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PREFACE.

——eCt——

IN the preparation of this work the authors have followed their
usual plan of attempting to allow the light of modern mathe-
matics to shine in upon the old, and to do this by means of a
text-book which shall be usable in American high schools, acade-
mies, and normal schools.

In general, the beaten paths have been followed, experience
having developed these and having shown their safety and value.
But where there is an unquestionable gain in departing from
these paths the step has been taken. For example, the subject
of factoring has recently attracted the attention it deserves; in
fact, several writers have carried it to an unjustifiable extreme ;
but there are few text-books that mention the subject after the
chapter is closed ; it is taught with no applications, and the stu-
dent is usually left with the idea that it has none. The authors
have departed from this plan, and have followed the chapter with
certain elementary applications, using the method in solving easy
quadratic and higher equations, making much use of it in frac-
tions, and not ceasing to review it and its applications until it
has come to be a familiar and indispensable tool. By following
such a scheme the student knows much of quadratics before he
reaches the chapter on the subject, and he enters upon it with
increased intelligence and confidence.

The arrangement of chapters has been the subject of consider-
able experiment of late. But the plan adopted in this work is,
in general, based upon the following:

1. The new should grow out of the old, as the expressions of
algebra out of those of arithmetic, the negative number out of
familiar concepts, factors out of elementary functions, quadratic
and higher equations out of factoring, the theory of indices out
of the three fundamental laws for positive integral indices, the
complex number out of the surd, and so on.
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iv PREFACE.

2. The student’s interest should be excited as early as possible,
and it should be maintained by reviews and by applications to
modern concrete problems. To this end the equation has been
introduced in the first chapter, with simple applications, and
general review exercises have been inserted at frequent intervals.

8. The new should be introduced where it is needed. To put
the remainder theorem where it is usually placed, at the end of
the work, is entirely unwarranted ; it is needed just before fac-
toring. To put complex numbers after quadratics is equally unsci-
entific, for they are met on the very threshold of this subject.

Considerable attention has been given to the illustration of
algebraic laws by graphic forms. The value of this plan is evi-
dent; the picture method, the cosrdination of the concrete and
the abstract, the one-to-one correspondence between thought and
thing — this has been recognized too long to require argument.
This method of making algebraic abstractions seem real is fol-
lowed in the presentation of certain fundamental laws (p. 37),
in the study of certain common products (p. 51), but more espe-
cially in the treatment of the complex number (p. 236) — a subject
usually passed with no understanding, — and (in the Appendix)
in the study of equations.

Where the time and the maturity of the class allow, the Appen-
dix may profitably be studied in connection with the several chap-
ters to which it refers. This arrangement allows the teacher to
cover the usual course, or to make it somewhat more elaborate if
desired.

It need hardly be said that no class is expected to solve more
than half of the exercises, the large number being inserted to
allow of a change from year to year.

It is the hope of the authors that their efforts to prepare a text-
book adapted to American schools of the twentieth century may
meet the approval of teachers and students. It is believed that
they have lessened the general average of difficulty of the old-
style text-book, while greatly adding to the mathematical spirit.

W. W. BEMAN, ANN ARBOR, MICH.

D. E. SMITH, BrockPoRrT, N. Y.
JuNE 1, 1900.
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ELEMENTS OF ALGEBRA.

——oOHR 00—

CHAPTER 1.
INTRODUCTION TO ALGEBRA.

1. ALGEBRAIC EXPRESSIONS.

1. There is no dividing line between the arithmetic
with which the student is familiar and the algebra which
he is about to study. Each employs the symbols of the
other, each deals with numbers, each employs expressions
of equality, and each uses letters to represent numbers.

In arithmetic the student has learned the meaning of 2%;
in algebra he will go farther and will learn the meaning of
2. In arithmetic he has learned the meaning of 3 — 2; in
algebra he will go farther and will learn the meaning of
2-3.

In arithmetic he has said,

If 2 x some number equals 10,
the number must be % of 10, or 5.

In algebra he will express this more briefly, thus:

1f 2z =10,
then x=2>5;
indeed he may already have met this form in arithmetic.

By arithmetic he probably could not solve a problem of
this nature: The square of a certain number, added to 5
times that number, equals 50; to find the number. But
after studying algebra a short time, he will find the solu-
tion quite simple.

1



2 ELEMENTS OF ALGEBRA.

In arithmetic it is quite common to use a letter to repre-
sent a number, as  to represent the rate of interest, ¢ to
. represent the interest itself, p the principal, etc. In
algebra this is much more common. In arithmetic it is
customary to denote multiplication by the symbol x, the
product of 5% and $100 being written 59 x $100, and
the product of » and p by » X p; but in algebra the latter
product is represented by rp.

In expressing 6 times 2 we cannot write it 52, because that means
50 4+ 2. But where only letters are used, or one numeral and one or
more letters, we may define the absence of a sign to mean multiplica-

tion. Thus, ab means a X b, that is, the product of the numbers rep-
resented by a and b; 6 ab means b times this product.

EXERCISES. I.

If a=5 6=T7,¢=3, d=1, e=4, find the value of
each of the expressions in exs. 1-9.

21 ae
1. 5abd. 2. g- acde. 3. m
be — ad 35 ab
4. V21 bee. 5. 235 6. 3 ode’
7. 2"’_+é_f.’l. 8. 3225(16. 9. w.
b cd

If a=2,6=38,¢=4, d=2>5, find the value of each of
the expressions in exs. 10-17.

abec = abe a+d c¢c—b
lo'lﬁ-'—ai 11. i 3
a b d 4 6 8 10
Rl S v R S
c  3d 2% a b ¢ d
0T T34 178 TE T 10
16.a+c+d—b_3' 17.a+b+c+d+5a—d_
b a 7 b
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2. A collection of letters, or of letters and other number-
symbols, connected by any of the signs of operation (+,
X, +, etc.) is called an algebraic expression.

E.g., 3z + 2 a is an algebraic expression, but 3 + 2 is an arithmet-
ical expression. So 2a is an algebraic expression, 2 and a being
connected by the (understood) sign of multiplication; also a, since
that means 1a.

)

3. An algebraic expression containing neither the + nor
the — sign of opera,tion is called a term or a monomial.

E.g., $ab, 5 Vaz, 2z 23

+ 3by — 5y2, the expressmns 2 az, 3 by, and b y2, are the terms, and
each taken by itself is called a monomial. The broader use of the
word term is given in § 46.

, are monomials. In the expression 2 ax

4. An algebraic expression made up of several terms or
numbers connected by the sign + or — is called a polynomial.

The word means many-termed. On all such new words consult
the Table of Etymologies in the Appendix.

5. A polynomial of two terms is called a binomial, one
of three terms a trinomial. Special names are not given
to polynomials of more than three terms.

Eg., gaz —< is a binomial. 5Va - 'c’ + ab%ed is a trinomial.

EXERCISES. II.

1. Select the algebraic expressions in the following list:

®@ 3 a’bc. (b) % a%bed.
(c) — — ¢t d) «® + y* + 2%
©) 2-.5\/7+1. () 24°— 32— 9z + 1.

2. Out of the algebraic expressions select the monomials.
3. Out of the polynomials seclect the binomials; tri-
nomials,



4 ELEMENTS OF ALGEBRA.

6. In the operation of multiplication expressed by e X &
X ¢, or abc, the a, b, and ¢ are called the factors of the
expression, and the expression is called a multiple of any
of its factors.

Factors should be carefully distinguished from terms. The
former are connected by signs of multiplication, expressed
or understood ; the latter by signs of addition or subtraction.

7. Any factor of an expression is called the coefficient of
the rest of the product. The word, however, is usually
applied only to some factor whose numerical value is ex-
pressed or known and which appears first in the product.

E.g., in the expression 3 azx, 3 is the coefficiént of ax, and 3 a is the
coefficient of z.

Since @ = 1 a, the coefficient 1 may be understood before
any letter.

8. As in arithmetic, the product of several equal factors
is called a power of one of them.

E.g.,2 x 2 x 2 is called the third power of 2 and is written 23 ;
aaaaa is called the fifth power of a and is written a8.

9. The number-symbol which shows how many equal
factors enter into a power is called an exponment.

E.g., in 23, 3 is the exponent of 2; in a5 b is the exponent of a.
The exponent affects only the letter or number adjacent to which it
stands ; thus, ab® means abbb.

The exponent should be carefully distinguished from the
coefficient. In the expression 2ax?® 2 is the coefficient of
az’ and 2 a of z®; 3 is the exponent of x.

Since  may be considered as taken once as a factor to
make itself, ! is defined as meaning z. Hence, any letter
may be considered as having an exponent 1.

There are other kinds of powers and exponents besides those which
have just been defined, and these will be discussed later in the work.
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10. The degree of a monomial is determined by the number
of its literal factors.
E.g., ab is of the 5th degree, a3b* of the 7th, 3 abc of the 3d, and 5a

of the 1st. A number, like 5, is spoken of as of zero degree because it
has no literal factors.

11. The word degree is usually limited, however, by refer-
ence to some particular letter.

Thus, while 8 a2z8 is of the 5th degree, it is said to be of the 3d
degree in z, or of the 2d degree in a, or of zero degree in other letters.

12. Terms of the same degree in any letter are called
like terms in that letter.

Thus, 3 az? and 5ax? are like terms, being of the same degree in
each letter. 3 ax? and 5 bx? are like terms in z.

13. The degree of a polynomial is the highest degree of
any of its terms.

Thus, ax? 4 bx + c is of the second degree in z.

14. As in arithmetic, one of the two equal factors of a
second power is called the square (or second) root of that
power, one of the three equal factors of a third power the
cube (or third) root, one of the four equal factors of a fourth
power is called the fourth root, etc.

The word root has also a broader meaning, as in ¢the
square root of 2,” an expression which is legitimate, although
2 is not a second power of any integral or fractional num-
ber. This meaning will be discussed later.

The square root of a is indicated either by Va or by al, the cube
3
root by Va or by a*, the fourth root by VE or by a*, etc. In a*, the
4 is called a fractional exponent, and the term is read ‘‘ a, exponent
4,”’ or ‘‘the square root of a,” or ‘‘a to the § power,” a reading
which will be justified by the subsequent explanation of the word
power.
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N
From what has been stated it will be seen that one of the

features of algebra is the representation of numbers by
letters. The advantages of this plan will soon appear.
Thus, if a number is represented by n, 5 times the square
of that number will be represented by 522 If two num-
bers are represented by a and &, 3 times the cube of the
first, divided by 5 times the square root of the second, will

5\/_

15. Those terms of a polynomial which contain letters
constitute the literal part of the expression.

E.g., the literal part of 22 + 2 + 1 is 22 + 2«. )
The expression is also used with respect to factors. Thus, the
literal part of }aV2 is a.

EXERCISES. III.

1. What is the numerical value of each term in the fol-
lowing expressions, if e =1,0=2,¢=5,d=3?

(a) abc®d*. (b) A+ —3a.
b
(c) 2d°—10¢—20. @) - 3 +10+d+3

2. In ex. 1, what is the numerical value of each poly-
nomial ?

3. In 13 a%®x, what is the coefficient of «? of & ? of
a%® ? What is the degree of the expression ? What is its
degree in x ? What is the exponent of ¢ ? of 6? of « ?

4. In the following monomials name the coefficients of
the various powers of z, and also the exponents of x:

@ (b) 2. (© “;xs.
(d) 23 a%e® (e) 4 a®Pea®. £) 8a®
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5. From ax? 3 bab, cx?, a®x, and 10 adz? select the like
terms in x or any of its powers.

6. From 3 ax? 9 mz, 14 az’ ax?, 9 az’, and 144 «, select
the like terms.

7. Express algebraically that if «? + y? + 2xy be divided
by « + y the quotient is « + y. (Use fractional form.)

8. What is the degree of the polynomial ax® + dx + ¢ ?
What is its degree in # ? What is its value if e =b=c=1,
and x =57

9. Express algebraically that if the sum of a? ab, and
b? be divided by the square of the binomial ¢ — d, the quo-
" tient is x.

10. What is the meaning of the expression
d4a*— 30t 4 6c—dt?
(That from 4 times the square of a certain number there
has been subtracted, etc.)
11. Also of the following expressions:
() a®+ 2ab+ 02 (b) a® — %
(c) 3a*— 48t + ot @) a®+ 3a% + 3ab® + b*.
12. Represent algebraically the sum of 3 times the square
of a number, 4 the cube root of a second number, and 5
times the 5th power of a third number. What is the value
of the.expression, if the three numbers are respectively 2,
81°?
13. Given a=4, h=6, c=9, d =16, ¢ =8, find the
value of each of the following, and designate the expres-
sion as a monomial, binomial, etc.:

a) 2a%ct. _(b) dtet — .
( 25 abed.

b
© at+b+d+e @ ,;,“20 °.

@ 2Bt +at—5+5. (€) 308 — ot + o,
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II. THE EQUATION.

16. An equality which exists only for particular values of
certain letters representing the unknown quantities is called
an equation. These particular values are called the roots of
the equation.

Thus, z + 8 = 5 is an equation because the equality is true only for
a particular value of the unknown quantity z, that is, forz = 2. This
equation contains only one unknown quantity.

2 + 3 = b expresses an equality, but it is not an equation as the
word is used in algebra.

17. The discovery of the roots is called the solution of the
equation, and these roots are said to satisfy the equation.

Thus, if 4+ 5 = 9, the equation is solved when it is seen that z = 4.
This value of z satisfies the equation, for 4 + 6 = 9.

18. If two algebraic expressions have the same value
whatever numbers are substituted for the letters, they are
said to be identical.

Thus, a2+%bisidenticalboa?+b, anda +btobd+a.
An identity is indicated by the symbol =, asin a2 + b=0b + a?.

19. The part of an equation to the left of the sign of
equality is called the first member, that to the right the
second member, and similarly for an identity.

The two members are often spoken of as ‘¢ the left side’’ and ¢ the
right side,” respectively.

The extensive use of the equation is one of the character-
istic features of algebra.

The importance and the treatment of the equation will
best be understood by considering a few problems.

In each case we say, ‘‘ Let ¢ = the number,”’ meaning that z is to
represent the unknown quantity.
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1. Find the number to twice which if 3 is added the
result is 11.

1. Let . « = the number.

2. Then 2z = twice the number.

3. Hence, 2z +3 =11 (Why ?)
4. Subtracting 3 from these equals, the results must be equal, and

2¢z=11 -3, or 8.
5. Dividing these equals by 2, the results must be equal, and
z =4
Check. To see if this value of z satisfies the equation, substitute it
in step 3. Since 2 x 4 + 3 = 11, the result is correct. This is called
checking or verifying the result.

20. A check on an operation is another operation whose
result tends to verify the result of the first.

E.g.,if 11 — 7 = 4, then 4 + 7 should equal 11; this second result,
11, verifies the first result, 4.

The secret of accurate work in algebra and in arithmetic
lies largely in the continued use of proper checks.

21. A check on a solution of an equation is such a substitu-
tion of the root as shows that it satisfies the given equation.

This substitution must always be made in the original
equation or in the statement of the problem. Thus, in the
above solution it would not answer to substitute the root,
4, in step 4, because a mistake might have been made in
getting step 4 from step 3.

2. Two-thirds of a certain number, added to 5, equals 17.
What is the number ?

1. Let & = the number.

2. Then #2 + b = 17, by the conditions of the problem.

8. Subtracting 5 from these equals, the results must be equal, and
$z =12,

4. Therefore, x =18.

Check. % of18=12, and 12+ 56 =17.
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3. T2 divided by a certain number equals twice that num-
ber. What is the number ?

1. Let « = the number.

2. Then 2 = twice the number, by the conditions
72 of the problem.

3. Therefore, z = 2.

4. Multiplying these equals by z, the results must be equal, and
72 = 222

6. Dividing these equals by 2,
36 = z2.

6. Extracting the square roots of these equals,

6 ==

Check. *2 =12,and 12 =2 x 6.

4. If from 35 a certain number is subtracted, the differ-
ence equals the sum of twice that number and 20. What is
the number ? ’

1. Let * 2 = the number.

2. Then 86—z =2z + 20. (Why ?)
3. Then 356 = 3z + 20, by adding z.

4. Then 16 =3z. (Why ?)
5. Then 5==z. (Why ?)

Check. (What should it be ?)

From the preceding problems it will be seen that the two
members of an equation are like the weights in two pans of
a pair of scales which balance evenly ; if a weight is taken
from one pan, an equal weight must be taken from the other
if the even balance is preserved ; if a weight is added to one
pan, an equal weight must be added to the other; and, in
general, any change made in one side requires a like change
in the other.

These facts are already known from arithmetic, where the equation
is frequently met. Even in primary grades problems are given like
2 x (?) = 12, this being merely an equation with the symbol (?) in place
of z.
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22. The axioms. There are several general statements
(of which a few have already been used) so obvious that
their truth may be taken for granted. Such statements
are called axioms.

The following are the axioms most frequently met in
elementary algebra.

1. Quantities which are equal to the same quantity, or to
equal quantities, are equal to each other.

Thatis, if 6 —2z=3,and 1+ =3,thenb6—-2z=1+=z.

2. If equals are added to equals, the sums are equal.
That is, if ¢ =y, thenz +2 =y + 2.

3. If equals are subtracted from equals, the remainders
are equal.
That is, if ¢ +2 =9, thenz =9 — 2, or 7.

4. If equals are added to unequals, the sums are unequal
in the same sense.

‘“In the same sense’’ means that if the first was greater than the
second before the addition of the equals, it is after. Thus, if z is
greater than 8, « + 2 is also greater than 10.

5. If equals are subtracted from unequals, the remainders
are unequal in the same sense.

That is, if z is less than 16, z — 3 is less than 13.

6. If equals are multiplied by equal numbers, the prod-
ucts are equal.
That is, if £ =6, z=8 x 6, or 18,

7. If equals are divided by equals, the quotients are equal.
That is, if 22 =6, =6 + 2, or 3.

8. Like powers of equal numbers are equal.
That is, if £ = 5, 22 =25. We here speak of z as a number because
it represents one.
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9. Like roots of equal numbers are arithmetically equal.

That is, if 22=386, £ =6. The axiom says ‘‘ arithmetically equal,’’
because it will soon be found that there is an algebraic sense in which
roots require special consideration.

These axioms should at once be learned by number.

23. Stating the equation. The greatest difficulty experi-
enced by the student in the solution of problems is in the
statement of the conditions in algebraic language. After
the equation is formed the solution is usually simple.

While there is no method applicable to all cases, the;fol-
lowing questions usually lead the student to the stateant:

1. What shall x represent? In general, x represents the
number in question.

E.g., in the problem, ¢ Two-thirds of a certain number, plus 10,
equals 30, what is the number ?’’ & represents the number.

2. For what number described in the problem may two
expressions be found? ‘
Thus, in the above problem, 30 and ‘‘§ of a certain number, plus
10, are two expressions for the same number.
3. How do you state the equality of these expressions in
algebraic language ?
$z + 10 = 30.

EXERCISES. IV.

Form the equations for the following problems :

1. The difference of two numbers is 14 and the smaller
is 3. What is the larger ?

2. A’s money is three times B’s, and together they have
$364. How much has B?

8. The sum of two numbers is 60 and the difference is
40. What is the smaller number ?
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Typical solutions. In the solution of problems involving
equations, the axioms need not be stated in full except when
this is required by the teacher. The check (which is a
complete verification) should always be given in full, except
when the teacher directs to the contrary. The following
solutions may be taken as types:

1. What is that number to whose square root if 2 is added
the result is T ?

1. Let z = the number.

2. Then vz + 2 =17, by the conditions.

3. . vz =5. Ax. 3
4 z =26. Ax. 8

-3

Check. V26 +2=5+2=

2. What is that number from two-thirds of which if 5 is
subtracted the result is 10 ?

1. Let & = the number.

2. Then $x — 6 = 10, by the conditions.

3. .. 4z —6+5=15, or $z = 16. Ax. (?)
4. .. z = 22¢. Ax. (?)

Check. % of 22¢ =15, and 16 — 5 = 10.

3. Find the value of x in the equation Vx +1=3}+T7.

1 Ve+l1=3%+1 Given
2 .- Vz = 6}, or p. Ax. 8
3 z = 881, or 40}. Ax. 8

Check. (Give it.)

4. Find the value of x in the equation 5x —3 =x + 7.

L bz —8=x+1. Given
2. .- bz =2+ 10. (Why? Seeex. 2, step 3)
3. .. 4z =10, for 52 — x means 6z — 1z.

4. .- T =24, (Why ?)

Check. (Give it.)
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EXERCISES. V.

1. Find the value of x in.the equation 2z + 2 = 30 + .
A.lsoin@= . 3. Alsoing=£-
x z 2

Also in x% 4+ 7 = 88. 6. Alsoin 22 —1 = 35.
Alsoin §x + 5 =4« + 20.
Alsoin 222 + 30 =17 x + 70.
Also in 250z — 20 = 20 = + 440.
Also in 12.75z + 6.25 = 7.25x + 17.25.

10. What number is that which divided by 3 equals $?

11. What is the number whose half added to 16 equals
217?

12. What is the number whose twentieth part added to
10 equals 20 ?

13. What is that number to whose square if 5 is added
the result is 41 ?

14. What is that number to whose square root if 5 is
added the result is 41 ?

15. What is that number from one-third of which if 27
is subtracted the result is 5 ?

® »® e D

16. There is a number by which if 9 is divided the quo-
tient is that number. Find it.
17. The sum of a certain number and 9 is equal to

the sum of 1 and three times that number. Find the
number.

18. The sum of a certain number, twice that number,
and twice this second number, is 70. What is the first
number ?

19. The united ages of a father and son amount to 100
years, the father being 40 years older than the son. What
is the age of the son ?
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Practical applications. The equation offers a valuable
method for solving many practical problems, of which a
few types will now be considered.

1. What sum of money placed at interest for 1 year at
439 amounts to $836 ?

1. Let 2 = the number of dollars.

2. Then Z + 0.04} z = the number of dollars in the prin-
cipal + the interest.

3. But 836 = the number of dollars in the prin-

cipal + the interest.

4. .. z 4+ 0.043 x = 836.

5. Or 1.04} = = 836.

6. .- z = 800. Ax. 7
7. ... the sum is $800.

Check. 800 + 0.04% of 800 = 836.

It should be noticed that since x stands for the number
of dollars, when it is found that = = 800 it is known that
the result is $800.

In the applied problems of algebra, x is always taken to
represent an abstract number, and the first step should
always state definitely to what this abstract number is
to refer.

2. A commission merchant sold some produce on a com-
mission of 2%, and paid $5 for freight and cartage, remit-
ting $117.50. For how much did he sell the produce ?

1. Let x = the number of dollars received.

2. Then 2 — 0.02z = the number after deducting 2%.

3. And 2 —0.02z — 6 = the number after deducting for
cartage also.

4 .- z —0.02z — 5 = 117.50.

5 .- 0.98z = 122.50. (Why ?)

6. .. z = 126. (Why ?)

Check. 126 — 0.02 of 126 — 6 = 117.50.
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3. After deducting J; and then } from a certain sum
there remains $49.50. Required the sum.

1. Let 2 = the number of dollars.
2. Then Z — %% = Yy, the number of dollars after
deducting .

" 3. From this 5 2 is to be taken } of it,
e —tof fsz=44z— Ae

=iz

4. .. = 49.50.

5. .. z =49.50 + }
= 66.

.. the sum is $66.
Check. 66 — 4 of 66 = 59.40. 59.40 — } of 59.40 = 49.50.

EXERCISES. VI.

1. In how many years will $100 double itself at 59
interest ?

2. What sum of money put at interest for 2 years at 69
amounts to $84 ?

3. In how many years will a sum of money double itself
at 69 simple interest ?

4. In how many years will $80 amount to $200, at 6
interest ? (80 +« X 6% of 80 = 200.)

5. What is the rate per cent of premium for insuring a
house for $2000, when the premium is $30 ?

6. Taking the number of units of area of a circle as
being 3} times the square of the number of units of length
" in the radius, find the radius of the circle whose area con-
tains 77§ units.

7. After gelling some goods on 59, commission, a mer-
chant remits, as the net proceeds, $79.80. How much is

his commission ? (Let x = the number of dollars for ‘which
the goods were sold ; after finding « take 59 of it.)
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III. THE NEGATIVE NUMBER.

24. In remote times men could count -only by what
are often called natural numbers, that is, 1, 2, 3, 4, 5, .. ..
Such numbers suffice to solve an equation like # — 3 =0,
an equation in which z must evidently be 3.

Mankind then introduced the wnit fraction, that is, a
fraction with the numerator 1. Such numbers are neces-
sary in solving an equation like 2z — 1 = 0. (Solve it.)

Then came the common fraction with any numerator, as
% 4 1% ---. Such numbers are necessary in solving an
equation like 3o — 2 =0. (Solve it.)

The idea of number was then enlarged to cover the cases
of V2, VT, \75, .-+, which are neither integers nor fractions
with integral terms. Such numbers are necessary in solv-
ing an equation like 2? — 2 = 0. (Solve it.)

25. Many centuries later the necessity was felt for fur-
ther enlarging the idea of number in order to solve an
equation like x +1 =0, or z + a = 0, a being one of
the kinds of number above mentioned. This led to
the consideration of negative numbers, —1, —2, -3, ..., | +5
and the meaning of these numbers will now be inves- {++

. J+s
tigated. 13e

26. If the mercury in a thermometer stands at 5° 1t
above a fixed point and then falls 1°, we say that it |_|
stands at 4° above that point. If it falls another ]-2
degree, we say that it stands at 3° above that point, {-*
and the next time at 2° and the next time at 1°. -

If the mercury then falls another degree, it becomes
necessary to name the point at which it stands, and we
call this point zero and designate it by the symbol 0.

If the mercury falls another degree, we must again name
the point at which it stands, and instead of calling this
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point «1° below zero,” we call it ¢ minus 1°” or “ negative
1°” and we designate it by the symbol — 1°. Likewise, if
the mercury falls 1° lower, we say that it stands at — 2°,
-and so on.

27. Thus we find a new use for the word minus and the
symbol —, Hefet(_)fore both the word and the sign have
indicated an operation, subtraction; they now indicate the
quality of a number, showing on which side of zero it
stands, and thus they are adjectives.

" In speaking of ‘‘west longitude,” *‘west’ is an adjective modify-
ing **longitude’’; in speaking of ‘‘ minus latitude,”” ‘‘ minus” is an
adjective modifying ‘¢ latitude’’; so in ¢‘minus 2°’ ¢ minus” is an
adjective.

28. It thus appears that our idea of number can
be enlarged to include zero, and still further to
include the series of natural numbers extended
downward from zero. Joysor o

If necessary to distinguish 1° above 0 from 1° Joyou 2
below 0, the former is written + 1° and called o+ 1
either ¢« plus 1°” or “positive 1°” and the latter ::_1 —
is written — 1°.  But unless the contrary is stated, - fog —,
a number with no sign before it is considered -
positive.

29. It thus appears that positive numbers may
be represented as standing on one side of zero, and negative
numbers on the other.

Thus, if west longitude is called positive, east longitude
is called negative, and vice versa ; if north latitude is called
positive, south latitude is called negative; if a man’s capi-
tal is called positive, his debts are called negative, etc.

E.g., if the longitude of New York is 78° 58’ 25.5” west and that of

Berlin is 13° 23’ 43.5” east, the former may be designated as + 73° 68~
25.6” and the latter as — 13°23’ 43.5”, their difference being 87° 22* 9,
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Similarly, if a man begins the year with $5000, and during the year
loses his capital and gets $2000 in debt, he is $7000 worse off than at.
the beginning. It may then be said that he started with $5000 and
ends with — $2000, the difference being the $7000 which he lost.

30. Since two such expressions as + @ and — a, or + 5°
‘and — 5°, represent different directions, but equal measures,
they are said to have the same absolute value.

The symbol | — a| is read, ¢« the absolute value of — a.”

Hence, | — 6°| = | + 5°1, although — 5° does not equal + 5°.

Since, the difference between — 5° and + 5° on a ther-
mometer is 10°, it appears that we sometimes find the dif-
Jerence between two numbers by adding absolute values.

31. There are numerous signs used in algebra, as 4, —,
x, +, V', exponents, etc. But by the sign of a term is
always meant the + or — sign, which indicates the quality
of the term, whether positive or negative.

Thus, in a2 + 7, the sign of 7b is plus (understood), whilein a2/— 7b
it is minus.

32. Positive and negative numbers, together with zero,
are often called algebraic numbers, positive numbers being
called arithmetical.

Zero is considered either as having no sign or as having both the
plus and the minus signs.

EXERCISES. VII.

These are intended for oral drill and should be supple-
mented by many others of this type.

1. A ship in 8° west longitude (4- 8°) sails so as to lose
1°in longitude. On what meridian is it then ? Suppose
it loses 7° more ? 3° after that ?

2. What is the difference in latitude between + 10° and
—20°? between + 90° and — 90°?
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3. Showthat |6 —7|=|—-10+12|=|—-22+20|=2.

4. What is meant by | — 4|? by the absolute value of
—8? of —3°?

5. What is the absolute value of 10 —17 ? of 17 —10?
of —%? of +%7?

6. What other numbers have the same absolute value as
+3,—5 +10, —V2,0°?

7. What is the difference in time between 50 years B.c.
and 50 years A.p.? Indicate this by symbols.

8. Draw a line representing a thermometer scale; mark
off 0°, 30°, — 25°. What is the difference between 30° and
—25°?

9. If the weight of a piece of iron is represented by
+ 10 lbs., what will represent the weight of a toy balloon
which pulls up with a force of 3 lbs.?

10. Suppose the piece of iron and the balloon mentioned
in ex. 9 were fastened together. 'What would be their com-
bined weight ?

11. If the upward pull of a toy balloon is represented by
+ 3 1bs., what will represent the upward pull of a piece of
iron weighing 10 lbs. ?

12. What is meant by saying that a person is worth
— $1000? Suppose $2000 is added to his capital. How
much is he then worth ?

13. Draw a circumference and show that the difference
between 50° and — 10° equals |50°|+|—10°|, or 60°.
Also that the difference between 10° and — 10° is 20°.

14. If the weights of two pieces of iron are respectively
100 1bs. and 300 lbs., and to these are attached a balloon
with an upward pull of 500 lbs., how shall the combined
weight be represented ?
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IV. THE SYMBOLS OF ALGEBRA.

33. As already seen, algebra employs the symbols of
arithmetic, often with a broader meaning, and introduces
new ones as occasion demands. The following classifica-
tion will enable the student to review the symbols thus
far familiar to him, and may add a few new ones to his
list. Others will be considered from time to time as
needed.

1. Symbols of quantity.

a. Arithmetical numbers, i.e., positive integers and frac-
tions.

b. Algebraic numbers, the above with the addition of neg-
ative numbers and zero. Others will be considered later.

c. Letters denoting algebraic numbers; these are the
symbols of quantity chiefly used in algebra.

2. Symbols of quality.

a. The symbols + and — to indicate positive and nega-
tive number, as in + a, — b, ete.

b. The absolute value symbol, as in | — 3/, indicating
that the arithmetical quality of — 3 is considered.

3. Symbols of operation.

a. Addition, +.

b. Subtraction, —.

c. Multiplication, X, -, and the absence of sign. Thus,
axb, a-b, and ab, all indicate the product of a and 5. It
is quite customary in algebra to say “a into &” for
“q times b.”

d. Division, +, /, :, and the fractional form. Thus,
a+b,a/b a:b and %: all mean the quotient of a divided
by .
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In arithmetic the symbol : is used only between num- .
bers of the same tlenominations; but in algebra, where the
letters represent abstract numbers, this distinction does
not enter. For ease in typesetting the symbol / is often
used in print; in writing, the fraction is usually employed.

e. Involution and evolution are indicated by exponents.
Evolution is also indicated, as in arithmetic, by the symbol
Vs a contraction of », the initial of radix (Latin, root).
Thus, «® means aaa,

8% means one of the three equal factors of 8, or 2.

4. Symbols of relation.

a. Equality, =.

b. Identity, = ; thus, @ = a, read “a is identical to a.”
Also read “stands for,” as in » = rate, P = x? + 2 xy, etc.

c. Inequality: > greater than, < less than, # not equal
to, > not greater than, < not less than.

5. Symbols of aggregation.

The expression m (¢ + ) means that a + & is to be mul-
tiplied by m. The parenthesis about a + & is called a
symbol of aggregation.

The bar, brackets, and braces are also used, as in

mia —[b+x(a —b—c)+ xza]—d}, and in

a|lx?+2alxt+ = (a+b)a’+(2a—b+c)x+ c?;
+b —b
+c

but the term parenthesis is often employed to mean any
symbol of aggregation. The subject is more fully dis-
cussed on p. 35. ,

6. Symbols of deduction.
*.*, since.
.*., therefore.
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7. Symbol of continuation.
..., meaning “and so on,” as in the sentence, ¢ consider
the quantities a, a? o, ....”

34. Conventional order. Mathematicians have established
a custom as to the order in which these signs shall be con-
sidered when several are involved, as in an expression like

a+bxc+dxef*—g+hk=—%-

In the above expression six operations are involved, as
follows :

DIRECT. INVERSE.
Crass 1. Addition. Subtraction.
Crass II. Multiplication. Division.
Crass III. Involution (Powers). Evolution (Roots).

The mathematical custom is expressed in the following
conventions :

1. If two or more operations of the same class come
together (without symbols of aggregation), the operations
are to be performed in the order indicated.

Eg,24+3—-44+1=2,and2x8+4x2=8.

2. If two or more operations of different classes come
together (without symbols of aggregation), the operations
of the higher class are to be performed first.

I.e., involution and evolution precede multiplication and division,
and these precede addition ard subtraction.

Eg.,5+2x8+22—VE=1.

This conventional order can, of course, be varied by the
use of symbols of aggregation.

E.g.,2+3x6=17, but (2 + 8) x 5 = 25.
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There are also certain exceptions to this conventional
order, but they are not of a nature to cause any confusion.
E.g., ab < cd means (ab) =+ (cd) and not a,%d’ and similarly in other

cases of the absence of sign where division is involved.

Similarly, when the sign of ratio (:) appears in a proportion it has
not the same weight as the symbol +~, Thus,2+3:12-2=1:2
means (2 + 3):(12—-2) =1:2.

EXERCISES. VIII

1. If a=1,0=2, ¢c=3, d =4, find the value of each
of the following expressions :

(@) (a+ )" (b) b(c + d)™

(c) 5d/bc — a. (@ 9 —d+b)et

(& 3a+b6xc—d €) (@ +b)(+d).

(8) 2+ a®*d + a + 0. () 2axb+dXc—a.

2. Read the following expressions :

(@) a+a*=a+a’

(b) a/b}aifdb>1. .
(©a’=a+a*—a,..a’?<a+ad

@ vce=2..a"=4a"=8,a*=16, ...

(e) a® + a® + a? and a® + a® 4 @ if a is positive.

3. Show that the following are equal when a =2 and

b =38. That is, substitute 2 for ¢ and 3 for & in each
member.

(@) (@a+d):=a+ 2ab+ b2

(b) 0 —a)?=10*—2ba 4 a®

(© *—a®/(d—a)=b+a.

@ (a+0d)(a®—ab+ %) =a®+

(e) (®*—a®) /(b — a)="0%+ ba + o

) (ea+8)°P=a’+3a%+ 3 ab? 4 bd.
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V. PROPOSITIONS OF ALGEBRA.

35. A proposition is a statement of either a truth to be
demonstrated or something to be done.

E.g., algebra investigates this proposition : The product of a™ and
aris am+», It also considers such statements as this: Required the
product of @ + b and a — b.

36. Propositions are divided into two classes, theorems

and problems.
A theorem is a statement of a truth to be demonstrated.

E.g., The product of am and a» is am+=»,

A problem is a statement of something to be done.
E.g., Required the product of a + b and a — b.

A corollary is a proposition so connected with another as
not to require separate treatment.

The proof is usually substantially included in that of the proposition
with which it is connected.

REVIEW EXERCISES. IX.
1. What is the degree of the expression 3ax?®? What
isits degreeinz? iny? inzxand y? inz?
2. Distinguish between coefficient and exponent. What
is the coefficient of x in the expression g? the exponent ?
3. What is the meaning of the expression ab? of 26 ?
ofag? of 23 ? What is the value of abifa =2, 5=6?

ofagifa,=2,x=3,y=4?

4. What s meant by the etymology of a word ? What
is the etymslogical meaning of binomial? of trinomial?
of monomial? of aggregation? of theorem? (See Table
of Etymologies.)



26 ELEMENTS OF ALGEBRA.

o

Show that if a =7 and & = 5,

(@) (a +b)(a —b)=a®—b%

(b) (@ —b)*=a?+ b2 — 2ad.

(€) (a —b)>=a®— b — 3ab(a —b).

Show that if a = 3,5 =2,¢ =1,

(@) (a+b)P—ct=@+b+c)(a+d—c).

() (e+b+c)=a®+ 2+ 2+ 2ab+ 2bc + 2 ca.
7. What meaning has the number “minus 2” to you ?
8. What is the value of 8% 2 of 9}? of 16.32% + 1637
9. Show by substitution that 1 is a root of the equation

in ex. 10.

10. How many terms in the equation 222 +32x —4=17?
How many members ?

11. Draw a diagram illustrating the. fa.ct that the abso-
lute value of the difference between — 5 and 10 is 15.

12. What is the degree of the polynomial «® + 3x%? +
3zy*+ 5y +6? What is the degree inz? iny? inz?

13. Write the following in algebraic language: The sum
of the square of a number, 3 times the number, and 5, is
equal to 9.

14. Represent algebraically the sum of the cube of a
number, 5 times the square of the number, and 6, less half
the number.

16. What is meant by solving an equation ? by a root of
an equation ? by checking a solution ? Illustrate with the
equation z — 2 = 0.

16. What is the number from which if 59, be taken, and
109, from the remainder, and 209 from that remainder,
the result is 41.04 ?

17. Write out three problems which you can now solve,
but which you could not solve when you began to study
algebra.

®



CHAPTER 1I.
ADDITION AND SUBTRACTION.

1. ADDITION.

37. In elementary arithmetic the word number includes
only positive integers and fractions, or at most a few indi-
cated roots like V2, %, --.. Hence, the word sum, as there
used, applies only to the result of adding two positive num-
bers.

In algebra the word sum has a broader meaning, and
includes the results of adding negative numbers and num-
bers some of which are positive and others negative.

E.g., consider the combined weight of these three articles: a 2-lb.
weight, a 4-1b. weight, and a balloon which weighs — 5 1bs. (i.e., pulls
upward with a force of 5 1bs.). Together they would evidently weigh
11b.. Hence 1 1b. is said to be the sum of 2 lbs., 4 1bs., and — 5 1bs.

So the result of adding a debt of $100 to a capital of $300 is a capital
of $200 ; hence, $200 is said to be the sum of $300 and — $100.

38. In this broader view of addition two cases evidently
arise:
1. Numbers with like signs.
2 Ibs. 4 3 1bs. = 5 lbs.
A balloon pulling up 5 lbs. and one pulling up 8 lbs. together pull
up 13 1bs., or (— 6 Ibs.) + (— 8 Ibs.) = — 13 lbs.
2. Numbers with unlike signs.

A balloon pulling up 5 lbs. and a weight of 2 lbs. together pull up
3 Ibs.,, or — 5 1bs. + 2 lbs. = — 3 lbs.
27
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39. From considerations like these we are led to define
the sum of two algebraic numbers as follows:

1. If two numbers have the same sign, their algebraic sum
8 the sum of their absolute values, preceded by their common
sign.

Thus, to add — 3 and — 2 means to add 3 and 2 and to place the
sign — before the result.

2. If they have not the same sign, their algebraic sum s
the difference of their absolute values, preceded by the sign
of the one which has the greater absolute value.

Thus, to add — 3 and 2 means to find the difference between 3 and
2 and to place the sign — before the result, since | —31>121.

3. In the special case where the two numbers have the
same absolute value (i.e., where they are equal and of oppo-
site signs), the sum is zero.

Eg.,2+(—2)=0.

4. If one of two numbers is zero, their algebraic sum is

the other number.
Thus, — 3 + 0 means — 3.

40. The algebraic sum of several numbers is defined as
the sum of the first two plus the third, that sum plus the
fourth, ---.

Thus, @ + b + ¢ + d means a + b with ¢ added, and that sum with
d added. I.e,a+b+c+dmeans[(a+Db)+c]+d.

EXERCISES. X.

Find the sum of — 20, + 3, — 47, + 80.
Alsoof +2,—3,+5, —4,+9, — 3, —6.
Also of 2% 5% — 62 8x2?

Also of 127 mn, 62 mn, — 93 mn, — 17 mn ?

L A A
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$50 + $7 + (— $21) +(— $30)="?
54219 4+ (—376) + (—40)+ 104 (—37)=?
D+44+(—2)+184+13+(—20)+(—6)=7?
3a+(—2a)+(—ba)+8a+6a+(—10a)="?
. What is the sum of 3a, 5a, — 6a, 8a, 10a, — 3 a,
—17a?

10. 12 2% + 4 2% + (— 16 2%) + (— 3 x%) + 10 2%
= (?) :c’y ?

11. 5 lbs. + 55 Ibs. + (— 40 Ibs.) + (— 27 1bs.) + 121 1bs.
+(—191bs.) + (— 51bs)=(?)lbs ?

12. What is the combined weight of two balloons weigh-
ing, respectively, — 10 lbs. and — 18 lbs., and three pieces
of iron weighing, respectively, 6 lbs., 12 1bs., and 14 lbs. ?

© ® o &

13. On seven consecutive midnights in January, in Mon-
treal, the temperature was 30°, 18°,10°, 4°, 0°, — 7°, — 20°.
What was the average midnight temperature for the week ?

14. What is the combined weight, under water, of a piece
of cork weighing — 2 oz., a stone weighing 31bs., a piece of
wood weighing — 1 lb. 3 oz., and a piece of iron weighing
5 1bs. ?

15. A merchant finds that he has cash in bank $575.50,
stock worth $4875, due from customers $1121.50, that he
owes a note and interest amounting to $350.25 and bills
amounting to $827, and that he owns a bond and mortgage
of $1000. Express his capital as the sum of these various
items with their proper signs.

16. A ship sailing up a river would go at the rate of 15
miles an hour if it were not for the current; the current
averages 5 miles an hour for the first 3 hours of the ship’s
progress, and 4 miles an hour for the next 2 hours. How
far has the ship gone at the end of 5 hours ? Express this
as the sum of several algebraic numbers.
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41. To add several literal expressions, called the addends,
is to find a single expression called the sum, such that what-
ever values are substituted for the letters the value of the
sum shall equal the sum of the values of the addends.

E.g., the sum of a, 2a, Ta, — 4a, is 6a; for suppose 1 is substi-
tuted for a, we have 1 + 2 + 7 — 4, which is 6 ; and if 2 is substituted
for a we have 2 + 4 + 14 — 8, which is 12,

and so for any other values. . 2a+ b-—38c
Similarly, the sum of the addends in the 4b+ ¢

annexed problem is —4a + 4b — ¢; for if —6a— b4+ ¢

a=2,b=4%,¢c=5, wehave —10§ + 7 — 7% —4a+4b—- ¢

= — 11, and similarly for any other values

of a, b, c. . 4+1+-16=-10%

. . 24+ b= 7

Since these values are entirely _19_3, 5= _ 73

arbitrary, they are usually called — 8+2— 5= —11

arbitrary values.

42. Hence, it appears that to add like terms is to add the
coefficients, and to add polynomials is to add their like
terms, the literal parts being properly inserted in the sum.

The sum is supposed to be simplified as much as possible. Thus,
thesumof 4da —band b+ ais ba, not4a + a.

EXERCISES. XI.

1. Add 322+ 2xy +4y% 422 —3zy — 298 3+ ay.

2. Add 6Vm +z, 5Vm —x — 3y, 8Vm — 2y,and 3.
Check the work by letting m =4,z =1,y =1.

3. Add 2a+3b—c¢, —4¢,7Ta, —6b+8c,and —a +5
—¢. Check the work by lettinga=1,6=1,¢c=1.

4. Add172—9y, 32+ 14z, y—32,2—172, and = —
3y + 42 Check the work by lettingx =1,y =2, 2=3.

5. Add16m +3n—p, p+4q, —g+Tm—38n,n—ygq,
and 3n + 2p. Check the work by letting m =1, n =1,
P = 2, ¢ = 4, or by assigning any other arbitrary values.
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II. SUBTRACTION.

43. Subtraction is the operation which has for its object,
given the sum of two expressions and one of them, to find
the other. .

The given sum is called the minuend, the given addend is
called the subtrahend, and the addend to be found is called
the difference or the remainder.

That is, the difference is the number which added to the
subtrahend produces the minuend. In other words,

difference + subtrahend = minuend.

E.g., w445 =9, e 4=9-5;
w44+ (—-3) =1, s 4=1—-(-3);
w44+ (—-56) =-1, s 4=—-1—(—-05);
v —44+(—-3)=-1, So—4=—-T7—(=3).

These results are illustrated as follows: the difference
between the temperature of 9° and that of 5° is 4°; that
between 1° and — 3° (i.e., 1° above 0 and 3° below 0) is 4°;
that between — 1° and — 5° (i.e., 1° below 0 and 5° below 0)
is 4°; that between — 7° and — 3° is — 4°, that is, the mer-
cury must fall 4° from — 3° to reach — 7°.

We may, therefore, think of subtraction as the inverse of
addition, or the process which undoes addition.

ExaMpLE. What is the remainder after subtracting
3a2 +4ab—5b2 from 4a2 — 5ab + 2b2°?

‘What term added to 3 a? makes 4a? —bab+ 202
4a2? Evidently a2 Sa? +4ab— b5b?
‘What tel‘lfl added to 4 ab makes @ —9abt 702
—bab? Evidently — 9ab; for the
addition of — 4 ab makes 0, and the further addition of — 6 ab makes
— bab.
" Similarly, 7 b2 is the term which added to — 552 makes 2 b2,

402 —bab+2b2—(3a+4ab—5b%)=a® —9ab 4+ TH.
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Check. Leta=1,b=2. Then

4a% —b5ab+ 2062 4—-10+ 8= 2
3a2+4ab—5b2 v 8+ 8-20=-9
a?—9ab + 72 1-18428= 11

Since this is an identity, it is true for any values of @ and b. Hence,
the work may be checked by letting @ =1, b = 2. The minuend then
becomes 2, and the subtrahend — 9, and the remainder 11, which is
2—(-9).

44, Theorem. The subtraction of a negative number should
be interpreted as the addition of its absolute value.

Given a and —b.
To prove that a — (— ) equals a plus the absolute value
of —b; that is,
that a —(—b)=a+|—blora+b.
Proof. 1. @ — (— &) must be such a number that
a—(—b)+(—b)=a. Def. of subt., § 43
2. Adding b to both members, and remembering
that (—b)+b=0, §39, 3
and that a+0=a, §39, 4
wehave a—(—b)=a+},
which we were to prove. '
CoroLLARY. ‘."a —(—0)=a+1b,..0 —(—b)=>b. This
is usually expressed by the phrase, Minus a minus is plus.

EXERCISES. XII.

1. From 3a — 45 + ¢ subtract 2a — 56 —¢. Check the
work by letting a =3, b =1, ¢ = 2, or by assigning any
other arbitrary values; also by adding the remainder and
subtrahend.

2. From 3a — 5z + $m subtract 4a —m. Check by
letting @ =5, x =1, m = 3, or by assigning any other
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arbitrary values; also by adding the remainder and sub-
trahend.

3. From 13z + y — 32 subtract 5 — Ty + 2 Check
as in exs. 1, 2. )

4. From 7a® 4 3 ab — 6% subtract a® 4+ 3 ab — 2%
Check as in exs. 1, 2.

6. What expression added to 2z? — 3xy — 15 y* makes
—Tx®?—3zy+2? Check.

6. Perform the following subtractions, checking each as
in exs. 1, 2.
(a) 3x®* —Ta? 4+ 22— 13 (b) 1.5p*— 2pgr 4+ 0.57%

40— 242 + 1 — 3 pgr —1.37%

(¢) 2t —3ab+ b — ¢
17 o} — 1304 12¢

@) 2a°—3a*% + 2a%*— 3a%® + 15 ad* — °
6 a® 4+ 3a%?— a%® + 5

()  18a%i+4da -3  (f) 22y —y*+ 32
7a* —2a 4402~ B 2’ +y? — 3y

7. What is the difference between the capital of a man
who has a stock of goods worth $5000, $750 in the bank,
and owes $1000 on a mortgage, and that of one who has
a stock of goods worth $6000, has overdrawn his bank
account $275, and owns a $500 mortgage ?

8 If P=a?’+2ab+0% Q=2a*+ab+ 0% and R =
— 4 ab — T8 find the values of the following expressions.
Check in each case by assigning arbitrary valuesto a and b.

(@ P—@. (b) P—R. (© Q- R

@ @—P. e P+Q—R. (f) P+R—Q.
® P—Q—R () R—-—@Q—P (i) Q—P—R
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45. Detached coefficients.” Additions and subtractions may
evidently be performed without the labor of writing down
all of the letters. Since the coefficients of like terms are
added, these coefficients may be detached and added sepa-
rately, the coefficients of like terms being placed under one
another. Missing terms are indicated by zeros.

Thus, the second of the following additions is the simpler :

1) 2 Check.
. at+2ab+ b2 1+2+41 = 4
—8a2— ab+ B —-8—-1+1 =-38
4a2 —3ab— 302 4-—-3-38 =—2
2a2 —2ab— b 2-2-1 =-1
2a2 —2ab — b2

Since, if the arbitrary value 1 is assigned to each letter, the value
of each term is its numerical coefficient, the check requires merely the
addition of the coefficients.

EXERCISES. XIIIL

Perform the following operations by using detached
coefficients, checking the results by the above method.

1. Add &% + a%® — 4 ab® 3a®b — Y, — a%? + b4, 4 ab®.

2. Add 5a* — 22%* + o, 2y + xyf, ot — xyp, — 2Py + Y4

3. Add «® — 2y + xy® — % 22 + B2’y — 4y + o3
b — 5

4. Add p*+3p*+4p—6, —p*—2p+1, p*—1, 3p®
+2p+3.

5. From a® + 2ab + 0* subtract a® — 2 ab + b2

6. From a® + o’y + xy® + 3 subtract «® — x%y + xy? — 2.

7. Given P=a®+4 32’ + 32’ + ', Q= — 3% +
3zy*—3y® R = x® — 3*, find by using detached coefficients
the values of the following, checking as above:

(@ P—@Q. (b)Q—R. (c)R—P. @ @—P.

@©E—-@ (E)P-EB (g P+@Q+ER (h)P+Q—R.-



ADDITION AND SUBTRACTION. 35

III. SYMBOLS OF AGGREGATION.

46. Symbols of aggregation, preceded by the symbols +
and —, may be removed by considering the principles of
addition and subtraction already learned.

Since a+@G—c)=a+b—eg

“and a—b—c)=a—>b+e,

therefore, « symbol of aggregation preceded by + may be
neglected ; if preceded by — it may be removed by changing
the sign of each term within.

Eg,2a+@Bb—c+a)=2a+8b—c+a=8a+38b—c.

2a—(Bb—c+a)=2a—-8b+c—a=a—-3b+ec

For the same reasons, any terms of a polynomial may be
enclosed in a symbol of aggregation preceded by + ; also in
a symbol of aggregation preceded by — provided the sign
of each term within is changed.

Eg,a+b—c+d=a+(b-—c+d)y=a+b—(c—ad).

The word term now takes on a broader meaning than that
given in § 3. E.g., in the expression a —b (¢ —d), b (c — d)
is often considered as a term. So in general, where no con-
fusion will arise, polynomials enclosed in symbols of aggre-
gation, with or without coefficients, are often called terms.

E.g., (a — b)x? + (a + b)x + (a® — b?) may be considered as a tri-
nomial.

EXERCISES. XIV.
Remove the symbols of aggregation in the following :
L p+2pg+9¢" — (" — P
a®— 362+ (2a® + T — c%).
a® — (3 a% + a® — b%) — b® + 3 a%.
25— 3wy + y* — (227 + 3zy — o).
5md — @B m® + 1) — (dm* + m® — 3) + (m® + 1).

A
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47. Several symbols of aggregation, one within another,
may be removed by keeping in mind the principles already
mentioned.

The order in which these symbols are removed cannot
affect the result, but the simplest plan will be discovered
by considering the following solution.

Simplify @ —[a 4+ b — (c —d —¢) +¢], (1) beginning
with the inner symbol, (2) beginning with the outer symbol.
(6] - @

1. a-[a+b—(c—d—e+c] 1.

2. =a—[a+b—-—(c—d+e)+c] 2.=a— a-b+(c—d—e)—c
3. =a—[a+b—c+d—e +¢] 8. =a— a—-b+c—-d—e —c
4. 4.
b.

a—[a+db—(c—d—e€)+c]

=a—a-b+ c—d+e —c¢ =a— a-b+ c—d+e —c

= -b —d+e b = -b —d+e

How many changes of signs were made throughout solution (1) ?
how many in solution (2) ? Hence, which solution is the better ?

From the second step of solution (2) could you have written down
step 5 at once ? Could you have done this from step 2 of solution (1) ?

On this account which is the better solution ?

From the above solution it appears that ¢t is better to
remove the outer parentheses first. A little practice will
enable the student to remove them all at sight if this plan
is followed.

EXERCISES. XV.

Remove the symbols of aggregation in the following
expressions, uniting like terms in each result.

1. —[a®— (2ab— & — a?) + b%].
4a*— {50+ a—[6a®—3a— (B*—a)]}.
a*zx — [ax? + a® — (a’x — a®) + 2*] — ax? + 2%
10 m? + 5mn — [6m? + n? — (2mn — m?® + n?)] — nt
. —(—=(=(¢--—(—=1)--4))), an even number of sets
of parentheses; an odd number of sets.

ooRow o
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IV. FUNDAMENTAL LAWS.

48. The following laws have thus far been assumed :

1. That @ + b= b+ a, a and b being positive or negative
integers, just as in arithmetic 3 + 4 =4 + 3. This is
called the Commutative Law of Addition, because the order
of the addends is changed (Latin com, intensive, + mutare,
to change).

II. That a + b+ ¢ = a + (b +¢), the letters represent-
ing positive or negative integers, or both, just as in arith-
metic 3+ 4+5=3+9. This is called the Associative
Law of Addition, because b and ¢ are associated in a group.

III. That ab = ba, a and b being positive integers, just
as in arithmetic 2.3 =3.2. This is called the Commuta-
tive Law of Multiplication.

That these laws are valid for the kinds of numbers indi-
cated will now be proved, although the proof may be

omitted by beginners if desired.

49. I. THE CoMMUTATIVE LAW OF ADDITION.

1. If 3 marbles lie on a table, and 4 more are placed with
them, the result is indicated by the symbols 3 + 4.

2. If the original 3 marbles be removed, 4 will remain;
and if the 3 be then replaced, the result will be indicated
by the symbols 4 4 3.

3. But the number of marbles has not been changed.

3 +4=4+3.

4. But this proof is independent of the particular num-
bers 3 and 4, and hence, @ and & being any positive integers,
a+b=b+a.

5. The proof is evidently substantially the saine for sev-
eral groups. Hence,

a+b+c+-=a+t+c+b+---=b+c+a+--,ete
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6. And since, if some of the terms are negative, we deal
with their absolute values, adding or subtracting as indi-
cated, and prefix the proper sign to the result, therefore
the above proof is sufficiently general.

Ie,a+b—c=a—c+b, because in any case we are to take the
difference between the absolute values of @ + b and ¢, and prefix the

proper sign.
50. II. THE AsSSoCIATIVE LAW oF ADDITION.

To prove that « + b + ¢ = a + (b + ¢), the letters repre-
senting positive or negative integers, or both.

L vet+dbt+a=(+0d)+a. Def., § 40
2. =a+(c+d). "~ Com. law, § 49
3. a+btec=a+(®+0). Com. law, § 49

The proof is evidently similar, however many terms are
involved or however the grouping is made.

51. III. Tae CoMMUTATIVE LAW oF MULTIPLICATION.

To prove that ab = ba, the letters representing only posi-
tive integers.
* % % * % . . . ginarow
LR R B

LR R BN N 4

b rows.

1. Suppose a collection of objects arranged in & rows, a
in a row, or, what is the same thing, in ¢ columns, 4 in a
column.

2. *.* there are b in one column, in @ columns there are
ab objects. .

3. *. there are a in one row, in b rows there are da objects.

4. But the collection being the same, ad = ba.
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REVIEW EXERCISES. XVI.

1. Distinguish between an equation and an identity, illus-
trating each.

2. Show that |2 — 3|=|3 — 2|, and state a proposition
covering such cases.

3. What is the etymological meaning of coefficient ? of
subtraction? of literal? of minuend?

4. Why is not the arithmetic definition of sum sufficient
for algebra? What do you mean by sum in algebra ?

5. What is the advantage in using detached coefficients
in addition ? Make up an example illustrating this.

6. What is the number which added to — 5 equals 0 ?
equals 2? Hence, what is the difference 0 — (— 5)?
2—(—5)°?

7. Remove the symbols of aggregation in the following
expressions. By beginning at the outside you can usually
write the result at sight, except for simplifying.

@ [+E+y+z—y) —z]

(b) a—ja—[a—a—(—a)li.

(c) Ba—[b+c—(a—0b)+a]—0d.

@ «*—[22°+ ' — (@ — y* — " — ) + y*] — o~

8. Enclose any two terms (after the first) in parenthe-
ses:

(@) a®— 02 —2¢*—3be. (b) 3p*—4pg — 29+ 72
() 42®— 22— T2 +1. (d) m*—m*+m?—m+ 1.

9. What is meant by the Commutative Law of Addi-

tion ? Have you proved it for all kinds of numbers ? If

not, name a kind for which it has not yet been proved by
you. Similarly for the Associative Law of Addition.



CHAPTER IIL
MULTIPLICATION.

I. DEFINITIONS AND FUNDAMENTAL LAWS.

52. Multiplication originally had reference to positive
integers and was a short form of addition. It was, for
this case, defined as the operation of taking a number
called the multiplicand as many times as an addend as there
are units in an abstract number called the multiplier, the
result being called the product.

E.g., in this limited sense, to multiply $2 by 3 is to take $2 3 times,
thus, 3 x $2 =$2 + $2 + $2 = §6.

But as mathematics progressed it became necessary to
multiply by simple fractions, and hence to enlarge the defi-
nition to include this case.

By the primitive meaning of the word times it is impossible to take
$2 § of a time. But the product of $2 by § may be defined as 2 x3$2'

So the product of ¢ by % may be defined as the product

of a and ¢, divided by b, ¢ being either integral or fractional.

As mathematics further progressed it became necessary
to multiply by negative numbers, and hence to enlarge the
definition to include this case. The natural definition will
appear from a simple illustration.

Suppose 5 men move into a town, each paying $1 a week in taxes.
They are worth 5 x $1 = $5 a week to the town. .

Suppose 5 such men move out. This may be represented by saying

that the town gains — 6 men, or, in money, — $56.
40
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Suppose 5 vagrants move in, each being a charge of $1 a week.
They are worth 6 x (— $1) = — $6 a week to the town.
Suppose 5 such vagrants move out. This may be represented by
saying that the town gains — 5 vagrants, or, in money, $5.
_Hence, it is reasonable to say that
$1 multiplied by 5=  $5, for the first case;
sl 13 3 — 5= 85’ “ second ‘¢
— 81 13 13 5= — $5’ 3 - third 3
— $1 113 “ — 5= $5’ 113 for 13

53. From such considerations multiplication by a negative
number is defined as multiplication by the absolute value of
the multiplier, the sign of the product being changed.

E.g., allowing the word times to indicate multiplication in general,
—2times 3means — (| —21x 3),or—-(2x 3),or— 6;
—2 =3« _[1-2Ix(=8] ¢« —[2x(=9)] « —(-6),
or + 6.

54. General definition of multiplication. The above partial
definitions may now be put into one general definition :

To multiply a number (the multiplicand) by an abstract
number (the multiplier) is to do to the former what is done
to unity to obtain the latter.

_ The result of multiplication is called the product, and the
product of two abstract numbers is called a multiple of either.

E.g., consider the meaning of 8 x $2. Since 3 =1 + 1 + 1, there-
fore, 3 x $2 means $2 + $2 + $2 = §6.

Consider also ¢ x $. Since £ = (1 + 1) + 3, therefore, $ X 3 means
(5 +3) =8, 0r 32+ 3, or 3§ i

Consider also (—2) x (—38). Since — 2= — (1 + 1), therefore,
(—2) x (— 8) means — [(— 3) + (— 3)], or — (—8), or 6.

55. The expression a-0 is defined to mean 0.
This is the natural definition, because 2 x 0 must mean 0 4 0.
And since it will be shown that the order of factors

can generally be changed without altering the product, ke
product 0-a is defined to be the same as a- 0, or 0.
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56. The product of three abstract numbers is defined to be
the product of the second and third multiplied by the first.

Ie., abc means a(bc), the product of b and ¢ multiplied by a.

The product of four or more abstract numbers may be understood *

from the above definition for three. [E.g., abcd means cd multiplied
by b, and that product by a.

57. Law of signs. From the definition it appears that
like signs produce plus, and unlike signs minus.

Le., +
+

+ =+

+ = -
- = 4

X X X X

58. Reading of products. As already stated, the original
meaning of the word times referred to positive integers.
The expressions % times, 4 of a time, and — 2 times are
meaningless in the original sense of the word. But with
the extension of the definition of multiplication has come
an extension of the meaning of the word ¢imes, so that it
is now generally used for all products, as in § 53.

Thus, the expression 2} times as much is generally used, although it
is impossible to pick up a book 2% times. So (—2) x (— 38) is read,
“minus 2 times minus 3,’’ although we cannot look out of a window
— 2 times.

As already stated, the word in¢o is sometimes used in
algebra to indicate the product of two or more factors,
(— @) (— b) being read “—a into —b.”

The parentheses about negative factors are omitted when
no misunderstanding is probable. Thus, (— «) - (— 4) may
be written —a X — b, or even —a.-—b. But — a? and
(— @)? are not the same, the former meaning — aa and the
latter — a- — a, or + a’
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59. The Associative and Commutative Laws of Multiplica-
tion. Before we are able to proceed with certainty in mul-
tiplication, it is necessary to show that we can change the
order and grouping of the factors to suit our convenience.

For example, to prove that abe, which by definition means a(bc),
= (ab)c = (ac)b=1d(ac) - - -.

Proof. 1. Suppose this solid to be composed of inch
cubes, and to have the dimensions 4 in., 5§ in., 6 in.

2. Then, since there are 4 cubes in
the row 04, and there are 5 such
rows in the layer CA, there are (5-4)
cubes in that layer. And since there
are 6 such layers, there are 6-(5-4)
cubes in all.

3. Similarly, since there are 6 in
column OB, and there are 4 such
columns in layer B4, there are (4 -6)
cubes in that layer. And since there
are 5 such layers, there are 5. (4-6) cubes in all.

4. Similarly, there are 4 - (5- 6) cubes.

5. But the total number is the same,

. 6.(5-4)=5-(4-6)=4-(5-6).

6. And since the proof is independent of the numbers,

coa-(be)y=b-(cca)y=c-(bra)y=(a-b)-c=---.

7. By taking d such solids it could be proved that

a-(b-c-dy=(a-b)-(¢c-dy=(a-b-¢c):-d=b-a-(d-¢)=---,
and similarly for any number of letters.

8. And since in multiplications involving negative num-
bers we proceed as if the numbers were positive, prefixing
the proper sign, therefore the proof is gemeral for all
integers.
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EXERCISES. XVII.

Perform the multiplications indicated :

1. —2.=7. 2. —4.—3.

3. 72.—}-—% 4. —}-—3-— L

5. (—2)*(—3)% ° 6. (— ). (— 2%

7. 4.5.—3.2.} -} 8. 1.—2.3.—4.5.—6.
9. —1.—2.-3.—4. 10. 5.3.1.—1.—3.—5.

11 1.(—2)%.8%. (—4)% 12 (— 1)1 (—1)®.(— 2%
13. 4.3.2.1.0.—1.—-2.-3. -4,

60. The index law. Since a’ = aa, and a® = aaa, there-
fore a?-a® = aa-aaa = a’. Similarly, if m and n are posi-
tive integers,
aaa --- to m factors,

aaa --- to n “ .
a™-a® = aaaa---tom +n ¢

am

il

and a®

a™.q®* = am+n_
This is known as the index law of multiplication.
Hence, 2 a2b3c5 - b a8b?ct = 10 abbsc®.

The cases in which m and n are negative, zero, or fractional are
considered later.

EXERCISES. XVIII.

Perform the multiplications indicated :
1. —a* (—a)l
25 ab3c®d* - 2 a*b®d.
—a-—a' —ab —at. —ab
—a- (= @) (= ) (— )t (— @)t
z= .2,
amyn . ary™ . P,
a8ty . byt xyz.

® oo R D

al a8 xS yB gty 2 2R
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II. MULTIPLICATION OF A POLYNOMIAL BY A MONOMIAL.

6l. I. When the monomial is a positive integer, as in the
case of a (b — ).

1. - a=1+14+1+-..to0 a terms,
2. ccalb—c)= (0 —0)+(b—c)+b—c)+ - to a terms,
Def. mult. § 54

3. =b+b+b+4---to a terms,
—c¢—c¢c—c—---to aterms, § 49
4. = ab — ac. Def. mult. § 54

Eg,.2@+y)=E@+y)+@+y)=2z+2y.
II. When the monomial is a positive fraction, as in the
x
case of 7 (b — o).
 1+1+414...tox terms
Z= ,

1 : ;
 2pmgm@mIEO=0t  t0s ey

y Def. mult. § 54
3. Ea:b;:w’ asin I
4 Ezb

7 :c;c, because b yths minus xc¢ yths
is the same as (xb — xc) yths.

1I1. When the monomial is negative, and either integral
or fractional, as in the case of (— m) (b — ¢).

1 - — m =m -1, preceded by the sign —
2. (— m) (b — ¢) = m (b — ¢) preceded by the 31gn -,
Def. mult. § 53
3. = (mb — mc) preceded by the sign —,
I and IX

4, = — mb + me. § 46
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62. From the results of these three cases it appears that:

To multiply a polynomial by a monomial is to multiply
each term of the polynomial by the monomial and to add
the products.

Since the multiplier is distributed among the terms of
the multiplicand, this statement is known as the distribu-
tive law of multiplication.

E.g., 8a%(at—b)=3a® —3a%. This can be checked by letting
a=1,b=2 Then 3a?(a* —b)=8.-—-1= —3,and 3a® —3a? =
3—-6=-38.

EXERCISES. XIX.
Perform the following multiplications, checking the re-
sults by assigning arbitrary values to the letters:
1. a*(a®+ 8% — c%.

_bmPry (x2? — 3 2% — 4).

— T2y (— 3ay? + 2ay).

25 ab*c®d* (2 a*b® + 2 c’d).

—ba[—3a+2(a—2)]

—Tm*n®*(2m — 3n — 4mn + 6mn).

A

III. MULTIPLICATION OF A POLYNOMIAL BY A

POLYNOMIAL.
63. Required the product of (a 4- ) (¢ + d).
1. Let m = (a + b).
2. Then m (¢ + d) = mc + md, § 61
3. =(@+bdc+(a+b)d, " m=(a+0b)
4. = ac + bc + ad + bd. §§ 51, 61

From this it appears that to multiply one polynomial by
another is to multiply each term of the first by each term of
the second and to add the products.

This is the general form of the distributive law of multiplication.
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The following example illustrates the process :
224+ 22y + 9y

r+y
Product by z, 2*+2x% 4+ xy?
Product by v, 2% + 2xy? +

Sum of products, z* + 3x% + 3zy® + y*
SEtY) @+ 22y +P)=xP+ 32y + 3xy +
Check. Letx=1,y=1. Then
1+42+1=4
14+1=2
1+43+3+1=8,0r2.-4

Since the identity holds true for any values of z and y, it holds true
if z = y = 1, as in the above check. It is evident, however, that the
value 1 does not check the exponents. Where there is any doubt as
to these, other values must be substituted.

EXERCISES. XX.

Perform the following multiplications, checking the re-
sults by assigning arbitrary values to the letters.

L (@+8)@+) 2 (z+9) (@@ —y).
3. (22— ¢°) (= + 9). 4. (P'+¢) (@ -3y
5. (4p*—54")(4p" +597).
6. (a®+ 02+ c%(a+b+c).
7. (e*+a*+a+1)(a—1).
8. bx*—2x+1)(3x?—x—2).
9. 2x+3y—2)2x—3y+2).

10. (*+ 22+ +x+1)(x—1).
11. (x + y) (=® + 3 2% + 3zy® + ).
12. Ba®*—2a)(ba’®—2a>—3a+ 4).
13. (a — b) (a” + a% + a%* + a%h® + a¥* + a%® + ab® + b7).
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64. A polynomial is said to be arranged according to the
powers of some letter when the exponents of that letter in
the successive terms either increase or decrease continually.

In the former case the polynomial is said to be arranged
according to ascending powers, in the latter according to
descending powers of the letter.

E.g., #5 + 328 + 22 + 1 is arranged according to descending powers
of z. If it is desired to have all of the powers represented, it is written
x5+ 0zt + 328 + 2240z + 1.

The polynomial 3 — 32%y + 3zy? — y® is arranged according to
descending powers of z and ascending powers of y.

There is evidently an advantage in arranging both multi-
plicand and multiplier according to the powers of some
letter, as shown by the following example:

NOT ARRANGED. ARRANGED.

¥4+ 22+ 2y 224+ 22y + y?

T4y z+y

zy? + a8 + 22y 8+ 2a% + xy?
+ % + 2%y + 2212 2%y + 2xy? + 3
zy? + 28 + 222 + yB + 2%y + 22 8 + 32y + 3zy? + 3
=284 3z% + 3zy? + B Check. Letx =1,y =1. Then
2.-4=8.

The method at the right is evidently much simpler.

65. It is also evident that the product of the terms of
highest degree in any letter in the fuctors is the term of ]
highest degree in that letter in the product. Also that the
product of the terms of lowest degree in any letter in the
Sfactors is the term of lowest degree in that letter in the
product.

