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PREFACE.

This text-book is based upon the methods of " limits " and

"rates," and is limited in its scope to the requirements in the

undergraduate courses of our best universities, colleges, and

technical schools. In its preparation the author has embodied

the results of twenty years' experience in the class-room, ten of

which have been devoted to applied mathematics and ten to

pure mathematics.

It has been his aim to prepare a teachable workfor beginners,

removing as far as the nature of the subject would admit all

obscurities and mysteries, and endeavoring by the introduction

of a great variety of practical exercises to stimulate the student's

interest and appetite.

Among the more marked peculiarities of the work the follow-

ing ma}^ be enumerated :
—

i. A large amount of explanation.

2. Clear and simple demonstrations of principles.

3. Geometric, mechanical, and electrical applications.

4. Historical notes at the heads of chapters giving a brief

account of the discovery and development of the subject of

which it treats.

5. Footnotes calling attention to topics of special historic

interest.

iii



IV Preface

6. A chapter on Differential Equations for students in

mathematical physics and for the benefit of those desiring

an elementary knowledge of this interesting extension of the

calculus.

7. An arrangement of topics admitting of extensive elimina-

tions without destroying the continuity of the subject.

8. A clear, open page.

The author desires to express here his acknowledgments to

the friends who have aided him in his work. To Chas. M.

Snelling, A.M., University of Georgia, and to T. H. Taliaferro,

Ph.D., State College of Pennsylvania, the author's obligations

are peculiarly great. Not only have they given valuable

counsel, but they have been largely instrumental in freeing the

work from typographical errors.

E. W. NICHOLS.
Lexington, Va.
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DIFFERENTIAL CALCULUS.

CHAPTER I.

QUANTITIES. FUNCTIONS.

1. Quantity. That which can be increased, diminished,

measured, or in general, anything to which mathematical pro-

cesses are applicable is called Quantity.

Time, space, motion, velocity, force, and mass are examples,

and with these, as with other quantities, we shall have more or

less to do in illustrating and applying the principles which are

to follow.

2. Classes of Quantity. In the abstract science of the Cal-

culus, as in Analytic Geometry, quantities are divided into

two general classes, viz., Constants and Variables.

3. Constants. A constant is a quantity whose value is fixed.

Constants are usually represented by the first letters of the

alphabet, a, b, c, etc., or by numbers.

4. Variables. A variable is a quantity which is, or is con-

ceived to be, in an actual state of change. Variables are usu-

ally represented by the last letters of the alphabet, ?/, z>, w, x, y,

z, etc.

5. Illustrations. The usual algebraic expression of the

law subject to which a point moves in generating a circle is

(x — df + (y — 1>f = **» Ifj then, we consider the generating
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point to be actually in motion, it is readily seen that its co-ordi-

nates, x and y, are in a state of variation, and hence, by defini-

tion (§ 4), are variables ; while the quantity r
f
which measures

the distance of the generating point from the centre (a, b) of

the circle, is fixed in value, and hence (§ 3) is a constant.

Again : A train leaves Jersey City for Philadelphia, and after

the lapse of a certain time attains a uniform speed of 45 miles

an hour, which it maintains until its destination is reached.

The distance between the train and Jersey City, being at the in-

stant under consideration in an actual state of change or varia-

tion, is a variable, while the speed, or velocity (45 miles per hour),

is a constant.

Again : A meteor is falling to the earth : Both the distance

between these bodies and their mutual attractio7i are variables,

the latter varying inversely as the square of their distance

apart.

Again : The volume of water in a cistern which is being filled

or emptied by a continuous stream is a variable.

6. Functions. One variable is said to be a function of

another when its value depends upon that of the latter. Thus :

The area of a circle (ira
2
) is a function of its radius (a) ; the

area of a square is a function of its side ; the expressions x2
-{- 1,

log x, sin x, x3 — log x2
-\- tan x, as well as all expressions which

contain x only, are functions of x. In like manner a variable

is said to be a function of two or more variables when its value

depends upon their values. Thus, the area of an ellipse (nrab)

is a function of its semi-axes (a, b) ; the area of a rectangle is a

function of its base and altitude; the volume of a rectangular

parallelopiped is a function of its three dimensions ; the expres-

sions x2
-\- y

2, — a2, sin x + tan y, xs — log y
2 are functions of x

and y ; the expressions xy -f- z
5

, z -f- log xy, xyz2 , etc. are func-

tions of x, y, and z.

When a function of one or more variables involves no condi-
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tion or conditions, the variables are indepe7ide?it of each other

;

that is, we may assign to each any value we please. Such is

the case in all the illustrations given above. If, however, some

condition is involved, as, for example, the equality to zero of

any one of these expressions, then one variable at least must be

dependent for its value upon the values assigned the others.

Let us illustrate : In the function of x and y, x2 + y
2 — a2

, x

and y are independent variables— no condition being involved.

But suppose we write x2 +f — a2 = o, then the range of values

which may be assigned to x or y is at once limited, and we

can no longer assign arbitrarily any values we please to both,

but must assign values to one only, and ascertain from the

equation the value of the other. The variable to which values

are assigned is called the independent variable ; the other, which

now represents the function, is called the dependent variable.

7. General Classes of Functions. Functions are either Alge-

braic or Transcendental

:

I. Algebraic Functions are those which involve only the six

fundamental operations of algebra, viz. : Addition, Subtraction,

Multiplication, Division, Involution, and Evolution, with constant

indices. Thus, x + y, x2 — yy, 1- V*3 are algebraic func-

tions.

II. Transcendental Functions, embracing all functions other

than algebraic, are subdivided into various classes, the more

important being

:

1. Trigonometric Functions, such as sin x, tan x, sec x, etc.

;

2. Circular, or Inverse Trigonometric Functions, such as sin
-1

#,

tan -1 .*, sec
- x x, etc.

;

3. Logarithmic Functions, such as log x, log (x -f- v'x2 — y
2
),

etc.

;
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4. Exponential, or Inverse Logarithmic Functions such as ax
,

xy
,
(u + v)z.

8. Special Classes of Functions. Both algebraic and trans-

cendental functions are further subdivided, the subdivisions

being dependent upon the standpoint from which they are

viewed.

I. Explicit and Implicit Functions.

1. The Explicit Function, as y = x3 — ax + b, or y = log x,

or y = x2z + sin v, where the simple fact that the equation is

solved with respect to one of the variables which enters it,

indicates explicitly that the first member (y) is a function of the

variables which enter the second member.

2. The Implicit Function, as y — x3 + ax — b = o, or y— log

x = o, or y — x2z — sin v = o, where the fact that one of the

variables is a function of the other is implied from the condi-

tion of equality to zero.

II. Increasing and Decreasing Functions.

1. The Increasing Function, as y= sx + b (s = positive quan-

tity), for as x increases, the function^ increases also.

2. The Decreasing Function, as y = — sx + b (s = positive

quantity), for as x increases, the function y decreases.

It should be carefully observed that the terms iiicrease and

decrease are here used in an algebraic sense. In the common

parabola y = + *^2px for example, y is an increasing or a de-

creasing function of x, according as we use the upper or lower

sign before the radical ; in other words, y is an increasing

function of x in the first angle, and a decreasing function of x

in the fourth.

III. Continuous and Discontinuous Functions.

1. The Continuous Function of a variable is a quantity that

changes gradually, and passes through every intermediate value



Quantities Functions 7

from an initial to a final value, as the variable that enters it

passes through every intermediate value from its initial to its

final value.

Thus in the equation of the line, y = sx -f- b, y is a continue

ous function of x\ for as x increases gradually, and passes

through all intermediate values between — oo and -f- °°
, y also

changes gradually, and passes through all intermediate values

between — oo and + oo. Again, in the circle y= ± \/a2— x2
,

y is a continuous function of x between the limits x = ± a.

2. The Discontinuous Function—as in the hyperbola y =
,b \ ...±- Vx^—a2

. Here y is a discontinuous function of x between

the limits x = ±a. For values of x> ± awe, readily see that

y is a continuous function of x. In fact, functional forms fre-

quently occur which are continuous between certain limits of

the variable which enters it, and discontinuous between other

limits of that variable. The Differential Calculus, however,

has only to do with variables between their limits of continuity.

9. Notation.* The equation y =/(x) is a symbolic expres-

sion of the sentence uy is an explicit function of x." Similarly

y =f(x, z, v) is to be read "y is an explicit function of x, z, and

v." Implicit functions are also capable of general representa-

tion. Thus,y*(x, y) = o means that x and y are implicit func-

tions of each other.

If the same functional symbol occurs more than once in the

same operation it is understood to refer to the same function.

If the symbols are different, then the functions to which they

refer are different. Thusy(x) and
(f>

(x) would, in the same

operation, indicate that the functions of x to which reference

was made were different.

* The notation
<f> (_r) to indicate a function of x was introduced by John Bernouilli, the

elder, in 1718 ; but the general adoption of symbols like_/, F, <$>,$, . . .to represent func-

tions, was mainly due to Euler and Lagrange.



8 Differential Calculus

If a particular value is assigned a variable which enters a

function, and we wish to express in general notation the re-

sulting value of the function, we substitute for the variable this

particular value. Thus, if we wish to indicate what ./"(%) be-

comes when x is equal to a, or b, or o, we write /(a), or /'(d),

orf (o), as the case may be. Another method, where the par-

ticular function with which we have to deal is given, is to place

the value of the variable as a subscript to a semi-bracket placed

on the right of the function, and equate this to the result ob-

tained by substituting the value of the variable in the function.

Thus
x —
X + 2

x2 + 2 ax= o;
2 x — a

3 a.

EXAMPLES.

1. If f(x) == x2— 5 x -f- 6, show that

/(l)=2, /(-2)=20, /(I) = 3t, /(2)=o,

f(S) = °» f{X - l) = X2 — 7 2C -f 12,

y^2 .%') = 4^ — io x -f- 6.

2. If /"(#) = (# -f- i) (x — i) (# — 2), show that

/(- I) =/(l) =/(2), - 3/(3) = 2/(- 2).

3. If/00 = <? - *" r
, show that /(3 7) = [/(j)]

3 - 3/(x>,

4. If <£ (x) = ax , show that [<£ (x)]2 = <£ (2 #).

In the following implicit functions make y an explicit function

of x.

5. jy
2 — 2 xy + x2 = o y = x

(a _j_ ^2
6. loga y = 2 loga (0 + x) - 1 j> = -^- •

7. Is y an increasing or decreasing function of x in the

function given in Ex. 5 ? Is it continuous ?
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8. Show that the following equalities are true

:

9

X2
-\- X -\- 1

2 X — I Jl
3>

2 sin x cos x

cos x — sin x
= o,

csc'x

2

IT

J2

9. In the equation x (y — 2) + y — c = o, show that y is

not a function of x when ^ = 2

.

10. Show that y is not a function of x in the equation

sin x sin \ x -f- cos ^ x cos jc

jr =
cos -J-.*
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CHAPTER II.

FUNDAMENTAL PRINCIPLES.

10. Increment. The increment of a variable is the amount of

its change in any interval of time.

We can always ascertain this amount by taking the algebraic

difference between the values of the variable at the beginning

and at the end of the interval— always subtracting the former

from the latter. If the increment thus ascertained is positive,

the variable is increasing ; if negative, it is decreasing. See

§ 8, II. The increment of a variable is usually denoted by the

symbol A placed before the variable. Thus Ax means ' the in-

crement of x,' and is to be so read.

11. Uniform Change. Varied Change. When a variable so

changes that its increment is numerically the same in all equal

intervals of time, its change is said to be uniform.

In all other cases its change is said to be Varied.

A dcbaBabcd
i i i i 1 i i I

Fig. a.

Thus let AB represent graphically the state of a variable (u)

at any instant, and let Ba, ad, be, etc., represent its increments

in any successive equal intervals of time ; then if

Ba = ab = bc= etc.,

the variable AB (u) is uniformly changing. Otherwise the

variable is varied in its change. If u is an increasing variable,

the increments Ba, ab, be, etc., are positive; if decreasing, the

increments are negative. § io.
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Again, suppose a bucket in the form of an inverted conical

frustum is being filled from a hydrant in such a manner that

the depth of the water increases by one inch in every second—
and proportionately for any other interval of time— then the

depth of the water is a variable in a state of uniform change,

while the volume of the water is a variable in a state of varied

change. Had we assumed a cylindrical bucket, then the volume

as well as the depth of the water would have changed uniformly.

12. Uniform Motion. Varied Motion. A point is said to have

uniform motion when the dista?ice over which it passes, estimated

from any point in its path, is a variable in a state of uniform

change. When this distance is varied in its change, the motion

of the point is also Varied.

Thus, Fig. a, let us suppose AB to be the path of a flowing

point, which at the instant of consideration has reached the

position B. Then if the distance AB is a uniformly changing

variable, the motioii of the point B is uniform. Otherwise the

motion of B is varied.

Corollary. The direction in which a distance is changing is

determined at any instant by the direction of motion of the flowing

point at that instant.

13. Differential. The differential of a variable is the increment

it would take on in any interval of time, if its change beca?7ie unL

form at the beginning, and continued so throughout that interval
m

The differential of a uniformly changing variable is obviously

the actual increment it takes on in any interval.

The usual notation for representing the differential of a varia-

ble is the letter d placed before the variable. Thus du, read

' differential of «,' indicates the operation of taking the differen-

tial of the variable u. It should be remembered that the sym-

bol d before u is not a coefficient, but a symbol of operation, and is

entirely analogous to the symbols sin, cos~ x
, log, in the expres-

sions sin u, cos
-1

u, log u.
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Cor. The differential of an increasiiig variable is positive, and

that of a decreasing variable is negative. (§ 10.)

14. Illustrations. To illustrate the relation between an in-

crement and a differential,

as well as to secure a clear

conception of each, let y =
f(x) be the equation of any

locus such as OPT, Fig. i,

and let u represent the vari-

able area bounded by the

curve, the x — axis and the

terminal ordinate PM, as

that ordinate moves uniformly to the right, changing its length in

obediance to the law expressed in the equation y =f(x). Let

x = OM= x' , and let MN be the increment of x (Ax) in any

interval of time, beginning at the instant when x = xr
. Then

Ax = MN, Ay = RT,

and An = area PMNT.

Since PM moves uniformly the distance OM{= x) changes

uniformly ; hence dx = Ax = MN.
Again, du is by definition the increinent that u (OPM) would

take on if it became a uniformly changing variable, and so con-

tinued throughout the interval of time. But this supposition of

uniform change in // (OPM) obviously requires the ordinate

PM to remain constant in length throughout the interval.

Hence
du = area PMNR.

But area PMNT- area PMNR = area PRT;
Au — du = area PRT.

15. Rate. The Measure of the Rate of Change of a variable

or, more simply, its Rate, is the increment it would take on in a
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unit of time if its change became uniform at the beginning and con-

tinued so throughout that unit.

The rate of a uniformly changing variable is the actual incre-

ment it takes on in a unit of time.

Thus when we speak of a body falling at the rate of 50 feet

per second, we mean that the variable distance through which

the body has already fallen would take on the increment 50 feet

in the next second, if its change became uniform at the begin-

ning of the second, and continued so throughout.

Or, when we speak of a passing train as moving at the rate

of 40 miles an hour, we mean that if its distance from some

point in its path (say the last station) became at the instant of

speaking a uniformly changing variable, and continued so for

an hour, that it would take on the increment of 40 miles.

16. Relation Between a Differential and a Rate. It will be ob-

served that the only difference between the definition of ' a dif-

ferential ' (§ 13) and that of ' a rate ' (§ 15), is in the use of the

term " interval of time " in the former, and the term " unit of

time" in the latter. If, therefore, the "interval of time" is

taken as the " unit of time," the rate of a variable and its differ-

ential are the same. If the " interval of time " is not taken as

the " unit of time," let dt = that interval (since time (t) changes

uniformly, dt can represent any interval or increment of time),

and let du be the corresponding differential of a variable u
;

then
du , N

"=Tt
(I)

where r = rate of u. If dt= unit of time, we have

r = du

as explained above, i.e., the rate of a variable is its differential

for a tmit of iiine.

Referring to the last illustration of § 15, suppose we say that
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the train will travel 160 miles in the next 4 hours at its present

rate of travel, then

du = 160 miles and dt — 4 hours,

du 160 m
and

as before.

dt 4 h
= 40 miles per hour

17. Velocity. Velocity is the rate of change of a distance. Let

s = variable distance traversed by a point, and let v = its

velocity at any instant; then, § 16 (1),

ds
(.')

18. Relation between the velocity of a point in its path and its

component velocities in the direction of rectangular axes.

Let y =f(x) be the equation of any locus, as APB, when re-

ferred to rectangular co-

ordinates. Let us further

suppose that the point

which generates this locus

is at the instant of con-

sideration at P, (x, y).

We wish to compare the

velocity of P in its pathFig. 2.

with its component velocities in the directions of X and Y.

In other words, we wish to compare the rates of change of the

distances AP (= s), NP (= x) and MP (== y).

The direction of change of the varying distance AP(= s) is

at the instant of consideration the direction of motion of its gen-

erating point P, § (12) Cor.; but the direction of motion of

P is at the instant in the direction of the tangent PT. Hence

the direction of change of the distance AP is at the instant in

the direction PT. Now, assuming the distance AP (=•*") to

become a uniformly changing variable at the instant of reach-
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ing the value AP, lay off any distance FT, in the direction of its

change, i.e., a!o?ig the tangent FT, to represent the increment it

would take on under this supposition in the interval of time dt\

then, § 13, we have
ds = FT

But if AP (= s) becomes a uniformly changing variable in

the direction FT, the co-ordinates of P, i.e., the distances NP
(= x), MP (= y), also become uniformly changing variables,

and would take on the increments PR and FT, respectively,

in the same interval of time, dt. Hence

PF = dx, FT= dy.

From the right triangle PTR we have

FT2 = PP* + FT2
;

i.e., (dsf = (dxf + (dyf ..... (3)

i.e., § 17, 2, The square of the velocity of a poi?it in its path is

equal to the sum of the squares of its components in any two rect-

angular directions.

Cor. Let TSX = a ; then, since TPF = TSX = a, we have

from the right triangle TPF the following important relations

:

dx , N
-Y- = cos a (4)
as

^j- = sm a (5)

-^ = tan a ....... (6)
ax

19. Signification of Q
ax
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I. Geometric Signification. Every relation between two vari

ables which can be expressed in the form of an equation,

y =/(x), can in general be represented geometrically by a

plane locus. Hence the ratio of the differentials of these vari-

ables
(
-j-

)
ought to admit of geometric interpretation. We

see from (6) of the preceding article that it does admit of such

interpretation ; for, Analytic Geometry, p. 2 5

,

tan a = s = slope of tangent TS.

But Slope of TS = slope of APB [y =/(#)] at (*> y\
dy

hence generally, — = slope ofy =f(x) at (x, y).

II. Analytical Signification.

dy .

since -r = rate of y.
dt

dx .

and -r = rate 01 x,
dt

and since

we have

dy

dt dy

dx dx

"dt

dy rate of y
dx rate of x

Hence the ratio of the differentials of two variables correspond-

ing to the same interval of time is equal to the ratio of the rates of

those variables at the beginning of that interval.

Cor. If rate of x be taken as unit rate. Then

-f- = x-rate of y.
dx
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20. Remark.* The terms "unit of time" and "interval of

time "' as used in preceding articles do not refer to any specific

portion of time— their values, whether great or small, not being

considered. In the abstract science of the Calculus, time is a

" foreign element "
; but as all change occurs in time, it is essen-

tial to the comparison of the rates of variables related in any-

given way that the " unit of time," or " interval of time," used

for this purpose should be understood to be the same.

Again, as any "interval of time *' may be taken as a "unit

of time " it will be found convenient to take

dt = unit of time.

Unless otherwise stated we shall so consider it in what ensues.

* Objection has frequently been made to Newton's method of fluxions, that it introduced

a foreign idea, namely that of motion into geometry and analysis. This objection was an-

swered by Newton when he stated that all his method contemplates is that one of the vari-

ables should increase uniformly (aequabilifluxu) as we conceive time to do.

*s
:
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CHAPTER III.

DIFFERENTIATION.

History.— It is not certain whether the Calculus was first discovered

by Sir Isaac Newton (1642-1727) or simultaneously and independently by

Newton and Gottfried Wilhelm Leibnitz (1646-17 16). The facts— elicited

after a bitter controversy extending throughout the eighteenth century—
are briefly these

:

1. Newton communicated his discovery to friends and in manuscript in

1669, although his method was not published until 1693.

2. Leibnitz published a memoir on the Calculus in 1684, yet the earliest

use of its method in his note-books is dated 1675.

3. In 1849, Gerhard discovered among Leibnitz's papers a manuscript in

Leibnitz's handwriting of extracts from one of Newton's papers, together

with notes on their expression in the differential notation. A copy of this

manuscript, it is known, had been sent to Tschirnhausen in May, 1675 • an<^

as he and Leibnitz were engaged on a piece of work at the time, it is pos-

sible that these extracts were made then. On the other hand, the extracts

may have been made from the printed copy in 1704.

4. It is certain that Leibnitz enjoyed for fifteen years and unchallenged

the honor of being the inventor of his Calculus. Newton himself rendered

him that credit in the first two editions of his Principia.

The problem of the Calculus as stated by Newton was : Given the relation

of the fluents (= variables) to find the relation of their fluxions (= rates).

This is equivalent to differentiation. Leibnitz's notation being preferable

to that of Newton has been generally adopted in treatises on the subject.

21. The Differential Calculus is the science of rates, and itsfunda-

mental object is to determine and compare the rates of related

variables.

22. Differentiation is the process of determining a dijferefitial.
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ALGEBRAIC FUNCTIONS.

23. The differential of a constant is zero.

Let c be any constant. By definition, § (3), a constant is a

quantity whose value is fixed ; hence, there can be no incre-

ment to its value in any unit of time.

Hence dc = (1)

24. The differential of the sum of two variables is the sum of

their differentials*

To prove

d(u +7') = du 4 dv,

in which u and v are the values of two varying quantities at

the same instant, and du and dv are their differentials.

Then u 4 v,

v 4 du + (v 4- <&)»

2* 4- 2 //# + (# + 2 */z/),

are the values of the function (u 4 #) at the instant and at the

ends of two equal units of time following that instant under the

supposition of uniform change in u and v throughout the two units

of time. Subtracting the first value from the second, or the

second value from the third, we find that the difference in either

case is

du 4 dv.

But this difference is the increment taken on by the function

(u 4- z;) in the same unit of time, and since it is the same for

all equal units of time the function is a uniformly changing

variable at the instant. Hence, § 13, this increment is its

differential

;

i.e., d(u + if) = du 4 dv (2)

* Argobast (a.d. 1800) was the first to separate the symbol of operation from that of

quantity. Francois in 1812, and Servois in 1814, were the first to give correct rules on the

subject of operation.
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Cor. i. Since the differential for a unit of time is the rate

of the variable, § 16, we may interpret (2) as follows: The rate

of the sum of two variables is the sum of their rates.

Cor. 2. The differential of any polynomial is the sum of the

differentials of its term. Thus

d (u + v — w -f- z) = du + dv — dw + dz.

25. The differe?itial of the product of two variables is equal to

the sum of the products arising from inultiplying each variable by

the differe?itial of the other.

To prove

d (uv) = udv + vdu.

Let u and v be any two vari-

ables, and, at the instant of

cojzsideration, let their values

be represented by the sides

AB and AD of the rectangle ABCD. Then at the instant

uv = area ABCD.

Let BB' = du, DD' = dv, i.e., let BB' and DDr
represent the

increments that the variables u (AB) and v (AD) would take

on in a unit of time if their changes became uniform at the

instant of consideration and so continued for the unit of time.

Now d (uv) [= ^/(area ABCD)\ is the increment that the rect-

angle would take on in the same unit of time provided its change

became wiiform at the instant and continued so throughout the

unit of time. The change in the rectangle ABCD would obvi-

ously become uniform if it took on the increment

area DD'C'C + area BB'C'C.

Moreover, since we have supposed u and v to take on the in-

crements du (BB') and dv (DD), the rectangle uv (ABCD) can

change uniformly in no other way. Hence

Fig. 3.
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^(area ABCD) = area DD'C'C + area BB'C'C;

i.e., d(wv) = ud'V + <Wa (3)

Cor. 1. If in (3) we make z/ = £ = a constant, we have

d {lie) = z/^/<f + rdfo.

Hence § 23 (1), d(cu) = cdu (4)

i.e., The differential of a constant multiplied by a variable is

equal to the product of the constant and the differential of the

variable.

Cor. 2. If in (3) we make v = vw, we have,

d (uvw) = ud (vw) -f- vwdu

= u (vdw -\- wdv) + vwdu

= uvdw + uwdv + vwdu.

Similarly we may prove

d(u cv cwz) = wvwdz + u cuzdcw + u cwzdcv + cv cwzdu (5)

and so for any number of variables.

Hence, 77z^ differential of the product of any number of vari-

ables is equal to the sum of the products arising fro?n multiplying

the differential of each variable by the product of all the others.

26. The differential of a fraction is equal to the dejiominator

into the differential of the numerator minus the numerator into

the differential of the denominator divided by the square of the

denominator.

To prove

it):
vdu — udv

1?

u
Let - = z,

V
then u = vz and

du -= vdz -f- zdv.

Replacing z by
. u

its value -

,

V
we have

du -
, fu\ u .

= vd 1 — M— dv.
\v V

§ 2 5> (3)
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du dv
I u\ V

Hence, solving, d f - ) =
;

1 /u\ <vdu — ud*v ,, x

••nw
=—*— (6)

Cor. i. It v = c = a. constant, formula (6) becomes

(u\ cdu — tide

• ,$-*.. .... . . . . (7)

This is as it should be, since - = -u, which being differentiated

by formula (4) gives d f- ,u\ = - .du = —

.

Cor. 2. If u = c = a constant, then formula (6) becomes

*©=-c$ ....... (8)

27. 7/^ differential of a variable with a constant exponent is

qual to the product of the exponent, the variable with its exponent

diminished by o?ie and the differential of the variable.

To prove

d (un) = nun~ 1 du.

1. Let n be a positive integer.

Then un = u. u. u. u. to n factors.

Hence,

d (un) = d (u. u. u. u to n factors)

= un
~ x du + un

~ 1 du + un
~ x du to n terms. § 25, (5)

Therefore

d (a*) = nun~ x du (9)
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m
2. Let n be a positivefraction and equal to — •

m
Let y — up, then

yP = Um .

Hence, pyp
~ x dy = mum~ 1 du. Equa. (9)

m um— 1

dy = — r du.

Substituting lot y its value and reducing, we have

_ m -_

1

d(up) = — up du.

Hence the rule applies in this case.

3. Let n be negative and equal to — m.

Let y = u~m = — , then, § 26. Cor. 2,

mum~ l du
*y= ^- s

i.e., du~ m = — mu~m~ x du.

Hence the rule applies in this case also.

4. Let n be incommensurable.

This case cannot be considered here as equa. (9) was de-

duced under the supposition that n was commensurable. The
rule holds good in this case also, as will be shown in a subse-

quent article. See § 32.

28. Differential Equation. Differential Coefficient.

Let y = x™, then by differentiation

dy = mx m~ x dx
;

dy m — lhence, -f- = mx
dx

The first of these equations is called The First Differential, or
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The First Derived Equation, of the equation y = xm , and the

second is called the First Differential Coefficient, or First Deri-

vative, of the same equation. Both of these equations, it will

be observed, contain a new function of x, viz., mxm~ 1
. Hence

?

in general, if y =/(x),

then dy = f\x) dx,

and g =/'(*)

are, respectively, the first differential equation and the first differ-

ential coefficient of the equation y =/(x).

Cor. Since dy and dx have the same or different signs, ac-

cording as y and x are increasing or decreasing functions of

each other, it follows that — is positive or negative, according

as j> is an increasing or a decreasing function of x. § 13, Cor.

29. Formulas.

dc= (a)

d(cu) = cda (p)

d(u + cv) = du + d<v (c)

d(u ev) = udev + 'vda (d)

d (wvw) = u cvdtw + u ewdev + ev ccvdu (*)

j (u\ evda—adcv , >xdU~—^r~ (/)

d(un
) = nun

- 1 du Cf)

Note.— These formulas are collected here for ease of reference. They

should, however, be carefully committed to memory.

EXAMPLES.
Differentiate

:

1. 5 * + 6.

d(£x+ 6) = d(5 x) + d(6) (c)

= 5 dx. Ans. (b)
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2. x* — nx2 + c.

d(x* - nx2 + c) = d (x4
) - d (nx2

) + </ (c)

= 4 jc
3^x — nd (x2

)

= 4 #V.r — 2 ;z^</x

= 2 x (2 ^2 — ^) dx. Ans

3. #* (*"• — X
s

).

d[x$ (xm — x)] = tf* ^(>
m — x) + (%

m — a;) //(**)

= ^i (mx7"" 1 — 1) rt& +(jtw — #) \x~^dx (g), (c)

(')

(d)

= \xh (mxm- x — 1) +
v*2 V.*

?]*.

(2 m -\- i) xm — 3 x

2 Vx

or, d\x\ (x™ — x)] = d(xm + l
* — #§)

dx. Ans.

3 1= (m 4- i) 3?
+ *"*<&? — -a&/# <& (')

-[
2 w 4- 1

1 3 ^
2 2

(2 #z + 1) x™ — 3 ^

^r

v,
//x as before.

2 v.#

\/.r
2

(jc
n + nix?)

4.

\/^:2 (vr" + mx2

)

x$
\= d\x* (x* 4- mx2

])]

6w+l

= d(x 6 + nix**-)

6n 4- 1
6-^±-1 -1

^
r3

<&" + -7- #** ldx (g), (c)

6w—

5

_ (6n 4- 1) jt:
6 +13 mx*

dx

dx= [(6 n 4- 1) *" 4- 13 w*2
] _ . Ans.
6 V*5
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As no special rule has been deduced for radical quantities,

they must always be expressed as quantities affected with frac-

tional exponents. It will be observed also that before differen-

tiating in the above example, the expression was first simplified.

This should always be done wherever practicable— not as a

matter of principle, but with a view of simplifying the process.

( Xn
(Z + 2)

p

I 7
_ fd \xn (z + 2)

p
I
- xn (z + 2)Pd{y>)

Too \J )

_f \xnp (z + 2)P~ 1dz + (z + 2)
pnxn^ldx} — xn

(z + 2)
p$y

4dy

y°

xn ~ l
(z + 2)

p~ 1 \pxydz -\-{z-\-2) (nydx — 5 xdy\

6. x2
-\- y

2, = a2
, and find value of dy.

d(x? +f) = d(a)\

2 xdx + 2 ydy = 0, — -
x

,\ dy = </.*. ^4«j.

7. y
2 = 4 ##, and find value of ^v.

d(y 2
) = */(4tfx),

2 _>v/y == 4 #</x,

2 #
.*. dy =— */#. ^4«j.

y

8. .-j
2
^

2
-f- ^p2 = #2^2 > and find value of dy,

IPx
Ans. dy = =- </x.

9. xy = m, and find value of dy.

y
Ans. dy — dx,

x
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10. y = (m + nx) xs
. Ans. dy = (^nx + 3 m) x?dx.

x™ .
,

mxm ~ 1

11. y = 7 r: • ^te. «y = 7 rT^*.•^ (1 + x)m
J

(i + jt:)"
i + 1

This fraction may be placed in the form xm (1 + x)~m and

differentiated as a product. So with all fractions.

J 12. j> = (1 + #) Vi — #. ^4«i". ^V == dx.

2 Vl — x

1 -I
- #

This product may be placed in the form —- and dif-

ferentiated as a fraction. Similarly for all products.

13. y = xi (x$ + i)i ^?w. dy =
3

— ^r.
12 V-*

2 Vx2 -f- 1

14. y = x5 (m -\- 3 x)s (m — 2 .x)
2

.

^;/j". */y = 5 -x
4
(#* + 3 #)

2 (m — 2 x) (m2 + 2 #z.r —12 .x
2
) ^r.

*

x™ mxm~ x

15. _v = Ans. dy — -, T-n dx.J
1 + xT J

(1 + *w
)
2

r^ F ,, 7 4 V*3 +
16. y= \ xr -\- aVx. Ans. dy = — dx.

4 \fx \ x2 + # V#

1
—

. rs-5 ^ 7 V0 + 3 ** 7

2 V*

18. y = y^—^
• ^«j. ^ = ^r

+ x
(1 + #) Vi -*2

1 # — Vi + x2
,

^19. 7= • ^4«i-. </y = - — dx.
x + Vi + x* Vi + *2

Vi +*+ Vi -* H-Vi-^2
,

20. y = ——= • ^/zx. dy = — //x.

Vi + x — yi — x x2 Vl — jc
2

Rationalize the denominator before differentiating.
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Vi -h x2 + Vi — x2

21. y = —= •

Vi + x2 — Vi — x2

Ans. dy =
§

( i +
*

)x \ Vi — x*/
dx.

x + Vi -+- -t
2

f 22. y = =+
/• Vi + ^:

2 — ^

^4^. //>/ = 2 ( Vi + ^2 + x) I + i^^U £
\Vi + x2

I

Write the first derivatives of the following

:

m dy 6 mx
23

*
J=Z

{7i
2 + x*f' dx

=
~(V +.X2

)
4

'

2 V* ., dfy ^ (i — X2
)

24. V = - • ^tfj. -f- = -^ ^r •

3 + ^ <& (3 + .x
2

)
2 VS

v 25. jy = V • Ans. -f= —— ' ^f/W. — = — ~

I + V* "X 2 (i + V#) \g)(l — X)

26. j; =
(xz — 2 .#) ^m

X2

iyJ[\

dy ,
Ans. — — (m -\- 1 ) xm — 2 (m — 1 ) xm

~ 2
.

dx J '

27. y = (a + bxm
)
n

. Ans. -j- = z?z/z£ (a + A*"1)"- 1*™- 1
.

1 — x dy 1 -\r x
28. y = • Ans. -f = -

?
—-—— •

Vi + a^ *& (1 + .r
2

)*

\la + x A dy V# ( V*— Vtf)
29. y= .__._. - ^^. -f

= ^
V

n S n .

Va + Vx dx 2 VxVa + x(Va+ Vx)2

30. 7 ='(2 ^ + ^) V^^ + *J*'

dy 4 V^ + 3 V.*:
^*r. -Z = —z_— ^ .

dx
4 v» V^ + v*
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TRANSCENDENTAL FUNCTIONS.

THE LOGARITHMIC FUNCTION.

30. The differential of the logarithm of a variable is equal to

the modulus of the system into the differential of the variable divided

by the variable.

Let u be the variable, and let m be the modulus of a system

of logarithms whose base is a.

To prove d (loga u) = m

Let c be any constant and let

u = cv (a)

Differentiating, du = cdv
;

or, du = - dv.
v

Hence — = — (b)
u v

Applying logarithms to (a)

\oga u = \oga v + \oga e;

Differentiating, d (loga u) — d (loga v) .- (V)

Dividing (V) by (b). we have

^(loga«) <t(logav)

du dv

U 7)

(d)

Now let us consider v at some one of its values, say v
r
.

Then the ratio d(\og a v)

dv

v

= m,
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where m is some constant. When v = v
r we have from (a)

u' = cv' , i.e., some particular value of u. Since the ratios in

(d) are always equal, we also have,

du

u

= m.

u' = cv'

But c is any constant, .*. u' (= cv
rs

) is any value of u, .'.
,
gen-

erally,

<?(}ogau)

da

u

= m.

da
Hence, d(Jogau) = m— (10)

Since the constant m depends only upon the constant a for

its value, it is the Modulus of the system of logarithms whose

base is a.

Cor. In the Napierian system the modulus is unity. Repre-

senting the base of that system by e, we have,

d(loge u) = ~ (11)

Hence, The differential of the Napierian logarithm of a variable

is equal to the differential of the variable divided by the variable.

31. Remark.—The simplicity of equation (11) as compared

with equation (10) explains the reason for the almost exclusive

use of the Napierian system of logarithms in the higher analysis.

We shall therefore restrict our attention to this system in the

investigations which follow, unless the contrary is expressly in-

dicated by the use of some subscript to the logarithmic symbol.

32. By means of the formula derived in article 30 for the dif-

ferential of a logarithm we can now show that d(un
) = nun~ 1du

when n is incommensurable. See § 27, Case 4.
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Let y = un
,

in which n is any incommensurable number.

Applying logarithms, logy — 11 log u
;

dy du

y u

d(un) du
i.e., —^ = n

un u

Hence, d(iin) = nun
~ xdu.

Equation (9) is therefore true in all cases. The above meth-

od is of course applicable whatever the value of ;/.

THE EXPONENTIAL FUNCTIONS.

33. To prove
d(iiv) = vuv

~ 1du + uv \ogudv,

in which u and v are variables.

Let y = uv
; then

logy = v log u.

dy du
,

.

.*. — = 7) h log «/7Z/,

y u

d(uv
) du .

i.e., —^~ = v (- logudv;
u u

hence d(u
v
) = eotC~ 1 du + uv

\o% udv . . . . (12)

Cor. 1. Let v = n = a constant; then formula (12) gives

directly and generally

d (un) = nu1l~ 1du,

as previously determined. See §§ 27, 32.

Cor. 2. Let ^ = a = a positive constant; then formula (12)

becomes

d(av
) =av

log ad<v ...... (13)



32 Differential Calculus

Hence, the differential of a constant affected with a variable ex-

ponent is equal to the consta?it affected with the same exponent into

the logarithm of the constant into the differential of the exponent.

Cor. 3. If u = e = base of the Napierian system, we have

(since log e = 1),

d(e
v)=ev

d<v. (14)

If we compare formulas (9) and (13) with formula (12) above,

we see that the following rule may be given for the differential

of a variable affected with a variable exponent

:

The differential of a variable affected with a variable expo?ient is

equal to the swn of the results obtained by differe?itiati?ig, consider-

ingfirst one variable and then the other to be a constant.

34. Formulas.

. %£tj d(hgav) = m

d{uv
) = <vu

v- xdu + u
v
log ud<v.

d(a
v)=av

log adv.

d(ev
) = e

v
dv.

EXAMPLES.

Differentiate

:

Ans. r

2 v

1. logjc2 . d(\ogx2
) = -dx^sr^

X ': Jt

a +- x2

2. log (3 ax + xs
). d(\og(3 axj- x

s

)J=^K^ dx,.

3. y = log Vi — xz
. dy = - -^ .dx.

.
—

, 5
2 *3 — I

,
; J:

"

4. y = x™*?. dy = xm=xiin + x^dxr

+ t

ii
J

•':
*
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5. y = (x2 — 2 x -f- 2) e*. dy = x?er°dx.

6. y = e* (1 — xs
). dy = (1 — 3 jc

2 — .x
3
) ^dx.

20. j^^log*.

dfc
7. y = log (log A*).

x iogx

8. y = x log x. dy = (1 -{- log a;) da:.

9. _y = .xV. •/y = ax (n + •* log tf) #M~ Va;.

10. y = \ogax
s
.

7 3 m 1dy = dx.
X

1 1; 11 —
(1 Hf^E 5 ^*^

I + X

12. jy = ^log*. //>> = <f
r

(—h log a: 1 dfof.

""

13. y fc= #*. </j/ = (log at + 1 ) x^dx.

14. ^ = at"^. dy = log # (log x -\- 1) + - x^x^dx.

1

15. jy == A*.
1-2

</y = (1 — log x) xx dx.
|

16. jy =«6"k dy = ye* log adx.

17.-^ = ^. dy = ye^dx. ^ *

18. y = e
x°C

. (fy = yx* (log x 4- 1) ^p.

»-©•-. ^ = ^ (
lo^ -

')
<**•

*/y == e™* I—\- m log x
) d&c.

21. y = log^A*. log (log a:) — log ^.

</y = log (log x) dx

x
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22. y = (#
3— 3 x2 + 6 x — 6) ^. ^ = xze°dx.

23. 7 = VS - log(i + \©- * =
2(l + V

-
}

JV lop" X
24. _y = log(i— ^f)H \ogx. dy = -—-

—

I —x (i — x)2
dx.

25. y = \og5x. dy = 5 log4
.r

—

/i -f- #\* , dx
26. 7 = log . dy

—

1 — x 1 — x2

. Vi — ^2 4- x ^[2 _ rtk V2
27. jy =log . dy — T——=Vi-*2 (Vi-^+^V2)(i -x2

)

dx
28. y = log( V*+w+ \lx— n). dy = ,

*'2 y (x -\- m) (x— n)

It frequently happens that the process of differentiation of

algebraic functions may be greatly simplified by applying loga-

rithms before beginning the operation. Thus,

xm '

30. y = , x ro
•'• tog-)" = ** log* — m log C

1 + x)
^1 -f- .#y

dty { dx dx=m
y I

x 1 -\- x

dx= m
x(i -\- x)

. dx
dy =my ——-—

r

x(i -\- X)

xm—

*

= m -, "

x ^_i dx.
(1 + x)m + 1
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Solve the following by this process

:

Ans.

31. y =
x

I -J- X

32. y = (i + mx
)
z
.

(i -|- x2)x
33. y = v J

-

Vi -**

J(x + df
34. y =V -.

V x — a

dy = dx

(i + *)
2

'

*/y = 2 (i -\-mx) mx log wdk.

1 + 3 ^2

</y =
V(i-*2

)

2 x*

,2\3

^/X.

^ = (^- 2 «)V
(̂
±^-3

^.

THE TRIGONOMETRIC FUNCTIONS.

35. The differential of the sine of an angle is equal to the cosine

of the angle into the differential of ^_ ^_ t
the angle.

Let POC be any angle gen-

erated by the line OP, taken as

the linear unit, revolving upward

about O as an axis ; then, in

circular measure,

Length of PC = u = measure of POC.

If length u becomes a uniformly changing variable at the in-

stant the generating point reaches the position P, then, § 18,

PT= du and Z>T= d sin u

(since AP = sin u). From the right triangle DTP, we have,

i.e.,

Z>T=PTcosDTP,

d (sin u) = cos a du ...... (15)
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36. The differential of the cosine of an angle is equal to minus

the sine of the angle into the differential of the a?igle.

From the right triangle DTP, Fig. 4,*we have

DP = FT sin DTP,

i.e., — d cos u = sin u du,

or d (cos u) = — sin udu (16)

since OA = cos u and OA is a decreasing variable, § (8), II.

Otherwise, thus : let u = u in equa. (15), then

d sin f u ) = cos ( u\d[ u
2 ) \2 J \2

i.e., d (cos u) = — sin u du.

37. The differential of the tangent of an angle is equal to the

square of the secant of the angle into the differential ofthe angle.

To prove

•/(tan u) = sec2 u du.

From trigonometry,

tan u
sin u

cos u

Differentiating,

, , N cos u ("cos u du) — sin u (— sin u du)
*/(tan u) = i <-.—, ^ '-

' cosJ u

(cos2 u + sin2 u) du

cos2 u

=—r~ du
>

COSJ u

.-. </(tan tt)= sec
2 udu (17)
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38. The differential ofthe cotangent of an angle is equal to minus

the square of the cosecant into the differential of the angle.

To prove

d (cot u) = — esc
2 u du.

We know that cot u
tan u

d (tan u)

tan2 u

sec2 u

.'. d (cot u) = —
tan

<;pr2 u.

du,
tair u

.'. d(cot u) =— esc 2u du (18)

Otherwise, thus ; let u = ( u\. Substituting in equation

(17), we have

d tan ( u\ = sec2
( u

)
d (

-

i.e., d (cot u) = — esc
2 u du.

The complementary functions which follow may be differen-

tiated by the student in the same way.

39. The differential of the secant^of an angle is equal to the

product of the secant, the tangent and the differential of the angle.

To prove

d (sec u) = sec u tan u du.

We know that
1

cos u

-

d(cosu)
.-. </ (sec u) = —-—-

COSJ u

(— sin udu)

cos2 u

.*. cf(sec u) = sec u tan udu (19)
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40. The differential of the cosecant ofan angle is equal to minus the

product of the cosecant, the cotangent and the differential of the angle.

To prove

d (esc u) = — esc u cot u du,

i

We know that esc u =

d(csai) = —

sm u

cos udu

sin' u

= — cscu cot udu (20)

41. The differential of the versine of an angle is equal to the

sine of the angle into the differential of the angle.

To prove

d (vers u) = sin u du.

We know that vers u = i — cos u,

,\ d (vers u) = — d cos u

= sin u da (21)

42. The differential of the coversine of an angle is equal to minus

the cosine of the angle into the differential of the angle.

To prove

d (covers u) = — cos u du.

covers u = 1 — sin u,

d (covers u) = — cos udu .... (22)

We know that

43. Formulas.

c/sin # = cos udu

d cos a =— sin tfcfo

cftan a = sec
2
a</tf

dcot u =— csc2 u du

dscc u = sec a tan acfa

(/esc t* = — esc u cot #</(/

(/vers t* = sin c*(/ff

(/ covers a =— cos u du
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EXAMPLES.

1. y = sin 3 x. dy — 3 cos 3 xdx.

2. y = sin3
3 x. dy = 9 sin2

3 ^ cos 3 jc^/r.

3. jj; = cos mx. dy = — m sin mxdx.

4. y = tan2
5 #. */y = 10 tan 5 x sec2

5 xdx.

5. jy = cot x2
. dy = — 2xcsc2x2dx.

6. y = sec 4 x dy = 4 sec 4 # tan 4 ^:^r.

7. jy = sec2
#Jt\ dy = 2 n sec2 nx tan nxdx.

8. jy = log sin #. ^v = cot xdx.

9. y = x
_ /sin 3: \
#y = ^ sma

f (- cos # log x 1 d*.

tan x — tand
.#

*- 10. y = -. . dy = cos a. xdx.J
sec4 * J

• /1 v 7 cos (log x) _

11. j = sin (log *). tfy = —-—- ax.

dy
12. y = esc

11 x. — = — ncscnx cot #.
^ //#

13. j = sin (1 -f- x
2
).

—- = 2 * cos (1 +- x2
).

14. jy = sin (sin at). — = cos # cos (sin x).

15. _>> = cos mx cos «*.

dy . . .

-— z= — (m cos /at sin ;;/* -(- ;/ cos /;z>r sin ;/*).

16. If sin 2 # = 2 sin # cos x prove by differentiation that cos

2 x = cos2 x — sin2 #, and conversely.

2 tan a?

17. If 2 sin at cos x = —- prove bv differentiation that
1 + tan2 x * y

cos2 x — sin2 x = — , and conversely.
1 + tan2 x' J

-%
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18. If sin (x -\- y) = sin x cos y -f- cos x sin jy "prove by differ-

entiation that cos (x -\- y) = cos x cosy — sin x sin y, and

conversely.

19. If sin (x — y) = sin x cos y — cos x s'my prove by differ-

entiation that cos (x — y) = cos a: cos y + sin .# sin y, and

conversely.

T . . . . /i — COS X
,

20. If sin ^-.r = y prove that cos fx = 1/
i -f- cos x

THE CIRCULAR FUNCTIONS.

44. 77/<? differential of an angle is equal to the differential of its

sine divided by the square root of one minus the square of the sine.

To prove

js - -l \
du

//(sin y u) =
\FT^~u<

Let v = sin~ 1 u. Then sin v = u,

.'. cos vdv = du,

.. </?/ = d(sm~ l u)
COS 27 ^

but cos v = Vi — sin2 v = yi.^0^

Hence d(sm~ l
u) = .

.... (23)

The student may deduce this as well as all the following

formulae by solving the formulae for the differential of the trigo-

nometric functions for du. Thus *~

Art. (35), Equa. (15), d (sin u) = cos u du,

d (sin u) d'(sin ar)

,\ du = —- = . . ^-=

.

cos « Vi - sin2 u

^
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45. The differential of an angle is equal to minus the differential

of its cosine divided by ihe square root of o?ie minus the square of

the cosine.

7/ i x du
To prove d (cos 1 u) = .

Vi — u2

Let v = cos
-1

u. Then cos v = u,

.'. — sin vdv = du,

.'. dv = d (cos
-1

it) =
sin v

but sin v = Vi' — cos2 v = Vi — «/
2
.

Hence ^(cos" 1 **)^ • • (2 4)

46. 77^ differe?itial of an angle is equal to the differential of

its tangent divided by o?ie plus the square of the tangent.

7/ _i s du
To prove d (tan x u) =—

—

- •

r ' i -f- u*

Let v = tan
-1

u. Then tan v = u,

.'. sec2 vdv = du,

7/ _in du
.-. dv = d (tan * u) = ——

;

sec5 v

but sec2
z/ = i + tan2 v = i -f- w

2
.

Hence </ (tan~ * a) = ^—,—= (2 5)
I -hit

47. The differential of an angle is equal to minus the differential

of its cotangent divided by one plus the squa?-e of the cotangent.

_ 7/ _i n
du

To prove d (cot * u) = :—o •

r v J
i -h zr

Let v = cot
-1

z/. Then cot v = it,

.'. — esc2 vdv = du,

du
.-. dv — d (cot 1

it) =
v y CSC* V.2
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But esc2 v = i + cot2 v = i 4- ?'
2

.

Hence d(cot~
1
a) = - T-^r

.... (26)

48. 77/<? differe7itial of an angle is equal to the differefitial of its

secant divided by the secant into the square root of the square of the

secant minus one.

Let v = sec
-1

u. Then sec v = u.

Hence dis^ u) = - f
U

(27)

The exercise is left for the student.

49. The differential of an angle is equal to minus the differential

of its cosecant divided by the cosecant into the square root of the

square of the cosecant minus o?ie.

To prove d (csc~
x
u) — . (28)

The exercise is left for the student.

50. The differential of an angle is equal to the differential of its

7>ersi7ie divided by the square root of twice the versine minus the

square of the versine.

To prove d(vets~
1 u)= . = = (2 9)

v 2a —tr

The exercise is left for the student.

51. The differential of an angle is equal to minus the differential

of its coversine divided by the square root of tivice the coversine

minus the square of the coversine.

To prove (/(covers
-1

u) = ,
(3°)

V2ff-t*2

The exercise is left for the student.
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52. Formulas.

d (sin"

d (cos"

</(tan"

</(cot"

d (sec"

</ (esc"

(vers"

d (covers"

«) =

du

Vj-a2

<fc

J -ha2

J -ha 2

c/a

tr) = -

*)

u)

du

da

V2 a -V

V2a-a2

EXAMPLES

1. jy = sin 1 (3# — i).

2. y = sin" dy =

3 /£r

V6 x — g x2

dx

Z, y — x sin 1 ^.

4. j = tan
-1

5. ^ = tan
-1

Vtf2 - a:
2

*/y = [sin
-1aH

—

)dx.
\ Vi-W

#

\ll - X2

2 ^C

-X2

^r

Vi -^
2 rtfo

I +^ 2
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6. y
. 2 x , 2(1— x2

) dx
^tan" 1 -• dy = v

, 9
J—.-

1 + jr 1 + 6 .ar -+- x*

_ 1
a */x

7. y =cos x - • dy -

a2 —x2

x2'1 — 1 2 ^rn_1 ,

8. j = cos x -r-—

-

tfy = dx •

^ X2'1 + I ^ ^n + I^1 , dx
9. y = sec x wx. #y = - .

•* V;;/2^2 — 1

1 ^ 7 dx
10. 7 = sec x ——=- • dy = —== •

\la2 — x2
^Ja2 — x2

, [—• 7 Vi + cscr .

11. y = sin l V sm .r. </y == dx •

. 8 ^ 2 ^r
12. y = vers x—

•

dy = — — •

9 V9 a" — 4X2

/ o 1 x dy ,x
13. y — (a2 + jv

2
) tan-1 - •

-f- = 2 * tan-1 - +y a dx a

14. v = (* + a) tan
- x —— — \fax. -4- — tan

-1
V/ - •

v 7
v« dx * a

a.

1
^ — e

x dy
15. y = cos

-1 — 2

x

16. jy
,,tan ^ x

e° -\- e
x dx e* -\- e

dy __ e
tan
~ lx

dx 1 -j- x2

. x dy 1

17. y = ,sm~ 1 - . -j-

18. j=sm- 1—— • -f

Vi + jp
2 </# I + **

+ 1 ^/v 1

V2 dx Vi -2X-^
.1 dy 2

19. jy = sec" 1 —-^ f-
= •

2 XT — I ^%" Vl — X2

20. y = x^la2 - x2 + a2 sin" 1 - . f = 2V«2 -^.
a dx
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00
i i _ _ 4 j

x — a dy 2 ax2

V x 4- a
21. y — tan

-1 - + log .

a y x -\-

22. y = log tan ^ +
^j

23. _y = log tan
-1

x.

24. ^ = tan- 1 ^ r -f
= —£-5

i — 3 jr #* i -f-
**

i
i dy i

25. y = tan
-1 * H

dx 4 4

dy_ =
dx

sec *.

dy i

dx (i + **) tan "-1 *

dy 3

d* .x
2
(i + x2

)

i
5

,
dy x sin

-1 x
26. y = x — Vi — x2 sin

-1
*. -7- = —

t

//* Vi — **

27. _y = (2 *2 — 1) sin
-1 x + * Vi — x2

.

dy • _i
-j- = 4 * sm * *.
#*

28. y = tan x sin 1 x.

dy

dx (1 + (sin J
*)

2

) Vi — x2

29. y = x2 + (sin
-1

*)
2 — 2 sin

-1 x . x Vi — x2
.

dy 4.x2 sin
-1 *

30. y = tan
-1

doc Vi - *2

Vi — cos* dy 1

Vi + cos* dx 2

, 1 — cos * dy
31. v = log \/ • — = esc*.

