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INTRODUCTION

Some fifty years ago an excellent little book was
ublished bearing the title, “The Calculus Made Easy."”
e author adopted as his motto, “ What one fool can do
another can,” intending thereby to encourage a diffident
student. As the author, however, disclosed the fact that
he was a “ Fellow of the Royal Society " it is doubtful
whether the words would bring much comfort to those
who were proposing to study the subject.

In those days the calculus was looked upon by many as
abstruse and lying beyond the boundaries of elementary
mathematics. But the increasing use of the subject in
engineering and science, and consequently the desirability
of bringing such a powerful mathematical instrument
within the reach of a wider circle of students, led to the
gradual simplification of its presentation.

The present volume is in the line of this development.
It aims at making it easier for the private student, who is
unable to obtain the guidance and help of a teacher, to
acquire a working knowledge of the calculus. Like other
books in the series, it attempts, within the inevitable
limitations of space, to provide something of the presenta-
tion and illustrations employed by a teacher of the subject,
especially in the earlier stages when the student is trying
to discover what it is all about.

Those who propose to use the book will naturally want
to know what previous knowledge of other branches of
mathematic:l are neomgly. 1&:1;: asts:Eegm that the readers
possess an elemen oW of algebra, nome
and the iuncla.n:leflat?lr prin g:es of geometrymglfl)ch astz
contained, for example, in companion books on these
subjects in the same series. To assist the student, cross
references to the relevant parts of these books are given
wherever they may be of assistance to him.

Perhaps the greatest difficulty in writing a book of this
character is to determine what to include and what to
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vi INTRODUCTION

omit. The calculus is so wide and deep in its ramifications
and applications, that the temptation is continually present
to include much that the limitations im by the avail-
able space, make im ible. The author, therefore, has
been guided by the policy of including what seems to him
to be necessary to enable and encourage the student to

ed further in his study of the subject or to utilise it
in its application to science and engineering. [t was only
after much hesitation that the book was lengthened by the
inclusion of the last three chapters. They were inserted
in the hope that they would convey to the student some
idea of the possibilities of the calculus and lead him to
continue his study of it.

As far as possible the “ proofs "’ of many of the theorems
have been simplified an curtailed. In consequence of
this simplification they may frequently be lacking in the
mathematical rigidity and “exactitude which are possible
in a larger and more ambitious volume. It is hoped, how-
ever, that they will supply the student with a sufficiently
logical basis for an intelligent study of the subject.

A considerable number of “ routine ** exercises have been
included, and the student is urged to omit very few of
them. They are necessary to give him a working know-
ledge of the calculus and facility in the manipulation of it.

The majority of the tables at the end of this book are
taken from Mr. Abbott's M ical Tables and Formulae,

by courtesy of the publishers, Messrs. Longmans, Green &
Co., Ltd.
P. ABBOTT
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CHAPTER |
FUNCTIONS

I. What Is the calculus?

THE word “calculus” is the Latin name for a stone which
was employed by the Romans for reckoning—i.e., for “ cal-
culation . When used as in the title of this book, it is an
abbreviation for * Infinitesimal Calculus ', which implies a
reckoning, or calculation, with numbers which are infinitesi-
mally small, This, in all probability, will not convey much
to the beginner, and the real meaning of it will in many cases
not be tlflgﬂ’sto%d m;tilhethe ﬁhd@tﬁﬂf%me he;cl!;
way with his study of the subject. e ing exam
may help to thmvg a little ligl:ft on it.

C‘::msi thegrowthofasmajlnplant. In the ordi
way we know that it grows gradually and continuously. If
it ge examined after an interval of a few days, the growth
will be obvious and readily measured. But if it be observed
after an interval of a few minutes, although growth has
taken place the amount is too small to be distinguished. If
observation takes place after a still smaller interval of
time, say a few seconds, although no change can be detected,
we know that there has been growth, which, to use a mathe-
matical term, can be regarded as infinitesimally small, or
infinitesimal.

The process of gradual and continuous growth or increase
may be observed in innumerable other instances, of which
the case of a living organism referred to above is but one.
What is of real importance in most cases is not necessarily
the actual amount of growth or increase, but the rate of
growth or Increase. It is this problem, closely connected
as it is with infinitesimal increases, that is the basis of the
Infinitesimal Calculus, and more especially that part
of it which is called the Differential Calculus. The
meaning of differential will be apparent later.

Historical Note. The calculus is the most powerful
mathematical invention of modern times. The credit for
its discovery has been claimed for both Sir Isaac Newton
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and Leibnitz, the great German mathematician, and a
controversy ed for years in England and Germany
as to who was the first to invent it. ibnitz was the first
to publish an account of it, in 1684, though his notebooks
showed that he used the method for the first time in 1675.
Newton published his book on the subject in 1693, but he
communicated his discovery of it to friends in 1669. It is

erally agreed now that the fundamental basis of the
invention was reached independently by the two mathe-
maticians.

2. Functions,

The student will realise, from his knowledge of Algebra,
that the example cited above of the growth of a plant is
an instance of a functional relation. [t may be affected by
variations in temperature, moisture, sunlight, etc., but if
these remain constant the growth is a function of time,
although we are not able to express it in mathematical form.

It is desirable, therefore, that we should begin the study
of calculus by clarifying our ideas about the meaning of a
function, since this is fundamental in understanding the
subject. The student will have become uvainted with
the meaning of ““ function”” in his Algebra (4 ebra, Chaps.
XIII and X VIII), but a brief revision is given below for the
benefit of those who may not be quite clear on this very
important matter.

3. Variables and constants.
Of the letters and symbols used to represent quantities

or numbers in an algebraical expression or formula, some
represent variable quantities, others represent constants.

hus in the formula for the volume of a sphere, viz.
V = grr®
where V represents the volume and r represents the radius
of the sphere,

(1) V and r vary with different spheres and are
called variables.
(2) = and § are constants whatever the size of the

sphere.
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Again, in the formula for a falling body, viz.i
s = joo

in which s represents the distance fallen in time t,

s and t are varlables.
} and g are constants.

4. Dependent and Independent varlables.

It will be seen that in each of the above examples the

va_n;la:blm arevof t;vﬂo kinds.
us in V = #nr® if the radius () be increased

decreased, the volume (V) will inm‘ease) or decrease ?111-
consequence.

gy.._ﬁ\el variation of.V ﬁep;lrssds upon the variation of r.

imilarly in s = gt?, the dist
R ik (y ig ance (s) fallen depends on

So, generally, it will be found that in all such formulae
and mathematical expressions there are two kinds of
variables : dependent and Independent.

(1) That variable whose value depends upon the valu
assigned to the other is called a dependent ]z(;rlable. as 3
and s above.

(2) The variable in which changes in value produce
corresponding changes in the other is called the Inde;,endznt
variable, as r and t in the above formule.

In a general form of an i
W asgen o expression of the second degree

y=ax*+bx +¢
a, b and ¢ represent constants, and the value of y depends
on the value of z. Consequently x is an mgep:gede.nt
variable, and y a de ent variable. The constants a, b,

and c are to indicate the relation which exists betw
the two variables. o

5. Functions.

This connection between two variables—viz. that the
value of one is dependent upon the value of the other—is
e)gpm;sed by the statement that the dependent variable Is
afunction of the independent variable. en the variables
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t quantities we say that one uantity is a function
o; the other. Thus in the examples above

m The volume of a sphere is a function of its radius.

The distance moved by a falling body isa function

of time.

Note.—For the use of the word ** quan » see Algebra, § 6.
nctional relation

Innumerable examples might be given of fu!
between quantities, IHere are a few common examples :

The loglarlthm of a number is a function of the number.
Thevoumaoiaﬁxedmassoigmisahncﬁmo{thetw
rature while the pressure remains constant.

The sines, cosines and tangents of angles are functions of the

angle.
ﬁlha time of beat is a function of the length of the dulum.
The range of a gun, with a constant propelling orce, is a
function of the angle of projection.

Definition of a function.

Generally if two variable quantities X and Y are so
related that, when any value is assigned to X there Is thus
determined a corresponding value of Y, then Y Is termed
a function of X.

6. Expression of functions.

When treating generally of functional relations letters
such as x and y are commonly employed to represent
variable quantities. Thus, in the expression y = x* + 3x
if, when any value be assigned to x there is always a corre-
sponding value of y, then y is said to be expressed as a
function of x. Similar examples are:

y = logw¥
y =sin x + €Os %,

It is usual, when dealing generally with functions in this
way, to employ letters at the end of the alphabet to re-
present the variables; when x and y are so employed the
hnedepeé'sien; variable is generally expressed by X and the

t X
or constgnzs, other than actual numbers, letters at the
beginning or middle of the alphabet are usually selected.

I
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Thus in the equation of the straight line in general form
y=mx+Db,

x and y are variables, m and b are constants,

When expressing functions of angles, the Greek lett
0 (thela) or $ (phi) as well as : od to
= ) a(h’é %) x are often employed to

7. General notation for functions.

‘When it is necessary to denote a function of x in general
without specifying the form of the function, the notation
f(xLelisnem ed, In this notation the letter “ f”’ is used
as g the first letter of ** function ', while the letter “ x
or d:the:l lettter Wh;fh might be employed indicates the
independent wvariables. us f(0) would be
method of indicating a function{)(f e 8" = "

Other forms of this notation are F(x), #(x), ¢(x).

A statement such asf(xg =x2'—Tx+8
or f(0) = sin®*0 — cos? 0
defines the specific function of the variable concerned.

This convenient notation is employed when it is desired
to indicate that in a particular function, which has been
defined, a numerical value is to be substituted.

Thus if f(x) = 2* — 4x + 3, f(1) would stand for th
?;mmcal value of the function v(vlzen il Dl substoiiuteg
x.

Thus J)=1"— (4 x 1
7@ =2=-§4§2;%_

Again, if ¢(0) = 2sin .
$(5)=2sin} =2.
$(0) =25sin 0 = 0.
é(;)=2sin§=2 P \§'=1/3.
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8. Notation for Increases In functions.

If x be any variable, the symbol 8x (sometimes Ax) is
used to denote an increase in the value of x. A similar
notation is employed for any other variable. The symbol
“ §" is the Greek small “d”, and is ronounced “ delta ",
Cont to the ordinary usage of ngebra, 8x does not
mean (8 x z). The letters should not in general be
separated. us “ 8z > means “ an Increment of x .

accordance with the definition of a function, if y be a
function of x, and if x be increased by 5x, then y will be
i;lcreased in consequence and its increment will be denoted

y 8Y.

Accordingly, if y = f(x)
then y + ¥y =Jflx + 8)
whence 8y = f(x + 8x) — f(x).

If for example y=x—7x* + 8&
and x receives the increment 3x, y will receive the increment
8y. Then

y +8y = (x+ 5x)% — 7(x + 8x)* + 8(x + &x).

Again, if s = ut + §ft?
and ¢ receive an increment 8¢, then s will receive the incre-
ment 38s.

Then s + 8s = u(t + 8t) + }f(t + 8t)%

Single letters are sometimes em loyed to denote incre-
ments instead of the above method. For example

Let y = f(2).
Let x receive the increment h and k be the corresponding
increment of y.
Then y +k =f(x+h)
whence k = f(x + h) — f(x).
9. Graphlc representation of functions.

Let f(x) be a function of x.

Then by the definition of a function (§ 5), for every value
assigned to z there is a corresponding value of f(¥). Thus
by giving a series of valuestoxa corresponding set of values

FUNCTIONS s

of f(x) is obtained. If these pairs of values of x and fi
are plotted as shown in Algebra, i .
sentation of f(x) may be drigwna AL g T
Consider the example of f(x) = 2% or y = x%
Assigning to x the values 0, 1, 2, 3, —0, —1, — 2,

— 3, . . . we obtain the corresponding values of f(x?) or y.
Thus f(0) =0
Aziayey
=4, — =4
73) =9, f(— 3; =9.

From these values we deduce the fact that f(— a) has
the same value as f(a). Hence the curve musfé bea)s -
metrical abm..:t the axis of ¥ It is a parabola (Algam.
§108), and is shown in Fig. 1. At the points on the

e i
i s
i H e a i
SEHE
I
$ :ﬁ K3 ”.:" :
i’?m il n:E
e it

F16. 1.—CURVE OF f(x) = #%.

z-axis where x =1, 2, 3 . . . the correspondi rdi
are drawn, the lengths of these represent ;E(I)). f(n2g) ; ?{s)m:at:&f
and the ordinate drawn where ¥ = g, represents f(a).
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In Fig. 2, which represents part of the curve of f(x) =
2ory =1,

¥
-
: /
1 »
6 Z"
. P

£io)
fia)

N X

.g..l.o/-_-uu&
r
f

Fic. 2.

points L and N are taken on 0X, so that
OL =a, ON =0b.
Drawing the corresponding ordinates KL, MN,
then KL = f(a), MN =Xf(?’);_ha i 3.
In general, if L be any point on OX so that OL = %, let
be increased by LN wthN = 8. .
MP represents the corresponding increase in f(x) or y.
- TMP. ==}ly.
Since KL = f(x)
MN = f(x + 87).
S, MP=f(x+ 8x) — {xg
or 8y = f(x + 8x) — f(x).
10. Inverse functions.

Let y = a*; then x = /9. : }
In the first equation y is expressed in terms of x and is a

FUNCTIONS 17

function of x. In the second x is in terms of
y—that is, as a function of y. The two functions—i.c.,
y=23 and %= 1/3_;—are called Inverse functions.
Similar examples will occur to the student, as for example:
If y=a* then x=log,y.
If y=sinz , z=sinly,

I1. Implicit functions.

If an equation such as

2 —2zy —3y =4

can be satisfied by values of x and y, but x and y are
together on the same side of the equation, 1.e., y is not defined
directly in terms of x, y Is sald to be an Implicit function
of z. In this particular case it is possible to solve for y in
4 — 2t
2x + 3’
function of y. But the solution is not always possible,
Further examples of implicit functions are:

2® =3 + 5y —T=0
xlogy +y* =dxy.

12. Functions of more than one variable.

We have been dealing with quantities which are functions
of a single variable, but there are also quantities which are
functions of two or more variables.

For example, the area of a triangle is a function of both
base and height; the volume of a fixed mass of gas is a
function of both pressure and temperature; the volume of
a rectangular-shaped room is a function of three variables,
the length, breadth and height of the room; the resistance
of a wire to electrical current is a function of both the
length of the wire and its sectional area.

n this book, however, we shall confine ourselves in the
main to functions of a single variable,

terms of %, giving y = —

which is an explicit

Exercise |.
L If f(x) = 2x* — 4x + 1, find the values of
JS(1), £(0), £(2), £(— 2), fla), f(x + 8x).
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2. If f(x) = (x — 1)(x -+ 5), find the values of
£@), 1), £0). fia + 1, 7 (3), i—5).
3. If f(0) = cos 9, find the values of

£3). 10 1(3). £(3). /.

4, If f(x) = x4, find the values of
f(3), f(3-1), f(3-01), f(3:001).
Also find the value of IQ.Q%%{)%J@

5. If $(x) = 2=, find the values of $(0), ¢(1), ¢(3), $(0-5).
6. If F(x) = 2® — 6x* — 3x + 7, find the values of
F(0), F(1), F(2), F(— #).
7. If f(t) = 8 + 5t — 1, find an expression for f(f + 3/).
8. If f(x) = #* + 2x + 1, find an expression for
flx + 82) — f(x).
9. If f(x) = ®, find expressions for1

&) 7 L og e
x xX] — .
(3) fﬁ-“ .l 3;2 -f "}.

10. If f(x) = 242, find expressions fori

QAT
3) flx +kh—f(x :

CHAPTER 1
VARIATIONS IN FUNCTIONS. LIMITS

13. Variations In functions.

Frou the definition of a function we learn that when the
independent variable changes in value the function changes
its value in consequence. We now proceed to examine in
a few examples how the function changes. We shall
consider its variations as the independent variable changes
through a range of numerical values. The graph of a
function provides a revealing way of observing these
changes.

As our first example we will consider the familiar function:

fla) =a* or, p=al

and refer to the graph as shown in Fig, 1. It shows within
the limits of the values plotted how the function changes
as x changes. In the conventional way x Is represented as
Increasing through the complete number scale which is
marked on the x axis O X (see Algebra, §§ 35, 36, 67). The
values of the function x* are similarly shown on another
complete number scale on the y axis (3 Y).

Remembering that the values of x are shown as con-
tinously Increasing from left to right, we see, from examina-
tion of the curve, that

(I) As x Increases continuously through negative
values to zero, values of y are positive and decrease
to zero, at the origin.

(2) As x Increases through positive values, y also
Increases and Is positive.

(3) At the origin y ceases to decrease and begins
to Increase. This is called a turning point on the
curve,

(4) If x be Increased without limit, y will also
Increase without limit. For values of x which are
negative, but numerically very great, y is also very great
and positive,

19
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14. Variations In the function y = :(

In considering this function we recall the effect on a
fraction of changes in the value of the denominator. It is
seen that if the numerator of a fraction remains constant!

(1) When the denominator Increases, the fraction
decreases.

(2) When the denominator decreases, the fraction
Increases.

Thus in the functiony-—-}‘:
(1) If x is very large, say, 10, y is a very small

") It 01910 3 ceeding}
x = (I ) ¥ = f[pioyie an € gy
sma.{l number. (1ot

These numbers, both very large and very small, are
numbers which can be specified in arithmetical form. They
are finite numbers. p

If, however, we conceive of x being increased so that it is
greater than any number which can be specified or expressed
in arithmetical form, then we speak of it as being Increased
without limit. It is said to approach Infinity, and is
exI‘)_msressed by the symbol o . .

is is not a number with which we can operate, Multi-

plication or division of it by any finite number leaves it
still infinite.

It is evident from the above reasoning that when x
becomes infinitely large the function i, which can now be
represented by :a, becomes an infinitely small magnitude,

smaller than any finite number which can be specified or
resented in arithmetical terms.
is is denoted by zero—i.e., 0.

We must therefore in this connection conceive of zero,
not as a number, but as an infinitely small magnitude.
Multiplication or division by any finite number not
alter it; it remains zero,

If, however, a finite number be divided by zero—e.g., the

VARIATIONS IN FUNCTIONS. LIMITS 21

above function becomes 3—then by the converse of the
above reasoning, the result will be infinitely large.

These conclusions can be expressed as follows, using the
notation employed in Algebra (dlgebra, § 201).

When t—>w, 1—>0

: FoRg Bl

It may be noted that the same conclusions will be reached
a

if the numerator is any finite number—e.g., F

The above conclusions can be illustrated by drawing the
graph of y = i

I
g:
+ 4
T
1

41

i

IT

1T

1

- =,

1
1
ﬁlr(
AL
T

. 1
T
111 1

&

|~ 1

Fia. 3.

Plotting the curve from the usual table of val /)
§ 173, we obtain the curve shown in Fig. 3. o
The curve is known as a hyperbola, and consists of two




22 TEACH YOURSELF CALCULUS

branches of the same shape, corresponding to positive and
negative values of x.

Considering the positive branch, we note the graphical
expression of the conclusions reached above.

(1) As x increases, y decreases and the curve
approaches the x-axis, Clearly as x approaches infinity,
the distance between the curve and OX becomes
infinitely small and the curve approaches coincidence
with O X at an infinite distance. In geometrical terms
the x-axis is tangential to the curve at infinity,

(2) For values between 0 and | it will be noted that
the curve is approaching coincidence with OY at an
infinite distance—i.e., the y-axis is also tangential to
the curve at infinity.

A straight line which meets a curve at an infinite distance,
and is thus tangential to the curve, is called an asymptote
to the curve. 4
~
The arguments employed above apply equalalir to the
branch of the curve corresponding to negative values of z.
Both axes are asymptotes to the curve in negative directions.

We may further note the following characteristics of the

Thus the two axes are asymptotes to the curve y =

function y = }‘

Throughout the whole range of numerlcal values of x,
from — o to + o, y Is always decreasing. The sudglen
change from — o to + o as x passes through zero is a
matter for consideration later. The same feature occurs
in the curve of y = tan x (Trigonomelry, p. 160).

I5. Limits.

If in a fractional function of x, both numerator and
denominator involve x, and if each approaches infinity as x
approaches infinity, then the fraction ultimately takes the

(=]
form —.
(=]

2x
x+ 1

For example, if fiz] =

VARIATIONS IN FUNCTIONS. LIMITS 23

both numerator and denominator become infinite when x
becomes infinite. The question then arises can any
meaning be given to the fraction when it assumes the form

g ? In this case a meaning can be found as follows.
Dividing both numerator and denominator by x

2x
f (x) o, ¥ + 1
-
7
1+ =
If now x—> o, then %—-)0.
Consequently in the limit the fraction approaches Ti—ﬁ

or 2, but clearly it cannot exceed this number—i.e.,

o approaches the limiting value 2 as x approaches
L Infinity.

Thus 2 is said to be the limit which ;g_;-l approaches
as x approaches infinity ; it is called the limiting value, or
the limit of the function.

The following notation is employed to denote a ** limit ™’
of a function;

.ﬂox oy Bt
The value towards which x approaches when a limit is
approached is indicated by x —> <, placed beneath Lt.
e idea of a limit is one of very great importance not
only in the Differential Calculus, but in all advanced forms
of mathematics.

16. Limit of a function of the form §.

Let us examine the function
2 —4
S =%=5.
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The value of this function for any value of x is readily
found. But if the value assigned to x is 2, both numerator
and denominator become zero, and the fraction takes the
form of §. This form is said to be indeterminate, and it
would be a mistake to suppose that its value is 0.

The form § is of great importance, and we must carefully
investigate it further.

Let us begin by aasiﬁ}'ling to x a number of values which

or

are sliﬁht.ly greater ghtly less than that which produces
the indeterminate form—viz., 2:
(1) Let x =2:1.
2 —4 441 —4 041
Then . ‘g Ry wOor ¥
@) Let x = 2:0I.

B —4 40401 —4 0-0401
Then S —5 =3or=% — 001 — To
@) Let x = 2:001.
Then ©.—4 _ 4004001 —4 _ 0004001
x—2 200l =2 0-001
Or, taking values less than 2:

= 4-001.

(4) Let x = 1-9.
H—4 361—4 —039
Then g =BT 1
(5) Let x = 1:99.

2* —4 39601 —4 — 0-0399
T oy TR—F =00

A comparison of these results leads to the conclusion that,
as the value of x approaches 2 the value of the fraction
approaches 4, and that ultimately when the value of x differs
from 2 by an infinitely small number, the value of the
fraction also differs from 4 by an infinitely small number.
This might be expressed in the form employed previously—
viz.

. -

as x—> 2, 2 .

x_2-->4.
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It will thus be seen that the function z;:; has a limiting

value as x approaches 2, or with the notation for limits.

T s SV
z—>1 x—12 )

17. Let us next investigate the problem in a_more
general form, taking as our example the fraction ‘%—E—?
and find its value when x = g, for which value of x the
fraction takes the form §.

; Following the method employed above, but in a general
orm;

Let x=a++h
i.e., h is the variable amount by which x differs from a for
any assigned value of x.
ubstituting in the fraction
B#—a_ (@+h—a
x—a (@a+h)—a

__2ah + M2
==
Dividing numerator and denominator by A which is not
zero,
x’ s a‘
e 2a + h.

As h decreases, x approaches in value to a, or when x
approaches infinitely near in value to g, h approaches zero.

then 2a + h approaches 2a,
L0
i.e., as x approaches in value to g, xx - : approaches 2a.
Or, using the symbols previously employed,
when x—>a, h—>0,
and sty 2a,
x—a

i.e., 2a Is the limiting value of the functlon.




26 TEACH YOURSELF CALCULUS

With the notation employed above:
x. i a’

It will be seen, therefore, that the expression §, as used
in the above examples, can be regarded as representing the
ratio of two infinitely small magnitudes. The value of this
ratio approaches a finite limit as the numerator and
denominator approach zero.

18. Limit of a series.

In the foregoing Sections we have considered a simple
example of the limit of a function. But the student will
have learned from Algebra that the term “ limat ™ is also
applied in certain cases to the sum of a series. In a

eometrical Progression, if the common ratio is a pro
fraction, the sum of the terms of the series, as the num
of them becomes great, approaches a finite number, which
is called the limit of the sum. A more detailed examination
of this will be found in Algebra, §§ 201-205. In this
chapter, however, we will confine ourselves only to the
expression for this limit as deduced from the general
formula for the sum of » terms.

If a be the first term of the series,

n be the number of terms,
r be the common ratio,
S, be the sum of n terms,

1 —7r
a ar®
or 5,. = 1—;-—" — 'l":; A B e B 4 (A)

If » be a proper fraction, the value of 7 decreases as n
increases. Using the notation employed above

as n—>o, m—>0
and arm —> 0.

Hence T (e )=o.
n—>» 1—7r

Consequently it is evident from (A) that S, approaches
I—_a_—' as a limit as # becomes infinitely great.
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Thus r—‘?_-—; becomes the limit of the series as n becomes

infinitely great, and is called the sum to Infinity.

If r is numerically greater than unity, the magnitude of
the terms increases as n increases; and if n approaches
infinity, so also does the sum.

As the student extends his knowledge of Mathematics he
will be concerned with many series of different kinds and
he will find that it is important to know the following about
the sum of n terms, when n becomes infinitely great

(1) Does it approach a finite limit ?
or {2} Does it become infinite ?

If the sum of the series approaches a finite limit it is
called Convergent, but if its sum becomes infinite it
is called Divergent.

With a limited number of exceptions most series are
either Convergent or Divergent, and we will return to the
matter in Chap XIX.

19. A trigonometrical

Wt 41 ot

e—0 ©

Note.— Through-
out this volume it
will be assumed,
unless specified to
the contrary, that
angles are measured
in radians—i.e., in
circular measure,

It is clear that as 6

becomes very small, so
also does sin 0, so that —/
ultimately when 6 and
consequently sin 0 ap-

proach zero, the ratio gl%_ﬁ approaches the form §. The

limit of this ratio can be found as follows, In Fig. 4 let
O be the centre of a circle of unit radius, Let BAC be

Fic. 4.
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an arc of this circle and BC its chord. Let OA be the
radius which bisects BC at right angles and consequently
bisects the arc BC. From B and C, draw BT, CT tangents
to the circle. They will meet on OA produced.

Let ZAOB be 0 radians,

Then TB + TC > arc BAC,
also arc BAC > chord BC.
Considering halves of these

BT >arcBA>BD . . . (A)

Now, tan 0 =g-%;—=BT, since OB is of unit length.

similarly 0 =2504 = arc BA, since OB is of unit

length.
and  sin 0 = oD = BD, since OB is of unit length.

;. from (A), tan 6 > 6 > sin 6
sin 0

— in 0
or cosa>0>sx

Dividing throughout by sin 0.
bt o LT
. G0 amo © :
But, since when 6 —> 0, cos 6 —> 1,and .°, s Yo 1 |

0 .
asil S-GICH always lies between —— and 1
v hen ST e Ry M
oW e i vy
sing SB 6 : ¥ vy
f.e.,as 0—>0, =5~ approaches unity as a limit,
or Le SIn8 _
6—>0
It is left as an exercise to the student to prove, using the
tan

above, that as 0 —>- 0, —5— approaches unity as a limit.
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20. A geometrical illustration of a limit.

Let OAB be a circle.

3 Le(t} gB be a chord intersecting the circumference at

and B.

Suppose the chord OB to rotate in a clockwise direction
about 0. The point of intersection B will move along the
circumference towards 0. Con-
sequently the arc OB and chord 8
OB decrease.

Let the rotation continue
until B is infinitely close to O
and the chord and arc become *
infinitely small.
It can be conceived that in
the limiting position when B
moves to coincidence with O—
i.e., the two inttl.ls of inte}:‘«
section coincide—the straight
line does not cut the circum- =t
ference in a second point. Therefore In the limiting
position the chord becomes a tangent to the circle at O.

21l. Theorems on limits.
We now state, without proofs, four theorems on limits,
to which reference will be made later.
[This can be omitted, if desired, on a first reading.]
(1% If two variables are always equal, their limits are
equal.
(2) Limit of a sum.
The limit of the sum of any number of functions is
equal to the sum of the limils of the separate functions.
Let vand v be functions of the same variable x.
Then Li(u + v) = Li(u) + Li(v).
(3) Limit of a product.

The limit of the product of 41?' number of functions
1s equal to the product of the limits of the separate
Sfunctions.

u and v standing for functions as above
Li(u x v) = Lt(u) x Lt(v).
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(4) Limit of a quotient.

The limit of the quotient of the functions is equal
to the quotient of the limils of the functions provided
that the limit of the divisor is not zero.

Thus Li (:,—‘) = Li(u) + Lt(v)
unless Li(v) = 0.

22. Worked examples.
2 4 3%

Example |. Find the limit of when x becomes
infinite. 2 —5

3
p Ay g, [T
._>.¢,21'—5 s—)-uz 5
T
DS b g}+Lt{2—- Lt E} (Th. 4)
r—>wX s> w A7
Bl 0ds
£ e -
A" — g"

Example 2. Find the value of Lt -
When z = a, the function is of,ge'form $, and therefore
indeterminate.

Let x = a + h, where h is small.

r—a* _ (a+h"—a
Then x—a (@a+h—a"

Expanding (@ + /4)" by the Binomial Theorem (A4lgebra
p. 281)

1 nin —
x'_a__{a"+ﬂa"'h+ E
x—a h

= {na”jl'+ﬂ’—'[2:ﬂa“k + .. }

1 a"-’h‘+...}—a'
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But since x=a+h
when x—>a, h—> 0.
.. Limit becomes
" —ar n(n — 1)
i = Li el [t el e
s£h¢ X —a ll—;-r-ll{m + I_i a3 tash }
= na™1,

since all other terms have a gower of b as a factor and
therefore vanish when A —> 0.

Example 3. Find the limit of
£ =3,

Both numerator and denominator vanish when z = 3.

Then the function takes the form §.

Rationalising the denominator (4lgebra, p. 252),
x—3 (=i —2+Vi—3

Vi-2-Vi—z (-2 —@—2
R s TR )
e 5 1

x — 6

2

x =3 becomes
VI+VT_ |
3 = .

x—3

Vi—2—-14—x

when

and limit when

Exercise 2.

1. (@) What number does the function -—l—l approach

as x becomes infinitely large? * —

(b) For what values of x is the function negative?

(¢) What are values of the function when the values
of x are 2, 1-8, 15, 1-2, 1-1,0-5, 0, — 1, — 27

(d) What limit is approached by the function as x
approaches unity ?

(¢) Using the values of the function found in (¢)
draw its curve.
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2. (a) Find the values of the function ?'x—:_—' when x
has the values 10, 100, 1000, 1,000,000.

(6) What limit does the function approach as x becomes
very great?
Fi.mfi g.li; limit of the function by using the method
O .
3. (a) Find s 22
£—p©
(6) Find the limit of the function as x approaches -+ 1.
4. (a) Find the values of the function — :1 when x has
the values 10, 4,’2, 1-5, 1-1, 1-01.
(t) Find the limit of -1 as x approaches unity.

b. Find the limit of the function
infinity.

Py ] approaches

8. Find the limit of the function -21‘1 j as % ap-
proaches . +
= P 422 - x —1
9. Find the limit L¢ —5—p5—.
s 002" + 2% + 1 tan 0
10. Show from the proof given in § 19 that .Lt S - 1.
—-*

CHAPTER Il
RATE OF CHANGE OF A FUNCTION. GRADIENTS

23. Rate of change of a function.

WE have seen that a function changes in value when the
variable upon which it depends is changed. The important
question which next arises is, how to determine the rate

of change?

Inth%CakaJuswsarsﬁmdammtaﬂymuwmdwﬂhm
rate of variation of a function with respect lo the change in
the variable on which it depends.

We will illustrate the problems which arise by ini
a few simple cases, in doing so will make use of the
graph of a function, since the graph makes visible the
changes in the function.

24. Uniform motion.

When a body moves so that it covers equal distances In
equal Intervals of time it is said to move uniformly. The
distance is a function of the time, and from the above
definition the rateof change of thefunction must be constant,
This will appear in what follows.

Let s be the distance moved, and

t be the time taken.
Then it is shown in books on Mechanics that
s=vt
where v, the velocity, is a constant, and is the distance
moved in each second.

The ratio of the two variables—viz. -—is constant for

[
all corresponding values of them.
Consider the following graphical example:
A motor-car travels distances in limes as shown in the
following table:
Time () (imsecs) . .| 1 | 2 | s | 4
Distance (s) (in ft) . | 20 | 40 | 60 | 80 | 100

B (cAL.) 33
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These quantities are reckoned from a fixed point in the
motion.

Plotting these points and joining them, they are seen to
lie on a straight line. This is shown in Fig. 6, which
represents the graph.

Y THE
100 H

80

I

Distance (in feetl
-

1 2 & &l & B WX
Time (in see).
FiG. 6.

Let 0Q, OS, represent two intervals of time (f). Then
PQ, RS represent the corresponding distances (s). From
the above general statement it follows that

PQ RS
0Q 03
This is true for any positions of P and R, and therefore the
ph must be a straight line,
Let 6 be the angle made by this line with 0X—i.e., LPOQ.

Then %=%=tm0.
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s (f'_)%) represents the gradient of the line (A4lgebra, § 72).
Let PM be drawn parallel to 0X.
Then, between the time intervals represented by 0Q
and 0S
PM represent the increase in time. Let this be &t.
RM represent the increase in distance. Let this be 3.
« SR increase in distance __ 8s
-+ TAH0 O i Crease in time 8
= tan 6
= gradient of the line.
Hence—for any corresponding values of s and t the
ratlo of Increase of the distance with respect to the
increase In time Is constant and equal to the gradient of
the line.
In the example above of uniform motion, this gradient is
seen to be 20 ft. per sec. This is the velocity of the car.

25. Gradient of a linear function.

Generalising the above:

Let y be a function of x. The straight line representing
the function may be of two forms:

(1) The function y = mx.

The graph is a straight line passing through the
origin. Comparing with the above example, if 8y and

8x be increments of y and x, :i is a constant and

represents the gradient of the line, But this is
represented by m (Trigonometry, § 67).

.
-s E_'X—m-

. m represents the rate of Increase of y with
respect to Xx.

(2) The function y = mx + b.

This straight line does not pass through the origin,
but has an intercept b on the y axis.
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In Fig. 7 let CPQ be the line whose equation is

y =mx + b.

b 5
Q
4//5 ?
Pl
x' /c 0‘ i ‘\dxa %

o

Fic. T.

Let 6 be the angle made with 0X.
Let P be any point on the line, its co-ordinates being

(x,_l{).
en 04 = x, PA =y.
Let x be increased by &x from OA to OB.
Let y be increased correspondingly by 3y, from AP

to BQ.

Drawing PR parallel to 0X, QR = 3y.
y o;-mglgdinatuoiQare

(x + 8z, ¥y + 8y).
o OB=zx+38x, QB=y + 8.

Substituting their values in the equation,
y=mz+b . . . . . El;
y+¥y=mx+3¥)+b . . . (2
Subtracting (1) from (2)
8y = m(32)

i.e., gg represents the gradjent of the line.

.". the ratlo of the Increase of y to the Increase of x
Is equal to the gradient of the line and is constant for

all points on the line.
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It will be clear that the addition of the constant b
to the right-hand side of the equation does not affect
the gradient. In both y = mx and y = mx + b, the

t is m, and for any given value of m the lines
are parallel (dlgebra, §74K

26. Meaning of a negative gradient.

The angle which a straight line makes with the z-axis is
always measured in an anti-clockwise direction. When
this angle is greater than a right angle, as is the case of the
angle 8 made by the straight line CD in Fig. 8, Its tangent is
negative (Trigonomelry, § 69).

.". the gradient of the line Is negative.

Let P be the point (x, y), so that 04 = x and PA =y,

Let x be increased by 8x to OB.

The value of the corresponding ordinate is represented
by QB. Draw QR to 0X, i.e., the ordinate PA is
decreased by 3y to QB.

Thus while x Is increased by 5x, y Is decreased by &y, or,
as we might express it, there is negative increase.

<+ 5y IS negative—i.c,, tan 8 Is negative.

. the rate of Increase of y with respect to x Is now
negative.
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Summarising this result with the foregoing we conclude :

(1) When y Increases as x Increases, the gradient Is
positive.

(2) When y decreases as x Increases, the gradient Is
negative.

27. Gradient of a curve.

The straight line, representing the graph of a function of
the first degree, is the only graph in which the gradient is
constant—i.e., the same at all points on the line.

If the graph is a curve, the gradient is different at
different points on the curve. It is not obvious, therefore,
what is meant by the gradient of a curve, since it is con-
tinuously changing, or what is the meaning of the gradient
at a point on a curve. It is necessary, therefore, to spend
some little time in investigating these difficulties.

28. Graph of the motion of a body moving with uniformly
Increasing velocity.

In § 24 we said that if a body is moving with uniform—
i.e., constant—velocity, the gr‘:’ph which connects distance
and time is a straight line. We will now consider a body
moving with uniformly Increasing velocity—i.c., in equal
intervals of time its velocity is increased by equal amounts.
In such a case it is clear that in equal intervals of time the
distances over are not equal. As the velocity
increases, the distances passed over will also increase. The
greater the velocity, the greater the distance moved. As
an example we will consider the case of a falling body, in
which it 1s clear that the velocity increases with time. The
following table gives the distances passed over in successive
intervals of time from rest by a body falling freely.

1
|o 02505076 1 {1-25|1-5/1.76] 2
|
]
1

Time (f) (in
secs) . .

Distance (s
(in ft.) .

{0 1 | 4| 9 |16| 25 |36 | 40 | 64

When the corresponding values of distance and time are
plotted, the graph is seen to be a smooth curve, as shown in

RATE OF CHANGE OF A FUNCTION 19

Fig. 9. Clearly the curve slopes more and more steeply as
time increases—i.c., the ratio of distance to time, or

Distance fn feet)

03 1 5 X
Tim= fin sec)

FiGc. 9.

velocity, Is Increasing. The smooth curve indicates that
this increase of velocity is uniform. Let us consider the
ratio of increase of distance to increase of time over three
successive intervals, as shown in the following table :

Time interval Distance [ Distance
(in secs.). (fr.). Time °
05 to 1 12 =2
1to 15 20 g% - 40
15 to 2 28 o8 = 56

These ratios represent the average velocities for the
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corresponding intervals. They are the distances which

would be passed over during the intervals, if the body were

moving with uniform velocities equal to these average

velocities. It is evident that the average velocity over
ual successive intervals is increasing uniformly.

It should be noted, as shown in § 24, that the gradients of
the chords joining the appr;)lpriate points on the curve will
be equal to these average velocities,

To generalise these conclusions, take any point P on the
curve and through it draw a chord cutting tﬁg curve again
in another point 4.

Draw the ordinate AB meeting at B the straight line PB
drawn parallel to the time axis.

PBLet increase in time between the two positions be 5t—i.e.,
= &t.

Let increase in distance between the two positions be 8s—
i.e., AB = bs. 8s

Then average velocity over the Interval = R

This is equal to the gradient of the chord PA.

Now suppose that the interval of time, represented by 8t,
continuallp diminishes. Then the distance 8s will also
diminish, but their ratio continues to represent the average
velocity during the interval and also the gradient of the
chord PA, which also diminishes.

ine now the interval of time to become infinitely
small. The interval of distance will also become infinitely
small. In the limit, when A is infinitely close to P—i.e.,

coincides—the ratio of § approaches a finite limit, and
the chord becomes a tangent at P (see § 20).
The limit which 3 approaches will be the gradient of

this tangent, and also the velocity at P.

Hence the term velocity at a point is the limit of the ratio
:—: when these each become Infinitely small. It is also the
gradient of the curve at the point P.

Thus the gradient of the curve at any point on the curve
Is equal to the gradient of the tangent to the curve drawn
at that point.
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In Fig. 9 draw PQ, tangent to the curve, at P.
Draw PR of unit length parallel to OX, and from R draw

RQ ndicular to PR.
ergi; = 0 = angle made by PQ with 0X,
Gradient of PQ = %g = % = 32.
.. velocity at the point P = 32 ft. per sec.

i.e., the velocity at the end of one second is 32 ft. per sec.
Students of mechanics will be able to verify this.

29. Gradients of the curve of y = x%

The methods employed above for obtaining the gradient
at any point on a curve will now be employed to solve the
problem more generally in the case of an algberaical
function. The curve of y = x* has been chosen as a simple
example, and one which is familiar to the student. A more
general form of this function would be {= ax®, but for
simplicity we will take the case where a = 1. The methods
adopted can be readily adapted for any value of a.

ig. 10 represents tﬁe curve of y = x2,

T
1

T
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T
TI

-
-
1 +
T+t
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it HH e
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} :::41‘ i E
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5 ::d;i:'..
e :
Fic. 10.
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Let P be tl;:dpoi.nt 1,1).

Draw a chord PQ cutting the curve again in Q.

Draw PR parallel to OX to meet the ordinate from Q at R.
Let PR, the increase in x between P and (), be &x.

Let QR, the corresgondhg increase in y, be 8y.

Then gradient of the chord PQ = tan QPR.

iy
8y T8
Also, ix 'S equal to the average rate of Increase of y per
unit Increase of x between P and Q.

The algebraical expression for % can be obtained as
follows: s
In the function =g N B L R

when x is increased by 8x and y correspondingly increased
by &y we get :
yAYy =+ . . . . (2
Subtracting (1) from (2)

8y = (x + 8x)? — a?
o By = 2x6x + (5x)%.
Dividing by 8x o = 2x +bx.
From this the value of :—‘E can be calculated for any

value of 3x at any point on the curve where the value of
x is known,

Thus when x = |, as in the case of the point P on the
curve above,

If 8x = 03, g 08 Wi
If 5x = 0-2, g =2402 =22
oo dy _ : :
Hex=01, 2=2+01 =21
If 8x = 001, g =2 +001 =20l

If 5x = 0-001, % =2 + 0001 = 2:001.
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These results exhibit the gradient of the chord PQ when
8x diminishes and Q moves nearer to P. Then it is evident
that the gradient of the chord approaches 2. We can
therefore conclude that when Q moves to coincidence with
P and the chord becomes the tangent to the curve at P,

the gradient of the tangent Is 2.

We may also say that

The rate of increase of y per unit Increase of x at the
point P Is 2.

Similar conclusions follow for any point on the curve, but
the gradient of each tangent will depend on the value of x at
the point; the gradient is therefore a function of x.

us at the point on the curve where x = 3, the gradient
of the tangent will be 6.

[t is evident that the conclusions reached hold for any
curve whose equation is known, In general, therefore, we
arrive at the following important conclusion :

The gradient at any point on a curve representing
a function is equal to that of the tangent drawn to
the curve at the point. It is also the rate of increase
of the function for the value of x at the point. :

30. Negative gradient.

In Fig. 10 let a point S be taken on the curve, correspond-
ing to a negative value of x. Draw the tangent to the
curve and produce it to meet the axis. The angle made
with the axis is greater than a right angle, Consequently the
gradient Is negative. As was shown in § 26, this indicates
that the rate of increase of the function is negative—i.c.,
the function decreases. An examination of the curve shows
that as x increases through negative values from —co to 0,
the function as represented by the curve is decreasing from
+ o to 0 at the origin. At this point OX is tangential to
the curve and the gradient of the curve is zero.

Exercise 3.

1. Draw the straight line 3x — 2y =6 and find its
gradient. If P and Q are two points on the line such that
the value of x at Q is greater by 0-8 than the value of x at P,
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by}l::'xgw much is the value of y at Q greater than the value
at
2. Find the gradients of the straight lines

(@) g —% =4
(b) 4z + 5y = 16.
() §+§=1.

3. Thegradient of a straight lineis 1-2. It passes th
a point whose co-ordinates are (5, 10). What i;mﬁ

equation of the line?

4, The distance passed over by a body falling from rest
is given by the formula s = 16t®. Representing an increase
in time by 5t and the corresponding increase in distance by
&s, find by the method used in § 29 an expression for &s in
terms of 8t for any value of t. Hence find the value of gts;.

Using this result find the average velocity for the following
intervals:

1) 2 secs. to 2-2 secs. (2) 2 secs. to 2:1 secs.

3) 2 secs. to 201 secs. (4) 2 secs. to 2-001 secs.

From these results, deduce what the velocity at the end of
2 secs. ap to be?
5. In the curve of y = x?, using the notation employed

in §29, find the value of g as the value of x is increased

from 3 to 3-1, 3:01, 3-001 and 3-0001 respectively. Deduce
the gradient of the tangent to the curve at the point where
x=3.

6. Draw the curve of y = #® for values of x between 0
and 2.

Find an expression for &y in terms of x and 3x.

Hence find an expression for &

Taking the values of x as 2-1, 2:01, 2:001, and 2-0001, find
the limit which % approaches as the value of x approaches 2.

Hence find the gradient of the tangent to the curve at the
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point where x = 2. Check by drawing the tangent to the
curve at this point. l
7. For the function y = 3 (see Fig. 3) find an expression

for 8y in terms of x and &x. Hence find an expression for
2,
x

Taking the values z = 1-1, 1-01, 1-001, 1-0001, find the

limit which % is approaching as x approaches unity. Hence

find the gradient and angle of slope of the curve at the point
where z = 1. Check your result by drawing the curve and
constructin%the tangent at this point. )
8. Find the gradient of the tangent drawn at the point
where x = 1 on each of the curves
1) y=22+2
2) y =2 —3 (see Algebra, § 112)
9. Find the gradient of the tangent drawn at the point
where # = 2 on each of the following curves:
1) y = 3x*
2 y = 2\1‘ — l-t




CHAPTER IV
DIFFERENTIAL COEFFICIENT. DIFFERENTIATION

31. Algebraical aspect of the rate of change of a function.

IN this chapter we take a very important step forward
in the development of our subject. It follows logically
from the work of the preceding chapter. To make this
clear we will briefly summarise the steps by which the
subject has advanced. They are as follows:

(1) The value of a function changes as the variable
changes upon which it depends.

(2) The rate at which the function changes is of
g‘eat practical importance and it is necessary to

able to calculate it.

(3) The rate of change (whether of Increase or
decrease) can be found geometrically as follows:

(a) When the function Is of the first degree.
Such a function can be represented by a straight-
line jraph, and the gradient of this straight line s
equal to the rate of change of the function.

If y is a function of x, and &x and &y are
corresponding increases of x and y, the gradlent

Is equal to g{ This is constant throughout the

line, i.e., the rate of change Is uniform.

(6) When the function Is not of the first degree
its iraph will be a curve, and the rate of change
of the function will differ in different parts of the
curve, Its value at any point is equal to the
gradient of the tangent at the point on the curve
corresponding to any assigned value of x.

The geometrical method has many important applica-
tions, and is suggestive as an illustration, but in practice
the gradient is not easily found by this method. For
practical purposes, and for accuracy, an algebraic method
1s necessary.

46
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The determination by algebraic methods in the case of
the function y = x* has in effect been indicated in §29,
when, by means of arithmetic calculations, the values of
gl; were shown to be approaching nearer to a limit, as z
approached an assigned value. For convenience the
working is repeated.

Let y =25
Then y+ 8y = (x + 8x)
Subtracting 8y = (x + 8x)* — 22

= 2x(3x) + (3x)%.

Dividing by 8%, o =2x+8 . . . . . (A)

We can now carry this a step further.

It has been shown geometrically that when 8x approaches
zero, the gradient of the chord, which represents the
average rate of increase of the function over the interval
represented by 5x, gradually ap hes the gradient of
the tangent at a point corresponding to any assigned value
of x.

Thus the gradient of the tangent, represented by the
limit of :—i. Is equal to the rate of Iincrease of the function
for the assigned value of x.

Since from (A) above, for any value of 8x

oy
5 = 2% + %

when 8x —> 0, % approaches a limit and the limit of
.,
S‘i _— zx . . . - . - (B)

i.e., when 8x —> 0 the limit of 2_.,; represents the rate of
Increase of y with respect to x, for any assigned value of x.
For example, when z = 1, limit of g =2, t.e., the rate

of increase of y, or x* with respect to xis 2.  (Cf. § 29.)
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Similarly,

when % =2, limit of 22 = 4. (Cf. Ex. 3, No. 8)
when x =3, limit of 2 = 6. (C1. Ex. 3, No. 5.)
Using the notation of § 15, we may write (B) above as,
It ¥ o
8x—>0 0%

A still more convenient notation is employed to represent
this limit. 4
&
Lt 2 is represented by
bx—-0 &x P y dx

in which the English letter d is used instead of the Greek 8
and the condition 8x — 0 is understood.
Thus (B) becomes

dy fagy

ai -
This limit is called the differential coefficient of
the function with respect to x, the independent

variable.

Thus, when y = 22, 2x is the differential coefficient of y,
or x3, with respect to x.

A similar procedure will enable us to find the differential
coefficient of any other function.

32. The Differential Coefficient.

Summarising the foregoing section we may conclude:
(1) If y be a continuous function of x, and &x be any
increase in the value of x, there will be a corresponding
sncrease (or decrease) in the value, denoted by &y.
(2) The ratio :-5 represents the average rate of increase

of 3;0:;?: respect to x, when X increased to x + 5x.
tnce y 1is a continuous function of x, if 8x becomes
s’nj{m'tdy small, so also does Sy. g

(&) When 8x— 0, the ratio L. in general tends to
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a finite limit, and this limit is called the differential
coefficient of y with respect to x. It is represented by

dy
the symbol i
.8 Li s d_y

;,._,0_8; ry dx'

The Differential Calculus is fundamentally concerned
with the variation of functions, and we can regard a
differential coefficient as a rate-measurer in such variations.
It measures the rate at which a function is changing its
value compared with that of the variable upon which it

depends,
I.l,'telus for the function y = 2*, since % = 2x, when x =4,

y, or 23, is changing its value at 8 times the rate at which
x is changing.

The differential coeflicient ‘%‘ Jedeo colled n'derivarive of

y with respect to xz, or the derived function.
Except in the case of a linear function, the differential
coefficient of y with respect to x is itself a function of x.

Notation for the differential coefficient.

Besides the form %, the differential coefficient of y with
respect to x may also be denoted by y'.
Thus if y=x
y =2x.
In general, the differential coefficient of y = f(x) may be
denoted by f*(x).

