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RETAY

HE first edition of OLNEY’S SPECIAL OR ELEMENTARY
GEOMETRY was issued nearly twelve years ago. It con-
tained many new features. The book has gone into use in every
State in the Union, and has been tested by practical teachers in
all grades of schools. This long and varied test has been watched
‘with care by the author, and it is with the greatest pleasure that
he has found that the general features of the book have been
well-nigh universally approved. .

To make the book still more acceptable to the teachers and
schools of our-country, and to keep it abreast with the real
-advancement in science and methods of teaching, as well as to
make it a worthy exponent of the best style of the printer’s art,
are some of the reasons which have led to the preparation of this
-edition. ‘ :

1. The division into Chapters and Sections, instead of Books,
has been retained, as affording better means of classifying the
subject-matter, and also as conforming to the usage of modern
times in other literary and scientific treatises.

- 2. Part First of the old edition has been omitted, and the
definitions and illustrations necessary to the integrity of the
subject have been incorporated with the body of the work. This
has been done solely in deference to the general sentiment of the
teachers of our country. The author can but feel that this senti-
ment is wrong. That the best way to present the subject of
Geometry is to present some of its leading notions and practical
facts with their uses in drawing and in common life, before
attempting to reason upon them, appears to him quite clear. It
is in accord with one of the settled maxims of teaching which
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requires ¢ facts before reasoning,” and then it is in harmony
with the historic development of the science, and with the order
of mental development in the individual. Moreover, since this
method was presented to the American public in this treatise, the
author has received books on exactly the same plan, which are
in general use in Germany, and also “A Syllabus of Plane
Geotnetry, prepared by the Association for the improvement of
Geometrical teaching” in England, in which this principle
is recognized by recommending quite an extended course in
Geometrical constructions before entering upon the logical treat-
ment of the subject. The author hopes to revise his Part First,
and present it as a little treatise adapted to our Grammar or
lower schools; as he can but think these subjects much more
interesting and useful to pupils of this grade than much of the
matter usually brought before them, especially the more advanced
portions of arithmetic, and as he is confident that they are the
proper preparation for the intelligent study of logical geometry.
3. The same general analysis of the subject is adhered to as in
the first edition. All must acknowledge it a reproach to the
oldest and most perfect of the sciences that, hitherto, no system-
atic classification of its subject-matter has been reached. That
the ordinary arrangement found in our Geometries is not
based upon a scientific analysis of the subject, and a systematic
classification of topics will be evident to any one who attempts
to give the subject-title of almost any so-called Book. A
glance at the table of contents of this volume will show that
the analysis of the subject-matter is simple and strictly philo-
gophical. There are two lines of inquiry in geometry, viz.,
concerning position (from which form results) and magni-
tude. The concepts of Plane Geometry are the point, straight
line, angle, and circle. Now, the measurement of magnitude is
either direct or indirect. The direct measurement and compar-
ison of magnitudes is a simple arithmetical operation, and is
presented, as regards straight lines, in Section 4. The direct
measurement of other magnitudes is effected in a similar manner,
but is unimportant from a scientific point of view. The indirect
measurement of magnitude, as when we find the third side of a
triangle from the other two and their included angle, the circum-
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ference or area of a circle from the radius, ete., is a somewhat
remote application of more elementary principles. There is then
left, as the natural first object of inquiry, the relative position of
two (and hence of all) straight lines. Here we have philosophi=
cally the first inquiry of logical geometry. This inquiry divides
into the three inquiries concerning perpendicular, oblique and
parallel lines. In a similar manner the topics of the succeeding
sections unfold themselves from the principles stated.

4. This analysis and classification of the subject-matter re-
quires that a somewhat larger number of propositions be demon-
strated from fundamental principles, that did the old method, of
proving first any proposition you could, and then any other, and
80 on ; but who will consider this a defect ? On the other hand,
it gives almost absolute unity of method of demonstratxon in
the propositions of any one section.

5. The freedom with which revolution is used as a method of
demonstration, will be observed upon a cursory reading. Of
course it is assumed that the old repugnance to the introduction
of the notions of time and motion into geometry is outgrown.
Indeed, the old geometers could not get on without the super-
position of magnitudes, and this idea involves motion. Now,
revolution is but a systematic method of effecting superposition, -
which is well-nigh the only geometrical method of proving the
equality of magnitudes.

6. The author has long desired to introduce the idea of same-
ness of direction in treating parallels; but could not accept
what seemed to him the vague methods of writers who have
made the attempt. If we cannot define the notion of direction,
we certainly should have some method of estimating and measur-
ing it before it can be made a proper subject of geometrical
inquiry. This the author thinks he has secured, by giving the
necessary precigion to certain very common and simple notions.

7. As to the introduction of the infinitesimal method into
mathematics (and if introduced at all, why not in the elements
where it will do most service ?), the author is confident that no
one thing would do more to simplify, and hence to advance,
elementary mathematical study, than the general and hearty
acceptance of this method. No writer has succeeded in getting
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on far, even in pure mathematics, without openly or covertly
introducing the notion, and its directness, simplicity, if not
absolute necessity, in the applied mathematics make its intro-
duction into the elements exceedingly desirable. Nevertheless,
the author has given alternative demonstrations, either in the
body of the text or in the appendix, so that those who prefer
can omit the demonstrations involving the infinitesimal concep-
tion.

8. Thanks to the spirit of the times, no geometry can now
receive favor which does not give opportunity for the application
of principles and for independent investigation. As in the
former edition, so in this, large attention has been given to this
just demand of the times. Asa help to independent thinking,
after the student has been fairly introduced to the methods, and
had time to imbibe somewhat of the spirit of geometrical reason-
ing, the references to the antecedent principles on which state-
ments in the demonstrations are based, are sometimes omitted,
and their place supplied by interrogation marks.

Y. In the earlier part of the work, the demonstrations are
divided, according to the suggestion originally given by De
Morgan, into short paragraphs, each of which presents but a
single step. So, also, in this part, care has been taken to make
separate paragraphs of the statement of premises and the conclu-
sion, and to put the former in different type from the body of
the demonstration. But, in the latter part of the work, this
somewhat stiff and mechanical arrangement gives place to the
freer and more elegant forms with which the student will need to
be familiar in his subsequent reading.

10. In the preparation of the work the author has availed him-
gelf of the suggestions of a large number of the best practical
teachers in all parts of our country. His chief advisers have
been Professor Benjamin F. Clarke, of Brown University, R. L.,
and Professor H. N. Chute, of the Ann Arbor High School,
Mich. To Professor Clarke he is indebted for valuable sugges-
tions on the whole of Chapter I, and especially on triedrals.
Indeed, whatever merit there may be in the general method of
treatment of triedrals, is due more to him than to the writer.
His ability as a mathematician, and his knowledge of what is
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practical in methods of presentation, gained by long experience
in teaching the subject, appear on well-nigh every page of the
latter part of the work. Professor Chute, the able and accom-
plished teacher of geometry in the Ann Arbor High School, has
given me the free use of his careful and scholarly thought, and
long and successful experience as a teacher, by several readings
of the proofs, and by the use of the advance sheets of the entire
work in his classes. His logical acumen, practical skill, and
generous contribution of whatever he has found most valuable
in matter or method, have been of the highest service. The
same general acknowledgments are due to other authors as were
made in the earlier edition. To the taste and skill of the stereo-
typers, and the lavish expenditure of. patience and money of the
Publishers, the author is indebted for the elegant and beautiful

dress in which the book appears.
: EDWARD OLNEY.
UNIVERSITY OF MICHIGAN,
ANN ARBOR, September 1, 1883.

N.B.—Part IIL of the old edition will still be published for use in such
schools as wish to push the study of geometry still further than it is carried
in the ordinary treatises, and especially into the methods of what is called
the Modern Geometry. The topics embraced in that part are Exercises in
Geometrical Invention, including advanced theorems in Special or Elemen-
tary Geometry, Problems in the same, and Applications of Algebra to
Geometry ; and also an Introduction to Modern Geometry, including the
elements of the subjects of Loci, Symmetry, Maxima and Minima, Isoperi-
metry, Transversals, Harmonic Proportion, Pencils and Ratio, Poles and
Polars, Radical Axes and Centres of Similitude in respect to Circles.

The author’s Trigonometry can also be had, bound separately or in con-
nection with the other parts of the Geometry, the same as formerly.

E O



SUGGESTIONS TO TEACHERS.

1. Fix firmly in mind the fundamental definitions of the
science, in exact language, and illustrate them so fully that
the terms cannot be used in the hearing of the pupil, or by
him, without bringing before his mind, without conscious
effort, the geometrical conception.

2. By numerous and varied applications of the fundamental
principles of plane geometry to the most familiar and homely
things in common life, divest the pupil’s mind of the impression
that he is studying “higher mathematics ” (as he is not), and
beget in him the habit of seeing the applications and illustrations
of these principles everywhere about him.

3. By means of much experience in the elements of geometri-
cal drawing, train the taste to enjoy, the eye to perceive, and the
hand to execute, geometrical forms, and by so doing fix indelibly
in the mind the ¢ working facts” of geometry.

4. Have all definitions, theorems, corollaries, &c., memorized
with perfect exactitude, and repeated till they can be given with-
out effort. Demonstrations should not be memorized by the
pupil ; and congiderable latitude may be allowed in the use of
language, provided the argument is brought out clearly. But
errors in grammar, and inelegancies in style, should be carefully
guarded against. One of the chief benefits to be derived from
class-room drill in mathematics is the ability to think clearly
and logically, and to express the thought in concise, perspicuous,
and elegant language.

5. The teacher should never give a theorem or corollary in
proper form, but by some such half-questions as the following,
suggest the topic :

The relation between the hypotenuse and the sides of a right-
angled triangle ?

The relative position of two circles when the distance between
the centres is less than the sum and greater than the difference
of the radii ?
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The sum of the angles of a triangle ?

The relation between the angles and the sides of a triangle?
ete.

In this manner the teacher should always designate the propo-
sition without stating if, The statement is one of the most
important things for the pupil to learn, and have at perfect com-
mand, and hence should not be given him by the teacher.

6. The construction of the figure is a necessary part of the
demonstration, and no assistance should be given the pupil, nor
aids allowed.

7. All figures in plane geometry should, upon first going over
the subject, be constructed by the pupils with strict accuracy, on
correct geometrical principles, using ruler and string; and this
should be persisted in until it can be done with ease. In reviews,
free-hand drawing of figures may be allowed, and is even desir-
able.

8. The ordinary notation by letters should be used.

9. All the exercises in the book should be worked with care in
the study, and in the class, and be carefully explained by the
pupil; and as many additional, impromptu exercises as may be
found necessary in order to render the pupil familiar with the
practical import of the propositions.

10. Little, if any, original demoustration of theorems not in
the book should be required of the pupil upon first going over
plane geometry. In review, more or less of such work may be
required.

11. Great pains should be taken that original demonstrations
be given in good, workmanlike form. For this purpose, they
should be written out with care by the pupil. Indeed, it is an
excellent occasional exercise, to have demonstrations written
out in full in class.

12. In review, much attention should be given to synopses of
demonstrations. They are the main reliance for fixing in
memory the line of argument by which a proposition is demon-
strated.
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INTRODUCTION.

PRELIMINARY NOTIONS AND DEFINITIONS

SLSELTION .

GENERAL DEFINITIONS.*

1. A Proposition is a statement of something to be con«
sidered or done.

ILLUSTRATION.—Thus, the common statement, *Life is short,” is a
proposition; so, also, we make, or state a proposition, when we say,
““Let us seek earnestly after truth.”—*“The product of the divisor and
quotient, plus the remainder, equals the dividend,” and the requirement,
“To reduce a fraction to its lowest terms,” arc examples of Arithmetical
propositions.

2. Propositions are distinguished as Axzioms, Theorems, Lem-
mas, Corollaries, Postulates, and Problems.

* The terms here defined are such as are used in the science in conse-.
quence of its logical character, hence they are sometimes called logico-
mathematical terms, The science of the Pure Mathematics may be con~
sidered as a department of practical logic.
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3. Aa Axiom is a proposition which states a principle that
i8 8o elementary, and so evidently true as to require no proof.

ILLUSTRATION.—Thus, “ A part of a thing is less than the whole of
it,” *“Equimultiples of equals are equal,” are examples of axioms. If any
one does not admit the truth of axioms, when he understands the terms
used, we say that his mind is not sound, and that we cannot reason with
him.

4. A Theorem is a proposition which states a real or sup-
posed fact, whose truth or falsity we are to determine by
reasoning.

ILLUSTRATION.—* It the same quantity be added to both numerator
and denominator of a proper fraction, the value of the fraction will be
increased,” is a Theorem. It is a statement the truth or falsity of which
we are to determine by a course of reasoning.

6. A Demonstration is the course of reasoning by means
of which the truth or falsity of a theorem is made to appear.
The term is also applied to a logical statement of the reasons for
the processes of a rule.

A solution tells %ow a thing is done: a demonstration tells why it is
so done. A demonstration is often called proof.

6. A Lemma is a theorem demonstrated for the purpose
of using it in the demonstration of another theorem.

ILLusTRATION.—Thus, in order to demonstrate the rule for finding
the greatest common divisor of two or more numbers, it may be best first
to prove that “ A divisor of two numbers is a divisor of their sum, and
also of their difference.” This theorem, when proved for such a purpose,
is called & Lemma.

The term Lemma is not much used, and is not very important, since
most theorems, once proved, become in turn auxiliary to the proof of
others, and hence might be called lemmas,

7. A Corollary is a subordinate theorem which is sug-
gested, or the truth of which is made evident, in the course of
the demonstration of a more general theorem, or which is a
direct inference from a proposition, or a definition.

ILLUsTRATION.—Thus, by the discussion of the ordinary process of
performing subtraction in Arithmetic, the following Corollary might be
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suggesbed: “Subtraction may also be performed by addition, as we can
readily observe what number must be added to the subtrahend to pro-
duce the minuend.”

8. A Postulate is a proposition which states that some-
thing can be done, and which is so evidently true as to require
no process of reusoning to show that it is possible to be done.
We may or may not know how to perform the operation.

ILLUSTRATION.—Quantities of the same kind can be added together.

9. A Problem is a proposition to do some specified thing,
and is stated with reference to developing the method of doing it.

ILLUSTRATION.—A problem is often stated as an incomplete sentence,
as, “ To reduce fractions to forms having a common denominator.”—This
incomplete statement means that “ We propose to show how to reduce
fractions to forms having a common denominator.” Again, the problem
“To construct a square,” means that “ We propose to draw a figure
which is called a square, and to tell how it is done.”

10. A Rule is a formal statement of the method of solving
a general problem, and is designed for practical application in
solving special examples of the same class.

11. A Solution is the process of performing a problem or
an example.

A solution should usually be accompanied by a demonstration of the
process.

12. A Scholium is a remark made at the close of a dis-
cussion, and designed to call attention to some particular feature
or features of it.

ILLUSTRATION. —Thus, after having discussed the subject of multipli-
cation and division in Arithmetic, the remark that ¢ Division is the con-
verse of multiplication,” is a scholium.

13. An Hypothesis is a supposition made in the state-
ment of a proposition, or in the course of a demonstration.

The Data are the things given or granted in a proposition.
The Conclusion is the thing to be proved.

The data of a proposition and the kypotheses are the same thing.
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SECTINN I,

THE GEOMETRICAL CONCEPTS.*

POINTS.

14. A Point is a place without size. Points are designated
by letters.

ILLusTRATION.—If We wish to designate any particular point (place)
on the paper, we put a letter by it, an
sometimes a dot in it. Thus, in Fig. 1, ti
ends of the line, which are points, are desi
nated as “ point A,” “point D;” or, simpl:
as A and D. The points marked in tt
line are designated as “ point B,” * point C,
or as B and C. F and E are two points
above the line.

Fig. 1.

LINES. Ty
15. A Line is the path of a point in motion.

Lines are represented upon paper by marks made with a pen or pen-
cil, the point of the pen or pencil representing the moving point.

A line is designated by naming the letters wntten at its ex-
tremities, or somewhere upon it.
ILLusTRATION.—In each case in Fig. 2, conceive a point to start from

A and move along the path indicated by the mark to B. The path thus
traced is a line. Since a point has no size, a line has no breadth, though

* A concept isa thing thought about ;—a thought-object. Thus,in Arith-
metic, number is the concept; in Botany, plants; in Geometry, as will
appear in this section, points, lines, surfaces, and solids. These may also be
said to constitute the subject-matter of the science,
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the marks by which we represent lines have some breadth. The first and
third lines in the figure are each designated as “ the line AB.” The sec-
ond line is considered as traced by a point starting from A and coming

aroand to A again, so that B and A coincide. This line may be desig-
nated as the line AmrA, or AmnB. In the fourth case, there are three
lines represented, which are designated, respectively, as AmB, AnB, and
AcB; or, the last, as AB.

16. Lines are of Two Kinds, Straight and Curved. A
straight line is also called a Right Line. A curved line is often
called simply a Curve. ‘

17. A Straight Line is a line traced by a point which
moves constantly in the same direction. (See 46, a.)

The word * line " used alone generally significs a straight line.

18. A Curved Line is a line traced by a point which con-
stantly changes its direction of motion.

ILLusTRATION. —Thus, in (1), Fig. 2, if the line AB is conceived as
traced by a point moving from A to B, it is evident that this point moves
in the same direction throughout its course; hence AB is a straight line.
If a body, as a stone, is let fall, it moves constantly toward the centre of
the earth ; hence its path represents a straight line. If a weight is sus-
pended by a string, the string represents a straight line.

Considering the line represented by AiB, (3), Fig. 2, as the path of a
point moving from A to B, we see that the direction of motion is con-
stantly changing.
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Sometimes a path like that rep-
resented in Fig. 8 is called, though
improperly, a Broken Line. It is not
a line at all; that is, not one line: it
is a combination of straight lines.

SURFACES.
19. A Surface is the path of a line in motion.

20. Surfaces are of Two Kinds, Plane and Curved.

21. A Plane Surface, or simply a Plane, is a surface
such that a straight line passing through any two of its points
lies wholly in the surface. Such a surface may always be con-
ceived as the path of a straight line in motion.

ILLUsTRATION. —Let AB, Fig. 4, be supposed to move to the right, so
that 1ts extremities A and B move at
same rate and in the same directior
tracing the line AD, and B the line BC.
path of the line, the figure ABCD, is a
face. This page is a surface, and ma;
conceived as the path of a line sliding li
ruler from top to bottom of it, or from
side to the other. Such a path will L....
length and breadth, being in the latter respect unlike a ling, whlch has
only length.

22. A Curved Surface is asurface in which, if various
lines are drawn through any point, some or all of them will be

curved.

TLLUSTRATION.—Suppose a fine wire bent into the form of the curve
AmB, Fig. 5, and its ends A and B stuck into a rod XY. Now, taking
the rod XY in the fingers and rolling it, it is evident that the path of the
line represented by the wire AmB will be the surface of a ball (sphere).

Again, suppose the rod XY placed on the surface of this paper so
that the wire AmB shall stand straight up frdm the paper, just as it

’
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would if we could take hold of the curve at m and raise it right up,
letting XY lie as it does in the figure. Now slide the rod straight up oz
down the page, making both ends move at the same rate. The path of -

Fig. 6.
AmB will be like the surface of a half-round rod (a8 scuu-cyunuer).  1'hus
we see how surfaces, plane and curved, may be conceived as the paths of

lines in metion.

Ex. 1. If the curve AnB, Fig. 6, be conceived ‘as revolved
about the line XY, the surface of what object will its path be like?

Ex. 2. If the figure OMNP, Fig. 7, be conceived as revolved
about OP, what kind of a path will MN trace? What kind of
paths will PN and OM trace ?

. Ans. One path will be like the surface of a joint of stove-
pipe, . e., a cylindrical surface ; and one will be like a flat wheel,
i. e., a circle.

Ex. 3. If you fusten one end of a cord at a point in the ceil-
ing and hang a ball on the other end, and then make the ball
awing around in a 01rcle, what kind of a surface will the string
describe ?

Ex. '4. If on the surface of a stove-pipe, you were to draw
various lines through the same point, might any of them be
straight? Could all of them be straight ? What kind of a sur-

‘faceyis this, therefore? |

Ex. 5. Can you draw a straight line on the surface of a ball ?
On the surface of an egg? What kind of surfaces are these ?
¢
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Ex. 6. When the carpenter wishes to make the surface of a
board perfectly flat, he takes a ruler whose edge is a straight line,
and lays this straight edge on the surface in all directions,
watching closely to see if it touches at all points in all positions.
Which of our definitions is he illustrating by his practice ?

Ex. 7. How can you conceive astraight line to move so that
it shall not generate a surface ? .

OF THE CIRCLE.

28. A Circle is a plane surface bounded by a curved line
all points in which are equally distant from a point within.

24. The Circumference of a circle is the curved line
all points in which are equally distant from a point within.

25. The Centre of a circle is the point within, which is
equally distant from all points in the circumference.

26. An Are is a part of a circumference.

27. A Radius is a straight line drawn from the centre to
any point in the circumference of a circle.
By reason of (24) all fadii of the same circle are equal.

28. A Diameter of a circle: is a straight line passing
through thé centre and limited by the circumference.
A diameter is equal to the sum of two radii; hence, all diam-

eters of the same circle are equal.

ILL;STBATION. —A circlt may be conceived as the path of a line, like
0B, Fig. 8, one end of which, O, remains at the same point, while the
other end, B, moves ardund it in the plane of the paper. OB is the radius,
and the path described by the point B is the circumference. AB is a diam-
eter. In Flg 9, the curved line ABCDA is the circumference, O is the
centre, and the surface within the circumference is the circle. Any part of
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& circumference, as AB, or any one of the curved lines BB, Fig. 8, is an
are. 8o also AM and EF, Fig. 10, are arcs, EF is an arc drawn from 0/
as a centre, with the radius O'B.

29. A Chord is a straight line joining any two points in a
circumference, as BC or AD, Fig. 9. The portion of the circle
included between the chord and its arc, as AmD, is a Segment.

80. A Tangent to a circle is a straight line which touches
the circumference, but does not intersect it, how far soever the
line be produced.

Two circles which tonch each other in but one point are said
to be tangent to each other. A straight-line tangent is called a
Rectilinear Tangent.

381. A Secant is a straight line which intersects the circum-
ference.

P
ANGLES.

32. A Plane Angle, or simply an Angle, is the opening
between two lines which meet each other.

The point in which the lines meet is called the Vertex, and
the lines are called the Sides. '

An angle is designated by placing a Tetter at its vertex, and
one by each of its sides. In reading, we name the fetter at the
vertex when there is but one vertex at the peidt, and the three

\ m
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letters when there are two or more vertices at the same point.
In the latter case, the letter at the vertex is put between the
other two.

ILLUsTRATION.—IN COm-
mon language an angle is
called a corner. The open-
Ing between the two lines
AB and AC, in which the
tigure 1 stands, is called the
angle A; or, if we choose,
we may call it the angle
BAC. At L there are two
vertices, so that were we to
say the angle L, one would
not know whether we meant
the angle (corner) in which
4 stands, or that in which
b5 stands. To avoid this
ambiguity, we say the angle
HLR for the former, and
RLT for the latter. The
angle ZAY is the corner in
which 11 stands; that is,
the opening between the
two lines AY and AZ. In designating an angle by three letters, it is
immaterial which letter stands first, so that the one at the vertex is put
between the other two. Thus, PQS and SQP are both designations of
the angle in which 6 stands. An angle is also frequently designated by
putting a letter or figure in it and near the vertex.

33. The Size of an Angle depends upon the rapidity
with which its siaes separate, and not upon their length.

InrusTRATION. —The angles BAC and MON, Fig. 11, are equal, since
the sides separate at the same rate, although the sides of the latter are
more prolonged than those of the former. The sides DF and DE separate
faster than AB and AC, hence the angle EDF is greater than the angle
BAC.

34. Adjacent Angles are angles so situated as to have &
common vertex and one common side lying between them.
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IrLusTRATION.—In Fig. 12, angles 4 and
5 are adjacent, since they have the common
vertex L, and the common side LR. Angles
9 and 10 are also adjacent.

85. Angles are distinguished. as
Right Angles and  Obligue Angles.
Oblique angles are either Acufe or
Obtuse.

36. A Right Angle is an angle included between two
straight lines which meet each other in such a manner as to
make the adjacent angles equal.

37. An Acute Angle is an angle which is less than a
right angle, i. e., one whose sides separate less rapidly than those
of a right angle.

38. An Obtuse Angle is an angle which is greater than a
right angle, 7. e., one whose sides separate more rapidly than those
of a right angle.

89. A Straight Angle is an angle whose sides extend in
opposite directions, and hence form one and the same straight line.

ILLusTRATIONS.—In common language, a right angle is called a
square corner, and an acute angle a sharp corner.

Angles BAD and BAC, Fig. 18, are right angles, PST is an acute angle,
and HLR is an obtuse angle.

If HL were turned to the left until it fell in the dotted line, the angle
HLR would increase, and when HL fell in the dotted line, the angle would
become what is called a straight angle.
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40. The Sum of Two Angles is the angle included
between their non-coincident sides, when the two angles are so
placed as to be adjacent angles, and their sides lie in the same
plane.

ILLUsTRATION.—Let O and M be any two angles. Make EPB = M,
and APE = 0, thus placing the two angles O and M so that they become
adjacent angles (34). Then is APB the sum of O and M, and we write,

O+ M=APB, or APE + EPB = APB.
That is, the sum of the angles 0 and M, or APE and EPB, is APB.

41, The Difference between Two Angles is the
angle included by their non-coincident sides, when the angles
are so placed as to have a common vertex and side, the second
side of the less angle lying defween the sides of the greater.

Fig. I5.

ILLUSTRATION.—To find the difference between the two angles O and
S, we place the vertices O and S at a common point, as at P, making
APB = RST, and APC = DOE. Then is CPB the difference between
RST and DOE ; that is, '
RST — DOE = CPB.
8o also APB — APC = CPB,
and APB — CPB = APO.
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42. CoROLLARY 1.—(@) The sum of two right angles,

(®) Or, the sum of the two adjacent angles formed by
one straight line meeting another,

(¢) Or, the sum of all the consecutive angles included

by selferal lines lying on the same side of a given line and
meeling it in a common point, is o straight angle.

Fig. 16.

Thus, ABP + PBC, or DEG + GEP, or HIL + LIM + MIN + NIK,
is a straight angle.

43. CoROLLARY 2.—The sum of the four angles formed .
by two intersecting lines, or the sum of all the consecutive
angles formed by any number of lines meeting in a com~
mon point is two straight angles, or four right angles.

Thus, the sum of the four angles ADC, CDB, BDE, and EDA is four
right angles, as also is the sum of AOB, BOC, COD, DOE, EOF, FOG,
and GOA,
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44. A Solid is a limited portion of space.

ILLUSTRATION.—Suppose you have a block of wood like that repre.

sented in Fig. 17. Hold it still in

your fingers a moment, and fix your

mind upon it. Now take the block

away and think of the space (place)

where it was. This space is an ex-

ample of what we call a Solid in

Geometry. In fact, the solids of

Geometry are not solids at all, in

the common sense of the word Fig. 17.
solid; they are only places of certain shapes.

Again, hold your ball still 8 moment in your fingers, then let it drop,
and think of the place it filled when you had it in your fingers. It is
this place, shaped just like your ball, that we think about and talk about
a8 8 solid in Geometry.

GENERATION OF LINES, SURFACES,
AND ANGLES.

45. When one geometrical concept is conceived to move so
that its path is some other concept, the former is said to generate
the latter, and the latter is called the locus of the former.

The Locus of a Point is the line (either straight or
curved) generated by the motion of the pomt according to some
given law.

In the same manner, a surface is conceived as the locus of a
line moving in some determinate manner.

46. A Line is generated by a moving point (15-18). Hence,
the locus of a point is a line,
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(a) The same straight line may be conceived as generated by a point
“ moving in either of two opposite directions, or part of it may be con-
ceived as generated by a point moving in one direction, and part by a
point moving in the opposite direction. Thus, FA, Fig. 18, may be con-
ceived as generated by a point moving from F to A, or from A to F ; or
the part OA may be conceived as generated by a point moving from O to
A, and the part OF by a point moving in the opposite direction, i. e.,
from O to F.

47. A Surface is generated by a moving line (19-22).
Hence, the locus of a line is a surface.

48. An Angle is generated by the revolution of a straight
line about one of its extremities, the line lying all the time in
the same plane.

ILLUSTRATION.—The angle BOA,
Fig. 18, may be considered as gen-
erated by the revolution of the line
BO from the position AO to its pres-
ent position. The angle COB may
be considered as generated by the
revolution of CO from the position
BO to its present position, etc. Fig. 18.

49. A Right Angle is generated by one-fourth of an en-
tire revolution, an Acute Angle by less than one-fourth of an
entire revolution, and an Obtuse Angle by more than one-
fourth. A Straight Angle is generated by one-half of a
revolution.

50. A Solid may be conceived as generated by the motion
of a plane, and hence may be defined as the path of a plane in
motion.

ILLusTRATION.—Thus the solid, Fig. 17, may be conceived as gener-
ated by the movement of the plane ABCD from its present position to the
position GHFE.

51. A Sphere may be conceived as generated by the revo-
lution of a semi-circle about its diameter. (See illustration at
the bottom of page 18.)
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QUERIES.

1. If the surface OMNP, Fig. 19, is conceived as revolved
around OP, what is the path through which it moves ?

CavutioN.—The student should distinguish between the surface gener-
ated by the line MN, and the solid generated by the surface OMNP.

Fig. 20.

2. If the surface represented by cAB, Fig. 20, is conceived as
revolved about its side CA, what kind of a solid is its path ?

3. As you fill a vessel with water, what is the solid traced by
the surface of the water?
Ans. The same as the space within the vessel.

4. If a circle is conceived as lying horizontally, and then
moved directly up, what will be the solid described, 1. e., its path ?
Do not confound the surface described with the solid. What
describes the surface? What the solid ?

EXTENSION AND FORM.

52. Extension means a stretching, or reaching out.
Hence, a Point has no extension. It has only position (place).
A Line stretches or reaches out, but only in length, as it has
no width. Hence, a line is said to have One Dimension, viz.,
length.
A Surface extends not only in length, but also in breadth;
and hence has Two Dimensions, viz., length and breadth.
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A Solid has Three Dimensions, viz., length, breadth, and
thickness.

ILLUSTRATION. —Suppose we think of a point as capable of stretching
out (extending) in one direction. It would become a line. Now sup-
pose the line to stretch out (extend) in another direction—to widen. It
would become a surface. Finally, suppose the surface capable of thick-
ening, that is, extending in another direction. It would become a solid.

53. The Limits (extremities) of a line are points.
The Limits (boundaries) of a surface are lines.
The Limits (boundaries) of a solid are surfaces.

54, Magnitude (size) is the result of extension. Lines,
surfaces, and solids are the geometrical magnitudes. A point is
not a magnitude, since it has no size. The magnitude of a line
i its length ; of a surface, its area; of a solid, its volume.

55. Figure or Form (shape) is the result of position of
points. The form of a line (as straight or curved) depends upon
the relative position of the points in the line. The form of a
surface (as plane or curved) depends upon the relative position of
the points in it. The form of a solid depends upon the relative
position of the points in its surface.

QUERIES.

1 Suppose a line to begin to contract in length, an@ continue
the operation till it can contract no longer, what does it become ?
That is, what is the minor limit of a line?

2. If a surface contracts in one dimension, as width, till it
reaches its limit, what does it become ?

3. If a solid contracts to its limit in one dimension, what does
it pass into ? If in two dimensions? If in three dimensions ?

4. What kind of a surface is that, every point in which is
equally distant from a given point?
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56. Geometry is that science which treats of magnituds
and form as the result of extension and position.

The Geometrical Concepts are points, lines, surfaces
(including plane and spherical angles), and solids (including
solid angles).*

- The Object of the science is the measurement and compari-
son of these concepts.

Plane Geometry treats of figures all of whose parts are confined to one
plane. Solid Geometry, called also Geometry of Space, and Geometry of
Three Dimensions, treats of figures whose parts lie in different planes.
The division of this treatise into two chapters is founded upon this dis-
tinction.

SECTIUN i,
AXIOMS AND POSTULATES.

57. There are very many axioms; but, as they are truths
which the mind grants on the mere statement, it is not needful
to enumerate them all. We give a few of the more important,
with some illustrative remarks.

58. All demonstration is based upon definitions, axioms, or
previously demonstrated propositions.

* A plane angle may be conceived as a portion of a plane, and hence as
itself a surface, and thus capable of increase or diminution like the other
magnitudes. The angle thus considered becomes a sort of infinity deter-
mined relatively by the rate of separation of the lines. It is thus analogous
to an infinite series the law of which is determined by a few of its first terms,

See definitions 32, 83, and 48, with their illustrations
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59. Axiom I.—A straight line is the shortest line be-

tween two points.

ILLusTRATION.—If & cord is strefched across the table, it marks a
straight line. In this way the carpenter marks a straight line. Having
rubbed a cord, called a chalk-line, with chalk, he stretches it tightly from
one point to another on the surface upon which he wishes to mark the
line, and then ruising the middle of the cord, lets it snap upon the sur-
face. BSo the gardener makes the edges of his paths straight by stretching
a cord along them. These operations depend upon the principle that
when the line between the points is the shortest possible, it is straight.

60. Axiom II.—Two points in a straight line deter-
mine its position.

IrLusTRATION.—If the farmer wants a straight fence built, he sets two
stakes to mark its ends. From these its entire course becomes known.
This is the principle upon which aligning (or sighting) depends. Two
points in the required line being given, by looking from one in the direc-
tion of the other, we look along a straight line, and are thus able to locate
other points in the
line. If the points A
and B are marked, by
putting the eye at A
and looking steadily :
towards B, we can tell whether D and E are in the same straight line with
A and B, or not. So we can observe that C’ and C” are not in the line -
but that Cis. This process of discovering other points in a line with two
given points is called aligning, or sighting. In this way a row of trees is
made straight, or a line of stakes set. It is the principle upon which the
surveyor runs his lines, and the hunter aims his gun. In the latter case,
the two sights are the given points, and the mark, or game, is a third
point, which the marksman wishes to have in the same straight line as
the sights.

Fig. 2.

61. Axiom III.—Between the same two points there
is one straight line, and only one.
ILLUSTRATION. —Let any two letters on this page represent the situa-

tion of two points; we readily see that there is one, and only one, straight
path between them. Again, let a corner of the desk represent one poing
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and a corner of the ceiling of the room represent another point; we per-
ceive at once that, if a point is conceived to pass in a straight line from
one to the other, it will always trace the same path. In short, as soon as
two points are mentioned, we think of the distance between them as a
single straight line,—for example, the centre of the earth and the centre
of the sun. :

Once more, conceive A and B, Fig. 21, to be two points in the path of
& point moving from A in the direction of B. Now all the points in the
same direction from A that B is, are in this path ; and any point out of this
line, as C’ or C", is in a different direction from A.

In this manner we draw a straight line on paper by laying the straight
edge of a ruler on two points through which we wish the line to pass,
and passing a per or pencil along this edge.

62. To Intersect is to cross; and a crossing is called an
Intersection.

63. CorROLLARY.—Two straight lines can intersect in but
one point; for, if they had two points common, they would
coincide and not intersect.

Ex. 1. A railroad is to be run from the town A to town B.
Ifit is made straight, through what points will it pass ? Can it
pass through any points not in the same direction from A that
B is?

Ex. 2. If Ilive on the south side fo a straight railroad, and
my friend on the north side, but five miles farther east and two
miles farther north, and the road from my house to his is
straight, how many times does it cross the railroad ?

Ex. 3. Can you always draw a straight line which shall cut a
curve (whatever curve it may be) in two points at least ? Try it.

64. Axiom IV.—The whole is greater than any of its
parts.

66. Axiom V.—The whole is equal o the sum of all
its parts.
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66. Axiom VI.—Things which are equal to the same
thing are equal to each other.

87. Axiom VIL.—If equals be increased or dimin-
ished equally, the results will be equal.

88. Axiom VIII.—If unequals be increased or di-
minished equally, the greater will give the greater result,
i. e., the inequality will exist in the same sense.

POSTULATES.

) 69. Postulates, like axioms, are very numerous, and it would
be useless to attempt to enumerate them all. We give a few
simply as specimens. :

70. Postulate I.—.A4 line can be produced to any
length.

71. Postulate II.—From any point a straight line
can be drawn to any other point.

72. Postulate IIL.—Geometrical magnitudes can be
added, subtracted, multiplied, or divided.

73. Postulate IV.—A4 geometrical figure can be con-
ceived as moved at pleasure, without changing its size or
the relation of its parts (shape ).

74. Postulate V.—Any number of lines can be drawn
making equal angles with a given line.

75. Postulate VI.—With any point as a centre, a
circumference can be drawn with any radius. )
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CSELTION IV,

MEASUREMENT OF RIGHT LINES.

76. The Measure of a line is another line which is con-
tained in it an exact number of times,

77. A Common Measure of two or more lines is a line
which measures each of them.

78. Commensurable Lines are lines which have a
finite common measure.

79. The Sum of Two Lines is the line formed by uniting
them so that one shall be the prolongation of the other.

80. The Difference between Two Lines is the line
which remains after the length of the less has been taken from
the greater.

81. Problem.—7o0 measure a straight line with the
dividers and scale.

SoruTioN.—Let AB, Fig. 22, be the line to be measured. Take the
dividers, Fig. 2 (frontis
piece), and placing th
sharp point A firmly
upon the end A of the
line AB, open the di
viders till the other poini
B (the pencil point) jusi
reaches the other end of
the line, B. Then letting Fig. 22,
the duviders remain open just this amount, place the point A on the
lower end of the left-hand scale, as at o, Fig. 1 (frontispiece), and notice
where the point B reaches. In this case, it reaches 8 spaces beyond the
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figure 1. Now, as this scale is inches and tenths of inches,* the line AB is
1.3 mches long.

Ex. 1. What is the length of cD? Ans. .15 of a foot.
Ex. 2. What is the length of EF?  Ans. .75 of an inch.
Ex. 3. What is the length of GH? Ans. 1} inches,
Ex. 4. What is the length of IK? Ans. 18 of a foot.
Ex. 5. Draw a line 3 inches long,

Ex. 6. Draw a line 2.15 inches long.

Ex, 7. Draw a line 1.25 inches long.

Ex. 8. Draw a line .85 of an inch long,

[Note.—Suppose a fine elastic cord were attached by each of its ends
to the points A and B of the dividers; when they were opened so as to
reach from C to D, Fig. 22, the cord would represent the line CD. Now
applying the dividers to the scale is the same as laying this cord on the
scale. Without the cord, we can imagine the distance between the points
of the dividers to be a line of the same length as CP.]

Ex. 9. Findin the same way as above the length and width
of this page. Also the distance from one corner (angle) to the
opposite one (the diagonal).

82. Problem.—7o find the sum of two lines.

SoruTioN. —To find the sum of AB and CD, I first draw the indefl-
nite line EX. With the di-
viders I obtain the length
of AB, by placing one point
on A and extending the
other to B. This length I
now lay off on the indefinite
line EX, by putting one point of the dividers at E and with the other
marking the point F. EF is thus made equal to AB. In the same man-

* The next scale to the right is divided into 10ths and 100ths of a foot.
Thus, from p to 10 is 1 tenth of a foot, and the smaller divisions are hun-
dredths.

+ These elementary solutions are somet'mes put in the singular, as the
more simple style.
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ner, taking the length of CD
with the dividers, I lay it
off from F on the line FX.

Thus I obtain
EG = EF + FG
Fig. 23.
= AB + CD. ig. 23

Hence, the sum of AB and CD is EG.

Ex. 1. Find the sum of AB and EF, Fig. 22.
Ex. 2. Find the sum of EF, CD, and GH, Fig. 22

Ex. 3. Make a line twice as long as CD, Fig. 22. Three
times as long.

83. Problem.—7o find the difference of two lines.

SoLuTioN.—To find the difference of AB and CD, I take the length of
the less line AB with the dividers;
and placing one point of the dividers
at one extremity of 8D, as C, make
CE = AB. Then is ED the differ-
ence of AB and CD, since

ED = CD — CE = CD — AB.

Ex. 1. Find the difference of IK and EF, Fig. 22.

Ex, 2. Find the difference of GH and €D, Fig. 22.

Ex. 3. Find how much longer IK, Fig. 22, is than the sum
of EF, Fig. 22, and cD, Fig. 23.

Ex. 4. Find the difference of the sum of AB and GH, and
the sum of CD and EF, Fig. 22.

84. Problem.—7o find the ratio of two commensurable
lines.

SoLuTrion.—Let AB and CD (Fig. 25) be the two lines whose ratio we
seek.

Apply the shorter (AB) to the longer (CD) as many times as the latter
will contain the former. If AB is contained an integral number of times
(say 8, or m) in CD, then AB is a common measure of AB and CD, and we

have AB

1
cD=§, or m.
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But if the shorter is not contained in the longer an integral number of
times, apply it a8 many times as it is contained, and note the remainder;
thus, AB is contained in CD once, with a remainder aD.

Now apply this remainder, «D, to AB as many times as AB will con-
tain it, which, in this case, is once with a remainder 5B.

Fig. 25.

Again, apply this remainder, 3B, to aD, the former remainder, In
this case, it is contained once with a remainder ¢D.

Again, apply ¢D to dB. It is contained twice, with a remainder dB.

Finally, applying dB to ¢D, we find it contained 8 times, without any
remainder.

Hence, dB is the common measure of AB and CD.

Calling dB the unit of measure, 1, we have,

d8=1; N
¢D = 8dB = 8; ’
bd = 2D = 6;

ac =0 =bd+dB = T

aD = ac +¢D = 10;

AB = Ab + 0B = aD + ac = 17;

CD = Ca +aD = AB +aD = 27.

Hence the lines AB and CD are to each other as the numbers 17 and
27; AB is }} of CD; or, expressed in the form of a proportion,
AB _ 17+
CcD —27°
[Note.—This process will be seen to be the same as that developed
in Arithmetic and Algebra for finding the greatest or highest Common
Measure of two numbers. See PRACTICAL ARITHMETIC, p. 862, and
CoMPLETE ALGEBRA, (137).]

#* This method will not always obtain the exact ratio, both because of
the tmperfection of the measurement, and because some lines are incommen.
surable by any finite unit, as will appear hereafter,
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Fig. 26.
Ex. 1. Find, as above, the approximate ratio of AB to CD.
’ . 13
Ratio, is

Ex. 2. Find, as above, the approximate ratio of CD and IK.
Ratio, 3.

Ex. 3. Find, as above, the approximate ratio of EF to GH.
Ratio, %

Ex. 4. Find, as above, the approximate ratio of EF to CD,

Ratio,

5
12

CONTINUOUS VARIATION.

85. A magnitude is said to vary continuously when in
passing from one value to another it passes through all intermes
diate values.

ILLUsTRATION.—Let the line EF, Fig. 26, be produced by placing a

pencil at F and tracing the line to the right, until it becomes equal to IK,
EF has thus been made to be successively of all intermediate lengths be-
tween its present length and the length of IK; 7. e., it has varied continu-
ously.
“ Tn like manner, an angle may be conceived to vary continuously from
one magnitude to another. Thus, in Fig. 27, the angle CPB may be made
greater or less by revolving CP about P. By such a revolution of CP the
angle CPB may be conceived to vary, or grow, continuously till it becomes
C'PB.
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PLANE GEOMETRY.

SECTION [.
OF PERPENDICULAR STRAIGHT LINES.

86. A Perpendicular to a given line is a line which
makes a right angle (36) with the given line.

87. An Oblique line is a line which makes an oblique angle
with a given line.

PROPOSITION 1I.

88. Theorem.—At any point in a straight line, one
perpendicular can be erected to the line, and only one,
which shall lie on the same side of the line.

DEMONSTRATION.
Let AB represent any line, and P be any point therein,

‘We are to prove that, on the same side
of AB, there can be one, and only one,
perpendicular erected to AB at P,

From P draw any oblique line, as PC,
forming with AB the two angles CPB and
CPA.

Now, while the extremity P, of PC,
remains at P, conceive the line PC to re-
volve 80 as to increase the less of the two
angles, as CPB, continuously. Since the sum of CPB and CPA remains
constant, CPA will diminish continuously.
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Hence, for a certain position of CP, as
C'P, these angles will become equal. In
this position, the line is perpendicular to
AB (36, 86). Therefore, there can be one
perpendicular, C'P, erected to AB at P.

Again, if the line C'P revolve from the
position in which the angles are equal, one
angle will increase and the other diminish ;
hence there is only one position of the line
on this side of AB in which the adjacent angles are equal.

Therefore there can be only one perpendicular erected to AB at P,
which shall lie on the same side of AB. Q. E. D.

Fig. 27.

89. CoOROLLARY 1.—On the other side of the line a second
perpendicular, and only one, can be erected from the same
point in the line.

90. CoROLLARY 2.—If one straight line meets another
80 as to malkee the angle on one side of it a right angle, the
angle on the other side is also a right angle.

PROPOSITION II.

91. Theorem.—If two straight lines intersect so as to
make one of the four angles formed a right angle, the
oiler three are right angles, and the lines are mutually
rerpendicular to each other.

DEMONSTRATION.

Let CD intersect AB, making CEB a
_right angle.

We are to prove that CEA, AED, and
DEB are also right angles, and that CD is
perpendicular to AB, and AB to CD.

By (90), since CEB is a right angle,
CEA is also a right angle.

In like manner, as BE meets CD,
making CEB aright angle, BED is a right
angle, by (90).

Again, since DEB is right, DE meets
AB, making one angle right; hence the
other, AED, is right also (90). Q. E. D.
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Finally, since CD meets AB, making AEC a right angle, CD is perpen-
dicular to AB (86); and, since AB meets CD, making AEC a right angle,
AB is perpendicular to CD. Q. E. D.

PROPOSITION III.

92. Theorem.—When two straight lines intersect at
right angles, if the portion of the plane of the lines on one
side of either line be conceived to revolve on that line as
an axis until it coincides with the portion of the plane on
the other side, the parts of the second line will coincide.*

DEMONSTRATION.

Let the two lines AB and CD intersect at right angles at E; and let
the portion of the plane of the lines on the side of CD on which B lies
be conceived to revolve on the line CD as an axis, until it falls in the
portion of the plane on the other side of CD.t

We are to prove that EB will fall in
and coincide with EA.

The point E being in CD, does not
change position in the revolution; and,
as EB remains perpendicular to CD, it
must coincide with EA after the revolu-
tion, or there would be two perpendicu-
lars to CD on the same side and from the
same point, E, which is impossible (88).

Hence, EB coincides with EA. Q.E.D.

Fig. 29.

PROPOSITION 1IV.

93. Theorem.—From any point without a straight
line, one perpendicular can be let fall upon that line, and
only one.

* This has nothing to do with the lengths of EB and EA ; indeed, lines
are generally supposed indefinite in length, unless limited by the data.

+ This revolution may be illustrated by conceiving the paper folded in
the line CD until EB is brought into EA.
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DEMONSTRATION.
Let AB be any line and P any point without the line.

We are to prove that one per-
pendicular, and only one, can be
let fall from P upon AB.

Let A’B’ he an auxiliary line;
and at any point in it, as D', let a
perpendicular P'D’ be erected (88).

Now place A’B’, bearing P'D’
with it, in AB, and move it to the
right or left till P’D’ passes through
P, and when in this position let
D be the point in AB in which

Fig. 30. D’ falls.

Connect P and D.

Then, since angle PDB coincides with the right angle P'D’B’, PDB is &
right angle, and PD is a perpendicular from P to the line AB (86). Q. E. D.

We are now to prove that PD is the only perpendicular from P to the
line AB.

Suppose that there can be another, and let it be PD".

Produce PD to P", and take DP”=DP, and draw P"'D",

Now let the portion of the plane above AB be revolved upon AB as
an axis until it falls in the plane on the opposite side of AB from its first
position. Then will DP' fall in DP"" (92), and since DP” is by construc-
tion equal to DP, P will fall in P”.

Then, since PDB is a right angle BDP” is also a right angle, and PP”
is a straight line (42, a).

For a like reason PD” P” is a straight line, and we have two straight
lines from P to P”, which is impossible.

Hence there can be but one perpendicular, as PD, from P upon AB.
Q. E.D.

PROPOSITION V.

94. Theorem.—From a point without a straight line,
the perpendicular is the shortest distance to the line.

DEMONSTRATION.

Let AB (Fig. 31) be any straight line, P any point without it, PD a per-
pendicular, and PC any oblique line.

‘We are to prove that PD is shorter than any oblique line, as PC.
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ist. Since the shortest distance from P to
any point in the line AB is a straight line
(59), we are to examine only straight lines.
2d. Produce PD, making DP’' = PD, and
draw P'C.
Now let the portion of the plane of the lines
above AB be revolved upon AB as an axis until
it coincides with the portion below AB.
Since PP’ and AB intersect at right
angles, PD will fall in DP’ (92); and, since
PD=DP’, P will fall in P’, and PC=P'C,
since they coincide when applied.
Finally, PP’ being a straight line, is shorter than PCP’ which is a broken
line, since a straight line is the shortest distance between two points (59).
Now PD, the half of PP’, is less than PC, the half of the broken line PCP .
Therefore, the perpendicular, PD, is the shortest distance from P to
the line AB. q. E.D.

956. The Distance between two points is the straight line

which joins them, and the Distance from a point to a line is
the perpendicular from the point to the line.

PROPOSITION VI.

98. Theorem.—If a perpendicular is erected at the
middle point of a straight line,

1st. Any point in the perpendicular is equally distant
from the extremities of the line.

2d. Any point without the perpendicular is nearer the
extremity of the line on its own side of the perpendicular.

DEMONSTRATION.

Let PD be a perpendicular to AB at
its middle point, D, O any point in this
perpendicular, and O' any point without
the perpendicular,

Draw OA, OB, O'A, and 0’B.

We are to prove, 1st, that OA=0B ;
and 24, that 0'B < O'A.

1st. Revolve ODB on PD as an axis,
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till B falls in the plane on the opposite
side of PD.

Then, since PD is perpendicular to AB,
DB will fall in DA (92). And since DB
= DA by hypothesis, B will fall in A, and
0B will coincide with OA (81).

Hence OA = 0B. Q. E. D.

2d. 0’ being on the opposite side of PD
from A, O’'A will cut PD at some point, as C.
Draw CB.
Now, since C is a point in the perpendicular, CA = CB by the for-
mer part of the demonstration.
And, since O'B is a straight line and O'C + CB is a broken line,
0'B < 0'C + CB (59).
Whence, substituting CA for its equal CB, we have
0B < 0'C + CA,
or 0B < OA. Q.E. D

97. CoroLLARY.—Conversely, The locus of a point equi-
distant from the extremities of a given line is a perpen-
dicular to that line at its middle point, since any point in
such perpendicular is equidistant from the extremities of the line,
and any point not in the perpendicular is unequally distant from
the extremities.

PROPOSITION VII.

98. Theorem.—If each of two points in one line is
equally distant from the extremities of another line, the
former line is perpendicular to the latter at its middle
point.

DEMONSTRATION.

Every point equally distant from the extremities of a straight line lies
in a perpendicular to that line at its middle point, by (97). But two
points determine the position of a straight line. Hence, two points, each
equally distant from the extremities of a straight line, determine the
position of the perpendicular at the middle point of the line. Q. E. D,
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PROPOSITION VIII.

99. Problem.—7o -erect a perpendicular to a given
line at a given point in the line.

SoLUTION.
Let XY be the given line, and A the given point.

We are to erect a perpendicu-
lar to XY, at A.- - ‘
From A lay off on each side
equal distances, as AC = AB.
From C and B as centres, with
a radius sufficiently great to cause
the arcs to intersect at some point
without XY, describe arcs intersecting at 0.
Pass a line through 0 and A, and it will be the perpendicular sought.

DEMCONSTRATION OF SOLUTION.

Since OA has two points, 0 and A, each equally distant from B and
C, OA is a perpendicular to BC at A, its middle point (98).
But BC coincides with XY ; hence OA is perpendicular to XY at A.

100. DeriNiTION.—To0 Bisect anything is to divide it into
two equal parts.

PROPOSITION IX.
101. Problem.—7o bisect a given line.

R , _SoLuTION.
Let AB be the given line.
We are to bisect it, that is, to divide it
into two equal parts.
From the extremities A and B as cen-
tres, with any radius sufficiently great to
cause the arcs to intersect without the line
AB, describe arcs intersecting in two points,
as m and n, Fig. 34.
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Pass a line through m and n, intersect-
ing AB at O.