T I + COS * tf*

1 3 + S cos x dy 1

32. jy = cos
-1 °

33. y

5 -f- 3 cos * dx 5 + 3 cos *

(1 — x2
)? sin

-1 *

*
dy 1 — x2 1+2*2

(1 — *2
)* sin 1

*.
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VI — X^2 + X2
. X VI

34. y = log * == + tan-* ^_^ .

yi +.rV2 + ** 1 — ar

ax j _j_ ^4

1 -f- •* 1, \ + x -\- x*" ,— ,Jtr V?
35. y = \og—i_ + -log— ^_+V3 tan- 1 *-

I — Jf 2 I — X + X* I — XT

dy 6

dfc 1 — x6
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CHAPTER IV.

LIMITS.

History. — What is known as the " method of limits " in the Calculus

is founded on the following lemma in the first book of Newton's Principia

(1687):

" Quantities and ratios of quantities, which in any finite time converge

continually to equality, and before the end of that time approach nearer the

one to the other than by any given difference, become ultimately equal."

53. In deriving the differential formulae in Chapter III., we

have taken as the basis of the operation what is known among

mathematicians as the " Method of Rates." We shall consider

in this chapter another method, known as the " Method of

Limits," and show how by this method all the foregoing differ-

ential forms may be derived.

54. Limit. The limit of a va?'iable is a fixed value fro?n which

it can be made to differ by less than any assignable quantity but

which it never reaches. Thus,

Limit of x = Limit (.66666 . . .) = §, as the figure 6 is an-

nexed an indefinite number of times.

Limit of x = Limit (1 + i + i + i + tV + • • •)
= 2

'
as

the number of terms indefinitely increase.

The limits of the area and of the perimeter of a regular in-

scribed polygon are respectively, the area and circumference of

the circumscribing circle as the number of sides of the polygon

indefinitely increase.

sin x
Limit = 1, as the value of x indefinitely diminishes,

tan x
i.e., as x approaches the value zero.
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Cor. It is evident from the definition that the difference be-

twee?i a variable a?id its limit is a variable whose limit is zero.

55. The student should be careful to distinguish the limit of

a variable as above defined, from the term limit ^as "Ordinalrily

used. Thus in the circle x2 + y
2
=.<£, or y = ± Y&y— x2

, we
are accustomed to say that the limws\oi the, values of x are

± a. By the term limit as thus iised we mea^.hat Beyond

these values there are no corresponding values of y, i.e., there

are no points on the locus.

56. Principles. I. If two variables are always equal and each

app?'oaches a limit, their limits are equal.

Let u = v, and let limit of u — a and limit of v = b ; since

// = v, we have a — u = a — v. But a is the limit of u ; hence

a is also the limit of v, §54, Cor. But b is the limit of v\

hence a = b.

' -
.

s
II. The limit of the sum of any number of variables is the sum

of their limits.

Let ?/, v, wy . .--.. be any number of variables whose limits

are a, b, c, . .
*% respectively, then

(a — u) + (b — v) + (c — w) + . . .
,

or (a + b + c +...) — (u + v + w +.. .)

is a quantity whose, limit is zero. § 54, Cor.

Hence Limit (u+ v + w \ . .) = (a -{- b -\- c . . .).

III. The limit of theSproduct of any number of variables is the

product of their limits.

Let u tnd v be variables whose limits are a, and b, respectively.

Let > a — u = x, and b — v = y, .

in which x and y are variables whose limits are zero: § 54.

A
*tffc
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Hence u = a + x, v = b -f- y,

hence nv = ab + bx 4- ay + xy
;

«z> — dr£ = &c + ay + ay.

But the limit of the second member of this equation is zero

;

Hence Limit (tiv) = ab.

And so for any number of variables.

57. Notation. In order to express the fact that a given func-

tion approaches a certain limit as the variable which enters it

approaches a certain other limit, it is convenient to adopt some

form of notation. The form in common use is illustrated by

the following

:

_ . . Tsin x]
Limit = i.

L X
Ja-=0

This expression is equivalent to the sentence ' the limit of

sin x . .,...,
as x approaches zero as its limit, is i.

i
x

58. The Differential Coefficient or First Derivative of a function

is the limit of the ?-atio of the increment of the function to the incre-

ment of its variable, as the increment of the variable approaches zero

as its limit.

Thus let y =f(x) be any function of x, and let A.* be an in-

crement of x and Ay be the corresponding increment of the

dy
function. Let the complex symbol — represent the differential

coefficient, or first derivative of y =f(x) ; then, by definition

Limit
Ay

Ax
dy

Sx=o ax

/
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59. Remark.— The student should carefully observe that

dy
the symbol — as here used is a symbol representing the limiting

value of a ratio] It is not therefore a fraction, the numerator

and denominator being dy and dx, respectively. We shall show

dy
in a subsequent article, see § 68, that the fraction — is equal

~Ay*

Ax
to Limit

Aa:=0

sEXAMPLES.

Find the first derivative of the following

:

1. y = x2
.

Let y = value of y when x = x -f- Ax ; that is, when x has

taken on the increment Ax ; then

y = (x -pAx)2 = x2 + 2xAx -|- Ax2
,

.'. j/ — y = (2 x + Ax) Ax
;

But j/ — 7 = Aj>,

Ajj>

Hence, Limit
Ax

i.e.

Ax

Ax=0

dx

= 2 x + Ax.

= 2 x.

2. 7 = x3 + 3.

.•; y' — (x + Ax)3 + 3 = x3 + 3 x*Ax + 3XAX2 + Ax3 + 3,

•'• y' ~ y — ^y — 3 -^^x + 3 ^Ax2 + Ax3
, ^

Aj

Ax
= 3 x2 + 3 xAx + Ax2

Hence,

i.e.,

Limit
'Ay

Ax Ax=

h
dx
= 3X2

.
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£»

3. y ~== (2 x — i) (x -\- 2)

= %!& + 3^-2,

.•. £gf = 2 (x + Ax)2
-j- 3 (jc + Ajc) — 2

s ;rt -2 x2
-\- 3 x — 2 -\- 4.x Ax -f- 3 A-* + 2 A.*2

,

•• Ar = j£ — y ^M/4 & £3 + 2 A*) A*>

Ay

Ax
= 4^ + 3 + 2 Ax.

Hence,

i.e.,

4.

Limit
'Ay

Ax
= 4^ + 3;

Ax=0

dy

m
y = Ĵ'

. 7 =

Ay =

Ay
Ax

m
(x -\- Ax)2

m
(x -\- Ax)2 x2

2 x-\- Ax

tn (2 x + A-*) Ax
J? (x + A.*)2

— w

Hence,

.r
2 (x + A.*)2

T . • rA/iLimit —

-

= — m —

-

La^Jax= X*

dy

dx

2 m
x3

5. y =
# +
2 ^

6. y = \lx? +a.

1. y = a V^.

8. >.=

^/jc 2 x2

dy x

dx 2

m
V^ +

dy

dx

mx

^(x2 + 2)
3
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9. y =
a -\- bx -\- ex1

x dx x

10. y =/(*).
^ T • •—- = Limit
ax

us? + Ax) -/(*)"

Ax |Az=0

60. The foregoing examples illustrate the meaning of the

term ' differential coefficient ' and explain the process by which

it may be derived in any given case. The process, however, is

lengthy and tedious, and, in a large majority of cases, very diffi-

cult. In the practical application of the i method of limits ' to

the derivation of differential coefficients it is usual to derive a

system of rules by aid of which the operation is greatly simpli-

fied. These rules have been derived already by the principles

of the ' method of rates ' (Chapter III). We shall now show

how they may be derived by the ' method of limits.'

61. To prove

d (u -f- v) du dv

dx dx dx

Let y = u -\- v, in which y, u and v are functions of x, and

let y = y', u — ?/, v = v' when x = x -f- A.r.

Then y
f = it + v',

and Ay = y' — y = ?/ + v' — (u + v)

= u' — u -f- (v
f — v)

;

Ay = Au + Av.i.e.

Hence

Therefore § 56, II.

"Ay"

Ay Au Av

Ax Ax Ax

Limit

i.e., § 58,

Ax
= Limit

Ax=0

'Au

Ax
+ Limit

Ax=0

dv

La^Ja^=o'

dy du

dx dx dx
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Replacing y in the first member by its value u -f- v, we have

diu +v) du dv= jZ+sI.' Compare §(24), 2.
dx dx ' dx

62. To prove

d(uv) dv

dx dx

Let y = uv\

then, y = u'v\

hence, y'—y = u'v' — uv

du

dx

Adding and subtracting uv in the second member, we have

y'—y = u (v
r— v) + v (u

r— u)
;

that is, Ay = u Av + s/ A?/

.

A_y Av , A ^

A.r Ax Ax

Hence, § 56, 11., in.,

Limit
lx^l = Limit «-A\ .

+ Limit KA^ ;

djy //z> du

dx dx dx

since v is the limit of v as A:r approaches the limit zero.

Hence, since y = uv,

d (uv) dv du _ » / \

A "^fc+'ZT Compare § (25), 3.

63. To prove

\ zy ^r ^r

dk v2
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Let

en,

u
y = -\

V

, u'

y = 7 ;

, u' u» -y = ^--v
u'v — v'u

v'v

v {11' — u) — u (v' --V)

v'v

Hence,
v Au — u Av

^y - .

V V

Ay v Au u Av
m

Ax v'v Ax v'v Ax
.'. § 56, II., III.,

_ . . \~Ayl T . . Y v Au~\ T . . f u Av\
Limit -r- = Limit X—r- -— — Limit \-j- -— •

La^Jax=o \yvAx\^x=(i L7;z/A^Jax=o

dy v du u dv
t

*'

dx v2 dx v2 dx

(since limit of 1/ as Ax approaches zero is v)

,(u\ du dv

\ v1 dx dx
or j = Compare § (26), 6.

dx V*

64. To prove

d(un
)

dx

. du
nun

~ L—
dx

in which n is a positive integer.

Let j> = &w
;

then, y
f= u'n

;

.*. Ay = u'n — un

= (u'-u)(u'n- 1 + u'n- 2u+u'n~ 3 u2+ . . . a""1
)
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... ^? =— (u'"- 1 + u n-*u + i/—V -f . . . ^w
- 1

).
Ax Ai^

Hence, § 56, in.,

Limit — = Limit urn~ x— + Limit u'
n~2u-^

LA*jA;c= o L a*Jax=o L a^Ja^= o

+ . . . to n terms.

dy .du . .du
.-. -f- = un

~Y— -\-

u

n~x— + ... to » terms,
dx dx dx

since the limit of u
r
as Ax approaches zero as a limit is u.

d(un
) . du

1^^,
dx

65. To prove

dx
.«) m du

u dx

Let 7 = logau ;

then, /= log„«'

;

</#
Compare § (27), 9.

u
^y = i°g<y - ioga ?/ = ioga -

/« -f- A#\= log"HH

(Au Au2 Au3

u 2 u2
2> u

* "
/

m . / A« A?/2= — A?4i
u

Ay mAu
Ax u Ax

( Au Au2
\

1 +— - • • • );

( Au Au2
\

1 —— H 2
— • • • )•

\ 2U $UA

J
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Hence, § 56, in.,

]_ . . Vm Au~\= Limit — —

-

X
Ax=0 \_u AxJAa;=io

Limit
[g

_ . . |7 A# Au2

Limit 1 1 r — ....
L\ u u 2.

Ax=0

i.e.,

dy d(\ogau) m die _ _ , N

Tx = *H " « S '

Compare § (3o)
'

IO>

Since the limit of Au as Ax approaches zero as its limit is

zero.

66. To prove
d (sin u) dn——. = cos u—

ax dx
Let y = sin u

;

then, y = sin u'
;

.-. A_y = sin u
r — sin z/

= 2 cos ^ (2/+ u) sin ^ (#'— u)

I Au\ . A11 ._,. , , . x= 2 cos
(

// -+- — 1 sin —
;

(Since u = u -f- A?/)

.. Az*
. , A v sm— AAj / AzA 2 Az/-— = cos u -\

Ax V 2 I Au Ax

Hence, § 56, hi.,

Limit -^- = Limit cos
(
u + — J

|_A^JAa;=io L V 2 /J^

Limit

Au-
sin

An
2 J

X Limit —A«l

A*=

i.e.,
</y d(sm u) du _, c , N

-f- == —i——^cosz/—

.

Compare §(35), 15,
/wr dx dx
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Since Limit

r • A^n
sin —

2

Au
L 2 J Aj;=0

= I.

67. To prove

d(sm 1u)

dx ^y I ir

Compare § (44), 23.

Let

then,

sin x u = v, or u — sin ^

;

du

dv dx

du

dx

i.e.,

' dx cosz/ ^j

du

d(s\xi~ 1 u) dx

sin^ z/

^r Vi - u2
'

68. The limiting value of the ratio of the increment of a function

to the correspondifig increment of the variable, as the increment of

the variable approaches

zero as its limit, is the

ratio of the differential of

the function to the differ-

ential of the variable.

Letjy =f(x) be the

equation of the locus

AB, Fig. 5. Let PP'
= As and the length

AP = s ; then

Y
B .

py
/ i

T̂ ~

A-
I~>//<^' B. IB

8 C J1 M'
Fig. 5-

PP = Ax = corresponding increment of x (OM), and

RP' = Ay = corresponding increment of y {MP).
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Draw the secant PP' and the tangent TS at P\

then ^ = tan P'PR.
Ax

If we now suppose Ax to approach zero as its limit the point

P' will approach P and the secant PP' will approach the

tangent TS\ hence

Limit
"4/

Ax
= Limit [tan P'PP] = tan TSX.

Ax=0 A;r=0

But § 18, Cor., the ratio of dy to dx is equal to tan TSX, i.e.,

tan TSX.

Hence, Limit -— =—

.

\_Ax_\Ax=0 dx



Analytical Applications 59

CHAPTER V.

ANALYTICAL APPLICATIONS.

1. (a) Compare the rates of the ordinate and abscissa of the

generating point of a circle whose radius is 5. (J?)
What does

the ratio of the rates become at the points (—3, 4), (o, 5),

(5, o) ? (c) If the ordinate is increasing at the rate of 8 feet

a second at the point whose abscissa is 4, what is the rate

of the abscissa and what the velocity of the point in its path ?

(d) In which angles is the ordinate an increasing function of x ?

(a) Referring the circle to its center and axes, we have

x2+y = 25 for its equation
;

/. 2 xdx •+• 2 ydy = o,

x
.*. dy = dx,

y
x

i.e., the ordinate changes times as fast as the abscissa.

(*) At the point (-3, 4), | =~=
J;

at (5, o),% = ~\

, n dy °= -oo ; at(o, 5),-=--=o.

(^r) The ordinates corresponding to x = 4 are found from the

equation of the circle to be y = ± 3, .*. since dy = 8 ft. a

second by hypothesis, we have

8 = — — dx = =F - dx,
±3 3

,\ dx = =f= 6 feet a second.
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From § (18), 3, we have ds = vdx2
-\- dy2

.

Substituting values found above we have

ds = V36 + 64 = 10 feet a second.

x
(d) Since dy = dx'\X. will be negative unless x and y have

different signs, hence dy will be positive when the moving point is

generating the second and fourth quadrants ; therefore, § (8), II.,

y is an increasing function of x in those quadrants. It is obvi-

ously a decreasing function of x in the first and third quadrants.

2. (a) Compare the rates of the ordinate and abscissa of the

parabola y
2 = 2px. (b) At what point is the rate of y equal to

the rate of jr? (c) Between what limits of x is the rate of y
greater than that of x ? (d) Between what limits is it less ?

(e) If the parameter of the curve is 8, and the generating point

so moves that its abscissa is uniformly increasing at the rate of

10 feet a second, what is the velocity of the point in its path

and the rate of the ordinate when x = 8 ? (/) What is the

rate of increase of the area of the parabolic segment at the

instant that x = 8 ?

P P •

id) dy = -dx, i.e., the rate of y = -times rate of x.

y y
p ...

(J?)
By condition dy = dx, .*. 1 = — .'. y = p. Substituting m

the equation of the parabola we find x = - /.( — ,/) or the

extremity of the latus rectum is the required point. See

" Analytic Geometry," p. 86.

P
(c) In the differential equation, dy = — dx, dy > dx when

P
p > y. But from the equation of the curve / >y when x < —

,

P
.-. dy > dx between limits x = o and x = —

.
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• • P
(d) Similarly we can prove dy < dx between limits x = —

and x = oo .

4
(e) The equation becomes y

2 = 8 x ;
.-. dy = - dx. By hypoth-

esis dx = 10 feet a second, and the point whose abscissa jc = 8

has y = S for its ordinate, .-. dy = - io = $ feet a second. Also,
o

ds = V^/jt
2 + dy2 = V125 = n. -f- feet a second.

(/) The area of a parabolic segment is z = § jey, .-. /& = §
(xdy + j^^). Substituting values found under (<?) above, we
have

dz = § (40 + 80) = 80 sq. ft. a second.

3. Compare the rates of the ordinates and abscissas in the

X? y X^ V
2

following curves — -f-
— = 1 , — — — = 1 , xy = m.

" 4. An elliptical metal plate is expanded by heat or pressure.

What is the rate of change of its area when the semi-axes are

4 and 6, and each is increasing at the rate .1 in. a second ? Let

x and y be the semi-conjugate and semi-transverse axes, and

let z be its area ; then z = irxy. See " Analytic Geometry,"

P- 136.

.*. dz = 7r (xdy -|- ydx) = it (10) .1 = it sq. in. a second.

5. Steam is admitted by a valve into a circular cylinder, one

end of which is closed by a piston. If the diameter of the

base of the cylinder is 1 foot, and the steam is admitted

at the rate of 10 cu. ft. a second, at what rate is the piston

moving ?
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Let y = volume and x = altitude of cylinder at any instant

;

then

.*, dx = — feet a second.
7T

6. Gas is introduced into a thin elastic spherical film at the

rate of 10 cu. ft. a second. At what rate is the radius increas-

ing when the volume is cu. ft. ?

3

Let y = volume and x variable radius ; then

y = - ttx
5
,

.'. dy = 4 7rx
2dx,

3

.*. dx = iody

4 7TX2 4OO 7T 40 7T

feet a second.

7. A man 6 feet in height, walking at the rate of 2 miles

an hour, passes under an electric light 18 feet above the pave-

ment. Assuming the pavement to be horizontal, find (a) the

rate at which the man's shadow is lengthening
; (/?) the velocity

B of the end of his shadow ; (c)

the rate at which he is receding

from the light when 15 feet

from its foot.

Let D be the light, and BM
^ the position of the man at any

Fig. 6. instant.

(a) Let AB = y, BC'= x\ then, from similar triangles,

y y + x 1

hence, dy = -dx = 1 mile per hour.
2
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(J?)
Let AC = y and BC = x ; then

y _y-x . v _3„.
i8~ 6 "•->; -

2
*'

hence, ^/y = - dx = 3 miles per hour.
2

(V) Let A be the man's position, and let AD = y and AC = x;

then,

.% I K

hence, dy = - dx = — 2 = i4 miles per hour, nearly,

j 24

8. Two ships start from Sandy Hook at the same time, one

going N. 30 E. at the rate of 10 miles an hour, the other going

due east at the rate of 12 miles an hour. At what rate are

they separating at the end of two hours ?

Let y = distance of ships apart at the instant, and let // and

v be the varying distances of the vessels from Sandy Hook
;

then

y2 = u2
-f- z'

2 — 2 iiv cos 6o° = u2 4- i'
2 — uv

;

.*. 2 ydy = 2 udu -f- 2 vdv — ndv — vdu
;

(2 u — 7') du + (2 v — ?/) /^7'

.-. dy= . = = 2 y,j miles an hour.
2 \'ir-{- zr— uv

>f an equilateral triangle is 2 feet, and is

ite of 2 inches a minute. At what rate is

the area increasing ? At what rate is the perimeter increasing ?

Am. 32 V3 sq. in. a minute, 4 V3 in. a minute.

10. The apothegm of a regular hexagon is 2 feet, and is

increasing at the rate of one inch a second. At what rate is the

area increasing? Ans. 96 V3 sq. in. a second.
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11. The altitude of a cone is constantly equal to twice the

diameter of the base. If the altitude is 3 feet, and increasing

one inch a second, at what rate is the volume changing ? At

what rate is its convex surface changing ?

T7 sq. in. a second.Ans. 81 7r cu. in. a second, f TV

12. A reservoir in the form of an inverted conical frustum,

radius of smaller base =100 ft. and elements inclined 45 to

horizon, is used to supply an adjacent town with water. If the

depth of the water at any instant is 10 feet, and is decreasing

at the rate of two feet

a day, at what rate is

the town being sup-

plied ?

Let AC = x, OC =
a ; then C? C'= a 4- x.

Let y = volume ; then

y
7TX

](a 4 jt)
2+ a2+ (a + x)a)\

= - (3 a2x 4 3 ax*-\- 0?).

3

dy = - (3 a1 + 6 ax + 3 x2
) dx

3

= 24200 7rcu. ft. a day.

13. Under the action of internal forces a circular cylinder is

changing. When the diameter is 24 in., and increasing at the

rate of 1 in. a second, the altitude is 48 in., and decreases at the

rate of 2 in. a second. At what rate is the volume changing?

At what rate is the convex surface changing ?

Ans. 288 7T cu. in. a second. Not changing.

14. (a) Compare the rates of the ordinate and abscissa of

the generating point of the logarithmic curve, y = \oga x.
(J?)

At

\
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what point are the rates equal ? (V) How do the rates compare

when the moving point crosses the .r-axis ?

/ v , m . . . . . m . . .

(a) ay = — dx, i.e., the rate of y is — times the rate ot x.

(J?)
At x = m.

(c) When y = o, x = i, .*. ay = mdx.

15. Which increases more rapidly, a number or its logarithm ?

m
Let x = number, then d loga x = — dx ; hence, if ;;z > jc the

logarithm increases more rapidly ; if m < x the number in-

creases more rapidly, and if m = x, the rates are the same. In

the Napierian system m = i, .-. dx = xdlogx, i.e., the number

increases more rapidly or more slowly than its logarithm accord-

ing as x > or < than i.

16. (a) How much more rapidly is the number 342 increas-

ing than its common logarithm ? (p) How much more rapidly

than its Napierian logarithm ? (V) If the number increases by

1, how much will its common logarithm increase?

(a) d log10 x = — dx = —

—

— dx,
x 342

since m = .434295 in common system.

342
Hence dx = d\op^x =788 d\op*. n x,

.434295
8

i.e., the number increases 788 times as fast as its logarithm.

(b) Since m = 1 in Napierian system,

dx = 342 dlogx;

i.e., the number increases 342 times as fas,, as its logarithm in

the Napierian system.
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(V) Since dx = i, we have

.A-ZA2QC
d\og10 x = yo X i = .00126,

342

i.e., the logarithm of 343 is greater than the logarithm of 342

by .00126. This decimal is the tabular difference correspond-

ing to the number 342 as given in tables of common logarithms.

17. What should be the tabular difference in tables of com-

mon logarithms for numbers between 6342 and 6343 ?

Am. .000068.

18. Assuming that the ratio of the rates of change of a num-

ber and its logarithm remains constant while the number

changes from 245 to 245.15, find the logarithm of the latter,

assuming the logarithm of the former to be 2.389166.

Ans. 2.389193.

19. Prove by logarithms that d {uvw) = uvdw + uwdv +
vwdu. Applying logarithms we have

log (uvzu) = log u -f- log v + log w
;

d'{uvw) dn dv dw
/. -^ J

- = — + - +—

;

uvw uvw
.'. diiivw) = uvdw + uwdv + vwdu.

'u\ vdu — udv
20. Prove by logarithms that d\—

j

21. Show that the ratio of the rates of ax and x is equal to

a log a when x = 1 ; of e* and x is equal to e when x = 1 ; of x°°

and x is equal to 1 when x = 1.

22. (a) Which increases more rapidly, an arc or its sine ?

(b) Where are their rates of increase the same ? (V) Where is

the rate of the arc twice that of the sine ? (d) When the arc

is 30 what is the ratio of the rates ?
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(a) d (sin x) = cos x dx. As the cosine is in general less than

i, the rate of the arc is in general greater than the rate of the

sine.

Qi) By hypothesis d sin x = dx ,\ cos x = i .'. x — o, i.e.,

when the arc is zero its rate and that of its sine are the same.

(V) By hypothesis d(s'm x) = - dx .*. cos x = — .-. x = 6o°.

/ 7\ 7/ • \ or V3 j d(s'mx) V3
{d) (/(sin x) = cos 30 tfx = dx .-. —^——- =—-

.

23. Which increases more rapidly, an arc or its tangent ? At

what value of the arc are the rates the same ? At what value

of the arc is its rate \ that of the tangent ? At what value is

its rate J that of the tangent ?

24. Assuming that the ratio of the rates of change of an arc

and its cosine remains constant while the arc changes from

62 42' to 62 42' 25" find the natural cosine of the latter arc,

given the natural cosine of the former as .45865.

Ans. .45854.

25. A fly-wheel connected with a stationary engine is revolv-

ing uniformly at the rate of 2 turns a second. Compare the

velocity of a point 1 foot from the axis with its horizontal

velocity.

Dropping a perpendicular from the point in any position to

the horizontal line through the axis, we readily see that the

horizontal velocity of the point is the same thing as the rate of

change of cos x, where x — arc already described, estimated

from the origin of arcs. Hence

d (cos x) = — sin xdx
,

i.e., the horizontal velocity is sin x times the velocity in its path.

Since dx = 2 tt .2. = 4 ir.
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d (cos x) = — 4 7r sin x
;

x = o, then d (cos .#) = o

;

# = 30, then d(cos x)= — 2 7rft. a second =
-J-
velocity of point

;

x = 90 , then d (cos #) = — 4 7r ft. a second = velocity of point

;

x = 1 50 , then d (cos .%) = — 2 7rft. a second = -g- velocity of point;

x = 270 , then d(ccisx) = 4 7rft. a second = velocity of point.

26. The crank of a steam engine is one foot in length and

the coupling-rod is 6 feet ; find the velocity of the piston per

second when the crank revolves uniformly at the rate of 5 turns

per second.

Let the length of crank = m and length of coupling-rod

= 11. Let
<f>
= varying angle described by the crank and

y = varying distance, the rate of change of which equals the

velocity of the piston.

Then n2 = m2
-\- y

2— 2 my cos <£ ;

.". jp
2 — 2 my cos cfi -|- m2 cos2

cf> = n2 — m2
-\- m2 cos2

<f> ;

.-. y == m cos </> + V/22 — m2 sin2
</>.

/ . , m2 sin 2 d> \

Hence dy = - »ism<£ H Uf>.
V 2 Nrr— nrswr^l

I . sin 2 <£

But ;/z= i,«= 6, d§—\OTr.\ dy= — sm<£ H 7
— - . — )i0 7r.

When <£ = o°,

When <£ = 45 ,

2 V36 — sin2
</>

//y = o.

dy = — [—=. H )
10 7T

W2 2 V36 -£/

—
(

* H—7= ) 5tt V2 feet per second.



When
(fj
= go°,

When
<f>
= 270 ,
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dy = — 1 o 7r feet a second.

dy = 10 tv feet a second.

69

27. Compare the velocity of a train moving along a horizon-

tal tangent with the velocity of a point at the base of the flange

of one of the wheels. Compare also the vertical and horizontal

components of the velocity of the flange point.

The velocity of the train is the same as the velocity of the

center of one of the axles. Call this velocity v. The point on

the flange of the wheel describes a cycloid whose equations are

x = ad — a sin 0,

y = a — a cos 0,

("Analytical Geometry," p. 206) in which a = radius of wheel

and

o b
Fig. 9.

= angle through which the wheel has rolled at the instant of

consideration.

Let jP, Fig. 9, be the position of the flange point at the in-

stant ; then PCB = 0. We are to compare the velocities of P
and C.

Differentiating the equations of the curve, we have

dx = a (1 — cos 6) dO,

dy — a sin OdO.

Since C is always vertically over the point B the velocity of

C = rate of change of distance OB ; but OB = PB = aO
;

.*. v = adO.
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Hence, dx = v (i — cos 6),

dy = v sin 6.

From § 1 8, (3), we have

ds= ^ldx* + df.

Hence, ds = Vz'2 (1 — cos 0)
2 + £'2 sin2 = z; V2 (1 — cos 0)

. 6>= 2? sin —

.

2

Now at O, = o° .'. dx = o, dy = o, ds = o, i.e., at the in-

stant the point touches the rail it is at rest.

At A, = 90 .*. dx = v, dy = v, ds == v V2, i.e., when the

point is in a horizontal line with the center C both the hori-

zontal and vertical components of its velocity are equal to the

velocity of C, i.e., of the train, while the velocity in its path is

equal to the square root of the sum of the squares of its compo-

nent velocities. At D, 6 = 180 .*. dx = 2 v, dy = o, ds = 2 v,

i.e., the vertical component of its velocity is zero while its hori-

zontal component = velocity in its path is twice the velocity of

the train.

. 2 av .

Again : since ds = 2 v sin - = sin — , we have
2 a 2

ds 2 a .— = — sin —

.

v a 2

Q
But 2 a sin - = chord PB and a = BC\

2

ds chord PB
v BC '

i.e., the velocities of P and C are proportional to the distances

of the points from B ; hence B is the instantaneous axis about

which the wheel revolves.
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28. Assuming the rectangular equation of the cycloid, deduce

the same results as in Ex. 27.

y 1The equation is x = a vers
-1 V2 ay — y

2
.

See "Analytic Geometry," p. 207. Hence

ydy
dx

v;' 2 ay — y
y

Since PB = a vers
-1 - , we have

a

d(PB) = da vers
-1^ = ady = v

;

a V2 ay — y2

dy = - V2 ay — y2
.

Hence, dx = - v.
a

2 yHence, ds = v
t a

At O, y = o .'. dy = o, dx = 0, ds = o.

At A, y = a .*. dy = v, dx = v, ds = v V2.

At Z), y = 2 a .'. dy = o, dx = 2 v, ds = 2 v.

ds \l2ay chord PB
Also

v a BC

Note.— The cycloid enjoys the mechanical properties of being the

curve of quickest descent and of equal times. The problem of determining

the line of quickest descent under gravity was proposed by John Bernouilli

in 1696. The origin of the calculus of variations may be traced to this

problem. Pascal applied the Method of Indivisibles of Cavalieri with emi-

nent success to the investigation of the properties of the cycloid-
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CHAPTER VI.

GEOMETRIC APPLICATION.

CARTESIAN CURVES.

69. Tangent. The equation of a line passing through the

point (V, y') is ("Analytical Geometry," p. 38),

y — y
r = s (x — xr

)

in which s represents the slope of the line. We have seen

dy
§ (19) that — (= tan a) as derived from the equation, jy =/(x),

represents the slope of the tangent to the curve at the point

(x, y). If, therefore, we let -=—, represent the value of — at

the point (V
', y

f

), we have

y-y' = %b-*) (*)

for the general equation of the tangent to any plane curve.

70. Normal. Since the normal at (x', y
r

) is perpendicular to

the tangent at that point, its slope is minus the reciprocal of

that of the tangent. Hence

dx
y - y = - jj (* - * ) (

2
)

is the general equation of the normal to any plane curve.
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EXAMPLES.

1. Find the equation of the tangent and normal to the circle

x2
-j- y

2 = a2
.

„.~ . . dy x dy' x
Differentiating, —- = .-. -£-= = 7 ;

dx y dx y

xr

hence, y — y
r=

7
(x — xr

) ;

, . xx' yy'
or, reducing, — + <~ = i

(Is €&

is the equation of the tangent, and

y
j - y = ^ o - x ),

or, - = —
y x

is the equation of the normal.

2. Find the equations of the tangent and normal to the

parabola y
2 = 2px.

dy p dy' p
dx y ' dxr yr

pHence y — y
r = —, (x — x'),

or, yy' = p (x + xr

)

is the equation of the tangent.

dy'
Substituting the value of —, in equa. (2) § 70, we have

yy-/_ = -- (x-cc)

for the equation of the normal.
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3. Find the equations of the tangent and normal to the ellipse

x2 y2

a2 b2

xx' yy
r

a2/ . ,.

a2
cr

'
b2x '

4. Find the equations of the tangent and normal to the

hyperbola _ _ _ = I#

xx' yy'
, a2/ ,.

5. Given the equation 3 a2y = x3 — 3 ax2 + b\ find (a) the

direction of the curve at the points whose abscissas are x = o

and x = a and (b) the abscissas of the points where the curve

is parallel to the ^c-axis.

(a) The direction of a curve at any point is that of its tan-

gent at that point ; hence, differentiating the equation, we have

dy x2— 1 ax

dx a2

dy
At x = o, — = o .*. the tangent is

||
to the ^-axis.

dx

At x = a, — = — 1 .*. the tangent makes an angle of 135

with x-2ixis.

(b) Equating the value of — to zero, we have

hence,

are the abscissas of the points where the curve is
|| to x-2ods.

X2— 2

a2

ax
: 0;

x(x — 2 a) = 0,

.'. X = and x = 2 a
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6. Does the direction of the curve in Ex. 5 at any of its

points make an angle of 45 with the .x-axis ?

Yes, at x = a (1 + V2) and at x = a (1 — V2).

7. Find the equation of the tangent to the semi-cubic para-

bola y% = aix at the point whose abscissa is a.

Ans. 3 y — 2 x = a.

8. Find the equation of the tangent to the cissoid ^
2=

2 a — x

,
?. ax 2 — x ? . ..Ans.y-y = ±
(2 „ _ yt) (* - * X

9. What angles do the cissoid y
2 = and the circle

2 a — x

x2
-\- y

2 — 8 ax = o make with each other at their points of

intersection ?

Ans. At one point, 90 ; at two others, 45 .

10. At what angle does the cissoid cut its base circle ?

Ans. tan
-1

2.

11. What is the equation of the tangent to x2 (x + y)
= a2 (x — y) at the origin ? Ans. y = x.

12. Show that all curves represented by the equation

— +T = 2

touch each other at the point (a, b).

71. Length of Subtangent. Length of Tangent.

Let FT, Fig. 10, be the tangent to MS (y =/(x)) at the point

P{x\y').
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PA /
Then, Subtangent =^r=/^ cotATP=

-J7ri>
=

~T' '> § J 9-
tan ^l j. Jr ay

dx1

Fig. io.

.'. Subtangent = y
, dx

f

~dj/'

Again, Tangent = PT= ^AP 2 +AT2=^y'2+ y'2

(^-)j ;

.-. Tangent =/y i +^j.

72. Length of Subnormal. Length of Normal. Perpendicular

to Tangent.

Let PB be the normal to the curve at P, then

Subnormal =AB =APtan APB =APt<mATP.
dy

.-. Subnormal = / ——.
.

dx

Again, Normal =PB = \J~AP
2 + AIP= \J/2+/2

(j~) ,

,. Normal =/V
/I+

(gJ
i

Draw 0C1 PT, then

Perpendicular= OC= or OA-AT x —y
,dx

r

w
cscATP ^1+ cot*ATP k I (dx'V

+W1v/-

.-. Perpendicular = xr
dyr—yrdxr

(dy'2+ dx'2
)^
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EXAMPLES.

1. Find the lengths of the subtangents and the subnormals

of the conic sections.

Circle. Parabola. Ellipse. Hyperbola.

a2 -x'2
. x'2-a2 x'2 -a2

Subtangents -,
— 2 x

Subnormals xr

p
b2x tfx'

a2 a2

As lengths only were required the signs of the values are

omitted. If we take Z"and A, Fig. 10, as points of reference,

the signs will show whether the subtangents and subnormals are

measured to the right or to the left.

2. Find the length of the normal to the catenaryy= — (ea -{-e «).

y *

Ans. —

.

a

3. Deduce the equation of the tangent to the hypocycloid of

four cusps, x/s
-\-y

/,s= c/
s

, and show that the position of the tangent

included between the coordinate axes is constant and equal to

the radius of the base circle.

4. Find the lengths of the subtangent and subnormal to the

. . _ x3
(2 a — x'~)x' (^a — x)x'2

cissoid jr= . Ans. 7— ,
— j-r .

2 a — x
2>
a ~ x {2 a— xy

5. Show that the subtangent of the hyperbola xy = m is

equal to the abscissa of the point of tangency.
X

6. Show that the subtangent of the logarithmic curve y = ae c

is constant and equal to c.

7. Show that the values of the normal and subnormal of the

cycloid, x= a vers
-1 V2 ay—y2

, are V2 ay' and \J(2 a—y')yf

,

respectively, and from these values show that the line joining
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the generating point and the foot of the vertical diameter of the

rolling circle is always normal to the curve. See Ex. 27, p. 69.

8. Find the length of the perpendicular let fall from the

origin to the tangent of the hypocycloid sr-\~y*= a 3
.

Ans. yax'y'.

73. Rectilinear Asymptote. Equations of the Asymptote.

The limiting position of a tangent to a curve as the point of

tangency recedes to an infinite distance is called the rectilinear

asymptote of the curve.

Of course curves with infinite branches only can have

asymptotes.

Assuming the general equation of the tangent to any plane

dy
curve, § 69, y —y= —, (x — x'),

and making successively y = o, and x= o, we obtain

dx
T*= x -y „y>

dx
/, = /-*'^7,

for the intercepts of the tangent on the X-axis and the K-axis.

Now, if either of these intercepts approach a finite limit as

either coordinate, xr
or y

r

, of the point of tangency approaches

an infinite value there is an asymptote whose equation may be

determined in either of the following ways

:

1., By ascertaining the limits of Ix and I
y , i.e., by determining

the two points in which the asymptote cuts the axes ; or,

2., By ascertaining the limit of one of the variable intercepts

dy'
of the tangent and the limit of its slope, -~y, as the tangent

point recedes infinitely.
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It frequently happens in the effort to ascertain the limit of

dy'
Z., or L„ or -r-p that the values assume an indeterminate form.

y dot

If so the process of evaluation is determined by principles ex-

plained in Ch. IX.

First Method. By ascertainifig the limits of Ix and I
y

.

Let x
/
and yJ

be the limits of Ix and I
y
as x' or y

f
approaches

an infinite value ; then

- + -=i (i)

is the equation of the asymptote in its symmetrical form.

dyr

Second Method. By ascertaini?ig x, or y , and the limit of -^—. .

'
-71 J dxr

(a) If we determine y/
and Limit

dxr

X':

, we have

'df
dx'

y = Limit

for the slope equation of the asymptote.

x+yj (2)

y'= 00

r~//i/

(F) If we determine x
t
and Limit ~—

f
j we have

V'= «>

%\y + x
< (3)

for the equation of the asymptote.

Cor. 1. If Xj = o necessarily y/
= o, and if y — o necessarily

x
t
= o ; i.e., the asymptote passes through the origin.

Cor. 2. If x
/
= 00 and yj

= 00 there is no asymptote.

Cor. 3. If x
/
= 00 and yj

= b = some finite quantity, then,

equa. (1) becomes 7 = b,
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or, if Limit
dx'

x'=
o and_y

/
= b, th,em equa. (2) becomes

V'= °°

y = b,

that is, in either of these cases the asympfete is
||
to the jc-axis.

Cor. 4. If yJ
= 00 and 'x = a, then equa. (1) becomes

x = a
;

"

or, if Limit
dx

ly'_
o and x = a, then eo^ua. (3) becomes

x = a.

That is, in either of these cases the asymptote is
||

to the

Kaxis. As the second of the two methods explained above

for determining an asymptote is usually the simplest we shall

adopt it in the following.

EXAMPLES.

X V
1. Examine the hyperbola — — — = 1 for asymptotes.

Here
dy' _ b\x b I £2V

dx' d2

y ~ a \ y"
2.

.*. Limit
\dx'_

x'= 00

y'= °°

= Limit
[*:( y'=

b= ± —
a

= Limit = Limit
y'= °° ay y'= 00

= Limit
' IF

_ 7. yi— 00

= 0.

Substituting these values in equa. (2) § 73, we have,

v = ± — xy
a

for the equations of the asymptotes.
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2. Examine the parabola^2 = 2 fix for asymptotes.

Here
dx

dy

81

dy' _fi m

dx' y

.'. Limit
dx

= o
y'= 00

.-. if there is an asymptote it is
||
to the X-axis ; Cor. 3, § 73.

Xr= 00

y = Limit y — x' = Limit 00 .

_ y'= 00

Therefore there is no asymptote to the parabola.

3. Examine the curve y
3 — x3

-\- a2x for asymptotes.

The equation solved for y shows that as x = 00
, y = 00 and

as x = — 00
, y = — 00 ; /. the curve has infinite branches in

the first and third angle.

,2dy x2

Here — = — -\
5dx y 2>T

V XT

+
3 \lx2 (x2 + ^2

)
2

'

•. Limit
df
dx'

= Limit
X1= i 00

(1 + ^) 3V^+^ = 1.

-1 a/= ± qo

.*. the asymptote makes an angle of 45 with ar-axis.

jy == Limit y —x
Xf= 4- 00

dx'
= Limit

id1

X'i+—
XX ?/ -> ~/—±,

o.

X' = ± 00

.-. Equa. (2), § 73, y = x

is the equation of the asymptote.

4. Examine y
B = xs

-{- ax2 for asymptotes.

y4«J". y — x =



82 Differential Calculus

74. Asymptotes by Inspection. The limiting position of the

tangent to a curve as the point of tangency recedes infinitely is

evidently a straight line which the curve continually approaches

but never reaches. Taking this view of a rectilinear asymptote

we are frequently able to determine the equation of the asymp-

tote by simply inspecting the equation of the curve.

EXAMPLES.
x3

1. Determine the asymptote of the cissoid v
2 =

2 a — x

We see from the equation that as x approaches the value 2 a,

y approaches an infinite value, .*. the curve continually ap-

proaches but never reaches the line x = 2 a.

.'. x = 2 a

is an asymptote.

4. fPx
2. Examine the witch y

2 = for asymptotes.
2 a — x

We see that x = 2 a is an asymptote and as the curve has

infinite branches in the first and fourth angles only there is no

other asymptote.

3. Examine the conchoid x2
y

2 = (J?
— y

2

)
(a + y)

2 for asymp-

totes.

Here x = ± °-^- V/>
2 - y

2
.

y

Asjy = o, x = ± 00 ,
.*. y = o, i.e., the ^r-axis is an asymptote.

4. Examine the curve of tangents for asymptotes.

TV 3 7T

We see from the equation y = tan x that as x = — , or -— , or
2 2

-—
, or etc., that y = 00 , or — 00 ;

.'.

2

t
1 3 * i 5 7r

x = - and x = -— and x = — , etc.,222
are asymptotes. Similarly we may show that
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7T 3 7T 5 7T
X — , X — , X — ^ cLC.j

2 2 2

are also asymptotes to the curve.

5. Examine (x — 2 a) y
2 = xs — as for asymptotes.

By inspection we find x = 2 a is an asymptote.

By analysis we find two others y = x -f- a and y -\- x -{- a = o.

75. Asymptotes by expansion. Where an equation can be

readily solved for one of the variables and the second member

can be expanded into a series the asymptote may frequently be

more readily detected than by pursuing the general course as

explained in § 73.

EXAMPLES.

1. To find by expansion the asymptotes of the hyperbola.

9, *>x V"
1

From the equation — — = 1, we obtain
az b2.

bx
:-

a2\i

x2

/

bx= + — (-
1 a2

a \ 2 x2 Sx4 16 x&

As x increases indefinitely, the curve approaches nearer and

nearer the lines represented by the equations

bxy= ±— ;

a

.'. these equations represent the asymptotes to the curve.

2. To find by expansion the asymptote of x* — xy2 + ay2 = o.

/ xs \* /
Here y = ± [

= ± x 1 —
\x — a \ x
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/ a 3 a2
5 a3

\ 2 x 8 x2 i6jc3

a'
.-. y = ± \x + -

are equations of asymptotes. By inspectio?i we see also that

x = a is the equation of an asymptote.

3. Find by expansion the asymptotes of the curve represented

by the equation y
2 — 2 xy — x2 + 2 = o.

Ans. y = (1 ± A^2)x.

4. Find by extraction of the root the asymptotes of the

curve y
4 — 96 a2}? +100 cPx2 — x4 = o.

Here y = ± \ 48 <?
2 ± V2304 #4 — 100 a2^ + x4

/ a2

= ±[x
\ x

99 a*

2 x3

.'. y = ± x

are the equations of the asymptotes.

POLAR CURVES.

76. To find the slope of the tangent to a polar curve.

From § 19, we have
dy

tan a = —
dx

for the slope of a curve when referred to rectangular coordinates.

If we assume the pole coincident with the origin and the initial

line coincident with the jc-axis we have, " Analytical Geometry,'

Art. 34, (3),

x = r cos 0, y = r sin 0.
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dy d (r sin B) r cos 6 d6 -\- sin 6 dr

dx d (r cos 6) cos 6 dr — r sin $ dO

is the required expression.

Cor. from § 18 (3), we have

ds = ^dx2 + dy2
;

.-. ds = V'\d\r cos 6)\
2 + {d(r sin 0)\

2 = \Jdr2 + r2 dd2
.

77. Length of Subtangent. Length of Tangent.

Let MS be any curve referred

to O as pole and OX as initial

line. Let P (r, 6) be any point

of the curve at which a tangent

PB and a normal PA are drawn
;

then OB and 6X4, segments

of the perpendicular to the

radius vector OP, are respec-

tively the subtangent and sub-

normal corresponding to the

point P (r, 6).

1. Tofind a valuefor OB, the subtangent.

From the triangle OPB
OB = r tan

<f> ; but

tan
<f>
= tan (a — 6) =

tan a — tan

1 + tan a tan 6

r cos dO + sin dr sin

cos dr — r sin d# cos

1 +
r cos dO + sin dr sin

Art. (76),

tan <£ =

cos dr

rdO

r sin dO " cos

dr

Subtangent = r
d0

dr
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2. Tofind a valuefor PB, the taiige7it.

From the triangle OPB

PB = V? + QB2

=\J

r

2 + r2~
;

1 +1?

78. Length of Subnormal. Length of Normal. Perpendicular

to Tangent.

From triangle OAF, Fig. 1 1

,

oa
op r r

tan OAF tan </> dO'

dr

dr
Subnormal = -y-

;do

also, PA = ^OP2 + OA" = V^2 +
dr

.-. Normal =yV+-^.

From triangle OCB (OC being perpendicular to BP), we

have

_ OB dr
r
dr

sec COB Vi + tan2
<j>

4 / r2d$2

dr

.-. Perpendicular =
'dr2

2h rz

dO2
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EXAMPLES.

1. A circle whose diameter is a is referred to the lower ex-

tremity of its vertical diameter as a pole, and to the tangent at

that point as an initial line. Find the relation between
<f>,

a,

and 0.

The equation of the curve is evidently r = a sin 0,

d& r a sin .

:. tan <£ = r— = — = = tan 6
;dr dr a cos v

Je

Fig. ii, a=<f>-\-6=20=2<f>.

2. Show that the logarithmic spiral r = ae is an equiangular

spiral, i.e., that the tangent makes a constant angle with the

radius vector.

r a9
i

tan <p =
dr ae log a log a

TO

If a = e, then tan
<f>
= i, .*.

<f>
= 45 .

3. Show that the perpendicular from the pole to the tangent

of the lemniscate r2 = a2 cos 2 $ varies with r3
.

v/
2

dr2 \ict (cos2 2 + sin2 2 0)

17

Show also that <£ =—\- 2 6

.

2

4. In the spiral of Archimedes r = cB show that the product

of the subnormal and subtangent is always equal to the square
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of the radius vector. Find also the value of the tangent,

normal and perpendicular.

Subtangent = t* — = —
dr c

Subnormal = dr

Jo

.'. Subtangent X Subnormal = r2.

Tangent = - *s/c
2 + i.

Normal = \[^

Perpendicular =

+ c\

\/r2 + c2

5. In the hyperbolic spiral rO = c show that the polar sub-

tangent is constant and equal to the circumference of the

measuring circle.

6. Show that the area of the square formed by tangents to

the cardioid r = a (i + cos 6) inclined at an angle of 45 to

the initial line is f £ (2 + V3) a2
.

79. Asymptotes.

Let r =/(&) be the equation of MS, Fig. 12, and \ttAB be

an asymptote. Draw OC
||

to AB and

OB _LOC; then OB is _L to AB. Now
OC = r is the radius vector of the in-

finite tangent point, and OB is the

subtangent corresponding to that point.

If, therefore, 6' be the limiting value of

6 as r approaches 00 as its limit, we

have

and

Limit [f(0y\o=o'= & ,

~r
2d6

Limit
dr

= OB = a finite value,
6=0'

as the conditions for an asymptote to a polar curve.
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Looking in the direction of the infinite radius vector OC, the

distance

OB = limit
dr 0=0'

is laid off to the right or left according as OB is positive or

negative.

EXAMPLES.

1. Examine the curve of tangents r — c tan for asymptotes.

Here, Limit [f(O)~\
e i ,= Limit |Vtan 0]

fl
_L + 5 = oo

;

~ 2

also, Limit r2—

-

= Limit \c
2 sin2 &]* = c.

L ar\e=e,
J0=~

2

Hence drawing the curve and the radii vecrores correspond-

ing to the vectorial angles - and , we see that BA J- to OX

at a distance C from O and B'A' J_ to OX and at the same

distance C from O are asymptotes to the curve.
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Here

and

2. Examine the lituus r26 = c for asymptotes.

Limit [/(ff)]o=e'= Limit

d9

= 00

Limit
dr 6=6'

= Limit [— 2 r6] e=0= o.

Hence, the initial line is an asymptote.

3. Examine the hyperbolic spiral rO = c for asymptotes.

Limit \_f(Qy\e = e>— Limit

M
= oo

»=0

Limit
dr 6=6'

Limit [— c]
e/= o= — c\

.'. a line
||
to the initial line and at a distance c above it is an

asymptote.

4. Taking the left-hand focus as a pole, examine the hyper-

bola for asymptotes. See "Analytical Geometry," Art. no,

Equa. 3.

5. Examine the following curves for asymptotes,

r = 2 a tan $ sin 6. r2 cos = a2 sin 3 0.

r = a sec 6 ± b. rcos 2 $ = a (1 -f- sin 2 0).



Successive Differentiation 91

CHAPTER VII.

SUCCESSIVE DIFFERENTIATION.

80. Successive Differential Equations. — If we differentiate

the expression y = x^ we obtain

dy = 4 xzdx.

Since dy is a function of # it can be differentiated. Regarding

x as equicrescent, i.e., as changing uniformly, we have dx = a

constant. Hence differentiating again, and representing d(dy)

by d 2
y, we have

d 2y = 12 x2dx2
,

in which d'x
2 = (^r)2

. Differentiating again, and representing

d(d 2
y) by d s

y, we have
d sy = 2\xdxz

,

in which ^r3 = (^c) 3
. The differentiation may obviously be

continued until the second member vanishes.

Hence, in general, if

y =f(x), we have

dy=fr (x)dx (a)

d 2y =/" (*) dx2
(b)

d %y=f'
r, {x)dxz

(c)

d 4y =/iv
(*) dk4 (d)

d ny =fn(x) dx" ....... . (V)

in which (#), (#), (V), (//) ...(e) are called respectively the

First, the Second, the Third, the Fourth . . . the nth Dif-

ferential Equation of the equation^ =f(x).
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81. Successive Differential Coefficients or Derivatives.

If we divide equations (a), (&), (V), (d), . . . . (e) by dx, dx2
,

dx3
, dx*, . . . dx11

, respectively, we have

!=/'(*) ^
d 2 v

a?--™ <">

3=^) <*>

These equations are called respectively, The First, The Sec-

ond, the Third, the Fourth, . . . the nth Differential Coefficient

or Derivative of the equation y =f(x).

Cor. As fn (x) is the first derivative of fn~x (x) it follows

§ (28) Cor. that fn (x) is positive or negative according as

fn~x (x) is an increasing or decreasing function of x.

EXAMPLES.

1. Write the successive differential equations and coefficients

of y = x5
,

dy = c x4dx .'. -r- = K x*.
dx °

d 2yd 2y = 20 Xsdx2
.'. —r~ = 20 x3

.

dx1

d 3yd 3y= 60 x?dx3
.*. -7-5 = 60 x2

.

dx3

7
. . a ydy = 120 xdx .'. ——, = 120 x.

d*y

dx*
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d 5
y = 120 dx5

.'. -r-z = 120.J
dx>

d ey = o .-. —4 = o.J dxb

2. Write the successive differentials of y = 2 x3 — 3 x2 + 7 x.

dy = (6 x2 — 6 x -f- 7) dfc,

^/
2j = (12 .r — 6) dx2

,

dsy = 12 dx3
,

d4y = o.

Find the differential coefficient indicated by the answers in

the following

:

1 — x

4. jy = xi log x.

5

.

y = tan # + sec x.

6. j = e~ x cos jf.

7. j; = (x2 + #2
) tan

-1 -

8. y = log (sin x).

9. ^+y = a2
.

