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PREFACE

One of the purposes of the elementary working courses in mathe-
matics of the freshman and sophomore years is to exhibit the bond
that unites the experimental sciences. “‘The bond of union among
the physical sciences is the mathematical spirit and the mathe-

. atical method which pervade them.” For this reason, the.
“applications of mathematics, not to artificial problems, but to
~the more elementary of the classical problems of natural science,
>find a place in every working course in mathematics. This
v presents probably the most difficult task of the text-book writer,
“—namely, to make clear to the student that mathematics has to do
“with the laws of actual phenomena, without at the same time un-
:»derta.king to teach technology, or attempting to build upon ideas
<which the student does not possess. It is easy enough to give
examples of the application of the processes of mathematics to
scientific problems; it is more difficult to exhibit by these problems
how, in mathematics, the very language and methods of thought
fit naturally into the expression and derivation of scientific laws,
and of natural concepts.

It is in this spirit that the authors have endeavored to develop
the fundamental processes of the calculus which play so important
a part in the physical sciences; namely, to place the emphasis upon
the mode of thought in the hope that, even though the student
may forget the details of the subject, he will continue to apply
these fundamental modes of thinking in his later scientific or
technical career. It is with this purpose in mind that problems
in geometry, physics, and mechanics have been freely used.
The problems chosen will be readily comprehended by students
ordinarily taking the first course in the calculus.

A second purpose in an elementary working course in mathe-
matics is to secure facility in using the rules of operation which
must be applied in calculations. Of necessity large numbers of
drill problems have been inserted to furnish practice in using the

v
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rules. It is hoped that the solution of these problems will be re-
garded by teacher and student as a necessary part but not the vital
part of the course.

While the needs of technical students have been particularly
in the minds of the authors, it is believed that the book is equally
adapted to the needs of any other student pursuing a first course
in calculus. Theauthorsdo not believe that the purposes of courses
in elementary mathematics for technical students and for students
of purescience differ materially. Either of these classes of students
gains in mathematical power from the type of study that is often
assumed to be fitted for the other class.

In agreement with many others, the book is not divided into two
parts, Differential Calculus and Integral Calculus. Integration
with the determination of the constant of integration, and the
definite integral as the limit of a sum, are given immediately fol-
lowing the differentiation of algebraic functions and before the
differentiation of the transcendental functions. With thisarrange-
ment many of the most important applications of the calculus
occur early in the course and constantly recur. Further, with this
arrangement, the student is enabled to pursue more advantageously
courses in physics and mechanics simultaneously with the calculus.

The attempt has been made to give infinitesimals their proper
importance. In this connection Dubhamel’s Theorem is used as a
valuable working principle, though the refinements of statement
upon which a rigorous proof can be based have not been given.

The subjects of center of gravity and moments of inertia have
been treated somewhat more fully than is usual. They are par-
ticularly valuable in emphasizing the concept of the definite
integral as the limit of a sum and as a mode of calculating the mean
value of a function. Sufficient solid analytic geometry is given to
enable students without previous knowledge of this subject to work
the problems involving solids. In the last chapter simple types
of differential equations are taken up.

The book is designed for a course of four hours a week through-
out the college year. But it is easy to adapt it to a three-hour
course by suitable omissions.

The authors are indebted to numerous current text-books for
many of the exercises. To prevent detracting the student’s at-
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tention from the principles involved, exercises requiring compli-
cated reductions have been avoided as far as possible.

The book in a preliminary form has been used for two years
with students in the College of Engineering of the University of
Wisconsin. Many improvements have been suggested by our
colleagues, Professor H. T. Burgess, Messrs. E. Taylor, T. C. Fry,
J. A. Nyberg, and R. Keffer. Particular acknowledgment is
due to the editor of this series, Professor C. S. Slichter, for
suggestions as to the plan of the book and for suggestive criticism
of the manuscript at all stages of its preparation.

The authors will feel repaid if a little has been accomplished
toward presenting the calculus in such a way that it will appeal to
the average student rather as a means of studying scientific prob-
lems than as a collection of proofs and formulas.

UNIVERSITY OF WISCONSIN, HerMaAN W. MARcH,

N ovember 6, 1916. Henry C. WoLFF.
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CALCULUS

INTRODUCTION

1. Constant. Variable. Function. 1. A symbol of number
or quantity, as a, to which a fixed value is assigned throughout
the same problem or discussion is called a constant.

2. A symbol of number or quantity, as z, to which asuccession
of values is assigned in the same problem or discussion is called a
variable. :

Ezample. The mass or weight of mercury in a thermometer is
constant. The number that results from measuring this quantity
(weight) is a constant.

The volume of the mercury in the thermometer is variable.
The number that results from measuring this quantity (volume)
is a variable.

3. The variable y is said to be a function of the variable z if,
when z is given, one or more values of y are determined.

4. z, the variable to which values are assigned at will is called
the independent variable, or the argument of the function.

5. y, whose values are thereby determined, is called the de-

pendent variable.’

6. y is said to be a function of several variables u, v, w, - - -
if, when %, v, w, -+ - - are given, one or more values of y are
determined.

7. The variables u, v, w, - - -, to which values are assigned
at will are called the tndependent variables, or the arguments of the
Junction. .

Functions of a single variable or argument are represented
by symbols such as the following: f(z), F(z), ¢(z), ¥ (z). Func-
tions of several arguments are represented by symbols such as
f(u, v, w), F(u, v, w), $(u, v, w).

2. The Power Function. 8. The function z», where n is a
constant, is called the power function.

1



2 CALCULUS [§2

If n is positive the function is said to be of the parabolic type,
and the curve representing such a function is also said to be of the
parabolic type. If n = 2, the curve, y = 2%, is a parabola.

P
o -
PR
s+
’--
L) 1
-8 -2 -t 1 2 3
x ) -~ /lo ' X
/
/
/
-1,-n -1
-24
Py
|
[}
8
-4ly

Fig. 1.—Curvesfory = 2%, n =1, 2, 3, and 4.

If n is negative the function z» is said to be of the hyperbolic
type, and the curve representing such a function is also said to be
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of the hyperbolic type. If n = —1, the curve, y = z-1, is an
equilateral hyperbola. )

In Figs. 1, 2, 3, and 4, curves representing y = z» for different
values of n are drawn. In Fig. 1, n has positive integral values;
in Fig. 2, positive fractional values; in Fig. 3, negative integral
values; and in Fig. 4, negative fractional values. The curves for

Y

Py
N / y
T // n=X
. n=
- _,,...-—-i‘—-
~ =
1 (1,1 |f=="
\\ y /s
! -3 -2 -1 ) 1 2 8 4
& ' ) X
Ill
7/
//_1 (1,-1)
=
2~
A
3
) 3¢
-3841Y

F1a. 2—Curvesfory = 2", n = 4, }, %, and §.

y = z» all pass through the point (1, 1). They also pass through
the point (0, 0) if n is positive. If n is negative, they do not
pass through (0, 0). In the latter case the coérdinate axes are
asymptotes to the curves.
3. The Law of the Power Function. 9. In any power function,
if z changes by a fixed multiple, y also changes by a fixed multiple.
The same law can be stated as follows:
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10. In any power function, if z increases by a fixed percent,
y also increases by a fixed percent.

The preceding statements are also equivalent to the fol-
lowing:

11. In any power function, if z runs over the terms of a
geometrical progression, then y also runs over the terms of a
geometrical progression.

Fia. 3.—Curves fory = z", n = —1, —2, and -3.

4, Polynomials. Algebraic Function. 12. A polynomial in
z is a sum of a finite number of terms of the form az*, where a is a
constant and n is a positive integer or zero. For example:

axd + bz 4+ cx + d.

13. A polynomial in z and y is a sum of a finite number of
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terms of the form azmy», where a is a constant and m and n are
positive integers or zero. For example:
az?y? 4 bry® + cx? + dy + e.
14. Functions of a variable z which are expressed by means of a
finite number of terms involving only constant integral and

Fia. 4—Curves for y = a*, n = —}, —%,—4%, and 4.

fractional powers of = and of polynomials in z are included in the
class of functions known as algebraic f unctions‘ of z. For example:

(a) =2 (d) + +1

3 - 3)% -
(b) 23 + (2z — 3)4. (e):c+5+\/;j
© Vo FizF7+4+5. (f)“’—”“?f’gg.

1 A function of z defined by the equation F(z, y) = 0, where F(z, y) is a polynomial
in z and , is an algebraic function of z. For example, y = 4/z3 4 2 is an algebraio
function of z. For by squaring and transposing we obtain

yr—-22—-2=0,

in which the first ber is a poly ialin z and y.
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15. An algebraic function is said to be rational if it can be
expressed by means of only integral powers of z together with
constants.

Rational algebraic functions are divided into two classes:
rational integral functions and rational fractional functions.

16. A rational tntegral function of « is a polynomial in z.

17. A rational fractional function is a quotient of two poly-
nomials in z.

It is usually desirable to reduce rational fractional functions
of z to a form in which the numerator is of lower degree than
the denominator. This can always be done by performing long
division.

Thus y = :i? is equivalent to y = 14 ;‘_%, and
3z2 45 7. . 1.41: 1
= % is equivalent toy = 3 + m‘}q‘_j

5. Transcendental Functions. The circular (or trigonometric),
‘the logarithmic, and the exponential functions are included in the
class of functions known as transcendental® functions.

6. Translation. If, in the equation of a curve

f(z,y) =0,
z is replaced by (z — a), the resulting equation,
f(l“— «, y) = Oy

represents the first curve translated parallel to the axis of z a
distance a; to the right if « is positive; to the left if « is
negative.

If y is replaced by (y — B) the resulting equation,

fz,y —B) =0,

represents the original curve translated parallel to the axis of y
a distance 8; up if 8 is positive; down if B is negative. Thus
y = (x + 3)2 — 4 is the parabola y = z2? translated three units
to the left and four units down. See Fig. 5.

1 All functions which are not algebraic functions as defined by the footnote on p.
5 are transcendental functions.
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'i. Elongation or Contraction, or Orthographic Projection, of a
Locus. - The substitution of 2 for z in the equation of any locus
multiplies all of the abscissas by a.

Y
110

| \<4s+s)’.4 /:

’Iw TA i &b
/L
A

Fia. 5.

v=z%

This transformation can be considered as the orthographic
projection of a curve lying in one plane upon another plane, the
two planes intersecting in the axis of y. If a <1 the second curve
is the projection of the former curve upon a second plane through

F1a. 6.

the Y-axis and making an angle «, whose cosine is equal to a,
with the first plane. If @ >1, the first curve is the projection of
the second when the cosine of the angle between their planes
is 1.
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Similarly the substitution of g for y in the equation of a locus

multiplies the ordinates by a. The interpretation from the
standpoint of orthographic projection is evident from what has
just been said. See Figs. 6 and 7.

8. Shear. The curve y = f(z) + mz is the curve y = f(z)
sheared in the line ¥ = mxz in such a way that the y-intercepts
remain unchanged. Every point on the curve y = f(z) to the
right of the Y-axis is moved up (down if m is negative) a distance
proportional to its abscissa; and every point to the left of the Y-

]P
Fia. 7.

axis is moved down (up if m is negative) a distance proportional
to its abscissa. The factor of proportionality is m.

In general a curve is changed in shape by shearing it in a line.
The parabola is an exception to this rule.

Thus y = az? sheared in the line ¥y = mxz becomes

y = az? + ma,
or
m\2 m?
y=a (‘” + 2—a) ~4a

This may also be considered as the result of translating the
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2
original curve by the amounts — ;% and — % in the z and y direc-

tions, respectively. Hence, by shearing, the parabola y = az?
is merely translated.

9. The Function a*. In Fig. 8 are given the graphs of y = a=,
for the values @ = 1, 2,and 3. By reflecting these curves in the
line y = 2 we have the corresponding curves for y = log, z.

The exponential function ¥ = a* has the property that if z is
given a series of values in arithmetical progression the corre-
sponding values of y are in geometrical progression.

s

- .
f t t t t +—X
-4 -8 -2 -1 o 1 2 8

-
’ "

X - =

F1e. 8.—Curves for y = a%,a = 1, 2, and 3.

10. The Function sinz. The function y = sinz is repre-
sented in Fig. 53.

11. The Functions p = acos §,p = bsin f,and p = acos § +
bsin 8. The function p = a cos @ is the circle OA, Fig. 9, and
p = bsin @ is the circle OB, Fig. 9. The function p = a cos 6 +
b sin 0 can be put in the form p = R cos (§ — ), where
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R = +/a% 4 b? and wherecos a = % andsina = % This function

is represented by a circle, Fig. 9, passing through the pole, with
diameter equal to R, and with the angle AOC equal to a. The
maximurn value of the function is B and the minimum value is
—B.

12. Fundamental Transformations of Functions. It is valuable
to formulate the transformations of simple functions, that most
commonly occur, in terms of the effect that these transformations
have upon the graphs of the functions. The following list
of theorems on loci contains useful facts concerning these
transformations:

B c
b s
a
O\/A
Fra. 9.

THEOREMS ON LOCI

1. If = be replaced by (—=z) in any equation containing z and
y, the new graph is the reflection of the former graph in the Y-axis.

II. If y be replaced by (—y) in any equation containing = and
y, the new graph is the reflection of the former graph in the X-axis.

III. If = and y be interchanged in any equation containing
z and y, the new graph is the reflection of the former graph in the
line y = z.

IV. Substituting G) for z in the equation of any locus multiplies
all abscissas by a.
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V. Substituting ((1;’ ) for y in the equation of any locus multiplies

all ordinates of the curve by b.

VL. If (z — a) be substituted for z throughout any equation,
the locus is translated a distance a in the z-direction.

VII. If (y — b) be substituted for y in any equation, the locus
is translated the distance b in the y-direction.

VIII. The addition of the term mz to the right side of
y = f(z) shears the locus y = f(z) in the line y = ma.

IX. If (6 — ) be substituted for § throughout the polar equa-
tion of any locus, the curve is rotated about the pole through the
angle o.

X. If the equation of any locus is given in rectangular coérdi-
nates, the curve is rotated through the positive angle a by the
substitutions

zcosa + ysina forz
and
ycosa — zsina fory.

Exercises
1. Translate the curves
@ y =22, @ =, ® y=1
®y=-3% (Dy=2, D y=
(©) y =logz, @ y=sinz (k) y=2,
@ y =e, #) y=cosz, O y=2i

two units to the right; three units to the left; five units up; one unit
down; two units to the left and one unit down. Sketch each curve
in its original and translated position on a sheet of squared paper.

2. Shear each curve given in Exercise 1 in the line y = iz;
y=—3z;y =2;y = —z. Sketch each curve in its original and
sheared position.

8. Write the equation of each curve given in Exercise 1 when re-
flected in the X-axis; in the Y-axis; in the line y = z; in the line
y = — z. Sketch each curve before and after reflection.

4. Rotate the turves
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(a) p = asin 6,
() p =acosd,

-

CALCULUS

(¢) p =acos + bsin 6,
d) p=a(l —cosd),

about the pole through an angle 3 %, ;r T, —

[§12

(e) p = a(l + cos 0),
() »p=a(l —sin),
(9) p = a(l +sin ),
(h) p = as,

ks

in its original and rotated position.
. B. Sketch the following pairs of curves on squared paper:

(@) y = =?
®) y=2
(©) y =a*
@y =z
(e y = — 222
N y=a
(9) y=sinz
(h) y =sinzx

(4) y =cosz

and
and
and
and
and
and
and
and

and

;- Sketéh each curve

y=z*+z
y=(x—3)3*4+2

y = — 2% — 2z. '
y = z* — 42 + 6% — 4z.
y = iz

y = =2

y = sin 2z.

y = 2sin z.
y=sin<g-x).

8. Rotate the following curves about the origin through the angle

indicated.

(a) z* — y* = a* through
(b) z* — y* = a* through
(c) z* — y* = a* through
(d) z* — y2 = a? through
(¢) 22 + y? =a through
O y = ma?

through

45°.
—45°,
90°.
—90°
a.
a.



CHAPTER 1

DERIVATIVE

In Elementary Analysis the student investigated the dependence
of a function upon one or more variables with the help of algebra
and geometry.

He is now to study a very powerful method of investigating the
behavior of functions, the method of the infinitestmal calculus,
which was discovered by Newton and Leibnitz in the latter part
of the 17th century. This method has made possible the great
development of mathematical analysis and of its applications to
problems in almost every field of science, particularly in engi-
neering and physics.

13. Increments. Let us consider the following examples which
illustrate the principles of the calculus:

Ezample 1. A steel bar, subjected to a tension, will stretch,
and the amount of stretching, or the elongation, will continue to
increase as the intensity of the force applied increases, until
rupture occurs. The elongation is a function of the applied force.
In fact, if the force is not too great, so that the elastic limit is not
exceeded, experiment has shown that the elongation is propor-
tional to the applied force (Hooke’s Law). If we denote the
elongation by y and the force by z, the functional relation between
them will be expressed by the simple equation

y = kz,

where k is a constant. This relation is represented graphically
by a straight line through the origin, Fig. 10. .

Suppose that after the bar has been stretched to a certain length,
the force is changed. This change in the force produces a cor-
responding change in the elongation, an increase if the force is
increased, a decrease if the force is decreased. Evidently, from
the law connecting the elongation and the force, this change in the

13
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elongation is directly proportional to the change in the force. We
shall call the change in the force z, the increment of the force, or
the increment of z, and shall denote it by the symbol Az (read ‘“‘in-
crement of 2’ or “delta z”’). The corresponding change in the
elongation we call the increment of the elongation, or the increment
of y, and denote it by Ay.

In Fig. 10 let P be any point on the line y = kz. If z takes on
an increment Az, y takes on an increment Ay. We see that the

ratio of these increments, i.e., the quotient %IS entirely inde-

pendent of the magnitude and sense of Az and of the position of P
on the line. Indeed this ratio is the slope of the line. Here the
increment of y is everywhere & times the increment of z.

Y]
\/W

a
2
§ Ty}
o
] P

AT X
[o] Force

Fic. 10.

The relation between Ay and Az can be shown without theuse
of the figure as follows: If z is given the increment Az, y takes on
an increment Ay so that '

¥ + Ay = k(z 4+ Az).
On subtracting

y = kz,
Ay = kAz.
Hence
Ay .
Az k,

a quantity independent of z and of Az.
Ezample 2. A train is moving along a straight track with a
constant velocity, .e., it passes over equal distances in equal inter-
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vals of time. Denoting by s the distance measured, say in miles,
from a fixed point, and by ¢ the time measured, say in hours,
which has elapsed since the train passed this point, the functional
relation between s and ¢ is expressed by

s =cl,

where ¢ is a constant denoting the velocity of the train. This
function is represented graphically by a straight line, Fig. 11. If
we take an increment of time At following an instant ¢ and measure
the distance As passed over in this time, the quotient 2
sents the velocity of the train, since we have assumed the velocity

of the train to be uniform. Furthermore, the quotient 2—8‘ will

repre-

5 as

F at

o Time (¢)
Fia. 11.

be independent of the length of At and of the time ¢ to which the
increment was given. As is everywhere ¢ times At¢. This is
evident from the graph.

In these two examples the functions were both linear functions
of the independent variable. We have seen in these cases (and -
clearly the same is true for any linear function, y = azx + b)
that the ratio of Ayto Az isconstant. Ay is everywhereequal toa
constant times Az, no matter how large Az istaken and no matter
at what point (z, y) on the graph the ratio is computed.

Example 3. Let us now take an example in which the func-
tional relation is no longer a linear one. We shall find that the
ratio of the increment of the function to the increment of the
variable is no longer constant. Suppose that the train of Exa,mple

2 is not moving with constant velocity. Then the quotwnt At
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18 called the average velocity of the train during the tnterval of
time At. Evidently this quotient will approximate more and
more closely to a fixed value the smaller the interval of time
At, is chosen. The limiting value

of the quotient g as At approaches

As zero ts called the velocity at the time t.
0 Let the curve of Fig. 12 repre-
sent graphically the relation be-

Distance (8)
Y

. As
T tween sand{. The ratio Al cal-

Fia. 12. culated at any point P on the curve
is no longer constant as in Example
2, but varies with At and also with the position of the point P.
14, The Function y = x2. Consider the power function
y = 2% Let us find the ratio of Ay to

Az at a certain point of the curve, say Az A Ay
(0.2, 0.04), for different values of Axz. Y Az
The results are given in the adjoining
table. 0.4 [0.32 [0.8
We observe that as Az is taken smaller gf g(l)g gg
and smaller the ratio % approaches more 0:05 0:0225 0:45
7 . A 0.02 |0:0084 (0.42
ﬁ?((l) ;nore closely a value in the vicinity 0.01 l0.0041 lo 41
o Ay 0.0050.002025|0.405
The value of Az will now be calculated |0.002/0.000804/0.402
. ” 0.001/0.000401/0. 401
for any point P, (z,%),on the curve y =z2.

From this value, which is a function

of z and Az, the limiting value as Az approaches zero will be
found. The point P, Fig. 13, has the abscissa z. If we give to
an increment Az, we have corresponding to the abscissa, z 4 Az,
the point @ on the curve. Its ordinate is

y+ Ay = (z 4+ Az):
Ay is equal to the difference between the ordinates of P and @, or

Ay= (z + Az)? — z2,
= 2z Az + (Az)%
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Then

Ay _
B—2$+A$.

As Az approaches zero the first term in the second member remains
unchanged, while the second term approaches zero. It follows

that the limiting value of % as Az approaches zero is 2z. This
result is expressed by the equation

lim Ay
M*OB = 22:,

Y
o
8
U
N
Q
Ay
Az X
o
Fic. 13.

(read “limit of %—z as Az approaches zero”). When z = 0.2,
A&ﬂg = 0.4. This is the limiting value which the ratio tabu-
lated in the last column of the table above is approaching. When
. - A . A

z=3 M2 Y6 When z=13 S0 -1 Thus the
formula just obtained enables us to calculate very easily, for any
valud of z, the limit of % as Az approaches zero.

16. Slope of the Tangent.—The curve of Fig. 14 is the graph of
the function y = f(z). On this curve take the point P with

2 ‘



18 CALCULUS 1§15

coérdinates z and y, and a second point Q@ with coérdinates
z + Az and y + Ay. Draw the secant PQ making the angle ¢
with the X-axis and the tangent PT’ making the angle r with the

X-axis. From the figure, 2—2 is the slope of PQ, or

Ay
Az = tan ¢.
As Az is taken smaller and smaller the secant PQ revolves about
the point P, approaching more and more closely as its limiting

position the tangent PT’, and tan ¢ approaches tan r. (The

Y -~
N
i .
“ 4
T
q
%
P \
x
) /1'

Fia. 14.

student will recall that the tangent to a curve at a point P is
defined as the limiting position of the secant PQ as the point Q
approaches P.) Hence

N A 3
' Jim 2 — Jm on¢ = tenr.
Hence I A—yis equal to the slope of the tangent to the curve

Az=0Ag
y = f(z) at the point for which this limit i3 computed.
In the case of the parabola, y = z? the slope of the tangent at
2
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the point (z, y) is 2z. This shows that the curve becomes steeper
and steeper for larger positive and negative values of x and that at
z = 0 the slope is zero.

In Fig. 15, let the X-axis be divided uniformly and let the Y-axis
be divided in such a way that distances measured from O on a
uniform scale are equal to the squares of the numbers affixed to
the points of division. Draw
lines parallel to the Y-axis ¥
through equidistant points 2
on the X-axis and lines par-
allel to the X-axis through
points on the Y-axis whose
affixed numbers on the non-
uniform scale are equal to
the numbers affixed to the
points on the X-axis through
which lines were drawn.

On the cross section paper
thus constructed, any point
at the intersection of a hori-
zontal and a vertical line
bearing the same number is
a point on the curvey = z?
which would be constructed
in the usual way by using
the uniform scale on the Y-
axis as well as on the X-axis.

Join the consecutive points
thus located by straight lines.
These lines are the diagonals - T t 1 ¥ 1
of the rectangles on the cross Fig. 15.
section paper and they are ,
secants of the parabola y = z2. Let PQ be such a diagonal and
let PR = Az. Then RQ = Ay and }ISiQ?, 2 » the slope of the
secant PQ. The diagonals give an approximate idea of the slope
of the curve. The construction shows why the slope increases
so rapidly with z.

e

>
Qo

wlo

[

o

0.1.--)-
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As more and more horizontal and vertical lines are inserted, the
diagonals approach more and more nearly the direction of the
tangent lines.

The fact that the slope of the tangent to the parabola y = z*
is 2z furnishes an easy way of constructing the tangent at any
point P (z, y). We have only to draw from P in the direction of
the positive X-axis, a line PK of unit length, and from the ex-
tremity of this line, a line KT parallel to the Y-axis, whose length
is twice the abscissa of P. Theline joining PT is the tangent to the
parabola at P. When the abscissa is negative the line KT is to be
drawn downward.

16. Maxima and Minima. The algebraic sign of jr%, %Y
enables us to tell at once where the function y is increasing and
where it is decreasing as z increases. For, if the slope is positive
at a point, the function is increasing with z at that point and the
greater the slope the greater the rate of increase. Similarly if the
slope is negative, the function is decreasing as « increases. Hence
the function y = x? is a decreasing function when <0 and an
increasing function when z>0, since the slope is equal to 2z.
When z = 0 the slope is zero and the tangent is parallel to the
X-axis. Since the function is decreasing to the left of z = 0
and increasing to the right of this line, it follows that the function
decreases to the value zero when z = 0 and then increases. This
value zero is a minimum value of the function y = z®. “In general
we define minimum and maximum values of a function asfollows:

Definition. Let y = f(x), where f(z) is any function of a single
argument. If y decreases to a value m as x increases and then
begins to increase, m is called a minimum value of the function. If
y increases to the value M as x increases and then begins to decrease,
M 1is called a maximum value of the function.

Thus in Fig. 16, if ABDFHI is the graph of ¥ = f(z), the func-
tion increases to the value represented by the ordinate bB and
then begins to decrease. bB is then a maximum value of the
function. Similarly fF is another maximum value. dD and AH
are minimum values of the function.

In referring to the graph of a function, points corresponding to
maximum and points corresponding to minimum values of the
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function will be called, respectively, the maximum and minimum
points of the curve. Thus B and F, Fig. 16, are maximum points
and D and H are minimum points of the curve.

Thus, zero is a minimum value of y = 22 or (0, 0) is a minimum
point on the curve y = 22, ’

It will be noticed that a maximum value, as here defined, is not
necessarily the largest value of the function, nor is a minimum
value the smallest value of the function. A maximum value may
even be less than a minimum value.

Y
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17. Derivative. We see that the limit of the ratio of the incre-
ment of the function to the increment of the independent variable
a8 the latter increment approaches zero, is very useful in studying
the behavior of the function. This limit is called the derivative of
the function with respect to the variable. Hence the following
definition:

The derivative of a function of a single independent variable
with respect to that variable is the limit of the ratio of the increment
of the function to the increment of the variable as the latter increment
approaches zero. The derivative of a function y with respect to a

‘variable z is denoted by the symbol %—Z This symbol will not be

considered at present as representing the quotient of two quan-
tities but as a symbol for a single quantity. Later it will be
interpreted as a quotient. (See §61.) It is read, “the derivative
of y with respect to z.”” The process of finding the derivative
is called differentiation.
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18. Velocity of a Falling Body. As a further illustration of the
application of the derjvative let us attempt to find the velocity of
a falling body at any instant. The law of motion has been experi-
mentally determined to be

8 = gt

where s is the distance through which the body falls from rest in
time ¢ If 8 is measured in-feet and ¢ in
seconds, the constant g is 32.2 feet per
second per second. s is plotted as a func-
tion of the time in Fig. 17. At any time
t, let t take on an increment Af. s wil take
P[_IR on an increment As, represented in the
figure by the line RQ. Since s = }gi?,

Time (£) 8 + As = }g(t + A~ (1
Fic. 17. Hence

Distance (8)
[
Y

As = 3g(t + AY)? — }g%,
or
As = gtAt + 3g(At)2 (2
This is the distance through which the body falls in the interval
At counted from the time ¢. The quotient %i is the average
velocity for the interval At. The velocity at ¢ has been de-
fined as lm As i.e., as the derivative of s with respect to &.

At=0 AP
To find this limit divide (2) by At and obtain

As
AL gt + 3gAt,

the average velocity for the interval At. From which

im AS
Jm 2 =t &)
or
d
it = o @

the velocity at t. Thus the velocity at the end of three seconds
is 96.6 feet per second; at the end of four seconds, 128.8 feet per
second.
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19. Illustration. As an example of the use of the derivative in
studying the behavior of a function, let us consider the power
function

y = z3 A
y + Ay = (z + Az)?3,
y + Ay = z* + 3z%(Azx) + 3z(Az)* + (Az)3,
Ay = 3z%*(Az) + 3z(Ar)? + (Az)?,

Ap = 3% + 32(Az) + (Az)*

Then
lim Ay 322
Az=0 Az
dy
&z = 3

For z = 0 the derivative is equal to zero and consequently the
tangent at (0, 0) is horizontal and coincides with the X-axis.
For all other values of z the derivative is positive. This
shows that the function is an increasing function for all these
values of z. Where is the slope of the curve equal to 1?
Equal to v/3? ,

20. Illustration. The solution of the-following problem will
further illustrate the use of the derivative.

Find the dimensions of the gutter with
the greatest possible carrying capacity ¥ P
and with rectangular cross section, which
can be made from strips of tin 30 inches
wide by bending up the edges to form g
the sides. See Fig. 18. Fic. 18.

If the depth MR is determined, the
width is also determined, since the sum of the three sides MR,
PQ, and RQ is 30 inches. We seek to express the area of the

" cross section as a function of the depth. Denote the depth by

z and the area by A. The width RQ is 30 — 2z. Hence

le— 83 —>1

A = (30 — 2z)z.

In Fig. 19, A is plotted as a function of z. A first increases with =
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and then decreases. The value of z for which A reaches its
greatest value can be determined from a graph with a high degree
of approximation. The derivative can be used to calculate
accurately this value of # and this saves construction of an
accurate graph. .

From O to H, A is an increasing function. Its derivative is
therefore positive for this part of the curve. From H to N the
function A is decreasing. Its derivative is therefore negative
for this part of the curve. At the point H the derivative changes
sign, passing from positive valués through zero to negative values.
The abscissa of the point H can then be found by finding the

120 H
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Fia. 19.

derivative of A with respect to z and determining where it changes
sign. In this case the change of sign occurs where the derivative
is equal to zero. We find by the method of increments '

dA
o =30 — 4z =4(75 —2).
Z—: =0 when z = 7.5. If 2<7.5, % is positive and 4 is an

increasing function. If z>7.5, % is negative and A is a de-

creasing function. This shows that A increases up to a certain
value at £ = 7.5 and then begins to decrease. Hence the gutter
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will have the greatest cross section if its depth be made 7.5
inches.

It is interesting to plot the derivative as a function of  on the
same axes. See the dotted line, Fig. 19. The statements made
concerning the derivative are verified in the graph.

Exercises

1. Consider the function y = f(z) whose graph is given in Fig. 20.
In what portions of the curve is the derivative positive? In what
portions negative? Where is the derivative equal to zero?

i v=s(z) C

4 |

! |

i l

| |

! | ! X
Ol a ) c

Fia. 20.

2. Find g—:, if y = 3z2. For what values of z is the function in-

creasing? For what values decreasing? At what point does the
tangent line drawn to the curve representing the function, make an
angle of 45° with the positive direction of the axis of z? Find the
codrdinates of the maximum or minimum points on the curve.

3. Answer questions asked in Exercise 2, if y = z3.

4. Answer questions asked in Exercise 2, if y = z¢.

6. Answer questions asked in Exercise 2, if y = z°.

8. Answer questions asked in Exercise 2, if y = 2 — 2z + 3.
z?  3z?

7. Answer questions asked in Exercise 2, if y = T—% + 2z — 6.
8. Find the derivative of \/z.
SoLuTion. Lety = /7.
Then
y+Ay =Vztaz
and
Ay = Vz+az—Vz
Ay Vz+az—Vz
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Rationalize the numerator:

Ay _ 1,
Az T+ Az+Va

As Az approaches zero the right-hand side of this equation approach

m' Then
lim 4y _ 1
az%0 Az ~ 2. /7
or
dy _ _1 |
dr 2z
9. Find the derivative of \/z — 2.
10. Find the derivative of /z* — 4.




CHAPTER II

LIMITS

In §17 the derivative was defined as the limit of a certain ratio.
The word limit was used without giving its precise definition,
as the reader was supposed to have a fair conception of the mean-
ing of this term from previous courses in mathematics. How-
ever, since the entire subject of the calculus is based on limit
processes it is well to review the precise definition and to state
certain theorems from the theory of limits.

21. Definition. If a variable changes by an unlimited number
of steps in such a way that, after a sufficiently large number of steps,
the numerical value of the difference between the variable and a
constant becomes and remains, for all subsequent steps, less than any
preassigned positive constant, however small, the variable is said to
approach the constant as a limit, and the constant is called the limit
of the variable. '

JK

A' x, él Ts é{ B
Fra. 21.

IlNlustration 1. Let AB, Fig. 21, be a line two units in length,
and let z be the distance from A to a point on this line. Suppose
that z increases from 0 by steps such that any value of z is greater

than the preceding value by one-half of the difference between 2 and
this preceding value, %.e., by 2—;—’: %y, T3, Ts, Ts, + - - are the
end points of the portions of the line representing the successive
values of z. Then the lengths z,B = 1, z.B = &, z,B = (})?,
z2B= (3), - -, z.B = (})»! are the successive differ-
ences between the constant length 2 and the variable length z.
This difference becomes and remains less than any preassigned
length KB after a sufficient number of steps has been taken.

27
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This is true however small the length KB is chosen. Therefore,
by the definition of the limit of a variable, 2 is the limit of the
variable z.

Illustration 2. Consider the variable x’ — 2. Give to z the

values O, 3, %, &', 4%, %%, - . - 3(2 = 3[1 - —-]

which are chosen by starting with z = 0 and giving to it successive
increments which are one-half the difference between 3 and the

7 B
c§K
6
6 ]
4
"
s g
2
1
D
[5) 1 z 2 8
Fia. 22.

preceding value of z. The corresponding values of z? — 2 are

given in the adjoining table. The corresponding points, excepting

(0, — 2), are plotted in Fig. 22.

z |z2—2 From the table and the expression 22 — 2it

is readily seen that the difference between 7 -

_2.00 | and the variable 22 — 2 becomes and remains
0.25 | lessthan any previously assigned quantity (such

6.86 | and nearer 2, the value of —— becomes nu- .

NN ~O
O OWO©OLWDNNWMO

5 | 3.06 | as KB, Fig. 22) after a sufficiently large number
2 | 4.89 | of steps. Therefore 7 is the limit of the vari-
1| 5.91 | ablex? — 2 as = approaches 3.

1 6.45 Illustration 3. By giving z values nearer
5| 6.72 '

8

9

L 6.93 | merically larger and larger. Indeed its numeri-
T cal value can be made greater than any preas-
“ed positive number however large by choosing z sufficiently

.
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p 1 5 does not approach a limit as z ap-
proaches 2. Instead of doing so it increases without limit.

If a variable changes by an unlimited number of steps in such
a way that after a suffictently large number of steps tts numerical
value becomes and remains, for all subsequent steps, greater than
any preassigned positive number however large, the variable is said
to become infinite. Illustration 3 of this section is an example
of a variable which bec;omes infinite, or approaches infinity.

22. Notation. If in any limit process, the variable, say y, is a
function of another variable, say x, the successive steps by
which y changes are determined by those by which z changes.
If y approaches a limit A, as x approaches a limit a, we say that the
limit of y as x approaches a is A, and write

near 2. The variable

lim, _
oaa¥ = A.
After what has just been said, the meaning of the two following
expressions will be clear:
lim , lim,,
zéwy—A’ ziay_w.
In the second case a limit does not really exist. The form of
expression is only a convenient way of saying that if = is taken
sufficiently near a, the value of y can be made to become and
remain greater in numerical value than any preassigned positive
number however large.
From the illustrations of the preceding section we have:

1 lim 2, where 7 is the number of steps taken.

N o

lim (2 _ o) —
2.lm g =7

lim 1
32y = >

23. Infinitesimal. In the particular case where the limit of a
variable is zero, the variable is said to be an infinitesimal. An
infinitesimal s a variable whose limit 13 zero. Thus Ay and Az
which were used in §§13, 14, and 15 are thought of as approaching
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zero and are infinitesimals. Hence the derivative, §17, is defined
a8 the limit of the quotient of two infinitesimals. Infinitesimals
are of fundamental importance in the Calculus. Indeed the
subject is often called the Infinitesimal Calculus.

24. Theorems on Limits. The following theorems concerning
limits are stated without proof:

Theorem 1. If twovariables are always equal and if one approaches
a limit, the other approaches the same limit.

Theorem II. The limit of the sum of two variables, each of which
approaches a limil, is equal to the sum of their limits.

Theorem III. The limit of the difference of two variables, each
of which approaches a limit, 18 equal to the difference of their limits.

Theorem IV. The limit of the product of two variables, each of
which approaches a limit, 18 equal to the product of their limits.

Theorem V. The limit of the quotient of two variables, each of
which approaches a limit, {8 equal to the quotient of their limils,
provided the limit of the divisor is not zero.

If the limit of the divisor is zero, the quotient of the limits in
Theorem V has no meaning, since division by zero is an impossible
operation. For, the quotient Q of two numbers A and B is
defined as the number such that when it is multiplied by the
divisor B, the product is the dividend A. Now if B is zero while 4
is not zero, there clearly is no such number.

26. The Indeterminate Form 3. If, in the quotient considered
above, A is also zero, any number will satisfy the requirement,
8o that Q is not determined. One encounters exactly this diffi-

2 _
culty in seeking the value of a; — ;
determined at this point but it is determined for all finite values
of z different from 2. We define its value at z = 2 as the limit of
its value as x approaches 2. The student should construct a
graph of this function. Usually we proceed as follows to find the
desired limit.

at x = 2. Its value is not

3 z’_4 .
I - M+ =4

2
The expression 1;_24 is said to be indeterminate at z = 2,
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since any one of an infinite number of values can be assigned to it.
The determination of its limiting value as z approaches the value 2
is called the evaluation of the indeterminate form. Indeterminate
forms of this and other types are frequently found in the Calculus.

Thus %—z is an indeterminate form for Az = 0. We have already

seen in several cases how it can be evaluated. Exactly as in the
example just given, we have sought the limit of the quotient as
Az approaches zero and not the quotient when Az = 0, because the
latter quotient has no meaning.

Exercises

1. Determine the following limits, if they exist.
@ lim lim

z&;_cosz. (§) 240 cot z.
(c) lif(’) sin g Draw the curve for values of z-between — » and + ».
@ Jm 2 gin .
2. Evaluate the following indeterminate forms:
Ol ® S s

. im 322, lim 4T _ lim 42?, lim 422+ 3 .
8. Fnd MM MR, Mm% Am T, Discuss the

symbol —z— Show that it is an indeterminate form.

26. Continuous and Discontinuous Functions. Draw the
graphs of the following functions:

1 1
= - = z2 = -
l.y e 2.y=1z% 3.y 7z+z
1
4. y = tanz. 5.y = sinz. 6. y = 3%

Hint. 1n6, valuesin the vicinity of z = 0 should be carefully
determined. Take a set of values of = approaching 0 from the
left and another set approaching it from the right.

1
_¥F+2

7.y=3’. 8'y 1
3F4+1
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Study the vicinity of £ = 0. See 6.
The functions 2, 5, and 7 are said to be confinuous while
1, 3, 4, 6, and 8 are discontinuous. The meaning of these

terms is obvious from the graphs that have been drawn. A

precise definition follows: A function f(z) %3 said to be continuous
atz = aif U™ f(z) = f(a).

In i, 3, 4, 6, and 8, this condition is not satisfied at z =0,
0, 5
either become infinite for the values of = in question or approach

. different limits as the value of z is approached from larger or
smaller values. A function f(z) ts said to be continuous tn an in-
terval (c, d), t.e., the interval ¢ T = T d, if it is continuous at every
point in this interval. Thus the functions 2, 5, and 7 are continu-
ous in any finite interval. The remaining functions are continu-
ous in any interval not containing the points to which attention
has been called.

0, and 0, respectively. In these examples the functions




GHAPTER III

THE POWER FUNCTION

27. In Chapter I the derivative of a function was found by what
may be called the fundamental method, viz., by giving to the
independent variable an increment, calculating the corresponding
increment of the dependent variable, and finding the limit of the -
ratio of these increments as the increment of the independent
variable approaches zero. This method is laborious and since it
will be necessary to find derivatives in a large number of problems,
rules awill be established by means of which the derivatives of
certain functions can be written down at once. The process of
finding the derivative of a function is called differentiation.

In this chapter we shall find the derivative of the power
function, and study the function by means of this derivative.

The graphs of y = z=, for various values of n, appear in Figs.
1,2, 3, and 4. If n is positive, the curves go through the points
(0, 0) and (1, 1), and are said to be of the parabolic type. In this
case z» is an increasing function of z in the first quadrant. If n
is negative, the curves go through the point (1, 1) but do not go
through the point (0, 0). They are asymptotic to both axes of
codrdinates. These curves are said to be of the hyperbolic type.
In this case z» is a decreasing function of z in the first quadrant.

The law of the power function, as stated in §3, should be
reviewed at this point.

28. Derivative of x". Let y = z», where n is at first assumed
to be a positive integer.

¥+ 4y = (z + Az)~.
Y+ Ay = z» +nzn-tAx +

n(n —1)
2

n(n2 1) Zn—2 (A$)2+ s '+(A$)".
Ay = nzr-1Az + -2 (Ax)2 4 - - - +(Ax)™

3 33
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% = pgr-! + mt;l). "2 M+ P +(AZ)'-'.
lim Ay
Azu%A—x = nz~7,
or
% = ngr-l, (1)

This proof holds when n is a positive integer. In §§88 and 42
it will be shown that the formula obtained holds for fractional and
negative exponents. For the present we shall assume the
formula true for these exponents.- ’

. Ilustrations. -
A=) _ 32 ST @

L =F : | -

Y

(] ) ~
z? — d(z ’) = —97-3 — __2. )/‘ '
= = 273 =

&

G
3. = 4¢3,
d(v%) - 3 1

v

Exercises

Find g—: in each of the following fifteen exercises:

1.y =22 8. y=uz 11.y=z*.
2.y =2z 7. y=zi. 12, y=z-".
8.y =28 8. y=z§. 18. y =z
4. y =z, 9.y = 2. 14. y = Pl
B.y=1 10.y=—1. 16,y = 2
.y—z .y—\/;. -V =

168. Find the slope of each of the curves of Exercises 1-15 at the
point (1, 1); also at the point whose abscissa is 4 and whose ordinate
is positive.

17. By making use of the derivative, find for what values of z
each function given in Exercises 1-15 is increasing; is decreasing.
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18. How does the slope of ¥ = 2" change with increasing z, if z
is positive and if n is positive and less than 1? If n is positive and
greater than 1?

19. Find where the slope of each curve given in Exercises 1-15 is
equal to zero; equal to 1.

20. Flnddtlf
(a) 8 = t2 '(c)a—\/_ (") s = V1
(b)s=tl,‘ (d)ss-‘—*- (f)8=—\!/—t:.
21. Find 3¢ if:
(@) y =12 (©) y = Vi (&) y=t2
®y=j (d)y=ti,- )y =g

29. The Derivative of ax”. In case the power function is writ-
ten in the more general form azn, it is easy to see that the con-
stant multiplier a will appear as a coefficient in all terms on the
right-hand side of the equations in the proof in §28, and the
derivative of y = az~'is, therefore,

dy

i = naz»-l, (1)
or
) nagrty @

The proof of the formula is for positive integral values of n only,

but as in §28 will be assumed for all commensurable exponents.?

Since az»—! is the given power functlon y = az" dxvxded by z,
formula (1) may be written N )

dy _ ¥ '

) - dz =" )

*" 1 The relation of formula (2) to that of §38is at once evident when it is recalled that

the curve y = ax™ can be thought of as obtained from the curve y = z™ by stretching

all ordinates in the ratio 1:a. Then the slope of the tangent at a point of y = az™is
a times the slope of the tangent to y = z™ at the corresponding point; s.e.,

d(az™) d(z™)
¢

= anz™"l,



i

36 CALCULUS [§29

The geometrical meaning of formula (3) is shown by Fig. 23.
The fraction % is the slope of the radius vector OP from the origin

to the point P on the curve. Formula (3) states that the slope,
at any point of the graph of the function, y = az», is n times the
slope of the radius vector OP. Thus, if n = 1, y = az* reduces
to a straight line through the origin, and the line has the same
slope as OP. If n = 2 the curve is the parabola y = ax?, and the
slope of the curve is always twice that of OP. If n = —1 the

8
J
B

)
R

Fia. 23.

curve is the rectangular hyperbola, y = Z’ and the slope of the
curve is the negative of the slope of OP. '

Illustrations.
2
L 402,
5
, ° ) _aeen _ G0 PN ()
"Tdr T Tdz  YTds T T T Ta
d6VE) . d(td) _op

8 g =6 g

g,

4. Ify = 523, 3—: =37
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6 dy _ Y
5. Ify—z,’ = —2::
Exercises

Find g—g in each of the following fifteen exercises.
1. y = 4z 8. y = 228, 1. y = —322.
2.y =37z 7.y = 42k 12. y = 2.
3. y = 525, 8. y = {z10, 18. y = —=z.
4. y = 3. 9. y = 10V/z. 14. y = -3/

2 4 4
B.y- = 10.y=-z—,o 15.y=—;,-

16. Find :8 in each of the following:
(@) s =2t% (b) 8 =3t. (c) 8 = —4,
17. Find %’ in each of the following: '

(@ y=4v. (B)y=—4 (c)y= -3

18. Find the slope of each of the curves given in Exercises 1-15,
at the point whose abscissa is 1; at the point whose abscissa is §.

19, For what values of z is each function given in Exercises 1-15
increasing? Decreasmg? Where, if at all, is the slope of each of
these curves zero?

20. Draw the curves y = }z2, y = %r y = 2%, y = \/z; and draw

tangent lines to them at the points for which the abscissas are 1, 2, 3,

and 4. Make a table showing the slope of the radius vector and the

tangent line for each of these points.

/' 30. Rate of Change of ax". Let y = az~, where z is a function

of the time {. Since z is a function of ¢, y is a function of . For
example, y = 3z?% where z = ¢ — 1. '
Let Az and Ay be the increments of = and y, respectively, corre-

sponding to the increment At of &.

