


2:50

THE COMPLETE NAUTICAL
ASTRONOMER



BY THE SAME AUTHOR

The Elements of Navigation
The Principles and Practice of Radio Direction Finding
The Master and His Ship
The Apprentice and His Ship
The Complete Coastal Navigator
The Physical Geography of the Oceans
The Astronomical and Mathematical Foundations
of Geography
A History of Nautical Astronomy



The

Complete Nautical
Astronomer

CHARLES H. COTTER

EX.C., B.sC.(Lond.) Mm.sc.(Wales)
F.Inst.Nav.

Senior Lecturer in the Department
of Maritime Studies at the
University of Wales Institute of
Science and Technology

“They are ill discoverers who think
there is no land when they can see
nothing but sea.”

- FRANCIS BACON
The Advancement of Learning
Book 2.

HOLLIS & CARTER

LONDON SYDNEY
TORONTO



© Charles H. Cotter 1969
ISBN 0 370 00230 X
Printed and bound in Great Britain for
Hollis & Carter
an associate company of
The Bodley Head Ltd
9 Bow Street, London, WC2E 7AL
by Fletcher & Son Litd, Norwich
Set in Monotype Imprint
First published 1969
Reprinted 1974



CONTENTS
FOREWORD, ix
PART 1: GENERAL ASTRONOMY

1. The Universe, 3

Introductory and the constellations

2. The Solar System, 18
Planets and the Earth

3. The Celestial Sphere, 30

Equinox and solstice—climatic zones—unequal lengths of seasons
—zodiacal belt—the Moon—solar and lunar eclipses

4. On Defining Celestial Positions, 44

Ecliptic system—equinoctial system—the horizon system

5. The Apparent Diurnal Motion of the Celestial Sphere, 52
Diurnal circles—twilight

6. Time, 62

Sidereal and solar day—the equation of time—longitude and
time—timekeeping at sea—years and calendar

PART II: THE THEORY OF NAUTICAL ASTRONOMY

1. The Astronomical Triangle, 81

Geographical position of heavenly body—circles of equal alti-
tude

2, The Altitude Corrections, 90

Refraction—dip or depression of visible horizon—Sun's and
Moon’s semi-diameter—parallax—aberration, precession, nuta-
tion, irradiation, personal error : -



vi CONTENTS
3. The Astronomical Position Line, 115

Astronomical position circles—Sumner’s method—Marcq Saint
Hilaire’s method

4. The Latitude, 135
' Celestial body at upper and lower transit—finding time of meri-

dian passage—latitude from observation of Polaris—latitude by
ex~-meridian altitude observation

5. Rates of Change, 163
Of azimuth—of altitude

6. Errors in Astronomical Navigation, 181

Accuracy and precision—systematic and random errors—gaus-
sian curve

PART I11: THE INSTRUMENTS OF NAUTICAL
ASTRONOMY

1. The Sextant, 199

Principal features—adjustable and non-adjustable errors—sex-
tant accessories—care of sextant

2. The Chronometer, 215

Description and care of chronometer

3. The Nautical Almanac, 219
Contents

4. Inspection and Short-Method Tables, 224
Horary and sight-reduction tables

5. Miscellaneous Nautical Tables and Instruments, 236

Azimuth tables and diagrams—-star globes and star finders—
slide rules



CONTENTS i
PART IV: PRACTICAL NAUTICAL ASTRONOMY
1. The Use of the Nautical Almanac, 247
Rising and setting phenomena—correction of sextant altitudes

2. The Use of Sextant and Chronometer, 253

Sun, Moon, star and planet observations—radio time signals

3. The Navigational Astronomical Bodies, 259

Sun, planets, Moon and stars

4. Direct Methods of Sight Reduction, 264
Advantages and disadvantages of various methods

5. The Daily Routine of the Nautical Astronomer, 271
Charts—-compasses—the running fix—plotting sheet

6. The Treatment of Navigational Errors, 277

Error in position line—error in running fixes—error in latitude—
error in multi-star fixes

Appendix I: Trigonometry and Nautical Astronomy, 301

Plane sine and cosine formulae—spherical sine and cosine for-
mulae—four-parts formula—Napier’s rules of circular parts

Appendix II: The Calculus and Nautical Astronomy, 318

BIBLIOGRAPHICAL NOTE, 327

INDEX, 331



FOREWORD

Navigation is usually defined as that maritime art by which a
mariner is able to get his vessel safely and expeditiously from
one place to another.

The traditional methods available to the navigator for check-
ing the progress of his vessel, once he is forced to leave the land
astern, having embarked on an ocean voyage, are based upon
the principles of mathematical astronomy. It is the astronomical
methods of fixing a vessel, when shore observations or electronic
aids to navigation are not available, with which we shall be
concerned. This branch of navigation which is largely scientific
in nature, being based upon mathematical principles, is known
by the time-honoured name of nautical astronomy.

The science of nautical astronomy is definite and rigorous in
its principles: it would not be a science otherwise. The rules
may be taught by a teacher or learnt from a textbook, and labor-
iously applied in practice. On the other hand, the art of nautical
astronomy (and it is interesting to note that in byegone days
nautical astronomers were often styled artists) is, in contrast
to the cold science, something warm and alive and peculiarly
personal. A mariner’s feeling for the subject, a feeling which is
related to the degree of his wonder at the marvel of being able,
in a wilderness of sea, to fix his vessel by means of the heavenly
bodies, determines whether or not he is a true artist.

My aim in writ’ 1g this book, which I regard as a companion
volume to my Tne Complete Coastal Navigator, has been to
provide a full and up-to-date text on nautical astronomy in the
belief that a gap in the literature of navigation needs to be
filled.

Now that systematic courses in navigation, of great educa-
tional as well as vocational value, are provided for students
preparing for the examination leading to the Ordinary National
Diploma in Nautical Science, and for those reading for the
degree of B.Sc. in Nautical Science or Maritime Studies, the
need exists for something more than mere manuals of navigation.

x



X FOREWORD

It is for this reason that I have, here and there, introduced a
little historical background which I hope will lead to a broaden-
ing of the reader’s knowledge of, and enhance his interest in,
navigation.

It is my sincere hope that all who read this book, professional
and amateur navigators alike—but especially students of the
subject—will derive not only profit from its pages, but also that
pleasure which springs from understanding and appreciating
the remarkable and unfailing science which enables them to
plan their landfalls with confidence and to complete their
voyages safely.

Cardiff. August 1968 CHARLES H. COTTER



PART 1

General Astronomy



CHAPTER 1

The Universe

The world considered as a system, that is to say the aggregate
of all existing things and space, assumed to be arranged in an
orderly pattern, comprises the universe.

The universe, on account of its apparent orderly arrangement,
is sometimes called the Cosmos; and the study of the science
of the universe is, therefore, called cosmology. Cosmogony
applies to any of a large number of theories of the creation of
the universe; and cosmography denotes description of the
universe.

The distribution of the stars throughout space is not uniform.
Most of the stars visible from the Earth belong to a stellar sys-
tem known as a galaxy. The Earth, which is a mere satellite of
a star, belongs to a galaxy having a diameter of about 100,000
light years, and a maximum thickness of about 3000 light years.
When the sky is observed on a dark, cloud-free and clear night
along the plane of the local galaxy, the immense number of
stars to be seen appears as a white belt girdling the heavens.
This is known familiarly as the Milky Way.

For describing distances such as the dimensions of galaxies
and the distances between stars, astronomers use (as we have
done above) a practical unit of distance known as a light year.
This is the distance traversed by light, which travels at the
prodigious rate of 186,000 miles per second, in a year. The
dimensions of galaxies are small compared with the distances
which separate neighbouring galaxies: astronomical distances,
therefore, have magnitudes wholly incomprehensible to most
minds.

It appears that the principal ‘physical’ feature of the universe
is space occupied by gaseous material at an infinitesimally low
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4 THE COMPLETE NAUTICAL ASTRONOMER

density. Interspersed throughout space are countless millions of
stars.

A star comprises a vast quantity of material at a relatively
high density. Nuclear processes within a star result in its tem-
perature being exceedingly high. A star’s high temperature
renders it self-luminous by virtue of the enormous quantity of
electro-magnetic energy, embracing a wide range of frequencies
(including those of heat and light), which it radiates. To terres-
trial dwellers the most prominent star is the Sun which, because
of his proximity to the Earth—one of the Sun’s family of planets
—renders all other stars invisible when he is above an observer’s
horizon.

At night, when the Sun is below the horizon and the air is
clear and cloudless, the stars in all their glory provide one of
the most majestic and awe-inspiring sights of Nature. The study
of the stars must have begun as soon as there were men to ob-
serve. The spectacle of the heavens is so wonderful that men
could not have eyes to see and not fix them attentively there-
upon.

The stars, because they lie in the expanse of the blue vault
of heaven, are sometimes called heavenly or celestial bodies. The
science which treats of the celestial bodies—their distribution,
motions, sizes and constitutions—is called astronomy, from the
Greek meaning the law of the stars or star distribution. In
ancient times, practical astronomy—an art and science which
served to provide the means of time-keeping, direction-measuring
and calendar-making—was referred to as astrology. This science
degenerated into the mere investigation of the aspects of the
planets relative to one another and to the Sun, and their imagined
influence on the destinies of men. Judging by the horoscopes
printed regularly in some daily newspapers, this branch of
knowledge still commands the attention of vast multitudes of
modern men and women.

Astronomy is usually regarded as being the most ancient of
the sciences. Folk at the earliest stage in human history were
doubtless impelled by curiosity first to observe, and then to
record, the movements of the celestial bodies. Having so many
practical uses it is small wonder that astronomy was to become
the first science to be cultivated by mankind. Investigation into
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the histories of every ancient people reveals their rude attempts
to discover the laws governing astronomical phenomena such
as eclipses of the Sun and Moon, and the seemingly curious
motions of the planets.

The celestial bodies fall conveniently into two broad classes.
One class comprises those which are relatively near to the Earth,
These include the Sun, the.planets (including the Earth) and
the satellites of the planets. In addition to these are comets and
meteors which frequently add splendour and interest to the
night sky. Beyond the Solar System, at distances tremendously
great compared with the dimensions of the Solar System, is
the world of the stars. These form the other class of celestial
bodies.

Observation of the heavens on a dark and clear night reveals
a great diversity in the apparent brightness of the stars. A
relatively small number are exceedingly bright. In contrast, the
apparent brightness of each of a very large number is so close
to the limit of visibility that it escapes notice unless it is viewed
intently. Optical assistance, in the form of a telescope, reveals
more and more stars in proportion to the magnifying power of
the instrument. It would appear that space is boundless and
the number of stars infinite.

The great distances that separate us from the stars (excepting
the Sun) result in the real motions of the stars being optically
unobservable except over relatively long periods of time. They
are, therefore, called fixed stars. Observation of the night sky
on successive nights manifests the unchanging pattern of the
stars relative to one another.

THE CONSTELLATIONS

The grouping of the bright stars into asterisms or constellations
originated in the mists of antiquity. The division of the stars
into constellations is arbitrary. The names of most of the con-
stellations stem from the Ancient Greeks who linked their
fabulous history to the stars. Ptolemy of Alexandria, who
flourished c. 150 AD, divided the stars visible at Alexandria into
forty-eight constellations:
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The Northern Constellations

1. Ursa Minor — The Little Bear
2. Ursa Major — The Great Bear
3. Draco — The Dragon
4. Cepheus — Cepheus
5. Bootes ~— The Herdsman
6. Corona Borealis — The Northern Crown
7. Hercules — Hercules
8. Lyra — The Harp
9. Cygnus — The Swan
10. Cassiopeiae — The Lady in her Chair
11. Perseus — Perseus
12. Auriga — The Waggoner
13. Ophiuchus — The Serpent-bearer
14. Serpens — The Serpent
15. Sagitta — The Arrow
16. Aquila et Antinous — The Eagle and Antinous
17. Delphinus — The Dolphin
18. Equuleus — The Horse’s Head
19. Pegasus ~— The Flying Horse
20. Andromeda — Andromeda
21. Triangulum — The Triangle
The Zodsacal Constellations
22. Aries — The Ram
23. Taurus — The Bull
24. Gemini — The Twins
25. Cancer — The Crab
26. Leo — The Lion
27. Virgo — The Virgin
28. Libra — The Balance
29. Scorpio — The Scorpion
30. Sagittarius — The Archer
31. Capricornus — The Goat
32. Aquarius — The Water-bearer
33. Pisces — The Fishes
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The Southern Constellations

34, Cetus — The Whale

35. Orion — Orion the Hunter
36. Eridanus — Eridanus the River
37. Lepus — The Hare

38. Canis Major — The Great Dog
39. Canis Minor — The Little Dog
40. Argo Navis — The Ship Argo

41. Hydra — The Hydra

42. Crater — The Cup

43. Corvus — The Crow

44, Centaurus — The Centaur

45. Lupus — The Wolf

46, Ara — The Altar

47. Corona Australis — The Southern Crown
48. Piscis Australis — The Southern Fish

To these Hevelius, the wealthy astronomer of Dantzig, added
another twelve constellations:

1. Antinous — Antinous

2. Mons Menelai -— Mount Menelaus
3. Canes Venatici — The Greyhounds
4. Camelolopardalis — The Giraffe

S. Cerberus — Cerberus

6. Coma Berenices — Berenice’s Hair
7. Lacerta . — The Lizard

8. Lynx — The Lynx

9. Scutum Sobieskii — Sobieskii’s Shield
10. Sextans — The Sextant
11. Triangulum Australa — The Southern Triangle
12. Leo Minor — The Little Lion

The famous Halley, a contemporary of Hevelius, after charting
the southern skies added a further eight constellations:

1. Columba Noachi  — Noah’s Dove
2. Robur Carolinum  — The Royal Oak
3. Grus — The Crane

2



8 THE COMPLETE NAUTICAL ASTRONOMER

4. Phoenix ~— The Phoenix

5. Pavo — The Peacock

6. Apus — The Bird of Paradise
7. Musca — The Fly

8. Chamaeleon — The Chameleon

The boundaries of the constellations were chosen arbitrarily,
and they appeared differently in different star atlases. In recent
times, a rectification of the boundaries has been made by the
International Astronomical Union, the boundaries now con-
sisting of arcs of great circles perpendicular to the equinoctial
and arcs of small circles of declination.

Many of the brighter stars have particular names; but, in
order to distinguish every star, it became necessary to adopt a
simple and effective system other than by giving particular
names. The astronomer Bayer introduced, in his famous star
atlas Uranometria of 1603, a system in which each star in a
constellation is assigned a letter of the Greek alphabet:

« alpha ¢ iota p rtho

B beta x kappa o sigma

y gamma A lambda T tau

8 delta @ mu v upsilon
€ epsilon ‘v nu ¢ phi

{ zeta ¢ xi x chi

7 eta o omicron ¢ psi

0 theta = pi w omega

In general, the brightest star in a constellation is designated
«, the next brightest B, and so on. Sirius, therefore, may be
referred to as ¢ Canis Majoris; and Rigel, the second brightest
star in the constellation Orion, may be referred to as 8 Orionis.
This general rule does not always apply. In particular it does
not apply to the stars forming the Plough, which are lettered
with the first seven stars of the Greek alphabet in order of
position, not brightness, starting with Dubhe, which is « Ursae
Majoris. When the Greek letters are exhausted recourse is made
to Roman or italic letters in Bayer’s system. Constellation num-
bers, instead of letters, were first suggested by Flamsteed, the
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first English Astronomer Royal, and this system is now almost
universally used in all the great star catalogues.

The principal data contained in a star catalogue are the posi-
tions of the stars at a specified time or epock, and the rates at
which the positions are known or thought to be changing. From
this information it is possible to compute the position of a star
for any epoch.

The apparent brightness of a star depends upon its intrinsic
brightness as well as upon its distance from the observer. Were
all stars of equal intrinsic brightness it would be an easy matter
to ascertain their relative distances, because the intensity of
light received from a luminous source falls off as the square of
the distance of the source from the observer. This however is
not the case: there is a great range of intrinsic brilliance of
stars; and the apparent brightness of a star gives no indication
of its distance from an observer.

The Ancient Greek astronomers classified the stars into six
categories of apparent brightness. Fourteen of the apparently
brightest stars visible to them were designated stars of the First
Magnitude. About fifty of the next brighter were designated
stars of the Second Magnitude, and so on: the magnitude num-
_ber increasing with decreasing brilliance. Stars just visible to
the naked eye were designated stars of the Sixth Magnitude.

There is no sharp line of demarcation in the apparent bril-
liance of stars of consecutive magnitudes. And, moreover, because
the estimation of stellar magnitudes depends upon optical com-
parison, it is impossible to state the magnitude of a given star
with absolute numerical precision.

The Great Hipparchus, the ancient Prince of Astronomy, is
sometimes said to be the first to have classified the stars accord-
ing to their apparent brightnesses. Ptolemy of Alexandria im-
proved on the rough classification invented by Hipparchus, and
divided each class into three subdivisions. Stars having magni-
tudes between 2 and 4, for example, were classified as ‘magnitude
3’, ‘magnitude 3+’ or ‘magnitude 3.

The greatest improvement in the system of classification of
stars according to apparent brightness came with the introduc-
tion of the decimal division of magnitudes. At the same time,
the magnitude scale was extended, stars fainter than magnitude
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6 having magnitude numbers greater than 6, and those brighter
than magnitude 1 having decimal or negative magnitude num-
bers. This system was first used in the famous star catalogue
prepared by Argelander and Schénfeld in the 19th century
known as the Bonn Durchmusterung or B.D.

During the 19th century, careful observation and study re-
vealed that the quantity of light corresponding to different
magnitudes varied in geometrical progression from one magni-
tude to the next. This accords with a psycho-physiological law
first enunciated by Fechner in 1859. Fechner’s law states that
the intensity of a sensation varies in arithmetical progression
when the exciting cause varies in geometrical progression. If,
therefore, the quantities of light received from two stars of
magnitudes m, and mj, are L, and L, respectively, then:

Ly/L, = km*-mb

where k is a constant corresponding to the ratio of the bright-
nesses of two stars whose magnitude numbers differ by unity.
This quantity is called the light ratio.

Sir John Herschel, the famous son of the illustrious Sir
William Herschel, estimated that a star of magnitude 1 is 100
times as bright as a star of magnitude 6. It follows that if the
ratio L,/L, in the formula stated above is 100 and the index
- of k, that is (my; — m,), is 5, then:

100 = &5
and k = V100
= 2-51...
= 2% approximately

Thus:

A first-magnitude star is 2} times as bright as a second-
magnitude star.

A second-magnitude star is 2} times as bright as a third-
magnitude star.

A third-magnitude star is 2} times as bnght as a fourth-
magnitude star.
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Also:

A first-magnitude star is (24)? times as bright as a third-
magnitude star.
A first-magnitude star is (23)3 times as bright as a fourth-

magnitude star.
Etc.

Two stars are said to have the same magnitude when they
appear to the eye to be of the same brightness. In measuring or
comparing magnitudes visually, because of the uncertainty of
human judgement, precise values or comparisons cannot be
obtained. One difficulty in estimating relative brightnesses of
stars arises from the diversity of colours of stars. It is difficult
enough to compare the magnitudes of stars of the same colour,
but when their colours are different, the difficulty is increased
considerably. A source of uncertainty which influences an ob-
server comparing the brightnesses of different coloured stars
is called the Purkinje phenomenon after the physicist who first
drew attention to it. Purkinje found that if the intensities of
two lights of different colour having the same degree of bright-
ness are changed equally, their relative brightnesses alter. It
follows that two stars of different colour having the same magni-
tude when viewed with the naked eye will have different magni-
tudes when viewed through a telescope.

Photography plays an important role in modern astronomy.
Photometric methods, of which there are several, are available
for measuring the visual apparent magnitudes of stars. A photo-
metric. method involves comparing the brightness of a star with
that of a standard light source or a standard selected star.

It may be thought that by photographing a star field the rela-
tive brightnesses of the images of the stars on the plate or film
will be the same as that of the same stars viewed visually. This
is not so because of the variety of colours of stars. The photo-
graphic plate or film is more sensitive to blue light and less
sensitive to red light when compared with the human eye. It
follows, therefore, that for a given exposure a blue star will
produce a larger image on the plate or film than a red star of
the same magnitude. The camera, therefore, cannot replace the
human eye for determining apparent magnitudes of stars. Star
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photographs, however, when compared with visual observa-
tions are invaluable for estimating the degree of colour of stars.
The difference between the ‘photographic’ magnitude and that
observed visually is a function of the colour of the star called
the colour index.

Photographic magnitudes depend upon the type of film or
emulsion used, and are influenced by the use of coloured filters.
When using photography for ascertaining and comparing star
magnitudes standard films and exposures are used.

Atmospheric conditions often add to the difficulty of esti-
mating star magnitudes. This follows because atmospheric ab-
sorption of light from stars varies with the clarity and humidity
of that part of the atmosphere through which the light rays
pass.

The apparent magmtude of Sirius, which is the bnghtest
of the fixed stars, is —1-6. The second brightest star in the
heavens is Canopus, which has a2 magnitude of —0-9.

There being no limit to the scale of magnitudes, an interesting
problem of astronomy has been the measunng of the Sun’s
and Moon’s magnitudes. The Sun’s magnitude is reckoned to
be about — 261, so that the light received from the Sun is about
10,000 million times as much as that received from the brightest
fixed star. The magnitude of the Full Moon has been estimated
to be about - 1241.

The time and effort expended in becoming acquainted with the
star groups leads to a form of pleasure and enjoyment which
never loses its fascination. This is reason enough for anyone
who wishes to become familiar with the patterns of the constella-
tions. The nautical astronomer, however, has a more pressing
reason for learning to recognize constellations so that he may
readily identify the stars of navigation. Navigational stars are
those for which astronomical data of use to the navigator are
provided in his Nautical Almanac.

In the Nautical Almanac published jointly by the British and
United States’ Governments, astronomical data are provided for
some 173 stars. These include all stars having a brightness of
magnitude 3-0 or brighter. Of this number, fifty-seven are selected
on the basis of brightness and distribution in the sky so as to
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give adequate coverage for normal navigational purposes. The
fifty-seven selected stars are numbered according to their Side-
real Hour Angles. The number increases as the S.H.A. decreases.
The selected stars have proper names in addition to their con-
stellation designations. Their proper names are usually those
by which they were known to the Arab or Greek astronomers
of antiquity. The star charts provided in the Nautical Almanac
serve admirably to show the distribution and celestial positions
of all selected stars.

The expert nautical astronomer should have no difficulty in
identifying any of the selected stars of navigation. The normal
way of identifying a star, when the sky is cloudless, is from
knowledge of the shape of the constellation of which it forms
part. The magnitude and colour of a star may also assist in its
identification. When the sky is partly clouded, identification of
a star may reqlire the use of a planisphere or star-finder, of
which there are many varieties, or a star globe. Alternatively,
a simple computation, using the star’s altitude and azimuth and
the observer’s latitude, or a graphical solution by projection,
may assist the navigator in solving the problem of star identifica-
tion.

To learn the constellations requires frequent observation of |
the night sky. If someone who knows the sky is not available
for assistance (and this would be most unlikely on board a ship)
a star map will be of great help. Most seamen are able to identify
a particular star by recognizing that it lies on a straight line
or arc joining or passing through other known stars, or that it
forms, with other known stars, a simple geometrical shape such
as a triangle or a square. It is useful to be able to estimate the
values of angles on the celestial sphere. With the aid of a star
chart the following descriptions are designed to assist the novice
in learning the night sky.

a. Ursa Major and its Environs

The constellation of Ursa Major, or the Great Bear, is so well
known to northern observers that the seven stars of the Plough
or Big Dipper provides a useful starting point for a survey of
the constellations and the navigational stars.
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The angle between Alkaid and Dubhe, the more northerly
of the two stars (the other being Merak) which together form
the so-called Pointers, is about 30°. Dubhe is about 30° from
the celestial pole which lies on the straight line through the
Pointers. At about the same angular distance—about 30°—from
Alkaid, along an arc through the stars forming the handle of the
Plough, the brilliant Arcturus will be found. Continuing along
the arc through Alkaid and Arcturus, and again at about 30°
from Arcturus, will be found the bright star Spica, associated
with which will be found the four stars of the constellation
Corvus, forming what seamen call Spica’s Spanker. Continuing
along the same arc through Alkaid, Arcturus, and Spica, and
again at about 30° from Spica, will be found Alphard, the
‘lonely’ star, so named because it lies in a region in which
bright stars are scarce.

On the concave side of the arc through Alkaid, Arcturus,
Spica, and Alphard, the beautiful constellation of the Lion will
be found, with Regulus and Denebola, the former star being
located at the handle of the Sickle. On the convex side of the
arc, lying between Alkaid and Arcturus, is Alphecca of the
Northern Crown, which star, together with Alkaid and Arc-
turus, forms an isosceles triangle with the base having an angular
distance of about 15°.

What is perhaps the most important navigational star, provid-
ing, as it does, a ready means of finding latitude, is Polaris, the
brightest star in the constellation Ursa Minor. Polaris is easily
located if the Pointers of the Plough are visible. Moreover, being
so close to the north celestial pole, its altitude is approximately
equal to the northern latitude of an observer, and its bearing
is approximately due north.

At the end of a great-circle arc through Polaris, with Polaris
at about the central position and the other end located in the
vicinity of the Plough, will be found the constellation of Cas-
siopeiae, the Lady in the Chair. The five brightest stars in this
constellation form the shape of a letter W, with Schedar standing
at the right foot below Caph (B Cassiopeiae) which lies at the
top of the right-hand side of the W. The straight line from Caph
through Schedar fetches up at Algol (¢ Cephei) at an angular
distance of about 20° from Schedar.
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b. Orion and its Environs

The constellation of Orion the Hunter is often regarded as
being the most splendid of all the star groups.

To the Arab astronomers of old, the constellation Orion was
called the Central One, because it stands astride the celestial
equator. The four principal stars of Orion form the shoulders
and feet of the Hunter. From the brightest star, the brilliant
red Betelgeuse located in the north-east shoulder of Orion, to
the second brightest blue-white Rigel, which forms his south-
east foot, the angular distance is about 20°. The three stars
forming Orion’s belt stand at the mid position of a straight
line which terminates at the brilliant white Sirius, the Dog-
star, which lies about 20° to the south-west of the belt, and
the ruddy Aldebaran, or Bull's Eye, which lies about 20° to
the north-east of the belt

Due north of the three stars of Orion’s belt, and passmg
through a tiny group of faint stars forming the Hunter’s head,
lies the star Elnath, located about 20° north of Orion’s shoulders.
A further 20° along this line lies the brilliant pale yellow Capella
or the Goat, in the constellation Auriga the Goatherd. Capella
is readily recognized by the three small stars, known as the Kids,
which form a small isosceles triangle, and which accompany
her. ,

To the north-west of Betelguese, at a distance of about 25°,
are the two bright stars Castor and Pollux of the constellation '
Gemini the Twins. Castor, or ¢ Geminorum, is the more
northerly and brighter of the pair. It is a brilliant white star
compared with Pollux which is yellow. Due south of the
Heavenly Twins, and due west of Betelguese is Procyon,
another beautiful yellow star of magnitude —0-5. Procyon lies
at the eastern end of a straight line through Regulus, Denebola
and Arcturus,

Due east of Orion’s right shoulder, at which the star Bellatrix
is located, at an angular distance of about 30°, is Menkar, the
brightest star in the constellation Cetus the Whale. Due south
of Orion’s feet, at about 25° from Rigel, is Phact, the brightest
star in the constellation Columba the Dove.
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¢. Pegasus and its Environs

The three stars Markab (« Pegasi), Scheat (8 Pegasi), and
Algenib (y Pegasi), which belong to the constellation of the
Flying Horse, together with Alpheratz the brightest star of the
constellation Andromeda, are located respectively at the corners
of a conspicuous square of side about 15°. On a straight line
extending to the north-west of Alpheratz are located Mirach
(B Andromedae) and Almach (y Andromedae). This line con-
tinues to Mirfak, the brightest star in the constellation Perseus.
The adjacent stars in this set of four are about 10° apart. Mir-
fak lies about midway between Cassiopeiae and Capella.

To the north-east of Scheat (B Pegasi), at a distance of about
20°, is the striking constellation Cygnus, the Swan. The five
brightest stars in this constellation form a cross set in the midst
of the Milky Way. The star at the head of the cross is Deneb,
which name, meaning tail, stands at the tail of the Swan, the
head star of which corresponds with the foot of the cross. This
is Albireo, a beautiful double star, one gold and the other blue,
whose angular separation is about half a minute of arc.

Lying between Alpheratz and Algenib, at a distance of about
20°, are the two stars Hamal and Sheratan, the two brightest
stars of the constellation Aries the Ram.

To the south-east of Markab, at about 12° from it, is Enif.
About 20° to the east of Enif is the conspicuous star Altair,
the brightest star in the constellation Aquila, the Eagle. Altair,
a first-magnitude star, is recognized in that it lies midway
between two stars of the third or fourth magnitude, each about
3° from it. These three stars provide a pointer to the beautiful
white star Vega, the brightest star in the northern skies. Vega
lies about 15° to the east of the constellation Cygnus.

At about 45° due south of Markab is the bright star Fomal-
haut, the principal star in the constellation Piscis Australis.

d. The Southern Stars

Perhaps the most notable constellation of the southern skies is
the Southern Cross, which lies about 30° due south of Spica’s
Spanker. The brightest star of the Southern Cross is named
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Acrux. This is the most southerly of the four stars which form
the cross. The star known as Gacrux stands at the north end of
the upright part of the cross about 6° from Acrux.

At about 10° to the west of the Southern Cross lie the two
brightest stars of the constellation Centaur, the brighter of the
two being Rigil Kentaurus which is the more westerly.

At about 35° to the south of Sirius, and about 30° to the east
of the Southern Cross, is the second brightest star of the
heavens. This is Canopus, the brightest star in the constellation
Argo. To the east of, at about 30° from, Canopus is the brilliant
Archernar standing on one end of the heavenly river Eridanus,
the other end of which is located near Rigel in Orion, and which
is marked by the second brightest star in the constellation Erid-
anus—a star which forms the end of Orion’s sword.



CHAPTER II

The Solar System

The Solar System comprises the Sun and the planets which
revolve around him, and whose orbital motions are controlled
by the Sun’s gravitational force. The planets, in order of dis-
tance from the Sun, are illustrated in Fig. 1.

yhefeur

FIGURE 1

Several of the nine planets have satellites: the Earth has one,
but Jupiter, which is the largest of the planets, has at least nine.
The satellite or satellites of a planet revolve around the parent
planet in much the same way as the planets revolve around the
Sun. In addition to the planets and their attendant satellites
other members of the Solar System are the Minor Planets or

18
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Asteroids the orbits of which lie mainly between those of Mars
and Jupiter. Comets and meteors or ‘shooting stars’ also belong
to the Solar System.

The Sun, which lies at the central position of the Solar Sys-
tem, rotates about a diameter with a period of about 244 days.
The planets and their satellites also rotate: the Earth’s period
of rotation being a day. The directions of rotation of the Sun,
planets and their satellites are, with minor exceptions, the same
as that of the motions of the planets around the Sun and the
satellites around their parent planets.

The Sun, whose diameter is about 865,000 miles, has a mass
equal to about 750 times the mass of the remainder of the Solar
System combined.

The path of a planet around the Sun is known as the orbit
of the planet. The plane of the orbit of a planet tends to be
fixed in space, but the orbits of the planets are not co-planar,
although they are nearly so.

The orbit of a planet is an ellipse having the Sun at one of its
focal points. The time taken for a planet to make one revolution
around the Sun is known as the planet’s period of revolution.
The Sun’s gravitational force on a planet varies directly as the
mass of the planet and inversely as the square of the distance
between the planet and the Sun. The nearer planets, therefore,
regardless of their masses, have smaller periods than the more
remote ones. The following table summarizes the more im-
portant astronoemical data of the planets.

The planets are not, like the Sun, self-luminous: they are

AVERAGE RADIUS ORBITAL
NAME SYMBOL OF ORBIT PERIOD VELOCITY
Mercury g 36-0 x 10° ml | 88 days | 30-0 m.p.sec
Venus Q 672 x 108 225 ,, 220 »
Earth (&) 92-9 x 10° 365 ,, 18:6 ”
Mars 3 141.5 x 10® 687 ,, 150 ”»
Jupiter 2 483-5 x 10° 12 years | 80 ,,
Saturn h 886-5 x 10° 30 50 "
Uranus Lol 1782-0 x 108 84 ,, 42 "
Neptune Y 27920 x 10° 164 ,, 34 ’»
Pluto B 37160 x 10% 248 ,, ?
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rendered visible by reflected sunlight. Because of their proximity
to the Earth, compared with the remote fixed stars, they move
comparatively rapidly relative to the stars. It is for this reason
that they are known as planets—the word planet being derived
from the Greek word meaning wanderer. The planets Uranus,
Neptune and Pluto were discovered in comparatively recent
times: the other planets, therefore, are often referred to as the
ancient planets. The planets Venus, Mars, Jupiter and Saturn
are, at times, suitable for navigational purposes. They are,
therefore, called the navigational planets, and astronomical data
related to them are tabulated in the seaman’s Nautical Almanac.

One of the significant discoveries in the history of astronomy
was that made by the famous astronomer Johannes Kepler
(1571-1630). Kepler, after extended observation of the planet
Mars, and comparison of his observations with those made by
his illustrious master Tycho Brahe (1546-1601), demonstrated
that the orbit of Mars around the Sun is elliptical, having the
Sun at one of the focal points of the ellipse. He also found that
the orbital velocity of Mars varied during the time of revolution,
being greatest when it was nearest to, and least when farthest
away from, the Sun. Similar study of the apparent motions of
the other planets revealed that their orbits also are elliptical.
From these observations Kepler formulated his famous laws
of planetary motion:

1. Every planet revolves around the Sun in an elliptical
orbit having the Sun at one focus of the ellipse.
2. The line joining a planet to the Sun sweeps out equal
areas in equal time intervals.
A third law relates the period of a planet’s revolution and its
mean distance from the Sun:
3. The square of the period of a planet’s revolution around
the Sun is proportional to the cube of its mean distance
from the Sun.

In other words, if the period is T and the mean distance from
the Sun is D, then:
T2 cc D3
and T2 = kD?
where & is a constant.
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It follows, therefore, that if the Earth’s period and mean
 distance from the Sun are known, the period and orbits of the
other planets may be found.

It is interesting to note that Kepler formulated his laws:
empirically, and that it was not until after his death that Kepler’s
laws were demonstrated mathematically by Sir Isaac Newton
(1642-1727) who showed that they were consequential to the
law of universal gravitation.

The point in a planet’s orbit which is nearest to the Sun is
called perihelion, and the most remote point is called aphelion.
The Earth is at perihelion at about January 3rd and at aphelion
at about July 3rd each year.

The orbital motions of the planetary satellites conform to
Kepler's laws. The point in the Moon’s orbit nearest to the
Earth is called perigee, and the most remote point is called
apogee.

The two planets Mercury and Venus are known as inferior
planets because their orbits lie within the Earth’s orbit. The
other planets, whose orbits lie outside the Earth’s, are known as
superior planets.

When a planet and the Sun lie in the same direction from the
Earth, the planet is said to be in comjunction with the Sun.
When a planet lies in a direction opposite to that of the Sun
it is said to be in opposition to the Sun. When the angle at the
Earth between a planet and the Sun is 90°, the planet is said
to be in gquadrature with the Sun.

An inferior planet can never be in opposition or quadrature
with the Sun. This will readily be seen from Fig. 2.

In Fig. 2, the Earth is assumed to be at E. When Mars (or
other superior planet) is at M,, it is in conjunction with the
Sun. When at M, it is in opposition, and when at M, or M,
it is in quadrature with the Sun.

When Venus (or other inferior planet) is at V, it is said to
be at inferior conjunction, and when at V, it is said to be at
superior conjunction. The angle at the Earth at any instant be-
tween the directions of the Sun and any planet is called the
angle of elongation of the planet at the instant. When a planet
is in conjunction the angle of elongation is 0°. When it is at
quadrature the angle of elongation is 90° and when it is in
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opposition it is 180°. It will be seen from Fig. 2 that when Venus
is at V5 or V, such that EV; and EV, are tangents from the
Earth to its orbit, Venus will be at maximum angle of elonga-
tion, which is about 47°.

When a planet lies to the west of the Sun it will normally
set before sunset and rise before sunrise. In this circumstance
it will be visible for some period of time before sunrise. This

M2

FIGURE 2

will be so when the planet has westerly elongation. When a
planet lies to the east of the Sun it has easterly elongation and
will rise after sunrise and set after sunset. It is for these reasons
that a planet having westerly elongation is called a morning
star, and one having easterly elongation, an evening star.

The apparent path of a planet as observed from the Earth
is the resultant of its own orbital motion and that of the Earth’s
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around the Sun. The planets trace out complex paths often
forming a series of successive loops known as retrogressive loops.
When an inferior planet is increasing its westerly elongation
following inferior conjunction, it maves westwards relative to
the fixed stars; but, when it is increasing its easterly elongation
after superior conjunction, it moves eastwards relative to the
fixed stars. When moving eastwards the apparent motion of the
planet is said to be direct. When moving westwards its motion
is said to be retrograde. The middle of the period of retrogression
of an inferior planet takes place at inferior conjunction.

When an inferior planet is at inferior conjunction its illumin-
ated hemisphere is directed away from the Earth. When at
superior conjunction it appears as a disc of light—its illumin- -
ated hemisphere then being directed towards the Earth. Because
the proportion of the illuminated hemisphere varies with time—
the proportion depending upon the angle of. elongation and
whether it is increasing or decreasing—inferior planets exhibit
phases as does the Moon.

THE EARTH

For most purposes of navigation the Earth may be considered
to be perfectly spherical.

The Earth, in common with all spinning bodies, possesses
the property of gyroscopic inertia by virtue of which her plane
and axis of rotation tend to be maintained.

As a result of the Earth’s slow, but uniform, rate of spin,
during the course of a day—which is the period of the Earth’s
rotation—every celestial object rises out of the eastern half of
an observer’s horizon, and sets into the western half, crossing
the north-south vertical plane through the observer at the
middle time of those of its rising and setting.

The real motions of the stars, because stars are so far distant
from the Earth, are not readily observable. It is for this reason
that they are said to be fixed. The stars, and indeed all other
celestial bodies, including the Sun, Moon and planets, are often
assumed to lie on the inside of a sphere of infinite radius known
as the celestial sphere which is centred at the Earth or Sun.
The rotation of the Earth about her polar axis is manifested

3
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by an apparent diurnal revolution of the celestial sphere about
an axis the ends of which are called the north and south celestial
poles.

Our fundamental ideas of horizontal direction are related to
the Earth’s rotation. Every point on the Earth’s surface is con-
tinually being carried in a direction called east. The horizontal
direction opposite to east is west. The directions nortk and south
are 90° to the left and right, respectively, of east. The natural
compass of an observer located on the Earth is his celestial
horizon—the great circle on the celestial sphere which divides
the heavens into the visible and invisible hemispheres.

The axis of the apparent diurnal revolution of the celestial
sphere towards the west is coincident with the axis of the Earth’s
spin towards the east.

The great circle on the Earth which lies in the plane of the
Earth’s spin is called the eguator. The equator divides the
Earth into the northern and southern hemispheres. The axis
of the spin of the Earth terminates at the Earth’s poles—the
North Pole in the northern hemisphere and the South Pole in
the southern hemisphere.

Small circles parallel to the equator are called parallels of
latitude. Semi-great circles which extend from pole to pole across
the equator and every parallel of latitude at right angles. These
are called meridians.

To define a terrestrial point we state two angles or their
corresponding spherical distances—one related to the parallel
of latitude, and the other to the meridian which intersects the
parallel at the point. These angles are called latitude and longi-
tude.

Treating the Earth as a sphere, the latitude of a place is the
angle at the Earth’s centre measured in the plane of the meridian
of the place, between the radii which terminate at the place and
the equator respectively. The latitude of any place in the
northern hemisphere is named north, and that of any place in
the southern hemisphere is named south.

The plane of reference from which latitudes are measured
is that of the equator, the latitude of every point on which is 0°.
The latitude of either pole is 90°.

The longitude of a terrestrial position defines the meridian
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on which the position lies. The meridian from which longitudes
are measured is chosen arbitrarily, and is called the prime meri-
dian. The prime meridian is sometimes called the Greenwich
meridian, because it is the meridian on which the transit instru-
ment at the original Greenwich observatory rested.

The word meridian is derived from the circumstance that
when the Sun, in his apparent diurnal path across the sky,
crosses the meridian of the place, it is midday at the place.

The prime meridian and the antipodal meridian, which are
separated by 180° of longitude, divide the Earth into the eastern
and western hemispheres. All places which lie to the east of the
prime meridian and to the west of the 180th meridian are in
the eastern hemisphere and their longitudes are named east.
All other places are in the western hemisphere and their longi-
tudes are named west.

The longitude of a terrestrial position is the smaller angle at
the pole or the smaller arch of the equator contained between
the prime meridian and the meridian of the place.

The difference of latitude (d.lat) between two places is the
arc of any meridian contained between the parallels of latitude
of the two places. If the two places are both on the north or the
south side of the equator the d.lat is found by taking the differ-
ence between their latitudes. If the two places are on opposite
sides of the equator their d.lat is found by adding their latitudes.

The difference of longitude (d.long) between two places is the
smaller angle at the pole or the smaller arc of the equator con-
tained between the meridians of the places. If the two places
have longitudes of the same name, their d.long is found by
subtracting the smaller longitude from the greater. If they lie
on opposite sides of the prime meridian their d.long is found
by adding their longitudes. If the 180th meridian lies between
two places their d.long is found by adding their longitudes and
subtracting the sum from 360°.

Although in most cases of navigation it is sufficient to assume
the Earth to be perfectly spherical, it is still necessary to consider
the true shape of the Earth, principally because the seaman’s
unit of distance—the nautical mile—is related to the Earth’s
true shape.

The shape of the Earth approximates to that of an oblate
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spheroid. The surface of an oblate spheroid is traced out by
rotating an ellipse about its minor diameter. The Earth’s spin
axis lies along her least diameter—called the polar diameter.
Every meridian is, therefore, an ellipse, and every parallel of
latitude is a circle. The diameter of greatest length is the equa-
torial diameter.

The lengths of the principal radii of the Earth are:

Equatorial = 3963} statute miles
Polar = 39493 statute miles

The statute mile is an arbitrary measure that has evolved from
makeshift units such as the length of a barleycorn or the length
of a man’s foot or span. It is a distance containing 1760 statute
yards of defined length. The statute mile is the unit of distance
used ashore. For nautical purposes the unit of distance is related
to the Earth’s dimensions, and is called the nautical mile.

Were the Earth perfectly spherical the length of a minute of
arc of her surface would everywhere be the same. This length
would provide a useful unit of distance for navigational purposes
because it would be equivalent, not only to the length of a
minute of longitude at the equator; but, more important, it
would be equivalent to the length of a minute of arc of a meri-
dian at any place on Earth: so that, when sailing northwards or
southwards, each minute of change of latitude would correspond
to a northing or southing of one unit of distance. Although the
Earth is not a sphere, this ideal unit of distance does form the
basis of measuring distances for navigational purposes.

Now the length of the circumference of any circle of radius
R is 27R. In other words, the radius of a circle fits into the cir-
cumference exactly 2n times. The angle at the centre of a circle
subtended by an arc of length equal to the radius of the circle
is an angular unit known as a radian (°), and, clearly:

if 360° = 2n°
then 1° = (360 x 60)/27 minutes of arc

It follows, therefore, that the radius of a sphere in units of
arc length of one minute on its surface is equivalent to the num-
ber of minutes of arc in one radian. This is approximately 3438.
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Thus, were the Earth a perfect sphere, her radius would be
3438 nautical miles.

The nautical mile is usually defined as a unit of distance
equivalent to the length of a minute of arc of a meridian. Be-
cause of the elliptical form of the meridians, the nautical mile
has a length which varies with latitude. The precise definition
of a nautical mile is that it is the length of an arc of a meridian
the astronomical latitudes of the end points of which differ by
one minute.

The astronomical latitude of a place (sometimes called geo-
graphical latitude or merely latitude) is defined as the angle at
the place contained between the horizon and the elevated celes-
tial pole measured in the plane of the meridian of the place:
the elevated pole, as distinct from the depressed pole, being the
celestial pole lying above the horizon.

Thus two points in the same meridian are one nautical mile
apart if the horizons or verticals at the two points are inclined
one minute of arc to one another.

to cel. pole
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FIGURE 3

Referring to Fig. 3: if V, and V, are the verticals and H,
and H, are the horizontals at two places A and B on the same
meridian, the astronomical latitudes of A and B are « and 8
respectively. If (8 — a) = 1’, then arc AB is one nautical mile.
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It follows, therefore, that if the verticals at A and B are in-
clined to one another one minute of arc, that is, if angle AXB
is 1, AB is one nautical mile. It is for this reason that the nautical
mile is often described as being the length of a minute of arc
of a meridian subtended by an angle of one minute at the centre
of curvature of the meridian.

The radius of curvature of any part of a meridian varies with :
latitude, being least at the equator and greatest at the pole. This
results in the length of the nautical mile being greatest at the
poles and least at the equator.

Numerous attempts have been made to ascertain the exact
size and shape of the Earth. This is expressed in terms of the
ellipticity or compression and the equatorial radius, forming the
so-called figure of the Earth. The ellipticity, c, of the Earth is the
ratio between the difference of -the lengths of the equatorial and
polar radii, and the length of the equatorial radius. Thus if the
equatorial and polar radii are denoted by a and b respectively:

¢ = (a— b)a

The figure of the Earth used as a basis for Admiralty charts
is that of the Clarke spheroid of 1880, which has an ellipticity
of 1/293:5 and an equatorial radius of 20,925,972 feet. On this
spheroid the length of a nautical mile in latitude 0° is 6046 feet,
and at latitude 90° it is 6108 feet.

The average length of a nautical mile on the Clarke (1880)
spheroid is 6077 feet.

The standard nautical mile adopted in Great Britain is 6080
feet or 1852 metres, which is the length of the actual nautical
mile in latitude 48°, This is the nearest round figure to the length
of the average nautical mile.

The general expression for finding the length of the nautical
mile in any latitude ¢ is:

(6077 — 31 cos 2¢) feet

The standard nautical mile is used as a basis for regulating
patent logs. No material error is introduced into normal navi-
gational problems by using the standard nautical mile for all
latitudes. The greatest error occurs in very low latitudes; but,
even here, the error amounts to no more than about 1 mile in 50.
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Since error in the estimated effects of wind and current normally
exceed this, the discrepancy due to the standard nautical mile
being different from that of the actual nautical mile escapes notice
in practical navigation.

Assuming the earth to be perfectly spherical, it is an easy
matter to prove that the length of any parallel of latitude is
proportional to the cosine of the latitude. If we regard a mile
as the unit length which is equivalent to an arc length of one
minute on the surface of a spherical Earth, the distance in-
miles between any two points on the same parallel of latitude
is equal to the product of the d.long between the points and
the cosine of the latitude. That is:

d=Dcos¢
where d = distance in miles between two points on same
parallel
D = d.long in minutes of arc between the two points
¢ = latitude of points.
This is the Parallel Sailing Formula, used extensively in
navigation.

The distance in miles that one point is east or west of another
is known as the departure between the two points.



CHAPTER III

The Celestial Sphere

The celestial sphere is that sphere on to which the heavenly
bodies are assumed to be projected in order to facilitate the
study of the apparent motions of the heavenly bodies. Because
the celestial sphere has infinite radius it matters not whether
we assume the point of projection to be the observer’s eye,
the Earth’s centre, or even, for some purposes, the Sun.

The stars, because of their immense distances from the Solar
System, tend to maintain their positions on the celestial sphere;
but the Sun and other members of the Solar System, because
of their relative nearness to the Earth, and because the Earth
rotates and revolves, change their positions on the celestial
sphere relative to the stars comparatively rapidly. Let us consider
the apparent annual movement of the Sun on the celestial
sphere due to the Earth’s orbital motion.

The period of the Earth’s revolution around the Sun is a
year; so that in one year the Sun appears to describe a
great circle on the celestial sphere which is co-planar with
the Earth’s orbit. The great circle forming the Sun’s annual
apparent path is called the ecliptic. In Fig. 1, which illustrates
the celestial sphere, the Earth’s orbit, and the ecliptic, the
Sun is assumed to occupy the central position of the celestial
sphere.

When the Earth is at points a, b and ¢, shown in Fig. 1, the
Sun is projected on to the celestial sphere at positions A, B and
C respectively. Thus, as the Earth moves in her orbit from atoc,
the Sun appears to move across the celestial sphere from A to C.

The plane of the Earth’s rotation is inclined to the plane of
her orbit at an angle of about 233° so that the equinoctial, which
is the projection of the equator on to the celestial sphere, is

30
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inclined at an angle of 234° to the plane of the ecliptic. This
angle is called the Obkiquity of the ecliptic.

The Earth’s spin axis is inclined at an angle of (90 — 233)°
that is 664°, to the plane of her orbit around the Sun; and,
because of the Earth’s gyroscopic inertia, this angle tends to
be constant. It follows, therefore, that for half the year the Earth’s

FIGURE 1

North Pole is directed towards the Sun; and for the remaining
half year it is directed away from the Sun. Also, during half
the year the Sun lies in the northern celestial hemisphere, and
for the remaining half he lies in the southern celestial hemis-
phere.

A heavenly body in the northern celestial hemisphere is said
to have north declination, and one in the southern celestial
hemisphere south declination. The declination of a heavenly body
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is its angular distance north or south of the equinoctial and is
analogous to latitude on the terrestrial sphere—this being angular
distance north or south of the equator. Semi-great circles ex-
tending from the north to the south celestial pole cross the
equinoctial at right angles—these are called celestial meridians.

All points on the celestial sphere having the same declination
(either north or south) lie on a small circle which is called a
parallel of declination. Such a small circle is parallel to the
equinoctial.

As a consequence of the inclination of the ecliptic to the equi-
noctial, the Sun’s declination changes during the year. During
half the year it is north, and for the remaining half year it is
south. The maximum declination of the Sun is, clearly, equiva-
lent to the obliquity of the ecliptic.

The Sun crosses the equinoctial twice a year: once on March
21st, when he crosses from the southern into the northern
celestial hemisphere; and again on September 23rd, when he
crosses from the northern into the southern celestial hemisphere.

From March 21st until June 22nd the Sun’s declination
increases from 0° to 234°N. During this period the Earth’s
North Pole is increasingly directed towards the Sun: this is the
season of Spring in the northern hemisphere. From June 22nd
until September 23rd the Sun’s declination decreases from
233°N. to 0°. During this period the Earth’s North Pole is
decreasingly directed towards the Sun. This is the season of
Summer in the northern hemisphere. From September 23rd
until December 22nd, when the Sun’s declination is increasing
southwards, the Earth’s North Pole is increasingly directed
away from the Sun. This is the season of Autumn in the northern
hemisphere. The remaining quarter of the year, from December
22nd to March 21st, when the Sun’s declination decreases from
233°S. to 0°, the Earth’s North Pole is decreasingly directed
away from the Sun. This is the season of Winter in the northern
hemisphere. In the southern hemisphere the seasons are the
reverse from what they are in the northern hemisphere.

Fig. 2 illustrates the seasons.

The great circle on the Earth which divides the dark from the
Sun-enlightened hemisphere is called the circle of illumination.
The Earth’s axis lies in the plane of the circle of illumination
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on March 21st and September 23rd. On these days, therefore,
day and night are each 12 hours all over the Earth. For this
reason these days are called the Spring or Vernal, and the
Autumnal equinoxes respectively. The points on the celestial
sphere occupied by the Sun when his declination is 0° are called
the equinoctial points.

]
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FIGURE 2

On June 22nd and December 22nd the Earth’s spin axis is
inclined at a maximum angle of 234° to the plane of the circle
of illumination, and the length of daylight is maximum for the
northern and southern hemispheres respectively. On these days,
the Sun’s declination ceases to increase and he appears to stand
still relative to the equinoctial. For this reason the times when
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the Sun reaches his maximum declination are called solstices,
and the points on the celestial sphere occupied by the Sun at
these times are called solstitial points.

UNEQUAL LENGTHS OF DAYLIGHT AND
DARKNESS DURING THE YEAR

On June 21st every point on the Earth located on the poleward
side of the parallel of latitude 663°N. experiences total daylight.
Fig. 3 illustrates that the whole of the polar cap north of the
parallel of latitude 664°N. lies in the enlightened hemisphere
on June 21st. B

circle of

rays from

FIGURE 3

Similarly, the polar cap south of the parallel of latitude 663°83.
is in complete darkness on June 21st.

It will be noticed from Fig. 3 that at noon on June 21st the
Sun is vertically overhead to an observer at A located on the
parallel of latitude 233°N. At all places north of this parallel,
the Sun crosses the plane of an observer’s meridian bearing
south; and at all places to the south of this parallel the Sun
crosses the plane of an observer’s meridian bearing north.
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An observer at any place to the north of the equator on the day
of the Summer solstice, is on the enlightened side of the circle
of illumination for a period of longer than 12 hours. An observer
at any place to the south of the equator is on the dark side of
the circle of illumination for longer than 12 hours on this
day.

