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PREFACE

In the following work there is presented so much

of the science of optics as pertains directly to oph-

thalmology. Simplicity has been sought so far as

this is not incompatible with thoroughness ; for

whoever would become versed in ophthalmology as

a science must in the beginning make the mental

effort necessary to acquire a clear understanding

of the refraction of light through a compound opti-

cal system such as the eye.

The demonstrations, some of which may appear

formidable to the student, require no knowledge

of mathematics beyond that of simple algebraic

equations and the elementary truths of geometry.

For those who may not be familiar with the trigo-

nometrical ratios, a brief synopsis has been fur-

nished in an appendix.

In demonstrating refraction by prisms and by

spherical surfaces. Heath's " Geometrical Optics

"

has been used as a basis, but many modifications

have been made.
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A uniform notation, with which the student will

easily become familiar, has been preserved through-

out the book ; by this means those who may be

indisposed to follow the algebraic processes in

detail will be aided in understanding the methods

of demonstration.

Washington, June, 1899.
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HANDBOOK OF OPTICS

INTRODUCTION

That branch of physical science which treats of

light and vision is called Optics. It may be sub-

divided into Geometrical, Physical, and Physiological

optics. Geometrical optics deals with the theory of

light ; it is a '' mathematical development " of the

experimental laws by which light is supposed to be

controlled,— the laws of reflexion and refraction,

and the supposition that light travels through homo-

geneous media in straight lines. Physical optics

investigates the causes and nature of light ; while

Physiological optics treats of the phenomena of vision

or the sensation produced by the action of light

falling upon the retina.

Catoptrics and Dioptrics, terms less used now than

formerly, refer respectively to the phenomena of

reflexion and refraction of light. The science of

optics was practically unknown to the ancients.

They had observed that light travels in a homogene-

ous medium in straight lines, and they also knew the

simple law of reflexion and the focusing property of

1
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lenses and mirrors ; but their ideas of vision were

most crude, it being commonly supposed that light

was something given out from the eye. Strange to

say, this theory did not entirely disappear for many

centuries.

Spectacles of spherical lenses were probably intro-

duced in the thirteenth century. To a spectacle

maker, Hans Lippershey, is ascribed the first tele-

scope in 1608, and in the following year Galileo

independently constructed his telescope ; but with

the astronomer Kepler, who died in 1630, begins the

true science of optics. Willebrod Snellius, professor

of mathematics in Leyden, discovered the law of

refraction ; and to Sir Isaac Newton is due the dis-

covery that white light is composed of various

colors, capable of separation by the action of a

prism.

Up to this time the propagation of light was

thought to be instantaneous. Romer, a Danish

astronomer, discovered in 1676 that time is re-

quired for the transmission of light. This he

inferred from discrepancies between the calculated

and actual time in the observation of eclipses of

Jupiter's satellites ; and he rightlj^ attributed these

discrepancies to the unequal distances through

which light had to travel, owing to the varying

distance between the planet and the earth. Ter-

restrial measurement of the rate of propagation of
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light was not accomplished until the middle of the

present century. This was done with instruments

of great precision by Fizeau and Foucault, and more

recently by Professor Newcomb. The velocity as

thus determined is 300,000,000 metres or 186,000

miles per second.

The question as to the method of transmission of

light has been the subject of much controversy.

Leaving aside the speculations of the ancients, the

two theories are the Corpuscular or Emission The-

ory and the Wave Theory. The first supposes a

luminous body to give off certain particles, which,

striking the eye, produce vision. The wave theory

supposes that all space is pervaded by a substance

called ether ; and that by means of this substance,

waves, excited in the luminous body, are transmitted

to the eye. While some of the phenomena of light

can be explained by either theory, experiments by

Huyghens, Young, and Fresnel have rendered the

emission theory untenable. While we are forced to

the belief that light is propagated in waves, we are

ignorant as to the nature of these waves. It was

formerly supposed that the ether was a highly elastic

body, transmitting vibrations of its particles through

space just as a rod of steel, if struck near one end,

will convey the vibrations to the other end.

To explain the phenomena of light it is necessary

to suppose the vibrations transverse to the direction
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of propagation, as is the case in the illustration

cited. The waves of sound travelling through air

differ from these in that in the case of the sound

waves the particles of air vibrate to and fro in the

direction of propagation.

The modern study of electricity has changed our

conception of ether waves ; for according to the

electro-magnetic theory of waves, each particle of

ether is ''polarized" or charged with energy, which

in turn is transmitted to the next particle, and so on.

These waves of energy produce various effects de-

pending upon the rapidity of vibration. Those of

least rapidity are manifested as electricity, and next

in order come heat-producing waves. As the rapid-

ity increases we have light of different colors, red

being the color of least rapidity of vibration. Be-

low this color in the spectrum are found heat

waves. Violet is the color of greatest rapidity,

and beyond this no light will be seen, but certain

chemical effects produced there indicate the presence

of waves capable of causing chemical action. It is

also thought probable that gravitation is exercised

by the transmission of energy through ether waves.

For the further study of the wave theory, which is

necessary for the proper understanding of interfer-

ence phenomena and of polarized light, the student

is referred to complete treatises on the theory of

light.



INTRODUCTION

The investigations in the following chapters are

based upon the experimental laws of reflexion and

refraction, and upon the supposition that light

travels in a homogeneous medium in straight lines.



CHAPTER I

REFRACTION AT PLANE SURFACES

A luminous body emits light in all directions.

That portion of light which travels along a partic-

ular line is called a ray. A collection of rays which

do not deviate far from a central fixed ray is called

a pencil. When a ray of light passing through a

median! meets another medium of different den-

sity, it is divided into two portions ; a part of

the light is reflected back into the first medium,

while the remaining portion passes into the second

medium, and is generally altered in direction.

Of the reflected light, a part is said to be regu-

larly reflected and a part scattered. Strictly speak-

ing, all reflexion is regular ; but owing to the un-

evenness of the surface, the light is reflected in

various directions. It is by this means that we see

a non-luminous object ; for if the light were all

regularly reflected, we should see only the image

of the illuminating source. The more even the sur-

face, the greater is the regularly reflected and the

less the scattered light. If the substance is opaque,

no light passes into it ; the incident light is either

6



REFRACTION AT PLANE SURFACES 7

reflected or absorbed. When a ray passes from one

medium to another, the two portions of the ray

before and after entering the new medium are

called, respectively, the incident and the refracted

ray ; and the acute angles which they make with the

normal to the surface are called, respectively, the

angle of incidence and the angle of refraction. In

Fig. 1.

Fig. 1 BO is the incident ray, OR^ is the refracted

ray, GOR is the angle of incidence, and DOR' is

the angle of refraction. It is found by experiment

that the incident and refracted rays always lie on

opposite sides of the normal to the refracting sur-

face ; that the angles of incidence and refraction

always lie in the same plane ; and that the sine of

the angle of incidence always bears a fixed ratio to

the sine of the angle of refraction. This ratio, while

fixed for the same two media, varies with the nature

of the refracting substances. It is called the refrac-
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tive index for the two media. This law of refrac-

tion is called SnelPs law ; it is sometimes called

Descartes' law, since he first published it in its

present form. For many years prior to Snell's dis-

covery, investigators had constructed tables express-

ing the relation between angles of incidence and
refraction, but even Kepler was unable to deduce
from these the law governing this relation. This

Fig. 2.

law, discovered by experiment, acquires new interest

from its corroboration of the wave theory of light.

It was supposed— and modern experiments have

proved it to be true— that light travels with dif-

ferent velocities in media of different densities. Let
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AB^ Fig. 2, be a small portion of the front of a

wave of light which proceeds from a distant point
;

then AB^ being an indefinitely small arc of a circle,

is indistinguishable from a straight line, and may

be regarded as such. AA^ represents the surface

of refraction ; v the velocity of light in the first

medium ; v' the velocity in the second medium.

Then if t is the time required by the light to trav-

erse the distance BA^^ we have BA^ = v - t^ Avhich is

also equal to AI). If the wave had been unob-

structed by the second medium, it would occupy the

position A'ND at the end of the time t. But the

portion of the wave front at A^ meeting the more

dense refracting substance, does not travel so fast as

the portion BA^ , The point A becomes the centre

of a wave disturbance, which in the time t has

reached the point C ; and, consequentl}^ AC = v' • t.

Similarly, the portion of the wave at P travels in the

second medium the distance P3I^, while it would

have travelled in the first medium the distance PiV.

Therefore, AO:AI) = v^:v, and FM^ : PN= v^iv,

from which

AC v^ PlSr AC AD AA^
or,

AD V PN PM^ PN PA'

From this equation it follows that PA'M' and

AA' C are similar triangles, and consequently M
lies on the line A'C. Since in like manner any
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other point of the wave front will at the end of the

time t lie on the line A' C^ which is perpendicular to

AC, then A^ O will represent the wave front after

refraction, and AO will represent the direction in

which the refracted light travels.

If z be the angle of incidence of the ray, then

BA'A = 90 - z, and AA'D = i. If r be the angle of

refraction, then A'AC= 90 — r, and AA' C= r.

From the triangle A'AD we have

sin i =
AD
AA!'

and from AA^ C we have

sin r =
AC

' AAl'

from which
sin i

sin r

AD
AC

V

v'

From this we see that the constant ratio between

the sines of the angles of incidence and refraction is

that of the velocity of light in the first medium to

the velocity in the second medium. We learn from

experiment that the deviation is toward the normal

to the surface when the ray passes from a rarer to a

denser medium, and away from the normal when the

ray passes from a denser to a rarer medium. If the

deviation is toward the normal, then i is greater

than r, and consequently v is greater than v\ Thus,
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according to the wave theory, the velocity of light

must be greater in air than in a dense mediun:i,

such as water or glass. On the other hand, accord-

ing to the emission theorj^, the velocity must be

greater in a dense medium than in a rare one.* Bat

experiments have proved that the velocity is less in

dense than in rare media ; and the evidence is in

favor of the wave theory.

Fig. 3.

When light passes from a rarer to a denser me-

dium, n is greater than unity, and since sin r = ,

sin r is never greater than unity whatever may be the

angle i ; but when light passes from a denser to a

rarer medium, n is less than unity, and, for certain

values of i, sin r may become greater than unity. As

* Preston's "Theoiy of Light," 2d ed., p. 17.
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the sine of an angle cannot be greater than unity,

this would be an impossible value for r. It is found

by experiment that when i has such value as to make

sinr greater than unity, light does not pass out of

the denser medium, but is reflected back into this

medium. This is called the total internal reflexion,

and the angle of incidence which makes sin r equal

to unity is called the critical angle. A glance at

Fig. 3 will show the meaning of this. It is also

found, as we might expect from this phenomenon,

that as the angle of incidence increases the propor-

tion of reflected light increases, while that of re-

fracted light diminishes. Advantage is taken of

the phenomenon of total internal reflexion in the

construction of certain optical instruments.

Another experimental fact is the reversibility of

the path of light, that is, if the direction of a ray be

reversed so that the angle of refraction becomes the

angle of incidence, then the original angle of inci-

dence will become the new angle of refraction. This

being so, it is evident that a ray after refraction

through a medium with parallel surfaces will, upon

reentering the original medium, be parallel to it^

direction before refraction. It will, however, un-

dergo a lateral displacement varying with the thick-

ness of the medium. See Fig. 4.

We have learned that = n, where n is the
smr
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ratio of the velocity of light in the first medium to

its velocity in the second medium. If the velocity

in a vacuum is taken as the standard, the ratio of

the velocity in any medium to the velocity in a

vacuum is called the absolute refractive index. The

ratio of the velocities for any two media may there-

fore be expressed in terms of the absolute indices of

the two media. Thus, if n be the absolute index

Fig. 4

of the first medium and n' that of the second, the

n
relative index for the two media will be — . Snell's

n
law thus becomes n • sin i = 7i' • sin r, and it is usually

written in this form.
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In any refraction the greater the angle of inci-

dence, the greater will be the deviation ; and the

greater the angle of incidence, the greater will be

the increase in deviation for a fixed increase in the

angle of incidence. This follows directly from the

equation -— = n. Reference to Appendix I. will
sm r

render this clear, for it is there shown that the sine

of an angle increases less rapidly than the angle

;

and the greater the angle, the less will be the change

effected in its sine by a fixed increase of the angle.

Hence, if r be smaller than z, a smaller increase in

r will be required to maintain the constant ratio

between sin i and sin r than in the greater angle i;

and this is true in a greater degree as i approaches

90 degrees. Since the deviation is expressed by

i — r, it follows that this increases when i increases.

As the path of light is reversible, the same holds

true when i is less than r, that is, when the ray

passes from a denser to a rarer medium.

A medium bounded by two plane faces meeting in

an edge is called a prism. At present we shall con-

sider only the refraction of rays through prisms,

reserving for a future chapter the more difficult sub-

ject of refraction of peficils of light. We shall sup-

pose the rays to lie in a principal plane of the prism,

that is, in a plane which is perpendicular to the edge

of the prism, and consequently to the plane of eacli
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face of the prism. We shall also confine our atten-

tion to prisms whose refractive index is greater than

that of air. When a ray of light passes through

such a prism, the deviation is in all cases from the

apex toward the thicker part of the prism. AVe

have seen that a ray, passing through a plane

Fig. 5.

bounded by parallel surfaces, emerges without devia-

tion. Let PQRS (Fig. 5) represent a ray passing

through the medium ABOD^ AB and CD being

parallel. RN is normal to the face CD, Now sup-

pose the face CD be turned into the position ^D^
making the prism BAD^; then the normal B]V must

turn into the position BW; and by this change the

angle of incidence is increased from NRQ to N^BQ.
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We have learned that with an increase of the angle

of incidence there is also an increase of deviation.

KRS represents the deviation at the second surface

when the face has the position (7i>, and as tlie devia-

tion is increased by turning the face into the position

AD' ^ then KRS'
^
greater than KRS^ will represent

the deviation at the second face of the prism BAD'

,

RS is parallel to PQ, the direction of the ray be-

FiG. 6.

fore entering the prism ; hence SRS' represents

the deviation of the ray in its passage through the

prism, and this deviation is away from the apex of

the prism.

Light from an object at P (Fig. 6) would be so

deviated as to enter an observer's eye at E, and the

object would appear to be at P^ Hence an object

seen through a prism is displaced toward the apex

of the prism.

All light is not equally deviated by prisms. If a
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narrow beam of simliglit be passed through a prism

in a darkened room, and the refracted light be inter-

cepted by a screen, it will be found that the beam

has been decomposed into bands of colored light.

These are violet, indigo, blue, green, yellow, orange,

and red. Of these, violet is most and red least

deviated. They are called the colors of the spec-

trum. Since the deviation of a ray by refraction is

explained by the theory that the passage of light is

retarded upon entrance into a substance of greater

density, it is necessary to suppose that this retard-

ing power is different for different colors ; violet,

which is most deviated by the prism, must suffer the

greatest retardation, and red, the color of least

deviation, must be least retarded by the prism. It

is supposed that only dense substances offer this un-

equal resistance to the passage of light of different

colors, and that in space and in air all light travels

with the same velocity.*

The property which prisms possess of separating

colors is called dispersion. It is a most important

property, but only incidentally concerns the student

of ophthalmology. The chief use of prisms in oph-

thalmological practice is for the purpose of changing

the apparent position of objects. In the weaker

prisms dispersion is not noticeable ; but if an opaque

* Preston's ^' Theory of Light," 2d ed., p. 97.
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object be viewed through a prism of considerable

deviating power, it will be tinged with red toward

tlie apex and with violet toward the base of the

prism.

Let PQBS (Fig. 7) represent a ray passing

through the prism whose apex is at (9, and whose

faces are inclined at an angle a. Tins angle is

called the refracting angle of the prism. At Q and

Fig. 7.

R draw the normals i^7!f and LRN. Let the angle

of incidence PQM be called ^, and the angle of

refraction LQR be called r. Also let LRQ be r\

and NRS be e ; then from the law of refraction we

have sin i = n - sin r, and sin e = n * sin r'. The

angle ORQ is equal to 90 — r' and OQR is equal to

90 — r. Since the sum of the three angles of the

triangle ROQ must be equal to 180 degrees, we

have

a + 90 - r + 90 - / = 180 ; or, r + / = a.

The deviation of the ray at the first surface is
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represented by i — r, and at the second surface by

e — T^ , The total deviation is denoted by z + e —

(r + /), OY i -{- e — a.

Hence the deviation produced by a prism is equal

to the sum of the angles of incidence and emer-

gence, minus the refracting angle of the prism.

Let us suppose that the ray passes symmetrically

through the prism, that is, that the angles of inci-

dence and emergence are equal. The angle of

incidence ^ is greater than the angle of refraction r,

since the index of the prism is greater than that

of air. Hence, as was shown on page 14, when i

increases, r also increases, but less rapidly than i.

Since in the triangle LRQ the angle L remains con-

stant, then when r increases, r^ must undergo a cor-

responding decrease, for the sum of the three angles

of the triangle must be 180 degrees. From the

equation sine = ti • sin/, it follows that if r^ de-

crease, e must decrease more rapidly than r^ There-

fore, if we start with the ray which passes sym-

metrically through the prism, and increase the angle

of incidence, the effect will be to increase the devia-

tion at the first face of the prism and to diminish it

at the second face ; but as r is now greater than r^

the increase at the first face outbalances the de-

crease at the second face, and the total deviation is

increased. If we trace this ray backward, we see

the effect of making the angle of incidence smaller
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than that of the symmetrical ray, that is, in this case

also the deviation is increased. Hence the symmet-

rical ray is the ray which undergoes the least devia-

tion ; it is called the ray of minimum deviation.

If D denote the deviation of a ray in passing

through a prism, I) =• i + e — a, from which e = a +
D-i,
We have seen also that a = r + r^ from which

r' = a — r.

Substituting these values of e and r' in the equa-

tion

sin e-—
j
= n,

, sin (a + D — i)
we nave >— = n^

sni (a — r)

or sin [(a + D) — ^] = 7^ • sin (a — r), or sin (a + i))

cos i — cos(a + J)) sin i = n (sin a cos r — cos a sin r).

When the angle of the prism is small, sin (a + i>)

and sin a do not differ materially from the angles

a + D and a.* Likewise, it is easily seen that the

cosines of these small angles do not differ materially

from unity. Making these substitutions, we have

* The measurement of an angle is expressed by the subtending

arc divided by the radius of this arc ; it is readily seen that this is

practically equivalent to the sine of the angle when the angle is very

small.
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(a + D) cos i — sin i = n - a cos r — n - sin r;

or,

J) . cos i= a(n ' cos r — cos 0, since sin i = n • sin r.

Hence D = a{ -,
1

cosz

When the ray passes nearly perpendicularly through

the prism, as does the ray of minimum deviation

in a prism of slight deflecting power, then cos r and

cosz are both very nearly equal to unity. In this

case the deviation is approximately equal to a(ii — V),

If the index of refraction of the material of which

the prism is made is 1.5, as is approximately true

of spectacle glass, the deviation becomes equal to -.

The exact index for glass is greater than 1.5; its

average index may be regarded as 1.53, and there-

fore the deviation even in weak prisms is more than

one-half the refracting angle of the prism, but for

practical purposes the two may be considered equal.

In prisms of high deviating powder the deviation

is perceptibly greater than one-half the refracting

angle.

Prisms in the oculists' trial case are usually num-

bered in degrees of the refracting angle, or accord-

ing to the deviating power in the position of minimum

deviation, the latter method having been first sug-
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gested by Dr. Edward Jackson,* of Philadelphia,

as being more scientific than the old notation in

degrees of the refracting angle. Other systems of

numbering prisms have also been advocated and are

to some extent used. The units in these systems

are : the centrad, introduced by Dennett
; f the

prism-dioptre, introduced by Prentice
; J and the

metre-angle, introduced as a measure of convergence

by Nagel, and as a prism unit by Maddox.§

It is sometimes desirable to know the result of

combining two prisms whose edges are not parallel.

We know that prisms deviate light in a direction

at right angles to the edge of the prism. Hence

when two prisms are combined so that their edges

are not parallel, the deviating power of the second

prism must be added to that of the first; but the

direction in which the power is exerted is not the

same in the two prisms.

In Fig. 8, let AB and AD represent the direc-

tions in which light is deviated by the first and

second prisms respectively ; also let the length AB
represent the displacement of a ray of light which

the first prism produces, as measured on a screen

at a fixed distance from the prism, and let AD

* Trans. American Ophth. Soc, 1887 and 1888,

t Ibid, 1889.

} Archives of Ophthalmology, 1890.

§ Wood's "Med. and Surg. Monographs," Vol. IX., No. 2.



REFRACTION AT PLAXE SURFACES 23

represent the displacement wliicli the second prism

produces at the same distance. Then to find the

combined effect of the two prisms, it is only neces-

sary to construct the parallelogram ABCD^ and

the diagonal AC will represent the direction and

the length of displacement produced by the two

prisms acting together ; for the problem is the same

.^^ /

..^

/
I
/
/
/

/
/

/

Fig. 8.

as that in which an object at A is acted upon by a

force which would move it from A to B^ and at the

same time by a force which would move it from A
to i), the result being that the object is moved from

A to (7.

It would, however, be inconvenient to find the

linear displacements AB and AD ; and to avoid this

we must use a relation which exists between the

angular deviation and the linear displacement.

Let d represent the angle of deviation of the first

prism, and dJ that of the second prism ; then, since
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an angle is measured by its subtending arc divided

by the radius of this arc, we have

J arc -, J, arc'
a = — and a' =—-,

If the distance of the screen from the prism be the

radius, then the arc described with this radius and

terminating in A and B will be the subtending arc

of the angle d. When d is small, the aic and the

straight line AB will be so nearly equal that we may
consider them identical. Similarly the arc of the

angle 6?^ when this angle is small, may be replaced

by the line AI). Thus for small angles we may with

any unit lay off AB so that it contains as many units

as the arc of the angle d contains degrees, and with

the same unit lay off A Z) so that it contains as many

units as the arc of the angle d^ contains degrees
;

then AC SiS measured by the same unit will give the

number of degrees of deviation produced by the

equivalent prism, and AO will represent the direc-

tion of deviation of this prism. The angle BAB is

the angle of inclination of the two prisms, for BA
and AD are perpendicular to the edges of the first

and second prisms respectively. The angle ABC is

equal to 180 — BAB. Hence in the triangle ABC
we know the two sides AB and BC and the included

angle ABC. We can find the third side ^6^ and the
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angle OAB, which the equivalent prism must make

with the first prism.

The side J. (7 is obtained from the equation

(^(7)2 = QABy + QBOy - 2 AB X BO cos ABC.

Having found A (7, the angle CAB is found from the

equation

sin CAB ^BC
sin ABC AC'

since in any triangle the sines of the angles are pro-

portional to the opposite sides. If the tw^o prisms

are at right angles, then

(ACy = (ABy + (BCy, and tan CAB = ^.



CHAPTER II

REFRACTION AT SPHERICAL SURFACES

Let (Fig. 9) be the centre of a spherical surface,

separating two media whose refractive indices are

respectively n and n'

.

A ray of light, PB, meets the surface at jB, and is

refracted so as to assume the direction RQ, NRP
is the angle of incidence, and ORQ is the angle of

refraction. Then we have n • sin NRP= n' - sin ORQ,

From the triangles ORP and ORQ we have

sin (180 -iVTgP) ^ sinNRP ^ OP .^.

^'mROA siiiROA RP ^ ^

sin ORQ ^ sin ORQ ^ OQ
sin (im-ROA) sin ROA RQ

Dividing (1) by (2), we have

(2)

sin NRP ^qP^ RQ_ ^3^
sin ORQ RP OQ ^ ^

The first member of (3) is equal to —

Therefore «-|5=^'-||-

26
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The ray PA is normal to the spherical surface at

A ; hence it will undergo no deviation, but will con-

tinue in the same straight line, PAQ.
This line is called the axis of the refracting sur-

face. The ray which meets the surface at R meets

the axis at Q. If every other ray of the pencil which

is refracted at the spherical surface should meet the

axis at Q, this would be the focus of the pencil after

refraction. A study of Fig. 9, however, will show

that this will not be so. If the arc AR be revolved

around the axis, a portion of a sphere will be gener-

ated, and all rays meeting this surface at the distance

AR from the axis will meet at Q. If we take the rays

which meet the spherical surface at a distance ATt\

they will not meet the axis at Q» The relations

between ROA and the angles of incidence and re-

fraction are such that as ROA increases, OQ must

diminish ; and consequently those rays which meet

the refracting surface more remotely from A inter-
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sect the axis at a less distance from A than do those

rays v>^hich lie near the axis.*

The rays BQ and M^ Q' meet at q. The curve

formed by the locus of all such intersecting points is

called the caustic of the refracting surface. An illus-

tration of a caustic can be seen by placing a glass of

water on a table so that sunlight strikes the glass.

