power applied.—In fig. 2, Plate LIX,, let AC be a rudder
of breadth B, and A¢ another rudder of breadth b, each of
which is moved by the application of the same power at the
rudder head. Suppose the speed of the ship to be the same
‘u both cases, then the ratio between the angles a and 6, to
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which the rudders AC and Ac will be respectively turned,
is determined by the expression

sine b

smé_ B
This was proved in the following manner by Mr. F. K.
Barnes, in a paper read before the Institution of Naval
Architects in 1864.

The normal pressures on the rudders are proportional in
the one case to Bsin?a and in the other to b sin? 6, there-
fore the moments of these pressures about the axes of the

¢ 2
rudders are proportional to % sin?a and b2 sin?6.  Hence,

since these moments are the same,’
B?sin? « _ b?8in? ¢
2 - 2
B2 sin? &« = 4% sin? ¢
Bsina = bsin/d
sine b
gin § ~ B’

In the same paper Mr. Barnes showed that the effects of
the rudders to turn the ship in the two cases will be in the
ratio of sin 2a to sin 26.

For the turning moments of the rudders are, respectively,
E;opo:l'tional to Bsin%a cos @ and b sin? @ cos 6. Calling these

and m.

then M : m=B sin?® & cos « : b sin? ¢ cos 4
But Bsina=bsin 4,
as already shown. Therefore,
M : m=sin & cos « : sin 4 cos ¢
=sgin 2« : sin 2/.

From this result we gather an important fact. The value of
2a or 26, for which the sine is a maximum, is 90° and
therefore a or 9 is 45°

Hence the best breadth of rudder for a ship when moving
at a given speed is that which allows the rudder to be turned
to an angle of 45° with the steering power available. Since,
given a certain power of turning the rudder head, that power
18 most efficiently applied in turning the vessel when the

malanty coma bal'dcomy
Bams
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rudder is at an angle of 45° hence it is necessary that the
rudder should not exceed a certain breadth.

Suppose the values of a and 0 to be 15 and 30 degrees
respectively; then

b _ sinl5 _ l(nearl
B = sinaoc — 2 (Mesny)
b=3B (nearly)

and the effects of the rudders in turning the ship in the two
cages will be as sin 30° to sin 60°, or as 1 to 1. The ratio
between the effects of two rudders in turning a vessel when
at angles of 15° and 45° respectively are as 4 :1 or 1 : 2,
supposing their breadths to be in the ratio of sin 45° to
sin 15°. Thus narrow rudders at large angles (up to 45°) are
equally as efficient as broad rudders at small angles, the speed
of the ship being the same.

The speed of the water which meets the rudder of a screw
steamship is greater than the speed of the ship, hence such
ships require narrower rudders than sailing ships. If it
were practicable it would be desirable to have two available
breadths of rudder for a ship which steams at one time and
sails at another, the narrower one for use when steaming and
the broader when sailing.

259. Usual Angle of Rudder.—Although 45 degrees is
the best angle at which to use a rudder, yet, as will be readily
seen, it is but slightly better than at 40 degrees, whereas the
power expended in getting the rudder through the additional
5 degrees and the additional head resistance are considerable.
Hence it is customary in wood vessels to “ beard ” the rudder
and rudder-post so as to allow of the rudder turning through
an angle of about 40 or 42 degrees each way.

The rudder is rarely worked beyond about 15 degrees in
large steamships, as the power required to turn it beyond
that angle is usually so enormous. There can be little

. doubt that rudders are frequently made too wide, and that
instead of proportioning their width to the area- of the
immersed middle line longitudinal plane of the ship, only,
due regard should be had to the speed of the vessel.

260. Areas of Rudders.—The following is a list of the
areas of rudder surface and their proportions to the areas of
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the immersed longitudinal vertical plane in the undermen-
tioned ships of Her Majesty’s Navy:—

Area of Area of Section
NAME oF SEIP. Area of Budder| y . oi¢ngingl | divided by the
in square feet. V:ﬁigl Secti:ln. Area of Ruyddor.
127 4592 36°1
114 5359 470
180 9271 515
203 7455 367
248 7301 294
166 9792 590
105 6290 600
165 7615 46°1
95 3613 38°1
163 4579 280

The ratios vary from % in the Glatton to & in the
Himalaya. The former is a full bodied monitor of low speed,
and as the motion of the water against the rudder is no doubt
deflected from the fore and aft direction owing to the form
of the after body, there seems some reason in this case for
the apparently excessive ratio. The Himalaya, on the other
hand, is a fast steam troopship with fine lines, and experience
shows that her low ratio of % is ample for the vessel.
Admiral Halsted stated before the Institution of Naval
Architects in 1864 that *reasonable grounds have been
shown, from combined sailing experience and successful gun-
boat experience, that 1 square foot of rudder area to every 38
square feet of immersed longitudinal area of the ship at load
draught may be assumed as an effective general standard for
rudder surface.” We question, however, whether any such
standard can be fixed, as the conditions of diverse types of
ships are so different.