10. a2
y

2 + ^2 = tf
2^.

11. ^ = 2^JC.

12. a2
y

2 - Px2 = - a2£2 .

A'

fl!

dx4
(' - xf

dy \±
m

dx6 ~ X2

d2
y COS Jt:

dx^~ (1 — sin x)2

d4
y

dx4 4 ^
_a: cos X.

d3
y 4 a3

dx3
(a2 + xf'

d3
y 2 COS X

dx3 sin3
jc

d2
y

9

dx2 7'

d2
y ^4

dx2 a2
y

3

d2
y f

dx2 /'

d2
y _ *4

dx2 «2
_>>

s
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By examining the successive derivatives we can frequently

express the nxh derivative of a function.

dn
v

13. y = ax.
—^ = (log dfax.J dx 11 v te }

d"y
14. y = /' r

. -/- = nn
e
ax

.J dxn

dn \n- I (- I)"" 1

15. y = log x.

16. y

dxn xn

i —x dn
y __

2
LZ£ C— 0"

i -+- x

'

dx*1 ~ (i + x) u + 1

APPLICATIONS.

82. Definition. Acceleration is the ?-ate of change of velocity.

Let a = acceleration and v = velocity ; then

dv d2s , . ds
a =

di
=

dF* (***» = #• §I ?>

1. A body, originally at rest, falls in a vacuum near the

earth ; find its velocity at any instant, and the acceleration of

that velocity.

From Mechanics we have

s — 2 & l

for the distance s fallen by a body in the time /.

Differentiating successively we have, if we do not regard

dt = unit of time,

ds
ds = gtdt .'. v = —- = gt

;6
dt *

'

d2
s

Hence the velocity of a falling body is a variable, while the

acceleration of that velocity is constant.
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2. A projectile thrown obliquely upward at an angle de-

g
scribes a parabola whose equation is y = x tan —

2tri COS2

Assuming the initial velocity (= v), and the horizontal compo-

nent of this velocity (dx = v cos = a constant), find the

velocity of the projectile in its path, and the acceleration of its

velocity vertically.

Here

g
dy == tan 6 dx =

7r-xdx,
ir cos-

= v sin 6 —
j. x = vertical component.

V COS V

d2y = — g = acceleration of velocity vertically.

ds = 's/dx
2 + dy2 = "vV — 2 gy = velocity in its path.

3. The distance described by a point whose initial velocity

was u is given by the equation s = ut + \ ct
z

; find its velocity

at any instant and the acceleration of the velocity.

Am. v = u + \ ct
2

, a = ct.

4. The generating point of the parabola y2, = 2px moves

with a constant velocity v' ; find the velocities and accelerations

in the direction of the axes.

PHere dy = - dx.
y

Since 7/ = ds = ^jdy1
-f- dx2 = dx,

y

y ....
we have dx =

,

v = velocity in direction of x ;

P
hence, dy =

,

if = velocity in direction of y.
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Differentiating these values, we obtain

f
d*x — / ^ ,

—^ v'* — acceleration in direction of x.
(f +r)2

d2y = — 7-75-;—^ ^/2 = acceleration in direction of y.

Hence, since d2x is always positive, its function, the velocity in

the direction of x, is an increasing function ; since d2y is posi-

tive in the fourth angle and negative in the first, the velocity in

the direction of y is increasing in the fourth and decreasing in

the first angle. The student should bear in mind that the

terms increase and decrease are used in an algebraic sense.

5. A point describes a circle of radius r with uniform ve-

locity v. Show that the resultant acceleration at any position

in its path is — •

r

y
6. The generating point of the cycloid, x = a vers

-1

V2 ay — y
2

, so moves that the component of its velocity in

direction of x is constant and = m ; find the velocities and

accelerations in the direction of y and in its path.

Here
y y

j i/2aas = m \ — >

V y

d2y = - y >»
2

,

in
2 la

d2s = - y-(2 a-y).

83. Theorem of Leibnitz.* To find an expression for the nth.

differential coefficient of the product of two variables which are

functions of a third variable.

* Leibnitz published this theorem in 1710.
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Let u and v be functions of x, and let u1} u2,uz, etc., and vlf

v2 , vs , etc., represent the successive derivatives of u and v. Let

y = uv\ then, § 25, 3,

dy
—— = uvx

-\- vux .

ax

d2y
Hence, -7-^ = uv2

-\- tc1v1 -f- zy'i + z^2
= ^2 + 2 *Vi + ^2-

</
3
y

Hence, —
z
= uvs + u

xv2 + 2 (//^ + vtu2) + zy/2 + zw8

= «z>3 4- 3 z^ -f 3 k^ + zw3.

We observe that the coefficients in the second derivative are

the same as those in the expansion (v -f- uf = v2
-f- 2 uv -j- u2

, and

that those in the third derivative are the same as in the expan-

sion (v + iif = z'
3 + 3 uv2 + 3 u2v + z*

3
. We further observe

that the subscripts in the derivatives are the same as the expo-

nents in the expansions, except that u enters the first term and

v enters the last term. It appears, therefore, that the values of

the successive derivations follow the laws of the Binomial

Theorem both as regards the coefficients and subscripts, except

in so far as indicated as to the subscripts. Assuming that the

law holds for the nth. derivative, we have

dny n (n— 1)
~^ = uvn +nu1vn_1

-{ ^ ^2
7/

ft
_ 2 -r- etc., . . .

-f nun_ 1v1 + vun ..."(«)

Differentiating again and collecting, we have

dn + 1

y ,
. (« + i)«

-fap+ i
= UVn + X + \

71 + *) UlJn-\ V~
2

«2»«-l+ etC
> ' ' •

+ (n + 1) ^^ -f- vun+1 ...(b)

Hence the law still holds. If n is any integer formula (h)

shows that the law holds for the next higher integer. But we

have shown that the law holds for the integer 3 ; hence it holds
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for the integer 4 ; hence it holds for the integer 5 , etc. Hence

the formula (a) holds for all positive integers.

In the usual notations formula (a) reads

dn
(uii) dnv du dn~ 1v n(ri— 1) d2u dn~ 2v
^ L = u _j_ n _) ^ '

.

dxn dx71 dx dx7l
~ 1

1

2

dx2 dxn~ 2

d n~ 1u dv dnn
+ etc., . . . 11— zr — -\-v——

dx'1
' 1 dx dx11

EXAMPLES.

1. Find by Leibnitz Formula the third derivative of x2^.

Here v = <?
ax

,
u = x2

,

dv
_

du
_

dx dx

d2v _ „„ d2u= a2e
ax = 2

dx2 ' dx2
'

d*V
3 ax d*U— = a 6

' . — = o.
dx3 dx3

.'.
,

' = x2
. a3

<f* + x . 2 x . a2
e
ax

-f ^~ . 2 . ae™
dx °

[2

= aeax (a2x2
-f 6 ax -f- 6).

2. Write the nth derivative in the example above.

dn (x2^x
) . . n(n — 1)

//•*" [2

3. Write the /zth derivative of x2^.

dn (x2ax)

dxn
(log #)

re 2ax \(?i -\- x log a-)
2— /z

\

4. y = x\ogx\ find ;zth derivative.

d ny \

n - 2
,

»n vm— 1 v /dxn xn
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5. y = £
-rE cos x; find 4th derivative.

d*y
-r—. = — 4 e

x cos a;.

ax*

84. To find the values of the successive derivatives when neither

variable is equicrescent.

In the preceding articles and examples we have derived the

successive derivatives under the supposition that x was equicres-

cent, i.e., that dx was constant and therefore d2x = o, dsx = o,

etc. If the variables are not equicrescent, then both dx and dy

are variables.

Let y =/(x) ; then

is the first derivative whether x or y, or neither is equi-

crescent. Differentiating again and remembering that — is a

fraction with a variable numerator and denominator, we have,

fdy

dx) dxd2y — dyd2x

-^r
=

i?

—

=/(x) •••(»)

for the second derivative when neither x nor y is equicrescent.

Differentiating again and collecting, we have

'dyy

d\ Vx
j

dx J (d zydx — d zxdy) dx — 3 (d 2ydx — d2xdy) d2x

dx dxb

=/'"{*) (3)

for the third derivative when neither x nor y is equicrescent

;

and so we may continue the process until any desired derivative

is reached.

LofC.
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Cor. i. If x is equicrescent, we have from the equation

above, since dzx = o and d2x = o,

^̂.=/"'(*>
Cor. 2. If y is equicrescent we have from the same equa-

tions, since d2y = o and dzy = o,

dx dx ^

dy

d2x

=_41 =/»,d 2xdy

dxz /dx\ 3

d2x\2 d sx dx

7.(d2x)2dy — dsxdydx \dy2
J dys dy

and -^^h—— = W =/"'(*)•

dy)

Scholium. It frequently becomes convenient in applying

the principles of the calculus to change the equicrescent vari-

able in a differential expression, thus converting the expression

into an equivalent one under another form.

Thus (1) if we desire to change a differential expression

deduced under the assumption that x was equicrescent into an

equivalent expression in which y is to be considered equicres-

cent, we merely substitute the successive derivatives under

Cor. 2 for those under Cor. i.

If (2) we desire an equivalent expression in which neither x
nor y is considered equicrescent we substitute for the succes-
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sive derivatives under Cor. i the expressions (2), (3), etc.,

above.

If (3) we desire to introduce a third variable z, a function of

x or y, as the equicrescent variable we first proceed as under

(2) and then substitute for the variables and their successive

derivatives their values drawn from the given functional relation.

EXAMPLES.

1. If y =

Here

1 4- x dx
show that — :

dy
\y

1 — X <S + if

dy I

dx — x) Vi -- X2

- /t v^ \/t . ~2 _ 4_y
" dy (f + i)

2

Tr d2

yf d2y /dy 2
\ dy dsy -

, , d3x d2x
2 - if &(*;& - (i)

)

- dxdx->=°>
show that z? +^

= o.

Replacing the derivatives by those given in § 84, Cor. 2, we

have,

d2x

df_
dxx3< 3

dy,

d2x

If
~dxV

dy) J

rdxV dx

dy) J dy

/d2x\ 2 dx d3x
3
\df)

~ dy df
dx\ 5

dy)

= 0,

/d2x\? d2x dx /d2xV dx d3x
, + +

\dy2
) df dy *\df) dydf

dsx d2x

df df

dx

. d2y 2 x dy y

dx2
1 -\- x2 dx (1 -f- x2

)

-(- y = o where z = tan
-1

x.

d2
y— o. Show that

dz
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Here we proceed as explained in (3), § (84), scholium.

dxd2y — dyd2x 2 tan z dy y
dx3

1 + tan2 £ dx (1 + tan2
^)

2

Since x = tans, we have

dx = sec2zdz and d2x = 2 sec22 tan zdz2.

sec2z(d2ydz — 2 dydz2 tan z) 2 tan zdy y
sec6zdz3 sec4zdz sec*z

d2y 2 tan zdy 2 tanzdy

dz2 dz dz

d2
y
2 +y = o.

dz

4. If x2 = 4 z, show that -z—
2

-\ — + y = o becomes

5. If # = cos0, show that (1 — x2
) —, — x~ = o becomes

v dx2, dx
d2
y

d02
= o -

d2
y x /dy\2 dy

6. If x = jjtf
2
, show that x —4 I ^- ) + -r- = o becomes

rt\3r jy \"^/ dx
d2z dz

v 1 = o.
dy2 dy

7. If x = a cos 0, and jy = b sin 0, show that

'dy" > *

1

rtfr/
( _ («

2 sin2 + ^2 cos2
0)3

dx2
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8. Given x = r cos and y = r sin 0, find the equivalent of

dx >—-—— = p, (i) when is equicrescent, (2) when r is

equicrescent

:

I. When is equicresce?it :

Replacing the derivatives by their equivalents in § 84, (1)

and (2), we have

\dxj dxz

_ (dx2 + ^2)1

//
2
_y dxd2y — dyd2x dxd2y — dyd2x

dx2 dx3

for the general value of p when neither 3: nor y is equicrescent.

Differentiating the values of x and 7, 6 being equicrescent,

we have
dx = cos Odr — r sin Odd,

d2x = cos 6d2r — 2 sin OdOdr — r cos &Z02
,

dy = r cos &/0 + sin ^^>

^/
2
j; = sin 6d2r -|- 2 cos &/&/r — r sin &/I9

2
.

Hence, substituting and reducing, we have

2U - r^
II. When r is equicrescent.

Differentiating the values under this supposition, we have

d2x = — r sin 6d26 — 2 sin OdrdO — r cos 0d(P

d2y = r cos $d2 + 2 cos OdrdO - r sinOdO2
.
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Substituting these values together with those of dx and dy

deduced under I. as they are unaltered by the new supposition,

we have

<dfr

~lFo ~lez de
= p '

dr2 dr3 dr

9. Show that when the equicrescent variable is changed

dy"

\ dx
from x to y in p = -i ——-—— we have

dy
dx2

i/dxV
I +W

P =

d>2

10. Change the equicrescent variable from x to y in the ex-

d2
z a2 dz

dx2 x dx
/ 9 9\ "" % & rf%

' 9 i 9
pression {ar — xr)—- — z = o, given xr -f- jr = a

A 2^Z
AllS. X* -r-i — z = o.

dy2



Series 105

CHAPTER VIII.

SERIES.

History. — Previous to the 17th century infinite series rarely occurred

in mathematics. During the latter part of this century, and in the 18th,

they came into very general use. It was supposed at this time that all

higher calculations could be made to depend upon them. No universal

criterion for determining the question of convergency or divergency was

known at the time, nor, indeed, is one known to-day. James Gregory

(1638—1675) was the first to draw a distinction between convergent and

divergent series
.;

yet Cauchy and Abel, distinguished mathematicians of

the 19th century, were the first to question results based upon them. New-

ton's first mathematical discovery— the binomial theorem — was the first

important contribution to this subject. The first rigorous proof of this

theorem was given by Abel (1 802-1 829). Taylor's theorem, published in

17 15, was the first general theorem on series published. The first correct

proof of this theorem is due to Cauchy (1789-1857).

Maclaurin's Theorem, published in 1742, was admittedly founded on

Taylor's. This therorem had in fact been previously published by Sterling,

in 1717.

85. A Series is a number of terms which follow each other in

obedience to some law.

Series are either Finite or Infinite ; and infinite series are

either Convergent or Divergent.

86. Finite Series. A series is finite when the number of its

terms is finite. Thus, in the expansion,

(x + i)4 = x4 + 4 xz
-\- 6x? -f- 4 x -f- 1

,

the second member is a finite series.
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87. Infinite Series. A series is infinite when the number of

its terms is infinite. Thus, in the expansion,

= i + x + x2 4- xs + x* + x5 + • • • xn~ x
-J----,

I — X

the second member is an infinite series.

88. A Convergent Series is an infinite series, the sum of the

first n terms of which is a variable whose limit is finite.

All other infinite series are divergent.

Thus, in the geometrical progression given above, we have,

from algebra, for the sum of the first ?i terms,

i — xn
i + x 4- x2

-f- x
s + x4

-f- x
T
° + • • • xn ~ x =

I — X
I X11

I — X I — X

Hence, if x < i, we have

""i — xr

Limit i + x -\- x2 + x3 + • • • xn~ x

— a finite quantity.

= Limit
i — x

i — x

Therefore it is a convergent series.

If x > I,

Limit i + x + x2 + xz + • • • xn~ 1

= Limit = oo.
\_i — x J M=00

Therefore it is a divergent series.

89. Definitions.— The sum of a finite series is the sum of its

terms. The sum of a convergent series is the limit to which the

sum of the first n terms approaches as n is indefinitely in-

creased.
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The Remainder after ?i terms is the difference between the

sum of the series and the sum of its first n terms.

Obviously, in a convergent series, this remainder is a variable

whose limit is zero as n is indefinitely increased.

Thus, in the progression given above,

Remainder after n terms
;

i — x

and if x < i the series is convergent, since

T xn ~

Limit = o.
|~ xn

L 1 — X\n

90. The development of a function consists in finding a series,

the sum of whose terms is equal to the given function. Since

any given function is necessarily finite, the sum of any equiva-

lent series must be finite ; hence the term develop7nent applies

only to finite and convergent series.

91. Methods of Development

:

I. By algebraic processes.
>

i. By division, as

= i + x + x2 + xs + • • • xn +
I — X

xn — y = x71-^ + xn- 2y + xn~y + • • • fx — y

2. By involution, as

{x + yf = xs + 3 x?y + 3 xf +f •

3. By evolution, as

V a2
-f- 2 ax + x2 = a? + f a~

3 x — ^ a~* x2 -}-•••

II. By general formulae

:

1. Maclaurin's formula,
'

fix) = f(0) + f'(0)x + f(0)j| + r"(0)|
3

+ • • • etc.
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2. Taylor's forniula,

fix + y) = fix) + f'(x)y + fix) ^ + fix)
|

2

+ • • • etc.

Note.— There are various other formulae more general than those just

given. The limits of this work preclude their discussion here. It may be

remarked in passing that as yet no perfectly general method of distinguish-

ing convergent and divergent series has been discovered. Reference will

again be made to the subject at the end of the chapter.

92. Maclaurin's Theorem. —The object of Maclaurin's Theorem

is to develop a function of a single variable i?ito a series arranged

according to the ascending powers of the variable.

Let f(x) = A + Bx + Cx2 + Dxz + • • (i)

be the proposed development, in which A, B, C, £>, etc., are

finite constants, whose values are independent of x. It is re-

quired to find the values of these constants. Writing the suc-

cessive derivatives of f(x), we have

f\x) = B + 2 Cx + 3^+ • • •

,

/"(*)= 2 C+ 2. 3 . Z>T-f- • • •
,

f'"(x) = 2; 3.Z>+ • • •
, etc.

Since the constants are independent of x, their values will be

unaffected if we make x = o. Hence, making x = o in the

functions, and its derivatives, we have

A =/(o),

C =
2

D=f-^1, etc.

Substituting the values of the constants in (i), we have

fix) = /(0) + f'(0)x + f'iO)|+ f"iO) |j
+ • • • (2)

for Maclaurin's formula.



Series 109

93. Remark.— Maclaurin's formula fails to develop a func-

tion of a single variable in the following cases

:

(i) When it leads to a divergent series.

(2) When the function, or any one of its derivatives,

becomes infinite for x = o.

EXAMPLES.

1. Develop (a -f x)5

Here f(x) = (a 4- xj*

f(x) = 5 (a + xy

f'(x) = A . S .(a + xy

/'"(*) = 3-4-5 + *T

f"(x) = 2.3.4.5(0 + *)

/v
(*) = 2.3.4.5

Since /(*)=/(o)+/'(o)*+/>)r +/'"(o) p + ...

we have

(0 + tf)
5 = #5 + 5 <7

4# +10 <7
3
a-
2 +10 a2xs + 5 0** -}- #5

.

/(o) = 5
,

/'(°) = 5 ^
/"(o) = 4-5 «*,

/'» = 3-4-5 A
7 iv

(°) = 2 -3-4-5^

/ v
(o) = 2.3.4.5,

AT .Y
u

2. Develop

Here

— (1 — #)
—

1

1 — x

/(X) = (I - *)-*

./» = (1 - ^- 2

/"(*) = 2(1- x)~*

f"\x) = 2.3.(l-x)-*

f\x) = 2.3.4(1 -*)~ 5

etc.

/(o) = i,

/'(°) = 1.

/» = [£,

/'» =
la,

/lv

(o)=l4-
etc.

Since

we have

ar
/(*) =/(o) +/'(o) * +/"(o) r; +/'"(°)

\l

x°

5 +

.V

= 1 + # + x2 + *3 +
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3. Develop sin x.

Here f(x) = sm x

fix) = cos x

f"(x) — — sin x

f'"(x) = — cos x

flv
(x) = sin x

etc.

/ (p) = sin = 0,

f'(o) — cos = 1,

f"(p) = — sin o = o-

/'"(o) = _ cos O = - I,

flv
(o) = sin = 0,

etc.

,3

Since f(x) =/(o) +/'(<>) at +/»,- +/"(<>),-
L? I_3

y« /y& yy»7

we have, sin x=o-\-x-\-o — -.—h o + i ho — -7— _j

[3 [5

»/V «/V i^V

[3 Li Lz^

Lz

It will be observed that f [y
(x) = sin x =f(x); hence the

5th, 6th, 7th, and 8th derivatives will be the same as the 1st,

2d, 3d, and 4th respectively. We are therefore enabled to

extend the development indefinitely without further differentia-

tion. This development, together with those for cos x, sin
-1

x,

cos
- x x were given by James Gregory in 1667.

wV %\r V\

4. Prove cos x = 1 — -.—hi tt A- • • •

[2 [4 [6
T

5. Develop loga (1 -f- #)> » being the modulus of the

system.

f{x) = loga (i + *)

f'(x) = m (1 -f -*)
-1

/"(*) = - m (1 + *)
-2

/"'(*) = 2 ** (1 + *)- 3

/iv
(V) = -6«(i+ x)~ :

etc.

.-. loga (1 + x) = m (x -

/(O) =l0ga I =

/'(o) = *,

/» = - «,

/'"(o) = 2 m,

/iv
(o) = - 6 ^,

etc.