Hence, if the factors are both arranged according to the descending
(or ascending) powers of some letter, the first term of the product will

be the product of the first terms, and the last term will be the product
of the last terms.
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EXERCISES. XXI.
Perform the following multiplications, checking the re-
sults by assigning arbitrary values to the letters:
1. x® —y® by «® + 42

a¥x + «*a by z?a — a%x.
¥yt —a® — P by y —a.
z+y+zby x4+y—-=2
1—a®+a*—a® by 1+ a2
o+ xfy+y* by «?—3x+y.
-3ty + 32 by by — 3=
ayz — 2l —y'— 22 by x +y + 2.

9.-p"— 2pg + ¢* by p*+2pg + ¢~
10. —a?+3ab+ 0% by 3ab— b*+ o
11. a®*—a*+a*—a’+a—1by a+ 1
12. 2* —3x% +3ay® — y® by «® — 2y + y2
13. zy+ 22z —3yz+ 2+ y*+42° by 2 —y— 2=

® e ok ®D

66. Detached coefficients may be employed in multiplica-
tion whenever it is apparent what the literal part of the
product will be.

E.g., in multiplying 27 + pz + ¢ by 28 — z + pq the coefficients
cannot be detached to advantage.

But in multiplying 2 + 2 xy + 2 by  + 3y, it is apparent that the
exponents of z decrease by 1 while those of y increase by 1 in each
factor, and that this law will also hold in the product. Hence, when
the coefficients are known the product is known also, and the multi-
plication may be performed as follows :

Check.
14241 =4
14241
3+64+3
1+564+7+3 =16

S@+8y) @+ 22y + yP)=a8 + 52y + Txy? + 898
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67. If the coefficient of the first term of the multiplier is
1, as is frequently the case, the work can be materially
simplified by the following arrangement:

The problem is the same as the preceding one.

1114241 Check. 4.4 =16.
+38 3+6+3

1+6+7+3 x8 4 b2y + Tay? + 33,

68. In case any powers are lacking in the arrangement of
the polynomial, zeros should be inserted to represent the
coefficients of the missing terms.

E.g., to multiply 22 + zy + 2 by 22 + 2, either of the following
arrangements may be used :

14141 114141 .Check. 2.3 =86.
1+0+4+1 +0
14141 +1 14+141 ]

141424141
1+1+1
1+1+2+4+1+1 T4 4 28y + 2222 + 28 + Y

EXERCISES. XXII.

Perform the multiplications indicated in exs. 1-13, by
detached coefficients, checking the results as usual.

P=2a'—2y+ay’—y', Q=a—y B=o"—ay+y’

1. PQ. 2. PR. 3. QR. 4. P2
5. @°R. , 6. R%. 7. QR 8. Q*R2
9. (x4 y)* 10. (x —y) 11. (z + y)>

12. (x —y)% 13. (= 4+ ¥) (x — y)-

14. Verify the following identities, (1) by substituting
arbitrary values, (2) by expanding both sides of the iden-
tity, using detached coefficients or not as seems best :

(@) @E+y+2)’—(@"+y" +2)=3@+y) (y+2) (¢ +2).

(b) @E+y)*+@y+2)*+(z+2)— (" +y" +27) = (@+y+2)%
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IV. SPECIAL PRODUCTS FREQUENTLY MET.

69. In exs. 9-13 on p. 50 five products were found which
are so frequently used as to require memorizing. They are
as follows:

1. x+y)?=a*+22y+y> Hence, the square of the
sum of two numbers equals the sum of
their squares plus twice their product. -

This theorem may be illustrated by a figure. oy F

Here the square AC = (z + y)?, the square x Py
AP = x2, the square PC = 2, and there are two x x o xy
rectangles equal to EF =zy. And y

-+ AC= AP + 2 EF + PC, —
oo (@t y)3=at+ 22y + 92

G__¢

2. (x—y)*=a*—2xy+y> Hence, the square of the

difference of two numbers equals the x
sum of their squares minus twice their xy
product. ' D C
In the figure, AP2 =122, BH =y2, AC = X x-y)*
(x — y)?, and DP = CH =zy. And
-+ AC = AP —2DP + BH, xy oo
L (@—y)R=at —2xy + 2 ¥
Expressions of the form z 4y, z — y, are N ) H
called conjugates of each other. X

3. (x+y)(x—y) =x*—y> Hence, the product of the
two conjugate binomials equals the differ-

ence of their squares (i.e., the square of 0 - x():—y) c

the minuend minus the square of the sub- G -

trahend). ' ' y oy |3
In the figure, AC =22, AF = 2, and GC + FB ; y E"' B

=z@-9)+y@-y)=E@+yYE&-y) And
*+ GC + FB= AC — AF,
L@ty (E—y)=22—y2
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4 z+y)P=2*+3x*+3xy*+y° Hence, the cube of
the sum of two numbers equals the sum of their cubes plus
three times the square of the first into the second plus three
times the square of the second into the first.

5. (x—y)*=a®—3x% + 3xy*—y* (State the theorem.)

EXERCISES. XXIII.

By the help of the theorems of § 69 expand the expres-
sions in exs. 1-18.

1. 42 X 38, i.e., (40 + 2) (40 — 2).

2. 23 x 17. 3. 95 x 85.

4. (a®+ 3)2 5. (a" — 2)%

6. (2p +1)% 7. 22— 1)

8. (22 —y)% 9. [a—(B+¢c)]
10. (22°+1)(2x*—1). 11. (a® + 3) (a® — 3).

12. (@ +b—ab)(a+b+ab). 13. [(a+b)(a— 5]
14. (0?4 2ab+ 0% (a®*—2ab+8%). 15. (x* + y*) (x* — y?).
16. 422 17. 49.51. 18. 492

19. Verify the following identities :

(a) (a®+ *+ &+ d%) (w? + =* + y* + 2%) — (aw + bz +
cy + dz)? = (ax — bw)?+ (cz — dy)® + (ay — cw)? + (do —
b2)? + (az — dw)® + (by — cx)*

(b) @+y)* —2*—y'=3zy(x +y) (=" + 2y + )"

(© @E+y)f -2 —y'=5zy@+y) @ +ay+y)

@ @+y)' -2 —y=Tay@+y) @ +ay+y)

20. Expand the following expressions by the help of the
theorems of § 69, checking by arbitrary values:

(@ @+ )% (b) (= +yH)™
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V. INVOLUTION.

70. The product of several equal factors is called a power
of one of them (§ 8). ‘

The broader meaning of the word power is discussed later (§ 130).
At present the term will be restricted to positive integral power.

71. The operation of finding a power of a number or of
an algebraic expression is called involution.

The student has already proved one important proposition in in-
volution, viz., that a=.a» =am+n, where the exponents are positive
integers (§ 60).

He has also learned how to raise the binomial = + ¥ to the second
and third powers (§ 69).

It now becomes necessary to consider certain other theorems.

72. Notation. If m and = are positive integers,
(e™)" means a™-a™-a™--- to n factors, each a™;
a” “ a.a-a--- tomr ¢ “ q.
E.g., (a®)2 means a?. a8 = a8+3 = a8;
a? o« a-a-a---to 32 factors, =a?;
a?® ¢« g.a.a---t028 « =qb.

73. o' has already been defined to equal a.

74. The expression o’ a being either pbsitive or negative,
is defined to equal 1, for reasons hereafter set forth (§ 214).

75. Theorem. The nth power of the mth power of an
algebraic expression equals the mnth power of the expression.
Given  an algebraic expression a, and m and = positive
integers.
To prove that (a™)" = a™.
Proof. 1. (a™)" means a™-a™-a™--- to n factors, each a™,

2. = gm+m+m+ ... tonterms, each m § 60

3. = g™,
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76. Theorem. The mth power of the product of several
algebraic expressions equals the product of the mth powers
of the expressions.

Given the expressions a, b, ¢, ---, and m an integer.

To prove that (abc .- )™= a™bmc™- ...

Proof. 1. (abc---)" means (abc---)-(abe---)- (abe---)---,

to m groups, each (abc---)
2. =(aaa---tom factors) - (bbb- --tom factors) - (cce
--- to m factors) - -- § 59
. = ambmem. Def. of power

77. Law of signs. Since
+a-+a=+4adf
and —a-—a =+ d}
but —a-—a-—a=—adb
it is easily seen that
1. Powers of positive expressions are positive ;
2. Even powers of negative expressions are positive ;
3. 0dd powers of negative expressions are negative.

EXERCISES. XXIV.

Express without parentheses exs. 1-12.

1. (a’zm™)" 2. (amm™)m. 3. (a®Pc*d%)2
4. (— a%®)% 5. (— ab¥®)*. 6. — (a?ic).
7. (%4, (a*)® 8. (a??% (a2 9. (— ambr)imn,

10. (— \}-aﬂbm)lm,. 11. —[— (“Z)ZJQ- 12. — (— a™bcr)?,
13. Prove that (a™)" = (a™)™
14. Is it true that a™" = a"™? Proof.

15. Also that (a™b™)™ = (a"™)""? Proof.
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78. Powers of polynomials. A polynomial can be raised
to any power by ordinary multiplication.

But in raising to the 4th power it is easier to square and
then to square again, since (a?)? = a*.

E.g., to expand (z — 2 y)*.

1. z—-2y)2=22—4zy + 492 § 69
2. (@3 —4dzy+4y0)2= (22— 42y) +42])2 § 46
3. =@2—4ay)?+2x2—4zy) -4y + 164

4. =at— 8% + 16222 + 823 — 32xy3 + 164

5. =zt — 823y + 24 x%2 — 32 zy8 + 16 4.

Check. (—1)*=1-8+24—-32+16=1.

Similarly, to raise to the 6th power first cube and then
square, since (a®)? = a®.

But to raise to the 5th, Tth, 11th, or other powers of

prime degree, multiply out by detached coefficients.

EXERCISES. XXV,

Expand the expressions in exs. 1-20.

1. (20 + 1) 2. (2% — 3))%.

3. (x+3y* 4. 2x— Ty

6. (z™ 4+ y™)* 6. (a+b+c)t

7. Gz — %y 8. (—xz—3y*

9. (22® — 394 10. (e +2b6+¢)®
11. (—a—b—c¢)? 12. (a®+ 2ab + b*)%
13. (%2+§+%)2- 14. (?—%—%)2-
16. (a'® — b® + %2 16. (x* 4 x%y? + y*)2
17. 3a+2b+0)> 18. (31m? — 20 n%)2
19. (a —2b6+30)% 20. (a—b+c—d)2
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79. The Binomial Theorem. It frequently becomes neces-
sary to raise binomials to various powers. There is a simple
law for effecting this, known as the Binomial Theorem.

The student will discover most of this law in answering the following
questions :

Expand (a + 8)% (a + )% (a + b)4, (e + b)"

(a) How does the number of terms in each expansion
compare with the degree of the binomial ?

(b) How do the exponents of « change in the successive
terms ?

(¢) How do the exponents of & change in the successive
terms ?

(d) In each case, what is the first coefficient ? How does
the second coefficient compare with the exponent of the
binomial ? ’

(e) In the case of the 4th power does the third coefficient

equal é—;? In the 5th power is it 5—'2%? What will it

probably be-in the 6th power ? in the Tth ? in the nth ?

(f) In the case of the 4th power does the fourth coeffi-

-3-2 5-4.3
2 %9 ? W
5.3 In the 5th power is it 2.3 hat

will it probably be in the 6th power ? in the 7Tth ? in the
nth ?

(8) In the case of the 4th power does the fifth coefficient
4321 ? In the 5th power is it 5-4.3-2, What
2-3-4 2.3.4
will it probably be in the 6th power ? in the 7th ? in the
nth ?
(h) In expanding (a + )7, what will be the coefficient of
a% ? of a®2?  (The student should now be able to answer

without actual multiplication.)

cient equal ———

equal



MULTIPLICATION. 57

80. Theorem. If the binomial a 4 b is raised to the nth
power, n integral and positive, the result is expressed by
the formula

(@ +b)" = a"+ na*"'b + ﬂn2—_12a"_2b2
" n(n —Zlén —2) a3 4

where :

1. The number of terms in the second member is n + 1;

2. The exponents of a decrease from n to 0, while those of
b increase from 0 to n;

3. The first coefficient is 1, the second is n, and any other
is formed by multiplying the coefficient of the preceding
term by the expoment of a in that term and dwzdmg by 1
more than the exponent of b.

The proof of this theorem, which has already been found inductively

on p. 56, may be taken now or it may be postponed until later in the
course. The proof is given in Appendix I.-

81. Pascal’s Triangle. The coefficients of the various
powers of the binomial f + n are easily found by a simple
arrangement known as Pascal’s Triangle, from the famous
mathematician who made some study of its properties.

Coefficients for 1st power 1 1

[13 13 2d [13 1 2 1

(13 113 3d 13 1 3 3 1

¢ ¢ 4th ¢« 1 46 41

¢ ¢ bth ¢ 1 51010 5 1 )

¢ ¢ Bth ¢ 1 6152016 6 1,andsoon,
Each number is easily seen to be the sumn of the number above and

the number to the left of the latter.

Write down the coefficients for the 7th, 8th, 9th, and 10th powers,

_thus enlarging Pascal’s triangle.
For note on Pascal, see the Table of Biography.
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82. Various powers of f + n. These are needed in the
extraction of roots (§§ 128-133) and should be verified by
the student.

(f+n)?=f242fn + n

(f+n) =24+ 31" + 3 fn*+ 2l
(f+n)t=ft4+ 41+ 6% 4 4 fn® +
(f + n)* = (BExpand it.)

(f+ n)ﬁ “« 13

(f_|_ n)'l = ¢« ¢«

Illustrative problems. 1. Expand (2a — 3 b%)%

1. 2a—3b%)3=(2a) + 3 (2a)?(— 30%) + 3 (2a) (— 8b)? + (— 3b?)3

2. =8a8 — 36 a%? + 54 ab* — 27 bS.

Check. (—1)3=8—86+54—27= —1.

In cases like this it is better to indicate the work in the first step
and then simplify.

2
2. Expand (g —-y+ z2> .

Gve)=[G-)+<T

2. E(g—y)2+2(g—y)zz+(z’)’

—

2
3. E%—xy+y“+:cz2—'2yz2+z4.

EXERCISES. XXVI.

Expand the following ekpressions :

1. (xz +y)* 2. 1—a)t

3. (*—y)" 4. (x—y)"

5. (a — 2b) 6. 2z + y)>

7. (2% — 3y 8. (x+y—2)>~

0. (hz— 4y +12)* 10. (Fatyte + s
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11. (@ — b —¢)2 12. (2a — 30)*%
13. (a — b+ ) 14. Bz + 247"
15. (32— 3y 16. (3a®— 2ab + b%)%

1 [}
17. (x-l— ) 18. (1——)'
x
8 1 3 s
19. %x y 20. ?—313 .
1 2\ 4md 2n \®
21. (;;—-2+x) 22. (3_7;’-_3_"7‘)

REVIEW EXERCISES. XXVII

1. Solve the equation 184 — z? = 40. Check.

2. What is the etymological meaning of multiply? of
abstract ? of ascending? of descending? of commutative ?

3. Show that the arithmetic definition of multiplication
is not broad enough for algebra. Explain the definition
in § 54.

4. What is the broader meaning of the word ¢imes in
algebra ?- Illustrate. ’

5. What is the Index Law of multiplication ? Has it
been proved by you for all kinds of exponents? If not,
for what kind ? Prove it.

6. What is meant by the Distributive Law of multipli-
cation ? Prove the law.

7. Make up an example illustrating the advantage of
arranging the terms according to the powers of some letter
in multiplication.

8. What are the advantages in using detached coefficients
in multiplication ? Illustrate by solving a problem.



CHAPTER 1V.
DIVISION.

I. DEFINITIONS AND LAWS.

83. Division is the operation by which, having the product -
of two expressions and one of them (not zero) given, the
other is found.

Thus, 6 is the product of 2 and 3 ; given 6 and 2, 3 can be found.

The given product is called the dividend, the given expres- '
sion is called the divisor, and the required expression is
called the quotient.

84. Since 0 =a-0 (§ 55), it follows that g should be
defined to mean O.

85. Law of signs. Since
+a-+b=+ ab,
+a.—b=—ad,
—a-+b=—ab,
and —a-— b=+ ab,
it therefore follows, from the definition of division, that
+ab+4+a=+5b,
—ab++a=-—-09,
—ab+—a=+5b,
and +ab+—a=—0b.
That is, like signs in dividend and divisor produce +,

and unlike signs —, in the quotient.
60
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86. Index law. Since a™~".a" = a™ by the index law of
m
multiplication (§ 60), therefore, Z—” = a™~", by the definition
of division. .
Hence, 10 a5b5c® -+ b a®h2ct = 2 ab3cS.
The above proof is based on the supposition that m >n, and that

both are positive integers. The cases in which m and n are zero,
negative, and fractional, and in which m <n, are considered later.

EXERCISES. XXVIII

Perform the following divisions:

1. —125 + — 25. 2. 80 + — 16.
3 ate 25 a"bet
8. — be 4 = 5 abbc
5 = 10 zy2* e 49 2y™ 28w
To— byt T = Twa?
7. = 70 %4 8 = 35 p*or?
: T xy%® T —Tplg?
‘ _ 1514 —_ —
°. 56@ bt 10. 27(a —b).
— 8 a'%e a—b

II. DIVISION OF A POLYNOMIAL BY A MONOMIAL.

87. 1. ‘" ma+mb+me=m(a+b+c). § 61

2. .. w =a+b+s6  Def. of division

3. Hence, to divide a polynomial by a monomial is to

divide each term of the polynomial by the monomial and to
add the quotients.

— 84 a2
Thus,ME2a—b. Check. Leta=2,b=3. Then
— 17 ab?
17.2.27—-84-4.9 — 306

=22 - =1
1729 22-8or %
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EXERCISES. XXIX.

Perform the divisions indicated; check by assigning
arbitrary values.

1 2T 2y — 2T oyt 2 121 m*® — 110 m®n®
’ — 2Ty - — 11 m?n?
3 x4+ 3xby + 32y +xy® . —3a% —12a'0*+9a%®
) x o —3a%
5 @—3a%+3a% —Tab
. T —a -
6 34 a%% — 17 ab’® 4 51 a®%
) 17 ab?e
7. 200 z®y® — T5x%® 4 125 2%®
25 xtyP
65 x?my? — 52 a®my® 4 39 at™yt
8. .
— 13 xmy?
9. 5p* — 15 p3q + 10 p2¢® — 20p".
5p?
10, 2@+ 8P —3(a+ b +2(a+ by,
(@ +9)*
1. 482y — 36 2'% + T2 2y'* — 108 zy
12y
12, @+ 22y + ) + (@ + 22y + )
— @+ 22y +9)
13. Cz—1)"+52z—1)"—(22—1)*
— 2z —1)?
18 = 52 a™b® — 78 a®?® — 26 al%!?* — 130 o

— 26 a®%®
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III. DIVISION OF A POLYNOMIAL BY A POLYNOMIAL.

88. As a preliminary to the explanation of this form of
division it is necessary to observe the following important
points :

L]

1. In division, if dividend, divisor, and quotient are
arranged according to the descending powers of some letter,
then the first term of the quotient is the quotient of the
first terms of dividend and divisor.

That is, in dividing 28 + 322y + 3zy2 + 8 by z + ¥, the first term
of the quotient is 2. For it has been shown (§ 65) that the term of
highest degree in any letter in the product (dividend) equals the prod-
uct of the terms of highest degree in that letter in the multiplicand
(divisor or quotient) and multiplier (quotient or divisor).

E.g., in dividing 7 + 2%y + 2 x5y2 — 22%y5 — xy® — " by z* + 223y
+ 322y2 + 2zy® + y4, the first term of the quotient isz8. If the terms
in each polynomial were written in reverse order, the first term of the
quotient would evidently be — 3.

2. If the product of the divisor and the first term of the
quotient is subtracted from the dividend, a partial dividend
is obtained which is the product of the divisor by the other
terms of the quotient.

'i‘hat is, in dividing 23 + 322 + 3zy2 + ¥ by = + y, we know (by 1)
that z2 is the first term of the quotient. Now if

from 28 + 322y + 3zy2 + B
we take 22(z + y) or z8+ %
the remainder 2x% + 3xy? + 33

is a partial dividend and is the product of the divisor, z + y, by the
other terms which follow in the quotient.

This is evident because the whole dividend is the product of z + y
by the quotient ; hence, the 222y + 3 zy2? + y3 is the product of z + y
by the other terms of the quotient.

It will be noticed that this is similar to the division with which the
student has become familiar in arithmetic ; each remainder is the prod-
uct of the divisor and the rest of the quotient.
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89. The operation of division can now be explained. Let
it be required to divide 3% + y* + 2+ 3xy® by y + =.
It has been shown (§ 88) that, if the expressions are
arranged according to the descending powers of x, the
first term of the quotient is z2

22+ 2xy -T— y? = quotient.
Divisor =z +y)2®+ 322 + 3zy? + y® = dividend.
If 22(x +y)orz® + Y is subtracted,
the remainder 2z% + 3zy? + y8 is a partial dividend,

the product of = + ¥
by the rest of the quo-
tient. ... thenextterm
of the quotient is 2 zy.
Subtracting 2 zy (x + ¥) or 22?% + 2zy?
the remainder zy? + y8 is also a partial divi-
dend, the product of
- z + y by the rest of
the quotient. ... the
next term of the quo-
tient is y2.
Subtracting ¥2(x + y) or zy? +
there is no remainder, and the division is complete.

90. Exact division. If one of the partial dividends be-
comes identically 0, the division is said to be exact. If not,
the degree of some partial dividend will be less than that of
the divisor; such a partial dividend is called the remainder.

This subject will be further considered in the chapter on fractions.
If D =dividend, d = divisor, ¢ = quotient, and r =remainder, then
D—-r=dg;
that is, if the remainder were subtracted from the dividend the result
would be the product of the quotient and the divisor.

91. Checks. 1. Since the dividend is the product of the
quotient and the divisor, one check is by multiplication.
-+ D — r =dg, any remainder should first be subtracted.

2. The work may be checked by arbitrary values.
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92. Arrangement of work in division. The full form of
the work is as follows:

224+ 2zy $22 = quotient.
Divisor =z + y) 2% + 32% + 4zy? + 5% = dividend.
8+ 2 =22 (z + 7).
22% + 4 xy? + 5 y® = 1st partial dividend.
22% + 2xy2 =2zy(x + ).
2zy? + 58 = 2d partial dividend.
2zy2+ 2y =292 (z + %)
(See check below.) 3y® = remainder.

It is better in practice to abridge this work as follows:

2422y +2y2
z+y)at+32% +4x2+ 598

x84+ %y
2 x2y
222y + 22
2zy? + 5y8
2zy2 4+ 298
3y?
It is still better to detach the coefficients if possible.
1+2+4+2
1+1)1+3+4+56
.l_+_1 Check. Letz=y=1.
2 Q+1)(1+2+2)=1+3+4+5—3
242
"'2—+5 or 2-5=10.
242
3 22 + 22y + 232, and 3 y® remainder.

Similarly, to divide #* —1 by 2 — 1.

14141
1-1)1+0+0—1
1-1 Check. Let z=2.
1 @-1)@-1)=4+2+1
S e ¥ or1.7=1.
l .
1-1 2?2 +zx+1.
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EXERCISES. XXX,

Perform the divisions indicated in exs. 1-14. Check
the results by substituting such arbitrary values as shall
not make the divisor zero.

2 —y® by ©# —y.
zlﬂ — alﬁ by xa — as.
32a®— 05 by 2a — 0.
zt + 2% 4+ y* by 2+ xy + ¥
a®+ 0¥ +c*—3abc by a+b+ec.
a®+3e¢*+3a+1by a’+2a+ 1.
2 —-322+3x+y¥*—1by z+y—1.
— 2ax® + 2% — a* by ax? — a?
1 by 1 — «, carrying the quotient to 6 terms.
—a*—2a*4+2a¥+6a’>+a—1Dby —a’+a+1.
. —a®+8a%% —14a*?+ a®®+ 6 a%* by a®—3a’ + 2al?
—5a%+10a*%*—10a%%®+5ab*—0° by a®—2ab + 02
B+ P+ 28 —3axyz by 2+ y* + 2 — xy — yz — 2.
zt+ 2%+ y* by y?—xy+x% (Rearrange the divisor.)

=

Y ® oo e wN

e e )
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Perform the divisions indicated in exs. 15-31 by using
detached coefficients, checking as above.
16. «®* — 52% — 3000 by = — 5.
16. 16x* —81y* by 2x + 3.
17. 32 —Tax —2—22 by 1+ 2.
18. a*+24a+ 55 by a®*—4a +11.
19. z* — 2a%? 4 a* by 2® — 2ax + o’
20. x® —32%+62* —Ta?+3 by «* — 22?4+ 1.
21, P4 p*4+4p* —9p+3 by PP+ p*—3p+ 1.
22. 28 —ab + 22 42 —Ta?+4x—1 bym’+a:—1
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23. 25+ Taby? —bxly —aP + 2y — 4oyt by (x — )%

24. 26a®+4a®*—3a*+a®—92a+55 by a* —3a +11.

26. 24m*—14m® —9m? — 84 +43m by T —3m + 4 m

26, x2* —3ax" — 528+ 22 + 5+ 4%+ 2 by 2+ 22 —1.

27. 3m*+Tm® —12m* + 2m® — 3 m?+ 13 m — 6 by m?
+3m — 2.

28, ' —ax® —22°+ 52 — 52 +8x?+6x — 12 by «°
— 2224 3.

29. x°+2x"+3x°+4(x‘+1)+5a:‘+bac”+7;r’+8z
by (& + 1)

30. 10m® — 11m® —3m* + 20m® + 10 m?® + 2 by 5m?
—3m*+2m — 2.

31. 2"+ 22+ 32 +32*+3a®*+322+2x+1 by «°
4+ttt 4+ 1.

32. Divide the product of (z — 1)(z — 2)(x — 3)(z — 4)
by 2(4 —3x)+ 2

33. Divide ¢° + 1 by ¢ + 1, and hence tell the quotient
of 100001 by 11 (¢ = 10).

34. Divide4¢*+2¢*+5¢*+8¢+1 by ¢+ 1, and hence
tell the quotient of 42581 by 11.

35. Divide the sum of §a°+4x* + 732+ 112*+ T2
+ 4 and §° + 4 2* + 6} «® + 9x? + 42 by their difference.

36. Divide 1 + «? by 1 + « carrying the quotient to 5
terms. From the form of this quotient tell what the next
5 terms will be.

37. The product of two polynomials is 2m* — 13 m®n +
31 m™n? — 38 mn® + 24 n*. If one of them is m? — 5mn +
6 n% what is the other ? i

Where the time allows, the work in Synthetic Division
(Appendix IT) should be taken at this point.
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REVIEW EXERCISES. XXXI.
1.” Solve the equation 2 — (3 —4 — 2)= 3.
2. Solve the equation — 22z 4+ 4 = — 12. Check.
3. Solve the equation $x + 4 =4z + 48. Check.

4. What are the advantages in detaching the coefficients
when practicable ?

5. What is the etymological meaning of quotient ? of
coefficient ? of associative ?

6. The cube of a certain number, subtracted from 1,
equals 9. TFind the number.

7. What is the sign of the product of an odd number of
negative numbers ? Prove it.

8. If from twice a certain number we subtract 7 the
resuvlt is 15. Find the number.

9. Three times a certain number, subtracted from 5,
equals —10. Find the number.

10. Why do you arrange both dividend and divisor
according to the powers of some letter ?

11. Why do you avoid using such an arbitrary value in
checking division as shall make the divisor zero ?

12. If to three times a certain number we add 2 the
result is five times the number. Find the number.

13. What is the value of

afa —b[a*—2¢(® —a—b+c)+b]—c}

whena=3,0=1,¢=27?

14. What is the Index Law of Division? Have you

proved it for all values of the indices ? If not, for what
kinds of indices ?



CHAPTER V.
ELEMENTARY ALGEBRAIC FUNCTIONS.

I. DEFINITIONS.

93. Every quantity which is regarded as depending upon
another for its value is called a function of that other.

E.g., with a given principal and rate, the interest depends upon the
time ; hence in this case the interest is called a function of the time.
Similarly, the expression #2 — 8z + 21 is a function of z, etc.

94. A function of z is usually indicated by some such
symbol as f(x), F(x), f1(x), P(x),---.

Thus, if the expression 28 — z + 1 is being considered, it may be
designated by f (z), read ‘¢ function of z,’’ or simply ¢ function z."’

If some other function of z, as z* — 23 + 2% — z + 4, is also being
considered, it may be distinguished from the first one by designating
it by F (), read ‘‘f major of z,” or * f major function z.”

P (), f1(x),--- are read ¢« P function z,” ¢ f-one function
z,” .... The Greek letter ¢ (phi) is also very often used in
this connection, ¢ (x) being read ¢ phi function x.”

95. If f(x) is known in any discussion, f(a) means that
function with @ put in place of . -

E.g., if f@E)y=22+2z +1,
then f@)=a*+2a+1,
f@=22+2.-2+1=09,
and JO0)=0+0+1=1.

69
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96. A quantity whose value is not fixed is called a vari-
able; if the value is fixed, it is called a constant.

E.g., in the expression 2 + 2y + 4, ¥ may have any value, and
hence y is a variable. But when it is said that y — 2 = 3, the value
of y is fixed, and hence y is a constant, 5.

97. Every algebraic expression which, in its simplest
form, contains several variables is called a function of those
variables.

E.g., 22 + 2zy + y? is a function of  and y, and may be d%igna.ted
by f(z, y), read * function of z and y,’’ or simply :“ f of z and y.””
But z + ¥ + a — ¥ — z is not a function of = and .

EXERCISES. XXXII.

1. If f(x) =«* —a?+ax —1, what are f(a), f(a?), f(—2),
JSA), f(0)? ,

2. If f(x)=24+x+1, and F(z)=z—1, find the value
of f(x) - F(x). ~ Check by letting « = 2, d.e., by finding the
value of £(2) - F (2).

3. ffx)=a*+32+3x+1,and ¢p(x)=2*+ 2z + 1,
find the value of f(x) +¢ (x). Check by using f(1) +¢ (1).

4. If f(z,y)=a’—32’y +3xy’—y% and fi(z, y) =z —y,
find the value of f(x, ¥) - f1 (2, ) ; also of f(x, ¥) + fi(x, ¥).
Check by using f(2, 1) and f; (2, 1).

6. If F(z, y,2) = a® + y* + 2* — 3zyz, and f(z, y, ) =
x + y + 2, find the value of F (=, y, 2) + f(x, ¥, 2). Check
by letting z =y =2=1.

6. If fi(x)=22+22+1, fa(x)=2*— 2z + 1, and f3(x)
= z? — 1, find the value of fi(z)-/2(x) -fs(x). Check by
letting = = 2.

7. If f(x)= 2* — 102® 4 3522 — 50 + 24, find the values
of (1), £(2), F3) S (H)-
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98. An algebraic expression is said to be rational with
respect to any letter when it contains no indicated root of
that letter. In the contrary case it is said to be irrational
with respect to that letter.

E.g.,4a+ V2 is rational with respect to a,
but 2 + 4 Va is irrational with respect to a.

3
So 2 —z Va+ Va is an irrational function of a, but it is a
rational function of z.

99. A rational algebraic expression is said to be integral
with respect to a letter when this letter does not appear
in any denominator. In the contrary case it is said to be
fractional. )

E.g., % - g is an integral algebraic expression, with respect to a,
but 2 — g is a fractional expression, with respect to a.

.So 22— Z + alz is an integral function of z,
but 22 — Vz is not, because it is not rational,

2. . . .
and 1 ——is not, because it has « in both denominators.
z z

100. An algebraic expression is said to be homogeneous
when all of its terms are of the same degree.
E.g., Ta% + 4 a® + 23 is homogeneous, but 3 a2x + 4 a3 is not.

So az?y + b%ry? + c3y® is homogeneous as to x and y, but not as to
z a.lone, nor as to y alone, nor as to a, z, and y.

101. An algebraic expression is said to be symmetric with
respect to certain letters when those letters can be inter-
changed without changing the form of the expression.

E.g., 22 + 2zy + y? is syminetric as to = and y, because if z and y
are interchanged it becomes y2 + 2yz + 22 which is the same as the
original expression. Similarly, 23 + y® + 28 + axyz is symmetric as
to z, y, and 2, but not as to a, z, ¥, and 2.
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102. An algebraic expression is said to be cyclic with
respect to certain letters in a given order when its value
is not changed by substituting the second for the first, the
third for the second, and so on to the first for the last.

E.g.,a(a—b) +b(@d—c)+c(c—a)is cyclic as to a, b, and ¢; for
if b is substituted for a, ¢ for b, and a for ¢, it becomes b (b — ¢) +
¢ (c — a) + a(a — b), which is the same as the original expression.

It will be noticed that if an expression is symmetric it
must be cyclic, for a cyclic change of letters is a special
case of the general interchange of symmetry. But the con-
verse is not true, for the special case does not include the
general one.

Eg,2?+y2+22—z@+y?)—y(y + 2% — 2(z + 2?) is cyclic but
not symmetric; but 22 4+ y2 4 22 — 2y — yz — zz is symmetric and
hence also cyclic.

The theory of cyclic functions is often called cyclo-sym-
metry, or, where no misunderstanding will result, simply
symmetry.

EXERCISES. XXXIII.

Select from exs. 1-13 those expressions that are (1) homo-
geneous, (2) symmetric, (3) cyclic, as to any or all of the
letters involved :

1. a% — b%x + c*x. 2. ot + 2oyt 4 4t
8. x%z — 3xyz? + y*%t 4. ab + bc + ca + abe.
6. a®+ b® + ¢® — 3 abe.
6. abc — 3ac® + bc® — ct.
7. ot — by + xly? — xyP + YA
8. at(b—c)+b*(c—a)+ c*(a —b).
9. a*(b — ¢)? + b*(c — a)? + c*(a — b)%

10. 2?4+ y? + 22 + ax + by + cz + may=.
11. be(h + ¢) + ca(c + a)+ ab(a + b) + 2 abe.
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12. a®(B* — c%) + 8% (c* — a®) + c®(a® — b%).
13. (@ +b)(a®+ 8> — )+ (b + ¢) (8 + ¢* — a?)
+ (¢ + a) (¢ + a® — b?).
Select from exs. 14-20 those functions of z, of ¥, and of a
that are (1) rational, (2) integral functions of those letters.
14. 4z —=x Va. '
16. ot 4ot 41
16. z*/a —x /a’.
17. 2+ a2+ + Va.
18. x4+ 3%y + 3zxy? + i~
19. "+ a™ 14 a2™ 24 ...+ 22 4+ + 1.

20. ™ —z?, (1) when m is even, (2) when m is odd.

The applications of homogeneity and symmetry are numerous
and valuable. If the time allows, they should be taken at
this point. They are set forth at some length in Appendix
III

It should, however, be said that symmetry and homo-
geneity form two valuable checks, especially in multiplica-
tion. If two expressions are homogeneous their product is
evidently homogeneous.

E.g., the product of 2 + 22y — 2 and  — y cannot be 23 + z2y?

— 3zy + ¥8, because the factors being homogeneous the product must
be so.

Likewise, if two expressions are symmetric as to two or
more letters, their product must be symmetric as to those
letters.

E.g., the product of 22 — 22y + 2 and = + y cannot be 28 — 22y +
zy2 + 3, because this is not symmetric as to z and y.

A knowledge of symmetry and homogeneity is of great
value in factoring.
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II. THE REMAINDER THEOREM.

103. If we consider the remainder arising from dividing
a function of x, say «? + px + ¢, by « — a, we find an inter-
esting law. )

z +p + a=quotient
z—a)x®+pz +gq
z2 — ax
(P+a)z+q
(p+a)z —pa—a?
a? + pa + ¢ = remainder.

That is, the remainder is the same as the dividend with
a substituted for x.

. Hence, if this law is general, we may find the remainder arising
from dividing 22 + 22 — 3 by = — 2 by simply substituting 2 for z in
the dividend. This gives 22 + 2.2 — 3 = 5, the remainder.

Similarly, it is at once seen that, if this law is general, =17 + 22° — 3
is exactly divisible by ¢ — 1. (Why ?)
That the law is general is proved on p. 75.

EXERCISES. XXXIV.

Assuming that the remainder can always be found as
above stated, find the remainders arising from the follow-
ing divisions:

1. z»—1 by z —1.
x — y by x —y.
225 —64 by = — 2.
32a°—1Dby 2a—1.
Tz)*+1by T+ 1.
-+ 22 —xz4+1 by = —3.
4+ —a2?—2x+1 by x—1
3a®+ 422 — 22— 36 by = — 2.
41 by x+1, ve, by o —(—1).

©® e R w W
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104. The Remainder Theorem. If f(x) is a rational inte-
gral algebraic function of x, then the remainder arising
Srom dividing £(x) by x —a is £(a).

Proof. 1. Let ¢ be the quotient and » the remainder.

2. Then f(x) = q(x — a) + 7. Def. of division

(I.e., the dividend equals the product of the quotient and the divisor,
plus the remainder, and this is true whatever the value of .)

3. Step 2 is true if « = a, it being an identity.

4. But r does not contain z. (Why ?)

5. . f(e)=q(a — a)+r=0+r=r, from step 3.

6. Ie., the remainder equals f(a), or the dividend
with a substituted for .

105. CororrAries. 1. If f(x) is a rational integral
algebraic function of x, then the remainder arising from
dividing £(x) by x +a is £(—a).

For £ + a=z — (— a) ; hence, — a would merely replace a in the
above proof.

2. If £(a) =0, then f(x) is divisible by x — a.

For the remainder equals f (a), and this being 0 the division is exact.

3. If n 18 a positive integer.

(a) x* + y" is divisible by x 4+ y when n is odd.
For, putting — y for z, z* + y* becomes (— y)* + y*, which equals
0 when 7 is odd, and not otherwise.
(b) x* + y® s never divisible by x — y.
For, putting y for z, z* + y» becomes y» + y», which is not 0.
(¢) x* — y® s divisible by X + y when n is even.
- For, putting — y for z, z» — y» becomes (— y)* — y*, which equals
0 when n is even, and not otherwise.
(d) x* —y® s always divisible by x — y.
For, putting y for z, z» — y» becomes 0.
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Illustrative problems. 1. Find the remainder arising from
dividing (z + 1)* —«®* — 1 by = 4 1.

Substitute — 1 for z, and f(x) becomes (— 1+ 1)5 — (—1)5—1,
which equals 0 + 1 — 1, or 0.

2. Also when (x — m)®+ (x — n)® + (m + n)® is divided
by = + m.

Substitute — m for z, and f(z) becomes (— m — m)® + (—m — n)3
+ (m + n)8, which equals — 8 m® — (m + n)® + (m + n)8, or — 8 m3.

3. Also when nz"+!— (n 4+ 1)2" + 1 is divided by = — 1.

Substitute 1 for 2, and n — (n + 1) + 1 =0.

4. Find the remainder arising from dividing x® 4 5z*
—32*—2x+T7 by 4+ 1T.

Here it is rather tedious to substitute — 7 for . If the student
understands synthetic division (Appendix II) it is better to resort to
it, as follows :

1+46—- 34+ 0—- 2 + 7
-7 —7 14-—-77 539 — 3759
1—-2 11 -177 537; — 3752 remainder.
Check. [8 — (— 37562)] + 8 = 470.

EXERCISES. XXXV.

Find the remainders in the following divisions:
1. &4 2™ by 2+ ».

z*— 422+ 3 by = + 4.
a2m+1 yam+1 by x + y.
322" —33x°+1 by «— 1.
2 +2x?—-32x—T by — 2.
2+ 2% —2 by z—1; by z+1.
2+ 322+ 50 by £+ 5; by = —b. )
x® + y® by «*+ 3> (Substitute — y* for «%)
& 4 y15 by 2 + P
x® 4 yzo by xt + 3/"

LA T o A o
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REVIEW EXERCISES. XXXVI
Solve the equation f(x)=f(2).
If f(x) = x — 1, solve the equation f(z)-f(3)=0.
If f(x) =z — 1, solve the equation [f(z)]*==*—3.
If F(z) = 2 — b + 1, solve the equation
Fl)=F(x)+ bz.

6. Is ax? + bxy + ay® symmetric as to z and y ? as to

aand b? astoaand x?

L

6. Is this a rational function of «:
&z‘—z’\/;+3x%—-\4/¢;?
Is it an integral function of z ? Is it a rational function
ofa?

7. If f(x, y) is symmetric as to = and y, is [/ (=, )]*
also symmetric as to z and y? Illustrate by letting
F&y)=z+y.

8. May f(x, y) be not symmetric as to  and y, and
[f (=, y)]* be symmetric ? Illustrate by letting f(x, y) =
z—y.

9. Do you see any advantage in having a function sym-
bol, as f(x), in the way of brevity ?

10. Multiply =* + 3%y + 4 2%? + 3xy® + y* by ® — ay
+ %2 checking the result (1) by symmetry, (2) by homo-
geneity. ' ,

11. Multiply «® — 3a% + 32y® —y® by 2+ 2y — y?
and check by symmetry or by homogeneity according to
which one applies.

12. Divide «* — y* by « — y, checking the quotient by
homogeneity.

13. Divide «® + ®* by = + y, checking the quotient by
symmetry. ’



CHAPTER VI.
FACTORS.

I. TYPES.

106. The factors of a rational integral algebraic expression
are the rational integral algebraic expressions which multi-
plied together produce it.

In the expression 3z (z + 1) (x? + = + 1) (2® + 2)

3 is called a numerical factor,
x % ¢« monomialalgebraicfactorof thefirst degree,
z+1 « ¢ linear binomial factor,

x?+x+1 «  « quadratic trinomial factor, the term ¢quad-
ratic” being applied to integral algebraic expressions of the
second degree in some letter or letters.

x® 4+ 2 is called a cubic binomial factor, the term ¢ cubic ”
being applied to integral algebraic expressions of the third
degree in some letter or letters.

E.g., in the expression 23 (x + y + 2) (22 + y2), 2% is a monomial
cubic factor, z + ¥ + z is a linear trinomial factor, and 22 4+ 32 is a
quadratic binomial factor.

107. Rational integral algebraic expressions which in-
volve only rational numbers are said to exist in the domain
of rationality.

- E.g.,x*+2z+ }, but not 22 — V2. The former has no algebraic

fraction, and the latter involves an irrational number.
78
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108. The product of two integral expressions in the
domain of rationality is evidently another integral expres-
sion in that domain. We say that an expression is reducible
in the domain of rationality if it is the product of several
integral expressions in that domain, and irreducible in the
contrary case.

E.g., 422 — 9 is reducible, because it equals (2z + 3) (2 — 3), but

22 — 3 is not reducible, the word ‘¢ reducible ’* alone meaning *¢ reduci-
ble in the domain of rationality.”’

109. A rational integral algebraic expression is said to be
factored when its irreducible factors are discovered.

E.g., the factors of 2+ — 1 are z2+ 1, ¢+ 1, and x — 1. When
¢ — 1 is written in the form (x2 + 1) (z + 1) (z — 1), it is said to be
factored, because 22 + 1, z + 1, * — 1 are irreducible.

The expression z — 1 is irreducible, although it has the factors
vz + 1 and vz — 1, because these are not rational.

The term ¢« factorable” is applied only to rational inte-
gral expressions. E.g., while (\‘/5 + 1)(\4/;: —-= Vo — 1,
expressions like Vz — 1 are not spoken of as factorable.

110. Factoring is the inverse of multiplication, and like all
inverse processes it depends on a knowledge of the direct
process and of certain type forms already known.

E.g., because we know that

@ +y)?2=a?+ 22y + 2,
therefore we know that the factors of
2+ 2zy+y?are z+y and x + y,
and those of m24+2m+1 “m41 “ m+1.

111, Although all cases of factoring give rise to identi-
ties, the symbol = is usually employed instead of = as
being more easily written.
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112. The type xy + xz, or the case of a monomial factor.

Since = (y + z) = xy + 2, it follows that expressions in
the form of xy + xz can be factored. '

Eg., 422 +22z=222z+1). Check. 6=2.3.

A polynomial may often be treated as a monomial, as in
the second step of the following :

v¥-my+ny—mun=y({y—m)+n(y—m).
=@ +n) @y —m).

Check. let y=2,m=n=1. Then38=3.1.

It must be remembered that an expression is not factored
unless it is written as a single product, not as the sum of
several products.

E.g., the preceding expression is not factored in the first step ; only
some of its terms are factored.

EXERCISES. XXXVII.
Factor the following expressions :
1. o7 4 x2% + 2t 2. a®+ 2ab 4+ 3ac.
3. o —xt— 2?4 . 3x° — 4ax® + «5.
5. 9y + 30y5 + 6yt aby — ay + y* — by.
7. m® 4+ 3mn + 3 mnl w? — wy + wr — wxy.

® & =

113. The type x? £+ 2 xy + y? or the square of a binomial.
Since (z * y)?= «* + 22y + y* (§ 69, 1, 2), it follows that
expressions in the form of «? + 2 zy + y? can be factored.
E.g., 2+4z+4=(z+2)2 Check. 9 =33
22 —6zy +9y2=(x —3y)% Check. 4= (—2)2

EXERCISES. XXXVIII.

Factor the following expressions :
1. 224+ 102 + 25. 2. 422 +4xy+ 9>
3. 254+ 22 —10x. 4. m®+ 14m® + 49.
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5. 1212 — 222 + 1. 6. 422 +4y(y — 2x).
7. 92 — 24 xy + 1642 8. 8la*+ T2a%3 + 1644
9. 49274+ 81w?—1262w. 10. (x+y)*+2(x+y)+1.
11. 169 a? 4 169 b* — 338 ab.
12. a*+4a+4+4+2(@+2)+1.
13. a®+2ab+8*+2(a+ b))y + ¥y
14. 22+ 22y 4+ 2+ 222+ 2y2 + 22
16. m*+n?+ p* + 2mn — 2mp — 2 np.

114. The type x? — y?, or the difference of two squares.

Since (x + y) (z — y) = * — y* (§ 69, 3), it follows that
expressions in the form of x? — y2 can be factored.
E.g., 22 — 16 = (z + 4) (z — 4). Check. —15=5-—3.
24 — 16 = (22 + 4) (@2 — 4)

=@ +4)(z+2)(x—2). Check. —156=5-3. —1.
zh+ 2%+t =2t + 228t + p - 2t

= (@ + y7)? — 2%?

=@+ +ay)(@@+y2—xy). Check. 3=3-1.

EXERCISES. XXXIX.

Factor the following expressions:

1. 2*—162 2. x'%—1.

3. a*+ a®?® + b4 4. 3622 — 942

6. 16a* + 42%?% + ¥~ 6. 81x*+9x2+1.
7. 2?4+ 22y + y? — 2% 8. (z+y)?—(x—y)

9. a?+ 0 —x*—1+4+2ab+ 2.

10. a?+4 2ab + ® — (2 — 22y + ¥°).

11. 4a’+4a—3(=4a’+4a+1—4).
12. 22— 6wy + 5> 13. 2+ 42y + 32
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115. Forms of the factors. Although a rational integral
algebraic expression admits of only one distinct set of
irreducible factors, the forms of these factors may often
appear to differ.

E.g.,since (z—2y)(2z—y)=223—bzy+ 213,
and Qy—2)(y—2z)=222—bzy + 213,
it might seem that 222 — 5 zy + 2 »2 has two distinct pairs of factors.

This arises from the fact that the second pair is the same as the
first, except that the signs are changed, each factor having been multi-

plied by — 1. But this merely multiplies the whole expression by
—1.—1, thatis, by + 1.

Hence, the signs of any even number of factors may be
changed without changing the product.

Eg., 2z?—bz+6=(x —2)(x—3),or (2—2)3—2)

Check. 2=—1-—2,0r1-2.

H-1=@2+1)(z+1)(@x-1)
=@+1)(-z-1)(1-2)
=(—22-1)(x+1)(1 —=x).

Check. Letx =2. Then
16-1=6-3-1=6-—-83-—-1=-565-3.- — 1.

EXERCISES. XL.

Factor the following, giving the various forms of the
results and checking each.

1. 1—at 2. 28 —1.

3. 16 — 2t 4. a®— 1"

5. 16a* — 81 94 6. 2+ 2¢—222V2.
7. 121 4 22 — 222. 8. 2°+2—222V2,
9. 1 — 2625 + 168. 10. a®—®+ 5% + 2 ab.

11. 16a*4+82%+1—-25¢°% 12. —at*—152242322—Tx.
13. 12122+ 12142 — 9 — 242ay.
14, 42’4+ 1 - 9y?—2yz — 22+ 4=z
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116. The type x® + 3 x’y + 8xy?>+ y? or the cube of a
binomial.

Since (z + y)* =2® £ 3x% + 3zy® £ 3* (§ 69, 4, 5), it
follows that expressions in the form of x® + 3% 4 3 zy?
=+ »® can be factored.

Eg., 828 +1222+6x+1=(22)8+3(@22)3+3.22+1

=@z + 1) Check. 21 = 88,
275 — b4zty + 3622 — 88 =
(32%)% —3(32%)2-2y + 3-322(29)* — (29)®

= @22 — 29 Check. 1=18.
Ik i ORI OIG R ORI
=(- 2y
23

Check. Letz=2,y=3. Then1—9+27—27=—8=(1—3)

EXERCISES. XLI.
Factor the following expressions :
1, 1 —3x 4+ 3x%2 — «8. 2. a®*—3a®*+3a—1.
3. 23 —328 4+ 3x*—1. 4, 2722 — 2724+ 9 — 1.
5. a®— 3a%%? + 3a%* — 0%
6. 270 —2Ta®+9a® — 1.
7. 8 —122% + 6xy® — y°
. 8. b4a?—27Tx + 8x* — 3622
9. 1.3312% —7.262% 4 6.6 — 8.
10. 64 2% — 48yt + 122%2 — 1.
11. a%® + 6 2%*? + 12 2%% + 8.
12. 0.125x% — 0.752* + 0.15 22 — 1.
13. (@ +86)°*+3(a+8)*+3(@@+0b)+1.
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117. The type x*+y" It has been shown (§ 105, Re-
mainder Theorem, cor. 3) that

«" + y" contains the factor  + y when # is odd,

13 [13 [13 [{3 x — y never,
o — yn “ 113 “ x + Yy when 7 is even,
« “« « «  x—yalways.

Hence, it follows that expressions in the form of " & y"
can often be factored.

E.g., 8 + y8 contains the factor z + y. The other factor can be
determined by division. It may also be determined by noticing that
28 + 38 is symmetric and homogeneous, and that its factors must
therefore be = + y and 22 + kxy + y2, where k is to be determined.
Lettingz =y =1,

28+ y = (x + ¥) (@2 + kzy + ?)

becomes 2=22+k),
and therefore, k=-1,
whence Bry=(@+y)(@®—zy+ U’)

This type occurs so often that the forms of the quotients
should be memorized :
1 xﬂ + yﬂ
ety
signs alternating.

=gr—1_ x»-zy + x— y2 — x”-*y‘ + -y the

r—y .___xn—l_xn—?y_’_wu— yi_zu—lyl_'_._,, the

x+y
signs alternating.
3. z _yn=xu—l+xn—2y + x— y‘-'l + 27"_“1/8 + - the

r—y
signs being all +.

We are thus able to write out the quotient of (z15.+ %) + (z + ¥)
at sight, and so for other similar cases.

The integral parts of the quotients in 1 and 2 are the same, but
the remainders are different. E.g., if » is odd there is no remainder
in 1, but in 2 there is a remainder — 2 y».



FACTORS. 85

When the exponent z exceeds 3 it is better to separate
into two factors as nearly of the same degree as possible,
and then to factor each separately.

Eyg., #-yr=+y) @ -y

= (@ + ') (& + 9% @ - ¥Y)
=@+ @+)E+y)E-v),
or the same with certain signs changed (§ 115).

This is better than to take out the linear binomial z + y orz —y

first, which would give

B 1= @ +) (@ — DY + Y — DY+ I — 2+ 3 — ),
or (= — y) @ + 2ty + 22 + 2yP + 2Pyt + 2% + 2 + 7)),
in which cases it would be difficult to discover the factors of the two
expressions of the seventh degree.

So z8n - y2n = (2 + ) (2 — ¥™).

118. Binomials of the form z* + y* which have not the
factor  + y may contain =™ * y™.

Eg., o+1= @+ = @ +1) @ — 2% + 1.

EXERCISES. XLII.

Factor the following expressions :

1. 27+ 1. 2. z*—16.
3. a8 — 3% 4. 1 — 28
5. z® 4+ 832 6. % + 5
7. 325 4 1. 8. x!m+l 1,
9. z'2 4 4096. 10. a%* — b,
11. 7292° + ° 12. 216a® — b*.
13. (z+y)t+1. 14, 125a® 4 27.
15. 64 z® — 729 16. 27 a® 4 64 0%
17. 12527 = 27 zy. 18. a®+a+ b+ 0.

19. (a — b)® — (a + b)% 20. m2—n?42n—1.
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119. The type x*+ax+b. Letz?4ax +b=(z +m)z+n),
in which m and » are to be determined. Then

22+ ax + b=2® + (m + n)x + mn.

It therefore appears that if two numbers, = and », can be
- found such that their sum, m + =, is @, and their product,
mn, i8 b, the expression can be factored.

E.g., consider z2 4 10z + 21.

Here 10=8+17
and 21=8-1,

22+ 10z +21=(+3)(@+7). Check. 32=14-8.

Consider also 22 — 3z — 40.

Here —-3=5-8,
and —40=5- -8,

22— 3z —40=(z +56) (& —8). Check. —42=6. —1.

EXERCISES. XLIII

Factor the following expressions:

1. 2243z + 2. 2. 22—z —2.

3. 2422 —12. 4., 2 —bx + 6.

5. x? —4x — 165. 6. p*— p — 600.

7. a®—3a —130. 8. x?—4x—21.

9. a?—11a — 60. 10. z°% — 42 — 45,
11. 42% 4 8z — 45. 12. a*+ 17 a + 66.
13. z? + 41z + 420. 14. z* 4+ 162? 4 55.
15. a? — 24 a + 135. 16. z'y?+4a%y 4 3.
17. z* — 15 2% — 100. 18. a®* —16a — 225.
19. a*z* + 5a’x? + 6. 20. 22+ Txy + 1042
21. 4a®+4 2ab— 202 22. a%? — 5 a’x — 14.
23. m? — 38 m + 165. 24. 2?4+ 1lzy — 26 y2

26. m2x® — Tmax — 18. 26. mx* + 12 ma? 4 35.
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120. The type ax® + bx +c. Let
ax? + bx + ¢ = (mx + n) (px + ¢),
in which m, n, p, and ¢ are to be determined. Then
ax?® + bx + ¢ = mpa? + (mq + pn)x + gn.
It therefore appears that the coefficient of x, mq + pn, s
the sum of two numbers whose product, mqpn, is the product
of the coefficient of x% mp, and the last term, qn. Hence,
if these numbers can be detected, the expression can be
factored.
E.g., consider 623 + 17z + 12.

Here 17=948,
and 6.12=72=9-8.
622+ 172 +12=622+9x + 8z + 12
=3z(2z+3)+4(2z+3)

=Bxz+4)(2x+3). Check. 36=17-56.
Consider also 622 + Tz — 3.
Here 7=9-2,
and 6. -3=—18=9.-2.
622 +72—-3=622+9x—-2z—3
=3z(2z+3)—(2z+3)
=Bz —1)(2xz +3). Check. 10=2-5.

EXERCISES. XLIV.

Factor the following expressions :

1. 6242 —12. 2. 12p°—p—1
3. 422 — 42— 3. 4. 3a°+8a+ 4.
5. 600a®—a — 1. 6. 927 — 172 — 2.
7. 8422 — 52 — 1. 8. 8a%+ 220+ 12.
9. 12p?2—Tp+1. 10. 6p*+ 25(p +1).
11. a'? — 7 a®%% — 85 12. 1622 — 62z 4 27.

13. 16 a®+ 43 ab + 27 0% 14. 40a%+ 61 ad — 8452
16. 16 2%%% 39 zxyz —27. 16. 30 x? — 41 zz — 1522
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121. Application of the Remainder Theorem. The presence
of a binomial factor is usually detected very readily by the
use of this theorem (§ 104).

E.g., 28 — 4z + 3 evidently contains the factor (z — 1), and the
other factor, z2 + z — 3, can be found by division.

Similarly, consider z3 — 2z — 21.

Trying £ — 1 we have

f(1)=1—-2-21%0; ..z —1isnota factor.
Trying z + 1 we have
f(=1)=—14+2-21%0; .. 2+ 1is not a factor.
Trying z — 3 we have f(8) =0; .. z — 3 is a factor.

If the student understands Synthetic Division (Appendix
II), the test of divisibility is easily made by that process,
thus:

10 -2 -21
3 3 9 21
1 3 7; 0 remainder.

Hence the factors are z — 3 and 22 4+ 8 + 7.

Check. —22=—2.11

Since the factors of — 21 are +1 and F¥21, +3 and F 7, the
number of trials necessary is very limited.

EXERCISES. XLV.

Factor the following expressions:

1. 28— 19z — 30. 2. 2 -3z —2.

" 3. mP— 2mn? 4 nb, J—4 a*—a'—a—2.

S b o a*—a—2+2a% | -6 a*49a?4 202+ 12.
7. a’—6a2+’11a—6. " 8. a®+8a2—1124a + 256.

9. a’—a2—15a+12./

For those who have studied symmetry as set forth in
Appendix III, the cases of factoring given in Appendix IV
are recommended at this point.
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. MISCELLANEOUS EXERCISES. XLVI.

122. General directions.

1. First remove all monomial factors.

2. Then see if the expression can be brought under some
of the simple types given on pp. 81-87. This can probably
always be done in cases of binomials and quadratic trino-
mials, and often in other cases.

3. If unsuccessful in this, the Remainder Theorem may
be tried, especially with polynomials of the form

"+ ax "y + bt tyR 4 -l
4. Always check the results, and be sure that the factors

are irreducible.

1.zt + 4. 2. xt+ 440

3. x4 ¢S 4. 14224 2%

5. xz® — iyt 6. 8+ 4° + xtyt,

7. 2+ a2+ L 8. x* — 22%% + y*

9. a®bsc* — a*bc. 10. x?(x? + y%) + %
11. a® — a® — 110. 12. z* + 2% + 2 a%y.
13. 4t — 11224 1. 14. 2224+ 112+ 12,
15. 6x%2 — 23z + 20. 16. y? — 224+ 22— 1.
17. x%® + 22%2 + xy. 18. (x+y) —«"—y"
19. a* — 15a%2 4 90% 20. ax®+ (a + )z +b.
21. ab+ y* — ay — by. 22. 12a%° — 1Ty + 6.

3. z* —8alyt + 16 4% 24. (@ +1)?— 5z — 29..

26. (a + b)® + (a — b) 26. 16 z* — 28 z%y? 4 y*.
27. Y¥*+3y*+6y+18.~ 28. 7x3+96x?—103m.\"
29. 21 a2+ 26ab — 1502 30. x* —(a?+ )+ a®r .

e
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31.
33.
35.
37.
39.
41.
43.
45.
47.
49.

Bl
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m®n® 4 1.

9x? — 16 2
a’+a — 2dd
10 a® — 360 5%,
4™ 4 a?™ 4 1.
z* + a® + z2at.
x?+ 16 x 4 63.
z? — 14 = + 49.
a®(a® — 1) — 56.

6+15a*—19a.
8 —(x+y+2)>

32.
34.
36.
38.
40.
42.
44,
46.
48.
60.
62.

a® — 2 a*h* + b8
z** — 11 2~ + 28.
9a*™ — 5 —4am
a*(a? — 24) + 63.
a’®— ac — bc — b
z? + 122y + 36 y2
m? — t? — w? 4 2 tw.
(a® + 1) —(B* +1)%
@E+yt+4@w+2)4
5ab — bc + cd — b ad.
%+t — 42ty — 4y

653. a®h — ab® + a% + abd

64. a*(a +1)—02(d + 1).

66. 3zy(xz+y)+ «*+ 3~

56. 4ax%y? — (2 + y* — 2%)2

57. 22+ (2*—4)y — 2xy

58. 121 a* — 795 a®? 4 9 0%

69. (a—4)’—4(a—4)+ 4.

60. (x —5)?— 8(x — 5)+ 12.

81. z¥(x —2y)— y*(y — 22).

62. 1 —(a—05)—110(a —b)2

63. 10 4 16(a + 5)+ 6 (a + b)*

64. (m + n)?+ 10 (m + n) + 24.

65. 2a%— a2y + (y — 2) (xy — x)%
66. 2% + y? — (w? + 2%) 4 2 (xy + wr).
67. (a +b)°—(a+0)>—(a+b)?*+1.
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I. APPLICATION OF FACTORING TO THE SOLUTION OF
EQUATIONS.

123. To solve an equation is to find the value of the
unknown quantity which shall make the first member equal
to the second. Such a value is said to satisfy the equation
(5 17).

E.g., if 2 =4,
then 22—4=0,0r (z+2)(x—-2)=0;

. 2=+ 2or —2. That is, either + 2 or — 2 will satisfy the equa-
tion ; for if z = + 2, then (2 +2)(2 —2)=0; and if £ =— 2, then
(-2+2)(—2-2)=0.

If 2+ =6,
then 2+ —-6=0,
whence (z + 3) (z —2) =0. This equation is evidently satisfied if
either factor of the first member is 0. (Why ?) -
If z+3=0, then £ =— 3, because —3 4+3=0;
and if z—2=0, “ =2, ¢ 2—-2=0.
If ¢ —622+1122—-62=0,

then z(z — 1) (x — 2) (x — 8) = 0. This equation is evidently satisfied
if any factor of the first member equals 0. (Why ?)
Hence, z may equal 0, as one value ;

or if z—1=0, then £ =1, because 1 —1=0;
and if r—2=0, ‘“ =2, @ 2-2=0;
and if r—8=0, ¢“ =zz=8, ¢ 3—-8=0.

EXERCISES. XLVIIL

Solve the following equations :

1. 22—-1=0. 2. x? 4 287 =48«.

3. 2224+2=5x. 4. 622 —1324+6=0.

6. x? =2z + 143. 6. z* — 1022421 =0.

7. ®+ 42+ =6 8 xf—14x*4 4927 =36.
9. 2zt —1322436=0. 10. 22® — 672 +371x=0.

11, 222 —T224+52x=0. 12. 2*—1522+10x +24=0.
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III. EVOLUTION.

124. If an algebraic expression is the product of two
equal factors, one of those factors is called the square root
of the expression. Similarly, one of three equal factors is
called the cube root, one of four equal factors the 4th root, - - -
one of n equal factors the nth root.

The broader meaning of the word root is discussed later (§ 130).

The process of finding a root of an algebraic quantity is
called evolution.

Evolution is, therefore, a particular case of factoring.
It is evidently the inverse of Involution, as Root is the
inverse of Power.

125. Symbolism. Square root is indicated either by the
fractional exponent 4 or by the old radical sign V', a form
of the letter r, the initial of the Latin radiz (root).

Si.mila.i'ly, a* or Va means the cube root of a,

a* 113 VE’ 3 3 4th “ 3
1 n
and, in general, a» ‘¢ Va ¢ ¢ nth oou

For present purposes it is immaterial which set of symbols is used.
The student should, however, accustom himself to the fractional
exponent, which, while a little more difficult to write, has many
advantages over the older radical sign as will be seen later.

126. Law of signs. Since any power of a positive quantity
is positive, but even powers of a negative quantity are posi-
tive while odd powers are negative (§ 77), therefore,

1. An even root of a positive quantity is either positive or
negative.

Eg,4 =12 81t=43

2. An odd root of any quantity has the same sign as the
quantity itself.

Eg., 8 =2 (-8=—2
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3. An even root of a megative quantity is neither a posi-
tive nor a negative quantity.

E.g., Y —1is neither + 1 nor — 1.
An even root of a negative quantity is said to be imagi-

nary, and imaginary quantities are discussed later (Chap.
XIII).

127. The root of a monomial power is easily found by
inspection.

Eg.,-- 40%4=2.2-a-a.b-b-b-b,
Veat=V(2-a-b-b)-2-a-b-b)=42-a-b-b
=4 2ab2

Similarly, ¥ 64 23y% = 4 xy2,
VB2 20y =2 a8,
¥ 64x12= 4 222

EXERCISES. XLVIII.

Simplify the following expressions :

1. Vava 2. ~/— 8 a%h,
3. V3 (a — 20)". a. V16 a*nVa® g,

6. V2a®V2bV4ct
6. V16 x1%y®% /32 10920280,
7. 2\7’1?‘, M+‘\l/a:3’+‘, 2M.\]/— r?E+

8. V64 mlsylﬂ’ \8/64 xlsym’ \6/64 x18y12'

9. V72905, ~/729a7%", /729 a%".
10. V a®™*™, m being even; m being odd.
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128. Roots extracted by inspection. The roots of the mono-
mials given on p. 93 were extracted by inspection. Simi-
larly, the square root of a square polynomial, the cube root
of a cube polynomial, etc., can often be found by inspection.

Ilustrative problems. 1. What is the square root of
zt + 4oty + 442

Lo [+ (F+ RSS2+ 2/n + 0, A § 82
2. and ‘- this polynomial can be arranged in a similar form, viz.,
@) +22%29) + 2¥)%

8. ... it is evidently the square of +-(z3 + 2%).
Check. (+8)2=1+4+4=09.

2. Find the cube root of z® + 6x*y + 12 x%® + 8 3%

1. - (f+n)i=r3+3/%n+ 3fn3 + 03, § 82

2. and - this polynomial can be arranged in a similar form, viz.,
(%) + 3(2%)%- 2y + 322 (29)% + (2¥)%,

8. .. it is evidently the cube of 22 + 2.

Check. 3*=1+6+12 + 8 =21.

3. Find the square root of
a?+4024+9c2+4ab—6ac —12bec.
1. v [2(x+y+2)2=22+92+ 22+ 22y + 2y2z + 222,
2. and ‘. this polynomial can be arranged in a similar form, viz.,
a2+ (20)2+ (—3c¢)2+2a2b) +2a(—3c)+22b)(— 3¢),
8. .. it is evidently the square of 4 (@ +2b — 3¢).
Check. 02=1+4+9+4—-6-—-12=0.

4. Find the fifth root of
a® — 5a® + 10 a®%? — 10 a*0® + 5 a%* — B85
1. - there are 6 terms, and the polynomial is arranged according

to the powers of a and b, it is the 5th power of a binomial (§ 82) whose
first term is a2 and whose second term is — b, if it is a 5th power.

2. But (a? — b)b equals the given polynomial. (Expand it.)
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EXERCISES. XLIX.
Extract the square roots of exs. 1-6.
$2° — gt + fy
4a —12Vab +9b.
4m? — 12ma? + 92t
9 a®® — 30 a®b*c® + 25 a*c.
4m3 + 4mn + 12mp + n® + 6 np + 9 p2
4t — 1228 + 16 2%® + 9aly® — 24 xy* 4 16 ¢S

L S A S

Extract the cube roots of exs. 7-12.

T. B2 — 382+ S 2® — .

8. m® 4 6m*n + 12 m*n® 4 8 nl.

9. 8% — 84z% + 294 xy® — 343 ¢

10. 82+ 12254+ 182* + 132 + 922 +3x + 1.
11. m®* —3m® —3m* +11m® + 6m?®* — 12m — 8.
12. 2% — 1224 54 2* — 1122® 4+ 10822 — 48z 4 8.

Extract the fourth roots of exs. 13, 14.
13, ffgat + §2% + 3270 + §ay’ + byt
14. 16x* — 96 2%y + 216 2%% — 216 zy® 4 81y~
Extract the fifth roots of exs. 15, 16.
16. 80x® — 80x* 4+ 322° — 40224 102 — 1.
16. 21 — gafy + §a'y® — 'yt + &yt — Pyt
Extract the sixth roots of exs. 17, 18.
17. a®* —12a® + 60a* — 160 a® 4 240 a? — 192 a + 64.
18. a®— 2 a® + § a*h® — 39 a®b® + o a®t — A ab® + ;4505
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129. Square root by the formula 2+ 2fn+n?%. The subject
is best understood by following the solution of a problem.
1. Required the square root of 4 z* — 12 2% + 932

Let f = the found part of the root at any stage of the

operation, and
n = the next term to be found.

Then (f+ n)*=f*+2fn + n% § 82
The work may be arranged as follows:

Root ==%(222—3y)

Power = 4az* — 12x% + 9y® contains 2 + 2 fn + n?

ﬂ: 4t
2f=4at —122% + 9y « 2fn + n?
2f+n=4x*—3y —122% 4+ 942 = “

Expranation. 1. If a root is arranged according to the powers of
some letter, the square obtained by ordinary multiplication will be so
arranged (§ 65).

2. ... the square is arranged according to the powers of z, so that
the square root of the first term shall be the first term of the root.

8. - 4% = the square of the first term, the first term is 2 22

4. Subtracting f2, the remainder, — 1222 + 92, contains 2fn + n2

6. Dividing 2 fn (i.e., — 1222y) by 2f (i.e., 42?), n is found to be
—3y.

6. - f2=4z% and 2/n + n? =— 122% + 94, .. the sum of these
is the square of + (222 — 3y).

Check. Letzx=y=1. Then(—1)2=4-124+9=1.

We might, after a little practice, detach the coefficients.
In the above example it would be necessary to remember
that the powers of z decrease by two, while those of y
increase by one.

Eyg., 4-12+4+9|2-3

4
4 —-12+49 +(22?—3y)
4-—3 —1249
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2. Required the square root of
a®—2ab* 4+ b*+ 4dac — 4b% + 42
Root =+(a— +2¢)
Power =a2—2 ab2+ b* +4 ac—4 b2c+4 c3 contains f2 + 2 fn + n?

2 — g2

2f =2a —Zab2+bh+ ... “ 2fn + n?
2f+n=2a-0% —2ab2+bt = ‘e
2f =2a-20h 4 ac—4 b2%c+4 c? contains 2fn + n?
2f+n=2a—-2b2+2¢ 4ac—4b%c+4c? = “

ExpLANATION. 1. See p. 96 for explanation down to 2f=2a —2b2.
2. - f? = a? and
2fn + n2= — 2ab? + b4,
< (f 4+ n)? = a2 — 2 ad? + b4, the square of a — b2
3. . a — b? has now been found, it may be designated by f.
4. . 4ac—4b% + 4c2 contains 2 fn + n?, the square of a — b2
having been subtracted.
Check. Leta=b=c=1. Then22=1-2+1+4—-4+4=4.
Orleta=1,b=2,c=3.
Then (1—4+62=82=9
and 1-8+16+12—-48+36=9;
and so for any other arbitrary values.