Then is O the middle point of AB, and
AO = OB.

DEMONSTRATION OF SOLUTION.

Since the line mn has two points, m and
n, each equally distant from A and B, it is
perpendicular to AB at its middle point (98). Fig. 34.

PROPOSITION X.

102. Problem.—From a point without a given line, to
let fall a perpendicular wpon the line.

SOLUTION.
Let XY be the given line, and O the point without the line.

- 'We are to let fall a perpendicular
from O to XY.
From O as a centre, with a radius
sufficiently great to cause the arcs to in-
tersect, describe an arc cutting XY in two
points, as B and C.
From B and C as centres, with a ra-
dius sufficiently great to cause the arcs to
intersect without XY, describe arcs in-
tersecting at some point, as D. Fig. 35.
Pass a line through O and D, meeting XY in A. Then is OA the
perpendicular sought.

DEMONSTRATION OF SOLUTION,

OA being produced through D has two points, O and D, each equally
distant from B and C, and hence is perpendicular to BC, which coincides
with XY. Hence, OA passes through O and is perpendicular to XY.

1
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QUERIES.

103. 1. In the solution of Proposition IX, is it necessary
that the arcs which intersect at 7 should be struck with the same
radius as those which intersect at m? Is it necessary that the
two intersections be on different sides of AB ?

2. In the solution of Proposition X, is it necessary that the
intersection D should fall on the opposite side of XY from 0?
Why is it necessary to take the radius with which these arcs are
struck greater than half of BC?

EXERCISES.

104. 1. A mason wishes to build a wall from 0 (Fig. 36), in the
wall AB, ¢ straight across” (perpendicular) to the wall €D, which
is 8 feet from AB. He has only his 10-foot pole, which is subdi-
vided into feet and inches, with which to find the point in the
opposite wall at which the cross wall must join. How shall he
find it? What principle is involved ?

f.! R T S N S R I

Fig. 36.

2. Wishing to erect a line perpendicular to AB (Fig. 37) at
its centre, I take a cord or chain somewhat longer than AB, and
fastening its ends at A and B, take hold of the middle of the cord
or chain and carry it as far from AB as I can, first on one side
and then on the other, sticking pins at the most remote points,
as at P and P'.  These points determine the perpendicular sought,
What is the principle involved?
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3. Bisect a line by making marks on only one side of it.

4. With a measuring-tape as an instrument, how would you
erect on the shore a perpendicular to the straight bank of a lake,
at a given point in the bank ?

SECTIAN 1.

OF OBLIQUE STRAIGHT LINES.

105. The Supplement of an angle is the angle which
remains after it has been taken from a straight angle, or two
right angles.

106. Supplemental Angles are, therefore, two angles
whose sum is a straight angle, or two right angles (42, b).

107. Vertical, or Opposite Angles are the non-adja-
cent angles formed by the intersection of two straight lines.

PROPOSITION 1I.
' 108. Theorem.— Vertical, or opposite angles are equal.

DEMONSTRATION,

Let AB and CE intersect at D.

We are to prove that ADC = BDE, and
CDB = ADE.

ADC + CDB = a straight angle (42, b);
and for the same reason CDB + BDE = a

straight angle.

Hence, ADC + CDB = CDB + BDE ; and
subtracting CDB from each member, we have Fig. 38.
ADC = BDE.

In like manner, CDB + BDE = BDE + ADE ; whence, CDB = ADE.
Q. E. D,
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PROPOSITION II.

109. Theorem.—If two supplemental angles are so
placed as to be adjacent to each other,the two sides not
common fall in the same straight line.

DEMONSTRATION.

Let AOB and B’O’E’ be two supplemental
angles, and let B’O’E’ be placed so as to be
adjacent to AOB, i. e., as BOE.

'We are to prove that AE is a straight line.

Before considering B’O’E’ as placed adja-
cent to AOB, produce AO to E, forming AE.

By (42, b), AOB + BOE = a straight
angle, 4. 6., two right angles, whence BOE is the Fig. 30
supplement of AOB.

Now, as by hypothesis B'O’E’ is the supplement of AOB, B'O’E’
= BOE.

Place B'O’E’ adjacent to AOB, O’ in O, and 0'B’ in OB. Then will
O’E’ fall in OE.

Therefore the two sides not common, 4. e., AO and O’E’, fall in the
same straight line AE. Q. E. D,

PROPOSITION III.

110. Theorem.—If from a point without a line a
perpendicular is drawn to the line, and oblique lines are
drawn from the same point, meeting the line at equal
distances from the foot of the perpendicular,

1st. The oblique lines are equal to each other.

2d. The angles which the oblique lines form with the
perpendicular are equal to each other.

3d. The angles formed by the oblique lines with the first
line are equal to each other.

DEMONSTRATION.

Let AB (Fig. 40) be any line, P any point without it, PD a perpendicular,
and PC and PE oblique lines meeting AB at C and E, so that CD = DE.
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‘We are to prove, 1st, that PC = PE;
2d, that CPD = DPE; and 8d, that
PCD = PED.

Revolve PDE on PD as an axis, until
E falls in the plane on the other side of
PD.

Now, since AB is perpendicular to
PD, DB will fall in DA (92). And since
DE = DC by hypothesis, E will fall in
C. Hence the two figures PDE and PDC
coincide, and we have, 1st, PC = PE; 2d, CPD = DPE and 3d, PCD
= PED. Q. E.D.

QuERY.—How would the equality of PC and PE follow from
(96)2

PROPOSITION IV.

111. Theorem.—If from a point without a line a
perpendicular is drawn to the line, and from the same
point two oblique lines are drawn, making equal angles
with the perpendicular and meeting the first line,

1st. The oblique lines are equal to each other.

2d. The oblique lines cut off equal distances from the
foot of the perpendicular.

3d. The oblique lines make equal angles with the first
line*

DEMONSTRATION.

Let AB be a straight line, P any point without it, and PD a perpen-
dicular to AB; and let PE and PC be drawn, making CPD = EPD.

We are to prove, 1st, that PC = PE;
2d, that DE = DC; and 3d, that PED
= PCD.

Revolve PDE upon PD as an axis,
until E falls in the plane on the opposite
side of PD.

Then, since EPD = CPD by hypoth-
esis, PE will fall in PF, and the point E
will be found somewhere in PF.

* This proposition is the converss of the last. The significance of this
wetement will be more fully developed farther on (188),
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Again, DE will fall in DA (92), and E will fall somewhere in DA.

Now as E falls at the same time in DA and PF, it must fall at their
intersection C, and the figures PDE and PDC must coincide; whence we
have,

1st, PC = PE; 2d, DE = DC; and 8d, PCD = PED. Q. E.D.

PROPOSITION V.

112. Theorem.—If from a point without a line a
perpendicular is drawn to the line, and from the same
point two oblique lines are drawn making equal angles
with the first line,

- 1st. The oblique lines cut off equal distances from the
foot of the perpendicular.

2d. The oblique lines are equal to each other.

3d. The oblique lines make equal angles with the per-
pendicular.

DEMONSTRATION.

Let P be any point without the line AB, and PD a perpendicular from
P upon AB, and let PE and PC be drawn making the angle DEP = angle
DCP.

We are to prove, 1st, that DE = DC;
2d, that PE = PC; and 3d, that angle
DPE = angle DPC.
Conceive a perpendicular erected at
the middle point of CE, and let it intersect
CP, or CP produced, in some point as X.
Conceive X joined with E.
By (110, 3d.) XED=XCD, (i.e., PCD). Fig. 42.
But by bypothesis PED = PCD. Hence, XE falls in PE, and PD is the
perpendicular to CE at its middle point. -
Therefore, DE = DC; and by (110) PE = PC, and DPE = DPC.
Q. E.D.
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PROPOSITION VI.

113. Theorem.—If from a point without a line a per-
pendicular islet fall on the line, and from the same point
two oblique lines are drawn, the oblique line which cuts off
the greater distance from the foot of the perpendicular is
the greater.

DEMONSTRATION.

Let AB be any straight line, P any point without it, and PC and PF
two oblique lines of which PF cuts off the greater distance from the foot
of the perpendicular PD; thatis, DF > DC.

‘We are to prove that PF > PC.
If the two oblique lines do not lie on
the same side of the perpendicular, as in
the case of PF and PE, take DC = DE,
and on the side in which PF lies,
draw PC. Then PC will be equal to PE,
by .(110, 1st). Hence, if we show the
proposition true when both oblique lines
lie on the same side of the perpendicular,
it will be true in general. Fig. 43.
Produce PD, making DP’ = PD, and draw P'F and P'C, producing
the latter until it meets PF in H.
Revolve the figure FPD upon AB as an axis, until it falls in the plane
on the opposite side of AB.
Since PP’ is perpendicular to AB, PD will fall in P'D; and, since
PD = P'D, P will fall at P’. Then P’C = PC and P’F = PF.
Now the broken line PCP’ < than the broken line PHP’, since the
straight line PC < the broken line PHC.
For a like reason, the broken line PHP’ < PFP’, since HP’ < HFP’.
Hence PCP’ < PFP’, and PC (the half of PCP’) < PF (the half of
PFP’). Q. E.D.

114. CoRrRoLLARY.—From a given point without a line,
there can be two, and only two, equal oblique lines drawn
to the line, and these will lie on opposite sides of the per-
vendicular drawn from the given point to the given line.
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o
PROPOSITION VII.

115. Theorem.—If two equal oblique lines are drawn
from the same point in a perpendicular to a given line,
they cut off equal distances on that line from the foot
of the perpendicular.

Let PD be perpendicular to AB, and
PE = PC.

‘We are to prove that DE = DC.
If DE were greater than DC, PE would
be greater than PC, and if DE were less than
DC, PE would be less than PC (1183) ; but
both of these conclusions are contrary to
the hypothesis PE = PC.
Hence, as DE can neither be greater nor less than DC it must be
equal to DC. ¢. E. Db,

EXERCISES.

116. 1. Having an angle given, how can you construct its
supplement ? Draw on the blackboard any angle, and then con-
struct its supplement. What is the supplement of a right
angle ?

2. The several angles in Fig. 45 are such parts of a right
angle as are indicated by the fractions placed in them. - If these
angles are added together by bringing the vertices together and
causing the adjacent sides of the angles to coincide, how will the
two sides not common lie? Why ?
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3. If two times A, B (Fig. 45), two times D, three times E,
three times C, three times G, and two times F, are added in order,
how will AM and GN lie with reference to each other? Why?

Ans. They will coincide.

4. It you place the vertices of any two equal angles together
go that two of the sides shall extend in opposite directions and
form one and the same straight line, the other two sides lying on
opposite sides thereof, how will the latter sides lie? By what
principle?

5. If two lines intersect, show that the line which bisects one
of the angles will, if produced, bisect the opposite angle.

6. If one line meet another, show that the two lines bisecting
these supplemental angles are perpendicular to each other.

7. If two lines intersect, show that two lines bisecting the
two pairs of opposite angles are perpendicular to each other.
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SKSELTION 1.
OF PARALLELS.

117. The Direction of a straight line is defined or deter-
mined by the plane in which it lies and the angle which it makes
with some fixed line, this angle being generated (48) from the
fixed line around in the same direction,* in the same argument.

118, The assumed fixed line is called the Direction Line,
and the angle which the line makes with the direction line is
called the Direction Angle.

ILLusTRATION.—Thus the directions
of the several lines AB, CD, and EF may
be defined by referring them to some as-
sumed fixed line, as XY.

The direction of AB is defined by say-
ing that its direction angle is YOA, or its
equal XOB, this angle being conceived as
generated from the direction line, as indi-
cated by the arrows.

So also the direction of CD is defined
by the angle YMC, or its equal XMD; and
the direction of EF isin like manner de-
fined by YNE, or XNF.

119, With reference to its generation, the same
line may be conceived as having either of two opposite directions,
or various parts of it may be conceived as having opposite direc-
tions.

ILLUSTRATION. —Thus, the line AB’ (Fig. 47) may be considered as
generated by a point moving from A to B, whence its direction would

* Revolution around a fixed point is often designated as from left to
right, or from right to left. To comprehend these terms, one may conceive
himself in the centre of motion, and facing the moving point. Thus all the
motions represented by arrows in Fig. 46 will be seen to be from rightto left.
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be from A towards B; or, it may be considered
as generated by a point moving from B to A,
whence its direction would be from B towards A.
In like manner, part of the line, as PB, may
be considered as having the direction from P
towards B, while the other part is conceived as
having the opposite direction, i. ¢., from P towards A,  F8- 47

120. Lines have the Same Direction when they lie in
the same plane and make equal direction angles w1th the same
line. -

Any line may, be assumed at pleasure as the direction line,
provided that in comparing the directians of different lines they
all be referred to the same direction line. ~

121. Parallel Lines are lines which have the same or
opposite dxrectlons.

122. A Transversal is a line cutting a system of lines.

123. When two lines are cut by a transversal, the angles
formed are named as follows:

Exterior Angles are those without
the two lines, as 1, 2, 7, and 8.

Interior Angles are those within
the two lines, as 3, 4, 5, and 6.

Alternate Exterior Angles are
those without the two lincs and on differ-
ent sides of the transversal, but not adja-
cent, as 2 and 7, 1 and 8.

Alternate Interior Angles are jthose within the two '
lines and on different sides of the transversal, but not adjacent,
as 3 and 6, 4 and 5. '

Corresponding Angles are one without and one within
the two lines, and on the same side of the transversal, but no{
adjacent, as 2 and 6, 4 and 8,1 and 5, 3 and 7. |
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PROPOSITION 1I.

124. Theorem.—7hrough a given point one line can be
drawn parallel to a given line, and but one.

DEMONSTRATION.
Let AB be the given line, and P the given point.

We are to prove that one line can
be drawn through P parallel to AB,
and but one.
Through P draw XY as the direc-
tion line, intersecting AB in E. .
« Also through P pass a line C'D/,
making XPD' greater than XEB.
Then revolving C'D’ about P as a
centre, XPD’ may be made to dimin-
ish continuously, and in some pos'i-
. tion, as CD, XPD will equal XEB. In this position, CD is parallel to AB
(120, 121). -
Hence there can be one line drawn through P parallel to AB. Q. E. D.
Again, there can be but one ; since, if CD be revolved in either direc-
tion about P, the angle XPD will become unequal to XEB, and hence the
line CD will not be parallel to AB. Q. E. D.

. PROPOSITION II.

125. Theorem.—If a transversal cuts two parallels,

"1st. Any two corresponding angles are equal.

2d. Any two alternate interior, or any two alternate’
exterior angles are equal. _

3d. The sum of any two interior angles on the same
side of the transversal, or the sum of any two exterior
angles on the same side, is two right angles, or a straight
angle. ‘ =

‘ DEMONSTRATION. .
Let AB and CD (Fig. 50) be any two parallels, and EF any transversal.’

-~
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‘We are to prove, 1st. Of the cor-
responding angles, b =d, a = ¢
e=g,andf = h

2d. Of the alternate interior an-
gles, b = f, and ¢ = g; of the alter-
nate exterior angles, d = h, and
a =¢é.

8d. Of the interior angles on the
same sgide of the transversal,

b + ¢ = 2 right angles,
and g + f = 2 right angles;

. Fig. 50.
of the exterior angles on the same side, e

a + d = 2rightangles, and ¢ + A = 2 right angles.

Let EF be taken as the direction line, the direction angles being esti-
mated from right to left (120, 121, and foot-note, p. 55). Then,

1st. Of the corresponding angles, b = d, these being the direction
angles, and AB and CD being parallel.

a = c, since they are supplements of the equal angles, b and d; and
¢ = g, for the same reason.

Also, f = A, since they are opposite angles to the equal angles, b
and d.

2d. Of the alternate interior angles, b = f, since f = d (108); ¢ = g,
since they are supplements of b and d.

Of the alternate exterior angles, d = %, since 2 = b (108); and
¢ = a, since they are supplements of b and d.

8d. Of the interior angles on the same side,
b 4+ ¢ = 2 right angles (or a straight angle),
gince d + ¢ = 2 right angles (or a straight angle), (42, b), and b = d;
and g + S = 2 right angles,
since g + b = a straight angle, and b = f.
Of the exterior angles on the same side,

a + d = 2 right angles,
since a + b = a straight angle, and b = d;

also ¢ + h = 2 right angles.
since g + h = astraight angle,ande =g. Q. E.D.
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PROPOSITION III.

1268. Theorem.—Conversely to Proposition II, When
two lines are cut by a transversal, the two lines are par-
allel,

1st. If any two corresponding angles are equal.

2d. If any two alternate interior, or any two alternate
exterior angles are equal.

3d. If the sum of any two interior angles on the same
side, or the sum of any two exterior angles on the same
side is two right angles.

DEMONSTRATION.

Let AB and CD be two lines cut by the transversal EF, making any
pair of corresponding angles equal, as b=d,a=c¢,g=e, h =f;
or any two alternate interior angles, or any two alternate exterior
angles equal, as b =f, g = ¢, a = e, or It = d; or the sum of any
two interior angles on the same side, or of any two exterior angles on
the same side, equal to 2 right angles,as ® + ¢, g + f,a + d, h + ¢,
equal to 2 right angles.

We are to prove that AB and
are parallel.

Let EF be the direction line, an
and d the direction angles. If] tt
these are granted or proved equal,
lines are parallel (121).

Now, 1st. Of the corresponding
gles, if & = d, AB and CD are par:
Ly definition; but, if e =¢, b =
since b and d are supplements of @
¢; or, if g=¢, b = d, since b an
are supplements of g and ¢; or, if J
(108). Hence, in every case, b = d, and AB and CD are parallel.

2d. Of alternate interior angles, if » = f, b = d, since f = d; or, if
g = ¢, b = d, since b and d are supplements of g and ¢. Hence, in either
case, b = d, and AB and CD are parallel.
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Of alternate exterior angles, if
h=4d,b=d,sinceb=h (108); or,
if a =¢, b= d, since b and d are
supplements of a and e. Hence, in
either case, b = d and, AB and CD
are parallel.
8d. Of interior angles on the
same side, if & + ¢ = 2 right angles,
b = d, since d + ¢ = 2 right angles
(42); or, if g + f = 2 right angles,
b = d, since
g+ S+ b+ c=4right angles;
hence, b + ¢ = 2 right angles, and as d + ¢ = 2 right angles, d = .
Hence, in either case, b = d, and AB and CD are parallel.

Of exterior angles on the same side, if @ + d = 2 right angles, b = 4,
since @ + b = 2 right angles; or, if & + ¢ = 2 right angles, b = d, since
h + ¢ + a + d = 4 right angles; hence, @ + d = 2 right angles, and, as
a + b= 2 right angles, d =b. Hence, 1n either case, b = d, and AB and
CD are parallel. Q. R D.

127. CoroLLARY.—Two lines which are perpendicular
to a third are parallel to each other.

For, in such a case, all the eight angles formed are equal ; hence, any
of the conditions of the proposition are met.

128. ScHOLIUM.—The last two propositions are the converse
of each other; 7.e., the hypotheses and conclusions are exchanged.
Thus, in Prop. IT, the hypothesis is that the two lines are parallel,
and the conclusion is certain relations between the angles; while
in Prop. III the hypotheses are certain relations among the angles,
and the conclusion is that the lines are parallel.

The learner may think that, if a proposition is true, its converse is
necessarily true; and hence, that when a proposition has been proved, its
converse may he assumed as also proved. Now this is by no means the
case. Although in a great number of mathematical propositions, it hap-
pens that the proposition and its converse are both true, we never assume
one from having proved the other ; and we shall occasionally find a prap-
osition whose converse is not true,
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PROPOSITION 1V.

129. Theorem.— When two straight lines are cut by a
transversal, if the sum of the two interior angles on either
side is less than two right angles, the two tines will meet
on this side of the transversal, if sufficiently extended.

DEMONSTRATION.

Let AB and CD be two lines cut by the transversal XY, making
BEP + EPD < 2 right angles,

We are to prove that AB and CD will meet on the side of XY on which
these angles lie.

Through P draw FG paralftl to AB.

Take EH = EP and draw PH, and also ET perpendicular to PH. By
(115), TH = TP, whence EHT = EPT (110).

But EHT = GPH (125). Hence GPH = }GPE.

Again, take HI = PH and draw PI, and it may be shown in the same
manner that GPl = }GPH = }GPE.

In this manner we may continue to draw oblique lines through P cut-
ing AB further and farther from E, and may thus diminish at pleasure
the angle included by the oblique line and PG. Hence this angle may be
made less than GPD, the difference between DPE and the supplement
of PEB, when the oblique line will fall between PD and PG. Call this
line PR. Now as PR and PE cut AB, and PD lies between them, it must
cut AB between E and R. Q. E. D.
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130. CoROLLARY 1.—If a transversal cuts one of two
parallels, it cuts the other also.

131. CoRrOLLARY 2.—Non-parallel straight lines meet,
if sufficiently produced.

132. CoROLLARY 3.—Two straight lines in the same
plane which do not meet, however far they are extended,
are parallel.

For, let AB and CD be two such lines, and P any point in CD. Now
all lines through P which are not parallel to AB meet AB (131). Hence
as there can be one parallel to AB through P (124), it is the line which
does not meet AB.

PROPOSITION V.

133. Theorem.—A lire which is perpendicular to one
of two parallels is perpendicular to the other also.

DEMONSTRATION.
Let AB and CD be two parallels, and let EF be perpendicular to AB.

We are to prove that EF is also
perpendicular to CD.

Since EF is a transversal cut-
ting AB and CD, angle EOB = angle
EMD (125, 1).

Now EOB is a right angle by
hypothesis (86),

Hence EMD is a right angle,
and EF is perpendicular to CD.

Q E.D.
Fig. 53.

134. CoroLLARY.—The shortest distance between two
parallels is the perpendicular which joins them.

For, OM being a perpendicular from O to CD, is shorter than any
other line from O to CD (94).
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135. The Distance between two parallels is the perpen-
dicular which joins them.

PROPOSITION VI.

136. Theorem.—Two parallels are everywhere equally
distant from each other, and hence never meet.

DEMONSTRATION,

Let E and F be any two points in the line CD, and EG and FH per-
pendiculars measuring the distances between the parallels CD and AB at
these points.

We are to prove EG = FH.

Let P be the middle point between
E and F, and PO a perpendicular at
this point.

Revolve the portion of the figure
on the right of PO, upon PO as an axis, Fig. 54.

until it falls upon the plane of the paper at the left.
’ Then, since FPO and EPQ are right angles, PD will fall in PC; and,
as PF = PE, F will fall on E. As Fand E are right angles) FH will
take the direction EG, and H will lie in EG or EG produced. Also,
as POH and POG are right angles, OB will fall in OA, and H, falling at the
same time in EG and OA. is at their intersection G.
" Hence, FH coincides with and is equal to EG. Q. E. D.

Hence, also, CD cannot meet AB, since the distance from any point
inCDto ABis EG. Q. E. D.

PROPOSITION VII.

137. Theorem.—Conversely to Proposition VI., If' two
points in one straight line are equally distant from a
second straight line, and on the same side of it, the lines
are parallel to each other.

DEMONSTRATION.

Let AB and CD (Fig. 55) be two lines having the points P and S in CD
equally distant from AB, and on the same side of it.

We are to prove that CD and AB are parallel,
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From P and S draw PE and SF perpendicular to AB. Then is PE =
SF, by hypothesis.

Through O, the middle point of PE,
draw GH parallel to AB.

Since PE is paraliel to SF, GH cuts
SF in some point as | (130).

By (138), OE = IF ; and since SF =
PE and OE is }PE, IF is §SF, that is,

IF = IS.

Now, as PE and SF are perpendicular to GH (1383), if we revolve the
figure OAEFBI on GH, E will fall in P,and F in S (92), and AB will have
two points in common with CD, and hence will coincide with it.

Hence, DPO = BEO, and as the latter is a right angle by construc-
tion, AB and CD are perpendicular to PE, and hence parallel (127).
Q.E.D.

PROPOSITION VIII.

138. Theorem.—A pair of parallel transversals inter-
cept equal portions of two parallels.

DEMONSTRATION.

Let ST and RL be two parallel transversals, cutting the two parallels
AB and CD.

We are to prove that GE = HF.
From E and F let fall the per-
pendiculars EM and FK. Then

EM = FK (136).

Now apply the figure GEM to
HFK, placing EM in its equal FK.
Since M and K are right angles, MG
will fall in KH.
With the figures in this position,
FH and EG are lines drawn from the
same point in the perpendicular to
ST and making equal angles with it
(125), and are hence equal (112)., Q. E. D,




PARALLELS. 65

PROPOSITION IX.

139. Theorem.—Two straighi lines which are parallel
to a third are parallel to each other.

"DEMONSTRATION.

-Let AB and CD be each parallel to

We are to prove that AB and CD a
parallel to each other.
Draw HI perpendicular to EF; then wi
it be perpendicular to CD (133).
For a like reason, Hl is perpendicule
to AB.
Hence, CD and AB are both perpendic- Fig. 57.
ular to HI, and consequently parallel (127). Q. E. .

PROPOSITION X.

140. Theorem.—If to each of two parallels perpendic-
ulars are drawn, then are the perpendiculars parallel.

DEMONSTRATION.
Let A and B be paraiiel lines, P be perpendicular to A, and Q to B.

‘We are to prove that P and Q are par-
allel to each other.

Q, which is perpendicular to B, one of
the two parallels, is perpendicular to A,
the other parallel, also (133).

Hence, P and Q are both perpendicu-
lar to A, and hence are parallel (127). Q.E.

Fig. 58.
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PROPOSITION XI.

141. Theorem.—If to each of two non-parallel lines
a perpendicular is drawn, the perpendiculars are non-
parallel.

DEMONSTRATION.

Let A and B be non-parallel, and P a perpendioutar to A, and Q to B.
We are to prove that P and Q are
non-parallel.
If P and Q were parallel, then, by the
preceding propoéition, A and B would be
parallel, which is contrary to the hy-
pothesis. Hence, P and Q are non-par-
allel. Q. E. D.
Fig. 59.

PROPOSITION XII.

142. Problem.—Through a given point to draw a
parallel to a given line.

SorvuTION.
Let AB be the given line, and P the given point.

Fig. 60.

-We are to draw through P a parallel to AB.

Let fall PF, a perpendicular from P to AB (102).

At P erect CD, a perpendicular to PF (99).

Then is CD parallel to AB (127). [Pupil give proof.)
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EXERCISES.

143. 1. How can a farmer tell whether the opposite sides
of his farm are parallel ?

2. If we wish to cross over from one of two parallel roads to
the other, is it of any use to travel farther in the hope that the
distance across will be less? Why?

3. If a- straight line intersects two parallel lines, how many
angles are formed ? How many angles of the same size? May
they all be of the same size? When? When will they not be
all of the same size ?

4. Are the two opposite walls of a building which are carried
up by the plumb line exactly parallel> Why?

5. A bevel (Fig. 61) is an instru-
ment much used by carpenters, and
consists of a main limb AB, in
which a tongue CD is placed, so as
to open and shut like the blade of
a knife. This tongue turns on the
pivot O, which is a screw, and can
be tightened so as to hold the
tongue firmly at any angle with the
limb. The tongue can also be ad-
justed so as to allow a greater or
less portion to extend on a given
side, as CB, of the limb. Now,
suppose the tongue fixed in posi-
tion, as represented in the figure, and the side m of the limb to be placed
against the straight edge of a board, and slid up and down, while lines
are drawn along the side n of the tongue. What will be the relative
position of these lines? Upon what proposition does their relative posi-
tion depend? How can the carpenter adjust the bevel to a right angle
upon the principle in Prop. I, Sec. I? At what angle is the bevel set,
when, drawing two lines from the same point in the edge of the board,
one with one edge m of the bevel against the edge of the board, and the
other with the other edge m/, these lines are at right angles to each other



68 ELEMENTARY GEOMETRY.

@{s ECTION 1Y.

OF THE RELATIVE POSITIONS OF STRAIGHT LINES AND
CIRCUMFERENCES.

PROPOSITION I.

144. Theorem.—Anry diameter divides a circle, and
also its circumference, into two equal parts.

DEMONSTRATION.
Let AB be the diameter of the circle AmBn.

‘We are to prove that arc AmB = arc
AnB, and that segment AmB = segment AnB.

Revolve AnB upon AB as an axis, until
it fulls in the plane on the opposite side of AB.

Then, since every point in AnB is at the
same distance from the centre C as every
point of AmB (24), the arc AzB falls in AmB,
and both arcs and segments coincide;
whence, arc AnB = arc AmB, and segment
AnB = segment AmB. Q. E.D.

PROPOSITION II.

145. Theorem.—The diameter of a circle is greater
than any other chord of the same circle.

DEMONSTRATION.

Let AB (Fig. 63) be a chord meeting the circumference in A and B,
and not passing through the centre O ; and let AC be the diameter.
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‘We are to prove that AB is less than any
diameter, as AC (28).

Now as AB is not a diameter, it dces not
pass through O, or liein AC. Hence B is a
different point from C.

Draw 0B.

Now AB being a straight line, is less than
A0+ 0B, which is a broken line (59); hence,
as A0O+0B = AC, AB < AC. Q.E.D.

146. An arc is said to be Subtended by the chord which
{oins its extremities, and the arc is said to subtend the angle in-
cluded by the radii drawn to its extremities.

PROPOSITION III.

147.. Theorem.—A radius which is perpendicular to
a chord bisects the chord, the subtended arc, and the sub-
tended angle *

DEMONSTRATION.

Let AB be a chord subtending the arc AB, which arc subtends the
angle AOB. Let the radius EO be perpendicular to AB, cutting it in D.

We are to prove that DA = DB, arc AE
= arc EB, and angle AOE = angle BOE.

Produce EO, forming the diameter EC.

Revolve the semicircle EBC on EC as an
axis, till it falls in the plane on the other side
of EC.

The semicircles will coincide (144), and
since AB is perpendicular to EQ, DB will fall

in DA.
Moreover, as A = OB, and there cannot Fig. 64,

* Such statements in Plane Geometry are generally limited to the con-
sideration of arcs less than a semi-circumference, yet all the propositions
in this section, except Prop. VIII, are equally true whatever the arce
may be.
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be two equal oblique lines from a point to a line on the same side of &
perpendicular (114), OB falls in OA, and B falls in A.

Hence, DB coincides with DA, EB with EA, and angle BOE with angle
AOE, and we have DA = DB, arc AE = arc EB, and angle AOE = angle
BOE. Q E.D.

PROPOSITION 1IV.

148. Theorem.—Conversely to Proposition I11, /4 radius
which bisects an arc bisects the chord which subtends the
are, is perpendicular to the chord, and also bisects the
subtended angle.

DEMONSTRATION,

Let arc AB be bisected by the radius OE at E. Let the straight line
AB be the chord of this arc, and AOB the subtended angle.

‘We are to prove that OE bisects the chord
AB and is perpendicular to it, and also bisects
the angle AOB.

Produce EO, forming the diameter EC.

Revolve the semi-circumference EBC upon
EC as an axis, till it falls in the plane at the
left of EC.

Then will semi-circumference EBC coincide
with EAC, and since arc BE = arc AE by hy-
pothesis, B will fall in A, and BD = AD. Fig. 64.
~ Hence, the line OF has two points, O and D, each equally distant
from A and B, and is therefore perpendicular to AB (98).

Furthermore, angle BOD coincides with AOD, and BOD = AOD.
Q.E.D.

PROPOSITION V.

149. Theorem.—Conversely to Propositions III and IV,
A radius which bisects the angle included by two other
radii bisects the arc subtending the angle, and the chord
of the are, and is perpendicular to the chord.

[Let the student give the demonstration. ]
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PROPOSITION YVI.

150. Theorem.—In the sume circle, or in equal cire
cles, equal chords are equally distant from the centre.

* DEMONSTRATION.
Let EF and GH be equal chords in the same circle or in equal circles ;

and OL and ON be the perpendiculars from the centre O upon the
chords, and thus be the distances of the chords from the centre (95).

‘We are to prove OL = ON.

Since OL and ON are perpendiculars from the centre upon the equal
chords EF and GH, HN = FL (147).

Now apply the figure HNO to FLO, placing HN in its equal FL. Then
will NO coincide with LO (88). '

In this position, HO and FO are equal lines drawn from the same
point in the perpendicular FL to the line L0. Hence, LO = NO (115).
Q. E.D. :

[Let the student state and prove other converses to Propositions III,
IV and VL]

PROPOSITION VII.

151. Theorem.—In the same circle, or in equal cir-
cles, if two arcs are equal, the chords which subtend them
are equal; and, conversely, if two chords are equal, the
subtended arcs are equal.
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DEMONSTRATION.

Let AmB and CnD be equal arcs in the same circle or in equal
sircles,

We are to prove, first, that the chords AB and CD are equal.

Apply the figure CrDO to AmBO, placing the radius CO in its equal
AO, and let the arc CD extend in the direction of arc AB..

Then, since each point in arc CD is at the same distance from the cen-
tre as each point in arc AB, arc CD falls in arc AB, and since arc CD =
arc AB by hypothesis, D falls in B.

Hence, chord AB = chord CD (61). Q. E. D.

Conversely, if chord AB = chord CD, arc AB = arc CD.

Draw the perpendiculars OL and ON. Then, since the chords are
equal, OL = ON (150).

Now apply the figure CzDO to AmBO, placing ON in its equal OL.
Since CD is perpendicular to ON, and AB to OL, CD will fall in AB; and,
since the chords are equal by hypothesis, and are bisected at N and L
(147), D falls in B and C in A.

Hence, arc CnD coincides with arc AmB, and arc CnD = arc AmB.
QED

PROPOSITION VIII.

152. Theorem.—In the same circle, or in equal eir-
cles, if two arcs are unequal, the less arc has the less chord ;
and, conversely, if two chords are unequal, the less chord
subtends the less are,
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DEMONSTRATION.

In the same circle, or in equal circles, let arc AmB < are CnD

Fig. 67.

‘We are to prove, first, that chord AB < chord CD.

Draw OA, OB, 0D, and OC.

Apply the figure CnDO to AmBO, placing OC in its equal OA, and the
arc n in the arc m.

Since arc CnD > arc AmB, D will fall beyond B, as at D'. Draw OD'.

AD’ will evidently cut OB. Let N be the point of intersection.

Now . AB < AN + NB (59),
and BO = D'O < ND’ + ON (59).
Adding, AB + BO < AN + ND’ + ON + NB,
or AB + BO < AD’ + BO.

Subtracting BO from each member, we have
AB < AD" Q.E.D.

Conversely, if chord AB < chord CD.

‘We sre to prove that arc AmB is less than arc CnD,

For, if arc AmB = arc CrD, chord AB = chord CD (151). Ang, if
arc AmB > arc CnD, chord AB > chord CD, by the former part of this
demonstration. But both of these conclusions are contrary to the hy-
pothesis.

Hence, as arc AmB can neither be equal to nor greater than arc CzD,
it must be less. Q. E. D
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PROPOSITION IX.

153. Theorem.—In the same circle, or in equal cir-
cles, of two unequal chords, the less is at the greater dis-
tance from the centre; and, conversely, of two chords
which are unequally distant from the centre, that which
is at the greater distance is the less.

DEMONSTRATION.

In the same circle, or in equal circles, let chord CE < chord AB,
and OD and OD’' their respective distances from the centre.

Fig. 68,

We are to prove, first, that OD > OD".

From A, one extremity of the greater chord, lay off towards B, AE’' =
CE. Since AE’' < AB, arc AE’ < arc AB (152), and E’ falls somewhere
on the arc AB between A and B.

Draw OD” perpendicular to AE’, and OD"” = OD, since the equal
chords are equally distant from the centre (150).

Now OD"’ is a different line from OD’, since 0D’ produced would
bisect arc AE’, and OD’ would bisect arc AB. Hence, as OD' is perpen-
dicular to AB, OD’’ mast be oblique (93).

Again, OD"’ cuts the line AB in some point as H, since the chord AE’
lies on the opposite side of AB from the centre O.

Hence, OH > 0D’ (94), and much more is OH+HD'' (= OD')) > OD'.
Q. E. D.

Conversely, let OD > OD’.

‘We are to prove that CE < AB.

If CE = AB, OD = OD’ (150), and if CE > AB, OD < OD’, both
of which conclusions are contrary to the hypothesis OD > OD’.

Hence, as CE can neither be equal to nor greater than AB, it must be
less. Q. E.D,
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PROPOSITION X.

154. Theorem.—4 straight line which intersects a
circumference in one point intersects it also in a second
point, and can intersect it in but two points.

DEMONSTRATION.

Let LM (Fig. 69) intersect the circumference in A.

‘We are to prove that it intersects in another point, as B, and in only
these two points.

Since LM intersects the circumference in A,
it passes within it, and hence has points nearer
the centre O than A. OA is, therefore, an
oblique line, and not the perpendicular from O
upon LM (94).

Now two equal oblique lines can be drawn
to a line from a point without (114). Let OB
be the other oblique line equal to OA. But as
OA is a radius, OB = OA must also be a radius,
and B is in the circumference. Q. E. D.

Again, LM cannot have another point common with the circumfer-
ence, since if it had there could be more than two equal straight lines
drawn from O to LM, which is impossible. Q. E. p.

155. CoroLLARY.—Iny line which is oblique to a radius
at its extremity is a secant line, since any such line has points
nearer the centre than the extremity of the radius, and hence
passes within the circumference.

PROPOSITION XI.

156, Theorem.—/ straight line which is perpendicu-~
lar to a radius at its outer extremity is tangent to the
circumference ; and, conversely, a tangent to a circumfer-
ence is perpendicular to a radius drawn to the point of
contact.

DEMONSTRATION.

A line perpendicular to a radius at its extremity touches the circum-

ference because the extremity of the radius is in the circumference,
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Moreover, it does not intersect the circumference, since, if it did, it would
have points nearer the centre than the extremity of the radius; but these
it cannot have, as the perpendicularis the shortest distance from a point
to a line. Hence, as a line which is perpendicular to a radius at its ex-
tremity touches the circumference but does not intersect it, it is a tan-

gent (30). Q.E.D.

Conversely, as a tangent to a circumference does not pass within, the
point of contact is the nearest point to the centre, and hence is the foot
of a perpendicular from the centre. Q. E. D.

157. CoROLLARY.—A perpendicular from the centre of
a circle to a tangent meets the tangent in the point of tan-

gency (98).

PROPOSITION XII.

158. Theorem.—The arcs of a circumference inter-
cepted by two parallels are equal.

DEMONSTRATION.

There may be three cases, Ist. When one parallel is a tangent and
the other a secant, as AB and CD;

2d. When both parallels are secants, as CD and EF ; and

3d. When both parallels are tangents, as AB and GH.

In the first case we are to prove
Ml = MK; in the second, IL = KR;
and in the third, MmN = MnN.

Through O draw MN perpendicular
to one of the parallels, in any case, and
it will be perpendicular to the other
also (133); and as a perpendicular
from the centre upon a tangent meets
the tangent at the point of tangency
(157), M and N are points of tangency,
and MN is a diameter.

Now, since the parallels are perpendicular to MN, and the chords IK
and LR are bisected by it, if we fold the right-hand portion of the figure
on MN as an axis until it falls in the plane on the left of MN, K will fall
inl,and Rin L.

Hence, MI = MK, IL = KR, and MmN = MzN. Q. E.D.

Fig. 70.
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PROPOSITION XIII.
159. Problem.—710 bisect a given are.

SoLuTION.

Let ACB be the given arc.

We are to bisect it; that is, find its
dle point.

Draw the chord AB joining the extre
ties of the arc; and bisect this chord by
perpendicular 00’ (101). Then will 00’

sect the arc, as at C.
Fig. 71

DEMONSTRATION OF SOLUTION.
00’ being a perpendicular to the chord AB at its middle point,any

point in it is equally distant from the extremities. Hence chord BC =
chord AC, and arc BC = arc AC (151). Q. E. D.

PROPOSITION XIV.

160. Problem.—70o find the centre of a circle whose
circumference is known, or of any arc of it.

SoLuTION.
Let ACB be an arc of a

We are to find the cen
circle,

Draw any two chords of
AC and BC, not parallel, and
by a perpendicular. Then
tersection of these perpendic
be the centre of the circle.

DEMONSTRATION OF SOLUTION.

OL being perpendicular to the chord AC at its centre, passes through
the centre of the circle, since if the centre were out of OL it would

be unequally distant from A and C (86). And for a similar reason, OM
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being perpendicular to the chord BC at its centre, passes through the

centre of the circle. .
Hence, as the centre of the circle lies at the same time in LO and MO,

it is their intersection 0. Q. E. D.

PROPOSITION XV.

161, Problem.—7o pass a circumference through
three given points not in the same straight line.

SoLUTION.

Let A, B, and C be the three given points not in the same straight
line.

Join AB and BC.

Bisect AB by the perpendicular MN
{101), and BC by the perpendicular RS.

With O, the intersection of MN and RS,
as a centre, and any one of the distances QA,
OB, 0C, say OA, as a radius, describe a cir-
cumference.

Then will this circumference pass
through the three points A, B, and C.

Fig. 73.

DEMONSTRATION OF SOLUTION.

Since AB and BC are non-parallel by hypothesis, MN and RS are non-

parallel (141), and hence meet in some point, as 0 (131).
- ‘Now as every point in MN is equally distant from the extremities of

AB (96), OA = OB.

In like manner, every point in RS is equally distant from B and C.
Hence, OB = 0C.

Hence, OA = OB = 0C, and a circumference struck from O as a
centre, with a radius OA, will pass through A, B, and C. Q. E. D.

PROPOSITION XVI.

162. Problem.—7o draw a tangent to a circle at a
Siven point in its circumference.
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SoLuTION.

Let it be required to draw a tangent to
the circle whose centre is O, at the point P
in its circumference. .

Draw the radius OP, and produce it to
any convenient distance beyond the circle.
Through P draw MT perpendicular to OP.
Then is MT a tangent to the circle at P.

DEMONSTRATION OF SOLUTION.

MT being a perpendicular to the radius at its extremity, is a tangent
to the circle by (156). Q. E. D.

EXERCISES.

163. 1. Draw a circle and divide it into two equal parts.
What proposition is involved ?

2. Given a point in a circumference, to find where a semi-
circumference reckoned from this point terminates. What
proposition is involved ?

3. In a circle whose radius is 11 there are drawn two chords,
one at 6 from the centre, and one at 4. - Which chord is the
greater? By what proposition ?

4. In a certain circle there are two chords, each 15 inches in
length. What are their relative distances from the centre?
Quote the principle.

5. There is a circular plat of ground whose diameter is 20
rods. - A straight path in passing runs within 7 rods of the cen-
tre. What is the position of the path with reference to the plat?
What is the position of a straight path whose nearest point is
10 rods from the centre? Omne whose nearest point is 11 rods
from the centre ?

6. Pass a line through a given point, and parallel to a given
line, by the principles contained in (151), (147), (148),and (127).



80 BLEMENTARY GEOMETRY.

SECTION Y,

OF THE RELATIVE POSITIONS OF CIRCUMFERENCES

AXIOMS.

164. Two circles may occupy any one of five positions with
reference to each other:

1st. One circle may be wholly exterior to the other.

2d. One circle may be tangent to the other externally, the
circles being exterior to each other.

3d. One circumference may intersect the other.

4th. One circle may be tangent to the other internally.

5th. One circle may be wholly interior to the other.

PROPOSITION I.

185. Theorem.— When one circle is wholly exterior to
another, the distance between their centres is greater than
the sum of their radii.

DEMQ:TSTRATION’.

Let M and N be two circles
whose centres are O and O,
and whose radii are OA = R,
and O'B = 7, respectively; and
let N be wholly exterior to M,

We are to prove that 00’
SR+

Draw 00', and let it inter-
sect circumference M in A, and
N in B.
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Since N is wholly exterior to M, OB > OA.
Adding BO' to each member of this inequality, we have
OB + BO' > OA + BO/,
or 00’ > R + 7,
since OB + B0’ = 00/, 0A = R,and 0B=1r. Q.E.D,

PROPOSITION II.

166. Theorem.— When two circles are tangent to each
other externally,
. 1st. The distance between their centres is the sum of
their radii.

2d. They have a common rectilinear tangent at their
point of tangency.

3d. The point of tangency is in the straight line join-
ing their centres. o

DEMONSTRATION.

Let M and N be two circles tangent to each other externally; let O
and O’ be their respective centres, B and » their radii, D the point of
tangency, and TR a tangent to M at D. )

We are to prove, 1st. That
00’ = R + r; 2. That TR is
tangent to N; 8d. That D is in
00'.
1st. Draw the radii OD = R,
and O'D = 7.
If we show that OD + O'D =
R + r is the shortest path from O
to O', we show that it is a straight Fig. 76.
line (59), and hence is the distance
from O to O’ (95).
Consider any other path from Q to 0', crossing circumference N in
some other point than D, say in P.
Now the shortest path from O to P is the straight line OP (59); and
the shortest path from P to O’ is the straight line PO’. Hence the
shortest path from O to O’ passing through P is OP + PO'.
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But OP > R (7)*, and PO’ = r, whence OP + PO' > R + 7.

Hence, as P is the point where
any other path from O to O’ crosses
circumference N, OD + D0’= R
4+ r is the distance from O to Q’.
Q. E.D.

2d. As TR is tangent to M at D,
by hypothesis, and as ODO’ has
been shown to be a straight line, TR
is perpendicular to DO’ (?) and
hence tangent to N (156). Q. E. D.

8d. As D is the point of tangency, and ODO’ is 00, D is in 00’
Q. E.D.

Fig. 76.

PROPOSITION III.

167. Theorem.—Two circumferences which intersect
in one point intersect also in a second point, and hence
have a common chord.

DEMONSTRATION.
Let M and N be two circumferences intersecting in P.

‘We are to prove that they intersect in another point, as P’, and hence
have a common chord PP'.

As M intersects N, it has points both without and within N.

Now consider the circumference M as generated by a point moving
from left to right, and let Y be a point within N. The generating point,

* Hereafter, minor references to principles on which a statement de-
pends wil be omitted, and the interrogation mark substituted. This indi-
cates that the student is to give the principle. In this case, P is without M
since by hypothesis N is external to M.
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in passing from Y, a point within N, to X, any point iun the circumference
M without N, must cross circumference N at some point, as P’, since this
is a closed curve.

Moreover, this second point, P/, is a different point from P, since a
circumference of a circle does not cut itself, or become tangent to itself.

Hence, if circumference M cuts circumference N in P, it cuts it also in
a second point, as P’. Q. E. D.

Finally, since P and P’ are common to both circumferences, the
circles M and N have a common chord PP’. Q. E. D.

PROPOSITION IV.

168. Theorem.— When two circumferences intersect,

1st. The line joining their cenires is perpendicular to
their common chord at its middle point.

2d. The distance between their centres is less than the
sum of their radii and greater than their difference.

DEMONSTRATION.

Let M and N be two circumferences intersecting at P and P’; let O
and O’ be their centres, and IZ and 7 their radii respectively, I being
equal to or greater than 7.

We are to prove, 1st. That
/00’ is perpendicular to PP’ at
its middle point; and 2d. That
00' <R+ r and 00 >
R—r.

Draw OP and O'P.

1st. Since O is equally dis-
tant from P and P/, and O’ is
also equally distant from P and
P’ (?), 00’ is perpendicular to

PP’ at its middle point (98). Fig. 78.

Q. E. D.
2d. As P is not in 00, 00’ < OP + PO’ (1), or 00' < B + r.
Again, 00’ + O'P > OP,

or 00’ + r > R;

whence, subtracting » from each member,
00 >R—7r. QED
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PROPOSITION V.

169. Theorem.— When the less of two circles is tangent
to the other internally,

1st. They have a common rectilinear tangent at the
point of tangency.

2d. Their centres and the point of tangency lie in the
same straight line.

3d. The distance between the centres is equal to the dif-
ference of their radii.

DEMONSTRATION.

Let M and N be two circles whose centres are O and 0’ respectively,
N being less than M and tangent to it internally ; let B and # be their
radii, and D the point of tangency.
We are to prove, 1st, That they have
8 common rectilinear tangent at D; 2d.
That O, 0', and D are in the same straight
Jine; and 3d. That 00' = R — .
1st. Draw TR tangent to M at D.
Draw also 0'D, and any other line from 0’
to TR, as O'E.
Now, since E is without the circle M
(), and M is without N (?), O'E > 0'D,
and O'D is perpendicular to TR (94).
Hence, TR is tangent to N (158), and Fig. 79.
is therefore a common tangent. Q. E. D.

2d. Since both OD and O'D are perpendicular to TR at D (), OD
aml 0'D coincide (88), and O and O’ lie in the same straight line with D.
Q. E. D.

3d. Since 00’ and D are in the same straight line, and O is between
0 and D, 00' = OD — 0'D; thatis, 00' = R— 7. Q.E.D.
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PROPOSITION VI.

170. Theorem.— When the less of two circles is wholly
interior to the other, the distance between the centres is
less than the difference of their radii.

DEMONSTRATION.

Let M and N be two circles whose centres are O and 0, and whose
radii are R and 7 respectively, and let N be wholly within M.

We are to prove that 00’ < B —r.

Produce 00’ till it meets both circumferences
on the same side of O that O’ is; and let the inter-
sections with N and M respectively be D and E.

Then, as O, 0', D, and E lie in order in the
same straight line,

0D < OE;

and subtracting O'D from each, and noticing that OD — O'D = 00/,
that OE = R, and O'D = r, we have

000 < R—17r. QED

171, GexeraL ScHoLroM. —The converse of each of Props. I, II, IV,
V, and VI is also true. Thus, if the distance between the centres is
greater than the sum of the radii, the circles are wholly exterior the one
to the other; since if they occupied any one of the other four possible
positions, the distance between the centres would be equal to the sum of
the radii, less than their sum, equal to their difference, or less than their
difference; any one of which conclusions would be contrary to the hy-
pothesis,

In like manner, the converse of any one of the five propositions may
be proved.

This method of proof is called THE REDUCTIO AD ABSURDUX, and
consists in showing that any conclusion other than the one stated would
lead to an absurdity.
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PROPOSITION VII.

172. Theorem.—JAll the circumferences which can be
passed through three points not in the same straight line
coincide, and are one and the same.

DEMONSTRATION.
Let A, B, and C be three points not in the same straight line.

We arc to prove that all the circumferences
which can be passed through them coincide, and
are one and the same circumference.

By (161) a circumference can be passed through
A, B, and C.

Now every point equally distant from A and B
lies in FD, a perpendicular to AB at its middle
point (?). And, in like manner, every point equally
aistant from B and C is in HE, a perpendicular to
BC at its middle point.

But the two straight lines FD and HE can intersect in only one point.

Hence all circumferences which can pass through A, B, and C have
their centre in O, and their radius QA, and therefore they constitute one
and the same circumference. Q. E. D.

Fig. 81

173. Cor. 1.—Through any three points not in the same
straight line a circumference can be passed, and but one.

174. DEFINITION.—A circle is said to be determined when
the position of its centre and the length of its radius are known.

175. Cor. 2.—Three points not in the same straight line
determine a circle.

176.  Cor. 3.—Two circumferences can intersect in only
two points. x :

For, if they have three points common, they coincide, and form one
and the same circumference.
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EXERCISES.

177. 1. The centres of two circles whose radii are 10 and 7,
are at 4 from each other. What is the relative position of the
circumferences ? What if the distance between the centres is 17 ?
What if 20? What if 2? What if 0?7 What if 3 ?

2. Given two circles 0 and 0’ (Fig. 82), to draw two others,
one of which shall be tangent to these externally, and to the
other of which the two given circles shall be tangent internally.
Give all the principles involved in the construction. Give other
methods.

Fig. 82.

3. Given two circles whose radii are 6 and 10, and the dis-
tance between their centres 20. To draw a third circle whose
radius shall be 8, and which shall be tangent to the two given
circles. Can a third circle whose radius is 2 be drawn tangent to
the two given circles? How will it be situated? Can one be
drawn tangent to the given circles, whose radius shall be 1°?
Why?

4. With a given radius, draw a circumference (Fig. 83) which
shall pass through a given point and be tangent to a given line.
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@{{sm*rmx\i vi.

OF THE MEASUREMENT OF ANGLES.

178. Two angles are Commensurable when there is a
common finite angle which measures each. When they have no
such common measure, they are Incommensurable.