x--- + --...)
2 3 4 5

w
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If a = e, m = i,

-* i>j /yiO /v"^* yy»0

.*. log Cl + #) == X 1 1

~~~ •• (2 )
2 3 4 5

(i) and (2) are called the logarithmic series. Nicholas

Mercator published this series in his Logarithmotechnia in 1668.

It was the first series published.

6. Develop ax.

Here a* = 1 + log a . x + log2a l-log
3 ^,—h • • (3)

If a = e, we have
x^ X / \

**=I +* + ,- +T-+ (4)

Series (3) and (4) are called the Exponential Series.

If in this last equation we make x = 1, we have,

111 1

* = 1 + 1 H r-^H 1 V . . .

2 24 120

.*. ^ = 2.718281,

i.e., the base of the Napierian or Hyperbolic System of

logarithms.

7. Develop log x.

Here f(x) = &gx •'• f(p) = — 00 .

It is unnecessary to proceed further. The function cannot

be developed by the theorem. See § 93 (2).

8. Show that the following functions cannot be developed by

Maclaurin's Theorem :

3 1

cot x, esc x, x*, ax

9. Develop sin
-1

.*.

f{x) = sin" 1 x .-. /(o) = o,

f'(x) = (1 - x2)- 1 = 1 + -^ + !*
4
-}- ^|^+ . . .'. /'(o) = 1,
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/-(^) = i

+

\* + f x* -
• /. r\o) = i

.

etc. etc.

1
i xs

i.i. x5

.*. sin
-1

.* = x -\— 1 h • • •

2 3 2 -4 5

It will be observed that the process of arriving at the suc-

cessive derivatives in this example is simplified by expanding

the first derivative by the Binomial Theorem.

10. Develop tan
-1

.*.

f{x) = tan
-1^ .*. f{°) — °»

f(x) =(i+x2)- 1=i-x2+x4-x«+ x8- ••• .\/'(o)=i,

/'(i) = -2i|4.t3 -6i5 +8i7 ---- .-. /"(o)=.o,

f"(x) = - 2 + I2f- 3 X*'+ • • • .'. /'"(o) = - 2,

/iv

(#) = 2^X — I20^3 + • • • .'. /iV
(o) = O,

.•. tan_1x = x 1
f-

•••

3 5 7

If x = i, we have,

i
T I I I I _,

tan
-1

1 =-=i 1 1
••• = .78^08

4 3 5 7 9
'

Derive the following,

2 ^3

11. ^sec # = 1 +^-f-^rH h • • •
•

3

_i x2 x3

12. ^
tan x = 1 + # H — —

2 6

13. ^ina: = 1 + x H ^-+ •••-
2 8
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14. log (i + sin x) — x Y~T — hsv } 26 12

15. log(l+V)=log2+^ +J-^ +
4

16. ^ si»*= 1 -f-^
2

-f-
— -f ....

3

94. Euler's Exponential values of sine and cosine.

If in the exponential series, Ex. 6,

,y»2 yO .y.4

r? ll [4

we substitute for at, .# V— i and — # V— 1 successively, we
have

li [4 ( [3 Is

<fV^ 1= I — .— + . • • • — V— I \ X — ,- + , • •

li li

.*. Examples 3 and 4.

^v x = cos x + V— 1 sin #,

<?
-a: v_1 = cos a: — V— 1 sin ^.

Hence sin x =
2 V— 1

V=ii „-a:V=l

cos # =

95. Taylor's Theorem. Taylor's Theorem hasfor its object the

expansio?i of a function of the algebraic sum of two variables into a

series arranged according to the ascending powers of one of the

variables.
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Let f(x + y) = A + By + Cf + Df + etc.,

be the proposed development in which A, B, C, D, etc., are

functions of x and the constants which enter the function. It

is required to find the values of A, B, C, D, etc. Since the

proposed development must be true for all values of x and y it

will be true for any value a of x. Let A'', B'', C, D' , etc., be

the values of the coefficients for x = a ; then

/(a + y) = A' + B'y + Cf + D'f + etc. . . (a)

Writing the successive derivatives with respect to y, we have,

f{a +y) = B' + 2 C> + 3 £/f + etc.,

/;' (a+ }) = 2 C + 6 B'y + etc.,

/"'("+ J) = 6 ZX + etc.,

etc.

Since the original function as well as its derivatives must be

true for all values of y, they are true when y = o ; hence

/(a) = A',

r (o = b,

2

etc.

Substituting these values in (a), we have,

/(a + y) =/(a) +/' {a)y +/" (a) | +/'" (a) | + etc.,

for the proposed development when x = a. But a is #/ry value

of x\ hence, generally,

fix + y) =f{x) + f'(x)y + f"(x)| + f'"(x)g + etc. . (i).
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Cor. i. If in (i) we make x = o and change y to x, we

have,

/(x) =/(o) +/'(o)x +/"(o) J +/'"(°) r + etc->

Li L3

which is Maclaurin's formula. Hence Maclaurin's formula is a

special case of Taylor's more general formula.

96. Remark. Taylor's Formula fails to develop a function

of the sum of two variables in the following cases

:

(i) When it leads to a divergent series.

(2) When the function or any one of its derivatives becomes

infinite for a value, or values, of one of the variables, it fails for

that value or those values.

EXAMPLES.

1. Develop (x, + yf.

Here f(x) = *5
,

f\x) = 5 x\

f"(x) = 4.5.^

/"'(*) = 3.4.5.^

f\x) = 2.3.4.5.*,

/v

0) = 2 -3-4-5-

Since,/(* + y) =f(x) +f'(x)y +/"(*) £ +/'"(*)
f-
+ •

•

f y
3

we have, (x + yf = x> + 5 x4y + 4.5 x3 .— -f- 3.4.5 x2 —
XL \2l

+ 2.3.4.5*- + 2.3.4.5-.
L4 [5

= x5 + 5 *4/ + 10 *y + 10 *y + 5 #/ -1- j
5

.
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2. Develop ax+y .

f(x) = a*. f'"{a) = log3
a.d*.

f\x) = log a.ax. f\a) = log4
a.ax.

ff,
(x) = \og*a.ax.

f\d) = l g
n a.ax.

Since, f{x +y) =/(x) +f'(x)y +/"(*)]? +f"\x)£ + •

y y
3

we have, ax+y = ax + log #.tf
x
_y + log2 ^.«x

.

f- + loefa.a*;—

\l [3

+ • • • logntf.tfx.^- + • • •

3. Develop sin (^ -f- 7) and prove that

sin (x -\- y) = sin # cos _y 4- cos x sin _y.

Here f(x) = sin ^. f'
n
(x) = — cos #.

f'(x) = cos jc. flv

(
x) — sm *•

f'\x) = — sin jc.

v
2

y
3

.*. sin (x -|- y) = sin 3: + cos .#.y — sin x. cos x\— + • •

\l [3

/ y y \ iff= sin * 1 — f- + f
• • • + cos # [y — f- + •

V [2 Li / V [3 5

Hence, Exs. 3 and 4, p. no,

sin (x -\- y) = sin .# cos y -f- cos # sin j.

Prove similarly the following trigonometric relations

:

4. sin (x — y) = sin x cos _y — cos x sin _y.

5. cos (x -\- y) = cos ^ cos y — sin jp sin y.

6. cos (jp — y) = cos jp cos y -f- sin jc sin y.
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7. Develop loga (x + y), m being the modulus of the system.

If x = i , we have, after replacing y by x,

loga (i + x) = m \x -- + -- — + --" ') * * (<0

an expression previously deduced by Maclaurin's theorem.

See Ex. 5, p. no.

If x = o, the formula fails to develop the function. § 96, (2).

If m = 1 in (a), we have,

y. » */v ••V »^V vV

log (1 + X) = # 1 12345
Derive the following

:

8. e* + * = Ai +y+f + r + '

V il [3

9. log sec (^ -f- y) = log sec jp + tan x.y +' sec2 #—

+ sec2 x tan # (-

3
1/2

10. sin
-1

(# -\-y) = sin * .# + y (1 — ^) i+x^i—x2
) § —

3
^

+ (1 +2**)(i -^)-i^-+ • • •

If x = 1, the formula fails to develop the function. § 96, 2.

97. Bernouilli's Series. Resuming Taylor's formula

f{x+ y) =/(x) +/'(*> +/"(*)£ +/"'(f)£ + etc->

and making jy = — x and transposing, we have,

/(*) =/(o) + xf\x) - |/"(*) + g/"'(*) - g>(*) + • • •
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By aid of this formula we are enabled to expand a function of a

single variable into a series. Thus,

x1

e~^ = i xe~
__ XT

e
x — ,— e '" -

x

\1 13 [4

Dividing through by e~ x and transposing, we have,

i x2 xs x*

e [2 [3 [4

See Ex. 6, p. in.

98. We have referred in a previous article ^90) to the fact

that the term development was inapplicable to a divergent

series, and the student was cautioned not to accept an infinite

series obtained by any of the foregoing methods as the develop-

ment of the function, unless the question of its convergency or

divergency had been previously settled. It remains to show

how series are examined for divergency and convergency.

99. Lemma. If f(xj] a = o andf(x)\ = o a.7idf(x) is continu-

ous between these limiting values of x, then fix) = O for some

value ofx intermediate between x = a and x = b.

Fig. 14.

Let APB be the locus of y = f(x), and let OA = a, and

OB = b- then

f(xj\ a = o, and/(#)]6 = o.

Since, by hypothesis, f(x) is continuous between the points

A (a,6) and B (b,o), there must be some intermediate point
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(OC, CP) where the tangent to the curve is
||
to the ^-axis.

But at such a point

g =/'(*) = o. §i 9 -

Hence the proposition.

100. Lagrange's Theorem on the limits of Taylor's Theorem. 1

Taylor's formula may be written, —

f{x + y) = f(x) +f{x)y +/"(*).- + • ' • +/M_1
(^) •

n — i

+ Pr~ (i)

in which P is some function of x and y, and

P -.— = Remainder after n terms.
\n

It is desired to find the value of P and thence the value

Of P f- •

\n

Let y = X — x. Substituting in (i) in every term, including

P, and transposing we have

/(X) -/(x) -f(x){x- x) -/»^^)
2

^ t/ . (X-xY- 1 (X-xY

in which ? is now a function of x and X.

Replacing x by z in every term in the preceding expression,

excepting P, and representing the resulting expression by <j>(z),

we have

*0) =/(*) -/(*) -/'(*) (* - ») -/"(*)
li

-/-(,)
(^-'y-' ^p^pg! (3)

1 This discovery of Lagrange placed Taylor's theorem on a satisfactory basis for the

first time

.
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Now if z = x, we have <f>(z)]x = o, since the second member

of (3) reduces to the first member of (2).

Again, if z = X, we have <^>(z)\x = °> since each term in the

second member becomes zero.

Hence
<f>'

(z) = o, for some value of z between the limiting

values x and X of z (§ 99). Let be a proper fraction. Then

z = x + (X — x) represents any value of z between the values

z = x and z = X.

Differentiating (3) we have, after cancellation,

,ft,-y^g?£? + /.g=3
»—

1

- I

Now, if 2 = a: + (X — x), we have cj>' (V)] ^ + e (X_ ^ = o,

hence, P=fn (x + 6(X- x)).

y
n

Multiplying both members by -.— and changing X — x to y}

we have *—

j>r. =/Hx + df)
r

(4)

for the remainder after n terms. Substituting this value in (1),

we have

/(* + y) =/(•*) +f'(*)y +/"(*) {?+•• +/*"' (*)
"

li
« — I

+/»(* + <Wj£ (5)

for the completed form of Taylor's theorem.

y1

Had we assumed Py, instead of Py- > to represent the remain-
\n

der after n terms at the outset, and followed the course of rea-

soning just concluded, we would have obtained

(j —BY- 1

jpy=/*(x + eyy >

t
f .... (6)
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as a second form of the remainder, and, consequently,

fix +y) =/(*) +/'{x)y +/"(*)£+ +/"-\-r) '

\1
n— \

d — Oy-i
+fn {x + 0y) ^

n J T
r (7)

as a second completed form of Taylor's theorem.

If we make x = o in (5) and (7), and then change y to x, we

have

/(*) =/(°) +/'(°> +/"(°)n- + • • '/"-^pr

+ /"(**) |. (8)

and

f{x) =/(o) -f-/'(o> +/»| + • •
'/"" 1

(°)^^

+ /"(^)n—— *n
(9)

as the two completed forms of Maclaurin's theorem. Similarly

from 4 and 6, we have

/*(«*)£ (io)

and f»(0x)"—^ xn
(11)

n — 1

for the two forms of the remainder after n terms in Maclaurin's

theorem.

Since (§ 89) the remainder after any n terms, in any conver-

gent series, is a variable whose limit is zero, the question of

divergency or convergency can generally be ascertained by

examining this remainder.

101. If the nth derivative is finite for all values of n in Tay-

lor's and Maclaurin's expansions thefufiction is developed.
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For the (n— i)
th and uth derivative in Taylor's expansion we

have

v
«-l

y
n

x
' \?i — i

v J
\n

Dividing the latter by the former, we have

/»(*) y

Now /" (x) is, by hypothesis, finite, and, since the value of n

is arbitrary, J n~\x) is also finite ; hence

r(x)
/»-!(*)

is finite.

y
Again, since y is necessarily finite, - becomes ultimately very

small, and approaches zero as a limit as n approaches oo .

If- 1
'

\x) y
Limit

(x)
= o.

n = oo

Hence the values of the terms become infinitely small as n

becomes infinitely great, and their sum, after n terms, ap-

proaches zero as a limit. Hence the series is convergent and

the function developed.

The proof is similar for Maclaurin's expansions.

102. Let us now examine a few of the expansions previously

determined, and ascertain if the term development used in con-

nection with them has been properly used.

1. sin x = x — -j— hi !— + •"' Ex. -z, p. no.
li li 17

Examining the derivatives, we see that

fn (x) = ± sin x, or ± cos x,

according as n is even or odd. Hence the nth derivative is

finite for all values of n, .'. (§ ioi) the function is developed.
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Similarly we may prove that

/y^i *yr& •y^D

cos x = i — .-—hi nr + etc. Ex. 4, p. no.
[2 [4 [6

>y^ 'I
-y<^

2. log (1 + .*) = a: 1 h • • •234 Ex. 5 p. no.

In this case, fn (x) = (— 1)
»—

1

\n— 1

(1 + ^)
w

Hence, /n
(0*) r- = ^ 1

,J v J
\n n V 1 -V ®x

Hence,

Limit fn (Ox)
x71

'

\n_
= Limit

n= oo

"(-0M— 1

«

#

i -f &%•
= o,

72= 00

if x < + 1; •'• the function is developed for all positive values

of x less than unity. By using the second form of the re-

mainder we can show that the function is developed when x

lies between o and — 1.

x2

3. ax = 1 -j- log a . x + log2 a \-

li

Ex. 6, p. in.

Here, fn (x) = a? log" a.

Hence, /B (Ox) r- = a^ log" a t~ = ±—^-^ cJ v J
\n

s
\n \n

9x

Since a0x is finite and limit

we have,

~(x log d)n

Limit
~(x log a)n

IT"1=.
= °' § io1 '

Hence the function is developed.

^ "Z Xr
4. Sin-1 * =1 + - + — h • • Ex. o, p. in.

6 24 5

Here the ratio of the nth term to the (n — i)
th term is
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where c is some function of // and a finite quantity when n

xF\
is finite. Necessarily x < i, .*. Limit — = o;

.*. the series is convergent.

5. tan-1 .* = x 1 .

3 5 7

The reasoning is the same as in Ex. 4 when x < 1. When
x > 1 the series is divergent.
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CHAPTER IX.

ILLUSORY FORMS.

History.— The Marquis de St. Mesme (L'Hospital) published in his

calculus (1696) a partial investigation of the limiting value of the ratio of

functions which for a certain value of the variable take the form — •

o

John Bernouilli, the elder (1667-1748), was the first to solve the problem

by aid of the calculus.

103. We are accustomed to consider the value of a fraction

as indeterminate when for any given value or values of the vari-

ables which enter it, it assumes the form - , — , o . 00 , etc.
o 00

It is our purpose to show (1), that such expressions are not

necessarily indeterminate but are frequently illusory, and (2), to

indicate a method by means of which their true values may in

general be ascertained.

104. Definition. The value of a fraction is the limit it ap-

proaches as its numerator, or denominator, or both, approach an

assigned value or values.

x2
1

Thus, the fact that = - when x = 1 may be ex-3^—12
pressed more generally, x being a variable, by writing

Limit
x2

_3 x ~ J _ a;=l

105.* Evaluation of the forms
a o

* Kepler introduced name and notion of i7ifinity into geometry in 1615.
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I. Form -
o

Here, Limit
x a =

a
- = 00
o

i.e., when the denominator of a fraction becomes infinitely

small and approaches zero as its limit, the numerator being

constant and finite, the value of the fraction becomes infinitely

large.

II. Form - .

a.

Here, Limit
a x=

o

a

i.e., when the numerator of a fraction becomes infinitely small,

and approaches zero as its limit, the denominator being con-

stant and finite, the value of the fraction becomes infinitely

snail, and also approaches zero as its limit.

III. Form -

.

o

This case frequently admits of evaluation,

{a) By Algebraic or Trigonometric reduction.

,% — 7 X -\~ I O O
Thus ~ = - when x = 2 ; but on factoring and

XT — 4 O

cancelling, we have

X2 — 7 X -f- IO (x — 2) (x — X — K 2 ,— — - when x = 2.
x 4 (x — 2) (x + 2) X + 2

X o
Again : —

—

= == = - when x = o ; but multiply-

\la + x — Na — x °

ing both numerator and denominator by the complementary

surd \/a + x -J- \ja — jp and reducing we have,
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X Vtf + x + \Ja — x

\Ja + x — Va —
= ya when x = o.

#

. . COS 2 .%• O , 7T ,

Again : = - when x = - : but
cot 2 x o 4

cos 2 a: tt= sin 2 # = i when ^ = -

.

cot 2 # 4

Obviously these methods are special in their character, and

apply only to those algebraic and trigonometric forms which

admit of ready reduction. We have, however, a general process

afforded,

(J?)
By the Differential Calculus.

To deduce this process let
<f>(x)' <K«)

\\> x \ a ^ (a) o

that is, let
<f>

(a) = iff (a) = o.

By Taylor's theorem, we have,

*(*)+*'(*)j> + *"(*)£ +

* (* + f)
iff (x) + $ (x)y + iff" (x)(- + • • •

Li

Making jc = #, we have (since
(f>

(a) = iff (a) = o and y is a

factor of both numerator and denominator),

*'(*)+*'>)!++"'(*)£+ ...

4>(a+y) _ \1 13_

*P(a+y)
"

y y*
iff (a) + iff (a) .- + iff (a) .- + • • •

Hence,

<f>(a+y)'
Limit

iff(a-\-y)_

= Limit
2/=0

12 [3

Li 13

w
?/=o



128 Differential Calculus

<f> 0) V (a)
i.e.

Hence ^
f(a)" f (a)

*' (x)

fW1-

d> (x) o
Hence the general rule, if = - for a?iy value a of x the

if/ (x) o

value of thefraction may in general be found by dividing the first

derivative of the numerator by the first derivative of the denomi-

nator and then substituting a for x in this ratio.

<j>(x) .x
2 — 7 * -f i o o

Thus ; ;
= zf = - when x = 2,

if/ (x) xr — 4 o

<f>

f
(x) 2 x — 7 3

.-. T7-7-T
= L = — - when ^ = 2.

j// (x) 2 x 4

Hence, as before III (a), we have — - for the true value of

the fraction.

Cor. 1. If
,

;
^ = - i.e., if <*/ (a) = \1/ (a) = o, then the

xp (a) o v 7

i- • j • J r / x 0) *"(*)
limits determined from equation (1), are —^4 = „ ' •

If cf>" (a) = \\i" (a) = o, we have similarly

<f>(a) <t>"'(a)

Hence, generally,

xp(x)_ tf{x\
^Ml = etc

when these forms successively assume the illusory form -

EXAMPLES.

^ -4- ^
x — 2

1. Evaluate the fraction when x = o.
I — COS X
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Here
xp(x)_

i// (x)j

4>" fa)

i//' fa)_

e° -\- e
x— i

i — cosx

e* — r
sm x

o COS X

e* -\- e~x— 2

I — COS X

= 2.

1"
Evaluate the following

:

2.

3.

JC — 2

(x- l)

x3 — I~

»_ x

X — I
1

# — sin X

/sin /zjc
\m

'

X

7.

8.

9.

10.

11.

12.

i — sin x + cos #

sin x + cos ^c — i

a™ x— a

log sin ^c

7T *

2

^ — e~ x

log(i + x)_

xf° — x

I — X + log X 1

e* — 2 sin x — e~ x
~

X — sin x

X4 — 2 XS
-\- 2 X — I

.V" 15 r+ 24a: - 10

Ans. - .

11

Ans. 3.

Ans. log- .

Ans. — .

6

Ans. 1

.

^4;?^. a log #.

^;w. 2

.

Ans. — 2.

y4/2.5\ 4.

^4/2.T. . I
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106. Evaluation of the forms— » — »
—

oo 00

I. Form
oo

Here, evidently, Limit = o.

II. Form
oo

Limit = oo

III. Form
oo

oo

Let
<M>)

xp(x)

i.e., let
<f>

(a) = \j/ (a) = oo .

1 *00 CO

CO

Taking the reciprocal of the numerator and denominator

we may write,

i

<J>(x)~

'/'OO.

xp(x)

<f>(x)

By § 105, III. (fr), we have,

1

if/ x

1

<f>(x)

hence,
iff (a)

[*(*)]'

- 4>'Q0

=

~

<frO0

"

" ^ oo.

a

jAOO.

2 fW"
0' 00_

f(d) m

(0

0)

i.e.,

<£00" <£'O0~

«AO0Ja «A'00_



Illusory Forms 131

Hence, the rule for evaluating the fraction
<K*)

xfj(x)

that takes

CO
the form — for any value a of x is the same as when it takes

00

the form -. See § 105, III., b.

Thus, 1-
log sin x

cot x

cos x n

00

00

<£'(V)~| sin x

$' {x)\ - csc2
^j

log sin x

= — sin x cos x~\ = o.

cot X
= o.

tion (1) of the same article we divided through by

107. Remark.— In deriving equation (2) Art. 106 from equa-

jp(a)_

viously if the real value of this fraction is either o or 00 the

generality of equation (2) is not established. Let us examine

these cases.

I. When *^> = o.

Let c be any constant, then

<f>
(a) <j> (a) -J- c\p (a) 00

if/ (a) if/ (a) 00

. since <j> (a) = if/ (a) = 00 . But the real value of this expression

is c\ hence

£0) ,

c = . <£ (a) + cxp (a) = # (a) + cip'(a) = f(a) + ^
if/ (a) if/ (a) if/' (a) fA'M

. <f>(a) 4>'(a)
q

Hence Equation (2) is true in this case.
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II. When

Then

Hence, by I.,

<M>) _

<Kg)
~

<i>
(a)

00 .

= o.

= o

00 .

and equation (2) holds in this case. Hence, equation (2) is

generally true for the illusory form
00

00

We may write, therefore, generally,

<f>(x)~ *'(*)"

«/y(V>J« xp
r
(x)\a f (*)J

_*"(*)
,„) ; = etc.

00
when the fractions assume successively the illusory form -^.

EXAMPLES.

1. Evaluate
log x

I

X

<J>(x)~ log X

xp(x)_ I

X

I

*'(*)" ^

when x = o.

00
00

-Jo

1// (*)_|

= — x\ = o.



Illusory Forms 133

Evaluate the following

:

2.

3.

4.

log

cot

I

X

cotx

sec

xl
Ans. o.

Ans. i .

sec 3

x 1
Ans. — 3.

It will be found simpler to transform this fraction so as to

make it take the form §.

log* !

x So

Ans. o.

108. Evaluate the forms o • 00 and 00 — 00 .

Expressions which assume these forms can be readily reduced

to expressions that assume either of the forms % or °9_.

EXAMPLES.

1. Evaluate x log x when x = o.

Here [x log x] = o (— 00 ).

But \x log x] = ~\ogx 00
00

Hence, Ex. 1, p. 132, we have

x log x = o when x = o.

2. [sec x — tan x] n .

Here [sec x — tan #] „. = 00 — 00 .

2

_ r ., 1 — sin
But [sec x — tan x\ n = -1

II "
°"
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— COS X
— sin x

= cot xl = o.
7T J 77

3.

4.

5.

6.

7.

8.

9.

[sec x — tan oc\ n = o.

2

[2 # tan x — 7r sec .#]„..

2

[sec 2^(i- tan .#)]„..

Li L_l.
log.* X — ij!

I Jt: ~|

log* logjcji

. N 7TX~\
(1 — x) tan— •

2 Ji

|>— log A^.

[sec 3 a: cos 7 x] n .

2"

^;z,r. — 2.

y4;/j-. 1

.

Aiis. — 1,

7T

-<4^. O.

^4/W. \.

109. Evaluate the forms o°, 00 °, i
00

, o", 00 ".

Let _y = uv, in which z^ and v are functions of .*.

Applying logarithms, we have

log y = v log &.

For some value a of x, let us suppose

(1) uv = o°, i.e., z/ = v = o ; then log y = — o • 00.

(2) z/
v = oo°, i.e., u = 00, ?/ = o ; then log _y = o «oo .

(3) z/
v = i°°, i.e., « = 1, v = 00 ; then log y = 00 • o.

(4) ?/
v = o

00

, i.e., ?/ = o, z/ = 00 ; then log y = — 00 • 00 =
— 00, .*. y = o.

(5) uv = oo°°, i.e., u = 00, v = 00 ; then log _y = 00 • 00 = 00,

.-. y = 00.
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It appears, therefore, that forms (4) and (5) are not, properly-

speaking, illusory, and that the logarithms of forms (1), (2), and

(3) may be evaluated by the method explained in the last article.
1 1

Thus (1 + ocf = 1
°° when x = o. Let y = (1 -f- x)

x
, and, ap-

plying logarithms, we have

log y = — log (1 + x) = 00 • o when x =^ o.

But
x

log (1 + X)].-'^
+'*)"

_

Hence, = 1.
f(x)~\ = 1±
^'OOjo 1

,\ log 7 = I. .'. y = e.

i.e., (1 + *)
x
Jo= ^.

Again, ^Jq = o°. Let 7 = xr
, then

log y]x=0 = x\og x] == — o • 00 = o. See Ex. 1, p. 133.

.-.Iog7=o. .-. y = A^jp = 1.

110. Evaluation of compound illusory forms §•§, §•£, etc.

Such forms arise from factors in the function that take illu-

sory forms for the given value of the variable.

We may evaluate the function by evaluating the factors sepa-

rately. Thus

sin2^(sec>r — i)~| /sinjcV 1 — cos x
x° l-( x X COS X

o o

° o

= 1;
_.

;

sin.r~] cos^l /sin.x\2

But ~r =^ =I
- •'• hr)**- Jo x Jo \ * / J(

, 1 — cos x~\ sin x
d = ,— \=% = o.

x cos x JG cosjc — ^sin^J

sin2 x (sec x — i)l /sin jcN
2
/ 1 ~~ cos #Y|

**
\ x 1 \ •* cos x /Jo
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EXAMPLES.

Evaluate the following

:

1. x*\ .

2. x sinx
] .

3. (i +

4. (i +

5. (i + ax)x\ .

tan x — x~\
6. :

•

x — sin xj

7.

8.

9.

Vjp tan xtan #1

X — 2 X~\

(f-?f—J;
^ — ^

# — sinin * xl

v

z x Jsin°

10. #m (sin x)iAnx
]

11. (sin *)
tanx

] .

^ log (i + #)"
12.

log (i + x)l
_

I — COS X J

13. x<*] .

14.

15.

16.

i — x + log #}
2*1

tan #— jp J

tan (# + #) — tan (# — #) "I

Ans. i

.

-*4/w. i

.

Ans. e.

Ans. i.

Ans. e
a

.

Ans. 2.

^4/2«5\ i

.

Ans. J.

-4«j. —
£,

^/w. i

.

Ans. 2.

Ans. — 2

Ans. i

.

i + <z
2

tan 1 (a -\- x) — tan
Ans.

cos'

a
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CHAPTER X.

MAXIMA AND MINIMA.

History.— Kepler (i 571-1630) was the first to observe that the incre-

ment of a variable was evanescent for values infinitely near a maximum or

minimum value of the variable. This remark contains the germ of the rule

given by Fermat (1601-1665).

The correct theory of Maxima and Minima was first given by Maclaurin

in his Treatise of Fluxions (1742).

111. Definitions.— A maximum value of a function is a value

greater than the values which immediately precede and follow it.

A minimum value of a function is a value smaller than the

values which immediately precede and follow it.

From these definitions it appears that a maximum value of a

function does not mean the greatest value of the function, nor

does a minimum value mean the smallest value of a function.

In fact, a given function may have several maximum values and

several minimum values.

112. Conditions for Maxima and Minima.

L,etf(x) be a function of an increasing variable x. Then, by

definition, f(x) is an increasing function just before it reaches a

maximum value, and a decreasitig function immediately after it

passes through that value. Hence, (Art. 13, Cor.), f'(x) is

positive (+) before and negative (— ) afterf(x) attains a maxi-

mum value ; hence,

f(x) = o, orf'(x) = 00

at a maximum point, since fr
(x) is continuous, and cannot,

therefore, change sign from + to — without passing through

one or the other of these values,
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Again, by definition, /(V) is a decreasing function of x just

before it reaches a minimum value, and an increasing function of

x immediately after it passes that value ; hence, f\x) is negative

(—) before and positive (+) after/"(V) attains a minimum value.

Hence, at a minimum value,

f'(x) = o, or f'{x) = oo.
.

It appears, therefore, that the essential condition for a maximum
or minimum value of a function of a single variable is that its

first derivative shall change sign,— in case of a maximum value,

from 4- to — ; of a minimum value, from — to +. It also ap-

pears that the value, or values, of x which render /"(V) a maxi-

mum or minimum will be found among the roots of the equa-

tions formed by equating the first derivative to zero or to infin-

ity. These roots are called critical values of the variable, and

must be separately examined, in order to ascertain which, if

any, give rise to a maximum or minimum state of the function.

113. Illustration. — Since fr
(x), when considered geometri-

cally, always represents the slope of the tangent to the curve

y =f(x) (§ J 9)> tne principles of the preceding article may be

graphically represented.

I. Critical values which renderf'(x) = o.

Let SM (Fig. 15) be the locus of the equation y=f(x).

Fig. 15.

At the highest and lowest points of the curve, D and E, and at

such points as F where the direction of curvature changes, the

tangents are
||
to the Jf-axis

;
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hence, dy ... x

for the critical values OA, OB, and OC, of jc.

For a value of x a little less than OA (say 6X4') the tan-

gent at the extremity of the corresponding ordinate A'D' makes

an acute angle with the AT-axis ; hence, fix) = -f- quantity.

For x = OA,f'{x) = o. For x = OA"
, y =A"F>", and the tan-

gent makes an obtuse angle with the X-axis ; hence f'{x) =
— quantity.

Hence at a maximum point, as D, fix) passes through o

from -f- to — direction. Similarly, to the left of the mini?num

point E the tangent makes an obtuse angle with X, while, to the

right of it, the tangent makes an acute angle ; hencef(x) at a

minimum point passes through o from — to + direction.

At such a point as F, whilef\x) = o, yet it does not change

sign as x passes through the critical value OC,f'(x) being posi-

tive + (or negative — ) on both sides of F\ hence CFis neither

a maximum nor a minimum value of y. This fact is also evident

from the definitions, since CF is neither greater nor smaller than

the ordinates which immediately precede and follow it.

The illustration further emphasizes the fact, that all the roots

of the equation f\x) = o do not necessarily correspond to

maximum or minimum values of/(x).

II. Critical values which renderf\x) = oo.

Let SM (Fig. 1 6) be the locus of the equation y = f(x).

At such points as D, F, F, where the tangents are perpen-

dicular to the X-axis, we have

g =/'(*) = -

OA, OF, OC are therefore critical values of x.

At D', f\xj\oA>= + quantity ; at D,f{x)\oA = oo
;

at D"

,

f'(x)\0A ff = — quantity ; hence at a maximum point f\x)
passes through oo from -f- to —

.
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Similarly, at E,f\x) passes through oo from — to -f-.

At F* f'(x)]oc = °°
; but for values of x a little less and a

little greater than OC we find f\x) = a positive quantity
;

hence f\x) does not change sign as x passes through the crit-

ical value OC\ hence CF does not represent either a maximum
or a minimum value of fix). This is also evident from the

definition. It also appears that the roots of the equation

fix) = oo do not necessarily render fix) either a maximum or

a minimum.

114. Methods of Investigation for Maximum and Minimum
Values.

I. By examining the given function.

Lety*" (x) be the given function, and let a be any one of the

critical values found by equating ^/"'(V) to o or oo , or both.

Then, by the definition, § in, we have, h being a very small

quantity,

/(a) >/(« - X) 1

f(a)>/(a + X)\

/(a) </(a - X)

/(«) </(a + A)

For a maximum

For a minimum (?)

Thus, let

then,

X"
fix) = 3X2 + 8x;

f r
(x) = x2 -6x-\-8.
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As no finite value of x will renderf'(x) = oo , we equate it

to zero ; hence

x2 — 6 x -\- 8 = (x — 2) (x — 4) = o,

.'. x = 2 and x = 4,

are the critical values of x. Substituting values a little less and

a little greater than x = 2 in the given function, — — 3 x2
-f 8 x,

we have /(»]i = Sh
/(x)y= 6§,

/(*)i=6.
Hence,

mum value.

Substituting now values a little less and a little greater than

x = 4, we have,

/0)]3 = 6,

/(*)]4=SJl

/(*)],= 6|.

Hence,

/(*)! < /Wis
/(*)]* < /(*)]

a minimum value.

Again let us consider the function,

cf> (x) = m — n (x — 2)
3

.

2 it

Here <£' (x) = 7 •

3 (x — 2)*

As no finite value of ^ can render this derivative = o, we

equate to 00 .

2 /z

Hence j = 00
,

3 (X - 2f
.'. X = 2

is the critical value. Hence

I

.'./(*)]. =
(f~3^ + 8*)1 = si
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<£ (xyji = m — n, •

4> (x)\ = m,

<j) (V)]3
= m — n

;

"

'"'

-5 SSI > 5SS 1

<*»--<-—(—Ai-—
a maximum value.

II. By examining the first derivative.

Let f(x) be the given function, and let a be a critical

value of jc.

Let h be any very small quantity. Hence, §112,

f (a — H) = a positive quantity \

For a maximum <j /'(^) = o or 00 > (3)

f (a + ^) = a negative quantity )

/"' (0 — //) = a negative quantity
)

For a minimum <j /'(^) = o or 00 > (4)
/"' (« -}-//) = a positive quantity )

To illustrate let us resume the example

f(x) = 3 x2 4- Sx.

Hence, f (x) = x2 — 6x-\-S = o, .*. # = 2, a? = 4,

/'(*)]2 = o,

/'(*)]3 = -i.

Hence, (3), 3 x2
-\- 8 x\ = 6§ = a maximum as be-

fore. See I.

Taking the value x = 4, we have,

/'(*)]3
= -i,

/*(*)]« = <>.
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X3 1
Hence, (4), 3X2 -\-8x = 51 = a minimum value. See I.

3 J4

Taking the example

<!> (x) = m — n(x — 2)
3
,

we have, <f>
{x) = j = 00 ,

.'. x = 2,

3 (* — 2T
2

o

4> (x)\ = co
,

2
<f>'(x)]3

= 0;

•'• (3) (
w — n{x — 2)

5

)]2 = ?/z = a maximum value. See I.

III. By examining the second derivative.

When_/(V) is a maximum,f (x) changes sign from -f- to —

,

§ 112 ; hence,f (x) is a decreasing function of x
; hence, f"(x\

must be negative for the critical value of a? that renders f(pc) a

maximum.

When /"(x) is a minimum, y' (jc) changes sign from — to +,

§ 112 ; hence,/' (x) is an increasing function of x ; hence,fix)
must be positive for the critical value of x that renders f (x) a

minimum.

Hence, if a be a critical value of .#, then

For a maximum f" (a) = a negative quantity..

For a minimum f" (a) = a positive quantity.

Let us resume the example,

x3

f (x) = $x2 + 8x.

Hence, f'(x) = x9 — 6 #~-f- 8 = o, ,\ x = 2,x .= 4,

and f"(x) = 2 x — 6,

: /"(*)],= - 2, .-.

(J
- 3^ + 8 »)

/"(*)]«= + 2, .-. /|

3

_ 3 ^ -I- 8 *)

2
= 6| = a max. value.

= 5I. = a min. value.
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Taking the example

<£ (x) = m — n (x — 2)3,

2 n
we have, ^'C*")

= 1 — °° >
•'• # = 2 ;

3 (^ - 2)
3

2 /z

also, ^ V J
9 (X — 2)

3

Hence, <£"(#)]2 = °o ;
hence, this method does not apply-

when the critical value renders the first derivative infinite.

For critical values that render f(x) = o, Method III. is

usually the simplest. Frequently, however, the form of the

given function is such as to render its second derivative difficult

or tedious to obtain. In such cases Method II. should be

employed.

It frequently happens, when Method III. is employed, that

a critical value of x reduces f" (x) to zero as well asf (x).

How to proceed in such a case will be explained in the next

article.

115. Maxima and Minima by Taylor's Theorem.

Resuming equation (1), § 114, and transposing, we have,

f{a -Ji) -fid) < o

f(a + X)-f(a) <oJ
{b)

as essential conditions for a maximum value ofjT(x) for the

critical value a of x.

By Taylor's Theorem :

/(a - h) -/(«) = -/' (a) h +/" (a)

I
-/'"(«)

I
+ . .

f(a+ h) -f(a) =/' (a) h +/" (a) ~ +/»' (a) ~ + . . (d)
l_ \A

If, therefore, f(d) is a maximum value of f (x) the second

members of these equations, (V) and (d~), must be less than zero,

i.e., negative. If h is taken sufficiently small— and we can take
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it as small as we please — the first term in the second member,

f (a) /i, can be made to exceed numerically the sum of all the

other terms. But these terms have different signs ; hence,

/'(.«) = °

is an essential condition to be fulfilled in order that the second

members may be negative. It is therefore an essential condi-

tion for a maximum.

Makingf (a) = o in (V) and (*/), we have,

/{*-*) -/w =+/'»| -/"»!+• • •
. «

f(a + X) -/(«) = +/" (a)| +/'" («)| + • • • • (/)

Giving h such a value as to make the first terms numeri-

cally larger than the sum of all that follow them, we have, as a

second essential condition for a maximum (since /i
2
is positive),

If fr
'(a) is zero for the critical value a of x, then a similar

course of reasoning shows that

f"\a) = o, and/ iv

(«) < o

are conditions for a maximum value. If J~
lv
(a) = o, then

f\a) = o, and/vi
(V) < o

are conditions for a maximum value.

By assuming equation (2) (§ 114), we can show, similarly, that

f\d) = o, and/"(tf) > o

are essential conditions for a minimum value of fix), and if

f"{d) = o, that

f'"{a) = o, and/iv

(» > o

are essential conditions ; and so on.

In general, therefore, if
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f'(a) = o, f"(a) = o, f"\a) = o • • • f"-\a) = o,

then, f(&) is a maximum if n is even andy"w
(#) < o

;

and fif) is a minimum if n is even and _/""(<?) > o
;

and f(a) is neither a maximum nor a minimum if n is odd

andyw
(<?) > o or < o.

116. Practical Suggestions.— In the examples and problems

which follow this article the following suggestions will be found

of great service in simplifying the operations

:

(i). The critical value that renders f(x) a maximum or

minimum will render C + Z)f(x) a maximum or minimum.

(2). If fix) is positive then [f(x)~]
n

is a maximum or mini-

mum for a critical value that renders f(x) a maximum or a

minimum.

lifix) is negative and n is an odd integer, then L/X-x')]" is

a maximum or a minimum for a critical value that rendersfix)

a maximum or a minimum. If ;/ is an even integer, then [_/*(^)]
w

is a maximum or minimum for a critical value that renders f(x)
a minimum or a maximum.

(3). The critical value that renders f(x) a maximum or a

minimum will render a minimum or a maximum.

(4). The critical value that renders f(x) a maximum or a

minimum will render \ogaf(x) a maximum or a minimum.

EXAMPLES.

1. Examine mx? — 2 nx -f c for maximum and minimum

values.

Here f(x) — mx^ ~ 2 nx + ^

fix) = 2 mx — 2 11 = o.

.•. ^ — _ is the critical value of x.
m

Also f"(x) — 2 »*'
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Sincef"(x) is positive, we have

mx2 — 2 nx -{- c\n = c = a minimum value.
m m

2. Examine 16 ax3 — 6o ax2 -f- 48 ax — \a for maximum and

minimum values.

As 4 <z is a constant factor we may omit it (§ 116, 1), and write

fix) = 4.x3 — 15 jc
2

-f- 1 2 # — 1

.

Hence, fix) = 12 x*— $0 x -\- 12 = 12 (jc
2 — far -f- 1)

= 1-2 (x — i)(# — 2) = O.

.*. x =-\ and ^ = 2 are the critical values of x.

f"{x) = 24^ — 30;

/"(*)]i= (
24* - 3°)]i=- 2 4.

•'• f(p°) 1S a niaximum when x = ^ ; also

/"(*)!= (24* - 3o)] 2 =i8.

•'• yC-^) *s a minimum when x = 2.

3. Examine (# — 4)
5
(# + 2)

3 for maximum and minimum

values.

Here f (x) = (x — 4)
5
(jc + 2

)
4

,

/'(*) = (jp _ 4)5 4 ^ + 2 )3 + (* + 2 )4 5 (* _ 4)4

= (# — 4)
4 (a + 2)

3
5 4 (x — 4) + 5 (x + 2) J

= 9 (x — I) (jc — 4)
4
(^ -f- 2)

3 = o,

.«. x = |, .%• = 4, x = — 2, are critical values.

As the work of obtaining the second derivative is tedious,

let us use Method II. (§ 114), i.e., let us see how the first de-

rivative passes through zero, as x passes through its critical

values.

As x passes through the value f , f'(x) changes sign from —
to + ;

As x passes through the value 4, f\x) remains positive, i.e.,

does not change sign
;
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As x passes through the value — 2,f'(x) changes sign from

+ to —

.

Hence,

when x — %,f(x) *s a mm imum
;

when x = 4,J~(x) is neither a maximum nor a minimum

;

when x =— 2,J~(x)is a. maximum.

4.

4. Examine b + (x — a) 3 for maximum and minimum values.

Here f\x) = 3 (x — tf)
3 = o; .*. # = a.

As jc passes through the critical value a, f'{x) passes through

zero from — to +. .*. for x = a,f(x)\a = &> a minimum value.

5. /(#) = Z> + (x - af.

Here f\x) = % (x — ay = o ; .\ .# = a.

As 3: passes through the critical value a, J~(x) does not

change sign ; hence, J~(x)~\a = l>, neither a maximum nor a

minimum.

6. f(x) = 2 xs — 9 ax
2 +12 a2x — 4 <z

3
.

y*(V)] a= a3
, a maximum

;
y*(V)] 2a =: o, a minimum.

7. /(*)=- +

+ £)
2

. . -, .-, - £)
2

f(x)\ a* — -' a minimum ;f(x)J fl2
= ^-,

a+b a— b

a maximum.

8. f(x) = ^ (;/z + xf (m — xf.

f{x)\m, minimum
; f{x)\ _ m ,

minimum ',f(x)~\-m, a maximum.

1

9. f(x) = xx
. 1

_/"(#)]«,= <?
e

, a maximum.

10. f(x) = • y (x)\e
= ~' a maximum.

X c
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11. f(x) = cos3
.* sin x.

/(^)]sin-H=/(^)]^= ± A ^3> a maX
«
aIld a min '

6

12. J~(x) = sin3
.# cos .*.

y"(^)]cos-H ==/(^)k == ± A ^3> a max
-
and a min-

is. f{x) =
i + x tan .#

COS X
/(*)]cos* = —;—=— '

a maximum.u
i + sin.*

14. f{x) = sin a; -4- sin ^ cos #.

y(jc)]7T, a maximum.

_. N sin x
15. /(*) =

i + tanx
J~(x)~]n, a maximum.

117. For convenience of reference the following expressions

for the measures of areas and volumes are introduced.

Area of triangle = ^ xy,

Area of rectangle = xy,

x ~\~ z
Area of trapezoid = y,

2

in which x and z represent the bases and y represents the alti-

tude. Let 6" = surface, V= volume, x = radius of circle or

sphere, s = slant height.

V= 7rx2y = volume of cylinder,

V= = volume of cone,
3

V= f irx
z = volume of sphere,

S = 2 irxy = lateral surface of cylinder,

S = ttxs = lateral surface of cone,

S = 4 vx2 = surface of sphere.
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PROBLEMS.

1. Divide a number a into two such parts that their product

shall be a maximum.

Let x = one part ; then a — x = the other ; hence,

/(•*) = (a — x) x,
\

.-. fix) = a — 2 x = o, .•. x = — •

Also f"ix) = — 2, a negative quantity.

Hence ./"(.*)]„ = — , a maximum
; hence the product of the two

5" 4

parts will be greatest when the parts are equal.

2. Divide a number <? into two factors such that their sum

shall be a minimum.

fix) = x H— ;
/"'(.#) =i -g = o, .*. x = "fa. A\sof"(x)

2a

x
hence the factors are equal when their sum is a minimum.

—
3

, which for x = Va is positive ; hence f(x)~\^-, a minimum
;

3. Divide the number io into two parts such that the square

of one part multiplied by the cube of the other shall be a

maximum,

fix)\4, a maximum, .*. 4 and 6 are the parts.

4. Required the height at which a light should be placed

above a table so that the page of an open

\ book placed at a given horizontal distance

\ (a) from the light may receive the greatest

x
\
a illumination.

\ From optics we have the principle that the

~7A ~7 intensity of the illumination varies directly as the

~cT^ / sine of the angle of incidence and inversely as

Fig. 17. the square of the distance.
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Let i = intensity of the illumination, then from the principle

and the figure, we have
sin

x

d ax ax
,
(a = intensity at units distance

d2 dz
(a> + ^f

from the light).

Hence,

.-. (<?
2 + .x

2

)
2
|#

2 — 2 .x
2

}
= o,

.*. # = —— and ^ = a V— i.

V2

As the second value is imaginary, the first value —— only
V2

... a
can satisfy the condition of the problem. Hence —=. is the

V2
required height. It frequently happens in the solution of prob-

lems that the critical value which satisfies the given conditions

may be detected without analytical examination. Such, for

instance, as the value —= of x in the above example.

5. Find the line of shortest length that can be drawn through

a given point (a, b) and terminate in the rectangular axes to

which the point is referred. Ans. (a3 + b*y.

6. Show that the area of the right triangle formed by a line

through (a, b) and the co-ordinate axes is a minimum when the

base of the triangle is 2 a and its altitude is 2 b.

7. Show that of all rectangles of a given area the square has

the least perimeter.



152 Differential Calculus

Let m = area, y = altitude, x = base, P = perimeter;

then P = 2 x -\- 2 y and m = xy,

2 m
.'. P =f(x) = 2 x -\-

X
2 m

... /'(*) = 2 -— = o, /.
a8

# V#z.

Hence, J =
;;z

a-

.'. the square has the shortest perimeter of all equivalent

rectangles.

8. Show that of all triangles of a given perimeter constructed

on a given base (b) the isosceles triangle has the greatest area.
/y* I At 1 A

Here Area = Vj (j — ^) (•$" — j) (r — #) in which s =
and by condition jc+j4-^ = r, a constant.

9. A box of maximum con-

tents is to be made from a rectan-

gular piece of tin 30" X 14";

required the side of the square

to be cut out of each corner of

the tin sheet.

Here v =y(x) = x (14 — 2 x) (30 — 2 x~)

Ans. x = 3.

10. Find the maximum rectangle that can be inscribed in a

given circle.

Area = 4 xy and a:
2 + j

2 = a2
;

.*. Area = 4 \la
2x2 — ^4

,

.*. ./"(#) = ^2^2 — x*.

Hence, f'(x) = 2 a2x — 4 a3 = o
;

a

\

1

1

Fig. 18.

X =
V~:

= Vtf2 - x2 =

.*. The figure is a square and its

Area = 4 xy = 2 #2
.
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11. Find the maximum right cylinder that can be inscribed

in a sphere of radius a. Ans. Height = § ay/3.

12. Find the right cylinder of maximum convex surface that

can be inscribed in a given sphere. Ajis. Height = ay/2.

13. Find the greatest right cylinder that can be inscribed in

a given right cone. Ans. Altitude = J altitude of cone.

14. Find the right cylinder of greatest convex surface that

can be inscribed in a given right cone. nab
^Ttns . o =^ •

2

15. Show that the cone of greatest volume and greatest con-

vex surface that can be inscribed in a sphere of radius (a) has

f a for its altitude.

16. Show that the altitude of the cone of least volume that

circumscribes the sphere is 4 a.

17. Of all cones of a given slant height show that the one,

the ratio of whose altitude to the radius of its base is V2, is a

maximum.

18. Of all circular sectors of a given perimeter show that the

one whose arc = twice the radius is greatest.

Let x = radius ; then, 2 x + arc = p, a constant, and

Area = \ x (/ — 2 x).

19. A Norman window, consisting of a semicircle surmounting

a rectangle, is to be of a given perimeter

and so constructed that the light ad-

mitted shall be a maximum ; required,

the height and breadth of the window.

With the notation of the figure, we
have,

Area = 2 xy -\
,

2

and Perimeter = j> = 2jy-{-2x-j- ttx.
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7TJC
2

.'. Area =f(x) =px — 2 x2
;

•'• f(x) =J> — 4-x — TTX = 0.

Px =

Hence, y

4 + 7T

/
4 + 7T

Therefore the height of rectangle = radius of semicircle.

We have heretofore, where two variables occurred in the ex-

pression we desired to investigate for maximum and minimum

values, substituted for one of the variables its value in terms of

the other, as derived from given conditions. Thus, in A =

2 xy -\ above we substituted for y its value in terms of x, as
2

determined by the condition p =2 y + 2 x -\- ttx. It frequently

happens that this substitution may be made more conveniently

after differentiation.

Thus, J~(x)
= 2 xy H *

w/ \ dy
.'. f (X) = 2 X— f- 2V + VX.J dx

And from p=2y-\-2X-\- 7TX

! have,
dy= 2——|-2-f-7r.
dx

dy 2 + 7r

'

' dx 2

dy
Substituting now this value of — together with that of y

drawn from the value ofp in the value oif(x), we have,

/ (*) = 2 */
j
+ 2 ^- - X ~

—J
+ 7CX

=p — 4 x — irx, as before.
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20. A person in a boat 3 miles from shore wishes to reach a

point 5 miles down the

coast in the shortest time.

Assuming that he can

walk 5 miles an hour and

row only 4 miles an hour,

at what point must he A q fr

land?

From the figure, we have (C being the landing-point),

x

CB = V9 + x2
, CD = 5 - x.

,\ Total time of rowing and walking is

V9 -\- x2
5 — x

4 5

!/(*);

J
4 V9T^ 5

.•. x = 4.

i.e., he must land one mile from the point he desires to reach.

21. What must be the dimensions of a square-based box, open

at the top, whose volume is 108 cu. in., in order that the mate-

rial of which it is made may be a minimum ?

Here S = x2
-|- ^xy, and V= x*y = 108,

.\ tS=/(jt:) = ^2 + ^.

.•. x = 6, and j = 3.

22. From a given quantity of material a circular cylindrical

cup with open top is to be made ; required its dimensions in

order that the volume may be a maximum.

Here V= irx^y and -S = ttx2 + 2 trxy = c, a constant,

ex — TTX
3

x = y
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23. Assuming the fact that the area of a segment of a

parabola is § the rectangle on the ordinate and abscissa, show

that the greatest parabola that can be cut from a given right

circular cone is one whose axis = § the slant height of the

cone.
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CHAPTER XI.

PARTIAL AND TOTAL DIFFERENTIATION.

118. Partial Differentials. Thepartial differe7itialof a function

of two or more variables is the differential obtained under the sup-

position that only one of the variables that e?iters it is changing.

Thus let u = x2 -f- xz -f- log y and let dxu, d
y
u, dzu represent

the partial differentials of u ; then

dxu = (2 x -f- z) dx,

O..U = — >

y
dzii

= xdz.

119. Partial Derivatives. The partial derivative of a function

of two or more variables is the ratio of the partial differential of

thefunction to the differential of the changing variable.

Thus, in the example of the preceding article, we have,

du—-= 2 x -\- z,
dx

du 1

dy~ y'

du

dz

It will be observed that in writing partial derivatives that the

subscript in dxu, d
y
u, dzu, may be omitted as the denominators

of the derivatives indicate the variable that is supposed to be

changing. In writing partial differentials it is frequently more

convenient to use a notation in which the differential of the
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changing variable enters. Thus, instead of using dxti, d
y
u, d

zii to

represent the partial differentials, we may use

die . du du .— dx, —ay, — dz.
ax ay az

Thus in the example selected we may write,

du—- ax = (2 x 4- z) ax,
ax

du , ay
ay = —,

ay y

— az — xaz,
az

for the partial differentials.

EXAMPLES.

1, If u = xy
, show that dxu + d

y
ii = yxy~ ldx + xv log xdy.

Here dxii = yx y~ 1 ax and d
v
ii =xy log xOy,

.'. dxu + d
y
u = yx y~ l dx + x* log #*/y.

/ n -i
. du du

2. u = log (V* + ey), show that— + — = i.

du e* du *>v

Here — = ———- and — =
dx e* -\- ey dy e* -\- ey

du du e* -f- ey

dx dy e
00

-\- ey

i / r~h on i ,
du du

3. u = log (x + V^r -|-jr) show that #— +7-7- = 1.

a2 v2 . d& . 3?/ . 2 x . 2 y .

,,0,0 N ,
. du du du

5. z* = log (ar -f- y5 + » — 3 xyz), show that —

—

\- ——\- —
(toe Li_y itz

= 3

# +7 4- ^
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. , du du
6. u = sin (.ay), show that ——(- — = (# + _y) cos (^y).

. . , , du du 2
7. a = log (* +J-), show that^ + - = -.

8. u = tan
-1

, show that x— -f- y—r = o.
\x -f- j/ ax ay

120. Euler's Theorem of Homogeneous Functions.

Let u = ax™/1 + bxm'ynf + ex™"

y

n" + etc (i)

be a homogeneous function of x and 7 not involving fractions

in which
m -\- n = m' -{- nr = m" + 11" = etc. = p.

To prove that

3?/ du
XTx +y Ty =P"-

Differentiating (1) partially, we have, after multiplying by

x, and y,

x~ = amxmy
n + bm xm'

y

n' + cm'Wf" + etc.

y— = tf/zx
my" + b?i

rxm'yn' + crf'xr"f" + etc.
#y

Hence, by adding, we have,

* -^ +.y-^ = (/«+ n) (axmy
n+ fomy'

+

ax^'f"+ etc.) =/// . (2 ) .

The proposition may readily be proved to be true for a

homogeneous function of any number of variables ; also for

homogeneous fractions.

EXAMPLES.

Verify Euler's Theorem in the following examples by partial

differentiation.

1 . u = 4 x*y* -j- 3 x2/ — 2 xy4
.

Here u is a homogeneous function of jc and y of the 5
th degree.
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Hence, by (2) Art. 120,

du du
x _|_ y — e u.
dx J

dy

By partial differentiation,

dit du
x ——\- y—- = 20 x6

y
z + 1 c; xryr — 10 x \r = zu.

dx J dy
J D y ' °

o o du du
J dx J

dy °

121. Differentiation by Use of Partial Differentials. The Total

Differential, or si?nftly the Differential, of a functio?i of several

variables is equal to the sum of its partial differentials.

Let // =f(x, y, 2, etc.) ; it is easily seen that

, du du du .

du = — dx + —r dy + — dz -\- etc.
dx dy dz

in which du in the first member represents the differential of u

under the supposition that all the variables which enter it are

changing. For an examination of all the differential forms,

both of algebraic and transcendental functions, as derived in

Chapter III., shows that only the first powers of the differen-

tials of the variables enter the differential of their function. If,

therefore, we differentiate u =J~(x,y, z, etc.), and collect the

coefficients of dx, dy, and dz,— these coefficients being usually

functions of the variables which enter the original function,—
we may write,

du = d[f(x, y, z, etc.)]

= <£ (x, y, z, etc.) dx-\-\\> (x, y, z, etc.) dy -f- w (x, y, z, etc.) dz+ etc.

Now, if we differentiate partially the original functions, we

obtain,

du . , , N _

-1- dx = (x, y, z, etc.) dx,
dx y

du
7 . N _— dy = if, (x, y, z, etc.) dy,
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du— dz = o> ( x, y, z, etc) dz.
dz /

Hence, adding,

du du du—ax + -rdy H

—

r dz =
<f>

(x, y, z, etc.) dx -\- \b (x, y, z, etc. ) ay
ax ay az

+ o) (x, y, z, etc.) dz + etc.

Hence, finally,

du = -*- dx + -7- dy + -7- dz + etc*

To illustrate, let us resume the example of § 118,

u = x2
-f- xz + log j.

Here, du = —dx -\—— dV -|—- tfs
dx dy dz

= (2 x -\- z) dx -\ (- xdz.
y

Obviously the example above may be differentiated by the

rules deduced in Chapter III. ; and, as a matter of fact, those

rules are sufficient to enable us to differentiate any algebraic or

transcendental function, whether explicit or implicit. In cer-

tain forms of expressions, however, it will be found more con-

venient to adopt the process here explained.

Cor. I. If u =J'(x,y) = c, a constant, be an implicit func-

tion of y, then

du du
du = —- dx -f- -7- dy = o.

dx dy

du

u dy dx
hence, -^ =— -_

ax du

dy

i.e., the first derivative of an implicit function is minus the ratio

of its partial derivatives.
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Let 7/ == a2y* + l?x? = a2
lr ; then

dH
72—- = 2 /rx,

awe

du—- = 2 rtry.

6//

*/>> dx

dx du
2~~'

Ty

Hence,

a result previously obtained by direct differentiation (see Ex. 8,

p. 26). This method will also be found convenient in differenti-