The brightly illuminated curve which will be noticed

represents the intersection of rays after refraction by

the water. The property of spherical refracting sur-

faces, by which rays of a pencil proceeding from a

point meet the axis at different points after refrac-

tion, is called spherical aberration. The nearer that

——
- approaches a constant quantity, the less is the

spherical aberration. It is easily seen that this condi-

tion is best fulfilled when H is near the axis, and when

the curvature of the surface is slight as compared with

the distances PA and AQ, The greater the lengths

PA and AQ^ the farther may It be removed from the

axis withou.t appreciable spherical aberration. Spec-

tacle lenses, being lenses of long focal length, do not

cause much aberration. In the eye the focal distances

are short ; but, owing to the cutting off by the iris

of all peripheral rays, and to the peculiar construction

of the crystalline lens, aberration is not appreciable.

Since the more peripheral rays are too strongly

* Heath's " Geometrical Optics," 2d ed., p. 144.
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refracted in comparison v/ith those near the axis, it

is evident that the curvature of the spherical surface

is too great for peripheral rays. A surface with

diminishing curvature, such as an ellipsoid, Avould

consequently produce less aberration than the spheri-

cal surface. The curve which produces no aberra-

tion is known to mathematicians as the Cartesian

oval. Such surfaces, however, are not in practical

use ; for, by suitable combinations of lenses, aber-

ration can be almost entirely overcome, even in the

lenses of very short focal distance and wide aperture

used in microscopes.

Besides spherical aberration, we have also chro-

matic aberration, v/hich is due to the unequal deviating

power of the refracting surface for different colors.

In the construction of microscopes and other delicate

optical instruments, the annulment of this defect is

a matter of the utmost importance, but owing to the

long focal length of spectacle lenses and to the pre-

vention by the iris of all peripheral rays from enter-

ing the eye, chromatic aberration does not attract

attention in ordinary vision.

All our formulae will be based upon the assump-

tion that PA, HP, AQ. and RQ are great in com-

parison with the curvature of the surface, and that

onlj^ rays near the axis are allowed to pass into the

refracting medium. With this understanding, our

equation,
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becomes

OP _ , OQ
'"'PR-'' 'BQ'

(FA + AO) ^ . (AQ-AO)
FA AQ

OF
For, upon our assumption, —— will not differ

materially from —— , and —^ will not differ mate-

riallv from —-^•
AQ

If PA be denoted by /, and AQ by/', and r be

the radius of the spherical surface, the equation will

become

f f
This equation may be reduced to the form,

This is the relation between a point P and its

focus Q. P and Q are called conjugate foci, and /
and /' are conjugate focal distances. A pencil of

light from P will be brought to a focus at Q^ and,

conversely, a pencil proceeding from Q will be

brought to a focus at P.* In our demonstration we

* When Q is virtual, we must modify this clause so as to read

:

"A pencil directed towards Q will be focused at P."
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have considered all the quantities as positive. This

is the convention of signs most convenient in dealing

with lenses ; but in working out formulae for several

refracting surfaces, it would lead to confusion. In

these cases it is better to consider all quantities posi-

tive when measured from left to right, and negative

when measured from right to left. Thus, J-P,

measured from A^ would be negative ; while AQ^ as

in the former convention, would be positive. We
should have to replace/ in our equation (a) by — /.

Doing this, we have

We shall use (ct) in demonstrating the properties

of single lenses, but (5) will be more suitable in

tracing the path of light through the several re-

fracting media of the eye.

n n^ _n' —n

is the equation between conjugate foci for all posi-

tions of / and /'. If, in this equation,, we make /
infinite, we have

n — n

This means that if the rays proceed from a point at

an infinite distance, that is, if the rays are parallel
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to the axis in the first medium, the value for /' is

This is called the posterior or second princi-
nr *

?^^ — n

pal focal distance, and the point where the rays meet

the axis is called the posterior or second principal

focus. Similarly, if f is infinite, that is, if rays pro-

ceeding from a point, P, are parallel after refraction

we have, as the corresponding value of /,

9

nr

71^ — n
The point P thus becomes the first or anterior prin-

7)7*

cipal focus, and the distance — is the first princi-
n' —n

pal focal distance. The anterior focal distance is

denoted by the letter i^, and the posterior focal

distance is denoted by _F^

If we divide equation (a) by , we have
r

nr . n^r

(ji' — 7i)f (n' — 71)f

This equation gives us the relation between two

conjugate points and the two principal foci.

F and / are positive when to the left of the refract-

ing surface, and F^ and f are positive when to the

* In the small pencils which enter the eye, the rays may be con-

sidered parallel when they proceed from a point situated 6 metres

from the eye ; hence / is intinite when it has not less than this

length.
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right of this surface. When nJ is greater than n, F
and F' are both positive or both negative according

as r is positive or negative ; and when 7i^ is less than

71, F and F' are both positive or both negative ac-

cording as r is negative or positive. In other words,

F and F^ are both positive when the convex surface

is turned toward the medium of less refractive in-

dex, and both negative when the convex surface is

turned toward the medium of greater index.

We have seen that rays which are parallel to the

axis in the first medium will, after refraction into

a denser medium at a convex surface, meet in an

actual focus in the second medium ; and we have

also seen that F^ in this case is positive. On the

other hand, if the refracting surface be concave, the

rays will not meet in a point in the second medium

;

they will be rendered divergent by the refraction,

and their direction will be such that, if prolonged

backward, they will meet in a point in the first

medium. Such a focus is only imaginary^ not a real

meeting point of the rays, as in the former case ; it

is called a virtual focus. It is, as we have seen, nega-

tive. Hence, with the convention of signs which we

are using, real foci are positive, and virtual foci are

negative. Figure 10 illustrates the virtual focus.

A study of equation Qd) will show that if n^ be

greater than n, and r be positive, then, so long as/ is

greater than #, /' will be positive ; and if / be less
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than F^ /' will be negative. This indicates that if

rays proceeding from a point on the axis are re-

fracted into a denser medium at a convex surface,

they will after refraction meet the axis in a real

point so long as the point from which they proceed

is farther from the surface than the first principal

focus. If the point is within this focus they will

\

1
Fig. 10.

not meet the axis after refraction, but if prolonged

backward they will meet in a virtual focus, and this

will be farther from the surface than the point from

which the light proceeds.

The following equations will also be found useful

in our studies :

Since F = ^^^^ and F' ^
^'"^

n' — n n^— n

we have F : F^ =n : 'n! -, or.
F^^n
F' n''

Also, if P (Fig. 11) be the position of a point

and Q its conjugate, F and F' the principal foci, then
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FF = f-F^iid QF'= f'- F. Let PF be denoted

by u and QF^ by u^ \ tlien/= u -\- F and/' = i^' + F\

Hence,
F

+ 17
F^

u + F u' + F^

From which we deduce

uu'=FF'.

= 1

Fig. 11.

Let us next take a point P not on the axis AA^

.

Draw POP' (Fig. 12) through the centre, 0, of the

refracting surface. This line is the new axis and P'

is the focus conjugate to P. If OP be equal to OA^

then OP' and OA' will be equal, and PA and P^A'

will be arcs of circles. As RHR is revolved on the

axis, producing the spherical surface, so the arcs PA
and P'A' also produce portions of spherical surfaces.
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If the radii OP and OP^ be great as compared with

the length of these arcs, the portions of spherical

surface which they generate will not differ materially

from plane surfaces.

Therefore the planes at A and A^ perpendicular to

the axis AA^ are called conjugate focal planes. The

image of an object lying in the plane at A will lie in

the plane at J.^ A plane tangent to the refracting

surface at H is called the principal plane of the

refracting surface. If the lines AR and PW were

terminated in such a plane, and from their points of

intersection with the plane lines were drawn to A^

and P\ respectively, the resulting lines would very

nearly coincide with those as drawn- in Fig. 12

;

and, for practical purposes, the two results might be

considered identical.

The point jET, where the principal plane and axis

intersect, is called the principal point.

We shall now show how we may construct the

image of an object if we know the position of certain

points. Let PA (Fig. 13) be the linear dimension

of an object. If we can determine the point of inter-

section after refraction of two rays from P, this point

will evidently be the image of P. First we take a

ray PFR , which passes through the anterior focus

F \ then we know that this ray must after refraction

be parallel to the axis AA\ It is represented by

R^P' . Next we take a ray Pi?, which before refrac-
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tion is parallel to tlie axis ; then after refraction it

mnst pass through the second principal focns F' , It

is represented by RP' , Then P\ the point of inter-

section of tlie two rays from P, is the image of P.

The image of all points in the line AP must lie in

the line A'P' \ hence, A^P^ is the image of AP.
We can now appreciate the importance of these

points and planes. They are called the cardinal

>
R^^. F^

^^^—___p H A'

'

^~^-^^ —^l„,
\

r

Fig. 13.

points and planes of the refracting surface. The
centre of the refracting surface also possesses a dis-

tinctive property, in that rays which pass through

it undergo no deviation, since such rays are normal

to the refracting surface. It is called the nodal

point. The cardinal points of a single refracting

surface are four ; namely, the ^:)r^?2c/paZ pointy the

two principal foci, and the 7iodaI point. The cardinal

planes are the principal plane and the two principal

focal planes.

If be the linear dimension of the object, and i
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that of the image, then from the similar triangles

PAF and HFB^ (Fig. 13) we shall have

PA __ AF _u _ u ^

llBJ~"FH'
"""' ^"^' ""^^

~i~~F'

Also from the triangles RHF^ and F^A^F\

or, - = F[

From either of these equations we can determine

the size of the image. We may also determine the

size of the image in terms of the divergence of the

""" —^—^_ M
-S

Fig. 14.

rays before and after refraction. Let MP (Fig. 14)

be the linear dimension of an object. A ray from

P, meeting the refracting surface at R, would be

refracted so as to assume the direction RS\ and if

prolonged backward, it would meet the axis at Q^

which is conjugate to P. Likewise, iVis conjugate

to M, and QN is the image of PM, The angle

* Since the image, when real, as in the figure, lies on the oppo-

site side of the axis to the object, we must consider it negative.
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RPA^ which we call a, expresses the divergence of

the pencil before refraction, and RQA or a^ is the

divergence after refraction.

Then tan a = —— , and tan a^ = -——
;

I^A QA

£ , . -, tan a QA firom which = i--. = ^.
tan a^ FA j

We have also the equation

PO_^PM
QO QN

From the law of refraction we have, as on page 26,

PO
,
QO

RP RQ

or, since RP may for rays near the axis be replaced

by/andi2^by/,

PO , QO PO n^f

1 PM n^f T n . n^ .^^hence -—— or -=:—-, and o • - = z • —

.

(1)

From this equation and from ^ == we deduce
f tan a-^

-n ' tan a = i *n' - tan a^. (2)

This is known as Helmholtz' formula.



CHAPTER III

KEFRACTION THROUGH LENSES

Haying investigated the refraction of light at one

spherical surface, we are now prepared to studj^ re-

fraction through lenses. A lens is defined as a por-

tion of a refracting substance bounded by two curved

surfaces centred on the same axis. If the radius of

curvature of one surface is infinite, then the corre-

sponding surface is plane, and the lens is bounded by

one curved and one plane surface. Ordinarily, the

surfaces of lenses are spherical ; but lenses have

been constructed whose surfaces were ellipsoidal or

paraboloid. The onl}^ lenses in practical use, how-

ever, are those whose generating curve is a circle ;

and we shall confine our attention entirely to lenses

of this nature.

The thickness of a lens is the distance between the

bounding surfaces as measured along the axis.

A lens bounded by two convex surfaces is called a

double convex or bi-convex lens ; one bounded by two

concave surfaces is called a bi-concave lens.

A lens, of which one surface is convex and one

concave, is called a convexo-concave lens, or a menis-

40
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cus. Lenses of this form are used as spectacles, and

are known as periscopic lenses.

The terms plano-convex and plano-concave need no

explanation.

In our demonstration we shall take as the typical

case the double convex lens ; and we shall consider

the refractive index of the material of which the lens

is composed to be greater than that of the air by

which it is surrounded. The index of the lens will

be indicated by the letter n, and that of the air by

unity.

We shall first show that there are two points on

the axis of the lens which are useful in the deter-

mination of the positions of conjugate foci. These

points are a pair of conjugate foci, such that any

incident ray directed toward one of them will, after

refraction, appeal* to come from the other, and in a

direction parallel to that before refraction. These

points are called the nodal points of the lens.

To find the position of these points, we draw any

radius of the first surface, as OQ (Fig. 15). Next

we draw a radius, 0' Q' , of the second surface, so that

OQ and 0' Q' are parallel. Connect the points Q
and Q^ by the straight line QQ\ which meets tlie

axis at 0, Then from the similar triangles OCQ
and 0'0Q\ we have OC: O'G = OQ: O^Q =tm\

from which =—
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00
Therefore, —— is a constant quantity, irrespective

(/ o
of the position of Q, from which the first radius is

drawn ; and consequently must be a fixed point.

The ray of light, RR\ which passes through (7, is,

after refraction, parallel to its direction before re-

FiG. 15.

fraction ; because, the radii OQ and 0' Q^ being par-

allel, the planes perpendicular to the curved surfaces

at Q and Q^ are parallel, and the lens will, for this

ray, act as would a piece of plane glass.

Let N be the point on the axis tow^ard which the

ray is directed before refraction. The ray is so re-
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fracted at the first surface as to pass through C
;

then C is conjugate to N in the first refraction.

After refraction at the second surface, the ray ap-

pears to pass through iV'; then N' is conjugate to Q
in the second refraction. Since N is the virtual in-

tersecting point of the ray and axis before refraction,

and N' is the virtual intersecting point of the ray

and axis after refraction, then N and N' are conju-

gate points with respect to both refractions.

The point Q is called the optical centre of the lens.

All rays which pass through it are, after refraction

through the lens, parallel to their direction before

refraction.

To find the position of the points iV, N' ^ and C we

have the following relations :

00^ = r + r' - e ;

where r and r^ are the radii of the surfaces, and e is

the thickness of the lens. Also,

00 ^ r
.

0^0 r''

and consequently,

00 r 00 r
or,

OO+O'O r + r^' ,^^r'-e r + r''

00 = -^ir + r'-e)=r--^,



44 HANDBOOK OF OPTICS

AC= OA- OC=r-r+ ^'^ ^"^

r + r' r + r

Similarly, A^ C-
ey

r + r

But since in the first refraction iVand are con

jugate foci, we have from formula (a), page 30,

In n — 1

AJSr AO r

Substituting the value of AC, this becomes

1 ,
n(r + ^') n — 1

1

—^^ ^ = '

AJV er r

If rays proceeding from F^ are parallel to the axis

after I'efraction at the first surface, and these parallel

rays after refraction at the second surface meet at

i^2^ then

AF. =-^ = F., and A^F, =-^ = F^.
71 — 1 '^

71 — 1

Making these substitutions, we have

1 <F, + i^,)
,

1
,+

• AN eF^ J^i

or, AN=^ - ^^ ^V7^ X ^
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If e be replaced by n • c, this equation will become

AN= cF,

^1 + ^2

Since AN is negative for the convex lens, N lies

to the right of A, and since in the lenses which are

in practical use, the numerator F^ is less tlian the

denominator '/v(i<\ + F^— e, the length AN is less

than 6, and the nodal point N lies within the lens.

Similarly, we find that the nodal point N' lies within

the convex lens, and that its distance from A' is

cF,

F,+F,^-c

Using the same equation, but changing the sign

of r, we should find that in bi-concave lenses, also,

tlie nodal points lie within the lens.

To repeat, the nodal points are two conjugate

points such that a ray of light directed toward one

of them is so refracted as to pass through the optical

centre of the lens, and emerges in a diivQciiow parallel

to that before refraction, Sucli a ray undergoes only

a lateral displacement due to the thickness of the

lens.

We shall now demonstrate the method of finding

the focus Q, after refraction by a lens, of a pencil

of light from a point P on the axis of the lens.

The ray PR (Fig. 16) meets the first refracting
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surface at jB ; it is refracted toward R' ^ and, if

prolonged, it would meet the axis at Q\ But, after

travelling the distance RR, it meets the second

Fig. 16.

surface of the lens and is refracted to Q. Then in

the first refraction Q' is conjugate to P, and we

have from equation (^i^), page 80,

1 n _ ^ — 1

.

PZ Z^~ r
'

or, substituting / for PA^ f for AQ ^ and F^ for

r

n— 1

l + ^ = -l (1)

Also in the second refraction Q is conjugate to

Q' \ therefore,

n 1 _ ^ — 1
.

or, substituting /^^ for A! Q\ f^ for A' Q, and F.^ for

n—1 , we have

// /i
^2'

(2)
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Reference to the figure will indicate that AA^^

the thickness of the lens, is equal to the difference

in length between'/^ and f-^' ; but we also notice

that /' and f^' have opposite signs, that when f is

positive, /j' is negative. Hence the difference be-

tween /' and /-^^ will be expressed algebraically by

/' +/i' ; and if e represent the thickness of the lens,

/^ +/^' = ^, or 7ic^ n being the refractive index of

the lens, and c being of such value that e is equal

to nc. From these equations we can determine the

relation between P and Q. From (1) we obtain

f'=
"

JL_1
F, f

n
From (2), // = -^ ^.

Substituting these values in the equation /^+/^'

= nc^ we have

n n
+ -q T = lie.

F, f F, f.

This, by reduction, becomes

-F,JiF,-c)^cF,F,..: (4)
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This equation is true for all values of/ and /j. If

we make / infinite, the corresponding value of/^ will

give us the focus for rays parallel to the axis before

refraction.

Dividing equation (4) by / and making / iufinite,

we derive

Similarly, if /^ be infinite, that is, if the rays be

parallel to the axis after refraction, we shall obtain

^ F^ + F,^- c

The points determined by these equations are the

prmcipal focal points of the lens. They are not

usually measured from the surfaces of the lens, how-

ever, but from the points iV^and iV^ It will be seen

that as thus measured the two focal distances are

equal.

f I

A,Y,^F2(F^-o-) .
cF, _ F,F,

-^^^
Fi + F,^-c^F^ + F,^-c Fi + F,^-c'

Hence in a lens tlie two principal focal distances are

equal, and this distance is found from the equation

F= ^^ ,

F. + F^-c'
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where F^ and F^ represent the same quantities as on

page 44.

The nodal points N and W possess another im-

portant property in addition to that already demon-

strated. If planes be drawn through these points

perpendicular to the axis of the lens, an object in

the first plane will have its image in the second

plane, and the image and object will be of the same

size and on the same side of the axis ; in other words,

the line joining the points where the incident and

refracted rays meet, respectively, the first and second

planes, is parallel to the axis. The two planes are

called the principal planes, and the points where

they meet the axis are called the principal points.

In lenses, the principal points and nodal points coin-

cide ; but this is not so in all optical systems, as we

shall hereafter learn.

To prove this property of the principal planes, let

be the linear magnitude of an object, i its image after

one refraction, and i^ its image after two refractions.

Then from equation (1), page 39, we have

= 0,

Hence,

X

/
1_ n • i

f
i'

/i

i

nf
and - =

i' f'fi'
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But in demonstrating the properties of nodal

points we have seen that AO : A^O = r : r^. Since

in the first refraction C is conjugate to iV", then AN
is represented by / and AC by /'; and since in the

second refraction iV^ is conjugate to (7, then A^ C is

represented hy f\' and A^H' hy fy Hence,

Applying formula (a), page 30, to the first refrac-

tion, we have

1 n_n — l f'-\-nf__n — l .^^

J+J7-=^^;
or, -^^^ = -^. w

Similarly, applying this formula to the second

refraction.

Dividing (2) by (1), we derive

ff(fl±nfA = L = f

from which

or, /// + nff, =f,f' + «//i, and /// =f,f'.
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Therefore the equation —
^

^^ becomes o = i\

J J

I

which shows that object and image are equal when

they lie in the planes perpendicular to the axis at the

nodal points of the lens. The significance of the

principal planes is rendered clear by reference to

Fig. 17. A thorough understanding of the proper-

ties of these planes is necessary to the further study

Fig. 17.

of refraction. A ray of light RW meets the first

surface at R , It is directed toward P, but before

reaching P, it is refracted at R ^ so as to assume the

direction RR"
; at W it is again refracted so that

its direction on leaving the lens is R'^R" . If R^R^^
be prolonged backward, it will meet the plane P'W
at P^ and PN and P'N' will be equal. Any other

ray directed toward P will after refraction appear to

come from P' ; in other words^ P' is the image of P.

It must not be supposed, however, that a real object

placed in the lens substance at PN would have for
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its image P'N' ; for such an object, as seen by an

eye, v/ould have undergone refraction at one surface

of the lens only. PN and P^N' are both virtual.

By making use of the properties which belong to

the principal planes, we can construct the image of

an object after refraction through a lens. Let PA
(Fig. 18) be the linear dimension of an object, P
and P^ the principal foci of the lens, H and W the

F R— R

A
^\.F H h'^\f^

^^^^v^ \\
S S'

Fig. 18.

principal points, RS and ^^aS'' the principal planes.

From the point P draw a ray PFS ; then since it

passes through the anterior focus, it must after re-

fraction be parallel to the axis, and from the prop-

erty of principal planes just demonstrated US and

E^S' must be equal. Hence S^P' represents the ray.

Next, take a ray PP from P, parallel to the axis ;

then it must after refraction pass through the pos-

terior focus F^^ and Hit and S'P' are equal.
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B!FP^ will represent the ray after refraction, and

P^ the point of intersection of the two rays from P,

will be the image of P. Similarly, we can show that

any other point of PA has a corresponding image in

P'A^ and P^A! is the image of P^. To find the

size of the image w^e nse the similar triangles PAP
and PUS, or P^A:P^ and H'R'F, When the image

is real, as in our figure, it lies on the opposite side of

the axis to PA, and it must be considered negative.

As on page 35, the distance of the object from the

first principal focus is denoted by the letter it, and

the distance of the image from the second focus is

denoted by ^6^ Hence, we have the following equa-

tions :

PA^AP^
^

^u
HS~ PH'

^^^' -i" p'

., P'A P'A^ P

By referring to page 38, w^e see that these equa-

tions are the same as those which we found to deter-

mine the size of the image after one refraction ; but,

instead of one principal plane from which all dis-

tances are measured, we now have two such phanes.

Having solved the problem for the double convex

lens, we may, without repeating the investigation,

apply the same formulae to other lenses by making

suitable changes in the signs of radii and foci.
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The position of the principal or nodal points may
be found from the equations,

cFAN (which we call A) = 1
,

and A'N'iorh')- ""-^^

F^ + F^-c

The focal distance of the lens is found from the

equation

If, in these equations, we replace the value of F^

and F^ in terms of n and r, we obtain

h =
(r + ?•') — (« — l)c

(1)

U - "'''
(2)

(r + r') — (n— 1)<?

(3)
{n — 1) [r + r' — (n — !)<?]

In spectacle lenses the thickness is so slight, as

compared with the radius of curvature, that it may

be ignored. Such lenses are spoken of as thin lenses.

In thin lenses the nodal points coincide with the

centre of the lens ; and the equation which deter-

mines F reduces to tiie form
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F
"""'

(H-l)(r + r')

This equation serves to determine the focal length

in all kinds of spectacle lenses. If both r and /

are positive and equal, we have

F =
2(« - 1)

'

and, if we reckon n as 1.5 for the glass of which

spectacles are made, we have F = r. If r' is infinite,

that is, if the lens is plano-convex, then

n — 1

when ^ is 1.5. If r and r^ are both negative, the

lens is bi-concave, and we have

F =
(^-l)(r + /)

Hence the principal focal distances are negative.

This means that rays which are parallel to the axis,

meeting the lens, do not intersect the axis after

refraction ; but they would, if prolonged backward,

meet the axis on the same side of the lens as that

from which the ra3^s proceed. Similarly, rays which

are parallel to the axis after refraction, do not come

from a real point ; but before refraction they are
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directed toward a point on the axis and on the

opposite side of the lens to that from which the light

proceeds. Thus we see that in the concave lens both

foci are virtual ; also that the first focus lies behind

the lens, and the second focus lies in front of the

lens, considering, as we do, that the side of the lens

Fig. 19.

which is turned toward incident light is the front

of the lens.

In Fig. 19, (1) represents the action of a convex

lens, (2) represents the action of a concave lens.

All rays from 0, the anterior focus of the convex

lens, are after refraction parallel to the axis ; all

rays, which before refraction are parallel to the axis,

meet at the posterior focus 0^ Convex lenses are
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called collective lenses. In the concave lens rays

which are parallel to the axis before refraction are

rendered divergent after refraction. If prolonged

backward, they would meet at 0\ 0' is then the

posterior focus of the lens, for it is the virtual inter-

secting point with the axis of rays wliich before

refraction are parallel to the axis. Similarly, rays

converging to the point before refraction are

parallel to the axis after refraction. is therefore

the anterior focus of the lens, since it is the virtual

intersecting point with the axis of rays which are

parallel to the axis after refraction. Concave lenses

are called dispersive lenses.

