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PREFACE.

Tue following volume is a sequel to my treatise on the
Differential Calculus, and, like that, is written as a text-book.
The last chapter, however, a Key to the Solution of Differential
Equations, may prove of service to working mathematicians.

I have used freely the works of Bertrand, Benjamin Peirce,
Todhunter, and Boole; and 1 am much indebted to Professor
J. M. Peirce for criticisms and suggestions.

.I refer constantly to my work on the Differential Calculus
as Volume 1.; and for the sake of convenience I have added
Chapter V. of that book, which treats of Integration, as an

appendix to the present volume.
W. E. BYERLY.
CAMBRIDGE, 1881.



PREFACE TO SECOND EDITION.

IN enlarging my Integral Calculus I have used freely
Schlémileh’s ¢ Compendium der Hoheren Analysis,” Cayley’s
¢ Elliptic Functions,” Meyer’s ¢ Bestimmte Integrale,” For-
syth’s ¢¢ Differential Equations,” and Williamson’s ¢ Integral
Calculus.”

The chapter on Theory of Functions was sketched out and
in part written by Professor B. O. Peirce, to whom I am
greatly indebted for numerous valuable suggestions touching
other portions of the book, and who has kindly allowed me
to have his Short Table of Integrals bound in with this volume.

W. E. BYERLY,
CAMBRIDGE, 1888.
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* INTEGRAL CALCULTS.

CHAPTER 1
SYMBOLS OF OPERATION.

1. Tt is often convenient to regard a functional symbol as
indicating an operation to be performed upon the ewpression
which is written after the symbol. From this point of view the
symbol is called a symbol of operation, and the expression writ-
ten after the symbol is called the subject of the operation.

Thus the symbol D, in D,(«*y) indicates that the operation of
differentiating with respect to @ is to be performed upon the
subject (2*y).

9. If the result of one operation is taken as the subject of a
second, there is formed what is called a compound function.

Thus logsinz is a compound function, and we may speak of
the taking of the logsin as a compound operation.

3. When two operations are so related that the compound
operation, in which the result of performing the first on any
subject is taken as the subject of the second, leads to the same
result as the compound operation, in which the result of per-
forming the second on the same subject is taken as the subject
of the first, the two operations are commutative or relatively free.

Or to formulate ; if

fPFu= Ffu,

the operations indicated by f and F are commutative.
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For example; the operations of partial differentiation with
respect to two independent variables « and ¥ are commutative,
~ for we know that .
D, Dyyu=D,D,u. (I. Art. 197).
The operations of taking the sine and of taking the logarithm
are not commutative, for logsinu is not equal to sinlogu.

4. If S(u £ v)=fuxfo

where « and v are any subjects, the operation f is distributive or
linear.

The operation indicated by d and the operation indicated by
D, are distributive, for we know that

d(u +v)=du =+ dv,
and that D (vt v)=D,ux D,v.

The operation sin is not distributive, for sin(u 4 v) is not
equal to sinu 4+ sinv.

5. The compounds of distributive operations are distributive.
Let f and F indicate distributive operations, then fF will be
distributive ; for

F(u £ v)=Fu x v,
therefore  fF(u £ v)=f(Fu x+ Fv)= fFu x fFv.

6. The repetition of any operation is indicated by writing an
exponent, equal to the number of times the operation is per-
Jormed, after the symbol of the operation.

Thus log?z means logloglogx ; d®u means dddu.

In the single case of the trigonometric functions a different
use of the exponent is sanctioned by custom, and sin’u means
{sinu)? and not sin sinu.

7. If m and n are whole numbers it is easily proved that

fmfnu =f«m+nu.
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" This formula is assumed for all values of m and n, and nega-
tive and fractional exponents are interpreted by its aid. It is
called the law of indices.

8. To find what interpretation must be given to a zero ex-

ponent, let m=0- in the formula of Art. 7.

Pfu=tru=sru,
or, denoting ™« by w», Sv=w.

That is; a symbol of operation with the exponent zero has no
effect on the subject, and may be regarded as multiplying it by
unity.

9. To interpret a negative exponent, let

m= —n in the formula of Art. 7.
f"‘f"u:f‘"*"u:f“u:u. .

If we call J"u=w, then f""b:u.
If n=1
we get S Hfu=wu,

and the exponent —1 indicates what we have called the anti-
function of fu. (I. Art. 72.)

The exponent —1 is used in this sense even with trigonometric
functions.

10. When two operations are commutative and distributive,
the symbols which represent them may be combined precisely as
if they were algebraic quantities.

For they obey the laws,

a(m + n) = am + an,
am = ma,

on which all the operations of arithmetic and algebra are founded.
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For example ; if the operation (D, + D,) is to be performed
n times in succession on a subject u, we can expand (D, -+ D,)"
precisely as if it were a binominal, and then perform on w the
operations indicated by the expanded expression.

(D.+D,)*u= (D3 +8D2D,+3D,D}+ Du
= D3u+38D2D,u+ 3D, Du+ Dlu:
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CHAPTER II.
IMAGINARIES.

11. An imaginary is usually defined in algebra as the indi-
cated even root of a megative quantity, and although it is clear
that there can be no quantity that raised to an even power will -
be negative, the assumption is made that an imaginary can be
treated like any algebraic quantity.

Imaginaries are first forced upon our notice in connection
with the subject of 'quadratic equations. Considering the typical
quadratic & +az+b=0,
we find that it has two roots, and that these roots possess cer-
tain important properties. For example; their sum is —a and
their product is . We are led to the conclusion that every
quadratic has two roots whose sum. and whose product are
simply related to the coefficients of the equation.

On trial, however, we find that there are quadratics having
but one root, and quadratics having no root.

For example ; if we solve the equation

?—22x4+1=0,

we find that the only value of 2 which will satisfy it is wnity;
and if we attempt to solve

o —2x42=0,

we find that there is no value of = which will satisfy the equation.
As these results are apparently inconsistent with the conclu-
sion to which we were led on solving the general equation, we
naturally endeavor to reconcile them with it. ‘
The difficulty in the case of the equation which has but one
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root is easily overcome by regarding it as having two equal roots.-
Thus we can say that each of the two roots of the equation

is equal to 1; and there is a decided advantage in looking at the
question from this point of view, for the roots of this equation
will possess the same properties as those of a quadratic having
unequal roots. The sum of the roots 1 and 1 is minus the co-
efficient of x in the equation, and their product is the constant
term.

To overcome the difficulty presented by the equation which
has no root we are driven to the conception of imaginaries.

12, An imaginary is not a quantity, and the treatment of
tmaginaries is purely arbitrary and conventional. We begin by
laying down a few arbitrary rules for our imaginary expressions
to obey, which must not involve any contradiction; and we
must perform all our operations upon imaginaries, and must
interpret all our results by the aid of these rules.

Since imaginaries occur as roots of equations, they bear a close
analogy with ordinary algebraic quantities, and they have to be
subjected to the same operations as ordinary quantities ; there-
fore our rules ought to be so chosen that the results may be
comparable with the results obtained when we are dealing with
real quantities.

13. By adopting the convention that
V—at=a ‘\/:_i,

where a is supposed to be real, we can reduce all our imaginary
algebraic expressions to forms where v/ —1 is the only peculiar
symbol. This symbol vV —1 we shall define and use as the sym-
bol of some operation, at present unknown, the repetition of which
has the effect of changing the sign of the subject of the operation.
Thus in a vV —1 the symbol v/ —1 indicates that an operation
is performed upon a which, if repeated, will change the sign

of a. That is, -
a(\/—,1)2= —a.
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From this point of view it would be more natural to write the
symbol before instead of after the subject on which it operates,
(¥ =1)a instead of aV/ —1, and this is sometimes done; but
as the usage of mathematicians is overwhelmingly in favor of the
second form, we shall employ it, merely as a matter of con-
venience, and remembering that a is the subject and the V=1
the symbol of operation.

14. The rules in sccordance with which we shall use our new
symbol are, first,

aN =1+ bV —1=(a+b)V—1. [1]

In other words, the operation indicated by V' —1 is to be dis-
tributive (Art. 4) ; and second,
av—1=(V-=1)a, - [2]

or our symbol is to be commutative with the symbols of quantity
(Art. 3).

These two conventions will enable us to use our symbol in
algebraic operations precisely as if it were a quantity (Art. 10).

When no coefficient is written before v/ —1 the coefficient 1
will be understood, or unity will be regarded as the subject of
the operation.

15. Let us see what interpretation we can get for powers of
~ =1 that is, for repetitions of the operation indicated by the
symbol.

(V-1)=1 (Art. 8),
(\/:_1)1= \/—__Ta
(V=1)2=—1, by definition (Art.13),

(V=1)= (V-1 —=1=—+ —1, by definition,
(V=Dt=—(¥V=Ty =
(‘\/t_l)5=]\/—-—l =V -1,

Vo= (VD =1

and so on, the values V—1, —1, —+/—1, 1, occurring in’
cycles of four.
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16. The definition we have given for the square root of a
negative quantity, and the rules we have adopted concerning its
use, enable us to remove entirely the difficulty felt in dealing
with a quadratic which does not have real roots. 'Take the
equation ‘

#—2+5=0. 1)
Solving by the usual method, we get

r=1++V—4;
V=4=2v—=1, by Art. 13 [1];
hence z=142vV—1o0or1—-2v -1,

On substituting these results in turn in the equation (1), per-
forming the operations by the aid of our conventions (Art. 14
{11 and [2]), and interpreting (¥ —1)% by Art. 15, we find that
they both satisfy the equation, and that they can therefore be
regarded as entirely analogous to real roots. We find, too, that
their sum is 2 and that their product is 3, and consequently that
they bear the same relations to the coefficients of the equation as
real roots.

17. An imaginary root of a quadratic can always be reduced
to the form a +b~ —1 where o and b are real, and this is taken
as the general type of an imaginary ; and part of our work will

be to show that when we subject imaginaries to the ordinary
functional operations, all our results are reducible to this typical
form. ‘

If two imaginaries @ +b+v—1 and c¢c+dv—1" are equal,
a must be equal to ¢, and b must be equal to d.

For we have ‘a»bV—l:c—i—d\/:—l.
Therefore @ -c =(d—-b)V—1,

or a real is equal to an imaginary, unless a —¢c=0=d —b.
Since obviously a real and an imaginary cannot be equal, it
follows that a =c¢ and b=d. ’
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18. We have defined v/ —1 as the symbol of an operation
whose repetition changes the sign of the subject.

Several different interpretations of this operation have been
suggested, and the following one, in which every imaginary is
graphically represented by the position of a point in a plane, is
commonly adopted, and is found exceedingly useful in suggest-
ing and interpreting relations between different imaginaries and
between imaginaries and reals.

In the Calculus of Imaginaries, a -+ b~ —1 is taken as the
general symbol of quantity. If b is equal to zero, a + bV —1
reduces to a, and is real; if a is equal to zero, a + bV =1 re-
duces to bV —1, and is called a pure imaginary.

a+ b~ —1 is represented by the position of a point referred
to a pair of rectangular axes, as in analytic geometry, a being
taken as the abscissa of the
point and b as its ordinate.
Thus in the figure the position
of the point P represents the P
imaginary a4 b V1.

If b=0, and our quantity is
real, P will lie on the axis of X
X, which on that account is )
called the axis of reals ; if a=0,
and we have a pure imaginary,
P will lie on the axis of ¥,
which is called the axis of pure imaginaries.

It follows from Art. 17 that if two imaginaries are equal, the
points representing them will coincide.

Since a and av/ —1 are represented by points equally distant
from the origin, and lying on the awis of reals and the axis of
pure imaginaries respectively, we may regard the operation
indicated by vV —1 as causing the point representing the subject
of the operation to rotate about the origin through an angle of
90°. A repetition of the operation ought to cause the point to
rotate 90° further, and it does ; for

a(v=1)=—a,

and is represented by a point at the same distance from the

Y




10 INTEGRAL CALCULUS. [ArT. 19.

Fd
origin as a, and lying on the opposite side of the origin ; again
repeat the operation,

a(V -1 =—aVv =1,
and the point has rotated 90° further ; repeat again,
a(V=1)=aq,

and the point has rotated through 360°. We see, then, that if
the subject is a real or a pure imaginary the effect of performing
on it the operation indicated by V' — 1 is to rotate it about the
origin through the angle 90°. We shall see later that even when
the subject is neither a real nor a pure imaginary, the effect of
operating on it with v/ —1 is still to produce the rotation just
described.

19. The sum, the product, and the gquotient of any two imagi-
naries, @ + b+ —1 and ¢+ d/ —1, are imaginaries of the typi-
cal form, '

a+bV=T+e+dV_1l =a+c+(b+d)vV_T1. [1]
(a+ bV =1) (c+dV=1) = ac— bd + (be + ad)v/—1. [2]
a4+0V=1 _ (a+bV=1) (c—dV=1) _ ac+bd+ (be—ad)V—1

c+dV—=1 (c+dV—=1) (c—dV—1) -+
_ac+bd be—ad
“et+@& T exe V- (2]

All these results are of the form 4 +B+~—1.

20. The graphical representation we have suggested for
imaginaries suggests a second typical form for an imaginary.
Given the imaginary m+y\/—-——1, let the polar coérdinates of
the point P which represents @ +y v —1 be  and ¢.

r i8 called the modulus and ¢ the argument of the imaginary.
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The figure enables us to establish very
simple relations between , ¥, 7 and ¢.

Y{ P
. x=rcosoP,
y=rsind; } v (1]
0 r 2.4
'l‘=‘\/m,
b= tan“lg. } (2]
e4yV—1l=rcosé+ (V=1)rsin¢
=7'(cos¢+\/-——1.sin¢), [3]

where the imaginary is expressed in terms of its modulus and
argument.

The value of r given by our formulas [2] is ambiguous in
sign; and ¢ may have any one of an infinite number of values
differing by multiples of =. In practice we always take the
positive value of 7, and a value of ¢ which will bring the point
in question into the right quadrant. In the case of any given
imaginary then, r can have but one value, while ¢ may have any
one of an infinite number of values differing by multiples of 2.

The modulus  is sometimes called the absolute value of the
imaginary.

EXAMPLES.

(1) Find the modulus and argument of 1; of V=15 of —4
of —9vV—1; of 343~/ —1; of 244+ —1; and express each of
these quantities in the form r(cos ¢ ++/=1.sin¢).

(2) Show that every positive real has the argument zero;
every negative real the argument =; every positive pure imagi-
nary the argument g; and every negative pure imaginary the
argument ‘9%' ’

21, If we add two imaginaries, the modulus of the sum is
never greater than the sum of the moduli of the given imagi-
naries.
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The sum of @ +5v—1 and ¢ +dV —1 is a + ¢ + (b+d)V—1.
The modulus of this summ is V(e + ¢)?+ (b + d)?; the sum of
the moduli of @ +b6v—1 and c+dV—1 is V@ + & +VE+ a2
‘We wish to show that

\/.(a+c)2+(b+d)’—<\/a2+b’+\/c’+d’;

the sign < meaning ‘¢ equal fo or less than.”

Now V(@a+c))+0+d)? <VE@+BP+VE+ &,

if (a4 ¢)?+ (b +d)? < a? + B + 2V (& + 00 (@ + &) +¢& + 7,

that is, if  ac4-bd <Vald+ 2+ b2 + b*d?;
or, squaring, if

“alc 4 2abed + Pd? -< a’E 4+ P AP + bPc? + bid?;
or, if 0 < (ad — be)s

This last result is necessarily true, as no real can have a
square less than zero; hence our proposition is established.

22. The modulus of the product of two imaginaries is the
product of the moduli of the given imaginaries, and the argument
of the product is the sum of the arguments of the imaginaries.

Let us multiply

r(cosg, +V—1.sin¢)) by ry(cose,+V —1.singy);
we get
7473[COS b, COS by — 5in by 8in hy 4V — 1(Sin by COS 4008 by sin by)],
COS ¢b) COS b, — 8in ¢, 8in Py = cos(p; + o)
sin ¢y cos ¢, + €08 ¢y 8in ¢y == sin (b; + )
by Triéonometry ; hence
1 (cos q!;l +V —T1.sing;) 7, (cos s+ V' —1. sin py)
= riry[cos (¢ + o) + V —1L.sin(d1 + 65 ],
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and our result is in the typical form, ry7; being the modulus and
¢1+ ¢, the argument of the product.

If each factor has the modulus unity, this theorem enables us
to construct very easily the product of the imaginaries; it also
enables us to show that the interpretation of the operation v :_l,
suggested in Art. 18, is perfectly genéral.

Let us operate on any imaginary subject,

r(cosd + v =1.sin¢), with V-1, ‘
that is, with 1 (cosg + v/ —1. sin 7—;)

The modulus » will be unchanged, the argument ¢ will be in-
creased by g, and the effect will be to cause the point repre-

senting the given imaginary to rotate about the origin through
an angle of 90°,

98. Since division is the inverse of multiplication,

r1(cos ¢y +V —1. sinhy) + ra(cos ¢y + vV —1.sin¢y)

will be equal to .
A eos (41— ¢) + V= Losin(di— #)];

since if we multiply this by r;(cos¢,+ v —1. sin ¢), according
to the method established in Art. 22, we must get

ri(cos ¢, + v =1.sing,).

To divide one imaginary by another, we have then to take the
quotient obtained by dividing the modulus of the first by the
modulus of the second as our required modulus, and the argu-
ment of the first minus the argument of the second as our new
argument.

24. If we are dealing with the product of n equal factors, or,
in other words, if we are raising r(cos¢ + v 1.sin¢) to the
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nth power, n being a positive whole number, we shall have, by
Art. 22,

[r(cos¢p +V—1.sin¢)J* = (cosn¢ +V—1.sinng). [1]

If » is unity, we have merely to multiply the argument by n,
without changing the modulus; so that in this case increasing
the exponent by unity amounts to rotating the point represent-
ing the imaginary through an angle equal to ¢ without changing
its distance from the origin.

25. Since extracting a root is the inverse of raising to a
power,

%/[r(cosd + —1.sin¢)] = W(cos;—l:+ \/—_l.sin%) ;o [1]
for, by Art. 24,

l:(‘ﬁ'(cos%’+\/—_l. sin2>]" = r(cosp + VvV —1.sin¢).

n

ExAMPLE.

Show that Art. 24 [1] holds even when = is negative or
fractional.

26. As the modulus of every quantity, positive, negative,
real, or imaginary, is positive, it is always possible to find the
modulus of any required root ; and as this modulus must be real
and positive, it can never, in any given example, have more than
one value. We know from algebra, however, that every equa-
tion of the nth degree containing one unknown has » roots, and
that consequently every number must have n nth roots. Our
formula, Art. 25 [1], appears to give us but one nth root for
any given quantity. It must then be incomplete.

We have seen (Art. 20) that while the modulus of a given
imaginary has but one value, its argument is indeterminate and
may have any one of an infinite number of values which differ by
multiples of 27, If ¢, is one of these values, the full form of
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the imaginary is not r(cos ¢ + vV — 1. sin ), as we have hitherto
written it, but is

r[cos(dp+ 2mw) + V' —L.sin(¢+ 2mr)],

where m is zero or any whole number positive or negative.
Since angles differing by multiples of 27 have the same trigo-
nometric functions, it is easily seen that the introduction of the
term 2mr into the argument of an imaginary will not modify
any of our results except that of Art. 25, which becomes

Vr [cos (o + 2mm) +~/—1. sin(do+ 2mr)]

={'/7|:cos(¢o+m >+\/ 1. sm(¢ +m2ﬂ>j] 1

Giving m the values 0, 1, 2, 3 .... , n — 1, n, n+ 1, success-
ively, we get

$o o ) ﬁ ..... $o 27
n’ + n’ +2 o +3 ’ g"‘(n—l)—,ﬁ'v
$opom, 240,

as arguments of our nth root.

Of these values the first =, that is, all except the last two,
correspond td different points, and therefore to different roots ;
the next to the last gives the same point as the first, and the
last the same point as the second, and it is easily seen that if we
go on increasing m we shall get no new points. The same thing
is true of negative values of m.

Hence we see that every quantity, real or imaginary, kas n

distinct nth roots, all having the same modulus, but with argu-

ments differing by multiples of 2_’r

27. Any positive real differs from unity only in its modulus,
and any negative real differs from —1 only in its modulus. All
the nth roots of any number or of its negative may be obtained



16 INTEGRAL CALCULUS. [ART. 27.

by multiplying the nth roots of 1 or of —1 by the real positive
wu) root of the number,

Let us consider some of the roots of 1 and of —1; for ex-
ample, the cube ,roots of 1 and of —1. The modulus of 1
is 1, and its argument is 0. The modulus of each of the cube

. 2 4 .
roots of 1 is 1, and their arguments are 0, —;—T , and E’—r; that is,

0°, 120°, and 240°. The roots in question, then, are repre-
sented by the points P, Py, P, in the figure. Their values are

1(cos0 + vV —1.5sin0),

) 1(cos120° + V/—1.sin120°),
P and 1(cos240° 4+ v —1.sin 240°),

orl, —}+2 V=1, 34— V1.

Py The modulus of —1 is 1, and its

argument is 7. The modulus of the
cube roots of —1 is 1. and their arguments are g, 731—1-2?",
E_'_i‘_”', that is, 60°, 180°, 300°. The roots in question, then,
3 3 .
are represented by the points P, P,
" P,. in the figure. Their values are
%‘+~/73_ —_1, "'11 %"Js’\/_—l'

Py ExXAMPLES.

(1) What are the square roots of
P, 1and — 17?7 the 4th roots ? the 5th
roots ? the 6th roots ?

(2) Find the cube roots of —8; the 5th roots of 32.

(3) Show that an imaginary can have no real nth root; that
a positive real has two real nth roots if n is even, one if n is
odd; that a negative real has one real nth root if » is odd, none
if » is even.
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28. Imaginaries having equal moduli, and arguments differing
only in sign, are called conjugate imaginaries. ‘
r(cos¢ + v/ =1.sin¢), and r[cos(—¢)+ v =1.sin(—¢) ],
or r(cos$ — v —1.sin¢) are conjugate.

They can be written x4+ ¥y V=1 and x — y\/——l , and we see
that the points corresponding to them have the same abscissa,
and ordinates which are equal with opposite signs.

ExAMPLES.

(1) Prove that conjugate imaginaries have a real sum and a
real product.

(2) Prove, by considering in detail the substitution of
a+bv—1landa—> ~/Z1 in turn for z in any algebraic poly-
nomial in & with real coefficients, that if any algebraic equation
with real coefficients has an imaginary root the conjugate of that
root is also a root of the equation.

(3) Prove that if in any fraction where the numerator and
denominator are rational algebraic polynomials in x, we substi-
tute a +b+vV—1 and @ — b+ —1 in turn for =, the results are
conjugate.

Transcendental Functions of Imaginaries.

29. We have adopted a definition of an maginary and laid
down rules to govern its use, that enable us to deal with it, in
all expressions involving only algebraic operations, precisely as
if it were a quantity. If we are going further, and are to sub-
ject it to transcendental operations, we must carefully define
each function that we are going to use, and establish the rules
which the funetion must obey.

The principal transcendental functions are ¢*, logz, and sinz,
and we wish to define and study these when  is replaced by an
imaginary variable z..

As our conception and treatment of imaginaries have been
entirely algebraic, we naturally wish to define our transcendental
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functions by the aid of algebraic functions; and since we know
that the transcendental functions of a real variable can be ex-
pressed in terms of algebraic functions only by the aid of infinite
series, we are led to use such series in defining transcendental
functions of an imaginary variable ; but we must first establish
a proposition concerning the convergency of a series containing
imaginary terms. ‘

80. If the moduli of the terms of a series containing imaginary
terms form a convergent series, the given series is convergent.

Let uy+ u, + ug 4 -+ + U, + -+ be a series containing imagi-
nary terms.

Let
Uy = Ry(cos ®y+ V=1, sin®,), u; =R1(co’s<I>1+\/———1. sin®)), &ec.,

and suppose that the series R,+ R, +R;+ - + B, + - is
convergent ; then will the series wy+ u; 4 ug --... be convergent.

The series Ry + By + - is a convergent series composed of
positive terms ; if then we break up this series into parts in any
way, each part will have a definite sum or will approach a defi-
nite limit as the number of terms considered is increased in-
definitely.

The series u,+ %) + Uy + - Uy, = ooeee can be broken up into
the two series

Rycos®, + B, cos P, + Rycos Py + ooe + R, cos®, + ... 1)
and

V—‘l(RoSin¢o +Rlsin¢1 +Rgsin(p2+ """ +R,,Sin¢,,+ """ ). (2)

(1) can be separated into two parts, the first made up- only
of positive terms, the second only of negative terms, and can
therefore be regarded as the difference between two series, each
consisting of positive terms. Each term in either series will be
a term of the modulus series By+ R, + Ry 4 -+ multiplied by
a quantity less than one, and the sum of n terms of each series
will therefore approach a definite limit, as n increases indefi-
nitely. The series (1), then, which is the abscissa of the point
representing the given imaginary series, has a finite sum.
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In the same way it may be shown that the coefficient of V=1
in (2) has a finite sum, and this is the ordinate of the point
representing the given series. The sum of n terms of the given
series, then, approaches a definite limit as n is increased indefi-
nitely, and the series is convergent.

31. We have seen (I. Art. 133 [2]) that
o2 2B,

=142 4T LT L% 4. 1

¢ +1+2!+3!+4!+ [

when  is real, and that this series is convergent for all values of .
Let us define ¢, where z = + yV —1, by the series

2 2 2
1424+ 2 22
¢ +1+2!+31+4!+ (2]
This series is convergent, for if z = r(cos ¢ +V —1.sin¢) the
series .
2, o ”

[ A T WL A T A T
+1+2!+3!+4!+

made up of the moduli of the terms of [2] is convergent by
1. Art. 188, and therefore the value we have chosen for ¢* is a
determinate finite one.

Write z + yV/—1 for z, and we get

ez+,ﬂ=1+w+y;/:i+(w+y2\/'—:l)2+ (w+:l/3\/‘?1)3+ ,,,,, [3]

The terms of this series can be expanded by the Binomial
Theorem. Consider all the resulting terms containing any given
power of x, say af ; we have

s

a2 JWNT) V)

p! a+ ) 21

or, separating the real terms and the imaginary terms,

Py
ﬁ(l 2—i+E a_|_ ..... )

* i ¥ ¥ _ ¥
+E«/—1(y—3_3+5_!_ﬂ+ ..... )
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or ﬁ? (cosy + Vv —1.siny), by I. Art. 134.
p: :
Giving p all values from 0 to o we get
e — . x, o ab | ot
ety _-(cosy+\/—1.smy)(1+I+—2—i+ﬂ+E+ ----- )
= ¢ (cosy + V—1.siny), 4]

which, by the way, is in one of our typical imaginary forms.
If £=0, in [4],
we get ¢V 1l= cosy + V1. siny, 5]

which suggests a new way of writing our typical imaginary ;
namely, _
7 (cosp +V—1. sin¢) = re®-1,

32. We have seen that
etV gV,

let us see if all imaginary powers of e obey the law of indices;
that is, if the equation

) e*e’ = e +v [1]
is universally true.

Let u=2,+nV—1 and v=a,+4yV—1,
then e*= e#1+ % v~ = e%1(cosy, + V —1.siny,),
€= ettt ¥ 1= em(cosyy + vV —1.siny),
e*e’ = emets[cos(y, + o) + V—1.sin(y; +v2)]
= %1+ 21 [cos (9 + %) +V — L. sin(y + %) ] 4
=ew1‘+wz+(y1+yz)«/3
— vt

and the fundamental property of exponential functions holds jfor
imaginaries as well as jfor reals.

EXAMPLE.
Prove that a*a” = a*** when » and v are imaginary.
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Logarithmic Functions.

33. As a logarithm is the inverse of an exponential, we ought
to be able to obtain the logarithm of an imaginary from the
formula for ¢*+*/=1. We see readily that

z=r(cosp+V—1.sing)= elogr+9~/ =1
whence logz=logr+¢ v —1;
or, more strictly, since

z=r[cos (¢p+2n7) + V—1.8in(py+ 20n7)],

#

logz =logr + (¢o+ 2n7) V—1 ‘ {13

where » is any integer.

fz=a+4yvV—1, r=Va* +¢’ and ¢ = tan—1¥;
z

whence  logz=3}log (2* +3?) 4 v I.tan™ % [21

Each of the expressions for log z is indeterminate, and repre-
sents an infinite number of values, differing by multiples of
27V —1. ‘
This indeterminateness in the logarithm might have been ex-
pected a priori, for ‘

™V = cos2r +V ~1.sin2x=1, by Art.31."

Hence, adding 27+ —1 to the logarithm of any quantity will
have the effect of multiplying the quantity by 1, and therefore
will not change its value.

ExAMPLE.

Show that if an expression is imaginary, all its logarithms are
imaginary ; if it is real and positive, one logarithm is real and
the rest imaginary ; if it is real and negative, all are imaginary.
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) Trigonometric Functions.
34, Ifzis real,

o 2 2P 7
smz_z—ﬁ+5_!—ﬂ+ ..... [1]
2
cosz=1—z—+£._£+ ..... [2]
21 41 6!
by I. Art. 134, !
Ir z=r(cos$ + vV —1.sing),
the sgries of the moduli,
' BB
T+a+3—!+?—!+ """ ’
ot

1+;+;ﬁ+a+ """ 1

are easily seen to be convergent ; therefore if 2 is imaginary, the
series [1] and [2] are convergent. We shall take them as defi-
nitions of the sine and cosine of an imaginary.

ExAMPLE.

From the formulas of Art. 31, and from Art. 34 [1] and [2],
show that
V1 = cosz+ vV —1.sinz,

P

and =cosz—+ —1.sinz, for all values of z.

35. From the relations
V1= cosz+ V—1.sinz,

eV = cosz — vV —1.sinz,

~ + e—z&/rl

el
we get copy = =y , [1]
ez&’:l_e—z'/:l

9v—1

sinz ==

(2]

for all values of 2.
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Let z=2+yV—1.
e;n/:l-y + e—zJ:l-t-y
2

cos(m+y‘\/———i)=

_ (cosz+ v/ —1.sinz)e-*4 (cosz— —1L.sinx)e’
= > ,
by Art. 34, Ex.,

=cosace'§——e——'—-\/—1.sinmev-26 (3]

-y
.

In the same way it may be shown that

sin(z4+yvV—1)= (cosz+V —1. sinx) e"jCOSw — A/ —1.sinz)e
: 24/—1
e¥ + e~v

= sine ——— +’\/ 1. cosa;ey 2e_y- [4]

If 2 is real in [1] and [2], we have

z /=1 + e—xJ—l

COSX = ————2——-,

VIl _ gma/Tl

smx—-—f—z———\/— .

If 2=y~ —1, and is a pure imaginary,

cosy V=1 =2ELT, [5]
siny«/Tl=e’—26"«/——1; (6]

whence we see that the cosine of a pure imaginary is real, while
its sine is imaginary.
By the aid of [5] and [6], [3] and [4] can be written :

cos (2 +yV—1) = coszcosyV—1 —sinzsiny V—1, [7]
sin (z +yV—1) = sinzcosy V—1 + cosawsinyV—1. [8]
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ExAMPLES.
(1) From [1] and [2] show that sin®z4 cos’z = 1.
(2) Prove that
cos (% +v) = cosucosv — sinusinv,
sin (v + v) = sinucosv -+ cosusinv,

where v and v are imaginary.

The relations to be proved in examples (1) and (2) are the
fundamental formulas of Trigonometry, and they enable us to
use trigonometric functions of imaginaries precisely as we use
trigonometric functions of reals.

. Differentiation of Functions of Imaginaries.

86. A function of an imaginary variable,
z=x4y V-1,

is, strictly speaking,.a function of two independent variables,
a and y; for we can change z by changing either x or y, or both
2z and y. Its differential will usually contain da and dy, and not
necessarily dz; and if we divide its differential by dz to get its

derivative with respect to 2z, the result will generally contain %:%’

which will be wholly indeterminate, since « and y are entirely
independent in the expression x+y~—1. It may happen,
however, in the case of some simple functions, that dz will appear
as a factor in the differential of the function, which in that case -
will have a single derivative.

87. In differentiating, the ¥—1 may be treated like a con-
stant; for the operation of finding the differential of a function
is an algebraic operation, and in all algebraic operations vV —1
obeys the same laws as any constant.
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EXAMPLE.
Prove that - d(z*V—1)= 20/ —1. da;
and that d~/ 1. sinz = V—1. cos.dz.
We have, by the aid of this principle, '
if z=x4+Y V=1,
de=do+NV—=1.dy; [1]

if z='r(cos¢+\/—-1.sin¢>),
dz = dr(cos4>+‘\/-—-1. sin¢)+'rd¢(——sin¢o+\/jl. cos ¢)
= (dr 47V —1.d) (cosd + Vv =1.sin¢). [2]

88. Let us now consider the differentiation of z™, e*, logz,
sinz, and cosz.

Let z=r(cos$+ V—1.sin¢),
then
zm = r™(cosme + vV —1. sinme), by Art. 24 [1];
dz» = my™~1dr(cosme + N —1.sinme) + mr™de (— sinme
++/—1.cosme),
dz™ = mr™1[cos (m—1) ¢ + V —1.sin(m—1) ¢] (cos ¢
+ +/—1.sin¢)dr

+ mr™[cos (m—1) ¢+ v —=1.sin(m—1)¢] (cos e
+V1.sin¢) V—1.d¢,
dz™ = mr™1[cos (m—1) ¢ + v/ =1.sin (m—1) ¢] (dr
+ v =1.d¢) (cosd+ vV —1.sin ¢),

de™ = mz™tdz, - [1] by Art.87 [2],
d "
‘(?zz‘ = mz", [2]

and a power of an imaginary variable has a single derivative.
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39. If z=ao4+yv-—-1,
e* = e*(cosy +V —1.siny), by Art. 81 [4],

de* = e*dw(cosy +V —1. siny) + e*(— siny
++V —1.cosy) dy,

de* = e*(cos y +V —1. siny) (dz 4+~ —1. dy),
de* = e*dz, [1]
de* _ .
Td; =e". [2]
ExampLE.
Show that da* = o log a.dz.

40. If z=r(cos ¢+ /1. sin é),
logz=1logr+ ¢V —1, by Art. 33,

dlogz=ﬂ’+ Vol.ap=F+rVv—1.d¢ V—Ld‘i’,

(dr+rV=1.d¢) (cos -+ —1. sm¢)

dlogz =
r(cos¢ + vV —1.sin ¢)
dlogz = c_lzg’ ‘ 1]
dlogz 1
dz 2z 2]
4. sine=¢T =™ by Art. 35 [2
. sz = ——————— . 5
24/ =1 v J
PN = S
dsinz = e—I—LI\/—l.dz
2V —
P = S s
=L_“;L__ dz, by Art. 35 [1],

dsinz = cosz.dz. [1]
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egu/rl + e—tu/rl

Cco82 =

2 b
zA/:l_ —za 1 R ~/-_l__ —za/"1
dcosz = £ NTlde=—8"""%""" dg,
2 24=1
dcosz = — sinz.dz. 2]

42. We see, then, that we get the same formulas for the dif-
ferentiation of simple functions of imaginaries as for the dif-
ferentiation of the corresponding functions of reals. It follows
that our formulas for direct integration (I. Art. 74) hold when «

is imaginary.
Hyperbolic Functions.
43. We have (Art. 35 [5] and {6])

cosx vV —1 =ez_‘;e:

and sin:v\/——l:ez_;e—z\/:—l»

where x is real. g,—+2_e—_= is called the hyperbolic cosine of z,

-%

e —e
and is written coshz; and B) is called the hyperbolic sine

of z, and is written sinhz;

sinhz =e’_28_¢=—\/'—1.sinm\/:T, [1]

wshm:e%Lﬂ:cosm —1. (2}

The hyperbolic tangent is defined as the ratio of sinh to cosh;
and the hyperbolic cotangent, secant, and cosecant are the re-
ciprocals of the tanh, cosh, and sinh respectively.

These functions, which are real when @ is real, resemble in
their properties the ordinary trigonometric functions.
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44. For example,

for

and

(1) Prove that
(2) Prove that
(8) Prove that
(4) Prove that

45. dsinhz=d

cbsh®s — sinb?@ =1 [1]
2z —22
cosh?x = e__+_%e_’
sinh?x = w.
4
ExamprLES.

1 — tanh®» = sech?s.

1 — ctnh®*x = — csch?a.
sinh(z 4 y) = sinhacoshy + coshzsinhy.
cosh(x + y) = coshx cosh y + sinhxsinhy.

€—e*_ ete "

3 2 dez,

dsinhx = coshz.dz.

(1) Prove

ExXAMPLES.

dcoshz = sinhx.dz.

dtanhz = sech’z.dx.

dctnhz = — csch?a.da.
dsecha = — sechztanh z.dz.
deschx = — cschxetnh x.dx.

46. We can deal with anti-hyperbolic functions just as with
anti-trigonometric functions.

To find dsinh~1z

Let
then

u = sinh 2,
& = sinhu,
dx = coshu.du,
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_ Oz
- ?
coshu

[
coshu = /1 + sinh’u, by Art.44 [1],
. coshu = V1 + 3,

. dz
dsinh 'z = . 1
V14 a# £
ExAMPLES.
Prove the formulas
dcosh 1z == _d=_,
Va2 =1
. de
dtanh 1 = —"—"—.
anh~'z =2
dsech 2z = — L
N1 — 2
deschlo=— —%% .
eVl 1

47. The anti-hyperbolic functions are easily expressed as

logarithms.
Let u = sinh™'x,
. then @ = sinhu = &= e_u,
2@ =e*— —1-,
eu
Qe =e*—1,
er—2zer=1,

% — 2xe* + =1+ 22,
e —z=1 V14,

et = + V1 +a*;
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as e* is necessarily positive, we may reject the negative value in
the second member as jmpossible, and we have

=z 4+ V1 + 22,
uw=log(x + V1 + o),
or sinh~'z = log(z + VI +%). 1]
ExaMPLES.

Prove the formulas
cosh™'z=log(z + Vat =1).
tanh ' = 1}log1 + z,

sech“a:—log( +,’—— )
1 1

Sl =1 - e 1)

esch—x og(m+4w2+ )

48. One of the advantages arising from the use of hyper-
bolic functions is that they bring to light some curious analogies
between the integrals of certain irrational functions.

From I. Art. 71 we obtain the formulas for direct integration.

dx .
—— =sin"'a. 1
S 2
dx — tan=1
f T+ & = tan"2. [2]
f I —gecla. [8]
orfa? — 1
From Art. 46 we obtain the allied formulas:

dx . —
2% = sginh 'z =log(z+ V14 a%). 4
iie g( ) (4]

92 __ _ coshl=log(z + VaF —1). [5]

vaE—1
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dax . 1 '1+m. y

fl-—w’ = tanho=}log - [6]
dx 1 1

— (——=—=— =sechlz=log|{ - 44]/=—1). 7

xvV1—2af g("’ a? &

dx 1 1
- —2% __ = csch1z=lo (——+J—+l). 8
zVaE+1 "\« "Nz el

ExXxAMPLES.

~ Prove the formulas

@)
@
®
©)
®)

(®)
@)

@
®)

'ta.nh(m+y \/:1-) =

x&

. xz  2®
smhm=1_!+a+a+ .....

A
coshm:l—}-é—!—l—l—!—l- -----
sin (x4 y V—1) =sinz coshy + v—1 cosz sinhy
cos (x+yV—1) =cosz coshy——1 sinw sinhy.

— __sin 204 V—1sinh 2y
tan (z+y V—1) = cos 2z + cosh 2y

sinh (¢ 4-y V— 1) =sinh= cosy + V—1 cosha siny.

cosh (2 +y V—1) =coshz cosy + v/—1 sinhz siny.

sinh 22+ v—1 sin 2y
cosh 2z + cos 2y

3
tanh“rz =z} %+%5+ wores
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CHAPTER III.
GENERAL METHODS OF INTEGRATING.

49. We have defined the integral of any function of a single
variable as the function which has the given function for its
derivative (I Art. 53) ; we have defined a definite integral as
* the limit of the sum of a set of differentials; and we have shown
that a definite integral is the difference between two wvalues of an
ordinary integral (I. Art.183).

Now that we have adopted the differential notation in place of
the derivative notation, it is better to regard an integral as the
inverse of a differential instead of as the inverse of a derivative.
Hence the integral of fr.dx will be the function whose differ-

ential is fr.dz; and we shall indicate it by f Jr.de. In our old
notation we should have indicated precisely the same function by

S for if the derivative of a function is fx we know that its
differential is fv.dw.

50. If fxis a continuous funection of x, fx.dx kas an integral.
For if we construct the curve whose equation is y = fz, we know
that the area-included by the curve, the axis of X, any fixed
ordinate, and the ordinate corresponding to the variable x, has
for its differential yde, or, in other words, fr.dx (I. Art.51).
Such an area always ex’sts, and it is a determinate function of ,
except that, as the position of the initial ordinate is wholly arbi-
trary, the expression for the area will contain an arbitrary con-
stant. Thus, if Fi is the area in question for some one position
of the initial ordinate, we shall have

ffw.dx = Fx +C,

where C is an arbitrary constant.
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Moreover, Fx 4 C is a complete expression for f Je.dw ; for if

two functions of  have the same differential, they have the same
derivative with respect to x, and therefore they change at the
same rate when x changes (I. Art. 88); they can differ, then,
at any instant only by the difference between their initial values,
which is some constant.

Hence we see that every expression of the form fx.dx has an
integral, and, except for the presence of an arbditrary constant,
but one integral. . ' '

51. We have shown in I. Art. 183 that a definite integral
is the difference between two values of an ordinary integral; and
therefore contains no constant. Thus, if Fiz+C is the integral
of fx.de,

13
f fw.de = Fb — Fa.
In the same way we shall have
b
ffz.dz: Fb— Fa;

and we see that a definite integral is a function of the values
between which the sum is taken and not of the variable with
respect to which we integrate.

Since fafa:.dw = Fa — F'b,
1]
a ]
ffm.da: = —-—ffw.da:.
ExamrLE.

Show that ﬁo Sre.de +£}w.dx =£}m.dx.

52. In what we have said concerning definite integrals we
have tacitly assumed that the integral is a continuous function
between the values between which the sum in question is taken.
If it is not, we cannot regard the whole increment of Fiz as equal
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to the limit of the sum of the partial infinitesimal increments,

and the reasoning of 1. Art. 183 ceases to be valid.

1
Take, for example, f da
-1 2

-1 1 ‘
f%:fﬂ%:””:i =—2 by L Ar.55 ();
and apparently

-l G G

1
But d—f ought to be the area between the curve y = %, the
-1

axis of , and the ordinates corresponding to x=1 and £ = —1,

which evidently is not —2; and we
Y

see that the function :%2 is discon-
tinuous between the values x = —1
and 2=1.
 The area in question which the
definite integral should represent is
easily seen to be infinite. for
“de_1 de 1
=1 =1
‘J:l(l}z € ’andsmz e
and each of these expressions increases without limit as € ap-
proaches zero. '

T 0 X

53. Since a definite integral is the difference between two
values of an indefinite mtegral, what we have to find first in any
problem is the indefinite integral. This may be found by in-
spection if the function to be integrated comes under any of the
forms we have already obtained by differentiation, and we are
then said to integrate directly. Direct integration has been illus-
trated, and the most important of the forms which can be in-
tegrated directly have been given in 1. Chapter V. For the sake
of convenience we rewrite these forms, using the differential
notation, and adding one or two new forms from our sections on
hyperbolic functions.
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1
‘fw"dw = et .
n+1

fsinw.dw = —CO8%.
fcos z.de = sinz.
ftan:v.dm = — logcos.

f étnw.de = logsina.

\/fi = = sin~'@.

.\/_Id"fT?= sinh 12 = log (¢ + V1 + #).
\/_:zm: = cosh'z=log(z +Va—1).
1—(j—_~w—w—2=tan’ le.

T C_fbwz: tanh 2 = %log%;-

f——ﬂ——=sec"‘m.
evVat—1

~  da 1 1

— =—sech‘1a:=—log<—+ ——1).
jac\/l——:z;2 z ' N2

dx 1 1.
—————=—cschlz=—1log( -+ _+1)_
fac\/m’+1 g(a; \}w’

f—d‘v— = verslz.
V2x—a?
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54. We took up in I. Chap. V. the principal devices used in
preparing a function for integration when it cannot be integrated
directly.

The first of these methods, that of integration by substitution,
is simplified by the use of the differential notation, because the
formula for change of variable (I. Art. 75 [1]),

f = f uDgx becoming | udz= u@fdy,
. £) 'y dy

reduces to an identity and is no longer needed, and all that is
required is a simple substitution.

(@) For example, let us ﬁndfd—: V14 1loga.

Let 14loge=2; then d—::dz,
and f—; \/1+logw=fz"{dz =%z§= 21 +logw)’.

‘When, as in this examp}e, a factor of the quantity to be
integrated is equal or proportional to the differential of some
function occurring in the expression, the substitution of a new
variable for the function in question will generally simplify the
problem.

. dx
b R d .
(b) Require e
Let &€=y; then ede=dy,
de _ efdy _ dy
etes e&+1 yP+1
and . p= -(ll-me" =f1_@ﬂ;2 =tan'y= ta.p“e”.

(¢) Required f secx.d.
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Let z=sinz; then dz = cosz.dw,
cos?r =1 — 22,
cos x.dw f dz 1+2
= =41 .
f cosa 1—2° * BT by Art. 53,
1 {sinx T, X
Jdr =11 = log t: ~ 42
fsecw x = 4log 8 o = 8 an<4+2>
ExaMPLES.
Prove that (1) § cscx.de= %lorr———(l.ﬁ = log tan Z.
14 cosx 2
2) 2?dx — — }coslw— V1 -
V1= : 2

Suggestion : Let z = cosz.

55. The formula for integration by parts (I. Art. 79 [1])
becomes

fudv = uv — | vdu, [1]
when we use the differential notation. Itis used agin I. Chap.V.

(a) For example, let us find § z*logw.dz.

Let u=log, and dv=a"dx;
then du = d_w’
x
nt1
and V== il )
+ 1

" .
+ 1 n_—l (logw -

log

n+l)‘

f "log x. da:._

(b) Required | xsin ‘x.dx.

Let u=sin"a, and dv=zdx;
dx .
—
V1 —a?

then du =
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and o= f’
2
fwsin“w.dm: a? sin-lz — %f 2?dx ,
2 Vi—a

fa: sin~lz.dx = —';—2 sin~to 4 $(cos™x + a1 —2?).

xe d
(¢) Required f(l Y f) 5

Let u = xe%,
de
dyv=———=3
and v O
then du = (we* + e)dee = €*(1 + z)dw,
and v=— L )
14+«
f wede __ +f e*
(1 +ac)2 1+ x =1 +x’
ExAMPLES.
1 f =sin?! 312w +;2a;.
V1= 32— \/13
(2) §otan'o.de= _;mz tan—'@ — .
xde 1 1
@) f(1_m)3“ T— = 2(1—2)
(4) — = —\/2aw—m2+avers—1§.
V2ax —o* a

€)) f\{?am——m’.da::w

— N —— 2 a
z \/2aw—w2+%sm_lm

Suggestion : Throw 2 ax — & into the form a* — ( — a)*

(6) 1+ COS% 35 — Jog (x + sin).
x + sin®
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(7) fx+ SIND 4s — wtan T
1+ cosz 2
Suggestion : Introduce % in place of .
de  _ _ 1
x(logz)™ (n — 1) (log z)**

) f@%_gw) des = logz [log (logz) —1]-

(8)

(IO)j’Sln L. dm__ztanz+logcosz, wherez = sin~'z.

%)
dx x|,
11 ———————l t. =
( ). sinz+cosz /2 oghan <2+8>
(12) singdz _ _ log(a+bcosx)
a+bcosz b

dx — -1 9
(13)fw2———+4x+5 tan-! (& + 2).

wzdw 1 1405
(14) 1 (1_903

Sdw  _ 1, ([ —3\
(15)fw3 20 1°g(w4 n 2)
da 1 /b
8~ Lan(Lana)
(16) afcos’z + bPsin’x  ab an <a an:v‘
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CHAPTER 1IV.
RATIONAL FRACTIONS.

56. We shall now attempt to consider systematically the
methods of integrating various functions; and to this end we
shall begin with rational algebraic expressions. Any rational
algebraic polynomial can be integrated immediately by the aid of

the formula
an +1
fw" do = .
n4+1

Take next a rational fraction, that is, a fraction whose nu-
merator and denominator are rational algebraic polynomials.
A rational fraction is proper if its numerator is of lower degree
than its denominator ; ¢mproper if the degree of the numerator
is equal to or greater than the degree of the denominator. Since
an improper fraction can always be reduced to a polynomial
plus a proper fraction, by actually dividing the numerator by the
denominator, we need only consider the treatment of proper
fractions.

57. Ewvery proper rational fraction can be reduced to the sum
of a set of simpler fractions each of which has a constant for a
numerator and some power of a binomial for its denominator;

A
z—a)™

that is, a set of fractions any one of which is-of the form (

fx

Let our given fraction be ~.
, Fx
If a, b, ¢, &c., are the roots of the equation,
Fx =0, (1)
we have, from the Theory of Equations,

Fr=A(x —a)(xz—0b)(z—c) - . (2)
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The equation (1) may have some equal roots, and then some of
the factors in (2) will be repeated. Suppose a occurs p times
as a root of (1), b oceurs g times, ¢ occurs 7 times, &c.,

then Fr=A(x —a)? (s — b)* (x— )" e (3)
Call ' A{@—b)r(x—c) - = ¢2;
then Fx= (x — a)? ¢z,

fe fo fw“%q"” %4’”

d I = —
ol T Gmapds G wper | Goay
Ja Ja
ga g
‘ B (x—a)? + (x—a)? ¢
fw——q{%¢w
G—ayrée is a new proper fraction, but it can be reduced

to a simpler form by dividing numerator and denominator by
a'— a, which is an exact divisor of the numerator because a is a
root of the equation
S e dx=0.
da
If we represent by fiz the quoﬁent arising from the division

of fr — % ¢z by x— a, we shall have
2

Ja
Iz P .

e~ (@—ay  (z—a)” ¢z’

Six
(z—a)?> 1o
precisely as we have treated the original fraction.

. l‘ﬂ p
x a 2@ .
Hence @ —{Li)"ldm: = C ja)l,_l + @— @yt
By continuing this process we shall get

where is a proper fraction, and may be treated

fa ha L Jo-1@
g G, e e TS
Fz~ (x—a)? (J:—a)P“+ (:c—a)"’2+ to—a™ b
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In the same way Jo® can be broken up into a set of fractions

2
having (x — b)Y, (#—b)?", &c., for denominators, plus a frac-
tion which can be broken up into fractions bhaving (x—c¢)7,
(x —c)™"! «orey &ec., for denominators; and we shali have, in
the end,

fo_ A A, A B,
Fx—(w—a)P+(w—a1’“+ +m—a+(m—b)¢
B, B,
+W+ """ +:E—b+ """ + K, [1]

where K is the quotient obtained when we divide out the last
factor of the denominator, and is consequently a constant. More
than this, K must be zero, for as (1) is identically true, it must:

i
be true when = ; but when = o, 1’;—1 becomes zero, be-
2z

cause its denominator is of higher degree than its numerator,
and each of the fractions in the second member also becomes
zero ; whence K =0.

58. Since we now know the form into which any given rational
fraction can be thrown, we can determine the numerators by the

aid of known properties of an identical equation.
3x—1

@-1)P@+1D)

Let it be required to break up into simpler
fractions.

By Art. 57,
3z —1 A B C

CENHCE T R CES VM S e
and we wish to determine A, B, and C. Cleariqg of fractions,
we have -
3x—1=A(@+1)+B@—-1)(@+1)+C0@-—-1)2 (1)
As this equation is identically true, the coefficients of like
powers of % in the two members must be equal ; and we have
B+(C=0,
A—-2C=3,
A—B4C=-—1;
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whence we find A=1,
B=1,
C=-1;
8x—1 1 1 1
_ — 2
and (-1 (= +1) (w—1)2+:v—1 z 41 @

The labor of determining the required constants can often be
lessened by simple algebraic devices.

For example; since the identical equation we start with is
true for all values of @, we have a right to substitute for = values
that will make terms of the equation disappear. Take equa-
tion [1]:

82—1=A@+1)+ B+ 1)(c—1)+C@-1)% [1]

Letx=1, 2=24,
A4=1,
then 20—2=B(z+1)(z—1)+C(@—1)%;
divide by = —1, 2=B(x4+1)+C (z—1).
Let x =1, 2=2B,
| B=1,
then —z41=C(z—1),
g: —-1.
ExaMrLEs.

(1) Show that when we equate the coefficients of the same
powers of  on the two sides of our identical equation, we shall
always have equations enough to determine all our required
numerators.
922+ 9w —128

(2) Break up =3 @LD)

into simpler fractions.

59. The partial fractions corresponding to any given factor
of the denominator can be determined directly.
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Let us suppose that the factor in question is of the first degree
and occurs but once ; represent it by @ — a.

o A4 | he

, Foe-z—aT o &
by Art. 57, where
Fr
o= _——"0,
so that Fr=(x— a)¢a.

"Clear (1) of fractions.

Jo= Agw + (z — a) fia. (2)

As (1) is an identical equation, (2) will be true for any value
ofz. Letx=a, '

Jo= Ag¢a,
A= ;{%, (3)

a result agreeing with Art. 57.

Hence, fo find the numerator of the fraction corresponding to
a foctor (x—a) of the first degree, we have merely to strike out
Jrom the denominator of our original fraction the factor in ques-
tion, and then substitute a for x in the result.

If the factor of the denominator is of the nth degree, there are
n partial fractions corresponding to it. Let (z— a)* be the
factor in question. *

Jx _ A, A, A, A, Y
E_(m_a)n_'_(x___a’)n—l_*-(w_a)n—2+ """ +w—_z'|:¢—m’ 4)
where Py ={(x —a)"¢z.

Multiply (4) by (¢ — a)”, and represent (x — a)” %? by ®u.
%

Sr=A,+ dy(x — a) + dy3(x — @)+ . + A (% — @)1

Yo e
+¢w(ac a)".
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Differentiate successively both members of this identity, and put
« = a after differentiation, and we get

A1=¢a,
Ay=2%a,
As=2—l‘<1>"a,

.
A4_3—7<I> a

..... ’ .

p— 1 (n-1)

=Gt ¢

Although these results form a complete solution of the prob-
lem, and one exceedingly neat in theory, the labor of getting
the successive derivatives of @z is so great that it is usually
easier in practice to use the methods of Art. 58 when we have to
deal with factors of higher degree than the first. So far as the
fractions corresponding to factors of the first degree and to the
highest powers of factors not of the first degree are concerned,
the method of this article can be profitably combined with that
of Art. 58.

60. As an example where the method of the last article
applies well, consider
3x—1 A B O'
x(x—2)(z+1) =zt o s tarr

4 8a—1 1_1
L_(w—?)(a,+1) 2
3= o3h L#
0=L§E::;) =_1=_§’
3v—1 __11,5 1 4 1

w(x—2(x+1) 2z 62x—2 3x+1
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61. Although the theory expounded in the preceding
articles is complete and can be applied without serious diffi-
culty to the case where some or all of the roots of F(z) =0
[Art. 57, (1)] are imaginary, there is a practical convenience
in modifying the method so as to avoid the explicit intro-
duction of imaginaries into the process of integrating a
rational fraction.

We know (Art. 28, Ex. 2) that if the denominator of our
given fraction contains an imaginary factor (x—a—25 N—1)»
it will also contain the conjugate of that factor, namely,
(m—a+b\/—_1)", and will therefore contain their product
[(x—a)*+5*]". Moreover, since by Art. 59 the numerator of
the partial fraction whose denominator is (x—a+ b_\/— 1)»
is the same rational algebraic function of a—&+—1 that
the numerator of the partial fraction whose denominator is
(@—a—0b \/——1)1’ is of @+ b5+/—1, these two numerators
must be conjugate imaginaries by Art. 28, Ex. 3. Hence, for

every partial fraction of the form A+ B \/__1_ we shall
(x—a—bN—1)?
have a second of the form — 42 V=1 |
: @—a4bV—1)*
Let (x—a—bV—1yp=X+ ¥YV—1,

X and Y being real functions of ; then
(@—a+bV—1p=X—Y V-1

The sum of the two fractions
A+B/—=1 A—Bv—1
(z—a—bN—1)¢ (z—a+bV—1)?
_A+Bx/l“i+A—Bx/——1___ 24X+ 2BY
T X+ YV—=1 X—YV—1 [(z—a)+]

and is a real proper fraction. Hence,
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Jx Sz Jax
[G—ay T 079 [@—ay 407 ' [@—a) + 07

Ju Yz
ot St )

every numerator being of lower degree than its denominator.

fiz . .
If we take ———-————[ &= T BT and divide numerator and de-
nominator by (x —a)?+ 5 we shall get a fraction of the

R .

Ot et P
[(x —_— a)2+ bﬂ]n—l
therefore of the form L,z + M, and we shall have
Sz L+ M, Q

[G—af ¥FT [@—ay + 6T  [@—ap T 57T

By successive repetitions of this process we can reduce
S
(@ + 5T
Lz + M, L+ M, L,_x+ M, _
[@—a)?+ 8] [(z—a)+ ]! (x—a)*+ b2
Treating all the partial fractions in (1) in this way and
adding the results, we shall at last reduce (1) to the form

form

and B will be of the first degree and

+ +

Jx — 4.2+ B, + Az + B,
[G—a 7T 9 [G—a T /T | [@—ay +577
4 o+ 4,2+ B, _, 4 ¥ @)

@—a)y}+4b ¢x

and our partial fractions are simple in form and do not involve
imaginaries.

The coeflicients in (2) can be found by either of the proc-
esses illustrated in Art. 58.

62. Let us now consider a rather difficult example, where
it is worth while to combine all our methods.
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x24+1
To break up G=D@F 1)2

B+1=>E+1)@@—x+1) and z?—ax+1=0 has imagi-
nary roots.
241 2¥2+1
(z—1) (z*4 1) (w—l)(x+1)2(m2——x+1)2
A B, Cyx~+ D 02m+D2
(m+1)2+m+1+(m21——x+11)2+ 7—zt1 @D

2+1 _
A= <w+1>2l =+

1 41 _
B“[(x—1)(x2—x+1)2l=_l_ ¥

Substitute in (1) the values just obtained, clear of fractions
and reduce and we have
— 92t 4228 —6at— 82+ 8+ 62+ 7T
=18(z*—1) [B, (2’ — =+ 1)+ (Cix+ Dy) (x+1)
+ (Cye+ Do) (x+ HEE*—=z+1)]
Divide through by 2*—1, and we get
—9xt 4+ 22— 152 —62—7
=18§B,(x*— 2+ 1)'+ (z+ 1) [Cwx + D,
+ (Cax + Dy) (2* — =+ 1)]§-
Let # = — 1, and we find \
B;=—1}.