178. An Angle at the Centre is an angle included be-
tween two radii.

180. An Inscribed Angle is an angle whose vertex is in
a circumference, and whose sides are chords of that circumfer-
ence.

181. Angles are said to be measured by arcs, according to the
principles developed in the following propositions.

PROPOSITION 1.

182. Theorem.—In the same circle, or in equal circles,
two angles at the centre are in the same ratio as the arcs
intercepted between their sides.

DEMONSTRATION.

There are three cases :

CASE L

When the angles are equal.

Let angle AOB = angle DOE (Fig. 84) in the same circle or in equal
circles.
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We are to prove that

AOB _arcAB *

DOE ~ arc DE
Apply the angle DOE
to the angle AOB, placing
the radius OD in its equal
OA. By reason of the
equality of the angles

DOE and AOB, OE will Fig. 84.
fall in OB, and E in B (?).
Hence DE coincides with AB, and
arc AB _ 1
arc DE = 7'
But, by hypothesis, 3—0—02 =1
AOB _ arc AB
Hence, D—OE' = a—m (66). Q. E. D.
CASE II.

When the angles are commensurable.

Let AOB and DOE be two commensurable angles at the centre in the
same eircle, or in equal circles.

Fig. 85.

* This method of writing & proportion is adopted in this book as the
more elegant, and as it appears to be coming into exclusive use. The above
is the same as

AOB : DOE :: arc AB : arc DE
and is to be read in the same manner.,
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Fig. 85.
AOB _ arc AB
We are to prove that DOE — arc DE "

As the angles are commensurable by hypothesis, let m be their com-
mon measure, and let it be contained 5 times in AOB and 8 times in DOE,

8o that
AOB _ 5

DOE ~ 8°
Conceive the angle AOB divided into 5 partial angles, each equal to
m, and the angle DOE divided into 8 such partial angles.
Now as these partial angles are equal, their intercepted arcs are equal
(%), and as AB contains 5 of them, and DE 8,

arc AB 5
arcDE ~ 8~
AOB _ arc AB

Hence, DOE — arc DE ?. QED,
CASE III
When the angles are incommensurable.

Let AOB and DOE (Fig. 86) be two incommensurablne angles at the
centre, in the same circle, or in equal circles.

AOB _arc AB
‘We are to prove that DOE = arc DE
. AOB . . arc AB . .
If the ratio DOE not equal to the ratio arc DE’ let it be greater ;
and let
AOB _ arc AB
DOE ~ arcDL’

{n which DL is less than DE.
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Fig. 86.

Draw OL, and divide AOB into equal parts, each less than LOE.
Apply this measure to DOE, beginning at DO. At least one linc of di-
vision wiil fall between OL and OE. Let this be OK.

Now AOB and DOK are commensurable; hence, by Case II,

y . AOB _ arc AB
but by hypothesis DOE = arcDL"

. ... AOB AOB arc AB arc AB
Dividing DOK by DOE’ and oDk P arcDL® 7O have

DOE _ arcDL
DOK ~ arc DK
But this conclusion is absurd, since

DOE are DL
pok > b oK <

1

Thus we show that the ratio DOE cannot be greater than the ratio

arc AB . . . AOB
arc DE’ and in a similar manner we may show that DOE cannot be less
arc AB
then e DE’
AOB ., . arcAB . .
Hence, as DOE ® neither greater nor less than aro DE’ it is equal to
arc AB AOB _arc AB

u-—cBE, and we have FO_E = a—;c—D—E - QE,D.

[For other methods of demonstrating this important theorem, see
Appendix.]

AOB
OE
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188. Out of the truth developed in this proposition grows the
method of representing angles by degrees, minutes, and seconds, as given
in Trigonometry (Part IV, 3-8). It will be observed, that in all cases, if
arcs be struck with the same radius, from the vertices of angles as centres,
the angles bear the same ratio to each other as the arcs intercepted by
their sides. Hence the arc is said to measure the angle. Though this lan-
guage is convenient, it is not quite natural; for we naturally measure a
quantity by another of like kind. Thus, distance (length) we measure by
distance, as when we say a line is 10 inches long. The line is length ; and
its measure, an inch, is length also. So, likewise, we say the area of a
field is 4 acres: the quantity measured is a surface,; and the measure, an
acre, is a suiface also. Yet, notwithstanding the artificiality of the
method of measuring angles by arcs, instead of directly by angles, it is
not only convenient but universally used ; and the student should know
just what is meant by it.

189. A Degree is ;}; part of the circumference of a circle; a
Minute is & of a degree, and a Second is ¢; of a minute. This is the
primary signification of these terms. But as any angle at the centre sus-
tains the same ratio to any other angle at the centre as do their subtended
arcs, we speak of an angle as an angle of so many degrees, minutes,
and seconds. Thus, an angle of 45 degrees (written 45°) means an angle
at the centre 45 times as large as one which subtends g} of the circumfer-
ence, or half as large as one which subtends 90° of the circumference.

This idea, as well as the notation °,’,”, for degrees, minutes, and
seconds, has already been made familiar in Arithmetic.

190. As the vertex of any angle may be conceived as the centre of a
circle, the intercepted arc of whose circumference measures the angle, we
speak of all angles in the same manner as of angles at the centre. Thus,
a right angle is called an angle of 90°, one-half a right angle is an angle
of 45° a straight angle is an angle of 180°, and the sum of four right
angles, being measured by the entire circumference, is an angle of 360°, etc.

PROPOSITION II.

191. Theorem.—dAn inscribed angle is measured by
half the arc intercepted between its sides.

- DEMONSTRATION.
Let APB be an angle inscribed in a circle whose centre is O,
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We are to prove that the angle APB is measured by one-half the
arc AB.

There are three cases: 1st. When the centre is in one side; 2d. When
the centre is within the angle; and 8d. When it is without.

CASE 1.
When the centre, 0, is in one side, as PB.
Draw the diameter DC parallel to AP.
By reason of the parallels AP and CD,
arc AC = arc PD (158);
and, since COB = POD (?),
arc CB = arc PD (§).
Hence, arc AC = arc CB,
and arc CB = } arc AB.
Again, since the parallels AP and DC are cut by the transversal PB,
the angles APB and COB are equal (125).

But COB is measured by arc CB (!). Hence, APB is measured by
arc CB = }arc AB. Q.E.D.

CASE II

When the centre is within the ai
Draw the diameter PC.

Now by Case I, APC is measured by } ar
and CPB by } arc CB. Hence the sum of
angles, or APB, is measured by } arc AC +
CB, or § arc AB. Q. E. D.

Fig. 88.
CASE III.
When the centre is without the angle.

Draw the diameter PC.

By Case I, APC is measured by } arc AC, and
BPC by § arc BC. Hence, APB, which is APC —
BPC, is measured by

 arc AC — § arc BC

orjarc AB. QE.D,
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192. CoROLLARY.—In the same circle or in equal circles,
all angles inscribed in the same segment or in equal seg-
ments intercept equal arcs, and are consequently equal.
If the segment is less than a semicircle, the angles are
obtuse; if a semvicircle, right; if greater than a semi-
circle, acute.

Fig. 90.

TuLusTRATION.—In each separate figure the angles P are equal to
each other, for they are each measured by half the same arc.

In O, each angle P is acute, being measured by §m, which is less than
a quarter of a circumference.

In O, each angle P is a right angle, being measured by m’, which is
a quadrant (quarter of a circumference).

In 0”, each angle P is obtuse, being measured by 3m”, which is
greater than a quadrant.

PROPOSITION III.

193. Theorem.—Any angle formed by two chords in-
tersecting in a circle is measured by one-half the sum of
" the arcs intercepted between its sides and the sides of its
vertical, or opposite, angle.

DEMONSTRATION.
Let the chords AB and CD (Fig. 91) intersect in P.
We are to prove that angle APD (= angle CPB ?) is measured by
} (arc AD + arc CB);
and that angle BPD (= aagle CPA?) is measured by
| # (arc BD + arc CA).
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.

Draw CE parallel to AB.
) Arc AE =arc CB (?); whence, arc ED =
arc AD + arc CB.
Now the inscribed angle ECD is measured
by } arc ED = } (arc AD + arc CB).
But ECD = APD (?); hence, APD (= CPB)
is measured by } (arc AD + arc CB). Q. E. D.
Finally, that APC, or its equal BPD, is
measured by } (AC + BD), appears from the Fig. 81
fact that the sum of the four angles about P '
being equal to four right angles, is measured by a whole circumference
(190).
But APD + CPB is measured by AD + CB; whence APC + BPD, or
2APC, is measured by the whole circumference minus (AD + CB); that
is, by AC + BD. Hence APC is measured by § (AC + BD). Q. E.D.

194, ScroLroM.—The case of the angle included between two chords
passes into that of the inscribed angle in the preceding proposition, by
conceiving AB to move parallel to its present position until P arrives at
C and BA coincides with CE. The angle APD is all the time measured
by half the sum of the intercepted arcs; Lut, when P has reached C, CB
becomes 0, and APD becomes an inscribed angle measured by half its in-
tercepted arc.

In a similar manner we may pass to the case of an angle at the centre,
by supposing P to move toward the centre. All the time APD is meas-
ured by }(AD + CB); but, when P reaches the centre, AD = CB, and
3 (AD + CB) = } (2AD) =.AD; i.¢., an angle at the centre is measured
by its intercepted arc.

PROPOSITION IV.

195. Theorem.—An angle included between two se-
cants meeting without the circle is measured by one-half
the difference of the intercepted arcs.

DEMONSTRATION.

Let APB (Fig. 92) be an angle included between the secants PA
and PB; and let the intersections with the ¢circumference be C-and D.-
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We are to prove that APB is measured by
$ (arc AB — arc CD).

Draw CE parallel to PB.

Now arc CD = arc EB (7). Hence, arc AE
= arc AB — arc CD.

Again, ACE = APB ().

But ACE is measured by § arc AE (7).
Hence APB is measured by

3 arc AE = } (arc AB — arc CD). Q. E.D.

196. Scmorrum.—This case passes into that
of an inscribed angle, by conceiving P to move Fig. 92.
toward C, thus diminishing the arc CD. When
P reaches C, the angle becomes inscribed ; and, as CD is then 0, } (AB —
CD) = § AB. Also, by conceiving P to continue to move along PA, CD
will reappear on the other side of PA, hence will change its sign,* and
4 (AE — CD) will become } (AE + CD), as it should, since the angle is
then formed by two chords intersecting within the circumference.

PROPOSITION V.

197. Theorem.—Al equal angles whose sides inter-
cept a given line, and whose vertices lie on the same side
of that line, are inscribed in the same segment of which
the intercepted line is the chord. '

DEMONSTRATION.

Let APB, AP'B, AP''B, etc., be any number of
squal angles whose sides intercept the given line AB.

We are to prove that the vertices P, P/, P”, etc.,
all lie in the same arc of which AB is the chord.

Through one of the vertices, as P, and A and B
describe a circumference,

Now the angle APB is measured by } the arc
AmB, and as the other angles are equal to this, they
must have the same measure.

Fig. 93.

* In accordance with the law of positive and negative quantities as used
in mathematics, whenever a continuously varying quantity is conceived as
diminishing till it reaches 0, and then ag reappearing by the sawme law of
change, it must change its sign,
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But suppose any one of them, as P/, had its vertex within the
segment, It would then be an angle included between two chords
drawn from A and B, and hence would be measured by §AmB plus some
arc (193).

If, on the other hand, the vertex P’ was without the segment, the
angle would be an angle included between two secants, and would be
measured by JAmB less some arc (195).

Hence, as P’ can lie neither without nor within the arc APB, it lies in
it. Q. E.D.

198. CorOLLARY.—AUl right angles whose sides inter-
cept a given line are inscribed in a semicircle whose
diameter is the given line.

PROPOSITION VI.

199. Theorem.—n angle included between a tan-
gent and a chord drawn from the point of tangency is
measured by one-half the intercepted arec.

DEMONSTRATION.

Let TPA be an angle included be-
tween the tangent TM and the chord
PA.

We are to prove that TPA is mea-
sured by } arc PrA.

Through A draw the chord AD
parallel to TM.

Then is PAD = TPA (?).

Now PAD is measured by }PmD (¥).

Whence TPA is measured by
$PmD. But PmD equals PrA (3).

Hence TPA is measured by }PnA. Fig. 94.
Q. E.D.

Exercise.—Show that APM is measured by § arc AmP.
Algo, obgerve how the case of two secanta (195), passes into thie
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PROPOSITION VII.

200. Theorem.—.4n angle included between two tan-
Bents is measured by one-half the difference of the inter-
cepted arcs.

DEMONSTRATION.

Let APB be an angle included between
the two tangents PA and PB, tangent at
C and D.

We are to prove that APB is measured

by
 (arc CmD — arc CzD).

Draw the chord CE parallel to PB.

Now arc CnD = arc EmD ().

‘Whence arc CE = arc CmD — arc CaD.

Again, ACE = APB (?). Fig. 95.
- But ACE is measured by } arc CE = }
(arc OmD — arc CnD). Hence APB is measured by } (arc CmD — are
CnD). Q. E.D.

901. ScroLroM.—The case of two secants (195) becomes this by sup-
posing the secants to move parallel to their first position till they both
‘become tangents.

PROPOSITION VIII.

202. Theorem. — 4n angle
included between a secant and a
tangent is measured by one-half
the difference of the intercepted
arcs. :

[Let the student write out the demon-
stration in form.]
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PROPOSITION IX.

203. Problem.—From a given point in a given line to
draw a line which shall make with the given line a given
angle.

SOLUTION.
Let A be the given point in the given line AB, and O the given angle.

We are to draw from A a
line which shall make with
AB an angle equal to 0.

From O as a centre, with
any counvenient radius, de-
scribe an arc, as ab, measuring
the angle O.

From A as a centre, with
the same radius, describe an
arc ¢cn cutting AB and extend
ing on that side of AB on
which the angle is to lie. Let this arc intersect AB in ¢.

From ¢ as a centre, with a radius equal to the chord ab, describe an
arc cutting cn, as at d. -

From A draw a line through d, as AC.

Then will CAB be the angle required.

Fig. 97.

DEMONSTRATION OF SOLUTION.
Arc ab measures angle O (9).
"Arc ed = arc ab ().
Hence, angle CAB = angle O ().

PROPOSITION X.
204. Problem.—Through a given point to draw a pars
allel to a given line.
SoLUTION.
Let P (Fig. 98) be the given point, and AB the given line,
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We are to draw a line through
P which shall be parallel to AB.
From P as a centre, with any
radius sufficiently great, strike an
arc cutting AB, as at a, and ex-
tending on the same side of AB
that the parallel is to lie. Let the arc be ae.
From a as a centre, with the same radius, pass an arc through P, cut-
ting AB in some point, as b,
With the chord 3P as a radius and a as a centre, strike an arc cutting
ec, as in O.
Draw a line through O and P, and it will be the parallel required.

DEMONSTRATION OF SOLUTION.

The arcs Oa and Pb are arcs of circles with equal radii, and have
equal ehords, and are hence equal arcs (7).

The angles OPa and Pab are equal, since they are measured by the
equal arcs Oa and Pb (?).

Hence the transversal Pa cuts the two lines MN and AB, making the
alternate angles MPa and BaP equal. Wherefore MN is parallel to AB,
and as it passes through the given point P, it is the parallel required.
Q E. D,

PROPOSITION XI.

205. Problem.—From a point without a circle to draw
a tangent to the circle.

SoLUTION.

Let O be the centre and OT the radius
of the given circle, and P the given point.
We are to draw from P a tangent to
the circle.
Join P with the centre O by a straight
line.
On the line OP describe a circle inter-
secting the given circle in T and T'.
Through the points P and T, P and T’ Fig. 99.
draw the straight lines PM and PM’. These will be the required tangents,
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DEMONSTRATION OF SOLUTION.

Drawing OT, the angle OTP is a right angle, since it is inscribed in &
semicircle (192).

Hence PM is a tangent to the circle, as it is a perpendicular to a radius
at its extremity, and as it passes through P it fulfills the conditions of the
problem.

In like manner, PM’ is seen to be a tangent passing through P, and
the problem has two solutions. Q. E. D,

208. CoroLLARY.—Through any point without a circle
two tangents may be drawn to the circle.

PROPOSITION XII.

207. Problem.—On a given line to construct a segment
which shall contain a given inscribed angle.

SoLuTION.

Let AB be the given line and O the given angle.
We are to construct a segment
on AB which shall contain the angle
O as an inscribed angle.
At one extremity of AB, as B,
construct an angle ABC equal to O,
and on the side of AB opposite to
that on which the segment is to lie.
Erect a perpendicular to CB at
B, and one to AB at its middle point
E. Let F be the intersection of these Fig. 100.
perpendiculars.
With FB (or FA) as a radius, describe a circle. Then will Am'm"B be
the segment required; and any angle inscribed in this segment, as AHB,
will be equal to O.

DEMONSTRATION OF SOLUTION.

Since CB and AB are non-parallel lines, perpendiculars erected to
them will meet in some point as F (141, 131
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F being a point in the perpendicu-
lar to AB at its middle point FA =
FB (96), and a circle struck with FB
as a radius and F as a centre will
pass through A. Moreover CB wiil
be a tangent to this circle, since it is
perpendicular to a radius at its ex-
tremity (156).
Now 0 = ABC by construction,
and ABC being an angle included
Letween a tangent and a chord, is
measured by half the intercepted arc AmB (7).
But any angle inscribed in the segment Am'm"’B is measured by 4 arc
AmB (?), and hence equals ABC = 0. Q. E. D.

PROPOSITION XIII.
208. Problem.—70 bisect a given angle.

SoLvuTION,

" Let BOA be the given angle.

“We are to draw a line dividing BOA
into two equal angles.

With any convenient radius and O as
a centre, describe an arc cutting the sides
OB and DA at b and a.

_From a and b as centres, with equal
radii, strike arcs cutting in some point,
as P.

Through O and P draw a straight line.

. Then is the angle BOA bisected by OP, and BOP = POA.

Fig. 101,

DEMONSTRATION OF SOLUTION.
OP being perpendicular to the chord of arc ab (?) bisects the are
(147). Hence arc 5D = arc aD.

angle BOP __ ar¢ bD
But  glo POA —arcaD’

. Therefore, BOP = POA, Q.E.D,
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EXERCISES.

209. 1. To find a point in a plane having given its distances
from two known points.

When are there two solutions?

When but one solution ?

When no solution ?

. In Fig. 102 there are 4 pairs of equal angles. Which are
they, and why?
Show that COB = ABD + CDB.
Show that DOB = ABC + DAB. .-

Fig. 102. Fig. 103.
210. Concentric Clrcles are circles which have a com-
mon centre.

3. Draw two concentric circles (Fig. 103), such that the
chords of the outer circle which are tangent to the inner shall
be equal to the diameter of the inner :

4. From a point out of a gwen straight line to draw a line
making a given angle with the first line,

5. Prove that if two circles are concentric, any chord of the
outer which is tangent to the inuer is bisected at the point of
eontact.

6. Prove that if two opposite angles of a quadrilateral are right
angles, the other two are supplementary.
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7. Prove that if, in the adjoining
figure, the opposite sides AB and DC,
and AD and BC be produced till they
meet, the lines which bisect the in-
cluded angles will be perpendicular to
each other.

8. Draw a triangle, and then draw
a circle about it so that all its angles Fig, 104,
shall be inscribed; 4. e., circumscribe
a circle about a triangle. (See 161.)

SELCTINN Yii.
OF THE ANGLES’OF POLYGONS, AND THE RELATION
BETWEEN THE ANGLES AND SIDES.

OF TRIANGLES.

211. A Plane Triangle, or simply a 7riungle, is a plane
figure bounded by three straight lines,

212. With respect to their sides, triangles are distin.
guished as Scalene, Isoscel.s,
and Equilateral.

A Scalene Triangle is
. a triangle which has no two
sides equal, as (1) or (2).
An Isosceles Triangle is a triangle
which has two of its sides equal to each other,
as (3). Fig. 108,
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An Equilateral Triangle is a triangle
which has all three of its sides equal each to each,
as (4).

218. With respect to their angles, triangles Fig 107,
are distinguished as acwle angled, right angled, and obfuse
angled.

An Acute Angled Triangle is a triangle all of whose
angles are acute, as (4).

A Right Angled Triangle is a triangle one of whose
angles is right, as (2).

An Obtuse Angled Triangle is a triangle one of whose
angles is obtuse, as (1).

214. A circle Circumscribes a figure when all the angles
of the latter are inscribed.

PROPOSITION I.

215. Theorem.—The sum of the three angles of a tri-
angle is two right angles.

DEMONSTRATION.

Let ABC be any triangle.
‘We are to prove that

A + B + C = 2 right angles.

Circumscribe a circle about the triangle (161).
Then the angle A is measured by } the arc
BaC (?), the angle B by } the arc CbA, and the
angle C by } the arc AcB.
Hence the sum of the three angles, or A+ B+ Fig. 108.
©C, is measured by § the sum of BaC+ CDA + AcB, or } the circumference.
But a semi-circumterence is the measure of two right angles (190).
Hence A + B + C = 2 right angles. Q. E. D.
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” 218, .CO!;OLLARY 1.—A triangle can have only one right
angle, or one obtuse angle. Why?

217. ConroLLARY 2.—Two angles of a triangle, or their
sum, being given, the third may be found by subtracting
this sum from two right angles, i. e, any angle is the
supplement of the sum of the other two.

218. COROLLARY 3.—The sum of the two acute angles of
a right-angled triangle is equal to one right angle; i. e.,
they are complements of each other.

219. COROLLARY 4.—If the angles of a triangle are
equal each to each, any one is one-third of two right an
gles, or two-thirds of one right angdle.

PROPOSITION II.

220. Theorem.—The sides of a triangle sustain the
same GENERAL relation to each other as their opposite an-
gles; that is, the greatest side is opposite the greatest
angle; the second greatest side opposite the second greatest
angle, and the least side opposite the least angle.

DEMONSTRATION.

Let ABC be any triangle having the angle C greater than B, and B
greater than A.-

We are to prove that AB opposite C is the
greatest side, AC opposite B the next greatest
and BC opposite A the least. :

Circumscribe a circle about the triangle (161).

If the triangle is acute-angled, the arc meas-
uring any angle is less than a quarter of a circum--
ference (191).

Now the angle C being greater than B, the
arc ¢ is greater than arc b (f). Hence, the chord
AB is greater than the chord AC.
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In like manner, the angle B being greater than the angle A, the arc
b is greater than arc a (?). Hence the chord AC is greater than the
chord BC.

If the triangle has one right angle, as C, Fig. 110, this angle is
measured by } the semi-circumference AcB, and inscribed in the semi-
circumference ACB. Hence the order of magnitude of the arcs is still
¢ > b > a (%), and of the sides AB > AC > BC.

Fig. 110, Fig. 18, ~

If any angle of the triangle, as C, is obtuse, Fig. 111, this angle is il}-
scribed in a segment less than a semicircle (192), whence this arc ACB is
less than a semi-circumference, and greater than either a or b,as it is their

sum.

Hence the chord AB is greater than either AC or BC (?).

Thus we have shown that in all cases, the order of magnitude of the
angles being C > B > A, the order of magnitude of the sides is

AB > AC > BC. Q.E.D.

921. CoroLLARY 1.—Conversely, The order of the mag-
nitudes of the sides being AB > AC > BC, the order of the
magnitudes of the angles is C> B> A.

[Let the student give the demonstration in
form.]

229. CoROLLARY 2.—An equiangu-
lar triangle is also equilateral ; and,
conversely, an equilateral triangle is
equiangular. ,

Thus, if A = B = C, arca = arch = arce,
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and, consequently, chord BC = chord AC = chord AB. Conversely, if
the chords are equal, the arcs are, and hence the angles subtended by
these arcs.

223. CoROLLARY 3.—In an isosceles triangle the angles
opposite the equal sides are equal ; and,
conversely, if two angles of a triangle
are equal, the sides opposite are equal,
and the triangle is isosceles.
Thus, if AB = BC, arc a = arc ¢; and hence,
angle A, measured by } ¢, = angle C, measured

by 3e.
Conversely, if A =C, arca = arce¢; and
hence chord BC = chord AB. Fig. 13.

224. Scmorrum.—It should be observed that the proposition gives
only the general relation between the angles and sides of & triangle. It is
not meant that the sides are in the same ratio
as their opposite angles: this is not true.

Thus, in Fig. 114, angle C is twice as great as
angle A; but side ¢ is not twice as great as side
a, although it 4s greater. Trigonometry dis-
covers the ezact relation which exists between
the sides and angles. Fig. 114,

PROPOSITION III.

225. Theorem.—If from any point within a triangle
lines are drawn tothe extremities of any side, the included
angle is greater than the angle of the
triangle opposite this side.

DEMONSTRATION.

Let ACB be any triangle, O any point with-
in, and OB and OA lines drawn from this point
to the extremities of AB.

We are to prove that angle AOB > angle
ACB.
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Circumseribe a circle about the triangle (161), and produce AO and
BO till they meet the circumference.

Now ACB is measured by }AnB (191); but AOB is measured by
3 (AnB + EmD) (193). Hence, AOB > ACB. Q.E.D.

226. An Exterior Angle of a triangle is an angle formed
by any side with its adjacent side produced, as ¢BD, Fig. 116.

PROPOSITION IV.

227. Theorem.—Any exterior angle of a triangle is
equal to the sum of the two interior non-adjacent angles.

DEMONSTRATION.

Let ABC be a triangle, and CBD be an ex-
terior angle.
‘We are to prove that CBD = A + C.
ABC + CBD = a straight angle (%).
But ABC + A + C = a straight angle (?).
Hence, ABC + CBD = ABC + A + C (?).
Hence, subtracting ABC from each member, Fig. 16,

CBD =A+C. QE.D.

228. CoroLLARY.—Either angle of a triangle not adja-
cent to a specified exterior angle, is equal to the differ-
ence between this exterior angle and the other non-
adjacent angle.

Thus, since CBD = A + C,
by transposition, CBD— A =0,
and CBD—-C = A.
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OF QUADRILATERALS.

229. A Quadrilateral is a plane surface inclosed by fous
right lines.

230. There are three Classes of quadrilaterals, viz., Trape-
viums, Trapezoids, and Parallelograms.

231. A Trapezium is a quadrilateral which has no two
of its sides parallel to each other. - - -

232. A Trapezoid is a quadrilateral which has but two of
its sides parallel to each other.

233. A Parallelogram is a quadrilateral which has its
opposite sides parallel.

234. A Rectangle is. a parallelogram whose angles are
right angles.

~ 235. A Square is an equilateral rectangle.

© 236. A Rhombus is an equilateral parallelogram whose
angles are oblique.

237. A Rhom-
boid is an oblique-
angled parallelogram
two of whose sides
are greater than the
other two.

ILL. —Thefiguresin
the margin areall quad-
rilaterals. A isatrape-
zium. (Why?) Bisa
trapezoid. (Why?) C,
D, E, and F are paral-
lelograms. (Why?) D
and E are rectangles,
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although D is the form usually referred to by the term rectangle. So C
is the form usually referred to when a parallelogram is spoken of, without
saying what kind of a parallelogram. C is also a rhomboid. (Why?)
E is a square. (Why?) F isarhombus. (Why?)

238. A Diagonal is a line j'oining the vertices of two non-
consecutive angles of a figure.

239. The Altitude of a parallelogram is a perpendicular
between its opposite sides ; of a trapezoid, it is a perpendicular
between its parallel sides; of a triangle, it is the perpendicular
from any vertex to the side opposite or to that side produced.

240. The Bases of a parallelogram, or of a trapezoid, are
the sides between which the altitude is conceived as taken; of a
triangle, the base is the side to which the altitude is perpendicular.

PROPOSITION V.

241. Theorem.—7The sum of the angles of a quadri-
lateral is four right angles*

DEMONSTRATION.

Let ABCD be any quadrilateral.
‘We are to prove that
DAB + B + BCD + D = 4 right angles.

Draw either diagonal, as AC.

The diagonal divides the quadrilateral
into two triangles, and the sum of the an-
gles of the two triangles is the same as the Fig. 118,
sum of the angles of the quadrilateral, since

: BCA + ACD = BCD,

and BAC + CAD = DAB.

But the sum of the angles of the triangles is four right angles (7).
Hence the sum of the angles of the quadrilateral is four right angles.
Q. E.D.

* See (261).
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PROPOSITION VI.

242. Theorem.—7The opposite angles of any quadrie
lateral which can be imscribed in a circle are supple-

mental.
DEMONSTRATION.

Let ABCD be any inscribed quadrilateral.
We are to prove that
A + C = 2 right angles,
and also that D'+ B = 2 right angles.

A is measured by } the arc DCB, and C by §

the arc BAD.
Hence, A+ C is measured by 3 (DCB +BAD),
that is, by a semi-circumference, and is therefore

2 right angles (190). Q. E. D.

Fig. U9.

In like manner, B + D is measured by 3 (ADC + CBA), and hence is
2 right angles. Q. E.D.

PROPOSITION VII.

243. Theorem.—The adjxcent angles of a parallelo-
gram are supplemental, and the opposite angles are equal
to each other.

DEMONSTRATION.

Let ABCD be any parallelogram.

We are to prove, 1st. That A + B, or
B+ C,or C+ D, or D+ A is 2 right
angles; and 2d. That A = C and D = B.

1st. Since, by definition (283), AD is
‘parallel to BC, and the transversal AB cuts them, the sum of the two in-
terior angles on the same side, that is, A+B, is 2 right angles (125).

In like manner, B+C is two right angles, since they are the interior
angles on the same side of the transversal BC which cuts the parallels AB

and DC.

Fig. 120.
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In the same way, C+D, or D+A may be shown equal to 2 right
angles. .
Hence the sum of any two adjacent angles of a parallelogram is 3
right angles. Q. E. D.

2d. A + B = B + C, since each sum is 2 right angles, by the pre-
ceding part of this demonstration.

Hence, subtracting B from each member, we have A = C.

In a similar manner, we may show that B = D.

Hence, either two opposite angles are equal to each other. @ = b.

244. CorOLLARY 1.—The two angles
of a trapezoid adjacent to either one
of the two sides not parallel are sup-
plemental.

[Let the student show why.]

245. CoROLLARY 2.—If one angle of a parallelogram is
right, the others are also, and, the figure is a rectangle.

PROPOSITION VIII.

246. Theorem.—Conversely to the last, If three consec-
utive angles of a quadrilateral are such that the first
and the second, and the second and the third are sup-
plemental, or if the opposite angles are equal, the figure is
a parallelogram. ‘

DEMONSTRATION.

Let ABCD be a quadrilateral having D and A, and A and B supple-
mental, or having A = C and D = B.

We are to prove that, in either case,
the figure is a parallelogram.

1st. If we have D and A, and A and B

supplemental. Fig. 122.
Since the transversal AD cuts the lines
AB and DC, making A + D = 2 right angles, the lines AB and DC are

parallel (126).



114 BELEMENTARY GEOMETRY,

Again, for a like reason, since A+ B = 2 right angles, AD and BC ard
parallel.

Hence the opposite sides of the quad-
rilateral are parallel, and the figure is a
parallelogram (233). Q. E. D.

2d. If A =C, and D = B, adding,

we have Fig. 122.

A+D=C+B.
But A + D + C + B = 4 right anglea.
Hence, substituting, we have
A + D + A + D = 4 right angles (?),
or 2 (A + D) = 4 right angles,
or A+ D = A+ B (?) = 2 right angles,
and the figure is a parallelogram by the former part of the demonstration.
Q. E. D,

PROPOSITION IX.

247. Theorem.—If two opposite sides of a quadrilat-
eral are equal and parallel, the figure is a parallelogram.

DEMONSTRATION,
Let ABCD, in (@), be a quad-
rilateral having the sides AB and
DC equal and parallel.
We are to prove that AD and
BC are parallel, and hence that
the figure is a parallelogram,
Draw the diagonal AC.
" Then, by reason of the paral-
lels AB and DG, the angles BAC
and DCA areequal @)
Conceive the quadrilateral di-
vided in this diagonal into two
triangles, as in (3).
Reverse the triangle ACB and
place it as in (¢). Since AC of Fig. 123.
the triangle ADC = CA of the
triangle ABC, CA may be placed in AC, as in (¢).
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. Now revolve the triangle CBA on CA as an axis. Since, as we have
shown, the angle BAC = angle DCA, BA will take the direction CD, and
being equal to it, by hypothesis, B will fall in D, and the angle BCA co-
incides with and is equal to DAC.

But in (a) the angles BCA and DAC are alternate interior angles made
by the transversal AC cutting AD and BC. Hence AD and BC are paral-
lel, and as AB and DC are parallel by hypothesis, the quadrilateral is a
parallelogram (233). Q.E.D.

PROPOSITION X.

248. Theorem.—If the opposite sides of a quadrilat-
eral are equal, the figure is a parallelogram.

DEMONSTRATION.
Let ABCD, (a), be a quadrilateral, having AD = BG and AB = DC.

‘We are to prove that ABCD
is a parallelogram, . e., that
AB is parallel to DC, and AD to
BC. ’

Draw the diagonal AC, and
conceive the quadrilateral di-
vided in this diagonal into two
triangles, as in ().

Reverse the triangle ABC,
and place it as in (c). Since
AC of the triangle ADC equals
CA of the triangle ABC, CA
may be placed in AC, as in ().

Draw DB, intersecting CA
(or CA produced), in O.

-As CD = AB, and AD = Fig. 124.

CB, by hypothesis, the line AC
has two points each equally distant from the extremities of DB, and AC
and DB are perpendicular to each other (98). Moreover, since AB and
CD are equal oblique lines drawn from the same point in the perpendic-
_ular to the line DB, angle BAC = angle DCA (98, 110, 24d).
. Now in (a), as angles BAC and DCA are the alternate interior angles
-wade by the transversal with the lines AB and DC, the latter are parallel,
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and as they are equal by hypothesis, the quadrilateral is a paralielogram
by the last proposition. Q. E. D.

249. CoroLLARY.—A diagonal of a parallelogram di-
vides it into two equal triangles.

PROPOSITION XI.

250. Theorem.—Conversely to the last, The opposite
sides of a parallelograny are equal.

DEMONSTRATION.

Let ABCD be a parallelogram.

We are to prove that AD = BO,
and AB = DC.
AD and BC being parallel transver-
sals cutting the parallels AB and DC, their
intercepted portions, which are the oppo-
site sides of the parallelogram, are equal by (138).
For a like reason, AB = DC.
Hence, AD = BC and AB = DC. Q.E.D.

PROPOSITION XII.

251. Theorem.—The diagonals of a parallelogram
bisect each other.
DEMONSTRATION.

Let ABCD be a parallelogram whose
diagonals AC and DB intersect in Q.

We are to prove that AQ = QC, and
DQ = QB.
Angle QDC = angle QBA (?), angle
QCD = angle QAB (%), and DC = AB (¥). -
For distinctness, let Q' represent the vertex at Q of the triangle DQC.
Now apply the triangle AQB to DQ’'C, placing the side BA in its equal
DC, with the extremity B in D, and A in C, and the vertex Q on the same
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side of DC that the vertex Q' is, and the triangles will coincide. For,
since angle QAB = angle Q'CD, AQ will take the direction CQ’, and the
vertex Q will fall somewhere in the line CQ'. In like manner, by reason
of the equality of angles QBA and Q'DC, the vertex Q will fall in D',
- Hence the vertex Q of the triangle AQB falling at the same time in CQ’
and DQ', falls at their intersection.

Hence, as these triangles coincide, AQ = Q'C, and DQ’' = QB ; that is,
AQ = QC, and DQ = QB. Q.E.D.

PROPOSITION XIII.-

252. Theorem.—The diagonals of a rhombus bisect
each other at right angles.

DEMONSTRATION.

Let ABCD be a rhombus, and AC and DB its diagonals intersecting
at Q.
We are to prove that DB and AC are per-
pendicular to each other.
Since AB = AD, and CD = CB (?), the
ine AC has two points, A and C, each equally
distant from the extremities of DB. Hence AC
is a perpendicular to DB at its middle point Q

(98). Q. E.D. Fig. 127.
In like manner, DB may be shown to be perpendicular to AC at its
middle point. Q.E.D.

253. CoroLLARY.—The diagonals of a rhombus bisect its
angles.

For, revolve ABC upon AC as an axis, and it will coincide with ADC.
Hence angles A and C are bisected. In like manner revolve DAB upon
DB, and it will coincide with DCB. Hence, D and B are bisected.

PROPOSITION XIV.

254. Theorem.—The diagonals of a rectangle are
equal,
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DEMONSTRATION.

Let AC and DB be the diagonals of the rectangle ABCD.

We are to prove that AC = DB.

Upon AC as a diameter describe a circle.

Since ADC and ABC are right angles whose
gides intercept AC, they are inscribed in the cir-
cumference of which AC is a diameter (198). .

Again, since DCB is a right angle and is in-
scribed, DB is a diameter (?).

Hence AC and DB, being diameters of the same Fig. 128,
circle, are equal. Q. E. D.

255. CoroLLARY.—Conversely, If the diagonals of a par-
allelogram are equal, the fisure is a rectangle.

By (251) the parallelogram is circumscriptible; whence, by (192) the
angles are right angles.

OF POLYGONS OF MORE THAN FOUR
SIDES.

256. A Polygon is a portion of a plane bounded by straight
lines.

The word polygon means many-angled ; so that with strict propriety
we might limit the definition to plaune figures with five or more sides.
This limitation in the use of the word is frequently made.

267. A polygon of three sides is a ¢riangle ; of four, a quad-
rilateral ; of five, a pentagon ; of six, a hezagon; of seven, a
heptagon ; of eight, an ocfagon ; of nine, a nonagon ; of ten, a
decagon ; of twelve, a dodecagon.

258. The Perimeter of a polygon is the distance around
it, or the sum of the bounding lines.

~ 2569. A Salient Angle of a polygon is one whose sides,
when produced, can only extend withou? the polygon.
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260. A Re-entrant Angle of a
polygon is one whose sides, when pro-
duced, can extend within the polygon.

ILLusTRATION. —In the polygon ABCDEFG,
all the angles are salient except D, which is
re-entrant.

261. A Convex Polygon is a
polygon which has only salient angles.

11¢

A polygon is always supposed to be convex, unless the contrary

is stated.

262. A Concave or Re-entrant Polygon is a polygon

with at least one re-entrant angle.

263. An Equilateral Polygon is a polygon whose sides
are equal, each to each; and an Equiangular Polygon is

a polygon whose angles are equal, each to each.

PROPOSITION XV.

264. Theorem.—7The sum of the interior angles of o
polygon is equal to twice as many right angles as the poly-

gon has sides, less four right angles.

DEMONSTRATION.

Let n be the number of sides of any polygon.

We are to prove that the sum of its angles
is n times 2 right angles less 4 right angles.

From any point within, as O, draw lines to
the vertices of the angles. As many triangles
will then be formed as the polygon has sides,
that is, n.

The sum of the angles of the triangles is n
times 2 right angles.

But this sum exceeds the sum of the angles
of the polygon by the sum of the angles around
the common vertex 0, that is, by 4 right angles,
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Hence the sum of the angles of the polygon is
n times 2 right angles less 4 right angles. Q. E. D.

265. ScrorroM 1.—The sum of the angles of a pentagon is
5 times 2 right angles — 4 right angles, or 6 right angles.

The sum of the angles of a hexagon is 8 right angles; of a heptagon,
10; of an octagon, 12, etc.

268, ScmoLtum 2.—This proposition is equally applicable to triangles
and to quadrilaterals. Thus, the sum of the angles of a triangle is

~ 8 times 2 right angles — 4 right angles = 2 right angles.
So also the sum of the angles of a quadrilateral is

4 times 2 right angles — 4 right angles, or 4 right angles,

267. ScHoLruM 8.—To find the value of an angle of an equiangular
polygon, divide the sum of all the angles by the number of angles,

PROPOSITION XVI.

268, Theorem;—If one of the sides of a polygon is
produced (and only one) at each vertex, the sum of the
exterior angles thus formed is four right angles.

DEMONSTRATION.

Let n be the number of the sides of any
polygon, and one side be produced at each
vertex.

‘We are to prove that the sum of the ex-
terior angles thus formed, as a + b + ¢ + d,
etc., is 4 right angles.

At each of the n vertices there are two
angles, an interior and an exterior one,
whose sum, as A + a, is 2 right angles
Hence the sum of all the exterior and inte-
rior angles is '

n times 2 right angles,
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Now, from this sum subtracting the sum of the exterior angles, the
remainder is the sum of the interior angles.

But, by the preceding proposition, 4 right angles subtracted from n
times 2 right angles leaves the sum of the interior angles.

Therefore the sum of the exterior angles is 4 right angles. Q. E. D,

OF REGULAR POLYGONS.

269. A Regular Polygon is a polygon which is both
equilateral and equiangular (263).

270. An Inscribed Polygon is a polygon whose angles
are all inscribed in the same circumference.

271. A Circumscribed Polygon is a polygon whose
sides are all tangent to the same circle. The circumference is
said to be inscribed in the polygon.

PROPOSITION XVII.

272. Theorem.—The anglesof an inscribed equilateral
polygon are equal ; and the polygon is regular,

DEMONSTRATION,

Let ABCDEF be an inscribed poly-
gon, having AB = BC = CD, eto.
‘We are to prove that angle ABC =
angle BCD = angle CDE, etc.
The sides of the polygon being equal
chords, subtend equal arcs (151).
Now any angle of the polygon is
measured by } the difference between
the circumference and the sum of two
of these equal arcs, as angle ABC meas-
ured by } (circumference — arc ABC) Fig. 132,
= } arc AFEDC,
Hence all the angles are equal, and the polygon is regular (269). Q.E.D.
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PROPOSITION XVIII.

273. Theorem.—4 circumference may be circumes
scribed about any regular polygon.

DEMONSTRATION.

Let ABCDEF be a regular polygon.

We are to prove that a circumference can
be circumscribed about it.
Bisecting any two consecutive sides, as FA
and AB, by perpendiculars, as Oz and 0Ob, pass
a circumference through the vertices F, A, and
B (161).
We will now show that this circumference
passes through all the other vertices.
Revolve the quadrilateral FObA upon 0b as
an axis until it falls in the plane of CObB, dA will fall in its equal 3B (?);
and since angle A = angle B, and side AF = side BC, F will fall in C.
Thus it appears that the circumference described from O, and pass.
ing through F, A, and B, also passes through C.
In a similar manner it can be shown that the same circumference
passes through all the vertices, and hence is circumscribed. Q. E. D.

PROPOSITION XIX.

274. Theorem.—/A circumference may be inscribed in
any regular polygon.

DEMONSTRATION.

Let ABCDEF be a regular polygon.

We are to show that a circumference may
be inscribed in it.

Let O be the centre of the circumscribed
circumference (273); then the sides of the
polygon are equul chords of this circle, and
consequently equally distant from the centre
(150).
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Now draw the perpendiculars Oa, 0b, O¢, Od, etc. These perpendic-
ulars are all equal, and a circumnference struck from O as a centre, with
any one of them, us Oa, as a radius, will pass through b, ¢, d, etc.

Moreover, the sides AB, BC, CD, etc., being perpendicular to the
radii Oa, 0, etc., are tangents to this circumference, which is therefore
an inscribed circumnference (271). Q. E. D.

275. CoroLLARY.—The centres of the inscribed and cir-
cumscribed circles coincide.

276. The Centre of a regular polygon is the common cen-
tre of its inscribed and circumscribed circles.

277. An Angle at the Centre of a regular polygon is
the angle included by two lines drawn from the centre to the
extremities of a side, as FOA, AOB (Fig. 133).

278. The Apothem of a regular polygon is the distance
from the centre to any side, and is the radius of the inscribed
circle.

PROPOSITION XX,

279, Theorem.—The angles at the centre of a regular
polygon are equal each to each; and any one is equal to
four right angles divided by the number of sides of the
polygon.

DEMONSTRATION.
Let P be a polygon of n sides.

‘We are to prove, 1st. That the angles at the centre are equal; and
2d. That any one of them is 4_____nghl;angles .

1st. Each angle at the centre intercepts one of the equal sides of the
polygon. But these sides are chords of equal arcs (?). Hence the sev-
eral angles at the centre have equal measures, and are therefore equal,
Q. E. D.
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2d. The sum of all the angles at the centre is 4 rlgﬁt angles (%), and
as they are equal and n in number, any one is
4 right angles
n

Q. E.D.

PROPOSITION XXI.

280. Theorem.—.4ny side of a regular inscribed hex-
agon is equal to the radius.

DEMONSTRATION.

Let ABCDEF be a regular hexagon inscribed in a circle whose radius
is R.

We are to prove that any one of the equal
sides, as AB, equals R.
Let O be the centre of the polygon, and draw
OA, OB, etc.
Now in the triangle AOB, angle O is } of 4
right angles, or } of 2 right angles (?).
Whence the sum of the angles OAB and OBA
is § of 2 right angles (?).
But the triangle AOB is isosceles, OA and
OB being radii of the same circle. Hence, each Fig. 135.
one of the angles at the base is § of § of 2 right angles, or § of 2 right
angles. Therefore the triangle AOB is equiangular and consequently
equilateral (222), and AB = OA = R. Q. E.D.

281. A Broken Line is said to be Convexr when a straight line
cannot be drawn which shall cut it in more than two points.

PROPOSITION XXII.

282. Theorem.—A convex broken line is less than any
broken line which envelops it and has the same extremities,
the former lying between the latter and a straight line
Joining its extremities.
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DEMONSTRATION.

Let AbcdB be a broken line enveloped by the broken line ACDEFB,
and having the same extremities A and B.

We are to prove that
AbcdB < ACDEFB.

Produce the parts of AbcdB till they
meet the enveloping line, as Ab to ¢, be to
7, and ed to g.
Now, Ab + be < ACe (D),
be + of <be + eDES (D),
od +dg <o +SFyg,
dB < dg + ¢B.

Hence, adding, and subtracting common terms,

Ab + be + ¢d + dB < ACe + ¢DEf + fFg + gB,
or AbcdB < ACDEFB. Q. E.D.

Fig. 136.

PROPOSITION XXIII.

283. Problem.—7v inscribe a circle in a given tri-
angle.
SoruTIoON,

Let ABC be a triangle.

‘We are to inscribe a circle.

Bisect any two angles, as A and B (208).

From the intersection of the bisectors, as O,
let fall a perpendicular, as OD.

Then is O the centre of the inscribed circle,
and OD its radius.

Hence a circle described with 0 as a centre
and OD as a radius will be inscribed.

DEMONSTRATION OF SOLUTION.
From O let fall the perpendiculars OD, OE, and OG on the sides.
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Now the triangle AOE = AOG (%), BEO=
BOD (7).

Hence OD = OE = OG, and the circum-
ference struck from O as a centre with a radius
0D, passes through E and G.

Moreover, AC, AB, and BC are perpendicu-
lar to the radii OG, OE, and OD respectively,
and hence are tangents to the circle.

Therefore the circle is inscribed in the
triangle. Q. E. D. Fig. 137.

PROPOSITION XXIV.

284. Problem.—In a given circle to inscribe a square,
and hence a regular octagon, and then a regular polyson
of 16 sides, ete.

[Let the pupil give the solution and demonstration.]

PROPOSITION XXV.

285. Problem.—In a giver. circle to inscribe a regular
hexagon, and hence an equilateral triangle and a dodec-
agon.

[Let the pupil give the solution.]

PROPOSITION XXVI.

286. Problem.—7o circumscribe a square about a
Ziven circle.

[Let the pupil give the solution.]
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PROPOSITION XXVII.

287. Problem.—7Zo circumscribe an equilateral tri.
angle about a circle.

[Let the pupil give the solution.]

PROPOSITION XXVIII.

288. Problem.—7o circumscribe a regular hexagon
about a given circle.

[Let the pupil give the solution.]

289. QUERY.—Given any regular inscribed polygon, how is
the regular circumscribed polygon of the same number of sides
constructed ?

EXERCISES.

290. 1. Given two angles of a tri-
angle, to find the third.

SuaaesTIoNs.—The student should draw
two angles on the blackboard, as @ and b, and
then proceed to find the third. The figure
will suggest the method. The third angle
is e
The solution is effected also by con-
structing the two given angles at the extrem- Fig. 138,
ities of any line, ard producing the sides till they meet (7).

2. What part of a right angle is one of the angles of an equi-
lateral triangle? From this fact, how can yon obtain an angle
equal to § of a right angle ?

3. Two angles of a triangle are respectively § and } of a right
angle., What is the third angle ?
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4. The angles of a triangle are respectively §, 4, and § of a
right angle. Which is the greatest side? Which the least?
Can you tell the ratio of the sides?

5. What is the value of one of the equal angles of an isosceles
triangle whose third angle is § of a right angle?

6. Two consecutive angles of a quadrilateral are respectively
4 and § of a right angle, and the other two angles are mutually
equal to cach other. What is the form of the quadrilateral ?
What the value of each of the two latter angles?

7. One of the angles of a parallelogram is § of a right angle.
What are the values of the other angles?

8. The two opposite angles of a quadrilateral are respectively
§ and 4 of a right angle. Can a circumference be circumscribed ?
If 0, do it.

9. Two of the opposite sides of a quadrilateral are parallel,
and each is 15 in length. What is the figure ? Do these facts
determine the angles ?

10. Two of the opposite sides of a quadrilateral are 12 each,
and the other two 7 each. What do these facts determine with
reference to the form of the figure?

11. What is the value of an angle of a regular dodecagon ?

12. What is the sum of the angles of a nonagon? What is
the value of one angle of a regular nonagon? Of one exterior
angle ?

13. What is the regular polygon, one of whose angles is 1{}
right angles ?

14. What is the regular polygon, one of whose exterior angles
is § of a right angle ?

15. Can you cover a plane surface with equilateral triangles
without overlapping them or leaving vacant spaces? With
quadrilaterals? Of what form? With pentagons? Why?
With hexagons? Why? What msect puts the latter fact to
practical use? Can you cover a plane surface thus with regular
polygons of more than 6 sides? Why?
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THEOREMS FOR ORIGINAL INVESTI-
GATION.

[1t is quite desirable that students have exercise, early in their course,
in the original demonstration of theorems. Those which are given in this
and the following lists are not such as are essential to the integrity of an
elementary course, and pupils may be encouraged to demonstrate more or
less of them, as their time and ability will allow. But all should do some
such work—it is the true test of mathematical ability and attainment.]

291. 1. Theorem.—7The least chord that car be drawn
through a point within a circle is the chord which is per-
pendicular to a diameter passing through the same point.

2. Theorem.—The shortest distance from a point
without a circle to the circumference is measured in @
line which passes through the centre.

8. Theorem.—The sum of the angles formed by pro-
ducing the alternate sides of a regular pentagon is two
right angles.

4. Theorem.—Prove that the sum
of the angles of a triangle is two right
angles, by producing two of the sides
abeut an angle, and through the vertex
of this angle drawing a line parallel to
the third side.

Prove the same by producind one
side of the triangle, and drawing a line
through the vertex of the exterior angle
parallel to the non-adjacent side.

5. Theorem.—If AB is any chord, AC a tangent at A,
and CDE a line parallel to AB and cutting the circumfer-
ence in D and E, the triangles ACD, CAE, and ADB are
mutually equiangular.

8. Theorem.—If from any point in the base of an
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isosceles triangle lines are drawn parallel to the equal
sides, a parallelogramis formed whose perimeter is equal
to the sum of the equal sides.

SECTINN YII
OF EQUALITY.
292. Equality signifies likeness in every respect.

293. The equality of magnitudes is usually shown by apply-
ing one to the other, and observing that the two coincide.

OF ANGLES.

PROPOSITION I.

294, Theorem.—Two angles whose corresponding
sides are parallel, and extend in the same or in opposite
directions from their vertices, are equal.

DEMONSTRATION.

First. In (a) and (a'), let B and E be two
angles having BA parallel to ED and extending in
the same direction from the vertices, and also BC
parallel to EF and extending in the same direction
from the vertices.

' We are to prove that angles B and E are equal.
Produce (if necessary) either two non-parallel
sides, as BC and ED, till they intersect, as in H.
ABC = DHC (9,
and ~ DHC = DEF (¥
Therefore, ABC = DEF. Q.E.D.
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Second. In (b) and ('), let B’ and E’ have
B’A’ parallel to E'F’, but extending in an oppo-
site direction from the vertices ; and in like man-
ner B'C’ parallel to, but extending in an opposite
direction from E'D’.