The same forms are used for other letters re _resentip
functions. Thus if s is a function of t, the differen

coefficient of s with respect to t is written g

33. Differentiation. Differentials.

The process of finding the differential coefficient or
derivative of a function is called Differentiation.
The operation may be expressed by using the operating
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symbol Zd' Thus the differentiation of x? with respect to
x can be written in the form ) or # (x?)
&« &'
In general, the differentiation of f(x) with respect to x
d(f(x) d
can be expressed by _%x_ or a;(f{x}). It may also be

denoted by the form D.y or Dy when there is no doubt as
to what is the independent variable.

Differentials.
The infinitely small increments of x and y which are

implied in the form f—% are called differentials. Thus %

represents the ratio of the differential of y to the differential
of z.

In the example y =2t
Y =
we have o= " 2z.

This might be described by the statement that the ratio
of the differential of y to the differential of x is equal to 2z,
or the differential of y is 2x times the differential of . This
could be expressed by the equation

dy = 2x . dx.
In this form 2x is shown as a coefficlent of the differential
of x, hence the term ‘* differential coefficient "',

The student should not at present regard g as a fraction

in which the numerator and denominator can be separated,
but as a limit, as shown above.

General definitlon of a differential coefficient.

It will now be seen, from what has been stated above,
that the general expression for the differential coefficient
of any function, f() is given by

Lt &X '+' SX) NS ﬂxJ_
85 —>0 &x
34. The sign of the Differential Coefficient.

It has been shown above that the differential coefficient
of a function is equal to the gradient of the tangent at a
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point on the curve which represents the function. It was
also shown in § 26 that this gradient may be positive or
negative. Consequently the differential coefficient may
also be positive or negative. This will be examined further
in a later chapter. For the moment the student is reminded
of the conclusions stated in § 26 as to the sign of the gradient
and the increase or decrease of the function. These con-
clusions apply also to the differential coefficient.

35. Differential coefficlent of a constant.

Since a differential coefficient measures the rate of change
of a variable, and a constant has no change whatever, the
differentlal coefficient of a constant must be zero.

36. Differentiation of y = mx + b.

As the student has learnt previously, this is the general
form of a function of the first gegree. ¥ts graph is a straight
line (§25), and therefore of constant gradient. This can
be shown algebraically from first principles as follows:

Let 8z be an increment of x.
Let 8y be the corresponding increment of y.

Substituting in y=mx +b
y+8y=mx+8) +b
subtracting 3y = m(8x).
.
=m.
5x

This is true for any value of 6x with the corresponding
value of 8y, since m is a constant.

e il
e AL
It will be noticed that the value of % is independent of
b. For different values of b the equation represents a
series of parallel lines, having the gradient “ m.”"  See § 25.

37. Differentlation of y = x*.

The lollowi.gg proof will provide another example of the
eral method which malv be adopted for finding the
ifferential coefficient of a function by first principles.
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Let 8x be an increment of x.
Let 8y be the corresponding increment of y.
Substituting in
y - x‘ " . - . . . . - - (l)
y+3¥=(x+u?
= x* 4 322(3x) + 3x(3x)* 4 (3x)*. (2)

Subtracting (1) from (2)
8y = 3x3(5x) + 3x(3x)* + (3x).
Dividing by 8x, which is not equal to zero, since it represents
any increase of x
% = 32? + 3x(8x) + (3%)%
Proceeding to the limiting value of g-%, when 8z —> 0
both 3x(8x) and (3x)? approach zero.

t (=) =32
o6

ie. Y =3,
38. Differentiation of y = x*.

If the method of the foregoing section be applied to y =4,

this would involve the expanu;gon of (x + Bxy‘, which is:
2+ 423(52) + 6x2(8x)* + 4x(3%)° + (3x)%.
After subtraction of #* and division by 8z, there is left:
4x° + 622(8x) + 4x(8x)% 4 (8x).

On proceeding to the limit when 8x —> 0, every term
after 42® vanishes, and we are left with 4x® as the differential
coefficient,

Any function of the form y = 2" is dealt with in the same
way, and it is evident that in the expansion of (x 4 8x)",
the second term provides the differential coefficient.

J d
For example, with y = 25, 2% = 5zt

” J’=x°. %=6¥‘.
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Generally when x is a posilive integer it may be deduced
that if
2y w—
AR

A general proof of this follows.

Let y = 2™,

Let 8x be an increment of x.

Let 8y be the corresponding increment of y.

Substituting ¥+ 8y =(x+ 8"

E):grand.mg the right-hand side by the Binomial Theorem
(Algebra, p. 279).

y + 8y =2+ nan1 (32) + - 1) o2 (342

+"—(";”_3_”IJ;2’ 3 + ...

(n—1

but y =a"
Subtracting

8y = na™1(3x) 4+ = 1 (8x)?

+ ’1(1___%)3(_'.'__& (82 +. ..
Dividing throughout by 8x.

&y n(n—1)
Sx_ml_i_—ﬁ__ x"—’(&x) + 3
Let 8 —> 0; then each term on the right-hand side after
the first tends to zero.
. 8y
P |\=Z )= 1
@)=
dy
L= ax™,
dx
The question now arises as to the values of n for which
this result is true. Does it a]gplg only to those cases when
n is a positive integer? Evidently the validity of it
depends on that of the Binomial Theorem. Does this hold

T

or
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when n is negative, or fractional? The ciuestion is briefly
discussed in Algebra, p. 282. There it will be learned that,
subject to certain numerical restrictions, which do not
affect the above, the Theorem holds for all values of n.

The differential coefficient of y = " can, however, be
found by other methods, not involving the Binomial
Theorem. If the student desires to study them, he should
consult a larger treatise on the subject.

The conclusion therefore is that for all values of n

d(x) _
d—z' = nx™1,
39. Differentiaticn of y = ax", where @ is any constant.
Compressing the proof given in § 38 we get the following:

y =ax
Y+ & =alx + 8"

=a{x" + na13x + ﬂ%”z‘“[&x)’ o }
Subtracting i

By = a{nx"-‘ (8 + Mo

Doms(sap + . . J

2

:;J; =¢{,.xn-1 +”.L’Zl—£-ﬂx'-'(8x) +.. }
Let 3 —> 0.
Then Lt () = atne-y

The constant factor g thus is a factor of right-hand side
throughout and remains as a factor of the differential
coefficient.

dy 1

<= = nax".
dx

40. Worked examples.

Example |. Find from first principles the differential
coefficient of

Y 96 y=x1
Let 8x be an increment of x.
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Let 8y be the corresponding increment of y.
1
T kg 22
1
. 1 1
o L !x =+ ax}
x(x 4 3x)
R
z(x + 82)°
slaved i L
Dividing by 8x, &P
Proceeding to the limit when 8x —>- 0.
‘ Q = — =
br—>08% 2t
d |
or . 35 = e }1'
Example 2. Write down the differential coefficients of
the following functions.
1)y = 2°; g = 8281 = Bx7.

@2 y= 2t % =zl = ix-‘ = 2‘_[/;_‘

it WL e
(3)}'—3"’. a—--—-3r'-‘-=—3r‘—~?—.
(4) y = 2%5; g=l-5xx1'5-1=l-5x‘".

G y=2% D= (—px @+ = —prt.
6) y==x; g=x1~1=x°=l. |
Example 3. Differentiate the following functions:
(1) y =624 & =6 x 4 x 1 =240,
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@ y=4Vz or y=4x
3{ =4 x § x 21 =4z

N
ey SN
@) y =p; D = p x 20 x 2,
= 2pgx¥-1,

4) s = l6sa; %‘s-—-2 x 18 x £ =32t (Cf. §28.)
Example 4. Find the gradient of the tangent to the curve
y=-’l;a¢$hcpo£ntwharsx=l.

The gradient is given by the value of the differential
coefficient at the point.

d (1 1
Now e (;) = 2pd (Example 1.)
when x=1
% = — | or tan |35°

(Cf. Ex. 3, No. 7.)
Exercise 4.
1. Write down the differential coefficients of the follow-
ing functions with respect to x:

#7; Bx; 33 000x; §x%; 1544
2. Differentiate with respect to x:

bit; B aw; xte; 20001 dmad,

20

. - . '
3 1-523%; (4x)%

3. Differentiate with respect to x:
6x +4; 0:54x —6; —3x +2; px +q.
4. Of what functions of x are the following the differential
coefficients:
x; 3x; a%; 1ad; x5; 20; 2%; §4°; 4ax?
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5. If v = u + af, where u and a are constants, find g.;"
6. It s =}/, where fis a constant, find % when f = 20.
7. 164 =m',ﬁnd%§.

8. 1fV=w,ﬁnd%’.

9. Differentiate the following functions of x1
86
6V%; 3 i, va; V28,
10. Differentiate with respect to x:
il - x—?,;; 6x4; 7,
11. Differentiate with respect to x:
622, 2-1%; 20007, i

12. 1t p =29, find 2,

13. Find the gradient of the curve of y = }x® at the
point on the curve where x = 3. For what value of x is the
gradient of the curve equal to zero?

14, Find the gradient of the curve of y = 2x®, at the
point where x = 2. 2

15. Find the gradients of the curve of y = = at the points
where x = 10, 2, 1, }. -

16. Find from first principles the differential coefficient
of y= ?.

17. At what point on the curve of 2*is the gradient of the
curve equal to 2?

18. At what point on the curve of y = #® does the tangent
to the curve make an angle of 45° with the x-axis?

19. At what point on the curve of y = 4/ is the gradient
equal to 27

20. It is required to draw a tangent to the curve y =
0-522 which shall be parallel to the straight line 2x — 4y = 3.
At what point on the curve must it be drawn?



CHAPTER V
SOME RULES FOR DIFFERENTIATION
SUCCESSIVE DIFFERENTIATION

41. Differentlation of a Sum.

THE functions which were differentiated in the preceding
chapter were expressions of one term only, with tEe excep-
tion of y=mx+ b (§ 36). This was found from first
principles.

We now proceed to consider in general the differentia-
tion of a function which is itself the sum of two or more
functions of the same variable, such as y = 5x® 4 141% —
7x. The proof given below is a general one for the sum
of any number of functions of the same variable. :

Let u and v be functions of x.

Let y be their sum, so that

y=u+v

Let x receive the increment 5x.

Then u, v and y, being functions of x, will receive corre-
sponding increments.

Let 8u, 6v and 5y be these increments, so that

u becomes u + &u

v e v -+ by
 RUatl ULk (a2 ol
.. From y=u-+v
we have Yy + 8y = (4 + 3u) + (v + 3v).
Subtracting 8y = 3u -+ dv.
Dividing by v 2 = o 4. 3%,

This is true for all values of &x and the corresponding

increments 3u, v, 8y.
Also their limits are equal. (Th. I, Limits, § 21.)

A 8x—> 0

uﬁog ys k-{io{:_“ +%‘}

W gy (:‘_;‘)-;- Lt (’_". (Th.2,§21.)

x
85 —>0 8 —>0\8
58
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Replacing these forms by the corresponding symbols for
differential coefficients

dy du  dv

=& T &
clearly the theorem will hold for any number of functions.
Hence the Rule for differentiation of a sum,

T he differential coefficient of the sum of a number of functions
is to the sum of the differential coefficients of these
Junctions.

42. Worked examples.

Example |. Differentiate with respect to x.

y = 3x® 4 7x* — 9x + 20.
Using the above rule

5{=9x'+ l4x — 9.

Example 2. Find the gradient at that point on the curve
of y =2 — dx + 3 where x = 3.
hat is the point of zero gradient on this curve?

If i'=:c’—£x+3.
¥ B e
‘E_zz 4,

; el w e
S When z=3, 3 =@2x3 -4

When the gradient is zero
2x —4 =0.
Jull .
Example 3. 1f s = 80t — 164, find 5. When % =16,
find ¢
s = 80¢ — 162
. ds _
e 32_80_3%.
Then & ie. 80 —32 =16
32t =64
t=2
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Exercise 5.

Differentiate the following functions of x1

1. 622 + 5. 5. 2 +4x.

2. 348 4% — L. 8. 7433

3. 4x4 4 324 — 2. 7. (6 — xz + 3x%).

4 3+ 32+ 1 8. 8V/z + V10.
Find g when

9. s =ut + }fe.

10.3-51+16£' 11. s =30 — 4 4 7.
12. Findz- when y = ax® + ba® +cx +d

13. Differentiate with respect to x, (x - )

14. Differentiate with respect to x, V'x +

15. Differentiate with respect to x, (1 4 2)3.

16. If y = x — na® + b, ﬁnda{

17. Find ywheny '\/x-l-‘V_-]-—

18. Find the gradient at that pomt on the curve of
y=2x* —3z + 1 where x = 1-5. For what value of %
will the curve have zero gradient ?

19. For what values of x will the curve of y = z(z* — 12)
have zero gradient ?

20. What are the gradients of the curve

y=x"—622+41lx —6
when x has the values 1, 2, 3?

21. tht are the points of zero gradient on the curve of
y=x+22
43. Differentiation of a Product.

The differential ooeﬂiuent of some products such as
(% + 2)? or 3x(x + 2) can be found by multiplying out and
using the rule for differentiation of a sum. In most

cases, however, that cannot be done, as, for example,
x’Vl—xandx'sinx.
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The differential coefficient of a product is not equal to
the product of the differential coefficients of the factors,
will be apparent on testing such an example as

£+”

eneral rule for use in all cases is found as follows:
Let u and v be functions of x.
Letyﬂ“ X,
consequently y is also a function of z.

Let 5x be an increment of x.
Let 8%, 8v and 8y be the corresponding increments of #,

v and y.
Substituting the new values of %, v and y in
y=uXxXv . 2w e i)
9+ 8y = (4 )0 + B)
or ¥+ 3y = uv + (%) + v é }+(8“)(M
Subtractmg (1) 8y = u(av) -+ v(au) + (3%)(3v)
Dmdmgbysx,ﬁ=u --{-u -{-8“.%.
Let 3x —> 0.
Then 8u, 8, 8y all approach zero.
‘. by Limits Th. 2.
- -~ 14
u{'ieh u-pu )+u£‘»o 'ax)+u£io(au )
In the limit, since 84 —> 0, the last term—viz. 8u xax
—alsoapproa.cheszero
.. with the usual notation
(_ix dv du
dx =Yt Vax

This u:nportant rule may be expressed as follows:
L Differentiate each factor In turn and multiply
by the other factor.
(2) The sum of the products 1s 9 3_'

This rule may be extended to more than two factors,
Thus if y = 4w
where %, v, w are factors of
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Then
dy du dv dw
ae= (G x ) + (G x ) + (G x w)
44. Worked examples.
Example |. Differentiate (x* — 5x + 2)(2xz* + 7).
Let

y = (x® — bx + 2)(24® 4 7).
Then

%u{dgx‘—&x+2p g (2x’+7)}
+ {282 ED) (22— 5x +2)
= (2x — 5)(2x® + 7) + 4x(x* — 5x + 2).
This result can be simplified, if necessary,
Example2. Differentiate (* — 1)(2x + 1)(2® + 24 + 1)

Y = (=0 @ + 1t + 20 + 1)}
+{£%xill X (= 1)@ + 22 + 1)}
+ {222 2 — s+ 1)

=222+ N+ 23 4 1) +2(x* — 1
Bt E 0 e el — nax + 1)
This can be further simplified.
Exercise 6.
Differentiate the following by means of the rule for
products.
10, (x2* —z 4+ 1)(x* +x—1).

1. (3x + 1)@z +1).
2. (2 +1)(3z + 1). 11, (x — 2)(2* + 2x + 4).
3. (8x — b)(x* + 22). 12. (228 — 3)(3x® + 2 — 1).
4. (2 +3)(22* —1). 13. (x—1 x+l{{x’+l).
5. (x* + 4x)(3x* — z). 14, (x +1)(2x + 1)(3z + 2).
6. x"+x+l}{x—l. 15. (ax® + bx + ¢)(px + 9).
g. ﬁ::x++15)7;l.2) 16. v;(zz—l)(x:/-_i-x+1).
% —4). 3 z—1).
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45. Differentiation of a quotient.
In § 40 the differential coefficient of a simple example of

a quotient, viz. 1, was found by first principles. This

method, however, is apt to become very tedious in more
complicated examples. The general rule which is explained
below is that which is usually employed.
Let v and v be functions of x.
%
Let y = ;.
{]is then a function of x.
sing the notation employed in the preceding section for
increments of these
_ %+ 8u
Iy =Fw
4 _ w43 u
subtracting 8y = R TER
o V(1 + 3u) — u(v + dv)
v(v + 3v)
_ vbu — udo
v(v + 8v)"
o ¥ 400
Gy 3y "3 " 8x
Dividing by 8z, O R 7Y -
'Il-"ﬁt 8% —> 0; in consequence 8#, 8v, and 8y tend to zero.
en

u (2) Eu":io(" 3=, ",,Ef_.,(“ -3)
i — 037, h_f:ﬁou(u-i-&;)

The limits in the numerator can be expressed by

(Th. 4, Limits).

and the limit of the denominator is v?, since 8v —> 0.
du dv
) Q—v'&_u'a

" ughe s v g
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This can be written:

% (den, x d.c. of num.) — (num. X d.c. of den.)
* (den.)? 4

46. Worked examples.

Example . Differentiate 22—,
" du T dv
: dy " dx "dx
Using % =gyt

where # =3xand v =x — 1.

dy _{(x— 1?(311 — {82(1))
ax % — 1

=3x—3—3z
ix—lF

-3

x — ¥

Example 2. y = ’5—:}%

Using the formula quoted above
dy _{(=* —1) x @)} —{(*+1) x B9}
i w1y

3x8 — 3% — 325 — 32
== @-1p

— 62
H(;__-l‘yic

Example 3. Differentiate =1 }1- :

24z

We have =

M—
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Using the above rule
dy _{(x* — 32 +2)(2% + 1)} — {(" + ) (2% — 3)}
dx (" —3x + 2)*

_(2® -5+ 2 + 2) — (22% — 2* — 32)

(»* —3x + 2
=——4x’+-£x+2
(@ =3x + 27"
Exerclse 7.
Differentiate the following functions of x.
g e, ek erd.
g1 1 — 3 ‘x4 2
4:\:—f—l 53::-—1 6:u:+!:
x4+ 2 "%+ 3 ‘x—0
7x—b 8 P 9 22
e 5 "x—4 L, P
10, VZ n 21 19, VE+1
T ¥ WS | "Vz—1
133‘—1 Mx'+x+1 15 222 —x 41
16 17, 2% 18, 2 —=8
* -y "=

1+x+2
x —_—
x(x —1 x4+ 2
19. Jm)- 20- T-
47. Functlon of a function.

To understand the meaning of * function of a fumction "
consider the trigonometrical function sin?x, ie. (sin x)%.
This function, being the square of sin x, Is a function of
sin x, just as x? is a function of x, or u? is a function of u.

But sin x Is itself a function of x.

.. sin? x Is a function of sin x, which Is a function of x,
i.e., sin? x Is a function, of a function of x.

_ Similarly 4/2* + 4x is a function of x* 4 4x, just as V/x
is a function of x.
But x* + 4x is itself a function of x.

o (‘\/E’}+4xisaﬁmction of x* 4 4x, which is a function
C (cAL,
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of x. The idea of a “function of a function’ may be
extended. For example, we have seen that sin®x is a
function of a function of x. But sin? (/) is a function of
sin v/, which is a function of 4/x, which in its turn is a
function of x. The idea of “a function of a function "
often puzzles the beginner, and there is a tendency to over-
look it and to omit application of the rule for differentiating
it which we shall discover later. For example, it may be
overlooked that such a familiar function as sin 2z is a
function of a function, since 2x is a function of x.

We cannot further with the example above of
sin? z, since the rules for differentiating trigonometrical
functions are dealt with in a subsequent chapter.

An algebraic function, say y = (x* — 5)%, will be used
as an example in discovering the rule for differentiating a
function of a function.

Now (x* —5)* is a function—the fourth power—of
x* — 5, which is itself a function of .

If u = (2* — 5)
we can write y =us
Differentiating y with respect to u, according to rule
. L
_Jt_' — 4!,’-

But we require ‘z; therefore the following method is
adopted to find it.
Let 8x be an increment of x.
,» 6u be the corresponding increment of u.
T3 57 " " " Y *
These being finite increments, it is obvious that by the
law of fractions
& % %
8x  &u " &x
Let 8x —>- 0; in consequence Su and &y will proceed

fi?m zfro Then each of the ratios % 3 :: approaches a
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br—>08% 830

5 K- o {Kxg}

=Bl 1 ()

by the third law of limits, § 21.

and as 4 =2 — 5

dy _dy , du
dx du " dx
Applying this resul; to the above we have:
Y -
P 413
du
ﬁ-—2z
dy_dyxdu
dx  du " dx
D P RS

ie., g{=4(x- — 5)® x 2x = Bx(x® — 5,

Worked Examples.
Example |. Differentiate y = /T — 2

VI=2 = (1 — )i,
du

Let u=1—x? then d-x=—2z and y = ub,

Since

.. substituting

20 = bt
= $(1 — 2+,
dy dy du
L
Y 40— x (—29)
= — z(l — %)
Py Bhom
Vi=x

67
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Example 2. Differentiate y = (x* — 3z + 5). Substituting in (A)
i au _ L
R TR IR A vl i, 2=+ 0 g} +FFTx 2
oo =3“’ (X’ +5 e,?——-
a;‘—s(xt 3% + 5)%. o SO Mo 5 el
Substituting in % dy g This might be further simplified.
% = 3(x* — 3z + 5)* X (2x — 3) , Example 5. Differentiate 3—/%
=3(2x — 3)(x* — 3z + 5)% ' Employing the formula for a quotient, viz.1
After some practice the student will probably find that % dv
usually he will be able to dispense with the use of “ u”’ and j Y =
can write down the result. The above example is a con- =- (—) =
venient one for trying this procedure. ol it du \v
tuti
Example 3. Differentiate y = (32* — bx + 4)1, b
Working this without introducing u, the solution can be ¢ -4 xide +§‘}( et XK 0
W1 down in two stages, as follows 1
b ut Of these /T + 3x or (1 + 3x)}is a function of a function.
Y — 135 — b3 + 41 x dc.of (34 —5x + 4) Aprivis i B e
=§(3x* — 5x + 4 x (6x —5). d(1+3x)'—-i(l+3 g i e
Example 4. Differentiate y = (x* + 5)¥2* + 1. dx i) T 2v/1 + 8%
This being a product of two functions, we employ the rule Substituting in (A)
‘%’;—vz=ﬂ.%+ﬂ.%‘. dy _ me —4/TF 32

Hence dx

d
= (2 +8)de. of ¥ ET
L= s

A1 x de of (3* +5)} (A)

W-MH*

Of these 'O’x'+llsafnnctmnoiafunction. 1622
It is better to work this separately and substitute after- _6x—4(1+3x)
wards: - e = 16AVI + 8%
a{(»* + 1) }#i(x’+1)"‘>< {(d.c.) of (x* + 1)} o Gl 18 —4—6x
— 302 + 14 x 22 M .. 1AV

2x = — >
=@+ x| + 3x
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48. Differentiation of Implicit functions.

It was pointed out in § 11 that it frequently happens,
when y is a function of x, that the relation between x and y
is not explicitly stated, but the two variables occur in the
form of an equation from which y can be obtained in terms
of x, though sometimes this is not possible. Even when y
can be found in terms of x, it is in such a form that differ-
entiation may be tedious or difficult. This is apparent
from the examples of Implicit functions given in § 11.

In such cases the method adopted is to differentiate
term by term throughout the equation, remembering that
in differentiating functions of y we are differentiating a
function of a function.

Example 1. Find % from the following equation.
A =y + 3z =05y.
: ey S dy _ Sy
Differentiating 2x 2y.dx+3-51;‘.
The differential coefficient % remains, as we have not
yet determined it. It will be seen, however, that the

equation can be solved for %
Thus collecting terms involving it

2y-:-§+5%=2x+3

d
or Ty +5)=20+3
oody = +3
Ty FS

It will be observed that the solution gives % in terms of
the two variables x and y. When corresponding values of
z and y are known, the numerical value of ﬁ can be deter-
mined. An example of this follows.
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Example 2. Find the slope of the tangent to the curve
2 + xy + y* = 4 at the point (2, — 2).

Differentiating x* + xy + ¥* = 4 as shown above, and
remembering that xy is a product

a d
2:::-y+x.£+2yd—i=0.
Lo pE ) == (@5 +)

a 2z +
and =T
.. when x=2,y=—2

dy 4 —2

= 3—4

.. the gradient of the tangent to the curve at this point
is1 andgll-;‘ile angle of slope is 45°. %

Exercise 8.

Differentiate the following:
. (22 4+ 6); (1 —b52)%; (3x + T

1
2. f—_l-ﬁ; (1 —2x)%; VI =2z

3. (x* —4)5; (1 —a0); V¥ 1.
4. 1.?!12;,; \/ll-—_i!x’; T\/n—:?
"E—% Vi—x @=2"
7oV 7F=1 VTR
7= 5 GF)

e

1
o VETH vaTE

10. VI=z F 2% (1 — 24"

=]

(=]

-3
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i 1\
7 Vﬁ, (x + ;) .
19, boms YA AE
V1 + 2 x
P S, X T
" A1+ 2t xoi

1 TR

14, - — x.

4 PV 7 g v € M1 =%
1l —x

15. ‘l_x ; #V2x +3.

Find % from the following implicit functions1

16. 3x* 4 Txy + 9y* =6,

17. (a* + 9% — (2* — %) =0.

18. 2* + 5° = 3xy.

19, 2* + " = a”.

20. Find the gradient, at the point (1, 1), of the tangent
to the curve 2* +3* — 3x + 4y — 3 =0.

49. Successive differentiation.

It was pointed out in § 32 that the differential coefficient
of a function of x, unless it be a linear function, is itself a
function of .

For example, if Jv = 3zt

Y =12
dx

Since 124® is a function of x, it can be differentiated with
respect to x and

g (12 =360,

This expression Is called the second differential coefficient
of the original function, and the operation can be indicated

by 72 ()

The symbol -j—?, Is employed to represent the second
differential coefficient. In this symbol the figure “2" in
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the numerator and denominator x is not an index, but
signifies that y, the original function, has been twice
differentiated and each time with respect to z.

Thus, g measures the rate at which g% is changing with
respect to x, justasg—-’;measur&stherate at which y is

changing with respect to x.
The second differential coefficient is also a function of z,

unless % is a linear function or a constant. Consequently
g can also be differentiated with respect, and the result
is the third differential coefficient of y with respect to z.

it Is represented by g
Thus in the above example in which

% - 360,

o =7x.

Thus it is Jla_ohsliible to have a succession of differential
coefficients. is process of successive differentiation can
be continued indefinitely or until one of the differential
coefficients is a constant. This can be illustrated by the
example of y = 2", as follows:

Successive differential coefficients of x»,

Y=o
dy
A
g=n(u—l)x“-’
dy

a;:nn—l)(n—ﬂx“—'.

If n is a positive integer this process can be continued
until ultimately n — n is reached as the index of x and the
differential coefficient becomes n(n — 1) (n :n? I |
—i.c., factorial n or [n. The next subsequent
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differential coefficients are zero. If n is not a positive
integer the process can be continued indefinitely. The
following example will serve as an illustration.

Find the successive differential coefficients of

y=x~"—7x’+6x+3.

-

@ 1aa. T
3;,—6:: 14
oy

d®

dy _

- e

50. Alternative notation for differential coefficients.

The successive differential coefficients are also called the
derlvatives or derived functions of the original function.
They may conveniently be denoted by the following
alternative symbols:

(1) When the functional notation is employed:

If f(x) or¢(x) denotesa function of x.
f'(¥) or¢'(x) denotes the lst diff. coefficient.

J"'(x) or ¢" () " 2nd 5
[ (x) or ¢ (x) " 3rd v
fl'(x) or éﬂ'{x, " 4th " etc.

(2) Or y may be retained with a suffix or an accent:
Thusif ¥ denotes the function.

Y e 1st diff. coefficient.
yl " 2nd "
Ys ” 3rd " , ete.

or sometimes the terms ¥’, ¥, ¥'" . . . are used.

51. Derived curves.

If has been shown above that successive differentiation
of a function of x produces a set of derivatives each of which
is also a function of x. These derivatives can be regreseuted
by their graphs. Consequently the derived functions give
rise to a series of derived curves, between which definite
relations exist.
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Consider the function
y==x'—4x +3

t-hen yl = 2x e 4
and ¥y =2

Fig. 11 shows (1) the graph of y = x* — 4x 4 3, (2) the
graph of y, = 2x — 4, and {3?]y,=2, the graphs o) the
fwo derived functions. The following connections between
the curve of the original function and of its two derivatives
will be obvious.

o
-
-
.
-~
—

s

1
b i
11
L1

FiG. 11.

(1) Since y,,the firstderived function,gives the rate of
increase of y with to z, Its value for any assigned
value of x equals the gradient at the corresponding
point on the curve.

Take any point A on OX where x = 3-6. Drawing
the ordinate at 4, P is the corresponding point on the
curve, and Q the point on the straight line y, = 2x — 4,
the first derived tion.

Then, the value of the ordinate QA Is equal to the

radient of the curve at P, This value is seen to be
2 units. By calculation, substituting z = 36 in
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¥y = 2x — 4, the differential coefficient, this is equal
to (2 x 3:6) — 4 =32, \

2 2’I'he graph of tll'ne se&nd dder]:lved function, t‘::t

= 2, being parallel to and having a cons
i&lue for any ordinate, shows that the gradient of

. = 2x — 4 is constant, viz. 2.

(8) At the lowest point B on the curve of y = x* —
4x -+ 3 the value of the ordinate at the corresgonding

int on the first derived curve, y, = 2x — 4 is zero;
it cuts OX at this point. Thus the gradient of the
original function Is zero, when x =2. A tangent
drawn to the curve at B will be parallel to 0X.

(4) For values of x less than 2, the function x* —
4x + 3 Is decreasing while the derived function values
are negative, For values greater than 2, x* — 4x + 3
Is Increasing and the derived function 2x — 4 s positive.

Exercise 9.

Write down the first, second and third derivatives of
the following functions of x:
1. x*(x — 1). 2. 2B,
3.5 — 38 + 22 —x + 1,
4, 10x5 — 42® + 52 — 2.

5. i 6. V7.
7. V3 FIL 8. ;1,

; 3 = = 1
9. Find the nth differential coefficient of Ao

4 1 1 1 1
[Hmt, a* —x* 2\a +x+a —x)]'

10. If f(x) = 6x® — 5x + 3, find f'(0). For what value
of xis f'(x) = 0? To what point on the curve of f(x) does

is correspond ?

11. If f(x) =+ —b62* + 7, find f'(1) and f"(2). For
what values of x does f’(x) vanish ?

12. Find the values of x for which the curve of f(x) =
42 — §2® + 6x 4 1 has zero ient. For what value of
x is the gradient of f’(x) equal to zero? To what value of
f'(x) does this correspond ?

CHAPTER VI

MAXIMA AND MINIMA VALUES. POINTS OF
INFLEXION

52. Sign of the differential coefficient.

The sign of the differential coefficient, to which brief
references were made in §§ 34 and 51, must now be examined
in more detail.

If y is a continuous function of x, and if x receives an
increment 8x, then y will be increased or decreased by a
finite quantity 8y.

If y Is Increased, then 8y must be positive, and &x being
always positive, the rate of change as expressed by the
limit of %—i.s., gi—must be positive.

If, however, y Is decreased, 8y must be regarded as
negative. Hence the rate of change as expressed by the

limit of :—i must also be negative—i.e., ?;‘ must be negative,
More concisely:
(1) If y Increases as x Increases, g‘ Is positive.

(2) If y decreases as x Increases, g{ Is negative.

Similar conclusions were reached in connection with the
gradient of a curve at a E:int. Since algebraical functions
can be represented graphically, the form of the curve, as
shown below, will indicate whether the function is increasin
or decreasing, and consequently whether the differenti
coefficient is positive or negative.

A. Functions which are increasing are shown by portions
of their curves in Figs. 12(¢) and lg(b), where P is a point
on the curve and Q the point corresponding to an increase
of &x in the value of x.

’ (1) Curves may be concave upwards and rlslgf. asin
Fig. 12(a). Examples are y = 2?® (for positive values of

x),y=10,y =tanx(between0and;).
77
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(2) Or they may be concave downwards and rising,
as in Fig. 12(5). Examples are, y = Vz, y = log %,
T
y =smx(between0&nd§).

o/ |
]
) s r. = X
Fic. 12(a).
Y
T i
Y
(+] o ox X
Fro. 12(b).

. In both kinds the curve rises upwards to the right as z
increases,

As is evident from the figures, as x is increased by &x,
y is increased by &y,

Thus gi and its limit are positive.

Geometrically it is evident that in each case the tangent
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to the curve at P makes an acufe angle with OX. Hence
the gradient, given by tan 9, is positive. It is also evident

that in Fig. 12(a) 3/ Is Increasing, in Fig. 12(3) decreasing.
B. Functions which are decreasing can be simi.larlg Tepre-

sented by portions of their curves in Figs. 13(a) and 13(b).
¥
Sy Q
N
o = %
Fie. 13(a).
Y
Sy
-“a y
0| r x
Fie. 13(b).

Using the same letters and notation as in Figs. 12(a) and
12(b), it is evident that in each case, as x at the pomt P
recelves an increment 8x, the new value of the function at x

isless. Hence 3y must be regarded as negative and g—r‘. with
Its limit g}r' are negative.
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As before, there are two types:

(1) The curve concave upwards falling, as in Fig.
13(a). Emmrles are: 1
y =% (for negative values of z), y ==

cot x | between 0 and g), etc.

(2) The curve concave downwards falling, as in
Fig. 13(b). Examples are:
y =sinzx (between ;and r:), y = — x* (positive
values of ), etc.

The ents drawn to both of these curves make obtuse
angles with OX. Consequently tan 0, the gradient of the
line, is negative. d

It is also clear that d{ Is Itself Increasing In 13(a) but
decreasing In Fig. 13(b).

53. Statlonary values.

Two of the cases illustrated above—viz., Figs. 12(a) and
13(a)—occur in the graph of y = x* — 4x 4+ 3 which was
shown in Fig. 11. This is repeated in Fig. 14, and we will
examine it further.

Since d'1»-=::'--4:<:-1--3
D —2r—4
i ;

This latter is represented in Fig. 14 by the straight line
AB

The following changes in the curve and function can be
seen from the graph:

(1) While x Increases from —o to +2, y Is
decreasing. Values of gg-;—reprﬁented by the line

AB—are negative (see Fig. 13(a)).
(2) While x Increases from 42 to 4o, y Is

Increasing (see Fig. 12(a)). Hence values of d—i are
positive.

(8) At C the curve ceases to decrease and begins
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to Increase. Thus when x =2, the value of y is
momentarily not changing, but is stationary. There

Is therefore no rate of change, and sg Is zero. The

straight line 4B thus cuts OX at this point.

Hence when z = 2, the function Is said to have a
stationary value, and C Is called a stationary point on
the curve.

s |

1
T
i
1

Fic. 14.

These important conclusions may be summarised as
follows:

(1) If 5 < +2, y is decreasing and %2 is negative.

@) If % > + 2,y is increasing and % is positive.
(8) When x =2, at C y is momentarily neither in-
creasing nor decreasing—i.e., the function has a stationary

dy
value and 3> = 0.
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Next we will consider the function:
y=3+42x — 22

%=2—-—2x.

The graphs of these are shown in Fig. 15, in which the

L

TIIT
Ha¢
3
L

b

s,

Fi1G. 18.

straight line 4B represents the derived function 2 — 2x.
Examining these, as was done above, we see:

(1) When x < + 1, y is increasing and g is positive,

(2) When x > + l,yisdacrsasingand%ﬁmgdius.

(8) When x =1 (at C) y has ceased to increase and
begins to decrease.
.. the value of the function at C is stationary and
the curve has a stationary point.
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54. Turning points.

Comparin% the stationary points in Figs. 14 and 15 of
the curves o
y=2x'—4x+3
and y=3+2x -2
we note the following important differences.
In y = x* — 4x + 3, at the stationary point,
(1) The curve Is changing from concave upwards
falling to concave upwards rising (Figs. 13(a) an l2{a{;
The slope, 6, changes from an obtuse angle, throug
zero, to an acute angle.
(2) The values of the function are decreasing before
and Increasing after.

(3) Consequently % is negative before and positive
after.
Iny=3+4+2—x*
(1) The curve is changing from concave downwards
rising, to concave downwards falling; but 0 is
ing from an acute angle before the point to an
obtuse after (cf. Figs. 12(b) and 13(5)).

(2) The values of the function are increasing before
and decreasing after.

(3) Consequently g is positive before and negative
after.

Thus at both points:

(1) The function decreases before and increases
after, or vice versa.

2) j—% = 0 and changes sign.

Such points on a curve are called “turning points”.
We shall sce later that not all stationary points are turning

ints.

It should be noted that for both stationary and turning
points an essential condition is that ‘}: =0. It is the

behaviour of the function before and after, and conse-
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quently that of the differential coefficient, which deter-
mines the difference.

55. Worked examples,

Example |. For what value of x is there a turning point
on the curve of y = 2x* — 6x + 9?

If j‘v=2x‘—6x+9
Y —4x—8
a; -
For a stationary point % =0.
S dx—6=0
and x=15

For values of x < 1-5, % is negative.
.. function is decreasing.
For values of x > 1-5, g% is positive.

.'. function is Increasing.
) As the function is decreasing before the stationary point
and increasing after,
.. there is a turning point when x = [-5.

Example 2. Examine y =1 —2x —2a® for turning
points.
If dy =1—2x—2

3;‘3’—_——2-2::.

For stationary values gyg =0,

S —2x—2=0 and z=-—1,
., there is a stationary point where x = — 1.
Ifx<—1,§——iispoﬁtive; .'. ¥ is increasing.
Ifz> —l,%isnegative; .. y is decreasing.

~. ¥ Is Increasing before and decreasing after the
stationary point.
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.. the stationary point Is also a turning point when

X = =
Note.—The student is recommended to draw the
curves of the above two functions.

56. Maximum and minimum values.
There is a very important difference between the turning
points of the curves of the functions examined in § 53, viz.:
y=2'—4x 43
and y=342x — 23,
as the student will have observed by an examination of
Figs. 14 and 15.

(1) In y = x* — 4x 4 3 (Fig. 14) the turning point
C, 1s the lowest point on the curve—i.e., at that point
y has its least value. If points are taken on the curve
close to and on either side of C, the value of the function
at each of them is greater than at C, the turning point.

Such a point is called a minimum point, and the
function is said to have a minimum value for the
corresponding value of x.

It d be observed that values of the function
decrease to the minimum point and increase after it.

(2) In')‘y=3 + 2x — x* (Fig. 15) the turning point,
C, 1s the highest point on the curve—i.e., at that point
¥ has its greatest value. If, again, points are taken
on the curve, close to and on either side of C, the
value of the function at each of them is less than at C.

Such a point is called a maximum point, and the
function is said to have a maximum value for the
corresponding value of x.

Values of the function increase to the maximum value
and decrease after it.

The values of the function at the maximum and minimum
points, while greater or less than values at points close to
them on the curve, are not necessarily the greatest and
least values respectively which some functions may have.
This will be apparent in a function such as that which is
examined in the next section. Examples of both maximum
and minimum values may be found in the same graph.
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57. The curve of y = (x — 1)(x — 2)(x — 3).
This function will vanish when x — 1 =0, x — 2 =0,
and ¥ — 83 =0—4.e.,, whenx =1, x =2 and x = 3.
Consequently the curve will cut the x axis for these
values of x. If the function is a continuous one—i.c.,
small changes in x always produce correspondingly small
changes in y—then, between two consecutive values for
which the curve cuts the axis there must be a turning point.
Consequently for the curve of the above function there
must be two turning points.
{1 Between the points x = 1 and x = 2.
2) Between the points x = 2 and x = 3.
We note further by examination of the function:
1) If x < 1, y is always negative.
52 If x > 1and < 2 y is positive.
(8) If x > 2 and < 3 y is negative.
(4) If x > 3, y is always positive.
These last two sets of results lead us to the conclusion
(1) That there is a maximum point (positive)
between x = 1 and z = 2,
(2) That there is a minimum point (negative)
between x = 2 and x = 3.
Making the usual table of corresponding values of x and y
and making use of the above conclusions, the curve can
be drawn as shown in Fig. 16. It would need, however,
much tedious calculation to obtain with any high degree of
accuracy either the value of the maximum or minimum
points, or the corresponding values of x.
We therefore proceed to the algebraical treatment of the
problem. Multiplying out the function, we have:
=28 — 622 + 11z — 6.
=32 — 122 + 11

It is a necessary condition for turning points that

S 3 — 122 4+ 11 =0.

r
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Solving the equation, the two roots are x = 1-42 and
2 = 2-58 (both approx.).

For these values of x, therefore (marked P and Q on
Fig. 16), there are turning points on the curve.

X

I |
1
|

EwsSSE

44
-

Fig. 16.

Substituting the values in the function, we get for the
values of the turning points:
y = + 0-385 (P on Fig. 16)
and y = — 0-385 (Q on Fig. 16).
The conclusion therefore is that:
il; ¥ has a maximum value of 0-385 when x = 142,
2582 y has a minimum value of — 0-385 when x =
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58. To distinguish between maximum and minimum values.

In the preceding example it was possible to decide which
was a maximum and which a minimum value by reference
to the curve of the function. This method, though valuable
as an illustration, is not satisfactory for practical purposes.
Accordingly, we proceed to examine algebraical methods,
which are general in their application and can be employed
with certainty and ease.

Three methods can be used; they all follow from the
conclusions previously reached.

Test |. Examination of changes in the function near the

ing points.

A maximum polnt was defined as one at which the value
of the function is greater than for values of x, a little greater
or a little less than that at the turning point.

A minimum point was similarly defined as one at which
the value of the function is less than for values of x slightly
greater or less than at the turning point.

Test | consists in the application of these definitions.
Values of x slightly greater and less than that at the
turning point are substituted in the function. From a
comparison of the results we can decide which of the above
definitions is satisfied.

This might be in general terms as follows:

Let f(x) be a function of x.

Let a be the value of x at a turning point.

Then f(a) is the value of the function at the point.

Let & be a small number.

Then fs:lz + h) is a value of the function slightly greater
than at the turning point and f(a — h) is a value of the
function slightly less.

Then for a maximum f(a) is greater than both f(a + A)
and f(a — h).

Test Il. Changes In the value of the differential
coefficient before and after the turning point.

(1) Maximum point. We have seen above that:

aftThe function is Increasing before and decreasing
er,

% must be positive before and negative after.
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To discover this, substitute in the differential coefficient
values of x a little greater and a little less than the value at
the point.

If it is changing sign from positive to negative through
the zero value the point is 2 maximum. F

(2) Minimum point. Similarly, since &% must be

negative before and positive after, if on substitution as
before it is changing sign from negative to positive, the
point is a minimum,

Test lll. Sign of the second differential coefficient.

This method is based upon the fact that 52 is the
differential coefficient of g, and indicates, therefore, the
variations of that function.

(1) Maximum point.

i (a) The function is Increasing before and decreasing
ter.

) . 2 is positive before and negative after.
(¢) .. at a maximum point 31; Is decreasing.
(d) - g% must be negative.

(2) Minimum point.
(@) The function is decreasing before and Increasing
er.
& .. % is negative before and positive after.
(¢) .. at 2 minimum point dy In Increasing.

” fx dx
S gyh Must be positive.

59. Graphical illustrations.
All these conclusions can be exemplified by further
consideration of the curve of
y=(s—1)(x—2)(x—3
or y=x’—62$+llx-—6
which was examined for turning points in § 57.
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Since f{x =2 —06x2+ 112 — 6
(=) —-3:’-—-12x+ll
[ (x) = 62 — 12,
All three curves are 5hown in Fig. 17.
Testing for turning points
3 —12x + 11 =0

whence x = 1-42 and 2-568 (as above).
1 1
T 1 ia
s T £ (26 s
F sl
ol S i)
i
fi 1
EmpECY
T
T )
N |
Fic. 17.

Corresponding to these values of #, marked 4 and B in
Fig. 17, are the turning ts P and @, and it was found
in 57thatatPf{x) goglﬁandatQ,f( = — (-385.

est III above may be employed to distinguish alge-
braically which is the maximum and which the minimum.

MAXIMA AND MINIMA VALUES [

Accordingly we substitute in 92 or f(x) those values of =
which produce turning points,

From above g = 6z —

(1) When z = 1-42, 6x —12 =852 — 12
. d‘y W 3'481
e Is negative

., P must be a maximum polnt.

(2) When x =2-58, 6x — 12 = 1548 — 12

= 4 348,
i.e., g—:,;; Is positive. o
*. Q must be a minimum point.

'I‘unung to Fig. 17, we will now examine these turning -
points, comparing for the maximum and minimum values
the corresponding curves, viz., f(x), f'(x) or d—::, f"(x) or 53

A. At the maximum point P.

1) f’(x) =0, the essential condition of a turning point.
f(x) is increasing before P, decreasing after.

(3 f (x) is positive before P, negative after.

@) ;. F(x)ls decreaslrlg

(6) ... f"(x) or Jx‘ Is negative,

B. At the minimum point Q.

(1) f'(x) = 0, the essential condition.
(2) f(x) is decreaslniebefore Q, increasing after.
(3 f’ (%) is negative before Q, positive after.

4) ., f'(x) or g{‘ Is increasing.

() .. f'(x) or 3:); Is positive,

All of these conclusions are illustrated in Fig. 17,
Of the three methods given above for the dﬁscmnlnatxon
between maximum and minimum values of a function:
Test | is a sound one fundamentally, though the
calculations are apt to be tedious.
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Test |l is also sound, but often laborious.
Test lll is generally the easiest and most useful, but
there is an exception which will be discussed later.

60. Worked examples.

Example |. Find the maximum or minimum value when
y =2x* — 6x + 3.

dy _ T
‘-&-_4.: 6.
For a maximum or minimum
dy _
3;—0.
S, dx—6=0
% = 1-5.

There is a turning point on the curve when z = 1-5.
To distinguish between maximum and minimum:

(4) Considering the expression for &, viz. 4x — 6:

(1) If x < 1-5, %—; is negative.

@) It > 15 2 is positive.

ajlt Is Increasing as x increases,

.. by Test II y Is a minimum when x = 1-5.

&
) za=4
This is always positive,

.. by Test III y Is 2 minimum when z = 1-5.
Example 2. Examiney = b — x — 2? for turning poinis
and distinguish between maximum and minimum.
Since =5—x—2
é =—1—2z

For a turning point —1 —2x =0,
whence x=—4%

MAXIMA AND MINIMA VALUES 23

(@) If x < — 4, — 1 — 2x is positive.
If x > — 4, — 1 — 2x is negative.

% Is decreasing as x increases,

.. by Test II y Is a maximum when x = — }.
R
(b) Also in=—2

This is always negative.

;. by Test III the turning point Is a
maximum.

Example 3. Find the turning points on the curve of
y =2 — 62* + Ox — 2, and distinguish belween maximum
and minimum.

dy =x’—6x’+9x — 2.
.

e dx=3x'—12x +9.

dy _
and an =0 —12
For turning points,
dy =0
a -
S 3 —1224+9=0
or 2 —4x4+3=0.
S xem 3 oril
.. There are turning points when x = | and x = 3.

To distinguish between maximum and minimum, we use
Test III and examine %

From above g = 6x — 12,

Ifzx=1, g = —6. ., a maximum point.

Ifx=3, % = +6. .. a minimum point.
", the curve has a maximum point when # =1 and a
minimum point when x = 3.
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The values can be found by substituting these values for
x in the function #* — 62* + 92 — 2,
They are maximum value + 2.
minimum value — 2.

Example 4. When a body is projected vertically upwards
with a velocity of 80 fi. per sec., the height (s) reached after a
lime t secs., 1s given by ormula s = 80t — 16, Find
the greatest height to which body will rise, and the time
taken.

s is a function of t and s = 80¢ — 164,
Differentiating s with respect to £
ds

& = 80 i 32‘.
But when s is greatest

ds

- 0.

. 80—=32=0
whence t = 25 secs.
d%

A].SO aﬁ = — 32.

This is always negative, .’, there must be a maximum
value for s when t = 2-5.

Substituting in s = 80¢ — 168
we get s = 100 ft.
Example 5. The cost, £C, per mile of an electric cable is
120

given by C = =0 600x, where x 1is ifs cross-section in

sq. ins. Find the cross-section for which the cost is least, and
the least cost per mile.
120

C = —;' -+ 600x.
ac 120
o.-o d; T — ?’ + Gm-

For a maximum or minimum value of C, g =4
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120
L= e 600 =0
2 _ 120
2= 50

2 = 4 4/02 = 4 0447 sq. in. (approx.).
The negative root has no meaning in this connection, and
is disregarded.
To discover whether this value of x corresponds to a
maximum or minimum, we use Test ITI.

Then g=§

When x = 0-447 this is positive.
.*. the cost is a minimum for this cross-section.

Substituting for x in 2 4 600xwe get the minimum

cost. 20
1

= £537 (approx.).

Example 6. A eylindrical gasometer is to be constructed so
that its volume is V cu. fi. Find the relation between the
radius of the base and the height of the gasometer so that the
cost of construction of the mda’l'fm, not including the base,
shall be the least possible. Find also the radius of the base,
r, in lerms of V.

Let h be the height of the gasometer.

Let A be the area of surface, excluding the base.

The cost will be least when A is least.

Using the formulae for a cylinder, without base,

A, ] n'r' + 2“?’! | w . . - l
and V =nr*h o (L SR ST NN e 52;

These equations contain two independent variables, r
and h. We accordinﬁ!y eliminate one of them, h, between
the two equations and obtain 4 in terms of r and V, which
is a constant.