ating many cases of implicit functions.

122. Total Derivative. The total derivative of a function of

several variables is the ratio of the total differential of the

function to the differential of the independent variable that

enters it.

Thus, if ?/ =J~(x,y, z
}
etc.), then (§ 121),

, du . du du . , .

du = — dx -\- — dy -\—- dz -\- etc (a)
dx dy dz

Now, if x = cj> (e'), y = \p (7'), z = w (v), etc. ; then ti is indi-

rectly a function of v through x, y, and z.

Dividing both members of {a) by dv, we have,

du __ du
%
d x

,
chu

%
dy . du ^ d_z

, ,
,,v

cfo c/j: cfa> c/3; cfo cfe cfo

To illustrate, let 7/ = xz — xy -f- log z, in which .*: = v2
, y = sin v,

and s = ^
v

; then

du _ //.r dzv dy du 1—- = 3 ^ — y\ — = 2 v; -=- = — x ; -7- = cos z/ ; — = -
,

dx dv dy dv dz z

dz

dv

Substituting in the formula (#), we have

du

dv

du e
v— = 2 (3^ — j^)z/ — # cos z/ + — = 67/— 2 7'sinz'— v2 cosv-{- 1
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for the total derivative. The same result may be obtained by-

substituting the values of x, y, and z in the value of u and then

differentiating; thus,

u = z>
& — v2

- sin v + log e
v

.

Hence, -7=6^-2^ sin v — v1 cos v + 1 , as before.
dv

Cor. 1. If u =J~(x,y, z) in which y = <f>(x), z= \p(x)\ then

du du du dy du dz

dx dx dy dx dz dx

Cor. 2. If u =/(x,y), in which x=
<f>

(v) andy= \p
(ji)

; then,

du . du
du = — dx 4- — dy,

dx dy

du du dx du dy

dv dx dv dy dv

Cor. 3. If u —f(x, y) and y = <f>
(x) ; then

du du du dy

dx dx dy dx

Cor. 4. If u =f(y) and y — <f>
(x), then,

du du dy

dx dy dx

EXAMPLES.

By aid of partial differentials differentiate the following, and

verify the results by direct differentiation :

du = yxy~ 1dx + xy log xdy.

du = yzdx + xzdy -+ xydz.

ydx — xdy
du =< —-.

4. u =^5 +logsinj-f-coss, du = 5 x4dx + cot^ dy — sin zdz.

1. u = xy
,

2. u = xyz,

3.
X

u = -,
y
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5. u = xlosy
,

{
* y )

6. u — axey
,

du = axev jlog adx -+- dy\.

, y T xdy — ydx
7. u = tan" 1 ^-

,

du = ^ , % .

X xr -+ jr

,
- .%•

7
ydx — xdy

8. # = log tan v -
,

du =
y

(^
2 + /)tan- 1 -

y

Write the first derivative of each of the following implicit

functions by use of partial derivatives, and verify results by the

direct process

:

9. a2f - b2x2 = - a2b2
.

Let u = a2
y

2 - Px2 + a2P.

Then, § 121, Cor. i, we have,

du

dy dx — 2 fix ftx bx

dx du 2 a2y a2
y a^ _ a*

dy

Directly : 2 a2ydy — 2 b2xdx = o,

dy b2x

dx a2
y

1A „ ~ fy y(j — x\ogy)
10. xy —f = o, — = — i

dx x{x — y log x)

ye^y dy my
11. — = a,

xm dx x (1 + ny)

12. sm(xy) + tan (#1;) = m, — =

</y a - y cos *y
13. sin (jev) — tf.x = o, — =

—

v ' #:*•.*: cos jey



Partial and Total Differentiation 165

Find the total derivative of each of the following

:

14. u = xz
-\- y

2 — xz, in which x = v2
, y = sin v, z = log 7/.

Here —- = —

—

T--\--j--r-\—r~r m See Art. 122.
dv ax dv ay dv dz dv

du du du
Also _ = 3^ + 2, — = 2 y, — = — x,

ax ay dz

dx dy dz 1— = 2v, -j- = cos v, — = -

;

dv dv dv v

. du , „ N #
hence, — = (;r-0)2z/-|- 2v cos v

dv vo y ^
z/

— (3 ^4 — l°g v) 2 v ~r~ 2 sni & cos v — v

= 6 z/ — 2P log z> + sin 2 v — v.

To obtain this result directly we substitute the values of .r, y,

and 2 in the value of u and obtain

u = vG
-{- sin27' — z>

2 log v.

Hence, —- = 6 v5
-\- 2 sin v cos z/ — [ z>

2—h 2 7/ log v

)

dv \ v )

= 6 z>
5 + sin 2 z> — z> — 2 z/ log z/,

as before.

15. ^ = y
2

-\- z* -\- sin xy, y = xs
, z = tan ^.

^ du du dy du dz _ _
Here — = — + -3- -^ + ~r ^- • See § 122, Cor. i.

#x ^ dy dx dz dx

.-. — = 6 x5
-f- 4 (tan3

.»: sec2 ^ + ^3 sin ,#
4
).

16. ?/ = j
3

-f- sy + z2
, y = **, 2 = sin at.

*/« du dy du dz ^ ' „
Here — = —^+—— . See § 122, Cor. 2.

^x dy dx dz dx

du „ . s
.•. — = 7. <r

x + ^ (sin jp -j- cos #) + sin 2 #.
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y
17. u = tan

-1 -
, v2 = 2 A*r.

du du du dy „Here — = — + — -f . See § 122, Cor. 3.
*/.* ax ay ax

du *Jpx

dx (^_|_ 2px)\f2
%

. x . du 1
18. 2/ = log -

, y = sin jc. —- = cot x.
y dx x

19. u = tan^y2
, j = log x.

du du dy
Here —= — -=-, See § 122, Cor. 4,

dx dy dx

du 2 log x sec2 (log jc)
2

dx x

z du (f'
€**

20. u = sin -
, y = x2

, z = e*,. — = (x — 2) -z cos -^
jy </# ' ar ar

,^-y _ du 2 e*
x

21. » = tan x
t
z = e*

f y = e x
.
—- =

2 +-J *£c ^"+ 1

1 / - du -i

22. # = sin
-1

(j — z), y = 3 x, z = 4 jr. — =
dx Vi — J^

2

jv k jc v •# ^/z/

SUCCESSIVE PARTIAL DIFFERENTIATION.

123. Successive Partial Differentials and Derivatives.

In general, if u =f(x,y), then

— dx =
<f>

(x, y) dx (a)

du
and -j-dy = if/(x,y)dy (b)
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i.e., the partial differentials of a function of x andy are, in general,

functions of x and y. Hence, differentiating again, with respect

to either x or y, regarded as equicrescent, we obtain a second par-

tial differential. Thus from (a) we have,

d (du \ d2u
—-[—r-dxXdx = ~=-s dxr = cb-. (x, y) dx2

,dx \dx ) dxr N J

Ty{£
dx

)
dy =

!jk
dxdy = ^X

'
J) dxdy

;

and from (&),

d (du , \ , d2u

dy\Ty
dy

)

dy =
If

dy = ^ <* y) df >

d (du . \ . bhidydx . N- ^- j
dx = -j-^ = ^ (x, y) dydx.

As the second partial differentials are also, in general, func-

tions of x and y, we may again differentiate and obtain a set of

third partial differentials, and so on. Thus, from the notation

adopted above, we have

!My d̂ dy

for the symbol of the result obtained by three successive partial

differentiations, huo of these being with respect to x, and one

with respect to y. Hence,
B3u

dx2dy

is a symbol of the third partial derivative obtained by the same

process. Other symbols of a third partial derivative are obvi-

ously,

bzu d3y d3u

dx3 dys dxdy2

and similarly for other derivatives.
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124. To prove,

d fdu\ d /du

dx \dyj dy \dx

i.e., that
dxdy dydx

Let u = f(x, y) ; thus, regarding y as a constant, we have,

Au f(x + Ax, y) —f(x, y)
Ax Ax

Ex. 10, p. 52. Now, regarding x as constant, we have,

\Ax/=/(x+ Ax, jy+ Aj) —f(x,y+ Ay)—/fo+ A.r,j) +/(*,j)
A_y AjAjc

(0
Reversing the above order, we have,

Au _f(x, y + Ay) —f(x, y)

Ay Ay
and

\Ay/_ f(x+Ax,y+Ay) —f(x+ Ax,y) —f{x,y+ Ay)+f(x,y)

Ax AxAy
(*)

Hence, J&l = J&I

.

Ax Ay

Passing to limits, we have,

dx dy

d 2 u d*u
i.e. = *

dxdy dydx
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Cor. Similarly we may prove,

dx?dy dydx2

dnu dnu

dxn~ sdys dysdxn~ 3

i.e., whatever the number of differentiations the order of differ-

entiatiofi is immaterial.

EXAMPLES.

1. u = xhy —
d2u d2u

' dxdy dydx

w

Al

e have,

so,

du .— = x* — cos y ;

dy

bhc

dxdy

du

5 = ***

Hence,

d2
//

d2
z/ d2

//

d2
/*; d2u

2. u = x log (ay — i)
;
prove that

dxdy dydx

3. * = xy (x + /) ; show that -JL = ^JL.

d2u d2u Bu
4. « = (x*+f)*; showthat 3*— + 3/^ + ^ = 0.

5. * = cos (* + jr)
s
show that Jj = ±jL.
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125. Tofind the successive total differentials of a function of two

independent variables.

Let u = f(x,y); thus, (§ 121),

_ du du .

du = — dx -\—- dy.
dx dy

Differentiating, remembering that — and — are, in general,

functions of x and y, and that x and y, being independent, may

be regarded as equicrescent, we have,

,_ d2u _ „ d2u . _ d2u _ , d2u _ .

d*u = -r-= tf.r
J
-f -—- ardfy -f- -r~r dydx + -7-5 #r

dxr dxdy dydx dy

^u v 2 .

^2u
,

6>
2
//

'

= *?** + ' *&** +&&
Similarly, we find,

-o d 3« d3
// , „ ,

d 3u _ , _ 33
z/ „

^jc
3 ^ ° /£eVy ^ ° dk/Zy8 J dy3 J

and so on. By observing the analogy between the exponents of

du, d 2
u, du3

, . . .

and those of the development of

(x + a), (x + a)2
,

(x+ a) 3
, . . .

we are enabled to write the value of dnu.

The student may apply this process to any example.
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CHAPTER XII.

DIRECTION OF CURVATURE. POINTS OF

INFLEXION.

CARTESIAN CURVES.

126. A curve is concave upward or convex upward at a point

according as the tangent at the point lies below or above the

curve.

Fig. 22, a. Fig. 22, b.

Thus, Fig. (a), the curves J/TVand M'N' are concave upward

;

and, Fig. (b), the curves ST, S' T' are convex upward at the

points T, P'.

127. Investigation for Direction of Curvature.

Let y =f(x)

be the equation of any curve ; then

is the slope of the tangent to the curve at the point (x,y). § 19.
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It is readily seen from Fig. (a), by examining either of the

dv
curves MN or M''

N

1

, that — increases as x increases ; hence
dx

dy

dx \_=f
r
(x)\ is an increasing function of x\ hence, § 28, Cor.,

dx
2 > 0.

On the other hand, the slopes of the tangents to the curves ST,
dy

S' T'', Fig. (d), are decreasing functions of x, i.e., — \j=/
r
(x)\

decreases as x increases ; hence, at such points as P, P r

J2

y
dx2

<o.

Hence, in general, a curve y —f(x) is concave upward or con-

vex upward at the point (x, y) according as -7-^ > or < than o.

128.* Point of Inflexion. The point at which the direction

of the curvature changes is called a

point of inflexion.

Such a point is P, Fig. 23. Since

the curvature changes from concavity

to convexity upward, or from con-

vexity to concavity upward at a point

of inflexion -— changes sign from -f-

to — , or from — to + ; hence at the

point

Fig. 23.

dx"
or 00.

To determine, therefore, whether any given curve has a point

of inflexion we obtain the second derivative from its equation,

* Sluze, in 1659, pointed out a general method for determining points of inflexion by

reducing it to a question of maxima and minima, viz., by investigating for a maximum or

minimum intercept made by a tangent on any axis from a fixed point.
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and equate the result to zero or infinity. The roots of this

equation are the critical values. If for values of x a little less

d 2yand a little greater than any one of these critical values -=-^

changes sign, then for that critical value there is a point of

inflexion.

To illustrate, let us examine the equation

6y = c (x — of
for a point of inflexion.

Here ——„ = c (x — a) = o,
ax1 /

.'. x = a is a critical value ; and as -^ obviously changes sign

as x passes through the value a the curve has a point of in-

flexion at (a, o).

EXAMPLES.

1. Determine the direction of curvature of the parabola

y1 = 2.pX.

Here ^ = -t.
dx2 f
d 2
y

For negative values of y, -^— > o ; for positive values of y,

d2y
-z-j < o ; hence the parabola is concave upward below the

^r-axis and convex upward above the ^c-axis.

2. Show that the hyperbola xy = m is concave upward in

the first angle and convex upward in the third angle.

d2y 2 m
Here

3. Show that 3 a2y — xz + 3 ax2 — 6 az = o has a point of

inflexion at (a, f a), and that the curve is convex upward on the

left of this point and concave upward on the right.
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4. Examine the witch y =
Sa*

x2 + 4a2
for points of inflexion.

Points of inflexion ( —=a, -ai
V3 2

2 3
—p=-Ci, —a
^3 2

5. Examine the logarithmic curve x = log y for direction of

curvature, and show that it has no point of inflexion.

6. Show that the " curve of sines " y = sin x has an infinite

number of points of inflexion, and that the ordinate of each is o.

7. Show that the curve - =

flexion at x = -
.

a t 2 a — x
has a point of in-

8. Find the abscissa of the point of inflexion in the curve

x
xy = a2 log - Am. x = ae*.

POLAR CURVES.

129. A polar curve is convex or concave to the pole at a

point according as the tangent to the curve at the point does,

or does not, lie on the same side of the curve as the pole.

Fig. 24.

Thus, Figs. 24, the curve MN is convex, and ST is concave

to the pole O.
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130. Investigation for Direction of Curvature.

Let r=f(0)

be the equation of either of the curves MN, ST, Figs. 24,

— MN and ST being any two curves referred to polar co-

ordinates. Let PB, P'B' , be two tangents drawn at any two

points P, P '; and let OB, OB' be perpendiculars let fall from

the pole on these tangents. From Fig. 24 (a) we see that as

r (OP) increases/ (OB) decreases, and from Fig. 24 (b) that

as r (OP) increases/ (OB) increases ; hence, in either case,

p = F(r),

and since p is a decreasing function of r when the curve is

convex and an increasing function of r when it is concave,

we have
dp—- < o or > o,
dr

according as the curve is convex or concave to the pole.

From § 78, we have

_ t
3-

I . .
/drV'

\/"+(5)

hence to investigate any curve r =/($) for direction of curva-

dv
ture at a given point we first obtain — from the equation of

. du

the curve and substitute the square of the value found in the

above value oip, the first derivative of the resulting expression,

(— ), in which the coordinates of the given point have been

substituted, will determine by its sign whether the curve is

concave or convex to the pole at the given point.

Thus let us examine the spiral of Archimedes r = aO for

the direction of curvature at the point (r, 6).
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Here --
Q
= a,

hence, p =
Vr> + a2

dp rs
-j- 2 #V

^ ~
(Vs + «2

)
f '

which is positive for all positive values of r ; hence the curve

is everywhere concave to its pole.

131. Point of Inflexion. Since the tangent to a curve at a

point of inflexion crosses the curve (see Fig. 23), the curve is

convex to the pole on one side of the point, and concave to the

dp .

pole on the other side ; hence, — changes sign from — to +,
dr

or from + to — ; hence, at the point,

dp—- = o or 00 .

dr

To examine a polar curve, therefore, for a point of inflexion

dp .

we obtain -4- as in the preceding article, and ascertain what
dr

values of r, if any, reduces this derivative to o or 00 . If such

dp
values of r exist we then ascertain whether or not — changes

dr

sign as r passes through this value ; if it does, the critical value

corresponds to a point of inflexion. Thus in the Spiral of

Archimedes, discussed in the preceding article, we find by
dp

equating — to o that

r = o and r = a V— 2

are critical values ; and by equating it to 00 that r = a V— 1

is another. As two of these values are imaginary and the other

(r = o) corresponds to the starting-point of the curve there is

no point of inflexion.
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EXAMPLES.

1. Examine the lituus, r29 = a, for direction of curvature and

for points of inflexion.

Here

=

dO 2 r(P 2 a

2 ar

V4 a2 + r4

dp 8 a3— 2 ar* 2 a (4. a2 — r4)
Hence, -±- = = = /- = o.

dr
(4 a

2 + r4y (4 a
2 + r4

)
5

.*. r4 — 4 <2
2 = o,

.'. r = \l2a.

Hence, when r < \l2~a, —- > o, .-. curve is concave to the
dr

pole ; and when r > VT^, — < o, .'. curve is convex to the
ar

dp
pole. Since — changes sign as r passes through the value

V2 a, that value of r corresponds to a point of inflexion.

2. Show that the logarithmic spiral r = a9 has no point of

inflexion, and that it is everywhere concave to the pole.

3. Show that the curve rO = a esc has a point of inflexion

. 2 a
when r =

4. Show that the curve r6m = a has a point of inflexion when

= Vm(i — m).

5. Show that points of inflexion on polar curves can be
d2u 1

determined by aid of the equation u + —- = o where u = -

.

6. By aid of the equation given in Ex. 5, show that the curve
f *J /J

r=(r—a)62 has a point of inflexion at (— , V3) ; also at
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CHAPTER XIII.

CURVATURE. CIRCLE AND RADIUS OF CUR-

VATURE. EVOLUTE AND INVOLUTE.

History.— Huygens, in the third chapter of his Horologium Oscillato-

rium (1673), defines evolutes and involutes, proves some of their more ele-

mentary properties, and illustrates his method by finding the evolutes of

the cycloid and the parabola.

132. The Measure of the Curvature, or more simply, The Curva-

ture of a curve, is the ratio of the rate of change of its direction

to the rate of change of its length.

Let a be the angle which

the tangent to the curve

MN at P, Fig. 25, makes

with the X-axis and let NP
= s

; then, since the direc-

X tion of a curve at a point

is the same as that of the

tangent, we have da. = rate

of change of direction of

the curve, and ds = rate of

Hence, by definition,

Fig. 25.

change of the length of the curve.

c =—~ ds

in which c represents the curvature of MN2I the point P.

To show how this ratio measures the curvature let us sup-

pose the curve MN to be generated by the point P moving

with any velocity v and carrying its tangent along with it as it
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moves. . Let us further suppose the curve SL (tangent to

MN and PT at P) to be generated by a coincident point P
moving with the same velocity v. Then, by definition, the

curvature of SL at P is

f
da

c = w
in which da is the rate of change of the direction of PT, the

tangent to SL, at P, and ds is the rate of change of the length

SP = /. But since the generating points move with the same

velocity, we have

v = ds = ds
r

§17;

,
C da

hence, -, = -yj
c da

i.e., the curvature of two curves at any two points are to each

other as the rates of change of their direction.

For example, let da = 30 a second and da = 6o° a second

;

then

L - 3^° - I
C OO 2

or c' = 2 c,

i.e., the curvature of one curve is twice that of the other.

133. Circle of Curvature. Radius of Curvature.

The circle tangent to a curve at a point, and having the same

curvature as the curve at the point, is called the Circle of Curvature,

for that point. The Radius of Curvature is the radius of the cii'de

of curvature, and the Center of Curvature is the center of this

circle.

Thus, Fig. 26, if the circle CPP r
has the same curvature as

the curve NM at the point P, CPPr

is the circle of curvature

for that point ; OP, the radius of CPP' , is the radius of curva-

ture, and the center O, the center of curvature.

It is obvious that the circle of curvature and radius of curva-
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ture vary from point to point as the curvature of the curve

changes.

Since, by definition, the circle of curvature CPP' and the

curve JVM have the same curvature at P, we have, § 132,

da

ds

for the curvature of the circle at P. But if we suppose the

length of the arc PP'(= ds) to be the velocity with which the

Fig. 26.

generating point passes through P, then POP' = a — a repre-

sents the angular velocity of the tangent, i.e., the rate of change

of its direction. Hence,
POP'= da.

Let OP = p, then from the circle,

arc PP'
POP' =

i.e. da =

Hence,

ds

P

ds 1

da C

i.e., the radius of curvature is the ?'eciprocal of the curvature.
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ds
r

Cor. i . If p — -j-j be the radius of curvature at any other
da J

point of the same curve, or at some point of another curve,

ds

da
we have ^ =

P

da'

ds"

da

p ds' c
i.e., — = —— = —

.

p aa c

ds

Hence, the curvatures of a curve at any two points are in-

versely as the radii of curvature at the -points.

134.* Expressions for the Radius of Curvature,

i. In Terms of Rectangular Coordinates.

Remembering that ds = {do? + dy2
y, § 18, and that

dy
a = tan-1 —- , § 19, we have

dx

ds
P = da

(dx2 + d/y

i
dy

^/tan- 1

d̂x

(dx2 + dy2

f
d2

y
dx

1 + W
dx2

* Equation (i) § 134, was first given by John Bernoulli in 1701.
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i+(grj'
hence, after reduction p = - ^

—

—

—

(i)
d2

y
v 7

dj?

If j is taken as the equicrescent variable, we have (Ex. 9,

P ' I04) '

$ wf

Cor. If in (1) -
r-= = o, p = 00 ,

.". £ = — = o : i.e., at a point
#jr p

of inflexion the curvature is zero. See § 128.

2. In Terms of Polar Coordinates.

1 r df) r
In this case ds = (r2d02 + dr2Y, §76; tan <£ = —- = —.

dr dr
r —

.•. <f> = tan
-1 —- : a = 6 + <£• See § 77. */0

Hence, p = —
da

_ (fd& + dr2

)
h (W02 + </r*)*

d(0 + <t>) dd + dcf>

dO + </tan- 1 4-
dr

dO

(r2dP + dr2

f
dr . d2r— dr — r
dO d$

d0 +

dr\2

dOj

r2
1 +

/drV

\de)
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Hence, reducing, we have

P= < Wi (X)

2
A/A* rfV

If r is taken as the equicrescent variable, we have (Ex. 8,

P- io3)>

r
+r U

d~0
2
/d$\ 3 dd ' ' ' '

W
dr2 \drj dr

Cor. Since p = oo at a point of inflection (§ 134, Cor.), we
/dr\2 d2r

have, from (1), r
2 + 2 1-^1 — ^-ttw = o as a necessary condition

for such a point.

135. At a point of Maximum Curvature the circle of curvature

lies e?itirely within the curve.

For on either side of the point the curvature of the curve is

less than at the point, while the curvature of the circle of curva-

ture is the same on either side of the point of tangency as it is

at that point. Hence, the circle of curvature lies entirely within

the curve.

Similarly, we may show that at a point of minimum curvature

the circle of curvature lies entirely without the curve.

Cor. Since, in general, the curvature of a curve at a given

point is less than at the preceding consecutive point and greater

than at the following consecutive point, or vice versa, we have,

as a general proposition, that the circle of curvature crosses its

curve.
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EXAMPLES.

1. Show that the curvature of the circle x2 + y
2 = a2

is con-

stant, and find its radius of curvature for the point (x, y).

Here, c =

d^y

i dx2

' \-*m
From the equation x2 + y

2 = a, we obtain

Hence,

dy X X

dx

d2y _

y \la2 -x2

a2 _ a2

dx2 y VO2 - x2

)
3

a2

(a2 - x2

f i

( #2 ) § a

a" — x*

Hence, the curvature of the circle is constant, as previously

assumed, and is the reciprocal of its radius.

Again, p = — • .*. p = a,

i.e., the radius of the circle is its radius of curvature.

2. Find the radius of curvature of the logarithmic spiral

r = ^e
.

(dr\2 J f

Here, p =—
dr\2 d2r
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From the equation we have

dr . d2r „ „

d0~ ' dd2 ~
'

e*9 + 2 a2e2ad - a2
e
2a9

= r Vi + d2
.

Find the radius of curvature of each of the following

:

2 \J(x + tf)
3

3. y = 4 ##. p =

4.
jc

2
y

2

-2 + ^2
= I -

5. r2 = #2 cos 2 0.

6. r = a(i — cos#).

p_ ^ 4

P
3 r

p = f V2 ar.

7. y = -(<?«+ e~"). p = - (e* + <T 5
)
2
.

2
v

4
v 7

8. x = a vers
-1 V2 ay — jj/

2
. p = 2 V2 #y.

9. 2 xy = dr. p = —— •

a2

2 2 2 3/

10. x 3
-\- y

3 = a 3
. p = $yaxy.

y

11. ^
a =sec-« p = <z sec —

a a

J J
12. r=«sec -• p= 2«sec -•

2 2

136. Evolute. 77z<? Evolute of a curve is the locus of the centers

of the circles of curvature of the curve.

137. Involute. The Involute is the curve whose centers of

curvatureform the Evolute.

Thus, if the curve N' (fS is the locus of the center of curva-

ture of the curve NPM, N' C?S is the evolute of NPM, and

NPM is the Involute. See Fig. 27.
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138. Equation of the Evolute.

Let_y =/{x) be the equation of involute NPM (Fig. 27), and

let (f be the center of curvature corresponding to any point P
on the involute. Let (x, y), (x',y'), be the coordinates of P
and (7, respectively. It is required to determine (1st) the

Fig. 27.

values of x' andj/ in terms of x and y, and (2d) to determine

from these values in conjunction with the equation of the invo-

lute, y =f(x), a general relation between xr and y\ i.e., to

determine the equation of the evolute.

1. To determine the coordinates of the center of curvature (x
f
,y'y

Let <yp = p, and draw PD ± OB. Since C^'isJ-to the

tangent PT, we have DC?P = a. We have, therefore,

OB = OC — PD = OC - p sin a.

But OB = x\ OC = x, sin a = -£ =
, (§ 18).

Substituting these values together, with that of p, as given in

§ 134, we have,

. \ \dxj \ dx , .

x = # — \„ (1)
d 2y
dx2
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Again, OB = PC -f- D
= PC + p COS a.

But <9'.Z? = /, ^C = j/, cosa = ^ =

dy^ 2

\dx j* /=y+ —d^r •
(2)

dx*

2. To determine the equation of the evolute.

If we now combine with (i) and (2) the equation of the

involute,

y-Ax
) (3)

eliminating the variable coordinates x and y of the involute,

we shall have a resulting equation in xr and y
r
. The equation

thus obtained is obviously that of the evolute.

To illustrate, let us find the equation of the evolute of the

parabola, y
1 = 4 ax.

Differentiating we obtain

*! =
\ft ,

d%y = 1
1
/Z

Hence, #' = # +

a I A a

v£
, # — 2 #

i.e., # = 3 # -}- 2 tf, # =

Also, 7 = j — m
f

i.e., /=-—-, y = - (4 a
2/)*.

4 #
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Substituting these values in the equation of the parabola, we
have,

x — 2 a

i.e., 27 ay"1 — 4 (ptf — 2 df

is the equation of the evolute.

The semi-cubic parabola CDE is the locus of this equation,

the branch DE being the

E evolute of OB, and DC the

evolute of OA.

Since y
r — o, gives x'=

2 a, the vertex D is at a

distance from the origin equal

to the semi-latus rectum of

the parabola y2 = 4 ax.

An inspection of the figure

shows that OD is also the

radius of curvature of the

curve at o, and since it is

evidently a minimum, the curvature of the parabola is a max-

imum at the origin.

139. Properties of the Evolute.

1 . A tangent to the evolute is twrmal to the mvolnte.

Let N'S, Fig.

29, be the evolute

and NM the in-

volute. Let PA
be a tangent at

any point P (V,

y
r

) of the evolute,

and TA a tangent

to the involute at

the point A(x, y) where PA cuts the curve. We wish to show

that PA is J_ to TA ; i.e., that

T
Fig. 29.

-X
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TV
r

Ia = \- a.
2

From § 138, we have

/

=

y + p cos a
>

x'= x — p sin a.

Differentiating these equations, we have

dy' = dy — p sin ada -f- cos adp,

dxr = dx— p COS ada — sin a//p.

ds dy ds dx
But p sin cu/a= —

—

r da= dy, and p cos ada = ——— da = ^r,
da dfr da ds

§§ 133, 18; hence,

dy'= cos a</p (a)

dx'= — sin adp
(J?)

therefore, by division,

dy
——, = — cot a

;

dx

i.e., § 19, tan a' = tan
j—f- a

) ;

/
7r

.*. a = |- tf,

2

and the tangent to the evolute is normal to the involute.

2 . 77^ difference between two 1'cidii of curvature is equal to the

length of the a?r of the evolute between the corresponding centers of

curvature.

Thus, Fig. 29, we wish to prove that

P'A'- PA = PP'.

Squaring and adding equations (a) and (//), we have

dy' 2 + dx'2 = dp2 (cos2 a + sin2 a)
;

hence, ds'2 = dp2
;

.*. ds'= dp,

i.e., the rate of change of JVP(= s') is equal to the rate of change
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of PA (= p) ; but since any interval of time may be regarded as

a unit of time, we have ds'=PP' and dp = P'A'—PA ; hence,

P'A'-PA=PP'.

140. The properties of the evolute demonstrated in the pre-

ceding article afford a method of describing the involute

mechanically when the evolute is given. Take a string of any

length, and wind it around the evolute JV'S, Fig. 29, one end of

the string being at JV. If we place the point of a pencil in a

loop of the string formed at N, and unwind the string, the pen-

cil-point will describe the involute. For the string is always

tangent to the evolute N'S and normal to the involute JVM;

also, the difference between the unwound lengths in any two

positions, say P'A' , PA, is evidently equal to the arc of the

evolute {PP') between the points of tangency.

Since the curve JV'S is usually of indefinite length, there may

be an infinite number of involutes of which it is the evolute

;

there can, however, be only one evolute of which it is the

involute.

EXAMPLES.

1. Find the evolute of the circle, x2
-f- y

2 = a2
.

dy x d2
y a2

dx y dx2
y

z
Here,

x*\ x

y
2
J y

Hence, x'= x — = x — x = o.
a2

7
X2

f
y = y — =y - y = o.

7
Hence, the evolute is a point.

/
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X2 V2

2. Find the evolute of the ellipse, — + -^ — i.
cr tr

dy fix d2
y b4

dx a2y dx2 a2
y

z

Hence, *>= <*
~J>* , /= -<*-?*

Substituting the values of # and _>> drawn from these values

of x' and y in the equation of the ellipse and reducing, we

have
x'l y§ _ (a2 - F)%
7 2. ' 2 2/2
#3 #3 tf3#3

for the equation of the evolute.

3. The hyperbola,- -- = i. ^ = ^

—

rî —
ar tr fa a* a^b*

4. The tractrix, x = a log V#2 — JP
2
, has for its

evolute the catenary, y= - (^ — e a
).

2

5. The cycloid, x = a vers 1
\J2 ay — y

2
.

xr= a vers" •i(_j)_V2 ay-y.

6. The hypocycloid, (-)
3

+ (-) = i.

a/+y\ /*'-

/

y=2

7. The equilateral hyperbola, 2 jy; = <z
2

.

1= 2.
/*'+yy /x'-yy
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CHAPTER XIV.

CONTACT OF CURVES. ENVELOPES .

History.— Envelopes may be said to have originated with the investi-

gations of Huygens on evolutes and those of Tschirnhausen (i63i-i7o8)on

caustics.

Leibnitz laid the foundation of the theory in a memoir written in 1692.

141. Orders of Contact. Let y = <j> (x) and y = ^ (x) be the

equations of two curves, and let x = a be the abscissa of a

common point ; then

cf> (a) = if/ (a),

i.e., their corresponding ordinates are equal. If we suppose,

moreover, that the curves touch each other, we have

4>'(a) = tf(a),

i.e., the curves have a common tangent at the point. When
these conditions are fulfilled for any two curves they are said

to have a Contact of the First Order.

If
(f>

(a) = iff (a), 4>'(a) — ^'00* and, also,

4>"(a) = «A»,

then the curves not only touch each, but their curvature at the

common point is the same since A— -1 is a function of the

first and second derivatives only. See § (134), 1. Under these

conditions the curves are said to have a Contact of the Second

Order.

If cf>(a) = if/ (a), 4>'(a) = <//(», <f>"(a) = $"(a), and also,
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the curves are said to have a Contact of the Third Order ; and

so on. Hence, generally, if

4> (*)=*(«), #'(*)=f(4 *"(*)=» • • • <r(a)=r (*) . • • (*)

the curves have a contact 0/" //;<? nth
order.

Cor. i . A contact of the nth order involves n -f- i conditions.

Cor. 2 . As only n + i conditions can *>z general be imposed

upon a locus whose equation contains n -{- i arbitrary constants,

the highest order of contact to such a curve is in general the

nth
. Thus the straight lines Ax -f- By + C = o, having only

two arbitrary constants, can have a contact of the ist order ; the

circle (x — a)2
-f- (y — <£)

2 = ^2 having three arbitrary constants

can have a contact of the second order.

142. Two curves in contact do or do not cross each other at their

co7?imon point according as their order of contact is even or odd.

Let y = <f>
(x) and y = \p (x) be the equations of two curves

having the nth order of contact, and let x = a be the abscissa

of their common point P, Fig. 30. Let us add a small incre-

ment // to a, then

<f>
(a -\- h) — tfj (a + h)

is the difference between the ordinates of the two curves corre-

sponding to the same abscissa x = a + h. Expanding both
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terms in the expression by Taylor's Theorem, and collecting

like derivatives, we have (since <£ (a) = \j/ (a))

$(«+*)- f (a + h) =
1
4>'(a) - f(a) \h + \

4>"(a) - ^\a) ]
~
\i

+^'»-f»j^+ ( t)

i . If n is even,

then 4>'(a) = i//(V), <£"(") =* tf'(a), . . . cf>
n
(a) = f1

(a),

and the terms in the second number of (i) successively vanish

until the (// + i)
th term is reached. As this term contains h

affected with an odd exponent (// + i) its sign will change with

/i, and if h is taken sufficiently small the numerical value of this

term will exceed the sum of all the other terms. Hence the

sign of the second member, that is, the sign of the difference of

the ordinates, changes with the sign of h ; hence the curves

cross each other. In Fig. 30, the curves MN and S' T' illus-

trate this case, P being the point of contact.

2. If n is odd,

then the first term that does not vanish contains h affected with

an even exponent (;/ + 1). If this term is made to control in

the second member by giving h a very small value, then the

second member, and hence the difference of the ordinates, will

not change sign with h ; hence the curves do not cross each

other.

The curves J/TVand ST illustrate this case.

Cor. 1. Since the smaller the difference between the ordi-

nates <£ (a + K) and \p (a -f- h) for any small value of h the closer

the curves approach coincidence near P and since <£ (a + K)

— \p (a + /j) becomes smaller and smaller as the number of

terms in the second member of (1) decreases, it follows that

as the order of contact increases, the c/oser the curves approach

coincidence.
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143. At a point of maximum or minimum curvature the circle

of'curvature has a contact of the third order.

Let y=f(x) (<i)

and (x - a)2 + (y - bf = r2
(/>)

be the equation of the curve and circle of curvature, respec-

tively.

From § 134 (1), we have

d2
y

dx2

By condition,

Hence,

Mx

dc
~r = °« § 112.
dx

dc } \dxj ) dxz dx2
2 ) \dx) ) dx dx2

dx c fdyY

)

3

(
\dx) C

dy (d2yy

Solving, we have —
3
= —-

.

Differentiating (//) successively, we have

/ n dy
x -a + (y-o)— = o,

' ^/jc
3 dx dx2 dx dx2



Substitutirlg the value of y — b drawr

with respect
dz
y

dx*'
we have

d\y

dy td2

y^
3 dx [dx2

/

dxz dy2

dx2
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b drawn from (</), and solving

<<)

which is identical with (c). The third derivatives are therefore

equal, and the contact is of the third order.

We may obtain the same result in the following very simple

manner. Since at the point the curvature is a maximum or a

minimum the circle of curvature does not cross the curve, §135 ;

hence, § 142, 2, the order of contact is odd. But the expression

fy
dx2

c =

is the expression for both the curvature of the circle and the

curve at the point of contact; hence, thejirst and second de-

rivatives drawn from their equations are equal ; hence, the order

of contact of the curves is, at least, the third. This article and

the one which follows explain the significance of the term " in

general," used in § 141, Cor. 2. The general statement there

given admits of exceptions at certain singular points of curves.

144. The tangent to a curve at a point of inflexion crosses the

curve.

Let y =/(x) (a)

and Ax + By -f- C = o (b)

be the equations of the curve and its tangent at a point of

inflexion.

Then, we have from (a),

d 2
y __

dx2
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as a condition for a point of inflexion, § 128. From (b) we have

also,

d 2
y _

d*x~°'

hence, at a point of inflexion, the order of contact of the curve

and its tangent is the second ; hence the tangent and the curve

cross each other, § 142, 1. See Fig. 23.

EXAMPLES.

1. Find the order of contact of the curves,

(a) y = 2 x2
, and (Ji) y = 3 x — x2

.

Here (1, 2) is their common point. Differentiating and sub-

stituting, we have,

from (a) — = ax = 4, from (fr) —- = 7. — 2 x =\.
v J dx v ; dx °

.*. The curves intersect at the point (1, 2).

2. Find the order of contact of

y = ax3
, y = 3 ax2 — 3 ax -f- <z.

Combining the equations we have (1, a) for the common
point ; then

-=
3 ax

2 = 3 a,

d2y c *——- = o ax = o a,
dxr

Hence the curves have the second order of contact.

a2

3. What order of contact has the circle,(#— § df+

(

y— %df=

—

>

—- = ax -

dx
- 3 a = 3 a -

^=6 a.
dx2

d3
y _

dx3
~

and the parabola, x*+. y*= a&, at (- , — y
\4 4/ ^//x. Third.
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4. Find the equation of the circle of curvature of the curve,

j'
4 == 4<2

2
jc

2 — x*.

5. What is the highest order of contact possible to two

conies ? Ans. Fourth.

6. What is the highest order of contact possible to the ellipse

and parabola. Ajis. Third.

7. Given xy=^x — i and jy—x— 1 = a(x — i)
2

, find the value

of a in order that the two curves may have a contact of the

second order.

145. Families of Curves. Curves whose equations differ o?ily in

the values of the constants which enter them are said to be of the

samefamily.

Thus the equation (x— df -\- (y—b)2 = r2
is the equation of a

family of a circles whose positions and magnitudes depend upon

the values of the constants a, b, r. Again, the equation Ax +
By -\- C = o is the equation of a family of straight lines whose

directions and positions with reference to the axes depend upon

the values of A, B, C.

The constants which enter equations are called Parameters,

and if one or more of these are supposed to vary, they are

called Variable Parameters.

146. Envelope. The Envelope of afamily of curves is a curve

tangent to each ?7iember of thefamily.

Thus, if we assume a to be the variable parameter in the

equation (x — a)2 + (y — b)
2= r2

, b and r remaining constant,

we have (Fig.- 31) a* series of circles, all of whose centers are on

the line MJV, at a distance b from the ^-axis. The envelopes

of this family of circles are evidently the
||
lines AB and EF,

whose equations are

y = b ± r.
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If we assume b to vary, a and r remaining constant, we have

a family of circles whose centers lie along the line LK at a dis-

tance a from the jy-axis.

The envelopes in this

case being CD and

HG, whose equations

are
x = a ± r.

Similarly, we

suppose a and

vary, r remaining con-

stant, or a and r to

vary, b remaining con-

stant, etc. ; or we may
suppose all three to

vary at the same time.

In each case we have

a family of circles, and a curve tangent to the members of that

family is called the envelope.

It is evident, in this case, that if r alone varies there is no

envelope.

147. To determine the equation of the envelope.

Let u =f(x, y, a) = o . . . (V) be the equation of any one

(MJV) of a family of curves,

a being the variable param-

eter, and let u =f(x, y) =
o . . . (7/) be the equation of

the envelope ST. Let P
(x, y) be the point of tan-

gency.

Since the curves are tan-
Fig. 32.

1 ! / N
gent to each other at (x, y)

the first derivatives drawn from their equations must be equal

;

hence differentiating each we have,
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. du du du
du = — dx -\—r dy -\

—— da = o.
dx dy da

du du da

dy dx da dx

dx du

dy

a i r / 7N 7 du
7

du .

Also, from (a), du = — ^/x -f — dy.
dx dy

du

dy dx

dx du

~dy

(")

if)

But (e) and (/*) are equal ; hence equating and reducing, we

have
du da

da dx

du

da
= ° (g)

is a condition which the envelope must fulfill. If, then, we com-

bine (<§
r

) and (V), eliminating a, we have an equation expressing

the relation between x and y for every such point as P\ hence

the equation, thus ascertained, is the equation of the envelope.

To illustrate, let us find the envelope of the family (x — a/

+ (y — by = r2, in which a is the variable parameter.

Here u = (x — df -f- (y — frf — r1 = o

;

du
.'. — = — 2 (x — a) = o

;

.•. a = x.

Substituting this value of a in (x — df -\- (y — b)2 = r2
, we

have

y = b ± r,

as before. See § 146.
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Similarly we may show that

x = a ± r

is the equation of the envelope when b is the variable param-

eter.

148. The evolute of any curve is the envelope of its normals.

We might readily infer this from § 140. We may prove the

fact, however, as follows :

From § 70, we have

y-y = -j/(x ~ x )>

, ,. dy
r

. , v

or, (y — y ) —-, + x — x = o (a)

for the equation of the normal to any plane curve whose equa-

tion is expressed in Cartesian coordinates. Taking x as the

variable parameter and differentiating, we have

,
<*y d/*

Solving (p) with respect to y and substituting in (a), we have,

" y*7
2,/

dx7*

fdyrV\ dy'

r I \dx'J ) dxr

x = x ly 7

dxf2

for the coordinates of any point on the envelope. But these

values are identical with the coordinates of the center of curva-

ture as found in § 138. Hence the envelope of the normals is

the evolute of the curve.
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EXAMPLES.

P
1. Find the equation of the envelope of the lines, y = sx + —

2 j-

i" being the variable parameter.

Here u =y — sx —
2 J

-

1
^7/ ^ c P

hence, —- = — x + ^ = o : .*. .r = -=—
;

7?.f 2r 2 .*

i.e., y
2 = 2/jf,

a parabola. The given equation y = sx -\ will be recog-

nized as the slope form of the equation of the tangent to the

parabola ^ = 2px. See Ana. Geom., p. 96. The parabola is,

of course, the envelope of its tangents.

2. Find the envelope of the family of lines represented by

each of the following equations :

y = SX ± A
\/s

2a2 + ^, y = SX ± \ls
2
(l

2 — b2.

x2 y2 x2 y2

-2 + j2
=1

'

a2 ~l?
Aus. —

-f — _i, — — — — 1.

3. The slope form of the equation of the normal to the parab-

ola y
2 = 4 ax is y = (x — 2 a) s — as? ; find the equation of

the evolute of the curve. By § 148, the evolute is the envelope

of the normal. We are required, therefore, to find the envelope

of the series of lines represented by the equation y = sx — 2 as

— as3 , s being the variable parameter.

du
Here — = — x-\-2a-\-^as2 = o-

1

-4x — 2 a
m

3 a
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y = (x — 2 a) y -

i
—

= 3"\

— 2 a

3 a v x — 2 a

3"

"-)•-<x — 2 a

3 a

—vp^y
.-. 27 ay2 = 4 a2 (x — 2 a)3

,

which is the desired equation. We have previously deduced

this equation by the direct method. See § 138 and figure 28.

4. The hypotenuse of a right

triangle changes its position,

its length remaining unaltered
;

find its envelope.

Let OBA be the triangle,

BA being any one position of

the hypotenuse.

Let BA = c, a constant, OB
= b, OA — a. Then the equa-

tion of BA is

Fig. 33.

and by condition,

x y

a

a*+P=c2

Let us take a as the variable parameter. Ordinarily we

would find the value of b in terms of a from the given condi-

tion, and substitute in the equation of the line, and then pro-

ceed as in preceding examples ; but in this case, as in others

with which we have had to deal, the simpler process is to sub-

stitute after differentiation.

Since b is a function of a, we have from (;#),

du x y db

da a b2 da
= o (/)
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from (///), 2a -{- 2 o— = 0;

da b

This value in (/) gives, after reduction,

Jpx = az
y (r)

We are now to eliminate a and b, having the relation (/«),

(/z), and (r).

From (//) and (r) we find,

ex* cx^
a = -

T £ =

These values in (;;/) give, after reduction,

X5 -\- y* = c-i

for the equation of the envelope. This curve is the four-cusped

hypocycloid, and is generated by a point on the circumference

of a circle as it rolls on the concave side of another circle whose

diameter is four times that of the rolling circle. This problem

was discussed by John Bernouilli in 1692.

x y
5. Find the envelope of the lines—f- — = 1, subject to the

a b

condition that 's/a + V^ = V^, a constant.

Ans. x^ -\- y* = c*.

6. Prove by direct process that the envelope of the linesxy—\- ^ = 1, subject to the condition ab = 2 c is 2 xy == c, a hyper-
a b

bola.

7. Find the envelope of all ellipses having a constant area

(7r£
2
), the axes being coincident. Ans. 2 xy = ± a.
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CHAPTER XV.

SINGULAR POINTS.

History.— Joseph Saurin (1659—1737) was the first to show now the

tangents at multiple points of curves could be determined by analysis.

Newton discussed double points in a plane and at infinity in his " Optics '

(1704).

Rules for finding and discriminating multiple points were given by Mac-

laurin in his "Treatise of Fluxions" (1742).

149. Singular Points are those points of a curve having some

peculiar property not possessed by the other points of the curve.

Thus, the point of inflexion is singular in that it is the point

where the direction of curvature changes,— a property not pos-

sessed by the other points of the curve. With this point we

have already had to deal (§ 128). It is now our purpose to

consider in order the more common of these singular points.

150. Multiple Points are those points of a curve common to two

or more of its branches.

As the branches must either pass through the point or simply

meet at the point, there are two classes

:

1. The branches pass through the point.

(2)

Fig. 34-

(a) If the branches inte7'sect, the point is called a Point of In-

tersection ; and the point is a double, triple, or quadruple . . . point
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according as two, three, or four . . . branches pass through it.

Figures i and 2 illustrate a double and a triple point. Since the

curve has as many tangents at a point of intersection as there

dy
are branches, it is obvious that — must have two different val-

ues at a double point ; three different values at a triple point

;

and so on.

(b) If the branches touch as they pass through the point, it is

called a Point of Osculation ; and this point is of the first species

or second species, according as the branches lie on opposite or on

the same side of their common tangent.

Fig. 34-

Thus, Figs. (3) and (4) are illustrations of osculating points

dy
of the first and second species. Here — has two equal values.

2 . The branches 7neet at the point.

(a) If the branches have a common tangent at the point, the

point is a Cusp of the first or second order, according as the

branches lie on opposite or on the same side of the tangent.

Fig. 34.

(6)

dy
Here, also, — has two equal values.

dx



Fig. 34 (7)-
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(f) If the branches have different tangents at the point the

point is called a Point Saillant, or Shooting-Point.

dy
Here — has two differe7it values, It

may be remarked, however, that shoot-

ing-points occur only in loci whose equa-

tions are transcendental. Such points

are usually determined by inspection.

151. Isolated or Conjugate Points are

those points which are isolated from the

curve, but whose coordinates satisfy its equation.

As the curve has no direction at an isolated point, -P(x, y~),

dy
Fig. 8, it is obvious that — has an imaginary

value at such a point. But imaginary values

arise from the presence of radicals with even in-

dices ; hence, if — has one imaginary value it p.

has necessarily two such values.

152. The Point d'Arret, or Stop Point, is a Fig. 34 (8).

point at which a branch of a curve stops. This

point, peculiar to transcendental curves, is usually determined

by inspection.

153. Investigation for Singular Points. Let u =f(x, y) = o

be the rationalized equation of any plane locus ; then §121,

Cor. 1,

du

dy dx

dx du

dy

dy
We have found (§§150, 151) that —must have more than one

value in all cases of multiple and isolated points. But, since
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differentiation of a rational equation cannot give rise to an irra-

tional expressi

(V, _/) unless

tional expression,— can have only one value for any given point

dy o
m

dx o

,
du du

i.e.. unless -=- = o, and —- = o.
dx dy

Hence, since the point (x',y') satisfies the equation,/"^, y) = o,

du du
if u = o, — = o, — = o,

•or dy

for that point then it maybe a multiple or isolated point; i.e., x'

and y
r
are critical values which require investigation. Further

investigation consists in evaluating the expression

du-

dy~\ dx

dx\(x)yf) du

dy

o

o

(a/, ?/)

Referring now to the figures and definitions of §§ 150, 151,

we see

:

dy'
(a) If —— has two or more unequal values, and y is real for

x = x' ± /?, h being a small increment, the point is a point of

intersection. See § 150, 1, (a).

dy'
(b) If -=—

t
has two or more unequal values, and y is real for

x = xr
-\- h (or x = xr— n), and imaginary for x = x — h (or

x = xf
-\- /i), the point is a shooting-point. § 150, 2, (Z>).

dy'
(e) If -^—, has two or more equal values, and y is real for

x = x' ± h, the point is an osculating-point. § 150, 1, (£).
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dV
(d) If —. has two or more equal values, and y is real for
v 7 dx

x = x' -f- h (or x = x'— h) and imaginary for x = x'— h (or x

= x' -\-h), the point is a cusp. § 150, 2, (a).

To determine in the last two cases, (c) and (d), whether the

point is of the first or second species (Figures (3), (4), (5), (6)),

usually the simplest way is to write the equation of the tangent

dV
y — y'= -j-, (x ~ x )> an(i compare the ordinates of the tangent

for x = (x
f+ X) or x = x'— h with those of the curve for the

same abscissa. If the ordinate of the tangent exceeds (or is

less than) the corresponding ordinates of the curve, the point is

of the second species ; otherwise it is of the first species.

(e) If -j-
f
has an imaginary value, and y' is real when x = x',

the point is isolated.

While the above statement is true, yet the converse, viz., that

dyf .

at an isolated point (x
r

, y
r

), ——, is imaginary, is not necessarily

true. For at such a point y is necessarily imaginary, when

x = x' ± h (/i being some small quantity). Now, by Taylor's

Theorem, we have

y ='/<V ± K) =/<V) ±/'(V) h +/"(*')
I
± • •

Hence, y is imaginary when any derivative in the second

member is imaginary.

dy
Hence, y may be imaginary while — (

y =f'(x''
s

j) may be real.

In examining, therefore, a given curve for isolated points the

simplest and most satisfactory test is, after determining the

critical values as above explained, to substitute values (x ± n)

a little less and a little greater than these in the original equa-

tion, and ascertain if they render y imaginary.
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EXAMPLES.

1. Investigate the lemniscata for singular points.

Here,

and

u = (x2 +ff - (fix2 ~f) = o,

— = 4 x (x2 -f- jf) — 2 a2x = o,

— = 4 y (x2 -f- y
2
) + 2 tf

2
_y = o.

Solving the last two equations, we find,

(o, o), FV2", oj, f-^VI, oj,

Fig. 35-

to be critical points. Of these,

however, the first (o, o) only

satisfies the condition u = o

(§ 153). We are, therefore, to

dy
evaluate the first derivative —

ax

which takes the illusory form -

for the point (o, o).

That is,

dy

dxJ 0,0

dx

bu

dy_

4 xs
-J- 4 x}2 — 2 a2x

4 x2y + 4-jfi + 2 a2
y 0,0

hence,
0,0

dy

dx

12 x2
-f- 4(2 ocy——\- f-\— 2 a2

a[xz——(- 2 yx)-\-i2 y——h 2 or —

-

\ dx J dx dx

.'. (—
J

= 1 when x = o and 7 = 0;

2 a'

2 ac

0,0
dx

dx
= ± 1,
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Therefore the curve has two non-coincident tangents at the

origin. Therefore, since the equation of the curve is algebraic,

the origin is a double point of intersection. The values of the

derivative (± i) show that the tangents are inclined at angles

of 45 and 135 to the *-axis.

2. Show that the curve ^ = x* (1 — x2
) has a double point of

osculation of the first species at the origin.

Here, u =f- X4 + X6 =: O,

du

dx
6x* -4^ = O,

bu

dy
2y-= 0.

Fig. 36.

We see that the partial derivatives give (o, o), a point of the

curve, as a critical point

;

dy 6 x5 — 4 xz
~

dx
hence,

dy

dx

2 y

30x4 — \'zxL

JO.O

dx
0,0

o

~dy

dx

IT- dx
= ± o for the point (o, o).

Hence, the curve has two coincident tangents at the origin,

which coincide with the ^-axis. Hence the point (o, o) is a

double point of osculation, or a cusp.

Resuming the equation, f- = x4 — xG
, we have,

y = ^ a2 vi x1

which, for all values of x less, numerically, than 1, give real

values for y; hence § 153, (V), (o, o) is a point of osculation.

Again, since the equation shows that the curve is symmetrical,

with respect to the A>axis, i.e., to its tangent at the origin, the

origin is a point of osculation of the first species.
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3. Show that the curve y
2 — xz

{\ — x) has a cusp of the first

species at the origin.

u = y* — xz
-f- oc

4

du

dx

du

dy

= — 3 x? + 4 xs

= 2 y = o.

Fig. 37-

.*. (o, o) is a critical point.

du

dy dx 3 - 5>n
4 xa — 3 ^r o

dx du 2 J' 0,0 °

dy
0,0

dy i 2 JT
2— 6 X~ O

dx
2 ^ dy

2
*/.# 0,0 dx

\dx)
o.

^
rt^

: o, at the origin.

Therefore, at the origin (o, o), the curve has two tangents

coinciding with the .r-axis.

From the equation of the curve, we have,

y = ± V^3
(i — x).

Hence, since x cannot be negative, the curve is situated in