We are to prove that B’ and E’ are equal.
Produce (if necessary) either two non-parallel
sides, as A’'B’ and E'D’, till they meet in some
point, as H'.
D'H'B' = D'E'F’' (),
and D'H'B’ = A'B'C’ (¥).
Therefore D'’E'F = AB'C’' (). QE.D. Fig. 141,

PROPOSITION II.

295. Theorem.—Two angles having their corres-
ponding sides parallel, while two extend in the same
direction, and the other two in opposite directions from
the vertices, are supplemental.

DEMONSTRATION.

Let ABC and DEF be two
angles whose corresponding
sides BA and EF are paralle!
and extend in the same direc-
tion from B and E, while BC
and ED extend in opposite
directions from the vertices.

We are to prove that ABC
and DEF are supplemental.

Produce one of the two
sides having opposite dircctions, as DE to H, in the same direction from
the vertex that BC extends.

Now DEF is supplemental to FEH (?), and FEH is equal to ABC (1)

Therefore, DEF and ABC are supplemental. Q. E. D,

Fig. 142,
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PROPOSITION III.

296. Theorem.—If the sides of one angle are perpen-
dicular respectively to the sides of another, the angles are
either equal or supplemental.

DEMONSTRATION.

Let ABC be any angle and DE
and FH be two lines drawn through
any point O, DE being perpendicular
to BC and FH to AB.

‘We are to prove that of the four
angles FOD, DOH, etc., two are
equal to ABC, and two are supple-
mental.

Draw BS bisecting ABC, and
from any point in this bisector, as L,
draw LM and LN, respectively paral-
lel to DE and FH.

Now, in the quadrilateral LNBM, the sum of the four angles is four
right angles (266) ; and, as LNB and LMB are right angles (?), NLM and
NBM (or ABC) are supplemental.

But NLM = FOD (?) = HOE (9.

Therefore two of the four angles FOD, DOH, etc., namely, FOD and
HOE, are supplemental to ABC. Q. E. D.

Finally, FOE and DOH are supplements of FOD and HOE (?) and
hence equal to ABC. Q. E. D.

297. ScHOLTUM.—To determine whether the angles are equal, or
whether they are supplemental, we may consider one angle as moved
(if necessary) till its vertex falls in the bisector, its sides remaining
parallel to their first position. Then, if both sides of one angle extend
iowards, or both extend from the sides of the other, the angles are sup-

‘emental, otherwise they are equal.

OF TRIANGLES.

PROPOSITION IV.

298. Theorem.—Two triangles which have two sides
and the included angle of one equal to two sides and the
included angle of’ the other, each to each, are equal.
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DEMONSTRATION.

Let ABC and DEF be
two triangles, having AC
= DF, AB = DE, and angle
A = angle D.

We are to prove that
the triangles are equal.

Place the triangle ABC
in the position (b), the side
AB in its equal DE, and
the angle A adjacent to its
equal angle D.

Then revolving ABC upon DE, until it falls in the plane on the oppo-
site side of DE, since angle A = angle D, AC will take the direction DF;
and a8 AC = DF, C will fall at F. Hence BC will fall in EF, and the
triangles will coincide. Therefore the two triangles are equal. Q. E. D.

Fig. 144,

299. ScHoLIUM 1.—We may also make the application of ABC to
DEF directly. The method here given is used for the purpose of uni-
formity in this and the following. We may observe that in this, as in
the other cases, DB is perpendicular to FC, and bisects it at 0.

800. ScrorLriuM 2. —This proposition signifies that the two triangles
are equal in all respects, i. e., that the two remaining sides are equal, as
CB = FE; that angle C = angle F, angle B = angle E, and that the
areas are equal.

PROPOSITION V.

801. Theorem.—Two triangles which have two angles
and the included side of the one equal to two angles and
the included side of the other, each to each, are equal.

DEMONSTRATION.

Let ABC and DEF (Fig. 145) be two triangles, having angle A =
angle D, angle B = angle E, and side AB = side DE.

‘We are to prove that the triangles are equal.
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Place ABC in the po-
sition (3), the side AB in
its equal DE, the angle A
adjacent to its equal angle
D, and B adjacent to its
equal angle E.

Then revolving ABC
upon DE till it falls in the
plane on the same side as
DFE, since angle A =
angle D, AC will take the
direction DF, and C will fall somewhere in DF, or DF produced.

Also, since angle B = angle E, BC will take the direction EF, and C
will fall somewhere in EF, or EF produced.

Hence, as C falls at the same time in DF and EF, it falls at their in-
tersection F. 'Therefore the two triangles coincide, and are consequently
equal. Q. E.D.

802. CoroLLARY.—If one triangle has a side, its oppo-
site angle, and one adjacent angle, equal to the correspond-
ing parts in another triangle, the triangles are equal.

For the third angles are equal to each other, since each is the supple-
ment of the sum of the given angles. Whence the case is included in the
proposition.

803. ScHoLrUM.—A triangle may have a side and one adjacent angle
equal to a side and an adjacent angle in another, and the second adjacent
angle of the first equal to the angle opposite the equal side in the second,
and the triangles not be equal, Thus, in the figure, AB = C'A’, A = A’

Fig- 146.

and B = B’; but the triangles are evidently not equal. [Such triangles
are, however, similar, as will be shown hereafter.]
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PROPOSITION VI.

804. Theorem.—Two triangles which have two sides
and an angle opposite one of these sides, in the one, equal
to the corresponding parts in the other, are equal, if of
these two sides the one opposite the given angle is equal to
or greater than the cne adjacent.

DEMONSTRATION.

In the triangles ABC and DEF, let AC = DF, CB = FE, A = D, and
CB (= FE)> AC (= DF),

We arc to prove that
the triangles are equal.

Apply the triangle
ABC to DEF, placing AC
in its equal DF, the point
A falling at D, and C at
F.

Since A =D, AB
will take the direction
DE.

Let fall the perpen-
dicular FH upon DE, or
DE produced.

Now, CB being > DF, cannot fall between it and the perpendicular,
but must fall in FD or beyond both (?).

But CB cannot fall in FD, since it is a different line from CA.

Again, as CB = FE, and both lie on the same side of FH, they must
coincide (114).

Hence, the two triangles coincide, and are consequently equal.
Q. E. D.

Fig. 147.

PROPOSITION VII.

805. Theorem.—Two triangles which have the three
sides of the one equal to the three sides of the other, each
to each, are equal,
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DEMONSTRATION.

Let ABC and DEF be
two triangles, in which AB
= DE, AC = DF, and BC
= EF.

We are to prove that
the triangles are equal.

Place the triangle ABC
in the position (3), with
the longest side, AB, in its
equal, DE, so that the Fig. 148.
other equal sides shall be
adjacent, as AC adjacent to DF, and BC to EF. Draw FC cutting
DE in O.

Now, since AC = DF, and BC = EF, DE is perpendicular to FC at
its middle point (?).

Hence, revolving ABC upon DE, it will coincide with DEF when
brought into the plane of the latter, since OC will fall in OF (?) and is
equal to it. .

Therefore the two triangles coincide, and hence are equal. Q. E. D.

806. CorOLLARY.—In two equal triangles, the equal an-
8les lie opposite the equal sides.

PROPOSITION VIII.

307. Theorem.—If two triangles have two sides of the
one respectively equal to two sides of the other, and the
included angles unequal, the third sides are wunequal,
and the greater third side belongs to the triangle having
the greater included angle.

DEMONSTRATION.

Let ABC and DEF (Fig. 149) be two triangles having AC = DF,
CB =FE, and C > F.

‘We are to prove that AB > DE.
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Make the angle ACE = DFE,
take CE = FE, and draw AE.
Then is the triangle ACE = DFE,
and AE = DE.

Bisect ECB with CH,

Now since angle DFE = ACE
< ACB by hypothesis, CE falls be-
tween CA and CB, and CH will
meet AB in some point, as H.

Draw HE.

The triangles HCB and HCE
have two sides and the included
angle of the one, equal to the cor-
responding parts of the other,

whence HE = HB (?). ) Fig. 149,
Now AH + HE > AE

but AH + HE = AH + HB =.AB.
Therefore, AB > AE,or AB > DE. Q.E.D.

808. CoroLLARY. —Conversely, If two sides of one tri-
angle are respectively equal to two sides of another, and
the third sides are unequal, the angle opposite thisthird
side is the greater in the triangle which has the greater
third side.

That is, if AC = DF, CB = FE, and AB > DE, angle C > angle F.
For, if C = F, the triangles would be equal, and AB = DE (298); and,
if C were less than F, AB would be less than DE, by the proposition.
But both these conclusions are contrary to the hypothesis. Hence, as C
cannot be equal to F, or less than F, it must be greater,

PROPOSITION IX.

309. Theorem.— Two right-angled triangles which
have the hypotenuse and one side of the one equal to the
hypotenuse and one side of the other, each to each, are

equal.
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DEMONSTRATION.

In the two triangles ABC and DEF, right-angled at B and E, let AC =
DF, and BC = EF.
We are to prove that the
triangles are equal.
Place FE in its equal CB,
with FD on the same side of
CB that AC is.
Then, since two equal
oblique lines cannot be drawn
from C to AB on the same side
of CB, FD will coincide with
CA, and DE with AB (%)
Hence the two triangles Fig. 150.
are equal, as they coincide
throughout when applied (292, 293). q.E.p.

PROPOSITION X.

810. Theorem. —Two right-angled triangles having
any side and one acute angle of the one equal to the
corresponding parts of the other are equal.

DEMONSTRATION.

One acute angle in one triangle being equal to one in the other, the
other acute angles are equal, since they are complements of the same
angles (218). The case then falls under (801).

EXERCISES.

ExErcisE 1. Given the sides of a triangle, as 15, 8, and 5, to
construct the triangle.

Ex. 2. Given two sides of a triangle, a = 20, 5 = 8, and the
angle B opposite the side & equal § of a right angle, to construct
the triangle.
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Ex. 3. Same as in the preceding example, except b = 12.
Same, except that b = 25.

Ex. 4. Construct a triangle with angle A = § of a right
angle, angle B = } of a right angle, and side a opposite angle
A, 15.

. Ex. 5. Construct an isosceles triangle whose vertical angle
is 30°.
Ex. 6. Construct a right-angled triangle whose hypotenuse

is 12 and one of whose acute angles is 60°,

Ex. 7. Coustruct an equilateral triangle, and let fall a per-
pendicular from one vertex upon the opposite side. How is this
angle divided? How many degrees measure the angle between
the perpendicular and one side?

THE DETERMINATION OF POLYGONS.

811. A triangle, or any polygon, is said to be Determined
when a sufficient number of parts are known to enable us to
construct the figure, or to find the unknown parts. If two
different figures can be constructed, the case is said to be
Ambiguous.

812. Since, in such a case, if several polygons were to be con-
structed with the same given parts all would be equal, the condi-
tions which defermine a polygon are, in general, the same as
those which insure equality (292). Hence, having shown that
certain given parts determine a polygon, we may assert that two
polygons having these parts respectively equal are equal, except
in the ambiguous cases.

PROPOSITION XI.

813. Theorem.— triangle is determined in the fol.
lowing cases :

L When two sides and the included angle are known.

IL. When two angles and the included side are known,
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III. When the three sides are known.

IV. When two sides and an angle opposite one of them
are known.

(a.) If the known angle is right or obtuse.

(b.) If the known angle is acute and the known side
opposite it is equal to the perpendicular wpon the unknown
side ; or equal to or greater than the other known side.

(¢.) But, if the known angle is acute and the known
side opposite it is intermediate in length between the other
known side and the perpendicular upon the unknown side,
the case is AMBIGUOUS.

DEMONSTRATION,

The demonstration of this proposition is effected in the solution of the
following problems.

3814. Problem. — Given two sides and the included
angle, to construct a triangle.

SovLuTION.

Let A and B be the given (or known) sides, and O the given angle.

We are to construct a triangle having
an angle equal to O included between sides
equal to A and B.
Draw any line, as 0'D, equal to either
of the given sides, as A.
Lay off at either extremity of 0'D, as
at 0, an angle equal to 0 (203), and wuke
O’E equal to B, and draw ED.
Then will EO'D be the triangle re- Fig. 151,
quired.
For, if two triangles (or any number) be constructed with the same
sides and included angle, they will all be equal to each other (298).

315. Problem.—Given two angles and the included
side, to construct a triangle,
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SoruTION,

Let M and N be the two given
angles, and A the given side.

We are to construct a triangle
having a side equal to A and in-
cluded between the vertices of two
angles equal respectively to M
and N.

Draw DE equal to A. At one
extremity, as D, make angle FDE =
M, and at E make FED = N.

Then is DEF the triangle re-
quired (?).

QUERY.—What is the limit of the sum of the given angles?

316. Problem.—Given three sides, to construct a tri-
angle.

SoLUTION.

Let A, B, and C be the three given sides.

We are to construct a triangle which
shall have its three sides respectively
equal to A, B, and C.

Draw DE = A.

With D as a centre and a radius
equal to B, strike an arc intersecting an
arc struck from E as a centre, with a
radius C.

The triangle DEF is the triangle Fig. 153,
sought (?).

317. ScHoLivM.—If any one of the three proposed sides is greater
than the sum or less than the difference of the other two, a triangle is
impossible (?).

318. Problem.— 7% construct a triangle, having given
two sides and the angle opposite one of them,
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SOLUTION.
There are three cases.
- CASE (a).

When the given angle is right or obtuse.

Let O be the angle,and A and B
the sides, the angle O to be opposite
the side A. :

Construct angle NDM =: 0 (208),
and take FD = B.

From F as a centre, with A as a
radius, strike an arc cutting DM in
E, and draw FE.

Then is FDE the triangle sought.

For it has FD =B, FE=A
(since FE is a radius of a circle
struck with A as a radius), and angle
FDE, opposite FE, equal to O.

If the given angle were right, the construction would be the same,

CASE (b)

When the given angle is acute, and, 1st, the side opposite
equal to the perpendicular upon the unknown side, and, 2d,
when the side opposite is equal to or greater than the other
given side. .

1st. Let A and B be the given sides
and O the given angle opposite B.

Proceed exactly as in the preceding
case, but when the arc is struck from F
as a centre with a radius equal to B,
instead of intersecting DM it will be
tangent to it, since B = FE is the per-
pendicular, and a line which is perpen-
dicular to a radius at its extremity is
tangent to the arc (156). Fig. 155.

2d. If the side opposite the given angle is equal to the other
@given side, the ar¢ struck from F with it as a radius will cu$
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DM at an equal distance with FD from the foot of the perpen-
dicular (2), and the triangle formed will be isosceles (?).

If the side opposite is greater than the other given side, it
will cut MD but once (?) and there will be but one triangle.

CASE (¢).

When the given angle is acute, and the given side opposite
it is intermediate in length between the other given side and
the perpendicular to the unknown side.

Let A and B be the given sides
and O the angle opposite B, B
being intermediate in length be-
tween A and the perpendicular
FH on the unknown side.

Proceed as in the two preced-
ing cases, but instead of tangency
we get two intersections of DM
by the arc struck from F with
radius B, as E and E/, since two
equal oblique lines can be drawn
from F to DM (114), and B being Fig. 156,
less than FD = A, FE will lie
between FD and FH, and FE’ beyond FH (113).
Thus we have two triangles, DEF and DE'F, each of which fulfills the
required conditions, .

819. SomoLrum.—In order that the triangle should Ve possible, the
side opposite the given angle must be equal to or greater than the per-
pendicular upon the unknown side.

OF QUADRILATERALS.

The subject of the conditions which determine a quadrilateral or
other polygon is quite an important and practical subject, especially in
surveying, and we treat the problem of the equality of polygons of more
than three gides in this way., (_See 31%)
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PROPOSITION XII.

320. Theorem.—4 quadrilateral is determined when
there are given in their order :

L. The four sides and either diagonal.

II. The four sides and one angle.

II1. 1st. Three sides and two included angles.

4. When the two angles are not both included between
the Inown sides, the case may be ambiguous.

IV. Three angles and two sides, the unknown sides
being non-parallel.

DEMONSTRATION.
CASE 1.

Let a, b, ¢, d (Fig. 157), be the sides in order, and e the diagonal
joining the vertex of the angle between « and d with the vertex between
b and c.

WithLO = a, OM = b, MN = ¢, NL = d, and LM = ¢, construct, by
{3186), the triangles LOM and MNL, on LM as a common side.

Then is LOMN the quadrilateral sought.

L., Fig. 157. . Fig. 158,
CASE II.

I.ét a, b, ¢, and d (Fig. 158), be the given sides in order, and O the
angle included between a and b.

With the same notatlon a8 before, construct the triangle LOM by
(814), and then LMN by (316), and the quadrilateral is constructed, . ¢.,
all the parts are found, . .
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CASE 111

Let @, b, and ¢ (Fig. 159)
be the given sides in order,

Ast, Let both the given
angles 0 and M be in-
cluded between the given
gides, 0 being included
by a and b, and M by b
and c.

Construct an angle LOM
= 0, and take OL = a and
CM =2b.

Now lay off the angle OMN
=M, and taking MN =e¢,
draw LN.

Then is LOMN the quadri-
lateral sought,

2d. Amsiauous Cases. — If three sides and two angles of
a quadrilateral are given, and both the given angles are not
included between given sides, the case may be AMBIGUOUS,

There may be three cases: 1st. When the two given angles are con-
secutive, and one only is included between given sides; 2d. When the
giveﬁ angles are consecutive, and the includ- ’ c
ed side is unknown; 8d. When the given
angles are opposite. .

Fig. 160 shows how an ambiguous solu-
tion may arise under Case 1. The given
parts are a, b, ¢, and angles L and O.

Fig. 161 shows how such solutions

Fig. 160.
may arise under cases 2 and 8. '9
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CASE 1IV.

1st. Let the three given angles be 0, M, and N, and, first,
let @ and b be two consecutive given sides.

Since the sum of the angles of a quadrilateral is 4 right angles, and
0, M, and N are given, the fourth, L, can be found (241).
[Let the student make the construction.]

2d. Let O, M, and N be the given angles, and a and c the
given mon-consecutive sides, d and b being non-parallel,
i. e., the angles L and 0 not being supplemental.

Find the fourth angle by subtract-
ing the sum of the three given angles
from 4 right angles. Whence all the
angles are known.

Lay off side @ and a its extremities
make LOX = 0, and OLY = L.

Then draw any line, Am, making
the angle m = M.

Take mA = ¢, and through A draw
AS parallel to OX. Let this intersect
LY in N. Through N draw NM parallel
to Am.

Then is NM = the given side ¢ (?), and OMN = the given angle M (),
and LNM = the given angie N (?).

Hence LOMN is the required quadrilateral.

Fig. 162.

891, ScroLroM.—With a given set of parts, a8 above, the possibility
of constructing a quadrilateral can be determined on the same principle
as the possibility of a triangle.

1. In Case I, if the diagonal is less than the sum and greater than the
difference of the sides of either of the two triangles into which it divides
the quadrilateral, the quadrilateral is possible, but not otherwise.

2. In Case II, the two given sides and their included angle always
make a triangle possible; whence the possibility of the quadrilateral will
be determined by the relation of the other two sides to the third side of
this triangle, as (Fig. 158) when ¢+ d > LM, and ¢ —d < LM, the
quadrilateral is possible, but not otherwise.

3. In Case III, the 1st problem is always possible. The student will
be able to determine when the several cases in the 2d are possible by in-
specting Figs. 160 and 161.

" 4. In Case IV, the first probleg ig always passible whea the sum of
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the given angles is less than 4 right angles. In the second problem, it
the unknown sides are parallel, the problem is indeterminate, i. e., there
may be any number of solutions, if any.

Note.—In problems of this class, it is usually understood that the
given parts are such as to allow the construction; <.e., that they are parts
of a possible polygon.

322. CoROLLARY 1.—A parallelogram is determined
when two sides and their included angle are given.

Since the opposite sides of a parallelogram are equal (250), all the
sides are known when two are given, and the case falls under Case II of
the proposition.

323. CoroLLARY 2.—Two rectangles having equal bases
and equal altitudes are equal.

Ex©ERcISE 1. Construct a quadrilateral three of whose con-
secutive sides are 20, 12, and 15, and the angle included between
20 and the unknown side § of a right angle, and that between
15 and the unknown side } a right angle.

Ex. 2. Construct a quadrilateral three of whose sides shall be
5, 4.2, and 4, and in which the angle between the unknown side
and the side 5 shall be § of a right angle, and that between the
unknown side and side 4, 1} right angles. How many solutions
are there? How many solutions if the second side is made 1.2,
and the third 22 How many if the second side is made 1, and
the third 1.52

OF POLYGONS.

PROPOSITION XIII.

824. Theorem.—A polygon is determined when two
consecutive sides, the diagonals from the vertex of their
included angle, and the consecutive angles included be-
tween these lines are given.

[Let the student show how the construction is made, and thus demon-
strate the proposition.}
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PROPOSITION XIV.

- 326. Theorem.—A polygon is determined by means
of its sides and angles, when there are given in order:
1. AUl the parts except two angles and theirincluded side.
II. AU the parts except three angles.
III. All the parts except two non-parallel sides.

CONSTRUCTIONS.

CASE 1.

Beginning at one extremity of the unknown side, and constructing
the given sides and angles in order till all are constructed, and joining
the extremities of the broken line thus drawn, the polygon will be con-
structed.

CASE II.

1st. When the three angles are consecutive.

Suppose the polygon to be ABCDEFG, and the unknown angles A, G,
and F. Commencing with side AB, lay off the given sides and angles in
order till the unknown angle F is reached. Then from F as a centre,
with a radius equal to the known side FG, strike an arc intersecting an
arc struck from A as a centre with the side AG as a radius. This inter-
section determines the remaining vertex of the polygon.

QUERY.—When does. this case become impossible ¢

2d. Whentwo of the unknown angles are consecutive and
the third is separated from both the others.

Let A, B, and F be the unknown angles.
The two partial polygons AIHGF and
BCDEF can be constructed, and thus the
sides AF and BF will become known, as
also the angles AFG, IAF, BFE, and
FBC.

Then constructing the triangle ABF,
whose three sides are now known, the
angles AFB, ABF, and FAB become known.
Hence all the parts of the polygon are
found, for Fig. 163,

the angle GFE = AFG + AFB + BFE, etc.
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3d. When no two of the three unknown angles are con-
secutive.

Let A, C, and F be the unknown
angles.

Constructing the broken lines ABC,
CDEF, and FGHIA separately, and
apart from the position where the
polygon is to be constructed, the diago-
nals which form the sides of the triangle
ACF can be determined by joining the
extremities A and C, C and F, and F
and A.

This triangle can then be con-
structed in the position desired, and
the broken lines constructed on its sides, as in the figure.

CASE IIIL

Under this case we have two problems:

1st. When the two unknown sides are consecutive.

2d. When the two unknown sides are separated.

[The student will be able to effect the construction. The first is
similar to that of Case II, 1st problem. The second is effected by
obtaining a quadrilateral similarly to the
construction in Case II, 3d problem.

326. In case the unknown parts are
two parallel sides, as @ and b, it is evident
that these may be varied in length at plea-
sure without changing the value of the other
parts,
. Fig. 165.
327. It will be a profitable exercise for
the student to reduce the determination of polygons to that of quadri-
laterals, and both to that of triangles.
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PROPOSITIONS FOR ORIGINAL SOLU-
TION AND DEMONSTRATION,

328.. 1. Theorem.—The sum of the exterior angles of
a polygon is four right andles.

Prove by drawing lines from a point and parallel to the sides of the
polygon.

2. Theorem.—The sum of the angles of a polygon is
twice as many right angles as the polygon has sides,
less four right angles.

Having proved the preceding, base the proof of this upon that.

3. Theorem.—If the sum of two opposite sides of a
quadrilateral is equal to the sum of the other two op-
posite sides, show that a circle can be inscribed in the
quadrilateral. :

4. Theorem.—If from a
point without a circle two
tangdents aredrawn, and also
a chord joining the points of
tangency,the angle included
between a radius drawn to
etther point of tangency and
the chord is half the angdle
included between the tan-
Zents.

5. Theorem.—In an isosceles triang‘le the line drawn
from the vertex to the middle of the base bisects the
triangle and also the angle at the vertex.

Fig. 166.

6. Problem.— With a given radius draw a circle tan-
gent to the sides of a given angdle. '

7. Problem.—Through a given point within a given
angle draw a line which shall make equal angles with
the sides.
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8. Problem.—7o draw a circumference through two
Siven points and having its centre in a Fiven line; or,
to find in a given line a point equally distant from two
points out of that line.

9. Theorem.—If from the
extremities of a diameter per-
pendiculars are let full on any
secant, the parts intercepted
between the feet of these per-
pendiculars and the circum-
ference are equal.

10. Problem.—7o trisect a right angle.

SUaGESTION.—What is the value of an angle of an equilateral tri-
angle?

SECTINN 1X.
CF EQUIVALENCY AND AREA.
329. Equivalent Figures are such as are equal in mag-

nitude.

830. The: Area of a surface is the number of times it con-
tains some other surface taken as a unit of measure; or it is the
ratio of one surface to another assumed as a standard of measure,

PROPOSITION I.

331. Theorem.—Parallelograms having equal bases
and equal altitudes are equivalent.
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DEMONSTRATION.

Let ABCD and EFGH be two parallelograms having equal bases, BC
and FG, and equal altitudes.

‘We are to prove
that the parallelo-
grams are equivalent,

Apply EFGH to
ABCD, placing FG in
its equal BC; and,
since the altitudes are Fig. 168.
equal, the upper base EH will fall in AD or AD produced, as E'H’.

Now, the two triangles AE'B and DH’C are equal, since they have two
sides and the included angle of the one equal to two sides and the in-
cluded angle of the other; viz., AB = DC, being opposite sides of a
parallelogram ; and for a like reason BE' = CH’. Also, angle ABE' =
angle DCH, by reason of the parallelism of their sides (294).

These triangles being equal,

the quadrilateral ABCH’' — the triangle AE'B = ABCH’ — DH'C.

But ABCH' — AE'B = E'BCH' = EFGH;
and . ABCH' — DH'C = ABCD.
Hence, ABCD = EFGH. Q.E.D.

332. CoROLLARY.—Any parallelogram is equivalent to @
rectangle having the same base and altitude.

PROPOSITION II.

333. Theorem.—A triangle is equivalent to one-half
of any parallelogram having an equal base and an
equal altitude with the triangle.

D EMONSTRATION.
Let ABC (Fig. 169) be a triangle.

‘We are to prove that ABC is equivalent to one-half a parallelogram
having an equal base and an equal altitude with the triangle.
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Consider AB as the base of the triangle,
and complete the parallelogram ABCD by
drawing AD parallel to BC, and DC to AB.

Now, ABCD has the same base, AB, as
the triangle, and the same altitude, since
the altitude of each is the perpendicular
distance between the parallels DC and AB.

But ABC is half of ABCD (249), and as
any other parallelogram having an equal base and altitude with ABCD is
equivalent to ABCD (331), ABC is equivalent to one-half of any parallel-
ogram having an equal base and altitude with ABC. Q. E.D.

Fig. 169.

334, CoROLLARY 1.—d triangle is equivalent to one-half
of a rectangle having an equal base and an equal al-
titude with the triangle.

335. CoROLLARY 2.—Triangles of equal bases and equal
altitudes are equivalent, for they are halves of equivalent
parallelograms.

PROPOSITION III.

336. Theorem.—The square described on n times a
line is n® times the square described on the line, n being
any integer.

DEMONSTRATION.
Let 2 be any line and AB a line n times as long, n being any integer.

We are to prove that the square de-
scribed on AB is n? times the square
on Aa.

Construct on AB the square ABCD.

Since » is a measure (76) of AB, by
hypothesis, divide AB into n equal parts
by applying %, and at the points of di-
vision a, b, ¢, etc., draw parallels to AD.

In like manner divide AD, and draw
through the points of division @', ¥, ¢,
etc., parallels to AB.

Then are the surfaces 1, 2, 8, 4,5, 6,
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etc., squares, since their opposite sides
are parallel (139) and equal (138), and
their angles are right angles (125).

Now of these squares there are n in
each of the rectangles a'B, V'E, etc. (?),
and as there are n divisions in AD, there

are n rectangles.

Hence there are n times =, or n’
squares in ABCD. Q. E.D.

837. CoROLLARY.—The square described on twice a line
i8 four times the square described on the line ; that on 3
times a line is 9 times the square on the line, ete.

PROPOSITION IV.

838. Theorem.—A trapezoid is equivalent to two tri-
angles having for their bases the upper and lower bases of
the trapezoid, and for their common altitude the altztude
of the trapezoid. : ,

By constructing any trapezoid, and druwing either diagonal, the stu-
dent can show the truth of this theorem.

PROPOSITION V.

839. Problem.—7o reduce any polygdon to anr equiva-
lent triangle.
SorLuTION.
Let ABCDEF (Fig. 171) be a polygon.

‘We are to reduce it to an equivalent triangle.

Draw any diagonal, as EC, between two alternate vertices, and through
the intermediate vertex, D, draw DH parallel to EC and meeting BC pro-
duced in H. Then draw EH.
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In like manner, draw
FH, and through E draw El
parallel thereto, meeting
BH produced in I. Then
draw FI.

Again, draw the diag-
onal FB, and through A
draw AG parallel thereto,
meeting BC produced in G.
Then draw FG.

Now FGl is equivalent to ABCDEF.

DEMONSTRATION OF SOLUTION,

Consider the polygon ABCDEF as diminished by ECD and then in-
creased by ECH. Since these triangles have the same base EC, and the
same altitude (as their vertices lic in DH parallel to EC, and parallels are
everywhere equidistant), the triangles are equivalent (335). Hence,
ABHEF is equivalent to ABCDEF (?).

In like manner ABIF is equivalent to ABHEF, and FGI to ABIF.

Hence FGI is equivalent to ABCDEF. Q. E. D.

AREA.

340. An Infinitesimal is a quantity conceived under such
a law as to be less than any assignable quantity.

ILLusTRATION.—Counsider a line of any finite length, as ome foot.
Conceive this line bisected, and one-half taken. Again conceive this half
bisected, and one-half of it taken. By this process it is evident that the
line may be reduced to a line less than any assignable line. Moreover, ii
the process be considered as repeated infinitely, the result is an infini-
tesimal.

This is the familiar conception of the last term of a decreasing infinite
progression, the last term of which is called zero.

841. PriNciPLE I.—In comparison with finite quanti
ties, an infinitesimal is zero.
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*18

Thus, suppose =a,

m, n, and a being finite quantities. Let ¢ represent an infinitesimal ; then
m=xi m m=
, OF —, or -y
n nti nxi’.
is to be considered as still equal to a, for to consider it to differ from a
by any amount we might name, would be to assign some value to i,

342. PrincipiE IL—Any two geometrical magnitudes
of the same kind are to be conceived as commensurable by
an infinitesimal wnit.

By the process for obtaiming the common measure of two lines (84),
the remainder may be made (in conception) less than any assignable quan-
tity, and hence in comparison with the lines should be considered zero,

The same conception may be applied to any geometrical magnitudes.

PROPOSITION VI.

843. Theorem.—Rectangles are to each other* as the
products of their respective bases and altitudes.

FIRST DEMONSTRATION,

LemMa.—Two rectangles of equal altitudes are to each
other as their bases.

Let ABCD and abcd be two rectangles having their altitudes AD and
ad equal.

Suppose rectangle ABCD gen-
erated by the movement of AD from
AD to BC, it remaining all the time
parallel to its first position, and
suppose abed generated in like man-
ner by the movement of ad.

Let these equal generatrices AD
and ad move with uniform and equal velocities; then it is evident that
the surfaces generated will be as the distances AB and ab.

. ABCD _ AB

That is, i = b

* This is a common elliptical form, meaning that surfaces, or areas, are
to each other,
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Now let M and N be any two rectan-
gles, the base of M being AB and the
altitude BC, and the base of N BE and
its altitude BG. '

We are to prove that

M __ABx Bc
N ~ BExBG’

Place the rectangles so that .the

angles ABC and GBE shall be opposite,

3. e., 8o that AG and CE shall be straight

lines (109).
Complete the rectangle CBGH, and call it 0.
_Bince M and O have equal altitudes,

M__AB

°=BG" (0]

In like manner, since N and O have equal altitudes,
N BE
o= @

Dividing the members of (1) by the corresponding memben of (3),

we have
M ABxBO
N =BExsa %™

SECOND DEMONSTRATION.
Let ABCD and EFGH be any two rectangles.

Fig. 174,
ABCD _ AB x AD_
EFGH ~— EF x EH’
The bases and altitudes of the two rectangles are at least to be con-
sidered as commensurable by an infinitesimal unit (342).

‘We are to prove that
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Let 4 be the common measure of AB, AD, EF, and EH, and suppose it
contained in AB m times, in AD ntimes, in EF p times, and in EH ¢ times.
AB AD EF EH

Whence, m=-=, B=, p_— and ¢ = —

avow conceive the rectangles divided into squares by drawing through
the points of division of the bases and altitudes parallels to the altitudes
and bases, as in (836), whence the rectangles will be divided into equal

squares.
Of these equal squares, ABCD contains m x n, and EFGH pxg.
ABXAD
ABCD _mxn _ 7 " i _ ABxAD
Therefors  EFGH ~ pxg ~ EF _EH ~ EFxEH ¥

f s

. PROPOSITION VII.

844. Theorem.—The area of a rectangle is equal to
the product of its base and altitude.

DEMONSTRATION.
Let ABCD be a rectangle.
‘We are to prove that lts area
is AB x AD.
Let the square u be the pro-
posed unit of measure, whose side
is 1.
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By (348), 'Lf” = %:‘?%’ =AB « AD.
Hence, by (330), area ABCD = AB x AD. Q.E.D.

345. CoroLLARY 1.—The area of a square is equal to the
second power of one of its sides, as in this case the base and
altitude are equal.

346. CoROLLARY 2.—The area of any parallelogram is
equal to the product of its base and altitude ; for any paral-
lelogram is equivalent to a rectangle of the same base and
altitude (332). '

847. CorOLLARY 3.—The area of a triangle is equal to
one-half the product of its base and altitude; for a triangle
is one-half of a parallelogram of the same base and altitude (333).

348. COROLLARY 4.—Parallelograms or triangles of
equal bases are to each other as their altitudes; of
equal altitudes, as their bases; and in general they are
to each other as the product of their bases by their al-
titudes.

349, ScroLrom.—The arithmetical signification of the theorem, T%e
area of a rectangle 8 equal to the product of its base and altitude, is this:

Let the base be b and the altitude a; then we have, by the prop-
osition, ‘

area = ab,

Now, in order that eb may represent a surface, one of the factors
must be conceived as a surface and the other as a number. Thus, we
may conceive b to represent b superficial units, <. e., the rectangle having
the base of the rectangle for its base and being 1 linear unit in altitude.

The entire rectangle is, then, a times the rectangle which contains 3
superficial units, or ab superficial units,

In the expression

.

_ area ABCD = AB x AD,
AB and AD may be given a similar interpretation,
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PROPOSITION VIII.

850. Thecrem.—7The area of a trapezoid is equal to
the product of its altitude into one-half the sum of its
parallel sides, or, what is the same thing, the product
of its altitude into a line jorning the middle points of
its inclined sides.

DEMONSTRATION.

Let ABCD be a trapezoid, whose parallel sides are AB and DC, and
whose altitude is IK.

‘We are to prove, 1st, that

AB+CD,
2

and, 2d, that~ area ABCD = IK x ab,

area ABCD = IK x

Fig. 176.
ab being a line joining the middle points of AD and BC. .

Draw either diagonal, as AC. The trapezoid is thus divided into two
triangles, whose areas are together equal to one-half the product of their
common altitude (the altitude of the trapezoid) into their bases DC and
AB, or this altitude into } (AB+DC). Q.E.D,

Through @ and b draw om and pn perpendicular to AB, meeting DC,
produced, if necessary.

Now the triangles aoD and Aam are equal, since -
Aa = aD,
angle 0 = angle m,
both being right, and angle oaD = Aam, being opposite. ‘Whence
Am = oD.
In like manner, we may show that
Cp = nB.

Hence, ab = }(op + mn) () = $ (AB + DC); and area ABCD, which
equals §(AB + DC) x IK, = abxIK. Q E.D.



EQUIVALENCY AND AREA. 161

PROPOSITION IX.

851. Theorem.—The area of a regular polygon is
equal to one-half the product of its apothem into its
perimeter,

DEMONSTRATION.

Let ABCDEFG be a regular polygon, whose perimeter is AB+BC +
CD +DE+EF +FG+GA, and whose apothem is Oa.

We are to prove that

area ABCDEFG = $0a(AB+BC+CD+DE +EF +FG + GA).
Draw the inscribed circle, the radii Oa, 0B,
etc., to the points of tangency, and the radii of
the circumscribed circle QA, OB, etc. (273,
274).
The polygon is thus divided into as many
equal triangles as it has sides,
Now, the apothem (or radius of the in-
scribed circle) is the common altitude of these
triangles, and their bases make up the perimeter
of the polygon.
Hence, the area = 30s(AB+BC+CD+DE+EF+FG+GA). Q. E.D.

852. CoroLLARY.—The area of any polygon in which
a circle can be inscribed is equal to one-half the
product of the radius of the inscribed circle into the
perimeter. '

The student should draw a figure and observe the fact. It is espe-
cially worthy of note in the case of a triangle. See Fig, 187.

PROPOSITION X.

853. Lemma.—If any polygon is circumscribed
about a circle and a second polygon is formed by draw-
ing tangents to the arcs intercepted between the con-
secutive points of tangency, thus forming a polygon of
double the number of sides, the perimeter of ¢he second
volygon is less than that of the first.
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DEMONSTRATION.

Let ABCDE be any circumscribed polygon, whose oonseoutive sides
are tangent at K, F, G, etc., and let a second polygon be formed by
drawing tangents at f, g, etc.

We are to prove that the
perimeter ab+be + cd, etc., is less
than the perimeter EA 4 AB 4-etc.

Observing the portions of the
perimeters from K to F, for the
first polygon we have

KA +AF = Ka+(aA + Ab) +0F,
and for the second
Ka+ab+bF.
But ab < aA+Ab (D).
Hence,
Ka+ab+bF < KA+AF. Fig. 178.

Now, as a similar reduction
will take place at each vertex, the entire pertmeter of the second polygon
will be less than that of the first. Q. E.D.

3564. The Limit of a varying quantity is a fixed quantity
which it approaches by such a law as to be capable of being
made to differ from it by less than any assignable quantity.

Such a varying quantity is often spoken of as reaching its
limit after an infinite number of steps of approach.

855. COROLLARY.—. s the number of the sides of a cir-
cumscribed regular polygon is increased the perimeter
is diminished, and approaches the circumference of the
circle as its limit, since the circle is the limit of such a

polygon.

PROPOSITION XI.

356. Theorem.—The area of a circle is equal to ones
half the product of its radiws into its circumference.
DEMONSTRATION.
Let O« (Fig. 179) be the radius of the circle,
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‘We are to prove that the area of the circle
i3 30a x the circumference.

Circumscribe any regular polygon.

Now the area of this polygon is one-half
the product of its apothem and perimeter.

Conceive the number of sides of the poly-
gon indefinitely increased, the polygon still
continuing to be circumscribed and regular.

The apothem continues to be the radius of
the circle, and the perimeter approaches the
circumference.

When, therefore, the number of sides of the polygon becomes infinite,
it is to be considered as coinciding with the circle, and its perimeter with
the circumference (355).

Hence the area of the circle is equal to one-half the procduct of its
radius into its circumference. Q. E. D.

357. A Sector is a part of a circle included between two
radii and their intercepted arc.

3568. CorROLLARY 1.—The area of a sector is equal to
one-half the product of the radius into the arc of the
sector.

359, CorOLLARY 2—The area of a sector is to the area
of the circle as the arc of the sector is to the circumfer-
ence, or as the angle of the sector is to four right angles.

EXERCISES.

360. 1. What is the area in acres of a triangle whose base is
75 rods and altitude 110 rods ?

2. What is the area of a right-angled triangle whose sides
about the right angle are 126 feet and 72 feet ?

3. If two lines are drawn from the vertex of a triangle to the
base, dividing the base into parts which are to each other as 2, 3,
and 5, how is the triangle divided? How does g line drawn
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from an angle to the middle of the opposite side divide a tri-
angle ?

4. What is the area of the largest triangle which can be in-
scribed in a circle whose radius is 12, the diameter being one
side ? :

5. What is the area of a cross section of a ditch which is
6 feet wide at the bottom, 9 feet at the top, and 3 feet deep?

6. If one of the angles at the base of an isosceles triangle is
double the angle at the vertex, how many degrees in each ?

LSELTION X,
OF SIMILARITY.

861. The primary notion of similarity is likeness of form.
Two figures are said to be similar which have the same shape,
although they may differ in magnitude. A more scientific defi-
nition is as follows:

362. Similar Figures are such as have their angles re-
~ spectively equal, and their homologous sides proportional.

363. Homblogous Sides of similar figures are those
which are included between equal angles in the respective figures.

864. In similar triangles, the homologous sides are
those opposite the equal angles.

The student should be careful, at the outset, to mark the fact that
similarity involves two things, EQUALITY OF ANGLES and PROPORTIONALITY

or sipEs. It will appear that, in the case of triangles, if one of these
facts exists, the other exists also; but this is not so in other polygons.

365. Two figures are said to be Mutually equiangular
when each angle in one has an equal angle in the other, and
Mutually equilateral when each side in the one has an equal
side in the other.
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PROPOSITION I.

366. Theorem.—Triangles which are mutually equi-
angular are similar.

DEMONSTRATION.

Let ABC and DEF be two mutually equiangular triangles, in which
A=D,B=E, C=F.

We are to prove that the sides
opposite these equal angles are pro-
portional, and thus that the triangles
possess both the requisites of similar-
ity, viz., equality of angles and pro-
portionality of sides.

Lay off on CA CD’ = FD, and on
CB CE’ = FE, and draw D’E'.

Triangle CD'E’ equals triangle
FDE (?). :

Draw AE’ and BD'.

Since angle CE'D’ = CBA, D'E' is
parallel to AB (?), and as the triangles D’E’B and D’E’A have a common
base D'E’ and the same altitudes, their vertices being in a line parailel
to their base, they are equivalent (335).

Now the triangles CD'E’ and D'E’A, having a common altitude, are te
each other as their bases (848).

CD'E' _ CD/

Fig. 180.

Hence, DEA DA’
For like reason, ——gfﬁ = (E)TEB,'
Whence, as D'E'B = D'E'A,
cp' _ CE'
DA~ EB
‘ i cD’ CE’
By composition,  en——a = G +EB’
CD’ CF'
or CA —c¢B
FD _ FE

or A = CB"
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In a similar manner, by laying off ED and EF in BA and BC respec-
tively, we can show that

FE _ED
CB ~ BA
FD FE _ED
Henoe, c—A--c'—'B—B'—A' Q. E. D.

867. COROLLARY 1.—If two triangles have two angles of
one respectively equal to two angles of the other, the tri-
angles are similar (?).

868. COROLLARY 2.—d transversal parallel to any side
of a triangle divides the other sides proportionally, and
the sides are in the ratio of either two corresponding
segmendts.

For in the demonstration we have D’E’ parallel to AB, and

cD’ _ CE
D'A” E'B’
co'_ DA
or CE B
CD' CF
And also EA— = EB- ’
CA_CD _DA

or, by alternation, CB=CF —FB"

PROPOSITION II.

869. Theorem.—If any two transversals cut a series
of parallels, their intercepted segments are proportional.

DEMONSTRATION.

Ist. Let OA and O'B’ (Fig. I181) be any two parallel transversals
cutting the series of parallels ab, cd, ef, gh, etc.

a_c _ &
We are to proye that M= ar = o
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ac co
Now == Ef— ‘1_1, ete. ()
Hence,
@ __oe_4
b= @ = ja o
Q E.D.
2d. Let OA and OB
be any non-paralliel trans-
versals cutting ad, cd,
ef, gh, etc.
We are to prove Fig. t81.
ao __ce t
== f k’ etc.
Since OA and OB are non-parallel they meet in some point, as 0.
Then, by (368), we have O _ a°
0d
Oc s
and ) 0d= d—f.
‘Whence, by equality of ratios, we have
@ _ e,
bd =~ daf

. ce _eg
Similarly, we may show that T = 7h ele.
Hence, also, by alternation, and by equality of mtios,

ac _bd ac__eg
o6 = @’ bd_f—h’ and —_ﬁ,etc. Q. E. D.

PROPOSITION III.

370. Theorem.—Conversely to Prop. I, If two triangles
have their corresponding sides proportional, they are sim-

ilar.
DEMONSTRATION.

Ac CB _BA
Let ABC and DEF have = FE ED-
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We are to prove that ABC is
similar to DEF.

As one of the characteristics of
similarity, viz., proportionality of
sides, exists by hypothesis, we have
only to prove the other, 7. ¢., that

A=D,C=F,and B=E.
Make CD’ = FD, and draw D'E’

pamllel to AB.
Then, by (368),
CA _CB
(] A
and since by construction CD' = FD,
. CA_CB
and by hypothesis FD=FE’
CE’' = FE.

Again the triangles D’E’C and ABC are mutually equiangular, since O
is common, angle CD’E’= CAB (?), and angle CE’'D’ = CBA (?).

CA _AB
‘Whence 6O —DE"
But by hypothesis and construction
CA _CA_AB
CD'~ DF _ DE'

Hence D’E’ = DE, and the triangles CD’E’ and DEF are equal (7).

Therefore ABC and D'E’C are similar; and as D'E’C = DEF, ABC and
DEF are similar. Q. E.D.

. 371. ScmoLruM.—As we now know that if two triangles are mutually
equiangular, they are similar; or, if they have their corresponding sides
proportional, they are similar, it will be sufficient hereafter, in any given
case, to prove either one of these facts, in order to establish the similarity
of two triangles, For, either fact being proved, the other follows as 5
;onsequence,
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PROPOSITION IV.

872. Theorem.—Two triangles which have the sides
of the one respectively parallel or perpendicular to the
sides of the other, are similar.

DEMONSTRATION.

~ Let ABC and A'B'C’ be two triangles whose sides are respectively
parallel or perpendicular to each other.

We are to prove that the tri-
angles are similar.

Any angle in one triangle is
either equal or supplemental to the
angle in the other which is included
between the sides which are parallel
or perpendicular to its own sides.

Thus, A either equals A’, or A + A’
= 2 right angles (294, 295, 298).

Now, if the corresponding angles

are all supplemental, that is, if

A + A’ = 2 right angles,

B + B’ = 2 right angles,
and C + C’ = 2 right angles,
the sum of the angles of the two
triangles is 6 right angles, which is
impossible.

Again, if one angle in one triangle equals the corresponding angle i
the other, as A = A’, and the other angles are supplemental, the sum is
4 right angles plus twice the equal angle, which is impossible. Hence,
two of the angles of one triangle must be equal respectively to two
angles of the other. Therefore the triangles are similar (367). Q. £. D.

PROPOSITION V.

878. Theorem.—Two triangles having an angle in
one equal to an angle in the other, and the sides about the
equal angles proportional, are similar,

8
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DEMONSTRATION.

Let ABC and DEF have the angles C and F equal, and %g = g—g—
We are to prove that ABC and DEF are similar.
Make CD’ equal to FD, and draw
D’E’ parallel to AB. Then is
angle CD'E’' = angle CAB,
whence the triangles are similar (367),
and Ly (368),
__AC___CB
D'C (= DF) ~ CE'
But, by hypothesis,
AC _CB
DF ~ FE
Whence CE’=FE.
Hence the triangle CD’E’ is equal to the triangle FDE. Now, CD’E’
and ABC are mutually equiangular. Hence DFE and ABC are mutually
equiangular and consequently similar. Q. E.D.

PROPOSITION VI.

874. Theorem.—In any right-angled triangle, if &
line is drawn from the vertex of the right angle perpen~
dicular to the hypotenuse :

1st. The perpendicular divides the triangle into two
triangles, which are similar to the given triangle, and
consequently similar to each other.

2d. Either side about the right angle is a mean propor-
tional between the whole hypotenuse and the adjacent
segment.

3d. The perpendicular is a mean proportional between
the segmendts of the hypotenuse.

DEMONSTRATION.

Let ACB be a triangle right-angled at G, and CD a perpendicular
upon the hypotenuse AB ; then
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1st. The triangles ACD and ACB have the
angle A common, and a right angle in each;
hence they are similar (387). For a like rea-
son, CDB and ACB are similar. Finally, as ACD
and CDB are both similar to ACB, they are .
gimilar to each other. Q. E.D. Fig. 185.
2d. By reason of the similarity of ACD and ACB, we have
AD _ AC.
AC ~ AB’
DB _CB
and from CDB and ACB, we have CE—AB %¢E ™
8d. By reason of the similarity of ACD and CDB, we have
A—;D - c—D. E D
cb b ¥®

Queries.—To which triangle does the first CD belong? To which
the second? Why is CD made the consequent of AD? Why, in the
second ratio, are CD and DB to be compared ?

875. CoroLLARY.—If a perpendicular is let fall from
any point in a circumference wpon a diameter, this per-
pendicular is a mean proportional between the segments
of the diameter.

Let CD be such perpendicular, and draw
AC and CB. Then, since ACB is a right angle
(192), we have, by Case 8d, the proportion

AD _ CD

co=pon’ CD’ = AD xDB.

Fig. 186.

PROPOSITION VII.

376. Theorem.—The square described on the hypote-
nuse of a right-angled triangle is equivalent to the sum
of the squares described on the other two sides.

FIRST DEMONSTRATION.

Let ACB (Fig. 187) be any right-angled triangle.



172 ELEMENTARY GEOMETRY.

We.are to prove that AB’ = AC’ + CB’.

For, let fall the perpeudicular CD, and by

(874, 21) we have

AD _AC DB _CB
Ac —AB’ ™ ©B = AB’
- ADxAB = AC'; Fig- 187.
and DBxAB = CB’.
Adding, we have AB(AD + DB) = AC’ + CB’,
or ABxAB = AB’ = AC' + CB’. Q.E.D.

SECOND DEMONSTRATION.

Let ABC be any right-angled triangle, right-angled at B,

Describe the squares AE, AG, and CL on
the hypotenuse and the other sides respect-
ively. From the right angle let fall upon
DE the perpendicular BK intersecting AC in
I, and draw the diagonais BE, BB, HC, and
AF. .

Now the triangles BAD and HAC are
equal, having two sides and the included
angle of one equal to two sides and the in-
cluded angle of the other; viz, BA = HA,
being sides of the same square, and for a
like reason AD = AC; and the angle HAC
= BAD, since each is made up of a right
angle and the angle BAC.

Fig. 188.,

Since ABG and ABC are right angles, BG is the prolongation of BC,
and the triangle HAC has the same base, HA, and the same altitude, AB,
as the square AG. Hence the triangle HAC is half the square AG.

Moreover, the triangle BAD has the same base, AD, as the rectangle

AK, and the same altitude as Al. Hence,

triangle BAD = 3ADKI.

Therefore, as the rectangle ADKI and the square AG are twice the
equal triangles BAD and HAC respectively, they are equivalent. .
In like manner, the square CL may be shown to be equivalent to the

rectangle CK.
‘Whence we have ADKI = ABGH,
and IKEC = BCFL;

and adding, ADEC = ABGH + BCFL. Q. E.D,
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877. CoROLLARY 1.—The hypotenuse of a right-angled’
triangle equals the square root of the sum of the squares
of the other two sides.

Also, either side about the right angle equals the square
root of the square of the hypotenuse minus the square of
the other side.

878. COROLLARY 2.—The diagonal of @ square is V3
times the side.

For, let 8 be the side. Drawing the diagonal, we have a right-angied
triangle of which the diagonal is the hypotenuse, and the sides about the
right angle are each S. Hence, by the proposition,

(diag)* = §* + 8% = 28?,
or diag. = 84/2.

379. ScroriuM.—Proposition VI with its corollary, and Prop. VII,
which is a direct resnlt of Prop. VI, are perhaps the most fruitful in
direct practical results of any in Geometry. Prop. VII is called the
Pythagorean Proposition, its original demonstration being attributed to

Pythagoras.

PROPOSITION VIII.

380. Theorem.—Regular polygons of tho same num-
ber of sides are similar figures.

DEMONSTRATION.

Let P and P’ be two regular polygons of the same number of sides,
a, b, c, d, etc., being the sides of the former, and ', ¥, ¢, d/, etc.,
the sides of the latter.