Substitute this value for B, and reduce;
—6at—4xt— 62 —12x—4
=18+ 1)[Cx+ D, + (Cox+ D) (@ — =+ 1)}
Divide by « + 1 and expand and we get
[18 C,+ 6] 2® — [18 (Cy — Dp) + 2] a?
+ [18(C, — Dy + C1) + 812+ 18(D, + Dy) +4=0.
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This equation must hold good whatever the value of =,
whence '
18C, +6=0,
18(C.— Dy) +2=0,
18(C;— D+ Cy)) +8=0,
18(Dy+ Dy) +4 =0,

and
Cg=— ‘&’
Dy,=— 3
C,=— ‘A‘y
D, =0.
Hence,
22+ 1 1 1 1 1 1

1

T2x—1 9 (@+1P 6 a+1

1 x 1. Sx+2

T3 @—at 1Y 9F—a+1 @

(z—1)(@*+ 1)

63. Having shown that any rational fraction can be reduced
to a sum of fractions which always come under the four forms

4 A Az + B Az + B
@—ay z—a (@—ay+8 [(@—ay+bT

it remains to show that these forms can be integrated.

Adx
To find j‘m

let r=z—a,
then ‘ dz = dzx,
a.ndf Adac _ dz=_ 1 A

(x— » (n—1) &~ 1

1 A4
_—(n—l)'(ac—a)”—l' (1]
To find Adz ’

let r=zx—a,

then dz = dx,
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and J‘Adm = fé—z:Alogz:Alog(x—a). (2]

r—a

Turning back to Art. 58 (2), we find
(Bx—1)dx _ + de  (de 1
(z—1*(x+1) (m—l)“ —1 x+1" z—1

+log(x—1)-——10g(w—|—1)=—w_1+10g:__}_i-

Turning to Art. 60 (1), we have

Sespern= i

=4logz+ §log(e—2) — ¢ log(x+1).
To find ———Z—A““ + 5) dv

a)2_+_62
Aac-l—B _ A(x—a) Aa+ B .
(90—&)2-1-1)2—(.ctc—(1,)2--1—-1)“’-,_(nc——on)z—f-b2

If we letz—(ac—a)2+b2 dz=2(x—-a)dx, and
Ax—ayde 4 (dz__
(a:-—a)” = o E =2 togr=12 log [(@—a) + 7]
If we let 2 =2 — a, dz = da, and
(4a+ Byde _
fx—a)z—l—b“ (Aa +B)f‘+b"
_Aa—}-Bta z__Aa+4+ B z—a,

b T
(Az+ B)d
Hence, —a—c—-—%z—_i_L;
=ZL1og [~ o+ + 225 F g1 222 5
(4= + Bydx
To find {- o T oT
Ax+ B _ Ax—a) + Aa+ B

(= + 0T [E—of +0T " [e—a'+oT
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If we let z=(x — a)? 4 0% dz=2(m—a)dx, and
A(x—a)dx P
[(@—a)y+ 6] 2f - 2(n—1)
— A 1 .
2—1) [(@— P+ o7

If we let 2 = — a, dz =dx, and
Aa + B)dzx _
= et B) Jpa- EEa
dz 2
fm can be made to depend upon fz,zrbﬁ)”.:l by the

aid of the reduction formula [6], Art. 64, which for this special
form reduces to

f(z”—l—bz)”
2 2n—
2(n--1)1;2 (z2+b")”—1+2(n—1)62f(z bﬁ)n—' [4]
1

(Adx+ B)dx __ A

Hence, [(@— a)’ + 67" =739 (n—1) . [z —a)*+ ]!
tUet B [y U
dx _ 1 . r—a
and f[(m —a)y + o] -2 (n—18 [(z— a)? »*p?

2n— 3
+2(n-— 1)% f [(gc_a)z Ey [6]

&L
A repeated use of [6] will reduce fm

depending on fm; which has already been found

1 ,x—a
tobeztan 5
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Turning back to Art. 62 (2), we find that
f (=*+1)dx Y dx _1fjw_
(@—1) @+ 1) =% w-—-l (xz+1)¥ *Jaz+1

xzdx Bx+2)dw
%f(x -—ac—{—l)2 fw“—w—l—l

=%logx—1)+ }

1.
z+1

x—2 2z—1
— .2 /3 tan—! -
i \3

et

-3} log(w“’——w—{—l)-—{y\/g ta,n—12xt1

._13 1

2x—1

— 3 V3 tan—! 73

ExAMPLES.

22— 3x+38 z—2
()f( 1) @y Fr e

) fwl dw_a;+%logw—+—§

de __'1
3) fx2+1—tan .

d (@—1)? 1, _9%z+1
4 —_— —_—— e — ———
fos_l s et B s
* ode 1 oz 1 a4+
®) Jam = i
dx av2+w+1 1 2z41
6 = +— tan71 1.
6) f(x2+1)(w2+w+1) o=~ 2?41 A3 3

x—1 '\/5 1z
— N2 tan-1-2_.
@) fm‘+:ﬁ p=dler gt G
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P?—x41
® +x2+1dw #lo B o+l
1
) f(w ~1y? (.»102+1)2 4(:c 5y ~Hee@—1
+ ¥tan~w — ————— + }log(a® +1).

<w2+1>

(10) e _ 1 log 22—z V241
Jat4+1 442 T4 V241

+2\1/§[tan“(w\/§+1)+tan“(w*/f—l)].
R R LV RS S SNV,
« )f-'v‘ 42 lo ——w\/§+1+2'\/§tan (1—06“’)'
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CHAPTER V. .
REDUCTION FORMULAS.

64. The method given in the last chapter for the integration
of rational fractions is open to the practical objection that it is
often exceedingly laborious. In many cases much of the labor
can be saved by making the required integration depend upon
the integration of a simpler form. This is usually done by the
aid of what is called a reduction formula.

Let the function to be integrated be of the form ™' (a+-bz"y,
where m, n, and p may be positive or negative. If they are in-
tegers, the function in question is either an algebraic polynomial
or a rational fraction; if they are fractions, the expression is
irrational. The formulas we shall obtain will apply to either
case.

Denote a + bz" by #z; then we want fw”‘"z? d.

Let Fr=u
and amde = dv, and integrate by parts.
du = p?~'dz = bnpx-122-1dx,
F
v=-—,
m
fw"‘“z’da: =T VD (Cmtn-t iy, [1]
m m

This formula makes our integral depend upon the integral of
an expression like the given one, except that the exponent of z
has been increased while that of z has been decreased.

We get from [1], by transposition,

fw""""" #de="2 " (g1 da.
np bnp
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Change m 4 into m and p — 1 into p, whence m is changed
into m — n» and p into p +1, and we get

m=n.p+1
amlgp dp = % 2 —_m—n amrlaptldy 2
f bn(p+1) m(p+1) > 2]

a formula that lowers the exponent of x while it raises that of .
Since z=qa + bz,

# =2"1(a 4 ba*),
hence

f gl dy = f a1z (a + bat) da = afw"‘"z‘”" dx

+bfamtrlz-lde;
therefore, by [1],

m p
rU b__np_fwm+n—lzp-ldw= afmm—lzp-ldz + bfwm-i-"—lzﬂ-ldm,
m

m

fw”‘“zp" o = T2 _ b0 1D) (m+n-1p-1 g,
am

am
Change p into p 41.

fw""lzpdw = ZET_bmtrp 4 n)f‘”""“""z”dw. [3]

-am am

Change m into m — n, and transpose.

m—n 1
el op gy = 2t a(m—mn) ™12 de, 4
fm i b(m +np) b(m+ np) (4]

We have seen that

fm'"'lz” dr=a f ™ zr-lde 40 f am+r-lap=ldy,

and, from [17,

bfxm+n—lzp—ldx= T M m-lp i
| np  np
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hence
- xm P m
fm”' lopdy = afw’"“z"“dw + — ™12 de,
np np

f e lpdy = L P (gmeip-lge 5]
m-+4np m-+np

Change p into p + 1, and transpose. .

{'x"‘“z"dm=-— ikl mA NP+ (et gy, [6]
an(p+1) an(p+1)

W

Formula [3] enables us to raise, and formula [4] to lower, the
exponent of by n without affecting the exponent of z; while
formula [5] enables us to lower, and formula [6] to raise, the
exponent of z by unity without affecting the exponent of z.

Formulas [1] and [3] cannot be used when m =0 ;
formulas [2] and [6] cannot be used when p= —1;
formulas [4] and [5] cannot be used when m = —np;

for in all these cases infinite values will be brought into the sec-
ond member of the formula.

65. If n=1, z=q + bx,
and our last four reduction formulas become
m p+1 N
fm”‘“z”dw:w 7o _bmtp+1) 2. 3]
am am
griap+l _a(m—
a1 epde = f a2 z2d. 4
it bt D) b(nT D) i L]
o™ lordr = 7 + 2D pm-1pp-1 . 5
f m+4+p m4p [ ]

m—1 pdx=_ xmz’+l m+17+1 xm— p+ 1 6
f:v ? a(p+1) a(p+l)f #ride. (6]

If m and p are integers, and m >0 and p >0, a repeated use
of [5] will reduce p to zero, and we shall have to find merely

the fm"‘“ dz.



Caap. V.] _REDUCTION FORMULAS, 57

If m<0and p>0, [3] will enable us to raise m to 0, and
then [5] will enable us to lower p to 0, and we shall need

“do
Iv [ 2
only J .
It m >0 and p<0, [6] will raise p to —1, and [4] will then
lower m to 1, and we shall needf—

It m<0 and p<0, [6] will raise p to —1, and [3] will raise

m to 0, and we shall need

fx"’“ de ==

k4
m
fd—m=logw,

x
dx dx 1
== =-1 bx),
2 fa+bw bog(a+ @)
fe_( do___1jgatis
xz z(a + bx) a x

Hence, when n =1, and m and p are integers, our reduction for-
mulas always lead to the desired result.

ExaMPLES.

atbr B B b 1
& )far’(a+ba:) a50g x +a‘x 2a3x2+3a2m" 4ax*
(2) Cons1der the case where n = 2, rewriting the reduction
formulas to suit the case, and giving an exhaustive investi-

gation.

dde x x
(3)f(a + 0223 4b(a+ba?)? +8ab(a+bx’)
+8(ab)§tan x -
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CHAPTER VI.
IRRATIONAL FORMS.

66. We have seen that algebraic polynomials and rational
fractions can always be integrated. When we come to irrational
expressions, however, very few forms are integrable, and most |
of these have to be rationalized by ingenious substitutions.

If an algebraic function is irrational because of the presence
of an expression of the first degree under the radical sign, it can
be easily made rational.

Let f(x, Va + bx) be the function in question.

Let r=Va+bx;
then z"=aqa + bx.
nz*~'dz = bdz,
n—1
de =" - dz :
5= r—a

b

Hence ff(w, Va +bx)dx = gfj(z” ; a z)z"'ldz,

which is rational and can be treated by the methods &'Chapter A

EXAMPLES.

(1) 3\§i—idw=w+4 V2 + 4 log(y/2—1).

n mog. Y (ax +b)m*"
(Q)f\/(am-{—b) dw_.iaW.

® flev@+a+v(@+alae

® 2n+1 n n41
—2e bR Y@L g (ta)
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67. A case not unlike the last is ff(a:, Ve + Ya + bx)da.
Let ' 2= Ve+ Va+bx;
»=c+ Va4 bz,
(#—c)"=a+bs,

("—c)"—a
L=

b
de =" (2" —c)™ 1z~ 1dz
b
Hence f flx, Ve+ Va +ba)dx
= an-ff[:_(zn——qb)_m———g’ z](zﬂ —_ c)m—lzn—l dz.
ExAMPLES.

(1) Find wdz

Ve+ Va+ bz
(2) Find f dz

V1i+V1i—=

68. If the expression under the radical is of a higher degree
than the first the function cannot in general be rationalized.
The most important exceptional case is where the function to be
integrated is irrational by reason of contaning the square root
of a quantity of the second degree.

Required ff(oc, Va + bx + ca?)dz.

First Method. Let ¢ be positive; take out V¢ as a factor, and
the radical may be written VA + Bx + .

Let VA +Br+at=2+2,
A+Br+?=a>+ 222+ 72,
x=z2—A
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_2(®— Bz 4+ A)dz
(B—22)
B— 2z
and the substitution of these values will render the given func-
tion rational.

dz =

9

Second Method. Let ¢ be positive ; take out V¢ as a factor,
and, as before, the radical may be written VA + Bz + 2.

Let VA+Br+ = JA+ xz;
A+Br+at=A+2/4.2z+ #2,

x=w,
do < 24 .22 — Ba + /A)dz
(l—g“’)? ’
AT BrF o= vA+az =42 =Bt yd

1—22
and the substitution of these values will render the given func-
tion rational.
If ¢ is negative the radical can be reduced to the form
VA ¥ Br — %, and the method just given will present no
difficulty.

Third Method. Let ¢ be positive ; the radical will reduce to
VA + Bx+4a’. Resolve the quantity under the radical into the
product of two binomial factors (x —a) (2 — 8), « and 8 being
the roots of the equation 4 4+ Bx 4 #? = 0.

Let VE@—a)(@—B)=@—a)z;
(@ —a)(z —B)=(z — a)*?,
—B—od?
=iE
—22(B—a)dz
T

G0 GE—p)=@—a=E=2),
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and the substitution of these values will make the given function
rational.

If ¢ is negative the radical will reduce to VA + Bx — o and
may be written v/ (a— =) (x — B) where o« and B are the roots
of #* — Bx — A =0, and the method just explained will apply.

In general, that one of the three methods is preferable which
will avoid introducing imaginary constants ; the first, if ¢ > 0}

the second, if ¢ <0 and _—il—c > 0; the third, if c< 0 and :a;; <0.

a
If the roots a and B are imaginary, and A=—_ is negative, it

will be impossible to avoid imaginaries, for in that case
A+ Bx — #* will be negative for all real values of @.

69. Let us compare the working of the three methods just

given by applying them in turn to the example f dz

Nerrre
1st. Let _V2+3:c+m2=ac+z;
f do _(2(*—82+2)dz _3—22 _ 2dz
Norxrrr (3 —22)* 2—32+2 8—22z
= —log(3 — 22),
f___d.x__=—-log(3+2w-—2\/2+3a:+m’)
VZH3e+ o _

1
1o,
g3+291;——2\/2+3:1:+ac2

S42x+2V2 432+
9 F12x+ 407 —8 — 120 —42°

=log[8 +2z+2V2+ 3z + 2] (1)

= 10g

2d. Let NZF szt =~/2 25
f dx =2f(\/2.z’—3z+\/2)dz. 1—2
N2 ¥ Bt o (1 -2 V2.2 —32+4+/2
dz 142
= =1 Art. 53
2f1_z2 og ( )

1—=z
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f g N2+ VI ¥t
V2 + 3%+ 2° w+\/2——\/2+5w+w2

P4+ 22V2 3z F 2+ 2+ 8w a?—2

=l Vi et 2 —Bs—a
—lo 3+2zx+2V2F3x 4o
=08 2y2—35

=log(3 + 2¢+2V2+ 3z+a?) — log(2+/2—3),
or, dropping the constant log(2+/2 — 3),

f___@__=1og(3+2w+2x/2+3w+wﬂ). )
V2 ¥ 3z + o
3d. Let V2 + 3o+ 22="(z+1) (z+2)=(x+1)z;
ds —zdz 1—2° 1+z
,f\/2+3x+m5' j‘(l—zz)2 —z f l—z
x+ 2

1+ S -
= log \m+1_10 NESERCES,
NIz + 2 1_\/w+2 Vo+1—Vo+2

z+4+1
m+1+2\/2+3w+x2+x+2
r4+1—x—2

=log (3+2x+2V2+3z+ o) +log(—1),
or, dropping the imaginary constant log (— 1),

dx YR
—— 2 —log(8+2x+2V2F3x+27). 3
f\/2+3w+wz g ( F3z+a2) (3
ExXAMPLES.
(l)f Codx _ l_log\/-l—i—z:v—\/z—m.
Q2+3x)Vi—22 4V2 Nit204+V2-w

dz S
—— =] 1 :1:2 .
) f\/_w”_x og (3 +  + V¥ )

3) _—log<;7+ch+Va+bw+cﬁ)

©
VaFbr e o
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70. If the function is irrational through the presence, under
the radical sign, of a fraction whose numerator and denowminator
are of the first degree, it can always be rationalized.

. x4+ b

Required f J (w, A ’lm -:-m) dw
nlax + b

e+ m’
axr +b
e+ m’
—_b—mz
" —q
n{am — bl)z""'dz

(" —a)?

and the substitution of these values will make the given function
rational.

Let z=

z"

k)

dx =

]

ExamPLE.

f(l +w)‘\3/§=_§\/(l+m

71. If the function to be integrated is of the forma™-1(a + ba")>,
m, n, and p being any numbers positive or negative, and one at
least of them being fractional, the reduction formulas of Art. 64
will often lead to the desired integral.

ExXAMPLES.

A da A oc\/l—-
()f(lac ﬁ)%—%sm T (34 227).

_%ogl—\/l -2 Ji—&

@ "’3\/1-—_ x 242
P r , 3a 23 =1 X
(3 )f(Qam .'1:2) (Zaw—xz)%(§+?>+3a sin \/;—a.
?dx _(2a+34Y)
(4)f(a2+w2)s 3(a®+ o)1
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72. We have said that when an irrational function contains a
guantity of a higher degree than the second, under the square-root
sign, it cannot ordinarily be integrated. It would be more cor-
rect to say that its integral cannot ordinarily be finitely expressed
in terms -of the functions with which we are familiar.

The integrals of a large class of such irrational expressions
have been specially studied under the name of Elliptic Integrals.
They have peculiar properties, and can be expressed in terms of
ordinary functions oanly by the aid of infinite series.
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CHAPTER VIL
TRANSCENDENTAL FUNCTIONS.

73. In dealing with the integration of transcendental functions
the method of integration by parts is generally the most effective.

For example. Required | z(logz)®de.

Let u'=(logx)?,
dv=x.dx;
2logw.dx
U = ——x—"—,
v=2
=%

fw(logm)” = x_ﬂ%g_x_)’ -—fwlogw.dm = %[(logwf— logz + 4],

Again. Required fe" sin o.d.
' u = sin®,
dv=e"dx;
du = cosz.dz,
V=€,
fe’ sin z.dx = €*sin © -—fe”cos x.dx,

fe‘cos z.de = e*cos x + | e"sin x.dzx;

. e*(sinax — cosx
whence f esinx.dx = -—2—-—) ,

and fe’cos x.dx = eS“””A__;:M)_.
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ExXAMPLES. .
x™ 8 _— o 8__ 3(10 w)2
(1)f (log x)*da = + [(lo x)s— i—m_*_]
+ 6logx 6 I
(n+1) (m+1)°

(2) lﬁgf-ﬁzml_ﬁ_“’_  flog(1—2z). .

(3)f e /(1 — e2*). dw-—[ (1 —ez"’)+sm“le"]

74. The method of integration by parts gives us important
# reduction formulas for transcendental functions. Let us con-

sider fsin" z.dx.
u = sin" 1z,
dv =sinx.dx;
du = (n—1)sin*"%x cos z.dz,

V= —COSZ;

fsin"w.dw = —sin"" 'z cosz 4+ (n —1) | sin™%x cos’x.dx

= —sin" '@ cosw + (n —l)f(sin“‘za: — sin*x)dr;

fsln w.dw = — 1 sin"1x cogz + =1 —1

in®—2
- sin"~2z.dx. (1]

Transposing, and changing n into n + 2, we get
. 1 . n+42 .
nw‘d —_ n+1 phd Bl n+2 . . 2
fsm @ = g sin :zccosa:+n+1 sin**+?z.de.  [2]

In like manner we get
n—1

1. ¢
foos"w.dw = sinx cos" 'z + cos™2x.dx, 3]

fcos"m.dm = _:_ 7 sina cos™ 1 4+ ::: cos*+ix.da. [4]

If n is a positive integer, formulas [1] and [8] will enable us
to reduce the exponent of the sine or cosine to one or to zero,
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and then we can integrate by inspection. If » is a negative
integer, formulas [2] and [4] will enable us to raise the ex-
ponent to zero or to minus one. In the latter case we shall need

f 9 o f 4% Shich have been found in Art. 54 (c).
cosx sSiny

ExampLES.

(1) sin4m.dw=_w4c<>_wv<smvm +§)+§x

H 3
(2) | coste.dr= W(coszw -+ g) + -iée- (sin& cosz+ x).

dx cos® @
3 = — log tan=.
@ sinx - 2sin“’m+% o8 an2

(4) Obtain the formulas

. 1 .. -1 .
fsmh" w.de= - sinh* 'zcoshz — 22 ( sinh*~?x.dw.
n n

f sinh®x.de= 1 sinh"*x coshx — n+2 sinh™+2z.d.
n4+1 n .
n—1

fcosh" r.de= 1 sinhx cosh™ x4 cosh*2z.dz.
n

f cosh"z.dx= — 1 sinha cosh”“”av+7i2 cosh"*+2x.da.
n41 n+1
(5) dx _ __ jcoshx 31 coshz — 1

sinh®z = “sinh’z coshz 41

75. The (sin~'z)"dx can be integrated by the aid of a reduc
tion formula.
Let z=sin"1z;

then x = sinz,

dx = cosz.dz,

and f (sin'x)"dw = | 2"cosz.dz.



68 INTEGRAL CALCULUS. [ART. 76.

Let u = 2",
dv = cosz.dz ;
du = nz""ldz,
v =sinz;
fz" cosz.dz = z"sinz — nfz"'l sinz.dz.
#"1sinz.dz can be reduced in the same way, and is equal
to —z"'cosz +(n— l)j‘z"‘2 cosz.dz;
hence :

fz"cosz.dz = 2"sinz +nz"'cosz — n(n—1) | 2**cosz.dz, [1]
or f(sin"‘x)"dac = z(sin~'@)" 4 nV1 — 2?(sin~ 2)*!

—n(n—1) f (sin~12) "2 dar. [2]

If  is a positive integer, this will enable us to make our re-
quired integral depend upon | dx orfsin“‘m.dw, the latter of
which forms has been found in (I. Art. 81).

ExXAMPLES.

(1) Obtain a formula for f (vers~'z)"dx. -

) f(sin“w)‘dac = [ (sin"'z)*— 4.3.(sin"'@)?+4.3.2.1]
+ 41 —a?sin~'z [(sin~'z)?—38.2].

76. Integration by substitution is sometimes a valuable method
in dealing with transcendental forms, and in the case of the trigo-
nometric functions often enables us to reduce the given form to

an algebraic one. Let it be required to find f (/sinx) cosz.dx.
Let z=sinz, ’

dz == cosz.dx ;

f(fsin x) cosx dx =fszdz.
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In the same way we see that
f (f cos®) sina.de - f fo.d if 2=c082,
and
f[f(sinm, cosw) ] cosw.dx = f[f(z, V1=2%)]dz if z=sinz,
f[f(cosw, sinz)] sina.de = —f[f(z, V1—2%)]dz if 2=cosx,

or, more generally,

f JS(sing, cosx) dr = ff(z, V1—2%) \/ — if z=sinw,
f.f(cosm, sinx) dw=—ff(z, V1=22) i dz if 2=cosz.

_Z2

Since any trigonometric function of # may be expressed in
terms of sinz and cosz, the formulas just given enable us to
make the integration of any irigonometric function depend on
the integration of an algebraic function, which, however, is
frequently complicated by the presence of the radical v1—2%

77. A better substitution than that of the last article, when
the form to be treated does not contain sin or cosx as a factor,

R x
is 2= tan—-
2

This gives us . Cde= 12_:?2;2,
sing = 2z

1422

coB X = 1—2.

142’

whence ff(sinw, cosx) da = 2ff<1 i—zzz’ i I:z)l (-1:7,“' 1]

As an example, let us find f __dv
v a+ b coswx
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Here we have

f da __2f dz _2f dz
a+bcosz 1 —27] o&+b+(01,—b)zé
1+ 22 b
a+afatoi o] i
__ 2 dz 2 tan_1<\/a—b.z>
a—b a+b+ 9 '\/G/Z—b2 a+b
a—b by I. Art. 77, Ex. 1.
dx 2 a—b z\ .
H f t ~-l< tanZ), if @ >b.
ence a+bcosw W an P an2>,1 a>

78. fsin"‘w cos"z.dx can be readily found by the method of

Art. 76 if m and n are positive integers, and if either of them
is odd. Let n be odd, then

n—1 b
cos™x =cos® 'xcos x = (1 — sin’x) 7 cosw,

n—1
f sin™wcos"x.dx = | sin™x (1 — sin®x) "% cosz.dwx.

Let z = sin®,
dz = cos.dx,

n—1
fsin"‘a; cos"x.de = § 2" (1 —2°) 2 dz,

which can be expanded into an algebraic polynomial and inte-
grated directly.
If m and » are positive integers, and are both even,

n
fsin”'w cos"z.dx = | sin™z (1 — sin’z)2de.

sin™x (1 — sin%); can be expanded and thus integrated by
Art. 74 [1].
If m or n is negative, and odd, we can write
cos"r = cos" 'z cos®, or sin™z=sin"'zsinz,
and reduce the function to be integrated to a rational fraction
by the substitution of
z=cos®, or 2z=sina.

fsin"‘w cos™w.de can also be treated by the aid of reduction

formulas easily obtained.
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79. ftan"wdw and f da
tan"x

of Art. 78, but they can be simplified greatly by a reduction
formula.
We have

ftan”w.da: =ftan"‘2a: tanz.dx =ftan"*2m (sec’r— 1) dx

can be handled by the methods

=‘ftan”“2 xd(tanx) —‘ft‘,an"*2 z.dx,

n*- 1
whence ftan x.do = —— ftan”'ﬂm.dw; 1]
™ .

and da =fseczw—tan2mdw =j‘d (tanx) f

tan"z tan”x tan"x tan"—%x’
whencef de 1 — aw__ [2]

tan" (n—1)tan* ' tan"%x

EXAMPLES.

cos®x cos’w
10 8

(1) | sin’zcos’w.dx =

(2) | cos’x sinz.de = 2sm’1m _ 2sin’z

3 7
T ]
3) sindx.dx - 2co08*x 2 costa.
cos2 5
(4) cos?x sinta.de = sinw cosx/sin‘z _ sinz 1 + z
2 3 12 8 16
da x
5 —_— = 1 t: —
4) Sin® costa secx 4 log tan 5
, dx cosw
6 = = — 1 <,
) sin®x cos®x e g sin + og tang 2
(7) =—-—i—+ + log sinz.

tan“ 4tantz 2 ta.n"’
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VbF¥a+Vh—a. tan;-”

(8) ‘Zx =1 log .
@+ bcosw V¥ —a® " \bfa—b—a.tan?
i 9 4+5tan§
(9 f_m__ = %tan-l| —— 2|
) 5+ 4sinx 3 an 3
 de L . x, 2
10— ==1 =1 =421 2 .
( )f3sinm+sin2m Flogsing ogcor:12—+-5 og (842 cosx)
(ll)f cos xdx ____é sin® —~8—tan‘1 1tan§ .
(b+4cosx)? 954 4cosz 27 3 2
) (a—c) tanZ b
(12) - dz = 2 tan“‘li___2__
atbsinx+tccosr /@ _pE_F ViR—p—¢?

(13) Show that the methods described in Arts. 76-79 apply
to the Hyperbolic funetions.

.

(14)f d = __2~_tan—1 \/b_atanhE if 6 >a
a+beoshe Voi—a? b+a 2

dx
a-+b sinha 4+ ccoshx

2 (c-—a,)tanhg—l—b
=—————— tan—! —_——— .
Vet — a?— 82 Vet —a? — ¢

(15)




CHap. VIIL] DEFINITE INTEGRALS, 78

CHAPTER VIIL
DEFINITE INTEGRALS.

80. In I. Art. 183, a definite integral has been defined as the
limit of a sum of infinitesimal terms, and has been proved equal
to the difference between two values of an ordinary integral.

We are now ready to put our definition into more precise,
and at the same time more general, form.

If fx is finite, continuous, and single-valued between the
values =« and = b, and we form the sum

(2, — a) fa + (@, — »1) fo +(%— @) foat oo+ (Ba1— Tu2) Su_s
+(b—wn—1)fwn—l,

where o, @y, @3-+ ®,_; are n—1 successive values of = lying
between @ and b, the limit approached by this sum as n is in-
definitely increased, while at the same time each of the increments
(%, — a), (7 — x,), etc., is made to approach zero, is the definite

integral of fz from a to b, and will be denoted byf Ja.dx.

If we construct the curve y=/fx in rectangular co-ordinates,
this definition clearly requires us to break up the projection on
the axis of X of the portion of
the curve between the points A A
and B into n intervals, to multi-
ply each interval by the ordinate
at its beginning, and to take the A, B,
limit of the sum of these products ofa =z & T b
as each interval is indefinitely decreased; that is, the limit of
the sum of the small rectangles in the figure, and this is easily
proved to be the area ABA,B,.

Now the area ABA,B,. found by the method of I. Chap. V.,

is [ f fw.dxlzb"‘[ f‘”'d”],:.’
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Therefore fbj‘m.da:=|i fa:.dw:} . -—[ fm.dm] . (1]

b
That is, f Jz.dx is the increment produced in f Jo.dx by

changing x from a to 5.

It is to be noted that the successive increments (2, —a),
(@, — ), (%, — 2;), ete., that is, the successive values of dx,
are not necessarily equal; and also, that if we multiply each
interval, not by the ordinate at its beginning, but by an ordinate
erected at any point of its length, the limit of our sum will be
unaltered. (v. I. Arts. 161, 149.)

81. It is instructive to find a few definite integrals by actu-
ally performing the summation suggested in the definition
(Art. 80), and then finding the limit of the sum.

(@) I . d.

Let us divide the interval from a to b into » equal parts, and
call each of them dz.

Then ndx=>b—a.

Our sum is

8 = adx + (a+dx) de +(a+ 2dx) de 4 - + (a +(n—1) dw) da
=nadz+ (142484 --- +(n —1)) da?
=a@—a)+ 2=V,

since ndz =5 — a, and the sum of the arithmetical progression

n(n—1)

1+2484-.+(n—1)= 3

n(n—1),, 2 —(—0a) (b—a)de
——2—da¢2_%(ndx2—ndw2)_ 5 >

2 2
Hence S=b -;a ——ib—;'—azda;.
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As we increase m indefinitely, dz approaches zero, and

fwd limit [b? —a? _(b—a)de| _b* _ o
3 Tdr=0|" 9 2 2 2

) f eda.

¥ —
Let —b=qa

S = e*dw 4 e*Hiody + ey | oi gDz g
=e'dw[l 4+ e + & + % ... e D=
but 14 e* + e¥= 4 ... e V%* jg a geometrical progression,

and its sum is
e’ndz —1 eb—u -1
e —1 e* ~1

”“—1 dz
cerdr= (e —e*
—1 o ( )e‘l'_._l

e limit de .
fe’da: (eb “) g = [e"“—l:]’

but as dx approaches zero, dzdw
e —

Hence S=

£

1 approaches the indeterminate

form %; but since the true value of

[e—l] []H ’
j;e“dw=e”—e".

)] I"cossw.dm.
Let doe = E, and let n be an odd number.
Then

S = dx - cos®dz - dw+coss2da: dz 4+ 4 cos® (n—2)de.dz
+ 208% (n — 1) dee - dee
= da + cos®dz . dw + cos®2dx - dx 4 --- + cos® (# — 2dx) - dx
+ cos® (w — dz) - d=

= de + cos®dz - dx + cos?2dx - dx + --- — cos®2dx - dx
— cos®dx - du,
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since cos (r — ¢p) = — cos ¢.

Hence the terms cancel in pairs, and we have left

S =dx
and j:"coss z.de = dglztb [dx] =0.
B
(d) f sin®x.dz.
0

Let doe = g—, and let » be an odd number.
n

S =sin’0. do4-sin’dx - dw+sin®2de - da + --- +sin’(n—2)dz . de
+sin® (n — 1) d - d

=sin’dz-dz+sin? 2dx.dx4-.- 4+ sin2<12r—— 2dw>daz+ sinz<g _ dw)d:v

=sin%dz-dx 4 sin’ 2dw-de + .. + cos?2dx-dz{- cos’dx-duw,

since sin (’2—' — ¢> = cos ¢.
Then S;dw+dw+dm---=n_2—1dm,
since sin’¢p + cos?p = 1.
dx
Theref =T _ o
erefore 179
’ 12[ . b
and f sin’z.de = =.
] 4

© [

Here it is best to divide the interval between @ and & into

unequal parts.
Let the values z,, @,, 25 --- 2,_; be such as to form with a and

b a geometrical progression.

For this purpose take ¢ = \jg, 80 that ag™ = b.
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Then the values in question are ag, ag®, ag®--- ag"?, and the
intervals are @ (¢ —1), ag(g —1), ag’(g—1) - ag"* (¢ —1),
and the sum

—_— —— — " -1 —
§=2=D ,a9(a=b ag(@—1) e (@—1)
a ag agq aq
=n(g—1).
To prove our division legitimate we have only to show that

each of our intervals, a(¢—1), ag(qg—1) -+« ag*'(¢—1),
approaches the limit zero as n increases indefinitely. Since

nb
9 —C',

the’ limiting value of ¢ as n increases must be 1, as otherw1se :

limit q" would not be finite.
n= o

Therefore :lelt [ag*(q —1)] = hmlt [aq (g—1)]=0.

We have then

j:bd;w hmxt [S] - hmlt [n (@—1)]= thiu [n(g—1)]

rlogb
limit Ca
= —1
since nlogqg = 009.
. gq—‘ 9a,
] b
timis| © a b hmlt
But — =log = = log Z.
For [q—l:l = .1. =1.
logq |41, 1
q g=1

' b
Therefore f %? =logb —loga.

a
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ExAMPLES.

(1) Prove by the methods of this article that

¢ 4 b
f a*dr = @ ~—a .
b loga
(2) By the aid of the trigonometric formulas

cos@ 4 cos26 + cos830+ -« +cos(n—1)0
=%|:sinn6 ctng -1 cosnﬁ:l,

8ind 4 sin26 +sin8f + --- f-sin(n —1) 6
=%[(1 — cosng) ctng—sinné?:l,

b
prove that f cosx.dx = sinb — sina,
a

a

' . 13
and f sina.dx = cosa — cosb.
27
(3) Show that f sin®x.de = 0,
0

and that f " costa.dp = %
0

bm+1 — a"‘*‘l

b
(4) Show that f o™ de = , using the method of

Art. 81 (e).

m-4+1

82. When the indefinite integral can be found, the definite
b
integral | fr.dx can usually be most easily obtained by em-

ploying the formula (1] Art. 80, and this can always be done
with safety when fx is finite, continuous, and single-valued
between x=a and x=>.

Of course, if the indefinite integral is a multiple-valued func-
tion, we must choose the values of the indefinite integral cor-
responding to x=0a and «=">b, so that they may be ordinates

of the same branch of the curve y =ffw.dac.



CHap. VIIL.] DEFINITE INTEGRALS. 79

1
Consider, for example, 1 (—1:0902 The indefinite integral
/=1
T iw w2=tan‘1w and tan 'z is a multiple-vaiued function.

Indeed, y =tan ' is a curve consisting of an infinite number
of separate branches so related that ordinates corresponding to
the same value of x differ by multiples of 7. On the branch
which passes through the origin, when = —1, y=tan'z= —2;
on the same branch, when =1, y=tan 'z =7. On the next
branch above, when = — 1, y=tan 'z ___34_71—; and when ¢ =1,

= i—" On any branch, when z=— 1, y=tan o = —i +nr;

and on the same branch, when =1, y= E + nar.

Hence f dz —tan*‘(l)—tan‘l( 1)—_ T=T.
14~ 2
or fl de 5w _ 8w _=
al422” 4 4 2
Lo
o Siremiee (i)

By f Jx.dx we mean the limit approached by fz:fa:dac as b

is indefinitely increased.

ExamPLES.

(1) Work the examples of Art. 81 by the method of Art. 82

1ginx.da .
(2)f cos’w =Vi-L.

“ de _4 _
) e
(4) o

oa+:z:2 2a
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(5) A a:liwxz=g if a > 0, and —-—%ifa<0, and 0 if a = 0.

(6)f e=de =1 if a>0.
0 a

(7)10‘ e~ sinma.dx = :'_l’”ﬁ if-a>0.
(8)]0‘ e~ cos ma.dwx =a2—;—lm2 if a>0.

1 de _ ¢
(g)jt: 1+ 2xcosdp+a* 2sing

* dx _ 9% .
(10)1: 1+2wcos¢+m2—sin¢v

83. When fr is finite and single-valued between x=a and
# = E. but has a finite discontinuity at some intermediate value
r=c

b ‘L‘bfw.dw =lcfm.dw +£bfm.dm,
‘\r‘

i
}
!
1

b
and thereforef fx.dz can be found by
ol o ¢

1
: X
b Art. 82 when the indefinite integral

[ P——

f fx.de can be obtained; but when fr becomes inﬁm’té for
#=a, or for ¢=25, or for some intermediate value z=c¢,
special care must be exercised, and some special investigation
is usually required.

If fr is infinite when 2 =a and ' fx.dx approaches a finite
limit as ¢ approaches zero, this limita.'-iss what we shall mean by

b b
f Sr.de; if f w.dx increases indefinitely as e approaches
a at+e

b b
zero, we shall say that f fr.dz is infinite; and if (‘ Jr.dx

<ate

neither approaches a finite limit nor increases indefinitely as ¢
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approaches zero, we shall say that bfw.dw is indeterminate.
It is in the first case only that ’ fmd;: can be safely employed
in mathematical work. ’

If fx is infinite when z=10 andf Jfr.dx approaches a finite
limit as e approaches zero, that limit is the value of f Jo.dax.

If fr is infinite when #=¢, and each of the expressions
f }c}':fv.dw and ' Jz.dx approaches a finite limit as e approaches
zgro, the sum (c)ﬂ%E these limits is j: ’ Sx.dx. Should either or
both of the expressions,

a”f"a’c.dw, f :fwdw

fail to approach a finite limit as e approaches zero, f bfa:.dm is
either infinite or indeterminate, and cannot be safely laxsed.

When the indefinite integral of fx.d@ can be obtained there
is little difficulty in deciding on the nature of f *fo.dw in any
of the cases just considered, or in getting its v;lue when that
value is finite and determinate.

For example,

(@) f — is infinite, since

- ldx 1
f—m—__loga: andj: ?—-log(l) —logs—log:,

and increases indefinitely as e approaches zero.
® dx
@ [ 2

dx 142 roo
=41 = Ll
f 1—2° %Ogl—x’

1-¢ dy 2—¢
=31
o 1 —g? 1}Og< € )’

and increases indefinitely as ¢ approaches zero.

a;”is not finite and determinate, for
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() f ‘9 s finite and determinate, for
0 g — oF

dx al 1%
S e

a0 =

. . 0 —€
—8in™10 = gin1—,
a

j‘: m:sin

and its limiting value as e approaches zero is sin~'(1) or ;r

2
(d) f (lxdw ) 1s finite and determinate, for
wdx
=2 =t =af—ja -

fl(elwdx) %c _%e %+%’

and its limiting value as e approaches zero is § — .

2 xdx
o s _ 34384 3%
afl\ﬂ(l—m)i—‘ $—3+2436,

and its limiting value as ¢ approaches zero is —$% —$, and
~ consequently

S = t-t-i-t=—t

84. When, as is sometimes the case, the indefinite integral
cannot be obtained and the function to be integrated becomes
infinite at or between the limits of integration, we have
recourse to a very simple test which is easily obtained by
the aid of the following important theorem, known as the
Maximum-Minimum Theorem.

If a given function of X is the product of two functions both
finite, continuous, and single-valued, one of which ¢(X) does not
change its sign between x ==a, and X =b, and if M is algebra-
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ically the greatest and m the least value of the other factor
b
f(x) between x=a and x=D, f f(x) ¢ (x)dx lies between

Mj:bq&(x)dx and mj;b¢(x)dx.

To prove this theorem, let us first suppose that ¢ (x) is
positive between x =a and x =8. M — f(x) is positive for
the values of # in question, [M — f(x)] ¢ () is positive, and,
therefore,

j;b[M—f(x)]¢(x)dm>0
and o 6 @)an> [ 1@ 9@ de. )

S (x) —m is positive for all values of z between x =a and
=10, [ f(x) —m] ¢ («) is positive, and, therefore,

[ r@—mle@dn>o0
and [r@¢@a>m S b (@) dz. )
Hence, fbf () ¢ (@) dz lies between M f b¢ (x) dx and m

b .
f ¢ (x) dz. It is easy to modify this proof to meet the case

where ¢ () is negative.
We can briefly formulate the result of the Maximum-Mini-
mum Theorem as follows :

b b
Sr@e@ae=r@ [ o6 ®)
where £ is some value of x between a and 5.

Let us apply this theorem to the consideration of f S@)de
when f(x) becomes infinite for x =a.
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limit b, .
In order that =, 0 ff (x) dz | should be finite and de-
€= a+te

terminate it is easily seen to be necessary and sufficient that
limit | limi ate
o l: it < J () dm):l should be equal to zero.
a+a

e=0| a =0

—_ k
Let us write /' (x) in the form % andlet 0 <k <1.
(w—_l_a? is positive for all values of x greater than a.
: ate at+e dx
Hence, j‘; S@da= f LEm @ T
— (£ — q)* are__dw
== j;“ (@ —ay

kgl —k )
= (¢ —a)* 1 (§) =% ata<é<a-te;

limit

ate "
and aﬁO[.ﬂ.,,&fl(m) dx} =<$—“)kf(f) 1—_—]‘:; a<é<a-e;

. .. o
and 111.1113 I: limit < . (x) dx)] will be zero if (§—a)*f(§)
€ = a-+a

does not inc(:'e;;sg indefinitely as £ approaches a.

Call {—a », whence é=a - 5. . Then a sufficient condition
that f!:f(ac) dz shall be finite and determinate when f(a) =
is that 7t f(a+7) shall not increase indefinitely as » ap-
proaches zero, 0 <X.<<1l. If we write f(x) = @—;%
and proceed as above, we can show that a necessary condition
that j;}'(x) dx shall be finite and determinate when f (a)y=o0

limit

8 2olflatn]=0
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If £(6) =« our sufficient condition is that »*/(5 — ) shall
not increase indefinitely as == 0,0 <<k <{1; and if f(s) =0
that neither 4%/ (c —») nor *f(c+4) shall increase indefi-
nitely as =0, 0 <k <<1.

Let us apply our tests to the examples considered in Art. 83.

Yde limit | o | __
(@) j‘: e because = 0[’7] =1.

> de ., .
® j; == indeterminate, for

limit 7 | limit =3
=0 1—(10—y)? 7;—0 2—1] ’

limitl: 7 ] hmltl: :|
7=01—(@+1)°1 =0[2+,

*  dx ) . )
j‘: ﬁ is finite and determinate, for

and

[\/a~(a—n):| —_— =0if1}<k<.1.

.20k
pPr—1 7

71=0

(d) f a— ; is finite and determinate, for

[[1 —%f—"i)]s =D A plee=0i §<k<1,

g ) S+ le=0if g <k<1



86 INTEGRAL CALCULUS. [ART. 8¢.

Even when, as in the examples just given, the indefinite
integral can be obtained, there is a decided advantage in using
the very simple method of this article. For if the application
of the test shows that the definite integral in question is infinite
or indeterminate, the labor of finding the indefinite integral is
saved; and if the application of the test proves the definite
integral finite and determinate, it follows that the indefinite
integral does not become infinite for the value of # which
makes the given function infinite, and consequently when the
indefinite integral has been obtained, the method of Art. 82
can be used without hesitation.

As an example, where the indefinite integral cannot be ob-
tained, let us consider at some length

f1<log1)ndx
0 @

If » is positive, <log%>n is continuous and single-valued be-
tween =0 and z =1, but becomes infinite when 2=0. We
must then investigate the limiting value of »* <log %)na.s 7
approaches zero.

n* (log 1>”is indeterminate when 5 =0, but its true value is
easily fouZd to be zero if n is positive, whether n is whole or
fractional. For positive values of =, j: ' <log;c>ndw is, then,
finite and determinate.

If n is negative, call n=—m.

Then f <log >dw —f <1og )

1

1 m
log -
(i)
is continuous and single-valued from =10 to x=1, but be:
comes infinite when x=1.
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limit 17"’

p=0 <10g 1 )’" ’
1—9

‘which proves to be 0 if m < 1; if m =1,

‘We must, then, find

i =1;

(log 1 )m
1-—- n =0

and if m > 1, it is infinite.
!’ dx
1 m
log =
(s3)

is, then, finite and determinate if m < 1, but infinite if m =1
or m> 13 and we reach the result that

1 1 1 nd
j; <Oga_a> 2
is finite and determinate if » > — 1, but infinite if n=—1 or
n<—1.

ExXAMPLES.
(1) Prove that

fl logw f logw . dx, f dx10g<l +m)
o 1—2 l—z

are finite and determinate.

(2) Prove that

f dz wzmda; ~» where m and n ave mtegers. and
o 1—at Jo 1—

o0 -1 "
f 1“# . dz, are not finite and determinate.
0 pa—

(8) Find for what values of = f (log#)"dx is finite and

determinate.
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1 n
(4) Find for what values of m and » f " logl> dx is
o ®

finite and determinate.

. .
(5) Show that f 2 (1 — z)*'dw is finite and determinate
0

if m and n are positive.
(6) Prove that f2 log sinz.dz is finite and determinate.
0 .

(7) Show that the following integrals are finite and deter-
minate, and obtain their values :

f“,_‘!_w_ =7
o JZ—w 2
f“__d?i____.,,
o ax —

fz_siiﬂ_=z.
12pf 1 8

85. It was stated in Art. 82 that by f }w.dx we mean the
limit approached byf}'x.dw as b is indeﬁxiitely increased, and,
as we have seen, if tt:e indefinite integral f Jx.dx can be found,
there is no difficulty in investigating the nature of ;w.dac and
in obtaining its value if it is finite and determinate. wThere are,
however, many exceedingly important definite integrals of the
form f}wdw whose values are obtained by ingenious devices
withou; employing the indefinite integral, and these devices
are valid only provided that the integral in question is finite and

determinate, since an infinite value not recognized and treated



CHar. VIIL) DEFINITE INTEGRALS. 89

as such, or a value absolutely indeterminate, renders inconclu-
sive any piece of mathematical reasoning into which it enters.
If we construct the curve

Y
y =7, f fw.de is the limit- ”
ing value approached by the
area ABB,A,, as OB, is in- B c
definitely increased; and in o @ 4, b B, ¢ G x

order that this area should

be finite and determinate, it is clearly necessary and sufficient
that the area BCC,B, should approach zero as its limit as
first OC, and then OB, is indefinitely increased.

. limit ( limit _
That is, b=w< [ffac dm])--()

86. A sufficient condition that

[ )]

can be easily obtained by the aid of the Mazimum-Minimum
Theorem (Art. 84).

Let f(2) be single-valued and continuous.
We can write () in the form w%%z: k>1; then by (3)
Art. 84.

[roda=[roS=tref 7

gl 1 1
SEe—1lF T & ]b<§<"

it [ f @i | =28 s <
and hmlt [h‘mt ( S f(x)dx)]— it g6 does

not increase mdeﬁmtely as ¢ increases indefinitely.




90 INTEGRAL CALCULUS. [Arr. 86.
If, then, [2*/(x)],_. is not infinite, 2 > 1,
fwf (x) dz is finite and determinate,

(2) As an example of the use of this test we will prove
fwe—z’dw finite and determinate.
0

~* i3 single-valued, finite, and continuous for all values of «.

hmlt [ ke—-x’] k>1, is easily found and proves to be zero.

Hence, f ¢ **dx is finite and determinate.
0

* sin ax
dzx.

() Let us eonsiderj;

sih ax

is equal to @ when =0, and is finite, continuous,

and single-valued for all values of «.
Let « be a given constant ; then

® sin ax 2sin ax * sin ax
f-—_m=f m+f dz,
(i} & 0 X a X

and f smx(mdx is finite and determinate.
0

By integration by parts.

x=——— — =~ | ——da,

sin ax P cosax 1 ("cosax
f ax a x?

* sin ax cosaa 1 ("*cosax
‘de= —=
a x aa

'dﬁ!,

eos ax
and f dz is finite and determinate since

limit | z*cos x* cos ax limit | cos ax
r = = a2k

]=0ﬁ1<k<2

() j{: cos (#°) dx is finite and determinate, for cos (2?) is

finite, continuous, and single-valued for all values of «, hence,
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f cos (#°) dx is finite and determinate ; and
0
£ 2 3 2 ® g1
f cos(acz)dac——f Zxcos(x)dm (s1na)+%f sm(m?)dx’
a 2a a x?
and j: ﬂx—gm is finite apd determinate since

X
hmltl:acsm(xz] 0. 1<k<2

ExAMPLES.
sinax

(1) Construct the curves y=¢ =; y= ; ¥ = cos(a?).

(2) Prove that the following integrals are finite and deter-
minate :

* sin’2 “sin® * e~ sin max
.d .d f esinme g,
.]; =z o Az i 0 x ’
el , o o _ﬂ_i"z_
f e " cos bz . dw, f e~ ™. d, f e " = . da,
0 0o (1}
f log <ez + 1) .dx.
() ee—1

(8) Show that f a"e-*. dx is finite and determinate for all
0

values of n greater than —1.

87. When we have occasion to use a reduction formula in
finding the value of a definite integral, it is often worth while
to substitute the limits of integration in the general formula
before attempting to apply it to the particular problem.

For example, let us find fa-ie—dg—
0 \uE—a?

We can reduce the exponent of # by [4], Art. 64,

m 7 yp+l
m 1,0, w Zp a (m - ’IL) am-rnla2de,
fac Faw= b (m + np) 3 (m -+ np) #
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For our example this becomes
fm"“l(a2—w2)"£‘dm i ’2((12—922)&_(&@7&—2) a:"‘“”(a,’—:c“’)"*dm
—m+1 —m+1 :

wm-z(az_wz)&_ 0
—m+1

When 2 =0, and also when z=a,

Hence

S (@ — ot tdo = “(m“2)fzm—8(a2 o) b da;

f B —a?) s =2 . @ f (0 — o)t
(1 6 [}
| =23 fTarar— oy
=51 " 0m2(a, ) *dz
=5.3.1 4 ("_do
6 4 2 0 il —o2
s o®de 1 8 5 wa®
Therefore A W_T_—wz-— 2°'1°6 2
ExaAmrrEs
P _2. 4,
(l)jt:«/(ﬁ_xz ) 5%
3 2
@) [ VF—Fdw =T
(I

a 4
(3) j; :v“’\/a"’—mz-dw:i -

@ (o=l D

(6)) j;ésin” x.dw = —1—29'2576@—;—1) . 1_;' when % is even

=246...(n—1) when n is odd.
8.6.7...n .
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(6) Show tha,t‘ﬁ“T cos" x.dx =f§ sin"x.dax.
[1}

) f‘ o*de _1.8.5...(2n—1) =
\ o VI—z  2.4.6..2n 2
Suggestion : let x = sinb.

Lghtide T 2.4.6...2n
) j; NI—# 8.5.7..2n+1)

(9) From Exs. 7 and 8 obtain Wallis’s formula

7_2.2.4.4.6.6.8.8...
2 1.8.3.5.5.7.79...
, 1 1dy 1 2dax 1 g2ty
Suggestion : .

— > —>
0 Vi—at JoI—# JO NI

b
88. When in ﬁndingf Jo.dx the method of integration by

substitution is used, and y =Fx is introduced in place of x, we
can regard the new integral as a definite integral, the limits of
integration being Fa and Fb, and thus avoid the labor of re-
placing y by its value in terms of x in the result of the indefinite
integration.

Let us find fle“’\/fte"‘“ . da.
Substitute y=e*,

dy = ae*dx.
Hence f e\l — = . do = %fm .dy.
When ¢ =—w, y=0, and when =0, y=1.

0 1
Therefore fe“\/l—e““’.dm:%f\/l—yﬁdy:f..
—» 0 a
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There is one class of cases where special care is needed in
using the method just described. It is when y has a maximum
or a minimum value between # =@ and x =&, say for z=r¢,
and x is consequently a multiple-valued function of .

For suppose ¥ a maximum when « = ¢, then as = increases
from @ to b, y increases to the value Fe, and then decreases
to the value F%, instead of simply increasing or decreasing
from Fa to Fb. If ¢(y)dy is the result of substituting
y for x in fr.dz, ¢y is a multiple-valued function of y,
and it will always happen that when y passes through a
maximum, we pass from one set of values of  to another,
and therefore from one set of values of ¢y to another, and
in that case it is necessary to express our required integral

¢ (3
as f ;;y.dy + ;y.dy, taking pains to select the correct set of
Fa Fe

values for ¢y in each integral.
If y is a minimum between x=a and x=2>5, essentially the

same reasoning holds good.
A couple of examples will make this clearer.

(a) Take j;———i;?zji .

Let y=2ax —2a? Then %:2(a—w)=0 when r=a.

d?y 2. and ¥ i . I _
gaz = 2andy is a maximum when = a.
z=axVa—y,
dy
de =3 ——~——.
2at—y
Since gg ig positive from =10 to = a, and negative from
x
z=a to z=2a, dw=—dy——— and x=a — Va®—y from
2vVar—y
=0 to x=a, and dw=——dy————, and w=a+\/a”—y
2Val—y

from x=a to ©=2a.
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Hence

f“ wdx f 2 pdy

02 — oF \/2aw— s /2 a — 22
2f a—Va'—y Ly — a4V —y .dy

Vaty — 3 : “ Valy—y
1 “a~ Vol —y a—~Val—y f a+ Va 2FNT Y gy
2 Vaiy — ¢ 2 \/ay —F
os;—g—dl——z=1ra. (Ex. 7, Art. 84)
Yy —y
b 2
®) j; (sinw+cosw)2.

Let y =sinz 4- cosz. gg =cosz —sinz =0 when z= i
2
2 —
g—:’;’ = —sine — cosz=—/2 when z= ;’Z' Therefore y has
m —
a maximum value V2 when &= i

y=sinz 4 cosxw = \/E,cos(i — )’

x=2—cos1-L, o=+

4 x/‘ =g

. Since % =0 and 7 acZ < 0 when z= Z’ it follows that ZZ is
positive from =0 to = Z’ and negative from x = 3 Ttoxw= ’é
Hence we have

1‘5 — f‘ dz + f—’ de
WA (sinz + cosz)  Jo(sinw+ cosz)  Jo(sinz + cosz)?
4

=Iﬁyw'f’_ fm,wi 7 f ywz 3
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Let —%:sine;
2
v 3
S =2 (T oscrean =1,
1 :’/'\/2—_’!/2 2% 2
and

fg dx

— = 1-

o (sinx + cosx )
ExAMPLE.

i dx
() Sow that o =

89. Differentiation of a definite integral,

We have seen in Art. 51 that a definite integral is a function
of the limits of integration, and not of the variable with respect
to which we integrate ; that is, that fz:fwdm is a function of a
and b, and not a function of =z. Stri;tly speaking, ‘L' }w.dw is

a function of & and b, and of any constants that fr may con-
tain, where by constant we mean any quantity that is indepen-
dent of =z.

If the limits ¢ and b are variables, they are always indepen-
dent of the » with respect to which the integration is performed,
which must from the nature of the case disappear when the
definite integral is formed, as it always may be in theory, from
the indefinite integral ; and this assertion holds good even when
the same letter which is used for the variable with respect to
which the integration is performed appears explicitly in the
limits of integration.

x
Thus if we write f sinz.dz, the 2 in sinz.dx and the & which
0

is the upper limit of integration do not represent the same
variable, and are entirely unconnected. Indeed, the former z
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mdy be replaced by any other letter without affecting the
value of the integral. For

fmsinw.da:

0
% 0
= sin z.dz
1]
=1—cosz.

Let us now consider the possibility of differentiating a
definite integral.

b
Required D, f S(x, o)dz, where o is independent of «,

and e and & do not depend upon «, and D, f (z, «) is a finite
continuous function of o for all values of x between a
and b.

We have |

~ b b
5 o y a4 Aa)de — | f(x,a)d:
o femyiam I fr@at ); [ 7@ a) wj‘
. limit [ b f(x, a + Aa) — f(z, a)
- Ao =0 _‘[a‘ Aa dx]
_ (*( limit [ f(z, a4 Aa) — f(z, «)
_‘Ja‘ (Aa:’:O | Ao, )dz »
Hencé, D, f "p (@, a)ydz = f [ D..f(x, a)]de, [1]

and we find that we have merely to differentiate under the
sign of integration.
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If D, f(x, ) becomes infinite for some value of x between
a and &, or if one of the limits of integration is infinite, the
proof just given ceases to be conclusive and [1] must not be
assumed to hold good.

The truth of the converse of the proposition formulated
in [1] can be easily established by differentiation, and we

have
f :‘I:if(w, a)dx]da
=j:;ff(x, a) da]dx, 4 [2]

LT el

=fab [j:df(w, o) da:l dz, [3]

if @, b, ¢, and d are entirely independent.

[2] and [3] are of course subject to limitations easily in-
ferred from the Iimitations on [1], stated above.

If, however, in [3] & is infinite, it can be shown by the aid
of the Maximum-Minimum Theorem that a sufficient condition
that [3] should hold good is that it shall be possible to find a
value of z such that for that value and for all greater values
a*f(x, o) shall be less than some fixed value for all values of
o between ¢ and d, % being greater than 1.

If d and b are both infinite there is also the corresponding
condition involving #'f' (2, a).

We are now able to state a sufficient condition that [1]
shall hold when & is infinite. It is that it shall be possible
to find a value of z such that for that value and for all greater
values %D, f(, ) shall be less than some fixed value.

Suppose now that we are dealing with variable limits of
integration.

or even

»
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Let us find first .} f f.dw. -
e/ a

Let f Jx.dx = Fx, then J Je.de =Fz — Fa; and since by

definition aFx _ = fx, it follows that Q_Fz = fz.
dx dz

Hence dffwd d(Fz"F“) = [4]
. In the same way it may be shown that
b
d% f fr.de = — fo. [5]

Let us now take the most complicated case, namely, to find
b
di f J(&; o) dx, where a aud b are functions of a.
deo/a B

Let f J(®5 0) de = F(z, a);

then w= f f(@, a) do = F(b, a)— F(a, a),

and d_“___w_dl"(a,a);

da da da

but as b and a are functions of q,

dFdz’ a) = DbF(b, a) Z_Z'}’Dap(b’ a)’

and ‘M“—“_ = D,F(a, a)_—+D F(a,a),

by I. Art. 200.
DDF(b, a)=f(b, “)7 .
D, F(a,a)=f(a, a).
Hence %‘ = D, [F(b, a) — F(a, )]+ f (b, a)‘;’—: — f(a, o) %,

or

‘if fl, o) dw = f (Daf (2, a)) do + /(b ) 2 —f(a, a)—— [6]
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ExAMPLES.