the first and fourth quadrants, and is symmetrical with respect

to the x-axis. Hence the origin is a cusp of the first species.

4. Show that the cissoid (2 a — x)f = x5 has a cusp of the

first species at the origin.

5. Show that (y — x2

)
2 = x* has a cusp of second species at

the origin.

6. Show that the semi-cubic parabola ay* = xz has a cusp of

the first species at the origin.
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y i

7. Show that the cycloid x = a vers
-1 V2ay—y2 has an

J a

infinite number of cusps of the first species.

8. Show that the curve a (x2 + f) = xs has a conjugate

point at the origin.

u = ax2
-f- ay

2 — x3 = o.

du

dx
= 2 ax — 3 x2 = o.

.*. (o, o) is a critical point.

dy

dx
3 xz — 2 ax

2 ay

6 x — 2a'

0,0 ^

Fig. 38

I

dy

dx

JY= - I; . or £ = ± V=I.

Hence, the origin is a conjugate point. See (<?) § 153.

Otherwise, thus : Solving the equation, we have,

y z= -j- x x — a

a

This equation is satisfied for the point (o, o). But y is

imaginary for any negative value of x and for any positive

value of x less than a ; hence (o, o) is isolated from the curve.

9. The curve y
2 = x (x + df has a conjugate point at

(— a, o).

10. The origin is a conjugate point of the curve y
2 (x2 — a2

)

4.= x .

11. Show that the point (a, o) is a conjugate point of the

curve ay2 — xz
-f- 4 ax2 — 5 <z

2
.# + 2 #3 = o.
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12. Show that the curve a 3

y
2 — 2 abxy — x

r
° = o has a double

point of osculation at the origin and that one branch of the

curve has a point of inflexion at that point.

13. Show that the curve y = ^cot-1 ^ has a point saillant

at the origin.

Since y is positive, and has only one

value for all values of x, positive or

negative, the curve lies in the first and

second angles ; and since x = o gives

y = o, the curve passes through the

origin.
Fig- 39.

Here
dy

dx
= cot 1 X

X

1 + X2

If we suppose x to approach o from the positive direction,

we have,

7Tdy

dx
cot 1 x = cot * o = - = 1 . q 7

.

If we suppose x negative and approaching o, we have

= cor 1 (- o) = - ^ = - 1.57._£ =cot-1(_ x)+ __
Hence there are two non-coincident tangents to the curve at

the origin. Hence the origin is a point saillant. § 150.
1

14. Show that the curve jy — x + yex = o has a point saillant

at the origin.

1

15. Show that the curve y — e
x = o has a point d 'arret at

the origin.

16. Show that the curve y = x \ogx has a point d'arret at

the origin.

17. x* — ax^y — axy* + a2
y

2 = o.

A conjugate point at (o, o).
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18. x4
-f- 2 axp-y — ay3 = o.

A triple point of intersection at (o, o).

19. af = (x — df (x — b).

At x = a there is a conjugate point, a

double point or a cusp according

as a < b, a > b or # = b.

20. Examine the hypocycloid xz
-\- y* = a 3 for cusps.
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CHAPTER XVI.

LOCI.

154. In tracing curves in Analytic Geometry we usually solve

the equation of the curve with respect to one of the variables

that enter it ; then assigning values to the variable in the

second member we determine the values of the other. A
smooth curve traced through the points thus determined we

call the locus of the equation. This process is at best only

approximate and is limited in its application to those curves

whose equations are of lower degrees. In equations of higher

degrees the difficulty is even greater as we can only determine

approximately the positions of the series of points. By the aid

of the Differential Calculus we are enabled to determine the

singularities of the locus from its equation and from these to

obtain a general idea of its form. We have seen in the pre-

ceding chapter, for example, how to investigate any locus for

singular points; in § 127, how to determine the direction of

curvature; in §§ 73, 79, how to determine whether or not the

curve has asymptotes and if so, to determine their equations,

etc. We propose to treat a few curves in this general manner,

and to indicate an order of procedure that will enable the stu-

dent to enter upon an intelligent investigation of any equation

with which he may have to deal.

ALGEBRAIC EQUATIONS.

155. Suggestions.

1. Determine as far as possible the form and properties of

the locus from its equation.
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2 Deduce the first and second derivatives from the equation

and investigate.

(a), for asymptotes. Cf. §73.

(J?),
for maxima and minima points. Cf. § 114.

(<r), for singular points. Cf. § 153.

(d), for direction of curvature. Cf. § 127.

EXAMPLES.

a2x
1. Trace the curve y =

(x — df

Here x = o gives y = o ; hence the curve passes through

the origin. As x approaches the value a, y approaches an in-

finite value ; hence x = a is the equation of an asymptote to the

curve, § 74. Again as x increases numerically, and approaches

positive or negative infinity, y decreases and approaches o as

a limit ; hence y = o, or the j*>axis is an asymptote to the two

branches of the curve, one extending infinitely in the first angle

and the other infinitely in the third angle. From the given

equation we have

dy a2 (x + a) , . d2y 2 a2 (x -f- 2 d) /7 .

dx (x — df
v ' dx2 (x — ay

dy . . .

Here — — o gives x = — a, and this value in (Ji) gives

d2y 1 . . .—
2
= -— , a positive quantity ; hence at the point whose ab-

scissa is — a, y is a minimum.
dy

Making x — o in (a) we find — = 1 ; hence the tangent at

the origin (since x — o gives y = o) makes an angle of 45 ° with

the ^r-axis.

d2y
Placing —— = o, we find x = — 2 a. Since (b) changes sign

as x passes through this value, x — — 2 a is the abscissa of a
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Fig. 40.

d2
y

point of inflexion. Again, since -^ is positive or negative

according as x is algebraically greater or less than — 2 a, the

curve is concave upward be-

tween the limits x = — 2 a

and x = 00 , and concave

downward between the limits

x = — 2 a and x = — 00 .

Reviewing the facts elicited

we are enabled to trace the

curve as in the figure. It

may be remarked in passing

that an asymptote to an al-

gebraic curve is always approached by two infinite branches.

The hyperbola affords a familiar illustration.

2. Trace the curve y
2 = x2 (x — a).

Here x = o gives y = o ; hence the curve passes through

the origin.

Again, all negative values of x, and all positive values of x

less than a, render y imaginary ; hence the origin is an isolated

point.

All positive values of x greater than a give two values of y
equal numerically with contrary signs ; hence the curve is sym-

metrical with respect to the .x-axis and extends indefinitely in

the direction of positive abscissas from the limit x = a. When
x = a,y = o ; hence the curve cuts the ^-axis at the point (a, o).

Here

dy 3 X — 2a
, x

d%y 3 X ~ \ a

—a '
;

• '
W; ~d^~

dy

dx \[x
(*)

When x = a,
dx

4 V(^ — of

= 00 ; hence the tangent to the curve where

it crosses the jc-axis is perpendicular to that axis.

Since (a) does not change sign as x increases, the curve has

no maximum or minimum points.
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Since
(J?)

changes sign as x passes through the value f a

there are points of inflexion corresponding to this value of x.

If we take the positive sign of the radical in the denominator
d2
y

of (p) we find that —^ is negative

between the limits x = a and x =
| a, and positive for all values of

x greater than ^ a ; if we take the

negative value of the radical we

find the reverse is true. Hence the

curve is concave toward the x-axis

between the limits x = a and x =
§ a, and convex toward that axis when x > f a.

3. Trace the curve az
y

2 = 2 a^x^y + x5
.

Fig. 41.

Solving we have y = —^ (a ± Vtf (x + a)).

x = o gives y = o ;
hence the origin is a point of the curve.

For all positive values of x, y has two real values of opposite

signs ; hence the curve extends indefinitely in the first and fourth

angle, x = — a, y = a, and for all negative values of x be-

tween the limits x = o and x = — a, y has two positive unequal

values ; for negative values of x greater numerically than — a

y is imaginary ; hence the curve has a loop in the second angle.

Let u = «y — 2a2x2y — x5 = o ; then

Evaluating,

hence,

dy

dx

dy

dx
1

dy

dx

4 a2xy + c x* o . . . .—
~ V-9 = - for tne point (o, o).

2 cry — 2 azx* o v '

4 arx —

—

\- 4 <3rv -f 2or

3^ 2
2 ar — 4 # ^

#x
2 #'

_o,

dy"

dx

= ±0;

.-. The origin is a point of osculation, the x-axis being a



220 Differential Calculus

common tangent to the two

branches. But we have seen

above that one branch of the

curve crosses the :v-axis at the

origin (i.e., the curve has been

shown to pass from the second to

Fig. 42.
the fourth angle through the

origin) ; hence the origin is also

a point of inflexion. Such a point is called a point of oscul-

inflexion.

4. y

Fig. 43-

5. y -f- xy = x.

Fig. 44.

6. xs — 2 x2y — 2 x2 — Sy = o.

Fig- 45-
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7. y (x — a) = x (x — 2 a).

8. ay2 = x* + x5
.

9. y (a — x) = x2 (a + x).

10. y = x2
(i - x2

)
s

.

11. /(^- tf
2
) =x\

12. j^
3 = ^3 — x3

.

13. ^(^2 -^) = «3
.

POLAR EQUATIONS.

156. Suggestions.

1. Determine as far as possible the form and properties of

the curve from its equation.

2. Deduce the first derivative of r with respect to from

the equation of the curve.

(a) Investigate for asymptotes, Cf. § 79.

(If) Investigate for maximum and minimum points. Cf.

§ 112.

(<r) Investigate for points of inflexion. Cf. § 131.

(d) Investigate for direction of curvature. Cf. § 130.

EXAMPLES.

1. Trace the curve r = a sin 3 6.

r = o, when = o°, = 6o°,0 =120°, = 180 , etc. ; hence,

the curve repeatedly passes through the origin.

r = a (a maximum value, since sin 3 cannot exceed unity)

when 6 = 30 ,
= i 5 o° ;

6 = 270 .

r = — a, a minimum value, when = — 30 ,
= — 150°,

= - 270 .

As increases from o° to 30 , r increases from o to a ; as ^

increases from 30 to 6o°, r decreases from a to o ; hence, the

curve has a loop in the first angle.

As 6 increases from 6o° to 90°, r decreases from o to — a ; as

increases from 90 to 120 , r increases from — a to o ; hence,
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the curve has a similar loop to the first, situated partially in the

third angle and partially in the fourth angle.

As increases from 120 to 150 , r increases from o to a ; as

increases from 150 to 180 , r diminishes from <? to o ; hence,

there is a loop in the second angle.

As 6 increases from 180 to 360 , the corresponding values of

r are the same in magnitude and direction as those already

indicated.

-r-r
dr n

Here, — = 3 a cos 3 0.
dO

dr
Since ^ = 3 a cos 3^ = when = 30*

dr

*5° = 270

and since —= changes sign as passes through these values it

follows that r is a maximum for these values of 0, — a fact

already ascertained from the equation.

Fig. 46.

2. r = a sin 2 0.

Fig. 47.
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3. r2 = tf
3 cos4

f 6.

4. r4 = a5 cos5
% 6.

Fig. 48.

Fig. 49.

5. r = a sec--
3

From the equation we readily see that the curve is of the gen-

eral form given in the figure.

Here

Fig. 50.

.

dr a 6 a 2— = - sec - tan - = *

dv 3 3 3 3 o#° °
J
cos2-

3

Subtangent — r*— = 3 # esc - •

</r
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When = 270 , we have,

and

r = 00
,

Subtangent = 3 #

;

hence, a line perpendicular to the initial line, and at a distance

3 a to the left of the pole, is an asymptote to the curve.

6. r = 2 a tan sin 0. (Cissoid).

sin2
2 a

Hence, r = 2 a
cos cos

2 a cos 0.

= o°, r = o ; and as increases, r increases.

When 6 = 90 , r = 00.

As decreases from o° to — 90 , r increases

from o to 00.

From the equation above, we have

dr 2 a sin 6(2 cos2 6 + sin2 0)

d0
=

cos2
(9

o //0 2 tf sin3

Subtangent = r

dO

dr 2 — sin2

2 <? ; hence, a line J_ to the

initial line, and at a distance 2 a X.o the right of the pole, is an

asymptote. Tracing the curve from the above data, we find it

as in the figure.

7. r = a sec ± a. (Conchoid.)

.

8. r = a sin —
2

9. r = a cos 2 0.

10. r = cot cos 0.
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INTEGRAL CALCULUS.

CHAPTER I.

TYPE FORMS.

History.— The Integral Calculus may be said to have taken its origin

from methods employed by Cavalieri, Wallis, and others for the determina-

tion of quadrature of curves and cubature of solids. The processes thus

employed were developed and reduced to a suitable notation by Newton and

Leibnitz.

The term " integral" was first used by James Bernouilli (1654-1705).

157. The Integral Calculus is the inverse of the Differential

;

and its fundamental object is to determine the function— the

relation between the rates or differentials of the variables

which enter it being given.

158. Integral. Integration. A function is termed the integral

of its differential, and the process by means of which it is derived

is termed integration.

The process of integration is simply a reversion of the process

of differentiation ; hence no new philosophical principle is in-

volved in the process. Thus, since

3 o?dx is the differential of x3
,

x3
is the integral of 3 x*dx.

dx
Again

:

— is the differential of log x ;

dx
hence, log x is the integral of — •

227
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159. Notation. The operation of integration is denoted by

the symbol / , read " integral of."

Thus, in the examples of § 158, we write

S>

I = log X.

3 x2dx = x3
,

^dx

x

Since integration and differentiation involve inverse operation

the symbols I and d neutralize each other.

160. Indefinite Integrals. Constant of Integration.

Since d (x3
-f- 5) = 3 x2dx,

d (x3 — 3) = 3 x
2dx,

d (x3 ± c) = 3 x2dx,

and, in general, d {/(x) + c) =/' (x) dx,

it follows that,

I 3 x2dx = x3 + c,

\f'(x) dx —f(x) + c,

where c is some indefinite constant. The constant c is called the

Constant of Integration ; and as its value is in general unknown,

the integral of which it forms a part is indefinite. While the

process of integration gives, it seems, an indefinite result, yet in

the practical application of the process the data of the problem

will enable us to determine the value of c, or to eliminate it alto-

gether, and thus enable us to render the result definite.

To avoid useless repetition we shall omit the constant of in-

tegration in what follows. The student must bear in mind,

however, that it is to be understood as entering every integral

expression.
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161. Elementary principles.

i . The integral of the sum of any number of differentials is the

sum of their integrals . Cf. § 24, (1).

Since d (u ± v) = du + dv :. I d (u + v) =
j
(du ± dv)

;

i.e., I (du + dv) = u ± v.

But I du ± I dv = u ± v
;

.'. f(du ±dv) = j du± I dv («)

The symbol of integration is, therefore, distributive.

2. y4 constant factor may be placed before or after the integral

sign. Cf. § 25, Cor. i.

Since d (cu) = cdu .\ 1 d(cu) = I cdu\

i.e., I cdu = cu.

But c
J
du = cu\

.'• I cc/tf = c
J
du (b)

162. Type Formulae.

1 . The integral of a variable with a constant exponent i?ito the

differential of the variable is the variable with an exponent in-

creased by one divided by the increased exponent. Cf. § 27, (9).

Since d(un + 1
) = (n + 1) undu .-. / d(un + 1

) = (n -f 1) / undu
;

i.e., (* +I)JW* = »-;

ifdu= ii—
(1)

n -1- 1
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2. The integral of a fractional expression in which the numera-

tor is the differential of the denominator is the logarithm of the

denominator. Cf. § 33, (14).

Since d (log ti) = —

Schol. Since
/0

/?-/# x du = — — 00,

we see that formula (1) does not apply when n = — 1. Such

expressions, therefore, as I u~ x du should be placed in a frac-

tional form I — and formula (2) applied.

3. The integral of a co?istant with a variable exponent into the

differential of the variable is the constant affected with the same

exponent divided by the logarithm of the constant. Cf. § 33, (!3)-

Since d (a") = au \ogadu .'.
J
d (au) = log a j audu

;

i.e, ks .f«:,*-.r;

I
a

log a

Cor. If a = e, we have from (3),

a" da = ,— (3)

/•e
udu = e

u
(4)

This also follows directly from the fact that d (e
u
) = e

udu.
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EXAMPLES.

The numbers and letters which follow the examples refer to

the formulae of §§ 161, 162.

1. I xsdx = — •

(1)

/dx 1 1 x2
1—— =

J
x~* dx = — = 2 xr. (1)

/dx .

-=\ogx. (2)

4. C(a+'bxfbdx = (
a + bxy

-

(1)

5. f(« + £r)2 <& = i C(a + &r)2 .y* = (" + $*?
. (^ ( r )

(x2 + i)2 */*r = v—

—

L.
(£) } (j)

8. JW* = ija** 3dx=-^-- (b), (3)

9. \el xdx=l&\ 00,(4)

10. C(a+Bfdx= (a 1
rbT . (i)

+ ^ / #
-3 dx — 5 I x~*dx = alogx 5 -f-

. -v-3
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12. / (i + x2
)
(i 4- x) xdx =

J
\x + x2 + x3 + *4

J
rtk

= -+ -+-+
2 3 4 5

13 i-
6^4-i2 a* — 8

7

/" V 12 8,
dx = / < .r — 6 H ; w

= 6 a: +12 log ^H
2 X

f X X

14. /

' = / (m 4- x4
) *4.x3dx = 2 \lm -\-x*.

J Vw 4 x4 *J

15. I <r (4 mx 4- 3 <?
2^3

)* (4^4-9 (fix
2
) dx = f ^(4 wje + 3 <?

2
.x

3
)3.

/' a2x
16. J (^

2x 4- d x
) dx = — h 2 <?**.

J v y
2 logtf

• I-

X JXX X

(e
ax 4- <P) dx = h ae«.

Y dx =
1 + \oga

dx

r dx r x

, x log # */ log x

I
}cgx dx

Jp

j
°— =/los

^x log2 Xx— ==—5
^ 2

(2)

(1)

21 )
!

J-
— 7 ^C = ——r

(

(-2^—1
2 A?2 *

^ (logJc)m+1
22. / log™.*— = v s ;

X #Z + I

/r l>xdx I

3
™^?= -A log(3OT-6^) = log^====

^) s
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24. / -j a^xdx = § = •

J ° 2
log a

25. / me?'erdx = m^x
.

26. f 2- ^2

) - ****= - 1 / 0*- ^)f
(- 2 */&) = -

^~ X^
,

/ "3 .X
2

-I
- 2 Jt -4- I

27. I -£ - dx = log (xs + -*
1 4- x + i).

J x3
-h x2 4 * + i

sv^ ^y

/(xm— amydx xm , ,^— = — (>
m - 4flm + #2w logo:,

x 2 ;;/

30. Ji^ = J log (*
2 4 |).

31. I 2ax(-
2
-hi Jdx =— (p

2 + x2)l

'

rt&f = h x 4 2 log (# — i).
JC — I 2

J (a 4 bxn
)

28

29

(<z 4 &*n

)
m bn(i — m)

r dx i fi^ ; , ±
34. / = / x m dx s= (mx)m .

I m—l m—1
J

v /

(xm 4 mxf J K } v y

2 Vxm 4- mx
m
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/xm-ijtl j (xm + mx)
dx = v - •

xm -f- mx m

===— dx = jc + V#M~4.
V*2 + 4

,

/•(V*2+4 + *)
2

v„ _ (* 4- V^+4)

36.

37.

d& =

39

V*2 + 4

rt&p = / < i > dx = I dx — 2 J2^+3 J ( 2^+3 ) J J
2dx

2X+3
= x — log (2 j; 4- 3)

2
-

2<Zdfc/2 ##.* r
1 - = J (2 ax — jv

2
)

-
^ 2 rtrjc

-1^:
3: \j2ax — xz J

41

= \ (2 ax x — 1) ^2 ax 2dx =

/xax 1 . .

_

3 i

t
—- = I (2 a — x) ?x zdx

(2 ax — .ar)* J

= I (2 tf.x
— x — i)

_i^~Vx =

2 V2 tf.r — ^r
2

#

VAr24-3(V^+3 —x)

a V2 <^x — x2

= x -\- V^2 4- 3.

43

44

45

/
xn~ x 4- -a?

-
*);/.-

(#» 4- ^w- 1)^

(log .r)
w ^c /« (log #)

w + *

q—p
q(xn -\-xn

~ v
) 1

* is ~ />)

# ^4-1

jc — 2
/ 4

_ dx = 2 V* 4- —p*
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46. I x y/x + adx = |- (x 4- #)* — %a(x -\- a)%.

/dx 2

-s]x + a + \[x 3<*

/a 4- bx C\b ab' — ba '
) 7— — dx = I < —. 4- _, . . -j—r l ax

a' + b'x J (b
r

b'{a 4- b'x) )

b ab
r — bd . . , ., .=

JfX H ?*— g ^ + *)'

163. Type Formulae. (Continued.) Cf. § 43.

/sin udu = — cos a or vers a (5)

/ cos u du = sin a or — covers a (6)

/ sec
2 a du = tan a (7)

/ esc
2
u du = — cot a (8)

/ sec u tan u du = sec a (9)

j esc u cot ac/a =— esc a (10)

/tan udu=— log cos a = log sec a (n)

/cot u du = log sin a (12)

/sec udu = \o% (sec a 4- tan a) (13)

/ esc u du = log (esc a — cot a) (14)
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Formulae (5) to (10), inclusive, follow directly from the differ-

ential form (§ 35, et seq.). Formulae (11) to (14), inclusive,

may be derived as follows

:

J/ — sin u . . . 1

tan u du = — I — — du = — log cos u = log
J COS U ° cos u

= log sec u.

//'cos u . .

cot ?/ du = I — ## = lo

J sin u
= log sin ^.

//Ysec // + tan ^) sec u .

sec // au = i au
J sec u + tan «

/sec2 u du -f- tan ?/ sec z/^
sec w + tan u

= log (sec u + tan «).

/, Cicsc u — cot u) esc u du
esc 11 du = I

J cscu — cot u

J
esc

2 u du — esc u cot u du

CSC u — cot u

= log (esc u — cot u).

EXAMPLES.

I (sin—(-cos 2 x)dx= — 2 j — sin — 1— I cos 2 x2dx

1 . x= - sin 2^—2 cos —
2 2

2. I sin3 x cos ^ ^v = sin4 x

3. f^Ad$ = - fcos- 2 0(-smOdO) = -
J cos2 J

= sec0, or thus, / —^^0 = I sec tan 0d$ = sec 0.

J cos2 J

4

sin(9 jo f™-tii/ M-«/i^fl\' (cos ^)
_1
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/sin 7. x , sec % x—£—dx = —
cos2

3 x 3

5. I sec2 (ax) dx =

6. Jsec^)

3 X 3

tan (ax)

«^V I ti^V -

—

a

tan ^

/i -f- cos # . , , N

; ax = log (x + sm #).
# -+- sm a:

8. I (tan 2 x — i)
2 dx =

J
[tan2

2 x -\- \ — 2 tan 2 x\ dx

J
sec2

2 xdx — I tan 2 x .2 dx = -^ tan 2 x -\- log cos 2 x.

9. I (tan#+ cot;r)2 ^r = I [sec2x+ csc2
.r| ^r= tan^— cot^.

10. / (1 -f sec 2 0)
2 d0 = <9 + |tan2<9 -f log (sec 2(9 + tan2 0).

/q / n o / n 7 tan4 (#x)
tan* (ax) sec (ax) dx = —

- •

/^,sin (ax)

e
<m (ax) cos (ax) dx = —:

13. I (esc t,x -f i)2 dx = / esc2 T,xdx -{- 2 / esc $xdx -\- I dx

= x — ^ cot 3 x -+- § log (esc 3 x — cot 3 x).

sec —
/<^x /^ dx r ~ 2 dx , x= / = I = log tan--

sm x J . x x J x 2 2
2 sm— cos— tan -22 2

— = log tan x.
sm x cos x
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/tan x dx C sin x cos x dx

a + b tan2 x J a cos2
ax -j- b sin2 #

log (a cos2
jc 4- b sin2 jc).

2 (£ - a)

C°S2 °
dO = (

t-ism20.

'

>

I + C

2

°S2(9
^^^+isin2^

. fs'm2 0d0= C-

. fcos20d0=
J

C dQ i-n e\ _ . /tt a
19. I - = log tan —— • Since cos ^ = sm —h 6 •

///jc \ . a -\- b tan #

<z
2 cos2 x — IP

1 sin2
.# 2 <z^ a — b tan #

164. Type Formulae. (Continued.) Cf. §52.

Jvftr^"
1
" (I5)

/- vfo =^ a (l6)

jvf?
= tan_1 " (I7)

J-rri? = cot
- 1
» (l8

>

—
.

= sec
-1

a (19)
tWa2 -*

/ ZFT=i
= csc_1 *

• (
2 °)

C du _ x , .

/ ,
= vers a (21)
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C da _! , ,

JV=r = i **St <23)

J^pL= = log (« + V7±7) (24)

Formulae (15) to (22), inclusive, may be obtained directly

from the differential forms, § 44, et seq. Formulae (23) and

(2 4) are derived as follows

:

/du
\ C S

1

u2 — 1
2 J ( « —

1
r \ du

2 J I u — 1

- 1 & -f- 1

du

du

u + 1 )

= iU°g(« - i)-log(« + i)j

« — 1= + 1oj
& + I

///z/ Cdu

where u2 ± 1 = .s
2

(tf)

But from (<z), 2 #dfo = 2 s^/s

;

//« dfe */?/ + ^2
#

z u u -\- z

/du Cdu -\- dz . , N

, f ,f = log + V5^7).hence,
V«2 ±
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EXAMPLES.

du

r du r a

J \/a2 — u2 J . I u

.11 ,«= sin L - or — cos
-1 -

2 a a

2

du

/du i C a i . u i
i-=——- = -

J
= - tan l - or cot x - .

az + ir aJ ir a a a a
i +

a*

3. f-^==lfJ u \lu2 — a2 aJ

du

a i
t
u i ^u

===== = - sec L - or esc x -

// u2 a
2

4 .
/• _j^_ = /%J V 2 au— u2 J I

/du i u — a— -

9
= — log

ir — a L
2 a u -\- a

6. f
,

= log (// + V?^2 + tf
2
).

u lu a a a a

V 2
_I

<?
1

?^ .. 7/= vei s
l - or — covers x -

These six integrals are frequently termed auxiliary type

forms.

/axdx—
Vl — A'

4

^-12- sin i 3r
2

tfJC^/r /? , A2

8. J = - tan" 1 —
4 + x* 4 2

axdx a . x2 — 2
9 \ = _ no-

Vr4 - 4 8
,0
* r2 + 2
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/c dx ,= vers
-1

5 x.

Vio x — 25 a2

—= = 2 sin
-1 y - • ^^

Vax — x1
' ' a

I
dx 1 ,2 IPx

12. I = - vers
\la

2x - l?x2 b a2

^•/r^=^tan-(^).

— = —7 sec x —dx 1 , or
___-——-

—

—— = — sec —
z V^2*2 - a262 ab ab

15. --^ - = — — x -f- tan x x.

3x^fi
=

— = /
?
——- = tan" 1 (a + 2).

17
C _ dx r

J Va2 — 4- A + 1 ^ «/V*2 — 4* +13 J \l(x — 2)
2 + 9

= log (A' — 2 -f Va2 — 41+ 13).

*/.# 2 , 2 A + I= -^tan" 1
/• dx r

18
' J a2 + x 4- 1

== 4J 3 + (2 ^ + i)
2 " V3

""

V3

/dx C dx

Va2 + x 4- 1 J V(* +i)
2 + f

= log \x + -J
4- Va2 4- * 4- 1 }

.

/^a . , a* 4- 2—== = sin
-1 —— .

V5 — 4 a — x2 3
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21•/.
dx

J (x —
dx

x2 — 2 ax cos a + a2 J (x — a cos a)2 + a2 sin9 a

i _. x — a cos a
-— tan L

:

—
tf sin a a sin a

/x2 + x + l
,

2 2a:—i
-j

—

^ ^ dfce= #+ log(^2— a:+ i)+ ^/=L tan
-1

23

24

.x
2 — x + i

"
7 V3 V3

<tfx _ 1 ( x -\- b b -
i
x

\

(x2 + a2){x + b)-W+d>\
°g V^M2

+
tf

tan~
~a\

mdx m _ 1
2

sec l -x.

25

26

27

/
' J VI

jr V4 ;*:
2 — 9 3 3

***
—sec" 1 V5

.
— —r: See — JC.

V5 x* - 3 ^ V3 \R

dx

x2 — 4'.x V3

/jc2 — 1 , 3 ^
-^ dx = x -f- - log -
.ar — 4 4 #

— ~~f log
{
3 ^ — 2 + V9 x2 — \2 x\.

— 2

28.

29.

+ 2

> ~ *)'^ = a sin" 1 - + Vtf2 - x2
.

(a + *)
2

/
^

30

1 . x — a (sec a -f- tana)= log ; -,

x2 — 2 ax sec a + a2
2 ataxia x — a (sec a — tana)

xdx/2 x — 5
/* jr^ /" */.%

3^ — 2 J 3 tf
2 — 2

5J 312 -

1
1 / 9 x Si X\J\ — \l2= _ log(3^_ 2) _A log_!__.

31, J V7
^jc

3 # — ar

. 3 4- 2 x= sin
-1 -——

—

V13
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f dx i*
32. I

= tan 1 ex .

33. I y dx = \lmx -\- x2
-\- m log \ Vx + \lm -\- x\

.

i/x -\—
2

/ i'

I I

X -\-

2

2

2
d

2 4

I ,2^+1
= log V^2 H-ar+ i = tan

V3 V3

//& 1 . 2 x — 1 + V5

36
- /;

I -\-X — X2

V5 2 JC — I — V5

dx J
1 ^ + ^*** = ——= tan" 1——==

a -\- 2 bx -{- ex2 Nac — b2 vac — b2

/dx 1 2 ax — b

c + bx-ax* =^ Sin_1 VF+"4 <2^r

165. Integration by Parts. — From equation 3, § 25, of the

Differential Calculus, we have

d(uv) = udv -f- #d?#.

Hence, uv =
J
udv + 1 ^« ;

.*. I udv =. uv — j vdu (25)

Examining (25) we see that the required integral is separated

into two parts, u and dv, and that the first term of the second

member is obtained by integrating the first member, assuming

u constant, and that the second term is obtained from the first
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term by differentiating that term, assuming v constant, and inte-

grating the result. This process, known as integration by-

parts, is applicable whenever dv and vdic are integrable forms.

Let us apply the process to the example

/<x sin xdx.

Let u = x and dv = sin xdx ; then

J'*
Sin^=.*(-oo.*)-/(-co8*)&

= — x cos x + sin #.

We might have assumed u = sin # and ^' = 37/3: ; then

x sin •%*/.? = sin x I — cos Jc^Zr.
2 J 2

But the integral I — cos #/&: is more complicated than the

given integral 1 x sin xdx ; hence this assumption will not serve

our purpose. In applying this process, therefore, we must

determine the proper factor by trial.

EXAMPLES.

1. I xlogxdx = log x 1

= log 3:

x2 dx

2 X

2 4

= — (log x2 — 1).

2. I x cos xdx = x sin x + cos x.

3.
J
x sec2 .x^r = x tan # — log sec x.
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4. Jx^xdx=f{^x-i)xdx

x tan x — log sec x6
2

/_1 7
Jf

2 + I , #
# tan x ^c^r = tan L x

2 2

6. Jsin-W* = *sin-^ + V7^.

X*

dx

/x2
i —

a: sin
-1

(xf dx = — sin
-1

(x)2
-\— yi

/sin-1 jc^t (sin
-1
xf

Vi -^2 ~~ 2

/x2 t3LW~ x xdx

— tan
-1 x (x — tan

-1
x) — f (x — tan

-1
x)

J 1 -\- XT

= x tan
-1 x — (tan

-1
x)2 — log Vi + x2

-\— (tan
-1
xf

= x tan
-1 x (tan

-1
x)2 — log Vi + x2

.

10. I log xdx = x (log x — i).

-r = -e~*(x + i)./(dx — i \
xeaxdx = M

2
—

J-

C z,l ^ ** V(^ - **)8
2 sj(a - x2

?
14. I x3 Va — x?dx =

J 3 J 5
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By repeating the process we may derive the following

:

= e^ix2 — 2 x -f- 2)./£aa:
2 JC 2 \

i^Afr = — (jt h -5 J.

<z a a*/

17. / tf
xjrV* - =-?— (x2 - ^- + —V- J

•

J log \ log log- 0//jt3

a:
2 log2 jf/atc = — (9 log2 x — 6 log jr + 2).

27

19. JVlog^
= -. ; r^ \ (n + i)

2 log2 X — 2 (fl + i) log * + 2
J

.

(« + 1/

a:
2 sin~ x xdx = — sin

-1 x -\ Vi — x2
•

3 9

^3 loPf ( I ~\~ X^) — X2

21. I x- tan" 1 xdx = — tan" 1 x +
3 6

22. | ^2 sec
—1

jc^t

.x
3

, losr (x + "v
7

^2 — i") + jc V.%2 — i= — sec" 1 x ^— ——
3 6

e* cos - dx = ^ ( sin—h cos - )
•

2 \ 2 2//, # sin nx — n cos /zx
<?
aa: sm ^^<w = — =

5
^.

ar + ^/_ /z sin nx -\- a cos tzjc
«"* cos nxdx = 5——

5

<? .

#2
-f- /r
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CHAPTER II.

RATIONAL FRACTIONS.

166. The fractional differential,

axm + bxm
~ x + cx

m~ 2 4- . . • • + kx 4- /

xn 4- bypf- 1 + ^w~ 2 + . . . . + kxx + /x

^r . . («)

is rational when ;;z and « are positive integers. To explain the

method of integrating such differential forms is the object of

this chapter.*

167. It m> nor m = n-

In this case we can always by division change the fractional

form into a mixed quantity composed of one or more monomial

terms increased or diminished by a similar fractional form, in

which m < n. The monomial terms are readily integrated by

rules already explained. Thus

f4^
3 + 2^2 + 4 r ( 2* + 8 ) _

I s—

:

" <WC = / < 2^ — 2 H ^ > rtfc

J 2r+3«f2 J ( 2X? + 3X + 2 )

= 2/ .^^r — 2 I dx -{- 2 I

J J J 2^r+3^+2
* H - 4 ,ax

= x2 — 2x +- 2 I —7r
—

i

— —;

—

dx.
x + 4

2.x
2 + 3# + 2

To complete the integration of such expression therefore we
are to obtain a rule applicable to rational differential forms (a)

in which m <n*

* Leibnitz and John Bernouilli, in 1702 and 1703, showed that such integrals depended

on the method of partial fractions. The simplified and general processes are due to Euler.
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168. When m < n. If /, s, t, . . . w are the roots of the.

equation

then by the General Theory of Equations,

xn+ l>1
x'

l
-1+ c1^-*+...k1

x+ l1= (x-p)(x-s)(x-t)...(x-w).

Substituting this value in the denominator of (a) § 166, we have

axm -f btf*- 1 + exm ~ 2 + . . . &* -f- /

(x —p)(x — s)(x — t) . . . (x — a/)
d&

(p)

By the method of Undetermined Coefficients we are enabled

to decompose the fractional form (b) into a series of partial

fractions of simpler forms. To do this, four cases present

themselves, depending upon the value of the roots p,s,t, . . . w.

Case i. When the factors of the denominator are real and
unequal.

Case 2. When the factors of the denominator are real and

equal.

Case 3. When the factors of the denominator are imaginary

and unequal.

Case 4. When the factors of the denominator are imaginary

and equal.

169. Case I. Factors real and unequal.

Caxm + bx™- 1 + cxm
~ 2

. . . + kx +1
7Here I — — ax =

/

(x — p) (x — s) (x — f) . . . (x — «/)

^ ^ C ^+ H + . .
.

\ dx =
x — p. x — S X — / X — w

A log (x —p) + J? log (x — s) + Clog (x— f) 4- • • • F log (x—w)

in which A, B, C, . . . F are undetermined constants. The
method of determining the values of the constants will appear

in the process of integrating the following examples.
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EXAMPLES.

J X3 — ^X2 4" 2X J X (x — 2) (x — i)

/ } - + | [ dx.
J [ X X — 2 ^ — I )

^jc
2 — 2^: A B C

Hence .
° —

; r = f-
(-

X {x — 2) (x — i) ^ ^ — 2 X— I
'

clearing of fractions, we have (a)

5X1 — 2 x = A (x — 2)(x — 1) -f- B (x — i)# + c?(x — 2) x

= A (x2 - 3 # + 2) + B (x2 - *) + C(^2 — 2 *)

= (^ + ^+C)x2 -(3 ^+^ + 2C)jt: + 2^.

Since the members of this equation are finite series, and the

equation is to be satisfied for all values of x, we must have, by

the Theory of Undetermined Coefficients, the coefficients of

like powers of x in the two members equal

;

i-e., a+B+C = 5,

3A +B + 2 C= 2,

2 A = o.

From the three equations we find the values of these con-

stants to be A = o, B = 4, C = — 1
;

hence, substituting, we have

r 3 x
2 - 2 x

T̂
c ^ r dx

J XS — 3 X* -\- 2 X J X — 2 J X — I

= 4 log (x — 2) — log (x — 1)

= log
(* -*y

.

& X — I
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A shorter and simpler process of obtaining the values of the

constants is as follows

:

Since (a) is true for all values of x, we may give x such

values as will determine the constants at once : Thus

x = o .•. o = 2A .'. A = o

x = i .*. i = — C .'. C = — i

x = 2 .'. 8 = 2B .-. B = 4.

x + 4 ,

ax =
J 2X — X" — X* J X (i

/!

(i — x) (2 -J- o:)

A B C } ,

- + + —7-- <**
*

.%• I — .T 2 + X )

x + 4 ^ ^ C
Hence, — —

;

— r = — H H
-

X (l — X) (2 -\- X) X I — X 2 -f- X

Clearing of fractions, we have

x -f- 4 = A (i — x) (2 + #) -+- -^^ (2 + a:) -f- Cx (1 — ^).

Here, jc = o gives 4 — 2^4. .*. A = 2.

# = 1 gives 5=3^. .-. B = %.

x = — 2 gives 2 = — 6 C. .'. C = —
J.

Hence,

f * + 4 ^ = rh + 5 1 k
J 2J-f-^3 J I X 3 (i — X) 3 (2 + X) )

/^x $ r~ dx 1 r dx

x 3J 1 — x 3J2+X
= 2 log x — % log (1 — ar) — J log (2 -f- •*)•

= l°g
3

•

V(i — #)
5
(2 + #)
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_
3

r i 9 * + i
dx= r \ a

+
J Kf + X-2 J (3^ — 1$x — I 5^: + 2

^r

= log V (3 ^ — i)2 V(s * + 2)
3
.

/.x2 + 6 jp — 8 , . x*(x — 2)
dx = log-jA-;

—

^x5 — 4.x {x -f 2)-

/•^^ _ /^

(# + 2)
2

(jt — 2 + V3) (x — 2 — V3)

2 3
log (* - 2 - V3) - -jJ- log („ - 2 + VJ).

2 V3 2 V3

— dx =x + \og(—— •

x2 — 4 \a: + 2/

/x dx x_____ = __
7
^-

f
-64 log(^+ 4)-27log(^+ 3).

r *2 ~

J .x
3—

7

dfc
.%• -f- 6

- i log (* — 1) + £ log (* - 2) + r
3
o log (* + 3).

/.T2 + 2 JC — COS2 a _ r' \ I
^

^2 + 2 JC + sin2 a t/ ( („ + i)2 — COS2 a )

,
sec a , .r -f- I + COS a= x -\ log •

2 x + 1 — COS a

ia f x2 + 8x +4. (x + i)(x — 2)
2

10. I -3-

—

dx — log ^ y

,

—4 •

J ar -f- xr — 4 .r — 4 (x + 2)^

— = - log
xr -\- mx m

dx

12

x2 + /#.# m x -\- m

a -\- bx/dx 1

a2 - Px2
=

_^i g
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170. Case II. Factors real and equal.

In this case, p = s = / = ... = w. Therefore (#), § 168,

axm + bxm
~ x + cxm

~ 2 + . . • + kx + / ,becomes ; ^r.

Following the method of Case I., we would write,

axm 4- bx™- 1 + r^'"- 2 + • • • + kx + /
,

t v dx
(x — p)

u

{ A B C F ) ,= < h 1 h • • • + l dx
( X — p x — p x — p x — p )

A+B+C+ . . • +F.= ax.
x — p

But this is impossible, for the given fraction cannot be re-

duced to an equivalent fraction having a variable denominator

(x — p) and a constant numerator (A + B + C -f- • • -f- F).

To avoid this objection, we write,

axm + bxm
- x+ ex m~ 2 + • • • + kx + /

7

(a: — /)
n

^ B C F ) ,

(x — p)
n (x—pf- 1 (x—py- 2 (x—p)

A B
(i - «) (* -Z)""

1
(2 - 71) (X -P)n~ 2

c
+ ~, ^7 n 5 + • • +^l0g (X — p).

If <z// the factors of the denominator are not equal, we ascer-

tain the partial fractions by combining Cases I. and II.
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EXAMPLES.

B C
I
_ dx = I <

I

" J (*-3)8 J l(x ~zf(* — 3)
8 J l(x-3)3 (x-3) 2 x ~3

x2 — 1 1 a: + 26 ^4 j9 C
1 e =

1 1

'

(x - 3)
3 (x - 3 )

3 (x - 3)
2 * - 3

Clearing of fractions, we have,

^-11x4-26=^ + ^(^-3) + C(x — 3)
2

= Cf + (J5-6q^+i-3^ + 9 C.

Equating coefficients of like powers of x, we have,

C=i,

B-6C=— ii,

^ - 3^ + 9 C= 26.

Hence, ^4 = 2 , B = — 5 , C= 1.

/x2— iijc+2^ /* ( 251
(* - 3)

3
* J UX -3T (

x ~3) 2 *- 3

= 2 I (x — 3)
-3

dfr — 5 I (x — T>)~ 2 dx -\- \ -

dx

dx

x — 3

+ -^— + log(x- 3 ).

(* - 3)
2 x - 3

J x* -f- 2 xl
-\- x J x{x-\-i)-

-f
A B C I ,

(.# -f- i)2 x +- 1 x
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It will be observed that this example affords an illustration of

the combined methods of Cases I. and II.

*2+3* + 4 A B C
Here, —

-

—— = \- \-

xz -\-2x2 -\-x (x + i)
2 x + i x

.-. x2
-f- 3 x -f- 4 = Ax + Bx (x + i) + C(* + i)

2

= (B + C)x2 + (^ + 7? + 2 C)x+C.

Equating coefficients of like powers, we have,

B+ C= i,

A + B + 2C= 3 ,

Hence, A = — 2, B = — 3, 6 = 4;

•'• P]
+ 3

!s

+4 ^=-2 [<*+*Y*d*-3 f—

+

4 f-J^3+2x2
H-a: J y J 6Jx+i*Jx

2 <> + i)
3

~ lQg ..4 'x -J- 1

(^ — 2) (^ — i)2 JC — I # — I

3^+2 4 * + 3 1
*2

x,(jc -K i)3
2 (x + i)2

fe
(# 4- 1)

2

,
C xdx _ (x + 3V 3 .

J (# + 3)
2
(* + 2)

g
\^ + 2/ # + 3

= log 1/—!

xs — x2 — x -\-

1

\ x— 1 2(^—1)

- f **

(x2 - i)2 * &
a; + 1 2 (x2 - 1)
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/x5— c x— 3 . C {

x2 (x + i)2 J (

X2

$xs
-{- 2x2— $x — 3

!

(* + i)2 -"J (~ - ' ^(^ + i)2

f(i4 ^ C D \ ,

2 ^ + I < — H h -——-
- H -— > dx

J tx" x (x -+-
1 ) a: + i

)

rtk

= 2 # -f
^ + \ogx(x + IT.

2 ^r -f- # ' .

171. Case III. Factors imaginary and unequal.

In this case, p, s, t . . . w are imaginary and unequal. Fol-

lowing the method of Case I., we would write,

axm + bxm
~ x + ^m~ 2 + ,..£*+/,

(x — p) (x — s) (x — /) • • • (x — w)

\
A B c F

\ J=
]

+ 1 + .
[ dx.

(x — p x — s x — / x — w

)

But, as the denominators of the partial fractions are imaginary,

the application of this process cannot afford real results. To

develop a process applicable to this case, let us resume the

denominator of the general fraction, (a) § 166, and equate to

zero, i.e.,

xn + Vn_1 + Wn~ 2 + • • • + k& + ^ = o . . (a)

By hypothesis, the roots of this equation,/, s, f, etc., are im-

aginary and unequal. We know, however, that imaginary roots

enter equations by pairs, and that if a + b V— i is a root of (a),

its complex conjugate, a — b V— i, is also a root. Hence, n is

an even number. Now let p = a + b V— i, s = a — b V'— i,

t = c + dy— i, u = c — dy
1— i, etc. ; then,

(* — P)(x — s) = \* — (a -f b V— i)J {.* — (« — £ V— i)j

= (# — tf)
2 + £2

,

(# - /) (jc - u) = \x — (c + d V^7)J {# — (c — // V^i)|

= (x — c)
2 + ^2

, etc.
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.-. xn + Vn-1 + ^n~ 2 + • • • +V + k
— (x — p) (x — s) (x — t) (x — u) . . . to n factors

= \(x - a)2 + l?]\(x - c)
2 + <P\ . . . to^factors,

i.e., every polynomial which, on decomposition, affords // im-

agi?iary binomial factors of the first degree affords also - real
2

binomial factors of the second degree. In this case, therefore,

we may write (V) § 1 66 in the form

axm + bxm
~ x + exm

~ 2 +...+£# + /
dx

\{x - af + P\\(x - cf + d2
l . . • to -factors

2

Ax+B Cx+£> n r . )

(x_^
) + /,

2+
(
-^)^+ ' ' • to-fractions Id* . . . (b)

in which the numerators are determined by considering, (i),

that, in general, m = n — i , and that therefore the partial frac-

tions, when reduced to a common denominator, must afford a

polynomial of the same degree (m), and (2), as there are, in

general, m -\-i (= n) terms in the numerator of the first member
of (b) there will be m -f 1 equations of condition between the

constants, and therefore there must he m -\-i{= n) constants, in

order that these equations may consist.

If, as generally happens, some of the factors of the denomi-

nator are real and of the first degree, we combine with this

method the methods of Case I. or of Case II., according as

these factors are not or are repeated.

EXAMPLES.

C ^+2x-i r
" J (x*+2)(x*+l)

aX
J

Ax + B Cx -f- D\ ,

H 7T-. i "x-

(X2,
-\- 2) (pC

2
-\- l) J I X2 + 2 X2 + I

x2
-f- 2 x — 1 Ax + B Cx + D

(x2
-\- 2) (x

2+ 1) x2 + 2 :r
2

-f- 1
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hence, clearing of fractions we have,

x2 -\-2x-i= (Ax + B)(x2 + i) + (Cx + D)(x2 + 2)

= (^4 + 6">3 + (^ +D)x2 +(A + 2 C)* +^ -h2Z>.

Equating coefficients of like powers, we have,

A + C= o,

^+^= r,

^ + 2 C = 2,

B + 2Z>= - 1.

.-. ^ = - 2, ^ = 3, C = 2, D = - 2

f X2 -\-2 X— I , /^ ( — 2 X+ •* 2 X— 2 )
7

HeilCe
' / / 2 1 W 2T N <** =

J
2~^^ + 2 1 [ ^

/2 xdx f* dx C 2 xdx C dx

X2 4- 2 J 2 + X2 J X2 + I J I -\- X2

= — log (x2 + 2) + -7= tan-1—— -+- log(x2
-f- 1) — 2 tan

-1
.*

V2 V2

. X2 + I ^ , ^ != log^ 1
—^— tan

-1 —
:
— 2 tan

-1
.*.

°jr2 + 2 ^/2 y 2

r x2dx r { A B Cx + D )
,

J x (x — 1 ) t/ (a: x — 1 ^r + ^ + 1 )

.*. x2 = A (x* — 1) +Bx (x2 + x + 1) + (G* + Z>) * (x — 1)

= (A + ^ + O x3 + (^ - C+ D) x2 + (^ - D)x - ^ = 0.

.-. A +B + C= o,

B-C +D= 1,

B - D = o,

^ = 0.

... ^ = o, ^ = -,C=--,Z> = -.
3 3 3
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C x2dx C ( dx — \x -\- \ 1 )
Hence, I —r-g r = / <

— -^ + -=-* -—* dx
\J x {x6 — 1) J ( 3 [X — I) xr -±-x -\- I }

3/ I C(2X— 2)dx= log V X — I — - I ^

. 3/ \ C 2 x -\- \ i /* dx
log V* - - i — z /

-=- — dx+- I
-

6jX2 +X+l 2 J <6J x2 + x + i 2 J (^ + i)
2 + ?

= log V ^ — i — 7 1°§ (^ + -^ + i) H—7= tan x —

—

/" x2dx _ r I A B Cx+D
i

J (jt
2 — i) (j?

2 + 2) J ( X — I A' + I X2
-\- 2 )

/X— I V2 a:
log V/ 1

tan" 1—=
x + i 3 V2

/.x^v . . / x2
-f- 1 1

,-—

—

= losfV/ , -H— tan l x.
(x + i)(^2+i) te V (x + i)2 2

^

—

dx = 3 log
,

+ ^ tan- 1 -
^ + 4 * V*2 + 4 22

/rtk I (# + i)
2

I _ 1
2^— I

xz + 1 6 >x
2 — a: + 1 -v/7 V3

/2 x^/r A*2 + 1
#

/^^r 1 ( ..r . )—

s

^-7-= r = - < 2 tan
-1 tan-1 ^ }

•

(*«+i)(*»+4) 3 ( 2 )

/* dx _ i /(x ~ I
)
2

* -1 •*

' J (*_i)(**+ 2 )
~ °gV ^+2 " W^^

11

V^
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x2 cos 2 a + i

10. f
-—

s

^
</*

.ar 4- 2 ar cos 2 # + i

sin a . x2 -\- 2 x sin a + i cos # . 2 .%• cos <z

log -^ =
-— H tan" 1

'/;

11.
J x(i

x2 — 2 x sin a -\- 1 2 1 — jt
2

(1 + Xj 2
(1 -f- ^ + x2)

1
,

. y/x2 -\-X
Z
-\- X* I .2 X + \~ + lo§

/ __ x 2
ptan" 1 —— •

1 -f- x (1 + xf V3 V3

/i— ^H-^2
, 1 _ (1 -\-x)s

1—. .———_ dx = - log —=^1 tan-1 x.
1 + x + x2 + x3 2 Vi-f^2 2

172. Case IV. Factors imaginary and equal.

This case bears the same relation to Case III. that Case II.

does to Case I. For the reasons indicated under Case II. we

may write, therefore, equation
(J?)

under Case III. in the fol-

lowing form

:

axm + bxm
~ x + cx™- 2 + - + kx +/ ,

\(x- of + ^p

j
Ax + B Cx +B -+•

-

1

n
to

' \(x-aj + l?\* \(x— df+Pp~
2

0)

Note.— In the application of this method when the exponent of the

denominator of a partial fraction is greater than I, the numerator being

constant, the student will find occasion to use the following formula.

Cf. § 186, 2°.

/xm {a + bxn
)
p dx

x"1 *

an«0+i) T
an(J>+i) J K ' w
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EXAMPLES.

/V — x -f 2 _ f ( Ax +B Cx+D)
lu

J (^+i)2
dx
~J \ C^TTJ2 + ^+V \

dx
>

.-. *2 — * + 2 = Ax + j5 + (Cr + D) (x2 + i)

= Cr5 + Z>*2 + (A + C) # + ^ + Z>.

Equating coefficients, we have,

C= o, D=i, A + C=-i, £ + £> = 2;

hence, A = — i, B = i, C = o, D = i.

Hence,

J (** + i)2 J ( O2 + i)
2 + *2 + i j

**

/xdx C dx C dx
2 +i) 2 +J (x2 + i)2 +J ^TT

To integrate the last term we find on comparing it with the

first member of the reduction formula, b, § 172, that,

m = o,-a = 1, b = i
}
n = 2,J> = — 2.

Substituting these values in the first and second members of

(b), we have

/(i + ,2)-v* = -^t^p + ^5/(1 + *r*&

# 1

2 (1 + f) 2
H— tan-1 #.
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Hence

/X2 — X + 2 I _ X I

"n^l—\2~ ^ =
/^2 \ + tan * H / o

,
s + - tan- 1 x

(x? + iy 2 (xr -\- i) 2(ar + i) 2

.%• + i 3 .=
/ o

,

—\ + - tan x x.
2 (JT 4- i) 2

J (x2 +2)2 ^+2 ^ V^

/A.xix—2) . X(-\X— i)
,

(x— i)2
, ,

(x— i)
2(x2+i)- {x— i)(xr-\-i) xr+i

4 r 3* +2 ^_r 3^+2

.-*r+
31

2/ 4

1^ X — 24 26 , 2 X — ^
H tan" 1

3 (x2 - 3 x 4- 3) 3 V3 V3

J x (a -\- bx2
)
2 J \ x (a + bxrf a + &r2

)

1 1 , x2

+ —-M
2 a (a -f- <^

2
) 2 #2 a -\- bx2

/x*dx 1 1 1

(1 -f jr) d
.at 4- 1 4 (jr 4 i)2 2

v y

/^r 1 1 , xn

=
1 log

x (a + Ax71

)
2 na (a -\- bx11

) no 1 a + &*w

/fl&C 1 1

(*- i)2 (x2 + i)
2
= " 4(jt- i)~ 2

g ^ " ^

1
1

1 1 . . . .

+ - tan xx
7
-r-—- + - log (x2 4- 1).

4 4 (x2 4- 1) 4



262 Integral Calculus

r*4 + 2^+3^ -h_3

(** + i)3

2 + X J X — 8 IK
+ Try-* v + -?r tan"

1*.
4<>2 + i)2 ' 8(** + i)

f JC
3 + 8*+ 21

10. / —

-

3 (* — 7) ,i, /9 N 3 Vs ,*—

2

IRRATIONAL FRACTIONS.

173. We have seen in the preceding discussions the methods

of reducing rational differential fractions to one or more of the

type integral forms, and hence the method of integrating such

differential expressions. To integrate irrational fractional dif-

ferentials, we have only to reduce them to a rational form, and

then apply the methods previously developed.

174. Methods of Rationalization.

As irrational fractional forms occur in infinite variety, the

method of rationalization will depend upon the particular

form under consideration. As a general rule, however, we

may state that the process in all cases is to substitute for the

variable in the given expressioii a new variable that will render

the expression rational. As illustrations of the method of ration-

alization, we shall consider certain groups of irrational forms,

and explain the method applicable to each group.

175. Functions containing monomial surds only.

Rule : Substitute for the old variable a new variable affected

with an expone?it equal to the least common multiple of the de?iomi-

nators of the fractional expo?ients of the old variable.
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/i i
x? — x^ .

1
— dx.

x*

EXAMPLES.

The least common multiple of the denominators is in this

case 12.

Let x = z12
,

then x? = z6 , x* = z4 , x% = z*, dx = 1 2 zndz
;

^— dx = I 5— 1 2 -s
1Vz

= 12 f
j

2
14 -212

| dfe

Substituting now for z its value x&, we have

/
^ X? 12 15 12 ,—I— dx = — an* xi

x* 15 13

By division, of course, the result in this case could be ob-

tained immediately.

2. / — t dx-

J x* + 1

Here x = z4
,

x* = z, x? = z
2

, dx = 4 2V3:

;

hence /
-
T
—

l

— dx = / -
i
—-— 4

J x? + 1 J r + 1
sVs

3

= 4/
J

S2 — — I +—

;

j, \
i + z1

{ z* z2 1 )= 4 j
----*+- log (i+^+tan-1

;*

j
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/*Y*'£ T I T T T
— - dx =4 \ -xi x? — x*-\— losf(i+ \lx)+ tan

-
^1.

X* + I (3 2 2
/

— = -xi - - log (xi + i).
** + i 3 3 ^

^ ^

176 Fractions containing only binomial surds of the first

degree.

The method of rationalization is the same as in the last

article.

J (x

EXAMPLES.
dx

(*—3)*+ (* — 3)
J

Let x — 3 = z
6

,

then (jc — 3)4 = s3
,

(x — 3)3 = s
2

, dx = 6 z>dz
;

/' <& _ r 6 z^dz
•''

o'(v-3ji + (*- 3)rJ?T?

J ^ + 1

= 6 < — -f- z— log (1 + 2) >

(3 2
)

Hence, substituting the value oi z = (x — 3)®, we have

/^jr / 3/

7 v , / •—xi
= 2 V*—3-3V* -3

4- 6V^ — 3 — 6 log (1 -f- V# — 3).

</ dx

\la + Zw
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Here a -\- bx= z2
,

i t~ 7
2 zdz

Va -\- bx = z, ax = —-— •

b

Hence /
—

,
= T / dz = T z =— \la -\-bx.

J \la + bx "J o b

3 P"~ 8)\^_ 2 C (*-** '&

J {ax - a)l ^J (x - i)*

2 C 1

2

=—7= / (x — i)~*dx== —(x — i)S.

V tf «/ 5 Vtf

We could rationalize by making x — i = s
6

,
but the process

is obviously unnecessary in this case.

C dx _ J__ !
\lx - 2 - A/2

J x \lx — 2 V2 \JX _ 2 4- V2

</ •y 2 x — 1
5. f

v z ^ ~ x
//r

- VJC — A/2JC — I

V 2 # — I . V'2 X — I — I

^2X — I — I -\/2 X — I + I

ix

= 4V21-I
;

+ 3 10

V(i+ \xj

_i (

V

(i+^) 3

-ym^- 3 -+
I

128^ 3
^ ^ V1+4* 3V(i+4^)3

)

'•
/ 3,

+ 1

3= ;V(i + i)2 - 3V* + 1 + 3 log (V* + 1 + i)3
.



266 Integral Calculus

/x = 2 Vi + x +
V(i + xf VT+ X

177. Functions containing quadratic surds of the form

\la + bx ± x2
.

1. When x2
is positive let

\la + bx + x2 = z — x.

2. When x2
is negative let

Va + bx — x2 = V(x — c) (d — x) = (x — c) z,

c and d being roots of the equation,

x2 — bx — a = o.

I
EXAMPLES.

dx

V2 -\- $x -\- X2

Let V2 + 3 x'

~r* x2 = z — x,

then, squaring, 2 + 3 x = z
2 — 2 zx;

z2 — 2
.'. X =

22+3

2(£2 +3£+2)
flJr = — - -^ dz,

(2Z + 3 )
2

1 S
2 — 2 22+32+2

V2 + * .# + .ar = 2 — x = z — = •

22 + 3 2 2 + 3
Therefore,

f
** = f-^- = log (2 . + 3)

«^ V2+3.X + .X
2 *^ 2s + 3

= log (2 V2 +3^ + ^ + 2^ + 3). flj
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dx

V2 + x — X2

Here, . x2 — x — 2 = (x + 1) (x — 2).

.*. V2 + x — x2 = \l(x -\- i)(2 — x).

Let \l(x + i)(2 — x) = (x -\- i)z;

then, 2 — # = (.%• -|-i)22 = xz2 + z2 .

2 — z
d

z
2

-\- I

dx = — rT
-

r-
2

rtfe,

V2 4-* — *2 = (* 4- 1) z — -=— h 1 U = L

-r~t

—
7 \2T + I / ZZ + I

///% Z^* 2 ^//S"

/ s =— I -5 = 2 cot
-1

;?

V2 + * — X2 J Z2 + I

.. 2—X= 2 cot
-1

!/
V #4-1

3. r
;

dx = 2 cot-yi^.
«7 V 2 — JV— a:

2 V # -f 2

4. /
,

= log (x + Vtf 4- x2
).

J \/a + x2

/dx . x — 1 4- Vi -\- x -\- x2— = log
jc vi -f- ^ + a;

2
a* + 1 + vi 4- x 4- .#

2

/^r 1 , x — V2 4- v 2 — x -\- x2

= —- log
x V2 — x 4- x2 V2 x + V2" 4- V 2 — .r 4- x2

/dx 1 . V2 -\- 2 x — V2 — x= — log— - j==
x V2 + x — x2 V2 ' V2 4- 2 x 4- ^2 — x

'
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dx
1 / V-* — i — x\k= 2 cot

-1
'

°- -»•
8. f-,

___. . rJ V2 — 2 X — X2
\ V3 + I + X,

9. / = log [-+ x + \/a + bx + x2
)

J ^a — bx -h- x2
V2 /

rtfr I , V4 -\~ 2 X — V2
- = — logf — —

(2 -\-
2>
x) "^4 ~ x2 4V2 ' V4 + 2 x + V2 x

11 — =—_ log (
—-+i'Vi-+ Va+fo+r.*2

]'

Na + bx + cx2 Vc uV^ /

/;
<2^

12
(*+ *) V^+^

1 #4- ^lx2+ b2+a— \la
2+b2

s]a2+b2
°g *+ ^Jx2+ b2+a + \I1F+T2

178. Methods in Special Cases. As already stated (§ 174),

no general rule can be given for the rationalization of irrational

forms, other than the very general rule given in that article,

viz., to substitute in the given expression some variable that will

effect the object in view. We shall conclude this chapter by con-

sidering some forms as illustrative of the usual method of at-

tacking the problem. It may be remarked that the process of

substitution is also frequently used in simplifying irrational

forms.

1.

EXAMPLES.
xsdx

V(^ + i)2

Let x2 4- 1 = z
;

dz dz
then, xs = (z — i)3 ; dx — — = —, ^ , V (x2 4- 1)

2 = si
;2x2 (z — 1 )*
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)dz

V(^2+i)

— 3
Zi= A S*

4

(*
2 + !)*(« -'3):

2. Ix3 \/a — x2
^jt\

Let a — x2 = z2
;

then, ;r
3 = (<? — z

2
)%, V<? — ^ = £, dx =

—

\la-z2

x3 \Ja — .x
2 dx = —

j
(a — z2) 2?dz = h -

\S 3/ iS
U

J 5

— (3 JC
2 + 2 «).

V^3 — a3

Let *= •. .-.& = f^ = f^13 x2 3 yk

2 „3x = y% \lxz — as = VjT -

Hence, /
——^-— = f I —-J=

«/ # V*3 — tf
3

«/ j' Vy2 -

2—, sec"
3«#

2—
-3
sec

3#s
"©'
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dx

I \f(ax2 +b)3

Let x — -) .-. dx = ,

y f
n a , yNg V(tf+^2

)
3

Hence, f f =- f {f =- f {a + b?)-*ydy
J V(^2+^)3 J («+£/)» J

bVa + Jf

x

b \/ax2 + £

/x2 — jr

(# — 2)(# — 2)
3

We may, of course, integrate in this case by decomposing

into partial fractions. (See § 168.) A simpler process is to

let x — 2 = z,

\z + 2 )
2 - {z + 2)/jf2 — .% 1

I

(X — 2)
8 J -S

3

Z2 + 3 £ + 2

rtfe

tffe

1 3 z= iog 2 _ 1 _
-2

= log (^ — 2) —

6 /

X — 2 (# — 2)
2

<2&

# (a + Xs

)

. . dz dz
Let jc* = z. .'. rt^ = —s = t—

3.x
2 3 2S

But x = 2-5 and # + #3 = « + z-
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C dx . C dz , CIA B \ ,

Hence
' J i&+*r v <^rv b+^nr m

By § 169, we find A = - and i? = ; hence,
a a

fz^r^ logz -l l°8 ^ + ^)

= T~Z loS
2,a a + z

/dx i , x3

—

7

^ =— l°g
x (a -\- x6

) 2>
ax (a -\- x3

) 3 a a + x3

e*dx C dz .— = / -= when e* = z.

r 1 — 4 Jr-4

Ji^ = ilog^(by§i64 ,
2 3).

?^-
4
=ilog

e* — 2.

e* + 2

8. J-|=
= ^(3^- 4)^ + I

)
1

Let ^+1=2.

dx =
x2 V*4 + x2 + i

V^4 + a."
2 + i

#

Let jc
2
H—» = £.

10
- f^^T^ =i(^+^i+x)i~h(My+^'

Let 2 + a*)i + x = z.
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/**fx dx . , A c= | sin" 1

V-1. /

Let ^2 = z.

dx . 2 (x — b)
12. I —

—

= vers
-1

J y(2 a —\j(2 a — x)(x — b) 2 a —

b

Let jc— b = z.
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CHAPTER III.

BINOMIAL DIFFERENTIALS.

179. The most general form of the binomial differential is

xc (axd +bxf

)
h dx, (i)

in which e, d,f, and h are any constants, positive or negative,

entire or fractional. It is our purpose to explain the method

of integrating these expressions.

180. Every binomial differe?itial may be i-educed to theform

xm (a + bxny dx,

in which m and n are integers, n being positive.

For in (i), § 179, let/> d, and let us multiply and divide

that expression by xdh
. We have

xc + dh (a + bxf
~ dfdx,

in whichf — d is a positive whole number or fraction, and

c + dh is positive or negative, entire or fractional.

Let us suppose these exponents are fractional, and that

s I
c -f- dh = ± - and /— d = + - •

t
J k

Then the above expression takes the form

±- l

x t (a + bx^h dx.

s +sk I

Now let x = z**, then x~* = z , x k = zlt

, dx = ktzht
~ 1 dz;

s_ 1

hence, x~ * (a + bx*
)
h dx = ktz

' s* + kt ~ l (a + bzlr

f dz,

in which the exponents of z are integers and // positive.
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Let h = p, ± sk + kt — i = m, lt — n\ then

±- i
"c (<zx

d
-f &t/) /4 dx = x * (a -j- bx&

)
h dx

= ktz± sk+u- x (a + ^)*^&

= ktzm (a + bzn
)
p dz,

which is of the required form. We shall confine our attention

in what follows, therefore, to the form

xm (a -h bxny dx,

in which m and 11 are integers, n being positive, and/ is whole

or fractional, positive or negative.

RATIONALIZATION.

181. Case I. Ifp is a positive integer the form

xm (a + bx 11

)
p dx

is rational, and may be integrated by expansion and monomial

integration.

Thus, I x3
(1 + 2 x2

)
2 dx = I x3

(1 + 4. x2
-{- 4. x4

) dx

=
f-
- x6 + - ;r

8
.

4 3 2

^"/ z> # negative integer and greater than 1, we proceed as