At
change of y during the interval At. Zi/ is the rate of change of y

at the instant f.
At any time, ¢

Y is the average rate of

y = az~.
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At the time ¢ + At, .
¥y + Ay = a(z + Az)~

y+ Ay = a[xu+ nzv-1Az + ’_‘(”_L—gl)z.-:(Az)s+ Ce (Az)']~
Ay = a[ nz =t + nn — 2 )x""Aa: + - -+ (Az:)""‘]A:c
Ay -1 ( 1) n— e n— Az.
Zt' = a[ nzr! 4 - lg z°Az + + (Ax) I]Kt-

As At approaches zero, the expression within the brackets ap-

proaches nz»-1, and Az approaches 2’:

Hence
g—f = anz"? S—f'
or : )
d(ax= —1dx,
F TR anx®

The rate of change of the function- az» is expressed in terms of z
and of gtf’ the rate of change of z. If then the rate of change of

x for a given value of z is known, the rate of change of the fune-
tion for that value of z can be calculated. |
Tllustration 1. The side of a square is increasing at the uni-
form rate of 0.2 inch per second. Find the rate at which the area

is increasing when the side is 10 inches long.
Let z be the length of the side, and y the area of the square.

Then Z—tz = 0.2 and z—f is the rate of increase of the area. To find

this rate of increase, differentiate the function y = x2.

dy _, dz

P TN
Since

dz

&= 0.2,

dy

a = 0.4z.
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When z = 10, % = 4. The area is increasing at the rate of 4

square inches per second. When z = 13, Zt

= 5.2, the rate of
change of the area at this instant.

Illustration 2. A spherical soap bubble is being inflated at the
rate of 0.2 cubic inch per second. Find the rate at which the
radius is increasing when it is 1.5 inches long,.

av

Let 7 be the radius, and V the volume of the bubble. x*= 0.2
and » the rate of increase of the radius, is to be found.
V = {xr,
4 :t—V = 4xr? :%
From which
dr _ 1 4V,
dt ~ 4t dt
Since
av
a = 0.2, and r = 1.5,

Z: 20'_(11 5= 0.0071 inch per second.

Exercises

1. Find the rate at which the surface of the soap bubble of Illustra-
tion 2 is increasing when r = 1.5 inches.

2. If each side of an equilateral triangle is increasing at the rate
of 0.3 inch per minute, at what rate is the area of the triangle increas-
ing when the side is 6 inches long?

8. Water is flowing at a uniform rate of 10 cubic inches per minute
into a right circular cone whose semi-vertical angle is 45°, whose apex
is down, and whose axis is vertical. At what rate is the surface of
the water in the cone rising, and at what rate is the area of this surface
increasing when the water in the cone is 25 inches deep?

- 81, The Derivative of the Sum of a Function and a Constant.
Sketch, on the same set of axes, the graphs of the functions:
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y=2zy=2z2*-25; y=x’+3;y=x’+10. Find%foreach

of the functions. Fmd , if y =22+ C, where C is any

constant.
Sketch a graph of any function y = f(z), and on the same set
of axes, graphs of y = f(z) 4 C for several values of the constant

C. What relation exists between d—z for the different functions

corresponding to the same value of z?

From these illustrations it is clear that the derivatives of all
functions which differ only by an additive constant are the same.
The reason for this is geometrically evident. For, the addition
of a constant to a function has the effect of merely translating the
graph of the function parallel to the Y-axis. The slope corre-
sponding to any given abscissa is clearly not changed by this

translation. Hence,
dif(x) +C] _ d[f(x)]

& T & &
In particular o
d[ax;:— cl_ d[;xx ] _ anxa-t (2)
Thus, if y =528 47,
dy d(5x3) _ .
= dz = 1522,
) Exercises
1. Prove formula (2) above by the increment process.
Differentiate:
2. y =322+2. 11. y = — 4x% + 6.
8. y=5vz+4 12. y = — 324 4+ 2.
4y=223—3 13. y = 7z* - 3.
5y——+5 14. y = 423 + 5.
6.y =24 +17. 15.y=i+2.
7.8 =166 + 5. ‘ 16. y = — §z° + 3.
8. & =213 +6. 17, y = 328 + 2.
9.a=§,-—4. 18. y = §z* — 5.

10, z = 413 — 2,
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32. The Derivative of au®. If y = au», where u is a function

of z and = is a positive integer, the student will prove, as in §30
that

ay _
dr = O™ Gz
or .
d(au?) _ _ydu
ax a4y
Illustrations.

m%ﬂ = 53(z? + 3)? = 15(z* + 3)* 2z
= 30z(z? + 3)

d(:c + I 4)

1 d(z2+ 3)
: dz

(1[2(172 -':i:)‘-'- 10] d[2(x;;|- 4)4] = 2-4(z? + 4)8 ——

= 2-4(z* + 4)3 2z = 16z(z? + 4)'.
3.1y = (222 + 1)? find dy

dy _d@z*+1)? d(2z2 + 1)
i = @ C+DT—g—

dz dz
= 2(2z% + 1)-2-2z = 8x(2z2 + 1) a

4. Ify = (22 + 1)}

Zy (22 + 1)} 22 = 32(22 + 1)3,

and J
dz _ i "
=2 = 3z 4+ Di 2z ST 3z(z2 4 1) ar
Exercises

Find Z—Z
1.y = (422 — 2)% 6.y =9 — 7.
2. y = 5(2z* — 5)%. Ty =3z 4+ 7)%
8. y =2(8 — 4z%)3 8. y = v/z2 - 6.
Ly=vaFl 9. y = V227 +3.

by=(-—2z9 10. y = vz + 1.
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1 7

Y == 16. y = 5——

Wv=Tm—s . V= Ve 1
— 5

12.y = = 16y = iy
2

18. y = V(@' + 9 1.y = iy oy
3

Hy=vi+1 18. vy = 5o

33. The Derivative of u®, n a Positive Fraction. We are now
in a position to prove that the rule for the denvatlve of u» holds

when n is a positive fraction of the form a’ where p and g are

integers. Let

Py
.

TRaise each member to the power g¢:
yﬂ = Ur

Since u is a function of z, y is a function of z. Hence each member
is a function of z raised to a positive integral power. Then each
member can be differentiated by the rule of §32 which was
proved for positive integral exponents. We find

8 B
From which
dy pur? du

dy p wrt du p wl du
dz ~ p|? z q » dr
u; ur-4q

Then
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and the rule is proved that
‘_'il.» - n—-1 _ﬁ
ar ~ ™ 47

where 7 is a positive fraction whose numerator and denominator
are integers. This rule has already been used in the solution of
DUMeErous exercises.

34. The Derivative of a Constant. Let y = ¢, where c is a
constant. Corresponding to any Az, Ay = 0, and consequently

Ay
Az 0,
and
. Ay
1 = =
A:To Az 0,
or
dy
iz = 0.

The dertvative of a constant s zero.
Interpret this result geometrically.

36. The Derivative of the Sum of Two Functions. Let
y=u-+v,

where 4 and vare functions of z. Let Au, Av, and Ay be theincre-

ments of u, v, and y, respectively, corresponding to the increment
Az.

y+Ay=u+ Au+v+4 Av .

Ay = Au + Av
By _du  dv
Az~ Az T Az

dy _du  do
dz _d:c+d:c’

or

dx  dx "dx

The derivative of the sum of two functions is equal to the sum of
their derivalives,

dlu+v) du g!.
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The student will observe that the proof given can be extended
to the sum of three, four, or any finite number of functions.

3.

Ilustrations.

d(ﬁz + 152%) _ d(6z) , d(15x%) _

1, dz = 4 = 6 + 30z.
ol 2
o 42Vz + 35" +4) _d2V7a) AR O S,
dz dz dz vz
dt*'+ 263+ 3) — 9t 4+ 60
dt
Exercises

Differentiate the following functions with respect to z, also with
respect to ¢:

1.

3zt — 2z% 4 6.

. 5z3 — Tx? — 2z — 10.

36. Differentiation of Implicit Functions.

2
3.t
4
b

(]
7.
8.
9

28 — 33+ 2 — 7.

z%+2:v%.
3. 2
"V Vz

. 327 — 68 + 9.

zi— :c'?‘.

:z:_% + :c_*.

— i+ it -z 4 2.

10. az? 4 bz + c.

11. y = Vz* + 4z — 5.
1

12. y = .
Var—-5z+7
13. y = 3z2 — 2z + 5.
14. y = V6 — 3z — =2
16. s = t+l+{’2t-3
1
16'y=z’—-7z—6.
17. y = V22 — 5z + 4.

18. y = 3z + 2z + 2)3.
The derivative of

one variable with respect to another can be found from an equs-
tion connecting the variables without solving the equation for

either variable.

For, if the variables are z and y, y is a function

of z, even though its explicit form may not be known, and the
usual rules for finding the derivative of functions can be asn.pplwd

to each member of the equation.

The following example will illustrate the process.

Illustration.

Let 22 4 y2 = a2.

The left-hand member of the given equation is the sum of
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two functions of z, since y is a function of z. Further, the deriva-
tive of the left-hand member is equal to the derivative of the
right-hand member. The derivative of the latter is in this case
zero, since the right-hand member is constant. On differentiat-

Y] Y
i a
5 b.¢
a K /
0 « X
R ENER
Y,
Ole X
a
O a X
ce+y=—a 22+ y?=a?
Fia. 24.

ing the left-hand member as the sum of two functions, we obtain

d
22 + %3 =
Solving for %-
dy _ _z
dx =y

When the derivative is found by differentiating each member of
an equation in the implicit form, as in the foregoing illustration,
* the operation is called implicit differentiation.



46 CALCULUS [§37

Exercises
1. Draw the circle 22 4 y* = a? and show geometrically that the

slope of the tangent at the point (z, y) is —5'

2. Solve the equation of Exercise 1 for y and find g—g

From the following equations find % by implicit differentiation:

8. 3z + 4y? = 12.
4, z? — y? = ad
oyl .
5. pr + b = 1. (Do not clear of fractions.)
If y is an implicit function of z expressed by an equation of the
form

x + yn = an’ (l)
differentiation gives

nxr1 + nyn—lg: = 0,

BT

The equation (1) includes a number of important special cases.
The graphs corresponding to the following values of n are shown in
Fig. 24. For

n =14, z* + yi = a;, a parabola,

or

n =4, 2} + y* = a*, an important hypocycloid,
n=1 z 4y =a, astraight line,
n=2 z*+yt =a%a circle.
The graph of (1) passes through the points (0, a) and (a, 0) if nis
positive.
6. :c* + y* = a*.

7. :ci +y} = a*.
8. z? + ¥ =ad

9. oz} + y% =al.

37. Anti-derivatives. Integration. Let it be required to
find the equation of a curve whose slope at any point is equal to
twice the abscissa of that point.
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This means that at every point of the curve :il—z = 2z. We
seek then a function whose derivative is 2z. y = 22 is such a
function. But y = 2? 4+ C, where C is a constant, is also a
function having the same derivative. Hence there is an infinite
number of functions whose derivatives are all equal to 2¢. The
problem as proposed has then an infinite number of solutions,
viz., the system of parabolas y = z? 4+ C, corresponding to the
infinitely many values of C.

If now we add to the statement of the problem the requirement
that the curve shall pass through a given point, say (1, 2), it is
geometrically evident that but one of the curves y = 22 4 C will
pass through the point. In other words there is but one value of C
for which the latter requirement is satisfied. This value is de-
termined by substituting the coérdinates of the point in the
equation ¥ = 22 + C, since they must satisfy this equation for
some value of C, if the problem has a solution. On making the
substitution we have

2=1+40¢C,

from which C = 1. Hence y = 22 4+ 1 is the equation of the
curve whose slope at any point is equal to twice the abscissa of the
point and which passes through the point (1, 2).

The nature of the problem which has just been solved can be
further explained by the following geometrical solution. Draw,
Fig. 25, at the vertices of each small square on a sheet of co-
ordinate paper on which a set of axes has been chosen, short
lines whose slopes are equal to two times the abscissas of the
respective vertices. A curve is to be drawn which at each of its
points is tangent to a line such as those which have been drawn.
Now it is impossible in the figure to draw lines through every point
in the plane, but if the points through which the lines are drawn
are sufficiently thick, the lines will serve to indicate the direction
which the curve takes at nearby points. The lines may be
regarded as pointers indicating the stream lines in flowing water.
Then a point tracing the curve would move as a small cork would in
water having the stream lines indicated by the figure.

Thus, to get the curve that goes through (1, 2), start from this
point and, guided by the direction lines, sketch in as accurately

H
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as possible the curve to the right of this point. Do the same
thing to the left, noting that here it is necessary to go against the
stream lines instead of with them.

In Fig. 25 it should be noted that all lines through points
having the same abscissa are parallel. This fact is of great
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Fig. 25.

assistance in drawing. The squares on the coérdinate paper can
be used to advantage in drawing lines when the slope is known.
If the derivative which was given had been any other function
of z, a geometrical solution could have been obtained by the same
method.
The foregoing illustration introduces a new type .of problem,
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viz., that of finding a function whose derivative is given. A
function whose derivative is equal to a given function is called
an anti-derivative, or integral, of the given function. From the
illustration it is clear that any given function which has one anti-
derivative, has an infinite number of anti-derivatives which differ
from each other only by an additive constant. This latter fact is
indicated in obtaining the anti-derivative of a given function by
writing down the variable part of the anti-derivative and adding
toit a constant C whichisundetermined or ““arbitrary.” Ina given
application this constant will be determined by supplementary
conditions as in the illustration at the beginning of this section.

The process of finding the anti-derivative of a given function is

called integration.
Illustrations.
W _ g s
1. d—z=3w, y=1z*4C.
2 Ifdy 2 3
I g =2 y = $z3 4 C.
3.Ifg—:=3z’+2:c, y=z+2*+C.

4.1f%=3z*+2x+7, y=2a'+2+7+C.
d 3 2
5 =attz47,  y=F+5+Tz+C

If in Illustration 1 the curve is to pass through the point
(3, —2) we must have —2 = 33+ C, or C = —29. Hence the
equation of the curve is y = z3 — 29.

Exercises

Integrate the following ten functions:

d d d
1.3—:=3:¢:’. , 6.3%’=(3x:+23+6)a—f-

Yy _ @y _ ar
2. gz 4z'.dz . 7. Zt = (az + b) i

O _ 408 @ _ W |
3. @ 4z8 a 8. az 3z2 — 229 + 7.
4. %y = 3”’%%:' 9. % =10z24+ 2z —z 4+ 7.
6. % o300 422 — 6. 1o.3—§=z*+z"5.

~ &
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Tllustrations.
dy
6. dz = 3(z% 4+ 2)? 2z.

The nght—hand side is in the form, nu»—1 Z—:, where n is 3, and u
is (? + 2). Since the integral of nur-1 Zl; is ur + C,
y = (@ +2)+C.
7. (di—g = (22 — 5)32z = }[4(z? — 5)32z].. ~
y =1 -5+ C.
8. % = z(2? — 1) = ~[6(z2 — 1)52z].
y = vx(z* — 1)*+ C.
d; d d
9. fi% = 233 — z%)* a;f = - 1"5[6(3 - :c')'( 3x? 7::)]
y=- 1‘5(3 -z + C.

10. d” = (@ — 2 + 3)-%z — 2 dt
= =4[ - 26t - 20 + 3 - 9]
y= ‘R’t’——:ﬁ?—fi)’ + C.
Exercises

Integrate:
11. % =av7 —1. Ans. y=14@ - DY +C.
12. %’ = (22* + 329%(@? + 7). Ans. y = }@22® + 320t + C.
13, % =@+0L Ansny=3z+1t+cC
14, f,—g = (2 - )z . 16. g-g = (2! — 3)z.
16. % = z/1 — 22 17. ‘;—‘; = 1% + 3z.

18. d_y = (22 4+ 7)3 z.

-1
19."" (z:+4), Ans. 1/='4(7+—4),+C.
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20. = (22 + 2z + 1)3(z + 1).
dy T dy
AN == = 3)2 28,
&= Vot 23 2+ 23)2z
dy _ T dy z?
. dz /5 —z* 2. =@ =z
26. 3—;’ = (322 + 2)%z. Ans. y = 44(3z2 4+ 2)¢ 4+ C.
26. i—y = (2 — 3::’)’3:%—7
27. :—Z =2z +1)2. Ans. y = 32z +1)* 4+ C.
dy dz
28. x = Bz — 2)4 a’
dy dz
29. P @3 —4:4:,)’&7-
W _ oy i
80. o~ = Vz+1. Ans. y =3z +1)% +C.
d S R
s 5! =VE+s 40. a—z =/ (@z F I
dy dz
82.5 \/l—za- 41.———\/(4—31:)'
8-yt 0. vaiTmi@+.
dy 1 dy —
VY . - = 4)1/z? N
34 PP 43 (z+49)Vz+ 82+ 9
dy 1 dy —
8. 5 =—— 44. -3 - 2,
0. _ 1 e dy 1 -5z
Tdz /3 Bz "dz " /6 + 4z — 102*
|7} — dy 3z —2
37. 5 = 2 46.
=z V4zt = 5. d \/33:2 =55
ss.j - 2v/e = ad-vizs
z
89. d:c \/4 3 48, dz = 72—z

49. Find the equation of the curve whose slope at any point is equal
to the square of the abscissa of that point and which passes through
the point (2, 3).

80. Find the equation of the curve whose slope at any point is equal
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‘to the square root of the abscissa of that point and which passes
through the point (2, 4). '

61. Find the equation of the curve whose slope at any point is equal
to the negative reciprocal of the square of the abscissa of that point
and which passes through the point (1, 1).

38. Acceleration. The velocity of a body moving in a straight
line may be either uniform or it may vary from instant to instant.
In the latter case its motion is said to be accelerated, and this
applies both to the case where there is an increase in velocity
and the case where there is a decrease in velocity.

Thus it is a fact of common knowledge that the velocity of a
body falling to the ground from a height increases with the dis-
tance through which the body has fallen, or with the time since
the body started to fall. The time rate of change of the velocity
of a moving body is an important concept in mechanics and
physics.

If s denotes the distance passed over in time ¢, the velocity has
been defined as the rate of change of s with respect to . The
notion of the velocity at a given instant was derived from that of
the average velocity for an interval At. The average velocity was
obtained by dividing the change in s, As, in a time At by At (i.e.,
by dividing the distance passed over in time At by Af). The
limiting value of this quotient as At approaches zero was defined
a8 the velocity at the beginning of the interval At.

In the same way if the velocity, », changes by an amount Av in

the time A¢ counted from a certain time ¢, the average rate of
change of v for this interval isﬁ—z- It is the average linear accelera-
tion?! for this interval. The acceleration at the time ¢ is defined as
the limit of the average acceleration as At approaches zero. It is
then %’ The acceleration 18 the time rate of change of velocity. In
the case of a falling body it is known experimentally that for
bodies falling from heights that are not too great, the velocity
changes uniformly, due to the action of the farce of gravity, t.e.,

1 We suppose here that the body is moving in a straight line. If the path is curved,
it will be seen later that the total acceleration is to be thought of as the resultant of

two components, one of which produces a change in the direction of the velocity and
the other a change in the magnitude of the velocity,

.
N
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the time rate of change of the velocity is a constant. This con-
stant is called the acceleration due to gravity and is usually
denoted by g. In F.P.S. (foot-pound-second) units it is equal
t0 32.2 feet per second per second. That the unit of acceleration
is 1 foot per second per second is explained by the fact that accelera-

g

k

:

o Time (£)
Fia. 26.

tion is the change per second of a velocity of a certain number of
feet per second.
The differential equation of motion of the falling body can be
written
a =9 1)
From which on integrating,
v=gt+4C. 2

If it is given that the body

starts falling from rest, we have 3 &
as the condition for determin- 7 [y

ing C, that v = 0 when ¢t = 0. g

Equation (2) shows that C must 5

be equal to zero. Then, 0| Time (1)

v = gt. (3) Fia. 27.

The graph, Fig. 27, of v = gt is a straight line whose slope is g.

If the body had had an initial speed of v, feet per second, i.e.,
if it had been projected downward instead of being dropped, the
constant C would have been determined from the condition that
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v =, when ¢ = 0. It follows from (2) that C = vo, and the
equation for v would have been

v =gt + vo.. 4)

The graph of this function is shown in Fig. 26. It is again a
straight line but it cuts the Y-axis at the point (0, v,).

The foregoing discussion evidently applies equally well to any
uniformly accelerated motion, i.e., to any motion where the rate of
change of the velocity is constant. In all such cases the graph of
v a8 a function of the time is a straight line,

Since v = g—:x ‘equation (4) gives
d
£ = gt 4 vo.
Integrating,
8 = 4gt* 4 vt + Ch. (5)
If ¢ is measured from the instant the body begins to move and s
from the position of the body at that instant, s = 0 when ¢ = 0.
From this condition Cz = 0. Then the distance of the body from
its initial position is given by
8 = 4gt® + vol.
If a body is thrown vertically upward, it is convenient to count
distances measured upward, and upward velocities, as positive.
Then, since the acceleration due to gravity diminishes v, equation

1) becomes
(1 do

at - "7 1)

The formulas (4) and (5) then become
v=—gt+4 v (CY)
8 = — 3gt* 4 vot. (5"

If a body falls from rest it is easy to express the speed as a
function of the distance traversed. In this case, vp = 0. Then
(4) and (5) become,

Y = gt (411)

2=}t (5”)
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Elimination of ¢ between these equations gives:

v = 4/2gs. (6)

Exercises

1. If a body falls from rest how far will it fall in 10 seconds?

2. If a body is thrown vertically downward with a velocity of 10 feet
per second, how far will it have moved by the end of 10 seconds?
What will its velocity be?

3. If a body is thrown vertically upward with a velocity of 64.4
feet per second, what will the velocity be at the end of 10 seconds?
What will be the position of the body? How far will it have moved?

4. Find the laws of motion if the acceleration is equal to 2¢ and if
(18 = 0and v = Owhent =0; (2°) s =3andv = —2whent = 0.

8. If the acceleration is proportional to the time and if v = v, a.nd
8 = 8o when ¢t = 0, show that

a=%+voi+so.



CHAPTER IV
DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

89. The Derivative of the Product of a Constant and a Variable.
Let

Yy = cu,

where ¢ is a constant and u and y are functions of z. Let Au and
Ay be the increments of u and y, respectively, corresponding to
the increment Az. Then

y + Ay = c(u + Au)

Ay = cAu

Ay _ Au

Az = %Az

dy du

(—i; = cd—x,

or

d(cu) _ du,

dx ~ ‘ax

The derivative of the product of a constant and a function is equal
to the constant times the derivative of the function.

Ilustrations.
d(3z?) d(z?)
1. “dz = 3 a4z = 6z.
ddz —2)1  d(z —2)*
2. az =4 Iz = 8(z — 2).
g d=3G@ -5t _ _ da -5t
: dz =-1 dz \
= _3;(,:2_5)-%9(”_(15__2)
= e L.
(@2 —5)}

56
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40. The Derivative of the Product of Two Functions. Let
Yy = uy,
where u and » are functions of z.

¥y + Ay = (u + Au)(v + Av)
¥y + Ay = uv + ulv + vAu + Aulv
Ay = uAv + vAu + AuAv
Ay
Az = Ax 2+ A:c 2+ A“
Since Au approaches zero as Az approaches zero,

dy d
iz = %a T3
or
d(uv)
dx dx L v » 69

The derivative of the product of two functions is equal to the first
times the derivative of the second plus the second times the derivative of
the first.

Tllustrations.

1. d(x+2d)z(x+3) - +2)d(x+3)+( +3)d(x+2)
=(@x+2)+(=x+3) =2z+5.
2 d(z’+3:;(x—2) (@ +3)d(:c 2) (_2)(1(3 +3z)
= (22 + 3z) + (x — 2)(2z + 3)
= 322 4+ 2z — 6.
3. If 22 4+ zy* + y = 10,
a(y®) )

2:c+z—+ a+d:v
2x+3zy’(—ig+y’+—=0
dx dz !
whence

dy _ _ 224yt
dz = 31:1/’-{-1
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-

Exercises )

Differentiate the following:

L(+1)E=-1). 9. ¥y =(z+ 1)z — 2.

2. (z* + 2z)(z — 3). 10. y = 2 — 2)V/a* — 4
8. z(z? + 2z — 6). 11, y = 2z + 3)\/4 — 7.
4. (z = 1)%z® + 1). 12. y = 2/1 — 22

6. (z?+2z — 3)(z + D2 18. 233 + 3z - Ty = 15
8. zv/z — 1. 14. z% — 3z = 10.

7. (z = )Va 16. yv/z + z/y = 3.

8. z(z — 1)}, 16. zy — z% = 0.

41, The Derivative of the Quotient of Two Functions. Let

. u
= —
y v

where u and v are functions of z. Then
yv = U..

Differentiating by the rule of §40,

dv dy du
Vzt'ar~ d

du _ dy
dy _dz " Ydz
dx v

Replacing y by its value, g;
d (u) du  dv

v/ _ zdx Yax , 1)
dx v: .

The derivative of the quotient of two functions is equal to the
denominator tvmes the derivative of the numerator minus the numera-
tor times the derivative of the denominator, all divided by the square
of the denominator. '
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Illustration.

241 d(z*+1) ( 2)
aT73] @-2TFE - @
dx - (z —2)2
_ (@ —2)22) — (22 +1)
(z —2)?
_ 41: -1
T (z—2)
Exercises.
Differentiate the following:
1 z+1 4 vz-—1 7 1 .
"z-1 " T 1+az "I— Va1
z?—3 z2—~1 z? 4 4
2.3_2' 5. \/5‘ 803_2'
z 4z z*+8
3. . . . 9, —5
1—-2z a- z)* z—-2

42. The Derivative of u”, n Negative. In Chapter III the
formula

u
e =™ &

was proved for n positive and commensurable. The formula
was assumed for negative exponents. We are now in a position
to give a proof of the formula for this case. Let

y=u—,
where s is a positive commensurable constant. Then
1
y = —)

u.
or

yur =1,
Differentiate by the formula of §40,

du d
ysus~! az + u‘d—g =0,

&= T ud T W
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This completes the proof that
dun
dx

if n is a commensurable constant.!
We see from equation (1) that

= nuo-1 g._:,

()
u? _nc du, @
dx = T untlidx
Tllustration. :
da 3 _ 6 d(:c’—l)__ 122
dz (z* — 1)z (z2 —1)3 dz - (z2 —1)3
Exercises
Differentiate the following:
2 3 6
Lo L T EET
4 _5 J—"—
2, —— 1= 5. @+ 1 (3,_,_1)}
2 3 1
8. — 6. . 9. ———
\/; ‘\/x -1 (1 —:|:’)i

43. Maximum and Minimum Values of a Function. In Chap-
ter I it was shown that the derivative of a function with respect to
its argument is equal to the slope of the tangent drawn to the
curve representing the function. The derivative is positive where
the function is increasing and negative where the function is
decreasing These facts enable us to determine the maximum
and minimum values of a function.

Additional exercises in ﬁndmg maximum and minimum values
of a function will be given in this section.

Illustration. Let

y = 2z° + 32* — 12z — 10.
? 62? + 6z — 12 = 6(z + 2) (z — 1).

1 It can be shown that the formula also holds for i able exp
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If z is less than —2, both factors of the derivative are negative.
Then for all values of z less than —2, the derivative is positive
and the function is increasing. If z is greater than —2 and less
than 1, the first factor of the derivative is positive and the second
negative. Hence, if —2 < z < 1, the derivative is negative and
the function is decreasing. If z is greater than 1 the derivative is
positive and the function is again increasing.

The function changes from an increasing to a decreasing func-
tion when x passes through the value —2, and changes from a

Y

X ' X
-4 -3f —2 -1\ 1 3 4
10

’

Y
F1a. 28.

decreasing to an increasing function when z passes through the
value 1. Hence the function has a maximum value when z equals
—~2, and & minimum value when z equals 1. These values, 10 and
—17, respectively, are obtained by substituting — 2 and 1 for
z in the function. (See Fig. 28.) The more important results
of the above discussion are put in tabular form below.

z z+2 | z-~1 3—3 Function
z < -2 - - + | Increasing.
-2<z<1 + - — | Decreasing.
1<z + + + | Increasing.
T = —2 0 - 0 | Max. value = 10.
z =1 + 0 0 | Min. value = —17.
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It is to be observed that —2 and +1 are the only values of z
at which the derivative can change sign and that these are the
values that need to be examined in finding the maximum and
minimum values of the function.

Exercises

Find where each of the following functions is increasing; decreas-
ing. Find the maximum and minimum values if there are any.
Sketch the curve representing each function.

1. y =2 6. y = (z + 2)(z — 3).

2y =2z - T.y=2z—92* + 12z — 10
8.y = —2z4 8.y=22-3z+17.

4.y =2 +3z — 2. Q. y=x*+z*—-z—1.

B. y = 325 — 221 — 6. 10.y=xl’~

11. A sheet of tin 24 inches square has equal squares cut from
each corner. The rectangular projections are then turned up to form
a tray with square base and rectangular vertical sides. Find the side
of the square that must be cut out from each corner in order that the
tray may have the greatest possible volume.

HinT. Show that the function representing the volume of this tray
is 4z(12 — z)?, where z is the side of the square cut out.

12. In a triangle whose sides are 10, 6, and 8 feet is inscribed a rec-
tangle the base of which lies in the longest side of the triangle. Ex-
press the area of the rectangle as a function of its altitude. Find
the dimensions of the rectangle of maximum area.

18. A ship A is 50 miles directly north of another ship B at a
certain instant. Ship B sails due east at the rate of 5 miles per hour,
and ship A sails due south at the rate of 10 miles per hour. Show
that the distance between the ships is expressed by the functipn
V125t —1000¢ + 2500, where ¢ denotes the number of hours since the
ships were in the position stated in the first sentence. At what
time are the ships nearest together? At what rate are they sepa-
- rating or approaching when ¢ = 3? When ¢ = 5?7 Whent = 6?

14. The stiffness of a rectangular beam varies as its breadth and as
the cube of its depth. Find the dimensions of the stiffest beam which
can be cut from a circular log 12 inches in diameter.
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Miscellaneous Exercises

Differentiate the following twenty-five functions with respect to z:

1. } 9. B — z)% 18. z2(1 — z).
"1 10. (2 — z2)s. 19. z(1 — z?)°.
2'. P 11. (3 — 792 20. 1 — l:c')’(:c —2)3,
- 2)—3 z—-1,
3. zl' 12, (2'— z2)—3, .
. . 18. (z + 1)(z — 2). 1—12
b e -t u. vz Biye
8. (z —2)% 16. z1. 23. (z — 1},
8. (z2 — 1)1 .
(@ = 1) 16. L. 24, — 2 .
1. (23 — 222 4+ — 6)2. \Vz Var = z?
8. (z —2)3 17, z(z — 1) 26. zv/1 — z
Integrate the following twenty expressions:
dy dy _3
26. iz = 3. 317. iz =zt
dy dy 2
M.d—z=z‘+z’. 38.3;-—-——(1_1:),-
dy dy z
28.d—$=z’+:c’+x+l. 39.'&;=ii_—zz)—2
dy 3 dy 1-=z
29, 3z =% 40. dz = @z — 297
dy 1 dy 1
30, o= = —- 41, 5= = .
RV &~ ail
L a_ _ 1
81.dz=z + z2, “’dz_ =
dy 3 dy _ _ 1
8. =@ -1t 43.“_\/1_:;
as.% = z(1 — 291, “. % =%
. ‘f—‘Z = z3(z? — 2)1, 45. % =z-1
d 1 ., dy, :
”.a%='(l—_?);- 46. Fmda%lf:c’—y’=a’.
dy 1 ind Wi 2LV
86’3—:07':3’. 47, Flndalf16+9 =1,

48. A ladder 20 feet long leans against the vertical wall of a
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building. If the lower end of the ladder is drawn out along the
horizontal ground at the rate of 2 feet per second, at what rate is
its upper end moving down when the lower end is 10 feet from
the wall?

Hint. Let AC, Fig. 29, be the wall and let CB be the ladder.
Iet AB =2z and AC =y. Then

v = Va0 = 2 e
and
dy -z =
dt T /300 —z* &t %,
. dr v | 3
But, since x = 2, 3 >
. B
dy , __—2
dt V400 — z? A B Ground
. The negative sign of the deriva- ‘<—‘—>§
tive indicates that the upper end Fig. 29.

of the ladder is moving down.

49. Answer the question of Exercise 48, if z = 0; z = 2; z = 15;
z = 20.

60. With the statement of Exercise 48, find the rate at which the
area of the triangle A BC, Fig. 29, is increasing when the lower end
of the ladder is 5 feet from the wall. '

61. With the statement of Exercise 48, find the position of the ladder
when the area of the triangle ABC, Fig. 29, is a maximum.

| shadow
-
8

Fr1a. 30.

62. A ball is dropped from a balloon at a height of 1000 feet. Ex-
press the velocity of its shadow along the horizontal ground as a
function of the time, if the altitude of the sun is 20°.

Hint. Let z, Fig. 30, be the distance of the falling body above
the earth. Let y be the distance of the shadow from a point on the
earth directly under the falling body.
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568, With the statement of Exercise 52, find the velocity of the
shadow when the ball leaves the balloon; when it is half ws.y to the
earth; when it reaches the earth.

64. A man standing on a dock isdrawing in a rope attached to a boat
at the rate of 12 feet per minute. If the point of attachment of the
rope is 15 feet below the man’s hands, how fast is the boat moving -
when 13 feet from the dock?

86. The paths of two ships A and B, sailing due north and east,
regpectively, cross at the point C. A is sailing at the rate of 8 miles
per hour, and B at the rate of 12 miles per hour. If A passed through
C 2 hours before B, at what rate are the two ships approaching or
separating 1 hour after B passed through C? 3 hours after B passed
through C? When are the two ships nearest together?

66. Two bodies are moving, one on the axis of z, the other on the
axis of y, and their distances from the origin are given by

z =802 —-3+1,
y =6t — 12,

the units of distance and time being feet and minutes, respectively.
At what rate are the bodies approaching or separating when ¢ = 2?
When ¢ = 5? When are they nearest together?

87. A ship is anchored in 35 feet of water and the anchor cable
passes over a sheave in the bow 15 feet above the water. The cable
is hauled in at the rate of 30 feet a minute. How fast is the ship
moving when there are 80 feet of cable out?

88. A gas in a cylindrical vessel is being compressed by means of a
piston in accordance with Boyle’s law, pv = C. If the piston is
moving at a certain instant so that the volume is decreasing at the
rate of 1 cubic foot per second, at what rate is the pressure changing if
at this instant the pressure is 5000 pounds per square foot and the
volume is 10 cubic feet?

89. Water is flowing from an orifice in the side of a cylindrical tank
whose cross section is 100 square feet. The velocity of the water in
the jet is equal to +/2gh, where % is the height of the surface of the
water above the orifice. If the cross section of the jet is 0.01 square
foot, how long will it take for the water to fall from a height of 100
feet to a height of 81 feet above the orifice?

60. At a certain instant the pressure in a vessel containing air is
3000 pounds per square foot; the volume is 10 cubic feet, and it is
increasing in accordance with the adiabatic law, pv'4 = ¢, at the rate
of 2 cubic feet per second. At what rate is the pressure changing?

. B
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61. Water flows from a circular cylindrieal vessel whosa radius is
2 feet into one in the shape of an inverted circular cone whose vertical
angle is 60°. (a) If the level of the water in the cylinder is falling
uniformly at the rate of 0.5 foot a minute, at what rate is the water
flowing? (b) At this rate of flow, at what rate will the level of the
water in the cone be rising when the depth is 4 inches? When it is
20 inches?

62. A toboggan slide on a hillside has a uniform inclination to the
horizon of 30°. A man is standing 300 feet from the top of the slide
on a line at right angles to the slide. How fast is the toboggan moving
away from the man 3 seconds after leaving the top? 10 seconds after
leaving the top? (Use formula for speed of & body sliding down an
inclined plane. Neglect friction.) '

If the man is approaching the top of the slide at the rate of 10 feet
a second, answer the same questions, it being supposed that the man is
300 feet away from the top of the slide when the toboggan starts.

44, Derivative of a Function of a Function. If y = ¢(u)and
w = f(z), y is a function of z. The derivative of y with respect
to z can be found without eliminating 4. For any set of corre-
sponding increments, Az, Ay, and Au,

Hence
lim 4y _ lim Ay lim Au
Az20 Ay — Az20 Ay Az%0 Ag

Since Au approaches zero as Az approaches zero,
dy _dy du
dx  du dx &
This is the formula for the derivative of a function of a function.
Illustration. Let

y=u*+5
and
u = 322+ 7z + 10.
dy _
@—3‘“’
and
du
(i—x‘=6x+7.
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Then
d
d_?:: = 3u*(6z + 7)

= 3(3z% + 7z + 10)* (6z + 7).

46. Inverse Functions. Ifz = ¢(y), gz canbe found by therule

dy _ 1
d:c—d_z
dy .

which is easily proved.
dy _ lim Ay lim 1 1

dzr = Az20 Ap T Az=0Agz d::c
' Ay dy
Illustration. If z = 5y% + Ty + 3,
o = 307 + 14y,
and
ay _ 1 |
dz =~ 2y(15y* +7)

Exercises
1. Find% in terms of zif :

(@) ¥y = Vut+ 7 and v = 3z + 10.
®) y = 2ud 4+ 5u and u = z* — 2z,

' 1
(0)y=\/u2__5&ndu=z’—2.
2. Findgyif:
* 1
(a) x=\/y;+7. (c) z=ﬁ'
®) = = agoyp” @z =y
3. Find:—yi.f:
z

(@) ¥* + 2t —Tzy = 15. (b)) 3zy® + 6z%y + 42 = 15.

46. Parametric Equations. If the equation of a curve is given
in parametric form, z = f(f), ¥ = ¢({), it is important to be able
to find the derivative of ¥ with respect to x without eliminating ¢
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between the given equations. A rule for doing this can be derived
by the method used in §§18 and 17.

If ¢ is given an increment A¢, z and y take on the increments
Az and Ay, respectively. Then

Ay
Ay At
Az = Az
At
and
lim Ay
lim Ay _ A0 At
At=0 Ag lim é}:’ .
at=0 At
or
dy
dy dt
=" &
' at
Exercises -

1. Find the slope at (6,1) of the curve whose parametric equations
are

T =141
y=t—1.
., dy .
Find s for each of the following:
2.z =1,
- x y=1t+4+1.
oIT . D N . 3. z=u+3,
Fia. 31. y = \%_
u

47. Lengths of Tangent, Normal, Subtangent, and Subnormal.
In Fig. 31, PT is the tangent and PN is the normal at P. The
lengths of the lines PT, PN, TD, and DN are called the tangent,
the normal, the subtangent, and the subnormal, respectively, for
the point P. Show that the lengths of these lines are:

D = dy (1)
dz
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P |
DN = yag: (@)

2T =g+ (3)" ®)
dz

@

Exercises .

1. Obtain the length of the tangent, normal, subtangent, and sub-
normal for the point (1, 2) on the curve y* = 4z. Show that for points
on this curve the subnormal is of constant length.

2. Write the equation of the tangent to y* = 4z at the point (1, 2).
Write the equation of the normal at the same point. It is to be noted
that in this exercise the equations of the tangent and normal lines
are to be found, and not the lengths of the tangent and normal as
in the preceding exercise.

8. Write the equation of the tangent to

z?  y?
25 tg =1
at the point (3, 2.4). Use implicit differentiation.

4. Find the equation of the curve whose subnormal is of constant

. length 4 and which passes through the point (1, 3).

2]
~ &. Find the length of the tangent to y = g at the point where
y=1
8. Find the length of the normal to the curve y =

point where z = 3.

7. Find the equation of the curve passing through the point (1, 3)
and having a subtangent equal to the square of the ordinate.

1
7-1 at the



CHAPTER V

SECOND DERIVATIVE. POINT OF INFLECTION

48. Second Derivative, Concavity. Since the first derivative
of a fundtion of z is itself a function of z, we can take the deriva-
tive of the @,derivative The derivative of the first derivative
18 called the seamd derivative. In the case of a function y of z, it

d(dy) d (dy
is deno;ed by the symbol —— iz T dz (d_z) , or more commonly by
&y &y
pry is read

must here again be remembered that %:% is not a fraction with a

“the 8ecomi dertvative of y with respect toz.” It

numerator and a denominator, but is only a symbol representing
the derivative of the first derivative.

If y = f(z), the first derivative of ¥ with respect to z is some-
times written 3’ and very commonly f’(z). Similarly the second
derivative is indicated by f"'(z).

The derivative of the second derivative is called the third deriva-

tive. It is designated by : or if y = f(z), by f”(z). Thenth

derivative is designated by E; or by f™ ().

Between the points A and C, Fig. 16, where the curve is con-
cave downward, the slope of the tangent decreases from large
positive values near A to negative values near C. This means
that the tangent revolves in a clockwise direction as the point of
tangency moves along the curve from A toward C. Clearly this
will always happen for any portion of a curve that is concave
downward. (See Fig. 32, a,b,and ¢.) The slope decreases as the
point of tangency moves to the right.

On the other hand, if a portion of a curve is concave upward,
the slope of the tangent increases as the point of tangency moves
to the right. Thus in Fig. 16 the slope of the tangent is negative
at C and increases steadily to positive values at E. The same

70
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thing is evidently true for any portion of a curve that isconcave
upward. In this case the tangent line revolves in a counter-
clockwise direction.

Since the first derivative of a function is equal to the slope of
the tangent to the curve representing the function, what hasjust
been said can be stated concisely as follows:

If an arc of curve is concave upward the first derivative is an
increasing function, while if the curve is concave downward, the
first derivative is a decreasing function.

If the second derivative of a function is positive between cer-
tain values of the independent variable z, the first derivative is an
increasing function, the tangent line revolves in a counter-clock-

2

wise direction, and consequently the curve representing the
function, is concave upward between the values of z in question.
If the second derivative is negative, the first derivative is a de-
creasing function and the curve is concave downward. Thus in
Fig. 16 the second derivative is negative between A and C, and
between E and G. It is positive between C and E, and between
Gand I.

49. Points of Inflection. Points at which a turve ceases to be
concave downward and becomes concave upward, or vice versa,
are called points of tnflection.

At such points the second derivative changes sign. C, E, and
@, Fig. 16, are points of inflection. At C, for instance, the second
derivative changes from negative values to positive values.

Tlustration 1. Study the curve y = 32® by means of its
derivatives.

Differentiating,
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When z < 0, d’z <0 d:c = 422 is a decreasing function, and

the curve y =3z is concave downward. When z > 0,
d%

az? > 0, d:c is an increasing function, and the curve y = $z% is

concave upward.
Y

Fi1a. 33.

At the point where z = 0, j—;—y, changes sign from negative to

positive, and the curve changes from being concave downward to
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being concave upward. Hence the point (0, 0) is a point of
inflection.

Since g% is positive except when z =0, y = }2® is an in-

creasing function excepting when £ = 0. When z = 0 the curve
has a horizontal tangent.

/.

F1a. 34.

In Fig. 33 the graphs of the functions y= }z3% and of its first
and second derivatives are drawn on the same axes. Trace out
in this figure all the properties mentioned in the discussion.

Illustration 2. Let

y=1%2*—a*+ §z + 2.
Differentiating,

Z—Z=&z’-—2x+%

=4(x — 1)(z — 3).
E,=x-2.
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At z = 2, % changes sign from minus to plus. Hence the curve

is concave downward to the left, and concave upward to the right
of the line z = 2. The point on the curve whose abscissa is 2 is
then a point of inflection. The value of the function corresponding
to z = 1 is a maximum value, and the value of the function
corresponding to £ = 3 is a minimum value. See Fig. 34 for a
sketch of the function and its first and second derivatives. Trace
out in the figure what has been given in the discussion.

The more important properties of the function are put in tabular
form below. :

2, .
T g?g % Curve

z <2 — | Decreasing | Concave downward.
z>2 + | Increasing | Concave upward.
T = 0 Point of inflection (y = 23).
z<1 + Increasing.
1<z<3 - Decreasing.
>3 + Increasing.
z=1 0 Maximum point (y = 2%).
T = 0 Minimum point (y = 2).

Exercises

Find the maximum and minimum points and points of inflection of
the following curves. Sketch the curves.
1. y = 2% — 322
2. y = 2% + 322
8.y =228 4+ 322 + 6z + 1.
4, y =3z — 422 — 1.
6.y =z
6. y = 2z% — 42% — 922 + 27z + 2.
7.y =624 — 423 + 1. °



CHAPTER VI _
APPLICATIONS

50. Area under a Curve: Rectangular Codrdinates. An im-

portant application of the anti-derivative is that of finding the
area under a plane curve.
' Let APQB, Fig. 35, be a continuous curve between the ordinates
z=a and z = b. Further, between these limits, let the curve
lie entirely above the X-axis. Qur problem is to find the area,
4, bounded by the curve, the X-axis, and the ordinates z = a
and z = b.

The area can be thought of as generated by a moving ordinate
starting from z = aand moving to theright to a position DP where
the abscissa is z. This ordinate sweeps out the variable area u,
which becomes the desired area A when z = b. On moving from
the position DP to the position EQ where the abscissa is z 4 Az,
the ordinate to the curve takes on an increment Ay and the area u
an increment Au. By taking Az small enough the curve is either
ascending or descending at all points between P and Q. It
follows at once from the figure that

YAz < Au < (y +4y)Az, 1)
or

Au
y<z;.<y+AII-
75
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(If the curve descends between P and Q the signs of inequality in
(1) arereversed. The argument which follows will not be affected.)
As Az approaches zero, Ay approaches zero and y + Ay

approaches y. Hence ﬁ-—:’ which lies between y and y + Ay,

approaches y. Thus
lim Au
Az&0 A—:c =1
or
du
==V @
If the equation of the curve is y = f(z),
. du

2 - 1), | @)

Let F(z) be a function whose derivative is f(z). Then
u=F(z) + C.
C is determined by the condition that v = 0 when £ = a. Then
C = —F(a)

and
u = F(z) — F(a), (C)]

an expression for the variable area measured from the ordinate
z = a to the variable ordinate whose abscissa is z. A, the area
sought, is obtained by putting z = b in equation (4).

A =F(b) — F(a) ®)

Illustration. Find the area A bounded by y = 2?, the X-axis,
and the ordinates z = 2 and z = 4.

Z—:=xz.
u=14%z3+C.
Whenz =2, u =0,and C = — §. Then
‘ w=1st -4,

and

A=st—g=ip
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Exercises

1. Find the area bounded by the X-axis, thelinesz = l1and z = 2,
and

(@) y = ma.
® y==2
(c) y=222+3z + 1.