Now, by the definition of regular polygons, the sides g, b, ¢, d, etc.,
are equal each to each, and also @/, ¥, ¢, d', etc. Hence, we have

Again, the angles are equal, since # being the number of angles of
each polygon, each angle is equal to
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n x 3 right angles — 4 right angles
p (267).
Hence the polygons are mutually equiangular, and have their corres
ponding sides proportional ; that is, they are similar. . E. D.

PROPOSITION IX.

381. Theorem.—The corresponding diagonals of reg-
ular polygons of the same number of sides are in the same
ratio as the sides of the polygons.

[Let the student give the demonstration.]

PROPOSITION X.

382. Theorem.—The radii of the circumscribed, and
also of the inscribed circles, of regular polygons of the same
number of sides, are in the same ratio as the sides of the
polygdons.

DEMONSTRATION.

Fig. 189.

Let ABCDEF and abcdef be two regular polygons of the same num-
ber of sides, and B and » be the radii of their circumscribed ciroles,
and R’ and 7' of their inscribed.

AF FE R R

We are to prove that 7 (_F’ etc.) =3=7
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Let O and O’ be the centres of the polygons, and draw OA, OF, 0a,
and O, and also the apothems Ol and 0'i.
OA=R, and Oa=7r (?);
also Ol=R, and O0i=7 (3.
Now the triangles AFO and qf0' are equiangular (?), and hence
similar.
AF/( FE 0A
Therefore, ?(_ﬁ,e .)_m_;.
Again, the triangles A0 and ai0’ are mutually equiangular (?), and
hence similar.

Q. E.D.

AI_or1.
ai~ 0%’
whence, doubling the terms of the first ratio, we have

AF(:%/,et .)__OI_I_i' Q. E. D.

Therefore,

af o
383. Homologous Altitudes in similar triangles are

perpendiculars les fall from the vertices of equal angles upon the
sides opposite.

384. Homologous Diagonals in similar polygons are
diagonals joining the vertices of corresponding equal angles.

PROPOSITION XI.

885. Theorem.—Homologous altitudes in similar tri-
angles have the same ratio as the homologous sides.
[Let the student give the demonstration.]

PROPOSITION XII.

386. Theorem.—The bisectors of equal angles of simi-
lar triangles are to each other as the homologous sides of
the triangles, hence as the homologous perpendiculars.

[Let the student give the demonstration. ]
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PROPOSITION XIII.
387. Theorem.—Homologous diagonals in similar
polygons have the same ratio as the homologous sides.

DEMONSTRATION.

Let ABCDEFG and abcdefg be two similar polygons, having angle
A =anglea, B =0, C = c, eto.

o Fig. 190,
We are to prove that ;
AC AD AB
E’ or E y ete. = Fb- »

the ratio L being the ratio of any two homologous sides of the polygons.
'I‘he tnangles ABC and abe are similar (?), and hence
AC _AB,
ac ab
Also, since triangle ABC is similar to abe,
angle BCA = angle beq,

and subtracting these respectively from the equal angles (?) BCD and bed,
we have
angle ACD = angle acd.
Hence the two triangles ACD and acd have an angle in each equal
and the including sides proportional (?), and are consequently similar, -

AD AC AB
Therefore dw= B



SIMILARITY. 17
In like manner, any homologous diagonals may be shown to have the

ratio AaTB’ which is the ratio of any two homologous sides. Q. E.D.

388. COROLLARY 1.—A4ny two similar polygons are di-
vided by their homologous diagonals into an equal number
of similar triangles similarly placed.

389. CoroLLARY 2.—Conversely, Two polygons which can
be divided by diagonalsinto the same number of mutually
similar triangles, similarly placed, are simila .

N PROPOSITION XIV.
890. Theorem.—Circles are similar figures.

. DEMONSTRATION.
Let Oa and OA be the radii of any two ciroles.

Place the circles so that they shall be con-
centric, as in the figure. Inscribe the regular
hexagons, as abedef, ABCDEF.

Conceive the arcs AB, BC, etc., of the outer
circumference bisected, and the regular do-
decagon inscribed, and also the corresponding
regular dodecagon in the inner circumference.

These are similar figures by (380).

Now, as the process of bisecting the arcs
of the exterior circumference can be conceived
as indefinitely repeated, and the corresponding regular polygons as in-
scribed in each circle, the circles may be considered as regular polygons
of the same number of sides, and hence similar. Q. E. p.

Fig. 191.

391. CoroLLARY.—Sectors which correspond to equal
angles at the centre are similar figures.

Since a radius is perpendicular to the circumference of its circle, such
sectors are mutually equiangular; and by the proposition it is evident
that the arcs are to each other as the radii. '

arcfe _ Of
" arcFE~ OF’ .

ScroLrum.—The circle is said to be the limit of the inscribed polygon,

and the circumference the limit of the perimeter. By this is. meant-that

te
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a8 the number of the sides of the inscribed polygon is increased it ap-
proaches nearer and nearer to equality with the circle. The apothem
approaches equality with the radius, and hence has the radius for its
limit.

PROPOSITION XV.

392. Problem.—7o divide a given line into parts
which shall be proportional to several given lines.

SoLUTION. ¥

) Let it be.required to divide OP into parts pro-
portional to the lines A, B, C, and D.

Draw ON making any convenient angle with
OP, and on it lay off A, B, C, and D, in succession,
terminating at M.

Join M with the extremity P, and draw par-
allels to MP through the other points of division.

Then by reason of the parallels we shall have

A:B:C:D :: a:b:c:d (369

Fig. 192

'898. The notation A:B:C:D :: a:b:c:d is of such frequent
oocurrence in mathematical writing that we feel constrained to retain it
It means that the successive ratios

A B C

B ’ c A D ’
are equal to the successive ratios

a b ¢

Ve’ @

We may read the expression thus: “The successive ratios A to B,
B to C, C to D = the successive ratiosatod dtoe, ¢ to d.) It does not
mean that the ratio A to B = B to C, etc.

* Hereafter we shall change somewhat the style of our demonstrations,
from the elementary form hitherto used to the more common and free form
used by writers generally. In the “Solution” of a problem we shall here-
after usually include the *“ Demonstration of the Solution.”
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PROPOSITION XVI.
394, Problem.—70 find a fourth proportional to three

diven lines.

SoLUTION.

Let it be required to find D, a fourth proportional to the lines A, B,

A_
8=

Q0

and C, so that we shall have

From some point O, draw two
indefinite lines OX, OY. Lay off on
0X, 0a = A, and Oc = B. Also, on
OY lay off 0b = C, and draw ab.
Through ¢ draw ecd parallel to ab.
Then is Od the fourth proportional,
D, which was sought.

For, since ab and cd are parallel,
we have, by (368),

Oa (or A) _ 0b (or C)
Oc (orB)  0d(orD)

Hence D is the fourth proportional sought.

Fig. 193.

895. SceorruM.—In speaking of the fourth proportional to three
given lines, it is necessary that the order in which the three are to occur
be specified. This order is usually understood to be that in which the
lines are named. Thus, a fourth proportional to A, B, and C,is D, as
found above. But a fourth proportional to B, A, and C is quite a differ-

ent line from D.

PROPOSITION XVII.

396. Problem.—7o find a third proportional to two

Ziven lines.

SoLuTION.

Let A and B be the two given lines,
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We are to find & third proportional,

2, such that
B

B =z

The usual solution is the same as the
last, C being equal to B. [Let the stu-
dent execute it.] Fig. 194,

ANOTHER SOLUTION.

Let A and B be the two lines.

Draw an indefinite line AM, and take
AD = A.

At D erect a perpendicular BD and
make it equal to B.

Join A and B, and bisect it by the per-
pendicular ON.

NO will intersect AM ; since, as A is less Fig. 195.
than a right angle (?), the sum of the two angles ONA and OAN is less
than two right angles (129).

From O as a centre, with OA as a radius, describe a semi-circumfer.
ence. It will pass through B (?).

AD (or A) _ BD (or B)

Now BD (or B) — DC (or 2) "

- Hence, CD = z, the required third proportional.

PROPOSITION XVIII.

397. Problem.—7o find a mean proportional between
two given lines.

SoLuTION.
Let it be required to find a mean

proportional, a, between M and N, so

that
M_
.=

28

or z=VMxIV_.
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Draw an indefinite iine; and on it lay off AD = M, and DB = N. On
AB as a diameter draw a semi-circamference, and erect DC perpendicular
to AB. Then CD = z, the mean proportional required.

[Let the student give the proof.]

PROPOSITION XIX.

398. Problem.—7o construct a square equivalent to «
Siven triangle.

Find a mean proportional between the altitude and half the base. On
this construct a square. ' '
[Let the student execute the problem and demonstrate it.]

EXERCISES.

399. 1. Draw any line, and divide it into 3, 5, 8, or 10 equal
parts.

2. Draw any line and divide it into parts which shall be to
each other as 2, 3, and 5.

3. Construct the square root of 7, 11, 2.

Fig. 197 will suggest the construction
of 4/T. ‘ ‘

4. The diameter of a circle is 20.
What is the perpendicular distance to
the circumference from a point in
the diameter 15 from one extremity ? -
What are the distances from the point where this perpendicular
meets the circumference to the extremities of the diameter ?

5. The sides of one triangle are 7, 9, and 11. The side of a
second similar triangle, homologous with side 9, is 4§. What
are the other sides of the latter?
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6. DE being parallel to BC, prove that the tri-
angles DOE and BOC are similar, and hence that
oD _ ok
0oC ~ OB
Are the following proportions true ?
oD _OE 0D _00
0C OB’ DE BC’
0D_o0C 0B _OE
OE “BC’ BC DE Fig. 198.
7. Draw any triangle or polygon, and then construct a similar
one whose homologous sides shall be £ as long.

8. Show that if ABCDEF is a regular
polygon, Abcdef is also regular, be, cd, ete.,
being parallel to BC, CD, etc. Show that
any two similar polygons may be placed
in similar relative positions, and hence
show that the corresponding diagonals are

in the same ratio as the homologous sides.
Fig. 199,

PROPOSITIONS FOR ORIGINAL INVES-
TIGATION.

400. 1. If two straight lines join
the alternate ends of two parallels,
the line joining their centres is half
the difference of the parallels.

‘We are to prove that

EF = }(CD — AB).
$CH = EF = } (CD — AB).

2. To construct a square equivalent to a given polygon.

First reduce the polygon to a triangle (339). Then construct an
equivalent square (398).
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8. The area of a regular inscribed dodecagon is three
times the square on the radius.

4. If the sides of a quadrilateral be divided into m
equal parts,and the nt® points of division, reckoning from
two opposite vertices, be joined sv as to form a quadri-
lateral, the quadrilateral will be a parallelogram.

Fig 201.

5. The line drawn from the vertex of the right angle
of a right-angled triangle to the middle of the hypotenuse
is half the hypotenuse.

Prove from either figure.

6. In any triangle the rectangle of two sides is equiva-
lent to the rectangle of the perpendicular
let fall from their included angle upon the
third side, into the diameter of the circum-
scribed circle.

This proposition is an immediate consequence of
the similarity of two triangles in the figure, Fig. 202.
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N SECTION X1,
APPLICATIONS OF THE DOCTRINE OF SIMILARITY TO

- THE DEVELOPMENT OF GEOMETRICAL PROPERTIES
OF FIGURES.

401. The doctrine of similarity, as presented in the preceding
section, is the chief reliance for the development of the geomet-
rical properties of figures. This section will be devoted to the
investigation of a few of the more elementary properties of plane
figures, which we are able to discover by means of this doctrine.

OF THE RELATIONS

OF THE SEGMENTS OF TWO LINESINTERSECT~
ING EACH OTHER, AND INTERSECTED BY A
CIRCUMFERENCE.

PROPOSITION I.

402. Theorem.—If two chords intersect each other in
a circle, their segments are reciprocally proportional;
whence the product of the segments of one chord equals
the product of the segments of the other.

DEMONSTRATION.
Let the chords AC and BD (Fig. 203) intersect at O,

OB _ OC
‘We are to prove that OA = 0D’

whence 0B x 0D = 0Ax0C.
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Draw AD and BC.
The two triangles AOD and BOC are simi-
lar (9).
. 0B _oOC
Honce, OA = 0D’
whence 0OBx0OD = 0Ax0C. Q.E.D,

QUERIES.—Why is OB compared with QA%
Why OC with OD? Would AO: CO :: BO: DO '
be true? Would AO: DO :: BO : CO? What is the force of the word
“reciprocally,” as used in the proposition ?

PROPOSITION II.

403. Theorem.—If from a point without a, circle, two
secants are drawn terminating in the concave are, the whole
secants are reciprocally proportional to their external seg-
ments; whence the product of one secant into its external
segment equals the product of the other into its external
segment.

DEMONSTRATION.

Let OA and OB be two secants intersecting the circumference in D
and C respectively.

‘We are to prove
08 _ 00
OA~ oOC’
whence, 0B x OC = OA x OD.

Draw AC and BD.
The two triangles AOC and BOD are simi-
lar (7).

Hence, 0B_ 0D

OA —OC’
whence, OBx0C = 0AxO0D. Q.E.D.

QuERIEs.—Same as under preceding demonstration.
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PROPOSITION III.

404. Theorem.—If from a point without a circle a
tangent is drawn, and a secant terminating in the con-
cave arc, the tangent is a mean proportional between the
whole secant and its external segment ; whence the square
of the tangent equals the product of the secant into its
external segment.

DEMONSTRATION.,

Let OA be a tangent and OB a secant interseoting the circumference
in C.

‘We are to prove that
0B _OA,
OA ~ 0C’
whence, 0Bx0C = OA".

Draw AC and AB.

The two triangles AOB and AOC are simi.
lar, since angle 0 is common, and angle OAC =
angle B (7).

Fig. 208.

OB OA
Hence, A = oc’
whence, 0Bx0C = OA> Q. E. D.

OF THE BISECTOR OF AN ANGLE OF
A TRIANGLE.

PROPOSITION 1IV.

405. Theorem.—A line which bisects any angle of a
triangle divides the opposite side into segments propor-
tional to the adjacent sides.

DEMONSTRATION.
In the triangle ABC (Fig. 206) let CD bisect the angle ACB,
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AD _ Ac*
DB~ CB
Draw BE parallel to CD, and produce it
till it meets AC produced in E.
By reason of the parallels CD and EB,
angle ACD = AEB,

Then is

and DCB = CBE.
. Fig. 206.
But, by hypothesis, ACD = DCB.
Therefore, AEB (or CEB) = CBE,
and CE = CB ().
AD AC
Hence, finally, DB = CE (= CB) (368). Q.E.D.

PROPOSITION V.

-408. Theorem.—If a lire is drawn from any vertex
of a triangle bisecting the exterior angle and intersecting
the opposite side produced, the distances from the other
vertices to thisintersection are proportional to the adjacent
sides.

DEMONSTRATION.
Let CD bisect the exterior angle BCF of the triangle ACB.
. AD _AC
Then is 8D = CB'

For, draw BE parallel to AC.
By reason of these parallels,

angle FCE = CEB,
and BCE = FCE, by hypothesis.

Hence, CEB = BCE,
and CB = BE.
Also, by reason of the similar triangles ACD and BED,
AD AC

BD “BE@rcB) Y&

* See note at the bottom of p. 178.
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PROPOSITION VI.

407. Theorem.—If a line is drawn bisecting any
angle of a triangle and intersecting the opposite side, the
product of the sides about the bisected angle equals the
product of the segments of the third side, plus the square
of the bisector.

DEMONSTRATION.

In the triangle ACB; let CD bisect the angle
ACB. .

Then ACxCB = ADx DB + CD".

For, circumscribe the circle about the trian-
gle, produce the bisector till it meets the circum-
ference at E, and draw EB. The triangles ADC
and CBE are similar, since angle ACD = ECB, by
hypothesis, and A = E, because each is measured

Ly # arc CB.
AC CD
Therefore, ﬁ = c~B,
‘whence, ACxCB = CE xCD = (DE + CD) CD
= DExCD + CD".

For DE x CD, substituting its equivalent AD x DB (402), we have
ACxCB = ADxDB + CD*. Q. E.D.

-AREAS OF SIMILAR FIGURES.

PROPOSITION VII.

408. Theorem.—ﬂw areas of similar triangles are to
each other as the squares described on their homologous
sides.

DEMONSTRATION.

Let ABC and EFG be two similar triangles, the homologous sides
being AB and EF, BC and FG, and AC and EG,
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Then is
area ABC AC® AB®

area EFG EG! EF? FG

From the greatest * angle in each tri-
angle let fall a perpendicular upon the
opposite side. Let these perpendiculars

be BD and FH.
BD _AC

Now FA=EG "
. AC _AC
and 4EG " EG

Multiplying the corresponding ratios
together, we have . ;

JACxBD _ AO c.
1EGxFH ~ E@ b
™
But $AC x BD = area ABC, T
| -
and $EG x FH = area EFG (7). {
: area ABC _ AC’ '
Hence, area EFG  Eg°
) AC’ _AB' _BC _
And, finally, as e EF o ®, ; L
e
o have warBC _AC_AE_BC .~
area EFG ~ EG’  EF FG e % D. !

PROPOSITION VIII.

409. Theorem.—7%e areas of similar polygons are to
each other as the squares of any two homologous sides of*
the polygons.

* The only object in taking the largest angles is to make the perpendic-
ular fall within the triangle. The demonstration is essentially the same
when the perpendiculars fall upon the opposite sides preduced.
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DEMONSTRATION.

Let ABCDEF and abedef be two similar polygons, the homologous
sldes being AB and «b, BC and bc, CD and cd, DE and de, EF and ¢f,
FA and fa.

Let area ABCDEF = P,
and area abedef = 2.

Then is
P _BC
v

or as the squares of any two
homologous sides.
Draw the homologous di-
agonals AC, AD, AE, and ac, ad, and ae, dividing the polygons into the
similar triangles M and m, N and n, 0 and o. and S and s (388).

1]
Now M=E_ET ,
m fe
N_ED’
n
o_nbc
o &’
s_G8
s g
Ant 2 =Rt ==
ch dc Je
whence, M='_“-_-2=§.
- m-n_ o 8

Taking this by composition, we have
M+N+0+S _P_M_CB

mintots  p m g

Yyt
And as the ratio E_BT is the same as that of the squares of any two
cb

homologous sides, P and p are to each other as the squares of any two
homologous sides,
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Finally, as this argument can be extended to the case of any two
similar polygons, the areas of any two similar polygors are to each other
as the squares of any two homologous sides of the polygons. Q.E.D.

410. CorOLLABY 1.—Similar polygons* are to eweh other
as the squares of their corresponding diagonala.

In the demonstration we have

By (388, 408) we have

H ==,
ence iy ete.

411. CoROLLARY 2.—Regular polygons* of the same
number of sides are to each other as the squares of their
homologous sides. [They are similar figures (?)].

412. CorOLLARY 3.—Regular polygons of the same num-
ber of sides are to each other as the squares of their
apothems.

For their apothems are to each other as their sides. Hence the
squares of their apothems are to esch other as the squares of their sides,

413. CoroLLARY 4.—Circles are to each other as the
squares of their radii (390), and as the squares of their
diameters.

OF PERIMETERS AND THE RECTIFI-
CATION OF THE CIRCUMFERENCE.

414. The Rectification of a curve is the process of find-
ing its length.

The term rectification signifies making straight, and is applied as
above, under the conception that the process consistsin finding a straight
line equal in length to the curve.

* This is a common elliptical form for “ The areas of, etc.”
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PROPOSITION IX.

415. Theorem.—The perimeters of similar polygons
are to each other as their homologous sides, and as their
corresponding diagonals.

DEMONSTRATION.

Let @, b, c, d, etc., and A, B, C, D, etc., be the homologous sides of
two similar polygons whose perimeters are p and P.

p_a_b>b_c¢ .
Then P_A_B_c’ew"
and 7 and R being corresponding diagonals,
p_T,
P R

“ Bj composition,
a+bd+c+d+ete. (orp) _a
A+B+C+D+etc. orP) ~ A

or as any other homologous sides. Also, as the homologous sides are to
each other as the corresponding diagonals (387),

,
g:—n- Q E.D.

416. CoROLLARY 1.—The perimeters of regular polysons
of the same number of sides are to each other as the apo-
thems of the polygons (382).

417. CorROLLARY 2.—The circumjferences of circles are
to each other as their radii, and as their diameters (390).

PROPOSITION X.

418. Problem.—7o0 find the relation between the

chord of an arc and, the chord of half the are in a circlg
whose radius is 1.
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SoLuTION.

Let O be the centre of the circle, AB any chord, and CB the chord

of half the arc AB.
Let AB=C, and CB =c.

We are to find the relation between C and o.
Draw the radii CO and BO, and call each 7,
CO is perpendicular to AB (?).

In the right-angled triangle BDO,

Do = VB0 — 10" (),
or DO = /7 — 10,
Hence, CD =r—4/r*—10°

Again, in the right-angled triangle CDB,

cB = VCD' + BD'
=V = V=T 4100
=Y/ 2 = ary/F =10

| =1/2r‘—r1/m—'.

Therefore, ¢ = 1/2; — r4/4r* — 0? is the relation desired.

419, ScroLruM.—The formula

e=4Y 2 —ry/ir = C7

is the value of the chord of half the arc in terms of the chord of the
whole arc and the radius. From this we readily obtain

0=;q/4r’—c’:

which is the value of the chord in terms of the chord of half the arc and
the radius. :
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PROPOSITION XI.

420. Theorem.—The circumference of a circle whose
radius is 1, is 2n, the numerical value of m being approxi-
mately 3.1416.

DEMONSTRATION.

‘We will approximate the circumference of a
circle whose radius is 1, by obtaining, 1st, the
perimeter of the'regular inscribed hexagon; 2d,
the perimeter of the regular inscribed dodeca-
gon; 3d, the perimeter of the regular inscribed
polygon of 24 sides; then of 48, etc.

By varying the polygon in this manner, it is
evident that the perimeter approaches the cir-
cumference as its limit (282, 354), since at each
bisection the sum of two sides of a triangle is substituted for the third
side, Moreover, the perimeter can never pass the circumference, since a
chord is always less than its arc.

Fig. 212,

Now let AB = = (!) = 1 be the side of the inscribed hexagon. Then
by the formula (418), we have

CB=c=% 2—4/4—1 = .51768809,

which is therefore the side of a regular dodecagon. Hence the perimeter
of the dodecagon is

561763809 x 12 = 6.21165708.

Again, let the side of the inscribed regular polygon of 24 sides be ¢,
and we have

d = 1/ 2—i—¢= 1/ 2 — 4/4 — (51763809)! = .26105288;
and the perimeter,  .26105238 x 24 = 6.26525722.

Carrying the computation forward in this manner, we have the fol.
lowing :
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It now appears that the first four decimal figures do not change as
the number of sides is increased, but will remain the same Aow far socver
we proceed. 'When the foregoing process is continued till 5§ decimals be-
come constant, we have 6.28318+. We may therefore consider 6.28318
a8 approzimately the circumference of a circle whose radius is 1,

Hence, letting 2= stand for the circumference, we have
2« = 6.28818 +,
and « = 8.1416, nearly. Q E.D.

421. ScEoLruM.—The symbol = is much wsed in mathematics, and
signifies, primarily, the semi-circumference of a cirde whese radius is 1.
3~ is therefore a symbol for a quadrant, 90°, or a right engle. F« is
equivalent to 45° and 2= to a circumference, the radius being alwsys
supposed 1, unless statement is made to the contrary. The numerical
value of 7 has been sought in a great variety of ways, all of which agree
in the conclusion that it cannot be exactly expressed in decimal numbers,
but is approximately as given in the proposition. From the time of
Archimedes (287 B.c.) to the present, much ingenious labor has been
bestowed upon this problem. The most expeditious and elegant methods
of approximation are furnished by the Calculus. The following is the
value of = extended to fifteen places of decimals: 8.141592653589798.

PROPOSITION XII.

422. Theorem.—The circumference of any circle is
27r, r being the radius.

DEMONSTRATION.

The circumferences of circles being to each other as their radii (417),
and 2 being the circumference of a circle whose radius is 1, we have

2 _ 1.
ciref. ~ r
whence, ciref. = 2. Q.E.D.

423. CoROLLARY.—The circumference of any circle is
nD, D being the diameter.
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AREA OF THE CIRCLE.

PROPOSITION XIII.

424. Theorem.—7The area of a circle whose radius
isl,ism.
DEMONSTRATION.
The srea of a circle is §r x circf. (356). When r = 1,
' ciref. = 2= (420); '
kence, area of circle whose radiusis 1 = } x%r = =. Q. E. D

PROPOSITION XIV.

425. Theorem.—ﬂw area of any circle is -rrr2 r bemg
the radius.
DEMONSTRATION.

The areas of circIe s being to ehch other as the squares of their radii
(413), and = being the area of a circle whose radius is 1, we have
. v
area of any circle ~ 7%’

whence, area of any circle = 7%, Q.E.D.

426. ScmoLruM 1.—S8ince the area of a sector is to the area of the

circle of the same radius as its angle is to 4 right angles (359), if we

]
represent the angle of the sector by a°, we have for its area ag’; J .

427. ScaoLIoM 2.—As the value of « cannot be exactly expressed in
numbers, it follows that the area cannot. Finding the area of a circle has
long been known as the problem of “Squaring the Circle;” i.e., find-.
ing a square equal in area to a circle of given radius. Doubtless many
hare-brained visionaries or ignoramuses will still continue the chase after
the phantom, although it has long age been demonstrated that the diam-
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eter of a circle and its circumnference are incommensurable by any finite
-unit. It is, however, an easy matter to conceive a square of the same
area as any given circle. Thus, let there be a rectangle whose base is
equal to the circumference of the circle, and whose altitude is half the
radius; its area is exactly equal to the area of the circle. Now, let there
be a square whose side is 4 mean proportional between the altitude and
base of this rectangle; the area of the square is exactly equal to the area
of the circle.

PROPOSITION XV.

428. Theorem.—If a perpendicular is let fall from
any angle of a triangle upon the opposite side (or on the
side produced ), the difference of the squares of the segments
i8 equivalent to the difference of the squares of the other
two sides.

DEMONSTRATION.

~ Let ABC be any triangle, and CD be the perpendicular let fall from
€ upon AB (or AB produced). Call the sides opposite the angles
A, B, and C, a, b, and ¢, respeotively; and let the segment BD = m,
AD = n, and CD = p.
Then is m'—a®= a*—b"
For, from the right-angled tri-
angle BCD,
a*—m? =p*.
Also, from CDA,
b—n? = p:,

Fig. 213,
‘Whence, a'—m? = B —1n?,

or m?=n?=a’— 3. Q.B.D.

429, CoroLLARY.—Since
m* —n* = (m + n) (m — n),
and a*—b’ = (@ + b) (a — D),

m+mnre) _ a—>

We-hay a4bd m—n
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430. Scmorrum.—In case the perpendicular falls without, the dis-
tances BD and AD are still, for simplicity of expression, spoken of a3
segments.

431. A line is said to be divided in Extreme and
Mean Ratio when it is so divided that the whole line is to the
greater segment as the greater segment is to the less, . e, when
the greater segment is a mean proportional between the whole
line and the less segment.

PROPOSITION XVI.

432. Problem.—7To divide a line in extreme and
mean ratio.

SOLUTION.

Let it be proposed to divide the line AB in extreme and mean ratio,
1. e., C being the point of division, so that

AB _AC
AC ~ CB’
At one extremity of AB, as B, erect a
" perpendicular BO, and make it equal to
$AB.
From O as a centre, with OB as a ra-
dius, describe a circle.
Draw AO, cutting the circumference
in D.
Then is AD the greater segment, and taking AC = AD, AB is divided
in extreme and mean ratio at C.

Fig. 2i4.

DEMONSTRATION OF SOLUTION,
Produce AO to E.

AE AB
Now AB = AD ®),
or, by inversion, ‘AB _ AD

AE ~ AB
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By division, we have
AB ____AD
AE—AB~ AB—AD

But, as DE = AB (3),
AE — AB = AE — DE = AD =: AC;
and AB — AD = AB — AC = CB.

ABI _ AC
A—c—c—s' Q. E. D,

Hence, substituting,

PROPOSITION XVII.

433. Problem.—7o inscribe a regular decagon in a
circle, and hence a regular pentagon, and regular polygons
of 20, 40, 80, etc., sides.

SoruTION,

Let it be required to inscribe a regular decagon in the circle whose
centre is O and radius OA,

Divide the radius OA in
extreme and mean ratio, as
at (@). .
Then is as, the greater
segment, the side of the in-
scribed decagon, ABCDE,
ete.
To prove this, draw OA
and OB, and taking OM =
ac = AB, draw BM. -

Now 0A _ oM by constructions and, as OM = AB, we have

oM~ MA’
OA _AB
AB ~ MA

Hence, considering the antecedents as belonging to the triangle OAB,
and the consequents to the triangle BAM, we ohserve that the two sides
about the angle A, which is common to both triangles, are proportional;
hence the triangles are similar (378).
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Therefore, ABM is isosceles, since OAB is, and
angle BMA = A = OBA,
and _ MB = BA = OM.
. This makes OMB also isosceles, and
" the angle O = OBM.

Again, the exterior angle BMA = O + OBM = 20;
hence, A (which equals BMA) = 20.

Hence, also, OBA (which equals A) = 20.

Wherefore, O is } the sum of the angles of the triangle OAB, or } of
2 right angles, = 4 of 4 right angles.

The arc AB is therefore the measure of ; of 4 right angles, and is
consequently 5 of the circumference. Hence AB is the chord of % of
the circumference, and if applied, as AB, BC, CD, DE, etc., will give an
equilateral inscribed decagon.

Moreover this inscribed polygon is equiangular, and hence regular
by (272).

To construct the pentagon, join the alternate angles of the decagon.
To construct the regular polygon of 20 sides, bisect the arcs subtended
by the sides of the decagon, etc.

MISCELLANEOUS EXERCISES.

434. 1. Show that if a chord of a circle is conceived to re-
volve, varying in length as it revolves, so as to keep its extremities
in the circumference while it constantly passes through a ﬁxed
point, the rectangle of its segments remains constant.

2. The two segments of a chord intersected by another chord
are 6 and 4, and one segment of the other chord is 8. What is
the other segment of the latter chord ?

3. Show how Propositions I, II, and III may be consldered as
different cases of one and the same proposition. .

SuaersTIONs.—By stating Propositions I and II thus, The distances
from the intersection of the lines to their intersections with the circumference,
what follows? In Fig. 204, if the secant AO becomes a tnngent., wlut
does OD become ?
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4. In a triangle whose sides are 48, 36, and 50, where-do the
bisectors of the angles intersect the sides ?

5. In the last example, find the lengths of the bisectors.

6. A and B have farms of similar shape, with their homolo-
gous sides on the same road. A’s is 150 rods on the road, and
B’s 200 rods. How does A’s farm compare with B’s in size ?

7. Draw two similar triangles with their homologous sides in
the ratio of 3 to 5, and divide them into equal partial triangles,
showing that their areas are as 32 to 52, that is, as 9 to 25.

8. What are the relative capacities of a 5-inch and a 7-inch
stove-pipe ? ‘

‘9. If a circle whose radius is 24 is divided into 5 equal parts
by concentric circumferences, what are the diameters of the sev-
eral circles ?

Solve geometrically as well as numerically.

'10. The projection of one line upon anotherin the same plane
is the distance between the feet of two perpendiculars let fall
from the extremities of the former upon the latter. Show that
this projection is equal to the square root of the difference be-
tween the square of the line and the square of the difference of
the perpendiculars.

11. The three sides of a triangle being 4, 5, and 6, find the
-segments of the last side made by a perpendicular from the op-
posite angle. Ans. 3.15 and 2.25.

12. Same as above, when the sides are 10, 4, and 7, and the
perpendicular is let fall from the angle included by the sides 10
and 4. Draw the figure. Why is one of the segments negative ?

-13. What is the area of a regular octagon inscribed in a circle
whose radins is 1? What is its perimeter? What if the radius
4ig 107 '

14. What is the side of an equilateral triangle inscribed in a
circle whose radius is 12
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15. "'What is the side of a regular inscribed decagon in a circle
whose radius is 4?7 What the side of the inseribed pentagon?
‘What is the area of each ?

16. Draw two squares, and construct two others, one equal to
their sum, and the other to their difference. '

17. Draw any two polygons, and construct two squares, one
equivalent to their sum, and the other equivalent to their differ-
ence.
nr
180°
and hence that the lengths of degrees in different circles are to
each other as the radii of the circles.

18. Show that the length of a degree in anjy circle is

19. What is the length of a minute on a circle whose radius
is 10 miles ?

20. Calling the equatorial radius of the earth 3962.8 miles,
what is the length of a degree on the equator?

21. How many degrees in the arc of a circle which is equal in
length to the radius?

22. Compute the area of the triangle whose sides are 20, 30,
and 40.

Find the segments of the base (40) by (428). Hence the perpendic-
ular. :

23. Given the side of a regular inscribed pentagon, as 16, to
find the side of the similar circumseribed polygon.

24. Prove that if a triangle is circumscribed about a given
triangle by drawing lines through the vertices of the given tri-
angle and parallel to the opposite sides, the area of the circum-
scribed triangle is four times that of the given triangle.

25. Prove that the bisectors of the angles of a triangle pass
through a common point.

26. Prove that the perpendiculars to the three sides of a tri-
sngle at their middle points pass through a common point.
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27. The three perpendiculars drawn from the angles of a tri-
angle upon the opposite sides intersect in a common point.

Draw through the vertices of the
triangle lines parallel to the opposite
sides. The proposition may then be
brought under the preceding.

28. The following triangles are
similar—viz., BOE, BDC, AOD, and
AEC, each to each ; also BOF, BDA,
DOC, and CFA. Prove it.

435. The Medial Lines in a triangle are the lines drawn
from the vertices to the middle points of the opposite sides.

29. The three medial lines of a triangle mutually trisect each
other, and hence intersect in a common point.

To prove that OE = }BE (Fig. 217), draw FC parallel to AD until it
meets BE produced. Then the triangles AEO and FEC are equal (%)
whence

EF = OE.
Also, BO = OF (%).
Having shown that
OE = {BE,
by a similar construction we can show that
0D = }AD.

Finally, we may show that the medial line
from C to AB cuts off } of BE, and hence cuts BE

at the same point as does AD. Fig. 217.

ANoTHER DEMONSTRATION.—Lines through O parallel to the sides

trisect the sides, etc.

8tLL ANoTHER.—Without EF and FC, draw ED, and prove by simi-
lar triangles,



+ CHAPTER II
SOLID GEOMETRYs

o

SECTINN 1.
OF STRAIGHT LINES AND PLANES.

436. Solid Geometry is that department of Geometry
in which the magnitudes treated are not limited to a single
plane.

437. A Plane (or a Plane Surface) is a surface such
that a straight line joining any two points in it lies wholly in the
surface.

PLANE, HOW DETERMINED.

438. A plane is said to be Determined by given conditions
which fix its position.

All planes are considered as indefinite in extent, unless the
contrary is stated.

* In some respects, perhaps, ‘“ Geometry of Space” is preferable to this
term; but, as neither is free from objections, and as this has the advantage
of simplicity and long use, the author prefers to retain it.
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PROPOSITION I.

439. Theorem.—Three points not in the same straight
line determine a plane.

DEMONSTRATION.

Let A, B, and C be three points not in the same straight line.

Then one plane can be passed through
them, and only one; 4. e., they determine the
position of a plane.

For, pass a straight line through any two of
these points, as A and B. Now, conceive any
plane containing these two points; then will the
line passing through them lie wholly in the
plane (437). Conceive this plane to revolve on Fig. 218.
the line as an axis until the point C falls in the plane. Thus we have one
plane passed through the three points.

That there can be only one is evident, since when C falls in the plane,
if the plane be revolved either way, C will not be in it. The same may
be shown by first passing a plane through B and C, or A and C. There
is, therefore, only one position of the plane in which it will contain the
third point. Q. E.D.

440. CoROLLARY 1.—A4 line and a point without it de-
termine a plane.

441. CoROLLARY 2.—Through one line, or two points, an
infinite number of planes can be passed.

442. CoROLLARY 3.—The intersection of two planes is a
straight line.

For two planes cannot have even three points, not in the same straight
line, common, much less an indefinite number, which would be required
if we conceived the intersection (that is, the common points) to be in any
other than a straight line.

443. The Trace of one plane in another is their intersection.
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PROPOSITION II.

444, Theorem.—Two intersecting lines determine the
position of a plane.

DEMONSTRATION.

For, the point of intersection may be taken as one of the three points
requisite to determine the position of a plane, and any two other points,
one in each of the lines, as the other two requisite points. Now, the
plane passing through these points contains both the lines, for it contains
two points in each. Q. E. D.

PROPOSITION III.

445. Theorem.—Two parallel lines determine the po-
sition of a plane.
DEMONSTRATION.

For, pass a plane through one of the parallels, and conceive it revolved
until it contains some point of the second parallel. Now, if the plane be
revolved either way from this position, the point will be left without it.
Hence, it is the only plane containing the first parallel and this point in
the second.

But parallels lie in the same plane (120, 121), whence the plane of the
parallels must contain the first line and the specified point in the second.

Therefore, the plane containing the first line and a point in the second
is the plane of the parallels, and is fixed in position. Q.E.D.

446. ScroLrum.—When a plane is determined Ly two lines, accord-
ing to either of the last two propositions, it is spoken of as the Plane of
the Lines. In like manner, we may speak of the Plane of Three Points.

RELATIVE POSITION OF A LINE AND
A PLANE.

447. A line may have one of three positions in relation to a
plane: (¢) It may be perpendicular, (b) oblique, or (c) parallel.
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OF LINES PERPENDICULAR TO A PLANE.

448. A line is said to Pierce a plane at the point where it
passes through it.

449. The point where a perpendicular meets, or pierces, a
plane is called its Foot.

450. A Perpendicular to a Plane is a line which is
perpendicular to all lines of the plane passing through its foot,
and hence to every line of the plane. Conversely, the plane is
perpendicular to the line.

451. The Distance of a point from a plane is the length
of the perpendicular let fall from the point upon the plane.

PROPOSITION 1IV.

452. Theorem.—A line which is perpendicular to two
lines of @ plane, at their intersection, is perpendicular to
the plane.

‘ DEMONSTRATION.

Let PD be perpendicular to AB and CF at D,

Then is it perpendicular to MN, the
plane of the lines AB and CF.

Let 0Q be ‘any other line of the
plane MN, passing through D. Draw
FB intersecting the three lines AB, CF,
and OQ in B, E, and F. Produce PD
to P/, making P'D = PD, and draw PF,
PE, PB, P'F, P'E, P’B.

Thenis PF = P'F,

and PB =PB,
since FD and BD are perpendicular to
PP, and . Fig. 219,

PD =P'D (96).
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Hence, the triangles PFB and P'FB are equal (305); and if PFB be
revolved upon FB till P falls at P/, PE will fall in P’E.

Therefore, 0Q has E equally distant from P and P/, and as D is also
equidistant from the same points, 0Q is perpendicular to PD at D (98).

Now, as 0Q is any line, PD is perpendicular to any line of the plane
passing through its foot, and consequently perpendicular to the plane
(450). Q. E.D.

453. CoROLLARY.—If one of two perpendiculars revolves
about the other as an axis, its path is a plane perpendicu-
lar to the axis, and this plane contains all the perpendicu-
lars to the axis at the common point.

Thus, if AB revolves about PP’ as nn axis, it describes the plane MN,
wnd MN contains all the perpendiculars to PP’ at D. For, if there could
be a perpendicular to P#'at D which did ot lie in the plane M N, there
would be two perpendiculars to PP st B, both lying in the same plane,
which is impossible (88).

PROPOSITION V.

454. Theorem.—JAt any point in a plane one perpen-
dicular can be erected to the plane, and only one.

DEMONSTRATION.

Let it be required to show that one perpendicular, and only one, can
be erected to the plane MN at D.

Through D draw two lines of the plane, as
AB and CE, at right angles to each other. CE
being perpendicular to AB, let a line be con-
ceived as starting from the position ED to re-
volve about AB as an axis. It will remain per-
pendicular to AB (453). Conceive it to have
passed to P’D. Now, as it continues to revolve,
P'DC diminishes continuously, and at the same
rate as P'DE increases; hence, in one position
of the revolving line, and in only one, as PD, PDE = PDC, and PD is
perpendicular to CE (86).

Again, any line which is perpendicular to MN at D is perpendicular

Fig. 220.
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to AB and CE (450). But the plane of the lines PD and DE contams an
lines perpendicular to AB at D. Hence, PD is perpendicular to the plans
(452), and is the only perpendicular. Q. E. D.

PROPOSITION VI.

455. Theorem—From a point without a plane one
perpendicular can be drawn to the plane, and only one.

DEMONSTRATION.

Let it be required to show that one perpendicular can be drawn from
P to the plane MN, and only one.

Take RS as an aux-
iliary plane, and at any
point as C erect DC per-
pendicular to RS.

Now place the plane
RS in coincidence with
MN, and move it in MN
till the perpendicular DC
passes through P.

Then DC, which passes Fig. 221.
through P and is perpen-
dicular to RS, is perpendicular to MN, with which RS 18 coincident.
Q. E. D.

To prove that there can be but one perpendicular from P to MN, sup-
pose that there could be two, as PA and PF,

Draw FA.

Then since FA is a line of the plane, and PF and PA are perpendic-
Jlars to the plane, PFA and PAF are both right angles (%), and the tri-
angle PFA has two right angles, which is absurd. Hence there can be
but one perpendicular from P to MN. Q. E. D.

456. CoROLLARY.—The perpendicular is the shortest line
that can be drawn to a plane from a point without.

Thus, let PA be a perpendicular and PF any oblique line.
PA < PF (?).
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PROPOSITION VII.

457. Theorem.—Conversely to the last, Through a given
point in a line, one plane can be passed perpendicular to
the line, and only one.

DEMONSTRATION.
Let D be the point in the line PG.

Pass two lines through D, as
EF and AB, each perpendicular to
PD; the plane of these linesis per-
pendicular to PD. Q. E. D.

To show that but one plane can
be passed through D perpendicular
to PG, assume that M'N’ is another
plane passing through D, and per-
pendicular to PG, but not contain-
ing BD. Through PD and BD pass
a plane, and let B'D be its intersec-
tion with M'N’. Then, on the Fig. 222.
hypothesis that M’N’ is perpendic-
ular to PG, B'DP is a right angle, and we have two lines in the same
plane with PG, and perpendicular to it at the same point, which is
absurd. Hence there can be but one plane perpendicular to PG and pass-
ing through D. Q.E.D.

PROPOSITION VIII.

458. Theorem.—If from the foot of a perpendicular
to a plane a line is drawn at right angles to any line of
the plane, and their intersection is joined with any point
in the perpendicular, the last line is perpendicular to the
line of the plane.

DEMONSTRATION.
From the foot of the perpendicular PD (Fig. 223) let DE be drawn

perpendicular to AB, any line of the plane MN, and E joined with O, any
point of the perpendicular.
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Then is OE perpendicular to AB.
Take EF = EC, and draw CD, FD, CO, and
FO. Now,
CD = DF (%),
whence CO = FO (?),

and OE has O equally distant from F and C, and
also E. Therefore, OE is perpendicular to AB (%),
Q E.D.

459. COROLLARY.—The line DE measures the shortest
distance between PD and AB.

For a line drawn from E to any other point in PD than D, as Ea, is
longer than DE (?).
" Again, if from any other point in AB, as C, a line be drawn tc D, it is
longer than DE (?); and if drawn from C to-a, any other point in PD
than D, Ca is longer than CD (?), and consequently longer than DE (f).

PROPOSITION IX.

460. Thédréin.—If one of two parallels is perpendic-
ular to a planre, the other is perpendicular also.

DEMONSTRATION.

Let AB be paraliel to CD and perpendicular to the plane MN.

Then is CD perpendicular to MN.

For, drawing BD in the plane MN, it is per-
pendicular to AB (?), and consequently to CD (?).
Through D draw EF in the plane and perpendio-
ular to BD, and join D with any point in AB, as
A; then is EF perpendicularto AD (?).

Now, EF being perpendicular to two lines, AD
and BD, of the plane ABDC, is perpendicular to Fig. 224.
the plane, and hence to any line of the plane passing through D, as CD.
Therefore, CD is perpendicular to BD and EF, and consequently to the
plane MN (). @ E. D
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461. CorOLLARY.—Two lines which are perpendicular
to the same plane are parallel.

Thus, AB and CD being perpendicular to the plane MN are parallel,
For, if AB is not parallel to CD, draw a line through B which shall be,
By the Proposition, this line is perpendicular to MN, and hence must
coincide with AB (454).

PROPOSITION X.

462. Theorem.—Two lines parallel to a third not in
their own plane are parallel to each other.

DEMONSTRATION.

h Let AB and CD be parallel io EF.

Then are they parallel to each other.

For, through F’, any point in EF, pass a plane
MN perpendicular to EF.

Now AB and CD are respectively perpendicu-
lar to MN (%), and hence are parallel to each other

®. ¢ =o. Fig. 225.

OF LINES OBLIQUE TO A PLANE.

463. An Oblique Line is a line which pierces the plane
(if sufficiently produced), but is not perpendicular to the plane.

464. The Projection of a Point on a plane is the foot;
of the perpendicular from the point to the plane.

-465. The Projection of a Line upon a plane is the
locus of the projection of the point which generates the line,
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PROPOSITION XI.

466. Theorem.—The projection of a straight line upon
a plane i3 a straight line. .

DEMONSTRATION.
Let AB be any line and MN the plane upon which it is projected.

Then is the projection of AB in MN
a straight line.
Let P be a point in AB, and D its
projection in MN.
Pass a plane, S, through AB and PD
(444), and let CE be its trace in MN.
Now let P’ be any point in AB
other than P, and let D’ be its projec-
tion in MN.
As PD and P'D’ are perpendicular Fig. 226,
to MN, they are parallel to each other
(461), and a plane may be passed through them (445).
But the plane of PD and P'D’ is S, since it contains PD and P’ (440).
Therefore D’ lies in S, and as it lies in MN, it is in the trace of S in
MN, which trace is a straight line (442).
Hence, as P’ is any point in AB, the projection of every point of AB is
in a straight line. Q. E. D.

467. CoroLLARY.—The projection of a line wpon a plane
is the trace of a plane containing the line and the projec-
tion of any point of the line.

468. The Projecting Plane is the plane of a line and its
projection upon another plane.

469. The Plane of Projection is the plane upon which
a point or a line is projected.

470. The Inclination of a Line to a plane is the angle
included between the line and its projection
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PROPOSITION XII.

471. Theorem.—If from any point in a perpendicular
to a plane, oblique lines are drawn tothe planre, those which
pierce the plane at equal distances from the foot of the
perpendicular are equal ; and of those which pierce the
plane at unequal distances from the foot of the perpendic-
ular, those which pierce at the greater distances are the
Sreater.

DEMONSTRATION.

Let PD be a perpendicular to the plane MN, and PE, PE’, PE"/, and
PE""’ be oblique lines piercing the plane at equal distances ED, E'D, E"'D,
and E"'D from the foot of the perpendicular.

Then PE = PE' = PE" = PE"".

For each of the triangles PDE, PDE/, etc.,
bhas two sides and the included angle equal
to the corresponding parts in the other. .

Again, let FD be longer than E'D.

Then is PF > PE.

For, take ED = E'D; then PE = PE’, by
the preceding part of the demonstration. Fig. 227.
But PF > PE, by (113): Hence, PF > PE’. Q. E.D.

472. CoROLLARY 1.—The angles which oblique lines
drawn from a common point in a perpendicular to a
plane, and piercing the plane at equal distances from the
foot of the perpendicular, make with the perpendicular,
are equal ; and the inclinations of such lines to the plane
are equal.

Thus, the equality of the triangles, as shown in the demonstration,
shows that
EPD = E’PD = E"PD = E""’PD,

and PED = PE'D = PE""D = PE'"D.

473. CoroLLARY 2.—Conversely, If the angles which
oblique lines drawn from a pointin a perpendicular to a
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plane, make with the perpendicular, are equal, the lines
are equal, and pierce the plane at equal distances from
the foot of the perpendicular.

Thus, let E'PD = E"PD;
then the right-angled triangles PDE’ and PDE” are equal (?). Hence,
PE' = PE", and DE’' = DE".

474. CorROLLARY 3.—Lines drawn from the same point
in a perpendicular, and equally inclined to the plane, are
equal, and pierce the plane at equal distances from the
foot of the perpendicular.

475. CoROLLARY 4.— Equal oblique lines from the same
point in the perpendicular, pierce the plane at equal dis-
tances from the foot of the perpendicular, are equally
inclined to the plane, and also to the perpendicular.

Since the right-angled triangles PDE’ and PDE"” have their altitudes
and hypotenuses equal, the triangles are equal (309), and

DE' = DE", PE'D = PE'’D, and E'PD = E"PD.

OF LINES PARALLEL TO A PLANE.

476. A Line is Parallel to a Plane when it is paral-
lel to its projection in that plane.

PROPOSITION XIII.

477. Theorem.—A line parallel to a plane is every-
where equidistant from the plane, and hence can never
meet the plane; and, conversely, a straight line which cans
vot meet a plane is parallel to it.

DEMONSTRATION.

The distance between a point in the line and the plane being the pew
yendicular (451), i§ also th distance bejWeen the point and the projeg:
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tion of the line (464). But this is everywhere the same (476, 136).
Hence a line parallel to a plane is everywhere equidistant from it, and
therefore can never meet it. Q. E. D.

Conversely; A line which meets a plane meets it in the projection of
the line in the plane, since the projecting plane contains all the per-
pendiculars, or shortest lines, from the line to the plane. Hence a line
which never meets a plane is parallel to its projection in that plane, that
is, to the plane itself (476). Q. E. D.

PROPOSITION XIV.

' 478, Theorem.—FEither of two parallel lines is paral-
lel to every plane containing the other.

DEMONSTRATION.

Let AB and CD be two parallel lines, and MN a plane containing CD.
- Then is AB parallel to the plane MN.
Since AB and CD are in the same plane
(?), and as the intersection of their plane
with MN is CD (?), if AB meets the plane
MN, it must meet it in CD, or CD produced.
Baut this is impossible (?).
Whence AB is parallel to MN (477).
Q. E.D. Fig. 228.

479. CoROLLARY 1. A line which is parallel to a line of
a plane is parallel to the plane.

480. CoROLLARY 2.—Through any given line a plane
may be passed parallel to any other given line not in the
plane of the first.

For, through any point of the line through which the plane is to pass,

conceive a line parallel to the second given line. The plane of the two
intersecting lines is parallel to the second given line (?).

481. CoroLLARY 3.—Through any point in space a plane
may be passed parallel to any two lines in space.

For, through the given point conceive two lines respectively parallel
to the given lines; then ig the plane of these intersecting lines parallel t¢
the two given lines (1),

10
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PROPOSITION XV.

482. Theorem.—Of two lines perpendicular to each
other, if one is perpendicular to a plane the other is par-
allel to the plane.

DEMONSTRATION.

Let AB and PD be perpendicular to each other, and PD perpendicu-
lar to the plane MN.

Then is AB parallel to MN.

If AB does not intersect PD,
through any point in PD, as G,
draw A’B’ parallel to AB; then is
it perpendicular to PD.

Let CE be the projection of
A'B’ in the plane MN. Then is H
the point where PD pierces the
plape in CE (7).

Hence A'B’ is parallel to its
projection CE (%), and coneequently
parallel to the plane MN.

Therefore AB is parallel to CE (?), and consequently to the plane MN

(479). Q. E.D.

Fig. 229.

4838. CorROLLARY.—A line and a plane which are both
perpendicular to the same line are parallel.

RELATIVE POSITION OF TWO PLANES.

OF PARALLEL PLANES.

484. Parallel Planes are such that either is parallel to
any line of the other.

485. The Distance between Two Parallel Planes
st any point ig mepsured by the perpendicular,
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PROPOSITION XVI.
486. Theorem.—Parallel planes are everywhere equi-

distant and hence can never meet.

DEMONSTRATION,

Let P and Q be two parallel
planes.

Then are they everywhere equi-
distant, and hence can never meet.

" Let A and B be any two points
in P, and pass a line through them.

Since Q is. parallel to P, it is
parallel to the line AB (484). And
since it is parallel to AB it is every-
where equidistant from AB.