130. Extension of the definition of root. If an algebraic
expression is not the product of » equal factors, it is still
said to have an rth root. In such a case the rth root to n
terms is defined to be that polynomial of » terms found by
proceeding as in the ordinary method of extracting the »th
root of a perfect th power.

E.g., the square root of 1 — z to 5 terms is

(1 -}z — 32— g2 — ghyat —--0).

In the same way we may speak of the square root of
numbers which are not perfect squares. Thus the square
root of 2 to two decimal places is 1.41; to three decimal
places, 1.414, and so on. We may also speak of the cube
root of numbers which are not perfect cubes, and so on.
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EXERCISES. L.

Extract the square roots of exs. 1-16.
1. 2+ 22—z 4+ .

2. 14+8a+22a%+ 24a®+ 9at.

3. 9(a®*—1)—12(a*—1)a + 44>

4, —6zt 422+ 922 —-12x 4 4.

5. — 2ax® 4 a%c* — 2bax® + 2 abx?® 4+ b2

6. 25a2+ 95+ ¢ + 6bc — 10 ca — 30 ab.

7. 10x* — 102 — 1225 + 522+ 92 — 22 + 1.

8. 928 —12ax” + 4 a%x® + 6 a®x® — 4 a*x* + a’x2

9. 16 —8m — 23 m?+ 22m® 4 5m* — 12mb 4 4 mS.
10. 9a®%*—12a%b®+4a%®+ 24 a®h%® — 16 a®h*c® + 16 a*b>cS.

11. 9a*—12a%® +48°% + 24 a%c* — 16 b%* + 16 ¢* — 30 a?d
+ 2086%d — 40 c'd + 25d2

12. 4282 — 12 2ty® + 92yt + 4ty — 6 2% + x%y%2? —
16 2%y%® + 24 2y®® — 8 xy’2* + 16 y%2° + 4 2°yz — 6 xBy’2 +
2 2Py2? — 8 alyzt + xt2t

13. 14 x to 4 terms.

14. 1 — 2z to 4 terms.

15. 4 4+ 2z to 4 terms.

16. 9a2 4 12 ax to 2 terms.

17. Find « so that a* 4+ 6a® + 7a? — 6a + = shall be a
perfect square.

18. Find m so that 4x* 4+ 4 2% 4+ mx? + 4 = + 4 shall be
a perfect square.

19. Find m so that 9a* 4+ 1242 4+ 10 a® 4+ ma + 1 shall
be a perfect square.

20. Show that the square root of 2[ (m +n)*+ (m*+n*)]
is 2 (m? + n® + mn).
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131. The square roots of numbers are similarly found.
Required the square root of 547.56.

Root =2 3. 4
Power = 547.56 contains f? + 2 fn + n?

f2=400.00

2f, =40 14756 « 2fm +n? f,=20
2fi+mn =43 12900 = g = 3
2f, =46 18.56 contains 2fin; + na? fi — 23
2f, +ny =464 1856 = « ng= 0.4

ExPLANATION. 1. - the highest order of the power is 100’s, the
highest order of the root is 10’s, and it is unnecessary to look below
100’s for the square of 10’s.

2. Similarly, it is unnecessary to look below 1’s for the square of
1’s, below 100ths for the square of 10ths, etc.

3. The greatest square in the 100’s is 400, which is the square of
20, which may be called f; (read ‘ f-one '), the first found part.

4. Subtracting, 147.56 contains 2 fn + n2, because f2 has been sub- -
tracted from f2 + 2 fn + n?, where f stands always for the found part
and n for the next order of the root.

5. 2fn + n? is approximately the product of 2/ and n, and hence,
if divided by 2f, the quotient is approximately n. ..n =3.

6. .. 2f+ n = 43, and this, multiplied by n, equals 2 fn + n2.

7. - f? has already been subtracted, after subtracting 2fn + n?
there has been subtracted f2 + 2fn + %2, or (f + n)2, or 232

8. Calling 23 the second found part, fz, and noticing that
f2 = f1 + my, it appears that 232, or f;2, has been subtracted.

9. ... the remainder 18.56 contains 2 fong + no2.

10. Dividing by 2 f; for the reason already given, n, = 0.4.
11. .. 2f; + ng = 46.4, and 18.56 = 2 fony + ns?, as before.
12. Similarly, the explanation repeats itself after each subtraction.

EXERCISES. LI
Extract the square roots of exs. 1-6.

1. 958441. 2. T779.24. 3. 32.6041.

4. 24.1081. 5. 0.900601. 6. 0.055696.
R

Q b=’



100 ELEMENTS OF ALGEBRA.

132. Cube root by the formula f* + 3 f’n 4 3 fn? + n®
Required the cube root of 8 a® — 12 a% + 6 ad® — %

Let f = the found part of the root at any stage of the

operation, and
n = the next term to be found.

Then (f+ n)® = /% + 3™ + 3 fn? + n®. - §82
The work may be arranged as follows:

Root =2a—0b
Power = 8 a8—12 a2b+ 6 ab?—b3 contains

f1=8as F343f 4 324 n3
312 |3/fn 31243/ —12 a%b+-6 ab?—b® contains
. +n? +n? 3f:n+3fm3+nd . °
12a2| —6ab|12a?—6ab —12a2+6ab2-b0 = “
+b2 +

ExpLaNaTION. 1. The cube is arranged according to the powers of
a-and b for a reason similar to that given in square root.

2. - 8a3 = the cube of the first term, the first term is 2 a.

8. Subtracting f3, the remainder, — 12a2% + 6 ab? — b3, contains
3f%n + 3fn? 4+ nd.

4. Dividing by 82 (i.e., 12 a?), n is found to be — b.

6. -f=2a,andn=—b,..3f24+3fn+n?=12a2— 6ab + b2

6. Multiplying by n, — 12a? + 6 ab? — b® must equal 3/%n + 3 fn2
+ n8. This together with /3 completes the cube of f + n.

Check. Leta=b=1 Then13=8_124+6_1=1.

EXERCISES. LII.
Extract the cube roots of exs. 1-6.
8a® — 36a% + 54 ab® — 27 b8
a®x® — 12 a%x® + 48 abx® — 64 b8,
1—6x+ 2122 — 44 2% 4 63 x* — 54 2% 4 27 =8,
a®—2a% + § a*d® — 39 a®® + f a®* — Frab® + ;1505
a®—12a% + 54 a*b? — 112 a%® 4 108 a?* — 48 ab® + 8.
x4+ 3x?y — 622+ By —12xy+122+y°— 63y>+12y —8.

LA A A
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133. The cube roots of numbers are found by the same
general method. :

Required the cube root of 139,798,359.
Root 56 1 9
Power = 139,798,359 cont’s f3+3 f2n+43 fn2+nd
f? = 125,000,000

8f2 |8fn | 8f2+3fn |14,798,359 contains 8f2n + 3 fn? +n
ot 4w =500

7,661,000 = 3f2n + 3/n? + nd

750,000 | 15,100 765,100
n = 10

7,147,359 contains 3 f2n + 3 fn? 4+ nd

Jfo =510
780,300 | 13,851 794,151 .
7,147,359 = 8 f2n + 3 fn2 + n8
Ng = 9

ExpLANATION. 1.. - the highest order of the power is hundred-
millions, the highest order of the root is 100’s (why ?), and it is unnec-
essary to look below millions for the cube of 100’s. (Why ?)

2. Similarly, it is unnecessary to look below 1000’s for the cube of
10’s, below 1’s for the cube of 1's, etc.

3. The greatest cube in the hundred-millions is 125,000,000, the
cube of 500. ... 500 may be called f.

4. Subtracting, 14,798,359 contains 8 f2n + 3 fn2 + n8. (Why ?)

6. This is approximately the product of 32 and n, and hence if
divided by 32 the quotient is approximately n. .. n = 10.

6. ..3fn+ n?=15,100, and 312 4 3 fn + n? = 765,100, and this,
multiplied by n, equals 3 f2n + 3 fn? + ns.

7. - f3 has already been subtracted, after subtracting 3 f2n + 3 fn?
+ =3 there has been subtracted (f + n)3, or 5103

8. Calling 510 the second found part, f,, it appears that f2% has
been subtracted. ... the remainder contains 3 f2n + 3 fn? + nd. -

9. The explanation now repeats itself as in square root.
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EXERCISES. LIII.
Extract the cube roots of exs. 1-4. )
1. (a) 10,077,696. (b) 31,855,013. (c) 125.751501.
2. (a) 367,061.696. (b) 997.002999.
3. (a) 551. (b) 975. Each to 0.001.
4. (a) 2 (b) 5. Each to 0.0001.

REVIEW EXERCISES. LIV.
Extract the cube roots of exs. 1-3.
1. 1 — =z to 5 terms.
2. 64 —48x + 9% to 3 terms.
3. a®+9a’ + 36 a’d? 4 84 a®® + 126 a®* + 126 a*b®
+ 84 a®® 4 36 a%” 4+ 9 ab® + "
\4. Factor 2% 4+ 22 — 4 2% — 4.
5. Show that xyz (® + y® + 2% — (¥%2% + 2%2® + 2%%) =
(=" — y2) (¥* — 2z) (2" — zy).
6. Divide the product of #*+ 2 — 2 and «? 4+ — 12 by
the sum of 22? + 6 4+ 1 and 2 — 2 (10 + ).

7. Find the square root of
x+3)(x+4)(x+5)(=+6)+1.
8. Solve the equation
7—2§6—-3[6—2(4—3+2=)]}=1.
9. Find the square root of
2a—056)?—2(2a*>—~5ab+ 25"+ (a —25)%

10. Find the three roots of the equation #® — 22 + 1 =z.
11. Also of the equation % + 92?4+ 8x — 60 = 0.

12. Ifa=—3,6=0,¢c=1,d = — 2, find the numerical
value of a — 2§b6 + 3[c —2a — (@ — )]+ 2a — (b + 3¢)}.



CHAPTER VII.

HIGHEST COMMON FACTOR AND LOWEST
COMMON MULTIPLE.

1. HIGHEST COMMON FACTOR.

134. The integral algebraic factor of highest degree
common to two or more integral algebraic expressions is
called their highest common factor.

Eg., a?is the highest common factor of a3cd and 2 a%be?,

zyzz " 113 3 zay-zz 13 xy2za,
a_b " 13 3 (a_b)z 3 a'z_b2.

Consider, also, 2(a® — b%) and 4 (b2 — a?).

Here 2 (a® — b%) = 2 (a — b)(a? + ab + b2), or — 2(b—a)(a2+ab+b2),
and 402 —a%)=40b—a)®d + a), ‘¢ —4(a—b)(a+Dd).

Here either @ — b or b — a is a common factor, and there being no
other common algebraic factor, either is called the highest common
factor. There is a common numerical factor, 2, but such factors have
nothing to do with the algebraic divisibility of the expressions, and
hence may be neglected.

In the last example, it is not usual to state both answers, @ — b and
b—a, because a — b= — 1. (b —a); that is, the two are the same

except for a numerical factor, and numerical factors are not con-
sidered.

135. The arithmetical greatest common divisor must not
be confounded with the algebraic highest common factor,
although these are often called by the same name. The
highest common factor has reference only to the degree of
the expression.

103
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E.g., consider the highest common factor of z2—82+2 and 22—z —2.
Here 22—-38z+2=(@x—-2)(x—1),0or 2-2z)(1-2),
and B-z-2=@@-2)@+1) “ —-2-2)(@+1);
hence, the highest common factor is € — 2, or 2 — 2. Now if z = b,
the expressions become 12 and 18, and the highest common factor
becomes 3, or — 3, although 6 is the greatest common divisor of 12
and 18.

The highest common factor is occasmnally used in reduc-
ing fractions to their lowest terms.

136. Factoring method. The highest common factor of
expressions which are easily factored is usually found by
simple inspection.

E.g., to find the highest common factor of 2 — 3z + 2, 28 — 22 — 2,
and 2% 4+ $z — 3, we have: *

1 2-3z4+2=(@x—2)(x—1).

2. wW—a2—-2z=z(@—2)(x+1)
3. 12 +3x-3 =4 —2)(x+3).

4. .. the highest common factor is ¢ — 2, or 2 — z.

EXERCISES. LV.

Find the highest common factor of each of the following

sets of expressions:
1. 5a%%*d% % atb*®d®.

15 mna®, 17 matyz, § abex'z.
10 x%yz, 15 ax’yz?, 20 amxz’.
22—yt P—ab 2?—-8ay+4+ Tyt
a®—yt Yy —at ' —fay — 4yt
x?—4, ®—2—6, 2—5x— 3%
22 —axy —y? 42+ 10xy + 442
6a?+19ab—T0% 2a®+ ab— 215%
4a%(a®— 0%, ab*(Ba®—b5ab+ 209%).

® ® RS, D
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137. If the factors of one of several algebraic expressions
are known, but those of the others not, it is easy to ascer-
tain, by division or by the Remainder Theorem, if the known
factors of the one are factors of the other.

E.g., to find the highest common factor of 1 — z2 and 11327 — 423
+ 2z — 111.

Here 1-22=(1-a)(1+2),0or —(x—1)(x+1).
But z — 1 is a factor of 11327 — 423 4 2z — 111, by the Remainder

Theorem (§ 103), while z 4 1 isnot. ...z — 1 is the highest common
factor.

EXERCISES. LVI.

Find the highest common factor of each of the following
sets of expressions:

b — o, a? — o2

x? —4, 25— 422 — 16.

x? —4, 27 4+ Tx? + 100.

x® 4+ 1, 2 + ax® + ax + 1.

22 —3x+2, 2* —9x 4 14.

2} — 9z 4 14, 22° — 522 — 441.

w242+ —3, 2*+322+ 52+ 3.

x?—4, bat + 22° — 2322 — 8z 4 12.

22 — 5y + 3% 62 — 23a% 4 25xy® — 642
10. a® — 8% 0% — a? 117 a® — 117 a% — 231 ab 4 23152

=11, 28—1, 22— 1, 293x°—200 2%+ 7 2% — 5022 — 252 — 25.

A2 1 —af) 28— 1, 2 — 14+ 30 — 3% 24T x* — 2402 —T.
13. 25— 32, 16 — 2%, 2 — 9z + 14, a* — 42 + 62 — 12.

14, 22+ 1, 22422+ 1, 254+ 1, 324 25 + 247 2* 4+ 100 2®
- + 204 22 — 27.

® ® S ok ¥ D=
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138. Euclidean method. In case the highest common fac-
tor is not readily found by inspection of factors, a longer
method, analogous to one suggested by Euclid (8.c. 300)
for finding the greatest common divisor, may be employed.

139. This method depends upon two theorems:

1. A4 factor of an algebraic expression is a factor of any
multiple of that expression.

Proof. 1. Let a, b, p, ¢ be algebraic expressions, p and ¢ being
the factors of b.

2. Then b=pq.

3. .. ab = apq. (Why ?)

4. ILe., if p is a factor of b, it is a factor of any multiple of b, as ab.

A similar proposition is readily seen to be true for num-
bers. E.g., 5is a factor of 35; and since multiplying 35
by any integral number does not take out this 5, therefore,
5 is a factor of any multiple of 35.

2. A factor of each of two algebraic expressions is a factor
of the sum and of the difference of any multiples of thosc
expressions.

Proof. 1. Let b=pg and b =pq.

2. Then ab=apq ‘ a’t’ =a’pq. (Why ?)

3. .. ab + a’% = apq + a’pg = p(ag + a’q). (Why ?)

4. Ie., if p is a factor of b and b’, as in step 1, then it is also a

factor of the sum and of the difference of any multiples of b and ¥’,
as ab and a'd’.

A similar proposition is true for numbers. E.g., 5 is a
factor of 60 and of 35, and also of the sum and of the dif-
ference of any multiples of these numbers.

140. The Euclidean method will best be understood by
considering an example.
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Required the highest common factor of
x* — a4+ 22 —x4+1 and 2* + 22+ 222 + 2+ 1.

zt—23 4222 -2+ 1|zt+ 2342224+ z+1(1
?— 284228— z+1
23:]22;3 +2%
+1 :1:4 284222 —z+1(22—2+1
+ =2
—z3+ 2—z+1
—z8 —z
2 +1
7 +1
ExpPLANATION. 1. The h.c.f. of the two expressions is also a factor
of 223 + 2, by th. 2 (§ 139).
2. It cannot contain 2z, because that is8 not common to the two
expresslons

3. .. 2z may be rejected, and the h.c.f. mustbeafactorofz’+l
4. 22 + 1 is a factor of z* — z3 + 222 — z + 1, by trial.

5. “ 13 13 228 + 2.

6. . LU ¢ 4 rd42z24z+ 1. (Why ?)
7. ¢ is the h.c.f. (Why?)

141. In order to avoid numerical fractions in the divi-
sions, it is frequently necessary to introduce numerical
factors. These evidently do not affect the degree of the
highest common factor.

E.g., to find the highest common factor of 4z% — 1222 + 11z — 3
and 628 — 1322 + 9z — 2.
6x3—13224+ 92—2
2
473—1223+112—38[1225—2622+182—4|3
1223 -36224+332—9

5(10x2—152+6
22%— 3z+1|42°-122?+112-3|22—3

428— 6224 22
— 622+ 92-3
— 622+ 923
Here the introduction of the factor 2 and the suppression of 6 evi-
dently do not affect the degree of the highest common factor.
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142. In practice, detached coefficients should be used
whenever the problem warrants.

E.g., to find the highest common factor of
3aby 4+ 3xty + 223y —x?y —ay and 224 4+ Qa8 4+ Qa2 4 Tux.
Here z is evidently a factor of the highest common factor. It may
therefore be suppressed and introduced later, thus shortening the

work.
But y is a factor of the first only, and hence may be rejected

entirely.
The problem then reduces to finding the highest common factor of

3zt 43234222 —z—1and 228 4922+ 9x + 7.
3+ 84+ 2—- 1-—- 1

2
24+9+9+7[6+ 6+ 4— 2— 2[3
6+27+ 27+ 21
—21— 23— 23— 2
- 2
42+ 46 + 46+ 421
42 + 189 + 189 + 147
— 143 — 143 — 143 — 148
1+ 14+ 1]24+9+9+4+72+7
24+2+2
T+74+17
~. 2 (22 + @ + 1) is the h.c.f. T4+7T4+7

143. The work can often be abridged by noticing the dif-
ference between the two polynomials. -

E.g., in the case of z* — 223 4 322 — 82 + 6 and 2* — 428 + 322 —
6z + 6. Here we have:

1-2+83-8+46 .

1—-44+83-6+4+86 .
2|2 -2
1 -1

2—1=(@+1)(—1).

By the Remainder Theorem z — 1 is a factor of each expression, and
z 4+ 1isnot; ..z — 1 is the highest common factor of the expressions.
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144. The highest common factor of three expressions
cannot be of higher degree than that of any two; hence,
the highest common factor of this highest common factor
and of the third expression is the highest common factor of
all three. Similarly, for any number of expressions.

EXERCISES. LVII.

Find the highest common factor of each of the following
sets of expressions :
1. 2* -2z +4, 2t +2*+ 4.
2 2x*+2x—4, 2*— 32+ 2.
73 +4, 2 — 228+ '+ 20— 2.
A 2 —40x 4 63, 2* — Ta® 4 632 — 81.
5. x4 o8 at — yt, ab + 2%yt 4 2%y + o~
6. 2®°(6x+1)—wx, 42— 2232+ 2)+ 3.
K. 2t — 1522 4+ 282 — 12, 22 — 152 + 14.
+8. T2 —102? -T2 4+ 10, 22% — 2> — 22 4 1.
+9. x?— 42— 117, 2* —13a® — 22 + 142 — 13.
4+10. 63a*—17a*+17a — 3, 98a* 4+ 34 a? + 18.
11. 224+ 42 —21, 22 +20x 4+ 91, 228 +42? —T0 .
12. 8a* —102®* 4+ T2? — 2z, 62 — 11 2* 4 8 2% — 222
13. 9a%? — 482+ 4bc— 3 202+ c*+3ab—3bc —3ac.
14. (a — b) (a® — ¢) — (a — ¢) (a® — b%), a® —b%, ab — b*
— ac + be.
15. —10(x’+3)+31z, m"’(x——11)+ 219 z — 20),
x® — 9a¥+ 262 — 24.
16. a'h? + 4a%® 4 3 a%* — 4 ab® — 4% a®h + 3a'h? — a®h®
— 3a%t — 4 a% + 455
17. 3a®>—Tab+2b*+5ac—5bc+ 2¢% 12a* —19abd
+ 582 +11ac—11bc + 2%
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II. LOWEST COMMON MULTIPLE.

145. The integral algebraic multiple of lowest degree
common to two or more algebraic expressions is called
their lowest common multiple.

E.g., a?bdcd is the lowest common multiple of a2bc and ab3d.
Similarly, + (a + b)2(a — b) is the lowest common multiple of
a? — 4%, b — a, and (a + D)2 For

1 a2 — b2 = (a + b) (a — b).
2. b—a=—(a—b).
3. (@+b)2=(a+b)(a+b).

4. .. either (a + b)2(a — b) or (a + b)2(b — a) contains the given
expressions and is the common multiple of lowest degree.

The lowest common muiltiple of algebra must not be con-
sidered the same as the least common multiple when
numerical values are assigned. E.g., the lowest common
multiple of @ + 6 and @ — b.is (¢ 4 b) (@ — b); but if a =6
and b = 4, the least common multiple of 6 + 4 and 6 — 4 is
simply 6 + 4.

146. So far as the algebraic multiple is concerned, numer-
ical factors are not usually considered.
E.g., a?b3c is the lowest common multiple of 2 ab3c, } a2b, and 15 ab.

The lowest common multiple is used in reducing fractions
to fractions having a lowest common denominator.

147. Factoring method. The lowest common multiple is
usually found by the inspection of factors.

E.g., to find the lowest common multiple of 22 — 12 + 27, 22 4+ =
—12,and 16 — 22 — 22

1 2—-1224+27T= (z—3)(x—9).
2. 2+z—12= (z—38)(x+4).
3. 16 -2 —22= — (x — 8) (x + H).

4. - 4 (z — 3)(z + 4)(x + 5)(x — 9) is the lowest common multiple.
In practice, the result should be left in the factored form. ’
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EXERCISES. LVIII.

Find the lowest common multiple of each of the follow-
ing sets of expressions:

1. — 10 a%yz, 5 2%z §a*cy®z.

2+ ety vy —a®—3

a®+ b — 2ab, ® — a? a —b.

27T — 122 4 «? x4 22 — 15.

w4, 2 -2 2+ 2 x— V2.

2?4+ —12, — 36 4+ 13z — x?% x? — 16.

2 +y'+3zy (@ +y), 2+ x+y.
2y —at —y? 2ay+ a2t +yLat— ot x4y

®» e ;o ®DN

148. Highest common factor method. Since the highest
common factor contains all of the factors common to two
expressions, it may be suppressed from either of them and
the quotient multiplied by the other to obtain the l.c.m.

Proof. 1. Let x = af,

y =15,
in which f is the highest common factor of « and y.

2. Then the lowest common multiple is evidently adf;
i.e., it is ¥ multiplied by a.

E.g., to find the lowest common multiple of 23 4 822 — 3z — 27
and 223 + 1222 + x — 45.

228 + 12224+ x— 46
223 + 822 —3x—27

24224+ 42— 18
222 42 — 9|22% 4822 —8x —27[z +8

228 + 222 — Oz
622+ 6x — 27
6x2+ 62 — 27

.~ (228 + 1222 + z — 45) (z + 3) is the lowest common multiple.
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EXERCISES. LIX.

Find the lowest common multiple of the sets of expres-
sions in exs. 1-15.

=

mlﬂ_‘_zﬂ, x17 +m8.
3a®—11a?+ 4, 6a*—a — 2.
22+ 3ab+ 2+ 3, 2® — 82 4 3.
6x?+ 13z + 6, 102> — 3 4 13 .
22+ 2ax + a?, 2+ ab + (a + b)=.
622+ 1122 —9x+1, 22243z — 2.
ot -2t —ax—4, xt—22+ 22— 8.
2+143@*+2), x*+1+ 4@+ x)+ 622
3a® — 15 ax? + a%r — 5a?, 6x* — 25 a%? — 9 at.
2 4+20x+91,35 — 22 — 2% 2* 4+ 62— 622+ 62— 7.
220202 —a?—42—T, 22*+ 62— 1T 22+ 8x—35.
et 41, 225 -3t 44224222 — 32 4.
13. "+ —at—622 —6x— T, x® —ax® — b + x* — 6B
—x 4+ 7.
14 "+ 22 -3+ 224+ 22 -3, " + 428 — Tab + 22
+4x—T7, 25+ 1.
15. 4a’(Ba+2)—(27Ta +18), 12a® —a(8a + 27) + 18,
6Ba—2)+27a®—8.
16. Find all of the algebraic expressions whose lowest
common multiple is «® — 4xy?

© PN e ;e BN

- e
¥ - O

17. Prove that the product of the lowest common mul-
tiple and the highest common factor of two expressions is
the same as the product of the two expressions.

18. Investigate ex. 17 for the case of three expressions.

19. Find the lowest common multiple of a? —1 and
a®—4a + 3. Can the result be checked by letting a = 5,
7, or any odd number above 3? Explain.
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REVIEW EXERCISES. LX.
Factor z(z — 1) — a(a — 1).
Solve the equation 42? + 1 = 4.
Solve the equation 6%+ 11z — 7 =0.
Extract the square root of x? + 1 to 3 terms.

L

5. Give a complete description of this expressxon as a
function of  and y: z* + 3ty + 4 2?2 + 3xy® + Yt

6. Show that the difference of the squares of any two
consecutive numbers is equal to the sum of the numbers.

7. Find the lowest common multiple of 2 z® 4+ z* + 4 «®
+42*+22+3 and 625 — 5zt + 122 — 8224+ 5x — 6.

8. Find the lowest common multiple of #* —a? — 2z —1,
2a* —2*—22*—2x —1,and 3ot — 428+ 622 — T — 8.

9. Find the highest common factor of z* + 22® — 522 4+
152 +12, 2* 4+ 52* 452?482+ 16, and z*+4 62+ 1022
+ 42 —16.

10. In finding the highest common factor of two alge-
braic expressions, by what right may a factor be suppressed
in one if it is not a factor of the other ?

11. The highest common factor of two expressions is 4 a2
— a? and their lowest common multiple is 4x* — 5a®x® 4 a*.
One of the expressions is 4 «® + 4 ax? — a% — a®.  Find the
other.

12. Assign such values to ¢ and b that the arithmetical
least common multiple of a® — 4® and a® 4 4® + 2 ab (a + b)
shall not be the value of the algebraic lowest common
multiple.

13. Prove that the difference between the cubes of the
sum and difference of any two numbers is divisible by the
sum of the square of the smaller number, and three times
the square of the larger.



CHAPTER VIIIL
FRACTIONS.

149. The symbol %’ in which & is not zero, is defined to

mean the division of @ by &, and is called an algebraic
fraction.

Hence, the algebraic fraction % represents a quantity

which, when multiplied by &, produces a.

The terms of the fraction %

numerator and b the denominator, and either or both may be
fractional, negative, etc.

are a and b, @ being called the

The case in which b equals zero is discussed later.

There are two definitions of a fraction usually given in
arithmetic: (1) The fraction % is @ of the & equal parts of
unity ; (2) The fraction % is one bth of a.

Neither of these arithmetical definitions includes, for example,
2 2

'y Ve etc., for ¢“2 of the — 3 equal parts of unity ’ means
nothing, and ¢ one V2th of 8 is equally meaningless. Hence the
broader algebraic definition.

In the first arithmetical definition above given, b names the part
and hence is called the denominator (Latin, namer), and ¢ numbers
the parts and hence is the numerator (Latin, numberer). Hence the
origin of these terms.

The fraction g is, therefore, read ¢‘a divided by b,”’ although the

reading ‘“a over b is generally used in various languages, and is
sanctioned by most teachers on the ground of brevity.
114
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1. REDUCTION OF FRACTIONS.

150. Theorem of reduction. The same factor may be intro-
duced into or cancelled from both numerator and denomina-
tor of a fraction without altering the value of the fraction.

Given the fraction %, and m any factor.
a ma .

To prove that 1= mb that is, that the factor m may
be introduced into both terms of ; or cancelled
from both terms of ma.

mb
Proof. 1 b -% = a. Def. of frac.
2. . mb -% = ma. Ax. 6
3. .. % = % . Ax. 7

An algebraic fraction is said to be simplified when all
common algebraic factors, and hence the highest common
factor, of both numerator and denominator have been sup-
pressed, and there is no fraction or common numerical
factor in either.

2
E.g., the fraction % is simplified when reduced to the
a+b .
form pr gy byaca.ncellmg the factor a + b.
- +b

But the fractions b

and %—: are not simplified.

The student should notice that the theorem does not
allow the cancellation of any terms of the numerator and
denominator. No factor can be cancelled unless it is con-
tained in every term of both numerator and denominator.
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Usually the factors common to the two terms of the
fraction can be found by inspection and cancelled ; other-
wise the highest common factor of both terms is found and
then cancelled.

87,2, 74

Exampres. 1. Simplify the fraction ;ab dc:i

1. Cancelling a?, b2, ¢, and d8, the fraction reduces to %d

2. And since there are no other common factors, and the terms are
integral, the fraction is simplified.

—27-4.1-16 _ —6
Check. Leta=3,b=d=2,c=1. Thenm—-=-?-
. o a2+ 2ab+ b
. a + b)?
1. This evidently equals @+5@—0
a+b

2. Cancelling a + b, this reduces t,o e

3. And since there are no other common factors, and the terms are
integral, the fraction is simplified.

Check. Leta=2,b=1. Then §=4. (If aandb are given the
same values, the denominator becomes zero, a case excluded, for the
present, by the definition of fraction.)

32 + 26 —T7
322 —10zxz + 7

1. A factor of each term of the fraction is a factor of their differ-
ence, 36 x — 84 (§ 139, 2). -

2. Hence of 3z — 7, because the terms of the fractions do not con-
tain 12. ‘

3. Hence, if there is a common factor, it is 3z — 7, because this is
irreducible.

4. By substituting arbitrary values this is seen to be a probable

factor, and the fraction reduces by division to z+ 111 .

Check. Letxz =2. (Whynot1?) Then ——113 = ?

-3. Simplify
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2m'+9a:’+11z+14'
32 +4x2+Tx+2

4. Simplify

1. Here the simple factors are not as easily determined as the
highest common factor, =2 + z + 2.

2. Cancelling this, the fraction reduces to 2247

3z +1
3. .. the fraction is, by definition, simplified.

Check. Letz=1. Then §$§ = §.

If the student has not studied Appendix III, ex. 5 may
be omitted.

—at(b—c)—0(c—a)—c*(a—b)
(@a=b) @ —c)(c—a)

1. By the Remainder Theorem (§ 104) a — b is a factor of both terms
of the fraction. (We try a — b because if there is any common factor
it must bea — b, b —c,orc—a.)

2. Hence, because both terms are cyclic, b — ¢ and ¢ — a are factors.

3. And since the numerator is of the 4th degree, the other factor is
a linear cyclic factor. Hence, it is n(a + b + ¢).

4. Hence, the numerator isn(a + b + ¢)(a — b)(b — ¢)(c —a). But
by substituting the values a =2, b =1, ¢ = 0, n is seen to be 1.

5. Hence, the fraction equals a + b + c.

Check. Let a =38,b=2,c=1 (values different from those used

for finding n). Then 122 =86.

5. Simplify

151. General directions for simplifying fractions. The pre-
ceding fractions were simplified in different ways. While
there is no general method of attack, and the student must
use his judgmrent as to the best plan to pursue, the follow-
ing directions are of value:

1. Cancel monomial factors first, as in ex. 1.

2. Then see if common polynomial factors can be readily
discovered. Make free use of the Remainder Theorem. Com-
pare ex. 2.
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3. If common factors are not readily discovered, see if the
difference between the numerator and denominator can be
easily factored. If so, try these factors, using arbitrary
values or the Remainder Theorem, as in ex. 3.

4. Never perform a multiplication until compelled to.
Factor whenever possible. If the terms are cyclic and you
have studied Appendix III, apply your knowledge of sym-
metry and homogeneity, as in ex. 5.

5. Let the method by finding the highest common factor
be the final resort. TFor one who is skillful in factoring,
this tedious method ought rarely to be necessary. Inex.5
students will probably use the Remainder Theorem instead
of the method suggested.

6. Always check the final result by substituting arbitrary
values or by some other simple device.

EXERCISES. LXI.

Simplify the following fractions and check each result:

1 ab?ct . 9 u“—3a+2'
" bt Va " at+4a:—5.

3 a®—b 4 21z — 10 — 92*
" at— bt " 32— 262+ 35

5 zt 4+ y* 6 a*+a’+3a—5
Tt yf ' a®—4a+3

. zt + 2%y 8 622 + Tay —3y*
ot — g " 6a+1lay +3y°

9 a%bc?d® . ! 10 x’—x2—7x+3.
© — ablcdt Tt 22+ 22 —1

ma’y — mxy® 12 2?4yt — 24 22y

11, —/————
naty — naly® x? —yt — 2t 4 2y2
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13 a'+a’—2a. 14 4+ 22— 122 .
‘"a®*—a®—6a T at44ax24+5x4+20 .
15 M 16 1—at .

" Bayt—daty " A+ m)}’—(@+a)p

a®+3a —10 22 —5x24+Tx—3

17. 3a*+2a—16 +18' 20 —5xt+4x—1
19 a:’+a:’y+:cy’_ v <20 a — a%xt .
T b+ xty? + xyt * a® 4+ afx — a'x? — a¥x®
m® —39m 4+ 70 m—6m?+11m — 6

21. m?2—3m — 70 ’f’zz' 2md — 14 m + 12

(%

23.

25

2 —xy —124° 24
x4 5xy + 6 y? T "z +m)—n(x+m)

22+ (a + b)x + ab

x’+(m—n)m—mn‘_

) (w+a)(x+b)(a:+c)'

a®—10a — 28

+ 20 2

2Ta* + 21 a + 147

mia? — (m + y) mnx 4+ mn’y

27.

x® — (m + 1) nx? + ma’x

Omit the following unless Appendix III has been studied.

at(b —c)+ b*(c — a)+ c*(a — b)

28.

abc(a —b)(b—c)(c —a)

' (@a—=8)(@®—c)(c—a) .
2 G0 —o+te—a+ia—5

30.

ab(a—b)+bc(b—c)+ca(c—a).

@—8¢—0 (-9

ab@+b)+bc(b+c)+ca(c+a).

31.

(@+d)@+c)(c+a)
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153. Reduction to equal fractions having a common denomi-
nator.

Theorem. If b’ d’ = are any fractions whatever, and m

is any common multiple whatever of b, d, £, it is possible to
reduce the given fractions to equal fractions having the
common denominator m.

In arithmetic, for example, we can reduce the fractions
4, & 1} to equal fractions having for their common denomi-
nators 24, 48, 96 - . .

Proof. 1. *.* m is a multiple of &, d, f, we may let

m = pb,
m = ¢d,
m = 7f.
ae_pa c_49° e _re,
2. Butb pb’ 7= qd and FT o § 150
a_pa o_ge =T
3. . = dm and = by sub-

k4
S
stituting the values of step 1
In particular, if m is the lowest common multiple of the
denominators, the fractions will be reduced to equal frac-
tions having the lowest common denominator, a step of

great importance in working with fractions.
7. z+y -y
g., to reduce the fractions z—v and Z 21y to equal fractions
having the lowest common denominator :

1. The l.c.m. of the denominators is (z + ) (z — ¥).

9 z+y_ (@+y)?
) z—y @+yE-1v)
3 z—y_  (z—y)?

Tty @+Y@E-9)
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EXERCISES. LXIII.

Reduce the following to equal fractions having the lowest
common denominator :

10.

11.

12.

13.

14.

z Yy =, g B, b a%
yz zx xy " d d¥ det
x Y z xy xy? x
’ ’ . 4. ’ ’ .
y+z2 z+4+x x4y 224yt -yt x—y
z+1 z—1 x
x“+4w+3’ 2—-9 z—3
1 2

m’+6m+8’ 2m’+7m+6.
2m —2n 4(m 4 n)

m’—mn-{-n" 5(m’+mn+n’).
=8 (a+8)? a+02+2ab
@ — b a’-}-b”’ (a® — 5% :
92?4122y —5y* 62 —1lzy +44°
3z —ay —10y® 22— bay +24°

z—y ct+y 2%
d—y@—y) F+y@E+y) -y
x? — 222+ 3xr—4 ac‘—2:v"'—3x+4.
x’+2x2+3w+4’ 2 —2x2+3x+4

z+1 x4+ 2 , x+ 3 .
2+ 5246 224+42z+3 +3z+2
a—3 2a+8 a+b

@®—9a+18 a*+a—12 a’+8a+15

Ty Yz <, 2T .
@+2)(z+2) @Ptzytzetay yY+yz+ay+az
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II. ADDITION AND SUBTRACTION.

154. Theorem. Operations involving the addition and sub-
traction of fractions can be performed upon the numerators
of equal fractions having a common denominator, the result
being divided by this common denominator.

Proof. 1. It has been proved in § 87 that

a b c¢_a+b+e .
TR RS T %

2. .. if the given fractions be reduced to equal
fractions having the common denominator £,
the operations can be performed as stated in
the theorem.

For simplicity it is, of course, better to reduce to equal
fractions having the lowest common denominator.

Thus, with numerical fractions,

: t+i=t+i=3=1

ExamprLes. 1. Required the sum of 2.
b —¢ b+e +c
1. The l.c.m. of the denominators is (b + ¢) (b — ¢).
e __OG+gae |
2 b—c (b+ec)b—c) § 150
3 a _ ®—c)a .
’ btc G+eob—o
a a (b+c)a:}:(b—c)a
4 b—c+b+ ®+c)d—c) § 164
_ 2 ab .
RETIED)

Check. Ifa=1,b=2,¢c=1, then } + } =4. Tt is not permis-
gible to let b and ¢ have the same values, because that would make the
common denominator zero, a case excluded for the present.
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R . z x+3 x—2
2. Simplify the polynomial e + 21 =71

1. The l.c.m. of the denominators is 22 — 1.
z+3_(z+l)(z+3)‘

2.

z—1  22-1
3 22 _(@-1)@-2)
) t+1 x-1
4 .= z+8 z2-2 z+@+1)E@+3)—(-1)(=—-2)
Ta -1 2z—1 xz4+1 22— 1
_z+x2+4z+3—-22+32x -2
- 22— 1
_8z+1
==

Check. Letx =2. Then § + § — ¢ =}

155. In a case like :: i Zz — x—a;—_:—zz, it must be remem-

bered that the bar separating numerator and denominator
is a sign of aggregation.

e+y—(@—y) _z+y—2+y _ 2y
3}2+1/2 x2+y2 z2+y2

In this case the result is

EXERCISES. LXIV.

Simplify the following expressions, checking each result
by the substitution of such arbitrary values as do not make
the denominators zero:

a,b ¢, etxb _a—20,
1. bc+ca+ab 2. a—b a+b

2z 5z 2—x x—2
% 32 6yhw e R gy
5. 1 1 6. = 4% _ 2ay

z+y x—y r+y x—y a:’—y’.



10.

11.

12.

13.

14.

15.

16.

18,

19.
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a+1_a+2 a—1
a+2 a+3 a+2

@ty z—y_ z+y,
@9 zty a—y

52 —Ta®— 92?411 =z—-1
224 —3x*+4+222—1 x+43

a—4 a—5 a—3
—9a+20+a“—11a+a’—7a+12.

1 ZL—z)_l_ 14 x2 6m’(1—x)_
1+ (A4 (A+2)? A+ =)

@ tabt¥ a'—abt B 20 —B+a?

a+b a—b a?® — ?
a b ¢
@—D@—0 G-90-9 -ae-0
a? Cob c?

@—DE—0 6-00-9 960

xy Yz 2x

V—DG-a G-y E-DE—9
ax? 4+ byz n ay? + bzx + a2 + bry
E—y)(@—2) @F—2Hy—) EF—2)(2—y

2 2 2 _ 9 8 __ 8 __ 0238 __ 4
l7.£+2m +y+3xy 3a® —y*  day’— 2% —y*

y @y 'y %y
1 1 1
a(e —b)(a—c) +b(b—a)(b——c) te c—a)(c—b).
xy Yz X
GroGEre GroGE+y) MRCER YR
2 zyz

RETIEDIED)
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III. MULTIPLICATION.

156. Theorem. The product of two fractions is a frac-
tion whose numerator is the product of their numerators
and whose demominator is the product of their demomina-
tors.

. . a ¢
Given the two fractions 3 3
a0 _ g
To prove that 3 a1
ac
Proof. 1. Let m-—-z'a
2. Then bdx=b-%-d‘§ Ax. 6
3. = ac, for b-% = a, by def. of
a6 division
4. .. xr = b‘a Ax. 7
a ¢ ac
5. . 3 a= b Ax. 1

COROLLARIES. 1. Similarly for the product of any num-
ber of fractions.

2. The product a-= = E’ as defined in § 52.

For if b = 1, the identity = :_; becomes a - 3 = %.

a [
bd
—8z+15 x*—15x + 56
12z+35'z=—17x+72
_(w—5)(w—3)(w—7)(w—8)
T @—-8)E-T(—-9=x—8)

Illustrative problem.
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EXERCISES. LXV.

Perform the multiplications indicated, simplifying the
results and checking as usual.

Taby? 18ty 2 -y 2 —zy+ 3yt
© 122% 28 2% Tyt 24y + P
3 27x Tty " a2+b’+2ab' 1
"8y+8x 3 ’ a—b a? — b3
5 z‘_yﬂ. za_ya' 6 (a+b)(x+y).a2—b2,

TPy @ty T @D@E—y oty

'y -y z—y =z
C(@—y)? &ty 4y

x4+x$y+xy8+y4‘ zT—y .

8. 2?4+ 2y + y? z? + zy
° 24— 12 ac2+2:c—35
" 22— 182+ 40 2°+ 9z + 20
10 x’+5z+6.x“+9m+20_
: x2+7z+12 24+ 112 + 30
1 2a’+5a+2 9 q? +15a+4

6a2+5a+1 5a’+12a+4

Reduction of integral or mixed expressions to fractional form.

157. Theorem. An integer can always be expressed as a
Sraction with any denominator.

For since 1

b
Y
ab
3’

by ax. 6 and § 156, cor. 2
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158. Theorem. A mixed expression can always be written
in fractional form. ’

For since a+

18
+ +
'Q" QI.Q"

§ 157

a+

§154

SIS oI
|
S

(-

EXERCISES. LXVI.

Write the expressions in exs. 1-8 as fractions with the
denominators indicated, as in § 157.

1. 5, denominator 25 a.

2. abe, “«  abe.

3. 4y, “ xTT—y.

4. 24224241, “ -1,

6. et —at4a?—2x 41, « x4 1.

6. a®—0?, “ a4 bt

7. 22+ xy + ¥ “ 2 —zy+ >

8. (a—b)(b—c)y(c—a), “ (@a+8)(+c)(c+ a)

Reduce the following to fractional forms, as in § 158,
checking each result:

6ab—2 b
. — . 10. .
9. 4a 37 0 a+b+a—b
1. P tetli—2. 12 —3z—2B8 =2,
z—1 x—2
13. 1+a+a,’+a,’+#'
a —

2 2
14. 2242 2 _(@—y)
2?+2xy+y P 2ay+ i
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159. Theorem. Any integral power of a fraction equals
that power of the numerator divided by that power of the
denominator.

Given the fraction gb’ and the integer n.

To prove that <9> = a—u

Proof. 1. ( )
aaa - - to n factors

2. = %5 - %o n factors § 156, cor. 1

.-+ to n factors
Def. of power

2.2,
b b

vl&

3. = Def. of power

EXERCISES. LXVII.

Express the quantities in exs. 1-6 without using the
parentheses. Check each result.

z+y abe \® r+3 ’.

S R A

a+b+c>2. s Mtm+1 o (ptgdr .
abe T (m+1)? "\p—gq-—r

4.

Express the following quantities as powers of a fraction :

a’+410ab 4 255° at4+9%* 4 6a%*
1+4z+4a? © 81(a®+ 0% + 162 ab

100z‘+20m’+1' 10 x°+1+3x2(m2+1)'
z* + 20 2% 4 100 Tt —1—-32%(@=2*—1)

4249y’ + 12y 12 —3a% +3xy* — o°
422 4+9y* — 122y T at+4322+3x+1

11.
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mustrative problems in multiplication. 1. To find the

—a a:—2a x
productof 2 Ta 25 2a andz_a
L By§156 —az-2a 2z _ (@—a)(x—2a)z
z+a z+2a z—a @+a)(x+2a)(®—a)
(x—2a)z
2. =& _28T ., 150
@+a)(z+2a) §
. 213 3
Check. Letxz =38,a=1. ThenZ'E'E_;_.E'
a b a b
2. To find the product of -+ - and - — -
b a b a
L +)G - )() () § 00
ot -
3. = § 164

Check. Leta =1,b=2. Then

(o)) 152 w5

24+ 6x+5 x“+8a:+15

3. To find the product of DTz 12 2+ bz +4

x2+63:+6.:c’+8x+15
T2+ Tx+12 x2+ b5z +4

(x+1)(x+6) (x+3)(:c+6)
SEt9td) @r@rd) Y s

2. E(w+1)(z+5)(x+3)(w+5) § 166
@+3)E+4H@E+1)(x+4)
—@+6)?
3. (z+4)2 § 160
Check, 1228 _10

20 10 26
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EXERCISES. LXVIII

Perform the multiplications mdlcated simplify each
result, and check.

n (1) s (3+2)
G RN OHONO.

3. xy 3 .
- (“*3 (1 3+y)

w

5
6.
[3 3(1—z):| [4 2(1+a:)
a+b a a—b a—b
7. l—a,-—b<a+b_ a +a,+b>

®
e
SRS
|

2\TL (B_TV\2, (2_T)\2.
b)c+<a c>b+<b c)a
1
b

1 a+b a?+ ab .
- (a+ ta—one <a2—ab+b2>
1 1 1 2 (1 1\ _ 1
0 i (5 8) r e (13) =
a  b\? b -c\? ¢  a\?
11. (Z+;)+<z+z)+<;+;)
a4+ (248 (210 (e+2).
b a c b a ¢
12,z’—(a+b+c)x+a(b+c). 2 — 02— 24 20c .
: —2ax + a? x?—2(0+c)x+(b+c)?
x* by | aly? 4zy‘ 16 »* x 2y,
13. (16z8 +izatontmat e ) (Ga 3
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IV. DIVISION.

160. The fraction formed by interchanging the numer-
ator and denominator of a fraction (of which neither term
is zerp) is called the reciprocal of that fraction.

E.g., 2 is the reclproca,l of = 5 is the reciprocal of —, and 9 is

the reciprocal of 3

Evidently 1 and — 1 are the only numbers which are their own
reciprocals, respectively.
The term reciprocal is used only in relation to abstract numbers.

161. Theorem. To divide any number by a fraction is
equivalent to multiplying that number by the reciprocal
of the fraction.

Given the fraction > and the number q.

b
To prove thatq+%-=-g~q.
Proof. 1. Lep qu-:—%-
2. .. %- x = ¢, by def. of division, or Ax.6
3. .. g- %~a;..=.§(- ¢, by mult. by_.-é' Ax. 6
4 - :z:Eg-q, sinceg-z 1. §§156,150
5. . g—'—%Eg-q. Ax. 1

162. CoroLLARIES. 1. The reciprocal of a fraction
equals 1 divided by the fraction. ‘

For 1+2= I:—L- 1, by the theorem.

atb+te 1 1 .1
m m m

. For to divide by m is to multiply by its reciprocal.

2.
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Tllustrative problems. 1. Perform the following division :

21 8a
8(@'—y) x—y
L 8(a:22:7_y2)+z3_zyEz3_zy.8(z+:)7(z-—y) § 161
2. 53—;% § 166
3. Ew—:_i_—y—), cancelling 8(z — ). § 150
Check. Letz=2,y=1. Thene—%%+g=%,forg+s=%.

+a 2*+ab
3 _ g8 _ 3 23 _ g8
L »-ad =z a5z8+a.a:8 a § 161
z+a x4a® z—a z+a
8) (28 — qb
2. =@+ad)@—d) §156
@—-a)@x+a)
3. = (2? — za + a?) (22 + za + a?).
Check. Letx=2,a=1. Then
8-1 2-1 7.1
—_— e ——=(4-24+1)44+2+1 -+ -=21
2+17871 4-24+1)@4+ +),for3 g=2t
3. Perform the following division :
a b _'_a2+b’.
a—b a+b) a*—abd
1 a  =b _ a+®
’ a—b a+b (a—Db)(a+b)
a? + b2 Lo+ a4 a(a—1b) § 161
@-b0)@+b) al—ab (@—0b)(a+b) o+
__ a
“a+b

Check. Leta=2,b=1Then${+ §=4%
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EXERCISES. LXIX.

Perform the following divisions, simplifying each result,
and checking.

a’+2a—15_‘_a’+9a+20

L ®+8a—33 &*+Ta—4d

x“+a:(a+b)+ab-__ z+a 2'

2t+axb+c)y+be  \z+ec

a’+b’—c’+2ab_,_(a+b—c)"
(d_+b+c)2 : abe

. 25xz—-29
b—4x —x)’(5—4z)(2—x)

=

(1 Ta 1_a) <1+a 17)
6. <z+1 x;1>.<x11.+“;1>.

(525

(

a+b2 a? —0? . a+b_a—b .
- a2+b2 "\ae+~b a+b

Ta—18b 2a—5b_2§)+

a—3b 3b—a

/\'!_‘9 2! —6xy+9y® (2 -9y '+ ay—6y%\
v at—day+4y \a?+4yP 22—y — 647

b 3a 3a—5b 1 1
10. <3a——b+3a—b> 9a2+bf*(3a—b‘3a+b>'

g 88t {14x(m n) 4(a—b)+16(a2_1,2)]}_
: m+n 15(a + ) 5x%y 7 (m? — n?)
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V. COMPLEX FRACTIONS.

163. A fraction whose numerator, denominator, or both,
are fractional is called a complex fraction.

a+b a+bd
E.g., ;, —a—, 2 _ are complex fractions.
a2+ab+b b+c a—-2>
be a

164. Complex fractions are simplified either By perform-
ing the division indicated, or by multiplying both terms by
such a factor as shall render them integral.

a+bd
¢c _ ¢ a+bd § 160
E.g.s @_0 a2—» ¢
o]
= §§ 150, 156
—a_b b
a+b :
c c(a+Db -
Or, m; a(2 — b2) , by multiplying both terms by c2,
]

= _c_b’ by cancelling a + b.
a pa—

Check. Leta=2,b=1,¢=1 Then }=1

It is obvious that the latter plan is the better when the
multiplying factor is easily seen.
2 — y2 .
zy
T—y
1/2
Multiplying both terms by zy2, this equals
yet—9) _y@+y)
z(x—y) ~ =
Check. Letz=2,y=1. Then } =3}.

E.g., to simplify
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EXERCISES. LXX.
a+b

1. Simplify

4. Simplify -

5. Simplify

a(a—b)—b(a+b)
_a___°b
a+bdb a—9b

6. Simplify

7. Simplify the reciprocal of ———

a b

8. Simplify the reciprocal of 95 15a
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Simplify the following expressions :
14 ——

1+a_'_(a+1)"’—a2
d+a+1

T
a+1+a

(a+b)° —ab — ¥

10. T

SIS
SHE

1
at 4 a4+ 0t a®— 08
a—b

11. 1 .
Frp @0

e e

b b
a b a®
1+Z+2_ ﬁ_l
13 1 + -1
e
z Yy
1

A I

(w—y+-x+y) pre?
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165. Continued fractions. Complex fractions of the form
a

b+

S +
are called continued fractions.
Such fractions are usually simplified to the best advantage
by first multxplymg the terms of the last fraction of the

form by the last denominator, f, and so working up.
d+2
S
E.g., to simplify the fraction T
at—
b+

Multiplying the terms of by c, the original fraction reduces
b+ z

to . Multiplying the terms of this fraction by bc + 1, this

a+

be+1

reduces to be +1

abc+a+c'

Check. Leta=b=c=1. Then !

EXERCISES. LXXI.

22

1. Simplify
1+——5
7
a
oo 1
2. Simplify T
B 1
m _—



Lol

10.

FRACTIONS.

Simplify

1+

a

Itetiera

Simplify a? +

Simplify = + y +

z+y+

z+y+

Simplify (a + 8)2 +

139

(@a—1b)+

(e +8)*+

(a—08)*
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VL. FRACTIONS OF THE FORM 3, &, AND -

166. By the definition of fraction (§ 149) expressions
of division in which the divisor (denominator) is zero
were excluded. An interpretation of this exceptional case
will now be considered.

When the absolute value of a variable quantity can
exceed any given positive number, the quantity is said to
increase without limit, or indefinitely.

1 1 1 1
E. th the values of th
g., in esenesl 01’ oot ool e of the suc-
cessive terms are 1, 10, 100, - --. Hence, as the absolute values of the

denominators are getting smaller, the absolute values of the fractions
are getting larger and may be made to increase without limit.

The symbol for an infinitely great quantity is oo, read
¢¢ infinity.”” This symbol must not, however, be understood
to have a definite numerical meaning. It is merely an
abbreviation for “a quantity whose absolute value has
increased beyond any assignable limit.”

Hence, ® + @ = o,

Q-0 = o,

and L = .
a

In fact, the symbol « is not subject to any of the common laws of
numbers.

167. If a is a constant finite quantity, the absolute value
a . .
of - can be made as small as we please by increasing =
sufficiently. That i 1s, = can be brought as near 0 as we

please. This is expressed by saying that the limit of —: as
z increases indefinitely, is 0.

This is written, gﬁ 0 as z increases without limit, the symbol ==

being read ‘¢ approaches as its limit.”
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2
a .
has a meaning for

168. The form % The fraction —

x2 —q?

r—a r—a

(a:-l-a) 1-(a+a)

all values of = except = = a. But Z (ac + a),

and as = a it is evident tha.t

= 2a.
- 2—-1_z-1 . .
Similarly, ;—_I_Em'(x+l)’ which =2 as2z=1;
—4z+4 _x2-2

—_— = - (x — 2), which = =2;
o 3 (z ), whic! Oasz=2;

»—-1_z-1

z—1 z-1

-(®®+x + 1), which =3asz=1.

But all these fractions approach the form § as z ap-
proaches the limit assigned, and in the several cases the
fractions approach different limits. And since the limits
are undetermined at first sight, § s said ¢o stand for an
undetermined expression.

This is commonly expressed by saying that $ is indeterminate.
The limit, however, can often be determined by simple inspection.

-1 . .
is2asx=1is

169. The fact that the limit of —1

expressed in symbols thus:
z?—1
=2

EXERCISES. LXXII.

Find the limit of each of the following expressions:

x®—1 xb — 32
1. z—ll 2. x_zl
x?—a’ | s 6x2—13x+4 6 .
z—a Co3at+x—2 |
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5 2?4+ 2x—-8 | 6 2 —22"—-52+46|
) x—2 2 ) 22 —4x+4+3 1
2+ 2x—8 x‘+2w’+2w+1]
7. —— . 8. .

z+4 — z+1 1

170. The form %- This form should be interpreted to
mean an expression whose absolute value is infinite.

For in the fraction g’ as z = 0 the absolute value of the
fraction increases without limit. _

Hence, the symbol %; while without meaning by the com-

mon notion of division, is interpreted to mean infinity.

171. The form %- This form should be interpreted to
mean an expression whose absolute value is zero.

. . . e
For as « increases without limit, s 0.

172. The form »-0. This form should be interpreted to
mean an undetermined (indeterminate) expression. (Why ?)

173. The relation of these forms to checks. The student
has been cautioned against substituting any arbitrary values
which make the denominator of a fraction zero. The reason
is now apparent.

E.g.,;%;—ﬁ-:a%- If £ = 1, this reduces to 0 — 0 =
which checks nothing because « has no exact numerical value.
Similarly in the case of
a?—b a-b_ at4bt4a2402—2ab(a+d)
a—b at—b (@ — b?) (a% — b) )
If a =b =1, this reduces to § + § = §, which checks nothing because
¢ has no exact numerical value. But if a = 2 and b = 1, this reduces
to 3 + i- = -139-.

1]

N[ =
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EXERCISES. LXXIII.
1. How should 3 be interpreted ? Why ?
2. Also 2.

[+ ]
3. Find the limit of Z

—20*— b+ 6] .
—4zx+3 3
a b c .
@—b@—oz C—o)¢—a) (c—a)(c—0)
What arbitrary values are excluded in the check ? Why ?

. . a—b ab? at
5. Similarly with 3 +a'—b"+a°—b“

no check to let ¢ = & = any number ?

4. Add

Why is it

6. Similarly with
1 1 1, @=0)'+0—0'+(—a)
a—b+b-—c+c—a+ 2(a—0)(b—c)(c—a)

7. Similarly with

b 4 252 a+ b
(@+86)? a*—08* " (a+0)2(e—0d) a—b
8. Show that .
1 1 - 2a " 2a?

1—a¢ 14a 1+a QA—-a)1l+ad

_ 2a? _ 8ad®
(1+a)(1+a2)—1—a‘
9. Verify the following identity, (1) by actually adding,
(2) by the substitution of arbitrary values.
2y | (@ =)@ =) =) | (@ )@= ) =)
b%? »B*—cd c?(c* — b%)
=+ y? 422 -2 —c2

y2 L @ -—0E- (- E—)_
10. Also b2 + G + A — ) =1
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REVIEW EXERCISES. LXXIV.

T

1. What is the value of — +

a,’(b—az?
b+ a)

2. Show why the arithmetic definition of fraction is not
sufficient for algebra.

c . . a ald afd \ 1 -

3. Simplify the expression 3 Z[E-'-Z(E-’- 1)]

4. Extract the square root of

(@) 92°/4 —3x* +112%/5 —4 /5 + 4 /25>

(b) 1+4/x+20/a*+ 25 /x* +10 /x? + 24 /2° + 16 /2"

(c) 178 /7—20x /Ty +9y* /1623 + 422 /49y*> — 15y / 2.

5. Extract the cube root of

(a) 82 /a® + 482?%/a? + 96z /a + 64.

(b) }dd —%azb—,l,,b“+ga’c+}ab’+§b’c+§c’+§ac’
— } bc® — } abe.

(¢)1—-3x/2+3x*/2 —5a/4+32*/4—325/8+
5x2°/32 — 327 /64 + 32° /256 — 2° /512,

6. Prove that the sum of two quantities, divided by the

sum of their reciprocals, equals the product of the quanti-
ties.

... 7. Show that by substituting 3 (x + 1) /(z — 3) for = in
either of the expressions (3 —4z +2%) /(3 +2%,238+z)/
(3 + %), it becomes identical with the other.

a
b_a—m, when = =

8. Raise % — g to the fourth power. Check.

. 2a® b
9. Raise — 7 Togte the sixth power. Check.



CHAPTER IX.

SIMPLE EQUATIONS INVOLVING ONE UNKNOWN
QUANTITY.

I GENERAL LAWS GOVERNING THE SOLUTION.

174. An equation has already been defined (§ 16) as an
equality which exists only for particular values of certain
letters, called the unknown quantities.

E.g., 22 = 4 exists only for the two valuesz = + 2and z = — 2.

175. An equation is said to be ration'al, irrational, integral,
or fractional, according as the two members, when like terms
are united, are composed of expressions which are rational,
irrational (or partly so), integral, or fractional (or partly
80), respectively, with respect to the unknown quantities.

E.g., % + V5 =0 is a rational integral equation ;

5 + 4 Vz = 0-is an irrational integral equation ;

% + 4 = z is a rational fractional equation ;

1

@12 1= 4 is an irrational fractional equation.
 +

176. A rational integral equation which, when its like
terms are united, contains no term of degree higher than
the first with respect to the unknown quantities, is called
a simple or a linear equation.

Eg.,z —8 =5, 22+ x — 1 =22+ y, are simple or linear equations.

But \’5:5, %: 2, are not as they now stand.
146
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177. Equations which are not simple are, however, often
solved by the principles which govern the solution of simple
equations.

E.g., (x — 1)(z — 2) =0 is an equation of the second degree. (Why")
But it is satisfied only if
z—-1=0,
or if z—2=0,
that is, if z = 1, or if z = 2. Hence, the solution of this equation of
the second degree reduces to the solution of two linear equations.

EXERCISES. LXXV.

1. What is meant by the roots of an equation ? (See § 16.)
What are the two roots of the equation «? = 25 ?

2. What is meant by solving an equa.tlon‘? Solve the
equations.

(@) 3z+5= 0 (b) (x—2)(x—3)=0.
© @+)E+2=0 @ (x+2)(zx—3)=0.
3. What is meant by an equation being satisfied ? What
values of x satisfy these equations ?

® @+HEz—2)=0.
(b) @z—1)(2«+3)=0.
@© z@—1)(@x—2)(x—3)=0.
4. What is meant by the members of an equation ? How
do they differ from the terms ?

5. Which of the following are simple equations with
respect to x ?
@) 24+t —ax2—ax*=4.

(b) 322+ + 7 =224 x(x + 3).
(c)\/a;+4‘=7. @1-%=s.
(e) x*—x+1=0. @) z@+1)=a
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178. Known.and unknown quantities. It is the custom
to represent the unknown quantities in an equation by the
last letters of the alphabet, particularly by z, y, 2.

This custom dates from Descartes, 1637.

179. Quantities whose values are supposed to be known
are generally represented by the first letters of the alphabet,
as by a, b, ¢, - - -.

E.g., in the equation az +b=0, a and b are supposed to be
known. Dividing both members by a, z + b/a = 0, which is satisfied
if  =—b/a. ' .

180. The solution of the simple equation has already
been explained (§ 17). The general case, not involving
fractional coefficients, will be understood from two illustra-
tive problems and the series of questions in the following
exercises.

1. Given the equation 5x —2=3x+8, to find the
value of .

1. 6z—2=3z+8. Given.
2. bz =3z + 10. Adding 2. Ax. 2
3. 2z =10. Subtracting 3 z. Ax. 3
4. z=05. Dividing by 2. Ax. 7
Check. Substitute 5 for z in the original equation, and
26 —-2=15+8.

2. Given the equation 2 ax — a? = ax + 3 a? to find the
value of z. :

1. 2az — a2 = ax + 3a2 Given.

2. 2ax = ax + 4 a2 Adding a2. Ax. 2
3. ax =4a? Subtracting ax. Ax. 2
4. z=4a. Dividing by a. Ax. 7

Check. Substitute 4 a for z in the original equation, and
8a2 —a2=4a%+ 3a2
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181. From these illustrative problems it will be observed
that any term may be transferred from one member of an
equation to the other if its sign is cha.nged This opera-
tion is called transposition.

E.g., if z + 2 = 7, transposing 2 we have
z=7T-2,
or z=25.

It should be remembered, however, that the operation is really one
of subtraction, 2 being taken from each member by ax. 3.

In general, transposition is always an operation of subtraction or
addition.

EXERCISES. LXXVI.

The answers to the following questions will lead to the
understanding of the steps to be taken in the solution of
linear equations with one unknown quantity.

1. In which member do you seek to place the known
quantities, and in which the unknown? Might this be
changed about ? What axioms are involved in this opera-
tion? (See ex. 1, steps 2 and 3, p. 147.)

2. Having done this, what is the next operation ? What
axiom is involved ? (See ex. 1,-step 4, p. 147.)

3. State, then, the two .general steps to be followed in
solving a linear equation with one unknown quantity.

4. How is the work checked ?
Solve the following equations, checking the results.
5. 122 — 28 =8 + 3=. 6. 17T—x =22 —1.
7. 272 —127=11—-19 . 8 2z4+3=4x+45.
9. 42 —34=22 3=
10. x+2+3x+4+4=5x+6.
11. 3z +4x+5x=6x+ T2.
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182. The axioms applied to the solution of equations. While
it is true that the solutions of equations depend upon cer-
tain axioms (§ 22), it is necessary to consider the precise
limitations of these axioms before proceeding further.

183. Two equations are said to be equivalent when all of
the roots of either are roots of the other.

E.g., z+4=2z-5,
and z + 6=2(z — 2), are equivalent equations,
for 2 = 9 is a root and the only root of each.

But z = 2 and 22 = 4 are not equivalent equations, for — 2 is a root
of 22 =4, but not of z = 2.

The necessity for a consideration of the limitations of
the use of the axioms is seen from the following :

Suppose 1. z=2.

Then 2. 2 = 4, by ax. 8.

But a root of equation 2 is not necessarily a root of equation 1,
because while equation 2 i8 true when ‘equation 1 is true, it is not
equivalent to equation 1.

184. Axioms 6 and 7. If equals are multiplied or divided
by equals, the results are equal.

This is true, but ¢ must not be interpreted to mean that
if the two members of an equation are multiplied by equals,
the resulting equation is equivalent to the given one.

E.g., if the two members of the equation
z—1=5
are multiplied by z — 2, we have
E-1)E-2)=56(@-2),
or 22—-8x+12=0,
or z—6)(x—-2)=0,
which has two roots, z =2 and £ = 6. Of these, only = = 6 satisfies

the original equation. Hence, the resulting equation is not equivalent
to the original one; there has been a new root introduced.
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185. A new root which appears in performing the same
operation upon both members of an equation is called an
extraneous root.

EXERCISES. LXXVII

What, if any, extraneous roots are introduced by multi-
plying both members of the following equations as indi-
cated ?

x+2=5 © by z43.
r—a=0 “ x4+ a.
22—-1=0 “« x2—5x+46.

z—2=4x+1 « 3.
r—5=5x—21 «
2t+rz=>01-—-2) « =

3z —4=42-—-3 « 21.
(+a)=@—a)? « xz+1

e B A o o

186. Just as an extraneous root may be introduced by
multiplying both members of an equation by equals, so a
root may also be lost by the same process. )

E.g., it is not permissible to multiply the two members of the
equation
xz—6)(x—-2)=0
by z 1 2 expecting thereby to obtain an. equivalent equation, for we

" should have z—6=0,

which has only a single root, z = 6, whereas the original equation had
two roots, =6 and # =2. Hence, the resulting equation is not
equivalent to the original one; a root has been lost by multiplying
equals by equals. - :
In the same way, while if we multiply both members of the equation
2—z=0
by 1.1 .1 or ! the results will be equal, it is not true
' ze+1"z—-1" ax2-1’ ?

that we shall obtain equivalent equations.
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187. Hence, it appears that multiplying the two members
of an equation £ (x) = 0 by a function of x does not, in general,
give an equivalent equation. The operation may introduce
an extraneous root, or it may suppress a root.

It should also be stated, in connection with extraneous
roots, that no value is considered a root unless it makes the
members identically equal. Hence, a value that makes
both members infinite is not a root, for infinity is not iden-
tically equal to infinity (§ 166).
2 z

E.g., 1 is not a root of = , for it makes each member

infinite. z—1 z-1

EXERCISES. LXXVIII.

‘Would each resulting equation be equivalent to the given
one, by multiplying both members as indicated below ?

1 x
1. ;—-4 byz‘
2 __
2. mw—24=0 €« 3—2.
3. 24342 “ = ‘
3"z &
x? 1
. o= “ 2 —1.
2 __
6. o' —5x+6=0 “1/(x—2).
7. 227 —b=at—1 “1/(@+2)
8 22—32-28=0  «1/@z—7)
2
o & +9z+14 1 (x* + 14 + 49) (x + 7).

a?+ 142 +49 =+7
10. Also by «? + 14z + 49; also by = + 7.
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188. Axioms 8 and 9. Like powers or like roots of equals
are equal.

This is true, but ¢ must not be interpreted to mean that
the equation formed by taking like powers or like roots of the
members of a given equation 18 equivalent to that equation.

E.g., if z=1,
then #2=1,0re?—1=0,0r (+ 1)@z —1)=0;
but this equation has two roots, x =— 1, and =+ 1, and of these,
only ¢ = + 1 satisfies the original equation.
‘Similarly, if . 22 =4,
it is true that r=2;

but this equation is not equivalent to the original oné. It should be
written z =+ 2, and — 2.

Students are liable to make a mistake by omitting the
+ sign in extracting a square root, thus losing a root.
E.g., in the equation

224+2z2+1=4,
extracting the square root, z + 1 = 2,
se=1. X
It should be z+1=+2 and -2,
~z=1and —3.

EXERCISES. LXXIX.

What extraneous roots are introduced by squaring both
members of the following equations ?

1. z=0. 2 z4+3=38. ° 3. x—2=2

4. 22=09. 5. £ —5=0. 6. 4z =—28.
A xT X

7. 22 +1=3. 8. 5—1. 9. §+1—2.

The discussion already given may be set forth in four
theorems. These theorems, with strict proofs, may be
found too abstract for most beginners, and hence they are
given in Appendix V.
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II. SIMPLE INTEGRAL EQUATIONS.

"189. General directions for solution. From the sugges-
tions in exs. 1-4, on p. 148, it appears that, to solve a
simple integral equation, we .

1. Transpose the terms containing the unknown quan-
tities to the first member, changing the signs (axs. 2, 3,

§§ 22, 181);

2. Transpose the terms containing only known quantities
to the second member, changing the signs ;

3. Unite terms;

4. Divide by the coefficient of the unknown quantity ;

5. Check the result by substituting in the original equation.

EXERCISES. LXXX.

Solve the following equations :

1. ax +b=0bz+a. 2. (z—1)(1—x)=— a2t
3. 8z —(7T—2)=29. 4. 3x—-2(2—2)=21
5. @—n)B—a)=a% 6 3@—1)=4(+1).

7.
8.

9.
10.
11.
12.
13.

. 14.
15.
16.

9z — 3 (5 — 6) = — 30.
2@+3)—3(x+2)=0.
z(@*+1)=x(@*—1) +9.
@+5)2=21x+ (4 —2)2
3x+14 —b5(x —3)=4(x + 3).
z@—1)—x(x—2)=2(x~3).
@(1+x+a:’)=a:‘+a:’+3x—17.5.
(a:f.l)(:v+2)=(ac+3)(:c+4)—50.
2@ +1)+3(=x+2)+4(x + 3)=101.
(x—2)—(x—3)"=(z —4)* — (x — 6)
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III. SIMPLE FRACTIONAL EQUATIONS.

190. If the equation contains fractions, these may be
removed by multiplying both members by the lowest com-
mon multiple of the denominators. This is called clearing
the equation of fractions. .