If, in equation (4), page 47, we disregard the

thickness of the lens, making c equal to zero, and if

we substitute F^ the focal distance of the lens, for

its equivalent, the equation reduces to the form,

1+1=1.
f A

Equation (4) can be reduced to the same form,

irrespective of the value of (?, but not so simply as

when c is equal to zero ; and, as we need apply this

formula to thin lenses only, we shall not make the

substitution for thick lenses. From the expression

thus obtained, we see that after refraction by convex

lenses, conjugate foci lie on opposite sides of the

lens and are real so long as both conjugate points
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are without the principal foci, but if one point is

within the principal focus, and real, the other lies

without the principal focus, on the same side of the

axis as the first point, and is virtual. We also ob-

serve from a study of this equation that as a point

approaches the lens, its conjugate moves in the same

direction, that is, it recedes from the lens when it is

real, and approaches the lens when it is virtual.

Since an object lying in one conjugate plane has its

image in the other, we may apply the foregoing con-

clusions to the images of objects. Since, as we have

seen, real images are inverted, a real and inverted

image of an object will be formed by a convex lens,

provided the object be not within the principal focus

of the lens. If the object be placed at the principal

focus of the lens, the rays from every point of the

object Avill be rendered parallel, and no image will

be formed. If the object be placed within the prin-

cipal focus, the rays from every point of the object

will, after refraction, be divergent, and if prolonged

backward will meet in a virtual focal plane, thus

forming a virtual image.

If, in the equation which we have been studying,

we make F negative, as in the concave lens, we

shall see that rays from an object will not, after

refraction, meet in a real focus.

Since real images are formed by the actual inter-

sections of rays of light, they may be depicted upon
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a screen, or upon a sensitive photographic plate

which is capable of retaining the impression; or,

again, upon the retina of the eye, a nervous mechan-

ism through which the impression is transmitted to

the brain, where it is manifested as vision. Virtual

images, not being actual intersecting points of rays,

cannot be so depicted.

Plano-convex lenses act in the same manner as

bi-convex lenses; and plano-concave act as bi-con-

cave lenses. Periscopic lenses act as convex or

concave lenses according as the convex or concave

surface has the greater curvature. Reference to

the equation

renders this apparent.

The power of a lens is inversely proportional to

the focal length. If T represents the focal length, —

is the power of the lens. Lenses may be numbered

according to their focal length or according to their

power. A lens which has a focal length of ten

inches is called a ten-inch lens. Its power is ex-

pressed by y^Q-. Since, in lenses which have equal

curvature at the two surfaces and whose index is

1.5, the focal length is equal to the radius of curva-

ture, the power of the lens is expressed by -.
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We obtain the power of two or more lenses used

in combination by adding the expressions denoting

the power of each lens ; but this simple method

applies only when the distance between the centres

of the lenses is so slight that it may without error

be neglected. That the power of two or more lenses

used in combination is equal to the sum of the

powers of the lenses, may be proved from the rela-

tion between bi-curved and piano-curved lenses.*

Since the principal or nodal points and the optical

centre of a thin lens coincide, any bi-curved thin

lens is equivalent in all respects to a piano-curved

lens of the same focal length. Hence if we wish to

combine two lenses, we may first replace them by

two piano-curved lenses with their plane faces in

contact. We then have as the result of this com-

bination a bi-curved lens ; and the focal length of

this lens is found from the equation

F= -^1^2

F^ + F^-o

When the thickness of the lens is neglected, this

becomes

f, + f;

F^ being the focal length of the first, and F^ that of

the second of the component lenses.
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From this we find

F F^ F^

To find the power obtamed by combining a lens

of ten inches focal length with one of twenty inches,

we have

1=1- 4- -1 = 1
F 10 20 20
-^= tt: + ttt: = 77;^ ; or, J^ = 6| inches.

In order to avoid fractions in the addition of

lenses, another method of numbering them is era-

ployed. This method, which possesses many advan-

tages, has almost entirely displaced the old method

in ophthalmology. The unit of power is that of a

lens whose focal length is one metre. This unit is

called a dioptre. A lens which has a focal length

of one-half metre has thejefore a power of two

dioptres. A lens whose focal length is two metres

has a power of .5 dioptre, and so on. Hence to find

the power of any number of lenses used in combina-

tion, we have only to add their dioptric values.

Thus a lens of two dioptres in combination with

one of three dioptres is equivalent to a lens of five

dioptres.



CHAPTER IV

THE EYE AS AN OPTICAL SYSTEM

The eye as an optical system consists of three

refracting surfaces and three media. The first sur-

face is the cornea. Strictly speaking, this is not a

spherical surface; it conforms more closely to the

small end of an ellipsoid of three unequal axes, but

we may without appreciable error replace in our cal-

culations the normal cornea by a spherical surface.

The anterior and posterior surfaces of the cornea

being very nearly parallel, and the refractive index

of the cornea and aqueous being practically identi-

cal, the cornea may be disregarded and the aqueous

humor may be considered the first refractive me-

dium. After traversing the aqueous, light enters

the crystalline lens. This is not composed of a

homogeneous medium, but of numerous layers, the

density of which increases from the outer to the

central part of the lens. To trace the path of light

through each of these layers would be an impossible

task. Helmholtz, accordingly, divides the lens into

three portions with increasing index,— the cortical

62
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or outer portion, the intermediate, and the nuclear

portion. From these he has determined the mean

refractive index of a lens having the same curvature

and refractive power as the crystalline lens. Refer-

ence to Fig. 20 will sliow that this does not mean

that the refractive index of Helmholtz'

equivalent is equal to the mean of the

indices of the three portions into which

the lens is divided. The index of tlie

equivalent is greater than the greatest

index of the component portions of tlie

lens ; for if the index of the entire lens

were equal to that of the nucleus, its refractive

power would be less than in tlie lens as constituted.

This will be seen from the figure. The letter n

indicates the nuclear portion, which has a small

radius of curvature ; and therefore, acting alone,

it would have a greater refractive power than the

entire lens of the same index, for its curvature is

greater. The outer portion has the same effect as

if two divergent menisci were added to the nucleus.

The index of the outer portion being less than that

of the nucleus, the addition of the two menisci has

a less divergent effect than if they had the higher

index of the nucleus. Thus we see that the refrac-

tive power of the lens with increasing index is

greater than if it were composed of homogeneous

material with the index of the most highly refract-
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ing part of the lens ; and consequently the index of

a homogeneous lens having the curvature and power

of the crystalline lens must be greater than that of

the nucleus of the lens. This equivalent, as deter-

mined by Helmholtz, is 1.4371.

Another effect of this increasing index is to

diminish spherical aberration. We have seen that

a spherical lens has a greater refractive power for

rays that meet it at a distance from the axis than for

those which pass near the axis. By means of the

physiological arrangement of layers with increasing

index, those rays which meet the lens near the axis

are acted upon by the more highly refracting nucleus,

while those which are remote from the axis escape

this portion and are refracted only by the cortical

layers of the lens.

Finally, after passing through the lens, light enters

the vitreous, whose refractive index is the same as

that of the aqueous.

Gauss, the eminent mathematician, has by his

researches rendered it possible for us to trace the

path of light from an external object through the

media of the eye to its focus on the retina.* Prior

to his work other mathematicians, notably Moebius,

had investigated refraction through a number of

media, but they neglected the thickness of the lenses,

* Gauss, "Dioptrische Untersuchungen," Werke, Band V.

Gottingen, 1867.
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thereby causing an appreciable error in dealing with

lenses of considerable thickness in comparison with

their focal length, as in the case of the lens of the

eye. Furthermore, Gauss demonstrated that an

optical system of any number of spherical surfaces

and media, the surfaces all being centred on the

same axis, has certain points and planes which are

very useful in determining the optical effect of

the system. These are called cardinal points and

planes, and are similar to the cardinal points and

planes of single lenses. As in single lenses we

have :

The first and second princiioal j^oints and the first

and second principal plane^^ and

The first and second principal foci and the first

and second principal focal planes.

When in any system the positions of these points

and planes have been determined, the solution of the

system is complete.

There are also two other points, the first and

second nodal points, which are similar to the

nodal points of a lens. These points, though

useful, are not necessary to the solution of the

system. Their properties were first demonstrated

by Listing.

Let P (Fig. 21) represent a point on the axis of

the system ; and let HR represent the first surface

or cornea of the eye ; WR the anterior surface and



HANDBOOK OF OPTICS

o»

a

WR' the posterior surface of the

crystalline lens. A ray of light passing

through P meets the cornea at i2 ; it

will be refracted so as to assume the

direction RR' ^ and if there were no

further refraction, it would meet the

axis at Q\ But after travelling the

distance RR\ it meets the anterior

surface of the crystalline lens and is

refracted so as to assume the direc-

tion RR''
^ and if it continued in this

direction, it would meet the axis at

Q^^
. But at the posterior surface of

the lens it is again refracted so that

its final direction is R'^Q, Hence we

see that in the first refraction Q' is

conjugate to P ; in the second refrac-

tion Q^' is conjugate to Q'
; and in

the third and last refraction Q is con-

jugate to Q'^
. The point Q being

the point of intersection of the ray

with the axis after the three refrac-

tions, is conjugate to P with reference

to the entire system.

To find the relation between the

position of a point and its conjugate

after refraction through the eye, we

make use of the foliowin or constants :

Fig. 21.
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The refractive index of air, which is denoted by 1

The refractive index of the cornea and aqueous n

The refractive index of the crystalline lens . . n'

The refractive index of the vitreous . . . . n

The radius of curvature of the cornea . . . r

The radius of curvature of the anterior surface

of the lens r'

The radius of curvature of the posterior surface

of the lens r''

The distance of anterior surface of the cornea

from the anterior surface of the lens , . . nt^

The thickness of the crj^stalline lens , . . , n't^

All distances measured from left to right are posi-

tive, and those measured from right to left are nega-

tive. In accordance with this convention of signs,

we use formula (5), page 31. Then r and r' are

positive and ?^'^ is negative. The distance from H
to S^ (Fig. 21) is denoted by 7it^, and that from R'

to S'^ by n^t^. Let the distance of P from the hrst

surface be denoted by/; and the distance of Q' from

the same surface by nfy The distance of the second

image Q^' from the second surface W is denoted by

n^f^, and the distance of the third image Q from the

third surface H^^ by nf^.^

* The reason for this notation will become apparent in the

course of the demonstration.
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Hence

PH=f; HQ>=nf^; H' Q" = n%; and JI"Q = nf,.

Then at the first refraction, applying formula (6),

page 31, we have

1 n 1 — n

f Vi r

At the second refraction,

(1)

n n' n — n'

H'Q' n% r

But H' Q' = HQ' - HH' = nf^ - nt^ ; hence

1 _ 1 _ n — n'

At the third refraction,

(2)

n/ n n^ — n

But H'^ Q^' =-- H' Q^' - WW^ = ^7*2 - nH^ ; there

fore

1 1 n^ — n

For convenience we make

—;r- = ^o' -^ = h' and -—^^h

(3)
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From (1) we have

From (2), /^ = f^ +—^.
h + j

From (3), f^ = t, + ^-p-

Substituting these values of /j and f^, we have

1
^=h, + ^—

(4)

^1 +

K + \
/

This is an equation expressing the relation be-

tween / and /g, from which we can find the conju-

gate focus of a point, P, in any case. The same

method may be applied to any number of surfaces,

but as the equation becomes much more cumbersome

with each additional surface, it is convenient to ob-

tain from the known properties of such an expres-

sion a simpler relation between / and /g. The

second member of equation (4) is called a continuous
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fraction. If we should neglect all the terms to the

right of Z^Q, the expression would become

Kq

If we neglect all except k^ + — , we have
^1

(a)

^0^1 + 1

h
(J)

Neglecting now all after k^ + , we have

Continuing this process, we finally embrace all the

terms and get the true value of the second member

of the equation. The expressions (a), (5), and (^)

are called convergents. If we examine the conver-

gent ((?), we shall see that its numerator is obtained

by multiplying the new letter k^ by the numerator

of the preceding convergent and adding the numera-

tor of the second preceding convergent ; and that

the denominator is obtained by multiplying the new

letter k^ by the denominator of the preceding con-

vergent and adding the denominator of the second

preceding convergent. This relation is true for all

subsequent terms of a continuous fraction such as

the second member of equation (4); we can there-



^i(Vi+ l) + '^o

k^h + 1

t^\k^(k,t^+ 1) + h\ + k,t^+ 1

t^ik^t^ + l) + t^
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fore write out the value of this fraction without

further calculation. The successive convergents, as

thus obtained, are :

(a)

(^)

(0

(Jl
(A)

^2[^2l^l(Vl + l)+ ^0<+Vl+ l] + /i:i(Vi + l)+ /i;o (^
k^\uxhh+'^)+h\+hh+'^ '(0"

For convenience we call the last two of these con-

vergents "^ and - ; then the next expression, which

will be the true value of the fraction, may be written

--:-,—f-, and equation (4) becomes
f^l + h

1 ^f^k + g

f U + h-

If we multiply numerator and denominator of the

second member of this equation by n^ we shall have

1 _ nf^k + ng

or nf^'l + nh =f - iif^ • ^ +/ • ng. (5)
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Since nf^ is the distance of the last image, Q\ from

the last surface, equation (5) expresses the relation

between P and its conjugate Q, Tliis is a general

equation, true for all positions of P ; we may there-

fore, by making 7if^ and / respectively equal to in-

finity, find the positions of the principal foci.

Equation (5) may be written

(^fk - V)nf^ = nh -f^ng,

or fk -1 =•

When ^/3 == GO, f-
I

Similarly we find when / = 00
9

nfs = —
ng
7.

These values determine the first and second prin-

cipal foci as measured respectively from the anterior

surface of the cornea and the posterior surface of the

crystalline lens ; but we cannot construct the image

of an object until we find the position of the prin-

cipal planes. These planes are, as we know, conju-

gate focal planes such that an object in one of them

will have its image in tlie other, the object and

image being equal and on the same side of the axis.

Hence to find these planes in a system of refracting
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surfaces, it is evident that we may use equation (5),

which expresses the relation between conjugate foci.

If, in this equation, we impose the condition that

object and image be of the same size and sign, the

resulting values of / and nf^ will be the distances of

the first and second principal planes from the ante-

rior surface of the cornea and posterior surface of

the crystalline lens, respectively.

Fig. 22

In Fig. 22 let PR represent an imaginary ray

directed toward E, After refraction throusfh the

system it appears to pass through E^ ; then E and

E' are conjugate foci. Let F mark the position of

the anterior, and F the position of the posterior

focus of the system ; then

k
and H^^F' = - '^.

k
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Since U is tlie point of intersection of the entering

ray with the axis, IIE=f; and likewise U\ being

the point of intersection of the emergent ray with

the axis, H'^U^ is equal to nf^. Equation (5) may
be written,

or,

But by a property of continuous fractions, gl — hk

= 1.*

„_,(/-l)(„/.-(^).-|. (6)

We have also (Fig. 22) FE = HE + HF, but HF
is in the figure negative ; if it were positive, we

should have FE = HE - HF ; or, FE^f--.
k

Similarly, FE' = nf^ - ^^^^-

Let the distance FU be denoted by u. As in the

case of single lenses, it will be most convenient to

consider u positive when U lies to left of F, and

negative when it lies to the right of F, as in our

* Reference to the simpler convergents on page 71 will make

this apparent.
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figure.* Likewise if the distance F'E' be denoted

by u\ then u^ will be positive when JE' lies to the

right of F\ and negative when it lies to the left of

i^^ as in the figure. Then

f — - becomes — u^ and iifo — ^ ^ becomes
k k

and equation (6) thus becomes

w

n

This equation is true for any two conjugate points

E and E' : and to find the values of u and u^ which

R /
Rl- r

R"

p" -____J^ -;:^r^r=^^^r H' H"
P' «'>'P

V \ y

Fig. 23.

give to E and E' the properties of principal points,

we make use of Helmholtz' formula for obtaining

the relation between the size of an object and its

image. In Fig. 23 let JI. H', and H" represent the

points of intersection of the refracting surfaces with

the axis ; then RH, R'H\ and R^'H" are the princi-

pal planes of these surfaces. A ray of light passing

* See Chap. II., p. 35.
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through P meets the principal plane RH at B ; it is

refracted to R' ^ where it is again refracted to R^

.

RPH^ the angle which the incident ray makes with

the axis, is called a, and the angle RP^H^ which the

refracted ray makes with the axis, is called a^ Simi-

larly, ^2 and a^ are the angles which the ray makes

with the axis after the second and third refractions.

Let &, 6j, h^, represent the distances from the axis at

which tlie ray meets the successive principal planes.

As in our previous demonstrations, the refractive in-

dex of air is unity; that of the aqueous and vitreous

are each n, that of the crystalline lens n^ ; the dis-

tance HH^ is nt^, and H'H^' is n^t^. From Fig. 23

we obtain the following equations

:

HP = -A_
; HP^ = —^ ; WP^' = -^.

tan a tan a-^ tan a^

Since in the first refraction IIP and RP^ are con-

jugate foci, and both negative, we have formula (5),

page 31,

1 , n 1— n tan a
,
n , tan a. -,

HP HP' r h h

from which n • tan a^ = tan a + kj).

Referring again to Fig. 23, Ave see that

h-^ = l + nt^* tan a^
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In exactly the same way it is proved that

7\! tan a^ = n ' tan a-^ + h-J)-^^ and 52 = ^1 + ^^^2 * ^^^^ ^2'

and so on. By these equations all the quantities

n • tan a-^, 5^, n' tan a^, h^^ ii • tan ag, may be expressed

in terms of tan a and h. Their values become

n tan a^ = k^b + tan a,

?>^ = O^Vi + 1)^ + ^1 tan a,

n' tan a^ = {k-^i^k^t-^ + 1) +A:q^ J + (/qf-^ + 1) tan a,

and so on.

The coefficients of b and tan a in these equations

are seen to be respectively the numerators and de-

nominators of the successive convergents on page 71.

Hence we may write out the value of b^^ thus :

b^ = gb + h tan a ; and n • tan a^ = kb + 1 - tan a, Avhere

g^ A, k^ and I have the same significance as on page 71.

If represent the linear dimension of an object

and i^, 2*2, and i^ the corresponding dimensions of the

successive images, then from Helmholtz' formula,

page 39, we shall have

• tan a = n 'i-^' tan a-^ = n^ - i^ • tan a^ = n - i^- tan a^.

The relation between the object and its final

image is

• tan a = i^' n ' tan a^, (7)
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But n ' tan a^ = kb + I - tan a, and from tlie figure,

b = HP tan a, or since HP = — /, b = —f • tan a.

Substituting this value, we have

n . tan a^= I - tan a — kf * tan a,

or n . tan a^ = k * tan a ( / j,

and equation (7) becomes

• tan a = i^k • tan al /).

Referring to page 75, we see that

Therefore o = i^ku^ and if object and image are

equal, which is the condition to be imposed in order

that u and u^ may determine the principal points,

= L and u = -*

From the equation

uw = -, we lind ii^= — —

.

k^ k

Thus we have determined the values of u and u^

which represent the distances of the first and second

principal points from the first and second principal

foci, respectively ; and since these distances are the
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first and second principal focal distances, we have

only to find the numerical value of k in order that

the solution of the system be complete. The value

of k can be obtained if we know the radii of the

refracting surfaces, the distances between these sur-

faces, and the refractive indices of the media. In

the human eye these quantities have all been meas-

p
R _ R

a| ^^-^F E E^ ^^F^ *

^'

^\ —^P'
S S'

^

Fig. 24.

ured by careful and scientific investigators. Of

these the name of Helmholtz is most conspicuous.

Before substituting these values it will be well to

show the construction of the image after refraction

through a number of media, and to demonstrate the

properties of the nodal points. The geometrical

construction of tlie image is almost a repetition of

that for sinoie lenses.

In Fig. 24, RS and R'S' represent the principal

planes, F and F' the principal foci, AP the linear
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dimension of the object, and A^P^ that of the image.

The anterior focal distance UF is denoted bj^ F^ and

the posterior focal distance F^F' by F', If, as in

our former notation, u denote the distance of the

point A from the anterior focus, and u' the distance

of its image from the posterior focus, then FA = u

and F^A' = u'. From the similar triangles PAF and

EFS we have
PA^FA
ES EF'

andas^AS^^^'P', ^^ ^^
P^Al EF

Since in our construction the object and image

are on opposite sides of the axis, the image ^ must

be considered negative, and we have this equation

to determine the size of the image :

on. F
; = — . or ^ = — —

— I F u

Also from the triangles E^F^R and F'A^P^, we

obtain the relation

F' . u^

— I u^ F'

This construction differs from that for single

lenses only in the respect that in lenses F and F'

are equal, while in the present case F is to F' as
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1 to ??, that is, as the index of air is to that of

the final medium or vitreous. If, after refraction

through any number of media, light enters a medium

of the same index as that of the first medium, the

system acts toward light as a single lens; if the

final medium has not the same index as the first,

the system is analogous to a single refracting surface.

S S'

J
p

F/^ E N E nV^ F/ ^ ^^
R x''

R

P/^

Fig. 25.

We have seen that in refraction at one surface

there is one nodal point at the centre of curvature,

and in refraction through lenses there are two nodal

points. The characteristic property of nodal points,

we remember, is that a ray directed toward one of

them appears after refraction to come from the other,

and in a direction parallel to that before refraction.

Let us then take a ray PR (Fig. 25) directed

toward the point N on the axis, so that after refrac-

tion through the system it appears to pass through
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N^ m a direction WP^ parallel to PR ; then N and

N^ are nodal points. To find the position of these

points we construct the principal planes RS and

R^S^ and the principal focal plane F^P^ . The ray

PR meets the first principal plane at R, It must

after refraction meet the second principal plane at

R so that ER = E'R' . P' is its point of intersec-

tion with the focal plane P'F' , If we draw any

two rays from P^, passing through the system, they

p

^N EN-^\.F'A ^\.F^^^^^^ ^'

^^^^^~-^:::^
r^'
P

Fig. 26.

must after refraction be parallel. Let P'N^ repre-

sent one of these rays, and P^S'
^
parallel to the axis,

the other. P' S' must after refraction pass through

the anterior focus F, SF will represent this ray

and RP will represent the ray P^N' after refraction.

FN^ the distance from the first focus to the first

nodal point, is FF + FK The triangle RFJV is

equal to RE'N\ and FES is equal to WF'Ri
hence FE + EN =^ WN' + N'F\ or FN= F' , In

the same way we find N'F' = F, When, as in lenses,
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F and F' are equal, it is clear that the nodal and

principal points coincide. It is also apparent that

the distance between nodal points is the same as

that between principal points. The size of the

image may be determined if we know the distance

of object and image from the first and second nodal

points respectively. In Fig. 26 AP=o^ and A^P' = i ;

then from the similar triangles J-PiV^and A'P'N'^

AP AN AN
TWr ^^

A^P^ A^N^ -i A^N'

The following is a table of measurements of the

constants which we shall require in the determina-

tion of the refractive power of the eye :

Radius of curvature of the cornea (r) . 7.829 mm.
Radius of curvature of the anterior

surface of the lens in a state of

rest (r^) 10 mm.
Radius of curvature of the posterior

face of the lens (/') 6 mm.
Distance of the anterior surface of the

cornea from the anterior pole of the

lens (nt^ 3.6 mm.

Thickness of the lens (n^t^) .... 3.6 mm.
Index of refraction of tlie cornea, aque-

ous and vitreous (ji) 1.3365 mm.
Equivalent index of refraction of the

crystalline lens Qi'^ 1.4371 mm.
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Substituting these values in the successive conver-

gents on page 71, we deduce the following :

^^0 = -"-^ =-.043

L =— = 2.6936
n

t.=^^ = 2.505
^ n'

r

]c^=:VLz±^- .QIQS

yto^j + l=.8842, ^1^1 + 1 = .9731,

^i(Vi + 1) + ^0 = - -0518,

hWihh + 1) + '^os + Kh + 1 = ^ = -7544,

t^ik^t^ + 1) + ii = A = 5.1312,

KiklhiKh + 1) + K\ + Vi + 1]

+ k^ih^f,^ + l) + A;o = A; = -. 0645,

K\hihh + 1) + i^iS + hh + 1 = Z = .8869.
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The first principal focal distance EF^ which is

equal to -, thus becomes
k

-15.5038 mm.; and RF or -=- 13.7504 mm.
k

Therefore FH, which is equal to FF — HF, is

— 1.7534 mm.; thus the cornea lies 1.7534 mm. in

front of the first principal point. The second focal

distance E^F\ being represented by — -, is
rC

20.721mm.; and H"F' or -^ is 15.6826 mm.

Therefore F\ the second principal point, lies 5.0884

mm. in front of the posterior surface of tlie lens,

and since this surface is 7.2 mm. behind the anterior

surface of the cornea, the second principal point lies

2.1116 mm. behind the cornea. The distance be-

tween the two principal points is .3582 mm. The

position of the first nodal point of the eye is, as we

know, found by laying off the distance FN equal to

E'F\ the second focal distance ; as thus found, N
lies 6.9706 mm. behind the anterior surface of the

cornea ; and since the distance between nodal points

is the same as that between principal points, the sec-

ond nodal point is 7.3288 mm. behind the anterior

surface of the cornea. With these points determined

our knowledge of the eye as an optical system is
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complete. The following table giving the positions

of these points will be found useful for reference :

Distance of the anterior surface of the .

cornea from the first principal point 1.7534 mm.
Distance of the anterior surface of the

cornea from the second principal

point .......... 2.1116 mm.
Distance of the anterior surface of the

cornea from the first nodal point . 6.9706 mm.
Distance of the anterior surface of the

cornea from the second nodal point 7.3288 mm.
Distance of the first principal focus

from the anterior surface of the

cornea 13.7504 mm.
Distance of the second principal focus

from the anterior surface of the

cornea 22.8326 mm.