Hence A and B, any two points
in P, are equidistant from Q, and
cconsequently P and Q can never
meet. Q. E. D,

Fig. 230.

PROPOSITION XVII.
487. Theorem.—Two planes perpendicular to the

same line are parallel to each other.

DEMONSTRATION.
Let P and Q be two planes perpen-

dicular to the line AB.
Then are P and Q parallel.

For any line in one plane is parallel
to its projection in the other, since any
line in either plane is perpendicular to

AB (%)

Hence either plane is parallel to any
line of the other (476), and therefore the
planes are parallel to each other. Q. E.D.

Fig. 231,
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PROPOSITION XVIII.

488. Theorem.—Jf a plane intersects two parallel
planes, the lines of intersection are parallel.

DEMONSTRATION.

Let RS intersect the parallel planes MN and PQ in AB and CD.
Then is AB parallel to CD.
For, if AB and CD could meet, the planes

MN and PQ would meet, as every point in AB is

in MN, and every point in CD in PQ. Hence,

AB and CD lie in the same plane, and do not

meet how far soever they be produced (132);

they are therefore parallel. Q. E. D.

489. CoroLLARY.—Parallel lines in-
tercepted between parallel planes are equal. Fig. 232.

Thus, AC = BD, if they are parallel. For, the intersections AB and
CD, of the plane of these parallels, are parallel (?), and the figure ABDC
is a parallelogram; whence, AC = BD (?).

PROPOSITION XIX,.

490. Theorem.—A line which is perpendicular to
one of two parallel planes, is perpendicular to the other
also. '

DEMONSTRATION.

Let MN and PQ be two parallel planes; and
let AB be perpendicular to PQ.

Then is AB perpendicular to MN.

For, pass any plane through AB, and let AC
and BD be its intersections with MN and PQ re-
spectively. Then are AC and BD parallel (%).
Now, AB is perpendicular to BD (), and hence
to AC (?). Thus, AB is shown to be perpendic-
ular to any line of MN passing through its foot,
and hence perpendicular to MN (?). Q. E. D,
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PROPOSITION XX,

491. Theorem.—Through any point without a plane,
one plane can be passed parallel to the given plane, and
only one.

DEMONSTRATION,

Let MN be a plane, and B any point without MN.

Let BA be a perpendicular from B
upon MN.

Through B draw DE and FG per-
pendicular to AB. Then is the plane of
DE and and FG parallel to MN (452,
487). Q. E.D.

Again, as any plane parallel to MN
is perpendicular to AB, and as only one
plane can be passed through B perpeun-
dicular to AB (457), only one plane can
be passed through B parallel to MN. Q.E.D.

Fig. 234,

PROPOSITION XXI.

492. Theorem.—Two angleslying in different planes,
but having their sides parallel and extending in the
same directiomn, or in opposite directions, are equal, and
their planes are parallel.

DEMONSTRATION.

Let A and A’ lie in the different planes
MN and PQ, and have AB parallel to A'B’,

and AC to A'C’,
Then A =A’, and MN and PQ are
parallel.

For, take AD = A’D’, and AE = A’E/,
and draw AA’, DD’, EE/, ED, and E'D'.
Now, AD being equal and parallel to
A'D/,
AA’ = DD’ () ) Fig. 235,
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For like reason,
AA’ = EF';

therefore EE’ = DD’.  Again, since EE’
and DD’ are respectively parallel to AA’,
they are parallel to each other (?) ; whence
EDD'E’ is a parallelogram (%), and ED =
E'D’. Hence the triangles ADE and A'D'E’
are mutually equilateral, and A, opposite
ED, is equal to A’, opposite E'D’, equal to
ED. Q.E.D.

Again, the plane of the angle BAC, MN,
is parallel to PQ, the plane of B'A'C’.
For, let & plane be passed through A and revolved until it is parallel
to PQ. It must cut DD’ which is parallel to AA’, and EE’ which also is
parallel to AA’, so that DD’ and EE' shall equal AA’ (?); hence it must
pass through D. Hence the planes of the angles are parallel. Q. E. D.

Fig. 235.

493. CoROLLARY 1.—If two intersecting planes are cut
by parallel planes, the angles formed by the intersections
are equal.

Thus, AB’ and AC’ being cut by the parallel planes MN and PQ, AD is
parallel to A'D’ (?), and extends in the same direction from vertex A that
A’D’ does from A’; and the same may be said of AC and A’C’. Hence,
BAC = B’'A'C’ (7).

494, COROLLARY 2.—If the corresponding extremities
of three equal parallel lines not in the same plane are
Joined,the triangles formed are equal, and their planes
parallel.

Thus, if AA’ = DD’ = EE’, the sides of the triangle AED are equal
to the sides of A’E’D', since the figures AD’, DE', and EA’ are parallelo-
grams (?), and the corollary comes under the proposition (¥).
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PROPOSITION XXII.

495. Theorem.—If two lines are cut by three parallel
planes, the corresponding intercepted segments are propor-
tional.

DEMONSTRATION,

Let AB and CD be cut by the three parallel planes M, N, and P, AB
piercing the planes in A, E, and B, and CD in C, F, and D.

AE _CF
EB~ FD’

Join the points A and D by the
straight line AD, and conceive planes
passing through AD and DC, and
through AB and AD.

Let EH and BD be the intersec-
tious of the planes N and P with the
plane BAD, and. AC and HF the in-
tersections of M and N with ADC.

Then is

Now, since EH is parallel to BD (?),

AE _ AH
&6 = ip @

Fig. 236,

In like manner, by reason of the parallelism of HF and AC,

CF _ AH,
FD ~ HD
Hence, by equality of ratios,
AE _ CF
g8~ fp &>

[Nore.—Planes perpendicular or obligue to each other give rise to one
species of solid angles; hence their consideration is reserved for the next
Section.]
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"EXERCISES.

496. 1. Designate any three points in the room, as one cor-
ner of the desk, a point on the stove, and some point in the
ceiling, and show how you can conceive the plane of these points.

2. Show the position of two lines which will not meet, and
yet are not parallel.

3. Conceive two lines, one line in the ceiling and one in the
floor, which shall not be parallel to each other.

4. The ceiling of my room is 10 feet above the floor. I have
a 12-foot pole, by the aid of which I wish to determine a point
in the floor directly under a certain point in the ceiling. How
can I doit?

SuvaaEsTION.—Consult Proposition XTI,

5. Upon what principle in this section is it that a stool with
threc legs always stands firm on a level floor, when one with four
may not?

6. By the use of two carpenter’s squares you can determine a
perpendicular to a plane. How is it done ?

7. If you wish to test the perpendicularity of a stud to a level
floor, on how many sides of it is it necessary to measure the
angle which it makes with the floor? By applying the right
angl: of the carpenter’s squarc on any two sides of the stud, to
test the angle which it makes with the floor, can you determine
whether it is perpendicular or not ?

8. If a line is drawn at an inclination of 23° to a plane, what
is the greatest angle which any line of the plane, drawn through
the point where the inclined line pierces the plane, makes with
the line ? Can-you conceive a line of the plane which makes an
sngle of 50° with the inclined line? Of 80°? Of 15°? Of 170°?
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sx:r:'r'mx_ i,
" OF SOLID ANGLES

497 A Solid Angle is the opening between two or more
planes, each of which intersects all the others. The lines of in-
tersection are called Edges, and the planes, or the portion of
the planes between the edges where there are more than two,
are called Faces.

498. Solid Angles are of Three Species, viz., Diedral,
Triedral, and Polyedral, according as they have two, three,
or more than three faces.

OF DIEDRALS.

499. A Diedral Angle, or simply a Diedral, is the
opening between two intersecting planes.

500. A Diedral (Angle) is Measured by the plane
angle included by lines drawn in its faces from any point in the
edge, and perpendicular thereto.

A diedral angle is called Right, Acute, or Obtuse,
according as its measure is right, acute, or obtuse.

Two diedrals are said to be Supplementary when their
measures are supplementary. '

Of course the magnitude of a solid angle is independent of the dis-
tances to which the edges may chance to be produced.

ILLusTRATIONS.—The opening between the two planes CABF and
DABE (Fig. 2387) is a Diedral (angle), AB is the Edge, and CABF and
DABE are the Faces. Let MO lie in the plane AF, perpendicular to the
edge; and NO in AE, and also perpendicular to the edge; then the plane
angle MON is the measure of the diedral
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Fig. 237, Fig. 238. Fig 230,

501. A diedral may be read by the letters on the edge, when
there would be no ambiguity, or otherwise by these letters and
one in each face.

Thus, the diedral in Fig. 287 may be designated as AB, or as C-AB-D.

502. A diedral may be considered as generated by the revolu-
tion of a plane about a line of the plane, and hence we may see
the propriety of measuring it by the angle included by two lines
in its faces perpendicular to its edge, as stated in the preceding
article.

InLusTrRATION.—Let AB (Fig. 238) be a line of the plane GB. Con-
ceive gB perpendicular to AB. Now, let the plane revolve upon AB as
an axis, whence gB describes a circle (?); and at any position of the re-
volving plane, as fBAF, since f'Bg measures the amount of revolution, it
may be taken as the measure of the diedral f-BA-g. When gB has made
} of a revolution, the plane will have made % of a revolution, and the
diedral will be right.

503. When two planes intersect, four diedrals are formed, any
two of which are either Adjacent to each other, or Opposite.

504. Adjacent Diedrals are on the same side of one
plane, but on the opposite sides of the other.

As D-AB-C and D-AB-c, or c-AB-D and ¢-AB-d (Fig. 289).

Opposite Diedrals are on opposite sides of both planes.
As D-AB-C and d-AB-c, or D-AB-¢ and d-AB-C (Fig. 239).
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PROPOSITION 1I.

505. Theorem.—When two planes intersect, the op-
posite diedrals are equal, and the adjacent ones are
supplementary.

DEMONSTRATION.

Let the planes DE and CF intersect in AB.

Then D-AB-C = d-AB-,
and D-AB-¢ = d-AB-C;
and D-AB-C +D-AB-c* = 180°,

¢-AB-D +¢-AB-d = 180°, etc.

Through 0, any point in AB, let Mm he drawn
in the plane CF, and Nz in the plane DE, each
perpendicular to AB. Then is MON, the measure

of D-AB-C (?), = mOn, the measure of d-AB-¢ (?), Fig. 240.
etc. Q.E.D.
Also, MON +NOm = 180° (%),

NOm+mOn = 180°, etc. Q. E.D.

PROPOSITION II.

506. Theorem.—ny line in one face of a right die-
dral, perpendicular to its edge, is perpendicular to the
other face.

DEMONSTRATION.

In the face CB of the right diedral C-AB-D, let
MO be perpendicular to the edge AB.

Then is MO perpendicular to the face DB.

For, draw ON in the face DB, and perpendicu-
lar to AB. Now, since the diedral is right, and
MON measures its angle, MON is a right angle;
whence MO is perpendicular to two lines of the
plane DB, and consequently perpendicular to the
plane. Q. E.D. Fig. 241.

* By this is meant the measure of the diedral.
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507. CoroLLARY 1.—Conversely, If one
plane contains a line which is perpen-
dicular to another plane, the diedral s
right.

Thus, if MO is perpendicular to the plane
DB, C-AB-D is a right diedral. For MO is perpen-
dicular to every line of DB passing through its
foot (?); and hence is perpendicular to ON, drawn
et right angles to AB. When C-AB-D is a right
dicdral, for it is measured by a right plane angle.

508. Two planes are Perpendicular to each other when
they intersect so as to make the adjacent diedrals equal. In this
case, all four of the diedrals are right.

Fig. 241.

509. COROLLARY 2.—The plane which projects a line
upon a plane (488) is perpendicular to the plane of projec-
tion. :

PROPOSITION III.

510. Theorem.—If each of two intersecting planes is
perpendicular to a third, their intersection is perpendicw-
lar to the third plane.

DEMONSTRATION.

Let EF and CD be two planes perpendicular to the third plane MN,
and let AB be the intersection of EF and CD.

Then is AB perpendicular to MN.

For, EF being perpendicular to MN,
D-FG-E is a right diedral, and a line in EF
perpendicular to FG at B is perpendicular to
MN; also a line in the plane CD, and perpen-
dicular to DH at B, is perpendicular to MN (?).

Hence, as there can be one and only one
perpendicular to MN at B, and as this perpen-
dicular is in both planes, CD and EF,it is
their intersection. Q. E. D.
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PROPOSITION IV.

811. Theorem.~7The angle included by perpendicu-
lars drawn from any point within a diedral to its Jfaces,
8 the supplement of the diedral.

DEMONSTRATION,

Let P’ be any point within the diedral F-AB-C, and let the perpendic-
ulars P'D’ and P’E’ be drawn to the faces.

Then is D'P'E’ the sup-
plement of F-AB-C.
From P, any point in
the plane which bisects the
diedral F-AB-C, draw PD
and PE perpendicular to
the same_ faces respectively.
as P'D’ and P'E’. - Then is
DPE = D'P'E'.
Now pass a plane
through PE and PD, and
let EO and DO be its inter-
sections with FB and CB Fig 243,
respectively. Then, by : .
(507), FB and CB are perpendicular to the plane PEOD. Hence, AB is
perpendicular to PEOD (?), and EOD is the measure of F-AB-C (?). DBut
in the quadrilateral PEOD, P is the supplement of EOD (?), and hence of
F-AB-C.
Hence, D'P'E’ is the supplement of F-AB-C. Q. E. D.

512. COROLLARY 1.—Jf from a point in the edge of a
diedral perpendiculars are erected to the faces on the same
sides of the planes respectively as the perpendiculars let
fall from a point within, the included angle is the sup-
plement of the angdle of the diedral.

513. CorOLLARY 2.—The angle DPE is the supplement
of the opposite diedral H-AB-l, and equal to each of the ad-
Jacent diedrals C-AB-1 and F-AB-H.
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PROPOSITION V.

514. Theorem.—Between any two lines not in the
same plane one line, and only one, can be drawn which
shall be perpendicular to both, and this line is the shortest
distance between them.

DEMONSTRATION.

Let AB and CD be two lines not in the same plane,

Then one line, as HG, and only
one, can be drawn which is perpen-
dicular to hoth AB and CD, and HG
measures the shortest distance be-
tween AB and CD.

Through either line, as CD, pass
a plane MN parallel to AB (480).
From any point in AB, as E, let fall
EF perpendicular to MN.

Let EK be the plane of the lines
EF and EB, and let FK be its trace
in MN,

Now, as AB and CD are not in the same plane, EK, and hence its
trace FK, cuts CD in some point, as G.

From G draw GH perpendicular to AB.

Fig. 244.

1st. GH lies in the plane EK (?) which is perpendicular to MN (%), and
being perpendicular to AB is perpendicular to FK (?), and hence to the
‘plane MN (508).

Therefore, GH, which is perpendicular to AB, is perpendicular to
cD (¥).

2d. GH is the only line which is perpendicular to both AB and CD.

For any line which is perpendicular to AB and CD is perpendicular
to FK (?), and bence to MN (?).

Now every perpendicular from AB to the plane MN meets this plane
in FK (2.

But FK and CD have only one point common, viz., G. Hence, GH is
the only perpendicular from AB to CD.

8d. GH is the shortest distance between AB and CD. For a line from
any point in AB to any other point in CD, as LS, would be oblique to
MN (%), and hence longer than the perpendicular LR, = HG. q. E. D.
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PROPOSITION VI.

515. Theorem.—If one of two parallel planes is per-
pendicular to a third plane, the other is also. -

DEMONSTRATION.

Let PD and QE be two paral-
fel planes; and let PD be perpen-
dicular to the third plane MN.

Then is QE perpendicular to
MN.

Through PD and QE pass the
plane RS perpendicular to MN,
and let FK be its trace in QE, and
Hl in PD.

Then is HI perpendicular to
MN (?).

And, as FK is parallel to HI
(M, it is perpendicular to MN
(460).

Hence, QE is perpendicular

to MN (507). Q. E. D.
Fig. 245.

OF TRIEDRALS.

516. As diedrals result from the intersection of fwo planes,
so triedrals result from the intersection of ¢#%ree planes.

rig. 490,
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517. Three planes may intersect in three principal ways:
1st. Their intersections may all coincide, a8 in (a).
2d. They may have three parallel intersections, as in ().

3d. They may have three non-parallel intersections, as in (c).
In this case the three intersections meet in a common point,
a8 at S.

In the first case the three planes have an infinife number of
common points. In the second case they have no common point.
In the third case they have but one common point.

The third case gives rise to Triedrals.

518. A Triedral is the opening between three planes which
meet in a common point.

519. When three planes meet so as to form one triedral, they
form also eight, as planes are to be considered indefinitely ex-
tended, unless otherwise stated.

520. The planes enclosing a particular triedral are called its
Faces, and their intersections its Edges. The common point
is called the Vertex.

521. A triedral may be designated by
naming the letter at the vertex and then
three other letters, one in each edge.

Thus, in the figure, the opening between the
three planes ASC, CSB, and BSA is the triedral
S-ABC. The faces are ASC, CSB, and BSA.

- 522. The plane angles enclosing a solid anglé are called
Facial Angles.

523. In every particular triedral there are six parts, Three
Facial Angles and Three Diedrals.
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524. Our study of triedrals will be confined te the relations
of the facial angles and the diedrals, and the comparison of dlf-
ferent triedrals.

525. Triedrals are Rectangular, Bi-rectangular, or
Tri-rectangular, according as they have one, two, or three
right diedral angles.

ILLUSTRATION.—The corner of a cube is &
Trirectungular triedral, as S-ADC. Conceive the
upper portion of the cube removed by the plane
ASEF ; then the angle at S, <. e., S-AEC, is a Bi-
rectangular triedral, A-SC-E and A-SE-C being
nght diedrals. Fig. 248,

526 An Isosceles Triedral is one that has two of its
facial angles equal.  An Equilateral Triedral is one that
has all three of its facial angles equal.

"62'7; Opposite Triedrals are such as lie on opposite sides
of each. of the intersecting planes, as S-ABC and S-abe.

Opposite triedrals havé mnti,mlly equal facial and equal
diedral angles, but these being differently disposed, such
triedrals are not in general capable of superposition.

ILLusTRATION.—Let the edges of the triedral S-ABC be
produced beyond the vertex, forming the opposite triedral
S-abe. Now, the faces are equal plane angles, but disposed
in a different order. Thus, ASB = aSb, ASC = aS¢, and
BSC = 0S¢, and the diedrals are also equal; but the
triedrals cannot be superimposed, or made to coincide. To
show this fact, conceive the upper triedral detached, and
the face aSc placed in its equal face ASC, Sa in SA, and Se
in SC. Now the edge Sb, instead of falling in SB, in front of ASC, will
fall behind the plane ASC.

Or, otherwise, if S-abc be revolved on 8 by bringing it forward and
turning it down on S-ABC, since the diedrals A-SB-C and ¢-Sb-a are
equal, they will coincide; but, as facial angle aSb is not necessarily equal
to CSB, Sa will not necessarily fall in SC. For a like reason, S¢ will not
necessarily fall in SA.
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528. Symmetrical Triedrals are triedrals in which each
part in one has an equal part in the other; but the equal parts
not being similarly disposed, the triedrals may not be capable of
superposition.

Symmetrical solids are of frequent occurrence: the two hands form
an illustration; for, though the parts may be exactly alike, the hands

cannot be placed so that their like parts will be similarly situated ; in
short, the left glove will not fit the right hand.

529. Adjacent Triedrals are such as lie on different
sides of one of the intersecting planes, and on the same side of
two of them.

Thus, S-ADE is adjacent to
8-DRE.

In adjacent triedrals, two of
the facial angles of one are the
supplements of two of the other,
each to each, and one isequal in
each

Thus, in the adjacent triedrals
S-DRE and S-ADE, ASE and ASD
are supplements respectively of ESR
and DSR, while DSE is common to Fig. 250.
both.

530. Of the eight triedrals formed by the intersection of
three planes, each has its Opposite or Symmetrical
triedral, and each has three Adjacent triedrals,

6531. Two triedrals are Supplementary when the facial
angles of the one are the supplements of the measures of the
corresponding diedrals of the other.

532. Equality, as has been before defined, means, in Geom-
etry, equality in all respects ; and two figures that are said to be
equal are capable of being so applied the one to the other that
they will coincide throughout. This absolute equality is hence
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often called Equality by Superposition, in distinction
from Equality by Symmetry.

533. Two figures are said to be Equal by Symmetry, or
Symmetrically Equal, or simply Symmetrical, when
each part in one has an equal part in the other; but these equal
parts being differently arranged in the two figures, the one may
no# be capable of being superimposed upon the other. (See 527.)

PROPOSITION VII.

534. Theorem.—Opposite triedrals are symmetrical
and may be equal.
DEMONSTRATION.

Let S-ABC and S-abc be two opposite triedrala.
Then are the triedrals symmetrical and may be equal.
For the facial angle ASC = the facial angle aSc¢ (7);
also, BSC = 0S¢, and ASB = aSb.
Again, the diedral A-SB-C = a-Sb-, since they are op-
posite diedrals.
For like reason, B-SA-C = b-Sa-c, and A-SC-B = a-Sc-b.
Hence all the parts in one triedral have equal parts in
the other.
But, in general, these triedrals cannot be superimposed.
(8ee illustration, 527.)
If, however, ASB = CSB, then aSb = ¢Sb, and the triedrals can be
superimposed.
Thus, conceive the triedral S-abe revolved on S, being brought over

towards the observer until 8b falls in SB.
Then, since CSB = ASB = aSb, aSb may be made to coincide with

BSC, and as the diedrals A-SB-C and a-Sb-c are equal, ¢S will fall in

ASB, and the triedrals will coincide, and will be equal.
Hence, opposite triedrals are symmetrical and may be equal. Q. E. D.

535. ComorraBY 1. — Opposite wosceles triedrals are
equal, :
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PROPOSITION VIII.

538. Theorem.—Two symmetrical triedrals may al-
ways be conceived to be placed as opposite triedrals.

DEMONSTRATION.

Let S-ABC and S'-A’B'C’ be two symmetrical triedrals, B and B’
being in front of the planes ASC and A'S'C’, ASB = A’'S'B’, ASC =
A'S’C’, BSC =B’'S'C’, A-SB-C = A’-S'B'-C’, A-SC-B=A'-§'C’-B’, and
B-SA-C = B'-S'A’-C'.

Then may S-ABC and S'-A’B'C’
be placed as opposite triedrals.

Produce the edges of either
triedral, as $'-A'B'C’, beyond the
vertex, forming the opposite tri-
edral §'-abe.

Then can S-ABC be super-
imposed upon S'-abe, and the latter
fulfills the requirements of the
proposition.

The application is made as
follows:

Since B’ is in front of the plane
A’S'C’, b is behind the plane aS'c.

Now conceive S-ABC inverted and reversed so that B shall fall
behind the plane ASC.

Then apply ASC to its equal aS’¢, SA falling in S'as, and SC
in S'e.

By reason of the equality of A-SC-B and «-S'c-b (= A’-S'C'-B’), the
plane BSC will fall in 3S’¢, and for a like reason ASB will fall in
aS'b; and since the planes coincide, their intersections SB and $'0 must
coincide.

Hence, S-ABG < $'4bc, the opposite to §'-A’'B'C’. Q. E. D,
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PROPOSITION IX,

537. Theorem.—Two triedrals which have two facial
angles and the included diedral equal, each to each, are
either equal or symmetrical.

DEMONSTRATION.

Let I, 2, 3, be triedrals having the facial angle ASC = A'S'C’ = aS'’c,
CSB = C'S'B’ = ¢S"'b, and A-SC-B = A’-S'C'-B' = a-S''¢-b.

Fig. 253.
Then are the triedrals either equal or symmetrical.

1st. When the equal facial angles are on the same sides of the respec-
¢ive equal diedrals, as in Figs. 2 and 3, the triedrals may be applied the
one to the other.

Thus, let the facial angle A’S'C’ be placed in its equal aS”¢, A’S’ in
aS",and S'C’ in §"¢; whence, by reason of the equality of the diedrals:
A’-S'C’-B’ and a-S"¢-b, and since the facial angles B'S’C’ and bS’¢ lie on
the same sides respectively of their diedrals A’-S'C'-B’ and a-$''¢-b, the
plane of B'S'C’ falls in the plane of S"¢, and since angle B'S'C’' = angle
8S'¢c, B'S' falls in 38/, and A’S'B’ coincides with aS''d.

Hence the triedrals coincide and are equal, Q. E. D.

2d. But if the equal facial angles lie on different sides of the equal
diedrals, as in Figs. 1 and 3, let the opposite of S-ABC be drawn (527)‘
and call it S-a’¥¢. Then may 3 be applied to S-a'd'c',

Let the student draw the figure aud wake the application.]
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PROPOSITION X.

538. Theorem.—Two triedrals which have two die-
drals and the included facial angles equal each to each,
are either equal or symmetrical.

DEMONSTRATION.

[Same as preceding. Let the student draw figures like those for the
preceding, and go through with the details of the application.]

589. CoROLLARY.—In equal or in symmetrical triedrals,
the equal facial ungles are opposite the equal diedrals.

PROPOSITION XI.

- 540. Theorem.—The sum of any two facial angles of
a triedral is greater than the third.

DEMONSTRATION.
This proposition needs demonstration only in case of the sum of the
two smaller facial angles as compared with the greatest (?).
Let ASB and BSC each be less than ASC; then is

ASB + BSC > ASC.

For, in the face ASC, make the angle ASY = ASB,
and S¥ = Sb, and pass a plane through b and ¥, cut-
ting SA and SC in a and c.

The two triangles aSh and aS¥ are equal (f), whence

al = ab.

Now, ab + be > ac (), Fig. 254
and subtracting ab from the first member, and its equal a¥/ from the sec-
ond, we have b¢ > Ve.

‘Whence the two triangles 5S¢ and ¥Sc have two sides in the one
equal to two sides in the other, each to each, but the third side d¢ > than
the third side ¥¢, and consequently angle BSC >¥SC. Adding ASB to
the former, and its equal ASH’ to the latter, we have

ASB + BSC > ASC. Q. E.D.

541. CoroLLARY.—The difference between any two facial
angles of a triedral is less than the third facial angle (?),

~
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PROPOSITION XII.

542. Theorem.—Two triedrals which have two facial
angles of the one equal to two facial angles of the other,
each to each, and the included diedrals unequal, have the
third facial angles unequal, and the greater facial angle
belongs to the triedral having the greater included diedral.

DEMONSTRATION.

Let ASC = asc, and ASB = asb, while the
diedral C-SA-B > c-sa-b.

Then CSB > esb.

For, divide the diedral C-SA-B by a plane
ASO, making the diedral C-SA-O = c-sa-b;
and taking ASO = ash, bisect the diedral
0-SA-B with the plane ISA. Conceive the
planes OSI and OSC. Fig. 255.

Now, the triedrals S-AOC and s-abe are equal or symmetrical, having
two facial angles and the included diedral equal each to each (537).

For a like reason, S-Al10 and S-AIB are symmetrical, and the facial
angle OSI = ISB.

Again, in the triedral $-10C,

0S! + ISC > 0SC (540),
and substituting I1SB for 0SI, we have
ISB + ISC (or CSB) > OSC, or its equal csh. Q.E.D.

548. CororLLARY.—Conversely, If the two facial angles
are equal, each to each, in two triedrals, and the third
facial angles unequal, the diedral opposite the greater
facial angle is the greater.

That is, if ASB = ash, and ASC = as,

while BSC > bse,
the diedral B-AS-C > b-as-c.
For, if B-AS-C = bas<c, BSC = bsc (537, 539); -
and if B-AS C < bas¢, BSC < bsc, by the proposition.

Therefore, a8 B-AS-C cannot be equal to nor less than §-as-c, it must
be greater. Q. E. D, : :
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PROPOSITION XIII.

544. Theorem.—Two triedrals which have the three
facial angles of the one equal to the three facial angles of
the other, each to each, are either equal or symmetrical.

DEMONSTRATION.

Let A, B, and C represent the facial angles of one, and a, b, and ¢ the
corresponding facial angles of the other. If A =a, B=25, and C == ¢,
thé friedrals are éequal or symmetrical.

For A being equal to a, and B to b, if, of their included diedrals, SM
were greater than sm, C would be greater than ¢ (?); and if diedral SM
wepe less than diedral &m, C would be less than ¢ (?). Hence, as diedral
SM caii neither be greater nor less than diedral sm, it must be equal to it.

.“Therefore: the triedrals have two facial angles and the included diedral
equal, each to each, and are consequently equal or symmetrical. Q. E. D,

PROPOSITION XIV.

545. Theorem.—If from any point within a triedral
perpendiculars are drawn to the faces, they will be the edges
of a supplementary triedral.

DEMONSTRATION.

From §' within the triedral S-ABC, let S'A’ be drawn perpendicuiar
to ASB, S'B’ to ASC, and S'C' to BSC.
Then is §'-A’B'C’ supple-
mentary to S-ABC.
For the facial angle A’S'B’
is the supplement of the di-
edral B-AS-C (511); and for
like reason B’S’C’ is the sup-
plement of A-SC-B, and A'S'G’
of A-SB-C.
Again, since S'A’ is per-
pendicular to the face ASB,
and S'B’ is perpendicular to

ASQ; the plane of §'A’ aud
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$'B’ is perpendicular to ASB and ASC, and therefore to SA. Hence SA
is perpendicular to the face A’S'B'.

For a similar reason, SG is perpendicular to B’S'C’. Hence ASC is
the supplement of A’-$’B-C’.

In like manner, it may be shown that BSC is the supplement of
A-S'C’-B’, and ASB of B'-S’A’-C’. Q. E. D.

546, ScmoLrum 1.—If perpendiculars were drawn from the point §,
or any other point, parallel to those from §’, and in the same directions
respectively from S that S’A’, ctc., are from §/, they would also be per-
pendicular to the faces of the diedral, and would form a supplementary
triedral,

547, ScHoLroM 2.—The triedral $'-A’B'C’ is also supplementary to
the triedral opposite to S-ABC.

548, Scmorrum 3.—The triedral S"-A’B'C’ will not be supplementary
to the triedral adjacent to S-ABC, but one facial angle will be supple-
mentary to the corresponding diedral in the other, and the other facial
angles will be equal to their corresponding diedrals.

549, ScHOLIUM 4.—One triedral adjacent to $'-A’B’C’ will be sup-
plementary to one of those adjacent to S-ABC.

PROPOSITION XV.

550. Theorem.—In an isosceles triedral the diedrals
opposite the equal facial angles are equal ; and,

Conversely, If two diedrals of a triedral are equal, the
triedral is isosceles.

DEMONSTRATION,

In the triedral S-ABC, let ASC = CSB.

Then is C-SA-B = C-SB-A.

For, pass the plane CSD through the edge
$C, bisecting the diedral A-SC-B. Then the
two triedrals S-ACD and S-CBD have two facial
angles of one equal to two facial angles of the
other, each to each; that is, ASC = CSB, by

bypothesis, and GSD common; apd the lge
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cluded diedrals equal by construction. Hence the triedrals are sym»
metrical, and

C-SA-B = C-SB-A (537, 539). Q.E.D.

Conversely, if C-SA-B = C-SB-A,
ASC = CSB.
For the supplementary triedral is isosceles; whence the diedrals op-

posite those equal facial angles are equal. But ASC and CSB are the
supplements of these equal diedrals, and hence equal. Q. E. D,

551. CoROLLARY 1.—The plane which bisects the angle
included by the equal facial angles of an isosceles triedral
is perpendicular to the opposite face, and bisects the oppo-
site facial angle.

552. COROLLARY 2.—If the three facial angles of a tri-
edral are equal, each to each, the diedrals are also equal,
each to each, and conversely.

PROPOSITION XVI.

553. Theorem.—Two triedrals which have the three
diedrals of the one equal to the three diedrals of the other,
each to each, are equal or symmetrical.

DEMONSTRATION.

In the two supplementary triedrals, the facial angles of the one are
equal to the facial angles of the other, each to each, since they are sup-
plements of equal diedrals (545). Hence, the supplementary triedrals
are equal or symmetrical (544).

Now, the facial angles of the first triedrals are supplements of the
diedrals of the supplementary; whence the corresponding facial angles,
being the supplements of equal diedrals, are equal. Therefore, the pro~
posed triedrals have their facial angles equal, each to each, and are con~
sequently equal, or symmetrical. Q.E.D.

554. COROLLARY. — AUl tri-rectangular triedrals are
equal, .
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PROPOSITION XVII.

555. Theorem.—The sum of the facial angles of a
triedral may be anything between zero and four right
angles.

D EMONSTRATION.

Let ASB, BSC, and ASC be the facial angles
enclosing a triedral.

Then, as each must have some value, the sum
is greater than zero, and we have only to show
that ASB +ASC +BSC is less than 4 right angles,
Produce either edge, as AS, to D. Now, in the
triedral 8-BCD, BSC is less than BSD+CSD (%). Fig. 258.
To each member of this inequality add ASB+ASC, and we have

ASB+ASC +BSC less than ASB+ASC+BSD +CSD ().

But ASB +BSD = 2 right angles (2),
and ASC+CSD = 2 right angles; .
whence ASB +ASC +BSD +CSD = 4 right angles,

and consequently ASB-+ASC+BSC is less than 4 right angles. Q E.D.

- PROPOSITION XVIII.

556. Theorem.—The sum of the diedrals of a triedral
may be anything between two and six right angles.

DEMONSTRATION.

Each diedral being the supplement of a facial angle of the supple-
mentary triedral (531), the sum of the three diedrals is 8 times 2 right
angles, or 8 right angles, minus the sum of the facial angles of the sup-
plementary triedral.

But this latter sum may be anything between 0 and 4 right angles (?).
Hence the sum of the diedrals may be anything between 2 and 6 right

angles. Q. E.D.
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OF POLYEDRALS.

557. A Convex Polyedral is a polyedral none of the
faces of which, when produced, enter the solid angle. A sec-
tion of such a polyedral made by a plane cutting all its edges is
a convex polygon. (See Fig. 259.)

PROPOSITION XIX,

568. Theorem.—The sum of the facial angles of any
convex polyedral is less than four right angles.

DEMONSTRATION,
Let S be the vertex of any convex polyedral.

Then is the sum of the angles ASB, BSC, CSD,
DSE, and ESA less than 4 right angles.

Let the edges of this polyedral be cut by any
plane, as ABCDE, which section will be a convex
polygon, since the polyedral is convex.

From any point within this polygon, as O,
draw lines to its vertices, as OA, OB, OC, etc.
There will thus be formed two sets of triangles,
one with their vertices at S, and the other with
their vertices at 0; and there will be an equal
number in each set, for the sides of the polygon
form the bases of both sets.

Now, the sum of the angles of each of these two sets of triangles is
the same. But the sum of the angles at the bases of the triangles having
their vertices at § is greater than the sum of the angles at the bases of
the triangles having their vertices at O, since SBA + SBC is greater
than ABC, SCB 4 SCD is greater than BCD, etc. (540).

Therefore the sum of the angles at S isless than the sum of the anglea
at 0, 4. e., less than 4 right angles. q. E. D,
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EXERCISES.

559. 1. I have an iron block whose corners are all square
(edges right diedrals, and the vertices tri-rectangular, or right,
triedrals). If I bend a wire square
around one of its edges, as ¢S'd, at
what angle do I bend the wire? If
I bend a wire obliquely around the
edge, as a5, at what angle can I
bend it? If I bend it obliquely, as
eS"f, at what angle can I bend it ?

2. Fig. 260 represents the ap-
pearance of a rectangular parallelo-
piped, as seen from a certain position.
Now, all the angles of such a solid are right angles: why is i
that they nearly all appear oblique? Can you see a right paral-
lelopiped from such a position that all the angles seen shall
appear a8 right angles ?

8. The diedral angles of crystals are measured with great
care, in order to determine the substances of which the crystals
congist. How must the measure be taken? If we measure
obliquely around the edge, shall we get the true value of the
angle ?

4. Prove that if three planes intersect so as to make two
traces parallel, the third is parallel to each of these.

5. From a piece of pasteboard cut two figures of the same
size, like ABCDS and abdcds (Fig. 261). Then drawing SB and
SC s0 as to make 1 the largest angle and 3 the smallest, cut the
pasteboard almost through in these lines, so that it will readily
bend in them. Now fold the edges AS and DS together, and a
triedral will be formed. From the piece abcds form a triedral in
like manner, only let the lines sc and sb be drawn so as to make
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the angles 1, 2, and 3 of the same size as be-
fore, while they occur in the order given in
gbeds. Now, see if you can slip one triedral
into the other, so that they will fit. What
is the difficulty?

6. In the last case, if 1 equals § of a right
angle, 2 = § of a right angle, and 3 = § of
a right angle, can you form the triedral?
Why ? If you keep increasing the size of 1,
2, and 3, until the sum becomes equal to 4
right angles, will it always be possible to
form a triedral ? How is it when the sum equals 4 right angles?

- 7. What is the locus of a point in space equidistant from
three given points ?

To demonstrate that such a locus is a straight line, pass a plane
through the three points, and also a circumference. Now, 1st, a perpen-
dicular to this circle at its centre has every point equidistant from the
three points; and, 2d, any point out of the perpendicular is unequally
distant from the points. Hence this perpendicular is the locus sought.

Notice that in demonstrating such a proposition the two points should
both be proved.

8. The locus of a point equidistant from two planes is the
plane which bisects the diedral included between them. [Give
proof.]

9. What is the locus of a point in space equidistant from the
faces of a triedral ? [Give proof.]

10. If each of the projections of a line upon three planes
intersecting in a common point is a straight line, the line is a
straight line.

11. To find the point in a plane such that the sum of its dis-
tances from two given points without the plane, ¢ 2d on the
same side of it, shall be a minimum.

SoLuTIoN.—Let the two points be P and P’. Let fall a perpendicular
from either point, as P, upon the plane, and call it PD. Produce PD on
the opposite side of the plane to P/, making P”D = PD. Join P” and P'.
The point where PP’ pierces the plane is the point sought. [Give proof]
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<§€$BC‘I’MN .

OF PRISMS AND CYLINDERS.

560. A Prism is a solid, two of whose faces are equal, par-
allel polygons, while the other faces are parallelograms. The
equal parallel polygons are the Bases, and the parallelograms
make up the Lateral or Convex Surface. = Prisms are triangular,
quadrangular, pentagonal, etc., according to the number of sides
of the polygon forming a base.

561. A Right Prism is a prism whose lateral edges are
perpendicular to its bases. An Oblique Prism is a prism
whose lateral edges are oblique to its bases.

562. A Regular Prism is a right prism whose bases are
regular polygons ; whence its faces are equal rectangles.

563. The Altitude of a prism is the perpendicular distance
between its bases: the altitude of a right prism is equal to any
one of its lateral edges.

564. A Truncated Prism is a portion of a prism cut off
by a plane cutting the ' )
lateral edges, but not
parallel to its base. A
section of a prism made
by a plane perpendicu-
lar to its lateral edges is
called a Right Section.

ILLUSTRATIONS.—In the
figure, (2) and (3) are both
prisms: (@) is oblique and
() right. PO represents
the altitude of (a); and
any edge of (8), as 0B, is its altitude. ABCDEF and abed¢f are lower and
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upper bases, respectively. Either portion of (3) cut off by an oblique
plane, a8 a'b'c’'d’'e, is a truncated prism.

565. A Parallelopiped is a prism whose bases are paral-
lelograms ; its faces, inclusive of the bases, are consequently all
parallelograms. If its faces are all rectangular, it is a recfangu-
lar parallelopiped.

566. A Cube is a rectangular parallelopiped whose faces are
all equal squares.

567. The Volume or Contents of a solid is the number
of times it contains some other solid taken as the unit of meas-
ure ; or it is the ratio of one solid to another taken as the stand-
ard of measure,

In applied geometry the unit of volume is usunally a cube de-
scribed on some linear unit, as an inch, a foot, a yard, etc. To
this the perch and the cord are exceptions.

PROPOSITION I.

568. Theorem.—Parallel plane sections of any prism
are equal polygons.

DEMONSTRATIOX.
Let ABCDE and abcde be parallel sections of the prism MN.

Then are they equal polygons.-

For, the intersections with the lateral faces, as
ab and AB, etc., are parallel, sinc. they are inter-
sections of parallel planes by a third plane (488).

Moreover, these intersections are equal, that
is, ab = AB, b¢ = BC, ¢d = CD, etc., since they
are parallels included between parallels (138).

Again, the corresponding angles of these
polygons are equal, that is,a =A,b=B, c=C,
etc., since their sides are parallel and lie in the
same dlirection (492).

Therefore the polygons ABCDE and abede are Fig. 263.
mutually equilateral and equiangular; that is, they are equal. Q. B.D.
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§69. CoroLLARY.—Any plane section of a prism, paral-
lel to its base, is equal to the base ; and all right sections
are equal.

PROPOSITION II.

570. Theorem.—If two prisms have equivalent bases,
any plane sections parallel to the bases are equivalent.

DEMONSTRATION.

Let M and N be any two prisms having equivalent bases B and B';
and let P and Q be sections parallel thereto.

Then, by the preceding proposition,

P =B,
and Q=8 =8,
whence, P=0qQ Q. E.D.

PROPOSITION III.

571. Theorem.—If three faces including a triedral
of one prism—complete or truncated—are equal respective-
ly to three faces including a triedral of the other, and
szmda,rly placed, the prisms are equal.

DEMONSTRATION.

In the prisms Ad and A’d’ (Fig. 264), let AECDE equal A B'C'D'E/,
ABba = A'B'b'a’, -and BCcb = B'C'c'D.

Then are the prisms equal.

For, since the facial angles of the triedrals B and B’ are equal the
triedrals are equal (544), and being applied they will coincide.

Now, conceiving A'd’ as applied to Ad, with B’in B, since the bases
are equal polygons, they will coincide throughout; and for like reason
aB will coincide with a'B’, and ¢B with ¢B'.
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Furthermore, since the bases
eoincide, C’'D’ falls in CD, and as
C’¢ falls in Ce, and D’'d’ is parallel
to C'd,and Dd to Ce (?), D'd’ falls
in Dd.

In like manner, E'¢ can be
shown to fall in Ee.

Finally, since the upper bases
have the angles a'd'¢ and abe co-
incident, they coincide (444).

Hence the prisms can be super-
imposed, and are therefore equal. Q. E.D.

572. CoROLLARY.—Two right prisms having equal bases
ond equal altitudes are equal.

If the faces are not similarly arranged, as the edges are perpendicular
to the bases, one prism can be inverted and then superimposed on the
other.

PROPOSITION 1IV.

578. Theorem.—Any oblique prism is equivalent to a
right prism, whose bases are right sections of the oblique
prism, and whose edge is equal to the edge of the oblique
prism.

" DEMONSTRATION.

Let LB be an oblique prism, of which abcde
ond fghil are right sections, and gb = GB.

Then is % equivalent to LB.

For the truncated prisms /G and B have the
faces including any two corresponding triedrals, as
G and B, respectively, equal and similarly placed
(%), whence these prisms are equal (571).

Now, from the whole figure take away prism
1G, and there remains the oblique prism LB ; also,
from the whole take away the prism ¢B, and there
remaivs the right prism 2.

Therefore, the right prism B is equivalent to
the oblique prism LB. Q. E. D.
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PROPOSITION V.

574. Theorem.—The opposite faces of a parallelopiped
are equal and parallel.

DEMONSTRATION.
Let Ac be a parallelopiped, AC and «c being its equal bases (560)-

Then are its opposite faces equal and parallel.

Since the bases are parallelograms, AB is equal
and parallel to DC; and, since the faces are paral-
lelograms, @A is equal and parallel to dD. Hence,

angle aAB = dDC,

and their planes are parallel, since their sides are
parallel and extend in the same directions.

Therefore, aB and dC are equal (322) and parallel parallelograms.
In like manner it may be shown that aD is equal and parallel to 3C.
Q E.D.

PROPOSITION VI.

575. Theorem.—The dmg‘onals of a parallelopiped
bisect each other.

DEMONSTRATION.

Let ABCD-b be a parallelopiped whose diagonals are bD, dB, cA,
and aC.

Then do 5D, dB, ¢A, and aC bisect each other.

Pass a plane through two opposite edges, as
3B and dD.

Since the bases are parallel (?), 3d and BD will
be parallel (488), and 5BDd will be a parallelo-
gram. Hence, 3D and dB are bisected at o (?).

For a like reason, passing a plane through de
and AB, we may show that dB and cA hisect each
other, and hence that cA passes through the com-
mon centre of dB and 3D.

80 also aC is bisected hy bD, as appears from
passing a plane through ab and DC.

Hence, all the diagouals are bisected at o, Q. E. D,
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576. CoROLLARY.—The diagonals of a rectangular par-
allelopiped are equal.

PROPOSITION VII.

577. Theorem.—The diagonal of a rectangular par-
-allelopiped is equal to the square root of the sum of the
squares of the three adjacent edges of the parallelopiped.

DEMONSTRATION.

Let @, b, c be the three adjacent edges of a rectangular parallelo-
piped, d the diagonal of the face whose edges are b and ¢, and D the
diagonal of the parallelopiped.

Then @a=0+e(Q0),
and DP=a+d=a+b+(Q),
or D= 4/a"+b +¢. QE.D.

578. CoroLLARY.—The diagonal of a cube is v/3 times
its edge.

PROPOSITION VIII.

579. Theorem.—The area of the lateral surface of
right prism is equal to the product of its altitude into the
perimeter of its base.

DEMONSTRATION.

The lateral faces are all rectangles, having for their common altitude
the altitude of the prism (563). Whence the area of any race is the
product of the altitude into the side of the base which forms 1ts base;
and the sum of the areas of the faces is the common altitude into the sum
of the bases of the faces, that is, into the perimeter of the base of the
prism. Q.E.D.
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580. A Cylindrical Surface is a surface traced by a
straight line moving so as to remain constantly parallel to its
first position, while any point in it traces
some curve. The moving line is called the
Generatriz, and the curve traced by a point
of the line the Directriz.

ILLUSTRATION.— Suppose a line to start from
the position AB, and move towards N in such a
manner as to remain all the time parallel to its
first position AB, while A traces the curve

A128456.... M.

The surface thus traced is a Cylindrical Surface;
AB is the Generatrixz, and the curve ANM the
Directrix.

581. A Circular Cylinder, called also a Cylinder of
Revolution, is a solid generated by the revolution of a rectan-
gle around one of its sides as an axis,

ILLusTRATION.—Let COAB be a rectangle,

and conceive it revolved about CO as an axis,
taking successively the positions COA'B’,
COA'’'B, etc.; the solid generated is a Circular
Oylinder, or a cylinder of revolution. The re-
volving side AB is the generatrix of the surface,
and the circumference AA’A” (or BB'B”) is the
directrix. - This is the only cylinder treated in
Elementary Geometry, and is usually meant
when the word Cylinder is used without specify-
ing the xind of cylinder.

582. The Axis of the cylinder is the fixed side of the rectan-
gle. The side of the rectangle opposite the axis generates the
Convex Surface; while the other sides of the rectangle, as
OA and CB, generate the Bases, which in the cylinder of revo-
lution are circles. Any line of the surface corresponding to some
position of the generatrix is called an Element of the surface.

683. Any section of a cylinder of revolution made by a plane
parallel to its base is equal to its base, eince such a section would
be a circle with a radius equal to OA.
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584. A Right Cylinder is one whose elements are perpen-
dicular to its base. In such a cylinder any element is equal to
the axis. A Cylinder of Revolution (581) is right.

585. A prism is said to be inscribed in a cylinder, when the
bases of the prism are inscribed in the bases of the cylinder, and
the edges of the prism coincide with elements of the cylinder.

PROPOSITION IX.

586. Theorem.—The area of the convex surface of a
cylinder of revolution is equal to the product of its axis
into the circumference of its base, i. e., 2nRH, H being the
axis and R the radius of the base.

DEMONSTRATION.

Let AD be a cylinder of revolution, whose axis HO = H, and the
radius of whose base is OB = R.

Then is the area of its convex surface 3rRH.

Let a right prism, with any regular polygon for
its base, be inscribe:l in the cylinder, as k-abedef.

The area of the lateral surface of the prism is
HO (= %d) into the perimeter of its base, 4. ¢.,

HO X (ab+be+ cd + de + ¢f + fa).

Now, bisect the arcs ad, be, etc., and inscribe a
regular polygon of twice the number of sides of the
preceding, and on this polygon as a base construct
the right inscribed prism with double the number of
faces that the first had. The area of the lateral sur-
face of this prism is

HO x the perimeter of its base.

In like manner, conceive the operation of inscribing right prisms with
regular polygonal bases continually repeated ; it will always be true that
the area of the lateral surface is equal to

HO X the perimeter of the base,
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By continually increasing the number of the sides of the inscribed
polygon in this manuer, the perimeter of the polygon may be made to
differ from the circumference by less than any assignable quantity, . e.,
by an infinitesimal, which is therefore 0 in comparison with the perimeter
" (341), and the prism of an infinite number of faces is to be considered as
the cylinder.

Therefore, the area of the convex surface of the cylinder is HO into
the circumference of the base. '

Finally, if R is the radius of the base, 2xR is its circumference. This
multiplied by H, the altitude, 4. e, Hx 27R, or 2=RH, is the area of the
convex surface of the cylinder. Q. E. D.

PROPOSITION X,

587. Theorem.—~Rectangular parallelopipeds are to
each other* as the products of any three adjacent edges.

. DEMONSTRATION.

Let the adjacent edges of one rectangular parallelopiped, P, be three
lines, which we will call 4, B, and C, and of another, Q, the three lines
a,b,c.

P AxBx0O
Then Q™ “axbxe

For A, B, C, ¢, b, and ¢ are at least commensurable by an infinitesimal
unit. Let the common measure of the edges be 7; and let it be contained
in A m times, in B 7 times, in C p times, in @ ¢ times, in b  times, and in
¢ 8 times, 8o that

_4 _B _0
m—-?: ”—?r P—?,
q=i9, r=g, and s=g-

Now let A and B be the sides of the rectangular base of P, and C its
altitude, and @, b, and ¢ corresponding edges of Q. The base of P may be
conceived as divided into mn units of surface. If upon each of these we
conceive a cube described, there will be i such cubes. Now, of these
layers of cubes there will be p in the entire parallelopiped P. Hence P
will be composed of mnp equal cubes. In lik¢ manner, Q may be shown

* This means that their volumes are to each other.
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to be composed of grs equal cubes, each equal to one of the map cubes
which compose P.

P _map
Hence, Q-
and substituting their values for m, n, p, ¢, r, and s, we have
4 8.0
| 4 i ¢ ¢ AxBxC
Q- e, 0, axbes ¥EP
£ i s

PROPOSITION XI
588. Theorem.—7The volume of a rectangular paral-
lelopiped is equal to the product of its three adjacent
edges.
DEMONSTRATION.

are each I.

Let P be any rectangular parallelopiped whose adjacent edges are
A, B, and C, and let Q be the proposed unit of measure, whose edges

Then, by the last proposition,

P _AxBx0O
Q  1Ixix1’
or, P=(AxBx0)xQ.
Thus, P contains the unit Q Ax Bx C times. Hence, AxBx 0 ia
the volume of P. Q. E. D.

589. CorROLLARY 1.—The volume of a cube is the third
power of its edge.
5980. ScmoLiuM.—This fact gives rise to the term cube, as used in
arithmetic and algebra, for * third power.”

591. CorOLLARY 2.—The volume of a rectangular par-
allelopiped is equal to the product of its altitude into the

area of its base, the linear unit being the same for the
measure of all its eddes

# For other demonstrations sce Appendix.
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PROPOSITION XII.

592. Theorem.—The volume of any prism, or of any
golid whose plane sections parallel to the base are all equal
to the base, is equal to that of a rectangular parallelopiped
having an equivalent base and the same altitude, and
hence is equal to the product of its base into its altitude.

DEMONSTRATION.

Let Q be any prism or solid whose plane sections parallel to its base
are equal to its base, and P a rectangular parallelopiped of the same
altitude, and whose base B = B, the base of the first solid.

Then is volume Q = volume P.

If Q be a prism, any plane section parallel to its base is equal to its
base (?); hence the case is the same whether Q be a prism or any other
solid having its plane sections parallel to its base equal to its base.

Now conceive two planes to start from coincidence with B and B’ at
the same time, and move upward at the same rate, generating the solids
P and Q. As these sections are always equivalent to each other, since
each is constantly equal to B or B', they generate equal volumes in equal
times, and by reason of the equal altitudes of the two solids, both
volumes are generated in the same time. Hence the two volumes are
equivalent. Q. E. D.