¢3) %‘ﬁz‘éin (z+y) de = (x4 1) sin (2y + y) —siny.
Vi
d 1
@ E;ﬁw?dw_g-
a
(3) dj&j:\/l —cos¢.de = e®V1 —cose®

90. When the indefinite integral cannot be found, the prob-
lem of obtaining the value of the definite integral usually be-
comes & more or less difficult mathematical puzzle, which can
be solved, if solved at all, only by the exercise of great inge-
nuity. Some of the results arrived at, however, are so impor-
tant, and some of the devices employed so interesting, that we
shall present them briefly here. But we must repeat the warning
that most of the methods are valid only in case the definite
integral is finite and determinate ; and erroneous results have
more than once been obtained and published when a little atten-
tion to the precautions described in Articles 83-86 would bave
prevented the mistake.

91. Integration by development in series.

1logx
. da. . Art. 84, Ex. 1.
(@) £ rog? (v. Art. 84, Ex. 1.)
11w (-2 l=lta BBt i<l
Hogz g (7
J: 1_m.dm_ﬁ(logw+wlogw+wzlogw+ ) dz.
lﬂ .—__.—.._——1 .
i;w log z.dae = Ty (v. Art. 55 (a).)
Therefore ;
1
loge go_ (1,11, 1. N__~
b 1o @ (mtetete T 6

(v. Todhunter’s Trigonometry, Chap. XXIIL, Ex. 1.)
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®) ! 1og(e' +1>dw. (v. Art. 86, Ex. 2.)
] e —1 -

log(%i%):logC"'e )——log(1+e")—log(l—e )

Y T eSS VR ST Salll Sagil Rept

¢ T ( T s T e >

(L. Art. 130.)

Hence '

yoo z L -&
S ow(GEg)ar= (e g g e

1 1 1
=2<1 +§2+5—2+72,+---).

1,1 ,1,1 o
But i-é+-:—3~—é+gz+7_2+...=§.
(v. Todhunter’s Trig., Chap. XXIII., Ex. 1.)
Therefore f lou ( > de = "Zz
EXAMPLES.
logz .. __=
@ f itz 12

()flogm.d —
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) ‘f\/f:mp. dep = 5[1,— (%)”? - (;:_Z)’g

2
_(ayE_] wwa

92. Intégration by ingenious devices.

>
(a) £ log sin ®.dw. (v. Art. 84, Ex. 6.)
: )
Let U= f log sinx.dz.
0
Substitute Y= g — 2.

0 2

: u=—f logcosy.dy=f log cosz.dz.
T 0
Z

T ‘ ;_'
2y= f2 (log sinw 4- log cos x) dx =£ log (sin cos ) dx
o

= fg log <M> .dx
o 2

7
log (2) +f log sin 2 2.d
0

=T
2
=—21lo (2)+l rvlo sinz.de
=T3¢ 2.Jp OB FITAT
.L‘ log sinz.dx =f§log sinz.dz +f log sinz.dz
0 T
2

=u +f log sinx.dz.
2

Substitute Y= —=x,
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and
4
ﬁ "log sinz.de= —flog siny.dy =£slog sinz.de=u.
2 ’ 2
Hence 2u=—§log(2)+u,
and
u= £ glog sinz.de = j; Elog cosa.di = — g log (2). [1]
(b) f "¢ da. (v. Art. 86 (a).)
Let u=‘£me‘zz de, andlet x=ay;
then U= jo‘ wme—ﬂ"v2 dy = ﬂ mme—ﬂ‘”ﬂez dxz,
ue— = j: wae*““”“’ dx,
wf “e=e* da = u? ='£°°( I P da) dw, by [3],Art.89.
But
j: “ae- Qe g — : 1—::}5.
Hence u’=% owf%=£’
and f S dn = LV [2]
© j ) SO da. (v. Art. 86 (b).)

We have 016= f e-=da if ©>0. (Art. 82, Ex.6.)
(1]
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f sinmw.dm=‘[ (sinmxf e“‘“‘da)da:
[J ® o
=f (f e—“sinmw.da>dz
0 0 )

= f < f me“‘” sin mw.dw) da, by [3], Art. 89.
0 0

* mda
=f, T (Art. 82, Ex. 7.)
Therefore v
f SINME gp= T it m>0
0 ® 2
=—T iftm<0 [* (8]
2
= 0 if m=0 by Art. 82, Ex. 5.
' ExamprEs.
M) fTologsinz.ds  =— ;flog(z).
0

dx

@) ‘ﬁmlog(w+é> T =log (2).

Suggestion : let x = tang

(3) ‘f o= gy =§}E =
@ f /’;’””_T =
Niogg
(5) jwﬂlﬁiﬁw.@c =0 if m<—1 or m>1
= if m=—1 or m=1

01N iy

if —1l<m<1.
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s 3] 2
(6) J s‘:fd:;::g- Suggestion : integrate by parts.
0
93. Differentiation or integration with respect to a gquantity
which is independent of X. (v. Art. 89.)
(a) We have f e=dn=1. (Art. 82, Ex. 6.)
1}

Differentiate both members with- respect to a,

jo (—ae *da)=— —2 or f xe* de = —-

Diﬁerentiate again,

f e “‘"d:c-——!

Differentiating » times,

f are-de =S [1] (v.Art. 86, Ex.8.)

(b) We have f e dy = % \—/;- (Art. 92, Ex. 8.)
0 .

Differentiating n times with respect to a,

et 135..(%n—1
Sreman IS0 =D g o
. (v. Art. 86, Ex. 2.)
(¢) We have ‘ﬂ e""da::%. (Art. 82, Ex. 6.)

Multiply by de, and integrate from & to b,

o b
(o2
0 a a C

® ,—ax —bz :
Hence [ <" ds =1 5,
ence ) = 7 og p [8]
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1 1
d {Ea’dw= .
() Jo‘ a+1

Multiply by da, and integrate from b to a,

1 a a
O e
b b a1

*1 na b 7,
Henc Clend 2 — log (&t 1).
ence Jo fogo Gy og(~ 1 [4]
ExAMPLES.
. “ dx r 1 .
(1) From j: Nt By obtain .

f’” de _7135...2n—-1) _ 1

o (P4 a)t 2 24.6..2n N
. .

n+

obtain

(2) From ﬁlm"dw=

. .
f z* (logzy“de = (—1)" m !
[}

(n+ Ly
(3) From f €% cos ma.dx = ——— obtain
. Jo of 4+ m?
© e _ gtz b + m
L cosmaz.dx = }lo, .
j: x $log (a"" +m?/.
(4) From f e om sinme.de = — obtain
o 0.2 + m2
D, —azx — bz
f ¢ € sinma.de= tan"i —tan' &.
0 @ m m

94. The method illustrated in Art. 98 can be applied to
much more complicated forms.

(@) JO' ¢ ¥ %, da. (v. Art. 86, Ex. 2.)
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0 Aa:!—~g
Let u=f e =dx;
0
© ad
then du__ g f adx =3,
da o o
Substitute z2= 9,
x
) a2 0 a2
and £Zil’=—2lf e_'gT”dz=—2f ¢ 7 P de=—2u.
da () [}
Hence du = —2da.
%
" Integrating,
logu=—2a+40C,
and u=0Ce%.
When a=0, w= f e?do=3~m (Art.92(b)[2])
(1}
Therefore C,= 3V,
£ —2a
d = e Zas=2"
an ‘ u=) e dz 2 [1]
)] J‘: e-*? cosbr.de. (v.Art. 86, Ex. 2.)
Let u =J; e~ cos bzx.dz,
then dw_ _ f we~ " gin bx.dx.
db o

Integrating by parts,

f ze = ginbx.dr = b e~ cos bx.dx = b R
o - 2adJo 202
d b
Therefo?e d—;:’ == Uy
du b
or —_— = = —— 00.

% 2a®
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or

and

Integrating, we have

b’
Clogu =~ yye +0C,
w= Ole—‘“'
When =0, u={( e**do= 325 (Art. 92, Ex. 3.)
0 a
o — b2
Hence u= f e ¥ cosb.dx = ;Le’m. [2]
o a
ExAMPLES.

) f CeTmsinme g pan-1™,
[} @x a

“ cos mw T
(2)£ s =Tem.

Suggestion : i _'l_

3
=2 _“’(lw)d .
S =2 ae a

95. Imtroduction of imaginary constants.

fcos (2?) dw. (v. Art. 86 (¢).)
We have f e g = L \f (Art. 92, Fx.3.)
(i}
Let F=cdV_i= c2<cos1§r+\/-—lsin7§r>-
Then a=c<cos§+\/—_lsin§>=%(l+ V=1),
: (Art. 25.)
1_ 1 (1 —~=D).

2a N+ V=D 20\/2
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Hence f e“’"’/_——‘da;=,1_\[zr .1 —/=1).
o 2¢ V2

But e*vV  — cos (¢22?) — V —1sin (¢?2?).
([5] Art.31.)
Therefore

.£ cos(czzc")dw—\/—f s1n(c’w’)d:c——\/7(l—\/ —1),

and
j:cos (Ea?) dx =f sin (c’w”) de=— \[ 1]

(Art. 17.)
Let

and Jo‘ cos (2°) dx = f sin (o) do = 1}\/— = 2]

If we substitute y =« in [2], we get

gﬂ _f smyd - 1§r (8]

0

Gamma Functions.

96. It was shown in Art. 84 that ‘f ' <log ala)"dw is finite and
determinate for all values of n greater than —1, and infinite
when » is equal to or less than —1. The substitution of
y= loggl—a reduceswthis integral to j:wy"e"dy, or, what is the
same thing, tof a*e~*dx; and in Art. 86, Ex. 3, the student
has been requirz,d to show that this integral is finite and deter-

minate for all values of n greater than —1.

fa:"e*’dw =—a"e"+ nfw"“e”'da:,
by integration by parts. ‘
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If n is greater than zero,
zte-*=0 when =0,

and z*e—* is indeterminate when = oo. Its true value when
# = o, obtained by the method of I. Art. 141, is, however, zero.

Therefore f arerde=n| o le*dx (1]
. 1} . (1]
for all positive values of =.

If n is an integer, a repeated use of [1] gives

f m"e“dw:n!f e=dx;
/0 0

but f e—~ds =1,
0

and we have fww” e*de=mn! [2]
provided that n is @ ;)osm've whole number.

If n is not a positive integer, but is greater than —1,
‘L‘ ema:"e"da: is a finite and determinate function of =, and its
value can be computed to any required degree of accuracy by
methods which we have not space to consider here.

f::"“e"dw is generally represented by T'(n), and has been
ver;f carefully studied under the name of the Gamma Function.

If n is a positive integer, we have from [2]

T(n+1)=n!l - (3]
From [3], INE))] =1. [4]
Since T =£Qw"e"dw =j:°e—'da;,

r) =1 (5]
We have always from [1]

T (n+ 1) =nT(n), 6]

if n is greater than zero.
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Sincef z"e~*dx 1s infinite when n is equal to or less than
o

—1, it follows from the definition of T'(n) that I'(n)= w if
n is equal to or less than zero. It has, however, been found
convenient to adopt formula [6] as the definition of I'(n) when
n is equal to or less than zero, and to restrict the original defi-
nition to positive values of n. The result easily deduced is
that I'(») is infinite when n is equal to zero or to a negative
Integer, but is finite and determinate for all other values of n.

97. We may regard the formula
I'(n 4 1)=nI'(n)

as a sort of reduction formula; and since each time we apply
it we can raise or lower the value of » by unity, we can obtain
any required Gamma Function by the aid of a table containing
the values of I'(n) corresponding to the values of n between
any two arbitrarily chosen consecutive whole numbers.

" Such tables have been computed, and we give one here con-
taining the common logarithms of the values of I'(n) from
n=1 to n=2. The table is carried out to four decimal
places, and each logarithm is printed with the characteristic 9,
which, of course, is ten units too large, the true characteristic
being —1. :

10 + log T'(n).

n 0 1 2 3 | 4 5 | 8 7 s | 9

.. 9975 | 9951 | 9928 | 9905 | 9883 | 9862 | 9841 | 9821 : 9802
9.9783 | 9765 | 9748 | 9731 | 9715 | 9699 | 9684 | 9669 | 9655 | 9642
9.9629 | 9617 | 9605 | 9594 | 9583 | 9573 | 9564 | 9554 | 9546 | 9538
9.9530 [ 9523 | 9516 | 9510 | 9505 | 9500 | 9495 | 9491 | 9487 | 9483
9.9481 | 9478 | 9476 | 9475 | 9473 | 9473 | 9472 1 9473 | 9473 | 9474

9.9475 | 9477 | 9479 | 9482 | 9485 | 9488 | 9492 | 9496 | 9501 | 9506
9.9511 | 9517 | 9523 | 9529 | 9536 | 9543 | 9550 | 9558 | 9566 | 9575
9.9584 | 9593 | 9603 | 9613 | 9623 | 9633 | 9644 | 9656 | 9667 | 9679
9.9691 | 9704 | 9717 | 9730 | 9743 | 9757 | 9771 | 9786 | 9800 | 9815
9.9831 | 9846 | 9862 | 9878 | 9895 | 9912 | 9929 | 9946 | 9964 | 9982

v v
LTI PWI~O
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Such a table enables us to compute with Gamma Functions
as readily as with Trigonometric Functions, and consequently
the problem of obtaining the value of a definite integral is
practically solved if the integral in question can be expressed
in terms of Gamma Functions.

For example, let us consider

(@) fwa:"e"';’ dw.
0
Let Yy=ax;

0 1 a0 1 . 3]
N p— 0L — " o=y P ] .
then J; x"e dw_-——aHlj; yre vdy proeei o zre *dx

Hence f e dy = I;(-n%ll, 1]
0 a
provided that a is positive and »>—1.
® f ' w"‘(log é)ndw (v. Art. 84, Ex. 4.)
(1}
Let y=—log®.

1 l\n p— ® n —(m+1)'d
then J; w"‘(log z) da ._j: ye .
Hence, by {11,
L. 1\*, T(n+1) 2
j; 2 (loga:) dw______———( Ty (21

if m>—1 and n>—1.

(c) ‘f e da.

Let y=2o%;

' Cede= Qfld=f.ari-’dw.
then j;e dx &ﬁﬁy 1}-0 e

Hence j:we"’dm= IT(3)- [3,



CHap. VIIL] BEFINITE INTEGRALS. 113

98. I "1 (1 — 2" de = B(m, m) [1]

is an exceedingly important integral that can be expressed in
terms of Gamma Functions; it is known as the Beta Function,
or the First Eulerian Integral, T'(n) being sometimes called the
Second Eulerian Integral.

In the Beta Function, m and n are positive, and B(m,n) is

always finite and determinate. (v. Art. 84, Ex. 5.)
1
In f 21l —az)lde let y=1—gz,
A :
and we get

1 1
fera—ayrtaa= [Ty @ -9,
0 0

or B(m,n) = B(n,m). [2]
1
-1 — n—-1 = y
In j:w”‘ (l—x)*'dx let = T¥7
-and we get
m—- d -1
f "1 (1 —z)"ds -—f ‘dy = - _an
(1 +y)m+n o (1 +w)m+n
!
Hence j; Aoy dx = B(m, n). [3]

We have seen in [1] Art. 97 (a) that

‘I‘; xre “*dx ,__I‘_(’,ii-_l)

an+1

Hence P(m) = f amg™le~*= dy,
()]
L
P(m) o ~1 e ¢ ___f am+n—l {Lan——l e—a(l—f-z) dw’
. (4]

T(m)| a*'le*da= | ! amtlemalta dg ) da,
0 0 [

I‘(m)I‘('n)=f s ‘{_‘l(%:;_:r);dx
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T(m)T(n) _ .
Therefore T(m £ ) f a +:z:) o 005 [4]
or by [3],

B(m, n) =j0.1w”*1 (1 —z)de= FI‘(_an)_i%? (5]

If n=1—m, then since I'(1)=1,

S =) L=t —m. (6]

Formula 6] leads to an interesting confirmation of Art.
92 (b).
Let m =%, and we have from [6]

N dz

Substitute y=+/7,
. da . “ dy
and we have j‘: m = 21: r_l——:;/; = .
Hence T} =+r; {7

and since by Art. 97 (¢)
j:we‘“"’dw =3T3,
ﬁme"z dw = /7.

99. By the aid of formulas [4], [5], and [7] of Art. 98
a number of important integrals can be obtained.
For example, let us consider

L4

f : sin"x.dx, where n is greater than —1.
0
Let y = sinz,

”

) 1
and we have fﬂ sin® z.dx =f ¥ (1 —y»)"idy.
[} 0
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Let, now, 2=y,
and
1 1 E_&
Sra-oitay=if 2t a-na
0 0

—% '-1 n+ 1( _w)a’rldw:%B(ﬁ_;;l,%)‘

r(*Ere

B(’ﬁl 1>= (

2’2 n
T{-+1

But

by [5] Art. 98.

g: B l> by [7] Art. 98.
=+)
Hence
fusm"m do = Vi m (1]

iy
If n is a whole number, this will reduce to the result given
in Art. 87, Ex. 5.

ExAMPLES.
1 a¥dx —\/1:' I‘(n +-§‘)
@ jo‘ N =72 I‘(n+l)

" T (ﬁ il) r(ﬂil)
2) fgsin"w cos™x.dx = 2 2/,
(]

21‘(’”"2"”+1)
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®) f 2 v )

Vi o r(l %.
n
I‘(p+1)r<ﬁ:_1_>

“) j.‘lx"‘(l—w")lﬂdw=ﬁr(p+l+m+l>.

n




x
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CHAPTER IX.

LENGTHS OF CURVES.

100. If we use rectangular coordinates, we have seen (I. Art.
27) that '

dy
tanr = g [1]
and (I. Arts, 52 and 181) thds
ds? = da? + dy’. [2]
From these we get sinT = %—Z, [3]
de
==, 4
cosT =~ 4]

by the aid of a little elementary Trigonometry.

These formulas are of great importance in dealing with all
properties of curves that concern in any way the lengths of arcs.

We have already considered the use of [2] in the first volume .
of the Calcnlus, and we have worked several examples by its
aid in rectification of curves. Before going on to more of the
same sort we shall find it worth while to obtain the equations of
two very interesting transcendental curves, the catenary and the
tractriz.

The Catenary.

101. The common catenary is the curve in which a uniform
heavy flexible string hangs when its ends are supported.

As the string is flexible, the only force exerted by one portion
of the string on an adjacent portion is a pull along the string,
which we shall call the tension of the string, and shall represent
by T. T of course has different values at different points of the
string, and is some function of the codrdinates of the point in
question.
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The tension at any point has to support the weight of the por-
tion of the string below the point, and a certain amount of side
pull, due to the fact that the string would hang vertically were
it not that its ends are forcibly held apart.

Let the origin be taken at the lowest point of the curve, and

suppose the string fastened

at that point.
Let s be the arc OP,

P being any point of the

string. As the string isuni-

form, the weight of OP is

proportional to its length;

X we shall call this weight ms.

This weight acts verti-

cally downward, and must be balanced by the vertical effect of T,
which, by I. Art. 112, is T'sin~.

Hence T'sinT = ms. (1)

As there is no external horizontal force acting, the horizontal
effect of the tension at one end of any portion of the string must
be the same as the horizontal effect at the other end. In other
words, Tcost=¢ (2)

where ¢ is a constant. Dividing (1) by (2) we get

¥

[
$=—tanr,
m

or s=atanr, 3)

where o is some constant. From this we want to get an equa-
tion in terms of « and y.

tant =Vsec*r — 1= (E—l;
da?
hence 32=a2<%§‘2_1 )
or a?ds = (a? + ) da?,
and ads

2 e e, Integrate both members.
(o + )t & ,
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alog(s+Va*+&)=a+C;
when =0, s=0,
hence C=aloga,

and log(s + Va*+ s*) = g +loga,
s+V@F S = aes,
Va4 s = acs — 3,
a? = tefa — 2 aezs,

s=g(e§—e—;)= atant by (3).

"Hence a%: % (es—e7a),
and y=g(ef+e"‘3)+ C.

If we change our axes, taking the origin at a point @ units
below the lowest point of the curve, y=a when =0, and
therefore C'=0, and we get, as the equation of the catenary,

y=4(e+e). )

ExAMPLE.

Find the curve in which the cables of a suspension-bridge
nwst hang. Ans. A parabola.

The Tractriz.

102. If two particles are attached to a string, and rest on a
rough horizontal plane, and one, starting with the string stretched,
moves in a straight line at right angles with the initia] position
of the string, dragging the other particle after it, the path of the
second particle is called the fractriz.

Take as the axis of X the path of the first particle, and as
the axis of Y the initial position of the string, and let « be
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the length of the string. From the nature of the curve the

string is always a tangent, and we shall have for any point P

g'= —sinr, [1]

for r lying in the fourth quadrant has a negative sine.

hence ~ Y(da? + dy?) = a?dy?y
ydat = (o — ) dy,
and de =+ W
)

is the differential equation of the tractriz.

On the right-hand half of the curve 7 is in the fourth quadrant,
ZZ or tanr is negative, and we shall write the equation
(@ — y")dy
A i 8 9

: 2]

If we allow the radical to be ambiguous in sign we shall get
also the curve that would be described if the first particle went
to the left instead of to the right. The tractrix curve, generally
considered, includes these two portions.

Integrating both members of [2], and deterxmmng the arbi-
trary constant, we get

dor = —

m=—\/65——yz+alog‘a+\/;2_?f [8]

as the equation of the tractrix.
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ExAMPLES.

(1) Show by Art. 102 (1) that in the tractrix s=alogg
if s is measured from the starting-point. y

i

(2) Find the evolute of the tractrix. (1. Art. 93.)

Rectification of Curves.

103. In finding the length of an are of a given curve we
can regard it as the limit of the sum of the differentials of the
arc, and express it by a definite integral.

%=y

We shall have s= f Vdx® + dyt.
z =y

Of course in using this formula we must express Vda? + dy?
in terms of z only, or of y only, or of some single variable on
which z and y depend, before we can integrate.

For example ; let us find the length of an arc of the circle

2+ ¥ =d
2x.dx + 2y.dy =0,
_ zdx
y b

dy:'-

s _ T4y, . df
dm2+dy_-———y2 dxz_yzdm?_az_wzdm’,

. y . X P
s=af % _a sin— 1% _ gin-1%0).
% g — 2 « a

The length of a quadrant =« do e

-2 2

‘. the length of a circumnference = 2a.

b
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Length of Are of Cycloid.
104. For the cycloid we have
x=a —asing
y=a _ a cos 0} .
dr = a(1 — cosf)db = ydb,

(L. Art. 99.)

6 = vers™Y,
a

=1_& A
“\/QQ__}f V2ay —3?
a a

dx:ﬂ_,
V2ay —
ds? = da? + dy = 2aydy’ _ 2ady*
2oy —y? 20—y
ds = '\/%—ﬂ——-,
V2a—y

s=via | ¥ - 2Bu(VZa—g—VIa—g)
% \2q —y

If the arc is measured from the cusp, 3, =0,
s=4a—2vV2aV2Za —y,. [1]
If the arc is measured to the highest point, 3, = 2a,

s=4a.
The whole arch = 8«.

ExAMPLE.

Taking the origin at the vertex, and taking the direction down-
ward as the positive direction for ¥, the equations become

a:=a6+asin0}

Y= a—acosé (I. Art. 100.)

Show that s =2+ 20y when the arc is measured from the
summit of the curve.
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105. We can rectify the cycloid without eliminating 6.
x=af — asind
y= a—dacosf % ’
dax=a(l — cosf)db,
dy = asind.dé,
da? + dy? = 2 a*d6*(1 — cosb),

0y
and s=a«/2£(1—cos0)*wi0,
0
8 6,
s=a~/2 A [28in’%‘rd0=4aj;osin%d%=4a(cos%°—-cos%‘)-

If =0 and §,=2n, we get s= 8a as the whole curve.

106. Let us find the length of an arch of the epicycloid.
x={(a+Db)cosd —b cos(a—'_'l;—blO

(L Art.109[1].)
y=(a+b)sing—bsin 22
dm=l:— (a +b) sinf + (a +b) sin -;; bo]‘w’
dy =[ (a +b) cosf — (a + b) cos -;; bG]dG.

ds’=(a+b)"‘d0’[2—2(cosa-;bﬁcos0+sina'gbesin0)]
=2(a +b)2d02<1 — cos%g).
6, a i
= 2 1— pud
s=(a+ b)Y .L'( cosb0>d0,

40D s Vg cos L
s " [cos%ﬂ) cos 2b01 ] i
2b

To get a complete arch we must let 6p=0 and 6, =—.
a

Hence, for a whole arch,
8 (ba 4 b)
§= ——"

[22
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ExampLEs.
(1) Find the length of an arch of a hypocycloid.

Ans, =222 =0),

a

(2) Find the length of an arch of the curve z* 4 yt=adl,
and show that it agrees with the result of Ex. 1.

(v. L. Art. 109, Ex. 2.)

107. Let us attempt to find the length of an arc of the ellipse

A
2+b2
2 d. 29 d !
We have a;zm+ ybzy_O,
dg:—b_:;dw,
s aF—b
PO Y P SR S I
aty? o — a2 a?—a?

where e is the eccentricity of the ellipse.

2, 2 __ p2
Hence S"f 1[(1 ¢ 1]
&0 .

The length of the elliptic quadrant is

=" ["u“_e;t’] . [2]

These integrals cannot be obtained directly, but
[a’ — 62w2]1’r
can be expanded by the Binomial Theorem, and the fractions
formed by dividing the terms of the result by [a*— #*]* can be
integrated separately, and we shall have the required length
expressed by a series.
A more convenient way of dealing with the problem is to use

2
an auxiliary angle. Instead of + Tha 1 we can use the pair

of equations ©=asin ¢}
’

y— b oond (. Art. 150),
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de = a cos ¢.de,
dy = — b sin ¢.de,
ds® = (a?cos’¢ + b?sin’¢) d¢p? =[a® — (a® — b?)sin’ ¢ ]dep®
2 2
=a? (1 il sin2¢> ¢ = a2(1— esinp) dep?,
o
where e is the eccentricity of the ellipse.

1
= 1 —e?sin’¢)td 3
F] aj‘;o ( sin®¢)*d¢ (31
=a 951[:1 — fefsin’p — 4 - fetsinte — 4.3 §€fsin’p .- Jdg.
/g

For the arc of a quadrant we have

w

sq=a£§[1—egsin2¢]*d¢. ’ [4]

ExAMPLE.

(1) Obtain s, as a series from [2], and also from [4], and
:ompare the results with Art. 91, Ex. 5.

Polar Formule.

108. If we use polar codrdinates we have
ds = dr* + r*d¢?, (1. Art. 207, Ex. 2.)

d
tane=%?, (L. Art. 207.)
From these we get, by Trigonometry,
gsine= Tdd’, coBe = dr,
ds ds

109. Let us find the equation of the curve which crosses all
its radii vectores at the same angle. Here
rd¢ __ adr

tane=a, a constant, s a, - = de,
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alogr=¢+0C, r == e°
r = be", 1
where b is some constant depending upon the position of the origin,

This curve is known as the Logarithmic or Equiangular Spiral.

110. To rectify the Logarithmic Spiral. We have, from
109 (1),

e 1og”
a logb ’
d¢=a%,
rd¢ = adr,

ds? =dr? + P d¢? = (1 4 a?)dr?;
s= ?1 + a®)dr = (1 4+ a®)i(r — 7).
To :

ExXAMPLES.

(1) Find the length of an arc of the parabola from its polar
equation

m
r=—
14cosd¢
(2) Find the length of an arc of the Spiral of Archimedes
7= ap.

111. To rectify the Cardioide. We have .
r=2a(l—cosq), (L. Art. 109, Ex. 1),
dr=2asin¢.de,
ds® = 4 a’sin’ p.d? + 4 a®(1 — cos )2 dep?
= 8a’d¢*(1— cos ¢),

s=2./2.a ?ll —cos¢)idp=8 a[cos%—cos%‘]
$a -

=16 a for the whole perimeter.
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Involutes.

112. If we can express the length of the arc of a given curve,
measured from a fixed point, in terms of the codrdinates of its
variable extremity, we can find the equation of the involute of
the curve.

We have found the equations of the evolute of y=/Sr in the
form

' =2 — pcos
, pos "}, (L ‘Art. 91).
Y=Yy—psiny
We have proved that tany = tan+', : (L. Art. 95),
! ! N
and that _ as'_ (L. Art. 96) ;
dp
!
sint' = %
s (Art. 100).
cost' = d’
ds'
Since tanyv =tant', v=1' or v=180°+ .

As normal and radius of curvature have opposite directions,
we shall consider » = 180° + +'.

Then sinv=—sinr' and cosv=— cost'.
) !
Hence w'=w+p%, )
d !
Y=y+ pd—‘;/;- )
Since . dp =ds',
‘ p=s"+1 3)

where [ is an arbitrary constant. Since z and y are the codrdinates
of any point of the involute, it is only necessary to eliminate 2’
¥', and p by combining equations (1), (2), and (8) with the equa-
tion of the evolute.

As we are supposed to start with the equation of the evolute
and work towards the equation of the involute, it will be more
natural to accent the letters belonging to the latter curve instead
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of those going with the former; and our equations may be
written

da d,
w=w’+p'd—2’; 3/=.7/'+P"d—:z3 =5+l (4)

Since p'=1 when s=0, it follows that [ is the free portion
of the string with which we start. (L. Art.97.) By varying!
we may get different involutes of the same curve.

To test our method, let us find the involute of the curve

.,2=—§_(x_m)89 )
27m (%)
for which I=m. We must first find s.

2ydy = —8- (w —m)?dw,

4 (x—m)’
dy = A L d
y= 9Im Y ®
dgt = 28T g2
3m

s———:f@w+mﬂMﬁ- 0w +m)i-m,
m

l=8s4+m= _(2x+m)3
P 3vV3m ’
2m+m
%=L 4 — 3
3
y==y’+2_;1 Cz+m)(x— ml
m Yy
, T—m
== 3 Y
b myr= A
Y=g @—mt=—t, '
z=3z'+m,
4{17'2
?/=—7

Substituting in (5) the values of z and y just obtained, we have
y'? = 2ma’
as the equations of the required involute.
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ExAMPLE.
Find an involute of ay® =2

118. An involute of the cycloid is easily found. Take equa-

tions L. Art. 100 (C).
r= ab+a sin0§

y=—a-+acosd
Let p =s,
dx = a(14 cosf)dd =2acos2%d0,
_ . .6 0
dy =— asind.df =—2asm-2-cos§d6,

ds2=2a’d02(1+c080)=4a2d02008”%,
o 6 . 0
8= 2aj;cos-éd0 _4asm§,
! 3 0 0 o :
rz=2 +4asm§eos§= a' + 2a sind,

y=y'-—4asinzg— =y' — 2a(1— cosb),

a:'=a0——asin0}
y'= a—acosf

a cycloid with its cusp at the summit of the given cycloid. -

ExAMPLE.

From the equations of a circle
x=acos¢ }
y=asing
obtain the equations of the involute of the circle. Let 1=0.
Ans. o'= a(cos¢ + ¢ sin ¢) }
¥'=a(sin ¢ — P cos¢) ’
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Intrinsic Equation of a Curve.

114. An equation connecting the length of the arc, measured
from a fixed point of any curve to a variable point, with the
angle between the tangent at the fixed point and the tangent at
the variable point, is the inirinsic equation ‘of the curve. If the
fixed point is the origin and the fixed tangent the axis of X, the
variables in the {ntrinsic equation are s and r.

We have already such an equation for the catenary

s=a tanr, Art. 101 (8), [1]

the origin being the lowest point of the curve.
The intrinsic equation of a circle is obviously

$=ar, [2]
whatever origin we may take.

The intrinsic equation of the tractrix is easily obtained. We
have

y=— asinr, Art. 102 (1),
and s=a logg; Art. 102, Ex. 1.
Y
hence s=alog(— cser)

where r is measured from the axis of X, and s is measured from
the point where the curve crosses ‘the axis of Y. As the curve is
tangent to the axis of Y, we must replace r by r — 90°, and we

et
g s=ualogsecr (3]

as the infrinsic equation of the tractrix.

ExAMPLE.

Show that the intrinsic equation of an inverted cycloid, when
the vertex is origin, is
s=4asint; 1

when the cusp is origin, 1s
s=4a(l—cosr). (2)
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115. To find the intrinsic equation of the epicycloid we can
use the results obtained in Art. 106.

m=(a+b)<sin#0 — sin0)d0=2(a+b)cosa+260s1n—0 dé,

dy=(a+b)<cos0—cosa2-b )d& 2(a+b)sma+2b09m 0 as,
by the formulas of Trigonometry
8in a — sin B = 2 cos 4 (a + B) sin{(a — B),
cosB— cosa=2sin4(a+ B)sing(a—B);

tanr = 2 = tan £ 22
hence =2 ;:ba ;.
=4w—aa+2)<l—cos§%0)byAJt.106[l];
tcherefore 3=M<l— cos —2 r) [13
a a+2b

is the intrinsic equation of the epicycloid, with the cusp as origin.
If we take the origin at a vertex instead of at a cusp

N UCER)
a
=7r_(ai2ﬂ+1-'-
2a ’
hence s'= 4b(a_"b)sm @
a a+2b
or s Ab(atd) :21;’ [2

is the intrinsic equation of an epicycloid referred to a vertex.
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EXAMPLE.

Obtain the intrinsic equation of the hypocycloid in the forms

4b(a—b . a
s=”¥<l "cpsa—%’)’ S
_4b(a—b) . a
s= = sin_——- 7. 2)

116. The intrinsic equation of the Logarithmic Spiral is found
without difficulty.

‘We have r= be%, (Art. 109),
and s ="14a (r,— 7). (Art. 110).
If we measure the arc fror.n the point where the spiral crosses
the initial line, 7, = b, and we have
s= b\/mg(eg— 1).

In polar codrdinates r = ¢ + ¢, and in this case e = tan~'a; if
we measure our angle from the tangent at the beginning of the
arc we must subtract ¢ from the value just given, and we have

s=b(«/1’+_oﬁ)(eg—1);

or, more briefly, s=k(c"—1), k and ¢ being constants.

117. If we wish to get the intrinsic equation of a curve directly
from the equation in rectangular codrdinates, the following method
will serve:

Let the axis of X be tangent to the curve at the point we take
as origin.

d
tant = d—z ; (1)
and as the equation of the curve enables us to express y ih terms
of @, (1) will give us @ in terms of », say o = Fr;
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then dx = F'r.dr, divide by ds;
dr dx
F’ - b —_— M4
ds 7 ik 55 = 0087
hence A ds = sectF'r.dr. ‘ (2)

Integrating both members we shall have the reqmred intrinsic
equation.

For example, let us take #* = 2my, which is tangent to the
axis of X at the origin.

2 xdx = 2 mdy,

dy _ z
dx

m

=tanr =

dx = m sec?r.dr,

dr _ CoS 7 == msecz-rﬁ,
ds ds

ds = m secdr.dr, 1)
L eenfansSn e (i) o
.8.=0 when 7=0; ‘.'. C=0;
s= %I:cszgr + logtan (4 + %)] 2
ExamMrLEs. )

(1) Devise a method when the curve is tangent to the axis
of ¥, and apply it to 3* = 2me.

(2) Obtain the intrinsic equation of y"’ = 2—78— (x—m)3.
m

(3) Obtain the intrinsic equation of the involute of a circle.
(Art. 118, Ex.)
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118. The evolute or the involute of a curve is easily found

from its intrinsic equation.
¥

m

If the curvature of the given curve decreases as we pass along
the curve, p increases, and

s'=p—pp (I. Art. 96).

If the curvature increases, p decreases, and

8'=py— p-
Hence always s=%x(p—po); [1]
p= %, (I. Arts. 86 and 90).

We see from the figure that ' =,

Hence : == ds — (% y
dr Jr— \dr/r—p

~or, as we shall write it for brevity,

ds|™
. =:|:~—’. 2
s dr|, []

119. The evolute of the tractriz s = alogsecr is

s= ad lo(gisecf =atanr, the catenary.
g 0

The evolute of the circle s = ar is
T
s=a® =0, a point.
dr|,
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The evolute of the cycloid s =4 a(1— cos7) is

s=4a(ﬁ1_—cos—r)—{‘=4asinr,
dr o

an equal cycloid, with its vertex at the origin.

ExAMPLES.
(1) Prove that the evolute of the logarithmic spiral is an
equal logarithmic spiral.
(2) Find the evolute of a parabola.
(3) Find the evolute of the catenary.

120. The evolute of an epicycloid is a similar epicycloid, with
each vertex at a cusp of the given curve.
Take the equation

3=4_qu.'.ib_)(l_cosa a

a

br). Art.115[1].

For the evolute,

d1—cos—% T
4b(a+b) a+2b
S = Y
a dr |0
_4b(a+d) a
s= o 20 Sma+2br' (13

The form of [1] is that of an epicycloid referred to a vertex
as origin; let us find o' and b', the radii of the fixed and rolling
circles.

4b'(a' + 0" . a
§= ( p )Sma'+2b'f, by Art. 115 [27;
r 1] ' 4
hence, 4b (aa'+ b ) = ’;(i _;bb)v

a a

dF20 a+20
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Solving these equations, we get

a' = a?
a+2b’
b
b =—2
a+2b’
a _a
b

and the radii of the fixed and rolling circles have the same ratio
in the evolute as in the original epicycloid ; therefore the two
curves are similar, :

ExAMPLE.

Show that the evolute of a hypocycloid is a similar hypo-
cycloid.

121. We have seen that in involute and evolute r has the same
value ; that is, r =17,

If s' and 7' refer to the evolute, and s and = to the involute, we
have found that

=% i
=7
drl,
or 8= dgﬁ' —1, 1being a constant,
T

the length of the radius of curvature at the origin.
(8" +D)dr' =ds,
T
s =f(s'+ 1)da'
0

is the equation of the involute.
The involute of the catenary s = a tanr is, when (=0,

1
s=q | tanr.dr = alogsecr, the tractriz.
0
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The involute of the cycloid s =4asin~ when I=0is .
T
s= 4a£sinr.dr = 4a(l— cosT),

an equal cycloid referred to its cusp as origin.
The involute of a cycloid referred to its cusp s=4a(l —cosr)
when ! =0 is

,
s=4a| (1—cost)dr=4a(r —sin7),
0

a curve we have not studied.
The involute of a circle s = ar when { =0 is

.<;=a‘j"rdfr—a—‘ri
2

122. While any given curve has but one evolute, it has an
infinite number of involutes, since the equation of the involute

s =‘£‘Es +Ddr

contains an arbitrary constant [; and the nature of the involute
will in general be different for different values of I.

If we form the involute of a given curve, taking a particular
value for [, and form the involute of this involute, taking the same
value of I, and so on indefinitely, the curves obtained will con-
tinually approach the logarithmic spiral.

Let s=fr 1)
be the given curve. )

s= [ @+ p)dr=ir+ | prar

is the first involute ;

s—f (l+lr+fffdf)dr_zr+” +fffwr2

is the second involute ;

2, P* I Tn "
s=brtgtgt +n"+£ Jrar @)
is the nth involute.
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By Maclaurin’s Theorem,
Jr=jfo+ tflo +£f"o'+§7s-!f"’o 4 eeen,
But s = 0 when 7 =0 hence fo =0, and

Jr=Adg +——r+ ”+ ----- :

.
S rar =gyt 3+f¢;"r*+ ----- ,

Tn A7+ A,7m+2 Az +3
dr” = 1 2 i N :
j; Jrdr D T mrn i T s T ®

as n increases indefinitely all the terms of (3) approach zero
(I. Art.133), and the limiting form of (2) is

T, T 73
=l<1+1+§+§+ """ —1>a

s=1i(e"—1) by I. Art. 133 [2],

which is a logarithmic spiral.

123. The equation of a curve in rectangular codrdinates is
readily obtained from the intrinsic equation.

Given s=fr,
. d
we know that sint = d—z,
dx
and COST = — ;
T ds b
hence dx = cosrds = costf'r.dr,

dy = sin rds = sin -:_-f "r.dr,

—fCOS 7f'r. d-r
= f sin ¢f'r. dr
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The elimination of r between these equations will give us the
equation of the curve in terms of 2 and y. Let us apply this
method to the catenary. '

s=atanr,

ds = a sec’r.dr,

Al r =
r= afsec'r.dr = alog+ ’1_4—_3}11_1,
o 1—sinr
T
y= afsec-r tanv.dr = a(sect — 1),
0

2z 1 . 4ginT

es = < 9
1 —sinr

22 z =

. ¢s —1 e—ea
sint = =

2z )

es 41 ea + e
secr = %(ez + e‘;),
y=g(e5+e'6)—a,

the equation of the catenary referred to its lowest point as origin.

Curves in Space.

124. The length of the arc of a curve of double curvature is
the limit of the sum of the chords of smaller arcs into which the
given arc may be broken up, as the number of these smaller arcs
is indefinitely increased. Let (z,y,2), (4 dx, y + Ay, 2+ Az)
be the codrdinates of the extremities of any one of the small arcs
in question; dx,Ay,Az are infinitesimal ; Vda?+ Ay?+ Az? is the
length of the chord of the arc. In dealing with the limit of the
sum of these chords, any one may be replaced by a quantity dif-
fering from it by infinitesimals of higher order than the first.
da? + dyf+ d2? is such a value;

z=x
hence s= | VdoZ F dy? + dz*.
=20
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Let us rectify the helix.

Z=acosf
y=asind }. (1. Art.214.)
2= k@

dx = — asinf.dd,.
dy = a cos6.dg,
dz = kd#,

ds* = (a* + k*)de*,

6 —
s=(a?+ kﬁ)%f% 48 = N E 7 (0, — 6y).

EXAMPLES.
(1) Find the length of the curve (y = 2£:-t 2= -(%2)
Ans. s=a+4z241
,53

(2) y=2\/a_x—w,z=m—§\;- Ans s=w+y—2z+41
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CHAPTER X.

AREAS.

125. We have found and used a formula for the area bounded
by a given curve, the axis of X, and a pair of ordinates.

A =fydw.

We can readily get this formula as a definite integral. The
area in the figure is the sum of the
slices into which it is divided by the P

ordinates ; if Az, the base of each - —7
slice, is indefinitely decreased, the B Y
slice is infinitesimal. -The area of v -
any slice differs from yAz by less ¥o
than AyAx, which is of the second
Tp * Az x
order if Az is the principal infini-
tesimal. We have then
limit ===
A= p, -0 3 yAw by I. Art. 161,
z=l:° N

Hence A= j; "y, 1]

If the curve in question lies above the axis of X, and , is
less than x,, each ordinate is positive, each Az is positive, each
term of the sum whose limit is required is positive. the sum is
positive, and the limit of the sum or the area sought is positive.
If, however, the curve lies below the axis of X, and x, is less
than 2, each ordinate is negative, each Az is positive, each
term of the sum is negative, the sum is negative, and the limit
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of the sum or the area sought is negative  If, then, the curve
happens to cross the axis between w, and 2y, tformula [1] gives
us the difference between the portion of the area above the axis
of X and the portion below the axis of X, but throws no light
upon the magnitudes of the separate portions. Consequently,
in any actual geometrical problem it is usually necessary to find
the portion of the required area above the axis of X and the
portion below the axis of X separately; and for this purpose
it is essential to know at what points the curve crosses the axis.
Indeed, if the problem is in the least complicated, it is neces-
sary to begin by carefully tracing the given curve from its
eljuation, and then to keep iis form and position in mind during
the whole process of solution.

ExXAMPLES.

(1) Show thatfylwdy is the area bounded by a curve, the
Yo

axis of ¥, and perpendiculars let fall from the ends of the
bounding arc upon the axis of Y. .

(2) If the axes are inclined at the angle o, show that these
formulas become
%, Y.
A = sin mf ‘ydw =sinw f 1:;r:oly.
%o Yo
(8) Find the area bounded by the axis of X, the carve

a? + 4y =0, and the ordinate of the point corresponding to the
abscissa 4. Ans. 5.

(4) Find the area bounded by the axis of X, the curve
y=a?, and the ordinates corresponding to the abscisse —2
and 2. Ans. 8.

(5) Find the area bounded by the axis of X, the axis of Y,
the curve y=cosz, and the ordinate corresponding to the
abscissa 3. Ans. 6.
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126. In polar codrdinates we can regard the area between two
radii vectores and the curve as the limit of the sum of sectors.

The area in question is the sum
of the smaller sectorial areas, any
one of which differs from 4+?A¢ by
less than the difference between the
two circular sectors 4(r 4 Ar)?A¢
and $7*A¢; that is, by less than

) 2
TArA¢ + (-A-%—A—‘# , which is of the

second order if A¢ is the principal infinitesimal.

' limit | Pz
Hence A= A= 0[«%3}:‘%4, ’

A=§j:;l-’d¢.

127. Let us find the area between the catenary, the axis of
X, the axis of ¥, and any ordinate.

A=f;/do;= f—tfze§+e_z)dw,
o 20
2 z x
A=% (ea—e7a),
but g(ef_ e":) =8, by Art. 101,

Hence A=as,

and the area in question is the length of the arc multiplied by the
distance of the lowest point of the curve from the origin.

128. Let us find the area between the tractrix and the axis
of X. .

We have do=—% Va? — 2 , (Art. 102.)
y

A=fydx=—fdyda_2?yz.
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The area in question is
. ] 2
A=——fdy\/a2— =—“Zl’-,

which is the area of the quadrant of a circle with a as radiuvs.

EXAMPLE.

Give, by the aid of infinitesimals, a geometric proof of the
result just obtained for the tractrix. »

129. In the last section we found the area between a curve
and its asymptote, and obtained a finite result. Of course this
means that, as our second bounding ordinate recedes from the
. origin, the area in question, instead of increasing indefinitely,
approaches a finite limit, which is the area obtained. Whether
the area between a curve and its asymptote is finite or infinite
will depend upon the nature of the curve. )

Let us find the area between an hyperbola and its asymptote.

The equation of the hyperbola referred to its asymptotes as
axes is @ + B

vy = 1

Let o be the angle between the asymbtotes ; then
at+b? “da

sin » —=0w.
4 bz

Take the curve yr=4d"(2a —2),

[+ -]
A=sino | yde=
0

or y’=4a’.-2-9-——w;
z

any value of  will give two values of y equal with opposite
signs ; therefore the axis of » is an axis of symmetry of the
curve.

When = 2a, y=0; as z decreases, y increases ; and when
x=0,y=o. If=isnegative, or greater than 24a, y is imagi-
nary. The shape of the curve is something like that in tthe
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figure, the axis of ¥ being an asymptote. The area between the
curve and the asymptote is then either

2a -]
¥ A=2‘£ydm or A=2‘£xdy;
by the first formula,
2a —_
. A=4af 2—“——§-dw=4a27r;
2q X 0 X
by the second,

Lol dy
A = 16(18 0—?;2—:'—_-4—(12= 4a271'-

ExampLEs.
(1) Find the area between the curve y*(a? 4 a?) = o?a? and its
asymptote y = a. Ans. A =2a%
(2) Find the area between y*(2a—2)=2® and its asymptote

r=2a. » Ans. A =38=dl.

(8) Find the area bounded by the curve y’;m and

its asymptote x = a. a«—x
Ans. A= 2a2(1 + ;I)

130. If the codrdinates of the points of a curve are ex-
pressed in terms of an auxiliary variable, no new difficulty is

presented.
Take the case of the circle 2* + y* = o?, which may be written

T=acos¢ f
’

y=asing¢
dy = a.cos pde.
2
The whole area 4 =a? f cos? ¢dep = wal.
0

kS
N
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ExAMPLES.

(1) The whole area of an ellipse T=a cf)SqS } is wab.
y="bsing

(2) The area of an arch of the cycloid is 3wa®.

(3) The area of an arch of the companion to the cycloid
x=af, y=a(l —cosf) is 27a’. ‘

181. If we wish to find the area between two curves, or the
area bounded by a closed curve, the altitude of our elementary
rectangle is the difference between the two values of y, which
correspond to a single value of z. If the area between two
curves is required, we must find the abscissas of their points of
intersection, and they will be our limits of integration ; if the
whole area bounded by a closed curve is required, we must find
the values of # belonging to the points of contact of tangents
parallel to the axis of Y.

Let us find the whole area of the curve

atyf 4 Dot = a? %2,
or aty? = b at(al— af).

. The curve is symmetrical with reference to the axis of X, and
passes through the origin. It consists of two loops whose areas
must be found separately. Let us find where the tangents are
parallel to the axis of Y.

T=- when tan+ = oo, that is, when r==* a.

T
2
98 (av&@ —de+2° T 2
A=22 [zVa'—2Pde+2 5 w\/a .dx =%ab.
a“/—a a?
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Again; find the whole area of (y —2)*=a®— 2.

y==z+ Va®—a’,
A=f(y’——- y")dm=f2 Vi o . da.

To find the limits of integration, we must see where 1-=7§r

d z__ :
—?'/=M=oo when = 1+ a.

dx a? —a?
A = 2fa\/a2-—x2.dw=7ra“’.
ExampPLES.

(1) Find the area of the loop of the curve 2= m‘*fza +xw) .
Ans. 2a? <1 — "-'-'>.
4

(2) Find the area between the curves y*—4ax=0 and
*—4ay=0. Ans. 16301,2
(8) Find the whole area of the curve 2t + y# = af. Ans. §ral
(4) Find the area of a loop of a?y* = o*(a? —2?%). Ans. igf-
(3) Find the whole area of the curve
29 (0" + &%) — 4ay (& — 2*) + (& — F’f = 0.
Ans. aix <4 - %)

132. We have seen that in polar codrdinates
¢
A=4( rdé.
bo
Let us try one or two examples.
(a) To find the whole area of a circle.

The polar equation is r=a.

A= %—‘fzwa“’ d¢ = rad,
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(b) To find the area of the cardioide r = 2a (1 — cos ¢).
2T 2

A= %fzta?(l —cos¢p)’de = 2a® ), (1—2cosé + cos’de¢)de,
0

A=6ax.
{¢) To find the area between an arch of the epicycloid and the
circumference of the fixed circle. )

w=(a+b)cos0—bcosa_zb0
y=(a+b)sin0—-bsina2-b0

We can get the area bounded by two radii vectores and the
arch in question, and subtract the area of the corresponding
sector of the fixed circle.

Changing to polar coérdinates,

r=rcosd,
y=rsin¢.
We want 4 f 2dé.
tan ¢ = =
sec? pd ady — ydz
‘ a?
but, since L=7rcos¢d, sece= 2;
?d¢  xdy—ydx
I e
lence ‘ (1?2 w’ 1)
and rd¢ = wdy— ydw ;
do = (a + b)(_sine +sin 2t o) a8,

dy =(a +b)(cos6 — cosZ 'Z b0)d€.

ady — ydz = (a +b) (a +2b)<l ——cos%ﬂ)d&: 2dg.

Our limits of integration are obviously 0 and 20m,
a
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= a
Hence A =4(a+0)a+20) [ (1 - 00550> a8,
A=%T—r(a+b)(a+2b),
is the area of the sector of the epicycloid. Subtract the area of
the circular sector wad, and we get v
_1*(8a+2b)
[ — .
a

A4
as the area in question.

(d) To find the area of a loop of the curve 7* =a?cos2 ¢.

For any value of ¢ the values of » are equal with opposite
signs. Hence the origin is a centre.

When ¢ =0, r=:+a; as ¢ increases, r decreases in length

till ¢ = :—;, when 7=0; as soon as ¢ > Z, r is imaginary. If ¢
decreases from 0, » decreases in length until ¢ = — I, whenr=0;
and when ¢— Z, r is imaginary. To get the area of a loop,

then, we must integrate from ¢= —;—r to p= i
a/ﬁ
A=3%| Pdp=14a*| cos2¢.dé=—
T o 2
= 1
ExXAMPLES.
(1) Find the area of a sector of the parabola r= S N—
14 cosg
(2) Find the area of a loop of the curve r’cos¢ = a’sin3 ¢.
3a® o
Ans. — — = log2.
ns. — 5 log
_(8) Find the whole area of the curve r=a(cos2¢ + sin24¢).
Ans. .

(4) Find the area of a loop of the curve rcos¢ =acos24.
Ans. <2 — g) o,

(5) Find the area between r =a(sec$-+tan¢) and its asymp-
tote rcos = 2c. Ans. (g + 2) @,
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133. When the equation of a curve is given in rectangular
coordinates, we can often simplify the problem of finding its area
by transforming to polar codrdinates.

For example, let us find the area of

@+ ) =4a2? 422
Transform to polar codrdinates.
=4 r*(a*cos® ¢ + b*sin¢),
=4 (a®cos® ¢ + b?sin®¢),
A= %‘zzzcosw + B sin? ¢)de = 2 (a? + 7).

ExamPLEs.
(1) Find the area of a loop of the curve (a? + y?)% = 4 a?a?2.
X 2
Ans. T,
ns. =g
TR W7 R AN
atp= a(z + 17:> '

ch_ 2 2
Ans. 2ab(a + 7).

(2) Find the whole area of the curve

(8) Find the area of a loop of the curve y* — 3 axy + *= 0.

2
Ans. ﬂ.
2

184. The area between a curve and its evolute can easily be
found from the intrinsic equation of the curve.

It is easily seen that the area
bounded by the radii of curvature
at two points infinitely near, by
the curve and by the evolute, dif-
fers from % p?dr by an infinitesimal
of higher order. The area bounded
by two given radii vectores, the
curve and the evolute, is then

Tl
A= -%‘J; ptdr.
°
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ds
p=r

151

Hence A=} f <d8> dr.

For example, the area between a cycloid and its evolute is

A %f ( 4as1nr)dT

=8 azfcos 7dr.
TO

Let To=0 and rl=g;

A=8 a”f%cosﬁ rdr = 2wal.
0

ExXAMPLES.

(1) Find the area between a circle and its evolute.
(2) Find the area between the circle and its involute.

Holditch’s Theorem.

135. If a line of fixed length move with its ends on any closed
curve which is always concave toward it, the area hetween the

B

curve and thelocus of a given
point of the moving line is
equal to the area of an el-
lipse, of which the segments
into which the line is divided
by the given point are the
semi-axes.

Let the figure represent
the given curve, the locus
of P, and the envelope of the
moving line.

Let AP=a and PB=b,
and let CB=p, C being the

point of contact of the moving line with its envelope. Let

AB=a+b=c.*
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The area between the first curve and the second is the area
between the first curve and the envelope, minus the area between
the second curve and the envelope.

-Let 6 be the angle which
the moving line makes at
any instant with some fixed
direction. Let the figure
represent two near positions
of the moving line; A6, the
angle between these posi-
tions, being the principal in-
finitesimal.

PB=p, P'B'=p+Ap.

The area PBB'P'P differs
from %p?df by an infinitesi-
mal of higher order than the first.

4p*d0 is the area of PBMP, and differs from PP'NB by less
than the rectangle on PM and PQ. which is of higher order than
the first, by I. Art. 153. But PP'NB differs from PP'B'B by
less than the rectangle on BN and NB', which is of higher order
than the first, since N B', which is less than PP'-- Ap, is infini-
tesimal and A@ is infinitesimal.

The area between the first curve and the envelope 1s then
27

4| p*dl; or, since we can take PP'A'A just as well for our
0

27
elementary area, %ﬁ(c —p)2de.

2T 27T
Hence 3| p*do= 1‘f(c —p)ide;
(] 0
2T
whence 2 cf pdf =2,
(U
27T
or fpdG = 7C. (1)
(1]

The area between the second curve and the envelope is

f}‘ﬁ;— 5)2de.
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The area between the first curve and the second is then

$ g 2
A=%£pﬂczo—%£(p-b)2do

o
= b.[pdﬁ—bzfr

= 7bc — b’ by (1),
=zb(a+b)—Vm,
A= zab, 2)

which is the area of an ellipse of which a and b are semi-axes.
Q.E.D.
ExaMpLES.

(1) If a line of fixed length move with its extremities on two

lines at right angles with each other, the area of the locus of a

| given point of the line is that of an ellipse on the segments of
‘ the line as semi-axes.

‘ (2) The result of (1) holds even when the fixed lines are not
) perpendicular.

Areas by Double Integration.

186. If we take x and y as the cotrdinates of any point P
within our area, # and y will be independent variables, and
’ we can find the area bounded by two
given curves, y = fr and y = F=,
by a double integration. Suppose
the area in question divided into
slices by lines drawn parallel to the
axis of Y, and these slices subdi-
vided into parallelograms by lines
drawn parallel to the axis of X.
The area of any one of the small
parallelograms is AyAz. If we
keep = constant, and take the sum
of these rectangles from y Jx to y = Fx, we shall get a result
differing from the area of the corresponding slice by less than

b 4
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2 AzAy, which is infinitesimal of the second order if Az and Ay
are of the first order.

Fx M
Hence f Ax.dy = Ax | dy
/5 e

is the area of the slice in question. If now we take the limit of
the sum of all these slices, choosing our initial and final values
of @, so that we shall include the whole area, we shall get the
area required.

Hence A =£z'<‘fj;$/>dx

In writing a double integral, the parentheses are usually omit-
ted for the sake of conciseness, and this formula is given as

£ Fx
A =f ‘fdydx,
%y fr

the order in which the integrations are to be performed being the
same as if the parentheses were actually written.

If we begin by keeping y constant, and integrating with respect
to , we shall get the area of a slice formed by lines parallel to
the axis of X, and we shall have to take the limit of the sum of
these slices varying y in such a way as to include the whole area
desired. In that case we should use the formula

Y%
= f dwdy

187. For example, let us find the area bounded by the para-
bolas y* = 4ax and #* =4 ay.
The parabolas intersect at the origin and at the point (44, 4«).

/ ta (*~iax 4a viay
o ~ A= f fdydm, or A_.f dxdy,
7
1/7@ v
[ f =V4ar — =
- x? 4a
4a
da ~~iax ta 22 16
_ _x .
j(; i,dyolsc __JO' <\/4am )dx 3
da

The second formula gives the same result.



CHaPp. X.] AREAS. 155

ExXAMPLES.

(1) Find the area of a rectangle by double integration; of a
parallelogram ; of a triangle.

(2) Find the area between the parabola y® = ax and the circle

y=2uz 2 na, 2(2 -2,
4 3
(8) Find the whole area of the curve (y —mz — ¢)? = of — a%.
Ans. wal.