261. Ratio of Pressure and Velocity. —It has been
assumed in this chapter that the pressure of the water on a
rudder varies as the square of velocity. Experiments made
on H.M.8. Warrior, by means of & dynamometer, show that
when the speeds vary as 1 : 2 : 3 : 4 instead of the pressures
varying as 12:22:32:420r 1:4:9 : 16, the actual pressures
were a8 1 : 3 : 6} : 8%, which is less than the assumed rate of
increase. The error made upon the assumption that the
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pressure varies as the square of the velocity whenever applied
in practice to determine the turning moment or the stress
upon the rudder head, will be on the wrong side in the former
but on the safe side in the latter case.

262. The Balanced Rudder.—The enormous power re-
quired in order to get the rudders of high powered armounr-
clads over to an efficient angle, and the consequent stresses on
the rudder heads, rudder posts, and stern framing of these
ships, has caused our Naval Architects to seek for some form
of rudder which, while possessing the same efliciency as the
ordinary type, shall yet require the expenditure of less work
to get it over to the desired angle, and less power to keep it
there while the speed of the ship is maintained. The balanced
rudder has been found to fulfil these conditions to a useful
degree so long as the ship is propelled by steam, but when
recourse is had to sail power the rudder has been found
objectionable.

The balanced rudder is said to have been mvented by Earl
Stanhope in 1790, but not in precisely its present form.
The credit of having practically tried the balanced rudder is
generally assigned to Captain Shuldham, R.N., who experi-
mented with it in the year 1819. It was not, however, until
1863 that anything like a satisfactory test was made of its
qualities. Admiral Sir A. C. Key (then captain of the Steam
Reserve at Devonport) superintended trials of the balanced
rudder on H.M. gunboat Delight, which he reported as being
““quite successful.” Since then it has been fitted in several
armour-clad ships of our own and other navies. At first,
difficulties were experienced in manceuvering under sail, to
meet which, modifications in the rudder were made, as will
be explained presently, but more recent experience has shown
that there are so many disadvantages attending its use that
it is no longer adopted in the Royal Navy.

Referring to Plate LX., CC, represents a balanced rudder,
A being the axis. Pis the centre of pressure—still assumed
to coincide with the centre of gravity of the area—PR the
direction of the resolved normal pressure, and GR is the arm
of the turning couple. Let CC,=B8. The turning moment
in this case is proportlonal to

B.V?2 sin? ¢ cos ¢ x pG,

|
|
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Let AC, be an ordinary rudder of the same area as the
balanced rudder, and of the same breadth B. P, isits centre
of pressure, and G R, is the arm of the turning couple; hence
the turning moment in this case is proportional to

B.V? gin? 4 cos 4 x p,G.

Now pG and p,@ are practically equal, hence the turning
moments of the two rudders are practically the same. This
is on the supposition that the stream of water inpinging on
the rudder meets it under similar circumstances, that is,
leaves the surface of the after body with the same direction
and 'velocity. This latter is purely an experimental question,
and was answered in the affirmative by Admiral Key in 1863.

Next, we have to consider the relative forces required to
turn the rudders to the same angle.

The stress on the rudder head in the case of the balanced
rudder depends upon the position of the axis, The best
position as determined by Admiral Key’s experiment was at
one-third the breadth of the rudder from the forward edge.

Hence if AC| is equal to ggl, the turning moment at the
rudder head to get it over to an angle 6 is proportional to

B.V9 gin? lx%:% B2V sin? 4,

Now, the moment to turn the ordinary rudder is readily
seen to be
=3 BYV? gin? 4.
Hence three times the power is required to get the ordinary
rudder of breadth B to the angle ¢ that is required for the
balanced rudder of the same breadth and same efficiency,
with its axis at one-third its breadth from the forward edge.
1t is obvious that the stress at the rudder head diminishes as
the axis approaches the middle of the rudder, and supposing
the pressure exerted by the particles to be uniform through-
out the breadth of the rudder, there would be no more force
required in turning than is necessary to overcome the inertia
of the rudder. 'We should here remark that this latter force
likewise diminishes rapidly as the axis approaches the middle
of the breadth, thus contributing another element of supe-
riority in the balanced over the ordinary rudder. 0
48 A
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The advantage of the balanced rudder is apparent only
when the speed of the ship is maintained by steam power, or
a body of water is driven against the rudder by the screw
propeller, even when the vessel’s motion ahead is very small.
‘When sailing, the speed of the ship is considerably reduced
by putting the helm over, and when the sails are shaking
and the head of the vessel points in the direction from whence
the wind is blowing, she rapidly loses all ¢ steerage-way,” and
frequently ¢ misses stays.” There is little doubt that owing
to the portion AC, of the rudder being on the opposite side
of the axis of rotation, the turning of the ship is impeded
when the “steerage-way ” is diminished or lost.

An attempt was made to get over this objection by fitting
the Hercules with a balanced rudder, the fore portion 4C, of
which could be locked in a fore and aft direction when
desired, leaving the portion 4C to rotate with the same effect
as an ordinary rudder of that breadth. The fact of this
experiment not being repeated in recent vessels is a proof
that even this improvement on the usual balanced rudder has
not met with sufficient success to warrant its being used in
preference to the ordinary rudder rotating about an axis at
its forward edge.
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Negative Blip, 859.
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