2. Find the area between the curves y = z* and z = y*;
y*=a(@a —z)andy =a—z; y? =4zandy =2z; y* =z'and y = z.

8. Find the area bounded by y = 4/z + 1, the X-axis, and the
ordinates z = Oand z = 2.

61. Work Done by a Variable Force. In this section there is
given a method of finding the work done by a variable force
whose line of action remains unchanged.

Tlustrations of such variable forces are:

1. The force of attraction between two masses, m and M, is
given by the Newtonian law

f(s) =

where s is the distance between the masses and k is a factor of
proportionality. Note that the equation is of the form

f(8) =3

2. The force exerted by the enclosed steam on the piston of a
steam engine is, after cut-off, a function of the dxstance of the
piston from one end of the cylinder.

3. The force necessary to stretch a bar is a function of the
elongation of the bar.

Let AB, Fig. 36, represent a bar of length I, held fast at the
left end, A. A force f is applied at its right end and the bar
is stretched. Tt is shown experimentally that up to a certain limit
the elongation, s, is proportlonal to the £orce applied (Hooke’s
Law), i.e.,

ka,

J = ks,

where k is a constant dei)ending upon the length of the bar,
its cross section, and the material of the bar.
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The work done by a constant force in producing a certain
displacement of its point of application in its line of action is
. defined as the product of the force by the displacement. In
the problem which we are considering the force varies with the
displacement. The work cannot be found by multiplying the
displacement by the force. Instead it will be found by integrat-
ing an expression for the derivative of the work with respect
to the displacement.
Let w denote the work done in producing the displacement from
s = a to a variable position s = 8. Let Aw denote the work
done in producing the additional displacement As. Let f denote
the force acting at 8, and f 4 Af the force acting at s + As. Af

S+A £, wiAw

FY
L]
S, w

®
4
14
t

Fia. 36.

may be positive or negative according as the force increases or
decreases with distance. For definiteness suppose Af positive.
In producing the displacement As the force varies from f to
f + Af, and hence the work Aw lies between fAs and (f 4+ Af)As,
which represent the work which would have been done had the
forces f and f + Af, respectively, acted through the distance As.
Hence
fAs < Aw < (f + Af)As,
or

Aw
< E<f+Af.

As As approaches zero, Af approaches zero, and we obtain,
dw :
is = f. 1)
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Integration gives
w=F(s) + C, )

where F(s) is a function whose derivative is f.
When s = a, w =0. (2) gives C = — F(a) and,
w = F(s) — F(a). 3)

This represents the work done in the displacement from s = a
to s = 8. The work, W, done in the displacement from s = a
to s = b is obtained by substituting b for s in (3).

W = F(b) — F(a). 4

Illustration 1. Find the work done in stretching a spring from a
length of 20 inches to a length of 22 inches, if the length of the
spring is 18 inches when no force is applied and if a force of 30
pounds is necessary to stretch it from a length of 18 inches to a
length of 19 inches. ’

Denote the elongation of the spring by 8. In accordance with
Hooke’s Law,

f =ks.
Since s = 1 when f = 30, k = 30 and f = 30s
Substituting in equation (1),

dw
Eg = 30s.

w = 1582 4 C.

The problem is to find the work done in changing the elonga-
tionfroms =2tos =4. Whens =2,w = 0. HenceC = — 60,
and

w = 1552 — 60.

The required work, W, is found by giving to s the value 4.
W = 240 — 60 = 180.

Thus the work done is 180 inch-pounds, or 15 foot-pounds.
Illustration 2. Two masses M and m are supposed concen-
trated at the points A and B, respectively. Find the work done
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against the force of attraction in moving the mass m along the line
AB from a distance a to a distance b from the mass M, the latter
mass being fixed.

If f is the force of attraction between the two masses,

kmM
Then
dw _ kmM
ds ~ st
From which
I
3
«——8 +n 8
Fia. 37.
When 8 = a, w = 0. Hence
C = kmM
==
and

w = kmM [}1 - %]
To find the required work, W, let s = b.
W = bm [ — %]

Illustration 3. Gas is enclosed in a cylinder, one end of which is
closed by a movable piston. Find the work done by the gas in
expanding in accordance with the law pv!-4 = K, from a volume
of 3 cubic feet at a pressure of 15,000 pounds per square foot to
a volume of 4 cubic feet.

Let A be the area of the cross section of the cylinder. Then
pA is the pressure on the piston, Fig. 37, and

dw
ds = pA,
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or

—_— . = — = .,

1 K 1
. W= —pagoigatC
1 K
= ~pawitC
Whenv = 3, w = 0. Hence
co LK
0.4 304

and

[y
(S

K
W =54 53~ o]
When v = 3, p = 15,000. Hence K = (15,000)(3-4), and

W = 150,000[0.75 — (0.75)!-4}
= 12,230.

Exercises

1. A spring is 12 inches long and a force of 120 pounds is necessary
to stretch it from its original length, 12 inches, to a length of 14 inches.
Find the work done in stretching the spring from a length of 13 inches
to a length of 15 inches.

2. In the case of a bar under tension, Fig. 36, the relation between
the stretching force, f, the original length of the bar, I, and the elonga-
tion of the bar, s, is given by

f==

where E is the modulus of elasticity of the material of the bar and

4 is the area of the cross section of the bar. Find the work done in

stretching & round iron rod 3 inch in diameter and 434 feet long to a

length of 54.5 inches, given that E = 3-107 pounds per square inch.
8. A spherical conductor, A, is charged with positive electricity and

a second spherical conductor, B, with negative electricity. The force

of attraction between them varies inversely as the square of the

6
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distance between their centers. If the force is 10 dynes when the
centers are 100 centimeters apart, find the work done by the force of
attraction in changing the distance between the centers from 140
centimeters to 120 centimeters.

4. Find the work done by a gas in expanding in accordance with
the law pv! = C from a volume of 5 cubic feet to one of 6 cubic
feet, if p = 70 pounds per square inch when » = 5 cubic feet.

5. Find the work done in compressing a spring 6 inches long to a
length of 5% inches if a force of 2000 pounds is necessary to compress
it to a length of 5 inches.

6. The work done by a variable force can be represented graphically
a8 the area under a curve whose ordinates represent the force. Con-
struct the figures and prove this fact for Illustrations 1, 2, and 3.

62. Parabolic Cable. Suppose a cable, AOB, Fig. 38, a, is
loaded uniformly and continuously along the horizontal, i.e., so
that any segment of the cable sustains a weight proportional to

the projection of the segment upon a horizontal line. Let k be the
weight carried by a portion of the cable whose horizontal pro-
jection is one unit of length.

Choose O, the lowest point of the cable, as origin and a hori-
zontal line through O as axis of z. Let P be any point on the cable.
Suppose the portion OP of the cable cut free, Fig. 38, b. To keep
this portion in equilibrium a horizontal force H and an inclined
force T must be introduced at the points O and P, respectively.
The force H must be equal in magnitude to the tension in the cable
at 0, and it must act in the direction of the tangent line at that
point. Similarly, the force 7 must be equal to the tension in
the_cable at the point P and act in the direction of the tangent
line. The force T can be resolved into its vertical and harizontal



§53] APPLICATIONS 83

components V and H’, respectively. Now H and H’ are the only
horizontal components of the forces acting on OP and, since OP is
in equilibrium, they must balance each other. Therefore,

H=H. O

Hence the horizontal component of the tension in the cable is
independent of the point P, .., it is a constant.

In like manner the only vertical components of the forces
acting on OP are the weight kz supported by OP, acting downward,
and V, the vertical component of T. They must balance one
another. Hence

V = kz. 2)

The slope of the tangent line to the curve at the point P is }—z,
Then

B H @
This is the slope of the curve at any point. On integrating

we obtain the equation of the curve apart from the arbitrary
constant C.

kx?
V=357 +C. 4)
C is determined by the condition that ¥y = 0 when z = 0. Then
C = 0, and (4) becomes
v=sg (8)
This is the equation of a parabola with its vertex at the origin.

63. Acceleration.! In §38 acceleration was defined as the time
rate of change of velocity, i.e., as the derivative of the velocity
with respect to the time. But velocity is the derivative of dis-
tance with respect to time. Hence the acceleration is the second
derivative of the distance with respect to the time. If s denotes

2,
the distance and ¢ the time, the acceleration is expressed by %‘;.

In the case of a freely falling body

d?s
=9 @

1 The statements in this section refer to motion in a straight line.
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The relation between s and ¢ can be found from this differential
equation by integrating twice, as follows:
The first integration gives

*—wte, @

and the second
8 = 3gt? + Cit + C.. 3)

Two arbitrary constants of integration are introduced. They
can be determined by two conditions. If

8 = 8 (4)
and .
v = fil—': = v (5)
when ¢ = 0, (2) gives C, = v, and (3) gives C2 = s Then
s = 3gt + vot + 0. 6)
This result was found in §38 by essentially the same method, where

2,
the symbol Z—: was used instead of %,E-

Exercises

1. Solve Exercise 5, §38, by the method used above.

2. Obtain the relation » = 4/2gs (see §88) directly from the
equation
d?s
ar = ¢
. ds.
HinT. Multiply by 2 a’
ds ds ds
war =Wy
The first member is the derivative of (Z_f) ! with respect to ¢ and the
second that of 2gs. We then have

(3—:—)’=2gs+0.

Determine C by the condition that v = 0 when 8 = 0.
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54. The Path of a Projectile. An interesting application of
integration is to find the equation of the path of a projectile, a
baseball for instance, thrown with a given velocity at a given
inclination to the horizontal.

Let O, Fig. 39, be the point from which the ball is thrown.
Take this point as the origin of a system of rectangular coérdi-
nates. Let the ball be thrown so that its direction at the instant
of leaving the hand makes an angle a with the horizontal, and let
the initial velocity of the ball be vo. Then the horizontal com-
ponent of the initial velocity is v cos «, while its vertical
component is vo 8in . That is, at the instant the ball is thrown
its z-codrdinate is increasing at the rate of v, cos a feet per second.
Similarly the initial rate of change of the y-codrdinate is vo 8in «.

OI A
Fia. 39.
At the end of ¢ seconds after the ball was thrown it is at the point
P whose codrdinates are z and y. If the resistance of the air s
neglected there is no force acting on the ball tending to change the
component of its velocity parallel to the X-axis. Hence the

z-component of the velocity is at all times the same as at the
beginning, viz., vo cos a. The z-component of the velocity is also

a viz., the time rate of change of the abscissa of the ball. There-
fore we can write

Z—f = 9y CO8 a. (1)

From which on integration

z = (vocos a)t + C. 2)
Time is counted from the instant the ball was thrown. The
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condition for determining C is then that + = 0 when ¢t = 0. It
follows that C = 0, and (2) becomes

z = (vo cos a)t. 3)

This equation gives the z-coordinate of the ball at any time ¢.
In the vertical direction, the force of gravity acts to change the
y-component of the velocity.

Then
d
%’ = -9 (4)

The negative sign is used since the force of gravity causes the
velocity in the direction of the positive Y-axis to decrease. In-

tegration gives
dy _
at

C, is determined by the condition that d_i! = vp8in a when ¢ = 0.

Then C; = vosin a and (5) becomes

— gt + Ca. (8

g%/ = — gt + v,s8in a. (6)
Integrating again,
. y = — 3gt* + (vo8in a)t + C,. )
Since y = 0 when ¢ = 0, C; = 0, and (7) becomes
= — igt? + (vosin a)t. (8)

This is the y-coérdinate of the ball at any time {. Equations (3)
and (8) are the parametric equations of the path of the ball.
The elimination of ¢ between these equations gives the rectangular
equation of the path,

- -1 2
Y= " Spicosia® + z tan a. 9

This is the equation of a parabola with its vertex at the point,

o2 sin 2a vo?sin? .
[ 29 29 ]
It is to be remembered that in the solution of this problem the
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resistance of the air was neglected. Consequently the results
obtained can be regarded only as approximations. Experimentally
it has been shown that the resistance of the air increases with the
velocity of the moving body. For low velocities the resistance is
assumed to vary as the first power of the velocity, but for higher
velocities, such as are attained by rifle balls, the resistance is as-
sumed to vary with the second power, and the results obtained
above cannot be considered to be even approximations.

Exercise

1. Find the angle of elevation, a, at which the ball must be thrown
to make the range, OA, Fig. 39, a maximum.



CHAPTER VII
INFINITESIMALS, DIFFERENTIALS, DEFINITE INTEGRALS

55. Infinitesimals. In §23 an infinitesimal was defined as a
variable which approaches the limit zero. Thus, 22 — 1, as z
approaches 1, is an infinitesimal.

It is to be noted that a variable is thought of as an mﬁmtesmal
only when it is in the state of approaching zero. Thus 22 — 1 is
an infinitesimal only when z approaches 41 or —1. An in-
finitesimal has two characteristic properties: (1) It is a variable.
(2) It approaches the limit zero; i.e., the conditions of the problem
are such that the numerical value of the variable can be made less
than any preassigned positive number, however small.

This meaning of the word infinitesimal in mathematics is entirely
different from its meaning in everyday speech. When we say
in ordinary language that a quantity is infinitesimal, we mean
that it is very small. But it is a constant magnitude and not one
whose numerical measure can be made less than any preassigned
positive number, however small. Thus, 0.000001 of a milligram
of salt might be spoken of as an infinitesimal quantity of salt, but
the number 0.000001 is clearly not an infinitesimal in the sense
of the mathematical definition. On the other hand, if we have a
solution containing a certain amount of salt per cubic centimeter
and allow pure water to flow into the vessel containing the solu-
tion while the solution flows off through an overflow pipe, the
quantity of salt per cubic centimeter constantly diminishes. The
amount of salt left insolution after a time ¢ is then an infinitesimal,
as ¢t becomes infinite.

Infinitesimals are of fundamental importance in the Calculus.
The derivative, which we have already used in studying functions,
is the limit of the ratio of two infinitesimals, Ay and Az.

66. Eﬂ s%_a. Let the arc AB, Fig. 40, subtend an angle «
88
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at the center, O, of a circle of radius r. The angle « is measured
in radians. Let AT be tangent to the circle at A, and let BC be
perpendicular to OA. The area of the triangle OCB is less than
the area of the circular sector OAB, and this in turn is less than
the area of the triangle OAT.

$(BC)(0C) < ar* < H(ATD)r

BC OC AT
- 7 <a< -
(—Z,gsina<a<tana - (1)
oc 1 '
—<sma<cosa' 2
As the angle a approaches zero, B T
0C approachesr and _O_rC_' approaches
1, and further, cos « approaches 1.
Hence the first and last members
of the inequalities (2) approach the o @
same limit, 1. Then the second ! c 4
member, .a pos which lies between Fro. 40.
them, must approach the same limit, 1. Therefore
lim sinae lim 1
aE:) a a0 g = 1. 3)
sina
lim tana fim tana
b7. ak( - a a=0 sm a
lim tana _ lim (Bi_nt_l _1_)
a%0 g T a0 a cosa
lim sin a) (hm 1
= \aw0 "/ \a*0 ¢os
=1 (1)
lim tana _ lim _1 _ @
. a*0 ginag %0 cosa '
im 1—cosa
88. fuo ————

[+
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Since
. . a
l—cosq 28in'y sing
= sin
a a a 2
2
i &
lim 1 —cosa lim s1112 im . «
ad0 ~ g~ |a%0 T4 J{a=o SR 3 |
2
Hence
lim 1 —cosa
ato —p — =0. (1)

In Fig. 40, AB, AC, AT, BT, and BC are infinitesimals as «
approaches zero. Then,

m BC

from (3), 558, a,.,o 4B = =1,

from (1), §67, L‘,‘f:, -,

from (2), §67, & i m Al -1,
m AC

from (1), §58, as0 a8 =0

69. Order of Infinitesimals. Consider the infinitesimals z?
and z as = approaches zero. The ratio of 22 to z is z, which is
itself an infinitesimal. The infinitesimals 22 and z are repre-
sented, Fig. 41, by the ordinates MP and MN, to the curves
y = z?and y = z. The quotient

z* _ MP
z MN

\
\

is a measure of the relative magnitude of these infinitesimals as

they approach zero. It shows that MP becomes small so much

more rapidly than M N that the limit of their quotient is zero.
On the other hand, the infinitesimals 2z and z behave very

differently. Their quotient is 2{ = 2, and the limit of this
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quotient is 2. In this case the limit of the ratio of the infini-
tesimals is not zero. ' (See Fig. 42.)

Again,

lim 1 —cosa
. a=0 a = 0’

while

lim sina _ ¢

-t o =1

These illustrations of the comparison of two infinitesimals lead
to the following definitions of the order of one infinitesimal with
respect to another.

Two infinitestmals, o and B, are said to be of the same order if the

bimit of Lisa finite number not zero.
B

Y o«
v
Y
£y
L) &
7 &
L) J
//4'
3,
N
N,
P
P
- ¥ X "o m x
Fre. 41. Fi1a. 42.

If the limit of < is zero, cuis said to be of higher order than p.
B

Thus, 22 and z are of the same order; z2 is an infinitesimal of
higher order than z; sin a and «, or CB and AB, Fig. 40,
are of the same order; tan « and «, or AT and A B, Fig. 40, are of
the same order; tan « and sin «, or CB and AT, Fig. 40, are of the
same order; 1 — cos a is of higher order than «, or CA, Fig. 40,
i8 of higher order than AB. - .

Let ACB, Fig. 43, be a right angle inscribed in a semicircle.
Let BD be a tangent line, and let CE be perpendicular to BD. If
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the angle CAB approaches zero, BC, CD, BE, ED, CE, and arc
BC are infinitesimals. From similar triangles

Since lim %g =1,it follows that
. BC . BD
lim 7 = lim g =

Hence BC and BE, and BD and BC are infinitesimals of the same
order.

=1.

Again,
BC _CE _CD
Fia. 43.
Since lim gg =0,
. CE CD
lim — BC= lim o BD = 0.

Hence CE is an infinitesimal of higher order than BC, and CD
is an infinitesimal of higher order than BD.

Again,
CB_CE _CD
AC ~ BE ~ CFB
. . CB
Since lim ic= 0,
CE C'D

Hence CE is an infinitesimal of higher order than BE, and CD is
an infinitesimal of higher order than CB.
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Exercises

1. Show that z — 2z? and 3z + z* are infinitesimals of the same
order as z approaches zero.

2. Show that 1 — sin 6 and cos? 6 are infinitesimals of the same
order as 9 approaches %

8. Show that 1 — sin  is an infinitesimal of higher order than
cos 9 a8 @ approaches %
4. Show that sec @ — tan a is an infinitesimal ag a approaches %
6. Show that 1 — sin « is an infinitesimal of higher order than
k3

sec @ — tan « 88 a approaches 3

6. Show that 1 — cos 0 is an infinitesimal of the same order as 6
as 6 approaches zero.

7. Show that IRR0=0 _ ¢
Imsing —@

8. Show that ,. —ing - %

9. Show that l:ﬂ,t—aLa—o =0.
lim tan 6 — 6

10. Show that 040 tan g 0.

lim sin @ — tan a -
11. Show that =0 tna 0.

lim sin @ — tan
12, Show that a%0 snea 0.
60. Theorem. The limit of the quotient of two infinitesimals,
aand B, ts not altered if they are replaced by two other infinitesimals,

v and 3, respectively, such that h‘mi,: =1 and lim% =1

Proor:

]
a_Ty,
8 8£
)
lim &
a Y Y
llmﬁ—li ma3=hm‘—s,
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since
B

. @ .
hm; = hmf = 1.

It is evident from the proof that the limit of the quotient is
unaltered if only one of the infinitesimals, say a, is replaced by

another infinitesimal v, such that lim g‘ =1,

Illustrations.
1. Since
lim sin a
a0 o =~ L
liml—cosa liml—cosa
=0 Sna et o O
2. Since
lim tan @
a=0 = 1’
liml—cosa liml—cosa =0
ax0 {ang  a=0 a -
3. In Fig. 40,
lim CA _ lim CA _ lim CA 0.
a0 4B~ ax0BC = a*0A4AT —
Exercises
1. Show that 135101_-;&1 =4

HINT. 1 —co8 @ = 2 sin? g

lim sin a(l — cos a)
2. Show that ak0 & = 3.

im (¢ — 5)%in «
8. Show that 3210 (—-a)—-
lim 1 —cosa
a=0¢cos a8in? @
lim 3z2? — 4x3
22022 — bzt L2
HinT. Replace numerator by 3z2 and denominator by 2z2.

= 25.
4. Show that = §.

5. Show that

H 2 4 : 2
6. Show that 57 = Im = _ o

Er =
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61. Differentials. Let PT, Fig. 44, be a tangent line drawn
to the curve y = f(z) at the point P. Let DE = Az, RQ =
Ay, and let angle RPT = 7.

From the figure,

M ’
Az = tanr = f'(z),

or
RM = f'(z)-Az.
This is the increment which the function would take on if
it were to change uniformly at a

rate equal to that which it had Y B
at P. Q /
This quantity, f'(z)Az, is M_T
called differential y, and is de- £ R
noted by dy. Its defining equa- 4] Az -
tion is o D E - -
dy = r@as. (1) Fra. 44

Az, the tncrement of the independent variable, is called differential
z and is denoted by dz, i.e., Ax = dz. Equation (1) becomes

dy = f'(z)dz. (2)

In Fig. 44, RM = dy and DE = PR = dz.
In general, dy is not equal to Ay, the difference being MQ,

Fig. 44. However, it will be shown that Alilfo 3}2 =1
im R
lim % _ 1),
or .
i RQ RM
2o (R 7R ] = ®)
But, since %I is constant and equal to f’(z), equation (3) becomes
' lim RQ _
az=0 RM 7

1 In the expression (2) for the differential of the function f(z), the first derivative
is the coefficient of the differential of the argument, and for this reason it is sometimes
called the differential coefficient.
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or

lim Ay

seso gy = 1 @

It is to be noted that dz is an arbitrary inecrement and that dy

is then determined by this increment and the value of the deriva-
tive, t.e., by the slope of the tangent at the point for which the
differential is computed. dz and dy are then definite quantities
and we can perform on them any algebraic operation. Thus we
can divide (2) by dz and obtain

=z =) ®)

where dy and dz denote the differentials of y and z, respectively.
Thus from the definition of differentials the first derivative may
be regarded as the quotient of the differential of y by the differ-
ential of z.

It is to be observed, however, that this statement gives no new
meaning to the derivative, since the derivative was used in the
definition of the differential.

62. Formulas for the Differentials of Functions. In accordance
with equation (5) of the preceding section, any formula involving
first derivatives can be regarded as a formula in which each first
derivative is replaced by the quotient of the corresponding -
differentials. Thus,

d (14) e _ o

v/ dz ~ Ydzr
dz v? )

Each derivative being considered as a fraction whose denominator
is dz, we can multiply by dz, and obtain
d(!) _ vdu -—2udv.

v v
In words, the differential of a fraction is equal to the denominator
times the differential of the numerator minus the numerator times the
differential of the denominator, all divided by the square of the denomi-
nator. It will be noted that the wording is the same as that
for the derivative of a fraction except that throughout the word
differential replaces the word derivative.
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The other formulas for derivatives which have been de-
veloped are expressed below with the corresponding formulas for
differentials.

Formulas
de
1. = 0. dec = 0.
2 d—(dz“i) = 03: d(cu) = cdu.
du +¢
3 JEED i & d(u + v) = du + do.
4. z_u’_' = nur! éﬁ dur = nur! du.
z dz
5. ds;”) = d” =+ dx d(w) = udy + vdu.
o d :}—‘) v%—u%. d(i_t)=vdu—’udv
- = . v v
c dy
B e
*Tdz T T T o? v
c dv
8 4(z) __a a(2) - - ol
* d£ pnt+l
du
9 i": = E du? = d_1;
dz 2ut 2u

The formula for the differential of ¥y = cu™ can be put in the fol-
lowing convenient form:

10. d_y = n(—iy,

u

which is obtained directly by dividing dy = cnun~'du by y = cun.

The process of finding either the derivative or the dzﬁ'erentzal of a
Sunction 8 called differentiation.

The process of finding a function when its derivative or differential
18 given 1is called integration.

We have no symbol representing integration when applied to
derivatives. The symbol for integration when applied to dif-

7
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ferentials is f . Thus |3z%r = z*+ C. The origin of this

symbol will be explained later. It is read ‘‘integral of.”

TIllustrations.
1.Ify =+/1 —z2
dy = 3(1 = 2~ ¥( — 2zdz)
_ zdz
V1-1?

By formula 10, where - u =1 — z2,
dy 1 -2z dz
y 2(1=2?%
zdr
1—22

(x? — 1)dz —z2d(z* — 1)
a = @ —1)*

- (x2— 1)dz — z (2zdx)
@ =1
(z2+ 1)dz

=T -1

3. If dy = zdx,

y = |zdz
=}f2:cdx
zﬁ
=§-+C

4. If dy = z/1 — 22 dz,
y= fz(1 — :c’)*d:c
= —11f 10 - 29 ¥(—20d0)

—f
=—(_1.._3x—2)+0.
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5. If dy = dz ’
Y z—1
y=C(-1),
by formula 10.
dy zdx
6. If Yy S#ioi,
dy 1 2xdr
y 2z2-—1
y=Cvrt—1
Exercises

Find dy in the following ten exercises:

1. y,=zz_3z—2. e.y= ‘\/; -
2 y= z . (z—1)

z—1 T.9 = (z —1)(z* — 1)3
8.y =zt—z1_32 8 y=(z+z—2)0
Ly=(z-2% 9. y=(—1L
5.y = (22 - 2)}. 10. y = (=2 — 1)L

Integrate the following:

11. f 21dz.

12. f(:c’ - 1) zdz.

1s. f(:c’ - 3z'+5) (2% — 1) dz.
14. f(:c’—2z—6)‘(a; - 1) dz.
. [

16. f V7 dz.
17. f %
1s. f cldr.
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Y »
dy zdx
20. Y S w1
Y

/
__A,%g
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dy _  (z2— 2z + 4)dz |
y z3—3224122—2

63. Differential of Length of
Arc: Rectangular Coordinates.
Let PR, Fig. 45, = Az, RQ = Ay,
the chord PQ = Ac, and the arc

21.

[9)
Fig. 45.
We have
lim Ac
Az20 (E
Since!

X PQ = As. (srepresents the length

of arc measured from some point
A.) PT is the tangent at P.

(Ac)* = (Az)* + (Ay)*

) =1+ A5 (@)= 1+ ()

lim Ac
Az=0 Ag — 1,

! When Az is taken so small that the curve has no point of inflection between P
and Q, the chord PQ < aro PQ < PT + TQ, or Ac < As < PT + TQ. Whence,

Therefore

since

Then from (1),

1<&<—+

as _PT , TQ, @

Ac Ac

d
1_@mr @ 1T G2

(

(az)2 + (ay)?

1+ (50):

lim (PT)* -1

Az=0\"ac

lim _T_Q_ lim Ay — dy Ay
¢ Az=0 Ay Ac

lim dy lim Ay
[z -8 ][220 2] -0

lim 9¥
Azw0 Ay~ !

lim  As
Az=0 2, =1



§63] DIFFERENTIALS 101

Ac can be replaced by As (§60).
lim (Asy2 _ dy\ 2
w0 (az) =1+ (a) >

@) =1+

(ds)? = (dx)* + (dy)* 0))
as=\1+ (%) & @
ds = \/l + (g——;)’dy 3)

Equation (1) shows that the line PT, Fig. 45. represents ds.
If 7 denotes the angle made by the line PT with the positive
X-axis,

dx = cos 7 ds

dy = sin 7 ds.

Illustration. Find the length of the curve y = ix'} between
the points whose abscissas are 3 and 8.

dy _ %
ar =%
dy\z _
@) ==
Substituting in formula (2),
ds = v/1+z dz.
Integrating,

s=t1+2)i+0C
When z = 3,8 =0. Hence C = — 42, and
s= 31 +2)f -1

This formula gives the length of the curve measured from the
point whose abscissa is 3 to the point whose abscissa is z. On
placing z = 8 we obtain 8 = 3#, the length of the curve from
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the point corresponding to x = 3 to the point correspondmg to
z = 8. -
Exercises

Find the differentials of the length of the following curves:

1y =2 5. 32 + 4y = 12.
2. 23 4y = 4. 6. zy = 1.
8. y =22 7. zy? = 1.
4. y2 =z. 8. y=2z1

64. The Limit of Zf(x)Ax. Let y = f(z) be a continuous
function between z = a and z = b. In §60 it was shown that
the area bounded by the curve, the X-axis, and the ordinates
z = a and z = b is given by the formula

A=F@®) — F(a), 1)

where F(z) = f j(a:)dx A second expression will now be found
for the area. Divide the interval b — a, Fig. 46,into n equal parts
and at each point of division erect an ordinate. Complete the
rectangles as indicated in the figure.

WY =S(2)
- -
\ 4
A
(o] a X

-The sum of the rectangles of which DEQ'P is a type, is approxi-
mately equal to the area ABUV. The greater n, the number of
rectangles, i.e., the smaller Az, the closer will the sum of the
rectangles approximate the area ABUV. We say then that

A= lm 3 pEgPp,
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or
z=b

A= Jm S a)As. @
z=a

The above expression (2) represents the actual area and not
an approximation to it, as can be shown by finding the greatest
possible error corresponding to a given number of rectangles and
then proving that this error approaches zero as the number
of rectangles becomes infinite. Thus it is easily seen that the
difference between the true area A and the sum of the rec-
tangles is less than the area of the rectangle RSTU. The altitude,
f(b) — f(a), of this rectangle is constant while the length of the
base, Ax, approaches zero. Hence the area of RSTU approaches
zero. Therefore the limit of the sum of the rectangles is the

area sought.
On equating the two expressions for A, given by (1) and (2),

we have
x=b

A‘i‘;‘oxg‘f(x)m = F(b) - F(a), @)
where

F@) = [ f(z)da.

This equation is the important result of this section. It gives a
means of calculating
z=b

2, 2 J@) s

T=a

For, to calculate this limit we need only to find the integral of
f(z)dz and take the difference between the values of this integral
at z = g and z = b. The result of this section will be restated
and emphasized in the next section.

66. Definite Integral. The expression

z=b

dm 3, f=)As

T=a

which was introduced in the preceding section is of such great
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importance that it is given a name, “the definite integral of f(z)
between the limits a and b,” and s denoted by the symbol

b
f f(z)dx.

Equation (3), §64, gives a means of calculating the value of the
definite integral.

The function F(z), the integral of f(z)dz, is called the indefinite
integral of f(z)dz in order to distinguish it from the definite inte-
gral which is defined independently of it, viz., as the limit of a
certain sum.

We have then the following definition and theorem:

Definition. Let f(z) be a continuous function in the interval from
z = atoz = b, and let this interval be divided into n equal parts of
length Az by points zi, zs, T3, . . ., Ta-1. The “definite integral of
S (x) between the limits a and b”’ ts the limit of the sum of the products
S(xzs) Az formed for all of the points zo = a, 1, T3, . . ., T, as the
number of divistons becomes infinite.

Theorem. The definite integral of f(x) between the limits a and
b is calculated by finding the indefinite integral, F(x), of f(x)dz and
forming the difference F(b) — F(a).

The symbol for the definite integral,

b
f f(z)dz,

is read ‘“the tntegral from a to b of f(z)dz.”” As we have seen, it
means

b . b
f f@)dz = 103 f(z) Ax.

Many problems, such as finding the work done by a variable
force, the volume of a solid, the coordinates of the center of
gravity, lead to definite integrals. But, no matter how a
definite integral may have been obtained and no matter what
. other meaning it may have, it can always be regarded as repre-
senting the area included by the curve y = f(z), the X-axis, and
the ordinates z = @ and & = b, provided that f(z) is a function
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which can be represented by a continuous curve. This fact, that

b
f f(z)dz

can be regarded as representing an area, enables us to calculate
its value. For the area in question is equal to F(b) — F(a),
where F(z) is the indefinite integral of f(z)dz. Consequently we
have, in all cases,

b
f f(z)dz = F(b) - F(a)-'
This is often written
b
f f(x)dz = F(z)

to show how the result is to be calculated. Thus

b
= F(b) — F(a),

2 2
3 28 18 7
ﬁ”’dx=§,=§‘§=§'
Exercises

Evaluate the following definite integrals:

3 . 4 dz a

1, f 2z 4+ 3)dz. 2. Py 8. f Va? + 3 zdz.
1 1 []

66. Duhamel’s Theorem. If oy, a2 as - - -, aa are n in-

Sinilesimals of like sign, the limit of whose sum 18 finite as n becomes
infintte, and if B, B2, Bs, * * -, Ba are a second set of infinitesimals
such that

lim B _ 1,

nEo o

where 1 =1,2,3, - - -, n, then
n n
e = 0 2 b

B‘=1+e¢.

o

Proor. Let
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Since
lim B: _ 1
s o a; =4
”1:_‘2 & = 0.

At first let it be assumed that the a’s are poéitive. Let E be the
numerical value of the largest ¢, t.e.,

E2le, t=123---,n
Then, since 8; = a; + €a, t1=1,23,:---,n,

a;—Eax ng §a1+Ea1

as —Ea; £ B: £ s+ Eerg

an — Ea, £ 6. £ an + Ean.
Adding, we get

tm=n i=n t=n
A-BHYu3 AL 0+5 2 a
i=1 t=1]1
Since
lim g =0,

s 0

t=n t=n

mm}Ea;—lmlzzﬁc

1=1 t—I

and the theorem is proved.

If the o’s are negative, it will be necessary to.change the proof
just given, only by reversing the signs of inequality.

Section 64 furnishes an illustration of this theorem. In this
example the limit of the sum of the infinitesimal trapezoidal
areas DEQP js finite as n becomes infinite, since it is the area

sought.

DEQ'P < DEQP < DEQP’,
(see Fig. 46), or v

yAz < DEQP < (y + Ay)Az,
or

DEQP . y+ A4y,
DEQ'P y

This shows that the limit of the ratio of the trapezoidal area to

1<
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the area of the corresponding rectangle is 1 as n becomes infinite.
Then by Duhamel’s Theorem,

lim > pEP = i 3 DEQP = 4.
Since we are able to replace the infinitesimals DEQP by the
infinitesimals DEQ'P, we may calculate the area which is the sum
of these infinitesimals by means of the definite integral. This
is a characteristic process in the use of the definite integral.
The quantity sought is subdivided into » portions which are
infinitesimals as n becomes infinite. These are replaced by =
other infinitesimals of the form f(z;)Az. The limit of the sum of
the latter infinitesimals is a definite integral.

Since the limits of the two sums are equal by Duhamel’s
Theorem, the definite integral is equal to the quantity sought.

Illustrations of the applications of Duhamel’s Theorem to
obtain definite integrals representing work, force, volume, etc.,
follow.

67. Work Done by a Variable Force. In §61 there was found
the work done by a variable force, f(s), in producing a displacement

as .
o a 8 b
Fig. 47.

from 8 = a to s = b. We shall now obtain the same result by -
building up the definite integral which represents the work.
Divide the total displacement b — a, Fig. 47, into n equal parts
of length As. The force acting at the left end of one of these
parts is f(s), while that acting at the right end is f(s 4 As).
The total work done in producing the displacement, b — @, is
approximately

s =5

2 £(s)As.

8 =a
The actual work is the limit of this sum as As approaches zero.!

1 This step can be justified by using Duhamel’s Theorem. Let Aw represent the
work done in producing the displacement As. Then
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Illustration 1. The solution of the problem of Illustration 1,
§61, is expressed by
4 4
= f 30sds = 15s’| = 180.
2

2

Tllustration 2. The solution of the problem of Tllustration 2,
§61, is expressed by

b b .
a8 8|, b a
‘ 1

Illustration 3. In solving the problem of Illustration 3, §61,
we can write

smb smb
= li _ li
w= 27 2 (pA)As = iﬂ‘o szAs
8=a 8=q
=03
= M*O 2 pAy = f pdy,
V=7,

where v, and v, are the volumes corresponding to s = a and 8 = b,
respectively. Since pv* = C, p = vg;r and

w=0£gg=lgkvl—k C

(va1* — vy1H),
. -k

The student will complete the numerical work.

w=lim 3.,

Nds
But f(8)As < Aw < f(s + As)As, N
Aw S(s + As)
or 1<j@a<"fay
Then
lim _Aw__
As=0 f(c)Aa *

Hence by Duhamel’s Theorem

Jim | EAw - fm. E/(a)Ac - fbf(n)dc.

W= ‘{‘::,. :za f(9)as = j; f(e)ds.
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Exercises

1. Set up and evaluate definite integrals representing the work
sought in Exercises 1-5, §61, Chapter VI.

2. Water is pumped from a round cistern whose median section
is a parabola. The cistern has a diameter of 8 feet at the top and
it is 16 feet deep. The water is 10 feet deep. Find the work done
in pumping the water from the cistern if the discharge of the pump
is 3 feet above the top of the cistern and if the friction in the pump
and the friction of the water in the pipes are neglected. -

8. Find the work done by a gas in expanding in accordance with
the law pv!4 = C from a volume of 10
cubic feet to one of 12 cubic feet, if
when v = 9 cubic feet p = 100 pounds
per square inch. ’ B

4. Find the work done in stretching
a spring whose original length was 15
inches from a length of 16 inches to a
length of 18 inches if a force of 40 \
pounds is required to stretch it to a 4 \
length of 16 inches. \

6. Find the work done in compress- %
ing a spring of original length 5 inches
to a length of 3% inches, if a force of \

900 pounds is required to compress it
to a length of 4 inches.

8. The force due to friction is pro- \ c
portional to the component of force Fic. 48.
normal to the surface over which a body
is being moved. Find work done in dragging a body weighing 100
pounds from the base to the top of a slide in the form of a segment
of a sphere, Fig. 48, if the distance AB = 200 feet and the radius of
the sphere is 500 feet. Express the result in terms of u, the coeffi-
cient of friction.

68. Volume of a Solid of Revolution. The area bounded by
the curve y = f(z), Fig. 46, the ordinates = ¢ and z = b,
and the X-axis, is revolved about the X-axis. Find the volume of
the solid generated.

Divide the interval AB = b — a on the X-axis into n equal parts
of length Ar and pass planes through the points of division
perpendicular to the X-axis. These planes divide the volume into
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n portions, Av. A typical portion can be regarded as generab:*d
by revolving DEQP, Fig. 46, about the base DE in the X-axis.
Replace the volume of this slice by that of the cylinder generatefl
by the revolution of DEQ'P about the X-axis. Its volume is
wy?Az. The total volume is then

b
~ lim
14 M_og;xyzm,
or

b
V= f [f(2)]d.

Illustration. Find the volume between the planes z = 1.and
z = 3 of the solid generated by revolving the curve y = z* + 2
about the X-axis.

3 3
V= wf (22 4 x)¥dz = f (24 + 223 4 z?)dz
1 1

= wliz® + jot + Jo); = woflia” + 4o + 3L
=271r(t + 3 + ) — v + 1 + 1) = 1

Exercises

1. Find the volume between the planes z = 0 and z = 3 of the solid
generated by revolving the parabola y? = 6z about the X-axis.
2. Find the volume of a sphere of radius r.
8. Find the volume of the ellipsoid of revolution generated by
revolving the ellipse ’
2 y?
6 T9 =1
about the X-axis; about the Y-axis.
4. Find the volume between the planes z = 0 and £ = 4 of the solid
generated by revolving y? = z? about the X-axis.
6. Find the volume of the solid generated by revolving 2t + yi =
about the X-axis. ' N
6. Find the volume generated by revolving y* = 2az — z* about
the X-axis.
7. Find the volume generated by revolving the loop of
y* = z(z — 1)(z — 2) about the X-axis.
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69. Length of Arc: Rectangular Codrdinates. In §63 the
length of arc of a curve was found by integrating its differential.
We shall now express the length of arc by means of a definite
integral.

To find the length of arc APQB, Fig. 49, divide CH into n
equal parts of length Az each. At the points of division erect
ordinates dividing the arc AB into n parts of which PQ is one.
The length of arc AB is defined by

llm 2 Ac,

¥ PQ
Ae 8
A N\
o ¢ D E X
G-
b
Fia. 49.

where Ac is the length of the chord PQ. Then
= lim 3 V(a1 + (ay)*

= IN+ () 2.
w Nt G

it follows by Duhamel’s Theorem that

- S @

Since
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Exercises

Hence,

1. Find the length of the curve y = z¥ between the points (0, 0)
and (1, 1).

2. Find the entire length of z3 + y* =dl

8. Find the entire length of 22 + y2 = g2,

4. Find the length of y? = 423 between the points (0, 0) and (4, 16).

70. Area of a Surface of Revolution. The portion 4B, Fig. 49,
of the curve y = f(z), between the ordinates z = @ and z = b,
is revolved about the X-axis. Find the area, S, of the surface
generated.

Pass planes as in §69 perpendicular to the X-axis through the
equidistant points of division of the interval CH =b — a.
Denote the convex surface of the frustum of the cone generated by
the revolution of DEPQ by AF. The area, S, of the surface of re-
volution will be defined as the limit of the sum of the convex
surfaces, AF, of these frusta as m becomes infinite, i.e., as Az
approaches zero. Then,

lim EAF _ lim 21',1/_4;(124'_A_1QA

= az=0 Azs0

= 2'20221 (y + %_y) Ac

By Duhamel’s Theorem we can replace y + _A2_y by y, since

Alﬂlo Y +y}Ay 1. Hence,
8 = S omy ac = IS omy ( ) Az.
Since

Eg-lo 1-I-(—2;§—2=1
e @)y
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m022 y\1+ (dy) Az.
S = 2rﬁby \/1 + (Z—Z) ’dz
=2r ﬁtgz(;s,

where ds is the differential of the length of are. The latter form
is easily remembered since 2xyds is the area of the strip of surface
generated by revolving ds, the differential of arc, about the X-axis
at a distance y from it. If it is more convenient to integrate with
respect to y, ds can be replaced by

and the limits are the values of y correspondmg tox = aandz = b.

Thus
Yy=y2 u-m
= 27 \’1 + dz' dy = 21rf

y=un y=y|

Therefore

Exerclses

1. Find the surface between the planes £ = 0 and « = § of the
paraboloid of revolution obtained by revolving y? = 4z about the
X-axis.

2. Find the surface of the sphere generated by revolving z? + y? =a?
about the X-axis.

8. Find the surface of the right circular cone whose altitude is 10
feet and the radius of whose base is 5 feet.

4. Find the surface of the solid generated by the revolution of

2t + yi = a§ about the X-axis.

71. Element of Integration. The first step in setting up a
definite integral is to break up the area, volume, work, length, or
whatever it is desired to calculate, into convenient parts which
are infinitesimals as their number approaches infinity. These
parts are then replaced by other infinitesimals of the typical

8
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:

form f(z)dz, which must be so chosen that the limit of the ratio
of each infinitesimal of the second set to the corresponding
infinitesimal of the first set is one. f(z)dzx is called the “element’’
of the integral or of the quantity which the integral represents.
Thus the element of volume is wy%dz, that of area is ydz, that of
work is Fdz. ‘

If the magnitude which it is desired to calculate is broken up into
suitable parts, the expressions for the elements can be written
down at once. The best way of retaining in mind the formulas
of §§68, 69, and 70 is to understand thoroughly how the elements
are chosen. The process of writing down the element of integra-
tion at once becomes almost an intuitive one.

72. Water Pressure. The pressure at any given point in a
liquid at rest is equal in all directions. The pressure per unit
area at a given depthisequal to the
pressure on a horizontal surface of
unit area at that depth, i.e., to the
weight of the column of liquid sup-
ported by this surface. This weight
As, |c is proportional to the depth. Hence
HM - the pressure at a depth z below the
p surface of the liquid is given by the
y formula p = kzx. If the liquid is
o water and the depth z is expressed

F1a. 50. in feet, ¥ = 62.5 pounds per cubic
) foot.

The method to be used in finding the water pressure on any
vertical surface is illustrated in the solution of the following
problems:

1. Find the pressure on one side of a gate in the shape of an
isosceles triangle whose base is 6 feet and whose altitude is 5 feet,
if it is immersed vertically in water with its vertex down and its
base 4 feet below the surface of the water.

Take the origin at the vertex of the triangle, the axis of z vertical,
and the axis of y horizontal, as in Fig. 50. The altitude is sup-
posed to be divided into n equal parts and through the points of
division horizontal lines are supposed to be drawn dividing the
surface into strips. The trapezoid KHMN = AA is a typical
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strip. Denote the pressure on this strip by AP. The abscissa
of the lower edge of the strip is z and the pressure at this lower
edge is k(9 — z). Then the total pressure is

p=m 2/«:(9 —2)AA. : (1)

In accordance with Duhamel’s Theorem we can replace AA
by 2yAz. .

z-5 '
p=lm 221.:(9 — z)yAz, o)
z=0
or
5
P=2k] (9 —z)ydz. 3
o
Since
=3
y= 5’
P = Gk (9 — z)zdz
6k 9:1:’ z8 A
- .5_[? - 5]0 = 5312.5 pounds. )

In general, if » denotes the depth below the surface of the liquid
and z denotes the width, at the depth u, of the vertical surface
on which the pressure is to be computed,

b
P= f wzdu, )

where a and b are the depths of the highest and lowest points,
respectively, of the surface. For,

umb

= imS'uag = lim 2 kuzAu = f uz du.

2. Find the total pressure on a vertical semi-elliptical gate
whose major axis lies in the surface of the water, given that the
semi-axes of the ellipse are 8 feet and 6 feet. Take the origin at

Fl
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the center, the axis of x horizontal and the axis of y positive down-
ward. The element of pressure is

2kyz dy
and the total pressure is

6
P = 2lcf yz dy.
0

z is expressed in terms of ¥ by means of the equation of the
ellipse, :
zﬁ ' y2 _
v + 3= 1.
Then
6
P = 2kéf yV 36 — y?dy.
[]

Exercises

1. Find the pressure on the vertical parabolic gate, Fig. 51: (a)
if the edge AB lies in the surface of the water; (b) if the edge AB lies
5 feet below the surface.

1 B .
\:.- 10 >
A -

o

[?)
Fia. 51.

2. Find the pressure on a vertical semicircular gate whose diameter,
10 feet long, lies in the surface of the water.

78. Arithmetic Mean. The arithmetic mean, A, of a series of
n numbers, ai, @, @3, - - - , @, is defined by the equation

nA =a+a+a~+ - - - + G

or
=81+82+a:+ < .. +8n_
n

That is, A is such a number that if each number in the sum

A
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ai+ar+a;+ - - - +a. be replaced by it, this sum is
unaltered.

74. Mean Value of a Function. We can extend the idea in-
volved in the arithmetic mean to other problems.

Ilustration 1. Suppose a body moves with uniform velocity
a distance of 1 foot during the first second, a distance of 2 feet
during the second second, a distance of 3 feet during the third
second, and so on for 10 seconds. At the end of 10 seconds the
body would have moved 1 4+2+4+3+4+ . - - 4+ 10 = 55 feet.
The mean, or average, velocity of the body is the constant velocity
with which the body would describe this distance in the same
time. It is equal to 5.5 feet per second.