The hypothetical eye which possesses these car-

dinal points is called the schematic eye.

We have seen that the method of determining the

size and position of the image is the same in refrac-

tion at one surface as in refraction at any number of

surfaces, with the exception that there are two prin-

cipal and two nodal points in the latter case and only

one principal point in the former, with one nodal

point at the centre of curvature. We also know

that the size of the image is proportional to the
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anterior focal distance ; and that this distance is

measured from the first principal point, while the

second focal distance, which determines the position

of the image, is measured from the second principal

point. In tlie eye the two principal points are so

near to each other that they may with very slight

error be merged into one. In this way the optical

effect of the eye may be represented by one refract-

ing surface whose summit coincides with tlie merged

principal points. Listing first proposed this simpli-

fication, and called tlie resulting equivalent the re-

duced eye.* In this reduction the single principal

point is between the two principal points of the

schematic eye as determined by Listing. f The

ratio of F to F^ remains unchanged, and as F is to

F' as 1 to n^ we can determine what value n must

have in the reduced e5^e. Listing takes as the an-

terior focal distance 15.036 mm., and as the second

focal distance 20.133 mm., from which we find n is

equal to 1.3365, and this, as a reference to the table

on page 83 will show, is the index of the vitreous.

From the equation F = -, we can determine the
n — 1

^ Dioptrik cles Auges, Wagner's " Handworterbuch der Phy-

siologie."

t Listing's schematic eye differs slightly from that given in the

text, since he takes the radius of curvature of the cornea as 8 mm.,

and the distance from cornea to lens and the thickness of the lens

as each equal to 4 mm.
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radius of curvature of the reduced eye. Using

Listing's measurements, this is 5.1248 mm. Figure

27 illustrates in (1) the schematic eye and in (2)

the reduced eye.

Fig. 27.

Bonders has furnished a less accurate but a more

useful reduced eye than that of Listing. He neg-

lects fractions, making the anterior focal distance

15 mm., the posterior focal distance 20 mm., and the

radius of curvature 5 mm. From F = we find
n — 1

n = 1.383, which is the index of water. Calculations
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as to the size of images with this eye are extremely

simple. If it be remembered that the size of the

image is proportiomil to the anterior focal distance,

and that in Bonders' eye this is 15 mm., while in

the schematic eye it is 15.5038 mm., it will be ap-

parent that the image obtained from calculation with

Bonders' eye is to the actual image in a normal eye

as 15 to 15.5038.

Based upon these data, artificial eyes have been

constructed for the study of tiie refraction of the

eye.



CHAPTER V

THE DETERMmATION OF THE CAEDINAL POINTS OF

THE EYE IN COMBINATION WITH A LENS

We must now carry our investigations one step

further in order to appreciate tlie effect upon vision

of placing a lens in front of tlie eye. A lens has two

refracting surfaces, and the eye three such surfaces
;

hence, if we wish to use the method given in the

preceding chapter, we must write out the convergents

for two additional surfaces ; but simpler than this

would be an independent geometrical construction,

from which we could find the effect of combining

two optical systems. But for our purpose it suffices

to make use of the reduced eye of one surface, since

we do not care to know the exact size of the retinal

image. What we wish to know is the relative size

of images with lenses and without them ; and the

investigation with the reduced eje furnishes this

information.

In Fig. 28 let A represent the centre of a spheri-

cal lens ; and since we neglect the thickness of the

lens, the letter A also marks the position of the

merged principal points of the lens. Let A^ repre-

90
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sent the position of the principal point of the reduced

eye. We know that in the lens A the proportion of

curvature at the two faces is immaterial, in other

words, any thin bi-spherical lens may be replaced by

a piano-spherical lens of the same focal length ; and

for the sake of simplicity we shall make this substi-

tution. To find the cardinal points of the combina-

tion of eye and lens, we use the formulae deduced in

the preceding chapter. If F denote the anterior and

F,

Fig. 28.

F^ the posterior focal length of the combination, then

1 71 »F= -^ and F' = , in Avhich n represents the index
k k

of the reduced eye, that is, if we use Listing's re-

duced eye, it is equal to the index of the vitreous,

and if we use Bonders' reduction, n is equal to the

index of water. The thickness of the lens, which

in our formula is represented by nt^^ is equal to zero
;

and the distance of the lens from the eye, which is

represented by n^t^-, becomes t^, since n'^ being now

the index of the air, is unity. This distance between

the eye and lens may be conveniently denoted by the

letter e ; then t^ in the formula is replaced by So
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Thus we have h^ = , in which r represents the
r

radius of curvature of the first surface of the lens and

n the index of the lens ; in the piano-spherical lens

is equal to the focal length of the lens. If we
1—n

denote this by F-^^ we have k^^ — —• The radius of

curvature of the second face of the lens is infinite,

hence ^j = 0. In the same way we find k^ = —

,

F^ being the anterior focal length of the eye. Mak-

ing these substitutions in the expressions (^), (Jc),

and (0» page 71, we derive

e + F.

._e_±F^±F^

Hence, F = \ =—^^ ;

Wi^ n^ nF,F,^ ^ F,F,<

k F^ + F^ + e F^ + F^^ + e

With the convention of signs whicli we are using,

F^ and F^ , being measured to the left of A and A'
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respectively, are both negative. In order that the

formulae may be applicable in any case without pre-

fixing the minus sign to F^ and F^, we must change

the sign of these quantities. Making this alteration,

the equations become

jT^l^ F,F,
. ^,_ n^ F,F4

h F^ + F^-e' h F^ + F,^-e

It is in this form that these equations are usually

written. To find the distance from the lens to the

anterior focus F^ we have

AF-^- F,{F,-e^
,

k F^ + F^-e'

and to find the distance from the principal point A^

of the eye to the posterior focus F , we have

k F^ + F,^-e

Having found the positions of the two foci and the

two focal distances, we know also the positions of the

two principal points, and the solution of the system

is complete.



CHAPTER VI

ERRORS OF REFRACTION— LENSES USED AS
SPECTACLES

We have studied the eye as an optical system,

taking as our measurements those found to exist

with close approximation to uniformity in a large

number of eyes. The posterior focal distance of

this system we have found to lie 22.8326 mm. behind

the anterior surface of the cornea. When the retina

lies at the same distance from the cornea, the image

of a distant object will be accurately formed on the

retina. When the retina lies in front of the focus

of the eye, the image of a distant object will be

blurred. This condition of the eye is called hyper-

opia ; and when the retina lies behind the focus, the

resulting condition is called myopia.

Eyes so constituted that retina and principal focus

do not coincide are said to be ametropic, or affected

with errors of refraction. When retina and focus

coincide, as in the normal eye, the condition is called

emmetropia. A distant object will be clearly seen

by a healthy emmetropic eye, but the image of a

near object will fall behind the retina. In order

94
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that a near object be clearly seen, either the eye

must be elongated or the focus must be brought

forward. The latter change is the one which occurs

by an increase in curvature of the crj^stalline lens

(principally of the anterior surface of the lens)

uncier the influence of the ciliary muscle. This

change in curvature is called accommodation, ^j it

we are enabled to adapt the eye for varjdng distances.

Since the curvature of the lens is increased during

accommodation, the optical system of the eye in this

state differs from that when the eye is adapted for

a distant object ; the focal distance has been sliort-

ened hj the exercise of accommodation, and the retina

now lies behind the principal focus ; in other words,

the eye has become myopic. Thus we see that the

emmetropic eye can render itself myopic in order

to see near objects. Similarly, a hyperopic eye,

possessing sufficient accommodative power, may be-

come emmetropic to see distant objects, and by a

still further increase in curvature of the lens may
even become m3'opic and thus see clearly near objects.*

The myopic eye is unable to increase its focal dis-

tance, thus bringing the principal focus back to the

retina ; it cannot therefore see distant objects clearly.

Since an eye may be myopic either from increase

in curvature or from increase in the antero-posterior

* These conditions, however, are not inchided in the usual

acceptation of the words emmetropia and myopia.
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diameter, we have curvature myopia and axial

myopia. Similarly, we have curvature hyperopia

and axial hyperopia. In axial hyperopia and myopia

the eye as an optical system is normal, the defect

being in the position of the retina; in curvature

ametropia the deviation from the normal is in the

optical system.*

Without using the formulae for the cardinal points

of the eye and lens in combination, we can easily

Q

Fig. 29.

understand how lenses can in hyperopia and myopia

bring the retina and principal focus into coincidence.

Let A'R (t^ig- 29) represent the cornea of a hyper-

opic eye whose principal focus is at F^ behind the

retina. Rays of light parallel to the axis before

entering the eye will after refraction meet at Fc^^,

In order to bring these rays to a focus at F on the

retina, we introduce a convex lens A. Let Q be

the principal focus of this lens ; then a ray PR
parallel to the axis will, after passing through the

* hidex ametropia, which in optical effect resembles curvature

ametropia, occurs in exceptional cases.
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lens, take the direction RQ ; but at R' it is refracted

by the eye and assumes the direction R'F.

Let A^R C^ig- 3^) i^epresent the cornea of a

myopic eye wliose focus F^ lies in front of the

retina ; tlien rays of light parallel to the axis before

entering the eye will, after refraction, meet at F^.

A ray passing through the point Q will meet the

axis at its conjugate focus behind the principal focus.

Let Q be so taken that its conjugate lies on the

retina; then Q is the far point of the eye, since light

Fig. 30.

from any more distant point will meet the axis in

front of the retina. If we place at A a concave

lens whose focal length is A Q, then any ray paral-

lel to the axis will, after refraction through the lens,

appear to pass through Q, and its direction will be

QR . But the ray QR will, after refraction by the

eye, meet the axis at F, Hence a concave lens

whose focal length \^ AQ will bring parallel rays

to a focus on the retina.

It is clear from these diagrams that the farther

from the eye the convex lens is placed the weaker
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is the lens required to bring the retina and focus

into coincidence, since AQ is the focal length of the

required lens. In the case of myopia the opposite

is true, for AQ^ the focal length of the lens, dimin-

ishes as the lens is removed from the eye.

We can determine the amount of shortening of

the eye in hyperopia, or of lengthening in myopia,

from the equation

f f

In this equation F and F^ are the focal distances

of the eye, and / and /' are the conjugate distances

^^^and^^^.
This equation is true not only for refraction at

one surface and for lenses, as we have seen; it applies

equally to a system of refracting surfaces. That

this is so, follows readily from the equation

/ 1 n
uu' = • -9

k k

1 n
since u^f-F, u^ =f - F\ and -.t.'-^^FF^.

k k

Applying this equation in myopia, if Q^ the far

point of the eye, is 100 mm. from the first principal

point of the eye, then / is 100 mm. Substituting for

F^ the anterior focal distance, its value 15.5038 mm.,

and for F^ its value 20.721 mm., we find the corre-
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sponding value of/' to be 24.5219 mm. That is,

the retina lies 24.5219 mm. behind the second prin-

cipal point of the eye. Subtracting 20.721mm.,

which is the distance of the retina from the second

principal point in the normal eye, we have 3.8009 mm.

as the amount of lengthening.

In hyperopia if rays directed toward Q (Fig. 29)

would be focused on the retina, and if the distance

of Q from the first principal point of the eye is

100 mm., tlien / in our equation becomes — 100 mm.
Making the proper substitutions as before, we find

/' to be 17.9402 mm., and the amount of shortening

is 2.7808 mm. From this we see that the shortening

in hj'peropia is less than the lengthening in the same

degree of mj^opia.

Since the strength of the lens required to correct

an error of refraction varies with the position of the

lens, it is clear that we cannot measure the error

by the correcting lens unless we adopt some fixed

position at which the lens should be placed. To be

strictly correct, this should be at the first principal

point, from which Q is measured, but as this is im-

possible, the position at which spectacle lenses are

ordinarily worn, about 15 mm., in front of the cornea,

is taken as the standard. In our example of the

myopic eye, 100 mm., as measured from the first

principal point E (Fig. 22) indicates the position of

the far point in a myopia of 10 dioptres; but the
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focal length of the correcting lens, placed 15 mm. in

front of the cornea and consequently nearly 17 mm.
in front of E^ must be a trifle more than 83 mm.
Taking this as 83 mm., the dioptric power of the

lens is slightly more than 12 D. In tlie second ex-

ample we have a hyperopia of 10 dioptres as meas-

ured from E^ while the degree, as indicated by the

correcting glass placed 15 mm. in front of the

cornea, is about 8.5 D.

If the crystalline lens has been extracted from the

eye, there is only one refracting surface and one

medium, for the index of the aqueous and vitreous

are identical. The second principal focal distance

of the aphakic eye is therefore derived from the

equation

nr
F^ =

n — \

and from this the focus is found to lie 31.095 mm.
behind the anterior surface of the cornea. The diop-

tric power of the aphakic eye is therefore 32.16 D.

The principal focus of the normal eye lies 22.8326 mm.

behind the anterior surface of the cornea ; hence its

dioptric power is 43.8 D. Subtracting the power

of the aphakic from that of the normal eye, we find

that the action of the crystalline lens, when adapted

for distant vision, is nearly equivalent to that of a

lens of 11.5 D. placed in contact with the cornea.
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After extraction of the lens from an emmetropic eye,

a convex lens of 11.5 D. would be required to bring

the image of a distant object to an accurate focus on

the retina, if the lens were worn in contact with the

cornea ; but as this is impracticable, a weaker lens

is required. If the distance of the lens from the

cornea be 15 mm., then its focal length must be

87 mm. (the focal length of a lens of 11.5 D.)

+ 15 mm. A lens having this focal length repre-

sents a dioptric power slightly in excess of 10 D.

Hence after extraction of the lens from an emme-

tropic eye, we should expect a lens of 10 D. to rec-

tify the refractive condition for distant objects, and

this corresponds very closely with what we find in

practice.

Let us now examine the condition which exists

after extraction of the lens from a mj^opic eye. If

the myopia is caused by excessive curvature of the

cornea, the amount of myopia relieved by the ex-

traction is the same as in emmetropia, that is, if

there existed prior to extraction 11.5 D. of myopia

as measured from the cornea, the eye would be

rendered emmetropic by the extraction. This,

however, is not so when, as is usually the case, the

myopia is due to lengthening of the antero-posterior

diameter of the eye. As previously shown, the pos-

terior focus of the aphakic eye of normal curvature

lies 31.095 mm. behind the cornea. Hence if an eye
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is emmetropic after extraction of the lens, the retina

also must lie at this distance from the cornea. To
find what degree of myopia exists in an eye whose

retina lies at this distance from the cornea, we must

use the equation

/ /'

As we can find from this equation the amount of

lengthening, if we know the distance (/) of the far

point from the eye ; so if we know the distance (/^)

of the retina from the second principal point, we can

find the distance (/) of the far point from the eye,

and this distance measures the myopia. Our result

will be sufficiently accurate if we consider F as

16| mm., F^ as 21 mm., and /' as 29 mm. We find

this last value by subtracting 2.1116 mm., the dis-

tance of the second principal point from the cornea,

from 31.095 mm., the distance of the retina from

the cornea, the result being the distance (/') of

the retina from the second principal point. Making

these substitutions, we find the corresponding value

of / to be 66.2 mm. This is the distance of the far

point of the eye from the first principal point; its

distance from the cornea is therefore approximately

51.4 mm. ; or, expressed in dioptres, the myopia, as

measured from the cornea, is 18.3 D.

To find what is the required power of the correcting
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lens for this amount of myopia we shall consider the

lens placed not, as before, 15 mm. from the cornea,

but 15 mm. from the first principal point, or about 13

mm. from the cornea. The position at which spec-

tacle glasses are usually worn is more remote from

the eye than as indicated in the standard (15 mm.)

which we have taken, but this is not so when very

strong concave lenses are worn. These lenses, when

tolerated, are worn very near the eye ; hence we

make the change in distance so as to be more in

accord with the actual conditions with which we

meet. It will be noticed that a slight change in

position of these strong lenses makes perceptible

change in dioptric power. The focal length of the

correcting lens in the case which we are considering

thus becomes 56.2 mm. — 15 mm., or 41.2 mm. The

power of the lens is accordingly 24 D. From this

we see that the eye must have a myopia of 24 D. as

measured by its correcting lens in order to become

emmetropic after extraction of the lens from the eye.

Let us now deduce from calculation the lens re-

quired for distant vision in an aphakic eye, in which,

before extraction, a concave spherical lens of 20 D.

was found to correct the ametropia. Making the

proper substitutions, we first find that in tliis case

the retina lies 29.7 mm. behind the cornea, and since

the posterior focus of the aphakic eye is 31 mm.
behind the cornea, the eye will be hyperopic.
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In the equation — +— = 1, I^ now represents

the anterior focal length of the aphakic eye ; it is

therefore approximately 23 mm. ; F^ represents the

posterior focal length, approximately 31 mm,; /'

represents the distance A!F (Fig. 29), and in this

case is 29.7 mm. From these data we can find /
(A!Q^ Fig. 29), the focal length of the required lens

if placed in contact with the cornea. We thus de-

rive the value/= — 512 mm. Supposing that the

lens will be worn in the same position as the con-

cave lens previous to extraction, we add 15 mm. to

512 mm. The dioptric power of the lens required

to correct the existing hyperopia is therefore 1.9 D.

This result agrees very closely with the condition as

found to exist in a particular case after the removal

of the transparent lens for the cure of myopia. So

close an approximation could not be obtained in

every case, however, for in high myopia there is

frequently defect in curvature and in position of

the lens as well as in length of the eye.

From the foregoing studies we also learn the

effect of a change in the position of the crystalline

lens upon the refractive power of the eye ; if the

lens move toward the cornea the eye will be rendered

myopic, and if it move away from the cornea the eye

will become hyperopic.

We shall next study the effect of changing the
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position of spectacle lenses when used for near

vision. We have seen that convex lenses used to

aid the distant vision of hyperopes increase in power

as they are withdrawn from the eye. When convex

lenses are worn by presbyopes to replace the accom-

modation which has failed, the effect of withdrawing

the lens varies under different circumstances. Sup-

pose first that we are dealing with an emmetropic

eye whose accommodative power has entirely failed
;

this eye can focus only parallel rays upon the retina.

Fig. 31.

Let P (Fig. 31) represent the point where a near

object intersects the axis ; then, in order that the

object be clearly seen by the eye without accommo-

dation, a convex lens A^ whose focal length is AP^
must be placed before the eye. As the lens is re-

moved from the eye the focal length AP diminishes,

and the strength of the lens necessary to produce

distinct vision must be increased.

We shall next take the case of a hyperopic eye

whose accommodative power has been lost. Let P
(Fig. 32) represent the intersection of a near object

with the axis ; then the conjugate of the point P in
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the refraction by the lens is Q, which lies behind the

retina. If the position of Q be such that it is con-

jugate to R in the refraction by the eye, then the

object at P will be accurately focused on the retina

with the aid of the lens. If P remain stationary

while the lens is moved to A^\ the effect upon the

power of the lens will not be the same in all cases.

We have the equation

1,1 1 1,11+ -7-7; = -^, or - + - = —.
AP ' AQ F' f f F

When the lens is moved from A to A^\ the dis-

tance/is diminished by AA^\ and/^ is increased by

AA' . To study the effect of this change upon the

equation, we take the case when / and /' are equal,

each being then equal to '2F, The equation then

1
1^11

becomes
^^^^^^^J

When the lens is at A!^ we have the similar equa-

tion 1^1 1

IF^AA!' 2F + AA" F^
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from which

1 4F 1

4F

From this we have F. = F — —^ • Therefore,

F^ is less than F^ and the dioptric power of the lens

must be increased in order that Q may be conjugate

to P, In other words, for a fixed lens the line PQ
is shorter when AF and AQ are equal than for any

other position of the lens ; conversely, if the line PQ
remains constant, a stronger lens is required when it

is moved from its central position at A, whether it is

moved toward P or toward Q. Hence we have this

rule : If the distance between object and lens is less

than twice the focal length of the lens, the power of

the lens is diminished by moving it from the eye and

toward the object ; if, on the other hand, the distance

between object and lens is more than twice the focal

length of the lens, the power of the latter is increased

by moving it away from the eye. It will be observed

that the distance at which a book is held for reading

is ordinarily less than twice the focal length of the

lens worn as a reading glass ; consequently the power

of such a glass is weakened by moving it from the

eye.

In Fig. 33 we have a representation of an eye

myopic either from abnormal length of axis or from
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act of accommodation. Without the aid of a lens

the conjugate of ^ is at J? on the retina ; but in

order that an object at P, nearer than §, may be

seen, a convex lens is required ; then in the refrac-

tion by the lens, P and Q are conjugate. It is seen

that AP is positive and AQ \^ negative ; therefore

AP must be less than 2F, for it must be less than F
in order that AQ may be negative. Hence, as in the

Q

previous case, the power of the lens will be dimin-

ished by moving it away from the eye.

From this we see that the statement that pres-

byopes increase the power of their glasses by moving

them to the tip of the nose is inaccurate. The power

of the lens can be increased in this way only on con-

dition that the object is moved in the same direction

and to the same extent as the lens ; but as the object

is removed from the eye, the retinal image becomes

smaller— a manifest disadvantage.



CHAPTER VII

THE EFFECT OF SPHERICAL LENSES UPON THE
SIZE OF RETINAL IMAGES

Spherical lenses used for the purpose of bringing

the image of an object to an accurate focus on the

retina have also an effect upon the size of retinal

images. In many cases this is so slight as to escape

notice ; but when strong glasses are worn the effect

is considerable. If the glass before one eye differs

much in strength from that before the other eye,

confusion results from the unequal images, and such

glasses are usually rejected. The size of the image

after refraction through any optical system is ob-

tained, as we have learned, from the equation

1 = — —
^,

where u is the distance of the object from the an-

terior focus of the system, and F^ is the anterior

focal distance. This equation gives a negative value

for the image when it is real, since such an image

lies on the opposite side of the axis to the object,

and is consequently inverted. As we shall have in

109



110 HANDBOOK OF OPTICS

our further studies to deal only with retinal images,

we shall neglect the minus sign, because the image

is seen by the observer as erect, the transformation

being made by mental act. Hence we shall consider

as positive those images which appear to be erect

;

and we shall consider as negative those which appear

to be inverted. Our equation thus becomes

u

If now a lens be introduced before the eye, we
shall have a new optical system ; and, as before, the

size of the image formed by this system will be

found from the equation

where ^6^ represents the distance of the object from

the new anterior focus, and F represents the new

focal distance. Hence the relation of the size of

the image with the lens to that without the lens

is expressed by the equation

^^ _ u X F
i U^ X i^2

When the distance of the object is great in com-

parison with the change in position of the anterior
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focus caused by adding the lens, then u and u-^ may

be considered identical. As this is true in the case

of lenses used as spectacles, we have the simplified

expression

But on page 93 we learned that the anterior focal

distance of the eye combined witli a lens is derived

from the equation

F F^
F^ + F,^-e .

Making this substitution, we have

^ = __Z__.
i F^ + F^- e

In this equation F^ is the focal length of the lens,

F^ is the anterior focal length of the eye, and e is

the distance between eye and lens. This formula

is sufficiently accurate to determine the effect of

spectacles upon retinal images except when the

object is very near the eye ; but as we wish to show

the magnifying power of lenses in all positions in

front of the eye, we shall examine the condition

when u and ii^ cannot be considered identical. Re-

ferring to Fig. 28 we see that u = PF^, and u^ = FF.
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Hence u^ = u + FF^ = u + QAF- AF^)
;

but on page 93 we found that AF is equal to

F^ + F^-e

We see also that

From this we find

uF^ + u(F^ - e) + (j; - ^y
F^+F^-e

or,

and i^= ^
i Mj'i4-M(-F2-e) + (-^2-0^'

or,
i' _ F^

' F^ + iF^ - + ^^^ ~ ^^'
.

^t

This is the general expression for the magnifying

power of any lens in combination with the eye, or

with any other optical system. Examining this

expression, we see that if F^ = e^ that is, if the lens

be placed at the anterior focus of the eye,
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Hence a lens so placed has no effect upon the size

of retmal images. This is true whether the lens is

convex or concave, and irrespective of the distance

of the object.

If the lens be convex and F^ be less than g, that

is, if the lens be without the anterior focus of the

eye, F^^ — e will be negative, but (jP^ — 6)^ will be

positive. The least value which u can have is equal

to ^ — F^, *since the object cannot lie between the

lens and eye. When u = e — F^^ i' and i are equal,

which indicates that there is no effect on the size of

the image when object and lens are in contact. But

as the distance of the object is increased and u

assumes a greater value, the lens exerts a magnify-

ing power upon the image, and this magnification

increases as the distance between lens and object

increases. We observe also from a further study of

the equation that as e, the distance between eye and

lens, varies, the magnifying power varies. When
this distance becomes such that

u

the denominator of the expression which denotes the

magnifying power becomes zero, and - becomes

iniijiite.