188. If we use polar codrdinates we can still find our areas
by double integration.

¥ Let r=/f¢ and r=F¢

be two curves. Divide the

&’ area between them into

o1 a'  slices by drawing radii

vectores ; then subdivide

a these slices by drawing

arcs of circles, with the

ef origin as centre.

Let P, with coérdinates

r and ¢, be any point

within the space whose

area is sought. The curvilinear rectangle at P has the base rA¢

and the altitude Ar; its area differs from rA$Ar by an infinitesi-
mal of higher order than rA¢Ar.

7
The area of any slice as aba'b' is f'rmj:dr, ¢ and A¢ being
Fp Jo
constant, that is A¢ 'rd'r The whole area, the limit of the

sum of such slices is A— frch dep. (1)
Py f

Or we may first sum our rectangles, keeping r unchanged,
and we get as the area of efe'f’

F-1p
rar dg, and A= f rd¢dr (2)
Sle Se
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It must be kept in mind that » in (1) and (2) is the radius
vector of any point within the area sought, and not of a point
on the boundary.

For example, the area between two concentric circles, r =a
and r=2>, is

A=£u£:g¢dr=£n£;drd¢=n-(a"’—b"’).

Again, let us find the area between two
tangent circles and a diameter through the ‘
point of contact. :

Let a and b be the two radii, V4
r=2acos¢ 1 _
and r==2bcos¢ ) |

are the equations of the two circles.

T 2acosg 3
A=f?fr‘:l;zl¢ = 2(0(2—b2)‘fcos2 ddep = g(cﬁ— b%).
0 0

2b cos ¢

If we wish to reverse the order of our integrations we must
break our area into two parts by an arc described from the origin
as a centre, and with 25 as a radius ; then we have

_f fad¢dr+f frdq;oh

cos~l5p
_ (Y S A ' 72"(130s“—rd
j).r €08 2a 2b 25 2a r
Te2 B2
= =(a? — b*).
2( )

EXAMPLE.

Find the area between the axis of X and two coils of the
spiral 7 = a¢.
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CHA>I TER XL
AREAS OF SURFACES.

Surfaces of Revolution.

189. If a plane curve y = fir revolves about the axis of X, the
area of the surface generated is the limit of the sum of the areas
generated by the chords of the infinitesimal
arcs into which the whole arc may be broken
ap. Each of these chords will generate the
surface of the frustum of a cone of revolution
if it revolves completely around the axis;
and the area of the surface of a frustum
of a cone of revolution is, by elementary
Geometry, one-half the sum of the eircum-
ferences of the bases multiplied by the slant height. The frustum
generated by the chord in the figure will have an area differing
by infinitesimals of higher order from = (y +y + Ay)As or from
2ryds. ‘The area generated by any given arc is then

8=2m ylyds. (1]
¥

If the arc revolves through an angle 6 instead of making a
complete revolution, the surface generated is

Yy
S=6 f yds. [2]

It must be noted that [1] and [2] will give a positive value
for 8 if the generating curve lies wholly above the axis of X at
the start, and a negative value for 8 if it lies wholly below the
axis of X at the start. If the curve happens to cross the axis
of X between the points whose ordinates are y, and %, [1] and
[2] give not the area of the surface generated by the curve in
question, but the difference between the areas generated by the
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portion originally above the axis, and the portion originally
below the axis.
ExampLE.

Show that if the arc revolves about the axis of ¥, S =2x wds.
ZO

140. To find the area of a eylinder of revolution.
Take the axis of the cylinder as the axis of X. Let a be the
altitude and b the radius of the base of the
cylinder. The equation of the revolving
line is

y=1>b;

dy = 0,

ds = Vda® + dpf = dae;

S=2= 'aydw = 2nab,

0

or the product of the altitude by the circumference of the base.
Again, let us find the surface of a zone.
The equation of the generating circle is

@4y = a?;

ds::%;

S: 2'n'f adw: 20/1?(w]_w0)-

! : o

Lo 24

If vo=—a and x,=a, S =4a’x.

Hence the surface of a zone is the altitude of the zone multi-
plied by the circumference of a great circle, and the surface of
a sphere is equal to the areas of four great circles.

Again, take the surface generated by the revolution of a
cycloid about its base.

x=0af —asind

y=a—acosf
ds = ad6~2 (1 — cosh), by Art. 105 ;

27
8= %f /2. (1 — cos 6)} d = S ma?.
[1]

y
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ExXAMPLES.

(1) The area of the surface generated by the revolution of

the ellipse 2 + ¥ _ 1
a? b

about the axis of X is 2xab (\/1 — et 4 sin” )

2
about the axis of ¥ is 2wa? (1 +1=¢€ log 1 ),
‘ 2e 1—e
a? — b?
—
(2) Find the area of the surface generated by the revolution
of the catenary about the axis of X ; about the axis of Y.

where =

(3) The whole surface generated by the revolution of the
tractrix about its asymptote is 4 »a?.

(4) The area generated by the revolution of a cyclmd about
its vertical axis is 8wa*(w —4).

(5) The area generated by the revolution of a cycloid about
the tangent at its vertex is 32wa’.

(6) The area generated by the revolution of the curve
ot -yt = gt about its axis is 12 wa?.

141. If we know the area generated by the revolution of a
curve about any axis, we can get the area generated by the
revolution about any parallel axis by an easy transformation of
codrdinates.

leen the surface generated by the arc from s, to s about
Py N OX, to find the area generated by
/\ the same arc- when it revolves
o x' about 0'X".

Let S be the surface about 0OX,
and S' about O'X".

[7] x We have

Yo

$, $
S=2=|fyds, S'=2=1{ y’ds'.
3

3o
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By Anal. Geom., r=2z,
‘ y=%+y.
Hence de=do', dy=dy', ds=ds,

8, 8
and  S=2x | (yo+y)ds=2ye(s, — %) + 27 [ y'ds,
) 8 3 £ )

= 21r_y'o(s, —8)+ S
Therefore S'=8—2myy(s; — ). [11

8, — 8y is the length of the revolving curve; 2xy, is the cir-
cumference of a circle of which y, is the radius. Hence the new
area is equal to the old area minus the area of a eylinder whose
length is the length of the given arc and whose base is a circle
of which the distance between the two lines is radius.

In using this principle careful attention must be paid to the
sign of ¥, and it must be noted that the original formula

S=2r g;]ds will always give a negative value for the area of
So

the surface generated, if the revolving arc starts from below the
axis; and hence, that the surface generated
by the revolution of any curve about an '
axis of symmetry will come out zero.

As an example of the use of the princi-
ple, let us find the surface of a ring.

Let a be the distance of the centre of 7l X
the circle from the axis, and b the radius of
the circle. Since the area generated by the
revolution of the circle about a diameter is zero, the required

area is
27b.2 ma = 47°ab.

ExAMPLE.

Find the area of the ring generated by the revolution of a
cycioid about any axis parallel to its base.

Ans. S§S= 4ab1r<1r 1—623;+-51—2b>
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142. If we use polar codrdinates,

8
S=2r yds
3
8,
becomes S=2= f rsin ¢.ds.
L
where ds = Vdr? 4 r’d¢®.

For example ; let us find the area of the surface generated by
the revolution of the upper half of a cardioide about the hori-
- zontal axis.
r=2a(l—cos¢);
dr=2asin¢.de,
ds? = 8a*(1—cos ¢)dg?,

Yy
8 =27 [ 4/20a%*(1— cos ¢)?sin p.dp.
0
S =188 »a?

EXAMPLES.

(1) Find the surface of a sphere from the polar equation.

(2) Find the surface of a paraboloid of revolution from the
polar equation of the parabola

_ m
1—cos 4;'

Cylindrical Surfaces.

148. If a cylindrical surface is generated by a line which is
alwags parallel to the axis of Z, the area of the portion bounded
by two positions of the generating line, the plane of XY, and
any curve whose projection on the plane of XZ is given, is
easily found.

Let ABCD be the cylindrical area required.
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Let y=fx 5]

be the equation of AB, the line of intersection of the surface
with the plane X7Y; and let

z=Fx 2)

be the equation of C D, the projection of CD on the plane
of XZ.

If 2,9,z are the codrdinates of
any point P of CD, the required
area is evidently the limit of
the sum of rectangles, of which
PP'P'P" ig any one. The area
of PP'P'P" differs by an in-

x finitesimal of higher order than
ds from zds, and therefore the

£
required area S =f zds.
o

7

x,z are the codrdinates of Py, and
satisfy (2), and ds = Vda? + dy?
where @,y are the codrdinates of
P’ and satisfy (1).

We have, then, 8= lez Vaa? -+ dyt. [3]

0

For example, let AB be the quadrant of a circle, and let the
projection of the required area on the plane of XZ be the quad-
rant of an equal circle, so that the surface required is one-eighth
of the surface of a groin.

Here 2 4y = af, 4)

and 2+ E=a; (5)

ds = Vdm2+dy2=gdx=—-ad—w—,
y Vat —a?

and z2=Va?— 2%
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Therefore S= f VT =t . _l_oﬂm_ = f “de = a.
0 —\/a2 — wZ 0

Again, let us find the area of the curved surface of the
portion of a cylinder of revolution included within a spherical
surface, whose centre lies on the surface of the cylinder, and
whose radius is equal to. the diameter of the cylinder.

If the centre of the sphere is taken as the origin, and a
diametral plane of the cylinder as the plane of XZ, the surface
required is four times that indicated in the figure.

The equation of the cylinder is

2 —ax+ 3y =0, (6)
and of the sphere

P4y 4+E—a?=0. )

Subtract (6) from (7), and we get

Z24ar—at=0 (8)
as the equation of a cylindrical surface /z
perpendicular to the plane XZ, and
passing through all the points of intersection of (6) and (7).
(8) is, then, the equation of the projection on the plane of XZ

of the line of intersection of the given spherical surface and
the given cylindrical surface.

de

From (8), ds=Vd& +dy=Ldw=_222 _.

©, 2y 2Vaz — z*
From (8), z=+d’—aw.

H S=("Va—am.__0dx _aVa(*Va—=.de
e T — i o v

=a2;

_ava reds
2 Vo
and the whole area required,

48 =4ad



L]

164 INTEGRAL CALCULUS. [ART. 144,

ExAMPLZS.

(1) Find the area cut from the cylindrical surface whose
base in the plane XY is a quadrant of the curve 2% 4- y# = at by
the plane o ==z. Ans. $at.

(2) Find the area of that portion of a cylindrical surface
whose base in the plane of XY is a quadrant of the ellipse
@
a2
by the curve a?z’=b*a?*(a’—2%). Ans. §=

2
3—/—2-=1, and whose projection on the plane of XZ is bounded
b ab(a’+-ab+b")
3(a+0)

(8) Let the base of the cylindrical purface be a tractrix,
whose vertex lies at a distance a to the left of the origin, and
whose asymptote is the axis of ¥, while its projection on the
plane of XZ is bounded by the parabola 2° = —2ma.

Ans. S=2aN2ma.

(4) Let the base of the cylindrical surface be the upper half
of a cycloid, having its vertex at the origin and its base parallel
to the axis of Y, and at a distance 2a from the origin, while
its projection on the plane of XZ is bounded by the parabola

2= 2me. Ans. 8 =4avam.

Any Surface.

144. Let @, 9, 2 be the codrdinates of any point P of the sur-
face, and z + Aw, y 4 Ay, z+ Az the codrdinates of g second
point @ infinitely near the first. Draw planes through P and Q
parallel to the planes of XY and YZ. These planes will inter-
cept a curved quadrilateral PQ on the surface ; its projection pg,
a rectangle, on the plane of XZ; and a parallelogram p'q" not
shown in the figure, on the tangent plane at P, of which pg is
the projection. PQ will differ from p'q' by an infinitesimal of
higher order, and therefore our required surface will be the limit
of the sum of the parallelograms of which p'¢' is any one.
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If B is the angle the tangent plane at P makes with XZ,
p'9'cosB=pg or p'¢' =pgsecB = AxAzsecf, and o, our sur-
face required, is equal to

the double integral ¥

o= ffsec Bdadz W\
taken between limits so AL7
chosen as to embrace the T
whole surface.

The limit of the sum o
. of the parallelograms, of p /i x

which p'g' is a type, will &
be the required surface Alx /7

if the limit of the sum of

the rectangles, of which

pq is a type, is the pro- ,

jection of the surface in

question on the plane of XZ; so that the values of # and 2

between which we integrate in o = fsec Bdxdz are precisely
those we should use if we were finding the area of the projection
of o by the double integration f dxdz. (v. Art. 136.)

The equation of the tangent plane at P is

(% — @) Do, [+ (¥ — y,) Dy, + (# — 20) Dz, f =0, byl Art. 217,
(%y Yo 20) standing for the codrdinates of the point of contact,
and f(#,y,2) =0 being the equation of the surface.

The direction cosines of the perpendicular from the origin upon

the plane are Do
T N @l ¥+ D+ Dl
B= Dy )
V(Dmof)z + (Dyof)2 + (Dzof)2
D f
08y

T N Dag ) + Dl + (Daf)?

by Anal. Geom. of Three Dimensions.



166 INTEGRAL CALCULUS. [ART. 144

Hence, dropping the accents,

_ C(VDDF DN+ D)
o= f f v dadez. [1]

By considering the projections upon the other codrdinate planes
we shall find

= f ff(b,fv +§)Ij}f)2+(D,f)2dydz; [2]
2 2 2
o= f\/(D,n +(le}f) +Daf) guay. [5]

In each of the formulas the derivatives are partial derivatives.
Let us find the area of the portion of the surface of the sphere

P+ =
intercepted by the three codrdinate planes.
D.f=2x,
D,f=2y,
. D,f=2z,
V(D.)?+ (D) +(D.f)"=2a.

N o

s (a
= =d ;

a2 _ z2

or cr=f fgdzdw; (2)
0 Oy
. a x/az_yz
a .
or o'=f f-dxdy. (3)
(] 02

For, in the second one, which agrees best with the figure, we
must take our limits so that the limit of the sum of the projec-
tions may be the quadrant in which the sphere is cut by the
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plane XZ; and the equation of this section is obtained by letting
y = 0 in the equation of the sphere, and is

2?42 =a?
whence z=al—
If we take as our limits in the integral f 2dz zero and Vai— 2
we shall get the area whose projection iéy a strip running from
the axis of X to the curve ; then, takingf f g dz) dx from 0 to

a, we shall get the area whose projection is the sum of all these
strips, and that is our required surface.

y= \/a— ¥ — 27,
ff dzdw
Tg=a ;
\/a -
——————='sin'1—-———
Va? =2~ 22 Va? — 2
if we regard x as constant ;
JE—z
az—x dz L,
o~ 2 2
o=a u’—rdx=7ﬂ-ﬂ
0 2 2’

the required area. Formulas (1) and (3) give the same result.

145. Suppose two cylinders of revolution drawn tangent to
each other, and perpendicular to the plane of a great circle of a
sphere, each having the radius of the
great circle as a diameter ; required the
surface of the sphere not included by
the cylinders.

The surface required is eight times
the surface of which the shaded portion
of the figure is the plfojeetion.

If we take the plane of the great
circle as the plane of XY,




168 INTEGRAL CALCULUS. [ArT. 145,

P—ar+y’=0 1y
is the equation of the cylinder, and i
P+ +E=a (2)

of the sphere.
We have o == f\/(D’f)L'_ (D,f)*+ (D'f)’dyM.

D.f

From (2) D,f=2x,
D, f=2y,

D, f=2z;

(D.1) + (D, 1)+ (D,f)? = 4a.

dyd,
Hence o-—-ff dydw..af N g _i/g: y

Our limits of integration for y are Vaz — 2* and Va? — o%; for
2 are 0 and a.

NP -2 dydx
r=af” Ver=r. ¢
ax-—-x?
N _
J a2
dy =sint——L __|=T_ sin‘l\’ z.
Vat— ot — V& — 2 2 a+x
vaz-x2 ~az—at
To find sin“\’ T _.dx we must integrate by parts.
0 a4z ‘
s x
Let % = sin \/——a_'_w,
and dv=dx
=2,

1 {a
du — d(l? .
2 (a + =) ’

— |
dac = a:sm‘l\/ ® \/a Va da.
a+w a+x

f sin~?
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Let w=\z; 2wdw=dxr
Ve.de w?dw
and ate 2ot =2
Ede / _ a W
a+a:_2 w -— 4Jatan &)
f;in'l\/—-_dw
’ ate \/2 o o a
=asin™! tanl—a="" 4T _g="F —
asin™'—= 4 atan 4+4 a 3 a,

= -a—-n--—-—.— = 2
o a(2 2+0L> 15

80 = 8a? is the whole surface in question.

146. Let us find the area of the curved surface of a right
cone whose base is the curve =t 4 y# = a#, and whose altitude
is ¢.

If we take the vertex of the cone as the origin of codrdinates,
and its axis as the axis of Z, the equation of its curved surface
is

at 4yt = (‘_”cfy, . ¢))

and the projection of the surface on the plane of XY is bounded "
by the curve v
xt Yyt =0l 2)

From (1) we get

VDI + (DI + (D) _ \[1 +cz [CEYDq
D.r Taiyt

where #,y are the codrdinates of any point within the projec-
tion of the base of the cone. '

Since the four faces of the conme are equal, the required
surface

(a3-28)}
___f f —y-t VaPatyt + (ot 4 y?)2. dy de. (3)
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Let us substitute »*=2 and w®=y, whence dx=3v*dv
and dy = 3w?dw, and we have
at (o2t
o= 3—;;- Oﬁfvw Vatoiw® + (VP +w' Y. dwdv ;

or, since in a definite integral it makes no difference what letters
we use for the variables,

RN
36 (* ("
o= Ejjomy VPP £ @+ Y dyda. 4)

The z and y in (4), however, must not be confounded with the
xand y in (3).

The integral in (4) is precisely that which we should have to
find if we sought the area of a surface of such a nature that its
projection on the plane of XY was a quadrant of the circle
#* 4 32 =a#, and the secant of the angle made by the tangent
plane at any point (,y,2) of the surface with the plane of X¥
was ayVarwy® + (& + yO).

In the latter problem there is nothing to prevent our re-
placing @ and y in zy Va?a?y® + ¢ (¢ + y?)? by their values in
terms of r and ¢, the polar codrdinates of any point of the
projection o+ y® = qgf, and dividing this projection into polar
elements instead of rectangular elements, and then integrating
between the limits which we should use if we were finding the

area of the projection by the formula A4 =f f rddr.
‘We have, then, '

*

T gt
o= %f J‘ar? sin ¢ cos ¢ Va?risin® ¢ cos?p + Ert. rdrde,
0 (]

or

7 A
o= %f ‘£a7‘5 sin ¢ cos ¢ Va?sin? ¢ cos’¢ + &. drde,
o

L4

7 R
F= Gaf sin ¢ cos p VaZ sin®p cosip + . de.
0
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Substitute % =sin®¢, and
=3 f VAT —wF e du,
o=1%| 2ac + (o +4) tan“léa;c .

EXAMPLES.

(1) Find the area included by the cylinders described in
Art. 145 by direct integration.

(2) A square hole is cut through a sphere, the axis of the
hole coinciding with a diameter of the sphere; find the area of
the surface removed.

(8) A cylinder is constructed on a single loop of the curve
r=a cosne, having its generating lines perpendicular to the
plane of this curve; determine the area of the portion of the
surface of the sphere 2?4 y* 22 = a® which the cylinder inter-
cepts. Ans. 4—“—2(‘5 - 1>-

n \2

(4) Find the area of the portion of the surface of the cone

described in Art. 146 included by the cylinder 2?4 3 =%

Ans. ?El:2 VaEF 3 tan! (wv —a tan‘li].
o c 2¢

(5) Find the area of the portion of the surface of the sphere
22+ y*+2°=2ay cut out by one nappe of the cone
_ A+ B =~ Ans. 4xd? .

A +4)(1+B)

(6) Find the area of the portion of the surface of the sphere

#® + y? + 2° = 2ay lying within the paraboloid y =_Aa? + Bz".
Ans. 21’1-
VAB

(7) The centre of a regular hexagon moves along a diameter
of a given circle (radius = a), the plane of the hexagon being
perpendicular to this diameter, and its magnitude varying in
such a manner that one of its diagonals always coincides with
a chord of the circle; find the surface generated.

Ans. a?(27 + 3 +/3).
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CHAPTER XIL
VOLUMES.
Single Integration.

147. If sections of a solid are made by parallel planes, and a
set of cylinders drawn, each having for its base one of the sec-
tions, and for its altitude the distance between two adjacent
cutting planes, the limit of the sum of the volumes of these
cylinders, as the distance between the sections is indefinitely
decreased, is the volume of the solid.

We shall take as established by Geometry the fact that the
volume of a cylinder or prism is the product of the area of its
base by its altitude.

It follows from what has just been said, that if, in a given
solid, all of a set of parallel sections are equal, the volume of
the solid is its base by its altitude, no matter how irregular its

form.
Let us find the volume of a pyramid having b

for the area of its base, and a for its altitude.

Divide the pyramid by planes parallel to the
base, and let z be the area of a section at the dis-
tance x from the vertex. o

‘ We know from Geometry that §= o
l Hence 2= % %
a

Let the distance between two adjacent sections be dx; then
the volume of the cylinder on z is

b v, -
a
and V, the required volume of the pyramid, is
ab

b a
= — { 2%dyx = —.
4 atly 3
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Precisely the same reasoning applies to any cone, which will
therefore have for its volume one-third the product of its base
by its altitude.

ExXAMPLE.

Find the volume of the frustum of a pyramid or of a cone.

148. If a line move keeping always parallel to a given plane,
and fouching a plane curve and a straight line parallel to the
plane of the curve, the surface generated is called a conoid.
Let us find the volume of a conoid when the director line and
curve are perpendicular to the given plane.

Divide the conoid into laminae by
planes parallel to the fixed plane.

Let Ay be the distance between
two adjacent sections, and let = be
the length of the line in which any
section cuts the base of the conoid;
let @ be the altitude and b the area
of the base of the figure. Any one of our elementary cylinders
will have for its volume 4 axAy, since the area of its triangular

base is 4ax, and we have V=14a f ady, the limits of integra-

tion 4being so taken as to embrace the whole solid. xdy be-

tween the limits in question is the area of the base of the co-
noid ; hence its volume,

V =4%ab.

ExAMPLES.

(1) Find the volume of a conoid when the director line and
curve are not perpendicular to the given plane.

(2) A woodman fells a tree 2 feet in diameter, cutting half-
way through from each side. The lower face of each cut is
horizontal, and the apper face makes an angle of 45° with the
horizontal. How much weod does he cut out?
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149. To find tne volume of an ellipsoid.
© oy 2
atpta=t

Take the cutting planes parallel to the plane of XY. A sec-
tion at the distance z from the origin will have

9

A
c‘~ I

x|y
a =

o a b =, .
for its €quation, and —+V¢® —2° and p V& —2? for its semi-axes ;

hence its area will be 7—%@(02——-%).

Any of the elementary cylinders will have for its volume
7ﬂ2b(c’—22) Az, and we shall have for the whole solid
c

V=’—’;‘7b (¢ — ) de.

V = 4 wabe.
If a, b, and ¢ are equal, the ellipsoid is a sphere, and
V =4 wal.
ExamPLES.

(1) Find the volume included between an hyperboloid of one
sheet

A

2t e=h
and its asymptotic cone

i + y_7 0

a2 B &

Ans. Tt is equal to a cylinder of the same altitude as the
solid in question, and having for a base the section made by the
plane of X7Y.

(2) Find the whole volume of the solid bounded by the surface

@,y 2
E2+%2+E4=1. Ans. 81r;tbc.
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(3) Find the volume cut from the surface
2
A Py
c
by a plane parallel to the plane of (¥YZ) at a distance a from it.
Ans. wa*+/(bc).

(4) The centre of a regular hexagon moves along a diameter
of a given circle (radius = a), the plane of the hexagon being
perpendicular to this diameter, and its magnitude varying in
such a manner that one of its diagonals always coincides with
a chord of the circle; find the volume generated.

Ans. 2./3.a%

(5) A circle (radius = @) moves with its centre on the cir-
cumference of an equal circle, and keeps parallel to a given
plane which is perpendicular to the plane of the given circle;

find the volume of the solid it will generate. 248
Ans, —-3——(37r + 8).

Solids of Revolution. Single Integration.

150, If a solid is generated by the revolution of a plane curve
¥ = fa about the axis of #, sections made by planes perpendicu-
lar to the axis are circles. The area of any such circle is =2,
the volume of the elementary cylinder is =4?Az, and

= wf ?/2dx
*o

is the volume of the solid generated.

For example ; let us find the volume of the solid generated by
the revolution of one branch of the tractrix about the axis of X.
Here we must integrate from ¢ =0 to x =0

V== ;2(1(13.
0
2__ .2\
We have do = — (“Ty)’ dy  (Art.102[2].)

in the case of the tractrix ;
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hence = — f;:(az —_ y"’)!dy,
=
When 2 =0, y=a, and when £ =, y=0.
¢ 2 wa®
Therefore V=—=| y(@—)idy= 5

ExAMPLES.
(1) If the plane curve revolves about the axis of ¥,

V== g dy.

Yo

(2) The volume of a sphere is L 7ab.

(3) The volume of the solid formed by the revolution of a
cycloid about its base is 5n2al.

(4) The curve ¥*(2a — w)'= 2* revolves about its asymptote ;
show that the volume generated is 2#°a®.

(5) The curve 2t + yt = at revolves about the axis of X
show that the volume generated is 4% wa’.

Solids of Revolution. Double Integration.

151. If we suppose the area of the revolving curve broken up
into infinitesimal rectangles as in Art. 137, the element AzAy
at any point P, whose coordinates are z and y, will generate
a ring the volume of which will differ from 2=yAxzAy by an
amount which will be an infinitesimal of higher order than the
second if we regard Az and Ay as of the first order. For
the ring in question is obviously greater than a prism having
the same cross-section AxAy, and having an altitude equal to the
inner circumference 2wy of the ring, and is less than a prism
having AzAy for its base and 2w (y + Ay), the outer circumfer-
ence of the ring, for its altitude ; but these two prisms differ by
2 rAx(Ay)?, which is of the third order.
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Az f 5 wydy, where the upper limit of integration is the ordi-

nate og' the point of the curve immediately above P, and must be
expressed in terms of # by the aid of the equation of the revolv-
ing curve, will give us the elementary cylinder used in Art. 150.
The whole volume required will be the limit of the sum of
these cylinders ; that is,

V= %f"l{;@dm. (1]

If the figure revolved is bounded by two curves, the required
volume can be found by the formula just obtained, if the limits
of integration are suitably chosen.

Let us consider the following example :

A paraboloid of revolution bas its axis coincident with the
diameter of a sphere, and its vertex in the surface of the sphere ;
required the volume between the two surfaces.

Let yi=2me (1)
be the parabola, and 2*+3y* —2az= 0 (2)

be the circle, which form the paraboloid and the sphere by their
revolution. The abscissas of their points of intersection are 0
and 2(a —m).

We have V=2~ f fydydw,
and, in performing our first integration, our limits must be the
values of y obtained from equations (1) and (2).

We get V=7rf[2(a—m)w—a:2]dw,
and here our limits of integration are 0 and 2(a — m).
3
Hence V=g7r(a-—m)3=%,

if & is the altitude of the solid in question.

ExAMPLES.

(1) A cone of revolution and a paraboloid of revolution have
the same vertex and the same base; required the volume be-
tween them. Ans wmh?

, where % is the altitude of the cone.
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(2) Find the volume included between a right cone, whose
vertical angle is 30°, and a sphere of given radius touching it
along a circle. Ans. ™

-

Solids of Revolution. Polar Formula.

152. If we use polar codrdinates, and suppose the revolving
area broken up, as in Art. 138, into elements of which rd¢dr
is the one at any point P whose codrdinates are r and ¢, the
element rd¢dr will generate a ring whose volume will differ
from 277% sin ¢dpdr by an infinitesimal of higher order than the
second, if we regard d¢ and dr as of the first order; for it will
be less than a prism having for its base rd¢dr, and for its alti-
tude 2w (r+dr)sin(¢ +de), and greater than a prism having
the same base and the altitude 27rsin¢g; and these prisms
differ by an amount which is infinitesimal of higher order than
the second.

We shall have then

= %ffﬁ sin pdrdg, [1]
the limits being so taken as to bring in the whole of the gener-
ating area.

For example ; let us find the volume generated by the revolu-
tion of a cardioide about its axis.
r=2a(l—cosd¢)
is the equation of the cardioide ;

V=2 wff7‘2 sin pdrde.

Our first integral must be taken between the limits # = 0 and
r=2a(l—cos¢), and is

§§;3(1 — cos ¢)3sin ¢pdep.

V= .13_a37r‘£7(rl — cos ¢ ) sin pdep,

‘ V= %ﬂ'a“‘.
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ExaMpLE.

A right cone has its vertex on the surface of a sphere, and its
axis coincident with the diameter of the sphere passing through
that point; find the volume common to the cone and the sphere.

Volume of any Solid. Triple Integration.

153. If we suppose our solid divided into parallelopipeds by
planes parallel to the three codrdinate planes, the elementary

Z

R
-3
.

Y
parallelopiped at any point (x,y,%) within the solid will have for
its volume AzAyAz, or, if we regard =, y, and z as independent,
dadydz ; and the whole volume

|4 =fffdmdydz, [1]

the limits being so chosen as to embrace the whole solid.

The integrations are independent, and may be performed in
any order if the limits are suitably chosen.

As it is important to have a perfectly clear conception of the
geometrical interpretation of each step in the process of finding
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a volume by a triple integration, we will consider one case in
detail.
Let the integrations be performed in the order indicated by

the formuls
V= f f fdzdydm.

If the limits are correctly chosen, our first integration gives
us the volume of a prism one of whose lateral edges passes
through any chosen point P, (x,y,%) within the solid, is parallel
to the axis of Z, and reaches directly across the solid from
surface to surface, while the base of the prism is the rectangle
dyds ; our second integration gives the volume of a right cylin-
der whose base is a plane section of the solid, passes through
the point P, and is parallel to the plane YZ, and whose altitude
is dz; and our third integration gives the volume of the whole
solid.

The limits in our first integration are, then, the values of 2
belonging to the point in the lower bounding surface and the
point in the upper bounding surface which have the codrdinates
2 and y; the limits in the second integration are the values of y
belonging to the two points in the perimeter of the projection
of the solid in the plane of XY which have the codrdinate =3
and the limits in the third integration are the least value and
the greatest value of « belonging to points on the perimeter of
the projection of the solid on the plane of XY,

It is easily seen from what has just been said that the limits
in the second and third integrations are precisely those we
should use if we were finding the area of the projection of the

solid by the formula
A= f fdyda:.

Of course, it is necessary to have a clear idea of the form of
the solid whose volume is required.

For example, let us find the volume of the portion of the
P

cut off by the codrdinate planes.
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V= f f f dedyda,

and our limits are, for z, 0 and c\/l—g ——b-z-, for y, 0 and

2

b\/l—-—, and for #, 0 and a. For, starting at any point

(%,y,2) and integrating on the hypothesis that z alone varies, we
get a column of our elementary parallelopipeds having dzdy as a
base and passing through the point (2,7,2). To make this col-
umn reach from the plane XY to the surface, z must increase
from the value zero to the value belonging to the point on the
surface of the ellipsoid which has the codrdinates « and y; that

=] 2
is, to the value ¢ 1——2—2—%-
pothesis that y alone varies, we shall sum these columns and
shall get a slice of the solid passing through («,y,%) and having
the thickness dx. To make this slice reach completely across
the solid, we must let y increase from the value zero to the
greatest value it can have in the slice in question ; that is, to the
value which is the ordinate of that point of the section of the
ellipsoid by the plane XY which has the abscissaz. The section
in question has the equation

wzy’
b”

therefore the required value of y is b 4 /1 — f;
o

Last, in integrating on the hypothesis that x alone varies, we
must, choose our limits so as to include all the slices just de-
scribed, and must increase = from zero to a.

Then, integrating on the hy-

7

between the limits 0 and cqll—" _ 2
a
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w2 y2
S \1= b
: ¢ ol -
=_ A 1—=)—d
bf < a2> y.-cy
!/\/b2<1 — f"_:) — 4+ b2<l — %sin"é
2 a « b\ll—x—z
—mbef ¥ o
4 a?
between the limits 0 and b"l———w—:.
a

wbe o wabc
¢ (**(1— % Vo = T
4 ) ( @/ 6

the volume required.

1 ¢
=1
b

ExAMPLES.

(1) Find the volume obtained in the present article, perform-
ing the integrations in the order indicated by the formula,

V= f f f dedyde.

(2) Find the volume cut off from the surface

c b

by a plane parallel to that of YZ, at a distance a from it.
Ans. wa?/ (be).
(3) Find the volume enclosed by the surfaces,

Py =cz, P+y’=ar, 2=0. , = 3w’

32¢
(4) Obtain the volume bounded by the surface
2=a— Vot 4 y°
. 3
and the planes ==z and x=0. Ans. 2%
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(5) Find the volume of the conoid bounded by the surface

242 ya =¢ and the planes =0 and v=a. Ans. 7-'—622—a

154. If we use polar coordinates we can take as our element

of volume )
72 sin pdrdpdb,

an expression easily obtained from the element 2x?sin ¢pdrde
used in Art. 152.

Then V= f f f 12 sin pdrdgdf,

where the order of the integrations is usually immaterial if the
limits are properly chosen.
EXAMPLES.
(1) Find the volume of a sphere by polar codrdinates.
(2) Find thé whole volume of the solid bounded by
(2 + v + ) = 2T d’wyz.
Suggestion : Transform to polar coordinates, Ans. %a’.
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CHAPTER XIIL

CENTRES OF GRAVITY.

155. The moment of a force about an axis perpendicular to its
line of direction is the product of the magnitude of the force by
the perpendicular distance of its line of direction from the axis,
and measures the tendency of the force to produce rotation
about the axis.

The force exerted by gravity on any material body is propor-
tional to the mass of the body, and may be measured by the
mass of the body.

The Centre of Gravity of a body is a point so situated that the

force of gravity produces no tendency in the body to rotate about
any axis passing through this point.

The subject of centres of gravity belongs to Mechanics, and
we shall accept the definitions and principles just stated as data
for mathematical work, without investigating the mechanical
grounds on which they rest.

156. Suppose the points of a body referred to a set of three
rectangular axes fixed in the body, and let #,%,Z be the coordi-
nates of the centre of gravity. Place
the body with the axes of X and Z
horizontal, and consider the tendency Y F
of the particles of the body to produce
rotation about an axis through (%,¥,%)
parallel to OZ, under the influence of
gravity. Represent the mass of an
elementary parallelopiped at any point 0
(#,y,2) by dm. The force exerted by
gravity on dm is measured by dm, and
its line of direction is vertical. If the mass of dm were concen-
trated at P, the moment of the force exerted on dm about the
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axis through C would be (x —Z)dm, and this moment would
represent the tendency of dm to rotate about the axis in ques-
tion ; the tendency of the whole body to rotate about this axis
would be 2(x —Z)dm. If now we decrease dm indefinitely, the
error committed in assuming that the mass of dm is concentrated
at P decreases indefinitely, and we shall have as the true expres-
sion for the tendency of the whole body to rotate about the axis

through C, f(w — Z)dm ; but this must be zero.

Hence f(a: —z)dm =0,

fxdm—zfdm=o,
__fa:dm
. . w_fdm. . 1]

If we place the body so that the axes of ¥ and X are hori-
zontal, the same reasoning will give us

A [2]

y =
fdm

and in like manner we can get
f zdm

fdm ) 3]

Since f dm is the mass of the whole body, if we represent it
by M we shall have

z=

fwdm
T = »
M
_ fydm
AT
_ fzdm
Z =Y

M
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ExAMPLE.

Show that the effect of gravity in making a body tend to rotate
about any given axis is precisely the same as if the mass of the
body were concentrated at its centre of gravity.

157. The mass of any homogeneous body is the product of
its volume by its density. If the body is not homogenecous, the
density at any point will be a function of the position of that
point. TLet us represent it by «. Then we may regard dm as
equal to xdv if dv is the element of volume, and we shall have

xxdv
“jfixd’v (1]

and corresponding formulas for 7 and z.
If the body considered is homogeneous, « is constant, and we
shall have

F=

= = 4 [2]

7= fdv 7 (3]

R [4]

In any particular problem we have oniy to express dv in
terms of the codrdinates.

Plane Area.

158. If we use rectangular codrdinates, and are dealing with
a plane area, where the weight is uniformly distributed, we have

dv = dA = dady. (Art. 136).
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Hence, by 157, [2] and [3],

te 1]

1f we use polar codérdinates,

dv = dA = rdgdr,
f 7 cos ¢ depdr
f J ‘rddr
f f 7 sin ¢ dpelr i 2]
f f rdgdr |

For example; let us find the centre of grawity of the area be-

tween the cissoid and its asymptote. From the equation of the
cissoid

and z

’
—&

we see that the curve is symmetrical with respect to the axis
of X, passes through the origin, and has the line x =a as an
asymptote. From the symmetry of the area in question, 7 = 0,
and we need only find Z. ‘

f f syl : ;:ydx7
f f dyda: ‘[;/dx
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N STl Yyt
f(aw)f” J(a—w)w

¥
a.

; by Art. 64 [4].
=3

As an example of the use of the polar formulas [2], let us find
the centre of gravity of the cardioide

r=2a(l—cos¢).

Here, from the fact that the axis of X is an axis of symmetry,
we know that ¥ = 0.

2T
f 'r2 cos pdrde

5= 21r
f fm;azp
g 8‘7 3
% 7 cosqbdtf) (1 --cos )3 cos pd
%ff?r@ 2 o2 f(l—cos¢)2(l¢
27

(cosqS — 3 cos?¢ +3 cos’p— cosgtp)dep =— L7}

and ﬁ(l — 2cos ¢ + cos’p )ddp = 3.

Hence . Z=—3a.

ExampLESs.

1. Show that formulas [1] hold even when we use oblique
cobrdinates.

2. Find the centre of gravity of a segment of a parabola cut
off by any chord.

Ans. 2=%a. 7=0. If the axes are the tangent parallel
to the chord and the diawmeter bisecting the chord.
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3. Find the centre of gravity of the area bounded by the semi-
cubical parabola ay® =a* and a double ordinate. Ans. z= 3.

4. Find the centre of gravity of a semi-ellipse, the bisecting
line being any diameter.
Ans. If the bisecting diameter is taken as the axis of Y, and

the conjugate diameter as the axis of X, x = g_a, 7=0.
m

5. Find the centre of gravity of the curve ¥ = b’a—;—"-‘v-

Ans. z=%}a.
6. Find the centre of gravity of the cycloid.
Ans. T=oar, J=4a.

7. Find the centre of gravity of the lemniscate ©* =a*cos2¢.
V2

Ans. T=——a.
8

8. Find the centre of gravity of a circular sector.

Ans. If we take the radius bisecting the sector as the axis
asina

3 —.

a

of X, and represent the angle of the sector by 2a,Z =

9. TFind the centre of gravity of the segment of an ellipse cut

off by a quadrantal chord.  Ans. x=% * ., 7=%

r—2 -2

10. Find the centre of gravity of a quadrant of the area of the
curve xi -4 y¥=at. Ans. g7;=g=%%gﬂ_
m

159. If we are dealing with a homogeneous solid formed by
the revolution of a plane curve about the axis of X, we have

dv = 2 wydydz. (Art. 151 [1])

Hence, by Art. 157 [2],

% o
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If we use polar codrdinates,
dv = 271 sin pdrdep. (Art. 152 [1].)

j fr’ sin ¢ cos pdrde
Hence &L= .
f 7 sin gdrdg

(2]

For example ; let us find the centre of gravity of a hemisphere.
The equation of the revolving curve is @* + y% == «2,

a2

f ‘[ wydydw

a a4 Na—a
‘f ydydx
If we use polar codrdinates the equation of the revolving curve
18 7 =aq.
a 5
‘L‘ ‘L‘r’smqs cos¢d¢dr_ it

j‘;ajo‘?zsin¢d¢dr _Ms

ExXAMPLES.

at
a

m§~

I

— 8
=3a.

<«

o

Here T=

=ga.

1. Find the centre of gravity of the solid formed by the revolu-
tion of the sector of a circle about one of its extreme radii.

Ans. T =}acos’} B, where @ is the angle of the sector.

2. Find the centre of gravity of the segment of a paraboloid
of revolution cut off by a plane perpendicular to the axis.
Ans. &=%a, where x = a is the plane.

3. Find the centre of gravity of the solid formed by scooping
out a cone from a given paraboloid of revolution, the bases of
the two volumes being coincident as well as their vertices.

Ans. The centre of gravity bisects the axis.



Cuap. XTII.] CENTRES OF GRAVITY, 191

4. A cardioide is made to revolve about its axis; find the
centre of gravity of the solid generated. Ans. T=—8a.

5. Obtain formulas for the centre of gravity of any homo-
geneous solid.

6. Find the centre of gravity of the solid bounded by the
surface z* = xy and the five planes £=0, y=0, 2=0, z=a, y=>b.
Ans. Z=%a, §=3}0, 2= S atbi.

160. If we are dealing with the arc of a plane curve, the
formulas of Art. 157 reduce to

= :J!i;ds ) (1]
£
y=“;’; 2]
ExampLEs.

1. Find the centre of gravity of an arc of a circle, taking the
diameter bisecting the arc as the axis of X and the centre as the
origin. Ans. = 29, where ¢ is the chord of the arc.

s

2. Find the centre of gravity of the arc of the curve a#+yi=qat

between two successive cusps. Ans. T=%=}a.

3. Find the centre of gravity of the arc of a semi-cycloid.
Ans. = (v —4$)a, y=—3%a.

4. Find the centre of gravity of the arc of a catenary cut off
by any horizontal chord.
Ans. T=0, y= aac2+ % where 25 is the length of the arc.
s

5. Obtain formulas for the centre of gravity of a surface of
revolution, the weight being uniformly distributed over the
surface.
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6. Find the centre of gravity of any zone of a sphere.
Ans. The centre of gravity bisects the line joining the centres
of the bases of the zone.

7. A cardioide revolves about its axis; find the centre of
gravity of the surface generated. Ans. z=—1ta.

8. Find the centre of gravity of the surface of a hemisphere
when the density at each point of the surface varies as its per-
pendicular distance from the base of the hemisphere.

Ans. T=%a.

9. Find the centre of gravity of a quadrant of a circle, the
density at any point of which varies as the nth power of its
distance from the centre. Ans. z=7="7F 22a

n+3 =

10. Find the centre of gravity of a hemisphere, the density
of which varies as the distance from the centre of the sphere.

Ans. T=%a.

Properties of Guldin.

161. 1. If a plane area revolve about an axis external to
itself through any assigned angle, the volume of the solid gene-
rated will be equal to a prism whose base is the revolving area
and whose altitude is the length of the path described by the
centre of gravity of the area.

II. If the arc of a plane curve revolve about an external axis
in its own plane through any assigned angle, the area of the
surface generated will be equal to that of a rectangle, one side
of. which 1s the length of the revolving curve, and the other the
length of the path described by its centre of gravity.

First; let the area in question revolve about the axis of X
through an angle ®. The ordinate of the centre of gravity of
the area in question is

f ydady
¥= by Art. 158 [1].
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The length of the path described by the centre of gravity

h ‘ffdxdy ' o

V= @ffydmdy, by Art. 151.

Hence V=y G)ffdmdy.

But f f dxdy is the revolving area, and the first theorem is

established.
We leave the proof of the second theorem to the student.

ExamMpLEs.

" 1. Find the surface and volume of a sphere, regarding it as
generated by the revolution of a semicircle.

2. Find the surface and volume of the solid generated by the
revolution of a cycloid about its base.

8. Find the volume and the surface of the ring generated by
the revolution of a circle about an external axis.

Ans. V=2, S=4=%b, where b is the distance of
the centre of the circle from the axis.

4. Find the volume of the ring generated by the revolution of
an ellipse about an external axis.

Ans. V=2zabc, where ¢ is the distance of the centre of the
ellipse from the axis. ‘
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CHAPTER XIV.
LINE, SURFACE, AND SPACE INTEGRALS.

162. Any variable which depends for its value solely upon
the position of a point, as, for example, any function of the
rectangular or polar codrdinates of the point, may be called
a poinl-function.

A point-function is said to be continuous along a given line
if its value changes continuously as the point, on whose position
the function depends tor its value, moves along the line; it is
said to be continuous over a given surface if its value changes
continuously as the point is made to move at pleasure over the
surface; and it is said to be continuous throughout a given
space if its value changes continuously as the point is made to
move about at pleasure within the space.

163. If a given line is divided in any way into infinitesimal
elements, and the length of each element is multiplied by the
value a given point-function, which is continuous along the line,
has at some point within the element, the limit approached by
the sum of these products as each element is indefinitely de-
creased, is called the line integral of the given function along
the line in question.

If a given surface is divided in any way into infinitesimal
elements such that the distance between the two most widely
separated points within each element is infinitesimal, and the
area of each element is multiplied by the value a given point-
function, which is continuous over the surface, has at some
point within the element, the limit approached by the sum of
these products as each element is indefinitely decreased, is
called the surface integral of the given function over the surface
in question.
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If a given space is divided in any way into infinitesimal
elements such that the distance between the two most widely
separated points within each element is infinitesimal, and the
volume of each element is multiplied by the value a given point-
function, which is continuous throughout the space, has at
some point within the element, the limit approached by the
sum of these products as each element is indefinitely decreased,
is called the space integral of the given function throughout
the space in question.

It is easily seen that the line integral of unity along a given
line is the length of the line; that the surface integral of unity
over a given surface is the area of the surface; and that the
space .ntegral of unity throdghout a given space is the volume
of the space.

In the chapter on Centres of Gravity we have had numerous
simple examples of line, surface, and space integrals.

164. That the value of a line, surface, or space integral is
independent of the position in each element of the point at
which: the value of the given function is taken can be proved
as follows: The distance apart of any two points in the same
infinitesimal element is infinitesimal (Art. 163), therefore the
values of a continuous function taken at any two points in
the same element will differ in general by an infinitesimal ; the
products obtained by multiplying these two values by the mag-
nitude of the element will, then, differ by an infinitesimal of
higher order than that of the element; therefore, in forming
the integral either of these products may be used in place of
the other without changing the result. (I. Art. 161.)

165. The line integral of a function along a given line is
absolutely independent of the manner in which the line is
broken up into infinitesimal elements, and is equal to the length
of the line multiplied by the mean value of the function along
the line; the meon wvalue of the function being defined as fol-
lows: Suppose a set of points uniformly distributed along the
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line, that is, so distributed that the number of points in any
portion of the line is proportional to the length of the portion ;
take the value of the function at each of these points; divide
the sum of these values by the number of the points; and the
limit approached by this quotient as the number of the points
is indefinitely increased is the mean value of the given function
along the line; and this mean value is in general finite and
determinate.

To prove our proposition, we have only to consider in detail
the method of finding the mean value in question. Let the
number of points in a unit of length of the line be k. Then,
no matter how the line is broken up into infinitesimal elements,
the number of points in each element is & times the length of the
element. Since any two values of the function corresponding to
points in the same element differ by an infinitesimal, in finding
our limit we may replace all values corresponding to points in
the same element by any one; hence the sum of the values cor-
responding to points in the same element may be replaced by one
value multiplied by the number of points taken in that element,
that is, this sum may be replaced by & times the product of one
value by the length of the element; and the sum of the values
corresponding to all the points taken in the line may be replaced
by.k times the sum of the terms obtained by multiplying the
length of each element by the value of the function at some
point within the element. When we divide this sum by the whole
number of points considered, that is, by % times the length of
the line, the &’s cancel out, and the required mean value reduces
to the limit of the numerator divided by the length of the line,
and the limit of the numerator is the line integral of the func-
tion along the line. Therefore the line integral is the mean
value of the function multiplied by the length of the line.

The same proof may be given for a surface integral or for a
space integral. The former is the product of the area of the
surface by the mean value of the function over the surface;
the latter is the volume of the space multiplied by the mean
value of the function throughout the space; and both are inde-
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pendent of the way in which the surface or space may be divided
into infinitesimal elements.

166. If the line along which the integral is.taken is a plane
curve, it is easy to get a geometrical representation of the
integral. For, if at every point of the line a perpendicular to
the plane of the line is erected whose length is equal to the
value of the function at the point, the line integral required
clearly represents the area of the cylindrical surface containing
the perpendiculars if the values are all of the samb sign, and
represents the difference of the areas of the portions of the
cylindrical surface which lie on opposite sides of the line if the
values of the function are not all of the same sign.

A similar construction shows that a surface integral over a
plane surface may be represented by a volume or by the differ-
ences of volumes. Consequently, in each case if the function
is finite and continuous, the integral is finite and determinate.

167. As examples of line, surface, and space integrals, we
will calculate a few moments of inertia.

The moment of inertia of a body about a given axis may be
defined as the space integral of the product of the density at
any point of the body by the square of the distance of the point
from the axis; the integral being taken throughout the space
occupied by the body.

If the body considered is a material sarface or a material
line, the integral reduces to a surface integral or to a line
integral.

In the examples taken below the body is supposed to be
-homogeneous.

‘(@) The moment of inertia of a circumference about a given
diameter.
Using polar codrdinates and taking the diameter as our axis,

I =J‘:2Wa.2 sin® ¢ - kad¢p = kabar
= § Mo?, - [l]
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if I is the moment of inertiz, and a the radius, % the density,
and M the mass of the circumference in question.

(b) The moment of inertia of the perimeter of a square about
an axis passing through the centre of the square and parallel
to a side.

I= 2f:y2kdy+ 2 zazkdm
=4ka® + 4 ko® = L ka®
= & Ma?, [2]
if 2a is the length of a side.
(c) The moment of inertia of a circle about a diameter.
I= ﬁ ) ﬁ " sin? b . hrdepdr = § ket
=} Ma?. , [3]

(d) The moment of inertia of a square about an axis through
the centre of the square and parallel to a side.

I =.£: _:y"’kdwdy = $ kat
=} Ma?. [4]

(¢) The moment of inertia of the surface of a sphere about
a diameter.

2 {3
I= f f o sin*¢p . ka? sin ¢pddf = § krat
0 JO
= % Ma?. [5]

(/) The moment of inertia of the surface of a cube about an
axis parallel to an edge and passing through the centre.

I= f " (a2 + 2 kdwdz + 2 f * f " + 22 kdydz
= 82kt + 18 kat
=10 Ma?. ' [6]
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(g9) The moment of inertia of a sphere about a diameter.

2m T a
= # sin? b . kr? si = ;
I jo' j)' j sin . kr? sin ¢ drddf = & kral
= 3 Mo 7

(%) The moment of inertia of a cube about an axis through
- the centre and parallel to an edge.

I=fafafa(y2+z”)kdwdydz=l§ka5

= % Ma’. [8]
ExAMPLES.

Find the moments of inertia of the following bodies :

(1) Of a straight line about a perpendicular through an
extremity ; about a perpendicular through its middle point.
‘ Ans. $M1*; 1 M1,

(2) Of the circumference of a circle about an axis through
its centre perpendicular to its plane. Ans. Ma?.

(3) Of a circle about an axis through its centre perpendicular
to its plane. Ans. 3 Ma?.,

(4) Of a rectangle whose sides are 2a, 25, about an axis
through its centre perpendicular to its plane; about an axis
through its centre parallel to the side” 25.

Ans. F M(a®>+b%); L Ma?.

(5) Of an ellipse about its major axis; about its minor axis;
about an axis through the centre perpendicular to the plane of
the ellipse. Aus. MV F Ma®; § M(a®+bY).

(6) Of an ellipsoid about the axis a. Ans. L M +¢%).

(7) Of a rectangular parallelopiped about an axis through
the centre parallel to the edge 2a. Ans. L M(b*+ &).

(8) Of a segment of a parabola about the principal axis.
Ans. L Mb®, where 2b is the breadth of the segment.
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168. If u, D,u, and Dyu are finite, continuous, and single-
valued for all points in a given plane surface bounded by a
closed curve T, the surface integral of Dyu taken over the surface
is equal to the line integral of ucosa taken around the whole
bounding curve, where a is the angle made with the axis of X
by the external normal at any, point of the boundary.

This may be formulated thus :
f D, udzdy = | » cosa.ds. Mj

Let the axes be chosen so that the surface in question lies in
the first quadrant, and divide the projection of 7' on the axis
of Y into infinitesimal elements of which any one is dy.

Y

o

On each of these elements as a base erect a rectangle ; and
gince 7" is a closed curve, each of these rectangles will cuf it
an even number of times.

Let us call the values of % at the points where the lower side
of any one of these rectangles cuts 7, u;, uy, us, u,, ete., re-
spectively ; the angles which this side makes with the exterior
normals at these points, a;y ay, 03, a4, etc.; and the elements
which the rectangle cuts from T, ds,, ds,, ds;, ds,, ete.

It is evident that whenever a line parallel to the axis of X
cuts into the surface bounded by 7', the corresponding value of
a is obtuse and its cosine negative; that whenever it cuts out,
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o is acute and its cosine positive; and that any value of a is
the angle which the contour T’ itself makes at the point in ques-
tion with the axis of ¥ if we suppose the contour traced by a
point moving so as to keep the bounded surface always on the
left hand. .

We have then approximately,

dy= —ds,+ cosa;=ds; - COSay= —d8; - COBaz==ds,- COBay=+++. [2]

If, now, in f D, udxdy we perform the integration with

respect to x, and introduce the proper limits, we shall have

ffD,dewdy =fdy (— w4 Uy — U+ uyee); - [3]

and the second member indicates that we are to form a quantity
corresponding to that in parenthesis for every rectangle which
cuts 7, to multiply it by the base of the rectangle, and then to
take the limit of the sum of the results as all the bases are
indefinitely decreased.

By [2], '

Ay (— uy +- vy — ug+ U, ---)

" = u, co8a dS; + Uy COS ay ds, -+ UsCOB agds; + w,cO8a,ds, + -+ 5 [4]
and the limit of the sum of the values any one of which is
represented by the second member of [4] is clearly | u cosads

taken around the whole of 7'

ExXAMPLE.

Prove that under the conditions stated in the last article

ffD,udwdy = f ucosB.ds,

where B8 is the angle made with the axis of ¥ by the exterior
normal.
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169. As an illustration of the last proposition, let us find the
centre of gravity of a semicircle.

We have g= % f f ydady. M)

But we maywrite y =D, (2y). Hence, by Art. 168,

gj:%ffydwdy:% xy cosads

=%<£1:zcos¢a.sin¢cos¢.ad¢ +j:w.0.cos7§r-dw)

k 4
= ?—’a3+0=£,
BT
2

which agrees with the result of Ex. 8, Art. 158.

As a second example, we shall find the moment of inertia of
a circle about a diameter.
We have

I= kffy“’ dady =kfwy2 cos¢.ds
2
= kf acosga’sin®e cos pade
0

o
= ka“f sin?¢ cos®’p dep = {f-’ra‘ = i]![a"’,
0

which agrees with thé result of (¢), Art. 167,

ExAMPLES.
(1) Find the centre of gravity of a semicircle, using the

theorem f D, udwdy = | ucos B.ds.

(2) Find the moment of inertia of a circle about an axis
through its centre perpendicular to its plane, using the principles

fsz udxdy = | wcosa.ds and fj.Dyudwdy =j.u cos3.ds.
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170. Since, as we have seen in Art. 168, a is the angle which
the'curve T makes with the axis of Y'; if we trace the curve
so as to keep the bounded space on our left, it follows that
cosa.ds = dy.

Hence : f D udxdy = | udy; [1]

and in like manner,
fnyudmdy =— §udx; 23

the first integral in [1] and [2] being taken over the bounded
surface, and the second around the bounding curve.

For example, the moment of inertia of a square about an
axis through the centre and parallel to a side is

I=kffg2dxdy. ((@) Art. 167.)
By [1], ffyzdwdy= aydy,

and the last integral is to be taken around the perimeter.
Hence ’ :

I= k[‘f:‘ayz dy +£ C— ooyzdy)] =2ka _zy“’dy = 4kat

—1 2
=} Ma®.
ExAMPLE.

Work Ex. 8, Art. 167, by the aid of (2).

171. If U, D, U, D,U, and D,U are finite, continuous,
single-valued functions throughout the space bounded by a given
closed surface T, the space integral of D, U taken throughout the
space in question is equal to the surface integral, taken over the
bounding surface, of U cosa, where a is the angle made with
the axis of X by the exterior normal at any point of the surface.

This may be formulated thus:

fffD, Udzdydz =fUCOSa. .ds. [1]
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The proof is almost identical with that given in Art. 168,
except that for elementary rectangle we use elementary prism.
We shall merely indicate the steps.

Y

z

dydz = — dS, cosa, = dS; cosa; = — dS; cosag

fffD,wadydz:ffdydz[—.Ul_|_U2_U8"_]

= the limit of the sum of terms of the form

U, cosa,. dS; + U cosay. dS; + Uz cosag. dS; 4 «o»

=fU005a.dS-

ExXAMPLE.

Prove that under the conditions of the last article

f f f D, Udadyds = f Ucosf. s,
and f f f D, Udwdydz = f Ucosy. ds,

where 8 and y are the angles made with the axes of ¥ and Z
respectively by the exterior normal to the bounding surface.
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172. As an illustration, let us find the centre of gravity of a
" hemisphere. ‘ :
We have
T= _]kff f fwdxdydz ____%f%’ cosa.dS
=—k—f”f§a.2 cos?¢ cos ¢ a? sin p dpdd
2MJo Jo

_a (7 (g
—2M.J; ‘g cos ‘4>sm¢d¢d0

whith agrees with the result of Art. 159.

ExXAMPLE.

Find the moment of inertia of a sphere about a diameter ; of
a cube about an axis through the centre parallel to an edge.
Make your work depend upon finding the value of a surface
integral.
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CHAPTER XV.
MEAN VALUE AND PROBABILITY.

178. The application of the Integral Calculus to questions
in Mean Value and Probability is a matter of decided interest;
but lack of space will prevent our doing more than solving
a few problems in illustration of some of the simplest of the
methods and devices ordinarily employed. A full and admirable
treatment of the subject is given in ¢ Williamson’s Integral
Calculus” (London : Longmans, Green, & Co.); and numer-
ous interesting problems are published with their solutions
in ¢“The Mathematical Visitor” and ¢ The Annals of Mathe-
matics.”

174. The mean of n quantities is their sum divided by their
number. If the number of quantities considered is supposed
to increase indefinitely according to some given law, the prob-
lem of finding the limiting value approached by their mean
usually calls for the Integral Calculus. The mean value of a
continuous function of one, two, or three independent variables
has been carefully defined in Art. 165, and has been proved to
depend upon a line, surface, or space integral.