If the velocity of the body instead of changmg abruptly as
indicated above were changing continuously in accordance with
the law v = ¢, the total distance s traversed in 10 seconds would be

10 10
s=fvdt=f tdt = 50. -
(1] [}

The mean velocity, V, the constant velocity which a body must
have in order to traverse the same distance in the same length
of time, is 50 <+ 10 = 5 feet per second. This can be expressed

by the formula
10 10
f Vdt = f vdt
0 9

From this equation
10
f vdt
V=2 .

10

In general, if v = f(t), the mean velocity, V, of the body in
the interval of time between ¢ = a and ¢ = b is expressed by the

equation
b b
f Vdt = f F(t)de,
a a

or, since V is a constant,

b
f f@dt
V=30
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V is the constant velocity, which replacing the variable velocity,

v = f(t), at every instant in the interval betweent = g and ¢ = b,

gives the same distance traversed, i.e., leaves the value of the
b

integral, f - v dt, unchanged. ’
a

Illustration 2. Consider the work done by a variable force £
acting in a straight line, the X-axis, and producing a displacement,
from z = a to z = b. If the law of the force is f = ¢(x), the
mean force F in the interval from z = a to z = b, or the constant
force which would do the same work while producing the dis-
placement b — g, is given by the equation

b b
f Faz = f $(x)dz,
b
f $(x)da
F=—

b
F is a constant such that if, in'the integral f ¢(z)dz, the func-

or

a
tion ¢(z) be replaced by it, the value of the integral remains

unchanged.
Tllustration 3. Let a unit of mass be situated at each of the
points on the X-axis whose abscissas are z1, %3, 3, + + ) Za.

The X-axis is taken horizontal and the masses are acted upon
by gravity. We shall find the distance, 7, from the origin at
which the n masses must be concentrated in order that the sum of
the moment about the origin of the forces acting on the masses
shall be unchanged.

Clearly % must satisfy the equation .

g =g@r + 22+ 2+ - - -+ za),

or
g=ttTatmt. .. 2.
n
If there are m,, ma, ms, - - -, m, units of mass concentrated
at 71, X3, T3, - - -, ZTa, respectively, the mean moment arm, %,

the distance from the origin at which the masses must be con-
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centrated in order that the sum of the moments about the origin
of the forces acting on the masses shall be unchanged, is given by
the equation

(my+ma+ - - - m)T=mZ1 + MaT2+ -+ - - + MaT,
or
- Zmax; .
T = zm‘)(l=l,2)3;' © ., m). 1)

T is a constant such that if in the sum Zm,z; each of the num-
bers 1, 2, - - - , . be replaced by z this sum is not changed.

Now let there be a continuous distribution of matter along the
X-axis from z = a to z = b. Divide the interval b — a inton
segments each of length Az. An expression for the approximate
sum of the moments about the origin of the forces acting on the
mass i8 2 gxAm; where Am; is the mass of the segment Az;.
An expression for the approximate force is = gAm;. Hence an
ZgrAm: '
ZgAm;
that as Az approaches zero, the numerator approaches the total
moment and the denominator approaches the total mass. Hence

. b
A],,I.To ZgzAm ]‘: zdm

li b
amw0 ZgAm f dm
a
. b
z is a constant such that if in the integral, | xdm, = is replaced

expression for the approximate z is It is readily seen

5=

(2

by z, the value of the integral is unchanged.
For example, if the density is proportional to z2, i.e., is equal to
kz?, the element of mass, dm, is kz?dz, and we have

b b
2, 3,
_ J;xk:cda: _ j;xdz 3bi—at
- 3 o 3 -
fk:c’dx fx’d:c
a a

The mean value, M, of the function f(z) with respect to the
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magnitude u, whick s a function of z, ts defined ty the equation

- z=0)
Mdu = | f(z)du, 3)

where M t8 a constant, or

) f(z)du
M = T=a (4)

=5
fdu
T=qa
Mwacomththtfthundmf(x) 18 replaced by it in
f(z)du, the value of the integral 18 not changed.

zT=qa
In (2), z is the mean value of z with respect to the magnitude,
m. '
A particular case of (4) is that in which u = 2. Then (4)
becomes
1
= ST A f(x) dx. (5)
Illustrations 1 and 2 are cases of
this type.

252
/r When u = z, as in equation
¢ b (5), M can be interpreted as
/ the altitude, AC, of a rectangle
A with base AB = b —a, Fig.
52, whose area is equal to the
area bounded by the curve y =
X f(z), the X-axis, and the ordi-
nates z = a and z = b. From
Fia. 52. this standpoint M is called the
mean ordinate of the curve y =
(fr) in the interval from z = a toz = b.
Illustration 4. Find the mean ordinate of the curve y =z
between the ordinates z = 0 and z = 2.

je- Q >

2 2
ztdz = }z3 = 4.
0 (]
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Illustration 5. Find the mean with respect to 4 of z between
thelimits 4 = 1 and v = 9, if u = 22.

=9 =9
Mdu=fzdu,‘
Um=] Um]
3 3
Mf2zdx=f2z’dz,
1 1

. | 8M = 52,
M=

Exercises

Find the mean ordinates for the following curves:

1.y = z} between z = 0 and z = 3.

2.y = z¥ between z = 2 and z = 4.

8. y = 3z3betweenz = Q0 and z = 2.

4, y = 3zsbetweenz = 1 and z = 3.

5.y = z3 betweenz = Oand z = 1.

6. Find the radius of the right circular cylinder of altitude 3 whose
volume is equal to the volume between the planes x = 2 and z = 5 of
the solid generated by revolving y = z + z? about the X-axis.

7. Find the radius of the right circular cylinder of altitude b — a
whose volume is equal to the volume between the planes z = a and
z = b of the solid generated by revolving y = f(z) about the X-axis.

8. The density cf a thin straight rod 10 inches long and of uniform
cross section is proportional to the distance from one end. Find the
mean density of the rod.

9. Find the mean velocity of a freely falling body between the
time ¢ = 1 second and ¢ = 3 seconds.

10. The density of a rod is given by p= 3z? where z is the distance
from one end. Find the mean density if the rod is 10 inches long.

11, Find the mean moment arm in the case of the rods of Exercises
8 and 10, about a horizontal axis through the end of the rod (z = 0).
The rods are horizontal, and perpendicular to the axis about which
moments are taken. The rods are supposed to be acted upon by
forces due to gravity alone.

12. Find the mean ordinate of a semicircle, the ends of which are
upon the X-axis.



CHAPTER VIII

CIRCULAR FUNCTIONS. INVERSE CIRCULAR FUNCTIONS

Up to this point only functions have been discussed which are
simple algebraic combinations of powers of the dependent variable.
Many interesting applications of the calculus to the study of
these functions have been given. We shall now take up the
study of the application of the methods of the calculus to another
very important class of functions, the circular functions. It is
apparent that the principles developed in the preceding chapters
are equally applicable to the circular functions and to the
algebraic functions.

As the student has already learned, the circular functions occur
very frequently in the study of the physical sciences and their
applications, because by means of them periodic phenomena can
" be studied.

76. Derivative of sin u.

Let
y = sin u.
y + Ay = sin (u + Aw),
Ay = sin (u + Au) —sinu
= gin u cos Au -+ cos u sin Au — sin u,
Ay - cosusin Au _ sinu(l — cos Au)
Au Au Ay :
Then
lim Ay lim sin Au . lim1—cosAu
Musd Ay = COB Upnyuo A, T B UpyuoT Ay,
Hence by §566 and §68 p
Y
du = co8 u. (1)
Whence
dy du
dg = CoB U g 2



-

§75] CIRCULAR FUNCTIONS 123

The corresponding formula for dy is ‘
dy = cos udu. @

It has thus been shown that
d(sinu) du
B T cosu iz 4)

and
d(sin u) = cos udu.

Well known properties of the function y = sin u can be verified
by formula (1). Thus sinu is an increasing function between

uj= Oand u = g, and between u = ?L;_r and 4 = 27, and decreas-

ing between u = 1_2r and 4 = 3—% The same facts are ‘spown by

— .
[ K| PR
* “ N G o
B [9) DE
/
_ /

the derivative, cos u, which is positive between « = 0 and u =

Fia. 53.
7
2
: 3r . T
and between u = 0} and % = 2, and negative between u = 3

3r . ’ . ..
and ¥4 = DR Further, sin % has maximum and minimum

values for u = 1—2r and u = 35‘”’ respectively. The same facts
are shown by the derivative, cos u, which becomes zero at these
points and changes sign atg from plus to minus, and at :%_r from

minus to plus.

The slope of the sine curve is approximately the slope of the
diagonal PQ of a rectangle in Fig. 53. The greater the number of
equal parts into which the circumference of the circle is divided
and hence the smaller the subdivisions of the arc, the closer do the
slopes of these diagonals approach the slopes of the tangents.
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76, Derivatives of cos u, tan u, cotu, secu, csc u. The
derivatives of the remaining circular functions can be obtained
from that of the sine.

Let y = cos u. Then

y=sin(g—u)

and
T
dy T ) d(5 u)
=cos (5 —u )
dxz 2 dz
T du
=cos (3-) (- )
- au,
= —sinu g
Hence
d(cosu) . du
o8 W) _ _ g ®
and
d(cosu) = — sinu du.
By writing
sin u
tan u = cos
cos %
cotu = =
1
secu = ’
€os %
and
escu = o
the student will show that
d(t:l; u) _ sec’u‘dl—:' or d(tan u) = sec?u du @
d(cg: u)‘ = — csc’u g_:, or d(cotu) = — csc?udu @
d(s:: 9 _ gecutanu :_:’. or d(secu) =secutanudu (4
d(csc u)

du '
ax ——escucotu(—l—x’ or d(cscu) = — cscucotudu (5)
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Illustration 1. Find the first and second derivatives of
3sin (2z — 5).
d[3 sin (2z — 5)] d[sin (2z — 5)]
dz dz

= 3 cos (2z — 5)@—)

= 6 cos (2 — 5).
Differentiating again,

d?[3 sin (2:5—5)] d[cos 2z — 5)]
dx? dz

= —6 sin 2z — 5)
—125sin (22 — 5).

d(2z — 5)
dz

Illustration 2. If y = sin 2z cos z, find Z—z Since sin 2z cos z

is the product of two functions, apply formula (1) §40.
% = sin 2z(— sin ) ‘dl—: + (cos z) (cos 2z) ({%

= 2 cos x cos 2z — sin z sin 2z.

Ilustration 3. If y = 3sinz 4 4 cos z, ﬁnd d_x and Zz
%=3coex—4smx (6)
Z:g —(3sinz + 4cosz) = —y. )

From (6)
Z—g = 4cosz (} — tanz).

When 0 < z < g, cosz ispositive. Thesecond factor,} — tanz,

is positive when z < tan-1 (), and negative when = > tan-1 (}).
Thus, when z is in the first quadrant the function has a maximum
value corresponding to z = tan—1(§).

Wheng <z<m, Z—Z is negative.

3 . . . .
When r < z < %r’ cos z is negative, and # — tan z is negative
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when z < tan-! (§), and positive when z > tan—! (). Thus
when z is in the third quadrant the function has a minimum
value corresponding to the value z = tan-! (}).

When - 3w < z< 21r, dy 1s positive.

The same facts can be seen directly from the function, for it
can be put in the form

y = 5(4 cos z + 5 sin z).

Let cos « = ¢ and sin @ = 3. Then

y = 5(cos z cos a + sin z 8in a),

y = 5cos(z — a).

In polar codrdinates this represents a circle passing through the
origin, with a diameter of 5. (See Fig. 54.) =z is the vectorial
angle and y the radius vector. The

diameter OB makes an angle a with

B the polar axis. As z varies from 0

to  the circle is described, and asz

varies from 7 to 2w, y is negative

and the circle is described a second

4. time.
o Hence y has a maximum value 5
\_/ when z is equal to «, and a mini-
Fia. 54. mum value —5 when z is equal to
a-+ .

Illustration 4. If y = tan® 3z = (tan 3z)3, ﬁnd — and *y_

The function is of the form y = u». Hence

dy _ d(tan 3z)
s = 3(tan 3z)* =7 —

= 3 tan? 3z sec? 3z dT&g
T
= 9 tan? 3z sec? 3z.
dy [ n? 3z d(sedcx 31)

___=9

+ sec? 3z d(tan? 32)]

dz
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=9 [tan’ 3z-2 sec 3z ‘i(f%:b'_) + sec? 3z°2 tan 3z d(t%;ﬂ]

d
=18 [1;9,n2 3z sec 3z sec 3z tan 3z d_d3;z

d3z
+ sec? 3z tan 3z sec? 3z Tz—]

= 54(tan? 3z sec? 3z + tan 3z sect 3x)
= 54 tan 3z sec? 3z(tan? 3z + sec? 3z).

Tllustration 5. If z—z = cos z, find y.

dy

az = cos .
y =sinz + C.

Y

Illustration 6. If Z_z = cos 3z, find y.

Z—‘Zé }[cos 3:1:%’-:]
The expression within the bracket is the derivative of sin 3z,

hence,
y =4%sin3z + C.

Ilustration 7. If % = sin 3z, find y.

3—% = — [—sin3x%].

y= —}cos3z + C.

Hence

Ilustration 8. If % = gec? 2z, find y.

Z—Z = %[sec2 2z %],

y = % tan 2z + C.

Hence

Illustration 9. 1f Z—: = sec 5z tan 5z, find y.

% = é[sec 5z tan 5z dd%:]
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Hence
y = % sec 5z + C.

Tllustration 10. If dy = cos 3z dz, find y.
y = f cos 3zdz
=13 f cos 3z d(3z)
= }sin 3z + C.
Ilustration 11. If dy = sin?2z cos 2z dz, find y.
y= f(sin 2zx)2 cos 2z dz
=33 f 3(sin 2z)? cos 2r d(2x)

= 1 3(sin 2¢)*d(sin 20).
Hence
y = ¥(sin 22)3 + C.

Illustration 12. If dy = tan® 5z sec? 5z dz, find .
Y= ftan’ 5z sec? 5z dr
= 4 [4(tan 52)* sec? 5z d(52)

= 75 [4(tan 52)* d(tan 52).

Hence
y = #v(tan 52)* + C.
Illustration 13.

f sin 5z cos 3z dz = f 1[sin (5z + 3z) + sin (5z — 3z)ldz
=3 |sin8zdz + } | sin 2z dz

= — ygcos8z — 1 cos 2z 4 C.
Tllustration 14.

[ oos 72 sin 35 do = [Hsin (32 + 72) + sin (85 — Ta)lds
= 1]sin 10z dz — } | sin 4z dz
= —fa-coslo:u+§cos‘4:c+0.

[§76
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Ilustration 15. _
fcos 4z cos 7z dx = f% [cos (7x + 4z) + cos (7x — 4z)]dz

) ' =%fcos_11:cd:c+%fcos.3zdx+0

= Y sin 11z + 4 sin 3z + C.
Illustration 16.

fsin 4z sin 2z dxz = — %f[cos(4x+2:c) — cos (4z — 2z)]dz |

-3 cosﬁzdx+%fcos2xdx
— v sin 6z 4 %sin 2z + C.

I

Exercises
In Exercises 1 to 10, verify the differentiation.
1. y = sin 5z, Z—g = 5 cos 5z, % = — 25y.
2, 39
2. y = cos 3z, g—g=—3sin3z, s—ag=—'9y. -
8. y = tan 2z, %—Z = 2 sec? 2z,
d%y
= 8 sec? 2z tan 2z.
. dy . .
4. y = sin z cos 2z, d—x=cos2:ccosz—2sm2zsm:§
_ . 3z —2 dy _ 3z — 2
6. y =sin 5 dx—%cos 5
d
% = -y
6. y = tan? bz, dy = 15 tan? 6z sec? 5z dz.
7. y = sect 3z, dy = 12 sect 3z tan 3z dz.
s [¥= a(l — cos 8), dy = asin @ dé.
‘|z = a(@ —sin §), dz = a(l — cos 6)dé.

9 in (27t dy _ 20 o (2%
-y =asin\7y —e), 5 = 75 €08 |\ 7y —ef.

10. y = zsin z, " dy = (z cos z + sin z) dz.

11. From the results of Exercise 8, show tha.t-g—g = cot g

9
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Find dy in Exercises 12-20.

12. y = tan 2z sin 2z. 16. y = cos (3 — z)2.
sin 2z -
/8. Y= cosior . 16. y = +/sin 2z.
14. y = sin (z? + 3z — 2). 17. y = z cos 2z — tan 2z.

18. y = tan? (z —1).
19, y = cos*(1 — z? — 2z).
20. y = sin? 2z — 1) cos? 2z - 1).

Integrate:
21. dy = sin 2zdz. 26. dy = sin z cos zdz.
22. dy = cos 2zdz. 26. dy = tan z sec? zdz.
28. dy = sec? 4zdz. . 27. dy = +/sin 2z cos 2zdz.
24. dy = sec 5z tan 5zdz. 28. dy = cos®z sin zdz.

29. dy = sectz tan zdz = sec3z sec z tan zdz.
30. dy =sect (z — 1) tan (z — 1) dz.
81. Find the area under one arch of the sine curve.
82. Find the area under one arch of the curve y = 2a?sin?z.
1 —cos2z
2

88. The equations of Exercise 8 are the parametric equations of the
cycloid. Find the length of one arch of the cycloid.

HinT. ds = \/ (dz)? + (dy)®. Express ds in terms of 6 and do.

84. Find the area under one arch of the cycloid.

856. z =acosf, y =asing. Find g—z Find the length of the
curve. Find the area bounded by the curve.

3.z = acos6,y = bsin6. Find 2. Find the area bounded by
the curve.

87. 2 = a cos’ ¢, y = asin® ¢. Find :——: Find the length of the

curve.

388. Find the volume bounded by the surface obtained by revolv-
ing y = 8in z about the X-axis.

89. A man walks at the constant rate of 4 feet per second along the
diameter of a semicircular courtyard whose radius is 50 feet. The
sun’s rays are perpendicular to the diameter. How fast is the man’s
shadow moving along the semicircular wall of the courtyard when he
is 30 feet from the end of the diameter?

HINT. sin?z =
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40. A drawbridge 25 feet long is raised by chains attached to the end
of the bridge and passing over a pulley 25 feet above the hinge of the
bridge. The chain is being drawn in at the rate of 6 feet a minute.
Horizontal rays of light fall on the bridge and it casts a shadow on a
vertical wall. How. fast is the shadow moving up the wall when 15
feet of the chain have been drawn in?

41.Find@if:c=y y—1

4. Fmddylfz=\/1-—siny.

43. If p? = a%cos 20 show by implicit differentiation that

a0 - P
4. It 5008 0 = atsin 36, find 32
45. [ sin 6z cos 2zda. 4. [ sin 4z cos 7zdz.
46. f cos 4z cos 3z dz. 60. f cos 5z cos 9z dz.
417. f cos 5z sin 2z dz. 61. f sin wt cos atdt.
48. f sin 8z sin 3z dz. 62. f cos wt cos atdt.

68. Find the mean ordinate of the curve y = sin z between the
limits z = Oand z = .

T7. Derivatives of the Inverse Circular Functions.! The for-
mulas for the derivatives of the inverse circular functions are
readily obtained from those of §§76 and 76.

1 The student will recall that sin~!« is defined for values of u between —1and +1
only, and that it is 8 many valued function. To a given value of u there correspond
infinitely many angles whose sines are equal to ». This will be seen to be the case on
sketching the curve y = sin~lu. In this and future discussions of this functionit
will be made single valued by considering only those values of ¥ = sin~1u whiob lie

between — -2- and +2 , inclusive.

The positive sign of the radical in the final formula (1) is chosen because
cos y = 4/1 — u1is positive when y lies between ——2— and +2

Of the functions occurring in (2), (3), (4), (5),and (6), ¥y = cos™lu, and y = sec™lu
are made single valued by choosing y between 0 and =, while the remaining functions,
vy = tan~lu, y = cot~lu, y = csc~!u, are made single valued by choosing y between
—% and +;—. Show that the proper sign has been chosen for the radicals in the
formulas (2), (5), and (6). '
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Let y = sin-'u. Then siny = u. Differentiation gives
dy du
cos y 5. =
dy _ _1_ du
dz  cosy dx
L.
4/1 —sinty dz
Hence '
du
dy dr
dz = Vi—u?
Therefore,
du
d(sinu)  dx o 4oy du ¢V)
& \/1_‘12 or  d(sin n)—\/l_.“2
The student will show that
~ du
d ~1 d
(co:x u) - — \/:xTué' or d(cos'u) = — _\_/___‘:____.u_’ 2
du
d(tan—'u) dx 3
R or dtan-tu) = roe @
| du
d(cot'u dx du
( = ) =-13a or d(cot~'u) = — T+u? “)
du
d(sec-! u) dx ey du
a Caver=i 3 or d(sec—lu) = V=i (5)
. du
d(csclu) dx ey o du
= " & \/1?———1’ or d(csc~'u) = a1 6

Illustration 1.
formula (1)

If y = sin-(z? — 2z — 3), find dy. By
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d(z? — 2z —3)
V1= (22— 2z — 3)
B 2(z — 1)dz
T A/1- (2?22 -3)*
Illustration 2. If y = tan—! 3z, find dy. By formula (3)

dy =

_ d(3z)
W= 11 @Gy ¢
3dz
1 + 9%
Illustration 3. If dy = i + —— find y.

dz
ﬂ=f1—+;=’

y = tan~'z 4+ C.

dz
T+ 927 find y.
I
V= )1+ 0n

= "f T+ @)

The expression under the integral sign is now of the form % '

or

Illustration 4. If dy =

whose integral is tan—1«. Hence
y=4% t,a,n‘l (3z) + C.

Tlustration 5. If dy = iF 9:4:" find y.
Y
V= Jiyron

= *f TG

3dz
=t *f1+<&x)=
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Hence
y=4% tam‘l (iz) + C.

Llustration 6. If dy = \/—_: find y.

dr
v= f Vi-oz
dz
=
PO S T
V1-(i2)*
The expression under the integral sign is now of the form
\/_i‘ii=q4’ whose integral is sin-'4. Hence
' y = }sin-1(3z) 4+ C.

Exercises
Find :—: in Exercises 1-10.
1. y = sin™! (z7). 6. y = sin~*(gin z).
2 y =sin~i(z — 1). T.y = tan~! T
8. y = tan~1(z?). 8. y =sin~1 (1 — z)2
4. y = tan"1 (z — 1). 9. y = sec™! (2 — 3).
6. y = sin (sin~1z). 10. y = zsin'z.
Integrate:
dz
11. dy = Tra
dz
12. dy = =y
dz
18. dy = o5 e
dz 1 z
14. dy-—,+—z; Ans. y=atan'la+0.
16, dy = 2%
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dz
16. dy s\/l——_g—;

dz .
Y T

dz .
l&dy—ﬁ' Ans. y =sin"1=- 4 C

zdx °
19, dy=-\/—1_T:3.

dz

20. dy = dz =% Ans. y=%lsec‘1§+0.

Using the results of Exercises 14, 18, and 20 as formulas, evaluate
the following integrals:

21 _d_z_._.
’ V16 — 22 93:’
99 [—9=
" JVie -9 a + e +17
g8, [—_92 . 31
VI = ) \/13 —z
dz dz
" f 2% +a¥ o= f z/71 — 19
dz |
”‘f25+16z* 88fsac=+s
dz : dz
8. | T 167 . z’+4:c+5 = f @2+l
Q7 __dz 36 _dz
") /22— 25 * ) 2322 = 14
28 __dz 36 dz__
© ) =021 — 25 V=2

87. Find the area between the ordinates z = 0, z = }, the X-axis

1 .
V1 — 22
88. Find the area under the curve y =

and the curve y =

7F 4a” above the X-axis,
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and between the ordinates z = 0 and z = b. Find the limit of the
area as b increases without limit.

89. Find the mean ordinate of the curve y = 1—_'1_—1;,7 between the

limits z = 0and z = 2

78. Velocity and Acceleration. If a particle is moving in a
curved path, its velocity at any point is represented by a vector
laid off along the tangent with its
length equal to the magnitude of

the velocity, Z—: Thus  the ve-

locity at the point P, Fig. 55, is
represented by the vector P7'. It
can be resolved into the com-
ponents PK and PM, parallel to
P the X- and Y-axes, respectively.
0 * These components represent the

Fia. 55. time rates of change of the coér-
dinates of the moving point P, t.e.,

dz
PK = i
and (6))]

_
PM = 5.

Y,

Since

PT = v/ (PK)* + (PM)?,

ds dx)\ 2 dy) 2
E=\}(§> + (G @
This relation can be obtained directly from (2), §68, if we consider
z and y functions of t. For, we can divide by dt and obtain the

equation (2).

In Fig. 55, let PT be the velocity at P, and QT" that at Q.
 Draw from a common origin, o, Fig. 56, the vectors op and og
equal to the vectors PT and QT", respectively. Then pq equals

the vector increment, Av. The average acceleration for the

interval At is equal to % directed along pg. Lay off, on pg, pm
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equal to %1:- As At approaches zero, @ approaches P, and g ap:

proaches p as indicated by the dotted line, Fig. 56; pm approaches a
vector pt directed along the tangent to thearc pgat p. This vector,

the limit of %’;: represents the acceleration of the body moving in

the curved path. Let us calculate its z and ¥ components. In
Fig. 56, denote: ’

op by v and its components by v. and v,,

og by v’ and its components by ¢'; and o',

pg by Av and its components by Av; = v, — v.and Ay, = v/, — v,,
pt by j and its components by j. and j,.

m.
(]
(o] .
Fra. 56.
Then d
. _ lim %_%_d_(ﬂ)_di 3
J» = aw0 A T gt T T4t T de ®)
dy
. lnm%_%_@_@. )
Jv = at=0 At~ dt dt — de?

The magnitude and direction of the vector j\are given by:

i= @)+ (@)’ ®
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and
@
tan ¢ = Exv
dt!
where ¢ is the angle made by pt, Fig. 56, with the positive direction
of the X-axis. .

Again we can resolve the acceleration j into components along
the tangent and normal. In Fig. 57, PL is the tangential com-
ponent and PJ is the normal component. The tangential com-
ponent clearly produces the change in the magnitude of the
velocity, and the normal component the change in its direction.

b 4

L]

Fia. 57,

79. Angular Velocity and Acceleration. If a body is rotating
about an axis, the amount of rotation is given by the angle 4
through which a line in the body turns which intersects the axis
and is perpendicular toit. Thus in the case of a wheel the rotation
is measured by the angle 6 through which a spoke turns. 6isa
function of the time ¢. The rotation is uniform if the body rotates
through equal angles in equal intervals of time. If the uniform
rate of rotation is w radians per second, the body rotates through
0 = wt radians in ¢ seconds. If the rotation is not uniform the
rate at which the body is rotating at any instant, the angular

velocity, is

@ Tas0nt T ar
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Similarly, the angular acceleration « is the time rate of change of

the angular velocity. Then,
_dw _d%
*=d T e

If we consider a particle at a distance r from the axis of rotstion,
its linear velocity v is
v = wr

and is directed along the tangent to the circle described by the
particle. The tangential acceleration is.

j; = ar.

Exercises

1. The following formulas have been established for linear motion,
with constant acceleration:

v =19, + jt.

8 = vt + 4jt.

2 2
5= = (See §88.)

Show that the corresponding formulas for rotation are:
w = wo + at.
0 = woi + }at2.

39 = af.

2. A flywheel 10 feet in diameter makes 25 revolutions a minute.
What is the linear velocity of a point on the rim?

8. Find the constant acceleration, such as the retardation caused
by a brake, which would bring this wheel to rest in 30 seconds. How
many revolutions would it make before coming to rest?

4. A resistance retards the motion of a wheel at the rate of 0.5
radian per second per second. If the wheel is running at the rate of 10
revolutions a second when the resistance begins to act, how many
revolutions will it make before stopping?

5. A wheel of radius r is rotating with the uniform angular velocity
w. Find the direction and magnitude of the acceleration of a point
on the rim.

.
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Hint. The coﬁrdmates of the point can be written £ = r cos of,

y = rsin of. Find W and Zti’

8. A wheel of radius r is rolling with the uniform angular velocity
") along a horizontal surface without slipping. How 'fast is the axle
moving forward? The parametric equations of a point P on the rim
are:

z = r(wt — 8in wt)
y = r(1 — cos wt).

Find the magnitude and the direction of the velocity of P at any
instant. What is the velocity of a point at the top of the wheel?
At the bottom?

7. If a particle moves in such a way that its coordinates are
z = acost + b, y = asin ¢ + ¢, where ¢ denotes time, find the
equation of the path and show that the par
ticle moves with constant tangential velocity.

> oV 80. Simple Harmonic Motion. Let the
point P, Fig. 58, move upon the circumfer-
ence of a circle of radius a feet with the
uniform velocity of » feet per second, so that

the radius OP rotates at the rate of 2 =0

radians per second. The projection, B, of P
on the vertical diameter moves up and down. If the point P
was at C when ¢t = 0, the displacement, OB = y, is given by

B

[0)

Fia. 58.

y = asinf = gsinwt.
If the point P was at D when { = 0, we have
y = asin(wt — a). (0]

"Any motion such that the displacement at time ¢ is given by (1)
is called a simple harmonic motion. Thus the point B, Fig. 5,
describes simple harmonic motion. The abbreviation “S.H.M.”
will be used for “simple harmonic motion.”

From (1) it follows that the velocity of a point describing
S.H.M. is

dy =awcos(wt — a) @
dt
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and that the acceleration is

Z% = —gw?sin(wt — a). 3)
The second member is —w?, by equation (1). Hence
o= -, | @
or
PY 4wty =0, (5)

Equation (4) shows that the acceleration of a particle describing
S.H.M. is proportional to the displacement and oppositely di-
rected. That the acceleration is oppositely directed to the
displacement is to be expected from the character of the motion,
which is an oscillation about a position of equilibrium. Thus if
the body is above this position the force is directed downward,
and vice versa. In Fig. 58, the point B has a positive acceleration
when below O and a negative acceleration when above O. The
acceleration is zero at 0, a maximum at the lower end of the diame-
ter, and a minimum at the upper end.

In accordance with (2) the velocity is zero at the two ends of the
diameter. The veloclty has its greatest numerical value when
B passes through O in either direction.

Equation (4), or (5), is called the differential equation of
S.H.M. The proportionality factor w? is connected with the

period T by the relation T = -25 The equation (4) was

obtained from (1). Frequently it is desired to solve the converse
problem, viz,, to find the motion of a particle whose acceleration is
proportional to the displacement and oppositely directed. In
other words, a relation between y and ¢ is sought which satisfies
equation (4). Clearly (1) is such a relation. However, it will be
instructive to obtain this relation directly from (4).
. First, a differential equation equivalent to (4) will be obtained
in the solution of the problem of the motion of the simple pendulum.
81. The Simple Pendulum. Let P, Fig. 59, be a position of the
bob of a simple pendulum at a given instant and let it be moving
to the right. If s denotes the displacement considered positive
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2
on the right of the position of equilibrium, ZT’S is the acceleration

in the direction of the tangent PT, for g is the velocity along the

(] tangent. This acceleration must be equal
to the tangential component of the accelera-
tion due to gravity, if the resistance of the
air be neglected. This component is equal to
—gsinf. Since it acts in a direction opposite
to that in which s is increasing, it must be
taken with the negative sign, 1.e., the acceler-
ation diminishes the velocity. We have then -

d?%s . '
ap = —9sin 0. 1)

F1a. 59.

If the angle through which the pendulum swings is small,
8in @ can be replaced by 8. Then (1) becomes

d?s

. iz = —90 @
Since s = 10,
dz0 0
o e
Putting % = w? for convenience in writing,
' dz0
am = w?0. 0]

Multiplying by 2 %0 and integrating,

(g—f) Po - w + O,

The arbitrary constant is written for convenience in the form C*
The constant must be positive. Otherwise the velocity would be
imaginary. Extracting the square root,

dé
o = Vo=

o
V0i—wifr

or

dt. )
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Integration gives
wf

1 .
;sm‘l c = t+ Ch.
. 0
sin-1 % = wt + wC)
= wt + Cg,
where the constant wC, is replaced by the constant Cs. Then

%f’ = sin (ot + C2),
0

=& sin @+
= Cysin (ot + C),
where % has been replaced by C5. Therefore
6 = Cssin (wt + Cy) (6)
is the equation of the angular displacement of the pendulum.
The form of (6) shows that the motion is of period 27 = 2 \[%

It is a S.H.M. and contains two arbitrary constants. They can
be determined by two conditions, e.g., the displacement and
velocity at a given instant. Suppose the bob drawn aside to the
right so that the string makes an angle 6, with the vertical. The
bob is then released without being given an impulse; ¢.e., with an
initial velocity zero. The time will be counted from the instant
of release. The conditions are then

0=, 7
and g
.do
= 0 (8)

when t = 0. From (6),

Z—to = w(C;3cos (wt + Cs).

The condition (8) gives
0= wC; cos Cz,

or cos Cs = 0. Whence C; = g Then (6) becomes
0 = C; cos wt.
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The condition (7) gives
0, = Cs.
Hence
0= 0, cos wt. 9

Multiplying by ! and recalling that 10 = s, and denoting 6, by
8., we have as the equation for the displacement s,

8 = 8, cos wt. (10)

The period is T = 2;7'- =27 \j;l—; When is the velocity of the

bob greatest? When least, numerically?

Equation (6), the solution of (4), shows that, if the acceleration
of a particle is proportional to its displacement and oppositely
directed, the particle describes S.H.M.

Exercises

1. Write the differential equations of the following simple harmonic
motions. Find the period in each case.

|
y = 5sin 3t l
y = 6sin (3t+§)- “
y = 5cos 3t. |

y = 4sin 2t + 3 cos 2t.
y = 7sin (8 + a).

2. Write the equation of a S.H.M. which satisfies the equations:

d%y

ax + =0

d '

dTi’ +3y =0.
2.

aty + aty = 0.

di?



CHAPTER IX
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

82. Derivative of the Exponential and Logarithmic Functions.
Let

y = a* ' 1)
Then
y+Ay=a T
Ay = az(a®* — 1)
Ay (aAz - 1)
— = q=

Az Az
d im a4 —1
d_?::l: = e Mhl’?o Az @

oz 1, im @’ — 1,
Since aA_xl is independent of z, Alifo _a_E_ is a constant

for a given value of a. Call this constant K, so that

Az — ]
K=£l}'1°aA:c 3

Then from (2),
dy
dz = = Ka?=. “)

Equatign (4) shows that the slope of the curve y = a= is propor-
tional to the ordinate of the curve. In other words, the rate of
increase of the exponential function is proportional to the function
itself.

When z = 0, it follows from (2) and (3) that

dy lim a4 — 1
8220 ~ A =K.

Consequently the constant K introduced above is the slope of the
curve y = a® at the point (0, 1). This slope depends upon the
value of a. Let e be that particular value of a for which the
corresponding curve, y = e, has a slope equal to 1 at the point
where it crosses the Y-axis.

10 145
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If, then,
Y = e?, (5
equation (4) becomes
dy
dz =
since K = 1in this case. Or
dez
iz =e=. ©)
Then
de* d
= ="% ]
and
de* = exdu. ®

Equation (6) shows that the slope of the curve y = e= is equal
to the ordinate of the curve. The number ¢ is the base of the
natural system of logarithms. It is sometimes called the Naperian
base. Its value, 2.71828 . . . ., will be calculated later in
the course.

The formula for the derivative of the natural logarithm of s
function is now easily obtained. In calculus if no base ts tnd:-
cated, the natural base is understood. Thus log 4 means log. u.

If

@ -

y = log u,
u=ev
and by (7)
du dy
iz = “dz
Whence
: dy _ 1du
dz = evdx
_ldu
T udz
That is
d(logu) 1ldu
dx T udx
or du
d(logu) = o
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Since!
or
Ify = av
That is
or
Tlustrations.
1. y=¢,
2. If y = €02,

3. Ify =logio (x+ 1), dy = logiee

4. If y = log (z + 1), dy =

logsu = logaelog u,

d (logau) 1du

ax = logae adx

d(logau) = logse %1

logy = uloga
ldy _ | du
ydz = 8%z

dy du
iz = ylogaa

el g B
=a*loga -

u

d._a__ u ] ﬂl.
dx = & Ogadx

dau = au log a du

(10)

an

(12)

dy = e”'d(x?) = 2ze”dx.
dy = ¢*® ?d(sinz) = cos z "™ % dx.
d(z +1)

_dz
z+ 1

z+1

=1 dz
= OBz

1 Change of Bass. Lets = logau. Then a* = u. Taking logarithms to the base

b,

Hence
Henoce

If u = bin (I),

slogya = logy u.

- logs u
logsa

z

- logs u
logsa

logs u

1
logs b = m-

We can therefore replace lo%z in (I) by log, b and obtain

log, u = log, blogy u,

To obtain (10) above let b = ¢

(0]

an

(III)
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5. If y = etan”'z,

1 2
6. If y = log Elf:)),

and

7. Ify = e*sinz,

and

’

Find the first derivative of each of the following:

1 y =e¢"

2. y =e",

8. y = log (z2).

4. y = log (z%).

6. y =log (z2 — 1).
16. y= logm z.
17, y = 5=,

18, y = 25 5=,

10. y = log a=z)"

CALCULUS 582
-, 4z
— ptan~iz - — otan~iz 7% |
dy =¢ d(tan—'z)=¢ itz
y=2log(l+2z)—3log (1l —2),
_ 2dx 3dz  5+=z
Zy_1+x+1—z_1—z’dz'
% = ¢*(cos = + sin.x)
% = 2e% cO8 Z.
Exefcises
6.y =log(1 —z%). 11y =¢sinz
7.y = e*cos z. 12. y = ¢tan 2,
8. y = e, 18. y =log vzt - 1.
9. y = ¥, 14. y = e~=sinz.
2)3
AL+2D° 15 4 = 10-.

19. Show that the subtangent for the curve y = a* is a constant.
What is this length whena = e?

Ilustrations.

8. If dy = e=dz,

9. If

10. If

y—fe‘dx—e'+0
dy = ze*'dz. .
y-—fxe*dx
= 3 [eaay
= }e=' 4 C.
dy = dx
y—log:c+0

= logz + log K
= log Kz.
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- g9z
T+
=log(z+1)+C
= log K(x + 1).
_zdz_
2+1
zdz
v= |51
2zdx
bl st
=34log (224 1)+ C
=log\vVs2F+1+C
= log KN/z* + 1.
13. If dy = ¢™* cos z dz,
y =fe'i“ *cos z dz
=e™® 4 (.
(z+1)dz
2+ 2z + 3

(z + 1)dz
2+ 22+ 3

2(z + 1)dz
=3 2+ 2z+3

=3log(@*+2c+3)+4+C
=logVz*+2z+3 + C
= log KA/7* + 2z + 3.
15. If dy = tan z dz,
Y= ftanxda:

11. If dy

12. If dy =

14. If dy =

sin z
== ——dx
f cos T

= —logcosz 4 C
= logsecz 4 C.
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16. If dy = cot zdz,
y = fcot zde
1 P 0_0_?__33
sin
= log sin z + C.
17. If dy = sec z dz,

y=fseczd:c+C

_ [ (sec = + tan z) sec zdx
n secr + tanx

secxtan:c+sec’xdx
secz 4+ tan

= log (sec z + tanz) + C.

. dz
18. Find f\/m
Let
v= VAL
2 =22 + a2
20dy = 2z dx
whence
do _do
z v
By composition,
dv _ dz _ dz + dv
z v z+v

Then, since v = V22 + a?,
2

f_gx__fdx+do
Varta J ztv
=log(x+v)+C
=log (z + V2* £ a?) + C.

19. If dy = é_:-—l

- e*dz
VY= Je+1

= log (e + 1) + C.

[§82
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20. If d_y = d_xy
Yy =z
logy = log z + log C
logy = log Cz
y = Cz.
21. If d_‘_l/ = n@,
Yy z

logy = nlogz + log C
= log z» + log C
= log Cz~,

y = Czn,

Exercises

151

The results of Illustrations 15, 16, 17, and 18 are to be used as

formulas of integration.
In the following exercises ind y:

20. dy = z% e’ dz. 27. dy = tan 2z dz.
21. dy =e™" ® sec? z dz. 28. dy = cot 2z dz.
22, dy = 5%-. , 29. dy = sec 2z dz.
23. dy = Ty 80. dy = (log z)? %-z
zdz? cos z dz
24. dy = T+ 81. dy = snz+3
zdz e* — e~*)dx
26. dy = ']Tzz' 32. dy = Lfem_):—"
“(e* + 1)dz sec’zdzr
. 4y = N 3. dY = ong
e2? — 1)dz
' 34. dy = (—74_—-)1—-.

85. Find the area between the equilateral hyperbola zy = 10, the

X-axis, and thelinesz = land z = 2.

36. The volume of a gas in a cylinder of cross section A expands
from volume v, to volume v.. If it expands without change in tem-
perature the pressure, p, on the piston varies inversely as the volume
(Boyle’s Law, pv = K). Show that the work done by the expansion is

LY
Kf & _ Klog 2
o1 v n
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37. The subtangent of a curve is of constant length, k. Find the
equation of the curve.

38. For what valueof z is the rate of change of log;o = the same
as the rate of change of z?

89. Jcsczdz. (See Ilustration 17.)

zdz
40. | tan 36 do. 48, | —
f V1=z
41, f €°°89 gin ¢ do. 49, f 10-dz.
[} dz
42, | cot 3 de. 50. f m°
- .
? (1 —sinz)dz
43. f:c sec?(z? 4 1)dz. 51. A W
44, f sec 3 dz. 52. f €1 + 080 gipy g g,
dz zidz
45. f = 53. f Py
' e s
46. —_— b4. ———
j; V1+z J Vet
dz ) T2dz
4. f Vi-z 86. f (@ +297

56. f(tan 260 —1)2d6 = % tan 26 + log cos 20 + C.

b7. f csc(7z + 5) dz.

(z + 2)dx .
Vot t7

L dz
59. fe’ z

go. [z +2dz
" )3+ 4+ 9
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61 (z +2)dz
gl REEwraEN )L
62. Show that'y = ge~™ cos w! satisfies the differential equation

+2k +(w’+k*)y=0

63. Find the mean ordinate of the curve y = 5 between the limits
z=1landz = 2.

83. Logarithmic Differentiation. It is often advantageous in
finding the derivative of y = f(z) to take the logarithm of each
member before differentiating. A number of examples will be
solved to illustrate the process.

$
Illustration 1. Find the derivative of (—l% Let
z+1)
u—n*
(z+ 1)5

and take the logarithm of each member.
logy = $log (z — 1) — $log (z + 1).

Differentiating,
ldy 2 3
ydz 3@z -1 5@+1D
__z+19 .
T 15(z2—1)
dy z+ 19
“1B5G@-1Y

s+19 (z—1t
15(2—1) (z + 1)t
- ‘x4 19 .
15@ -+ 1)¥
V1-z
Vol

Illustration 2. Find the derivative of

_Vizw
Y F1
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logy =} log (1 — %) — §log (z* + 1)

ldy z 2z
ydz~ ~ 1—2z' 3(*+1)
_ z(5+1?)
T T30 —-2Y

dy _ _z(6+2?) V1 =23
dr~  3(1—2Y Y241
z (5 + z2)
3vI—zt (et + )}
This method is manifestly shorter and simpler than that of differ-

entiating by the rule for the derivative of a quotient.
Tllustration 3. Find the derivative of (z* + 1)3=*2,

y = (:L" _|_ 1)3:0—2
logy = (3z + 2) log (22 + 1)

"_'—(3x+2) z+1+310g(xz+1)
[Gz+2 5 S+ 3log (et + D] + D

dy

d_
1dy.

y dc
It will be considered further in a later article.

is called the logarithmic derivative of y with respect toz.

Exercises

Find the derivative in Exercises 1-8.

3 ,
1.y=ﬁl)—§- 3.y=@+0n¥ez+nk
“ K ot 3) '

z H
=G ye-o
B. y = z*n°. (Solve by two methods.)

4. y=z1+2)V1-2

8. y = z8inz,
7. 8 = (7t + 3)10%2,
8.y = z V7,
In Exercises 9-16 find the logarithmic derivative,
9. y =e’% 12, y = zn.

0. y =z 18. y = ca™.
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11, y = xlz 14, y = et=tl = cebs,
16. y = 10*=+L,

16. y = uv, where u and v are functions of z.
17. y = ww, where u, v, and w are functions of z. Find Z—g
Find y if its logarithmic derivative is:

18. 6z + 7. Ans.y = Ce™*™
3 n

19. z 20. z 21. F(z). 22. k.
84. Compound Interest Law. If
' Y= Ce“: (1)
d
d—i’ = Cke* = Cky. @

Equation (2) expresses the fact already noted in §83, as a
characteristic property of the exponential function, viz., that the
function increases at a rate proportional to itself. We can show,
conversely, that if a function increases at a rate proportional to

itself, it is an exponential function.
~ Thus, let it be given that

d
o = hy. @)
Then .
W '
Yy
logy =kt + C
Yy = ekt+0 — ecekt.
Hence
y = Cet, 4)

When a function varies according to this law it is said to follow
the ‘‘ compound interest law.”” For, if & sum of money be placed
at compound interest, its rate of increase, for any interest term, is
proportional to the amount accumulated at the beginning of that
term. The more frequently the interest is compounded the
more nearly does the amount accumulated increase according
to the exponential law.

In many cases in nature the function decreases at a rate pro-

~
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portional to itself. The compound interest law appears in this
case in the form Ce*, where k is a positive constant. For, if

d
:igt = - ky,
it follows that

y = Ce™,

Ilustration 1. Newton’s law of cooling states that the tem-
perature of a heated body surrounded by a medium of constant
temperature decreases at a rate proportional to the difference in
temperature between the body and the medium. Let 6 denote the
difference in temperature. Then '

do
= k6. )]
and
0 = Ce*, (6)

The meaning of the constant C is seen at once on setting ¢t = 0.
It is the difference in temperature between the body and the
medium at the timet¢ = 0. If this initial difference in temperature
is known, (6) gives the temperature of the body at any later
instant. Call the initial temperature ;. (6) becomes

0 = B . U]

The time which is required for the temperature to fall from 6,

to 0. can be found from (7). Thus

01 = 006—"‘1
0; = Qge*
0
— = e~ (‘ —1)
g, =
whence
1 0
to —t, = ]—c]og E—; (8)

This result could have been obtained directly from the differ-
ential equation (5). Thus

de
7= — kb
dt = — 1d9 9)

ol
<
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Integrating the left-hand member between the limits ¢, and ¢; and
the right-hand member between the limits 6; and 6,,

(1] 1 Ozdo
it=—;1 =
j; kjJ, o

1
= —-Elogﬂ
1,6
k%8 9,

1. 8
t—t = plog Ei

02

0y

Illustration 2. Find the law of variation of the atmospheric
pressure with height.