Unless the fractions are in their lowest terms before multiplying by
the lowest common denominator, an extraneous root is liable to be
introduced (§ 187). . -

It is not always advisable, however, to clear the equation of frac-
tions at once, as is seen in the following illustrative problems.

Illustrative problems. 1. An e%ua,tion v;hich should be

x — x

Tt =t

1. The l.c.d. of the fractions is 16 17.

2. Multiplying both members by 15617, by ax. 6,
172 — 51 + 16z + 105 = 15.17 - 8.

3. Subtracting — 51 + 105, and uniting terms,

cleared of fractions at once:

322z = 1986.
4. Dividing by 32,
z = 6275.
Check. 59, | 690 =8, or 3}§ + 445 =8.

156 17

2. An equation which need not be cleared of fractions at

once: x z_3_ 1
’ 3 472
1. Adding # and uniting terms,
jz=4%.
2. Multiplying both members by § (or dividing both members by §),
z =23,

Check. 3 —§—3=1.
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3. An equation which should be cleared of fractions part
3x+7_ 2z—4 x4+ 1
15 Tz—12~ 5

1. Multiplying both members by 15,

at a time:

3:c+7—E(1z_—4)=3z+3. Ax. 6
Tz —12
2. Transposing and uniting terms,
162z — 4)
4=—. . 2, 3
Tz — 12 Axs
3. Dividing by 2 and multiplying by 7z — 12,
14z —24 =152 — 30. Axs. 6, 7
4. Adding 24 — 152,
—z=—6. i Ax. 2
5. Multiplying by — 1,
z =6. Ax. 6

Check. 3% — & =1.

4. An equation in which the fractions may be united to
_z+1 =xz—8 x—9
r—2 xz—1 z—6 =z—T

1. Adding the fractions in each member separately,

advantage before clearing :

2—zc—22+zx+2_22-—162+66 — 224 1562z — 54

-2 @—-1) @—6)(@—1) )

2 _ 2
@-2@-1) @-6@E-17)
3. Dividing ‘by 2 and clearing of fractions,
22— 13z 4+ 42 =22 -3z + 2.

4. .- — 10z = — 40. (Why ?)
5. .- z=4. (Why ?)
4 56 —4 -5
27327 =%

It will be noticed, in step 1, that the bar of a fraction i3 a symbol of
aggregation, and in adding fractions or in clearing of fractions this

must be taken into account.
This example wmay also be treated like the following one if desired.

2.
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5. An equation in which the fractions should be reduced
to mixed expressions before clearing :

520—8 6x—4 x—8 10x—8

z—2 + x—T7  z—6 z—1
1. Reducing to mixed expressions,
2 2 2 2
6 6 — =1- 10 .
+z—2+ z -1 z-—6+ +z—l
2. Subtracting 11 and dividing by 2,
11 1 + 1
z—2 -1 -6 z-1
3. Adding the fractions in each member separately,
—-b _ —b
@-2@-7 @-6@-1)
4. Dividing by — 5, and clearing, ’
2—-Tz+6=22—9z + 14.
5. .. 2z =8. (Why ?)
6. .. z =4 (Why ?)
12 —-20 -4 32
k. —+—=—+— 6§ =2 .
Chec 2-{-_3 _2+3,or6+§ + 10%

EXERCISES. LXXXI.

First determine which seems the best method of solving
each of the following equations; then solve and (except as
the teacher otherwise directs) check the solution by substi-
tuting the roots in the original equation.

ab z—1 x—6
L am+bx—1' 2. z+1 z—3
50 12 49 2 x?
3. ot =1 4. x_3—2a:+15.
x x x . —
5. §+§—13—Z- 6. 0.5+ 0.25x = 1.5.



10.

11.
12.
13.

14.

15.

16.
17.
18.

19.

SIMPLE EQUATIONS.

- U8 8KI8
I
8
|
)
+
QI=

8
Ot
8

|
!

3 7

e ——
a+ x4+ —

a
1 3 4

x

z—3 ' 2—9 z—6

b+=x

b—x V¥ —ax

b+a+

52 4+ 10.5 2z

z4+05 " 2z+4+1

b—a BA—0

157
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21.

8 9 15
z2+3 246 Ta2+2

7x+5_5z—6_8—5@
6 4 12

24, 1=9<1—g +9(1—é :

2¢—5  6xz+3 35
25. 3 + 1 =5z )

26 2z+3_6m+22__3:c+17.
"B 15 ~ 5(1-—=)

1 a—b_ 1 a+b
'a—b+ x —a+b+ x

22.

23.

; x4+ 4a+0d 4x+a+26=
28':t:-l—a+b+ r4+a—25b .
1 2 3 4

x—l—x—2=x—3_x—!

- 29.

24+3 x—6 =x+4 x—i
30'ac+1+ac—71—x+2 z—3
1 _ 1
*+3)(=x+5) (@+9)(=—5

143z 9—1lz_14(2x—3)1
5+7z b—Tx  25—49a*

31.

32.

83, ——— ——— ——4;7——=0.



34.
36.

36.

37.
38.

39.
40.

. 41,

42,

43.

/ a4,

/45.

46.
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2 1+1—-3 +2t2

343334z —1)—1]-1} —1=0.

S5z — +17.

5 4 1/ 3 8 .
52+8 2z+3 5\z+3 =z+2

-5(1-2)-5 )

322 —22+1_(Tz—2)(3= 4)_‘_
5 35 10

a(a+m_a’—-b’_ 26z _ (ba+b)b,
— b a+b b—a  a—b

yr—g+iz—f="+iz— 1 i
138210 4c+9 T@—2) 13z—28

36 18 12 ~ 17Tz—66
a _2(3a+5)+8a+15_3(a+2)__ 1
z+1 z—1 z—2  z—3 r+2

f5 (22 —1)— % (B2 —2)= (2 —12) — & (= +1).
@+8'@+ D)+ @+D)@+1) +@+1)

a+b+1
=(@+0)*+ (e +8) +1.
z+1 1/ =z+1
3 2 2

_w—2_1 _a:+3 +§.
=75 T3\" "2 60

325 +122* + 44 2% + 18522 + 82 + 98
3at+ 182 + 2622 + 16z + 14

_3x*+ 44z 42

T 32+ 6z+2
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IV. IRRATIONAL EQUATIONS SOLVED LIKE SIMPLE
- EQUATIONS.

191. It often happens that irrational equations can be
reduced to equivalent simple equations and thus solved.

Eg., Vz = 2 can be reduced to the equivalent simple equation x = 4.
In applying ax. 8 it is possible, however, that extraneous roots may be
introduced (§ 185). That this is not the case in this instance is seen
by substituting the value of z in the original equation.

192. A question at once arises, however, in dealing with
equations like
Vi 2z 4+14+Vat—2x4+1=4 .
Shall this be reduced to : >
T+ 1)@ =-1)=4,
or shall only the positive roots be considered, as in
r4+14+2—-1=47?

The former would give = * 2, the latter only = = 2.
To answer this question, let Vf(x) and VF(x), for

brevity, represent the square roots of any two functions.

of z, like those already mentioned.
Then it is evident that an irrational equation of the form

Vi@ + VE@)=a

involves four equations, viz.:

L + Vi@ +VF(@)=qa;
2. @ - NF@) = a;
3, @+ VF @ = s
4. —W_W=a:

where Vf(z) and V F(x) represent, in these four equations,
only the positive square roots.
This is also seen in the case of V4 + V0, which equals (+ 2) + (& 3).
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193. Hence, any root which satisfies any one of the four
equations is strictly a root of Vf(z) + VF(z)=a.

By convention, however, only the roots which satisfy equa-
tion 1 are usually considered.

For example, consider the equation Va —2+ Vo —5=1.

1. Ve—6=1-Vz-2. Ax. 3
2. . z2-6=1+z—2—-2Vz 2. Ax. 8
3. . 2Vz —2=4. Ax. 3
4. . z—-2=4. Axs. 7,8
5. . z=0.

. Substituting 6 for z in the given equation,
Va+Vi=1,0r (£2)+(x1)=1

While this is true in the form (+ 2) + (— 1) = 1, the root 6, by the
convention just given, is usually called extraneous.

194. Irrational equations can often be solved by isolating
the radical and then applying ax. 8. For example, consider
the equation Ve—2—-Vz—5=1.

1. We first isolate the radical Vz — 2, by adding Vz =5 to each
member.

2. .. Ve —-2=14Vz—5.

3. Then, by squaring both members,

z—2=14+2—-5+2Vz—b.

4. Then, isdlating the radical vz — 5, by subtracting 1 42z —5
and dividing by 2,

1=Vz -5
6. .. 1=z — 5, whence z = 6.

Check. V6 —-2—V6—-5=1.

195. If the equation contains several irrational expres-
sions, there is no general rule for solution. The student
must use his judgment as to which radical it is best to
isolate first.
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Illustrative problems. 1. Solve the equation
Ve4+1l—4Ve—44+5Vo—-T=0.

1. Isolating the radical 4 Vz — 4 by adding it to both members, we
have : :

Ve+1+6Ve—T=4Vz -4

2. Squaring .
2+1+262z—176+10 V22 — 6z — 7 = 16z — 64.

3. . t—11=—Va2—6z—1. (Why ?)

4. .. 22 222+ 121=22 -6z 1. (Why ?)

5. .. z=8. (Why ?)

Check. V9 —4V44+5vV1=8—-8+5=0.

2. Solve the equation Vz=—2

Squaring, £ =4. But on substituting 4 for z, V4= —2 This
satisfies the equation because Vz is both + 2 and — 2. But since the
positive sign is usually taken with the radical (§ 193), 4 is usually
called an extraneous root and the equation is said to be impossible.
The equation — Vz = — 2 is not open to the same objection for it is
satisfied by z = 4.

EXERCISES. LXXXII.

Solve the following equations, designating such roots as
are usually called extraneous.

1. V2 +2—Vr+9=1.
2. Vze+ Va+z=0a/Va.
3. Ve+19+ /z+3=8.

4 2V —1+4-/4z+5=09.

5. V8z+5—V2zx—1=1.

6. 4Va+2— /a2 +T=5Vx—1.
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V. APPLICATION OF SIMPLE EQUATIONS.

A. ProBrLEMs RELATING TO NUMBERS.

Tlustrative problems. 1. The sum of two numbers is 200,
and their difference is 50. Find the numbers.

1. Let z =the lesser number.
2.. Then z + 50 = the greater number,
3. And z + z + 50 = the sum.
4. But 200 = the sum.
5. . z + = + 650 = 200.
6. . z =175,

and z + 50 = 125.

Check. The sum of 125 and 75 is 200, and their difference is 50.

Always check by substituting in the problem instead of
the equation; because there may have been an error in
forming the equation. The neglect to take this precaution
often leads to wrong results.

2. What number must be added to the two terms of
the fraction 45 in order that the resulting fraction shall
equal §3?

. 1. Let z=the number to be added.
T+ 69
2. Then 23-:-3;=6_7.
3. 67 (7 + z) = 59 (23 + ). (Why ?)
4. - 469 + 67z = 1367 + 69 z.
5. . 8z = 888. (Why ?)
8. .- z =111. (Why ?)

T4+111 118 59 o .
heck. =18 _ 5 hat is, if 111 is added to both
c 234111 184 67 s i 1 1s adde

terms of the fraction 7, the result equals 3.
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EXERCISES. LXXXIII.

1. What number is that which when subtracted from
28 gives the same result as when divided by 28 ?

2. Or, more generally, what number is that which when
subtracted from 7 gives the same result as when divided
" by n? Check by supposing that » = 3, n = 28.

3. What number is that which when multiplied by 16
gives the same result as when added to 16 ?

4. Or, more generally, what number is that which when
multiplied by » gives the same result as when added to
n? Check by supposing that n = 2, n = 16.

5. What number is that which when divided by 12
gives the same result as when added to 12?

6. Generalize ex. 5 and check. (See exs. 2, 4.)

7. What number is that which when subtracted from
25 gives the same result as when multiplied by 25 ?

8. Generalize ex. 7 and check. (See exs. 2, 4, 6.)

9. What number must be added to 3 and 7 so that the
first sum shall be 4 of the second ?

10. Or, more generally, what number must be added to
a and b so that the first sum shall be~% of the second ?
Check by supposing that e =3,6 =7, m =3, n =4.

11. Determine z, knowing that a*—5a*4+4a —=z is
algebraically divisible by 2« + 1.

12. Divide the number 121 into two parts such that the
greater exceeds the less by 73.

13. Or, more generally, divide the number » into two
parts such that the greater exceeds the less by a.
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14. Divide the number 121 into three pérts such that
the first exceeds the second by 85 and the second is four
times the third.

16. Divide the number = into three parts such that the
first exceeds the second by p and the third by ¢. Check by
letting n =10, p =1, ¢ =1.

2a+n 1

a’i{z .;Nhat is the value of = if m=§ when

17. If each of the two indicated factors of the two
unequal produects 52-45 and 66 -37 is diminished by a cer-
tain number, the two products are equal. What is the
number ?

18. Divide- the number 99 into four parts such that if
2 is added to the first, subtracted from the second, and
multiplied by the third, and if the fourth is divided by 2,
the results shall all be equal.

19. Or, more generally, divide the number » into four
parts such that if a is added to the first, subtracted from
the second, and multiplied by the third, and if the fourth
- is divided by @, the results shall all be equal. Check by
letting » =10, a = 1.

20. The square of a certain number is 1188 larger than
that of 6 less than the number. What is the number ?

21. The square of 13 times a certain number, less the
square of 3 more than 12 times the number, equals the
square of 9 less than 5 times the number. What is the
number ?

22. . What number must be added to each term of the
a
b
letting e =3,6=5,¢c=9, d =10.

fraction = that it may equal the fraction Zc? Check by.
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B. ProBrLEMs ReLATING TO CoMMON LIFE.

Illustrative problems. 1. What sum gaining 619 of itself
in a year amounts to $157.50 in 2 yrs.?

1. Let 2 = the number of dollars.

2. Then 63% x = the number of dollars of interest for 1 yr.

3. . x+2-6}%x =157.50. (Why ?)
4. .. 1.124 = = 157.50.

5. . x = 140. * (Why ?)

Check. The interest on $140 for 2 yrs. at 63% is $17.50, and hence
the amount is $157.50.

2. The cost of an article is $17.15, and this is 309, less
than the marked price. What is the marked price ?

1. Let z = the number of dollars of marked i)rice.

2. Then 30%« = the number of dollars of discount.

3. .- % — 80%z = 17.15. ’

4. .. 0.72 = 17.15. (Why ?)
5. .. z = 24.50. (Why ?)

Check. $24.50 less 30% of $24.50 is $17.15.

EXERCISES. LXXXIV.

23. What is that sum which diminished by 939 of itself
equals $1538.50 ?

, 24. How long will it take an investment of $6024 to
amount to $7658.01 at 349, simple interest ?

26. A man invests § of his capital at 49, and the rest
at 349%, and thus receives an annual income of $76. What
is his capital ?

| 26 A man invests one-fourth of his capital at 5%, one-
‘fifth at 49, and the rest at 39, and thus secures an annual
income of $3700. What is his capital ?
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27. A train traveling 30 mi. per hour takes 2§ hrs. longer
to go from Detroit to Chicago than one which goes § faster.
What is the distance from Detroit to Chicago ?

28. A loaned to B a certain sum at 4}9%, and to C a sum
$200 greater at 59 ; from the two together he received
$276 per annum interest. How much did he lend each ?-

29. The interest for 8 yrs. upon a certain principal is
$1914, the rate being 3} for the first year, 339 for the
second, 339, for the third, and so on, increasing }9, each
year. What is the principal ?

30. A bicyclist traveling a miles per hour is followed,
after a start of » mi., by a second bicyclist traveling & mi.
per hour, 6 > a. At these rates, in how many hours after
the second starts will he overtake the first ?

31. A capitalist has § of his money invested in mining
stocks which pay him 139, § in manufacturing which pays
him 99, and the balance in city bonds which pay him 3.
What is his capital, if his total income is $26,640 ?

, %th for

rent, %th for clothing,’ %th for furniture, and saves e dollars.

32. A man spends %,th of his income for food

How much is his income ?

33. Two trains start at the same time from Buffalo and
New York, respectively, 450 mi. apart; the one from New
York travels at the rate of 50 mi. per hour, and the other
0.8 as fast. How far from New York do they meet?

34. Two trains start at the same time from Syracuse,
one going east at the rate of 35 mi. per hour and the
other going west at a rate } greater. How long after start-
ing will they, at these rates, be exactly 100 mi. apart ?
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]L 35. A train runs 75 mi. in a certain time. If it were to
r

un 24 mi. an hour faster, it would run 5 mi. fartherin the
same time. What is the rate of the train ?

i~ 36. A steamer can run 25 mi. an hour in still water. If

it can run 90 mi. with the current in the same time that it
can run 60 mi. against the current, what is the rate of the

~ current ?

-~ 387. The cost of publication of each copy of a certain
illustrated magazine is 64 cts.; it sells to dealers for 6 cts.,

and the amount received for advertisements is 109, of the
amount received for all magazines issued beyond 10,000.
Find the least number of magazines which can be issued
without loss.

38. A steamer and a sailboat go from M to N, the

" former at the rate of 35 mi. in 8 hrs. and the latter at the

rate of 10 mi. in the same time. The sailboat has a start
of 3} mi., but arrives at N 5 hrs. after the steamer. How
long did it take the steamer to go from M to N, and what

is the distance ?

39. Two engines are used for pumping water from dif-

“ ferent shafts of a mine, their combined horse power being

represented by 108. The first engine pumps 22 gals. every
10 secs. from a depth of 310 yds. ; the second pumps 9 gals.
more in the same length of time from a depth of 176 yds.
Required the horse power of each.

. 40. There are two hoisting engines at a coal-pit mouth,
the first capable of raising at the rate of 144 tons every 5
hrs. from a depth of 375 ft., and the second 80 tons every
3 hrs. from a depth of 540 ft. After the first had been
running 1% hrs. the second began, and after 7 hrs. it had
raised from the bottom of the mine 11} tons more than the
first. Required the depth of the mine.
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C. ProBLEMS RELATING TO SCIENCE.

Ilustrative problems. 1. Alcohol is received in the labo-
ratory 0.95 pure. How much water must be added to a
gallon of this alcohol so that the mixture shall be 0.5 pure ?

1. Let z = the number of gallons of water to be added.
. 2. Then 0.5(1 + z) represents the alcohol in the mixture.
3. But 0.95 represents the alcohol in the original gallon.
4. - 0.5(1 + z) = 0.95.
5. .. z=0.9. (Why ?)
Check. Adding 0.9 gal., there are 1.9 gals. of the mixture, 0 5 of
which is the 0.95 gal. of alcohol.

2. Air is composed of 21 volumes of oxygen and 79 vol-
umes of nitrogen. If the oxygen is 1.1026 times as heavy
as air, the nitrogen is what part as heavy as air ?

1. 21-1.1026 + 79z = 100. (Why ?)

2. .. z = 0.9727. (Why ?)

EXERCISES. LXXXV.

41. How much water must be added to a 59 solution of
a certain medicine to reduce it to a 19, solution ?

42. How much pure alcohol must be added to a mixture
of # alcohol so that #; of the mixture shall be pure alcohol ?

43. In midwinter in St. Petersburg the night is 13 hrs.
longer than the day. How many hours of day ? -of night ?
At what time does the sun rise ? set ?

44. How many ounces of silver 700 fine (700 parts pure
silver in 1000 parts of metal) and how many ounces 900
fine must be melted together to make 78 oz. 750 fine ?

45. How many ounces of pure silver must be melted
with 500 oz. of silver 750 fine to make a bar 900 fine ?

7
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46. How many pounds of pure water must be added to
32 Ibs. of sea water containing 169, (by weight) of salt, in
;)7der that the mixture shall contain only 29 of salt ?

47. In a certain composition of metal weighing 37.5 1bs.,
1839 is pure silver. How many pounds of copper must
be melted in so that the composition shall be only 15.625%
pure silver ?

" 48. How many pounds of copper should be melted in
with 94.5 lbs. of an alloy consisting of 3 lbs. of silver to
4 1bs. of copper so that the new alloy shall consist of 7 lbs.
of copper to 2 lbs. of silver ? '

49. What per cent of the water must be evaporated from
a 67 solution of salt (salt water which contains 69, by
weight, of salt) so that the remaining portion of the mix-
ture may be a 129 solution ?

1%50. The planet Venus passes about the sun 13 times to
the earth’s 8. How many months from the time when
Venus is between the earth and the sun to the next time
when it is in the same relative position ?

51. Two bodies start at the same time from two points
243 in. apart, and move towards each other, one at the rate
of 5 in. per second, and the other 2 in. per second faster.
In how many seconds will they be 39 in. apart ?

- 52. From two points d units apart two bodies move
towards each other at the rate of ¢ and b units a second,
respectively.  After how many seconds will they be ¢
units apart for the first time (¢ < d)? together? ¢ units
_apart for the second time ?

53. These bodies (of ex. 52) move, from the two starting
points, away from one another. How far are they apart
after ¢ secs. ? When will they be e units apart (e >d) ?
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64. If sound travels 5450 ft. in 5 secs. when the temper-
ature is 32° and if the velocity increases 1 ft. per second
for every degree that the temperature rises above 32°, how
far does sound travel in 8 secs. when the temperature is’
70°°?

55. Seen from the earth, the moon completes the circuit
of the heavens in 27 das. 7 hrs. 43 mins. 4.68 secs., and the
sun in 365 das. 5 hrs. 48 mins. 47.8 secs., in the same direc-
tion. Required the time from one full moon to the next,
the motions being supposed to be uniform. Answer cor-
rect to 0.0001 da.

56. In Spitzbergen (77° N. lat.) there is a certain part of
the year in which the sun does not rise, remaining con-
stantly below the horizon; there is also an equal length of
time during which it does not set. The period in which it
rises and sets is 14 months longer than the period of con-
tinued night. How many months in each of these three
divisions of the year ?

67. It is shown in physics that if ¢ = the number of
seconds which it takes a pendulum to swing from one state
of rest to the next, through a small angle, then t=7V{/g,
where m=3}, g=32.2, and /=the number of feet of length
of the pendulum. Required the length of a 1-second pen-
dulum; of a 2-seconds pendulum; of a pendulum which
oscillates 56 times in 55 secs.

58. It is proved in physics that if v = the velocity of a
body which started with an initial velocity of a« ft. per
second and has gained in velocit{y S ft. per second for ¢
seconds, then v =a + ft. Suppose v =15, a =0, ¢t = 5.
Find f. (This is one of many exceptions to the custom of
representing known quantities by the first and unknown
quantities by the last letters of the alphabét.)
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D. ProBrLEMs RELATING TO MENSURATION.

The following formulas are proved true in geometry and
are probably already known to the student from his work
in arithmetic. They are inserted for reference.

Symbols.
7 = 3.14159 -.., or nearly 3}.

r = radius. a = area. b = base.
¢ = circumference. h = altitude (height).

Formulas.
Rectangle, a = bh. Triangle, @ = % bh.

The square on the hypotenuse of a right-angled triangle
equals the sum of the squares on the other two sides.

Circle, ¢ =2 7r. a = .

Ilustrative problem. What is the length of the radius of
the circle whose circumference is 62.8318 units ?

1. - c=2mnr,
2. .. 62.8318 = 2 - 3.141569 - .
3 . 10=r

EXERCISES. LXXXVI

59. What is the altitude of a triangle whose area is
7 8q. in. and whose base is 2 in. ?

60. What is the length of the base of a rectangle whose
area is 18 sq. in. and whose altitude is 24 in. ?

61. From the top of a flagstaff a line just reaches the
ground ; if a line a yard long is tied to this (no allowance
- being made for the knot), the whole line when tightly
stretched touches the ground 20 ft. from the staff. Re-
quired the height of the staff.
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62. What is the length of the radius of the circle whose
area contains 25 7 sq. in. ?

63. if the area of a triangle is 3+/3, and the base is
2 V3, required the altitude.

64. What is the length of the diameter of the circle
whose circumference is 1567.0795 in. ?

65. The perimeter of a recté.ngle is 14 in., and the base
is 3339, longer than the altitude. Required the length of
the diagonal.

86. Two rectangles of the same area have the following
dimensions : the first, 15 ft. by 10 ft., and the second,
18 ft. by = ft. Required =z.

67. What is the length of the radius of the circle the
number of square units of whose area equals the number
of linear units of circumference ?

68. The perimeter of a triangle is 75 in.; the second
side is 4 of the first and.the third is § of the first.
Required the length of each side.

69. The area of a triangle is 250 sq. ft., and the altitude
is 259, more than the base. Required the length of the
base. Is the resulting equation linear ?

70. The perimeter of a triangle is 24 in., the first side is
2 in. longer than the second, and the second is 2 in. longer
than the third. Required the length of each side.

71. A dock pile is } above water and } is driven into
the soil; if the water at the dock is 7 ft. deep, what is the
entire length of the pile and how many feet are above
water ? ’



174 ELEMENTS OF ALGEBRA.

E. HisToriCAL PROBLEMS.

Many problems which were of considerable difficulty
prior to the introduction of our present algebraic symbols,
about the opening of the seventeenth century, are now com-
paratively easy. They have considerable historical interest
as showing the state of the science at various periods, and
a few examples are here inserted.

EXERCISES. LXXXVII.

72. If 9 porters drink 12 casks of wine in 8 das., how
many will last 24 porters 30 das.? (Tartaglia, a famous:
Italian algebraist, about 1550 A.p.)

73. Demochares lived 1 of his life as a boy, } as a
young man, } as a man, and 13 years as an old man. How
old was he then? (Metrodorus, 325 A.p.)

74. Of 4 pipes, the first fills a cistern in 1 da., the second
in 2 das., the third in 3 das., and the fourth in 4 das. How
long will it take all running together to fill it ?

76. In the center of a pond 10 ft. square grew a reed
1 ft. above the surface; but when the top was pulled to
the bank it just reached the edge of the surface. How
deep was the water ? (From an old Chinese arithmetic,
Kiu chang, about 2600 ».c.)

76. A horse and a donkey, laden with corn, were walk-
ing together. The horse said to the donkey: « If you gave
me one measure of corn, I should carry twice as much as
you; but if I gave you one we should carry equal burdens.”
Tell me their burdens, O most learned master of geometry.
(Attributed to Euclid, the great writer on geometry at
Alexandria, about 300 =.c.)
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77. Heap, its whole, its seventh, it makes 19. (That is,
what is the number which when increased by its seventh
equals 19? From the mathematical work copied by the
Egyptian Ahmes about 1700 B.c. from a papyrus written
about a thousand years earlier.)

78. Find the number, § of which and 1, multiplied by }
of which and 2, equals the number plus 13. (Mohammed
ben Musa Al-Khowarazmi, the famous Persian mathemati-
cian, 800 A.p. From the title of his book conies the word
Algebra, and from the latter part of his name-— referring
to his birthplace — comes our word Algorism.)

79. In a pond the top of a lotus bud reached % ft. above
the surface, but blown by the wind it just reached the
surface at a point 2 ft. from its upright position. How
deep was the water? (From a mathematical work by
Bhaskara, a Hindu writer of about 1150 A.p. The work
was named the Lilayati in honor of his daughter.)

80. Two anchorites lived at the top of a perpendicular
cliff of height 4, whose base was m# distant from a certain
town. One descended the cliff and walked to the town;
the other flew up a height, z, and then flew directly to
the town. The distance traversed by each was the same.
Find z. (Brahmagupta, a Hindu mathematician, about
640 A.p.)

81. An ancient problem relates that Titus and Caius sat
down to eat, Caius furnishing 7 portions and Titus 8, all
of equal value. Before they began Sempronius entered
and they all ate equally and finished the food. Sempronius
then laid down 30 denarii (pence) and said : “Divide these
equitably between you in payment for my meal” How
much should each receive ?
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F. DiscussioN oF PROBLEMS.

196. Many problems can be suggested which admit of
mathematical solution, but whose practical solutions are
impossible by reason of the physical conditions imposed.

E.g., I can look out of the window 18 distinct times in 4 secs.
What is the rate per second ?

The answer, 4} times per second, while entirely correct from the
mathematical standpoint, is physically impossible ; for while I can look
out 4 times, } cannot look out half of a time.

The problem might easily be changed, however, so as to demand
the time required to look out once, the answer being £ of a second.

A similar absurdity appears in the result of the following
problem: A father is 53 yrs. old and his son 28. After
how many years will the father be ‘twice as old as the son ?

‘We have the equation

53 + = 2(28 + x),
whence r=—3.

We are now met by the necessity of

(1) interpreting the meaning of the answer — 3 years
after this time, or

(2) changing the statement of the problem so as to avoid
an answer which seems meaningless.

It is immaterial which course we take. We may say:

(1) — 3 years after this time shall be understood to mean
3 years before this time, which is entirely in harmony with
our interpretation of negative numbers (§ 29); or

(2) we may change the problem to read: ¢“How many
years ago was the father twice as old as the son?” TFor
this latter question the solution would be

53 —x=2(28 — ).
SJox = 3,
and the answer would be 3 years ago.
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The discussion of results of this nature is well illustrated
in an ancient problem known as the Problem of the Couriers.

A courier, A, travels at the uniform rate of ¢ mi. per
hour from P; after ¢ hrs. a second one, B, starts in pursuit
from P and travels at the uniform rate of & mi. per hour.
After how many hours will B overtake A ?

at ax
] et se—t—
bz

Sorution. 1. Let  =the number of hours required.
2. Then - a(t + z) = bz, the distance B must travel,
_a
=i
Discussion. 1. If none of the quantities is zero, and b>a, the
denominator is positive and .. z is positive.
2. But if b = @, the denominator is zero and .-. z is infinite (§ 170).
I.e., if they are traveling at the same rate B will never overtake A.
3. And if b <a, the denominator is negative and .. z is negative.
I.e., if B is traveling slower than A he will never overtake him. But
if the problem reads, . .- after ¢ hrs. B passes through P in pursuit,’’

hrs.

then the result would mean that they had been together
before reaching P.

4. If either ¢t =0, or @ =0, the numerator is zero and .. =0,
except when b = a, in which case x is undetermined (§ 168). This is
evidently true, for if £ = 0 and they are traveling at the same rate they
will always be together. Or if ¢ =0 and a = b, then neither courier
is traveling at all, and hence they are always together at P.

EXERCISES. LXXXVIIIL

Solve the following and discuss the results according to
the suggestions given above and in the problems.

1. A Dbicyeclist starts out riding 10 mi. per hour, and is
followed after 30 mins. by a second riding 8 mi. per hour.
In what time will the second overtake the first ?
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2. A bicyclist starts from P, riding @ mi. per hour; after
t hrs. another follows and overtakes him in 2 hrs. At what
rate did the second one ride ? Discuss for =% =0.

3. A bicyeclist starts from P, riding ¢ mi. per hour; he
is followed after ¢ hrs. by a second rider traveling ¢ times
as fast. After how many hours will the second overtake
the first? Discuss for (1) ¢>1, t+#0, (2)c=1, t+0,
B)e<l, t+0, 4)ec=1,¢t=0.

4. Two trains going from San Francisco to Chicago, on
the same road, pass through Omaha, the first at 9.30 a.m.,
and the second at 10 A.m. The first train travels at the
rate of 50 mi. per hour, and the second 109, slower. At
what distance from Omaha are they together ?

REVIEW EXERCISES. LXXXIX.
1. Are z =2 and z*=16 equivalent equations? Why ?

2. Show that if x is a factor of every term of an equa-
tion, 0 is a root. FE.9., 2?4+ 22 =5=.

3. Solve the equation
3a—2§a+3[a—2(a—a—2m)]§ =11a.

4. Show that if both members of an equation have a
common linear factor containing the unknown quantity, a
root can be found by equating this factor to zero.

5. What is the fallacy in this argument ?

1. Let ] x=a.
* 2. Then 2? = ax, multiplying by z.
3. Then z? — a? = ax — a?, subtracting a2
4. Then (x + a) (x — a) = a (¢ — a), factoring.
5 . 2a(x — a)=a(x — a), because £+ a =2a.
6. . 2 =1, dividing by e (x — a).



// // CHAPTER X.

SIMPLE EQUATIONS INVOLVING TWO OR MORE
UNKNOWN QUANTITIES.

197. A single linear equation containing two unknown
quantities does not furnish determinate values of these
quantities.

This means a single equation in which the similar terms have been
united. I.e., z + ¥ = 2 + 3 is not included, because the z’s have not
been united.

. E.g,x—y=1issatisfledifr=1andy=0,orifz=2and y =1,
or if x = 3 and ¥ = 2, etc.

198. But two linear equations containing #wo unknown
quantities furnish, in general, determinate values. Simi-
larly, as will be seen, a system of three linear equations
containing ¢4ree unknown quantities, a system of four linear
equations containing four unknown quantities, --- a system
of n linear equations containing » unknown quantities,
furnish, in general, determinate values of all of these
quantities. '

199. Equations all of which can be satisfied by the same
values of the unknown quantities are said to be simultaneous.

Eg.,x+y="1 2 —y =3, are two equations which are satisfied if
z =25 and y = 2. Hence they are simultaneous.

But z + y = 7 and z + y = 8 cannot be satisfied by the same values
of z and y, and hence they are not simultaneous.

The equations z +2y =6, 3z + 6y =9, are simultaneous; but
each being derivable from the other they do not furnish determinate
values.

179
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1. ELIMINATION BY ADDITION OR SUBTRACTION.

200. The solution of two simultaneous equations involv-
ing two unknown quantities is made to depend upon the
solution of a single equation involving but one of the
unknown quantities. The usual process, by addition or
subtraction, is seen in the following solutions:

1. Solve the system of equations

1. 4z + 3y =41
2. 3z —2y=1.
We first seek to give the y’s coefficients having the same absolute

values. This can be done by multiplying both members of the first by
2, and of the second by 3. Then

3. 8z + 6y = 82.

4. 9z —6y =3.

Add equations 3 and 4, member by member, and
5. 17z = 86.

6. .. z=>5.
Substitute this value in equation 1, and

7. 4.5+ 3y =41.

8. .. 3y =21.

9. .. y="1.

Check. Substitute these values in equation 2 (because y was obtained
by substituting in equation 1), and 8.6 —2.7=1.

For brevity we shall hereafter use the expressions, in
solutions, “Multiply 2 by 5,” ete., meaning thereby, “ Multi-
Ply both members of equation 2 by 5,” ete. .

201. When one of the unknown quantities has been made
to disappear (as in passing from steps 3 and 4 to step 5
above) it is said to be eliminated.

In the above solution y was eliminated by addition. The
quantity z may, however, be eliminated first, by subtraction,
as in the following solution.
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2. Solve the system of equations
1. 4z + 3 Y= 41,

2. 3z —2y=1

3. - 12z + 9y = 123, multiplying 1 by 8,

4. and 122 — 8y =4. (Why ?)
5. . 17 y = 119, subtracting 4 from 3.

6. .- y="1. (Why ?)
7. .- 4z + 21 =41. (Why ?)
8. . 4z =20. (Why ?)
9. .. z=>5. (Why ?)

Check. In which equation should these values now be substi-
tuted ? (Why ?)

Other types are illustrated in the two problems fol-
lowing.

3. Solve the system of equations

It is not worth while here to clear of fractions. Simply multiply
both members of the first by 4, and

z _y
X - —==1
3 6 1
4 . gf:s, adding 2 and 3.
5. . z=12. (Why ?)

It is now apparent that  can easily be found and the results checked
in the usual way.

ILe., y=4,
and 12 — 4 =2, ete.
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4. Solve the system of equations
2

1.

3,
z
2

=R

2. -+

RIH Q|

x

These are not linear equations because, when cleared of algebraic
fractions, they are of the second degree. But they can easily be
solved by the methods of linear equations as here suggested.

4 2
3. —+-=2 Wh
i (Why ?)
1 1 .
4. - - = -, subtracting 1 from 3.
z 4
6. .. 4 = z, multiplying by 4 z.

Hence, y is easily found to be 2, and the results check.

EXERCISES. XC.

Solve the following, checking each result by proper sub-
stitution :

1. Tx —3y=3. 2. 3z +b6y=25.
S5z 4+ Ty=25. 4x—3y=26.
3. x4+ 17y =53. 4. bz +2y=1.
8z +y=19. 13z + 8y =11.
5. 6x—5y=12 6. 1.7+ 11y =13.
122 — 11y =27 13z—01y=1.
z_y_T, r, Y
7.3 753 8.5+10 3
T Y _ x Y _
gts=1t ots5=3
3_4__15 2z _y_
9.;—:;— 2 10. 3 2—5.
2.5_31 . 2y _
a:+y_3 2+ 3—20.
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II. ELIMINATION BY SUBSTITUTION AND COMPARISON.

202. After finding the value of one unknown quantity
by addition or subtraction the other is usually, but not
necessarily, found by substitution. It is often more con-
venient to find each by substitution, especially when one
of the coefficients is 1.

This method of elimination by substitution is illustrated
in the following solution :

1. Given z—%y=-25,

2. and 3z + 2y =45.

From equation 1 we have:

3. z=%y—b. (Why ?)
Substitute this value in equation 2, and .

4. 2y — 156 + 2y = 45, fromn which

5. 4y = 60.

6. .. y = 15.

From this z is found, by substitution, to be 5, and the results check.

It is not necessary that the coefficient of = or y should
be 1, although this is the case in which the method is most
frequently employed. Consider, for example, the follow-
ing solution :

1. Given 2z + 5y =154,
2. and 30z -2y =0.
3. From equation 2, z=15v.
4. Substituting, %Y +56y=154,

whence y = 20.
KX ’ z=2.

203. A special form of substitution occurs when the value
of one of the unknown quantities is found in each equation,
and these values are compared. This is called elimination
by comparison.
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The method is illustrated in the following solution :

1. Given T—3y=—25,

2. and 3z + 2y =46.
Solving equations 1 and 2 for z, we have :
3. z=%y -5,
4. and r=156—}y.

Substituting the value of z from step 3 in step 4, or, what is the
same thing, comparing the values of z (by ax. 1), we have: )

5. 3y —5=15—¢%y.

6. .. $y = 20. (Why ?)

7. - y=16. (Why ?)

8. .. - 2 = b, by substituting in step 3.

Check. Substituting in both of the original equations,
5—%.16=—05.

3$.54+2.15=45.

EXERCISES. XCI.

Solve the following by substitution or comparison, check-
ing the results as usual :

1. z+y=1T. 2. x+y=s.
3z + 2y =44. x—y=d.
3. x=y. 4. x+ay=>0
3z 4+ 5y =120. cx+y=d.
~ b. z—y—1=0. 6. ax +by=c.
2¢+y—29=0. a'z + by =c.
7. x4+ y=6912 8. z+2y=30.
r=4444 1+ y. tx—}y=3.
9. =+ 17y = 300. 10. x+ 13y = 264,
11z —y =104 48y — x = 443.

11. 1.543689 x — y = 1.543689.
z — 0.839286 v = 0.839286.
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III. GENERAL DIRECTIONS.

204. The following genera.ll directions will be found of
some value, although the student must use his judgment
in each individual case.

1. If the equations contain symbols of aggregation, decide
whether it is better to remove them at once.

It is usually best to remove them, as in a case like ex. 18, p. 188.
But in a case like ex. 17, p. 188, it is evidently better to add at once.

2. If the equations are in fractional form, decide whether
1t s better to eliminate without cleariny of fractions.
See pp. 181, 182, illustrative problems 3, 4. Much time is often

wasted by clearing of fractions unnecessarily.” This is also seen in
the example on p. 193.

3. If it seems advisable, clear of fractions and reduce
each to the form ax +.by = c.

See illustrative problem 1, p. 186. The same course will naturally
be followed with an example like ex. 8, p. 187.

4. If the coefficient of either unknown quantity is 1, it
is usually advisable to eliminate by substitution.

See illustrative problem 1, p. 186, steps 4, 6, 7. This is, however,
not often the case.

5. Otherwise it is generally best to eliminate by addition
or subtraction.

This is the plan usually employed.

6. If the unknown quantity is in an exponent, follow the
plan suggested in § 205.

It is here assumed that the root of the single equation
derived from the two given equations satisfies those equa-
tions. For the proof of this fact see Appendix VI.
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Illustrative problems,
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1+ 2

1. +3=25.

e Z2i5=Yyo
X X

1. Solve the system of equations

Here it is not best to attempt to eliminate without clear-

ing of fractions.

3.

© ® IS o

1+z2z+3y=56y.
z=2y-—1.
2+ 5x=y+ 2z, from 2.
3z —y =—2, from 5.
68y — 3 — y =— 2, substituting 4 in 6.

52/:1.
1 -3
= - d =
Vi 6,&]1 x 5

Check. Substituting in both given equations,

and
or

2 +3=25, from 1,
R +b=—}+2
$ =%, from 2.

Multiplying both numbers of 1 by ¥,

Ax. 6
(Why ?)
(Why ?)
(Why ?)

(Why ?)
(Why ?)

205. Equations in which the unknown quantities appear
as exponents are called exponential equations.
Exponential equations of the following type are easily
solved by means of simple equations.

2. Solve the system of equations

1 -
2. -
3

4. Similarly,
Solving,

aﬂ: . aSy — ass.
as:e_ at? = a«.

a?= . a3y = a3,
a2z +38v = 82,

2z + 3y =32.
3z +4y =44,
z=4, y=8.

§ 60
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EXERCISES. XCII.

Solve the following, checking as usual:

2x
2
pﬂ

3. g—?é/:c.
m n
z g P

1 =3
%
]
Il
| =
\/“

9. b7 5%V =%,

%% bV = b4
11 24 Ay="TL
y—rlg:c=61.
ct+y—1_
13'w—y+1_a'
y—xz+1
a:—y+1_ab'
rLY_

15. 9+7 6.3
x 83y
3+ 6—39.2

10.

12.

14.

16.

47.16¥ = 2%,
167. 22v = 4°,
4z 481
10y —17
122 + 97
15y — 17
79:-—%y=48
S5y+4x=26.

6.

4.

172 — 13y = 144.
23z + 19y = 890.

187

e b1

z y

2 2
-b—+g-=a—b.

z 'y
a:+y___1_5
z—y 8

95— 344 _ 150
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17. a(z+y)—b(x —y)=2a.
a(@—y)—b(x+y)=20.

\/18. 10[z+9(y—8z+T7)]=6.
5[z +4(y—38z+2)]=1.

a—¢ a

19.

20. =7 — =

21. ===

4y’ + 13y — 1222
4y—3xz—1

y+4x+ 6=

22.

13;—w+ 3x;—8y —oty—bf

11—2 4x4+8y—2
g Tt 93/ =8 —(y — ).

(/ 422+ 22y + 288 — 6%
23. 2z +13— 2y =2x+3y—131.

AR bo—4y=22

3y+2x—16

Ty+13 —-b=z
’ 3

1 +9=2z2—

5y+2:c_3a:-—12+8y= 154+2y—4

x
x+ 3 5 4———37—/
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IV. APPLICATIONS OF SIMULTANEOUS LINEAR EQUA-
TIONS INVOLVING TWO UNKNOWN QUANTITIES.

Illustrative problem. The sum of two numbers is 12
and 7 times the quotient of one divided by the other is 5.
Required the numbers.

1. Let Z, y=the numbers. qge—

2. Then z+y=12, and

3. 7 ; = 6, by the conditions of the problem.

4. .. y =12 — z, from 2. Ax. 3
5. And 7z = b6y, from 3 Ax. 6
6. - T2=60—bz. (Why ?)
7. . 12z =60, and z = 5. (Why ?)
8. . y =17, from step 4.

Check. The sum of 5 and 7 is 12, and 7 times § is 5.

EXERCISES. XCIII.

1. The sum of two numbers is 30 and their difference
is 17. Required the numbers.

2. What is that fraction which equals § when 1 is
added to the numerator, but equals } when 1 is added to
the denominator ?

3. A number of two figures is 5 times the sum of its
digits. If 9 is added to the number, the order of its digits
is reversed. Required the number.

4. A man invests $16,000 for 8 yrs. and $11,000 for
6 yrs., and receives from the two $8090 interest. Had the
first been invested at the same rate as the second and the
second at the same rate as the first, he would have received
$310 more interest in the same times. Required the rate
at which each was invested.
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5. The sum of two numbers is s and their difference
is d. Required the numbers. From the result, deduce a
rule for finding two numbers, given their sum and their
difference.

6. The sum of two capitals, each invested at 59, is
$12,000, and the. sum of 5 yrs. simple interest on the
larger and 4 yrs. simple interest on the smaller is $2800.
Required the capitals.

7. Divide the two numbers 80 and 90 each into two
parts such that the sum of one part of the first and one
part of the second shall equal 100, and the difference of
the other two parts shall equal 30.

8. Two points move around a circle whose circumfer-
ence is 100 ft.; when they move in the same direction they
are together every 20 secs.; when in opposite directions
they meet every 4 secs. Required their rates.

9. The boat A leaves the city C at 6 A.M.; an hour
later the boat B leaves the city D, 80 mi. from C, and
meets A at 11 A.m. They would also meet at 11 a.m. if B
left at 6 A.M. and A 45 mins. later. Required their rates.

10. Of two bars of metal, the first contains 21.8759
pure silver and the second 14.0675%. How much of each
kind must be taken in order that when melted together
the new bar shall weigh 60 oz., and 18.759, shall be pure
silver ?

11 A marksman fires at a target 500 yds. distant and
hears the bullet strike 43 secs. after he fires; an observer
standing 400 yds. from the target and 650 yds. from the
marksman hears the bullet strike 2§ secs. after he hears
the report. Required the velocity of sound and the
velocity of the bullet, each supposed to be uniform.
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12. Find two numbers the sum of whose reciprocals
is 5, and such that the sum of half of the first and one-
third of the second equals twice the product of the two
numbers.

13. Two bodies are 96 yds. apart. If they move
towards each other with uniform (but unequal) rates, they
will meet in 8 secs.; but if they move in the same direc-
tion the swifter overtakes the slower in 48 secs. Required
the rate of each.

14. The sum of two numbers, one of one figure and the
other of five figures, is 15,390 Writing the first number
as the first digit to the left of the second number gives a
number 4 times as large as that which is obtained by writ-
ing it as the last digit to the right. Required the numbers.

15. A reservoir has two contributing canals. If the
first is open 10 mins. and the second 13 mins., 15 cu. yds.
of water flow in; if the first is open 14 mins. and the
second 5 mins., 2.4 cu. yds. more flow in. How many
cubic yards of water per minute are admitted by each ?

16. A silversmith has two silver ingots of different
quality. He melts 13 oz. of the finer kind with 12 oz. of
the other, the resulting ingot being 852 fine (see p. 169,
ex. 44); but if he melts 1.5 oz. of the finer kind with
1 oz. of the other the resulting ingot is 860 fine. Required
the fineness of each original ingot.

17. It is shown in physics that if a body starts with a
velocity of « ft. per second, and if this velocity increases
f ft. per second, then at the end of ¢ secs. the body will
have passed over ut + 4ft%. Suppose f is uniform and
that in,the 11th and 15th secs. the body passes through
24 ft. and 32 ft., respectively, find « and f.
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V. SYSTEMS OF EQUATIONS WITH THREE OR MORE
UNKNOWN QUANTITIES.

206. In general, three linear equations involving three
unknown quantities admit of determinate values of these
quantities. For one of the quantities can be eliminated
from the first and second equations, and the same one from
the first and third, thus leaving two linear equations involv-
ing only two unknown quantities. Similarly for a system
of four linear equations containing four unknown quanti-
ties, and so on.

Ilustrative problems. 1. Solve the following system of
equations :
1. b —3y+42=1T.
2. 22+ Ty—52z=5.
3. 9z—2y—2=38.

We first proceed to eliminate z from 1 and 2.

4. 25z — 156y + 20 z = 85, multiplying 1 by 5.
b. 8z + 28y — 20 z = 20, multiplying 2 by 4.
6. .. 33z + 13y = 106. (Why ?)
We now proceed to eliminate z from 1 and 3.
7. 36z — 8y — 42z = 32, multiplying 3 by 4.
8. .. 41z — 11y =49, from 1 and 7.
We now proceed to eliminate y from 6 and 8.
9. 363z + 143 y = 1155, multiplying 6 by 11.
10. 533z — 143 y = 637, multiplying 8 by 13.
11, .. : 896z = 1792. (Why ?)
12. .. z=2. (Why ?)
13. .. y = 3, substituting in 6.
14. .. z = 4, substituting in 1.
Check. Substitute in 2 and 3. (WLy not in 1?) .

4421 —-20=5,and 18 -6 — 4 = 8.
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2. Solve the following system of equations:

101 1
5fc+7TI/+9_z 1

2 243 4t
x y oz

3. 3542 __ 3
x y oz

We first proceed to eliminate % from 1 and 2.

4
4, — 4 — —_4f 1.
+7y+9z rom
2 3 4
b. —_ —_— —— = f 2.
+9y 9z 9 om
6 8 5 103
bx Ty

We then proceed to eliminate i from 2 and 3.

7. 6 _10 4 _ 76 froms.
T y 2z
8. .. 2—7-= — 9, from 2 and 7.

We then proceed to eliminate 1 from 6 and 8.

9. 822 + 39;9 =721, from 6.
bz Ty
468 399 513
10. - = — —, from 8.
Tz Ty 7 om
1. 4634 _ 4634 4 om 9 and 10.
3%z 7
12, .. 1_5 and x._1
T b
13. .- 1_7 :;\.ndz/—3
Yy 7
1
14. .- -=—9,and z= —
z

193

(Why ?)
(Why ?)

(Why ?)

(Why ?)

(Why ?)

{Why ?)

(Why ?)
(Why ?)
(Why ?)
(Why ?)

(Why ?).
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Check. Substitute in 1 and 2. (Why not in 3?)
141-1=1.
10 + 21 + 36 = 67.

The equations in ex. 2 are not linear in «, y, # (why ?),
and it is unwise to clear of fractions (why ?). The equa-

tions are linear in é, i, %, and it is better to solve as if

these were the unknown quantities.

3. Solve the following system of equations:
L‘g+y—z=&
2. w:|-y+2z=—3.
8..x —2y—2=0.

Frequently systems of equations offer some special solu-
tion, as in this case.

Adding the equations, member by member,

4. 3z =3.

5. .. z=1.

Subtracting 2 from 1, member by member,

6. —3z2=09.

7. - z=-—3. o
8. .. y = 2, substituting in 1.

Check. Substitute in 2 and 3.
1+42—-6=-3.
1-44+3=0.

4. Solve the following system of equations:
1. w+2z4+y—2=4
2. 2wtc+y+2z="T.
3. 3w—z+2y—z=1.
4. dw+3zxz—y+22=13.
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Eliminating 2 from 1 and 2,

5. Sw+3z+2y=11.
Also from 1 and 3,

6. 2w—-3z+y=-38.
Also from 1 and 4,

7. 6w+ Tz+y=21
Eliminating y from 5 and 6,

8. w—9z=-17.

9. Also from6and7, 2w + 6z = 12.
Eliminating w from 8 and 9,

195

10. z=2.

11, .- w= l,'ipbstituting in 8.
12. .. ¥ = 1, substituting in 6.
18. .. z = 2, substituting in 1.

Check. Substitute in 2, 3, and 4. (Why not in 1?)

2+24+14+2=1.
8—-242-2=1.
4+6-1+4=13.

EXERCISES. XCIV.

Solve the following systems of equations:

1.1_ x YR
1'x+y_ . 2.5+7 9—258.
1. 1_ x Yy R
z+z—2' 7-|-9+5—304.
1.1_3 x YL R
y+z_2 9+5+7—-296.
3. Te—3y=1. 4. 5z —6y+42=15.
112—-Tu=1. Te+4y—32=19.
42—-Ty=1. z+y="T
192 —-3u=1, x4+ 62z=39.
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5% x+y=16.
z+x =22
y+ 2z =28
v aa:‘ay+2 — (l,w.

az.az+4 — alo.

a’-a*+3 = al.

. x=21—4y.
z2=9—%ux.
y =64 — T}z .
7( 11. §+ +']—8=
x
12-I-ls-i-—=23
18 9 12 _ o5,
x Yy 2
3y—1
13. 1
S5z 4=z
‘4—+
8z+1_ =z
7 14
14.

OF ALGEBRA.

6/:z:+y—z=132.
x—y+2z=654

8. ax + by + ¢,z = d,.
ag® + byy + ¢z = dy.
agx + bgy + cgz = d.

10. z+y+2z=>5.
3z —b5y+Tz="75.

9r—112+4+10=0.

Tx—2z4+3u=1T.
4dy—2z+v=11.
5y—3x—2u=2_8.

4y—3u+2v=09.
3z + 8u=33.
6z « 9
=% 275
5
y+s
2z y
2173

aéz+8y/+z' a3:+g/+z =a2z+15.

a9x+y+3z . ac::—y+2z — a.';z+15.

15.

2w+ —10y + 0.52 = T7.62.

3w —2x+4+2y+ 32=28.26.
w+3x+ 5y —2 =861
—6w—2x+3y+ 102=2551.
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VI. APPLICATIONS OF SIMULTANEOUS LINEAR EQUA-
TIONS INVOLVING THREE UNKNOWN QUANTITIES.

Illustrative problem. A certain number of three figures
is such that when 198 is added the order of the digits is
reversed ; the sum of the hundreds’ digit and the tens’ digit
is the units’ digit; and the number represented by the two
left-hand digits is 4 times the units’ digit. Required the
number. ’

1. Let a = the hundreds’ digit, b the tens’, ¢ the units’.
2. Then 100a + 10b 4 ¢ = the number.
3. Then, by the first condition,

100a + 10b + ¢ + 198 = 100¢c + 10b + a.
4. By thesecond condition, a +b =c.
By the third condition, 10a + b = 4c.

.. the equations are
a — ¢ = — 2, from step 3.

a+ b — ¢ =0, from step 4.

10a + b — 4¢ = 0, from step 5.
7. Solving, a=10=2, c=3.
.*. the number is 123.

Check by noting that 123 answers all of the conditions of the origi-
nal statement.

o o

EXERCISES. XCV.

1. What three numbers have the peculiarity that the
sum of the reciprocals of the first and second is 4, of the
first and third §, and of the second and third } ?

/2. There is a certain number of six figures, the figure
in units’ place being 4; if this figure is carried over the
other five to occupy the left-hand place, the resulting
number is four times the original one. Required the origi-
nal number.
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- 3. Divide the number 96 into three parts such that the
first divided by the second gives a quotient 2 and a
remainder 3; and the second divided by the third gives
a quotient 4 and a remainder 5.

/% The middle digit of a certain number of three figures
is half the sum of the other two; the number is 48 times
the sum of the digits. Subtracting 198 from the number,
the order of the digits is reversed. Required the number.

\ 5. Of 3 bars of metal, the first contains 750 oz. silver,
624 oz. copper, 187} oz. tin; the second, 62} oz. silver,
750 oz. copper, 187% oz. tin ; and the third no silver, 875 oz.
copper, 125 oz. tin. How many ounces from these bars
must be melted together to form a bar which shall contain
250 oz. silver, 5624 oz. copper, and 1874 oz. tin ?

6. Of three bars of metal, the first contains 750 oz.
silver, 200 oz. copper, 50 oz. tin ; the second, 800 oz. silver,
125 oz. copper, 75 oz. tin; and the third 700 oz. silver,
250 oz. copper, 50 oz. tin. How many ounces from these
bars must be melted together to form a bar which shall
contain 765 oz. silver, 175 oz. copper, and 60 oz. tin ?

- \7- Two bodies, A and B, start at the same time from the
points P and Q, respectively, and move at uniform rates
towards one another, B faster than A; at the end of
18 secs., and again at the end of 30 secs., they are 48 ft.
apart. Had they moved in the same direction, B follow-
ing A, at the end of 40 secs. they would have been 48 ft.
apart. Determine their rates and the distance PQ.

Solutions by determinants. The treatment of simulta-
neous linear equations by determinants is set forth in
Appendix VII, and should be taken at this point if time
allows.



SIMPLE EQUATIONS. 199

REVIEW EXERCISES. XCVL
1. Solve the equation 2.252 — 5 — 0.4z + 2.6 =22 —3.

2. By the Remainder Theorem ascertain whether 10 «®
— 13 2% — 5x + 3 is exactly divisible by 2z — 3.

3. Form an integral linear function of # which shall
equal 37 when ¢ =10, and 4 when z = — 1.

4. Form an integral linear function of = which shall
vanish when z =2, and which shall equal 4 when x = 3.
(If f(x)=mx+n,then Zm +n=0and 3m + n=4.)

5. Show that the following set of equations are not
simultaneous and hence cannot be solved:

62z + 93y = 31.

2z+4+3y=4.
1 1
224 x+4+1 2z +1
. T

6. Simplify 1
z—14+- z+14-
z x

7. Write down by inspection the quotient of
;.-}- +13+4b 2+S+1. Check.
... 1 3 2 2 3
8. Multiply - + 2 = + 7 by 7 + 4 by detached
coefficients. Check.
s‘Divideﬁ———+5y 53’ +3"’4 ¥ b %
+ y? by detached coefficients. Check
10. Solve the equation
2z—1 2z45 2z41 2243
2z+1  2z+7 2z+3 2z+5

=0.
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11. Solve the system .
022+ 0.3y + 0.4z = 25.
03z + 0.7y 4+ 0.6z = 45.
042408y +092z=258.

12. Solve the system
1.1 1

13. Solve the system
3x—5y+42=05.
Te+2y—32=0.2.

4x+3y—2=0.7.

14. Solve the system
z+y+2z=3824.
1.252 + 23.8y + 3.1z = 7.5276.
11z +2y — 0.5z = 1.8505.

15. The sum of three capitals is $111,000. The first is
invested at 49, the second at 449, and the third at 59,
and the total annual interest is $5120. If the first had
been invested at 249, the second at 39, and the third at
49, the total annual interest would have been $3710.
Required the capitals.

16. In each of three reservoirs is a certain quantity of
water. If 20 gals. are drawn from the first into the second,
the second will contain twice as much as the first; but if
30 gals. are drawn from the first into the third, the third
will contain 20 gals. less than 4 times as much as the first;
but if 25 gals. are drawn from the second into the third,
the third will contain 50 gals. less than 3 times the second.
How many gallons does each contain ?



CHAPTER XI.

INDETERMINATE EQUATIONS.

207. A linear equation involving two unknown quantities
can be satisfied by any number of values of those quantities.
E.g., in the equationz + y =5 )
 can equal e —2,-1,0,1,2,3,4,6, 6,---
the corresponding values of ¥ being 7, 6,5,4,3,2,1,0, —1,---.

- But of course this applies only to equations after like terms are
united, and not to an equation like z + y =z + 2.

208. Equations like the above, which can be satisfied by
an unlimited number of values of the unknown quantities
are called indeterminate equations.

209. Since two equations containing three unknown
quantities give rise, by eliminating one of these quantities,
to a single equation containing only two, it follows that,
in general, Two equations, each containing three unknown
quantities, are indeterminate as to all of these quantities.

E.g., the two equations

22+ 3y +2=10,
3z +2y+2=38,
give rise to the single equation

_x+y=21
or to by +2z=14,
or to bz +2=4,

all three of which are indeterminate.
201
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210. Similarly, it is evident that, in general, n linear
equations, each containing n + 1 or more unknown quanti-
ties, are indeterminate.

Roots of an indeterminate equation are often found by
simple inspection.

E.g., to find the roots of 2z — 7y = 5.

Let z=0, 1, 2, 8 4,
then the corresponding values of y are —-7—5, _—7{ —Tl’ -;—, g, .
Similarly, find a set of roots of z + 2y + 82z = 10.
Let z=1;
then z+2y=1;
and if z=0,1,2, 38, .-

the corresponding values of y are }, 3, §, 2, :--.
That is, the equation is satisfied if
z=1,2=0,y=14,
or if z=1,z=1, y =3, ete.
Similarly, we may start with z = 2.

211. Sometimes it is desirable to find the various posétive
integral roots of an indeterminate equation. For practical
purposes these may be found by simple inspection.

E.g., to find the positive integral roots of 5z + 3y = 19. Herez} 3,
because if z > 3, and integral, y is negative.

If z =3, 2,1
then y = a fraction, 3, a fraction.

~. & = 2, y = 3 are the only positive integral roots of the equation.

Graphs and discussion of equations. For those who have
the time, the study of the graphic representation of linear
equations, and the discussion of solutions (Appendix VIII)
are strongly recommended at this point.
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EXERCISES. XCVII.

1. Find three sets of roots of each of the following
equations:

(a) 10z +3y=—4.
(b) bz—2y=1T.
(¢) bz + 23y = 100.

2. Find two entirely different sets of roots of each of
the following equations:

(@) z—3y+42=20.
(b) 224+ 10y — 2=15.
() 3z —Ty+5z=12

3. Find all of the positive integral roots of each of the
following equations:

(a) z+y=>5.
(b) 2z + 10y = 30.
() 3z 4+ 5y =20

4. Find all of the positive integral roots of
z+2y+32=14.

5. Find three sets of roots of the following system of
equations:
z—2y+4z=>5.
20—y +2=1.
6. Find a set of roots of the following system of
equations:
2w+2x+3y+2=20.
Bw+3xz+2y+22z=25.
4w+ bx—y—2=6.



CHAPTER XII.
THE THEORY OF INDICES.

1. THE THREE FUNDAMENTAL LAWS OF EXPONENTS.

212. It has already been proved that, when m and = are
positive integers,

1. a™-a* = a™t". § 60
2. a™:a"= a™ " § 86
3. (@) =a™. §75

It has also been stated (§ 125) that a? means the square

root of a, a* means the cube root of @, and, in general, o
means the nth root of a, but the reason for this symbolism
has not yet been given.

It is now proposed to investigate the meaning of the
negative and the fractional exponents; that is, to find what
meaning should be attached to symbols like 3%, 8*, 16'*,
PN

We shall then proceed to ascertain whether the three
fundamental laws given above are true if m and = are
fractional, negative, or both fractional and negative.

The necessity for this is apparent. We know that a™. o
= g™+, if m and = are positive integers, because a is taken
first m times, and then » times, as a factor, and hence
m + n times in all. But we do not yet know that a}n-ali

1,1 l l l 1
=a*m  Neither do we know that am:gh = am %, nor that

a~™.a~" = a ™" nor that a— ™. a,n—a —mg - ete.

204
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II. THE MEANING OF THE NEGATIVE INTEGRAL
EXPONENT.

213. The primitive idea of power (§'8) was a product of
equal factors. The primitive idea of exponent was the
number which showed how many equal factors were taken

According to this primitive idea the

3d power of « meant aaa, written a?,
2d « “ “ aa, «“ az;
but there was no first power of a, because that is not the

product of any number of a’s, nor any zero power, fractional
power, or negative power.

But since a® means aaa, or a*+a,
and a? « aa, “ a®-+a,
.*. it is reasonable to define o' as - a, % a’-=a,
0 .
and “ “« ¢« “ a “ 1’ “ a-+a,
. 1
13 13 13 “ “ a=l « =y ¢ 1 = a,
a
a2 1 1
{3 {3 113 3 3 a [ _2, € — = a’
a a
) _ 1
and, in general, to define a™ « —)
an

n being a positive integer.

214. For this reason we define

a! to mean a,

0
a “ 1,
a™ “« l,
a’l

n being a positive integer.
But it is evident that a + 0.
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Illustrative problems.
tion.

1.
2.

N

3.

1.

2.

ELEMENTS OF ALGEBRA.

3, by deﬁmtlon, means -21'
1
it 0.125.
ab . -
Express pr with positive exponents.
B eans 2.
a—8h? 1
ad
at
This equals .
=y
Express oy in the integral form.
2y
#yr
=z"ly

The expression z— 1y is as much a fraction as is Y z’
the form of a common fraction.

-

L

|l A <

Simplify (2-%)~*.

275 means ..
@ @Y
2

This equals (22)2 which equals 24.

. Simplify [(2-)~']%

2—1 means .
(*)—l w9
2-1 w3

the expression reduces to 3.

1. Express 2% as a decimal frac-

§ 214

§ 161

§ 160

§ 214
, but it is not in

§ 214

§ 214

§§ 161, 75
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EXERCISES. XCVIII.
Express exs. 1-4 without exponents.

[T e e
CEAEE e ()

Express exs. 5-9 with positive exponents.

5 a % 6 3oy %"
¢ a—3dp—cc—2a ¢ 4a:‘°y—"z—’
a:my» y— n 8 32a8b466 .
C gy a:"'y" R A

9. 2a7% a % (—x)=~

207

Express exs. 10-16 in the form of common fractions, with

positive exponents for the factors.

zby—*%\? R
o (22w oS I
a—m-—ub—n-—m _ _ .
12. - 13. x~%yz~* + gyl
14. [(@ ]~ 15. [ —2)3A —2H)].

16. a~ % %*d% a—mb—"c”.

Simplify exs. 17-20.

2—3 4—6 6—-7 68 a—b c° b—c
1. 3—1'@'7—‘«'% 18 = e
_ -8
19. a? 1+4a 3a+1

(—-a)—2 3+a' —a
20. —a~%.(2—10)2.27%.a2. (b—2)"2

. abebe.
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III. THE MEANING OF THE FRACTIONAL EXPONENT.

215. We have now found the meaning of

1. The positive integral exponent greater than 1, the
primitive meaning of exponent;

2. The unit exponent;

3. The zero exponent;

4. The negative integral exponent.

216. It remains to find the meaning which should attach
to the fractional exponent.
The expression a* means aaaa,
and if the exponent is half as large,
a® or aa is the square root of a*,
and if the exponent is half as large,
a' or a is the square root of a®

.". if an exponent half as large indicates a square root,
«? should mean the square root of a.

Hence, at is detined to mean the square root of «, and,

1
in general, a» is defined to mean the nth root of a.

217. The reason for this is also seen from the fact that

cam.a™---to n factors = «™.

1 1 n

! n
Coan.gr... «  should equal oG or a* or a.

1
» should be defined to mean the nth root of a.

3

»
218. . And since a™ = (a™)", so a? should be defined to be
1
identical with (a?).
p
Hence, we define a to mean the pth power of the qth root
P .4

of a, and a_ 9 to mean the reciprocal of as.
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219. The following identities involving fractional expo-
nents are also true and will now be proved.

111 , 1
1. aibrer... = (abe-- ) Proved in § 220
1 1 m
2. (a™) = (an)™ = an. “ § 221
m  pm :

3. a® = arr. “ § 222
11 R 11

4. (atu)n = qmn = (an)m_ “« § 224

111

1
220. To prove that a®ber ... = (abe--- )

1. Let z = anbn,
11

2. -~ - z» = (anbr)n Ax. 8
11

3. = (a)(b™)» § 76

4. = ab. § 217

' 1 11 1
5. .. z = (ab)?, or amb® = (ab)™. Axs. 9, 1
111 11 1
6. .. anbicn = (ab)nc = (abc)", and so on for any number of factors.

1

=Gy

Similarly,

-8

1 1 m
221. To prove that (a™)» = (a*)" = an.

1 111

1. (aaa - - - to m factors)* = ana”a® - - - to m factors. § 220
1 1
2. Le., (am)m = (am)m,
1 m
3. But (ar)ym=an. Def. § 218

Hence, ¢ may be considered either as the mth power of
the nth root of a (as defined in § 218) or as the nth root
of the mth power of a.
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But § 221 must be understood to apply only t6 the abso-
lute values of the roots.

Eg., =16t =14,
but @hr=(+22=+4.

222. To prove that ar = am,

1. Let z =an.
2. .. ™= am™ Ax, 8 and § 221
3. . P = g™, Ax. 8and § 756
pm
4, .. = a”" Ax. 9 and § 218
m  pm
6. .. ar =a?", Ax, 1

Hence, both terms of a fractional exponent can be multi-
plied or divided by the same number without altering the
value of the expression.

223. The student should understand clearly that § 222 is
true not because the exponent is a fraction. The exponent
is merely an expression in the form of a fraction, and hence
a proof like that of § 150 has no application to this case.
The laws of fractions apply to fractional exponents only as
they are proved to do so.

11 1 11
224. To prove that (am)» = am = (an)™.
11

1. Let z = (am)™
1
2. .~ = am, Ax. 8
3. . . zmn = q. Ax. 8
1
4, .. z = am, Ax. 9
11 RN .
5. .. (am)» = am», and similarly

11 1
n)m = qmn,
(an)m = qmn,
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EXERCISES. XCIX.

Find the absolute value of each of the expressions in
exs. 1-3.

1. 4%, of gl 393 g1b
2. 254 1253, 328 643, 625k
3. 1674 3671 343-% 1331-% 146411
Write in integral form, with negative or fractional expo-
nents, the expressions in exs. 4-9.

1
_a_ a+b a 1

U Ve Vaiva @

5. aVb+b6Va+~Va+b—Va—6.

| _\/54—\/6_'_'_1__1_.

ava bVb Vamt 2t B .
7. V1 +a, \8/1+a’, \6/a“+b‘, 1—:—\7/xTy.

8. a’—:—(\/¢;+\/I_E)+(a‘+:/?¢—2)+\/07.

9. Vo, Va8, V1+8e, Vit (a+ b

Write the following without negative or fractional expo-
nents, using the old form of radical sign (4/) and the
common fraction :

m+1

10. ailﬁ a‘b§ :c: xz?, ::z:*yi 24,

m+n m—n

11. a."% a §b § xi‘y i xm— nym+n

%
12. — & — —gt.at.gb 4 (@ — =12

ad <+ a—
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IV. THE THREE FUNDAMENTAL LAWS FOR FRACTIONAL
AND NEGATIVE EXPONENTS.

225. Laws 1 and 2. To prove that
qm.gh = gm+n
aM:at =am "
if m and n are fractional, negative, or both fractional and
negative.

a. Let them be fractional and positive. We have first to

P r T
prove that a?-a* = a? *.
p T re qr
1. al-a’ = a?®. a® § 222
1 1
2. = (aP‘)'I_’ . (a"”)‘T' § 221
1
3. = (a*- a"');' § 220
1
4. 4 = (ar+ qr);. § 60
ps+qr _p+:
5. =a * , o0r a? * § 221

This shows that a case like Va?-Vaé can be easily
handled by fractional exponents, thus:

R SO FY S T

To see that Va3. Vat equals the 15th root of a??is not so
easy by the help of the old symbols alone.

p r p_r

We have also to prove that a?:a’=a? *.