If (e - F^^ is greater than F^ + ^ '^
~ ^^

, then ^
becomes negative.
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To render the meaning of this clear, we shall first

suppose the object to be so distant in comparison

with the distance between lens and eye that the

fraction ^^—

^

^ may be neglected as inappreciable.

In this case — becomes — ^ , and this exyjres-
i F^ + F^ — e

sion is negative when e — F^i^ greater than F^^ that

is, the image is inverted when the distance of the

lens from the anterior focus of the eye is greater

than the focal length of the lens. An aerial image

of the object will then be formed by the lens in

front of the eye, and a second image will be formed

by the eye.*

As the object approaches the lens, the term

5^—2 ^ can no longer be ignored, and e — F^^ the
u

distance of the lens from the anterior focus of the
/^ XT \2

eye, must be greater than F^ + ^^—^ L in order
u

that the inverted image be formed.

The meaning of this is that as the object ap-

proaches the lens, its image recedes behind the pos-

terior principal focus, F^^ and in order that the

aerial image be formed in front of the anterior focus

of the eye, the distance of the lens from the eye

* When the aerial image is near the anterior focus, the final

image will lie far behind the retina, and no distinct image will be

perceived by the eye.
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must be greater than when the object is more re-

mote. If we solve the equation

e-F,-F, + , .

we obtain the relation between e — F^ and u^ which
i' . .

exists when — is infinite. This relation thus becomes

Since we cannot extract the square root of a nega-

4:F
tive quantity, the fraction 1 must be less than 1,

or equal to it, in order to give a real value to the ex-

pression. Hence we see that the least value which u

can have and satisfy the condition — = oo is u = 4:F-^]

and when u = 4:F^ we find the corresponding value

for e — F^ to be -. In other words, the image can-

not become infinite, and consequently cannot become

negative, when the distance of the object from the

anterior focus of the eye is less than four times the

focal length of the lens. When this distance is

equal to four times the focal length of the lens, the

image becomes infinite provided the lens is placed

midway between the object and anterior focus of the

eye. All this follows from what has been said in

the preceding chapter in regard to the effect of
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changing the position of a lens in near vision, and

we need not have deduced this result algebraically.

We have seen that PQ (Fig. 32) is shorter when the

lens, A^ is half way between P and Q than in any

other position. Similarly, in Fig. 28, the least dis-

tance from F^ at which P may be situated and still

form an image at this point is four times the focal

length of the lens, and the lens must be at the mid-

way point of the line PF^. Whether the lens be

moved toward the object or toward the ej^e, the

image will be thrown to the right of F^^ and the

final image will be reduced in size. Thus the image

attains its greatest size when the lens is in this mid-

way position, and we have this rule for determining

the effect of changing the position of the lens : As

the convex lens is removed from the eye, the magni-

fying power increases so long as the distance of tlie

object from the lens is more than twice tiie focal

length of the lens, and when the distance between

object and lens is less than twice the focal length of

the lens, the magnifying power is diminished by

further removal of the lens from the eye.

If, while the lens is convex, F^ — e be positive,

that is, if the lens be placed within the anterior

focus of the eye, then i^ will always be less than i.

We next suppose the lens to be concave. In this

case F^ is negative. Our equation shows that when

F^ is less than g, or when the lens is without the an-
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terior focus, i' is less than z, except when it = e — F^;

in tliis case, as with convex lenses, i^ and i are equal.

When F^ is greater than e, i' is greater than i.

To sunimarize : A convex or concave lens placed

at the anterior focus of the ej'e or of an}' optical sys-

tem, though it alters the j^osition of the image of an

object, has no effect upon the size of the image.

A convex lens placed without the anterior focus

of an optical system magnifies the image, the degree

of magnification varjdng with the distance between

the lens and anterior focus, and with the distance

between the object and the lens.

A convex lens placed witJiin the anterior focus of

an optical system minifies the image, the degree of

minification varying with the distance between the

lens and anterior focus and with the distance between

the object and lens.

A concave lens placed loithin the anterior focus

magnifies the image ; if placed ivitliout the anterior

focus it minifives the image, the degree of magnifi-

cation or minification varying with the distance be-

tween lens and anterior focus and with that between

object and lens.*

* The student should verify these phenomena by taking a con-

vex lens of 20 dioptres, which may represent the eye ; if another

lens be held before this and be moved to and fro while an object is

viewed through the combination, the effect of the second lens upon

the size of the image can be easily noted.
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The anterior focus of the eye we have found to

be 13.7504 mm. in front of the cornea. Spectacle

glasses, being usually worn farther from the eye

than this on account of the projecting eyelashes,

must affect the size of retinal images ; convex lenses

magnify and concave lenses minify these images.

Thus in the hyperopic eye, which sees with the aid

of a convex lens, the image is larger than it would

be in the emmetropic eye, because the optical sys-

tem is the same in the two eyes, and the addition

of a convex lens placed without the anterior focus

magnifies the image. Similarly, in a myopic eye,

which sees with the aid of a concave lens placed

without the anterior focus, images will be smaller

than in an emmetropic eye.

We must now compare the image as formed by

the unaided hyperopic eye with that formed by the

emmetropic eye. The hyperopic eye is enabled to

see objects by an increase of curvature of the crys-

talline lens, by which means its dioptric power is

increased and its focal distances are diminished.

Hence the size of the retinal image is diminished

by the change, since this is proportional to the an-

terior focal distance. The hyperopic eye without

a correcting lens has smaller images than the emme-

tropic eye ; and as the same eye with a lens has

larger images than the emmetropic eye, it is evident

that in hyperopia images are increased in size by the
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correcting lens. The same holds true in near vision,

since a greater amount of increase in curvature is

necessary for the hyperopic eye to see near objects

than for the emmetropic eye to see the same objects,

and in consequence the image in the hyperopic eye

is smaller than in the normal eye ; but with the aid

of the correcting lens the image is larger in the

hyperopic than in the normal eye. Likewise, pres-

byopes, who wear convex lenses to enable them to

see near objects, have larger images than those who

see near objects by act of accommodation.

The myopic eye cannot adapt itself to distant

vision, and hence without a lens all images of dis-

tant objects are blurred. Such an eye, however,

sees near objects either without any increase of

curvature or with less increase than would be re-

quired in an emmetropic eye. Thus we see that

the myopic eye has the advantage of larger images

of near objects than the normal eye has. If the

myopia is corrected by a concave lens, the eye must

now make the same effort of accommodation that the

normal eye makes. The image is accordingly mini-

fied by the increase of curvature and by the concave

lens if this is worn without the anterior focus of the

eye. In the high degrees of myopia, in which strong

glasses are required, the minifying effect is a serious

obstacle to their use. In these cases the lenses

should be worn as near the eyes as possible.
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We shall now investigate the aphakic eye. The
second principal focal distance of this eye is

31.095 mm. As the retina is only 22.8326 mm.
behind the cornea, we have in the aphakic eye a high

degree of curvature hyperopia. The anterior focal

distance of the aphakic eye is 23.2659 mm. Hence

the eye which has been deprived of its crystal-

line lens has larger images than the normal eye.

The image, however, will be formed far behind the

retina ; and in order to bring it forward to the

retina a strong convex lens is required. This lens

worn as a spectacle glass will be within the anterior

focus of the aphakic eye. It will, accordingly,

reduce the size of images so that they more nearly

correspond in size with those as formed in the nor-

mal eye. If the eye be hyperopic prior to the

extraction of the lens, the images will be still more

nearly approximated in size to those formed in

the normal eye, since a stronger convex lens will

be required to focus rays on the retina than if the

eye had been normal. But even in high degrees

of hyperopia the image will not be reduced by the

correcting lens to the size of the normal image.

In the myopic eye images w^ill be larger than if

the eye had been emmetropic before extraction,

because a less convergent lens will be required than

if the eye had been normal. Thus we see that in

all aphakic eyes the retinal images, as formed with
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the aid of correcting lenses, are larger than in nor-

mal eyes, and that of aphakic eyes, those which

were hyperopic prior to the extraction are least

favorably sitnated as regards the size of images,

and those which were myopic prior to the extraction

are most favorably situated in this respect. To this

enlargement of images is due the remarkable increase

of visual acuity after extraction of the lens for the

cure or improvement of myopia. We have seen

that the excessively myopic eye which requires a

strong concave lens to produce clear images is very

much hampered by the minifying effect of the cor-

recting lens. If, after the extraction of the crj^stal-

line lens, parallel rays of light are focused on the

retina without the aid of a lens, the size of the image

of a distant object, as formed in this eye, will be

to the size of the corresponding image m a nor-

mal eye as the anterior focal distance of the aphakic

eye is to that of the normal eye. Omitting fractions

this ratio is as 23 to 15.* When we consider that,

before the extraction, images were reduced in size,

we are prepared to expect great improvement in

visual acuity in those cases in which the operation

has been successfully accomplished.

To the enlargement of images, though in a less

* This ratio refers to the linear dimensions of the images. The

relative amount of retinal surface covered by the images is pro-

portional to the squares of these numbers.
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degree, is also due the excellent visual acuity which

sometimes follows cataract extraction in emmetropic

eyes. In the most successful cases a visual acuity

of ^^ may be obtained in spite of the fact that the

pupil is not entirely free from particles of opaque

matter.

Finally, we shall consider the effect upon retinal

images of changing the position of the convex lens

in near vision. We have seen, as we might infer,

that the size of the image varies according to the

same rule as does the dioptric power of the lens

in any position, that is, if the distance between the

object and lens is less than twice the focal length

of the lens, the power of the lens is weakened

and the size of the image is diminished by removal

of the lens from the eye ; and if the distance of

the object is more than twice the focal length of

the lens, the power of the lens and the size of the

image are increased by removal of the lens from

the eye. Thus, as the prevalent belief that pres-

byopes increase the power of their glasses by placing

them on the tip of the nose was shown to be not

generally true, so the statement made in some text-

books that by so placing them larger images are

obtained, is also erroneous.

The condition when the eye is emmetropic and

without accommodative power is shown in Fig. 31.

When one looks through an ordinary hand magni-
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fying glass, tlie same conditions are present. If, as

is usually the case, the distance of the object from

the anterior focus of the eye is less than four times

the focal length of the lens, the image is never in-

verted. If this distance is less than twice the focal

length of the lens, then as the lens is removed from

the eye the image is diminished in size. But when

the lens A is farther from the object P than the

focal length of the lens, tlie pencils of light after

passing through the lens are convergent, and cannot

be focused by a normal eye ; hence the nearest point

to the eye at which the lens can be placed and afford

distinct vision is such that the object is at the focus

of the lens, and this is for the emmetropic eye the

position of greatest magnifying power. The hyper-

opic eye can focus the convergent pencils and receive

a clear image when the lens is to the right of A ; on

the other hand, the myopic eye can only focus diver-

gent pencils such as are formed when the lens is on

the left of A and nearer to the object.



CHAPTER VIII

CYLINDRICAL LENSES

We have assumed that the refracting surfaces of

the eye are spherical in form. This is permissible

in normal cases, but in a large proportion of eyes the

refracting surfaces— more especially the cornea—
do not have this regularity of curvature ; the curva-

ture is found to vary appreciably in different meridi-

ans, the meridians of greatest and least curvature

being usually at right angles to each other. These

are called the principal meridians. Such a surface

is called a torus or toric surface. The outer convex

surface of a ring is an example of a toric surface.

In an eye whose cornea is of this form the image of

a point will not be another point, and from this fact

the defect is called astigmatism. This asymmetry of

refraction was first noticed by Dr. Thomas Young,

the celebrated physicist, but Sir George Airy, who

had the defect in his own eyes, was, in 1827, tlie

lirst to correct it by means of suitable lenses.

Astigmatism may be produced by faulty curvature

or oblique position of the crystalline lens, but its

most common source is asymmetrical curvature of

124
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the cornea. If the curvature of the cornea be nor-

mal in one meridian and too little or too great in the

meridian at right angles to this one, the defect may

evidently be corrected by a lens having no curvature

in the normal meridian, and having in the meridian

at right angles to this such curvature as will counter-

act the defective curvature of the cornea in this me-

ridian. A lens of tliis nature would be cylindrical

in form. If, with the equalization of curvature, the

eye is still ametropic, a sj^herical lens may be com-

bined with tlie cylindrical lens. The spherical

surface may be ground on one side of the glass

and tlie cylindrical on the otlier ; or a toric curva-

ture may be ground on one side of the glass, leav-

ing the other side plane ; and, if desired, this may

then be made concave and the lens periscopic.

Toric lenses are not much used, as they are more

difficult to grind than spherical and cylindrical

surfaces.

In a cylindrical lens the line drawn through the

summit of curvature and parallel to the axis of the

cylinder is called the axis of the lens.* Reference

to Fig. 3-i renders it clear that in the direction at

right angles to the axis AA^ of the lens a cylindrical

lens has the same action tliat a spherical lens of like

radius of curvature and index would have in this

*This must not be confounded with the axis of the optical

system.
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direction, and that the deviating power of the lens

is confined entirely to this meridian. Rays of light

parallel to the axis 00' passing through such a lens

would not be united in a focus. They would, how-

ever, all meet a line which is parallel to the axis of

the lens, and whose distance from the lens is equal

to the focal length of a spherical lens of the same

radius of curvature and index. This distance is

called the focal distance of the cylindrical lens, and

the line is called the focal line. Similarly, rays

diverging from a point will, after refraction by the

lens, all pass through a line conjugate to the point

from which the rays proceed.

If we take another cylindrical lens whose axis is at

right angles to that of the first lens, it will bring all
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the rays from a point into a line at right angles to

the first line.*

In Fig. 35 the rays from the point P all pass

through the line AB ; and rays from P^ all pass

through the line A'B' at right angles to AB,
Hence, if these two lenses have equal refractive

Fig. 35.

power, and if we combine them so that the rays after

deviation by the first lens pass immediately through

the second lens, the effect of both lenses will be to

cause the rays to meet in the point where the lines

intersect ; for the rays must all pass through both

lines. In other words, two equal cylindrical lenses

placed with their axes at right angles are equivalent

* It will be understood that we are bound by the same restric-

tions as in the case of spherical lenses, that is, we must suppose

that only rays near the axis of the pencil pass through the lens.
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to a spherical lens of the same index and radius of

curvature. In Fig. 36 let P represent the point at

which a ray parallel to the axis of the refracting

system meets a spherical lens ; then when this ray

reaches the focus of the lens it will have been so

deviated as to pass through the axis at F. The mo-

tion of a point from P to F may be considered as the

.iN

M.
i \

^F

Fig. 36. "^^^-^v'

resultant of three motions at right angles to each

other: 1st, from P to M; 2d, from M to 0; and

3d, from to F. In the case of the spherical lens

the deviation in the plane PMOJYwiW be represented

by the line PO; if instead of a spherical lens we

take two equal cylindrical lenses with axes at right

angles, then in this plane the ray will be deviated by

one lens from P to Jf, and by the other from Mto 0.
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The result is the same

in the two cases. If the

two cylindrical lenses have

different focal lengths,

their combined effect will

not be equivalent to that

of a spherical lens, be-

cause their focal lines

will not intersect. If

the focal length of the

first lens is less than that

of the second, it is clear

that when a ray parallel to

the axis of the refracting

system has been brought

by the first lens to its in-

tersection with the first

focal line, it will not yet

have reached its intersec-

tion with the second focal

line.

Let C (Fig. 37) repre-

sent a combination of two

cylindrical lenses whose

axes are vertical and hori-

zontal respectively. The

line AB is conjugate to P
as regards the lens whose
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axis is vertical ; and A^B\ at right angles to AB^

is conjugate to P as regards the lens whose axis

is horizontal. We take two rays, PR and PR^^

so situated that they pass through the axis of the

second lens. Hence they will be deviated only

by the first lens ; they will intersect at E in the

first conjugate focal line, and after crossing at this

point they will meet the second conjugate focal line

at 2^ and T' , Likewise, if we take two rays, PS and

PS ^ which pass through the axis of the first lens,

they will be deviated only by the second lens and will

intersect at W in the second conjugate focal line,

meeting the first conjugate focal line before intersec-

tion at /and I' . All rays which do not pass through

the axis of either lens will be deviated by both lenses,

and the deviation by one lens will be superposed upon

that of the other. The action of the first lens is such

as to cause all rays from P to pass through the verti-

cal line AB conjugate to P ; and since the second

lens deviates light in the vertical meridian, its effect

is to change the position of rays in the line AB^ but

not to deviate them out of this line ; hence all rays

from P must pass through AB, Similarly, the action

of the second lens is such as to cause all rays from P
to pass through the horizontal line A^B^ , and since

the first lens deviates light only in the horizontal

meridian, its effect is to change the position of rays

in the line A^B\ but not to deviate them out of this
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line. From this we see that rays proceeding from a

point will never be nnited in a focus by such a lens
;

they will, however, all pass through two lines which

are at right angles to each other, called focal lines.

If the point is so far distant that the rays may be

regarded as parallel, the lines AB and A^B^ are the

principal focal lines. The interval between the prin-

cipal focal lines is called the focal interval of Sturm.*

It is clear that the more nearly equal the two cylin-

drical lenses are in power, the shorter will be the

focal interval, and the more closely will the image of

a point resemble a point.

Since two equal cylindrical lenses with axes at

right angles are equivalent to a spherical lens, it

follows that two unequal cylindrical lenses, similarly

combined, are equivalent to a sphero-cylindrical lens

;

for we may regard the unequal lenses as composed

of two equal cylindrical lenses with the addition of

another cylindrical lens.

In order to investigate the image of a point after

refraction by an astigmatic surface, we must suppose

a screen to be placed at different positions in the

path of the rays so as to intercept them. If a

screen be placed at AB^ the image of the point P,

as formed on the screen, will be the vertical line JP.

*The theory of refraction by asymmetrical surfaces was first

demonstrated by Sturm in 1845. See " Comptes Rendus de I'Acad.

des Sci. de Paris/' torn, xx., pp. 554, 761, 1238.
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Likewise, the image of the point as formed at A^B^

is Tr. To the left of AB the image will be ellip-

tical, for the rays will not yet have intersected

either focal line, but they will be nearer the vertical

than the horizontal intersection. To the right of

A'B^ the image will be elliptical, for the rays have

passed both vertical and horizontal intersections, but

are nearer to the horizontal than to the vertical

intersection. Between AB and A^B^ the image will

also be elliptical, except in one position, in which

the distance of the rays from the axis is the same

in the vertical as in the horizontal meridian ; it will

then be a circle. This is called the circle of least

confusion. To the left of this circle the ellipse has,

in our case, the long axis vertical, and to the right

the long axis is horizontal.

The image of a line will vary according to its

position in relation to the focal lines. If the line

be a vertical one passing through P, then at AB
every point of the line will have as its image a

vertical line such as IF. The image of the vertical

line will be a lengthened and intensified line. At

A'B\ however, every point of the vertical line will

have as its image a horizontal line such as TT' ^ and

the image of the vertical line will be an aggregation

of horizontal lines ; it will therefore be a hroad and

indistinct line. At any other point the image will con-

sist of a superposition of confusion ellipses or circles.
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If the line be horizontal, we shall have a broad

blurred image at AB and a clear intensified image

at A'B\ If the line be neither vertical nor hori-

zontal, its image will be blurred in all positions.

From what has been said we see that a vertical

line appears distinct at the focus of the cylindrical

lens whose axis is vertical, and a horizontal line ap-

pears distinct at the focus of the lens whose axis is

horizontal; or, since the meridians of refraction are

at right angles to the axes, a vertical line appears

distinct at the focus of the horizontal meridian, and

a horizontal line appears distinct at the focus of the

vertical meridian.*

The formulae which we have deduced for spherical

lenses are also applicable to cylindrical lenses. We
have only to bear in mind that the action of the

latter is confined entirely to the meridian at right

angles to the axis of the lens. What has been said

of the effect of spherical lenses upon the size of reti-

nal images applies, therefore, to cylindrical lenses,

with the understanding that this effect is confined

to the refracting meridian, no eft'ect being produced

by the cylindrical lens in the meridian of its axis.

Astigmatism of the eye is a curvature defect,

* The student who finds it difficult to comprehend refraction

through the double cylindrical or sphero-cylindrical lens should

construct for himself, or procure from an instrument maker, thread

models, which illustrate very clearly astigmatic refraction.
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while hyperopia and myopia are, in a large majority

of cases, axial defects. The effect of hyperopic or

myopic astigmatism upon retinal images will, con-

sequently, not be analogous to that of axial hyper-

opia or myopia. If the eye is hyperopic in one

meridian and emmetropic in the meridian at right

angles to this, the defect in curvature in the hyper-

opic meridian is the same as if a concave cylindrical

lens were placed in contact with a normal cornea.

The effect of such a lens, since it would be within

the anterior focus of the eye, would be to enlarge

images in the refracting meridian of the lens. In

other words, since the curvature of the eye is less

in the hyperopic than in the emmetropic meridian,

the anterior focal distance is greater in the faulty

than in the normal meridian ; and consequently the

image of an object will be too large in the former

meridian, for the size of the image is proportional

to the anterior focal distance. Similarly, in myopic

astigmatism, the image is too small in the myopic

meridian. But we must remember that the retina

is not in the proper position to receive an accurately

focused image in the faulty meridian ; and, to dem-

onstrate the effect of this faulty position of the

retina, let (9, Fig. 38, be the optical centre of a lens

which may, for the present purpose, represent the

eye ; then, if A be conjugate to P, the image oi PQ
will be AB, If, now, the screen or retina remain at
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A, while the lens is increased in po\Yer so that P^ is

conjugate to P, the true image, P' Q' ^ will be smaller

than AB, but the indistinct image, as intercepted by

the screen, will be AC, which is larger than AB,^

This is why a round object such as the fall moon

appears greater in the meridian of myopic refraction

than in the emmetropic meridian, though the accurate

image is less in the myopic meridian. In like man-

Q.^^^^ c

^^^^r^^^ «>^ B

_p ^^^%<^\y A K

u^^^ ^^ ^^^^^
1

Q
Fig. 38.

5^,

ner, if the screen, remain at A while the conjugate of

P is changed from A to P^, it is apparent that by

the change both the focused and blurred images will

be rendered larger than the normal, but the blurred

image will be less enlarged than the other.

We can now understand the influence upon retinal

images of cylindrical lenses used as spectacles. A
proper convex cylindrical lens worn as a spectacle

* The change in position of the optical centre, being too slight

to affect the resalt, is neglected in the figure.
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brings the image of an object to an accurate focus on

the retina ; but it also enlarges the image in the

meridian at right angles to the axis of the lens. For,

as we have seen in Fig. 38, if the lens be worn at the

anterior focus of the eye, the new image will be of

the same size as P^ Q^^ since the effect of the lens is

to bring the image forward without changing its size.

If the lens be worn without the anterior focus of the

eye, then the new image will be larger than Pi Qi ;

in either case it will be larger than the blurred image

AO'^ which the eye receives without the lens, and

larger than AB' ^ the normal image. A proper con-

cave cylindrical lens throws the image back upon the

retina ; it also minifies the image in the refracting

meridian of the lens. If the lens be worn at the an-

terior focus of the eye, P^ Q' will represent the size of

the new image ; and if the lens be worn without this

focus, the image will be smaller than P^Q' ; in either

case it will be smaller than the blurred image AO^

which the eye receives without the lens, and smaller

than AB^ the normal image. Hence we see that

cylindrical lenses worn as spectacles do not, under

any circumstances, produce normal retinal images ;

all objects are magnified in the refracting meridian

by a convex lens, and minified in this meridian by a

concave lens. If the lens could be worn in contact

with the cornea, the seat of defective curvature, nor-

mal images would result. The same position of the
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spherical lens would be necessary to produce images

of normal size in curvature hyperopia and myo]3ia

;

but, as shown in the preceding chapter, in ordinary

axial hyperopia and myopia, the lens must be placed

at the anterior focus of the eye in order that images

of normal size be produced.



CHAPTER IX

THE TWISTING PROPERTY OF CYLINDRICAL LENSES

As a consequence of the effect of cylindrical lenses

upon retinal images, it follows that if one hold such

a lens in front of the eye, and through the lens look

at a distant rectangular object as a picture frame or

test-type card, there will be observed a distortion of

the object, which will vary with every variation in

the position of the lens. If the axis of the lens be

parallel to one of the sides of the object, the rectan-

gular form of tlie object will be retained, but the

ratio of the sides will be altered. The side which is

parallel to the axis will not be changed, wdiile tliat

which is perpendicular to the axis will be increased

or diminished. If now the lens be rotated in its own

plane, the distortion will no longer be confined to

the apparent size of the object ; it will also affect the

direction of the lines forming the sides, so that the

rectangular object will assume the form of an oblique

parallelogram. Use is made of this phenomenon to

determine the position of the axis of a cylindrical

lens. Looking through the lens at a distant straight

line, we observe the position of the lens in which

138
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there is no apparent deviation of tlie line ; the axis

of the lens must be either parallel or perpendicular to

this line.