It may be readily verified that on the day of the Winter solstice
(December 22nd) all places north of the parallel of latitude
661°N. experience total darkness, and all places south of the
parallel of latitude 664°S. experience total daylight. All places
in the southern hemisphere have daylight for more than 12
hours each day, and all places in the northern hemisphere have
daylight for less than 12 hours.

On the days of the equinoxes, day and night are each 12
hours at all places on Earth, and the Sun crosses the plane
of the meridian with an altitude of 90° at every point on the
equator.

CLIMATIC ZONES

As a result of the changing declination of the Sun the Earth’s
surface is divided into climatic zones bounded by the parallels
of latitude 0° 234° and 664° N, and S.

The zone that lies between the equator and the parallel of
234°N. is called the North Torrid Zone. That which lies between
the equator and 234°S. is called the South Torrid Zone. Within
the Torrid zone, which is bounded by the Tyopic of Cancer in
the north and the Tropic of Capricorn in the south, the Sun has
an altitude of 90° on two days every year.

The parallel of latitude 663°N. is called the Arctic Circle,
and that of 661°S. is called the Antarctic Circle. Within the
polar caps north of the Arctic Circle and south of the Antarctic
Circle, at least one day of the year has 24 hours daylight and
at least one day of the year has 24 hours complete dark-
ness.

The zones lying between the Tropic of Cancer and the Arctic
Circle, and the Tropic of Capricorn and the Antarctic Circle,
are called the North and South Temperate Zomes respectively.
The Earth’s climatic zones are illustrated in Fig. 4.
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UNEQUAL LENGTHS OF THE SEASONS

The orbital speed of the Earth varies, being greatest when she
is nearest to the Sun and least when she is farthest from him.
The Earth is at perihelion on January 3rd approximately. This
is a fortnight or so after the Winter solstice. From the time of
the Winter solstice to that of the Spring equinox the Earth
travels faster than at the other seasons. The effect of this is to
bring forward the first day of Spring in the northern hemisphere.

The Summer solstice occurs about a fortnight before the time
of aphelion (about July 3rd). The Earth, during northern Sum-
mer, therefore, moves slower than during the other seasons.
The effect of this is to delay the first day of Northern Autumn.
The seasons, therefore, do not have equal lengths. For the
northern hemisphere:

Spring is 93 days (approx.)
Summer is 94 ,,
Autumn is 90 ,,

Winter is 89 ,,
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Because northern Winter occurs when the Earth is compara-
tively near the Sun, the severity of northern Winter is mitigated.
Similarly, southern Winter, which takes place when the Earth
is comparatively far from the Sun, is correspondingly harsher
than it would be were the seasons of equal length.

THE ZODIACAL BELT

During a year the Sun travels through twelve constellations
which lie within a celestial zone centred along the ecliptic. This
zone is called the zodiacal belt, and the twelve constellations,
the Signs of the Zodiac. :
At the time when the Sun’s apparent annual path was in-
vestigated by the Egyptian astronomers of antiquity, the Sun
entered the constellation of Aries the Ram on the first day of
Spring. For this reason the Spring equinoctial point is called
the First Point of Aries (denoted by the symbol ). A month
later the Sun entered the next sign of the zodiac, and was said
to be at the first point of Taurus the Bull, etc. The twelve signs
of the zodiac are usually memorized from the following rhyme:

The Ram, the Bull, the Heavenly Twins,
And next the Crab the Lion shines,

The Virgin and the Scales,

The Scorpion, Archer and He-goat,

The Man who holds the watering pot,
And the Fish with the glittering tails.

‘The signs of the zodiac are illustrated in Fig. 5.

Because of the precession of the Earth’s polar axis the equi-
noctial points are no longer at the first points of Aries and Libra,
although the names are still used.

Precession of the axis of a spinning body takes place when an
external couple acts upon it. When a spinning body precesses,
its axis traces out a conical surface taking a time which is usually
very slow compared with its period of rotation.

The precession of the Earth’s axis is due to:

1. The Earth’s oblate shape.
2. The tilt of the spin axis to the plane of the ecliptic.
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3. A torque acting due to solar attraction which tends to
force the Earth’s plane of rotation into that of its revolu-
tion around the Sun.

Precession of the Earth’s axis results in the precession of the
celestial poles and the equinoctial points. The celestial poles
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describe small circles centred at the poles of the ecliptic. The
period of the precession of the celestial poles is 26,000 years.
This slow motion results in the equinoctial points moving with
retrograde motion around the ecliptic at an angular rate of
about 50 seconds of arc per year. This movement is called the

precession of the equinoxes.
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The Moon, the plane of whose orbit is inclined at an angle
of about 5}° to the plane of the Earth’s orbit, has a similar
effect on the Earth as has the Sun. The points of intersection of
the planes of the Moon’s and Earth’s orbits are known as the
nodes. The point on the celestial sphere which the Moon occupies
when she crosses from the south to the north of the ecliptic is
called the ascending node. The other is called the descending
node. The straight line joining the nodes, known as the nodal
line, swings westwards around the ecliptic with a period of about
19 years. '

When the ascending node coincides with the Spring equinox
the maximum declination of the Moon is (23} + 5})°, that is
283° N. or S. About 94 years later, when the descending node
coincides with the Spring equinox, the maximum declination of
the Moon is (234 — 51)°, that is 18}° N. and S. When the nodes
coincide with the solstitial points the declinational limits of the
Moon are the same as those of the Sun.

The Earth’s axis does not describe a smooth conical surface,
as it would were precession due to the Sun alone. The Moon’s
effect, known as nmutation, is to cause the celestial pole to
trace out a wavy curve, each. wave taking about 19 years to
complete.

THE MOON

The Moon’s orbit around the Earth is elliptical. When she is
at perigee the Earth-Moon distance is some 220,000 miles;
and when she is at apogee it is about 253,000 miles.

As the Moon revolves in her orbit around the Earth she
describes a great circle on the celestial sphere at an angular
rate of about 13° per day. This comparatively rapid apparent
motion may readily be observed over a short period of time.
To complete a circuit around the celestial sphere relative to the
stars the Moon takes about 492, that is about 274 days. This
period is known as a sidereal period.

The Moon is rendered visible by reflected sunlight. The pro-
portion of the Moon’s illuminated hemisphere visible at the
Earth at any time is dependent upon the relative positions of
the Sun, Moon and Earth. The changing shapes of the Moon’s

4
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surface observed at the Earth are known as the Moon’s
phases.

When the Moon is in conjunction, her illuminated hemisphere
is directed away from the Earth, At this time the Sun and
Moon cross the plane of the meridian of an observer together
at noon. At this time the Moon is said to be New, and her age
is said to be 00 days 00 hours.

As the angle at the Earth between the Moon and the Sun
increases after the time of New Moon, the phase changes from
a crescent form to Half Moon which occurs about seven days
after New Moon. At this time the Moon is said to be at First
Quarter. When the shape is greater than Half Moon the phase
is said to be gibbous. When the age of the Moon is 14 or 15
days, at the time when she is in opposition with the Sun, the
full illuminated disc is visible at the Earth. The Moon is then
said to be Full.

From conjunction to opposition with the Sun the phase of
the Moon changes from New to Full. During this time the
Moon is said to wax and her western limb is illuminated. After
Full Moon the illuminated part of the Moon’s surface visible
at the Earth diminishes and the Moon is said to wane during
which time her eastern limb is illuminated. Seven days after
Full Moon, when half the illuminated hemisphere is visible
at the Earth, the Moon is said to be at the Third Quarter. After
a further seven days, the Moon is said to be at Change, when her
age is again 00 days 00 hours.

The period of the phases of the Moon, that is to say the
interval between successive New Moons, is about 29} days.
This is a couple of days longer than a sidereal period, because
the daily separation of the Sun and Moon is about 12°, that is
1° less than the arc traced out by the Moon relative to the fixed
stars. The lunation is, therefore, 352 or 294 days. The lunation
is sometimes called a synodic period.

Twelve lunations amount to 354 days, which is about 11
days less than a solar year, so that the age of the Moon on
January st of successive years increases by 11. The age of the
Moon on January Ist is called the epact for that year. This is
used for ascertaining the date of Easter in the ecclesiastical
calendar.
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WINTER AND SUMMER FULL MOONS

Successive Full Moons take place in different parts of the celes-
tial sphere: this is due to the Sun’s annual apparent motion
across the celestial sphere.

In Summer, when the Sun’s declination is north, the Full
Moon has south declination. In the northern hemisphere, be-
cause celestial bodies having south declination are above the
horizon for less than 12 hours each day (see Chapter V), Summer
Full Moons are above the horizons of northern hemisphere
observers for less than half a lunar day. In contrast, Winter Full
Moons, having north declination, are above the horizons of
northern hemisphere observers for more than half the lunar
day.

In Spring and Autumn, when the Full Moon occurs near
the First Points of Aries and Libra respectively, the Moon’s
declination changes most rapidly during the lunation.

In Spring, when the Sun’s declination changes from south
to north, the Full Moon’s declination changes from north to
south. This has the effect of accelerating the time of Moonset.
In Autumn, in contrast, and for similar reasons, the time of
Moonset is retarded. The Full moon immediately following the
Autumnal equinox is called the Harvest Moon. The interval
between the times of Sunset and Moonrise is short for several
days after Harvest Full Moon on account of the rapidly changing
declination of the Moon and its effect on accelerating the time of
Moonrise; so that, before darkness sets in, the large Moon
rises to provide reflected sunlight for the harvest gatherers.

MOON’S LIBRATIONS

The Moon rotates once in a sidereal period, the speed of rotation
being uniform. Because of this, the same side of the Moon is
always directed towards the Earth.

The Moon’s orbital motion is not uniform, her speed of
revolution around the Earth being greatest at perigee and least
at apogee. The average orbital speed is equivalent to the rota-
tional speed, so that as perigee is approached a narrow lune
on the western side of the circle of illumination on the Moon
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becomes visible; and a narrow lune on the eastern side becomes
invisible, swinging, as it does, into the dark side of the circle
of illumination. Similarly, when the Moon is approaching
apogee, the rotational speed being greater than the orbital speed,
a narrow lune, normally beyond the eastern limb, heaves into
view.

The Moon’s axis of rotation is inclined at an angle of 84°
to the plane of its orbit around the Earth. During a sidereal
period, therefore, terrestrial observers are able to see a 6° lune
extending over and under the normal polar limbs.

The apparent shaking and nodding of the Moon, due to the
above factors, are known as lbrations in longitude and latitude
respectively. They result in it being possible to observe from the
Earth about 60 per cent of the Moon’s surface instead of a little
less than half, which would be the case if the Moon had no libra-
tions.

ECLIPSES

Should the celestial positions of the Moon and Sun be the
same, the Sun’s disc would be obscured by the Moon. This
phenomenon is called a solar eclipse.

Should the celestial positions of the Moon and Sun be
diametrically opposed on the celestial sphere, the Moon would
be obscured by the shadow of the Earth cast by the Sun. This
phenomenon is called a lunar eclipse.

An eclipse of the Sun occurs at the time of New Moon,
and an eclipse of the Moon occurs when the Moon is Full.

Were the Earth’s orbit around the Sun and the Moon’s
orbit around the Earth co-planar, an eclipse of the Sun and an
eclipse of the Moon would occur once during every lunation.
Because the plane of the Moon’s orbit is inclined at an angle
of 53° to the plane of the Earth’s orbit, eclipses do not occur
so frequently as they would were the two orbits co-planar,
For an eclipse to occur the Moon must lie on or near to the
ecliptic; and this is the reason why the projection of the Earth’s
orbit on the celestial sphere is called the ecliptic.

Eclipse information is tabulated in the seaman’s Nautical
Almanac. For 1968, for example, we learn from the Nautical
Almanac that there were four eclipses, two of the Sun and two
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of the Moon. Diagrams illustrating the times and limits within
which solar eclipses are visible are also provided in the Nautical
Almanac.

Lunar eclipses may be partial or total, according to whether
the Full Moon is partially or completely obscured in the Earth’s
shadow. '

Solar eclipses may be partial, total or annular. A total or
annular eclipse of the Sun is visible only within a relatively
narrow strip of the Earth’s surface, the width of the strip being
never more than about 170 miles. This narrow strip is called
the path of the eclipse. Within wider strips of territory, up to
about 1000 miles, adjacent to the path of an eclipse, a partial
eclipse of the Sun may be observed. Within the path of the
eclipse the Sun is completely obscured to form a total eclipse
if the angular diameter of the Moon exceeds that of the Sun.
If the Sun’s angular diameter is greater than that of the Moon's,
within the path of an eclipse a narrow circumferential area of
the Sun’s disc will be visible, in which case the eclipse is des-
cribed as annular.

The Moon, during her monthly circuit of the heavens, fre-
quently passes over fixed stars and occasionally over planets
which lie in her path. When this happens the star or planet is
said to be occulted, and the phenomenon is called an occultation.



CHAPTER IV

On Defining Celestial
Positions

The most satisfactory method of defining a position on a plane
surface is by employing Cartesian co-ordinates relative to
mutually perpendicular axes of references in the plane. The
same principle is used for defining positions on a sphere: the
axes of reference, in this case, are two great circles which inter-
sect at right angles.

There are three systems of defining celestial positions. These
are:

1. The Ecliptic system.
2. The Equinoctial system.
3. The Horizon system.

THE ECLIPTIC SYSTEM

The names given to the co-ordinates used in the ecliptic system
of defining celestial positions are celestial latitude and celestial
longitude respectively. The two great circles of reference from
which celestial longitudes and celestial latitudes are measured
are the ecliptic, which gives its name to the system, and a
secondary great circle to the ecliptic which extends from the
extremities of the axis of the ecliptic and which passes through
that intersection of the ecliptic and equinoctial called the First
Point of Aries. The extremities of the axis of the ecliptic are
called the poles of the ecliptic and the semi-great circles extending
between them are called circles of latitude.

The celestial latitude of a celestial point is a measure of the

44
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arc of a circle of latitude between the point and the ecliptic.
The celestial latitude of a point is named north or south accord-
ing to whether the point lies north or south of the ecliptic
respectively. The celestial latitude of any point on the ecliptic
is 0°. The celestial latitude of the Sun, therefore, is always 0°.

The celestial longitude of a celestial point is a measure of the
arc of the ecliptic contained between the First Point of Aries
and the circle of latitude through the point, measured eastwards
from 0° to 360° from the First Point of Aries. The celestial
longitude of the Sun is 0° at the time of the Spring equinox,
and it increases at an irregular rate until the following Spring
equinox.

Because of the precession of the equinoxes the celestial longi-
tudes of all fixed points on the celestial sphere increase with
time. The celestial latitudes of all fixed points on the celestial
sphere are constant.

The ecliptic system of defining celestial positions is useful
in a consideration of the Equation of Time (see Chapter VI).

THE EQUINOCTIAL SYSTEM

The co-ordinates used in the equinoctial system of defining
celestial positions are declination and Right Ascension (R.A.), or
some other similar angle. The two great circles of reference from
which declination and- R.A. are measured are the equinoctial
and the secondary to the primary equinoctial which connects
the extremities of the axis of the equinoctial and which passes
through the First Point of Aries. The extremities of the axis
of the equinoctial are the celestial poles, and semi-great circles
extending between them are called celestial meridians.

The declination of a celestial point is a measure of the arc of
a celestial meridian contained between the point and the equi-
noctial. The equinoctial divides the celestial sphere into the
northern and southern hemispheres. All points in the northern
celestial hemisphere have north declination; and all points in
the southern celestial hemisphere have south declination. All
points having the same declination lie on a small circle which is
parallel to the equinoctial. Such a small circle is a parallel of
declination. The declination of any point on the equinoctial
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is 0°; and the declination of the celestial pole is 90°. The Sun’s
declination changes from 0° to 233° N., to 0° to 233" S., to 0°
again in the course of a year.

The angle between a celestial point and the elevated celestial
pole is equivalent to the complement of the declination of the
point if both point and celestial pole lie in the same celestial
hemisphere. If they lie in opposite hemispheres the angle
between the point and the pole is equivalent to (90° + declina-
tion). The distance between a point on the celestial sphere and
the elevated celestial pole is called the polar distance of the
point. ‘ :
The Right Ascension of a celestial point is a2 measure of the
arc of the equinoctial, or the angle at the celestial pole, con-
tained between the celestial meridians of the point and the
First Point of Aries. It is always measured in hours, minutes
and seconds, from the celestial meridian of the First Point of
Aries.

The R.A. of the Sun is 00 hr 00 min 00 sec when he is at
the First Point of Aries at the time of the Spring equinox. The
Sun’s R.A. increases irregularly from 00 hr 00 min 00 sec on
March 21st to 24 hr 00 min 00 sec on the following March 21st.

Because of the precession of the equinoxes the declination
and R.A. of every fixed point on the celestial sphere change
with time.

Fig. 1 illustrates the ecliptic and equinoctial systems of
defining celestial positions.

In Fig. 1, the circle represents the celestial sphere. o repre-
sents the First Point of Aries and X is any celestial body.

Using the ecliptic system:

X is in {celestial latitude = arc BX
celestial longitude = arc vB

Using the equinoctial system:

declination = arc AX
_R.A. = arc TA

" For navigational purposes the celestial positions of the navi-
gational stars are given in the Nautical Almanac in terms of
declination and Sidereal Hour Angle (S.H.A.).

Xis in
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FIGURE 1

The sidereal hour angle of a star is a measure of the arc of
the equinoctial or the angle at the celestial pole, contained
between the celestial meridians of the First point of Aries and
the star. In contrast to R.A., S.H.A. is measured westwards
from the celestial meridian of the First Point of Aries, so that:

S.H.A. + = 360° — R.A. # in degrees.

Time problems in nautical astronomy are facilitated by using
S.H.A. instead of R.A., principally because the S.H.A. of a
celestial body is measured in the same direction as the apparent
diurnal motion of the celestial sphere, a motion which will be
discussed in detail in Chapter V.

Declination and R.A. are co-ordinates used for defining celes-
tial positions relative to fixed great circles in the celestial sphere.
It is convenient to provide a method of defining celestial posi-
tions relative to the projection of the observer’s (and the prime)
meridian on to the celestial sphere. For this purpose use is
made of co-ordinates called Local and Greenwich Hour Angle
(L.H.A. and G.H.A)).

The L.H.A. or G:H.A. of a celestial position is similar to
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S.H.A. except that, whereas S.H.A. is measured westwards
from the celestial meridian of the First Point of Aries, L.H.A.
and G.H.A. are measured westwards from the plane of the
Observer’s and Greenwich meridians respectively.

The L.H.A. of a celestial body is 0° when the body lies in the
plane of an observer’s meridian at its superior transit. When a
celestial body is at inferior transit its L.H.A. is 180°. The
G.H.A. of a celestial body is 0° when the body lies in the plane
of the Greenwich meridian. This will be discussed in greater
detail in Chapter VI.

The L.H.A. of the Sun is 0° at midday, and 180° at midnight.
Because of the Earth’s rotation towards the east, the L.H.A.
and G.H.A. of a celestial body change at the rate of about 15°
per hour towards the west. That is to say, they increase at a
rate of about 15° per hour.

THE HORIZON SYSTEM

The co-ordinates used in the Horizon system of defining celes-
tial positions are altitude and azimuth. The two great circles
of reference from which these angles are measured are the
celestial horizon and a secondary to the horizon which extends
between the poles of the primary horizon and which crosses
it at the north and south points of the horizon.

The extremities of the axis of the horizon are called the
zenith and nadir respectively. The celestial horizon divides the
celestial sphere into the visible and invisible hemispheres. The
zenith is the pole of the horizon which lies in the visible hemis-
phere. The nadir is antipodal to the zenith. Secondary great
circles to the horizon are called vertical circles.

The altitude of a celestial point is a measure of the arc of
a vertical circle between the point and the horizon vertically
below it. The altitude of every point on the horizon is 0°, and
the altitude of the zenith is 90°. All points having the same
altitude lie on a small circle which is parallel to the horizon.
Such a small circle is called a parallel of altitude.

The angle contained between a celestial point and the zenith is
called the zenith distance (Z.D.) of the point. If the point is above
the horizon, the zenith distance is equivalent to the complement
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of the altitude of the point. If it lies below the horizon, its
zenith distance is greater than 90°.

- The vertical circle that extends from the zenith of an observer
to the north point of his horizon lies in the plane of the ob-
server’s meridian, It, therefore, contains the celestial pole of the
hemisphere in which the observer is located. That is to say, if
the observer is in the northern hemisphere, the north celestial
pole will lie on the vertical circle through the north point of the
horizon, and it will bear due north. If the observer is in the
southern hemisphere the south celestial pole will lie above the
horizon bearing due south.

The celestial pole lying above an observer’s horizon is called
the elevated pole; the other is called the depressed pole. .

Semi-great circles on the celestial sphere which terminate at
the celestial poles are celestial meridians. It follows, therefore,
that the vertical circle through the elevated pole is also a celes-
tial meridian; and, containing as it does, the observer’s zenith,
it lies in the plane of the observer’s terrestrial meridian. For
this reason it is called the observer’s celestial meridian.

The azimuth of a celestial point is a measure of the arc of
the horizon, or the angle at the observer’s zenith, contained
between the vertical circle through the elevated pole and the
vertical circle through the point. It is named east or west
according to whether the point lies to the east or west of the
observer’s celestial meridian. Azimuths of celestial points are
measured from north or south according to whether the ob-
server is in the northern or southern hemisphere respectively.
The azimuth of every point, the declination of which is named
opposite to that of the latitude, is greater than 90°, It does not
follow, however, that objects having declinations of the same
name as that of the latitude have azimuths of less than 90°. For
the azimuth of an object to be less than 90° its declination must
be greater than, but of the same name as, the latitude.

The vertical circle passing through the east and west points
of the horizon is called the prime vertical circle. The azimuth of
every point on the prime vertical circle is N. or S. 90° E. or W.
according to whether it is east or west of the observer’s celes-
tial meridian.

All objects having azimuths named east are rising objects;
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that is, their altitudes are increasing. All objects on the west
side of the observer’s celestial meridian are setting objects; that
is, their altitudes are decreasing. When a fixed celestial object
crosses a stationary observer’s celestial meridian it has its greatest
altitude for the day (see Chapter V).

The bearing of a celestial object, as distinct from its azimuth,
is a measure of the horizontal angular distance from the vertical
plane through the north or south point of the horizon. For con-
venience it is named from the nearer cardinal point. For example,
if the azimuth of a body is say N. 120° E., its bearing would be
described as S. 60° E.

The amplitude of a heavenly body is a measure of its angular
distance from the east or west point of the horizon and the body
when it rises or sets respectively. Rising amplitudes are named
from the east point of the horizon; and setting amplitudes are
named from the west point. Celestial bodies having north
declination rise and set north of the prime vertical circle; and
those having south declination rise and set south of the prime
vertical circle. In other words the amplitude of a body takes its
name from the declination of the body.

Fig. 2 illustrates the horizon system of defining celestial
positions. Fig. 2(a) illustrates the celestial sphere drawn on the
plane of the horizon of an observer whose zenith is at Z. N, E,

horizon

invisible
hemisphere

(@) ts)

FIGURE 2
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S and W are the cardinal points of the observer’s horizon. P is
the elevated celestial pole, and X is a celestial body.

Fig. 2(b) illustrates the celestial sphere drawn on the plane
of the observer’s celestial meridian. Arc PZS is part of the
observer’s upper celestial meridian, arc PN is part of his inferior
celestial meridian.

In both diagrams:

Position of X using the Horizon system:
Altitude = arc AX

Azimuth = NZX or arc NA
(Bearing = N. 6° E.)



CHAPTER V

The Apparent Diurnal Motion of the
Celestial Sphere

The Earth’s diurnal rotation is manifested by the apparent di-
urnal revolution of the celestial sphere. As a result of this during
the course of a day all celestial objects rise out of the eastern
half of an observer’s horizon and set into the western half each
day.

To terrestrial observers, the celestial objects appear to des-
cribe paths around the Earth, each sweeping out a complete
circle once per day. These circles are called diurnal circles. Let
us first consider the diurnal circles of the heavenly bodies as
viewed by each of two observers, one located at the North Pole
of the Earth, and the other located at the equator. We shall then
discuss diurnal circles as viewed by an observer located in some
intermediate latitude.

Fig. 1 illustrates the celestial sphere with the Earth lying
at its centre. The zenith Z, of an observer standing at the
Earth’s North Pole, coincides with the north celestial pole P.
Now the celestial pole is the pole of the equinoctial, and the
zenith is the pole of the horizon, so that if the pole and the
zenith coincide, so also will the equinoctial and the horizon.

Now the diurnal revolution of the celestial sphere takes place
about the axis of the equinoctial. Therefore, to an observer at
the Earth’s North Pole every point on the celestial sphere will
trace out a diurnal circle which is parallel to his horizon. It
follows, therefore, that every fixed celestial object will maintain
a constant altitude to an observer located at the Earth’s North
Pole, and will trace out its diurnal circle in an anti-clockwise
direction as viewed by the observer.

52



DIURNAL MOTION OF CELESTIAL SPHERE 53

FIGURE 1

The equinoctial, which coincides with the horizon of an
observer located in latitude 90°, divides the celestial sphere into
hemispheres of north and south declination. At the Earth’s
North Pole all celestial points having north declination lie above
the horizon. Those having south declination lie below the hori-
zon in the invisible hemisphere.

Celestial bodies which are above the horizon throughout the
day are called circumpolar bodies. To an observer at the North
Pole of the Earth all bodies having north declination are circum-
polar. The Sun will be circumpolar during the period from
March 21st to September 23rd. During the three months period
between March 21st and June 22nd, that is, during the season
of northern Spring, the Sun’s altitude will change gradually
from 0° to 231°, attaining its maximum altitude on the day of
the Summer solstice. After this day for the following three
months, that is, during the season of northern Summer, the
Sun’s altitude will decrease to 0°. During the remaining half
year, the Sun will never rise above the horizon of an observer
at the Earth’s North Pole.
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To an observer at the Earth’s South Pole, all objects having
south declination will be circumpolar. The diurnal circles will
be swept out in a clockwise direction as viewed by the observer.
During northern Autumn and Winter, the Sun will be above the
horizon; and during southern Autumn and Winter he will be
below it.

FIGURE 2

Fig. 2 illustrates the celestial sphere with the Earth at the
centre. o is an observer located on the equator. Z is his zenith,
and N, E, S and W are the cardinal points of the observer’s
horizon.

It will be seen from Fig. 2 that the horizon of an observer
located on the equator bisects the equinoctial. It follows, there-
fore, that the diurnal circles of all celestial bodies are bisected
by the horizon. All celestial bodies, therefore, rise and set to
an observer located on the equator; and no bodies are circum-
polar.

It will also be noticed from Fig. 2 that all diurnal circles
cross the equinoctial perpendicularly. Moreover, all objects
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having north declination will rise to the north of east and set
to the north of west, and their azimuths at all times will be less
than 90° measured from the north point of the horizon. Simi-
larly, all objects having south declination will rise to the south
of east and set to the south of west, and their azimuths also will
be less than 90° measured from the south point of the horizon.
A celestial body having a declination of 0° will rise bearing due
east and set bearing due west. Such an object will cross the
plane of the observer’s meridian with an altitude of 90°.

When a celestial object crosses the observer’s celestial meri-
dian it is said to culminate. To an observer at the equator, every
celestial body will culminate with an altitude equal to the comple-
ment of its declination. Because every diurnal circle is bisected
by the horizon of an observer located on the equator, every
celestial body will be above the horizon for exactly half the day.
Moreover it will culminate six hours after rising and set six
hours after culminating.

Fig. 3 illustrates the celestial sphere with the Earth at the

FIGURE 3
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centre. o is an observer in the northern hemisphere. Z is the
observer’s zenith and N, E, S and W are the cardinal points
of his horizon. p is the Earth’s North Pole and P is the celestial
north pole.

In this general case it will be noticed that the planes of all
diurnal circles lie at an angle to that of the horizon. It will also
be noticed from Fig. 3 that some objects having north declina-
tion are above the horizon all day, and that some having south
declination are below the horizon all day. The number of
circumpolar bodies depends upon the observer’s latitude: the
higher the latitude the greater the number. Celestial bodies
having north declination will be above the horizon of an observer
having north latitude for longer than 12 hours each day. Those
having south declination will be above the observer’s horizon
for less than 12 hours each day.

Fig. 4 illustrates the celestial sphere. The boundary circle
represents the horizon, and the points on the celestial sphere

S

FIGURE 4
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in which we are interested are projected on to the plane of the
horizon. Z represents the observer’s zenith. PZS is the projec-
tion of the observer’s upper celestial meridian, and PN is that
of his lower celestial meridian. EQW is the projection of the
equinoctial—every point on which is 90° from P the projection
of the celestial pole.

All diurnal circles are parallel to the equinoctial; and those
within the shaded circle centred at P are circumpolar. It will
be noticed from Fig. 4 that all objects within the shaded zone
bounded by the diurnal circle AZB and the equinoctial will, at
two instants in the day, cross the observer's prime vertical
circle.

Consider the star X which rises at X,. Its rising amplitude
is arc EX,: its azimuth being N. 6 E. where 0 is angle PZX,.
The diurnal circle of X crosses the prime vertical circle at X,
and X,, at which times its azimuth is N. 90° E. and N. 90° W.
respectively. When it culminates it is at X; and bears due south
with its greatest altitude for the day being equivalent to arc
8X,. At X it sets with a setting amplitude of arc WX,

The number of stars which are circumpolar to and the num-
ber which cross the prime vertical of an observer depends
primarily upon his latitude. To investigate these problems we
shall first consider what may justifiably be regarded as one of
the important principles of astronomical navigation, namely:

Latitude of an observer = Altitude of the celestial pole

Fig. 5 serves to prove this important fact. Fig. 5 represents
the celestial sphere projected on to the plane of an observer’s
celestial meridian. The small circle represents the Earth at the
centre of the celestial sphere. p represents the Earth’s North
Pole and qq, represents the equator. o represents the observer
whose zenith is projected at Z. P is the projection of the elevated
celestial pole and QQ, is that of the equinoctial. N'S lies in the
plane of the observer’s horizon.

arc qo = arc QZ = observer’s latitude
arc QP = arc NZ = 90°

Therefore:
arc NP = arc QZ
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But
arc NP = altitude of celestial pole
Therefore:
Latitude of observer = Altitude of celestial pole

Reference back to Fig. 4 will verify the fact that for a celes-
tial body to be circumpolar its polar distance, which is the com-
plement of its declination, must be smaller than the observer’s

Z

horizon
n N

s k
. q1

FIGURE §

latitude; and, of course the names of the latitude and declination
must be the same.

Also from Fig. 4 it may be verified that for a celestial body
to cross the prime vertical circle of an observer its declination
must be smaller than, and of the same name as, the latitude.

A celestial body having a declination of 0° will culminate with
an altitude equal to the complement of the observer’s altitude.
One having a declination the same in name and equal in magni-
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tude to the observer’s latitude will culminate at the zenith. In
other words, its maximum altitude for the day will be 90°.
These facts are readily verified from Fig. 4.

TWILIGHT

Because of a phenomenon known as atmospheric refraction (see
Part II, Chapter II), and because sunlight may be reflected from
particles high in the atmosphere, sunlight may be received by
an observer when the Sun is as much as 18° below his horizon.
Sunlight received after sunset or before sunrise is called tewi-
light.

When the Sun is below and within 6° of the horizon, twilight
is sufficiently strong to obviate the necessity, except for excep-
tional cases, of artificial lighting. This is called civil twilight.
When the Sun is between about 6° and 12° below the horizon,
twilight is sufficiently strong for the seaman to see his visible
horizon, but sufficiently weak for many of the brighter stars to
be visible. This provides the best conditions for observing star
altitudes, and the twilight received in these circumstances is
called nautical twilight. When the Sun is between about 12°
and 18° below the horizon twilight is relatively weak and is
called astronomical twilight.

The duration of twilight is related to the angle which the
plane of the Sun’s diurnal circle makes with the plane of the
horizon. The bigger is this angle the shorter will be the dura-
tion of twilight. At the equator the Sun sinks into and rises
out of the horizon perpendicularly, so that the duration of
twilight is relatively short. In high latitudes, the Sun’s apparent
diurnal path at rising or setting makes a relatively small angle
(an angle which decreases as latitude increases) with the horizon
so that the duration of twilight is relatively long. If the Sun does
not sink lower than about 18° below the horizon, twilight will
last all night. Fig. 6 serves to illustrate that for twilight to last
all night the latitude of the observer and the Sun’s declination

must have the same name and their sum must be not less than ‘

72°,
Fig. 6 represents the celestial sphere projected on to the plane
of the horizon of an observer whose zenith is projected at Z.
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N, E, S and W, are the projections of the cardinal points of the
horizon. The outer circle represents the parallel of altitude of
18° below the horizon. For twilight to last all night the Sun’s
diurnal circle must not cross this parallel of altitude. In Fig. 6
the circle centred at P just grazes the parallel of altitude of 18°
below the horizon at X. This is the diurnal circle of a celestial

FIGURE 6

body which crosses the observer’s celestial meridian when at
upper transit at Y. Its declination, therefore, is equal to arc QY.

Now © PX = NP + 18°
that is PY = NP + 18°
But PY = 90° - QY

where QY is the declination of the celestial body whose diurnal
circle passes through X and Y.
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Therefore:

NP + 18° = 90° — QY
or Lat 4+ 18° = 90° — Dec
from which

(Lat + Dec) = 72°

Thus, for twilight to last all night the sum of the observer’s
latitude and the Sun’s declination must equal or be not less than
72°, In other words, if the observer’s latitude is not less than
(72° — Sun’s declination) twilight will last all night. There-
fore, the lowest latitude at which twilight can last all night is
(72 — 23%)°; that is, latitude 481°.




CHAPTER VI

Time

Time in the astronomical sense denotes that which persists
while astronomical events, such as eclipses, culminations, occulta-
tions, Sun’s arrivals at the equinoctial and solstitial points, etc.,
take place. The common units of time are related to astronomical
periods: in particular the period of the Earth’s rotation; that
of the Moon’s revolution around the Earth; and the period of
the Sun’s annual apparent motion on the celestial sphere (which
is a reflection of the Earth’s real orbital motion around the
Sun).

The Earth’s period of rotation, although not quite regular,
provides a perfect unit of time for ordinary navigational pur-
poses. The period of the Earth’s rotation is a natural unit of
time called a day.

The Earth’s rotation is manifested by the apparent diurnal
motion of the celestial sphere; so that the celestial bodies, in
rising, culminating and setting, may be regarded as pointers
which mark off the hours, minutes and seconds of the day.

A simple definition of the basic unit of time is: ‘A day is
the interval between successive risings, culminations or settings,
of a celestial body.’

It is comparatively difficult to time the rising or setting of a
celestial body, but comparatively easy to time its culmination.
This is done in an observatory using a tramsit instrument which
is a telescope of special design set in the plane of the meridian.
Thus, a more satisfactory definition of a day is: ‘A day is the
interval between successive transits of a celestial body across
an observer’s upper celestial meridian’.

Because of the movements of heavenly bodies relative to one
another, on account of the Earth’s rotation and revolution, and

62
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because of the real movements of the Moon and planets, a
day by this definition varies in length according to which type
of heavenly body is used.

If any fixed star is used for the purpose of defining a day,
the interval between its successive transits with an observer’s
upper celestial meridian, is a unit of time called a sidereal day.
In practice, the First Point of Aries, which is a fixed point on
the celestial sphere in the sense that stars are fixed, is used for
determining the sidereal day: so that the sidereal day is defined
as the interval of time that elapses between two successive tran-
sits of the First Point of Aries with an observer’s celestial meri-
dian.

A clock which registers sidereal time correctly will indicate
00 hr 00 min 00 sec at the instant when the First Point of Aries
bears due north or due south at upper transit.

The sidereal day is a constant unit of time, and may be re-
garded as being a measure of the time taken for the Earth to
rotate exactly 360° on her axis. For navigational purposes the
sidereal day is a very important unit of time, but for everyday
purposes of civil life it plays no part whatever. The Sun is the
most important celestial body for most human activities; and
this luminary, therefore, is used as a basis for time-measuring
for civil purposes.

The interval of time which elapses between successive lower
transits of the Sun is a unit of time called a solar day.

The solar day, it must be appreciated, commences when the
Sun crosses the lower celestial meridian of an observer: so that
a clock registering correct solar time will indicate 00 hr 00 min
00 sec at the instant when the Sun is at lower transit. When he
is at upper transit, half a solar day will have elapsed since the
solar day commenced. Because the day is subdivided into 24
hours, a clock registering solar time will indicate 12 hr 00 min
00 sec when the Sun crosses the upper celestial meridian of an
observer. It is for this reason that the time of the Sun’s upper
meridian passage is called midday.

Fig. 1 serves to illustrate that a solar day is longer than a
sidereal day.

The period of the Earth’s revolution around the Sun is about
365 days; so that, as the Earth moves in her orbit, the Sun
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appears to move eastwards across the celestial sphere at the
rate of 3¢ or approximately 1° per day.

Referring to Fig. 1, in which o represents an observer at
whose meridian, when the Earth is at E;, the solar time is
midday. Let us assume that a particular fixed star happens to
be in transit with the Sun at this instant. The next time the
star will be on the observer’s upper celestial meridian will be
after the Earth has rotated exactly 360°; that is when the Earth
is at E; and the observer is at 0,. At this instant the Sun will
lie about 1° to the east of the observer’s upper celestial meridian,

FIGURE I

so that the Sun will not cross this meridian until after the star
does. The solar day, therefore, is slightly longer than a sidereal
day, and it is the time taken for the Earth to spin about 361°
on her axis.

The principal disadvantage of using the solar day, as we have
defined it, arises from the variable motion of the Sun in his
annual apparent orbit. When the Earth is near perihelion the
apparent angular motion of the Sun in the ecliptic is more rapid
than it is when the Earth is near aphelion: so that the interval
of time between successive transits of the Sun varies with the
time of year, being relatively long when the Earth is near peri-
helion and relatively short when the Earth is near aphelion.
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Another factor which influences the length of the solar day is
due to the plane of the Earth’s spin not being coincident with
that of her orbit around the Sun.

To overcome the variations in the length of the solar day due
to the combination of the effects of the varying speed of the
Earth’s orbital motion and the obliquity of the ecliptic, and
yet use the Sun as the basis of time measuring, an imagin-
ary point known as the Mean Sun is employed. The Mean
Sun is a point which moves in the equinoctial at a uniform
rate.

The interval of time elapsing between successive upper tran-
sits of the Mean Sun is a unit of time called a Mean Solar Day.
The day by the actual Sun is usually called an Apparent Solar
Day, because the apparent diurnal motion of the True Sun is
used in its determination.

Having described the principal units of time, it is now neces-
sary to understand the meaning of the term ‘time at a given
instant’. Time at any instant is a measure of an angle swept
out by a semi-great circle which is centred at the celestial pole,
and which swings with diurnal motion around the sky making
one rotation in a day. For indicating sidereal time the semi-
great circle referred to is that on which the First Point of Aries
is located. For indicating solar time it is that on which the Sun
is located—the True Sun for Apparent Solar Time, and the
Mean Sun for Mean Solar Time.

The semi-great circles referred to above may be imagined
to ‘sweep out time’. For this reason they are called kour circles:
8o that local time at any instant may be defined generally as
the angle at the celestial pole contained between the observer’s
meridian (the upper celestial meridian for sidereal time and the
lower for solar time) and the hour circle of the celestial point
or body used for indicating time, measured westwards from the
observer’s celestial meridian.

The angle at any instant at the celestial pole contained between
the upper celestial meridian of an observer and the hour circle
of a celestial point or body, measured westwards from the ob-
server’s upper celestial meridian, is known as the Local Hour
Angle (L.H.A.) of the point or body at that instant.

An hour angle measured westwards from the upper celestial
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meridian of Greenwich is called a Greenmwich Hour Angle
(G.H.A)).

'The Local Sidereal Time (L.S.T.) at any instant is equivalent
to the L.H.A. of the First Point of Aries, i.e.

LS.T. = LHA. v

The Local Apparent Solar Time (L.A.T.) is equivalent to the
L.H.A. of the True Sun + 12 hours, i.e.

LA.T. = LHA.T.S. + 12 hours

The Local Mean Solar Time (L.M.T.) is equivalent to the
L.H.A. of the Mean Sun + 12 hours, i.e.

L.M.T. = LHA.M.S. + 12 hours

[

U

FIGURE 2

Fig. 2 illustrates the celestial sphere, with the Earth at the
centre, projected on to the plane of the equinoctial.

o represents an observer and P is the projection of the north
celestial pole. PU and PL are the projections of the observer’s
upper and lower celestial meridians respectively. PG and PR
are the projections of the Greenwich upper and lower celestial
meridians respectively.
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P, PM, PT are the projections of the hour circles through
the First Point of Aries, the Mean Sun and the True Sun respec-
tively. _

arc Uy = LHA. e =L.S.T.
arc Gor = G.HA. v = G.S.T.
arc UM = L.H.A.M.S.

arc LUM = L.M.T. = L.H.AM.S. + 12 hour
arc UT = L.H.A.T.S.

arc LUT = L.A.T. = L.H.A.'T.S. + 12 hour
arc GM = G.H.AM.S.

arc RGM = G.M.T. = G.H.A.M.S. + 12 hour
arc GT = G.H.A.T.S.

arc RGT = G.A.T. = G.H.A.T.S. + 12 hour

In Fig. 2 the Mean and True Suns are shown on the western
side of the observer’s upper celestial meridian. Had they been
on the eastern side L.H.A.T.S. and L.H.A.M.S. would have
been greater than L.A.T. and L.M.T. respectively, by 12 hours.
That is:

L.A.T. = LHA.T.S. — 12 hours
LM.T. = LHAM.S. — 12 hours

Fig. 2 is an example of what has become known as a time dia-
gram, a device which provides a simple method of illustrating
and verifying problems related to time and hour angle.

THE EQUATION OF TIME

The Mean and True Suns seldom occupy the same hour circle.
At some periods in the years the Mean Sun is akead or west of
the True Sun, by which we mean that the Mean Sun’s hour
angle at any instant exceeds that of the True Sun at the same
instant. At other periods the Mean Sun is behind or east of the
True Sun.

The angle at the celestial pole contained between the hour
circles of the Mean and True Suns is called the Equation of
Time (E). When the Mean Sun is ahead or west of the True



68 THE COMPLETE NAUTICAL ASTRONOMER

Sun E is conventionally named plus (+). When the Mean Sun
is astern or east of the True Sun it is named minus (—): so
that E is usually defined as being the excess of Mean Time over
Apparent Time. For example, if the L.M.T. is 1050 at the
instant when L.A.T. is 1040, the equation of time is described
as being + 10 minutes. If, on the other hand, L.M.T. is 1040
at the instant when L.A.T. is 1050, the equation of time is
described as — 10 minutes.

E=LM.T. - LAT.

or E = LHAM.S. — LHA.T.S.
or E = GHAM.S. — G.H.A.T.S.
or E = RAT.S. - RAM.S.

In Fig. 2, because the Mean Sun lies to the east of the True
Sun, E, which is denoted by arc MT, is a negative quantity.

The equation of time is considered to be composed of two
parts: one resulting from the ellipticity of the Earth’s orbit
around the Sun; and the other resulting from the obliquity of
the ecliptic.

An imaginary point which moves in the ecliptic at a uniform
rate equal to the average rate of the True Sun’s motion is called
the Dynamical Mean Sun (D.M.S.). That part of the equation
of time due to ellipticity is a measure of the angular difference
between the hour circles of the True Sun and the D.M.S. It is
equivalent to the difference between the R.A.’s of the True
Sun and the Dynamical Mean Sun.

The D.M.S. and the True Sun are considered to be in coinci-
dence at perihelion and aphelion (approximately January 3rd
and July 3rd). For three months after the time of perihelion
the True Sun increases his R.A. at a greater rate than does the
D.M.S.; so that the maximum angular separation occurs at
about April 3rd. From April 3rd until the time of aphelion their
separation diminishes until they coincide at the time of aphelion.
For the three months following aphelion the D.M.S. increases
its R.A. at a rate faster than that of the True Sun, so that the
maximum separation occurs at about October 3rd. For the
following three months their separation decreases until they
coincide again at the time of the next perihelion.
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The maximum angle between the hour circles of the True
Sun and the D.M.S. occurs at about April 3rd and October 3rd;
and it amounts to about 2° or 8 minutes of time. Between
January 3rd and July 3rd, when the R.A. of the True Sun is
greater than that of the D.M.S. the hour angle of the D.M.S.
at any instant is greater than that of the True Sun, so that the
component of the equation of time due to ellipticity is named
plus (+). From July 3rd to the following January 3rd it is
named minus (—).

The D.M.S. increases its celestial longitude at a uniform
rate, so that if the planes of the Earth’s rotation on her polar
axis and her revolution around the Sun were coincident the
D.M.S. would provide the means of regular timekeeping. Because
of the obliquity of the ecliptic the perfect astronomical time-
keeper must move on the equinoctial at a uniform rate. This is
the imaginary point we have called the Mean Sun. To distin-~
guish the Mean Sun from the Dynamical Mean Sun, it is
called the Astronomical Mean Sun (A.M.S.).

The A.M.S. moves uniformly in the equinoctial increasing
its R.A. at the same rate as the D.M.S. increases its celestial
longitude.

The component of the equation of time due to obliquity is
the difference between the hour angles or R.A.’s of the D.M.S.
and the A.M.S,

The A.M.S. coincides with the D.M.S. at the First Point
of Aries on March 21st. For the following three months the
R.A. of the A.M.S. is greater than that of the D.M.S. This is
illustrated in Fig. 3, in which arc «rD is equivalent to arc A,
D and A representing the D.M.S. and the A.M.S. respectively.

The H.A. of the A.M.S. at any instant during northern Spring
is less than that of the D.M.S.; so that, during this season, the
component of the equation of time due to obliquity is a nega-
tive quantity.

Both the A.M.S. and the D.M.S. travel through equal arcs
along their respective paths—equinoctial and ecliptic respec-
tively—in equal time intervals; so that at the time of the Summer
solstice they occupy the same celestial meridian, and their
R.A’s are each 06 hours. From the time of the Summer solstice
to that of the Autumnal equinox the R.A. of the A.M.S. is less
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than that of the D.M.S,, so that the component of the equation
of time due to obliquity is plus (+). Similarly, from the time
of the Autumnal equinox to that of the Winter solstice it is
minus (—); and from the time of the Winter solstice to that of
the following Spring equinox it is plus (+).
~ Fig. 4 illustrates the variations in the components of the
equation of time, and also those of the resultant of the two
components, which is the equation of time.

COMPARISON OF THE LENGTHS OF THE SIDEREAL AND
MEAN SOLAR DAYS

During one revolution of her orbit the Earth makes about
365} revolutions on her polar axis. During the Earth’s period
of revolution the Sun describes one apparent annual circuit of
the ecliptic; and, in so doing, makes one apparent revolution
relative to the fixed stars. Thus, relative to the fixed stars, the
Earth makes one more rotation in a year than she makes rela-
tive to the Sun. It follows, therefore, that:

3654 Mean Solar days = 366} sidereal days
From this relationship: '

1 Mean Solar day = 24 hr 00 min 00 sec of Mean Solar Time
= 24 hr 03 min 56-5 sec of Sidereal Time

1 sidereal day = 24 hr 00 min 00 sec of Sidereal Time
= 23 hr 56 min 04-1 sec of Mean Solar Time

The solar day, therefore, is about four minutes longer than a
sidereal day. For this reason, the time of transit of any fixed
star with the upper celestial meridian of any terrestrial observer
is about four minutes later on successive days. For this reason
the aspect of the heavens changes gradually throughout the
year, and different constellations cross an observer’s celestial
meridian at any given time of night, at different times of the
year.

On the day of the Spring equinox, when the Sun’s R.A. is
00 hours, celestial objects having equal or nearly equal R.A’s
will cross the observer’s celestial meridian at more or less the

6
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same time as the Sun. These objects, therefore, will not be
suitably placed in the sky for altitude observations. On the other
hand, celestial objects whose R.A’s differ by 12 hours from that
of the Sun’s, will cross the observer’s upper celestial meridian
when the Sun is on the lower celestial meridian. These bodies
will, therefore, cross the observer’s meridian at or about mid-
night. They will be east of the meridian before midnight and
west of the meridian after midnight. They may, therefore, be
suitably placed for altitude observations during evening twilight
when they are east of the meridian, and during morning twilight
when they are west.

By comparing the Sun’s R.A. (or S.H.A.) with that of any
given star, planet or the Moon, a navigator may readily ascer-
tain, after considering the declination of the body, whether it is
suitable or not for navigational purposes at his particular loca-
tion on the globe.

LONGITUDE AND TIME

The angle at the celestial pole contained between the upper
celestial meridians of Greenwich and any observer is equivalent

L

o1

FIGURE §
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to the longitude of the observer. This follows from the fact
that the Greenwich meridian, from which longitudes are meas-
ured, lies in the same plane as the Greenwich upper celestial
meridian; and the observer’s terrestrial meridian lies in the
same plane as the observer’s upper celestial meridian.

The problem of finding longitude by astronomical methods
is, therefore, essentially a problem of comparing the local time
of an astronomical event (usually the instant when a heavenly
body has a particular observed altitude) with the Greenwich
time of the same instant.

Fig. 5 illustrates the celestial sphere drawn on the plane of the
equinoctial with the Earth at the centre. o, and o, are observers
located in the eastern and western hemispheres respectively.
G represents Greenwich. P is the projection of the north celes-
tial pole.

PO, represents 0,’s upper celestial meridian

PL, represents 0,’s lower celestial meridian

PO, represents 0,’s upper celestial meridian

PL, represents 0,’s lower celestial meridian

PG represents the Greenwich upper celestial meridian
PM represents the hour circle of the Mean Sun

arc RM = G.M.T.

arc LM = LM.T. ato,

arc L;O;M = L.M.T. at og

arc GO; = East longitude of o,
arc GO, = West longitude of o,

Now:
arc GO, = arc RL,
= arc RM + arc ML,
= arc RM + (24 hr - arc L,0,M)
= arc RM - arc L,O,M
Therefore:

West longitude of o, = G.M.T. — L.M.T. at o,
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Also:
arc GO; = arc L;R
= arc L,M — arc RM
Therefore:
East longitude of o; = L.M.T. at 0, — G.M.T.

It follows, therefore, that the longitude of a terrestrial posi-
tion is a measure of the difference between L.M.T. and G.M.T.
at any instant, reckoned at the rate of 15° of longitude per one
hour difference between L.M.T. and G.M.T.

If G.M.T. is greater than L.M.T., longitude is named west.
If it is less than L.M.T., longitude is named east. Hence the
well known seaman’s rhyme:

‘Longitude west, Greenwich time best;
Longitude east, Greenwich time least’.

TIMEKEEPING AT SEA

It is impracticable, if not impossible, to keep local time on a
moving ship, unless her course is along a meridian. Local time
is a measure of an angle at the celestial pole between an observer’s
lower celestial meridian and the hour circle through the Sun.
Because of the movement of the observer’s lower celestial
meridian, as a result of his easterly or westerly motion on the
Earth’s surface, it would be necessary, if the observer wished
to keep local time, for him continually to alter his clock time
at a rate proportional to his motion in longitude.

In days gone by it was the custom in merchant ships to set
the clock at 12 o’clock when the Sun reached his greatest altitude
of the day. About a quarter of an hour or so before noon, the
Captain and navigating officers would assemble on poop or
bridge, armed with their sextants to observe the changing alti-
tude of the Sun. When this luminary reached his greatest alti-
tude at his upper meridian passage, his L.H.A. would be 00
hours, and the solar time would, accordingly, be 12 hr 00 min
or midday. At the time of meridian passage, therefore, the ship’s
clocks would be set to 12 o’clock and the order given for eight
bells to be made. During the second dog watch, at about seven
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in the evening, the navigator would estimate the ship’s longi-
tude for the following apparent noon. This enabled him to
find the error of the clock on the apparent time for the meridian
at which he estimated his ship would be at the next apparent
noon. The ship’s clocks would then be altered, or flogged as
the seamen say, in the hope that at the following apparent noon
they would register 12 o’clock. If this hope was fulfilled the
clock afforded a reliable guide to the time of the Sun’s upper
meridian passage on the following day.

This system of time organization is still used to some extent,
although it appears to be giving way to the system of zone
time.

In the zone time system the Earth is divided into north—
south parts called #ime 2ones: these (with two exceptions) being
bounded by meridians whose d.long is 15° or one hour in time.
Each time zone, of which there are twelve in the western and
twelve in the eastern hemisphere, is designated by a zone num-
ber which is pre-fixed by a plus (+) sign for those in the western
hemisphere and a minus (- ) sign for those in the eastern hemis-
phere.

The zone time (Z.T.) in any given zone is always an integral
number of hours different from G.M.T., the number being the
same as the zone number. If the zone number is ( +) the G.M.T.
at any instant is equal to the Z.T. plus a number of hours equal
to the zone number. If the zone number is (—) the G.M.T.
at any instant is equal to the Z.T. minus a number of hours
equal to the zone number. Thus, if it is, say, 1020 Z.T. in zone
(+4)itis 1420 G.M.T. If it is, say, 1650 Z.T. in zone (~6) it is
1050 G.M..T., etc.