593. CoROLLARY 1.—The volume of a right prism is
equal to the product of its edge into its base.

594. CoROLLARY 2.—Prisms of the same altitude are to
each other as their bases ; and prisms of the same or equiv-
alent bases are to each other as their altitudes; and, in
ZBeneral, prisms are to each other as the products of their
bases and altitudes.
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PROPOSITION XIII.

595. Theorem.—7The volume of a cylinder of revolu-
tion is equal to the product of its base and altitude, i. e.,
nR*H, H being the altitude and R the radius of the base.

DEMONSTRATION.

By (592) the volume of such a cylinder is equal to the product of its
base into its altitude, since all plane sections paral]el to its base are equal

thereto (5883).
But the base is a circle whose radius is R, the area of whlch is 1rR’ ®.
Hence the volume of the cylinder is Hx 7R? or nR’H. Q. E.D.

596. CorOLLARY.—The volume of any cylinder is equal
to the product of its base into its altitude.

This can be demonstrated in a manner altogether analogous to the
case given in the proposition.

597. Similar Solids are such as have their corresponding
solid angles equal and their homologous edges proportional.

598. Similar Cylinders of revolution are such as have
their altitudes in the same ratio as the radii of their bases.

599. Homologous Edges of similar solids are such as
are included between equal plane angles in corresponding faces.

ILLUSTRATION.—The idea of similarity in the case of solids is the
same as in the case of plane figures, viz., that of likeness of form. Thus,
one would not think such a cylinder as one joint of stovepipe similar to
another composed of a hundred joints of the same pipe. One would be
long and very slim in proportion to its length, while the other would not
be thought of as slim. Bat, if we have two cylinders the radii of whose
bases are 3 and 4, and whose lengths are respectively 6 and 12, we readily
recognize them as of the same shape: they are similar,
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PROPOSITION XIV.

600. Theorem.—The altitudes of two similar prisms
are to each other as any two homologous edges, and the
areas of corresponding faces are to each other as the
squares of any two homologous edges, or as the squares of
the altitudes.

DEMONSTRATION.

Let P and p be any two similar prisms, H and A their altitudes, Ae
and A’a’ two homologous edges, and Ab and A’d’' two corresponding
faces,

. H A
Then is i= A—,:—, , or as any other two homologous edges;
Ab Al g, '
and AT = gt =-E§, t. ¢, a8 the squares of any

other two homologous edges, or as the squares of the altitudes.

From the homologous vertices a and a' let fall the perpendiculars al
and a'l’, and draw Al and A'l".
al=H,and a'l' =1 (?).
Now, since the prisms are
similar, they may be so placed
that their homologous edges
will he parallel ; hence, let AB
be parallel to A’B’, AE to A’E’,
and aA to a’A’. Then is al
parallel to a’l’, and Al to A'V,
and the triangles aAl and a’AY
are similar.
Whence we have
H_ Aa
A~ Ad’
or as any other two homolo-
gous edges, since by definition
any two homologous edges bear the same ratio. Q E.D.
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Again, since the corre-
sponding faces Ad and AV
have their homologous sides
proportional (597), aud their
homologous angles, as aAB and
a’A'B’, equal, being the ho-
mologous facial angles of equal
triedrals, the faces are similar
plane figures, and

A _ Ad _m

o

re’

or as the squares of any two
homologous edges. Q. E. D.

ELEMENTARY GEOMETRY.

Fig. 271,

601. CoroLLARY.—The corresponding faces of any two
similar solids are to each other as the squares of any two
homologous edges of the solids.

PROPOSITION XV.

602. Theorem.—Thelateral surfacesof similar prisms
are to each other as the squares of any two homologous
edges, or as the squares of the altitudes of the prisms.

DEMONSTRATION.

Let 4, B, C, D, etc., and a, b, ¢, d, etc., be the corresponding
faces of two similar prisms, and M and 2 any two homologous edges,

and H and & the altitudes.

By the last proposition,

4_M  B_M
a m’ b m?’
Hence, 4_38_
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and, by composition,

A+B+C+D,ete.  M* H* ? ED
a+db+c+d,etc. — mE T B ®- &>
603. CoroLLARY.—The ENTIRE surfaces of ANY two Simi-
lar solids are to each other as the squares of any two
homologous edges.

PROPOSITION XVI.

804. Theorem.—7The volumes of similar prisms are to
each other as the cubes of their homologows edges, and as
the cubes of their altitudes.

DEMONSTRATION.

Let 7 and v be the volumes of any two similar prisms, M and m
any two homologous edges, and H and h their altitudes.

s vV _M:_H®
Then is T W

Let B and b be the bases of the prisms; whence their volumes are
Bx H and bxh respectively (592).

H H3
By (600), 2. E.Z
H_M_H
But 7=1_n=77(?)
- BxH _V _M*_H*
Multiplying, b):dq Ty T W YED
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PROPOSITION XVII.

605. Theorem.—The convex surfaces of similar cylin-
ders of revolution are to each other as the squares of their
altitudes, and as the squares of the radii of their bases.

DEMONSTRATION.

Let H and % be the altitudes, and R and 7 the radii of the bases of
two similar cylinders.

The convex surfaces are 2xRH and 2=rh (586).
2«RH _RH _R H

Now, oerh = o R
:4

By hypothesis, 3 _I;.l_

Whence, by substitution, we have

2*RH _ H®

2rrh T~ A

2»RH R? :
and 2ark P Q E.D

PROPOSITION XVIII.

608. Theorem.—The volumes of similar cylinders of
revolution are to each other as the cubes of their altitudes,
or as the cubes of the radii of their bases.

DEMONSTRATION.

Let H and h be the altitudes of two similar cylinders of revolution,
R and 7 the radii of their bases, and ¥ and v their volumes.

y_2_F

Then PR
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For, by (595), V = =HR,
and 0o = whr’,
r_m_m,
and, since % = L:’ ®,
we have, by substitution, % = ;1? = %‘ Q. E.D,

607. ScmoLioM.—It is a general truth, that the surfaces of similar
solids, of any form, are to each other as the squares of homologous lines;
and their volumes are as the cubes of such lines. These truths will be
further illustrated in the following section, but the methods of demon-
stration will be seen to be the same as used in this,

EXERCISES.

608. 1. A farmer has two grain bins which are parallelo-
pipeds. The front of one bin is a rectangle 6 feet long by 4 high,
and the front of the other a rectangle 8 feet long by 4 high.
They are built between parallel walls 5 feet apart. The bottom
and ends of the first, he says, are ‘“square” (he means, it is a
rectangular parallelopiped), while the bottom and ends of the
other slope, 1. e., are oblique to the front. What are the rela-
tive capacities of the bins?

2. How many square feet of boards in the walls and bottom
of the first bin mentioned in Ex. 17?

3. An average sized honey bee’s cell is a right hexagonal
prism, .8 of an inch long, with faces % of an inch wide. The
width of the face is always the same, but the length of the cell
varies according to the space the bee has to fill. Are honey bees’
cells similar ? Is a honey bee’s cell, of the dimensions given
above, similar to a wasp’s cell, which is 1.6 inches long, and
whose face is .3 of an inch wide? What are the relative capaci-
ties of the wasp’s cell and the honey bee’s?
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4. How many square inches of sheet iron does it take to make
a joint of 7-inch stovepipe 2 feet 4 inches long, allowing an inch
and a half for making the seam?

5. A certain water-pipe is 3 inches in diameter. How much
water is discharged through it in 24 hours, if the current flows
3 feet per minute? How much through a pipe of twice as great
diameter, at the same rate of flow ?

6. What is the ratio of the length of a hogshead holding 125
gallons, to the length of a keg of the same shape, holding
8 gallons?

7. What are the relative amounts of cloth required to clothe
three men of the same form (gimilar solids), one being 5 feet
high, another 5 feet 9 inches, and the other 6 feet, provided they
dress in the same style? If the second of these men weighs
156 1b., what do the others weigh ?

8. If a man 5} feet high weighs 160 Ib., and a man 3 inches
taller weighs 180 lb., which is the stouter in proportion to his
height ?

9. I have a prismatic piece of timber, from which I cut two
blocks, both 5 feet long measured along one edge of the stick;
but one block is made by cutting the stick square across (a right
section), and the other by cutting both ends of it obliquely,
making an angle of 45° with the same face of the timber. Which
block is the greater? Which has the greater lateral surface ?

10. How many cubic feet in a log 12 feet long and 2 feet and
5 inches in diameter ? How many square feet of inch boards
can be cut from such a log, allowing one-quarter for waste in
slabg and sawing ?

11. How many square feet of sheet copper will it take to line
the sides and bottom of a cylindrical vat (cylinder of revolution)
6 feet deep, if the diameter of the bottom is 4 feet? How many
barrels does such a vat contain ?

12. What are the relative capacities of cylinders of revolation
of the same diameter, but of different lengths? What of those
of the same leng’ch but of different diameters ?
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SECTIAN 1V,
OF PYRAMIDS AND CONES.

609. A Pyramid is a solid having a polygon for its base,
and triangles for its lateral faces. If the base is also a triangle,
it is called a triangular pyramid, or a tetraedron (2. e., a solid with
four faces). The vertex of the polyedral angle formed by the
lateral faces is the v:rfex of the pyramid.

610. The Altitude of a pyramid is the perpendicular dis-
tance from its vertex to the plane of its base.

611. A Right Pyramid isa pyramid whose base is a regu-
lar polygon, and the perpendicular from whose vertex falls at
the centre of the base. This perpendicular is called the axvs.

612. A Frustum of a pyramid is a portion of the pyramid
intercepted between the base and a plane parallel to the base.
If the cutting plane is not parallel to the base, the portion inter-
cepted is called a Truncated pyramid.

613. The Slant Height of a right pyramid is the altitude
of one of the triangles which form its faces. The Slant Height
of @ Frustum of aright pyramid is the portion of the slant height
of the pyramid irtercepted between the bases of the frustum.

IrrusTrATIONS.—The student will be able to find illustrations of the
definitions in the above figures,
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614. A Conical Surface is a surface traced by a line
which passes through a fixed point, while any other point traces
a curve. The line is the Generatriz, and the curve the Direc-
triz. The fixed point is the Verfex. Any line of the surface
corresponding to some position of the generatrix is called an
Element of the surface.

615. A Cone of Revolution is a solid generated by the
revolution of a right-angled triangle around one of its sides,
called the Azis. The hypotenuse describes the Convex Surface
of the cone, and corresponds to the generatrix in the preceding
definition. The other side of the triangle describes the Base.
This cone is right, since the perpendicular (the axis) falls at the
centre of the base. The Slant Height is the distance from the
vertex to the circumference of the base, and is the same as the
hypotenuse of the generating triangle.

616. The terms Frustum and Truncated are applied to
the cone in the same manner as to the pyramid.

617. A pyramid is said to be Inscribed in a cone when the
base of the pyramid is inscribed in the base of the cone, and the
edges of the pyramid are elements of the surface of the come.
The two solids have a common vertex and a common altitude.

618. If the generatrix be considered as an indefinite straight
line passing through a fixed point, the portions of the line on
opposite sides of the point will each describe a conical surface.
These two surfaces, which in general discussions are considered
but one, are called Nappes. The two nappes of the same cone
are evidently alike. '

IrrusTrRATION.—In Fig. 273, (¢) represents a conical surface which
has the curve ABC for its directriz, and SA for its generatriz. The nu-
merals indicate the successive positions of the point A, as it passes around
the curve, while the point S remains fixed. (J) represents a Cone of Rev-
olution, or a right cone with a circular base. It may be considered as
generated in the general way, or by the right-angled triangle SOA revolv-
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Fig. 273. ‘
base. The figure (¢) represents the Frustum of a cone, the portion above

the plane abe being supposed removed. Figure (d) represents the two
Nappes of an oblique cone.

PROPOSITION I.

819. Theorem.—Any section of a pyramid made by a
plane parallel to its base is a polygon similar to the base.

DEMONSTRATION.

Let abcde be a section of the pyramid
S-ABCDE made by a plane parallel to ABCDE.

Then is abede similar to ABCDE.

Since AB and ab are intersections of two
parallel planes by a third plane, they are paral-
lel (?). 8o also b is parallel to BC, ¢d to CD,
etc. Hence, angle = B, ¢ =C, etc. (?), and the
polygons are mutually equiangular. Again,

ab  Sb be Sb
Hence @ = _b_g

In like manner, we can show that
b _BC
c_d = C—D y ete. .
Therefore, abede and ABCDE are mutually equiangular, and have
their corresponding sides proportional, and are consequently similar.
Q.E.D.
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PROPOSITION II.

620. Theorem.—If tuwo pyramids of equal altitudes
are cut by planes equally distant from and parallel to
their bases, the sections are to each other as the bases.

DEMONSTRATION,

Let S-ABC and S'-A’B'C'D'E’ be two pyramids of the same altitude,
cut by the planes abc and «'b'c’'d'¢, paraliel to and at equal distances
from their bases.

abe  ~ ABC
atc¢de ~ ABCDFE

For, conceive the bases in the
same plane. Let SP and S'P’ be the
equal altitudes, and Sp = S'p’ the
distances of the cutting planes from
the vertices.

Conceive a plane passing through
the vertices parallel to the plane of
the bases. This plane, together with
the plane in which the sections lie,
and that in which the bases lie, make
three parallel planes which cut the
lines SA, SB, S'A’, S'B/, SP, and S'P/, Fig. 275.
whence

Then is

SB_SP_SB _SP
S~ Sp SV~ §yp

Also, since the planes ASB and A’S’B’ are cut by parallel planes in
AB, ab, A'B’, and a'V, ab is parallel to AB, and «'b’ to A’B’; whence,

AB_SB . AB_SB
ab — Sb’ at — SV
ABC _ AB’ §'B”
Now abe E 7= 377(1)’

A'B'C'D'E’ AB® §B"
and K2 Can it
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Hence, by equality of ratios,

ABC _ A'B'C'D'E’ abe ABC
“ae = aveds ' " avodéd ~ ABCDE O ¢ EP

621. CoROLLARY.—If two pyramids having equivalent
bases and equal altitudes are cut by planes parallel to and
equidistant from their bases, the sections are equivalent.

PROPOSITION III.

622. Theorem.—The area of the lateral surface of o
right pyramid is equal to the perimeter of the base multz-
plwd by one-half the slant height.

DEMONSTRATION.

The faces of such a pyramid are equal isosceles tri-
angles (?), whose common altitude is the slant height of
the pyramid (7).

Hence, the area of these triangles is the product of
one-half the slant height into the sum of their bases. But
this sum is the perimeter of the base.

Hence the area is equal to the perimeter of the base
multiplied by one-half the slant height. Q. E. D.

623. CorOLLARY.—The area of the lateral
surface of the frustum of a right pyramid is
equal to the product of its slant height into
half the sum of the perimeters of its bases.

The proof is based upon (350) and definitions.
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PROPOSITION 1IV.

624. Theorem.—7he area of the convex surface of &
cone of revolution (a right cone with a circular base) is
equal to the product of the circumference of its base and
one-half its slant height, i. e., ntRH', R being the radius of
the base, and H' the slant height.

DEMONSTRATION.

In the circle which forms the base of the cone,
conceive a regular polygon inscribed, as abedgf. Join-
ing the vertices of the angles of this polygon with the
vertex of the cone, there will be constructed a right
pyramid inscribed in the cone. Now, if the arcs sub-
tended by the sides of this polygon be bisected, and
these are again bisected, etc., and at every step a right
pyramid is conceived as inscribed, it will always remain
true that the lateral surface of the pyramid is the pe-
rimeter of its base into half its slant height.

But, as the number of faces of the pyramid is in-
creased, the perimeter of the base approaches the circumference of the
base of the cone as its limit, and hence the slant height of the pyramid
approaches the slant height of the cone, and the lateral surface of the
pyramid approaches the convex surface of the cone as their limits, and all
reach their limits simultaneously.

" Therefore, af the limit we still have the same expression for the area
of the convex surface, that is, the circumference of the Lase multiplied
by half the slant height.

" Finally, if R is the radius of the base, its circumference is 2rR, and
H being the slant height, we have for the area of the convex surface
2rRx }H', or tTRH'. Q. E.D. '

Fig. 278.

* 825. CoROLLARY 1.—The area of the convex surface of a
cone is also equal to the product of the slant height into
the circumference of the circle parallel to the base, and
midway between the base and vertex.

This follows directly from the fact that the radius of the circle mid-
way between the base and vertex is one-half the radius of the base, 1. e.,
$R (%), whence its circumference is 7R, Now, R x H'is the area of the
convex surface, by the proposition,
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626. CoroLLARY 2.—The area of the convex surface of
the frustum of a cone is equal to the product of its slant
height into half the sum of the circumferences of its
bases; i. e, n (R+r)H', R and r being the radii of its
bases, and H' its slant height.

From the corresponding property of the frustum of a pyramid, the
student will be able to deduce the fact that } (2« R+2nr) H' or m (R+7) H
is the area of this surface by the same line of argument used in the
demonstration of the main theorem.

627. CorOLLARY 3.—The area of the convex surface of
the frustum of a cone is equal to the product of its slant
height into the circumference of the circle midway between
the bases.

The radius of the circle midway between the bases is } (+ R), whence
its circumference is w(r+R). Now, w(r+R)x H' is the area of the con-
vex surface of the frustum, by the preceding corollary,

PROPOSITION V.

628. Theorem.— Two pyramids having equivalent
bases and the same altitudes are equivalent, i. e., equal in
volume.

FIRST DEMONSTRATION.

Let S-ABCD and S'-A’B'C’'D'E’' be two pyramids having the same
altitudes, and base ABCD equivalent to base A’B'C'D’E/, i. e., equal in
area.

Then is pyramid S-ABCD
equivalent to $-A'B'C’'D'E/, i. ¢.,
equal in volume.
For, conceive the bases to be
in the same plane, and a plane to
start from coincidence with the
plane of the bases, and move to-
ward the vertices, remaining all
the time parallel to the bases, rig. /9,
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Now each of the sections of the pyramids made by this plane may be
conceived as a varying polygon which generates its respective pyramid.
And as these polygons are always equivalent, and move at the same rate,
they generate equal volumes in equal times. Moreover, as the bases of
the pyramids are in the same plane, and their altitudes are equal, the
polygons generate their respective pyramids in the same time. Hence
these volumes are equal. Q.E.D.

SECOND DEMONSTRATION.

Consider the pyramids divided into an infinite number of laming of
equal but infinitesimal thickness, as mc, m'c, parallel to the bases. Now
each lamina in one will have a corresponding lamina in the other at the
same distance from the base since the lamine are of equal thickness, and
hence equivalent to it.

Hence the pyramids are composed of an equal number of equivalent
lamine, and are consequently equivalent. Q. E. D.

PROPOSITION VI.

629. Theorem.—The volume of a triangular pyramid
is equal to one-third the product of its base and altitude.

DEMONSTRATION.

Let S-ABC be a triangular pyramid, whose altitude is H.
Then is the volume equal to
{4H x area ABC.

For, through A and B draw Az and Bb
parallel to SC; and through § draw Se
and Sb parallel to CA and CB, and join a@
and b; then Sab-ABC is a prism with its
base equal to the base of the pyramid,
Now, the solid added to the given pyr-
amid is a quadrangular pyramid with abBA
as its base, and its vertex at S.
Divide this into two triangular pyra- Fig. 280.
mids by drawing aB and passing a plane through SB and aB. These tri-
angular pyramids are equivalent, since they have equal bases, sAB and
abB, and a common altitude, the vertices of both being at S.
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Again, 8-abB may be considered as having abS (equal to ABC) as ita
base, and the altitude of the given pyramid (equal to the altitude of the
prism) for its altitude, and hence as equivalent to the given pyramid,

Thus the prism ABCab8 is divided into tho three equivalent pymmldn\
S-ABC, B-abS, and S-aBA.

Hence, the pyramid S-ABC is one-third the prism Sab-ABC, which
has the same base and altitude.

But the volume of the prism is
H x area ABC.
. Therefore the volume of the pyramid S-ABC is

$H x area ABC. Q.E.D.

630. CoroLLARY 1.—The volume of any
pyramid is equal to one-third the product
of its base and altitude.

Since any pyramid can be divided into triangular
pyramids by passing planes through any one edge, as
SE, and each of the other edges not adjacent, as SB
and SC, the volume of the pyramid is equal to the sum
of the volumes of several triangular pyramids having
the same altitude as the given pyraumid, and the sum Fig. 281.
of whose bases is the base of the given pyramid.

631. COROLLARY 2.—Pyramids having equivalent bases
are to each other as their altitudes; such as have equal
altitudes are to each other as their bases ; and, in general,
pyramids are to each other as the products of their bases
and altitudes.

EXERCISE.—A Regular Tetraedron is a triangular pyr-
amid whose base is an equilateral triangle and each of whose
lateral faces are equal to the base. What is the volume of such
a tetraedron whose edge is 1 inch ? Ans. 14/ cu. in.

‘What is the entire area of the surface of this tetraedron ?
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PROPOSITION VII.

632. Theorem.—The volume of the frustum of a tri-
angular pyramid is equal to the volume of three pyramids
of the same altitude as the frustum, and whose bases are
the upper base, the lower base, and a mean proportional
between the two hases of the frustum.

DEMONSTRATION.
Let abc-ABC (Fig. 282) be the frustum of a triangular pyramid.

Through ab and C pass a plane cutting off the pyramid C-ade. This
has for its base the upper base of the frustum, and for its altitude the
altitude of the frustum.

Again, draw Ab, and pass a plane through
Ab and 3C, cutting off the pyramid 3-ABC,
which has the same altitude as the frustum,
and for its base the lower base of the frustum,

There now remains a third pyramid, 5-ACa,
to be examined.

Through & draw 8D parallel to eA, and
draw DC and aD.

" The pyramid D-ACa is equivalent to
3-ACa, since it has the same base and the same
altitude(?). But the former may be considered
as having ADC forits base, and the altitude of the frustum for its altitude,
1. e., a8 pyramid @-ADC. -

Fig. 282,

We are now to show that ADC is a mean proportional between abe
and ABc'
ABC _ AB’ _ AB’
@ =@

ABC _ AB ABC' _ AB’
Ao Ao =m0 @ o 5o o @
. . ABC _ ABC’ e .
By equality of ratios, @ = Apg" whence, ADC® = abex ABC;

f.¢., ADC is a mean proportional between the upper and lower bases of
the frustum.

Hence the volume of the frustum is equal to the volume of three
pyramids, etc. Q. E. D.
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633. CoroLLARY.—The volume of the frustum of any
‘pyramid is equal to the volume of three pyramids hav-
ing the same altitude as the frustum, and for bases, the
wpper base, the lower base, and a mean proportional
between the two bases of the frustum.

For, the frustum of any pyramid is equivalent to the corresponding
frustum of a triangular pyramid of the same altitude and an equivalent
base (7); and the bases of the frustum of the triangular pyramid being
both equivalent to the corresponding bases of the given frustum, a mean
proportional between the triangular bases is a mean proportional between
their equivalents,

PROPOSITION VIII.

634. Theorem.—The volume of a cone of revolution is
equal to one-third the product of its base and altitude ;
i. e., 37 R*H, R being the radius of the base and H the alti-
tude.

DEMONSTRATION.

The volume of a pyramid is equal to one-third the product of the
base and altitude, and the cone being the limit of the pyramid, the vol-
ume of the cone is one-third the product of its base and altitude.

Now, R bheing the radius of the base of a cone of revolution, the
base (area of) is 7R?, whence }=RH is the volume, H being the altitude.
Q.E.D.

635. COROLLARY 1.—The volume of any come is equal
to one-third the product of its base and altitude.

636. CoroLLARY 2.—The volume of the frustum of a
cone is equal to the volume of three cones having the
same altitude as the frustum, and for bases, the wpper
base, the lower base, and a mean proportional between
the two bases of the frustum.

The truth of this appears from the fact that the frustum of a cone is
the limit of the frustum of a regular inscribed pyramid.
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PROPOSITION IX.

637. Theorem.—7Thelateral surfacesof similar pyra-
mids are to each other as the squares of their homologous
edges, or of their altitudes.

DEMONSTRATION.

Let A, A/, A, etc., and «, «/, a'’, etc., be homologous sides of the
bases of two similar pyramids, E, E’, E’, etc., and ¢, ¢, €', etc.,
homologous lateral edges, H and . the altitudes of the pyramids, and
let S and s be the lateral surfaces.

s Ai AI! AII!

Then is ?=¢?=F=W’m"

E® E’® E'"?
.‘=o—a-=e,-T=e",,e oy
HO
= I’"

Since the pyramids are similar, the corresponding facial angles are
equal, and the homologous edges proportional (597, 532), hence the
bases are similar polygons, and the corresponding lateral faces are simi-
lar triangles.

Now let F, F/, F”, etc.; and f, f*, /", etc., be the corresponding latera.
faces, of which triangles, A, A’y A", etc., and a, @', a”, etc., are the bases
respectively, and E, E/, E”, etc., and ¢, ¢, ¢, etc., other homologous sides.

A_AN A E_FE _FE H
Then 7 = 7 = i ete, = = = - =~ ete, = £ (.
Ai Ali A”’ Ei El’ E/IQ H’
Whence? == a,—,,,etc., =g == ;,,—,,etc., =IF(?)

F A F At FV A2
Moreoyer, 7=a F e ik ete.
F+F +F/, etc. S A* A% A"
SHf+f"ete. — s a® ~ d* "
E2 E’® Es H!
=eT=6J—’=—e'T’_’e .,=h—,' Q. E. D,

‘Whence

638. COROLLARY.—Thelateral surfacesof similarright
pyramids are to each other as the squares of any homolo-
Zgous lines, as slant heights, altitudes, or of correspond-
ing diagonals of the bases.
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.PROPOSITION X.

639. Theorem.— The convex surfaces of similar
cones of revolution are to each other as the squares of
their slant heights, the radii of their bases, or their
altitudes; i. e., as the squares of any two homologous
dimensions.

DEMONSTRATION,

Let H” and 7' be the slant heights of two similar cones of revolution,
R and 7 the radii of their bases, and H and I their altitudes.

Their convex surfaces are xRH and nrk’,

Now, since the cones are similar,

R_H
7w (P

Multiplying the tefms of this proportion by the corresponding
terms of

~H _H

W T W’

B TRH' _H"
we have =

Hence the convex surfaces are as the squares of their slant heights,
QE.D.

H” R H?
But,u F=;§(?)=F,

*RH' R _H?
ARl

That is, the convex surfaces are to each other as the squares of the
radii of the bases, or as the squares of the altitudes. Q.E.D.
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PROPOSITION XI.

640. Theorem.—The volumes of similar pyramids
are to each other as the cubes of their homologous dimen-
sions.

SyYNopsis oF DEMONSTRATION.

Let 4 and @ be homologous sides of the bases of two similar pyra-
mids, B and b their bases, and H and /X their altitudes.

H £

We have g=%—%(7)-
iH A _H

W =a ="

PROPOSITION XII.

641. Theorem.—The volumes of similar cones are to
each other as the cubes of their altitudes, or as the cubes
of the radii of their bases.

SyNopsIsS OF DEMONSTRATION.

Let R and 7 be the radii of their bases, and H and 2 their altitudes.

3

‘We have f,’ ‘ir,(?).

and BT
*WH_E

e il Al

}nR’xH_li’(?)

CmExh B

or =‘-—R;—:- Q. E.D
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OF THE REGULAR POLYEDRONS.

642. A Polyedron is a solid bounded by plane surfaces.
A Regular Convex Polyedron is a polyedron whose faces are all
equal regular polygons, and each of whose solid angles is convex
outward, and is enclosed by the same number of faces.

PROPOSITION XIII.

643. Theorem.—There are five and only flve regular
convex polyedrons, viz.:

The TETRAEDRON, whose faces are four equal equilat-
eral triangles ;

The HEXAEDRON, or CUBE, whose faces are six equal
squares ;

The OcTAEDRON, whose faces are eight equal equilateral
triangles ;

The DopECAEDRON, whose faces are twelve equal regular
pentagons ; and

The IcosAEDRON, whose faces are twenty equal equilat-
eral triangles.

DEMONSTRATION.

‘We demonstrate this proposition by showing—1st, that such solids
can be constructed ; and 2d, that no others are possible.

The Regular Tetraedron.—Taking three equilat-
eral triangles, as ASB, ASC, and BSC, it is possible to
enclose a solid angle, as S, with them, since the sum
of the three facial angles is (what ?) (555).

Then, since AC = AB = CB (f), considering ACB
the fourth face, we have a regular polyedron whose

four faces are equilateral triangles. Fig. 283.
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The Regular Hexaedron or Cube.—This is a familiar solid, but for
purposes of uniformity and completeness we may conceive it constructed
as follows: Taking three equal squares, as ASCB,

CSED, and ASEF, we can enclose a solid angle, as S,
with them (?).

Now, conceive the planes of CB and CD, AB and
AF, EF and ED produced. The plane of CB and CD
being parallel to ASEF (?), will intersect the plane of
EF and ED in HD parallel to FE (?). In like manner,

FH can be shown parallel to ED, BH to CD, and HD to
BC. Hence the solid has for its faces six equal squarea, % 284-

The Regular Octaedron.—At the intersection, P,
of the diagonals of a square, ABCD, erect a perpendic-
ular SP to the plane of the square, and making SP =
AP (half of one of the diagonals) draw SA, SD, SC,
and SB.
Making a similar construction on the other side of
the plane ABCD, we have a solid having for faces eight
equal equilateral triangles (?). Fig. 285.

The Regular Dodecaedron.—Taking twelve equal regular pentagons
we may group them in two sets of six each, as in the figure. Thus,
around O we may place five, forming five triedrals at the vertices of 0.
These triedrals are possible,
since the sum of the facial
angles enclosing each is 83
right angles (})—.e., between
0 and 4 right angles (555).

In like manner, the other
six may bhe grouped by
placing five of them about
0.

Now, conceiving the con-
vezity of the group O in front and the concarvity of group 0’, we may place
the two together so as to inclose a solid. Thus, placing A at b, the three
faces 5, 7, 1, will inclose a triedral, since the diedral included by 5 and 1
is the diedral of such a triedral. Then will vertex B fall at ¢, and a like
triedral will be formed at that point, and so of all the other vertices,
Hence we have a polyedron having for faces twelve equal regular pentae
gous,

-

Fig. 286.
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The Regular Icosaedron.—Taking twenty equal equilateral triangles,
they can be grouped in two sets, as in the figure, in a manner altogether
similar to the preceding case.
The solid angles in this case are
included by five facial angles
whose sum is 8} right angles
(?), which is a possible case
(555). As before, conceiving
the convezity of group O in
front, and the concavity of 0’,
we can place them together by
placing A at @, thus enclosing
a solid angle with five faces, whence B will fall at b, etc. Thus we obtain
a solid with twenty equal equilateral triangles for its faces.

That there can be no other regular polyedrons than these five is evi-
dent, since we can form no other convex solid angles by means of regular
polygons. Thus, with equilateral triangles (the simplest polygon) we
have formed solid angles with three faces (the least number possible), as
in the tetraedron; with four, as in the octaedron; and with five, as in the
icosaedron, 8ix such facial angles cannot enclose a solld angle, since
their sum i8s four right angles (?), and much less can any greater number.
Again, with squares (the next most simple polygon) we have formed
solid angles with three faces, as in the hexaedron, and can form no other,
for the same reason as above. With regular pentagons we can enclose
only a triedral, as in the dodecaedron, for a like reason. With regular
hexagons we cannot enclose a solid angle (?), and much less with any
regular polygon of more than six sides.

Fig. 267.

Fig. 288,
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644. ScroLruM.—Models of the regular polyedrons are 2asily formed
Ly cutiing the preceding figures from cardboard, cutting half-way through
the board in the dotted lines, and bringing the edges together as the
forms will readily suggest.

PROPOSITION XI1IV.

645. Theorem.—Any regular polyedron is inscriptible
and circumscriptible by a sphere.

OUTLINE OF D) EMONSTRATION.

From the centres of any two adjacent faces, as ¢ and
¢, let fall perpendiculars upon the common edge, and
they will meet it in the same point o ({). The plane of
these lines will be perpendicular to this edge (?), and
perpendiculars to these faces from their centres, as ¢S,
¢'S, will lie in this plane (?), and hence will intersect at
a point equally distant from these faces (?).

In like manner ¢’S = ¢S, and the point S can be
shown to be equally distant from all of the faces, and is therefore the cen.
tre of the inscribed sphere.

Joining 8 with the vertices, we can readily show that $ is also the
centre of the circumscribed sphere.

Fig. 289.

EXERCISES.

648. 1. What is the area of the lateral surface of a right
hexagonal pyramid whose base is inscribed in a circle whose
diameter is 20 feet, the altitude of the pyramid being 8 feet?
What is the volume of this pyramid ?

R. What is the area of the lateral surface of a right pentago-
nal pyramid whose base is inscribed in a circle whose radius is
6 yards, the slant height of the pyramid being 10 yards? What
is the volume of this pyramid ?
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3. How many quarts will a can contain, whose entire height
is 10 inches, the body being a cylinder 6 inches in diameter and
64 inches high, and the top a cone? How much tin does it take
to make such a can, allowing nothing for waste and the seams ?

4. If very fine dry sand is piled upon a smooth horizontal
surface, without any lateral support, the angle of slope (. e., the
angle of inclination of the sloping side of the pile with the plane)
is about 31°. Suppose two circles be drawn on the floor, one
4 feet in diameter and the other 3, and sand piles be made as
large as possible on these circles as bases, no other support being
given. What is the relative magnitude of the piles ?

5. In the case of sand piles, as given in the last example, the
ratio of the radius of the base to the altitude of the pile is §.
How many cubic feet in each of the above piles ?

6. The frustum of a right pyramid was 72 feet square at the
lower base and 48 at the upper; and its altitude was 60 feet.
What was the lateral surface ? What the volume? [Such a
solid is called a Prismoid.] :

7. Find the area of the surface, and the contents of a regular
tetraedron, one of whose edges is 10 inches. What is the diam-
eter of the inscribed sphere? Of the circumscribed ?

647. A Wedge is a solid
bounded by three quadrilaterals
and two triangles.

Thus, ABCD is a rectangle, and is
called the Head of the wedge, the two
triangles AED and FBC are the Ends,
and the two trapezoids ABFE and
DCFE are the Sides. The Altitude is
the perpendicular to the head from the
edge opposite.

8. The base of a wedge being 18 feet by 9 feet, the edge 20
feet, and the altltude 6 feet, what are the contents ?
Ans, 504 cu. ft.
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SECTINN ¥,
OF THE SPHERE.*

648. A Sphere is a solid bounded by a surface every point
in which is equally distant from a point within called the Centre.

The distance from the centre to the surface is the Radius,
and a line passing through the centre and limited by the surface
is a Diameter. The diameter is equal to twice the radius.

CIRCLES OF THE SPHERE,

PROPOSITION I.

649. Theorem.—Euvery section of a sphere made by a
plane is a circle.

DEMONSTRATION.

Let AFEBD be a section of a sphere,
whose centre is O, made by a plane; then
is the section AFEBD a circle.

For, let fall from the centre O a per-
pendicular upon the plane AFEBD, as OC,
and draw CA, CD, CE, CB, etc., lines of the
plane, from the foot of the perpendicular
to any points in which the plane cuts the Fig. 291.

* A spherical blackboard is almost indispensable in teaching this section
as well as in teaching Spherical Trigonometrj. A sphere about two feet in
diameter, mounted on a pedestal, and having its surface slated or painted as
a blackboard, is what is needed. It can be obtained of the manufacturers
of schoo] apparatus, or made in any good turning-shop,
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surface of the sphere. Join these points with the centre, O, of the
sphere.

Now OA, OD, OB, OE, etc., being radii, are equal; whence, CA, CD,
CB, CE, etc., are equal; 4. ¢., every point in the line of intersection of a
plane and surface of a sphere is equally distant from a point in this
plane. Hence, the intersection is a circle. Q. E. D.

650. A circle made by a plane not passing through the centre
is a Small Cirele; one made by a plane passing through the
centre is a Great Circle. ’

651. CorOLLARY 1.—A perpendicular from the centre
of a sphere upon any small circle pierces the circle at its
centre; and, conversely, a perpendicular to a small circle
at its centre passes through the centre of the sphere.

652. A diameter perpendicular to any circle of a sphere is
called the Axis of that circle. The extremities of the axis are
the Poles of the circle.

853. CoROLLARY 2.—The pole of a circle is equally dis-
tant from every point in its circumference.
The student should give the reason.

654. CorOLLARY 3.—Euvery circle of a sphere has two
poles, which, in case of a great circle, are equally distant
from every point in the circumference of the circle ; but,
in case of a small circle, one pole is nearer any point in
the circumference than the other pole is.

655. COROLLARY 4.—A small circle is less as its dis-
tance from the centre of the sphere is greater; hence the
circle whose plane passes through the centre is the greatest
circle of the sphere.

For, its diameter, being a chord of a great circle, is less as it is far-

ther from the centre of the great circle, which is also the centre of the
sphere.

656. CorOLLARY 5.—Jll great circles of the same sphers
are equal (?), '
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PROPOSITION II.

657. Theorem.—Any great circle divides the sphere
into two equal parts.

DEMONSTRATION. .

Conceive a sphere as divided by a great circle, i. e., by a piane pass-
ing through its centre, and let the great circle be considered as the base
of each portion. These bases being equal, reverse one of the portionsand
conceive its base placed in the base of the other, the convex surfaces
being on the same side of the common base. Since the bases are equal
circles, they will coincide, and gince all points in the convex surface of
each portion are equally distant from the centre of the common base, the
convex surfaces will coincide. Therefore, the portions coincide ¢through-
out, and are consequently equal. Q. E. D.

857, a.— A Hemisphere is one of the two equal parts into
which a great circle divides a sphere.

PROPOSITION III.

858. Theorem.—The intersection of any two greaé cir-
cles of a sphere is a diameter of that sphere.

DEMONSTRATION.

The intersection of two planes is a straight line; and in the case of
the two great circles, as they both pass through the centre of the sphere,
this is one point of their intersection. Hence, the intersection of two
great circles of a sphere is a straight line which passes through the cen-
tre. Q. E.D.,

659. CorOLLARY.—The intersections on the surface of a
sphere of two circumferences of great circles are a semi-
circumference, or 180°, apart, since they are at opposite
extremities of a diameter.
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DISTANCES ON THE SURFACE OF A
SPHERE.

660. Distances on the surface of a sphere are always to be
understood as measured on the arc of a great circle, unless it is
otherwise stated.

PROPOSITION 1V.

661. Theorem.—7The distance, measured on the swr-
face of a sphere, from the pole of a circle to any point in
the circumference of that circle, is the same.

DEMONSTRATION.

Let P be a pole of the small circle AEB.

Then are the arcs PA, PE, PB, etc,
which measure the distances on the surface
of the sphere, from P to any points in the
circumference of circle AEB, equal.

For, by (853), the straight lines AP, PE,
PB, etc., are equal, and these equal chords
subtend equal arcs, as arc PA, arc PE, arc
PB, etc., the great circles of which these
lines are chords and arcs being equal (656).

Thus, for like reasons, Fig. 292.

arc P'QA = arc PLE = arc P'RB, etc. Q. E. D.

862. CoroLLARY.—The distance from the pole of a great
circle to any point in the circumference of the circle is a
quadrant (a quarter of a circumference).

Since the poles are 180° apart (being the extremities of a diameter),
PAQP’ = PELP’' = a semi-circumference. But, in case of a great circle,
chord PL = chord P'L (= chord PQ = chord P'Q), whence arc PEL =
src P'L = arc PAQ = arc P'Q. Hence, each of these arcs is a quadrant.
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663. ScHOLTUM.—By means of the facts
demonstrated in this proposition and corollary,
we are enabled to draw arcs of small and great
circles, in the surface of a sphere, with nearly the
same facility that we draw arcs and lines in a
plane. Thus, to draw the small circle AEB (Fig.
292), we take an arc equal to PE, and placing one
end of it at P, cause a pencil held at the other
end to trace the arc AEB, etc. To describe the Fig. 293.
circumference of a great circle, a quadrant must
be used for the arc. By bending a wire into an arc of the circle, and
making a loop in each end, a wooden pin can be put through one loop
and a crayon through the other, and an arc drawn as represented in
Fig. 2908,

PROPOSITION V.

664. Problem.—70o pass a circumference of a great
circle through any two points on the surface of a sphere.

SoLuTION,

A ki;et A and B be two points on the surface of a sphere, through which
it Is proposed to pass a circumference of a great circle.

From B as a pole, with an arc equal to a quad-
rant, strike an arc on, as nearly where the pole of
the circle passing through A and B lies, as may be
determined by inspedtion. Then, from A, with
the same arc, strike an arc s¢ intersecting on at P.
Now, P is the pole of the great circle passing
through A and B (?). Hence, from P as a pole, with
a quadrant arc drawing a circle, it will pass
through A and B; and it will be a great circle,
since its pole is a quadrant’s distance from its circumference.

[The student should make this construction on the spherical black-
board.]

Fig. 294.
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PROPOSITION VI.

665. Theorem.—Through any two points on the sur-
face of a sphere, one great circle* can always be made to
pass, and only one, except when the two points are at the
extremities of the same diameter, in which case an infi-
nite number of great circles can be passed through the two

points.
DEMONSTRATION.

This proposition may be considered a corollary
to the preceding. Thus, in general, the two great
circles struck from A and B as poles, with a quad-
rant arc, can intersect in only two points (%), which
are the poles of the same great circle (7).

But, if the two given points were at the extrem-
ities of the same diameter, as at D and C, the arcs
st and on would coincide, and any point in this
circumference being taken as a pole, great circles can be drawn through
D and C.

[The student should trace the work on the spherical blackboard.]

Fig. 295.

666. ScmoLruM.—The truth of the proposition is also evident from
the fact that three points not in the same straight line determine the
position of a plane. Thus, A, B, and the centre of the sphere, fix the
position of one, and only one, great circle passing through A and B.
Moreover, if the two given points are at the extremities of the same diam-
eter, they are in the same straight line with the centre of the sphere,
whence an infinite number of planes can be passed through them and the
centre. The meridians on the earth’s surface afford an example, the poles
(of the equator) being the given points.

667. CorOLLARY.—If two pointsin the circumference of
a great circle of a sphere, not at the extremities of the
same diameter, are at a quadrant’s distance from a point
on the surface, this point is the pole of the circle.

* The word circle may be understood to refer either to the circle proper,
or to its circumference. The word is in constant use in the higher mathe.
matics in the latter sense.

13
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PROPOSITION VII.

668. Theorem.—7The shortest distance on the surface
of a sphere, between any two points in that surface, is
measured on the arc less than a semi-circumference of the
Zreat circle which joins them.

DEMONSTRATION.

Let A and B be two points in the surface of a sphere, AB the arc of a
great circle joining them, and AmCnB any other path in the surface be-
tween A and B.

Then is arc AB less than AmCnB.
~ Let C be any point in AmCnB, and pass the
arcs of great circles through A and C, and B and
C. Join A, B, and C with the centre of the sphere.
The angles AOB, AOC, and COB form the facial
angles of a triedral, of which angles the arcs AB,
AC, and CB are the measures.

Now, angle AOB < AOC + COB (540);

whence arc AB < arc AC + arc CB (?),

and the path from A to B is less on arc AB than on arcs AC, CB.

In like manner, joining any point in AmC with A and C by arcs of
great circles, their sum will be greater than AC. 8o, also, joining any
point in CnB with C and B, the sum of the arcs will be greater than CB.

As this process is indefinitely repeated, the path from A to B on the
arcs of the great circles will continually increase, and also continually
approximate the path AmCnB. Hence, arc AB is less than the path
AmCnB. Q.E.D.

669. COROLLARY.—The least arc of a circle of a sphere
Joining any two points in the surface, is the arc less than
a semi-circumference of the great circle passing through
the points; and the greatest arc is the circumference
minus this least arg.
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Thus, let AmBn be any small circle passing
through A and B, and ABDoC the great circle;
then, as just shown, ApB < AmB.

Now, circf. ABDoC > circf. AmBn (655).

Subtracting the former inequality from the
latter, we have BDoCA > BrA. Q. E. D.

670. Two arcs of great circles are said
to be perpendicular to each other when
their circles are.

PROPOSITION VIII.

Fig. 297.

201

671. Theorem.—If at the middle point of an arc of a
great circle a perpendicular is drawn on the surface of a

sphere, the distances being measured on great circles,

1st. Ary point in this perpendicular is equally distant

from the extremities of the arc.

2d. Any point out of the perpendicular is unequally

distant from the extremities of the arc.

DEMONSTRATION.

Let AB be any arc of a great circle, D its middle point, and PD a

perpendicular.

Then is PB = PA, the arcs being all arcs of
great circles. :

From O, the centre of the sphere, draw OP,
OD, OB, and OA. The rectangular triedrals
O0-PDB and O-PDA are symmetrically equal (?) ;
whence PB = PA, Q. E.D.

~ Again, let P’ be a point out of PD. Pass
arcs of great circles through P’ and A, and P’ and
B, as P’A, P'B. From P, where one of these

cuts PD, draw the arc of a great circle PB. Then is

P'B < P'P + PB (668),

Fig. 298,

whence, PB < PP + PA (1),and PB < PA(}). Q E D
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872. CorOLLARY 1.—The perpendicular at the middle
point of an arc contains all the points in the surface of
the sphere which are equally distant from the extremities
of the are.

673. COROLLARY 2.—An arc which has each of two points,
not at the extremity of the same diameter, equally distant
from the extremities of another arc of a great circle, is
perpendicular to the latter at its middle point.

This is apparent, since by Corollary 1 such points are in the perpen-
dicular, and two such points with the centre determine a great circle.

PROPOSITION IX.

874. Theorem.—7The shortest path on the surface of a
hemisphere, from any point therein to the circumference
of the great circle forming its base, is the arc not greater
than a quadrant of a great circle perpendicular to the
base, and the longest path, on any arc of a great circle, is
the supplement of this shortest path.

DEMONSTRATION.

Let P be a point in the surface of the hemisphere vhose base is
ADCBC', and DPmD' an arc of a great circle passing through P and per-
pendicular to ADCBC'.

Then is PD the shortest path on the sur-
face from P to circumference ADCBC’, and
PmD’ is the longest path from P to the cir-
cumference, measured on the arc of a great
circle.

For, the shortest path from P to any point
in circumference ADBC’ is measured on the
arc of a great circle (?). Now, let PC be any
oblique arc of a great circle. We will show
that _ ' Fig. 299,

arc PD < arc PC.
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Produce PD until DP’ = PD; and pass a great circle through P
and C.

Then is the arc PC = arc P'C.
And, since PC + P'C > PP/,
PC, the half of PC + P'C, is greater than PD, the half of PP’. Q. E. D.

8econdly, PmD’ is the supplement of PD, and we are to show that it
is greater. than any other arc of a great circle from P to the circumference
ADBC'. Let PaC’ be any arc of a great circle oblique to ADCBC'. Pro-
duce C'nP to C. Now CPaC’ is a semi-circumference and consequently
equal to DPmD’. But we have before shown that

PD < PC,
and subtracting these from the equals CPzC’ and DPmD’, we have

PmD’ > PnC'. Q. E. D.

675. CoroLLARY.—From any point in the surface of a
hemisphere there are two perpendiculars to the circumfer-
ence of the great circle which forms the base of the hemi-
sphere; one of which perpendiculars measures the least
distance to that circumference, and the other the greatest,
on the arc of any great circle of the sphere.

SPHERICAL ANGLES.

676. The angle formed by two arcs
of circles of a sphere is conceived as
the same as the angle included by the
tangents to the arcs at the common
points,
ILLusTRATION.—Let AB and AC be two
arcs of circles of the sphere, meeting at A;
then the angle BAC is conceived as the same
as the angle B’AC’, B'A being tangent to the
circle BADm, and C'A to the circle CAEn. Fio. 300.
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677. A Spherical Angle is the angle included by two
arcs of great circles.

ILLUSTRATION.—BAC is a spherical an-
gle, and is conceived as the same as the
angle B'AC’, B’A and C’A being tangents to
the great circles BADF and CAEF. [The stu-
dent should not confound such an angle as

BAC Fig. 800) with a spherical angle.]

Fig. 30L.

PROPOSITION X.

878. Theorem.—A spherical angle is equal to the
measure of the diedral included by the great circles whose
arcs form the sides of the angle.

DEMONSTRATION.

Let BAC be any spherical angle, and BADF and CAEF the great cir-
cles whose arcs BA and CA include the angle.

Then is BAC equal to the measure of the
diedral C-AF-B.

For, since two great circles intersect in a
diameter (?), AF is a diameter.

Now B'A is a tangent to the circle BADF,
that is, it lies in the same plane and is per-
pendicular to AO at A.

" In the like manner, C’A lies in the plane

CAEF and is perpendicular to AO. Hence Fig. 302.
B’AC' is the measure of the diedral C-AF-B (%).

Therefore the spherical angle BAC, which is the same as the plane
angle B'AC/, is equal to the measure of the diedral C-AF-B. Q.E.D.
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PROPOSITION XI.

879. Theorem.—If one of two great circles passes
through the pole of the other, their circumferences inter-
sect at right angles.

DEMONSTRATION.

Thus, P being the pole of the great circle
CABm, PO is its axis, and any plane passing
through PO is perpendicular to the plane
CABm ().

Heuce, the diedral B-AO-P is right, and
the spherical angle PAB, which is equal to the
measure of the diedrul, is also right. Q.E.D.

Fig. 303.

680. CoROLLARY 1.—.A spherical angle is measured by
the arc of a great circle intercepted between its sides, and
at a quadrant’s distance from its vertex.

Thus, the spherical angle CPA is measured by CA, PC and PA being
quadrants. For, since PC is a quadrant, CO is a perpendicular to PO,
the edge of the diedral C-PO-A, and for the like reason AOQ is perpendic-
ular to PO. Hence, COA is the measure of the diedral, and consequently
CA, its measure, is the measure of the spherical angle CPA. q. E. D.

681. CoroLLARY 2.—The angle included by two arcs of
small circles is the same as the angle included by two arcs
of great circles passing through the vertex and having the
same tangents. '

Thus, BAC = B’AC".

For the angle BAC is, by definition, the
same as B’'AC’, B/A and C’A being tangents
to BA and CA. Now, passing planes
through C’A, B’A, and the centre of the
sphere, we have the arcs B”A, C''A, and B'A,
C'A tangents to them. Hence, B”AC" is
the same as B'AC’, and consequently the
sam? a8 BAC. Q E. D, Fige 304
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682. ScHoLIUM.—T0 draw an arc of a great circle which
shall be perpendicular to another; or, what is the same
thing, to construct a right spherical angle. ‘

Let it be required to erect an arc of a great circle perpendicular to
CAB at A. Lay off from A, on the arc CAB,
a quadrant’s distance, a8 AP/, and from P’ as
a pole, with a quadrant describe an arc pass-
ing through A. This will be the perpendic-
ular required.

‘In a similar manner we may let fall a per-
pendicular from any point in the surface,
upon any arc of a great circle. To let fall a
perpendicular from P” upon the arc CAB,
from P” as a pole, with a quadrant describe Fig. 305

-an arc cutting CAB, as at P’. Then, from P’
as a pole, with a quadrant describe an arc passing through P” and cutting
CAB, and it will be perpendicular to CAB.

PROPOSITION XII.

683. Problem.—7Z0 pass the circumference of a small
circle through any three points on the surface of a sphere.

SoLuTION.

Let A, B, and C be the three points in the surface of the sphere
through which we propose to pass the circumference of a circle.

Pasgs arcs of great circles through the points,
thus forming the spherical triangiec ABC (664).

Bisect two of these arcs, as BC and AC, by
arcs of great circles perpendicular to each (673,
682). The intersection of these perpendiculars,
o, will be the pole of the small circle required (?).

Then from o, as a pole, with an arc oB draw
the circumference of a small circle: it will pass
through A, B, and C (?), and hence is the circum- Fig. 306.
: ference required.

QUERY. —If the three given points chance to be in the circumference
of a great circle, how will it appear in the construction
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OF TANGENT PLANES.

684. A Tangent Plane to a curved surface at a given
point is the plane of two lines respectively tangent to two plane
sections through the point.

ILLUSTRATION.—Let P be any
pointin the curved surface. Passany
two planes through the surface and
the point P, and let OPQ and MPN
represent the intersections of these
planes with the curved surface.
Draw UV and ST in the planes of -
the sections, and tangent respectively to OPQ and MPN at P. Then is
the plane of UV and ST the tangent plane at P.