Consider a column of air of unit
cross section (Fig. 60). Denote
height above sea level by & and the
pressure on unit cross section at this
height by p. The difference in pres-
sure at C and D is the weight of the
gas within the element of volume A____ BSea Lovel
of height Ah. Fia. 60.
Thus

4—:-—-»{»

) Ap = —gp Ah,
where p is the average density of the air in the volume CDEF.
Then

A

K% ==—9gr 1
and '

d

dg = —gp,

where p is the density at C. If the temperature is assumed con-
stant, the air obeys Boyle’s Law, pv = ¢, where v denotes the
volume occupied by unit mass of air. Since
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where
L
k c
Integration gives
logp = — kh + log C,,
or

p = Cre*,
When i =0, p = po, the pressure at sea level, and C; = p,.

Hence
P = poe*h 2

If A is measured in meters and p in millimeters of mercury,
k = wovo, (2) becomes

p = T60e—5is3 @3

Exercises

1. A law for the velocity of chemical reactions states that the
amount of chemical change per unit of time is proportional to the
mass of changing substance present in the system. The rate at which
the change takes place is proportional to the mass of the substance
still unchanged. If ¢ denotes the original mass, find an expression
for the mass remaining unchanged after a time ¢ has elapsed.

2. Assuming that the retardation of a boat moving in still water is
proportional to the velocity, find the distance passed over in time ¢
after the engine was shut off, if the boat was moving at the rate of 7

miles per hour at that time. Ans. s = %(1 — e7k),

8. The number of bacteria per cubic centimeter of culture increases
under proper conditions at a rate proportional to the number present.
Find an expression for the number present at the end of time . Find
the time required for the number per cubic centimeter to increase
from b; to bs. Does this time depend on the number present at the
time ¢ = 0?

4. A disk is rotating about a vertical axis in a liquid. If the retar-
dation due to friction of the liquid is proportional to the angular
velocity w, find w after ¢ seconds if the initial angular velocity was wo.

5. If the disk of Exercise 4 is rotating very rapidly, the retardation
is proportional to w? Find w after ¢ seconds if the initial angular
velocity was wq.
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86. Relative Rate of Increase. If the rate of change of a func-
tion is divided by the function itself, the quotient is the rate of
change of the function per unit value of the function. This
quotient has been called the relative rate of increase of the function.
If a function varies according to the compound interest law, its
relative rate of increase is constant, i.e.,

1dy

vt k.
One hundred times the relative rate of increase is the percent rate
of increase. Thus if

the percent rate of increase is 2. This means that y increases 2
percent per unit time. Any of the Exercises 1~5 might have been
stated in terms of the relative rate of increase of the function
concerned. '

Exercises

1. Given that the intensity of light is diminished 2 percent by
passing through one millimeter of glass, find the intensity I as a func-
tion of ¢, the thickness of the glass through which the light passes.

2. The temperature of a body cooling according to Newton’s Law
fell from 30° to 18° in 6 minutes. Find the percent rate of decrease of
temperature per minute.

86. Hyperbolic Functions. The engineering student is likely
to meet in his reading certain functions called the hyperbolic
functions. These functions present analogies with the circular
functions and they are called hyperbolic sine, written sinh, hyper-
bolic cosine, written cosh, and so on.

These functions are defined by the equations:

ez + e~z
coshz = s sechz = ’
2 cosh z
. ex —e=
sinh z = »  eschz = = s
2 sinh z
e* —e? 1

tanh z =

s O = fmny

cosh z and sech z are even functions, while the remaining four are
odd functions
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Exercises
1. By making use of the definitions the student will show that the
following identities hold. They are analogous to those satisfied by the
circular functions.
cosh*z — sinh?z = 1.
1 — tanh?*z = sech?z.
2. Show by the use of the defining equations that:

dcosh z

= ginh z.
dsinh z
iz cosh z.
dtadl;h L sech? z.
'ﬁ%lﬁ = — csch?z.
ds;(;hz = — gech z tanh z.
(_ic?c%: = — csch z coth z.

8. Sketch the curves y = cosh z, ¥ = sinh z, and y = tanh z.

87. Inverse Hyperbolic Functions. The logarithms of certain
functions can be expressed in terms of inverse hyperbolic functions

Let

y = sinh~1z.
z =sinhy = pad ;e_v’
or
e — 2zev — 1 =0,
whence

ev =zt a2+ 1.
The minus sign cannot be taken since ev is always positive.
Hence

e =z+ V2241,
y= sinh;‘x =log (z + Vz2 +1).

and
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Exercises
1. Show that

cosh™1z =log (z + V22 — 1).

Since .

1
- 2 e ] =
z \/Z z + \/z’ = 1,

log (z — \/z’ —1)=—-log(z + Vzz —1).
Therefore

cosh~lz = + log (z + V=t — 1).

The inverse hyperbolic cosine is then not single valued. Two values
of cosh~1 z, equal numerically but of opposite sign, correspond to each
value of z greater than 1.

2. Show that: )

tanh~1z = } log i tz’ if z22<1;
coth~lz = 4 log :i- i: if z2>1,;
14+v1 -2z
sech™tz = + log __"'__z.l__?_, if 0<z<1;
1 ,/ 2
csch=lz = log Lf—ﬂ, if z>0;
and _
1 -zt
esch-1z = log __Tﬂ’"'_!’ if z<0.

The student is not advised to memorize the formulas of this and the
preceding sections at this stage in his course, but to acquire sufficient
familiarity with the hyperbolic functions to enable him to operate with
these functions by referring to the definitions and formulas given here
and to others that he.will find in mathematical tables.

88. The Catenary. Let AOB, Fig. 61 a, be a cable suspended
from the points A and B and carrying only its own weight. Let
us find the equation of the curve assumed by the cable, consider-.
ing it homogeneous. We shall assume that the curve has a
vertical line of symmetry, OY, and that the tangent line drawn
to the curve at O is horizontal.

Take OY as the Y-axis. Imagine a portion of the curve, OP,
of length s, cut free. To hold this portion in equilibrium the
forces H and T, Fig. 61 b, must be introduced at the cut ends.

1
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H and T are, respectively, equal to the tension in the cable at
the points O and P and they act in the direction of the tangent -
lines drawn to the curve at these points. The portion of the cable
OP, Fig. 61 b, is in equilibrium. Hence H’, the horizontal com-
ponent of 7, is equal to H.

a ‘f’—ar
P ’
H 4—Q/ * "
b
Fie. 61.

V, the vertical componeht of T, must balance the weight of the
portion OP of the cable. Hence

' V = sw,
where w is the weight of a unit length of the cable.
From Fig. 61 b, it is seen that

dy V _V _ ws
dic " H H™ H
Let
w _1
H
Then g
y s
i = o ) )

This differential equation involves three variables, viz., z, y, and

s. s may be eliminated by differentiating and substituting for o

its value,

Thus




—
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The equation now involves only two variables and may be written

dy
@) ., o
Ve (@ 0

If we look upon % a8 the variable u, the left-hand side of equa-

tion 2) is
du

V14 u?
whose integral is log (4 + /1 4 u?). (See Illustration 18, §82.)
Integrating (2),

log [% + \/1 + (Z—Z) 2jI = :—;+ C. 3)

Whenz =0 d_x—o

Hence C = 0 and (3) becomes
Zi’+\f1+( ) = e, T @

From the symmetry of the curve Zz changes sign when z is re-
placed by —z. Then from (4),

dy dy\ 2 _ -z
-t 1+(d—z) =¢ o, (5)
Subtracting (5) from (4),
dy 2 -z
2 iz =¢e —¢ 9, (6
or
N ' @
Integrating (7),
y=acosh§+02- ) (8)

If the origin is taken a units below the point O, Fig. 61 a,
y=awhenz = 0,and C; = 0. Hence

z
y = acosh - 9)
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This is the equation ef the curve assumed by the cable. It
is called the catenary.
Equation (9) can be written
Y = cosh X, (10)
where

Y=Y and x=2%
a a

The constant a depends upon the tautness of the cable. Equa-
tion (10) shows that the curve y = cosh z if magnified the proper
number of diameters will fit any cable hanging under its own
weight.

The length of OP can be found by substituting in formula 2, §63,

the value of Z—: given by (7), and integrating.
ds = \/l + sinh’zd:c
’ T
= cosha dz.

8 = asinh2+03.

Since s is measured from the point where the curve crosses the
Y-axis, s = 0 when £ = 0. Hence C; = 0 and

8= asinh j—;- (11)

. Exercises

1. If the two supports A and B, Fig. 61, are on a level, L feet apart,
and if the sag is d feet, show that the tension, 7, in the cable at the
points A and B is

T = w(a + d).

2. Beginning with equation (6) find expressions for y and s without
making use of hyperbolic functions.

8. If the cable, Fig. 61, is drawn very taut, show that the equation
of its curve is approximately

z2
y= 2_a’

if the origin of coérdinates is taken at the lowest point of the cable.

HINT. Begin with equation (2) and note that (‘iﬂ) ’is small com-

az
pared with 1.




CHAPTER X
MAXIMA AND MINIMA

In previous chapters maximum and minimum values of fune-
tions have been found by making use of the derivative. Besides
this method several others which do not involve the use of the
derivative may, at times, be used to advantage.

89. The Maximum or Minimum of y = ax*+ fx+ 9. In
elementary analysis the student learned that y = az% + 82z + v
represents a parabola with its axis parallel to the Y-axis, and
that the equation can be put in the form y = a(z — p)2 + gq.
The point (p, ¢) is the vertex of the parabola. If a is positive,
the vertex is a minimum point, if negative, a maximum point of
the curve. Let

y =3z — 12z + 19.
y=3>z—-2)* + 7.

The last equation shows at once that the minimum value of the
function is 7 and that it occurs when z = 2.

Exercises

Find the maximum or minimum values of the following:
1. y=3z22 -2z + 1.
2 y=3z—-222+41.
8. y =3z + 7z.
4. If a body is thrown vertically upward with an initial velocity of
a feet per second, its height & in-feet at the end of ¢ seconds is given by
h = at — 16.1:2

To what height will the body rise if thrown with an initial velocity of
32.2 feet per second? When will it reach this height?

90. The Function acosx + bsinx. The function a cosz +
bsin z is of frequent occurrence. If it is put in the form of
165
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the product of a constant by the cosine of a variable angle, the
maximum and minimum values can be found at once. Thus

_ b .
acosz + bsin z =+/a? + b2 [\ﬁa:ﬁcosx+\msm z]

may be regarded as the cosine and

a
Now,\/a2 T and Vot

sine, respectively, of an angle @. Forif P, Fig.
62, be the point (a, b) and the angle POX be a,

Y

a
CoOs @ = \/mr
and
. b . X
s e = \/a’-l-b’. Fia. 62.
Hence

acosz + b sin z = \/a® + b? (cos = cos a + sin z sin a),
or
acosz + bsinz = v/a? + b2cos (z — ). . )

The quadrant in which « lies will be determined by the signs of
a and b.

a is in the first quadrant if a is positive and b is positive.
a is in the second quadrant if @ is negative and b is positive.
« is in the third quadrant if o is negative and b is negative.
« is in the fourth quadrant if a is positive and b is negative.

In polar coérdinates equation (1) shows that the function
acosz + bsin z is represented by a circle passing through the
pole, of diameter 4/a2 + b?, and with its center on the line making
an angle a with the polar axis.

The right-hand side of equation (1) shows that the function is
represented graphically in rectangular coérdinates by a cosine
curve of amplitude /a2 + b2. Thus, the maximum value of
acos z + bsin z is v/a® + b* and occurs when r = «. The mini-
mum value of the function is — 4/a2? + b2 and occurs when
zT=a-+mT

Two examples giving rise to this function are solved below.
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Illustration 1. The weight W, Fig. 63, rests upon the horizontal -
surface AB. P is the force, inclined at an angle 6 with the
horizontal, which will just cause the weight to slide over the
plane. The problem is to find the angle 6 for which P will be a
minimum. The coefficient of friction is denoted by u.

The normal pressure, N, between the weight and the plane is
(W — P sin 0), the difference between W and the vertical com-
ponent of P. The force of friction, F, is then u (W — P sin 6).
The horizontal component of P equals F. Hence

u(W —Psin 6) = Pcos 0,
or

"I‘,V cos 0 + usin 6. 2)

Since u and W are consi;a.nts,%uZ is & maximum when and only
when P iz a minimum. Hence to find the minimum value of P
we may find the maximum value of "‘T;—W and multiply its reciprocal
by uW

Fia. 63.
From (2),

“E = VTHw cos (0 = ),

where a is an angle in the first quadrant whose tangent is u,
the coefficient of friction. Therefore, when 6 is acute and equal

wW
V14

Illustration 2. A weight, W, Fig. 64, rests upon the inclined
plane AB. Find 0 so that P, the force which will just cause W
to move up the plane, shall be a minimum.

The normal pressure, N, between the weight and the plane AB

to tan—! u, P is a minimum and equal to
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is equal to WecosB — Psin 6. Then F, the force of friction, is

equal to
p (W cos B — Psin 6), -

where u is the coefficient of friction. We have then
F = u (W cos B — P sin §).

Since the force of friction must balance the components of P
and W parallel to the plane AB, we have

u(Wcosf — Psinf) = (P cos § — Wsin f3).

Hence X
VZ(uAch_g;Fﬁlgﬂ = cos 0 + usin 0,
or .
W(pcos}ﬁ’+smﬁ) = 1+ ptcos (0 —a). @)

where « is the acute angle whose tangent is u. Thus, the left-
hand side of (3) is a maximum, and P a minimum, when 0 is acute
and equal to tan—! u.
W (ucos B + sin )

V1 4+ pu?

The minimum value of P is then

Exercise

In Fig. 64, find the minimum force, P, and the angle between its
line of action and A B, which will just prevent the weight W from slid-
ing down the plane.

91, The Function mx + +/a? — x2. Frequently problems in
maxima and minima lead to functions of the form mz + /a2 — z*.

The curve for
y=mrt Va?—z? (1)

can be obtained by shearing the circle y.= + /a2 — z2 in the
line y = mz. Every ordinate of the circle to the right of the Y-axis
is increased (or decreased if m is negative) by an amount propor-
tional to the distance from the Y-axis. To the left of the Y-axis
the ordinates are decreased if m is positive and increased if m is
neg;ltive.

The maximum value of y is easily found by placing

z = acost. (2)
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Then from (1)
y = a(mcost + sint) (3)

= av1+ micos (t — a), (4)

where a = tan-! —11; The maximum value of y occurs when
- am___,
Vitm

92. Maxima and Minima by Limits of Curve. Incase f(z,y) =0
is of the second degree in z and ¥, and in a few other cases, the
maximum and minimum values of y can be found by determining

when x changes from real to complex values.
The method will be illustrated by an example.

r=acosa =

Let
_ 246
Y=oz +1
Then
z=y+V({y+3)y-2): 0))

From equation (1) it is seen that for values of y greater than 2
or less than — 3, z has two distinct real values. When y = 2 or
— 3, z has two equal real values. When — 3 <y < 2, zisimagi-
nary. This shows that the line y = ¢ meets the curve in two
distinet points if it is more than two units above or more than
' three units below the X-axis; that it is tangent to the curve
when two units above and when three units below the X-axis, and
that it does not cut the curve when it falls within the limits two
units above and three units below the X-axis. Hence the func-
tion has a minimum value 2 and a maximum value —3.

Exercises

1. Find the maximum and minimum values of

z? -2z 4+ 19
22 +5
2. Find the maximum rectangle which can be inscribed in a circle
of radius 10.
93. Maxima and Minima Determined by the Derivative. The
first derivative has been used to determine the value of the argu-
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ment corresponding to maxima and minima of functions. Im-
mediately to the left of a maximum point the function is increas-
ing with z and consequently the first derivative is positive. On
the other hand, immediately to the right of such a point the func-
tion is decreasing with z and the first derivative is negative. Simi-
larly it follows that the first derivative is negative immediately
to the left and positive immediately to the right of a minimum
point. In both cases the first derivative changes sign as the inde-
pendent variable passes through the value for which the function
has a maximum or a minimum value. This change of sign may
take place in a number of ways.
Illustration 1. Thus, in the case of the function

y=z2—-2z+7,
- the derivative,

dy
a—x—zx—2—2(x—l),

is negative to the left and positive to the right of the line z = 1.
When z = 1, g = 0 and the curve has a horizontal tangent. In

_ the vicinity of this point the curve has the
shape shown in Fig. 65.

1 At first thought it might appear that if the
first derivative is negative to the left and
positive to the right of a certain point, it

Fm.'65. certainly must become zero at this point.

This is, however, by no means the case, as
the next illustration will show.

Tlustration 2. y =4+ (z — 1)}, Although the minimum
value of this function can be determined at once by noting that
it represents a semi-cubical parabola with its vertex at (1, 4), the
problem will be worked by the method of the calculus for illustra-
tive purposes.

The derivative,
dy 2

—_—

is negative when z < 1 and positive when z > 1. Hence the
function is decreasing to the left and increasing to the right of
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z=1. When z =1,y =4. This value is a minimum value of
the function. For z = 1 the derivative does not exist, as the
denominator becomes zero. Let us see what really happens in

the vicinity of £ = 1. As z approaches 1 from the left, 2 takes

on larger and larger negative values. The form of the curve to
the left and in the immediate vicinity of the point (1, 4) is some-
thing like that shown in Fig. 66. The line z = 1 is tangent to
the curve at this point.

As zapproaches 1 from the right, 7.e., through decreasing values,
the derivative becomes larger and larger. The form of the curve
to the right of the line z = 1 is also shown in Fig. 66. The line
z = 1is also tangent to the portion of the curve obta.med by allow-
ing z to approach 1 from the right.

0/

\
»

p

(1.4)

Y

X
Fi1a. 66. F1a. 67.

It is now apparent that the first derivative may change sign
without passing through zero. In the above illustration it changes
sign by becoming infinite.

The first derivative may change sign in still another way as
illustrated by the curve of Fig. 67. Let us suppose that the de-
rivative approaches —1 as x approaches a from the left, and the
value +1 as z approaches a from the right. The function has a
minimum value at the point P, for the derivative changes from
minus to plus as z increases through the value a and consequently
the function is decreasing to the left and increasing to the right
of z = a.

The essential thing at a minimum point is that the derivative
changes sign from minus to plus, and at a maximum point that it
changes sign from plus to minus.

o
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A derivative which is continuous at a maximum or a minimum
point changes sign by passing through zero. But it may change -
sign by becoming infinite, as the second illustration shows, or by
becoming otherwise discontinuous as explained above. This last
type is of rare occurrence and will not be referred to again.

Illustratton 3. y = z%+ 3. The derivative of this function,
gl_; = 3z?, is positive for all values of = except x = 0, when it is
zero. The function is increasing for all these values of z. At
this point, (0, 3), there is a horizontal tangent but the function
has neither a maximum nor & minimum at the point, for it in-
creases up to the value 3 for z = 0 and then continues to increase
to the right. This illustration brings out clearly the fact that
there is no reason for assuming that a function has a maximum or
a minimum value at a point where the first derivative is zero.
What kind of a point is the point (0, 3)?

94. Second-Derivative Test for Maxima and Minima." In the
first of the three types of maximum or minimum points considered
in §93, the first derivative changes continuously from positive to
negative values or vice versa. For a maximum point of this type
the curve is concave downward and the second derivative is
negative at such a point. For a minimum point the curve is
concave upward and the second derivative is positive. A con-
venient test for the behavior of a function at a point where the
first derivative 13 zero is then, to substitute the absoissa of this
point in the expression for the second derivative. If the second
derivative is positive the point is a minimum point; if negative,
a maximum point. If the second derivative is zero, the test
fails. This test also fails for maximum or minimum points where
the first derivative is discontinuous.

Examine the curves

y =%,
y = x4
y =28

96. Study of a Function by Means of its Derivatives. The
following is a summary of the application of the first and second
derivatives to tracing the curve representing a function:
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1. The function is increasing if the first derivative is positive,
. and decreasing if it is negative. v

2. To find maximum and minimum points find the values
of = for which the first derivative becomes zero or infinite. If
the derivative changes sign at any of these points, the correspond-
ing point is & maximum or minimum point according as the
change is from plus to minus or vice versa.

Points at which the first derivative is equal to zero can also be
tested by substituting the abscissa of the points in the second
derivative. If the second derivative is positive, the point is a
minimum point, if negative, a maximum point.

3. Points of inflection are found by determining where the
second derivative changes sign. As in the case of the first
derivative, the change in sign can take place through zero or
infinity. If the change is from positive to negative values the
curve changes from being concave upward to being concave
downward.

The abscissas of the points at which the first and the second
derivatives become zero or infinite we shall call the ecritical
values. These values and these alone need be tested in study-
ing the behavior of an ordinary curve. The investigation of a
curve by means of its derivatives can be put in the tabulated
form shown in the following illustrative examples:

1. y = §z% (See Fig. 33.)

% = }z2
d?y
(_i;’ = Z.
dy
dz = 0 when z = 0.

d%y _
a = 0 when z = 0.

ay | dy

£2<0 | <0 | >0 |Concave downward, increasing
z>0 | >0 | >0 |Concave upward, increasing
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Here (0, 0) is a point of inflection. There is neither a maxi-
mum nor & minimum point.
2. y=13%zt— 22+ 3z 4+ 2. (See Fig. 34.)

d
Y=t —22 41
=3(z — 1)(z — 3).
d?y
(—E—z =z —2.
Z—Z = Owhenz =1, 3.
2
3711 = O whenz = 2.
I d%y dy
dz? dz y
z <2 < 0 | Decreasing | Concave downward
z>2 " > 0 |Increasing | Concave upward
r<l1 >0 Increasing
1<z<3 <0 Decreasing
z>3 >0 Increasing
1 %
2 %
3 2
0 2

(2, %) Point of inflection.
(1, 4) Maximum point.
(3, 2) Minimum point.

Apply second derivative test forz = 1 and z = 3.

96. Applications of Maxima and Minima. In solving problems
involving maxima and minima the first step is to set up from the
conditions of the problem the function whose maximum or mini-
mum value is sought. Frequently the function will be expressed,
at first, in terms of two or more variables. Usually, however,
there is a relation between these variables, and the function can be
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expressed in terms of a single variable. After this has been done
the maximum or minimum values can be found.

Exercises

1. Equal squares are cut from the corners of a rectangular piece of
tin 30 by 20 inches. The rectangular projections are then turned up
forming the sides of an open box. Find the size of the squares cut out
if the volume of the box is a maximum.

2. A man who is in a boat 3 miles from the nearest point, 4, of a
straight shore wishes to reach, in the shortest possible time, a point
B on the shore which is 6 miles from A. Find the point of the shore
toward which he should row, if he can row at the rate of 3 miles per
hour and walk at the rate of 5 miles per hour.

8. The horizontal component of the tension in the guy wire BC,
Fig. 68, is to balance the horizontal pull P. If the strength of the wire
varies as its cross section, and if its cost varies as its weight, find the
angle 0 such that the cost of the guy wire shall be a minimum.

P B

A
F1G. 68. F1a. 69.

4. Find the length of the shortest beam that can be used to brace
a wall if the beam passesover a second wall 6 feet high and 8 feet from
the first. .

5. A steel girder 30 feet long is moved on rollers along a passageway
10 feet wide, and through the door AB, Fig. 69, at the end of the pas-
sageway. Neglecting the width of the girder, how wide must the
door be in order to allow the girder to pass through?

8. A sign 10 feet high is fastened to the side of a building so that the
lower edge is 25 feet from the ground. How far from the building
should an observer on the ground stand in order that he may see the
sign to the best advantage, i.e., in order that the angle at his eye sub-
tended by the sign may be the greatest possible? The observer’s eye
is 5} feet from the ground.

7. A man in a launch is m miles from the nearest point A of a
straight shore. Toward what point on the shore should he head his
boat in order to reach, in the shortest possible time, an inland point
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whose distance from the nearest point B of the shore is n miles? The
man can run the boat v; miles per hour and can walk v; miles per hour.
The distance AB is p miles.

Ans. Toward a point such that

sin 6, _ sin 23

V1 V2

where 6, and 6, are the angles made by the paths of the man with the
normal to the beach. It will be noticed that the path taken by the
man is similar to that followed by a ray of light in passing from one
medium to another with a different index of refraction.

L6

1)

‘.25(2 -2 -2z
(1) y=e%ose
1 8) ¥y=e
(1) y=er-02e 2
@ (6) Y=e-05e
A\ (8) Y=e -08¢

1) y=e>- 2%
(8) y=e"-15e

05

N
v

-2z

©)
282

(W]
0 /|

(8)/
=25

b
0 5 1 L5 2 25

Fia. 70.

8. A man in a launch is m miles from the nearest point A of a
straight shore. He wishes to touch shore and reach, in the shortest
possible time, a second point on the lake whose distance from the
nearest point B on shore is 7 miles. In what direction must he head
his boat if the distance AB is p miles?

The path taken by the man is similar to the path of a ray of light
reflected by a plane surface.

9. It is desired to make a gutter, whose cross section shall be a
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segment of a circle, by bending a strip of tin of width a. Find the
radius of the cross section of maximum carrying capacity.

10. A sector is cut from a circular piece of tin. The cut edges of
the remaining portion of the sheet are then brought together to form a
cone. Find the angle of the sector to be cut out in order that the
volume of the cone shall be a maximum.

11. The stiffness of a rectangular beam varies as its breadth and as
the cube of its depth. Find the dimensions of the stiffest beam which
. can be cut from a circular log 12 inches in diameter.

12. The strength of a rectangular beam varies as its breadth and as
the square of its depth. Find the dimensions of the strongest beam
which can be cut from a circular log 12 inches in diameter,

15

"
125

1) y=e 240567

(2) y=€ .
(2) (s; Z-ﬂ -01€ 307
1 ® (4) y=e7 -05¢
a -e~102
(5) Y=e 2 -e 0% o
(6) Yy=€®-15€
75
4)

(5)
5 N
) \
25 \\
~——
0 5 1 1.5 2 2.5
Fia. 71.

18. Consider the sum
v = az" + bz"
for positive values of z only. First, if » and r are of like sign, show
that: (1) a maximum or a minimum value exists if a and b are of
unlike sign; (2) neither a maximum nor a minimum value exists if a
and b are of like sign. Second, discuss the same cases if n and r have
opposite signs.
14. Determine the exact values of the maxima shown in Figs. 70
and 71.
HinTt. Consider first the general case
Yy = e~* — ae™d3,
12



CHAPTER XI
POLAR COéRDINATES

97. Direction of Curve in Polar Cobrdinates. Let BP(Q,
Fig. 72, be a curve referred to O as pole and OA as polar axis.
Let P be any point of the curve and let PT be a tangent to the
curve at this point. Let PS be the radius vector of the point P,
produced.

A point describing the curve, when at P, moves in the direction
pr PT. This direction is given by the
angle ¢ through which the radius
$ vector produced must rotate in a posi-
tive direction about P, in order to be-
come coincident with the tangent line.
0 4 An expression for tany will now be

Fia. 72. found. Let @, Fig. 72, be a second

point of the curve. PR is perpendicu-

lar to 0Q, and PM is a circular arc with O as center and radius
OP = p.

im PR
tany = A,_o tan RQP = Al;To R m
The infinitesimals PR and RQ can be replaced by PM and MQ,
respectively, if (see §60)
lim PR

%0 ppf = 1 @
and R0
i
A:Tom =1 3)
Equation (2) is true by equation (3), §66. The proof of equation
(3) follows:
lim RQ _ lim RM + MQ
2620 }7Q ~ 26%0 Q
_ lim p(1 —cos Af) + Ap
T A8%=0

Ap
lim p(1 —cos AB) A8
=1t ag B
178
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Hence
lim RQ _ 1
a0=0 MQ ~
since ’
lim 1 —cosAf 0
2040 Ad =9.

From (1), (2), and (3) it follows that

lim PM _ lim pA8
tan ¥ = aolo 37 = a00 Ay

Hence
de -
tany = p -
ny =p dp
= P '
tany = dp (4)
dé

This formula! can be easily remembered if the sides of the tri-
angular figure MQP, Fig. 72, are thought of as straight lines, and

14

a0

A
4%

2
. Fia. 73.

in 6
1 This formula enables us to give another proof for 4 ;‘: 3

In polar cosrdinates

p = sin 0 represents a circle, Fig. 73. By geometry, ¢y = 6. Then
P sin 9
tanw-tano-dp- ﬂ"

a6 do

dp
do — co8 6,

d 8in 0
a3 = cos 6.
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the angle MQP as equal to y. Then the tangent of ¥ would be

dé o
14 (Tﬁ = Q—P
do
Formula (4) corresponds to Z—: = tanr in rectangular codrdi-
nates.
Hlustration 1. If p= eol,
:il—z = aeal

1
. and tany = a8 constant.

Illustration 2. Find the equation of the family of curves for
which the angle between the radius vector produced and the
tangent line is a constant.

tany =k
£
="
do
or
dp
d—osl’
p k
d 1, .
;—=Ed0.
Integrating
0
logp=7c+0 .
0
p=e’:+c
0
=ecei,
or
e
p=Kek,

where K is an arbitrary constant.
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Exercises

Find tan y for each of the following curves:

1P=%_ _ 4. p = a(l — cos@).
[ __a_.

2. p =alb. " P™ I —coso

8. p = e, 6. p =acos (0 — a).

98. Differential of Arc: Polar Codrdinates. We shall now
find an expression for %% in polar codrdinates. From Fig. 72,

(chord PQ)? = (PR)? + (RQ)*.
From which

lim /chord PQ lim /PR\? lim /RQ\*
soxo| —ap— ) Tasso| zp + a0so0 Y]

Replacing chord PQ by arc PQ = As, PR by PM = pA#f, and
RQ by M Q= AP’

lim (As\* _ lim [pA@\*  lim (Ap)\?
amwo| xp) = aeso| 75 + aeso A0
Therefore
ds\? 2
ey o

ds = \/ T-I-—<—)_dl9 2

This formula can be written
(ds)? = p%(d6)? + (dp)%. 3

It corresponds to (ds)? = (dx)? + (dy)? in rectangular codrdinates.
It can be remembered easily by the help of the triangle MQP,
Fig. 72.

The length of the curve can be expressed as a definite integral.
Thus: (See Fig. 74)

and

lim ?
8= A0a0 E PQ

0=a
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lim °=r -
= ms0 3, VPR + (RQ)’
6= a
lim °<’ [/PR\* (R
.3 ,wA—o) : <A—<3>’Ao
Y
- E\/ ’+ I
0=«

8 ’ dp
=j; p2+ &6 do.

Illustration. Find the entire length of the curve p=a(1—cos 6).
This curve is symmetrical with respect to the polar axis. The
length of the upper half will be found and multiplied by 2.

_p = a sin 6.
= f Va*(1 — cos 6)2+ a?sin? 0 d6
_2af ’l—cosa
=2af sin —d0
[]

= - 4acos§|°= 4a.
s = 8a.

Exercises

1. Find the entire length of the curve p = 2a sin 6.
2. Find the entire length of the curve p = a(1 - sin ).

8. Find the entire length of the curve p = a sin? -;—

4. Find the length of p = ¢’ between the points corresponding to
0 =0and § =x. Also between the points corresponding to 8 = 0

and 9 = g
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6. Prove formula (3) directly from
x = pcosé,
= psin 6,
and
ds = +/(dz)* + (dy)*

‘99, Area: Polar Codrdinates. Find the area bounded by the
curve p = f(0) and the radii vectores 6
= aand § = 8. We seek the area
BOC, Fig. 74. * Draw radii vectores
dividing the angle BOC into n equal
parts A8. Let POQ be a typical one
of the n portions into which the area
is divided by these radii. The angle
POQ is A8. The line OP makes an
angle § with the initial line 04, and
its length is p = f(6). Denote the area of BOC by A.

4 =13 Pog. ¢

Replace! POQ by the circular sector POR whose area is $p2A0.
Then

Fig. 74.

=0

PRI

f=a

;]
A= %f p*de,

B8
= %f [f(6)]* d6. @

Exercises

1. Find the area bounded by the curve p = 2a sin 6.
2. Find the area bounded by the cardioid p = 2a(1 — cos 6).

HINT. cos?d = l_+_<;os 20-

or

1Let AA = OPQ (Fig. 74). PR and QS are arcs of circles. Then
. OPR < AA < 08Q,
.6,

10200 < AA < §(p + Ap)200.
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8. Find the area bounded by p = 2a(1 + sin 6).
4. Find the area bounded by one loop of p = 10 cos 26.
5. Find the area bounded by one loop of p = 10 sin 26.
6. Find the area bounded by one loop of p = p cos 36.
7. Find the area bounded by one loop of p? = 10 cos 24.
8. Find the area swept out by the radius vector of the curve
p = ab, as @ varies from 0 to 2r.
w

9. Find the area bounded by the radii vectores 6 = v 6 = =, and

the curvep = %—3
10. Find the area bounded by the radii vectores 6§ =0, 6 = gand

the curve p = 562.



CHAPTER XII

INTEGRATION

100. Formulas. In Chapters III, VI and VII the following
formulas of integration, with the exception of (19), have been used.
They are collected here for reference, and should be memorized by
the student.

N n = 1 ;a 1 —
1" Jw du—n_’_lu“+0,1fn9-é 1.

2. f%:—‘= logu +C.

3. Jevdu =ex+C.

4, faudu= lq;

fsinudu‘= — cosu + C.
.fcosud'u=sinu+C;
.fsec’udu=tanu+0. -

. fcsc’udu= — eot u + C.
fsecutanudu=secu+0.

10. fcscucbtudu= ~cscu + C.

11. ftanudu=logsecu+0.

12, fcotudu=logsinu+0.

13. fsecudu=log(secu+tanu)+0.

14. fcscudu = = log (csc u + cot u) + C.

du U
o [t e e
185

.aa'+C

©® 0 N e @
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. du 1, _u
16. fm = &tan ‘}'&"‘ C.

du |
fu\/uﬁ—az asecla+0.
lgf =log (u + Vur + a?) + C.

19. f———- 2a1°gu+a+c fu>a

+C’ ifu<a.

11
Oga+

Formula (19) is proved as follows:

1 1 11
ut—a? 2a|lu—a u+a
du 1 1 1 du
ut—a?2 2a)|lu—a u-+a
_tfdu _1[ du
" 2aJu—a 2afu+ta

1 1
=2 log (u — a) — —log (u 4+ a) + C.

1 log +C

u+a

This formula leads to the loganthm of a negative number if 4 < a.
To obtain a formula for this case write

_1__l[_ 1 1]
wr—a:. 2l a—u a+ul

Then
du 1 a—u .
fu’—a? = %loga-i-u +C.
Exercises
1 zdz . 3 dz .
* V16— =22 * ] V22 =16

dzr dz
% f\/16—z’ & fx’+16
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-B. _dz | 14. |sec (20 + 4) tan (260 + 4) db.
z? — 16
’ 16. f csc? (3 — 2¢) do.
6 dz | )
: flﬁ -z 6. feszdn.
. z d:c €08 0 o
7. fm- 17. fc sin @ dé.
3t2dt
dz 18, | i —r
N e —— 30” 13
8 f z4/7* — 16 +
19. b — +/z)%dz.
9. [cot 7¢ dt. Joe - vara
(z+ a)dz 20. fV3+4$d‘"-
10, |ETOC
z? 4 2az a1 f dy
u [ -10tzde VE-3y _
' v
1. [sin @z —3)dz. 22. f e3dy.
18. fsec’ (5a + 2)da. 23. fetan 2z +3) gec2(2z + 3) dz.

z+1

z =
26. f [e2 +e 2]dx. 31. [ewdaz.
26. [ as< d. dz
f .82, f T

27. f 2z + 4)95 dz.

z2 42 . . .
24. dz. Divide numerator by denominator.

3 cos z dz
28. ftt-l-‘-?dt‘ 33. f4+3sin:c‘
__dr (  dz
. 7211 3. V16 — 932'
dz
30. f o @ =D 35. [tan Ba+4)da.

86. f(tan0+cot0)’d0 =tan § — cot 6 + C.

87. f (sing — cos 50) do. 89. |cos (3t —4) dt.

: ydy
38. f cot (5¢ — 8) dt. 40. fs — &
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a [—%2—

) V3EE+FT , \
. f dz sec? (9 — 7z)dz.

* )7 -5z

63. f 3 sec’ d:c

48. |tan (2z — 5) dz.
44. |sec (2y + 4) dy. 64. f tan* z sec? zdz.
468. |csc (2y — 7) dy. 66. | cos?3zsin 3zdz.
46. [cot (3t + 11) dt. 6. f tans 5z sec? 5z dz.

61. ] cos® (3z — 2)sin (3z — 2)dz.

47. f sec? (g - )d:c 67. ] sectz tan zdz.
48. f cos (3 — 2z)dz. 68. | csc’ z cot zdz.
2z +5 69. |z tan (222 — 5) d:z;.
49 f:c_’ T . ]
dt 70‘ fsm:ccqs::; Z.
50. f9t'+4 4 +s8in2z
cos z dz ‘
5. f gt,d_t_ 5 n. f itsniz |
72 f = La ' l
o f \/sm = |
53 73. f (a3 = zY gz .
\/4 o ) it 3
74. f e |
. 32— 2502 ‘
il IOV 9t= 2
55 tdt 1. [1n/6r — 174 ‘
cJ V-4 z dz
56 f L " )vi-e
* o =14 .
m sin 5z dz .
B87. fsec 5z dz. * J3cosbr+11
58. f sin (wf + a) dt. 78. [ 32 cog 3z dz.
59. fcos’ 4z sin 4z dz. 70. fe“’ +62+ 7z 4 3)da.

60. |sin* (z + 3) cos (z + 3)dz. 80. | cos 5z sin 3z dz.
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81. | cos 3z cos 5z dz.

82. |sin 7z sin 4z dz.

85. Finmt cos nt dt, where m and n are integers. What is the

value if m = n?

INTEGRATION

88. | sin 3t cos 4t dt.

*
84. | gin?5tdt.
0

868. | cos (3wt + «)sin (3wt + a)dt.

2z +3

8T. | =2 o dz.

o iz,
8. | iy + 111 dz.
. =t .

o1. f sin® 50 cos 50 d6.
93, [sintzdz.
93. f 2+/16 — 7% dz.

94. fsec’ +2

96. sec'4:ctan4zdz.
\/z_r
Vz 2

dz
os.f—ﬁ_w-
dz .
Vi =5
100. fsin4zooe6£cdz.
101. f(va- 2)* dz.

2z+3dz

102. 2z 4+7"

Vs
104, [sint2s cos 22 dz.
106. [Vainz cos 2 dz.
108. fe- .
or. [(ez - B)ida.

T
108. sec -ida:.

109. [sec (3¢ — 2) tan (3¢ — 2)dé.

10. [tans(2z — 1) sec* (22 — 1) dz.
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sec? 3z zdz
. f T+ ten 82 118. f wtd
N dy
112. \/2 - 3z dz. . —
f oy
113. [tan (5 - 20)do. vdy
120. \/——
3y —7
114, | 2%
5 — 3z? 121, f sect 6 tan 6 dé.
dy %
115, f = 122. f VTEST
118.. f : i g dz. 123, fsil_l' -gcos gd:c
117. fz+49dx. 124. fcos 2z sin Zds.
101. Integration of Expressions Containing ax? + bx + ¢, by
Completing the Square. :
Ilustration 1.
dz dz 1. rz+2
f:c’+4z+9_ @+27°+5 tant =22 + C.

Illustration 2.

f dz _ dr _ dz

m?_f\/m_f 3+4—(z-2)"
= . 22 ‘
"f\/r:(—z_zrz"“‘" vz T e

Illustration 3.

dz _1 dz
72243z +11 7] 22+ 4z + 1bs + 2 — 1¥w

1 dz
T 7)) &+ )+ 3%
1 14 x+')f+c
7\/299 /299
14
2 ion- 14:ci3+0

T V2% /299
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Tllustration 4.

da:
f\/G+2z 322 \/3 YV 2+§:¢:-—:¢'z \/2—3 V2=(z2=} (z’—}z)
dz -3
=— *J———sm‘l +C
V3] VE-—(c—1? 3 Vi
. 3z —1
—_— -1 C
\/3 sin \/E -+
Exercises
1 J—_. '3 —i__.
"JVitm—a B ECREEY
2 . dz 7 —_a
") e +25 "JVetau-z
3 dz 8 dz
*Jzt—6z+5 * )52 — 8z + 1
4 [— 9= o [—— 2
" )JV2rrt 2z -3 ") VI F 2+ 2

dr .
) 222 5z — 3
2z — 5  (2z+6-11
fz2+6z+25d"fx=+6z+25d"

(2x+6)dx‘_llf dz’ .
z

1

e

z2 4+ 6z + 25 24+ 6z425
n (=247 4 13. [ 2L .
V2zt4 2z — 3 V5 —4x — z2
4z 4+ 11 3z —
12. mdx. 14. fmdx

16, [—— . Substitute z = .
zN/222 4+ 3z — 2 z

18 dz . 18 [—— %
: V'3 + 6z + 522 : Vayr +12y - 7
dz y dz
17, f “'——_6:; = 19, f Py gy P
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0. - S— 23. dz
V8 + 12z — 4z¢ 24+ 12z — 722
21. 23_—'*'__—5—— dx. 24\ —_dz—'—_’
V8 + 12z — 4z z/8zt+ 12z — 4

dz
22. f 1627 — 24z F 24

102. Integrals Containing Fractional Powers of x or of a + bx.

Illustration 1.
X B
I dz.
z3 44

Let z = z6. Then dxz = 625dz, and

i_.13 3 8 — 7
Té— z 2°—2
f$§+4dx—6f,+4zdz fmdz.

The integration can be performed after dividing the numerator
by the denominator until the degree of the remainder is less
than 2. After integration replace z by 3.

Tllustration 2.

(x+2)*+4
—_— z
c+2t-3
Let z + 2 = 24 Then
(z+2) +4,. f(z=+4)z8
z+2t -3 3

Divide the numerator by the denominator. The integration can
readily be performed. After integration replace z by (z + 2)*.

In general if fractional powers of a single linear expressior,
a + bz, occur under the integral sign, let a + bz = 2=, wheren is
the least common denominator of the exponents of a + bz. The
linear expression a + bz reduces to * when ¢ =0 and b= 1.
See, for example, Illustration 1.

Exercises

:t‘zd:c; 2.1‘ (z+1)* dz.
22+ 3) 1+ (z+ 1}
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at2 g, 10, [2=2
:v\/:c +3 ‘ x\/2:c+3_
2z 4+ 3 : 3 1
4f-’5 —:c-2dx 11.f(:c + 3)dzx.
3z —4 2+ 5
a1 12. 3_x e —3 dz.
f\/x+"+1 1. f(x+2)* +1
Vz+1l-1lz 1+(z+2)l§‘
14 VT — 3dz
%+3x* SR
8 f /7 F 4 dz. 16. f ab+ob dz.
2(1+ ot)
N dz 16 V2z +3dz.
"z ta . 3z —2

103. Integrals of Powers of Trigonometric Functions.
(a) f sin™ z cos™ x dz where at least one of the exponents is an '

odg.posntlve integer. This mcludes f sin™ z dz and f cos” z dx

where the exponents are odd.
Illustration 1.

f sin®z cos?x dr = f(l — cos?x) cos®z sin x dx

=fcos’xsina:d:c fcos‘:csin:cdz

cosdz  cosbz
=—T+ 5 + C.

Hlustration 2.

f(l — sin?z) cos z dx

coszdx — |sin?z cos z dz

f cos? x dz

. sin3z
=sinz — —3 + C.

It is seen that the process consists in combining one of the func-
tions sin z or cos z with dz to form the differential of — cos z or
of sin z, respectively, and of expressing the remaining factors
of the function to be integrated in terms of cosz or sin z,

respectively.
13
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“,“’” Vway*cwy dra,E}xercxses
1. |sin®zdz.’ 3 . cos?z
2 fsin’zcos':cdz.sf"”-?'} > Vinz
& z
: : sin® @
3. fcos'zsm'zdz. 8. n de
(cos 8)

k)
4, fsin'xdx. -CodxX +CCE X

5. f +/sin z cos? T dz.
6. fcos.“in.,dx. ~cos%, ces 10. |cos? (22+3) sin? (22+3) dz.
]

9. |sin? acos? ada.

(b) |sin™ z cos® z dz when m and n are both even positive

integers: 1In this case make use of the relations:
sin? z = 3(1 — cos 2z).
cos?z = 3(1 + cos 2z).
sin z cos z = % sin 2z.
Tlustration 1. N

[foin? 2 dz = [3(1 — cos20) do = } [dx — 3 [cos 22 2
T sm2:c+c

= - —

2

Ilustration 2.

fsin’ z cos?zdr = }|sin?2zxdr = }f(l — cos 4z) dz
z sindzx

=5~ 32 ¢

Ilustration 3.
fcos‘xd:c = %f(l+cos2:c)’dz
=%f(1+2cosZ:c+cos’2x)dz
=tz +1sin2z + 3 [(1 + cos 42) dz
= 3r + 1sin2z + 4 sindzx 4 C. .
Ilustration 4.
fsin’x cos‘a:d:c=f(sinxcosx)’cos’xdx
= } | sin? 2z (1 + cos 2z) dz
=T“°'f(1 —cos4:c)d:c+}fsin’2zcos2zdz
= iz — ¢ sin 4z 4+ Jgsin®2z + C.
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Exercises
1. faintzaz %. QL%;LJ,C 4 [eintzda,
2. f cost 2z da. 5. [sin?3z dz.
8. |sin‘z cos?z dz. 6. fcos‘5xd:c. E L smiex X, Sit 20
s 97 20 7 leo

3
(c) i:;.n" z & and | cot» x d&7

Illustration 1.

ftan‘:cd:c =ftan’:c (sec?z — 1) dz =

K _3Sinz¥ 4 j"’”‘ _'61'”\.‘12

3
tag x—ftan’:cdx

3
= tax; z —f(sec’x - 1)dz
3
_tag x—tanx+z+C.
Ilustration 2.

fcot' zdz = f(csc’:c — 1)2cot z dz

fcsc‘zcotzdx—2 csc?z cot x dz + | cot z dz
= — %csctz + cse?z + logsinz + C.