Zone +1 extends from 73° W. to 221° W.; and all ships
keeping Z.T. in zone +1 keep time which is one hour astern
of G.M.T. Zone —1 extends from 73° E. to 224° E.: and all
ships keeping zone time in zone —1 have their clocks set one
hour ahead of G.M.T. The zone between 73° E. and 74° W.
is called zone 0; and all ships keeping zone time within this
zone have their clocks set to G.M.T.

On crossing the boundary of a time zone the clock is altered
one hour abruptly; so that when sailing westwards the clock
is retarded and when sailing eastwards it is advanced.
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The 15° zone antipodal to zone 0 is bisected longitudinally
by the 180th meridian. That half lying between 1724° W. and
180° is designated zone + 12. The other half is designated zone
—12. When crossing the 180th meridian the zone number changes
from +12 to —12 when sailing westwards, and from —12 to
+12 when sailing eastwards. It follows, therefore, that when
crossing the 180th meridian the date will have to be changed,
advancing the date by a day when sailing westwards, and retard-
ing it a day when sailing eastwards. It is for this reason that the
180th meridian is called the date line.

To overcome the difficulties arising from keeping local time
at places ashore, it was long ago agreed internationally that
shore time should be systematized rationally. The zone time
system is admirably suitable for this purpose; and it is used
extensively ashore, as well as at sea. For shore purposes, the
boundaries of time zones are sometimes adjusted to take in
national territory outside the normal boundaries of the time
zones. The date line, for example, does not coincide exactly
with the 180th meridian. It is adjusted in order that certain
Pacific islands and other territory which straddles the 180th
meridian, which have a common administration, keep a common
time. The times kept by nations are called standard times. They
are usually related to G.M.T. Information about standard times
is to be found in the Nautical Almanac.

YEARS

The period of revolution of the Earth around the Sun provides
a natural unit of time called a year. The time taken for the Earth
to make one revolution relative to any fixed celestial point is
called a sidereal year. It is 365 days 06 hr 09 min 09 sec of Mean
Solar Time.

Because of the precession of the equinoxes the time taken for
the Mean Sun to move from the First Point of Aries back to the
same point is slightly shorter than a sidereal year. It is 365 days
05 hr 48 min 46 sec of Mean Solar Time. It corresponds to the
interval between successive Spring equinoxes and is the period
of the seasons, It is called a tropical year.

The straight line joining perihelion and aphelion, a line called
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the apse line or line of apsides, is not fixed in the plane of the Earth’s
orbit: it swings slowly around the Earth’s orbit in such a way
that the dates of perihelion and aphelion occur progressively
later. The interval between successive perihelions is slightly
longer than a sidereal year. The interval, which is called an
anomalistic year, is 365 days 06 hr 13 min 48 sec of Mean Solar
Time.

THE CALENDAR

The systematic arrangement of units of time constitutes a
calendar. The incommensurable nature of the natural units of
time, viz. the day, month and year, made the problem of fitting
them together in an orderly way one of great difficulty to the
astronomers of old.

An early attempt is that known as the Julian calendar named
in honour of Julius Caesar and contrived by the Alexandrian
astronomer Sosigenes. The year, by the Julian reckoning, is
365 days 6 hours exactly. The 365 days were divided into twelve
months each containing an integral, but not necessarily the same,
number of days. The extra six hours in the year were allowed
to accumulate for four years making an extra day which was
intercalated to form a year containing 366 days instead of 365
days as in the common or ordinary years. The intercalated day
was called the bissextus, and a year which contained it a bis-
sextile year.

The year that is of the greatest significance in calendar making
is the tropical year, this regulating, as it does, the seasons. By
taking the year as 365 days 6 hours an error amounting to about
11 minutes a year throws out the calendar according to the
recurring seasons. The Julian calendar was used in Britain
until 1752, by which date the accumulated error amounted to 11
days.

The Gregorian calendar was introduced in Britain in 1752.
This calendar takes it name from Pope Gregory XIII who
occupied the Papal throne during part of the 16th century.
Pope Gregory’s calendar took into account the error in the
Julian calendar, which amounts to very nearly 72 hours or three
days in 400 years. In the Gregorian calendar three bissextile
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or leap years are dropped every 400 years, these being the opening
years of centuries except those in which the first two numbers
of the year is divisible by 4. Thus the year 2000 will be a leap
year whereas the year 1900 was not.

Before the Julian calendar was introduced the Romans em-
ployed a calendar in which the period of the Moon’s revolution
around the Earth played the principal element. The months
commenced on the days of the New Moon. These days were the
calends of the months. The middle day of each month, the day
at which the Moon is at the Second Quarter, is called the ides
of the month.

The Moon’s motion is still used in the ecclesiastical calendar
from which the dates of the moveable feasts of the church are
derived. The principal feast day in the Christian year is Easter
Day, from which all the other moveable feasts are found. In
general, Easter Day falls on the first Sunday . after the Full
Moon which follows the Spring equinox. The date of the Full
Moon, for this purpose, is calculated from an eclipse cycle
known as the Metonic Cycle—named after Meton of Athens
who first discovered it. The Cycle of Meton is a 19-year period;
and each year in the cycle is given a Golden Number between
1 and 19. The Golden Number is found by adding one to the
year number and dividing the result by 19. The remainder is
the Golden Number. This is used in conjunction with the
Sunday or Dominical Letter, which is the letter for Sunday
starting with A for the first day of the year. If, for example, the
first day of the year is a Tuesday the Sunday letter for that
year will be F; if it falls on a Saturday it will be B, etc.

The subject of calendar making, however interesting it may
be, must be brought to an end to make way for the principal
parts of our main subject of nautical astronomy. These will be
found in the following chapters.



PART 1I

The Theory of Nautical Astronomy



CHAPTER I

The Astronomical Triangle

The fundamental feature of nautical astronomy, in the modern
sense, is the relating of the celestial position of a heavenly body
at a given instant of time using the horizon system, with its
position at the same instant using the equinoctial system. The
co-ordinates employed in defining a celestial position using the
horizon system are altitude and azimuth; and those employed
for navigational purposes in defining a celestial position using
* the equinoctial system are declination and hour angle.

FIGURE 1
81
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The hour angle and azimuth of an observed celestial body,
together with a third angle called the parallactic angle or the
angle of position, form the three angles of the celestial spherical
triangle which is the subject of this chapter. Two of the sides
of the astronomical triangle are functions of the altitude and
declination of the observed celestial body. The third side is a
function of the observer’s latitude.

Fig. 1 illustrates a typical astronomical triangle.

Fig. 1 illustrates the celestial sphere with the Earth at its
centre. o is an observer in the northern hemisphere, and Z is his
zenith, p is the Earth’s North Pole and P is the elevated pole.
HH, is the observer’s horizon and QQ); is the equinoctial. ZPN
is the vertical circle through the north point N of the observer’s
horizon. This, therefore, is the observer’s celestial meridian.
W is the west point of the observer’s horizon, and X is a celestial
body.

The spherical triangle PZX is the astronomical triangle related
to the observer o and the celestial body X.

arc XA = declination of X
angle ZPX = L.H.A. of X

These two co-ordinates define the body’s position using the

equinoctial system.
arc XB = altitude of X
angle PZX = azimuth of X

These two co-ordinates define the body’s position using the
horizon system.

We have seen, in Part I, Chapter 5, that the altitude of the
celestial pole is equivalent to the observer’s latitude, so that in
Fig. 1 arc NP is equal to the observer’s latitude.

In the PZX triangle:

PZ = (90° — NP)
= co-latitude of observer
ZX = (90° - BX)
= co-altitude of observed body
= zenith distance of observed body



THE ASTRONOMICAL TRIANGLE 83
PX = (90° — XA)
= co-declination of observed body

(N.B. Had the declination of the observed body been south the
arc PX would have been greater than 90° by an amount equal
to the declination.) In all cases

PX = polar distance of observed body

= (90° — declination) when latitude and declina-
tion have the same name

= (90° + declination) when latitude and declina-
tion have different names

angle ZPX = L.H.A. of observed body
angle PZX = azimuth of observed body

angle ZXP = parallactic angle (this plays only a minor role
in nautical astronomy)

If the observer knows his latitude (and this is not generally
the case with a navigator) the angle P of the PZX triangle may be
computed using the three sides of the astronomical triangle.

The angle P is the local hour angle (L.H.A.) of the observed
celestial body. This, when compared with the Greenwich hour
angle (G.H.A.) of the body at the time of the observation, will
yield the observer’s longitude. The G.H.A. is provided in the
Nautical Almanac against G.M.T., so that an essential process
in nautical astronomy is timing an altitude observation of a
heavenly body, using a chronometer the error on G.M.T. of
which is known.

G.H.A. of * ~ L.H.A. of + = Longitude of observer

where » is any celestial body.

In general, an astronomical triangle is solved by the navigator
when he wishes to obtain an astronomical position line. A
position line is a line drawn on a navigational chart somewhere
on which the navigator may fix his ship’s position. Notice that
the result of a PZX triangle computation is a line of position
and not a point of position.

The principal and significant difference between finding
position ashore and at sea is that for the shore station which is
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fixed, the latitude of the station is first found. This, as we shall
see in Chapter IV, is a relatively simple matter. Having found
the latitude, it is used in a PZX triangle for the purpose of find-
ing the longitude of the station. The sea observer, being on a
moving ship, is never certain of his latitude at the time he ob-
serves to find his longitude, so that he has to use an estimated
latitude in order to form an astronomical triangle. If the latitude
used in forming this triangle is, in fact, the ship’s actual latitude,
the ship’s longitude may be found without difficulty. If, on the
other hand, the latitude used is not the ship’s latitude, the ship’s
longitude ascertained from the astronomical triangle will be in
error proportional to the difference between the estimated and
actual latitudes of the ship.

It is possible, as we presently shall see, to obtain a position
line from an observation or ‘sight’ of a heavenly body, in spite
of the fact that the latitude used in computing the L.H.A. of
the observed body is not the ship’s actual latitude. A position
line obtained from a celestial observation is called an astronomical
position line. An astronomical position line is the projection on a
chart of part of a circle of equal altitude the centre of which is
located at a point on the Earth called the geographical position
of the observed body. Let us discuss this type of circle and its
centre in some detail.

THE GEOGRAPHICAL POSITION OF A
HEAVENLY BODY

The geographical position (G.P.) of a heavenly body at a given
instant of time is simply a point on the Earth at which the body
is in the zenith at the instant. If the body referred to is the Sun,
his G.P. is called the sub-solar point. If it is a star, the term
sub-stellar point is used.

If an observer were to observe a celestial body at his zenith,
‘his terrestrial position would coincide with the observed body’s
G.P. at the time of the observation. If, therefore, the observer
knows the G.P. of the body at the time of a zenithal observation,
his own position would also be known, this coinciding with the
body’s G.P. This interesting navigational sight provides the only
case whereby a ship’s position may be found from a solitary
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observation. This celestial observation forms the basis of primi-
tive Polynesian navigation by means of which the intrepid
voyagers of the South Seas were able to make long sea journeys
with navigational precision.

%quincctiat

FIGURE 2

Fig. 2 serves to illustrate how the latitude and longitude of the
G.P. of a heavenly body at any given instant are related to the
declination and G.H.A. of the body at the time of the observa-
tion.

In Fig. 2, QQ, represents the equinoctial and P the north
celestial pole. p is the Earth’s North Pole, o is an observer and
Z is his zenith. pg represents the Greenwich meridian. PO and PG
are the upper celestial meridians of the observer and Greenwich
respectively. PC is the hour circle of the celestial body X.

The point x is the G.P. of the celestial body X.

Latitude of G.P. of X = arc cx
Declination of X = ar¢ CX

But arc cx = arc CX
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therefore:

Latitude of G.P. of X = Declination of X

Longitude of G.P. of X = angle gpx

G.H.A. of X = angle GPX
But angle gpx = angle GPX
therefore:
Longitude of G.P. of X = G.H.A. of X
Now, G.H.A. of X = GPX
= GPO + ZPX
therefore:

G.H.A. of X = L.H.A. of X + W, longitude of observer

The Nautical Almanac provides data from which the declina-
tion and G.H.A. of any celestial body of navigational importance
for any given G.M.T. may be found. Thus, if G.M.T. is known
at any instant the G.P. of any navigational body for that G.M.T.
may be found.

For the Sun, Moon and navigational planets, the Nautical
Almanac gives values of G.H.A. and declination for integral
hours of G.M.T. for the whole year. Interpolation tables are
provided so that the G.H.A. and declination of any of these bodies
may be found for any G.M.T. other than an integral hour.

In order to find the longitude of the G.P. of any fixed star
for any given G.M.T., the star’s G.H.A. is found by adding its
S.H.A. to the G.H.A. <o; which latter, like the G.H.A. of
Sun, Moon or planets, is tabulated for every integral hour of
G.M.T. Fig. 3 illustrates that:

G.HA.of * = GHA. v + SSH.A. of

Fig. 3 illustrates the celestial sphere on the plane of the equi-
noctial. P is the projection of the celestial pole of the north
celestial hemisphere. PG, PX and P are the projections of the
celestial meridians through Greenwich, and star #, and the
First point of Aries, respectively.
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G

FIGURE 3

From Fig. 3:
arc GX = arc G + arc X
therefore:

G.H.A. of s = G.H.A. v + S.H.A. of #

The interpolation tables provided in the Nautical Almanac
for the purpose of finding the G.H.A. of a navigational celestial
body give increments to the G.H.A. of Sun, Moon and the
First Point of Aries, for every minute and second between
00 min 00 sec and 60 min 00 sec.

The hour angle of the Mean Sun increases at a uniform rate
of 15° per hour. The hour angle of the True Sun increases
irregularly, but the variation from the mean rate of increase
(which is the same as that of the Mean Sun) is so small that the
interpolation tables for use with the Sun are devised on the
assumption that the True Sun’s angle increases uniformly at
the rate of 15° per hour exactly. To eliminate any slight error
that would arise from this assumption, the tabulated values of
the Sun’s G.H.A. for integral hours of G.M.T. are adjusted
where necessary.

The hour angle of the First Point of Aries increases at a
uniform rate of 15° 02-46’ per hour, so that the increments

7
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lifted from the interpolation tables for use with the First Point
of Aries are slightly greater than those for the corresponding
increments lifted from the Sun interpolation tables. Care,
therefore, must be taken to use the correct interpolation table.

The hour angle of the Moon increases at an erratic rate. The
interpolation table for use with the Moon is based on the assump-
tion that the Moon’s hour angle increases at a uniform rate of
14° 19’ per hour. This is the value of the minimum rate of
change of the Moon’s hour angle. To allow for the difference
between the minimum and the actual rate of change of the
Moon’s hour angle, an additional correction called the ‘v
correction’ is to be added to the increment lifted from the main
interpolation table. The excess of the Moon’s hourly increase
in hour angle over 14° 19’ is tabulated as ‘v’ on the daily pages
of the Nautical Almanac. _

The planets, like the Moon, increase their hour angles at an
erratic rate. The interpolation table for the Sun is used for
finding the G.H.A. of a navigational planet, the average rate of
change of a planet’s hour angle seldom departing very much
from the Sun’s rate of change of hour angle. Sometimes a
planet changes its hour angle at a greater rate, and sometimes
at a less rate, than that of the Sun, so that the ‘v correction’ for a
planet is sometimes to be subtracted (when its rate of change of

_hour angle is greater than that of the Sun), and sometimes added
(when its rate of change of hour angle is less than that of the
Sun).

The interpolation tables provided for finding the G.H.A. of a
body are also used for finding the declination of a body for a
time which is not an integral number of hours G.M.T. The
mean hourly change in the declination of the Sun or planet is
tabulated daily, and that for the Moon (whose declination changes
relatively rapidly), every hour. This mean hourly change is
tabulated as ‘d’.

CIRCLES OF EQUAL ALTITUDE

A circle of equal altitude is a circle on the Earth’s surface centred
at the geographical position of a heavenly body. At every point
on a circle of equal altitude the heavenly body has the same
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altitude. The greater is the altitude of a heavenly body, the
smaller is the radius of the circle of equal altitude, the centre of
which lies at the geographical position of the observed body.
The circle of equal altitude at every point on which the altitude
of the body is zero, is a great circle. If the body is the Sun, this
circle of equal altitude coincides with the circle of illumination.

Assuming the Earth to be a perfect sphere, the radius of a
circle of equal altitude, which is equal to the angle at the Earth’s
centre between the radius terminating at the G.P. of the object
and that terminating at any point on the circle measured in the
plane of a great circle through the G.P. of the body, is equivalent
to the zenith distance of the body. It follows that the great-circle
arc of the Earth’s surface in miles between the G.P. of a heavenly
body and any point on a circle of equal altitude is equal to the
zenith distance of the body in minutes of arc.

An observer standing on a particular circle of equal altitude
and facing in the direction of its centre will also be facing in a
vertical plane coinciding with that of the vertical circle through
the body. In other words, the direction of the G.P. of a heavenly
body corresponds to the azimuth of the body at the time of the
observation. It follows, therefore, that if the azimuth of the
body at the time of the observation can be found, the direction
of the circle of equal altitude—which lies at right angles to the
direction of any of its radii—can also be found.

The principal problems with which the nautical astronomer
is faced, are: finding the position of a point on, or at a known
distance from, a circle of equal altitude, and finding the direc-
tion of the circle of equal altitude at this point so that he may
project part of the circle of equal altitude on his navigational
chart or a plotting sheet—this projection being the desired
position line. Two such position lines will, if they intersect,
provide the navigator with an astronomical fix.



CHAPTER II

The Altitude Corrections

The fundamental process in astronomical navigation is the
‘measuring of the altitude of a celestial body by means of a
sextant. We shall discuss the navigator’s altitude-measuring
instrument in Part III. In this chapter we shall investigate the
several corrections that may have to be applied to the altitude
measured by means of a perfect sextant in correct adjustment
in order to find what is called the zrue altitude of the observed
body. This subtracted from 90° gives the true zenmith distance
of the body, an arc which forms one of the three sides of the
astronomical triangle PZX.

The true altitude of a celestial body is defined as a measure
of the arc of a vertical circle contained between the true direc-
tion of the centre of the body at the Earth’s centre and the celes-
tial horizon.

The measured altitude is called the sextant altitude. If the
sextant possesses known error, this is applied in reverse to the
sextant altitude to obtain the observed altitude.

The true altitude is found by applying altitude corrections to
the observed altitude. Altitude correction tables are provided
in the Nautical Almanac as well as in nautical table collections
such as those of Burton’s and Norie’s.

The observed altitude of a celestial body is a measure of the
arc of a vertical circle contained at the observer’s eye between
the apparent direction of the body (or, in the case of the Sun
or Moon, the upper or lower limb of the body) and the apparent
direction of the visible horizon. The term apparent direction
is used to denote the fact that the line of sight, which is tangen-
tial to the generally curved path through which light from the
observed body and the horizon travels, is not coincident with

90 .
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the corresponding true straight-line direction of the body
because of a phenomenon known as refraction,

The visible or sea horizon is a small circle on the sea surface
which limits the observer’s view. It is the line which separates
the sea from the sky. Because the observer’s eye is elevated
above sea level, the sea horizon is depressed below the horizontal
plane on which the observer’s eye rests. The circle on the celes-
tial sphere which lies in a horizontal plane through the observer’s
eye is called the observer’s sensible horizon. The measure of an
arc of a vertical circle contained between the sensible and visible
horizons is a function of the observer’s height of eye above the
surface of the sea. It is an angle called the dip of the sea horizon.

The great circle on the celestial sphere whose poles are the
observer’s zenith and nadir respectively is often called the
celestial or rational horizon, to distinguish it from the observer’s
. sensible and visible horizons.

If the observed body is the Sun or Moon the arc of a vertical
circle contained between the upper or lower limb of the body
and the horizon vertically beneath is measured. The observed
altitude must, therefore, be adjusted with an angle which is
equivalent to half the angular diameter of the observed body.
This is the so-called semi-diameter correction.

If the altitude of the relatively close Moon is observed, the
fact that her true directions from the Earth’s centre and the
observer’s eye are markedly different necessitates a correction
called paraliax.

In addition to the effects of refraction, height of eye, parallax
and semi-diameter, irradiation effect and personal error may
influence the altitude of a celestial body. We shall discuss each
of these factors in some detail.

REFRACTION

Observations of celestial bodies are made possible through light
emitted by or reflected from them. The stars and the Sun are
rendered visible by electro-magnetic radiation of optical fre-
quency which is emitted from these astronomical bodies. The
Moon and the planets, on the other hand, shine by reflected
sunlight.



92 THE COMPLETE NAUTICAL ASTRONOMER

The path of light is straight only when the light travels through
a medium of uniform optical density. When light travels from
one medium to another of different optical density, its path
direction changes by an angle known as refraction.

The air through which light from an observed celestial body
or from the horizon travels is not of uniform optical density.
It follows, therefore, that the true directions of celestial body
and horizon are not the same as those in which they appear
to lie. The angular value of the difference between the true and
apparent directions of a celestial body is called celestial or
astronomical refraction. That between the true and apparent
directions of the horizon is called terrestrial refraction.

Celestial and terrestrial refraction depend upon changes in
the density of the air along the path taken by the light that
enters the observer’s eye. Density changes arise from changes in
pressure and temperature. These, therefore, are the principal
factors which influence refraction.

The law of refraction was first enunciated by the Dutch
philosopher Willebrord Snell (1591-1626). Snell’s law asserts
that when light passes from one medium to another of different
density, the planes of the angles of incidence and refraction and
the normals to the common surface of the two media are co-
incident; and that the sines of the angles of incidence and refrac-
tion are in a constant ratio for any two given media. This ratio
is called the refractive index for the two media.

Several investigations into the phenomenon of celestial refrac-
tion were made during the 19th century, and the names of many
illustrious astronomers are closely linked with these investigations.

The law of astronomical refraction propounded by Cassini
is based on the assumption that the atmosphere is spherical and
homogeneous.

In the simplest investigation the Earth is regarded as being
flat and the atmosphere is considered to be composed of an
infinite number of horizontal parallel layers of air, the density
of which decreases uniformly with height above the Earth’s
surface. On this assumption it is readily proved that the effect
of atmospheric refraction is the same as if light entering the
atmosphere were refracted directly into the lowest layer of air
without traversing the intervening layers.
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From Snell’s law, a ray of light passes through the atmosphere
such that . sin 2 is constant for every point in its path, u being
the refractive index at any point, and 2 the angle the path makes
with the vertical at the point. If 2, is the value of 2 when the
ray enters the atmosphere; then, since # vacuo the refractive
index is unity:

psin z = sin 2,

If p and 7 are now taken as referring to the position of an
observer’s eye, and if 7 is the atmospheric refraction, then

=2 +7r
Hence sin 2, = sin (2 + 7)
ie. sin 2, = sinzcos7 + cos zsinr

Since 7 is a small angle (never more than about 1°) we may
assume the equivalence of sin r and r radians, and treat cosr
as 1. We may, therefore, write

psinz =sins + rcos
from which '
r=(u-—1tanz
ie. r=Utanz
where U = (u — 1) or the coefficient of refraction.

This result holds good for small zenith distances, but for
large zenith distances, by treating sinr and cosr as 7 and 1
respectively, significant error results. Moreover, light from
celestial bodies at small altitudes has to travel through a con-
siderable length of atmosphere, and we are not justified, there-
fore, in regarding the layers of air as being bounded by horizontal
parallel planes. Cassini recognized this, and accordingly took
into account the Earth’s spherical form.

Cassini’s formula for atmospheric refraction is explained
with reference to Fig. 1.

Fig. 1 represents part of a vertical section through the Earth’s
centre C and an observer 0. X0,0 represents a ray of light
from a celestial body X entering an observer’s eye.
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FIGURE I

Cassini’s hypothesis is that the light undergoes a single refrac-
tion on entering the atmosphere at O,.

Let the apparent zenith distance of the celestial body be 6,
and the true zenith distance ;. Let the refraction be r radians.

If r is small,

r=(p— 1)tan 6,
Cassini expressed tan 6, in terms of tan 0. This he did after

first drawing CT perpendicular to 0,0 produced; and O,V
perpendicular to COZ. Then:

tand O,T

1.e tand,  OT
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00,
oT
OV sec 8
OC cos 8

ov
=14 ocC sec? §

Now OV is approximately equal to the vertical height of the
atmosphere OW and is, therefore, equal to x.0C, where x is
the ratio between the height of the homogeneous atmosphere
and the Earth’s radius. Therefore:

-1 4+

tan @ 2
m-— 1 + xsec? @
or
tan §
tan 0, = 1 + xsec?d

Expanding the denominator (1 + x sec? 6) by the binomial
theorem, we get:

tan 6; = tan 6(1 — xsec? 6 + a3 sect § — e0)

Since x is a small quantity, powers of x greater than 1 may
be ignored without introducing material error.
Thus:

tan 6, = tan §(1 — x sec? 6)
and 7 = (p — 1) tan (1 — x sec? §)

which is Cassini’s formula.

If a suitable value for x is chosen, Cassini’s formula yields
good results for altitudes not less than about 10°,

One of the best of the 18th-century tables of atmospherical
refraction was that made by the French astronomer the Abbé
de la Caille. He recognized that atmospheric refraction varies
with air pressure and temperature, both these factors influencing
the air density and, therefore, the refractive index. De la Caille’s
table gives Mean refractions computed for a standard atmosphere
having a specified pressure and temperature at sea level.
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Doctor James Bradley, the Astronomer Royal, compiled one
of the best refraction tables of the 18th century. Bradley’s table
consisted of a Mean refraction table calculated for a sea-level
pressure and temperature of 29-6 inches of mercury and 50°F
respectively, and also an auxiliary table for correcting the Mean
refraction when atmospheric conditions differed from those for
which the Mean refraction table was based.

It will be of interest to discuss the methods by which atmos-
pheric refraction may be ascertained. The usual method in-
volved the observation of circumpolar stars, and this is explained
with reference to Fig. 2.

FIGURE 2

Fig. 2 represents the projection of the celestial sphere on to
the plane of the horizon of an observer whose zenith is projected
at Z. P is the projection of the celestial pole and X and X, are
the projections of a circumpolar body at lower and upper meri-
dian passage respectively.

Let 3 and 2, be the apparent zenith distances of the star
when at lower and upper transit respectively. Let p be the polar
distance of the star and U the coefficient of refraction (u — 1),
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then:

PZ =72X - PX
ie. PZ==z+ Utanz — p (1)
Similarly:

PZ =2, + Utanas; + p 2)
Adding (1) and (2):
' 2PZ = z + 2; + U(tan 3 + tan z,) 3)

In a like manner, if £ and #, are the apparent zenith distances
of another circumpolar star whose declination differs materially
from that of the first star, we have:

2PZ = % + %, + U(tan £ + tan %,) 4)
From (3) and (4) we have:
z+ 2 + Uftanz + tan2;) = £ + £, + U(tan £ + tan §,)
from which

" (tan § + tan %,) ~ (tan z + tan 3,)

By repeated observations of circumpolar stars, Bradley found
the value of U to be 57-54 seconds of arc. ‘

The value of U used at the present time is usually given for a
standard atmosphere of sea-level pressure and temperature of
30 inches of mercury and 50°F, and is 58-3 seconds of arc.

It may be remarked that the actual refraction of light from a
heavenly body whose altitude exceeds about 10° is never more
than about half a minute of arc different from the Mean refrac-
tion. It is for this reason that the auxiliary table to that of Mean
refractions is seldom used in practical navigation.

Refraction of light from heavenly bodies within a few degrees
of the horizon can never be known with exactitude. Neither
the most refined mathematical investigation nor the most care-
ful observations can remove the uncertainty of refraction at
small altitudes. Temperature changes—and, therefore, density
changes—of the air along the line followed by a ray of light from
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an object near the horizon, are almost always taking place.
These changes can never be known with certainty, and no refrac-
tion law has yet been formulated which will hold good at all
times for altitudes of less than about 5°.

The value of the refraction for any given atmospheric condi-
tions depends upon the altitude of the body. It varies approxi-
mately as the cotangent of the altitude. Its maximum value is
about 33’ when the altitude is zero. It disappears when the alti-
tude is about 90°, because light from an object in the zenith
strikes the observer’s eye travelling in a direction normal to
the horizontal. The rapid rate of change of refraction with
altitude at small altitudes accounts for the oval shape of the
Sun and Moon when these bodies lie very near to the horizon.

Abnormal refraction may occur when there is a great differ-
ence between air and sea temperatures. If this is suspected, the
results of observations of celestial bodies should be used with
extreme caution.

DIP OR DEPRESSION OF THE VISIBLE
HORIZON

The depression, or dip, of the sea horizon is a measure of the
angle contained between the plane of the horizontal surface
through the observer’s eye, and the direction of the visible
horizon. It is an arc of a vertical circle and is a function of the
observer’s height of eye.

Although it is customary to define the visible horizon as a
small circle on the sea surface, the visible horizon is not, in fact,
a circle. This follows because of the oblate spheroidal shape of
the Earth. The ellipticity of the geoid being a very small frac-
tion means that for practical navigation the Earth may be regarded
as being perfectly spherical. On this assumption, the angle of
dip is independent of the direction in which an observer may
be facing. The dip of the sea horizon is related to the distance
of the sea horizon. Fig. 3 illustrates this and serves to demon-
strate the relationship between dip, distance of sea horizon and
height of observer’s eye.

Fig. 3 illustrates the Earth, assumed spherical, and an observer
O whose eye is located & feet above the sea. OX is in the plane
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of the observer’s sensible horizon, and OH is a tangent to the
Earth’s surface at D. C is the centre of the Earth.

X [+] plans of
4 W sensible horizon
o A
H
o
C
8
FIGURE 3

The circle on the Earth the radius of which is equal to OD
is called the observer’s theoretical or geometrical horizon. From
a well-known theorem of plane geometry we have:

OD? = OA.OB
ie. OD = VOA.OB

But, because A is small compared with the Earth’s diameter
no material error is introduced by assuming that OD is equal
to arc length AD and that the Earth’s diameter is equal to OB.
Therefore:

AD = VOA.OB
or
Distance of geometrical horizon = V' 2Rk (1)

(OB = 2R approximately.)

It follows that if the Earth’s diameter and the height of the
observer’s eye above sea level are known, AD, the distance of
the observer’s geometrical horizon, may be computed.
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It will be noticed from Fig. 3 that the dip of the geometrical
horizon, denoted by 4, is equal to the angle at the Earth’s centre
contained between radii terminating at D and A respectively.
We have, therefore:

R
cos 4 =RTh
Since the angle of dip is a small angle:
42 h
l-7=1-3

where 4 is expressed in circular measure; and

a- % @

The effect of atmospheric refraction is for light coming from
the actual horizon—the visible or sea horizon as it is called—to
follow a path concave to the Earth’s surface as illustrated in Fig.

4.

piane of
dip A sensible horizon

theoreticq)| norizo®

Se
Q (i c,0f
(V’5lble) hof‘lo

FIGURE 4
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Refraction causes the sea horizon to have a greater range than
that of the geometrical horizon. It also causes the angle of dip
to be smaller than that of the geometrical dip.

The effect of terrestrial refraction on dip and distance of the
sea horizon received the attention of many 18th century astro-
nomers and physicists, but there was never general agreement
as to the exact effect of refraction. Nevil Maskelyne, under
whose direction the first British Nautical Almanac was pub-
lished in 1766 for 1767, stated that one tenth of the theoretical
dip should be subtracted from the theoretical dip to give the
true dip. Other investigators gave fractions between $ and .
At the present time the factor 7 is used, this normally being
attributed to the French physicist Biot.

Biot’s law is usually expressed thus:

d

r = —

1

where 7 is the angle of terrestrial refraction and d is the distance
of the actual sea horizon.

By expressing 4 in feet and R in nautical miles, and substituting
in formulae (1) and (2) we get:

4 =106Vh

This angle is the theoretical dip in minutes of arc and it is
equivalent to the distance of the geometrical horizon in nautical
miles.

We shall now investigate the formulae used for finding the
actual dip and the distance of the sea horizon using Biot’s law,
illustrating the investigation by Fig. 5.

In Fig. 5, O represents the observer’s eye, and OH lies in the
plane of his sensible horizon. Curve OT represents the ray of
light, called the grazing ray, which enters the observer’s eye and
which comes from a source on the actual sea horizon, the range
of which is equivalent to arc BT, and which is denoted by d.
3 is the actual dip. OD and TE are tangents to the grazing ray
at O and T which meet at X.

XOT = XTO = r = terrestrial refraction
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o H
T
h X

- r

c
FIGURE §

Applying the plane sine formula to triangle COT we have:
R sin O
R+ snT
8in(180° — d — 90° + 7)
sin(90° — r)
cos(d — 1)
cosr ,
= cosd + sindtanr
Because d and 7 are small we may express cosd as 1 — d%/2
and sin 4 and tan r as d and r respectively, without introducing
material error. Thus

R
h+ R

26k
4= V1R
Expressing & in feet and R in nautical miles, this formula re-
duces to:

=1-d%2+rd

from which

d = 1-154/h
Now 1:15 is about {3 of 1-06. It follows, therefore, that
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refraction extends the distance of an observer's geometrical
horizon by about one twelfth of itself.
In the triangle OTC in Fig. 5:

C+0+T=180

therefore,
d+ (90 -8 -1)+ (90 — r) = 180°
from which
S=d-2r
ie. 8§=115vk - 2. % (Biot’s law)

= 1-15VF — % 115V
1

= 098V

The running of the sea in bad weather causes the sea
horizon to be in almost continual vertical motion, and the rising
and falling of an observer due to rolling, pitching and heaving
of the ship, causes the dip of the sea horizon to be in perpetual
change. This trouble may be overcome by taking a series of
altitude observations or shots and then meaning the results,

The height of eye should be ascertained with precision be-
cause an error in dip, which depends upon the observer’s height
of eye, causes a corresponding error in the altitude. This is of
great importance when the observer’s eye is near sea level,
because the rate of change of dip decreases as the height of eye
above sea level increases.

In general, the greater the height of eye the more distinct
will be the sea horizon provided that the air is clear. In misty
weather, however, when celestial observations may be possible,
it is best to observe from a position as near to the sea surface
as practicable, so as to bring the sea horizon as near as possible
to the observer.

SUN’S SEMI-DIAMETER

The Sun’s semi-diameter is the angle at the Earth’s centre con-
tained between the true directions of the Sun’s centre and
8
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circumference or limb. Because the distance of the Sun from the
Earth is very great compared with the Earth’s radius, the angle
at an observer’s eye between the true directions of the Sun’s
centre and his upper or lower limb is not materially different
from the angle at the Earth’s centre.

When observing the Sun the altitude of his lower limb is
measured. It follows, therefore, that an additive semi-diameter
correction must be applied in the process of correcting the
observed altitude.

The Sun’s semi-diameter is greatest when the Earth is at
perihelion in early January when its value is 16-3'. It is least
in early July when the Earth is at aphelion, when its value
is 15-8’. The Sun’s semi-diameter is tabulated in the Nautical
Almanac for 1200 G.M.T. for each day of the year.

MOON’S SEMI-DIAMETER

Because the radius of the Earth is a significant proportion of
the distance between the Earth and Moon, the Moon’s semi-
diameter is sensibly affected by her altitude. The Moon’s orbit
around the Earth, like that of the Earth’s around the Sun, is
elliptical, so that the Moon’s semi-diameter during any lunation
is least when she is at apogee and greatest when she is at peri-
gee. The Moon’s semi-diameter is least of all when she is at
apogee and has an altitude of 0°, It is greatest when the Moon
is at perigee with an altitude of 90°.

Tabulated values of the Moon’s semi-diameter given in the
Nautical Almanac apply to an altitude of 0° so that a small
correction, known as the augmentation, is to be applied to the
tabulated value.

A formula for finding the augmentation of the Moon’s semi-
diameter is derived as follows.

In Fig. 6, C represents the Earth’s centre and O an observer.
M, represents the Moon on the observer’s sensible horizon.
M, represents the Moon whose altitude above the observer’s
sensible horizon is a. Let the radius of the Earth be denoted by
R and that of the Moon by 7.

The tabulated value of the Moon’s semi-diameter is the angle
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at the Earth’s centre subtended by the Moon’s radius. Since
MoO and MyC are almost equal, the angles 6, and 6 are also
almost equal. It follows that the tabulated value of the Moon’s
semi-diameter, viz. 6, is equivalent to the value when the Moon’s
centre is on the sensible horizon of an observer.

FIGURE 6

Referring to Fig. 6, N is a point on the perpendicular from
O on to CM,.

Now OM, = NM, (nearly)
= CM, - CN
= CM, - CN
= OM, — Rsina

Let the Moon’s semi-diameter at altitude a be denoted by
0,. Then:

4
oM,
_ r
~ OM, — Rsina
r
~ OM,[1 — (R sin 2/JOMg)]

6, = radians
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r Rsina
- o [! + "oz |

oM, oM,

r rRsina
= oM, t oMz
=0+c¢

where 8 is the tabulated semi-diameter and ¢ the augmentation.
Now
= rRsina
OM,?
_rRsina
T 363

~Rena.62
r

In other words, the augmentation of the Moon’s semi-
diameter is proportional to the sine of the altitude and to the
square of the Moon’s semi-diameter.

Because M,0 is about one sixtieth of M,C, it follows that the
augmentation of the Moon’s semi-diameter when the Moon is
in the zenith is about one sixtieth of her semi-diameter. The
maximum value of the augmentation of the Moon’s semi-
diameter is about 0-3’. In practical navigation, therefore, the
Moon’s augmentation normally is ignored.

PARALLAX

The point on the celestial sphere occupied by a celestial body
viewed from a point on the Earth’s surface is called the apparent
place of the body. The point the body would occupy were it
viewed from the Earth’s centre is called the body’s true place.
The angular distance between the apparent and true places of a
body at any instant is called the body’s parallax-in-altitude at
the instant.

Fig. 7 illustrates the Earth whose centre is at C. O is an ob-
server. X is a celestial body.

The parallax-in-altitude of a body such as X is greatest when
the body, indicated by X,, lies on the observer’s sensible hori-



THE ALTITUDE CORRECTIONS 107

zon. This value is called horizontal parallax (H.P.). As the alti-
tude of a body increases, its parallax-in-altitude diminishes, so
that a body in the zenith, such as X, in Fig. 7, has zero parallax-
in-altitude. This follows because the true and apparent places
of a body in the zenith coincide.

!
X A
/——
plane of sensible [¢] (-]
horizon H.R Xy
[

FIGURE 7

It should be clear from Fig. 7 that parallax-in-altitude varies
inversely as the distance of the body from the Earth. Parallax-
in-altitude for Y in Fig. 7, which has the same apparent place
as X, is smaller than it is for X, the nearer body.

The parallax-in-altitude for any celestial body is given by
the formula:

Parallax-in-altitude = H.P. x cosine altitude’

This may be proved with reference to X in Fig. 7 as follows:
In Fig. 7 parallax-in-altitude of body X whose altitude is 6,
is angle OXC.,

Applying the sine formula to triangle OXC we have:

sin OXC _ sin COX
OC X
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i.e.

sin OXC = —g)% sin COX

CXo sin (90 + 6)
ie.
sin parallax-in-altitude = sin H.P. cos 6

Since parallax-in-altitude and H.P. are small angles the
formula becomes:

parallax-in-altitude = H.P. cos altitude

Parallax-in-altitude for a fixed star, on account of its immense
distance from the Earth,. is minutely small. For practical pur-
poses stellar parallax-in-altitude is ignored. For the Sun, the
value of the H.P. varies throughout the year, being greatest
when the Earth is at perihelion and least when she is at aphelion.
The maximum value of the Sun’s H.P. is about 9”. No sensible
error results in practical navigation when the Sun’s parallax-
in-altitude is ignored.

The Moon’s parallax-in-altitude is an altxtude correction of
great importance. The Earth’s radius is relatively large com-
pared with the distance of the Moon from the Earth. The ratio
. between these two distances is about 1/60 so that the Moon’s
H.P. is about 1°. The Moon’s H.P. is greatest when she is at
perigee when the value is about 62’, and least when she is at
apogee when the value is about 53’.

The oblate shape of the Earth results in the Moon’s H.P.
being different for different latitudes. The tabulated H.P. is
given for an observer located on the equator. For this reason
it is called equatorial H.P.

In Fig. 8 M, represents the Moon on the sensible horizon of
an observer o, on the equator. The angle o,M,;C is the equa-
torial H.P. M, represents the Moon on the sensible horizon of
an observer o, at the Earth’s pole. The angle o,M;C is the
polar H.P.

In any latitude other than 0° the tabulated H.P. must be
reduced by an amount called the reduction to the Moon’s H.P.
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An expression for finding the reduction to the Moon’s H.P.
is derived with reference to Fig. 9. '

In Fig. 9 x is an observer in latitude ¢°. xC is the Earth’s
radius in latitude ¢, and QC is the Earth’s equatorial radius.
Mg represents the Moon on the sensible horizon of observer x.
xM¢C is the Moon’s H.P, for latitude ¢. '

Reduction to Moon’s H.P. = H.P. in lat 0° — H.P. in lat ¢

2o Cx
CM, CM,

- ( _&x
~ CM, CQ
Now it can be shown thatf the radius of the Earth, R, for any
given geocentric latitude 6, is given by:
_ a(l — o)
= [cos? (1 — ¢)? + sin? O]/
where a is the equatorial radius of a terrestrial spheroid having
an ellipticity ¢. This formula may be expressed as:
_ a1 — ¢)?
= cos? §(1 — ¢)? + sin? 0

R

R2

Now c¢ is a very small fraction having a value of about 133.
The terms in ¢2 in this expression may, therefore, be neglected
without introducing material error. The formula thus reduces
to:

1 — 2¢ cos?

Expanding the right-hand side of this expression by the
Binomial Theorem and neglecting terms in the second and
higher powers of ¢, the expression reduces to:

R = a(1 — csin? §)
Now the reduction to the geographical latitude is a very small

- 13
R=a[ 1-2 0]

+ See pp. 4950 of The Astronomical and Mathematical Foundations of
Geography by C. H. Cotter.
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angle and it may be assumed that the geographical latitude ¢ is
equivalent to the geocentric latitude @ so that:

R = a(1 — csin? ¢)
or,
Cx

= T = (1 — sin® /300)

alky

It follows that:
Reduction to Moon’s H.P. = Equatorial H.P. x sin? ¢/300

The reduction to the Moon’s H.P. is greatest for latitude
90°, but it never exceeds about 0-2’. It is, accordingly, ignored
by practical nautical astronomers except when navigational
refinement is sought.

It is interesting and important to note that although the Moon’s
H.P. and semi-diameter are constantly changing, their values
are always in constant ratio. This fact, which facilitates the
construction of Moon altitude correction tables, is proved with
reference to Fig. 10.

FIGURE IO

In Fig. 10, O and M represent the centres of the Earth and
Moon respectively. Let the radii of these bodies be denoted
by R and r respectively. Let the distance between their centres
be denoted by D.

Now AMO = Moon’s H.P.
and MOX = Moon’s S.D.
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These are small angles, therefore:

% = Moon’s H.P.

r

and = Moon’s S.D.

ol

from which:

D= r _ R
~ Moon’s S.D. Moon’s H.P.

Therefore:

Moon’s S.D. r
Moon’s HP. R

-The ratio between r and R is constant and it is about 1/4,
therefore the ratio between the Moon’s semi-diameter and her
horizontal parallax is also constant.

STELLAR PARALLAX

The term stellar parallax (sometimes called annual parallax)
applies to the angular distance between the positions of a star
as viewed from opposite ends of the Earth’s orbit around the
Sun. It is equivalent to the angle at a star subtended by a
diameter of the Earth’s orbit.

The annual parallax of every fixed star is a minutely small
quantity, that of the nearest fixed star being no more than a
fraction of a second of arc.

ABERRATION, PRECESSION AND NUTATION

The 17th- and early 18th-century attempts made by philoso-
phers, including Jean Picard, Robert Hooke and James Bradley,
to discover.the annual parallax of a fixed star, led to the dis-
covery of an astronomical phenomenon known as aberration of
Ilight. This phenomenon is due to the Earth’s orbital speed being
a relatively big proportion of the speed of light. The orbital
motion of the Earth is sufficiently fast to cause the light from a
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star to shift slightly in the direction in which the Eurth is mov-
ing. Because of this a fixed star, during the course of a year,
‘appears to describe an ellipse the centre of which is the true
place of the star,

The effect of aberration on a star’s position may be as much
as to cause a displacement of about 20" of the star’s true
place. By noting the changes that take place during the year,
in the declination and Sidereal Hour Angle of some fixed stars,
the effect of aberration can be detected from the Nautical
Almanac.

In addition to aberration a star’s celestial position may be
affected by the real motion of the star. That component of a
star’s real motion across an observer’s line of sight is called the
star’s proper motion. Precession of the equinoxes and nutation
may also affect a star’s celestial position.

Because the Earth is a spinning body she possesses the property
known as gyroscopic inertia. This is the expression of the ten-
dency a spinning body has to maintain its plane of spin. Every
spinning body maintains its plane of spin so long as the body
is not influenced by an external couple acting upon it. An
external couple acting upon a spinning body causes the axis of
spin of the body to trace out a conical movement the period of
which is usually very long compared with that of the rotation
of the body. This motion is called precession.

The revolution of the Earth around the Sun, the force of
attraction between the Earth and the Sun, the Earth’s oblate
shape, and the fact that the plane of the Earth’s spin is inclined
to that of her orbit around the Sun, results in the Earth’s axis
precessing, the period of precession being about 26,000 years.

The celestial poles, because of the precession of the Earth’s
axis, would trace out small circles centred at the poles of the
ecliptic, each having a spherical radius of about 234°, The pre-
cessional movement has a retrograde direction which results
in the gradual increase in the Right Ascension of all fixed
celestial bodies.

The Moon has a similar effect to that of the Sun known as
nutation. Nutation results in the celestial poles describing wavy
circles around the poles of ecliptic, each wave being completed
in a period of about 18} years.
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As a result of precession and nutation the celestial positions
(R.A. and declination) of all fixed celestial positions change
with the passage of time,.

IRRADIATION

When a bright object is viewed against a darker background, the
bright object appears to be larger than it actually is. On the
other hand, an object viewed against a lighter background
appears smaller than it actually is.. This optical phenomenon
is known as ¢rradiation.

The celestial bodies, when viewed against the relatively darker
sky, are affected by irradiation. Moreover, the sea horizon, be-
cause the sky is generally brighter than the sea, appears to be
depressed on account of irradiation.

When the Sun’s upper limb is observed the effect of irradia-
tion is apparently to lower the sea horizon and to elevate the
Sun’s limb. The combined effects make it necessary to apply
an irradiation correction amounting to — 12’ to altitude observa-
tions of the Sun’s upper limb.

When the Sun’s lower limb is observed, the two effects of
irradiation tend to neutralize one another so that no irradiation
correction is considered to be necessary.

PERSONAL ERROR

The timing of an event such as the instant when the image of
a celestial body makes contact with the horizon, is affected by
the temperament and nervous and physical condition of the
observer. Any error due to this cause is called personal error or
personal equation. '

Personal error may be detected by comparing observations
with those made by other observers. Personal error varies not
only between observers, but it may vary at different times for
any one observer.
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The Astronomical Position Line
u—_——“—_—_—

We have, in Chapter 1, defined an astronomical position line
as the projection on a navigational chart or plotting sheet of
part of a circle of equal altitude somewhere on which the navi-
gator may fix his ship’s position.

A circle of equal altitude is a circle on the Earth’s surface
centred at the G.P. of an observed celestial body: and the G.P.
is the point on the Earth at which the body is in the zenith.
At the zenith of the G.P. lies the observed object. This, in turn,
occupies one of the corners of the astronomical triangle. It is
convenient to ‘bring the astronomical triangle down to Earth’
in order to facilitate relating it to the astronomical position line
which is obtained after solving the PZX triangle.

FIGURE 1
11§
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Fig. 1 represents the celestial sphere with the Earth at its
centre. p is the Earth’s North Pole and P is the elevated celestial
pole. X is an observed celestial body whose geographical posi-
tion is at x. z represents the position of an observer (which
position is generally unknown to him). O is the Earth’s centre,
and PO, ZO and XO are straight lines of projection by means of
which the PZX triangle is projected on to the Earth’s surface.
The projected pzx triangle is geometrically similar to the PZX
triangle. In the celestial triangle PZX:

PZ = co-altitude of celestial pole

PX = polar distance of the observed object

ZX = zenith distance of the observed object
angle P = local hour angle of the observed object
angle Z = azimuth of the observed object

In the terrestrial triangle pzx:

pz = co-latitude of the observer
px = co-latitude of the G.P. of the observed object

zx = great circle distance between the observer and the
G.P. of the observed object

angle p = d.long between the observer’s position and the
G.P. of the observed object

angle z = great circle bearing of the G.P. of the observed
object at the observer’s position.

If the G.M.T. of the observation of X is known, the G.P. of
X may be found as explained in Chapter 1. Also, the arc ZX
having been measured by means of a sextant (see Part III,
Chapter I), corresponds to the great-circle distance zx; and this
is, accordingly, known. If, therefore, the bearing of z from x
can be found, the position of x, the observer’s position, can
also be found. Nowhere is the meaning of the small word #f
more important than it is in the foregoing sentence. There is
no way of finding the bearing of z from x unless at least three
parts of the pzx triangle are known. The only known parts are
the sides px, which is equal to PX the polar distance of the

]
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observed object, which can be found from the Nautical Almanac;
and zx, which is equal to ZX. This, as stated above, is deter-
mined by sextant measurement. The third side of the pzx
triangle is not known unless the observer knows his latitude.
Because the observer is at sea he does not generally know this.
at the time of an observation. The angle at z, which is equal to
PZX, cannot be found from a compass observation to a degree
of accuracy commensurate with that required for finding the
ship’s position. The angle at p, which is equal to the angle ZPX
the local hour angle of the observed object, cannot be found
unless the observer’s longitude is known. And again, because
the observer is at sea he does not generally know his longitude
at the time of the observation.

If the navigator does know his ship’s latitude precisely it is
an easy matter for him to find his ship’s longitude from an
altitude observation. If the ship’s latitude is known, the three
~ sides of the astronomical triangle are also known from a single
observation, so that by the rules of spherical trigonometry, the
angle P may be computed. This angle, being the local hour
angle of the observed body, when compared with the G.H.A.
of the body for the time of the observation, will give the ship’s
longitude.

On the other hand, if the navigator knows his ship’s longitude,
it is an easy matter for him to find his ship’s latitude from an
altitude observation. In this case, the angle P in the astronomical
triangle is known in addition to the sides PX and ZX, so that
from the rules of spherical trigonometry it is possible to com-
pute the side PZ of the astronomical triangle from which the
observer may find the ship’s latitude. _

There are special circumstances whereby a navigator may
ascertain his ship’s latitude without knowing her longitude or
the ship’s longitude without knowing her latitude. Latitude may
be found from an observation of a celestial body on the celes-
tial meridian of the observer, in which case the observer's
longitude need not be considered. Longitude may be found from
an observation of a celestial body on the observer’s prime vertical
circle (this being the vertical circle passing through the east
and west points of the observer’s horizon), in which case the
observer’s latitude need not be considered. These particular
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problems, however, do not invalidate the general rule in nautical
astronomy that an observer may find either latitude or longitude,
but not both latitude and longitude from a single observation.

ASTRONOMICAL POSITION CIRCLES

The zenith distance of an observed celestial body in minutes of
arc is equivalent to the radius in miles of the circle of equal
altitude centred at the G.P. of the body. If the G.M.T. of an
observation is known and a Nautical Almanac is available, the
G.P. of the observed object may be found.

If simultaneous observations of the altitudes of two celestial
objects are made and the G.M.T. of the simultaneous observa-
tions noted, sufficient information is available to the observer
for him to find his ship’s position.

A simple method of fixing a ship from simultaneous time
altitude observations is to plot the G.P’s of the two observed
objects on a model globe; and then to draw the projections of
the two circles of equal altitude to intersect at the ship’s posi-
tion. This position is then lifted from the model globe using
the graticule of lines of latitude and longitude. This method,
although attractive and simple in theory, is not practicable
because of the difficulty of obtaining a position to the necessary
degree of accuracy.

Because the Mercator chart virtually replaces the model
globe, it is natural to inquire into the nature of the projections
of circles of equal altitude on the Mercator chart. Investigation
in this direction reveals that, in general, the projected circle
of equal altitude is a complex curve the form of which depends
upon the relative values of the altitude and declination of the
observed body. The closed form of the projection of an equal-
altitude circle on a Mercator chart ‘resembles an ellipse. The
smaller is this ellipse the more closely it resembles a circle.
In this case the projection of the circle of equal altitude may
be considered to blend with a circle when the observer’s lati-
tude and the zenith distance of the observed object are both
small, and it is an easy matter to plot such a circle of equal alti-
tude on a Mercator chart. All that has to be done is to plot the
G.P, of the observed body for the time of its observation and,
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with this point as centre, describe a circle of radius equal in
miles to the zenith distance of the observed body in minutes
of arc.