The proof is evidently identical with that just given,
except that the sign of division replaces that of multipli-
cation in the first member, and the sign of subtraction that
of addition in the second member.
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b. Let one exponent be megative and either integral or
JSractional. We have then to prove that

am.a~"=am"+t™ or g™ ",

1. o= a’“-% §§ 214, 218

2. = a_” § 156, cor. 2
a

3. = g, §§ 86, 225, a

We have also to prove that a™:a=" = am—" = gm+»,
The proof is evidently identical with that just given,

except that the sign of division replaces that of multipli-
cation, and the sign of subtraction that of addition.

c. Let both exponents be negative and either integral or
fractional. We have then to prove that

a™.a"=a" m+ (—n) = q—m—n,

1. a™.g" = lml,. §§ 214, 218
a” a

2. = ,} = § 156
a™a

1

3. =— §§ 60, 225, a
a

4. =qg " §§ 214, 218

As an ﬂlustra,tlon of the value of these laws, consider

1
the case of —
v— Vab
Here we have
atig = ot = g,

or the 20th root of };, a result not so easily reached by the
older notation.
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226. Law 3. To prove that (a™)* = a™, if m and n are
JSractional, negative, or both fractional and negative.

a. Let m be fractional or negative or both,n being a posi-
tive integer.

1. From §§ 60, 225, it follows that

afa’a’ .- = P tItTH

if p, ¢, 7, --- are fractional, negative, or both fractional and
negative.

2. And if p =g =r=... =m, and there are n factors,
then
(am)n = amn’
whether m is positive or negative, integral or fractional,
provided n is a positive integer.

b. Let m and n be positive fractions. We then have to .
pr pr
prove that (a3)s = aw.

pr
1. Let xr = (aq)'.
P
2. Then x* = (a%)" Ax. 8 and § 221
pr
3. =al. § 226, a
4 x® = af", Ax. 8 and § 221
pr
5. .. x = a®. Ax. 9
rpr pr
6 «(a?)* = a®

c. Let n be negative and either integral or fractional, m
being positive. We have then to prove that (a™)~" = a—™=

1. (@™ = (ai)” § 214
2. = —}—m § 75
«

3. =a ™, § 214
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d. Let m be negative and either integral or fractional, n
being positive. We have then to prove that (a~™)" = a~—™",

1. (@ = %) § 214
1

2. == §75

3. = o § 214

e. Let m and n be negative and either integral or frac-
tional. We have then to prove that (a~™)~" = a™.

1 (@) = (al_>_ § 214
2, ' = <1 + a%) =@  §214
3 = o™, § 75

The value of this law may be seen by the solution of a
few problems. Consider for example the case of

()

This expression, thus written in the older style, does not

strike the eye as simple; but since 1 + N may be written
a1, the expression reduces to (af)}, which equals a.
Consider also the more complicated expression

1 1 \*
SR (GRS
x" x?

-Writing this with fractional and negative exponents, we
have

r. a4 _gr- B—q'  ar

—_—— —
z-(x 2 Nr-d=x.0 ¢ ~"-d=g.rl=2"=1

To simplify this without the assistance of negative and
fractional exponents would be more difficult. '
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V. PROBLEMS INVOLVING FRACTIONAL AND NEGATIVE
EXPONENTS.

227. It has now been proved that we can operate with
expressions involving negative or fractional exponents just
as if these exponents were positive integers. Exercises
involving such exponents will now be given. :

The student should see the distinct advantage in using
the fractional exponent instead of the old form of radical
sign, except in cases like the expression of a single root,
and in using the negative exponent, except in cases like the
expression of a simple fraction. This has been shown on
p- 215, but it is worth while to consider the matter further,
that the student may become entirely familiar with the use
of the modern symbols.

E.g., while it is easier to write Va than a‘, and }; than a—1,

1. .
because we are more accustomed to the forms Va and a’ it is much
easier to see that

@H =2t
than to see that the equivalent expression
! =Va.

V1 = Vi

Similarly, it is easier to recognize in
2k p2sh 1 1=0
the quadratic form
’ 2t 422t 4+ 1=0,
than to recognize it in
Va4 2’V y1=0.
It is doubtful if students would readily grasp the significance of
the form a3 4 2 a2 % + a%; but when written af + 2q¥ +abitis
seen to be the square of at + ol
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Ilustrative problems. 1. Remove the parentheses from
(x~'=+ y 1)~ ?% expressing the result with positive expo-
nents.

Ty )"2=2%+ 92 § 226

2. Multiply =24+ 2~'+1 by =2 —2 1+ 1.

Since we can multiply as if the exponents were positive, we have the
following :

Check.
242141 3
=2 —zx141 1
44284 22
-8 —z-2_ -1
=242 1+4+1
T4 + z—2 +1 3

Detached coefficients should be used in practice.

3. Divide ==+ 3z 2+ 32~ '+1by x4 1.

Since we can divide as if the exponents were positive, we have the
following :
Quotient =z—2 4 221 41
=14+ 1jz—34+32-24+ 32141
x—3 + x—2

22-2 + 31

Check. 8 + 2 = 4. 22-2 4 22!
141
=141

Detached coefficients should be used in practice.

4. Solve the equation x ¥ — 832" ¥ 4+ 2=0.

1 2—-3z+2=@—-2)(—1),

2. .. ¥ _3rtypo=@t-2)@t-1)

3. . @t-2)@t-1=0

4 z=¥=2, or =1

5. z-1=28=8, orz-1=13=1.

6 ¢ =8-1=1, or £ =1, and these roots check.
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EXERCISES. C.
Remove the parentheses and simplify in exs. 1-8.
L [(~ a9
2. (x4 y M)
4l — )T
(@@= @ T
@ T [T
LETT @l

7. Cz %+ y—ﬂ)—!,\\/s 64[(z — y)~°]k

[

o

(=]

(-]

8. (xm—n)m+n . xn’ : xm', [(x§y- izé)_%]%.

Express with positive integral or fractional exponents, in
simplest form, exs. 9-14.

3
9. ~Va . 10. VzTyst
11. mV a?mpsm, 12. ™ Vu am'—n,
2 3 m
13. a %~ *Vecd? 14. Vg mp—2me—m,

Perform the multiplications indicated in exs. 15-19.
16. 3a~t 4078 24t axmy. banym.

16. of. oty 3o %%t 40—t . (— =).

17. 5% 2zly?; — a—*btcfd—5. — atb—Sctd—4.

18. (x*+2xy + ) (72— 22y 4+ y2).

19. (&2 + 30~ + 327l + o) - (=0 + 20Ty + ).
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Perform the divisions indicated in exs. 20-30.

LN
P

21. 4abdct: 208t

22. (aft? — alo? + 4 o80%): a¥ot.

23. 4 *+112"2—45 by 227! —3.

24. a7 —a%4+1 by a=?—a™? + 1.

26. (4atyd — 9alyl): (2atyt + 3atyt).

28 278422 % ' -3y by a7 —y L

21. 3a~1:5a78, 2 {[a—ty-? (z‘-'yﬂﬁj—i;—e,

28. 1622+ 62 2+b5x1—6 by 2271 —1.

20. Vaa gtk [(1: Vi2ay-te) . V08 o],

30, = —22"*—42%4+192"2—-312x"1+15 by =3
-T2~ 14 5.
[Al. Find the remainder when x=%—112—234 10 is divided
by 2= — 1.
/32. Alsowhen z=%+ (@ —3)z~2+4 (b —3a)z~! — 3b is

divided by «—! — 3.

33.

Factor 222 —92~2 —82~! 4+ 15, negative expo-

nents being allowed in the factors.

|/ 34,
A

s

Also 63+~ 2— 521 — 2.
Also 6224+ 1722 — 182! — 45.
Also1 —9at — 486 %, fractional exponents being

allowed in the factors.
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V1. IRRATIONAL NUMBERS. SURDS.

228. Rational and irrational algebraic expressions have
already been defined (§ 98). But in algebra it is often
necessary to use numbers which are irrational.

229. A rational number is a number expressible as the
quotient of two integers.

Eg,3=4,0666.---=%, 3.

230. An irrational number is a number which is not
rational. :

Eg., 2or V2, 1 + 24 or V1 +V2, V_1.

231. Irrational numbers which are not even roots of
negative numbers are often called surds, but in elementary
works the term is still further limited to irrational roots of
rational numbers, or to such roots combined with rational
numbers.

E.g., V2 and 3 + V5 are the types here treated, but not V2 + V3
and V— 6.

232. Surds are classified as follows :
1. According to the root index, as

quadratic, or of the second order, as V5,

cubic, «  « third “ o« \3/7,
‘ quartic, or biquadratic, “ \4/5,
quintic, « \6/3,
sextic “ \6/;

~

and in general as

S

n-tic, » being a positive integer, ¢«
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2. Similar or dissimilar (if they have a single term),
according as the surd factors are or are not the same.

E.g., 2\/§, 4\/5, — 7V3 are similar surds.
2V3, 3V2 are dissimilar surds.

Vz. \/§, 53 are similar as to V3 but dissimilar as to V2.
3. Pure or mixed (if they have a single term), according

as they do not or do contain either real factors or dissimilar
surd factors.

E.g., V3isa pure surd but 2V3 and V5. V3 are mixed surds.
4. According to the number of terms in the expression
when simplified, as
monomial surds, as \/§, 3\3/5,
binomial « « V24 VB, 5+ V2,
trinomial « « 2 43 4+ V7,
and, in general, polynomial surds.
5. According to simplicity. A surd is said to be in its
simplest form when all the factors that are perfect roots
are expressed without the root sign, when the index is as

small as possible, and there are no fractions under the
radical sign.

E.g., \/6, Vi, Vi , VaT:c, are not in the simplest form. For
3,
VVi = V3,

=viz2=}Vve

aVa.

The fractional exponent is, in general, more convenient in

all operations involving surds. The two forms of the radical
symbol are used here in ordér that both may be familiar.

ﬁfﬁé
5
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233. Convention as to signs. When we consider an ex-
pression like V4 4 V9 we see that it reduces to (£ 2)+(%3),
and hence to

+243=5,
+2-3=-1,
—243=1,
—2-3=-35.

But for simplicity it is agreed among mathematicians .
that in expressions of this kind ‘only the absolute values of
the roots shall be considered unless the contrary is stated.

Hence, \/Z+\/§=2+3=5, but ;}:\/Zi\/!_)=6, -1, 1, or
— 5. (Compare § 192.)

EXERCISES. CL
1. Classify according to the index of the root:
@ V5. (b)) V7. () at. (@) at.
2. Classify as similar or dissimilar:
(a) 22, 52, 8.2t (b) 25, — V5, V6.

3. Select the surds from the following :

@) V2. (b) 4k, © VV2+3.
4. Classify as pure or mixed :

(@) V4T. (b) 3V5.  (c) abt. (d) V2.3
5. Classify according to the number of terms:

(@) o¥ot. () V2+V5. () 2+ V3 + V4.
6. Find the value of each of these expressions:
(@) VA+V9+VI16. (b) V8+ 25+ V6 + V32.

() V1728 — V144 + V169 — 13.
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234, Reduction of surds. It has been shown (§ 217) that

1
a =(a")» Hence, it follows that a number can be reduced
to the form of a surd of any order.

Eg.,2= Vé, the form of a surd of the 3d order.
Similarly, V2 can be reduced to the form of a surd of the 5th order,
for 2t = (283, or ‘:/2—’, or V 328,
Similarly, ¥4 = V42 = V186, a surd of the 10th order.
Hence, mixed surds can always be reduced to pure surds.
Eg., - Vo= za‘b,
3§/5 = V8 3.5 = sV 135.

235. Since it is desirable to have the number under the
radical sign as small an integer as possible, it is often
necessary to.reduce surds to their simplest forms (§ 232, 5).

Eg., Vi =vVi =+Vi.2 =}Va

V135 = V3.5 = 3V5.

‘JE =‘4L=-‘, 10 =1\/ﬁ
18 32.2 32.22 6

Hence, in the case of fractions under the radical sign we
multiply both terms by the smallest number which will make
the denominator the required power, then extract the indi-
cated root of the demominator, and reduce the remaining
surd as much as possible.

2 r 2
E.g. J:= — .39 ="V39.
g -V '%¥=3

236. Since in multiplying surds it is desirable to have
them of the same order, it is often necessary to reduce
several surds to equivalent surds of the same order, the
order always being as low as possible.

Eg,V2.V3=2t.3V—28.38 — (28. 3% = V8.9 = V72.
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EXERCISES. CII.

1. Reduce the following numbers to the forms of surds
of the orders indicated :

(a) 5, 3d order. (b) 2, 6th order.
() 4, 4th « - @) 10, 5th «

) 11, 24 « (f) 12, 34 «
@ —2,24 « (h) —5,3d «

() 3, b5th « (G) —2, 6th «

2. Reduce the following to pure surds:

(a) 2V3. (b) 3V2. © 22
@ 5-2% () ot () aV2d'

(8 3V2- V3.5 (h) able. -

3. Reduce the following numbers to the formsA of surds
of the orders indicated :

(a) V. abe?, 9th order. (b) v, a® 14th order.

(¢) V5, 30th « @ 3%, 15th «

(e) 5%, 20th « (f) 10%, 15th «
. (g) V4, 8th « (h) V3, 60th «

4. Reduce the following to equivalent surds of the same
order, the order being as low as possible in each case:

@) Va, V. (b) V3, V3, V2.
(¢) 2}, 3%, 4k, @ Vi, V3, V5.
(e) atst, atod. &) V2, V5, V3.

@ T, 9%, 11b. (h) 2, V2, V3, Vi, V5.

!
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237. Addition and subtraction of surds. Irrational expres-
sions may evidently be added and subtracted the same as
rational expressions, by taking advantage of some con-
venient unit.

Check.
E.g., a\/:;+ b{/;:—cv;, 1
— ci/:?+c’\‘/;, 0 *
aVz + Vz+cVz 8
2aVz+@2b—c)Vz +cVz 4

Similarly, required the sum of V24, V54, and — V96. Here we
have, each surd being reduced to its simplest form,

Vo4= V4.6 = 2V

Voi= V9.6 = 3V8

— V96 =—V16.6 = —4V6

Hence, the sum is R

Similarly, required the sum of V8, V27, — 2V2, and V48. Here
we have 2V2 +3V3 —2V2 + 4V3="7V3,

In general, however, the sums of surds can only be indi-

cated as \/§+\s/7, — Va 4+ Vo

EXERCISES. CIII.
Simplify the following :
1. V72 + V108 — V32 — \/243.
V24 + /375 — V648 +10V3.
V' + VaE — Va5 . V.
(a“b)% — az\s/z + a%e.
V147 + V243 — /363 + V432 — /507.
~IT15 + V3645 + V6655 + V8640 — 39 V5.
Vzt {52+ 627 —dz — 84+ Vo' —4a 628 —dw 1.

R
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238. Multiplication of surds. In general, products involv- 1
ing irrational numbers must be indicated, as 3 V2, o

expressed approximately, as 3V2=3.1414...=4.24....

Eg., 3v2.2V3=3V8.2V9 § 236
= 8VT2. § 220

This result, while it still leaves a root to be extracted
and a multiplication to be performed, is more compact than

the indicated product 3 V2.2 V3.

Similarly, to square 3 V2 42 V3. '
(BV2 +2V3p2 = (3V2)2 +2(3V2) 2V3) + 2 V3 § 69, 1
=18 + 12V72 + 4 V0.

It is understood that no results are to be expressed
approximately, in decimal form, unless so stated.

EXERCISES. CIV.

Perform the following multiplications :

1. 3V3-2V3 2. V2.vV3.vV2. V3.
3. (3—5V3)" 4. Va-Va-Va-Va.
5. V7.7 VT. 6. (Va—b+Va+d)2

7. 2v/2.3V3.5v6. 8. V121.~/11.V1464l.
9. (2+8+V3)(4—5V3).
10. 3V2.2V3.4V5.56.
11. VvVa+v5.V~a -
12. (V2 +V3)(2V2Z —5V3).
13. 5~/(a + 20)*-3V(a + 20)*.
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239. Division of surds. To divide an irrational number
by a rational number is equivalent to multiplying by the
reciprocal of the rational number, and hence it may be con-
sidered as a case of multiplication.

a+ Vb

c

Eyg., is merely % (a + \/l-z), or g + % Vb.

240. Division by a surd usually reduces, without much
difficulty, to division by a rational number, as shown in the
following example :

To divide V2 + V3 by V6, we have:

V2 +V3_ Vb(V2 + V3
v5 V6.V
assuming that we can multiply both terms of the fraction by V6 with-

out changing the value, as we can in the case of rational multipliers
(§160). This equals

V10 + V15
b

or %(Vﬁ + \/ﬁ).

b

241, In the preceding example we have reduced the
fraction to an equivalent fraction with a rational denomi-
nator. The process of rendering a quantity rational is
called rationalization.

The advantage of rationalizing the denominator is seen by consid-
ering the computation necessary to find the approximate value of
V24 V3

4
lowed by one addition a.nf/l;_y one division with a long divisor.

But in the case of } (V10 + V15) there are only two square roots
to be extracted, followed by one addition and by one division with a
short divisor.

Here there are three square roots to be extracted, fol-

242. The factor by which an expression is multiplied to
Produce a rational expression is called a rationalizing factor.

E.g., V8 can be rationalized by multiplying it by V2.
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243. Since the problem of division by surds reduces to
that of the rationalization of the divisor, exercises in
rationalization will first be considered.

Illustrative problems. 1. By what expression may alpt
be multiplied in order that the product shall be rational.

1,
1. - - tr=uz,
2. .. alt. a9 —1 = ab.

3. . a'= 3% or a®dl, is a rationalizing factor. There are evi-
dently any number of rationalizing factors, since we may multiply this
one by any rational expression. This is, however, the simplest one.

. 5 4 s qs .

2. By what expression may Vea!. Vd* be multiplied in
order that the product shall be rational ?

1. Vai. Vi = atvt = atvid.

2. Evidently atbb . a! '~ will equal ab?, a rational expression.

3. .. adbl is a rationalizing factor.

3. By what expression may a + Vb be multiplied in
order that the product shall be rational ?

1o E-—yE+y)=22 -9 § 69
2. .- (@ — Vb) (@ + Vb) =a? — b, a rational expression.
3. . a— Vbisa ra.tionalizing factor.

244. And, in general, the conjugate of a binomial quad-
ratic surd (§ 69, 3) is a rationalizing factor of that surd.

4. Find a rationalizing factor for Va+Vo+, e+

Lv@+ty+a)(—zs+y+2)@—y+2)@+y—2)
=2x%? + 2y%2 + 22%% — at — Yt — 24,
2. .. any trinomial quadratic surd of the form Va + Vb + Ve
can be rationalized by multiplying it by the product of the other
three trinomials. E.g., the rationalizing factor for V2 — V3 + V5 is

(V2 + V3 + VB) (= V2 + V3 + V) (V2 + V3 — Vb).
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EXERCISES. CV.

Find the simplest rationalizing factor for each of the
following expressions :

1. aipich 2. V7T —+/6.

3. afslcl. 4. Va—b

5. 2+ V3. 6. Va+b+e.

7. 3—V2. 8. Vb—V2—+3.

9. V5—1. 10. V5 + V7 + VIl
11. el 12. V2 + V7 — Vil
13. V7 + V5. 14. Va+b+Va—o

Illustrative problems in division. 1. Divide V12 by /3.
VE_afE_yy

d = § 220
BoV3
2. Divide V3 by V2.
. _
L Vb V58 _ 658 § 220

B oY V#
4, 53 —_—
2. ={/2 265 = 3 V2000.

3. Divide V2 + V3 by V2 — /3. Thatis, rationalize
VZ+V8,
V2 -3
1. The rationalizing factor for the denominator is evidently
V2 + V3.
o (V2HVE(VE4VE)_242V643_ o
(V2 + V3) (V2 - VB) 2-3

the denominator of the fraction
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EXERCISES. CVI.

Perform the divisions indicated in exs. 1-16.

1. 6:4~/24, 2. 24: (2V7 —6).
3. 3a%*: 2Vab. 4 15V24:3 V24
5. 58: (8 + V35). 6. 12192 : 4 V729,
7. 16Va%e*: 8 Va¥te. 8. 90: (53 — V30).

9. 10V12:218:4 V3.

10. V(@ —20)*: V(a® — 20).

11. (V12 — V18 + V6): V2.

12. (3V5—-8+V2):(3V3—45).

13. (18 —16V5): (4 — V5 —2V3).

14. (TV12 —4V27): (8 V3 4+ 2V?2).

15. 15V8 +10V7 —8V2 +5): — 45
16. (3V3—-2V2):(5V8—-3V2—_2V3).

Rationalize the denominators of the fractions in exs.
17-23. '

by, 145t 18 30
a5t 23t 45t |
T+3V7 0o, 30t —2F |
" 12— 6V11 " 34540t
2 22 2m
21. . . - .
(a® + 8)t + (a — p)} (@ +m)t +(a — m)}
23. 1 ‘

2l —a)f —y( + )t
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%5, Roots of surds. The roots of perfect powers of
swd expressions can often be found by inspection or
extracted in the ordinary way. ’

1 To find the square root of a + 4 Vab + 46.

L V4 2fn+ n2=4 (f+ n),
2 . Va +4Vab+4b= +(Va +2Vh).
Check. VO = £ 8.

2. To find the fifth root of the perfect fifth power
a¥ — 5a%t +10a%% — 10ab + 5alet — ok,

This is readily seen to be a? — bt. § 82
To check, let a=b=1. Then 0°=0. If, however, we wish to
theck the exponents, let @ equal any square and b equal any cube.
Eg,leta=9,b=8. Then
(3 — 2)5 = 243 — 810 + 1080 — 720 + 240 — 32.

3. To find the square root of 7 + 4 V3.

L If this can be brought into the form f2 + 2 fn + 72, the root will
bein the form + (f + n)- § 69

2. We first make the coefficient of the second term 2, because of
the 2 fn, and have 7 + 2 V12.

3. And - 12 is the product of 3 and 4, and 7 is the sum of 3 and
4v we have

Vi44vV3=Vi42V3.4+8=12(Vi+ V3 =42+ Vi)

Check. Square 2 + V3.

4. To find the square root of 8 — 2 V15.
L. Asin ex. 3 we attempt to bring this into the form f2 4 2 fn + n2.
2. -+ 15 is the product of 5 and 3, and 8 is their sum, we have

V8 _2V16= Vb6 -2V16+3 =4 (V5 - V3).

Of these results, only the positive one is usually considered in
Practice.

Check. 'Squa.re V6 — V3.
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EXERCISES. CVII.

1. Extract the square roots of

(a) a —2V2ab+ 26. (b) a—2a®+ a®
() 3a—8V3a +16. (@) at —2atet 4ok

(€) 2a— V200a +25. () * + 222 Vy + Vi
2. Extract the cube roots of
(a) 8—12Va 4 6a —aVa.
(b) @ — 3~Va%?+3b~ab — 1"
(c) x“—-3z“\4/37+3x\/3;—\4/?.
@) «*Vz —32°Vy + 3z vyt —y.
3. Extract the fifth roots of
(@) 1 -5y +10y* —104% + 548 — o2
(b) 32 — 80V + 80 Vyt — 40y Vy + 10 y VP — i~

4. Extract the square roots of

(2) 8 —2VT. (b) 3+ V2.

() 8+ V60. @d 9—4V2.

(e) 10 — V/96. ) §+ 1 V.
(g) 107 + 32. (h) 112 + 40 V3.

5. Extract the square roots of

@) 22+ 2Val — 2 (b) 22 +2Va?r —1.
(c) ab —2aVab — a®
@ z’+w+y+2m'\/x—-|-—3;.




THE THEORY OF INDICES. 233

VII. THE BINOMIAL THEOREM.

246. It has been shown (§ 80, the proof being given in
Appendix I) that if » is a positive integer

n(n _ 1) an—ﬁb?

(a +b)*=a"+ na"~1% +

"’(n_l)(n_z n—38p8 | .
+ 2.3 a* =3 4.

It was proved by Sir Isaac Newton that this is true even
if » is negative or fractional. The proof is, however, too
difficult for the student at this time.

Assuming that the binomial theorem is true whether »
is positive or negative, integral or fractional, it offers a
valuable exercise in the use of negative and fractional
exponents.

E.g., - (a+d)»

=ar+ na"—lb+n(n 1)

- Va+b=(a+b)}
=adtgar o D i FG-DG=2) 4gpy
2 2.3

n(_n-_—_Man—3b3 4.
2.3 ’

ar—2H2+

=at+3aH —ja 2 +fa b8 —
b=(4+1)

'=4i+,}.4—§_%.4—i 478 —...
=2 +} -3 +5tz —e
-1 +(—3)z+—3(_23—1)z2+—3( 321;( =3-2 5, .

=1 -3z +6z2 —1028 R
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EXERCISES. CVIII.
Expand to four terms (1 4 x)~.
Also1/V1—=.
Also VId=Vi6—2=4(1 -t
Find the 5th term in the expansion of (1 — z)~2
Also in the expansion of (1 + z)%.

L

Also in the expansion of (1 — z)i.

7. Find V10 by expanding (9 + 1)* to four terms,
reducing these to decimal fractions and adding.

8. Similarly for V82 = (81 + 1)%.

9. Similarly for V28 = (27 + 1)},
L)

10. Similarly for V37 = (36 + 1)}

REVIEW EXERCISES. CIX.

1. Divide z¥ — 4z¥a? + 6atat — 42bat + ot by at —
2 z¥ab + at.

2. Simplify 3 (a‘} + a:’})2 —4 (a‘} + w’}) (a‘} - x*) + (a* —
2 w‘})’.
a™ + b ar =

3. Simplify prr g gy

4. By inspection find the square root of
(@) 4a~ ¥4 4 4ot
(b) at —2at +5a% —dat +4.
e z+y+2+ 2atyt — 2atat — 2400
d) a*+4 a*y* + 10 ay* +12 a%y +9 g/*.
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5. Simplify (3% 43t +3t 1 1)t —1).

6. Factor 362" — 65x% — 36, fractional exponents being
allowed in the factors.

7. Also 4ot — 4abyt 4 948
8. Solve the equation at +3at +2=0.
9. Alsodzt — 152t 140

10. Also 2% — 54t +6=0.

11. Extract the square root of
a%=1+ } a2 + 2 (at — 8}y (ab) L.

12. Also of 254 — 302y + 49— %% — 242143 +- 1644
13. Extract the cube root of

8 —-92x 54332 *—63224+66x"2—36x"1+8.
14. Also of

82+ 48% +602% — 80z — 902t + 108 2¥ — 27.
15. Also of

8at 4 48abb + 604102 — 80 aBt® — 90 atd* + 108 o35 — 27 2.
16. Also of
B B Il O PO RN PO (N Vo N R LB

17. If a® = b°, show that (%)'ﬁ = ag-l.

o (VB4 VRNt VBV
. smptty (2 72)"+ (5572

19. Simplify

Va—1-Va+1-Vata+1 - Va—a+1. V@ —1)p



CHAPTER XIII
COMPLEX NUMBERS.

I. DEFINITIONS.

247. Certain steps in the growth of the number system
have already been set forth in § 24, but are here repeated
for reasons which will be obvious.

1. The positive integer suffices for the solution of the
" equation  — 3 = 0, since = = 3 satisfies the —_—
equation. We can represent such a number
by a line three units long, as in the annexed figur e, the umt
being of any convenient length.

2. The positive fraction. If, however, we attempt to
solve the equation 3z — 2 = 0, either we must say that
the solution is impossible or we must extend the idea of
number to include the positive fraction. Then x =% sat-
isfies the equation. We can represent such a number by
dividing a line one unit long into three parts and taking
two of them.

3. The surd. If we attempt to solve the equation

— 2 =0, either we must say that the solu-
tion is impossible or we must extend the idea
of number to include the surd. Then V2 $ 1
satisfies the equation. 'We can represent
V2 by the diagonal of a square whose side
is one unit long. This is evident because the square on
the hypotenuse equals the sum of the squares on the two

sides of the right-angled triangle.
236

1
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4. The negative number. If we attempt to solve the
equation x + 2 = 0, either we must say that the solution
is impossible or we must extend the idea of number to
include the negative number. Then x = — 2 satisfies the
equation. We can represent such a number by supposing
the negative sign to denote direction, a direction opposite
to that which we assume for positive numbers.

248. The numbers thus far described in this chapter are
called real numbers.

249. The imaginary number. If we attempt to solve the
equation z? 4+ 1 = 0, either we must say that the solution
is impossible or we must extend the idea of number still
further. .

The equation z24+1=0
leads to 2= — 1,
which leads to r=x V-1,

which cannot be a positive or a negative integer, fraction,
or surd (§ 126).

250. We call an even root of a negative number an
imaginary number.

The term ¢“imaginary ” is unfortunate, since these num-
bers are no more imaginary than are fractions or negative
numbers. We cannot imagine looking out of a window
— 2 times or } of a time any more than V' — 1 times. The
“imaginary ” is merely another step in the number system.
The name is, however, so generally used that it should
continue to designate this new form of number.

To the ancients, negative numbers were as ‘¢ imaginary *’ as Vo1

is tous. It was only when some one drew a picture of V2 (see § 247, 3),
of —1, and later of V — 1, that these were understood.
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251. As with fractions, surds, and negative numbers, it
is' necessary to represent the imaginary graphically by a

line, or in some other

Bf+2¥1 concrete way, in order
to make its nature clear
AJ+03 to the beginner.

In this figure the

X B, A, \A, B, multiplication of + 1
=2 N o £ 42 by — 1 swings the line
- /" 04, through 180° to
A the position 04,
As a matter of custom
Bil—2v=1

this line is supposed to
swing as indicated by the
arrows, opposite to the movement of clogk-hands, counter-clockwise.

Y’

252. That is, since (vV— 1)? means V—1-V—T1or —1,
the multiplication of +1 by V—1.-V—1 swings +1
through 180°; therefore the multiplication of + 1 by
vV — 1 should be regarded as swinging it through half of
this angle, or 90° to the position 04,.

Or we may say that since mulfiplication by vV —1 twice,
carries OA4 through 180°, therefore multiplication by vV —1
once should carry it through 90°. L

Similarly, — 1 multiplied by V—1-+v—1, or — 1 mul-
tiplied by — 1, swings OA, the rest of the way around to
04,; hence, — 1 multiplied by V'—1 should be looked
upon as swinging it to the position 04,

253. Hence, we represent +1vV1 (or +\/—_1), +2 \/:T,
+3vV-1,..., by integers on the perpendicular OY, upward
from O, and —1V—1 (or —\/_—_1), —2v-1, -3vV—1, ...,
by integers on the negative side of this line, i.e., on OY),
downward from O.
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254. Hence, it appears that the symbols + V—1 and
— V=1 are, like + and —, symbols of quality and may be
looked upon as indicating direction.

E.g:, +3 indicates 3 units to the right,
— 3 6 3 113 left’
+ 3 \/_ l 3 ‘“ 'llp,
-3vV-1 ‘e ¢ down.

255. Since Vab = Va-Vb, we say that V-3 shall
equal V3. —1=+vV3.V—1. Hence,

Every imaginary number can be written in the form
a V— 1, where a i3 real, though possibly a surd or a frac-
tion, and V — 1 is the imaginary unit.

E.g., to represent 3 V — 1, we measure 3 units upward from the O
point on the line X’X; to represent — V — 2, we reduce this to the
form — V2. V= 1, then construct a line equal to V2, as in § 247, 3,
and lay this off on OY".

EXERCISES. CX.

Solve the following equations, expressing the results in
the form a vV — 1.

1. 22=-09. 2. 3z22+2=0.

3. bat=—5. 4. 22V2=-3.

5. 22+ 5=0. 6. bx?=—125.

7. 224+4=0. 8. 22 4+20=—25.
Represent graphically the following imaginary numbers :
9. V-4 10. V—5. 1. —5V—1.

12. V32 13. 3V—1. 14. V2.V2

15. —V—16. 16. 2V—09. 17. — V=12



/
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256. The complex number. If we attempt to solve . the
equation #? — 4x + 5 = 0 by factoring, we may write it in

240 ELEMENTS OF ALGEBRA.

the form . 2 —de4d—(—1)=0,
or x—22—-(—1)=0,
oo (—2+V-1)(z—2-V—-1)=0,
whence r=2-—V—1,
or x=2+\/—_1.

Hence, it appears that each root is the algebraic sum of
a real number and an imaginary.
Such a number is said to be complex.

257. As with positive and negative integers, fractions,
surds, and imaginaries, we proceed to make the nature of
the complex number more clear by resorting to a graphic

representation.
If we wish to represent the sum of 2 and — 3, we pass
weemee from zero 2 units to the right
-z and then 3 units to the left,

and we say that the sum is the distance from 0 to the point
where we stop.
The fact that the absolute value of the sum is less than the sum of

the absolute values of the addends is no longer strange to us, because
we have become accustomed to this in dealing with negative numbers.

258. Similarly, to represent the sum of 3 and 2V —1 we
pass from zero 3 units to the
right and then 2 units upward
(for 2V —_1) and we say, as be-
fore, that the sum is the distance
Jrom O to the point where we stop.

The fact that the absolute value of the sum is less than the sum of
the absolute values of the addends is no more strange than it is in the
case of 2 4+ (— 3).
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. EXERCISES. CXI.
Represent graphically the following complex numbers :

1L 44+ V—4. 2. 5—2vV—-1.

3. 5+2V—1 4 —3—V—3

5. —5—2V—1. 6. —3—-3V—1.

. —3+3V3- V-1 8. —+—34V3.V—1.

259. Symbolism of complex numbers. Instead of writing
the symbol vV — 1, the letter ¢ is usually employed.

This letter, standing for imaginary, seems to have been first used in
this sense by Euler in 1777.

Then V—_4=2vV—-1=2i
V=3=i '\/5, ete.
Also, =1,
B=—1.i=—1

#=@r=(-1=1,

$=1.i=74

B=ii=d=—1,
T=—1-i=—j
B=—ii=—()=—(—1)=1;
and, in general, =1,
i+l = g
= _q,
s — g

EXERCISES. CXII.
Represent graphically the following complex numbers :
1 24 34 2. 4424 3. 24 %4
4. #4432 5. *+ 4% 6. i+ 244
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II. OPERATIONS WITH COMPLEX NUMBERS.

260. Complex numbers are subject to all of the laws of
rational numbers and the operations do not materially
differ from those already
familiar to the student.

) Illustrative problems. 1.
BT R " Represent graphically the
\ % sumof 24+ 37and —3 —1.
, Starting from O we lay off
X X 42 (to the right), then 3i
(upward), OA being 2 + 31i.
From A we then lay off — 3

Y’ (to the left), then — i (one
unit downward), reaching B.
Then the sum is OB, the distance from O to the point where we stop.

2. Add 1, —} + $iV3, and — } — 4 V3; then repre-
sent the sum graphically.

Y B
1
& \3; —++iV3
W G —4-14iV3
/) Sum = 0
1 AY Graphically, we lay off 1 from
0 OtoA. From A welay off — §,

then, 3i V3 (i.e., -i-1.73...,
or 0.87 i), reaching B. From B welay off — 4, then — 414 \/2_3, reach-
ing O. Hence, the sum is zero.

3. Multiply 2 + 34 by 3 — 24.

2+ 8i

3—2i

6+91¢ =64+91% = 6491

—4i—62= —4i—6(—1)= 6—41i
12 + 614

Simply multiply by i as if it were any other letter, but in finally
simplifying remember that i2 = — 1.

P
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4. Divide 12+ 5¢ by 3 — 24.
Multiply both terms of the fraction
12 + 51
3—2i
by the conjugate of the denominator. Then
B+29)(12+5i)  26+39i _26+39i
B+2i)@B—2i) 9—_4(—1) 13

=24 3i.

5. Cube — % +41V3.

o (f+ n)B=F3 + 3f%n + 3/n? + n?,

(=3 + iV T .
=—4+3-34iVB43. (= (=) +H(-1) $iV3
=—%+3iV3+3-4iV3 '
=1. .

Hence, —4}+1}i\/§isacube root of 1.

6. Extract the square root of — 16 4 304.

ca+2Vab+b=[+ (Va + VB, § 246
and - — 16 + 304 can be written 9 + 2V — 9. 26 + (— 25),
. —16+30i=9+2V_9.26+ (— 25)
=[+ @+ V-2
=[+ (3 +6%)]%

»o 4 (3 + 51) is the required square root.

The solution is seen to consist simply of making the coefficient of
the square root 2, and then separating — 16 into two parts whose prod-
uct is — 225. (See § 245, 3.)

The addition (including subtraction) of complex numbers
has been represented graphically. It is also possible to
represent the other operations graphically, but the expla-
nation is too difficult for an elementary text-book.

7. Extract the square root of a? 4 2 abs — 0%

This is evidently the same as a2 + 2 abi + (bi)2.
Hence, the square root is + (a + bi).
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EXERCISES. CXIII.

1. Find the following sums and represent each solution
graphically.

(@) 5—Tiand 5+ 74 (b) —2—3i and 2+ 3i.

(© 1, —1, i, and —i. (d) —6+2i and 6 + 2i.

() 1,3+4iV3, —4+4iV3, —1, —4 —}i V3, and
r—3iV3.

2. Multiply
(@) 3—4i by 5424 (b) —3+3iby ++3.0
(¢) 24+9¢ by 9424 (d) —4+2:by —4—20

() —%+4iV3by —3—%iV3.

-3. Divide
(a) 10 by 3 —1. (b) ++227¢ by 7+ <.
(¢) 14+8i by 2+ (d) 14+8¢ by 2+ 3.

() T+61i by 4474 (f) 3+ 67 by 3—6¢.

4. Raise the following to the powers indicated :

(a) i". (b) @+30)L () (—4—4V=3)
@ 4+ (@ G—=5)% F) (—+++V-3)"
©® @+bi)t  (h) @—=TO%h () (~4—3 V=3

5. Extract the square root of

() 3+4i. (b) 5+124. () —5—12i
@) —45—28i  (e) 24—104.  (f) 15 —8.i.
1 V3

® ®+2i (W) —5—5i () —F+i
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REVIEW EXERCISES. CXIV.
1. Simplify the expression

—/[10 + 2V5 4 (V5 + 1)i].
2. Also the expression (V3 + ¢)®/i(— 1 4+ V—3)5.
8. Also the expression
(= H) ===

4. By factoring, solve the equation 822 — 35z + 12 = 0.

5. By the Remainder Theorem determine whether x — ¢
is a factor of x* + 5«2 + 4.

6. Find the times between 4 and 5 o’clock at which the
hands of a watch are at right angles.

7. By factoring, find four different roots of the equation
—1=0. (Two are imaginary.) Check.
8. By substituting the three numbers
1, —4+34iV3, —3—4iV3,
for z, show that they are the roots of the equation #*—1=0.
9. Find to two decimal places the values of z and y in
the following :
= 7.935.

3 5.793

9. 753 7. 539

10. The sum of two numbers is 16, and the sum of their
reciprocals is double the difference of thelr reciprocals.
What are the numbers ?

\



7 CHAPTER XIV.
/

/ QUADRATIC EQUATIONS INVOLVING ONE
UNKNOWN QUANTITY.

I. METHODS OF SOLVING.

261. A quadratic equation (or equation of the second
degree) involving one unknown quantity is an equation
which can be reduced to the form ex?+ bz +¢=0, a, b, ¢
being known quantities and e not being zero.

Eg., 3224+ 2x+3=0,
2?2 4+1=0,
%m’+z\/§=0,

are quadratic equations involving one unknown quantity.
So is the equation

208 4+ 322 — b+ T=2x*+ 1) (x—1),
because it can be reduced to the form ax? 4 bx + ¢ = 0.
Similarly for
2,2
x 27
although, in general, multiplication by any f(x) is liable to
introduce an extraneous root (§ 185).
But 0.-224+42x—-5=0
is not a quadratic equation ; neither is
22+ x4+ 1=uo+ 2%+ 3ux,

nor Ztr+l=(>@=+1)(—1).
246

0,
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The equation 2+ 22 +4=0

is not a quadratic equation in z, but it is one in %, for it
is the same as

=2+ (2*+4=0.
So % + i +2=0
is, without reduction, a quadratic équation in i; or z~1, and
(e+ab)?+2@a+2)+3=0
is a quadratic equation in @ + % and
. 24+x4+3 \/a:’——l—a: =4
is a quadratic equation in Va? + .

262. The quadratic equation az?+ bx 4 ¢ = 0 is said to
be complete when neither & nor ¢ is zero; otherwise to be
incomplete.

The coefficient a cannot be zero, because the equation is to be a quad-
ratic (§ 261).

E.g., 22 + 22 — 3 = 0 is a complete quadratic equation,
but 22—-3=0
and 22 4+ 2z = 0 are incomplete.

Older English works speak of an equation of the form
ax?® 4+ ¢ = 0 as a pure quadratic,
and ax?® + bx + ¢ = 0 as an affected quadratic.

The following are further examples of complete (affected)
quadratic equations:

E-D +@E—0)+5=0,in -1

1 1 4
I PP
Ve Vz ’ ’

ot + 22 41 =0, in 0. /
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263. Solution by factoring. (a) The type
(ax + b) (cx +d)=0.

One of the best methods of solving the ordinary quadratic
equation is by factoring, as already shown in § 123.

Illustrative problems. 1. Solve the equation
ac’+16x+63=0.

1. This reduces to (z + 9) (x + 7) = § 119
2. This is satisfied if either factor is zero, the other rema.mmg finite
(§ 123). Hence, either
2+9=0,0orx+7=0. .
3. Lrx=—=9 orz=-—1.
Check. Substituting these values in the original equation (§ 189),
81 — 144 + 63 = 0,
49 —-112 4+ 63 =0.

- 2. Solve the equation 2x2 = T.

1. This reduces to 2 = £. Ax. 6
2. .- t=+Vi=+}1VI4 Ax. 9, § 235
That is, it is not worth while to factor as in ex. 1. But the problem

can be so solved ; for
z2—-1=0.

L@-V)@E+ V)=
.'.a:=;|;\/g=;b-}\/iz.
Check. Substituting in the original equation,
2.3.14 =1

3. Solve the equation 62> — 7Tz +2 =0.

1. This reduces to (2z — 1) 8z — 2) = 0. § 120
2. - 2z—1=0, 0or 3z—-2=0. § 123
3. .- 2z=1, or 3z =2,

and =14, or z=%§.

Check. 3—3+2=0, §-lt+2=0.
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EXERCISES. CXV.

Solve the equations:

1. 2 =2 ©,! 2. 2=T7 — 6z _.".'

1 1_ N 1_ 1 .
3. ;&—;—6. &, . 4. (E+2—-2w, L, \
5. 922—-1=0. + 6. x2=2(12_5z)' 7’“..-‘-

~7. 4+ 1T2=0. 0,-17. 8 8x—2?—12=0. 6, 2.

9. 2! —22z—15=0.5-3 10. z(10 +2)=—21. -7." 3
11. 2®4+52—14=0.7-". 12. 6224+ T2 4+2=0. - 2, >
13, 2?4+ 1924+ 18=0. " "14. 224262 =—120. -0~

15. 2 — 122 —85=0.17-5 16. (4 — )+ 77T =0. 1,

17. 2*—2224121=0.""- 18. 32*— 10z +3 =0. 3

19. 2® — 242 +143=0.31.20. 102* + 292 =—10. % -,

264. (b) The type (x + a) (x — a)= 0.

It frequently happens that it is-easier to arrange the first
member as the difference of two squares than to factor in
the form suggested on p. 248, especially when the numbers
are such that the linear factors involve surds.

E.g., to solve the equation 22 + 4z + 1 =0. Here 22 4 4z are the
first two terms of a square, 22+ 4z + 4. The equation may be written

22+4x+4-3=0,
or (x+2)2—-3=0,
or @+2+V3)(x+2—V3) =0,

since we are not confined to the domain of rationality (§ 107) in our
solutions.
~z4+24+V3=0,0orz+2—V3=0,

and :c=—2—\/§,ora:=—2+\/§.
Check. 4+4V3+3—-8F4V34+1=0.

.
N

1

-
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265. The addition of an absolute term to two terms so
that the trinomial shall be a square is called completing the
square. ’

E.g., to complete the square of 22 + 2 we must add 1; to complete
the square of 22 + * we must add $.

266. Since (z + a)? = 2? + 2ax + a? it is seen that zhe
quantity which must be added to x?+ 2ax to complete the

a

ax

a!

X2

X

ax

a

square s the square of half the coeffi-
cient of X.

E.g., to complete the square for z3 + 8=z,
add 16, #2 + 8z + 16 being (x + 4)2. To com-
plete the square for z + 6 Vz with respect to
Vz, add 9, © + 8 VZ + 9 being (Vz + 3)2.

From the annexed figure it is readily seen
that if we have 22 4 ax + az, or 22 + 2 az, the

square on z 4 a will be completed by adding a2 in the corner.

EXERCISES. CXVI.

Complete the squares in exs. 1-16.

1.

11.
13.
15.

3
5
7.
9

;]:',‘;-}—:%. 2. §;+2§-

.z — Va. 4. 2’ — 6=

. 2?4 . 6. 224+ 30z
x?— g 8. z?— 34«

. 42?4 8. 10. 2% 4 10 .
z? — 100 x. 12. 2 —2z; 22 4 2.
92?4 362. 14. (x—1)*+4(z—1).
100 22 4+ 20 . 16. (z 4+ a)®*+ 2(z + a).

17. In general, to complete the square for x? + px what
must be added ?



QUADRATIC EQUATIONS. 251

Hlustrative problems. 1. Solve the equation
224+3x+2=0.

1. Completing the square for 22 + 3z, the equation may be written
2+3z+4—%=0.

2. .- @+3)2-%=0.
8. . @+i+H@E+i-DH=0,
or @+2)(x+1)=0.
4. .- z=—2, 0or —1.

Check. 4—6+2=0,1-8+4+2=0.

2. Solve the equation z — Vz + 1 = 0.

1 z=Vz+1 Ax. 3
2. .- 2?2=z+1,ora2—z—1=0. Axs. 8, 8
3. .- @?—z+}—3=0.

4. ~@—3+31Vh)@e—}—}VE)=0.

5. . z=}+}V5.

Check. }+3V6—V3+1Vh
=3+3V6-3Ve+2v5
=31+3vV6-3V1i+2Vvs+5b § 245
=3+3V5—3(1+ VB =0.

EXERCISES. CXVII.

Solve the equations:

1. §+%= : J 2 1/(m+%)=1.
3. 22— 2x=—2. \/4. 24+ 6x+4+2=0.
6. #*—9x—3=0. . ‘/6. 22— 6x+42=0.
7. 22 —Tx+5=0. 8 x’+10z+5=0.{,

7

/9 a24+10x+25=0. /
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267. Solution by making the first member a square. The
method of § 264 may be modified by making the first
member the square of a binomial of the form z + a.

E.g., to solve the equation 2* +42 4+ 1 =0.
The first member would be a square if the 1 were 4, i.e.,
if 3 were added. Hence, adding 3 to both members,

1. 2?2+4x+4=3. Ax. 2
2. .. (& +2)2=3,

3. .. z+2=1V3 Ax. 9
4. .. x=—2+V3.

Check. (—2+ V3P +4(—2+VB)+1
=4F4V3+3-8+4V341=0.

268. It therefore appears thatthe equation x3+px+q=0
can be solved by
1. Subtracting q from each member ; then

2. Completing the square, by adding the square of half
the coefficient of = (§ 266) to each member; and then

3. Extracting the square root of each member and solv-
ing the simple equations which are thus obtained.

The + sign in step 3 of the above solution is placed only
in the second member, because no new values of = would
result if it were placed in both members.

Suppose it were placed in both members. Then

+@+2) =+ V3; thatis

(1) +@ +2)=+ V3, whence z =— 2 + V3,

@ +@+2=-V3, « z=-2-V3

@) —@+2)=+V3, ¢ —z= 2+V3and ..z=—2~V3,

) —@+2)=-V3, “_z= 2-V3 ¢« .z=-24V3

Thatis. = — 2 + V3, as in step 4 of the solution.’
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Illustrative problems. 1. Solve the equation

24+2+1=0.
1. 4r=-—1
2. ?2+r+i=—-1+4+%=-4%
3. T+4=+3iV3
4. . Z:—}i}i\/g.

Check. (—3F4iVa)+(—4+4iV3)= -1

253

Ax. 3
Ax. 3
Ax. 9
Ax. 3

2. Solve the equation #? + 3z + Va2 + 3z + 7 — 23 =0.

1. This may be written in quadratic form, thus,
224+ 32+ 7+ Va2 +32+7—-30=0,

aquadratic in Va2 + 8z + 7. This quantity may now be represented.

by y, for simplicity, and

2. ¥2+y—30=0.

3 .- 24+ y+ 3 =13

4 .- Coyti=Ek

5 - y=—}+4 =5, or —6.
6. \/;7:2_-}-3:4:_4-7=6, or — 6.

This evidently gives rise to two quadratic equations in z. First

congider the case of y = 5.

7. Then 22 4+ 3z + 7= 26.
8. .. 2243z —-18=0.
9. .- (x+6)(x—38)=0, and = — 6, or 3,

results which easily check.
Ify= — 6, we have

10. 2?2+ 3z+ 7 =36,
11. whence 2?2+ 3% + § =135,
12 .- t+3=+}Vbandz=—§+ } V5.

This pair of results checks, provided we remember that

Va2 4+ 32z +T7=56 or — 6.

For, substituting 5 and — 6 for Va2 + 3x + 7, we have

18+56—-23=0,
29 -6 —23=0.



254

3
1
2.
3.
4.
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. Solve the equation 22? — 2x = b.

2—z=4% Ax. 7
22—z +}=23 Ax. 2
z—} =43 VIl ’ Ax. 9
z=3(1+ V1I). Ax. 2

Check. (8 + V11) — (1 + V11) = 5.

It is often possible, in cases of this kind, to avoid fractions by the

exercise of a little forethought.
1.
2. ..
8. .
4. .-
6. ..

422 —42 =10.

This equation may be written

(2)? —2(2z) + 1 = 11, a quadratic in 2.
2z—1=+ VIL
2z =14+ V11.
z=3(1 + V11).

EXERCISES. CXVIII.

Solve the equations:

1.
3.
5.
7.
9.
11.

Vi,

2?—gx=1 2
z? + 82 = 65. 4.
24+ 0.9z = 8.5. 6
3¢a? —4x =96 8
x4+ 6x 4 25 =0. 10.
42’ —5x+62=0. 12.

. 6x4+40 —22=0.

'+ g — 3R =0,

. 2.52% — 43z = 304,
. 2?4132z = — 1331.

Tx?— bx — 150 =0.
4.05 2% — 7.2 x = 1476.

13. (x+a)+2(x+a)+1=0.

2
14. <x+£) —3<x+al—c>+2=o,

15. (x_’+2a:)’—3(x’+2z)+2=0.
16. (42— 1)°+4@*+2—1)+4=0.
*+4) (122 —-5)+ 44 =(T2*>—10)8 — 12.75z.
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269. Solution by formula. Every quadraticc equation can
be reduced to the form ax® + bz + - =0 (§ 261).

This equation can be solved by any of the methods already
suggested and-it will be found that

2=—2—b-:|:?1—\/b’ 4ae.

Hence, the roots of any quadratic equation which has
been reduced to the form ax® + bz + ¢ = 0 can be written
down at sight.

E.g., the roots of

6z2 —13 6=0 _t - 13 4.6-6
z+ are 26i \’( ) —

=4 £ 4 V169 — 144
=fitf=tori
Similarly, the roots of
2 3 1 -3 1
L _%41=0are-=—_S. —V(—32—%-2-1
z2 + mz 2.272.2 ( )
=4+31VvV9-8
=%+t=1ori
~.z=1lor2

270. In particular, the roots of
z* + px + ¢ =0 are :t=-—-g':|:«}\/p’—4q.
Eg.,therootsof 22 + z+1=0are — 4+ $} V1 — 4
=—34+3iV3
27L. The formulas

x=——b-d:i\/b’—4ac,
2a” 2a

x=—g5 :i: +Vpi—14q,
are so important that 'tkey should be memorized and freely

used in the solution of such quadratic equations as are not
readily solved by factoring.
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-

EXERCISES. CXIX.

Write out, at sight, the roots of equations 1-30, and then
simplify the results.

1. 22—-3x4+1=0. 2. 224+ 6x+2=0.
3. 2*+4x—4=0. 4. 22— 5x2+1=0.
5. 224+ 22 +2=0. 6. 2+ 2x—24=0.
7. 22 —2x2+4+3=0. 8. z?—5xz—36=0.
9

24+ 22—-3=0. 10. 224+ Tx—44=0.
11. 22 —5xr —36=0. 12. 224+ 10x+5=0.
13. 22+ T7x+10=0. 14. 22 —42—-12=0.
15. 1222 4+ax—6=0. 16. z2+4x—45=0.
17. 2 —Tx +12=0. 18, 2?2 —3x —28 =0.
19. 322 —-22+1=0. 20. 22 —16x + 60 = 0.
21. 4224524+ 6=0. 22. 224102+ 21=0.
23. 22*4+3zx+4+1=0. 24. 62?2 —37Tx+6=0.
25. 2°—21xz—-1=0. 26. 62+ 5z — 56 =0.

27. 2?—112z — 60 = 0. 28. 2+ 0.6x+4 03=0.
29. 22 —10x + 16 = 0. 30. 2+ 0.7+ 0.1 =0.

31. What are the roots of the equation az? 4 bz 4 ¢ =0,
if*=4ac?

32. Show that if 42 — 4 ac is negative the two roots are
complex.

33. Show that if 42 — 4 ac is positive the two roots are
real.

34. Show that if 4 — 4 ac is a perfect square the two
roots are rational.
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272. Summary of methods of solving a quadratic equa-
tion. From the preceding discussion it appears that a
quadratic equation is solved by forming from it two simple
equations whose roots are those of the quadratic.

E.g., to solve the quadratic equation
224+ Tx+4+12=0,
we may write it in the form
@+3)@+9H=0,
whence # +3 =0, or x +4 =0, two simple equations
whose roots, — 3, — 4, are those of the quadratic.

Or we may write it in the form

2+ T2+ (3~ 3)*=0,
whence  [(=+ 5+ 31[(=+5) —41=0,
and therefore z+5+3=0,
or z+5F—3=0,

two simple equations whose roots, — 3, — 4, are those of the
quadratic.

Or we may write it in the form
24 Tz + 3) = ()%
whence z+5=14
or r+F=—1%

two simple equations whose roots, — 3, — 4, are those of the
quadratic.

Or we may simply write out the results from a formula
obtained by one of the above methods.

For expressions easily factored the first method is the
best; otherwise it is usually better to use the formula at

once. ff

s
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Ilustrative problems. 1. Solve the equation
) z+3_ac+1_3:c——5_3a:—»3.
z+5 x+3 3z—7 3z-—5

The denominators are such as to suggest adding the fractions in

each member separately before clearing of fractions. Then
4 _ 4

@+3)@+5 (Bz—5@Bz—17)
2. Multiplying by 3 (z + 3)(x + 6) (8 — 5) 8z —T),

1.

Bz —586)Bxz—-T)=(x+3)@x+5). Ax. 6
3 . 822 — 44z +20=0, . (Why ?)
or ’ 222 - 11z +5=0.

4. This is easily factored (§ 263), and
@—-56)(@2z—-1)=0.

5. .. z=5or +.

Check. Forz =05, 5 =+4; forz =14, $§ =1$.

1 1
—2+z—3_a

Multiplying by (z — 1) (x — 2) (x — 3) we have

1. 3z2— 122+ 11=0.

2. This is not so easily factored as in the first problem; hence,
applying the formula (§ 271), we have

2. Solve the equation 1 +
r—1 =z

|

— 12 1 Vichr—i3 1

=3 —V(=12)2-4.3.1

z 2‘3:|;2.3 ( ) 3-11
1 1 1

Check.

12:v3 238 12313
_1F3V3 -1F3V3
B S =
=3§F4V3+V3—3FiV3=o0.

3. Solve the equation z? 4+ 2z = 0.

This factors into z (z + 2) =0, whence z = 0 or — 2.
And, in general, if z is a factor of every term of an equation, =0
is one root.
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EXERCISES. CXX.

Solve the following :

1.

10.

11
1 12,

13.

"22—1 z—-1

3T 2T 15T 69" T115”

45 —z) 5B +x) " 25— 105

1 2 13
z+1 1—2 4z—1
3 2 1

3—w—2—x=1—3x.

2x+1_:c+1_ac—6.
z+1 z2+2 -7

4z z+1_xz+4+5
2¢—1 =z z+4
| N S S
a—x a—2x a—5zx
3 6 1

+x+1_
2, = 16 34, 16 5

fpa_ 22 _9% a =,
x +6

~2=0

xr—2a x—3b a*—6ad
Za T30 6w "%

. V2 —z4+V34+z— Vil +2=0.

A+2at—@B+at+2—a)t=0.
6452 3r—4  5—-Tx 89 _

7.

0.

AV

'
e
X v

4(2—\/5)_x/5—x+ 3a? )
Ve+z 24+ Vo 4(Vz+a)@+ Va)

4(2+\/5)=\/5+m+ 32? _
Ve—x 2—+Vz 4(Vo—z)©2— Va)
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II. DISCUSSION OF THE ROOTS.

273. The number of roots. The roots of the equation
ax? + bx 4+ ¢ = 0 have been shown to be

:t L Vb? — 4 ac.
2 a

This shows that every quadratic equation has two roots.

It is also true that no quadratic equation has more than
two different roots.

For, suppose the equation x? + pz + ¢ = 0 has three dif-
ferent roots, », 75, 7. Then by substituting these for z
we have

1. rl+pr+9=0,

2. ry’ +pra+ 9 =0,

3. rs2 + prs + ¢ = 0, whence

4. rd—rlt+p(ry—ry)=0.

Dividing by », — 75, which by hypothesis + 0,

5. rmn+r+p=0.

Similarly, taking equations 2 and 3,

6. rs+rs+p =0,

7. .. 7y — rg = 0, by subtracting. Ax.3

But this is impossible because, by hypothesis, » # 7
Hence, it is impossible that the equation shall have three
different roots, and so for any greater number.

It must be observed, however, that a quadratic equation
need not have two different roots. TFor example, the equa-

tion 22—4x4+4=0
reduces to x—2)(x—2)=0,

and the roots are 2 and 2; that is, the equation has two
roots, but they are equal.
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274. The nature of the roots. The expression 4? — 4 ac is
called the discriminant of the quadratic equation’
ax?+bx 4+ c=0.
In this discussion a, b, ¢ are supposed to be real.

If the discriminant is positive, the two roots are real and
unequal.

b 1 . .
For then — %a + 2a Vb’—'—4ac can involve no imaginary.

In particular, if the discriminant is a perfect square, the
two roots are rational.

For then V5* — 4 ac is rational.
If the discm'minant is zero, the two roots are equal.

Forthen—z—:i: Vb-—-4ac=———:|:0

In this case, — % is called a double root.

If the discriminant is ﬁegative, the two roots are complezx.

b 1
For then — %a + %4 V6? — 4 ac contains the imaginary
Vo2 — 4 ac.

Since the two complex roots enter together the instant
that 4° becomes less than 4 ac, we see that complex roots_
enter in pairs.

For example, in the equation

22 +3z—-T7=0
the roots are real, since 3% — 4 (— 7) is positive.

In 202 4+2—-3=0
the roots are rational, since 1 — (— 24) is a perfect square.
In 322 4+224+1=0

the roots are complex, since 4 — 12 is negative.
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275. Smce the equation am’-}-bac +¢=0 has for its

roots——+-—- b—4acand-———\/b"’ 4 ac, it
2a 2a 2a

follows that
[z— (—E +— Vb — 4a,c):]
I:a: - (— s _ —1; Vo? —.4ac>:| =0.

Hence, any quadratic function of x can be factored

1. In the domain of rationality,

if the discriminant is square ;
2. In the domain of reality,

if the discriminant is positive ;
3. In the domain of complex numbers,

if the discriminant is negative ;

4. Into two equal factors,”
if the discriminant is zero.

Illustrative problems. 1. What is the nature of the roots
of the equation 22 +x +1=07?
b2 —4ac=1-—4 = — 3, the two roots are complex.

2. What is the nature of the roots of the equation
2?46z +9=0? '
b2 — 4ac =36 — 36 = 0, the two roots are equal.
3. What is the nature of the roots of the equation
42°4+82+3=07
o b3 — 4ac = 64 — 48 = 16, the roots are real, unequal, and rational.

4. Can f(x)=52%+ 32 — 7 be factored ?

o b — dac =9 + 140 = 149, which is not a square, f(z) cannot be
factored in the domain of rationality.
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EXERCISES. CXXI.

‘What is the nature of the roots of equations 1-10?

1. 5x24+1=0. 2. a**+ % —ax=0.
3. x22—z2+1=0. 4, 222 —2—20=0.
6. 3224+z2+7=0. 6. 322 4+4x+5=0.
7. T2 —2—-3=0. 8. 224 50x 4 625 = 0.
9. 2 +2+1=0. 10. 1222 —-122+3=0.

Of the following functions of x select those which can be
factored in the domain of rationality and factor them.

11. 32— 1. 12. 2224+ T2+ 3.

13. 6x? 42— 1. 14. 22 -5z 4 3.

156. Tx24+ 22 —6. 16. 55x% —27x + 2.
17. 622+ T2z — 3. 18. 112% —23x + 2.
19. 2243z —4. 20. 1324¢?+ 51a — 21.
21. 402% 4 34z 4 6. To22. 12122+ 112 412,
23. 80x%+ 70z + 60. 24. 5622 + 113z + 56.
26. 65z — 263 x — 42. 26. 105x% — 246z + 33.

Reduce the following to the form az? + bx + ¢ =0, and
state the nature of the roots:

2
a7, TXYE_, gs, @t @b _g
x_'\/5 (a—b)‘ a—10>
8 2z+b 4x—a _
29 —x—3—0 30. —%’jb—o.
31, 2——L_—_1 . 4 Va 20—\/;=3.

a1 G-  Vaos' ~a
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276. Relation between roots and coefficients. The roots of
the equation z? + pz 4 ¢ = 0 are

x1=—%+% Vp*—4yg,
I T

Their sum is z; + 23 = — p,

2
and their product 2, = (— %’) — @G Vpr—4g)*
A k. |
T4 4
= q.
That is, in an equation of the type x* + px +q =0,
1. The sum of the roots is the coefficient of x with the
sign changed ;
2. The product of the roots is the absolute term.

These relations evidently give a valuable check upon our
solutions. Any solution which contradicts these laws is
incorrect.

E.g., if the student finds the roots of the equation 22 — 2 — 30 =0
to be — 6 and 5, there is an error somewhere in the solution, because
their sum is not the coefficient of z with its sign changed.

EXERCISES. CXXII
Solve the following, checking by the above laws.

1. 2241=0. 2. 22 —1=0.

3. 22 +x2=0. 4, 22 —2—1=0.

6. 22 —6x+8=0. 6. 22—x—2=0.

7. 22 —-5x+4=0. 8. 22—17Tx+16 =0.
9. x? — 122 + 27 =0. 10. 22+ 24x+ 144 = 0.
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277. Formation of equations with given roots. Since if
x =7 and T =1y,
then z—r=0 “z—r=0,

and hence (z —7,)(z —r;) = 0, a quadratic equation; there-
fore it is easy to form a quadratic equation with any given
roots.

E.g., to form the quadratic equation whose roots are 2 and — 3.

1. - r=2, .z-2=0.

2. .- z=-38, .z+3=0.

3. .. *—2)(x+3)=0, or 22+2—6=0.
Similarly, to form the equation whose roots are  + } 1.
1. - z=4+%i, cx—%—23i=0.

2, - r=%—2%i, x—%+3i=0.

3. ~(@x—%-2i)(x—4++27) =0, and this may, if desired, be
written in the form
22—+ =0,

or 1622 — 162 + 6 = 0.

EXERCISES. CXXIII.

Form the equations whose roots are given below.

1. %3 2. V2, V3.
3. i, —i. 4. V2, - 3.
5. 3, —11. 6. —7,—8.
a a 1 1
7. —§)—§ 8. ;\/—,5'\/(;.
9. —ak 20 410, 3424324

1. —3+4iv3. 12 5430 530
+ 1. V=L, -2 1414 a+2V=1,a—2V_1
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III. EQUATIONS REDUCIBLE TO QUADRATICS.

278. Thus far the student has learned how to solve
any equation of the first or second degree involving one
unknown quantity, and simultaneous equations of the first
degree involving several unknown quantities.

It is not within the limits of this work to consider gen-
eral equations of degree higher than the second. It often
happens, however, that special equations of higher degree
can be solved by factoring, as already explained, or by
reducing to quadratic form.

A few of the more common cases will now be considered,
some having already been suggested in the exercises.

279. The type ax®® 4 bx" + ¢ =0. This is a quadratic
in ", and (§ 269)

w”:—ﬁ—:t 1 Vit — 4 ac,
2a 2a

whence x =\/i—é—:|:—1—\/. b2 — 4 ac.
v 207 2a

Illustrative problems. 1. Solve the equation
x4+ 102+ 16 = 0.
This is a quadratic in x2 and is easily solved by factoring.
o (234 8) (2B + 2) =
28 =—8, or —2.
r =—2, 0or — i/é
Check for & = — V2. 4—20 +16=0.
We might also solve by the above formula, thus:
2=V 614V o4
— 2, or VZg=-—
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1
por]

2. Solve the equation #* +x + 1 + :]—; + o 0.

Thiémaybearranged
1\2 1 ‘s 1
(:c+5) +(x+£)—-l=0,aquadrat1cmz+5‘
Solving (§ 270), z+;=—'}i1}\/5-
B —(—t+1Vh)z+1=0,

and (§ 270) e=3(V5—14iV10+2V5),
or = Vs—-1+iV10-2V5).

3. Solve the equation 1 + i _2=0.
This is a quadratic in z~%. Solving by factoring,
=1, 0or —2
1
(-2
(—2)2+(—-2)—2=0.

~z=1, or

1 .
(- 2)

If (— 2)* had been written 16, there would appear to be an extra-
neous root, but by writing it (— 2)* we know that the 4th root is — 2.

Check for z =

4. Solve the equation #? = 21 + Va? — 9.
This may be arranged
@—-9—(@-9t-12=0.
The solution often seems easier if y is put for the unknown expres-
sion in the quadratic. Here, let y = (z2 — 9)}. Then
Yri-y—-12=0,

or V—-49Yw+3) =0,
whence y=4, or —3.
KX 2 — 9 =16, or (— 3)?,
and z2 = 25, or 9 + (— 3)2,
and z= 46, or + VO + (- 3)%.

Check forz =+ VO + (—3)% 9+ (—8)2=21+ V94 (-38)2-9,
or 18 = 21 — 3, because V(— 3)2 = — 3. If the (—3)2 were written 9,
there would appear to be an extraneous root.
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5. Solve the equation' (x* 4+ = + 3) (x* + = + 5)= 35.

In equations of this kind there is often an advantage in letting ¥
equal some function of z. Here, let y =22+ z +3. Then

¥ (¥ + 2) = 356,

or ¥»+2y-86=0,

or @+7w-56)=0,
whence y=-—1,orb.
Hence, 224+2+3=—-17 or b,

and each of these equations can be solved for z.
It would answer just as well to let ¥ = 22 + « + 6, in which case we
should have (y — 2) ¥ = 36. .

EXERCISES. CXXIV.

Solve the following :

1. Vo —1=2—1. 2. z—at —20=0.

3. Te—4at —20=0. _4a 2t4+a2t_20=0.
5. 2% — 2828 427 =0. Xe. Tat ot — 350 = 0.

><7. at o —62f=0.

XS. x’+5x—1=$~
X 9 (@ +3)'+(=*+3)—42=0.
10. @ — (a4 0zt —2a(a —5)=0.
11. (22 +22+3) (22 + 22 + 6) = — 2.
12. (#*+3z—4)(2*+3x+2)+8=0.
13+ Vz /(21 — Vz) + (21 — Vz) /Vz = 2.5.

1 1 6

14. :cz+:c+2+a:_2+a:+4—:c2+x+8=

0.
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280, Radical equations have already been discussed (§ 191)
in the special case in which they lead to simple equations,
and several problems have been given in connection with
the study of quadratics.

Whenever they lead to quadratic equations their solution
is possible, and a few cases somewhat mere elaborate than
those already given will now be considered.

Tlustrative problems. 1. Solve the equation
2w2+3x—3\/2x’+3x—4—2=0.

1. This may be arranged
2x2+3x—4—3\/2z’+3z—4+2=0.

2. Let y=Vvez +3z—4
3. Then 2—-3y+2=0

4. . w-2)w—1=0

5 . y=2,0rl

6. .. 222 +3x—4=2,0rl,

two quadratic equations in z, which give
z=—3+3V6l,1,0r —3

Check for € = — §. 1{——-’}—3—2:0.

2. Solve the equation # —1 =2 + 2271
1. This may be written
(Vz —1)(Vz +1) - Mf/_—'*ﬂg 0.
z

2. Or (x/5+1)(\/5—1——2\/:)=0.

9. - V34+1=0, and Vi =—1, and z=(=1)% or Va—1- 72_- =0,
and 7 — V& — 2 = 0, a quadratic in V. x
4, - (V2 —2)(Vz+1)=0.
5. .. Ve=2,andz=4,o0r Ve=—1,andz=(—1)>%
-. there are three roots, two being alike, 4, (— 1)2, (— 1) All
three are easily seen to check. The reason for writing (— 1)2 instead
of + 1 is explained on p. 267, exs. 3 and 4.
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3. Bolve the equation Vz +3 —Vz+8=5\/;.
2z + 11 —-2V(x +3)(x+8) =26=. Ax. 8
g —2Va? 411z 424 =232 — 11. , Ax.3

1.
2.
3. .
4.

2122 — 22z + 1 = 0, squaring, etc.
2lz—1)(x—1)=0, and z =4, or 1.

In checking, each root is found to be extraneous. This might have
been anticipated because in squaring the first member of step 2 the
(— 2)? was called 4, and hence, when the result was placed under the
radical sign for checking, and the root taken as positive, a failure to
check was natural. ' ’

Had the original equation been Vz + 3 + Vz + 8 = § VZ, the root
1 would have checked ; had it been — Vz + 3 + Vz + 8 =5 Vz, the
T00t Hy would have checked.

EXERCISES. CXXV,

Solve tile following :

1.

+2.

3.

10.
11.
12.

© ® 2 o®

Vz+3—Ve—4—-1=0.
:c2+a:=4+\/i_0——a:“——a:.
Vitde—V1—dz=4Va

Var — 8z + 31 + (z — 4)* = 5.

@+ 5x—10=Va’+ 5z + 2.

Ve —24+V3+z—VI9+x=0.