From (2) h= g,
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Substituting in (1)
=nr? 4 2-:-/
4 is a function of 7; ", dlﬁerenttate& with respect to 7,
Then ‘% = 2nr —-g
Since 4 is to be a minimum, i‘: must equal zero.
b1 4
. 2nr — ;‘ =
V.
l. ;i = nr
and V ==r.
8
F=af-,
™
Also since V =mnrh
o = nr¥h.
... h =,

Note.—The student should not make the mistake of
attempting to differentiate A with res to r in
Equation (1) as it stands, Care should be taken to
distingui tween constants and variables in such
equations. In addition to conta.mmg two vanablw.
this equation does not contain the constant V. It is
therefore necessary to eliminate h and obtain 4 in
terms of r and/v.

61. Points of Inflexion.

When studying how to discriminate between maximum
and minimum values of a function, one of the tests applied

est III) was that of the sign of 'y, viz., that for a
dx?

maximum it is negative, and for a minimum, positive. To
complete this test it is necessary further to consider what

>y
happens when - 0.
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The following brief mvestlga.tlon will also include con-
sideration of a case in which 2— =0 but the function is

neither a maximum nor minimum.
We will first illus-
trate these points by T
considering the case of ﬁ
Y H
Then 2— = 32 - t j B

and %=Bx.

The curves of the
function and its first v
two derivatives are I
shown in Fig. 18. [y M

It will be seen that HFHI$ 4 H
the curve of y =2® #
passes through the #

bl

i i
BN

origin, and at that
point its curvature
changes from concave
downwards and rising B
(Fig. 12b) to concave s
upwards and rising
ig. 124). Thus it is ﬂ
8

rising in each part—
f.e., it is Increasing
throughout, except at Fie. 18.
the origin, when the
curve is momentarily stationary. At that point, there-
fore, there is a stationary value, the gradient is zero,
and the ent to the curve is the axis of . It does not
therefore f the condition for a turning point—viz.,
increasing before after, or vice versa

The curve of its differential coefficient—.e., of y' = 322—
is shown in the parabola, which is dotted. This curve is
always positive, which was to be expected from the fact
that t}le ﬁ;nction y = 2% is always increasing. Its value is

D (CAL.
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zero at the origin. This indicates that the gradient of

== x® is zero at that point, which is a minimum point for
y = 32% It shows further that y = x* has a minimum
gradient at the point.

Such a point as this on a curve is called a Point of Inflex-
lon, the word indicating a bending in the curve. The
curvature is changing at such a point from concave down-
wards to concave upwards, or vice versa, as would be the
case for y = — &%,

This is an invariable condition for a point of inflexion,

but at such a point g;y is not necessarily zero, as in the above
example—i.e., the tangent at the point is not always
parallel to OX. Nor does the zero value of g necessarily

correspond to a t point for the function. But for
the point of inflexion the gradient is a minimum and the

minimum value of % in this example is zero.

As an example of a function for which the tangent to the
curve at a point of inflexion is not 1 to 0X, we can
consider the case of the point C on the curve of

y=(x—1)(x —2)(x — 3). (Fig. 17.)
From this curve we note:
(1) At the point C the curvature is changing from

concave downwards to concave upwards. dy
(2) When the curve is concave downwards - is
decreasing.

o gr:’; Is negative (§52).
When the curve is concave upwards g is in-

d‘l
d_f}; Is positive  (§ 52).

(3) At the point of change—i.c., at the point of
inflexion— 5= is zero.
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(4) Consequently % is changing sign at the point
of inflexion. P

(5) At the point of inflexion, C, d;’ is a minimum for
the corresponding value of x.

(6) This value of ‘;r';—m — 1—gives the gradient

of the curve at the point of inflexion. It is therefore

the gradient of the tangent at the point. If 6 be the

slope of the tangent, then tan 6 = — 1, and 6 = 135°.

Summing up, it may be stated that at a point of inflexion
on a curve:

(1) The curvature changes from concave upwards to
concave downwards, or vice versa.

(2) Consequently % will be increasing before and
decreasing after, or vice versa.

(3) Therefore zg will be positive before and negative
after, or vice versa.

(5) d{ will also be a maximum or minimum.

n B=o.
Thus i% changes sign through the pownt of inflexion.
62. The tests for discrimination between maximum and

minimum values of a function may be summarised as
follows:

l Maximum. Minimum.

| Point of Inflexion.
? = ! 8} i)aumlng?im‘ gg Mm I ﬂﬂ\!: up ?:?mum:

down or vice-versa.

Negative after, 3 mum,
Equal tl.o 0 at the Equal to 0 at the

ml.
. ng. «+ increasing.

T
b =
I

l}' | Negative. Positive. i
|
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Exercise 10.
1. Draw the curve of y = #* — 2v. Find % and obtain

its value when x = — 1, 0, 2, 3, checking the values from
the graph. For what value of x is there a turning point on
the curve? Is this a maximum or minimum point?

Whatisthesignofg?

2. Draw thecurveofy = 3¢ — #%. Find % and calculate
its value when z =0, 1, 2, 3. For what value of xis %
zero? What is the sign of % for the same value of x?

Is the function a maximum or a minimum for this value?
3. Find the turning points for the following function and
ascertain whether the function is a maximum or minimum
in each case:
1) 42® — 2z, s2 x — 1:52%,
fs 2+ 4x + 2. 4) 2x* +x — 1.
4. Find the maximum and minimum values of the
following functions and state the corresponding values of x1
(1) x® — 12x. 2) 2x® — 9a® 4 12,
(3) x® — 622 -+ 12. 4) da® + 92 — 12x -+ 13,
(5) 2 — 9x + 62 — 23,
5. Find the maximum and minimum values of
(¢ + 1)(x — 2)* and the corresponding values of x.
6. Find the maximum and minimum values of 4x +;.

7. Divide 10 into two parts such that their product is a
Y £ the ratio of

. In a certain type of engine the ratio of expansion, 7,

and the number of pounds, N, of steam used per I.H.P.

hour are related by the auation N = 0-62r* — 567 + 32.

Find the value of  which gives the minimum value of N.

9. A closed cylindrical tin is to be manufactured to

contain 40 cu, ins, If the minimum amount of metal is °

to be used, what is the ratio of the height of the tin to the
diameter of its base?

10. An open tank is to be made of sheet iron; it must
have a square base and sides perpendicular to the base,

S
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is to be 8 cu. ft. Find the side of the square

Tts capaci
depth, so that the least amount of sheet iron

base and

s as a function of £ and find its maximum value.

12. If H=pV and p =3 — 4V, find the maximum
value of H.

13. A rectangular sheet of tin, 30 in. X 24 in., has four
equal squares cut out at the corners, and the sides are then
turned up to form a rectangular box. What must be the
length of the side of each square cut away, so that the
volume of the box may be as great as possible ?

14. The strength of a rectangular beam of 1giw;n length is
P ional to bd*® where b represents the breadth and 4
the depth. If the cross-section of a beam has a perimeter
of 4 ft., find the breadth and depth of the strongest beam.

15. Find the values of x corresponding to (1) a maximum
value, (2) 2 minimum value, (3) a point of i ion on the
curve of y = 22° 4 32 — 36x + 10.

16. Find the maximum and minimum values of the curve
of the function y = x(x* — 1). Find also the gradient of
the curve at the point of inflexion.

17. Find the value of x at the point of inflexion of the
curve of y = 32® — 4x 4 5.

18. The distance s travelled by a body propelled vertically
upward in time £ is given by the formula

s = 120t — 162,
Find the greatest height which the body will reach and the
o bending (M) of a beam ed

19. The bending moment of a , Su at

one end, at a distance x from one end is givmy the

formula
M = jwix — jwit,

where / is the length and w is the uniform-load per unit
length., Find the point on the beam at which the bending
moment is a maximum.




CHAPTER VII

DIFFERENTIATION OF THE TRIGONOMETRIC
FUNCTIONS

63. The circular measure of angles.

When considering the differentiation of the Trigono-
metric or Circular functions it must be remembered that
the angle whose function is being examined is assumed to
be measured in circular measure. Thus, when finding the
differential coefficient of sin 8—i.c., the rate of increase of
sin 0 with respect to 6—it is clearly that 6 should
be mmedsuch n &w uniw no{T u; ar itmﬂypwauchomn
units as or . Unless it is speci
indicated to the contrary, in all further work in this volumi
angles will be regarded as measured in radians, often

in the convenient form of fractions or multiples
of = radians,

Students who are at all hazy about circular measure
schigﬂd }Ee)vlse it before proceeding further. (Trigonomeiry,

p- X.

64. Differentlation of sin x.
Let y =sin z.
Let 8z be an increment of z.
Let 8y be the corresponding increment of y.

Then y + 8y =sin (x + 8x)
but y = sin z.
.. Subtracting 8y = sin (x + 8x) — sin z,

dx

Our next step is to find the value of the limit of the right-
hand side as 8x —> 0. This requires some manipulation.

We first change the numerator from a sum to a product
by employing the trigonometric formula

sinP —sinQ =2cos” + Qsin 250
(Trigonometry, § 817.)

Dividing by 8z, ¥ =S50 j:;;:l.:ﬂﬁ (A)

102
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where (x + 8x) takes the place of P, and x the place
of Q.
ransforming the numerator in (4) we get:

B EL PRI R

8x 3x
2 cos (x -+ 8—;) sin %z
o 3%
or, re-arranging A %x

%=2°°5(”+'823) e T

Transferring the numerical factor, 2, on the right side to
the denominator, we have:

. 8%
sin
3x 2
%=cos(x+.2.)x B (B)
2

In this form the second factor takes the form of sl-la_f the

limit of which, when 6 —> 0, was found in §19. From
this we know that, proceeding to the limit in B,
sin %z

Lt =1

s —0

Taking limits, therefore, we have!

. 0%
sin
3y ) __2
PR el cos (x +3) x =
:;E = COS X (since 8; s 0)

Geometric proofs of the above, as well as of those which
follow, are of interest, and will be found in larger books on
the subject.
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65. Differentiation of cos x.
Employing the notation and method used with sin z we
obtain :—
8y = cos (x + 8x) — cos .

Using the formula
coaP—cosQ::-—zsinP—;'QsinP—;-g
(T'rigonomeiry, § 87.)
by = —2sin(x + 3)sin 5.
Dividing by 8x 2
By i
o= —2sin(s+5) x =
sin&z
8x 2
= — SIn x+§~ X? (3.8111§64]
2
in 2
. _81__ 1 i‘-z- B
v uﬂosx— E:- sm(x+2 * T
2

whence g% = — sin x.

66. Differentiation of tan x.

This can be found most easily by making use of the
differential coefficients of sin x and cos # as obtained above.

: sin %
Since tanz = ———
dy _ (cos x X cos x) — {sin x X (— sin )}
A 7 cos? x

(quotient rule)
cos? x 4 sin? x
o cos? x
i cT:G (Trig., § 65)
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d
s EE = secs X.

A proof from first principles can rea;i-lnlg be obtained by
the method employed above for sin » cos x, using the
appropriate trigonometrical formula.

67. Differentlation of sec x, cosec x, cot x.

The differential coefficients of these functions can be
found from first principles as above, but they are more
easily obtained by expressi as reciprocals of cos x,
sin x and tan x, and using rule for the differentiation
of a quotient.

(@) y = cosec x.

Then y= g]rn.—;.
dy 0—cosx _—cosz J
e % = "sinfx _ siniz (quotient rule).

This is more useful in the following form:

— Ccos x cos x 1
T E— R x 5
sin? x siny  singx

.‘l g'z = — COosec Xx cct X.
dx

(b) y =secx.

(quotient rule)

ae —y = §ec x tan x.




106 TEACH YOURSELF CALCULUS
(¢) y = cot x.

tan x
d — sec? .
1 cos? x

S
cos?z ~ sinfx

dy = — cosec? x.
dx
68. Summary.

The above results are summarised as follows for con-
venience:

Function. :{

sin x cos X

cos X — sin x

tan x sec? x

cosec x — cosec x cot x
sec x sec x tan x

cot x — cosec? x

69. Differentiation of modified forms.

The differentiation of the trigonometric functions
frequently uires the a Xpllcatlon of the rule for “a
Junction of a m?um:twn very common form involves a
multiple of x—for example, ax. This is a function of a
function, and its differential coefficient is a. Hence this
must appear as a factor of the differential coefficient.

Thus if y=sinax.g=auosax

THE TRIGONOMETRIC FUNCTIONS 107
y = cos ax, g = — asin ax

y=tanaz,%=asec’ax

and similarly for their reciprocals.

Thus d%sinzx = 2 cos 2x
Ecosz it %
dx 2 T

a ax _a ax
Slightly more complicated forms are such as the following:
If  y=sin (ex +b), ¥ =acos (ax + )

y =sin (x +M)'gi=“°°s(“ + nx)

y=tan (1 —2z), z—yx=—sec’(l—-x)

Sy dy 2 1
SeaEsiy .
70. Worked examples.
Example |. Differentiate y = sin? x.
ie. y = (sin z)*
Pl e B d(sin x)
b ﬁ =2sinx X '—3;‘—-
= 2sin x cos
= sin 2x.
Example 2. Differentiate y = sin /7.
=sin

o % = cos (#¥) x (3x1)

= }cosat x :
;x
_ cos Vx
e
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Example 3. Ds_ﬁ"ﬂmhais y = 4/sin z; 35. cot (5x + 1). 36. cot? 3x.
ie. » = (sin 2)} 37. V/cos x. 38. sin 2x cos 2x.
: kit ! %) 39. sin? x + cos? x. 40, sin? x — cos? z,
ot 3'5: L _1_._,, £ L‘:_P"_?_f,
_ cosx _ cosx lv-tcosx 1 - cosx
2sin 2t 24/sin x° 43. _sﬁfi 44, 22 cos 2z.
Example 4. Differentiate y = sin?® (x%). (See § 47.) 45 X " tanx — 1
= (sin %)% " cos 2% T OTeNew ot
o G =2sina x cos 2 x 2 41. xV/sin 7. 48, (SUE
= 4x sin x? cos x2, 49 1 50. sec?
., ——. . X COSEC %.
Exercise 1. I —tany
Differentiate the following: 71. Successive derivatives.
1. 3sin x. 2. sin 3x. Let j = sin x.
3. cos 2. 4. tan %, Then = COS %
2 3y dx
5. sec 0-6x. 6. cosec %. ddy
6 aa=—snz
7. sin 2x + cos 2. 8. sin 3x — cos 3x.
9. secx + tan x, 10. sm4x+c035x. g=—cosx
11. cos 30 + sin }0. 12. sin gg—-sinx
13. cos (3= — 2). 14. cosec (a — ix) X
15. sin® x. 16. sin s . Clearly these derivatives will repeat in sets of four,
17. cos® (2x). 18. sec iden with the first four above.
19. tan V1 — x. 20-““”"‘*"”’““" meTngmmdrywelgnowthatcosx==sin(x+;).
21. a(l — cos x). 22. 2tan§. .". the above may be written
23. cos 2z+g. 24, tan 2x — tan? z. 3=oosx=sin(x+'§')
: a
25. x* 4 3sin }x. 26.003;. g=d sin(x-l-") =cos(x+")=sm x+23
21, xsinz 28, %~ dx 2 : 2
: 3 s x’ - 2r :
kg e 5= L fin (s 4 )} oo e +3) = (5 ).
3 " tan x’
g sz 32. sin 2% + sin (22)% They may be continued indefinitely, ; being added in
33. cos® (xY). 34, x* tan x. each successive derivative, the sine form being retained.
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Thus it may be deduced that
dn nm
Hx}:" = sin (x =+ —i).
Successive derivatives of cos x may be similarly obtained.
Those of tan z, sec x, cosec %, and cot x become complicated

after a few steps in differentiation, and cannot be expressed
by a general formula.

72. Maximum and minimum values of trigonometric
functions.
Note.—Unless the student is familiar with functions
of an angle of any magnitude, he should revise Trigono-
metry, §§ 130-136.

(1) y =sin x, y = cos x.

When y =sinx
dy=cosx
dx
ﬁ%: — sin x,

The graph of sin x is represented by the thickest curve in
Fig. 19. The broken curve is that of @, and the thin one

d’y
dx¥
T 111
L h
1
1
# Sy
:..- ].— ' - ’ ’?_ -!‘.
= : £ -
! AvA 1 T
11 T 1 1

Fic. 19.
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A perlodic function. Since sin x =sin (x 4 2x), the
portion of the curve between z =0 and x = 2r will be
repeated for intervals of 2= as x increases. There will be
similar sections for negative angles.

Thus the section of the curve between 0 and 2w will be
repeated an infinite number of times between — oo and
+ w0, the whole forming one continuous curve,

sin x is an example of what is termed a periodic function,
and the number 2x is called the period of the function.

The following characteristics of the curve of sin x
illustrate much of the work of the preceding chapter.

() Types of curvature. The curve between 0 and
2x provides examples of the four t?es of curvature
illustrated in Figs. 12(a) and (b) and Fig. 13(a) and (b),

while that of % illustrates the connection between these

forms of curvature and the sign of the differential
coefficient (see § 52).

(b) Turning points. The curve between 0 and 2w
shows that between these two values of x there are
twg turning points, at P and Q, the values being + 1
and — 1.

n d
At P, when x = 3 35 =0, and % Is negatlive,
.. Pis a maximum point.
3w d d*
At Q, when x = 5 ag‘ =0 and 33!’ Is positive.
J. Qis a minimum point.

This is true for any section of 2r as x increases.
Consequently throughout the curve from — » to + e
there is an Infinite sequence of turning polnts,
alternately maximum and minimum.

(c) Points of Inflexion. There are two points of
inflexion on this section of the curve at 4 and B.
At A the curve changes from concave down to concave

wp, 2 is a minimum, viz., — 1, 9% =0 and is

changing from negative to positive.
Hence 4 is a point of minimum gradient. Its
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gradient is given by the value of % at the point, viz.,

— 1. As this is the tangent of the angle of slope, the
curve crosses the axis at an angle of 135°.
At B this is reversed. The curve changes from

concave up to concave down, g is a maximum, and
=0, and is changing sign from positive to negative.

B is therefore adpoint of maximum gradient. This is
equal to + 1, and the curve cuts the axis at45°. There
is also a point of inflexion at the origin.

It will be seen that Fig. 19 illustrates graphically the
whole of the summary in § 62, %
The graph of cos x is that of sin x, moved 3 to the left

along OX. The curve of g shows its shape and position in
Fig. 19. Consequently with angles, where they occur,
diminished by ;, the above remarks respecting sin x are
applicable to cos x.

(2) y=tanx, y =cotx.

‘When: Whent
y=tanx dy=eotz
%=sec’s a£==—cosec’x

ay

3;,=2sec'xtanx g=2oosec’xcotx

The graphs of tan x and of its differential coefficient sec? »
are represented in Fig. 20, the latter curve being dotted.

The following characteristics of the curve of y = tan »
may be noted:

(a) The curve Is discontinuous. When z—> %.
tan x—> +c. On passing throughg, an infinitely

small increment of x results in the angle being in the
second quadrant. Its tangent is therefore negative,
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while still numerically infinitely great. With this
infinitely small increase in x tan 6 changes from + e
to —w. The curve of the function is therefore

discontinuous. Similar changes occur when =z =-3-3'.

%", etc. This can be observed in Fig. 20.

(6) The curve of tan x Is consequently periodic and
the period Is .

.
o
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Fre. 20.

(¢) The functlon Is always Increasing, and this is

indicated by the fact that di , viz., sec?x, is always
itive.

(d) There Is a point of Inflexion when x =m. The
curve is changing from concave down to concave up,
the differential coefficient, sec? x, is a minimum, and
its value is 4+ 1. Consequently the curve crosses 0X
at an angle of 456°. Similar points occur for x =0
and any integral multiple of =.

Since cot x = its curve is the inversion of that

tan x
of tan x. It is always decreasing (— cosec? x is always
negative); it is periodic and has points of inflexion
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whenz-—g —3%' . . The student should draw it as

an exercise.
(8) y = cosec x, y = sec x.

Turning points on these curves may be deduced from
those of their reciprocals. When sin x is a maximum,
cosecx is a minimum; consequently the curves are
periodic, and maximum and minimum values occur
alternately.

If = COsec %

25?=—cosecxcotx.

When x=;, —cosecx = — 1, cotx =0.
L oo
g will be found to be positive.
Hencethereisama.:dmumvaluewhenzmg.
Both curves are discontinuous and periodic.
(For the curves see Trigonometry, pp. 157, 158.)
73. Worked example.
Find the turning points on the curve of y = sin z 4 cos z.
If =sinx + cos x
3% = cos ¥ — sin .

Y —o.

Putting cosx —sinx =0
sin x = cos z

and tanz = 1.

For turning points

™
.. x=z

But this is the smallest of a series of angles whose
tangent is -+ 1.
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All these angles are included in the general formula
g (Trig., § 136.)
», the angles for which there are turning points in the
above function are
x bn 9
7 a7 WY e
o OB P Pyl

Also Ja = —sns cos %.

This is negative when
and positive when

. the curve is periodic, and maximum and minimum
values occur alternately:

L n 9=
Maximum when x=i?"'
Minimum whén x=§:,1{’— 4

™ ™

Max. value 4+cos;
1 1 =~
AT

Similarly minimum value = — 4/2.

The curve is represented in Fig. 21. P is the maximum
point and Q the minimum. A4 Is obviously a point of
inflexion.

The curve can be drawn by first drawing the curves of
sin x and cos z, and then adding the ordinates of the two
curves for various values of z.

The curve is a simple example of what are termed
Harmonic Curves, or wavediagrams, which are of importance
in Electrical Engineering (see Trigonometry, § 139).
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Fic. 21.

Exercise 12.

For what values of x, not greater than = are there maxi-
mum or minimum values of the following?
sin 2% — x.
sin® x cos? x.
. sin z + sin x cos z.
sin z
14 tan x’
. 2sin % + cos z.
. sin x -+ cos 2z.
. 2sin x — sin 2x.
. sin x sin 2x.
. What is the smallest value of # for which 2sin %
+ 3 cos x is a maximum.

10. Find the smallest value of x for which tan?x — 2 tan»
is a maximum or minimum.

11. Show that the maximum value of @ sin 0 4 b cos 0
is v/a® + b and the minimum value — 4/a® ;
(T'rig., § 139.)

©CEONOM B W
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74. Inverse circular functions.

‘When we write y = sin x the sine is expressed as a function
of the angle denoted by x. When x varies, the sine varies
in consequence—i.e., angle is the independent variable
and the sine the dependent variable.

But we may require to reverse this relation, 7., to
express the angle as a function of the sine. Thus we
express the fact that when the sine is varied, the angle
varies in consequence. The sine now becomes the Inde-

endent variable and the angle the dependent variable.
is relation, as the student knows from Trigonometry, is
expressed by the form
y =sintx
which means, y Is the angle of which x Is the sine. From
this meaning we can write down the direct function relation,
viz.}
x =siny.

It must be noted that the — 1 is not an index, but a
})a.rt of the symbol sin-!, which expresses the inverse
unction.

All the other circular functions can similarly be expressed
as inverse functions,

75. Differentiation of sin-! x and cos-! x.
Let y=sinlz
Then, as shown % =siny et s Sher Tk
Differentiating x with respect to y.

& =
Sl TS
** dx dx cosy
dy

From the relation sin?y + cos?y =1 we have
cosy =41 —sinty =41 —2? (from A)
dy _ I

—-'_——-—I .

dx VI — x2

Hence
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Similarly if y =costlx
- oA
dx Vi— 2

The following points should be noted about these
functions and their differential coefficients. They can be
examined more easily by
1 means of the graph of the
£u2;1ction y =sintx (Fig.

ass

1

(1) The function is a

FHEH == many valued funct:i&-—-
HHH i.e.,for any assigned value
of x ther'g is an infinite
number of values of ¥.
y =sin zis a single valued
function.

(2) Since sin y lies be-
tween + 1 and — 1, the
saas function sin-! x exists be-
tween these values of x
only.

: (3) Since there is an
HH infinite number of angles
having a given sine, so for
any value of x between
<+ 1 and — 1 there is an
infinite number of points
on the curve. For ex-
ample, if x = 4, the values
of y at P, Q and R repre-
sent three of the angles
whose sine is , and that
at Q is the smallest posi-
tive angle.

(4) The differential co-
efficient of sin!x, viz.,

15T
Ll

Fic. 22.

‘\/I__l_?' , may be positive ornegative. Referring to Fig.
22, it will be seen that at all such points as Q, where the
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dient of the curve is the tangent of an acute angle,
the d.c. will be fositive, while at such pointsas P and R,
where the angle of slope is obtuse, the d.c. will be
negative. J 1

(5) Since x lies between + 1 and — l,ﬁcan—

not vanish. Therefore there are mo maximum or
minimum points on the curve. If x =+ 1, " g

becomes infinite. uently, at such points as
A and B the tangent to the curve is perpendicular
to the x-axis.

76. Differentiation of tan-! x and cot! x.

Let y=tanlx
Then z =tany
Differentiating with respect to y
dx
&=
|
W dx = secty
1
=1 Ftanty
1
I+
oy e =)

todx T+
Similarly, if y = cot-! ¥ we can show that
B et
dx I+ X
In this case there is no ambiguity of sign.
The following points which are illustrated by the graph
of tan-! x in Fig. 23.

(1) :—Jz' is always positive; ., y is always increasing.
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2 % does not vanish for any value of z; .’, there
is no turning point.

(3) Points of inflexion occur when y =0, «, 2x, —m,
etc.

The gradient is positive.

1

3¢
by -_"----1!:

1
1

| i

}_‘I 1

5

1
N
O

‘ﬁl

Fic. 23.

The graph of y = cot-! # is the reverse of this curve,
% is always negative, ., the function is always decreasing,

There are no turning points, but a series of points of
inflexion at which the gradient is negative. J

The drawing of the curve is left as an exercise to the
student.

77. Differentiation of y = sec-! x and y = cosec! x,
Let y =seclz.
Then x =secy.
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e
ah 3—=se.cytany

d . oo
e dx  secytany
but tany = 4v/sec’y —1 =4/ — 1,

i i |
Todx xVe o
Similarly if y = cosec'z

1
HEY,
el p—{ —~ 4 ! = m B b
- =t - - - A o] 2 ]
11
X .
=2 11T PIseaEls
= L
muy +H 4
= A
1
T
"t
I
1
= - ==t =t e pd e e e o
|NE LY,
1
T 1
Fic. 24,

Fig. 24 represents part of the curve of sec*x. Itisa
mauy—valuecf discontinuous curve with no part of it between
x=+4+land x=—1.

%’_;_g,, ;in=i cannot vanish for any finite value
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of x. There are therefore no turning points, but when
=+ 1,%beeomuinﬁnite.aswasthe case in the curve
of sin-! x (Fig. 22). The curve of cosec-! x is similar,

78. Summary of formulae.

The differential coefficients of the inverse functions are
collected together below for reference.

Function.

dy

dx

sin~! x I
Vi — <2

|

=1 =
piii Vi—=
tan~1 x :

|

= V.4
|

c1
c1 -

It should also be noted that
1

. %
i =
a

ax
b Bt
x
e e -
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Similarly for the other three functions.

79. Worked examples.
Example |. Differentiate sin-! x2,
Using the rule for a “ function of a function *

1 d
g=ﬁ“*a;"’1
2
=ﬁ. 1

Example 2. Differentiate tan- &

ézz_l__xi(:_l)
=T )
W, 131:2.
by
2 -2
B
—2x
=&Fr

Example 3. Differentiale 2* sin-* (1 — z),
Using the rule for differentiation of a product

g=2zsin4(1-—x) + 22 XVIT‘:TI.Z—-? X %(l"x}

mpnsiact ot Opfepy S o)

= 2x sin2 (1 —x)-v——z: =
Exercise 13.

Differentiate the following functions1
1. (a) sin-!4x; (b) sin-1 2,
2 (a) bcos? G); () cost ;
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(@) tantZ; (B) tant (a — 2).
(a) cos1222; () sin-!4/z,
(@) #sin-tx; () sint.
(a) sint (3% — 1); (B) cosec? 3.

tan-! (x 4+ 1); (B) («* + 1) tan-?
;:) m—lH ; ((g (sin-‘ =
) sec-15x; (b) sect 42,
10. (a) sin-? (sin#); (8) sin-?4/sin x.
11. (a) 2sectax; (b) tan?4/7.
12. (a) tan-‘l%,: (t) tan-? ‘%
13. (@) sec St () sec1 51,
14. (a) sin"\/l—%?; () cosec .
15. (@) xtan-?x; (b) tan xsin-? .

@I S & @

CHAPTER VIl
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

80. Compound Interest Law of Growth.

THE student will be familiar with two methods of pay-
ment of interest on money, termed Simple and Compound
Interest (Algebra, §207). In each the interest bears a
fixed ratio to the magnitude of the sum of money involved.
But while with Simple Interest the principal remains the
same from year to year, with Compound Interest it is added
to the principal at the end of each year, over a period, and
the interest for the succeeding year is calculated on the
sum of principal and interest.

Let P = the Principal.

Let r = the rate per cent. per annum.

Interest added at end of Ist year =P X y55-

.. Amount at end of 1st year =P+ %

r
This is the principal for the =P(1+Tﬁ)'
is the principal for the new year.
.'.bythesa.mew%al:lldngasforthelstyear

Amountatendoi2ndym=P(l +i-3—0)'
» » 3rd " =P(l +'ifﬁ)'

’ » ith ,, =P(l +T&j)‘.

g Stlggosetheinterestisaddedattheendof each half year
ins of at the end of each year, then:

Amount at end of 1st half-year = P (1 -3 m)

” ” 1st year =P (1 + E—)Tr-m)'

» »” 2nd ,, '=P(1 +§‘%m)‘
.. Amount at end of ¢ years =P(1 +§'Y"T®).

125
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If the interest is added 4 times a year:
4
Amount at end of 1st year = P (1 + I—){m)
P L)
i o iy B )
Similarly, if the interest is added monthly, i.e., 12 times
a year:
r 1%
Amount at end of t year =P(l -l--ﬁ-—x-m)
If the interest is added m times a year:
Amount at end of t years = P (1 T IOBm)'-”
In this result let

by ax, Bt

100m — '

nr

Then m = 155

.". the amount after ¢ years = P (1 +’1’)Tﬁ|

1\™\ 00
5 A
Now suppose that n becomes indefinitely large, t.e., the
intemst;vi:h added on at indefinitely small intervals, so that
the growth of the principal may be regarded as continuous.
Then the amount reached wﬁl be the limit of
I\m
P{(1 +3) }im
when n becomes infinitely large.
To find this we require to find the limit of (1 + )" as
n—> ©, .., -

Amount = P {.Lr‘f., (1+ ;1;)"}1%

It becomes necessary, therefore, to find the value of
1yn
Lt (1+4-).
--+n( +”)

EXPONENTIAL AND LOGARITHMIC FUNCTIONS 1ay

81. The value of Lt (I +;)‘.

ne=—y
Expanding (1 —i—%)’l by means of the Binomial Theorem
1\® 1 ,nn-—1) 1
(1 #3) =1 ¥l FEREIS
nn—1)n—2) 1
+ ﬁ -’_" + ...
Simpl'ifyi.ngby dividing the factors in the numerators by

-1 (=303

(1+}')"=1+1+L2 L E g

(-D0-3 .. (-5
4
But the limit of (1 +}')'is equal to the sum of the
hth:o (Th. limits No. 2.)

l_;li 1 Lt (l_i)(l"?:):l
O | I i - S 1 I
(-D0-)... -5,

|G

+ +l.o

| | | I
=|+T+E+[3‘+ +o-.

The limit is thus represented by an infinite
can be proved that as the number of terms is increased
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without limit, the sum of all the terms a es a finite
limit, i.e., the series is convergent (see § 18). Its value has
been calculated to hundreds of places of decimals, and can
be found arithmetically as follows to any required deg:
of accuracy. Each term can be found from the :
simple division of the preceding by the new factor in
e denominator. Thus:
1st term = 1-000000
2nd ,, = 1-000000
3rd ,, = 0500000 (dividing 2nd by 2)
4th ,, = 0-166667
6th ,, =0-041667
6th ,, = 0-008333
7th ,, =0-001389
8th ,, = 0-000198
9th ,, = 0-000025
10th ,, = 0-000003

Sum of lOterms=£-l18282

Thus its value to 6 significant is 2:71828.
This constant Is always denoted by the letter e.

or e= [t (l+%)-

n—wo

TAUET i ey A
=l+T+E+|__-"_+E+'”

We have seen above that the amount (4) at C.L. after ¢
years when the interest is continuously added is

4=p{(1+ 1)}
when 7 becomes infinitely large.
Replacing (1 +:-;)”byitslimitwhenﬂ—)-aa,wegetl
4 = Pi%,
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I.oet 1'60 = X,

Then we can write :

A = Pex

ex is called an exponential function because the index or
exponent is the variable part of function, whether it be t as
above or x in general.

82. The Compound Interest Law.

The fundamental principle employed in arriving at the
above result is that the growthpofythe principal is con-
tinuous in time and does not take place by sudden increases
at intervals. In practice, com d interest is
added at definite intervals of time, but phenomenon of
continuous growth is a natural law of organic growth
and change. In many t-Iflzily!;i:r:al, chemical, electrical and
engineering processes mathematical expressions of
them involve functions in which the variation Is propor-
tional to the functions themselves. In such cases the
exponential function will be involved, and as the funda-
mental principle is that which entered into the Compound
Interest investigations above, this law of growth was called
by Lord Kelvin the Compound Interest Law.

83. The Exponential Series.

We shall next proceed to show that the function, e, can
ressed in a series involving ascending powers of x, a
result which might have been anticipated, since a series

was used to arrive atthelimitof(l - }).whenn became
infinite, -

L B+
T e
=( )

E (CAL.)
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Expanding thus by the Binomial Theorem

(1 +E)“=1+M.’!'+MJ~B——““I).'—:.

+f_sx1nx-13}(ﬂ—2_)"_:‘+...

Lo L +;l')”=l+x+]§-+§-+

le., e’=|+x+'§+;§+...

This series can be shown to be convergent.

Replacing x by — x we get %

e—’=l—x+!-——._—3—+ oim =
Similarly : -'; a‘:
a
W=1+8x+E+E+.-.
o't a%d

w=l_“+‘@—'§+oto
84. Differentiation of =,
This can be performed by assuming the series for ¢* as
above and differentiating it term by term.

Since F=l+x+-§+|§+l§+...

d 2% | 82 da?
35(9')=0+1+E+r.3——'+l*i—+...

281, ig*
=l+x+E+E+...
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But this is the series for &#

B0 y=é¢&
&dz = €%,
X
This , viz. that the differential coefficient of &

is equal to itself, is possessed by no other function of x.
It was to be expected, since we have seen that fundamentally
e'i:;s:l‘functionsuchthatitsrateotchmgeis proportional
to itself.

Similarly, if y=c% 5+ =—¢°

y=¢u, g=ae-
y=¢",%=—a&*’.
The differentiation of e* can also be readily performed
by using first principles.

85. The exponential curve.
(1) If y=e

i _
...

Since % is always positive, the curve of the function e
must be positive and always increasing. ., it has no
turning points.

Since g = ¢#, this does not vanish for any finite value
of z.
., there is no point of inflexion.

@) If 36
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Applying the same reasoning as above, :.-; is always

negative. ., curve is always decreasing. There are no
turning points and no point of inflexion.

The two curves are shown in Fig. 25. In drawing them,
values of the two functions will be found in the tables on
pp- 379, 380.

J 1
N-
L

g

s

=
1%

P

|

7
mEar
B

e

Fic. 28.

The curve of e illustrates the continuous increase of a
function according to the Compound Interest law.
chThg caclu::.ad ofhe" cihiows a law of decrease common in
emi ysical processes, representing a “‘ dyln
away "’ law, tﬁe decrement being ppmpo:tnilgnal to ythg
magnitude of that which is diminishing at any instant.
The loss of temperature in a cooling body is an example.

e p—
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86. Naplerian, Hyperbolic, or Natural Logarithms.
In § 81 we arrived at the formula

L3
A =Pclmo
This may be written:
A .3
Y
ri
Let m=x.
Then we can write:

In this form it is seen that x represents the logarithm of ;

to base e. In many similar examples e arises naturally as
the base of a system of logarithms. So it came about that
when logarithms were first given to the world by Lord
Napier in 1614, the base of his system involved e. Hence
such logarithms are called Napierian logarithms. They are
also called Hyperbolic logs, from their association with the
hyperbola, and sometimes natural logarithms. The intro-
duction of 10 as a base was subsequently made by a
mathematician named Briggs, who saw how valuable tiey
would be in calculations. A short table of Napierian
logarithms is given on pp. 377, 378.

In subsequent work in this book, unless it is stated to
the contrary, the logs employed will be those to base e,

87. Differentiation of log, x.

The differential coefficient of log, x can be readily obtained
by the method of first principles, the work involving the

limit of (1 - i)' as n proceeds to infinity. Or the
differentiation of ¢# may be demonstrated as follows:

Let y =log, x.

Then x=ea,




134 TEACH YOURSELF CALCULUS
e a' =&

PR
and ix" o= x

o 6 1l
- (log.x) = =

If the logarithm involved a different base, say g, then it
can be changed to base e by the usual method. (Algebra,

§153.)
Thus if y =log.x
then y=log. x x log, ¢
d |
and a{:;xlog.e,
As a special case, if
y =logyp %
dy

1
=.3" x 0-4343.

88. Differentlation of the general exponential functions,
¢ is a special case of a* where g is any positive number.

Let y=a
Then log,.y ==xlog. a
1
or x=log.yx1—65—‘—‘-'
i dx=!x 1
"t dy y " loga
-
and p ¥y % log.a

i o P
i - a* x log, a.
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As a special case, if

=102
d
& 102 x log, 10.
89. Summary of formulae.
Function. Diff. Coeff.
e e
e* i
a* a* X log,a
| 1
og. X %

90. Worked examples.
Example |. Differentiate y = &*='.
Employing the rule for the function of a function

d d
£=a='xﬁ(3x')
= 6x x e,

Example 2. Differentiate y = log 22,
a b ——d
Ji =% 5"
=,—:i X 2x
2

= x—,
Or it can be obtained by noting that log »* = 2 log .

Example 3. Differentiate log - ;_]E_Ex’ i
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This may be written
y =log #* — log (x* — 1)}
1 1 d
%—(;. "2") w—mp X & -

=§_z;|——;x (#(2* — 1) x 22)
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13. (a) log (sin x); (b) log (cos ).

14. (a) loggT%; (b) log (= + .

15. () log {x + VA F1}; ¢) VE—1log (1 + V3.
16. (d) logtan3; () log VA 1; (o) 175

17. (@) 2%*; (b) ae**sin kx.

2
=: =1 18. (@) 5; () log (VEin ).
1 xx: _—2l)' 19. (@) 2#; (b) log {(Vz —1 + vz +1}.

& d
Example 4. Differentiate y — e sin (bx + c). gpsiy byl r iy fe st Ak e

This ti electrical and physical problems, . Va+ Vs,
such as:s;ﬁ-portanm ll:?:;lx dylng away ‘Po?m the spmmng ofa e 10g7=_17= ibistentes
pendulummar&ustmgm 9. (@) & ( b) — s
Let dy_.aﬁs:n(bx+c) 23 sin-1 1, "t‘:os- 1ge,
Then 2 = {eos x bcos (bx + o)) — {ae=sin (bx + ) s ) e o atet (¥ sin(es-+).
= eo*{b cos (bx + ¢) — asin (bx + ¢)}. %. (@) 1 RrRaesanT Lol
. (@) lo sin- ;
Exercise 14. $a = Vi~ it

26. Find the 2nd, 3rd, 4th and nth derivatives of
Differentiate the following functions: (@ y=e=; (b)) y=¢=; (c) y =log z.
(@ &5 (0) &3 () ¢
(@) e2; (b) €73; (c) €S-,
(@) e7%; (5) &; () cas+,
@) SR 0 S5 @ e
) xe*; (b} xes; ()x’
a +4a (b)e'smx (¢) 10e.
B0 ) e

a x‘a‘ f’ a"*‘ (¢) e""'

a) @ (b) (a +b); (c) emos.

10. (a) log %; (8) log (ax® + bx + ).

11. (a) log 2*; (b) log (+* + 3).
12. {a xlog z; (}J} log (px + q).

PENS; B o P




CHAPTER IX
HYPERBOLIC FUNCTIONS

91. Definitions of Hyperbolic Functions.
In Fig. 25 there were shown the graphs of the exponential

function e* and e=. These two curves are reproduced in
Fig. 26, together with two other curves marked A and B.
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(1) In curve A the ordinate of an
one half of the sum of the correspondin
ef and e*, For example, at the point
PQ is half the sum of LQ and MQ.

.. for every point on the curve

point onm it is
ordinates of
, its ordinate

P

(2) On curve B, the ordinate of any point is one half
of the difference of the ordinates of the other two

curves,
Thus RQ = }(LQ — MQ)
f.e, for any point  y = }(ez — ).

The two curves therefore represent two functions of x,
and their equations are given by

y = (e + )
and Yy = $(ex — e=).

It is found that these two functions have properties which
in many resPects are analogous to those of y = cos x and
y=sinx. It can be shown that they bear a similar
relation to the hyperbola that the trigonometric or circular
functions do to the circle. Hence the function y =
z(eIr +e#) Is called the hyperbolic cosine, and y =

(e* — e=) Is called the hyperbolic sine.

These are abbreviated to cosh x and sinh x, the added h
indicating the hyperbolic cos, etc. The names are usually
pronounced “‘ cosh " and “ shine,” respectively.

They are defined by the equations stated above, viz.:—

cosh x = §(e* + e9)
sinh x = §(es — e#).
From these definitions, also
cosh x 4 sinh x = e=
cosh x — sinh x = e=

There are four other hyperbolic functions corresponding
to the other circular functions, viz.:
sinhz e —es e —1

t'am”‘=coe;h.z T e tee g ]
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1 2
cosechx=m =F-—6"‘
A i s .oy
G ¢ g K
1 &4

coth x =

tanhx =~ & —e*'

These functions can be expressed in nential form by
derivation from their reciprocals. S

The names of these are pronounced “ than,” * coshec,”
“shec " and “ coth.”

The curve of cosh #, marked 4 in Fig. 26, is an important
one, Itis called the catenary, and is the curve formed by a
uniform flexible chain which'Za.ngs freely with its ends fixed.

These functions can be expressed in the form of series
which are derived from the series for e#, found in § 83.

2 2P
Thus a=l+x+E+E+...
d pras) = gy iy o
an - - % E2—l_§ .
Hence by addition and subtraction:
coshx=l+xE;+E+ T

slnhx=x+]x:;+§+ 3

92. Formulae connected with hyperbolic functions.
There is a close co dence between formulae ex-
pressing relations between hyperbolic functions and
similar relations between circular functions. Consider the
two following examples:
(1) cosh? x — —:-inh’ % :
& e —
. i (TH)
= et et +2) — (e 2)

s, cosh?x —sinh*x = |.
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This should be compared with the trigonometrical result
cos?z +sin?x =1,

(2) cosh?® x + sinh? x

o 2 ' — |
=(_§r') (2
=2s" + 2%

4
- + cta
2
= cosh 2z
[ & cosh? 4 sinh? x = cosh 2x.

This is analogous to cos? x — sin® x = cos 2x.

Similarly, any formula for circular functions has its
counterpart in hyperbolic functions. It will be noticed
that in the above two cases there is a difference in the signs
used, and this applies only to sinh? z. This has led to the
formulation of Ssbome's rule, by which formulae for
hyperbolic functions can be at once written down from the
corresponding formulae for circular functions.

Osborne’s Rule.

In any formula connecting circular functions of general
angles, the corresponding formula connecting hyperbolic
functions can be obtained by replacing each circular
function by the correspandlnf I:rperbollc function, If the
sign of every product or Implied product of two sines Is

changed.

For example sec?x =1 4 tan?x
becomes sech?z = 1 — tanh? x

- : ],x=smhxxsmhx_
R cosh z X cosh z
93.

The more important of these corresponding formulae are
ised for convenience.
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Hyperbolic Functions.

cosh? ¥ — sinh?s = 1
sinh 2z = 2sinh cosh
cosh 2 = cosh® » 4
sinh? »
sech? ¥ = 1 — tanh®» sec’ s = 1 4 tan*s
cosech? ¥ = coth?z — 1 cosec? ¥ = cot? ¥ 4 1
sinh (¥ 4 y) = sinh x cosh y 4 | sin (¥ + y) = sinxcosy +
cosh x sinh y cos x sin y

Circular Functions.

cos?y +sin?*y =1
sin 2 = 2sin ¥ cos ¥
cos 2z = cos? ¥ — sin x

cosh (¥ 4 y) ﬁ:ﬁh;ifcmhi” cosm:zosmyn’f
The following striking connections between the two sets

of functions are given for the information of the student.
For a full treatment any book on advanced trigonometry
should be consulted.

coshxnia’+e‘2: coax-:ﬂo"+¢:;
sinh x = §(ef — ¢7%); sin x = §y(e** — ¢
sinh x = 3 sin iz
cosh x = cos i
where f =4/ — 1. (See Algebra, Appendix, p. 284.)
94. Differential coefficients of hyperbolic functions.
(1) sinh x.
Let y =sinh z
& —c*
T T

Then £=a_'_-|2-_£'

= cosh x.
(2) cosh x.
Let y =cosh z
_&+et
2

dy e —e*
Thep F Ak o

= sinh x.
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(3) tanh x.

The differential coefficient may be found from the
exponential definition, or we may use the above result.

Let y=ta.|:|hx=§;—:h];—i.
Ti g=ooshz.ooshx—sinh_x.sinhx

cosh?z
(Quotient rule.)
cosh? x — sinh?
- cosh®z
- s (592)
= sech? x.

Similarly, it may be shown that, if
y = cosech zx, 'g = — cosech x coth x
y =sech x, g = — sech x tanh x

y = coth x, % = — cosech? x.
These results should be compared with the differential
coefficients of the corresponding circular functions,
95. Curves of the hyperbolic functions.

The curves of cosh # and sinh x in Fig. 26 should be
examined again with the assistance of their differential
coefficients.

g?ynmshx; guslnhx,g=mshx.
7, vanishes only when x = 0. There is therefore a

turning point on the curve (curve A). Also, since
sinh x is negative before this point and positive after,

while g is positive, the point is a minimum, There
is no other turning point and no point of inflexion,
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(2) y =slinh z; % = cosh %, g=sinhx.

%’, f.e., cosh # is always positive and does not vanish.,
Consequently sinh z is always Increasing and has no
turning point. When z = 0, a= 0, and is negative
before and positive after. Therefore there is a polnt
of Inflexion when % = 0; since% 1., coshz =1
when x = 0, the gradient at 0 is unity and the slope 3.

(3) y =tanh x; % = sech? x.

e B T el

always continuous and cosh # never vanishes, tanh x must
be a continuous function.

1
L
LLLE

F1e. 27,

As was shown in § 91, tanh # can be written in the form1

s — 1
mhx=m

Y
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From this form it is evident that while x increases from
— oo to 0, e* increases from 0 to 1.

. 2 :
X l—zr_i_—lortanhxmu'easesfrom—ltao.

Similarly, while x increases from 0 to -+, tanhzx
increases from 0 to + 1.

The curve therefore has the lines y = 4 1 as its asymp-
totes and is as shown in Fig. 27.
96. Differentlation of the Inverse hyperbolic functions.

Inverse hyperbolic functions correspond to inverse
circular functions, and their differential coefficients are
found by similar methods.

(1) Differentlal coefficlent of sinh-* x.

Let y =sinh? %
Then x = sinh y.
', - =coshy

. d

b dx ~ coshy — /1 + sinhy (§93)

L aiiirae & VAT

(2) Differential coefficient of cosh-? x.
Using the same method as above we geti

i
dx /x¥—1
(3) Differential coefficient of tanh-! x.

y =tanh-lx
x =tanh y
? = sech® y
by . Ha
e dx = ey

= I —taal'y (593)
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(4) The differential coefficients of the reci of the
abovembefonndbythesamemethods are:

y= sech? X, al P ;ﬁ

y = cosech™

50 Y ikt 60
dx ~  xV/T+ 2
4. dy
- e S0
y = coth x, i P
The following forms will be found of importance later :
(1) If y = sinh-? ?‘,

1
-VETE " T

(2) Similarly, if y = cosh-1 7,

dy Pr A
Az~ /i —av
97. Logarithm equivalents of the Inverse hyperbolic
unctions.
(I) sinh! x = log {x + VI + x3.
y =sinh-1 %,
'I'hen z = sinh y.
But cosh?y =1 + smh’y (§93)
=142
=VIfR (a)
o mnhy+ooshy-_x+\/ 2
but sinhy 4 coshy =& (§91)

Soe=x4+ VIR
Taking logs y==10g{x+'\/i+x*}
f.c., sinh-1x = log {x +v/x + 1}.
Note.—Since cosh y is always positive, the plus sign only
is taken in A.
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(2) cosh?x = log{x + vx2 —1}.
Let y = cosh-1 z,
S, x=coshy,
but sinh? y = cosh?y — 1 (§93)
=2'— 1
s sinhy=+4/28 —1
(both signs applicable).
As above e = cosh y + sinh y
=x:|;‘\/§i— .
& y=lg{zx V¥ -1}
or cosh-1 x = log {x 4+ V/x* — 1},
The two values thus obtained are:
log {# +4/2* — 1} and log {x — V/#* — 1}.
Their sum :
log{x+V§‘ 1} + log {x — V2* — 1}
lx+‘\/§’ 1) X (x — V2" =1)}

-=log %2 — —

||=log
= 0.