(d) f sec® z dz and | cse" z dz, m an even integer.
Tlustration 1. '
fsec‘ zde = f(l + tan?z) sec?zr dz = tanz + } tan®z + C.
When 7 is odd this method fails. (See §106.)

(e f tan= z secr z dr and f cot™ z esc™ z dz when n is a positive
even integer, or when m and n are both odd. - - -
"THustration 1.

ftan‘ zsect z dz = fta.n‘x(l + ts?n’:c) sec?z dz

: = {tan®z +  tan’z + C.
Illustration 2.

fi:a.ns z sec® z dr ftan’:csec*:csecxtan zdr

f(sec’:c — 1) sec?z sec z tan z dx

f (secdz — sec?z) sec z tan z dx
Lsecdz — }secdz 4 C.

I
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If m is even and n is odd the methods of §106 must be used, for
the integral reduces in this case to the integral of odd powers
of the secant.

Exercises
1. ftan‘zd:c. 9. ftan‘zsec'zdx.
2. f cscé z dr. 10. f tan® z sect z dz.
3. ftan’z sec® r dz. 11. ftan ¥ 2 sectz dz.
4. f tan3 2 sect z dz. '12. f (tan?z - tantz) dz.
5. f cot! z dz. 13. f sect z tan! z dz.
6. f csct z dz. 14. f (tan @ + cot 8)% do.
1. f tan z sec? z dz. : 15. f tan? 6 dé.
8. f sect z dz. 18. |sec® o tan—*0 do.

104. Integration of Expressions Containing 1/a? — x2, \/a? + x?,
4/x2 — a2 by Trigonometric Substitution. The methods of §108
find frequent application in the integration of expressions which
result from the substitution of a trigonometric function for z .
in integrals containing radicals reducible to one of the forms

Va? + 2%, Va? — 1%, or \/1? — a2
Illustration 1. f\/ a? — 22 dz. Let £ = asin 6. Then
dz = acos 0df, and

f\/a’—x’dz = fa’cos’0d0 = 4a%(0 + 4 sin 260) + C
= 1a%(0 4 sin @ cos 0) + C )

=t [sin 4+ S vaT—a| + 0
= ja?sin=t 7 + J2/aT — 22 + C.
Illustration 2. f\/m z8dz. Let 2 = a tan 6. Then
[V Fzizrds =as [tant 0 sec 0 df
= 4% [tan? 0 sec? 6 tan 0 sec 0 dO

= a‘f(sec‘d — sec?0) tan 0 sec 6 df
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= g5(3 sect 0 — iséc’ 0 +C

o) (2
= qb —

- 5 3 +C
2 2)§ 2 2)3
_e +5z) _ o -:lgz) +C.
Illustration 3, \/_xzx—_a’ dz. Let = = asecd. Then

dz = asec 0 tan 0 d6, and
f\/:c’—a’ fsecOtan’OdO
dzx =
sec 0

=aftan20d0
=a(tanf —0) 4+ C

2
=a"z— -1 —asec-1£+C'
a
= 422 —a% — asec"§+C.

The integration can also be performed directly if the numerator
is rationalized Thus,

f V2 — a’ (x? — a?)dzx
et — @

" zdx — g dz
Vz?* —a? z/z? — a?
= VT —at — asect = + C.

The substitutions used in these illustrations are summarized in
the following table:

Radical Substitution Radical becomes
Va?—z? z =asinéd acos 8
Va? + 22 z = atan @ asec
Vz? — a? x =asecl a tan 6
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Expressions involving 4/az? 4 bz + ¢ can frequently be inte-
grated by completing the square under the radical sign and making
a trigonometric substitution.

Illustration 1. '
% dx _ zdr .
V3 + 2z —z? Vi —(z-1)

Let £ — 1 =2sin6. Then z =14 2sin 0 and dz = 2 cos 0 d6.
Hence

zdy ___ [(1+2sin0)cos§do
V3+2z—a2 2cos 0

=f(1+2sino)do
=0 —2cos0+C

S RV e rymy- WU

Illustration 2.

fL _f__dz_.
Qaz — 223 J [a® — (z — @)}

Letz —a =asin . Thenz = a(l + sin 0) and dz = a cos 8 df.

dz acos @ a0
vV (2az — z2)s  J adcos®d
= al’ sec? 0 dO
1
=g tan 8 + C

1sin6
=2icosg T C

z—a
1 a

@ av2a:c — 2z

r—a

v 26z — 22

+C

|

+ C.

Q
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Exercises

L e

N ) *Javer £ 20 " J 2@ + ot
Vata, __dz | 4z
f e oL 6. fz\/m 8 f(l-z)\/sz"
s fz.\/——mzd, o [ e [ 2
. L PPN vt *J 4z —3 —ani

10. [(a? — btz = 302 [cost 6 sin?s ao.
Hint. Let

zt =al sin?4,
or
z = g 8in3 4.

7
ztdz dz . dz .
11, f V=2 18. fz' V=9 15. f z_—(z’ _.4)}

VO —Batdz. 14 f ©—-ontde. 1. f dz

(16 — znt
. f _da 1. f __d
(z* + 62 +25)} (@ + 4z — 5)k

ztdz ’
18. f?ﬁ:c———-;’ 20.-f\/2 + 6z — z? dz.

105. Change of Limits of Integration. In working the pre-
ceding exercises by substitution it was necessary to express the
result of integration in terms of the original variable. In the
case of definite integrals this last transformation can be avoided
by changing the limits of integration.

d .
Illustration 1. f z?4/a? — ztdz. Let z = a sin 6. Then
0

dz= q cos 0 df.
When z = 0,s8in 8 = 0and 6 = 0.

When:c=a,sin0=land0=g-
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As z varies continuously from 0 to a, 6 varies continuously from

0 to g' Hence we have

a
fz’\/a*—:c’d:c = a‘fsin’ﬁcos’ﬂdo
[} 1]

= a'(}0 — 74 sin 40) |~
0
_ et
16
a
Hlustration 2. _x’_ic_: Let z = atan . Then
0 \/az + x?

dz = a sec? 0 d6.
Whenz =0,tan@ = 0and 6 = 0.

Whena:=a,tan0=1ando.__‘£.

As z varies continuously from 0 to a, 6 varies continuously from

0 to g Hence we have

_gds 3| *tan? 0 sec 648 = a¥(d sec? 6 o)—‘
— =0 an sec =a sec — 8ec
o Va2 + x? 0 °

= 1a%2 - V2).
'a
Illustration 3. f v/a* —z*dz. By using the substitution
0

z = g sin § we obtain .

a x
f \/az—:czd:c=a’fzcos’0d0
(1] o

= 3a? (8 + 4 sin 20)\‘
]

_ ma?

=2

The above integral is of frequent occurrence in the application
of the calculus. The integrand, 4/a? — 2?2, is represented graphie-
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ally by the ordinates of a circle of radius a, center at the origin.
The integral then represents the area of one-quarter of this circle.
(See §§64 and 656.) The value of any integral of this form may
be written down at once. Thus,

fvmu=fmdu=1§=,.
5 0

V3 + 22 3 2
[ e - T,
. .
Exercises
: ¢ dz
1| 9-atde .| —=—.
ﬁ( = j; (@ + 20k
2 f __dz 8 f f__ds
" Jo V202 -2t " Jevi z@ - o
8 : z?dz . 9 4 dz
") VI—at "), @167
4 fs—ﬂ——. 10 f‘_dz—.
) , V54 4z — 2? ) s z:(za_g)i
5 7
5. f V25~ de. 11. f VI— G = Dide
(] 4
o bT
6. f Vo =z da. 1. f VRS s,
0 [}

106. Integration by Parts. The differential of the product of
two functions u and v is
d(uv) = udy + v du. (1)
Integrating we obtain
u = |udv+ Jvdu
From which
fudv=uv—fvdu. (2)
This equation is known as the formula for integration by parts.
It makes the integration of u dv depend upon the integration of -
dv and of v du.
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Tllustration 1. f zlogzdz. Let logz = u and zdz = dv.
" The application of (2) gives ’ -
1
f:clogx dz = }a? log z — if:c’;d:c
= }z2logz — 1z 4 C.
Tllustration 2. f zedsdz. Let e¥*dr = dv and z = u. The
application of (2) gives
f zedzdr = }reds — ;f e¥ dx
= 1e%(3z — 1) 4 C.
If we had let z dz = dv and e = u we should have obtained a

more complicated expression to integrate than that with which
we started.

Exercises
l.fz’logzdz. 2.fzcos:cdz. 8.fsin‘lzdz
4. f z2e**dz. (Apply formula (2) twice in succession.)
5. [ tan-iz d. 0. [zesintzdz.
6. [zsinzdz. 10. [10g 2 dz.
7. [logzdn. 11. [ 2%sin 2z da.
8. f z? tan™! 2z dz. 12. f sin z log cos z dz.

107. The Integrals f e** sin nx dx, f e*™ cos nx dx. Let
% = sin nz and dv = e*=dz. Then

. 1 . . =n
fe“smn:cdx =ae“s1nm:-_-afe"cosnxdz.

A second integration by parts with u = cos nx and dv = es=dz
gives

. 1 . n n? .
ez sInnNxr dz = ae“ sin Ny — E;e“ cos ny — E; €%% gln N dx.

The last term is equal to the integral in the first member multiplied
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\ ,
by ;Lz- On transposing this term to the first member we obtain

a? + n?
a2

fe"sinn:cdx =€—:(asinnx—ncosh:c)+0.
Then ‘

ax of eax s ’

fe smnxdx=m(asmnx—ncosnx)+c

eax )

T Verm

sin (nx — @) + C/, 1

where

a
cCoOsS ¢ = —f———————
Va
and
n

Sin A= —FF "
Vit

" The student will show in a similar way that

P

fe“cosnxdx=;,f:%;(nsinnx+acosnx)+c

= Jaem e x = @) +C, @

a

COS ¢ = —F————
V' +n

where

and
n

gin @ = —F/—
a1+ n?
Exercises

The student will work exercises 1-5 by the method used in obtaining
(1) and (2) above. In the remaining exercises he may obtain the
results by substituting in (1) and (2) as formulas.

1. f e~% gin 7¢ dt. 6. |e~* cos bt dt.

2. f e~ cos 8t di. 7. f €04 gin wt dt.
3. f €~0-% gin 3¢ df. 8. f €™ cos wt dt.
4. f e~9-% cos 4t dt. 9. | e+ cos 5t dt.

e

5. f == sin z dz. 10. [e-o-# sin 4t dt.

11. Find « in exercises 1-10.
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108. f sec3xdx. This integral can be evaluated by a method
similar to that used in the last article.

fsec‘:cd:c= sec z sec? z dx
=sgecztanz — fsecxtgn’zdz.
Since tan?z = sectz — 1,
fsec‘zd:c =sgecztanz — fsec’zdz + | seczdz.

Transposing the next to the last term to the first member, dividing
by 2, and integrating the last term we have

fsec’:c dz = } [sec z tan z + log (sec © + tan 2)] + C.

) Exercises
1. | csc®z dz. . b. f\/a’ + z?dz.
2. [sectz da. 6 [vF-&+iids
a x4 dz
f Visa® 7. fz Vaica
. 6
4.f\/a=+a;’d:c. B.f\/:t’—-Qd:c.
0 3

109. Wallis’ Formulas. Formulas will now be derived which
‘make it possible to write down at once the values of the definite

integrals:
i
f sin® 0 d6,
(1]

f cos™ 6 df,
0

L3

2
f sin™ @ cos 8 d,
0

L]

and

where m and n are positive integers greater than 1.

3 5
f sin® 0 df = f sin*~! @ sin 6 d@.
0 0
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Integration by parts gives

5 T T
f sin® § d@ = — sin*~1 6 cos 0' + (n— l)f sin"~% 0 cos? 6d8
(1]

0 0

=(n—1) f * sins~ 6(1 — sin? 6) d6
0

T 5
=(n- l)f gin*20df — (n — l)f sin® 0 d6.
e []
On transposing the last term and dividing by n we obtain

f’sin»odo= n= lf’ sin=-2 0 do.
) n Jo .

This equation can be regarded as a reduction formula for
expressing

-

2
f sin* 6 d6
0

in terms of an integral in which sin @ occurs with its exponent
diminished by 2. Applying this formula successively we obtain

T

"sinmgdp =2 =17 =3 [ ntgdp
o n n—2o

w

_n—1n-3n-=-5(*.
== n—2n—4£81n 0deé

@ ;(,1,)(_”2-)- 3.) - .‘5._34‘2 j‘z gin 6 d0 if n is odd.
= 0
@ -1;(:&)5?2—) 3-) - .'4:23.1‘[2 ae if niseven.
]
x m—-1)n-38) - - - 42 o
: . 0 do = nn—-2) - - - 31 if n is odd.
0sll:l T |a-1)(n-3) - - _3'11—‘_

nn—2) - - -42 2 if nis even.
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From the fact that the integrals

T

2

. sintz dz
()]

L3

r .
f cos™ z dz
[]

represent the areas under the curves y = sin"z and y = cos*z,

and

respectively, between the limits z=0and z = g, it is clear

from the graphs that

Ll x
2 2 . .
cos*zdr = | sinrzdz.
0 0 .

The results obtained can be expressed in the single formula

fcos“ﬂd(i =f28iﬂ"0<10=(n_1)(n_3) . '2or1a,(l)
0 0

nn-—2) - - -2o0rl
wherea=1ifnisodd,anda=gifniseven.

In a similar way we shall evaluate

T

2
f sin™ 0 cos" 6 df.
0

T ' ;“
f sin™ @ cos" 0 df = f sinm™-1 @ cos™ @ sin 0 d
0 0

x

sin™10 cosr+19[2  m —1 ;
0-i--”_i__lj‘rsm"‘ 2 § cos™+2 0 dO

n+1
-1
=%‘ﬁfsin""ﬂcos"0(l—sin’0)d0
0
m—1

_m=2 ;_sinu-zocosngdg_"‘_—l : -
=a¥i), nF1 0sm 0 cos" 0 do.
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Transposing the last term to the left member of the equation

—11 (5 T o
n 1] f sin™ @ cos” 0 df = m—1 sm-'20 cosm 6 df
0

[1+n+1 |

; . ' m—1 ; .
sin® @ cos"0df = —— sin™-26 cos" 0 df.
(] m+” 0

Apply this formula successively and obtain

2
fsm"‘acos“edo s fsin"‘“ocos"oda

(m—1)(m—3)-
m+n)(m+n—-2)- (n+2)f008 6 dé if miseven

L

’sine cos» @ dﬂif mis odd

(m—1)(m—3)---2
(m+n)(m+n—2)---(n+3) ),
(m—-1)(m—3): - ‘1-(n—1)(n—3)"
@ Fm@ a2 @ @@ :
(m—1)(m—3): - ‘1-(n—1)(n—3)" N e
- {mtD@tacs  @rI@E 3 ‘f’;d‘s even.

(m—1)(m—3)* - -2 . . .
if n is either even or
m+n)(m+n-2)- - - (a+3)(n+1) odd, and m is odd.

= 1f n is
even

and

The right-hand member of the last formula of this group can
be put in a form similar to the others by multiplying numerator
and denominator by (n — 1)(n — 3)- - - 2 or 1, It becomes

(m-1)m—3) - - -2 - (n—-1)(n—3) - - -20r1
(m+n) (m+n-2) - - - (a+3)(n+1)(n—1)(0n—3) - - - 20r1

2
These formulas for f sin™ 6 cos® § df can all be expressed in

[}
the single formula

f{sinma cos"d do:(m—r)(m—3)---zort-(n—:)(n—3);--zorra
° (m+n) (m+n-—2)-20rz ’

@)

where @ = 1 unless m and = are both even, in which case a = 1_2r
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Illustration 1. By formula (1)
f’"sin»odh 8642 128
f 9-7-5-3.1 315
Ilustration 2.

L3

fcos‘0d0—_l_7i’ oT
Jo 2 16

Tllustration 3. By formula (2),

2
f sinfz cosdz dx = 422 = 1
. -

Illustration 4.

.h
CAD

w

E‘ .
f sinfz costz dx 4231 8
0

9-7-5:3-1 315

Illustration 5.

Exercises
L . %
2 2
sin® 6 dé. 7. f cos!! z dz.
0
w L
T

|
)
cos!® 6 do. 8. sin? ¢ d¢.
o 0
I
) 2
sin® 9 dé. 10. 8in3 z cos® z dz.
) 0

L

3
5. f cos® 8 dé. 11. f sin4 z cos® z dz.
0 0

w

2
6. sin® 6 d6. 12. f sin® ¢ cos ¢ d¢o.
0 )

cos?® @ dé. 9. sin* z cos® z dz.

o
» o)

2
2
T
2

1
2.
8.
4,

n]ﬂ

[§109
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L 3
2
13. f sin? z cos® z dz. 16. f z? (a® — :c’)* dz.
0 )

'a
14, : cost z sin® z dz. 17. f (ag - z*)idz.
(1]

15. f(az - zz)* dz. 18. f"z(zi - zhlgg,
0 0

18. fra’(l — cos 6)1d0 = M’fsin‘gdo- ‘
0 0

Leto’ = g Then d = 246’ and ¢’ =g when 8 = x, and 6’ =0

when 6 = 0. Hence

N w
2
a’f'(l — cos 9)2d6 = 8a’f sint ¢’ do’.
) : 0

Wallis’ formula can now be applied.
By transformations similar to the foregoing many integrals can be
put into a form to which Wallis’ formulas can be applied.

L

L
'y 2
20. f cos?20d9 = } cos? 6’ do’.
[} - . )
21. f (2az — z’)*dz. (Substitute z = 2a sin?6.)
°

22. z\ 2az — z?dzx.
‘o .

110. Integration of fa sinx + b cosx

mcosxdx. Integra.ls of this
xz

form can be reduced by the substitution, z = tan 3 In making

this substitution it is necessary to express sin z, cos z, and dz in
terms of z. This is easily done as follows. (The student is ad-
vised to observe the method carefully, but not to learn the results
as he can readily obtain them whenever needed.) Since

z = tan g,
z = 2tan"!g,

14
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and
dz
de = 275
Further,
cosZ = 1 _ ! 1
2 z 3
sec ; \/1+tan?g Vi+tz
and
Z e tan 2 z_ &
sin g = anzcosz—m-
Then
inz = 2sin L cos £ = 2z
sinz = 2sing cos 5 = 73
and
CO8 Z = 2T _ i:"'f_l;z’,
z = cos’y sn‘2—1+z,
1ll tration 1 —ﬂ— (o) king th bstitution
ustration 1. T ¥ 4cosz n making the substituti

z= t\,ang we obtain by using the values jﬁst found for cos z and

dz in terms of 2,!

2dz
f 1422 _2f dz
1—22 1422441 —22
1-}-41_*_22 )
_ dz
- 5 — 322
__2 (B
T A3J]32-5
2 \/ﬁz—\/g
= — — 1 = —
VivE BV rvs e
\/ﬁtang+\/5
= v15log———— 4+ C

\/§tang— V5

1 The student will del;ive these values in each problem worked in order to famil
iarize himself with the method. )
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dz

. z
Illustration 2. m Letz = tan 3 Then
2dz
dz _ 1422 2 dz
5 —3sinz 6z 5 + 522 — 62
1 +z2 4
”*f T *f(z—e)wﬂ
= ¢.{ tan"! *§+C }tan" 4 +C
5tan£—3

= }tan"T+ C.

Exercises

The student will find cos z, sin z, and dz in terms of the new vari-
able in each of the exercises.

dz cos T
L f3+5cos:l:' 6. fl—3sinzd$ -
dz 3+ 4sinz
2. f5—3cos:c' 1. 1+2sin:¢:’dz
dz 1 1+ sinz
. Ji—5emz 8. fsinz(l-i—cosz)dz
4 sinzdz. 9 dz .
* 12+sinz * ] 5—3sin2z
Cco8 T dz
. f3+2coa:r‘dz' 10. | i Fecomsor

111, Partial Fractions. A rational fraction is the quotient of
two polynomials, e.g.,
az™ + a1+ - - -+ amaz +am _ $(3) o)
bozr +bizn 14+ - - o Doy 4 ba f(x)

1 The integrand is not in the form given in the heading of this article, but the sub-
stitution 2 = tan ; enables us to transform any expression containing only integral

powers of sin z and cos z into a rational function of z, .., into a function containing
only integral powers of z.
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If the degree of the numerator, m, is greater than or equal to the
degree of the denominator, n, the fraction can be transformed by
division into the sum of a polynomial and a fraction whose nu-
merator is of lower degree than the denominator. In this case
the division is always to be performed before applying the
methods of this section.

The integration of a rational fraction cannot in general be ac-
complished by the methods which have been given if the degree
of the denominator is greater than 2. Illustrations will now be
given of a process by which a rational fraction can be expressed
a8 the sum of fractions whose denominators are either of the first
or second degrees.

Illustration 1.
242
fxs 2 -9 + 189

Factoring the denominator
— 222 -9z + 18 = (z—2)(:v—3)(:c+3)
Assume PR \\.r -‘,(\’
z?24 2 4
-—2z2-—9z+1s“x—2+x-3+x,+3’
where A, B and C are to be so determined that this equation shall
be satisfied for all values of z. Clearing of fractions

2?4+ 2 = Ax? — 94 + Bx? 4 Bx — 6B + Cz* — 5Cz + 6C
=(A+ B+ C)z2+4 (B —5C)r — 94 — 6B + 6C.

On equating the coefficients! of 22, z, 2% we obtain ‘the following
three equations for the determination of A, B and C.

A+B+C=1
.B —-5C=0.
— 94 — 6B 4 6C = 2.
1 In applying this proceés use is made of the fact that if two polynomials in z are

identically equal, the coefficients of like powers of z are equal. Thus, given the
identity

az™ + aiz" 1+ -t an_1z + an = Bz + B1z" L 4 - ¢ ¢ +Bn17 + Bay
then :

a0 = fo
ay = i1

an = Bn.
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From these equations

Qb
o
w

Hence
2?42 __ -6 . 1 11
P2 -0z 118 5@ —2) T6(z—3) T30z +3)

and

242 _ dz
fx3—2z’—9:c+18dz_ -t z—2

= — flog (z — 2) 4+ %' log (z — 3) + 3t log (z + 3) + C.

Short Method. The foregoing method of determining the
values of 4, B, -+ - -, by equating coefficients of like powers of
z, is perfectly general. However, a shorter method can sometimes
be used. Thus in the illustration just given write the result of
clearing of fractions in the form

z?+2 =A(z — 3)(z + 3) + B(z — 2)(z + 3) + C(z — 2) (z — 3).

Since this relation is true for all values of z, it is true for z = 2.
On setting z = 2, we obtain

6 = — 54.
Hence

A=—-4%
On setting z = 3, we obtain

11 = 6B.
Hence

B = 4.
On setting z = — 3, we obtain

11 = 30C.
Hence

C =1t

Illustration 2.

241
f GFrDe-—1p%
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Let L 4
241 _ B C D
GrhE-r " i+l T @G-t E-mtr-T
On clearing of fractions,
z*4+1=A(x—1)*+ B(z+1) +C(xz—1)(z+1)+D(z— 1)’(z+l), !
or

2?4+ 1= A2 —3422 434z - A+ Bx+B+Czx*—-C
+ Dz3 — Dz? — Dz + D.

~ In the first form put £ = 1. Then
B=1.
In the first form put £ = — 1. Then
-84 =2
Hence
A=~}
Equating coefficients of z? in the second form
A+ D=0.
Hence
D=-4=1%
Equating coefficients of 2 in the second form,
—-34+C-D=1.

Hence
| C=1-%+1=14
Consequently
2241 -1 1 1 1

GFDe—1r - dz+D T =1 Toz-1 "‘4(: |
and

a:’+l dz
EFDE—1p%® 1t u—n'
1

= -ilog(x.+1)—2(z_l),— 3 = 1)+uog(z-1)+c
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Ilustration 3.
3x2 -2z 4+ 2
(x — 1)(2? — 4z + 13)

Let
322 -2z +2 A Bz +C

x—-—1D)@GE*—4z +13)
Clearing of fractions,
312 — 2z + 2= A(z* — 4z + 13) + Bz(z — 1) + C(z — 1),

or
322 — 22+ 2 = Ax* — 44z + 134 + Bz2 — Bz + Cz — C

In the first form put z = 1. We obtain

3 = 104.
Hence ,
A= 1.
Equating the constant terms in the second form,
134 - C = 2.
Hence
#H-Cc=2
and
C =it
Equating the coefficients of z2 in the second form,
A+ B=3.
Hence
B =3 -3 = 1.
Consequently
3x2 —2r+2 _ dz 279: +19
f(z—l)(x’—4x+l3)dx—ﬁf it ) e ®
1 (2:c 4) dx
=tvlog (e— 1)+ 4x+13+Hf(:c 2719

= ¥ log (z—1) + ¥ log (z2—42+413) + 34 tan-12 3 =2 + C.

Ilustration 4.

. 2z dx .
1 +2)(1 4 =22
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Let 2z _ A4 Bz+C Dz+E
T+t 1+t 0+ 0+

In Illustrations 1 to 4 a fraction was broken up into ‘partial
fractions.”” The denominators were the factors of the denomina-
tor of the given fraction. In Illustrations 1 and 2 the factors were
all real linear factors, while in Illustrations 3 and 4 there were also
factors of the second degree which could not be factored into two
real linear factors. The method of procedure will be further indi-
cated by the following examples. They will be grouped under the
numbers I, II, III, and IV, corresponding to Illustrations 1,2,3,
and 4. ’ :

1. Factors of denominator linear, none repeated.

245 _ A " B o
@ e De+DE-9 z-1Tz+1Tz-3
) 2242247 _ 4 + B
(z+4)2z+3)(z—2)Bx+1) z+4  2r+3
C D
+$—2+3z+1‘
II. Factors of denominator linear, some repeated.
z24+2z+5 ;! B C
@) G-t D -~ G-2¢ Tz-21 G-3p
D - FE F
3 +4zx — 2 A B

@+ T Gz F1p
: D E F
. tatitosstTeoaptz—4
III. Denominator contains factors of second ' degree, none
repeated. '

<() 2+7r+3  Az+B C
) @FED(z—2) " 244 Tz-2

® G F1rE +3)@ - b)¢

®) 22—3z+5 ___Aa:+B+ Cz+ D
24+ 2)(z2 —4r +7)(x+3) 2242 :c’—4x+7E
tz¥3

224+2x—5 Az + B C D
© EIne=2¢= 237 T@-2rtz—3
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- IV. Denominat.of contains factors of second degree, ‘ some
repeated. N
(@) 23422245 _ Az +B
(2* 42z +10)%(z2 +3)(z +2) (22 + 2z +10)?
Cz+ D Ex+F G
+ x’+2z+10+ 243 +xr|-2

. Exercises
1. f oA 10de + fervero
2. (zl.:’l—)a . s @ = i};(if = ;;)iz 5%
s. z%%__ﬁz%. 6. :’%5%73:——_:17),@.
1 [Emin,

4 3
8. f z:‘-+;;3 dz. (Divide numerator by denominator.)



- CHAPTER XIII

_APPLICATIONS OF THE PROCESS OF INTEGRATION. |
IMPROPER INTEGRALS i

112, In this section a brief summary and review of the applica-
tions of the process of integration will be given.
1. Area under a Plane Curve: Rectangular Codrdinates.

A= f f(z)dx.
See §64, and Fig. 46.

2. Area: Polar Codrdinates.

]
A=%fp’d0.

See §99, and Fig. 74.
3. Length of Arc of a Plane Curve: Rectangular Cobrdinates. ‘

s = f\/:c—xyzdx ' |
- [ ) |

See §69, and Fig. 49. , }

4. Length of Arc: Polar Coérdinates.

s=j;ﬂ pa+(g—g)’d0 ‘

i N ' ‘
e +
See §98, and Fig. 72. ‘
5. Volume of a Solid of Revolution. ) ‘
b {
V= f wy? dz.

a \

See §68, and Fig. 49.

- 218
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6. Surface of a Solid of Revolution.
P —
dy\ 2
S=2r \/ 14 (5%) dz
ﬁ y (a)
=)
= 21rfy ds
T=q
= 21rf”.y\/ 1+ (g_x)’dy
" dy
-y,
= 2r f y ds.
: Y=y,

See §70, and Fig. 49.
7. Water Pregsure on a Vertical Surface.

P = f‘uzdu,

where z denotes the width of the surface at depth » and k = 62.5
pounds per cubic foot if u and z are expressed in feet. See §72,
and Fig. 50.

8. Work Done by a Vartable Force. See §67.

Exercises

1. Find the area in the first quadrant between the circle 22 + 32 = a2
and the cosrdinate axes.

The definite integral which occurs in the solution of this problem is
of very frequent occurrence. See Illustration 3, §105.

2. Find the area bounded by the lemniscate, p2 = a2 cos 26.

3. Find the length of one quadrant of the circle z* 4 y? = a3, or
zT=gacosd,y = asiné.

4. Find the length of p = 10cos 6.

8. Find the volume of a sphere of radius a.

8. A solid is generated by a variable square moving with its center
on, and with its plane perpendicular to, a straight line. The side of
this square varies as the distance, z, of its center from a fixed point
on the line, and is equal to 2 when z = 3. Find the volume generated
by the square when its center moves from z = 2toz = 7.

7. Find the area of the surface of a sphere of radius a.

8. The unstretched length of a spring is 25 inches. Find the
work done in stretching it from a length of 27 inches to a length of
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29 inches, if a force of 400 pounds is necessary to stretch it to a
length of 26 inches.

9. A trough 3 feet deep and 2 feet wide at the top has a parabolic
cross section. Find the pressure on one end when the trough is
filled with water.

10. Find the length of the curve :1;i + yg = a} or z = a cos? 6,
¥ = asin3é.
i 11. Show that the work done by the pressure of a gas in expanding
from a volume v; to a volume v; is given by

12}
f P dv.
n

where p is the pressure per unit area.

¥ Hint. Take a cylinder closed by a piston of area A forced out
a distance Az by the expanding gas. Denote by Aw the work dome
by the gas in expanding from a volume v to a volume v + An

Then,
lim
W = 0 EA“’ = At-l-O 2 pAd Az = 0, 2 pA”

f P dv.
L2

12, Find the area of one quadrant of the ellipse z = acosé,
y = bsin 6.

13. Find the area of one loop of the curve o = a cos 26.

14. Find the length of the cardioid, p = a(1 — cos 6).

16. Find the volume of the ellipsoid of revolution generated by

2 2
revolving the ellipse 5—, + g—, = 1 about the X-axis; about the Y-axis.

16. A volume is generated by a variable equilateral triangle moving
with its plane perpendicular to the X-axis. Find the volume of the
solid between the planes z = 0 and z = 2, if a side of the triangle is
equal to 223,

17. Find the area of the surface generated by revolving about
the X-axis the portion of the arc of the catenary

a z Ed
i
between (0, a) and (z1, ¥1).

18. Find the area under one arch of the cycloid z = a (§ — sin 6),
y = a(l — cos9).
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19. Find the length of that portion of 9y?* = z? above the X-axis
between z*= 0 and z = 3.
20. Find the volume generated by revolving the portion of the

catenary
x z
Yy = g [ea + e ;]

between z = 0 and z = b about the X-axis; about the Y-axis.
21, Find the volime generated by revolving the hypocycloid

z* + y* = a;, or z = acos®d, y = asin? §, about the X-axis.

22. Find the area included between the parabolas 4y* = 25z and
512 = 16y.

23. Find the area between the X-axis, the curve y = 2% — 4z + 9,
and the ordinates z = land z = 7.

24. Find the area between the curve y = sin z, the X-axis, and
z=0andz = .

26. If a gas is expanding in accordance with Boyle’s law, pv = C,
find the work done in expanding from a volume v, to a volume v,.
Represent the work graphically by an area.

26. Find the work done if the gas is expanding in accordance with
the adiabatic law, pv* = C.

Hint. From the result of Exercise 11,

d c "
W=cfv—f=l_kul-*lv = = (o — o).
1

1

Now,
C= pw;" = szzk-
Hence

1
W =1 (pw2 — pw1).

Represent the work graphically by an area. Use the same scale as
in Exercise 25.

2 2
27. Find the area of one quadrant of the ellipse T—G + % =1. See

Exercise 1.

28. Find the length of p = ¢*® from 6 = 0 to 6 = 2n.

29. Find the length of p = €% from 6 = 0to 6 = — o, if a is
assumed positive.

30. Find the area bounded by the cardioid p = a(1l + cos 6).

31. Find the area bounded by o = 10 sin 6.

32. Find the area bounded by the hypocycloid z = a cos? g,
¥ = asindg.
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88. Find the area between y? = 4z and y? = 8z — 22,

84, Find the work done by a gas in expanding isothermally from
an initial volume of 2 cubic feet and pressure of 7000 pounds per square
foot to a volume of 4 cubic feet.

86. Find the work done if the gas expands adiabatically. Take
k = i, the value for steam. (See Exercise 26.)

86. Find the pressure on a trapezoidal gate closing a channel con-
taining water, the upper and lower bases of the wet surface being
25 feet and 18 feet, respectively, and the distance between them being
10 feet.

87. Find the area between the catenary

z z
y=§[ea_+e E]:

the X-axis, and the ordinates z = 0 and z = a.

88. Find the length of p = a6 from § = 0 to § = 2x.

89. Set up the integral representing the length of one quadrant
of the ellipse £ = a cos 9, y = bsin 6.

40. Find the volume generated by a circle of variable radius mov-
ing with its plane perpendicular to the X-axis, between the planes

-z =2and z = 8. The radius is proportional to 23 and is equal to 54
when z = 3.

41, Find the volume generated by revolving one arch of the cycloid
z=a(@ —sing), y =a(l —cosd) about the X-axis; about the
tangent at the vertex.

42. Find the area of the surface generated by revolving a quadrant
of a circle about a tangent at one extremity.

43. If the density of a right circular cylinder varies as the distance
from one base, find the mass of the cylinder if the altitude is A and the
radius of the base is r.

44. The force required to stretch a bar by an amount s is given by

F = %q,
where E is the modulus of elasticity of the material of the bar, a is the
area of the cross section, and L is the original length. Find the work
that is done in stretching a bar whose unstretched length is 400 inches
to a length of 401 inches, if E = 30,000,000 pounds per square inch and
a = 1.5 square inches.
46. Find the area of one loop of p = 10 sin 36.
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46. Find the length of

. .
y= %[e'; +e a])
from (0, a) to (1, y1). .

47. Find the length of one arch of the cycloid z = a(a — sin 6),
y = a(l — cos 9).

48. Find the volume of the anchor ring generated by revolvmg the
circle 22 4+ (y — b)* = a® about the X-axis, a being greater than b.

49. Find the area of the small loop of p = a sin® -

60. Find the work don€'in pumping the water out of a cistern 20 feet
deep, in which the water stands 8 feet deep, if the cistern is a parabo-
loid of revolution and the diameter at the surface is 8 feet.

5i. Find the volume included between two equal right circular
cylinders, radius @, whose axes intersect at right angles.

62. Find the area of the surface generated by revolving one arch of
the cycloid z = a(8 — sin §), y = a(l — cos §), about the X-axis;
about a tangent at the vertex.

53. Find the area bounded by p = 3 + 2 cos 6.

64. Find the area bounded by the small loop of p = 2 + 3 cos 6.

66. Find the area of the surface generated by revolving the cardioid
p = a(l + cos 8) about the polar axis.

66. Find the volume bounded by the surface of Exercise 55.

1
113. Improper Integrals. Since —=—— Vool becomes infinite at
z = 1, the definite integral

1
j: V-1 dz
must not be evaluated by the usual process. For, the assumption
has been made that in the integral

fb.f(z) dz

f(z) is a continuous finite function at £ = @ and z = b as well as
at all intermediate points, and the evaluation of this integral was
based on the area under the curve y = f(z). In this case

1
==
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becomes infinite at the lower limit. The area under the curve
1
V¥=Vz-1

_between the ordinates 2 = 1 and z = 7 has no meaning. In fact
the integral in question has no meaning in accordance with the
definition of a definite integral already given. A new definition
is necessary. We define

7
1
dz
j: z—1 *

lim (7 1

0 1+ Vz—1 '
where 7 is a positive number, if this limit exists. Otherwise the
integral has no meaning. Now,

lim ! 1 _ lim /
"‘°f.+q Vesi® T e VE-1)

as

7

149

= lim (24/6 — 24/7) = 2+/6.

Since the limit exists we say that

f7v::_:ia=2ﬁ.

Graphically this means the limit as n approaches zero of the area

1
under the curve y = ﬁ between the ordinates z =1 + g

and z = 7, exists and is equal to 24/6.
Ezercise 1. Show that

f’ dz
L (=1
exists if 0 < n < 1.

On the other hand, whenn = 1,

lim 1 _ lim
”"'Oj:.,, x_ldz—-néolog(z—l)

. . 6
= }'T:) (log 6 — logn) = :l‘_'% log 7

7

149
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This limit does not exist and consequently we say that

7
1
j:a:—ldx

has no meaning or does not exist.
Graphically this means that the area under the curve

between the ordinates z = 1 4+ 7 and z = 7 increases without
limit as n approaches zero.
Ezercise 2. Show that

T dx
y (=1)"

does not exist if n > 1. (Note that the case n = 1 has just been
considered.) If n < 0 no question as to the meaning of the
integral can arise. Why?

A definite integral in which the function to be integrated
becomes infinite at the upper limit is treated in the same way.
Thus

! dr
[ =
is defined as
lim ['7"_ dz
=), Vi-s
where 7 is a positive number, if this limit exists.
Ezercise 3. Show that

Yodz
, —)"

has a meaning in accordance with this definition if 0 <n <1, and
that it has no meaningif n 2 1. If n < 0 no question can arise as
to the meaning of the integral.

It is easy to see how to proceed in case the function under the
15
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integral sign becomes infinite at a point within the interval of
integration. Thus

f (:cii_x—]y*’ where 7 is a positive integer,
0

lim fl" dz +f7 dz
ol ) G-t ), G=1r

where 7 is a positive number, if this limit exists. If not, the
integral has no meaning. If n < 0 no limit process is necessary.

is defined as

Exercises

Evaluate the following integrals if they have a meaning:

f 5f+‘d_z. 9f‘_dz_.
\/5 - x? A 3r—4
!

ot de +liz
6. . 10. —
o ® o Va—z Ll :c*
3 _d_:c 7 t__dz
. T . A m (z — 2)*
1

s +1 gz 8 dz
°j:1 '\/a;+l. °£ \/1-:1:’.
3

12. Find the area between the curve y? = 2az——:c’ its asymptote and

- the X-axis.

114, Improper Integrals: Infinite Limits. In §113, the interval
of integration was finite. In other words neither of the limits of

the integral ,
f f(z)dz

® dz
A $2+a2

. b
lim dz
b= 2 2
*Jo 2 +a

was infinite.
The integral

will be defined as
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if this limit exists. Now

. b . b .

lim _92 _liml 2% _ lim1 L0 _17

b= A $2+az—bi-matan ao—b*“’atan s a2
lim

b | 77 i represents graphically the limit of the area under
0

the curve y = :ﬁ between the ordinates z = 0 and z = b

as b increases indefinitely.

Consider
"dg
- l x
. b . b .
1 dx | 1
blargj: = ,,:,'2 log z . = bfﬂ log b.

But logb increases without limit as b increases witnout limit.

Hence f d—: has no meaning.
1

Exercises

Evaluate the following integrals if they have a meaning:

1. L aTFar 3. j; ze*dx
2. f &=dz. 4, f 2% e—* dzx.
° o

. 3
6. Find the area between the witch, y = ;%a? and the axis of z.



CHAPTER XIV
SOLID GEOMETRY

116. Cobrdinate Axes. Codrdinate Planes. Just as the posi-
tion of a point in a plane is given by two cobrdinates, for example
by its perpendicular distances from two mutually perpendicular
codrdinate axes, the position of a point in space is given by three
coordinates, for example by its perpendicular distances from three
mutually perpendicular planes of reference, called the coérdinate
‘planes. Let the-three cosrdinate planes be those represented in
Fig. 75, viz., X0Y, called the X Y-plane, YOZ, called the Y Z-plane,
and ZOX, called the ZX-plane. Then the position of the point P
whose perpendicular distances from the YZ-, ZX-, and X Y-planes

z z ’

IIII /X ' )i

X X
F1a. 75, Fia. 76.

are 2, 3, and 1, respectively, is represented by the codrdinates 2,3,
and 1. The lines of intersection of the planes of reference are
called the axes. Thus X'0X, Y’'0Y, and Z'0Z, Fig. 76, are called
the axes of z, y, and z, respectively. The codrdinates of a point
P measured parallel to these axes are known as its z, y, and 2
codrdinates, respectively. Thus for the particular point P
of Fig. 75,z = 2,y = 3,and z = 1. More briefly we siy that the
point P is the point (2, 3,1). In general, (z, y, 2) is a point whose
coordinates are x, y, and z. If these coordinates are given the
228
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position of the point is determined, and if a point is given these
coordinates are determined.

The relation between a function of a single independent variable
and its argument can be represented in a plane by a curve, the
ordinates of which represent the values of the function correspond-
ing to the respective values of the abscissas. Thus, y = f(z) is
represented by a curve. To an abscissa representing a given value
of the argument there correspond one or more points on the
curve whose ordinates represent the values of the function. In
like manner a function of two independent variables z and y can
be represented in space. Choose the system of codrdinate planes
of Fig. 75. Assign values to each of the independent variables
z and y. These values fix a point in the XY-plane. At this
point erect a perpendicular to the X Y-plane, whose length z repre-
sents the value of the function corresponding to the given values of
the arguments. Thus a point P is determined. And for all values
of z and y in a given region of the XY-plane there will, in general,
correspond points in space. The locus of these points is a surface.
The surface represents the relation between the function and its
two independent arguments just as a curve represents the relation
between a function and its single argument.

Thus if 2=+ V25 —22— y2 = f(z,y), + V12 are the

values of the function correspondjng to the values z = 2and
y = 3. Then the points (2, 3, 2v/ 3)and (2,3, — 2\/1—3) lie on the
surfacez = + V25 —22—y2 Ifz=-3andy=1,2z= % 1/15.
The corresponding points on the surface are (— 3, 1, 4/15)
and (— 3,1, — /15).

The coérdinate planes divide space into eight octants. Those
above the XY-plane are numbered as shown in Fig. 76. The oc-
tant immediately below the first is the fifth, that below the second
is the sixth, and soon. The points (2, 3, 24/3) and (2, 3, — 24/3)
lie in the first and fifth octants, respectively. The points
(=3, 1, 4/15) and (— 3, 1, — 4/15) lie in the second and sixth
octants, respectively.

The locus of points satisfying the equation

2= V25 —2%—y? 1)

is a sphere of radius 5. For, this equation can be written in the

-
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form z* + y2? 4+ 22 = 25, which states that for any point P on the
surface (1), OP = Vi + y2 4+ 22 = 5. The left member is the
square of the distance, OP, of the point P (z, y, 2), from O, since
OP is the diagonal of a rectangular parallelopiped whose edges
arez,y, and z. If then the codrdinates of P satisfy (1), this point
is at a distance 5 from the origin. It lies on the sphere, of radius 5,
whose center is at the origin.

116. The Distance between Two Points. The student wil
show that the distance d between the two points (z1, 1, 21) and
(3’: Yy 22) is

Cd= V(2= 2) + (Y2 — 91)* + (22 — 2) (1)

See Fig. 77. If the point (i, y1, 21) is the origin, (0, 0, 0), the
expression for d becomes

b= Var ¥R o K

Z
e |
oy|(z1,n|z Y ‘

/ 7 /
X
Fia. 77. Fra. 78.
Exercises

Find the distance between the following points:

. (1,2, 3) and (3, 5, 7).

. (1, —2, 5) and (3, =2, —1).
. (0, —3, 2) and (0, 0, 0).

. (0, 0, 3) and (0, 2, 6).

. (0,0, —5 and (2, 0, 6).

. (=3, 2, —1) and (0, 0, 0).

117. Direction Cosines of a Line. Let OL, Fig. 78, be any line
passing threugh the origin. Let e, 8, and v be, respectively, the
angles, less than 180°, between this line and the positive direc-
‘ions of the X-, Y-, and Z-axes. These angles are called the

- - W N
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direction angles of the line, and their cosines are called the direction
cosines of the line. Let P, whose coordinates are z, y, and 2, be
any point on the line. Let OP = p. Then

= p CO8 «,

‘ Yy = pcosf,
and

z = pcosy.

Squaring and adding the above equations we obtain
z? + y? + 22 = p*(cos? @ + cos? B + cos?y).
Since -
7 + y? + 2 = p?,
cos?a + cos? + cos?y = 1. (1)
The direction cosines of any line are defined as the direction
cosines of a parallel line passing through the origin. Then, the
sum of the squares of the direction cosines of any line ts equal to
unity.
Exercises

Find the direction cosines of the lines passing through each of the
following pairs of points.
1. (0,0,0)and (1, 1, 1).
2. (0, 0, 0) and (2, —3, 4).
8. (0, 0, 0) and (-1, 2, —3).
4. (1,2, 3) and (5, 6, 7).

5. (—2,3, —1) and (-3, —4, 3). L~
118. Angle between Two D .
Lines. Let AB and CD, Fig. ¥

79, be two lines, and let their
direction cosines be cos a4, cos 81, K

cos 1, and €os @z, cos B2, 08 73, Fia. 79.
respectively. Denote the angle

between the lines by §. Let CH, HK, and KD be the edges of
the parallelopiped formed by passing planes through C and D
parallel to the cosrdinate planes. The projection of CD on AB
is clearly equal to the sum of the projections of CH, HK, and
KD on AB.

Hence
CD cosf = CH cos @y + HK cos 31 + KD cos 1.
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Now

CH = CD cos as,

HK = CD cos B3,
and

KD = CD cos vs.
Consequently

CD cos 8 = CD(cos a; cos az + cos 1 cos B2 + €08 1 €08 73).
Hence
cos 0 = cos a; cos az + cos 3; cos B2 + cos v, cos ya. (1)

Exercises

Find the cosine of the angle between the lines determined by the
points of Exercises 1 and 2; 2 and 3; 3 and 4, of the preceding
section.

119. The Normal Form of the Equation of a Plane.—Let ABC,
P Fig. 80, be a plane. Let ON,
c the normal from O, meet it in
N. Let the length of ON be p
and let its direction angles be a,
Y B,andvy. If p, a, 8, and y are
given the plane is determined.
We seek to find the equation
4 of the plane. Let P, with co-
X ordinates z, y, and z, be any
Fia. 80. point in the plane. The sum
of the projections of OH = z, HK = y, KP = z, and PN upon
ON is ON = p.
The projection of OH on ON is z cos a.
The projection of HK on ON is y cos 3.
The projection of KP on ON is z cos .
The projection of PN on ON is 0.