explained in § 172. Thus,

f
(1 -{- x2

)
2 dx = / q

t>"

i

—- -h -tan 1
^r.

^ 1

2 (jc
2 +1) 2

See latter part of Ex. 1, p. 260.
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182. Case II. Where is an iiiteger or zero and p = —
n k

a fraction.

In this case we have

/ xm (a + bxny dx =
f
xm (a + bxn~fdx,

which may be rationalized, and hence integrated by putting

a + bxn = z1'.

For under this assumption we have,

x = (£ - a\h (£ - «\» , 7
*

i —T—p x =
(
—j- Y ' o + bxn

)
k = ^

/£r = —
- (
—-— ]" zk

~ 1 dz
;

nb\ b )

hence,

^ — ^v^ k Iz1' — a
I xm (a + &£")* */# =

/ ( b ) nb\ b

k

n z l
'~ xdz

m+l
nb

/m+l
(2* -a) " V+*- 1

*/*,

772 -f- I
- a form which is rational when is a integer or zero.

As an illustration let us find

I xz
(l -f- 2 x2)^^:.

#z -+- i z -f- I

Here, = = 2, an integer.
^ 2

Therefore let 1 + 2 3? = 22.
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Hence, x = ( I , xz = I

J
, (1 + 2 x2)* = z %

i\ 22 zdz
<tx = i\ ~y-

l\s _ V2 #//?
Z 3

2
.
/*«*(«*-

1)
4 V2,

_l)Z7 zh

7 5

Hence, / **(i + 2 **;!<& = J ]
^^ ^- - ^-Z ;

-
[

•

J (7 5 )

^ tn -4~ 1 ^
183. Case III. Where p = —

, a fraction, and h - ?>
£ « k

an integer or zero.

In this case, as in Case II., we have

This expression may be rationalized by putting

a + bx71 = xnz1'.

For under this assumption we have,

- V j xm =

(a + bxn)
k= (xn zk)

k = x k z h = l-^ )k zh
, and

# / a \z~ 1 kz k~ 1 dz
dx = —

\zk - bj (z
k - by'
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.-. / xm {a 4- bxn
)
k dx

-/ W a \l^ a/ a \l~ x kz^dz
zk — bj \zk — bj n \zk — b) (2*— bf

n j \z"- — a/ (z* — b)
2

k

mi,

J\zk -b)
n

*
(z* - bj

dz

— a form which is rational and therefore integrable when
m -j- 1 ^ .

h - is an integer or zero.

To illustrate this case let us write,

/dx C
- = I x 2

(2 + 3 x2
) idx.

x2 V2 + 3^ «/

m -j- 1 /z — 2 + 1 1

Here, h - = = — 1, an integer

:

71 k 2 2

.•.let 2 4- 3 ^ = x?z2
.

/ 2 \ ? 22 — 7.

Hence, x = —
, x~ 2

z2 -?,/ 2

(2 + 3 x*)-±= (xz)-i= (*~^A
Z--3Y1

z

l
I 2 \ ? 4 ^//z /2r2 — 3 \ ^ 2-^2-

.*. \ x~ 2
(2 -\- ^ x2)"^ dx

/z2 — 3 /^2 — 3\* 1 /22 — 3\* ar^fe

~i~' V ^ / * V^~)
2 - if

/dz z
m

4 2 '

/dx _ j
V2 4- 3 jc

2

a^ V2 -f- 3 #* "*
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EXAMPLES.

a2xz
.
abx%

1. fx2 (a + bxjdx =— +— +J 3 3

J v ) 7#* 5 b2

«/ .r
4 V i — :r2 3 ^

3

I+a*vr=*

/.r^Zr x2 (x2 +- 2 <?
2
) ,

-=-:

—

2
= V J + ^4 log V^+T2

.

a2 + jc
2

4
b

v. /**• vrn?& = iiM8

(3 *
2 - 2).

8
- J vra =—— v?^

3

//JP tf
2+ 2 X2

^4 \la2-x2

~

3 a**?
\[rf^x2

.

10. f ^ = T
L V(l+2X2

)
3 - J Vl + 2*2

.

/* xV.r 2 <2 4- A*2

(a 4- W)i p yfiT+ln*
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' J (a
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o?dx xs

(a + bx2
)? $a(a + bx*f

/xzdx bx2 — 2a i
—^

,
= ™— ya + bx2

.

^a + bx2 ?>&

14.

15.

/

\ia-\-bx2 3^

dx a -\- 2 bx2

x? (a -\- bx2
)? a2x (a -\- bx2

)?

dx 2 x2 4- i

J*2 (i

16

( I + x2
)% . x Vi + .t

2

rtr//jt: ax

V(i + ^)3 VT+

3 a:
4 — 2 .r

2 + 2
17. /

,

= — V2^ + I.

3°V2 ^2 +

1

18.
J
xs (a2 - x*)ldx = T|2 (6 x4 - a2x2 - 5 a') (a2 - x2)K

REDUCTION FORMULAE.

184. It frequently happens that a given binomial differential

is of such a form that the foregoing methods of rationalization

are inapplicable. We proceed to derive a general method, by

aid of which we are enabled to reduce any binomial differential

to one of the type forms given in Chapter I.

185. To deduce formula for the reduction of the exponent of the

variable without the paretithesis.

Two cases present themselves according as m is positive or

negative in the form

/xm (a + bxn
)
p dx.



280 Integral Calculus

i. When m is positive.

Multiplying and dividing the above form by xn~ 1
, we have

/*-(. + *r* -/>-*<• +»^^
In the formula for integration by parts, § 165,

I ftrtfy = 7/Z' — / Vdll,

let ?/ = xm~n+1 and dfr = (a + A*")**"- 1
/&-.

Hence,

///>(/ + 1) «*(/ + i)J v J

xm ~ n + 1 (a + ^^ + 1
(a* — « + 1) ( /»

«*(/ + i) ~
" nbU+i)

\ J
axm~ U

(* + bxnY dx

4- / fom (a 4- A*")*^
\

•

Clearing of fractions and transposing,

b (m — 11 4- 1) / ^ {a 4- A*")* <&:

to the first member we have

(
„¥ + l!b + mb - llb + b)f^ (a + bxr ,x

(a 4- /3*")p + 1 — a(m — n+i) I xm~ n (a 4- bxn
)
p dx.~m— n+ 1

,

Hence,

xm~n+1(a+ fo?
B
)
p+1— ar(/«— «4- 1) / «"-*(«4 bxn

)
pdx

• - 00
6 (#/ -\-m-\-\)
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which is the required form. Formula (A), it will be observed,

enables us to make the required integration depend upon the

integral of an expression in which the exponent of the variable

without the parenthesis (m) is decreased by the exponent of the

variable within the parenthesis (n).

2. When m is negative.

Let m = m' + «, and therefore ni = m — n.

Substituting these values in Formula A, and clearing of

fractions, we have,

= xm, + 1 (a + bxnY + 1 - a {rri + i) j xm ' (a -f bxay dx.

Solving this equation for / xm'(a -\- bxn
)
p dx and dropping

accents as no longer necessary, we have,

xm+\a+ bxn
)
p+1— b(,ip+m+ 7i-{-i) I xm+n (a+ bxn

)
p dx

(m + i)
• (Q

This formula, commonly called Formula C, enables us to make
the required integral depend upon another in which the expo-

nent of the variable without the parenthesis (m) is increased

by the exponent («) of the variable within the parenthesis.

186. To deduceformulafor the reductio?i of the exponent of the

pare?ithesis.

i. When p is positive.

In this case in the general form,

I xm (a + bof)* dx,
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let u = (a + bxn
)
p and dv = xm dx. Integrating by parts we

have,

/^ (. + **).*

xm + 1 (a + bxnY nbp C A , , N , ,= -— * — / *m+w (a + b&Y-1 dx . . . (i)
»z + i m -\- \J ' v 7

Applying formula (A) to the last term in the second member,

we have,

/*--(. + «o~*

$(/^> + ^ 4- i)

Substituting this value in (i), we have after reduction,

;// + m -\- i

• • • (*)

Formula (i?) enables us to decrease the exponent of the

binomial by i.

2. When is p negative.

Let p = p' + i and therefore, p' =p — i.

Substituting these values in (i?), we have, after clearing of

fractions,

= *m+1 (0 -f- bx
nY+1 + ## (/ + i) /

*"* (# + bxnY' dx.
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Dropping accents and solving we have,

/ xm {a + bxn

)
p dx

— xm+1(a+bxny+1+(?ip+ m+?i+i)
f
xm(a+ bxny+1dx

= »
. (£>)

an (J>
-+- i)

Formula (Z>) enables us to increase the exponent of the

binomial by i.

187. Summary. For ease of reference we collect here the

foregoing formulae, and rearrange them in accordance with

the letters used to designate them.

fxm (a + bxn)
p dx

x
m-n+1(a+bxny+1-a(m-n+i) Cxm

~n{a+bxn)pdx

b(np+m + i)

J xm (a + bxny dx

{a + bx n
)
p + anp

J
x
m
(a + bx n

)
p- x dx

{A)

xm +

(*)
np + m + \

j
xm (a + bx n

)
p dx

xm+\a+bxn
)
p+1-b(np+m+n+\)JxM(a+bxn

)
p dx

=
a(m + \)

(°

fx
m
(a + bxn)

p dx

-

x

m+1
(a+ bxn

)
p+1 +(np+m+n+ \) \ xm (a+ bx

n
)
p+1 dx

= ± (D)

From an examination of the last term in the second member

of each of these equations, we elicit the following

:

(A) decreases the exponent of the monomial factor

;

(B) decreases the exponent of the binomial factor
;
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(C) increases the exponent of the monomial factor

;

(Z>) increases the exponent of the binomial factor.

Or, more generally,

{A) and (B) decrease exponents

;

(C) and {£>) increase exponeiits.

The terms increase and decrease are used of course in an

algebraic sense.

EXAMPLES./x3dx

In this case we observe that the given expression can be

integrated by (i) § 162 if we can make the integral depend upon

the integral of ——= [= x (a2 — x?)~? dx]. This we are
Va2 — x2

enabled to do by (A) , as that formula decreases the exponent

without the parenthesis by the exponent of the variable within

the parenthesis. Writing, therefore, the expression in the

general form,

xz {a2 — x^yi dx,f
we see that m = 3, a = a2

, b = — 1, n == 2, p = . Sub-

stituting these values in (A) we have,

(a2 — x?)i — 2 a2

J
x (a2 — x2)~? dx

I xs (a2 — x2
)

i dx =

X

(a2 -

2 (a2 - X2
)?

X2

3

• x2

f

T

2 a2
,

3

! +2 a2
) \ld>

3
(

(V •-x2

r
J

(a2 — x2
) £ 2 xdx.

(a2 -x2f
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x^dx

Here by (A) we can make the required integration depend

Ix/dx——=== = sin l x. In this case
Vi

/x^dx I

,

= / x2 (i — x2)~? dx :

Vi -x2 J

.'. m = 2, a = i, b = — i, « = 2, p = — ^.

Substituting in ^4, we have,

jc (i — x?y — I (i — ^2)~i dJr

I x2 (i — a:
2
) £ dk =

/

— 2

# (i — jc
2
)^ -j- sin

-1 x

.

yi-^a?dx.

we seeWriting the example in the form I (i — x2
)* d&e

that the expression can be integrated if we can decrease the

exponent of the binomial by i, thus making the integration de-

pend upon the I (i — x2)~^ dx =
f
—= = sin

-1
x. For-

mula (B) enables us to do this. In this case m = o, a = i,

b = — i, 7z = 2, / "= i. Substituting these values in (i?), we

have

2

-1
# / T I .= - Vi — xr -\— sm—i .#.

2 2
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C dx

3 \Jx2

Here /

X = j x~
3 (— a2 + 3*)-* dk.

In this case we wish to increase the exponent without the

parenthesis by the exponent of the variable within the paren-

thesis, thus making the integration depend upon

far 1 (_ a2 + x2)-? dx = f
dx 1 , x= - sec J

* Vjt2 - a2 a a

Applying (C) in order to accomplish this result, making

m = — 3, a = — a2
, b=i,n = 2, fi=— ±, we have

*- 2 (-tf2
-r-:r

2)*+ I x^^-c^+x2)' 1 dx

j x~
3
(— a2 -\-x?)~*dx =

2 a"

yx2 — a2
1 , x

-Vj 1

§ sec
-1 -

.

2 rtrjr 2 ar #

rt^C

6
- J («

2 + *2

)
2

Here fJ-*L--fo + *rdx.

Formula D is here applicable making the integration depend

upon// dx 1 x
(a> + **)- & =

J j-^ = - tan- - . Making

m = o, a = a2
, b = 1, n = 2, j>'= — 2,

in (Z>), we have,

* (>
2
4- *2

)
-1 - / (>

2 + *2

)
-1 <&

JW-v*2\-2 V^ —
— 2 dT

H s tan
-1

2 tf
2

(<Z
2 + ^2

) 2 tf
3

tf
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In the following examples give the formulas which are appli-

cable :/x dx
.

• A?is. Formula (A) twice successively.
Vi -x>

7>
C \la2 - x>dx ^^. Formula (^).
J x

/dx —
• Ans. Formula (D).

\/(x2 + a2

f

/x2dx r 3 i= I X 1
{2 a — X) 2

<7Jt\

V2 ax — x2 J
Ans. Formula (A) twice successively.

/dx7= • Ans. Formula (C).
x3 ya2 — x2

/x^dx
Ans. (A) once, (2?) once.

V(«2 — .x
2

)
3

u/^Vra* ^.(^) once, (*> once.

Integrate the following

:

x2 V#2 — x2 dx = — (2 x2 — #2
) Va2 — jc

2 + — sin
-1 - •

8 8 a

14. /V^+??*
4

= ? (2 ^ + 5 <*
2
) V^ + tf

2 +— log (* + V*2 + «2
).° 8

/<£* \//22 _ ~2 T ^
= _— +—W -

x3 \la2 — x2 2 a2
.*
2

2 az \/a2 — x2
-{- a
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— = — V2 ax — x2
-f- a vers

-1 -
V 2 ax — x2 a

C x2 dx x + -z a 1 x „ ,x
j

- = —^— V2 ax — x2 + ±a2 vers
-1 -

' V2 <2^ — x2 2 2 rt

/x3d# x2 — 4 <2
2

.

/-y—-
2

=—;— V*» + *2
-

Vr -f- « 3

19
C dx V^2 - *2

17
*7 V2

20. /

°? \la2 — x2 a2x

(a + bx*f

x x 1 1 . jbx2

4- ——7 ^ -\ ?= tan
-1

1/—
4 £ (a + Ar2

)
2 8 ^ (a + ^) 8 Vtf3£3

/xdx
1

- a
,

- = — V<^^ — x2
-\— vers

-1

V <?.# — x2 2

2 a:
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CHAPTER IV.

TRIGONOMETRIC INTEGRALS.

188. Trigonometric formulae. The following trigonometric

relations will be found of service in what follows :

sin2 x -f- cos2 x = i

sec2 x = i -f- tan2 x

esc2 x = i + cot2 x
sin 2 jc = 2 sin x cos .%•

2 sin2 x = i — cos 2 jc

2 COS2 # = I -J- COS 2 X.

189. General Rule. Separate the given expression into two
1

factors, the first being the differential of one of the trigonometric

functions. £xj>ress the other factor in terms of the trigonometric

function of which the firstfactor is the differential.

If this rule is followed the resulting expression is, in general,

in an integrable form.

For example: Jsirfx cos'*<fe.
^

Set aside cos xdx and observe that it is the differential of

sin x. The remaining factor, sin2 x cos2 x, must now be ex-

pressed in terms of sin x. Hence we write

f«*x «*** =/«* * (x - sin' x) cos Xdx

sin2 x cos %•</.£ — / sin4 x cos artfk

sin3 x sin5
a:
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Similarly,

I tan^rsec4 .*^ = / tan3
.r (i + tan2 x) sec2 xdx

=
j tan3 x sec2 xdx + I tan5 x sec2 xdx

tan4 ^ tan 6 ^
+ —=—

Or, thus

I tan3
a; sec4 ^jc = / (sec2

„r — i) sec3 x . sec # tan xdx

= / sec5jc.sec^ taxixdx — / secz x. sextan xdx

secD x sec* x

If the given expression does not contain the differential of one

of the trigonometric functions we must attempt by aid of some

trigonometric relation to reduce it to an equivalent expression

that does contain such differential. Thus,

I X.2J? xdx = I (sec2 .* — i) dx

= I sec2 xdx — I ,sec2 xdx - l dx

= tan x — x.

Let us now examine the various trigonometric forms in a

general way.

190. J t&nm xdx and /cot" xdx.

These forms can be integrated when m is an integer, positive

or negative. For, assuming m positive,/C tan™
-1

.* (*

tanmxdx= I t2in
m-2x(sec2 x—i)dx= I tanm

-2 xdx.
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The required integral is thus made to depend upon an inte-

gral, I tanm
~ 2 xdx, in which the exponent has been diminished

by 2.

By repeating the process we find that the integral will ulti-

mately depend upon / tan xdx = log sec x or / dx = x ac-

cording as m is odd or even.

Similarly, j o.oX?
lxdx = j cotm— 2x (csc2 ^? — i) dx

cot™- 1
.* r , 7

I cotm z xdx.
m —

Ultimately the integral will depend upon

Jc*** = log «n*•«/*=*

If m is negative, then

/ \.2J\~
mxdx = j cotm xdx,

and I cot~m xdx = I ta.n
m xdx.

The integration is therefore always possible when m is an

integer.

EXAMPLES.

1. / tan3 xdx = j tan x (sec2 .* — i) dx = log sec x.

I tan x
2. / tan4 xdx = tan x -\- x.

«' 3

/tan4 x tan2 ^ . .

tan5 xdx = h log sec x.

4 2
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/dx f—-— = / tan3 xdx. Cf . i

.

cot3 x J

/cot2 X
cot3 xdx = — log sin x.

/'Y* "Y* "Y*

cot4 - dx = — cot3—(-3 cot \- X.
3 3 3

tan 5 x

t2LV\
m + 1 X

7)1 4- I

COt6 #

7. I (tan4
a* + tan6 x) dx —

8. / (tan'" a 4- tan" i + 2
or) dx =

9. / (cot5
jc 4- cot7 x) dx = —

10. J(car» + «*••*)* =

—= tan4 2 tan2—|- 4 log sec
,k x 4 4

cotn+1#

11 4- 1

cot°-
4

——— dx = I X.23\° xdx. Cf. ^.
cot3 x J °

191. / sec
M

j:(£r and / csc
n
xdfc

If ;z is an even positive integer these forms can be readily in-

tegrated, for/f* n—2
sec" xdx =

J
(tan2

.*: 4- 1) 2 sec2 xdx,

cscn xdx == 1 (cot2 a 4- 1)
2 csc? xdx,
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fl — 2
in which is a positive integer. The binomial factors

may therefore be expanded, and the terms integrated sepa-

rately.

When n is an oddpositive i?iteger this method does not apply, as

ft — 2
is a fraction. For this case, see § 197. When n is a

2

negative integer, even or odd, we have

For these cases see § 197.

EXAMPLES.

1. / sec& xdx = I (tan2 ^ + i)
2 sec2 xdx

= l (tan4 # + 2 tan2
jt: + 1) sec2 ^^r

tan° x „

H- * tand ^ + tan jc.

5

2. I csc6 ^jc = / (cot2 x + i)2 csc2
Jtv/:r

cot5 x — § cot3 X — cot JC.

esc6 - dx= — 4 cot5
2 cot3

3 cot —
3 3 3 3

/„ ,
. ( tan 7

2 x , _ )

sec8 2^^c=f< hf tan& 2^+tand 2^H-tan 2^: >

t 7 V
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192. /tan™* sec* xdx and / cof esc" xdx.

If n is a positive even number the method of the preceding

article is applicable. Thus,

/ tan3 x sec* xdx = / tan3
.* (tan2

.* -f- i) sec2 xdx

tan6 x tan4 x

If in is a positive odd number then

tanm .* sec" xdx = / sec"
-1

.* (sec2 .* — i) 2 secx\.2j\xdx.

cot'" a- esc" xdx = I csc*
_1* (esc2 a — i) 2 csc .* cot a^r,

.... m — i . ... ii-
which since is a positive integer the binomial may be

2

expanded and the terms integrated separately.

Thus / tan3
.* sec5 xdx = I sec4 x (sec2 x — i) sec x tan .%y/x

sec' .* sec .*

EXAMPLES.

/sec4 * i—3— dx = I tan
-4 a (tan2 x -4- i ) sec2

•*;/.*

tan4
.* J v

' y

i i

tan x 3 tan3 *

2. / tan° x sec4 *//.* = y\ tan¥ x + § tan s#.

3. / tan5
.* sec5 xdx = T

2
T sec^ .* — ^ sec* * + § sec^ .*.
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4. / —5— dx = / sec
-4 x (sec2 x — if sec x tan .xy&;

J sec3
a: J

2= sec ^ +
secx 3 sec3 #

. sec9 ^ 2 sec7 # sec5 #
tan& ^ sec5 ^«x = 1

9 7 5
1

/ cot5 *

_ CSC X
CSC JC<7JC = CSC X

3

_ cot6 x cot8 *
CSC JC<7X = =

-

8

8. I tan s x sec4 -x^ = § tan 2 x
tan 1 #

/, , . . tan8
(jc -j- «) ,

sec4
(.r + #) <tfr = + tan (x -f- a).

/. . tan3 nix tan mx
tan4 mxdx = — =

f- .%•.

3 #z m A

11. I COt5
.* CSC5

.27fo: = — I CSC9
.* + f CSC7 X — \ CSC5

.*.

12. I ^ -^ - = | tan* * + f tan 2
#.

'sec
4
.%y/.*

Vcot3 x

193. Since

sin x cos #
tan .* = , cot x = —

cos x sin x

i i

sec x = , esc x = ——
?

cos x sin x

it is obvious that all the foregoing trigonometric integrals may be

reduced to equivalent integrals involving only sin x, or cos.*, or

both. Let us consider now integrals involving these functions.
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194. I sin
m
xdx and / cos'" xdx.

i. If m is a positive odd number the integration is readily-

performed.

sinm jerf[r == — / (i — cos2
^) 2 (— sinav&r),

cosm .*7/jc = I (i — sin2
.*)

2 cos^v/.*:,

. . . m — i .

in which is a positive integer.

Thus /*»•** ~-/(i- co**) (-<*»**)

COS3
a:= — cos x -j

3

= sin # — -| sin3
jc -f-

i sin5
j?.

2. If #2 is an even positive integer the integration may be

affected as follows

:

// / 1 — COS 2 JtA —
sin"1

#//.* = / (

J

2 /&:,// /i -f- COS 2 Jc\

—

COS™ .X^ = / j 1
2 ^T.

;«
Since — is a positive integer the binomials may be expanded

2

into a finite series of terms. Those terms involving odd ex-

ponents can be integrated by the method explained under i and

those involving even exponents may be further reduced by re-

peating the process above. Thus
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I

I — COS 2 x\2

sin4 xdx = I (

J
dx

= \ J
(i — 2 COS 2 X -\- COS2

2 *) rtfr

x sin 2* i /

r

*i + cos4^=
1— I ax

4 4 4J 2

* sin 2* x sin 43:

4 4 8 32

== | x — ^ sin 2 .% -f- 3V sni 4 x «

3. When #z is an even negative integer, we have

/sin -m xdx = I — = / esc"' xdx,
J sin™ x J

/cos~mxdx = I = / sec'" xdx.
J cos"'.* J

We proceed, therefore, as in § 191. Thus,

/dx / cot5 x
-t—~— = I csc6xdx = f cot3* — cot*. Ex. 2, p. 203.
sin6 * J 5

—s— = I sec6 *?7* = -f- f tan3 * + tan x. Ex. i,p. 203.
cos6 * J 5

4. When m = — 1.

dx

cos- - ^sec2 -#*

=
/ = i / = i I = logtan-

sin x J . x x J . x J x 2
2 sin - cos - sm - tan -22 2 2

x
cos-

2

7T

/dx f* dx . 2 . In x\= / - = log tan = log tan •

cos* J . Itc \ 2 \a. 2)
sin \- - xj
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5 . When m is an odd negative integer greater than i . See

§ 197.

>. /si195. / sin
w
;rcos

w
;ttfr.

1. If either m or n, or both, are odd positive integers the

method of § 194, 1, is applicable. Thus,

1 sin4 x cos3 xdx = I sin4 x (1 — sin2 x) cos a*/.*

sin5 x sin 7 ^

/sin»*cos«*& = -/(, - «**)«*«*<- sin«*)

cos5 ^ cos7
.#

If both m and « are odd, we may adopt either of the fore-

going methods. Thus,

sin4 .% sin6 x

6 '

or, / sin3 x cos3 jc^r = — 1(1 — cos2
^:) cos

3 ^(— sin^^r)

cos4
3: cosb

a:

2. When /» and 72 are even positive integers.

Let n> m and let n =ni+p, p being an even positive

integer.
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Then, / sinm #cosw
.#tfk = / sin"l ^cosm+p xdx

/*/sin 2 x\m /i+ cos 2 x\% .

• =J {—) (

——

)

dx

= / sin"1
2 x{\ -\- cos 2 x)%dx.

2m+?J

p ... ...
Since — is a positive integer the binomial can be expanded

2

into a series, and the terms integrated separately.

If m > n and m = n -\-p, we have, similarly,

/sinm .# cos* xdx = / sinn 2 x (1 — cos 2 x)* dx.

Thus,

J/^/sin 2 jf\
2

sin4 # cos2 #//# = I 1

J
sin2 xdx

-s
•/cJ«2sin' 2 ^ 1 — cos 2 jc\

due

4 2 /

= -| / sin2
2 xdx —ifI I sin2
2 #/&: — i I sin2

2 # cos 2 xdx

1
i~i — COS4.X 1 sin3

2 x
-»/ d£r

16 3

1 sin 43: 1 . .= —^ # t smd
2 x,

16 64 48
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3. When m + n is an even negative integer.

In this case we have,

sin'" x cosw .*#.* = I —— cosm+ n xdx
J cos"' X

= I tanm .* sec
- (m+n) xdx.

Since (#2 + n) is by hypothesis an even negative integer,

— (m + n) is an even positive integer. Hence § 192, such

trigonometric forms may be integrated.

Thus, / 3— dx = / tan3 x sec2 xdx
J COS .* J

tan4
.*

EXAMPLES.

1 . / sin2 xdx = \ sin 2 x.

2. / cos2 xdx = f- J sin 2 .*.

3. / cos3 .r^r = sin x — ^ sin3
.*.

4. / s'm^xdx = — cos.* + % cos3
.* — i cos5

.*

x sin 2 .* sin 4 #
5. I COS4

.*^.* = — X + (-

3 2

6. 1 sin5
.* cos* xdx = — \ cos5

.* + f cos7
.* — \ cos9

.*.
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'. I sin4 * cos5 xdx = i sin5 * — f sin7 * + ^ sin9
*.

/dx
i

.. /si

= tan * 4- h tan3
*.

COS"
1 *

sin4 xdx = — X cot3 * — cot *.

C 2 4 , •* sin 4* sin 3 2*
10. I snr * cos4 *«* = —- -

1

6

64 48

J
'sin* * , 1— #* = cos *.
c

1

3

cos2 * cos *

„ xdx .

12. ——— = ^ sin5 * — 2 sin * — esc *.
/cos 5

a

sir

r sin1

> /—I
«/ COS'

"\f
X = I tan1

*.

cos 5 xdx

dx
14 3

sin 2 * cos a *

/• dx
.

3 3
= i tan2 x — \ cot2 * -f- log tan2

*.
snr * cos" *

/dx /''sin
2 * + cos2 *

-^-= s— = / —r-^ 5 dx = tan * — cot *.
sin" * cos'

2 * J sin- * cos" *

196. Formulae of Reduction.

When m and 11 are integers positive or negative, even or <?*/</,

we can by successive reduction make the expression

/sinm * cos" xdx
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depend ultimately upon an integrable form. It may be remarked

that while the following formulae are applicable to all cases where

the exponents are integral, yet the preceding processes should

be employed in all cases where they are applicable as being in

general simpler.

197. To deduceformulaefor the reduction of the expofiefit (m) of

sin~ X in the expression§si,f' X co? Xdx .

i . m positive.

I sinm x cosn xdx = — I sinm_1.# cos".* (— s'mxdx)

1 x I'm — i

i J n + i

-smm~ 1 x cosn + 1 x -{- {m — i) I sinm~ 2 x cos"x (i — sin2 x) dx

n -(- i

—sin"1-1 x cosw+1 x-\- {m— \)\ sin"1-2x coswxdx—
(
m— i ) / sin™* cos" xdx

n + lCOS= — smm 1 x h / sin"1 2 x cosn+2 xdx
n -f-

'l/*-*-
"*<*- «-->/"•

n -\- l

Clearing of fractions and transposing, we have

(«+«)JsiD-*«*-**

= - sin-, cos-, + (m - i)Jsfa—* «*•**

.-. I sin™ x cosn xdx

$
n + 1 x -\-(m — i) / sinw

~ 2.rcosn .rdk:— sinm * x cos'

m -\- n
. . . (A)
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Formula A reduces the exponent (m) of sinm x by 2 . By re-

peating the process the integration will depend ultimately upon

I sin x cos" xdx or I cosw xdx

according as m is odd or even.

2. m positive and n = o.

Making this supposition in (A), we have,/— sinm— 1 jccos x -f- (m — 1) / sin m_2.x^

sinm A:^r = • (
B

)m

3. w negative.

Let m =— m' -\- 2, m — 2 = — #/,

in which /#' > 2. Substituting these values in (^4), we have,

I sin~"l '+2 3:cosn .XY&:

— sm~ m/+1x cosn + 1 x -\- (— m'-\-i) I sin~ m/
.* cosw •%•</.#

— rri+ n + 2

Clearing of fractions, transposing, solving, and dropping ac-

cents, we have,

1 sm~m x Q,os
n xdx

— sin-m+1 .a: cosw+1 ^r -\-(m — n— 2) I sin-m + 2
^: cosnxdx

= . A (c).

m — 1

By repeating the process, the integration is made to depend

ultimately upon

/
#

cosw xdx C—
: or I cosn xdx.

sin x J

according as m is odd or even.
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4. m ?iegative and n = o.

In this case (C) becomes

/sin '" x^/r
. (Z>)

#z — I

198. To deduce formulae for the reduction of the exponent (n)

of cos
n x in the expression

J
sium x cos'

1 xdx.

1 . n positive.

I sinm x cos" xdx = / cosn_1 x sin™ x cos xdx

* x /'sin"' "*" *x
I (« — 1) cosTO_2^(— sin^x)= cos" L X

sin
,M — 1

m +

cos'1 1 xsinm + 1
jc n — 1 (* _ .^07
- H I cos" J .rsinTO+ cV/m:

w + 1

J

7/7 -f- I

cosn 1 xs\rini + 1 x +(«-0/^-»sin- J (.-cos^)A

;/z + 1

Clearing of fractions, transposing, and solving, we have

/sin™^ cosnxdx =
->X+ («-r)f-sinm+1xcosn 1x4-(n— 1) I sinmJccosw 2xdx

{A').

m + n

(A r

), after repeated use, makes the required integral depend

upon

/sin-. cos *&, or Jsin-^,

according as /z is 0^ or ^?;z.
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2. n positive and m = o.

(A r

) under this supposition becomes

/sin xcosn—1 x -j- (n — i) I cosn
~ 2xdx

cosn xdx = •
\B

)
n

3. n negative.

Let n = — n' -\- 2, n — 2 = — n\

in which ;/> 2. Substituting in (^4') we have,

fair***-'"**

sinm + 1 xcos~ n/+1x + (—n-\-i) I sinm ^ cos-n/ ^^c

m — n
r

-+- 2

Reducing and dropping accents, we have,

f*r**x~*dx

s^*coS-+Lx + (n- m
-2)f

Sm"*cos-«+>*<t*

n — \

(C)

Repeating the application of (C), the integration will ulti-

mately depend upon
/"sin™*

7
r .

I dJt:, or / sinm xtfx,
t/ cos x J

according as n is odd or m?/z. For further reduction we apply

(A) or (S), § 197.

4. « negative and m = o.

This supposition in (C) gives

/ sin x cos n+1x-\-(n — 2) / cos~n+2 ^x
cos

-" ardfc =
n — 1

.(//)



306 Integral Calculus

199. Reduction to Algebraic Forms.

Let sin x = z ; then,

/ sinm x cos" xdx = / z
m

(i — spf^dz (i)

For x = sin 1
z. .'. dx =

Vi - z2

also, cos".r = (i — sin2 .*)* = (i — s
2

)
5

, sinm .# = zr'

Since the second member of (i) is of the form,

xT (a + bxn
)
p dx,/•

formulae ^4, i?, C, Z>, of §§185, 186, may be made applicable to

trigonometric integrals.

/ si

EXAMPLES.

sin2 x cos2 xdx.

The process of § 195, 2, is obviously applicable. To reduce

the expression, however, by the reduction formula, let us apply

(A f

), as it applies to this case. It will be observed that (A) is

also applicable.

In this case m = 2 and n = 2,/sin3 x cos x + / sin2 .r^r

sin 2 x cos2 .x^ =
4

sin3
Jtr cos x H J sin 2 .#

= (Ex. 1, p. 300).
4

= ^ sin3
jf cos x -{- ^ x — -^ sin 2 #.

2. I sin* x cos2 xdx.

Using (A) we have m = 4, 72 = 2. Substituting we have
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6

= — \ sin3 .* coss x + -J- (J sin3
;*: cos x + | jc — y

1^ sin 2 x)

2 x — sin 2 jc (3 — 4 cos2 x) sin 3 # cos jp ,
-

N= — H — . (k.x. 1.)
32 24

3. I sec3
Jtv/.r = J cos

_3
*v&\f»*x*=f<

Using (ZX) in which « = 3, we have

sin x cos"
J (/- ,/ COS*

secd *#* =

2 COS2 X
+ i log tan f- - H § ^94, 4-

1 \ 1
IT X= 4- < tan * sec # + log tan

( V4 2

4. I sec7 xdx = ^ tan x sec #
{
J sec4 x + fV sec2 x H~ f i

+ T
5
g log (sec j? -f- tan .#).

I esc3
.xt/a: = I !csc3
Jtr^r = I sin 3 ^:^r

— sin 2 .xcos.# +
sin x

2

x= — \ cot x csc x + 1 log tan - • § 194, 4.

csc5:*^ = — \ cot x csc3
jc — I cot x csc # + f log tan -

.

C dx sin3 x cos a: „ .

7. I j— = I sin x cos * -f- f Jt:.

J csc4 * 4
8 8
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/dx cos3 * sin x—j— = h | sinjc cos x 4- % x.
sec4 * 4 8 ¥

/dx— =— = h sec2 * + log: tan x.
sin * cos"5 * Q

/cos4 *//* *—
:

—— = A cos** x + cos * -f- lo£ tan - .

sin* d &
2

/cos4 *</*
r-« = — i COt* (3 — COS2 *) — %X.
sm2 * 2 W / 2

J</*
.

5
= — i cos * (esc4 x -f- | esc2

*) + § log tan

Reduce the following to algebraic forms and integrate :

13. / sin2 * cos2 xdx.

Let sin * = z ; then

dz
sin2 * = s

2
, cos2 * = i — z2 , dx

Vi — z2

.*. / sin2 * cos2 *</* =
J
z
2
(i — z2)? dz.

Applying formula A, § 187, we have

x = z, m = 2, a = 1, b = — 1, n = 2, p = |-;

hence

s(i - *2)§- f(i - *2)*^
/ Z2 (i — 2-2)* rtfe =

Z (i — ^2
)§ I

-|_ _ ) _ Vi — z2 + 1 cin-1sin x
ar

4/2

= - (2 22 — 1) (1 — 2-2)* + J sin"
-1

2-.
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Ex. 3. p. 285. Substituting for z its value, we have

/
sin x x

sirr x cos^ xdx = —-— (2 sirr a: — 1) cos x + —

sin2x 1= ^ sind x cos x h — • See Lx. 1.
16 8

14. /
— =— — 1 sec2 jc + log tan x.

J sin ^ cos* x

15. I sin2
_rd£c == \ sin 2 ^.

/. sin3
jc cos ^

sin4 xtfx = § sin 2 jc + § x.

/dx x
-^—=— = — 1 cot x esc3 x — I cot # csc # + ft log tan - .

sm 5 x 4 8 8 &
2

MISCELLANEOUS EXAMPLES.

+ b sin x J /
9
x

t

. x\ x x
a cos'

1—h sinz -)-\- 2 sin - cos -
\ 2 2/ 22

-/•
cos^ -

2

# + 2 <£ tan—\- a tan2 -
2 2

-/
# sec2 - dx

2

a2 + 2 ad tan- + «2 tan2 - + £2 - £2

2 2

,
jc dx

a sec*

= 2 f U
,

W
^ a2- s+ (a tan- + ^

<? tan—\- b
2 2

- tan-1 , when a > b.

\fa2-^ \la2-b2
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If a < b, then a2— ft is negative, and we write

f f . = 2 fJ a-\- o sin jr J

a sec*
2 2

(«tan- + ^ - (ft-

a

2
)

x
atari- + b — \lft —

log
V^-^2

- %tan- + £+V^=~*

J a + o cos # J

-

2

rt ( cos
2—h sin2 - ) + b I cos2 sin2 -
2 2/ \ 2 2

/
dx

(a + £) cos2—h (# — ^) sin2 -
2

y
2

„ see2 - —
= 2J U _ W

# H- £ + (# — £) tan2 -
2

<sja2 - ft \ a + b

H a < b, then

V—r~7 tan ~
>
when a > b.

V a-\- b 2

/dx C
a -\- b cos x J

sec2

2 2

(£ — d) tan2 - — (£ + a)

;/:

sec2

2 2

b — aJ „ x b -\- a
tan2

2 b — a

*s/b — a tan - + \jb + a

log
\/ft- a2 „/t -. *

V^ — # tan \/b + a
2
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/dx , 5 tan x + * „—
:

= i tan" 1 ^ -H^
. Ex. (i).

5 + 3 sin 2 x 4

/</:r , , 4 tan # -f 2
:
—_ = i log

^

4—5 sin 2 x 4 tan x + 8

tan—f- 2
2

,. r—*— =iiog

2

= 4- tan" 1 i tan- V
5 — 3 cos ^ V 2/
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CHAPTER V.

DEFINITE INTEGRALS.

200. Up to this point all the integrals derived have been

indefinite, the indefinite constant of integration, C, having been

understood to enter each integral expression. See § 160. If

C is determi?ied from given conditions, and its value substituted

in the integral, or if it is climiiiated altogether from the ex-

pression, the result is termed a Definite Integral.

201. First Method. To determine the value of C from given

conditions.

Let dy =ff
(x) dx,

.-. y =f 0) + Q (0

f(x) containing, of course, no constant term.

Now suppose the relation between x and its function y is

such that when x = a, y = o. Substituting these values in (i),

we have,

o =/(*) + a
.-. C = -/(*).

This value of C, which is now definite in (i), gives

y=f(x) -f(a),

2l definite integral.

To illustrate, let dy = x2dx.

r.y = - + C.

3
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Suppose the relations of x and y are such that when x = 2,

y = o ; then,

o = S + C .-. C = -|.

x3 8
Hence, y =

3 3

Again, suppose a body in a vacuum falls from a state of rest,

and it is required to ascertain the velocity it acquires and the

distance it falls in a time t.

We know from mechanics that the acceleration of the velocity

of a body falling in a vacuum is constant and = 32.2 ft. a

second.

Let g = 32.2 ; then, § 82, we have,

dv

di~ g'

.'. dv = gdt\

.-. v = gt+ C.

But, by condition, v = when t = o, .*. 6

Hence, z> =gt.

Also, § 17, we have,

ds

M = V ''

.'. ds = gtdt\

... j^^+C".
But s = when t = ;

.-. r=o.
Hence, j = i^.

C=o.

Equations («), (^), give the required velocity and distance.

202. Notation. The fact that a function (y) is zero for a

particular value of the variable (x) that enters it is usually de-

noted by placing the value of the variable as a subscript to the

integral sign. Thus,
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y — / f\x)dx = o
U a

denotes that y = o when x = a.

203. Second Method. To eliminate C.

Let dy =f'(x) dx;

then, y =/{x) -f- C. (V)

Now, suppose we know, from given conditions, that

y = A when x = a,

and y = B when x = £.

Substituting these values in (#) we have,

A=f(a)+C,
B=f(b)+C

Hence, ^4 - B =/(<*) -/(£).

But since y4 and i? are values of j/, ^4 — B is also a value of y\
hence we may write,

y =/(<*)-/(*)•

This process is known as Integration between Limits, and is

so called because it gives the value of y between certain lim-

iting values (a and b) of x. The process eliminates C, and

thus renders the result definite.

204. Notation. The above process is indicated by the notation,

j , in which a is called the superior limit and b the inferior

limit. Thus, the expression

y =
J
f(x)dx

denotes that the integration is to be taken between the limits a

and b of x.
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EXAMPLES.

2-6+ C-(i-3+ 0=-|.1 -

f
(x— 3)dx= ( $x+C)

J^dx , .x

a ^ (-1

Jf—
\ —

smxdx= (— cos.*)
\

=—cos—+ C— (— coso-f-C)= i.
y

|- 2

J^
dx 2= 2 _.

i V^3 v#

Jxctx , I
—

= log V2.
2 I - X2

•p.

f-
Jo tf

2

•r

7. /
4
sec4 ^r^c = f

.

^ 7T

y2 + x2
4. a

dx Tt

y/a2 -*? 2

10. I
4
sec x tan a-zj&p = V2 — 1.

2
sin3 x cos3

atfJr = T
J

¥ .

12 Jf»

00

1 A V^Z7
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J^

00

dx

o I + :

J^

00

dx

o i 4- x

13.
XT 2

14. / = oo.

c
15. I r == 7Ttf.

V2 <7X — JT
2

°sin 7/Jtv/jt: 1

16.
d'"'

4-

2

«

17.

£

^-2Jt' COS a+ i 2 sin a

APPLICATIONS.

In order to illustrate the foregoing methods we shall give a

few problems to which these methods are applicable.

1. Determine the curve whose subnormal is constant and

equal to a.

From § 72, we have

dy
Subnormal = y -=- •

dx

Hence, y-=- = a,
dx

J
ydy = a

J
dx,

i.e., jv
2 = 2 a (x + f).

The required locus is therefore a parabola the position of

whose vertex is indeterminate. If, however, we suppose y = o

when x = o we have c = o and the equation of the curve be-

comes

y
2 = 2 ax.
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As the position of the origin is arbitrary we may always so

assume it as to determine c,

2. Determine the curve whose subtangent is equal to double

the abscissa of the point of tangency.

From § 71 and by condition we have

dx

i.e

y = 2 X,
ay

dy 1 dx
•J

y 2 x

Integrating log y = h (log x -f- log c)

= log \lcx.

Hence, y — \lcx

y
2 = ex,or

i.e., a parabola with indeterminate parameter.

3. Required the curve in which the angle between the radius

vector and tangent is m times the vectorial angle.

From Fig. 11 and § 77, 1, we have, since <£ = m6,

rdO—— = tan ma
;

dr

dr cos m9 M— =
a
d6.

r sin mu

Integrating, log r = — (log sin mO + log c)

rm = c sin m6.

When m = 1 this equation represents a family of circles touch-

ing the initial line at the pole.

4. Required the curve whose normal is- constant and equal

to a. From § 72 and by condition

>\MI
2

= a.
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Hence x2
-f- y

1 = a2
;

i.e., the circle is the required curve. The value of c is here de-

termined as in Ex. i by assuming the position of the origin of

coordinates.

5. Find the locus whose polar subtangent is constant and

equal — a. . rO = a.

6. Find the locus whose polar subnormal is constant and

equal a. r = ad.

7. In the cardioid, r = a (i — cos 0), the angle between the

tangent and radius vector is always £ the vectorial angle.
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CHAPTER VI.

GEOMETRIC. APPLICATIONS.

205. Definition. The process of determining the area bounded

in whole or in part by a curve is termed Quadrature.

206. Quadrature of plane areas.

I. When bounded by Algebraic Curves.

Let y =f(x) be the equation of any curve as OPC, Fig. 52,

and let the area between the curve and the X-axis be generated

by the ordinate (PB) of the curve moving parallel to itself from

left to right. Let A = area

AP'PB, and let PB be any

position of the generating or-

dinate y ; then dA, the incre-

ment that A would take on

in any unit of time provided

the change in A became

uniform and so continued

throughout the unit, is evi-

dently the area that PB would describe if its length and velocity

remained unaltered throughout the unit. But the velocity of

PB is the same as the rate of change of the distance OB (= x),

i.e., it is = dx. Hence the differential area {dA) is a rectangle

whose altitude is y {PB) and whose base is dx (BP>), i.e.,

Fig. 52.

dA

. A

= ydx (a)

(0
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in which b and a (OB and OA) are the limits of integration

taken along the X-axis. Equation (i) is an expression for the

area bounded by the curve, the X-axis, and terminal ordinates.

Similarly, we find,

A =£xdy (2)

the expression for the area bounded by the curve, the K-axis

and terminal abscissae, b and a being the limits of integration

taken along the Kaxis.

To illustrate, let it be required to find the area of a parabolic

segment.

Here y2 = 2px. .*. y = \[2~px*',

hence, A =
j

ydx
t/o

„ /—. i' , Vijta* _ 2 TV\}2pX^ClX = — 15
XS>-£

i.e., the area of any segment as OBP is § of the rectangle on

the ordinate and abscissa, i.e., \OBPK.

II. When bounded by Polar Curves.

Let r =f(6) be the equation of any curve as APC, Fig. 53,

O being the pole and OX the initial line. Let A = OP'P, and

let us suppose it to be generated

by the radius vector revolving

around O as an axis, and chan-

ging its length in obedience to

the law expressed in the equa-

tion r =/(&). Obviously the rate

Fig- 53#
of change of A, i.e., dA, is the

circular sector OPB described

by OP in any unit of time with a constant angular velocity (d0).

Hence, since BP = rd$ and OP = r, we have
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dA =ir.rdO = ir2 dO;

.-. A 1 f 'do

321

(*)

(3)

where
<f>
= POX and ^ = P' OX. Equation (3), it will be ob-

served, gives the area bounded by the curve and terminal radii-

vectores. For example, let us find the area of one loop of the

lemniscata,

r2 = a2 cos 2 6.

Fig. 54.

From tne equation we observe that the limiting values of 6

are 45 and - 45 ;

.-. = 45 and «// = - 45 .

Hence,

A == i / r2dO

IT

c\*de=±r a2 cos 2 OdO

4

= \ a2 sin 2
j ;

hence,

i.e., the area of the loop is i- the square constructed on a.

A = —
2
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EXAMPLES.

1. Find area of the circle from its rectangular equation,

x2 + f- = a2
.

Here ydx = 4 I V<? 5

t/0

x2dx

{ x ,-= = a2
. . .%•

= 4 \ - V« — x1

H— sin
-1 -

(2 2 a
See Ex. 3, p. 285.

1 « . <7 .= 4 < — sin
-1

1 4- C sin
-1

o — (7
2 2

4
2 2

7Ttf
2

.

2. Find the area of the circle from its polar equation

r = 2 a cos 6, the left-hand extremity of the horizontal diameter

being the" pole and the diameter being the initial line.

Here A = \\ r2d$

71

^ 1 /

2

4 a2 cos2 6dQ

~2

= 2dl l- +
I 2

sin 2
See Ex. 2, p. 300.

, 7r sin 7r _ / 71 sin (— 7r)= 2 a2
J - + + C - - - H i ; +c)

j

9 \ 7T . 7T= 2 AT {
1

f 4 4

= irar.

r 374 5 8
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3. Find the area in Ex. (2), (#), when the center is the pole

and any diameter is the initial line
; (^), when any point on the

curve is the pole and the tangent at that point is taken as the

initial line.

4. Find the area of the ellipse. -jrab.

5. Show that the entire area of the cissoid, j? (2 a — x) = x3
,

is three times the area of its base circle.

6. Find the area of the first spire generated in the spiral of

Archimedes, r= aO. %Tr 3a2
.

7. Show that the area of the cardioid, r = a (1 — cos 0), is

six times the area of the generating circle.

8. Area between the Witch of Agnesi, (x2 + 4 a2
) y = 8 az

,

and the ^f-axis. 4 ird2 .

9. Area between the cissoid, (2 a — x) y2, = xs
, and its

asymptote, x = 2 a. 3 -na
2

.

10. Assuming the polar equation of the cissoid, r = 2 a

tan sin 0, and the polar equation of its asymptote, r = 2 a sec 0,

find the area.

11. The entire area of the hypocycloid, x* + J$ = «*, is § the

area of its base circle.

c ,
... x = aO — a sin )

12.* The area of one arch of the cycloid, , m >

y = a ( 1 — cos v)
)

is three times the area of the rolling circle.

ira
2

13. Area of one loop of r = a sin 2 6. — •

o

ira
2

14. Area of one loop of r = a cos nv. —r
4 n

* This fact was first established by Roberval in 1634.
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15. Entire area of r = a (cos 2 6 + sin 2 0). 7r#
2

.

16. Area betweeny (x2 + #2
) = tf

2
.*

2 and its asymptote, y — a.

2 ^2
.

17. Area between r = a (sec -\- tan 0) and its asymptote,

r = 2 a sec 0. (
—\- 2 )a\

18. Area of one loop of x2 (a2 + _y
2
) — y

2 (a2 — y
2
).

7T — 2

2

19. Area between y
2 (a — x) = x2 (a -f- x) and its asymptote,

x = a.
I—h 2 I a\

207. Definition. The process of determining the length of

a curve is termed Rectification.

208. Rectification of Curves.

I. Algebraic Curves.

We have found, § 18, that,

ds = \]dx2 + dy2
.

This equation may be placed in either of the following

forms

:

*=| i+ (l)T^

*H--+-(S)T*

Hence, 5= P
j

i +
(4|J |

Vjr (i)
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In (i) the limits of integration are taken along the X-axis ; in

(2) the limits are taken along the Y-axis.

To illustrate let us find the entire length of the circlex2+y2= a2
.

dy x
From the equation we have — = Substituting in (1),

we have /»«. f ^\ \

Jr
x
t /

Xo V

S= (1 +- dx.
r

If we integrate between the limits x1
= a and x2

= o, we ob-

tain the length of a quadrant ; hence for the entire length we

have n a 1 ^\ \
f'

a/a2
\
h

5=41 V
+
f)

dx==A
lXf)

dx

Jo Vtf2

— dx
x2

Jr
a dx _-< x—= == = 4 a sin l

v#r x2 "

7T= 4<2
" 2

= 2 na.

II. Polaj' Curves.

From § 76, Cor., we have

ds= ^r*d& + dr2
.

Hence, ds = ),* + (— J
{
&\

( (d6\2
)
i

or, ds — { 1 + r2 1
—-

J-
//r.

H«TO 5-J( J-'
+Qj* ()
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According as the limits of integration are limiting values of

the vectorial angle (0), or limiting values of the radius vector (r).

To illustrate, let us find the entire length of the cardioid

r = a (i — cos 0).

From the equation we have,

dr .— = a sin 0.
ad

Substituting this value together with the value of r in (i), we

have
r<t>

S= I \a2
(i - cos 0)

2 + a2 sin2 0|i dO.

The limiting values of are 2 7r and o ; hence

X2tt \a2
(1 - 2 cos + cos2

0) + a2 sin2 0}i ^0

X2tt
(1 - COS 0)* //0

X2tt V2 sin 10^/0

2^

= — 4 tf cos J

= — 4 a \ cos 7r + c — (cos o + c)
\

= 8 a.

EXAMPLES.

1. Find the length of the circle, the pole being at the center.

We have for the equation of the circle

r = #

;

dr

.: §208, II., (1), 5 =£" W + (o)2jJ

/»2 7T

= a
J

dB =

dO

2 ira.
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2. Find the length of one arch of the cycloid.

From the equations of the curve, Ex. 27, page 69, we 'have,

do
= asm6

>

-^ = a(i-cosff) (a)

dy .00
j lm -a 2 sm - cos -

ady ad smO 2 2

dx dx 1 — cos . „ 2

m 2sm2 -
i </0 2

Substituting in (1), § 208, I., the value of dx drawn from (a)

id the \

we have,

dy
and the value of— and integrating between the limits 2 ir and o,

S = a
\ ] 1 + cot2- > (1 - cosO)dO

/
=; 2 a I

Jo

'2

= 2a I csc-sin2 -rt#

2ir

sin - </0
2

19

4 <? COS -
2

2?r

= 8«.

3. Find the length of an arch of a cycloid, assuming the

rectangular form of its equation, x = a vers
-1 - — V2 ay — y

2
.

a

dx yHere,
dy ^2ay-y2

This value in (2), § 208, I., gives

S = V2 a I (2 a— y)~*dy.
*-'Vi
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Integrating between the limits )\ = 2 a and y2 = o, and

doubling the result, we have the length of one arch

;

Jr»2a
(2 a — y)~%dy

= — 4 V2 a (2 <? — jj/)a

= 80,

as before. See Ex. 2.

Note. — Sir C. Wren rectified the cycloid in 1673. It was the second

curve rectified, the semi-cubic parabola having been previously (1660) rec-

tified by William Neil.

4. Find the entire length of the hypocycloid, x% + y% = a*.

dy y&

dx x^

S= 4 I (1 + -S~dx
x$l*s

= 4 C& /
f

i

e/0

x %dx

I

a

= 6 tfir^

lo

= 6 a.

a

5. Show that the entire length of the curve, r = # sin3 -, is

three-fourths of the circumference of the circle of radius a.

6. Find the length of an arc of the parabola, jy
2 = 4 ax, esti-

\l /yt I \f rt I sy*

mated from the origin. ^Jax + x2
-\- a log — — •

Na

a I * -*\
7. Find the length of an arc of the catenary, y = - (ea -f- e

a
)

,

estimated from the vertex of the curve. S = -[

e

a
- e

a
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P
8. Find the length of an arc of the parabola, r — -•

i — cos 6

9. Find the length of the curve, 8 azy = x* -f- 6 a2x2
, measured

x
from the origin. -

—

--(x
2 4- 4#2)i

o <2

10. Find the length of the logarithmic curve, x = <?log--

S = a log
J + y<z2 +f + C.

rt + V^2 + /

11. Find the length of the logarithmic spiral, = a log -,

between the limits rx and r2 . S = V(i + ^2
)(^2

— ri)-

12. Show that the cissoid is rectifiable.

13. Rectify y = log between limits x1
= 2, x2

= i.

S = log(<? +

14. St. Vincent, before the middle of the seventeenth century,

proved that any arc of the spiral of Archimedes was equal to the

corresponding arc of a parabola. Prove it.

209. Surfaces and Volumes of Revolution.

Let the curve A'PC in the plane XY revolve around OX as

an axis. Then the surface generated by the curve is a surface

of revolution and the volume generated by the area A'CC'A is

a volume of revolution. As every point, as P in the. curve, gen-

erates the circumference of a circle, and every ordinate of the

curve, as PP(= y), generates the area of a circle, we may con-

ceive the surface and volume to be generated by the circum-

ference and area of a circle whose center is in the X-axis

moving in the direction of that axis, and changing its radius

in obedience to the law expressed in the equation of the limit-
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ing curve A'PC. Assuming the latter mode of generation, let

B be the position of the center of the generating circle at any

instant ; then the differential or

rate of change of the surface

(dS) is obviously the surface

that would be generated in any

interval of time if PB = y re-

mained constant throughout the

interval, and the velocity of each

of the generating points of the

circumference, such as P, also re-

mained unaltered. But such a surface is that of a cylinder

K'PB, the circumference of whose base is 2 -k PB = 2 -ny, and

whose altitude PK' = PK = ds = velocity of the generating

point P of the curve A'PC. Hence

Fig. 55-

But

dS = 2 iryds.

i /dy\
2

)
*

ds = I 1 + I — > dx. See § 208.
I \axj

)

dS = 2 irv < 1 -f- [ -r- J
> dx.

(
\dxj

)

dx
(*)

Similarly the differential or rate of change of the volume

(dV) is the volume that would be generated in any interval

by the area of the circle ttPB2, (= iry
2
) provided its radius

remained unaltered and the velocity of each point of that area

also remained unaltered throughout the interval. This dif-

ferential volume is also that of a cylinder whose base is

itOB2, = irf~ and whose altitude PK' = dx (not ds since each

point of the area is moving at the instant in the direction of

the X-axis). Hence,
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dV= irf-dx (a)

"
> V=tt f

Xl

y
2 dx (2)

To illustrate let us find the surface and volume of the sphere

generated by the circle, x2 + y
2 = a2

, revolving about the X-axis.

(1). To find the surface.

dy x
Here -=- =

, and y — (a2 — x2
)*,

dx y
v 7

— 2 tv I y I 1 + —
\ dx

C*i a= 2 7T I V -
Jxo " y

TU X-2

dx
xz y

= 2 ira I dx.

Taking the limits xx
= a and x2

= o we obtain one-half of

the surface. Hence for the whole surface we have

S = 4 Tra
J

dx = 4

(2). To find the volume.

Integrating between the limits x1
= a and x2

= o and

doubling the result we have

V= 2 tt I y*dx
Jo

= 2 7r / (a2 — x2
) dx

( H \ \
a

\ X I= 2 7r < ax >

( 3 Vd

= % Tra
3

.
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EXAMPLES.

1. Find the volume of the ellipsoid of revolution generated

revolving tl

(2), about Y.

y
by revolving the area of the ellipse, — + — = 1,(1), about X,

4 irab2 4 tt(i
2
1)

Ans. ,

3 3

2. Find the volume generated by revolving the area bounded

by the Witch of Agnesi, (x2 + 4a 2

) y = 8a s
, about the X-axis.

Ans. 4 7r
2
tf

3
.

3. Show that the volume generated by revolving the area of

the parabola, y
2 = 2 px, about X is equal to one-half the volume

of the circumscribing cylinder.

4. Find the surface and volume of the cone generated by

x y . .

revolving the line, —f- - = 1 , and the area which it and the
a b

72

axes limit, about the Jf-axis. Ans. V'= , S = 7rb \la
2

-f- P.
3

5. Find the volume and surface generated by revolving one

arch of the cycloid and the area it bounds about X.

Ans. V = 5 ttV, S = ^ ira
2

.

6. Find the volume generated by the area of the cissoid

{2a — x) y
2 = xs

, as it revolves about its asymptote, x = 2 a.

Ans. V = 2 7r
2a3

.

7. Find the surface generated by revolving the cycloid

about its axis. Ans. S = 8 ira
2 (w — f).

8. Find the volume generated by revolving the area of the

hypocycloid, x% + y* = a%, about X. Ans. V— -tra
z
.

o o

9. Show that the volume generated by revolving one branch

of the equilateral hyperbola, x2 — y
2 = a2

, about X, the limits

of integration being xx
= 2a, x2

= a, is equivalent to sphere of

radius a.
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10. Find the volume generated by revolving the area bounded

by one branch of the sinusoid, y = a sin -
, about X. Ans. —- •

J
2

11. Show that the expression, S = 2 tt I y\ i -\- i-j-\ > dx,

ir
J
r si]becomes S = 2

when the coordinates are polar

(ST^

12. Find the entire surface generated by revolving the

cardioid, r = a (1 + cos 6), about the initial line.

Ans. S = \2 7ra
2

.

210. Surfaces and Volumes in General.

Let the surface SJBCS'p be generated by the curve SpS r

as it moves in the direction of X, its plane being always parallel

to ZY.

Fig. 56.

At the instant of reaching the position SpS f we have

dS = area ASpS'A'.

Let SpS' =P, SA =ds; then, since the surface is cylindrical,

S
dS = Pds. (a)

.-. S= jPds. (1)
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Similarly, dV'== volume ASpS'A'P/,
== -4//#.

(/;)

.*. V = JAdx, (2)

in which ^4 = area SJDS' and dfo = 6^.

Formulae (1) and (2) are obviously applicable to all cases

where P can be expressed in terms of s and where A can be

expressed as a function of x.

Cor. If SpS r
is a circle with its center D in the X-axis ; then

P— 2 iry, A = 7^,

and (1) and (2) become, respectively,

S = 2 j -nyds

v= tt / y^c,

as heretofore determined. See § 209.

EXAMPLES.

1. To find the surface and volume of a regular pyramid or

cone.

1. To fi?id the surface.

Let P' — perimeter of base and Oc = // = slant height.

Let mnd be the position of the generating perimeter P at

any instant. Since P and P' are similar, we have

P Od _ s
.

~P
r'~~Oc~~~h''

>

hence -P
P'

This value of P in (1). § 210, gives

% 5 =
p> nw

^J
P'h'

Jdfr,

i.e., S =
2
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Hence the convex surface of any pyramid or cone is measured

by ^ product of perimeter of its base by its slant height.

2. Tofind the volume.

Let A r = area of base and Oa = h = altitude. Let Ob = x
;

then

A
~A'

Ob
1

Oa

x'

J2

A'
A - p *•

Hence, § 210, (2), V
_A^ f

h

\A? Lt'+A' •

V= A'h

i.e., the volume of any cone or pyramid is measured by \ of

the product of its base and altitude.

2. Show that the volume of the frustum of any pyramid or

h
cone is equal to - (A + A' + \lAA') where A and A' are the

bases, and h is its height.

3. Find the volume of a right conoid with circular base, the

7ta
2h

radius of base being a, and altitude h. Am.

4. Find the volume of the wedges cut from a tree (radius =
a) in cutting it down, the faces of each wedge being inclined at

an angle of 45 . Am. %as
.
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CHAPTER VII.

SUCCESSIVE INTEGRATION.

211. Successive integration is a reversal of the process of

successive differentiation. If, for example, x is equicrescent

and
d3y = x2dx3

,

then,
J>7

= *./*<&;

i.e., d 2y = dx2
\
—\-C \ .

U )

. c ,„ , r \ xzdx _ , )

Again, I ay = dx
J

< (- 6^ >

;

,#
4

i.e., dy = dx < 1- Cr + C, ? •

(12 )

And finally,

// \ x^dx f
dy = I ] (- Cawk + Cxdx \ ;

J ( L2
)

x5 Cx2

i.e., j = — h (- £> -h C/2 .

In practical applications of this process the conditions given

are, in general, sufficient to enable us to determine the values of

C,CX
. . . , and thus render the result definite. Thus, given the

acceleration due to gravity (g), let it be required to find the

distance s through which a body starting from rest will fall in a

time /.
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By condition,

d2s

-jp=g (see § 82) ;

ds

~dt

••• -. = gt + c.

But —- = v\ and v = o when t = o, .*. C = o.

Hence, — = p-/;

hence, s = g—l-C.
2

But j = o when t = o, .'. Cx
= o ; hence,

212. Double Integration. Let

S = ± °-t
2— 2 £>

l
•

x2yz

u =
6

Differentiating (a) regarding x as constant we have

{a)

X2 V
d
y
u =—- dy. (b)

Now differentiating (£), regarding y and its differential as

constant, we have
dx (dyti) = d2