This method of drawing what may be described as a position
circle is the only practical result afforded by the study of the
forms of the projection of a circle of equal altitude on a Mer-
cator chart. But, as pointed out by the French astronomical
navigators of the 1870’s after an intense and significant study
of the seaman’s nautical astronomical problems, it is a precious
result because it permits of the very simple and rapid utilization
of altitude observations of celestial bodies at great altitude.

It is not uncommon in cloudy weather for a star to appear near
the zenith when it is impossible to see others in a less elevated
position. Moreover, within the tropics, the Sun often attains a
very high altitude near his time of meridian passage. On occas-
ions an observation in these circumstances may afford a navigator
the means of fixing his ship when, perhaps, other methods of
fixing are not available.

The method of fixing by plotting astronomical position circles
on a large-scale Mercator chart was first suggested in about
1874 by the French naval officer Aved de Magnac who, with
other French navigators and astronomers of the time, played a
significant role in the advancement of nautical astronomy. The
attention of British navigators was directed to the problem by
Captain T. S. Angus of the P. & O. Company in the year 1884,
and for many years the method was known as ‘Captain Angus’s
method’.

Angus’s method involves observing two altitudes (and corres-
ponding G.M.T’s) of the Sun when he is high in the sky near
the time of his meridian passage. The interval of time between
the dbservations must be sufficiently small for the position circles
correspontipg to each of the two observations to intersect, thus
enabling the observer to find his ship’s position by plotting.
If the interval between the times of the observations is more
than a few minutes, it might be necessary to transfer the first
position circle, and to treat the problem as a running fix.

The following example serves to illustrate this simple and
effective method of fixing the ship when astronomical conditions
permit. :

9

S R
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ExampLe: The following information was obtained from
observations of the Sun near meridian passage before noon on
August 7th 1968.

Observation No. 1: True altitude = 89° 12’

G.M.T. = 16 hr 20 min 15 sec
Observation No. 2: True altitude = 89° 22’
G.M.T. "= 16 hr 23 min 11 sec

Find the ship’s position at the time of the second observation.
From the Nautical Almanac:

Sun’s declination = 16° 17-4’ N,
Observation No. 1: G.H.A.T.S. = 63° 39’
Observation No. 2: G.H.A.T.S. = 64° 23/

From this information the Sun’s G.P. at each observation
may be plotted. Fig. 2 illustrates part of a Mercator chart on
which the navigator plots the position circles in order to fix
his ship.

Go G

)

FIGURE 2

In Fig. 2:
G, represents the G.P. of the Sun at the time of the first

observation. This position is:
lat 16° 174’ N. = declination of the Sun
long 63° 39’ W. = G.H.A. of the Sun at first observation

N
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G, represents the G.P. of the Sun at the time of the second
observation. This position is:

lat 16° 17-4’ N. = declination of the Sun
long 64° 23’ W. = G.H.A. of the Sun at second observation

The radius in miles of the position circle centred at G, is
equal to the zenith distance of the Sun at the time of the first
observation in minutes of arc. This is 48 miles, i.e. (90 — 89°12").

The radius of the position circle centred at G, is 38 miles,
i.e (90 — 89°22),

The d.long G,G; is equivalent to the difference between the
G.H.A’s of the Sun at the times of the two observations. This
is equivalent to the difference between the G.M.T’s of the
observations. This is 2 min 56 sec or 44 minutes of arc.

Because the interval between the times of the observations is
small, the observations are treated as being simultaneous, so

that the first position circle has not been transferred.

" The two position circles intersect at F, and F, one of which
represents the ship’s position at the time of the second observa-
tion. The navigator would be able to decide which of the two
points of intersection is the fix from knowledge of his ship’s
D.R. position or, failing this, by noting the bearings of the Sun
at the times of observation. Had the bearings been southerly,
the observer would have been at F,. Had they been northerly
the fix would have been at F,.

Captain Angus’s method is severely limited in its application.
In the general problem of nautical astronomy the radius of the
circle of equal altitude is very big, usually in the order of many
hundreds or even thousands of miles, so that the position circle
cannot readily be projected on a Mercator chart.

The solution to the general problem of nautical astronomy
involves finding a point through which to draw an astronomical
position line. The required position line, the direction of which
is at right angles to the bearing of the observed object, is a small
fragment of a position circle. This being so no material error is
introduced by assuming it to be a straight line on a Mercator
chart,

There are two general methods of obtaining an astronomical
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position line. One method stems from a discovery made by the
American Captain Thomas Sumner in 1837. The other de-
veloped from the excellent investigations, referred to above,
made in France during the last century, and to which the name
of Marcq Saint Hilaire is closely associated. We shall deal with
each of these methods historically.

SUMNER’S METHOD AND ITS MODIFICATION

The history of what has become known as astronomical position-
line navigation is full of interest. It is usually regarded as having
begun in 1837 with Captain Sumner’s discovery. There seems
to be no doubt, however, that for some decades before this date
scientific navigators of many nations had given considerable
attention to the problems of nautical astronomy. Position-line,
or intersectional, navigation, as it used to be called, grew from
the method of finding latitude from two astronomical observa-
tions—a method known as the double altitude. The germ of
astronomical position-line navigation is to be found in a work
on navigation by Samuel Dunn published about 1780, in which
the author introduced a problem entitled:

‘Of a general method whereby the latitude may be found
having any two altitudes of the Sun and the time elapsed
between the observations’.

By assuming two latitudes differing about a degree or less,
and not widely different from the latitude by D.R., Dunn showed
that the two altitudes give four hour angles, two of which pertain
to each of the assumed latitudes. He then made the following
statement:

‘As the difference of the elapsed times computed from the
assumed latitudes is to the difference of those latitudes: so
is the difference between the true elapsed time and that arising
from either of the assumed latitudes to a number of minutes
which, added to or subtracted from the corresponding assumed
latitude, as the case requires, gives the true latitude required
when the latitudes are assumed near enough for the truth.’

Chronometers were scarce in the days when Dunn introduced
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this novel problem. Had they been common it is likely that Dunn
would have extended his method for finding longitude as well
as latitude.

Dunn’s resolution of the double-altitude problem had been
discussed in all its aspects by the French astronomer Lalande,
but there is much justification for believing that the develop-
ment of position-line navigation from Dunn’s time onwards,
was carried out on the basis of his double-altitude problem.

In 1833, Commander Thomas Lynn of the East India Com-
pany published a method for finding latitude and time by double
altitudes based on Dunn’s method. Lynn’s method, similar to
one used by officers in the British Royal Navy at the beginning
of the 19th century, was known as the method by trial and error.

The discovery of position-line pavigation rightly belongs to
Sumner, who is credited with being the first to systematize the
problem of finding position at sea from astronomical observa-
tions. ‘
Sumner’s discovery was made in 1837 during a voyage from
Charleston to Greenock. The details of his discovery are given
in a pamphlet first published in Boston in 1843,

Sumner pointed out that when knowledge of the latitude is
uncertain there are only two instants during the day at which the
Sun’s altitude can be used to find the longitude if the G.M.T.
is known; and that there is only one instant each day when the
Sun’s altitude can be used for the latitude, unless the local hour
angle of the Sun is accurately known. At all times when the
Sun is not at meridian passage or on the prime vertical circle
errors of latitude and longitude proportional to the angular
distance of the Sun from north or south, and east or west,
respectively may be great. He then described how a single alti-
tude of the Sun, taken at any time, may be used to determine a
line diagonal to, and affording a substitute for, a parallel of
latitude or a meridian. This line, when plotted on the chart,
is the astronomical position line we have discussed.

In preposition-line navigation days, the customary method of
finding position at sea was to observe the Sun on the prime
vertical (or as near to the prime vertical as latitude and declina-
tion permitted) to find the longitude at morning sights corres-
ponding to a D.R. latitude, and then to observe the Sun on the
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meridian to ascertain the noon latitude. The morning longitude
was run up to noon from knowledge of the course and distance
made good between the times of morning sights and noon to
find the longitude at noon.

The latitude used in solving the longitude from a Sun observa-
tion was generally different from the ship’s actual but unknown
latitude. In some cases the difference or error in latitude was
ascertained from the noonday Sun observation, in which case
the morning sight was reworked using the correct latitude. In
the event of the sky being overcast at noon, the morning sights
for longitude were often discarded as useless.

‘Sumner discovered that a single observation of the Sun (or
other celestial body), even if the latitude is uncertain, is of
value. He demonstrated that a single -altitude taken at any time
is sufficient to obtain an astronomical position line.

It seems, from what Sumner wrote, that his discovery was
something of an accident. He relates how, after passing the
meridian of 21° W. when eastbound across the north Atlantic,
no astronomical observations were obtained until near the land:

‘On the 17th December 1837°, he wrote, ‘the ship was kept
on ENE. under short sail with gales. At about 10 a.m. an
altitude of the Sun was observed and the chronometer time
noted; but, having run so far without any observation, it was
plain that the latitude by D.R. was liable to error, and could
not be entirely relied upon. Using however this latitude in
finding the longitude by chronometer, it was found to put the
ship 15’ of longitude East from her position by D.R. which in
latitude 52° is 9 nautical miles. This seemed to agree tolerably
well with the D.R.; but feeling doubtful of the latitude the
observation was tned with a latitude 10’ further north. Find-
ing this placed the ship ENE. 27 miles of the former position,
it was tried again with a latitude 20’ north of the D.R. This
also placed the ship still further ENE. and still 27 miles. These
* three positions were then seen to lie in the direction of Small’s
Light. It then at once appeared that the observed altitudes
must have happened at all the three points and at the Small’s
Light, and at the ship, all at the same time; and it followed
that Small’s Light must bear ENE. if the chronometer was



THE ASTRONOMICAL POSITION LINE 125

right. Having been convinced of this truth, the ship was kept
on her course ENE,, and in less than an hour Small’s Light
was made.’

The first astronomical position line may, therefore, be re-
garded as Sumner’s line of position through the Small’s Light-
house. It is interesting to note that this first astronomical posi-
tion line was used to fetch up a known position on the land—
a very valuable use of a single position line.

The principles of Sumner’s method is illustrated in Fig. 3.

Lcircle of equal
altitude

chosen paraltel

FIGURE 3

Fig. 3 illustrates the celestial sphere with the Earth at its
centre. p is the Earth’s North Pole and P is the elevated celes-
tial pole. X is an observed celestial body and x is its geographical
position. Point ¢, whose zenith is at Z,, lies on both the circle
of equal altitude and a parallel of latitude near to the ship’s
actual, but unknown, parallel of latitude.

In the astronomical triangle PZ X:

PX = polar distance of observed object
PZ, = (90° — latitude of chosen parallel)
ZX = zenith distance of the observed object
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These three sides of the triangle are known, so that the angle
P may be computed. This will give the hour angle of X at the
meridian of c. Comparing this with the G.H.A. of X, the longi-
tude of ¢ may be found.

The problem is then reworked for position ¢, which, as was
the case with c,, lies on the circle of equal altitude but on a
different parallel of latitude from that on which c, lies. Fig. 4
 illustrates an enlargement of the Earth as it appears in Fig. 3
and shows, in addition to c,, the second point c;.

tostar X

FIGURE 4

The two positions ¢, and c, are plotted on a large-scale navi-
gational chart, and a straight line drawn through them. This
straight line is regarded as being the required astronomical
position line. T'wo such lines, provided that they intersect, enable
a navigator to fix his ship. Fig. 5 illustrates two intersecting
circles of equal altitude obtained from simultaneous observa-
tions of two heavenly bodies.

The points ¢, and ¢, in Fig. 5 are those ascertained from the
observation of the star X. The points ¢; and c, are those ascer-
tained from a simultaneous observation of a star Y. The points
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c; and c; are on the parallel of latitude A. Points ¢z and ¢, lie

on parallel of latitude B. Latitudes A and B are chosen in rela-
tion to the ship’s D.R. latitude. The normal practice was to
choose two latitudes which embrace the ship’s D.R. latitude,
one 10 to the north and the other 10’ to the south.

to starX

FIGURE §

Fig. 6 illustrates the manner of plotting the position lines
obtained from the observations to which Fig. 5 applies.

FIGURE 6
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Refetring to Fig. 6, the ship’s position lies at the point F at
the intersection of the two position lines.

The straight line joining ¢, and c; (or ¢5 and c,) does not,
theoretically, coincide with the circle of position. It is a straight
line joining two points on the position circle. It is for this reason
that Sumner’s method of fixing by crossing two astronomical
position lines was often referred to as the chord method.

Soon after Sumner’s method had been published the illus-
trious Henry Raper suggested a modification of Sumner’s method
leading to a reduction in the amount of computation required.
Sumner’s original method involves solving angle P in each of
two PZX triangles for each observation, making four calcula-
tions in all, each one involving a relatively complex trigono-
metrical formula derived from the spherical cosine formula.
Raper pointed out, as indeed bad Sumner, that the projection
of the position line on the chart lies at right angles to the bearing
of the observed object. Instead, therefore, of assuming two lati-
tudes and hence finding two longitudes, Raper demonstrated
that one assumed latitude is sufficient, this enabling the observer
to calculate an hour angle and an azimuth for each observation.
The azimuth calculation, involving the simple spherical sine
formula, is considerably simpler than the hour angle calcula-
tion. This method became known as the tangent method in
contrast to Sumner’s original ‘chord method’.

In practice both the chord and tangent methods give the
same result. This follows because the curvature of circles of
equal altitude is usually very small on account of their radii
being large so that the chord, tangent and arc, of a position circle
are almost coincident.

In extreme cases, where the curvatures of two intersecting
position circles are large, the tangent and chord methods yield
slightly different positions. Fig. 7 serves to illustrate this.

In Fig. 7, ¢, and c, stand on one chosen parallel, and c; and
¢, on another. By Sumner’s chord method, the observed posi-
tion resulting from crossing astronomical position lines c;c, and
C4C5 is at F,. By using the tangent method and the first chosen
latitude (that through c; and c;) the observed position is at Fi.

Despite the fewer figures involved in calculating the ship’s
position using the tangent method compared with the number
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used in the chord method, the latter method appears to have:

been the more popular amongst the generality of seamen until
the beginning of this century. The increasing popularity of the
Azimuth tables designed by Burdwood and Davis, and the A,
B and C Tables, which are still very popular amongst merchant
seamen, spelt doom to the old chord method; and when the
B.O.T. examiner ceased to ask questions about it (at a time long
after it had outlived its usefulness), it suffered a natural death.

FIGURE 7

Despite its inferiority as a method for fixing a ship, compared'
with the alternative general method of finding a position line,
the tangent method still maintains its popularity amongst mer-

chant seamen. Perhaps this is so because they are taught the

method to satisfy the examiner; and, having been taught it,
and finding it suits their needs, they persist in using it to the
exclusion of other methods.

MARCQ SAINT HILAIRE’S METHOD

In 1875, a paper in a French scientific journal entitled La
Nouvelle Navigation appeared under the name of a French naval
officer named Marcq St. Hilaire. He was the inventor of a navi-
gational method known to the French as Méthode du Point
Rapproché, and to British navigators as the Intercept Method.

The work of the French naval officers and astronomers who
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introduced the methods known as the New Navigation, marked
a collective, and very fruitful, attempt to study the problems
of astronomical navigation in a scientific way.

Commander Aved de Magnac, while serving as navigator in
a French man-o’-war about 1867, found himself in circum-
stances not dissimilar to those in which Captain Sumner found
himself on that eventful day in 1837 when astronomical posi-
tion-line navigation first saw the light of day. Circumstances
were such that it was very important for de Magnac to find his
ship’s position with great accuracy. In a clear patch of sky near
the zenith during twilight a star appeared, and de Magnac
observed its altitude. Because the altitude was so great none of

- the standard navigational methods afforded him the means of
getting a reliable result from his observation; and thus, the
observation was useless. This observation appears to have been
instrumental in leading de Magnac to undertake the improve-
ment of nautical astronomy.

De Magnac realized that the theory of nautical astronomy
was incomplete and that, in order to rectify the matter, the
united efforts of astronomer and navigator were required.
Through this realization the French were to stand in the fore
of navigational improvements for many decades.

On returning to France de Magnac, with the co-operation of
Villarceau, a prominent French astronomer, published an im-
portant book on navigation entitled Nouvelle Navigation Astrono-
migque. It was in this book that the navigator’s problem was
first properly defined. The authors pointed out that the nautical
astronomical problem par excellence is the determination of a
POINT. Hitherto from the time of Sumner’s discovery all in-
vestigations into the nautical astronomical problem had been
related to the determination of a LINE; and, clearly, the problems
related to point and line are different. Here then was an entirely
fresh approach into nautical astronomy.

In the first place, de Magnac and Villarceau investigated the
theory of the single observation, and showed incontestably that
fixing a ship by astronomical methods requires more than one
observation. Secondly, they showed that computation is neces-
sary, projection of circles of equal altitude on the chart not
providing a practical solution to the problem. They then derived
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formulae which, although of no practical use to the navigator,
were instrumental in demonstrating the most favourable condi-
tions for finding a ship’s position by astronomical methods,

They showed, as others had shown before them, that for
best results:

1. 'The difference of azimuths of the observed objects is 90°,
2. The altitudes must not be too great.

The first condition follows from an investigation into the
errors of altitude and their effects on the resulting fix (see
Chapter VI). The second condition arises from the fact that if the
altitude is great, the circle of equal altitude is small, in which
case the points of intersection of the two circles of equal alti-
tude are close together and the mathematical solution may be
indeterminate.

Further investigation led to the Méthode du Point Rapprocké,
credit for the invention of which is given to Captain (later
Admiral) Marcq St. Hilaire, an officer endowed with a pro-
foundly acute mathematical mind.

The intercept method is similar to the tangent method which
we have discussed above. Fig. 8 serves to show the underlying
principle of the method. )

The point E, in Fig. 8, represents the ship’s D.R. position.
Let the circle of radius 7 be a circle of error within which it is
assumed that the actual position of the ship lies. AA, represents
part of a circle of equal altitude which cuts the circle of error
at Y and Y,. The ship’s actual position must lic on the arc
YXY, provided that the altitude of the body has been correctly
observed. Although the exact position of the ship on arc YXY,
is unknown; the point X, which lies midway between Y and Y,
in a direction from E corresponding to the azimuth of the ob-
served body (or 180° away from it had the curve AA, been
concave instead of convex, to the right), is the most likely posi~
tion of the ship. Hence the name point rapproché given to the
point X,

"The point rapproché lies at a distance from E called by British
navigators the intercept, and the name given to the point is
intercept terminal position. The intercept terminal position is
coincident with E when the D.R. position happens to coincide
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_to GP ot
observed body

M
FIGURE §

with the ship’s actual position, in which case the intercept is
zero. In other circumstances the point rapproché must be nearer
to or farther from the geographical position of the observed
body than is the point E. In Fig. 8 X is nearer to the G.P. of
the observed body than is E. In this case the intercept is named
TOWARDS. Had the circle of equal altitude been concave instead
of convex to the right in Fig. 8, the point X would have been
farther from the G.P. of the observed body than E, in which
case the intercept would have been named away.

It is clear from Fig. 8 that if the navigator has a single observa-
tion he is able to find the position of the poins rapproché. If he
takes this as an approximate position of his ship instead of
taking the D.R. position, he makes use of a position nearer to
the ship’s true position than is the D.R. position.

Fig. 9 illustrates how the point rapproché may be found.

Fig. 9 illustrates the Earth. P is the Earth’s North Pole and
E is the D.R. position of an observer who observes a celestial
object the G.P. of which is at S. The arc of the circle of equal
altitude YXY, is that on which the observer assumes he must
lie—the small circle representing the circle of maximum error.
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Knowing the latitude of E the arc PE is known, this being the
co-latitude of E. Knowing the longitudes of E and the G.P. of
the observed body, the angle P, which is the local hour angle of
the observed body at E, may be found. The side PS of the
spherical triangle PSE is known, this being equivalent to the
polar distance of the observed body. With sides PS and PE
and the included angle P, the side SE may be calculated using
the spherical cosine formulz or a formula derived from it. SE
is a measure of the great-circle distance between the D.R.

FIGURE g

position E and the G.P. of the observed body. This is equivalent
to the zenith distance of the body at the D.R. position, and is
referred to as the Calculated Zenith Distance. The arc SX is
the radius of the circle of equal altitude. It is, accordingly,
equal to the zenith distance of the body at the observer’s posi-
tion at the time of the observation. This is equivalent to the
great-circle distance between the point rapproché X and the
G.P. of the observed body S, and is called the Observed Zenith
Distance.

The difference between arcs ES (which is equivalent to the
Calculated Zenith Distance or C.Z.D.), and XS (which is equiva-
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lent to the Observed Zenith Distance or O.Z.D.), is equal to
the intercept, which is arc EX.

Intercept = C.Z.D. ~ O.Z.D.

If the C.Z.D. is greater than the O.Z.D. the intercept is
named TOWARDS. If the C.Z.D. is less than the O.Z.D. the inter-
cept is named AwWAY.

By plotting the D.R. position on the chart and drawing a line
of correct length and in the correct direction to represent the
intercept, the point rapproché may be plotted. The trend of
YXY, is at right angles to the direction of ES. Therefore, if the
azimuth of the observed body is known, the arc YXY, may be
plotted as a straight line through the point rapproché. This is
the required position line, which is the projection of a tangent
to the circle of equal altitude at the point rapproché.

The intercept is usually a short distance, and the degree of
accuracy of its direction need only be coarse. It is not necessary,
therefore, to calculate the azimuth of the observed body in order
to find this direction. Azimuth tables may be used instead. These
tables contain an orderly collection of solutions of PZX triangles
for every whole degree of latitude and declination and every
four minutes of hour angle. Their use facilitates the position-
line problem of nautical astronomy.



CHAPTER IV

The Latitude
%

In the days before chronometers and nautical almanacs, the
observation of the Sun on the celestial meridian ranked as the
most important of all astronomical observations. With the ad-
vent of the chronometer, perfected by the Yorkshire carpenter
John Harrison in the mid-18th century, the way was open for
the navigator to find longitude, as well as latitude, at sea, With
the introduction of the British Nautical Almanac, which the
Astronomer Royal Nevil Maskelyne published in 1766, the sea-
man was provided with astronomical data presented in a way
that made it relatively easy for him to find longitude from a
lunar observation. It is interesting to note that the chronometer
and the Nautical Almanac made their appearances almost simul-
taneously.

Chronometers for a long time after they became available
were expensive and, therefore, scarce. The lunar problem, for
about a century after its introduction, appears to have been the
standard method for finding longitude at sea by astronomical
methods. The problem of the longitude, which the early nautical
almanacs were specifically designed to facilitate, involved measur-
ing, by means of a sextant, the angle between the Moon and
the Sun or a selected star lying in or near the Moon’s monthly
circuit of the heavens. The observed lunar distance had then to
be reduced, by which is meant computing the angle at the
Earth’s centre between straight lines terminating respectively
at the Moon’s centre and that of the second body. The process
of doing this, in which corrections for refraction and parallax
were to be made, was called clearing the lunar distance. The
cleared lunar distance was then to be compared with tabulated
distances given against G.M.T. in the Nautical Almanac. Having
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found the G.M.T., an ordinary altitude sight, taken at the time
at which the lunar distance was measured, enabled the observer
to find his ship’s longitude provided that the ship’s latitude was
known.

The lunar distance problem was not at all an easy problem
for most navigators. So that until the time when chronometers
did become common—about the middle of the 19th century—
and the methods of modern position-line navigation had been
discovered, the generality of navigators observed the noonday
Sun for latitude, and relied largely on D.R. navigation for longi-
tude.

The noonday Sun observation has lost some of its former
glory since the advent of position-line navigation. Now that
an astronomical position line may be ascertained at any time
provided that an altitude observation of any navigational celes-
tial body is possible, there is no reason whatever to rely solely
on the meridian altitude observation of the Sun at noon. How-
ever, the ease with which the latitude at noon may be found from
a meridian altitude observation of the Sun, coupled with the
fact that the organization of clock time on many ships is related
to apparent time for the noon meridian, has resulted in the Sun
maintaining its rank, in the eyes of many of the more conserva-
tive seamen of our time, as the pre-eminent celestial body for
the purpose of astronomical navigation.

The observation of the altitude of any navigational celestial
body when that body is at meridian passage, affords an easy
method of finding the observer’s latitude. Such an observation
is known as a meridian altitude observation.

We have seen in Part I, Chapter V, that any celestial body,
in performing its apparent diurnal motion, attains its greatest
altitude when it bears due north or south. When a body bears
due north or south it lies on the observer’s celestial meridian,
at which time it is said to culminate or transit, or to be at meridian
passage.

In the case of an altitude observation of a celestial body bear-
ing north or south, the two sides PZ and PX of the astronomical
triangle coincide. In other words, the hour angle of a body at
meridian passage, being 00 hr 00 min 00 sec or 0° 00’, results
in the collapse of the PZX triangle into an arc of a great circle.
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Because the direction of an astronomical position line is at
right angles to the azimuth of a body at the time of observation,
the position line obtained from an observation of a celestial
body at meridian passage, runs east-west. That is to say, it
lies in the vicinity of the ship’s position along a parallel of
latitude. It is for this reason that latitude is so readily found from
an observation of a celestial body at meridian passage.

We have seen in Part I, Chapter V, that the latitude of an
observer is equivalent to the altitude of the celestial pole. If a
celestial body crosses the observer’s upper or superior celes-
tial meridian, the body is said to culminate, or to be at superior
transit or passage, or to be on the meridian above the pole.

Celestial bodies which are circumpolar cross the meridian of
an observer above the horizon on two occasions during each
diurnal circuit. When such a body crosses the lower celestial
meridian of an observer it is said to be at lower or inferior transit,
or to be on the meridian below the pole. Let us deal separately
with the problems of finding latitude from observations of
celestial bodies at upper and lower transits.

LATITUDE FROM AN OBSERVATION OF A CELESTIAL BODY
ON THE MERIDIAN ABOVE THE POLE

FIGURE 1

Fig. 1 illustrates the Earth. p is the North Pole; o0 is an observer
on meridian pq who observes a celestial object at upper meridian
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passage. g represents the geographical position of the observed
object. :

The small circle in Fig. 1 represents a circle of equal altitude
centred at g and which passes through the observer’s position.
XX, is a small fragment of the circle of altitude through o.
This, when projected on to the chart, will be the position line
obtained from the observation. Because the observed body bears
due south, the position line coincides with the parallel of lati-
tude of the observer.

From Fig. 1:

arc qo = Latitude of observer
arc qg = Declination of observed object

arc go = M.Z.D. of the observed object, i.e. (90° — Meri-
dian altitude of observed object).

Now qo = qg + og
therefore:

Latitude of observer = Declination of observed object +
M.Z.D. of observed object

= Dec of object + (90° — M.Alt)

This relationship may be illustrated using the celestial sphere
instead of the terrestrial sphere.

Fig. 2 illustrates the celestial sphere on the plane of the obser-
ver’s celestial meridian. The small circle at the centre represents
the Earth. p is the North Pole and P is the elevated celestial
pole. o is an observer whose zenith is at Z. QQ, is in the plane
of the equinoctial and N and S are the north and south points
of the observer’s horizon. '

Fig. 3 illustrates the same conditions that pertain to Fig. 2,
but it represents the celestial sphere drawn on the plane of the
observer’s horizon.

From Figs. 2 and 3:

arc NP = Altitude of celestial pole
= Latitude of observer
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But 2Q=QX + ZX

therefore:
Latitude = Declination + M.Z.D.

If the observed object crosses the observer’s celestial meridian
at the zenith Z, the M.Z.D. is 0° 00, and the observer’s latitude
is equivalent to the declination of the object.

If the observed object crosses the observer’s celestial meridian
at Q, the declination of the object is 0° 00’ and the observer’s
latitude is equivalent to the M.Z.D.

There are three general cases, apart from these special cases.
The first is that, illustrated in Figs. 2 and 3, in which the ob-
served body crosses the observer’s meridian between the ob-
server’s zenith and the equinoctial. In this case, as we have
shown, the latitude of the observer is equal to the sum of the
declination of the body and its M.Z.D. The second case applies
when the observed object crosses the observer’s meridian on the
elevated poleward side of the observer’s zenith. In this case
the observer’s latitude is equal to the declination of the body
minus its M.Z.D. The third case applies when the observed
object crosses the meridian on the depressed poleward side of
the equinoctial. In this case, the latitude of the observer is equal

N(S) N(S) N(S)
N(S AL T
— P — —=p— — — P —
M.zufx
—2— —— U |z
}MZ-D- N
Lat] $X Lat ec Lat
}Dec MZ2.D.
—e= — —=-@d— — — —fa|— —
Dcc{.x
1 1 1
S(N) S(IN) S(N)

FIGURE 4
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to the M.Z.D. of the object minus its declination. In all cases,
the latitude of the observer is a combination of the M.Z.D. of
an observed body and its declination. Fig. 4, which represents
the celestial meridian of an observer on the plane of his horizon,
illustrates the three cases.

There are many aids to memory designed to assist navigators
who have little or no knowledge of the principles of the prob-
lems of combining declination and M.Z.D. to find latitude. The
rules work if they are applied properly. But the principle is
simple; and, if a rough drawing of the conditions is made, there
is no need to resort to a mnemonic (or donkey’s bridge as the
Dutch call it).

LATITUDE FROM AN OBSERVATION OF A CELESTIAL BODY
. ON THE OBSERVER’S LOWER CELESTIAL MERIDIAN

A body which is visible at lower meridian passage is a circum-
polar body. Conditions necessary for a celestial body to be
circumpolar have been discussed in Part I, Chapter V.

(13}

FIGURE §

Fig. 5 illustrates the celestial sphere. Diagram (a) is drawn
on the plane of the horizon of an observer whose zenith is at Z.
Diagram (b) is drawn on the plane of the celestial meridian of the
same observer.

I e S S S Sl
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P represents the celestial pole, and X and X, a celestial body
at lower and upper meridian passage respectively.

When a circumpolar body is at lower meridian passage it
attains its least altitude for the day. The radius of its diurnal
circle is equivalent to the complement of its declination. This
angle is generally called the polar distance (P.D.) of the object.

Because the altitude of the celestial pole is equivalent to the
latitude of an observer, it follows (and this will readily be seen
from Fig. 5) that:

Latitude of observer = Altitude of celestial body at lower
meridian passage + P.D. of object

From Fig. 5:
NP = NX + PX
ie. Latitude = Altitude + P.D.

FINDING TIME OF MERIDIAN PASSAGE

In order to observe the altitude of a celestial body at meridian
passage it is convenient (although not essential) for the observer
first to find the time of meridian passage to facilitate the observa-
tion of the altitude. This can be done if the G.M.T. is available.
If the time of meridian passage of a celestial body is computed,
the observer simply measures the altitude of the body at this
precomputed time. If the time is not found, it will be necessary
for the observer to stand by for some minutes before the body
is due to cross the meridian, and to watch its altitude, using his
sextant, until it reaches 2 maximum. This maximum altitude is
then taken to be the meridian altitude. We shall, in Part IV,
Chapter V, discuss the possible error that may arise due to this
practice.

a. The Sun

When the Sun is at upper meridian passage his L.H.A. is 00 hr
and the L.A.T., therefore, is 12 hr 00 min. The observer’s
longitude measured west from the Greenwich meridian applied
to the Sun’s L.H.A. gives the Sun’s G.H.A. for the time. This
is tabulated in the Nautical Abmanac against G.M.T. so that
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the G.M.T. of the Sun’s meridian passage may readily be
found. :

An alternative method of finding the G.M.T. of the Sun’s
meridian passage is to use the tabulated time of meridian passage
which is to be found in the daily page of the Nautical Almanac.
These tabulated times are strictly G.M.T’s of the Sun’s meri-
dian passages across the Greenwich celestial meridian, but they
may be taken as being equivalent to L.M.T’s of the Sun’s
meridian passages across local meridians. This follows because.
the Mean Solar Day is almost equal in length to that of the
Apparent Solar Day. If the L.M.T. of the True Sun’s meridian
passage can be found, the L.M.T. of the Mean Sun’s meridian
passage can be found by applying the equation of time. On a
day when the equation of time is say + 14 min the L.M.T. of
the True Sun’s meridian passage would be 12 hr 14 min. In
other words 12 hr 00 min L.A.T. corresponds to 12 hr 14 min
L.M.T. on the day when the equation of time is +14 min.
When the equation of time is negative L.M.T. is less than L.A.T.,
so that the L.M.T. of the Sun’s upper meridian passage occurs
before Local Apparent Noon when the equation of time is nega-
tive.

If the L.M.T. of an event is known, the longitude of the ob-
server applied to it will give the G.M.T. of the event. When
observing the Sun at upper meridian passage it is convenient,
therefore, to work out the G.M.T. of the instant, and by the
help of the chronometer to measure the altitude at this pre-
determined G.M.T.

Finding the G.M.T. of the meridian passage of the Moon,
a planet or a star for the purpose of finding latitude by meridian
altitude can hardly be regarded, in these enlightened days, to
be a practical problem of navigation. There is generally no
need to take the trouble to do so. This follows because an
observation of any celestial body at any time will yield no more
than a single position line: that obtained from an observation
of a celestial body at meridian passage differs from other position
lines only in respect of direction. However there may be an
occasional circumstance (perhaps to demonstrate a principle of
astronomical navigation to a cadet) when it might be useful
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to work out the G.M.T. of the meridian passage of a star, the
Moon, or a navigational planet.

b. The Moon

The G.M.T’s of the Moon’s meridian passage (both upper and
lower) are tabulated for the meridian of Greenwich on the daily
pages of the Nautical Almanac. Now the interval between suc-
cessive upper meridian passages of the Moon across any given
observer’s celestial meridian is always more than 24 hours of
Mean Solar Time. For example, on February 10th 1968, the
G.M.T. of the Moon’s upper meridian passage is 21 hr 24 min.
On the following day, it is 22 hr 20 min. The interval between
these two times is 25 hr 04 min. Thus, the lunar day on this
occasion is 64 min longer than a Mean Solar Day.

The G.M.T. of the Moon’s transit on February 10th at the
meridian of 90° W., may be found by adding 90/360th or a
quarter of a lunar day to the G.M.T. of the Moon’s meridian
passage at Greenwich on February 10th. This will give an
approximate, although practical, result, because of the invalid
assumption that the Moon’s diurnal motion on the celestial
sphere is uniform.

To find the G.M.T. of the Moon’s transit for an east longitude,
a proportion of the lunar day (depending upon the longitude)
is to be subtracted from the G.M.T. of the Moon’s meridian
passage at Greenwich for the day in question. The following

examples will illustrate this.

* ©ExaMpLE: Find the G.M.T. of the Moon’s upper transit
across the meridian of:

(a) 30° W. on February 10th 1968
(b) 120° E. on February 11th 1968

(a) From the Nautical Almanac:

h m
G.M.T. of D’s mer. pass. at Greenwich on 10th = 21 24
G.M.T. of D’s mer. pass. at Greenwich on 11th = 22 20
Length of lunar day = 25
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Proportion for 30° = % x 25 hr 04 min = 02 05
G.M.T. )’s mer. pass. at long. 0° on 10th = 21 24
". G.M.T. D’s mer. pass. at long. 30° W. on 10th = 23 29
h m
(b) Proportion for 120° = 322 x 25 hr 04 min = 08 21
G.M.T. )’s mer. pass. at long. 0° on 11th = 22 2
.. G.M.T. D’s mer. pass. at long. 120°E.on 11th = 13 5

An alternative method of solving the above problems involves
first finding the L.M.T. of the Moon’s meridian passage at
ship, and then applying the longitude to this to give the re-
quired G.M.T.

The difference between the G.M.T. of the Moon’s meridian
passage at Greenwich and the L.M.T. of the Moon’s meridian
passage at ship is called the longitude correction.

The longitude correction is a proportion of the excess of the
lunar day over 24 hr 00 min and is proportional to the longitude.
The following solution to the examples given above will exem-
plify the alternative method of finding the G.M.T. of the Moon’s
transit.

h m

(a) G.M.T. )’s mer. pass. at long. 0° on 10th =21 24
Longitude correction (%% x 64 min) = 405
L.M.T. D’s mer. pass. at long. 30° W. on 10th = 21 29
Longitude =02 00

. G.M.T. D’s mer. pass. at long. 30° W. on 10th = 23 29
h m

(b) G.M.T. )’s mer. pass. at long. 0° on 11th = 22 20
Longitude correction (3%4¢ x 64 min) = =21
L.M.T. )’s mer. pass. at long. 120° E. 11th =21 59
Longitude = 08 00

. G.M.T. D’s mer. pass. at long. 120° E. 11th =13 59
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¢. A Planet

The G.M.T. of a navigational planet’s upper meridian passage
at Greenwich is given in the Nautical Almanac to the nearest
minute of time for every third day. Because the day by the
planet is seldom more or less by a few minutes than the length
of a Mean Solar Day, the tabulated values are approximate
L.M.T’s of local meridian passage. In other words, the longi-
tude correction in the case of a planet is trifling and, accordingly,
in practice it is unworthy of consideration.

d. A Star

To facilitate finding the G.M.T. of a star’s upper meridian
passage, the G.M.T. of the transit of the First Point of Aries
at Greenwich is tabulated in the Nautical Almanac at three-day
intervals. Because the sidereal day is shorter than the Mean
Solar Day by about four minutes of Mean Solar Time, the
G.M.T. of the transit of the First Point of Aries across the
Greenwich (or other) celestial meridian is later on succeeding
days by this amount.

When a star is at upper meridian passage its R.A. is equivalent
to the Local Sidereal Time (L.S.T.). This follows because
L.S.T. at any instant is equivalent to the L.H.A, of the First
Point of Aries at the instant; and the L.H.A. of the First Point
of Aries is equivalent to the L.S.T.

The R.A. of a star may be found by subtracting its S.H.A.
from:360°. By applying the observer’s longitude to a star’s
R.A. the result is the G.H.A. of the First Point of Aries at the
time of the star’s meridian passage. Fig. 6 illustrates this.

In Fig. 6, P represents the north celestial pole. PG, PO and
Py represent respectively the celestial meridians of Greenwich,
an observer, and the hour circle of the First Point of Aries.
X is a star at meridian passage.

From Fig. 6:

arc Gop = arc O + arc GO
ie. G.H.A. < = LHA. v + W. longitude of observer

Because G.H.A. ¢ is tabulated in the Nautical Almanac
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FIGURE 6

against G.M.T., if the G.H.A. corresponding to a star’s meri-
dian passage can be found, the G.M.T. of the star’s meridian
passage can be found by interpolation using the interpolation
tables provided in the Nautical Almanac.

In practice it is not necessary to go to this trouble. By treating
the G.M.T. of the Greenwich transit of the First Point of Aries
as being equivalent to the L.M.T. of the local transit of the
First Point of Aries, the problem is facilitated by adding the
R.A. of the star to the G.M.T. of the transit of the First Point
of Aries to find the L.M.T. of local transit. The longitude is
applied to this to obtain the required G.M.T. The following
example illustrates this:

EXAMPLE: Find the G.M.T. of the upper transit of the star
Mirfak over the meridian of 60° E. on July 10th 1968.

From the Nautical Almanac:

S.H.A. Mirfak = 309 29.5
= 360 00
R.A. Mirfak = 50 305
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In time
h m
R.A. Mirfak = 03 22
L.M.T. mer. pass. ¢ = 04 52
L.M.T. mer. pass. Mirfak = 08 24
Longitude E. = 04 00
G.M.T. mer. pass. Mirfak = 04 24

LATITUDE FROM OBSERVATION OF POLARIS

Finding latitude from an observation of the ‘seaman’s star’—
Polaris, or the Pole Star—is probably the earliest astronomical
method for finding latitude at sea. The declination of the rela-
tively bright star ¢ Ursae Minoris (magnitude 2-2) is a little
more than 89° (89° 06’ in 1965). It lies, therefore, within a degree
of the north celestial pole. It follows that because the altitude
of the celestial pole is equal to the latitude of the observer, the

. altitude of the Pole Star is never different from the latitude of

the observer by a degree or less. When Polaris is on the observer’s
upper celestial meridian its altitude is about one degree greater
than the latitude of the observer. When it is at lower meridian
passage its altitude is about one degree less than the latitude of
the observer. When its L.H.A. is about 06 hours or 18 hours
its altitude is roughly equal to the latitude of the observer.

The correction to apply to the altitude of Polaris, in order to
find the latitude of the observer, is provided in the Nautical
Almanac. The correction is a function of the L.H.A. of the star
and the latitude of the observer. The Pole Star Tables in the
Nautical Almanac give three corrections against arguments
L.H.A. v, latitude of observer, and month of the year. The
three corrections are denoted by a,, @; and a,. They are to be
added together and their sum diminished by 1°. The latitude
of the observer is then found by applying the resultant correc-
tion to the True Altitude of the star. Thus:

Latitude = True Altitude —1° + 4y + a; + a,
In addition to the tables for finding the latitude from an
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altitude observation of Polaris, an Azimuth Table is also given
in the Nautical Almanac.

The Pole Star Tables provide a convenient method for finding
latitude when the observer is between about 10° and 68° N.
South of about 10° N, Polaris is too near the horizon for it to be
suitable for navigational purposes. The tables extend only to
68° N., which latitude approximates to the northern limit of
surface navigation.

The formula used in calculating Pole Star Tables is:

Correction to alt = —p cos & + p/2.sin p sin%h tan ¢
where p = P.D. of Polaris
h = L.H.A. of Polaris
= L.H.A. v + S.H.A. Polaris

¢ = observer’s latitude (which is very nearly equal to
 the altitude a of Polaris)

The derivation of the Pole Star formula is described with
reference to Fig. 7.

S

FIGURE 7
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Fig. 7 represents the celestial sphere on the plane of the horizon
of an observer whose zenith is at Z and whose latitude is ¢
which is equivalent to arc NP. The small circle represents the
diurnal path of Polaris (greatly exaggerated for diagram pur-
poses) and X denotes Polaris at the instant its L.H.A. is A.

Let the correction to be applied to the altitude AX (denoted
by a) to find the latitude NP (denoted by ¢) be y. This is repre-
sented by arc PY in Fig. 7. Then:

Latitude = Altitude — correction
i.e. Latitude = a — y

Applying the spherical cosine formula to the astronomical
triangle PZX we have:

osh = 0 ZX — cos PZ cos PX

¢ - sin PZ sin PX

sina — sin(a — y)cosp
cos(a — y)sinp

i.e. cosh =

Since y and p are small quantities, we may assume the equiva-
lence of y and siny and p and sin p, and we may call cos y,
(1 — ¥?/2); and cos p, (1 — p?/2).

Thus:
sina — (1 — p?/2) {sin a(1 — ¥%/2) — y cos a}

pcosa(l — »3/2) + pysina

cos h =

This reduces to:

y =pcosh + pycoshtana ~ tan a(p® + y?)/2 (1)
Neglecting second-order terms in equation (1) we get as a
first approximation:

y=pcosh
This result would be obtained by assuming the triangle PXY
to be plane.

By substituting this approximate value for y in the right-hand
side of equation (1), we get:

2 P a
y=pcosh + p2cos?htana — tana(li%ﬂ_h)
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i.e.
'y = pcosh — tan asin? k.p?[2

But a = ¢ and p = sin p, therefore:
y = pcosh — tan ¢ sin? A sin p.p/[2

Because the correction is negative the correction to the altitude
to find the latitude is:

~ pcosh + p/2sin psin? htan ¢

Values of a, in the Pole Star Tables are computed using both
- terms of the formula.

The first term in the formula, which depends upon L.H.A.
(and therefore on S.H.A. of Polaris) and the polar distance of
the star, is computed using mean values for S.H.A. and polar
distance. (These for 1968 are 329° 40’ and 89° 07-3’ N. respec-
tively.)

The second term in the formula is computed using the same
mean values for S.H.A. and P.D. of Polaris, and for a mean
value of 50° for the latitude. The combination of these terms are
then adjusted by the addition of a constant (58:8) so that the
values of a, are always positive.

Values of 4, in the Pole Star Tables depend upon L.H.A. and
the observer’s latitude. They represent the excess of the value of
the second term over its mean value for latitude 50°, increased
by a constant (0-6’) to make the correction always positive.

Values of a; take into account the variations of S.H.A. and
P.D. of Polaris during the year. These values depend upon the
L.H.A. o and the date. They are increased by a constant
(0-6") so that they are always positive.

It will be noticed that the sum of the three constants used
to adjust the three corrections to get a,, 2, and aj, is exactly 1°.
Thus:

Latitude = Altitude + (2 + a; + a3) — 1°

It is customary first to subtract 1° from the True Altitude and
then to add the three corrections a,, a; and a,.

The Pole Star Azimuth Table gives azimuths correct to 0-1°.
This relatively coarse degree of accuracy (which is still finer

11
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than that required for practical navigation) suggests that re-

finements like those used for computing the correction to find

latitude are not used in computing tabulated azimuths.
Referring to Fig. 7:

~ In the astronomical triangle PZX:
Azimuth of Polaris at X = PZX
= arc NA
By the parallel sailing formula:
arc NA = arc XY sec AX

therefore: Azimuth = XY seca
but XY = psink (approx.)
therefore: Azimuth = psinhseca

An alternative, but more complex, method of dealing with
the azimuth of Polaris is to apply the spherical four-parts
formula to the PZX triangle as follows:

singdcos h = cos;/:cotp — sinkcotZ
from which:

sin A

tanZ = cos ¢ cot p — sin @ cos k

that is,

sin h tan p

tanZ = -
cos ¢ — sin ¢ cos htan p

Because Z and p are small quantities we may assume the
equivalence of tan Z and Z; and sin & and A. Therefore
_ psink
~ cosp — psingcosh

that is:
7 = psin b(cos ¢ — psin ¢ cos k)~?
Expanding the right-hand side of this formula using the
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binomial theorem, and neglecting terms higher than the second
power of p, we get:

Z (rad) = p sin hsec ¢(1 + p tan ¢ cos k)
or,
Z (min) = 3438 p sin hsec $(1 + p tan ¢ cos k)

LATITUDE BY EX-MERIDIAN ALTITUDE OBSERVATION

The term ‘ex-meridian’ in this context means ‘near the meri-
dian’.

When a celestial object is near meridian passage the observer
may find from an altitude observation the latitude of his ship
by using a method which has become known as Latitude by
Ex-meridian. This method of finding latitude, like that of the
meridian altitude method, no longer holds its former impor-
tance. It is mainly of historical interest, but candidates for pro-
fessional examinations, requiring knowledge of the method, will
find the following account of value.

FIGURE §
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The essential problem in the ex-meridian method for finding
latitude is the comparison of the altitude of a celestial body at
a place where the body is culminating (the latitude of the place
being the same as the observer’s latitude), with its altitude for
the same instant of time at the observer’s actual, but unknown,
position. Fig. 8 serves to illustrate the ex-meridian problem.

Fig. 8 illustrates the celestial sphere drawn on the plane of the
horizon of an observer whose zenith is at Z. PO represents the
observer’s meridian. Z, is the projection of the zenith of a
place the latitude of which is the same as that of the observer’s,
and over whose meridian the body X is passing.

If the arc Z,X can be found, the latitude of the place whose
zenith is at Z,, and hence the observer’s latitude, may also be
found.

If ¢, d, z and h denote the observer’s latitude, the body’s
declination, the body’s zenith distance, and the time from meri-
dian passage of the body, respectively, we have from the astro-
nomical triangle PZX:

cos 2 — sin¢ sind
cos ¢ cos d

cosh =

when ¢ and d have the same name, and

cos 2 + singsind
cos ¢ cos d

cos h =

when ¢ and d have opposite names.

These two cases are illustrated in Fig. 8 using body X and
body X; respectively.

When ¢ and 4 have the same name:

cosz — sin¢ sind = cos ki cos ¢ cos d
Because vers § = 1 — cos 6, this result may be reduced to:
vers (¢ ~ d) = versz — cospcosd vers h

Similarly, when ¢ and 4 have oppesite names:
vers (¢ + d) = versz — cospcosdvers h
In general, therefore:

vers (¢ £ d) = versz — cos g cosd vers h
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Also, because haversine § = 4 versine 8, therefore:
hav (¢ £ d) = havz — cos ¢ cos d hav h

Now (¢ L d) is the M.Z.D. of the body X or X, at the place
whose zenith is at Z;. The latitude of this place, and, therefore,
the observer’s latitude, is thus given by:

é=MZD.td

This method of finding the latitude of the observer requires
the use of an estimated latitude which should approximate to
the observer’s actual, but unknown, latitude. If the latitude found
differs materially from that used, it is necessary to repeat the
computation, this time using the calculated latitude instead of
the estimated latitude used in the first computation. Moreover,
it is necessary for the observer to use an estimated longitude—
knowledge of this being necessary to find 4 which figures in the
computation.

It was early realized that when using stars for finding latitude
by the ex-meridian method, those with big declinations give
the best results (see Part II, Chapters V and VI). This follows
because of their relatively slow rates of change of altitude.
The Pole Star is admirably suited for this purpose, and the
Pole Star tables we have described are, in a sense, ex-meridian
tables for this body.

Of theoretical interest is a method of finding latitude from an
ex-meridian altitude observation using right-angled spherical
trigonometry. This is described with reference to Fig. 9.

Fig. 9 illustrates the celestial sphere on the plane of the horizon
of an observer whose zenith is at Z. P is the elevated celestial
pole and X is a star whose hour angle is 4. Point Y, on the ob-
server’s celestial meridian, lies on the great circle through X
which is perpendicular to the observer’s celestial meridian.

In the triangle PYX:

tan PY = tan PX cos P ’ 1)
cos PX = cos YX cos PY )
In the triangle XYZ:

cos ZX = cos ZY cos YX
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from which, using (2), we can obtain:

cos ZY = cos ZX cos PY sec PX 3)

S

FIGURE g

From equations (1) and (3) the arcs PY and ZY may be found.
These, when combined, give arc PZ which is the complement
of the observer’s latitude.

This method is independent of the latitude and may be used
to good effect even when the body’s hour angle is large provided
that it is known accurately. This will depend on knowledge of
the longitude.

A method alternative to the direct methods, like those des-
cribed above, is known as the Reduction to the Meridian method.
This involves the computation of a correction to apply to the
ex-meridian zenith distance to find the M.Z.D. The reduction
method makes use of an estimated latitude which, if materially
different from the calculated latitude, requires recalculation of
the problem using the calculated latitude found in the first
calculation.

The reduction to the meridian method is described with
reference to Fig. 10.
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Fig. 10 represents the celestial sphere drawn on the plane of
the horizon of an observer whose zenith is at Z. X is the pro-
jection of a celestial body whose hour angle at the time of the
observation is A, and whose declination and zenith distance are
d and = respectively. Arc ZA is equal to arc XZ.

N

m

Y

AF-7

Q

3
FIGURE 10

The arc YA is the reduction to the meridian. This is clearly
the difference between the zenith distances of X at the times of
observation and meridian passage respectively. If the reduction
is denoted by 7, then:

r = Ex-M.Z.D. — M.Z.D.

The ex-meridian problem has provided a favourite field of
inquiry for investigators into the problems of nautical astro-
nomy. The fruits of these investigations are prolific. There are
dozens of methods of finding latitude by the ex-meridian prin-
ciple and there are scores of ex-meridian tables designed to
facilitate finding latitude at sea.
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The reduction method is usually attributed to the great
French astronomer Delambre, who published his method in
1814. Delambre applied the spherical cosine formula to the
astronomical triangle PZX as follows:

In the triangle PZX:
cos 3 = cos hcos ¢ cos d + sin ¢ sind
i.e. cos 2 = cos(¢ t d) — 2 cos ¢ cos dsin? hf2
Now, 2= (2Y +7)
and, cos(ZY + r) = cos ZY cos r — sin ZY sinr

Since r is a small quantity, provided that the astronomical
conditions favour the use of the ex-meridian method, we may
assume that sin7 = r; and cosr = 1 — r?/2, Also since arc
ZY = M.Z.D. = (¢ % d), it follows that:

cos2 = (1 —r%2)cos(¢ t d) — rsin(¢ L d) (2)

By equating values of cos z from equations (1) and (2) we
have:

(1 —1*2)cos(¢ £ d) — rsin(¢$ £ d)
= cos (¢ t d) — 2 cos ¢ cos dsin? h[2
from whic}}:
r2[2cos (¢ £ d) + rsin(p L d) ‘
= 2 cos ¢ cos d sin? k(2 3)

The first term in (3) is small when the body is near meridian
passage. It may, therefore, be neglected; and, for practical
purposes:

_ fcos ¢ cos . 2
= z(s———in G d sin? h/2

Now, sin? 8/2 = hav §
therefore:

cos ¢ cos
r = Z(W hav 2
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If r is expressed in minutes of arc, then:

2 cos ¢ cos

wmeza)

= 3438 x (

If 7 is expressed in seconds of arc:

” = 60 x 6876(°M) hav A

sin (¢ + d)
The ex-meridian tables found in Norie’s and Burton’s collec-
tions give values of the change in altitude in seconds of arc

during one minute of time from or to that of meridian passage.
This is tabulated as 4 (or F) so that:

v _ cos ¢ cos d .
A" = 60 x 6876 x (m)havlmm

cos ¢ cos d
sin (¢ £ d)

The arguments used in Table I of the ex-meridian tables are
latitude and declination.