@ - —2z@ 1)t —31=0.
V1i+2z2—Vi+axz+V3—2=0.

Vo + 8+ Vo —6—~8z—10=0.
Vir—2+4+2V2 —z—Vid—4x=0.
3Vet —Tx+12=V7. V@ — Tz +12.
Ve-1)(@z—-2)+V@—3)(z—4=V2.
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281. Reciprocal and binomial equations. A reciprocal equa-
tion is an equation in which the coefficients of the terms
equidistant from those of highest and lowest degree, respec-
tively, have the same absolute value and have the same
signs throughout or opposite signs throughout.

E.g., the following :
x2—1=0,
ax® + bx? — bx — a = 0,
axt — bx® + ca? —bx + a =0,
ettt tae+1=0.
They are called reciprocal, because they are unaltered
when for the unknown quantity is written its reciprocal.

E.g., when % is written for z in the equation

ax?®+ bz + a =0,
it becomes

which, by multiplying both members by «? reduces to
a+ bx + ax? =0,
the original equation.

282. Since x can be replaced by E; the roots of reciprocal

equations enter in pairs, each root being the reciprocal of
the other root of that pair, excepting the two roots 4+ 1 and
— 1, each of which is its own reciprocal.

E.y., 22 4+ x 4+ 1 = 0 has for its roots
o=—4%+4iV3,
@y =—% —3iV3,

and each is the reciprocal of the other, because their prod-
uct is 1 (§ 162).
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So z? + 1 = 0 has for its roots the reciprocals 7 and — «. '
Similarly in the case of 2®* — 222 — 2x +1=0. Here
?+1—-2xz@x+1)=0,
whence (x +1)(@* -2z +1—2x)=0,
and therefore zr+1=0,andx=—1,
or x’—3z+1=0,andz=§:l:§\/5.
In this case, § +4 V5 and § — } Vb are reciprocals,
because their product is 1 (§ 162), and the other root,
—1, is its own reciprocal. And in general, in the case of

reciprocal equations of odd degree, one root is a,lwa.ys its
own reciprocal.

This is seen in the case of 28 — 1 = 0.

283. Reciprocal equations can often be reduced to equa-
tions of lower degree by the factoring method set forth in
the preceding example, or by dividing by some power of the
unknown quantity, as in the following case:

Solvez‘+:i’+x’+:c+l=0.

Divide by z2, and i 1
Zre+l+-+-5=0,

an equation already considered (§ 279).
2
It reduces to (z-{-l) + (:c+]i)—1=0,
z z
a quadratic in z + i Solving for = + i, we have

x+%=—1};|;}\/3. § 270

~2+GFF1VET +1=0,
two quadratics in z. ’

These equations may now be solved for z, each giving two values.
The final roots are four in number, as would be expected. They are
given on p. 267, and in more complete form on p. 273.
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284, Equations of the form z* + p = 0 are called bino-
mial equations. In this case, no restriction is placed on p;
it may be positive, negative, integral, fractional, real, imag-
inary, ete.

The solution of binomial equations in which p =+ 1 evi-
‘dently depends upon the solution of a reciprocal equation.

E.qg., »%—-1=0
reduces to @-1(@t+2+22+2+1)=0,
whence z—l'=0, and z =1,
or 48422+ 24+1=0,

a reciprocal equation, the one just considered in § 283, with four roots.

Since if #® —1 =0, or «°®* =1, x is the fifth root of 1, and
since «®* — 1 = 0 has 5 roots (§§ 279, 283), viz.:

=1, ,

v =3(VB—1+iV10 + 25),
2 =3(VB —1—iV10 + 2V5),
wa=1(—VB—1+iV10 —25),
25 =3(— V5 —1—3iV10 — 25),

therefore, there are 5 fifth roots of 1.

Similarly, there are 2 square roots of any number, 3 cube
roots, - - - 7 nth roots.

Thus the two square roots of 1 are evidently + 1, — 1,
which may be obtained by extracting the square root
directly or by solving the equation x* —1 = 0.

" The three cube roots are readily found by solving the
equation z® — 1 =0.

Here 2®*—1=0
leadsto (x—1)(x*+x+1)=0,
whence ) r—1=0, and x =1,

or x4z +1 =0, solved in § 282.
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EXERCISES. CXXVI.
Solve the following :
1. 222 +4+5x+2=0.
2. 4+ x2+ax+1=0.
3. 1022 — 292 +10=0.
4. 22* —322—-32+2=0.
b. x‘+w’—4w’+x.+1=0.
6. zt—at—4a2’—2+1=0.
7. x* 4+ 422 +2x2+4x+1=0.
. 8. —ba*+ 432’ —b5x+1=0.
"" +)k9. ot —gad—1pat— ga+1=0.
Fr 100 200920 + 142 — 92 + 2 =0.
++ 11. 122 +42° — 412’ + 42 +12=0.
12. 28 4+1=0. 13. 264+ 1=0. 14. 2 —1=0.

15. What are the 2 square roots of 1 ? the 3 cube roots ?
the 4 fourth roots ?

V 16. What are the 3 cube roots of 8 ?
17. What are the 6 sixth roots of 1?

18. Show that the product of any two of the fourth roots
of 1 equals one of the four roots, and that the cube of either
imaginary root equals the other.

‘/ 19. Show that the product of any two of the cube roots
of 1 equals one of the three roots, and that the squa,re of
either complex cube root equals the other.

20. Show that the sum of the 2 square roots of 1, the
sum of the 3 cube roots, the sum of the 4 fourth roots, the

5, fum of the 5 fifth roots, are all equal to zero.
go=1
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285. Exponential equations have already been considered
in § 205. Only in certain cases can they be solved by
linear or quadratic methods.

E.g., 27:8==16:1.
This may be written
27 287 = 24
or 27 =3z — Q4
whence z?— 3x =4,

giving x = 4, or — 1. Each result checks.
The equation 2+ 4 4* = 8 may be written

2.2% 4 2% =8,
or (2°)® + 2(2%) — 8 = 0, a quadratic in 2=
Hence, solving, 2% =2 or, — 4.
If 22 = 2, x =1, a result which checks.
If 2% = — 4, we cannot find .

EXERCISES. CXXVII.

Solve the following :

1. 647:2= =4, 2. 37: 81 =(31)",
3. 2=.28+1 =2 i 4 3=.9"=27.3,
5. 2°.16% = b 6. a*: (@®)% = (a®)®.
7. 2.48Ve = 288, V8. (3%)%.3% = 271,
3z
Vo, (47 /8) = 2=+9, 10. 2.625+4 = 3= 9249,
a’8=. alsz— 2 ore 1
11. 'a—a—l. 12. 9.9 =31
1822
13. %: m® =1, 14. a2 (a?)¥z = a—lu'

lAs. 2.50-=.25 = 2 /2551,
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IV. PROBLEMS INVOLVING QUADRATICS.

Illustrative problems. 1. What number is 0.45 less than
its reciprocal ?

1. Let z = the number.

2. Then T = % — 0.45.

3. . 2240452 —-1=0.

4. .. z=—0.225z + 0.5 V0.2025 + 4
= 0.8, or — 1.25.

Check. 0.8 =1.26 —0.46. —1.26= — 0.8 — 0.46.

Hence, either result satisfies the condition. But if the
problem should impose the restriction “in the domain of
positive numbers,” — 1.25 would be excluded; if «in the
domain of negative numbers,” 0.8 would be excluded; if
“in the domain of integers,” both results would be excluded
and no solution would be possible.

2. A reservoir is supplied with water by two pipes, A, B.
If both pipes are open, }} of the reservoir will be filled in
2 mins.; the pipe A alone can fill it in 5 mins. less time
than B requires. Find the number of minutes in which
the reservoir can be filled by A alone.

1. Let z = the number of minutes required by A.
2. Then z+ 5= “ - - B.
3. Then ; = part filled by A in 1 min.,
1 : .
and —_— = ¢ ¢ B ¢ 1 min.
z+5b
4. g + 2 = [ ¢ both in 2 mins. = }}.
z x+5

6. . 1122472 —120=0, or (z — 3)(11x + 40) = 0.

— — 40
z =3, or — %%
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Here each root satisfies the equation ; but the conditions
of the problem are such as to limit the result to the domain
of positive real numbers. Hence, — $¢, being meaningless
in this connection, is rejected.

3. The number of students in this class is such as to
satisfy the equation 22? — 33 x =140. How many are
there ?

1 222 — 33z — 140 =0.
2. . (x—20)2z+7)=0.
3. .- z =20, or — £.

Here, too, the conditions of the problem are such as to
limit the result, this time to the domain of positive inte-
gers. Hence, “ — § of a student,” being meaningless, is
rejected. ‘

4. A line, 4B, 3 in. long, is produced to P so that the
rectangle constructed with the base 4P and the altitude
BP has an area 14.56 sq. in.

Find the length of BP.
1. Letz R
= the number of inches in BP. p’
2. Then the area R A 3in. B X P

= (3 +z)z = 14.56.
3. .22+ 3% —14.656 =0.
4. .. x=2.6, or — 5.6,

Here we are evidently not
limited as in probs. 2 and 3.
The negative root may be
interpreted to mean that AB is produced to the left.
BP'is — 5.6 in., i.e., 5.6 in. to the left, and the rectangle
becomes R', which is, however, identically equal to R.
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EXERCISES. CXXVIIL
In each exercise discuss the admissibility of*both roots.

A. RELATING TO NUMBERS.

1. What number is ¢ of its reciprocal ?
2. What number is {; greater than its reciprocal ?

3. What is the number which multiplied by $ of itself
equals 1215 °?

4. Separate the number 480 into two factors, of which
the first is ¢ of the second.

5. The sum of a certain number and its square root is
42. Required the number.

6. Find a number of which the fourth and the seventh
multiplied together give for a product 112.

7. One-fourth of the product of 3 of a certain number
and § of the same number is 630. Find the number.

8. The square of 5 more than a certain number is
511,250 more than 10 times the number. Required the
number.

.\_—l_ 9. The product of the numbers 2x3 and 4«6, written
in the decimal system, is 115,368. What figure does z
represent ?

10. Separate the number 3696 into two factors such that
if the smaller is diminished by 4 and the larger increased
by 7 their product will be the same as before.

11. Of three certain numbers, the second is # of the first,
and the third is § of the second; the sum of the squares
of the numbers is 469. What are the nunbers ?
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B. RELATING To MENSURATION.
For formulas see p. 172.

12. How many sides has a polygon which has 54
diagonals ?

13. The area of a rectangle is 120 sq. in., and its diagonal
is 17 in. Required its length and breadth.

14. The base of a triangle of area 16.45 sq. in. is 2.3 in.
more than the altitude. Required the base.

15. The length of a rectangle of area 70 sq. in. is 3 in.
more than the breadth. Required the dimensions.

16. Divide a line 16 in. long into two parts which shall
form the base and altitude of a rectangle of 63.96 sq. in.

17. The hypotenuse of a right-angled triangle is 10
in., and one of the sides is 2 in. longer than the other.
Required the lengths of the sides.

18. In a right-angled triangle one of the sides forming
the right angle is 6 in., and the hypotenuse is double the
other side. TFind the length of the other side.

19. A square and a rectangle have together the area 220
sq. in. - The breadth of the rectangle is 9 in., and the
length of the rectangle equals the side of the square.
Required the area of the square.

20. From the vertex of a right angle two bodies move
on the arms of the angle, one at the rate of 1.5 ft., and the
other 2 ft., per second. After how many seconds are they
50 ft. apart ?

21. What is the result if, in the preceding example, 1.5,
2, and 50 are replaced by m, n, d ?
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22. A square is 78 sq. in. greater than a rectangle. The
breadth of the rectangle is 7 in., and the length is equal to
the side of the square. Required the side of the square.

++—.23. If the sides of a certain equilateral triangle are
shortened by 8 in., 7 in., and 6 in., respectively, a right-
angled triangle is formed. Required the length of the side
of the equilateral triangle.

24. If two sides of a certain equilateral triangle are
shortened by 22 in. and 5 in., respectively, and the third
is lengthened by 3 in., a right-angled triangle is formed.
Required the length of a side of the equilateral triangle.

—_ 26. On an indefinite straight line given two points, 4
and B, d units apart, to find on this line a point, P, such
that AP?= BP.AB. Draw the figure showing the posi-
tions of the two points. (This is the celebrated geometric
problem of “The Golden Section.”)

4\ 26. Four places, 4, B, C, D, are represented by the
corners of a quadrilateral whose perimeter is 85 mi. The
distance BC is 24 mi., and CD is 14 mi. The distance
from 4 to D by the way of B and C is {# as great as the
square of the distance from A4 direct to D. How far is it
from 4 to B? also from 4 to D?

—

27. About the point of intersection of the diagonals of a
square as a center, a circle is described ; the circumference
passes through the mid-points of the semi-diagonals; the
area between the circumference and the sides of the square
is 971.68 sq. in. Required the length of the side of the
square. (Take 7 = 3.1416.)

— -+~ 28. A mirror 56 in. high by 60 in. wide has a frame of
uniform width and such that its area equals that of the
mirror. What is the width of the frame ?
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C. ReraTING TO PHYSICS.

29. If a bullet is fired upward with a velocity of 640 ft.
per sec., the number of seconds elapsing before it strikes
the earth is represented by ¢ in the equation 0 =2320¢—4g¢?
in which g =32 ft. Find ¢

30. Two points, 4 and B, start at the same time from a
fixed point and move about the circumference of a circle in
opposite directions, each at a uniform rate, and meet after
6 secs. The point 4 passes over the entire circumference
in 9 secs. less timé than B. Required the time taken by
A, and also by B, in passing over the whole circumference.

31. It is shown in physics that if two forces are pull-
ing from a point, P, and are represented in direction and
intensity by the lines P4, PB, the resultant force is repre-
sented by PC, the diagonal of their parallelogram. Two
forces, of which the first is 23 1bs. greater than the second,
act at right angles from a point. Their resultant is 37 lbs.
Required the intensity of each force.

32. Two forces, of which the first is 47 lbs. less than
the second, act at right angles from a point. Their result-
ant is 65 lbs. Required the intensity of each force.

33. It is proved in physics that if a body starts with a
velocity (“initial velocity ”) of w ft. per sec., and if this
increases a ft. per sec. (the «acceleration ””), then in ¢ secs.
the space s described is s = ¢ + 4 a¢®.  Suppose the initial
velocity is 40 ft. per sec., and the body moves with an ac-
celeration of — 2 ft. per sec., find when it will be 400 ft.
from the starting point. ‘

34. Suppose a body starts from a state of rest, and the
acceleration is 18 ft. per sec., find the time required to pass
over the first foot; the second; the third. (See ex. 33.)
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’\/ 36. Two points, 4 and B, start at the same time from a
fixed point and move about the circumference of a circle
in the same direction, each at a uniform rate, and are next
together after 8 secs. The point 4 passes over the entire
circumference in 18 secs. less time than B. Required the
time taken by 4 in passing over the whole circumference.

36. It is shown in physics that if 2 = the number of feet
to which a body rises in ¢ secs. when projected upward
with a velocity of u ft. per sec., then 2 = ut — % g¢2, where
g =32. TFind the time that elapses before a body which
starts with a velocity of 64 ft. per sec. is at a height of
28 ft.

37. A body is projected vertically upward with a velocity
of 80 ft. per sec. When will it be at a height of 64 ft.?
(See ex. 36.)

D. MISCELLANEOUS.

— 38. A reservoir can be filled by two pipes, 4 and B, in
9 mins. when both are open, and the pipe 4 alone can fill
it in 24 mins. less time than B can. Required the number
of minutes that it will take 4 alone to fill it.

39. A reservoir has a supply pipe, 4, and an exhaust pipe,
. B. A can fill the reservoir in 8 mins. less time than B can
! empty it. If both pipes are open, the reservoir is filled in
6 mins. Required the number of minutes which it will

take to fill it if 4 is open and B is closed.

40. Two travelers, 4 and B, set out at the same time
from two places, P and ), respectively, and travel so as to
meet. When they meet it is found that 4 has traveled
30 mi. more than B, and that 4 will reach @ in 4 das., and
B will reach P in 9 das. after they meet. Find the dis-
tance between P and Q. C
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REVIEW EXERCISES. CXXIX.

24+ m? =z

1. SOIVBm=ﬁ'
x 2 =z 8
2. Solve§+5—§+5'

3. Factor (z® + xz — 13)* — 49.
4. Factor z® — 622 — 37z + 210.

2z 4z — 3
5. Solve —— + e 1

x—4

xr — 1\?2 x — 2\?
k 6. Solve (z+1)—(m+2>=0.

x—a x—0b a’—-b*ﬁ

7. SOlVe —_ =
x—b x—a a*—ax

2:):’—x+2..4:r2—1.
42 4+3x+2 2z—1

2! —11x 4+19\* 3(2 —=x)
9. Solve ( P T >_ ppps

—9=0.

8. Simplify

-+

10. Solve 18(z + 1)*(z + 2)* =8 (x — 3)*(x + 1)*.
11. Solve (z —3)* —3(x — 2+ 3(¢ —1)* — 28 =9 —=.
12. Find the square root of
2y i+ iyt —ay T byt - 4
13. If 2?2 +2y+ 2 =0, and w?+ wy+ 2z =0, where = + w,
prove that w + x + y = 0. (Subtract and factor.)
14. Find the lowest common multiple of
@*+c—a’+20bc)(c+a—b)
and (@ =0 —ct+ 2bc)(a+ b+ ¢).



CHAPTER XV.
SIMULTANEOUS QUADRATIC EQUATIONS.

I. TWO EQUATIONS WITH TWO UNKNOWN QUANTITIES.

286. 1. When one equation is linear. While this is not

a case in simultaneous quadratics, since one equation is

linear, it forms a good introduction to the general subject.

In this case, one of the unknown quantities can be found

in terms of the other in the linear equation, and the value

substituted in the quadratic. The problem then becomes
that of solving a quadratic equation.

E.g., to solve the system z — 2y = 3.
2 + y2.= 26.

Here we have .

z =3 + 2y, from the first equation.

1.
2. (8 +2) + 42 =26. (Why ?)
3. . 6by2+ 12y —17=0.
4. . Gy+17)(y —1)=0.
5. . y=—4%4, or 1.
6. .. r=38+2y=—12 or b.
Qheck, forz=—32, y=— 4.
— 343 =15 =3
A8 4 289 = 850 = 26,

In checking, the roots must be properly arranged in pairs.
E.g., in the preceding example
z = — %2 when and only when y = — A%,

and =2 “ o N ¢ y==5.
284



Solve the following Systems of equations:

1. ‘:c+_1/=100.

11.
13.
15.
17.
19.

21.

SIMULTANEOUS QUADRATIC EQUATIONS.

285

EXERCISES. CXXX.

x/y=2 2.
a:y=8.
zr+y=9 - ) ‘_'_'4'
zy =45, ) )
r—y=24. + 6.
zy = 4212
x4+ y=1.25. 8.
xy = 0.375.
z? + y? = 1274, 10.
ac=5y.
S+y)=uy. 12.
xy = 180.
z+y=—6. 14.
a:y=—2592
J o1l e
3z +y=>5.
2?4+ xy + y* = 63. 18.
x—y=—3.
(7T + =) (6 + y)= 80. 20.
xr+y=>5.
x? + y? = 500. 22.
2ry_s
r—y

:cy=2400.
ac—y=11.
6/x = y/10.
e 2+ 9P = 122,
jr—y=13

22% + y2 — 100 = 0.
72:—y—50=0.

a?+31y2—60=0.
tx+3ly—5=0.
14 2 — 122 42 = 100.
x=3y.
2Tx + 33y — 60 = 0.
822 4+10y2—18 = 0.
0.012*+ 0.5y —2=0.
01x—0.25y —-3=0.

0.01 2%+ 400y — 25=0.
0.52+y—10=0.

r+y—4=0.
'y
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287. 2. When both equations are quadratic. In this case,
z can be found in terms of y in either equation, but, in
general, the value will involve % In this case, the value
of = substituted in the other equation will involve 3*, and
hence the result will be an equation of the fourth degree.
E.g., given the system 22 —y3=-38.
222 +3x4+y=1"1.
From the first equation -
=4 \/yzj
Substituting in the second,
2@2-8)£8V—8+y="T.
Isolating the radical, squaring, and reducing, we have
2yt +2y8 —30y2 — 13y + 98 = 0,
an equation of the fourth degree.

288. Hence, in general, two simultaneous quadratic equa-
tions involving two unknown quantities cannot be solved by
means of quadratics.

It is only in special cases that such systems admit of solu-
tion by quadratics, and four pairs of roots should always be
~ expected.

A few of the more common of these special cases will
now be considered.

EXERCISES. CXXXI.

To what single equations of the fourth degree do the
following systems reduce ?
1. 224+ y="T. 2. ¥+ 2z —axy=>5.
z+y2=11. . 2’+x+y=4.
3. 2224+ 3z —y2=0. 4. 22+ ay+y*+2—5=0.
2?—3y*+y=0. 20+ y*—x+y—3=0.
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289. When one equation is homogeneous. In this case a
solution is always possible. For if ax? + bxy + cy®>= 0 is
the homogeneous equation we can divide by y? and have

2
a-£-+b-a—c+c=0, a quadratic in z. Hence, Z can be

Yy
found and « will then be known as a multiple of y, and
this value can then be substituted in the other equation.

E.g., to solve the system

1 22—-fzy+9y2=0.

2. 2+3c—4y+4=0.
z\2 b/z

3. -) —=(- =0.

From 1 (y) 5 y)+l 0

4 . 2(;—;)2-5(;) +2=0,

or (234)(2-2):0.

5. E=1 or 2, andz:z, or 2y.
y 2 2
Substituting z = % in equation 2, we have
v 3y _
7. - y2—10y + 16 =0.
8. .. y=2, or 8, a.nd.-.z:%:l, or 4.
Substituting £ = 2y in equation 2 and reducing, we have
9. v+iy+1=0. '
10. .. y=—%+3iV16.
1. .. z=2y=—4+4iVi6
12. .- z=1,4, — 4 ++i V16, — 4 —3i V15,
and ¥y=2,8 —1+1iVvV1s, —$—-$iVI15,

these roots being taken in pairs in the order indicated.

Check. All of these roots check. While the substitution of the
complex roots takes time and patience, it is the only method of deter-
mining the correctness of the solution.
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EXERCISES. CXXXII.

Solve the following systems of equations:

1.

\ 10
){)( 11.

12.

x4+ y? —bxy = 0.
x4+ y=a.
322 +3zy —y?=0>.
2 —2xy +y*=0.
5z +4zy—y:=0.
2*+z+y=>.
22try+r—y=—2
22 —axy — y*=0.
2 +3zy+3x—y=2
22+ 22y —3y*=0.
?—ytet+y=14}
36 (22 + y*) = T xy.
22+ 3xy+4y=18.
22+ 4oy =122

. 3x?+4ay+3x—y=3.

z?+xy =0.
2?+4z+3y+y =—2
z(x+2y)—15y*=0.
z@+y)+yy+a)=4azy.
z(x+y)+y+x=24
22 —3zx+4y+2xy =24
x4+ 3zy =442
14722 + 1962y + 57 y2 = 0.
x4+ 2xy + 33 =0.
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290. When both equations are homogeneous except for the
absolute terms. In this case a solution is always possible
by quadratics. For if

a@x® + by + ¢y* = dy,
and agx? + by + ¢y’ = d,,

we can multiply both members of the first by d;, and of
the second by d,, and subtract, and

(ard;y — agdy)x? + (bydy — bydy) 2y + (€1dg — cody) y? = 0.
This may now be treated as in § 289.

E.g., to solve the system
1. 22+ 3xy —2y2=2.
2. : 222 —bzy + 6y2=3.

Multiplying both members of equation 1 by 3, and of equation 2 by
2, and subtracting, we have:

3. 22— 19xy + 182 =0.

This equation is easily reducible. If it were not, we should divide
by %2 and proceed as in § 289.

4. .. (x—18y)(x —y)=0.

5. .. z =18y, or y.

Substituting 18y for z in 1, we have

6. 3242+ H64y2 —2y2 = 2.

7. .- y=:|:£\/;=i§l{\/j4—79
and z=18y =4+ & V4T

Substituting y for z in 1, we have

8. ¥y2+3y2—-2y=2.

9. .. y=+1, whence x = + 1.

Check. All of these results check.
E.g,tryz =+ & V4T, y = + J V4T,
Substituting these values in equation 1,
H+éi—1t=2
Substituting in equation 2,
Y-t +a=3
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291. Since §§ 289 and 290 depend upon finding the value
of Z, or of g’ we can also solve by letting %=v, or y = vz,
theg finding v.

E.g., in the preceding example we had the system

1. 224+ 3zy —2y2=2.

2. 222 — by + 6y2=3.

Let g =v, or y =vz. Then, from 1, we have

3. 22 + Sva? — 2v%2 = 2.
4. .. 2 = ._.2_
143v—202
Similarly, from 2, we have
b. 223 — 5vx2 + 6022 =3.
6. .. 22 = ———§— .
2—bv+ 602
Equa.ting the values of 2,
1. : -3
14+3v—-21v2 2-—56v+4602
Reducing,
8. 1812 —19v+1=0,
or (18v—1)(v —1)=0.
9. .~ v= 1§ or L.
10. .. Y =0T =52, O L.

This is substantially the same as step 6 of the preceding solution
(p. 289), and the rest of the work is as given there.

In the same way we may let z_ v, or z =vy. We should then
have, from equation 1, 4

w2+ 3vy2 —292 =2,

y2———2 —.
v24+3v—2
3
Similarly, from 2 2= - .
o ’ Y =3® _6v+6

Equating these values of 2, v can be found as above.
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EXERCISES. CXXXNI.

Solve the following systems of equations:

1

11.

13.

2 2
L X 15. 32+ 13zy 4 8y = 162.

z? + 2xy = 39. 2 x*+3xy=2
r
zy + 2 y* = 65. 3y +xy=1
. 22 + Sxy = b4. 4. 224 3y = 27.
zy + 4y* = 11b. y+yi=4
. mix? + n¥y? = g .6 Ta?—bay=18
x?  y? x? 7
pehal ey ATe=y
3zy+y2 —18=0. 8. x? —xy + y? =21
42+ 2y —T=0. y?—2zy = —15.

Labay+y =139 10 ez + 0@ +y)=m.

5y*—4xy =—T5. eyt d@E+yH)=mn.

2} — 2y + y? = 57. 12. 322 —5ay +2y*=14.

169 2% 4+ 2 y2 = 177. 22— bxy +3y*=6.

202+ 22y + 2 =73. 14. 32y*— 22y —11=0.
Pty + 2y ="T4. z? + 4 y* =10.

2?—xy+y:="T.

16. Bz +y)(By + x)=384.

(@ — ) (@ +y)=40.
14 17 32t 4 day4+ 542 —48=0.
422+ 5xy — 36 =0.
18. 2x%+ 3xy — 3y*+ 124 =0.
Tal—axy —y?+49=0.
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292. When the equations are symmetric with respect to the
two unknown quantities. In this case a solution is always
possible by quadratics. The solution is accomplished by
letting ©* =« + v, and y =« — v, and first solving for
and v.

E.g., given the system

1. 22 + 3zy + 2 =41,
2. 24+ y2 4+ y =32
Letz =u + vand y =u —v. Then, by substituting in 1, we have
3. buz —v2 =41, or v2=5u? — 41
Substituting in 2,
4. u2 4+ 2 4+ u=16.
Substituting here the value of »2 from 3,
5. 6u2 +u—67=0,
or Bu+19)(u—3)=0.
6. o u=—212 or 3.
Substituting this value of % in 3,
7. v=:|:§\/@, or + 2.
8 zx=utv=—"—= """ 19 :; \/32_9, 5, or 1, four values as we should

expect (§ 287).
9. Since the equations are symmetric with respect to ¢ and y, y
must have the same values, always arranged so that z + y shall equal
2u. (Why?)
_—194+ V320 —19— V329
9

10. .. for z= , 5,1,
6 6
_19—V _ V
we have y= 19 - 329, 19 -; 329’ 1,5

All of the results check.

It should be noticed that a set of equations like
g —y=1, o +y* =25,
is symmetric with respect to x and — y. Hence, if

x=3,0or —2, y=2, or —3.
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EXERCISES. CXXXIV.
Solve the following systems of equations:

1L 2?4+ y? =41, 2. Prry+y'=19.
z—y=1 r+y=3.
3. z’—:cy+y’=3. 4. I’-q-y’-q'-q?t[z-‘-y):-l.
224 xzy+yyr=". 32 +4xy -3y =3.
{r 5. 2+ Vzy +y=14 6. 2 —25ry+y=0.
:t’+:cy+y’=84. 2(_2-*—!/;)2:3.6-/:7.’/3.
1 1 55
) — = 8 r—y=
ez tyre=e A 7Y -
r y 26
1.1 -+ ===
-+-=T y x >
z Yy

9. z(z+y)—40=0.
y(y+zx)—60=0.
10. 222+ zy + 2y =79.58.
2 —2zy + y* = 21.29.

293. 3. When equations above the second degree are involved.
In general, such systems cannot be solved by quadratics,
although they can be solved in special cases.

Ey., D4y + =11

z—y=-1
Here z =y — 1; hence,
-1+ -1y +y2 =11,
or 3y —56y>+4y — 12 =0, a cubic equation.

Now a cubic equation may sometimes be solved by factoring, as

here, for this reduces (§ 104) to
W-2B¥+y+6)=0,

whence ¥y =2, or %(—l:{:i\/ﬁ),

whence z=1, % }(=7+iV).
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294. If the equations are symmetric with respect to the
unknown quantities, they often yield to the method given

in § 292.
E.g., to solve the system
1. 28 + 3 =91.
2. z+y="1.
Let z=u+v, y=u—v. Then
3. 2ud + 6 uv2 = 91, from 1.
4. u=4§, ‘“ 2
5. .. 342 4+ 21v2=91, and v= + §.

6. .xz=u+v=4, or 3, and .. ¥y = 3, or 4, by symmetry.
This system is easily solved in other ways, as by dividing the mem-
bers of 1 by the members of 2, etc.
EXERCISES. CXXXV.

Solve the following systems of equations:

1. B+ 2 =72 2. x4 yt=9T.
z+y=06. z+y=1

3. x*+ y* = 33T. 4. x®— %= 279.
z—y=1. x—y=3.

)(5. x® + 35 = 4149. 6. *+y*+ay(x+y)=154.
/\: CE+y=9 z*+y*—3(z"+y") =50. .
e -t
\)( 7. ;8—?7!—19 8. y+ x—2

11, 1,1_10,
xr Y z Yy Y
4
9. Vx+ —4=0.
\ 7 Y ety

gty 34,
zy 15
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295. Special devices will frequently suggest themselves,
but it is not worth while to attempt to classify them. A
few are given in the following illustrative problems.

1. Solve the system
1L a%?+2zy—6=0.
2. z?+ y? =05,
From 1 we have
3. (zy — 2) (xzy + 8) = 0, whence zy =2, or — 3.
4. Adding2zy = 4 or — 6 to, and subtracting it from, the respec-
tive members of 2, we have

b. 22+ 2xy+y2=9, or — 1.
2 —-2zy+y2=1, ¢ 11,

6. .. z+y=43, or 41,
. z—y=+1, % +VIL

Adding, and dividing by 2,
' +3+1 +i+ VIl
, or

2 2.

i+ V1L §—- V11 —i+VIl —i—V1l
=21, -1, -2, 2 ) ) ’ .

2 2 2

On account of symmetry, ¥ must have the same values, arranged so

as to satisfy step 6.
) i— VT i+ VIl —i— VIl —i4+ V1l
e e e e e T T

1. 2=

All of the results check.

E.g., consider the last ones,
—i— V11 —i4+ V1l
= 2 3 y = 2 .
Substituting in equation 1,
(—i—\/ﬁ_—i+\/ﬁ)2+ —i— V11 —i+ V1 _
2 2 2 2
=(—82+(—3)—6=9—-3-6=0.
Substituting in equation 2,

(—i_zx/ﬁ)’+(—i;x/ﬁ)2= 10+2i\/ﬁ+10—2i\/1_1

6

= b.

4 4
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2. Solve the system

lL.z=aVz+y.
2. y=b6Va+y.
Adding,
3. z+y=(a+b)\/m,or
z+u—(a+b)\/m=0,or
4. Ve+y(Vz+y—a+b)=0.
5. .. Vz+y=0, or a+b.

_Substituting in 1 and 2,
z2=0, or a(a +b).
y=0, ¢ b(a +Db).
The results check.

3. Solve the system
1. x* 4 x2%? + y* = 481.
2. x4y + y*=3T7.
Factoring 1, by § 114, ;
3. (®2 + zy + ¥?) (23 — zy + y?) = 481.
4. .. 37 (x? — zy + y?) =481, or
23—y + 2 =13.
Subtracting from 2,

b. 22y = 24, whence zy = 12.
Adding to 2, and subtracting from 4,
6. 22+ 22y + y? = 49.
2—-2zy+y3=1.
7. - z+y=4+4T
r—y=4+1

8. ~x=4 —4,3 -8, y=3 —3, 4, —4.

Graphs. For the graphic representation of quadratic
equations, and for the discussion of the number of roots
of simultaneous quadratic equations with two unknown
quantities, see Appendix IX. If Appendix VIII has been
studied, this may be taken at this point.
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Solve
1. «®

x

3. z}
xt

5. x?

MISCELLANEOUS EXERCISES. CXXXVI.

the following systems of equations:

+ =0 2. m’—my+y’=124.
+y=a. 2 —y?=44.
+yt =3z 4. yVy=1TVy + 14z
+yt=u. - z’=4\/37+17a:.

+ y? = 25 x%y>2 6 ’+y—x—y=1.

122y =1. xy =1.

)(\ 7. Vo +Vy=12 8. 3(a*+y)=10(z +y).

9

10.

11.
12.

13.

14.

)( 15.

xz? + y* = 3026. 9(x* 4 y*) = 34 («® + ¥P).

. (@ 42y + y*) Vat + y? = 185.
(2® — xy + y*) Va? + y? = 65.

z y xVy

Viu? 4 144 4+ V2 4 144 = 35.

'\/a:’—y’—\/x’+y’+2=0.
Ve +y— Ve —y=15.

z4+y—2Vaey—Vz+Vy=2
\/;+\/g;=z—y=x——‘\/wy+y.

22— 6ay+9y* —4x+ 12y =—4.
2?—2xy+3y*—4x+ 5y =253
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II. THREE OR MORE UNKNOWN QUANTITIES.
In general, three simultaneous quadratic equations involy-
ing three unknown quantities cannot be solved by quadratics.

Many special cases, however, admit of such solution.

The same is true if one equation is linear and the other
two are quadratic, or if one is of a degree higher than 2.

If, however, two are linear and the other quadratic, a
solution is possible by quadratics, as in illustrative prob-
lem 2 on p. 299.

Illustrative problems. 1. Solve the system
L3xy=2xz+2y.
2. 2y2=3y + 2=
3. 4zz=52z—3u=.

Dividing both members of 1, 2, 3, by zy, ¥z, 2z, respectively, we
have

2 2
4. 3_5.*.1_’
2 3
b. 2= ;+;
6. 48  _3.
z z
Adding 5 and 6,
5 2
7. 6_5+17
Eliminating y, with 4 and 7,
8. 3=g, whence z = 1.
Yy=2, 2=3.
Check. 6=2+4,
12=6+6,

12=156-3.
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2. Solve the system
1. z4+y—2z2=-9.
2. 3x+2y+2=09.
3. z?4 y*+422=230.
Eliminating z from 1 and 2,
" v = 9-Tz
5
Eliminating y from 1 and 2,
5. 7= 27T -z
b
Substituting 4 and b in 3, and reducing,
6. 622 — 122 +4=0, or
(x—-2)(bz—2)=
T . z=2, or §.
X y=-1, or .
E z2=2>5, or b5%.
C’Iwck for the second set of values.
£+ 31— 1043 =—
$+88+55=09
7 + # + 1§32 = 14430 = 30
EXERCISES. CXXXVII.
Solve the following systems of equations:
1. 4y =9xa. 2. 2’4y +xy =19.
= 36 yz. y: 4 2 4+ yz = 3T.
922 =4axy. 22 4 x? 4 2 = 28.
3, oy _5, 0 Zv2 9
T myz 6 T4y 2
22422 b zyz
== =2
Tyz 3 y+z
yv+22 13 xyz 18
xyz 6 e4+ax T

299
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III. PROBLEMS INVOLVING QUADRATICS.

EXERCISES. CXXXVIII

1. The difference of two numbers is 11, the sum of their
squares 901. What are the numbers ?

2. The sum of two numbers is 30, the sum of their
squares 458. What are the numbers ?

3. Find two numbers whose sum, whose product, and
the difference of whose squares are all equal.

4. The sum of the squares of two numbers is 421, the
difference of the squares 29. What are the numbers ?

6. A certain fraction equals 0.625, and the product of
the numerator and denominator is 14,440. Required the
fraction.

6. The sum of the areas of two circles is 24,640 sq. in.,
and the sum of their radii is 112 in. Required the lengths
of their radii.

7. The product of the numbers 223 and 4y6, in which
z and y stand for the tens’ digit, « being twice y, is 103,518.
What are the tens’ digits ?

8. If a certain two-figure number, the sum of whose
digits is 11, is multiplied by the units’ digit, the product is
296. Required the number.

9. Three successive integers are so related that the
square of the greatest equals the sum of the squares of the
other two. Required the numbers.

10. Separate the number 102 into three parts such that
the product of the first and third shall be 102 times the
second, and the third shall be § of the first.
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11. Two cubes have together the volume 407 cu. in., and
the sum of one edge of the one and one of the other is
11 in. Required the volume of each.

12. If the product of two numbers is increased by their
sum, the result is 89; if the product is diminished by their
sum, the result is 51. Required the numbers.

13. One of the sides forming the right angle of a right-
angled triangle is § the other, and the area of the triangle
is 5082 sq. in. Required the lengths of the sides.

14. There are two numbers such that the product of the
first and 1 more than the second is 660, and the product of
the second and 1 less than the first is 609. What are the
numbers ?

15. A sum of money at interest for 5 yrs. amounts to
$4600. Had the rate been increased 19, it would have
amounted to $40 more than this in 4 yrs. Required the
capital and the rate.

16. The product of the numbers 17 and 2y2, in which
x stands for the hundreds’ digit of the first and y for the
tens’ of the second, and in which y =2 4 3, is 83,054
Required the values of x and .

17. Find a two-figure number such that the product of
the two digits is half the number, and such that the dif-
ference between the number and the number with the digits
interchanged is § of the product of the two digits.

18. In going 1732.5 yds. the front wheel of a wagon
makes 165 revolutions more than the rear wheel; but if
the circumference of each wheel were 27 in. more, the front -
wheel would, in going the same distance, make only 112
revolutions more than the rear one. Required the circum-
ference of each wheel.
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19. The floor of a certain room has 210 sq. ft., each of
the two side walls 135 sq. ft., and each of the two end walls
126 sq. ft. Required the dimensions of the room.

20. A certain cloth loses } in length and ¢ in width by
shrinking. Required the length and width of a piece which
loses 3.68 sq. yds., and which has its perimeter decreased
3.4 yds. by shrinking.

21. A rectangular field is 119 yds. long and 19 yds. wide.
How much must the width be decreased and the lengtl
increased in order that the area shall remain the same
while the perimeter is decreased 24 yds.?

22. Two points move, each at a uniform rate, on the arms
of a right angle toward the vertex, from two points 50 in.
and 136.5 in., respectively, from the vertex. After 7 secs.
the points are 85 in. apart, and after 9 secs. they are 68 in.
apart. Required the rate of each.

23. There are two lines such that if they are made the
sides of a right-angled triangle the hypotenuse is 17 in.;
but if one be made the hypotenuse and the other a side, the
remaining side is such that the square constructed upon it
contains 161 sq. in. How long are the two lines ?

24. There is a fraction whose numerator being increased
by 2 and denominator diminished by 2, the result is the
reciprocal of the fraction; but if the denominator is in-
creased by 2 and the numerator diminished by 2, the result
is 1/ less than the reciprocal. Required the fraction.

26. If the numerator of a fraction is decreased by 2, and
the new fraction added to the original one, the sum is 1%;
if the denominator is decreased by 2, and the new fraction
added to the original one, the sum is 24;. Required the
fraction,
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EXERCISES. CLIL

\l\ 1. How long is a pendulum which oscillates 56 times a
/ minute ?
2. A cube of water 1.8 dm on an edge weighs how
many kg ?
', 3. If a pipe 1.5 cm in diameter fills a reservoir in 3.25
+mins., how long will it take a pipe 3 cm in diameter to
it ?
4. If a projectile 8.1 in. in length weighs 108 lbs., what
is the weight of a similar projectile 9.37 in. long ?

\ 5. If a metal sphere 10 in. in diameter weighs 327.5 1bs.,
‘what is the weight of a sphere of the same substance 14 in.
in diameter ?

6. Of two bottles of similar shape one is twice as high
as the other. The smaller holds 0.5 pt. How much does
the larger hold ?

7. If a sphere whose surface is 16 = cm? weighs 5 kg,
what is the weight of a sphere of the same substance whose
surface is 32 7 cm? ?

\ 8 If the length of a 1-sec. pendulum be considered as
/ 1m, what is the time of oscillation of a pendulum 6.4 m
long? 62.5m long ?

9. A body weighs 25 lbs. 5000 mi. from the earth’s
center. How much will it weigh 4000 mi. from the center ?
(Weight varies inversely as the square of the distance from
the earth’s center.)

10. The distance through which a body falls from a state
of rest is proportional to the square of the number repre-
senting the time of fall. If a body falls 176.5 m in 6 secs.,
how far does it fall in 3.25 secs.? in 1 sec.? in 2 secs.?



CHAPTER XVI.
INEQUALITIES.

MAXIMA AND MINIMA.

296. Having given two real and unequal numbers, @ and
b, a — b cannot be zero. If a — b is positive, a is said to
be greater than b; if negative, a is said to be less than b.

Eg., 3> 2 because 3 — 2 is positive,
—2>-3 ¢ —2— (- 3)is positive,
—8< —2 ¢ —3—(—2)is negative.
If a >0, then a is positive, and if
a<0, ¢ ¢ ¢ pegative.

297. The inequalities @ > b, ¢ > d are called inequalities
in the same sense, and similarly for « <5, c<d. But a >,
¢ < d are called inequalities in the opposite sense, and similarly
for a <b, c>d.

298. In this chapter the letters used to represent numbers
will be understood to represent positive and real finite
numbers, except as the minus sign indicates a negative
number.

299. Just as we distinguish two classes of equalities,
(1) equations and (2) identities, so in inequalities we have
two classes, (1) those which are true only for particular
values of a quantity called the unknown quantity, and (2)
those which are true for all values of the letters.

E.g., x +2>3 is true only when > 1, but @ + b b is always true.
304
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300. If a variable quantity, «, cannot be greater than a
constant, m, but can equal it or approach indefinitely near
it in value, then m is called the maximum value of z.

Similarly, if « <¢m but can equal it or approach indefi-
nitely near it in value, then m is called the minimum value
of x.

E.g., (x —1)2 <0, because it is the square of a real quan-
tity and hence cannot be negative. But (x — 1)? can equal
O by letting =1. Hence, 0 is the minimum value of
@ —1)* |

Since we shall need the subject of inequalities in only a
few cases in our subsequent work, we shall present but a
few of the fundamental theorems. It is evident, however,
that the subject is an extensive one, covering simple inequali-
ties, quadratic inequalities, etc., together with simultaneous
inequalities corresponding to simultaneous equations.

301. The axioms of inequalities. The following axioms
have already been assumed and used:

Ax. 4. If equals are added to umequals, the sums are
unequal in the same sense.

Ax. 5. If equals are subtracted from unequals, the re-
mainders are uneyual in the same sense.

These are easily demonstrated, thus:
1. If a >b, then a — b is positive. § 296
2. Then ‘a—-b=a+k—k-b
' =(@+k) —(k+D)
and this expression is positive.
3. . a+k>b+k § 296
Similarly for ax. 5.

Theorems. Three important theorems of inequalities will
now be proved, the first two corresponding to axs. 6 and 8.



306 ELEMENTS OF ALGEBRA.

302. Theorem. If unequals are multiplied by equals, the
products are wnequal in the same or in the opposite sense,
according as the multiplier is positive or negative.

Proof. 1. If a > b, then a — b is positive. § 296
2. Then k(a — b) is positive,
and — k(a — b) is negative. § 296

3. .- ka — kb is positive,
and — ka — (— kb) is negative.
4. .. ka > kb,
and — ke < — kb. § 296
In this discussion the multiplier is supposed to be neither zero nor
infinite. :
303. Theorem. Ifa>Db, then a™>b™
Proof. 1. a — b is positive. § 296

2. (@ a4 ab™ ) (@ — b)
is positive, because the multiplier is evidently
a positive quantity.

3. .*. a™ — b™ is positive, because this is the prod-
uct of the expressions.

4. .. am™>b™ § 296

304. Theorem. Ifa+b, a?+ b>>2ab.

Proof. 1. (a — b)?>0, because (a — b)? is positive, being
the square of a real number. It is not 0, for
a+b.

2. .. a®—2ab+02>0.
3. .. a?®+ 0*> 2 ab.

Evidently a2 + b2 =2ab, if a = b.
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Illustrative problems. 1. Prove that 2> 2« — 1, if z+1.
We have 22 + 1>2z, by § 304.

2. xPHe 4 yPrI> gyt  poyr, if x £y

1. This is true if x»+92 — xPy? 4+ yP+9 — zey» is positive.

2. Or if zP (27 — y9) — yP (27 — y9) is positive.

8. Or if (z» — yP) (x7 — y9) is positive.

4. But both factors are positive if >y, and both factors are nega-
tive if £ < y, and in either case their product is positive.

3. Which is greater, 2 + V3, or 2.5 + V2?

1 2+ V32 2.5 + V2, according as
2. 7+4V32 8} + 5 V2, squaring. § 308
3. Oras  —1}+4V335V2. Ax.§
>
4. Oras 498 —10V3250. § 303
>
5. Or as -10V32 g - Ax. 5
6. But a negative number is less than a positive one.
24 V3<2.8 4+ V2.
. . z 1 1 =
4. Solve the inequality 22 — S +=>3z2 — =+ =-
3 2 3 6
1. 122 —-22+3>182 -2 4 z. § 302
2. .. —9z>—5b. Ax. b
3. z<$§, and § is the maximum value. § 300

Check. 1If z = §, the inequality becomes an equation. If > §, the
sense of the inequality is reversed.

5. Solve the inequality «? — 5x + 6 < 0.
1. (z —2)(z —3) <0, and hence is negative.

2. The smaller factor, z — 3, is negative, and the other positive.
3. ~z>2 and <3, or 2<z<3.
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6. Show that the minimum value of 22 — 8 x 4 22 is 6.

1. Letz? —8z + 22 = y, in which we have to find the miniinum
value of y.

2. Thenz2 —8x +22—-y=0.

3. ..z=4+ Vy — 6, and y cannot be less than 6 without making
z complex.

7. Divide the number 6 into two parts such that their
product shall be the maximum.

1. Let z and 6 — x be the parts.

2. Then z(8 — z) = y, in which we have to find the maximum value
of y.

3. Solving for z, z = 3 + V9 — y, and y cannot be greater than 9
without making & complex.

4. When y =9, 2 = 3; ... the parts are 3 and 3.

Check. 3.-3=9; but2(6 — 2) = 2 -4 = 8, a smaller number.

EXERCISES. CXL.

1. What is the nature of the inequality resulting from
subtracting unequals from equals ? Prove it.

2. Investigate the addition of unequals to unequals.
3. Also the subtraction of unequals from unequals.

4. Show that the maximum value of 4 x — 2? is 4, and
that 2 is the value of  which makes this f(x) a maximum.

6. If f(x) =x*+ « + 1, show that x = — 0.5 renders
Jf(x) a minimum, and find the minimum.

6. Prove that, in general, 2® 4+ 1>2%+ 2. What is
the exception ?

7. Also that (z + y)? >4 xy.
8. Solve the inequality x? + 5x > — 6.
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]
por> 9. Prove that (a + ) (b + ¢) (¢ + a) > 8 abe.
10. Prove that the minimum value of 22— 10 2 + 35 is 10.

11. Solve the inequality 5x +2>3 =z + 55— 7. Check
the result.

12. Solve the inequality ;”—:Z>0. Check.

‘ 13. Required the length of the sides of the maximum
rectangle of perimeter 16.

14. Prove that if the sum of two factors is %, a constant,
)( the maximum value of their product is 4% /4.

; 16. Show that if a square is inscribed in a square whose
; area is 16, its corners lying on the sides of the larger square,
its area 4. 8. "

16. If a, b, ¢ are three numbers such that any two are
together greater than the third, then

’ a? 48024 c2<2ab+ 2bc + 2ca.
17. Solve the inequality z? — 3z < 10.
18. Solve the inequality « (xz — 10) < 11.

19. Find the maximum value of 8 x — «?% and also the
value of z that renders this f(x) a maximum.

-20. Find the minimum.value of x (x + 10), and also the
value of x that renders this f(z) a minimum.

)( 21. Required the area of the largest rectangle having the
perimeter 20 inches. How do the sides compare in length ?

1 22. Required the area of the largest rectangle having the
! perimeter p inches. How do the sides compare in length ?

~ —



CHAPTER XVII.
RATIO, VARIATION, PROPORTION.

1. RATIO.

305. The ratio of one number, a, to another number, &, of
a
P

Thus, the ratio of $2 to $56 is g%, or %, or 0.4, but there is no

ratio of 82 to 5 ft., or $10 to 2. Here, as elsewhere in algebra, how-
ever, the letters are understood to represent pure (abstract) number.

the same kind, is the quotient

A ratio may be expressed by any symbol of division, e.g.,
by the fractional form, by =+, by /, or by :; but the symbols

generally used are the fraction and the colon, as (—2, or a:b.

306. In the ratio a:4, a is called the antecedent and & the
consequent.

307. The ratio b:a is called the inverse of the ratio « : .

308. If two variable quantities, x, y, have ‘a constant
ratio, r, one is said to vary as the other.

E.g., the ratio of any circumference to its diameter is 7 = 3.14159;
hence, a circumference is said to vary as its diameter.
x . .
If —=r, then £ =7y. The expression “z varies as y”’
is sometimes written « «c y, meaning that z = ry.
1 L .
fe=r- 7 x is said to vary inversely as y.

310
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309. If two variable quantities, «, y, have the same ratio
as two other variable quantities, z', ', then = and y are said
to vary as «' and y'. And if any two values of one variable
quantity have the same ratio as the corresponding values
of another variable quantity which depends on the first,
then one of these quantities is said to vary as the other.

E.g., the circumference ¢ and diameter d of one circle have the
same ratio as the circumference ¢’ and diameter d’ of any other circle ;
hence, ¢ and d are said to vary as ¢’ and d’.

If two rectangles have the same altitude, their areas depend on
their bases; and since any two values of their bases have the same
ratio as the corresponding values of their areas, their areas are said to
vary as their bases.

310. Applications in geometry. Similar figures may be
described as figures having the same shape, such as lines,
squares, triangles whose angles are respectively equal,
circles, cubes, or spheres. It is proved in geometry that
in two similar figures

1. Any two corresponding lines vary as any other two
corresponding lines.

2. Corresponding areas vary as the squares of any two
corresponding lines.

3. Corresponding volumes vary as the cubes of any two
corresponding lines.

E.g., in the case of two spheres, the circumferences vary as the
radii, the surfaces vary as the squares of the radii, the volumes vary
as the cubes of the radii.

These facts are easily proved. Let 8, 8’ stand for the surfaces of

two spheres of radii r, v/, respectively. Then we know from mensu-

ration that
8=4mnr? and & =43,

L8 _4m?2 _ 1

Ty dmr 2
Hence, the surfaces vary as the squares of the radii. In like manner
the volumes might be considered.
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Illustrative problems. 1. If the ratio of 2 to 3 is 27, find
the value of .

2
% =27, ~.22=38-27 =81, ...z = 4 9, and each value checks.

2. If a sphere of iron weighs 20 lbs., find the weight of
a sphere of iron of twice the surface.

1. Let r;, rg be the respective radii.
2. Then 4 zr 2 = § - 4 wrqg3, because the surface of a sphere = 4 zr3.
(p. 811.)

3. -~ 2=V
1
4. And ‘. the volumes (and hence the weights) vary as the cubes of
3 —
the radii (§ 310), and - 7 = (V2)P =2 V2.
Lot
6. .. the second sphere weighs 2 V2 times as much as the first.

2 V2. 20 lbs. = 56.57 1bs., nearly.

EXERCISES. CXLI.
1. The ratio of 625 to x® is 5. Find =.

2. Find z in the following ratios:
(a) 4:22=09. (b) «?:27 = 300. (©) x=1}z:2.

x? 36
(d) @ =T. (e) ? =x.
3. Find « in the following ratios:
x? 3 81 492t 3
(a) 175—2.4. (b) 28 ©) 132 19
@) 7:x=49. (e) z*:5=3g.

4. One cube is 1.2 times as high as another. Find the
ratio of (1) their surfaces, (2) their volumes.

5. The surfaces of a certain sphere and a certain cube
have the same area. Find, to 0.01, the ratio of their vol-
umes.
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311. Applications in business. Of the numerous applica-
tions of ratio in business, only a few can be mentioned, and
not all of these commonly make use of the word ¢ ratio.”

In computing interest, the simple interest varies as the
time, if the rate is constant; as the rate, if the time is con-
stant; as the product of the rate and the number repre-
senting the time in years (if the rate is by the year), if
neither is constant.

I.e., for twice the rate, the interest is twice as much, if the time is
constant; for twice the time, the interest is twice as much, if the rate
is constant; but for twice the time and 1.5 times the rate, the interest
is 2 - 1.5 times as much.

The common expressions “2 out of 3,” «2 to 5,” «“6 per
cent” (merely 6 out of 100) are only other methods of stat-
ing the following ratios of a part to a whole, 3, 4, 1§5, Or
the following ratios of the two parts, %, %, .

E.g., to divide $100 between A and B so that A shall receive $2 out
of every $3, is to divide it into two parts

(1) having the ratio 2:1, or

(2) so that A’s share shall have to the whole the ratio 2 : 3, or

(3) so that B’s share shall have to the whole the ratio 1:3.

EXERCISES. CXLII

1. Divide $1000 so that A shall have $7 out of every $8.

2. Divide $500 between A and B so that A shall have
$0.25 as often as B has $1.25.

3. The area of the United States is 3,501,000 sq. mi.,
and the area of Russia is 8,644,100 sq. mi. Express the
ratio of the former to the latter, correct to 0.01.

4. The white population of the United States in 1780
was 2,383,000; in 1790, 3,177,257; in 1880, 43,402,970;
in 1890, 54,983,890. What is the ratio of the population
in 1790 to that in 1780 ? in 1890 to that in 1880 ?
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312. Applications in physics. (a) Specific gravity. The
specific gravity of any substance is the ratio of the weight
of that substance to the weight of an equal volume of some
other substance taken as a standard.

In the case of solids and liquids, distilled water is usually taken as
the standard. Thus, the specific gravity of mercury, of which 11
weighs 13.596 kg, is 13.596, because a liter of water weighs 1 kg, and

13.596 kg : 1 kg = 13.596. -
In the case of gases either hydrogen or air is usually the standard.

The following table will be needed for reference :

SPECIFIC GRAVITIES.

Mercury, 13.596. Silver, 10.5.
Nickel, 8.9. Gold, 19.3.

WEIGHTS OF CERTAIN SUBSTANCES.

11 of water, 1 kg. 1 cm? of water, 1 g.
1 cu. ft. of water, about 62.5 lbs.

ExamprLe. What is the weight of 1 cu. in. of copper ?

1. 1 cu. ft. of water weighs 62.5 lbs.
2. .. 1 cu. in. of water weighs 62.5 lbs + 1728.
3. .. 1 cu. in. of copper weighs 8.9 - 62.5 1bs, + 1728, or 5.15 oz.

EXERCISES. CXLIIL
1. What is the weight of a cubic foot of gold ?
2. What is the weight of 1 cm? of nickel ? of silver ?

3. The specific gravity of ice is 0.92, of sea-water 1.025.
To what depth will a cubic foot of ice sink in sea-water ?

4. From ex. 3, how much of an iceberg 500 ft. high would
show above water, the cross-section being supposed to have
a constant area ?
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313. (b) Law of levers. If a bar, AB, rests on a fulcrum,

F, and has a weight, w, at , w
B, then by exerting enough — R

pressure, p, at A the weight A 3 B J?
can be raised. In the first

figure the pressure is down- J &

ward (positive pressure); in P

the second it is upward (neg- AL JB4 —

ative pressure).
There is a law in physics that, if p', w' represent the
number of units of distance AF, FB, respectively, and p,
w the number of units of pressure and weight, respectively,
then . 1
=1,

ww

In the first figure p, w, p’, w are all considered as positive; in the
second figure p is considered as negative because the pressure is up-
ward, and w’ is considered as negative because it extends the other
way from F. Hence, the ratio pp’: ww’ =1 in both cases.

ExampLE. Suppose AF =25 in.,, FB =14 in., in the
first figure. What pressure must be applied at 4 to raise
a weight of 30 lbs. at B?

1. By the law of leve 25p =1
14- 30
14-30
2. ~p= 5 = 16.8, and .-. the pressure must be 16.8 1bs.

EXERCISES. CXLIV.

1. Two bodies weighing 20 1lbs. and 4 lbs. balance at the
ends of a lever 2 ft. long. Find the position of the fulerum.

2. The radii of a wheel and axle are respectively 4 ft.
and 6 in. 'What force will just raise a mass of 56 lbs., fric-
tion not considered ?
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REVIEW EXERCISES. CXLV.

1. In each figure on p. 315, what must be the distance
AF in order that a pressure of 1 kg may raise a weight of
100 kg 3 dm from F'?

2. If a sphere of lead weighs 4 1bs., find the weight of a
sphere of lead of (1) twice the volume, (2) twice the sur-
face, (3) twice the radius.

3. A nugget of gold mixed with quartz weighs 0.5 kg ;
the specific gravity of the nugget is 6.5, and of quartz 2.15.
How many grams of gold in the nugget ?

.*\ 4. A vessel containing 11 and weighing 0.5 kg is filled
with mercury and water; it then weighs, with its contents,
3 kg. How many cm? of each in the vessel ?

5. What pressure must be exerted at the edge of a door
to counteract an opposite pressure of 100 lbs. halfway from
the hinge to the edge ? one-third of the way from the hinge
to the edge ?

6. Explain Newton’s definition of number: Number is
the abstract ratio of one quantity to another of the same
kind. What kinds of numbers are represented in the fol-
lowing cases: 5 ft.:1 ft.,, 1 ft.:5 ft., the diagonal to the
side of a square, the circumference to the diameter of a
circle ?

7. The depths of three artesian wells are as follows :
A 220 m, B 395 m, C 543 m; the temperatures of the
water from these depths are: A 19.75° C,, B 25.33° C.,
C 30.50° C. From these observations, is it correct to say
that the increase of temperature is proportional to the
increase of depth ? If not, what should be the tempera-
ture at C to have this law hold ?
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Tee THEORY 0F RATIO.

314. A ratio is called a ratio of greater inequality, of
equality, or of less inequality, according as the antecedent
is greater than, equal to, or less than the consequent.

315. Theorem. A ratio of greater inequality is dimin-
tshed, a ratio of equality is unchanged in value, and a
ratio of less inequality is increased by adding any positive
quantity to both terms.

Given the ratio @ : b, and p any positive quantity.

To prove that - tr s - according as a 2 b.
b+ b
Proof. 1. atpga according as
b+p = b
ab + pb § ab + ap. § 302, ax. 6
2.0ras pbSap orasdsa § 301

3. Le,as aZb

316. Theorem. If %:%:%:..., then each of these
. at+c+e+---
ratios equals brdsfe
Proof. 1. Let 3 ="k. Tmnk=§=§=
2. .. a = kb,
¢ =kd,
e=kf,---.
3 c.at+ct+e+ - -=k(0+d+f+--). Ax.2
.atct+e+ - a ¢ [

) . k=20 AT
btd+ft b= d *
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EXERCISES. CXLVL

X )( 1. Prove that the product of two ratios of greater in-

\

X X 7. Which is the greater ratio,

equality is greater than either.

2. Consider ex. 1 for two ratios of equality; of less
inequality. Then state the general theorem and prove it.

3. Find the value of x, knowing that if « is subtracted
from both terms of the ratio 4 the ratio is squared.

4. Is the value of a ratio changed by raising both
terms to the same power ? State the general theorem
and prove it.

5. Prove (or show that it has been proved) that the
value of a ratio is not changed by multiplying both terms
by the same number.

6. As in § 315, consider the effect of subtracting from
both terms of a ratio any positive number not greater than
the less term. State the theorem and prove it.

a+5b a+6b
or ?
a-+6db a+T7b

%_X 8 Which is the greater ratio, *— 2y o 239,

y—2& O 3y—2z°

% X 9. Which is the greater ratio, Z+b+c’ op 2=b+e,

—b—c a+b—c’

2 2 2
)( 10. 1f%=’3 °, prove that L1+ 0-+ ¢ _abtbe+t cd

¢ d ab+bct+ed P+ +d2

~

a ¢ e 3a+5¢c—6e
L If s=-=-_= =to T8 906,
)« 3= 3 k, prove that % 5531 54—67

12. If % ‘%a the letters standing for positive numbers,

2 2
prove that —>\/a +o >c

b?_'_dﬁ
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II. VARIATION.

317. It has already been stated (§ 308) that the expres-
sions “a varies as y,” “a varies inversely as y,” simply

mean that the ratios x:y, x:-, are respectively equal to

some constant. These are merely special cases of z = f(¥);
for z:y = k reduces to = = ky, whence z is a function of y;

similarly : 1_ k reduces to x = I—c; whence x is a function
of y. - y

Although there is nothing in the theory of variation which
is not substantially included in the theory of ratio, the
phraseology and notation of the subject are so often used
in physics as to require some further attention.

Two illustrations from physics will be given in this con-
nection, the one relating to the pressure of gases and the
other to electricity. While neither requires much algebra
for its consideration, each offers an excellent illustration of
the use of variation in physics. No preliminary knowledge
of physics is necessary, however, to the work here given.

318. Boyle’s law for the pressure of gases. It is proved in
physics that if p is the number of units of pressure of a
given quantity of gas, and v is the number of units of
volume, then p varies inversely as » when the temperature
remains constant.

This law was discovered in the seventeenth century by Robert Boyle.

E.g., if the volume of a gas is 10 dm? under the ordinary pressure
of the atmosphere (‘‘ under a pressure of one atmosphere '"), it is

% as much when the pressure is 2 times as great,

P13 ‘“ “ (13 “" ‘“ n [13
n 1
ntimes (3 ‘o ‘" 13 (3 [ 13
n

the temperature always being considered constant.
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ExampLE. A toy balloon contains 31 of gas when exposed
to a pressure of 1 atmosphere. What is its volume when
the pressure is increased to 4 atmospheres ? decreased to 4
of an atmosphere ?

1. - the volume varies inversely as the pressure, it is } as much
when the pressure is 4 times as great.

2. Similarly, it is 8 times as much when the pressure is § as great.

3. .. the volumes are 0.756 1 and 24 1.

EXERCISES. CXLVII

1. If a cylinder of gas under a certain pressure has its
volume increased from 20 1 to 25 1, what is the ratio of the
pressures ?

2. A certain gas has a volume of 1200 cm® under a pres-
sure of 1033 g to 1 cm%  Find the volume when the pres-
sure is 1250 g.

3. A cubic foot of air weighs 570 gr. at a pressure of 15
1bs. to the square inch. What will a cubic foot weigh at a
pressure of 10 lbs. ?

4. Equal quantities of air are on opposite sides of a
piston in a cylinder that is 12 in. long; if the piston moves
3 in. from the center, find the ratio of the pressures. Draw
the figure.

5. A liter of air under ordinary pressure weighs 1.293 g
when the barometer stands at 76 cm. Find the weight when
the barometer stands at 82 cm, the weight varying as the
height of the barometer.

6. If the volume of a gas varies inversely as the height
of the mercury in a barometer, and if a certain mass occu-
pies 23 cu. in. when the barometer indicates 29.3 in., what
will it occupy when the barometer indicates 30.7 in. ?
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319. Problems in electricity. The great advance in elec-
tricity in recent years renders necessary a knowledge of
such technical terms as are in everyday use.

When water flows through a
pipe some resistance is offered
due to friction or other impedi-
ment to the flow of the water.

A certain quantity of water
flows through the pipe in a second,
and this may be stated in gallous
or cubic inches, etc.

A certain pressure is necessary
to force the water through the
pipe. This pressure may be meas-
ured in pounds per sq. in., kilo-
grams per cm?, etc.

Hence, in considering the water
necessary to do a certain amount
of work (as to turn a water-wheel)
it is necessary to consider not
merely the pressure, for a little
water may come from a great
height, nor merely the wvolume,
nor merely the resistance of the
pipe; all three must be consid-
ered.

‘When electricity flows through
a wire some resistance is offered.
This resistance i8 measured in
ohms. An ohm is the resistance
offered by a column of mercury
1 mm? in cross-section, 106 cm
long, at 0°C.

A certain quantity of electric-
ity flows through the wire. This
quantity i8 measured in amperes.
An ampere is the current neces-
sary to deposit 0.001118 g of silver
a second in passing through a cer-
tain solution of nitrate of silver.

A certain pressure is necessary
to force the electricity through the
wire. This pressure is measured
in volts. A volt is the pressure
necessary to force 1 ampere
through 1 ohm of resistance.

Hence, in considering the elec-
tricity necessary to do certain
work it is necessary to consider
not merely the voltage, for a little
electricity may come with a high
pressure, nor merely the amper-
age, nor merely the number of
ohms of resistance; all three must
be considered.

The names of the electrical units mentioned come from the names
of three eminent electricians, Ohm, Ampeére, and Volta.
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320. Tt is proved in physics that the resistance of a wire
varies directly as its length and inversely as the area of its
cross-section.

That is, if a mile of a certain wire has a resistance of 3.568 ohms,
2 mi. of that wire will have a resistance of 2 - 3.58 ohms, or 7.16 ohms.

Also, 1 mi. of wire of the same material but of twice the sectional
area will have a resistance of 4 of 3.568 ohms, or 1.79 ohms,

From these laws and definitions, the most common prob-
lems and statements concerning electrical measurements
will be understood.

EXERCISES. CXLVIIL

1. If the resistance of 700 yds. of a certain cable is
0.91 ohm, what is the resistance of 1 mi. of that cable ?

2. The resistance of a certain electric lamp is 3.8 ohms
when a current of 10 amperes is flowing through it. What
is the voltage ?

3. If the resistance of 130 yds. of copper wire ¢ in. in
diameter is 1 ohm, what is the resistance of 100 yds. of
7 in. copper wire ?

4. The resistance of a certain wire is 9.1 ohms, and the
resistance of 1 mi. of this wire is known to be 1.3 ohms.
Required the length.

5. Three arc lamps on a circuit have a resistance of
3.12 ohms each ; the resistance of the wires is 1.1 ohms,
and that of the dynamo is 2.8 ohms. Find the voltage for
a current of 14.8 amperes.

6. The resistance of a dynamo being 1.6 ohms, and the
resistance of the rest of the circuit being 25.4 ohms, and
the electromotive force being 206 volts, find how many
amperes flow through the circuit.
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THEORY OF VARIATION.

321. Theorem. If xocy and y « z, then x « 2.

Proof. 1. If x <y, then = ky. § 308
2. If y <z, then y = k'z. § 308
3. ... v = ky = kk'z. Substn.
4. .. T oz, § 308

Note that in step 2 we cannot use the same constant as in step 1.

E.g., if the edge of a cube varies as the diagonal of a face, and the
diagonal of a face varies as the diagonal of the cube, then the edge
must vary as the diagonal of the cube.

322. Theorem. If x «xcyz, then y <x/z.

Proof. 1. x = kyz. (Why ?)
2. .. y=}—cx/z. Ax. 7
3. .. yoex /2. § 308

E.g., if the area of a rectangle varies as the product of the (numbers
representing the) base and altitude, then the base varies as the quotient
of the (number representing the) area divided by the (number repre-
senting the) altitude.

323. Theorem. If woxx and y xz, then Wy « Xz.

Proof. 1. w=kx and y = k'z. (Why ?)
‘ 2. . wy = kk'zz. , (Why ?)
3. .. wy o« x2. (Why ?)

E.g., if the surface of a sphere varies as the square of the diameter,
and ¢ of the radius varies as the radius, then the product of the surface
and 4 of the radius varies as the product of the radius and the square
of the diameter.
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324. Theorem. If x oy when z is constant, and if X o€ z
when y is constant, then x « yz when both y and z vary.

To understand this statement consider a simple illustration: The
area of a triangle (p. 172) varies as the altitude when the base is con-
stant, and as the base when the altitude is constant; but it varies as
the product of their numerical values when both base and altitude vary.

Proof. 1. Let the variations of y and z take place sepa-
rately.
2. Let = change to z' when y changes to y', 2
remaining unchanged. Then
3. Let «' change to =" when y' remains unchanged

and z changes to 2. = Then

.. . x z
.xocz,..——,—,—;-,-
!
z x z 2 2
4. ... -~ or -, equals l,-—-,; or yT,
z x x y z y'z

5. Le., x changes to z" as yz changes to y'2', or
o yz. '

Ilustrative problems. 1. If xcy, and if x =2 when
y =5, find « when y = 11.

‘s Zocy means that x=ky, ~.2=%k-5, and k=% .-.z=§y..
Wheny =11,z =311 = 4.4. S

Y

2. The volumes of spheres vary as the cubes of their
radii. Two spheres of metal are melted into a single
sphere. Required its radius.

1. v="Fr® and v = kr3. ! § 308
2. ... the volume of the single sphere is k (r3 4 173).
3. Call v” this volume, and 7 the radius; then
v’ =k(r8 + v8) = kr”’8,
4. . r8=1% 48 and .. 7”7 = (18 + r8)3,
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EXERCISES. CXLIX.

If x «c 2 and y o« 2, prove that xy o 22
If x cz and y 2, prove that  + y c 2.
If x + y cx — y, prove that x? + y* ey,
If wocx and y x 2, prove that w/y <z /2.
If10x+3y=T7x — 4y, show that z < y.