yor
u = xy^dydx.

A reversal of this process is Double Integration, and is indi-

cated by using a double integral sign. Thus, if

d2
yx ti = xy^dydx.

then, u =
J J

xf-dydx.

In performing this operation the order of integration is

denoted by the arrangement of the differentials proceeding

from right to left. For example,

u = I / x*yAdydx
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=f(
X- + CWdy

x4y> Cyb „
+ —+ Cv20 5

213. Triple Integration. If

aZ
zVxu — x2yzzdzdydx

is the result obtained by a triple differentiation of a function of

x, y, z, regarding only one variable to vary at a time, then

=
f f

yzsdzdy\- + cl

x*fz* Cy2
z* Qz* „2484

and the process is termed Triple Integration.

214. Definite Double and Triple Integrals.

Where the limits of integration are given the result of the

process is of course definite. Thus

Jb Jd
u = I I x2ydydx

Jb Jd

r a (<*-dz

=
j
ydyl——

Jb ( 3

c
z — ds a2 — V1

3 2

<V
3 - dz

) (a2 - F)

6

Jr*a
r*b r*c

I I xyzdzdydx
Jo Jo

b ,2

=
I I

yzdzdy -
Jo Jo 2
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x
£V2

= / zdz
4

a2Pc2

It frequently happens in practical application that the limits

of one integration are functions of the variable considered in a

subsequent integration. Thus

Jf*a
f*a,2— y*

. I dydx
o Jo

2 ,&
3 a".

EXAMPLES.

Jf2b
f*a

I y1 (a — x) dydx.
b Jo

/*« r v«2 _ X2

2.11 (x -\- y) dxdy.
Jo Jo

n>/a? - 3*

(x2 -j- y
2
) dxdy.

Jo Jo

r* r^^zzr^. dxdy

Jo Jo

la cos0

rdOdr.

5. a
^la2 - x2

n* riiax- x* r—a—
, , ,

6. f / I I dxdydz.
Jo Jo Jo

ra /•*yi- ? rcS 1 -^-^
7. 8 I /

/
dxdydz.

Jo Jo Jo

Ans. 1 a2b\

Ans. %a\

Ans.
7ra

4

2

Ans. ird
2

.

Ans. a2
.

Ans. ira
3

.

Ans. f irabc.
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CHAPTER VIII.

GEOMETRIC APPLICATIONS.

215. Quadrature of Plane Areas. From § 206 (a), we have

dA = ydx.

Differentiating this equation with respect to y we have

d2A = dydx.

Hence, A = I I dydx. (1)

From § 206, (£), we have

dA = \ r2dO
;

hence d2A = rdrdO
;

: / / rdrdO (2).-. A =

The order of the differentials in (1) and (2) are obviously

immaterial.

Formulas (1) and (2) enable us to determine the areas

bounded by curves by double integration.

EXAMPLES.

1. To find the area of the circle, x2 + y
2 = a2

, by double

integration.

In this case (1) § 215, becomes
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= 4 / / • dxdy
Jo Jo

= 4 I Vtf2 — x2 dx

341

= 4
2 2

Ex. i, p. 322.

~*-/y"= irtl .

Fig. 58.

2. Find the area of the circle using a polar equation.

Let Or

X, Fig. 58, be the polar axis and O the pole, then

r = 2a cos 9

will be its polar equation. Hence, § 215 (2), we have,

'2,2 cos 9

A == 2 I
J

rdOdr
Jo Jo

TV

J
^2 4 a2 cos2 6

t i.•7 2

d0 = 4 a2
I cos2 OdO

= 4 #2

= 7T<7
2

.

See Ex. 2, p. 322.

3. Show that -nab measures the area of the ellipse.

4. Find the area of the cardioid, r = a (1 — cos 0).

Am. §7rtf
2

.

5. Find the area between the line, ay = bx, and the parabola.

ay2 = bx.

a jbxH*
Ans. I

a
dxdy = —

Ji>* 6 b£
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216. Surfaces and Volumes in General by Double and Triple

Integration.

I. Surfaces. From § 210 (a), we have

dS = Pds.

Differentiating with respect to P, we have

d2S = dPds.

Let SpS' be the position of the generating curve at any in-

stant — p being any point of that curve. Suppose the surface

to be generated by the curve moving in the direction of X and

so changing that its co-

ordinates always satisfy

the equation of the sur-

face,^ =/(x,z). Then,

at the instant of reach-

ing the position SpS'

any point such as p has

a motion (represented

by pA) in a direction

perpendicular to the

tangent pB of the

curve SpS' by vi?-tue of

the motio?i of the plane of the curve in the direction of X, and

a motion (represented by pB) in the direction of the tangent

pB by virtue of the change in the curve as it conforms to the

configuration of the surface, y =f(x,z), it generates ; and this

whatever may be the absolute or resultant motion oip. But

Fig. 59.

Hence,

pB = dP and pA = ds.

d*S = dPds = area rectangle pACB.

The projection of the rectangle pACB on the coordinate

planes XY, XZ, YZ, are obviously dxdy, dxdz, dydz, respectively.

If we now let <£, 6, if/ represent the angles which the plane of the
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rectangle pACB makes with XY, XZ, and YZ, respectively, we

have
d2S cos

<f>
= dxdy,

d2S cos 6 = dxdz,

d2S cos \p = dydz.

Squaring and adding these equations, remembering that

cos2
<£ -J- cos2 + cos2

i// = i, (Ana. Geom., p. 221.)

we have, (d2S)2 = dx2 dy2
-f- dx2 dz2 + dy2 dz2

.

Hence,

<=/JHtHS7** <>

dz dz
in which — and — are partial derivatives drawn from the

dy dx

equation of the surface, y =f(x, z).

II. Volumes.

From § 210 ($), we have

dV= Adx.

Differentiating with respect to A, we have

d2 V=dAdx.

But, §206 (a), dA = ydz\ since plane SMS' is
||
to YZ\

hence, d2 V= ydxdz.

Differentiating with respect to y, we have

dz V'= dxdydz
;

Hence,

V=jjjdxdydz (2)
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EXAMPLES.

1. To find the surface and volume of a sphere.

(a) To find the surface.

Let the origin of coordinates be taken at the center of the

sphere, and let Fig. 60 repre-

sent the portion of the sur-

face in the first angle, i.e.,

one-eighth of the surface.

From the equation of the

surface,

Hence,

Fig. 60.

S=S

x2 + y* + z2 = a\

we obtain,

dz y dz

dy z dx

X

z

If'

- *fj\

-If,

, dz\
2 fdzV\h

r 7

y
2 x2^

1 + -
2 + -J dxdy

a
dxdy.

But, z = Vtf2 — x2 — y
a

;

S=Saff-
dxdy

Va" — xr — y

To determine the limits of integration we observe that X

Y

cuts from the sphere a circle whose equation is x2
-f- y

2 = #2
;

.-. y == ^la2 — x2
, as it everywhere measures the extension of

Sj>S' in the direction of y, is the variable superior limit of y, its



Geometric Appplication. 345

inferior limit being obviously zero. The limits in the direction

of x are obviously x — OA (= a) and x — o.

Hence,

nV^rr^ dxdy

\Ja
2 — xr — jr

J(*a
I y \ y/^~T_

dx ( sin
1

,

o \ Vtf2 -

Jo 2

= 4 7Ttf (x)

/. .S = 4 7Ttf
2

.

afo

(d). To find the volume.

Since s = \la2 — x2 — y
2 measures everywhere the extension

of the surface in the direction of Z, we have, from § 216, (2),

V = 8
/ / /

<2k//j//fc

Jo Jo Jo

'«V„*_.
= 8 I f

" (a2 - a:
2 - f)\dxdy

Jo Jo

= 8 fVx \l^/a2-x2-y2 -{-
(

Jo ( 2

2 ^2 t;

4 -l
Va* - ]?

Va2-*2
,

Ex. 3, p. 285.

2 2

x3\ la

= 2 7T I
#"#

Hence, V= f 7m
3

.
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2. Find the entire surface of the groin formed by the inter-

section of two equal semicircular cylinders whose radius is a.

Assuming the axes of the cylinders as those of Z and Fwe
have

Jo Jo 'sja
2 — x2

x2 y2
z
2

3. Show that the volume of the ellipsoid, -, -f —„ -h-= = i, is
a2

Ir c l

two-thirds the volume of its circumscribing cylinder.

4. Find the volume common to the two cylinders given in

Ex. 2

.

Ans. | az
.

5. Find the volume cut from the paraboloid z
2 4- y

2 = 2 ax

by the cylinder x2
-j- y

2 —- ax.

Ans. I - -h - ] a
s

.

\3 4/
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CHAPTER IX.

DIFFERENTIAL EQUATIONS.

History.— Within the last half-century the theory of ordinary differen-

tial equations has become one of the most important branches of analysis.

Euler's memoirs, published in 1770, gave the first method of integrating

linear ordinary differential equations with constant coefficients.

The science of linear partial differential equations may be said to have

been created by Lagrange, in a series of memoirs published in 1 779-1 785,

although Pfaff, in a paper read before the Berlin Academy in 181 5, gave

the first general method of integrating those of the first order.

Lie's labors in recent times have put the whole subject on a more satis-

factory basis.

217. Definitions. A differential equation is one which con-

tains one or more differentials or differential coefficients.

The general solutio?i (also called the complete integral or primi-

tive) of a differential equation is the most general equation free

of differentials and differential coefficients, from which the

former may be obtained by differentiation.

Thus, dy = 7. x2dx, and — = tan x,
dx

are differential equations, while

y = xs + c, and y = log (c sec x),

are their general solutions, or primitives.

With differential equations of the above forms, or, generally,

of the form,

dy =/(x) dx,

we have had to do in preceding chapters. It is our purpose in

this to deal with some of a more general character, and to indi-
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cate methods for their solution. We shall confine our attention,

however, to ordinary differential equations, i.e., to those con-

taining only one independent variable.

218. Orders and Degrees. The order of a differential equa-

tion is that of the highest differential or differential coefficient

which enters it.

The degree is that of the highest differential or differential

coefficient, after the equation is freed from radicals and frac-

tions.

Thus, dy = 3 x2dx, — = tan x,
dx

are of the first order and first degree

;

/dy\ 2 dy ,

-f + -f- + x = o, ds = Ndx2 + dy2
,

\dxj dx

are of the first order and second degree

;

d2
y dy—— —\- x = o, d2y = 6 xdx2

,

dx' dx

are of the second order and first degree, and so on.

EQUATIONS OF FIRST ORDER AND FIRST DEGREE.

219. Form, f(x)f1 (y)dx -f 4>(x)4>i{y)dy = 0-

Rule: Separate the variables by division a?id i?itegrate separately.

EXAMPLES.
Solve

:

1. (1 + x) ydx -f- (1 — y) xdy = o.

Dividing through by xy, we have

x y
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Integrating separately, we find

log x + x + log y — y = c,

or, xyex~ y = clf

to be the solution.

2. sin x cos ydx = sin y cos xdy.

Dividing by cos y cos x, we have

tan xdx = tan ydy.

Hence, log sec jc = log sec y -f- log ^;

or, sec # = <fsecj,

is the solution.

, \ dy o
3. (<? — j') .% —

—

\- 2 y = o. y
axr = cev.

dy y2
~f~ i

5. The differential relation between volume (?') and pressure

(/) of a gas, under condition that no heat leaves or enters it

during expansion or compression, is apdv -f- bvdp = o. Show
a

thatpv* = constant.

6. A source of constant electromotive force (E) is suddenly

introduced into a circuit of resistance, R, and self-induction,

di
L. The differential equation is E = Ri + L—y Show that the

El -*?\
strength of the electric current (i) is i =— ( i — e l

J,

under the

condition that when t = o, i = o.

y
7. The slope of a family of curves is ; find the equation

of the group. xy = c.
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8. Given the family of curves, y = sx ; find the curve which

intersects each curve of the group at right angles, i.e., find their

orthogonal trajectory, s being the variable parameter.

9. Find the orthogonal trajectory of the hyperbolas xy — m2
,

7?i being the variable parameter. x2 — y
2 = c2 .

220. Homogeneous Equations of form,

f(x, y)dy+<l> (x, y) dx = 0.

Rule : Lety = vx, a7id apply rule § 2 19.

EXAMPLES.

1. (x2 — jy
2
) dy = 2 xydx.

Let y = vx,

and the equation becomes

(x2 — v2x2s

) (vdx -f- xdi!) = 2 7?x
2dx

;

i.e., (1 — 7?) xdv = v (1 + v2
) dx.

Separating variables, we have

1 — v2
. dx
dv

v{\-\-zF) x

.-. § 171, log v — log(i + if) + \ogc = log*;

cr, \og—^ = \ogx.

y
.-. Substituting for v its value, —

, and reducing, we have

x2
-\-f1 = cy

for the required solution.
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dv
2. (x2 -f y

2
) -j- — xy. x2 = 2f log cy.

y X X
3. (x — 2 y) dx 4-ydy = o. log =

c x — y

4. x — y = V^2 + V
2
. jc

2 — 2 rv = r
2

.

dx •*

5. .arVj> + y
2dx = — xydy.

>
xy2 = c(x -\- 2 y).

dy y-
6. (xy — x2

)— = y
1

. y = «*.

221. Form, /*(>, y) Jy + cf> (x, y) dx = 0, in which f(x, y)
and <£ (j:, y) are of the first degree.

Rule : Reduce to an homogeneous equatio?i and apply rule § 220.

To show that such reduction is possible and to indicate the

method of procedure let us assume the form

(a!x -f- b'y + /) dy -f (ax -f by + c) dx = o. (1)

Let x = x -\- m and y — y
r + n ; then (1) becomes

<w + by + ^0 <// + (W +'#/ + >&) dx' = (2)

in which k' = dm + <£';/ + / ) / n

>£ = am -\- bfi -\- c )

If now we give such values to m and n as to reduce expres-

sions (3) to zero, equation (2) becomes

(a'x' + £'/) a?/ + (ax* + 3/)^ = o (4)

which is homogeneous.

Equating (3) to zero we find

b'c — be' acr — a'c

a'b — ab'
'

a'b — ab'
(5)

for the required values of m and n.
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This process fails when

a'b — ab' = o
;

a' //
i.e., when — = —

.

a b

If, however, we let these ratios = jh
j
and substitute

a' = am
y

, b' = bm
y ,

in (i) we have

\ m
t
(ax -f- by) -f- c''

\
dy + (ax -\- by -{- c) dx = o. (6)

Now let ax -J- by = z,

whence, adx -f- bdy = dz.

Substituting in (6), eliminating y and its differential we have

dz = [ a — —-
7 )dx,

\ m/s + c )

in which the variables can be separated.

EXAMPLES.

l. (31 - 7 y - 3) dy + (7 x — $y — 7) dx = o.

Substituting in (5) § 221, we find

m = 1, « = o.

Letting y' = v'x in

(3 *' - 7 2/0 ^/ + (7 *' - 3/)^ = °>

(cf. (4) § 221) we have, after separating variables,

dxr

3 — 7 7/ .

7 -T- = ,2 ^ >

.*. log .X
77 + 2 log (V — i) + 5 log (?/ + i) "= log C.

From x = x + ;/z, jj/ = j' + ^> since #z = 1,^ = 0, we have

x' = x — 1 , y = y'

.

. V yWe have also, v = — =
x x — 1
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Substituting and reducing we find

O - x + i)
2
(y + x - i)

5 = c

to be the required equation.

/ x dy
2. (x-\-y — 2) —— = y — 2^: — i.

log J2 (3 * - i)
2 + (3 y - 5 )

2
}
= V2 tan" 1 ^ *

g
+ '

3. (2 * 4- 3 y — 8) — (x + 7 — 3)— = o.

h\og\(y-x-iy- 3{x-iy\^\ogy
~ X~ 1 ~^~ 1

\^ = c.

^3 y—x— i+O*— i) v3

4. (2 .%• 4- 4y -\- 3) dy — (2 y -\- x -\- i) dx — o.

4 x — 8_y — log (4.x -f- 8 j + 5) = r.

222. A Linear differential equation is an equation of the jirst

degree with respect to the dependent variable and its derivatives.

223. Linear Equations of the First Order.

Form, dy 4- Py dx = Qdx- (1)

in which ,P and <2 are functions of x.

Rule : ./^W value of j Pdx and substitute in

/Pdx
ye /„ fPdx , . .

Qe dx + o (2)

• The result obtained is the required solution.

For if we assume the form

dy 4- Pydx = o,

separate the variables and integrate we have

,
fPdx

log y 4- log <? = log r,

i.e., ye = c. (3)
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If we now differentiate (3) we obtain

/Pdx
e {dy + Pydx) = o.

Hence multiplying (1) by e and integrating we have (2).

As an example let us solve

xdy — aydx = (x + 1) dx.

Putting in form of (1), we have

a x-[- 1
dy ydx = dx,

, .. , _ a -. x -\- l

in which P = , Q =

/Pdx — — a I — = log — .

J x B xa

Substituting these values in (2) we find

— = I
—xt- dx + c.

x 1
.*. y = f- cxa

1 — a a

is the required solution.

224. Form, dy + Pydx=Qy n
dx. (1)

Rule : Reduce to linear form and apply rule for that form.

Cf § 223.

This reduction may be effected by dividing through by y
n and

then letting y~n+1 = z. The resulting equation will be linear

in z and its derivatives.

For example, solve

dy ydx = =- dx.
3 3J
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Here f1 = y~2
. Dividing through by this we have

ypdy y^dx = dx.
3 3

Now let z = yP ; dz = 3 f'dy. We have

</z — azdx = (x -J- 1) dU:,

which is linear in z and its derivative. Solving by the method

of the preceding article we find

x -}- 1 1

for the solution.

EXAMPLES.

1. x (1 — x2
)
— ax3 = (1 — 2 ^2

)_y.
dx

y — x(a-{- c ^Ji— Xs).

2. (ay/ + tf) //a? = (1 4- jc
2
) </j>. j' = tfjc 4- ^ Vi + a2.

3. jcy (1 + _y) //jc = (1 — x2
) dy. y (c Vi — x2 + 1) = 1.

4. <?*</)> = (1 — ^) */*:. j/r* = a: + <r.

5. dx — .x^'Vy = xydy. x (2 — jy
2
) H = = 1.

6. (1 + x2
) dy = 2 x (2 x — y) dx. y = ± xs — x^y + c.

dy
7. ——\- y cos x = sin 2 x. y = 2 sin 3: — 2 + r^~ sma:

.

//#

dy
8. ——h y cos a: =y sin 2 x.

dx
2y-» = 2 sin a; 4 h ^ (w- 1)sfalJc

.

72 — I

9. cos xdy -f- _y sin xdx = dx. y = sin x -\- c cos a:.
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dy .

10. cos x— + sin x — i — y. y (tan x + sec x) = x -{- c.

225. An <?.%•#<:/ differential of a function of two variables is a

form that may result from the total differentiation of that func-

tion.

An exact diffe?'ential equation is an equation formed by equat-

ing an exact differential to zero.

Thus if u represent a function of x and y, then

_ du du . . .

du = — dx -\—— ay cf . § 1 2

1

ax ay
du

is an exact differential. Calling the partial derivatives — and

— , Tl^and ^respectively, we have
ay

Mdx + Ndy = o (1)

as a general form for an exact differential equation.

As a criterion of exactness, we have (cf. § 124),

dM _ dJV

dy dx

226. Exact Differential Equations.

Form, Mdx + Ndy = 0. (1)

Rule : Find the value of J
Afdx, regarding y as coiistant

;

substitute in the expression

JMdx + J(n-j-fMdz
)
dy = c (2)

and perform the operations indicated. The result is the required

solution.

For if we integrate (1), we have

/Mdx + Y=c (a)
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in which Kis some function of y. Since (a) is a form of the

primitive of (i) if we now differentiate with respect y, regarding

x constant, we have

— I Mdx 4-— = N (b)
dy J dy

since— = N. Solving for d Y and integrating, we find

Y=f(N-TySMliX
)
dy {C)

Substituting (/) in (a), we have (2). Hence the rule.

By a method entirely analogous we may prove that

JNdy +J(m - ^ffWy) dx=c (3)

is the solution of (1).

To illustrate, let us solve

(x? + 3 xy2
) dx + (jy

3 + 3 o?y) dy = o.

Here, M'= x3 + 3 xf and N =f + 3 ^7 ; and since

dx 6K ^ r)
dy

the equation is exact. Now applying the rule we find

\ Mdx = f(** + 2,xf)dx = - + ^-x?f.

SMdx +S(
N~ lyS

Mdx
)
dy

- +^x?f + / (f + $x?y - 3^)^)' = r;

4

42 4
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is the required solution. Since the given equation is homogene-
ous it may of course be solved by § 220.

EXAMPLES.

1. (x*-f)^ + x(x + 2y)=o, -+o?y - y- = c.

2. (x2 -{- y
2
) dx — 2 xydy = 0. x2 — y

2 = ex.

- - x

3. y (1 + ev) dx + (y — x) &dy =0. x -+- yev = c.

4. (2 x — y -f- 1) dx + (2 j — x — 1) </y = o.

(* + 1) (.* — y) -J- y*= <r.

227. Integrating Factor. A factor which converts a differ-

ential equation into an exact differential equation is called an

integratingfactor.

That such a factor exists for every equation of the form

Mix + Ndy = o (1)

which admits of solutio?i is evident from the following con-

siderations :

If (1) is exact its primitive is of the form

u = c.

Cf. §225. If (1) is not exact its primitive will contain a con-

stant of integration (e) with respect to which it may always be

solved. If, then, we differentiate the primitive thus solved for

e we have an exact differential equation of the form

fi (Mdx -f- Ndy) = o (2)

which will be satisfied for the same simultaneous values of x
and y and their differentials as will satisfy the original inexact

equation. Hence (2) is equivalent to that equation. Since (2)

is of the first order and degree the factor fx may be a function
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of x or y, or both, but not of their derivatives or differentials.

It is further evident, since forms of equivalent primitives are

infinitely varied, that their exact differentials will also be infi-

nitely varied ; hence the number of values of fx in any given

case is unlimited.

To illustrate : solving 2, p. 349, we have

sec x cos y

hence,

sec y cos x

cos y sin xdx — cos x sin ydy

cos' x

Therefore, comparing with the given differential equation, Ex.

2, p. 349, we see that—^— is an integrating factor. We see also

that , the factor by aid of which the variables were
cos x cos y

separated, is another value of /x.

Again, in Ex. 1, p. 348, we see that -— is an integrating

factor. Differentiating

xyex
~ y = c,

we have, xyec~ v idx — dy) -j- ex
~ y {xdy -\-ydx) = o .

i.e., e*~y 5(i + x) ydx + (1 — y) xdy\ = o.

Hence e*^ is another value of /x in this case.

228. The following methods may be observed in determining

a value of /x in certain cases.

1. By inspection.

Thus if the equation,

x (1 — y
3
) dy 4- ydx = o,

is placed in the form,

xdy + ydx — xjfdy = o,
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we readily see that — is an integrating factor and that

f
log xy = c

is the solution.

i

2. If (i) is homogeneous ix = .J v ' * r Mx + Ny
Take, for example, the equation,

(x2 — y
2
) dx + xydy = o. (a)

In this case, Mx + Ny = xs — xy2
-f- xy2 = xs

; hence

i i

Mx + Ny x3

Multiplying (a) by this factor, we have

x2 — y
2

y—~»— «•* + —2^ = °

;

which is £%•#<:/, since

,/y

_
*»
_

dx '

Ct
* 225 ' (2>

Hence, applying § 226, (2), we have

y2

log x H 5 = *•

2r
for the solution.

If Mx -\-Ny=o, this method fails, but the solution is y = £r.

3. Jf (f) is of theform

<f>(x,y)ydx + ^ 0,3;)* <fy = 0,

r Mx — Ny

Take as an example,

(1 -f- xy) ydx — (xy — 1) xdy = o. (£)
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Here, Mix — Ny = xy + x^y2, + x2

f" — xy = 2 ^y2
;

1 1

.M* — Ny 2 ^y2

Multiplying (b) by this factor, we have

1 + xy xy — 1

tf.r — ay = o.

Since

2 jt>> 2 j' jc

5M 1 dilT

^/y 2 x^y2 dx

the equation is exact. Applying § 226, (2), we find,

x i
- = a?

1'

to be the solution.

If Mx —Ny = o, this method fails, but the solution is xy = c.

1 /dM dN\ , . , /*<*)**

1 /3iV BM\ , N ,
/*<*)<*>

°r
'
lf M^"^/^ 00' ^

=
' '

Take for example, the equation,

(x2 + j
2
) dx — 2 xydy = o. (V)

1 /aj/ aiV\ 2
Here

' ^(^r-^j = -^ = ^)'

f$(x)dx f—-xc1x l°S-^ I

Multiplying (V) by this value, we have

** + f , y ,

-5— ^r — 2 - #y = o,

which is exact, since

dM _2y _dN
dy x2 dx
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Applying § 226, (2), we find the solution to be

x2 — y2, = ex.

EXAMPLES.

X ex*
1. (x*-y — 2 xy2

) dx + (3 x
2y — x3

) dy — o. - — log — •

y
2. (x^y2 + xy)ydx + (x2

y
2 — 1 ) xdy = o. xy = log — •

3. x2
-\- 2xy — y

2 = (x2 — 2xy — jy
2
) — • x2

-\-

y

2 = c(x-\- y).

4. x2
-f- 2 x + y

2
-f- 2y —- = o. ^(jk2 + y

2
) = ^-

dx '

5

.

2 xydx + (j
3 — 3 .a-

2
) ^/y = o

.

x2 + jy
3 logj = ry3

.

EQUATIONS OF FIRST ORDER AND A^TH DEGREE.

229. Form, f (p\ p«~\ . . . x, y) = (1)

m which p = —

.

dx

1. When the first member of (1) <r<2^ <fe resolved into 11 rational

bino??iialfactors of the first degree with respect to p.

Rule : Factor, equate each factor to zero and solve separately.

Take for example the equation

(dy\ 2
. N dy

dy
Letting/ = —- , transposing and factoring we have

(p -f- x) (p - y) = o.

Equating each factor to zero and solving we find

2 y + x2 — c = o,

and y = ce*.
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Hence, (2 y -f- x2 — c) (y — ce*) = o

is the general solution.

2. When (1) can beput in theform

y = f(p,x) (<*)

Rule : Differentiate (a), thus obtaining

#« equation of the first order between p and x. Solve (b), and

eliminatep between the resulting equation and (a).

3. When (1) can be put in theform

* = f(p> y) W
Rule : Differentiate (V) thus obtaining

dx
in which p = — . Solve (d), and elimifiatep between the result-

ing equation and (c).

Take for example the equation

y=*f+f.
Differentiating we have

i.e., /(i-2(/ + i)|) = o.

Hence, p = o,

and 2 (p + 1) dp = dx.

Integrating the latter we find

p2
-}- 2p = x + c;

hence, / = V# -f- c — 1

.
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This value of p in the given equation gives, after reducing

and rationalizing,

(3 x + 31 + 3 c ~ J
)
2 = 4 (x + cf

for the general solution. The first value, p = o, when substi-

tuted in the given equation gives the singular solution y = o.

The success of this method depends (1) on our ability to solve

the derived equations
(J?)

or (d), and (2) upon our ability to

eliminate p.

The method can in general be successfully employed in

equations in which one of the variables is absent, and in those

where both enter but are of the first degree.

EXAMPLES.

dv"
1. -~ = a2y2

. (y— ^0 (v — ee~ax) = o.
dor

2. p2 — §p -\- 6 = o.
(y — 2 x — c) (y — 3 x - c) = o.

3. p2 — 3P + 2 = 0.
(y — 2 x — c) (y — x — r) = o.

4. p (p + 2 x) (p — jy
2
) = o.

(y — c) (y -f x2 — c) (xy -\- cy + 1 ) = o.

5. y+jli =p(x+i). y + c
2 = c(x + 1).

6. p2y — y + 2/jc = 0. jy
2 = 2 ^# + <r

2
.

EQUATIONS OF THE N™ ORDER.

230. Special Forms.

1. Form, 2 = /0r>

Rule : Integrate n times with respect to x. Cf . §211.
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Rule : Multiply both members by 2 dy and integrate.

Thus, let -j-*=y\
d2
y

dx2

then, — / dyd2y = 2
j
ydy.

Hence, -^ = y
2 + c.

dy2

dx2

Hence, dx = ±

Therefore, x = ± log (
j> + Vy2 + <r) + /.

Rule : ./W — =. p ; then (1) becomes
dx 7

/( -x^=i ' v^=a ' :
* •/, *)=o

which is of an order one lower than (1).

To illustrate, let

<y^
2

/ \dx)

'

dy
Letting — = p, and extracting square root of both members,

we have

$ = \la2 - Pp2
;

dx

1 . ,bp-
.', x = -sin l

(- c.

b a

Hence, p = — sin (bx — c).
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Integrating again, we find

IP-y -f a cos (bx — c) = c
d

to be the general solution.

+ --'<&'&> %»)-
dy

Rule : Put -— = p and change independent variablefrom x to y.

Then (2) becomes

which reduces the order 0/(2).

_ . d2y d dy dy dp
Then since — - = — —.— =— .p,

dxr dy dx dx dy

we have dp
2 2

Integrating, we find

/2^>

Hence, ^r =
V^y — d2

Integrating again, and reducing to an exponential form, we

have
e
cx = c1(y+ \fc

2
y

2 - a2

)

for the general solution.
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EXAMPLES.
ds
y

dxz

(l y

1. -j^-
3
= 5 bx2

. 12 y — bx5
-f 6 ex2 + cxx + <r

2 .

2. </y + a2ydx2 = o. 7 = <rsin (dra: + *i).

3. d*y— a2dx2 = A/y2
. ^ = sec {^ (# + c) } cx .

d2
y (dy\ 2

*-d + a
{i) = °- " = «* + *

5. yd2y + dy2 = dx2
. y

2 = x2
-\- ex + cx .

2
/d2

y\
2

,

/dy\2 2y -
,

j
6

-

a i^; = i + ^- t-** 4 -
*,<?"

= v—Tr1-' (x + cf +{y+ # - aK

dx2

8
- *£-($)'-**** +***-*"-"*
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CHAPTER X.

MECHANICAL APPLICATIONS.

RECTILINEAR MOTION.

231. Formulae. Let v = velocity, a = acceleration, and

s = distance traversed ; then

v — —
dt

a = —
dt

.-. s = / vdt, and / = / — (i)

.*. v = j adt, and t = / — (2)

ds

It

dv

ds
d

.. dv dt d 2s
Also a = —- = —— = -—^ .'. s =

dt t

J
t dt*

fjadt* (3)

232. The acceleration of a body^s velocity is constant ; find the

velocity of the body and distance traversed in any time t.

d 2s
From (3) we have — = a

;
(a

ds _ . .

.-. by integration, — = at + C {a

)

i.e., v = at + C.

Suppose v = vQ when / = o ; then C = v .

Hence^ v = v + ^/, (/^)

is the required velocity expressed in terms of the initial velocity

Vq, the acceleration a and time t.
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Integrating (af), remembering that C — v , we have

s = i at2 + v t + Cv

Let s = s when / = o ; then Cx
= s .

Hence, s = ^ at2
-\- v 1 -\- s

,
(c)

is the required expression for the distance traversed.

Cor. i. If we suppose the body to move from rest then

z/ =o and s = o,

hence, (p) and (c) become
v = at (d)

s = ±at2 (e)

Eliminating / between (d) and (e) we have

v = V2 as (/")

for the velocity acquired by the body in moving through the

distance s.

233. Falling Bodies. We know from mechanics that the

acceleration of the velocity of a body caused by the earth's

attraction (force of gravity) is sensibly constant. Denoting

this acceleration by g (= 32.2 ft. a second, nearly), and the

distance fallen through by h, we have from (a), (p), (c), § 232.

d2s

df2= ^
v = v + gt (a)

h = v t+±gt2 + h (b)

in which v = velocity, and h = distance traversed at the be-

ginning of the epoch.
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Cor. If the body starts from rest then v = o, and h = o
;

hence,

7) = erf

Eliminating t, v = \l2gk (c)

234. Bodies projected vertically. If a body is projected ver-

tically downwards ; then (a), (b) § 233, give

v = vo + gt (a)

h = v t + ±gt* (since ^ = o) (b)

If projected vertically upward, then since £ = — g, a retarda-

tion, we have
v = v — gt (c)

h = vj-\gt* {d)

Cor. If v = o in (V) we have

for the time it takes a body to rise to its highest point when
projected upwards with a velocity v .

235. Body Falling in a Resisting Medium. Let us consider

the case of a body falling in the air. It has been found by

observation that the retarding effect of the air varies with the

square of the velocity of the body ; hence the acceleration due

to gravity is at any instant less than g by an amount propor-

tionate to v 2
. We may therefore write

a=—=g— mif,

in which m is to be determined by observation. For con-

g
venience let m = -=; then
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dv g 2
In2 — v'

dt
* n2 " *

\ n2

.•
g , . dv

- *dt= •

nl nr — vl

Integrating and suppose v = o when / = o, we have

or,

g i n + v— t = — log
nr zn n — v

2
-2-t n-\-v

n — v

gt gt

,n - n
e — e

hence, v = n (i)
'

at at v /

n I „ n+ e

An expression which gives the velocity at the end of any

time /.

ds
Replacing v by its value — , § 231, and multiplying through

by dt, we have

ds = n(e n — e
n
) dt

gt gt_

<r + e~ "

g

If s = o when / = o ; then C = — log 2 = log 1. Hence,

?< gt

*
=
?|

log^—

I

(2)

Equa. (2) enables us to determine the distance traversed in a

given time (/).
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236. Body projected into a Resisting Medium. If we sup-

pose the body is acted upon by no force other than the resist-

ance of the medium into which it is projected, we have from

the preceding article,

dv
a = — = — wr,

at

in which m is to be determined by experiments made in the

particular medium selected. From the above expression we

have
i dv

dt = -;
m ir

hence, / = (- C.
mv

Let v = 7> when / = o ; then C = —
mv,

i /i i

m \v v

v
i

mt -j

an expression for the velocity at the end of any time /. Re-

ds
placing v by its value — , and multiplying through by dt, we

have
dt

ds = ;

i

mt -\

vn

ii
Let s = o when / = o ; then C1

= log -

Hence, s = — log \ v mt + i
}m

which gives a relation between the distance (s) and time (/).
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237. Body Falling when Gravity is variable.

Let g = acceleration of a body at the earth surface, and let

r = radius of the earth. Let s (> r) = distance of a body from

the earth center, and let a = its acceleration at that instant

;

then, according to Newton's law, viz., that the acceleration of a

body at different distances from the earth center varies inversely

as the square of its distance, we have

a :g : : r2 : s2 .

d*s gr2

Hence, * = _=-_.

Multiplying through by ds, and integrating, we have

ds2 2 gr2 _
Hence, — =

f- C,
dr s

2 pr2

i.e., v2 = tlL- + C.

Let v = o when s = s ; then C =

s

2 gr2

3 o

.-. v2 = 2 gr2
) S (i)

An expression for the velocity acquired by the body in fall-

ing from the height s .

ds
Replacing v by its value — , and solving for dt, we have

_, s \i sds

2
6

'2gr n/v

Hence, t =. (-^-X \(s s-M - -° vers" 1 —l+.Q
\2gr2

) (

K
2 s

)

48 1374
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Let s = s when / = o ; then

C =

Hence,

s \*st

2jsrr

.—

1

vers~ x
2 = '0

2 srr'

2 TTS.

»0

J
(j s - s*)i - -Vers- 1— + —

°

2 £r*J (
2 so 2

(2)

which gives the time t for a body to fall from height s to

height s.

Cor. i. If in (i) we make ^ = oo and s= r, we have

v = ^2gr

for the velocity with which a body would strike the earth if it

fell from an infinite distance in a vacuum.

Since g = 32 ft., nearly, and r= 20,900,000 ft., nearly, we

find

v = j miles per second, nearly.

Cor. 2. If in (2) we make s = r, we have the time for a

body falling from the height ^ to the earth.

CURVILINEAR MOTION.

238. Velocity of a body down a curve in a vertical plane.

Let ST be any curve in the plane VOX, referred to OY and

s OX 2iS axes, OF being posi-

tive downwards. Let P be

the position of the body at

any instant and let PA =
(g) represent the acceleration

due to gravity. Draw AC
_l_ to the tangent PB, and

Fig. 61. let PAC = ; then

PC = g sin = acceleration in direction of motion.
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But if we let PB = ds, then PA = dy ; hence— = sin 0.
ds

Hence, §82,
d2s dy

.

a¥
=g

~ds'

dsd2s .

•'• ~w = gdy -

Integrating between limits y and y
r we have

ds*
=g(j-y) (o

.-. § 17, ^2 = 2g(y — /)-

Comparing the last equation with (V) § 233, Cor., we see

that the velocity acquired by a body in rolling down a curve is

the same as it would acquire in falling freely through the vertical

height.

Cor. From (1) we have

ds ds dy
dt =

V2 g (y — y') dy ^2g(y — _/
N

fy ds dy
.'. t= I -j- •

.

— . (2)
J tf

dy V2 g{y - /)

is the time it takes the body to fall through the height, y — y'

.

239. Time of descent down an inverted cycloid.

From § 238 (2), we have,

ds dy

-I dy ^2g(y-y')
(a)

We are to find what this expression becomes when applied

to the cycloid.
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From the equation of the cycloid, x = a vers -1- — V2 ay — y?f

we obtain

ydx

dy V2 ay — jf

But § 18, (3),

Hence

ds Idx2

df
+ 1.

This value in (a) gives t = y -
j

dy

Let y — y = z ; then dy = dz, and 2a— y = 2 a — y
r — z.

dz
Hence

i.e.,

t =
gJ \li2a- y')z- z*

t = \/ -vers
g 2a-y

- 2Z
-, + c.

If we suppose the body to fall from C to B we have z = o at

C, and z = 2a — y at j5. Hence between these limits of 2

we have

/ =

.\<tm^

a\ , 2 a—

y

I vers x 2
£" 2 # — y

7 + C — vers
_1

o — C > ;
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is the time it takes the body to fall from the position C to the

lowest point B of the curve. Since y' is any value of y, the

point C is any point of the cycloid ; hence the time requiredfor a

body to fall from any point of an inverted cycloid to its lowest

point is constant. Theoretically, therefore, the cycloidal arc is

the path of a pendulum which vibrates in equal times.

240. A projectile is thrown obliquely upward with a velocity

v ; find (i), the equation of its path ; (2), the coordinates of its

highest point ; (3), the angle of projection in order that its range

may be a maximum.

Fig. 63.

(1). Let the origin of coordinates O be the point of propul-

sion ; DOX = angle of projection and OD = v = velocity of

projection. Draw DE _L to OX; then

OE = v cos = velocity in direction of X,

DE = v sin 6 = velocity in direction of Y.

Since no retarding force acts in the direction of X(the resist-

ance of the air being neglected) the velocity in that direction is

uniform. Denoting the distance traversed in that direction

in any time / by x we have,

x = v cos 6

1

{a)

Denoting the distance traversed in the vertical direction in

the same time thy y we have, § 234 (d),

y= vsm6t-±gt\ (b)
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Eliminating / between (a) and (b) we have,

y = tan 6.x f—-j (i)
2 zr cos'

2 y

which expresses the relation between x and y for all values of t

;

hence it is the equation of the trajectory. This curve is

obviously a parabola. (Ana. Geom. p. 178.)

(2). At the highest point C, the tangent, is
||

to X; hence
dy

= o,

V2

i.e., x = — sin 2 — OA U)
2 g

is the abscissa of the highest point. This value of x in (1) gives

j^J^sin2 6 = AC
*g

for the ordinate of the highest point.

(3) Denoting the range by R we have, since the curve is

symmetrical with respect to AC,

R = 2 OA = OB\

dx

From (1),

dy _ tan
dx 1? cos2 6

• i'
2

,\ x = —sin 6 cos 0,

nee (V) R = — sin 2 0.

g

Hence,
dR 2 7?—- = — cos 2
dB g

.'. COS 2 $ = O,

.-. e = 45°.
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Since f"(K) is negative for = 45 ° this value of 6 corre-

sponds to a maximum value of R.

Cor. Since

2 2 2

R = - sin 2 $ = - sin (180 - 2 6) = - sin 2 (90 - 0)

we see that the same range (R) may be attained with a

given initial velocity (7/) under two angles of projection and

90 — 6. We see also that these angles are complementary.

CENTER OF GRAVITY.

241. Definition. The center of gravity of a body is that point

through which the line of action of the body's weight always passes.

242. Formulae.

Jxdv

fydv
y\ =

z, =I

V

zdv

v

These formulae enable us to determine the coordinates

(pcvy\,z^) of the center of gravity of any given homogeneous

body, of volume v.

If the body is symmetrical with reference to a plane, this

plane may be taken as the XY plane ; whence z
1
= o.

If the body is symmetrical with reference to a straight line,

this line may be taken as the X-axis ; whence yx
= o and

z
x
= o.

243. To find the center ofgravity of a circular arc.

Let ABC be the arc and let OX be the axis of symmetry.
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Let (x,y) [= OZ>, DA\ be the coordinates of the extremity (A)

of the arc. Since

we have, § 242, xx
=

dv = ds = \nix*~+~df

Xx ydx2
-f- </y

2

J> (+(!)>

From the equation of the circle, x2 + y
2 = a2

, we have

Jv-f —

dx y
dy x

'

f-ASf^ _2ya

Since 27 = chord AC, we see that

the center of gravity of a circular arc

is on its radius of symmetry and at a

stance from its center equal to the

fourth proportional between the arc, radius and chord.

244. Tofind the center ofgravity of a circular sector.

Here dv = d2A = dxdy ; hence,

OC-% —

—

rx xdxdy

A

£1
V^2 — ^2

xdxdy
—VJ _ .3.2
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2 I V#2 — x2xdx
= _

381

A
2 /2

3

rd"
If the sector is a semicircle then A = — > and

2

,%^-j —

—

4a

3*

245. 71? find the center of gravity of the area bounded by a

parabola, its axis and one of its ordinates.

c

V

B

x' A

Fig. 65.

Let y
2 = 2px be the equation of the parabola ; then

#! =
xdxdy I I xdxdy

Jo Jo

A

\l2fi \ x?dx
1
—

6

Jo 2 \}2pX*

A 5^

and
y± =

ydxdy I I ydxdy
Jo Jo

£
A

p I xdx
px2

2~A
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But, §215,

dxdy =jj dxdy = \l2fi j x*dx
Jo Jo Jo

2 V2 px%

Hence, xx
= §x and yx

= §jy.

246. To find the center ofgravity of a parabolic spandrel.

That is, to find the center of gravity of OB C, Fig. 65.

Here,

-

££xdydx
_£txdydx

_ wi"
yidy

/AAA 4op2A
v
2

ydydx I I ydydx —
/

yrdy
_ Jo Jo 2 pjp _^ y*

yi ~
~~A

~~
~^A

~~
~A ~ZpA

But A = OBC= OABC-OAB;
i.e., A = xy — \xy = \xy.

Hence, x
x
= t

3
q x, and yx

= \y.

It will be observed from the limits of integration that the area

OR C is supposed to be generated by a line II to X moving in

the direction of Y, the line being limited by the K-axis and

the curve. The student may derive the same result by pro-

ceeding as in previous articles.

247. Tofind the center of gravity of a Pyramid or Co?ie.

From § 210 (p), we have

dV= Adx;

1 xdV j Axdx
hence, xx

— —— = —p
/ Adx
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Adopting the figure and notation of Ex. i, p. 334, we have

A _ x2
m

~A
f=W

.:A-A
/;

hence x-. = ^-r = - h.£xzdx

248. To find the center of gravity of a paraboloid of revolution.

Let y
2 = 2px be the equation of the generating curve, and let

x = h and x = h! be the equation of two planes
||
to YZ. We

wish to find the center of gravity of that portion of the para-

boloid included between the planes. Since X is an axis of

symmetry we have

/ xdV 7r / xy2dx

*i = --jr-
=

fh
'

7r I y2dx

since dF= 7ry
2dx, § 209 (a)

;

hence, x-, =
2p \ xdx

h „ VI __ l,'1
3 h2 - h'

zF / xux
Jh'

If h' = o, then

x\ — 3 ">

i.e., The center of gravity of a segment of a paraboloid of

revolution estimated from its vertex is two-thirds of its altitude.

249. To find the center of gravity of the semi-ellipsoid of

revolution.

b2

Let v2 = -5 (2 ax — x2
)

be the equation of the generating curve, then
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J
(2 ax — x2

) xdx

J
(2 ax — x2

) dx
=h

MOMENTS OF INERTIA.

250. Definition. The moment of inertia of any area about

an axis is the integral of the product arising by multiplying the

differential of the area by the square of its distance from the axis.

251. Formula. „

M= I t*dA

in which M = moment of inertia, A = area, and r = distance

of dA from the assumed axis.

252. To fitid the moment of inertia of a rectafigle.

Y

dD

Fig. 66.

Let AB = b and AD = d ; then

(1), OY being the axis.

M r2dA

d b

= I I x^dxdy

2

&

2 bx^

* 3
2

bd*

12

Ad"

12
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(2), OX being the axis.

M= J\J\fdydx

= djjfdy= - =—

•

%j 2

(3), OZ being the axis.

I \ H*2 +f)dxdy

^ + db* A (d2 + ^)

385

12 12

253. Moments of inertia of hollow-girders, channel-bars, and

I-iron.

b b b

—
b'

___d—
b' 4*' 4*'

Fig. 67.

Let the X-axis, passing through the center of gravity of the

section, be taken as the axis of moments ; then, in all three

cases, we readily deduce

bd3 - b'd'z

M=
12

254. Moment of inertia of a circle about a diameter.

In this case, a representing the radius of the circle,

M= f

r

2dA

%J— a <J—

V«2 Zl x2

V^^
x2dxdy = 2 I x2 (a2 — x2)i dx.

U— a
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Using the reduction formula of §§ 185, 186, we find

7J77
4 Aa1

M= — ==

4 4

Y

1
°

B

\a

,

C

Fig. 68.

255. Momejit of inertia of an ellipse about its minor-axis.

Here M= f

r

2dA

b V~ o

Ca Ca * " X

=
J

I x^dxdy^
rrba

8 Aa2

DEFLECTION AND SLOPE OF BEAMS.

256. Formula. From mechanics we have

ir EIM= —

>

tt

for the relation between the moment of the extraneous forces
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(EI\
{AT) and the moment of the internal resistance — about

the neutral axis of any section. In this formula E = coeffi-

cient of elasticity of the material of which the beam is made

;

J= moment of inertia of section, and p — radius of curvature

of the curve of mean fiber, at the point in which it pierces the

section. But § 134,

C fdy\2
)
%

d2
y

dx2

EI
Hence, M=

d2
y

dx?

+
@)'i

/dy\2

Since (
—-

J

= tan2
a, i.e., the square of the slope of the beam,

and since in practice the value is small, we may omit it and

write

d2
yM=EI

dx''
(»)

Formula (2) is sufficiently accurate for all practical purposes,

and is in general use.

257. Slope and defleciio7i of a beam loaded at one e?id and fixed

at the other.

Let / = length of beam, and

W= weight applied at its end

A. Let OA be the mean fiber,

and S a plane _L to OA at a

distance x from O ; then

M= WQ-x).
Fig. 69.
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d2y W
Hence, § 256 (2), — = ^(/- x)

dy

dx

W
2EI (2 Ix — x2

) -f- C.

dy
When x = o, — = o, since the tangent at O is coincident

with X; hence C = o.

Integrating,

dy

dx

y =

2^£Y
(2 /jc — .x

2
).

(3Z*2 -^3
), (*)

since when x = o, j = o and therefore C" = o. Equa. («) is

the equation of the curve OA, i.e., the equation of the curve

which the mean fiber takes under the action of the load W.

If in (a) we make x = I and let 8 = value of y when x = I,

we have

for the maximum deflection of the beam.

258. Shape a?id deflection of a beam fixed at one e7id and

uniformly loaded.

Let w = load per unit of length of beam ; then at any

section 6"

M= w{l- x) ^—^ = - (/- x)\
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d2y w
Hence

' M =
7Wl (-p - 2lx +^

dy
Since -r- = o when x = o ;

.*. C = o.
ax

Integrating again we have

w /Px2 lxz x*\

Since y = o when x = o ;
.*. C = o. Equa. (<z) gives the

shape the beam assumes under the action of the load. Repre-

senting the maximum deflection by 8' which obviously occurs

when x = I we have

a//
4

8 =
&EI

Cor. Let W= wl = load on beam ; then

8Ef

Comparing 8' with 8 of § 257 we find

8 = 8 8' = 3 8', nearly.

That is, the deflection is nearly three times as great when the

load is concentrated at the end as it would be if uniformly dis-

tributed over the beam.

259. Shape and deflection of a beam supported at both ends and

loaded in center.

W
In this case M= — x\

2

d2
y W

dx2
2 El

dx \EI
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If x = - , -j- = o, since at the middle of the beam the tan-
2 dx

gent is
||
to X; .*.

C= -
1 6EI

Hence,
dx 4.EI

W /xs Px\
Integrating again, y = —~ f - - — 1

Since x = o, y = o ; .\ C = o.

/ J^73

When x = — we have 8 = .. _ .

2 48 is/

260. Shape a?id deflectio?i of a beam supported at both ends and

imifornily loaded.

Fig. 72.

In this case we have

_ x wl w

,

M = mx • ^ = — (ar — £n.22 2

Hence
7£/

tf^
2

2 .£/
I fc'V

*
t i,V I «
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hence
w fxz /x2

\ _dy

dx 2 JEI \$ 2 I

wu I dy i wl z

When x = - » — = o ;
.-. C = =—

2 ^C 2\±L1

Hence
</>' «/ ( xs /x2 l

z
)

^r 2 j5"/ (3 2 12
)

w { x4 lxz l zx
• y = —^r \ t •

—

2 i,/ 12 6 12

Since # — o, _>' = o; .-. C = o.

K* = -, then y = _|- = ^ .

Cor. Comparing the value of 8 of § 259 with S' of this

article, we find

8 = fS',

i.e., the deflection produced by a load concentrated at the cen-

ter of a beam is f of that produced by the same load when

uniformly distributed.

261. Shape and deflection of a beam fixed at both ends and

uniformly loaded.

Fig. 73-

This case is similar to that of the preceding except that an

unknown moment m acts on the portion of the beam OB ; hence,

wM=— (x2 — Ix) + m. (0
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d2y i ( wx2 wlx ) , .

Hence 7^ =^ \- m \
• (a)

dx2 EI (22 )

w

Integrating and noting that when x = o, — = o, and there-

fore C = o, we have,

dy 1 ( mx3 «Vjc2

4
+ OT* 1

'

{b)

At the point C where x = /,—-= o. If we substitute these
dx

values in the last expression, we find after reduction

wl 2

m = ? (c)
12

for the moment of the unknown couple acting at the points of

support. Substituting this value of 771 in
(Jj)

and integrating,

we find,

I ( WX* - ^/XS
7£>/

2X2
) , ,

y = ITr] + WEI (24 12 24 )

since x = o gives y = o, and therefore C f = o.

Making jc = - in (d) we find

, 7£//
4 ^7 3

o —
384^/ 384^/

Comparing this value of 8 with that of S' in § 260, we find

8' = 5 S,

that is, by fastening the ends of a beam at its points of support,

the deflection caused by a uniform load is only one-fifth of

what it would be if the beam merely rested on its supports.

wl 2
. z

Again, making m = in (1), we have

wx2 wlx wl2

M= 1

2 2 12
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Making x = - in this value we find,

M= - wP
24

wV'
Comparing this value with the value of m = we see that

the bending moment at the point of support is twice that at the

center, i.e., the beam is twice as strong at the center as it is at

the points of support.

d2
yMaking—-^ = o in (a) and giving m its value in (V), we have

wx2 wlx wP+ = o
;2212

P
.'. x2 — Ix -\- — = o

;

6

M '~

)
.*. x = — { 1 +..-->:

are the abscissas of the points of inflexion A, D, Fig. 73.

262. To find the strongest rectangular beam that can be cut

from a cylindrical log.

We have from mechanics

p= E d

P 2

for the stress on a unit of area at the distance

— .from the neutral axis of a beam when under

transverse strain.

Hence §§ 256, 252, P = Md
T2

M
Fig- 74-

(a)

in which b and d are the breadth and depth of a rectangular

beam. It is obvious that that beam strained by a moment M
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will be strongest in which P is least. But P is least when bd2

is greatest. Cf. (a).

Let D be the diameter of the log ; then d2 = D2 — b2
,

.'. bd2 = bD2 - bs
;

d (bd2
)

Differentiating, we have, = D2 — 3 b2 = o,

hence b = D y -
, and d = D

3 y 3

are the dimensions of the strongest rectangular beam.
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ANALYTIC GEOMETRY
PLANE AND SOLID.

BY E. W. NICHOLS,
Professor of Mathematics in the Virginia Military Institute.

The aim of the author has been to prepare a work for be-

ginners, and at the same time to make it sufficiently compre-

hensive for the requirements of the usual undergraduate course.

For the methods of development of the various principles he has

drawn largely upon his experience in the classroom. In the

preparation of the work, all authors, home and foreign, whose

works were available, have been freely consulted.

In the first few chapters elementary examples follow the dis-

cussion of each principle. In the subsequent chapters, sets of

examples appear at intervals throughout each chapter, and are

so arranged as to partake both of the nature of a review and an

extension of the preceding principles. At the end of each

chapter general examples, involving a more extended application

of the principles deduced, are placed for the benefit of those

who may desire a higher course in the subject.

Nichols's Analytic Geometry is in use as the regular text in

the greater number of the larger colleges and universities, and

has proved itself adapted to the needs of institutions with the

most varied requirements.

Cloth. Pages xii + 273. Introduction price, $1.23.

D. C. HEATH & CO., Publishers, Boston, New York, Chicago
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THEORY OF EQUATIONS
By SAMUEL MARX BARTON, Ph.D.,

Professor of Mathematics in the University of the South.

In this treatise the author aims to give the elements of Deter-

minants and the Theory of Equations in a form suitable, both in

amount and quality of matter, for use in undergraduate courses.

The work is readily intelligible to the average student who has be-

come proficient in algebra and the elements of trigonometry.

Th\use of the calculus has been purposely.^avoided. While the

presentation of the subject ha» necessarily been condensed to

suit the requirements of college courses, great pains has been

taken not to sacrifice clearness to brevity. It is a short treatise,

but not a sylla$&|. >

Part I treats -of determinants. The chapters give the funda-

mental theorems, witn^examples for illustration ; applications and

special forms of determinants, followed by a collection of care-

fully selected examples, ^k

Part II treats of the Theory^! Equations proper, with chapters

upon complex numbers, properties of polynomials, general

properties of equations, relations between roots and coefficients,

symmetric functions, transformation ,cSL equations, limits of the

root's of an equation, separation of rootsf^limination, solution of

numerical equations. Almost everyr tn'eis&em is elucidated by

the complete solution of one or more representative examples.

Cloth. Tages, x + 198. Introduction price, $1.50.

D. C. HEATH & CO., Publishers, Boston, New York, Chicago
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COLLEGE ALGEBRA
BY WEBSTER WELLS, S.B.,

Professor of Mathematics in the Massachusetts Institute

of Technology.

The first eighteen chapters have been arranged with reference

to the needs of those who wish to make a review of that portion

of Algebra preceding Quadratics. While complete as regards

the theoretical parts of the subject, only enough examples are

given to furnish a rapid review in the classroom.

Attention is invited to the following particulars on account of

which the book may justly claim superior merit :
—

The proofs of the five fundamental laws of Algebra— the Com-

mutative and Associative Laws for Addition and Multiplication, and

the Distributive Law for Multiplication— for positive or negative

integers, and positive or negative fractions ; the proofs of the

fundamental laws of Algebra for irrational numbers j the proof of

the Binomial Theorem for positive integral exponents and for

fractional and negative exponents ; the proof of Descartes's Rule

of Signs for Positive Roots, for incomplete as well as complete

equations ; the Graphical Representation of Functions ; the so-

lution of Cubic and Biquadratic Equations.

In Appendix I will be found graphical demonstrations of the

fundamental laws of Algebra for pure imaginary and complex

numbers ; and in Appendix II, Cauchy's proof that every equa-

tion has a root.

Half leather. Pages, vi + 578. Introduction price, $1.50.

Part II, beginning with Quadratics. 341 pages. Introduction price, $1.32.

D. C. HEATH & CO., Publishers, Boston, New York, Chicago
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