.". these two values of cosh-!x are equal, differing
only in their sign. Hence we may write:

cosh-1 x = 4 log {x + Vx* — 1}
Note.—x must lie between 1 and 4o,

(3) tanhix = }log | X

Let y—ta.nh-lx
then z = tanh y
(and x lies between + 1 and — 1 (§ 95))

-5 @

I.. x(g" + 1) = ﬂ I 1.
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1+=% Logarithm equivalents.
& = .
Wy B sinh- x = log {x + V/x¥ + 1
2J"‘=I°Eii: cosh-1x = + log {x + — 1}
142 tanh*‘x:}logl—i—!.
and y=}log 1, sl
. Ty | 4+ x —
ot sanhixe= flog = Also sinh-1 % = log {x“t“'—‘/:' £}
98. Summary of formulae of Inverse functions, colrd atlie {x + V?Tai}
Function. DIff. Coefl. . oy L
-1
sinh x i g Exercise I5.
it | Differentiate the following functions:
sh® x
vx:— | 1. (a) smhﬁ, () sinh 2z; (c) cosh§
ol | L 2. (a) tanhax; () tanh; () sinh ax + cosh ax.
_I" 3. (a)smhl, (b) sinh? x; (c) cosh® x
cosech™® x = 2 4, (a) sinh (ax +5); gb) cosh 222 ; (c) sinh® ax.
xVI + x 5. sm.hxcoshx (5) sinh? % -+ cosh? x; (c) tanh? .
2 | 6. lo tanh z; b) % sinh # — cosh x; c) logooshx
sech? x oy v % z'smhsx ()log(smhx+ooshx (c) estuha,
8. (a) sinhz; (b) log T tanh %, (c) gtanbz,
coth? x it e 2 I=tarks
o 9. () sin*3; () coshZ; (0 sinh-t [ %,

[
=

(a) smh—‘ta.nx (%) ta.n-lsmhx (c)tanh‘smz.
11, sin-! tanh z; (b) cosh-!sec #; (¢) tanh-?

12. E:%oosh1(éz+1)) (b]smh‘zﬂ})_rx, e ?
(¢) tanh-? =—.

13. (@) tan-!x + tanh-1x; (b) tanh-! (tan §x);
i‘) tan-* (tanh §x).

The following additional forms are important. When
y =sinh-17, %z - %
y = ODS"I":'X %l WE?
y=tanhil ¥ = ol
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14, Write the logarithmic equivalents of 1
(a) sinh-lg: (8) ooslr"g; (¢) sinh-? 2;

(@ cost-1 3 (o) tanb-1.

15. Differentiate:
ks
— b
0) log {EVFE=2, () j1og 22

CHAPTER X
INTEGRATION. STANDARD INTEGRALS

99. Meaning of Integration.

The integral calculus is concerned with the operation of
Integration, which, in one of its aspects, is the converse
of differentlation.

From this point of view the problem to be solved in

sn‘}ggraﬁzbis: What s the - kaick g bat':;g
i fferenti; prodmsaginm%dm or example, what
is the function which, being differentiated, produces cos x?

In this case we know from the work on the previous chapters
on differentiation, that sin x is the function required. We
therefore conclude that sin x Is the Integral of cos x.
Generally If f’(x) represents the differential coefficient of
f(x), then the §roblem of Integration Is, given f’(x), find

f(x), or given v find y.

But the process of finding the integral is seldom as simple
as in the example above. A converse operation is usually
more difficult than the direct one, a.ndp?;ategmtion is no
exception. A sound knowledge of differentiation will
help in many cases, such as that above, but, even when the
type of function is known, there may arise minor complica-
tions of signs and constants.

For example, if the integral of sin x is required, we know
that cos x, when differentiated, produces — sinx. We
therefore conclude that the function which produces
+sin x on differentiation must be — cos z. us the
Integral of sin x Is — cos x.

Again, suppose the Integral of x Is required. We know
that the function which produces this on differentiation

must be of the form xb. But o (sf) = 2s. If therefore

z is to be the result of the differentiation, the in
must contain a constant factor of x such that it cancels with
the 2 in 2x. Clea.r:)r this constant must be . Hence the
Integral must be §x3.

151
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These two simple examples may help the student to
realise some of the difficulties which face him in the int
calculus. In the differential calculus, with a knowledge of
the rules 1\;rrlluch ‘lialagre been formulatled a]ﬁ &revious chapters,
it is possible to differentiate not on e ordinary H-pes
of functions, but also complicated yexpressions formed by
Eroducts, powers, quotients, logs, etc., of these functions.

ut simplifications, cancellings and other operations occur
before the final form of the differential coefficient is reached.
When reversing the process, as in integration, we want to
know the original function, it is usually impossible to
reverse through these changes, and in very many cases the
integration cannot be effected.

It is not possible, therefore, to formulate a set of rules
by which any function may be integrated. Methods have
been devlseg' , however, for intggrating certain gges of
functions, and these will be stated in succeedin pters
With a knowledge of these and much practice, the student,
if he possesses a good grasp of differentiation, will be able
to integrate most of the commonly occurring functions,

These methods, in general, consist of transposing and
maﬂpﬂ;%e functions so that they assume the known
form of d functions of which the integrals are known,
The final solution becomes a matter of recognition and
Inspection.

ntegration has one advanta%&the result can alwa
be checked. If the function obtained by integration
differentiated we should get the original function. The
student should not omit this check.

100. The constant of Integration.

When a function containing a constant term is differenti-
ated, the constant term disappears, since its differential
coefficient is zero.

When the process is reversed and we integrate, the
constant cannot be determined without further information,

For example, let Jv =2+ 3.

Then 22 = 2%,

%

If the process is now reversed and 2x is integrated as it
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stands, the result is x2 Consequently to get a complete
Intergal an unknown constant must be added.

In the above example let C denote the constant. Then
we may state that the integral of 2x is 2* 4 C, where C Is
an undetermined constant. Consequently the integral is
called an Indefinite Integral.

This may be illustrated graphically as follows.

In Fig. 28 there are represented the graphs of y = 43,
y=2x'+2, and y = 2* — 3, all of which are included in

|
.
L

ek

L
11

Fic. 28.

the general form y = 2* 4+ C. They are termed Integral
curves, since they represent the curves of the int
2? 4 C, when the values 0, + 2, and — 3 are assigned to C.
Evidently there is an infinite number of such curves.

Let P, Q, R be points on these curves where they are cut
by the ordinate x = 1-5.

At all three points the gradient Is the same. They have
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tvl;ti: sa;ne coefficient, 2x, which for these points has the
ue 3.

The int y = x* 4 C therefore represents a series of
corresponding curves having the same gradient at points
with the same abscissa.

The equation of any particular curve in the series can
be found when a pair of corresponding values of x and y is
known. These enable us to find C. If, for example, a
curve passes through the point (3, 6) these values of x and v
can be substituted in the equation.

Thus on substitutionin y =2 4+ C
we have 6=3+C
whence C=-3.

Thus y = x* — 3 is the equation of this particular curve
in the set.

101. The symbol of integration.
The operation of integration necessitates a symbol to
indicate it. The one chosen is I , which is the old-fashioned

elongated “ s,” and it is selected as being the first letter of
the word “ sum,”” which, as will be seen later, is another
aspect of integration.

he differential dx is written by the side of the function
to be integrated in order to indicate the independent
variable with respect to which the original differentiation
was made, and with respect to which we are to integrate.

Thus f f(x)dx means that f(x) Is to be Integrated with

respect to X.
e example of the integration of cos # which was con-
sidered in § 99 would be written thus:

fcosxdx =sinx 4+ C.

It is important to remember that the variables in the
function to be differentiated and in the differential must

be the same. Thus f cos ydx could not be obtained as it

stands. It would first be necessary if possible to express
oosi as a function of x.
ole.—Any other letter may be used to represent the
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independent variable besides . Thus f {dt indicates that

t is the independent variable and we need to integrate
with respect to it.

102. Integration of a constant factor.

It was shown in §39 that when a function contains a
constant number as a factor, this number will be a factor
of the differential coefficient of the function. Thus if

¥y
d = -1
Q{r = a(nx»-1),
It will be obvious from § 39 that when the operation is
reversed, and we integrate a function containing a constant

factor, this factor must also be a factor of the final Integral.
When finding an integral it is better to transfer such a

factor to the left side of the in tion sign before proceed-
ing with the integration of the function. Thus:
fﬁxdx = 5dex
=5} +C
=§a + C.

[af W)ax = af 1 (@)ax.

It should be noted that no factor which involves the
variable can thus be transferred to the other side of the
integration sign.

103. The Integration of x».

_Simple examples of this can be obtained by inspection,
viz.:

Generally

[xdx = 32 4-C
[#z = 4 +-C
%z =3 +C

[#dz = 425 + C.
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From these examples we may readily deduce that:
|
xdx = ——x"*1 4 C,
[ n+ | i

Also, in accordance with the rule of § 102:
fax'dx = afx'dx

=n—-?-—l'x’+1 + C-

Remembering the rule for the differentiation of a function
of a function, we can also deduce that

l 1
f (ax + BJrdx = gy (ax + byt + C.

If a student has any difficulty in realising such a result
as this last, he will see the reason for it by differentiating
the integral obtained.

It was seen in § 38 that the rule for the differentiation of
#* holds for all values of #. The formula above for the
Etegrgtion of the function similarly holds for all values of

e 1ndex.

Note.—It should be noted that [dx = x + C.
104. Worked examples.

1) fsxvdx —sfsax=3x% +Cc=304c
@ [+vziz =4 x‘dx=4x{%+6=4xix’+c
8

3 f‘%= B =[5
x—i{-l
=24 4
=2V/x + C.

Note.—This last integral and those of the following allied
functions should be carefully noted:

INTEGRATION. STANDARD INTEGRALS 157
[ V=F::- =2/xFb+C
d 2
]7=BGXX+ =gvax+ b+C

105. Integration of a sum.

It is evident from a consideration of the differentiation
of a sum of a number of functions %41). that on reversing
the process the same rule must hold for integration—i.c.,
the integral of a sum of a number of functions Is equal to
the sum of the Integrals of these functions.

Examples.
(M) [ —b2* + 72 — 11)dx
= [wax — 5[ 0ax +7[xax —11[ax

=% g+ -1z +C.

Note.—The constants which would arise from the
integration of the separate terms can all be included in one
constant, since this constant is arbitrary and undetermined.

1
@ [(#7-33)
= [ — [x-iax _
=3x —§x + C.
106. The Integration of ,lth

If the rule for the integration of x» be applied to the case
ofjl—‘or x1, we get:

[Z=[ras=Ery+c
=¥ ic=}+c
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This result is a tly infinite, and the rule does not
seem to apply. e ap%armt contradiction must be left
for future consideration, but it shot:;lltlihb;lrbered that
in these processes we are dealing with limits.

We know, however, that by the rule for the differentia-
tion of a logarithmic function (§87) that the differential
coeficient of log, % is .

Hence we conclude that

dx
— = fog X
[ = 1o

107. A useful rule for Integration.
By combining with this last result the rule in differenti-
ation for the function of a function we know that:

if g lolg {f(=)} :
&= <10 =53
consequently ] ;E) dx = log f(x) + C
(x) . :
Hence—when inlegrating a fractional function in which,
afier a suitable adjustment of constants, if necessary, it is seen
the numerator is the differential ient of the denomina-
m,mmm&mzogmqmmsm.
Clearly all ional functions of x in which the

denominator is a function of the first degree can be integrated
by this rule by a suitable adjustment of constants.

108. Worked examples.

dx 1l (a
B & =ala"

=-‘|]Iogax+c.

@) ja—;%=£log(ax+b)+c.
xdx dxdx
® [ss =tz
=tlog (2x* +3) + C.
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@ [26+Ndx _ [ (2x + 2)dx
Prox+1 A F2% 1
= log (x* 4+ 2x 4 7).
() Itanzdx _—.[%dx
LE T S sin % i
Ccos x
= —logcosx 4+ C
le., [ tan xdx = log sec x 4+ C.

©) [cot xax =jg-;dx.

S |cot xdx = log sin x + C.
) S,;,fjl‘-_-;-g‘z%dx=|og(3x'+5x+n+c.
® [+ 2@z — hax.

Although there is a definite rule for the differentiation of
the product of two functions, there is none for the integra-
tion of a product as in the above example. In such a case
the factors must be multiplied.

Then f(x +2)(2x-—l)dz=f(2x’+3x—2)dx
=2fx-dx+3fxdx—2fdz
=3 +§2* —2x + C.

) jx‘+3x’+ldx.

In this example we employ a device which will be used
later in more complicated cases; the fraction is split u
into its component fractions. This we do by dividing eac.g
term of the numerator by the denominator.

Then jﬁ%’ildz=f(x+g+$)dz
= [xix +3[Lax + [%
=} +3logz — 5y +C.
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109. lfg = x® express y in terms of x.
Since 92 is the differential coefficient of %2, it follows
that by integrating 72, we obtain 2. Having thus found
a second integration will give the equation connecting
y and x.

Since %=x’.
Integrating Y — [
Integrating again y = | (3% + Cy)dx
= [1s4ax + [Cyan
=1 x $x2* + Cyx + C,
y=$gx'%1-c,x-|‘-c,. 3
As a result of integrating twice, two constants are intro-
duced, and these are distinguished as C, and C,.

Toﬁndthmitisnmarytohavetwopmmofcom-
sponding values of x and y. On substituting these, we get
two simultaneous equations involving C; and C, as the two
unknowns. Solving these, the values found are substituted

in the equation
y=o2"+Cyx + C,,
and so the equation connecting x and y is found completely.
Exerclse 16.
Find the following integrals.

1 f 3xdx. 2. f 523z,

3. [1ax. 4. [oaxar.

5. f 12280, 6. f 150t

7. f %’. 8. f ao.
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9. f(h’—5x+l)dx.

11. |x(8x — $)dz.

13. f{(x — 3)(x + 3)dx.

15. fé,‘

17. f =

19, [ Jr-Vdz.

21. [ ( + 2-¥)dx.

23. fz—jiadx.
2. fgd:.

2. [VE.a.
29, f‘%‘dx.
8L [
83. fﬁ%
35. ff;"—%x

2 —x 41
xf"""""d‘o

39. fm

4. IV?:%-"E
43. f (ax + b)dz.
F (car.)

37.

10. f (334 — 62%)dx.

12. f B23(2 + )dx.

14, f (2% — B)(x + 4)})dx.
16. f 3x-4dx.

18, f V. d.

ofis

22, f(x‘l 41 4 z-1)dx.
2. [ (5 — 6s-09) ax.
i
2. [(1— —-2-‘17;)&.
0 FL

2 [(2-i2o) %

34, fs;ffﬁ
36. f";"dx.

4. ] (1 + %) + 2Ydx.
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xdx sin axdx

- fx:u—;xl' “f e

47. ¢ 1 + cos 2xdx
B - 2x + sin 22 °

49. 119% = 3 find y in terms of .
50. If:—{ = 6% find y in terms of x, wheny = §if x = 1.

51. If g = bz, find y in terms of # when it is known
thatifx=2,§3:=l2,andwhenx=l.y=-l.
52. The gradient of a curve is given by %=4.z—5.

When z = 1 it is known that y = 3. Find the equation of
the curve. d
53. The gradient of a curve is given by d—%e:ﬂx'—-— 102

+ 4. If the curve passes through the point (1, 6), find
its equation.

54. If%s = 8¢, find s in terms of 4, when it is Kriown that
if:=o,s=10,and‘§=s.

110. Integrals of Standard Forms.

We collect below a number of integrals known as Standard
Forms, which are obtained mainly by inspection as bein,
the known differential coefficients of functions; a few o%
them were employed above.

(a) Algebraic functions.

|
(l) [X"dx = mx"-‘-la
(2) ]‘? = log, x.
3) [a'dx = a" x log,e.
() [erdx = e
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The constant is omitted from the above, as well as from
others which follow, lo save space.

() Trigometrical functions.
(5) fsin xdx = — cos x.
(6) [cos xdx = sin x.

(7) |tan xdx = — log cos x = log sec x.
) [ g grecx.
(8) f cot xdx = log sin x. (§ 107)

Note.—The differential coefficients of sec x and
cosec x—viz., sec x tan x and cosec x cot x—do not give
rise to standard forms, but to products of these.
They are not therefore included in the list above, but
follow below. The integrals of sec # and cosec x do
not arise by direct differentiation. They will be given
later (§120).

(¢) Hyperbolic functions.
9) fslnh xdx = cosh x.
(10) fcosh xdx = sinh x.

(1 ]mnh xdx = log cosh x.
(using method of § 107)

12) |coth xdx = log sinh x.
( ) [ . (using method of § 107)

Note.—The following variations of the above should
be carefully noted:

[sln axdx = —%aos ax
[sln (ax + b)dx = — % cos (ax 4+ b)

[cos axdx = % sin ax
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fcos (ax 4+ b)dx = —l& sin (ax + b)
I tan axdx = IE log sec ax
fslnh axdx = % cosh ax

fcosh axdx = IE sinh ax.

Exercise 17.
Find the following integrals:

1. ] 3etedz. 2. [oe-tas,

3. f (& + e-2)¥x. 4. ] iz,

5. j (@ + e R, 8. j (e= — e-e)dx.

7. f (@ + a¥)dz. 8. [Mx.

9. [10%ds. 10. [(@* +a-2)ix.
11. fxa"dx 12. [esoss sin xax.
13. fsinSxdx. 14. fcos&xdx.

15. fsin}(x +3)dx. 16. fcos(zx+¢)dx.
7. f sin §xdz. 18. f sin (z — 82)ds.

19. f(cosax+sinbx)dx. 20. [sinzam
21. f(oossz—sing)dz. 22, fiig:
23, fsin'xcoszdx. 24, [sec!xe.h-dz.

sin 2%
25. f(tanax+ootbx]dz. 26. fmds.
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21. ]coshzxdx 28. ]sinhi’?dx
29. [tanh 3xdx. 30, [tsin (@ + b2) —
f_@ilfdx ¥ fmax:;s (a — bx)}dx.
- d. 4 3 dx.
" fm'gd’ b fl:e'dx
35. fl+tanx 36, fcosxfsl'ﬁ.dz.

I11. Additional standard Integrals.

In addition to the above integrals of standard forms, the
following additional mtﬁs which are obtained by the
d:ﬁerentlation of forms, are of importance,
especially Nos. 17-253

(@) Trigonometrical.
(13) Jsec x tan xdx = sec x.
(14) | cosecx cot xdx = — cosec x.
(15) foosec' xdx = — cot x.
(16) Isec’ X = tan x,

(6) Inverse trigonometrical.

(17) [VETT? = slrr1 or — cos“:
(18) fm = }’tan“l‘; or — %cot'l’a—".

dx ;o8 ' T 1 X
(19) IW—::;’ g SocH Ziar — cosect

(¢) Inverse hyperbolic functions.

dx .
(7-0)] Ve -—slnhaor+‘/ 2
bor C27:E2,
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(21) [‘—/;;dx_—a, = cosh-! g or

log {x o 1/5’-:_0’}.

@) [%, =l Xor

= -
a a |

(23) IXSEL = _‘.',.—.o:hﬂg or

—a@

The following variations of Nos. 20-25 will be found
useful, especially in some of the applications in the next

chap::}r: s lsinh_lbx
(“}f;ﬁ—{-al—ﬁ L @

=3 bg{ﬂ___

bx

d
21 (a) fvb&—::?—gcosh'l—

a

T LR

dx 1 bx 1
R lo—p “kmESTER
dx 1 bx 1
BO |pa—a =o' 7 =3

bx — a

g Ta
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dx 1 bx
24 (a) | —jg——ge=, = — —sech- =
a ]x'\/ai—ﬁix! a ll aa " \/GT_—_W
dx T_E ogb -
. o
25 (a) f ooy ey : > at:O&;drl =
a+va’+5‘§‘
=—E og___..rx____._'
Notes.

(1) In Formulae 20, 21, 20(a), 21(a) the “ a’* which
%%E:ars in the denominator of the logarithm is omitted.
means that the — log a is merged in the constant of

in tion.

(2) In Formulae 17-25, if 2 = 1, we get the simpler form
stated in §§ 78 and 95.

(3) The Formulae 17-25 will be proved directly in a
later chapter.

(4) In the trigonometrical integrals it will assist the
memory if it be noted that whenever the name of the
function in the resulting integral begins with “co”’ the
function is negative.

112. Worked examples.

Example |. Ewvaluale the integral [ Vﬁ{i@.

N'I‘he form of this integral can be transformed to that of
0. 17

[ ity i

V16 — 922 3V3AE — a® VS‘T;’

This is now in the form of No. 17, where a = §.
.. Integral = §sin? (v + §).

::]S'ﬂ"‘%!.
s dx

E le 2. the e,
xample 2. Evaluate the integral by, 7= oy |

The form is that of No. 21 (a), where b =3, a = 1.
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Hence

I?ﬁ‘_‘xﬂﬁ = } cosh-1 3x = }{log 3x + V9x* — 1}

Example 3. Find the integral f 97,‘%_-1.

This can be transformed into No. 18.
ax . dx

A Jema=loss

dx
st 3
*. by No. 18 integral = (} x %) tan-‘;

=@ x i)tan-"%

3x
= * tan-1 '72'.
Exerclse 18.
Find the following integrals:

1. (a) I‘\/Qd: x',' (b) f‘\/xfx—-g: (¢) fv;fifﬁl.
2. (a) 9—%_'-’;.: ® 5 2 @ E=

3. (@) IVl:z—x’: (®) [[gfxa'

4. (a) f ‘,,.dz_ e © fx‘ i-xlﬁ'

dx dx
(@) I‘\/x’ 716 9 Ja e

6. @ [Js O [ O[5t

1@ [prs O[5 @ [y
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dx | iz . dx
% 0[5 O [are O [aa—=s
dx ; dx
* @ [Fmarm O [ymaTs
dx dx
0 [ 0 [
@ [ g O [5Ze
dx dx
2. @ [ O [wrrs
dx dz
18 @ [ 0 [ 75y

1

o
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CHAPTER XI
SOME ELEMENTARY METHODS OF INTEGRATION

I13. This chapter will contain some of the rules and
devices for integration which were referred to in § 99. The
general aim of these will be, not direct integration, but
transformations of the function to be integrated so that it
takes the form of one of the known standard integrals
which were given in the last chapter.

Transformations of Trigonometric Functions.

I14. Certain trigonometrical formulae may frequently be
used with advantage to change products or powers of
trigonometric functions into sums of other functions when
the rules of § 105 or § 107 may be employed to effect a
solution. Examples of this were given in § 108, Nos. 5 and

6, where, by changing tan x to :%; and cot x to cﬂ, the

sin x
integrals ftan xdx and fcot xdx were found.
Among the formulae which are commonly employed are
the following:
1) sin?* x = }(1 — cos 2x).
}2 cos® x = §(1 + cos 2x). (Trigonometry, § 83.)
Hence, fsln' xdx = f}(l — cos 2x)dx
=§(x — i sin 2x),
Similarly, j cos? xdx = $(x + 4 sin 2x).

It will be noticed that the formula employed in each
case enabled us to change a power of this function into
a sum, when integration was immediately possible.
The following are two further examples:

(3) tan? x =sec*x — |,
o [rant xdx = [(sect x — 1)ax
=tan x — X.
170
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(4) cot? x. By the same device
[ cot® xdx = [(cosect x — 1)d.
= — (cot x + x).
(5) f sin® xdx. This can be found by employing the
e.

rul
sin34 =3sinA4 — 4sin® 4
whence sin* 4 = }(3sin 4 — sin 34).
The integral can now be written down:
6) j cos® xdx. The method is the same as in No. 5,

cos34 =4cos*Ad —3cosA.

The following formula are useful for changing products of
sines and cosines into sums of these functions:

a) sin A cos B = ¥{sin (A + B +s§nA-—B;
b) cos A sin B = §{sin (4 + B) —sin (4 — B
¢) cosd cos B = coséA+B +oos{A —B}
sin A4 sin B = §{cos (4 — B) — cos (4 + B)
(Trigonometry, § 86.)
115. Worked examples.

in3
Example |. Evaluate the integral zlon—s,—;dz.
Rearranging
sin® x sin® x sin %
costx ™ = | “oostz ¥

- ] i
- [ it LA
cos* x
sin % sin x cos® x
cos? x cos? x

-=Isecxtanxdx -[sin xdx
= sec X - cos X.
Example 2. Infegrate Ism 3x cos 4xdx.
Using formula (b) above
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foosixsin3xdx=fi{(sin (4% + 3x) —sin (4x — 3]}
= } [sin Txdx — § [sin xdx

= #{— % cos 7x + cos 2}
= £(C0S ¥ — ; CcOos 71).
Exercise 19,
Evaluate the following integrals:
. x x
1. [sm‘ﬁdx. 2- ICOS’de.
3. f tant % dz. & [cost zds:
5. [sind zdx. 6. f Ot S
7. [ sin® 2xd%, 8. f cos? Suds.
9. f cos? (ax + b)dz. 10. j sin® xdx.
1. Icos'xdx. 12. fsinzxsin 3dx.
13 [cos?.xcosxdx 14, fsinucos%dx.
15. [sinuoossgds. 16.: fsin ax cos bads
17, [sm 6 cos 046, 18. fsin'xcos’xdx.
dx 1 +sin?x
19. f R T 20. f Toodts o
21. ]tan' xdx. 22. fsi.n‘xoos’zdx.
23. ] VT F cos adx. 24, j Sect xix.

Integration by Substitution.
116. Itissometimes possible, bychanging the independent
E:riable, to_ transf(:eri a functioj:l into another th;ecE can
readily integra Experience will suggest the par-
ticular form of substitution which is likely to be eﬂecupfri.
but there are some easily recognised forms in which certain
known substitutions can be employed.
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Irrational functions can frequently be treated in this
way, as will be seen in the following examples, and those
employed serve to prove some of the standard integrals
given in § 111.

A. Some trigonometrical and hyperbolic
substitutions.

7. [Va¥ = xdx.

The form of this suggests that if x be replaced by a sin 6,
we get a® — a*sin® 0, 1.e., a¥(1 — sin® 0). This is equal to
a®cos? 0, and on taking the square root the irrational

uantity disappears.
: It wi?be seen that we are then left with two independent
variables—viz., x and 0, since dx remains as part of the
integral. But we must have the same variable throughout

the integral. Consequently
dx must be expressed In terms of 0.

Since x =asin 0,
Differentiating with respect to 0

dx

Zé =acos 0

which, for this purpose, we can write as

dx = a cos 0de.
The solution will therefore be as followst
Tointegrate V& —.dx.
Let x=asin 6,
Then dx = a cos 0d0.
Substituting in the integral

IVai—-zidx=f\/ér—a'sm’0 X acos 0.d0
.-.=fa-\/T—siniﬂ X a cos 040
=a’foos’&d9

=a'{‘}(0 + § sin 26)} (See § 114))
= }4%0 + §asin 6 X acos 0
(since sin 26 = 2 sin 6 cos 0).
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It is now necessary to change the variable from 6 to x.
Since x=asin® and sin@=2
. i 4
0 =sin-1Z
a
also @cos 0 =aV1 —sin? 0
= 1/a¥ —a¥sin? §
=va' =i,
. Substituting in
[V =iz = 4% + jasin 0 x acos 0
we get
a® X
I\/a‘ — Xdx = 5 sin? + Ixva® — X2,

Note.—Instead of substituti x=asin® we could
equally well put x = acos 6. student should work

this through for practice.
]_ dx
V@ — X2
Using the same substitution as in the previous case—
viz., x=asin 0
we have! vVa* — 2 =qgcos 0
and dx = a cos 040
[ a cos 646
7 -—xi acos b
=fd'9
=0
e
=5m13
dx X
S et e BIRNE See § 111.
f‘,a,_x,l % (eesll)
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fv’xT—_a_’dx.

For this integral we employ hyperbolic functions.

Let % = a cosh z.

Then = oosh-lz

From cosh?z —sinh*z =1 (See § 92.)
and sinh z = v/cosh*z — 1

& Jg? L
Also since xz =acoshz
dx =asinhz.dz

s [VE =Gz = [Va¥eoshiz = @ x asinhz.ds
=fa1/§i'ﬁ'*_zxasinhz.dz
= a*[sinh? 2dz
=a*[}(cosh 2z — 1)dz  (See §93)
=% (4sinh 2z — 2)

a‘ al
=Zslnh23""§3

=%.2sinhxooshz -—fgz

= §(asinh z x a cosh z) —

= VA= x 2) — %cosh-‘%
(fromabove}

] VxE = a¥dx = jxvVx® —a® — cosh‘1 5 Or
IV —a® — 7(Iog {—-i—‘—/—i_—a }

a
(See § 97.)

a’
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dx
Vi —a*
As in the case of the preceding integral
Let xz = acosh z,
Using the equivalents found above:
[ = [ < % asinbz . ds
Vi —g Jasinhz
- [ dz
=z
f Vx%-a&? = cosh? ’a-‘ or
log "_i_ia___ =@ e 111, No. 21)
f V& + d¥dx.
Let x =asinhz
. dx = a cosh zdz
and s=sinh'% and coshz = VA F
Substituting

JV@Faax = [av/sinhiz F1 x a cosh zdz

-=facoshz X a cosh zdz

= a?| cosh? zdz

al

=% [ (cosh 2z 4 1)dz

=% (3sinh 2z +2)
a?

I 2

= }asinhz X acoshz +%z

: |
X 2 sinh 2 cosh z +%z
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f\fx’+ adx = 3xVx® + @® + %zslnh‘lg or

VX @+ 923 log ’#il-—a .
dx
ey
As above, let x=7 mw
dx a
en Vit a =f acoshz
'=f“‘
=2
2 d ¢l -1 X
.e I7x3=+-3=i s‘nh o or
log ﬁl/f-‘-"—a . (See § 111, No. 20

18 W""
- + ]
The form of this suggests the substitution
x =g tan 0,
0 == tan-1%
a
then dx = a sec® 640.
Substituting

Accordingly, let

dx __ [ asec?0d0
2 +a*  Ja¥(tan® 0 + 1)
asec’ade
= Ja¥sect o
a

1
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i o

C ¥ e a

X
al
(See § 111, No. 18.)

119. Summary of the above formulae,

Integral. Substitution. Result.
f\»’s" _;‘.':: % = asind ;'ﬁn"5+]xv'hTT§i
f‘ s x=asinf gin-1 %
Va—p :
[V =aar | x=acoshs | gV =3 — § coshi
x>a 2 a
or
ix‘/i’i—al_.
a', x4 Vit —a*
P Flog T —/———
IV;—E. % = acoshzs cos.h";
or
x4 Vi —a*
gttty —¢
I\/:‘-i—aids % = asinhzs i l’m‘+§sinh":-
or
Ve at
2 2 - gt
dx Flog f'j'——vf e
IV;—,TE‘, % = gsinh s a:‘mh-l;
or
x4+ V' ¥ a
log e
dx : g
A% %= atanf 5 tan l;
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Note—[ %y and [ 5%, are solved by a method
which will be given later (§ 129).
120. A useful trigonometrical substitution is given by
means of the following formulae, in which sin x and cos x
areexpmssedintermsofnn;. The formulae are :

. 2 tan §x

s:nx=l+| %
_ 1 —tan*ix

COS% = { Fian' §x"

In using these formulae it is convenient to proceed as
follows:

Let t = tan {x
then slnx=l—"f?
cosx=]|—'+'—%;.
Since ¢ = tan}x
dt = § sec? jxdx
S 2dt 2dt
Tsec?fx I Ftan?fx
dx=]——5,—+ .
This substitution can be used to find the following
integral ;
[mm-[“i
~ Jsinx
e o AN
=[r¥a* 7o
=[“‘
i
= log ¢

X

f cosec xdx = log tan 3
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f sec xdx can be found similarly or may be derived from
the above thus:

From Trigonometry secx-——-cosec(g-i-x)
fsecxdx=fcosec(g+x)
T
ita)
It may also be shown that this is equal to
log (sec x + tan x).

% dx dx
e et [ep by o [y o
solv e above substitution. ollowing example
will illubsytrate the method.

N : dx
Fmdthemtegra] IW.
Let dz=l—2f‘pwheret=tan}x

1-p
then €08 & = 1%
On simplication the integral becomes 1

[ sec xdx = log tan (

f 2dt e I dt
SUFM a0 =0~ “JoFm

This is of the form of integral (18) of § 111.

2 [4
. integral = 2{} tan-! g}
1

The resulting integral may take one of the forms 18, 22,

or 23 of the standard integrals of § 111, according to the

relative values of a and b. Or, it may require methods
given in Chapter 12.
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Worked examples.

The following worked examples are numerical variations
of the above.

Example |. Integrate fVlB—Q?’dx.
Let 38x =4sin 6.
then x=4%sin® and 0=sin"?§x
dx = % cos 040
cos 0 = 1/1Tsiﬁf§=.,f1 —% =3}v16 — 9%
Substituting
JVI6=0x%x = [vVI6—165in*0 x $ cos 049
=4foosexfcosoda
= 3% [cos? 640
1 4 cos 20
vy R
= §(0 + }sin 20)
= §{sin-! §x + sin 0 cos 6}

= §sint 1z + 3% x VIE=0R)

= §sin! ix + xv/16 — 9%
Example 2. Intcgrmfvﬁf—zgdz_k 7
Put % = § sinh z; then z = sinh-1 3%
s, dx = } cosh zdz
and cosh z = v/1 +sinh? z = V1 + 922,
Then I dx = }coshz.dz
Voi* +1 J+/smhiz+1
o cosh zdz
§ cosh z
-=§fdz

: izslnh-1 3x.
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Example 3. Integrate I 7%’:-5;
Put x =+/§sin 6, then 6 =sin1v§x.
s, dx =V §cos 049
cos 0 =1 —sinfo =1 F’=\7§W
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Exercise 20.
Use the methods given above to find the following
Integrals by using suitable substitutions.

Note.—For other examples analogous to 1-10 but
involving the irrational quantities as the denominators
of fractions, the student 1s recommended to solve some
of the exa.mples of Exercise 18 by the method of

cos 640
[75%5a=] Jgﬁm substitution.
= 1. VO —x%x (putz = 2. V25 — x%dx.
% 2wsT :’f_nj) 4 V9 l—4x‘dx (put z =
.=_L[¢a 3. VI — dx¥dx. § sin 0).
P A 5. [viF = dax. 6. [V =2oas.
V3 e ache]
7|= 1. ]1/::‘+4de. 8. I\/x’-]-ﬁdx.
i sin- /3x.
ot rogs Lot 9. [v/254 F Tods. 10. [v/3* = 3as.
xample 4. -
V1 + A 2y
Let x = tan 0. 11, ],‘/__ 12. \75_._;1
Then dx = sec? 046 W e .
en
I =[ sec? 649 15 [ xhdx 16 f W
VT +2*  Jtan? 6V/1 + tan? 0 o=y T = VTZA (put
sec? 640 z = cos 6).
[t**—"‘a-;éa 117. ]COSBC ]xdx. 18. fﬁec }zdx.
[mox r—r‘—,da 19. foosecaxdx. 20. fseczoosecxdx.
cos 040 dx
- Eﬁilré_ : : 21. [l_-l-cﬁs_z' 2 ]l Fsin %
=== (by insp:cinﬂgl;":}by putting 923, fl_——‘-i:'i_n'_i 24. [(sec x + tan z)dx.
1. dx
tan 0 25. IST§c_o's_:-c' 5. [5-—3cosx
w SR dx
i o 4 4+ 5cos % %‘Ii'—ﬁsmz‘




184 TEACH YOURSELF CALCULUS

B. Algebraic Substitutions.

121. Transformation of a function into a form in which
it can readily be integrated can be effected by suitable
algebraical substitutions in which the independent variable
is . The forms these take will d upon the
kind of function to be integrated and, in general, experience
and experiment must guide the student. The general aim
will be to simplify the function so that it may become
easier to integrate.

A tﬂumt example of this method is in the cases of
irrational functions in which the expression under the
radical sign is of the first degree, that is of the form ax 4+ b.
These can be integrated by substitution.

Let ax + b =u?
or %= Vax + b.

The following examples are typical of the use of alge-
braical substitution.
122. Worked examples.

Example |. Integrate fz\/2x + Tax.

Let 2% 41 =ul
or_men %= ;/2:: +li.
x = U —
and dx = m(iu. )
Substituting

[aVEF 1z = [3w* —1) x u x udu
= }[urt — 1)du
=3[ — wt)iu
5
-i(% -9
= ¥ (3u° — 5u°)
=& B30x + N —5x + ).
xdx
Example 2. l'ntegrcnfefvx—ﬂ
We rationalise the denominator by the substitution,
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z=4%+3 or x43=2

Then x=2'—3
and dx = 2zdz.
Substituting
I xdx _]‘(z' — 8)2zdz
vVi+3 vz
=2 ]‘ (s —33!2&
=2f (& — 3)dz
23
=2(5-%)
2z
=3 (22 —9)

= §(x —6)Vx +3.
Example 3. Inlegrale fx"\/l — 2%x.

Let u*=1—2* and a?=1—ud
Then r=vVIi—ut
“
and dx = — 1_“’du.
Substituting

fxsmdxaf(l —ut)VT —u* X u X v;'-=_“=‘;.—,du
. f ud(l — u?)du

(5:4’—-3“

ot

= —ygut(5 —3u)

= — (1l — VI =25 — 3(1 — 2%}

= — ¥{(l — '@ + 3}

Example 4. Evaluate [ e'—f'é_-"

In this case no rationalisation is needed, but we try a
substitution which will simplify the exponential form, thus:
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Let “u=e
then o=l
U
du = e*dx
or dx '——-‘-11‘ or dl‘.
& %
Substituting
dx du | 1
Jas==Ts#0+))
_f du
T
P 'ﬂ:vis we have reached a standard form, viz., No. 18
1).
.. Integral = tan-1u
= tan-1e?,

Example 5. Integrate f%’ dx.
x

This example illustrates the advantage in certain cases of
g trigonometrical forms into a.lggbraical, the reverse
It will then be

of the method employed in §§ 117 -1
easier to operate with the indices.
Let % = sin x.
Socosx=VI
Then du = cos xdx.
. [gos‘xdz  [cos*x x cos zdx
* ] Vsinz sin z)'
_f{_l — u?) X du
wt

—————

= f{u—l — tl)du

= bt — Au¥

- "%‘ (11 — 24)

= o Vsin® x(11 — 2 sin® x),
Example 6. Find the value of the integral [ sin® x cost xd.

The form suggests trying the same substitution as that of
the preceding example. i
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Let CoOSx =4
then sin x = V1 —cos? z.
Also — sin zdx = du.

Splitting the factor sin® x into sin®x.sinx and sub-
stituting
fsin‘zcos‘zdx=fsin'x.oos‘x.sinzdz

= [l —uh) x w x (—du)

= — f (u* — u®)du
us o

--(5-9)

= % cos” x — § cos® x.

Example 7. Integrate ]V:xF-i—ﬂ

Let x=ul
then dx = 2udu
: ] dx_ _ [ 2udu
e V;+2 “+2
% +2) —2

2
= 2{u — 2log (¥ + 2)}
=2{Vx — 2log (VX + 2)}.

Exercise 2.

Note.—Some of the following examples may be
solved by inspection, remembering the rule for the
differentiation of a function of a function. The
student is advised, however, if only for the sake of
practice, to solve by the method of substitution.

Integrate the following functions:—

1. [+ cos ¥dx (put # =w). 2. fl’f’;“g;, (put 228 = ).

s [T w ==
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5. IVI;sin\/:?.dx.
P

9. |xV5 + 2%dx.
11- fx(x — 2)%dx.

13. f Vf—x_—l
15. f Vidi—
=

17. f *7 = 2dx.

19. [ #/2¥ —2dx.

21. IV%—::T#.
23. fsinlxms' xdz.

Bdx
25. f e

27. [x5(1 + 22%)¥dx.

6[ x%dx
VI
8 g xdx
L JREEE
2xdx
10, [,
x2dx
* fm
14, fx\/mdx.
16, [ s
VA =T
18, [ 2% (put x—1=u).
dx
] b S
Vx—a
xdx
929, X
f§x+l

24, [ sin? x cos® xdx.
2. [ g
. [yt
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Integrating throughout with respect to x, we get1
dv du
""""]"‘Hidx +[v.a’—(dx.

Since u and v are functions of x, this may be written
more conveniently in the form:

w=[u.dv+fr.du.

Thus if either of the intggmls on the right side is known,
the other can be found. We thus have a choice of solving
either of two integrals, whichever is possible or the easier.
If, for example, it it decided that [vdu can readily be

determined, then the other integral;viz., f udv—can be

found, thus:
fudv=uv—-fv.du. o « i(A)

The method to be employed will be better understood by
studying an example. ~Suppose it is required to find the

b fxcosxdz.
Let u=x and dv = cosxdx.
Then du = dx
Since dv = cos xdx
v=fcoaxdx=slnx.
Substituting in the formulae

fudu=un—-fvdu

29. f V_1; 2 30. f _1/1_—%;1_051,;, ol
(putz - 1) (put 1 + log z = z). fx.cosxdx=xslnx -—fsln xdx.
“ ) Thus instead of finding the original integral, we have now
Integration by parts. to find the simpler one of f sin zdx, which we know to be
123. This method of integration is derived from the rule =—cos x.
f‘g the differentiation of a product of two functions (§ 43), I x cos xdx = x sin X + cos x.
& d(uv) dv du If u and v had been selected as follows:—
i° gt u=coszx then du= —sinxdx

in which u and v are functions of x. dv = xdx and "=fm=ix'-
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Substituting in the formula we get:
fxcosxdx = $x¥cos x —f}x’{—sinx).
Thus the integral to be found is more difficult than the
°“§E‘$ma (A) above could of course be written in the form :

Jodu=wo — [udv . . . . @B

The choice is arbitrary, but the student will probably
find it better always to use one of the two forms. If the
form selected is (ﬁg. then u will always stand for the function
which is to be differentiated and dv as the one to be inte-
grated to complete the formula. In determining which of
the functions is thus to be represented by u and which by v,
trial must be made as to which will produce the easier

int :
fﬂﬂfou ing worked exam will perhaps serve to
make these%ts clear. e i

124. Worked examples.
Example |. Evaluate the integral flog xdx.

Evidently since log x produces a simple expression on
being differentiated, we put; -

u =log . da=—x-
dv = dx, 9=fdx=x.
.. substituting in
fudv=uv—jvdu
flogxdx=xlogx—fxx£dx

=xlogx — fdx
= xlogx —x

or [ log xdx = x(log x — 1).
This important integral should be carefully noted.
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Example 2. Evaluate [xedz.

We know that e %:)duces the same result, except for
constants, whether it be differentiated or integrated. But
x has a simple form for its differential coefficient.

Hence let u=x. S du=dx |

dv = esdx r=fe“dx=ae“.
Substituting in

fudu=un-—-fvdu

I:uﬂdx=xx!¢“—!x-lcﬂ

a "
| |
=z (x—2a)

Example 3. Iniegrate fx‘sin xdx.
For the reasons given in § 123, we choose
u=x S du = 2xdx
and dv = sin xdx and v=fsi.nxdx=—cosz.
Substituting in Formula A, we get:
fx'sinxdx = —2%cosx + 2fxoosxd.z.

In this example we arrive at an integral which cannot be
evaluated by inspection, but is the one evaluated in § 123
and requires itself to be * integrated by parts.”

As was shown above

fzooszdx = x sin x + cos z.
Substituting this in the result obtained above, we get

#*sin xdx = — 2® cos ¥ + 2{x sin x + cos x}
= — x*cos x + 2x sin x + 2 cos x.
This repetition of the process will occur in many other
cases. For example, if | 2® sin zdx were required, the inte-
gration process would have to be applied three times.
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Example 4. Integrate f sin-? xdx.

Af‘ in Example 2, we must represent dx by dv and u by
sin-? x.

. dx
Let =gin-! %, o dus= .
R Y ==
dv = dx. o |F=fdz=x,
Substituting in

fudu = uy —fudu

we get fsin-lxdz=xsin-1x—f71=xg-;,.

Noting that the numerator with adjustment of sign is
the differential coefficient of (1 — #?) in the denominator

xdx
faizpm T
Hence fsln-1x=xsln-1x + VT =x2

Example 5. Evaluate fe' cos xdx.

Take u=e* S du = e%dx.
Take  dv = cos xdx v=fcosxdx=sinx.
Substituting in

fudu = uy —fvdu
we get
fe'cosxdx=e’slnx—fe'sln xdx . (A)
Thus we are left with an integral of the same type as the

Now try U = cos X. S du = —sin xdx.
and dv = e*dx. S V=g,
Substituting the formula above

fe'cosxdx=e'oosx-—fc‘(—sinzdx).
fefcosxdx=e’oosx+fe=slnxdx. . (B)
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By addition of (A) and (B)
2fe'cosxdx=a'sinx+c'cosx.
fe’ cos xdx = §e*(sin x + cos x).

In the same way we may find the general form of these
integrals:

fe-' cos bxdx = a;sz—p{n cos bx + b sin bx}
and
jeﬂ' sin bxdx = E’%F‘{a sin bx — b cos bx}
or more generally
feﬂ cos (bx + ¢)dx = E*%E*{d cos (bx +¢) + bsin (bx +c)}

feﬂ‘sln (bx + c)dx = ?%B{asln (bx +¢) —bsin (bx +c)}.

Exercise 22.
Evaluate the following integrals:—

L. [xsin xdx. 2. [xsin 3xdz.

8. * cos xdx. 4. [ cos xdz.

5. fxlogxdz. 6. fx‘logzdx.

7. [ log xdx. 8. [ Vzlog xdx.

0. [xesdx. 10. [arerdx.
. fxe-"’dx. 12. fa' cos 2xdzx.
13. [cos? xdz. 14. [tan-t xdx
15. [ tan-? xdx. 16. e sin xdz.
17. [xsin? xdz. 18. [ sin  cos xdx.
19. fxsec’xdx. 20. fxsinhxdx.
21. [*sin-1 xdx. 22. [ (log %)* dx.

G (cAL.)




CHAPTER Xl
INTEGRATION OF ALGEBRAIC FRACTIONS

I. Rational fractions.

125. Fractions of certain have occurred frequently
among the functions w have been integrated in
previous work. One of the commonest is that in which the
numerator can be expressed as the differential coefficient
of the denominator. As stated in § 107

Irf-(—!dx = log f(x) + C.

A special form of this which will constantly appear in
the work which follows is that in which the denom?nator is
of the first degree, the general form of which is:

dx 1 x
ax +b alax+ 0
= 1og (ax + ) +C.

126. Variants of the above include fractions in which the
numerator is of the same as or of higher dimensions than the
denominator, simple examples of which have already
occurred. Such fractions can often be t.ransEosed so that
the rule quoted above may be applied. Worked examples
illustrating this follow.

127. Worked examples.

2

Example |. Evaluate |
The process employed in transforming such a fraction is

s:rm!ar to that employed in arithmetic. Thus the fraction

g= g =l+g

dx.

104
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Similarly, in the example above

[(z'—1>+1
x+1 x+1

% — 1
x+ldx+ x+1dz

= [ =0as + [ opas
= §x* —x + log (x + 1).

Example 2. Evaluate ‘Z;de
Then
+1.,  [#2x—3)+8 +1
e R L

=f*.§_2‘_)_2” _3 3"‘1'_‘4,

= [1as + [ s

195

=§x + 3 x flog 22 —3) (§125.)

= §x + 4} log (2x — 3).

Exercise 23.
Integrate the following:
2 f*ﬁi
+ 2 R i =
x + 1
m =1
57 xd 2z — 1
5. f x. 6. PP + 3dz.
7. f—-— % 8. /1 —z
9. x'dx
3x a+ Ex
3x‘dx 22dx
ll. x—n. 12. % lc




196 TEACH YOURSELF CALCULUS

128. Method of partial fractions.

In the fractions above the denominators are of the first
degree. We next proceed to consider fractions of which
the denominators are of the second or higher degree.

When adding two such fractions as

2 1
x+8 z+06
2 4+6) —(x+3) _  x+7
weget S ISx+5 AT+
By reversing this process, -:8.::11- 15 can be resolved
into the two fractions %ﬁ and x—__i_—s,whicha.recalledits

“Partial Fractions”, and these can be integrated directly.
By this device we obtain the integral of ;—*- T In
proceeding to develop this method we will, for the present,
consider those cases in which the denominator of the
fraction to be Integrated can be resolved into linear factors
which are different.

If in the fraction to be integrated the numerator is of the
same or h.I%I;.:r dimensions than the denominator, the
fraction can first be simplified by the process given in § 127.

The following examples will indicate how the partial
fractions are obtained.

129. Worked examples.
Example |. Iutegrate [ 5,_’;—32!; dx.

Factorising the denominator
x+35 x 4+ 35
=25 (x +56)(x —8)

From what has been stated above this is resolvable into
two partial fractions with denominators }x -+ 5) and
(¥ — 5). Since the numerator of the given fraction is of
lower dimensions than the denominator, it is evident that
the numerators of the partial fractions will be numbers,
t.¢., not containing x.

INTEGRATION OF ALGEBRAIC FRACTIONS 1g7
Let the numerators be A and B, so that

x + 35 A B
GFOE—-8 s+i-8tzts: - @
Clearing the fractions

%*+35=Ax+6 +Bx—5 . . (2

This is an identity and therefore true for any values of z.
Let x = 5, by which means the coefficient of B vanishes.

Then 5+35=104 4 0.
o 10A =40
A=4

Substitution of this value of 4 in (2) would give a
equation which could be solved for B. But in this, and in
most such cases, it is more simple to substitute a value of x
in (2) so that the coefficient of 4 vanishes.

-~ let x=—25.
Substituting in (2)
—5+4+35=0+4B(—5—85).

s 10B = —30
and B=-—-3.
Substituting for A and B in (1)

x4+3 . 4 38
21 —20" x—6 =x2+56
Hence
]x+35dx= 4dx _.:3..‘:?_
=25 x—06 x%x+6

=4 log (x — 5) — 3 log (x 4 5).

dx
Example 2. Integrate P

This is a generalised form of Example 1, and is No. 23 of
the Standard Integrals (§ 111). .
Factorising
| e 1
B —a' (x+a)(x—a)
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Let
1 o + B
(*x+a)(x—a) x—a ' x-+a
S 1=A(x+a) + B(x —a).

then 1=4@) +B0). . A=,
(2) Let x=—a 1
then 1=A4(0)+B(—2a). . B=-—
’ 1() e ( ) y %
P—d W'i—a_ 2_a Z+a

dx 1
fm=§3f{m—x+a}
= 5. {log (x — a) — log (= + a))
X—a |

—— R — —— E— . ‘15
s | 2a|°gx+a acoth -

a+x | X

rx—i —Ig tanh
23 — 2x

Example 3. fnugmtc m
Factorising the denominator

23 — 2x 23 — 2x

28+ 9x -5 (2x—1)(x +6)
Let

23 — 2% A
@ =D+ et

S 28 —2x=A(x+5) +B(2x —1).
(1) Let x=—25;

then 28 +10=A4(0) +B(—11). ., B=—3

(2) Let z=1;
then 23 —1 =A%) + B(0). SoA =4
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Hence

23 — 2x 4 3
2x’+9x—5 -1 =zxz4+8
28 — 2« b 4dx 3dx

23 +0x -5 %—1_ Jz+5

=2log (2x — 1) — 3 log (x + 5).