PROPOSITION XIII.

685. Theorem.—A tangent plane to a sphere is per-
pendicular to the radius at the point of tangency.

DEMONSTRATION.

Let P be any point in the surface of a sphere; pass two great oircles,
as PaA, etc., and PmAR, through P, and draw ST tangent to the aro
mP, and UV tangent to the arc aP.

Then is the plane SVTU a tangent
plane at P, and perpendicular to the ra-
dius OP.

For, a tangent (as ST) to the arc mP
is perpendicular to the radius of the cir-
cle, 4. e., to OP, and also a tangent (as VU)
to the arc aP is perpendicular to the ra-
dius of this circle, 1. e., to OP.

Hence, OP is perpendicular to two
lines of the plane SVTU, and consequent-
ly to the plane of these lines (?). Q. E. D.
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686. CorOLLARY 1.—Every point in a tangent plane to
a sphere, except the point of tangency, is without the
sphere.

For, OP, the perpendicular, is shorter than any line which can be
drawn from O to any other point in the plane (?); hence any other point
in the plane than P lies farther from the centre of the sphere than the
length of the radius, and is, therefore, without the sphere.

687. CoROLLARY 2.—A tangent through P to ANy circle
of the sphere passing through this point lies in the tan-
Sent plane.

Thus, MN, tangent to the small circle PrRb through P, lies in the tan-
gent plane.

For, conceive the plane of the small circle extended till it intersects
the tangent plane. This intersection is tangent to the small circle, since
it touches at one point, but cannot cut it; otherwise the tangent plane
would have another point than P common with the surface of the sphere.

Bat there can be only.one tangent to a circle at a given point. Hence
this intersection is MN, which is consequently in the tangent plane.

"OF SPHERICAL TRIANGLES.

688. -A Spherical Triangle is a portion of the surface of
a sphere bounded by three arcs of great circles. In the present
treatise these arcs will be considered as each less than a semi-
circumference ; and the triangle considered will be the one which
is less than a hemisphere.

The terms scalene, isosceles, equilateral, right-ang]ed and
obliq-e-angled, are applied to spherical trlangles in the same
manner as to plane triangles.
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PROPOSITION XIV.

689. Theorem.—The sum of any two sides of a
spherical triangle is Sreater than the third side, and
their difference is less than the third side.

DEMONSTRATION.

Let ABC be any spherical triangle.

Then is BC < BA + AC,
and BC — AC < BA;

and the same is true of the sides in any order.

For, join the vertices A, B, and C with the cen-
tre of the sphere, by drawing AO, BO, and CO.
There is thus formed a triedral 0-ABC, whose Fig. 309.
facial angles are measured by the sides of the triangle (188). Now,
angle BOC is less than BOA 4+ AOC (?), whence BC is less than BA+AC;
and substracting AC from each member, we have BC—AC less than BA.
Q.E.D.

PROPOSITION XV.

690. Theorem.—The sum of the sides of a sphericad
triangle may be anything between 0 and a circumfer-
ence.

DEMONSTRATION.

The sides of a spherical triangle are measures of the facial angles of a
triedral whose vertex is at the centre of the sphere. Hence their sum
may be anything between 0 and the measure of 4 right angles, as these
are the limits of the sum of the facial angles of a triedral (?). . E. D.

691. ScmoLrum.—As the sides of a spherical triangle are arcs, they
can be measured in degrees. Hence, we speak of the side of a spherical
triangle as 80°, 57°, 115°, 10/, etc. " In accordance with this, we say that
the limit of the sum of the sides of a spherical triangle is 360°.
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PROPOSITION XVI.

692. Theorem.—7Zhe sum of the angles of a spheri-
cal triangle may be anything between two and six right

angles.
DEMONSTRATION.

The sum of the angles of a spherical triangle is the same as the sum
of the measures of the diedrals of a triedral having its vertex at the centre
of the sphere, as in (?). Now the limits of the sum of the measures of
these diedrals are 2 and 6 right angles (?). Hence the sum of the angles
of any spherical triangle may be anything between 2 and 6 right angles.
Q. E. D.

693. CoroLLARY.—A spherical triangle may have one,
two, or even three right angles; and, in fact, it may
have one, two, or three obtuse angles; since, in the
latter case, the sum of the angles will not necessarily be

ZSreater than 540°,

694. A Trirectangular Spherical Triangle is a
spherical triangle which has three right angles.

695, ScHoLrUM.—It will be observed that the sum of the angles of a
spherical triangle is not constant, as is the sum of the angles of a plane
triangle. Thus, the sum of the angles of a spherical triangle may be
200°, 290°, 850°, 500°, anything between 180° and 540°.

696. Spherical Excess is the amount by which the sum
of the angles of a spherical triangle exceeds the sum of the
angles of a plane triangle; 7. e., it is the sum of the spherical
angles — 180°, or m.

ExXERCISE.—Prove that if from any point within a spherical
triangle arcs of great circles be drawn to the extremities of any
side, the sum of these two arcs is less than the sum of the other
two sides of the triangle.
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PROPOSITION XVII.

697. Theorem.—The trirectangular triangle is one-
eighth of the surface of the sphere.

DEMONSTRATION.

Pass three planes through the centre of a sphere, respectively perpen-.
dicular to each other. They will divide the surface into eight tri.
rectangular triangles, any one of which may be applied to any other.

Thus, let ABA’B’, ACA’C’, and CBC'B’ be ‘
the great circles formed by the three planes,
mutually perpendicular to each other. The
planes being perpendicular to each other, the
diedrals, as A-CO-B, C-BO-A, C-AO-B, etc., are
right, and hence the angles of the eight tri-
angles formed are all right.

Also, as AOB is a right angle, AB is a quad-
rant; as BOC is a right angle, CB isa quadrant,
etc. Hence, each side of every triangle is a
quadrant. '

Whence any one triangle may be applied to any other. [Let the stu-
dent make the application.] ’ :

Hence the trirectangular triangle is one-eighth of the surface of the
sphere. Q. E. D.

Fig. 310.

698. COROLLARY. — The trirectangular triangle is
equilateral and its sides are quadrants.

ExEerCISE 1. What is the spherical excess in a spherical tri-
angle whose angles are 117°, 84°, and 967, expressed in degrees ?
Expressed in right angles? Expressed in 7 ?

Ans. 117°, 14, and }§m

2. Can there be a spherical triangle whose gides are 78°, 113°,
and 31°? Oan there be one whose sides are 152°, 136°, 148°?

3. Can there be a spherical triangle whose sides are 52°,
126°, and 140°?
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PROPOSITION XVIII

699. Theorem.—In an isosceles spherical triangle,
the angles opposite the equal sides are equal; and, con-
versely, If two angles of a spherical triangle are equal,
the triangle is isosceles.

DEMONSTRATION.
Let ABC be an isosceles spherical triangle, in which AB = AC.
Then angle ABC = ACB.

For, draw the radii AO, CO, and BO, form-
ing the edges of the triedral 0-ABC.

Now, since AB = AC, the facial angles AOB
and AOC are equal, and the triedral is isosceles.
Hence the diedrals A-OB-C and A-OC-B are equal
(5650), and conscquently the spherical angles
ABC and ACB are equal (678). Q. E.D.

Agnin, if angle ABC = angle ACB, side AC
= side AB. For in the triedral 0-ABC, the
diedrals A-OB-C and A-OC-B are equal, whence the facial angles AOB
and AOC are equal (550), and consequently the sides AB and AC, which
measure these angles. Q. E. D.

700. CoROLLARY.—An equilateral spherical triangle
is also equiangwlar; and, conversely, An equiangular
spherical triangle is equilateral.

QuERIES.—1. What is the greatest angle which an equilateral
spherical triangle can have ?

2. What is the greatest side which an equilateral spherical
triangle can have ?
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PROPOSITION XIX.

70l. Theorem.—On the same sphere, or on equal
spheres, two isosceles triangles having two sides and
the included angle of the one equul to two sides and
the included angle of the other, each to each, can be
superimposed, and are consequently equal.

DEMONSTRATION.

In the triangles ABC and AB'C’, let AB = AC, AB' = AC’; and let
AB = AB', BC = B'C/, and angle ABC = AB'C'.

Then can the triangle AB’C’ be superimposed
~ upon ABC.

For, since the triangles are isosceles, we have

angle ABC = ACB,
AB'C’ = AC'B’ (699),
and, as by hypothesis
ABC = AB'C/, Fig. 312,

these four angles are equal, each to each.

For a like reason, AB = AC = AB’ = AC".

Now, applying AC’ to its equal AB, the extremity A at A, and C’ at
B, with the angle B’ on the same side of AB as C, the convexities of the
arcs AC’ and AB being the same, and in the same direction, the arcs will
coincide. Then, as

angle AC'B’ = ABC,

C'B’ will take the direction BC, and since these arcs are equal by hypoth-
esis, B’ will fall at C. Hence B’A will fall in CA, as only one arc of a
great circle can pass between C and A, and the triangle AB'C’ is super-
imposed upon ABC; wherefore they are equal. Q. E. D.

702. Symmetrical Spherical Triangles are such as
have the parts of one respectively equal to the parts of the other,
but arranged in a different order ; hence such triangles are not
capable of superposition.
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IrrusTRATION.—In Fig. 818, ABC and A’B’C’ represent symmetrical
spherical triangles. In these triangles,

A =N, B=#, c=¢0,
AC =A'C, AB=A'B, and BC = B'C’;

nevertheless we cannot conceive one triangle superimposed upon the
other. Thus, were we to make the attempt by placing A’B’ in its equal
AB, A’ at A, and B’ at B, the angle C’ would fall on the opposite side of
AB from C. Now, we cannot revolve A’C'B’ on AB (or its chord), and
thus make the two coincide, for this woula bring their convexities to-
gether. Nor can we make them coincide by reversing A’B’C’, and placing
B’ at A, and A’ at B. For, although these two arcs will thus coincide, a8
the angle B’ is not equal to A, B’C’ will not fall in AC; and, again, if it
did, C’ would not fall at C, since B’C’ and AC are not equal.
But, considering the triangles ABC and A’B'C’ in Fig. 814, in which

A=N, B=~"0, c=0C,
AC=A'C, AB=AB, and BC = BC,

we can readily conceive the latter as superimposed upon the former.
[The student should make the application.] Now, the two triangles are
equivalent in each case, as will subsequently appear; and the former are
equal. Such triangles as those in Fig. 818 are called symmetrically equal,
while the latter are said to be equal by superposition.

Fig. 815 represents the same triangles as Fig. 814, and exhibits a com-
plete projection* of the semi-circumferences of which the sides of the

* To understand what is meant by the projection of these lines, conceive
a hemisphere with its base on the paper, and represented by the circle abe,
and all the arcs raised up from the paper as they would be on the surface of
such a hemisphere. Thus, considering the arc ¢ABb (Fig; 815), the ends a
and b would be in the paper just where they are, but the rest of the arc
would be off the paper, as though you could take hold of B and raise it from
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triangles are arcs. The student should become perfectly familiar with
it, and be able to draw it readily. Thus, aABb is the projection of the
semi-circumference of which AB is an arc, aACc of the semi-circumfer-
ence of which AC is an arc, etc., etc.

PROPOSITION XX,

703. Theorem.— Two symmetrical spherical tri-
angles are equivalent, i.e., equal in area.

DEMONSTRATION.

Let ABC and A’B'C’ be two symmetrical spherical triangles, with AB
=A'B, AC=A'C,BC=BC,A=A",B=B,and C=C,
Then are they equivalent.
Pass circumferences of small circles
through the vertices A, B, C, and A’, B, C/,
as abe and a'b'¢,of which o and o’ are the
respective poles.
Now, by reason of the mutual equality
of the sides,

the chord AC = chord A'C/,
chord AB = chord A’B/,
wd chord BC = chord B'C/, Fig. 316.

and as the small circles are circumscribed about the equal plane triangles
ABC and A’B'C/, these circles are equal. Hence,
oA =0A' = 0B = 0B =0C = 0C/,

and the triangles AoB and A’¢’'B’, BoC and B'o'C’, AoC and A’0'C’ are
isosceles.

Now call O the centre of the spkere, and draw the radii OA, 0B, OC,
0o, OA’, OB’, OC’, and O0'.

the paper while @ and b remain fixed. The lines in the figure are represen-
tations of lines on the surface of such a hemisphere, as they would appear
to an eye situated in the axis of the circle abe, and at an infinite distance
from it ; that is, just as if each point in the lines dropped perpendicularly
down upon the paper. Arcs of great circles perpendicular to the base are
projected in straight lines passing through the centre, and oblique arcs are
projected in ellipses. See Spherical T'rigonometry (97-109).
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Considering the triedrals 0-AoB and
0-A'0'B’, their facial angles are equal, being
measured by equal arcs; hence the diedral
A-00-B = A’-0'0’-B’ (?), and the spherical
angle AoB = A%'B’ (?). Therefore, the
isosceles triangle AoB = A'0'B’ (701).
In like manner, we may prove the tri-
angles oBC and o'B’C’ equal, as also AoC
and A'0’'C’.
Hence, ABC is equivalent to A’B'C’, as Fig. 316.
the two are composed of parts respectively equal. Q. E. D.
If the poles of the small circles fell without the given triangles, ABC
would be equivalent to the sum of two of the partial triangles minus the
third. What if the pole fell in a side?

PROPOSITION XXI.

704. Theorem.—On the same sphere, or on equal
spheres, two spherical triangles having two sides and the
included angle of the one equal to two sides and the in-
cluded angle of the other, each to each, are equal, or sym-
metrical and equivalent.

DEMONSTRATION.

Let ABC and A'B'C’ be two spherical triangles, having B = B/,
BA = B'A’, and BC = B'C'.

Then are they either
equal, or symmetrical and
equivalent.

For, passing planes
through the sides of each
triangle and the ceutre of
the sphere, two absolutely
or symmetrically equal tri-
edrals will be formed (?). Fig. 317. Fig. 318.
Whence the facial angles AOC and A’OC’ are equal, and consequently
AC = A’C’ (?). Also, the diedrals C-OA-B and C'OA’-B are equal, and
B-0C-A = B’-0C’-A’ (?). Whence A = A’ and C = C’ (¥).

Hence the parts of ABC are respectively equal to the parts of A’B'C/,
and the triangles are equal, or symmetrical and equivalent, according as
the equal parts are arranged in the same or in a different order. Q. E. D,
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PROPOSITION XXII.

705. Theorem.—On the same sphere, or on equal
spheres, two spherical triangles having two angles and the
included side of the one equal to two angles and the in-
cluded side of the other, each to each, are equal, or sym-
metrical and equivalent.

This is a direct consequence of a proposition concerning triedrals.
Let the student give the deduction.

PROPOSITION XXIII.

708. Theorem.—On the same sphere, or on equal
spheres, if two spherical triangles have two sides of the one
equal to two sides of the other, each to each, and the in-
cluded angles unequal, the third sides are unequal, and
the greater third side belongs to the triangle having the
greater included angle.

Conversely, If the two sides are equal, each to each, and
the third sides unequal, the angles included by the equal
sides are unequal, and the greater belongs to the triangle
having the greater third side.

DEMONSTRATION.

In the triangles ABC and A’B'C’, let AB = A’B’, AC = A’C/, and
A>NA.

Then is BC > B'C'.

For, join the vertices with the centre, form-
ing the two triedrals 0-ABC and 0-A’B'C'.

In these triedrals, AOB = A’OB', AOC =
A'OC’, being measured by equal arcs; and
C-A0-B > C’-A’0-B’, having the same measure
as A and A’ (678). Hence COB > C'OB’ (?).

Therefore CB, the measure of COB, > C'B’,
the measure of C'0OB’. Fig. 319.

In like manner, the same sides of the triangles, and consequently the
same facial angles of the triedrals, being granted equal, and BC > B'C/,
A > A’. For, BC being greater than B’C’, COB > C'0OB’; whence
B-AQ-C > B'-A’0-C’ (?), or A is greater than A’,
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PROPOSITION XXIV.

707. Theorem,—On the same sphere, or on equal
spheres, two spherical triangles having the sides of the one
respectively equal to the sides of the other, or the angles of
the one respectively equal to the angles of the other, are
equal, or symmetrical and equivalent.

DEMONSTRATION,

The sides of the triangles being equal, the facial angles of the triedrals
at the centre are equal, whence the triedrals are equal or symmetrical (?).
Consequently, the angles of the triangles are equal, and the triangles are
equal, or symmetrical and equivalent.

Again, the triangles being mutually equiangular, the triedrals have
their diedrals mutually equal; whence the triedrals are equal or sym-
metrical (2). Therefore, the sides of the-triangles are mutually equal, and
the triangles are equal, or symmetrical and equivalent. (See Figs. 813
314,

PROPOSITION XXV.

708. Theorem.—O0n spheres of different radii, mu-
tually equiangular triangles are similar (not equal),

DEMONSTRATION.

Let ABC and abc be two mutually equiangular spherical triangles on
spheres whose radii are respectively R and 7, and let angle A = a,
B=bC=c

Then is 222,

For, joining the vertices of the triangles with the centres of the
spheres, 0 and 0/, the triedrals 0-ABC and O'-abc have their diedrals
mutually equal (?), whence their facial angles are mutually equal ().
Therefore sector AOB is similar to sector ¢0'b, sector BOC to 30'c, and
sector COA to cQ'a. :
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From the similarity of these sectors, we have

AB_E, BC_RE CA_R
ab~ r” b 7’ a7’
and hence, %g:zc—c:c—c:- Q. E. D.

709, ScHoLIoM.—In Spherical Trigonometry we are taught to find
the sides of a spherical triangle having the angles given. But in such a
case the sides are found in degrees, etc., which does not determine their
abselute lengths. The length of an arc of any number of degrees is not
known unless the radius of the sphere is known.

POLAR OR SUPPLEMENTAL TRIAN-
GLES.

710. One spherical triangle is Polar to another when the
vertices of one are the poles of the sides of the other, and the
corresponding vertices lie on the same side of the side opposite.
(For illustration, see 7183.)

Such triangles are also called supplemental, since the angles
of one are the supplements of the sides opposite in the other, as
will appear hereafter.

PROPOSITION XXVI.

711. Problem.—Having a spherical triangle given,
to draw its polar.
SorLuTION.

Let ABC (Fig. 820) be the given triangle.* From A as a pole, with

* This should be executed on a sphere. Few students get clear ideas of
polar triangles without it. Care should be taken to construct a variety of
triangles as the given triangle, since the polar triangle does not always lie
in the position indicated in the figure here given. Let the given triangle
have one side considerably greater than 90°, another somewhat less, and the
third quite small. Also, let each of the sides of the given triangle bg
greater than 90°.,
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Fig. 320. Fig. 328,

a quadrant strike an arc, as C'B’. From B as a pole, with a quadrant
strike the arc C'A’; and from C, the arc A’B’. Then is A’B'C’ polar to
ABC.

712. CorOLLARY.—If one triangle is polar to another,
conversely, the latter is polar to the former; i. e., the rela-
tion is reciprocal.

Thus, A’B’'C’ (Fig. 820) being polar to ABC, reciprocally, ABC is polat
to A’B'C’; that is, A’ is the pole of CB, B’ of AC, and C' of AB. For
every point in A’B’ is at a quadrant’s distance from C, and every point in
A'C’ is at a quadrant’s distance from B. Hence, A’ is at a quadrant’s dis-
tance from the two points C and B of CB, and is therefore its pole.

[In like mannuer, the student should show that B’ is the poie of AC,
and C’ of AB.]

713, ScEoLroM.—By producing (Fig. 821) each of the arcs struck
from the vertices of the given triangle sufficiently, four new triangles
will be formed, viz., A'B'C’, QC'B’, PC’A’, and RA’B’. Only the first of
these is called polar to the given triangle. Thus, in A’B'C’, A’, corre-
" sponding to A, lies on the same side of CB or C'B’ that A does, and so of
any other corresponding vertices. v

It is easy to observe the relation of any of the parts of the other three
triangles to the parts of the polar. Thus,

QC’' = 180° -V,
QB’ = 180° — ¢,
QC'B’ = 180° — B'C'A/,
QB'C’ = 180° — C'B'A’,
and Q = A’ =180° —a,
as will appear bereafter,
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PROPOSITION XXVII.

714. Theorem.—4ny ANGLE of a spherical triangle is
the supplement of the SIDE opposite in its polar triangle ;
and any SIDE is the supplement of the ANGLE opposite irs
the polar triangle. '

FIRsT DEMONSTRATION.
Let ABC and A’B'C’ be two spherical triangles polar to each other;

and let the sides of each be designated as @, b, ¢, @/, ¥, ¢, @ being op~

posite A, «’ opposite A', b opposite B, eto.

Then _ A = 180° —d,

B = 180° — ¥,

C = 180° — ¢,

a = 180° — A/,

b= 180° — B/,

and ¢ =180°—C".

Let O be the centre of the sphere, and
draw OA, OB, 0C, OA’, OB, and OC'.

The angles B'OA and B'OC being right
(?), B'0 is perpendicular to the face AOC (¥).

For like reasons, C'0 is perpendicular to
the face AOB.

Hence B'OC’ is the supplement of the
diedral B-A0-C (512)-

But o is the measure of B'OC’, and
B-AO-C has the same measure as A.

Hence, A = 180° —d.
In like manner, we may show that
B=180°—b, and € =180°—¢. QE.D.
Again, since the edges AO, BO, and CO are perpendicular to the faces
B'OC’, A'OC’, and A’OB’, we can show in like manner that
a = 180° — A/,
b = 180° — B,
sad ¢e=180=0" QED

—~——
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SECOND DEMONSTRATION.

Let ABC and A’B'C’ be two polar triangles. Let BC, CA, and AB be
represented by a, b, and c respectively, and B'C’, C'A’, and A'B’ by &',
Y,and c.

To show A = 180° — a’, produce b and ¢,
if neceseary, till they meet the side a’ of the
triangle polar to ABC in ¢ and d.

Now A is measured by ed (7). But, since
B'e = 90°, and C'd = 90°,

B¢+ Cd, or B'C' + ed = 180°y
whence, transposing, and putting a’ for B'C/,
we have
ed = A = 180° — ad’.
In like manner, Cy + A = C'A’ + fy = 180°;
whence Jo = B = 180° — C'A’, or 180° —¥.
8o, also, ‘ - C=180°=¢.

To show that A’ = 180° — a, consider that A’ being the pole of CB,
J'i is measure of A’,

Now Bf=90°(), and ©Ci=90°;
whence, Bf + Ci = 180°,
But Bf+ Ci=jfi+a, wherefore fi+a = 180°;
and transposing, and putting A’ for fi, we have A’ = 180° —a.
In like manner, we may show that
B'=180°—5 and © =180°—a QED.
[The student should give the details.]
714, a. CorOLLARY.—The sum of the supplements of

any two angles of a spherical triangle is greater than the
supplement of the third angle. (Consider 714, 689.)
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QUADRATURE OF THE SURFACE OF
THE SPHERE.

715. The Quadrature* of a surface is the process of find-
ing its area. The term is applied under the conception that the
process consists in finding a sguare which is equivalent to the
given surface,

PROPOSITION XXVIII.

716. Lemma.—The surface generated by the revolution
of a regular semi-polygon of an even number of sides,
-about the diameter of the circumscribed circle as an axis,
is equivalent to the circumference of the inscribed circle
multiplied by the axis.

DEMONSTRATION.

Let ABCDE be one-half of a regular ootagon, AE being the diameter
of the circumscribing circle.

If the semi-perimeter ABCDE be revolved about AE
as an axis, the surface generated is 27r x AE,  being the
radius of the inscribed circle, as a0, or 50.

This surface is composed of the convex surfaces of
cones and frustums of comes. Thus, AB generates the
surface of a cone, BC the frustum of a cone, etc.

Let a and b be the middle points of AB and BC re-
spectively, and draw am, Be, bn, and CO perpendicular to
the axis, and Bd parallel to it. Also draw the radii of the .
inscribed circle, @0 and 50. Indicate the surfaces gener- Fig. 324,
ated by the sides as Surf. BC, etc. The areas of these surfaces are:

Surf. AB = 2r x am x AB (?), (6))
Surf. BC = 2r xbn x BC, etc. (). ()]

* Latin quadratus, sqnared.‘
14
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Now, from the similar triangles Oam and BAc, we
have

a0 _ am
AB ™ Ac’
Brxa0 _ grxam,
or AB = Ac ’
whence, 2 xam x AB. = 277 X Ag,
putting r for aO.
Also, from the similar triangles Obn and CBd,
b0 bn
we have BC = Bd (=<0)’
2rxb0 _ B xbn
or BC 0 '
whence, 27 xbnx BC = 2 x c0,
putting r for 30:

Substituting these values in (1) and (2), we obtain

Surf. AB = 277 x A¢,
Surf. BC = 277 xc0.
And, in like manner, Surf. CD = 2mrx Op,

and .Snrf. DE = 2wrxpE.
Adding, Surf. ABCDE = 277 (Ac + ¢0 + Op + pE)
= 2mr x AE.

Finally, since the same course of reasoning is applicable to the semi-
polygons of 16, 82, 64, etc., sides, the truth of the proposition is estab-
Mshed.

717. ScmoLrum.—This proposition is only a particular case of sur-
faces generated by any broken line revolving about an axis; and the
general proposition can be established in a manner altogether similar to
the method given above, PBut this case is all that we need for our pres-
¢nt purpose,
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PROPOSITION XXIX.

718. Theorem.—The surface of a sphere is equivalent
to four great circles ; that is, to 4nR? R being the radius
of the sphere.

DEMONSTRATION.

Let the semi-circumference ABCDE revoive upon the diameter AE,
and thus generate the surface of a sphere.

Conceive the half of a regular octagon inscribed in
the semicircle ABCDE; and let both the semi-polygon
and the semi-circumference be revolved about AE as an
axis,

Call the radius of the inscribed circle, as a0, r, and
let AO = R.

The surface generated by the broken line ABCDE is,
by the last proposition, 2z x 2R = 4nrR.

Now, conceive the arcs AB, BC, etc., bisected, and the
chords drawn, and let 7' be the radius of the circle in-
scribed in the regular polygon thus formed. The surface generated by
the revolution of this semi-polygon is 4m’R.

By repeating the bisections, the broken line approximates to the
semi-circumference, the radius of the inscribed circle to R, and the sur-
face generated to the surface of the sphere, the three quantities reaching
their limits at the same time. Hence, at the limit we have

Fig, 325,

Surf. of sphere = 7Rx 2R = 4xR’. Q.E. D.

719. CoROLLARY 1.—The area of the surface of a sphere
is equivalent to the circumference of a great circle multi-
plied by the diameter, that is, to 2nR X 2R, as above.

720. CoROLLARY 2.—The surfaces of spheres are to each
vther as the squares of their radii.

Thus, if R and R’are the radii of two spheres, the surfaces are 47 R?

and 47R*. Now,
4=R* R

&R RY
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721. A Zone is the portion of the surface of a sphere in-
cluded between the circumferences of two paral-
lel circles of a sphere. The allitude of a zone
is the distance between the parallel circles
whose circumferences form its bases.

ILrusTRATION.—The surface generated by CB, or
any arc of the circle ABCDE, etc., as the semicircle
revolves about AE as an axis, conforms to the defini-
tion, and is a gone. Such a portion of the surface as is
generated by AB is called a zone with one base, the
circle whose circumference would form the upper base
having become tangent to the sphere. The altitude of
the zone generated by CB is ab, and of that generated by AB the alti-
tude is Aa."

Fig. 326.

PROPOSITION XXX,

722. Theorem.—The area of a zone is equal to 2maR,
a being the altitude of the zone and R the radius of the
sphere.

DEMONSTRATION,

It is evident that in passing to the limit, the surface generated by
such a portion of the broken line as lies between C and B, Fig. 826, is
measured by the circumference of the inscribed circle multiplied by ab.
Hence, at the limit, the zone generated by arc BC is measured by

2rRxab, thatis, 2maR,
representing ab by . Q. E. D,
728. COROLLARY.—On the same sphere, or on equal
spheres, zones are to each other as their altitudes, and any

zone is to the surface of the sphere as the altitude of: the
zone is to the diameter of the sphere.
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OF LUNES.

724. A Lune is a portion of the surface of a sphere included -
by two semi-circumferences of great circles. :

The surface AmBn is a lune.

725. The Angle of the Lune is
the angle included by the arcs which form
its sides ; or, what is the same thing, the
measure of the diedral included between the
great circles. , Fig. 327.

Thus, the spherical angle mAn, or the measure of the diedral m-AB-»
is the angle of the lune AmBn.

726. An Ungula, or Spherical Wedge, is that portion
of a sphere included between two semi-great-circles, as AmB and
AnB. It has a lune for its convex surface and a diameter for its
edge.

PROPOSITION XXXI.

727. Theorem.—On the same sphere, or on equal
8pheres, lunes which have equal angles are equal.

i DEMONSTRATION.

[This is readily effected by applying one to the other. Let the stu-
dent make the application.]

ExercisE.—Can there be a spherical triangle whose angles are 152°,
136°, and 148°%? One whose angles are 152°, 186°, and 168°? (See
714, a)
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PROPOSITION XXXII.

728. Theorem.—7The area of a lune is to the area of
the surface of the sphere on which it is situated as the
angle of the lune is to four right angles.

FIrsT DEMONSTRATION.

‘Let S represent the area of the surface of the spilere generated by
the revolution of the semicircie MAN about MN as an axis, and L the
aréa of the lune whose angle is AMD, or AOD.

L _ AOD
‘8™ 4right angles”

In the generation of 8 and L by the
semi-circuamference MAN, the middle
point, A, of the semi-circumference gen-
erates the great circle ACDBF, on which
the angles of the lunes are measured (?).
~ Now A generates equal and coinci-
dent parts of arc AD and circumference
ACDBFA, in the same time that MAN
generates corresponding equal and co-
incident parts of L and 8.

Then is

Fig. 328

Hence, if ._arc_AE_. =

3.1 -

circf, ACDBF
L _ 1

=n’

8

L_ _arcAD __ AOD
and § = Gircf. AGDBF — 4 right angies O ¢ &P

SECOND DEMONSTRATION.

Let S represent the area of the surface of the sphere generated by
the revolution of the semicircle MAN about MN as an axis, and L the
area of the lune whose angle is AMD, or AOD.

Now the angles AOD and the sum of the four angles AOD, DOB,
BOF, FOA are at least commensurable by an infinitesimal unit. Let ¢ be
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their common measure, and let it be contained in AOD n times, and in
the four right angles m times, so that

__AOD __ n;
4 right angles ~ m

. Now conceive the circumference divided into m equal parts, and
radii drawn to the points of division; and through their extremities let
semi-circumferences be drawn. Then is L divided into » lunes, each
equal to one of the m equal lunes into which S is divided (727), so that

L_n,

8 m
'Hence £=__AQ_D__. Q. E.D
4 8 = 4 right angles T

THIRD DEMONSTRATION.

Let S be the surface of the sphere, and ACEB = L be a lune whose
angle is the spherical angle CAB, or what is the same thing, the plane
angle BOC measured by the arc CB, of which A is the pole.

L CAB
§ = &right angles’
For, first, suppose the arc €B commensurable
with the circumference BCmDn, and suppose that
they are to each other as 5 : 24. .
Divide CB into five equal arcs, and the entire
circumference BCmDn into twenty-four arcs of the
same length, and pass arcs of gréat circles through
A and these points of division. 'Thus the lune is
divided into five equal lunes, and the entire surface into twenty-four
equal lunes of the same size. These lunes are equal to each other (727).

Then is

Hence, .g: 25_4 .
- COB _ CB _5
oW Tright angles _ BCmbn 24

L _ COB(orCAB) .
Therefore 3= 4’—~ﬁght anglos Q.E.D,
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If the angle of the lune is incommensurable with four right angles,
or, what is the same thing, if the arc BC is not commensurable with the
circumference, let us assume

L BL
8 = BCmDn’ ®
in which BL < BC.

Conceive the circumference BCmDn divided
into equal parts, each of which is less than CL,
the assumed difference between BC and BL.
Then conceive one of these equal parts applied
to BC as a measure, beginning at B. Since the
measure is less than LC, one point of division, at
least, will fall between L and C. Let | be such a point, and pass the arc
of a great circle through A and 1,

lune AIEB Bl

5~ BOmDn’ @
since the arc Bl is commensurable with the circumference. In (1) and
(2), the consequents being equal, the antecedents should be proportional;

L _BL,
Tune AIEB ~ BI

But this is absurd, since lune ACEB > lune AIEB, whereas BL < Bl,
that is, an improper fraction equals a proper fraction.
~ In a similar manner, we may reduce the assumption to an absurdity,
if we assume BL > BC.

Fig. 330.

Now

hence we should have

. L
Hence, as the ratio of = g can neither be greater nor less than ——— BCmDn CmDn
it is equal thereto, and

L_ BC BOC
8 7 BCmDu — 4right angles 2 E.D.

729. ScuoLtoM.—To obtain the area of a lune whose angle is known,
find the area of the sphere, and multiply it by the ratio of the angle of
the lune (in degrees) to 860°. Thus, B being the radius of the sphere,
4nR* is the surface of the sphere; and the lune whose angle is 80° is 38
or 4y the surface of the sphere, i.e., 45 of 47R* = }nR"

780. CoROLLARY.—The sum of several lunes on the same
sphere is equal to a lune whose angle is the sum of the
angles of the lunes; and the difference of two lunes is @
lune whose angle is the difference of their angles.
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7381. CoROLLARY.—Ungulas bear the same ratio to the
volume of the sphere that the oorrespondmg‘ lunes do ta
the area of the surface

PROPOSITION XXXIII.

782. Theorem.—If two semi-circumferences of great
circles intersect on the surface of a hemisphere, the sum
of the two opposite triangles thus formed is equiva,lenf to
a lune whose angle is that included by the semi-circum-~
‘ferences.

DEMONSTRATION.

Let the semi-circumferences CEB and DEA intersect at E on the surs
face of-the hemisphere whose base is CABD. '

Then the sum of the triangles CED and
AEB is equivalent to a lune whose angle is
AEB.

For, let the semi-circumferences CEB and
DEA be produced around the sphere, inter-
secting on the opposite hemisphere, at the
extremity F of the diameter through E:

Now, FBEA isa lune whose angle is AEB.

Moreover, the triangle AFB is equivalent
to the triangle DEC ; since

angle AFB = AEB = DEC,
side AF = side ED,
each being the supplement of AE; and ' .
BF = CE, o

each being the supplement of EB.

Hence, the sum of the triangles CED and AEB is eqmvalent to the
June FBEA. Q. E.D.
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PROPOSITION XXXIV.

733. Theorem.—The area of a spherical triangle is to
the area of the surface of the hemisphere -on which it is
situated, as its spherical excess isto four right angles, or
360°.

DEMONSTRATION.
‘Lét ABC be a spherical triangle whose
angles are represented by A, B, and C; let T
‘Pepresent the area of the triangle, and H the
wrou Uf'the surface of the hemisphere.
T _A+B+C—180°
H™ 860°

Let lune A represent the lune whose angle is
the angle A of the triangte, i. ¢., angle CAB, and
in like manner understand lune B and lune C.

Then is

Y

Now, triangle AHG + AED = lune A (732),
. BHI + BEF = lune B,
CGF + CD! = lune C.

Adding, 2ABC + hemisphere = lune (A + B +C)¥, (6))
by (730), and since the six triangles AHG, AED, BHI, BEF, CGF, and CDI
make the whole hemisphere and 2ABC besides, ABC heing reckoned three
times. .

From (1) we have, by transposing, and remembering that a hemi-
sphere is'a fune whose angle is 180° (730), and dividing by 2,

ABC = } lune (A + B + C — 180°).1

But, by (728),
jlune A +B+C—180°) A+B+C—180°

H 360°
Therefore, % =A+B ;6:))"_ 1807, Q. E.D.

* This signifies the lune whose angle is A+B+C, which is of course
the sum of the three lunes whose angles are A, B, and C.

t This signifies one-half the lune whose angle is A+ B+C—180°

™
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%734, ScrorruM 1.—To find the area of a spherical triangle on a given
sphere, the angles of the triangle being given, we have simply to multiply
the area of the hemisphere, 4. e., 37.R? by the ratio of the spherical excess
to 860°. Thus, if the angles are

A=110°, B =80° and C = 50°,
we have

A+B+C—180° o py 60 _ . b

area ABC = 21R? x 360° 360

%735, ScHoLroM 2.—This proposition is often stated thus: The area
of @ spherical triangle i equal to its spherical excess multiplied by the trirec-
tangular triangle. When so stated, the spherical excess is to be estimated
in terms of the right angle; i.e., having subtracted 180° from the sum of
its angles, we are to divide the remainder by 90°, thus getting the spheri-
cal excess in right angles. In the example in the preceding scholium,
the spherma.l excess estimated in this way would be ¢

110° + 80° + 50° — 180°
WO

=2
=3 .
and the area of the triangle would be § of the trirectangular triangle.
Now, thie trirectangular triangle being § of the surface of the sphere (2),
is § of 4nR’, or §nR’. This multiplied by § gives §nR?, the same as
sbove.

The proportion

ABC _A+B+0C—180°
surf. of hemisph. — 860° ’

is readily put into a form which agrees with the enuncmtlon as given in
this scholium. Thus,

surf. of bemisph. = 2=R*;
whence,

+ B+ C — 180 = jnR? x A+B+C—180°

_ A
ABC =27 x o A
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VOLUME OF SPHERE.

PROPOSITION XXXV.

736. Theorem.—7The volume of a sphere is equal to
the area of its surface multiplied by one-third of the ra-
dius, that is, §n RS, R being the radius.

DEMONSTRATION.

‘ Let OL = R be the radius of a sphere.

Conceive a circumscribed cube, that is, a
cube whose faces are tangent planes to the
sphere. Draw lines from the vertices of each of
the polyedral angles of the cube to the centre
of the sphere, as AO, BO, DO, CO, etc. These
lines are the edges of six pyramids, having for

- their bases the faces of the cube, and for a com-
mon altitude the radius of the sphere (!). Hence
the volume of the circumscribed cube is equal to its surface multiplied
by {R. )

Again, conceive each of the triedral angles of the cube truncated by
planes fangent to the sphere. A new circumscribed solid will thus be
formed, whose volume will be nearer that of the sphere than is that of the
circumscribed cube. Let abe represent one of the tangent planes. Draw
from the polyedral angles of this new solid, lines to the centre of the
sphere, as a0, 50, and cO, etc.; these lines will form the edges of a set of
pyramids whose bases constitute the surface of the solid, and whose com-
mon altitude is the radius of the sphere (?). Hence the volume of this
solid is equal to the product of its surface (the sum of the bases of the
pyramids) into }R.

Now, this process of truncating the angles by tangent planes may be
conceived as continued indefinitely ; and, to whatever extent it is carried,
it will always be true that the volume of the solid is equal to its surface
multiplied by $R. Therefore, as the sphere is the limit of this circum-
scribed solid, we have the volume of the sphere equal to the surface of
the sphere, which is 4rR? multiplied by §R, . ¢, to §7R% QE.D,

Fig. 333.
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787. CoroLLARY.—The surface of the sphere may be
conceived as consisting of an infinite number of infinitely
small plane faces, and the volume as composed of an infi-
nite number of pyramids having these faces for their
bases, and their vertices at the centre of the sphere, the
common altitude of the pyramids being the radius of the
sphere.

738. A Spherical Sector is a portion of a sphere gener-
ated by the revolution of a circular sector about the diameter
around which the semicircle which generates the sphere is con-
ceived to revolve. It has a zone for its base ; and it may have
as its other surfaces one or two conical surfaces, or one conical
and one plane surface.

ILLUSTRATION.—Thus, let ab be the diam-
eter around which the semicircle aEb revolves
to generate the sphere. The solid generated
by the circular sector AOB will be a spherical
sector having the zone generated by AB for its
base ; and for its other surface, the conical sur-
face generated by AO. The spherical sector
generated by COD has the zone generated by
CD for its base; and for its other surfaces, Fig. 334.
the concave conical surface generated by DO, :
and the convex conical surface generated by CO. The spherical sector
generated by EOF has the zone generated by EF for its base, the plane
generated by EO for one surface, and the concave conical surface gener-
ated by FO for the other.

789. A Spherical Segment is a portion of the sphere
included by two parallel planes, it being understood that one of
the planes may become a tangent plane. In the latter case, the
segment has but one base ; in other cases, it has two. A spheri-
cal segment is bounded by a zone and one, or two, plane surfaces.
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PROPOSITION XXXVI.

~ 740. Theorem.—The volume of a spherical sector w
equal to the product of the zone which forms its base into
one-third the radius of the sphere.

DEMONSTRATION.

A spherical sector, like the sphere itself, may be conceived as consist-
ing of an infinite number of pyramids whose bases make up the base of the
sector, and whose comnon altitude is the radius of the sphere. Hence,
the volume of the sector is equal to the sum of the bases of these pyra-
mids, that is, the surface of the sector, multiplied by one-third their com-
mon altitude, which is one-third the radius of the sphere Q E. D.

741. CoroLLARY.—The volumes of spherical sectors of
the same sphere, or of equal spheres, are to each other as
the zones which form their bases; and, since these zones are
to each other as their altitudes (723), the sectors are to each
other as the altitudes of the zones which form their bases.

PROPOSITION XXXVII.

742. Theorem.—The volume of a spherical segment
of one base is mA*(R — }A), A being the altitude of the
segment, and R the radius of the sphere.

DEMONSTRATION.
Let AO = R, and CD = A.

Then is the volume of the spherical segment
generated by the revolution of ACD about CO
equal to 74? (R — $4).

For, the volume of the sphencal sector gener-
ated by AOC is the zone generated by AC, multi-
plied by 3R, or 2rARx {R = $nAR*. From
this we must subtract the cone, the radius of
whose base is AD, and whose altitude is DO.
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To obtain this, we have
DO =R—A4;

whence, from the right-angled triangle ADO,

AD = /R — (R— 4)' = VzAR—A’.

Now, the volume of this cone is $0D x xAD’, or

jr(BR— A)(RAR — A®) = {n (RAR* — 84°R + A%).
Subtracting this from the volume of the spherical sector, we have

$rAR — jn QAR — 8A'R + A% = n (AR — }4%)
= rd*(R—$44). QE.D.

743. ScmoLruM.—The volume of a spherical
segment with two bases is readily obtained by
taking the difference between two segments of
one base each. Thus, to obtain the volumes of
the segment generated by the revolution of 5CAc
about a0, take the difference of the segments
whose altitudes are ac and ab.

SPHERICAL POLYGONS AND SPHERI-
CAL PYRAMIDS.

744. A Spherical Pelygen is a portion of the surface of
a sphere bounded by several arcs of great circles.

745. The Diagonal of a spherical polygon is an arc of a
great circle joining any two non-adjacent vertices.

746. A Spherical Pyramid is a portion of a sphere hav-
ing for its base a spherical polygon, and for its lateral faces the
circular sectors formed by joining the vertices of the polygon
with the centre of the sphere.
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747. The elementary properties of spherical polygons and
spherical pyramids are so readily deduced from the corresponding
properties of polyedral angles, spherical triangles, etc., that we
leave them for the pupil to demonstrate, merely stating a few
fundamental theorems. .

748. Theorem.—The angles of a spherical polygon
and its sides sustain the same general relations to each
other as the diedral and facial angles of a polyedral
angle having for its edges the radii of the sphere drawn
to the vertices of the polygon.

749. Theorem.—7The sum of the sides of a convex
spherical polygon may be anything between 0° and 360°.

750. Theorem.—7The sum of the angles of a spherical
polygon may be anything between 2n — 4 and 2n right
angles, n being the number of sides.

751. The Spherical Excess of a spherical polygon is the
excess of the sum of its angles over the sum of the angles of a
plane polygon of the same namber of sides.

752. Theorem.—The spherical excess of a spherical
polygon of n sides, the sum of whose angles is S, is

8 + 360° — 1-180°.

753. Theorem.—The area of a spherical polygon is to
the area of the surface of the hemisphere on which it is
situated as its spherical excess i8 to four right angles.

764. Theorem.—The volume of a spherical pyramid
is the area of its base multiplied by one-third the radius
of the sphere on which it is situated. A
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EXERCISES.

755. 1. What is the circumference of a small circle of a sphere
whose diameter is 10, the circle being at 3 from the centre ?
Ans. 25.1328.

2. Construct on the spherical blackboard a spherical angle of
60°. Of 45°. Of 90°. Of 120°. Of 250°.

SuacesTiONs.—Let P be the point where the vertex of the required
angle is to be situated. With a quadrant strike an arc passing through
P, which shall represent one side of the required angle. From P as a
pole, with a quadrant strike an arc from the side before drawn, which
shall measure the required angle. On this last arc lay off from the first
side the measure of the required angle,* as 60°, 45°, etc. Through the
extremity of this arc and P pass a great circle (?).

3. On the spherical blackboard construct a spherical triangle
ABC, having AB = 100°, AC = 80°, and A = 58°.

4. Construct as above a spherical triangle ABC, having AB =
75°, A = 110° and B = 87°.

5. Construct as above, having AB = 150°, BC = 80°, and
AC = 100°. Also having AB =160°, AC = 50°, and CB = 85°.

6. Construct as above, having A = 52°, AC = 47°, and CB
= 40°

SuaeesTIONs.—Construct the angle A as before taught, and lay off
AC from A equal to 47°, with the tape. This determines the vertex C.
From C, as a pole, with an arc of 40°, describe an arc of a small circle;
in this case this arc will cut the opposite side of the angle A in two
places. Call these points B and B’. Pass circumferences of great circles
through C, and B, and B’. There are two triangles, ACB and ACB'.

7. Construct on the spherical blackboard a spherical triangle
ABC, having A = 59°, AC = 120°, and AB = 88°.

* For this purpose, a tape equal in length to a semi-circumference of a
great circle of the sphere used, and marked off into 180 equal parts, will be
convenient. A strip of paper may be used.
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8. Construct a triangle whose angles are 160°, 150°, and 140°.

9. Can there be a spherical triangle whose angles are 85°,
120°, and 150°? Try to construct such a triangle by first con-
structing its polar.

10. What is the area of a spherical triangle on the surface of a
sphere whose radius is 10, the angles of the triangle being 85°,
120°, and 110°? Ans. 235.64.

11. What is the area of a spherical triangle on a sphere whose

diameter is 12, the angles of the triangle being 82°, 98°, and
100°?

12. A sphere is cut by five parallel planes at 7 from each other.
What are the relative areas of the zones? What of the segments ?

13. Considering the earth as a sphere, its radius would be
3958 miles, and the altitudes of the zones, North torrid = 1578,
North temperate = 2052, and North frigid = 328 miles. What
are the relative areas of the several zones?

SuaaesTION.—The student should be careful to discriminate between

the width of a zone and its altitude. The altitudes are found from their
widths, as usually given in degrees, by means of Trigonometry.

14. The earth being regarded as a sphere whose radius is
3958 miles, what is the area of a spherical triangle on its surface,
the angles being 120°, 130°, and 150°? What is the area of a
trirectangular triangle on the earth’s surface ?

15. In the spherical triangle ABC, given A = 58°, B = 67°,
and AC = 81°; what can you affirm of the polar triangle ?

16. What is the volume of a globe which is 2 feet in diameter ?
What of a segment of the same globe included by two parallel
planes. one at 3 and the other at 9 inches from the centre, the
centre of the sphere being without the segment? What if the
centre is within the segment?

17. Compare the convex surfaces of a sphere and its circum-
seribed cylinder.

18. Compare the volumes of a sphere and its circumscribed
cube, cylinder, and cone, the vertical angle of the cone being 60°.

19. If @ and b represent the distances from the centre of a
gphere whose radius is 7, to the bases of a spherical segment, show
that the volume of the segment is m [13 (b—a) — §(5*— a®)].
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THE INFINITESIMAL METHOD.

THE author is a firm believer in both the logical soundness and the
practical advantages of the strict infinitesimal method. Hence he has intro-
duced it—though generally as an alternative method—in those cases in
which the incommensurability of geometrical magnitudes by a finite unit
makes the old demonstrations cambrous.

As to the logical soundness of the method, he has not the shadow of a
doubt. The well-known logical principle, that, if we create a certain cate-
gory of concepts, under certain definite laws, use them in our argument in
accordance with these laws, and finally eliminate them, the argument being
conducted according to correct logical principles, the final results are
correct, covers the entire case. Now the twe essential laws of infinitesimals
are, (1) Infinitesimals of the same order have the same relations among
themselves as finite quantities; and (2) Infinitesimals in comparison with
finites, are zero.

But the simple exposition given in the text (840-342) is quite adequate

to show that the method can introduce no conceivable error. Thu_s, if

g = a, all the quantities boing finite, and if i is an infinitesimal, "‘T*' =a

must be true, and ¢ must be 0 in the relation. Otherwise solving the equa-
tion we have ¢ = an—m, a finite quantity, unless ¢ = :,,L‘

Of the immense practical utility of the method there can be no question.
All from Lagrange down, have acknowledged it. I know of no extended
treatise which does not in some way imply it. Why, then, should not the
pupil become familiar with it early in his course ?

As to the method of limits it is not at all difficult to show that it is
identical with the infinitesimal method, in its fundamental principles.
Moreover, there is a sort of jugglery in the very first step in the method of
limits which quite transcends any difficulty that the method of infinitesimals
presents. Thus, we give the variable an increment, assume that the fanc-
tion takes a related increment, manipulate the function, and then make the
increment of the variable zero (whence the increment of the function
becomes zero), and, presto, we have a finite relation between two zeros!
And this is the “ simple” fyndamental conception which the tyrq ig sup
posed 1o see af & glance|
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NOTE ON (182), (343), (587), (628), AND (728).

These propositions are of a class in which the incommensurability by a
finite unit of certain lines introduces particular difficulty, which ditficalty
disappears at once if we admit, as in the infinitesimal theory, that these lines
are commensurable by an infinitesimal unit. Also, by the introduction of
the principle of the generation of one magnitude by the motion of another,
very simple demoustrations are afforded.

In the text the author has given illustrations of the three sorts of
demonstrations. In (182) we have the old method of avoiding the difficulty
which grows out of the incommensurability, by the reductio absurdum.
The objection to this is not any objection to the reductio absurdum as a
method of reasoning. But why use so cumbrous a method, when other
exceedingly simple methods are at hand, and methods involving principles
80 necessary to subsequent use ?

In (728) the three methods are given. In (343) and (628) the methods
involving generation by motion, and the infinitesimal method, are given.

NOTE ON (182).

1. To prove this proposition by means of the conception of the genera-
tion of magnitudes by the motion of other magnitudes, we do not need the
Lemma. Thus, referring to Fig. 85, p. 89, we are to prove that ag:
arc AB_
arc DE

Let the sector AOB be applied to DOE, OA being placed in OD. By
reason of the equality of the circles the arc AB will fall in DE.

Conceive the angles AOB and DOE as generated by a radius mov-
ing from the position OA (which is now also OD) to OB and OE,
with uniform motion. Let the time of generating AOB be 7, and that of
generating DOE be s. Whence ——Sgg (48, 49).

Again, the extremity of the radius, as A (or D), describes equal and (as
far as the less extends) coincident parts of AB and DE in equal times, whence

arcAB 7 AOB _ arc AB
=2 Hence, by equality of ratios, we have ——— DOE — arc DE

2. To prove the same proposition by the infinitesimal method, we pro-
ceed exactly as in Case 1L, pp. 89, 90, simply conceiving m as infinitesimal
when the angles are incommensurable by a finite unit, and for § putting the
indefinite number 7, and for 8 the indefinite number s.
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NOTE ON (343).

By the old method the Lemma on which this demonstration is based is
proved in two cases. 1st. When the bases are commensurable ; 2nd. When
the bases are incommensurable. Dividing the bases into equal parts and
erecting perpendiculars at the points of division the argument in the first
case proceeds exactly like the argument in Case IL. of (182). When the
bases are incommensurable, we apply abed to ABCD placing ad in its
equal AD, whence ab falls in AB, as far as it extends, and de¢ in DC. Then
assume that, if 5—:’% is not equal to :—:, it is equal to —2—5 , ag being either
greater or less than ab. Now divide the base AB into equal parts, each of
which is less than bg, and erect perpendiculars at each of the points of
division. We may then show, as in Case IIL of (182), the absurdity of
supposing ag greater or less than ab.