(@) Let us find the mean distance of all the points on the
circumference of a circle from a given point on the circumfer-
ence.

If we take the given point as origin, the distances whose
mean is required are the radii vectores of points uniformly dis-
tributed along the circumference of the circle.

The required mean is, therefore, by Art. 165, equal to
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the quotient obtained by dividing the line integral of r taken
around the circumference by the length of the circumferénce ; H

that is, .
f rds
M=

2=ma
The polar equation of the circle is
r=2acos¢;

ds = 2 ado,

™

w
3
-—1~f 4a?cosdpdp = 4a
whe _ 7T
3
the required mean value.

(b) Let us find the mean distance of points on the surface
of a circle from a fixed point on the circumference.

Here, by Art. 165, the required mean is the surface integral
of r taken over the circle, divided by the area of the circle;
that is,

2a COB P

_j:_fﬁdmf’ 32a_

(¢) The problem of finding the mean distance of points on
the surface of a square from a corner of the square can be sim-
- plified slightly by considering merely one of the halves inta
which the square is divided by a diagonal.

Here

a secd

M= —-f fr rdrdé

=g(\/§+log tal 3.
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(d) As an example of a device often employed, we shall now
solvk the problem, T'o find the mean distance between two points
within a given circle.

If M be the required mean, the sum of the whole number of
cases can be represented by (w1®)2M, r being the radius of the
circle ; since for each position of the first point the number of
positions of the second point is proportional to the area of the
circle, and may be measured by that area; and as the number
of possible positions of the first point may also be measured
by the area of the circle, the whole number of cases to be con-
sidered is represented by the square of the area; and the sum
of all the distances to be considered must be the product of the
mean distance by the number.

Let us see what change will be produced in this sum by in-
creasing r by the infinitesimal dr ; that is, let us find d(«*M).

If the first point is anywhere on the annulus 2 7r.dr, which we
have just added its mean distance from the other points of the

circle is —9—— by (b).

Therefore, the sum of the new distances to be considered,

ki
second point may be on the annulus, instead of the first; so that

to get the sum of all the new cases brought in by increasing
r by dr, we must double the value just obtained.

if the first poinf is on the annulus, is -9—- 2. 27rdr; but the

Hence d(zr' M) = 188 =ridy,
oM =138 ;"dr = 128 o,
M= 128a
457 .

¥

175. In solving questions in Probability, we shall assume
that the student is familiar with the elements of the theory as
given in *‘ Todhunter’s Algebra.”

(a) A man starts from the bank of a straight river, and
walks till noon in a random direction; he then turns and walks
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in another random direction ;. what is the probability that he will
reach the river by night?

Let 8 be the angle his first course -makes with the river. If
the angle through which he turns at noon is less than = — 26.
he will reach the river by night. For any given value of 4,
’L;—Qf. The probability that

w

6 shall lie between any given value 6, and 6, + d@ is gﬁ .

then, the required probability is

T
The chance that his first course shall make an angle with the
river between 6, and 8, 4+ df, and that he shall get back,, is

T—20 df _ (mr—286)d8
27 = o

As 6 is equally likely to have any value between 0 and %, the
required probability,

AT
_ ((z—26)a6 _
.p_ A 71'2 _'i"

(b) A floor is ruled with equidistant straight lines; a rod,
shorter than the distance between the lines, is thrown at ran-
dom on the floor; to find the chance of its falling on one of the
lines.

Let « be the distance of the centre of the rod from the nearest
line ; 6 the inclination of the rod to a perpendicular to the paral-
lels passing through the centre of the rod; 2a the common dis-
tance of the parallels; 2c¢ the length of the rod.

In order that the rod may cross a line, we must have
ccos@ > x; the chance of this for any given value 2 of 2 is
1 cos1%,

n R . . dw

The probability that a will have the value @, is —=. The

probability required is @
p= 2 [ cos®
1 X% c

da:=gf
T

=
This problem may be solved by another method which pos-
sesses considerable interest.
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Since all values of & from 0 to @, and all values of § from —%
to g are equally probable, the whole number of cases that can

arise may be represented by

im ~a
f fdme = gd.
-3y

The number of favorable cases will be represented by

im nccosf
f daedf = 2c.
~invo
1
= ;a

Hence

(¢) To find the probability that the distance of two stars,
‘aken at random in the northern hemisphere, shall exceed 90°.

Let a be the latitude of the first star. With the star as a
pole, describe an arc of a great circle, dividing the hemisphere
into two lunes; the probability that the distance of the sec-
ond star from the first will exceed 90° is the ratio of the lune
not containing the first star to the hemisphere, and is equal

o ET—9) e probability that the latitude of the first star
w
will be between a and a 4 da is the ratio of the area of the

zone, whose bounding circles have the latitudes o and a4 da
respectively, to the area of the hemisphere, and is

27a’ cosada
2 wa?

T
b
Hence P =f7(i7i_a_) cosa da = l
0

m ™

= cosa da.

{d) A random straight line meets a closed convex curve;
what is the probability that it will meet 4 second closed convex
curve within the first?

If an infinite number of random lines be drawn in a plane, all
directions are equally probable; and lines having any given
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direction will be disposed with equal frequency all over the
plane. If we determine a line by its distance p from the origin,
and by the angle a which p makes with the axis of X, we can get
all the lines to be considered by making p and o vary between
suitable limits by equal infinitesimal increments.

In our problem, the whole number of lines meeting the exter-

nal curve can be represented by fj.dpda. If the origin is

within the curve, the limits for p must be zero, and the perpen-
dicular distance from the origin to a tangent to the curve; and
for a must be zero and 2#. If we call this number N, we

shall have
27
N= f pda,
0

p being now the perpendicular from the origin to the tangent.

If we regard the distance from a given point of any closed
convex curve along the curve to the point of contact of a tan-
gent, and then along the tangent to the foot of the perpendicu-
lar let fall upon it from the origin, as a function of the o used
above, its differential is easily seen to be pda. If we sum these
differentials from o =0 to a =2, we shall get the perimeter
of the given curve.

27
Hence N =fpda =L
0

where L is the perimeter of the curve in question. By the same
reasoning, we can see that n, the number of the random lines
which meet the inner curve, is equal to /, its perimeter. For p,
the required probability, we shall have

p=+
7

- ExaMPLES.

(1) A number = is divided at random into two parts; find the

mean value of their product. Ans 112

6
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(2) Find the mean value of the ordinates of a semicircle, sup-
posing the series of ordinates taken equidistant. Ans. Ta.
4

(3) Find the mean value of the ordinates of a semicircle, sup-
posing the ordinates ‘drawn through equidistant points on the
circumference. A 2a

ns. —.
™

(4) Find the mean values of the roots of the quadratic
#* — ax + b = 0, the roots being known to be real, but b being
unknown but positive. Ans. 5¢ od %_

(5) Prove that the mean of the radii vectores of an ellipse, the
focus being the origin, is equal to half the minor axis when they
are drawn at equal angular intervals, and is equal to half the
major axis when they are drawn so that the abscissas of their
extremities increase uniformly.

(6) Suppose a straight line divided at random into three
parts; find the mean value of their product. Ans. a_3 i
60

(7) Find the mean square of the distance of a point within a
given square (side =2 @) from the centre of the square.

Ans. ¥ad’.

(8) A chord is drawn joining two points taken at random on

a circumference ; find the mean area of the less of the two seg-

moents into which it divides the circle. Ans. ma® _a®
4 w

(9) Find the mean latitude of all places north of the equator.
Ans. 82°.7.

(10) Find the mean distance of points within a sphere from

a given point of the surface. Ans. fa.

(11) Find the mean distance of two points taken at random
within a sphere. ' - Ans. $%a.

(12) Two points are taken at random in a given line a; find
the chance that their distance shall exceed a given value c.

. Ans. (a ; 6)2-
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(13) Find the chance that the distance of two points within
a square shall not exceed a side of the square.  Ans. 7 — 3.

(14) A line crosses a circle at random ; find the chances that
& point, taken at random within the circle, shall be distant from
the line by less than the radius of the circle. Ans. 1 — 2.
mw
(15) A random straight line crosses a circle ; find the chance
that two points, taken at random in the ecircle, shall lie on
opposite sides of the line. Ans. 128
45 7%
(16) A random straight line is drawn across a square; find
the chance that it intersects two opposite sides. 4 log2
ns. § ———

v

(17) Two arrows are sticking in a circular target; find the
chance that their distance apart is greater than the radius.
Ans. 33,

o

(18) From a point in the circumference of a circular field a
projectile is thrown at random with a given velocity which is
such that the diameter of the field isgequal to the greatest range
of the projectile: find the chance of its falling within the field.

Ans. % ——g(\/ﬁ— 1).

(19) On a table a series of equidistant parallel lines is drawn,
and a cube is thrown at random on the table. Supposing that
the diagonal of the cube 1s less than the distance between con-
secutive straight lines, find the chance that the cube will rest
without covering any part of the lines.

Ans. 1 — 4—(; » where a is the edge of the cube and ¢ the dis-
T
tance between consecutive lines.
(20) A plane area is ruled with equidistant parallel straight

lines, the distance between consecutive lines being ¢. A closed
curve, having no singular points, whose greatest diameter is less
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than ¢, is thrown down on the area. Find the chance that the
curve falls on one of the lines.
Ans. i. where [ is the perimeter of the curve.
TC
(21) During a heavy rain-storm, a circular pond is formed in
a circular field. If a man undertakes to cross the field in the
dark, what is the chance that he will walk into the pond?
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CHAPTER XVL
ELLIPTIC INTEGRALS.

176. In attempting to solve completely the problem of the
motion of a simple pendulum by the methods of I. Chapter
VIIL. we encounter an integral of great importance which we
have not yet considered. The problem is closely analogous to
that of the Cycloidal pendulum (I. Art. 119).

For the sake of simplicity we shall suppose the pendulum
bob to start from the lowest point of its circular path with the
initial velocity that would be acquired by a particle falling
freely in a vacuum through the distance y,; and this by I. Art.
114 [1] is V2 gye.

Forming our differential equation of motion as in I. Art. 118,
but taking the positive direction of the axis of Y upward, we

have
d?s dy
¢ g 1
dt? Y as @)
Multiplying by 2%: and integrating,
2 = d——s>2= —92
v <dt 9y +0C;
or, determining C,
) ds 2__ 2
V= i) = 9 & —Y)- @

If the starting-point is taken as the origin, the equation of
the circular path is 2* +3* — 2ay =20, whence

Qf‘)z:__f; ay\’
at)  2ay—i\dt)’

a d
and we have —éﬁy———t‘y‘z d—‘i/= v2g‘(y0—y ’




F
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ady
V2g . V(¥ —y) (2ay—7)
Integrating, and determining the arbitrary constant, we get
N Eyrre e (3)
V29 V(g—y) (2ay — ¥
as the time required to reach that point of the path which has
the ordinate y.
The substitution of 2= reduces (3) to the form

or dt =

- de
Vgﬁ \/(1 — (1 _.2-7/_;902)7 )

where the integral is of the form

f \/%_d_”*_, (5)
o N1 —2) (1 = KaD)

I* being positive and less than unity if y, is less than 2a. An
examination of equation (2) will show that if this is true, the
pendulum will oscillate between the two points of the arc which
have the ordinate .

If vy, is greater than 2a, the pendulum will make complete

revolutions. For this case the substitution of a*= ~2:—'/— in (3)
. P

will reduce it to ) .
t= a\} f dw (6)

(1 _acZ)(l__wz>

where the integral is of the f'orm (5), & being positive and less
than unity.

The time required for the pendulum to reach its greatest
height — that is, in the first case. the time of a half-vibration,
and in the second case, the time of a half-revolution — will
depend upon

“1 de %)
Jo ST =2y (1 — o) :
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177. The length of an arc of an Ellipse, measured from the
extremity of the minor axis, has been found to be (Art. 107)

z |o? —e*d?
o= N W

If we replace %’ by @, (1) becomes

= 1 —ela?
s—‘d:\/l—mﬁ - @
and the integral is of the form
: [—°a |
‘f »J 1—& - dz, ®)

where k? is positive and less than unity. )
The length of an Elliptic quadrant depends upon the integral

1 1 —12a?
. dx.
R e . @)

178. It can be shown by an elaborate investigation, for
which we have not room, that the integral of any algebraic
function, which is irrational through containing under the square
root sign an algebraic polynomial of the third or fourth degree,
can by suitable transformations be made to depend upon one
or more of the three integralé

_( dz ,
F (k, @) _‘L' e T} | [1]
E (k) =j:\, 11__k;?2 - de, (2]

= dx
k,x)= ) 3
I (n, ) ~£(1+nm2)\/(l—w2)(l—k"’w’) [2]

which are known as the Elliptic Integrals of the first, second,
and third class respectively. ‘




218 INTEGRAL CALCULUS. [ART. 179.

k, which may always be taken positive and less than 1, is
called the modulus; and n, which may be taken real, is called
the parameter of the integral.

t dz
K=F(k,1) = s 4
o ) j"\/(l—mg)(l—kzw?) t

and  E=E( 1)—f\/1—"2 [5]

are known as the Complete Elliptic Integrals of the first and
second classes.

179. The substitution of x=sin¢ in the Elliptic Integrals
reduces them to the following simpler forms.

(" dé ¢ de, )
Foi =) = -l oW
Bk, ¢)= ‘[ VI —F o' . dg = l}' *ag.dp.  [2]

d$
I (n, &, ¢) = = .
(n, %, ¢) f (1+nsin®¢p) VI—A?sin’¢ 70281n2¢ f(1+”51112¢)?93
3

= %

E= f TS do - f "Ab.d.  [5]

¢ is called the amplitude of the Elliptic Integral and
ap =1 —k’sin’4 is called the delta of &, or.more simply,
delta ¢, and i8 regarded as a new trigonometric function : it is
always taken with the positive sign, and has an analogy with
CcOos .

For a given value of %, A¢ is easilv seen to be a periodic
function of ¢ having the period #. It has its maximum value 1
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when ¢ =0 and when ¢ =, and its minimum value VTR,
which is usually represented by &' and called the complementary

modulus, when ¢ = g ; and A(g + a) = A (g - a)-

. Landen’s Transformation.

180. The approximate numerical value of an Elliptic Integral
of the first class, when % and ¢ are given, is easily computed
by the aid of two valuable reduction formulas due to Landen.

. : v dé
s Pk ) _j; VI —Rsintd

we replace ¢ by ¢, ¢, and ¢ being connected by the relation

sin2 ¢,

t = 1
and k+cos2¢«,’ M
which is easily transformable into either of the following :
ksin = sin (21— $), @)
tan (¢ — $) = L% tang, ®)
14+%
f *__d¢ ___ reduces to 2 f¢1 ___d(#_l.___,
o VI —Fk'sin’¢ 1+kJo \{1_. 1% in%
: a+e

which is also an Elliptic Integral of the first class, but has a
different modulus and a different amplitude from those of the
given integral.

The steps of the process are as follows:

From (1) we easily find

- sin?2 ¢,
s 14+ +2kcos2¢y
whence ViZEFsnie= 14+ kcos2¢,

NIFE +2kcos2¢y
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Differentiating (1), we get
secip dp = 21 +k 00324:,) deby

(k+cos2¢1)2
1+k2+2kcos2¢o
but £ 1 i = LH
ut from (1), sg ¢ (k + cos 2 ¢;)? .
2(1 + k& cos2 o))
he = d
nee d¢ 148 +4+2kcos2¢,; v
b _ 2déy _ 2déy
Vi—Ksin’¢p VI+K+2kcos2d, V1+EP42k—4ksin’d,
_ 2 deby
T4k ik
1— sin?
‘ \/ a+mp

¢$=0 when ¢=0,

¢ dé fm
hence

o 1= sin’e 1+k \f 2¢

(1 +7ﬂ)“' '
2

and Fk,¢)= TT% F(ky ),

4
where k= 2Vk [
1+k

and sin(2¢; — p) =k sine.
%, is less than 1 and greater than k; for 2\/k< 1 reduces
to O<(1—-\/70)% which is obviously true, and f_\'_/;cc >k

reduces to 4 > k(1 +k)"’ which is true, since %k is less than 1.
If ¢ is not greater than ~ 3’ and the smallest value of ¢, con-

sistent with the relation sin(2¢, —¢)="%ksing is taken,
0< ¢ < ¢. Hence (4) is a reduction formula by which we
can raise the modulus and lower the amplitude of our given
function.
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By applying the formula (4) n times, we get

2 2 2
F(k, F(k,, du) 3
(k, #) = 1+7c 1+% 1+k 1+k. (s ba)
. 2 k
or, since =" 9
1+k  E
F(k ¢)=k""ML%_—"—1 (K, b0)s
where [5]
2k,
k, ———Ll-l-kp X and sin (2 ¢,— Pp-1) =k, 180G,

If we suppose n in (5) to be indefinitely increased, we shall

have Jlimt [k.J=1; for if we form the series

(1 =B+ (1 = k) + (L —F) e (L= F) oo

we shall have

2k,

1—
1=Ky 1+k (1—\/702)2 1—-vE 1
1—k, 1—F, 1—k} 1+V_1+k

which is always less than unity; hence the terms in the series
rust decrease indefinitely as p is increased and hmlt [1 —k,]=0.

Since, as we have seen above, ¢, contmualh dlmmlshes as n
increases, but does not reach the value zero, it must have some
limiting value ® Hence

hrmt
k. =F
‘.F( ‘l’n)] (1 ‘1)) f ,\/1 sm2¢

=£ sec ¢d¢ = log tan[z + é-],
d F(k, =logt + Ty Ky K ee (]
an (k, ¢)=log an[ -]' } G [6]

Formulas [5] and [6] lend themselves very readily to numer
ical computation.

S
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181. Formula [4], Art. 180, may be used to decrease the
modulus and increase the amplitude of a given Elliptic Integral.
Interchanging the subscripts, and using (8) Art. 180 instead of
(2) Art. 180, we have

Pk, )= h P, ¢,

where B=l=V1=F L [1]
1+V1—#
and tan(¢;, — ¢) = V1 — K tan .

By repeated application of [1] we get

Bk, ¢)=(1+ k) (1 +k)...(1 +kﬁ)ﬂk_§,:£n_),

1-ViI=F
where ky=—""Y_-" "1 [2
FIVI—R,, ]

and tan(d, — ¢, )= V1 —F, tane, ;.

It is easily shown, as in Art. 180, that 7}2’;’ [%k.,]=0, and
consequently that 7:11_“;2 F(k,, ¢,) = f ‘»dq& = &, where ® is the
- 1}
limiting value approached by ¢ as = is increased.

If ¢=g, we get from [2], =, ¢2=27r, ...¢”=2""11r;
bence K=F<k, ’§'> =’-2T(1 + k) (1 4-k) (14 %) -+ (3]

Formulas [2] and [8], like formulas [5] and [6] of Art.
180, lend themselves readily to computation.

With a large modulus, it is generally best to use [5] and [6]
of Art. 180; with a small modulus, [2] or [3] of the present
article will generally work more rapidly.

We give in the next article the whole work of computing the
Elliptic Tntegral F (i;, 77;) by each of the two methods, and

-



Caap. XVL.] ELLIPTIC INTEGRALS. 223

of computing K| <i22> =F<g, g) by the second method,

employing five-place logarithms.

182. F(*/—j }:) MerHoD oF Arr. 180.
= 0.70712 logh = 9.84949

14+k=1.70712  log (1 +k) = 0.23226

log vk =9.92474
log 2 = 0.30103
colog (1 + %) =9.76774

log &, = 9.99851
Ty = 0.98518 log &, = 9.99351
14k =1.98518 log(l+ k)= 0.29780

log V&, = 9.99676
log2 = 0.30103
colog (1 4 k,) = 9.70220

logk, = 9.99999
ky=1

logk = 9.84949

log sinz = 9.84949

log sin (2, — ¢) =9.69898
2¢—p=30° 0 3"
=175 0 3
¢ =37°30" 2"

logk, = 9.99851

log sin¢, = 9.78445

tog sin (2 ¢, — ¢y) = 9.77796
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2y — oy = 36° 51' 8*
2y =T74° 21' 5"

@ = ¢, =87° 10' 32"
1}<I>+§=63° 35' 16"

logtan{Z + 3 & ) = 0.30393
V1

log Vi, = 9.99678
colog Vk =0.07526

log log tan (;_’ + 4@) =9.48277
colog p = 0.36222

V2 7
F{==2)=9.91701
log <2,4> 9170

F<ﬁ l’) — 0.82605
2°1

p=0.43429 is the modulus of the common system of
logarithms. '

F(ﬁ, i) MeTtaop oF Arr. 181,

2
NT=E=k =0.70712

1 — &' = 0.29288 10g (1 — &') = 9.46669

14k =1.70712 colog (1 + ') = 9.76774

ky=0.17157 logk, = 9.23443

1 —k, = 0.82843 log (1 — #;) = 9.91826

14 % =1.17157 log (1 + %,) = 0.06878

log %,'2 = 9.98704

k,'= 0.98520 logk, =9.99352

1 —k'=0.01480 log (1 — k') = 8.17026

1+ %,'=1.98520 colog (1 + %,") = 9.70220

ky = 0.00746 log ky = 7.87246
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1 —k, =0.99254 log (1 — k) = 9.99675
14 ky = 1.00746 log (1 + kz) = 0.00823
log &,/ = 9.99998
k=1 logk, =9.99999 °
k=0

logh' = 9.84949
log tan ¢ = 0.00000

log tan (¢, — ¢) = 9.84949

1 — b =235° 15' 53"
$, = 80° 15' 53"

logk! = 9.99852
log tan ¢, = 0.76557

log tan (¢; — 1) = 0.75909

b — = 80° 7' 17"
¢y = 160° 28' 10"

tan (45 — ¢z) =tand,
D= ¢y =2¢, = 320° 46’ 20"
I .
§5<I>,= 40° 5' 48"
= 144348"
= = 648000"

log<—21§<l>>" = 5.15942

colog ' = 4.18842
log==0.49715

1
log(§§<1>> = 9.84499
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log (1 + %;) = 0.06878
log (1 + k,) = 0.00323
10g<_13<1>> — 9.84499

logF<\/2 }D —9.91700

F(l/—Q, ’I> — 0.82605
21

For F(%—Q—, 725> we have by (3), Art. 131,

log (1 + k)= 0.06878

log (1 + %,) = 0.00323
logr = 0.49715 -

colog 2 = 9.69897

1ogI«'(*/2 ’2’> —0.26813

F(l@ 1’> =1.8541
2 "2

183. Landen’s. Transformation can also be applied to the
computation of Elliptic Integrals of the second class, but the
task is a more difficult one; we shall, however, give a brief
sketch of the method; and in so doing we shall apply it to a
more general form

O R (1

, oln.2

of which E (%, ¢) is a special case.
From Art. 180 we have

VI Foin’g = L TReos2
NIFE +2kcos2 ¢,
k 4 cos2¢,
V1t K+ 2kcos2ey
2(14+kcos24y)

d —_
¢= 1+lc2+2kcos2¢,¢

cosp =
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Hence VT Zisin®¢p + kcosp =1 + ¥ + 2k cos 2 ¢;.

o4 Bsin’e
G (k. #) f e

=f[ a +£ 1—(1—k2s1n2¢)]
o LNT—IEsindg K VT —Fsin’e

i o+ B l
k‘2 _BoyTma

and

G (b, $)— B sings

a+B
f‘_\/l——k"sm‘¢> 702( 1_k281n¢+keos¢)J -

Substituting ¢, for ¢, this becomes

o . a—gcos2¢1
G (k, ¢)—i51n§=2ﬁ \/md%
, __ﬁ Bsm“qS
1 +kf \/ sinf¢ -
(14-k)2 '

Hence @Q (%, ¢)=7{:Sin¢+——1+kal(kl, q§1), [2]
where

2Nk . . i ?
k1=1—£, sin (2, — ¢) = ksing, “1”“1'?’ B‘=Tﬁ° - B

Formulas [2] and [8] enable us to make our given function
depend upon one of the same form, but having a greater
modulus and a less amplitude. A repeated use of [2], together
with the reductions employed in Art. 180, gives us
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G (k. ¢)=€sin¢+%csin¢l+ \}I% - Bysing,

\{k1k2 Bs8in s+ - +\’klk2 "“B» 18I0,y
iy [BER 6k, 4, 4]
2B
h = 2P
where B, o T
e Bl1p2, 2 L2 N
and p=c— 1t Tk T oykey o 1)

Just as in Art. 180 %k, rapidly approaches 1 as n is increased ;
the limiting value of G,(%,, ¢,) is then

limit G, (Fny b) _f ay + B, SI0° 5

cos ¢

= (an + ) log tan (g + %) ~ B.sing.. [6]

By Art. 180, [5] and [6].

limit %, \/’ﬁl"—?—’“—-—l log tan[ "ﬂ F(k, $).

[4] can thus be written

@ (k, ¢)=F (k, ¢)[a—§(1 F2a 2

2n—1 on
A klkzka...k,,,l)]

+€[sin¢+-\%}sin¢l+——2 sin ¢y 4

28
Vi, VEkk ke,

gt gn .
-  _sing,  —————— sing, | 7
N Y kR k ¢:| (7]
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If a=1, and B=—7%2, [7] reduces to

E(k, ¢)=F(k, ¢)[:1+7c 1+ +__+...

. 2“—1 9n
Yakod k. k,,_.)]

- k[smd; + 7 sin ¢, + \/klc

1

8in gy 4 +oe

n—1 3 ’
+ — 2 s bpg— .2___, sin ¢»J, (8]
Vil by k.. k, ,

where k,= 12—%%’;’, and sin (2¢, — ¢, )=k, 18iné, ;. [9]

p-1

By Formulas [8] and [9] an Elliptic Integral of the Second
Class may be computed without difficulty.

184. Formula [2], Art. 183, may be used to decrease the
modulus and increase the amplitude of an Elliptic Integral
Interchanging the subscripts, we have

G (k, $)= L‘gﬁl[el (ks $) — L sin ¢,];

or, since BB , (Art. 183 (3]),
k2
&, ) =" +’“ILG1 (I, 1) ~ B oin qsl], [1]
where -
= i’i”{/v i = ::, tan (d—) =1 —7& tan b, a1=a+g, /3,:1“_}2_3

[2]
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A repeated use of [1] gives

14k 14k 14k 14K
Gk ¢y=2F0 TR TES LG, (e ¢) ‘

-3 _1_:’2?_7&3511]%_,.1_"2'31 . l_‘|2:_k2,3151n¢2+... ‘

14+F 14k 144k .

e T L N
where Br= ,8———5—-102
and _a+%ﬁ<1+kl+kk2+klkk3+ +‘@Tku>

Just as in Art. 181 linﬁt k, =0, therefore limit 8, =0 and
limit Gy (K, bo) = f P T
(]

By Art. 181, [2], 14;’“1 1 42"“2 1 ‘;k"¢n=F(k, é).

By Art. 180, [5], L%’_@=1/k£x 127@:1/76&2’ ote.
1

Hence [3] becomes
G (k, $)=F (%, ¢)[a+%ﬁ<l+ il Bk )]

\/kl kg )\/kl

'8 \/kl sin ¢, 4+ ——1Zsing, + — 27 kz L2 S gingpg - -+ ]

If a=1 and B=—Fk, [4] reduces to
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E (k, $)=F (%, ¢)[:1_’°i’<1+ o k2+klk2ks+ >]

+ k[\/k] gin ¢, 4 —21=2 \/klk’ sin ¢y - 123 \/kl k2 Ny ey kg Singhy o+ ] [5]
where
,\ / 2
k,= -i—:—v———k— and tan (¢, — ¢, )=V1—F_, - tand, ..
+

(6]

We have seen in Art. 181 that if ¢=’§’, ¢, =921,

Therefore, for a complete Elliptic Integral of the second
class we have

s()-r Kb sge) o

Formulas [5] and [7] are admirably adapted to computation.
We give in the next article the work of computing
2°4)
puting E(?’ 7—;) by the second method; using, as far as
possible, the values already employed or obtained in Art. 182.

E’<ﬁ 3) by each of the methods just given, and of com-

185. E(%,E . Mgraop oF ArT. 183.

Here, as we have seen in Art. 182, if we carry the work only
to five decimal places, k=1, and our working formula will be

E(k,¢) = F (k, $) [1 + k<l - %)]

1

[ 2 . 2 .
— k| sing 4 ——sin¢ ———:—_-smqs]-
l_ VE O NEk



log2 = 0.30103
log &k =9.84949
cologk; = 0.00649

0.156701

log(l +k— 27010 = 9.43391

1

log F( Y2, ™ = 9.91701
2’4
9.35092

logk = 9.84949

log sin¢ = 9.84949

9.69898

log 2 = 0.30103
logVk = 9.92474

log sin ¢; = 9.78445

0.01022

log 22 = 0.60206
log Vi = 9.92474
colog Vk, = 0.00324
log sin ¢, = 9.78122

0.31126

<51n4> + — 7 sing; —

' INTEGRAL

CALCULUS.

\/2 3
( 2, 4)(1+k—-771) 0.22435

F(\/z } (1+k T,

[ARr. 185.

2k
1
14k=1.70712

=1.48553

1+k—?kl“=o.27159

1

2k
ksing = 0.5

2k Gin gy =1.0288
N

2k

ky

sin ¢, = 2.0477

2 in ¢2> = 0.5239

1

2K\ _ 0.22435

‘\/§1r
~ = 2)=0.74
E(2,4> 0.74825
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E(—\/g, E) MEeTHOD OF ART. 184.

k;=0. Therefore our formula is

B ) =F 915 (145 +’“’“)]

+ k(\/E sin ¢, 4 —12 vklk” smd:)

logk, = 9.23443
logk,= 7.87246
colog4'=9.39794

6.50483 ’%% = 0.00032

. %: 0.08578

7-71 ke

1+k‘+ =1.08610

K (1 +5 -1-7‘1"‘2 = 0.271525

log 0.728475 = 9.862415 1 — ~];—2<1 +’§ + ’%’?) = 0.728475

1ogF(i? z) —9.91700

9.779415 F(VQ )(0 728475) = 0.60178

logk = 9.84949

log Vk, = 9.61722
colog 2 = 9.69897
log sin ¢, =-9.99370

9.15938
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logk = 9.84949

log Vi, = 9.61722
log Vk, = 8.93623
colog 4 = 9.89794
log sin ¢, = 9.52592

7.32680 k\/k kb

sin ¢, = 0.00212

k<\/~ in ¢y + \/k' LW sin ¢2> = 0.14646

F(\f? ") (0. 728475)_ 0.60178

(ﬁ Z) _l0.74824

E<\/TZQ’ g) MEeTHOD OF ART. 184.

LAY N B L kY
E(’“’J-F(’“’z)[l (1+3+%)]

> 0.728475 log 0.728475 = 9.862415

1—E<
logF<\/2 ’2’> —0.26813

EC/: g)_1 3507 logE’<vQ ’2’> 0.13054
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186. An Elliptic Integral of the first or second class, whose
amplitude is greater than g—, can be made to depend upon one
whose amplitude is less than g, and upon the corresponding

Complete Elliptic Integral.

We have

F(k,m)= d¢‘ f‘d"’ fd"’ K f‘“’ by [4], Art. 179,

ﬂi(é .
In jf_:Acb let p=m—y3

then d¢ =—dy and Ap= V1 —’sin’¢p =1 — I sin’y = Ay,

and we have "gl_@__ oﬂ__ d¢ ‘2d¢
Db fwm/x" j
2 2
Hence F(k,w):ﬁ”%i:?lf. [1)
mr+}zi
F(k,’n'lr-l-p)= ﬁ
]
L on
_ (b, (db (db o el
[A¢+‘[A f bt ¢+ +A¢
(p+h)7

A 1ot & — 1 40 _ _
InjA¢ let ¢ =pr + ¢ ; then dé = dy, and Adp = Ay,

e

(p+)m E 4 L4
and we have ad = ay = dé =2K.
J 2 J Ay A
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nwtp

The substitution of Y for ¢ — nr infgﬁ gives us

nm+p I P
&: i‘k= ﬁ:ﬁ'(k,p)..
nw A¢ OA‘/, OAqS

Therefore F(ky nw +p)=2nK + F(k, p). [2]

In like manner it can be proved that

F (ky nw—p)=2nK— F (k, p), [3]
E (k, nw +p)=2nE + E (k, p), [4]
E (k, nr —p)=2nE — E(k, p), [5]

where E’=E(k, g) is the complete Elliptic Integral of the

second class.

A table giving the values of the Elliptic Integrals of the
first and second classes for values of the amplitude between

0 and 721 is, then, a complete table.

Such a table, carried out to ten decinral places, is given by
Legendre in his ¢¢ Traité des Fonctions Elliptiques.” We give
in the next article a small three-place table.

It must be noted that the first column gives F (0, ¢) and

E (0, ¢), that is,f¢d¢= ¢; and that the last column gives
0
F(1, ¢) and E (1, ), that is, log tan<£+92§>and sin ¢.

The complete Elliptic Integrals,
E= F(k g) and E = E’(k §>’

are given in the last line of each table.
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.:m‘ ANQ. A—vv *

k=0 k=01 k=02 k=03 | k=04 k=05 k=06 | k=07 k=08 k=09 k=1

b sin 0°  sin 6° sin 12° sin 18° | sin 24° sin 30° sin 37° | sin 45° sin 53° sin 64° sin 90°
0° 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0000  0.000 0.000  0.000
6 0.087 0.087 0.087  0.087 0.087 0.087 0.087 0.087 0.087 0.087 0087
10 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175
156° 0.262 0.262 0.262 0.262 0.262 0.263 0.263 0.263 0.264 0.264  0.265
20 0349 0349 0.349 0.350 0.350 0.351 0.352 0.353 0.354 0.355 0.356
25 0436 0436 0.437 0.438 0.439 0440 0441 0.443 0.445 0448 0451
30° 0.524 0.524 0.525 0.526 0.527 0.529  0.532 0.536 0.539 0.544  0.549
35 0.611 0.611 0.612 0.614 0.617 0.620  0.624 0.630  0.636 0644 0553
40 0.698  0.699 0.700  0.703 0.707 0.712 0.718 0.727 0736 0748  0.763
4b° 0.785 0.786 0.780  0.792 0.798 0804  0.814 0826  0.839 0.858  0.881
50 0.873 0.874 0877 0882 0.889 0:898 0911 0.928 0.947 0.974 1.011
5b 0960  0.961 0.965 0972 0.981 0.993 1.010 1.034 1.060 1.099 1154
60° 1.047 1.049 1.054 1.062 1.074 1.090 1112 1.142 1.178 1.233 1.317
65 1.134 1.137 1.143 1.153 1.168 1.187 1.215 1.254 1.302 1.377 1.506
70 1.222 1.224 1.232 1.244 1.262 1.285 1.320 1.370 1431 1.534 1.735
76° 1.309 1.312 1.321 1.336 1.357 1.385 1.426 1.488 1.566 1.703 2.028
80 1.396 1.400 1410 1.427 1452 1.485 1.534, 1.608 1.705 1.885 2436
85 1484 1487 1.499 1.519 1.547 1.585 1.643 1.731 1.848 2077 3131

K. 90° 1.571 1.575 1.588 1.610 1.643 1.686 1.752 1.854 1.993 2.275 0
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Addition Formulas.

188. The Elliptic Integrals, F (%, z) and E (k, x), may be
regarded as new functions of x, defined by the aid of definite
integrals ; namely,

& dz
F, w)=£ NI—a(1-Ea)

E(k, w)_f \/1~7€201:2

see Art. 178, [1] and [2].

We have seen how we may compute their values to any
required degree of approximation when % and 2 are given.
It remains to study their properties.

We are familiar with other and much simpler functions which
may be defined as definite integrals, and whose most important
properties can be deduced from these definitions.

*de .
For example, we may define logz asf—, sin 'z as
1o

3

do , tan~lz as f zﬂ—, and the theory of these func-
o V1 —a? 0 1427
tions may be based upon these definitions. For instance, the
fundamental property of the logarithm is expressed by what is
called the addition formula,

logz + logy = log (zy),

and the whole theory of logarithms may be based on this
property ; and there are addition formulas for the other func
tions defined above; namely,

sin='z + sin~ly = sin ' (2V1 — ¥ 4+ yV1 = 27),
tan'x -+ tan~ly = tan™! ( ﬁl)
1—2y

+
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These three important formulas are usually obtained by more
or less elaborate methods involving the theory of the functions
which are the inverse or anti-functions of the log®, the sin~'z,
and the tan~!z, that is, of €%, sinz, and tanz; but they may
be obtained without difficulty from the definitions of log,
sin' 'z, and tan='z, as definite integrals.

Take first loga -—--IZ%Z—G-
Let us determine y in terms of «, so that
logx + logy = loge, 1)
where ¢ is a given constant.
Since logy =j;y%l,

if we differentiate (1), we have

d  dy_ o,
z Y
or ydx 4 2dy = 0. @)

Integrate (2), and we get
[y + fdy=cC. ®)
Simplify the first member of (3) by integration by parts;
wy—fwdy+wy—fydm=0’
or 2ay —f(a:dy + ydz) = C.

Reduc.ing by the aid of (3), 2wxy=0C,

or azy = Cy, 4)
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where C, is an undetermined constant. To determine Oy let
#=1in (4), and we have y = C, when =13 let z=1in (1),

then log =j:l% =0, logy=1loge, and y=c, when z=1.
Therefore C,=¢, and ay=c. Consequently y= :—; is the
required value of y, and we have (1)

logz + logi = loge.

We can express this relation more neatly by replacing ¢ by
its value @y, and thus we reach our required addition formula

logz + logy = log(zy). [5]

189. The addition formula for the sin™ can be deduced in
exactly the same way. We wish to determine y so that

sin—1% + sin~'y = sin~'c. 1)

‘We have sinlz= f "_dz , sin"ly = f ' dy .
" A1 —2 0 V11—

Differentiate (1).

dx dy
+ - ===0 2
Ni—z Vi—¢ ’ @
or Vi—p . de+V1—o*. dy=0,

fx/l—gﬂ- da:+f\/1—:c2-dy=0.
Integrate by parts, and

w\/l—y2+yﬁ—w2+fwy< __ffw?+ __fyyz =C;

or, reducing by (2),

2Vl —yi+yV1i—at=C. @3)

#



242 INTEGRAL CALCULUS. [ART. 189

To determine C, we have from (3) y= C when 2=0, and

=0, when

0

from (1) y= ¢ when 2= 0, since sin~'z =f i
0 /1—

#=0. Hence C'=c,and V1 — 32 +y V1 — 2* = ¢, and, finally,

sin 'z + sinty =sin (V1 =2 +y V1 —2?). [4]

To get an addition formula for the tan’, a slight device is
required, that of dividing the differential equation correspond-
ing to (2) by 1 — 2%%%

_As before, let

tan~'x 4 tan~!y = tanl¢, , o)
where tan—lz =‘£xl—%
1y — ¥ dy
and A tan~ly = T y2
dx dy =
1428 1+3
or A +y)de+(1+2")dy=0. (6)

Divide by 1 — «%3* and integrate.
149 gy 1+”” . dy=C.

1—a?y* -ty -y
Integrate by parts. We have

a. e [+ dy + oy (1 +97) da)
1—afy* (1— w2y2)2 ’

142 2

1 d
T as 2)2[( +y") de+ 2y (1 + 2% dy],
and
x.1+y’"+ . 14+ x4y

1— w2y2—1 — zy
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Hence

sty _ (22y(1+2y) . _
1—ay f(l_xzyz)z [Q+y)de+ (1 +27)dy]=C.

Therefore, by (6), 1"” i‘é’y =C. 7)

To determine C, we have from (7) y=C when =0, and
0

from (5) y=c when z =0, since tan‘1w=‘fo ] dww?=0 when

x=0.
Hence C=c, and 1w+ Y =c,
and, finally, tan~lx 4 tan 'y = tan™! (1£+—wy—y) [8]

190. To get.an addition formula for F (k, x), as before

let F (ky x)+ F (k, y) = F (k, c), )]
= da
h F(k, x)= )
where (> ) ~£ N@A=2) (1 —ka?)
Y dy
d F, )=
N D= ==

dz + dy =0, (@)
NA =) (1 -2 VA=) 1 -1y

or

A=A =R - dz+ NI =) (1 — &) - dy=0. (3)

Divide by 1 — k?#*y® and integrate.

VA=A —F) VA=A (1) 4, _
1— Ky dat T—kayg W
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Integrate by parts. We have -

. VA=A =Fy) _ y
-2y (-kagpiPE+
— (L +R) (1 +a2y)] y

VA-y) (1 —=ky)

+ 2Ky (1 — ") (1 = F*y%) - d}

NA=HA-FH ____ =
. d 1=Ky - (1_k2w2y3)23[2k9(w2+y’)
— (1 +8) (1 + 2] de

V(@ —a%) (1~ K2

+2K 2y V(1 — ) (1=K - dyi-
Hence

V(1= A=Ky + yVI =) (1= Fa?)
1 — K2aly?

ST PR+ — A+ (1 + oty

dz

[«/(1—#)(1 —127) +\/(1 — 2)(1_k2 %)_]

+ 2Ry (VA=) (1 —Fg) - da

+ VI =2)(1 =) - dy]§=C.

Reducing, by the aid of (2) and (3), we have

WNA—AAFH+y VI AED) _ g
1 — Ry
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To determine C, from (4) y = C when z =0, and from (1)
y=c when £=0. Therefore C=c, and we get

F(k, ©) 4 F (K, y)

- tV(1—y) (1= #y") +y V(1 =2°) 1 —K2*)
- F<k 1—aly? )’ 2]

our required addition formula.

An addition formula for E (%, ) can be obtained in very
much the same way, but the work is rather complicated, and
it is better to use a method which will be explained later.

THE ELLIPTIC FUNCTIONS.

191. We have just seen that there is an analogy between
" the Elliptic Integral F(%, ), and the familiar functions logz,
sin~!z, and tan~'x; and we know that the theory of these
functions is ultimately connected with that of their inverse
functions, log='u or €% sinu, and tanwu; and, indeed, that the
latter are so much simpler than the former that it is customary
to regard them as the direct functions, and the logarithm, the
anti-sine, and the anti-tangent as the inverse functions.

For example: the first three addition formulas just obtained
are much simpler when we express them in terms of the direct
functions, and they becoie

log Y(u + v) =log 1u - log~1v,
or etwt) =e". ¢, [1)

sin(u +v) =sinu+1 — sin®v 4 sinv V1 — sin’«;

or 8in(u +v) =sinucosv+ cosusinv, 2]
' tan « + tanv
tan (u +v) = ————— 3
B (u+v) 1—tanw - tanv’ []

and in this form they seem to better deserve the name of
addition formulas.
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In the same way the addition formula for F(k, ) can be
more simply written in terms of the function which we might
naturally represent by F~u (mod. k); and, as we might
expect, this function has many interesting and important prop-
erties which well deserve investigation.

Since in most of the work which follows we shall generally
employ the same modulus throughout, we shall not take the
trouble to write it except in the few cases where its omission
might give rise to confusion. and then we shall put (mod. k)
after the function, as above with F~'u (mod. %), or we shall
write it more briefly as #-1(u, k).

192. In Arts. 178 and 179 we have adopted two forms of
notation for an Elliptic Integral of the first class, ¥ (k, ) and

F(ka¢); d
&L

Fe,o)= | )
(2 ~£\/(1—w‘l)(1_k2w2)

_ (A6 _ (*de
F& ) 'ﬂ VI—Ksin’s _£ Ag’

where z=sing, V1 — o’ = cos ¢,
and V1T =2 =1 —I?sin’¢p = Ad.
I we let uw=F(k, z) =F(k, ¢),

we have in Art. 179 called ¢ the amplitude of u, and sing,
cos ¢, and A¢ may be called the sine, the cosine, and the delta of
the amplitude of % ; aud ¢, sing, cos¢, and A¢p may be written
amu, sinam u, cosamu, and A amw, or, more briefly. amu, snu,
cnw, and dnu; and may be read amplitude u, sine amplitudeu,
cosine amplitudeu, and delta amplitudew. Formulating, we
have

u=F(k,0)=F (% $),

¢ = amu, '

z=sin¢=-snu, - (1]

V1 =2 =cos ¢ = cnu,
V1T =P =A¢ = dnu,
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snu, cnu, dnu, are trigonometric functions of ¢, the ampli-
tude of u, but they may be regarded as new and somewhat
complicated functions of v itself, and from this point of view
they are called Elliptic Functions of wu. .

amu also is sometimes called an Elliptic Function ; and there
are various allied functions that are sometimes included under
the general title of Elliptic Functions. We shall, however,
restrict the name to snu, cnu, and dnu. They have an analogy
with trigonometric functions, and have a theory which closely
resembles that of trigonometric functions, and which we shall
proceed to develop. It must, bowever, be kept in mind that
the independent variable w is not an angle, as in the case
of the trigonometric functions.

Of course, with our notation, u=F(k, x) =sn"'(z, k), or
w=F(k, ) =am™'(¢. k).

The fundamental formulas conunecting the Elliptic Functions
of a single quantity follow immediately from the definitions
[1], and are

sp?u 4 en’u=1, I2]
dn’u + Bsnfu=1, (3]
- damu
W:dnu, (4]
g_;';_-u=cnu.dnu, [51
dcnu:—-snu.dnu, ( £e]
du
ddnv _ _ peqny. cnu, [7]
du

The only one of this set which needs any explanation is [4]

S
We have ° =J; i%’
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hence du=?, du=‘1;—;%u-;
and, finally, d:zlmu = dnu.
Since f e _ f va(—¢) _ f ¢d¢
A(—¢)
we see that : _
am(— u) = — amu,
sn (—u) =—snu,

L)

en (—u) =cnu,
dn (—u) =dnw,

That is, snu is an odd function of u, and cny and dnu are
even functions of u.

Since f 0@_ 0,

Ad
we have
am(0)=0,
sn(0) =0, 9
cn(O) = l, [ J
dn(0) =1,

193. Our addition formula for the sine amplitude flows
immediately from [5], Art. 190. Let u= F(k,x) and
v=F(k,y), and take the sine amplitude of each member of
[5], Art. 190 ; we get

snu.cnv.dnv+chu.snv.dnu
1 — k2. sn’u.sn’v

sn (u+9v) =

If now we replace v by — v, and s1mp11fy by [8], Art. 192,
we have

snu.cnv.dnv—cnu.snv. dnu

sn (v —v) = — 2. sn?u . sn*v

and the two formulas can be combined if we use the sign + ;
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- snu.cnv.dnv +cnu.snv.dny
= 1
en (v £ ) ©1 —k?. sn’u. sn’v tul
From [1], with the aid of [2] and [3], Art. 192, we can get,
after a rather elaborate reduction, the addition formulas for
en and dn.

cénu.cnv Fsnu.snv.dnw.dny

o) = 2
on (u ) 1 —Z%2.sn%u.snv [2]
dn(ui,v)=dnu.dn'u:}:k2.snu.snv.cnu.cnv (3]

1 —7%2.sn’u.sn?v

From [1], [2], and [8] a large number of formulas can be
readily obtained. We give only those for sn; there are
similar ones for c¢n and dn.

2snv.cnv.dnv
=" . [4]

sn (w4 v) +sn (¥ —v) T 1—K.sn’u.sn®

2cnu.snv.dnu
= [5]

en (v 4+ v) — sn (% — ) T 1 —2.su’u.sn®

sn?u — sn®v [6]

sn (u +v) . sn (¥ —v) =17 sotu. swiv

A
2 2 2
14sn(u+4v).8n(u—o) = in_vkj SSI;:;' (:I:lzz £7]

2 2
1+7sn(u+v).om(u—v) =22 v R “s:;;:" [8]

(env + snu. dno)?
(9]

[1+sn(u42)][1+sn(u—2)]= 1 — k*.snfu . snio

From [2] and [3] comes the useful formula

cn(_u+'v)=enu.cn'v——snu.snfv.dn (u +v). [10}
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194. If in formulas [1], [2], and [3] of Art. 193 we let
v=u, we get the following formulas for sn2u, cn2u, and
dn2u:

2snu.cnu.dnu
e t
2y — snfu . dn?u 1 — 2sn?u - k?sntu
gy = cotu — sn’u — 2
ensw 1 — k?sn*u 1 — E?sn*u (2]
2, 12 2 2 _ 2 4
dn2u=dnu k?.sn’u.cn®u _ 1 —2K%sn’u + K?sntu [3]

1 — K?sntu - 1 —k*sntu

From these come readily

1—cn2u= %, : [4]
14ondu= 2L, [5]
1—dn2u= .2_@:1_“;2“—;——“"}":“, [6]
14dn2u= 1= Kentn 3(;:21:241‘- [73

195. Replacing u by g, and dividing [4] by [7] and [6]
by [5], Art. 194, we have

an?? — l—cnw _ 1—dnu [1]
2 14dnwu 702(1+cnu)’

cnzz_l,_dnu+cnu= — k24 %enu+dnu re]
2" 14dnu (1 +cnu) -
2’11,_k'”+dnu+k’cnu= (enw 4 dn w) :

dn 2 14 dnu (1 +cnuw) ’ (8]

where k'2=1—#? and is the square of the complementary
modulus.
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From [1], [2], and [3], we can get without difficulty the set

dnu —cnu )
8 Q¥ dhw—r - 4
o 2 k'2+dnu—kzcnu’ (4]

3% _ k'%(1 4+ cnw) - T5
o 2 k’2+dnu—k20nu’ (5]
dn’y-— k!ﬂ(l +—dnu! .\ [6]

2 k?+4+dnu—kicnu

Numerous additional formulas can be obtained by the exer-
cise of a little ingenuity, but we have given the most useful and
important ones, and they form a set as complete as the usual
collections of trigonometric formulas.

Periodicity .of the Elliptic Functions.
196. We have seen (Art. 186, [2]) that
Fk,nw +p)= 2n K + F (k, p)s [1]

where. K is the complete Elliptic Integral of the first class.
Let uw=F(k, p), and take the amplitude of each member of
[1]; we get
am(u+2nK)=nz+amu; [2]

or, replacing n by 2=,

am (¢ +4nK)=2nr+amu; 3]
whence

cn (u+4nK) =cnu,

dn(u+4nK); dnu, |

sn(u+4nK) =snu,
}; [4]

and snu, cnu, dnu are periodic functions, and have the real
period 4 K. dnu actually has the smaller period 2 K, as may
be seen by taking the delta of both members of £2]-
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Since the amplitude of K is —275, we have

snK=1,
enK =0, , [5]
dn K=1%,

and our addition formulas [11, [2], [8], Art. 193, give us
readily

sn(y+K) = EDTZ,
k"
en (v + K) =—%]uu’ . [6]
a K !
n(u+ K). = Ina

sn(u+2K)=—snu, ,
en(u+2K)=—cnu, §, [7]
dn(v+42K)= dnu,

sn(u+38K)=—2%
. ksnu
en(ut3K)= “oo5 b, [8]
a 3K K
n(u + )= anw J

sn(u+4K)=snu,
en(u+4K)=cnu, §, [9]
dn(u+4K)=dnu,

a confirmation of [4].
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197. It is easy to get formulas for the sn, en, and dn of an
imaginary variable, N —1, by the aid of a transformation due
to Jacobi.

Let v=F(k, ".’)=~£¢(Zi%i’ 1)

so that ¢ =amwv, sing=snv, and cosd=cnv. In (1), re-
place ¢ by ¥, ¢ and ¢ being connected by the relation

sing =V —1.tany, 2)
whence cos = secy, ‘ 3)
A= V1 —sin’$ = VI + & tan’y, )

wnd dp= Vv —1.secy.dy.

§

Since y and ¢ equal zero together,

f"’d¢ N 1f"‘ secy dy
\/1+k‘tan3|[/

VT W VT F@, ).
f\/l k' sin?y 9
If now we let u = F (&, ¢),

we have v=uvV—1 (5)

Hence, since y = amwu (modk'), we have from (2), (8)

and (4),
sn (v, k) =4/ 2%(%"_7;:%
en (v, k) = (;n—(zijk—')’

dn (u, k
dn (v k)=, Eu: %

or, as v=wuv—1,
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sn (uN—1, k) =~/— 1:‘18‘?W
— 1

cn (u '\/— 1, k) = m) > [6]
— dn (u, &'

N e

It is interesting to note that if w is replaced in (6) by
v/ =1, the formulas reduce to

sn (—wu) =—snu,
cn(—u) =cnu,
dn (—u)=dnu,
and are still true. Consequently, in (6), v may be either a

real or a pure imaginary.

T

Let

z — K
jo‘Ax[/(modk’ f‘\/l k7sin’y :

Then, by Art. 196, 4K' is a period for snu(modZx'),
enu (modk'), and dnwu(modk').
Hence

sn(uV—=1+4nK'V—T1) =snuVvV—1,
en(uV—1+4nK' V- tcnuv=1,
dn (uV=14+4nK'V—1)=dnuvV—1;
or, replacing v+ — 1 by v,
sn(v+4nK'V—1) =snwv,
en(w+4nK'N—1) =cnv, ¢, t7]
dn (v +4n K'~/=1)=dnv,
and 4 K'v =1 is a period for sn, cn, and dn.
We see, then, that our Elliptic Functions, like Trigonometric

Functions, have a real period, and, like Exponential Functions,
have a pure imaginary period. They are, then, what may be called
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Doubly Periodic Functions, and they are often studied from the
point of view of their double periodicity.
* Like Trigonometric Functions, the Elliptic Functions may be
developed in series, and from these series their values may be
computed, and tables resembling Trigonometric tables may be
prepared. :

A partial three-place table is here presented as a sample. It
is complete for Elliptic Functions having the modulus 12% ; that
is, 0.7. 5

MobuULUS % =0.7.

u snu cnu dnu
0.00 0.000 1.000 1.000
0.05 0.051 0.999 0.999
0.15 0.150 0.989 0.994
0.25 0.247 0.969 0.985
0.35 0.340 0.940 0971
045 0.429 0.903 . 0953
0.55 0.512 0.859 0.932
0.65 0.589 0.808 0909
0.75 0.659 0.752 0.885
0.85 0.722 0.692 0.860
0.95 0.778 0.628 0.835
1.05 0.827 0.562 0.811
115 0.869 0.494 0.789
1.25 0.906 0.424 0.768
1.35 0.935 0.353 0.750
1.45 0.959 0.284 0.735
1.55 0.977 0.213 0.723
1.65 0.990 0.143 0.714
1.75 0.997 0.072 0.709

K.1.85 1.000 0.000 0.707

From this table, by the aid of formulas [4], (6], [7], and
(8) of Art. 196, snu, cnu, and dnu may be readily obtained

for any value of u if the modulus is %
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As a matter of fact no complete set of fables for the Elliptic
Functions has been published, and their values are usually ob-
tained indirectly from Legendre’s Tables of Elliptic Integrals
(v. Arts. 186, 187), unless especial accuracy is required, in
which case they must be computed by methods which we have
not space to give.

198. The Elliptic Integral of the second class E (k, ¢) can
be expressed in terms of Elliptic Functions, and for some
purposes there is a decided advantage in the new form.

&
We have E(k, $) =.£. Ad.dg.

Let w=F'(k, ¢), then ¢ = amwu, and E (k, ¢) may be written
E (k, amu), or, more simply, E (amu), if the modulus can be
omitted without danger of confusion.

Then E (amu) =f83;1u.damu;
0
or, since by (4), Art. 192,

damy =dnu.du,
E (amu) =fudn2u.du. [1]
0
As an example of the usefulness of the form just given in

[1], we will employ it in getting an addition formula for
Elliptic Integrals of the second class.

E (amu)+ E (amv)

=fudn2u .du +fvdn"v .dv
0 0
=f“dn2z . dz +fvdn2z .dz
o o .
U0 v *t-v
=f dn?z . dz +f dn?z . dz —f dn?z . dz
(] (] “

= E{am (v + 'u)]+j;"dn2z .dz —L?nvzz . dz.
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Replacing z by u +2, and remembering that v and v are given

constants,

' f"ﬁ'nzz.dz =f"dn2 (u +2) dz,
and * ’
E (amu) + E (amv) =

E[am (u+v)]—£'[dn2 (u + 2) —dnz] dz. (2)
dn? (u 4 2z) —dn’z=[dn (v + )+ dnz][dn (u +2) —dnz]. (3)

We can obtain from [3], Art. 193, the following formulas
‘analogous to [4] and [5], Art. 193,

2dou.d
dn u-+-0) +00 (=) = Ty t®

2/2snu .snv.CnY.CNY
S ()

dn (u 4v)—dn (v —v)=— T Fentu . snf0

If in (4) and (5) we let ut+v=u+2 and v —v=2¢, and
substitute the results in (3), we get
do? (x + 2) — dn’z
4k”sn<g+z>cn<g+z)dn(g+z>sn%'cngdng.
= 1
[1 ——k’sn’%’ snz( +z>:r
and '
f [dn? (u +7) — dn*z) dz
212sn( % 42 \en Y 4+2)dn y+z dz
%o U U 2 2 2
=—280- cnfdn—f
2 2 2 {:l—-k“’sn“"%sn2 E+z):r

%
2 1

snzg ' l—k"snzgsn2<!+z>

™

<

8

2sn ¥ en¥dn
2 2

==
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since — 2k2 snzg sn (g + z) cn <g+ z> dn (g’ + z) dz is the differ-

ential of 1— k2 sn2g sn? (g + z)

‘Ev[dnz (v +2)—dn’z]dz

2sn¥en“an¥
B 27272 1 1
snzg [1 — k2 snzg sn’(g’ +fv> 1— k“’sn‘%}

k22sngcngdng sn2<%+'v>—sn2%

1—Ksnt” 1—k2sn?Yen?( %
sn2 sn2s 2+’U
=—Fk.snu.snv.sn(u+v),

by (1), Art. 194, and [6], Art. 193,
Hence by (2),

E (amw) 4+ E (amw) = Efam(u + v)]+ k*snw . snv. sn(u+ v),
[6]

our required addition formula.

APPLICATIONS.
Rectification of the Lemniscate.

199. From the polar equation of the Lemniscate, 1°=a? cos 24,
referred to its centre as origin and its axis as axis, we get as
the length of the are, measured from the vertex to any point,
P, whose codrdinates are r and 6.

S==q f 1
\/00920 \/1—2s1n‘0 [
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and for the arc of the quadrant of the Lemniscate, that is, the
arc from vertex to centre,

L

S/
8, =a R —) 2
! J° V1 —2sin?6 (2

These differ from Elliptic Integrals of the first class only in
that the coefficient of sinZ@ is greater than unity, and they may
be reduced to the standard form by a simple device.

Introduce in [1] ¢ in place of 8, ¢ and 6 being connected by
the relation sin?¢ = 2 sin*6.