If a®*xd¥, and if x =3 when y =5, prove that
a8 =3,

& & h oW b

7. If zxy, and if £ = « when y = b, find the value of
x when y = c.

8. If xxy, and if =7 when y =11, find the value
of ® when y =T7.

9. If zcy, prove that px « py, p being either a con-
stant or a variable.

10. What is the radius of the circle which is equal to
the sum of two circles whose radii are 3 and 4, respectively ?

11. Prove that the volume of the sphere whose radius is
6 is equal to the sum of the volumes of three spheres whose
radii are 3, 4, and 5, respectively. '

\ 12. The illumination from a given source of light varies
inversely as the square of the distance. How much farther
from an electric light 20 ft. away must a sheet of paper be
removed in order to receive half as much light ?

\" 13. Kepler showed that the squares of the numbers rep-
resenting the times of revolution of the planets about the
sun vary as the cubes of the numbers representing their
distances from the sun. Mars being 1.52369 as far as the
earth from the sun, and the time of revolution of the earth
being 365.256 das., find the time of revolution of Mars.
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III. PROPORTION.

325. The equality of two ratios forms a proportion.

Thus, § =4,a:b=c:d, x/y = m/n, are examples of proportion.
The symbol :: was formerly much used for =.

326. There may be an equality of several ratios, as
1:2=4:8=9:18, the term continued proportion being
applied to such an expression.

Three quantities, a, b, ¢, are said to be in continued proportion
when a:b=>b:c. '

327. There may also be an equality between the products
of ratios, as - § = } - 12, such an expression being called a
compound proportion. '

328. In the proportion a:b=c:d, a, b, ¢, d are called
the terms, @ and d being called the extremes and 4 and ¢ the
means. The term d is called the fourth proportional to a, b, c.

329. In the proportion a:b=1b:¢c, b i called the mean
proportional between e and ¢, and ¢ is called the third pro-
portional to @ and b.

330. If one quantity varies directly as another, the two
are said to be directly proportional, or simply proportional.
E.g., at retail the cost of a given quality of sugar varies directly as

the weight; the cost is then proportional to the weight. Thus, at
4 cts. a pound 12 lbs. cost 48 cts., and 4 cts. : 48 cts. = 1 1b. : 12 lbs.

331, If one quantity varies inversely as another, the two
are said to be inversely proportional.
E.g., in general, the temperature being constant, the volume of a

gas varies inversely as the pressure, and the volume is therefore said
to be inversely proportional to the pressure.



RATIO, VARIATION, PROPORTION. 327

Illustrative problems. 1. What are the mean proportionals
between 5 and 125 ? '

1. 5_ =,
z 126
2. .. 626 = 23,
3. .. + 25 = z, and both results check.

2. What is the fourth proportional to 1, 5, 9?

1 1_9
b5 =z
2. .. z = 5-9 = 45, and the result checks.

3. What number must be added to the numbers 1, 6, 7,
18 so that the sums shall form a proportion ?

L 1+x=7+x‘
6+ 184z

2. .- 18 + 19z + 22 =42 + 13z + 22

3. .- z=4.

Check. 5 = 3}.

EXERCISES. CL.

1. State which of the following, other things being equal, .
are directly and which are inversely proportional :

(a) Volume of gas, pressure.

(b) Price of bread, price of wheat.

(c¢) Distance from fulcrum, weight.

(d) Amount of work done, number of workers.

Given 1.43:2 =4.01:2, find the value of z.

Also in 27 :z = x : 48.

What are the mean proportionals between 1 and 1 ?
Also between 1 + ¢ and 2 (1 — ), where i = V—17?
What is the third proportional to 1 + ¢ and —2?

A O
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332. The applications of proportion are found chiefly in
geometry and physics. Other methods are now generally
employed for business problems.

In the two illustrative examples below, the first three
steps are explanatory of the statement of the proportion
and may be omitted in practice. In the first problem the
ratios are written in the fractional form in order that the
reasons involved may appear more readily.

Illustrative problems. 1. The time of oscillation of a
pendulum is proportional- to the square root of the number
representing its length; the length of a 1-sec. pendulum
being 39.2 in., what is the length of a 2-sec. pendulum ?

1. Let x = the number of inches of length.
2. Then ?ﬁ = the ratio of the lengths.

3. And $ = the ratio of the corresponding times of oscillations.

4. - the time is proportional to the square root of the number
representing the length,

. Vz 2
" Veee 1
z 4
“33=1’ whence z = 39.2 - 4 = 156.8. AAxs. 8,6

6. -z = the number of inches, ... the pendulum is 156.8 in. long.

2. A mass of air fills 10 dm® under a pressure of 3 kg
to 1 cm®. What is the space occupied under a pressure of
5kg to 1 cm? the temperature remaining constant ?

1. Let 2 =the number of dm® under a pressure of 5 kg to 1 cm?.
2. Thenz:10=the ratio of the volumes.

3. And b6:3=the ratio of the corresponding pressures.

4. ‘. the volume is inversely proportional to the pressure,

co2:10=3:5.
5. .. z2=10-3:56=6. Ax. 6
6. - z = the number of dms, .. the space is 6 dms3.
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) EXERCISES. CLI.
X 1. How long is a pendulum which oscillates 56 times a
minute ?
2. A cube of water 1.8 dm on an edge weighs how
many kg? ,
v 8. If apipe 1.5 cm in diameter fills a reservoir in 3.25
. E\'gxs., how long will it take a pipe 3 cm in diameter to
Al it?

4. If a projectile 8.1 in. in length weighs 108 1bs., what

is the weight of a similar projectile 9.37 in. long ?

\, 5. If ametal sphere 10 in. in diameter weighs 327.5 1bs.,
- what is the weight of a sphere of the same substance 14 in.

in diameter ?

6. Of two bottles of similar shape one is twice as high
as the other. The smaller holds 0.5 pt. How much does
the larger hold ?

7. If a sphere whose surface is 16 = cm? weighs 5 kg,
what is the weight of a sphere of the same substance whose
surface is 32 7 cm??

\
\

8. If the length of a 1-sec. pendulum be considered as
1 m, what is the time of oscillation of a pendulum 6.4 m
~ long? 62.5m long?

\\ 9. A body weighs 25 1bs. 5000 mi. from the earth’s

- center. . How much will it weigh 4000 mi. from the center ?
(Weight varies inversely as the square of the distance from
the earth’s center.)

10. The distance through which a body falls from a state
of rest is proportional to the square of the number repre-
senting the time of fall. If a body falls 176.5 m in 6 secs.,
how far does it fall in 3.25 secs.? in 1 sec.? in 2 secs.?
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THEORY OF PROPORTION.

333. Theorem. In any proportion in which the numbers
are all abstract, the product of the means equals the product
of the extremes.

Proof. 1. If

% = 2, then, by multiplying by bd,
ad = be.

2. Ax. 6

334. Theorem. If the product of two abstract mnumbers
equals the product of two others, either two may be made
the means and the other two the extremes of a proportion.

Proof. 1. If ad = be, then, by dividing by &d,
¢

a
2 = a

Ax. 7

Similarly, 2 =%, ete.
a [

335. Thmmﬁ. If a:b=c:d, then a:c=Db:d.

The proof is left for the student.

The old mathematical term for the interchange of the means is
¢t alternation.”” The first proportion is ‘‘taken by alternation?’ to
get the second. The term, while of little value, is still used.

336. Theorem. If a:b=c:d, then b:a=d:c.

The proof is left for the student. :

The old matheniatical term for this change is ‘¢ inversion.’

337. Theorem. If a:b=c:d, then a+b:b=c+d:d
The proof is left for the student.

The old mathematical term for this change is ¢‘ composition.”’
338. Theorem. Ifa:b=c:d, then a—b:b=c—d:d

The proof is left for the student.
The old mathematical term for this change is ¢ division.”
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339. Theorem. If
a:b=c:d, then a+b:a—b=c+d:c—d.

Proof. 1. eté_otd § 337
b d

2. 1%1’=°;d § 338

3. ...a-li)-b+a;b=c-£d+c;d_ A.x.7

4.0 LE_ctd § 161

The old mathematical term for this change is ‘‘ composition and
division.”’
There is sometimes an advantage in applying this principle in solving
fractional equations. E.g., given the equation
2?2+8z—-1_ a2—42+2
2 —8z+1 22+4z—2

222 222
6z —2 —8z+4
s x=0, or §.

340. Theorem. The mean proportionals between two num-
bers are the two square roots of their product.

a =z
2. ... z? = ab. § 333, or ax. 6
3. .. x =% Vab. Ax. 9

Dlustrative problems. 1. If a:b = ¢:d, prove that
a+b+c+d:b+d=c+d:d.

1. This is true if ad + bd + cd + d? = bc + bd + cd + d3. § 334

2. Orif ad = be. Ax. 3

3. But ad = be. § 333

4. .. reverse the process, deriving step 1 from step 3, and the origi-
nal proportion from step 1.
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2. Solve the equation c+2+ Ve -3 _ 1}.
Ve +2—-Vz—-3
We may clear of fractions at once, isolate the two radicals, and

square; but in this and similar cases § 339 can be used to advantage.
Writing the second member § and applying § 339, we have

1 2Vz+2_§_
' 2vz—3 1
. z+2 _
2. .. z—3_25°
3 . z+2=26z—175.
4. .. z =1
Check. Substitute 1] for z in the original equation, and reduce;
then g
SVE_ ;.
2V}

3. Find a mean proportional between 1+¢ and —2 —141.
1. By § 340 thisequals + V(I + 1) (- 2 — 14)

2. =+V12 - 164

3. =+2V3—4i

4. =4+2V4_2v_4-1

5. =42 —i). § 246

EXERCISES. CLIIL
1. Find the valueof £ in 2:3 4+ ¢ =x:5.
2. Find the third proportional to 1 —v2 and 1 —3V2.

at ct

at+b c+d

b= - 8 4 78.08 =
; /Vs. If a:b = c:d, prove that a®+5%:¢*+d®

4. Also that = +e

c.
b+d d : 4
5. Alsothatbc+cd:c—a=2bcd+cd’—£"-cd—bc.
X k6. Alsothat Va —b: Ve —d=Va—Vb:Ve— V.
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7. If a:b=1b:¢, prove that a + ¢ > 2.

8. If a:56=b:¢, prove that (e + ¢)b is a mean propor-
tional between a? + 4% and 4% + c2

9. Find the two mean proportionals between
(a) 2 and 98. (b) 50 and — 2.
(¢) 3 and 432. (d) — 7 and — 847.

10. Given 16 — 6x:3 =2 + z: z, to find «.

{/* 11. Given Ve + 7T+ Ve —T: Vz + 7 — \/z—"( 6:1,
to find =.

12. Given 14 z2:13 —z=2—2:2?—21=2+44:37 —2a?,
to find .

. a+b)’ 2b’
‘H’ 13. Given a — 2 ab Y to find .

\

14. Given3a?+2ab—8b%:5a%+4ab—1202=x:5a—65,
to find .

16. Givenx:y= a+b——b—b a— b+ ,and:c-l-y a®
=2:1,tofindzandy °7

16. Given Va;—5:\/7+x=1:2,toﬁndz.,
17. Find the value of z in
3+4x—x22:3 —4x+4+22=24x:2—2. \ i
\

8. If ax +cy _ayYoezx az+ox
: by +dz_ bz+da: bz +dy

these ratios equa.ls

» prove that each of

b+d o
19. If a—b b—c¢c c¢c—a _ a+4+b+ec

’ ay+bxr bz+cx cy+az ax+ by+cz
that each of these ratios equals 1

» prove

z+y+z.
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/ ' SERIES.
341, A series is a succession of terms formed according
to some common law. '

E.g., in the following, each term is formed from the preceding as
indicated :

1,.8, 5, 7, ---, by adding 2;
7, 3, —1, — 5, ..., by subtracting 4, or by adding — 4 ;
3, 9, 27, 81, ..., by multiplying by 3, or by dividing by % ;
2, 2, 2, 2, ..., by adding 0, or by multiplying by 1.
In the series 0, 1, 1, 2, 8, 5, 8, 13, - -., each term after the first
two is found by adding the two preceding terms.

342. An arithmetic series (also called an arithmetic pro-
gression) is a series in which each term after the first is
found by adding a constant to the preceding term.

E.g., -7, —1, 5, 11, -. -, the constant being 6,
2, 2’ 2’ 2’ ceey “" (3 3 0,
98, 66, 34, 2, ..., ¢ ¢ ¢~ 32,

343. A geometric series (also called a geometric progres-
sion) is a series in which each term after the first is formed
by multiplying the preceding term by a constant.

E.g., 3, —6, +12, — 24, ..., the constant being — 2,

10’ 5, 2_*, li,’ ceey ‘" 13 3 *’
2,2, 2 2, ..., ¢ ¢ ¢« 1.

344. The terms between the first and last are called the
means of the series.
334
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I. ARITHMETIC SERIES.

345. Symbols. The following are in common use:

n, the number of terms of the series.

s’ ‘" sum (3 [ o ‘"

ty, &3, ts, - - - ts, the terms of the series.

In particular, a, or t;, the 1st term, and [, or £,, the nth or last term.

d, the constant which added to any term gives the next ; d is usually
called the difference.

346. Formulas. There are two formulas in arithmetic
series of such importance as to be designated as fundamental.
Lt,orl=a+(—1)d
Proof. 1. ts = a + d, by definition.
ts=ta+d=a+2d.
ts=ts+d=a+3d.
2 . th=ta1+d=a+(n—1)d.
3. Or l=a+(n-1)d.
E.g., the 50th term in the series 2, 7, 12, 17, -- - is 2 4 49.56 = 247.

TNLICE L N ICE S5}

Proof. 1. s=a+(a+d)+@+2d)+---( —d)+1

2. Hence, s=1 +( —d)+( —2d)+---(a+d)+a,

by reversing the order.

3. ~28=@+d+@+)+---(at+)). Ax. 2
4 . 28=n(a+ 1), - thereis an (a + ) in step 3 for each of the
n terms in step 1.

5 .. 8=n(a—+l—).

E.g., the sum of the first 50 terms of the series 2, 7, 12, 17, ---,
of which  has just been found, is

0@+ 247) _ gogs.
2
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347. It is evident that from formulas I and II various
others can be deduced.

E.g.,Agiven d, l, 8, to find n. The problem merely reduces to that
of eliminating @ from I and II, and solving for n.

1. From I, a=1l—(n-1)d
2. Substitutinginll,s:’."ﬁilg'_'ﬂl.
2l+d 28
. 2 - . —=0.
3 7 2 'n+d
2
4 . n=2l+d:t V(§;+d) Sds. § 269

Illustrative problems. 1. Which term of the series 25, 22,
19, ...is —125°?

1. Given a=25, d= -3, | = — 125, to find n.

2. l=a+@m—1)d, —125=26+ (n—1)(—3).

3. Solving, n = b51.

2. Insert arithmetic means between 5 and 41 so that the
4th of these means shall have to the next to the last, less 1,
the ratio 1: 2.

1. The means are 6 + d, b + 2d, ---41 —2d, 41 —d.
b5+4d 1

41-24-1 2

3. .. d =3, and the means are 8, 11, 14, 17, -.. 35, 38.

2. ..

3. The sum of three numbers of an arithmetic series is
12 and the sum of their squares is 56. Find the numbers.
In this and similar cases it is advisable to take z —y, 2, 2 + ¥, ¥

being the common difference. In the case of four numbers it is advis-
able to take z — 3y, z — ¥, = + ¥, = + 3y, 2y being the difference.

1. E-+z+@E+y)=12, z=4.

2. @—y)2+22+(x+y)2=066, .. 322 +2y2=156.

3. .. y=42.

4. .. the numbers are 4 T 2, 4, 4 + 2; thatis, 2, 4, 6, or 6, 4, 2.
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348. The following table gives the various formulas of
arithmetic series, and these should be worked out from
formulas I and II by the student.

GIVEN. | TO FIND. RESULT.

1 adn l=a+(n—-1)d.

2 ads . l=—3}d+V(a—$d)?+2ds.
3 ans l=28/n—a.

4 dns l=s/n+(n-—1)d/2.

5 adn s=3n[2a+ (n —1)d].

[ adl s=3(l+a)+ (2 —a?)/2d.

7 | ant * s=4n(a+1).

8 dnl : s={n[2l - (n —-1)d].

9 dnl a=1l—(n-1)d

10 dns a=8/n—$(n—1)d

1 | dis * |l a=jdx Vit idF—_2ds.
12 nls a=2s8/n-—1

13 anl d=(l-a)/(n—1).

14 ans d=2(s—an)/(n® —n).

15 als d d=B-a?/28—1—a).

16 nls d=2(nl —3s)/(n?—n).

17 adl n=(1—-a+d/d

18 ads n=[d—-2a+V@2a—d)?+8ds]/2d.
19 als " n=28/(a+1).
20 dls n=[d+2l+V(@Il+d)?—8ds]/2d.
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Illustrative problem. Find the number of terms in the
arithmetic series whose first term is 25, difference — 5, and
sum 45.

We may substitute in formula 18, but it is quite as easy to use the
two fundamental formulas which the student will carry in his mind.

1. FromI, 1=26+(n—1)(—5)=30—5n

2..

3. .
4. ..

« 11, 45= 2_5_%__57.‘ n.

n?—11n+18=0.
m—2)(n—9)=0, and n=2, or 9.

The explanation of the two results appears by writing
out the series.

25, 20, (16, 10, 5, 0, — 5, — 10, — 15).

The part enclosed in parentheses has 0 for its sum.
Hence, the sum of 2 terms is the same as the sum of 9 terms.

EXERCISES. CLIII

1. Find ¢,y in the series 1, 3; 5, ...
2. Find s, given ¢ =40, 2 =101,d =5."
8. Find s, given a =1, I = 200, n = 200.
4. Given ¢, = — 1} and ¢,; = 59}, find d.
5.
6
7
8
9

Find ¢,, in the series 540, 480, 420, ---.

. Find n, given s = 29,000, a = 40, I = 540.

. Insert 7 arithmetic means between — 5 and 11.

. Insert 12 arithmetic means between — 18 and 125.

. Find s, given a =14, n =8, d = —4. Write out

the series.

10.

How many multiples of 17 are there between 350

and 1210°?
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11. What is the sum of the first 200 numbers divisible
~by5? by 7?
12. Show that the sum of any 2» + 1 consecutive integers
is divisible by 27 + 1.
13. What is the sum of the first 50 odd numbers? the
“first 100 ? the first » ?

14. What is the sum of the first 50 even numbers ? the
first 100 ?. the first n ? /

15. Given /=11, d =2, s =32, to find n. Check the
result by writing out the series.

16. How long has a body been falling when it passes
through 53.9 m during the last second ?

17. Suppose every term of an arithmetic series to be
multiplied by %; is the result an arithmetic series ?

18. The sum of four numbers of. an arithmetic series is
0 and the sum of their squares is 20. Find the numbers.

19. The sum of four numbers of an arithmetic series is
12 and the sum of their squares is 116. Find the numbers.

20. The sum pf three numbers of an arithmetic series
is 21 and the sum of their squares is 179. Find the
numbers. '

21. Find five numbers of an arithmetic series such that
the sum of the first and fifth is 46, and that the ratio of the
fourth to the second is 1.3.

22. $100 is placed at interest annually on the first of
each January for 10 yrs., at 69. Find the total amount of
principals and interest at the end of 10 yrs.

23. Find the nth term and the sum of the first » terms:

@ 1+3+3+-- (b) 11+9+7+...,/.
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II. GEOMETRIC SERIES.

349. Symbols. The following are in common use :

n, 8, a, l and ¢, &y, - - - Ly, a8 in arithmetic series ;
r, the constant by which any term may be multiplied to produce
the next; r is usually called the rate or ratio.

350. Formulas. There are two formulas in geometric
geries of such importance as to be designated as funda-
mental.

L ¢, orl=ar"1

Proof. 1. ts = ar, -by definition.
ts=tyr =ard
ty=tyr =ars

2. .. ty = ta—1r = ar*—1,

8. Or l=arm—1

E.g., the 7th term of the series 16, 8, 4, -- - is
1=18.-(3)7"1=16-4 =1}

I s=—— = —-
—1 r—1
Proof. l.s=a+ar+ard+ ...+ am—3 4 arm—1,
2. .- rs = ar 4+ ard 4+ .- 4 ar*—2 4 arv—1 4 ars,
by multiplying by r.
3. .. r3—s=ar — a, by subtracting, (2) — (1).
4. - (r—1)s=am—a, ands:a:‘—la, by dividing by (r — 1).
5. And ‘cam=ar—!.r=1r, .~.a=l:—:.

E.g., the sum of the first 7 terms of the series 16, 8, 4, - - -, of which
! has just been found, is

$-4-16_
ﬁ—.‘!l}.
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351. It is evident that from formulas I and II various
others can be deduced.

1

E.g., givenl, a, n, to find r. - l=am—1, .. r= (/a1

Given n, I, s, to find a. The problem reduces to that of eliminating
» from I and II and solving, if possible, for a.

1. From II, r=5-9
s —1

s —a\r—!

2. Substitute thisinI,and I=a =1 ,
or 18—-l)r—1—a(s—ayr—1=0.

Here it is impossible to isolate a. When the numerical values of
1, 8, n are given, a can frequently be determined by inspection.

For example, given n = 4, l = 8, 8 = 15, to find a. Here
8.7 =a(156 — a),

and a evidently equals 8, or 1. Either value checks, for the series
may be 8,4,2,1,0r1,2,4,8.

Illustrative problems. 1. Find the sum of five consecutive
powers of 3, beginning with the first.

1. Here a=38,r=38,n=>5.

2. 8= (am—a)/(r—1)=(3.85 —3)/2 = 363.

2. Of three numbers of a geometric series, the sum of
the first and second exceeds the third by 3, and the sum
of the first and third exceeds the second by 21. Find the
numbers.

1. Let z, zy, zy? be the numbers.

2. Then T4y =xy? + 3, or x 4+ 2y — 3 =zy.

8. And z+ayl=2ay + 21, or — 2z +xy + 21 =zt
4. .. z4+ay—8=—2x+2y+21, or z=12.

5. 4y? — 4y — 3 =0, by substituting in 2.

6 QRy+1)2y—3)=0,and y=—4, or $.

7. .. the numbers are 12, — 6, 3, or 12, 18, 27. Each set checks.
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352. The following table gives the various formulas of
geometric series. They should be worked out from formulas
I and II by the student, excepting those for n. The for-
mulas for » require logarithms and may be taken after
Chap. XIX.

GIVEN. | TOFIND. E RESULTS.
1| arn =arm—1,
2| ars l=[a+ (r—1)8]/r. .
3| ans ! lg—l)r-1—a(s—ay*—1=0.
4| rns l=(r—1)sm—-1/(m—1).
6| arn s=a(m—-1)/(r—1).
6| arl s=(rl—a)/(r—1).

s s 0« 1 1
7] anl $=(In—1 —an=1)/(In—1 — gn—1),
8| rnl s=1l(m—1)/(m —rn—1),
9| rnl a=1/rm—1
10| rns a=8(r—1)/(—1).
nlris | ¢ la=ri—@-1s
12 | nls l—=l)r—1—a@3—a—1=0.
1

13| anl | r=(l/a)—L
14| ans |m—sr/a+(s—a)/a=0.
16| ats | " |r=@—-a)/(—10.
16 | nls m—gm=1/8-l)+1/(3—1)=0.
17| arl n = (log! —loga)/logr + 1.
18| ars n = {log[a + (r — 1)8] — loga} /logr.
19| als " n = (logl — loga)/[log (s — a)—log (8 — )] + 1.
20 | rls n = {logl — log[lr — (r — 1)8]} /logr + 1.




SERIES. 8438

EXERCISES. CLIV.

1. The sum of how many terms of the series 4, 12,
36, --. is 118,096 ?

2. Find the sum of the first ten terms of the series
3t —2b 3.3 ...

3. Find the geometric mean between

(a) 1and 4. (b) —2 and — 8.
4. Find the sum of five numbers of a geometric series,
(Ke second term being 5 and the fifth 625.

" 5. What is the fourth term of the geometric series
whose first term is 1 and third term g ?

(\/ 6. The arithmetic mean between two numbers is 39 and
the geometric mean 15. Find the numbers.

7. Prove that the geometric mean between two numbers
is the square root of their product (§ 343).

X~8. Prove that the arithmetic mean between two unequal
positive numbers is greater than the geometric mean.

9. To what sum will $1 amount at 49 compound
interest in 5 yrs.? (Here a = $1, r =1.04, n =6.)
10. In ex. 9, suppose the rate were 49, a year, but the
interest compounded semiannually ?

11. The sum of the first eight terms of a certain geo-
metric series is 17 times the sum of the first four terms.
What is the rate ?

12. Find the 10th term and the sum of the first ten
terms of the series:
@ 1,43 - (b) 1, —2,4, -8, ...
() 1,2,4,.... (d) 32, — 16,8, —4, ...
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353. Infinite geometric series. If the number of terms is

infinite and »<1, then s approaches as its limit
(8 167).
This is indicated by the symbols 8 =

a
1—r
a s
, n being infinite.
1—r
The symbol = is read ‘¢ approaches as its limit** (p. 140).

Proof. 1. °.* r <1, the terms are becoming smaller, each
being multiplied by a fraction to obtain the next.

2. ...1=0, and .". Ir = 0, although they never reach that
limit. .

.0—a
3. ..s= T_—T, by formula II.
4. c.s= 1 i ) by multiplying each term of the frac-
tion by —1. ’ )
E.g., consider the series 1, §, %, ---, where n is infinite. Here
a

= i— or ﬁ, or 2. That is, the greater the number of terms,
— r —

the nearer the sum approaches 2, although it never reaches it for

finite values of n.

EXERCISES. CLV.
Given s= 8,2 =4. Find »
Given s =103, »=}. Find a.
Given s =1, r» = 3388. Find a.
Given s =155, r =2, n=15. Find a.
6. Given s =1244,r=38,n=4. Find a.
6. Find the limits of the following sums, # being infinite:

@ 20+10+5+25+-. (b)) §+§+d5+rhg+-oee

© 1+3+3+2 -+

@) 10+1+01+0.01 4---.

Lol S L
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354. Circulating decimals. If the fraction % is reduced
to the decimal form, the result is 0.272727.. ., and similarly
the fraction }} = 0.152777.... The former constantly
repeats 27, and the latter constantly repeats 7 after 0.152.

When, beginning with a certain order of a decimal frac-
tion, the figures constantly repeat in the same order, the
number is called a circulating decimal, and the part which
repeats is called a circulate.

A circulate is represented by a dot over its first and last figures.
0.272727 - - - is represented by 0.27 ;
0.162777 ..+ ¢ “ “ 0.1527.

A circulating decimal may be reduced to a common frac-
a

11— as follows:

tion by means of the formula s =

1. To what common fraction is 0.27 equal ?

1 0.27 = 0.27 4 0.0027 + 0.000027 + - - -.
2. This is a geometric series with @ = 0.27, r = 0.01, n infinite.
3. .‘.Sﬁﬂ=2—7=§-.

1—-001 99 11

2. To what common fraction is 0.1527 equal ?

1. 0.1527 = 0.152 + 0.0007 + 0.00007 + - - - = 0.152 + a geometric
series with @ = 0.0007, r = 0.1, n infinite.
9. - g 0.0007 _ 7

T1-01 9000
3. To this must be added 0.152, giving 0.1562}, or }§§3, or }}.

EXERCISES. CLVI.

Express as common fractions:

1. 0.3. 2. 0.045. 3. 0.0001.
4. 0.147. 5. 1.2375. 6. 5.0504.
7. 0.045. 8. 2.003471. 9. 0.23456.
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III. MISCELLANEOUS TYPES.

355. Of the other types of series, some can be treated by
the methods which have just been considered.

Ilustrative problems. 1. Defining a harmonic series as one
the reciprocals of whose terms form an arithmetic series,
insert three harmonic means between 2 and 4.

This reduces to the insertion of three arithmetic means between }
and }.

1. - a=4,n=>5andl=4%,

2. .~ }=1+4d, and d= — 4.

3. . the arithmetic series is 4, v, %, % 3
and ¢ harmonic 2,24, 2% 383, 4.

2. Sum to 20 terms the series1,—3, 5, — 7,9, —11,-...

Here the odd nuambers of the terms form an arithmetic series with
d =4, and the even ones form an arithmetic series with d = — 4.
There are ten terms in each set. Summing separately, we have

190 — 210 = — 20.

3. What is the harmonic mean between @ and & ?

1. If h is the harmonic mean, 1, 1, 1 must form an arithmetic
a’ k'Y
serles (ex. 1).
2. . LU
h a b bk
3. - h=29
a+b

E.g., the harmonic mean between 3 and 4 is 3. For, taking the
reciprocals of 3, 2#, and 4, we have §, 74, 1, or o, 3%, and -8, which
form an arithmetic series.

4. Find the sum of n terms of the series 1, 2z, 323
428 ...

e — _————
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Here the coefficients form an arithmetic series and the z’s a geo-
metric. Such a series is called arithmetico-geometric.

Lets=1+4+224+322+ .-+ (n—1)z"—2 4 nzn—1;

then zs = z+222 4.+ (n—2)2" 2+ (n — 1)zr—1 4 nan,
Subtracting,
(l-z)8s=1+ z+4+ 23+..-+ n—2 4 gn—1 — ngn,
1—2an b

Ta-ep "a-a

EXERCISES. CLVIL
1. Sum the series 3, 6,---3 (n — 1), 3n.
2. Sum to 2n terms the series 1, — 2, + 3, —4, ....
3. Sum the séries 1,4z, T2% 1028 ..., to n terms.
4. Sum the series 1, — 3, + 5, — 7, +--- to 2n terms.

5. Insert a harmonic mean between 2 and 2; between
—2 and — 2.

6. Prove that no two unequal numbers can have their
arithmetic, geometric, and harmonic means equal, or any
two of these equal.

7. Show that the sum of the first » terms of the series
1, -2, +4,—8,+16,...is } (1 £ 2"), the sign depending
on whether » is odd or even.

8. Find the sumofl + 2x 4+ 3x2 4 4%+ -.- to n terms
by writing the series (1+x+x?4--) + (x+ 22+ a®+---)
+(@*+x8+--) + («® +-- ), ete., summing each group sepa-
rately, and adding the sums.

9. The number of balls in a triangular pile is evidently
1+14+2)4+1+2+3)+---, depending on the number
of layers. How many balls in such a pile of 10 layers ?



CHAPTER XIX.

LOGARITHMS.

356. About the year 1614 a Scotchman, John Napier,
invented a scheme by which multiplication can be per-
formed by addition, division by subtraction, involution by
a single multiplication, and evolution by a single division.

357. In considering the annexed series of numbers it is
apparent that

1. - 28.26 = 28, . 20=1 26 =64

o 8.82 = 28 = 266. 21=2 2" =128

.. the product can be found by adding the 2%2=4 28 =256
exponents (3 + 5 = 8) and then finding what 22=8 20 =512
28 equals. 2¢=16 21 =1024

2. - 20:28 =28 ° 26 =382 21l — 2048

512:8 = 64.

.. this quotient can be found from the table by a single subtraction
of exponents.

3 .- (26)2 = 25 . 26 = 210,
322 = 1024.
4, - V210 = V2526 = 26,
V1024 = 32.

5. The exponents of 2 form an arithmetic series, while the powers
form a geometric series.

In like manner a table of the powers of any number may
be made and the four operations, multiplication, division,
involution, evolution, reduced to the operations of addition,
subtraction, multiplication, and division of exponents.

348
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358. For practical purposes, the exponents of the powers
to which 10, the base of our system of counting, must be
raised to produce various numbers are put in a table, and
these exponents are called the logarithms of those numbers.

In this connection the word power is wused in its
broadest sense, 10" being considered as a power, whether n
is positive, negative, integral, or fractional. The logarithm
of 100 is written ¢ log 100.” )

E.g., 105 =1000, . log 1000=3. 102 =100, .- log 100 =2.

100 =1, ..logl =0. 10! = 10, .. log 10 =1.
llﬁ’ - log 0.01=—-2.
1085 that is, the thousandth root of 10%1, is nearly 2,

.. log 2 = 0.301, nearly.

10“1=%, o log0.1 =—-1. 10—2=

Although log 2 cannot be expressed exactly as a decimal
fraction, it can be found to any required degree of accuracy.

EXERCISES. CLVIII.

1. What is the logarithm of 10—2? of 1000%? of 10°?
2. What is the logarithm of 10¢.10°? of 107:10% ?
3. What is the logarithm of V10*.10%.10°? of V10 ?

4. What is the logarithm of 10%.10%.10°? of 0.001 of
102.10*? of 10®-105.10°?

5. Between what two consecutive integers does log 800
lie, and why ? also log 3578 ? log 27 ?

6. Between what two consecutive negative integers does
log 0.02 lie, and why ? also log 0.009 ? log 0.0008 ?

7. If the logarithm of 2 is 0.301, what is the logarithm
of 21002 (2=1070%5 . 2100_2 . the logarithm of
21000 — ?)
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359. Since 2473 lies between 1000 and 10,000, its loga-
rithm lies between 3 and 4. It has been computed to be
3.3932. The integral part 3 is called the characteristic of
the logarithm, and the fractional part 0.3932 the mantissa.

Thatis,  10M88 or 108882 —2473, . log 2473=3.3032.
L 1088952, 101=10299%2, -, 102982 —247.3, .-.log 247.8=2.3932.

Similarly, 101982 =24.73, - log 24.73=1.3932.
¥ 1008982 —2478, .. log 2.473=0.3932.
“ 100-8982—1-0,2473, .-, log 0.2473=0.3932 — 1.

360. It is thus seen that

1. The characteristic can always be found by inspection.

Thus, because 438 lies between 100 and 1000, hence log 438 lies
between 2 and 3, and log 438 = 2 + some mantissa.

Similarly, 0.0073 lies between 0.001 and 0.01, hence log 0.0073 lies
between — 3 and — 2, and log 0.0073 = — 3 4 some mantissa.

Bince b lies between 1 and 10, log 5 lies between 0 and 1, and equals
0 + some mantissa.

2. The mantissa is the same for any given succession of
digits, wherever the decimal point may be.

Thus, log 2473 = 3.3932, and log 0.2473 = 0.3932 — 1.

3. Therefore, only the mantissas need be put in a table.

Instead of writing the negative characteristic after the mantissa,
it is often written before it, but with a minus sign above; thus, log
0.2473 = 0.3932 — 1 = 1.3932, this meaning that only the character-
istic is negative, the mantissa remaining positive.-

Negative numbers are not considered as having loga-
rithms, but operations involving -negative numbers are
easily performed. E.g., the multiplication expressed by
1.478 - (— 0.007283) is performed as if the numbers were
positive, and the proper sign is prefixed.
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EXERCISES. CLIX.

1. What is the characteristic of the logarithm of a
number of three integral places? of 6? of 20? of n?

2. What is the characteristic of the logarithm of 0.3 ?
of any decimal fraction whose first significant figure is in
the first decimal place? the second decimal place ? the
20th ? the nth ?

3. From exs. 1, 2 formulate a rule for determining the
characteristic of the logarithm of any positive number.

4. If log 39,703 = 4.5988, what are the logarithms of
(a) 39,703,000 ? (b) 397.03 ? (c) 3.9703 ?
(d) 0.00039703 ? (e) 0.39703? (f) 3970.3?

361. The fundamental theorems of logarithms.

L. The logarithm of the product of two numbers equals
the sum of their logarithms.

1. Let @ = 10™, then log a = m.

2. Let & =10, “ log b=n.

3. ... ab=10"*" and log ab =m + n = log a + log &.

Thus, log (6 x 6) = log 6 + log 6.
II. The logarithm of the quotient of two numbers equals

the logarithm of the dividend minus the logarithm of the
divisor.

1. Let a = 10m, then log a = m.
2. Let 6 =107, “ log b=n.
Loe 10" s a_
3. .. 5—10.—10 , and logb—m—n.

Thus, log (40 + 5) = log 40 — log 5.
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I11. The logarithm of the nth power of a number equals
n times the logarithm of the number.

1. Let a = 10™, then log a = m.
2. ... a»=10m™, and log a" = nm = n log a.

IV. The logarithm of the nth root of a number equals
%th of the logarithm of the number.

1. Let a =107, then log a = m.
1 m 1
1 m > m 1
2. .. a*=10" and loga"=—==-1loga.
a or, gar=_—=_-loga
Th. III might have been stated more generally, so as to include
x

Th. IV, thus: log a¥ = g log a. The proof would be substantially
the same as in ths. III and IV.

EXERCISES. CLX.

Given log 2 = 0.3010, log 3 = 0.4771, log 5 = 0.6990,
log 7 = 0.8451, and log 514 = 2.7110, find the following :

1. log 60. 2. log 24. 3. log 78

4. log V2. 5. log 625. 6. log 7%.

7. log V3t 8. log V21. 9. log 35.
10. log 5143 11. log 1.05. 12. log 257.
13. log 1050. 14. log 154,200.  16. log V514.
16. log 10.28. 17. log 154.2. 18. log 3.598.
19. log 0.3084.  20. log 30.84. 21. log 15.42%,

22. log1799[= log (3-514-7)].
23. Show how to find log 5, given log 2.
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362. Explanation of table. Given a number to find its
Zogarithm. In the table on pp. 354 and 355 only the man-
tissas are given. For example, in the row opposite 71, and
under 0, 1, 2, --. will be found :

N o 1 2 3 4 b 6 7 8 9

71 (8613 | 8519 ( 8525 | 8531 | 8537 | 8543 | 8549 | 8555 | 8661 | 8667

This means that the mantissa of log 710 is 0.8513, of
log 711 it is 0.8519, and so on to log 719. Hence,
log 715 = 2.8543, log 7.18 = 0.8561,
log 71,600 = 4.8549, log 0.0719 = 2.8567.

And ‘.- 7154 is #; of the way from 7150 to 7160, .. log
7154 is about #; of the way from log 7150 to log 7160.

.*.log 7154 =log 7150 + #; of the difference between
log 7150 and log 7160
= 3.8543 + #; of 0.0006
= 3.8543 + 0.0002 = 3.8545.

Similarly, log 7.154 = 0.8545,
and log 0.07154 = 2.8545.

The above process of finding the logarithm of a number of
four significant figures is called interpolation. It is merely
an approximation available within small limits, since num-
bers do not vary as their logarithms, the numbers forming
a geometric series while the logarithms form an arith-
metic series. It should be mentioned again that the man-
tissas given in the table are only approximate, being cor-
rect to 0.0001. This is far enough to give a result which
is correct to three figures in general, and usually to four,
an approximation sufficiently exact for many practical com-
putations.
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N 0o 1 2 3 4 5 6 7 8 9
0 0000 0000 3010 4771 6021 6990 7782 8451 9031 9542
1 0000 0414 0792 1139 1461 1761 2041 2304 2553 2768
2 3010 3222 3424 3617 3802 3979 4160 4314 4472 464
3 4771 4914 5051 518 5315 5441 5563 5682 65798 5911
4 6021 6128 6232 6335 6435 6632 6628 6721 6812
b 6990 7076 7160 7243 7324 7404 7482 7569 7634 7709
6 7782 7853 7924 7993 8062 8129 8195 8261 8325 8388
7 8451 8513 8573 8633 8692 8761 8808 8865 8921 8976
8 9031 9085 9138 9191 9243 9294 93456 9395 9445 9494
9 9542 9590 9638 9731 9777 9823 9868 9912 9956
10 0043 0086 0128 0170 0212 0253 0294 0334 0374
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0766
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732
15 1761 1790 1818 1847 1876 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2176 2201 2227 2253
17 2304 2330 2355 2380 2406 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2967
20 3010 3032 3064 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3 3346 3365 3385 3404-
22 342 A4 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
P23 3820 3838 3856 3874 3892 3909 3927 3945 3962
25 9 4014 4031 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4266 4281 4298
27 4314 4330 4346 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4639 4654 4683 4698 4713 4728 4742 4757
30 4771 4786 4800 4814 4829 4843 4857 4871 4836 4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038
32 5061 5065 5079 5092 5105 5119 5132 6145 5159 5172
33 5185 5198 65211 5224 5237 5250 5263 5276 5289 5302
34 6315 3 53563 5366 5378 5391 5403 05416 5428
35 5441 6463 5465 5478 5602 6514 56527 5539 5651
36 6563 6575 5587 5599 5611 5623 5647 5668 5670
37 6682 5694 57056 5717 5729 5740 5752 5763 .57 5786
38 5798 5809 5821 5832 5843 5856 5866 5877 5888
39 5911 5922 5933 5344 5955 5966 6977 65988 5999 6010
40 6021 G031 6042 6063 6075 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 4 6284 6294 6304 6314 G326
43 6335 6345 6355 6365 6375 6385 6395 6405 6416 6425
44 6435 6444 6454 6464 644 6484 (493 6503 6513 6522
45 6542 6551 6561 6671 6580 6590 6599 6609 6618
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 678 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893
49 6902 6911 6920 6928 6937 6946 6966 6964 6972 6881
N 0 1 2 3 4 5 6 7 8 9
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N 0 1 2 3 4 5 6 7 8 9
50 6990 6998 7007 7016 7024 7083 7042 7050 7059 7067
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316
54 7324 T332 7340 7348 7356 7364 17372 7380 7388 7396
55 7404 7412 7419 7427 7435 7443 7461 7459 7466 T474
56 7482 7490 7497 7505 7513 7520 7628 7536 7643 7551
57 7559 7566 7574 7582 7589 7697 7604 7612 7619 7627
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701
59 7709 7716 7723 7131 7738 7456 7152 7760 T767 1774
60 7782 7789 17796 7803 7810 7818 7825 7832 7839 7846
61 783 7860 7868 7875 7882 7889 7896 7903 7910 7917
62 7924 7931 7938 7952 7959 7966 7973 7980 7987
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055
(3 8062 8069 8075 8089 8096 8102 8109 8116 8122
65 8129 8136 8142 8149 8166 8162 8169 8176 8182 8189
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319
68 8325 8331 8338 8344 8351 8367 8363 8370 8376
69 8388 8395 8401 8407 8414 8420 8426 8446
70 8451 8457 8463 8470 8476 8482 8488 8494 8506
-T71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567
T 8573 8579 8585 8501 8597 8603 8609 8615 8621 8627
73 8633 8639 8645 8651 8657 8663 8675 1
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745
7 8751 8756 8762 8768 8774 8779 878 8791 8797 8802
76 8808 8814 8820 8825 8831 8837 8842 8848 8859
i 8865 8871 8876 8882 8887 8803 8399 8904 8910 8915
78 8921 8927 8932 8938 893 8949 8954 8960 89656 8971
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025
80 9031 9036 9042 9047 9058 9074
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186
83 9191 9196 9201 9206 9212 9217 2: 9232 9238
84 9243 9248 9253 9268 9263 9269 9274 9279 9284 9289
85 9294 9299 9304 9309 9315 9320 25 9330 9335 9340
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390
87 9395 9400 9405 9410 9415 9420 9425 9436
88 9445 9450 9465 9460 9465 9474 0479 9484 9489
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538
90 9542 9547 95562 9557 9562 9566 9571 9576 9581 9586
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633
92 9638 9643 9647 9652 9657 9661 9671 9676 9680
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727
94 9731 9736 9741 9746 9750 9754 9769 9763 9768 9773
95 9777 9782 9786 9791 9795 9800 9805 9814 9818
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908
98 9912 9917 9921 9926 9930 9934 - 9939 9943 9948 9952
99 9961 9966 9969 9974 9978 9983 9987 9991
N 0 1 2 3 4 b 6 7 8 9




356 ELEMENTS OF ALGEBRA.

In all work with logarithms the characteristic should be
written before the table is consulted, even if it is 0. Other-
wise it is liable to be forgotten, in which case the computa-

tion will be valueless.

Illustrative problems. 1. Find from the table log 4260.

The characteristic is 3.

The mantissa is found to the right of 42 and under 6 ; it is 0.62%4.

.. log 4260 = 3.6294.

2. Find from the table log 42.67.

The characteristic is 1.
log 42.7 = 1.6304

log 42.6 = 1.6204
difference = 0.0010

T of 0.0010 = 0.0007

. log 42.67 = 1.6294 + 0.0007

= 1.6301.

EXERCISES. CLXI.

From the table find the following:

1. log 28. 2. log 443.
4. log 2.34. 5. log 6.81.
7. log 8940. 8. log 43.41.

10. log 3855. 11. log 2.005.
13. log 1003. 14. log 3.142.
16. log 23.42. 17. log V4.28.
19. log 75.55%.  20. log 0.0007.
22. log 0.2969.  23." log 0.0129%

12.
16.
18.
21.
24.

log 9.823.
log 700.3.
log ~/125.
log 9.821°
log 24,000.
log 0.2346.
log 0.00323.
log 0.000082.
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363. Given a logarithm to find the corresponding number.
The number to which a logarithm corresponds is called its
antilogarithm.

E.g., - log2 = 0.3010, .. antilog0.3010 = 2.

The method of finding antilogarithms will be seen from
a few illustrations. Referring again to the row after 71
on p. 355, we have:

N 0 1 2 3 4 5 6 7 8 9

718513 | 8519 | 8525 | 8531 | 8537 | 8543 | 8549 | 8655 | 8561 | 8567

Hence, we see that ,
antilog 0.8513 = 7.1, antilog 5.8531 = 713,000,
antilog 2.8567 = 0.0719, antilog 1.8555 = 0.717.

Furthermore, *.* 8540 is halfway from 8537 to 8543,

.*. antilog 2.8540 is about halfway from antilog 2.8537 to
antilog 2.8543.

.*. antilog 2.8540 is about halfway from 714 to 715.
.*. antilog 2.8540 = 714.5.
Similarly, to find antilog 1.8563.

antilog 1.8567 = 0.719 1.8563
antilog 1.8561 = 0.718 1.8561
6 2

.. antilog 1.8563 = 0.718% = 0.7183.

The interpolation here explained is, as stated on p. 353,
merely a close approximation ; it cannot be depended upon
to give a result beyond four significant figures except when
larger tables are employed.

This is sufficient in many numerical computations. E.g.,
we speak of the distance to the sun as 93,000,000 mi., using
only two significant figures.
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EXERCISES. CLXII

From the table find the following:

1. antilog 0.3234. 2. antilog 2.4271.
3. antilog 2.9193. 4. antilog 5.2183.
5. antilog 3.9286. 6. antilog 1.7929.
7. antilog 0.8996. 8. antilog 4.7834.
9. antilog 3.9320. 10. antilog 2.0000.
11. antilog 1.9850. 12. antilog 0.7076.
13. antilog 10.5445. 14. antilog 3.6987.

15. antilog 0.9485 — 4. 16. antilog 0.6585 — 6.
17. antilog 0.6120 — 2. 18. antilog 0.9290 — 3.

364. Cologarithms. In cases of division by a number

it is often more convenient to add the logarithm of % than

to subtract the logarithm of ». The logarithm of % is called
the cologarithm of x. '

- log ;’1—‘=logl —logn =0 — log n,

.. colog n = — log n.
Also, cologn =10 —logn — 10, often a more convenient form
to use.
E.g., .. log 8 = 0.7782.
KX colog 6 = — 0.7782.
This may also be written 10 — 0.7782 — 10, or 9.2218 — 10.

The object of this is seen when we consider the addition of several
logarithms and cologarithms ; it is easier to add if all the mantissas
are positive, subtracting the 10’s afterwards.

In general, cologn = 10p— logn — 10p; that is, we may use 10,
20, or any multiple of 10, as may be most convenient.
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The cologarithm can evidently be found by mentally sub-
tracting each digit from 9, excepting the right-hand signifi-
cant one (which must be subtracted from 10) and the zeros

following, and then subtracting 10.

E.g., to find colog 6178.

9. 9 9 910
log6178=3. 7 9 0 9
colog6178=6. 2 0 9 1—10.
To find colog 41.5.
: . 9 910 0
log41.6=1. 6 1 8 0
colog4l.6=8. 3 8 2 0-—10.
To find colog 0.013.
9. 9 9 910
log0.013= 2. 1 1 3 9
colog0.013=11. 8 8 6 1— 10 = 1.8861.

In case the characteristic exceeds 10 but is less than 20,
colog » may be written 20 — log » — 20, and so for other
cases ; but these cases are so rare that they may be neglected

at this time.

The advantage of using cologarithms will be apparent

from a single example:

" To find the value of

USING COLOGARITHMS.

log 317 = 2.5011

log 92 = 1.9638
colog 6178 = 6.2091 — 10
colog 0.13 = 10.8861 — 10

log 36.32 = 1.5601

317 - 92
oo = 36.32.
6178.0.13

317.92
6178-0.13

NoT USBING COLOGARITHMS.

log 317 = 2.5011

log 92 = 1.9638

log (317 - 92) = 4.4649
log 6178 = 3.7909

log 0.13 = 1.1139

log (6178 - 0.13) = 2.9048
log (317 - 92) = 4.4649
log (6178 - 0.13) = 2.9048
log 36.32 = 1.5601
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365. Various bases. Thus far we have considered loga-
rithms as exponents of powers of 10. But it is evident
that any other base might be taken. Logarithms ¢o the
base 10, such as we have thus far considered, are sometimes
called common or Briggs logarithms, the latter designation
being in honor of Henry Briggs, who is said to have
suggested this base to Napier.

If 2 were the base, log 8 would be 3, because 2* = 8.
Similarly, log 16 would be 4, and so on.

Where a different base than 10 is used (which is not the
case in practical calculations), or where more than one base
is used in the same discussion, the base is indicated by a
subscript ; thus, log; 32 = 5, because 2% = 32.

366. Computations by logarithms. A few illustrative
problems will now be given covering the types which the
student will most frequently meet. It is urged that all
work be neatly arranged, since as many errors arise from
failure in this respect as from any other single cause.

Since 7 enters so frequently into computations, the follow-
ing logarithms will be found useful :

log ™ = 0.4971, log = = 1.5029.

I

0.007%
0.03625

log 0.007 = 0.8451 — 3
3-10g 0.007 = 2.6363 — 9
colog 0.03626 = 11.4407 — 10
13.9760 — 19

= 0.9760 — 6 = log 0.000009462.

. 9.462.10—6 = Ans.

1. Find the value of

It will be noticed that the negative characteristic is less confusing
if written by itself at the right.
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2. Find the value of 0.09515%.

log 0.09515 = 0.9784 — 2.

- the characteristic (— 2) is not divisible by 8, this may be written
log 0.09515 = 1.9784 — 3.

Then +10g 0.09515 = 0.6595 — 1 = log 0.4566.

.. 0.4566 = Ans.

3. Given a, 7, [, in a geometric series, to find . Compute
the value if { =256, a =1, r = 2.

1. From § 350, l=arm—1,
2. .. logl=1loga+ (n —1)logr. § 361
3. logl—loga +1=n

log

log 266 = 2.4082
log1=0, log 2 =0.3010;
2.4082 =+ 0.3010 = 8.
4 .- n=8+1=9.

2.706 - 0.3-0.001279
86,090

2.708 - 3-1.279
8.609

4. Find the value of

This may at once be written
the characteristics. Then

log 2.706 = 0.4324

log 3 = 0.4771

log 1.279 = 0.1069
colog 8.609 = 9.0650 — 10

log 1.208 = 0.0814

- 1.208-10—8 = Ans.

- 10—8, thus simplifying

5. Given 2* =17, find z, the result to be correct to 0.01.

zlog2 =log7.
o= log 7 _ 0.8451 = 2.81.
log2 0.3010

This division might be performed by finding the antilogarithm of
(log 0.8451 — log 0.3010), a plan not expeditious in this case.
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6. The weight of an iron sphere, specific gravity 7. 8 is
14.3 kg. Find the radius.

v = $7r®. 1 cm3 = volume in cm?,
< weight = $7r%.7.8.1g = 14,300 g.
3. 14300
4n

) the number of centimeters of radius.

log 3= 04771

log 14,300 = 4.16563
colog4 = 9.3979 — 10
cologw = 9.5029 — 10
colog 7.8 = 9.1079 — 10

3|2.6411

log 7.693 = 0.8804
.. radius = 7.593 cm.

EXERCISES. CLXIII.

In the following exercises give the result to four signifi-
cant figures.

Find the value of 3757,

Given z* = 27:15. Find 2.
Find the value of (32 /29)%.
Find the value of Var-5.927.
Find the value of (5.376 /m)}.
Find the value of (37 /2939)'%.
Given 227,600 = 7*~1. Find .

10
Find the value of V2 V2 : V10.
9. Find the value of (3.64/7.985)%
11 p—
10. Find the value of V4.257° v0.8.

IR I A s

®

11. Find the value of (1402 /3999)~22,



LOGARITHMS. 363

12. Find the value of V/100.

13. Find the value of (22.8 + 0.09235)}.

14. Find the value of (24.73% + 31.97%)%.

15. Find the value of (44 -8.37)} + 0.227%.

16. Find the value of 4 72, when r = 2.06.

17. Also of § 7.

18. Given z: 5127 = 0.325:2936. Find 2.

19. Find the value of § a®r, when a = 19.63, b =19.57.

20. Given a, 7, s, in a geometric series, show that

log[a +(r—1)s]—loga
n = )
log

and compute the value of » when a =1, r =2, s = 511.

21. Also, given 7, /, s, show that
" log ! —log[lr — (r — 1)s] i1
log
Compute the value of » when » = 3, I =729, s = 1092.

22. Also, given a, [, s, show that
_ logl —loga
"= log (s — a) — log (s — 1)
Compute the value of » when a =3, I =729, s = 1092. -
23. Find the values of V2, u\/273, W, \8/5, each to 3
decimal places. Which of these is greatest ? From this

it may be inferred that the value of » that makes Vn
greatest is about what ?

24. Solve the equation 5*=6. (First take the loga-
rithm of each member.)

25. Also the equation V5 = 10.

+1.



CHAPTER XX.

PERMUTATIONS AND COMBINATIONS.

367. The different groups of 2 things that can be selected
from a collection of 3 different things, without reference to
their arrangement, are called the combinations of 3 things
taken 2 at a time.

E.g., representing the 3 things by the letters a, b, ¢, we can select
2 things in 3 ways, ab, ac, be.

In general, the different groups of » things which can be
selected from a collection of n different things, without
reference to their arrangement, are called the combinations
of n things taken » at a time.

So the combinations of the 4 letters a, b, ¢, d, taken 3 at
a time, are abc, abd, acd, bed; taken 2 at a time, abd, ac, ad,
be, bd, cd.

EXERCISES. CLXIV.

1. What is the number of combinations of 5 things
taken 2 at a time ? Represent them by letters.

2. What is the number of combinations of 5 things
taken 3 at a time ? Represent them by letters.

3. Write out the combinations of the letters w, z, ¥, 2,
taken 4 at a time; 3 at a time; 2 at a time; 1 at a time.

4. How does the number of combinations of 6 things
taken 2 at a time compare with the number taken 4 at a
time ?

364
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368. The different groups of 2 things which can be
selected from 3 things, varying the arrangements in every
possible manner, are called the permutations of 3 things
taken 2 at a time.

E.g., the permutations of the letters a, b, c, taken 2 at a time, are
ab, ba, ac, ca, be, cb.

In general, the different groups of » things which can be
selected from » different things, varying the arrangeément
in every possible manner, are called the permutations of n
things taken » at a time. A

In all this work the things are supposed to be different, and not to
be repeated, unless the contrary is stated.

369. The number of combinations of » things taken » at
a time is indicated by the symbol C7. The number of per-
mutations of » things taken » at a time is indicated by the
symbol P2,

. EXERCISES. CLXV.
Show that P} =12.
Show that P§=2.P4.
Show that P§= 2. C}.
Find the value of P}; of Pj.
Show that C} =n, and C? = 1.
Show that P$ = 3, and in general that P? = n.
Using the letters a, b, ¢, show that C3 = 3.

8. Write out the permutations of the letters of the word
time, taken all together.

R A

9. Write out the permutations of the letters a, b, ¢, d
taken 2 at a time; 3 at a time.
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370. Theorem. The number of permutations of n different
things takenr at @ timeisn(n —1)(n — 2)---(n —r 4+ 1).

Proof. 1. Since we are to take » things we may suppose
there are » places to be filled.
The first place may be filled in any one of » ways.

Thus, with a, b, ¢, d, we may fill the first place with a, b, ¢, or d.

2. For every way of filling the first place there are
n — 1 ways of filling the first and second.

Thus, if the first place be filled with a, we may fill the first and
second with ab, ac, ad.

3. .. for » ways of filling the first place there are
n(n — 1) ways of filling the first two.

Eg., ab, ac, ad,
ba, be, bd,
ca, ¢b, cd,
da, db, de,

giving 4 -3 = 12 ways in all.

4. For every way of filling the first two places
there are n — 2 ways of filling the first, second,
and third.

Thus, if the first 2 places be filled with ab, the first 3 can be filled
with abe, abd, i.e., in 4 — 2 ways.

5. .. for n(n — 1) ways of filling the first two
places there are n(n —1) (n — 2) ways of fill-
ing the first three.

Eg., abc, abd, adc, adb,
ach, acd, bea, bed,
bda, bdc, cda, cdb,

and the same with the first two letters interchanged in each.
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6. Similarly, the number taken 4 at a time is
n(n — 1) (n — 2) (n — 3), and the same reason-
ing evidently shows that the number of permu-
tations of n things » at a time is

n(—1)(n—2).(n—r—1)
or n(n—1)(n—2)..-(n —r+1).
CorOLLARY. Ifn=r1,Pi=n(m —1)-..3-2.1. Hence,

the number of permutations of n things taken all together is
no—1)(n—-2)---3-2-1.

EXERCISES. CLXVIL
1. Find the value of P
2. Find the value of P?%.

3. Prove that Pr=l = % P,

4. Prove that P? = P». Prz".
5. Find the value of P§; of P§. DProve this by writing
out the permutations of the letters a, b, ¢, ---.

6. Show from the theorem (§ 370) that P? is greater as
» is greater.

7. Show from the corollary that P is the product of all
integers from 1 to » inclusive.

8. Find the number of permutations of the letters of
the word number taken all together.

9. Find the number of permutations of the letters of
the word courage taken 3 at a time ; taken all together.

10. By writing out the permutations and the combina-
tions of the letters a, b, ¢, d, ¢, taken 2 at a time, ascertain
how P} compares with C3.
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371. Factorials. The product
n(n—1)(n—-2)(n—3)---3-2.1,
that is of all integers from 1 to » inclusive, is called fac-
torial n.
Thus, factorial 3=1.2.3=86,
¢ 4=1-2.3.4=24, etc.

Factorial » is represented by several symbols. In writing
it is customary to use |, this being a symbol easily made.
In print, on account of the difficulty of setting the |z, it is
customary to use the symbol n! or (especially in Germany)
IIn.

. II is a Greek letter corresponding to P, and may be thought of as
standing for product.

We shall use in print only the symbol n!

372. It therefore appears that
(1) Pr=mn!
nn—1)(n—-2).-.3-2.1 _  n!

€)) P’;:(n—r)(n—r—1)~--3~2'1_(n—7')!

EXERCISES. CLXVII

!
1. Show that PY = % 2. Show that 5! =120.

1 1 81 41
3. Find the value of 15%- 4. Also of 128—4—

5. Prove that n! =n(n — 1) (n — 2) . (n — 3)!
6. Prove that (n!)?=n?(n —1)*(n — 2)*...3%.22. 1,

7. In how many ways can 10 persons be placed in a
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373. Theorem. The number of permutations of n differ-
ent things taken r at a time, when each of the n things may
be repeated, is .

Proof. After the first place has been filled, the second
can be filled in » ways, since repetition is allowed.
So for the subsequent places.
Hence, instead of having

t=n(—1)(n=2-(—r+1)

we have n-n-n---n=n"

EXERCISES. CLXVIIIL
1. Find the value of P repetitions being allowed.
2. Find the value of P}, repetitions being allowed.
3. How many numbers are there containing 4 digits ?

4. How many ways are there of selecting 3 numbers
from 50 on a combination lock, repetitions being allowed ?

5. How many ways are there of selecting 3 numbers
from 10 on a combination lock, repetitions being allowed ?

6. Show that P, repetitions being allowed, is »*. From
this tell how many 9-figure numbers are possible, all zeros
being excluded.

7. From ex. 6, how many 10-figure numbers are possible,
zeros being admitted except in the highest order.

8. How many possible integral numbers can be formed
from the digits 1, 2, 3, 4, or any of them, repetitions of the
digits being allowed ?

9. The chance of guessing correctly, the first time, the
three numbers on which a combination lock of 100 numbers
is set, is 1 out of how many ?
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374. Theorem. The number of combmatwns of n different
things taken T at a time s
nmn—1)n—2).--(n—r+1)
r!

Proof. 1. For each combination of r things there are »!
permutations.

*. for C" combinations there are C* x r! per-
mutations.
3. But it has been shown that this number of
permutations is
nn—1)(n—2).--(n—r+1). § 370
4. i xrl=n(r—-1)(n—2)---(n—7r+1),
_rr—1)(n—=2).--(n—r+1)

r!

and Cr =

CoroLLARIES. 1. C"= P*/r!
n!

2. = rl(n — r)!.

For we may multiply both terms of the fraction

nn—1n—2)--(n—r+1)

r!

by (» — 7)!, giving
ann—1)n—=2)--(n—r+1)(n—r)(n—r—1)-.-3.2.1

ri(n —r)!
hich equal n!
which equals m

This is a more convenient formula to write and to carry in mind.
Practically, of course, it gives the same result as the other. E.g.,

By the theorem, Ci= g : z,
by the corollary, Ci= g ; ?_%_:
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EXERCISES. CLXIX.
1. If P = 3,628,800, find =.
2. Find the values of P]; of PY; of C3.

3. If P} =56, find n, and explain why there should be
two results.

4. In how many ways can 3 persons be selgcted from a
class of 20 ?

6. In how many ways can the letters of the word cat
be arranged ? )

6. Prove that C*= C,*,, by substituting in the formula
of § 374, cor. 2.

7. What is the number of combinations of 20 things
taken 5 at a time ?

8. In how many ways can the letters of the word
number be arranged ?

9. How many numbers can be formed by taking 4 out
of the 5 digits 1, 2, 3,4, 5?
10. How many triangles are formed from 4 lines, each of
which intersects the other 3 ?

11. How many changes can be rung with a peal of 7
bells, a particular one always being last ?

12. In how many ways may the letters of the word
untted be arranged, taken all at a time?

13. How many changes can be rung with a peal of 5
bells, using each bell once in each change ?

14. In how many ways can a consonant and a vowel be
chosen out of the letters of the word numbers?
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15. How many numbers between 2000 and 5000 have
the hundreds figure 7 and are divisible by 2?

16. In how many ways may the letters of the word
rate be arranged, taken any number at a time ?

17. In how many ways can 5 persons be seated about
a circular table, one of them always occupying the same
place ?

18. How many different arrangements (permutations)
can be made by taking 5 of the letters of the word ¢ri-
angle ? .

19. On an examination 15 questions are given, of which
the student has a choice of 10. In how many ways may he
make his selection ?

20. How many different arrangements can be made of
the letters of the word algebra, it being noted that two of
the letters are alike ?

21. There are four points in a plane, no three being in
the same straight line. How many straight lines can be
drawn connecting two points ? :

22. How many different signals can be made with 5
different flags, displayed on a staff 3 at a time? 4 at a
time ? 2 at a time ? altogether ? any number at a time ?

23. Suppose a telegraphic system consists of two signs,
a dot and a dash; how many letters can be represented by
these signs taken 1 at a time? 2 at a time? 3 at a time? |
4 at a time ?

24. Prove that the number of permutations of » different
things taken » at a time is #» — » 4+ 1 times the number of
permutations of the » things taken » — 1 at a time.




CHAPTER XXI.

THE BINOMIAL THEOREM.

375. The binomial theorem is stated in § 80, and a proof,
which may be used in connection with that section, is given
in Appendix I.

It is now proposed to consider this theorem in the light
of Chapter XX. ’

376. Theorem. If the binomial a + b is raised to the nth
power, n integral and positive, the result is expressed by the
SJormula .
(x+ay=x"+ Crx*"la 4 Cpx"%?

+Cpxr %At 4...C " xa" ' 4 an

Proof. 1. By multiplication we know that
(x+a)(x+90)
=x’+(a + )z + ab,
(@ +a) (@ +b) (@ +0)
=2+ (a+b+c)x?+ (ab+ b +ca) x + abe,
(@+a)(@+b)(z+c)(z+d)
=xt+(a+b+c+ d)a®
+ (ab + ac + ad + bc + bd + cd) x?
+ (abe + abd + acd + bed)x + abed.
There is evidently a law running through all

these expansions, relating to the exponents and

the coefficients of x.
373
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2. We might infer from step 1 that if there were

n factors, the product would have for the coef-

ficient

of 2%, 1;

of z*La+b+4c---n;

of z"—?, the combinations of the letters a, d,. - -n,
taken 2 at a time;

of z*—3, the combinations of these letters taken
3 at a time;

of , the combinations of these letters taken
n —1 at a time.

. This inference is correct; for the term con-

taining 2* can be formed only by taking the
product of the 2’s in all the factors, and hence
its coefficient is 1.

The terms containing 2"~! can be formed only
by multiplying the «’s in all but one factor by
the other letter in that factor; hence the a"—1
term will have for its coefficient (a + 6 +- - - »).
The terms containing z"—2 can be formed only
by multiplying the «’s in all but 2 factors by
the other letters in those factors, i.e., by @ and
b, a and ¢, @ and d, ete.; hence the "2 term will
have for its coefficient (ab + ac + ad + -- ).
The reasoning is evidently general for the rest
of the coefficients.

. If, now, we let a=b=c=-...=n, we have

(x + a)"=ua" + Crz"~'a + Ciz"—2a?
+ Ciax"—3%ad 4 ...
+ C,* xa"~! + a™
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As stated in § 246, the binomial theorem is true whether
n is positive or negative, integral or fractional. While the
proof of this fact cannot satisfactorily be presented without
the differential calculus, the fact itself should be recog-
nized.

The following exercises will serve to recall the applica-
tion of the theorem, although they do not differ materially
from those already met by the student in the exercises
following §§ 80, 246.

Ilustrative problems. 1. Required the square root of
1 + = to 3 terms.

1. o (a+b)n5an+nan—lb+wau—?bﬂ+...'
2. . (1+z)i=14‘.H-1—*-z+¥-1‘i-x2+-~
=1+4z—}22+4---.
2. Expand to 4 terms (¢ — 2b)73,
L@ s by + M D g
+%ﬂzn—%3+...,
2. . (@—2b)"3=a"3%+(—38)a—4(—2b)
+—3é_4a—5(—2b)2
. +:3_'2_‘43;__5a—6(_2b)3+...

=a3+6a%+24a—024+ 800603 + - -..

3. Expand to 3 terms (1 + ac)_*.
As above, (1 +z)-t=1 +(_§)x+(__*)(;¢32+...

=1—32+ a2,
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EXERCISES. CLXX.

Expand the following binomials:

1. (= + 5)". 2 (22— 2a)s
2\ 10 AN

3. (1—§> . 4, <Z+;>

5. (40 + D)% 6. (Ba—3%0H8

7. 1+ w)*, to 4 terms.

8. (a+ b)*, to 4 terms.

9. m, to 3 terms.
10. (1 + x)_*, to 4 terms®
11. (1 —2a)}, to 4 terms.

12. Bx — 2y)%, to 4 terms.

13. V31 =(32 — 1)}, to 3 terms.

—

= + )"} to 4 terms.
14. \/TTx' ( ) ’

16. (1 —x)~}, to 5 terms, checking by performing the

o 1
division 11—
'16. (1 —x)~?% to 5 terms, checking by performing the
- 1
division m
17. (1 + «)~% to 5 terms, checking by performing the
division

14224 2%



APPENDIX.

1. PROOF OF THE BINOMIAL THEOREM FOR POSITIVE
INTEGRAL EXPONENTS (p. 67).

If n is a positive integer

(a + b)l =a*+ na"" b + Z”.L) ar—2p?
+ L_;%@'__an—sba +

~ Proof. 1. The law is evidently true for the 2d power, for (a + b)?
=a? + 2ab + b3, or,-as the theorem says,
=a? + 2 alb! + a'b2 § 69
2. It is also true for the 3d power, for (@ + b)3=a3 + 3 a2b + 3 ab?
+ b3, or, as the theorem says,
=a®’ + 3a' + 3a'd? + a'bd. § 69

8. Now if it were true for the kth power we should have (a + b)*
k(k k=) gy RE=DE=2) gy

=ak + ka*—1 + 2.3
and if this were mult,lphed by a + b we should have
4. (a + b)k+1!

= at+1 4 klakd +’f_%ﬂak—1bz+k_(k__2l)gab—zba+...

1 .

+ + k k(k—1)
2

=at+! 4 (k + 1)atd + (& '*'21)" at—1p2 4 (k + 1;5_3(";1)“1-255 +.-.

5. But here we see that if the theorem were true for any power, as
the kth, it would be true for the next higher power, as the (k + 1)th.

6. But the theorem is true for the 3d power (step 2), and
.. it is true for the (3 + 1)th or 4th power, by step 5;
[ X3 (4 + l)th “ 5th 3 X3 6

and so on for all integral powers.
317
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II. SYNTHETIC DIVISION (p. 67).

If the divisor is a binomial of the first degree, there
often a considerable gain by resorting to a form of divisi
known as synthetic.

The process is best understood by following the soluti
of a problem.

Required the quotient of «® —3x*+ 3z + 4 by = —
The ordinary long form would be as follows, the hea
numerals being the ones reserved in the synthetic for
given below :

2 -2z 41
z—1[s? 32+ 3z +4
2 —1a? ’
— 222
— 222422
z+4
z—1
"5 rem.

This may be abridged by writing the quotient below, a:
follows :
z|x® —32? +3x +4
-1 —12%4+22,—1
22— 2xz+1; b rem.

Here the first term of the quotient, 2% is multiplied by
— 1, this product subtracted from — 32? and the remainder
immediately divided by -z to get the next term, — 2z, and
80 on.

Since it is easier to add than to subtract, it is usual to
change the sign of the second term of the divisor and add.
Doing this, and detaching the coefficients, we have the
common form for synthetic division, as follows:
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111-3+3+4
+1 1—-2 1

1—2+1; 5 rem.

379

Check. Letz=2. Then (8 —-124+6+4—-6)+1=4—-4+1,

In case any powers of a letter are wanting in arranging
according to descending powers of that letter, zero coeffi-
cients should be. introduced as usual.

EXERCISES. CLXXI.

Perform the following divisions by the synthetic process,
detaching the coefficients, and checking in the usual way.