Hence

xcosa +ycosf + zcosy = p. (1)

If P does not lie in the plane ABC, the projection of PN on ON

is not zero, and the coordinates of P do not satisfy (1). Hence the
locus of a point satisfying (1) is a plane. Equation (1) is the
normal form of the equation of the plane. p is taken to be
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positive. The algebraic signs of cos @, cos 8, and cos y are de-
termined by the octant into which ON extends.

Tllustration 1. Find the equation of a plane for which p = 2,
o = 60° B = 45°.

Then by (1), §117,
cos’y=1—-1-—4%.
Hence
cosy = + 3.

The equation of the plane is
z | Y + z _

There are thus two planes satisfying the conditions of the problem,
one forming with the codrdinate planes a tetrahedron in the first
octant, the other a tetrahedron in the fifth octant.

Exercises

1. Find the equation of a plane if @ = 60° 8 = 135° p = 2, and
if the normal ON extends into the seventh octant.
2. If « = 120° 8 = 60°, p = 5 and if the normal ON extends into
the sixth octant.
120. The Equation Ax + By 4+ Cz = D. The general equation
of the first degree in z, y, and z is
Az + By + Cz = D, (1)
- where A, B, C, and D are real constants. D may be considered
positive. For, if the constant term in the second member of an
equation of the form (1) is not positive it can be made so by
dividing through by —1.
Divide (1) by v/A2 4 B2 4 (2 and obtain

A - B
VAt Bt T NAEtr B0
c D

Y TG VIt BT O
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The coefficient of z is either equal to or less than unity in numerical
value. It can then be considered as the cosine of some angle, say
a. Similarly the coefficient of ¥ may be considered as the cosine
of some angle 8, and that of z as the cosine of some angle 1.
Further the sum of the squares of these coefficients is equal to 1.
Hence «, 8, and v are the direction angles of some line. Then (2)
is in the form

zcosa+ycosﬂ+zéosy=p, 3)

where
D

PEVAiFBfCY
and cos «, cos 3, and cos v are the coefficients of z, y, and z, respect-
ively, in equation (2). Hence (3) is the normal form of the equsa-
tion of a plane. Equation (1) is the general equation of the first
degree in the variables z, y, and z. Therefore every equation of
the first degree in z, y, and z represents a plane.

Tllustration 1. Put 3z — 2y — 2z =6 in the normal form.
Divide by v/A? 4+ B*+ C? = v/9 + 4 + 1 = 1/14 and obtain
3z _ 2y oz 6
Vi Vi /14 V14

The plane is :/% units distant from the origin, and forms, with the

- coordinate planes, a tetrahedron in the eighth octant.

Exercises

Transform each of the following equations to tﬁe normal form, find
the distance of each plane from the origin, and state in which octant
it forms a tetrahedron with the coérdinate planes.

1.3z -2y —z=1. 6. z + 2y = 6.
2.z24+y+z= -1 T.2—-2=4.
8. 2 -3y +22=3. 8.z =2

4. 2 -2y +32+2=0. 9. z= -1
6.2 —y—2-1=0. 10. z = y.

121. Intercept Form of the Equation of a Plane. We seek the
equation of a plane whose intercepts on the X-, Y-, and Z-axes
are a, b, and c, respectively.
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The general equation of a plane is

Az + By + Cz = D. . (1)
The constants are to be so determined that the plane will pass

through the points (a, 0, 0). (0, b, 0) and (0, 0, ¢).
On substituting the coérdinates (a, 0, 0), in (1), we obtain

Aa = D,
or
4 =2

a

Similarly, since (1) passes through (0, b, 0),

Bb = D,
or
_D
)
And, since it passes through (0, 0, ¢),
Cc=D
or
¢-D.
c
With these values of A, B, and C, (1) becomes
+ Dy Dz =D,
or
T, Y ,%_
atpte=t @

Equation (2) is known as the intercept form of the equation of a
plane.
IlNlustration. Transform the equation 3z — 2y — 5z = 4 to the

intercept form. Divide by 4 and obtain

T, Y 4.z _

st t—g=1
The intercepts on the X-, Y-, and Z-axes are 4, —2, and —4,
respectively.
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\ \ ‘ | Exercises

\1‘ Transform each of the following equations to the intercept form:
’/1.z+y+z=3. 4.2 +7Ty—32=1
2.2z —3y+4z=17. b.z—-y+32=-1
3.2z +y—-2+2=0. 8.y —2z — 32 =5.
' ( 122. The Angle between Two Planes. The angle between two
\ planes is the angle between the normals drawn to them from the
/ origin. The cosine of the angle between the normals can be found
by formula (1) §118, in which a;, 81, v1 and a3, B, 2 are the direc-
tion angles of the normals.
Illustration. Find the angle between the planes

r+y+z=1 1)
and 2z +y+ 22 =3. 2)
Transform these equations to the normal form and obtain
z Y z 1
Vit Vst~ va @
and
2 y 2z
3gt3t+g =1L 4
The direction cosines of the normals to the first and second

planes are %, \—}5, —\%, and %, %, %, respectively. Then,if 6 is

the angle between the normals, formula (1), §118, gives
+ 1 2 5

3v3 3333

cosf = 2
33
From which § = 74.5°.
Exercises
Find the angle between the following pairs of planes:
1.z -3y+22=6andz -2y +2z=1.
2.2 -2y +32=2and 2z +y — 22 =3.

123, Parallel and Perpendicular Planes. If two planes are
parallel @ = 0 and cos # = 1. If they are perpendicular § = 90°
and cos 6 = 0.

Let

Az + By + Ciz = D, (5)
and
A,z 4+ By + Cyiz = D, (6)
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be the equations of two planes. After writing these equations in’
the normal form it is found that

cos 8 = AA:+ BB+ C\C, . e
VA*+ B+ C:* VA + B2+ Cy?
If A1A; + BBy + CC; = 0, (8)

cos @ = 0 and the planes (5) and (6) are perpendicular.

If the planes (5) and (6) are parallel, the corresponding coeffi-
cients must be equal or proportional. For then and only then will
their normals be parallel.

Exercises

From the following equations pick out pairs of parallel planes and
pairs of perpendicular planes.
lL.z+y+2z=6.
2z—y—2z2=2 .
8.2z +2y+4+22=1.
4, 3z — 2y — z = 8.
6.2z —3y+2z=1
124. The Distance of a Point from a Plane. Let (zi, 91, 21)
be any point and let
Az +By+Cz=D
be the equation of a plane. We shall find the distance of the
point from the plane.
Now
Az + By + Cz =K,
where K is any constant, is the equation of a plane parallel to the
given plane. (See §123.) Let us choose K so that this plane shall
" pass through the given point (z,, y1, 21). To do this substitute
the cooérdinates of the point in the equation and solve for K.
This gives
K = A:cl + By1 + Cz;.
Placing the equation of each plane in the normal form we have
Az+By+Cz D
R R
and

R “R” R
where R = /A2 + B2 + C=

Az + By + Cz K_A2'1+By1+C'z;
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The given plane is-g units distant from the origin, and the plane

through the point (zi, yi, 21) is Mlél—lﬂ units distant

from the origin. Then the distance, d, between the two planes,
and hence the distance of the given point from the given plane,
is equal to the difference of these two distances, or
_ Ax + By, +Czf= D,
VAT +B* 4 C

Tllustration. Find the distance of the point (1,2, —1) from the
plane3z —y +2+4+7 = 0.
d = - = = —.
VAT + B+ C VEF(-D+1 VI

Exercises

d

In each of the following find the distance of the given point from
the given plane: ‘
1. 31,-2); 3z+y—2—6=0. ‘
2 (-1,2,-3); z—y—224+1=0.

3. (0,2,-3); 2z +3y — 52 — 10 = 0.

125. Symmetrical Form of the Equations of a Line. Let PP,
Fig. 81, be a line passing through |
the given point P, (zi, ¥, 21),

and having the direction cosines
/ cos a, cos B, cos 4. In order to

zZ

find the equations of the line,
? y let P (z, y, 2), be any point on
/o / the line and denote the distance

PP, by d. Then |

/ Tz — 2z, =dcosa,
X

Fia. 81. Yy -y =dcosp, |
2 —2z =dcosvy,

and therefore
To—m_Y—Yh _2—2 R
cosa cos cosy
These equations are known as the symmetric equations of the
straight line.
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Frequently a straight line is represented by the equations
of two planes of which it is the intersection.
Illustration 1.
3z—-y+1=0, (2
5z —z = 3. 3)

From these equations the symmetrical form of the equations can
readily be obtained. From (2) and (3) we obtain

$=y—;—l‘=z-;3’
. 0 1 3
° bl ol F
xl =y3 = 45; @

The denominators, 1, 3, and 5, of (4) are not the direction cosines
of the line, but they are proportional to them. Upon dividing
each by 1/35, the square root of the sum of their squares, they
become the direction cosines. Then

z—-0 y—1 243

1 3 5

V35 V35 V35
is the symmetrical form of the equations of the line.

The line therefore passes through the point (0, 1, —3) and has
the direction cosines given by the denominators in the preceding
equations. '

Illustration 2. Consider the line which is the intersection of
the planes

13z + 5y — 4z = 40,
—13z + 10y — 2z = 23.
On eliminating =z we obtain

Sy — 2z = 21,
and on eliminating y we obtain
,13z — 22 = 19.

From the last two equations we find
5y—21 13z —19
2 - 2

z—1 _y—-% _2-0
2 T |

2 =

or
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These are the equations of a line which passes through the point
(43, 3%, 0) and whose direction cosines are proportional to v,
#,and 1. The student will find the direction cosines.

In Illustration 1, equation (2) represents a plane parallel to the
Z-axis whose trace in the XY-plane is the line 3z — y +1 =0.
Equation (3) represents a plane parallel to the Y-axis whose trace
in the ZX-plane is the line 52 — z = 3.

In Illustration 2 the position of the two planes whxch intersect
in the straight line is not so evident. By eliminating first z and
then y, the equations of two planes passing through the same line
are obtained, one of which is parallel to the X-axis and the other to-
the Y-axis.

Exercises

Put the equations of the following lines in the symmetrical form:

1. 242y +32 =6,
rT— y=— 2z =1
22+ y—- z=1,
z—=3y+2z = 6.
.z— y+22 =0,
_ z4+2y—32 =0.
126. Surfaces of Revolution. Let
¥ =4 (1
z be the equation of a curve in the
c D  YZ-plane, Fig. 82, and let it be
P rotated about the Z-axis. The sur-

face generated is a surface of revolu-
tion. Any point D on the curve de-
seribes a circle of radius CD, equal to

g Y the y-coordinate of the point D.
During the revolution the z-coérdinate
does not change. Let P be any posi-

X tion taken by D in the revolution. Let
Fia. 82. the codrdinates of P be (z, y, 2).

2t + y* = (CP)* = (CD)? @
But by (1), (CD)? = 4z,
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where z is the common z-codérdinate of D and P. Then (2)
becomes

z? 4y = 4z, (3)
an equation satisfied by any point on the surface of revolution.
We note that (3) is obtained from (1) by replacing y? by 22 + 2,
ory by vz 4 y2 ’

In general, if .
fy,2) =0 4)
is the equation of a plane curve in the YZ-plane, the equation of
the surface of revolution generated by revolving it about the Z-
axis is obtained by writing 4/z% + y2 for y, i.e., the equation of
the surface of revolution is

JVrr ¥yt 2) = 0. (5)
This equation can also be regarded as the equation of the surface
generated by revolving the curve f(z, 2) = 0, lying in the XZ-
plane, about the Z-axis.

Simila.rly, Fy, Vzr+22) =0 (6)
is the equation of the surface generated by revolving the plane
curve f(y, ) = 0 about the Y-axis; and

¢z, Vyr+2) =0 (7
is the equation of the surface generated by revolving the plane
curve ¢(z, z) = 0 about the X-axis.

Illustration 1. The equation of the surface generated by rotat-
ing 22 4 (y — B)? = a? about the X-axis is

2+ VETa sl =a
Exercises

Find the equation of the surface generated by rotating:
1. y = z? about the Y-axis.
2. y = z? — a? about the X-axis.
3. b2z? + a?y? = a?b? about the X-axis.
4. bz — g?y? = g?? about the X-axis,
6. b%? — a%y? = a?? about the Y-axis.
6. 22 + y? = a? about the Y-axis.
7. 22 4 y? = a? about the X-axis.
8. y = mz about the X-axis.
9. y = mz about the Y-axis.

16
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127. Quadric Surfaces. Any equation of the second degree
bet ween z, y, and 2, of which
Az? + By*+ C22 4+ Dxy + Eyz + Fzz +Gz+Hy+Kz 4+L=0

1)

is the general form, represents a surface which is called a gquadric
surface, or conicoid.

By a suitable rotation and translation of the axes, the equation
of any quadric surface can be put in one of the following forms:

2 2 2
i’%i%—,i’—,=1, 2)
yz 22 :
ibzi =0, (3)
E‘,il;=:t2cz. (4)

The particular form assumed by the equation depends upon the
values of the coefficients in (1).
The quadric surface
2
S (5)
is called the ellipsoid. To find the shape and properties of this
surface, let
z =k, (6)
where k is any real constant. This equation represents a plane
perpendicular to the axis of z. Equations (5) and (6) considered as
simultaneous equations represent the curve of intersection of the
ellipsoid with the plane. If z is eliminated between (5) and (6)

there results
2 2 2

(b\/a; k’)’ + (g_g‘;—_k”)’

the equation of the curve of intersection in the plane z = k.
Equation (7) is the equation of an ellipse. The semi-axes of the
bva% — k? and cvVa? — k?
a
b
as k increases in numerical value from 0 to a. When k = + a

=1, ]

ellipse are These axes grow shorter
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the elliptical section reduces to a point. When |k| > a, the lengths
of the axes of the ellipse become imaginary, i.e., the plane z = k,
(|k] > a), does not meet the surface (5) in real points. Hence the
surface is included between the planes z = + a.

The above discussion shows that the surface represented by the
equation (5) is included between the planes z = + a;is symmet-
rical with respect to the YZ-plane; and has elliptical sections
made by planes perpendicular to the axis of . These sections
grow smaller as the cutting plane is moved away from the YZ-
plane and at a distance +a reduce to a point.

In a similar manner, by taking y = k, and then by taking
z = k, the student will discuss plane sections of the ellipsoid (5)
perpendicular to the Y-axis and to the Z-axis.

a, b, and ¢, are called the semi-axes of the ellipsoid.

It can be shown that any plane section of the ellipsoid is an
ellipse.

The surface represented by

xz y2 z2
@t~ o

will now be discussed. Let z = k. Then .

=1 (8)

x2 2 k2
=1+ )

is the equation of the plane section made by z = k. Itis an

Y c’c-{- i and by c';+ K They

increase in length with the numerical value of k. The axes
have a minimum length when k¥ = 0. The surface represented by
equation (8) is symmetrical with respect to the X¥-plane, and
every section parallel to this plane is an ellipse. The smallest
elliptical section is that made by the XY-plane.

If z = k, equation (8) becomes

. . a
ellipse whose semi-axes are

2 2 2
y*_ 2 _k

- (10)

an hyperbola.
If k < a, the transverse axis of the hyperbola is parallel to the
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Y-axis. If k > a, the transverse axis is parallel to the Z-axis.
When &k = a, equation (10) reduces to

yz z2
a0

G+ -9 -0

the equation of two straight lines.

The student will discuss the curves of intersection of the surface
(8) with planes parallel to the XZ-plane.

The surface is called the hyperboloid of one sheet, or of one

nappe.

or

Exercises

The student will discuss the following surfaces and make sketches
of them:

T2 oyt 22

1. Pl < Rl i 1, the hyperboloid of two sheets.
zt gyt . A
2. il vl 2cz, the hyperbolic paraboloid.
T2y o e .
3. pr + = 2cz, the elliptic paraboloid.
128. Cylindrical Surfaces. If the circle , \
2t +y? =125 m

be moved parallel to itself so that all of its points describe lines
parallel to the Z-axis, it will generate a right circular cylinder.
The equation of this cylinder is sought. In any plane z = k, the
relation between z and y for points in the curve of intersection of
this plane and this cylinder is the same as that for points in the
plane z = 0, viz., z* 4 y* = 25.

Now, this equation is satisfied by all points on the surface for
all values of z. Hence it is the equation of the surface.

The cylindrical surface just considered can be regarded as
generated by a line moving parallel to the Z-axis and passing
through points of the circle 22 4+ y2 = 25 in the plane z = 0.

In general a cylindrical surface is a surface generated by a line
moving parallel to itself.
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It is clear that the equation ‘
fz,y) =0. (2)

represents the cylindrical surface generated by a line moving
parallel to the Z-axis and passing through points of the curve
f(z, ¥) = 0in the plane z =.0. The equation of a section of (2)
made by any plane z = kis f(z, y) = 0.

Thus

2 2
S+h-1 @®

represents an elliptical cylinder whose elements are parallel to the
Z-axis.
22 4 y? = 2ax 4)

represents a circular cylinder whose elements are parallel to the
Z-axis. The center of the section in the plane z = 0 is the
point (a, 0).

By the same reasoning

y*+2* =a? ©)

represents a circular cylinder whose elements are parallel to the
X-axis.
22 =4z (6)

represents a parabolic cylinder whose elements are parallel to the
Y-axis.
The plane
z2—4y+3=0 ) )

can be regarded as a cylindrical surface whose elements are
parallel to the Z-axis and which pass through the line

z
v=3 + i

in the plane z = 0.
In general, an equation in which one of the letters z, y, 2 is
absent, represents a cylindrical surface whose elements are

parallel to the axis corresponding to the letter which does not
appear in the equation.
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Exercises

Describe the surfaces represented by the following equations:

1. 224 y? = 16. . T.23 —y* =0.

z y? 8. zy =1.
2’71-+.175=1' ' 9. 2z = 2.
3. 22 —y? =1 10. (z — 3)(z +2) =0.
4. 22 + y* = 25. 11. y? = 4z. :
B. z2 — z? = 25. 12, y? + 2% = 2ay.
6. z + 3y = 10. . 18. 22 4 y* = 10z.

129. Partial Derivatives. Let z = f(z, y) be a function of two
independent variables, z and y. When z takes on an increment
Az, while y remains fixed, z takes on an increment which we shall
denote by A.z. When y takes
on an increment, Ay, while z
remains fixed, z takes on anin-
crement which we shall denote
by A,z

For example, if a gas be en-
closed in a cylinder with a mov-
-able piston, the volume v of the
gas is a function of the tempera-
ture T and of the pressure p
Fia. 83. which can be varied by varying

the pressure on the piston. If
the temperature alone be changed the volume will take on a
certain increment Asv. If the pressure alone be changed the
volume will take on the increment A,

If z = f(z, y) be represented by a surface, Fig. 83, the increment
of z obtained by giving z an increment, while y remains constant,
is the increment in z measured to the curve cut out by a plane
y = k, a constant. Thus A.z = HQ; similarly A,z = KR.

The limit of the quotient %i: as Az approaches zero is called the

X

partial derivative of z with respect to z. It is denoted by the
bol 2. Th
symbol o en
9z _ lim A.z

dr Az=0 Ag
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It is evidently calculated from z = f(z, y) by the ordinary
rules of differentiation, y being treated as a constant. Thus if
z=z%,

a9z

Fy 2zy.

Geometrically g—; represents the slope of the tangent at the

point (z, y, z) to the curve cut from the surface by the plane
through this point parallel to the XZ-plane.
Similarly

9z _ lim A2
dy  4v=0 Ay
and it is calculated by differentiating z = f(z, y), treating = as a
constant. Geometrically it represents the slope of the tangent
at the point (z, y, 2z) to the curve cut from the surface by the
plane through this point, parallel to the YZ-plane. If z = z%,

Tllustration 1. If z = sin 5,

ai—cos:fif "‘];COBE
9z ~ yaz(y) Ty oy
and
% _ cosfi(—a-:) =—Zcos?
dy y 9y \y, ¥y

130. Partial Derivatives of Higher Order. If z is differentiated
twice with respect to z, y being treated as a constant, the deriva-
tive obtained is called the second partial derivative of z with re-

2
spect toxz. Itisdenoted by thesymbol g—:, Similarly the second

partial derivative of z with respect to y is denoted by the symbol
0%
ay*

If z is differentiated first with respect to z, y being treated as a
constant, and then with respect to y, = being treated as a constant,

the result is denoted by the symbol (—%{% If the differentiation

takes place in the reverse order the result is denoted by the symbol
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92 . c g e . )
E')T;y. The first is read *the second partial derivative of z with
respect to z and y;”’ the second, ‘“the second partial derivative
of z with respect to y and z.”” In the case of functions usually
occurring in Physics and Engineering, viz., functions which are

continuous and which have continuous first and second partial
N 9%z 9%z - e
derivatives, Gyox — oxoy The order of differentiation is

immaterial.
Illustration 1. z = z%y.
0z 9% 9%z
3z = 2% 3= 2 m=2ﬁ.
dz 9%z 92z
= 2 —_— = =
3y z2, o 0, 320y 2z.
In this case
O _ 0%
dydz  Ozdy .
Illustration 2. z = sin ;—j
9 _1 =z
Eriay cos v
0% . T
a'—'zz = - 'y_z sin g'
z

oz _1 (— sin—) (-— i) —lcosf
dydx y y y? Ty

i . T z
== (xsmg—ycos—)-

Y Y
a9z T
= TRy
9%z 2z z x2 . z
-a—y2=y—30081;—5481n;

0% z /. x\ /1 1 z
azay = v (03) )~y
1 . T z
=5 (xsmg—/ - ycos&)-
Here again, we notice that
d% 0%z
dydz ~ 3zdy
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Exercises
022 02 0% 022
1. Find -—; 9z 3" 9297 and 3997 for each of the functions:
(@) z = g- . (b) z = zyn (c) z = zy.
(d) z = sin zy. (€) z = e*sin y.
2. Find aa az and i 320y for each of the following functions:
(a) z = z%y. (b) 2 = z8in"1y. (¢) z=2xcosy.
@) z =ylogz. (e) z = evsin z. (f) 2z =ytan'z.
9% 9%

It is seen that ——— 3yoz = 3297 ay in all of these cases.

In the above discussion z was considered to be a functjon of two
independent variables only. The notion of partial derivatives
can, however, be extended to functions of three or more variables.

Tllustration 3. 1If z = zyt,

0z
3z = 22yt
dz
ay = z2,
9z
& = Izy,
9%z
379t = 2%
and
0%

atoyozx = 2z.



CHAPTER XV

SUCCESSIVE INTEGRATION. CENTER OF GRAVITY.
MOMENT OF INERTIA

131. Introduction. In the preceding chapters there have been
numerous examples of successive integration of functions of a
single independent variable. Thus, to determine the law of
motion of a falling body whose differential equation of motion is

d%s

ﬁz’ =4,
it is necessary tointegrate twice. The result of the first integration
is%—f = gt 4+ C,, and that of the second is s = 4gt2 + Cit + C..

Exercises
dy . . dy
1. If =t = 2z, find y as a function of z, given that iz = 3 when

z =1, and y = 2 when z = 4; given that y = 4 when z = 2, and
that y = 7 when z = 4. i
3,
2. Find y if ﬁ% = 7z. Assign suitable conditions to determine the
constants of integration.

. .. A%y
8. Find yl.f(—i;‘ = 2z%, }

The operation of finding the result of Exercise 2 can be written
[U1[72 deldzias = ([ Fa* + Cildaldz |

=[Go+Ca + Caz
4 2
=%+01%+Cﬂ+ca- ‘

The first member can be written ‘

[[ e

It is a triple integral and indicates that integration is to be per- |
formed three times in succession. An arbitrary constant of
250
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integration is introduced with each integration. If each integra-
tion is performed between limits the constants of integration do not
appear. Thus,

J [ frosacan- [ [ 55|
[ [aeas

2 3
=f42:c dx
1 1 .
2
[ue
! 2
=84z| = 84.
1

132. Illustration of Double Integration. Let

d2z ‘
dzdy =2+ y ®

Integration with respect to v, treatmg z as a constant, gives

¥ om+lisw,

where ¢(z) is an arbltrary function of z. This arbitrary function
of z takes the place of an arbitrary constant of integration in the
case of a single independent variable. A second integration, this
time with respect to z, gives

=£;_y+%y’+f¢(z)dx+¢(y), @)

where Y(y) is an arbitrary function of y.

The result contains an arbitrary function of z and an arbitrary
function of y. Equation (2) represents a surface, but a very
arbitrary one on account of the presence of the arbitrary functions
f ¢(z)dzx and ¥(y). The process of finding (2) from (1) is indi-

cated by a double integral sign. Thus,

ff(xz + y?) dy dz,
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f ( f (e + y)dy) dz

Upon performing the integration indicated, first with respect to y,
then with respect to z, we obtain

,ff(z=+y=)dudz=f(xw+’-’—'+¢(x))d<c

N +f¢(x)dx+¢(y)

which means

Instead of an indefinite double integral such as the one just
considered we may have a definite double integral. If the inte-
gration with respect to y is performed before that with respect to
z, the limits of integration with respect to y may be functions of
z. Thus,

Y=z

ff(zz+y=>dydz foy+3’) 3
Fert-9e

The last mtegratlon is readily performed It is to be noted that |
in evaluating a double integral, z is treated as a constant when the
integration with respect to y is performed. ‘

If in a definite integral dz is written before dy, the integration |
with respect to z is to be performed first.!

ynz!

Exercises

1 P4 a(1l + cos 8) v
l.ff:cydydz. 4. ff r dr do. ‘
0 J2
1 Mz
2. f f zy dy dz. Vei=ai z’ ‘
o Jo ‘
1 et
.. f f zy? dy dz. 6. f f f z3y322 dz dy dz.
0 Joz 0 2 ‘

1 Usage varies on this point. The student will have to observe in every case the
sonvention adopted in the book he is reading.
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f*’f\/m f\/&:_—'?:
7. dz dy dxz.
0Jo ()
1 (V= L (V=
Bff z dy dz. 10.ff dy dx
0 Jz2 0 Jx2
1 V; 1 _\/;
9. f f (z? + y?) dy dz. 11, f f y dy dz.
0 Jzx2 ! 0 Jx2

% (*/ar — zt
12. ff Va2 — a2 — yrdy dz.
0 Jo

Hint. To perform the integration in Exercise 12, let \/ a? — 12 = b
and make use of the result of Illustration 3, §106.

133. Area by Double Integration: Rectangular Codrdinates.
A plane area can be represented by a double integral. Thus, let
it-be required to find the area A between the curvesy = fi(z),
y = fu(z), and the lines z = @ and z = b. The area of the strip
IJKH, Tig. 84, is approximately

v, Yy
i
A;%szAx = Az, ‘OEAy—Axﬁ dy,

where y; and y. are the ordinates of the two curves ¥y = fi(z) and
y = fiz), respectlvely And
the area sought is approxi-
mately

z=b

ZA:c f

T=a
The smaller Az is taken, the © @
closer the approximation. Fra. 84.

The limit of this sum as Az
approaches zero is the area sought. Since y, and y. are func-

ob————

]
tions of z, jw dy is a function of z and cousequently
v

z=b
Jim A”f dy—fbfdydx=A.
T=a

It is to be noted that in setting up this integral the summation /‘r
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with respect to y was performed first, giving the area of a vertical
strip for a particular value of z. Consequently, the integration
with respect to y is to be performed first, z being treated as a
constant. On performing the integration with respect to y we
obtain -

b b
A= f (y2 — y1)dz = f [f2(2) = fi(2)]dz,

a single integral which might have been set up at once by consider-
ing the area as the sum of vertical strips of length y, — y,, and
of width Az. It is, however, desirable to be able to set up a
double integral over an area.
In choosing the limits for a double integral, the student should
proceed systematically. The process of setting up the above
. integral with its limits is the follow-
Y| 4 ing: The ‘“element” is the rectan-
gular element of area dy dz. The
“summation”. (integration) of this
% %) element, for a particular value of z,
between the limits for y of WI and

% WH, the ordinates of the curves y =

x Ji(z) and y = f(z), gives the area of

o ﬁ’x the typical strip I/JKH. The ‘“sum-
Frq. 85. mation” (integration) of the strips of

which this is a typical one, between
the extreme values,of z, z = a and z = b, gives the area sought.

Thus
) b Ys
A= f f dy dz.
a l[‘

The procedure may be briefly summarized in the following concise
directions. Write first the element dy dz, then the integral sign,
then the limits fi(z), f2(z), then another integral sign with the
limits @ and b.

Illustration. Find by double integration the area between the
parabolas y2 = z and y = z2. The integral is set up as follows:
Write the element dy dz, then an integral sign with the limits
72 and v/z. This represents the area of the typical strip, IJKH,
Tig. 85, for a fixed z. All of the strips of which this is a typical
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one are to be summed from z = 0 to z = 1, the abscissas of the
points of intersection of the curves. Then write the second
integral sign preceding the first with the limits 0 and 1. Thus

1 Pz
A=ff dydz = }.
0 Jz?

Exercises

1. Find by double integration the area between the curves y = z
and y? = 2%

2. Find the area of Exercise 1 by integrating first with respect to z
and then with respect to .

8. Find by double integration the area between of y2 = a(a — z)
and of z? + y? = a2

4. Find the area between y? = az and y* = 2ax — z.

5. Find the grea of Exercises 3 and 4 by integrating first with respect
to z.

6. Find the area bounded by y? = 4z, z + y = 3, and the X-axis,

7. Find the area of a reetangle by double integration.

8. Find the smaller area between 22 + y? = land y = z + %.

134. Geometrical Meaning of the Definite Double Integral
Consider the definite double integral

b Vy=S2(z)
f f(z, y) dy dz. (1)
e Jy;= fi(z) .

In accordance with the definition of a definite single integral,
§65, (1) can be written

b [, U
f [A‘,:’fo ) ¥ (CRN) Ay] dz. @
a v,

Here z is considered constant under the summation sign, and .
f(z, y) is, for such a fixed z, a function of y alone.

. n R
lim S f(, 9) &y = f f(z, v) dy
v, 1

is a function of z, since « oceurs as an argument of f and also in
the lifnits of integration. Hence we can write (2) in the form
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b Vs
Jim S az [ Aim 3 £, v) Ay]
a A
b

Vs
= tm, Aljj‘.’o 2 f(z,y) Ay Az, 3)
a v,

where Az under the second summation sign is regarded as a con-
" stant multiplier.

2

Al L9 D
i
/1 /‘ A ;/’
B
/ T 7TV TE
A7
B T
s
Fia. 86.

In Fig. 86, let EFGL represent the surface z = f(z, y); QABS,
in the XY-plane, the curve y = fi(z); DHKC, the curve y = fy(x);
AD the line z = a; BC the line z = b; and A’B’C’D’ the portion
of the surface cut from z = f(z, y) by the cylinders y = fi(z),
y = fi(z), and the planes z = aand = = b.
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Divide ABCD into small rectangles, as shown in the figure, by
lines parallel to the X- and Y-axes, at intervals of Ay and Az,
respectively. Through these lines pass planes parallel to the
XZ-and YZ-planes. These planesdivide the solid bounded by the
planes and surfaces of Fig. 86 into vertical columns of rectangular
cross section Ay Az. The column erected on MNPR as'a baseisa
typical one. f(z, y)Ay Az represents approximately the volume of
the column whose base is M NPR and whose top is M’N'P’R’, since
the area of its base is Ay Az and its altitude is MM’ = f(z, y).
Then the sum of the columns at a fixed distance from the
YZ-plane,

vy

> 1, v) Ay As,

v,
is approximately the volume of the slab between the planes
IHH'I’ and JKK'J', i.e., between the planes z = z and
z=z+ Az And

b Vs
D Az [2 1=, v) Ay],
a v, :

the sum of the volumes of all the slabs, is approximately the vol-
ume of the solid ABCDA'B’C'D’. If Ay and Az are each taken
smaller and smaller this sum will eventually represent a very close
approximation to the volume in question, and the limit of this
sum as Ay and Az approach zero is the volume. Hence the inte-

gral
b Vs
f f 1o, 9) dy dz,
a 1[x

which we have seen is equal to

. z=b . L

tm Az [};‘1‘02 f(z, ) Ay],

z=a v,

represents the volume bounded by the plane z = 0, the surface

z = f(z, y), the planes £ =a and z = b, and the cylinders
¥ = fi(z) and y = fi(z).

Ilustration. Find the volume contained in the first octant of

17
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the sphere z2 + y? + 22 = a?. See Fig. 87. The equation of the
surface is
z=+/a* — 2 —
n=rkx=0
Y2 = fa(x) = Va? — z?,
the trace of the sphere on the XY-plane. The volume of the col-
umn on MNPR as a base is

Va* —z? — y? Ay Az,
or, as we shall say in the future,
¥ Va? =2t — ytdydz.

The summation of these columns

B
for a fixed z gives

Vaisz
Fa. 87. f Va* —z* —ytdydz,
0

the volume, expressed as a function of z, of the slab between the
planes £ = z and £ = x + Az or z = z + dz. The summation
of all these slabs from z = Otoz = a gives

% *Var—z:
ff V=T dy da,
[}

the volume of one octant of the sphere. This integral was evalu-
ated in Exercise 12, §132.

Exercises

Z

1. Find the volume of the segment of the paraboloid y? + 2:* = 4z,
cut off by the plane z = 5.
2. Find the volume bounded by the cylinders y = z* and y* =z,
and the planes z = 0and z = 1.
., 8. Find the volume common to the cylinders 22 + y* = a* and
y? + 22 = al

4. Find the volume between the cylindrical surface y? = z3, the
plane y = z, and the planes z = ®and z = 1.

135. Area: Polar Codrdinates. Let it be required to find, by
double integration, the area between the radii vectores 8 = ¢,
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and @ = B, and the curve p = f(f). Divide the area as shown in
Fig. 88, the radii making an angle of A@ with each other and the
radii of the concentric circles differing by Ap. The area of MPQR
is equal to

3(p + Ap)* A0 — } p* A0 = p Ap AO + } Ap? AG
As Ap approaches zero,

lim pApAG + 3Ap2A0 1
Ap=0 pAp Al o

Hence

i p=/(6) i p=1(8) o= £(6)
kD, (pApAS +38p240) = TS pApAo=f pdp A6
p=0

p=0 P=0
Yy
B
DQ
- 4>0
10 A
Fic. 89.

This sum represents the area of the sector OHL. The total area
sought is the limit of the sum of these sectors as A@ approaches
zero, 1.e.

LT Y A7) 8 L1O)
A=A1;E’02A0f pdp=fﬁ p dp dd.
P a .

0=a =0

This integral is to be set up as follows: The element of area is
the approximately rectangular area MPQR whose area is approxi-
mately (MR)(MP) = pdpdf. This element is to be summed
from p = 0to p = f(6). This gives approximately the area of the
typical sector OHK. These sectors are to be summed from
6 =atol =B



260 CALCULUS [§136

More briefly: Write down the element pdpdf, then an
integral sign. Its limits are the extreme values of p for a given 6.
Then write before this integral another integral sign. Its limits
are to be chosen so as to sum up all the sectors such as OHK.

Illustration 1. Find the area
of the circle p = 10 cos 6, Fig.
89. The area bounded by the
semicircle above the initial line
will be found and multiplied by

two.
10cosé
el e
10 005"@'
A= f f p do dp.
o Jo

Illustration 2. Find by double integration the area between
p = 10 cos 8 and p = 20 cos 6. » See Fig. 90.

20 cos 6
=2 f f pdp db.
10cos 8
Show that * -

10 ";po‘ 20 005"5"3
A= f ‘ » pd0dp+2f f p do dp.
0 cos"ﬁ 10 0

Which method is the simpler in this case?

Show that

Exercises

Find by double integration:

1. The area of the circle p = 5sin 6.

2. The area of the cardioid p = a(l — cos 8).

8. The area of the lemniscate p2 = a2 cos 20.

4. The area outside p = a (1 + cos ) and inside p = 3a cos 4.

136. Volume of a Solid: Triple Integration. We shall now
ind the volume of the solid of Fig. 86 by triple integration. Sup-
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pose the solid further subdivided by planes parallel to the X Y-
plane and at a distance Az apart, into rectangular parallelopipeds
of volume Az Ay Az. Then the volume of the column on the base
MNPR is approximately
z = f(z,9)
Az Ay Az.

g =0

Then

vs 2= f(z,9)
Az AyAx
n =0
is approximately the volume of the slab between the planes
IHI'H' and JKJ'K', 1i.., between the planes z =2 and
z =z + Az .
z=b ¥ g=f(z,v)
Az Ay Az
z=a ¥y z=0
is approximately the sum of the volumes of all of the slabs.
If Az, Ay, and Az are each taken smaller and smaller, this sum will
represent a very close approximation to the volume sought, and the
limit of this sum as Az, Ay and Az approach zero is exactly this
volume. Hence the integral,

b V2 z
[ ffwne
a Jy, Jo

represents the volume bounded by the plane z = 0, the surface
z = f(z,y), the planes £ =a and z =b, and the cylinders
y = fi(z) and y = fu(2).

Illustration 1. Find by triple integration the volume of the
ellipsoid .
' y: R
b2 + - = 1 , '

See Fig. 91.
I

oof f” f Fane
=
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The student will perform the integration.

Illustration 2. Find by triple integration the volume of the
solid bounded by the cylinder 2 4 y2 = 2az, the plane z = 0,
and the paraboloid of revolution z2 + y2 = 4az. Write the ele-
ment of volume, dz dy dxz. The integration with respect to 2

2 2
between the limits 0 and = :; y gives the volume of the typical

vertical column of base dy dz, extending from the point (z, y) in
2+

4a
Next, z being kept fixed, these columns are summed into a
typical slab by integrating with respect to y from the X-axis,

the plane z = 0 to the surface of the paraboloid, z =

Z|

%
("
Yz /
X
Fia. 91.

¥y =0, to y = 4/2ax — 27, the trace of the cylinder in the XY-
plane. Finally the integration with respect to z from z = 0 to
x = 2a gives one-half of the total volume sought, viz., that lying
in the first octant.

zt + y?

2a vV 2az — z? 4a
V= 2f f f dz dy dz.
0 ] 0

The student will perform the integration.

Exercises

1. Find the volume common to the cylinders z* 4 y* = r? and
z? + 2t = 1Y,

™
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2. Find the volume of one of the wedges cut from the cylinder
7t + y2 = r? by the planes z = 0 and z = maz.

3. Find the volume in the first octant bounded by the coérdinate
planes and the plane z +% +% =1

4. Set up the integral representing the volume bounded by the,
surface z! 4 yt 4 2t = al.

5. Find the volume between y2 + 22 = 4az and z — z = a.

6. Find the volume between the planes y = 0, z = 0 and the sur+
facesz = z2 + 4y%, y = 1 — z%

7. Find the volume between y? 4 222 = 4z and z = z.

137. Center of Mass, Centroid. Let there be a system of

masses mi, Mz, My, . . . , Mn situated at the points (zi, y1, 21),
(%3, Y2, 22), (T3, Y3, 23), . . . »(Tn,Yn,2a), respectively. The mean
distance with respect to mass, of the system from the YZ-plane is
- Em.-x‘
T =< 1)

The mean distances, with respect to mass, of the system from the
ZX- and X'Y-planes are, respectively,

_ 2 msYs

Y S me (2
and

- 3 miz; =

“=ZTm @
The point (z, y, 2) is called the centroid, or the center of mass, of
the system of masses my, ma, - - -, Mn.

m; z; is called the moment, and x; the moment arm, of the mass
m; with respect to the YZ-plane.! Then z is the mean moment
arm with respect to the YZ-plane of the masses m;, ma, + + -, Ma.
For, equation (1) shows that if all the masses were placed at the
distance, z, from the YZ-plane, the moment with respect to this
plane would be the same as the sum of the moments of the masses.
Hence we can say that the centroid of a system of masses is a point
such that if all the masses were concentrated at this point, the
moment with respect to each cosrdinate plane would be equal to

1 The term moment of a mass with respect to a plane has evidently a dlﬂ'erent
significance from the term moment as applied to a force.
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the sum of the moments with respect to the corresponding planes
of the masses in their given positions.

138. Centroid Independent of the Position of the Codrdinate
Planes. It will now be shown that the distance of the centroid,
(z, v, 2), from any plane is the mean of the distances, with respect
to mass, of the masses m;, mg, - - -, ma, from that plane. And
thus it will be shown that (z, y, 2), the centroid, is a point whose
position with reference to the masses is independent of the choice
of the codrdinate planes.

Let az + by + cz + d = 0 be the equation of a given plane
(see §120). The distance, p, of the point (z, ¥, z) from this plane
is

_ ar+by+cz+d

p= R ’
R=VETFETA

(See §124.) On substituting the values of 7, y, and z from (1),

(2), and (3) §137, and reducing the absolute term, d, to the common-
denominator, we have

aZmx; + bEmuy: + cZmiz; + d3m;

6))]

where

’_J = R3m;
or ,
azr; + by + cz:i + d
- Em‘[ R ] @)
P Em.-
But & + by‘;- catd _ ps is the distance of the point

(%:, ¥i, 2;) from the given plane. Hence (2) can be written
in the form
— > m:ps
= Tme ®
This proves the statement at the beginning of this section. In
other words, if all the masses of the system were concentrated at
the centroid, the moment with respect to any plane would be
equal to the moment of the system of masses with respect to this
plane.
139. Center of Gravity. Let the system of masses considered
above be acted upon by gravity. It will be shown that the line

~
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of action of the resultant force passes through the center of mass,
or the centroid.

Since the position of the centroid is independent of the choice of
axes, choose the positive direction of the axis of z vertically upward
and the axes of z and y horizontal. The force acting on m, is
myg, that on mg is mog, ete. The resultant force is equal to T m.g
and is directed vertically downward. Its line of action meets the
XY-plane in a point (a, 8, 0) such that its moment, aZm.g, about
the Y-axis is equal to Zm.gz;, the sum of the moments of the
forces acting on the individual masses; and such that the moment,
f=m.g, about the X-axis, is equal to the sum of the moments,
Zm.gy;, of the forces about this axis.

aZmig = Zm.gxs,

and
3Em.g = Em.yy‘
Whence
Em.a:.-
o=
3
and
B = Em‘.y"
S
. Consequently

a=zandB =y.

Hence the resultant passes through the centroid of the system of
masses.

If the masses all lie in one plane, say the XY-plane, z is zero and
the centroid is fixed by the two coordinates z and y. The product
m.z; is called the moment of the mass m: with respect to the
Y-axis. In this case z is the mean moment arm with respect to
the Y-axis.

If the masses all lie upon a line, say the X-axis, the centroid is
fixed by a single coordinate, .

140. Centroid of a Continuous Mass. If instead of discrete
masses we have a continuous mass, the coérdinates of the center
of mass, or the centroid, are clearly,
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A,’,i,‘:ozxAm fxdm
sz, Am fdm
_ A2 yam fydm ,
y lim ZAm fdm
. Am=0
_ A‘;éo EzAm fzdm
z2 =
Am=0 2 Am fdm

The integration is to be extended throughout the entire mass, and
the integrals considered may be single, double, or triple, depending
on the form of the mass.

Illustration 1. Find the center of gravity of a bar, Fig. 92,
of length L, whose linear density, p, may vary. Let the axis of 2
coincide with the bar, the origin being taken at one end. The

z

0 TR

[e———2L—>

L
Fia. 92.

mass of an “element’’ of the bar of length dz is p dz, p beings
function of z, the distance of the element from the origin. The
moment of this element of mass, dm = pdz, about an axis
through the origin perpendicular to the bar is

zdm = zp dzx.

7, the abscissa of the centroid, the only coordinate necessary
to fix the centroid in this case, is given by

L
f px dx
- 0
T =g
e
0
The numerator represents the total moment, and the denominator
the total mass. If the bar is of uniform density, p can be taken
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out from under the integral sign. Then

If the linear density is proportional to the distance from one end,
then p = kz and we have

L
L

k z2dx
J = e,

z= - = > = %L.
kf zdx }x’o
[)

Illustration 2. Let it be required to find the center of gravity
of a plate of uniform thickness and of mass p per unit volume or of
mass p per unit surface. Take a plate of the shape of Fig. 84.
The mass of the element MNPR is p dy dz. The moment of this
element about the Y- axis is zp dy dx, and its moment about the
X-axis is y p dy dz. Then

b Vs
) :cdm f j; px dydx
X = fd ”. )
m f pdy dx
”n

If p is constant, : fb ’ z dy dz
a Jy,

b Yy
and f f y dy dz
- a v,
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The numerator of each of these expressions is the integral of the
product of an element of area by its distance, z or y, from the ¥-
axis or X-axis, respectively. The denominator is the area. The
mass does not enter into either of these formulas. We are thus
led to speak of the centroid of an area, of a line or of a solid, with-
out reference to its mass. This notion of the centroid of a geo-
metrical figure, a line, an area, or a solid, without reference to its
material composition is an important one. For, in many prob-
lems in mechanics one is interested in the centroid of a geomet-
rical configuration as such. Thus in the study of the deflection
of beams it is necessary to know the position of the centroid of the
cross section of the beam.

Illustration 3. Find the centroid of the solid represented in
Fig. 86. The element of mass, dm, is equal to p dz dy dz, and its
moment with respect to the YZ-plane is zp dz dy dz. Then

] s [z, )
) fz dm j; j: ﬁ pz dz dy dz
= fd' ST v, (Tew
) m f f f p dz dy dx
Ja Jy, Jo

Similarly: \ o
Y2 (z, ¥
py dz dy dz
- fydm ,[.fu.ﬁ !
v= =M v, (fa v ’
o
a Jy, Jo
and

b A i LC ] d
i f’ dm j; j: j; pzdz dy dz
g = = f(z, v) :
f dm f j\u’f pdzdydz
a Jy, Jo

If the density is constant, p can be canceled from numerator
and denominator.

If the solid has an axis or a plane of symmetry the centroid lies
in this axis or in this plane.

Illustration 4. Find the centroid of the area in the first quad-
rant bounded by the circle 22 + y? = a?.
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If we use double integration we have, in accordance with Illus-

tration 2,
Vai =zt
f f v z dydx
1ra’

a2 — zp?
ff ydyd:c

1ra2
Y
Radicals could be avoided in the evaluation of the numerator
of the expression for z if the integration were performed first with
respect to z and then with respect to y. Thus

Var— gt
ff “ '”:vdzdy
')ra2

The student will evaluate each expression given for .

From the symmetry of the figure, z = ¥, and it is not necessary
to evaluate the integral for y.