Then we have V1—2sin?0 = cos ¢,

and d9=ﬁ_ﬂ§ﬂ’_.
_ 2 AT }sin’¢
Y W Y ) g
Hence 8= 5 Vl—%sinzd;— 3 F 2,¢ ) (3]

o amtf fvl_dqb (B

%sin2¢_ 2 2’2/

The auxiliary angle ¢ is very easily constructed when the
point P of the Lemniscate is given. We have r=acos 20,
and we have seen that v/cos 20 = cos ¢ ; hence r =acos¢. If,
then, on a as a diameter we describe .
a semi-circumference, and with the Py
centre O of the Lemniscate as =a
centre, and with a radius equal to 7,
we describe an arc, and join with O
the point @ where this arc intersects
the semi-circumference, the angle made by OQ with a is equal
to ¢. For 0Q =acos AOQ and OP = a~cos 26.

’
i
i
1

a A
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ExXAMPLES.

w

6
(1) Find the numerical value of 4 .
S ST demig
Ans. 0.843.

é
(2) Reduce f 9% __ t an Elliptic {ntegral of the
0 A/I—nsin’¢ "

first class, when n > 1.

1 ‘P__:ﬂ__ where sin? = n sin’¢.

(8) The half-axis of a Lemniscate is 2. What is the length
of the arc of a quadrant? of the arc from the vertex to the
point whose polar angle is 80°? Ans. 2.622; 1.168.

In the inverse problem of ecutting off an arc of given
length the Elliptic Functions are of service. ~As an interesting
example, let us find the point which bisects the quadrantal arc
of the Lemniscate.

Here s =0L—\/2 F(—\/—“Z LR
2 272
and we wish to find ¢ and then 6. ‘
Let u=F \/—2, T\; we need amZ.
2°2 2

amu=’2-r, snu =1, enu =0, and dnu=y2—2-

By [1] and [2], Art, 195,

Sn234=1—cnu 2y=dnu+cnu.
27 1 4+dnv’ 2 1+4+dnu
Therefore,
sn? ¥
2 u 1—cnu 1 _
=t 22 e T P e =
enz ¥ 2 dnu+4cnu /2 V2.
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If, then, the required amplitude is ¢,

tan’¢ = V2,
and tang =~/2.

Since sin’¢ = 2sin’d, we can compute 6 without difficulty,
and so get our required point. If, however, a construction will
suffice, a very simple one gives the point. .

Erect at A a perpendicular
whose length is a mean- pro-
portional between a and a /2.
The angle subtended at O by
this perpendicular is ¢, and
the corresponding point, P, is
found by the method described
on page 253.

Rectification of the Ellipse.

200. We have seen in Art. 177 that the length of an arec
of an Ellipse measured from the end of the minor axis is

2 a? — e?xt
= NG (1]

If we let z=asin¢, [1] becomes
1¢ —_— -
s=a \/1—e2sm2¢.dq§=aE(e,¢), [2]
0

- ‘e, the modulus of the Elliptic Integral, being the eccentricity
of the Ellipse. If z=a, ¢ = g, and the length of the Elliptic
quadrant is "

s=0) \/l—e2sin2¢.d¢=aE(e,§). [3]



262 INTEGRAL CALCULUS. [ArT. 201.

The length of an arc of the Elliptic quadrant, not measured
from the extremity of the minor axis, can of course be ex-
pressed as the difference between two Elliptic Integrals of the
second class.

The amplitude ¢, corresponding to a given point P, of the
Ellipse, is easily constructed as follows: On the major axis
,as diameter describe a circumference ;
extend the ordinate of P until it meets
the circumference, and join the point of
intersection with the centre of the ellipse.
The angle the joining line makes with
the minor axis is seen to be the required
amplitude ¢. If ¢ is given, P may be
found by reversing the order of the steps
of the construction.

EXAMPLES

The equation of an ellipse is — + ¥ 1, required the length

of the quadrantal arc; of the arc Whose extremities have the
abscissas 2 and 2V2. Ans. 5.4; 0.944,

(2) Find the abscissa of the end of the unit arc measured
. 2
from the extremity of the minor axis in the ellipse 1£6+% =13

of the point which bisects the arc of the quadrant.
Ans. 0.996; 2.57.

201. By the aid of the addition formula

E(amu) 4+ E(amv)=FE [am (v 4-v) ] +k*snusnvsn(u )
([6], Art. 198)

it is always possible to find an arc of an cllipse differing from
the sum of two given arcs by an expression which is algebraic
in terms of the abscissas of the extremities of the three arcs.
This will be clearer if we modify slightly the form of our addi-
tion formuia.
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Let ¢=amu, y=amv, and o =am(%+v).
Then the formula given above becomes ;
E(k, ¢) + E(k, y)= E(k, o)+ K sing sip y sino,  [1]
‘where ¢, ¥, and o are three angles connected by the relation

cos o = co8 ¢ cosy — sin p siny Ao, [2]
by [10], Art. 193.

If we multiply [1] by a and take k equal to e, we get
2
aE (e, $)+ aE (¢, y)=aE (e, o)+£§m1.w2.ms,

if @,, oy, and x5 are the abscissas of the points whose amplitudes
are ¢, ¥, and o.

The most interesting case is when a=12r, in which case

aE (e, o) is the arc of a quadrant. [2] then reduces to

0 = cos ¢ cosy —sing siny V1—é,
) b . .
or Z sin ¢ siny = cos ¢ cosy,
a

or tan ¢ tany = %, [3]

and we get from [1]
. aE(e, ¢) —[aE (e, 3;-)— aE (e, ‘l’)] =ae’sing siny.  [4]

If, then, any point, P, is given, [3] will enable us to get
the amplitude of a second point, @, and o
thus to find @, @ and P being so re- P
lated that the arc BP, minus the arc 4,
shall be equal to a quantity which is
proportional to the product of the ab-
scissas of P and Q. 0 4
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For the special case where ¢ and i are equal we have from

31, tan¢g = »J%’
and from [4], .
ate?
BP — AP=qe’sin’¢ = -L&_ = g—b.
a

This point, which divides the quadrant into two arcs whose
difference is equal to the difference between the semi-axes, has
a number of curious properties, and is known as Fagnani’s
point.

ExamprLEs.
(1) Show that the diftance of the normal at Fagnani’s pomt,
from the centre of the ellipse, is equal to @ — b.

(2) Show that the angle between the normals at P and @ in
the figure is equal to ¢y — ¢ ; that the normals are equidistant
from O; that this distance is BP — AQ.

Rectification of the Hyperbola.

© 202, If the arc of the Hyperbola is measured from the
vertex to any given point, P, whose codrdinates are = and y,
its length is easily found to be

8= —_—— |y, . (1]

if e is the eccentricity of the Hyperbola. Let

Sy =rtan,
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and [2] becomes

: pdd
8=%-ef Q-iec—__—;,

1 eﬁsm 2

2
hence 8= bz ¢_sedddd = = %f‘b sec’$ d [s].

o /T =K sin® Ad
if k=1
e
Now _1_=1-k’._}_= 1 ‘.1—k2sin2¢—7czcos“¢
Ap 1—K Ap 1—F Ad
_ 1 K2 cos’¢p
"1—7&{3‘# Ad :l’
B L[ (Pecpapds— i [0
and §=— l—k“’[jn: sec’¢ Ad de k’j; vy

2 ¢ .
=2 ﬁ?[ﬁ sectp Apd — B F (K, qb)].
If we integrate by parts,

j; secid A dep = tan g A4>+k’f sin ¢d¢,

psin'e 1
Ap A

but — A,

and kﬁf‘bs‘“g"’ b =F (k, ¢) E (%, ¢)-

Hence

s=—F(k $)— —————[E(k $) — tan ¢ Ad].

ae (1 —

b
t 1—it=——
Bu o
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therefore = EbZF (k, ¢) —aeE (k, ¢) + aetan ¢ Ag,
B /1 1 L

or 8= —F(—-, d;) — aeE (—, ¢) +aetan¢ Ad. [4]
ae \e e

The angle ¢ corresponding to a given point P is easily con-

X
¥
P’ }'e'/ P
7 S
/ m«nx \\b "

1 \

£t \
0 a

structed. We have only to erect a perpendicular to the trans-

. . b? b .. .
verse axis at a distance — = - — from the origin ; that is
ae ,———aZ ¥ B2 gin ; ’

at a distance from the centre equul to the projection of b on
the asymptote, and to join the projection of P on this line with
the centre. The angle made by the joining line with the trans-

verse axis is ¢, for its tangent is clearly __Zz_.
N
ExAMPLES.

(1) Find the length of the arc of the hyperbola rm; —-3/9—2= 1,

measured from the vertex to the point whose ordinate is 2.
Ans. 2.194.

(2) Show that aetane A¢ is the distance from the centre to
the normal at P.

(83) Show that the limiting value approached by the difference
between the arc and the portion of the asymptote cut off by a
perpendicular upon it from P, as P recedes indefinitely from
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2
the origin, is aeE 1,75 —b—F 1,3 . This is generally re-

e 2 ae \e 2 -
ferred to as the difference between the length of the infinite are
of the hyperbola and the length of the asymptote.

Show that in example (1) this difference is equal to 2.803.

The Pendulum.

203. We have seen in Art. 176 that if a pendulum starts
from rest at a point of its arc whose distance above the lowest
point is %, the time required in rising from the lowest point to
a point whose distance above the lowest point is ¥, is

t=v\l% ‘£¢\/1 —(:fsin“’¢ =\I.%F(k, #) [1]

where k= Qﬂ"—, and sing = Y.
2a :

In the figure let 4 be the lowest point of the arc, B the

highest point reached by the pendulum, and P the point
reached at the expiration of the time %. Call AOB a, and
AOP 6.

Then Y0 — 1 — cosa, and 4|2 = V(1 — cosa) =sin = k.
a 2a 2

Consequently the modulus of the Elliptic Integral in [1] is

-~



~

268 INTEGRAL CALCULUS. [ART. 203

the sine of one-fourth the angle through which the pendulum
swings.
?I

=1 —cosé,
and ,},z/.=«/;‘(Tr—coso) =siné’,
2a
Ng g
and sing = l_ﬂ___,

and therefore the sine of the amplitude of the Elliptic Integral
in [1] is easily computed when the angle through which the
pendulum has risen is given. When #=a, sing =1, and

2’2

b =1§r; so that the time of a half-oscillation is \Xq F(sma ”)
: g
a confirmation of [7], Art. 176. The construction indicated

[v]
h c
3| .,
% \eel/-°
y
A

in the figure gives the angle ¢, corresponding to any given are
AP. For

L1 cos 40'Q,
3%

and \/JQ= V(= cosAo'Q‘)=sinAg'Q—_— sin A0Q.
Yo

Therefore ACQ = ¢.
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It is very easy to express the angle 9 in terms of &

We have t= \)QF sin%, ¢);
g 2
hence t\lg = F<sin"5, 4:),
a 2
¢ =am (t \Ig )7
sin¢ =sn <t\’§),
a
0 . a 5 . a\,
and sin 3= sing sn (t \’ a) <mod gin 2) H
then ‘ cosﬁ =dn (t \l g) (mod sin !1>,
) 2 a 2
and ginf = 2sin% sn (t\lg> dn (t\/§> <mod sinﬁ)-
2 a a 2

EXAMPLES.

(1) A pendulum swings through an angle of 180°; required
the time of oscillation. s, 5.708 \}@ .
g9

(2) Compare the times required by the pendulum in Ex. (D)
to descend through the first 30°, the second 30°, and the third
30° of its arc respectively.

Ans. 1.028 Jg; 0.446 \IQ; 0.380 \[‘l
g q g

(83) The time of vibration of a pendulum swinging in an arc
of 72° is observed to be ‘9 seconds ; how long does it take it to
fall tbrough an arc of 5° beginning at a point 20° from the
highest point of the arc of swing? Ans, 0.095 seconds.
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(4) A pendulum for which \/9 has been determined, and is
g

equal to , vibrates through an arc of 180°; through what arc
does it rise in the first half-second after it has passed its lowest
point? in the first  of a second? Ans. 69°; 20° 6'.

(5) It has been shown in Art. 176 that if y,>2a the
pendulum will make complete revolutions, and that the time
required to pass from.the lowest point to any point whose
distance above the lowest point is y, is

7f¢ do Np.
t=a.|— ————=a ] —Fk¢)
\/gz/o * VI — K sin’gp gy, %)
where k= —2—7 and sin¢=\/:—l—-

Yo 2a

Show that in this case ¢ = Q, and that sing =8n E\fﬂ’ .
2 2 a\N 2

Nore.—In working with a pendulum it is often about as
easy "to compute F (k, ¢) by developing by the binomial
theorem and integrating two or three terms, as to use a table
of Elliptic Integrals.

—(*__4d¢
‘We have F(k,¢>)_‘£ m,
(l—kzsinzqs)_}:1+1}kgsin2¢-+£k"sin4¢+---,
¢ de . 2 .
and F(k,gb):j;m_¢+z(¢—sm¢cos¢)

— 3 isin*po 9 3t (b —si
32k‘sm ¢>cos¢+64 (¢ — sin ¢ cos ¢)
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Differentiation and Integration.

204. Rewriting formulas [4], [5], [6], and [7], of Art. 192,
we have

d am x = dn x dz, [1]
d snx =cnzdnzdz, 2]
d enx = — sn x dn x dz, [3] -
ddnx=— E?snxcn x do, [4]
dnx
we add dtne=_— dx. (5]

By the usual method of differentiating an inverse function
(I, Art. 72) we get readily

1 . dx
den o D= o — ) (6
& o= (@, B) =— & , M
\/(T . a:’) (k” + kzmz)
4@ @ B == 7= w:;””( e [8]
d tn=1 (&, k)= dz : [9]
NNy

[63, [7], [8], and [9] give at once a very valuable set of formu-
las for integration, namely :

x dx 1 _ s—1
e LR G ED

1 dx —on=) (. By .
j; 1 —a?) (k'2+k2wz)_cn (x, k) =F (k, cos~'z), [11]

S = (A=)

. =F<7c, sin“\/II: ”2>, 2
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f dax

VAt At R
If in [10], [11], [12], and [13] we substitute y =2? and

then change y to z, we get

“ dz =92gn-! = in— Wz
fo \/m—2sn (N, k) =2 F(k,sin~ Wz ),[14]

tn~1 (z, k) = F (%, tan—1z). [13]

2 en—t (Va, k)y=2F (k,cos~'Vx),[15]

f\/m(l—x)(k'z—}—kz)
= 2du~! (Vz, k)

—=
=2F(k, sin—1 1 — ), [16)

=2to (Va, k)

f \ﬂlc(l—w)(x: — k'%)

f der
o Vel +=z)(1+ k%)

=2 F (k, tan—! V). [17]

The following formulas are obtained from formulas [10]-
[13] by easy substitutions :

* dx 1 b .
j\/m__w_?)—asn <b:a>,a>b>x>0, [18]
" 1sn—l<‘—‘, —b>,x>a>b>0; [19]
a xr a

L ==

f i = 1 en—! E’————_—_—b
z \/(a’—{-wz)(bz—‘wz) “a?+ b2 (b \/a’-l—b’)’
. a>b>x>0; [20]

z . 1 1 é’ a
i) V@t —0 atn \@ \/az—l—b”)’
x>b>0; [21]
f“ dx '\/az——b2>
. Y@= @—
a>x>b0>0; [22]

S i) - o

1l
_a
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For example we will take [19].

Let y—l’ then dx___@?_/

¥’

J vm f v<1—a2y2><1—b2y2>

f V<1—a*y?>< zy,)

Let; now z=aqay and
j‘:xx/(l—aﬂf;zll_ga; ) 1f V(l—z2)< )
=%sn"<—; *) by [10].

From [14]-[17] may be derived in like manner

dx
S e —a)@—B)@—7) va— " (‘/ Y‘/E’J>

5>a>8>y; [24]

a dx — 2 - 0-_'” B)
fzx/(a—w)(w—ﬂ?)(w—v) */"‘_VSD ( a>_ﬂ>ﬂ [25]
a>x

S v(a—wxgiw)(w—y) va—ysn_l(\/xny\/—f—j>

B>a>y; [26]

d 1 a—
f \/(a—w)(ﬁiw)(y—w) \/a— o (\/,B—m ﬁ)
v>w, (271

For example we will take [24].

Let ‘y=;i—y, then dw=—d—-;;
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f‘” dx
= N@—a)@@—B)(@—7)

=f dy .
" VYA — =Ny A—(B—)y)
Let now 2 = (a — v) », then

J !
" Vyd—@— A —B—79
1 z= ;/ dz |
\/a—yf

J(1—@<L—u::)
T Vam st_(\/;:;l, \/B

ey

)byﬂﬂ.

From [24]-[27] may be obtained
= dx
IV@*@@—@@‘ﬂ@—®
= 2 n1(JB=8 2—a [B—y a—3
s (Ve i VEL =)
x>a; [28]

f @ dx
*Ve—2)@—B) @E—y) @=—29

_—____2____ —1 B—8 a—x _la—f -y—3>
N =YD < a—B w—s’\/a~y B—38
a>z>B; [29]

f dx
V@—@w—@@—ﬁ@*®
n—1 a-—-'y'B—m, B—y a—3
V(a*v)(ﬂ ON <\/B—7 a—2 Va—y ,3_3>
B>x>vy; [30]
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f‘l dx
*N@—z) (B—2) (y — ) (x—9)

—_— 2 B—38 y—=x Ja—B y—3
V(e —1y) (B—39) " ( y—8 B—=z’ \/a—v ﬁ—3>

y>x>8; [31]

dx
‘J; Vie—2z)(B—x) (y—2) 6 —2)

_ 2 1 a—y 86—z B—y a—38

[ Y Y.

V@“ﬁﬂﬁ—®MI<¢w—37—w azy B= 9
3> [32]

Formulas [24]-[32] enable us to integrate the reciprocal of
the square root of any cubic or biquadratic which has real
ToOots.

dzx .
) (@ — )

2
As an example let us find j; 7@
ax —

f2 dx
o \/(2a——x)(a—x)x(w+a)

=f“ dx
° \/(Za—x)(a—ac)m(w+a)

_f“ dx
2 \/(2u—x)(a-—-w)m(w+a)

=3ch [59_1(1, 3./2_?:) - sn—1<\/§, %ﬂ by [30],
Sn_1< V6 \/3> _ln (_ sin—1V6 \/E>‘
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Formulas [10]-[32] suggest the appropriate substitution to
rationalize any rational function of » and the square root of
a eubic or biquadratic hdving real roots.

4
For instance, let us consider jo‘ V(o — a*) (b* — 2?) d.

Let y;sn—1<%, g), [v. formula [187].

Then x=b,sn<y, g), dzr=0bcnydnydy, a?*—a?=a?dn’y
P—a?=8cnly;
b K
‘Io‘ \/(az——w“’)(bz—xz).dm:abi‘ en’y dn?y dy
K| a2+62 b2
=ab’j0' l:l—- pr sn“’y-l—;ssn‘y]dy.

ExAMprLES.

() Find [ \/;d

S S
(2) Rationalize j‘: V1 — ot da.

_ K
Ans. 2~/2 j(: (dn?2 — dn*z) dz. (mod _\g)

Ans. %2 K(mod 12.2> or 1.311.

X
— et

. b dx
(%) Find J«: V(@ — bx) (bx — o7)

Ans. 2 sn‘l(l, é) or gK(mod é)
a a a a

b
(4) Rationalize f A\ |2 =B g,
0 Vix —2*

x
Ans. 2af dn?x. dx, or 2@E<é 1").
1]

a’ 2
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. ° dx
(%) Find j‘" + (@*+ e — ) (@ — a?) (2 — z’) .

2 2

Ans. ;lésn*(l, %) or ;LI—,K(mod L% .
S iom + 1 _ 1

uggestion : let = et

205. If we are integrating the reciprocal of the square root
of a cubic or biquadratic having imaginary roots, formulas
[24]-[32] of Art. 204 no longer serve our purpose and we
are driven to a more laborious method.

We need only to consider the biquadratic form as we may
regard the cubic as a special case under it.

Take the form f dz l and
_ V(@ +2bx + ) (@ + 2 Br + ya)

let y = ::—Z where m and n are at first undetermined. We
shall get an integral of the form

. dy
f\/(A + By + Cy®) (4'+ B'y + C')

and m and » can then be so chosen that B and B’ shall be
equal to zero, and the integral can be obtained by one of the
formulas [18]-[21] of Art. 204.

The values of m and » required are easily proved to be the
roots of the quadratic equation :

2_coL—aln,:z_ba.—ot[-}
by—eB  by—eB

and are always real if the original biquadratic has any
imaginary roots.

=0, @

For example let us find fm—iaf——*
o e

a+a)
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Here a=0,b=1%, ¢=0,a=1, =0, y=1. Our auxil-
iary equation (1) becomes 2*— 1 =0 and gives 1 and —1 for

m and n. Let, then, y= z _‘—_ 1, substitute and reduce and

o dx — (" dy
S Vz(+ =) vaf, i+ HA—p

— 5 (Tt dw — -1 :/_5
__2\/2]0‘ \/m—icn (0,2)

=2 K(mod —?) — 3.708,

ExAMPLES.
. ©  dx /2
1 Fmdf — = .
@ v ViEat Ans. K(mod 2 > or 1.854.
Suggestion : let z = «?
2 Ratlonahzej L wdr
@ Va (1 + 2%
£l —ecny
Ans. A —1—:(3—11—:; d:l/

_f"’2-—2cny—sn y . dy mod—@ .
sn? 2
1 R
(8) Rationalize | VITat-de.

£ 1+tecn’y
1 4 eny)? dy

XK(I-*—CD x) (1——an « d (mod—%g)

sntx

Ans.

206. Formulas for integrating snz, enz, dn, and their
powers positive and negative, are obtained without difficulty.
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f f—k’snxcnwdx lf dy
snedr=-—-; - —L
cnx k \/yz—k"
=——log(y+\/y2 k%) if y=dnz Hence

fsnwdw:—%clog (dnw-i—\/dn"’:c— k™

1 dnx ‘
==z cosh™! % ) [1]
fcnxdm=%ccos—1(dn x). [2]
fdn xde=amz =sin"! (snz). [3]
de _ (snzenwzdnede dy
sne J sn’zenzdnz =%f
INA—y) (1 —FYy)

=—ylog Vad-—ynd—=ky+1 _%k_z]

y
if y=snx.

Hence
dx sn x
Er_l_;_l()g [cnx—}—dnx]' [4]
kFsnx - dn oc:l '
cnx I: cnx (5]

=1 [k’“sn x—cnlz :I
dnm Zk’ dn’?x

! —
==ltan‘1 Esnx cnw]_

k' EKsnx+cnx 16]

From Art. 198 [1] we get

‘Iowsnsxdmzk%[m—lf?(amx, )], [7]-
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® 1
, en’e de = 2 [Z (am z, k) — k'?z], (8]

[ dn%z do = E (am z, k). 9]

An important set of reduction formulas by which the integral
of any whole power of snz, enz, or dnz can be made to
depend upon the formulas just obtained can be found with-
out difficulty.

‘We have ‘—}i (én"‘“x cn z dn x)
=(m+1)sn"z —(m~+2) (1 + &Y sn™+?x 4 (m 4 3) k*sp™+* ,

whence we get
(ﬁ+1)fsnmxdx
= (m+ 2) (1—}-k’)fsn’"+2xdx
' —(m+3)ic2fsnm+4xdx+snm+lwcnxdnz. [107
(m—l—l)k’zfcn’"a;dx
= (m+2) (lc”’—lc?)fcn"‘”xdm
+(m-|—3)k’fcn"‘“wdx—cn"‘“wsnzdnw. [11]
(m+1) | dnmzds
=m+2) A +#) [ dmizde

~m+3) [ dm+tzdo+ dpmtizsnaens.  [12]
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. ExAMPLES.

(1) Obtain the following formulas :

4’ _— 2
f sn—lzde=xsn"'z+ —115 cosh—l(—l—,kzi>

k
f en—lazde=xcn"lx —%}cos—1 (VK4 Ia®)

fdn“wdm:mdn—lx—sin‘l(vlgmg)-
K P! 2 2
(2) Find abj(: [1—-”’ ;tb sn’w-!-z—zsn‘x] da.
. b . b
Amns. -}%[(a‘-{-b”)E(;; g)—(a +2b”)K<m0d-&l>:]-
x —
(3) Find _%_2.£ (dn? x — dn* x) da, (mod _‘_/2_2>

N2 2
Ans. iz K (mod ?—); or 0.219.

Ko . 2 53
@ Fina [ 2 Zonz =@ g, (modiz?-)

sn?zx
- \2
Ans. N2+ K—2E(mod—- ) or 0.567.

(5) A cannon-ball of radius & is fired horizontally through
the middle of a ship’s mast (radius a); find (2) the volume,

and (b) the whole superficial area of the plug required to fill
the hole.

R CHRCE i C)

(b>,8(a+b)[aE<§’ %)“(a—b)K(mod—fi)]-
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(6) A cylindrical hole of radius & is bored through a sphere
of radius @ and just grazes the centre; find (a) the area of the

inner surface of the hole, (b) the spherical surface removed,
and (c) the spherical volume removed.

AN
Ans. (a) 4abE<a; —2—),

) 2a’7r—4a2E<£, g),
22a*—0 b
(¢) 3ma*—ga® I:_(%—)E(;’ g)

2 __ A2
—Z 26K<mod—[z>:|-
@ a

(7) Find the mean distance of points uniformly distributed
along the perimeter of an ellipse from a focus.
Ans. Onpe half of the major axis.
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CHAPTER XVII.
INTRODUCTION TO THE THEORY OF FUNCTIONS.

207. A function having but a single value for any given
value, real or imaginary, of the variable is called a single-valued
function. Rational Algebraic Functions, Exponential Func-
tions, the direct Trigonometric Functions, and the Elliptic
Functions are single-valued. .

A function which has in general two or more values for any
given value of the variable is called a multiple-valued function.
Trrational Algebraic Functions, Logarithmic Functions, the
inverse or anti-Trigonometric Functions, and the Elliptic In-
tegrals, are multiple-valued.

208 1In Chapter II. we bave explained the customary graph-
jeal method of representing an imaginary by the position of a
point in a plane, the rectangular codrdinates of the point being
the real term and the real coefficient of the pure imaginary term -
of the imaginary in question. .

In the ordinary treatment of the Theory of Functions this
method of representation is of the greatest service, and enables
us to bring the study of functions of imaginary variables within
the province of Pure Geometry, and to give it great definiteness
and precision.

For the sake of brevity we shall in future use the symbol ¢
for ¥ =1 and cis¢ for cose+ V—1sing, so that we shall
write our typical imaginary as @ 4yi or as rcis ¢, instead of
using the longer forms @+ y\/:T, and r (cos ¢ + v —1sing).

We shall also use the name complex quantity for an imaginary
of the typical form when it i8 necessary to distinguish it from
a pure imaginary.
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209. A complex variable z = 4 yi is said to vary continu-

susly when it varies in such a manner that the path traced by
the point (%,y) representing it is a continuous line.

B

(1)

e
Y“’/« (3

‘Thus if z changes from the value o to the value B, so that
the point representing it traces any of the four lines in the
figure, z varies continuously.

It will be seen that a variable can pass from the first to the
second of two given values, real or imaginary, by any one of
an infinite number of different paths without discontinuity if the
variable in question is not restricted to real values; while a real
variable can change continuously from one given value to another
in but one way, since the point representing it is confined in its
motion to the axis of reals.

210. A single-valued function w of a complex variable z is
called a continuous function if the point representing it traces
a continuous path whenever the point representing z traces a
continuous path. .

A multiple-valued function of z is continuous if each of the »
points representing values corresponding to a value of z traces
a continnous path whenever 2 traces a continuous path.
These n paths are in general distinet, but two or more
of them will intersect whenever z passes through a value
for which two or more of the » values of w, usually distinet,
happen to coincide. Such a value of # is sometimes called a
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critical value, and the consideration of critical values plays an
important part in the Theory of Functions.

In studying a multiple-valued function we may confine our
attention to any one of its » values, and except for the possible
presence of critical points this value may be treated just as we
treat a single-valued function.

In representing graphically the changes produced in a func-
tion w by changing the variable z on which it depends, it is
customary to avoid confusion by using separate sets of axes for
w and 2.

211. If we use the word function in its widest sense,
w=u+vi will be a function of a complex variable z = + yi,
if w and v are any given functions of  and y. For example,

‘m:, 63/9 ,972+y2, w—?ﬂ, wz—y2+2w?/7:a i,:—:z'_._ﬂ,
V& +yt+4

may all be regarded as functions of 2.

We have seen in Chapter II., Arts. 36-42, that with this~

definition of function the derivative with respect to z of a func-
tion w is in general indeterminate ; but that there are various
functions of 2, for instance, 2", logz, ¢, sinz, where the deriva-
tive is not indeterminaté. We are now ready to investigate
more in detail the general question of the existence of a deter-
minate derivative of a function of a complex variable.

Let w=u 4 vi be a function of z; » and v, which are real,
being functions of « and y.

Starting with the value 2, =2, + ¢ of z and the correspend-
ing value wy= 1+ vy¢ of w, let us change 2 by giving to %
increment Az without changing y.

v e
el
Y w :_’:/_’._.:\A’.
A%
2 as__ A
Vo
%
O &, [ Uo u

Let A, and A,v be the corresponding increments of « and
v; and 2, and w, the new values of 2 and w.
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We have H=2 + Az, Wy =wy + A, u 4+ 1A,
Then Wy — Wy — AU zA,'v‘
2 — % Az Ax

and the derivative of w with respect to z under the given cir-
cumstances is

limit [ w; —w, ,
. =D,u+iD,v. 1
Az=0 2 — % z = [ ]
Un
v /"‘
w’// JAv
-
0 a

If, however, starting with the same value z, of z, we change
z by giving y the increment Ay without changing @, we have

2 =%+ (Yo + Ay){ =2, + tAY,
wy =y + Ayu + (vg+ A, 0)i =W + Ay u + (A, 0,

w,—wy,  Au
21— % Ay

1A,V
Ay’

+

and

ot [2= )= 10—y, (2]
and this is the derivative of w with respect to z when we change
y and do not change x.

Comparing [1] with [2], we see that if we start with a given
value of 2, and change z in the two different ways just con-
sidered, the limits of the ratios of the corresponding changes in
w to the changes in z need not be the same. Indeed, the two

values for %—19 given in [1] and [2] will not be the same unless
Z
w=u -+ vi is such a function of 2 =24 yi that

Dyu=Dwv and Du=—D,v. r3]
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We shall now show that if w is such a function of z that
equations [3] are satisfied, Ahzm:liz) [%:] will be the same if we
start with a given value z of z, no mattter in what manner 2
may change; that is, no matter in what direction the point
representing z may be supposed to move; or, in other words,
no matter what may be the value of Ahm.lt Ay,

=0 Aw

We have in general, since w is a function of the two variables
x and ¥,

Aw = (D,u +iD,v) Az +(D,u + tD,v) Ay + ¢

where ¢ is an infinitesimal of higher order than Az or Ay.
(1., Art. 198.)
Az = Ax 4 iAy.

Aw_ D,u.Az+iD,v.Ay +iD,v.Ax+D,u.y+ e

Hence .
Az Az 1Ay

R Ay B Ay €
2Y D D w2 4 S
_D,,u+zD,v Am+l LU+ ”qu+Aa:
- LAy ’

1 oY

+3Am

and

limit | Aw _dw
Az=0| Az dz

. limit [ Ay } . limit [ Ay
D,u+iD,w. A0 [Aw + Z(Dz’v— iD,u. M"io[-A-:v:D

- . limit [ Ay ’
i 3 [4]

a value involving Ahmm‘.lto [—A&z{l, and therefore dependent upon
= x

the direction in which # is made to move.
If, however, [3] is satisfied, [4] reduces to

"% — D,u+4D,, [5]

and the derivative of w is independent of lim.i b [ﬂ]
Ar=0| Agx
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A function which satisfies equations [3]; and which, there-
fore, has a derivative whose value depends only upon the value
of the independent variable, and not upon the direction in which
the point representing the variable is supposed to move, is called
by some writers a monogenic function, by others a function which
has a derivative,

212. Any function of z which can be formed by performing
an analytic operation or series of operations upon z as a
whole, without introducing # and y except as they occur in 2,
is a monogenic function of 2.

For if w=fr=f(x+yi),
where fz can be formed by operating upon z as a whole,
Dw=fz, and D,w=if'z;
therefore iD,w=D,w, or iD,(u+vi)=D,(u+ i) ;
whence D,u= D, and Dy=—D,wv;

and [3], Art. 211, is satisfied. Consequently w is monogenic.
This accounts for the results of Arts. 38—42.
If w is a multiple-valued function of 2, there may be several

different values of ‘i—w, corresponding to the same value of z;
. 2

but if w is monogenic, each of these values depends only upon z,
and not upon the way in which z is supposed to change.

In future, unless something is said to the contrary, we shall
give the name function only to monogenic functions. Thus we
shall not call such expressions as % —~yiy or a4 y? 4 2ayi,
fanctions of z.

Conjugate Functions.

213. If u and v are functions of « and v, satisfying equations
[8], Art. 211, it is easy to prove that

Diu+Dlu=0 and  Dlv+ D2w=0.
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For since D,u=D,v and D,v=— D,u,
we have Diu=D,Dyw and Dpfu=—D,D,v,
Dfv=—D,D,u and Div=D,D,u;
» and v are then solutions of Laplace’s equation,
D2V+DrV=0. [1]

Any two functions ¢ and ¢ of 2 and y, such that
¢ (%, y)+ iy (x,y) is a monogenic function of =z +yi, are
called conjugate functions ; and, by what has just been proved,
each of a pair of conjugate functions is always a solution of
Laplace’s Equation [1].

Thus a®—3? 2my; e*cosy, e“siny; %log (x* + ¥%), tan—1Y;

z
are three pairs of conjugate functions, since z*— y®+ 2ayi
= (% + yi)?, e cosy + ie* siny = e+¥, }log (a® + y?) + ¢ tan—2¥
x

= log (« + yt), and consequently, by Art. 212, are all monogenic. ‘
"Therefore each of the six functions at the beginning of this ‘
paragraph is a solution of Laplace’s Equation [1]. ‘

It is clear that we can form pairs of conjugate functions at
pleasure by merely forming functions of z--y¢ and breaking
them up into their real parts, and their pure imaginary parts;
that is, throwing them into the typical form » + vi.

If each of a pair of conjugate functions, ¢ and y, is written
equal to a constant, the equations thus formed will represent a
pair of curves which intersect at right angles. For let (=, y)
be a point of mtersect‘)n of the curves ¢ = a, ¢y = b ; the slopes
D¢ _ D,y
D Dy
I., Art. 202; and since D,¢=D,y and D,y =—D,, the
second slope is minus the reciprocal of the first, and the curves
are perpendicular to each other at the point in question.

Thus #* — y*=a, 2wy = b, cut each other orthogonally; as de

of the two curves at (w, y) are respectively —
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also #log (#*+¥¥) = a, tan-'¥ =b; or, what amounts to the
®
same thing, #*+y’=aq y~=b,. It must be observed, how-
x

ever, that 2? 4+ 9? and ¥ are not conjugate functions, and that
@

in general the converse of our proposition does not hold.

It may be easily proved that if ¢ and ¢ are conjugate func-
tions of z and y, and f and F are any second pair of conjugate
functions of « and y, the new pair of functions formed by re-
placing @ and y in ¢ and ¢ by f and F respectively will be
conjugate.

Thus (e* cosy)? — (¢*siny)?, 2e*cosy.esiny,
or, reducing, e®cos2y, e¥sin2y,
are conjugate functions ;

Hog [~ )* + @a)], tan(2L5),

or, reducing, log (2 4+ 7). tan- 1< 22 zy 2>,

r—Yy
are conjugate.
The properties of conjugate functions given in this article
are of great importance in many branches of Mathematical
Physics.

ExAMPLE.
Show that if ' and o' are conjugate functions of x and y,
« and y are conjugate functions of ' and g'.
Preservation of Angles.

214, If wis a single;valued monogenic funetion of 2, and
the point representing z traces two arcs intersecting at a given
angle, the corresponding arcs traced by the point representing
w will in general intersect at the same angle.
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For let z, be the point of intersection of the curves in the z
plane, and w, the corresponding point in the w plane. Let 2, be
& point on the ﬁrgt curve, and % a point on the second ; and let

&

«n
8

w,; and w, be the corresponding points in the w figure.

Let 7y, 74y 51, and 8, be the moduli of 2, — 25, % — 2, Wy — W,
and w, — w, respectively, ;. ¢y ¥y, and ¢, their arguments:
then, since w is a monogenic function of z, we must have

limit | 22 =% | — limit{ X2 "% |,
21— 2 Z— %

or limit| $:68Y1 | — jimit | S2Ci8¥e :
T cis ¢y 75 cis g

whence, by Art. 23,
limit l_fl cis (¢, — 4>1):l = limit [8—2 cis (Y, — ¢2)];
" Ts

and since, when two imaginaries are equal, their moduli must
be equal, and their arguments must be equal, unless the moduli
are both zero or both infinite, .

limit (¢ — ) = limit (¢s —~ 1) 3

that is, the angle between the arcs in the w figure is equal to
the angle between the corresponding arcs in the z figure ; unless

(—h—v =0, or d—w =0
dz 2=z, ’ dz 2=z, ’

If w is a multiple-valued monogenic function of 2, and if
starting from any point z, the point which represents z traces
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out two curves intersecting at an angle o, each of the n points
representing the corresponding values of w will trace out a pair
of curves intersecting at the angle a; unless % is a point at

which %—- is zero or infinite.
2

1f, then, w is any monogenic function of z, and the point
representing z is made to trace out any figure however complex,
the point representing w will trace out a figure in which all the
angles occurring in the 2 figure are preserved unchanged, except
those having their vertices at points representing values of z

which make %@ zero or infinite.
%

This principle leads to the following working rule for trans-
forming any given figure into another, in which the angles are
preserved unchanged.

Substitute #' and y' for x and ¥ in the equations of the curves
which compose the given figure, 2’ and ;’ being any pair’ of
conjugate functions (Art. 213) of @ and y, and the new
equations thus obtained will represent a set of curves forming
a second figure in which all the angles of the given figure are
preserved unchanged, except those having their vertices at
points at which D2’ and D,y' are both zero, or at which one of
them is infinite.

For exmnple, s—y=a, 1)
2+ y="b, @)

are a pair of perpendicular right lines. Replace z by 2° — 3
and y by 22y, and we get

22— 2y — P =0, / (3)
o+ 22y — y* =0, 4)
a pair of hyperbolas that cut orthogonally. '

215. If w is a single-valued continuous function of 2, it is
clear that if w, and w, are the values corresponding to % and 2y,
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at;

find the complete derivative e and form the expression
@

dV_O—lgl, representing it by Vi gp an contains the

de dx da dax

first power only of the highest derivative of y, it may
itself be an exact derivative, and is to be treated pre-

cisely as the first member of the given equation %Z has
©

been. Continue this process uutil a remainder %ﬁ:—‘ of
2z

the first order occurs.

Write this equal to zero, and see if the equation thus
formed is exact, see (6). If so, solve it by (6),
throwing its solution into the form V,,=C. A
complete first integral of the given equation will be
U+ U;+ -+ V,,=0C. The occurrence at any step

of the process of a remainder %_V:", containing a higher
@

power than the first of its highest derivative of y, or the
failure of the resulting equation of the first order above
described to be exact, shows that the first member of the
given equation was not an exact derivative, and that this
method will not apply.

Of the form @+X + [—:I =0, where X is a
dx? dx

functlon of # alone and Ya function of y alone. Maultiply

“1~1
through by [:%J and the equation will become exact,
z

* and may be solved by (33).

‘Singular integral will answer.

~1

Call y P, and @ :l/ ¢, and find id_, regardmgp and ¢
dp
as the onl) varlables, and see whether % can be made

infinite by writing equal to zero any factor containing p.
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Homogeneous on the supposition that z and ¥ are of the

degree 1, _'1_/ of the degree 0, g? of the degree — 1,
Assume z=¢e’, y=ez and by changing the variables
introduce 6 and # into the equation in the place of » and Y.
Divide through by ¢’ and there will result an equation
dz d’z

a0 g whose order may be de-

involving only 2,
pressed by (25).

¢
Homogeneous on the supposition that « is of the degree

2
1, y of the degree n, g% of the degree n —1, %12./ of the

degree n — 2, -

Assume ¢ =¢’, y = €2, and by changing the variables
introduce ¢ and z into the equation in the place of 2 and y.
The resulting equation may be freed from 6 by division
and treated by (25).

dy 'y
dz’ dz*’

Assume y =e*, and substitute in the given equation.
Divide through by e* and treat by (25).

Homogeneous relatively to v,

Containing the first power only of the derivative of the
highest order. .
The equation may be exact.

Call its first member ﬂ If n is the order of the equation,

n—1
represent g Y by p and y by dp -=. Multiply the term

containing _p by dz and mtegrate it as if p were the only
dar— 1
Y

variable, calhng the result U7}; then replacing p by pra
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Of the form g—% Y. Y being a function of ¥ alone.

Multiply by 2%—1 and integrate relatively to . There
will result the = equation —> =2 f Ydy + O, whence
——- 2 f Ydy + 0’)? an equation that may be solved
by ).

Of the form f =
Assume
dar? dz d
dw"‘:l‘/=z’ then d_x=fz or. dm=}§, 2= fz+0
After effecting this integration, express z in terms of «
. ar— -1 dn 1
and C. Then, since z—da:”‘?ll’ dw""l =F(z, C), an
equation that may be treated by (26).
Or, since
aty a2 fzdz dz
= jzdr+c= | ==+c¢, since de=—-:
o1 + +c, 7

T [ (f”ﬂ“)“l“ Ao

Continue this process until y is expressed in terms of
# and n — 1, arbitrary constants, and then eliminate z by

the aid of the equation x = %+ C

ary _ Ay
Of the form —< o =gt
Let g—"——:—y_- z, and the equation becomes
x™

may be solved by (27).

é=fz, and
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by inspection. We have first to solve pg—i+qz=R
by (4), and then to solve r;zl—z+sy-=z by (4).

(e) A particular solution of the equation
&y
da?

can often be obtained by assuming that y is of the form
Sa,x™, m being an integer, substituting this value for y
in the given equation, writing the sum of the coefficients
of a2 equal to zero, since the cquation must be identically
true, and thus obtaining a relation between successive
coefficients of the assumed series. The simplest set of
values consistent with this relation should be substituted
in the assumed value of y, which will then be a particular
solution of the equation. If this solution can be ex-
pressed in finite form, the complete solution of the given
equation can be obtained from it by the method described
in (24) (a). If, however, two different particular solu-
tions can be found by the method just described, each
of them should be multiplied by an arbitrary constant. and
the sum of these products will be the complete solution
of the given equation.

+P'd—g+Qy=0a
dz

Either of the primitive variables wanting.

Assume z equal to the derivative of lowest order in the
equation, and express the equation in terms of # and its
derivatives with respect to the primitive variable actually
present, and the order of the resulting equation will be
lower than that of the given one.

Of the form %n-y‘= X. X being a function of x alone.
wﬂ

Solve by integrating n times successively with regard
to x.
Or solve by (22).
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and can be found by (1), and should be used in the
simplest possible form, will lead to a differential equation
in z of the form

&z +Iz=R

da? ’

which is often simpler than the original equation.

(¢) The introduction of z in place of the independent
variable @, z being a solution of the auxiliary differential
equation 2

2z dz
—+4+P—==0
da:2+ de

the simpler the better, will reduce the given equation to
the form

d*y
a2 +Iy=28,
which is often simpler than the original equation.

(d) If the first member of the given equation regarded
as an operation performed on y can be resolved into the
product of two operations, the equation can always be
solved. The conditions of such a resolution are the
following : let the given equation be

&y dy -
U s -+ Yo +wy=R,
where %, v, w, and R are functions of z; this can be

resolved into
d
(p%_{.q) (T__ + s)y: R,

where p, ¢, 7, and s are functions of x, if
d
pr=1u, Qr+p (d_::+ s>=fv, and qs+pfll—‘:c=w;

and the values of p, ¢, 7, and s can usually be obtained
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except the nth, equal to the derivative of the same order in

the first set, determine the arbitrary coefficients and sub-
stitute their values in the original expression for y.

-(23)  Of the form

Yot Iy=
Y4t Iy=X,

3"y

where X is a function of z alone.

Assume a + br =¢’, and change the independent vari-
able in the given equation so as to introduce ¢ in place of
2. The solution can then be obtained by (22).

(24) Linear; of second order; coefficients not constants.

General form y + P + Qy=R.

(a) If a particular solution y = v of the equation
dty dy .
el + P s +Qy=0

can be found by inspection or other means, substitute
y=vz in the given equation, which will then reduce to
the form

d 2

doc2+( +P> dz =B

and can be solved by (25). Substitute the value of 2
thus found in y =wvz, and the result will be the general
solution of the given equation.

(b) The substitution of y=oz in the given equation,
where v is given by the auxiliary differential equation

@
-2a_:’0+m=o,
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(b) 1t the second member of the given equation can
be got rid of by differentiation, or by differentiation and
elimination between the given and the derived equations,
solve the new differential equation thus obtained, by (21),
and determine the superfluous arbitrary constants so that
the given equation shall be satisfied.

In determining these superfluous constants, it will
generally -save labor to solve the original equation on
the hypothesis that its second member is zero, and then
to strike out from the preceding solution the terms which
are duplicates of the ones in the second solution before
proceeding to differentiate, as from the nature of the case
they would drop out in the course of the work.

(¢) If the given equation is of the second order, solve
on the hypothesis that the second member is zero,
by (21), obtain from this solution a simple particular
solution by letting one of the arbitrary constants equal
zero and the other equal unity, and let y = v be this last
solution ; then substitute vz for y in the given equation ;
there will result a differential equation of the second order
between z and z in which the dependent variable z will be
wanting, and which can be completely solved by (25).
Substitute the value of 2z thus obtained in y=wz and
there will result the required solution of the given equa-
tion. ‘

(d) Solve, on the hypothesis that the second member
is zero, and obtain the complete value of y by (21).
Denoting the order of the given equation by n, form the
dy d*y dly
i I g Then
differentiate y and each of the values just obtained, re-
garding the arbitrary consiants as new variables, and
substitute the resulting values in the given equation; and
by its aid, and that of the n —1 equations of condition
formed by writing each of the derivatives of the second set,

n — 1 successive derivatives
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e
whether it can be made infinite by writing equal to zero
any expression involving y. If so, and if the equation
thus formed will satisfy the given differential equation, it
18 a singular solution.

Or take

()
dp , regarding y as constant, and see whether
2

it can be made infinite by writing equal to zero any ex-
pression involving z. If so, and if the equation thus
formed is consistent with the given equation, it is a
singular solution.

Linear, with constant coefficients. Second member
Zero.

Assume y=¢™; m being constant, substitute in the
given equation, and then divide through by e™. There
will result an algebraic equation in m. Solve this equa-
tion, and the complete value of y will consist of a series
of terms characterized as follows: For every distinct
real value of m there will be a term Ce™ ; for each pair
of imaginary values, a+bV —1, a—bv —1, a term
Ae™ cosbax 4 Be®® sinbx ; each of the coeflicients A, B, and
C being an arbitrary constant, if’ the root or pair of roots
occurs but once ; and an algebraic polynomial in @ of the
(r—1)st degree with arbitrary constant coefficients, if
the root or pair of roots occurs r times.

Linear, with constant coefficients. Second member not
zero.

(a) If a particular solution of the given equation can
be obtained by inspection, this value plus the value of y
obtained by (21) on the hypothesis that the second mem-
ber is zero, will be the complete value of the dependent
variable.
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order between p and the remaining variable, which may be

simplified by striking out any factor not containing Qldﬂ or -
@

gﬂ, and can be solved by (4). Eliminate p between this

solution and the given equation, and the result will be the
required solution.

Of the first degree in « or y.

The equation can sometimes be solved by the method of
(16), differentiating relatively to the variable which does
not enter to the first degree.

Homogeneous relatively to « and y.
Let y = vz, and solve algebraically relatively to p or v,
p standing for Z—y The result will be of the form p = fv,
x

orv=Fp. If
d d d

p = fo, (—ﬁ: v, ——%%:fv, wd—;; + v = fu,
an equation that can be solved by (1). If

v=Fp, g=Fp7 y=xFp,
an equation that can be solved by (16).

Of the form F (¢, ) =0, where ¢ and ¢ are functions

of z, y, and Z_:Z, such that ¢ =a and ¢ =">b will lead, on

differentiation, to the same differential equations of the
gecond order.

Eliminate ;(% between ¢ = @ and ¢ = b, where a and b

are arbitrary constants subject to the relation that
F(a,b) =0, and the result will be the required solution.

Singular solution will answer.
Let %71 =p, and express p as an explicit function of &
2 :

~and y. Take %, regarding @ as constant, and see
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In the general case y, is entirely arbitrary, and if the
given equation is at all complicated, the solution is apt to
be too complicated to be of much service. If, however,
in a special problem the value of y corresponding to some
value of x is given, and these values are taken as y, and
@y, the solution will generally be useful.

Can be solved as an algebraic equation in p, where p

.stands for idg
dx

Solve as an algebraic equation in p, and, after trans-
posing all the terms to the first member, express the first
member as the product of factors of the first order and
degree. Write each of these factors separately equal to
zero, and find its solution in the form V' —c=0 by (V.).
Write the product of the first members of thesg solutions
equal to zero, using the same arbitrary constant in each.

Involves only one of the variables and p, where p stands

for @
dx
By algebraic solution express the variable as an expli-

cit function of p, and then differentiate through relatively
to the other variable, regarding p as a new variable and

remembering that gﬁ: l There will result a differen-

tial equation of the first order and degree between the
second variable and p which can be solved by (1).
Eliminate p between this solution and the given equation,
and the resulting equation will be the required solution.

Of the form afip + yfep = fi;p, where p stands for Z_y .
2

Difterentiate the equation relatively to one of the vari-
ables, regarding p as a new variable, and, with the aid of
the given equation, eliminate the other original variable.
There will result a linear differential equation of the first
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M, a function of y alone.
fDN-D ¥,
Mu]tlply the equation through by e Y, and

the first member will become an exact differential. The
solution may then be found by (6). )

M, a function of (xy).

Ny — Dy M—De¥
Multiply the equation through by e/ Ny—32 "* where
v =2y, and the first member will become an exact differ-
ential. The solution may thus be found by (6).

A solution of Mdx + Ndy =0 in the form of a series
can always be obtained.
dy_ M

Throw the given equation into the form W

then differentiate, and in the result replace i'lg by
2
M, thus obtaining a value of 7 acz in terms of x

4
and y; by successive differentiations and substitutions

3 4
get values of g ,‘Z: Z i/, ete., in terms of 2 and y.
2®” dw

If y, is the value of y corresponding to any chosen
value @, of x, y can now be developed by Taylor's
Theorem. ’

We have Yy =Je=[ (w4 x— 25)

= 2+ (% — %) S’ + L’-”'—_'”’—")Zf”wo + k,—wﬂf My ey

or

d?/o (2 —x)*® d?/o (9’—%) &y,
y=y+(x— xo) + 5T dmg + 31 d%3.+
where % Ty i ete.,

dz, da?’ dad’
are obtained by replacing « and y by a, and g, mn the
values of
dy d? @
@ @ @
described above.
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Of the form g—g+ X,y = X,y", where X; and X, are
2

functions of x alone.

Divide through by y*, and then introduce z=y'~" in
place of y, and the equation will become linear and may
be solved by (4). p

Mdx + Ndy an exact differential. Test D, M= D, N.

Find f Mdz, regarding y as constant, and add an arbi-

trary function of y. Determine this function of y by the
fact that the differential of the result just inentioned, taken
on the supposition that = is constant, must equal Ndy.
Write equal to an arbitrary constant thej Mdax above

mentioned plus the function of y just determined.

Mz + Ny=0.
Divide the first term of Mdx + Ndy=0 by Mz, and
the second by its equal — Ny, and integrate by (1).

Mx— Ny=0.
Divide the first term of Mdx 4 Ndy=0 by Mz, and
the second by its equal Ny, and imtegrate by (1).

Of the form f; (wy) yde + /3 (wy) ady = 0.

Multiply through by —1——, and the first member
Mx — Ny
will become an exact differential. The solution may then
be found by (6).

D,M—D,N
S
.'N ‘/'DyM—DzN.dm
Multiply the equation through by e N , and
the first member will become an exact differential. The
solution may then be found by (6).

a function of « alone.
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Of or reducible to the form Xdx + Ydy = 0, where X is
a function of « alone and Y is a function of y alone.

Integrate each term separately, and write the sum of
their integrals equal to an arbitrary constant.

M and N homogeneous functions of x and y of the
same degree.

Introduce in place of y the new variable » defined by
the equation y = vw, and the equation thus obtained can
be solved by (1).

Or, multiply the equation through by ]T[w-1|-—N’ and its

first member will become an exact differential, and the
solution may be obtained by (6).

Of the form (a» + by + ¢) da + (a'z - b'y + ') dy = 0.
If ab'— a'b =0, the equation may be thrown into the

form (ax+by+c)dw+ (aw+by+c)dy 0. If now

z2=oax+ by be 1ntroduced in place of either = or y, the
resulting equation can be solved by (1).

If ab' — a'b does not equal zero, the equation can be
made homogeneous by assuming ¥ = 2'—a, y = y'— 8, and
determining a and B so that the constant terms in the new
values of M and N shall disappear, and it can then be
solved by (2).

Linear. General form % + X y= X3, where X; and

X, are functions of z alone.

Solve on the supposition that X, =0 by (1); and from
this solution obtain a value for y, involving of course an
arbitrary constant C. Substitute this value of y in the
given equation, regarding C as a variable, and there will
result a differential equation, involving C' and 2, whose
solution by (1) will express C as a function of 2. Sub-
stitute this value for € in the expression already obtained
for y, and the result will be the required solution.




VIII.

IX.

XI.

KEY.

y are of the degree 1, g—y- of the degree 0,
a y

of the degree — 1,
Homogeneous on the supposition that « is of

the degree 1, y of the degree n, g—g of the
2

n__.2 “ee

degree n — 1,

dy &y
H latively to v,
omogeneous reiatlv ytoy da dwz

Containing the first power only of the deriva-
tive of the highest order

2 2
Of the form g—w—g + X% -+ Yl:%] =0, where

X is a function of 2 alone and Y a func-
tion of y alone* .
Singular integral will answer

Simultaneous equations of the first order .
Not of the first order .

All the partial derivatives taken with respect
to one of the independent variables .

Of the first order and Linear

Of the first order and not Linear

Of the second order and containing the denv-
atives of the second order only in the first
degree. General form RD/z+ 8D, D,z +
TDz2z=YV, where R, S, T, and V may be
functlons of @, y, 2, D,2, and D,z . .

Containing thrée variables
Containing more than three variables .

Containing three variables
Containing more than three variables .

* See note, p. 310.

329
(30) 341

(31) 341

(82) 341

(83) 341

(34) 342
(35) 342

(38) 344

(89) 345

(40) 345
X. 329
XI. 329

(45) 347

(41) 346
(42) 346

(43) 346
(44) 347
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Page.

Of the form F (4, y)=0, where ¢ and ¢ are
functions of =, y, and Z—‘Z, such that ¢ =a
y=>b, will lead, on differentiation, to the
same differential equation of the second

order. . . . e e o 0. (19) 334
A singular solution w1ll answer . . . . . (20) 334

VII.  Not of first order.
Linear, with constant coefficients ; second

member zero* . « .+ .+ . (21) 835
Linear, with constant coefﬁments second
Iember not zero* . . (22) 335
Of the form (u+ bw)"d y+A(a+bm)n~1d -’{
da=
+ -4 Ly= X, where X is a function of
z alonet . . . . (28) 337

Linear ; of second 01de1 H coeﬂiuents not con- -
d*y dy
tant. G 1f —< 4 P =R;
stan eneral form, gt + 7 + Q=R

P, @, and R being functions of . . . (24) 337
Either of the plimitive variables wanting . .. (25) 339

Of the form d_E=X X being a function of

a:aloneT e e s« o+« + . (26) 339
Of the form a—w;— Y, Y being a funection of

yalonef. . . . . . . . . . ., . (27) 340

Ko §
Oftheformdy-—fdxnzl/. C e e e e . (28) 340

p :
Oftheformdny fdx”g' <o e e e . (29) 340

Homogeneous on the supposition that  and

# The first member is supposed to contain only those terms fnvolving the dependent
variable or its derivatives.
t See note, p. 310.

’



VI.

KEY.

Of the form (am + by+c) dx 4 (a z b ;c/—l-c’) dy
=0 .

Linear. General form, d~'3+ X,y = X,, where
X, and X, are functions of x alone* .
Of the form leﬂ + X,y = X,y", where X; and X,
x

are functions of x alone* . e e e
Mdx + Ndy an exact differential. Test, D, M
=DN . . e .

Mz + Ny=0

Mx— Ny=0 . .

Of the form F, (xy) ?/dx + F’2 (my)wdy O
DM—DN

—e =2 g function of « alone
N

Q—NTDJ a function of y alone . . .
Qﬁ%—j}l—v a function of (ay)
A solution in the form of a series can always be

obtained . .« +« « « 4 o+ e .

Not of first degree.
Can be solved as an algebraic equation in p,

where p stands for dy .
da
Involves only one of the variables and p,
where p stands for ay .
dx

Of the first degree in x and y; that is, of the
form zfip + yfap =f;p, where p stands for
dy :

da *
Of the first degreeinxzory . . . . .
Homogeneous relatively to x and y

* Of course, X; and X, may be constants.

327
Page

(3) 330
(4) 330

(5) 331
{(6) 331
(7) 331

(8) 331
(9) 331

(10) 331
(11) 332

(12) 332

(18) 332

(14) 333

(15) 333

(16) 333

(17) 334
(18) 334
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KEY.

Page
Single equation ., . . . . . .. . . I. 326
System of simultaneous equations. . . . . VIIL 329

L Involving ordinary derivatives . . . . . . Il. 326

Involving partial derivatives . . . . . . 1IX. 329

II. Containing two variables . . . . . IIT1. 326
Containing three variables and of ﬁrst degree

General form, Pde 4+ Qdy + Rdz=0 . . . (36) 343

- Containing more than three variables and of
- the first degree. General form, Pdx, 4+ Qdx,
+ Rdeg+4++=0 . . . . . . . . . (87) 34

Il Of firstorder . . . . « . . + . . . 1IV.32%
Notof firstorder . . . . . . . . . . VIIL 328

IV. Of first degree. General form, de+Ndy 0 V. 326
Not of first degree . . . . .« « .« VL 327

\'A Of first degree. General form, Mdx - Ndy
=0.