Example 4. Integrate %'*—:d

The numerator bems of the same dimensions as the
denominator we p as shown in § 127, Example 1.
24+ 10x + 6 (x’+2x—_2_+ (8x + 14)
e R Es ™ T P
8x + 14
b 7 T g

The fraction thus obtained is now resolved into partial

fractions. Factorising the denominator

8z + 14 8x + 14
A28 (x = ﬂx——)
8x + 14
e
S 8+ =A(x+4) +Bx—2).
(1) Let r=—
- 18 A(0) + B(— 6). B=3.
(2) Let =2;
then 30 A(68) + B(0). . 4=6.
g 8x 4 14 5
T EENEE T -3 T
+ 10x 4+ 6
jxﬁ'f:‘:ad‘ fl+ 2+x+4)d’

=x + Slog (x —2) + 3 log (x + 4).

130. When the denominator Is the square of a binomial,
as, for example, (x + a)*.
In this case the fraction may be the sum of two fractions
of which the denominators are (x¥ + a) and (x 4 a)? with
constants as numerators.
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Example. Integrate 3”—"";‘,
3x+1 B
Let 1x+1)!=x+1+(x+1)"
s WWEPRdbSBY-B 420 )
Let x=—1;
then Skl i Bp.c, B2

A may be found by using the property of an identity, viz.,
the coefficients of like terms on the two sides of the
Identity are equal. Comparing the coefficients of x in (1),

above, we get:
< 3=A4.
. Sx41 3 2
F+I 2+1" F+D)*
1 3x+1d1:— 3dx 2dx
> JEFPT ) FT T IGFIR

=3log (x + 1) +--2—T.
The second integral, 7.e. f 1) , is found by inspection,

remembering that f
Exercise 24.
Find the following integrals1
dx 2 ]‘ dx
xi FEEE, i. - 1 — .l
3 xdx 4 I‘ dx
A= 4t =9
x+8
b. W_—sdx. 6. [T:_—x—_ﬁdx.
. 8x+1 8. ]’ x+1
I — 05 — 35 A —z—3
Tx —8 1 -I-x

S
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[l = [t

5
L W s
—2x’—11x—8 2 21
15[2"' a3, 18, [ES2 1

131. Denominator of higher degree than the second and
resolvable Into factors.

(a) When the denominator Is entirely resolvable Into
different linear factors.

The method is the same as when there are only two
factors, but the number of partial fractions will correspond
to the number of fa.ctors

— 4z — x?

Example I”‘Ggrm m
Factorising the denominator we get1

3 —4xy — a2
xix—l)ﬂx—S)'
let —s#_as43 4. B . C_
¥ x—10)x—38) =z 'z-—1 x—s
en

—x'—4x +3 =4 (x —1)(x — 3) + Bx(x — 3) +Cx(x — 1).
(1) Let z=0;
then 3=34 +B(0) +C(0. . A=1.

(2)Let r=1;
—2=A4(0) —2B +C(0). & B=1.
(3)Le

=3;
alg': A(0) +B(0) + 6C. ol T
—d-ds+3 . 3
f(xx--l ¥ —3) =f(§+i‘fl_xT3)d’
= log x + log (x — 1) — 3 log (x — 3).

(5) When the denominator can be resolved Into linear
factors, one or more of which may be repeated.

Example. Integrate f m
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The procedure is the same as that of § 130.
Let

-1 A B Cc
G=Dfx—=2 z—1 +ix—li'+xT2'
then
—1=A@E—1)(x—2) +Bx—2 +Clx — 1)

(1; Let x=1;

then —1=A(0)—B +C(0). & Bw=l.
(2) Let x =2;
then —1=A4(0) + B(0) +C. s C=-1,
(3) Let x=0;
then —1=24—-2-2 5 A=L

{on substituting the values already found for B and C)

1
o (x-n-(x—ﬁj [(x l+(x—1)’ )
Icrg(.:r—-l)—-——~—I Iog(x—Z)

132. When the denominator contains a quadratic factor
which cannot itself be factorised.

The method adopted in cases already considered can be

employed.
(% ~ 1)dz

Example. Integrate I(x iy V1% oy

The factor (x* 4 1) cannot itself be resolved into real
factors. However, two fractions with the denomina-
tors (x +1) and (x* + 1) can be obtained. But the
numerator of the fraction in which the denoglmaé:g:e of the
second degree, viz. (x* + 1) may be of the first in x.
The general form of this can be expressed by (Bx + C).

o

_ x=1 A + Bx +C

EFN@F) "z F1 7 A1

'llllen x—l=A(x'+l)+(Bx+C)(x+l} (1)

t X = —

then -—2-—-—11(2)-{—0 S A=-=1
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Substituting this value of 4 in (1), we get :
x-l=-(x!+1)+(ll)?x+C)(x+l}

ar P4+ x=(Bx+C)(x +
Equating coefficients of x?
1=8 S B=1 (§ 130.)
Equating coefficients of %
1=B+C. S C=0
Hence

x—1

-1 x
'(x—l)(z'+l)=x+l+z3ﬂ'

x—1 ]’
f(x+1)(x'"4n bl 2
= —log (x + 1) + § log (+* + 1).

Note.—The integral L—;di is one which can be
found by the ap?hcatlon of the rule in § 107, but more

difficult cases will require the methods given in the
next section.
Exercise 25.
Integrate the following:
1[. dx_ 2[. __d_‘___
ETC ) x +

e =he vy

= l )z — 2)F+_)

S f (x'v;‘i“)fatﬁ-
g I %‘ - f x(a ““i)

dx
0. [ z;r(%»“—ﬂn(;d: . o t‘f D@ F 4
%+
u. f c;frﬂf‘_ g ] =1
18 [ 1. [5Gt e
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133. Denominator of the form ax® 4 bx 4+ ¢ and not
resolvable into factors.

The student will have learnt from Algebra that the
expression ax? 4 bx + ¢ can always be expressed as the
sum or difference of two squares. e following examples
illustrate this.

B2 4dr+2={x*+44x 4 (2 22 42
s ;z + 2)8 -2( ):}r (x + 2)* — (V)
—3x+1= E — &) +
= 2{x* — §x+(i)’}—2 B ol 2 S
=2(x —? — 3 ={V2(x — i)}' (Ve
2 46x4-14 = {x’ + 6x + (3)%} — (3)* +
Fop 50 Pops (vap

12 + 62 — 2* = 12 — (2® — b2)
—m—% 5z + (%) + %
= — (x—fp

= (VB — (e —

All of these are expressions for which there are no rational
factors. They are all included in the three types:

{1 2 —a?

2) 2* + a?

(3) a* — a2
We have seen that fractions of which these are denomina-
tors are of standard form (see § 111, Nos. 18, 22, 23).
Consequently the denominator of a fraction which is of the
form ax* + bx + ¢ can be transformed into one of these
three types. For convenience these three integrals are
eﬁeated as they will be in constant use in work which

A ’%=-—%coth‘1 or mlogx;:
[ p* aX
B e b tan

d | 4 |
@ fa’ . —Etanhl’—‘ or -alogzi:
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If (x + b) is substituted for x in each of the above, since
thehdiﬁerential coefficients of x 4- b and x are the same,
we have:

" | x+b (x+b)—a
G =a = e o g leR g
dx I 1 X+b
B (x+bF+a* Em‘_ ail
1 x+b a+ (x+b)
& fa_’_(x ) tanh f&l ga—ix+5

Two cases may occur in the mtegratmn of such fractional
functions. They will be illustrated by the following:

(1) When the numerator Is constant.

dx
Type f ax® + bx + ¢
134. Worked examples.
€ dx
xample |. Integrate fx,~——————-—--—-+ 6 72

We first express the denominator in the form x? 4- a2
x® 4 6x +2={x’+6z+(i)'}—9+2.
+3}' '_70

= (X

. [ dx =f dx
v )62 +2 (x + 3 — (V7)?
which is of form A above.

. [ dx =___|_..coth—lx+_3
= JAFex+2 V7 \/7
g £3=V7
2177 x+34+V7
Since 2 4 8x —2* =2 — {»* — 3x+!}+!
=3 - (-9
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Using formula C

[ﬂz ! lli : A O
= et Tl o oyt VB3

EXBITIPIB 3. Inugm!c fﬁ}im.

Rearranging the denominator
20 +4x +3=2{(""+22+1) -1+ §

o 2{ (x +1)* + (Vli)‘}
Using formula B and substituting

=y
[osess=ariey
Using [B) as integral

sravs=if (x+n‘+i
x4+ 1

tan-1-= - —

=gy
= ? tan-! vV2(x + ).
(2) When the numerator Is of the first degree In the

variable. S .
Type f - o XN ;

135. To solve this integral a combination of the devices

previously is required as shown in the following
examples.
Example |. Infegrate ;i—sfi?_-d,;,

The numerator must be first rearranged so that part of it
is the d1ﬁerentla.1 coefficient of the denominator.,

Now ‘-&(x’—x-—l)=2z-l.
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Re-arranging numerator
6x +7=3(2x—1) + 10.

denominator B—z—1l=@x—-}-4
o [Qetnde (o@Dt 10,
At —z—1 22—z —1

The first integral is found by the rule of § 107 and the
second by using the standard from (4) above.

V5
o [ giogn st )4 Mg T
(x— i‘)+T

Verification.—The student will find it a very useful
exercise to verify some of these results, by differentiating
the integral obtained. The verification of the exercise
above, follows as an example.

Let V5
3log (@ —z + 1) + 2 log e
y ——
Then TCRm—— 4]
dy _ 3@z—1) , 10 1 T 1

F-t+%) (1)

=_6x~—__+l_0=
VA G )
_ 6x—3 10 VB
et Ay
6x — 3 10
x’_-x—-x'-F—_l'*'x —z 41
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Example 2. Integrate ?S-T-Ix—l-f?,

2ot +ax 43 =tx+4,

Re-arranging numerator
B + 1 =§(dx +4) —
Re-arranging denominator
2t +3= x’+2x+§‘}
(= + 10+ 4).
. ]£5x+1!dx
" ey s
SPF LTI
=3 (4x + 4)dx ___4] dx
2 Fdx + 3 AG+1"+ 48

=4log 22 +4x +3) — (2 + V) tan-x"j;‘

=§log (2x* + 4x + 3) — 2v/2 tan"1 V2(x + |).

Example 3. Integrate ﬁ,-f—j_'—%dx
First we must resolve the fraction into partial fractions,
Since 2 —1=(@x—1)(x+x+1).

22 41 A Bx +C
Iet B iaimt Ty
S 24 1=A@+x+1) + (Bx +C)(x — 1).
Let #=1; then3 =4(3) +0; .. A=1.
Comparing coefficients

}} 0=4+B=1+48B. ..B=._
2) Constants 1-=—C+1 il

I b e bt

(1) fff-—f_l =log (x — 1).
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® [agee
- A e
=i[Z - eria
=}log(x'+x+l)—-(ix72?)tan-‘%/i—§i
" Bl g yHESET S
e e

2x +1
S41
Iog(x—l)+}log(x’+x+I)—i.taniz%—l.
Exercise 26.
Integrate the following:
dx 2]‘
2 F6x + 17 x’+6x—
3 .. Sl 4[ il
AT+ 6 ; 27*‘-‘:—_2x+7'
1— 3% (4x — 5)dx
5. 3—2(,—&”“4_ 6. [ 250,
(2x + b)dx dx
n ¥ s [7 5
(x — 1)%x 3x + b)dx
0. [Fgs o, [0,
4% + b)dx P |
11. F+9 12. x‘+ldx

Il. Fractions with irrational denominators.

I36. T -
we f Vax® + bx + ¢
By the use of methods similar to those employed in
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previous sections, integrals of this type can be transformed
to one of the followmg standard forms (see § 111).

W [ = coset = log s + VI

®) [ 73_".;_.7 =sin1 %,
(© I#%—_a‘ = sinh-1 E = log {x + VX¥ + a%}.

In this type the numerator is a constant and does not
involve the variable. Consequently it is necessary only
to transform the denominator into one of the three forms

(&), (B), or (C).
e method of doing this is illustrated in the following
examples:

137. Worked examples.
dx

EXII‘I’IPIE  ja Integmtc fm

Now
P +6x4+10=224+6x+ 3P —9+4+10=(x+3)2+1.

f 8 RS e f ik 2
Va8 +6x + 10 Vi +3p 41

This is of type (C) above, in which x is replaced by x + 3,
which has the same differential coefficient.

dx
§e [7:4’+6x+1
—-slnh‘(x+3)orlog{(x+3)+1/x'T+3x+lﬁ}

Example 2. Integrate [ ‘72—;‘-1.—_5”—2-.
Now, (2x* 4 3z — 2) 2(x? + §x — Iil}

=+ —
vt = vlveri—w
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.. Using Type A,
dx § = "‘__'!l'_i
f VTR A

1 x4+ 3
=V—imsh‘—§—.

Example 3. [Integrate f‘74—+_dx—__.§.

4 + 8x — b2 = b6{§ —
= R
f Vit8 +_'az==‘-‘x=‘ [ V5 = (= - _(x —
=qafm'—7—;—T
R e

B Sali B

gl ¥ i
V5 6

(Ax + B)dx
g i [Vax’ +bx+c

Let us consider a s case in which the denominato:
is, say, «/ﬁx‘“-{-'zx + 8, f.e., (22* + 7% + 8)4.
Then V2 + x4 8)
z"( =](2x'+7x—8}" e 5(2"""'7""8)
=22 +7x — 8)* x (4x + 7)
$dx +17)

From this it is evident that, if the numerator of a fraction,
of&uws,wmhdfofmdqfamwwﬁcwntofthc
expression under the root sign in the demominator, then the
lruogrdofthcfraczwntssqudloﬂudmomsm i.c.,

.a-x(ax’ + (x 4+ ¢)

VETE T dx = v/ ax* ¥+ bx F c.
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Consequently, when evaluating an integral of this type,

arrange the numerator so that part of it is the differential
coefficient of the expression under the root sign in the
denominator.

In general, this results in a constant being left over in
the numerator, as in the corresponding type in §135. The
expression can then be divided, as in §135, into two
fractions, in whieh the first will be as above, and the

second as in § 137.
A worked example will make this clear.

139. Worked example.

(x + 1)dx
Integrate (7 e
Now fentz-3

Re-arranging the numerator
x+1=34x+1) 43
=4#{idx + 1)} + 1.
- (x + 1)dx
72xi+x—3

-ttt

2x’ +x —
As shown above 3 jide + l)dx =}V3A Fz—3.
Also using the methods of §§ 135 136

VR +z—38
[vate—=s =t Vﬁ';:ﬁ

j‘ (x + 1)dx

+x—3

=4x 4 1.

5

=} Fx—3 +ﬁmsh-14_"_:|:_'_
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Exercise 27.
Integrate th: following: "
%
Va2 F6x + 10 2‘ [ VA toz+4
dx dx
3'[ﬁv:\:i-—4x+2' 4'1_\/1—:::7"
dx
% f\/ﬁx’—l2x+4 % [Vx(i—-xj'
(x + 1)dx
t [Sar & f V;Tq.%
x i—!-)—d-«x. ﬁm’
22 —1 2 —zx41
11. f (22 — 8)dx 12. (2% + 1)dx .
Vit =22+ 6 173='=J- dx — 2
15, [t Ddr 1 LSBT
Atzx41 Vi 422 —1

140. Some useful devices.

Other irrational functions can sometimes be transformed

so as to admit of the use of the above methods.

(a) Rationalisation. In certain cases the rationalisation

of the numerator enables the integratmn to be performed.

Example. Integrats[ mdx.

Rationalising the numerator
vi—1_+vz—1 x Vx —1
V¥l VxF+1lxvVz—1

zx—1

22 —1
Nem =[S
=[Vxxf:1—[1/x’—l
= 4/x* =1 — cosh-1 x.




214 TEACH YOURSELF CALCULUS

(b) Substitution. By substitution for the irrational
expression a new variable, such as u, the Integral can be

simplified as shown in the followmg examples:
Example |. Integrate [W.
1

Let Z=- or »=1
1 x
Then dx-——‘-‘-'d‘l‘
1
. ] dx —J’dﬂ
o lave + 4 W
wNw T4
1
— du

= — §sinh-?

Example 2. Integrate

2Vt —z+1
Let x=- and #%=-—
du

Ixﬂixk+l=fl |

I—ere
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du

I £ T
2 24 — 1 (using method

A of § 137)

2

- 1
= — sinh-! —

sinh 73

= — sinh-1 2;‘735 "
Exerclse 28.

Integrate the following functions:

x —2
‘Nx+z 2f 2;‘:‘“
e Vx+3

B ,+——,;.——— P: f : :‘f‘ﬁ?ﬁa‘
(rationalise the denominator).
dx
fwr?:';'ﬁx = IWWT
f 10 [_i_’E#
(x+m/x' +4x+2 )/l +a8

(put x+4+1 =i).

V1 F i __ ds
11 [_x——dx 12. [xwm

(rationalise numerator). (put x = tan u).
13. | Vel e 14 | 7:'.‘_]“"__1.
R f
"IV =% (z+l)‘\/x+§
(put vz + 2 = u).

. [T




CHAPTER XIlI

AREAS BY INTEGRAL CALCULUS. DEFINITE
INTEGRALS

141. Areas by Integration.

THE integral calculus had its origin in the endeavour to
find a general method for the determination of the areas
of regular figures. When these figures are bounded by
straight lines, ele-
mentary geometry
Y supplies the means of

obtaining formulae
for their areas; but
A when the boundaries
are wholly, or in
part, curves,
sulllc_h as the circle,
' el » seml'cude,
PrAS etcﬁsethen, unless we
have the help of the
integral calculus, we
must depend upon

o experimental or a
OF b X proximate methodl;.-
e proceed therefore
Fic. 29. to 1investigate how

; integration can be
eml]‘aéoyed to determine any such area.
t us consider, as an example, the parabola
y =2

In Fff' 29, OA represents a part of this curve.

Let A be any point on the curve and 4B the corre-
Spo; ordinate.

Let OB = g units.

Suppose it is required to find the area under 04, that is,
glg area of OAB, which is bounded by the curve, 0X, and

216
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Let the area be A sq. units.

Let P be any point on the curve 04.

Let its co-ordinates be (x, y).

Drawing the ordinate PQ we have 0Q = x, PQ = y.

Suppose the area to be increased by a small amount 34,
due to the point P moving along the curve to M, and Q@
moving along the axis to N.

Draw PS and MR parallel to OX and produce QP to
meet MR at R.

Then we can represent QN by 8x

and MS by 8y.
S ON =2z + 8
MN =y + 3.

Also 84 is represented by the figure QPMN.
The area QPMN lies between the areas of QRMN and
QPSN,

and area of QRMN is (y + 8y)dx
3 PSN is y8x.
. 34 lies between y3x and (y + 8y)8z
and % - yandy + 3y.
Now suppose 3z to be decreased indefinitely.
Then as 8x —> 0, By—-)o,audi—‘: becomes% in the
limit, ¢.e., in the limit
A _
.=
=t
S dA = xdx.
Integrating A=§2 4 C.

This result provides a formula for the area 4 in terms of
any abscissa x and the undetermined constant C.

But when z=0,4=0,
then C=0.
.. for any value of x, when measured from O.
A= 30,

When x = g as in the figure for the area of 04B
A = }a® sq. units.
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If now another value of x, say b, be taken, so that OD in

Fig. 30 = b&. Thenbytheaboveresult
Area of OCD = }b‘

. Area of CDBA = }(c® — bY).
Y
A
p— - B
0l D X

Fic. 30.

We will now proceed to establish a general rule which will
apply to any function.

142. Definite Integrals.

Let the curve drawn in Fig. 31 represent part of the
function
y = $(x).

Let AB and CD be fixed ordinates such that
OB = a, 0D = b.

Let ABDC be the area which we require to find and let
.- sq@ n;(;h ble ordi nding

Let: P a varia inate corr&;po to any
point, (xl{v), so that 0Q = x, PQ = y = ¢(x).

moves along 0X so that x be increased by &x
h QN), will in consequence move along the curve to
(say).
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Draw PS and MR parallel to 0X.

Then MS =8y
and MN =y + 8
also ON =z 4 8z.

Let the area be in-
creased by 84, where 84
is represented the
figure PQNM. Y

Then the area of
PQNM lies between the
areas of PQNS and
ORMN

5A lles between y&x

and’ (y + 8y)dx,
fa. %‘: lies between

and y + 8y.
. Let yax aiJ)’e decreased
indefinitely. :

Then, as axa-:i-+ 0, ) B QN D x

&y—->0 and 3 2P

proaches T 2 its limit.

“"lln..

(I

cinthelimit % —y
} 1P ﬁmdx
Integrating, and representing the integral of ¢(x) by f(x).
f dA = [$(x)dx

and R

where C is an undetermined constant. Its value can be
determined when the value of 4 is known for some value
of z.

Now A has been taken to represent the area ABDC, i.e.,
between the ordinates where x = g,and x = b respechvely.
and the variable ordinate moves from x = a to x = b.




=

220 TEACH YOURSELF CALCULUS
But when t=ad=0.
Substitutingin I, 0 = f(a) +C,

& C=—f(a).
When x=2>0,1e,atD
A4 =f(¥) +C.

Substituting the value found for C,

A=f®)—f@. . . . @
Since /‘(a) and f(b) are found by substituting 4 and &
for x in f(x) which represents the integral ofg(x), the area,
A, between these limits a and b can be found by in i
$(x) and substituting the values # = a and x = b, f(a) being
subtracted from f£(b).
This can conveniently be expressed by the notation

f(b) — fia) = [ o(x)dx.

fq&(x)dx is called a definite integral and @ and b

are called its limits, a being called the lower limit
and b the upper limit.

.. To evaluate a definite Integral such as J ‘ ¢(x)dx

(1) Find the indefinite iniegral f ¢(x)dx, m'z? f(=).

(2) Substitute for x in this the upper limit b, i.e., f(B).

(3} m % ta lower limit g, i.e., f(a).

(4) Subtract f(a) from f(b).

In practice the following notation and arrangement is
found convenient:

[[#eadu =[]
= 6) = fla).

143. Characteristics of a definite Integral.

The following points about a definite integral should be
carefully noted lpo
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(a) The results of substituting the limits in the
integral are respectively f(aL + C and f(b) + C. Con-
sequently on subtraction the constant C disappears,
hence the term “ definite.”” If @ and b are numbers
the integral will also be a number.

(b) The variable is assumed to be Increasing from
the lower limit to the upper limit, ¢.c., in the above
from a to b. This must be carefully remembered when
dealing with negative limits. If, for example, the
limits are — 2 and 0, thenthevaﬁablexisincmsing
from —2 to 0. Consequently the upper limit is
and the lower limit — 2.

This definite integral would therefore be written

j_: $(x)dx.

(¢) The term ““limit” in this connection has not
the meaning attached to it previously in §15. It
denotes the values of the variable x at the ends of the
range of values a to b over which we are finding the
value of the definite integral.

144. Worked examples.

]
Example |. Evaluate the definite integral }' 3% . dx.
]
Now f3zdz =§x* 4+ C.
5 B
s | Bxdx = x’l
Jseeeml
=#0)* - @)%
=§ x 21
‘a8
=5
The student will find it a useful exercise to check this by
drawing the graph of y = 8z, the ordinates at x = 2 and

x = 5 and finding the area of the trapezium b the ordinary
geometrical rule.g 3 .
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L
Example 2. Evaluate the definite integral j Tsin xdz.
]
Now f sin xdx = — cosx + C.

fsin xdx =[—oosxf

g
= {(-e=3) - (- s 0)}
=0+1
=1
Note.—This gives, in square units, the area beneath
thewrveofynsinxbetweenl)and;. A graph ot

this function between 0 and =
is shown in Fig. 32. Clearly,
from symmetry the area under
this curve between 0 and =
must be twice that between 0

and g, ie., 2 sq. units. This
o F 7 X can be checked by evaluating
J' sin xdx.
Fic. 32. 0

Example 3. Evaluate oxa"dx.
Now f xedzx = §e~' +C (by inspection)
1 1
s [retdn = [3e]
g Syt
Example 4. Evaluate the definite integral
f: (1 + 8% — 2%dx.
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Since f(l+3z—2z’)dx=g+3.g;'_!xa

5 o 320
fo fat s —eas=[r 4% — ]
—0—(~1+4+]
7
= — g,
Example 5. Evaluate the definite integral j' & .
e,

‘ dx -
Since [ m cosh-! %,

% 68era L 1

i L7-==12 . [cosh x]:
S Ry ¥
= ]. -1 a X.
= 0-447. il

Rough values for cosh-1 (8) and cosh-! (2) can be found
from the tables on p. 379.

More exact values can be found by using the algebraical
equivalent of cosh-! z, viz. log, {x + V/2* 4 1} using the
hyperbolic logs on p. 377.

Example 6. Evaluate the definite integral ] x log xdx.

1

Using the result of Exercise 22, No. 5, we get1
[x log zdx =5 (log x — }).
Lz log %dx = [’;-' (ogx — B
=% (log.e — ) — §(log, 1 — §)
=(§ x1)-i0-1

e |
=317
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Exercise 29.
Evaluate the following definite integrals:

¥ rx-dx.
1

]: (3 + 3% — B)dx.
Coss,

1

. j:(xi + +hdz,

1
.jzrdx.
-1

13. fwe.

3 f et dx,
a

- [
X L lx log xdx.

2. }:(x' + 4)dx.
4. j_t % + 1)%x.
6. j:w? dz.

n
8. ]:cos 3xdx.

f(cos 0 — sin 20)d0.  10. ]:cos (20 + 5)ao.

12. j: edzdx,
14. i=p L (@ — %)%z,
16. fsin' xdx.

18, ]’x gin s,
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3l L’Tixﬁ' 32, L:R??ﬁix_ﬂ'ﬁ
33. L "J ifdx. 34, j:tau‘ iz,

(7 gy e, oot 36 j‘ ol
V2 —dx— "L VE(l —2)
a7 j-’ dx
- LE=3r
145. Some properties of definite Integrals.

(1) Interchange of limits.

Let ¢(x) be the indefinite integral of f(x).
Then, iz the limits of the definite integral are g and b

[foadx = 4(b) — $(a)-

If the limits be interchanged
[Fwax = g@ — 401
e, f )i = — L () dx.

Thus, the Interchange of the limits of Integration
changes only the sign of the definite Integral.

b b €
©) [ fodx = [fixdx+ [ o
Let ¢(x) be the indefinite integral of f(x).
j:f(x)dx = () — $(a)
s j ")z = $(5) — $(c)

and [ 1@z = $0) — d(a).
H (CAL.) =
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W * flaydx + [ fdx =($0) — 4@} +$(0) — $(a)
j A = é(b) — b(a)

b
= ] flx)dx.
In Fi?. 30 there is a graphical illustration of this theorem.
Clearly,
Area of OAB = Area of ABDC + Area of OCD,

e, ]ﬂ “fix) = j' fx) + L fix).

(3) Since }” fix)dx = (b) — $(a), where $(z) is the
indefinite integral of f f(x)dx, then as the definite integral

$(b) — $(a) does not contain x, any other letter could be
used in the integral, provided the function of each of the
two letters in the sum is the same.

For, [ 11y = $0) - $(a)
but j' fix)dx = $(5) — d(a).
aﬁ b
v [ wax = [y
4) [ foxydx = [ fla — x)dx.
@ [ fdx = ["fla — xax

Let X=a—u Of a—%=*u.
Then dx = — du.

Now, If In definite integration the variable Is changéd.
the limits will also be changed and the new limits must be
determined.

., in the above, when x = g,
#=a—x=a—a=~0.
when x =0
#t=a—x=a—0=a.
Thus when x = a, ¥ = 0, and when x = 0, 4 = a.

L e

e

AREAS BY INTEGRAL CALCULUS 227
.. When =z is replaced by a — « in rf{x)dy, the limits
must be changed to those found above.
0 0
s [ feds = — j (@ — u)du
0 a

= J..(a — u)dx (by (1) above)
o

i J ‘(@ — x)dx (by (3) above)
Examples. :
:

fsin xdx = m‘sin (5 — #)ax

= | cos xdx.

(-]

In general
rf{sin x)dx = [if(cos x)dx.
0 0

146. Infinite limits and infinite integrals.

In the calculation of definite integrals between two limits
a and b it has been assumed

(1) That these limits are finite.
(2) That all the values of the function between them
are also finite, i.e., the function is continuous.

We must, however, consider cases when one or both of
these conditions is not satisfied.

147. Infinite limits.
The problems which arise when one of the limits Ils infinite
can be illustrated by considering the case of y = 5.

In studying this function it will be helpful to refer to its
graph, part of which is shown in Fig. 33. The values of

;1, being always positive, the curve of the function lies
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entirely above OX. It consists of two Iag;ts. corresponding
ese

to positive and negative values of x. two parts are
clearly symmetrical about OY.
11
11
]_.H
|
i
1
N |
N |
6}
FXH L %
P2 AR 2
1 1 IEEEE] 1 ]
| 1 11111 1 1
Fic. 33.

Let P, Q be two points on the curve,

Let PA, QB be the corresponding ordinate,

Let 04 =a,0B =b.

Then, as shown in § 142, the area beneath the part of the
curvsif(? and bounded by P4, gBand 0X, is as shown by
the ed part of the figure and is represented by

bdx 17 Lol
.?=[—§l an -(5_5)'
(1) Suppose the ordinate QB to move indefinitely away
from OY, so that OB—i.e., b—is increased indefinitely.
Then the ordinate QB decreases indefinitely and in the
limit 0X is an asymptote to the curve (§ 14),
f.e.,a8b—> 0, QB—> 0.
The definite integral can now be written s
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L dx .
j‘ S+ OF more conveniently,

= dx I
[ =03
Its value in the limit becomes — (1 —1).
But the limit of 2 is zero.

.. The value of the definite Integral Is %and Is finite.

(2) Next, suppose the ordinate P4 to move towards 0Y;
then PA increasesrapidly,and when O4—i.e., a—is decreased
without limit, the ordinate, .e., the value of y, increases
without limit,

.. as -0, g0l

The definite integral can now be written :

MEEWENE

1
5 &9 et
In the limit { becomes infinite.
Thus the definite Integral becomes Infinite and cannot

be found numerically.
At the same time OY becomes an asymptote to the curve,

We therefore conclude that in the definite integral j . %,

a) If x becomes infinitely great, while y becomes
indefinitely small, the integral will have a finite value.

(6) If x becomes indefinitely small, while y becomes
infinitely large, the integral has no finite value.

It is clear therefore that in all such cases we must
investigate and determine whether the definite integral
can have a finite value or not.

Next we will consider an example in which both limits
become infinite.

:l—iif? = [tan-’ :c]:

= tan-! b — tan-1 qa.
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If b —> oo, then ta.n-‘b-—rg.
If a—> — o, then tan-‘a—r—g.
.. In the limit
. Sy 3 3
[ 15 becomes {5—(=5)} =~
el dx

Therefore there is a finite value of the integral | 4 2

148. Functions with Infinite values.

We next consider functions which become infinite for
some value, or values, of the variable between the limits
of the definite integral, i.e., the function is not continuous.

The function ::,, which was considered above, is an

example; it becomes infinite when x = 0, as shown above.
If therefore it is required to find the value of the integral

+
] :—; it is evident that the function becomes infinite for a
-2
value of x between the limits, viz. x = 0.
+ 2
If I i; be evaluated as usual, disregarding this infinity
-

value, the result is as follows:
+2dx 17+
anlzaanati-oh=TL
But this result is at variance with that obtained above

+24x Jadin
when it was shown that j 2 becomes infinite as x
agproaches zero. Similarly,o it can also be shown that

J f,‘ i infixiite;
-2 +!dx

As |
infinite.

s must be the sum of these (§ 145), it must be
2
It is therefore necessary, before evaluating certain
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integrals, to ascertain if the function is continuous between
the assigned limits, or whether it becomes infinite for some
value of x.

This is specially necessary in the case of fractional
functions in which, while the numerator remains finite, the
denominator vanishes for one or more values of x.

Thus o becomes infinite, and the curve is

x
G - 2)
therefore discontinuous

(1) when (x — 1) =0,

and x and
(2) when (x — 2) =0, and =

lr
2.

I

Similarly in ‘/g.l o the denominator vanishes when

x = 2, or more accurately, V2 — x —> 0 when x —> 2.
Consequently the function approaches infinity as x —> 2.

All such cases must be examined to ascertain if a finite
limit and therefore a definite value of the integral exists.
For this purpose the ropertr of an integral as stated in
§ 145, No. 2, can often be employed. In using this theorem
the integral to be tested is expressed as the sum of two
integrals in which the value of the variable for which the
function becomes infinite 1s used as an end limit. Each
of these must have a finite value if the original integral is
finite and its value is given by that sum.

An example of this was given above, when it was pointed

*2dx dx
out that ] Y when expressed as the sum of 7 and
-2
F éx; must be infinite, {.e., it has no meaning, s‘t,nce each
-2

of the two oomEonent integrals had been shown to be
infinite. A further example is given below in which a
method is employed for determining whether a given
definite integral is finite or not.

il ot dx
: the definite al | 5=
Example. Determine if finite integr j: p s |
has a finite value.
The integral approaches infinity as x —> 2.
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Using the above theorem (§ 145), the inte can be
expr&gad as follows: ity o

}.Vx— r‘%:—Z ’ a'x

Itis , if the original int is to have a finite
value, that of these integrals uld be finite. We,
therefore, test these separately.

In the first let the end limit ““ 2 *’ be replaced by 2 + «,
where « is a small positive number.

8 dx 3
Al o Ll
= ;%{!(3_—3)'} — {2 +q) —2}1]

=§ — §al.
As a —> 0 and (2 + a) —> 2, the value of the integral

appmach&s ?
*. In the lmlt the value of the integral is §.

@ [Ty =ile-2] "
=${(2 —qa) —2}'- (0—2)1
H(— a)t — (—2)i}.
In the limit when « —> 0, (—¢)l—->-0and the value
of the integral becomes — §(— 2)i = — §V/4.
As each of the definite integrals has a finite value, the
i\;r;l*lole integral is finite and is equal to the sum of the two

— =3 —3V4
s [
=3(1 — V4.
Exercise 30.

When possible calculate the values of the following
definite integrals:

1 L "2, e [

N

[
® dx

5. [ Ve

1. jnr’cosm.
o

P daiuith
9. Lx(l-i—z'

11.

13.

(<]

15.

17.

1

®

AREAS BY INTEGRAL

1dx

f‘
[

x
,Jl;dz

l+x

l-—-z

log xdx.

dx
R

4.

6.

8.

10.

12.

14.

16.

18.
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+o, dx
g #—1

} e ns-'dz.
0

J, e

sy

[

)dx.

jlx log xdx.
0

j ox’r‘dx.

j%

f?




CHAPTER XIV
INTEGRATION AS A SUMMATION. AREAS

149. Approximatiom to an area by division into small
elements,

In the preceding chapter it was seen how, with the aid of
integration, we could find the area of a figure bounded in
part by a regular curve whose equation is known. We
now proceed to the consideration of another, and a more
general, treatment of the problem.

Y

Fic. 34.

In Fig. 34 let AB be a portion of a curve whose equation

is {ﬁ: d(x). ;
t AM, BN be the ordinates of 4 and B, so that
OM =a, ON =b,
S, AM = ¢(a), BN = ¢(b).

Let the co-ordinates of 4 be (x, y).

ABNM is the figure whose area is required.

Let MN be divided into nequal partsat X, X, X,, . . .

234
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Then MX, can be represented by 8x. Hence each of
the divisions X, X,, X, X, . . . is equal to 3x.

Let 4,X,, A,X,, A4X; . . . be ordinates corresponding
to the points 4,, A,, /. Il et

Completetherectangles AP 4,0, 4 ,PyA,Qy, A3P3AQ, . ..

There are now two sets of rectangles corresponding to
the divisions MX,, X, X,, . . .

(1) MP, A, X,, X,P, ,x’(,, XPpA Xy 0.0,
B) MAGK, Kol Bak” Kol ke

The area beneath the curve, s.c., the area of MABN, lies
between the sums of the areas of the rectangles in sets
(1) and (2).

If the number of divisions be increased the area of each
of the two sets will approximate more nearly to the area of
MABN.

If the number of divisions be increased indefinitely, 8x
will be decreased indefinitely and the area of each of the
sets (1) and (2) approaches to equality with the area under
the curve. It is Lﬁerefore necessary to find expressions for
the sums of these sets and then to obtain I.Eelr limiting
values when 8x —> 0.

The ordinates can be expressed thus:

AM = ¢(a)
AIXI = é{a 4 31)
A X, = dla + 282)

'A...,X.. g q&ia + [ﬂ.— l}&x}.
and BN = ¢(b)
where n is the number of divisions.
.. the areas of these rectangles in (1) are as follows:
Area of MAQ X, = (AM x MX = ¢(a)dx
. X :8,5(,= 511 X)) x (X1Xo) = dla + 303z
o XA Xy = (A X,y x (X X;5) = d(a + 28x)3x
” XR'IAD-‘[QI—IN = {Al-lxﬂ— 1) X {XI'IN}
= ¢f{a + (n — 1)3x)38x.
The sum of all these rectangles is
3x(d(a) +dla + 83 + . .. +dla + (n — 1)8x}] (A)
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Similarly the sum of all the rectangles in (2) is

B + 8%) + 4-2&! . s »
($(a %) + ¢(a + J{a + (n — 1)3z} + ¢(b)] (B)

The area of the figure AMNB lies between (4) and (B).
Then (B) — (4) = 3x{$(0) — ¢(a)}.

In the limit when 8x — 0 this difference vanishes.
Thus each of the areas approaches the area of AMNB.

.. The area is the limit of the sum of either (A) or (B).

The summation of such a series can be expressed con-
cisely by the use of the symbol £ (pronounced “sigma "),
the zreek capital “S.” Using this symbol tke sum of the
series may be written

x=b
= $(x)ox.
Xe=q
By this expression we mean, the sum of terms of the
type ¢(x)8x, when we substitute for x the values
a,a+8x,a+28x,a+38x, ...

for all such possible values of it between x = a and x = b.
The area of AMNRB is the limit of this sum when 8x —> 0,
and this is written in the form

A= Lt '3 $(x)ex.

&x ODxma
But we have seen, (§ lE}, that this area is given by the
integral :
[ ¢ax.
Lt “5 g00dx = [ 900
ao bt T ddx = j $(x)dx.

150. The definite Integral as the limit of a sum.

It is thus apparent that a definite integral can be
regarded as a sum, or, more correctly,, the ““limit of a sum,”
of the areas of an infinite number of rectangles, one side of
each of which (dx in the above) is infinitesimally small.

The use of the term integral will now be clear, the word
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integrate meaning “ to give the total sum ", Thefirst letter
of the word sum appears in the sign f , which is the old-

fashioned elongated “s.”” It is also evident why the
inﬁ.lglti:lsimal, dx, must necessarily appear as a factor in an
integral.

The definite integral has been used in the illustration
above to refer to the sum of areas. This, however, is used
as a device for illustrating the process by a familiar geo-
metrical example. Actually there was found the sum of
an infinite number of algebraical products, one factor of
which, in the limit, becomes infinitely small. The results,
however, can be reached independently of any geometrical
illustration. b

Consequently, j ¢(x)dx can be regarded as representing
the sum of an infinite number of products, one factor of
which is an Infinitesimally small quantity. The successive
products must be of the nature of those appearing in the
demonstration above, and must refer to successive values of
the independent variable, x, between the limits x = b and
x=a.

This being the case, the method can be applied to the
summation of any such series, subject to conditions
which have been stated.

This is of great practical importance, since it enables us
to calculate not only areas, but also volumes, lengths of
curves, centres of mass, moments of inertia, etc., such as

s=b
are capable of being expressed in the form X ¢(x)dx.
They can then be represented by the definite integral
b
j $(x)dx.

“In the above demonstration ¢(x) has been regarded as

steadily and continuously increasing, but the arguments
employed will apply equally when ';ng) is decreasing. It
is essential, however, that the range of values of x between
a and b can be divided into a definite number of parts, and
that the corresponding values of ¢(x) are continuously
increasing or decreasing.
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The practical applications of the above conclusions are
very many, and some of them will be discussed in succeeding
chapters.

e most obvious application, in view of the method
followed in the demonstration, is to areas; so a beginning
will be made by examining examples of them.

I51. Examples on Areas.
Example |.  Find the area between the curve of y = §x*, the
x-axis, and the ordinate of the curve corresponding to x = 2.
The part of the curve involved is indicated in Fig. 35 by

0Q, \;here the ordinate from @ corresponds to the point
x=2.

s
2fB ~#Q
]
™M v —
B
— . : 1% il
o | N 2
Fic. 35.

The area required is that of 04Q indicated by horizontal
shading.

Let %’. (%, y) be any point on the curve, so that ON = z.
Let z be increased by 8x, and drawing the correspondin
ordinate there is enclosed what is approximately a smaﬁ
rectangle, as shown in the

The area of this is approximately y8x.

When &x becomes indpeﬁnitel small, the sum of the area
of all such rectangles throughout the range from x =0
to x = 2 is equal to the required area.

The area of this very small rectangle is ydx.

INTEGRATION AS A SUMMATION. AREAS 239

Thisis called an element of area, and it is always necessary
to obtain this element before proceeding to the solution.
The sum of all such areas is given by the definite integral

1
J ydzx.,
[
But y = j2

Area = L’ prtdx = ;[;x!]:
= ;sq. units.

Example 2. Find the area between the curve of y = §13,
the axis of y and the straight line y = 2.

The curve is the same as in Example 1, and is shown in
Fig. 35 with vertical shading; BQ is the line y = 2.

ake any Wint P(x, y) on the curve; as before, OM =y,
ON = z. PM represents a small element of area.

In this problem it is convenient to consider the area as
being formed by the movement llel to OX of PM, 1.e.,
y is regarded as being increased by 8y to form the rectangle
PM.

Then area of PM = x&y.

Then the rectangle becomes infinitely small, and when
8y —> 0, the element of area, is represented by xdy.

-2
.. Area of figure OBQO is given by J 4 xdy.
-0

Consequently there are two variables in the integral, and
one of these must be expressed in terms of the other so that
there remains one variable only.

Let us express x in terms of y, in which case the limits are
unaltered.

Since y = 2

=V

Substituting, Area = r\/ 2y .dy = V2 j' yidy
= \/ﬁ[iy']: =vZ x §(V2%

= g sq. units.
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If dy had been expressed in terms of x, and it is seen that
dy = xdx, then for the limits we must obtain the values of
% correspondmg to y =2 and In this case they
are the same, since from y = {13, wheny =2,x2=2,and
y=0,2z=0

Note—Evidently the sum of this area and the

receding one in Example 1 must equal the area of
the rectangle OBQA,

s 8§ + 4 =4 sq. units.

Example 3. Area of a circle.
(1) Area by rectangular co-ordinates.

The equation of a circle.

Before finding the area enclosed wholly or in part by
a curve, it is necessary to know the equation of that curve.
v To help those students
who have not studied
te met
we will proceggoto ﬁanl’
the equation of the
p circumference of a

x
«w
;
5
i

In any circle the
centre can bfe taken as
the origin of a system
of co-ordinates, and
two diameters at right
angles to each other as
the co-ordinate axes.

Y * ’l‘hls is indicated in
o 80 ake any point P,
(x, }ron the circumference and draw PM perpendicular

Let the radius of the circle be a.
Then OM = z, PM = y.
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By the property of a right-angled triangle
OM?* + MP* = OP?
5.e., a2+ yt=al
This equation is true for any point on the circumference,
and it states the relation which exists between the co-
ordinates of any point and the constant which defines the
circle, .., the radius a.
x? + y’ - a‘
is the equation of a circle of radius g and the origin at its
centre.

Area of the circle x* 4 y? = a*
Fig. 37 represents this circle.

Yl
Fia. 37.

For reasons which will be apparent later it is better to
find the area of the quadrant which is shaded; from this
we get the area of the whole circle.

Let P (x, ) be any point on the circumference.

Then OM =x, PM =3y.

The element of area, as previously defined, can be repre-
sented by the small rectangle PM, and is given by y8x.
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In the limit as 8x ——>- 0 the element of area is represented
by ydx.
or the purposes of the definite integral which will give
us the area, the limits of x for the quadrant are:

At O, x=0.
At A, xX=a.

o Area = [ ydx.
Jy
Since B24+yr=at
Pl gais
Area = |*Va¥ = s,

']
In § 117 it was shown that

2
Ve =3ax = G sin1 g + ppva =,

b Ve =Ris = [pevar = + 4 sin- 1T.

Now when 2=q, Bin-! *mgint]l =y
a 2
When x=o,sin-l:=sin-10=o.
. i g O .
s Area = {ia‘\/a a*+ 5 X E} 0
- ™
=7

.. Area of the circle = wal.

(2) Alternative method.

The following method will be found useful in its
applications.
area of a circle can be conceived as the area of a
plane figure which is traced out by a finite straight line as
it rotates around one of its ends, and makes a complete
rotation.
Thus in Fig. 38 if the straight line OP, length ¢ units,

INTEGRATION AS A SUMMATION. AREAS 243

starting from the fixed ec{)ositiﬂn 0A on 0X makes a complete
rotation around a fixed point O, the point P describes the
circumference of a circle, and the area marked out by 04
is the area of the circle.

Let the point P have
rotated from OA, so that it
has described the angle, 0,

AOP being consequently a
sector of a circle. A

Now suppose OP to rotate o i X
further through an in-
finitesimally small angle
denoted by d6. The in-
finitely small sector so de-
scribed would be an element
of area, and the sum of all Fic. 38.
such sectors when OP makes
a complete rotation from OX, back again to its original
position, will be the area of the circle.

The infinitely small arc subtended by 40 in the limit can
be regarded as a straight line, and the infinitely small sector
as a triangle.

The length of the arc is ad0 (Trig . § 120).

The altitude of the triangle can be n , in the limit,
as the radius of the circle.

.. Using the formula for the area of a triangle

Element of area = } x adf x a = $a%0.

And the angle corresponding to a complete rotation is
2z radians.

;. Area = jh ja?d6 = [ia’ﬁ]:'

- — &d’ X 2r
= wag",

Example 4. Area of part of a circle between two parallel
chords.

In the circle x® + y* = 9 find the area contained between
the lines x =1, x = 2.

The radius of this circle is 3 and the centre is at the
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origin, The area which it is required to find is shown in
Fig. 39.

Since 2 4y=9 9
y=v9 =2

If ydx represents the element of area, then
ydx = V9 — x2dx.

Considering only the part of the area above 0X, then
Area = J"\/B — %% . dx.
1

Y v
¥ v
Fia. 39, Fic. 40.
Using the integral
f V& ZHd = VA — 2 + jadsin (§117)

J:Vm‘dx= [1+v6 =2+ dsint 5]

— (320 =4 +Bsin1 §)—(1VO—T +§sin})
— (VB + §sin §) — (18 + §sint )
- = (V5 — V2) — §(sin-! § —sin-1 })
Now

sin-! § = 41° 48" = 0-730 radians (approx.)
and sinl4 =19°30'=0340 ,,
s Area = 0-822 + £(0-730 — 0-340)
= 2:582 (approx.).
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.. Area of the whole
= 2:582 x 2
= 5164 square units (approx.).
Example 5. Area of a segment of a circle.
Find the area of the segment cut off from the circle
22 - y2 =09 by the line x = 2.
This is the same circle as in the previous example, and the
area required is that which is shaded in Fig. 40. Eonsidering
only the area of that part lying above OX, we have:

3 3
Area = [ yax = [ Vo=,
2 2
Using the result obtained in the previous example
3 3
J V¥ =3 = [}/ = 2 + sint 3l
2 i o
= {0 + §sin-! §} — (VB + §sin §}
=8x E— {2:236 + § x 0-730} (from above)
= — (2236 + 329)
= 1-543
.. total area = 3-086 = 3-09 square units (approx.).
Note.—As a check, the student should find the area
of the segment cut off by the line x = 1. It should
be the sum of those above.

Example 6. The area of an ellipse.

Fig. 41 represents an ellipse in which the origin is the
centre, f.e., ti)xe point of intersection of the major axis 44*
and the minor axis BB,

Let the length of AA! be 2a.

»” » BB‘ " 25.

Then OA = a, and OB = b.

It is shown in co-ordinate geometry that the equation of
such an ellipse is -

2 + Y =1

whence y=2'\/a’—xi.
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The element of area, ydx, is 2 Va¥ = 2%x.

Considering the area of one quadrant of the ellipse, such
as that which is shaded in Fig. 41.

Area of quadrant = sz Va? = x%dx
L]
il [ var = s
: 0
i ~ gy %Y
a[ix\/o x* 4 1a?sin-? :]o.

The total area is four times this.

Comparing this with the area of the circle, radius g, in
Example 3, it is seen that the ratio of the area of the
quadrant of the ellipse to that of the corresponding area of

the circle of radius g is :, i.e., the ratio of the major axis to

the minor. This is also the ratio of corresponding ordinates
of the two curves.
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Example 7. Area of a segment of a hyperbola.

It is not possible within the limits of this book to give
any satisfactory account of the geometry of a hyperbola,
or the method of arriving at its equation. For this the
student is referred to a book on co-ordinate geometry.

The curve of y = E, which has been discussed previously,

is an example of a hyperbola (see § 14). In this form of
the equation the co-ordinate axes are the asymptotes 9!
the curve. There are two branches of the curve, and in
each the curve proceeds to infinity as x becomes infinite.

In the general form of the equation to the curve, the axis
of symmetry of the curve is taken as the z-axis and the
curve appears as represented in Fig. 42.

¥

2 &
Fic. 42.

AA?!, the line joining the apexes of the two curves, is
called the transverse axls.