Since the average rate of change of altitude during the period
of one minute from or to the instant of meridian passage is A4”,
the rate at the time of meridian passage being zero, means that
the rate at a minute before or after the time of meridian passage
must be 24 seconds of arc per minute of time.

The change in altitude during the minute before or after
the time of meridian passage is considered to be an acceleration;
and, from the relationship between distance s travelled at uni-
form acceleration 4 in time ¢, viz, s = }at?, we get:

= 1-9635 x

Change in altitude in & min = AA3

Table II of the ex-meridian tables in Norie’s and Burton’s
collections performs the multiplication of 4 and A3. The argu-
ments used in the table are, accordingly, 4 and time from or to
that of meridian passage.

The result obtained from Table II is an approximation of the
reduction to the meridian. This, subtracted from the observed
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zenith distance gives the M.Z.D. from which a latitude may
be found by applying the body’s declination. The latitude ob-
tained is the ship’s latitude only if the longitude used in finding
it is the ship’s longitude. Because, in general, the longitude of the
ship is not known at the time, the latitude obtained is not the
ship’s latitude. So that, strictly speaking, the result of an ex-
meridian observation is not the ship’s latitude but a position
line which passes through the calculated latitude and the longi-
tude used in the calculation.

Table III of the ex-meridian tables of Norie’s and Burton’s
should be used when & is sufficiently large to make the result,
using Tables I and II only, insufficiently accurate. Table III,
therefore, may be regarded as providing the means of extending
the use of Tables I and II.

Referring back to Fig. 9.

cos 3 = sin ¢ sin d + cos ¢ cos d cos k
= cos (¢ £ d) — 2 cos ¢ cos dsin® hf2 1)

Now a={¢td)+1
therefore:

cos 3 = cos (¢ £ d)}{l — 2sin?7/2} — sin (¢ £ d)sinr (2)
By equating (1) and (2) we get:

cos (¢ £ d) — 2 cos ¢ cos d sin® h/2
= cos (¢ £ d){1 — 2sin?r/2} — sin(¢ L d)sinr

from which:

2cospcosdhavh

sinr = S0 (3 £ J) — 2sin%7/2 cot (¢  d)

If r is small and it is expressed in minutes of arc, we have:

r _2cos¢cosdhavh
3438~ sin(¢  d)

~ cos (4 £ D2zig5)
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Le.

_ 6876 cospcosdhavh + 2
Y P ) cot (¢ T ) 7233

The second term in this expression forms the basis of the
values tabulated in Table III of the ex-meridian tables.

2
Additional correction = — cot (¢ £ d)3—ir§ min of arc

2
= —cot(d % 2;-65 sec of arc

Now (¢ + d) = 2, and z is the complement of the altitude
of the observed body. Therefore, additional correction is:

2
N @ 5oz sec of arc

In the above discussion, we have used the relatively loose
term ‘near the meridian’. It now remains to define this term
with some measure of precision.

The term ‘near the meridian’ implies an hour angle limited
according not only to latitude and declination, but also to the
accuracy with which G.M.T. is known and to the required
degree of accuracy of the calculated latitude.

It is 2 common practice to provide a table (ex-meridian
Table IV in Norie’s collection) giving limits of time from or to
meridian passage computed to give the number of minutes in
the hour angle when an error of a given amount in the hour
angle produces an error of a given amount in the reduction.
The usual table gives limits of hour angle when an error of half
a minute in time in the hour angle produces an error of one
minute of arc in the zenith distance and hence in the calculated
latitude.

The practical rule using this relationship in respect of the
Sun is:

— ta

‘The number of minutes to or from apparent noon should
not exceed the number of degrees in the Sun’s zenith dis-
tance.’

N.B. A final note to the old-fashioned navigators who still pin
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their faith in the ex-meridian method: Latitude found from an
ex-meridian observation of the Sun is the latitude of a point
on a position line the direction of which is at right angles to
the bearing of the Sun at the time of the observation. IT 1S
NOT, REPEAT NOT, THE LATITUDE OF THE SHIP AT NOON.



CHAPTER V

Rates of Change

In this chapter we shall be concerned primarily with the accelera-
tions of a celestial body during its diurnal circuit relative to an ob-
server’s celestial meridian and the body’s vertical circlerespectively.

The arc of the horizon contained between the vertical circle
through the elevated pole and that through any celestial
body is a measure of the body’s azimuth. The arc of a vertical
circle contained between a celestial body and the horizon
vertically beneath the body is a measure of the altitude of the
body. Both the azimuth and the altitude of a celestial body,
except in special circumstances, change at rates that are not
uniform. It is with the rates of change of azimuth and altitude
that we shall be concerned.

The average rate of change of azimuth of a celestial body is a
measure of the ratio between the change in the body’s azimuth
in any given interval of time f, and the interval of time itself.

Thus:
" Average rate of change of azimuth

_ change of azimuth in interval ¢
- t

In all cases, a body which changes its azimuth does so in
consequence of a change in its hour angle, so that the expression
may be written thus:

Average rate of change of azimuth

__change of azimuth in ¢ change in H.A. in ¢
~ change of hour angle in ¢ t

The average rate of change of altitude of a celestial body is a

measure of the ratio between the change in the altitude of the
163
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body in any given interval of time £, and the interval of time
itself. Thus:
Average rate of change of altitude

_ change in altitude in interval ¢
B t

In all cases a celestial body which changes its altitude does so
in consequence of a change in its hour angle, so that the expres-
sion may be written thus:

Average rate of change of altitude

change in altitude in ¢ _ change in H.A. in ¢
= - - X
change in HA. in ¢ t

If all celestial bodies changed their hour angles at the same
rate as that of the Mean Sun, the change in hour angle in any
given interval of time measured in Mean Solar units would be
equal to the interval. This however is not the case.

To a stationary observer the rate of change of the Mean Sun’s
hour angle is 15° per Mean Solar hour, or 15’ per minute of
time, or 15" per second. This rate is uniform at all times.

Because the True Sun moves in the ecliptic his changing
declination influences his rate of change of hour angle. This
rate is irregular. The average rate of change of the True Sun’s
hour angle during a year is equal to the rate of change of the
Mean Sun’s hour angle. Because the variation from the average
rate of change of the True Sun’s hour angle is very small, his
rate of change of hour angle is generally assumed to be the same
as that of the Mean Sun. No material error is introduced by
making this assumption.

The R.A. of the Mean Sun increases uniformly at the rate of
24 hours of Mean Solar time per year. This is equivalent to
2-46’ per hour. It follows that the rate of change of the hour
angle of the First Point of Aries (or that of any fixed celestial
point or star) is (900 + 2-46)" per hour, or very nearly 902-5’
per hour.

The rate of change of hour angle of the Moon or any planet
is very irregular. The value for any given time may readily be
found from the Nautical Almanac.
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If the rate of increase of the R.A. of a celestial body is 7’ per
hour, the rate of change of its hour angle is (902-5 — 7)’ per
hour.

Any motion of an observer on the Earth’s surface, unless it be
along a meridian, will influence the rate of change of a celestial
body’s hour angle. If, for example, an observer is moving towards
the west at the same rate as the Earth is rotating towards the
east, fixed celestial bodies would appear stationary in the heavens.
It follows that any movement of an observer towards the west
reduces the rate of change of hour angle of any celestial body
compared with its rate when the observer is stationary. Con-
versely, any movement of an observer towards the east increases
the rate of change of a body’s hour angle compared with its
rate for a stationary observer.

If the rate of change of longitude of a moving observer towards
the west is & per hour, the rate of change of hour angle of any
celestial body is given by the expression:

Rate of change of hour angle = (902-5 — r — x)’ per hour

Having derived an expression for the rate of change of hour
angle of any celestial body, we are now in a position to investi-
gate the rates of change of azimuth and altitude of celestial
bodies.

RATE OF CHANGE OF AZIMUTH

The rate of change of a body’s azimuth will be investigated with
reference to Fig. 1.

Fig. 1 illustrates the celestial sphere drawn on the plane of the
horizon of a stationary observer whose zenith is projected at Z.
P is the projection of the celestial pole and N, E, S and W, that
of the principal points on the observer’s horizon.

Let us suppose that a celestial body of constant declination d,
in travelling along its diurnal path from X to Y, changes its
hour angle by one minute of time, denoted by the angle APB
or the arc AB. In so doing the body changes its azimuth by the
angle CZD or arc CD, and its altitude by angle (CX — DY),
which is equivalent to arc VY—the point V lying on the same
parallel of altitude as that through X. Let the altitude of the
body when at X be denoted by «.
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FIGURE I

Because arc XY is small, we may assume that the triangle
XYYV is plane without introducing material error.

Now YVX = 90°

and YXP = 90°

therefore YXV = 90° — VXP
Also PXZ = 90° — VXP

therefore YXV = PXZ

Let this angle be denoted by 6.
The angle at a celestial body X in an astronomical triangle
PZX(0) is called the parallactic angle or angle of position.
Rate of change of azimuth = CD
per
= XVseca minute
= XY cos fsec e ’{f
= AB cos d cos 0 sec o) U ™°
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Now AB is one minute of time and this is equivalent to 15
minutes of arc. Therefore:

Rate of change of azimuth = (15 cos d cos 0 sec &)’ per minute
or = (15 cos d cos 8 sec )" per second

The above result may be obtained by using the differential
calculus as follows:

Let 8Z denote the change in azimuth (arc CD) consequent
upon a change in hour angle of 8k (arc AB). Then:

Rate of change of azimuth = -ss—i-
Now XV = 8Zcos e ‘
also XV = XY cos 8
= Sh cosdcos 0
therefore
8Z cos @ = 8h cos d cos 0
and %—Z'; = sec e cos d cos 0
In the limit as 8Z — 0, h — 0. Therefore:
. . 0Z dZ
leltﬁ 7= sec & cos d cos 0

Expressing this rate of change of azimuth in minutes of arc
per minute of time we have:

Rate = (15 sec « cos d cos )’ per minute

Examination of this expression reveals that for a given declina-
tion the rate of change of azimuth of a heavenly body varies as
the secant of the altitude and the cosine of the parallactic angle.
For any given altitude the rate of change of azimuth of a heavenly
body is greatest when cosine # is a maximum, that is when
8 = 0° or 180°. This is so when the body is at upper or lower
meridian passage respectively. It follows that a celestial body
changes its azimuth most rapidly when it culminates and has
its greatest altitude during its diurnal circuit.

12
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When a celestial body is at upper meridian passage its zenith
distance is equivalent to the sum or difference of the observer’s
latitude (¢) and the body’s declination (d). That is to say:

M.Z.D. = (¢ & d)

The parallactic angle of a body at upper meridian passage is
0°. It follows that the greatest rate of change of azimuth of a
celestial body is given by:

Rate = [15 cos d cosec (¢ 1+ d)]’ per minute

When a celestial body is at lower meridian passage its zenith
distance is a maximum and is equivalent to (90 — ¢) + (90 — d),
that is 180 — (¢ + d). The parallactic angle of a body at lower
meridian passage is 180°. It follows that the rate of change of
azimuth of a celestial body at lower transit is:

Rate = [15 cos d cosec (¢ + d)]’ per minute

From the general formula for rate of change of azimuth,
Viz.:

Rate = (15 sec « cos d cos )’ per minute
it may readily be seen that when the parallactic angle is 90°

the rate of change of azimuth is zero.
When the parallactic angle is 90°;

in ¢
Co8 g = —
nd
that is
in ¢
sin ¢ = —=
“sind

Since sine o cannot be greater than unity, the ratio between
sin ¢ and sin d cannot be greater than 1. It follows that sin ¢
must be less than sin d so that the conditions necessary for the
parallactic angle to be 90° are that the observer’s latitude must
be less than the body’s declination and the names of the latitude
and declination must be the same.

When the parallactic angle is 90° the body is said to be at its
himiting azimuth. When such a body is east or west of the ob-
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server’s celestial meridian its azimuth increases before, and de-
creases after, it reaches its limiting azimuth.

S

FIGURE 2

From Fig. 2, which illustrates the celestial sphere on the
plane of the horizon of an observer whose zenith is projected
at Z, it may readily be seen that the azimuth of a celestial body
which rises at X increases until the body reaches Y after which
the azimuth decreases to zero when the body is at meridian
passage. After the time of meridian passage the azimuth in-
creases to a maximum which is reached when the body is at
Y, after which it decreases.

The points Y and Y, are the points in the diurnal circuit of the
body at which it is at limiting azimuth. When at Y or Y;, the
body moves momentarily directly along the vertical circle it
occupies. That is to say, it changes its altitude but not its azimuth.

By applying the spherical sine formula to the triangle PZY
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in Fig. 2, an expression for finding the limiting azimuth may
readily be found:

sinZ _ sin 90°
sin PY  sin PZ

From which:
sin Z = cos dsec ¢

in which Z is the limiting azimuth.

An expression for finding the hour angle of a celestial body at
limiting azimuth may also be found by means of the spherical
sine formula as follows:

sin P sin 90°
sinZY  sin PZ

From which:
sin P = cos a sec ¢

By applying Napier’s rules to the triangle PZY, the altitude
of the body when at limiting azimuth may be found from:

cos o = cos ¢ sin &
or cosa = cotdcotZ

When a celestial body is on the horizon the side ZX of the
astronomical triangle is 90°. In the general formula for the
rate of change of azimuth viz.

Rate = (15 sec @ cos d cos )’ per minute

when a = 0° sec a = 1, so that for any celestial object on the
horizon, its rate of change of azimuth is

(15 cos d cos )’ per minute

Applying Napier’s rules (see Appendix I, page 315) to the
triangle PZX illustrated in Fig. 2, it may readily be shown that:

cosdcos X = sin ¢

-But X is the parallactic angle 8, therefore the rate of change
of azimuth of a celestial body on the horizon is

(15 sin ¢)’ per minute
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Notice that the rate of change of azimuth of 2 body on the
horizon is independent of the body’s declination. When ¢ is
90° the rate of change of azimuth of a celestial body is 15’ per
minute, and this rate is uniform and constant.

To an observer at either pole, because Z and P coincide, the
parallactic angle at every celestial body is 0°. PZ and PX coin-
cide, so that the rate of change of azimuth of every fixed celestial
body to an observer in latitude 90° is 15’ per minute or 15°
per hour.

Because sin 0° = 0, in latitude 0° the rate of change of azi-
muth of a celestial body on the horizon is zero. It follows that
at the equator all celestial bodies rise out of and set into the
horizon vertically.

RATE OF CHANGE OF ALTITUDE

Referring to Fig. 1, and again assuming conditions for a sta-
tionary observer and a celestial body of constant declination;
the body, in the interval of time one minute (indicated by angle
APB), changes its altitude by an amount equivalent to arc VY.

Because arc XY is small the triangle XYV may be assumed
to be a plane. During the one-minute interval between the
instants when the body is at X and Y respectively:

change in altitude
(4

Rate of change of altitude =

A
= AB

A
~ XYsecd

= sin 0 cos d (1)

It follows that when a body is at its limiting azimuth (8 = 90°),
its rate of change of altitude is maximum and is proportional to
the cosine of its declination. When a celestial body is on an
observer’s celestial meridian 8 = 0°, so that the body’s rate of
change of altitude is zero. For a short period before and after
the time of meridian passage sine 0 decreases and increases
respectively. Because for small angles sine 6 cc 6°, it follows
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that for a short period before the time of meridian passage the
change of altitude is a motion of uniform deceleration, and for a
short period of time after the time of meridian passage, it is
one of uniform acceleration.

By applying the spherical sine formula to the astronomical
triangle PZX, we have: ‘

sin PX _ sinPZ
sinZ  sin X

from which
sin § cos d = cos ¢ sin Z

By substituting cos ¢ for sin 6 cos d in (1), we have:
Rate of change of altitude = cos ¢ sin Z

Expressing this rate in terms of minutes of arc per minute of
time, we have:

Rate of change of altitude
= (15 cos ¢ sin Z)' per minute (2)

It follows from this formula that for any given latitude the
rate of change of altitude of a heavenly body is greatest when
sine Z is greatest, that is when Z is 90° or 270°. In other words,
a body’s rate of change of altitude is greatest for any given
latitude when the body is on the prime vertical circle. The
conditions necessary for a celestial body to cross the prime
vertical circle are that its declination must be of the same name
as but its magnitude smaller than that of the observer’s latitude.

For a celestial body which does not cross the prime vertical
circle and whose declination is different in name from that of
the observer’s latitude, the greatest rate of change of altitude
occurs at the instants of rising and setting. Bodies whose declina-
tions are of the same name as, but of greater magnitude than,
that of the observer’s latitude, change their altitudes most
rapidly when they are at their limiting azimuths.

Formula (2) indicates that when the azimuth of a body is
0° or 180°; that is to say, when the body is at meridian passage
at either upper or lower transit, its rate of change of altitude
is zero.
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Formula (2) may be derived directly by using the differential
calculus as follows. The spherical cosine formula applied to the
astronomical triangle PZX is:

cos 2 = cos psin¢ + sin p cos ¢ cos k
Differentiating with respect to k, we have:

. dz
sin 3 =

y sin p cos ¢ sin A

From the spherical sine formula:

sin psin k

sinZ = 3
sin 2

Therefore, by substitution we have:

%—; = cos¢sinZ

Now dz/dh is the rate of change of zenith distance, the magni-
tude of which is equivalent to the rate of change of altitude. If
the rate is expressed in minutes of arc per minute of time, we
have, as before:

Rate of change of altitude = (15 cos ¢ sin Z)’ per minute

If the changing altitude of a fixed celestial body be graphed
against time, the resulting curve will be symmetrical about an
ordinate corresponding to the time of meridian passage. This
ordinate will represent the meridian altitude which corresponds
to the maximum altitude of the body for the day. This will
apply only to fixed celestial bodies observed by a stationary
observer. For a stationary observer the curve of changing alti-
tude against time applicable to the Sun, and even more par-
ticularly to the Moon, is not generally a curve symmetrical about
the ordinate representing the meridian altitude. This results
from the changing declination of the body.

The rate of change of the Sun’s declination varies as the cosine
of its declination. A change in the Sun’s declination amounting
to (2 x 23%4)°, that is 47°, takes place in the six-monthly period
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between solstices. At an equinox, when the Sun’s declination is
zero, his rate of change of declination is greatest, being about
1" per hour: at a solstice, when the Sun’s declination is maximum,
his rate of change of declination is zero. It follows that, to a
stationary observer in a high northerly latitude, the Sun con-
tinues to increase his altitude after the time of meridian passage
during the period when he changes his declination towards the
north, that is to say, during the period between the Winter and
Summer solstices. On March 21st, when the Sun’s rate of
change of declination towards the north is greatest, the interval
between meridian passage and the instant when he attains his
maximum altitude is greatest.

During the period between Summer and Winter solstices,
when the Sun’s declination increases towards the south, he will
attain his maximum altitude to an observer in a high northerly
latitude before he is at meridian passage. The interval between the
times of meridian and maximum altitudes during this period will
be greatest on the day of the Autumnal equinox, that is on
September 23rd.

The rate of change of the Moon’s declination, like that of the
Sun’s, varies as the cosine of her declination. The Moon’s maxi-
mum declination may be as much as 283° N. or S. The plane of
the Moon’s orbit is inclined at an angle of 5}° to the plane of
the ecliptic. The points of intersection of these planes on the
celestial sphere—points known as the nodes—swing with retro-
grade motion around the ecliptic once in 18-6 years. The node
at which the Moon lies when changing her declination from south
to north is called the ascending node: the other node is called the
descending node.

Depending upon the position of the ascending node relative
to the First Point of Aries, the Moon’s declination during any
sidereal period, may be anything between (234 — 5})° N. or S.
and (234 + 5})° N. or S.

When the Moon’s declination is changing towards the north
she will continue to increase her altitude to a stationary observer
in a high northerly latitude, after she has crossed the observer’s
upper meridian. Her maximum altitude in these circumstances
is attained after the time of her meridian passage. When the
Moon’s declination is changing towards the south her maximum
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altitude, to a stationary observer in the northern hemisphere, will
occur before the time of her meridian passage. For a stationary
observer in a high southerly latitude, the reverse will apply.

If at the time of meridian passage, the declination of the Sun
(or Moon) is increasing at the rate of " per minute, maximum
daily altitude to a stationary observer will occur when the rate
of change of altitude due to the Earth’s rotation is decreasing at
the rate of x’ per minute. ,

Not only does the rate of change of declination affect the rate
of change of the altitude of a celestial body: any movement of
the observer will also affect the curve of changing altitude against
time. Let us deal first with the effect of movement of an ob-
server towards the east or west. Any such movement results
in a corresponding movement of the observer’s celestial meri-
dian.

Because the Earth spins towards the east, celestial bodies tend
to revolve around the Earth towards the west at the rate of 15°
per hour. Any movement of an observer towards the east,
therefore, tends to increase this rate. Conversely, any movement
of the observer towards the west tends to decrease it. It follows
that when an observer is moving eastwards over the Earth’s
surface, the rate of change of altitude of a celestial body is
greater than it is for a stationary observer. When an observer
is moving towards the west, a body’s rate of change of altitude
is less than it is for a stationary observer.

Easterly or westerly movement of an observer has no effect
on the symmetry of the curve of changing altitude against time.
It merely accelerates or decelerates the rate of change of alti-
tude. Northerly or southerly motion of an observer over the
Earth’s surface does, however, affect the symmetry of the curve.

The effect of meridianal movement of an observer is the same
as that of changing declination of a heavenly body. When an
observer is moving such that his zenith.is approaching a fixed
celestial object at meridian passage, the object will attain its
maximum altitude after the time of meridian passage. Conversely
when an observer’s zenith and a fixed celestial object at meridian
passage are separating the object will attain its maximum altitude
before the time of its meridian passage.

To those navigators who pin their faith in the latitude by
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meridian altitude of the Sun, it should be important that the
observation be made at the time of meridian passage. The normal
practice of waiting until the Sun dips and using the maximum
altitude in place of the meridian altitude, may lead to considerable
error in the latitude of a ship travelling at great speed northerly
or southerly.

It will be interesting, in view of the above remarks, to investi-
gate a formula for finding the interval between the instants of
meridian and maximum altitudes.

ithoct;
et 9y

FIGURE 3

Fig. 3 illustrates the northern celestial hemisphere in the
plane of the equinoctial. P is the elevated celestial pole and Z is
the zenith of an observer at the instant a celestial body is at
upper meridian passage at X. Z, is the observer’s zenith at the
instant the body is at its maximum altitude at X;.

Applying the spherical sine formula to the spherical triangle
PZ,X,, in which the angle P (denoted by #) is the hour angle of
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the body when it is at maximum altitude, we have:

sinZ, _ sinP
sin PX, sinZ,X,
from which:
. sinhcosd
sin 21 = m (1)

Let x represent the rate of change in the ship’s longitude
towards the west. Let y represent her rate of change of latitude
combined with the rate of change in the declination of the body
in the same interval, expressed in minutes of arc per hour.

If the ship’s change of latitude is in the same sense as the
change in the object’s declination, y is the difference between the
changes in the observer’s latitude and the object’s declination:
if they are opposite in sense, y is the sum of these.

We have seen that for a stationary observer the rate of change
of altitude of the Sun is:

(15 cos ¢ sin Z)’ per minute
or (900 cos ¢ sin Z)’ per hour

Taking into account the change in the ship’s longitude (x
per hour towards the west), this formula becomes:

Rate = [(900 — x) cos ¢ sin Z]’ per hour

The Sun reaches its maximum altitude when the ship’s rate
of northerly or southerly motion is equivalent to this. It follows
that when the body is at maximum altitude:

y = (900 — x) cos $psin Z
from which:

ysecd
900 — «x

Substituting this value for sin Z, in equation (1) we get:

sinZ =

sinhcosd _ ysecd
sin Z, X, 900 — x
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from which:
_ Yy sec ¢ sin Z, X,
cos d (900 — x)
But Z,;X, is equivalent to (¢ 3 d), therefore:

ysecdsin(p 1 d)
cos d (900 — x)

_ysecd(singcosd ¥ cos 4 sind)
cos d (900 — x)

_ysech(sing ¥ 1 cos ¢ tan d)
900 — x

_Y(tand T tand)
900 — x

Now £ is small when the celestial body is near meridian pas-
sage, and in these circumstances we may assume the equivalence

of sin A and h radians without introducing material error.
Thus:

sin A

sinh =

y(tan ¢ % tan d)

B = 50— =
, 3438y(tan ¢ + tan d)
and K =500 =
and h secs = 4 x 3438y(tan ¢ * tan d)
900 — «»
1 1 1 x\"?
NV 500 — % = ool __)=W)(’ - 5%0)
( 900

Since x/900 is a very small quantity we may assume that:

1 1 (1 + x )
900 — x 900 900
so that:

hsecs = 4 x 3438y(tan ¢ £ tan d)(l + =)/900

)
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That is:

hsecs = 15:28y(tan ¢ % tan d)(l + 53—‘5) @)

Referring to Fig. 3, let the interval between the instants of
meridian and maximum altitudes be H secs. Then:

H = ZP,.ZI + ZIPnXI
ie. H=h +h

This applies to the case when maximum altitude occurs after
the time of meridian passage. When maximum altitude occurs
before the time of meridian passage:

H=h1—h

Let the interval between the times of meridian and maximum
altitudes be H where:

H=h+h1

Now A, represents the change in the ship’s longitude between
the instants of meridian passage and maximum altitude. That
is to say k, is the change of longitude in the time interval H.

h,  Rate at which ship is changing her long. ~ x

H ~ Rate at which Sun is changing his H.A. = 900

. Hx
1.€. hl = .9-66
Now H=n"h +h
therefore:
Hx
' x
and H= h/(l - Wo)

or h=H(1——§—)

therefore:



180 THE COMPLETE NAUTICAL ASTRONOMER
Since x/900 is a very small quantity we may assume that:

X
H = h(l + Wo)
X
or h=H/(l+%—0)

Substituting this value for 4 in equation (2) we have:
. x \2
= 15 + —_
H secs = 1528y(tan ¢ + tan d)(l + 900)
And again since x/900 is a very small quantity this reduces to:
Hsecs = 15-28y(tan ¢ + tan d)(l + I;())

If the ship changes her longitude towards the east during the
interval between meridian passage and maximum altitude the
formula becomes:

x
= 15- + -2
H secs = 15-28y(tan ¢ % tan d)(l 450)



CHAPTER VI

Errors in Astronomical
Navigation

In this chapter we shall discuss the principal errors that occur
in the processes of practical astronomical navigation.

Nautical astronomy is not an exact science. The measurements
made by the navigator when using sextant or chronometer, the
quantities extracted from the Nautical Almanac and from nautical
tables, and the computational processes employed when reducing
sights, are all liable to error. An intelligent nautical astronomer
should aim to understand the nature of the several errors which
may influence the degree of accuracy of his observed positions.

The required degree of accuracy of any navigational result
varies with the use to which the result is to be put. If, for example,
a navigator wishes to keep his ship in a channel, then assuming
that he knows that his ship is somewhere near the middle of
the channel, the required degree of accuracy of his fixes should
be related to the channel width. It would be pointless to try to
fix his ship to the nearest cable if the width of the channel were
10 miles. On the other hand, an accuracy to the nearest cable
would be insufficient if the channel width were only a cable.
Again, a compass error worked out to the nearest minute of arc
(often done in class- and examination-rooms) serves little better
than one worked out to the nearest quarter or even half degree,
bearing in mind the relative coarseness with which compass
bearings are measured.

Safe navigation requires the navigator to fix his ship and set
her courses within certain safe limits. Any combination of
errors within these safe limits will not endanger the ship. The
wider are the safe limits prescribed by the navigator the smaller
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will be the required degree of accuracy of the quantities and
processes involved in producing a navigational result.

Before discussing navigational errors a few remarks on arith-
metic and its processes will be relevant to our purpose. By
arithmetic we mean the mathematics of computation in which
numbers are used. The fractional numbers used in most naviga-
tional processes are expressed in decimals. It is important to
realize that nothing is to be gained, and considerable time and
effort may be wasted, when a number is expressed with a pre-
cision greater than that justifiable. The precision of a decimal
quantity is indicated by the number of digits to the right of the
decimal point. Consider the quantity the magnitude of which is
13-64 precisely. The quantity may be described as 13:6 or 14
to mean respectively that its magnitude lies between 13-55 and
13-65 or between 13-5 and 14-5. We say, therefore, that if the
magnitude of the quantity is described as 13-6 the description
is more precise than by giving it as 14, etc.

In expressing a number which is a multiple of 10, 100, 1000,
etc., there is sometimes a doubt as to its precision. If, for example,
the tonnage of a ship is described as 8000 tons, the tonnage
may be taken to mean between 7500 and 8500; or between
7900 and 8100; or between 7990 and 8010 tons.

A common way of expressing the degree of precision of a
numerical quantity is to state the number of significant figures.
Significant figures in a number, as the name implies, are those
that occupy places which indicate their significance. For example,
in the number 82-07 there are four significant figures, for we
know that the symbols represent eight tens, two units, nought
tenths, and seven hundredths, respectively.

In determining the number of significant figures in a num-
ber, caution is necessary in respect of zeros. Zeros interspersed
between digits are always significant figures (as in the example
above) but zeros written to the right of a digit in a whole num-
ber present difficulty in determining which figures are signifi-
cant. In the above example, we could say that the tonnage of
the ship is 8000 tons to four, three or two, significant figures,
dccording to whether we wish it to mean 8000 tons precisely;
or between 7990 and 8010; or between 7900 and 8100 tons,
respectively.
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It is important to bear in mind that in any arithmetical com-

putation the result can never be more accurate than the least
precise value used. An example will illustrate this. Suppose we
wish to add 10, 6-4 and 5:35. From the above remarks 10, as
written, may mean ‘between 9-5 and 10-5’; 6-4 may mean
‘between 6-35 and 6'45°; and 5:35 may mean ‘between 5-345
and 5-355°. It follows that the result of the addition may lie
between (9-5 + 6-35 + 5-345), i.e. 21:195; and (10-5 + 645
+ 5-355), i.e. 22-305. The sum of the three numbers is 21-75
precisely only if the numbers are 10, 6-4 and 5-35 precisely in
each case. If the three numbers are not precise the result 21-75
may give the computer a false indication of accuracy.
- It is useful to distinguish between the terms accuracy and
precision. In many, if not all, navigational processes we deal with
measurements of quantities which are continuous as opposed
to those which are composed of discrete and separate elements.
The quantities measured by a navigator when using sextant or
chronometer are called by arithmeticians approximate numbers.

An approximate number is incorrect because of the error
that exists between it and its true value. Let us suppose that the
length of the rod illustrated in Fig. 1 is to be measured with
cach of three rulers, labelled in the figure A, B and C, divided
to inches, half-inches and quarter-inches, respectively.

]
Q 1 2 3 |r 4 inchas
B o 2 4 | 8 halfins
. r A 1 1. 1
(o 0 4 8 12 16 quarter ins

FIGURE 1

Using ruler A we find that the rod is 3 inches long to the near-
est inch. Using B we find it to be (7 x %), i.e. 3} inches to
the nearest half-inch, and using C we find the length to be
(13 x }), i.e. 3} inches to the nearest quarter-inch. In each case

13 .
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the length of the rod is expressed in terms of the nearest exact
unit of measurement of the ruler. The result, therefore, is
accurate to within a half unit of the measurement given. The
accuracy of the result using A is within +34 inch of the true
value. That using ruler B is within +2 inch of the true value;
and that using ruler C is within +} inch of the true value.

The term precision is used to denote the degree of accuracy
of an approximate number. The smaller is the degree of accuracy
the more precise is the measurement. Precision and accuracy
are the concern of the navigator, not only when using naviga-
tional instruments, but also when using logarithms and trigono-
metrical functions.

Most logarithms and tngonometncal functions are irrational
numbers and, with few exceptions, entries in tables of logarithms
and trigonometrical functions are but approximations of exact
values.

The logarithm of a number to a given base (10 in the case of
common logarithms) is the power to which the base must be
raised to give the number. Thus, the logarithm of N to base B
is L, that is:

loggN = L
or Bt =N

The logarithm of 100 to base 10 is 2 precisely. The logarithms
of most numbers are unending decimal quantities. The logarithm
of 2 to base 10 is 0-3011385557 to ten places of decimals. In
practical work, the logarithm of 2 (or that of any other number)
to base 10 should be related to the degree of precision required
in the final result of the computation in which it is to be used.
For some purposes in which a coarse degree of accuracy is all
that is required, the logarithm of 2 to base 10 may be taken to
be 0-301, but if a higher degree of accuracy is required, it will
be necessary to take the log to a number of places greater than
three. The last figure of an incommensurable logarithm is
called a rounded figure.

By rounding off we mean expressing a decimal quantity to a
degree of accuracy less precise than the accuracy of-the given
quantity. If the digit in the extra (or unwanted) place is 4 or
less it is ignored when rounding off. If the digit in the extra
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place is 5 or more, the digit in the last desired place is increased
by 1. Thus the number 8-656 is rounded off to two decimal
places to 8:66, and to one decimal place as 8-7.

In logarithmic tables the final figure is rounded off and may
be in excess or defect of half a unit. For example, the log of
2-25 is 0-3521825 to seven figures. To five figures it is 0-35218,
so that the relative error in the fifth figure is 0-25 defect. To
four figures it is 0-3522 so that the relative error in the fourth
figure is 0-0175. It is interesting and important to appreciate
the error introduced into results obtained by logarithmic com-
putation.

In extracting from a table a logarithm or trigonometrical
function, there may be an error of 0-5 in the last place. If, there-
fore, two logarithms are combined by addition or subtraction,
the combined error may be anything between +1 and -1 in
the last place. ‘

In lifting from a table a number corresponding to a given
logarithm there are two sources of error. First the +0-5 in the
tabulated log and second the +0-5 in the calculated log. At
worst, therefore, there is an error of +1 in the last place of
logarithms to cause an error in the result. It is interesting to
work out the percentage errors that apply when using logarithms
to various places of decimals. Five-figure logarithms are amply
sufficient for astronomical navigational purposes. The maximum
percentage error using five-figure logarithms is about 0-002.
Four-figure logarithms used for nautical astronomical problems
generally give an accuracy to within one minute of arc.

There are cases in which satisfactory results cannot be expec-
ted regardless of the number of figures in the logarithms.
Examination of the table of log sines of large angles will exem-
plify this. The computer should recognize these so-called ill-
conditioned cases, in which a very small error in the data is
magnified greatly in the result. Accordingly he should distrust
the result when these cases are forced upon him. Now let us
turn our attention to a discussion on errors.

The term error applies to the difference between a correct
and a corresponding incorrect value arising from imperfections
or the instruments or methods used in obtaining a result.
Errors are to be distinguished from what statisticians euphemis-
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tically call blunders. Blunders are due largely to carelessness and
are commonly called mistakes. Before dealing with errors a few
words on blunders and how to avoid them will be made.

Blunders in nautical astronomy may arise from careless read-
ing of sextant or chronometer. Sextant readings are commonly
in error by 10° 1° or 10’. After having read the sextant, it is
advisable to leave the index bar in its original position until
after the sight has been worked. By so doing the sextant reading
may be checked if necessary. Chronometer times are commonly
in error by an hour, or a multiple of five minutes, or a minute.
In order to check chronometer times it is a good practice to
have the chartroom clock time recorded for the instant of ob-
servation.

The fact that the chronometer dial registers only 12, and not
24 hours often leads to an error of 12 hours in the G.M.T. No
self-respecting nautical astronomer makes this mistake in prac-
tice; for, knowing the approximate local time and the ship’s
longitude, it is a simple matter to ascertain an approximate
G.M.T. which may be used in deciding whether the chrono-
meter time is equal to, or 12 hours different from, the approxi-
mate G.M.T.

Careless use of the Nautical Almanac often gives rise to
blunders. Using the wrong month and the correct day of the
week, or the correct month and the wrong day of the week, are
all too common careless mistakes made by navigators. It is
customary, and good practice, to cross out each day’s date in
the Nautical Almanac as soon as convenient after the Greenwich
date changes.

Many navigators solve their sights by long methods which
often lead to blunders in arithmetic. A neat layout of the working
of the sight is essential if arithmetical mistakes are to be kept
to a minimum. Addition of groups of figures should be checked

“ upwards or downwards in the reverse direction to that used in
the first attempt. Subtractions should be checked by adding
the difference to the lesser value. Care is necessary when con-
verting from one unit to another. A common mistake, for example,
is to count 100 minutes of arc, instead of 60, to a degree, when
adding or subtracting angular measures.

Mistakes due to lack of facility in simple arithmetical processes
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lead to considerable frustration and lack of confidence. Navi-
gators who are prone to making arithmetical mistakes should,
perhaps, use inspection tables or short-method tables, instead
of long methods, for solving their sights.

Amongst the more common blunders that arise when using
nautical tables is that due to reading from the wrong end of
the table. For example, some log-trig function tables and traverse
tables are downward reading for angles between 0° and 45°,
and upward reading for angles between 45° and 90°. Great care
should be exercised when using these tables.

Other common blunders due to carelessness arise from apply-
ing corrections, such as altitude corrections, index error of
sextant, etc., in the wrong direction or sense.

When plotting position lines, blunders resulting from: apply-
ing the intercept the wrong way, drawing a position line in the
direction of the azimuth instead of at right angles to it, and
using the wrong scale in marking off intercepts, are not un-
common.

It appears that blunders in arithmetic occur most frequently
when performing relatively simple computational tasks which
do not require a large measure of intelligent concentration.
Boredom, overconfidence, or unnecessary hurry, often lead to
blunders. These factors clearly are related to temperament.

Errors in navigation may be systematic or random. A syste-
matic error is one which follows a set pattern. If the pattern is
understood a systematic error may be predicted: A common
systematic error in nautical astronomy is index error of the
sextant. Index error, if it is measured immediately before or
after making an altitude observation, may be allowed for by
applying a correction of equal magnitude but opposite in sense
to the index error, to the sextant altitude. Index error is an
example of a constant systematic error.

Personal error, due to habitually over- or underestimating an
observed altitude, is another example of a constant systematic
error which may be dealt with in the same way as sextant index
error.

Systematic error may result from not applying the effect of a
current in working out an estimated position. The error, in this
case, is proportional to the time during which the current acted.
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Another type of systematic error may arise through faulty
interpolation. Interpolation is the process of finding the value
of an element which falls between two given values. Interpolation
is a very commonly used process in navigation. Values of the
elements given in the Nautical Almanac, for example, apply to
particular values of G.M.T. If the given G.M.T. (for which
an element is required) is different from a tabulated G.M.T., it
will be necessary to mterpolate between the next higher and
next lower G.M.T. to the given G.M.T.

The process of finding an element the value of which depends
upon more than one argument; such as, for example, the process
of finding the amplitude of a heavenly body from a table re-
quiring double entry of latitude and declination, is called double
interpolation. When three arguments are required for finding an
element; as, for example, in finding the azimuth of a celestial
body from Davis’s or Burdwood’s tables (in which azimuths
are tabulated against latitude, declination and local hour angle),
the process is called triple interpolation.

The smaller is the interval between tabulated arguments the
smaller is the need for careful interpolation. If the interval is
large great care is necessary when interpolating.

In practice many tables in which it may be necessary to
interpolate are designed so that the intervals between tabulated
arguments are sufficiently small to assume that the value of the
element changes directly as that of the argument. In this case,
a graph representing values of the element against an argument
may be considered to be a straight line. Interpolation in this
case is called kinear interpolation.

Linear interpolation, when only one argument is involved,
is accomplished by simple proportion. Suppose the tabulated

values of declination are given at integral hourly intervals as
follows:

Time | Declination

0200 12 16
0300 12 22

0400 12 28
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In finding the declination for 0220, a correction is applied to
the declination for 0200. The cosrection is found from the rela-
tionship:

t

T
where ¢ = required correction to the tabulated declination,

Al o

d = difference between successive tabulated declina-
tions between which it is required to interpolate,

t = difference between the given and tabulated times,
and T = difference between successive tabulated times.

The correction in the example is (20 x 6)/60, i.e. 2’, so that
the required declination is 12° 16" + 2’, i.e. 12° 18’. The correc-
tion in this case is additive because the declination increases with
time.

Linear interpolation in practice is usually performed by
mental arithmetic.

The practical method for triple interpolation is first to extract
the element corresponding to the tabulated arguments equal to
or less than those given, and then to apply three corrections to
this element, each correction being obtained by single linear
interpolation. An example will clarify this.

EXAMPLE: Find the true azimuth of the Sun whose L.H.A. is
3 hr 05 min W. and whose declination is 20° 18’ N. to an ob-
server in latitude 49° 24’ N. Use Burdwood’s Azimuth Tables.

In Burdwood’s tables azimuths are tabulated for each integral
degree of latitude and declination and for every degree of local
hour angle. To interpolate we proceed as follows:

Lat Dec H.A.
[+] o h m

Azimuthfor 49N. 20N. 304 = 111-7°
Azimuthfor 49N. 20N. 308 = 110-7°

correction for HA. =} x 1-0 = —0-3
Azimuth for 49N. 2IN. 3 04— = 110-6°

correction for Hx11 =-03

Azimuthfor S50N. 20N. 3 04 = 112.5°
correction for lat = & x 0-8 =+ 0-3
Azimuth for 4924’ 2018 305 = 111-4
Required azimuth = N. 1114° W

l
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Single interpolation may be obviated by arranging a single
argument table so that the table is entered within limiting values
of the argument. If the argument happens to be a limiting
value the entry is said to be critical, in which case a choice of
two possible values of the required element has to be made.
Some of the altitude correction tables in the Nautical Almanac
are critical tables. In these tables the correct element for a
critical entry is the upper of the two possible values.

When the rate of change of a tabulated element is not propor-
tional to that of the argument, linear interpolation will result
in error in the extracted element. Examples of non-linear rates
of change in navigation are the rates of change of the hour angle
and declination of the Moon and planets. When interpolating
for these quantities, using the linear interpolation tables pro-
vided in the Nautical Almanac, it is necessary to apply asecondary
correction, called the v or d correction, to the main correction
lifted from the interpolation tables.

In some cases a table may be ‘extended’ by a process known
as extrapolation. By extrapolating we mean obtaining an element
from an argument lying outside the limits of the table. Extra-
polation is reliable only when the rate of change in the elements
outside the tabular limits is linear.

We now come to a brief discussion on a type of error known
as a random error. In contrast to systematic errors random errors
are those which cannot be predicted. These include errors that
are inherent in practical work. In navigation random errors are
seldom very big. In measuring an altitude with a sextant the
accuracy of the measured result is influenced by several factors,
which include: indistinct horizon, abnormal refraction, changing
height of eye due to rolling, pitching or heaving of the ship.
Moreover the limit of accuracy with which the sextant can be
read may also result in error. All of these are examples of random
or chance errors.

Random errors are governed by the mathematical laws of
probability. The term probability may be defined as the propor-
tional frequency of occasions on which some stated event takes
place. If for example a series of sextant altitude observations
is made, and the observations are liable to a random, but not
a systematic, error, the probability of the result of any given
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observation being greater or less.than the corresponding true
value is expressed as 0-5. This follows because the probability
or chance of a particular observation producing too high a result
is equal to that of its producing too low a result.

If a large number of observations affected by a random error
were made and the results plotted as a frequency curve in which
error is plotted against the probability of it happening, the
result would tend to be a curve known as a Normal or Gaussian
curve of errors. Fig. 2 illustrates such a curve.

Aprobubility
ot error

Error(-) [e] Error(e)

FIGURE 2

The Gaussian curve is a bell-shaped curve symmetrical about
an ordinate representing the proportional frequency of observa-
tions yielding the correct value. The ordinates of points on the
curve to the right of the central ordinate represent the pro-
portionate frequency of observations yielding too high a result,
and those of points to the left represent the proportionate fre-
quency of observations yielding too low a result.

The curve illustrates that the possibility of a random error
occurring falls off as the size of the error increases.

To express the ‘average’ error in a series of observations which
produce a Gaussian curve statisticians use a quantity called
standard deviation. This is found by squaring each error, dividing
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the sum by the number of observations, and taking the square
root of the quotient. The result is sometimes called the root
mean square (R.M.S.) and is denoted by the Greek letter
sigma (o). It is of interest to note that the abscissae at the points
of inflexion on the Gaussian curve are each equivalent to the
standard deviation.

If the total area under a Gaussian curve represents 100 per
cent of the observations, the area between the ordinates at the
two points of inflexion represents 68 per cent of the observa-
tions. The value of the error corresponding to o is, therefore,
called the 68 per cent error.

The value of the error at the two ordinates placed symmetrically
about the central ordinate, and which limit half the total area
under the curve, is called the probable error. This represents the
50 per cent error, so that the probable error may be defined as
the error such that 50 per cent of the observations will have an
error greater, and 50 per cent of the observations will have an
error smaller, than the probable error.

From the equation of the Gaussian curve it may be shown that
the 50 per cent error is equivalent to two-thirds of the standard
deviation. In other words, the 50 per cent error is two-thirds of
the 68 per cent error.

For a nautical astronomer the ideal result of an astronomical
observation is a position line which is drawn on a chart or
plotting sheet. Because random errors are to be expected in the
processes involved in taking and reducing a sight, the ideal

FIGURE 3
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result, viz. a true line of position on the chart, is not to be expec-
ted. The practical result of an astronomical observation is a
position band on the chart the width of which may be regarded
as being proportional to the probable, that is the 50 per cent
error. The band may be considered to be the projection on the
chart of part of a ridge the shape of which, at right angles to
the band, corresponds to the Gaussian curve of errors. This is
illustrated in Fig. 3.

The band of 50 per cent error may conveniently be regarded
as being formed by a series of parallel lines symmetrically dis-
posed about the mid-line of the band. These lines represent
the projections of ordinates bounding equal areas under the
Gaussian curve as illustrated in Fig. 4.

/ /

ey

——— e
band of 50%
error

FIGURE 4

The distance between any pair of adjacent lines in the band
of error illustrated in Fig. 4 is such that the chance of the ship
lying between the pair is equal.

A fix in the simplest case is obtained by crossing two position
lines. In the ideal case, in which the position lines are free from
error, the required fix is the point of intersection of the two
position lines. If, on the other hand, two position lines are
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affected by random error, the 50 per cent bands of error will
intersect to form a diamond. ’

It may at first be thought that there is a 50 per cent chance of
the ship’s position falling within the diamond formed by the
intersection of the 50 per cent bands of error. This is not the
case. Statistical analysis reveals that the 50 per cent probability
area is an ellipse which fits into a diamond having dimensions
13 times those of the diamond formed by the intersecting 50
per cent position bands.

FIGURE §

In Fig. 5 the ellipse of 50 per cent error fits into the diamond
WXYZ the dimensions of which are 1} times those of the dia-
mond ABCD.

If two position bands have equal width and cross at 90°,
the ellipse of error becomes a circle. If the position bands have
equal widths but cross at any angle other than 90°, the major
axis of the ellipse of error bisects the acute angle between the
bands. If the position bands have unequal widths and cross
at any acute angle, the major axis of the ellipse of error lies
nearer to the narrower than to the broader band.

A navigator, in recognizing the possibility of errors affecting
his position lines, at once realizes that the concept’ (common
amongst navigators) that information used in computing a ship’s
position is perfectly reliable, is false and unrealistic. A ship’s
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position obtained as a result of a systematic evaluation of the
information used in getting it may be described as a probable
position, because recognition of probable error has been made.

Probable error in a position line is estimated: there is no other
practical way of evaluating it. The estimation of probable error
in nautical astronomy is related to a man’s skill and experience
as a navigator. Skill, in this connection, is related to the under-
standing of the nature of the errors which may affect navigational
observations and processes. Without this understanding errors
cannot be handled systematically and intelligently. The prac-
tical treatment of navigational errors will be discussed in Part
IV, Chapter V.



PART III

The Instruments
of Nautical Astronomy



CHAPTER 1

The Sextant

The sextant is the distinctive instrument of the nautical astro-
nomer. In astronomical navigation the sextant is used for
measuring altitudes of celestial bodies, and it is with this aspect
of its use that this chapter will primarily be concerned.

The modern sextant dates from the middle of the 18th
century. It has evolved from the reflecting quadrant the inven-
tion of which is usually attributed to John Hadley, a prominent
English philosopher of the period. The sextant is a portable
instrument which is ideally suitable for measuring altitudes from
the unsteady platform of a rolling, pitching or heaving ship.
The name given to the nautical instrument is derived from the
fact that the graduated arc against which observed altitudes are
measured is a sixth part of a circle. The sextant is described as
an instrument of double reflection, and it may be used for
measuring angles up to about a third of a circle.

Although sextants vary widely in details of design, and with
the auxiliary equipment provided by the manufacturer, the
principal constructional features are common to all sextants.
These features are illustrated in Fig. 1.

The frame labelled A in Fig. 1 is usually of brass or aluminium.
The hmb B is graduated in degrees from about —5° to +125°.
Pivoted to the frame at the centre of curvature of the imb is the
index bar C. The index bar is so-named because it carries the
pointer or index by means of which the angle corresponding to
the measured altitude is read against the graduated scale on
the limb. Mounted on the index bar is the cell which accommo-
dates the index mirror D.

The frame is provided with a collar E which houses the
sextant telescope F. In line with the axis of the telescope is the

14 199
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horizon glass G which is accommodated in a cell fitted to the
frame. The horizon glass is generally half-silvered, that half
adjacent to the frame being silvered and the other half plain.
Mounted on the index bar tangentially to the limb is a screw
which engages in teeth cut in the limb. The index bar may be
moved from one end of the arc to the other by turning the
tangent screw. For this reason the screw is called an endless
tangent screw. The index bar is fitted with a spring-actuated

FIGURE 1

clamp by means of which the tangent screw may be disengaged.
This facilitates setting the index bar to any desired position on
the arc. One end of the tangent screw carries the micrometer
drum. One complete turn of the drum causes the index to move
exactly one degree of arc across the scale graduated on the limb.
The circumferential surface of the micrometer drum is graduated
in minutes of arc. Adjacent to the drum and fixed to the index
bar is a Vernier scale, by means of which altitudes may be meas-
ured to a fraction—usually one-tenth—of a minute of arc.
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To reduce the brilliance of the rays of light entering the
observer’s eye from the observed object—especially the Sun—
and the horizon, tinted shades are fitted. Those for use with the
reflected ray from the index mirror are called the index shades;
and those for use with the direct ray from the horizon are called
the horizon shades.

The sextant frame is fitted with a handle of wood or plastic.
This provides a convenient place for accommodating a dry
electric cell which is connected to a bulb fitted to the index
bar for use when reading star altitudes.

Before the introduction of the micrometer drum sextant, the
so-called Vernier sextant was in general use. This type of sex-
tant, in which the arc scale is usually cut to 10’ intervals, is
provided with a Vernier scale fitted on the index bar, by means
of which altitudes may be read to an accuracy of 10" of arc.
Vernier sextants are now obsolescent.

Of academic interest to the navigator is the optical principle
of the sextant which is based on the elementary laws of light,
viz.:

1. When a ray of light is reflected from a mirror the incident
and reflected rays and the perpendicular or normal to the
reflecting surface at the point of reflection are co-planar.

2. The angle which the incident ray makes with the normal
is equal to the angle which the reflected ray makes with the
normal. In other words, the angles of incidence and reflec-
tion are equal.

Arising from these two laws, the optical principle of the sex-
tant is:

When a ray of light is successively reflected from two mirrors
the reflecting surfaces of which are perpendicular to a com-
mon plane, the angle between the reflecting surfaces is half
the angle between the first incident and the final reflected
rays.

Fig. 2 illustrates the optical principle of the sextant.

In Fig. 2 XABC is the zig-zag ray which is doubly reflected
at A and B. N;AN, and BN, are the normals to the mirrors at
A and B respectively.



202 THE COMPLETE NAUTICAL ASTRONOMER

FIGURE 2

From the laws of light:
XAN; = NJAB =«
ABN,; = N;BC = g8

Let the angle between the first incident ray XA and the final
reflected ray BC be ¢.

Now the angle between the reflecting surfaces is equal to the
angle between the normals to the reflecting surfaces at the points
of reflection. Let this angle be 6.

In triangle BAN,: 0 = (¢ — B)
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In triangle ABD: ¢=22-28

= 2(¢ - B)
therefore: ¢ =20

It follows that the angle between the mirrors is half the angle
between the first incident and the final reflected rays. For this
reason the 60° arc of the sextant is graduated to 120 divisions,
each division representing 1° of measured altitude.

The sextant is in correct adjustment when the index on the
index bar is at zero on the graduated arc, with the index mirror
and the horizon glass parallel to one another, and both mirrors
perpendicular to the plane on which the arc lies. Moreover, the
axis of the sextant telescope should be parallel to the plane of
the sextant. If a sextant is not in perfect adjustment the error
in a measured altitude may be considered to be a combination
of several component errors. These components are of two types,
known respectively as adjustable and non-adjustable errors. Let
us deal first with the adjustable errors.

There are four adjustable errors which may be eliminated by
making the first, second, third and fourth adjustments.

The first adjustment is made in order to set the index mirror
perpendicular to the plane on which the arc lies. The cell in
which the index mirror is housed is fitted with a spring which
bears against the back of the mirror. A screw adjustment is
made to cause the spring to bring and keep the plane of the
mirror perpendicular to the plane of the arc.