We have seen that a cylindrical lens has in its

refracting meridian the same effect that a similar

spherical lens would have. The formula by which

the magnifying or minifying power is obtained has

been given in Chapter VII. (page 112).

Fig. 39.

Let OA (Fig. 39) be a line parallel to the axis of

a cylindrical lens, and let BA be perpendicular to

the axis. If we look through the lens at the line

OA^ the image of this line on the retina will be the

same as without the lens. If we look at the line

AB^ and if the lens be convex, then AB will be

magnified in its own direction, and will appear as

the line AB^. If we now look at an oblique line

OB, its direction will be changed, for B will apjDcar

at B' and ^ will appear at ^^ and so on for every
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other point of the Ime. The line OB will conse-

quently assume the position OB' , Hence any line

not parallel or perpendicular to the axis of the lens

undergoes an angular deviation when viewed through

a cylindrical lens. If a is the angle which the line

makes with the axis, and x the angle which the line

appears to make with the axis, we have

AB ^ AB^
tan a = —-- ; tan x = -——

;OA OA

AB'
from which tana: = ———tana.

AB
AB'

being the magnifying power of the lens may
AB

be called m. Then tan x = m tan a. When the lens

is concave m is less than unity, and the line OB'

appears as OB,

Taking a convex lens, we look through it at a

pencil held at arm's length from the eye. When
the pencil is parallel to the axis of the lens there is

no apparent deviation, but as we turn the pencil

througli an angle a it appears to make the greater

angle x with the axis of the lens. At first x in-

creases more rapidly than a, and x — a^ which is tlie

angle made by the apparent position with the real

position, becomes rapidly greater. As the pencil is

turned farther, the angle x — a changes more slowly,

then comes to a standstill ; and finally a increases
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more rapidly than x^ and a;— a diminislies, so that when

the pencil has been turned through 90 degrees a has

overtaken x and there is no deviation. If for the

pencil we substitute a distant straight line and turn

the lens while the line remains stationary, Ave shall

have the same effect. As we turn the lens to the

right, the line appears deviated to the left, since tlie

apparent position always makes a greater angle with

the axis than the real line. After reaching a maxi-

mum deviation the apparent line now travels back-

ward, coinciding with the real position when the

lens has been turned through 90 degrees. If we

take a concave lens, m being less than unity, the

angle which the apparent position of the line makes

with the axis will be less than that which the real

position makes ; consequently, when we look at a

distant line and turn the lens to the right, the ap-

parent position also moves to the right, and after

reaching a maximum deviation it travels backward,

coinciding with the real position when the lens has

been turned through 90 degrees.

This to-and-fro deviation, familiar to every one who

uses the oculists' trial lenses, vanishes under cer-

tain conditions when we experiment with the convex

lens. If we take a convex cylindrical lens of four

dioptres and, holding it about 1 metre in front of

the eye, look at a vertical line across the room, we

shall have, upon turning the lens, the to-and-fro
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motion of the line ; but as we move the lens farther

from the eye, the line becomes so indistinct that

we cannot determine its movement ; continuing to

increase the distance between the eye and lens, we

now notice that as we turn the lens the behavior

of the observed line has entirely changed. It no

longer moves to and fro, but as the axis of the lens

is turned through 90 degrees the apparent position

of the line moves through twice this angle, or 180

degrees. This phenomenon can be most easily ob-

served by holding a pencil or similar object at arm's

length and viewing it through a cylindrical lens of

ten or twelve dioptres held about ^ metre in front

of the eye.

To explain this we shall compare the action of the

cylindrical lens with that of the spherical lens of the

same radius of curvature and refractive index. It

has been shown that if a convex spherical lens be

held before the eye at a sufficient distance, an in-

verted image of an object Avill be formed in the air in

front of the eye, and a second image will be formed

by the eye.

In Fig. 40 let (1) represent a rectangular object

such as a picture frame ; then if it be viewed through

a spherical lens held beyond its focal length from the

eye, (2) will represent the object as it will appear

to the observer. If we replace the spherical lens

by a similar cylindrical lens with axis vertical, (3)
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will represent the object as it will appear to the ob-

server. The cylindrical lens has the same effect as

the spherical one in deviating the ra3"s in the merid-

ian at right angles to the axis of the lens, that is,

rays from the right of the object are made to cross

over and intersect on the left, and vice vei^sa. The

object therefore appears reversed in this direction ;

but it is not reversed in the meridian parallel to the

axis of the lens ; in this meridian the rays are un-

affected by the lens. Similarly, (-i) represents the

(1) (3) (3) (4)

Fig. 40.

object as it would appear when viewed through a

cylindrical lens with axis horizontal.

Tlie image as formed with the cylindrical lens

will be much blurred, because the rays will, in one

meridian, enter the eye diverging from the aerial

image ; in the meridian at right angles to this

they have been unaffected by the lens, and con-

sequently diverge from the more distant object.

They cannot, therefore, be accurately focused on

the retina.

To this reversal of the object in one meridian

is due the apparent rotation of a line through
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180 degrees, while the lens is turned through 90

degrees.*

In Fig. 41 let OB represent a line making the

angle a with the line OA, which is parallel to the

axis of the lens. From what we have just shown, it

Fig. 41.

is clear that if we view the figure AOB through a

convex cylindrical lens so placed as to form the aerial

image, then AB will appear in the position AB\ and

OB will appear at OB^ , Hence, if we suppose the

original position of the axis to be parallel to OB^ in

this position there will be no apparent deviation of

* Dr. Carl Roller, the discoverer of the anaesthetic property of

cocaine, has demonstrated this phenomenon by means of analytical

geometry. See Graefe's "Archives," 1886.
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the line OB^ but when the axis of the lens is turned

into the direction OA. the apparent position of OB is

changed from OB to 0B\ The angle AOB\ which

the apparent position of the line makes with the axis

of the lens, is as before x. From the figure it is seen

that tan x = —-— tan a ; where -—— represents theAB AB
magnifying power of the lens at right angles to its

axis. Hence, tan x = m tan a. This is the same

equation as that derived for the to-and-fro deviation,

but the angle which the apparent position OB' makes

with the real position OB is now equal to the sum of

X and a, whereas in the former case it was equal to

their difference. Since ??^ becomes negative when the

reversed aerial image is formed, x is also negative,

and adding a negative value is equivalent to sub-

tracting a positive value. When a is zero, x is also

zero ; as a increases, the negative value of x increases ;

and when a is equal to 90 degrees, x is equal to — 90

degrees. That is, if we turn the axis through 90 de-

grees from OB to OA, in so doing the line OB will

be apparently rotated through 180 degrees and will

appear in the position OB,

It was sliown in Chapter VII. that the reversed

image of a distant object is formed when the distance

of the lens from the anterior focus of the eye exceeds

the focal distance of the lens, but that as the object

approaches the lens the distance between the eye and
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lens must be increased in order that the negative

image be formed. Hence, if a pencil or similar

object be held so that we have the continuous devia-

tion through 180 degrees, and if the pencil be then

moved nearer the lens, a point will be reached at

which this phenomenon will disappear, and upon

further approximation of the pencil to the lens, the

to-and-fro deviation will be seen. Since spectacle

lenses are never worn beyond their focal distance

from the eye, it is clear that, so far as this continuous

deviation is concerned, nothing analogous occurs in

the use of cylindrical spectacles.

As was shown in the preceding chapter, retinal

images in astigmatic eyes are not normal in their

proportions ; Ave have seen that the effect of astig-

matism upon images is similar to that of a cylindri-

cal lens placed in contact with a normal cornea.

A cylindrical lens so placed would have a magnify-

ing or minifying effect on images in the refracting

meridian of the lens ; and, since upon this property

depends the apparent deviation of lines, it is clear

that in astigmatic eyes all lines not parallel or per-

pendicular to the axis of the astigmatism are twisted

out of their proper relations. A rectangle whose

sides do not correspond in direction with the merid-

ians of greatest and least refraction, appears as an

oblique parallelogram. This distortion is, however,

slight, for the dioptric power of the eye is great in



CYLINDRICAL LENSES 147

comparison with the amount of astigmatism. The

defect is not appreciable to the person whose eyes

are astigmatic, even if the astigmatism is of high

degree ; but when the astigmatism is corrected by

a suitable lens, complaint is frequently made of

annoying distortion of lines. This annoyance is

fortunately transitory. Since a cylindrical lens, as

worn before the eye, cannot reduce the retinal image

to its proper proportions, it is evident that it cannot

correct the distortion of lines ; furthermore, by

recalling what was said on this subject in the pre-

ceding chapter, it will be seen that the effect of the

lens is to increase the distortion in hyperopic astig-

matism ; in myopic astigmatism the distortion pro-

duced by the lens is in the opposite direction to that

existing in the blurred image without the lens. In

either case it is easy to see why annoyance should

arise when glasses are first worn.*

* Aside from this actual distortion of tlie retinal image, there

frequently occurs a distortion due to mental influence. Eor the

explanation of this peculiar phenomenon the following articles may
be consulted :

"The Effect of a Cyl. Lens with Yert. Axis Placed before One
Eye," by 0. E. Wadsworth, Trans. American Oplith. Soc, 1875;

''Binoc. Metamorphopsia," Archives of Ophthalmology^ 1889, and
"New Tests for Binoc. Vision," Trans. American Ophth. Soc,

1890, by J. A. Lippincott ; " Stereo. Illusions Evoked by Prismatic

and Cyl. Spec. Glasses," by John Green, Trans. American Ophth.

Soc, 1889.



CHAPTER X

THE SPHERO-CYLINDRICAL EQUIVALENCE OF
BI-CYLINDRICAL LENSES

It was shown in Chapter VIII. that two cylin-

drical lenses whose axes are at right angles are

equivalent to a spherical lens if the two lenses have

the same dioptric power, and to a sphero-cylindrical

lens if the two lenses differ in power. It remains

now to find the equivalent of any two cylindrical

lenses whose axes are not at right angles. Formerly

it was not uncommon for oculists to prescribe

glasses consisting of a combination of two cylindri-

cal lenses obliquely inclined to each other. This

was done notwithstanding that attention had already

been called to the fact that such a combination is

equivalent to a sphero-cylindrical lens. Sir G. G.

Stokes, a celebrated English physicist, first demon-

strated this problem, at least for the special case

in which two lenses of equal but opposite curvature

are combined. He devised this combination as a

test for astigmatism. The two lenses are placed

the one over the other so that by rotating one lens

any angle between the axes can be obtained. This

148
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combination is called the Stokes lens. To use it

as a test for astigmatism it should be placed before

the eye to be examined, and the angle bet\yeen the

axes varied until the position of best vision is found,

when further improvement can usually be obtained

by adding a spherical lens. From a table con-

structed by calculation the amount of astigmatism

can be deduced.*

Bonders in his book on refraction refers to Stokes'

demonstration, and also presents a solution appli-

cable for any two cylindrical lenses ; but while his

conclusion is correct, the demonstration is defective

;

for, as will be subsequently shown, his assumption is

not generall}^ true. In 1886 Dr. Jackson, of Phila-

delphia, read before the American Ophthalmological

Society a complete demonstration of the problem of

cylindrical refraction, and at the same meeting Dr.

Gustavus Hay, of Boston, offered a somewhat dif-

ferent solution.! In 1888 Prentice J published a

solution, similar in principle to those of Jackson and

Hay, and in 1893 Dr. Weiland, § of Philadelphia,

published a solution based upon that of Donders, but

* The " Stokes lens" is chiefly of historical interest ; it is rarely

if ever used as a test for astigmatism at the present day, for other

more convenient tests have supplanted it.

t Trans. American Oplitli. Soc, 1886.

t Dioptric Fnrmiilce^ Cylindrical Lenses, 1888.

§ Archives of Ophthalmology, Vol. XXII., No. 4, and Vol.

XXIII., No. 1.
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this, containing the same error as that of Bonders,

is not a general solution. There is also given in

Heath's '•' Geometrical Optics " * a solution by means

of analytical geometry, which leaves nothing to be

desired except that this method is unsuitable for the

use of students who are not familiar with the higher

mathematics. Thus we see that this question has

not lacked investigation. With our more accurate

methods of examination it is of less practical im-

portance than formerly, for it is seldom necessary in

testing the vision of an eye to resort to two cylin-

drical lenses obliquely inclined ; moreover, if, in any

case, it should be found convenient to place two

lenses in this manner, the sphero-cylindrical equiva-

lent can be found without formulae or calculation.

Nevertheless this subject must always be of interest

to the oculist who wishes to have a scientific knowl-

edge of optics, and therefore, before giving the prac-

tical method of determining the equivalent in any

case, we shall demonstrate that any two cylindrical

lenses acting in combination are equivalent to two

other cylindrical lenses whose axes are at right

angles to each other, and consequently to a sphero-

cylindrical lens. Our apology for adding still

another solution to the list of those already pub-

lished is that in all these solutions the process of

* ^'Geometrical Optics," Heath, 2d ed., p. 186.
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eliminating the special point at which the ray meets

the lens is unnecessarily tedious.

In studying refraction by two cylindrical lenses at

right angles to each other, we learned that a ray of

light in its progress from a point, P, on a spherical

lens, Fig. 36, to its intersection with the axis at the

focus, F, undergoes the same change in position as

if it Avere first moved from P to in the plane of

the lens, and then moved along the axis from to F,

Furthermore Ave learned that the change of position

from P to 0, in the plane of the lens, is identical

with the resultant of the two motions from P to M
and from M to 0, which would be produced by two

equal cylindrical lenses at right angles to each other.

In the same w^ay w^e may study the result of the

deviation of a ray of light b}^ two cylindrical lenses

obliquely inclined. In Fig. 42 let AO and BO rep-

resent the axes of the two lenses; then a ray per-

pendicular to the plane of the lens, and meeting the

lens at P, would, if acted upon by the first lens only,

be so deviated in the meridian, Pi¥, as to intersect

the principal focal line of the lens at the distance

F from the lens. The motion of the ray from A to

F (P is not represented in the figure) is equivalent

to the resultant of the two motions from P to M
and from M to F. Similarly this ray, if acted upon

by the second lens only, would be deviated in the

meridian PiV, and would intersect the focal line of
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this lens at a distance F^ from the lens. Now each

of these displacements, PM and PN^ in the plane of

the combined lenses, is equivalent to two displace-

ments at right angles ;
* thus the displacement from

P to il!f is the resultant of the displacements from

Fig. 42.

P to E and from E to M^ and the displacement

from P to iV^ is the resultant of the displacements

from P to JTand from Hio N. If the two lenses act

in combination, the deviation produced by one lens

must be superposed upon that produced by the

other. Each lens produces a certain deviation in

* Since we neglect the thickness of the lenses, they both lie in

the same plane.
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the direction PK or LO, and also a deviation in tlie

direction PK' or QO, at right angles to LO. If we

add the deviation which the first lens produces in

the direction LO io that which the second lens pro-

duces in this direction, the result is the deviation in

this direction which the two lenses would produce

acting in combination ; and this same deviation might

evidently be produced hy a certain prism whose edge

is perpendicular to iO, or by a certain cylindrical

lens whose axis is represented by QO. In the same

way the deviation produced by the two lenses in the

direction QO might also be produced by a cjdindrical

lens whose axis is represented by L 0,

From this we see that any two cylindrical lenses

have upon a ray of light the same deviating effect

as two other lenses whose axes are at right angles.

This is true for any point on the lens and for any

position oi LO and QO; but we do not mean that

the same two lenses at right angles are equivalent

to the obliquely inclined lenses for different posi-

tions of the point P, The problem that we wish

to prove is that for a particular position of the lines

LO and QO the same two cylindrical lenses are equiv-

alent to the obliquely inclined lenses irrespective of

the position of the point P at which the ray meets

the lens.

If the focal length of the two lenses were equal,

we should find the combined action of the two lenses
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in the direction PKhj adding the displacement PE,
produced by the first lens, to PH^ produced by the

second lens ; but when the strength of the lenses is

not the same, these distances do not measure the dis-

placements which the two lenses produce in the same

time.*

Hence we must find an expression from which we
can reckon the deviating power of the two lenses

acting through the same distance. Since all rays

parallel to the axis of the refracting system are re-

fracted to the focus or focal line of the lens, it is

evident that the displacement which any ray under-

goes in the plane of the lens is proportional to the

distance from the axis at which the ray meets the

lens ; and so long as the focal length remains un-

changed, this displacement measures the deviating

power of a lens at any point on its surface. It is

also evident that the time required to produce a

certain displacement varies inversely as the focal

length of the lens, or directly as the dioptric power.

Hence the deviating power of a lens at any point

on its surface is measured by the expression — , in

which D represents the distance from the axis at

which the ray meets the lens and F the focal

length.

Thus the deviating power of the first lens in the

* Compare Chap. L, p. 22.
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meridian PM is expressed by —^^ P being any
F

point on the lens; and the deviating power of the

second lens for the same point is expressed by ——

;

or if we replace the focal lengths by the dioptric

values, and represent these by C and (7^, respec-

tively, we have PM - C as the measure of the devi-

ating power of the first lens, and PN - C^ as the

measure of this power for the second lens.

Let the angle AOB^ which is included between

the axes of the two cylindrical lenses, be represented

by the letter a ; and let us assume that in a certain

position of LO and QO the two obliquely inclined

lenses may be replaced by two other lenses at right

angles. The unknown angle LOA^ which the axis

LO must make with OJ., is denoted bv x, and the

angle LOB, which is equal to a — x,i^ denoted by y.

It is readily seen from the fignre that P3IE, MPP\
and ORK ?iYQ each equal to x, and that PNS, S'PN
and OSK are each equal to y.

The dioptric value of the assumed lens whose

axis is 0^ is denoted by C^^, and that of the lens

whose axis is LO is denoted by 0^. If the lens O^

is equivalent to the combined action of the two

lenses and 0-^ in the direction iO, we have the

equation

PK' 0,^= PE'0 + PH-C^, (1)
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for PK' C^ expresses the deviating power of the

lens 0^ in its refracting meridian PK^ and PE •

and PH ' O^ express the deviating power of the

first and second lens respectively in tlie direction

PK\ and, since when both lenses are convex tlie

displacements PE and PH are both toward the

axis OQ^ we must add the deviating powers of

the two lenses to find the equivalent lens.* In

the direction PK' or Q the displacements EM and

HN are in opposite directions, and the difference in

power of the two lenses in this direction will express

the power of the equivalent lens. Hence we have

also the equation

PK' . C^ = RN'0^- EM' 0. (2)

But PE=PM sinx, PH= PJST- sin y,

HN^PN'Gosy, 'dJid EM=:PM'Gosx.

Hence equation (1) becomes

^ PM . ^
,
PJV . ^

But PM= PR • sin x, and P]Sr= PS • sin y ;

also, PE = PK- BK, and PS= PK+ KS,

* We take as the typical case two convex lenses ;
the same

demonstration is applicable if one or both lenses be concave, it

being only necessary to change the sign of C or of (7i, or of both.
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Hence we have

or, (^2 = sin^ x - C + sin^ U ' ^i

_||.sia2a;.C + ||.sin2^.(7,. (3)

If this is true for all positions of P, it must be

true when P lies on the line LO. It is readih^ seen

that when P is moved over to K'^ RK and KS
both become zero, and our equation reduces to the

form
C^ = sin2:?; . C+ sin2^ . q^ . (4>^

and since C^ is a constant quantity for all positions

of P, if it is an equivalent lens for and (7j in its

refracting meridian, then the algebraic sum of the

last two terms of the second member of equation (3)

must be equal to zero.* Thus we have as the con-

dition of equivalence for all points on the lens that

the expression

* Bonders and Weiland in their demonstrations have assumed

that a lens C is in the meridian TK equivalent to another lens

whose dioptric power is expressed by (7 • sin^ x. This we readily

see is true only for points on the axis L 0.
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should be equal to zero ; or,

but we see from the figure that RK=^ OK- cot x,

and KS — OK - cot i/, Substitutmg and replacing

the cotangent of these angles by -^, we have
sin

C • sin X • cos x= 0-^ sin y • cos 7/ ;

or, C - sin 2x= (7^ sin 2 y ;

or, C ' sin 2x= C^ sin 2(a — x).

By reduction we obtain the equation

O + C\ cos 2 a

and from this we know the value which must be

assigned to x.

In the same way we find from equation (2),

^ PN ^ PM ^
^3 = -pK'

^°^ ^ ^1 ~ 'PK'
^°^ "^

'

but PN= PS' cos ?/, and PS' = PK' + K'S',

also Pif= PE' cosx, and Pi?' = K'B' - PK'.
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Hence

^ PK' + E'S' 2 ry K'R - PK' „ ^
^ "

~PK'
y

'
' PK' '

'

or, Cq = cos^ y ' ^\ + c^s^ ^ • ^

When P lies on the axis OQ, K'S^ and ^^i2^

both become zero, and

Cq = cos^ 1/
' ^1 + cos^ X • G. (5)

Hence

-^— cos2^ . C^ - -^^ cos2:^ . (7=0,

irom which
^'i?^ C0s2y. C\'

or, since ^'aS"^ = OK' • tany,

and K'R = 0K' i^nx,

sin ^?/ cos :r _ cos^ x • G
^

cos 2/ sin X cos^ 2/ • C^
'

or, (7 sin 2 a; = (7^ sin 2 ^Z

;

from which, as above,

, o G. sin 2 a
tan Ix = -——1 •

G + 6\ cos 2 a



160 HANDBOOK OF OPTICS

Thus we find that the angle LOA is the same in

order that C^ should be equivalent to C and C^ in

the direction 0^ as when C^ is equivalent to these

lenses in the direction LO^ and therefore it is proved

that by giving a suitable value to the angle LOA^
we may substitute for the obliquely inclined lenses

two other lenses at right angles, or, the equivalent

of the latter, a sphero-cjdindrical combination. To
find the dioptric value of 0^ and C^ we have only to

substitute the values of x and y which we now know
in equations (4) and (5). If we add these two

equations, we see that

^2 ^" ^3 "^ ^ "I" ^1'

since sin^ x + cos^ x and sin*^ y + cos^ y

are each equal to unity.

In practice it is not necessary to resort to this cal-

culation, as was stated in the first part of the present

chapter. The equivalent may be found in the fol-

lowing manner : Place the two lenses in a trial

frame with their axes in proper position ; and, hold-

ing the frame about -^ metre in front of the eye, look

through the lenses at a test-type card or other rec-

tangular object distant five metres or more. Rotate

the frame in the plane of the lenses until the posi-

tion is found in which there is no angular deviation

of the vertical and horizontal edges of the card;
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then move the frame slightly from right to left or

vice versa until there is no break in the vertical line

as seen through the lens and above it. Notice where

this unbroken line cuts the trial frame, and thus read

off on the frame the angular marking, which gives

the position of the axis of one of the equivalent

lenses ; the axis of the other is at right angles to

this. Having found the position of the axes, we

next neutralize the meridian of least refraction by

means of a spherical lens ; adding now a suitable

cylindrical lens, with axis in the meridian already

neutralized, we neutralize the meridian of greatest

refraction. The sphero-cylindrical combination of

equal but opposite power to that required for neu-

tralization represents the equivalent of the two ob-

liquely inclined lenses. The accuracy of this method

is limited only by the intervals between lenses in the

trial case; it is therefore sufficiently accurate for

practical purposes. The nearest equivalent which

exists in the trial case can be found in a few

moments.

In this way also can the lenticular astigmatism of

the eye be found.* Suppose, for instance, that the

entire astigmatism of the eye, as found by subjective

or objective test, is three dioptres, the meridian of

* It was for the purpose of showing how to find the lenticular

astigmatism of the eye that Bonders gave his solution of the bi-

cylindrical problem.
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least curvature being 60 degrees from tlie horizontal

line. This can be represented by a convex lens of

three dioptres, witli its axis at 60 degrees. If the

corneal astigmatism be found by the ophthalmometer

to be two dioptres, with the meridian of least cur-

vature at 130 degrees, this will be represented by

a convex lens of two dioptres with axis at 130 de-

grees. The lenticular astigmatism is evidently equal

to the entire astigmatism less that of the cornea.

To find this we place in the trial frame a convex

cylindrical lens of three dioptres with axis at 60

degrees, which represents the entire astigmatism.

If we neutralize the corneal astigmatism, we have

remaining the lenticular astigmatism. The corneal

portion is neutralized by a concave lens of two

dioptres wdth axis at 130 degrees. Placing this lens

in the trial frame, we have a combination of two

cylindrical lenses obliquely inclined, and the astig-

matism of this combination represents the lenticular

astigmatism of the eye. By neutralizing the combi-

nation, we derive the lens equivalent of the lentic-

ular astigmatism and the angle of its axis.



CHAPTER XI

OBLIQUE REFRACTION THROUGH LENSES

In our study of refraction we have considered

only pencils of liglit whose central ray or axis is

perpendicular to the refracting surface. Such a

pencil is called direct. We have also learned that

a spherical surface has greater refractive power for

rays Avhich meet it at a distance from the axis than

for those which pass near the axis. We have been

obliged in order to escape spherical aberration to

limit our consideration to those rays which do not

deviate far from the axis. We are justified in this,

since only small pencils can enter the eje.