Let its length be 2a, so that 04 = a. Draw tangents to
the curve at 4 and A’. On them take AL, A'N each

equal to b. Then tanLOA =2,

Note.—~The relation between @ and b cannot be
discussed here.
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The straight lines N'OL, NOL' are asymptotes to the
curve. It is shown in co-ordinate geometry that the
equation of the hyperbola is

iy
i R

The similarity to the equation of the ellipse will be
noticed.
Iftb=a,te, A0 = AL, LAOL =45°
Thus £ZLOL!, between the asymptotes, is a right angle,
and the equation of the curve can be written
S e e
This form of the curve is called a rectangular hyperbola.
The area of the hyperbola,
Y unlike the ellipse and circle,
is unenclosed, and conse-
quently has no definite
P value.” We can, however,
find the area of a segment
X' o X such as is shown in Fig.
MN 42, being cut off bF the
double ordinate PMP1,
Let AM =z,

Then, considering the

' upper half of the segment,
Fic. 43. e element of area can be
written ydx.

But from the equation of the curve y = E_va’ — a%, and
the limits are a and x, since 04 = a. a

.. Area of whole segment = 2 F‘g VA — g3y

. %B"‘/’?_‘_“T_ 323 log x + 1/5"‘—"?]:' (§117).

Equation of a hyperbola referred to its asymptotes as
axes,
This form has been mentioned above.
The curve is represented in Fig. 43.
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The general form of the equation is shown in co-ordinate

geometry to be
xy =%

The area required to be found is usually that under a
portion of the curve as
shown by the shaded

rtion of the figure.
l:l)"l):u':" can be found in
the usual way. A modi-
fied form is worked out -
in the next example. i

Example 8. Find the HH
area sed between the 1

S s aaas
cmsofy_x+l,ﬂ;4 !
axis of x, and the ordin- =222
alesx=1,x=4. P...

The curve of this
function is a hyperbola
(Se\?vfig' 44_+). 1,y —>

en x -1, 0. - )

. the ordinate xy= — 1 (dotted in the figure) is an

asTm:ptote to the curve. So also is the z-axis.
he a

shaded

LT

11
i
il

4

-4

il

S

rea which it is required to find is that which is
Takil"lg the element of area as ydx and substituting

B
y=x+1,wehave

Area = f:%-;-l

=4[log (x + 1)]:
= 4(log §)

= 4(0-9163) (remembering the logs are hyperbolic)
= 8:665 (approx.)

dx
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152. Sign of an area.

It will be seen that in the foregoing examples of the
determination of areas, these were, in most cases, lying
above the axis of z, and the values of the function were
consequently positive. In the examples of the circle and
e]h e, in which the curve is symmetrical about both axes,
gusltwe values of the function were still adlicred to by

nding the area of one quadrant and then the whole by
multiplication by 4. We must now proceed to the con-
sideration of areas which lie below the x axes, and the values
of the function are negative. The following examples will
serve as an illustration:

Y

Example |. Find the area enclosed between the curve
y = 2 — 3x + 2 and the axis of x.

Since x#* —3x 4+ 2 = (x — 1)(x — 2).

ThecurvecutsOX at x =1, x = 2,

Alslo :JE =2x —3. .. there is a turning-point when
r=F

Since 9% =2 and is always positive, this point is a
minimum.

The curve is represented in Fig. 45, and the area
required lies entirely below 0X.

. — R W
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Let A represent this area.

Then A= f’ (x* — 3x + 2)dx

-]
=(i;-3 +49-G-1+2

The result is a negative area. But an area, fundament-
ally, is signless. How, then, is this result to be interpreted?
It will probably not come as a surprise to the student

because he will have seen that the definite integral ’ ydx

represents the sum of an infinite number of products which
are themselves infinitely small. When the area lies below
0X, all values of the function, i.¢., y, are negative, and since
dx, being the limit of 6x and re%e ting an Increase, is
positive, all the products must negative. Hence the
sum is negative. It has been pointed out (§ 150) that the
summation is general for all such products, and the repre-
sentation of an area by it is but one of the applications.
Hence if we are finding an actual area by the integration,
the negative sign must be disregarded, Since by the con-
vention of signs used in the graphical representation of a
function ordinates below the axis are negative, the corre-
sponding areas are also negative. Hence as a matter of
convention, areas above the x-axis are considered positive
and below the axis are negative.

The student may note the following in connection with
the above examples:

(1) The area below the curve between x = 0 and
x = 1, 1.e., the area with horizontal shading in Fig. 45,
is given by

J’ (2* — 3% 4 2)dx = §.
1]
(2) Consequently the total actual area, s.e., dis-

Eega::idmg the negative sign of the above integral, is
+
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(3) The total area as given by the integral

2
j (x — 3% +2)dx = §,4.e.§ — 3.

Example 2. Find ihe area enclosed between the curve of
y =4x(x — 1)(x — 2) and the axis of .
The function 4x(x — 1)(x — 2) vanishes when x =0,
1 and 2. Consequently its curve cuts the x-axis for these
values of z. Proceeding as shown in § 57, there are found
to be two turning points, as follows:
1) a maximum value 1:55 when x = 0:45;
52} a minimum value — 1-56 when x = 1-55.
That part of the curve with which we are concerned is
shown in Fig. 46. The areas required are shaded.

111

111

Y

-
L1

||
‘I'

11
e

1111
Liltl

FiG. 46.
(1) Area of OPA = [ "da(x — 1)(x — 2)dx
1]
= | s — 12 4+ 80)ax
1]
=[x -4+ w]‘
0

= SI —4 +4+4)—0
= | square unit.
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: |
(2) Area of AQB = ] dx(x — 1) (x — 2)dx
1
a
A [x‘ —d 4 4x':|
= — | square unit. .

Hence, disregarding the negative sign of the lower area,
the total actual area of the shaded portions is 2 square units.

If we integrated, for the whole area between the limits
0 and 2 we get:

Mm=ﬂa@—n@—ma
=[# -4 + 4]
=16—32 410 :

This agrees with the algebraical sum of the two areas
found separately.

From these examples we conclude that when finding the
total area enclosed%y a curve and the axis of x when it
crosses the axis, we must find separately the areas above
and below the axis. The sum of these, disregarding the
signs, will be the actual area required.

Other examples follow.

Example 3. Find the area enclosed between the axis of x
and the curve of y = cos x, between the limils

(1) Oand 3.
(2) 5and
(3) 0and .

(1) The first area is shown in Fig. 47, in which it is the
area above OX with shading.

Area=fcosﬂda=[sin0]':'

s T -
=sm§—sm0
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(2) The second area is shown with shading below 0X.

Area = L'cos 0406 = [sin B]:
3 ]

. « T
=Ssln® — SIn 5

3
=0-—1
= — |
11
T
::$L
A A _;
Voo Tt
=8 JeHH
L] AA
L
i
EER
Fic. 47.

(3) The third area is composed of both (1) and (2).

j: cos 0d0 = [sin B]:

= sin w — sin 0.
= 0.

These results agree algebraically, but if we require to
know the actual area between 0 and =, the negative sign of
the second area must be disregarded, and consequently the
area of the two parts is 2 square units.

Example 4. Find the area enclosed between the axes of x
and the curve of y = sin x, for values of x between

(1) 0 and m.
(2) ™ and 2.
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It is evident from the part of the graph of y = sin z in
Fig. 48, that the area enclosed between the curve and the

1
v

_..-1-__.

FiG. 48.

z-axis consists of a series of loops of equal area, each
corresponding to a range of = radians, and lying alternately
above and below the z-axis; consequently they are
alternately positive and negative.

(1) Area of first loop
=Lsmxdx=[—cosx]:=—-(cosu—m50)
=—(=1—1)=2

(2) Area of second loop

2a 22 :
—_-j Sinzdx=[—cosx] = — (cos 2r — cos )
-1 —(=)=—2

It is evident that if there are n loops, when n is an odd
number, the total area, regard being paid to the negative
signs, is 2, but if n is even, the area thus calculated is zero.

The actual area of n loops is 2n.
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Example 5. Find the area contained between the curve of

y = x® and the straight line y = 2x.

Fig. 49 represents the parts of the curves of the given
functions between their points of intersection, 4 Al
The areas shaded are those which we require to find.

L1 1
1

11

1

+

L
e |

1 1
Fic. 49.

From symmetry it is evident that the parts above
and below the z-axis will be equal in magnitude but of

site si

35 thergigsre tofind the area of 04 BO (the shaded
area). Thisis gxe difference between (1) the triangle OAC,
and (2) the area beneath the curve of y = 4*, viz. OBAC.

We first find as usual an expression for the element of
area.

From any point P on the line _y = 2x draw the ordinate
PR, cutting the curve of ¥ =
PRAS before, construct a small rectangle represented by
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This represents the element of area for the triangle, while
OR Tepresents the element of area for OBAC.
their difference PQ represents the element of area for
the shaded part.
Let PR =y,, QR =
Then element of area represented by PR is equal to
y1dx, in the limit.
Then element of area represented by QR is equal to
y,dx in the limit.
the element of area PQ is represented by (y, — y,)dx,
in the limit. Before we can integrate, the limits of the
integral must be found. These be the value of x at
0 and 4, the points of intersection,
To find the value of x at these points we solve simul-
taneously

y=2x
y =2
Then P2 =2

and the roots are 0, + V2, — V2 :
These are values of x at 0, 4 and A respectively.
.. for the positive area 0ABO the limits are

#=0 and z= 442,
t]ma.re.-:areq1.1irec!=»!‘,i (¥, — y2)dx
0

=L"i {2x—x‘)dx=[x’—%‘]:i
= vap - O

=1 square unit,

From symmetry and previous considerations we conclude
that the area below the z-axis is — | square unit. This can
be verified as follows:

e j,,, (2% — )z = [#* — "]"_‘,i
wlig &k [(‘/2)1 L_L‘]
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Dureq{.rd' ing the negative sign the actual area of the two
1 is 2 square units.

he student, as an exercise should verify by finding the
area of the two loops by the integral
+ V2
j (2x — x%)dx.

- V32

Exercise 31.

Note.—The student is recommended to draw the
figure which represents each problem, even though the
drawing might be rough.

1. Find the area bounded by the curve of y = 23, the
x-axis and the ordinates x = 2, x = 5.

2. Find the area bounded by the straight line 2y = 5x + 7, |

the x-axis and the ordinates x = 2, x = 5.

3. Find the area between the curve of y = log x, the
z-axis and the ordinates x = 1, x = 5.

4. Find the area enclosed by the curve of y = 43, the
y-axis and the straight linesy =1,y = 4,

5. Find the area between the curve of y? = 4z, the x-axis
and the ordinates x = 4, x = 9.

6. Find by the method of integration the area of the
circle 2® 4 y* =4,

7. In the circle 2* 4+ % = 16 find the area included
between the parallel chords whose perpendicular distances
from the centre are 2 and 3 units.

Find also the area of the segment cut off from the circle
x* 4+ y* = 16 by the chord whose distance from the centre
is 3 units, | 2

8. Find by integration the area of the ellipse 6 +'2% =1

'9. F ind the area of the segment cut off from the hyperbola
% —""i = 1 by the chord x = 4.

10. Find the area between the hyperbola zy =4, the
z-axis and the ordinates x = 2, x = 4.

11. Find the area included between the curve of
y = 2x — 32 and the z-axis.

12. Find the area bounded by y = & and the z-axis
between the ordinates # = 0 and x = 3.

J

s i =

T —
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13. Find the area cut off by the x-axis from the curve of
=2 —x —2.

14. Find the whole area included between the curve of

y* = 2* and the line x = 4.

15. Find the area of the segment cut off from the curve
of xy = 2 by the straight line x + y = 3.

16. Find the total area of the ts enclosed between
the x-axis and the curve of y = x(x — 3)(x + 2).

17. Find the area between the curves of y =8x*and y =2*.

18. Find the area which is common to the two curves

y=2%and y =x.

19. Find the area between the catenary, y = cosh;
(see § 91), the x-axis and the ordinates x = 0, x = 2,

20. Find the actual area between the curve of y =
x? — 8x + 12, the x-axis and the ordinates x = 1, x = 9.

21. Find the actual area between the curve of y = 2® and

the straight line y = E

153. Polar co-ordinates.

The equations of curves are frequently more simple and
the determination of areas easier when polar co-ordinates
are employed, instead of
rectangular. For the 4
benefit of those students
who have had no previ-
ous acquaintance with
them, a very brief ac-
count is accordinglﬁ °
given below. Fora fu
treatment the student
should consult a text-
book on Co-ordinate Geometr%._ y

(a) Definitions. Let 0X (Fig. 50) be a fixed straight
line and O a fixed point on it._ y y

Then the position of any point P is defined with reference
to these when we know

1) its distance from O, ¢
2) the angle made by OP with OX.

Let 7 be this distance.

T

v
L

a 1
L

Fic. 50.
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Let 0 be the angle made by OP with 0X.
Then (r, 0) are called the polar co-ordinates of P.
0, the fixed point, is
Y called the pole, OP is
called the radius vector,
P 0 the vectorial angle,
and OX the Initial line.
$ 6 is the angle which
would be described by
the radius vector, in
x rotating in a positive
direction from OX.
(b) Connection be-
tween rectangular co-
Fie. 51 ordinates of a point and
the polar co-ordinates.
Let P be a point (Fig. 51) whose polar co-ordinates are
(7, 0), and rectangular co-ordinates (x, ), viz. 0Q and PQ.
Then it is evident that x = rcos 8

y=rsin@
xX2yrt=r

(c) Polar equation of a curve.

If a point moves along a curve, as 8 changes, r in general
will also change. Hence
r Is a functlon of 6.

The equation which
states the relation be-
tween r and 6 for a
given curve is called the
polar equation of the
curve,

d) Example of a

polar equation.

Let a point P move
along the circumference Fro. 52.
of a circle (Fig. 52).
Let O be a fixed point at the extremity of a fixed diameter.
Let 2a = the diameter of the circle.

L -»”

° Q

INTEGRATION AS A SUMMATION. AREAS 261
Then, for any position of P with reference to O and 04,

the polar co-ordinates are :
OP=r
LAOP = 0.

From geometry it is known that ZOPA is a right angle.
L. r=2acosé.

This is the polar equation of the circle with the above
conditions. It may be noted that if the centre of the circle
were taken as the pole,  is always equal to a; 1.e., the polar
equation is then

r=a.

In such a case r is a constant, being the radius of the
circle, and has no functional relation to 6.
The equation of the circle may take other forms,

154. Plotting curves from their equations In polar co-
ordinates.

Many curves are easily drawn from their polar equations,
though the plotting of points may be difficult when using
the equations of the curves in rectan, co-ordinates.
The following example is given as typical of the method
employed.

Example. Draw the curve whose polar equation is

r = a(l + cos 6)
= a + acos 8.
The general method is to select values of 0, find the
corresl?ond.ing values of r; then plot the points obtained.
As has been shown above, r = a cos 0 is the equation of a
circle of diameter a, when the pole is on the circumference.
It is evident therefore that if for any value of 6, the value
of r for the circle is increased by a, the result is the value
of r for the required curve.

Draw a circle of radius g- (Fig. 53).

Take a point O at the end of a diameter 04. 0 will be
the pole for the curve.
Since cos 0 is a maximum, viz., unity, when 0 = 0, the
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maximum value of r for the curve will be at the point B,
where AB = a.
Thus the maximum value of r is 2a.

When 6=g and 32ﬂ.cosﬂ=0. . r=a. Hence we
get the points C and D.
C
Q
~\
\
o “" - a ‘;a

’

D

FiG. 53.

In the 2nd quadrant, cos 0 is decreasing to — 1, at =,
thenr =a —a =0.

Similarly the general path of the curve may be found for
the third and fourth quadrants.

Finally, when 6 = 2=, cos 6 = 1.

.". the curve is closed at B.

To get other points on the curve between the special
points considered above, draw a series of chords of the
circle, for increasing values of 6. If OP be one of these,
produce it and mark off PQ equal to a. Then Q is a point
on the curve. The complete curve is as shown in Fig. 53.

It is known as the cardioid, from its heart-like shape.
It is of importance in optics.
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Other examples of curves which are readily drawn from
their polar equations are
(1) The lemniscate, »* = a? cos 26.
(2) The limacon, r = b — acos 6.
(3) The spiral of Archimedes, r = a6.
(4) The logarithmic or equiangular spiral, log r = a8.
(5) The hyperbolic spiral, r6 = a.

I155. Areas In Polar Co-ordinates.

Let AB, Fig. 54, be part of a curve whose equation is
known in polar co-ordinates.

Fic. b4.

Suppose it is required to find the area of the sector 04B,
contained between the curve and the two radii 04, 0B,
the angles made by them with the fixed line OX being

LAOX = «
LBOX = B.
Let P be any point on the curve, and its polar co-ordinates
(r, 9).
;. LPOX =0.

Let 6 receive an increment 80, and 7, in consequence be
increased by 8. The polar co-ordinates of , the new
position on the curve, are

((r + 87), (0 + 380))

Then, with the construction shown in the figure, the area
of the sector OPQ lies between the areas of the As OPM,
ONQ, the areas of which are

AOPM = }r%50
AONQ = %(r + 8x)%6,
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If the angle 80 be now decreased indefinitely, then as
30 —>0, (r + 8x) —>r
and the area of the infinitely small sector approaches 4r?de.
This is, therefore, the element of area, and the sum of
all such sectors between the limits 6 =« and 0 = p will
be the area of the sector OAB.
Expressing this as an integral, as before,

)
Area of sector OAB = ] 2o,
When the polar equation of the curve is known, r can be
expressed in terms of 0 and the integral can be evaluated.

Example. Find the area of the circle whose polar equation
§s r = 2a cos 0 (§ 153, d).

If P be a point moving round the curve, the radius
vector describes the area of the circle.

L =~

Fi6. 63.

When Pisat 4, 0 =0.
When Pis at 0,0 = 5.
.. as P moves from 4 to O, and the vectorial angle 6
changes from O to g, the area described is a semi-circle.

Using the formula obtained above

Area of semi-circle = f D)
0

. G A e il =

|
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The area of the circle is twice this.
n

= Area of circle = f'rade.
But r = 2a cos 0, 3

. Area = jitia’ cos? 040
0 n

= 44® ji cos? 040
0

=4q? j :m + cos 20)d0 (§ 114)
0 .

= 24* [e P }sin20]:

= 2a’[§— + % sin 1:]

=2a’xg

= mwal.

Exercise 32.
1. Find the area of the cardiod whose equation is
r=a(l 4 cos 6), the limits of 8 being 2= and 0.
2. Find the area of one loop of the curve r = asin 20, 1.e.,

between the limits 0 and g How many loops are there
between 0 and 2x.

Note.—asin 20 vanishes when 6 =0 and 0 = ;

As the function is continuous between these values, the
curve must form a loop between them. The student
should draw roughly the whole curve.

8. Find the area of one loop of the lemniscate
r? = a? cos 20.
How many ll‘:gps are there in the complete curve?
4. If the radius vector of the function r = a6 makes one

complete rotation from 0 to 2z, find the area thus
over,
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5. Find the area which is described in the curve
r =asec‘§0from 6=0to 0 ='2—'.

6. Find the area enclosed by the curve r = 3cos 6 + 5
between 0 = 2z and 6 = 0.

156. Mean value.

Let PQ (Fig. 55A)
represent part of the
curve of a continuous
function

y=/(.
Let PA, QB be the
X ordinates at P and Q,
where 04 = a, OB = b.
Then from previous
FiG. 56A. work we know that

Area of APQB = ] " [(x)dx.

o A M B

Let ABCD be a rectangle whose area is equal to that of
(]
APQB, i.c., to ] f(x)dz.
Draw LM r lel to OY, from L, the intersection of the
curve, and parallel to OX.

Area ABCD =AB x LM

Area of ABCD
LM = -——-sz—-- ——

Area of APQB

AB

j:f(x)dx
s
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LM Is sald to be the mean value of ordinates of the
curve for the range of values x = a to x = b.
b
| flx)dx

. Mean value of f(x) froma to b = Y

Example. Find the mean value of 2 cos ¢ — sin 3t between
the values t = 0 and ¢ = .

From the above, mean value

J'_(2cos¢—sin3t)dt
—Jo

k19
§ Y v

[2sin:+§cosax]:

™
6
{2sing+§cos'-2§} —{2sin 0 + } cos 0)

_3 8
5

ot

q) >

Exercise 33.

1. Find the mean value of the function sin x over the
range of values x =0 to x = =.

2. Find the mean value of the function sin? x over the
range of values x =0 toz ==

3. Find the mean value of y = = for the range of values
x=1tox=10. Z

4. Find the mean value of y* = 4x between z = 4 and
z=0.

5. The equation of a curve is y = bsin? '-:;. Find the
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mean height of the portion for which x lies between b
and a.
6. Find the mean value of cos x between x = 0and x = E

7. Find the mean value of the function y = asin bx
between the values ¥ =0 and x = E

8. The range of a projectile fired with initial velocity v,
and an elevation 0 is Ly sin 20. Find the mean range as
0 varies from 0 to E

I57. Irregular areas.

The determination of irregular areas, .., areas the
boundaries of which cannot be expressed by formal equa-
tions, is often a matter of great practical importance.
There ar:ai certain practical meltlll'gls, Sl:lch as I?Sing squared

and counting squares, which yield rough approximate
f:sﬁrts, but there are also methods%?lcal a.tiogpby which
the area can be determined with greater accuracy, though
still approximate. The first of these is the trapezoidal rule
which 1s as follows:

158. The trapezoidal rule.

Let the area which it is required to determine be that
enclosed by the irregular curve PV (Fig. 66), the x-axis
and the ordinates P4 and VG. Divide AG into any number
of equal parts, at B, C, D . . ., each of length /, and draw
the corresponding ordinate PA, @B, RC . . .

Join PQ,QR, RS . .. UV.

Let the lengths of the ordinates be ¥, ¥3, ¥3 - « +

Then each of the figures formed by these constructions,
such as APQB, is a trapezium, and their areas are

o +y) + ¥ +y) + - . - + H(ys + 2)-

The areas of the trapeziums a%proximate to the areas of
those figures in which the straight line PQ is replaced by
the curve PQ, and so for the others. Consequently the sum
of all these approximates to the area of the whole figure
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which is required, and the greater the number, the closer
will be the approximation.

Y

Fi1G. 56.

.". the area is approximately equal to

1 +2) + at+2) + s +2) - - .+ + )
=_ﬂ(h+h +¥6’a+h+h---+h)} }
= (half the distance between the strips) x {(sum of first

and last ordinates) 4 (twice the sum of other

ordinates)}.

159. Simpson's rule for area.

Considering again the irregular curve of the previous
section, it is evident that if the chords PQ, QR, ES it
were to be replaced by the arcs of suitable regular curves,
and the areas so obtained be found by previous methods,
the a Eroximation to the area would be closer than that
found by the trapezoidal rule.

_ Accordingly we assume that the part of the curve
joining three consecutive points, such as P, @, R, is the arc
of a parabola.

Assume the origin for this parabola to be at B, so that
the co-ordinates of 4, B and C are — I, 0, + I, then the
area of APRC can be found by integration.
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Let the equation of the parabola,of which PQR is an arc, be
y=a + bx 4 cx%,

Then, since the equation is satisfied by the co-ordinates
of 4,B,C

AP=a—-bl+cl=y,. . . (1)
B =a=y NS Farom TR
C =a+b’+d’=y,., W
.s Y =a
adding (1) and (3)  y; +y3 =2(a + ¢
whence ; 2d!=yl+y,—2a

=y, +y; — 2y, from (2
s =30+ — 2 - {Ag
Integrating area of APRC

.=f (a + bx + cx¥)dx
-1

= [ax + 822 + ma]'_ '

=§£a£-l;§;i‘p)

= 2l(a

=2y, +tn +y:— 2} . (A)
—u(Yatnty)

(" jg_%g. )

Similarly, area of RCET
A% (ys_i% .+.za)
3

and area of TEGV
- (J’l = 4.%1! j‘l‘!).

,". area of whole

i ;{(J’l + 4y, +5s) + (s + e +ys) + (¥ + 46 +33))
= ;{(h + y2) + 2(ys + ¥o) + 4(ya + Yo + Yo}

Clearly, this process can be applied to any even number
of intervals, which involves an odd number of ordinates.

INTEGRATION AS A SUMMATION. AREAS 25

Thus, if there be 2n intervals, there will be 2n + |
ordinates. From the consideration of these results we
may deduce:

Simpson’s rule for areas.

If the area be divided into an even number of strips by
equidistant ordinates, then
Area = “—'Igth-;f Lo {(sum of first and last ordinates)

+ 2(sum of odd ordinates) + 4(sum of even ordinates)}.

It will readily be undersood that the greater number of
strips which are taken, the greater will be the accuracy of
the approximation to the area.

160. Worked example. Find the area of a quadrant of a
circle of 2 inch radius.
In this example the result as obtained by Simpson’s Rule
can be compared with the calculated area of the quadrant.
Fig. 57 represents the quadrant,

F16. 57.
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0.2D_ivciﬁ.e the radius 04 into 10 equal divisions each of g;ni‘ind btel:; a{:;.l under tlllle curve shown in Fig. gs, the
n ordinat i tt ints ked 1 to 12, each
Then the ordinates will be represented bﬁ'" Yo Vs -« Yia- djvisionesmpresinﬁn:n O:e fo:t?om ki, &4
Measuring these, the working is arranged as follows:
(1) First and (2) Odd (3) Even °F HEHT TR
last. ordinates. ordinates. 7 2! L St
¥y, =2 ¥y = 196 vy =199 i
$1y =0 ye =183 e = 191 o il
Y, =16 Ve =173
sum 2 Yy =12 yg = 1:42 s
—_— Y10 =086
sum 6-59 _— EE
sum 7-91 N:
.". By Simpson’s rule
" 2
Area = 03_2{2 + (2 x 6:59) + (4 x 7-91)}
t
X, - X 46:82 = 3-12 square inch,
Ildsnr' 3 . e M ava i gl i T e
Calculated areas = }nr* =} X = X 4 = 3:14 square inch. i

The error 0-2 in 3-14 is less than one per cent.

Exercise 34.

1. The lengths of nine equidistant ordinates of a curve
are 8, 10-5, 12-3, 11-6, 12-9, 13-8, 10-2, 8 and 6 inches
respectively, and the length of the base is 24 inches. Find
the area between the curve and the base.

2. An area is divided into ten equal g:rts by parallel
ordinates, 0-2 inch apart, the first and last touching the
bounding curve. The lengths of the ordinates are 0, 1-24,
2-37, 410, 5-28, 476, 460, 4-36, 2-45, 1-62, 0. Find the

area.

8. The lengths of the ordinates of a curve in inches are
2-3, 3-8, 4-4, 6-0, 7-1, 83, 8:2, 7-9, 6-2, 5:0, 3-9. Find the
area under the curve.

4. Ordinates at a common distance of 10 feet are of length
in feet, 5, 6-5, 9, 13, 18-5, 22, 23, 22, 18-5, 14-5. Find the
area bounded by the curve, the axis of x, and the end
ordinates.
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CHAPTER XV
THE LENGTHS OF CURVES

161. The measurement of the length of a curve,

The student will remember that he has previously been
faced with the problem of the length of a curve when
considering the “ circular measure” of an angle. The
unit employed in this method of measuring angles is the
rgdflani)ywhzch is the ‘" angle subte;:fed aa‘.?t tl;;_ centre of a
circle an arc e in length to the radius joonometry,
p- 150). The diﬂgt:flty of comparing the lengtl?if a curr\a’e
with that of a straight line is met by the assumption that
the arc of a semi-circle subtends = radians, where = is a
constant the value of which the student has no means of
finding except b}; approximate practical methods. The
student learns that this value has been found to be
approximately 3:14159 . . . or some less accurate approxi-
mation. Using this constant, the semi-circle is stated to
contain mr units of length, where r represents the radius
and that the length of the circumference of the circle is
2wr units.

It will be observed that this *“ formula ** for the circum-
ference of a circle is, in reality, merely a statement that
the ratio of the length of the circumference of a circle to
its diameter is represented by the Greek letter n, where the
value of = is undetermined. The determination of its value
occupied mathematicians through the centuries, and by
various ingenious devices, with which we are not concerned
here, approximations were found.

Modern mathematics, however, with the help of the
calculus, as the student will see later, has solved the
problem, and it can now be proved that the ratio is incom-
mensurable, but that its value to any required degree of
accuracy can be calculated with certainty,

Since no part of a curve, however small, can be super-
imposed on any portion of a straight line, so that it coincides
with it, its length cannot thus be found by comparison with
a straight line of known length. Integration, however,
supplies a method of determining the length of any regular
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curve. This method, as the student has probably antici-
}mted, is similar to that used for areas, expression is
ound for “ an element of length "’ of the curve and the sum
of all such elements is obtained by integration.

This process is called ** the rectification of a curve.”

162. General formula for the length of a curve In cartesian
co-ordinates.

Let AB (Fig. 69) Y
represent a portion
of the curve of a
function y = f(x) be-
tween the points 4,
where x = @, and B,
where x = b.

Let P, Q be two
points on the curve,
and PQ the chord of
the curve through

them. o "
Let P be (x, y).
Let s be the length
of the arc from 4 to B. Fic. 59.
When x is increased by 8x
> " 3y
then s 3s

i.e., 8s represents the length of the arc PQ.

Then by geometry the chord PQ = v/ (8x)F + (8y)%.

If Q be taken close to P, i.e., sfl?ecomes( sn)mll. t(hszllength
of the chord is nearly equal to the length of the arc.

If Q is indefinitely close to P, in the limit when 8z —> 0,
the chord approaches to coincidence with the curve and
the sum of these chords is equal to the length of the arc.

Then  ds = V(@) T (@)

= \/l:(jTi)idx or \/@—;_,)._;—l . dy.

.". Integrating

s=[VI+ (@)
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If the integration is more conveniently performed with
(3
respect to values of y, then s =[.\/ +=) <+ 1.dy, where
cag?icdarethelimitsoiy. d (;;) doue
In many cases the evaluation of the integral is difficult
and requires a more advanced knowledge of the subject
than is contained in this volume.

163. Worked examples.
Example |. Find the length of the circumference of the
circle x* + y* = a*.
Since 2* + y* =a?
y=Va =2 = (a* — )}

dy 2 -4
= }(a® — 23 x (— 22)
2= P oy
. _\/a’.—x"
- ‘ x
s (d{) e
Considering the area of a quadrant the limits will be ¢

and 0.
Using the formula above, viz.

s=f\/1+(dx32 ). ax
then 3=J:4,l+a—i—_——i;x.dx
=E\/;T._9r.m.dx
~o| s
=ax[sin-1§]:
=a X (g—o)

=a

=?.

v
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., circumference of the circle

=4Kﬂ—a

2
= 2wa.

Note.—The use of = is necessitated in the evaluation
of the definite integral, and it is there employed in the
same way as referred to in § 161.

Example 2. Find the le of the arc of the parabola
a8 = @?from the vertex to m”g;hmn{ where x =f2. ’

The equation can be written in the formi

%2
b el
whence & oy
iz~ 2
A sketch of the curve is shown in Fig. 60, where 0Q
Y
l 2
Phe. 55 .
o i 2 »
Fic. 60.
represents the of the curve of which the length is

uired. The limits of x are clearly 0 and 2.
sing
s=j'\/1-;-$a ). da
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on substitution

N (e
§ = Lgl + a .dx
=}f VvVt ¥F4.dx
0
.. by the formula of § 116,
s=4[#va F4+tlog ’-‘% ""“]:

= §{} x 2v/8 + 2{log (2 + V/8) —log 2}]
= V2 +log (1 + V?)
= 2:295 (approx.).

(The logs being to base e.)

164. Equation for the length of a curve In polar co-
ordinates,

The general method is similar to that in rectangular
co-ordinates. In Fig. 61 let AB represent part of a curve
whose polar equation is known.

o3
Fic. 61.

Let the angles made by OA and OB with OX be 6, and 0,.
Let s be the length of AB.

i
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Let P be any point (7, 6) on the curve.
Let Q be a pomnt on the curve near to P, so that ZQOM,
the increase in 6 is 80 and PM is the increase in 7, 5.e., 7.
Whence @ is the point (r + 8, 6 + 36).
Let PQ be the chord joining P to Q.
Then QM = r36 and the arc PQ represents 8s.
With the construction shown
PM = 3r,
Then PQ* = (r30)® + (7)?
When @ is taken indefinitely close to P, t.e., 80 —> 0,
in the limit
(ds)* = (rd0)* + (dr)*
ds = Vr3(d0)? + (dr)?
o (dr\?
.=\/r= ¥ (d_ﬂ) SO &9 TR

The limits of the integral are 6, and 6,.

. e g
. Integrating, S = J 2+ 8 0 T

), (o) 0
We may also write (A) in the form

o {J|+ r‘(:f)‘.dr,

s.e., we regard 0 as a function of r; hence if the limits of r

are ry, ry i i ]
g = L\/I +r'(jf)'.dr. . ()

165. Worked example.

Find the complete length of the cardiond whose equation ts
r = a(l — cos 0).

As was seen in § 154, the construction of a complete
cardioid involves a complete rotation of the radius vector,
so that @ increases from 0 to 2x.

Since r =a(l — cos 0)
dr X
db=asm8.

Using formula (1) above
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s= f"\/{a(l — cos 0))* 4 (a sin 6)%d6
1]
Sw
s j V(@1 =2 cos 0 + cos* 6) + &*sin® 0}d0
0

=aV/?2 r\/l — cos 040 (on simplification)
0
=a\/§f'J2 sin? 940
-=2af":inﬂde
g

£ M
= 24[— 2 cos g

= ga[— cos = + cos 0]
= 8a.
Exerclse 35.

1. Find the length of the arc of the bola y = §a?
between the origin and the ordinate x =p2?ra »=3

2. Find the length of the arc of the parabola y* =4x
from x =0 to x = 4.

3. Find the length of the arc of the curve 3* = 4® from
x=0tox=0_,.

4. Find the length of the arc of the catenary y = cosh x
from the vertex to the point where x = 1.

5. Find the length of the arc of the curve y =1Io
between the points where z =1 and z =2. “(For the
integral see Ex. 28, No. 11.)

6. Find the length of the part of the curve of y = log sec z

between the values x = 0 and x=§.

7. Find the length of the circumference of the circle
whose equation is 7 = 2a cos 0,

8. Find the length of the arc of the spiral of Archimedes,
r = a0, between the points where 6 =0 and 6 = =,

(Note.—The student should draw the curve.

9. Find the length of the curve of the hyperbolic spiral
ﬁ! =1:¢; from 6 = § to 0 =1. (For the integral see Ex. 28,

o.

10. l.!ind the whole length of the curve of # = a sin® 32

CHAPTER XVI

SOLIDS OF REVOLUTION. VOLUMES AND
AREAS OF SURFACES

166. Solids of revolution.

IT is obvious that the methods of integration which
enabled us to find areas of plane figures may be extended
to the determination of the volumes of lar solids,

The solids with which we shall chJeﬂg! concerned are
those which are marked out in space when a regular curve
or area is rotated about some axis. These are termed
Solids of Revolution. For example, if a semi-circle is
rotated about its diameter it will generate a sphere.
Similarly, a rectangle rotated about one side will describe
a cylinder in a complete rotation.

167. Volume of a cone.

The method employed for the determination of the
volumes of solids or revolution can be illustrated by the
example of a cone. Ifa rifht-angled triangle rotates com-
pletely about one of the sides containing the right angle as
an axis, the solid generated is a cone.

Or, if a straight line, equation y = mzx, is rotated about
the z-axis (or y-axis) so that it makes a constant angle
with the axis, it will erate a cone. Since the straight
}i.ne Easses through the origin, and is of undetermined

ength,

(1) The volume will be undetermined.
(2) The complete solid will be a double cone with the
origin as a common apex,

Incidentally, if the complete cone be cut by a %Ig.ne

el to tge z-axis, the section will be a hyperbola.

ence it is that the curve as stated in § 151, Example 7,
has two symmetrical branches.

The volume becomes definite if an ordinate from a Point

on y = mx is also rotated to enclose a definite portion of

281
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the cone. It is the volume of such a cone that we will pro-
ceed to determine, { ;
In Fig. 62 let OA be the straight line y = mx, A being
any point on it.
t 0 be the angle

made with 0X.

. tan 0 =—om.

Let 0A rotate
around OX so that
the angle made with

x OX is always 6.
Let OA! be the
position after half

a complete rotation,

Then A4, and every

other point on 0A

after a complete

rotation, will de-

scribe a circle, and
a cone will be generated with apex at 0.

Let AMA?® be the double ordinate joining A and 4. It
is also a diameter of the circle formed by the rotation of
A—viz., ABA®.

Let V be the volume of the cone of which O is the vertex
and the circle ABA! the base.

OM represents the height of the cone. Let this be h.

Let P be any point on 04 and its co-ordinates (x, y).

Let x be increased by 8x so that the corresponding point
Q on OA has co-ordinates (x + 8z, y + 3y).

PQ, on rotating, describes a small'slice of the cone of which
the ends are the circles described by P and Q.

The thickness of the slab is 8x.

Its volume lies between the cylinders whose volumes are

ny*8x and =(y + 3y)%x.

Let Q become infinitely close to P, so that 8x tends to
become infinitely small and in limit is represented by dx.
Thus as 8x —> 0 the volume of the slice —> wy%dx.

wy*dx Is therefore the element of volume.
. The volume of the cone is the sum of all such elements
between the values x = 0 and x = A.

Y]

20

A
R,

Fic. 62,

-
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V= [ nyds
L
= 1:! (mx)dx
- e [2T
= 3J,
= dnm2h3,
1
n V=i A
= {nAM?*h
or, if AM = y,, the radius of the base
V = jny,*h

or volume of cone = } (area of base x height).

168. General formula for volumes of solids of revolution.

(A) Rotation around the x-axis.
Let AB (Fig. 63) be part of a curve whose equation is
y =/flx).

Y]

d

¥
63.
generating a solid which is

FiG.

Let it rotate around 0X,
depicted in the figure.
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O}\I!,et %MA 1, BNB! be double ordinates so that OM = a,
Let P g:é ) be any point on the curve.
Let x be increased by 8x, so that (), the corresponding
point on the curve, is (x + 8x, y + Bgld
Then, the volume of the slab described by PQ on rotation
lies between wy*3x and =(y + Szr&x.
In the limit when Q is infinitely close to P,

as 8x —> 0, and 8y —> 0, volume —> =y*dx.

The volume of the whole solid is the sum of all such slabs
between the limits x = aand x =b. Let ¥ be this volume.

vmfnyadx. WY

. Since y = f(x) we can substitute for y in terms of x and
integrate.

B. Rotation around the y axis.
Let AB (Fig. 64) be a portion of the curve of y = f(%).

Fic. 64.

Let it rotate around OY so that A and B describe circles
as indicated, centres M and N.
Let OM = a, ON = b.
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Let P (x, y) be any point on the curve and Q another
point with co-ordinates (x + 8x, y + 8y).

Then, using the method of the previous example, the
slab generatzﬁ by PQ becomes, in the limit,

wx2dy.
.*. the volume of the whole solid is the sum of all such
slabs between the limits y = a, ¥ = b.

b
V=Jnx’a‘y. PR

From the equation & = f(x), x can be found in terms of
y and substituted in integral.

169. Volume of a sphere.

Let the equation of the

circle in Fig. 65 be
2?4yt =al

The centre is at the origi o] @
and radius 04 = a. N

Let the quadrant OAB
be rotated about OX. The
volume described will be v
that of a hemi-sphere.

Using formula (1) of the Fic. 65.
preceding section, and re-
presenting the volume of the sphere by V, we have:

Vnzxﬁya
.=2rfr(a'—-z’}dx S
0

¥

=2 [a'x . w]:
= 2x(a® — }a%) = 2r X 34
=;m=
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170. Volume of part of a sphere between two parallel
planes.

In Fig. 66 let the quadrant OCD of the circle 2* 4 y* = *

Y

Yl
Fic. 66.

rotating around OX describe a hemi-sphere. Let two
planes whose distances from O are given by 04 = a,

B = b, mark out the segment whose volume (V) is required.
We may use equation (4) in the example above to express V.

b
Then Vi j =(r? — xY)dx

= n[rx — 4]

= = (% — 1) — (% — 4a")]

=n{rt(b —a) — §(b* — a%)}

=mw(b — a){r® — }(b* + ab + b?)}
If b = r the part of the sphere becomes = spherical cap.
Then V =n=(r —a){r* — §(* + ar 4+ a¥)}.

Note.—When in this result a = 0, the spherical cap
becomes a hemi-sphere, and the result is one-half of
the volume of the sphere found above.
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171. Volume of an ellipsold of revolution.

This is the solid formed by the rotation of an ellipse

(1) about its major axis,

or (2) about its minor axis.

(1) Rotation about the major axis.

The rotation as shown in Fig. 67 is supposed to be about
AAY, ie.,0X.

Y

YI
Fic. 67.

Consequently any section perpendicular to OX is a circle.
Let the equation of the ellipse be

Let V be the volume of the ellipsoid.

Consider the volume marked out by the rotation of the
quadrant OAB, the limits being o and a.
Then, using formula (1) of § 168

This volume = r nyldx,
o




ey, e
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; s (pt
V=sf u{;,(a’ — a%dx
2rt? (o
= L (@* — 20)dx
;]
= 2:—5’— alx — }x’I
2rbt
=5 @ —1a)
S P ;Trub'.
Note.—If b = a, the ellipsoid becomes a sphere.
(2) Rotation about the minor axis.

Lettheequaﬁonoftheeﬂipsebe%:+§=1.
In this case, as indicated in Fig. 68, the rotation being

about 0Y, any point P (%, y) on the circumference of the
emlgse will describe a circle radius x and centre on OY.
e area of such a circle is nx?,
.. Volume of slab between two such circles infinitely

close together is
i nx?dy.
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.'. Using formula (2) of § 168 and considering the half
of the ellipsoid above OX, we have, the limits of y being

band o:
Volume of half the ellipsoid

)
= J nxidy
0
.. Volume of whole ellipsoid
=2r J ' x2dy

) a?
=2 [ 3 (0" — 5y

-’ g:f: 5 — y0)dy
=% [y -v]

2ra?

=2 4o — b9
- ~ P ;-rra'b.

The solid formed by the rotation of the ellipse about

(1) The major axis is called a prolate spheroid.

(2) The minor 5 an oblate spheroid.
Note.—The solid, not of revolution, in which those

sections which are perpendicular to the plane of

XO0Y, as well as those which are parallel to it are all

ellipses, is called an ellipsold.

172. Parabolold of revolution.

This is the solid generated by the rotation of a parabola
about its axis. It is not a closed curve, consequently we
can obtain only the solid generated by part of the curve.

There are two cases.

(1) When the axis of the parabola colncides with OX.

The general form of the equation in this case is

y? = 4dax.

K (cAvL.)
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OP in Fig. 69 represents part of the curve.

P is any point on the curve, its co-ordinates being (x, y).
PA is the ordinate of P, and 04 = ¢. OP rotates around
0X, generating a solid, with a circular base PQR.

X
x (o]
L @
Fic. 70.

FiG. 69.
Asshown in § 167, the element of volume is =y*dx, and the

limits of x are 0 and ¢. Let V be the volume.
V= f-rry‘dx = nj'4axdx
0 0

=Tna [2;’]:
= 2mac?,

Note.-——The cylinder indicated by the dotted lines in
Fig. 69, having PR(Q for one base, and a circle equal
and allel to it with O as centre, is the circum-
scribing cylinder of the paraboloid.
The volume of this cylinder = my* x 04
=mn X 4ac x ¢
= 4wacd.
.. Volume of the paraboloid equals half that of the
circumscribing cylinder.

(2) When the axis of the parabola colncldes with OY.

In Fig. 70, QOP represents part of a parabola, the equation
of which is
y = ax3,

B
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Let P (x, y) be any point on the curve.
Let PB be its abscissa, so that

OB = b.
The element of volume as shown in § 168 (B) is
nxtdy.
The limits of y are 0 and b.
.. using formula (2) of § 168

Note.—Compare this with the volume of the circum-
scribing cylinder.
}3) Parabola whose equation Is y = kx* rotating about
0

The parabola does not Y p/
rotate about its own axis,
which coincides with OY,
but with the other axis.

F].,ei:'7 l'cl:.e curve OQP

ig. represent t
t(Jf lﬁie c1.)1rvepof the fg;:rc- x: M| x
tion between the origi o
and x = a, where PM is
the ordinate of P and "
OM =a.

Let V be the volume
generated by OP as the P
curve rotatestharound 0X, Y b o \
occupyi e ition G, 71.
OQ‘EFL:fgter a halp?srota.tion. .

Using formula (1) of § 168, the element of volume is
ny*dx, and the limits of x are 0 and a.
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0.. V = J. ,U"dx
’ a
= j (hx%)2dx
0

Y
)
= }nk2ab.
If the part of the curve which is rotated is QP, where

QN is the ordinate of Q and ON = b, then the volume
generated is given by

¥ j'@’dx = }k?(a® — b?).
1]

173. l-iyperbolold of Revolution.

This is the solid generated by the rotation of a hyperbola.
It may take different forms. vl

(1) Rotation about OX of the curve whose equation is

. 1

@A B

Since there are two symmetrical branches of the curve,
as shown previously, there will be two corresponding solids,
one of which is shown in Fig. 72,

Fic, 72.

These two parts are called an hyperbolold of two sheets.
Clearly, there will be no part of the solid between 4
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and A'. Also there is no enclosed solid, but the volume
a;n be found between sections corresponding to two values
of z,

Let P be any point on the curve, and PM its ordinate.

LetOM =c.

Let ¥V be the volume between the vertex 4, where
x=aandx=c.

Then

V=Ew‘dx=u£b-’—(£a._—#l

=T [be —ats] = T (@ — 3a% —&* + 34)

=12 (& — 3a% + 2V,

(2) Rotation around OY.
Let the equation be

x’ 2
@ p=l
The solid formed will be as indicated in Fig. 73.
Y
P ®
X A A X
: Q
Y.
Fic. 73.

Since the two of the curve are symmetrical, an
point P on the curve, after a half comglete rotation, wi
coincide with the corr&sﬂding point P1 on the other arm.
Thciiigoint, like every other point on the curve, will describe
a e.
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The solid is therefore continuous, and is called a hyper-
boloid of one sheet. It stretches out infinitely around the
{;a.xis, and any volume which has to be determined will be

unded by sections corresponding to two values of y,

say ¥, and ¥,.
%’ﬂ:’s volime can be found as in former examples.

(3) Rotation of rectangular hyperbela about its asymp-
totes, which, as shown in § 151, Ex. 7, are the rectangular
axes OX and OY. The equation of the curve is zy = ¢3,
and there are two parts of the solid, above and below 0X.

The of the volume contained between two sections

allel to one of the axes can be found in the usual way.
us, if P and Q are two points on the curve (Fig. 74), and

Fic. 74.

the corresponding values of y are ¥, and ¥,, the volume
would be gi?ren b%r [ ¥ r

f " wxtdy.

N

Note.—Only that sheet of the hyperboloid which is
above 0X is shown. There is a second similar sheet
below.

Exercise 36.
1. Find the volume generated by the arc of the curve
y==x
1) when it rotates round the x-axis between x = 0
and ¥ =3;

((12) when it rotates round the y-axis between x = 0

and ¥ = 2
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2. Find the volume generated when an arc of the curve
ofy =2
(1) rotates round the z-axis between x = 0 and
X = 3;
(2) rotates round the y-axis between z = 0 and
X==2

3. Find the volume of the cone formed by the rotation
round the x-axis of that part of the line 2x —y + 1 =0,
intercepted between the axes.

4. The circle 2* 4 y* = 9 rotates round a diameter which
coincides with the z-axis. Find

(1) the volume of the segment between the planes
perpendicular to OX whose distances from the centre,
and on the same side of it, are | and 2;

(2) the volume of the spherical cap cut off by the
plane whose distance from the centre is 2.

5. Find the volume generated by the rotation of the
ellipse x* + 4y® = 16, about its major axis.

6. Find the volume generated by the rotation round the
x—ai::s of the part of the curve y* = 4x between the origin
and x = 4.

7. Find the volume generated by rotating one branch of
the hyperbola x* — y* = @® about OX, between the limits
x =0 and x = 2a.

8. Find the volume of the solid generated by the rotation
round the y-axis of that part of the curve of y* = z* which
is contained between the origin and y = 8. g

9. Find the volume of the solid generated by the rotation
about the z-axis of the part of the curve of y =sinz,
between ¥ = 0 and x = =. J

10. Find the volume generated by the rotation round
the x-axis of the part of the curve of y = x(x — 2) which lies
below the x-axis. .

11. If the curve of xy = 1 be rotated about the x-axis,
find the volume generated by the part of the curve inter
cepted between z =1, x = 4. )

12. The parabolas y* = 4x and x* = 4y intersect and the
area included between the curves is rotated round the
r-axis. Find the volume of the solid thus generated.
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174. Simpson’s rule for volumes.

Simpson’s rule for calculating the areas of irregular
figures can be adapted to find the volume of an irregular
solid. Thus, if the areas of the cross-sections of the solid
at equal intervals are known, these can be plotted as
ordinates of an irregular curve. For example, if in Fig. 58
of Exercise 34, each of the ordinates represents the area of
a cross-section of the irregular solid and | represents the
distance between the cross-sections, then the sum of their
products, which are represented by areas in Fig, 68, will
represent the volume of the solid. Just as applying
Simpson’s rulein Example 34 we find the area of the i
figure, so the products will now represent the volume of
the irregular solid. In the particular example quoted the
area was found to be 73-5 sguare feet, so, now, the volume
of the Irregular solid Is 73-5 cubic feet.

Note.—When the values of the areas of sections are
not known at equal intervals, those which are given
should be drawn, the curve plotted and then the
ordinates required should be drawn and measured.

Examples can be found in books on practical
%mlthematics, such as National Certificate M. ics,

ol. II.

Areas of surfaces of solids of revolution.

175. Area of curved surface of right circular cone.

The curved surface of a right circular cone, if unrolled, is
the sector of a circle. The problem is therefore that of
determining the area of this sector, and this can be found
by previous methods.

Let | = radius of the sector (i.c., the slant side of the
cone).

Le}t r = radius of circular base of cone.