If the index mirror is not set correctly the sextant possesses
error of perpendicularity. It is an easy matter to test the sextant
to ascertain if the cause of this error exists. The instrument is
held horizontally face upwards and with the arc away from the
observer. The index bar is set near the middle of the arc. By
observing the reflection of the arc in the index mirror and com-
paring its alignment with the true image of the arc to the right
of the mirror, the observer readily can see whether or not the
index mirror is properly set. If the true and reflected images of
the arc are not in the same straight line, as illustrated in Fig.
3(a), it will be necessary to make the first adjustment.

The second adjustment is made in order to set the horizon
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FIGURE 3

glass perpendicular to the plane of the arc. The adjustment is
made by means of a screw at the top of the back of the cell
which houses the horizon glass,

If the horizon glass is not set correctly the sextant possesses
side error.

To test the perpendicularity of the horizon glass the sextant
is held with the arc in the vertical plane and with the index set
near the zero on the arc. A star is observed so that the position
of the reflected image of the star may be compared with the
star’s direct image as seen through the unsilvered part of the
horizon glass. If one of the images lies to the side of the other,
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the sextant possesses side error, and it will be necessary to make
the second adjustment.

The cause of side error may be detected in the daytime by
observing a vertical edge (such as that of a mast or building)
with the sextant arc lying in the vertical plane; or by observing
a horizontal edge (such as the horizon) with the sextant arc
lying in the horizontal plane. If the line through the reflection
of the observed edge is not co-linear with the direct image ob-
served through the unsilvered part of the horizon glass, the
sextant possesses side error.

The second adjustment is normally made simultaneously with
the third adjustment. The third adjustment is necessary if the
two mirrors are not parallel to one another when the index is
at zero on the arc. If the third adjustment is necessary the sex-
tant possesses index error.

To test for index error, the index is set to zero. With the
arc lying in the vertical plane the true and reflected images of a
star by night or the horizon by day are then compared. If one
image lies above the other, index error exists. By turning the
tangent screw until the horizontal alignments of the images
coincide, the amount of index error may be read from the arc.
If the reading is positive the index error is described as being
on the arc. If it is negative the index error is described as being
off the arc. If index error is on the arc it will be necessary to
subtract the error from all readings made with the uncorrected
sextant. If it is off the arc index error will have to be added to
all readings.

Index error is removed by making the third adjustment. This,
like the first and second, is a screw adjustment. The screw for
making the third adjustment is at the back of the cell which houses
the horizon glass. The effect of turning this screw is to slew the
horizon glass in its cell. The index-error adjustment screw is
placed at the side of the vertical centre line of the mirror as
viewed with the arc in the horizontal plane. In contrast, the
adjustment screw for making the second adjustment is placed
centrally on the edge of the housing farthest away from the
plane of the arc,

Turning either screw at the back of the horizon glass cell
usually affects both side error and index error. For this reason
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the second and third adjustments are made simultaneously. The
usual method is to remove the existing side and index errors,
and then to remove half the remaining side and index errors until
‘a satisfactory adjustment is made for both.

If perpendicularity and/or side errors exist the three parts of
the zig-zag ray due to the double reflection at the index and
horizon mirrors will not be in the same plane. As a result of this
all readings made with the uncorrected sextant will tend to be
too high.

It is necessary that the part of the zig-zag ray which enters
the observer’s eye is parallel to the plane of the arc. If this is
not so all readings will tend to be too high. This follows be-
cause the zig-zag ray will not lie in the same plane as that of
the vertical circle through the observed heavenly body. Error
due to this cause is called collimation error.

Collimation error may be due to the axis of the sextant tele-
scope not being parallel to the plane of the arc, or it may be
due to careless observing. When observing it is necessary that
the observed image lies at the very centre of the field of view
of the telescope. If this is not the case collimation error will
result even if the telescope axis is set correctly.

The telescope is housed in a collar which, on some sextants,
is adjustable. Two adjustment screws are fitted. The effect of
slackening one of these screws and tightening the other is for
the telescope axis to slew relative to the plane of the arc. This
adjustment, when made to set the collar propetly, is called the
fourth adjustment.

In most modern sextants the housing of the telescope is
permanently and properly fixed to the frame. Collimation error
due to faulty housing is not, therefore, to be expected on such
a sextant.

Before dealing with the manner in which collimation error
may be detected, let us consider sextant telescopes.

The common practice at the present time is for manufacturers
to supply a single telescope suitable for use with all observations.
Such a telescope must inevitably be a compromise instrument.
This follows because the requirements of a telescope for stellar
observations are different from those for daytime or Sun ob-
servations.
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For Sun observations the telescope should be capable of pro-
ducing a large image of the Sun. The larger the image of the
Sun (or Moon) the easier it is for the observer to make a sharp
contact with the reflected image of the body’s limb and the horizon.

The magnifying power of a telescope is related to the power
of the eyepiece. The higher the power of the eyepiece the greater
is the magnification. Theoretically there is no limit to the
magnification of an image, but there are practical limits because
the amount of light available to illuminate the magnified image
is limited. The amount of light available for this purpose is
related to the diameter of the object glass of the telescope, the
amount being proportional to the area of the object glass. For
any given object glass, the higher the magnification factor the
smaller is the brightness of the magnified image.

For Sun observations there is usually an abundance of light,
so that a small object glass is all that is necessary. The charac-
teristic features of a sextant telescope designed for Sun observa- -
tions are, therefore, high magnification and small object glass.

For observations made between. the times of sunset and sun-
rise, light is not abundant. A large object glass is necessary
therefore to capture as much light as possible in order that the
horizon be rendered sharp and clear. The magnifying power of
the eyepiece of the star telescope need only be small: stars never
appear more than mere pinpoints of light even in the largest
telescopes. The characteristic features of a star telescope for
use with a sextant are, therefore, low magnification and large
object glass.

The simplest type of telescope is the astronomical telescope.
This type of telescope produces an inverted image and for this
reason it is often called an inverting telescope. In contrast to
the astronomical telescope, the terrestrial telescope is an erecting
telescope, so-named because it is provided, in addition to the
object glass and eyepiece, with an additional system of lenses
designed to erect the inverted image produced by the object glass.

For convenience of use when observing stars, the sextant star
telescope is an erecting telescope. On the other hand the Sun
telescope is an inverting telescope. It is more difficult to use
than a star telescope, and a large measure of skill is demanded
of the observer when he uses an inverting telescope with his
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sextant. The time and effort spent in acquiring this skill is
rewarded by the relatively high accuracy with which Sun alti-
tudes may be measured by means of the inverting telescope
compared with the relatively low accuracy of Sun altitudes when
measured with a low-powered star telescope.

- The importance attached to ensuring, when taking sights, that
the image of the observed celestial body lies in the centre of the
field of view of the telescope was stressed by John Hadley, the
inventor of the reflecting quadrant, as far back as the mid-18th

" century. Hadley suggested the use of cross wires in the sextant
telescope, by means of which the observer would be aided in
respect of this important point. Hadley’s suggestion seems never
to have been noticed sufficiently.

The inverting telescope with which some sextant outfits are
provided is usually fitted with two pairs of cross wires. When
using such a telescope for measuring the Sun’s altitude, the
image of the observed limb should lie in the square formed by
the intersecting cross wires, in order to eliminate the possibility
of collimation error due to faulty observing.

The two pairs of cross wires serve to enable an observer to
detect the possible presence of collimation error. To ascertain
if the sextant possesses collimation error, the inverting tele-
scope is shipped, and a pair of the intersecting cross wires is
set parallel to the plane of the arc of the sextant. Two widely
spaced stars are then chosen, and the reflected image of one is
brought into coincidence with the direct image of the other, so
that the two images lie on one of the pair of cross wires which
are parallel to the plane of the arc. Having done this, the sextant
is tilted slightly to bring one of the images on to the other cross
wire of the pair. If the other image does likewise, and remains
in coincidence, the sextant is free from collimation error due to
faulty housing of the telescope. If however the two images separ-
ate, collimation error exists and it should be removed if possible
by making the fourth adjustment.

When collimation error exists the measured altitude of a

- celestial body exceeds the required altitude by an amount which
varies with the square of the angle of inclination of the line of
sight to the plane of the sextant arc, and as the tangent of half
the measured altitude. This may be proved as follows:
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A

B
FIGURE 4

Fig. 4 serves to show that the arcs AB and AC of the sphere
centred at 0 are proportional to the chords AB and AC, and that
the ratio of the arcs or chords is proportional to that of the sines
of half the angles subtended at the centre of the sphere, provided
that the angle BAC is small.

Referring to Fig. 4:

' arc AB  chord AB

arc AC ~ chord AC
_ 3 chord AB
~ % chord AC
sin af2
= sin B2

FIGURE §
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Figure 5 illustrates the celestial sphere projected on to the plane
of the celestial meridian of an observer whose zenith is projected
at Z. X is a star whose true altitude is arc AX indicated by 6.
If the line of sight is inclined at an angle of ¢ to the plane of the
sextant arc, the measured altitude will be arc XB indicated by ¢.

arc XA  sin /2

Now arc XB ~ sin /2
arc XA .
but oXB " cos AXB = cos¢
. . _sin 6/2
therefore: cost = m/—z

Let collimation error be € so that

€ = ¢ — 6
. sin 62
Now 1 = m
SIRREIN
ie. 2 sin“-;: _ sin ¢/szm = /szin 8/2
= 2 cos H($/2 + 6/2) sin ($/2 — 6/2)
sin ¢/2

Now (¢/2 + 6/2) may be assumed to be ¢ and (¢/2 — 6/2)
is €/2, therefore:

. g1 _ 2cos/2.sin e/4
2sin’s = — a2
. . g4 _ cos $/2.sin ¢/4
ie. sin 5 = ———m— 32
and sin = = sin? = tan ¢

4 272
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Now e and ¢ are small angles and no significant error will
result by assuming :

N € € .
sin — = - radians

Y
N

T : radians
sins = =
2 2

-l
ol

For values of £ = 1° and ¢ = 30°, 60°, 90°, ¢ = 0-3, 0:6 and
1-1 respectively.

It will be noticed that collimation error increases as the
measured angle increases. It is for this reason that when using
the method described above for detecting collimation error, the
two stars chosen should be widely spaced, so that the effect of
the possible inclination of the telescope is pronounced.

In addition to the four adjustable errors discussed above, a
sextant may give false results because of one or a combination
of several non-adjustable errors. The principal non-adjustable
errors are called centring error, prismatic error, shade error and
graduation error.

Centring error may result when the axis of the index bar does
not coincide with the centre of curvature of the graduated arc.
The magnitude of centring error varies with the position of the
index bar on the arc. Special optical apparatus is required for
detecting and measuring centring error. This apparatus is not
normally available to a navigator. Centring error may be detec-
ted by comparing measured angles with their known values
using a sextant which has been carefully adjusted for adjustable
errors.

It is unlikely that centring error of any consequence will be
found in a modern sextant. Careless use of the instrument,
however, leading to wear on the bush at the pivot of the index
bar, may lead to relatively large centring errors.

so that:
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Prismatic error may result if the back and front surfaces
of the index mirror or horizon glass are not parallel to one
another.

The directions of the reflections from the index mirror and
the silvered part of the horizon glass, and the direction of the
direct ray that passes through the unsilvered part of the horizon
glass, will be affected by refraction through any want of paral-
lelism of the two surfaces of the mirrors.

Any prismatic effect of the horizon glass will affect the index
error, and this effect may be eliminated by making the third
adjustment. Prismatic effect of the index mirror, however, cannot
normally be detected.

Shade error is the name given to error that may arise through
the non-parallelism of the surfaces of the shades, or through
lack of uniformity of the tint of the glass from which the shades
are made. Shade error for any shade, or any given combination
of shades, may be detected by comparing the values of fixed
-angles with and without the shades in place.

Graduation error may arise through faulty division of the
arc, micrometer drum and/or Vernier scale. By using the Ver-
nier principle graduation error, if it exists, may readily be
detected. It would be unusual to find graduation error on a well-
made sextant. In practice, therefore, this error is ignored.

SEXTANT ACCESSORIES

For the purpose of eliminating the effect of horizon glare, a
Nicol prism is fitted to some sextants. This is simply a polarizing
prism used like a telescope eyepiece. It is so fitted that when the
telescope is screwed home in its collar, the polarizing plane of
the prism is parallel to the plane of the arc of the sextant. Fitted
in this way the polarizing plane is perpendicular to the horizontal
when the sextant is used for measuring altitudes. The prism
allows the ‘extra-ordinary’ ray to be transmitted to the eye,
the intense glare being refracted upwards out of the prism.
Another useful device provided with some outfits is the
Wollaston prism for use when taking star sights. The Wollaston
prism, which is fitted between the index mirror and the horizon
glass is, in fact, a pair of prisms in the form of two wedges of
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different thicknesses or different refractive indices, so that two
distinct images of an observed star are formed.

When using the Wollaston prism the observer brings the two
reflected images of the observed star to a position such that the
horizon lies centrally between them. This device is of particular
value for observing stars when the horizon is indistinct.

A device called a lenticular or an elongating lens is often fitted
for use with star sights. This is a cylindrical lens fitted in a
frame or cell and housed with the index shades. The purpose of
the lenticular is to draw out the point image of the star into a
line, thus facilitating the measuring of star altitudes.

An artificial horizon is used ashore when the sea horizon is
not visible or when the observer’s height of eye above sea level
is not known. The traditional artificial horizon consists of a
shallow trough filled with mercury to provide a bright horizontal
reflecting surface. When using an artificial horizon of this type,
the angle between the body and its reflection in the mercury
is measured. Half this angle, after index etror has been applied,
is equal to the apparent altitude, regardless of the observer’s
height of eye above sea level.

The mercury horizon is useless for use on board ship unless
the ship is perfectly steady. The slightest acceleration of the
ship, especially through rolling or pitching, and the slightest
vibration, would cause the mercury surface to tremble and be-
come useless for observational purposes.

Many attempts have been made to provide the nautical
astronomer with an artificial horizon that may be attached to
the sextant. The most fruitful result of these efforts is the Booth
bubble horizon, commonly found on sextants used by airmen.
At the present time artificial horizons are seldom used by seamen.

CARE OF THE SEXTANT

The sextant is a precision instrument which demands careful
handling in order to preserve its adjustments and prevent it
from becoming damaged in any way. It should never be lifted
other than firmly by the frame or handle. Should it be dropped
or knocked sharply there is a big chance that it will be rendered
useless for its purpose.



214 THE COMPLETE NAUTICAL ASTRONOMER

When not in use the sextant should be kept in its case and the
case should be locked. It should be stowed securely in a suitable
cupboard or on a chartroom shelf.

A great enemy of a sextant is moisture, especially salt water
that may be allowed to remain on the mirrors or their cells. The
sextant should be quite dry before stowing. A small quantity
of silica gel, a substance which has a great affinity for water,
should be kept in the sextant case. If this advice is followed, it
may be necessary to dry out the silica gel occasionally in order
for its effectiveness to be maintained. Care should be taken in
drying or cleaning the sextant mirrors to prevent them from
being scratched by grit that may be present in the cloth or
chamois leather used for the purpose. The working parts of
the sextant should be oiled lightly when necessary.

A sextant should not be exposed unnecessarily to the direct
rays of the Sun. This treatment may lead to unsuspected error
in measured altitudes.

After adjusting a sextant, the adjustments should hold good
indefinitely. It should be borne in mind that frequent tinkering
of the adjustment screws may result in the threads wearing,
rendering the screws loose, with the resulting possibility of the
adjustments being thrown out.

The following remarks on the sextant made by the renowned
merchant seaman of the last century, Captain Lecky, are worth
repeating.

‘There is a proverb,’ wrote Lecky, ‘“You should never lend

to any one your horse, your gun, or your dog.” It applies also

to the sextant, only more so. Bear it in mind, dear boy.’



CHAPTER II

The Chronometer

A chronometer is an instrument designed for the purpose of
keeping accurate time on board ship.

We have seen in Part I that the essential problem of finding
longitude at sea is related to the comparison of local time with
a standard time at the same instant. The difference between
corresponding local and standard times is equivalent to the
longitude of the local meridian eastwards or westwards of the
standard meridian. The standard time used for this purpose is
Greenwich Mean Time, longitude being measured eastward or
westward from the Greenwich meridian.

The standard time with which computed local time is com-
pared for the purpose of finding the ship’s longitude is normally
provided by a ckronometer. A chronometer is an accurately
made timekeeper the important features of which are:

1. The energy derived from the wound mainspring is trans-
mitted through a train of gears and communicated by the
escapement to the balance, in a uniform manner by means
of a variable lever device known as the fusee.

2. Compensation for temperature changes is achieved by
means of a bi-metallic balance wheel.

The amount by which a chronometer gains or loses during
24 hours of Mean Time is called the chronometer’s daily rate.
The rate of a chronometer is related to temperature. A rise in
temperature causes the rate of a timekeeper fitted with a simple
uncompensated balance wheel to retard, whereas a fall in tem-
perature results in an accelerated rate. The purpose of the
compensated balance is to correct this defect.

The effects of a change in temperature are a change in the

15 ars
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tension of the balance spring and a change in the moment of
inertia of the balance wheel due to a change in the distribution
of the mass of the wheel.

The tension in the balance spring varies directly as tempera-
ture, whereas the moment of inertia of the balance wheel varies
as the square of the temperature. Accordingly, there are two,
and only two, temperatures at which temperature compensation
is correct. Chronometers are constructed so that they are correctly
compensated for temperature at two standard temperatures, viz.
45°F and 75°F (6°C and 24°C). At temperatures between the
standards a compensated chronometer should gain: at other tem-
peratures it should lose.

The chronometer is mounted on gymbals so that it maintains
a horizontal position despite rolling and/or pitching of the ship.
It should be housed in a permanent position in the chronometer
box in a locker which should be dustproof and insulated to
offset the effects of rapid changes in temperature.

Before the advent of radio time signals the chronometer pro-
vided the only satisfactory means of finding G.M.T., at any
time of the day or night. The rigorous routine related to the
management of a chronometer on board ship, which was formu-
lated in byegone days, has persisted to the present time. The
rules associated with the checking, winding and handling of the
precious tlmekeeper are still practised with an observance al-
most ritual.

Nowadays, when radio time signals are available at any time
of the day, the chronometer has lost some of its former glory.
Moreover, improvements made in watchmaking have resulted
in the availability of portable watches having a sufficiently high
degree of accuracy to obviate the need for the more expensive
chronometer.

The standard chronometer, which will run for about 56 hours
after winding, is described as a two-day chronometer. To ensure
a regular routine for winding, so reducing the possibility of an
uneven rate, a standard chronometer should be wound daily.
On merchant ships the Second Mate is usually entrusted with
the care of the ship’s chronometer, and it is part of this officer’s
duty to wind the chronometer at the same time every -day.
When the ship is at sea, the regular routine of the ship makes
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it unlikely for this important task to be overlooked. When the
ship is in port, however, distractions due to a variety of causes
often result in the chronometer remaining unwound. Allowing
a chronometer to stop through carelessness is an offence which
every self-respecting Second Mate lives in fear of committing.

In order to wind the chronometer, the instrument is first
turned on its side, and the guard covering the keyhole is slid
back. The key is then inserted and the instrument wound until
the key butts. This requires about seven half turns. The winding
key, called a tipsy key, is designed so that if it is turned in the
wrong direction the winding mechanism will not be stressed.
A small dial on the chronometer face serves to indicate whether
the chronometer is fully or partly wound.

It is very important that the chronometer is not allowed to
stop, especially on small vessels not fitted with radio. The es-
capement of a chronometer, unlike that of an ordinary watch,
is not self-starting. Should the chronometer stop, therefore, it
will be necessary, after winding it, to turn it sharply to right or
left in order to set it going. Should it be necessary to re-set the
hands, this should be done with the tipsy key before winding
the chronometer. On no account should the hands be turned
other than by means of the key, which is designed to fit over
the spindle to which the hands are fitted.

A chronometer should be cleaned and oiled regularly at
intervals of two or three years. This work should be undertaken
by or through a nautical instrument supplier.

Before transporting a chronometer from or to a ship it will
be necessary to wedge the balance wheel using two thin cork
wedges for the purpose. In order to do this the instrument is
removed from its box and the glass face unscrewed. The brass
case is then grasped at the bottom and, with the fingers of the
left hand placed around the top edge, the case is inverted and
lifted off the working part. The key must be used to ease the
working mechanism from the case should it be necessary to
force it. After inserting the wedges the chronometer should be
reassembled in its box and clamped in its gymbals. The box
containing the instrument should be carried carefully and it
should not be allowed to suffer jolts or shocks.

When the ship is to be laid up for a long period the chrono-
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meter should be placed under the care of a nautical instrument
supplier.

When a chronometer is delivered to a ship it is customary for
the nautical instrument supplier to furnish the navigator with a
Chronometer Rate Certificate, on which is written the error and
rate of the instrument. During the time when the ship is in
service it is important that a careful check be made, and a
record kept, of the chronometer rate. If this becomes erratic or
unduly large, chronometer times used for astronomical purposes
should be treated with caution. A British Admiralty chronometer
is regarded as being unfit for navigational purposes when its
daily rate is erratic or when its daily rate exceeds six seconds
per day.

A discussion on time signals and their use for checking
chronometers is given in Part IV, Chapter II. :



CHAPTER I1I

The Nautical Almanac

The word almanac comes from the Arabic al manakh meaning
the calendar. An almanac contains astronomical data, and a
nautical almanac provides the seaman with the astronomical data
he needs for position-finding using the methods of nautical
astronomy. It is a navigational instrument of the first importance
for without the information it provides the navigator’s sextant
and chronometer would be of little use.

The earliest almanacs used for astronomical navigation by
the Portuguese and Spanish navigators during the early period
of the Golden Age of Discovery, contained little more than that
necessary for finding latitude. It was not until the 18th century
that satisfactory methods for finding longitude at sea were avail-
able to the mariner, and it was during this time that the first
British Nautical Almanac was published. This almanac, which
was first published in 1766 for the year 1767, contained astro-
nomical data useful not only for finding latitude at sea, but
also for finding longitude. ’

The principal method for finding longitude at sea during the
century following the appearance of the first British Nautical
Almanac was the ‘lunar method’. This method involved meas-
uring the angle between the Moon and a selected star, planet or
the Sun, and, after clearing the measured angle for the effects of
refraction and parallax, comparing it with predicted lunar dis-
tances given in the almanac against G.M.T. Now that G.M.T.
is readily available to a navigator by means of his chronometer
or a radio time signal, it is no longer necessary to find longitude
at sea by means of the relatively complex lunar distance method,
and predictions of lunar distances are no longer available.

The essential problem in modern nautical astronomy is con-
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cerned with the relationship between the position of a celestial
body at any given instant of time using the horizon and equi-
noctial systems of co-ordinates respectively. The data contained
in the Nautical Almanac facilitates this problem.

The British Nautical Almanac is identical in contents with
the United States’ Nautical Almanac. It is published jointly
by H.M. Nautical Almanac Office and the United States’
Nautical Almanac Office. The British and United States’
Governments make available to any nation the data contained
in the almanac in a form suitable for direct photographic repro-
duction. At the present time the Brazilian, Danish and Nor-
wegian almanacs are produced under this arrangement.

The principal part of the British Nautical Almanac consists
of astronomical data by means of which the declination and
Greenwich hour angle (G.H.A.) of every celestial body used
in nautical astronomy may be ascertained for any instant of
G.M.T. The declination of an observed body is required to form
the side PX (polar distance of observed body) of the astronomical
triangle. The G.H.A’s of the navigational bodies are given so
thata local hour angle (L.H.A.) or a longitude may be found from
the relationship:

L.H.A. « ~ G.H.A. * = longitude

where * represents any celestial body.

The principal part of the almanac, therefore, consists of tables
- giving predicted positions of the Sun, Moon, navigational
planets, and the First Point of Aries, using the equinoctial
system of co-ordinates (Declination and G.H.A.), against
G.M.T. Such an astronomical table is called an ephemeris.

Tabulated values of G.H.A. and declination, given to an
accuracy of 0-1’, are given for every integral hour of G.M.T.
for the whole year, and special interpolation tables are provided
so that values for any G.M.T. may be found.

A table giving sidereal hour angle (S.H.A.) of each of the
navigational stars is provided. By applying the S.H.A. of a
star to the G.H.A. < for any given instant, the G.H.A. of the
star for the same instant may be found.

In addition to the ephemerides, the Nautical Almanac con-
tains a great deal of other information of use to the nautical
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astronomer. Included in this information are: a calendar of
religious and civil holidays, eclipse information, notes on planets,
times of Sunset and Sunrise, times of Moonset and Moonrise,
times of twilight, equation of time, times of meridian passage
of Sun and Moon, table of standard times, Pole Star tables,
star charts and altitude correction tables. In addition to this
information several pages of the Nautical Almanac are given
over to an explanation of the principles, arrangement and use,
of the almanac. Every nautical astronomer using this almanac
should be thoroughly familiar with this explanation.

Each pair of facing pages, known as daily pages, contains the
ephemeral data, arranged vertically, for three days. On the
left-hand daily page successive columns give G.H.A. v and
G.H.A. and declination of each of the four navigational planets
Venus, Mars, Jupiter and Saturn, followed by a table giving
the name, S.H.A. and declination, of each of fifty-seven selected
stars. At the bottom right-hand corner of this page the S.H.A’s
and G.M.T’s of meridian passage of the navigational planets
over the meridian of Greenwich are given.

The right-hand daily page contains the Sun and Moon
ephemerides. Twilight information, times of Sunset, Sunrise,
Moonset and Moonrise, are also given on this page. At the
bottom right-hand corner of the right-hand daily page will be
found the equation of time given for 00 hr and 12 hr for each
of the three days, the G.M.T. of the Sun’s meridian passage at
Greenwich, and the G.M.T. of the Moon’s upper and lower
transits at Greenwich, together with the age and phase of the
Moon.

The special interpolation tables provided in the Nautical
Almanac, which are placed near the end of the book, are printed
on tinted paper so that they are readily located.

The altitude correction tables are given at the front and back
of the book. Those for the Sun, stars and planets are given on
the inside of the front cover and the facing page; and those for
the Moon are given on the inside of the back cover and the facing
page. A dip table is duplicated in both sets of correction tables.

The Nautical Almanac dip table is a critical table. Values of
dip are calculated from the formula:

dip in minutes = 0-97VH
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where H is the height of the observer’s eye in feet above sea
level. The dip table is arranged so that at a critical entry the
, upper of the two values is to be taken.

The Sun’s altitude correction table, given on pages A2 and
A3 of the almanac, is the combined correction table for mean
refraction, mean semi-diameter for each of two periods (October
to March and April to September), and mean solar parallax.
The table is arranged critically in two parts, one for altitudes
greater than about 10°, and the other for altitudes between 0°
and 10°. Corrections are given for both lower and upper limb
observations, those for the latter including an irradiation correc-
tion of —1-2°,

The argument with which the Sun’s altitude correction table
should be entered is apparent altitude. This is the arc of a
vertical circle contained between a celestial object and the sen-
sible horizon. To convert the observed altitude, after index
error (if any) has been applied, into apparent altitude, the dip
correction must be applied to the former.

The mean refraction correction given in the altitude correc-
tion tables is based on a theory of refraction by B. Garfinkel
(see the Astromomical Journal, Volume 50, 1944), and is given
for a standard atmosphere having a temperature of 10°C and a
sea level pressure of 1010 millibars. For non-standard conditions
it is necessary to apply an additional correction which may be
found from page A4. This correction is particularly important
when the altitude of the observed body is small.

The altitude corrections for planets are the same as those for
stars; but for Venus and Mars additional corrections for parallax
and phase are necessary. Phase correction is necessary because
the direction of the actual centre of a planet is different from
that of its apparent centre. Phase correction is insignificant
except for the relatively near planets Venus and Mars. The
phase and parallax corrections depend upon the relative posi-
tions of the Sun and the planet, and upon the relationship
between the planet and the horizon. The corrections given in
the altitude correction table apply to twilight observations. Should
Venus be observed when the Sun is above the horizon, the phase
and parallax correction should be computed directly, using the
altitude, phase angle (the angle between the vertical circle through
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the planet and the direction of the Sun from the planet), and
constants p and k which are given in the Nautical Almanac.

The altitude correction tables for Sun, stars and planets,
given on page A2, are critical tables: those on page A3 are non-
critical. .

The Moon altitude correction table is a combined table giving
corrections for mean refraction, semi-diameter, augmentation and
parallax. The correction is in two parts, the argument for the
first correction, which is given in the top part of the table, is
apparent altitude. Those for the second part, which is given in
the lower part of the table, are apparent altitude, limb, and
horizontal parallax. The table is designed so that all correc-
tions are positive, but 30’ are to be subtracted from altitudes of
the Moon’s upper limb.

The practical use of the Nautical Almanac is described in
Part IV, Chapter 1.



CHAPTER IV

I.nspection and Short-Method
Tables

The term inspection table applies to a table giving direct solu-
tions of the PZX triangle. The earliest navigation inspection
tables were prepared by the great astronomer Cassini in about
1770. Cassini’s horary tables were designed to give local hour
angle as respondent against arguments latitude, declination and
altitude. Other early horary tables are those of Lalande pub-
lished in 1793, and Thomas Lynn published in 1827.

Lynn’s tables, like those of Cassini’s and Lalande’s, were
designed for Sun observations. They give tabulated solutions
for hour angle for each integral degree of latitude from 0° to
60°, of declination from 0° to 24° N. and S., and of altitude from
0° to 60°.

The early horary tables never became popular, largely on
account of the tedious interpolation that was necessary in order
to obtain accurate results from their use. Seamen have never
taken kindly to interpolation, and when triple interpolation is
needed, as is the case with the early horary tables, most seamen
prefer to solve their PZX triangles using the direct methods of
spherical trigonometry.

Improvements in horary tables made towards the end of the
last century were related to improved methods in interpolation.
Notable in this respect are the Chronometer Tables designed by
Percy L. H. Davis and published in 1897.

Following the introduction of the intercept method of sight
reduction, which came into general use in the Royal Navy in
the early part of the present century, attention was directed to
the task of designing inspection tables to give solutions of zenith
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distance (or altitude), against arguments latitude, declination
and hour angle. The first inspection tables designed for use
with the intercept method were those published in 1907 under
the authorship of the Royal Naval Instructor Frederick Ball.

Ball perceived that since in the intercept method the observer
may use any position near the D.R. position of his ship, it is
possible to.choose the position for solving a sight so as to have
an integral number of degrees of latitude and hour angle.
Interpolation, using this simple principle, was necessary, there-
fore, only for odd minutes of declination: the correction for
declination when using Ball’s tables was effected by means of a
small supplementary table.

The Altitude~Azimuth Tables of Percy L. H. Davis were
first published in 1917. These tables give both altitude and
azimuth against latitude and declination (each to an integral
degree), and local hour angle at intervals of eight minutes of
time. Davis’s tables became very popular, especially for finding
azimuths, for star identification, and for planaing sights. The
relative difficulty of interpolation in these, as well as in most
of the early inspection tables, spelt their doom, and they are
seldom used at the present time.

The growing need for a quick and simple method of sight
reduction has resulted in the publication of a comprehensive
set of inspection tables. These, the title of which is Tables of
Computed Altitude and Azimuth, were published by the United
States’ Government in 1946 in nine volumes. They are generally
known as H.0. 214 and are similar in design to Davis’s Chrono-
meter Tables referred to above.

The United States’ Hydrographer permitted the reproduction
of H.0. 214 by the Hydrographic Department of the British
Admiralty. The corresponding British tables, known as H.D. 486,
were published in six volumes, each volume embracing 15° of
latitude, in 1953,

The Tables of Computed Altitude and Azimuth formed at the
time the most comprehensive set of tables of altitude and azimuth
in existence. An important feature of the tables is that there are
no precepts connected with their use. The entering arguments
are latitude, declination and hour angle, and the respondents
are altitude to 0"-1 and azimuth to 0°-1.
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For each degree of latitude there are 24 pages of tables.
Declination entries are given at half-degree intervals, each entry
being given at the top of each of eight columns per page. The
declination entries cater for all celestial bodies of navigational
importance having declinations of up to 74° 30’. The extreme
left-hand column on each page is labelled H.A. meaning local
hour angle east or west of the local meridian. H.A. entries are
given for every integral degree from 0° to the top to the maxi-
mum value at which the altitude of the observed body is 5° or
more.

At an opening the left-hand page gives tabulated altitudes
and azimuths for cases in which the latitude and declination have
the same name. The right-hand page applies to cases in which
the latitude and declination have contrary names.

In each declination column there are four vertical columns
of figures. The figures in the first of these are in bold-faced
type and are altitudes. Those in the fourth are azimuths. The
second and third columns are labelled 4d and 4t respectively.
4d is the change in altitude for a change of 1’ in the declination.
At is the change in altitude for a change of 1’ in the hour angle.

The standard (and simplest) method of using H.D. 486 is
to work the sight using a chosen position the latitude of which
is an integral number of degrees, and the longitude of which is
such that the hour angle of the observed body is also an integral
number of degrees. By so doing the required altitude and azimuth
may be found with interpolation for declination only. The stan-
dard method of sight reduction involves the following steps:

1. Find G.H.A. and declination of observed body from the

Nautical Almanac.

2. Choose a latitude nearest in integral degrees to the ship’s
estimated latitude.

3. Choose a longitude nearest to the ship’s estimated longi-
tude such that when it is applied to the body’s G.H.A. a
L.H.A. of an integral number of degrees results.

4. Enter tables with latitude, L.H.A. and nearest tabulated
declination to that given in Almanac.

5. Extract altitude and azimuth and 44, noting whether 4d
is increasing or decreasing by inspection of neighbouring
declination columns.
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6. Multiply 4d by the difference in minutes of arc between
the declination from the Almanac and that used to enter
the tables. (A multiplication table is provided to facilitate
this process.)

7. Apply the 4d correction to the tabulated altitude.

8. Name the azimuth and find the required intercept.

The method is exemplified as follows:

exaMPLE: Using the extract from H.D. 486, find the calculated

altitude and the azimuth of a celestial body whose declination
is 12° 24’ N. The chosen latitude is 42° 00’ N. and the chosen
longitude yields an H.A. of 6° W.

Lat 42° ‘ Declination same name as latitude
12° 00’ 12° 30’
H.A.
Alt. A4d At Az Al 4d 4t Az
(-] ’ (-] -] ’ -]

4 |59 479 99 11 1722
05 |59 411 99 16 170-3|60 108 99 14 1701
6 |59 328 99 16 1684 | 60 02-4 99 16 168-2
7 |59 231 98 19 166-5|59 526 98 19

Enter table with latitude = 42° N
HA. = 6°
declination = 12° 30’ N
(N.B. Lat and dec same name)
Altitude = 60° 024 4d = -99
Adcorr = —59

Altitude = 59° 565’ Az = N. 168-2° W,

The principal disadvantage of using the standard method is
that each sight of a set requires the use of a chosen longitude
different from that of each of the remainder. This leads to
complication in plotting, for each intercept will have to be
plotted from a different position.

H.D. 486 is readily adapted for use with an estimated position;
but when so used, double or triple interpolation will be neces-
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sary. Instructions for use are given in the introduction to the
tables.

An interesting and valuable set of sight reduction tables, first
published in 1953, are those known as A.P. 3270. The Nautical
Almanac Office of the U.S. Naval Observatory and H.M. Nauti-
cal Almanac Office co-operated in the design and preparation
of these tables. They were originally planned in the United
States where they are published as H.0. 249. These tables, which
were designed essentially for air navigation, are in three vol-
umes. Volume I contains precomputed altitudes to the nearest
minute, and azimuths to the nearest degree, of six selected
stars for each integral degree of latitude and L.H.A. <. Vol-
umes II and III, which are identical in character—Volume II
covering latitudes 0°-39°, and Volume III covering latitudes
40°-89°—are designed for solving Sun-, Moon- and Planet-
sights. They may also be used for star-sights so long as the
declination is between 0° and 29° N. or S., this being the range
of declination covered by each of the two volumes.

Volume I of A.p. 3270 serves admirably not only for reducing
star-sights but also for planning twilight observations. All the
data relating to six well-placed stars for each degree of latitude
are presented on two facing pages of the tablés. The page head-
ing is latitude and the altitudes and azimuths of the six stars
are given in vertical columns against L.H.A. v as vertical argu-
ment. This arrangement facilitates seeing at a glance for any
given L.H.A. o the approximate altitudes and azimuths of the
six selected stars. The approximate altitudes can thus be set
on the sextant and each star observed in turn on its known
bearing.

What may be regarded as the tour de force in connection with
inspection tables are the newly published (1967) Sight Reduc-
tion Tables for Marine Navigation.

Although H.0. 214 (H.D. 486) is not without imperfections it
was not, until recently, thought that the enormous task of re-
computing, proof-reading and rearranging the tabular material
to improve the efficiency of the tables warranted the expense
and labour that would be entailed in replacing it. However,
with the availability of electronic computers and other improve-
ments which make for high-speed setting and checking, the
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position has changed. Accordingly the U.S. Naval Oceanographic
Office (formerly the U.S. Hydrographic Office) decided to under-
take a design study for a possible replacement of H.0. 214 (H.D.
486). The result has been the publication of Sight Reduction
Tables for Marine Navigation, the production of which has been
the co-operative effort of the U.S. Naval Oceanographic Office,
the Nautical Almanac Office of the U.S. Naval Observatory
and H.M. Nautical Almanac Office.

In producing this new work the aim was to provide the mariner
with tables by which, with conventional methods of observation
and altitude correction, the highest precision possible is attain-
able.

The tables appear in six volumes. Altitudes to the nearest
0’-1, and azimuths to the nearest 0°-1 are tabulated for all
combinations of latitude, L.H.A., and declination at uniform inter-
vals of 1°. Interpolation is required only in respect of declina-
tion—specially designed tables being provided for this purpose.

Inspection tables provide what are sometimes called tabular
methods of sight reduction. Two other categories of methods of
sight reduction are direct methods and mixed methods.

In the so-called direct methods of sight reduction nothing
more than a number of single entry tables are required, and
interpolation is completely avoided. In the tabular methods
considerable interpolation is necessary unless the table is ab-
normally bulky and therefore expensive. The H.D. 486 inspec-
tion tables discussed above, for example, form a veritable
library of six volumes, each volume containing about 360 large
pages. The so-called mixed methods include those in which the
PZX triangle is split by dropping a perpendicular great circle
from one of its corners—usually X or Z—on to the opposite
side: and solving the PZX triangle for altitude or hour angle
andfor azimuth. The tables designed for mixed methods are
usually called short-method tables. We shall discuss some of
the mixed methods and their associated short-method tables in
this chapter, reserving a discussion on some of the direct methods
for Part IV, Chapter IV.

Numerous attempts have been made and a great deal of
energy expended by many brilliant mathematicians in producing
short methods of nautical astronomy by which the seaman may
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be aided in solving his PZX triangles. Notable amongst these
attempts was that made by Sir William Thomson (later Lord
Kelvin), who published what may be regarded as the first short-
method table for astronomical navigation.

Sir William Thomson is credited with being the first to
apply the well-known device of dividing an oblique spherical
triangle into two right-angled spherical triangles, to facilitate
solution, to the needs of nautical astronomy in respect of finding
longitude at sea. Thomson’s remarks on solving PZX triangles
are interesting:

‘... When we consider the thousands of triangles calculated
daily among all the ships at sea we might be led for a moment
to imagine that every new calculation is merely a repetition
of one already made. But this would be 2 prodigious error:
for nothing short of accuracy to the nearest minute in the use
of the data would thoroughly suffice for practical purposes.
Now there are 5400’ in 90° and therefore there are 5400°
or 157,464,000,000 triangles to be solved each for a single
angle. Even with an artifice such as that to be described, for
utilizing solutions of triangles with their sides integral num-
bers of degrees, the number to be solved (being 90%) or
729,000, would be too great, and the tabulations of the solu-
tions would be too complicated (on account of the trouble of
entering for the three sides) to be convenient for practice;
and tables of this kind which have already been actually cal-
culated and published (as for example Lynn’s Horary Tables
of 1827) have not come into general use.’ (Nautical Magazine,

1871).

It occurred to Thomson that by dividing the problem into
the solution of two right-angled triangles, the ship’s position
could be found without recourse to calculation. Thomson’s
method, in which the PZX triangle is split into two right-angled
- triangles by dropping a perpendicular from the observed body
on to the observer’s celestial meridian, is the first of numerous
methods in which the same technique is employed.

By clever design Thomson’s tables, which were published in
1876, are amongst the briefest of those produced for the same
purpose. Despite the ingenuity and mathematical talent of their
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inventor, and largely because of the complexity of the rules for
using them, Thomson’s tables were not a success. It is the com-
plexity of the rules for using them that is the principal drawback
of most short-method tables. However, once the rules are
mastered, and sufficient practice has been obtained in the use
of any of most of the short-method tables, a considerable saving
of time, as compared with that needed for most of the direct
methods, and even some of the tabular methods, is effected.

Short-method and inspection tables are not generally used
in the Merchant Navy, the officers of which seem to cling to the
cumbersome direct methods using logarithms. The Board of
Trade Examiners of Masters and Mates appear not to recognize
any but direct methods for sight reduction, and this, seemingly,
is a factor which detracts many Merchant seamen from learning
short methods. ‘

The late Vice-Admiral Radler de Aquino ranks as one of the
greatest navigators, and a foremost authority on short-method
tables, of his times. He first published his famous Altitude and
Asimuth Tables, which he described as being ‘the simplest and
readiest in solution’, in 1907. The remarks with which he pre-
faced the English editions of his early tables are interesting:

¢ Attention!’

‘Would you ever think of going to the trouble of calculating
the elements of the Nautical Almanac . . . when the Nautical
Almanac office tabulates these data for you? Would you ever
think of working out your D.R. by means of formulae and
logarithms when the Plane Traverse Table facilitates the
direct solution of all problems related thereto?

Why then go to the trouble to solve the astronomical
triangle by means of complicated formulae and logarithms
when we have tabulated its elements in our Altitude and
Azimuth Tables (spherical traverse tables) and have given the
simplest and readiest methods for solving all problems re-
lated thereto?’

Aquino’s tables were designed for use with the intercept
method. Aquino’s aim was to provide a means of dispensing with
logarithms and with only a limited amount of interpolation to

16
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determine the zenith distance and azimuth of an observed body
for an assumed position.

Aquino’s Altitude and Azimuth Tables are based on the splitting
of the PZX triangle into two right-angled triangles by dropping
a perpendicular great circle from the observed body on to the
observer’s celestial meridian. They form, in effect, a spherical
traverse table for two right-angled triangles PMX and ZMX,
M being the foot of the perpendicular from X on to the observer’s
celestial meridian. The side MX, being common to both tri-
angles, acts as a link.

An interesting navigational method based on the Marcq
St. Hilaire principle was published in 1920 by the Hydrographic
Department of the Japanese Navy. This publication, entitled
New Altitude and Azimuth Tables between 65° N. and 65° S. for
the Determination of the Position Line at Sea, was the work of
S. Ogura of the Japanese Navy.

In using Ball’s or Aquino’s Altitude and Azimuth Tables, the
navigator makes use of an integral number of degrees in his
assumed latitude and the local hour angle. The same technique
is used in Ogura’s method.

FIGURE 1
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In Ogura’s method the PZX triangle is split by a perpendicular
great circle from Z on to the opposite side or side produced, as
in Fig. 1.

The declination of the point B at the foot of the perpendicular
from Z is denoted by X.

When the latitude of the observer and the declination of the
observed body have contrary names the arc BX is equal to the
sum of K and the body’s declination. When the latitude and
declination have the same name the side BX is equal to the
difference between K and the declination of the body. In
general:

BX = (K t d)
where d is the declination of the observed body.
Referring to Fig. 1:

In triangle PZB (known as the Time triangle) we have, from
Napier’s rules:

tan PB = cos P tan PZ
Inverting this we have:
cot PB = sec P cot PZ

ie. tan K = sec P tan lat (1
Also: sin BZ = sin P cos lat
from which:
cosec BZ = cosec P sec lat (2)

In triangle BZX (known as the Altitude or Zenith Distance
triangle) we have, from Napier’s rules:

cos ZX = cos BZ cos BX
from which:
sec ZX = sec BZ sec (K £ d)
or:
log sec ZX = log sec BZ + log sec (K £ d)

Ogura’s method marked a distinct advance in nautical astro-
nomy. All that was necessary to find the calculated zenith dis-
tance when using the intercept method, was to lift 4 and K
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from a specially designed table, combine K with the declination
of the observed body, then add the log secant of (K + d) to 4
(which latter element is log sec BZ) to give the log secant of the
required zenith distance.

The principal feature of Ogura’s method is its conciseness,
and his table involves complete freedom from interpolation.

H. B. Goodwin, a well-known writer on navigation and
nautical astronomy during the early part of the present century,
suggested that Ogura’s table might well be included in the com-
mon nautical table collections. Goodwin’s suggestion seems to
have borne fruit, for in 1924 a table entitled Short Method for
Zenith Distance was published in Norie’s Nautical Tables as
the A4 and K Tables.

The Altitude- Azimuth Table contained in the present Norie’s
collection is designed to give the azimuth of the observed body
as well as its calculated altitude. The reader is referred to the
explanation given in Norie’s tables.

The well-known Hughes' Tables for Sea and Air Navigation,
first published in 1938, are designed on Ogura’s method. These
tables, the tabulated quantities of which were mechanically com-
puted, was skilfully designed by the late Doctor L. J. Comrie
of the British Nautical Almanac Office.

An interesting short-method table designed specifically for
the air navigator, but now adapted for marine use, is the Rapid
Altitude and Azimuth Tables by Myerscough and Hamilton.
These tables are similar to Ogura’s, the PZX triangle being
divided by dropping a perpendicular great circle from the zenith
on to the side PX or PX produced, and are designed for use
with a chosen position the latitude of which has an integral
number of degrees, and the longitude of which yields a L.H.A.
having an integral number of degrees.

The data in the Myerscough and Hamilton tables are laid
out in a clear manner in order to facilitate the solution of the
altitude and azimuth with the minimum of effort. The azimuth
table is based on the 4, Band C Table principle which is described
in the following chapter.

" Most short-method tables make use of a position having an
integral number of degrees in its latitude and a longitude which
produces an integral number of degrees in the hour angle. A
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popular table of the present time is that compiled by J. C.
Lieuwen by order of the Netherlands Ministry of Marine.
Lieuwen’s tables are based on Ogura’s principle and are designed
for use with a D.R. position. .

The Netherlands’ edition of Lieuwen’s tables, after the tables
had been tested by a committee under the chairmanship of the
Chief of the Netherlands Hydrographic Office, has been made
compulsory for all schools and colleges of the Netherlands Royal
Navy and Mercantile Marine. An English edition has been
published by Messrs. George Philip and Son Limited.



CHAPTER V

Miscellaneous Nautical Tables
and Instruments

In this chapter we shall discuss some of the tables and instru-
ments used by nautical astronomers, other than the essential
tables and instruments described in other chapters of this book.
In particular we shall discuss azimuth tables and diagrams, star
globes and star finders, and slide rules designed for nautical
astronomy. 4

For the purposes of checking compasses a navigator employs
the true azimuth of a celestial body. The true azimuth of a
heavenly body is a measure of the arc of the horizon contained
between the observer’s celestial meridian and the vertical circle
through the body. This angle, when compared with the compass
bearing at any given time, enables the navigator to ascertain the
error of his compass for the heading of his ship at the time.

As well as providing the means for checking compasses, the
true azimuth of a celestial body whose altitude is observed for
the purpose of position-line navigation serves to enable the
observer to ascertain the direction of a position line—this being
at right angles to the azimuth of the observed body at the time of
the observation.

In pre-position line days the purpose of finding the true azi-
muth of a celestial body (particularly that of the Sun) was
geared almost entirely to the need for checking compasses.
With the advent of iron and steel ships the need for compre-
hensive and simple azimuth tables became acute, and the earliest
azimuth tables were designed essentially for use in connection
with magnetic compass checking.

Captain Thomas Lynn, famous for his inspection tables which

236
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are mentioned in Chapter 4, produced a large azimuth table
as early as 1829. Lynn’s azimuth table gave azimuths of the
Sun against latitude of the observer and declination and altitude
of the Sun.

The most famous of all azimuth tables is the monumental
work of Staff Commander John Burdwood, R.N., Tables of
Sun’s True Bearing or Azimuth, devised by Burdwood and
first published in 1852. These were enlarged, first by Burdwood
himself, and later by Captain John E. Davis, R.N., and his son
Percy L. H. Davis of the British Nautical Almanac Office.
Burdwood’s and Davis’s azimuth tables are designed to give
azimuth against latitude of the observer and declination and
hour angle of the Sun. They cover all latitudes between 64° N.
and 64° S.

With the advent of position-line navigation, which dates from
the middle of the 19th century, existing azimuth tables afforded
a ready means for finding the azimuth, and thence the direction
of a position line obtained from an altitude observation of a
celestial body.

The popularity of Burdwood’s and Davis’s tables are matched
only by the celebrated 4, B and C Tables. These tables are used
extensively by navigators of all nationalities, and in particular
by those who use the direct methods of sight reduction in
preference to the less troublesome and less time-consuming
mixed or tabular methods.

The A, B and C Tables found in collections of nautical tables,
such as those of Burton’s and Norie’s, are of great practical
utility. The history of these interesting tables dates from 1845
when Lieutenant (later Admiral) L. G. Heath, R.N,, invented
the original 4 and B Tables which are described in the Nautical
Magazine of 1846.

The original purpose of the 4 and B Tables was to facilitate
finding the noon longitude, as soon as the noon latitude had
been obtained from a meridian altitude observation of the Sun,
from the a.m. Sun sight.

Heath’s 4 and B Tables were based on the relationship:

Error in longitude due to error in latitude
oc tan lat cot H.A. + tan dec cosec H.A.
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Values of tan lat cot H.A. were tabulated as A4 against argu-
ments latitude and hour angle; and values of tan dec cosec H.A.
were tabulated as B against arguments declination and hour
angle.

By combining 4 and B, the error in longitude due to an error
of one minute error in latitude is found. This error in longitude
is commonly called the longitude correction or longitude factor.

Longitude correction = 4 + B

A short while after the first appearance of Heath’s 4 and B
Tables, a Royal Naval Instructor named J. N. Laverty published,
for private circulation, 2 small work in which he included a
table from which the longitude factor could be lifted using
arguments latitude of observer and azimuth of observed body.

Laverty’s longitude correction table is based on the relation-
ship:

Longitude correction = cot Az sec Lat

Heath’s A and B Tables, enlarged by Blackburne and Lecky,
and Laverty’s longitude correction table enlarged by Johnson
and Lecky, were first combined by a well-known nautical
teacher of his day and an editor of Norie’s nautical tables and
epitome, named W. H. Rosser. Rosser’s A, B and C Tables
first appeared in the Norie’s collection in 1889.

A, B and C factors may be derived from the four-parts for-
mula of spherical trigonometry. This formula applied to the
astronomical triangle reduces to:

cot Zsec$p = —tan ¢ coth + tan d cosec h
where Z = azimuth of observed body
¢ = observer’s latitude
d = declination of observed body
h = H.A. of observed body
Now: cot Zsecdp = C
| —tandcoth = 4
tan d cosech = B
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therefore:
A+B=C

By combining 4 and B factors and entering with this com-
bination as one argument C in the 4, B and C Tables, the
azimuth of the observed body may be lifted using latitude as
the second argument. :

The azimuth of a celestial body is the angle at the observer’s
zenith contained between the observer’s celestial meridian and
the vertical circle through the body. It is an angle in the PZX
triangle and its value lies between 0° and 180°. If the latitude
of the observer and the declination of the body have different
names, the azimuth of the body is always greater than 90°.
The azimuth of a body is always less than 90° when the declina-
tion of the body is of the same name as but of greater magnitude
than the observer’s latitude. When latitude and declination
have the same name, but the declination is smaller than the
latitude, the azimuth of a celestial body may be less or greater
than 90°. Azimuth is always named according to latitude and
hour angle.

The rising amplitude of a celestial body is a measure of the
arc of the horizon between the east point of the horizon and the
body when it rises out of the horizon. The angle between the
west point of the horizon, and an object when setting is called
the object’s setting amplitude. The amplitude of a body is always
named from East or West and takes the name of the body’s
declination.

An amplitude table is commonly found in collections of nautical
tables. In amplitude tables the amplitude of a body is tabulated
against latitude of observer and body’s declination, assuming -
the body to have a true altitude of 00° 00’. The true altitude of a
celestial body is 00° 00’ when it lies on the celestial horizon.

Tabulated amplitudes in amplitude tables are computed from
the relationship:

sin amplitude = sin dec sec lat

This is proved with reference to Fig. 1.
Each of the diagrams in Fig. 1 represents the celestial sphere
drawn on the plane of the horizon of an observer whose zenith
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is projected at Z. P represents the celestial pole and X a body
- rising having an amplitude of 6°.