Variables separated or separable; that is, of

or reducible to the form Xdx 4 Ydy=0,

where X is a function of x alone, and Y is a
function of y alone®* . . . (1) 330

M and N homogeneous functlons of x and y of
the same degree. . . . . . . . . . (2) 330

* Of course, X and ¥ may be constants,
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2
@ dy+tanwdy+cos"’$ y = 0, reduces to z:g+?/=0’

if z =sinwx.

(C.) Change of both variables.
(1) ( - ——z> xy = dy (mr;2 ~g® — a?), reduces to

2
L .d”(z—v——az)=0, if 2=2? and v=9"

@) y—x)Q+ wz)% %}: QA+ %, reduces to
gin (¢ —)dp=4db, if = tanf and y = tand.
(3) (w—-— — ) = a,<1 + L) (& + yz) , reduces to

dr _ 9% o, ifx=rcos¢ and y=rsing

Nr(l—ar) Va
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228. When a differential equation does not come under any
of the forms given in the key, a change of dependent or inde-
pendent variable, or of both, will often reduce it to one of the
standard forms. No general rule can be laid down for such g
substitation. It will, however, often suffice to introduce 2 new
letter for the sum, of the difference, or the product, or the
quotient of the variables, or for a power of one or of both.
Sometimes an ingenious trigonometric substitution is effective,
or a change from rectangular to polar codrdinates ; that is, the
introduction of r cos ¢ for z and r sin ¢ for y.

The following examples of such substitutions are instructive.

(A.)  Change of dependent variable.

2
(¢)) (m+y)2%= a?, reduces to aQi-z“’dz —dx =0,
if we introduce z =z 4 Y.
. d
(2) % =sin(¢ — 6), reduces to T;—-:hl—w —d¢ =0,

fo=¢—0..
(8) (z—yHdz +2zydy = 0, reduces to (2 —2) do 4 xdz =0,
if z=g"%

4) wg—i— ¥ +zVa® —y’ = 0, reduces to ﬁ+da:= 0,

if z=4.
x
(3) g%/-;--‘?- (%—Z—n”y:O, reduces to f—wz'?—~n2z=0,
o
if z2=uy.

(B.) Change of independent variable.
2
) 1- xz)z;iag-{—g/: 0, reduces to

2
cos26g§y+sin9 cos6%+y=0, if x=sind.
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Obeying these, our work is as follows:
dy? — a?da? = 0,
dy —adr =0,
dy +adx =0,

dpdy — a*dgdx = 0.

Combining (1) and (3), we get

dpdy — adgqdy = 0,

or dp —adg=0.
(1) gives Y —ar=a.
(4) gives p—aqg=g.
(2) and (8) give us, in the same way,
Y+ ar=aqa,
p+ag=pH;

and our two first integrals are
p—ag=f(y— az),
_p+oag=f,(y +az),
J1 and f; denoting arbitrary functions.

Determining p and ¢, from (5) and (6),

p=3[fiy+ax)+f1(y —ax)],

q=21—a[f2(y+aw) —hH(y—ax)];

3238

1)
(2)
3)

O]

)
(6)

Qe =} [fi(y+02) +i(y—a0)] do+ - [fi(y+am)—fi(y—ao)]dy

_fi(y+ az) (dy + ade) —f; (y — az) (dy — adz)

2a

Hence, z=F(y+ ax) + F, (y — ax),

where F and F) denote arbitrary functions obtained by integrat

ing f; and fa, which are arbitrary.
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We have wy_%s— 2 +_”"'.7__i+-“’1_1'...,

315 517 719 9!11

d@y) oo 2 & o
de = 31+5! .+.

@, P 2, 2P
=‘”<”°—a+5—rﬂ+a"‘)’

=wsinx;
whence 2y = sinx —x cO8 R,
1, .
and =~ (sinx —  cosx).
%

By going back to (2), and using odd values of m, we get
another solution of our given equation, namely,

P o o
—"+ ~%14aT 116 618

which can be reduced to
y= i (cosx 4 x sinw).
Hence our complete solution is

y= i [4 (cosx + x sinz) + B (sinz — # cosx) ],
or Y =A'[9ﬁ—%-:—c) + sin (. — c)}

. B
f let — = tane.
if we le )

¢)) Diz—a’Djrz=0.

Beginning at the beginning of the key, we are directed
through I. and IX. to (45), p. 347, for our specific instrucs
tions.
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Turning now to (24) (a), page 337, we find

e 2z
y_l_m+c<1+w+1_wlogw).
@y, (12—
(® dx2+<1 w2>y_o.

Beginning at the beginning of the key, we are directed
through I., IL., IIL., VII., to (24), page 337, for our specific
instructions. Let us try again the method (24) (e), page 339.

Assume y = 3a,,2™, and substitute in the given equation,

3[m(m —1)a,2**+ a,2™ — 20,2~ ?]=0.
The terms containing 2™ are ’
(m+2) (m+1) 0,y 00™ + 0,2 — 20,375
writing the sum of the coefficients equal to zero, we have
m (m -+ 8) g+ a,=0. ; ¢
Lettingm =0 and m = —3, weget qp=0and a_s;=03; and all

terms of y involving even negative powers of z disappear, as do
all terms involving odd negative powers, except the — 1st.

v o
In general Oys = —-m. 2)
From this we get
a,=——22% =—3—11—5, if we take a,=14,
— a = 1
%= 3357 517
[42 =—_—.g2—— =—_1_
8 2.4.5.6.7.9 719’
= a, _ 1
0 2.4.5.6.7.8.9.11 9111
a? ot af P o
H _ —_— e e
ence Y=3"s15 57 7o toima

is a particular solution of the given équation. This can be
thrown into finite form without much labor.
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™ 2(1 -2y 2 — 2y =0, |

Beginning at the beginning of the key, we are directed |
through I., II., IIL, VII., to (24), page 337, for our specific
instructions.

Let us try the method of (24) (e), page 339.

Assume y = 3a,x™, and substitute in the given equation ;
we have :

S[mm—-1)a, 2" —2m (m — 1) a,z"
+m(m—1)a,a"" —2q,2™]=0.

Writing the coefficient of #™ in this sum equal to zero, we
have o
m(m 4+ 1) a4 — 2[m(m—1)+1]a, + (m —1)(m — 2) a,,,=0,
and we wish to choose the simplest set of values that will
satisfy this relation.

Substituting m =0, m =—1, i = — 2, ete., in this relation,
we find

Q3= 0gy O_g=0_3y G_g=q_gy ***s
Hence if we take a, = 0, it follows that
a—l =03 = a,__s... = 0,
and no negative powers of & will occur in our particular
solution.
Substituting now m =1, m = 2, m =3, etc., we have
Ay == O3 == Qg = by == *+*.

Taking a, = 1, we get as our required particular solution of the
given equation
y=ov+ 2ttt .o
This can be written in finite form, since we know that
' 1

l14be+at4ad...=
l—-2

Hence Y=
. l—=

is a particular solution.
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L, Py dy .
2 . —_ — 3
(6) sin vz + sinz cos 2 y=2x—sinz (1)

Beginning at the beginning of the key, we are directed
through I., IL., III., VII., to (24), page 337, for our specific
instractions.

Dividing through by sin’sz, the equation becomes

a2y

W+ctnwd—y—csc%.y:mcsc?m—cscw. 2

dx
y = ctnz is found by inspection to be a solution of

Py, dy 2 —0-
W—{-ctnwd—w-—csc z.y=0;

(2) can then be solved by (24) (a).
Substitute ¥y = zctnz in (2), and it becomes

ctn m@ + (ctn?z — 2 escPx) dz _ zescle — esex,
da? dz

2
or g—:z—(tanm+secm cscw) g-i: rsecx cscx — secw.  (8)

Referring to (25), page 339, and obeying instructions, we

fet z'=gf, and (3) becomes
2

!
& (tanx + secx cscx) 7 = x secx cscx — secy,
dx

a linear differential equation of the first order ia 2'. whose solu-
tion by (4), page 330, is

2' = A tanz secx — x sec’x + tanx secx (log tang —log sinx) ;
but 2' = g—z, whence integrating, we have
2z
z =B 4 Asecx —x tanz — (1 4 secx) log (1 + coszx),

and
y=Aecscz 4 Betnx — x — (escx + ctux) log (1 4 cosx).
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Striking out the factor 2p* + f, we have

a differential equation of the first order and degree in which
the variables are separated, and which therefore can be solved
by (1), page 514. ’

Its solution is log p —logy? = C,

or ‘£= C.

Eliminating p between this and the given equation, and re-

ducing, we have cy (# —c¢*)=1, as our required solution.
dy_ oy By _ody
5 — QL 22 27 =1. 1
@) wt Car Tl T Pt M

Beginning at the beginning of the key, we are directed
through I., IL., III., VIL, to (22) (a), page 335, for our
specific directions.

We see at once that ¥y =1 is a particular solution.

Obeying directions, we have now to solve

Ay _o By, oy _ oy,
G 2gm T2 2, TY=0 by (2. ()

Let y =™, and we have
mt—=2mP 4+ 2m¥—2m 4 1=0,
as our auxiliary algebraic equation in m. Its roots are
1,1, V=1, =vV—=1.
The solution of (2) is then
y = (A + Bzx)e* 4 Ccosz + Dsinz,

and of (1) is
y= (A + Bx)e* 4 Ccosx + Dsinz + 1.
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v (2 )((m_%) (2= wo)+<w—wo)

51 -
_(m—m) )
7! ’

or

;y=ac[~::—‘;cos(ac—:l:o)——m";;:l’L Sin(‘”-%)]

= 2| % cos (x — @) — 1—— sin (@ — ay)
5 \ ]

Y% is entirely arbitrary ; call it sina, then
o

y = z[sina cos(z — @) —cosa sin (& — %) ] = sinfa—(z — o) ],

y == sin (¢ — &), where ¢ is any constant.

(4) (gg)=y«<y+wgg)

Beginning at the beginning of the key, we are directed
through I., II., IIL., IV., to VL, page 327. Looking under VI.
we see that the equation is of the first degree in «; we are
referred to (17), page 334, for our specific instructions.

Obeying these, we firat replace %’7 by p; the equation becomes

P=y'(y +ap).
Differentiate relatively to y, and we get
dp ouh dp
3ptt=4 2 .
PR =ty +ap) + 20+ 3

Eliminate @,

3P — 4 Y\,
7 +2y‘+( )y’

or P4y Ay B+ g
P ¥
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v, Mo Lo Vig=ys,

» f—w%=—y'—§\/m_“’—_y2, %’=—yo—~\/% — %

Py 394 vE—p, TSy iy,

L Yy + vy, =+ T,
s e %{/:J—{o—vmm,
Ny Svo=y, g‘;::=—yo—§vm,
=Ty v, ==y e

and the general value of y is

_ﬂ;<3% 2) ‘

3!

+”‘4'%<yo+ m)+@§$£ %_m)
8 ).

This result can be very greatly simplified by breaking up the
* series ; we have

v %(l S SNCTES Gomr.)

6!

PN Gl %)( (w—wo)’_,_(w—wo)* gw xo)‘ )

—VVT%(@_M—(”S%)H(”;%)“ (=)
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2dy — ayde = 0,

d
dy _adz _ o,
Y X

logy — alogz=¢,
log-z-a=c;

¥y_-o0,

x*

y =02 Q)

dy _ dac

ht Ap— C’ a—1 a

dx alat 4w dz

Substitute in the given equation,

ac
aCz* 4+ ac"“f‘a —aC*=2x+1,

w"*‘%g—(m+1)=0,

41
ac — e dz=0,

(e —1)a! *

N

Substitute this value for C in (1), and we get

y_—:C'ma_(l_*_ .m >a
a a—1

the required primitive.

(3) m%‘—y+x\/§:’f—_y—"’=0.

Beginning at the beginning of the key, we are directed
through I., 1L, 111., IV., to V., page 326. Looking under V.,
we find that our equation does not come under any of the
special forms there given. We are consequently driven to
obtaining a solution in the form of a series, and for specific
instructions we are referred to (18), page 332. Obeying
these, our process is the following :



314 INTEGRAL CALCULUS. [AxT. 227,

A singular solution of a differential equation is a relation
between the primitive variables which satisfies the differential
equation by means of the values which it gives to the deriva-
tives, but which cannot be obtained from the complete primitive
by giving particular values to the arbitrary constants.

227. We shall illustrate the use of the key by solving equa-
tions (1), (2), (8), (4), (5), (6),(7), (8), and (9) of Art. 226
by its aid.

(1) (A+2)y+1=9)a=0, or (142)ydo+ (1~y)ady=0.

_ Beginning at the beginning of the key, we see that we have a
- single equation, and hence look under L, p. 326; it involves
ordinary derivatives: we are then directed to IL, p. 326; it
contains two variables: we go to IIL, p. 326; it is of the
first order, IV., p. 326, and of the first degree, V., p. 326.

It is reducible to the form

v Y

which comes under Xdz -+ Ydy =0.

Hence we turn to (1), p. 330, and there find the specific direc-
tions for its solution. Integrating each term separately, we get

loge+ao+logy ~y=e¢, or log (@y) +x—y=e,
the required primitive equation.
dy

2 = — gy = 1.

(2) mda: ay =2z

Beginning again at the beginning of the key, we are directed
through I., IL., II1., IV., to V., p. 326. Looking under V.,
we see that it will come under either the third or the fourth
head. Let us try the fourth; we are referred to (4), p. 330,

for specific directions.
Obeying instructions, the work is as follows

dy
= —ay =0
da Y s
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2
sinﬁwg—wg+sinwcosw%—y=w—-sinw, (6)

—ap®Y 9y =
z(1—2x) 3 2y=0, 1)
d?y 2
— —Zl\y=0
da? <1 w2>y i ®)
- DEx—dDj2=0, (9)

are differential equations. ,

The order of a differential equation is the same as that of the
derivative of highest order which appears in the equation.

Equations (1), (2), (3), and (4) ave of the first order; (6),
(7), (8), and (9) of the second order; and (5) of the fourth
order.

The degree of a differential equation is the same as the power
to which the derivative of highest order in the equation is
raised, that derivative being supposed to enter into the equation
in a rational form.

Equations (1), (2), (8), (8), (6), (7), (8), and (9) are all
of the first degree ; (4) is of the third degree.

A differential equation is linear when it would be of the first
degree if the dependent variable and all its derivatives were
regarded as unknown quantities. :

Equations (2), (5), (6), (7), (8), and (9) are linear.

_The equation not containing differentials or derivatives, and
expressing the most general relation between the primitive vari-
ables consistent with the given differential equation, is called
its general solution or complete primitive. A general solution
will always contain arbitrary constants or arbitrary functions.

The differential equation is formed from the complete primi-
tive by direct differentiation, or by differentiation and the
subsequent elimination of constants or functions between the
primitive and the derived equations.

If it has been formed by differentiation only without sub-
sequent elimination or reduction, the differential equation is
said to be exact.
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CHAPTER XVIIL
KEY TO THE SOLUTION OF DIFFERENTIAL EQUATIONS. .

225. In this chapter an analytical key leads to a set of con-
cise, practical rules, embodying most of the ordinary methods
employed in solving differential equations ; and the attempt has
been made to render these rules so explicit that they may be
understood and applied by any one who has mastered the Inte-
gral Calculus proper.

The key is based upon ¢ Boole’s Differential Equations™
(London : Macmillan & Co.), to which or to ‘* Forsyth’s Differ-
ential Equations” (London: Macmillan & Co.), we refer the
student who wishes to become familiar with the theoretical
considerations upon which the working rules are based.

226. A differential equation is an expressed relation involv-
ing derivatives with or without the primitive variables from
which they are derived.

For example :

(1+w)y+,(1—y)wg—i= , 1)
wg—z—‘ayéw-l-l, » (2)
”d—w—y-f-w\/“‘z y'=0 ' ®)
(o D =r(v+a3 ) @)

dy &y Qﬂ_gd_?/ =1
e T iar e TYTD @)
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Answers.
(@) —a<zeLas;.
ki
2
() —w<e<®0; (d) ~o<el®o;

(b) —w<z<0if n>0, — <x<gﬁn<0;

(e) —1<z<l; , ) —g<w<’—2’;

(9) —%\/§<w<-§\/3; ) —1<z<l;

(i) —1<a<1; () —5<=<Gs
(k) —w<az<m; RO) —£<w<2p
(m) —x<z <0} (n) —g<w<g;
(0) —2<a<2; () —V2<z<V2:

@ —2<z<2.

311
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(o) 1og(m+\/a:2+a,2)=1oga+gf__1.£+_1'_3.~i_
a 2 8a® 2.4 id
2 4
O @rey =21+ G- )
. _ 22° 42!
(¢) e*.cosz _1+x_§!__ﬂ...
(d) goos =e 1___.’1:_2 4_584_31‘/1’5.
' - 21741 61 )
. 208 94
(e) elog(l+2) _w+ﬁ+—§+5—!—---
(f) tan*x =x4+%”8+6—5””~8--.
@ Q+2a43) 7t =1—cr2o- "0
-1 2 2
h) e @ =1 L 2.
(h) € +x+2 6
. 14 2 2
I — =2 i AP
(@) Og(l—m) <w+3+5 >
. _ 2 2¢ 217 28.31 2°.691
(N tanm_w+ﬁw*+aw5+ = 2 4 o1 P4+ T zt..
(k) = ctnw=1_f__m_‘_2ﬂs_ﬁ_ﬁ...
’ 3 45 945 4725 98555
fud = il 2 5.2° 5 61.27
() log tan<4+w>_logtan4+2w+3 !x*+ 31 a:"+—7Ta:
sinz x , o 3at 84 3a° 562"
(myems =14yt 51 et T
2 8a2% 9xt, 872 | 1774°
tanx __ = _— — —_— .
() e =1ttt 7+ ot 5 T o
. e 1.2 2 1.2.83 ot
, 132 — 9 o e 1m0 T
() (versinTa) <w+3.2+3.5 573574 )
1 2 22 o 22t 24 af

() st =242 2 2 2 L.

14o  _ 8 4 _ (3 4\ (3 4\,
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—ising - e'_—2- ﬂ,
(v. [38] and [4], Art. 35)

are single-valued, and are finite and continuous throughout the

plane. Therefore, Maclaurin’s developments for sinz and cosz

bold for all values of z.

sinz

Co8z2

continuous, and become infinite only when cosz=0; that is,

and cosz= cos(®+ yi) = coszx - ‘3”__'_2_{_'

(e) tanz=

1 .
, and secz=—, are single-valued and
cos?

when z = % Therefore, Maclaurin’s developments for tanz and

secz (I. Art. 1388), hold for every value of z whose modulus is

less than Z.
2

(f) ctnz= cgs_z, and cscz= -—l— become infinite when z =0,
sinz

sinz
and cannot be developed by Maclaurin’s ‘Theorem.

(9) sin~'z is finite and continuous throughout the plane; it

is, however, multiple-valued, and its derivative Vi—“’ becomes
—z

infinite when 2 =1, and when 2= - 1. Therefore, the develop-
ment for sin~'z (I. Art. 135 [2]), holds for any value of 2
whose modulus is less than 1.

(k) tan 'z is finite and coutinuous throughout the plane; it

is multiple-valued, and its derivative 1 1 becomes infinite

Z?
when z =i, and when z=—1i. Therefore, the development for
tan'z (I. Art. 135 [1]), holds if modz < mod<; that is, if
mod z < 1.

ExamMPLEs.

(1) Show that the development of —2
142

in I. Art. 136, Ex. 1, holds if modz < 1.

(2) Show that the development of log (1 + ), given in 1.
Art. 136, Ex. 2, holds if modz < =.

(3) Obtain the following developments, and find for what
real values of x they hold good :

+ log (1 4+ z2), given
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that is, for all values of 2z, such that mod (2 — a) < mod @ ; and
consequently [1] holds if mod k< mod a.
If nis a fraction, 2" is multiple-valued, and our circle of

N
convergence must avoid the points at which %— becomes zero
%

or infinite ; but as the origin is the only point of this character,
the circle of convergence is the same as in the case last con-
sidered, and [1] holds for all cases where mod h < mod a.

When « and & are real our results agree with those obtained
in XI. Art. 131,

(®) & = e+ = ¢" (cos y + i 8iny) ([4], Art. 81)

is single-valued and continuous, and becomes infinite only when
2= oo. Maclaurin’s development for ¢° holds, then, for all
finite values of z. '

(¢) log z = log (rcis¢) = logr 4 ¢¢ (Art. 33)
is finite and continuous throughout the whole plane. It is,
however, multiple-valued, but its derivative 1 pecomes infinite

2

only when z= 0, and does not become zero for any finite value
of z. logz, then, can be developed into a convergent series,
arranged according to powers of z — a, for all values of'z within
a circle having the centre « and passing through the origin ;
that is, for all cases where mod (z — a) < mod a.

If z—a=h, we get )
h? R ht

h
h)y= —_——— e — —
log (a+1) 10ga+a 2a2+3a‘°’ 4a‘+ £3]
[3] helding for all cases where mod h < mod a.
Ifa=1 and k=2, we get
log(1+z)=‘”i 324..53__'?_*_... [4]

which holds for all values of 2z where mod z < 1.

gte? —e?
2

“

(d) sinz =sin (x4 yi)=sinz. +icosa:-ev
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and we get the very important result that if o function of z is
holomorphic within o circle whose centre is at the origin it may
be developed by Maclavrin’s Theorem, and the development will
hold, that is, the series will be convergent, for all values of =
lying within the circle.

If a function of 2 is holomorphic within a circle described
from z =a as a centre it can be developed by Taylor’s Theorem
into a series arranged according to powers of z—a, and the
development will hold for all values of z lying within the circle.

The question of the convergemcy of either Taylor's or
Maclaurin’s Series for the case when z lies on the circum-
ference of the circle needs special investigation, and will not
be considered here. '

If the function which we wish to develop is single-valued, in
drawing our circle of convergence we need avoid only those
points at which the function becomes infinite; but if it is
multiple-valued we must avoid also those at which its derivative
is zero or infinite (v. Art. 217).

224. We are now able to investigate from a new point of
view the question of the convergence of the series obtained by
Taylor’s and Maclaurin’s Theorems in I. Chap. IX.

Let us begin with the Binomial Theorem,

(a) (a+h)”=a”-{-na"“h+n£@_2__!-llan—2},,2+..., [1]
or, following the notation of [9], Art. 220,

2 =a" + na” (2 — a)+ﬁ732"——1—)a"‘*(z —ay+ ... [2]

If nis a ;\)ositive integer, z” is holomorphic throughout the
whole plane, and [2] holds for all values of z and a, and [1]
for all values of a and 4.

If n is a negative integer, 2" is single-valued, and it is finite
and continnous except for z=0, where z* becomes infinite,
[2] is, then, convergent for all values of z lying within a circle
described with a as a centre and passing through the origin ;
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Integrate now both members of [3] around the circumfer.
ence, and we have

1 (Fz 1 [ FzZ Fz
i) 7%= 5| [Faz s~ [ az
2mi Z =3 271'[ Z—a" =9 ) 0

+(t—a)j'(7%dZ+ J [4]

and, since each of the functions to be integrated is holomorphic
on-the contour around which the integral is taken, and the
second member of [3] is convergent, each integral will be finite
and determinate, and the second member of [4] will be con-
vergent.

Substituting in [4] the values obtained in Art. 221, 1], [2],
(8], and [4], we have

2
Fi=Fa+(t —a) Fla +-(t;'—‘“).1ﬂ'a+§%fpﬂa+

./I_Q__“)"F(n)a_,_m_ 153
n!
If the point z = q is at the origin, @ = 0 and [5] becomes
- t2 ! t3 "
Ft_Fo-l-tF’o+2_!FrO+3_!p 04 oo, [6]

which is Maclaurin’s Theorem.
That [5] is merely a new form of Taylor’s Theorem is easily
seen if we let ¢ —a =%, whence t = q + %, and [5] becomes

2 3 .
F(a + 1) =Fa+hF’a+%F”a +,g—'F’"a+ [7]
[6] can, of course, be written
N .
Fe= Fo 4 2F'o +2£-!F”o +§_?F'"o+ ceuy [8]

and [5] as
Be=Fq +(z — a) Fla + Q_;_'ﬂ)_gp"a + (z’%,ar]i‘"'a ey
[s]
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If the modulus of ¢ is less than 1,
limit
n=oo (¢]=0.

limit 1 — 1

Hence 1+q+¢' + ¢+ = n=w[7:%]—1—_—q~ (1]
even when g is imaginary, provided that the modulus of ¢ is
less than 1.

Suppose, now, that everywhere within and on a certain cir-
cumference described with the point z=a as a centre Fz is
holomorphic. Let 2=1 be any point within this circumference,
and z=Z be a point on the circum-
ference. Then the modulus of Z —a z
is the distance from a to Z, and the
modulus of ¢ — a is the distance from
a tof;
bence mod (¢ — a) < mod (Z — a),

t—a 0
d od 1.
an m (Z——a)<
1 _ 1 _ 1 1
Z—t—Z—a-—(t—a)—Z-—-a'l_t—a’
Z—a

=1 [j t—a (—a) (—a),
‘z—al_1+z—a+(Z—a)2+(z—a)s+ ]
Hence by [1]

- t—a_ (t—a)  (t—a)® ,
77— oot G T Zmay t T

and the second member of [2] is a convergent series.

Multiply [2] by f—z—_, and thg series will still be convergent
27

for each value of z which we have to consider; we get

1 Fz
2mi Z—1t

1 [ FZ FZ . FZ
=i 7t =) et =) eyt |
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For,let S=w,+w+ wy+* +w,+ w1t
=wo+ wy + wy +  + w, + By

where B, =W,y Warat

and where by hypothesis » may be taken so great that the
modulus of R, is less than e for all values of z in the portiop
of the plane in question, e being a positive quantity taken in
advance and as small as we please.

dez= wodz + ((wydz + ---+fw,,dz +fR,,dz
for any given value of «.
By the proposition at the beginning of this article, | Sdz

along the given path is finite and determinate, as are also

f wydz, f w, dz, ete.

The modulus of f R, d= is not greater than the line-integral

along the given path of the modulus of R, (v. Art. 218). If,
now, n is taken sufficiently great, each value of the modulus
of R, will be less than ¢; consequently each element of the
cylindrical surface representing the line-integral of the

modulus of R, will be less than e (v. Art. 166), and f R, dz

will be less in absolute value than e multiplied by the length
of the path along which the integral is taken.

Therefore, dez =fw0dz +fw1dz +fw2dz +

and, since the first member is finite and determinate, the
second member is a convergent series.

Taylor's and Maclaurin’s Theorems.

R
2238. T_:Z—=1+q+qﬂ+98+...qn_1

identically, if n is a positive integer, even when ¢ is imaginary.



Cuap. XVIL] THEORY OF FUNCTIONS. 303

and we see that a holomorphic function is determined every-
where inside o closed contowr if its value is given at every point
of the contour.

1° R

If in the formaul Ft=- —dz 1
in the formula el P 1]

we change ¢ to ¢t + At, we get
1 * Fz.dz.At
—_ 27rl

AFt=% Fz.dz(

i Z—t—AL (z—t) (z—t—At)
whence
limit limit 1
Fz.d
A= 0[ ] 2mf #* at=0 [(z—t)(z—-t—At)]’
or 1 Fz.dz | [2)

T om (z—1t)?’

and in like manner we get

F=o=) G [3]
. ! Fz.d
and in general Fmp= én;l — 2 )i o [4]

each of the integrals in these formulas being taken around a
closed contour lying wholly in that portion of the plane in which
F% is holomorphie, and enclosing the point z=1.

222. The integral of a holomorphic function along any given
path is finite and determinate, for, by [3], Art. 218, it is equal
to the sum of four line integrals, each of which is finite and
determinate (Art. 166).

If a series wy—+ wy + ws + -, where wy, wy, wy - are holo-
morphic functions of z, is uniformly convergent for all values of
# in a certain portion of the plane, the integral of the series
along any given path lying in that portion of the plane is the
series formed of the integrals of the terms of the given series
along the path in question, and the new series is convergent.
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. o 2 ,pi
Hence f % (around abe) = f tee®dd _ 9 mi.
z—1 0 eed

From what has been proved in Art. 220, it follows that
f _d:z_t around any closed contour embracing ¢ must also be
equal to 2.

As another example let us consider ff%dz, when F% is
supposed to be holomorphic in the portiorzl_:)f the plane con-

sidered, and where the integral is to be taken around any closed
contour embracing the point z =¢.

z— .
becomes infinite. The required integral is, then, equal to the
integral around a circumference described from the point ¢ as
a centre, with any given radius ¢, that is, by the reasoning just

used in the case of f de P to
Z —

on CIANNN 1 4 on
‘J; F(t-‘-ce )lee d¢, or i [ F(t+€€¢‘)d¢;

ee

_F_'z_t is holomorphic except at the point z=f¢, where it

and in this expression e may be taken at pleasure. If now e is
made infinitesimal ee?® is infinitesimal, and since F% is continu-
ous F (¢ + e?) is equal to Ft + » where 5 is some infinitesimal,
and F (t + e?) d¢ is equal to Ft.dep + 5. do.

Now, by I. Art. 161,

fh(Ft.dcﬁ-{- d¢)=f2"m.d¢.
(] K 0
Hence ,ij:wF(t+ce"") ¢ = 'j}""n.dqb:zmﬂ;

and we get the important result thatfz—ﬁlt dz, taken around any
contour including the point z=¢, is equal to 2x¢. F¢.

From this we have Ft= L —Eidz;

2%t 2—1
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Therefore,
f '%2.dx (along ABCDAA'D'C'B'A'A)=0,

or f . dx (along ABCDA) * + f "f.dz (along AA")

+ffz. dz (along A'D'C'B'A") +ffz. dz (along A'4)=0;
but
f Sz .dz (along AA") =— f fz.dz along (4'4),

and
f 'fx.dz (slong A'D'CBA") =— f 'tz . dz (along A'B'C'D'A").

Hence

f '2.dz (slong ABCDA) = f 'f2.dz (along A'B'C'D'A").

991. That the integral of a function of z around a closed
contour embracing a point at which the function is infinite is
not necessarily zero is easily shown by an example.

fz=—1———t, ¢ being a given constant, is single-valued, con-
z— )

tinuous, and finite throughout the whole of the plane except at
1

Z—

ceasing to be single-valued. -

Let us take f dz
Jz—t
whose radius is any arbitrarily chosen value e. If z is on the

circumference of this circle
7z —t=ce(cos ¢+ isine)
=e? . by [5], Art. 31.

g=t + e

the point ¢, at which becomes infinite, without, however,

around a circle whose centre is t, and

and dz = iee® de. o|



300 INTEGRAL CALCULUS. [ArT. 220.

f"' Jz.dz (along z,aZbzy)

0

=f'ﬁz.dz‘ (along % aZ) +f’°fz.dz (along Zbz)=0;
2 z

%y z
but f J2.dz (along szo)=—f Jz.dz (along %,bZ)
z . 2,
by Art. 218.
z z
Therefore, f Jz.dz (along 2,aZ) = f Jz.dz (along #z,bZ).
29

a ’ If the paths z,aZ and 2,bZ inter-
z - ’ sect, a third path zycZ may be drawn
not intersecting either of them, and

by the proof just given
fzfz. dz (along z,aZ) =fzfz .dz (along zycZ),

z
fzfz.dz (along 2,0Z) =f Jz.dz (along zcZ) ;
%o %o
therefore,

¥4
fzfz.dz (along % aZ) =f Jz.dz (along %,02).

220. If jfz, while in other respects holomorphic in a given
portion of the plane, becomes infinite for a value T of z, then

ffz.dz taken around a closed contour embracing 7', while not

zero, is, however, equal to the integral taken around any other
closed path surrounding 7.

' For let ABCD be any closed con-
tour about 7. With 7T as a centre,
and a radius ¢, describe a circumfer-
ence, taking e so small that the cir-
cumference lies wholly within A BCD.
Join the two contours by a line 44’
Then ABCDAA'D'C'B'A'4 is a
closed path within which fz 15 holo-
morphic.
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219. If fz is holomorphic in a given portion of the plane,

N fz.dz=0 ‘ ]
if 2z describes any closed contour lying wholly within that
portion of the plane.

From [3], Art. 215, we have

f’“fz.dz=fw.dz=fudm+ifvdx— vdy+ifudy, (2]

the integral in each case being the line-integral around the
closed contour in question. -

Since w = fz is holomorphic, u=¢ (, ¥), and v=1y (2, ),
and D,u, Dyu, D,v, and D,v are easily seen to be finite, con-
tinuous, and single-valued in the portion of the plane considered.
Therefore, by Art. 170,

fu.dw = f Dudxdy ; fvd.a: = f fD,vdwdy;
f vdy = — f f D vdxdy ; fudy = — f f D udxdy ;

the integral in the first member of each equation being taken

around the contour, and that in the second member being &

surface-integral taken over the surface bounded by the contour.
We have, then, from [2],

f"’fz e = f f (Dju+ D) dody+ i f f (Dyy—Du)dady, [3]
%o
but Du = Dy, and Dy = — D,vfrom [8], Art. 211. Therefore,
8] reduces to fz”fz Ldz=0.
%
From this result we get easily the very important fact that if
z

fz is holomorphic in a given portion of the plane, | fz.dz will

have the same value for all paths leading from 2, to 0Z, provided

they lie wholly in the given part of the
a

plane. For let z,aZ and zbZ be any
two paths not intesecting between 2z, O,o
and Z. Then z,aZbz is a closed con- z

tour, and b
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If 2 is a complex variable, and Pbasses from 2 to Z along any
t4
given path, we shall still define the definite integral f JZz.dz by

{1] where now 21y gy Z35...2, ; are points in the givennpath.
Two important results follow immediately from this defini-
tion :

L/ z
1st. That fde=— [ 7., [2]
. Z 'D
if z traverses in each integral the same path connecting %, and Z,
zZ
2d. That the modulus of JZ.dz is not greater than the

line-integral of the modulus of Jz taken along the given path
joining z, and Z.

If we let
Sr=w=u+vi, r=z+tyi,u=9¢(z,y), and v =y (2, ),
then f “fo.de= f (u i) (do + idy)

=Jo@naetifv@na— (4@ na s,
[]

each of the integrals in the last member being the line-integral
of a real function of real variables, taken along the given path
connecting z, and Z.

If the given path is changed, each of the integrals in the
last member of [3] will in general change, and the value of

Zfz. dz will change ; and, since z may pass from 2, to Z by an ‘
iu';inite number of different paths, we have no reason to expect
that fzfz. dz will in general be determinate.

We z‘;shall, however, prove that in a large and important class
of cases fzfz. dz is determinate, and depends for its value

%

upon 2, and Z, and not at all upon the nature of the path
traversed by z in going from z, to Z.
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responding line joining w, with the moving point representing w
will revolve through 360°, and we shall have what we have
called Case 1.

If, then, we avoid the points at which %%’ i{s zero or infinite,

we shall avoid all critical points that can vitiate the results
obtained by treating our double-valued or multiple-valued func-
tions as we treat single-valued functions.

A critical point of such a character that when z describes a
closed contour about it the corresponding path traced by any
one of the values of w is not closed, we shall call a branch point.

When a function is finite, continuous, and single-valued for
all values of 2z lying in a given portion of the z plane, or when
if multiple-valued it is finite and continuous, and has no branch
points in the portion of the plane in question, it is said to be
holomorphic in that portion of the plane.

Definite Integrals.

” .
218. In the case of real_variables, f fz.dz was defined in
Art. 80 in effect as follows: ’

[da= [ ) — ) P 2)+
’ + S22 — 2, 01 [1]

where 2, 2, %3, «++ Zn—1 81 values of z dividing the interval
between 7z, and Z into n parts, each of which is made to
approach zero as its limit as n is indefinitely increased.
Z
In other Words,‘j is the line integral of fz (Art. 163) taken

%0

along the straight line, joining 2, and Z if 2 and Z are repre-
sented as in the Calculus of Imaginaries.

Tt has been proved that if fz is finite and continuous between
2, and Z, this integral depends merely upon the initial and final
values of z, and is equal to FZ — Fz, where F%z is the indefinite

integral f Jz.dz.
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Let 2 be the critical point, and let wo be the corresponding
point in the w figure. As z moves from %, towards z, the points

2y

D

representing the correspondiné' values of w will start at w, and
w,' and move towards w,, tracing distinct paths.

If, now, z describes a circumference about %, and then
-returns along its original path.to 2, the first value of w will
either make a complete revolution about w, and return along
the branch (1) to its initial value w,, or it will describe about

121

wl
by B
% L)} Lo

® 1 |

! | | k)w{ ol \2;”'

1

Casg 1. C4sE II.

w, & path ending with the branch (2) of the w curve, and move
along that bradch to the value w,’.

In the first case, and in" that case only, the value of w
describes a closed contour when z describes a closed contour,
and is practically a single-valued function.

If 2 is a point at which :}Il‘w is neither zero nor infinite
2

(v. Art. 214), when z describes about % a circle of infinitesimal
radius, w will make about w, a complete revolution ; for since
if two radii are drawn from z,, the curves corresponding to them
will form at w, an angle equal to the angle between the radii,
when a radius drawn to the moving point which is describing
the circle about 2, revolves through an angle of 360°, the cor-
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It is easily seen that if #, starting with the value +1, de-
scribes a complete circumference about the origin, the value of
w which starts from the point 4 1 will not describe a closed
contour, but will move through a semi-circumference and end
with the point 1.cisw or —1. Now, by Art. 215 any path

C
described by 2z beginning with +1 and ending with — 1 and
passing above the origin, since it can be deformed into the
semi-circumference of Fig. 1 without passing through a critical
point, will cause the value of w beginning with 4+ 1 to end with
445 and any path described by 2z beginuing with 4+ 1 and end-
ing with o 1 and passing below the origin, since it can be
deformed into the semi-circumference of Fig. 2 without passing
througk a critical point, will cause the value of w beginning
with + 1 to end with —. Therefore any two paths described
by z beginning with -1 and ending with —1 will, if they include
the critical point z= 0 hetween them, lead to different values
of w, provided that the same value of w is taked at the start.

41 5

Fie. 8.

217. If w is a double-valued function of z, and z describes a
closed contour about a single critical point, this contour may be
deformed into a circle about the critical point, and a line lead-
ing from the starting point to the circnmference

of the circle, without affecting the final value of B A
w (Art. 215). Thus, in the figure, the two
paths ABCDA, AB'C'D'B'A lead from the

'D

same initial to the same final value of w; and
this is true no watter how sinall the radius of o
the circle B'C'D'.
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points the separate values of a multiple-valued fanction may be
separately considered, and may be regarded and treated as
single-valued functions.

216. That in the case of a double-valued function two paths
in the z plane, including between them a critical point, but
having the same beginning and the same end, may lead to
different values of the function, is easily shown by an example.

Let w =%, and let 2, starting with the value 1, move to the
value — 1 by the semi-circular path in the figure. That one of

1
1 ol -+1 o] ] +1

Fie: 1.

the corresponding values of w which starts with 4+ 1 will de-
scribe the quadrant shown in the figure, and will reach the

point 1 .cisg, ori. If, however, z moves from +1 to —1 by

1 |2 4 [ ¥ 4
W OV
—i

Fia. 2.

the semi-circular path in the second figure, the value of w which:
starts with -4 1 will describe the quadrant shown in the second

figure, and will reach the value l.cis(—%), or —i¢. These

two paths described by z, then, although beginning at the same
point 4+ 1 and ending at the same point — 1, cause that value
of the function which begins with + 1 to reach two different
values ; and the two paths in question embrace the point z = 0,
which is clearly a point at which the two values of w, ordinarily
different, coincide ; that is, a critical point.
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and the point z moves from 2, to 2, by two different paths, the
corresponding paths traced by w.will begin at w, and end at w,,
and consequently that if z describes any closed contour, w also
will describe a closed contour.

If w is a double-valued function of z, since to each value of
z there will correspond two values of w, it is conceivable that
if w, and w,' are the values of w corresponding to 21, and z moves
from 2, t0 2; by two different paths, w may in one case move
from w, to w,, and in the other case from w, to w,'.

It can be proved, however, that if the two paths traced by 2
do not enclose a critical point (Art. 210), and w is finite and
continuous for the portion of the plane considered, this will
not take place, and that the two paths starting from w, will
terminate at the same point w,. We give a proof for the case
where z is a single-valued function of w.

As z traces the first path, each of the two points repre-
senting the two values of w will trace a path, one starting at wo,
and the other at w,', and unless the z path passes through a
critical point, the two w paths will not mtersect but will be
entirely separate and distinct, and will lead, one from w, to w,
the other from w,’ to w,'.

1f, now, the z path be gradually swung into a second position
without changing its beginning or its end, since w is a continu-
ous function, the two w paths will be gradually swung into new
positions ; but, provided that the z path in its changing does not

at any time pass through a critical point, the two w paths will
at no time intersect, and consequently it will be impossible for
the w points to pass over from one path to the other, and there-
fore the point which starts at w, must always come out at w,
and not at w,'.

It follows readily from this reasoning that if z describes a
closed contour not embracing a critical point, each of the w
points will describe a closed contour, and these contours will
not intersect.

Of course, the proof given above holds for any multiple-
valued function.

In any portion of the plane, then, not containing critical
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If so, eliminate g between this equation and the given
equation, and if the result is a solution it will be a singular
integral.

General form, Pdx + Qdy + Rdz = 0.

If the equation can be reduced to the form Xdx + Ydy
+ Zdz = 0, where X is a function of z alone, ¥ a function
of y alone, and Z a function of z alone, integrate each
term separately, and write the sum of the integrals equal
to an arbitrary constant.

If not, integrate the equation by (V.) on the supposition
that one of the variables is constant and its differential
zero, writing an arbitrary function of that variable in place
of the arbitrary constant in the result. Transpose all the
terms to the first member, and then take its complete
differential, regarding all the original variables as variable,
and write it equal to the first member of the given equa-
tion, and from this equation of condition determine the
arbitrary function. Substitute for the arbitrary function
in the first integral its value thus determined, and the
result will be the solution required.

If the equation of condition contains any other varia-
bles than the one involved in the arbitrary function, they
must be eliminated by the aid of the primitive equation
already obtained; and if this elimination cannot be per-
formed, the given equation is not derivable from a single
primitive equation, but must have come from two simul-
taneous primitive equations. )

In that case, assume any arbitrary equation f(=,y,2) =0
as one primitive, differentiate it, and eliminate between it
its derived equation and the given equation, one variable,
and its differential. There will result a differential equa-
tion containing only two variables, which may be solved
by (IIL.), and will lead to the second primitive of the
given equation.
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General form, Pdz, + Qdw, + Rdws 4+ =0.

If the equation can be reduced to the form X;da; + X,du,
+ Xyday 4 -+ = 0, where X] is a function of z; alone, X,
a function of x, alone, X; a function of x; alone, etc., inte-
grate each term separately, and write the sum of their
integrals equal to an arbitrary constant.

If not, integrate the equation by (V.), on the supposi-
tion that all the variables but two are constant and their
differentials zero, writing an arbitrary function of these
variables in place of the arbitrary constant in the result.
Transpose all the terms to the first member, and then
take its complete differential, regarding all of the original
variables as variable, and write it equal to the first mem-
ber of the given equation, and from this equation.of con-
dition determine the arbitrary function. Substitute for
the arbitrary function in the first integral its value thus
determined, and the result will be the solution required.

If the equation of condition cannot, even with the aid
of the primitive equation first obtained, be thrown into a
form where the complete differential of the arbitrary func-
tion is given equal to an exact differential, the function
cannot be determined, and the given equation is not deriv-
able from a single primitive equation.

System of simultaneous equations of the first order.

If any of the equations of the set can be integrated
separately by (IL.) so as to lead to single primitives, the
problem can be simplified; for by the aid of these primi-
tives a number of variables equal to the number of solved
equations can be eliminated from the remaining equations
of the series, and there will be formed a simpler set of
simultaneous equations whose primitives, together with the
primitives already found, will form the primmitive system
of the given equations.

There must be n equations connecting n 4 1 variables,
in order that the system may be determinate.

Let , 2,, @, ....., *, be the original variables. Choose
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any two, # and x,, as the independent and the principal de-
pendent variable, and by successive eliminations form the

. dzx, dw
n equations 713;1 A CX R — ’d_; == Jo(2,%15%gy +rees T,

weeey U tO %: Jo(®y2%s, ...y ®,) . Differentiate the first
™ :
of these with respect to x n — 1 times, substituting for

%, %’, .....,@—”, after each step their values in terms of

the original variables. There will result n equations,
which will express each of the n successive derivatives
de, d?z, dBx, drx,
W T
Eliminate from these all the variables except # and @,
obtaining a single equation of the nth order between «
and x,. Solve this by (VIIL.), and so get a value of z; in
terms of x and n arbitrary constants. Find by differen-
de, d*x, dr1lz,
T d T g
them equal to the ones already obtained for them in terms
of the original variables. The n —1 equations thus formed,
together with the equation expressing 2, in terms of % and
arbitrary constants, are the complete primitive system
required.

in terms of x, x;, Tz ..... s Lpe

tiating this result values for and write

System of ‘simultaneous equations not of the first order.

Regard each derivative of each dependent varfable,
from the first to the next to the highest as a new variable,
and the given equations, together with the equations de-
fining these new variables, will form a system of simulta-
neous equations of the first order which may be solved by
(88). Eliminate the new variables representing the
various derivatives from the equations of the solution, and
the equations obtained will be the complete primitive sys-
tem required.

All the partial derivatives taken with respect to one of
the independent variables.
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Integrate by (II.) as if that one were the only indepen-
dent variable, replacing each arbitrary constant by an
arbitrary function of the other independent variables.

Of the first order and linear, containing three variables.
General form, PD,z + QD,z = R.

Form the auxiliary system of ordinary differential equa-
tions % =dy_dz , and mtegrate by (38). Express their
primitives in the form w=a, v=>5, a and b being arbi-
trary constants; and = fv, where f is an arbitrary func-
tion, will be the required solution.

Of the first order and linear, containing more than three
variables. General form, P,Dgz+ P,Dgz + - = R,
where 2, &, -+, &,, are the independent and z the depen-
dent variables.

Form the auxiliary system of ordinary differential equa-
tions % = % e = %‘ = (—g, and integrate them by (38).
Express their primitives in the form v, = a, v,=b, v;=c¢,
----- s and vy = f(vy,v3, -,v,), Where f is an arbitrary func-
tion, will be the required solution.

Of the first order and not linear, containing three varia-
bles, F(w,y,2,p,q) =0, where p= D,z, = D,z.

Express ¢ in terms of #, y, z and p from the given equa-
tion, and substitute its value thus obtained in the auxil-

iary system of ordinary differential equations _if =dy
— dz - dp )

9—pD,9 D.9g+pD.q
these equations, by (86), a value of p involving an arbi-
trary constant, and substitute it with the corresponding
value of ¢ in the equation dz = pdx + gdy. Integrate
this result by (86), if possible; and if a single primitive
equation be obtained, it will be a complete primitive of the
given equation.

Deduce by integratiopn from
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A singular solution may be obtained by finding the
partial derivatives D,z and D,z from the given equation,
writing them separately equal to zero, and eliminating p
and ¢ between them and the given equation.

Of the first order and not linear, containing more than
three variables. F(&y,2, -+, @py 2y P1y P2y =+ Pn) = 0, Where
p1=I)x‘z, p2=Dz’z, ..... .

Form the linear partial differential equation Z;[ (DaxF
+piD,F)Dp® — Dp, F(Dy;® + pi D, @)} = 0, where ® is
an unknown function of (%, -+ 5 Ty P1v s Pu) » and where
S, means the sum of all the terms of the given form that
can be obtained by giving i snccessively the values 1, 2,
8, ey R

Form, by (42), its auxiliary system of ordinary differen-
tial equations, and from them get, by (38), n —1 mte-
grals, & = a;, Oy= g, =+, P} = Uy By these equations
and the given equation express pi, ps - , P in terms of
the original variables, and substitute their values in the
equation dz = p,d@, + p.dacy + -+ +p.de,. Integrate thns
by (87), and the result will be the required complete primi-
tive.

Of the second order and containing the derivatives of
the second order only in the first degree. General form,
RD2z+8D,D,z+ TD2z=7V, where R, S, T, and V may
be functions of ®, y, 2, Dz, and D,z

Call D,z p and D,z q.

Form first the equation .

Rdy® — Sdzdy + Tdx* =0, f11

and resolve it, supposing the first member not a complete
square, into two equations of the form

dy —myde=0, dy — myda =0. (2]
From the first of these, and from the equation

Rdpdy + Tdgdx — Vdxdy = 0, [3]
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combined if needful with the equation
dz = pdx + qdy,

seek to obtain two integrals u, = a, v,=p8. Proceed-
ing in the same way with the second equation of [2],
seek two other integrals w, = a;, v, =f3;; then the first in-
tegrals of the proposed equation will be

= fiv, Up = fo 0, [4]

where f; and f, denote arbitrary functions.

To deduce the final integral, we must either integrate
one of these, or, determining from the two p and g in terms
of z, y, and 2, substitute those values in the equation

dz = pdx 4 gdy,

which will then become integrable. Tts solution will give
the final integral sought.

If the values of m, and m, are equal, only one first in-
tegral will be obtained, and the final solution must be
sought by its integration.

When it is not possible so to combine the auxiliary
equations as to obtain two auxiliary integrals w =a, v =4,
no first integral of the proposed equation exists, and this
method of solution fails.
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ExAMPLES.

(1) sina cosy.dx — cosx siny.dy:O. Ans. cosy=ccosz.

(2 (m+y)";—i=a2. Ans. y—amn“g’—li:c.
a9 . _ T _d—6]_

(3) d¢_sm(¢l 0). Ans. ctnl:4 = :]—¢+c.

) w——-—y+m\/a:‘" y*=0. Ans. sin“%:c—w.

® G-+l |
Ans. ctn l:i — % (tan'y — tan™* x)] = tany +c.

® (s =1+ () @+t
Ans. 2a (2 + 3*) = (2 +3*)} —z cosc + ysinc.
(D [24/(2y) — o] dy + yde = 0. Ans. y=ce /.
(8) (m—y2)+2wyg—g=0. Ans. m¥=c.

9 2z—y+1de+(2y—2—1)dy=0.
Ans. @ —wy+ P+ r—y=c

sin2z Ans. y=sinx — 1 4 ce~*0=,

(10) g—-z+ycos:c=
(11) (l—w’)g?—;-—my=awy’. Ans. y=T[cy/(1—2%)—a]L,
(12) zy(1+wyﬂ)@= . Ans. 91_5=2_y2+ce%

(18) ¥ (& +9*+ ) 2 4o + 9 — at) =o.
Ans. (a:”+_1,/2)2 20 (2 —y =c.
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2
(14) wde+ydy + U=V _ o gus, ZHY | an¥ =
x4y 2 x

(15) d_y2__a_“’=0. Ans. (y—dlogx—c)(y+alocrw-—c)=0.
dz) a? =

(16) +23/ctnoz;-——y2
( > 4@ Yns. (ysinzg—c>(ycos2a—2c—c>=0.

¢%)) dy(dy+y>—w(W+?/)
Ans. Qy—&—c)[log(e+y—1)+x—~c]=0.

(18) (‘i’ﬂ) —<w2+wy+y>( >+(w?y+w2y t+ay) W —zp=o.

e
(19) (1_y2_£><d_y> 2y dy o

dx z de o

Ans. <y+ logﬁ'-l/gz—_|_—3/2 - c> <y - logfi'\/—;zi'—f — c) = 0.

(20) y=x@+d~y— @—/2- . Ans. y=cx+c—ci
dx  dx dzx 12
Singular solution, y =(L'§—_.
(21) y= y< y) +2xdi Ans. y?=2cx + &
2
@ (1 () = @
2z
Ans., y® — ca? +- + = 0.
c
(23) y—2wdy+y (di) Ans. y*=2cx + 2.

(24) :ﬁ( >-f—cl:2y0ly+as Ans. A +cay+ aPx=0.
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dy dy
(25) f[m et ':]+2w———y=0.
(dm) de Ans. (b +y)2=4am,f(a)+b=0.

(26) ﬁ—%: [yz— wyg—z:’ Ans. y;xfza: by, f(a)+b=0.

dx
dy By Py _,dy
( )d# dm"’+ dx® dx+y
Ans. y=(c+ 1% + ;2 + ¢, 7°) €.
@ d <
@8) T4 2k ey=e. dns y=(atane+o

dty d*y
29) = ol 4 = é*.
(29) JS+2 5 +y=e .
' Ans. y=z+(A+Bac) cos® + (C + Dzx) sinz.

(30) %—— 2%+44y= € cos .

Ans, y= Ade ¥4 e‘{(B — 5%) cos & +<0+ %g) sinw].

dty By | dy
31 — 2——— — = (1;3,
Gb dxt da® +dw2

Ans. y= (A+ Bz)e+(C+ Dm)+12w2+3zs+%‘+ ca

z,
(32) BY_ 4B 44y,

da dw Ans. y=(A+ Bx)e*+ 4 (227 + 42 + 8).
(33) %—i—y:cosm. Ans. y= Acoszx+ Bsina:-{-gsinw.

(34) %+4y=msin2z. ,
Ans. y=<A—§§>cos2m+(3—%)sin2w+%’.
35) #TY _ 2% 4 9y = wloga.

da? dx
Ans. y= Axcos (log x) + Bz sin (logx) +zlog.

-
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(36) a:sg;?{ m?fx-’21+2xd?/ 2y =2+ 3a.

Ans. y—m(A+Bloga:)+Ca:2+-——3m<l+MZ>
(37) dsy-|-2 d?/ nfy = 0. Ans. y=£(Ae”‘+Be“"').
(38) d2y+tanmdy+cos 2x.y=0.
Ans. y = A cos (sinz) 4 Bsin (sinz).
89) (1—a)'TYty=o.

Ans. y=I—@ (A + Blog %i‘_g)

(40) +¢2)4;—-‘/—2mg2+2y=o.
d a: Ans. y=Bx+ A1 —a%),

=g —1.

Ans, y= Ae* + Bx (1 4 a?).

Py =
(41) d?  z—1 do —1

(42) #%—2m(1+w)%+2(1+x)y—__—x".

Ans y=Axe’+Bm__‘§.
(43) sin’xf—ﬁ-—?y:O. Ans. y=A4Actnz+ B(1 —zctnzx).
1

2
=e (=41 .
da? :czlogwy (97+ og:v) dx
Ans. y=Alogw+e’logw+B<logw' — — )
log

(45) %—2(1& —g)d—y+<n’—2%a>y=e’“.
Ans. y—e""(A+

dy_2dy
(46) da? a:da;+( m’)

(4e) L4

=+

2ot ey

A'ns y = (A cosax + Bsinax).
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un = £y 2ba:—ﬂ+b’m’y— .
Ans. y=e? (A cosz\b + BsinzVb).

(48) dgy — 422t (4t~ B)y =",
Ans. y=¢€" (Ae*+ Be*—1),

(49) (1— wﬂ)d’?f 4:1: (1+a:2)y_:v
Ans. y._i—- - (x4 A cosx + Bsing).

(50) 1 dy+w+ «_\{x—S
Ans. y= ‘/_(Am’+B)

dm2 Jz 427
(51) +2nctnnw y+(m’-—-n’)y 0.
Ans. y= (A cosmz + Bsinma) cse nz.
)Y oW ay
(52) (»* l)dm’+wdw Ey=0. ‘
Ans. y=A(x+Va¥ —1)°+ B(z— Vo’ = 1)°,

@y 2 dy — Asin® e,
(58) _.-|-x + 4y 0. ' Ans. y—Asmw+Bcosm
3x+1 dy 6(x+1)
54 &y _ .
( )dm’ -1 dw_' [(w—l)(3w+5) =0

Ans. y=[A+ Blog((z— 13z +5))]V(@—1¥ (32 + 5).

(55) (1 —ﬁ)%—m%——c’y:&
‘ Ans. y= Ae*"o's 4 Be~eria™s,

(56) (1+a2)= y+aw —nly=0.
Ans. y= A(NTF aa? aw=+xva)75 +B(V1+ a2 +2Va) V=

(67 @—1) (w_z)%’—(zm—a%+2y=o.
Ans. y=c(x—~2)* 4+ (#—2) [(z—2)log (z—2)—1].
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(58) (3—m)g’ﬁ—(9—4m)%+(e—3w)y 0.

Ans. y= ce* +e’e*°“°<1-8—3—E +21a:” >

(59) (a?— xﬁ)‘” Swd —129=0.
Ans. y=

Py o2y (0 2\y_o
(60) T4 42 By (- Bhy=o.

x dx

¢ g(@+38a)
@—ap T @

Ans. y= x% [ 4 (sinnz — nx cos nx) + B (cosnz + na sinne) J.

dy

24 = 0. Ans. y=clogz+c'.
dx

dy 1
(6\1) d—xz-'—a;

dy @y 2o — 0
(62) <2w3dw+w2y>dx2+4w"’( w>+ ay % = 0.

Ans. ¢+ cxy=c'x.
(63) (w2+2y”dy>d“g+2 ( ) +3w‘;y+y 0.
d “ Find a first integral.
Ans. :z:zd—y +y2<-@) +zy=c.
dx

©4) #TL+a LY 4 @y —1) y+y =
F1nd a first integral.

wzd—y—w y+wy2._c.

(65) dx + dy + dz

x—a y'—b z-——c=0. Ans. (Q}—a,) (y_b) (Z—C)=c,

(66) (y+2)de+dy+dz=0. Ans. e (y +2) =c.
da Y dy
44 Z=20 3 = 0.

(6D —+4z+ =0, 1 +3y—

Ty %
Ans. x=ce T y=(ct+¢)e 2
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(68)—-+ miz=0 d’-’/ —mtz=0.
Ans. a,=Asinmt+Bcosmt, c4+y=0t+ D.

(69) D,z= +z Ans, e'f(w+y+z)=¢y.
(70) 2D,z + yzD,z = xy. Ans. Z2=axy + ¢<§)
(1) Dz.Dyz=1. Ans. z= a,m+%+ b.

(72) D22+ 2ayD,D,z+y°D2=0. Ans. z=xd (%)+¢<%).

(78) (D,2)*D22z—2D,2D,2D,D,z+(D,z)*D2%=0.
Ans. y=xdz+ yz.

(74) Dyz2.D,Dyz— Dyz.Dfz=0, Ans. x = ¢y + yz.
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CHAPTER V.
INTEGRATION.