Let A = area of curved surface of the cone.

Then it can readily be shown that

A =rl.

Area of curved surface of a frustum of a cone.

Let the cone (Fig. 75) be cut by a plane, CD, parallel to
g ig. 75) byap P
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Then ABDC is a frustum of the cone.

The curved surface of the frustum can be considered as
the limit of a very large number of small trapeziums, such
as PQRS.

Y e
P
H
X
o '
A
P
Q
Y g
Fic 76.

Using the formula for the area of a trapezium, in the
limit, this sum—i.e., the area of the curved surface of the
frustum—is

AC x % (sum of circumferences of circles AB and CD).

*, if r = radius of base (4B)
and  r, = radius of section (CD).
Area = }AC X 2w(r, + )

176. General formula for area of a surface of revolution.

Let AB (Fig. 76) represent a portion of a curve which
rotates round OX, generating a solid of revolution. We
uire to find an expression for the surface of this solid,
re(i.et PQ be a smal Ea.rt of the curve, which on rotating

generates a portion (shaded) of the surface of the whole.
Lei;:? = 3.
y2d Q, on rotation, describe circles, PP, QQ, with
centres M and N on 0X,
Let PM =y.
Then QN =y + 8.
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If PQ be small the portion of the surface which it generates
may be considered as surface of the frustum of a cone.

', as shown in § 175, its area is 2r x y _—tb;t'sy) X 85,

If PQ becomes indefinitely small so that 8§y —> 0.
Then, in the limit, area of strip = 2wyds.
It was shown in § 162 that

ds=,\/l_+-(3{_)’.dx or \/1_+_(:—ﬁ'.dy

.. if s be the total area of the surface.
s =11rfy,Ji +(g£)’.dx Lk Vv 1)

or way,\/rqi—;‘-)i.dy o b oeptls 2}

In particular problems limits are stated, and thus the
definite integrals may be found.

Note.—The form of the integral above may lead to
complicated integration, consequently only simple
examples will be given.

Rotation round OY. The above formulae are used

when rotation is round OX. If rotation be round OY, the
following formulae may be used.

s=2wfx,~/l_h-|_-@‘)i.dx. e ik 4l

or s=2wfx I+(d—,;)'.dy. A

177. Area of the surface of a sphere.

Let x* + y* = a® be the equation of a circle which
enerates a sphere by rotation about 0X, on which there-
ore lies a diameter.

Since x? 4y =gt
y=vVal =2
dy _ o
dz — " Vo =2
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i,
il o, ™ e Y
a—
= Jl + ﬂ-i-:“i‘ . dZ
a?
=;—- . dx.
The limits of the integral when a quadrant rotates are

o and a, giving rise to a hemisphere.
.'. using formula (1) above.

Surface of hemi-sphere = 2x j' y x ;dx
(1]

=2nj.adx
0

= 2na[x]:
= 2mwad,
.". Area of surface of sphere = 4wa?

Exercise 37.

1. Find the area of the surface of the solid generated by
the rotation of the straight line y = §x around the x-axis,
between the values x =0 and x = 3.

2. Find the area of the surface generated by the rotation
about OX of the curve of y = sin x, between x = 0 and
=

3. That part of the curve of x* = 4y which is in ted
between the origin and the line y = 8is rotated around OY .
Find the area of the surface of the solid which is generated.

4. The curve of the function i + yt = al rotates
around 0X. Find the area of the surface of the solid which
is formed between x = 0 and x = a.

5. Find the area of surface of the zone cut off from a
sphere of radius r by two parallel planes, the distance
between which is h.

6. Find the area of the surface of the solid generated by
rotattl;nﬁgnaound?}.’thepa.rtof the curve y = 23, between
X = x=1.




CHAPTER XVII
USES OF INTEGRATION IN MECHANICS

. Centre of Gravity.
178.

Integration, as a method of summation, can be applied
to the solution of many problems in mechanics in which
it is required to find the sum of an infinite number of
infinitesimally small products. Some of these are included
in this chapter, but in a volume of this size and purpose
only a few of the simpler examples can be given,

179. The centre of gravity of a number of particles.

It is shown in treatises on mechanics that if a series of
parallel forces acts u&m a body, the point through which
their resultant can considered as acting is called the
Centre of Force; also the resultant is the algebraical sum
of these parallel forces (Mechanics, § 24).

This can be otherwise expressed as follows:

Let m;, my, m, . . . be the masses of a number of particles.

Let (%3 Y1), (2 ¥a)» (%5, 3s) - « - be the co-ordinates of the
positions of the particles with reference to two rectangular
axes, 0X, 0Y.

Each of the particles is acted upon by the force of
gravity, this force being termed the weight of the particle
and beintigroportional to its mass.

Since force is always directed towards the centre of
the earth, these forces, in a small system of particles, may
be considered as a system of parallel forces, which can be
denoted by

Mg, MoB, Mal, + + o
or Wy, Wy, Wy, « = »
where w represents the weight of a particle.

The centre of force of this system Is the centre of gravity
of the particles.

Let the co-ordinates of the centre of gravity be (x, ¥).

Let M be the sum of the masses of the particles.

300
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s, M=m +mg+mg+ ...
or M = X(m).

The product of the mass and the distance of the particle
from any point or axis, Is called the moment of the force
about that point or axis.

It is established in mechanics that the moment about any
axis of the resultant acting at the centre of force is equal to
the sum of the moments of the particles about the same axis,

.. considering the system of particles above and taking
moments about 0Y

Mgx = mg%, + Mo8%y + MeBXg = . . .
or, dividing throughout by g
Mz = myx; + My¥y + MyXs +
.. with the usual algebraic notation

¥ & Z(mx)
~ Z(m)’
Similarly, considering the moments about 0X
- _ Z(my)
Y= 5(m)

The point (%, ¥), the moments of which we have found,
is the centre of mass of the system, or considering the masses
as acted upon by the force of gravity, the centre of gravity
(c.g.) of the system.

180. The centre of gravity of a continuous body.

In the above section we have considered the c.g. of a
system of %a.rticles irrespective of their distances from one
another. But a continuous solid body can be regarded as
made up of an infinite number of infinitely small ga.rtxcles,
and the centre of gravity of these is the centre of gravity
of the body. k

As the moment of each of these particles about an axis
is the product of its mass and its distance from the axis, the
problem of finding the sum of these products at once
suggests integration as the means of effecting it. The
metiod of applying integration is most easily shown by
examples, such as those which follow, g

It should be noted that c.g. of a body must clearly lie
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upon any axis of symmetry which the body possesses. For
example, the c.g. of a solid of revolution must clearly lie
on the axis about which the revolution takes place. yl'hJs
suggests that for the purpose of finding the c.g. it will
generally be simpler to take the axis of revolution as a co-
ordinate axis.

181. To find the centre of gravity of a uniform seml-
circular lamina.
The c.g. evidently lies upon the radius which is perpen-
dicular to the diameter of the semi-circle at its centre, f.e.
v on O4 in Fig. 77. This line
should therefore be taken as
P &e z-axis and the diameter as
e :
If the radius of the circle is
a its equation is
A 3 - yl = gt
o X Since the lamina is uniform,
its mass, or that of any part of
it, can be represented by its
area. If m the mass of
unit area, it will occur on both
Q sides of the equations found in
» § 179, and so will cancel out.
Sk 77 Let x be the distance of the
S c.g. from 0, along 0X.
If a narrow strip of width 5x be considered, at a distance
x from OY, such as is indicated by PQ in Fig. 77, then
area of the strip =2y .38z
and moment of the strip = 2y8x x x.
In the limit when the width of each strip becomes
indefinitely small,
Sum of areas of strips, .., area of semicircle
- j'zydx
3 0
also sum of moments of these strips

= jlzydx X = I‘2yxdz.
0 o
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by the principle of moments

| E xL.2grdx=j:2xydz.
= j"zxydx e r2ydz.
o 0

But y=Va' — 22
i= [2va =z s [2d= .0
0 ‘0
=[-t@ -7 + jma* (5151, Ex3)
= §ab = jxat.
. . v
% X=q Ia

182. Tofind the centre of gravity
of a solid hemisphere.

Let the semi-circle of the pre-
ceding example rotate about BX 5
thus generating a hemi-sphere. =g}
The c.g. will lie on the axis of
rotation, 0X,

Let z be its distance from O.

Equation of curve is

249 =al,
'i:i:n radius oflci%e =f :l-l v
e rectangle () e pre- Fic. 78.
ceding examrle on rotatin ;v)vill | ’
generate a slab, which, when the width of the rectangle
is very small can be considered as cylindrical.
.". in the limit this volume = =y*dx.

.. volume of hemi-sphere = r"”"‘”

9:;.———_—-7",
‘

moment of cylindrical slab = n;’dx X %
.. sum of moments of all such slabs = rny’xdx.
L]

Also moment of hemi-sphere =z X fny’dx
]
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But these are equal.

i@ X r nyldx = j‘ny'xdx.
0 0
Fa: ='r:rx(a’ — x¥dx - J' (a® — 2%)dx
o 0

- u[;,a!x’ = ix‘]: + 3ma®  (§169)
B e
S X =§da.

183. Centre of iravlty of paraboloid generated by the
rotation of the curve of y = x#, about OY.

Let the limits of # be 0 and 2. When 2 =2, y =4,
Fig. 79 represents the solid generated by the rotation
about OY of that part of the
parabola y = x? between the

N
o values x =0 and x = 2 (see
A \a §172). (

The c.g. lies on OY.
Let its distance from O be .

PQ r ts a small
9y].ind:iczg slab, formed, as
in the preceding example, b
b ) +2 X the rotation of a rectang

I of very small width.
Fic. 79. Let the co-ordinates of P

be (%, ).
In the limit when width of rectangle becomes infinitely

Volume of slab = =x?dy.
Moment of slab about 0X = nx*dy x y

.. sum of moments for all such slabs = j’ -:r:x’dy xy (1)
,-

Volume of the whole solid = rr:x’dy.
0

.. moment of whole solid = § x ]‘nx’dy 2)
[
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Equating (1) and (2)
4 4
7 x f ratdy = f rxtydy.
o 0

- ‘ ‘ 3
S = J nyldy + j mydy  (since x* = y)
0 0

=], + ],
=@ x 4+ G x10

] s,
.. the c.g. Is § units from 0 along OY.
Note—This is § the height of the solid.

184. Centre of gravity of a
uniform circular arc. 6
Let BAC (Fig. 80) represent
a circular are. ¥
Let r = radius of arc, centre
(0]

Let 2a = angle subtended at
the centre.

Draw OA Dbisecting this
angle.

et OA be the z-axis,

The c.g. of the arc must lie
on OA.
Let z = distance of c.g. from

Let P be the point (x, y),
and PQ be a small arc sub- Fic. 80.
tending an angle 86 at O.
Then PQ =r. 86,
The c.g. of all such arcs as PQ must lie on 0A.
.. moment of PQ about O = #80 x x and x =rcos 0.
4 o P8 » 0 =i#"cos8.30.

In the limit when PQ is taken infinitely small

Moment of = 7% cos 040.
Mass of arc BC =r x 2«

Yl
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(representing mass by length as arc is uniform)
moment of arc = % x r X 2a.

Equating moments
%X 2a= rtr'cosﬁ.da

a
=2] #2 cos 0. d0
0

X X 2ra = 22 [sm 0]:

= 2r*sin «.

- 2rsina

X = e,
2ra

=" reina

X = ——,
a

Exercise 38.

1. Find the centre of gravity of the parabolic segment
bounded by y?* = 4ax and the line x = b.

2. Find the centre of gravity of the segment of the para-
bola y* = 8z, which is cut off by the line x = 5 and the
axis of the bola.

3. Find the centre of gravity of the area bounded by the
curve y = 2%, the y-axis, and the line y = 1.

4. Find the c.g. of the parabolic segment of y = 23,
whicg is contained by the curve, the y-axis, and the line
f 5. Find the c.g. of a quadrant of a circle, radius r.

6. Find the c.g. of the area between the curve of y = sin x,
and the z-axis fromx =0tox ==

7. Find the c.g. of a thin uniform wire in the shape of a
semi-circle, radius r.

8. Find the c.g. of a thin uniform wire in the shape of a
quadrant of a circle, radius r.

9. Find the c.g. of the circular sector shown in Fig. 80
as OBAC.

10. Find the c.g. of the right circular cone formed by the
rotation of the line y = mx about the origin to x = A.

11. Find the c.g. of a quadrant of an ellipse whose
diameters are 2a and 2b.
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12. Find the c.g. of the area bounded by the hyperbola
= k*, the x-axis, and the ordinates x = a, x =)2?er

13. Find the c.g. of the solid formed by the rotation of

= z* about the xz-axis between the origin and x = 3.

14. If the Fortion of the curve of ay* = x* which is
bounded by the curve, the x-axis and the ordinate x = b,
rotates about the x-axis, find the c.g. of the solid thus
generated.

MOMENTS OF INERTIA AND RADIUS OF
GYRATION

185. Moments of Inertia.

Let m,, m,, mg, . . . be the masses of a series of particles
forming a system.

Let ry, 7o, 75, . . . be their distances from a given straight
line or axis.

Then the sum of the products

my 1,3, myr, marsd . . . or S(mr?)

is called the moment of Inertia of the system, and is usually
denoted by M.I. or L.

It is also called the second moment of the system, while
T (mr), which was defined in § 179, is called the first moment.

As was pointed out when considering centre of gravity
(§ 179), a continuous rigid body can be regarded as a
system of infinitely small particles which, with the usual
notation, can be expressed by dm.

The sum of the products or second moments then
becomes Ir*@m. This sum, taken throughout the body,

becomes in the limit the integral [+%dm.
M.I = [rdm.
The moment of inertia becomes of great importance
when the body is rotating about an axis.

Suppose a body of mass M to be moving in a straight line
with velocity v. Then its

Kinetic Energy = $Mv2.
Thus the Kinetic Energy of any particle is §v*dm.
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Now suppose a body of mass M to be rotating with
angular ity @ about an axis.

hen a particle dm is moving at any given instant with
linear velocity v where v = ro.
Its kinetic energy is §dmo*
fi; ddm(re)?
.". the total kinetic energy of the body is
KE. = f }(ro)%dm = iw® f r¥dm
= }w? x M.l
Total kinetic energy = #(moment of inertia) x w?

186. Radius of gyration.
If the moment of inertia be written in the form
I =M
so that k=+vT+M.

then x Is called the radius of gyration of the body.

From these statements it is clear that—

The kinetic energy of a body and the moment of Inertia
are the same as If the whole mass were supposed to be
concentrated at a point whose distance from the axis of
rotation Is .

187. Worked examples.

Example |. Find the moment of inertia and the radius of
gyration of a uniform straight rod about an axis perpendicular
to the rod at ils cenlre.

Let M be the mass of the rod.

Let 2a be its length.

Since the rod is uniform its mass may be represented by
its length.

.". M is represented by 2a.

Let O (Fig. 81) be the centre of the rod and OY the

dicular through 0.

It is required to find the M.I. of the rod about OY.

Let PQ be a small element of the rod, where the distance
of P from O is x.

Then PQ can be represented by 8x.

M.I. about O of the element PQ = 2%3x.
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i i

LA

Fic. 8.
In the limit when this element becomes indefinitely small
M.I. of the whole rod = ] * xtdx

-,
= ia‘
but M = 2a.
& A= jMads
Since Mi?2 = {Ma?

s k=%

Example 2. Find the Y
M.I. of a uniform rect-
angular lamina of mass M,
about an axis which bisects P
two opposite sides.

Let ABCD (Fig. 82) re-
present the rectangle. Xt 5 X

Let YOY! be the axis
about which the M.L. is to

>
o @

be found.
Let AB = 2a. o 2
Consider a thin strip T
P%oi mass M. Y
y Example 1 its Fic. 82.

M.I. = }M,a’
The M.I. of the whole rectangle is equal to the sum of
all such strips.
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i.e., M.I. = §(Mya* + Mya® + Mg + . . )
=M, + My +M, ...
= {Ma’.
Example 3. Find the M.I. of a uniform circular lamina
of radius r and mass M, about an axis through its cenire and
perpendicular to the plane of the lamina.

7,
/4

Lg% A

" A\%/'

Y
L/
) ””’fzw//-/ /
/(’ 7
Y

FiG. 83(a). Fic. 83(b).

Fig. 83(a) represents the circle, centre 0, OY being the
axis, perpendicular to the plane of the circle, about which
it rotates.

Fig. 83&&) represents the plan of the circle. A small
circular band, I‘BCR‘I z and x + 3%, represents the element of

area
M.I. of this band = (2rx .dx) x a2

The sum of all such as this throughout the circle is the
M.I. of the whole.

ML = ["2radz = 2n [}x‘]: = jurt,

But M= 1;".
S3 e MR e M,

Exercise 39.

L ¥ Finfd the momint ?)il inlertia a:;d tﬁl: radius of gyration
of a uniform straight rod, length I, about an axis perpen-
dicular to its length at one end of the rod.

2. Find the M.I. of a uniform rectangular lamina of
sides 2a and 2b about the side of length 2b.

o

<
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3. Find the M.I. of a uniform circular lamina of radius r
about a diameter.
. 4. Find the M.I., about OX, of the ellipse whose equation
is
gt gt
atp=1L
5. Find the M.I. of an isosceles triangle, height h about

(1) its base;
(2) an axis through its vertex parallel to the base.

6. Find the M.L of a right circular cone, radius of base r
about its axis.

7. Find the M.I. of a uniform circular cylinder, radius of
base r, about its axis.

8. Find the M.L of a fine circular wire, radius a,about a
diameter.

9. Find the M.I. about OY of the area of the segment of
the parabola y* = 4ax between the origin and the double
ordinate corresponding to x = b.

10. Find the M.I. and radius of gyration of a uniform
sphere, radius r, about a diameter.

i88. Theorems on mo- Y]
ments of inertla.

The following theo-
rems are helpful in the
calculation of moments N
of inertia in certain y
cases.

l. The moment of
Inertia of a ol;mlna
about an axis er-
pendicular to its plgne. =
Is equal to the sum of
the moments of Inertia
about any palir of rect- Fic. 84.
an ularhaxe|s O)(f a;:dl :
0Y in the plane of the lamina.

Let P bg a particle of mass m in the plane of 0X, 0Y
(Fig. 84),

ril
v
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Let its co-ordinates with regard to these axes be (x, y).
oin OP. LetOP =r.
t OZ be an axis perpendicular to the plane X0Y.
Then POZ is a right angle.
.. moment of inertia of particle at P about axis 0Z = m»®.
Let PM, PN be drawn perpendicular to 0X, OY.

Then OP2 =0M?® 4+ MP?
=214y
or r? =22 42
But M.I. of mass m at P about 0Z
= mr?
=m( +
- Is + I"
or I=I,41,.

where I, I,, I, are the moments of inertia of m about the
areas OX, OY and OZ, respec-
tively.

This is true for all particles of
a lamina of which the particle at
P is a part, and is therefore

true for the whole lamina,
A As an example let us consider
the case of the circular lamina
described in Exercise 39, ques-
tion 3'ABC (Fig

Let ig. 85) represent a
circular lamina.

Let XOX?! be a diameter.

If I, be the M.I. about this
diameter, then it was found in question 3, that

I, = IM~.
If YOY* be another diameter at right angles to X0X?,
then I, = }Mnr
& L+ I = iMp + 1M
= §Mad.

If OZ be an axis perpendicular to the lamina and therefore
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gerpendicular toOX and OY, then, it was shown in Example
, p. 310, that

I, = }Mr,
Hence I=1, 4+ I.
Il. Theorem of parallel axes.

Let I, be the M.I. of a mass M about an axis through its
centre of gravity; let a be the distance of a parallel axis
from the centre of gravity, Then

M.l = I. + Ma®
This may be defined as follows:

The moment of inertia of a body about any axis Is equal

to the sum of—

(1) the moment of Inertia about a parallel axis, and
(2) the product of the mass and the square of the
distance of the axis from the centre of gravity.

It is evident that (2), i.e., Ma?, is the same as the M.I.
of the whole mass, collected at the centre of gravity, about
the selected axis.

189. Worked examples. Y B

Example |. Find the M.I.
of a uniform circular lamina,
radius a, about a tangent.

In Fig. 86 the tangent to ° c A
the circular lamina centre C
is taken as OY, \J
BC is an axis el to
0Y through C, which is, of
course, the c.g.

Then, by the above theo- Fic. 88.

rem
M.I. about OY = M.I. about BC 4 Ma?,
But M.I. about BC = }Ma® (Ex. 39, (3), and example

on Theor. I.
». M.I. about O0Y = }{Ma® 4 Ma?
5 1
= 2MG .

> 4
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Example 2. Find the M.I. of a uniform lamina in the
shape of an isosceles triangle, height h and vertical angle 2a,
about—

1) An axis through the vertex parallel to the base.
{2} A line through the c.g. parallel to the base.

(3) The base.
Arrange the triangle so
Y that its axes of symmetry
A lies along OX (as in Fig.
P 87).
. Then OC =h, AC=h
. c__x tanaea.
o| Let P (x, ) be any point
on OA.
Q The strip PQ represents
8 an element of area
and y =ztana.
FiG. 87, 8x = width of strip
(1) To find M.I. about OY.
Let m = mass of unit area.
M.I. of strip = 2mydx x x*

.. in the limit, M.I. of triangle about
oY =m }' " oyrdz
but y==x taon .
MI = mj: 24 tan adx = 2m tan cf:x“dx

A
=2mt x4
m tan a[} ]n
= {mh' tan «
but mass of triangle, i.e.,

M =mh x htana
= mh® tan a.
S MI = iMhd
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(2) M.1. about an axis through the centre of gravity and
parallel to AB.

Let I, = M.I1. about an axis through c.g.
Let a = distance of c.g. from 0.
In this case a = §h.
Using I = I, + Ma?® and substituting.
I.=1— M(§h)?
= IMA* — §Mh?
= yyMh?,

(3) M.I. about the base.

Distance of c.g. from base = }h.
By the theorem of parallel axes
M.I. about base

= (M.I. about axis through c.g.) + (M " (3).)
= l}-jig‘hl + $Mh?

Exercise 40.

1. Find the M.I. of a uniform rod, length 2a, about an
axis %rpendir.'ular to the rod through one extremity.

2. Find the M.L. of a uniform square lamina about an
axis perpendicular to the plane of the square, at one corner,

3. Find the M.I. of a uniform lamina in the shape of an
equilateral triangle of side a.

(1) About a line parallel to the base through the
centre of gravity.

(2) About an axis through the centre of gravity and
pergendicula: to the plane of the triangle.

(3) About a line perpendicular to the plane of the
triangle and through a vertex.

4. Find the M.IL. of a uniform circular lamina of radius a
about an axis perpendicular to the plane of the disc through
a point on the circumference.

5. Find the M.I. of a umform right circular cylinder
about a line through the centre of the axis of the cylinder
and dicular to it. Length of cylinder is 2a and
radius of base b.

6. Find the M.I. of a uniform thin spherical shell, radius
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g, about a diameter, [Hint—see problem of finding surface
ofas (§177)].

7. Find the M.I. of a solid sphere, radius @, about a
diameter. [Hint.—divide the sphere into thin con-
centric shells and use the result of the previous question.]

8. Find the M.I. of a right circular cone, height h, about
an axis drawn through the vertex parallel to base, the
radius of which is r.

9. Find the M.I. of an elliptic lamina, axes 20 and 2b,
about an axis drawn through the centre of the ellipse and

rpendicular to its plane.

10. Find the M.I. of a uniform rectangular lamina, sides
2aq and 2b.

1) About a side.

2) About a diagonal.

3) About an axis perpendicular to the plane of the
rectangle and passing through a corner.

CHAPTER XVl
PARTIAL DIFFERENTIATION

190. Functions of more than one variable.

THus far we have been concerned only with functions of
one independent variable. It was pointed out, however,
in § 12, that a quantity may be a function of two or more
independent variables. Examples were given in illus-
tration.

We must now consider, very briefly, the problem of
differentiation in such cases. An adequate treatment is
not possible in an introductory book on the subject, but
some simple aspects of the problem can be examined.

191. Partial differentlation.

We will begin with an example referred to in § 12, viz.
that the volume of a gas is dependent upon both pressure
and temperature.

Let V represent the volume of a gas.

i® pbethe%g.e?sureonit.

,» ¢ be the absolute temperature.
The law connecting these can be expressed by the formula
i
V=~Fk.-
?

where k is a constant.
(1) Suppose the temperature to vary, the pressure
remaining constant.

dav |
Then gt =k. F-
(2) Suppose the pressure to vary, the temperature

remaining constant.

av ¢ ¢
=k, or — k.
Thew, 1l gg 8- 8 7
Thus the existence of two independent variables gives
rise to two differential coefficlents.
317
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These are called Partial derivatives or Partial Differentlal
coefficients. For the sake of simplicity the ordinary
notation was employed above, but special symbols are
employed to indicate partial coefficients. Instead of the
letter ** d,” the small Greek delta, 8, is employed. Thus
the partial differential coefficients above would be written :

av I
) ?f, =k.3
t
@ 5 =—k-pv
Thus, (1) indicates that V is differentiated with resgect
to t (hence &), while p is constant. Similarly, with (2).

In general—if z be a function of x and y, the partial
differential coefficients are written :

(1) g—:, when x is variable and y constant.

(2) g-;. when y is variable and x constant.

Using the form referred to in g 33, of defining the
differential coefficient, the partial differential coefficients
can be expressed thus:

0z _ |, fx+8xy) —flxy)
Bx

X -0

oz _ , fxy+8) —flxy)

A Sy
Examples.

(1) z =22+ 62% + 29? 452

% = 62® + 10xy + y* (¥ constant)
% = b2* + 22y + 3y? (x constant)
(2) a: =siny 4 2% cosy + %
= 2x cos y + 2¢% (¥ constant)
g—;= cosy — x¥siny (x constant)
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192. Graphical illustration of partial derivatives.

We have seen that a function with one independent
variable can be represented by a plane curve. If, however,
there are two independent variables, the dependent function
can be represented by a surface, f.e., co-ordinates in three
dimensions are employed. This can be illustrated as
follows.

In Fig. 88, let XOY represent a plane with 0X, OY as
co-ordinate axis at right angles to one another. Values of

z

two variables x and y can be represented along 0X and OY
as heretofore. This we call the xy plane.

Draw OZ at right angles to the plane from 0.

Thus the planes X0Z, YOZ, are dicular to the
plane. XOZ is the (x, z) plane and YOZ is the (y, z) plane,

Values of z, corresponding to values of x and y, are
marked on OZ.

Let P be a point in the plane of XOY with co-ordinates

(xl:\.ly 1)-

ong OX mark OB = x, and along OY, 04 = y,.
Then P is the B%siti.on of the point in the plane X0Y,
From P draw PC parallel to OZ and equal to z,, where z,

is the value of z corresponding to #, for x and y, for y.
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Then C represents the position of the point in space when
the co-ordinates are (%,, ¥, 2,). :

If other values of xand y are taken, with the corresponding
values of z, we shall obtain an assemblage of points such as
C, which will lie on a surface.

(1) Let y be constant and have the value y,.

GCE will now represent the variations of z relative to »
when y is constant. o1 pad - o
Consequently the partial differential coefficient 7 Will

represent the slope of the tangent to the curve, corresponding
to any assigned value of x. For example, when x = x,,
C is the corresponding point on the curve and the tangent

to the curve GCE at C represents the value of :Ti when
%=2,
(2) Let x be constant and have the value z,.

Then the curve of DCF represents the variations of z toy.
The tangent to the curve at any point on it represents

g;— for corresponding values of y and z.

193. Higher Partial Derivatives.

The partial derivatives are themselves functions of the
variables concerned, and thus may have their partial
derivatives.

(1) Thus if 3- be differentiated with respect to %
(y being constant), this is indicated by 72 (5) ana
denoted b}' 3’ x".

(2) Since it is also a function of y, it can be differ-
entiated with respect to y, x being constant. Thus we
have! 3

)
Oy \ox
(3) Similarly gy’i can be differentiated with respect

iz 0z
) denoted by 7.
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to x and y, so that when it is differentiated with respect
to x, y being constant, we have:

9 (0z 'z
(4) When differentiated with respect to y, x being
constant, we have:
d [0z 9%z
5;(3}) denoted by t
It will be seen that (2) and (3) are the same, except for

the order of the differentials in the denominators. ese
indicate the order of differentiation.

In (2) we differentiate with respect to y first and

en X.
In (3) we differentiate with respect to x first and

then y.
It can be shown that these are commutative—s.e., the
order of differentiation is immaterial—i.e., the result is the

same
0%z 0%z

Similarly there may be third and higher derivatives.

194. Total differential.

When a function of a single variable such as y = f(x) is
differentiated, the result is expressed by

d '
ZL=rw.
If this be written in the form
dy = f'(x)dx
the differential dy of the dependent variable y is thus
expressed in terms of the differential dx of the i.ngependent

variable x (see § 33).

We now proceed to find a similar expression, when zis a
function of the independent variables x and y; i.e., we
require to obtain the relation between dz, dx, and dy.

Let S A R R ¢ |

Let x receive an increment 8x.
L (caAL.)
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Let y receive an increment 3y.
And z receive a corresponding increment 38z.
Then z + 8z = f(x + 8x,y + &) FETI ¢
Subtracting (1) from (2),
sz=f(x+8y+8) —flx,y) . . (A)
If y only varies, and is increased by 8y, the result can be

expressed by
MY, ... oo ®
If x only varies and is increased by 8x, the result can be

expressed by
Flxit 8xpy)i vain anian il w0 44)
If (3) be added to and subtracted from (A)
dz={f(x+3x,y +8y) —f(x.y + &)} + {f(x.y + 3) —f(x,5))
b o LB %J_'i&;g:_f_(ﬁ ¥+ Y)px

k4
RICEEL IS

(1) Consldering the first part of B.
If x and 8y tend to become zero, then

Sz + 8%,y + Bgv) —flxy + 8y)
X

in the limit becomes the partial differential coefficient of
f(x,y + 8y), when x alone varies and y remains constant.

But in this expression 3y ultimately vanishes, and thus
it takes the form

f_(iii’&%’t [%3)

Thus it becomes the ial differential coefficient of
f(x, ¥), when x varies and y is constant,

; ..
"48., ax'

(2) Consldering the second part of B.
In the limit this represents the partial differential coeffi-
cient of f(x, ¥), when y alone varies,
oz

FO i oy
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Also, in the limit, with the usual notation, 3%, 3y, 8z,
become the differentials dx, dy, dz.
. substituting for the corresponding parts of (B) they
become
0z

3 - - . ©

This is called the total differentlal of z, where z is a
function of the variables x and y.

A similar expression may be obtained when z is a function
of three variables.

dz = %240,
ox

195. Total differential coefficient.

Let x andy, and consequently z, be functions of a variable
.
In equation (B) above, divide throughout by 3t
On proceeding to limits in the same way as was adopted
above with (B), then in the limit we reach the result :

dz _ 0z dx , 2z dy
dt  ox  dt +§y'dt caln
This is termed the total differential coefficient of z with
regard to x and y, these being variables dependent on t.

f y Is a function of x, and the total differential coeflicient
of dz is found by replacing t by x in the above, we get

dz _ 0z , 9z d
&=t oy dv
This may be obtained independently in the same way
as the above.

196. A geometrical illustration.

The following geometrical illustration will probably be
belpful to many students in realising the meaning and
significance of the above results.

The area of a rectangle is a function of two variables, the
len of its two unequal sides.

.

ig. 89 represents a rectangle, with sides x and y.

Let A be its area.
Then 4 =2,
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Let x be variable and receive an increment 3x, while y
remains constant,

Then A 434 = (x + 3x)y.

A DH Subtracting 34 = y3x, i.e.,
H  rectangle CGHD.
- The rate of Increase of 4
H with regard to x, y being
H  constant, is the partial differ-
H  ential coefiicient 22, i,
=

a "lll"lllll|Il|ll!l!llllllllillll!llI:=3 a_x(xj') = y‘

€ i

Similarly, if y be variable,
FiG. 80. x being constant

84 = the rectangle BEFC = a3y

and rate of increase =% =%(xy) =2

If both x and y vary, then by formula C the total differential

increase, in limit, when 3x and 8y proceed to zero, is
24 84

Substituting the values of the partial differential coeffi-
cients, we get 1
dA = ydx + xdy.
Comparing with Fig, 89, it is seen that the total increase
in area, due to increases of x and y, is rectangle
BEFC + rectangle CGHD + the small rectangle CF KG,

i.e., in the limit
yax + xdy + dxdy.
But dxdy is the product of two Infinitesimals and is
&aﬂﬂ%ﬁmﬁm itesimal of th\_ethsecgnd o‘;'dez. Ithlp:ﬂx be
in comparison wi x and xdy, w are
infinitesimals of the first order. { £
.. total differential Increase of area Is ydx -+ xdy.

Total differential coefficlent.

Now suppose y = 8 in., and at a given instant is increasing
at the rate of 2 in. per sec.
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Also let x =5 in., and be increasing at the same instant

at 3 in. per sec.

At whal rate is A increasing al the given instant ?
In this problem another variable, time (#), is introduced,

so that x and y, and consequentg A, vary with time.

The rate of increase of A is clearly given by the total

differential coefficient as stated in formula (D).

This becomes
aA _od dx 4 dy
& x'dt "oy d&t

We know that 21 =y =8
24
— = =5
?’ x
x
Zd
dy _
Y —.
:. substitating % = (8 x 3) + (5 x 2)

= 34 square inches per second.

197. Worked examples.

If z = tan-! J’-:, find the total differential dz.

If 2 = tan-1Z
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Substituting in formula D
-t AN
dz e | +J,i‘dx+xl +yldy
— Xdy — ydx
x4 %_'

198. Implicit functions.

Partial derivatives will, no doubt, have reminded
students of the method of differentiating implicit functions
as described in §48. The connection will be made clear
by a modification of formula (C), § 194.

Let z =jé:;, ) = a constant, say ¢,
Then its differentiatials equal zero,
.. Formula (C) becomes

2z &z
ATy az
. éya'y=—-éxdz
0z
o d ox
fd--E
o9

It will be noted that though the total differential co-
efficient of z is zero, this was not the case with the partial
differential coefficients.

Referring to § 48 it will be seen that the results are, in
principle, identical.

Worked example. Ifz=4x* —xy* 4 y* =0, find :!.

From above

dy _ _ (5 _ &2

gx x ' ¥

8z _ s
but é;-l?.z’—y

Wi, & 2
2y 2xy + 3y

PARTIAL DIFFERENTIATION 327
.. substituting
gy o TABah ey
dx~ T Z2xy ¥ 3
-
Ly =3y
Exerclse 41.

A. Find the ?artla.l differentlal coefficients gz‘ g—z. in
questlons | to x oy

1. 5= 2.2=cos (x* 4+9%. 8.2=. "'Ll‘

4 7=1 + 32 + Bxy* + 2. Mty

6. z = sin-1 f. 8. 5 = tan? f. T
&%

Y oz
8. If z =log (¢ + &), show that = + 5= 1.

B. Find the total differentials in questions 9 to 14.

ax
—._*J-’-._

9. z2=1% 10. z = ax* + 2bxy + o,
lI.z={ogx'. 12. z = x% + xP.
13. 3.=e", 14. z = a%ev,

15. If u=2x*43y% find du, when x =1, y =3,
dx = 0-01, and dy = 0-02. ki
16. If the law of a perfect gas be V = , where V

represents the volume, p the pressure, and t the absolute
temperature, find the relation between dV, dt, and dp.

17. If # = 2% —sin y, find 5%. and show that it is
equal to P

18. In the solid representing z = a* — x* — 2y* what
is the slope at a point of the curve along a section for
which y is constant? What is the slope at a point along a
section for which x is constant ?

19. The radius of the base of a right cylinder is increasing
at a given instant at the rate of an inch per sec., while the
height is increasing at 2 inches per second. At the same
instant the height is 10 inches, and the radius of the base
6 inches. At what rate is the volume increasing ?



CHAPTER XIX

SERIES.
TAYLOR’S AND MACLAURIN'S THEOREMS

199. Infinite series.

WHEN studying algebra the student has become ac-
quainted with certain “ series,”” as, for example, geometric
grogression or series, arithmetical progression, and the

inomial series.

In the first of these he will have considered the impor-
tant problem of the sum of the series, when the number
of terms is increased without limit, ¢.e., becomes “ infinite.”

Two cases arise:

(1) When the common ratio r is numerically greater
than unit_y, as the number of terms increases the terms
increase individually and so does their sum. If the
number of terms becomes infinitely great, their sum
also becomes infinite, 1.e., if S, represent the sum of n
terms, then, when # —> 0, S, —> 0.

(2) If, however, the common ratio be less than unity,
the terms continually decrease and the question of
what happens to S, when # becomes infinitely great
is a matter for investigation.

In this case it is readily shown that when #n —> 0,
S. approaches a finite limit.

200. Convergent and divergent serles.
In general when considering any kind of series, it becomes
a problem to be investigated as to whether
(1) S, approaches a finite limit when # — o, or
(2) Sa approaches infinity when # —> 0.
If a series is of the first kind it is said to be convergent’
if of the second, it is called divergent (Algebra, § 270, § 282).
There is also a third type of series called oscillating, but
we shall not consider it in this chapter.
For theoretical and practical purposes it is very important
to know whether a given series is convergent or divergent.
328
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There is no universal method of determining this, but there
are various tests which can be applied for certain kinds of
series. A consideration of such tests is, however, beyond
the scope of this volume. Students who desire, or need to
study, this important matter, should consult a book on
Higher Algebra.

n this brief treatment of infinite series by the use of the
Calculus, the series considered will be assumed, without
proof, to be convergent.

201. Taylor’s theorem.

( In tl)le binobr:ia.l t.heoremded it is 5ta.te;l dtils:ta tcl‘:;;gfunction
% -+ a)* can be expanded in a series o ndi ers
of x and ascending of a. Many other flmctiopn(;wun
be similarly expanmd various methods are employed
for this purpose. In this chapter, however, it is proposed
to investigate a general method of expanding functions in
Series.

Briefly, we shall see that {{fn-!_ h) can, in general, be
expanded in a series of ascending powers of h. Such an

ion is not possible for all functions, and there are

limitations to the application of the theorem which defines
the form of the expansion.

We will begin by stating the theorem which is known as
Taylor’s Theorem, and proceed afterwards to demonstrate
the truth of it.

Taylor’s Theorem.
h?

f(x + h) = f(x) + hf'(x) + |

+Ef‘"x+ e +L|£f"'(x)+ ... ad Inf.

The following assumptions will be made :
(1) That any function which will be considered is
capable of being expanded in this form.
(2) That subject to certain condilions in some cases,
the series is convergent.
That the successive differential coefficients, f1(x),

3
fnix;,jm(xj. .+« f7(x) all exist.

f'(x)
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In accordance with (1) we will assume that f(x + k) can
be expanded in ascending powers of h as follows:

f(x +h) = A+ Ah + A + AR 4 ... (B)
where the coefficients 4, 4,, 4,, . . . are functions of x
but do not contain A.

Since this is to be true for all values of h

let h=0.
Then on substitution in (1), we have1
Aq = f(x).

Since the series (B) is an identity, it may be assumed that
if both sides be differentiated with respect to h, keeping x
constant, the result in each case will be another identity.
Repeating the process, we get:
(1) f1(* +h) =4, + (44 x 2k)
+ (Adg x 3h%) + (A, x 4% + . ..
since f(x) = 0, where x is constant.
Simi ;i
Rt Sy iy ¢ il b
3) fMi(x + h) =3.214, + 4324} + . . .
and so for higher differential ooeﬂiclents
In all of these results put 5 = 0.

Then from
g ifu %) = 25,-1,
= 32.14
ﬁ((:)} — 4392, 13-1.
fidk; A,. =ﬁ{x) : : ’
4, =T
Aa =f!—n3(x

Substituting for these in (B) we obtain the theorem, viz.,
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f(x +h) = f(x) + J")"(%) o }-2 ) /u(x)
fm(x) + .

202. Application to tho binomlial theorem.
To expand (x + h)» (by Taylor's t.heorem).

h»
R TG E

flx+h) = (x + h)»
= f(x) + hf*(x) + rz fﬂ(x] + 13 fm{x) R 1ot
When A =0,
{x =Ly
x) = nan-1

(x) =n(x — 1)an-2?
(x) =n(n — 1)(n — 2)xn-3

Substituting in Ta).rlor's'expa.n.sion
(* +hr =2 +h.nx-! + h;
3 L=

= %-n(u — 1) —2)2m-3 4 , ..

n(n — 1)xn-3

or with the usual arrangemﬁe-nt
(x + h)" = x» + nxn-1h + "(" = l)x- 2py2

ﬂ(ﬂ'—_ I){.I'l xn 3 + -

203. Maclaurin’s theorem (or Stu'lmg s theorem).

This is another form of Taylor's theorem. It is obtamed
by putting x = 0, and for convenience replacing h b
'I'Lls' ,:mble since Taylor’s theorem is true for all v u&s
of x

> et x=0, and h ==z
Then Taylor's theorem becomes

flx) = f(0) + xF1(0) + 75 F(0) + .

+r' f©)...

In this form f"(0) means that In the nﬂ' differential
coefficient of f(x), x Is replaced by 0.
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204. Worked examples.
Example |. Expand log (1 + x).
Since f(x) =log (1 4+ ); f(0) =log (1) = 0.

S fiA) = r_l‘—_;: J10) =% =1
o) = = g R0 = —1= 1
o) = e fmO) =12
1.2.3

¥ (x) =— ("1'-1-;::)"' Jo0)=—|3
Jrte) = (= =t s fo0) = (— I =L,
Substituting these values in Maclaurin’s series, viz.
f(x) =log (1 + ) = f(0) + %/*(0) + -Ef“(ol R
we have A
log (I +x)-——-x—-%+—§—§+... + (= l)p=txm .,

It should be remembered that the base employed
throughout has been e. Consequently the above series
may be used to calculate logari to that base. From
these the logs to any other base, such as 10, can be
obtained.

Example 2. Expand sin x in a series involving powers

of x.
flx) =sinzx. s f0) =0
fi(¥*) =cosx =sin (x -+ ;) S 0 =1
fH(x) = —sin . s f3(0) =0

fM(x) =-—cosx=sin(x+§2f). S H0) = —1

» - . 0 .

@ =sin(x+5). f:'(O) —sin %,
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Substituting in Maclaurin’s series we have

. MW
4 2t oA et et i
mx=x_E+E_E+-..+ !1

In this series x is measured in radians,

If now we put z = 1, we may readily calculate the value
of a radian to as great a degree of accuracy as may be
desired, by taking sufficient terms of the series. It will
be noted that the terms decrease rather rapidly, or the
series is said to converge rapidly.

It should be further noted that the series contains only
odd powers of z, 1., it is an odd function. The series for

cos z will be found to contain only even powers of z, i.e.,
it is an even function.

Example 3. Expand e* in a series involving powers of x.

o g L
oo x) =€ “s = 1.
JH(z) = e S fB(0) =1,

Substituting in Maclaurin’s series we get 1

e, rejlacn of
el=l+x+-[+ -—+-‘+---
et g 3
Compare § 83. -
205. Expansion by the differentlation and Integration of
known series.
The method may be illustrated by the following example:
By division.
R — %0
i—'_'}'-_xi =] 2 + %t B iins
It may be proved that when a function is represented

by a series, and the function and the series are integrated
throughout, the results are equal.

l_iié‘ -_—fdx —fx’dx +fx44x e
L

‘ -1 x?
s tan X—X—-§+—5——-7+...
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This is known as Gregory's serles. It is convergent
and can be used to calculate the value of =.

Thus, in the series let x = L.

Then tan-! (1) = g
Substituting in Gregory’s series
o ) migaly § 1y
T oA Joping iy v

Hence, by taking sufficient terms, the value of n can be
found to any required degree of accuracy. It converges
slowly, however, and eons:guentlﬁe other series which
converge rapidly are employed for the calculation.

Exercise 42.
Expand the following functions in powers of x1

1. (a) sin (@ + z); (b) cos (a + x).

2. eoth, 3. tan-! (x + A).
4. log (1 + sin x). 5. cos x.

6. tan x, 7. log (1 + &2).
8. a=. 9. ek,
10. estas, 11. sec x.

12. log sec x. 13. sin-1zx.
14. log (1 — x). 15. sinh x.

16. e*sin z. 17. tanh z,

CHAPTER XX
ELEMENTARY DIFFERENTIAL EQUATIONS

206. Meaning of a differential equation

A differential equation is one which involves an independent
variable, a dependent variable and one or more of their
differential coefficients.

These equations are of t importance in Physics,
Engineering of all kinds, and other applications of Mathe-
matics. Although it is not ible in this volume to give
more than a very brief introduction to what is a big subject,
the element:rar forms which are dealt with in this chapter
may prove valuable to many students,

xamples of differential equations have already appeared

in this book, as, for example, questions 49-54 in Eg;;erc:se 16.

Again, as illustrated in § 100

It o= 86 he dns orae(l

or dy = 2xdx o s waadt Pl
we obtain by integration the relation :

Yaat oty o it (d)

(1) and (2) are differential equations, and (3) is their
solution. Thus a differential equation is solved when, by
inte%ration, we find the relations between the two variables
x and y.

Thisy process involves the introduction of an undeter-
mined constant. Thus the solution (3) is the general
equation, or the relation between y and x for the whole
family of curves represented in Fig. 28.

207. Formation of differential equations.

Differential equations arise or may be derived in a variety
of ways.

For example, it is shown in mechanics that if s be the
distance passed over in time t by a body moving with
uniform acceleration, @, then

: a:
TR Bliridy et boittas Sorll)
335
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By integration &
ﬁ = qf + €y . . . . (2)

Integrating again s=4a' +ct+¢3 . . (3)
Of these (1) contains a second derivative, (2) the first
derivative, while (3) is the general solution ofeél) and (2).
Differential equations may also be formed by direct
differentiation. Thus, let

£=z~‘+7’x’+3x+7. S
then £=3x'+14.z+3 fyvgduh. =g

%=8x+14. o PN

- - - - - . - - (ﬂ
(a) is called the complete primitive of (d).

208. Kinds of differential equations.
(A) There are two main types of differential equations:

(1) Ordinary differential equations, involving only
one independent variable.

(2) Partial differential equations, which involve
more than one independent variable.

In this chapter we shall concern ourselves with (1) only.

(B) Orders. Differential equations of both types are
classified according to the highest derivative which occurs
in them. Thus of the differential equations (b), (c), (4)
in § 207:

(b) is of the first order, having only the first deriva-
tive.

(¢) is of the second order.

(d) is of the third order.

(C) Degree. The degree of a differential equation is
that of the highest power of the highest differential which
the equation contains after it has been simplified by
clearing radicals and fractions.
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3
Thus the equation (g) EE 32{ =0 is of the second
order and third degree; s = ,Jl + (dxdi )'ax (§162) is of
the first order and second degree.

209. Solutions of a differential equation.

A solution which is complete or general must contain a
number of arbitrary constants which is equal to the order of
the equation. Thus in §207 (3) contains two arbi
corgstants and is the solution of (1), an equation of the second
order.

Solutions which are obtained by assigning particular
values to the constants, as in Exercise 16, question 54, are
called particular solutions.

This chapter will be concerned only with equations of
the first order and first degree.

Differential equations of the first order and
first degree.
210. Since solutions of differential equations involve inte-
gration, it is not ible in uence to formulate rules,
as with differentiation, which apply to any t}ge of
equation. Some indeed it is not possible to solve. But a
large number of equations, including very many of practical
importance, can be classified into various fypes, solutions
for which can be found by established methods. Some of
these types we will proceed to consider.

211. I. One variable absent.
There may be two forms:
(1) When y Is absent.
The general form is dy = f(x)dx

and the solution is y= ] f(x)dx.
This requires ordinary integration for its solution.

Example. Solve the equation
dy = (x* + sin z)dx.
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Then y=/{x‘+sinx)dx.

S y=13#x* —cosx + c.
(2) When x Is absent.
The general form is

d
T =10
or dy = f(y)dx.
This may be written in the form i
dx _ 1
dy f‘gy}
or dx = 2
1)
when f dx = f ]?y)
The solution is then obtained by direct integration,
Example. Solve the equation :J; = tan y.

dx 1
Heuge dy = @any
Fopatly, )
tan y°
¥ siny °
S o x=logsiny + ¢
212. Il.  Variables separable,

If it is possible to re-arrange the terms of the equation in
two groups, each oontamm_F only one variable, the variables
are said to be separable. Then the equation takes the form
R F(x)dx + f(y)dy = 0
in v;ltuch F(x) is a function of x only, and f(») a function of
y only.

The general solution then is ;

[rixex + [fingy = c.
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213. Worked examples.
Example |. Solve the differential equation

xdy + ydx = 0.
To separate the variables divide throughout by xy.
dy , dx _
Then 5’ + X = 0..

. [ f%
oo f;'{‘[-x-—-o
logy + log x = ¢,.
If the constant ¢, be written in the form log ¢

Then logy + logx =log ¢
whence Xy =c.

The factor x!v used to multiply throughout to separate
the variables is called an integrating factor.
Example 2. Solve the equation
(1 + z)ydx + (1 — y)xdy = 0.
Multiplying throughout by xlj,-' we get |
1 4= Ly
FEELEp T dy =0,
1 1
or (;+1)dx+(;—|)dy_o.

1 1
[ +1)ax +[(; ~1)dy =c.
logx +x+logy —y=c.
or logxy + (x —y) =c.
Exercise 43.
Solve the following differential equations:
&y ol L g ) dy
G R ke R Wilon 18 e
4. (1 +y;dx — (1 — x)dy =0,
5. (x + 1)dy — ydx = 0.

6. sin x cos ydx = sin y cos zdy.
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7. (y* — 2%)dy + 2xydx = 0.
@ Ykl

Ly =T
9. 2ydx = x(y — 1)dy.
10. y* +sin22. 2 = 1.
1 s ol dy
11. m%’)—._ . 12. 37 = 2.
13. xVy L ldxd— yWa —Tldy =0.
1+20 & dy _
14. 1+y-xydx' 15.‘5-21:3'.
16. The slope of a family of curves is —2, What is the
equation of the set? L

214. lll. Linear equations,
An equation of the form

d
&Py =0,

where P and Q are constants, or functions of x only, is called
a linear differentlal equation.