(a)

e/

AN

(b)
FIGURE I
In the quadrantal triangle PZX:
P is the hour angle of X at rising denoted by %
PX = (90 1 d), where d is the declination of X
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PZ = (90 — ¢), where ¢ is the observer’s latitude
Z = (90 + 6), where 0 is the amplitude of X.
Applying Napier’s rules to the triangle PZX, we have:

8in co PX = cos Z cos co PZ

i.e. cos PX = sin 8 sin PZ
ie. sin d = sin f cos ¢
and sin amplitude = sin dec sec lat

Numerous azimuth diagrams have been devised to facilitate
finding the azimuths of celestial bodies. An interesting azimuth
diagram is that invented by a British Merchant Service master
of the last century named Patrick Weir. Weir’s diagram, which is
still published by the British Hydrographic Department, and
which until recently was popular in the Royal Navy, is a diagram on
which hour angles and latitude are represented by confocal
hyperbolae and ellipses respectively.

As well as graphical solutions for azimuths several graphical
solutions for hour angle and zenith distance have been devised.
An interesting diagram designed for this purpose is based on the
stereographical projection of a model globe of radius six feet.
The projection is divided into several sheets bound together and
capable of giving zenith distances and hour angles to an accuracy
of one minute of arc. This work was published by George Little-
hales of the United States’ Hydrographic Office.

The realization that latitude and local sidereal time (or local
hour angle of the First Point of Aries) are defined by simultaneous
altitudes of two celestial bodies of given declination and sidereal
hour angle (or Right Ascension), led to the invention in 1923
of the Two-Star Diagram by K. Biej of the United States.
Curves on the Biej diagram correspond to altitudes of selected
stars. Simultaneous observations of the altitudes of the two
stars enables the observer to find latitude and L.S.T. direct
from the diagram. The longitude is then found by taking the
difference between the L.S.T. and the G.S.T.

The renowned navigator of the present time, Captain, P. V. H.
Weems of the United States, devised his famous Star Altitude
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~ Curves on lines similar to those of Biej. Weems’s Star Altitude
Curves, which first appeared in 1928, are plotted on a chart on
which the latitude scale conforms with that on a Mercator chart,
so that the azimuth of the body to which a particular curve
applies is at every point at right angles to the tangent to the
curve at the point.

By means of Weems’s Star Altitude Curves an observed posi-
tion may be obtained from the altitude curves of the two or
three selected stars in a matter of a couple of minutes without
reference to declination, S.H.A., L.H.A., azimuth, D.R. posi-
tion, and without the use of the Nautical Almanac or other
tables with the exception of altitude correction tables.

The disadvantages of altitude curves are first, the limited
number of stars for use with the method, and second, the curves
apply to one epoch and it is necessary to apply corrections to
the curves when used at a time different from that for which the
curves are computed, to allow for the changing declination and
S.H.A. of the stars employed, on account of precession and
nutation of the Earth’s axis, and the proper motion of the stars
used.

The Baker navigation machine, invented in 1919 by Com-
mander Baker, R.N., employs prepared altitude curves traced
on a transparent tape wound on two rollers. The tape, which
moves across a Mercator plotting chart, is marked with altitude
curves for a series of suitable stars. Several tapes are provided,
each occupying a small range of declination.

Numerous attempts have been made to provide the nautical
astronomer with an instrument for the direct solution of the
nautical astronomical problem. The globe of the early ocean
navigators marked the first navigational instrument that could
be adapted for this purpose. Although there have been many
modern attempts to adapt a globe, on which is marked a grati-
cule formed by the circles employed in nautical astronomy, for
the purpose of solving PZX triangles with a high degree of
accuracy, they have not met with commercial success. The term
star globe applies to an instrument designed essentially to give
approximate solutions to the problems of nautical astronomy.

The star globe of the present time is used chiefly for star
identification purposes. A globe, usually about eight inches in
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diameter, is marked with the navigational stars, and with a
graticule formed by parallels of declination and hour circles.
It is housed in a box and may be rotated within a brass meridian
ring which lies on a vertical plane, and which is graduated in
degrees. The lower hemisphere of the globe lies within the box
and is invisible. The top surface of the box within which the
globe is housed is also graduated in degrees, and the intersection
of this surface with the globe represents the observer’s horizon.

The star globe is set by placing the celestial pole on the globe
in such a position that its altitude is equal to the observer’s
latitude. By rotating the globe within the meridian ring until
the hour circle corresponding to the observer’s celestial meri-
dian coincides with the meridian ring, the aspect of the visible
hemisphere is truly portrayed for the time in question. The
altitude and azimuth of a given star may then be lifted from the
globe. Conversely using a given altitude and azimuth, a star
may be identified.

A useful instrument which serves the same function as, but
replaces the more costly star globe, is the star identifier or
planisphere. A very popular star identifier is that invented by
Captain G. T. Rude of the United States’ Coast Guard. The
Rude Star Finder consists of a thin white plastic disc about 8
inches in diameter and having a small pin at its centre. Naviga-
tional stars having north declination are marked on one side of
the disc the centre of which represents the north celestial pole.
The other side of the disc is marked with the navigational stars
of the southern celestial hemisphere. The circumferential edge
of this disc is graduated in degrees of L.H.A. < from 0° to 359°.
Together with the white opaque base plate, as the disc is called,
is a series of transparent discs each having the same dimension
as the base plate. Each of these may be fitted over the central
pin of the base plate.

Each of nine transparent discs is marked with families of
altitude and azimuth curves—the former ellipses and the latter
hyperbolae—covering a range of 10° of latitude. A tenth trans-
parent disc is printed in red with concentric circles representing
parallels of declinations and intersecting diametrical lines repre-
senting hour circles.

To use the Rude Star Finder, the appropriate transparent disc
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is fitted over the base plate and oriented so that the north~south
azimuth line on the transparent disc coincides with the L.H.A. <
on the base plate. The L.H.A. < is found by applying the ob-
server’s longitude to the G.H.A. °r extracted from the Nautical
Almanac for a given G.M.T. Having done this the star finder is
correctly set for the purpose of finding the approximate azi-
muths and altitudes of the visible navigational stars. The red
printed template is used for plotting the declinations and S.H.A’s
of the Moon and the navigational planets to enable the observer
to estimate their altitude and azimuths at any given time.

The Rude Star Finder is a useful instrument for planning
star sights for it enables an observer to ascertain the approximate
altitudes and azimuths of the visible navigational stars. It may
also be used to identify stars using their approximate altitudes
and azimuths in order to find their declinations and S.H.A’s.

The Slide Rule is sometimes used for solving nautical astro-
nomical problems. The principle of the slide rule is that the
logarithm of a product of two numbers is equal to the sum of
the logarithms of the numbers. Thus, if two successive segments
are set off along a straight line, of lengths equal to log A and
log B on a given scale, their sum would be the log of the product
of A and B on the same scale.

The object of an inventor of a navigational slide rule is to
adapt the scales to suit the particular computations of nautical
astronomy. Popular slide rules designed specifically for navigators
are those invented by Podmore and Carmody.

The Bygrave cylindrical slide rule, invented in 1922 by Captain
L. C. Bygrave, consists of two concentric cylinders which slide
relative to one another. The inner cylinder is graduated with a
spiral scale of log tangents, and the outer one with a spiral
scale of log cosines. The solution of the PZX triangle by means
of the Bygrave slide rule is based on a formula involving tan-
gents and cosines. Two pointers are provided on a third sliding
cylinder concentric with the other two. After a little practice
the solution of altitude and azimuth may be found to an accuracy
of a minute of arc within a couple of minutes of time.



PART IV

Practical Nautical Astronomy



CHAPTER 1

The Use of the Nautical Almanac

The principal tables in the Nautical Almanac are found on the
so-called daily pages. These tables facilitate finding for any
given G.M.T. the G.H.A. and declination of any of the celestial
bodies used in nautical astronomy.

The argument used in the tables of G.H.A. and declination is
G.M.T., and the respondents are tabulated for every integral
hour of G.M.T. for the whole year of the Almanac.

Interpolation for times other than integral hours of G.M.T.
is facilitated by the interpolation tables described as ‘Increment
and Correction Tables’, which are bound with the Almanac.

To find the G.H.A. and declination of the Sun at a G.M.T.
other than one having an exact number of hours, the Sun table
on the appropriate daily page is entered with the nearest G.M.T.
preceding the given G.M.T. The tabulated G.H.A. and declina-
tion, and also the d valie given at the foot of the table, are
extracted. The Increments and Corrections Tables are then
entered with the additional number of minutes and seconds as
argument, and the increment from the column labelled sunN
PLANETS is extracted. This, when added to the tabulated G.H.A.,
gives the required G.H.A. The correction to the tabulated
declination is found from the same page as that used for finding
the increment to the G.H.A., in this case entering the ‘v or d
correction table’ with d as argument. Care is necessary in
applying the ‘d correction’ in the correct sense. This is done
by noting how the declination is changing: whether towards
the north or south.

To find the G.H.A. and declination of the Moon for a G.M.T.
other than one having an exact number of hours, the MOON
table on the daily page is entered with the whole hour preceding
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the given G.M.T., and the tabulated values of the G.H.A. and
declination are extracted. In addition, the corresponding ‘v and
d values’ are lifted. The Increments and Corrections Table is
then entered with the additional minutes and seconds of G.M.T.
and the increment to the tabulated G.H.A. of the Moon is
extracted from the column labelled MooN. The correction table
on the same page is then entered with ‘v’ as argument and the
‘v correction’ extracted. Both increment and correction are then
ADDED to the tabulated G.H.A. The procedure for finding the
declination of the Moon is the same as that for finding the Sun’s
declination.

To find the G.H.A. and declination of a planet for any
G.M.T. other than one having an exact number of hours, the
procedure is similar to that for the Sun except that a ‘v correc-
tion’ is usually necessary. The ‘v correction’ is to be added for
all planets with the possible exception for Venus. When finding
the G.H.A. of Venus it is necessary to note whether the sign of
the ‘v value’ on the daily page is negative or not.

To find the G.H.A. of a selected star, the appropriate daily
page is entered with the integral hour of G.M.T. next preceding
the given G.M.T. in the column labelled Aries. The increments
table is then entered with the additional minutes and seconds
of G.M.T. and the increment to the tabulated G.H.A. of Aries
is lifted. This is added to the tabulated G.H.A. of Aries to find
the G.H.A. of Aries for the given G.M.T. The S.H.A. of the
selected star is then extracted from the Star Table on the daily
page. The S.H.A. of the star is added to the G.H.A. of Aries
to give the required G.H.A. of the star. The declinations of the
selected stars are tabulated in the Star Tables on the daily
pages. Should the observed star not be a selected star it will be
necessary to extract the star’s S.H.A. and declination from the
Navigational Stars Table to be found near the back of the
Almanac.

Great care is necessary when using the daily pages of the
Abmnanac to ensure that the required data for the correct day is
extracted. The data for Aries, Moon and Sun for three con-
secutive days are arranged vertically on the daily pages, and it
is a common blunder to extract the data from the wrong part of
the page. A good practice, which helps to reduce this possi-



THE USE OF THE NAUTICAL ALMANAC 249

bility, is to score out the data in the Almanac for each day as
soon as convenient after the Greenwich date changes.

The worked examples given in the Al/manac and the associated
notes should be studied carefully.

RISING AND SETTING PHENOMENA

The times of Sunrise, Sunset, Moonrise and Moonset, and the
times of the beginning and end of civil and nautical twilight,
are given for the range of latitude between the parallels of
72° N. and 60° S., at a tabular interval of 2°, 5° or 10°. Tabulated
times are given to the nearest minute, and special symbols are
used to indicate that the Sun or Moon is circumpolar (OJ);
twilight lasts all night (////); Sun or Moon does not rise above
the horizon (mm). The tabulated times apply strictly to the
middle of the three days of the page opening, and they are com-
puted using the average values of declination and equation of
time. For most cases, the tabulated times may be assumed to
hold good for each of the three days. They are G.M.T’s of the
phenomena at the Greenwich meridian, and approximate to the
L.M.T’s of the phenomena over other meridians.

Interpolation for latitude and longitude, if necessary, is
facilitated by using Tables I and II provided near the end of
the Almanac. '

The twilight tables are useful for planning star observations.
The best time for star observations occurs when the horizon is
still clear after sunset or before sunrise, and the required stars
are still visible. This usually occurs near the time of the begin-
ning of nautical twilight in the evening or the beginning of
civil twilight in the morning.

THE CORRECTION OF SEXTANT ALTITUDES

The term sextant altitude applies to the angle read off the sextant.
after a celestial body has been observed for aititude. It is neces-
sary to apply the altitude corrections described in Part II,
Chapter I, to the sextant altitude to obtain the true altitude of
the observed body.

Correction for index error (if any) is applied to the sextant
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altitude to obtain the observed altitude. The observed altitude
may be described as the altitude read from the sextant when the
instrument is in perfect adjustment. The remaining corrections
are applied to the observed altitude to obtain the true altitude.

The practical method of correcting altitudes is to use the
Altitude Correction Tables printed in the Nautical Almanac.
These tables are located on the backs of the covers and on the
fly-leaves. Those for the Sun, stars and planets, appear at the
front of the Almanac, and those for the Moon at the back.

The dip correction is first to be applied to the observed alti-
tude to obtain the apparent altitude. The apparent altitude is
used as an argument when entering the appropriate Main Cor-
rection Table.

The Sun Altitude Correction Table provides for lower limb
and upper limb observations. The corrections for lower limb
observations are printed in heavy type and those for the less-
frequently used upper limb observations are printed in light
type.

To allow for the change in the Sun’s semi-diameter the Sun
Altitude Correction Table is in two parts. One part is for use
during the period October to March, that is to say, the six-
months period three months on each side of the approximate
date of perihelion at which time the Sun’s angular diameter is
greatest. The other part is for use during the period April to
September, that is to say, the six-months period three months
on each side of the approximate date of aphelion, at which time
the Sun’s angular diameter is least for the year. It will be noticed
that the difference between corresponding corrections for the
two periods amounts to 0’2,

The Sun Altitude Correction Tables are critical tables in
which the variable interval of apparent altitude corresponds to a
constant interval of 0’-1 in the corrections. If, for example, the
apparent altitude of the Sun’s lower limb during the period
October to March is anything between 16° 28’ and 15° 59’, the
main correction is 13’-04. The tabular values are arranged so
that at a critical entry the upper of the two possible values
of the correction is to be taken. Thus, if the apparent altitude of
the Sun’s lower limb is 15° 59’ the main correction is 129+ :
if it is 16° 28’ the main correction is 13'-0+.
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The main altitude correction for Sun observations includes
corrections for refraction, semi-diameter, parallax and irradia-
tion.

The Altitude Correction Table for stars and planets is entered
with the body’s apparent altitude and the main correction is
extracted. An additional correction is required for Venus and
Mars to allow for parallax and phase. This additional correction
varies with the time of year and with the altitude of the
planet.

The Altitude Correction Tables for the Moon are entered
with apparent altitude to obtain the first part of the correction.
With the Moon’s horizontal parallax (obtained from the daily
pages), and the first part of the correction as arguments, the
second part of the main correction is extracted.

Moon altitude corrections are always additive to the apparent
altitude, but 30’ is to be subtracted from altitudes of the Moon’s
upper limb. To facilitate correcting the Moon’s altitude, a
Dip Table is duplicated on the back flyleaf of the Nautical
Almanac.

The Altitude Correction Tables described above are based
on a mean refraction corresponding to that in which the air has
a sea-level pressure and temperature of 30 inches of mercury and
50°F respectively. Should the atmospheric conditions of pressure
and temperature be non-standard, it may be necessary to apply
an additional correction to the main correction. This correction
may be of particular significance when the altitude of the ob-
served body is small.

The explanations of the Altitude Correction Tables that are
given in the Nautical Almanac, and the examples provided, should
be studied carefully by the student.

The Pole Star Tables provided in the Nautical Almanac are
discussed in Part III, Chapter III.

An interesting and useful feature of the Nautical Almanac is
the section headed PLANET NoTEs. These notes are designed to
assist in the identification of the navigational planets and Mer-
cury, and to prevent confusing one with another. Associated
with the Notes is an ingeniously contrived diagram from which
the S.H.A. of any of the five planets Mercury, Venus, Mars,
Jupiter and Saturn, and the local mean times of their meridian
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passages for any day of the year may be lifted. The navigator
may see at a glance at the planet diagram which planets (if
any) are suitably placed for morning or evening observation for

any day of the year.



CHAPTER II

The Use of Sextant and
Chronometer

To become an increasingly skilful sextant observer should be
the aim of every nautical astronomer. It should be remembered
that efficiency at observing with a sextant comes only after
considerable experience. The novice should be warned to expect
poor results from his sights, not through insufficient knowledge
of principles but through lack of skill at using the principal
measuring instrument of nautical astronomy.

The simplest sextant observation is that in which the noon-
day altitude of the Sun is measured. When the Sun is near
meridian passage his altitude changes very slowly, thus facili-
tating the accurate measuring of his meridian altitude. In prac-
tice the altitude of the Sun’s lower limb is measured. The
procedure for so doing involves the following:

1. Ship the telescope and focus it. The common practice of
marking the draw tube of the telescope to expedite setting
the eyepiece for correct focusing is a good one: it often
saves valuable time in cloudy weather.

2. Select the appropriate index and horizon shades. This tech-
nique involves trial and error which improves with prac-
tice.

3. Hold the sextant in the right hand with the arc of the
instrument lying in the plane of the vertical circle through
the Sun.

4. Observe the horizon through the unsilvered part of the
horizon glass, and slide the index bar towards the observed
object until the doubly reflected image of the object ap-
pears in line with the horizon.

253
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5. Clamp the index bar, and use the tangent or micrometer
screw to effect a grazing contact of the reflected Sun’s
lower limb with the true (direct) image of the horizon. To
effect a grazing contact the least angle between the Sun’s
lower limb and the horizon must be measured. The sextant
is rocked about a horizontal axis through the line of sight,
so that the plane of the sextant arc sweeps through a small
arc about the vertical circle through the observed body.
The effect of this is for the reflected image of the observed
body to sweep out an arc which, when the correct angle
has been set by means of the tangent screw, just grazes
the true image of the horizon.

It is important to remember that when taking a Sun-sight
the Sun should never be observed directly through the sextant
telescope unless the glass shades are in position. Temporary
blindness or even injury to the eye may result if this rule is not
obeyed.

If the sky is overcast it frequently happens that although the
Sun is visible, his image through the sextant telescope is not
clearly defined. In this circumstance the Sun is said to be
woolly. When the Sun is woolly it is usually better to observe
the altitude of his centre rather than that of his limb which
latter is not nearly so well defined as his centre.

The Moon may be observed in the same way as the Sun,
except that it may be necessary, on account of the phase of the
Moon, to observe the upper instead of the lower limb. An
alternative method of observing the Moon is the general method
of taking star sights. Instead of the procedure outlined above,
the index bar should be clamped to zero or near-zero on the
arc, and the true and reflected images of the star should be
observed simultaneously. By moving the index to higher read-
ings on the arc, at the same time swinging the sextant in the
vertical plane to keep the reflected image of the star in the sil-
vered part of the horizon glass, the reflected image of the star
is made to coincide with the true image of the horizon as ob-
served through the unsilvered part of the horizon glass. When
using this method, the observed object is said to be brought
down to the horizon. Having brought down the observed object
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the tangent screw is used to effect a grazing contact to ensure
that the arc of a vertical circle has been measured.

For star observations it is well to remember that by adjusting
the rising piece of the sextant a greater or less amount of light
enters the telescope from the horizon or from the observed
body respectively. During the end of evening or the beginning
of morning twilight, when the horizon is dim but the observed
star bright, it is advisable to adjust the rising piece to ensure
maximum amount of light entering the telescope through the
unsilvered part of the horizon glass. Conversely, during the
beginning of evening or the end of morning twilight, when the
horizon is bright but the observed star dim, the rising piece
should be adjusted to allow only a small amount of light entering
the telescope through the unsilvered part of the horizon glass,
so that the contrast between the brilliancy of the observed star
and that of the horizon is sharp.

For measuring the altitude of a planet in daylight, the only
satisfactory way is to compute the approximate altitude and
azimuth of the planet for the time of the observation, and then
to set the index on the sextant to the computed altitude on the
arc. By holding the sextant with its arc lying in the vertical
plane, and sweeping the horizon in the vicinity of the computed
azimuth, the planet’s image will be seen in the silvered part of
the horizon glass provided that the computed altitude is within
about a degree of the planet’s actual altitude.

In misty or hazy weather, when the horizon is not clearly
defined but celestial objects are visible, altitude observations
are best made from the deck instead of from the bridge. By
reducing the height of eye the distance of the sea horizon is also
reduced. With a small height of eye the observer’s horizon is
nearer and therefore more clearly defined than when the height
of eye is big.

When waves are running high the sea horizon will not be a
sharp straight line as it is in clear weather with a calm sea. The
line of sight of the sea horizon, assuming a stationary observer
unaffected by the waves, is raised slightly by an amount which
increases with the height of the waves. In practice, error due
to this cause is ignored. When observing in rough weather it is
best to observe from as high up as is conveniently possible. By
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so doing the sea horizon appears more nearly straight than it
does when observed from nearer the sea surface.

In general a sextant observation must be timed by chrono-
meter or stop-watch. An assistant, if available, should stand by
the chronometer and at the instant when the altitude has been
observed, the observer should shout ‘time’ or ‘stop’, whereupon
the assistant should record the chronometer time of the observa-
tion.

When taking chronometer times the three hands of the instru-
ment (second, minute and hour hands) should be read in order
of their rapidity of motion. As well as recording the chronometer
times of observations, the assistant should record the times by
the chartroom clock to the nearest half minute, so that a check
on the chronometer time-record is available.

If an assistant is not available the observer must time his own
observations. The common practice is to count the seconds
between the instant of observation and the instant when the
chronometer time is noted, and then to reduce the chronometer
time by the interval in seconds. The expert nautical astronomer
should be able to count seconds accurately so that no material
error results when timing his own sights.

If a watch is available, the altitude observations may be timed
using the watch which should be held in the palm or strapped
to the wrist of the left hand. As soon as the altitude has
been measured the eye is shifted quickly from telescope to
watch and the watch time recorded. This time should then
be adjusted for the delay which should be ascertained from
experiment and which should never be more than about a
second.

The chronometer with which altitude observations are timed
should be checked frequently (at least once per day when the
ship is at sea) by Radio Time Signals. Full particulars of Radio
Time Signals are given in the Admiralty List of Radio Signals,
Volume 5.

There is an absence of uniformity in the systems used for
transmitting radio time signals, but in 1955 the International
Astronomical Union recommended the use of the method by
which time signals controlled by the Royal Greenwich Observa-
tory are transmitted. This method has become known as the
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English System, and it is envisaged that in time it will replace
all other methods.

In the English system time signals which are radiated for
five minutes preceding each hour of G.M.T., consist of a series
of 0-1 second dots at each second. The dots at the minutes are
lengthened to 0-4 seconds to facilitate identification. The com-
mencement of each dot is the timing reference point.

A widely used system of transmitting time signals is the
International System known as ONOGO, the name being derived
from the sequence of Morse letters used in the time code. The
transmission takes three minutes, the procedure being:

1st minute: A series of the Morse letter X sent every five seconds
from 0 to 49 seconds. This is followed by a six seconds period of
silence followed by the Morse letter O (-—-) each dash of one
second’s duration commencing on the 55th, 57th and 59th
second.

2nd minute: A series of the letter N (-.) sent once every 10
seconds commencing at the 8th, 18th, 28th, 38th and 43th
second, the dot being given at every tenth second. This is
followed by five seconds silence; followed by the Morse letter O
(-—-) as in the preceding minute.

3rd minute: A series of the Morse letter G (——.) sent once
every 10 seconds commencing at the 6th, 16th, 26th, 36th and
46th second. This is followed by a five seconds silence; followed
by the final signal the Morse letter O (—--) as in the preceding
minute.

Other systems in use are oNoGo (Modified), United States’
system, Modified Rhythmic, and the Russian Ordinary system, each
of which is described in the Admiralty List of Radio Signals.

The Service Details of Radio Time Signals include the name
and call sign of the transmitting station and the radio frequency
' of the transmission, the system used, and the source of the time
signal, the period of transmission, and perhaps other relevant
information.

Many radio time signals are operated automatically by mechan-
ism connected to the Standard Clock of an observatory. The
accuracy of such signals is usually correct to within 0-05 second.

At some radio stations the time signals are sent by hand. The
operator obtains the time from the standard clock at the radio
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station which is checked by astronomical observations or by
reliable radio time signals. These signals are usually correct to
within 0-25 seconds.

Of particular interest is the time signal transmitted by the
B.B.C. This consists of the automatic transmission by the stan-
dard clock at the Greenwich observatory of six dots (or pips)
representing successive seconds, the final dot being the time
signal. This signal is usually accurate to within 0-1 second.

In some countries a telephonic time signal service is provided
by the Post Office. In Great Britain oral announcements are
made at intervals of 10 seconds by a speaking clock which is in
operation in London and certain other centres. Full particulars
of this service are given in the telephone directories for London
and the other centres concerned.



CHAPTER III

The Navigational Astronomical
Bodies

The navigational astronomical bodies include the Sun, Moon,
the four planets Venus, Mars, Jupiter and Saturn, and the 173
stars for which astronomical data are given in the Nautical
Almanac.

Throughout the hours of daylight, when the sky is clear
and the horizon visible, the Sun is available for observation.
For this reason he is often regarded as being the principal
navigational body. Except on relatively rare occasions when the
Moon or one of the navigational planets is visible during the
daytime, the Sun alone provides the means of ascertaining a
position line.

To find the ship’s position during the daytime using the
Sun alone, a running fix is necessary. This involves advancing
or transferring the position line obtained from the first observa-
tion, through a course and distance corresponding to that made
good by the ship during the interval between the times of the
first and second observations. The running fix method is des-
cribed in detail in Chapter V.

The running fix is less reliable than a fix obtained from simul-
taneous observations of celestial bodies. This follows because of
the uncertainty in the assessment of the movement of the ship
during the interval between the times of the first and second
observations. ,

- The optimum conditions for finding the ship’s position using

the running fix method in which two Sun observations are

employed occur when the change in the azimuth of the Sun

between the instants of the two observations is 90°, this angular
259
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change taking place in the least possible time. The difference
between the Sun’s azimuth at the times of the two observations
is equivalent to the angle between the two position lines ob-
tained from the observations of the Sun at the two instants;
and, as we shall see in Chapter VI which deals with errors in
positions, the error due to any cause in a position obtained by
crossing two position lines is least when the position lines cross
at an angle of 90°.

By choosing the instants of observation such that the Sun’s
bearing changes relatively rapidly and substantially in the
interval between the times of the observations, errors in the
estimated course and distance steamed during the interval are
kept as small as possible.

The common practice on merchant ships appears to involve
observing the Sun at about 8 a.m. and again at noon and finding
the ship’s position by running fix for noon.

To get the most from the Sun the nautical astronomer should
have a clear understanding of the manner in which the Sun’s
altitude and azimuth change during the day. These changes are
related to the Sun’s declination, the observer’s latitude, and the
time of day.

On the days of the equinoxes, when the Sun’s declination is
zero, to an observer on the equator the Sun will rise bearing
due east at 6 a.m. and set bearing due west at 6 p.m., and will
cross the observer’s meridian at his zenith. The Sun will change
his altitude at the uniform rate of 15’ per minute of time and
will not change his azimuth, except from due east to due west
at the instant he is at meridian passage. These conditions are
approximated for any observer in a low latitude on any day of
the year. In other words in low latitudes the Sun’s rate of
change of altitude tends to be great and his rate of change of
azimuth tends to be small. In high latitudes, in contrast, the
Sun’s rate of change of altitude tends to be variable and smaller
than it is in low latitudes, and his rate of change of azimuth
tends to be more uniform and greater than it is in low latitudes.
These matters are of great importance when planning Sun-
sights, not only for altitudes but for azimuths (in connection
with checking compasses) as well.

In low latitudes, because the change in the Sun’s azimuth
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during any given interval of time between two Sun-sights is
relatively small, the running-fix method of finding the ship’s
position by Sun observations should be treated with caution,
unless the course and distance made good during the interval
between the two observations can be assessed accurately.

In low latitudes it may be possible and convenient to find
the ship’s position by means of two (or more) altitude observa-
tions of the Sun when he is near meridian passage using Captain
Angus’s method which is described in Part 11, Chapter III.

Observations of the navigational planets are taken most
commonly during twilight. Venus and Jupiter are sometimes
well placed for observation during broad daylight. When this
is so the astronomical navigator is provided with the means of
crossing his Sun-sight position line. The Planet Notes and
Diagram in the Nautical Abnanac will assist the navigator who
wishes to observe any of the navigational planets.

The Moon is often available for altitude observation during
twilight, daytime, and even during the hours of darkness, pro-
vided that the horizon is distinctly visible in the direction of the
bearing of the Moon. When observing the Moon at night at
times when the sky is cloudy difficulty is often experienced in
distinguishing the sea horizon from the horizontal edges of the
long dark shadows of clouds that often appear on the sea sur-
face in the direction of the Moon. When the sky is cloudless
and the Moon’s age is about 14 days, the brilliance of this
luminary may be such that irradiation of the horizon immedi-
ately under the Moon may be considerable, this adding to the
possibility of error in the true altitude. Apart from these factors
the Moon is just as easy to observe as the Sun except that it may
be necessary to observe the upper limb instead of the lower
limb on account of the phase of the Moon.

When taking a Moon-sight it is important that the altltude
of the upper limb or lower limb is observed, and not the alti-
tude of a point on the Moon’s terminator. The terminator is the
line which separates the illuminated from the dark hemisphere
of the Moon. On some occasions it is not obvious from the
appearance of the Moon which of the upper or lower limbs is the
illuminated limb. On these occasions the following particulars
relating to the Moon should be considered when selecting the
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Moon’s limb. First, when the Moon’s age is between 0 days
and 14 days, that is to say, during the period between the times
of New and Full Moon, the western limb of the Moon is illumin-
ated. When the Moon’s age is between 14 and 28 days her
eastern limb is illuminated. The age of the Moon at any time
may be ascertained from the Nautical Almanac, so that it is a
simple matter to ascertain which is the illuminated side of the
Moon. The second factor to bear in mind is that the straight
line which joins the ends of the terminator is at right angles to
the direction of the Sun from the Moon. The direction of the
straight line which joins the ends of the terminator may be
ascertained from a consideration of the relative positions of the
Earth, Moon and Sun, and this in turn will enable the observer
to select the Moon’s limb.

Stellar observations have the advantage over Sun-sights in
that simultaneous observations are possible, and by their means
a ship’s position may be found direct instead of by the running-
fix method which is always necessary for Sun-sights.

Star-sights are facilitated by familiarity with the constella-
tions. The ability to recognize stars instantly makes for speed
in taking a series of star-sights. The nautical astronomer should
aim to get his series of star observations in the shortest possible
time so that the several sights of the series may be regarded as
having been made simultaneously. An assistant employed to
record the chronometer times of the observations is essential
if the observer wants to ensure that his eyes will be tuned to the
darkness throughout the period of the observations. The star
observer who times his own observations inevitably loses time
in ‘getting his eyes’ as seamen say, after they have been tem-
porarily blinded by the relatively bright light of the chartroom.
It is admitted that this trouble may be reduced by having orange
instead of white lights in the chartroom,

A series of star-sights should be planned so that the resulting
position lines cross at relatively large angles (never less than
about 30°), The stars to observe are best chosen from a star
identifier or star-globe set to the time at and the position from
which the observations are to be made. The optimum time for
observing should be ascertained after consulting the twilight
tables in the Nautical Almanac.
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When planning a series of star-sights, the rate of change of
altitude of each of the stars to be observed due to a combina-
tion of the Earth’s rotation and the movement of the ship over
the ground, should be considered. The order of observation
should agree with the order of the rates of change of altitude of
the observed stars. The star whose altitude is changing most
slowly should be observed first, and the one whose altitude is
changing most rapidly should be the last to be observed. By so
doing errors due to assuming the observations being simul-
taneously made are kept to 2 minimum.

The time of the last observation is usually taken to be the
time of the combined sights. If the interval between the instants
of the first and last observations of the series is unduly long
(more than about five minutes) it will be necessary to advance
or transfer the lines of position of all but that obtained from the
last star observed to allow for the ship’s movement between the
time of the observation of the earlier star and that of the last
star of the series.

Although the principal aim of the nautical astronomer is to
obtain a ship’s position by crossing two or more position lines,
a single position line, besides having a potential value in that it
may be transferred for use with another position line obtained
from a later observation, often has direct value to a navigator.

If the direction of a position line differs from that of the
ship’s course line by a large angle, the position line provides
useful information whereby the observer accurately may assess
the ship’s speed made good since the time of the last observed
position. If, on the other hand, the direction of a position line
and that of the ship’s course line are the same or nearly so, a
single position line may indicate the effect of current or wind
across the course line.

A good position line running north-south provides the navi-
gator with a reliable estimation of his ship’s longitude, whereas one
lying east-west gives a reliable estimation of the ship’s latitude.

A transferred single position line may often be employed for
fetching up harbour along a safe line of approach. This use of a
single position line normally applies to terrestrial position lines
but, on occasions, an astronomical position line may serve the
same function.

18



CHAPTER IV

Direct Methods of Sight
Reduction

Despite the availability of a profusion of short-method and
inspection tables designed to facilitate the solution of the PZX
triangle, a great number of navigators employ the long method
of sight reduction, in which spherical trigonometry is used, to
compute their astronomical triangles.

When using Sumner’s modified method the angle P of the
PZX triangle is computed using the three sides of the triangle.
When using the intercept method the side ZX of the astronomical
triangle is computed using the angle P and the other two sides.
Let us consider some of the direct methods of computing P
and ZX.

Given the three sides of an-astronomical triangle, any of the
three angles may be computed using the fundamental spherical
cosine formula (see Appendix I). In the PZX triangle we have:

P = cos ZX — cos PZ cos PX
cost = sin PZ sin PX

from which:
sina + sinl/sind

cos lcosd

cosP =

where a, l and d are the altitude of the observed body, the latitude
used in the computation, and the declination of the observed
body.

The solution of P using this formula is tedious because the
formula is not suitable for logarithmic computation. This defect
led to the invention of other formulae, most of which are derived

264
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from the cosine formula, but which have the advantage in that
they are adapted for use with logarithms.

There is a singularly wide variety of methods for finding an
angle in a spherical triangle using the three sides, and many of
these methods have been used by navigators. A layman may
well be astonished at the fact that seamen were not provided
with a standard and universal method for solving their PZX
triangle soon after there were PZX triangles to be solved. This
was not the case until relatively recently. ‘

The methods used at different times during the last two cen~
turies for solving the PZX triangle have seldom provided the
shortest, or the simplest, or even the most accurate solution.
The method employed was often dependent upon which par-’
ticular set of a multitude of available nautical tables a mariner
was accustomed to use. Moreover, once a specified method had
been accepted, mastered and committed to memory, a con-
servative seaman tended to use it throughout his sea-going days. .

One of the earliest methods of solving angle P of the PZX
triangle was invented by a French naval officer named Charles
Borda. Borda’s method is derived as follows: -

Since cos P = 1 — 2 sin? P/2 we have in the PZX triangle:

cos ZX — cos PZ cos PX
sin PZ sin PX

_ sin @ — sin I cos PX
- cos I'sin PX

sin @ — sin / cos PX
~cos Isin PX

cos Isin PX + sin/cos PX — sina
cos I sin PX

sin(PX + /) — sina
B cos /'sin PX
and sin P/2 = V/sec [ cosec PX cos s sin (s — a)
where s=3PX + 1+ a)

Licutenant Henry Raper, R.N., gave a modified and im-
proved method for solving P based on Borda’s method in his

1 - 2sin?Pj2 =

and 2sin?P2 =1 —
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well-known The Practice of Navigation. Raper’s modification
involved using the table of log sine squares, which is what the
present-day navigator would recognize as the log haversine
table.

Haversine 6 = 4 versine § = 4(1 — cos )

Now cos § =1 — 2sin? §/2
therefore:

hav 6 = sin? 6/2
80 that in the PZX triangle:
hav P = sec / cosec PX cos s sin (s — a)

This formula is short and simple but suffers the disadvantage
in that it requires the use of no less than five trigonometrical
tables.

It is an easy matter to derive the so-called half-angle formulae
for finding an angle in a spherical triangle using the three sides

. _[sin(s — PZ)sin (s — PX)
sin P/2 = J sin PZ sin PX

_ [sinssin (s — ZX)
conplz = M CR

_ [sin(s — PZ)sin (s — PX)
tan P/2 = A/ sin s sin (s — ZX)

To which of these formulae, each of which is suitable for
logarithmic computation, preference over the others ought to
be given, should depend largely upon the value of P. It can be
demonstrated that it is expedient to use the first or third when
P is acute, and that the second is most suitable when P con-
siderably exceeds 90°.

In times gone by the most commonly used half-angle for-
mulae for solving the PZX triangle were those giving sin P/2
and cos P/2. The former was the favourite: seemingly because
sines alone were employed in the solution. What has often been
described as being the shortest direct method for solving P is
that in which the formula for sin P/2 is modified for use with
the haversine and sine tables.
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Since hav 8 = sin? 6/2, it follows that:
sin (s — PZ) sin (s — PX)
sin PZ sin PX

1e. hav P = sin (s — PZ)sin (s — PX) '
x cosec PZ cosec PX

havP =

The principal stumbling block in using any of the half-angle
formulae for solving P was due to the difficulty the seaman had
in handling the signs of the trigonometrical functions of angles
in the second quadrant. This is probably one of the reasons why
the versine and haversine have become popular amongst navi-
gators.

The trigonometrical functions the versine and the haversine
were adapted to nautical astronomical needs during the 17th
and 18th centuries. Now versine § =1 — cos 8, so that the
spherical cosine formula may be reduced to:

vers ZX — vers (PZ ~ PX)
sin PZ sin PX

vers P =

Now,
sin PZ sin PX = 3{cos (PZ ~ PX) — cos (PZ + PX)}

= 3[{1 — cos (PZ — PX)}
Z {1 - cos (PZ ~ PX)}]

~ hav (PZ + PX) — hav (PZ ~ PX)
Also,

4 vers ZX — } vers (PZ ~ PX)

fversP = sin PZ sin PX

therefore:

hav ZX — hav (PZ ~ PX)
hav (PZ + PX) — hav (PZ ~ PX)

This formula is called the all-haversine formula. Its great
advantage is that the only trigonometrical function involved in
its use is the haversine.

The significant feature of the versine (and haversine) is that

havP =
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it has a unique positive value for every angle between 0° and
180°. It follows that angles in the second quadrant present no
difficulty in respect of algebraic sign when the versine or haver-
sine is used instead of the fundamental trigonometrical func-
tions.

We have noted that the cosine formula for angle P in the
PZX triangle adapted for use with versines is:

vers ZX — vers (PZ ~ PX)

vers P =

sin PZ sin PX
ie. vers P = Yers  — vers (It d
cos [cosd
i.e. vers P = {vers 2 — vers (I 1 d)} seclsecd
ie. vers P = vers 0 sec Isecd
also hav P = hav @sec Isecd

where hav § = hav z — hav (I 1 d)

This is the direct method for finding angle P of the PZX
triangle, most frequently used by navigators of the British
Merchant Navy.

The haversine formula, as the above formula is called, may be
transposed thus:

hav z = hav P cos /cos d + hav (I £ d)

In this form it is used when computing the zenith distance in
order to find an intercept. The formula in this form is usually
known as the cosine-haversine formula. It was introduced by
Percy L. H. Davis of the British Nautical Almanac Office in
his Requisite Tables first published in 1905.

Davis, in his Requisite Tables, was first to publish a haversine
table giving both natural and logarithmic values side by side in
a common table in order to facilitate the solution of the astro-
nomical triangle using the method he introduced.

An interesting direct method, similar to Davis’ cosine-haver-
sine method, was introduced by the Japanese naval officer S.
Yonemura. Yonemura’s method was published in Ogura’s tables
in 1920.
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In the cosine-haversine method for finding ZX in the PZX
triangle, viz.:

hav ZX = hav(l £ d) + cos /cos d hav P
let cos ! cos d hav P = hav 6. Then
hav ZX = hav(l £ d) + hav @

' 1
Now, o i sec Isecd tav P

This is Yonemura’s formula the solution to which is facili-
tated by means of a table giving the logs of reciprocals of haver-
sines.

In solving a sight by direct method, a latitude in the case of
the modified Sumner’s method, or a latitude and longitude in
the case of the intercept method, must be used in the computa-
tion. In general, therefore, a position is used in working out a
sight. This position is often described loosely as the ship’s
position. It is simply a position used in the computation and as
such it may best be described as a USED position. The used
position must, of necessity, be not too distant from the actual
but unknown position of the ship at the time of the observation.
In many cases it is best to use a position the latitude of which is
an exact number of degrees. This facilitates the use of the log
table when extracting the secant or cosine of the latitude.

The used position should be based on the ship’s estimated
position (E.P.). The E.P. of a ship at any time is derived from
the ship’s dead reckoning (D.R.) position for the same time.

The derivation of the term dead reckoning is not known with
certainty. The term in present usage denotes a position ob-
tained by applying the course and distance made by the ship
through the water to the last known observed position or fix.
It follows that the ship is seldom at her D.R. position at any
given time for the simple reason that the course and distance
made through the water is seldom the same as that made over
the ground. The effect of wind, current, bad steering, the heave
of the sea, is generally to cause the ship’s actual position at any
time to be different from her D.R. position at the given time.

The best estimation of the ship’s position for any time is
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made by applying to the ship’s D.R. position an estimation of
the effects of each of the above causes (wind, current, etc.).
The resulting position is called the estimated position (E.P.).

The ability to derive a good E.P. is perhaps the hallmark of
the expert navigator. Good judgement, gained through ex-
perience, of the effects of the factors influencing the way of his
ship, is necessary in obtaining a good E.P.



CHAPTER V

The Daily Routine of the
Nautical Astronomer

The master of a merchant ship carries the burden of responsi-
bility for the safety of the ship under his command. Related
closely to safety is the navigation of the ship. To know where
the ship is at any time and, more important, to know how the
ship is moving over the ground and to be able to forecast her
likely position at any time in the near future, are the principal
problems of the navigator. When the ship is away from land,
in the absence of electronic aids to navigation, the principles
and practice of nautical astronomy must be brought to bear in
seeking answers to these problems.

In the discussion on nautical astronomy presented in the
foregoing pages we have said little about charts and compasses.
These are amongst the more important of the instruments of
navigation. Their care and management, in common with most
other navigational equipment, falls to the charge of the navi-
gating officer of the ship. The Second Mate in a merchant ship
is usually designated the navigating officer, and it is this officer
who normally is responsible to the ship’s master for seeing to
it that the charts and compasses and all other navigational equip-
ment is looked after properly and that it is available for instant
use when required.

The navigation of a ship is collectively performed by the
officers of the watch. Each officer during his watch sees to it
that the ship is never on an unsafe course. He checks the ship’s
rate of progress, using compass and patent log and, when pos-
sible and practicable, by finding her position by observation.
In this brief chapter we shall discuss the normal routine in the
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~navigator’s day’s work, when his ship is at sea away from the
land.

Of great importance is the record that should be kept of
courses steered and distances made through the water on each
course, together with other information of relevance to naviga-
tion. This record is the loghook which is brought up to date by
each officer at the end of his watch. It is from the logbook
record that the ship’s D.R. position and Estimated Position for
any time may be found. Information of navigational importance,
in addition to courses and distances, that should be recorded,
includes: the direction and speed of the wind, the set and rate
of the current, and alterations of course and speed made in
order to keep clear of other vessels.

The charts -for use during a voyage should be corrected to
the date of the latest available Notice to Mariners, and they should
be arranged sequentially in order of use in a chartroom drawer.
The chart used when the ship is away from the land is usually a
small scale general chart of the area on or from which rough
courses and distances may be plotted or measured.

The Sailing Directions of the area in which the ship is being
navigated should have been studied before the commencement
of the voyage, and they should be available for use at every
stage of the voyage.

The chronometers should be wound at the same time by the
same officer each morning. The chronometer error should be
found from radio time signals at least once a day when the ship
is at sea and a record kept, in the chronometer journal, of the
daily rate and the accumulated error.

The compass bearing of the Sun during the daytime, or that
of a star at night, should be observed at least once during each
watch, and compared with the body’s true bearing to obtain the
compass error for the heading of the ship at the time of the
observation.

The true bearing of a celestial body, when it is needed for
compass checking, is usually lifted from azimuth tables such
as those of Davis or Burdwood, or from A4, B and C Tables.
Care should be taken to interpolate properly when using these
tables, especially when the observed body is changing its azi-
muth rapidly. Celestial objects are most suitable for observing
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for azimuth when their altitudes are small and their rates of
change of azimuth are not great. ’

Some navigators employ amplitude tables when checking com-
passes. These tables are worked out for an object whose true
zenith distance is 90°. In other words, the amplitudes extracted
from the table, using as arguments latitude of observer and
declination of observed body, apply to a celestial body the true
altitude of whose centre is 00° 00’.

When using the Moon or Sun for amplitude, care should be
taken to ensure that the centre of the body lies on the observer’s
celestial horizon. At the instant when this is so, the position of
the object’s centre relative to the observer’s visible horizon will
vary according to the body observed, and the height of eye of
the observer.

In high latitudes the diurnal circles of celestial objects which
rise and set cross the horizon at a very small angle. It follows that
in these circumstances, a small change in altitude results in a
relatively large change in the body’s azimuth. For this reason
amplitude observations are particularly liable to error in high
latitudes. The navigator is advised to ignore amplitude tables
and to treat every observation of a celestial body for checking
compasses as an azimuth observation, timing the observation
to obtain the body’s hour angle, and using the azimuth tables
to ascertain the body’s true azimuth.

Astronomical sights taken when the ship is at sea should
include twilight observations of stars during both morning and
evening. In planning star sights the times of Sunrise and Sunset
and the times of morning and evening twilight should be ob-
tained from the Nautical Almanac.

Because of the uncertain effects of astronomical refraction at
low altitudes, stars chosen for altitude observation should have
altitudes of more than about 10°.

Stars whose altitudes are small (less than about 15°) usually
change their altitudes relatively rapidly. Altitude observations
in these circumstances, therefore, are attended with difficulty.
On the other hand a star whose altitude is large (more than about
60°), is not easy to observe on account of the small degree of
curvature of the grazing arc of its reflected image when the sex-
tant is rocked during the observation.
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The nautical astronomer should have no difficulty in recog-
nizing stars observed during morning twilight, as he will have
had the opportunity of studying them during the darkness
before the time of sights. Stars observed during evening twilight
are not so readily identified at the time of sights, and may have
to be identified later.

During evening twilight the eastern part of the sky becomes
darker more quickly than the western part. Conversely, during
morning twilight the eastern part of the sky becomes brighter
more quickly than the western part. For this reason it is best
that bodies in the eastern sky during morning twilight, and those
in the western sky during evening twilight should, in general,
be observed before those in the opposite half of the sky.

During the daytime the Sun is available for fixing by the
running-fix method. It is customary to find a position for noon
each day by crossing position lines obtained from an a.m. ob-
servation and a meridian altitude observation of the Sun respec-
tively.

During daytime the Moon, when in the first quarter during
the afternoon, or the last quarter during the forenoon, is often
suitably placed for simultaneous observation with the Sun.
Occasionally Venus and/or Jupiter is available for daytime ob-
servation, and these bodies on these occasions provide the means
of fixing by simultaneous observations with the Sun.

Mainly for record purposes the course and distance made
good between successive noons is worked out using the so-
called observed positions for the two noons.

The working out of the noon position by observation, em-
ploying the running-fix principle, is normally a process of
computation in which the principles of position-line navigation
are lost to sight and mind.

The morning sight is usually worked out using the ship’s
D.R. latitude at the time of the observation, and a longitude is
computed. The d.lat and d.long corresponding to the course and
distance made good between the times of morning and noon
sights, are applied to the used latitude and the computed longi-
tude respectively to give a position which 1s the ship’s noon
position only if the latitude by meridian altitude observation is
the same as that obtained by applying the d.lat to the latitude
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used in computing the morning sight. If the noon latitude by
observation is different from the latitude run up to noon it will
generally be necessary to apply a longitude correction to the
longitude obtained by applying the d.long to the computed
longitude from the a.m. sight. The longitude correction is
obtained from the 4, B and C Tables and is based on the rela-
tionship:
Error in longitude = Error in latitude x C correction

The longitude correction is usually applied by a rule of thumb,
in which the Sun’s azimuth at the time of the morning sight
figures, and the so-called observed longitude, is obtained as if by
magic.

An alternative method of finding the noon position using the
running-fix method is to use a plotting sheet on which the posi-
tion lines associated with the sights are drawn, thus manifesting
the basic principle of the problem, and at the same time giving
an indication (from the angle of cut of the position lines) of the
degree of accuracy and reliability of the position obtained.

Plotting should be regarded as being an important part of the
work of an astronomical navigator. The tools of plotting include
a plotting sheet (usually a page of the navigator’s workbook), a
sharp pencil, a graduated straightedge, a pair of dividers, and a
good protractor. For plotting on a navigational chart, a parallel
rule is almost a necessity.

All significant lines and points on a plotting sheet or chart
should be labelled or indicated in a conventional manner. It is
customary to use the following symbols for this purpose:

position line.

Y
3

» transferred position line.

A D.R. position.
+ estimated position.
® observed position.

Course lines should be labelled with the true course printed
neatly along the line in three-figure notation. Times should be
printed in 24-hour notation. All inscriptions should be neat and
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legible and they should be located so that they least interfere
- with the navigator when he uses the chart or plotting sheet.

When plotting on a navigational chart it is important that
the chart in use alone occupies the chartroom table. The prac-
tice of using one chart placed on top of another should be con-
demned, on account of the possibility of using the scale of the
chart below for marking off distances and positions on the
chart on top. Seldom do navigational charts have the same
. scales.

For the small-scale plotting of position lines obtained from
simultaneous star sights, most navigators use their work books.
In this case the scale used for plotting is usually 1 inch to 10
miles, a scale too small for high accuracy. For preference plot-
ting should be done on a relatively large scale (1 cm to a mile
is suitable). The back of a cancelled chart on which a large
compass rose is centrally drawn provides an ideal plotting sheet.

When using a plotting sheet for simultaneous star-sights, or
-even running-fix Sun-sights, the intercept method is to be
preferred to the modified Sumner method. The plotting sheet,
however, does not lend itself for use with the a.m. Sun-sight
run up to noon: and this, no doubt, is a major reason why the
intercept method is not universally used for Sun-sights.

It is important that the navigator works accurately and metho-
dically when solving his sights. To facilitate accurate working it is
advisable to keep to a standardized system of solving sights.
Most navigators use systems which they have evolved according
to their varied experiences and sight-working habits. Familiarity
with the layout of a solution to a sight or series of sights assists
in checking and finding possible mistakes.

The practical as well as the theoretical aspect of dealing with
errors in positions and position lines, and a discussion on the
cocked hat and multiple star fixes, will be given in the following
chapter.



CHAPTER VI

The Treatment of Navigational
Errors

In this chapter we shall discuss the errors in position lines and
positions obtained from astronomical observations due to various
causes,

[

ERROR IN A POSITION LINE DUE TO ERROR IN ALTITUDE

An error in an observed altitude due to any cause displaces the
resulting position line by an amount equivalent to the error at
the rate of 1 mile per minute of arc error. The effect on an
intercept resulting from an error in altitude is dependent upon
the sense of the error and the name of the intercept. If the incor-
. rect altitude is too large the effect of the error is to displace the
position line in the direction of the azimuth of the observed body.
If the incorrect altitude is too small the effect is to displace the
position line in the opposite direction to that of the azimuth of
the observed body.

An error in an altitude may result from not applying index
error properly, from incorrect application of altitude correc-
tions, from using incorrect values of altitude corrections, es-
pecially those of dip and refraction, or from the observer’s
personal equation.

The error in latitude and longitude resulting from an error
in altitude is investigated with reference to Fig. 1.

In Fig. 1, C represents a ship’s actual position. CL represents
part of the parallel of latitude through C, and CM represents
part of the meridian through C. Let the azimuth of the ob-
served body *X be Z.
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M

FIGURE I

Let us assume that an observation of the body *X, using the
ship’s actual position in the computation of the PZX triangle,
yields an intercept equivalent to CI where I is the intercept
terminal position. Had there been no error in altitude the inter-
cept would have been zero and C and I would have been coin-
cident. The computed intercept, therefore, is equivalent to the
error in the altitude.

The resulting error in latitude is equivalent to AC.

From the triangle ACI:
AC = CIsec ACI

therefore:

Error in latitude = Error in altitude x sec Z

The resulting error in departure is equivalent to BC.



TREATMENT OF NAVIGATIONAL ERRORS 279
From the triangle CIB:
CB = CI cosec IBC
therefore:
Error in dep = Error in altitude x cosec Z

Now dep = d.long cos lat (parallel sailing formula), there-
fore:

Error in longitude = Error in altitude x cosec Z sec ¢

where ¢ is the latitude of the observer.

ERROR IN A POSITION LINE DUE TO AN ERROR IN TIME

An error in G.M.T. will result in an error in hour angle, This,
in turn, will lead to an error in the computed zenith distance

N

o

s
FIGURE 2

19
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when using the intercept method of sight reduction. This will
cause an error in the computed intercept, this resulting in a
displacement of, or error in, the position line. The effect of an
error in G.M.T. on an intercept is investigated in Fig. 2.