74. We are now able to extend materially our list of formulas
for direct integration (Art. 55), one of which' may be obtained
from each of the derivative formulas in our last chapter. The
following set contains the most important of these : —

D logx = 1 gives j;l = log .
z x
D,a*=a"loge “  fofloga=a’
D,e=¢e ¢ fef=¢e"
D, sinz = cos® ¢ f cosz=sing.
D,cosx= —sinw “  f.(— sinx)=cosz.
D,logsinx = ctnz ¢ fctnz=logsinz.
D,logcosz= — tan® “  f.(— tana)=logcosz.
D,sinlz= _ 1 L _ 1 o sinla
S N(A=F) V(1—2%)
D, tan" 'z = 1 ¢ f,,——l—— =tan'z.
) 142 142
1 1
D Ly e — [ = —1 3
,vers—'x J@e =) f’\/(Qx—ac?) vers— &

The second, fifth, and seventh in the second group can be
written in the more convenient forms,
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'=__g:. H ¥
Jec loga’
Jusine = — cosz;

Jotanx = —logcosx.

75. When the expression to be integrated does not come under
any of the forms in the preceding list, it can often be prepared
Jor integration by a suitable change of variable, the new variable,
of course, being -a function of the old. This method is called
tnegration by substitution, and is based upon a formula easily

deduced from D,(Fy)=D,Fy.D,y;
which gives immediately
Fy=/.D,Fy.Dy).

Let u=D, Fy,
then Py=/,u, ’
and we have Syu=Lf(uD,y);
or, interchanging « and v, .
Sou=fy(uD,z). (1]
For example, required [ (a + bz)".
Let z=a 4+ bz,
and then S(a4-bx)" =/ 2" = [, (2" -D,2), by [1]:
b =2._2
ut x P
D:w = ';‘ H
: 1 1 242 ‘
h - )P = [l =" .
ence St by =g =y o1
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Substituting for z its value, we have

o+ bay =1 (e DT :_”f}"”

ExAMPLE.
Find f,

p _i o Ans. %log(a + bx).

76. 1If fir represents a function that can be integrated, f(a+-bx)
can always be integrated ; for, if

2= a+ bz,
then D,x= 1
b
and j;f(a+bw)=_f,fz==f,sz,m=%f,fz.
ExXAMPLES.
Find
1) f.sinax. Ans. — ‘lzcosa,w.
(2) Jf.cosam. Ans. _tlisinam.
(3) [f.tanaz.
(4) Jf.ctnazx.
77. Required fi———
N[CET)
1 1 1
RV R P
N
Let 2= :E,
a
then T = az,

Dx=a,



68 DIFFERENTIAL CALCULUS.

1 1 1 1 1 1
= fa =

[ArT. 78.

a W=5LV(1 —7) ~5‘['\/(1 —zﬂ)D'”

1

So——— =sin~lz =sin"!
JaA=2
ExampLss.
Find
1 x
) ‘/;a T = Ans. atan‘la
) f;m' Ans. vers‘l%;cb
. 1
78. d fo— .
Required f, J@ T
Let z2=x++/(*+a?) ;
then z—w=+/(a*+ a?),

22— 2z 4+ a =+ of,

22w =22 — a2,

x=z2—-a"’,
2z
Z2—a? 24a?
w2 ,2 = —P=L— —— =
V@t a)y=z—z==z2 22 PR
D’m=z2+a2.
222
= = D
fz\/(xz+a2) Lz2+a f’zz+a =%

=/ 22 2Z+4a?

1
2+ a oz zz=logz=log(x+\/ac2+a2);

ExAMPLE.
Find /

7(‘“;_—(1,)' Ans. log(x+Va?—a?).
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79. When the expression to be integrated can be factored, the
required integral can often be obtained by the use of a formula

deduced from D, (uww) =uD,v +vD,u,
which gives wv = f,uD, v+ f;vD,u
or JouD,v=wv — f,oD, u. 1]

This method is called ¢ntegrating by parts.
(a) For example, required flogz. .
loga can be regarded as the product of logz by 1.

Cali logz=u and 1 = D,v,
1
then Du=_,
®

V=2,
and we have

Sloga = f1logw = fiuD,v=wv — fvDu

=rlogx —j;z = wlogx — w.

ExAMPLE.
Find f.xlogz.
Suggestion: Let logz=w and = D,v.

Ans. L :v"(logw - 1)
2 2

80. Required f,sin’x.

Let u = sinz ana D,v=sinz,
then D, u=cosz,
v= — COS¥,

Jf.sin’x= — sinxcosz + f,cos’x;
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but cos?z = 1 — sin’x,
80 Sucos*x = f,1— [.sin’2 = & — /,sin’®
and Jo8in’x = x — sinx cosx — f, sin*w.

2/.sin’x = » — sinxcosx.

Ssin*e = }(x— sihwcosm).

ExamMpLES.
(1) Find f cos®z. Ans. %(w+sinwcos:v).
s 9
(2) J[.sinzcosz, Ans, sx_121_a_:.

81. Very often both methods described above are required in
the same integration.
(a) Required f,sin~'z.

Let sin~lz =y,
then z=giny;
D,z = cosy,

Jesinlz = [,y =/, y cosy.

Let #==2y and D,v=cosy;
then D,u=1,

: v=giny,
and

Jyycosy=ysiny—f,siny=ysin y+cosy=xsin= 24 /(1 =2%).

Any inverse or anti-function can be integrated by this method
if the direct function is integrable.

() Thus,  fif'e=Ly=LyDSy=yv~/Jy
where ya=f-1z,
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ExampLzs.
(1) Find f,cos™'z. Ans. zcos—z —+/(1—2.
(2) fitan—'z. Ans. ztan—'z— -;-log(1+ ).
(3) J.vers~z. Ans. (x—1) vers~lz 4 /(22 —2%).

82. Sometimes an algebraic transformation, either alone or in
combination with the preceding methods, is useful.

ved /L
(a) Required [, =
-1 _1 _1___1_)
P—& 2a0\z—a z+a)

and, by Art. 75 (Ex.),

./;w,_l_ == [log(a; —a)—log(z+a)]= g;‘-‘:.

l—x

(®) Reguired [, \/ (1 +z

J(1+w= 14-2 _ 1 + @
i-z «/(1—w*) Ja=a " ya==y’

Su————e ( —5 =sin~lw

Ja :/_(l_w—_?)' can be readily obtained by substituting y = (1— %),
‘ and is —+/(1—%);
hence /;\/G"'w =gin~1z — /(1 — &%),

© Required/;V(a’—m’).

—a al Cat
V(e ) ‘\/(“’ a:’) J(@—a) \/(a’ -




12 DIFFERENTIAL CALCULUS. [Art. 83.

d T b)) = 23 @ 2
SN = D= ~ i
whence /;\/(a2_x2)=a2sin—1§__ﬁ\/( e , by Art. 77;
but S/ (@ — &) = zf (a? —w2)+/;v( )

by integration by parts, if we let
u=\/(a2—w2) and D,vo=1.
Adding our two equatioﬁs, we have

2/ (@ — &%) = 2/ (a" — &%) + a¥sin'2;
and oSl (@ — ) = %(w o g +agsm.1§).

ExampLEs.
Find
1) fiv(a*+a?).
Ans. % [z (2 + a®) + a*log(z + Vo' + a*) ]
(2) fov (@ —a?).
N Ans. %[m\/(w’—a”) — o’ log(x +\/;’J——a’)].

Applications.

83. To find the area of a segment of a circle.
Let the equation of the circle be

P yi=d

and let the required segment be cut off by the double ordinates
through (#o,y) and (2,y). Then the required area

A=2/y+0C.



CHaP. V.] INTEGRATION. 73

Y S

From the equation of the circle,

y=+/(a"—2),
hence A=2//(a?—a*)4+C;
and therefore, by Art. 82 (¢),

x
A=2z/(a?—2®) 4 a2sin_’a +C.
As the area is measured from the ordinate y, to the ordinate y,

A =0 when x=1x,;

therefore 0 = zo~/(®—2x") + a? sin“‘? +C,

z
C= —xy~/(a* — a*) — a’sin“a?,

and we have

. 2,
A=2x+/(a®—a®) + azsin—lz- — g~/ (B —m®) — a’sin—l-ao
Ir :q, =0, and the segment begins with the axisof Y,
A =z+/(F—~ %)+ a“’sin—‘i
- a

If, at the same time, = a, the segment becomes a semicircle, and

1@ na?

A=a+/(a’—a®) + a’sin~'==—.

The area of the whole circle is na?.



74 DIFFERENTIAL CALCULUS. [ArT. 84.

ExAMPLES.

(1) Show that, in the case of an ellipse,
L
215"

the area of a segment beginning with any ordinate g, is

A= b (:a: V(@ — )+ a”sin“% — @/ (a2 — ) — azsin"lﬂ:].
a a
That if the segment begins with the minor axis,

_ of 2 __ g2 2 g1

_a[z\/(a ) 4+ a*sin a:]'

That the area of the whole ellipse is mab.

(2) The area of a segment of the hyperbola

2 P
A
is = 2oy (@~ ) — atlog(z +VF =)

— ayy (' — 0%) + a?log (s +V o' — &) ]
If %, = a, and the segment begins at the vertex,
= s [#+ (2 — a?) — a*log (¢ + V¥ — &%) + a*loga).

84. To find the length of any arc of a circle, the coordinates
of its extremities being (¥ and (2,y).

By Art. 52, s =/i[1+ (Day)?]-

From the equation of the circle,

F+y=d,



CuaP. V.] INTEGRATION. 75
we have 2¢+2yD,y=0,
Dzy = — §7
y ,
m? 2 2
14 (D,y)’= ;;y = Ey?
s=/f2 _aj;w = asin“g-f—C’. (Art. 77.)
When T = Ty, s=0;
. . Lo
hence 0=asin™! o +C,
C= —asin™!=
and s=uq (sin*1 v_ sin‘lﬁ))- '
a a

If 2, = 0, and the arc is measured from the highest point of the

circle, , s=aqasin"!~

If the arc is a quadrant, 2z=a,

s=asin™!(1) = ”;,

and the whole circumference = 2z a.

85. To find the length of an arc of the parabola y*= 2mx.

We have 2yD.y=2m;
Da:y= ﬁ;
y

2?

V1 + (D.y)*] :\/(mz* ”—') =Ly v
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8=f,[§\/(m2+y2)]=fyl}x/(m2+y2) D,z );

(=

=Y, by Art. 73;
m

s= %f, Vm?4 y2=2—1”—l-[y\/m2+ i+ m*log (y + Vmi+ ¥*) ]+ O,

by Art. 82, Ex. 1.
If the arc is measured from the vertex,

s=0 wheny=20;

0= L(mi’logm)-‘l-(J,
2m

C= — %mlogm,

02 24 .2
and $= % [y————\/(mm_'- ¥ +mlogy——-——+\/(:: +y )]

ExXAMPLE.

Find the length of the arc of the curve a® = 273" included be-

tween the origin and the point whose abscissa is 15.
Ans. 19.
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FUNDAMENTAL EQUATIONS

1. fa, - f(x)dx = ff(w)dw, f¢(y)dw=f¢—;¥2dy,where y'=dy/dzx.
2. f (u+;;)dx= f udac‘—}— f vdx, where  and v are any functions of 2.

m3fudv-—uv——fvdu fu——dx_uv——fv—da:

4fxmdx— +1y1fm=# f—-——logw,orlog(—m)
5 wdr = e /a; | 6dx = Ly

]e = e*/a; T alogh
6.fsinmdac=—cosx; fcoswdx:sinx.

fta,n zder = — log cos z; fctn zdx = log sin .

f seckedx = tanx; f cse’zdr = — ctnz.

7. feosh 2dr = sinh fsinhxdx = cosh .

ftanh xdx = log coshx fctnhx = log sinh a.
8. _dw = 1 tan—l(?g), or — 1 ctn—l(@)
at4+a? a a a a
de 1 1 a+x
fa2_xz——atanh <a>,or2aloga_w .

d 1 _ 1 x—a
fmﬂ_ag———ctnh (a)’ or é—log T

8




FUNDAMENTAL EQUATIONS

9 = = sin"(§> or — cos‘l(g—c>-
[ sn(?) :

dx

— _ =log(x + Va* £ &*).
fx/m 8l )

dx 1 _1(a>
———==cos" )
Va2 —a? @ x

dx ___1_10g<a+\/a2:|:w2>.
xVat + o a x

dx 2 a 4+ bx —2 b a4+ b
10. f =— tan-l'\‘ or —= tanh~ \|———-
zVatbr V—a ¥ —a’ Va a

In such a case as this, that one of the altermate values of the inte-
gral which makes the quantities under the radical signs positive is

"to be used, and each radical itself is to be considered positive. Of

course an arbitrary constant may be added to the value of every
integral given in this pamphlet.

11. e =cosx + isinz; e~ " =cosx — isinz.

12. sinhz = }(¢¢ — e~®); cosha = (5 + ¢7%).

13. sinzi= isinhx; cosxi = coshuz.

14. sinz =— ¢sinhaé; cosx = cosh xi.

15. log u = log (cu)— loge.

16. logx = log(— )+ (2 k + 1)mi; logxe = (2.3025851) - logyx.
17. log(z + ¥i) = } log (& + »*) + i tan™’ (y/2).

Tor acute angles and some other cases easily to be determined in

each ingtance,

18. sin~—lu = cos~! V1 — u? = tan"(u/V1 — u?) = cse™! (1/u).
19. sin—'u = — sin-1v1 — «* + a constant = } sin~*(24* — 1)+

a constant.

20. tan—lu = — tan—'(1/4)+ a constant.



+ - RATIONAL ALGEBRAIC FUNCTIONS

I. RATIONAL ALGEBRAIC FUNCTIONS
A. EXPRESSIONS INVOLVING (a + bz)

The substitution of ¥ or 2 for #, where y = a2 = a + bz, gives
1
21. f(a, + bxy*dx = ny’"dy.
1
22. fac(a+bw)"‘dm fy (y — a)dy.
e\m 1 n
23. | 2" (a  bx)"de =355 ¥ (y — a)*dy.

4. _atde _ ——ag"d
(a+bw)"‘ b"+1

25 dr L i (z—b)'"+”_2dz.
* fwn(a/ + bm)m - am-}-n—l 2m

‘Whence

= % log (a + bx).

1
2. f(a-hw T b(a+bx)

s 1
28. f(a Ty 2b(a+ bx)

29.f xdx =%[a+bw_alog(a,+bx)]..

a4+ bx
ba:]'

d. 1
0. [ = los@ i+



RATIONAL ALGEBRAIC FUNCTIONS

1 a
31'f(a+bx)s=ﬁ ~a+bx+2(a+bx)2].

32. 22dx

- bs (a+bm)2 2a(a,+ba:)+a2log(a+bx)],

acdac a?

e __Lygatlte
34'fw(a+bx)~ alog x

35 -1 1 etbs
) w(a-}—bx)z_a(a-}-bm) a8 x
¥
dx 1 b o+ bx
36, | — = 4+ Z @+ o
fx“'(a+bw) aw+a210g T

B. EXPRESSIONS INVOLVING (a4 bz*)
37. fc+w : ‘1§=%sin-1?/c:c—?c_;.
38. fc_x . ngfc;fwfﬁ”cﬁz%clogz;z.
f@iwxzz%tanh—l<§>; fxgcfg_c(},:—%ctnh'l <§>
39. fa+bx \/Etan (Z\E>,[a>0,”b>0].

1 Va + V-
4°fa+bw2 o s 8 \/a_m/“b

1 ta.nh‘1<ac \,:’-’>, [a>0,b < 0]
vV — ab a

dz x 1 dx
41. f(a—{— bocz)z_ 2a(a + ba?) + ﬂf@ +ba;2'




RATIONAL ALGEBRAIC FUNCTIONS T

& 1 x 2 m—1
") (@+ bt T 2ma (a + bwz)’" 2ma J (a+ bmﬁ)"‘

wdo 1 (4,
43'fa+bx2_2blog<m+b)

44.‘[‘(7;%;———962),"“ 1fza—+02'z“w’[z a’].

05, [ LT
") 2@t bd) 2a Pa+t bz

x?dx a dx
46. fa,+bw Z_—fa+bac
1 b dx

47f2(a+bm2) —%—_fa—}—bx

x*dx —x
48. f(a + ba?ymt1 = 2mb (a + da*)™ + 2 mbf(a + bx2)"‘.
49 dx _1 dx b dx .
) @t e+ 11.70“)',"“ Ta) e+t a) (a+ baP)ymt?

50. (kA2 22 ] s
fa+bx 3a 1og k+z+\/3tan 3 [6k*=a].

dx 1171 k2 kx+% 2z
1. r [ V3tan-1 :I 5 —ql.
5 fa+bw 50128 Ghrap o g ) PF=al

1 x"
b2. fw(a+bx") —Elog a+ba:"'

53 dx . _1_ dx _ b xrdx .
) f(a + bgrym+1 T a (@ + b a) (a+ bamym+1

54. x"dx 1 am @ e d )
@+ oy i~ o) @+ tayr b)) (a+ b2yt

55 dx . _1_ dzx b dax . )
0 ) aa 4 bayr T a) at(a +b2m)P a) (e + eyt



" RATIONAL ALGEBRAIC FUNCTIONS

X

X ub wxhu |:;‘\. . b—ptatamg FoA H%.
w) oG—ugg T itmg o) B ov?offl\/ e Ty Tl
b xb  xgy P X h—n h—n
T 14 84
me|w+Am+ T Ve._.&om 09 0>h :ofP“AQ.T&VNv _quey . - 10
2 b _xP : En I~ %
TANETY: &»\ 64 oA?ﬂa“Agfs&vTé i ") M

weyy 9 — o == pue @o g+ v=x 1]

(2 + 29 4+ v) DNIATOANT SNOISSHUIXH D

.T?%giy-% [t i+

.T?AE + D)1murul \ 9+ du + w)— (4 o (2 + D)u

._H&%aA..&@ + SJ-I..IS&‘\,SQ@ — ) — 14 a(u®¢ + D)u_u®

11+ d)uv

T

v

| 1 du + w
) ﬁ.&.ﬁal&A&&Q + Sv-ISH\'@\N@ + &Aﬂ&% + \BVS& I

T(du + w) g

J

= p olu2q + SVTE&,\ ‘9




RATIONAL ALGEBRAIC FUNCTIONS

62 x_;l(g_ logX—-Eb—c d,

63 mclm__bac+2a,__ dm

: X2 qX q x
64 xdx __2a+bx»__b(2n—41) gl_x_
) o xetr T ng X" ng Xxr
at : P —2ac (dx
65.f}dx-——z 20210gX+——2-'2—‘ X'

: 2 . (P—2a)x tab 2a (fdx
66. ngw————————“—ch + qu

67 arde am—1! _n'—m—l—l b [z lde
)3T T @rn—m+1)eXx* 2n—m+1 ¢ X

n m—1 a w"“"’dm.
' 2n—m4+1 ¢ Xr+1

dx b X 1 b? dx
69‘f§§'—2—¢?1"g5¢5—_+<2a ;> X
70. 1 _n +m—-1 5 dx
- xsz"“ (m —Daxm X m—1 a) am1Xntl

_2n+m——1 4 dx .
m—1 a) am2xt1
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D. RATIONAL FRACTIONS

Every proper fraction can be represented by the general form :

JS@) g2 gpr it gttt g,
F(z) A e L e A

If @, b, ¢, etc. are the roots of the equation F(x)= 0, so that
Fay=@—a)@—0b) (@—0o) -,

J@ 4 4 A A
then F(x)_(x ——la)p (x—c:)"—l+(.7c—a3j)1’—2+'“+:1:—a
U U L W T
(=0  (x—0)y"' (x—0b)* x—b
IS S S——— b
(@—ey (@—e)y ' (z—e)y? x—¢
where the numerators of the separate fractions are constants.
If a, b, ¢, etc. are single roots, then p=¢=r=-... =1, and
x A B C
'fﬁ(z)):w—a-'_m-—b_*-x—c”"
where A= J@ B= &, ete.

Fl@)' =7 F'()
The simpler fractions, into which the original fraction is thus
divided, may be integrated by means of the following formulas:

71 hdr — (hd(mr+n) _ h g
) (mx 4+ n) " ] m(mx + n)t - m (1 — &y(mx + n)t-1

h dx A
72. f = log (mx + »).

mr +n

If any of the roots of the equation f(x)= 0 are imaginary, the
parts of the integral which arise from conjugate roots can be com-
bined, and the integral thus brought into a real form. The following
formula, in which ¢= V' — 1, is often useful in combining logarithms
of conjugate complex quantities :

vs. log(x + g/i)= 3 log <w2+ y‘z) + ttan™!? z/_c
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II. IRRATIONAL ALGEBRAIC FUNCTIONS

A. EXPRESSIONS INVOLVING Va + bz

The substitution of a new variable of integration, y =Va + bz,
gives

74.[Va+bxdw=3—2b V(a + bx)®

1 BB
,75.fx\/mdx=_ 2@ - 3i§>b;/<a+bw> .

2 __ 2,2 3
6. [ agind = 280120 A B0 1),

77.‘[___Mdm=2\/a+bx+af——dx_'
x zVa + bz

vs. 2\/a+bx
f\/a+bx b

xdx 2(2a by ———
. f\/a+bx 30 @+ ba.

x 2(8a®— 4 abx + 3% 2)\/——
so.fm s
8L. 15 <\/a+bx—\/g)
f\/ -+ bx \/ v bac—}-\/a

+ bz
ta h-1 J——a o
82] Va + bx \/_ a 4
Va + bx b dx

83.[31:2\/a+bx=— axr " 2a x\/a-{—bw

2xn

=3 __2 +n _M.
84.f(a,+bw) Zdz—zfyl dy = b2 £ )
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4+n 2+n

= 2 (a + bx) 2 _a a + bx) 2
x (a + bx) 2dx:ﬁ[( 4:‘:; (Z:tn) ]
x™dx 2am Va + bx 2ma x"~dx

86. = — .
Vat+ie @Cm+Db  ECm+1b) o+ b

87 i _ Va + bz _(2n—3)b dx '

.fx"\/a,+bx (n—Dax"' (2n—2)a =1 Va + bz
5 n=2

ss.fuw:bf(a—i—bx)?ﬁdx_f_a (a—_}_b_w)_2_dw

x
89. ___‘]_””_.T'l:%f____df_?;_gf__ix_;‘.
x(a + bx)? x(a+bx) 2 (a + bx)F

B. EXPRESSIONS INVOLVING Vz® + a® AND Vd? — 2

90. f\/w2 + alde =} [oc Vi + o 4 o log(ac +Va? 4 a“)]-*

91. f\/az — xldx = %[w Va2 — x4+ a? sin—1<§>]-

di [T 3 *
92. fvw’z——i-—ag = lOg(.lJ + Va4 az).

e s(%) _1<a_c>.
93.f\/a2_x2—sm Zpor — eos~H{~

%.f—axﬁdx aj;m—alog(

ilog(mi W): sinh™ ( ) 1o, (x+\/x2 ol TP sh_l( )

log(W):sech_l( ]og( a2+ x=) esc h‘
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de = Va? — a® — a cos™

97fm

x dx
-98. Va? £ o2
f\/a, :tm +z

99. f\/wdx _ 2_@2.

100. o Ve E e = 4VETE @Y

101 [oVa=da =~ V@27

zfmdm‘

2 1 *
= i[m'\/(z“ + a?)? ;tg'—oé—f\/acg + af"-l—§2i log(ac +'\/acT§:—a“)]-

3fmdx
=i[wm+3

2 A N
atx 3a* . x
Va®— -’102+—2—sm‘1;J-

dx +x
104. —— = == .
f\/(oc“ +a*)® Vi + a?

dx . x
105"[%‘;:;2_)_8—: l]/2 az_m2
xdx _ -1
106. f S ErT e

107. x dx 1
| [Vom-va=z

108, [V e = 4V -

100, [(on/@= Bt == 4V -

# See note on page 12

13
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110. fxz\/xz + a’dx
= —\/(w +a?F '—x\/m - 10%(93 +Ve + a? + a,“) *

111. f NG~ P
———\/(a a)® + <xm+ azsin“li-)-

dde  _x gy @ =)+
112. f\/ 2\/90 iaIF2log(x+\/w ia).

2* + o?
Bdr s B T
113.fva2_x2— 2\/a—x+2sm »
VELa

dx
114. fﬁ\/az—zj:a?:q: PP
- e 2
115.[ e _ Noe-—z
2?Vat — ot

atx

116. f\/x £ e _ ‘/’”mi ~ +log(x +Va® £ a).*

e, (Y=, Ne—2 oz
x? x
2d$ — X o 5\ %
118. f\/(% a?)? \/xz + a? + 10g<x +Ve a2).

adx _ x e _\1&
119'[\/((1?—9&)3 N sin =

C. EXPRESSIONS INVOLVING Va + bz + ¢

Let X=a+bx+c2? g=4ac—-08, and k =%- In order
to rationalize the function f£(, Va + bz + cx’) we may put
Va +bx + ca? =V ¢ VA + B + o, according as ¢ is positive
or negative, and then substitute for « a new variable #, such that

* See note on page 12
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=VA4+4+Bx+a—uz if c>0;
_VA—I—Bx—mz——\/Z

x

z= : where ¢ and 8 are the roots of the equation

yif e<<0 andi>0'

A+ Bx —~2>=0, ifc<0and_—0<0.

By rationalization, or by the aid of reduction formulas, may be ob-
tained the values of the following integrals:

120f =——]og<\/—+x\/c+ >
Ve
or —-smh <M> if ¢>0.
Ve Vi ge — 1
dx 1 —2ecx—10
121, | —== in—1 if ¢ <0,
: VX V-—csm <\/l)“’—4ac>” ¢
122f da 2(2cw+b)
XVx vx
2 2(2cx+b)< >
123.fX2 == (2
2(2cx + O)VX | 2k(n—1) da

124. fX"'\/X (Zn—1)9X" 20 —1 J xn1~/x
125. f\/Xd (2”9‘+5)VX+_1_” _dz |

VX
126. fX (20x+b)\/.< +%>+g% %'
127-th/§ M( POLE 817§>+T6578 j_o_c)'?'_
128 f XV “(zcigz?f;cﬁ 2(2nn++1;k )30;":'

xrdx & dx
129. =Yz 2
J= =
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d
130.fx x ___Z(bx+_2@.

X\/}— q'\/X
131' cde VX __b_f de
'an\/} @2n-—-1eX* 2¢ x* VX
2olac 3b — B8V —4ac [ dx
132. f W>\/X+_—_, e

rde (20 —4dac)x+2ab 1 de
13 + -
3 fX\/X eqVX VE

134 x*dx _(26"’—4@0)90—}-2(16+4ac+(2n——3)1)2 de
fX"\/} (Zn—l)ch"“\/X (2""1)09{ fX"“\/}

sdw x 5bx BB 20 3ab b dx
135f §;—~1zo+a“3—cz>*’}+<z;frecs> N4

136. fm/}dx—%}_—fx/“dx

2
137. wa\/_)Edm _ X;F _ zifxvzdw

138. fo de VX b (Xrdx
(2n+1)o ~2:) Vx

X 2
139. fm2\/}dm=<w—§—b>X\/" 50— 4acf\/_—dac
) : 6¢c/ 4ec 16 ¢%

2 X" dx xX* VX (2n+3)b (xX"dx

w. | x T2m+ e 4@m+De) VX
_ a Xrdx
2(n + e ) Vx

8c T18¢ 34/ Be
3ab 71) f\/—dm

141 fxﬁx/?r'dx=(x2_.@ 3507 2a>?”/a

803 324
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VX +Va b
142f —_—1 ( ¥ )if >0,
x VX o8 ® aval' "

’ bx+2a .
-1 » if @< 0.
143. f \/‘ V= a (x Ve — 4ac> “
X
144. — —
fw\/X bac yifa =0.

VX 1 dx b dx
145. st = | T
wxvx. @rn—Dax" " a) gx1vVx 2a) xrVX

147.f\/§dw=\/i+gfjm+ ‘;Zg/”_

148, X”dm__ X"~ 1dx b (X ldx
f VX (2n_1)v_ f VX

149. f\/de____

xX

X vVx ¢) xivVx o) xvVx ) xVx

151. f anXrde _ amIX VX @2n+2m—1)b (om X d

x™dx x™~2dx b - dxe  a xm idr
150. f

(2n+m)c 2¢(2n+m) VX
(m ];L m 2Y"d’l)
T (2n+m)e VX

152. de VX
Vx| (- Dar

_(2n+2m——3)1/f dx
Qa(m —_ 1) fl’m_lX"'\/X

~_ (2n+m~—2)c du .
(m —1)a fac"‘““’X"\ff
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153. de ___XIVX L @r=1b X"l
(m—1)am~1 " 2(m—1) ) pm-1~y/%

(Zn — e £ X" lda
-1 fxm-ﬂx/)?

dx 1 2k+m(a +b'x)
14. — = ___tan
o f(a'-f—b'x)\/X V=17 20V =X
o A g 2h A m (@ +lm)—2b'\/kX
. Vh a' + '

where m =0b'— 2a'c and & = ab> — a'0d’' + ca'?.

If 2 = 0, the value of the integral is — 27’ \/}/[m (a'+b'x)]. .

D. MiSCELLANEOUS ALGEBRAIC EXPRESSIONS

155. f\/Z ax — 2* de = }[(x — a) V2ax — & + a*sin~!(z — a)/a].
lx a—x .
156. —_(_—___—* = C S_1< >'
f\/2 axr — x? © a
dx 2 1 =0 (a+bx)
= tan=! \|——F—+-F72
157. f\/a T Vo ria vew \/ b(a'+ bz)

\j b'(a + bx)
b{a +b’oc)

2
or ——tanh™?
Vb
E4+20Va' + 0 x

1 \/(a,+bac)(a'+b’x)

158. f\/(a—f—bx)(a'—f—l)'oc)dm =
dx
T 8o Va+ bz Va £z

159. f a’—{—()':)r:dw_ \/a,+bm-'\/a'+b’x_£ . dr .
a+bx b 2bfva,+bx\/a'+b'w

160. f\’ii_;cdw =sin~le — V11—«

y [k=ab — a'b]
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161.f1 ’ZIZdw=\/(ac+a)(w+b)+(a—b)log(\/m+a+\/>w+b).

. r—a
= 2sin™!

162. dx .
f\/(x—-a)(a,’-_gc) a —a

163f (px + dx =q+apf de
(d—a')(ac-——b')\/aﬂ-bac-kcsc“’ a' =¥ x—aYVatdbax+cax?
g4+ 0'p dx
a——b' (oc—b)\/a+bw+cx2

d
164. f LI

(a' + b'x)}/a + bx + c2®
S <2 b m(a'+ V'a) =28 Vh(a + bz + cwg) ,

Vi a4+ b
1 20 + m (a4 b'x)
- tan—?!
o Ny <21) V= l(a+ bz + cz®))’
where m="00—2a'ec and A = ab'® — a'bb' 4 ca'’.
165. a + bx
ff {x, a' 4+ ' w}d
2 -ldz
‘—n(a'b—ab)ff X .._b’ T — by
where Z(a'+ V'z)= a + b

166. ff (2, Va + bx + e2®)dx

- ff<2 \f_.zze_b’zz \/;1__["27;’“ ﬁ),zz\/(al—_b;;;x/;

dz,

where xz +\/ﬁ Va + bx + ca?.
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III. TRANSCENDENTAL FUNCTIONS
167. fsinwdw = — COS .
168. fsin“’acdw =—3coszsine +3x=4%x—}sin2e
169. fsinsxdw = — 3 cos x(sin’x + 2).

. sin®*~'xgcosz K n—1.
170. | sintzde =— —F——— + —— | sin*?xdz.

n n

171. feos xdr = sinx.
172. fcos%cd:c: }sinzcosz+ 4o =4ax+ }sin2a.
173. fcos“wdx = 4 sinx (cos®x + 2).
174. fcos"acdx = %L cos""lzsinx + —n—;—lfcos"—zwdw.

175

sin 2 cos x dr = % sin®a.

176. fsin%c cos?zdx = — 4 (¥ sin 4 — x).

. cos™tiyg
177 sin x cos™xdx = — .
ne vaw m+41
: . in™t1
178. fsin’”ac cos wdp = 2%,
m 41

. cos™~lxsin®+tly m—1 .
179. f cos™x sin*xdx = ' + cos™ 2z sin"zdx.

m+n m+n
. sin®*~lzcos™tle n—1 N
180. | cos™zsin*xdx=— + cos™x sin* *x dx.
m+n m-+n

T m + 1 _— m
181.\fcos acdac= cos™ Tl m n+2feos acdm_

sin*z (n—1)sin* 'z n—1 sin® 2z
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m—1 ' _ m—2
‘182 fcos mdx cos .w +m 1fcos' wdx.

sin*z ~ (m —a)sin" 'z m—n sin"x

cos™ (E w>d<7—r w)
183, fsm acolx 2 2 .
cos™x sin® (1" — x>
2 .
184. f _
sin™x cos™x
1 " m4n—2 dx
Tn— 1 sin™~1x . cos" "z n—1 sin™x - cos® 2
_ 1 ) 1 " m4+n—2 dx
T m—1 sin™lx.cos" I m—1 sin™ 2z . cos*x
f_d—w_ = log tan x.
sinz cos z
cosw m—2 dx
185. fsm”‘ = — 1 sin™ 1z + m—1 ) sinm 2z
sinx n—2 dx
186. fcos" n ——1 cos” 1z + n— lfcos""x.

187. ftan xdxr = — log cos x.

188. ftanzwdw =tanx — 2.

n—1
189. ftan”acdx: tan® "z tan”®— 2z de.
n—1
190. f ctn zdx = log sin .

191. fctn’acdac =_—-cthx — .

n—1
192. fctn"a:d = otn" 'z —fctn”“’:cdx.
n—1

x
193. fsecmolw = log tan <Z + 5).

194. f sec?zdx = tan .
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195. fsec"mdx —f . ’
cos*x ,

196. f ese xde = log tan 4 x.

197. fcsczxdw =— ctn .

198. fesc"wdw —f
sin"x

- —1 : b+ acosw
199. L = . —1[?] ,
? fa+bcosac Vi — B sin a+beosx’[a>b>0:]’

_1 .sin—l[_,__””"g'sm””] [a>8>0
T i a+bcose | 1
1 __][\/az — 0. sinw]
o VE_p tan b+ acosx ' [e>8>0],
1 b+acosx+\/b2—a2-sinx]
— 0, 1* 1.
or \/bz—azlog[ a+becoszx ' [2>0, 0> a7
dx
200'fa’+bcosw+csinx
-1 . B+E+al(bcosz +csine
= - sin~? )
Va2 — - Vi 4+ (a+ b cos x + ¢ sinx)
1
or ﬁ-lo
VB ¢t — a? &

[b’+c’+a(bcosx +cs1nac)+\/b’*’+02——a2(b sinx—ceosx)].
V& + *(a 4+ beosx + esinx)

201. fx sin zdx = sinx —  cos x.
202. fxzsinwdw = 2zsina — («* — 2)cos x.
203. fw”sin xda = (3 2® — 6)sinx — (2* — 6x)cos .

204. fw’”sinwdw =— a™cos & + mfw""lcos z de.
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265. fac cos xdx = cos 2 -+ sin 2.
206. fwzcos axdx =2z cosx + (o — Z)éin x.
207. fm’cos xdx = (3 x* — 6)cos & + (2® — 6 x)sina.

.

208. fx"‘cosxda::ac’"sinm——m a™~1gin x dx.

209. sin x dr = — 1 .sm—x + 1 eos_w .
™ m—1 gnt m—1] am 1

cosx 1  cosx 1 sin
21o.f g =——— o — e [ e

sinz o o x x®
211'f 2 @=C i tE s 7. te. e

cos & x? at ot x®
212'f z =l Y i 6 e T8

213. fsin(mx+a)~sin(nw+b)dw. '
_sin(mx —nr4+a—>b) sin(mr+nr+a+bd)
- 2 (m — ) 2(m + n) |

- 214. fcos(mx+a)-cos (nx 4+ b)dx
_sin(mx +nx+a+b) sin (mx — nx + a — b)
- 2 (m + n)  2(m—m) '

- 215. fsin(mm+a)-cos(nm+b)dx

' __cos(mx+m+a+b)_cﬁmm—nx+a—;b).
- 2(m + n) 2 (m —n)

216. fsin (ma + a) - sin (mx + b)dx

sin (mx + a) - cos (mx + b)
2m

X
—E-cos(b—a)—

217. fsin (mx + @) - cos (mx + b)dx

_sin(me +a)-sin (me 485 = .
= o 3 sin (b — a).
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218. fcos (mx -+ a) - cos (mx + b)dx
sin (mx + a) cos (mx +b)
2m

x,
2
219. fsin‘lmdac =z sin~le + V1 — 22

cos (b — a) +

- 220. fcos‘%dw:xcos“w—vl—a?.

221. ftan“xdx = x tan~'z — § log (1 4 o%).

222. fctn—lxdx =zectn~'z + §log (1 + 7).

223. fversin‘lxdx = (x — 1) versin'z + V2z — &

224. f(sin“lx)zdx =z (sin~12)? — 22 + 2V1 — #?sin—1a.

225. | x.sinlwde =1 [(22° — 1) sin~'z + 2 V1 — 7]

(4

xrtlgintx 1 atlde

7 gin~1 = — = .

.226. fx sin—tzdzx i nri) Viee
x"tleos 1z 1 xtldx

n -1 —_ .
227.f9c cos ladr = p—— . B B p

xtitan—lz 1 w"“dx.
n-+1 n+1) 14 a2

228. f o tan-la do —

229. flogxdz =z logx — x.

(loga , 1 ni1
230,f - dx~n+1(logm) .

231. f dz = log (log ).

xloga
dx 1

L (ogz)* ~  (n—1)(loga)y*

log = 1
m — gpm+1 —
233. fx logzdz =2 [m+1 (M+1)2]'
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234. f e = £
’ a

235. fxe‘””dw =— (owc — 1.

236. fx'”e‘”‘dxzm O T amtem

a a

e a e
237. f—dm—— e 1+m_1fxm_ldx.

238 fe"“logmdac—-e logz f—dm

239 w . o _ ¥ (asinpx — p cos pr)
. 9 fe sin px dx g

e* (a cos px + p sin px)
(]/2 + pZ

240. re‘” + cos prde =
241. fsinhxdx = coshx; fcoshxdm = sinh z.

242. ftanhxdx = log coshz; fctnhwdx = "og sinh .
243. f sechzdx = 2 tan—1(¢*).

244, Jrn.sch zdzx = log tanh <g—> .

245. fﬂc sinh xdx = « cosh x — sinh @.

246. | x cosh zdx = x sinhx — cosha.

247. fcosh*’xdac = } (sinhz coshz + x).

248. [sinh x cosh zdx = } cosh (2 x).

249. fsinh“’acdx = } (sinh @ cosh & — ).
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1V. MISCELLANEOUS DEFINITE INTEGRALS

25o.f ﬂ"—:% ifa>0;0,ifa=0; —7, if 4<0.
[1]

a? + x? 2
251. fwaé";le-xdx ;fl[log}c]n_ldw=1'(n).
 T(n+1)=n-T(n),if 2> 0. T(2)=T(1)=1
I'(n +1)=n!, if » is an integer. rQ)=vmr
T(n)=Ti(n—1). . Z(y)=D,[lgT ()]

Z(1) =— 0.577216.

1 = gm-ldx I‘(m)l‘(n)
m—1 n—1 — x
252. fo‘ 11—z lde = A+ o " T(m

253. f sin®xdx __f cos*xdx

(n—1)
2-4-6~--(n)

=2 6 (n—)

< o)

)

254.f SIMMEAL T it >0; 0, if m=0; — Ty if m < 0,
A x 2 2

g if n is an even integer;

» if » is an odd integer;

for any value of n greater than —1.

l\le—l

255.[ ﬂr—‘-’”'—"ZS——""”"Z’”=0, if m<—1o0r m>1;
1]

77:’ if m=—1 or m=1; 2, if —1<m<1.

® sinzdxr T
256. l e _T.
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257.‘f cos (a:2)dx =fwsin (xz)d _—_1 \{E
0 0 2 2

258 f sin kx sin mxdx =f cos kx cos maxdx = 0, [k #+ m]
0 1]

259 f sin kx cos mxdz =

L22km2, if & —m is odd;
=0, if £ — m is even.

260. f sin*mxdr = cosimadr = T.
0 [ 2

261.f sin kx cos kxdz = 0
0
i dz T
262"£a+bcosw=m,[a>b>0]'
cosmadr _m _,
263f e
264f cosmdac f sin xdx

265.f5———di——=1(
o V1—k*sin’z

= 1, (1.8, (1.8:5
=l (e ()

2
6 cen 1 2
2-4~6>k + ]’1fk <1.
266. f§V1—k2sirl x-de=
0 .
K 1\? . [1.3VE [1.3.5\4° s
2[1”<§> k _<2 4> 3 <2-4-6> B ""']”fk <1
&3 _ 21’ 1 .
267. ey = — g =
A 2a

1 /1
%P(2>'
268. fac ey = 2D

n+1

a}!+1

27
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bl 2 1. 3‘ 5...2n—-1)
27 ,— ax’ —
269. \/0‘ z2"e dx = 2”+1a" q

270f e'xz_:*:da;=e_2a-\/7r.
°

2
271.fme"’*’”cosmwdx— - if a >0,
A 2+ m
272.fwe‘“"sinmxdm— PR ———ifa>0.
0
273f = 008 barda = 004
2a
274, logx =
[ aa=-T
log x ?
275'f1+x ="12
log « wt
276. fl—x =%
1+w>.£l§_"‘_'2.
277 Olo (FX5)- ===
+1> _m
2rs. lo<x e ="
1 dx

r _1_" T(n+1)
280.£m log(x> (J——m+1)n+l,[m+1>o n k1> 0]

’2—r . § 7r
281. f log sin xdz = f log cos xdx = — oh log 2.
4] ]

282. f z - log sinxdx =— glog 2.
0
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Natural Logarithms of Numbers between 1.0 and 9.9
N.\o\1 2\314\5 6 | 7 | 8| 9
1. 0.095 | 0.182 | 0.262 | 0.336 | 0.405 | 0.470 | 0.531 | 0.588 0.642
2, 0.742 | 0.788 | 0.833 | 0.875 | 0.916 | 0.956 0.993 | 1.080 | 1.065
3. 1131 | 1.163 | 1.194 | 1.224 | 1.258 | 1.281 | 1.808 | 1.385 1.361
4, 14110 1.435 | 1.450 | 1.482 | 1.504 | 1.526 | 1.548 | 1.569 1.589
5. 1.629 | 1.649 | 1.668 | 1.686 | 1.705 | 1.728 | 1.740 | 1.758 1.775
6. 1.808 | 1.825 | 1.841 | 1.856 | 1.872 | 1.887 | 1.902 | 1.917 1.932
. 1.960 | 1.974 | 1.988 | 2.001 | 2.015 | 2.028 | 2.041 | 2.05¢ 2.067
8. 2,002 | 2.104 | 2.116 | 2.128 | 2.140 | 2.152 | 2.163 | 2.175 2.186
9. 2.908 | 2.219 | 2.230 | 2.241 | 2.251 | 2.262 | 2.272 | 2.282 2.293
Natural Logarithms of Whole Numbers from 10 to 109
N. 0 1 2 3 4 5 6 7 8 9
1 |2.308 | 2.308 | 2.485 | 2.565 | 2.639 | 2.708 | 2.773 ) 2.833 2.890 | 2.944
9 |2.996 | 3.045 | 3.001 | 3.185 | 3.178 | 3.219 | 8.258 ; 3.296 3.332 | 8.867
3 |3.401 | 3.434 | 3.466 | 3.497 | 8.526 | 8.555 | 8.584 | 3.611 3.638 | 8.664
4 |8.680|8.7148.788 | 3.761 | 3.784 | 8.807 | 3.829 | 3.860 | 3.871 3.892
5 |s.912]|3.9323.951|8.970 | 3.989 | 4.007 | 4.025 | 4.043 4,060 | 4.078
6 | 4.004 (4111|4127 |4.143| 4159 | 4.174 | 4.190 | 4.205 | 4.220 4.234
v | 4.248 | 4.263 | 4.277 | 4.290 | 4.304 | 4.317 | 4.331 | 4.344 | 4.357 4.369
8 | 4.382 | 4.304 | 4.407 | 4.419 | 4.431 | 4.443 | 4.454 | 4.466 | 4.477 4.489
9 | 4.500 | 4.511 | 4.522 | 4.588 | 4.543 | 4.554 | 4.564 | 4.575 4.585 | 4.595
10 | 4.605 | 4.615 | 4.625 | 4.635 | 4.644 | 4.654 | 4.663 | 4.673 | 4.682 4.691
Values in Circular Measure of Angles which are given in
Degrees and Minutes
1’ | 0.0008 o' | 0.0026 || 8° | 0.0524 || 20° | 0.8491 || 100° | 1,7453.
o' | 0.0006 || 10’ | 0.0020 || 4° | 0.0698 || 80° | 0.5236 || 110° 1.9199
' | 0.0009 || 20’ | 0.0058 || 5° | 0.0873 || 40° | 0.6981 ) 1207 2.0944
& | 0.0012 || 30 | 0.0087 || 6° | 0.1047 [| 50° | 0.8727 |} 130° 2.9689
5 | 0.0015 || 40’ | 0.0116 || 7° | 0.1222 || 60° | 1.0472 )| 140° 2.4435
6 | 0.0017 || 50’ | 0.0145 || 8° | 0.1396 || 70° | 1.2217 || 150° 2.6180
7' | 0.0020 1| 0.0175 || 9° | 0.1571 || 80° | 1.3963 || 160° % 2.7925
8' | 0.0023 2 | 0.0349 || 10° | 0.1745 || 90° | 1.5708 |} 170° 2.9671
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Natural Trigonometric Functions

TABLES

Angle Sin Cse Tan Ctn Sec Cos
0° 0.000 | o) 0.000 o 1.000 1.000 90°
1 0.017 57.30 0.017 57.29 1.000 1.000 89
‘2 0.035 28.65 0.035 28.64 1.001 0.999 88
3 0.052 19.11 0.052 19.08 1.001 0.999 87
4 0.070 14.34 0.070 14.30 1.002 0.998 86
5° 0.087 11.47 0.087 11.43 1.004 0.996 85°
6 0.105 9.567 0.105 9.514 1.006 0.995 84
7 0.122 8.206 0.123 8.144 1.008 0.993 83
8 0.139 7.185 0.141 7.115 1.010 0.990 82
9 0.156 6.392 0.158 6.314 1.012 0.988 81
10° 0.174 5.759 0.176 5.671 1.015 0.985 80°
11 . 0.191 5.241 0.194 5.145 1.019 0.982 79
12 0.208 4.810 0.213 4.706 1.022 0.978 78
13 0.225 4.445 0.231 4,331 1.026° 0.974 ™
14 0.242 '4.134 0.249 4.011 1.081 0.970 . 76
15° 0.259 3.864 0.268 3.782 1.035 0.966 75°
18 0.276 3.628 0.287 3.487 1.040 0.961 74
17 0.292 3.420 0.306 3.271 1.046 0.956 78
18 0.309 3.236 0.325 8.078 1.051 0.951 7’
19 0.326 3.072 0.344 2.904 1.058 0.946 71
20° 0.342 2.924 0.364 2.747 1.064 0.940 70°
21 0.358 2.790 0.384 2.606 1.071 0.934 69
22 0.375 2.669 0.404 2.475 1.079 0.927 68
23 0.391 2.5569 0.424 2.356 1.086 0.921 67
24 0.407 2.459 0.445 2.246 1.095 0.914 66
25° 0.423 2.366 0.466 2.145 1.103 0.906 656° .
26 0.438 2,281 0.488 2.050 1.118 0.899 64
27 0.454 2.203 0.510 1.963 1.122 0.891 83
a 28 0.469 2.130 0.532 1.881 1.138 0.883 62
29 0.485 2.063 0.5564 1.804 1.143 0.875 61
80° 0.500 2.000 0.5677 1.732 1.155 0.866 60°
81 0.515 1.942 0.601 1.664 1.167 0.857 59
32 0.5630 1.887 0.625 1.600 1.179 0.848 58
33 0.545 1.836 | 0.649 1.540 1.192 0.839 57
34 0.559 1.788 0.675 1.483 1.206 0.829 56
35° 0.574 1.743 0.700 1.428 1.221 0.819 56°
36 0.588 1.701 0.727 1.376 1.236 | 0.809 54
87 0.602 1.662 0.754 1.327 1.252 0.799 53
38 0.616 1.624 0.781 1.280 1.269 0.788 52
_ 39 0.629 1.589 0.810 1.235 1.287 0.777 51
40° 0.643 1.556 0.839 1.192 1.305 | 0.766 50°
41 * 0.656 1.524 0.869 1.150 1.825 0.756 49
42 --0.669 1.494 0.900 1.111 1.346 0.743 48
43 0.682 1.466 0.933 . 1.072 1.367 0.731 47
44 0.695 1.440 0.966 1.036 1.390 0.719 46
45° 0.707 1.414 1.000 1.000 1.414 0.707 45°
Cos Sec Ctn Tan Cse Sin Angle




Values of the Comp

w w
3 dz g :
E=(* = __; E_—fzw/ 2 ginZz -
‘/:) V1= I2sin?z’ o V1~ kisinz

¥
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lete Elliptic Integrals, K and E, for Different
Values of the Modulus, %

dz.
sin—1% K E sin— 1k K E sin—1k K E
0° 1.5708 | 1.5708 50° 1.9356 | 1.3055 81.0° 3.2553 | 1.0338
1° 1.5709 | 1.5707 51° 1.9539 | 1.2063 81.2° 3.27T71 1.0326
2° 1.5713 | 1.5703 52° 1.9729 | 1.2870 81.4° 3.2995 | 1.0313
3° 1.5719 | 1.5697 53° ©1.9927 | 1.2776 81.6° 3.3223 | 1.0302
4° 1.572 1.5689 54° 2.0133 | 1.2681 81.8° 3.3458 | 1.0290
§° 1.5738 | 1.5678 56° 2.0347 | 1.2587 82.0° 3.3699 | 1.0278
6° 1.5711 | 1.5665 56° 2.0571 | 1.2492 82.2° 3.3946 | 1.0267
T° 1.5767 | 1.5649 57° 2.0804 | 1.2397 82.4° 3.4199 | 1.0256
8° 1.5785 | 1.5632 58° 2.1047 | 1.2301 82.6° 3.4460 | 1.0245
9° 1.5805 | 1.5611 59° 2.1300 | 1.2206 82.8° 3.4728 | 1.0234
10° 1.5828 | 1.5589 60° 2.1565 | 1.2111 83.0° 3.5004 | 1.0223
11° 1.5854 | 1.5564 61° 2.1842 | 1.2015 83.2° 3.5288 | 1.0213
12° 1.5882 | 1.5537 '62° 2.2132 | 1.1921 83.4° 3.5581 | 1.0202
13° 1.5913 | 1.5507 63° 2.2435 | 1.1826 83.6° 3.5884 | 1.0192 -
14° 1.5946 | 1.5476 64° 2.2754 | 1.1732 83.89 3.6196 | 1.0182
15° 1.5981 | 1.5442 65° 2.3088 | 1.1638 84.0° 3.6519 | 1.0172
16° 1.6020 | 1.5405 65.5° 2.3261 | 1.1592 84.2° 3.6853 | 1.0163
17° 1.6061 | 1.5367 66.0° 2.3439 | 1.1546 84.4° 3.7198 | 1.0153
18° 1.6105 | 1.5326 66.5° 2.3622 | 1.1499 84.6° 3.7557 | 1.0144
19° 1.6151 | 1.5283 67.0° 2.3809 | 1.1454 84.8° 37930 | 1.0135
20° 1.6200 | 1.5238 67.5° 2.4001 | 1.1408 85.0° 3.8317 | 1.0127
21° 1.6252 | 1.5191 68.0° 2.4198 | 1.1362 85.2° 3.8721 | 1.0118
22° 1.6307 | 1.5141 68.5° 2.4401 1.1317 85.4° 3.9142 | 1.0110
23° 1.6365 .5090 69.0° 2.4610 | 1.1273 85.6° 3.9583 | 1.0102
24° 1.6426 | 1.5037 69.5° 2.4825 | 1.1228 85.8° 4.0044 | 1.0094
25° 1.6490 | 1.4981 70.0° 2.5046 | 1.1184 86.0° 4.0528 | 1.0087
26° 1.6557 | 1.4924 70.5° 2.5273 | 1.1140 86.2° 4.1037 | 1.0079
7° 1.6627 | 1.4864 71.0° 2.5507 | 1.1096 86.4° 4.1574 | 1.0072
28° 1.6701 | 1.4803 71.5° 2.5749 | 1.1053 86.6° 4.2142 | 1.0065
29° 1.6777 1.4740 72.0° 2.5998 1.1011 86.8° 4.2744 | 1.0059
30° 1.6858 | 1.4675 72.5° 2.6256 | 1.0968 87.0° 4.3387 | 1.0053
31° 1.6941 | 1.4608 73.0° 2.6521 1.0927 87.2° 4.4073 | 1.0047
32° 1.7028 | 1.4539 73.5° 2.6796 | 1.0885 87.4° 4.4812 | 1.0041
33° 1.7119 | 1.4469 74.0° 2.7081 1.0844 87.6° 4.5619 | 1.0036
84° 1.7214 | 1.4397 74.5° 2.7375 | 1.0804 87.8° 4.6477 | 1.0031
35° | 17812 | 1.4323 || 75.00 | 27681 | 1.0764 || 88.0° | 4.7427 | 1.0026
36° | 1.7415 | 1.4248 || 75.50 | 27998 | 1.0725 || 88.2° | 4.8479 | 1.0022
87° | 17522 | 1.4171 || 76.0° | 2.8327 | 1.0686 || 88.4° | 4.9654 | 1.0017
38° 1.7633 | 1.4092 76.5° 2.8669 1.0648 88.6° 5.0088 | 1.0014
39° 1.7748 | 1.4013 77.0° 2.9026. | 1.0611 88 8° 5.2527 | 1.0010
40° 1.7868 | 1.3931 77.5° 2.9397 | 1.0574 89 0° 5.4349 | 1.0008
41° 1.7992 | 1.3849 78.0° 2.9786 | 1.0538 89.1° 5.5402 | 1.0006
42° 1.8122 | 1.3765 78.5° 3.0192 | 1.0502 89.2° 5.6579 | 1.0005
a3° | 1.8256 | 1.3680 || 79.0° | 3.0617 | 1.0468 || 89.3° | 5.7914 | 1.0005
44° | 1.8396 | 1.35% 79.5° 3.1064 | 1.0434 89.4° 5.9455 | 1.0003
45° 1.8541 | 1.3506 80.0° 3.1534 | 1.0401 89.5° 6.1278 | 1.0002
46° 1.8691 | 1.3418 80.2° 3.1729 | 1.0388 89.6° 6.3504 | 1.0001
4'7° 1.8848 | 1.3329 80.4° 3.1928 | 1.0375 89.7° 6.6385 1.0001
48° 1.9011 | 1.3238 80.6° 3.2132 | 1.0363 89.8° 7.0440 | 1.0000
49° 1.9180 | 1.3147 80.8° 3.2340 | 1.0350 89.9° 7.7371 | 1.0000
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Common Logarithms of I'(n) for Values of n between 1 and 2
T (n) =‘/;m:cn—1 e de =‘/;l[log%]n—ldx.

» logyo I () ” logy, T (1)

n | log,,T'(») n | logyI'(n) n | logy T ()

1.01 | 1.9975 ||1.21| 1.9617 ||1.41 | 1.9478 ||1.61| 1.9517 || 1.81 | 1.9704
1.02 | 1.9951 ((1.22 | 1.0605 ||1.42 | 1.9476 || 1.62| 1.9523 ||1.82 | 1.9717
1.03 | 1.9928 |/1.28 | 1.9594 ||1.43 | 1.9475 || 1.68 | 1.9520 || 1.83 | 1.9730
1.04) 1.9905 ||1.24 | 1.9583 |[1.44| 7.9473 ||1.64| 1.9536 || 1.84 | T.9743
1.05| 1.9883 ||1.25| 1.9578 ||1.45| 1.9473 ||1.65| 1.9543 ||1.85 | 1.9757
1.06 | 1.9862 ||1.26 | 1.9564 || 1.46 | 1.9472 ||1.66 ] T.9550 ||/ 1.86 | 1.9771
1.07 | 1.9841 ||1.27 | 1.9554 ||1.47 | 1.9473 |[1.67| T.9558 ||1.87 | 1.9786
1.08 | 19821 (| 1.28 | 1.9546 ||1.48 | 1.0473 || 1.68 | 7.9566 ||1.88 | 1.9800
1.09 | 1.9802 {|1.29 | 1.9538 |[1.49 | 1.9474 |[1.69 | 1.9575 |/ 1.89 | 1.9815
1.0 | 1.9783 ||1.80| 1.9530 ||1.50 | 1.9475 || 1.70 | T.9584 ||1.90 | 1.9881
111 1.9765 {/1.81] 1.9528 ||1.51 | 1.9477 ||1.71) 1.9593 | 1.91 | 1.9846
1.12 | 1.9748 |[1.82 | 1.9516 |{1.52 | 1.9479 || 1.72 | 1.9603 |/ 1.92 | 1.9862
118 | 1.9731 ||1.88 | 1.9510 |[1.58 | 1.0482 |/ 1.78 | 1.9613 |/ 1.93 | T.9878
1.14 | 1.9715 ||1.84 | 1.9505 |[1.54 | 1.9485 || 1.74 | 1.9623 || 1.94 | T.0805
1.16 | 1.9699 ||1.85| 1.9500 ||1.55 | 1.9488 |\ 1.75 | 7.9633 || 1.95 | 1.9912
1.16 | 1.9684 ((1.36 | 1.9495 ([1.56 | 1.9492 |[1.76 | 1.0644 |{1.96 | 1.9929
1.17 | 1.9669 ||1.87| 1.9491 ||1.57 | T.9496 |i1.77 | 1.9656 ||1.97 | T1.0046
1.18 | 1.9655 ||1.88 | 1.9487 || 1.58 | 1.9501 || 1.78| 1.9667 || 1.98 | 1.0964
1.19 | 1.9642 ||1.89 | 1.9483 ||1.59 | 1.9506 |{1.79| 1.9679 |!1.99 | T.0082
1.20 | 1.9629 [|1.40 | 1.9481 |[1.60 | 1.9511 |}1.80 | 1.9691 |{|2.00| 0.0000

TE+)=2.T(), if2>0; 1"(2)=I‘(1)=1;}
{[I‘(z-)-l‘(l—x)]::vr/sinnz‘, if1>2>0.

If the values of an analytic function, f(z), are given in a table for consecu-
tive values of the argument, z, with the constant interval d, and if & = kd,
where k is any desired fraction,

Ja+hy=fl@y+k-A +

where f(a) is any tabulated value.

k(e —1) kk—1(E—2)
X .A2+ 31 .A3+...’
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