It is so called because y and its derivatives are of the
first degree.

It has been discovered that if such an equation is multi-

ied throughout by the Integrating factor efPéx, an equation
ghobtained which can be solved. iy
When multiplied by this factor, the equation becomes 1

&y
e/ris(3, + Py) = Qefres,
It may now be seen that the integral of the left-hand side

is yelPéx, This is evident on differentiating ye/?%, There-
fore the solution is :

yeles = [Qefrrdx . . . (A)
The procedure in solving this type of differential equation
i(sAto begin by finding the integral dex, then substitute in
kxamples will illustrate the method more clearly.
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215. Worked examples.
Example |. Solve the equation

d
-2 —2y=1
Transforming this to the general form, viz.,

d
tPy=0
we get

d: % 1
2; T T T
Since the integrating factor is /P4, we proceed ﬁrslt to
find [Pdx in this case, noticing that P =1 = 73,0 = [~ 5
Comparing with the equation above we have,
x
Jpax = ;‘1] 11-—x-f)"
=flog(l —~
=log VI — 2%
. integrating factor = ¢ ¥VI=# = /T 44,
Using the form (A) in § 214, we have 1

WI=a = [ A x VT

Lo dx
VT =0

=sin-! x 4 ¢.

.. the solution is:
yVI —x* =sin'x +c.

Example 2. Solve the equation
cosx% +ysinz=1.
Dividing by cos z,
d
d—; -+ y tan x = sec z.
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Comparing with the type equation
P = tan x,
]de =Ita.n xdx = log sec x.
s efPls = gogmos — goc x,
Using formula (A) and substituting

ysecz=/seczsecxdz

= / sec? xdx

=tanzx + c.
.". the solution is 1

y=cosxztanzx + ccos x
or ¥y = sin x + c cos x.

Example 3. Solve the equation
}i’ + 2 =1 + 22,
Comparing with the type equation
P=2x;Q=1+ 2
]de = ]“zdx = x,

mtegratmg factor is &=,
", using formula (A) and substituting

ye=' =](1 + 2% dx

- [ (¢ + 2x%)dx
= ze¥ + ¢.
*. the solution is :
ye*' = ze* + ¢
or y=x+ ce*.
EXAMPLE 44,

Solve the following differential equatlons'
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d
3.£=y—x. 4.dx+xy—-x

d a
5.£+ay—-e". 6.Ji+ytanx=l.

dy ay x+l d
7'dx 8.tanx£=l+y.

9. esdy = l - z'y)dx 10. zdy — aydx = (x + 1)dx.
11, cos®z y +y tan x.
12. x J’ +xy+ 1=0.

216. IV. Homogeneous equations.
These equations are of the form
P+Q%=0
where P and Q are homogeneous functions of the same
degree in x and y.
Then Pisa function of %
Such equations can be solved by using the substitution

%:v or y=ux

Thus the two variables x and v are separable, and the
solution can be found as before. ’ .
When the solution has been found, using these variables

substitute%: for v and so reach the final solution.

217. Worked examples.
Example |. Solve the differential equation

(z+y]+z.?=0.

In this example P and Q, i, x +y and x, are each
functions of the first degree throughout in ¥ and y.

Let % =v ofr ¥y =uz
Then dy = 1dx + xdv (d.c. of a product)
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Substituting in equation above

(x+vx)+x.5%t——xd—”=0.

S (2 4+ vx)dx + x(vdx + 2dv) =0

and xdx + 2vxdx + x%v = 0,
Separating the variables
(1 + 20)dx + xdo = 0.
- dv dx _
142 B0
Integrating,

$log (1 +20) +logx =¢,

and log (1 + 2v) + 2log x =¢,.
S 231 4+ 20) =c.

Substituting 21+ 2%) -,
.", solution is X4+ 2y =c

Example 2. Solve the equation

(x* — y¥)dy = 2xydx,
Put

y=uvx
then dy = vdx + zdv,
Substituting
(x* — v*2%) (vdx + zdv) = 2vx%dx.
Dividing by 2*
(1 — v*) (vdx + xdv) = 2vdx
whence (1 — v)xdv = v(1 + v¥)dx.
Separating variables
1—0? 7 dx
v(I + 29 z’
.". by partial fractions
v l14v %'

ELEMENTARY DIFFERENTIAL EQUATIONS

Int X
tmglogu —log (1 + v*) =log z + ¢;.

2 log i—-_f_—”, = log x + log c.

3¢5

replacing v byj—;

whence
and the solution is

Exercise 45.
Solve the following equations:
. (x +y)dx + xdy = 0.
%+ y)dx — xdy = 0.
% +y)dx + (y — x)dy =0.
% — 2y)dx +ydg =4,
. (2 +y2 =22y 7.
=23 é =0
. (¥* — 2xy)dx = (2* — 2xy)dy.
- x’:g+y'dx+ dy = 0.
10, s + oy 1 4% = 0.
0. + (2 + 2%)ay = 0.
11. —2y)?y+x4)z =0,
218. V. Exact differential equations.
The equation Mdx + Ndy =0
is called an exact differential equation, when it is formed
from its complete primitive by simple difierentiation.
Thus, if the complete primitive be

o oo

Lo &

XB43xwtyPr=c. . . . (A)
Then, on differentiation
(322 + 6xy)dx + (32* +3y¥dy =0 (§198)
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This is an exact differential equation. Consequently
(1) (32* + 6xy) is the partial differential coefficient ;:, and

(2) (3x® — 3y%) is the partial differential coefficient 2*.

The first is obtained by differentiating (A) with x variable
and y constant, the second by differentiating with y variable
and x constant.

In general the result is of the form

g;—‘dx+g;dy=0 (§ 198)
Comparing with the form
Mdx + Ndy = 0
it is evident that Mo
ox
o
N=5

219. Test for an exact differential equation.

In § 193 it was shown that if o, %‘ be the first partial
differential coefficients, that of the second derivatives are

8 (u @ fou
ay(m) ™ &%)
These are denoted by
u *u
dydx axay
It was further shown that these are equal.

Consequently, if the equation Mdx + Ndy =0 is an
exact diﬂerentll’al equation .

2 2
5y M = 5 (N).

. if the function M be differentiated on the as-umption
that y is variable and x constant, and N be differentiated
with x variable and y constant

the results are equal.

and
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Thus, in the example above
(3x* + Bxy)dx + (3x® + 3y¥)dy =0
5y (38" + 6) = 6x

a
3z 87" + 3y") = 6.
Hence the equation is exact.

220. Solution of an exact differential equation.

The integral fde. i.e., M, integrated assuming x
variable and y constant, will contain those terms in Ndy
which contain x. Hence the following rule:

(1) Integrate [ Max, assuming y is constant.

@ 1SS M el et

Add the resulls, bul the terms common to both are written
down once only.

Thus in the above example
[ (32 + Bxy)dx = 2 + 3x%y
[ + 3yndy =3aty + 5%,

Since 3x% occurs in each, it is written down once only.
.. the solution is

43y P =c (see § 218)

221. Integrating factors.

Equations which are not exact may often be made so by
multiplying throughout by a suitable function of x and y.

Such a factor 1s an integrating factor (see § 213).

It represents common factors which have cancelled
out during the process by which the equation was obtained
from its primitive. This factor is not always easily
obtained. In some cases it may be found by inspection;
sometimes by the method of trial; in others there are rules
for obtaining it. The work in this chapter will be confined
to the simpler cases only.
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222. Worked examples.
Example |. Solve the differential equation
(x +y)dz + (x + 3y)dy = 0.

g ying the test of § 219 the second partial differential
cient in each case is 1

*. the equation is exact.
Applying the rule of § 220

(% + y)dx = §2* 4+ zxy
(* +3y)dy = zy + §»?
.. the solution is

2+ xy+iy=c
or }x' +2?;r -+ 3?’ el

Example 2.  Solve the differential equation
(85* — 102y + 3yN)dx + (— 52* + 6xy — 3y’)dy = 0.
Testing

5503 — 101y + 3% = — 10z + 6y

o (— B2 + 6xy — 3% = — 10z + 6.

Hence the equation is exact.
Solving by method of § 220

/ (62* — 10xy + 3y%)dx = 22® — B2ty + 3xy*.
(= 62 + Bay — 3y")dy = — b2y + 3xy* — 5>
Writing down the common terms 3xy* and — 5x% once
only the solution is
2x® — 5xty + 3xy! — y* =c.
Example 3. Solve the differential equation
2ydx + xdy = 0.

Applying the test, it is seen that this is not an exact
equation.

Multiply throughout by the integrating factor %
2 1
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This is exact.
Solving f%dx=210gx=logx‘

1
[ J;dy =log y.
.. the solution is
log #* + logy = ¢*

or %% =log ¢*
or Xy ==c
Exercise 46.
Solve the diﬁerential equations,

+$¢+ Jdy = 0.
2 2x+y+1) +2y—1)dy=0.

e s — ydy = 0.
@y = y’yfif 295# oy At S

8. ydx (x +9%)dy =0 (Integratmg factor ?)
7. 2dy — ydx = xdx. (Tntegrating factor %)

8. %(1 — »¥)dy + ydx = 0.
9. (x* —y%dz + zydy = 0.
10 —x 5

INTEGRALS OF STANDARD FORMS AND
OTHER USEFUL INTEGRALS

I. Algebraic functions.

) fr'dx=”_li_lxﬂ+1.

) f % g, .
3) f atdx = a* x log, e.

@) fm -,
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II. Trigonometric functions.
(5) ]smxdx = — COS %.

]smazdx ==—-—loos¢x
(6) Icosxdx = gin .

[eosardr  =1sinaz.
(7 jta.nxdx = — log cos x = log sec .

]tanaxdx =£logseca.x.
(8) ]coudx — log sin 3.

flogcotaxdx=%logsinaz.

III. Hyperbolic functions.
) f sinh 2dz = cosh z.
]sinh axdx = %cosh azx.
(10) [coshxdx = sinh z.
fcosh axdx = é sinh ax.
(1) ftmmm log cosh x.

tanh axdx = —log cosh az.

(12) feoth xdx = log sinh z.

fcoth axdx =-logsmhax.

IV. Inverse trigonometrical functions.

(14) 11/2-"“5 = sin-! £ % or — cos? :—.
(15) dx 1 2 % i ¥

SEP mgtenoas g o o
dx D x 1 1 %
(16) [;v;,__a =lsect % or —Loosec

¥
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Inverse hyperbolic functions.

(17) f\/—’_:%_-_;’ o= sinh-lgor log {x + V¥ +af).

(18) ] V;_}f?. = cosh"g or log {x + Vx* —a?}.

(19) f-—--- -—!tanh‘-or --log“""‘

a—x
dx 1 5 x—a
@) la— S -coth E or 2—61051 -

1 -1"
ol e

1 x
(22) [ ooy~ gy xR cosech-! 7 O .
w—-—
a2 {eht_t/f_ﬁ},

a x
dx 1 bx
{17)(3) f\/s-’;' j-_? == 5—5“11‘]'1 ‘,
e é og {bx + V2 + a%)
1 bx
8)(@) [ iy = g costis 2
O i
b
9@ [T =g, tant %
l 1 a_'l: bx
2ba 8 - %
1 b
0@ [pa p == gyt %
I 1 bx -
%ba bx +a




352 TEACH YOURSELF CALCULUS
@) [y = — Lsecht 2

a a
=_%1og{a+\/m'}
ene) [7apm = — gt
=_;log{a+vm}

Squares of the circular functions.
(23) [sin*zdx = }(x — }sin22).
(24) [costxdx = (x + }sin 22).
@5) [tantzdz =tanz —=x.
(26) fcot'zdx = — (cot z + 2.
@7 j sec?xdx =tanz
(28) [ cosec? zdx = — cot .
Other useful Integrals.
@9) [Va=7ds =L sint % 4 v =,
(30) IVF —a' =}V —a — 3 cosh*‘%
or }xVa¥ —a* —
(31) I\/mdx = VAT B + G sinhr 2
or }xVa¥ a4 + %' gityvete ":+“.

(32) fsecxdx = logtan (§ +5)
or log (sec x + tan z).
(33) j cosec zdx = log tan ;

(34) flogzdx =z (logx —1).

logx——-——-——+ |.:'—a_

ANSWERS

[ T Exercise |.
1. — 1,1, 1,17, 2a* — 4a + 1, 2(3.‘.8,}!_4{,_‘_8:, T
. 17,0, — 6, aa + 6), E= _“);il_‘h_“_l. 0.

L0t -~3—1.

2

3

4. 9, 961, 9 0601, 9-:006001, 6-001.

6. 1,28 1414 . , ,

6 0 =1L — B Rty W

;3(!+81]'+5{l +3)— 1. 8 2%.3% + 2.3 + (39

1) 2* + 328, 8% + 3x(3%)F + (32)%.

2) 822. 8x 4 3x(8x)? + (84)%.
3) 32 4 3x(8x) + (Sx)L
10. (1) 2x* + 4hx + 2h%. (2) 4hx + 243,
(3) 4x + 2h.
p. 31 Exercise 2.
1. (&) ¢ (b) values less than 1;
e) 1,195, 2. 65,10, —2, —1, —} — §;
infinity
¢) the graph is a hyperbola similar to that of Fig. 3, but
the y axis is at » = L.
2. (@) 31, 3:01, 3:001, 3-000001; (&) 3,
3. (a) 5, sb] infinity.
4, (a) 11, 5, 3, 2°5, 2°1, 2-01; b) 2.
5. 1. 8. 2. 7. 3, 8. } 9. 4.
p. 43. Exercise 3.
1. 15; 13 b
2. (a) 2'5; () — 08; @ — 4
3. y= 12% + 4. 8s
4. 8s = 32¢ x (3f) 4 16(31)*; 5 =32t + 16(30);
1) 67-2; 55?2 65°6; 8 (3) 6416;
4) 64'016; ft. per sec.
8. 6.
6. 3y = 3x°(3%) + 3x(3x)* + (32)*;

g = 32 + 3x(8x) + (3x)%; 12.
1

T ir“‘m % TE e et el 1)
slope 135"

8. (1) 2; @) 2. 9. (1) 12; (2 8.
™ (CAL.) 353
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p. ‘56 Exercise 4.

1. 72%; 6; 4; 006; §»*; 602%; 4x%; 4'62; 322,

2. 4bs*; 3 apxra- 2ax1*-1; 2(2b 4 1)#®; 8rz.

3. 6; 064; — 3;

’ A1 gredl gt

4. i" l” i-'. *”l *‘ » ”+ la r_l_lr E‘a i“x.-
5. a.s - 6. 203 2_ 8. 4mrd,
bt - W
10, 0%, 16 _15 —24

Bt pi 3;!;;3‘;““' kTN

YT Pl Seis e
1L 192 5 i —pae 12— 3 18 15,30.
14. 24. 15. — 002, — 05 -2, -8 16. — a
17. s = L. 13.3-.7'3. 19. = . 20. x=4
p. 60. Exerclse 5.
1. 12% 4 b. 2. Oz's-f-l. 3. le;-}-ﬂ:—l.
4.2+ % b —a+4 6 -5+
7.6—2x 4908 8. 7‘;. 9. 4+ fi.
10. 5+82t. X 6&1—4. : 12. 3ax* 4 2bx 4.
QU - Sk 2

13. 22 ;,. 4. o7 (1 le). 15. 3(1 + 2),

1 1
L e -—

18. B:x—i. 19. x = 4 20or — 2.

20. 2, —1,2. 2. s =4 lory = — 1.
p. 62. Exerclse 6.

1. 12% + 5. 2! 4 27 4 §. 3. 92 4 2¢ —

4. 82* 4 102, izx'+333'* + 3:'

7. 828, 8. +12x’+ﬁx—8 9 422,

10, 42® — 2x 4 2. 11. 342 12, 242° 4 62* — 22% — 3.

13. 4%, 14. 182* + 26x + 0.
16. (2ax + b)(px + q) + plas* + bx + o).

1
186. Wi 2 — D@+ 2+ 1)+ 2V 42+ 1)

( + VE{(2x — (22 + 1)
17. 3Vz(Vz + 2)(Vx — 1) + 2(2V% + 1).
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p. 65. Exercise 7.
S . ...
: (ﬁ_i"; I (T=3x
S @+ “E=or
g )i g, ¥ —8%
" (x +8,55" x —1717"
-— -_—
X - -
l..l. —-2;i—. 12. 7-3—(7;-:1_)‘.
15 10 et
15, Bt — 10% g =1
"B Fr—1 i Iy
17, Wi T W Yo £
$ Y
— (%
waEat ol
pi7l Exercise 8.
1. 4(2x + 6); — 20(1 — 62)*; (3% -11- 7+
Lottt 3z
3. 105(* — 4)*; — VI =3 e
P . Lt
(1 T 240’ vl T V1 —
5 == '2{4- = x)*
o 2x —
CE=D )l' a+ x')l :
x —
- @ —z')! 2V{x(1 - s)'} s x)‘(l — z}i
8 1 —x- 2 -.F
"0+ xi 3[#' + I)§° val T ,a' (a* + )

10.

W RS, Bt
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#(2a* — 2%) ol
e 2(x + o (1-2)
12 3" . (l + x} 13. L =1
" 80 + x'}' /1 F 2x (1 + A AT
14 + 3 4x — b2
" 2(2s — 3x+4) é 21—z
15 . 3{’ b 52 l)
'u-ﬂvhu'Vm+s
TR 4o 17. ~ B+ %) — =
© Tz + 18y ; 2v(f'+y’}+:v'
- »=
18 - 5= 2 19. -;,_,.
dy  —2¢+38_
20. ;. 3y + 4 tat (1, 1)
p. 76. Exercise 9.
- 2): 2(3x — 1); 6.
l 3 x:‘ i; )2b[2£ — l}:l'"; 2b(2b — 1)(2b — 2)x®-3,
3 20x’—9x'+4x— 1; 602® — 182 + 4; 120x — 18.

4. 50x% — 1222 4 B5; 2002° — 24x; 6002* — 24,
2 6

B,
6. —pip — &

¥ ST

” ml s 4_,'[', 8‘1-

1 -1

LBV ==t V(2x+1)' JE T
2,6 _2n

St 1 5~ Tl &

— 1"

in 1
o. & {@= Lpn+ gl
int on the curve.

10. — 5; the lowest
11. — 7: 2; 0 and

12. x =8, ¥ = 2; 2-5"—0'25 (the lowest point on the curve).

p. 100.

Exercise 10.

' . ST D
1.%-2:-2. —4,—20,24; x=1; 57 is positive;

point is a minimum.
.~-=8—2z 31, —1-38;

% = — 2; minimum.

1'6; negative; maximum,

# = }; maximum.
x = — }; minimum.

M.mvalue-—lﬁx:-z ma.xva.lue+16:-—2.
Max. value 5, # = 1; min. value 4, ¥ = 2.

1 F o e, (8

10.
12.

15.
16.
17.
18,

©=1 oo

11.

13.
15.
17.

19.

21.
23.

25.
21.

29.
31.

33.
35.

37. —
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3) Max. value 12, x = 0; min. value — 20, r = 4.
4) Max. value 41, = — 2; min. value 9%, x = §.
(5) Max. value 2, x=-3‘ min, value — 2, ¥ = 1.
.Ma.xva.lued-xno min. value0x=-2.
. Max. value—l-.x-: — §; min. value 4, ¥ =
-l 8. 65-29. 9. height = diameter.
2'52 ft.; depth 1-28 ft. 11, s =3 + 48t — 1-6*; 6-6.
4-5. 13. 4'42 in. (approx.).
. 1'56 ft. deep, 05 ft. broad.
) 2= —3. (2) = 2. (3) » = — .
Max. = +4 0-385; min. = — 0-385; Eﬂdzent-:- - L
5 =0 18. 225 3] secs.
Centre of beam.
108. Exercise 11.
3 cos . 2. 3cos 3z,
5 x
. — §sin 9 4. }sec.? 3
0°6 sec 0°6x tan 06x. 6. — } cosec 'E cot ;
. 2(cos 2% — sin 2x), 8. 3(cos 3x + sin 3x).
. sec x(tan x + sec 2). 10. 4 cos 4x — b sin bz.
— §sin §0 + } cos §6. 12. 2cos (2x+’-2')
sin (3 — 7). 14. }c.osec (a — ix) cot (a — §2).
3 sin? x cos . 32 cos
— 6 cos? (2x) sin (2%). 18. 2x sec (x') tan (2?).
- gacd =
s;c‘?%‘{:l—; x) 20. n(a c:s nx — b sin nx).
a sin z. 22. sec? S
-—2si.n(23'+'—;). 24, 2 sec?® 2¢ — 2 tan # sec?z.
2x 4 § cos §x. 26. aisin :.
P siny — xcosx
sin ¥ 4+ z cos =z, 28. - pamm
- 1
x sec? x + tan x, 30, tﬁn—’—---—-:—;‘a—f.
] p—
Aeec s - anx 32. 2 cos 2% + 8 cos (2x)%.
— 6x cos? (x7) sin (2?). 34. 2x tan x 4 2% sec? x.
— b cosec? (b + 1). 36. — 6 cot 3x cosec? 3x.
sin x .
e s . ' - ' % -
e d 8. 2(cos? 2x — sin? 2z)
0. 40. 4 sin x cos .
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sin # 2 si .
e eo 2 T :‘: Vi . ) VT Fcosec,
43. m;‘/_._—fn‘i:“ - 44. 2x(cos 2x — x sin 2¢). L% N;‘fx‘f—_l' @ 2{73(1 ey
45. :x(ooa 25;"2: - 2" 46. sinx 4 cos 2. i: :a: f_—lr-_iflz (;)} _1_:?
sin ¥ 4 x cos z sin # cos #(2 + sin %) a H v T
47. W—. 48. T+ sina)? A 7-'1__-1 x .;l
o :ecta:x p: 60. sec #(2 sec*  — cosec? #). i 1_—? ::: ﬁ., tan »
15. (a)f(:)—tan"x+—x1 sec*x¥sin~'x +
p- 1l6. Exercise 12. Vi=a&
1 Max,»=(; min,¥=—7g 2 Max,z=70 p. 136. Exercise 14.
3. Max., » = 5. 4 Max,x=T. 1. (a) Be. ®) e =l © ﬁ; eV
6. Max., # = tan! 2, 6. Max., x = E or sin"13, 2. (@) — 2e-%, () 1— g‘ i, (6) — 2¢8-32,
7. Max. 1'54/3 when # = §x; min. — 1'5V/3 when # = 4m. 8. (@) —pe™ (b)) g~ () ae=+s,
§ Mot sbimcingem - W i £ =V = <@l TR, © 2.
" b) (1 — x)e™. (2 — %),
e oot L 5 @ g(f 49?). o) ﬁ-(sm’iﬁ,mx; @ = 10
1
L (@) =i ®) = 7. (a) 2=log, 2. ®) W-La (c) cosx X ea=,
p .'lﬁ:: ‘/f-_l g 8. fa) #-1a*(n 4 xloga).  (b) 2a*+1loga.
2. @) p—yi ® oo ) — sin x . eos, .
€ -1 0. {a} 2bxa* log a. ®) (@ + b)*log (a + b).
8. (ﬂ) El_'__::; tb) ———m 6) 8 sec® ¥. (b) - + b
7 . 10. (@) =. 2
el PV gy i “27?:‘—= u()x ®) s i
= sin- T ~ M P
5. (a) S m"+ﬁ. () — W;—Ti. % i
3 g - 12. (@) 1 + log =. ®) P_Lx o
6. @ Ve —w - ) 13. () cot x. © = tanz.
1. (@) ﬁm: ®) 2xtat;"s+1. 14. (@) CEe ® 5 T
=3 : - b
& @ V=7 O 6. @ ZETT ® 53V

1 2 1 28 e(2x — 1)
9. (a) Y ®) oy - g o 16. (@) oo ® w1 R e




17.
18.
19.
20.

21.
22.

23.
24.

—a 2

%@ Ja—w ® e

26. (a} a%", g%, a'e™, a"e=.
(b) a?e~*=, — a% "%, ale~*, (— 1)"are~*.
) TS T 1 x 358 (it a=
5} T si: _;.i' » 24 » P .

p. 149. Exercise 15.

1. (a) } cosh ;. () 2 cosh 2x. {c) 4 sinh & F

2. (4) asech?ax. (®) }sech‘x
(¢) a(cosh ax + sinh ax).

3. (a) — :,cosh & (b) sinh 2z, (¢) 3 cosh?® x sinh z.

4. (a) acosh (ax -+ b). (b) 4x sinh 223,
¢) na sinh"-! ax cosh ax.

5. {a} cosh 2z, (b) 2 sinh 2. (¢) 2 tanh » sech?® z.

6. (a) ainl? 2% (b) x cosh z. (¢) tanh x,

i Ea) 32* sinh 3x 4 34 cosh 3x. &) 1.
et e

* L]

8. (a) WT“TT‘_; &) 2. : (¢) sech? xe:" A

SOmrre Omwm 9 Sl +OVIA+ )

10. (@) sec = (b) sech # (c) sec z.

o B
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(@) 2xe**(1 + 2x). (&) — ake-*(sin kx — cos kx).
@ “E =, (5) § cot .
(@) 3'(11 + log #). & 2—\7;‘1—.:1
(@) & c" (b) cos x (1 + log sin x).
(@) LA (b) e*=sin 2(2 cos # + asin 7).
'\/x{a.: 2’ 4
(@) 6x.a* loga. (b) @ F &9
@ A A L M
+T= g ) Vi—ew
(@) e={a cos (bx + ¢) — bsin (bx + )}

(b) — e **{a cos 3x + 3 sin 3«
(c) —c"’{ism(m: + §) — mcos (mr +;)}

ANSWERS .
11. (a) sech z. (b) sec z. @y ’;'._
4
% ‘“’1/27(2:+1 ”T+ )
13. (a) 1-3--. ®) § sec #. (¢) §sech ».

14. (a) log {’..‘t‘\_/‘? + 4} ® log {x + \/x‘ - '9}
© tog {#1.F ‘/*"_i_”}_ @ tog {3+ \/bx- =0

Ik .
(0 llog -t
1
e «7?'?—«" O Wata
p. 160. Exercise |6.

In order to save space the constant of integration is not
shown in the following answers after the first twelve,

1. 82 4 C. 2. §4% + C. 3. »* 4 C.

08 28 + C. $ C. 6. 5 + C.
T.}x+C.. + C. 0. 42 — §a? + x 4 C.
0. g = % 4 c. 11. §#8 — }a2 4 C.

12. §2° + §2* + C. 13. }a* — 02 14, §2° 4 20 — 124
Bt e o Y A
g x 5 % 0-420¢
18. 32t 19. V. 20. gt |
21. §24 4 2t 22. x4 + v + 3xt, 23 - ‘/-2:'
24, E: — 102, 25, gt 26. — 2:! + 4+ logx — 2.
27. g, 28. x — 328 — 2b, 20, luogz g
30. log (* + 3. 31 .log(ax + b). 32. log 5‘ =3

33. log (+* +4).  34. — }log (3 — 2%). 35x+sogx.

36. 4+ — Tlogs.  37.logx + . — L. o (@5 + b,

3. 42s + 3. 40 4(1+3)" L 2var +3.

2 —2WT=% 43 g (as+ b 44 E.1.“'+"‘.+.“;

45. flog (" — 1). 46, — ) log (1 + cos ax).
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47. }log (e* + 6). 48. } log (2% 4 sin 2x). 4. cosh? ! —16)
49, y = 3% + C,x + C,. 50. y = 2 + 3. ::))_*moi"tl:;\/:""_a
Bl. y = §2% + 27 — AL 62, y = 22% — bx -+ 6. s,+4
B KSR O RS TON EEERS W 5. (&) sink*  or log = + v/# F TG ® # tanr Z.
i
p. 164. Exercise 17. 6. (a) iain"%.
b i": g fatowr | (8) § cosh™t 3% or  log (3« + v/0 = 25,
:. :‘(15—::"’;+2‘. : T’(‘e-+ ) | (© 4 sinbet 3 or § log (3x + V35 ¥ 2.
. — . a ", 9%
7. }e* + a* log, e). 8. 2 log, o. 7. (@) §tan™ 5 () § tanht ° Orx':losa +z:
l?. 10* logy, . }g {a";::"} log, e. © ""imth"s orﬁlog2:+:
13. — § cos 3%. 14. } sin bz, & () JAEIY G fhnh M o »
. : 4 + /A 4.
15. —2cos1(x+§). 16. } sin (2% + o). m_lsaz : 3 or }log { 9
17. — 3cos }x. 18. § cos (x — 32). @ i 3 Or Hlog (37 + V05T — 4.
19. isinax—-;cosz:. 20. — 5 cos 2ax. ! 0 @) } iais '7-'0”103 (15 4 /405 575
fimpesel  gabees |0 e vice et yeTE
25. ;logaecax + ;logsin br. 26. log (1 + sin? ). 1 10. (@) ’“’".‘\73' ®) §sint 22, 3
27. } sinh 2%, 23.’—"cosh 3% [ 11. (a“m:mor;log(z:+ﬁ‘i-__
29. } log cosh 3z. 30. b {sun (a — bs] — cos (@ + bx)}.
31 ‘:'- “; 28_; 22 21 34’ (%) % tanh?
- 8¢ -i; 2 " §log sec 5 12. (a) Tmnhlﬂorv-log{ﬁ;+\/?ﬁ+§ﬂ}
33. 3 tan 3 34. log (1 + 6'}. 2 +V/IFHA
35. log (1 + tan 2). 36. §(sin #)\. “ ::; *:fgh i b‘{ - }
3 :
p. 168. Exercise 8. ®) — lmh"g or — }log {3"'—._ V: ""4}
L (a) sin23; (5) cosh-1 3 or log{x + VT = 9. 14. (@) — §sectt3 or — }log {,_,_1/—,:“_ }
2
(¢) sinb1} or logx + V& + 9). () cosh™ 7 + }sec .
2. (a) § tan? ; ®) itanh-i‘ or ilogg"' = Pi ];(2- S Exeﬂ:lsenz.lzE —
(c) —{coth" or }log - T - z). £ sin x).
8. (a) sint ; @ I:+ta.nh"’ “"‘. 3. 2tang —x " *{%""i’”“"i’i’“’}'
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5.}{%‘—2:-“@4;}. 8. —(§ cot 2% + ).
7. }x — }sin 42, 8. 3# + % sin 62,

9. }x+£'sin2{u+b). 10. — 3cos z+ v cos 3.
11. ¢ sin 3% + }sinz. 12. }(sin # — § sin 67).

13. }(sin 2¢ + § sin 42). 14. — }(cos 2x + § cos 6x).

15. —(ﬁ l;’+icus5’
cos (@ + b)x | cos (a — b)x
16 — {2l TN om0 }
17, e *cos% 18. }(x — } sin 4x).
19. tan ¥ — cot ». 20. 2tan x — 2.

21. §tan?z — logsecs. 22. — % (§ sin®2x — x + }sin 4x).

23. WEsin;. 24. tan x + § tan® z.
p. 183. Exercise 20.
¥ ‘sin-‘l ; x“./gz_. f.‘. 2. S’ﬁ sin-! 5 + S_:V’__E_B___—_f_
8. }sin 2% + §4/1 — &% 4!m12”+ FVO—
5. ’—{‘; 4 — 2log ’——i—-+ ;
6. vV — 25 — 3plog” * v" =%

x

y 5 }x\/x'+49+i,\|sm.h17. 8 i"\/"+5+551nh‘ .

V5
9. 1 sinh-* °F s + V2627 + 18

— e
10. $xV/#* — 3 — §cosh} {/‘-_3 . ‘_/I"r{'-
—
12. #V1 4 #* — §sinh-*x 13, sinh-1x — Vi;t!_,
a* + & D S
14. —_— a'x i 15. V]_ .-g' s1n x

16. ; i 2 (see formule, Trigonometry, § 83).

x
17. 2log tan 5. 18. 2logtan( +%)
19. }logtanag. 20. log tan =z,
21. tan; 22, tan ¥ — sec x.
e
23. tan x 4 sec #. 24, log1 TR
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25. |m-=(1tan‘§’). 26. § tan-! (2tan§).

tan; -2
27. } tanh? (tan ;) 25 §log | et 1.
2 tan; "
p. 187. Exercise 21.

1. }sin 2. 2. 3 log 2x' (Algebra, p. 211.)

3. V1§ A 4. /2 "Bz,

6. — 2cosVz. s.; 1+ 45

7. §log IT%EOE 8. % (logx).

9. (6 + 291, 10. tan-! 22, 43
11. s5(r — 2)5(6x + 2). 12. log (x + 1) + Sx F I
13. §(x + 2)Vx — L 14. (3% + 2)(x — l)l
15. — V65— a8 16. }(2* + 2) -

17. fi(x — 2)4(2x + 3).
18, $(22% + 32* 4 6x — 11) + log (¥ — 1).

19. P5(32* + 4)(* — 2);. 20. 2(vx + 3log (V7 — 3)}.
21. 2{}x —_«/E + log (V% + 1}}

2. 2{’5—3/1' — 3+ VE—log (V7 + 1)}.

23. } cos® x — } cos® 7. 24, }sin®x — §costx 4 #sinx,
265. §(x* — 3)(=* + i 26. gz — 3 + 4108 (6 — 2).
27. (1 + 2:')’{3.1:' — 13 £8, .= @

29. ?-“T;ﬁ 30. §(1 + log »)\.

p. 193. Exercise 22.

. sin # — ¥ cos 7. 2, 3 sin 3z — 3z cos 3.

3 (¥*— 2) sin ¥ + 2x cos 7.

Jx’—ﬁ}sms+3{x'-—2)cosxx. 5?(1@3-—}).
g (log* — % 3 (logx — 3.
l"ﬂﬂgf—'ﬂ 9"{*—‘)
10. *a* — 2% + 2). e c--("f;*,:-l).



p. 203.
L

-f.tm"x—-ilos( 1+ 4.
: *:ixooazx+ism2:.
. # cosh ¥ — sinh ».

. x—2log (* + 2).

. — x4+ 2log (# 4+ 1).
328
T +

gt + o) —
. 3(§#® — 22 + 4v — 8log (+ + 2)}
32 x o log (v — 1)

. 24 flog (v — 2

. x4+ 2log x-—&i) loF (* + 3).
o
.;'+2los{x+
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(cos 2x + 2 sin 2%), 13 zcosly — VI =2,
(¥ + 1) tant 7 — jx.
% — }xsin 2x — } cos 2x.

(sin # — cos x).
19. x tan ¥ — log sec .

= (og 2)* — jlog = + ).

195. Exercise 23.
2. —{x+log(l—2)h
4 2+ 2log (» — 1).

6. x — 2log (2+ 4 3).
P o - N S i log (1 — ).

+ %+ §log (8% — 1)}.
2a(a + bx) -+ a®log (a + bx)}.

El,{a + bx — alog (a + bx)}.

Exercise 24.

12. ;mg(2x+3)+271¢-3.

8(—'+1)

x—

2% + 2log(x+l)—log(x—l).

Exercise 25.
—logx + §log (¥ + 1) + }log (»+ — 1).

2. }{log (¥ + 2) — log 2} —

21. %sin-=x+";'—;;-2v_x*1 — §

i log (1 — #) + if—,.

13.

14.

p. 209.

12.

p. 213.
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—glogz + §log (x — 1) — }log (x + 2).
$log (# — 1) + ¢ log (¥ — 2) + Y log (x + 3).
—Alog (s 2) + dylog (r — ) B =g

sz 1) + 4008 (+ = 1) — log (+ + 1.
-—logx+2log{x—l}——l--____F_1
log # — } log (#* + 1). %
tllog (+ — 2) — §log (»* + 1)} — § tan 7.
Yy {log (+* + 4) — 21og (+ + 1)} + § tan? 5.

. fllog (#* + 4) — 2log (1 — #)} — § tan1 §

{log (¥ 4+ 1) 4 log (x—l; log (#* 4 1)} + .
{log (* — 1) — log(x+1}+}tan‘.
g % 4 2 tan™?

Exercise 26.
1 #+3 g -2 Iog(::+3}—1/1‘3‘
"2VI3 C(x+3) +VI3
6 ) i
7& " V13 Vi3 '

. 3 a3x 42

2log (#% — 2% — 1) — Vzlog{:_:;:_v;

lo {z'+4x+5)+bm‘1(x+2}
tlog (x + 1) —

log{x'—x+l)+7ta.n' 2117—51.

. % — 2log (#* + 2% 4 2) + 3tan"! (x + 1),
. — glog (1 — 2% — 2%) +2y/Zlog

. flog (30 4 # + 3) + 29 tan-l""“

Vz+{1+x)
{1+x)

3V35 1/35 &b
§log (x + l}+ilos{x'—x+1)+,\7§m"73=-

Exercise 27.

1. sinh-t (% + 3) or log {(x + ) + V& F 6x + 10}.
2. ainh-l% or log {(x + 1) + V¥ F 2% + &)
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8. cosh-! "_.;7;, or log{(x — 2) + Va¥ — 4z + 9). p. 224. Exercise 29.
2%+ 1 1 ogher 5% — 6 ) Sasd 2. 4} 3. 13
4. sin V. 5._‘7'3‘ i T T w41 = T
" _“ 2 ¥ 4. 9. a 2:025. 6. X
6. sint ¥ 7%, . VAT 1. 7. 48, g 9. 0.
BSVA L Bl . 0. V=1 + coshls. 12 g{ 1) = 3436 (appnl:g )(gppm) 3. jno
2% — 1 : ;
10. VA=FFT 4 dsinhd o, 14. 3'-“9;-;. 1. g(e® — ). 167
W Y g,y PR Lii) 1 17. log V2. 18. 1. 19. =%
12. — 3sin ;{%2 30 —idx — 3. - :*' 2l 53— 1 22. 7 — §log 2.
7
by SR 285 = 24. l(w-z —8). 25 0.
= TR 2
I8 - F 5 TR S0y 2. 4—2log3.  27.} 2. .
14. VA F 22 =1 + cosh-? i‘%‘-. 20: 3 30. 1. 31. log (2 + V3.
32. -9379. 33. 35— L 3. 1-7
P 258 Exerclse 28. 85. sin"! § — sin-1 §, 36. m. s — ﬂz
- x TP = a2 2%
1. V3 =4 + 2cosh-15. 2. }V4& =0 + § cosht 2,
z ey’ A oy 8 bl p. 232 Exercise 30.
8. Va(F + 8) — § cosh = & = Note.—The omission of an answer indicates that no finite
4 WS —x—3 + 4_.35 cosh-1 4x s__.l_ value of the integral exists.
5. §* — ir\/ﬁ_ 1+ §coshz 2. & 8. ;, 4. §log 3. i e 18
o 71= sinpt 3%+ 10 7. — sinh-1 (x +_2)_ 704 9. 1—log2 10.log2—§ 1273,
. i S VY 13. = 154 g 16. 2. 17.= L
gl = cosh"-(—-—-—-- )‘ 9. — sin-t {_'t( +:;.V§} 18. 2. 20. 0.
&
10. — cosech! x or log {Y_’*__"“_:_l}
3 y x . p. 258. Exercise 31.
N VIFA+lgIEEL gy 3-/—1,‘:;"—". L 1a2}. 2. 363, 3. 4047 (approx.).
; . 6. 4r.
1. tg s+ VIFR) - VIER, L St om G, 8 1
. og . o
14, BVTFA— flog (v + VIF2 + ,,q — _ 12. & — 1. 13. 4. 14. 253,
15. — §(z + V1 — % %‘—2 - 15. § — log 2.
VitT=1 F3-41 16. Between — 2and 0, area = 5} ; between 0 and 3 area = 15{.
17. log 77ms 3 17. 341 18. t‘, 19. 2:3504.
+ 20. 40. 21.
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p. 265. Exercise 32.
L 5 2. nat; 4 3. jab; 2
daz® 4a?
4. g 5. 5 (for the integral see Example 19).
6. 50
. g
p. 267. Exercise 33.
1. 0:637 (approx.). 2. 0'6. 3. 0-256.
4 3 58 . -2
. S . 2 o
3 8. 2,
® i 1
p- 272. Exercise 34.
1. 260 sq. ins. 2. 6:24 sq. ins. 3. 607 sq. ins.
4. 1426 sq. ins 5. 735 sq. units,
p. 280. Exercise 35.

1. V5 + §log (2 + V5). 2. 2V/8 + log (2 + V3.
</ )
6. W"'- Vv?) + 103\7-— 6. 1'732.
L 8. 6la. : |
9. {(1/6 — v/2) +log (1 + V2) — log - +21/5}. .
10.
p. 294. Exerclse 36. .
L (@ 213_“5 (b) 8r. 2, (a) Elﬂ’?' () 9:!‘- !
- 8w
o - « %% @ 3
5. 6—;1'. 6. 32r. 7. §rad, 8 :38_743.
L 167 3z 9&;:
9. 3" 10. 15" 7 8 % 12.
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p. 299. Exercise 37.
135w =
1 g 2. 2x{V2 + log (V2 + 1))
3. 2%"’—‘. 4 12:—"' 5. 2nvh.

6. i’%(«/m = 1.

p. 306. Exerclse 38.

1. 7= §b; 7 = 0. 2. %=3; §=3VIo.
3. 7= y—Q 4, Z=10; y=3
6 EVE G a conive ioag tho midiie sal

s Al “ocen ng the us.
8. ;—;;§—§.

7. = ﬁ'omoentrealongradms at right angles to diameter.
8 ;_E'- 5 o2 9 §. L‘“_E‘_E

it “-)’ “ 4 . 46
10. §h. 11. xns-.}'u—a;.
19, 3 b—a k*b — a)

* = Togb —1 ga )= 2ab(logb — log a)”
13. ¥ =26; y= 0. 14, §b from 0.

p. 310. Exercise 39.
. B 1
1. §Mn; v 3 2. §Mat. 3. IMn,
4, }Mbs, 6. (1) MK, (2) }MA,
8. YoM, 7. §Mr. 8. {Ma,
9. §MbL, 10. $Mr*; rV3
p. 315. Exercise 40.
1. §Ma?, 2. §Mas.
3. (1) ¥aMa®; (2) YhMa®; @ YeMad,
4. IMa. 5. M( + 2 ) 6. §Mad.
7. $Mar. 8. M (r® + 4h%). 9. IM(a? + bY).

10. () ¥a*; @) 85 @) able? + 00,



p. 327.

I

10.

12.
14.

16.
18. — 2%; — 4y.

p. 334.

10.

11.

. (@) siua+xcosa-—--’§ sina —
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Exercise 4.
ya*-1; ¥ log x.

X —2xsm(:¢'+y') — 2y sin (2 + 3).

iF F_"l_'_'i

.as=+sxy+ey"w+mw+oy'.

; \/yT- X r7y'
7.

8. i TN o LU
ok 3 it ol X
0. J'_d"_;‘ﬁ‘z,

2ax + by)dx + 2% + ey)dy. 11 Lax + log xay.

(2xy + y‘)dx + (x' + 3xy%dy. 13. ¥ (ydx + xdy).
aer (log dy). 15. 0°40 (approx.).
av = S dt — dp. 17. Each equals 524,

? p' _
19. 150x8 cu. ins. per sec,

y" X "y"

Exercise 42.

: |
:;cosa-!-...

P

(b) cosa — xsina — Ecosa+ sina 4 .

Ko ow! LA
(1 tht g +1g+..0)
ht T
(‘iT?'}" aFap 3t
E ¥ 2~ nx
e 0+ o A R

x+}x‘+§’{x'+ :

il ) i :E‘;v- g

.x—}x'-l—i

.logz+}x+}x'—1-92+ < TRl

1
.1+ xloga +‘ (loga)

2,2 3,3
1—m+k1; "EB". LY

l
1+x+——§+.--

+ 2 loga)r

L_ +
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i ah g A s
12.2+12-I’-. : B.x+G+gg+---
14. ,+2+3 + )
16. # —‘L"+fﬂ+ g
25 2’_‘ 238
10. +3'.+|3 ls ——.LB: ..
l7.x—}z‘+1‘#' PR
pt 339. Exercise 43.
l.y=:+¢. 2.y=—u‘. ! 8. y=oc¢x
4. 141 —2) =o. 5. vy gl
6. sec x = ¢ sec y. T. 2049yt —ey = 0.
8. (1 4+ ¥0(1 +x’} = gz, 9. logxly —y =c.
10. (12 = ctan 1L (1 + 90)(1 + 2% = o2,
12. y = ™", 13. VA —1—4/y —1=u0,
n e P -
14. §+logx-—§—-§ c. lﬁ.y “‘.
16. zy =¢.
p. 342. Exercise 44.
L ¥4 1=c¢s" 2. 2% 4+ 22y = 0.
=
8. y=2x2+ 1+ ce. 4, y=ce %+ L
[ L
5.ywa—;—i+u b
6. y sec x = log (sec x 4 tan %) + ¢.
% gt b T Ty 8.y+l-ssm.:.
9. yef=2+¢ 10.y=-f—-—a—-a+oz‘.
1. y=tanz — 1 4+ ce~™" 12 2y +logz=oc.
p. 345. Exercise 45.
1. 2* + 22y = o, 2. y = z(log # + ¢).
- x y—x
3. lg VAT —tantt —o 4 Eo=lgt T
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6. 11
x

5. * — ' =cx. -
8. »'=clx + ).

7. z2y(x —y) =c.
r

9. y = ce’. 10. 2 = ¢(x + 2y).
11.¥-+3:=y-4y-_.. - ( "

p. 349. Exercise 46.

1. 2* 4+ 22y + Y* =0, 2.0 42y + P +r—y=o
3. 2y — 2 =oc. ¢ 2 +P—y=c

6. 2% —xy* + 2+ y'=0. 6. ’f—y=-c.
T. y = z(x + o). 8. logzy — P =c.
9.logx+§;,=¢. 10 22+ —cy= 0.

11. logxy—’gus.

CIRCULAR MEASURE OF ANGLES

35555 55853 22197 A9g=g |-

3§ §8388 £88=8

1

§ 8838¢ R8gs

™S
=
.

288

F

24

30°

42!




CIRCULAR MEASURE OF ANGLES HYPERBOLIC LOGARITHMS
2 Diffi for 4th signi-
—II L Thurd significant figure. ’m‘ ﬁgl‘m.m
pre 0|1|2(3|4|5|6|7|8)|9]|1{23/4|6]|6|7|8|9
ﬁ: 19}o 981029610397 0488
48° ; 1-1 |o0gs3 fro44(1x33(1222(1 370f 1398 | T
ape | }: n'-::i T 7o:2151] 2231 |2
6 B765| o 52129271 sz
B o6y ‘grastl ‘gr455 16 | o' 4055 |exatly1871425314318 4383 13 258
B3° : 18 | 0'4700 |4762(4824 4886404 1218 55
64’ {z o's - S1lss 3 = [1h8418 1
66° 0587 152 366 sjrzix
56° 19 | 06419 6471165236575 6678 F 15 3 6
5T 2006931 [5081f7031 7178 [ 15
gg' 21 Jo-7419|7467(7514/7561 7 14 3
- B e e B R
> X
e1° | 24 |o875s 8961 R 7
g | @5 jog163 3 9361 12 7la1l3s
84° 28 |o9s55 31710 11
a5° 27 (09933 6 1T 25/29(33
28 | 10296 3 0473 glrx l25!28
g 3 29 | 10647 16/075 081 10 24 H
e8| 3010986 1086 111g{ 1151 7iro 23
ag° &l |rr3ng :&ut 1442 1474 6lrol3) r6 jrgl2aia
70° g :-:o;: 173517501 : 9124 15 |18jazjas
) £y 4 3 1
;}’ 84 :E:s 2384 2
78° a5 |12sa8 585261 1] 2669 f2698 Blx
T4 8e !“iﬂ 528922920 294 5 T 5
5 87 | 13083 r10j313713164/3197 321 5| 8fx
7% o d 2 e 3 shdeahsk
i P e o y 7ok
80° 1°401 42 l‘:ﬁ' : z
81° 6| 1°41721| 1°41895 43|y 5
g 92| 1° ad|r X 5 16iT
45 | 15041 @ i
: g :3“ e E‘;‘: 19
8e° 48 l;g: - 19
80 4 | 3802 Bor3isonslses il
8o° 50| 6094 T Tojiary
5l I 10 f12,14/16(18
62| 525 TofIII3|ISiT7
53 | 16677 15 9frxir3fz5ity
B4 | 16864 11691 gjrrjr3jrsiz6

376 377




HYPERBOLIC LOGARITHMS

Diff for 4th signi-
Third significant figure. “;‘;‘;tﬁ 454
N
; 6|7|8|9|12|s|a|6|87|8|0

7156(7174{7192i7210) 2

334 2

33233 23329 23322 23822 33333 2J32d 33333 23323 33333

0008 O8O0 OO

HYPERBOLIC FUNCTIONS

X 3 X b LA L LA ALLERY -
UL AU O OISO VO VOOV SISl SISISY 0000 o0

= e e-* |sinh r|cosh x| = - e-* |sinh x|cosh =
“00 | rooo0o (10000 | o 10000 | 5O | 16487 | Gobs *sars | 11376
‘01 | roror | 9goo ‘o100 | 1ooor | ‘51 | 16653 | Goos 11329
02 | ro202 | gloa w200 | tocoz | ‘62 | 16820 -;gg 3':; 138
.03 | 10305 | 9704 | o300 | 20005 | 53 | 169Sg | 5 '5553 |
04 | ro4o8 | 968 ‘o400 | 10008 | 64 | vy160 | “sBay 5666 | 1404
‘05 | o513 | 9512 ‘o500 | ¥woory | 66 | 17333 | ‘5760 5782 | 1550
08 | 10618 | gqB oboo | o018 | 58 | 17507 | 5712 5897 | 1'1bog
07 | = ‘9324 1 | vooas | 57 | 17683 | 5655 oty | r1669
08 | ro833 | 923 1 | 10032 | 58 | 17860 | ‘5500 G131 | 11730
00 | rogyz | 9139 ogor | 1004t | -59 | 8040 | 5543 6248 | 1792
10 | 1052 1002 | 10050 | B0 | tBaar | 5488 b 118
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