10.
11.
12.
13.
14.
15.

1
2
3
4
5.
6
7
8
9

. a®*4+ b by a+0d.
.2 —y* by x —y.
.a*—4a+3 by a—1.
.2t —2224+1 by =z + 1.

1+z+a*+2®by 1+

. 22— 292 +190 by = — 10.
. 2*+ 3x%a — 4za® by x — a.
.2+ 22 —4x+1 by z—1.
. 2 — 32?4+ 2246 by x4+ 1.

22+ 322 +3x+ 28 by = + 4.

S5zt +4a2*+322+2x+1 by 2+ 1.
a‘——4a’b+6a’b’—4qb‘+b‘ by a —b.
z*— 1022+ 9 by x4+ 3; also by z — 3.

3a* —2x*—Tx—2 by z+1; also by « — 2.
22+ 3xy—2y* by x4+ 2y; also by y —2a.
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Required the quotieng of «* — 31”35 fonowﬂ,thetlc
The ordinary long form would be .. the sy

numerals being the qpeq reserved w
given below ;

- 1ru\x2—2m+1‘ -
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11——3+3+4
+1 1—-2 1
1_-2+1; 5 rem.
Then(8—12+6+4—-5)+1=4—4+1.

theck. Letz =2.
s of a letter are wanting in arranging

1 case any power
s of that letter, zero coefli-

ording to descending power
ats should be introduced as usual.

EXERCISES. CLXXL
by the synthetic process,

Perform the following divisions
ing in the usual way.

saching the coefficients, and check

a®+ b® by a + b

=

9. g8 —9y® by ® — Y-
3 @*—4a+3bya—
o —2x*+1 by x4+ 1.

e 1 _ 4 1 m

1.

L
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III. THE APPLICATIONS OF HOMOGENEITY, SYMMETRY,
AND CYCLO-SYMMETRY (p. 73).

The applications of homogeneity, symmetry, and cyclo-
symmetry are very extensive and they materially simplify
the study of algebra. The principle which lies at the foun-
dation of these applications is as follows:

If two algebraic expressions are homogeneous, symmetric,
or cyclic, their sum, difference, product, or quotient is also
homogeneous, symmetric, or cyclic, respectively.

The truth of this principle follows from the definitions
and from previous proofs. E.g., by the law of the forma-
tion of the product of two polynomials it appears that each
term of one factor is multiplied by each term of the other;
hence, if one factor is homogeneous and of the third degree
and the other is homogeneous and of the second degree, then
the product must be homogeneous and of the fifth degree.

The converse is not necessarily true. [E.g., the sum of
two non-symmetric expressions may be symmetric, as the
sum a? + 4%+ ¢ and ¢ (¢ — 1).

These considerations suggest some valuable checks on the
four fundamental operations. Since algebraic expressions
are often homogeneous, symmetrie, or cyclic, these checks
will be of service throughout the study of the subject.

E.g., the product of z2 + y2 and x + y is 2® + zy2 + 2% + »%. This
may be checked by arbitrary values, or by noticing that the product
must be homogeneous, of the third degree, and symmetric as to z and y.

In the same way the square root of a2 + b* + ¢2+2ab + 2bc + 2 ca
must be symmetric, the product of (a — b)(b — c)(c — a) must be cyclic
and the quotient of 27 a8b® + ¢3 by 3 ab + ¢ must be symmetric as to a
and b; otherwise there must be an error in the operation.

It so happens that many of the expressions dealt with in higher
algebra are, or can be made, symmetric or homogeneous, or both, and

hence the value of these checks becomes the more apparent as the
student progresses in mathematics.
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EXERCISES. CLXXII.

Perform the operations here indicated, checking each by
substituting arbitrary values and also by (1) homogeneity,
(2) symmetry, or (3) cyclo-symmetry, as seems best.

16.
16.
17.
18.

19.

1. (xd + yl) (xﬂ —_ wlyl + yB).

2. Cz+y—2)2x—y+-2).

3. (81 a** — 256 ¢*) <+ (3 ab + 4c).

. 4. (a+0b+c)(be + ca + ab) — abe.

6. (&' + 2%+ y') + (2" + ¥* + xy).
6. —(@a—b)(d—c)(c—a)(a+b+ec).
7. a®(b—¢)+ *(c — a)+ c*(a — D).
8. atb—c)+ b (c—a)+ ct(a—0).
9. —(a—10)(—c)(c—a).

10. a*(b —c)+ b*(c — a)+ *(a — b).

11. (@®+0°+1—3ab)+(a+b+1).

12. (z —y) (@* + o'y + 2%’ + zp® + y).

13, (x* — 18 2%? + y*) + (x? — »* + 4 xy).

14. (P4 y*+ 22—y —yz — 2x) (x + y + 2).
E+y—22)°24+@y+z—22)?2+(@r+x—2y)>%
k—21—-3m)*+(1—2m—3k)*+(m—2k—31)%
(@—0*—c+d*+2bc—2ad)+(a+b—c—d).

@P+e+n)’+@*—g—7)>+(@q—r—-p°
+r—p—9):-

E+y+2)l—(y+z—aP—(z+x—y)*
—(x+y—=2)>~
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Symbolism of symmetric expressions. Since the terms of
a symmetric expression are so closely related in form, it is
often necessary to write only the types of these terms.

E.g., if a trinomial is symmetric as to a, b, and ¢, and if
one term is ab, the others are at once known to be b¢ and ca.
The term ab is therefore called a type term.

The Greek letter 3 (sigma, our S) is used to mean “¢he
sum of all expressions of the type ---.”

E.yg., in f(z, y, z), S2% means “the sum of all expres-
sions of the form 22 ”” which can be made from the three
given letters. ’

That is, Sx%y = 2%y + 2% + y% + y% + 2% + 2%. This
polynomial is called the expansion of Sx%y.

If these same three letters are under discussion,

Sa? = x? + y? + 2% but (Zx)? = (x + y + 2)%

In case of any doubt, the letters under discussion are

written below the 3, thus:

Ec(a+b)5(a+b)+(b+c)+(c+a)
Z@+y)=@+y) + @ +2)
xy
If an expression is known to be cyclic, 3 has a slightly
different meaning. It then stands for “the sum of expres-
stons of this type, which can be formed by a cyclic inter-
change of the letters.”’

E.g., if only cyclic expressions involving three letters are
under discussion, :

2@ —0)=(@—b)+0G -0+ —a),
instead of
@=b+@—a)y+(d—0c)+(c—b+(c—a)+(ea—c);
and
Sa(b+c—2a)?=a(b+c—2a)*+b(c+ a—25)*
+e(a+5b—2c)2
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EXERCISES, CLXXIIL
Expand the expressions in exs. 1-8.

1. 3zy, where only =, y, 2 are involved.

2. Sa%, “« a, b “
3. S(a+10b)? « a, b, c «
" 4. Sab? “« “« “
5. Sxbyiz. 6. Sa®— 3abe.
xyz abe
7.a Etf’ + 2 Sab. 8. ia‘ + 3 3a? + 6 abe.

In cyclic functions involving only a, 4, ¢, what is the
expansion of the expressions in exs. 9-14 ?

9. Sa(d+c). 10. Sa?(b —¢).
11. Za?(® — ). 12. 3a®?*(a — ).
13. Sa*(a —b+c). 14. 3(b—c)*(b+c—2a).

Show that the following identities are true, by expanding
both members. Those involving negative signs are cyeclic.
Except as stated to the contrary, only a, b, ¢ are involved.

16. Sa(b—c)=0. 16. (Sa)? — Sa?= 2 Sab.
17. 521?2 =3Sa’+ S2ab.  18. }[SEaZ’ — Sa?] = Zab.
19. S(@a—b)(a+b—c)=0.
20. S(a -0 =3(@—0)( —c)(c—a).
2l Sa’'b—c)=—(a—b)(d—c)(c —a).
22. Sab(a —b)=—(a—0)(d—c)(c— a).
23. (Za) (Sab)— abe= (a + b) (b + ¢) (¢ + a).
24. (3a)(Za®) + 2abe = (a 4 b) (b + ¢) (¢ + @) + Zd®
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Illustrative problems. The preceding principles render it
easy to simplify certain expansions which would otherwise
require considerable labor. The process will be understood
from a few problems.

1. Expand (a + & + ¢)%
1. The expression is symmetric and homogeneous.

2. .. the expanded form contains only the types a2, ab, with numer-
ical coefficients.

3. .. it is of the form mZa2 + n=ab, where we have to determine
m and n.

4. Considering the expression as a binomial, (a + b + ¢)32, we shall
evidently have a? + 2 ab + b2 + some terms which do not contain a2
or ab. :

5. ... the coefficients of the type a2 are all 1, and those of the type
abareall2. .m=1n=2.

6. .. the result is Za2 + 2 Zab, or a2 + b2 + ¢2 + 2 (ab + ca + be).
Check. Leta=b=c=1. Then
$=1241241242(14+1+4+1)=0.

2. Simplify
(@+b+e)?+@4+b—c)?+G+c—a)+(c+a—0b)>
1." As in problem l,'the types are a2, ab, and the expanded form is
mZa2 4+ nZab, where we have to determine m and n.

2. In the four trinomials we have a2, a2, (— a)3, (— a)?, or 4a?, as
shown in problem 1. ..m =4.

3. Also2ab, 2ab, — 2ab, — 2ab,or0-ab. ..n=0.

4. .. the result is 4 Za?, or 4(a? + b + c?).

Check. Leta=Db=c=1. Then
32412412412 =4(12+ 124 12) = 12.

This particular problem is so simple that there is no great gain by
using the = symbolismn.
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3. Expand (2a)? where Sa=a+0+c+d+e+---.
1. What can be said of (Za)? as to symmetry ? homogeneity ?
2. ... the expanded form contains only what types ?

8. .. it is of what form, and what coefficients are to be determined ?
(See problem 1.)

4. What are these coefficients in the expansion of (a + b)2?

5. Will the addition of other letters, as c +d + e + - - -, affect these
coefficients of a2 and ab ?

6. .. what values have the coefficients m and n, and what is the
result ?

4. Expand (Sa)? where Sa=a+b+c+d+e+---.

1. The types are evidently of the third degree, and therefore must
be a3, a%, abc. (Why ?)

2. In expanding (a + b + c)?, we have (§ 69)

a+b +3a+b-c+3a+b-c2+c3

in which the coefficient of a3 is evidently 1, of a2 is 3, and of abc
(found only in 3a +b°-¢) is 6.

3. The addition of other letters, d + e + - - -, will not affect the
coefficients of a3, a?b, or abc.

4. .. (Za)®=Zad + 3 Za? + 6 Zabc.

5. Expand (w +y +2)° —(y +2—2)*  — (2 + = — y)®
—(x+y—2)>~

1. What are the types ?

2. .- we have a8, —(— )3, — 23, — 8, what is the coefficient of S8 ?

3. - we have 32%, — 32%y, —(— 3x%), — 3%, what is the coef-
ficient of Zz2y ?

4. - we have 6zyz (as in problem 4), — (— 62yz), — (— Gzyz),
— (— 6zyz), what is the coefficient of Zzyz ?

5. .- the result is 24 zyz.
Check. Letz =y =z=1. Then, etec.



386 ELEMENTS OF ALGEBRA.

EXERCISES. CLXXIV.

3 is limited to three letters in each of the following
exercises, except as otherwise indicated.

[=

Expand (Sa)* 2. Expand (Se)*
a-o d

Show that, if 3a = 0, (3a?)?= 4 (3ab)>

Show that 3a - (3a? — Sab) = 3a® — 3 abe.

Show that, if Sa = 0, 3(a + 6)® + Za®=0.

Show that (a + &) (b + ¢) (¢ + a) = Za® + 2 abe.

Simplify (¢ — b — )+ (b — a — ¢)* + (¢ —a — b)2

Show that 3z-(3x — 2x)- (S — 2y)- (S — 22)

= 2 3ax%? — 3zt )
9. Simplify (¢ —2b6—3¢)*+ (b — 2¢ — 3a)?

+(c—2a—30)%

10. Show that (—a+b+¢c)(a—b+c)(a+b—¢)
= 3a®(b + ¢) — 3a® — 2 abe.

11. Show that 3(a — b) =0.

12. Show that (e +b6+¢)(—a+b+c)(a—b+c)
(@a+b—c¢)=32a%*— 3o

13. Show that (a + 8) (b + ¢) (¢ + a) = Sab® + 2 abe.

14. Show that 3a.Sa’=ab(a + b)+ bc (b + ¢)
+ ca(c + a) + Zab.

156. Show that Sa-3ab=d*(b + ¢) + b*(c + a)
+ ¢ (a + b) + 3 abe.

16. Show that (3a — 2a) (3a — 28) (Sa — 2¢)

=a’(b+c)+ 02 (c+a)+ (e + b) — Za® — 2 abe.

® 2 e & b o®
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IV. APPLICATION OF THE LAWS OF SYMMETRY AND
HOMOGENEITY TO FACTORING (p. 88).

Since many of the expressions in mathematics are sym-
metric or homogeneous or both, the application of the laws
of symmetry and homogeneity is of great importance.

E.g., to factor ac? + ba2 + cb2 — ab? — be2 — ca?, it should be noticed
that

1. It is homogeneous, of the third degree, and cyclic.

2. .. either it has 3 linear factors, a — b being one (why ?), or else
it has 1 linear factor, @ + b + ¢ (why ?) and 1 quadratic factor. (Why ?)

8. And -. it vanishes for a = b, .. @ — b is a factor, and ... b — ¢ and
c—=a (Why?)

4. There are no more literal factors (why ?), but there may be a
numerical factor n..

5. Then ac? + ba? + cb? — ab? — be2 — ca2=n(a — b)(b — ¢)(c — a),
and if a = 2, b =1, ¢ = 0, this reduces to
2=—-2.n,
whence n=-1
6. ... the expression equals — (@ — b) (b — ¢) (¢ — a).

Check by letting @ = 3, b = 2, ¢ = 1, or other values.

EXERCISES. CLXXV.

Factor the following :

1. Szt(y — 2). 2. Sa*(0® — c?).

3. Sxb(y — 2). 4. Sat(B® — ).

5. (Sa)® — Zab 6. Sa*— 23a%2

7. (Sa)(3ad) — abe. 8. Sab (a + b) + 2 abe.

9. Sa(B*+ )+ 2abe.  10. Sa(b— o)+ 8 abe.
11. Sa (b + ¢)?— 4 abe. 12. a® — 0% 4 ¢ 4 3 abe.

13. S(a—b)(a+b—c)%. 14. S(@a—d)(a+b—20¢)%
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16.
17.
18.
19.

ELEMENTS OF ALGEBRA.

Sa® (b + ¢) + abe3a. 16. 4a%? —(a® 4 b* — %)%
(32)* + 32 — 3z + 1)’
(32)* + Sat — 3(z + )"
ad + b® + ¢ — 3 abe. One factor must be a £ b or Sa.

~(Why ?)

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.

32.

33.

34.

Sa®+ 3(a +b) (b + ¢)(c + a).

3 (a — b)3, 3 referring to a, b, c.

3 (a? — %)%, 3 referring to a, b, c.

(Ba) (Zab)—(a + ) (b + o) (¢ + a).

2y — ) +y(E —2)+ 2@~y

(s—a)?+(s—b?—(s—c), wheres=a +b +ec.

Sa?(b — c), i.e, a?(b — ¢)+ b*(c — a) + ¢*(a — D).

(@ —a)(d—c)+ (& — b)*c —a)+ (x — o)’ (a — b).

(@a+8)(@—02+@+c)(b—c)f+(c+a)(c—a)’

3 (a — b) (a® + b?), i.e., (@ — b) (a® + 0%)
+ (=) (B*+ )+ (c — a) (¢ + a¥).

@E+y+2)l—(e+y—2)°"'—@+z—2)
—(+=z—y)*

E-)E@—H@—D+e—DE—0¢—0)
+(x—c)(x—a)(c—a)

@b+ ) (B + ¢ — a?) + b(c + @) (¢* + a? — B9
+c¢(a+b) (a® + 0 — c?).

Find three factors, only, of (x — ;z/)”'""l +(y—=z)n+1
+(z —_ m)2"+l.

Also of (3x)?"+! — 3a?"+!, 3 referring to , y, 2.
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The type =x? 4 = 2 xy, the square of a polynomial.

Since (3z)?=3x?+ 32xy (p. 385), it follows that ex-
pressions in the form of 3x?+4 32y can be factored.

E.g.,

4y 422422y +2yz+ 222 =(x +y + 2)%

Check. 9 =32
Similarly, 4a2 + 9b2 + ¢2 — 12ab — 6bc + 4ca = (2a — 3b + ¢)2
Check. Leta=b=1, c=2 Thenl=12

EXERCISES. CLXXVI.

Factor the following:

1.

2
3.
4
b

422 +99y2+1+122y+ 6y + 4.

. 14+4a4+90+4a+ 68+ 12ad2

4 +16a®+ 250" + 16 a + 20 0% + 40 al®

. B5x 4yt + 94222 V5 + 62 V5 + 642
L@t +9c+d2+ 2ad + 6ac® 4 2 ab? + 60%3

+ 20% + 6 ¢3d.

.The following miscellaneous exercises review some of the
elementary cases of factoring.

6.
8.
10.
12.

4 + 8ay? + 9yt 7. 4ot — 4yt + 9yt
5224+5+4+3x +3xa8 9. a%?—42*4+4 — 9y~
at+ 0 —16+2a¢®% 11 144y — 4y — 2%
z%a + ay® + by® + bx®. 13, x2°®+ 144 —16 2% — 9t

14. by +2bx + 2ay + 4 ax.

15. x? + wry — 4wy — 4 xy.

16. 22 +10x+ 2+ 10y + 25 + 2 xy.

17. 22— 122+ 4y*+ 36 — 24y + 4 xy.
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V. GENERAL LAWS GOVERNING THE SOLUTION OF

Theorem.

EQUATIONS (p. 152).
If the same quantity is added to or subtracted

Jrom the two members of an equation, the result is an equiva-
lent equation.

Given
To prove
Proof. 1.

4 = B, an equation, and C any quantity.
that 4 £ C = B X C is an equivalent equation.

If for certain values of the unknown quantities,
4 and B take numerically equal values, it is
evident that 4 £ C and B + C must also take
equal values.

. .*.any root of 4= B is also a root of 4 + C

=B*C

. If for certain values of the unknown quantities

A= C and B+ C take numerically equal values,
it is evident that 4 and B must also take equal
values, because we obtain their values by sub-
tracting from the equal values of 4+ C and
B £ C the same number. .

. .. any root of 4+ C = B =+ C is also a root of

A= B.

. Since any root of 4 = B is also a root of 4 £ C

=B+, and any root of A+ C=B=C is
also a root of 4 = B, it follows that the two
equations are equivalent.

CoroLLARY. Every equation can be put into the form

A=0.

For in subtracting from the two members of an equation a quantity
equal to its second member, an equivalent equation is obtained of which
the second member is 0.
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Theorem. If the two members of an equation are multi-
plied or divided by the same quantity, which is neither zero
nor capable of becoming zero or infinitely great, the result is
an equivalent equation.

Given the equation 4 = B, and the factor C, which by
the conditions cannot be O or infinitely great.

To prove that AC = BC is an equation equivalent to
4=B.
Proof. 1. .- 4 = B, S.d—B=0.
2. ..C(A—-B)=0. Ax. T
3. Every root of 1, making 4 — B = 0, must also

make C'(4 — B)= 0, because C is not infinitely
large.

If C = w, then C (A4 — B) would be undetermined, by § 172.
4. .-. every root of 1 is a root of 2.

5. Conversely, every root of 2, making C (A4 — B)
= 0, must also make 4 — B =0, because C is
not zero.

If C =0, then A — B would equal J, an undetermined quantity
by § 168.

6. .. every root of 2 is a root of 1.
7. From 4 and 6, the equations are equivalent.

The necessity for the limitations on the value of the multiplier is
evident from a simple example. In the equation
2+z=0
we cannot expect to get an equivalent equation by dividing by z
or multiplying by %, for =0 and :—:z «, and the simple equation
z+1=0
is evidently not equivalent to the quadratic equation x* + xr = 0.
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Theorem. If the two members of a rational fractional
equation are multiplied by the lowest common denominator
of the fractions, the result is, in general, an equivalent
equation.

Proof. 1. The equation can be transformed so that the
second member is 0.

2. The first member, being a rational fractional

expression, can then be reduced to the form %,

in which B is the lowest common denominator
of the fractions, after they are added and
reduced, and hence is prime to 4.

B
members of which it is proposed to multiply

by B.

3. .*. the equation can be reduced to 4_ 0, the

4. There can be no values of the unknown quan-
tity which make 4 and B zero at the same
time, since B is prime to A.

<t

.*.in order that % = 0 it is necessary and suffi-

cient that 4 =0. .".the equation 4 =0 is

equivalent to the equation %= 0.

To illustrate the theorem, consider the following cases :

In the equation ; = &, it is legitiinate to multiply by z, giving 4 = 22,
whence £ = + 2, or — 2, either root satisfying the original equation.

But in the equation %z =1, it is not legitimate to multiply by z, for
then #2 =z, and 22 — z =0, whence z(x — 1) =0,z =0, or 1. But
z = 0 does not satisfy the original equation, because § does not neces-

sarily equal 1.

2 1 5
Similarly we cannot solve ;-%9 = 3 by multiplying by z + 2.
z
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Theorem. If both members of an equation are raised to any
integral power, the resulting equation contains all of the
roots of the given equation, but in general is not equivalent
to it.

Given the equation 4 = B.

To prove that the equation 4™ = B™ contains all of the
roots of the equation 4 = B, but in general is
not equivalent to it.

Proof. 1. From 4 = B it follows that 4 — B =0.

. From 4™ = B™ it follows that A™ — B™ =0.

3. But whether 7 is odd or even, 4™ — B™ con-

tains the factor 4 — B.
4. .". equation 2 becomes
A—-B)y(A" 4+ A" 2B+ ...)=0,
and is satisfied by 4 = B.

N

5. .*. equation 2 contains the roots of equation 1.
6. But from equation 4,
Am—l + Am—?B + F— O,

and hence A™ = B™ contains other roots than
A = B, and hence is not equivalent to it.

To illustrate let z=2;
squaring, 22 =4,
an equdtion containing the root

=2,
but also the extraneous root
) z=—2.

If we cube, z8 =8,

and this again contains the root
r=2,

but it also contains the extraneous roots
r=—-—14+V-3.
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VI. EQUIVALENT SYSTEMS OF EQUATIONS (p. 185).

It has been shown that the solution of a system of equa-
tions is made to depend upon the solution of a second sys-
tem derived from the first. But it has not yet been shown
that extraneous roots are not introduced by this operation.

Two systems of equations, each having the same roots as
the other, are called equivalent systems.

Theorem. Gliven a system of two equations
@ txy)=0 Fxy)= 0{
and a, b two numbers (b # 0), then
(2) a-f(x, Y)+be(x’ y)=0, f(x,y)=0
is an equivalent system.
Proof. 1. *.- a solution of system (1) makes both f(zx, y)

and F(z, y) equal zero, it makes both a - f(x, ¥)
‘and b- F (=, y) equal zero, and hence satisfies

system (2).
2. *.* a solution of system (2) makes
| f(@y)=0
and a-f(@y)+b-F(z,y)=0,
it must therefore make a - f(x, y) =0,
and hence, b-F(x, y)=0,
and hence, Fx,y)=0,--0+0.

Hence, it is a solution of system (1).

This theorem justifies the solution of two simultaneous
linear equations by addition, subtraction, and substitution.
For it shows that we may multiply the members by any
numbers (a, b), add or subtract (since 4 may be negative)
the equations member for member, and combine this result
with the equation f(x, y) = 0.
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VII. DETERMINANTS (p. 198).

The practical solution of simultaneous linear equations,
while possible by the methods already given, is frequently
tedious. For this reason mathematicians often resort to a
simpler method, that of determinants.

The theory of determinants is comparatively modern, and
although it is not practicable to enter into the subject at
any length at this time, the elementary notions are so
simple and so helpful, and the applications so common,
that a brief presentation of the subject will be of value.

The symbol |“%t
asb,
a;b; — ab,. The symbol is called a determinant, and the

letters a,, a,, by, b, are called its elements.

is merely another way of writing

This is a determinant of the second order ; i.e., there are two ele-
ments on each side of the square. It will be noticed that the expanded
form is simply the difference of the diagonals.

In a determinant, the horizontal lines of elements are
called rows, the vertical ones columns.

In the above determinant the rows are a,, b; and a,, be; the columns

are ™ and O,
as by

. Yay0,] . . .
‘When the determinant lbl is written in the form
[ A0y
a;b; — agh, it is said to be expanded.
It is understood that the expanded form is to be simplified in all

cases. E.g., while ? ; =2.7—5.3, the result should be stated
as — 1. 0
EXERCISES. CLXXVII

1. Expand the following determinants:
la b jx ;/: lay| ilcb
Zywp ba’  lbx lyal
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2. Also the following:

13 14 '23 ‘24‘

420 320 41) 311
3. Also the following:
10 50 00 019 Oa 00
20/ 700 18 30/’ 027/ 05 abl’

4. From exs. 1 and 2, state what changes can be made
in a determinant of the second order without changing its
value.

6. From ex. 3, what is the value of a determinant if
either a row or a column is made up of zeros ?

6. Expand the following determinants :

126 81 ’5 6}
570 230 78|’
7. Expand the following determinants :
a, b, a, a,
(223 b, ’ bl bg :

8. From ex. 7, state the effect on the value of a deter-
minant of the second order of changing the rows into
columns and the columns into rows.

9. Expand the following determinants :

ay+b b
az+b; by

a, by
ag by

a; — bl bl

’ a; — b, I’n'

)

10. From ex. 9, state the effect on the value of a deter-
minant of the second order, of increasing the elements of
one column by the corresponding elements of another, or of
diminishing the elements of one column by the correspond-
ing elements of another.
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11. Expand the following determinants :

2(11 bl
! 2a, b,

ma, b,
mas by

a, bl
as b,

)

"12. From ex. 11, state the effect on the value of a deter-
minant of the second order, of multiplying the elements of
a column by any number.

A determinant of the second order is no more easily
written than is its expanded form. But one of the third
order (one with three elements on the side of the square)
is materially more condensed than is its expanded form.

a, bl [~}
The symbol |@2bs¢s| is the general form of a deter-
ag by c3
minant of the third order, and it stands for

1bas + tsbse) + @gbi16s — AgbaCy — @abiCs — @rbgCs.

The expansion of a third order determinant is easily
written by following the
arrows in this arrangement.
This method of expansion
holds only for determinants
of the second and third orders,
all that we shall treat in this
work.

The fact that the student is
rarely called upon, in elementary
algebra, to solve a system of more
than three simultaneous linear
equations makes it undesirable to enter, at this time, upon the theory
of determinants of an order higher than the third.

[y




398 ELEMENTS OF ALGEBRA.

EXERCISES. CLXXVIII

1. Expa.nd the following determinants, the rows of the
first being the columns of the second :

123 147
456|, [258]
789 (369

2. Also the following :

a by ¢ a, ay ag
ag by ¢y, by by bgf.
ag by ¢; € Cz Cy

3. From exs. 1 and 2, state the effect on the value of a
determinant of the third order, of changing the rows into
columns and the columns into rows.

4. Expand the following determinants:

246 24446 646
135|, 1+335], 435
789 7+889 1589
5. Also the following:
a, b, ¢, a+b b ¢
ag by cof, az+b, by .
ag bs c3 ag+by by ¢

6. From exs. 4, 5, state the effect on the value of a de-
terminant of the third order, of increasing the elements of
one column by the corresponding elements of another.

7. Expand the following determinants:

Oald 000
0cdf ab c|.

Oef de f
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8. From ex. 7, what is the value of a determinant of the
third order if either a row or a column is made up entirely
of zeros ?

9. Expand the following determinants:

a, b, ¢ ma, by ¢;!
az by ¢, ) may by ¢y,
as by sl |masg by cai

10. From ex. 9, state the effect on the value of a deter-
minant of the third order of multiplying the elements of a
column by any number.

In the preceding exercises certain general theorems have
been proved by the student for determinants of the second
and third orders. These will now be presented formally,
the proof, however, referring only to determinants of these
orders.

Theorem. The value of a determinant is unchanged {f the
rows are changed to columns and vice versa.

@y by ¢
Given  the determinant |as ; cs|.
lag bs c;

‘al as ag
To prove that it equals the determinant [0, b; b;].

1 €3 Cg
Proof. Each expands into

a1bacg + aghsey + aghicg — aghyey — aghics — aqbsc,.

The proof for the determinant of the second order is left
for the student. Take the determinants
a, b,
a, b,

ay Ay
by by
i =1

and and expand.
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Theorem. If each element of a column (or row) of a
determinant is multiplied by any factor, the determinant
is multiplied by that factor.

a bl Cy a b
Proof. Consider the determinants |a; b3 ¢;| and | * ! ! .
b a! b’
Qg 03 Cg

‘By the law of expansion every term of the ex-
panded form contains one a (i.e., a,, a; or asg)
and only one; hence, if every a is multiplied by
m, the m will appear once and only once as a
factor of every term of the expanded form.
Similarly, for any column or row.

For example, consider the determinant lz 3 . If we multiply either

column or either row by 2, the determinant is multiplied by 2. This
is seen by expanding

62 3 4 64 3 2

107 |514) |67 10 14)°

the results being 42 — 20 = 22 in each case, while the original deter-
minant equals 21 — 10 = 11,

Theorem. If a column (or row) is made up entirely of
zeros, the determinant equals zero.

Proof. As in the preceding theorem, every term of the
expanded form contains an a; hence, if every a
is zero, the expanded form vanishes. Similarly,.
for any other row or column.

120

470

360

expands into 1-7-0+4.6-043.0.2—-1-6.0—4.2.0-3-7-0=0.

The same may be seen in the case of determinants like

124 03
00|’ |02

This is seen, for a special case, in the determinant which

ete.
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Theorem. If each element of a column is multiplied by
any number, and added to the corresponding element of any
other column, the value of the determinant is not changed.

a, b, ¢y
Given the determinant |@; b; c;|.
ag bs c5

a, + mb, b, ¢, !
To prove that it equals the determinant |@; + mbg b; co|.
ag + mbg by ¢;
Proof. Expanding the second determinant, it equals
(a'l. + mbl) bacs + (‘12 + mbz) bsey + (as + mbs) bycy
— (s + mbg) bae, — (ag + mby) bycs — (a, +.mb1) bgey
which equals o
@1be05 + @sbsey + ashica — aghacy — axbic; — a1b5c,
the other terms all cancelling out.
That is, the two determinants are equal.
The proof is the same whatever columns (or
rows) are taken, and for the second order as well
as for the third.

CoroLLARIES. 1. The elements of any column (or row)
may be added to or subtracted from the corresponding ele-
ments of any other column (or row) without changing the
value of the determinant.

For m may equal 1 or — 1.

2. If twa columns (or rows) are identical, the determinant
equals zero.

For, if the elements of one are subtracted from the corresponding
elements of the other, a column (or row) will be composed of zeros.

3. If the elements of one column are the same multiples
of the corresponding elements of another, the determinant
equals zero. (Why?)
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Illustrative problems. 1. Expand the determinant

27 25
42 411

Subtracting the second column from the first, the determinant
225 .
equals '1411_82—26_07.

This is much easier than finding the value of 27 - 41 — 42.25.
2. Expand \g i[li | .

Factoring the second column by 3, and then subtracting it from
the first, we have

87 17

3|65 =3’15 =3(56-T7)=-6.
1017 3
3. Expand |20 16 4 /-
30155
Subtracting the first row from the second and that from the third,
10 173
10 —-11|=0. (Why ?)
10 —-11

General directions for expanding determinants.

1. Remove factors from columns or rows.

2. Endeavor to make the absolute values of the elements
as small as possible by subtracting corresponding elements of
rows or columns, or multiples of those elements.

3. Endeavor to bring in as many zeros as possible.

4. Endeavor to make the elements of two columns (or
rows) identical, so that the determinant may be seen to be
zero (if that is its value) without expanding.

5. After thus simplifying as much as possible, expand.
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EXERCISES, CLXXIX.

_Expand the determinants or prove the identities as
indicated.

121
1. (112 2.

211 63 62 13 39

97 96~. 3. l 3 9l'
011 1 41 a b a
4. |12 5|. 5. | 4 16 4/. 6. |a®b%ab |.
137 97 5 17 a® b® ab?

1a a?
7. 11602 =(a—=05)(b—c)(c—a).
lec? '

a0c a+b ¢ c
8. |a b0|=2abec. 9. a b+c¢ a |=4abe
0bc b b c+a

B4 ¢ ab ca
10. ab ct+a?® be |=4a%22
ca be  a®+4 b2

Application of determinants to the solution of a system of
two linear equations.

On solving the system
ax + by = ¢y,
g + byy = ¢y,
the roots are found to be
— c1bs — oy ,
@10y — ash,
_ %l — A9l
T agh, — agh,
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It is at once seen that

. . . 3, b
1. Each denominator is the determinant !
of the coefficients of X and y.

, made up

2. The numerator for X is the same determinant with c
put for a (the coefficient of Xx).

3. The numerator for y is also the same determinant,
with ¢ put for b (the coefficient of y).

Illustrative problem. Solve the system
3z 4 11y = 64,

164 11 16| '
Hore g 16 =7l _ 11 -7 _16(-28-11)_8.-39
IR 14 11| 2(—49-55) —104
'17 -1 10 —7
. ¥ = b, by substitution.
EXERCISES. CLXXX,
Solve by determinants, checking in the usual way.
LHL , 1956,
z y
42 _ ?l -1 56 _9_ o
x Y x y
3. 230 —30y=2. 4. 23z + 10y = 252.
10x + Ty = 61. 19« + 17Ty = 154.7.
5. 41z —3Ty=4. 6. 235x — 234y = 236.
43x + 39y = 82. 411z 4 410y = 412.
7. 522 — 39y =13. 8. 0.5z — 0.3y = 0.021.

18z +18y = 15. 0.6z + 2y =0.332.
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Three linear equations with three unknown quantities.
On solving the system
ax + by + ez =d,,
s + boy + Caz = dy,
asx + by + 5z = dy,
the roots are found to be
_ yboes + dobyey + diybiey — dybuey — dobyes — d bac,
("16203 + agbser + agbicy — azhyey — aghic; — albsﬂz

— aydacs + aydsey 4 agdicy — asdoey, — aydic; — aldsca
a1b965 + aghscy + azhyc; — “sbzcl — aghics — aybzey

— 1bods + asbsdy + ashidy — ashydy — ashids — aybsd, .
a1bscs + azhsey + aghic, — q,b,c, — azhyc5 — @100,

It is at once seen that the same law already set forth
holds here, and that the roots may be expressed thus:

dl b1 (] ay d1 Cl! ay b1 d,
dg by ¢ ag dy 2 ag by ds
=dsbaca. y= asdscs. =a3b3d3'
ay b1 (2] wy bl C1 a bl ¢y
ag bs 2 ag by cg ag bs co
ag b cg ag b c3 ag bg Ca!

It is thus seen that the roots of three linear simultaneous
equations can be written down, in the determinant form, at
sight. It then becomes merely a matter of simplifying.
Whether it is easier to solve by determinants, or to solve
by elimination through addition and subtraction, depends
largely on the size of the coefficients. If the coefficients
are small, there is usually no advantage in using deter-
minants; if they are large there is often a great gain. In
the problems on the next two pages the coefficients are not
in general large enough to make it worth while to use
determinants except for practice.
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Illustrative problem. Solve the system

1Mz + 9y + 332z= 152,
13x+11y+712=0,

1Tz + 15y + 802z = 30.

The common denominator for z, y, 2 is

11 933 2 933 2933 1933
131171|=(21171|={0238|=2-2/0119
17 15 80 21580 04 9 04 9

=2.2(9—-4-19)=—4-67.
(How is the second determinant obtained from the first ? the third
from the second ? and so on.)
The numerator for z is

52 933 ‘26 933 26 —17 7

01171|=2-5; 011 71|=10] 0 1171

20 15 80 ' 3 316 3 013
=10(26-11-13—3.17.71 —3.11-7)
= —10-134.

—10-134
x=-—_4'67 =b.
The numerator for y is

11 52 33 1126 0 .
13 071{=2{13 0 32|=2(17-832-26—29-13-26—11-15-32)
17 30 80 17156 —29

=—2 938,
-2-938_

V="9.61 T

We may now find z by substitution. Or the numerator for z is

2 926 0 —226
1311 0/=2i211 0(/=2-2|1 11 0|,
17 156 30 215-16 0 415

by factoriné by 2 and subtracting the second row from each of the
others. This equals 4 - 134.

11 952

4-134

zZ = =
—4.67
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EXERCISES. CLXXXI.

Solve by determinants, checking all numerical results in
the usual way.

1.

11.

z 4+ y =10. 2.
y + z = 10.

x4 z=06.

zLY_

a+b 3. 4.
Y20

b+z 5.

Trioa

a ¢

12z + 7y = 109. 6.
Sy—2z=11.

4z 4 32 =26.
4x+9y 4+ 2=16. 8.

2¢4+3y+2=4.
z+y+z2z=1

. p*x + gy + r% = sk

Pz + ¢y + Pz = st
pr+qy+rz=s.

S3x+4y+22=47.

S5z —3y+Tz=41.

Te—2y—

S5x—3z2=3.
2x4+y=>.
3y+2="175.

+
|
li
w
)
o

+
|
n

I
2
r

I
Wi IR W
+
Il
L

I8 W8 I
LK

Te —3y—2z=16.
20 —5y+32=239.
S5z +y+ 52=231

3z +3y+32=144.
Tx+ Ty+ 52 = 306.
9z +y—2=154.

a’r+0y+cz=a+b+c.
ax + by +cz=1.
z+y+2=0.

. 22—3y+42=—18.

3rx+4y—52=34.
z4+y+2=0.

13. 1232+ 17y — 139z =1.
51c +3Ty — 972 =—9.
S52+3ly—35z=1.
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VIIL. GRAPHIC REPRESENTATION OF LINEAR
. EQUATIONS (p. 202).

TN

/

/ In the annexed figure the two lines X X' and YY", inter-
_ secting at right angles at O, are called rectangular azes.
A segment, 04, on OX is called

Y the abscissa of any point, as’ Py,

on a perpendicular to XX' at 4.

B-,,_____-,_ > A segment, OB, on OY iscalled

R i the ordinate of any point, as P,,

% 0 A —x on a perpendicular to YY" at B.

The abscissa and ordinate to-
! gether are called the codrdinates
Y7 of the point, the abscissa always
being named first.
Abscissas to the right of O are called positive, those to
the left negative. Ordinates above O are called positive,
those below negative.

o
o

E.g., in the figure the codrdinates of P, are 3, 2; those of Pg are
— 4, 1; those of Pg are — 2, — 3; those of P, are 2, — 2; those of
A are 3, 0; those of O are 0, 0. The ordinate of any point on XX~
is evidently 0, and the abscissa of any point on YY" is 0 also.

Hence, when the axes are given a point in their plane is
fixed when its codrdinates are known. Conversely, when
a point is fixed its coordinates with respect to any given
axes are evidently fixed also.

A point, as Py, is designated by its codrdinates.

Thus, P, is designated by (3, 2), P; by (— 4, 1), Pg by (— 2, — 3),
and P, by (2, — 2).

If the codrdinates are unknown, they are designated by = and y,
the point being designated by the symbol (z, y). That is, if it is
desired to speak of two general points, as we speak of two unknown
quantities in algebra, they may be designated either as P;, P, or as
(21, 1)y (2T2) ¥2)-
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EXERCISES. CLXXXII.

In each exercise draw a pair of rectangular axes and
take } inch as the unit of measure for laying off the coor-
dinates.

1. Represent the points (2, 5), (— 4, — 7).
2. Also (5, 0), (0, 5).

3. Also (0, 0), (2,2), (— 4, — 4). Join these. Do they,
or do they not, lie in the same straight line ?

4. Similarly for the points (— 3, 0), (0, 3), (3,0), (0, — 3).

5. What kind of a figure is formed by joining, in order,
the points (2, 4), (— 2, 4), (— 2, — 4), (2, — 4)?

6.. Also the points (6, 3), (3, 3), (3, — 5)?

[ 4

The graph of an equation. The equation y =x — 1 is
satisfied if
z=---—1, 0,1,2 ..
while y=---—2,—-1,0, 1,....
The points (— 1, — 2), (0, — 1), (1, 0), - - - may, therefore,
be thought of as lying on a line representing this equation.
Hence, in the figure the line

MN is considered the graphic Y

representation of the equation

y=x=—1. Such a graphic rep-

resentation is called the graph

of the equation. X S X
The word locus is sometimes /

used instead of graph. Locus M y

is a Latin word meaning place,

and the line is the place where the points are found.
Strictly, therefore, it is the graph of the equation and the
locus of the points which we have.
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In a case like that of y =« — 1, y is a function of .
Hence, the abscissas represent the variable X, and the ordi-
nates represent the function.

A stmple equation containing two unknown quantities can
always be represented graphically by a straight line.

This is the reason why it is called a lZinear equation, a
term which has, however, been extended to include all

equations of the first degree.
Hence, it is necessary to locate only
/ two points to determine the graph of a
simple equation.

The easiest plan usually consists in
letting z =0 and finding the corres-
ponding value of y; then letting y =0
and finding the corresponding value of z.

E.g., to draw the graph of the equation 22 — 3y =7. If z =0,
then y=—}; if y=0, then z =}. Hence, draw a line through
(0, — 1) and (4, 0), as in the figure.

Since the line represents the equation it is evident that
the coordinates of any point on the graph satisfy the equa-
tion. That is,

a single linear equation in- | a single straight line has an
volving two unknown quan- | infinite number of points.
tities has an infinite number

of roots.

EXERCISES. CLXXXIII.
Draw the graphs of the following equations:
1. x—y=0. 2. x4+y=0.
3. 2z —y=_8. 4. Tx—4y=10.
6. —2xz43y=5. 6. 16z +2y="T.



APPENDIX.

411

It is also apparent that although a single

linear equation has an in-
finite number of roots, two
linear equations involving
two unknown quantities have
in general but one common
pair of roots.

For example, the two equa-
tions
(@) x+2y=38
® 2¢+y="7
have the graphs « and &.

The two equations have
the common pair of roots
whose values are

=2 y=3.

straight line has an infinite
number of points, two straight
lines have in general but one
common point.

b

N

\

The two graphs have the
common point whose coordi-
nates are

x=2, y=3.

Hence, two linear equations involving two unknown
quantities can be solved by means of graphs, although
this is not advisable in practice.

EXERCISES. CLXXXIV.

Draw the graphs of the following pairs of equations and
show that the intersections represent the solutions.

1. a:+y=0.
x—-y=0.
3. 3Z+5y=12.
r+y=2

2. bx +2y=16.
3x—y=3.

4. Bz +Ty=11
7$+5"l/=1.
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DiscussioN oF SOLUTIONS.

While in general

two linear equations involv-
ing two unknown quantities
have a single cominon pair of
roots, they may not, for they
may be inconsistent or they
may be indeterminate.

E.g., the equations
2z+3y=86
2z4+3y=4

have evidently no common pair
of roots, since that would make
6 = 4. Hence, they are called
inconsistent.

Also the equations

z Y

T, Y 4

2+3
3z+2y=86

have no determinate solution, for
the members of the second are
merely six times those of the first.
They are, therefore, equivalent
equations, and reduce to a single
indeterminate equation.

two straight lines in a plane
have a single common point,
they may not, for they may
be parallel or they may coin-
cide.

E.g., the graphs of

2z+3y=6
22 +3y=4
are parallel.
AN
Also the graphs of

z v
g A |
2+3

3z +2y=0

coincide.

It is a mistake quite often made by students to think
that it is possible to solve any two equations like

8z +4y=>5.
They may not be simultaneous, as in this case.
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EXERCISES. CLXXXV.

Discuss the following systems of equations, solving if
possible and drawing graphs in all cases.

1. z4+y=1. 2. x4+y=4.

z—y=1 x—y==6.

8. y+3x=6. 4. z+3y=6.

y=4. z=4.

6. 2¢+3y=38. 6. 62+ 10y =10.
- LY
513 1. 5+3 2.

7. —1.5y=10. 8. Tx+35y=15.

22 —-3y=>5. 3z + 15y =38.

9. 10z +6y=>5. 10, 8x— 12y =2,
z, ¥y _1 g _y_1,

3 5 6 3 2 12

11. 6z + 0.8y = 10. 12. 1.02z — 0.01 y = 20.1.

3z+04y=6. 022—-01y=1.

In the same way it may happen that three equations in-
volving three unknown quantities may be inconsistent or
indeterminate.

Illustrative problems. 1. Solve the following system :
1. 924+ 6y + 32 =30.
2. 6z+4y+22z=20.
3. z4+2y+3z2=14.

Equations 1 and 2 are easily seen to be equivalent. Hence, there
are only two independent equations, involving three unknown quan-
tities, and they are indeterminate.
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2. Solve the following system :
1. 6z + 13y +22=14%
2. 9z+2y+32=22.
3. z+2y+3z2=14.

Equations 1 and 2 are easily seen to be equivalent. Hence, there
are only two independent equations, involving three unknown quan-
tities. But these two are determinate as to z, for subtracting 3 from
2 we have 82 =8, ... z = 1. But y and z are indeterminate. That is,
these two equations are inconsistent except for z = 1.

3. Solve the following system :

1. 92+ 6y + 32 =30.
2. 6x+4y+22=30.
3. z+2y+32=14.

Equations 1 and 2 are easily seen to be inconsistent; for if the
members of 1 are multiplied by §, 6z + 4y + 22z = 20 instead of 30.

EXERCISES. CLXXXVI.

Discuss the following systems of equations with respect
to their being indeterminate or inconsistent.

1. z4+2y—22=0. 2. be+3y—2=—17.
2z —y +2=10. 6r+4y=—14.
3z +y—2z=10. r+y+2=3.

3. 6x+9y+122=35. 4. Tx+11y+ 42 =22
20 +3y+42=32. 20 +3y+42=09.
3z +2y—2=28. S5z+2y—2=86.

6. 10z +5y — 152 =5. 6. 220 —3y —42=—85.
22 4+y—32=0. x4+ 6y +32=10.
3z +2y+2=6. z+5y+32=0.
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IX. GRAPHS OF QUADRATIC EQUATIONS (p. 296).

The student has already learned in Appendix VIII how
graphically to represent a simple equation. Furthermore
he has learned that to every point on the graph corresponds
one root and only one of the equation, and wice versa, a
“one-to-one correspondence” between points and roots.

He has also learned that
as, in general, so, in general,
two straight lines in a plane | two linear equations have
have one common point and | one common root and only
only one, one.

Y

‘We shall now consider the graphs
of equations of degrees above the
first.

Illustrative problems. 1. Required X [
the graph of the equation |

z’+y’=10. d

Y=+ V10 — 23, .-. by giving z va-
rious values (noticing that 22} 10 for real values of y) we have corres-
ponding values of y as follows:
e=+V10, +3, £ V8, £ V7, + V6, + V5, 2, £V2, 1, 0.
y= 0, +1, +V2, +V3, 42 +V5, +V6, £ V8, £3, +VI0.

Taking the approximate square roots, and laying off the abscissas
and ordinates as indicated, and then connecting the successive points,
the graph is the circumnference of a circle.

So, in general, the graph of every equation of the form x2 + y2 = k2
i8 the circumference of a circle.

2. Required the graph of the equation 2 a? + 3 3 = 10.
Yy =13V6(5 — x?), .. by giving ¢ various values (noticing that
22} b for real values of ¥) we have corresponding values of y as fol-

lows:
ows z=ﬂ:\/5y :E2$ :}Z\/gv i‘\/E’ ﬂ:l’ io'

Y= 0, ii\/“}’ i‘i‘\/gy i\/év ;i;&\/a, ii‘\/d_o'
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Y Taking the approximate square roots, and
laying off the abscissas and ordinates as indi-
cated, and then connecting the successive points,

x the graph is a curve known as an ellipse.

So, in general, the graph of every equation of
the form ax? 4+ by2? = ¢, where a, b, ¢ are posi-
tive, i8 an ellipse.

3. Required the graph cf the equation 2 2? — 3 y? =10.

‘cy=++V6(x2 - b), ... by giving z various values (noticing that
23 4 5 for real values of ) we have corresponding values of y as fol-

lows:
z=+V6, +V8, +V7, +V8, 13, +VI10, .- -.
y= 0, ;{:*\/6, i*\/'i :t\/é’ :}:*\/61 iimv
Taking the approximate ) Y

square roots, and laying off
the abscissas and ordinates as
indicated, and then connect-
ing the successive points the X-

graph is the curve known as 0 )
the hyperbola.
So, in general, the graph

of every equation of the form Y
ax2? — by? = c, where a, b, ¢, are positive, is an hyperbola.

4. Required the graph of the equation y? = 8.

cyY=+% % 2—:—0, .. by giving ¢ various values (noticing that = 0
for real values of y) we have corresponding values for y as follows:
z=0, 1, 2, 3, 4 5, 6, ---

2]
'.ll=01 :i‘.i\/iy :Ely ii\/éy :l;\/é, i*\/lo’ :t\/g""-
Y, Taking the approximate square roots, and
, laying off the abscissas and ordinates as indi-
X 5 +—X cated, and connecting the successive points, the
—___ graph is a curve known as the parabola.
Y So, in general, the graph of every equation

of the form y? = ax is a parabola.
The ellipse, hyperbola, and parabola are curves formed by cutting
into a right circular cone, and hence are called conic sections.
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5. Required the graph of the equation Y
?+3x*—x—3=y.

Giving z various values, we have corres- X

ponding values of y as follows: 0 X
z=-.-— 4,-3,-2,—-1, 0,1, 2, 3, 4,---.
y=..-—15, 0, 38, 0,-—3,0,15,48,105,--. v

The curve is seen to be one which can be
cut by a straight line in three points, and this is the general charac-
teristic of graphs of cubic equations.

EXERCISES. CLXXXVII

1. Required the graph of the equation z?+ y?=25. In
how many points at the most could a straight line cut this
curve ?

2. Similarly for y? =18 z.
3. Similarly for 2 2? + 5% = 10.
4. Similarly for 2x% — 5 y? = 10.

5. In how many points, at the most, can a straight line
cut the graph of a quadratic equation, judging by the results
of exs. 1-47?

6. Required the graphs of the equations
xz? + y? =13,
x—y=>5
drawn with respect to the same axes. What are the abeis-
sas and ordinates of the points of intersection of the two
graphs ? How do these compare with the common roots
of the two equations ?
7. Similarly for the equations
22% + 3 y* = 35,
3a? + 2y* = 30.
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8. Similarly for the equations‘
y’ =10 x,
¥ — 2x? = 80.
9. Required the graph of the equation y =z — 9uz.
In how many points does this curve cut the X axis?
10. Required the graph of the equation
y=ax*—5x+ 92— 5a.

In how many points could a straight line cut this curve ?

Graphic representation of the roots. In the equation

y=a'—xz—2
we have the following corresponding values :
z=---—3, —2, —1, 0, 1, 2, 3 4, --.
y=-.-- 10, 4, 0, —2, —2, 0, 4, 10, --.
Y The graph is shown in the annexed figure.

When y=0, x=—1, or 2. That is, the
wvalues of X, in the equation 2 —x — 2 =0,
X are the abscissas of the intersection of the
graph with the X axis.
i Similarly, any equation f(x)=0 can be
Y solved by writing it f(z) = y and plotting. it.
The abscissas of the intersections of the graph with the X
axis will then be the roots of the equation.

Imaginary roots show themselves by a curve which does
not reach the X axis.

E.g., in studying the equation z® — 522+ 8z — 6 =0, let
y=/(x). Then wehave the following corresponding values:
x=-..- —1, 0, 1, 1.5, 2, 3, 4
y=---—20, —6, —2, —1.875 —2, 0, 10.
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The curve does not reach the X axis between 1 and 2.
In solving the equation the roots are found to be 1 + <,
1—4, and 3.

The fact that complex roots enter in pairs
is readily understood by a study of the gra.ph

E.g., consider the equation x? —

Let f(z) =y. We then have the followmg
corresponding values :

z= 0, +1, +£2,
y=_4’ —3: 0’

If, now, we make each y 3 units greater, i.e., if we lift
the curve 3 units (or, what is the same thing, lower the X
axis 3 units) « will equal =1 when y = 0.

Y
Le., the roots will approach each other. [
This can be done by making the equation
2?—1=y. X- 3 X

If we lift the curve another unit (or lower
the X axis 4 units), making the equation
2=y, « will have only the double root 0
when y =0; <.e., the two roots are now equal.

If we lift the curve another unit (or lower the X axis 5
units), making the equation 2?4 1=y, = will have the
imaginary value ¢ when y = 0, the two imaginaries enter-
ing together. In other words, complex roots (of which pure
imaginaries form a special class) enter in pairs.

Roots of simultaneous equations. We have seen that two
linear equations, involving but two unknown quantities, can
be solved by finding the point of intersection of their graphs.

Similarly, if we have two equations like

L x4+ 3y? =28,

II. 22—yt =1,
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the coordinates of the common points of their graphs repre-
sent the common roots of the equations.

From I, wehavey::l:}m.
Hence, if

x= 0, +1,+2,  +3, +4, +5, +V28,
then y=+%V21, +£3 +2V2 +34V57, £2,+1, 0.

II

v
The graph is marked I in the annexed figare. It is an
ellipse.
From II, we have y = £ V222 + 7.
Hereifz= 0, =£1, £2, +3 4, - ..,
then y=%V7, £3, £V15, £5, V39, -...

The graph is marked II in the annexed figure. It is an
hyperbola, a two-branched figure.
The common roots are
z=1, 1, —1, —1.
y=3, —3, 3, —3

From the preceding figure we see confirmed the fact
already mentioned, that two simultaneous quadratic equa-
tions involving two unknown quantities have, in general,
four roots, the two curves intersecting in four points.

Two of the points may coincide, as in Fig. 1, giving a
double root, or there may be two double roots, as in Fig. 2,
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or two of the roots may be imaginary, as in Fig. 3, or both
pairs of roots may be imaginary. '

A N/
S K

Fia. 1. Fi1G. 2. FiG. 3.

From similar considerations it may be inferred that there
are 6 roots common to two simultaneous equations of which
one is a quadratic and the other a cubic. In general, if one
equation is of the mth degree and the other of the nth,
there are mn roots.

EXERCISES. CLXXXVIII.

Represent graphically the following sets of simultaneous
equations, and find at least one value of x and one of y
common to the two.

1. 224+ y?=8. 2 x4+y="T.
y'=2= @4y =11
3. =+ 3y =10. 4. 2274 2 =19.
24 5=2y. x?— y? =8,
5. 2x*+y*=3. 6. P*+at—x—3=y.
2 —3yt=-2. x+y=>.
7. 2+ yt=>5.

y=x"+3x*—4ax+2.
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TaE simple equation was known to the Egyptians, its solution
appearing in the oldest deciphered mathematical work extant, the
papyrus of Ahmes. The quadratic equation was solved by the
Greeks, and indeterminate equations formed a considerable portion
of the works of Diophantus. The Hindus, Persians, and Arabs next
took up the science and made considerable progress in the study of
equations and series. The Arabs gave to algebra its name.

The sixteenth century saw a great revival of learning in general
and of algebra in particular. The cubic and quartic equations were
now solved.

The seventeenth century saw modern symbolism established, thus
forming elementary algebra as it is known to-day.

The following table contains the names mentioned in this work,
together with a few others prominent in the history of algebra. The
notes are chiefly from those prepared by the authors for their transla-
tion of Fink’s ‘ History of Mathematics®’ (Chicago, The Open Court
Publishing Co., 1900), to which reference is made for a more complete
account of the development of the science.

Abel, Niels Henrik. Born at Findoe, Norway, August 5, 1802 ; died
April 6, 1829. Proved the impossibility of the algebraic solution
of the quintic equation.

Ahmes. An Egyptian scribe. Lived about —1700. Wrote the earliest
deciphered mathematical manuscript extant, on arithmetic, alge-
bra, and mensuration.

Al Khowarazmi, Abu Jafar Mohammed ibn Musa. First part of ninth
century. Native of Khwarazm (Khiva). Arab mathematician
and astronomer. The title of his work gave the name to algebra.

Ampére, André-Marie. Born at Lyons, France, in 1775; died at
Marseilles in 1836. Founder of the science of electro-dynamics.
423
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Apollonius of Perga, in Pamphylia, Taught at Alexandria between
— 250 and — 200, in the reign of Ptolemy Philopator. Solved
the general quadratic with the help of conics.

Argand, Jean Robert. Born at Geneva, 1768; died c. 1825. Private
life unknown. One of the inventors of the present method of
geometrically representing complex numbers (1808).

Aristotle. Born at Stagéira, Macedonia, — 384; died at Chalcis,
Eubcea, — 322. Great philosopher. Represented unknown quan-
tities by letters; suggested the theory of combinations.

Aryabhatta. Born at Pataliputra on the Upper Ganges, 476. Hindu
mathematician. Wrote on algebra, including quadratic equations,
permutations, indeterminate equations, and magic squares.

Bézout, Etienne. Born at Nemours in 1730; died at Paris in 1783.
Prominent in the study of symmetric functions and determinants.

Bhaskara Acharya. Bornin 1114. Hindu mathematician and astrono-
mer. Author of the ‘¢ Lilavati "’ and the ‘¢ Vijaganita,’’ contain-
ing the elements of arithmetic and algebra. One of the most
prominent mathematicians of his time.

Bombelli, Rafaele. Italian. Born c¢. 1530. His algebra (1572) sumn-
marized all then known on the subject, especially the cubic.

Boyle, Robert. Born in Ireland, Jan. 25, 1627 ; died Dec. 30, 1691.
Celebrated physicist.

Brahmagupta. Born in 608. Hindu mathematician. Contributed to
geometry, trigonometry, and algebra.

Briggs, Henry. Born at Warley Wood, near Halifax, Yorkshire,
February, 1560-1; died at Oxford Jan. 26, 1630-1. Savilian pro-
fessor of geometry at Oxford. Among the first to recognize the
value of logarithms; those with decimal base bear his name.

Burgi, Joost (Jobst). Born at Lichtensteig, St.. Gall, Switzerland,
1552 ; died at Cassel in 1632. One of the first to suggest a system
of logarithms, The first to recognize the valie of making the
second member of an equation zero.

Cardan, Jerome (Hieronymus, Girolamo). Born at Pavia, 1501 ; . died
at Rome, 15676. Professor of mathematics at Bologna and Padua.
Mathematician, physician, astrologer. First to publish (15645) the
solution of the cubic equation.

Cataldi, Pietro Antonio. Italian mathematician, born 1548 ; died at
Bologna, 1626. Professor of mathematics at Florence, Perugia,
and Bologna. Pioneer in the use of continued fractions.
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Cauchy, Augustin Louis. Born at Paris, 1789 ; died at Sceaux, 1857.
Professor of mathematics at Paris. One of the most prominent
mathematicians of his time. Contributed to the theory of deter-
minants, series, and algebra in general.

Cramer, Gabriel. Born at Geneva, 1704; died at Bagnols, 1752.
Added to the theory of equations and revived the study of deter-
minants (begun by Leibnitz).

D’Alembert, Jean le Rond. Born at Paris, 1717; died there, 1783.
Physicist, mathematician, astronomer. Contributed to the theory
of equations.

De Moivre, Abraham. Born at Vitry, Champagne, 1667; died at
London, 1764. Contributed to the theory of complex numbers
and of probabilities.

Descartes, René, du Perron. Born at La Haye, Touraine, 1696 ; died
at Stockholm, 1650. Discoverer of analytic geometry. Contrib-
uted extensively to algebra.

Diophantus of Alexandria. Lived about 275. Most prominent of
Greek algebraists, contributing to indeterminate equations.
Euclid. Lived about —300. Taught at Alexandria in the reign of
Ptolemy Soter. The author or compiler of the most famous text-
book of geometry ever written, the ‘¢ Elements,’” in thirteen books.

Euler, Leonhard. Born at Basel, 1707 ; died at St. Petersburg, 1783.
One of the greatest physicists, astronomers, and mathematiciaus of
the eighteenth century.

Ferrari, Ludovico. Born at Bologna, 1522 ; died in 1662. Solved the
biquadratic.

Ferro, Scipione del. Born at Bologna, c. 1465; died between Oct. 29
and Nov. 16, 1626. Professor of mathematics at Bologna. Inves-
tigated the geometry based on a single setting of the compasses,
and was the first to solve the special cubic 3 + pz = q.

Gauss, Karl Friedrich. Born at Brunswick, 1777 ; died at Gottingen,
18565. The greatest mathematician of modern times. Prominent
as a physicist and astronomer. The theories of numbers, of func-
tions, of equations, of determinants, of complex numbers, of
hyperbolic geometry, are all largely indebted to his great genius.

Harriot, Thomas. Born at Oxford, 1660; died at Sion House, near

Isleworth, July 2, 1621. The most celebrated English algebraist
of his time.
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Horner, William George. Born in 1786 ; died at Bath, Sept. 22, 1837.
Chiefly known for his method of approximating the real roots
of a numerical equation (1819).

Lagrange, Joseph Louis, Comte. Born at Turin, Jan. 25, 1736 ; died
at Paris, April 10, 1813. One of the foremost mathematicians of
his time. Contributed extensively to the calculus of variations,
theory of numbers, determinants, and theory of equations.

Maclaurin, Colin. Born at Kilmodan, Argyllshire, 1698 ; died at York,
June 14, 1746. Professor of mathematics at Edinburgh. Contrib-
uted to the study of conics and series.

Metrodorus. Lived about 325. -Author of many algebraic problems.

Napier, John. Born at Merchiston, then a suburb of Edinburgh, 1550 ;
died there in 1617. Inventor of logarithms.

Newton, Sir Isaac. Born at Woolsthorpe, Lincolnshire, Dec. 25, 1642,
(0. S.); died at Kensington, March 20, 1727. Lucasian professor
of mathematics at Cambridge (1669). The world’s greatest mathe-
matical physicist. Invented fluxional calculus (c. 1666). Contrib-
uted extensively to the theories of series, equations, curves, etc.

Ohm, Georg Simon. Born at Erlangen, Germany, in 1781 ; died July
6, 1854. Celebrated physicist.

Pascal, Blaise. Born at Clermont, 1623 ; died at Paris, 1662. Physi-
cist, philosopher, mathematician. Contributed to the theory of
numbers, probabilities, and geometry.

Recorde, Robert. Born at Tenby, Wales, 1510; died in prison, at
London, 156568. Professor of mathematics and rhetoric at Oxford.
Introduced the sign = for equality.

Tartaglia, Nicolo. (Nicholas the stammerer. Real name, Nicolo Fon-
tana.) Born at Brescia, ¢. 1500 ; died at Venice, c. 15657. Physi-
cist and arithmetician ; known for his work on cubic equations.

Taylor, Brook. Born at Edmonton, 1685; died at London, 1731.
Physicist and mathematician. Known for his work in series.

Vidte (Vieta), Francois. Born at Fontenay-le-Comte, 15640 ; died at
Paris, 1603. The foremost algebraist of his time.

Volta, Alessandro. Born at Como, Italy, Feb. 18, 1746 ; died March
5, 1827. Celebrated physicist.

Wallis, John. Born at Ashford, 1616 ; died at Oxford, 1703. Savilian
professor of geometry at Oxford. Suggested (1685) the modern
graphic interpretation of the imaginary.
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THEe following table will serve to make more clear to students the
meaning of many words used and defined in elementary algebra.

L., Latin.

Abscissa. L. cut off.

Absolute. L. absolutus, ab, from,
-+ 8olvere, loosen. That is, com-
plete, unrestricted.

Abstract. L. abs, away, + tra-
here, draw.

Add. L. ad, to, + -dere, for dare,
put, place.

Affected. L. ad, to, + facere, do,
make ; i.e., to act upon, influ-
ence. Hence compounded ; an
equation of several degrees.

Aggregation. L. ad, to, + gre-
gare, collect into a flock, from
grezx, flock.

Algebra. Arabic, al, the, + jabr,
redintegration, consolidation.
The title of Al Khowarazmi's
work (see Table of Biographies)
was ‘ilm al-jabr wa’l muqa-
balah, the science of redintegra-
tion and equation; of thislong
title only al-jabr survives.

Alternation. L. alter, other.
Antecedent. L. ante, before, +
cedere, go.

Antilogarithm. L. and G. anti-,
against, opposite to, -+ loga-
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G., Greek.

dim., diminutive.

rithm. See Logarithm. The
number standing opposite to the
logarithm.

Arithmetic.
ber.

Ascend. L. ad-, to, + scandere,
climb.

Associative. L. ad-, to, +sociare,
join.

Axiom. G. azioma, that which
is thought fit, a requisite.

G. arithmos, num-

Binomial.
name.

Characteristic. G. charakterizein,
designate; from G. character,
an instrument for graving, from
charassein, to scratch.

Circulate. Fromcircle. L. dim.
of circus, a ring, G. kirkos or
krikos, a circle, ring.

Commutative. L. com-, inten-
sive, + mutare, change.

L. bi-, two-, +nomen,

Comparison. L. com-, together
with, + par, equal.
Complement. L. complementum,

that which fills; from com-,
intensive, + plere, fill.
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Complete. See Complement.

Complex. L. com., together, +
plectere, weave.
Composition. L. com-, together,

+ ponere, place.
Compound. Same etymology as
Composition.

Consequent. L. con-, together,
+ sequi, follow.
Constant. L. con-, together, +

stare, stand.

Continued. L. con-, together, +
tenere, hold.

Corollary. L. corollarium, a gift,
money paid for a garland of
flowers, from corolla, dim. of
corona, a Crown.

Cube. G. cubos, a die, a cube.

Decimal. L. decem, ten.

Deduce. L. de, down, away, +
ducere, lead.

Define. L. de-, + finire, limit,
settle, define.

Degree. L. de, down, + gradus,
step.
Denominator. L. namer, from

de, + mominare, name, from
nomen, name.

Descend. L. de, down, + scan-
dere, climb.

Detach. Ital. des-, privative, +
-tacher, fasten.

Determinant. L. de-, + termi-
nare, bound, limit.

Determine. See Determinant.
Discriminant. L. dis-, apart, +
cernere = G. krinein, separate.
Distribute. L. dis-, apart, + tri-

buere, give.
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Divide. L. di-, fordis-, apart, +
videre, see.

Domain. L.dominium,dominion,
from dominus, lord.

Eliminate. L. ¢, out, + limen, a
threshold. To turn outof doors.
Equal. L. aequalis, equal, from
aequus, plain.
Equation. See Equal.
Evolution. L. e, out, + volvere,
roll. To unfold the root.
Exponent. L. ex, out, + ponere,
put; i.e., to set forth, indicate.
Extraneous. L. extra, outside.
Extreme. L. extremus, superla-
tive of exter, outer.

Factor. L. a doer, from facere,
do.
Fraction. L. fractus, broken,

from frangere, break.
Function. L. functus, performed,
from fungi, perform.

Graph. G. graphein, write.

Homogeneous. G. homos, the
same, + genos, race.

Identical. - L. idem, the same.

Imaginary. L. imago, an image.

Indeterminate. L. in-, privative,
+ determinate. See Determi-
nants.

Index. L. indicare, point out,
show.

Infinite. L. in-, not, + finitus,
bounded.

Inspection. L. in, on, in, at, +

specere, look.
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Integer. L. in, privative, + tan-
gere, touch; i.e., untouched,
whole, sound.

Inverse. L. in, on, toward, +
vertere, turn. .

Involution. L. in, in, + volvere,

roll. To roll the root into a
power.
Limit. L. limes (limit-), a cross-

path, boundary.
Linear. L. linea, line.
Literal. L. littera, litera, a letter.
Logarithm. G. logos, proportion,
ratio, + arithmos, number.

Mantissa. L. an addition.

Maximum. L. greatest, superla-
tive of magnus, great.

Mean. L. medius, middle.

Minimum. L. least.

Minuend. L. minuere, lessen.

Monomial. G. monos, single,
+ L. nomen, name.

Multiple. L. multus, many, +
-plus, like English -fold, from
plicare, fold.

Negative. L. ne, not, + que, a
generalizing suffix.

Notation. L. notatio, a marking,
from nota, a mark, a sign.

Number. L. numerus, number.
Numerator. L. numberer.
Operation. L. opus, work.

Ordinate. L. ordo (ordin-), arow.

#. Initial of G. periphereia, pe-
riphery, circumference.
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Polynomial. G. polus, many, +
L. nomen, name. .

Positive. L. positivus, settled,
from ponere, put.

Power. L. posse, to be able.

Problem. G. problema, a question
proposed for solution; from
pro, before, + ballein, throw.

Product. L. pro-, forth, + du-
cere, lead.

Proportion. L. pro, for, before,
+ portio, a share.

Proposition. L. pro, before, +
ponere, place.

Pure. L. purus, clean.

Quadratic. L. quadratus, a
square, from quattuor, four.
Quantity. L. quantus, how much,

from quam, how.
Quartic. L. quattuor, four.
Quotient. L. gquot, how many.

Radical. L. radix, root.

Ratio. L. a reckoning, calcula-
tion, from reri, think, estimate.

Rational. L. ratio. See Ratio.

Real. L. realis, belonging to the
thing itself, from res, thing.

Reciprocal. L. re-, back, + ad-
jective formative -cus.

Reduce. L. re-, back, + ducere,
lead.
Remainder. L. re-, behind, back,

+ manere, remain.

Root. L. and G. radiz, a root.
Beries. L. a row.
Similar. L. similis, like.

Simplify. L. simplex, simple.
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Simultaneous. L. simultim, at
the same time, from simul,
together.

‘Solution. L. solvere, loose.

Square. L. quadra, a square,
from quattuor, four.

Substitute. L. sub, under, +
statuere, set up. -

Subtract. L. sub, +trahere, draw.

Subtrahend. See Subtract.

Sum. L. summa, highest part.

Surd. L. surdus, deaf. A mis-
translation of the G. alogos,
which does not mean stupid

Trinomial.

(hence deaf), but inexpressible.
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Symbol. G. symbolos, a mark,
from syn, together, -+ ballein,
put.

Symmetry. G. syn, together, +
metron, measure.

Theorem. G. theorema, a sight,
a principle contemplated.

Transpose. L. trans, over, +
ponere, place.

L. tres (fri-), three,

-+ nomen, name.

Vary, variation.
ferent.

L. varius, dif-