Fig. 2 illustrates the visible celestial hemisphere drawn on the
plane of the horizon of an observer whose latitude is ¢ and
whose zenith is projected at Z. P is the projection of the ele-
vated celestial pole; N, E, S and W are the projections of the
cardinal points of the horizon and WQE is the projection of the
equinoctial.

Let the hour angle of the observed body (which is projected
at X in Fig. 2) be k. Let the error in the G.M.T. be denoted
by e, which is represented by angle XPY in Fig. 2.

Let the point V lie on YZ such that ZV = ZX. The triangle
XVY, being small, may be regarded as being a plane triangle
right-angled at V.

Arc VY is the error in zenith distance (and altitude) due to
error ¢ in the time. It is, therefore, equal to the error in, or
displacement of, the resulting position line.

Now VY = XY sin YXV
‘but YXV = the parallactic angle PXZ
Let this angle be denoted by 6. Then
VY = XY sin 4

Now XY/AB = cos d, where d is the declination of the ob-
served body.

Now AB =e¢
Therefore:

XY = ecosd
and VY = ecosdsin @

Applying the spherical sine formula to the PZX triangle we
have:

sin @ = sin PZ sin Z cosec PX

from which:
sin § = cos ¢ sin Z sec d
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It follows that:
VY = ecosdcos ¢sinZsecd

1.e. VY = ecos¢sinZ
therefore:

Error in altitude Error in time

(in min of arc) = (in min of arc) ~ °*° ¢ sin Z

Error in altitude _ Error in time . o8 ¢sinZ
(in min of arc) ~ (in sec of time) 4

From this formula it may readily be shown that error in
altitude due to error in time is zero when cos ¢ or sin Z is zero.
In other words in latitude 90°, regardless of the azimuth (which
incidentally is always 180° in latitude 90° N., and always 000°
in latitude 90° S.) any error in time will cause no error in com-
puted altitude (or zenith distance). Also, in any latitude, when
an observed body bears 000° or 180°, any error in time will
cause no error in computed altitude (or zenith distance).

Error in computed altitude (or zenith distance) due to error
in time is greatest for any given latitude when sin Z is maximum.
When an observed body is on the prime vertical circle of an
observer: that is to say, when its azimuth is 090° or 270°, error
in altitude (or zenith distance) due to error in time is greatest.

ERRORS IN RUNNING FIXES

a. Error in Transferred Position Line due to an
Error in the Distance

The displacement in a transferred position line due to an error
in the distance run between the times of the sights is investi-
gated with reference to Fig. 3.

Let AB in Fig. 3 be a position line obtained from a celestial
observation. Let CX be the true distance run between the times
of observations from which a running fix is obtained. Let the
error in the distance be XX;, so that the false transferred posi-
tion line is ApBy, and the true transferred position line is ApB;.
The error in the transferred position line is XY which is denoted
by e in Fig. 3.
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FIGURE 3}

In the triangle XYX,
e =XX,sinb

where 0 is the angle between the position line and the course
line.

The formula shows that the error in a transferred position
line is maximum when sin 8 is maximum: that is, when 8 is
90°.

When @ is 0° error in a transferred position line due to an
error in the distance run is zero. It follows that an error in a
transferred position line is zero if the observed body lies abeam
to port or starboard, and it is greatest when the observed body
lies dead ahead or right astern at the time of the first observa-
tion.

b. Error in Transferred Position Line due to an
Error in the Course

The error in a transferred position line due to an error in the
course made good during the interval between two sights used
for a running fix, is investigated with reference to Fig. 4.

Let AB in Fig. 4 represent a position line obtained from an
observation of a celestial body *X whose azimuth is
N. (90 — ¢) W. Let the distance run on a course N. 8 E. be-
tween the times of the observations be d, so that the true trans-
ferred position line is ApBp. Let the error in the course be q,
so that the false transferred position line is ApBp, and the
corresponding error in the transferred position line is e.
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¥ s

FIGURE 4

In the right-angled triangle APC:
AP =¢
PAC = (6 — ¢)
S.e=ACcos (8 — ¢)

If & is a small angle and AC is regarded as being very small
compared with d, then:

AC = dsina (very nearly)
or AC = da radians
Therefore: AP = dacos (6 — ¢)

_ da® cos (0 — @)
57-3

When 6 = ¢, (8 — ¢)is 0° and cos (§ — ¢) is unity and maxi-
mum. Thus, for any given distance and error in course, the error
in the transferred position line is greatest when the course angle
is equal to the angle which the position line makes with the
meridian. In other words, error in a transferred position line
due to an error in the course is a maximum when the course

/

or
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line and position line coincide. This will be so when the ob-
served body lies abeam to port or starboard at the time of the
first observation.

When (8 — ) is 90°, cos (6 — ¢) is zero. It follows that an
error in a transferred position line due to an error in the course
is zero when the observed body is dead ahead or astern at the
time of the first observation.

¢. Error in a Running Fix due to an Error in the
Distance Run

FIGURE §

In Fig. 5, AB represents the first position line and CD represents
the second position line with which the first position line trans-
ferred is crossed to produce a false running fix at F.

Let the angle between the first position line and the course
line be ¢, and let the error in the distance run be XX, in which
case the false transferred position line is AgBg, and the true
transferred position line is AyBy. The ship’s true position at
the time of the second sight is T, and the error in the fix is
FT, denoted by e. ‘

Let the smaller angle between the two position lines be 6.

In the triangle TYF:

e = YT cosec 8
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In the triangle XZX,:
ZX, = XX, sin¢

But ZX, = YT
therefore:

e = XX, sin ¢ cosec §

Examination of this formula reveals that the error in a running
fix due to an error in the run is zero when sin ¢ is zero: that is,
when ¢ is 0°. This occurs when the transferred position line
coincides with the original position line, and this is so when
the ship’s course and the first position line coincide.

The error in a running fix due to a given error increases for
any given value of ¢ as the angle of cut 8 decreases. The formula
shows that an optimum condition for a running fix occurs when
the angle of cut is 90°, in which case cosec 8 is unity.

d. Error in a Running Fix due to an Error in the Course

FIGURE 6

In Fig. 6, AB represents the first-position line and CD repre-
sents the second-position line obtained after the ship had run
d miles from the time of the first observation. Let the error in
the course be «° as shown in Fig. 6. The false transferred posi-
tion line is A;By and the true transferred position line is ApBy.
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T and F represent the true and false running fixes respectively.
Let the angle of cut between the first- and second-position
lines be 6, and let the angle between the first-position line and
the course line be ¢.

The error in the transferred position line is SQ, which is
equal to PT. The error in the running fix is, therefore:

e = PT cosec 8
_docos ¢
But PT = 553 = sSQ

therefore:

_ dacos ¢ cosec 8
B 57-3

'This formula shows that when cos ¢ is zero, that is, when
¢ is 90°, the error in a running fix due to an error in the course
is also zero. This applies when the object observed for the
first-position line is right ahead or right astern at the time of the
first observation.

ERROR IN LATITUDE DUE TO TREATING THE
MAXIMUM ALTITUDE AS THE MERIDIAN ALTITUDE

We have seen in Part IT, Chapter V, that the observer’s northerly
or southerly motion and the changing declination of a heavenly
body influence the time at which the body reaches its maximum
daily altitude. We have also seen that if the combination of the
rates of change of the observer’s latitude and the body’s declina-
tion is towards the éec\g@‘?hical position of the body when it is
near meridian passage, the time of maximum altitude occurs
after the time of meridian altitude. If away from the geographical
position of the body the time of maximum altitude is earlier than
the time of meridian altitude. In the same chapter a formula for
giving the interval between the times of maximum and meridian
altitudes is investigated. It is now our aim to consider the differ-
ence between the maximum and meridian altitudes of a heavenly
body. This difference is equivalent to the error in a latitude ob-
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tained from an observation of a body on the meridian when its
maximum instead of its meridian altitude is used.

The northerly or southerly rate of motion of a ship may
readily be found from the Traverse Tables, this rate being
equal to the product of the ship’s speed and the cosine of the
course angle. The rate of change of a body’s declination' may be
found by inspection from the Nautical Almanac. Let the com-
bination of these rates be y’ per hour.

If the interval between the times of maximum and meridian
altitudes is computed it is an easy matter to estimate the differ-
ence between maximum and meridian altitudes if y is known.

If, for example, the interval between the times of maximum
and meridian altitudes is say 10 minutes, and y is say 18’ per
hour, the difference between maximum and meridian altitudes
will be 33 x 18, that is 3’ approximately. The solution is
approximate because we have assumed that the rate of change
of altitude at the time of maximum altitude is uniform. This is a
false assumption, but the error introduced when estimating the
difference between maximum and meridian altitudes in this
way is trifling.

On fast ships, especially when steaming along or nearly
parallel to a meridian, and especially at or near the time of an
equinox, when the Sun’s declination is changing most rapidly,
it is important when using the noonday Sun for latitude to
compute the time of meridian passage and to take the sight at
this pre-computed time.

’

ERROR IN FIX OBTAINED FROM SIMULTANEOUS
OBSERVATIONS

The minimum amount of information necessary for fixing a
ship from astronomical observations consists of two intersecting
position lines. A position obtained in this way is sometimes called
a two-star fix. If more than two stars are observed in order to
find the ship’s position, the position is referred to as a three-star
fix when three position lines intersect; a four-star fix when
four position lines intersect, and a multi-star fix when more than

four stars are observed. Let us deal with errors that may occur
in such fixes.
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a. The two-star fix

An interesting and fruitful way of dealing with errors in posi-
tions obtained from astronomical observations involves a con-
sideration of the bisectors of pairs of position lines.

The use of bisectors for analysing star sights was brought
to the notice of navigators by Admiral L. Tonta of the Royal
Italian Navy in 1931 in an article in Hydrographic Review Vol. 8,
and more recently by Captain Mario Bini, of the Italian Navy,
in a valuable paper which appears in Volume 8 (1955) of the
Journal of the Institute of Navigation.

Any pair of intersecting straight lines produces two bisectors
mutually perpendicular to one another. The bisector of any
pair of intersecting astronomical position lines with which we
shall be concerned is that bisector which not only bisects the
position lines but also bisects the angle contained between the
directions of the observed bodies which produce the position
lines.

Fig. 7 illustrates two astronomical position lines obtained
from simultaneous observations of celestial bodies whose azi-
muths at the time of the observations are indicated by the
arrows labelled »X and Y.

In Fig. 7, BB,, the bisector which bisects the angle XOY also
bisects the position lines.

Should the azimuths of two observed bodies differ by 180°,
and the position lines obtained from the observations not be

FIGURE 7
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coincident, the bisector-of the position lines is taken to be the
line which lies midway between the two position lines,

Consider the two position lines illustrated in Fig. 8. These
position lines intersect at F which, if there is error in one or
both of the position lines, is a false fix.

FIGURE 8

Let us suppose that the position lines illustrated in Fig. 8
have been plotted with the same systematic error—an error per-
haps due to the application of the wrong index error, or a con-
stant personal error—affecting the two position lines. Let this
systematic error result in an error in each of the position lines
amounting to e, as illustrated. The true position of the ship is,
therefore, at T.

It is easy to see that, regardless of the magnitude or the sense
of e, the true position of the ship lies on the bisector of the two
position lines, provided that the same systematic error, and no
random error, affects both position lines.

It must be emphasized that the true position of the ship lies
on the bisector of two position lines only if systematic error
alone influences the observations.

Let us now consider a case in which two position lines ob-
tained from astronomical observations are each affected by a
combination of systematic and random errors. Referring to
Fig. 9, suppose that simultaneous observation of two stars *X



290 THE COMPLETE NAUTICAL ASTRONOMER

and »Y result in two position lines XX; and YY, intersecting
at F. ‘

FIGURE g

Let the errors in the position lines be e, and e, as indicated
in Fig. 9.

Let T in Fig. 9 represent the ship’s true position. Then BB,
is the bisector that would have been obtained had the position
lines been free from error. Let the displacement of the false fix
F from this bisector be e. This quantity e may be regarded as
being the error affecting the bisector drawn through the false
position F.

Let the smaller angle between the directions of the observed
bodies be 28. The angle between the direction of either body
and that of the bisector is, therefore, 6. Let the angle which FT
makes with the bisector be «, then:

e, = FT cos (8 + a) 1)
e, = FT cos (0 —~ «) 2)
FT = ecoseca 3)
From (1) and (2) we get:
e, = FT(cos 6 cos « — sin 0 sin ) “4)

e, = FT(cos 0 cos ¢ + sin 6 sin ) (5)
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Subtracting (4) from (5) and substituting for FT from (3) we
have:

e, — e, = 2esin 0
from which:

e, — €
¥ X
€ = ——p——
2sin 8

It may readily be seen from this formula that for any given
errors in the position lines, the error in the bisector is least
when 2 sin 0 is maximum: that is to say, when sin 6 is 1. This
is so when the azimuths of the two observed bodies differ by
180°. In this circumstance the condition for using a bisector is
optimum.

Considering the manner in which the sine of an angle changes
as the angle changes we may regard the optimum condition to
pertain so long as 8 is greater than about 70°. This is to say when
the azimuths differ by more than about 140°. When @ is less
than about 30°: that is to say, when the difference between the
azimuths of the observed bodies is less than about 60°, the use
of bisectors is not recommended.

The principal and most useful feature of a bisector is that,
by using it as a position line, systematic error is eliminated
entirely. A second important feature is that random errors are
averaged. This is readily seen from the formula:

e, ~¢e 1
e=2"% _—~
2 siné
It follows that a more reliable position is possible by crossing
two bisectors than by crossing three or four position lines.

b. The Three-star Fix

The position lines obtained from astronomical observations of
more than two bodies seldom intersect at a common point.
Because of errors in observation, computing or plotting, three
astronormical position lines usually intersect to form a cocked hat.

By taking pairs of position lines obtained from simultaneous
observations of three stars, three bisectors may be drawn. These
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three bisectors will ALWAYS intersect at a common point. This
follows from the simple geometry of the problem.

The most likely reason why three astronomical position lines
do not intersect at a common point is that the altitudes obtained
from observation are incorrect. This leads to the displacement
of one or more of the three position lines from the ship’s true
position. This, in turn, results in the formation of a cocked hat.
In general, the bigger is the cocked hat the bigger is the error
in the position lines.

In Fig. 10, P represents a position used to compute intercepts
I,, Is and I from observations of three stars A, *B and »C
whose azimuths differ by about 120° respectively. The resulting
position lines AA;, BB, and CC, intersect to form a cocked hat.

FIGURE 10

If the same systematic error has affected each of the three
position lines the ship’s true position will lie on each of the
three bisectors X, Y and Z. These bisectors intersect at T
which is the centre of the in-circle of the cocked hat.

A common method of dealing with a cocked hat is to apply
a trial-and-error method by moving each of the position lines
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(in the imagination) through the same distance either all towards
or all away from the directions of the respective observed bodies,
until they intersect at a common point which is taken to be the
ship’s probable position. Such a fix is sometimes called a cart-
wheel fix. The principle employed in this method is the same as
that used in the bisector method.

In the example illustrated in Fig. 10, the three intercepts are
named towards. Had they been of different senses, or had they
been all three away, the ship’s true position would have been
inside the cocked hat. This will always apply when the syste-
matic error affects each of the position lines, and the observed
bodies are spaced equally, or nearly so, around the observer.

FIGURE 11
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Fig. 11 serves to demonstrate that if all the sights are taken
on one side of the observer within a sector of 180° or less, the
ship’s true position will lie outside the cocked hat when the
same systematic error affects all sights,

In Fig. 11, P is a position used to compute the three intercepts
I,, Iz and I¢. The three resulting position lines form a cocked
hat. The three bisectors intersect at T which is the ship’s true
position if the same systematic error has affected each of the
three position lines.

The point T could have been found by the cartwheel prin-
ciple. In this case each position line would have been moved
through a distance d as illustrated in Fig. 11. It follows that T
is the centre of the circle which touches the three position lines
at a, b and ¢, respectively.

A cocked hat provides information that error has affected the
sights, but it gives no indication whatever that the error is
systematic or random. It is true that if the navigator is sure that
systematic error exists he may fix his ship reliably using bisec-
tors or the cartwheel method but, in practice, the navigator is
never sure that random error is not present. There is a way by
which random error may be detected and, in this event, a navi-
gator may be able to estimate the degree of reliability of his fix.
We shall now discuss a four-star fix by which this information
may be found.

¢. The Four-star Fix

From a consideration of the properties of bisectors it would
appear that the ideal requirements for fixing by astronomical
observations consist of four position lines obtained from simul-
taneous sights of four stars equally spaced in azimuth around
the observer. The following examples should be studied care-
fully.

Referring to Fig. 12, suppose that four stars *W, #X, Y
and *Z produce the four position lines AA,, BB,, CC, and DD,
respectively. It will be noticed that the azimuths of the four
stars are each directed away from the centre of the square formed
by the intersection of the intersecting position lines. By using
the cartwheel principle, or the bisectors of parallel pairs of
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position lines, the ship’s probable position is at F, the centre
of the square.
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FIGURE 12

The pairs of position lines AA; and CC,, and BB, and DD,,
are separated by the same distance. This, coupled with the fact
that, relative to F, each of the position lines lies towards the direc-
tion of the observed body which produced it, suggests that a
common systematic error has affected all four observations. In
other words, if four position lines cross as they do in Fig, 12,
there is every possibility that a systematic error only has affected
the sights and the ship’s probable position at the intersection of
the bisectors, as illustrated, is a reliable fix.

Had the four position lines obtained from the observations

20
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of four stars *W, X, »Y and »Z intersected as illustrated in
Fig. 13, the fix at the intersection of the bisectors would not be
such 2 reliable position as is the case illustrated in Fig. 12.
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It will be noticed in Fig. 13 that by using the cartwheel prin-
ciple, the effect of moving each position line a given amount in,
or away from, the direction of the appropriate observed body,
the shape of the area cut off by the intersecting position lines
becomes rectangular but not square. This suggests that random
error (in addition perhaps to systematic error) has affected the
sights.

gIt follows that by using four position lines which intersect at
right angles or nearly so, the navigator may be provided with
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evidence of the existence in his sights of random error. By using
bisectors systematic error will automatically be eliminated, and
this sort of error, therefore, need not worry the navigator unduly.

Captain Bini, in his paper, points out that a navigator who
has a positive personal error will, when using four position lines
in the way described, normally find that the azimuths point away
from the centre of the area of intersection of the position lines.
The reverse will be the case if personal error is negative. Know-
ledge of one’s personal error, therefore, may be put to good use
in assessing the reliability of a four-star fix. Conversely, using
four-star fixes of the type described, an effective way of ascer-
taining one’s personal error is provided.

When taking star sights, in order to remove or reduce the
possibility of faulty sights, a series of three or five shots of each
of the observed stars should be taken in quick succession. After
first checking the differences between successive observed alti-
tudes and chronometer times, so that a faulty sight may be
detected, the results should be averaged. The average values
should then be used in the sight reduction. A fix obtained from
a series of single shots should not be regarded as favouring the
production of a reliable ship’s position and, in general, analysis
of position lines obtained in this way is not regarded as being a
fruitful procedure.
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APPENDIX I

Trigonometry in Nautical
Astronomy

The mathematics of nautical astronomy is concerned essentially
with the solution of triangles. The branch of mathematics which
deals with the computation of unknown parts of triangles is
called trigonometry.

Every triangle contains six parts three of which are sides and
three angles. If three of the six parts of a plane triangle are
given the others may be computed provided that at least one of
the given parts is a side. To facilitate the computation of the
unknown parts of a triangle trigonometrical functions are used.
The principal trigonometrical functions are the six unique
ratios of the pairs of sides of a right-angled triangle containing
the angle. These ratios are named the size and its reciprocal the.
cosecant; the secant and its reciprocal the cosine; and the tangent
and its reciprocal the cotangent.

D

(o} 3 A

FIGURE I
3o1
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Tables of trigonometrical functions, natural and logarithmic,
are to be found in most collections of nautical tables.

The trigonometrical ratios of any angle 6 (less than 90°) may
be represented by straight lines as illustrated in Fig. 1.

Let the straight line OA in Fig. 1, of any unit length, be
rotated about O so that the angle § is swept out. Let AOD be
90°. AB and DE are tangents to the circle formed by rotating
OA about O:

sine § = CF/OC
secant § = OB/OA
tangent § = AB/OA
But OC and OA are each equal to one unit, therefore:
sin § = CF numerically
sec § = OB numerically

tan = AB numerically
Also:
cosine § = OF/OC

cosecant § = OE/OD
cotangent § = DE/OD
But OC and OD are each of unit length, therefore:
cos § = OF numerically
cosec § = OE numerically
cotan § = DE numerically

Considering the similar triangles OCF, OBA and ODE, in
Fig. 1, it will readily be seen that:

sin 8 1
cosO—tano_cotﬂ
sin 0 1 tan 6

T = cosec sec é
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cos 0 1

wnd =~ =G

cos § 1  cot 0
1  secO cosecd

Also, by Pythagoras’ theorem:
8in? 0 + cos? § = 1
tan? @ + 1 = sec? ¢
1 + cot?.8 = cosec? §

The sine of an arc may be defined as the ratio between the
length of the perpendicular dropped from one extremity of
the arc on to the diameter through the other extremity, and the
radius itself. The sign which this perpendicular has for all angles
up to 180° is regarded as being positive. For all angles more
than 180° and less than 360° the perpendicular is regarded as
being negative. It follows that the sines of angles between 0°
and 180° are positive, and that those of angles between 180°
and 360° are negative.

The result of graphing the sine of an angle against angle from
0° to 360°, is a sine curve. From the sine curve it may readily
be seen that when 8 is in the second quadrant, that is to say,
when @ lies between 90° and 180°:

sin 6 = sin (180 — 6)

Similarly, when 8 is in the third quadrant:

sin § = —sin (6 — 180)
When 8 is in the fourth quadrant:
sin § = —sin (360 ~ 6)

A cosine curve has the same shape as a sine curve, but it is
90° out of step, the cosine curve leading the sine curve as illus-
trated in Fig. 2.

Because, as we have seen, all trigonometrical ratios are func-
tions of the sine and/or cosine, the signs of trigonometrical

functions of angles in the second, third and fourth quadrants
may readily be ascertained.



304 THE COMPLETE NAUTICAL ASTRONOMER

“ 9°90h oy,

’n
Lo /
° s80 0__ o
o % 276
Oroa
Wor
-1 Cosl;

ne @

FIGURE 2

In practical navigation angles of more than 180° are not
generally considered, so that the signs of trigonometrical func-
tions of angles in the third and fourth quadrants need not con-
cern us. Sines and cosecants of angles in the second quadrant
are positive, and cosines, secants, tangents and cotangents are
negative.

Practical nautical astronomy involves solving triangles. Plane
trigonometry is employed to solve plane triangles which, if
right-angled, are readily solved using the trigonometrical ratios
direct. Now although every oblique triangle may be split into
two right-angled triangles and its solution, therefore, obtained
by using right-angled trigonometry, it is necessary on occasions
to use the formulae of oblique trigonometry. The more im-
portant of these are the sine and cosine formulae.

THE PLANE SINE FORMULA
C

Y C-y
A D < B

FIGURE 3
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Fig. 3 illustrates any plane oblique triangle. The sine formula
applied to this triangle is:

a b __c
sinA sinB sinC

This may be proved as follows:
CD is a perpendicular from C dropped on to AB. Let the
length of CD be denoted by x, then:

x=bsin A
also x=qgsinB
therefore:

a b

snA snB

By dropping a perpendicular from B on to AC, or from A
on to BC, it may be proved in a similar way that:

a ¢
sinA sinC
b _ ¢
sinB  sinC
therefore:
a b c

snA snB snC

THE PLANE COSINE FORMULA

Referring to Fig. 3, the cosine formula applied to the triangle
ABC is:

b? + % — a?
cos A = -——-2}7—'
from which:

a® =0 + @ — 2bccos A
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This may be proved with reference to Fig. 3 as follows:
By applying Pythagoras’ theorem to the two right-angled
triangles ACD and BCD we have:

b = x2 + 2 1)
a? = o + (c - y)? @)
Subtracting (2) from (1):
b —a® =y — (c - y)?

ie. b —a® =y — (2 + y? - 2y)
ie. b2 — a? = 2cy — 2

But y=bcosA
therefore:

a2 = b2 + ¢ — 2bccos A
b+ % —a®
or cosA—T

The following trigonometrical identities are connected with
compound angles:

sin(A + B) =sinAcos B + cos Asin B
cos(A + B) = cos AcosB — sinAsinB
sin (A — B) = sinAcos B — cos Asin B
cos (A — B) = cos Acos B + sin Asin B

These identities may be proved as follows.

Referring to Fig. 4, let the points P and Q have co-ordinates
(r cos B, rsin B) and (7 cos A, rsin A) relative to the axes of
reference OX and OY.

By Pythagoras’ theorem:

PQ? = (rcos A — rcos B)? + (rsinA — rsin B)2 (1)

By the plane cosine formula:

PQ? =3 + 72 — 2r%cos (A — B) )
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FIGURE 4

Equating the values for PQ? in (1) and (2) we have:
2r3 — 2r3cos (A — B)

= r’cos’A+ r3cos B — 2r2 cos A cos B
‘ + 738in?2 A + r28in? B — 2r3sin Acos B

from which:
cos (A — B) = cos Acos B + sin Asin B
By putting B = —B in this identity we have:
cos (A + B) = cos Acos B — sin Asin B
By putting A = (90 — A) we have:
sin(A — B) =sinAcosB + cos AsinB
By putting B = —B in this identity we have:
sin (A + B) = sin Acos B + cos Asin B

Products as Sums and Differences
sin (A + B) = sin A cos B + cos A sin B
sin(A — B) = sin Acos B — cos Asin B
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By addition:
sin(A + B) + sin(A — B) = 2sinAcos B
. By subtraction: |
sin (A + B) — sin(A — B) = 2 cos Asin B
cos(A + B) = cos AcosB — sin Asin B
cos (A —~ B) = cos A cos B + sin Asin B
By addition:
cos (A + B) + cos (A — B) = 2 cos A cos B
By subtraction:
cos (A + B) —cos(A — B) = — 2sinAsinB

Sums and Differences as Products

Let X=X+ +3iX-Y)
and Y=3X+Y)-HX-Y)
then:

sinX + sinY =sin X + Y)cos (X — Y)
+ cosHX + V)sind(X - Y)
+ sind(X + Y)cos (X - Y)
—cos X + Y)cos (X — Y)
ie. sinX +sinY =2sin}X + Y)cos}(X - Y)
Similarly:
sinX —sinY =2cos (X + V)sin{(X - Y)
cos X + cosY = 2cos H(X + Y)cos (X - Y)
cosX —cosY = — 2sin¥(X + V)sin(X - Y)

Functions of Small Angles

Remembering that the area of a plane triangle is equal to half
the product of the base and the perpendicular height measured
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[o) ) r A

FIGURE §

from the base; and that the area of a sector is equal to half the
product of the radius squared and the angle in radians: referring
to Fig. 5 we have:

Area triangle OAB > area sector OAC > area triangle OAC
Therefore:

ir3tan 0 > $r36° > 3r3sin 6

and tanf > 6° > sin 0
tan 0 sin 6
and 0 >1>T

As 0 tends to zero, (tan 0)/6 tends to 1 and (sin 6)/6 tends to 1.
For small angles, therefore, we may write 6° for either sin

or tan 6.
Now cos & = cos (10 + 10)

=1 - 2sin%40

Thus, when 6 is small, we may write (1 — 62/2) for cos 6.
Now 1 radian = 3438’ approx., so that

sinl’ = tan1’ = soe x
sin an 335 2PproX.
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and sin @’ = tan ¢’ = 3—-40§§ approx.
12
Also cosl’ = (l - m)
02
and cos §' = (1 - m)

SPHERICAL TRIGONOMETRY

Spherical trigonometry is concerned with the several methods
of solving spherical triangles.

A spherical triangle is formed on a sphere by the intersection
of three great circles: a great circle is a circle on the sphere’s
surface on the plane of which the centre of the sphere lies.

Two great-circle arcs intersect to form a spherical angle, the
magnitude of which is equivalent to the plane angle between
the tangents to the great circle arcs at the point of intersection.

The measure of a spherical arc or side of a spherical triangle
is equivalent to the angle at the centre of the sphere contained
between the radii which terminate at the ends of the arc.

Every spherical triangle has six parts, three of which are
angles, and the other three sides. It is conventional to denote an
angle of a spherical triangle by a capital letter, and a side by a
small letter corresponding to the letter used for the opposite
angle. Thus, if an angle is denoted by X, the side opposite is
denoted by x.

If three parts of any spherical triangle are known it is pos-
sible to compute any of the other parts direct by means of one
of three fundamental formulae. These are the spherical sine,
cosine and four parts formulae.

The Spherical Sine Formula
In any spherical triangle XYZ:

sinx siny sinz
= — = —
sinX 8nY sinZ




TRIGONOMETRY IN NAUTICAL ASTRONOMY 311

Proof: Referring to Fig. 6, in which the spherical triangle
XYZ is depicted on a sphere whose centre is at O.

FIGURE 6

Drop a perpendicular from X on to plane OYZ at P.
Drop perpendiculars from P on to radii OY and OZ at A

and B respectively.
Because XA and XB lie in the planes of the arcs XY and XZ
respectively, it follows that:

Plane angle XAP = spherical angle XYZ
Plane angle XBP = spherical angle XZY

Now:
sinz _ AX/OX _ AX BX
snZ XP/BX OXXP
and siny - BX/0X - BX AX
sinY XP/AX OXXP
therefore:

sinz _ siny
sinZ sinY
By dropping a perpendicular from Y on to the opposite
plane OXZ, and proceeding similarly, it may be proved that:
sinz sinx

sinZ sinX

214
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therefore: v
sinx _ siny _ sinz
sinX sinY sinZ
The spherical sine formula may be used to find an angle given
the opposite side and another angle and its opposite side; or
to find a side given the opposite angle and another side with its
opposite angle.
Because sin « = sin (180 — «), the spherical sine formula is
ambiguous.

« The Spherical Cosine Formula
In any spherical triangle XYZ:

COS X — COS Y COS Z
cos X = - - y
sinysinz
or cosx = cos Xsinysinz + cosy cos z

FIGURE 7

Proof: Referring to Fig. 7: Let XYZ be a spherical triangle
on the sphere whose centre is at O. Tangents at X drawn in the
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planes of the sides XY and XZ meet the plane OYZ at A and B
respectively.

Because XA and XB are tangents in the planes of the arcs
XY and XZ the plane angle BXA is equal to the spherical angle
X. Also OXB and OXA are right angles.

By the plane cosine formula applied to triangles OAB and
AXB:

AB? = OA? + OB? — 2.0A.OB.cos x 1)
AB? = AX? + BX? — 2.AX.BX.cos X )
Subtract (2) from (1):

O = OA? + OB? — 2.0A.0OB.cos x
— (AX? 4+ BX? — 2.AX.BX.cos X)

= OA2 + OB? — 2.0A.0B.cos x
— AX?2 — BX? + 2.AX.BX.cos X

= (OA?% — AX?) + (OB? — BX?)
— 2.0A.0B.cosx + 2.AX.BX.cos X

=2.0X%2 - 2.0A.0B.cosx + 2.AX.BX.cos X
from which:

OA.OBcosx — OX2
AX.BX (3)

cos X =

Divide (3) by OA.OB:

CO8 X — COSY.COS Z
sin y.sin z

cos X =

The spherical cosine formula suffers the disadvantage in that
it is not suitable for logarithmic computation.

The Four-Parts Formula

In any spherical triangle XYZ, if three of any four adjacent parts
are known, the fourth may be found directly by means of the
four-parts formula.
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In the triangle XYZ depicted in Fig. 8, the four-parts formula
connecting angles X and Y and the sides y and z is:

coszcos X =sinzcoty — sinXcotY .

FIGURE 8

Proof: By the spherical cosine formula:
cosy = cos Y sinzsinx + cos z cos X (1)
cosx = cos X sinysinz + cosy cos z (2)
By the spherical sine formula:

sin X siny

SinX = ——s A3)

Substitute (2) for cos x in (1); and (3) for sin x in (1). Thus:
sin X sin y

sinY
+ cos z(cos X sin y sin z + cos y cos z)

]

cosy = cos Y sin z

cot Ysin Xsinysinz
+ coszcos X sinysinz + cosy cos?z

cosy — cosy cos? z = sin y sin z(cot Y sin X + cos'z cos X)

cos y(1 — cos? z) = sin y sin z(cot Y sin X + cos z cos X)
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cosy x sin?z .
—.y-——.—-— =cotYsinX + coszcos X

sin y sin z
or:

coszcos X =sinzcoty — sin X cotY

Napier’s Rules of Circular Parts

If one of the angles in a spherical triangle XYZ is 90°, the funda-
mental formulae reduce to simple expressions, each involving
three terms only. This is so because sin 90° = 1, and cos 90°
= 0.

X

FIGURE ¢

In the spherical triangle XYZ depicted in Fig. 9,
Because Y = 90°:

sin Z = sin z cosec y
COS X = COS Y COS Z
cot X = cotxsinz

It is possible to derive ten such formulae which, collectively,
provide the means of solving every case of right-angled triangles.
Instead of deducing from these formulae ten distinct rules for
the solution of the various cases, the whole, by means of the
assistance of an ingenious contrivance invented by the illus-
trious Baron Napier, may be comprehended in two simple rules
known as ‘Napier’s rules’.

21*



316 THE COMPLETE NAUTICAL ASTRONOMER

The parts of the right-angled triangle (not including the 90°
angle) are written in order in the five sectors of the cartwheel
illustrated in Fig. 10.

¥ 90"

FIGURE 10

The two angles X and Z and the side opposite to the right
angle Y, are prefixed with ‘co’ meaning complement.

Of any three of the five parts in the cartwheel, one is a ‘middle’
part, and the other two are either ‘opposite’ or ‘adjacent’ parts.

Napier’s mnemonic rules are:

sine middle part = product cosines opposites
sine middle part = product tangents adjacents

Any oblique spherical triangle may be divided into two right-
angled triangles by dropping a perpendicular great circle from
any apex on to the opposite side or side produced. It follows,
therefore, that Napier’s simple formulae may be used to solve
any oblique triangle indirectly and without resort to the funda-
mental formulae of spherical trxgonometry They are, therefore,
powerful artifices in the practice of navigation, being particularly
important in the construction of short-method navigation tables.

In astronomical navigation the more important spherical
trigonometrical problems are those in which it is required to
find an angle given three sides; or those in which it is required
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to find a side given the other two sides and the included angle.
The spherical cosine formula is, therefore, the basis of the solu-
tions of most nautical astronomical problems.

Because the spherical cosine formula is not suitable for logar-
ithmic computation, other formulae derived from the cosine
formula, and which are suitable for use with logarithms, are
invariably used by navigators.

The trigonometrical functions versine and haversine are
functions used almost exclusively by navigators.

versine 0 = 1 — cos §
haversine # = $(1 — cos 6)

The great value of the versine is that its sign is positive for
all angles, so that the various forms of the versine and haver-
sine formulae help to eliminate or reduce the seaman’s traditional
difficulty of dealing with trigonometrical functions of angles
over 90°.



APPENDIX 11

The Calculus and Nautical
Astronomy

The calculus is the branch of mathematics in which the opera-
tion of taking a limit plays a predominant role. A limit of great
importance in the calculus is called a derivative of a function,
and the process of finding it is called differentiation.

A function in mathematics is a quantity the value of which
depends upon the value of some other quantity. The area of a
circle, for example, is dependent upon the radius of the circle,
so that we say that the area of a circle is a function of its radius.
Similarly the sine of an angle is a function of the angle; and the
draught of a ship is a function of her displacement, etc, etc.

If a variable quantity is denoted by x, an expression which
involves x is a function of x. The expression 3x% + 2x is a
function of x, and so is (x2 — 4x + 2) a function of x.

If y = 3x2 + 2x we say that y is a function of x and, in the
normal notation, this is written as:

y =fx)

The expression y = 3x? + 2x may be represented graphically
by plotting points relative to two mutually perpendicular axes
of reference which are graduated with values of the variables x
and y respectively. A curve drawn through a relatively small
number of plotted points represents the equation y = 3x2 + 2x.

The positions of the points through which the curve is drawn
are found by assigning values to x in the equation and finding
the corresponding values of y. This process is familiar to all
navigators. :

Many of the practical applications of the calculus, and in

318
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particular the applications to nautical astronomy, are related
to the idea of the gradient at a point on a curve. The gradient
of a curve at any point on it is defined as the slope of a straight
line tangential to the curve at the point. An example will make
this clear.

ExAMPLE: Find the gradient of the curve y = 3x% at the
point (3, 27).

y
v
o
»
5
Q78— — — — — — . . _ _ (e}
'5y
|
27b - - - m e - PR
&x
|
l ]
| I
[ t
e | :
[+ 3 (3+ 8x) x
IGURE 1

The quantities (3, 27) given in the question are the distances
respectively x-wards from the y axis and y-wards from the
x axis. The first quantity 3, is called the abscissa, and the second
quantity 27, is called the ordinate of the point P. The two quan-
tities form the co-ordinates of the point P illustrated in Fig. 1.

Referring to Fig. 1, consider the point Q on the curve, the
co-ordinates of which are (3 + 8x), (27 + 8y).

The expressions 5x and 8y are used to denote small quantities,
so that (3 + 5x) may be expressed as ‘three plus a little bit
x-wards of the y axis’, and (27 + 8y) may be expressed as
‘27 plus a little bit y-wards of the x axis’.
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Now consider the triangle PQR, in which:

PR = 8«
QR = &
and PQ = chord of curve y = 3x2

From the equation of the curve:
(27 + 8y) = 3(3 + &x)2

and 8y = 3(9 + 68x + (dx)3) — 27
ie. 8y = 188x + 3(8x)?
and: & _ 18 + 35«

Sx

The slope of the chord PQ is, therefore, 18 + 38x. Now
imagine the point Q to move along the curve towards P, in
which case the slope changes and 8x diminishes. As Q moves
closer to P the slope of the chord becomes more neatly equal to
the slope of the tangent to the curve at the point P. We say
that as Q approaches P, the slope of the chord tends to become
equal to the slope of the tangent to the curve at P and 8x tends
to become zero. For this reason we think of the slope of the
tangent, or the tangent of the slope, as being the limiting value
of 3y/dx as 8x tends to zero. This limiting value is denoted by
the term dy/dx. In the usual notation:

L2 Y
tan 6 = aj:.to 8x ~ dx

The quantity dy/dx is called the derived function of x, or the
derivative of x. It is usually denoted by Df(x) or f'x.

Let us return to our example. We have seen that if y = 3a?,
8y/8x = 18 + 38x. It now remains to be seen how dyldx is
found from this expression.

Remembering that dy/dx is the limiting value of dy/éx as
8x tends to zero, our problem is to find the limiting value of
18 + 38x as 8x tends to zero. This limiting value is 18, so that
if y = 342, the gradient of the curve at the point (3, 27) is 18.
In other words the tangent to the curve at the point (3,27)
makes an angle with the x axis equal to tan~1 18,
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The process of finding a derived function amounts to the
evaluation of a limit. In the general case of the curve y = f(x)
the gradient at any point where x = c is:

Lo ¥ L fe ) - Q)
3x—0 Sx 8x-0 dx

EXAMPLE: If y = x* find dy/dx.

Df(x) = Dxt

- Lt'(x + dx)* — x*
8x—0 S5x

- Lt 4x38x + 6x3(8x)3 + 4x(8x)° + (8x)*
8x—0 Sx

= Lt 428 + 6x38x + 4x(8x)% + (8x)°
8x-+0

= 453

It may be proved that if # is any number, positive, negative or
fractional; then, if y = &",

dy__' n-1)

Z’;—nx‘
and if y = ax”,

dy _ -1

a—;—ﬂax("'

dy and dx are called differentials, and dy/dx is called the differen-
tial coefficient of y with respect to x.

The results of differentiating y = x™ or y = ax® may be
written respectively as dy = nx®~Vdx and dy = nax®~V dx.

To Differentiate a Sum

Lety=U, + U+ Uy +...
where U,, U,, Us, etc., are functions of x.

Let y increase to (y + 8y), U; increase to (U; + 3U,), U, in-
crease to (U, + 8U)), etc. Then:

y+8y=U1+8U1+U2+8U2+ U3+8U3+...
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dy = 8U, + 8U,; + 8U; +

8y 8U, o&U, 18U,
5% ox ox dx

In the limit, as §x — 0,

Sy dy sUl_*dUl. 8U2 dU2
Sx @ ox dx ' dx  dx '

Therefore:

and,

+ +...

dy _dUy  dU; dU;

dx dx dx dx

Function of a Function
Ify = (2x® + 2x)8, then
=
Let f(x) = U, then
y=U*

Now y is a function of U and U is a function of x.
Therefore, y is a function of a function of x.
Now: :

)
g S:ny (by the rules of algebra)
In the limit, as 8x — 0 so also does 8U — 0, and
&
5% dx
Sy dy
and, U dU
and SU dU
’ x T dx
Therefore:
dy _dy dU

dx = du > &




CALCULUS AND NAUTICAL ASTRONOMY 323
Thus, in the example given above:

%=6(w+2x)°x(6x’+2)

ie, Y~ (3687 + 12)(20° + 290

The Differentiating of a Product
Lety = UV, where U = f(x) and V' = f(x). Then:
y + & = (U + dUXV + 8V)
=UV + V38U + UsV + 38UV
8y = VU + USsV + U &V

8y V8U UV SU 8V
and 3  ox + dx + Sx

In the limit, as 8x — 0, 8y/8x — dy/dx, etc., and

dy o dU _ _.dV
d—x--V-a;'-'r U-d—x

The Differentiating of a Quotient
Let y = UV, where U = f(x) and ¥ = f(x). Then

U+ U
y+¥ =55y

U+8U U
=TT
V(U + 8U) — UV + 8V)

TV + 8V)
VU — UsV
V(V + 8V)

By _ V8U[sx — UBV|sx
3= V(v + oV)/ox
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In the limit, as 8x — 0, 8y/dx — dy/dx, etc., and

dy _ VdUldx — UdV/dx
dx V3

Trigonometrical Functions
Let y = sin ». Then
¥y + 8y = sin (x + 8x)
8y = sin (x + dx) — sin x
= 2 cos (x + dx/2) sin 8x/2

Sy _ 2cos (x + 3x/2) sin 8x/2
3x ox

sin dx/2
= cos (x + 8x/2) S22
In the limit, as &x — 0, 8y/6x — dy/dx,

cos (¥ + 8x/2) — cos x

sin 3x/2

-
Therefore:

dy
:i; = COo8s Xx

or dy = cos x dx
Let y = cos x. Then
y + 8 = cos (x + 8x)
3y = cos (x + 8x) — cos x
= —2sin (x + 8x/2) sin 5x/2

& _ . sin dx/2
5% sin (x + 6x/2) 52
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In the limit, as 8x — 0, dy/dx — dy/dx,

" —sin (% + 8%/2) = —sinx
sin dx/2
2 !
Therefore: Y sin x
dx
or, dy = — sin xdx

By using the quotient or product rule, and remembering that
tan 0 = sin 8/cos 6, cot § = cos f/sin 8, sec @ = 1/cos 8, and
cosec § = 1/sin 0, it may readily be shown that:

If y = tan 6, dy[dd = sec? §

Ify = cot §, dy[dd = cosec? 6

Ify = sec§, dy[d0 = sec O tan 6

Ify = cosec 6, dy/d0 = — cosec 0 cot

The differential calculus is of great use in nautical astronomy
in connection with small errors in altitude or time and their
effects on position lines, and when dealing with rates of change.

To find the rate of change of altitude or azimuth of a celestial
body the problem is, in essence, the same as finding the tangent
to a curve which connects altitude or azimuth with hour angle.
Let us see how the spherical cosine formula applied to the PZX
triangle may be dealt with when finding, say, the rate of change
of a celestial body’s altitude with time assuming the latitude
of the observer and the declination of the body to be constant.

cos ZX = cos P sin PZ sin PX + cos PZ cos PX
i.e. cos 2 = cos h sin PZ sin PX + cos PZ cos PX

Now the differential of cos = (i.e. d(cos 2)) is —sin zdz and
the differential of cosk sin PZ sin PX + cos PZ cos PX is
—sin A dh sin PZ sin PX. Therefore:

—sin 2 d¥ = —sin A dh sin PZ sin PX
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and the rate of change of = with respect to & is:

i’f = sin A sin PZ sin PX cosec &

dh
By the sine rule of spherical trigonometry:

sin Z = sin PX sin A cosec =

Therefore, by substitution:

%Z =sinPZsinZ
ie. % = cos psinZ

This rate is (15 cos ¢ sin Z)’ per minute.
If 8z is regarded as being a small error in altitude due to a
small error 4 in time, we have:
8z .
5% = 08 ¢sinZ
or:
Error in altitude (82) = Error in time (8k) cos ¢ sin Z
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Apse line, 77
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Aquino, V.-Adm. Radler de, 231
Arctic Circle, 35
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Artificial horizon, 213
Asterism, 15
Asteroid, 19
Astrology, 4
Astronomical position line, 84
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Astronomy, 4
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Auriga, 15
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navigation machine, 242
Ball, Frederick, 225
Bayer, 8
Bearing, 50
Biej, K., 241
Bini, Capt. Mario, 288
Biot, 101
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Blunder, 186
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pole, 24
position, on defining, 44-51
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Circumpolar bodies, 53, 57
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Cosmos, 3
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» comparison of lengths, 71
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Dip, 91, 98
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Dominical letter, 78 |
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Earth, 23
, figure of the, 28
Ecliptic, 30
, obliquity of, 32
system, 44
Eclipses, 42
Ellipticity, 28
Elongating lens, 213
Elongation, angle of, 21
Epact, 40
Ephemeris, 220
Epoch, 9
Equation of time, 45, 67
Equator, 24
Equinoctial, 30
system, 44-5
Equinox, 33
Eridanus, 17
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, personal, 91, 114, 297
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, random, 187
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, Systematic, 187
Errors in nautical astronomy, 181, 185,
277-97
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tables, 159-61
Extrapolation, 190
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, cartwheel, 293 , equatorial, 108
, four-star, 294-7 , polar, 108
, multi-gtar, 287 , reduction to Moon’s, 108
, running, 274, 281~6 Hour Angle,

, three-star, 291-4

, two-star, 287, 288-91
Flamsteed, J., 8
Formula
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, Napier’s rules, 315
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, plane cosine, 305

, plane sine, 304
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, spherical sine, 310

Galaxy, 3
Garfinkel, B., 222
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116
Golden number, 78
Goodwin, H.B., 234
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Great circle, 310
Greek alphabet, 8
Gyroscopic inertia, 113

Hadley, J., 199, 208
Hamilton, W., 234
Harrison, J., 135
Haversine, 267, 317
Heath, Adm. L. G., 237
Heavenly body, 4
Hemisphere
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Herschel, Sir J., 10

, Sir W., 10

Hipparchus, 9
Hooke, R., 112
Horizon, 24

, artificial, 213

, celestial, 48

, dip of, 91, 98-104

, geometrical, 99

, rational, 48

, sensible, 91

system, 44, 48

, visible, 91

, Greenwich (G.H.A.), 47, 66

, Local (L.H.A)), 47, 65

, Sidereal (S.H.A)), 13, 46
Hour circle, 65

Ides, 78
Index error, 205
Inspection tables, 224-9
Instruments
chronometer, 215-18
Nautical Almanac, 21923
sextant, 199-214
Intercept, 131
method, 129
terminal position (see Point rap-
proché), 131
Interpolation, 188
, double, 188
, linear, 188
, triple, 188
Irradiation, 91, 114

Kepler, Johannes, 20
laws, 20

Lalande, 123, 224
Latitude, 24, 57, 135
, astronomical, 27
by ex-meridian, 153-62
by Polaris, 148-53
, celestial, 44
, circle of, 44
» geographical, 27
of geographical position (G.P.), 85
, parallel of, 24
Laverty, J. N., 238
Lecky, Capt. S. T. L., 214
A, B and C Tables, 238
on care of sextant, 214
Lenticular, 213
Libration, 41
in latitude and longitude, 42
Lieuwen, J. C., 235
Light ratio, 10
year, 3
Lines of apsides, 77
Littlehales, G., 241
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Logarithm, 184 Napier, Baron, 315

Longitude, 24 Nautical Almanac, 12, 20, 42, 46, 76,
and time, 72 83, 86, 90, 101, 135, 219-23
by lunar distance, 135 , use of, 247-52
, celestial, 44 Newton, Sir 1., 21

of geographical position (G.P.), 86 Nicol prism, 212

Lunar distance, 135 Nodal line, 39

Lunation, 40 Node, 39

Lynn, Capt. T, 123, 224, 236 Normal curve of errors, 191
Notices to Mariners, 272

Magnac, Aved de, 119, 130
Magnitude, 9-12
of Sun, 12
of Full Moon, 12
, photometric, 11
Marcq St. Hilaire, 122
his method, 129-34
Maskelyne, Rev. N, 101, 135
Mean refraction, 96
Mercator chart, 118
Meridian, 24
altitude observation, 136
, celestial, 32, 45, 49
, Greenwich, 25
passage, 136, 142, 144, 146
, prime, 25
Meteor, 19
Metonic cycle, 78
Meton of Athens, 78
Micrometer drum, 200
Midday, 63
Mile
, hautical, 25
, Statute, 26
Milky Way, 3
Moon, 39
» harvest, 41
librations, 41
, meridian passage, 146
, phases of, 40
, semidiameter of, 104
, sidereal period, 39
, synodic period, 40

» Winter and Summer Full, 41

Motion

, direct, 23

> proper, 113

, real, 113

, retrograde, 23
Myerscough, W., 234

Nadir, 48

Nutation, 39, 113

Oblate spheroid, 25
Occultation, 43
Ogura, S., 232, 268
Opposition, 21

Orbit, 19

Orion, 15

Parallax, 91, 106, 112
, annual, 112
, horizontal, 107
in altitude, 106
, reduction to Moon’s horizontal,

108-11

, stellar, 112
Parallel Sailing, 29
Pegasus, 16
Perigee, 21
Perihelion, 21

Period

of Earth’s revolution, 63

, sidereal, 39
Perpendicularity error, 205
Perseus, 16
Personal error or equation, 91, 114, 297
Phase correction, 222
Phases of Moon, 40
Picard, J., 112
Piscis Australis, 16
Planets, 18, 19

, ancient, 20

, inferior, 21

, meridian passage of, 146

, minor, 18

, navigational, 20, 261

, periods, 19

, superior, 21
Planisphere, 13, 243
Plotting sheet, 275
Pointers, 14
Point Rapproché, 129, 131
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Polar distance, 46 , augmentation of Moon’s 104-6
Polaris, 148 , Moon’s, 104-6

, latitude from observation of, 148 , Sun’s, 1034

tables, 148-53 Setting body, 50
Pole Sextant, 199-214

, celestial, 45 accessories, 212

, depressed, 27, 49 , care of, 213

, elevated, 27 , construction of, 199-201

of ecliptic, 44 , errors of, 203-12

of equinoctial, 45
Pole Star Tables, 148-53
Polynesian navigation, 85
Position circle, 118

line, 83

Precession, 37, 113

of equinoxes, 38, 46
Precision, 182, 183
Prismatic error, 211
Ptolemy, 5, 9
Purkinje phenomenon, 11

Quadrature, 21
Radian, 26

Radio time signals, 217
Raper, Lieut. H., 265

Reduction to the meridian, 156

Refraction,
, abnormal, 98
, atmospheric, 59

, Cassini’s formula for, 93

, Coefficient of, 93

, mean, 96 ’

, terrestrial, 92
Refractive index, 92
Retrograde motion, 23
Retrogressive loops, 23
Right Ascension, 45, 46
Rising body, 49

Root Mean Square (R.M.S.) error, 192

Rosser, W. H., 238
Rounded figure, 184
Rounding off, 184

Rude, Capt. G. T, 243
Rude star finder, 243
Running fix, errors in, 281

Sailing directions, 272
Schénfield, 10
Seasons, 32

, unequal lengths of, 36
Semi-diameter, 103—6

, optical principles of, 201-3

telescopes, 199, 206-11
, use of, 253-6

Shade error, 211

Side error, 204-5

Sidereal Hour Angle (S.H.A)), 13, 46

Sight reduction, 264-70
Significant figures, 182
Slide rule, 244
Snell, W, 92
Solar system, 5, 18
Solstice, 34
Sosigenes, 7
Southemn Cross, 16
Spherical angle, 310
triangle, 310
trigonometry, 310-17
Standard deviation, 191
Star, 4, 5 ’
altitude curves, 241
charts, 13
, evening, 22
finder, 243
, fixed, 5
globe, 13, 242
, meridian passage of, 146
, morning, 22
, navigational, 12
, selected, 13
sights, 262-3
Sumner, Capt. T. H., 122
, his discovery, 124
, his method, 264
Sun, 18-19
, astronomical mean, 69
, dynamical mean, 68
, parallax of, 108
, semi-diameter of, 104
Sunday letter, 78
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