We shall now investigate the refraction of small

pencils, the axis of which is not perpendicular to the

refracting surface. Such a pencil is called oblique.

Refraction by oblique pencils takes place when we

look through a tilted lens, as is frequently done in

the use of spectacles. The complete analysis of this

subject is difficult and requires a knowledge of the

higher mathematics, but we can study oblique

refraction in an elementary manner, and this will

enable us to understand the problems which present

163
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themselves in ophthalmology. A complete solution,

so far as relates to tilted spectacle lenses, has been

worked out by Dr. John Green of St. Louis ; ^ and

a general solution of the problem of oblique spher-

ical refraction is given in Heath's " Geometrical

Optics." f From the formulae derived by these

investigations, the exact value of a lens when tilted

at any angle can be found. We shall suppose the

lens to be tilted only in the meridian of vertical

Fig. 43.

refraction. Let A (Fig. 43) represent the princi-

pal point of a refracting surface. The direct pencil,

whose axis is PA and whose peripheral ray is PT^

will after refraction meet the axis at Q, Let

RPR^ represent a pencil meeting the surface

obliquely, PR being the axis of this pencil. We
have learned from our previous studies that it is

sufficient to determine the deviation of light in two

meridians at right angles to each other. We shall

* Trans. American Ophth. Soc.^ 1890.

t Heath's "Geom. Optics," 2d ed., p. 179.
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therefore investigate the refraction of the oblique

pencil first in the vertical meridian or plane of tlie

paper, as represented by B!B!\ and then in the

horizontal meridian, as represented by SS^ , We
may consider the rays PBJ ^ PR^ and PPJ' as rays

of the direct pencil which are so far from the axis

that spherical aberration cannot be neglected.

These rays will after refraction meet the axis at Q^,

Q^, and ^3, respectively. The refracted rays R Q^

and RQ2 will meet at q\ RQ^ and R^^Q^ will meet

at qy If the pencil be small, q and q^ will be so

near to each other that we may regard them as

identical. Then the point of intersection q will

be the focus of the pencil in the vertical meridian,

and Rq will be the focal distance in this meridian.

If now we take the raj^s PS and PS' in the hori-

zontal meridian, it is evident that after refraction

they will meet the axis at Q^ ; for their vertical

distance from A is the same as that of the ray PR^
the axis of the pencil. Hence Q^^ is the horizontal

focus, and RQ2 is the horizontal focal distance.

From this we see that oblique spherical refraction

is astigmatic. Since Rq is the focal distance in

any vertical meridian, all rays of the pencil must

intersect a straight line passing through q and par-

allel to SS',^ Likewise all rays must have their

* SS', being a small arc, does not materially differ from a

straight line.
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horizontal intersections on the line ^1^3; and since

the pencil is small, the error will be inappreciable

if we replace ^^^3 by a line through Q^ parallel to

WR\ These lines drawn through q and Q^ are

the focal lines of the pencil, and qQ^ is the focal

interval. It is clear that the focal interval increases

as the distance of the oblique pencil from the axis

PA increases. As AQ is the focal distance for the

direct pencil, it is seen that by the change from

direct to oblique refraction the focal distance is

\ Fig. 44.

shortened in both vertical and horizontal meridians,

but more in the former than in the latter; for AQ^
and Rq are both less than AQ, and i^g^ is less than

AQ^, In the question before us we have oblique

refraction at two surfaces. We shall consider only

the case in Avhich the axis of the pencil passes

through the optical centre of the lens, so that after

the two refractions its direction is parallel to that

before refraction ; and we shall disregard the lateral

displacement due to the thickness of the lens.

In Fig. 44 let BJPB!^ represent the vertical

section of a pencil meeting the lens obliquely at
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R'R^ ; then since the axis of the pencil, PR^ passes

through the optical centre of the lens, its direction

after emerging from the lens will be parallel to PR,
Let Q be conjugate to P in the vertical meridian.

We have seen the refractive power of the first sur-

face is increased by tilting the lens; consequently

a shorter incident pencil R'PR^ will cause the

refracted pencil to assume tiie convergence R^qR^'

than if the pencil were direct. Likewise if we

suppose a pencil T' QT" to proceed from Q so that

after refraction it assumes the divergence RqW^^
appearing to proceed from ^, the pencil T' QT" will

be shorter than if it were direct. Since the path of

light is reversible, the same will be true when

T^ QT'^ is an emergent pencil; in other words both

the incident and emergent pencils are shortened by

tilting the lens, and the lens is increased in refrac-

tive power. The same reasoning applies also to

the refraction in the horizontal meridian, but in

this meridian the increase of power is less at each

surface than in the vertical meridian. Hence a

spherical lens tilted in its vertical refracting me-

ridian is equivalent to a sphero-cylindrical lens.

Reference to Fig. 43 will show that as the tilting

is increased, the amount of astigmatism increases

very rapidly.

If a cylindrical lens whose axis is horizontal be

tilted in its vertical refracting meridian, the increase
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in power will be tlie same as that of a similar spher-

ical lens in the vertical meridian. If the axis of the

lens be vertical and it be tilted in this meridian, the

increase in power will be the same as that which a

spherical lens undergoes in the horizontal meridian

when tilted in the vertical meridian.

We should learn two practical points from this

study : first, the necessity of giving the proper

inclination to spectacles, especially when strong

lenses are used ; and, secondly, the uncertainty of

effect of very weak cylinders in combination with

strong spherical lenses. A spherical lens of four

dioptres acquires more than one-quarter of a dioptre

of astigmatism by tilting it through an angle of 15

degrees. Hence a convex cylindrical lens of .25 D.,

axis vertical, combined with a convex spherical lens

of 4 D., would be completely nullified by a slight

amount of tilting ; on the other hand, if the axis

of the lens be horizontal, its action will be practi-

cally doubled by the same tilting.



CHAPTER XII

THE EFFECT OF PRISMATIC GLASSES UPON
RETINAL IMAGES

In Chapter I. we considered refraction of rays

through prisms. We must now investigate in an

elementary way the more difficult subject of refrac-

tion of pencils of light such as enter the eye. The

study of the effect of prisms upon stereoscopic vision

belongs to physiology, and is discussed in treatises

on physiological optics. We shall confine our atten-

tion to the influence of prisms upon the size and form

of retinal images.

For convenience we repeat the following :

1. A principal plane of a prism is a plane jDcrpen-

dicular to the edge of the prism, and therefore to

each face of the prism.*

2. By the lav/ of refraction, the incident and re-

fracted raj'S and the normal to the surface all lie in

the same plane.

3. From the equation sin i = n • sin r, it follows

that the greater the angle of incidence, the greater is

* The principal plane of a prism bears no analogy to the princi-

pal plane of a spherical refracting surface.

169
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the deviation of the ray ; and the greater the angle

of incidence, the greater is the increase in deviation

for a fixed increase in the angle of incidence, the rate

of change in deviation increasing very rapidly as the

angle approaches 90 degrees.

From (1) and (2) we see that a ray which enters

the prism in a principal plane must lie in this plane

after emergence.

A ray which enters in any other plane passes out

of the prism in a plane parallel to that in which it

Fig. 45

entered, the amount of separation between the planes

depending upon the thickness of the prism ; and the

deviation which this ray undergoes in the principal

plane is greater than if the ray were in this plane.*

The effect which these facts have upon images will

appear subsequently ; we must first examine the re-

lation between the length of the pencil and the size

of the image. Helmholtz' formula applies here as in

all cases, but this relation is indicated clearly in Fig.

45. Let AP represent the linear dimension of an

* For the demonstration of this see Appendix II.
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object, then ^aS' represents its image on the retina.

The distance from P to the cornea is the length of

the pencil before refraction, RPO is the angle of

divergence of the pencil, and A OP or QOS is the

visual angle which the object snbtends.

Thus we see that as the incident pencil becomes

shorter the image on the retina increases. If, by any

means, rays of light from an object AP are rendered

more divergent, so that the pencils appear to proceed

from A^P\ the image will be enlarged from QS to QS\'^

The effect of prisms upon the length of pencils

varies greatly with position of the prism as regards

the light which passes into it. If the prism be of

small refracting angle, all rays which pass through it

near the position of minimum deviation will undergo

practically the same amount of deviation, f Small

pencils passing through such a prism in this position

undergo no change in length, for if the rays all have

the same amount of deviation their relative diver-

gence will be unaltered in their passage through the

prism. But all other pencils will be altered in

length ; and to prove this let Fig. 46 represent a

principal section of a prism. From draw It 0R\
representing a pencil in the position of minimum

deviation, and also SOS^ and TOT\ two pencils, the

* We neglect as inappreciable the slight change in position of the

optical centre 0, due to change in refractive state of the eye upon

approximation of the object. t Chap. I., p. 21.
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former being nearer the apex and the latter nearer

the base of the prism than ROR'. As has been

stated, tlie pencil ROR undergoes no change in

length. By the first refraction the pencil SOS' is

increased in length, for OS makes a greater angle

with the normal to the surface than does OS' ; its

deviation is consequently greater and the divergence

of the pencil is diminished. By the second refrac-

tion the divergence of the pencil is for a similar

'^"^-^.^

Fig. 46.

reason increased ; but since the angles of refraction

are greater at the first surface, the difference in the

amount of deviation undergone by OS and OS' is

greater at this than at the second surface ; conse-

quently the lengthening of the first surface out-

balances the shortening at the second surface. In

the pencil TOT' the angles of refraction are greater

at the second surface, and the shortening at this sur-

face outbalances the lengthening at the first surface.

Furthermore it will be observed that pencils proceed-
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ing from a point will not, after passing through a

prism, appear to come from a point ; but if the axis

of the pencil lie in a principal plane of the prism, as

we suppose in Fig. 46, rays proceeding from will

appear to come from two focal lines parallel and per-

pendicular, respectively, to the edge of the prism.

This follows from the analogy to astigmatic refrac-

tion at cylindrical surfaces ; for the rays of the

pencil will not be deviated in the direction of the

edge of the prism, the alteration in length taking

place in the meridian at right angles to this edge.

Since we deal only with small pencils, we may for

our present purpose ignore the astigmatic effect and

regard the pencil SOS' as proceeding from a point 0'^

after refraction by the prism. An object seen by

pencils such as SOS^ appears minified in the direc-

tion of the principal plane, since the incident pencils

as received by the observer's eye are lengthened ; on

the other hand, an object seen by pencils such as

TOT appears magnified in this direction, since the

incident pencils are shortened.

From this we see that as the apex of a prism is

turned toward the object, the image is magnified in

the principal plane of the prism ; and as the base of

the prism is turned toward the object, the image is

minified in this plane.*

* Upon this principle is constructed a toy,— the "laughing

camera,"— which is sold on the streets and in the shops.
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Let us now study the effect of a prism placed

before the eye with its principal plane horizontal.

If the prism have a refracting angle of 15 or 18 de-

grees, objects in the field of view will undergo

marked distortion. This is due not only to the

actual distortion of the retinal image, but also, in

part, to mental impressions of previous experience.

(a)

Fig. 47.

When prisms are worn before both eyes there is still

further confusion arising from altered convergence

and perspective.*

In Fig. 47 (a) represents a square object so placed

that 0, its middle point, is seen by rays passing

through the prism with minimum deviation ; then

if the base of the prism is placed to the right, (J) is

a representation of the object as it appears on the

* Articles bearing upon this subject have been published by a

number of writers. Reference may be made to the following

:

Helmholtz' "Physiological Optics"; "Stereoscopic Illusions

Evoked by Prismatic and Cylindrical Spectacle Glasses," John

Green, Trans. American Ophth. Soc.^ 1889.
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retina. The portion of the figure near is un-

affected by the prism, but the portion toward the

base of the prism is minified, and that toward the

apex is mag]iified in the liorizontal meridian. The

point A is displaced toward 0, and any other point

of the line AE is displaced in this direction to a

greater extent than is A^ because a ray not in a

principal plane is more deflected than a correspond-

ing ray Ij'ing in this plane. As this increase in

deviation continues at an increasing rate with the

increase of the distance of the point from A^ the

line AE appears curved. For the same reason ON
and BF appear curved.

Neglecting, as we do, the thickness of the prism,

there is no displacement at right angles AE^ and

therefore EF is unchanged in direction in the retinal

image. Nevertheless EF does seem to be changed

in such manner as to assume the form represented

in Qc)— a change which is due to illusion. The

line AE^ as seen through the prism, appears at an

increased distance Avhile its image is unchanged

;

consequently the line seems to be increased in length.

For a similar reason BF appears shortened. This

increasing apparent distance, as the attention is

directed farther to the left, also causes this part of

the figure to assume a convex cylindrical form

;

while that portion toward the extreme right appears

concave. This effect can be obtained by looking
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through a strong prism at the opposite wall of a

room, turning the prism so as to get the extreme

magnifying and minifying power. Since the lower

half of the figure is a reproduction of the upper half,

it needs no explanation.

Similar distortions and illusions must be produced

by weak prisms, though in a less marked degree ;

it is not surprising therefore that unpleasant sen-

sations arise when persons attempt to wear com-

paratively strong prismatic glasses as spectacles. In

many cases, however, this disturbance passes away

after the glasses have been worn for a short time.



CHAPTER XIII

THE KEFLEXION OF LIGHT

The law of reflexion— namely, the angles of inci-

dence and reflexion lie in the same plane and are

equal— was, as we have stated, known to the

ancients.

As we have found the law of refraction to follow

as a necessary consequence of the wave theory of

light, being due to the varying velocity of light in

different media, so also the law of reflexion cor-

roborates this theory. In reflexion the light does

not pass out of the first medium ; its direction,

however, is reversed. Hence, if we make n equal

to minus 1 in any equation pertaining to refraction,

we ought to get the corresponding equation for

reflexion. By making this substitution we arrive

at identical formulae with those obtained from in-

dependent geometrical construction.

The phenomena of reflexion, so far as they con-

cern the ophthalmologist, are exceedingly simple.

The illumination of the interior of the eye is ac-

complished by means of a mirror, which reflects light

from a flame, while the observer is so situated as to

177
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be in the patli of the light returning by reflexion

and refraction.

If a plane mirror is used, light is thrown into the

eye by pencils which appear to come from behind

the mirror and from a distance equal to that of the

Fig. 48.

lamp from the mirror. This is illustrated in Fig. 48.

It can easily be proved that the angles A and A^ are

equal.

If a concave mirror is used, the light appears to

come from a point in front of the mirror. This we

deduce from equation (a), page 30. If we make n

equal to minus 1 in this equation, the result is an

equation expressing the relation between the conju-
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gate foci after reflexion at a spherical surface. Mak-

ing this substitution, equation (a) becomes

1_1__2 1_2 ,

1

f is the distance of the flame from the mirror, /' is

the distance of its conjugate from the mirror, and r

is the radius of curvature. Since the mirror is con-

cave, r is negative. Hence, / being positive, /' is

2 1
negative when - is greater than - and positive when

- is less than -.

r f
In other words, if / is greater than -, the two

conjugate foci lie on the same side of the mirror

;

if / is less than -, both / and f^ are positive, a]id

consequently lie on opposite sides of the mirror.

The radius of curvature of the concave mirrors

used in ophthalmoscopy does not exceed ^ metre

;

and as the distance of the flame from the mirror is

greater than half this radius, the point from which

light proceeds is in front of the mirror. The

illumination of the eye bv the concave mirror is

therefore more intense than that by the plane

mirror.

Figure 49 illustrates reflexion by the concave

mirror ; light from A is focused at A' . HA rep-
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resent a gas flame, an image of this flame will be

formed at A^.

Continuing the study of reflexion at a spherical

surface, we see that if we make / equal to infinity,

f is equal to -, that is, the principal focal distance

of a spherical mirror is equal to one-half of tlie

radius of curvature.* If the mirror is concave, -
2

is negative, and the principal focus is half way be-

FiG. 49.

tween the centre of curvature and the surface of the

mirror. If the mirror is convex, - is positive, and

the principal focus lies behind the mirror. Clearly

such a focus must be virtual, while the negative

focus of the concave mirror is real. Hence if we

use equation (a), real foci in reflexion are negative

while virtual ones are positive.

*It will be observed that in reflexion the two principal foci

coincide.
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It must be borne in mind that the equation ap-

plies only to small pencils near the axis of the sur-

face, for spherical aberration occurs in reflexion as

in refraction.

The same relation exists between the size of object

and image as in refraction, viz.

:

__ u

If u be positive, that is, if the object be without

the principal focus, as in Fig. 49, then the image

will be positive or negative according as F is posi-

tive or negative. When F is negative, as in the

concave mirror, the image is real and inverted;

when F is positive, as in the convex mirror, the

image is virtual and erect.

In the concave mirror u is negative Avhen the ob-

ject lies nearer the mirror than the princijDal focus

;

in the convex mirror u cannot be negative, since

the principal focus is virtual and behind the mirror.

Hence in reflexion at concave mirrors the image is

real and inverted when the object lies without the

principal focus ; virtual and erect when tiie object

lies within this focus. In reflexion at convex

mirrors the image is always virtual and erect.
XT

Since the size of the image is equal to o - —, the
u

virtual image formed by the concave mirror is larger
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than the object, for u^ lyhig between F and the

mirror, must be less than F.

The real image formed by the concave mirror is

less than the object when u is greater than F^ and

vice versa.

The erect virtual image formed by the convex

mirror is always smaller than the object, since u is

necessarily greater than F.

Since all refracting surfaces act also as reflecting

surfaces, the three refracting surfaces of the eye,

namely, the cornea, the anterior, and the posterior

surface of the lens, must furnish also three reflect-

ing surfaces. Consequently, when an object is held

before the eye, there must be formed by reflexion

three images of the object. The first, formed at

the convex surface of the cornea, is virtual and

erect ; the second, formed at the anterior surface of

the lens, is also virtual and erect; while the third,

formed at the concave posterior surface of the lens,

is real and inverted. These images, as seen with

the aid of a lighted candle in a darkened room,

are of great interest to ophthalmologists. The

formation of all three images is conclusive evidence

of the presence of the crystalline lens in the eye.

Furthermore, by the change in relative size of

these images, the increase in curvature of the lens

during the act of accommodation can be demon-

strated.
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Since the size of the ima^e varies with — , and F
is equal to -, we have a means of measuring the

curvature of the refracting surfaces of the eye,

provided we can measure the size of the reflected

images. A brief description of the way in which

this can be done will be given in the next chapter.



CHAPTER XIV

THE OPTICAL PRINCIPLES OF OPHTHALMOMETRY
AND OF OPHTHALMOSCOPY

To the genius of Helmholtz we owe the invention

of the ophthalmometer, an instrument of great pre-

cision for measuring the curvature of the refracting

surfaces of the eye. In the construction of this

instrument Helmholtz employed a device already in

use by astronomers for the measurement of the stars,

namely, the production of double images of a single

object.

This is possible by means of several contrivances.

The simplest is the double prism, such as the Mad-

dox prism found in the oculists' trial case. Helm-

holtz' device consisted of two plates of glass of

equal thickness inclined at an angle, as is shown in

Fig. 50. A pencil of light from o meets the plate

i), and is refracted as in the figure. The rays, after

emergence, are parallel to their direction before

entering the plate, but they undergo a lateral dis-

placement due to the thickness of the glass, so that

they all appear to come from A, Likewise, that

part of the pencil which passes through the plate

184
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JE appears to come from B, Hence, if o represent

a small object, there will appear after refraction

through the plates two similar objects at A and B^

respectively.

D

a' H/^'^L^^^=^^^3 J ____—
——

"

^^^"^^
-^^^^lf^$^^^^^^^^^:^=^

u^^^^^^^LJ' ——~-__^ _^^ ^^^^"^^"""^^

^eY
-^ B'

M
^\_7

Fig. 50.

If a convex lens be placed at Z, a real image of

A will be formed at A^^ and an image of B will

be formed at 5'. A second convex lens, Jf, whose

principal focal plane is A^B\ will render rays from

the image A^B' parallel ; and the

image will be focused on the retina

without accommodation.

If the circle whose centre is (Fig.

51) be viewed through a double prism,

or through two inclined plates ; and,

if the double images are separated to

such an extent that the two circles A
and B appear to touch at 0, it is clear

that the amount of separation of the

iraages will be equal to the diame-

ter of the circle 0, It is also clear that if the

angle between the two plates can be varied, then, by

changing this angle to the proper degree, the two

y
Fig. 51.
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images can be made to touch as in the figure.

Knowing the angle between the plates, the thick-

ness and refractive index of the glass, the amount

of displacement from to A and from to B can

be calculated.

If the object at be a reflected image as seen in

the cornea, we can obtain its size from the data

above mentioned. The size of the object, the size

of the image, and the distance of the object from

the cornea being known, we deduce the curvature of

the cornea from the equation,

_ u _2u
i F r

'

The greater the curvature of the surface, the

smaller is the image ; consequently, if the two im-

ages touch in the meridian of least curvature of an

astigmatic cornea, they Avill be separated by an

interval in the meridian of greatest curvature

;

while, if they touch in the meridian of greatest cur-

vature, they will overlap in that of least curvature.

The construction of the modern ophthalmometer

of Javal and Schiotz is somewhat different from that

of Helmholtz ; but the essential optical principles

are the same in both instruments.

By the aid of ingenious mechanical devices, ob-

servations of the corneal curvature have become a

matter of the greatest ease. In the instrument of
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Javal and Schiotz the glass plates are replaced by a

Wollaston prism, which, like the plates, produces

two images of a single object.

Certain crystalline substances possess the peculiar

property of double refraction. Iceland spar is a

familiar example of a double refracting substance.

Part of the light entering this material undergoes

refraction in the ordinar}^ wa}^ while a part possesses

the property of having different velocities, and hence

different refractive indices in different directions.

This is due to the fact that the constitution of the

substance is such as to offer unequal resistance to

the passage of light in different directions or axes.

The tirst portion of light which follows tlie ordinary

law of refraction is called the ordinary ray ; tlie

second portion, whose index varies for different

meridians, is called the extra-ordinary ray.

If we take a piece of double refracting substance,

as Iceland spar or quartz, and through it look at an

object placed in such position as regards incident

light that the difference in index between the ordi-

nary and extra-ordinary rays causes a separation of

these rays, a double image of the object will be

formed. Wollaston's prism is based upon this

principle.*

* For a detailed account of the phenomenon of donble refrac-

tion and the construction of Wollaston's prism, consult Preston's

" Theory of Light," or other complete treatise on optics.
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In the modern ophthalmometer, in which the Wol-

laston prism is used, the objective L is composed of

two lenses separated by an interval ; and the prism

is placed in this interval between the lenses.

The exact amount of separation which the prism

produces in its fixed position is known. The di-

ameter of the object from which light is reflected to

the cornea can be varied at will. This object con-

sists of two sets of white enamelled disks called mires,

equally distant from the centre of a connecting bar.

By increasing or diminishing the distance between

the mires their separation may be made such that the

double images are tangent to one another. From a

scale which has been constructed by previous calcula-

tion, the curvature of the cornea or its refractive

power in dioptres can be read off on the bar separat-

ing the mires.

The ophthalmoscope is a contrivance by which the

observer reflects light into an eye, while he is in

such position as to receive in his own eye the light

which returns by reflexion and refraction from the

observed eye. As Helmholtz invented the ophthal-

mometer, so to him are we indebted for the gift of

the ophthalmoscope. Prior to this invention, in

1851, the question of seeing the fundus of the eye

had attracted much attention. It was of course

known that the eyes of some animals emit a reddish

or greenish tint under certain circumstances, and
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many absurd speculations were indulged in for the

explanation of this phenomenon. Briicke made a

thorough study of this subject, and in 1847 gave the

true explanation.* Indeed, he came so near to the

invention of the ophthalmoscope as to place in a

flame an iron tube, through which lie could see the

fundus of the eye. It was also known prior to these

discoveries that the fundus of the ej^e would become

visible if the eye were immersed in Avater. The ex-

planation of this is similar to that of the glow of a

cat's eye.

The ophthalmoscope in its simjDlest form is a plane

or concave mirror, havinof in its centre a small circu-

lar opening through whicli the observer receives tlie

light returning from the observed eye. Reference to

Fig. 62 shows why the fundus of an eye cannot be

seen without a special contrivance. If light be re-

flected into the eve from a flame A alono^ the axis

AJE^ and along other axes near AU, a small image

of the flame will be formed on the retina, and at the

same time a small portion of the fundus adjacent to

the image will be illuminated by irregular reflexion.

Light from this portion of the fundus passes out of

the eye. If the eye is emmetropic, the pencil from

U, having as its axis UA, is after refraction changed

to parallel rays ; similarly, pencils from other points

* Mueller's " Archiv ftir Anat. und Phys.," 1845, S. 387; and

1847, SS. 225, 479.
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:z

Fig. 52.

near E will have as axes lines ly-

ing very near EA, and these rays

will also, after refraction, be par-

allel to their axes ; thus it is evi-

dent that the light which returns

from the examined eye cannot

within a short distance from the

eye deviate far from the axis EA.
Hence we see that without a spe-

cial contrivance the observer's

head would necessarily cut off the

light which illuminates the qjq.

In the hyperopic eye pencils of

light from any point on the fundus

are divergent after leaving the eye.

If the fundus be at H^ then BHC
will represent a pencil from H, If

the rays diverge considerably it

will be possible for an observer

to place his head in position to

receive some of the rays^ and yet

not obstruct those from the illu-

minating source. It is on this

account that a cat's eye glows in

the dark when the observer is not

far from the path of the rays which

enter the eye. Placing the eye

under water has the same effect
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upon pencils as hyperopia, for the refractive index

of water is nearly the same as that of the aqueous,

and, the external surface of the water being plane,

we have in the immersed eye a high degree curva-

ture hyperopia.

By referring to Fig. 62 we see that when the fun-

dus is conjugate to the position from which the illumi-

nation proceeds, only a small portion of the fundus

is illuminated, and that the more remote the fundus

is from this conjugate position, the greater is the

portion of fundus illuminated. This is the prin-

ciple upon which is based the method of examina-

tion known as skiascopy. If the examination be

conducted with a plane mirror so placed that light

enters the eye in pencils diverging from a distance

of one metre in front of the eye, and if the far point

of the eye be also distant one metre, that is, if the eye

have one dioptre of myopia, a very small part of the

fundus will be illuminated. Hence, if the mirror be

slightly tilted, the area of illumination will at once

be thrown out of the line of vision of the observer.

If the eye be hyperopic, then as the mirror is tilted

the area of illumination will move in the same direc-

tion, but it will not pass out of view so rapidly, and

we can observe the motion of the reflex and its at-

tendant shadow as they move across the pupil.

When the mirror is so tilted that the light which

enters the eye appears to come from i, then a
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straight line, drawn through the optical centre of

the eye, connecting i, H'^ E^ ^ N' ^ and M' ^ replaces

the axis AM\ hence, no matter what may be the

refractive condition of the eye, the area of illumina-

tion always moves in the direction of the tilting of

the mirror. But in myopia such that the fundus is

at M, beyond the conjugate iV, there will be formed

to the left of A an aerial image of the illuminated

area, and this will evidently move in the opposite

direction to the tilting of the mirror. If the ob-

server is farther from the eye than this image, he

must therefore see the reflex and shadow move in

the opposite direction to the tilting.

By observing the movement of the shadow in dif-

ferent meridians of the eye, the test can also be used

for the detection of astigmatism.

If a concave mirror be used so that light enters

the eye diverging from a real image in front of the

mirror, the movements of the shadow will be oppo-

site to those which occur with the use of the plane

mirror ; the reason for this is apparent.

With such accuracy can the motion of the shadow

be observed that this method, in skilful hands, sur-

passes all other objective means of examining the

refractive condition of the eye.

Since light leaves the emmetropic eye in parallel

rays and the hyperopic eye in divergent pencils,

these rays may be brought to a focus on the retina
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of the observer, thus forming an image of the illumi-

nated part of the fundus under examination, so that

in both hyperopia and emmetropia the details of the

fundus can be seen, provided the observer is suffi-

ciently near the examined eye to receive light from

an appreciable area of the fundus. Moreover, since

in hyperopia a larger part of the fundus is illumi-

nated than in emmetropia, the details can be seen at

a greater distance in hyperopic eyes.

The rays from hyperopic and emmetropic eyes,

being either divergent or parallel, will never meet

in a real aerial image ; hence the image, as seen by

the examiner, will always be erect. The examina-

tion of the erect image is called the direct method of

ophthalmoscopy.

Light emerging from a myopic eye is convergent,

and if the eye of an emmetropic observer be nearer

the e5"e than the far point, a concave lens must be

used to see clearly the details of the fundus. The

image as thus seen will be erect ; but at the far

point of the eye, which we know is conjugate to the

retina, an inverted aerial image will be formed, and

from this, divergent pencils will enter an observer's

eye situated beyond the image. A concave lens will

be no longer required ; on the other hand, exercise

of the accommodation or a convex lens varying with

the distance of the eye from the image is necessary.

The examination of the inverted image is called the
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indirect method of ophthalmoscopy. As thus de-

scribed, this method would be practicable only in

highly myopic eyes ; but we may produce the aerial

image in all cases by holding a strong convex lens

in front of the eye to be examined. The stronger

the lens the larger will be the field of view and

the smaller the image ; hence the strength of the

converging lens may be varied to suit the purpose of

the examiner.

Finally let us investigate the apparent size of the

optic disk— the most conspicuous object revealed

by the ophthalmoscope— as affected by the various

refractive conditions of the eye. We shall first con-

sider the examination by the direct method. When
the eye under examination is emmetropic, no change

in apparent size is produced by varying the distance

between the observed and observer's eyes ; for we

see from Fig. 50 (in which A^B^ may represent the

disk, the lensM may represent the observed, and HN
the observer's eye respectively) that the visual angle

HON under which the disk is seen does not vary

with the distance between the two eyes.* The field

of view becomes smaller as this distance increases, for

more rays pass outside of the eye ! but no change in

size is produced. If the observed eye be hyperopic,

rays after leaving it will be divergent, and this same

divergence might be caused by placing a suitable

* See also Fig. 45, p. 170.
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concave lens in contact with an emmetropic eye. A
lens in this position is without the anterior focus of

the observer's eye. We know that a concave lens

placed without the anterior focus of an optical sys-

tem diminishes the size of images formed by it, and

that the minifying effect increases as the distance of

the lens from the focus. Hence in hyperopia the

disk appears smaller than in emmetropia, and its

apparent size diminishes as the distance between

the eyes increases. In myopia the pencils are con-

vergent after leaving the eje, just as if a convex lens

were placed before the eye ; thus the disk in this

case appears larger than in emmetropia, and the

apparent size increases with the distance between

the eyes.

In astigmatism the disk appears smaller than

normal in the meridian of hyperopic and larger than

normal in the meridian of myopic refraction. Hence

supposing the disk to be circular in form, it appears

oval in astigmatism witli the long axis in the merid-

ian of greatest refraction.

In the indirect method of examination the image

as seen by the observer varies in size with the aerial

image formed by the convergent lens ; hence we

must investigate the size of this image as affected by

the refractive condition of the examined eye. In

hyperopia the concave lens, which we suppose to be

placed in contact with the cornea of a normal eye,
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has a magnifying or minifying effect upon the aerial

image according as the distance of the lens from the

eye is less or greater than the focal length of the

lens. Therefore in the indirect examination the disk

appears larger than normal when the distance of the

lens from the examined eye is less than the focal

length of the lens ; when this distance is equal to

the focal length of the lens, the disk appears nor-

mal in size, and when the distance of the lens from

the eye is greater than the focal length of the former,

the disk appears smaller than normal.

In myopia we have the opposite conditions, that is,

the disk appears diminished in size when the distance

between the eye and lens is less than the focal length

of the latter ; and, increasing with the distance of

the lens, the disk appears larger than normal when

the distance of the lens from the eye is greater

than the focal length of the lens.

Thus also in astigmatism the disk undergoes the

opposite distortion to that which occurs in the direct

examination, provided that the distance of the lens

from the eye is less than the focal length of the lens,

and when the lens is farther from the eye than this

length the distortion is the same in both methods.

This distortion, first described by Knapp, was

formerly used as a test for astigmatism. By placing

a suitable lens before the eye the distortion can be

made to disappear, and this lens represents the
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amount of astigmatism present. While this test

has given way to other more delicate ones, the

phenomenon is, in high degrees of ametropia, so

striking that it must attract the attention of every

student of ophthalmoscopy.
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For the convenience of those who may not be familiar

with trigonometrical formulae, we append the following

synopsis

:

In the figure, ABODE represents a quadrant, or 90

degrees of the circumference of a circle, of which AB,

BC, CD, and DE are equal

arcs. The angles AOB,^

BOC, COD, and DOE are

also equal.

If BF be drawn perpen-

dicular to OA, then
BF
OB

IS

called the sine of the angle

AOB; similarly, —— is the

Fig. 53. sine of COR.

BF .

00
OF
OB
OF
BF

is called

the cosine of AOB, ^ is the tangent, and —- the cotan-
OF Bli

gent of this angle.

The angle xWC is twice the angle AOB, but it is

readily seen that the perpendicular CH is less than

twice the perpendicular BF] hence the sine of twice an

angle is less than twice the sine of the angle. Similarly

198
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the sine of AOD is less than three times the sine of

AOB] moreover it is evident that the increase in the sine

caused by adding the angle COD is less than that caused

by adding the equal angle BOC. As the angle approaches

90 degrees, an increase in this angle will produce much

less increase in the length of the perpendicular DM than

the same increase of a small angle. The opposite to this

is true of the cosine of an angle ; as the angle increases

the cosine diminishes, and at an increasing rate as the

angle approaches 90 degrees.

The sine of an angle increases, as we see, from zero to

unity as the angle increases from zero to 90 degrees, and

the cosine diminishes from unity to zero as the angle in-

creases from zero to 90 degrees. The value of the sine,

cosine, or tangent of any angle can be found from tables

which have been constructed by calculation.

All the trigonometrical formulae used in the preceding

pages are easily deduced from the foregoing. They are

as follows

:

, sina , cos a
tan a = ; cot a = ——

;

cos a sm a

sin(a ± &) = sin a • cos b±cosa sin&; sin2a=2 sin a • cos a;

sin (180 —a) = sin a ; sin^ a + cos^ a = l.

Also in any triangle ABC, =— , BC being the
sin B AC

side opposite to the angle A, and AC being opposite to B,



APPENDIX II

The following demonstration is based upon that given

in Heath's " Geometrical Optics ''
:
^

In the figure, the normal, MN, to the refracting surface

lies in the plane of the paper represented by ABCD, and

Fig. 54.

the plane EFOH is perpendicular to the plane of the

paper. For the sake of clearness all lines which lie in

* " Geometrical Optics," Heath, 2d ed., p. 21.

200



APPENDIX II 201

the plane ABCD are drawn as continuous, and all not in

this plane are drawn as interrupted lines.

Let RO represent an incident ray which, lies in front

of the plane ABCD, then OS, the refracted ray, will lie

behind this plane. If the first medium be air, whose

index is 1, and if the index of the second medium be n,

then we shall have the equation

sin3/0i? = n . sin>SO^.

Since the incident and refracted rays must lie in the

plane MRNS, the deviation produced by the refraction is

in this plane, but we have learned that a deviation in any

plane may be resolved into two deviations at right angles

to each other; and therefore a deviation in the plane

MRNS may be considered as the resultant of tAvo devia-

tions lying respectively in the plane ABCD and in PQRS
at right angles to ABCD. To find these resultant de-

viations, lay off the distances RO and OS such that

OS = n • RO. From R, which lies in front of the plane

ABCD, draw i?J/ perpendicular to MN, and i?P perpen-

dicular to ABCD\ from S, which lies behind the plane

ABCD, draw in like manner SN and SQ. Then as RMO
is a right angle, we have MR = RO - sin 3I0R, and from

the triangle SOX^e have SX= OS • sin >SO:V, or, since

OS =71' RO, SX= RO • n • sin SON-, but sin 3I0R =
n- sin S0^\ hence MR = SX. MR is also parallel to

SN, since both lie in the same plane and are perpen-

dicular to MX. We see also that PR is parallel to SQ
and FM to QX; thus the triangles PJfR and XQS are

equal, and PR = QS and PM= QN.
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Let the angle POE, which the incident ray makes

with the plane ABCD, be denoted by i^^ and let the

angle QOS, which the refracted ray makes with this

plane, be denoted by r^; then PE = BO - sin i^^ and

QS = OS • sin Ti, or, since PB = QS and OS = 71- BO,
we have

. .

sm 1^ = 71' sm T^. (1)

From this we see that there is the same relation be-

tween ^l and i\ as between the angles of incidence and

refraction, MOB and SON.
If the angle POM be denoted by 4, and'QOiV^ by

T2, we shall have PM= PO • sin ^2 = i20 • cos ^l
• sin 2*2,

and QJSf= QO • sin rg = OS • cos r^ sin 7-2 = n • BO • cos Vi

sin 7^2-

From this, since PM= QN, we have

cos ^l sin i^^n * cos ri sin rg,

. . cos ?\ . ,oxor sm i2 = n ' ^ • sm rg. (2)
cos ii

Thus we see that ^2 and ra are connected by the law

of refraction, the index of the first medium being 1 and
cos 7'

that of the second being 71 • -. From equations (1)
cos ii

and (2) we can find the deviation of the ray BOS in the

planes PBQS and 3fPNQ, or ABCD.
When n is greater than unity, as in glass, it follows

from (1) that 2\ is greater than rj, and since the greater

the angle the smaller is the cosine, ~ must be greater
cos

?*i

than unity ; hence 71 • —^

—

- is greater than n. In other
cos 1*1
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words, the deviation of the ray in the direction of the

plane ABCD is the same as would be produced in a

ray, PO, upon entering a medium of greater index than

that of the medium which we are considering. As we

know that the deviation increases with the index, it fol-

lows that the ray EO undergoes a greater deviation in

the plane ABCD than would a ray in the line PO, which

is the projection oi BO on this plane.

We can now apply these deductions to refraction

through a prism. The ]3lane ABCD represents a prin-

cipal plane of the prism; the TSij BO, not in this plane,

will, at the first face of the prism, undergo deviation in

the plane ^IBuSfS, and this deviation is equivalent to a

certain deviation in the principal plane superposed upon

a deviation in the plane PBQS, which is perpendicular

to the principal plane. The plane PBQS, being perpen-

dicular to the principal plane, cuts the two faces of the

prism in two parallel lines. From equation (1) we have

seen that the angles BOB and QOS, whose difference

expresses the deviation in the plane PBQS, are con-

nected by the law of refraction; and, since this plane

cuts the faces of the prism in parallel lines, it is clear

that the deviation in this plane at the first face must be

neutralized by that at the second face. Thus we see

that in any position of the ray no deviation is produced

in the direction of the edge of the prism. ^

Let us now investigate the deviation by the prism in

* We have already assumed this to be true for the cylindrical

lens, which we may consider as composed of an infinite number
of prisms whose edges are all parallel to the axis of the lens.
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its principal plane. The edge of the prism would be

represented by a line perpendicular to ABCD^ such a

line would be parallel to FB, and consequently B and P
are equally distant from the edge. At the first face the

deviation in the principal plane is greater for the ray

BO than for a ray, PO, equally distant from the edge of

the prism. We have seen that the deviation in a prin-

cipal plane which the ray BO undergoes at the first face

is the same as would be produced in the ray PO upon

entering a medium whose index is n • —^. We have
cos ii

seen also that in its passage through the prism there is

no deviation of the ray in the plane PBQS\ hence, if

we trace the ray backward, we shall have at the second

face the same angles, POB and QOS, that we have at

the first face. At the second face also, then, the oblique

ray is deviated in the principal plane to the same extent

as the corresponding ray in this plane would be deviated

by a prism whose index is n • \ Since the total
cos ii

deviation produced by a prism increases as the index

increases, it is proved that the deviation in the principal

plane is greater for rays not in this plane than for those

which lie in it.

When POB (ii) increases, the index of the hypo-

thetical prism increases at a continually increasing rate.
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Aberration, chromatic, 29.

spherical, 28, 181.

of crystalliue lens, 64.

Accommodation, 95.

effect of, on retinal images, 118.

Airy, Sir George, 124.

Ametropia, 94.

Angles of incidence and refrac-

tion, 7.

Aphakic eye, curvature hyperopia
of, 120.

dioptric power of, 100.

effect on images of correcting

lens in, 120.

focal distances of, 100, 120

with axial elongation, 101.

Aqueous humor, 62.

refractive index of, 83.

Astigmatism, 124, 133.

effect of, on retinal images, 134.

lenticular, 161.

produced by oblique spherical

refraction, 165.

the action of a prism, 172.

Axis of cylindrical lens, 125.

of optical system, 65.

refracting surface, 27.

Bruecke, 189.

Cardinal planes and points, 37, 65.

of the eye, 86.

in combination with a lens, 90.

Cartesian oval, 29.

Cataract, vision after extraction

of, 121.

Catoptrics, 1.

Caustic, 28.

Centrad, 22.

Centre, optical, 43.

Circle of least confusion, 132.

Colors of the spectrum, 17.

Conjugate focal planes, 36.

Conjugate focal distances and foci.

See Focal distances.

Constants, optical, of the eye, 67.

Continuous fraction, 69.

Convergent, 70.

Cornea, 62.

curvature of, asymmetrical, 124.

method of determining, 186.

normal, 83.

Corpuscular theory, S.

Critical angle, 12.

Crystalline lens, change in curva-

ture of, in accommodation,
95.

curvature of, 83.

effect of extraction of, in axial

myopia, 101.

in curvature myopia, 101.

in emmetropia, 100.

on retinal images, 120.

effect of variation in position of,

104.

equivalent refractive index of,

64.

normal position of, 83.

oblique position of, in astigma-

tism, 124.

structure of, 62.

thickness of, 83.
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Cylindrical lens, 125.

action of, 125.

axis of, 125.

combination of, with spherical

lens, 125.

lenses, combination of, at right

angles, 126.

at oblique angles, 148.

effect of, on retinal images,

135, 146.

twisting property of, 138.

Dennett, 22.

Descartes, 8.

Deviation, increase of, with in-

crease of angle of incidence,

14.

Dioptre, 61.

Dioptrics, 1.

Direct method of ophthalmoscopy,
193.

Direct pencil, 163.

Dispersion, 17.

Donders, 88, 149, 157, 161.

Double refraction, 187.

Electro-magnetic theory of waves,
4.

Ellipsoidal surfaces, 40.

Emission theory, 3.

Emmetropia, 94.

Errors of refraction, 94.

Ether, 3.

Eye, adaptation of, to varying dis-

tances, 95.

aphakic, dioptric power of, 100.

focal distances of, 100, 120.

artificial, 89.

as an optical system, 62.

cardinal points of, 86.

conjugate foci and focal dis-

tances of, 98.

far point of, 97.

illumination of, 177.

lengthening of, in myopia, 98.

nodal points of, 85.

Eye, normal, dioptric power of,

100.

focal distances of, 85.

optical constants of, 67, 83.

principal points of, 85.

reduced, 87.

schematic, 86, 88.

shortening of, in hyperopia, 98.

Fizeau and Foucault, 3.

Focal distance of cylindrical lens,

126.

Focal distances and foci, conju-

gate, of single spherical re-

fracting surface, 30.

of a lens, 45.

of a system of surfaces, 65.

in reflexion, 179.

principal, of single spherical re-

fracting surface, 32.

of a lens, 48, 54.

of a system of surfaces, 78.

of the eye, 85.

of the aphakic eye, 100, 121.

of the eye in accommodation,
95, 118.

relation between principal and
conjugate, 32, 57, 102.

Focal interval of Sturm, 131.

Focal length of spectacle lenses,

54.

Focal line of cylindrical lens, 126.

lines of bi-cylindrical lens, 131.

Focal planes. See Planes.

Foci. See Focal distances.

Focus, 27.

conjugate, 30.

principal, 32.

real, 33.

virtual, 33.

Fresnel, 3.

Galileo, 2.

Gauss, 64, 65.

Green, John, 164.
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Hay, Gustavus, 149.

Heath, 150, 161.

Helmholtz, 62, 64, 79, 184, 188.

Helmholtz' formula, 39.

Huyghens, 3.

Hyperopia, 94.

effect of correcting lens on im-

ages in, 118.

use of convex lenses in, 96.

Image, formed by astigmatic re-

fraction, 131.

by refraction at one spherical

surface, 36, 37.

by refraction through a lens,

52, 58.

by a system of spherical re-

fracting surfaces, 79.

Helmholtz' formula for deter-

mining size of, 39.

real, 58.

reflected, 181.

relation between length of pencil

and size of, 170.

size of, and of object. See

Object,

retinal, effect on, of cylindrical

lens, 135.

of prism, 169, 173, 174.

of spherical lens, 109, 117, 118,

122.

virtual, 59.

Incident ray, 7.

Index of refraction. See Kefrac-

tive index.

Indirect method of ophthalmo-
scopy, 193.

Jackson, Edward, 22, 149.

Javal and Schiotz, 186.

Kepler, 2, 8.

Knapp, 196.

Roller, 144.

Law, Snell's, of refraction, 8.

of reflexion, 177.

Lens, 40.

crystalline. See Crystalline.

Lenses, action of concave and con-

vex, 56.

bi-cylindrical, 127, 148.

classification of, 40.

collective, 57.

combination of, 60.

cylindrical. See Cylindrical,

deviating power of, 154.

dispersive, 57.

focal length of, 48, 54.

nodal points of, 41.

oblique refraction through, 163.

periscopic, 41, 59.

piano-curved, 41, 59.

position of, when used as spec-

tacles, 97, 99, 104, 118.

principal planes and points of,

49.

refractive power of, 59.

spherical, effect of, on images,

109, 117, 118, 122.

in hyperopia, 96.

in myopia, 97.

in presbyopia, 105.

sphero-cylindrical, 131, 148.

systems of numbering, 59, 61.

thickness of, 40.

thin, 54.

toric, 125.

Lens, Stokes, 149.

Lenticular astigmatism, 161.

Light, method of transmission of, 3.

reflected and scattered, 6.

velocity of, 3.

in media of different densities,

8, 17.

Lippershey, Hans, 2.

Listing, 65, 87.

Maddox, 22.

prism, 184.

Meniscus, 40.
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Meridian, principal, 124.

Metre-angle, 22.

Minimum deviation, 20.

Moebius, 64.

Myopia, 94, 95.

concave lenses in, 97.

effect of, on images, 119.

extraction of crystalline, for cure

of, 101, 120.

Nagel, 22.

Near vision, effect of changing
position of lens in, 104, 122.

in emmetropia, 94.

in hyperopia, 95, 105, 119.

in myopia, 119.

in presbyopia, 105, 122.

Newcomb, 3.

Newton, Sir Isaac, 2.

Nodal point of single spherical re-

fracting surface, 37.

points, of lens, 41, 54.

of system of refracting sur-

faces, 81.

of the eye, 85.

Object, relation between size of,

and image, after one spheri-

cal refraction, 37.

after refraction by a lens, 52.

after refraction by a system of

surfaces, 79.

in reflexion, 181.

Oblique pencil, 163.

Oblique refraction, cylindrical, 167.

spherical, 163.

Ophthalmometer, 184.

Ophthalmometry, optical prin-

ciples of, 184.

Ophthalmoscope, 188.

Ophthalmoscopy, direct, 193.

indirect, 194.

optical principles of, 189.

Optical centre, 43.

Optic disk, apparent size and
shape of, 194.

Optics, definition and subdrvision
of, 1.

Paraboloid surfaces, 40.

Parallel rays, 31.

Pencil of light, 6.

direct, 163.

oblique, 163.

Planes and points, cardinal. See
Cardinal,

conjugate. See Conjugate,
principal. See Principal.

Prentice, 22, 149.

Presbyopes, near vision of, 105,119.

Principal focal distances and foci.

See focal distances.

Principal meridians, 124.

Principal plane and point, of single

spherical refracting surface,

36.

Principal plane of prism, 14, 169.

Principal planes and points of a
lens, 49.

of a system of surfaces, 72.

of the eye, 85.

of the eye in combination with
a lens, 93.

Prism, 14.

Wollaston's, 187.

Prism-dioptre, 22.

Prisms, astigmatic effect of, 172.

deviation produced by, 19, 21.

effect of, on pencils of light and
images, 169.

refracting angle of, 18.

refraction of pencils by, 169.

of rays by, 14.

of rays not in principal plane,

170.

combination of, 22.

numbering of, 21.

use of, in oiDhthalmology, 17.

Ray, 6.

extraordinary and ordinary, 187.

incident and refracted, 7.
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Reduced eye, 87.

Reflected images, 181.

formation of, at surfaces of

cornea and crystalline lens,

182.

Reflexion at a plane surface, 178.

at a spherical surface, 178.

law of, 177.

total internal, 12.

Refractive index, 7.

absolute, 13.

of spectacle glass, 21.

Refraction by one spherical sur-

face, 26.

by cylindrical surfaces, 125.

by spherical lenses, 41.

by system of spherical surfaces,

65.

by toric surfaces, 125.

double, 187.

law of, 8.

oblique, 163.

Retinal images, as affected by
accommodation, 118.

by cylindrical lenses, 135.

by prisms, 169.

by spherical lenses, 109.

in aphakia, 120.

in hyperopia, 118.

in myopia, 119.

in presbyopia, 119.

Reversibility of path of light, 12.

Romer, 2.

Schematic eye, 86, 88.

Skiascopy, 191.

Snell, 2, 8.

Spectacles, 2, 54.

Spectrum, colors of, 17.

Sphero-cylindrical equivalence of

bi-cj^lindrical lenses, 131,

148.

equivalent, practical method of

finding, 160.

Stokes, Sir G. G., 148.

Stokes lens, 149.

Sturm, focal interval of, 131.

Toric surface, 124.

Units used in numbering lenses,

59, 61.

prisms, 21.

Vision, theory of ancients, regard-

ing, 2.

Visual angle, 171.

Vitreous, 64.

refractive index of, 83.

Wave theory, 3.

Weiland 149, 157.

Wollaston's prism, 187.

Young, Dr. Thomas, 3, 124.
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