In finding the centroid in this case, and indeed in many cases,
it is easier to use single integration than double integration.
Thus if we choose as the element of area, the strip y dz parallel
to the Y-axis, the moment of this strip about the Y-axis is zy dz,

and
f:cdm f:cyd:c f\/ — ztdx

wa?
dm y dy 1

Illustration 5. Find the centr01d of the solid in the first octant
bounded by the sphere 22 + y? 4 22 = a2
The method of Illustration 3 gives

Var—z2 (Va2 - s
ff * “ yxdzdyd:c

and

‘
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From considerations of symmetry, y = z = z.

Here again it is simpler to use single integration. Choose a8
element a slab of thickness dz parallel to the YZ-plane. The
base of such a slab is a quadrant of a circle of radius /a2 — 1,
where z is the distance of the slab from the YZ-plane. The volume
of this elementary slab is

w(a? — z?)
—g dx.
Hence

T ¢ 2 2’

i f z (a2 — z?) dz
- 4 .
£ Tat

6
Exercises

Find the codrdinates of the centroid of:

1. The area between y = 2 and y? = z.

2. The areas of Exercises 1, 2, 3, and 6, §188.
8. A triangular plate.

HinT. Draw lines parallel to the base, BC, Fig. 93, at intervals
dz along the median AM. The mass of each strip is proportional .
to AL = z and can be regarded as

¢ concentrated at its centroid on the

M, line AM. Hence we can think of

the triangular plate as replaced by

A v the bar AM whose density is propor-
tional to the distance from the end
My A In accordance with Illustration
) B 1, its centroid is at a point I two-
Fra. 93. thirds of the way from A to M.

The centroid of a triangle can also
be located without any calculation whatever. From Fig. 93 it follows
that the centroid lies on the median AM. The same argument shows
that it lies on the medians BM,; and CM,. Hence it lies at the
point of intersection of the medians, i.e., at a point two-thirds of the
way from a vertex to the middle of the opposite side.

4. The area of a semicircular plate of radius r. (Single integra-
“tion will be sufficient.) '
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6.1 Let OMKB, Fig. 94, be a quadrant of a circle of radius ». Let
OMDB be a square. Denote by C, Cs, and C; the centers of gravity
of the square, the quadrant of the circle, and the area MDBKM,
respectively; and by A, A, and A; the corresponding areas. Then

A&! + ASEI = Alil

s = ‘ﬂ%éf.’ = 0.223r.
3
DC] = 0.315 .
8. A circular arc of radius r and central angle 2. See Fig. 95.
u 0
—? c’
z (]
K
< C;
D E
F1c. 94. Fia. 95.

HinT. The centroid lies on the radius which bisects the central
angle since this line is an axis of symmetry. Choose this radius as the
axis of z and the center of the circle as the origin. Then y = 0, and

a
xrdo rcosordo r’f cos 0 do .
- - -a _rsine
2ra - *

2ra a

This problem can also be solved by using rectangular coordinates.
Thus

_ d_y)’ =\/ @ T, __rds
ds—\/l_l-(dz dz 1+y,d:c yd:c Vi

2 rdx

r —_——

p rcosa\/rz_xz 2r'sinae _ rsina
‘ - 2ra T 2re a

7. The portion of the arc of the circle 22 + y? = r? which lies in the
1 Exercises 5, 9, 20, 21, and 22 taken from Technical Mechanics by Maurer.
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]

first quadrant. TUse the result of Exercise 6. Also find the result
directly.

8. The parabolic segment of altitude a and base b. See Fig. 96.

Hint. Show that the equation of the parabola is 4ay? = b'z.
Ans. T = {a.

9. A conical or pyramidal solid of altitude a and base A.

Hint. Let OMNO, Fig. 97, represent the projection of the solid
on the XY-plane. Divide the solid by planes parallel to the base
into laminas or plates of thickness dz. Then the area of the lamina

Y . ]f N
/ T < a A
a
o » x
M
B
0 [l X
dz
"Fra. 96. Fia. 97.
2 .
whose abscissa is z is ‘t—f—; and its volume is A::zd:c. The volume of the
solid is 1—43—1-1. Hence:
f“ (sz dx)
z 2
—_Jo VY / _3a
= Aa =%

fl —_—

Further the centroid of every lamina lies on the line joining the apex
with the centroid of the base. Consequently the centroid of the
solid lies on that line. '

10. The hemisphere generated by revolving one quadrant of

z? + y? = r*about the X-axis. Evidently y=2 = 0 and

r
wf zytdx
0 .

fwr3

5‘:

11. The surface of the hemisphere of Exercise 10.
12. The segment of a paraboloid of revolution of altitude h.
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18. The semi-ellipsoid of revolution generated by revolving one
2 2
quadrant of g—, + %—, = 1 about the X-axis.

14. The surface of the paraboloid of Exercise 12.

16. The surface of a right circular cone. Any conical or pyramidal
surface.

16. The area of the cycloid z = a(9 — sin 6), y = a(l — cos 6).

17. The arc of the cycloid of Exercise 16.

18. The area in the first quadrant under z! + ¥ = al.

19. The arc of the curve of Exercise 18 in the first quadrant.

20. The segments of the ellipse indicated in Fig. 98. It will be
found that the centroid of the segment XAAX coincides with that of

a
\
\
\
\
\ \‘t
) X
+
i
/
Vi
]
(-3

" Fia. 98.

the segment XaaX of the circumscribed circle, and that the centroid
YBBY coincides with that of the segment YbbY of the inscribed
circle.

21. C, and C; are the centers of gravity of the two portions of Fig.
99. Show that their distances from the sides of the enclosing rec-
tangle, @ X b, are those marked in the figure. The curve OC is a
parabola. See Exercise 5.

22. Find the centroid of the portion of a right circular cylinder

shown in Fig. 100. C is the centroid. Its distance from the axis of

2
the cylinder shown is r t::: a, and from the base is 3 + z ta.naz

When the oblique top cuts the base in a diameter (lower part of Flg
100) the distance of the centroid from the axis is — 3;6 and from thebase
3ea,
32

18
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28. Find the centroid of the volume lying in the first octant and
included between the cylinders z? + y* = a?, 2* 4 2? = a2

E
el @ c P h
2 }
C| |
T C b DA A
b R
} H f
o le— -2 a —> A a L
a |
Fr1a. 99. Fia. 100. -

141. Theorems of Pappus. Theorem I. The area of the surface
generated by revolving an arc of a plane curve about an axis in is
plane and not intersecting it is equal to the length of the arc multi-
plied by the length of the path described by tts centroid.

Theorem IL. The volume of the solid generated by revolving a
plane surface about an axis lying in its plane and not intersecting
its boundary s equal to the area of the surface multiplied by the
length of the path described by tts centroid.

Proof of I. Let ABC, Fig. 101, be an arc of length L lying in the
XY-plane. Then 7, the ordinate of its centroid, is given by the

equation:
f y ds f y ds
e =t— ()
L
ds

"

Whence
Fia. 101. fy ds =yL. %)

The surface generated by revolving the arc ABC about the
X-axis is given by
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S =2r f y ds. 3)
It follows then from (2) and (3) that
S=2ryL. . 4)

But 27y is the length of the circular path described by the cen-
troid of the arc ABC. Hence the theorem is proved.

* Proof of II. Let ABC, Fig. 102, be a plane surface of area A.
Then y, the ordinate of its centroid,

is given b
given by B

foas 7
y= : (8)
14 4 . c

Whence L ]

fy dA = A;. (6) F1a. 102.

Now the volume of the solid generated by the revolution of the
area ABC about the X-axis is

V=21rffydydx=21rfydA. )

It follows from (6) and (7) that
V = 2rAy. (8)
Hence the theorem is proved.

Exercises

1. Find the surface of the anchor ring generated by revolving the
circle z? + (y — b)? = a?, a < b, about the X-axis.

2. Find the volume of the anchor ring of Exercise 1.

8. Find, by using one of the theorems of Pappus, the centroid of a
quadrant of a circular are, radius a.

HiNT. The rotation of the arc about the X-axis, which coincides
with a radius drawn to one extremity, generates the surface S = 2xa?
Then, by (4),

S = 2ma? = 2wyl = 2w g_/%l
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Hence
- 2a
V=7

4. Find, by using one of the theorems of Pappus, the centroid of a
quadrant of a circular area.

142, Centroid: Polar Cotrdinates. The formulas are readily
obtained for finding the coérdinatés of the centroid of an area
bounded by a curve whose equation is given in polar coordinates.
The area of the element MPQR, Fig. 88, is pdp df, and its moment
about the Y-axis is p dp df p cos @ = p? cos @ dp df. Hence

ffp’ cosf@dp df

f pdp dé

ffp’smo dp d0‘
[Trwoe

If it is advantageous, the integration with respect to 6 can be
performed first.

Similarly,

Exercises

Find the coordinates of the center of gravity of:
1. The area of p = a(1 + cos ). The area of the upper half of
the same cardioid.
2. The area of one loop of p =

/"\ a cos 26.
8. A circular sector of central angle

R
\"//'\ 2a.
\‘/ g 4. One quadrant of a circle. A

3 ¥ semicircle. (Obtain directly and also
CrCy © use the result of Exercise 3.)

5. The area of a portion of a cir-

cular ring, Fig. 103, of radii B and

Fic. 103. r, and of central angle 2a. Denote

by Cgr the centroid of the sector of

radius R, and by C; that of the sector of radius r, and by C that

of the given portion of the ring. Let the abscissas of these points be

TR, Zr, and z, respectively, and let the corresponding areas be denoted
by Ar, A., and A.
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Then
A,z + Az = Agza.
Hence
- Apip — Az, _2R—rlsina
= A "3RI a

Obtain this directly by integration.

6. A segment of a circle of radius r cut off by a chord of length ¢.
Use the method of Exercise 5. The distance of the centroid from the
center is

e 2rsin'a
124~ 34 '
where A = area of the segment = r2 (2a — sin 2«).

143, Moment of Inertia. Consider a system of masses, m;,,

msz . . ., Ma, moving with linear accelerations, ji, ja, . . ., Jny
respectively. The forces acting on these masses are then m.j,
Maj2, . . ., Majn, respectively; and the sum of the moments of

these forces about an axis is equal to Zm.jr: where ry, 12, .

7, Tespectively, are the moment arms of these forces with respect
to this axis. If now the masses are rigidly connected and rotate
about an axis, they have a common angular acceleration. Let the
common angular acceleration be denoted by a. Then j; = ary,
ja=oarsy . . ., jn =ar., where 1, 72 . . ., 7. are the dis-
tances of the masses mi, ms . . ., m. from the axis of rota-
tion. The sum of the moments, Zm.jir;, becomes aZm.r2.
This is the moment necessary to produce the angular acceleration
a. To produce unit angular acceleration a moment equal to
Zmr? is necessary. This moment, Zm.r:2, is called the moment
of inertia, and is denoted by the symbol I. Thus

I=>myr2 1)

The moment of inertia of the system would be unchanged if the
n masses of the system were situated at a distance & from the axis
of rotation such that

Emk? = Zmrd,

or
Zmir;?

s 2
k Zm;
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k is called the radius of gyration. Its square is the mean of the
squares of the distances ry, r2, . . . , 7, with respect to the mass.

The moment of inertia of a system with respect to an axis of
rotation plays the same réle in the discussion of a motion of rots-
tion as the total mass in the discussion of a motion of translation.
In the former case the moment necessary to produce an angular
acceleration & is aZm,r;2. In the latter case the force necessary
to produce a linear acceleration j is jZms;.

The kinetic energy of a rotating system can be expressed in
terms of its moment of inertia and its angular velocity. If a
particle of mass m is rotating with angular velocity w about an
axis and at a distance r from it, its kinetic energy is equal to

one-half the product of its mass
¥, by the square of its linear veloc-
ity, t.e., to 3imw?? And if
there is a system of particles of
masses My, Mz, . . ., Ma, at dis-
tances 71, 72, . . ., Ta, Tespec-
tively, from the axis, all rotating
with the angular velocity w, the
kinetic energy of the system is
equal to }Zmw?r? = FwZmad
= 1w?l.

If a rectangular plate of uniform thickness £ and composed of
material of uniform density, p, rotate about an axis through one
corner and perpendicular to its plane, its moment of inertia can be
found by a process of double integration. Let the sides of the rec-
tangle be a and b and take the origin at one corner, Fig. 104
The moment of inertia of the rectangle MNPQ is approximately
the product of its mass, p£ Ay Az, and the square of the approxi-
mate distance, 4/z2 + y2, of its mass particles from the origin.
That is, the moment of inertia of MNPQ is approximately

pé(x? + y?) Ay Ax.
That of the strip EHIJ is approximately

J 1
[
q P
M| N

o E H
Fia. 104.

v=>% b
ot Ahm (2 +y?) AyAx=pt Az | (z* + y*) dy.
y=0 0

And the moment of inertia of the entire plate is obtained by
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taking the limit of the sum of the moments of inertia of these
strips as Az approaches zero, viz.,

. b
I = p§ Jim, Azf (z* + y*) dy

ZT=0

a (b
= ok f f (22 + y7) dy dz = §M(a? + bY),
] 0

where M = péab, the mass of the plate.

We have obtained the moment of inertia of the plate by inte-
grating over its area the product of the mass of the element,
pt dy dz, by the square of its distance, v z2 + ¢?, from the axis of
rotation.

If instead of a rectangular plate we consider a plate of any shape,
say that of Fig. 84, its moment of inertia is given by

b 2
I=psff"(z=+y2>dydx. @
a Jy,

1f the density, p, and the thickness, £, are variable the foregoing
argument shows that they must be written under the integral sign.
For, the element of integration is p£(z? + y?) dy dz and only when
pand £ are constant can they be taken out from under the integral
sign. If p and £ are variable we have

b [y, .
I=ff”pe<z2+y=)dydz. @
a Jy,

(2) and (3) can be written in a form easily remembered, viz.,

I =|r?dm, 4)

where dm is an element of mass, and r is its distance from the
axis.

Sometimes in finding the moment of inertia of a body it is
advantageous to choose the element of mass so that a single inte-
gral will suffice. See for example Illustration 2, below.

Tllustration 1. Find I of a right-angled triangular plate whose
thickness is 0.5 inch, and whose legs are 10 inches and 4 inches,
about an axis through the vertex of the right angle and gerpendicu-
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lar to the plane of the triangle. The density of the material is
0.03 pound per cubic inch. See Fig. 105.

: 10 p—gz +4
I= '0°03.0.5f f (=2 + y2) dy dx.
o 0

The student will carry out the integration and find the radius of
" gyration.

Illustration 2. Find I of a circular plate about an axis through
its center and perpendicular to its plane. The plate has a radius
of 10 inches. It is 2 inches thick and its density is 0.04 pound
per cubic inch. .

Hint. Here it is convenient to divide the plate into concen-
tric rings of inner radius r and of width dr. See Fig. 106. The

Fra. 105. Fra. 106.

volume of such a ring is 2-2wr-dr, and its mass is 0.04*4xr-dr.
The distance of this mass from the axis is ». Hence

10
I =0.16 rf ridr.
0 -

Also find the radius of gyration.

144. Transfer of Axes. Theorem. The moment of inertia of a
body about any axis is equal to its moment of inertia about a parallel
azis through the centroid, increased by the product of the mass by
the square of the distance between the axes.

Let AB, Fig. 107, be the axis about which the moment of inertia
is desired. Choose a system of rectangular axes such that the
origin, O, is at the centroid, such that the Z-axis is parallel to AB,
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and such that the ZY-plane contains the line AB. Consider an
element of mass, dm, at P. The moment of inertia of the body
about AB is then

1= [®Byrim= [ [(y —dr 4 z’] dm,
or I = f(z’ + 97 dm.—'2dfy dm + d2 | dm. 1)

The first term of the right-hand side of (1) is the moment of
inertia, I,, of the body about the Z-axis, an axis through the cen-
troid. The second term, f y-dm, is the moment of the body
with respect to the XZ-plane, a plane passing through its centroid.

Z

c B

le— d —>

Since 7 =0, [y dm = 0. The last term, d@*[ dm, is &*M,
where M is the mass of the body. Hence '

I=1I,+ Md2

146. Moment of Inertia of an Area. We have spoken of the
center of gravity of an area quite apart from any idea of mass and
have stated that this is a useful conception in the study of mechan-
ics. In the same way the solution of some problems in mechanics
requires the moment of inertia of an area quite apart from any idea
of mass.
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The moment of inertia of a plane area about an axis through the
origin and perpendicular to its plane is defined by the integral.

1= [f@+maya= [[a+maxay

The theorem on the transfer of axes holds in this case if the word
‘““area’’ is substituted for the word ‘‘mass.”’

Exercises

Find the moment of inertia of the following:

1. A rectangle of sides a and b about one corner. (See Fig. 104.)
About the centroid. About one base. About a line parallel to one
base and passing through the centroid.

2. A right triangle, legs @ and b, about
one of the legs. About a line through the
 centroid parallel to this leg.

Y 8. The area of a circle about an axis
through a point on its circumference and
perpendicular to its plane. See Illustration
2, §143.
4. The area of a circle about a diameter.
HinT.

X

a .
1 =f y2:2zdy. ‘,’\
—a.

5. The area of a circle about a tangent
line.

6. The area between y = z? and y* = z
about an axis through the origin perpen-
dicular to the X Y-plane.

Fic. 108, 7. A uniform bar of length L and linear

density p about an axis through one end

perpendicular to the bar. Find I about a parallel axis through the
middle point of the bar.

8. A bar of length L, whose density is proportlona.l to the distance
from one end, about an axis perpendicular to the bar through the
end of least density.

9. A slender uniform rod, Fig. 108, about a line through its middle
point and making an angle « with the rod.

Ans. I = {ymL?sin? «, where m is the mass and L is the length
of the rod.




)

§146] SUCCESSIVE INTEGRATION 283

Hint. Denote by p the linear density. Then
I= f 2? sin%a dz, with proper limits.

10. The rod of Exercise 9 about a parallel axis through one end.

. 11. A wire bent into the form of a circular are, Fig. 109, about the
origin. Also find the moments of inertia, 7. and I, about the X- and

Y-axes, respectively.

fa |
I = r2rdo;
e ) ds

« 0 [ X
I,=f r28in%9 r do; z.

@
I, = f 72 cos?0 r db. Fra. 109.

-—a
12. A triangle of base b and altitude & about an axis through the
vertex parallel to the base. Divide the area into strips parallel to the
base and of width dz. The axis of z is drawn from the vertex perpen-

dicular to the base.
fhz’bx dz
l = —h—-
[

13. A triangle about a line through the center of gravity parallel
to the base. Use the result of Exercise 12. ,

14. The area of the ellipse %: + %: = 1 about the major axis. (Use .
single integration.) About the minor axis. About the origin.

146. Moment of Inertia: Polar Cobrdinates. The moment of

inertia of the element r dr d§ about an axis through the origin is
rir dr df. Hence the moment of inertia of an area is

1 =ffr°drd0,'

with proper limits. If the moment of inertia of a plate is required,
73 dr df is to be multiplied by p, the density per unit area.

Exercises

Find the moment of inertia of the following:

1. The area of the cardioid p = a (1 + cos 6) about an axis through
the origin perpendicular to the plane of the cardioid. About the
initial line.
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2. The area of one loop of p = a cos 26 about the initia] line.
8. A circular sector of central angle 2a about the radius of

symmetry.
4. The arc of the sector of Exercise 3 about the radius of sym-

metry.

6. The area of Exercise 3, about an axis through the center of the
circle and perpendicular to the plane of the sector.. About a parallel
axis through the centroid.

147. Moment of Inertia of a Solid.—We wish to find the moment
of inertia of the solid of Fig. 86, about the Z-axis. The moment of
inertia of the element of mass, p dz dy dz, about the Z-axis is equal
to p(22 + y?) dz dy dz. The total moment of inertia of the solid
about this axis is the integral of this element throughout the solid.

Hence, .
b (Vs s = f(z,v)
L= f f f oty dedyds. ()
a Y, E N ]

b Vs = f(z, )
I. = f f f' p(y? + 2%) dz dy dz, 2
e Jy, zmQ N
b (Vs = f(z, y)
I,=ff f p(2? + z?) dz dy dz. 3
e Jy, Jz=0

If the solid be regarded as a geometrical volume of density 1,
the p’s disappear, and the formulas (1), (2), and (3) can be written

Similarly

L= [[[@+y)deayas, @

L= [[fo+2 dzayaz, ®

I, = [[[@+2) dedyda. )
Let .

1. =fffpz’dzdydz, @

Le= [ [ fov*dzdyds, ®

I, = f f 2 dz dy dz. 1)

The quantities (7), (8), and (9) will be called the moments of
inertia of the solid with respect to the ¥ Z-plane, the XZ-plane,
and the XY-plane, respectively. They are the integrals of the
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product of the element of mass by the square of its distance from
the respective planes. They can very frequently be found by a
single integration by taking as element a plane lamina between
two planes parallel to the plane with respect to which the moment
is computed. If this is the case the moment of inertia about the
codrdinate axes can easily be found by noting that from the equa-
tions (1), (2), (3); and (7), (8), (9):

I, = Iyz + Irs
I =1 + Ity:
Iy = Iy + Iy,

That is, the moment of inertia about the Z-azxis is equal to the sum
of the momenis of inertia with respect to the Y Z- and XZ-planes, and
80 on.

In general, the moment of inertia of a body about an azis is equal
to the sum of its moments of inertia with respect to two perpendicular
planes which intersect in that axis.

In the same way it follows from the formula for the moment of
inertia of an area, I = f f (2 + y?) dy dz, that the sum of the
moments of inertia of an area (or a plate) about two perpendicular
azes i3 equal to its moment of inertia about an axis perpendicular
to the plane of these axes through their point of intersection.

I llustratwn 1. Find the moment of inertia of the ellipsoid

b’ + = 1 about each of its axes.
Fzrst Method.

= sfafbvl_afc\’l at ”’(y2+z2)dzdydz

Carry out the integration far enough to see that it is not simple
and then note the relative simplicity of the

Second Method. Compute I.., the moment of inertia with
respect to the XZ-plane: Take as element of integration the ellip-
tical plate ocut out by the planes y = y and y = y + Ay. The
equation of the intersection of the ellipsoid and the planey = y is

xz . z2
=1.

c(-F) " el-F)

zz
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Now the area of an ellipse is v times the product of its semi-
major and semi-minor axes. Hence the area of this ellipse is

2 2 2!
ra\’l—%c\,l—% = wac(l— %)

The volume of the elliptical plate in question is

a (1- b_) &y
and its moment of inertia with respect to the XZ-plane is
2
Tacy? (1 - g;) dy.

The total moment of inertia of the ellipsoid with respect tothis
plane is then

s = TGC yﬂl__
3

”’“(3 5—b’)|+b

2 ( b E) _ 4mab%
=ema\y T /T T 15
I., can be written down at once as
I.. = 4mabe®
=y 15
Then
I: = In + Izv = %abc (b’ C’).
We can write down at once by int.erchangmg letters:
I, = 44rabc( 2+c’)
1= 44rabc( 24 b2).

Illustration 2. Find the moment of inertia of a right circular
cone about a line through its vertex perpendicular to its axis, if
the radius of the base is b and the altitude is A. Choose the vertex
as origin and the axis of the cone as axis of z. Consider the plate

of radius bh cut out by the planes ¢ =z and z = z + dz. Its
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moment of inertia about a diameter parallel to the axis of rotation
4

through the vertex is equal to T b4 A 4da;. (See expression for I of
a circular plate about a diameter, Exercise 4, §146). Then the
moment of inertia of this plate about the axis of rotation through
the vertex is equal to this moment of inertia about an axis through
the centroid increased by its volume (mass if density = 1) multi-
plied by the square of the distance between this axis and the par-
allel axis through the vertex (see §144) t.e., to

wbizidr | wbladr

4ht Rt 7

And the total moment of inertia of the cone about the axis through
the vertex is equal to the integral of this moment of inertia from
z=0 to z = h That is

1rb‘:c4 whiz!
I= f [ + " Jas
wbth = wb%h®  wb%h

=20 T75 = 50 &+

Exercises

Find the moment of inertia of :

1. The cone of Illustration 2, about a parallel axis through the
centroid of the cone. About a diameter of the base.

2. Aright circular cylinder, the radius of whose base is r, and whose
altitude is k, about a diameter of one base. About a parallel axis
through the centroid.

8. A rectangular parallelopiped with edges a, b, and ¢, about an
axis through the centroid parallel to one edge.

4. A right circular cylinder about its axis.

5. A hollow right circular cylinder of outer radius R, inner radius 7,
and altitude A, about its central axis. About a diameter of one base.
About a diameter of the plane gection through the centroid perpen-
dicular to the axis.

6. A right rectangular pyramid of base ¢ X b and of altitude &,
about an axis through the centroid parallel to the edge a. About an
axis through the vertex and the center of gravity.

Ans. I, = “;é‘ (0 + 3h9). I, = Tbo'f (a? + b2).
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7. A frustum of a right cone about its axis if the radius of the large
base is R, that of the small base is r, and the altitude is A.

RS — 75
R—r

8. A hollow sphere about a diameter, if the outer radius is R and
the inner radius is r.

9. A paraboloid of revolution, the radius of whose base is r and
whose height is &, about the axis of revolution.

Ans. I = }mwréh.

Ans. I = {yh

10. The anchor ring generated by revolving the circle
[z — (R + »)]? 4+ y* = r* about the Y-axis.

Ans. I, = TRr3(R?® + §r?). I, = 2r3Rr2 (R? + §r7).

11. A right circular cone about its axis.

12. A right elliptical cylinder of height L, and having the semi-major
and semi-minor axes of its cross section equal to a and b, respectively,
about an axis through the centroid parallel to b.

13. A quadrant of a circular plate about one of its bounding radii.

14. An equilateral triangle of side 2a, about a median. About a
line through a vertex perpendicular to one of the sides through that
vertex.



CHAPTER XVI
CURVATURE. EVOLUTES. ENVELOPES

148. Curvature. Let PT and QT", Fig. 110, be tangents drawn
to the curve APQ at the points P and @, respectively. Denote the
length of the arc PQ by As and
the angles of inclination of PT ¥
and Q7' to the positive direc~- -
tion of the X-axis by 7 and =
+ Ar, respectively. Ar gives a
rough measure of the deviation
from a straight line, of that por-
tion of the arc of the curve be- —5
tween the points P and Q. The
sharper the bending of the curve Fra. 110. -
between the points P and Q the
greater is Ar for equal values of As. The average curvature of
the curve between the points P and Q is defined by the equation

Average Curvature = ~AA—§- (1)

The average curvature of a curve between two points P and Q
is the average change between these points, per unit length of
arc, of the inclination to the X-axis of the tangent line to the
curve. Or, more briefly, the average curvature is the average
change per unit length of are, in the inclination of the tangent line.

The curvature at P is defined as the limit of the average curvature
between the points Q and P as Q approaches P. On denoting the
curvature by K, we have in accordance with the definition,

im At dr
K== (2
The curvature at a point P is then the rate of change at this point of
the inclination of the tangent line per unit length of arc. The
19 289
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curvature is a measure of the amount of bending of a curve in
the vicinity of a point.

149. Curvature of a Circle. It is clear that the average curva-
ture of a circle, Fig. 111, is

Heace the average curvature is independent of As and conse-
quently the curvature, the limit of the average curvature as
Ag approaches zero, is

K = ;“ (l)

The curvature of a circle 3 constant and equal to the reciprocal of its
radius.

160. Circle of Curvature. Radius of Curvature. Center of
Curvature. Through any point P of a curve infinitely many cir-
cles can be drawn which have a
common tangent with the curve at
P and whose centers are on the con-
cave side of the curve. Of these
circles there is one whose curvature
is equal to that of the curve at P,
1.e., one whose radius is equal to the
x reciprocal of the curvature at P.
0 7 This circle is called the circle of

Fig. 111. curvature at the point P. The

radius of this circle is called the

radius of curvature, and its center the center of curvature, of the

curve at the point P. The radius of curvature is denoted by R
and, in accordance with (2), §148, its length is

1 ds
R=f=d_r 1)

161. Formulas for Curvature and Radius of Curvature: Rec-
tangular Codrdinates. For obtaining the curvature at any point
on the curve y = f(z), we shall now develop a formula involving
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the first and second derivatives of y with respect to z. The above
formula for curvature K can be written

dr dr
4 dr I
S ds dy\ ¥
& N+ (3)
" Since
7 = tan—! %»
dy
dr _ da?
- d.
“ 4 ( )
Consequently
dy
dx?
K= Py (2)

and, by (1), §160,

@7 ®

dzy
dax?

We shall understand by K and R the numerical values of the
right-hand members of (2) and (3), respectively, since we shall
“not be concerned with the algebraic signs of K and R.

Tlustration. Find the curvature of y = 22

ay _,. 2y _
dz ~ 7 dx*
Substitution in formula (2) gives
-2
(1 + 4ot

From this expression it is seen that the maximum curvature
occurs when z is zero, and that the curvature decreases as z
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increases in numerical value. When z =0, K = 2. When

. 2\/3
a:-;tl,K=-—2—5—~

Exercises
Find the curvature and radius of curvature of each of the curves:
1.y =2z — 2z 4.y=z’—z'7 7.y=3z§.
2.y-z*. 6.y-%~ 8.y=z_‘.
8. y=1 8 y=a 9.y=-1.
z vz

10. If p = f(6) is the equation of a curve in polar cosrdinates, show
that
dp]? dsp
P +2 [—“] — P gp
K= de de

[+ @)
dr
x-%-%
3

r=0+4y. (Ses Fig. 72.)

dr dy
35-1+%.

HiINT.

Obtain % from the relation

-1 P,
¢ = tan™! d_p
do
g—; is given in §98.

162. Curvature: Parametric Equations. If the equation of &
curve is expressed in parametric form, z = f(f), y = F(t), the cur-
vature can be found by differentiating  and y and substituting
in (2), §161. ¢ can be eliminated from the result if desired.

Illustration 1. If x = tand y = 2,

dy dy _ d2t) dt -2

dz e B TP
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Hence
B 2 2

Q44 44t

Illustration 2. Find the curvature of the ellipse z = a cos ¢,
y=bsi ¢

K

dy bd dt b 1 b
&= ECOHE = Ecsc’t [— asint] = — (T,csc‘t.
— b eens
K ar %8¢ _ — ab _ —ab
= = : i1~ rat 1
[l + %: cot? t] (a?sin*t + b*cos??) %, ¥+ 3—: 3’]
a'dt
(b2t + o)’
Exercises

1. Find the curvature of the curve £ = a cosh{, y = asinh ¢.
2. Find the curvature of the curve z = a({ — sin f),
y = a(l — cost).
163. Approximate Formula for the Curvature. If a curve

deviates but little from a horizontal straight line, % is small and

2
(Z—Z) in formula (2), §161, is very small compared with 1.

Hence the denominator differs very little from 1 and the formula
becomes approximately
i M

= dzt
This approximate formula for K is frequently used in mechanics
in the study of the flexure of beams. The slope of the elastic
curve of a beam is so small that % can be used for the curva-
ture without appreciable error.
The approximate formula for the radius of curvature R is
pe L
= oy @

dz?
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164. Center of Curvature. Evolute. Formulas will now be
obtained for the coordinates of the center of curvature of a curve
corresponding to any point P. Let the coérdinates of P be z and
y. Denote by « and 8 the coérdinates of the center of curvature
of the curve at this point. There are four cases to be considered.
See Fig. 112, a, b, ¢, d.

Y
C,(x,8)
HY
H P,(z,v)
\\-—
T
[3) /M N
a
\ <
/
[7) o . [7)
b c d
Fia. 112,
In Fig. 112, a,

a=0M = ON — HP = z — Rsinr,
B = MC = NP + HC =y + Rcosr.
Since
tanr=%:%:
1 L dz
———; sinT =

@@




§154) CURVATURE.  EVOLUTES. ENVELOPES 295

Consequently,
dy
gyt t (dx)
a=x— ——— (1)
dx dy
dxl
and
dy
14 (dx)
B=y+—gy @
dx? '
The student can show that, since —Z% is negative for a descending

curve and positive for an ascending curve, and since %’: is positive
when a curve is concave upward and negative when a curve is
concave downward, formulas (1) and (2) hold for the three curves
represented in Fig. 112, b, ¢, d.

Illustration. Find the codrdinates of the center of curvature
corresponding to any point on the curve y = + 24/z. Only the
positive sign will be used. If the negative sign is used it will
only be necessary to change the sign of 8.

dy _ 1
e ~ \/z
dy 1
dr? = T 2g1
141
b T 349
a ‘\/5 _1— .
2z}
141
z 3
ﬁ-y——1—=y—2\/_(z+1)=y—y[y+1]——%
2z1

The equation of the locus of the center of curvature is obtained
by eliminating z and y from the equations for a and 8 and the
equation of the original curve. Thus

-2
z =255 y= —(t.
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Substituting in y? = 4z, we obtain

B? = dh(a — 2)3,
the equation of the locus of the center of curvature. This is the
equation of a semi-cubical parabola whose vertex is at the point
(2, 0).

The locus of the center of curvature corresponding to points on a
curve 18 called the evolute of that curve. Its equation is easily
obtained in many cases by eliminating z and y from equations (1)
and (2) and the equation of the original curve. Otherwise (1)
and (2) constitute its parametric equations, o and 8 being ex-
pressed in terms of the parameters « and y.

Exercises

1. Find the evolute of y = 4z2.
2. Find the evolute of the ellipse

z? 2
Ftm=l
Hint It will be found that
. (a? — b%)z3, 5= (a® — bYy®

at b4

ata |} b i
r=la=—5l; ¥~ |la-mn

Elimination gives
(ac)? + (b8)? = (a* — bO)1.
8. Find the parametric equations of the evolute of the cycloid,
z = a(f — sin 9),
y = a(l — cos 6).
Ans. « = a(@ +sin ), 8 = — a(l — cos 8). Show that the evo-
lute is an equal cycloid with its cusp at the point (— »a, — 2a).
4. Find the equation of the evolute of
z = a(cos @ + 0sin 9),
y = a(sin 6 — 6 cos 6).
Ans. @ = acosf, B = asind. Discuss.
166. Envelopes. If the equation of a curve contains a constant
¢, infinitely many curves can be obtained by assigning different
values to ¢. Thus

Whence

(=) +y* =a (1
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is the equation of a circle of radius a whose center is at (¢, 0). By
assigning different values to ¢ we get a system of equal circles
whose centers lie on the X-axis. A constant such as ¢, to which
infinitely many values are assigned, is called a parameter. A
constant such as a, which is thought of as taking on only one value
during the whole discussion, is called an absolute constant. We say
that equation (1) represents a family of circles or a system of circles
corresponding to the parameter ¢. -

The general equation of a family of curves depending upon a
single parameter can be written in the form,

flz,y,¢) =0. ()

Exercises

State the family of curves represented by the following equations
containing a parameter:

lLLy=22+e¢, ¢ being the parameter.
2.y =mz+0b, b being the parameter.
3. y’= m:;: + b, m being the parameter.
4, i—, + % =1, a being the parameter.
B, y* = m(z + m), m being the parameter.
6. 22 + y? = a?, a being the parameter.

Consider again the family of circles (1). Two circles of the
family corresponding to the values, c and ¢ + Ac, of the parameter
intersect in the points @ and @', e
Fig. 113. We seek the limiting
positions of these points of in- - Q

[o

tersection as Ac approaches zero.
Clearly, they are the points P
and P’, respectively, on the lines

y = +a. Such a limiting posi- \
tion of the point of intersection
of two circles of the family is
called the point of intersection of Fia. 113.

two ‘‘consecutive’ circles of the

family. In general, the limiting position of the point of intersec-
tion of two‘curves, f(z, 9, ¢), f (=, ¥, ¢+ Ac), of a family, as Ac




298 CALCULUS [§155

approaches zero, is called the point:of intersection of *consecu-
tive” curves of the family.

In the case of the family of circles (1) the locus of the points of
intersection of “consecutive” circles is the pair of straight lines
y = +a. This locus is called the envelope of the family of circles.
In general, the envelope of a family of curves depending upon one
parameter is the locus of the points of intersection of ‘consecutive”
curves of the family. It will be shown in a later chapter that the
envelope of a family of curves is tangent to every curve of the
family.

Exercise

Draw a number of lines of the family

~

zcosf + ysin @ = p,

where @ is the parameter, and sketch the envelope.

A general method of obtaining the envelope of a family of
curves will now be given.

The equation of a curve of the family is

f(xs Y, C) =0, ' (3)
where ¢ has any fixed value. The envelope is the locus of the
limiting position of the point of intersection of any curve (3) of
the family with a neighboring curve, such as

f(z, y, ¢ + Ac) = 0, 4)
as the second curve is made to approach the first by letting Ac

approach zero. The coérdinates of the points of intersection of
the curves representing equations (3) and (4) satisfy

f(x) Yy, c + AC) - f(x: Y, 0) = 0. (5)
Then they satisfy
[,y ¢ +AAcZ J@9,9) _, ®)

since Ac does not depend on either z or y. Then the codrdinates
of the limiting positions of these points of intersection satisfy

hm .f(z, Y, ¢+ Ac) — f(z,y,¢)
Ac

= 0.
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The first member of this equation is the derivative of f(z, y, c)
with respect to ¢. It may be written in the form,

df(z,y,¢)
e = 0. ()

The differentiation is performed with respect to ¢, z and y being
treated as constants. The point of intersection also lies on (3).
Hence the equation of its locus is obtained by eliminating ¢
between (3) and (7).

Illustration 1. Find the equation of the envelope of the
family of circles, (z — ¢)? 4+ y? = a?, ¢ being the parameter.

The equation of the curve written in the form f(z, y, ¢) = 0 is

(=T +y* —a?=0. M
Differentiating with respect to c, '
~2(x —¢) = 0. 1)
The elimination of ¢ between (I) and (II) gives
y? = a?,
or
y=+=a

as the envelope.

Illustration 2. Find the equation of the envelope of the
family of lines, z cos 6 + y sin 6 = p, 0 being the parameter.

On differentiating the first member of

zcosO +ysinf@ —-p=0 4))
with respect to § we obtain )
—2z8in@ + ycosd = 0. an
The result of eliminating  between (I) and (II) is
z2 4+ y? = p?,

a circle of radius p about the origin as center.

Exercises

1. Find the envelope of the family of straight lines y = mz + ;’;’

where m is the parameter. Draw figure.
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2. Find the envelope of the family of lines y = mz + a+v/1 + m},
where m is the parameter. Draw figure.

8. Find the envelope of the family of parabolas y2 = c¢(z —¢), ¢
being the parameter.

4. Find the envelope of the family of lines of constant length whose
extremities lie in two perpendicular lines.

5. Find the envelope of y = pz — p? p being the parameter.
Draw figure.

6. Find the envelope of the family of curves (z — ¢)? 4 y? = 4pc,
¢ being the parameter. Draw figure.

7. The equation of the path of a projectile fired with an initial
velocity vo which makes an angle « with the horizontal, is

gz?
20 cos?ar’
Find the envelope of the family of paths obtained by considering a a
parameter.

y =ztana —

o _ g7
= 29 ~ 20,

8. The equation of the normal to y* = 4z at the point P, whose
coordinates are z; and y,, is

Ans. y

Y-y = —%‘ (z—z1).

Since y:? = 4z,, this may be written
3
nz + 2y "y_i‘ -2y =0.
Find the equation of the envelope of the normals as P moves along
the curve.
Hint. On differentiating with respect to the parameter y, we

obtain
Va3,
V3

On substituting this value of y; in the equation of the normal and
squaring we obtain

y1=+2

4z —2)° .
- 27
This is the evolute of the parabola as we have seen in §154.

166. The Evolute as the Envelope of the Normals. In Exercise
8 of §166 it was seen that the evolute of a parabola is the envelope
of its normals. This is true for any curve. The result is fairly
evident from the examination of the curves of the exercises of

y%
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§166 and their evolutes. It will be shown that the normals to a
curve are tangent to its evolute.
The parametric equations of the evolute are
a=2— Rsinr, (1)
B=y+ Rcosr. 2)
On differentiating with respect to the variable s, which is per-
missible since z, y, R, and 7 are all functions of s, we obtain

da _dz _dR . = poosr 9.
ds = ds — gghnr cosT o
3—?=Z—g~+%cosr —Rsmr:—:—
Now
CT- = CO8 T,
g% = ginr,
dr _1
ds R
Then the foregoing equations become
da dR .
E = - a;' smnT,
dg8 dR
a;‘ = (78- COS 7.
Hence the slope of the tangent to the evolute is
Z—i = —cotr. @3)

Therefore the tangent to the evolute is parallel to the normal to
the curve at the point (z, y) to which (e, B) corresponds. But the
normal to the curve at (z, y) passes through (e, ). Hence it is
tangent to the evolute at this point.

. It can also be shown that if C; and C,, Fig. 114, are the centers
of curvature corresponding to the points P, and P,, the length of
the arc C,C; of the evolute is equal to the difference in the lengths
of the radii of curvature, B, and R;. For, from the above values
of da and dg it follows that

Vda® + dB? = dR.
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But v/da? + dp? is the differential of the arc of the evolute. Call
it do. Then do = dR, and hence on integrating ¢ = R +C.
o and R are functions of s, the arc of the given curve. Then corre-
sponding to a change As( = arc P,P,) in 8,0 and R will take on the
increments As and AR which are equal by the foregoing equation.
But Ac = arc C,C,, and AR = R, — R,. Hence arc C,C; equals
R, — R,.

Fra. 114.

167. Involutes. In Fig. 114, suppose that one end of a string s
fastened at C and that it is stretched along the curve CC.C,KM.
If now the string be unwound, always being kept taut, the point M
will, in accordance with the properties of the evolute, trace out the
curve MP,P,P. This curve is called the involute of the curve
KC,C.C. 1If longer or shorter lengths of string, such as CKM;
be used, other involutes will be traced.. In fact to a given curve
there correspond infinitely many involutes. The given curve is
the evolute of each of these involutes. We see that while a given
curve has but one evolute it has infinitely many involutes.

In Exercise 4, §164, the circle z = a cos 8, y = a sin 6 was found
as the evolute of the curve z = a(cos § + 0sin 8), y = a(sin 6 —
0 cos ). Then the latter curve is an involute of the circle. The
student will draw a figure showing a position of the string as'it
would be unwound to generate the involute and indicate the
angle 6.




CHAPTER XVII

*SERIES. TAYLOR’S AND MACLAURIN’S THEOREMS.
INDETERMINATE FORMS.

168. Infinite Series. The expression
htutut o duat e 0]
where wi, w2, s, * * *, Us, * * * is an unlimited succession of
numbers, is called an infinite sertes.
Let s, denote the sum of the first n terms of the infinite series
(1). Thus
Sn=wutut+us+ -+ un 2
If, as n increases without limit, s, approaches a limit s, this
limit is called the sum of the infinite series, and the series is said

to be convergent.
Ilustration 1. In Ilustration (1), §21, AB, Fig. 21, is a line

2 units long. The lengths Az, 212y, Zo%s, TsZs, * * *° Ta_iZa,
-are 1, 3, 4 4, - - -, =t respectively. For this
series
S=l4d+i+i+ o+ g 3 .

The limit of this sum as n increases ‘without limit.is 2, as the
figure shows. Or, we may write,

1
l+3+t+3+ - +55+ - =2 4)
Illustration 2. The sum of the geometrical progression
1+1~2+r$+r‘+...+rn (5)

does not approach a limit if |[r| S 1, but if [r| < 1 it approaches
the limit l——l—_r’ when n becomes infinite.
The infinite series (1) is said to be divergent or to diverge if, as n
increases without limit, s, does not approach a limit.
303
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Thus the series

14+424+3+4+ - +n+--

1—1+1—1+1—1+1— IR

1+R+R*+R*+R'+ -+ +Rr 4 - - - (R>1)
are illustrations of divergent series.

If the terms of an infinite series are functions of a variable z and
if the series is convergent for any range of values for z, the series
defines a function of x for that range of values. Thus, if |z| <1,
the series

14+z+z24224 - farn4 - )

defines the function 1 ix‘ On the other hand, if the series is
divergent it does not define a function of . Thus, if |z| > 1, the
series (7) is divergent and does not define the function 1—1} !

or any other function. -

It may happen that the sum of a few terms of an infinite series
representing a function is a very close approximation to the value
-of the function. As an illustration take the infinite geometrical

progression (7), which when |z| < 1 represents the function i—-l-i

If the terms after z*-! are neglected, the error is

zk
xk+xb+l+... +$n+... .

l—x.

* . ,
The error, lsz is very small compared with the value of the

. 1 . .
functlon,m, and decreases as k increases; t.e., a better and

better approximation is obtained the greater the number of terms
retained.
Another infinite series is obtained by expanding (1 + z)! by
the binomial theorem,
A+a)t=1+3z+fa2— g2+ - - - ®)
This series can be shown to be convergent when |z] < 1 and
divergent when |z| > 1.

Just as the function I 1 p is represented to a high degree of ap-
proximation by the first few terms of the series (7) when |z]| issmall,
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the function (1 + z)! is represented approximately by the first
few terms of (8) when |z| is small. In both cases the functions are
represented approximately by polynomials. A method will be
developed in the succeeding articles which will enable us to deter-
mine polynomial approximations to other functions, such as sin z,
tan z, e=.
An infinite series of the form

ataz + a4 asxd+ . . . F a4 ... (9)
is called a power series in z. One of the form
ao+ ai(z — a) + ax(z — a)* +as(x —a)®*+ - - -

taz—ar+ - - - (10)

is called a power series in (z — a). The series (7) and (8) are

power series in z representing the functions i ix and (1 + z)},

respectively. In the succeeding articles power series will be
obtained representing the functions sin z, tan z, e=, etc.

169. Rolle’s Theorem. Let f(z) be a single-valued continuous
function between z = a and z = b, having a continuous first

Y
0 a R b X ol /s X
Fra. 115. Fia. 116.
Y
Y
1
|
I
/: X
Ol a . ) of a | b X
' Fia. 117, Fig. 118.

derivative, f'(z), between the same limits. Further, let f(a) = 0
and f(b) = 0, t.e., let the curve representing the function cross or

touch the X-axis at z = aand z = b. The curve may or may not
20 .
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cross or touch the X-axis at intermediate points. (See Fig. 115.)
Since f(z) is continuous it cannot have a vertical asymptote be-
tween z = a and z = b as shown in Fig. 116, nor can it have a
finite discontinuity as shown in Fig. 117. Since f(x) is con-
tinuous between £ = a and z = b, the curve cannot change its
direction abruptly between these limits, as shown in Figs. 118 and
119. Since cases such as are represented by Figs. 116, 117, 118,
and 119 are excluded, the curve, Fig. 115, must have a horizontal
tangent at some point * = z, between z = a and z = b. Henee
the
¥
. B

o e | b~ o a 1
Fia. 119. Fra. 120.

Theorem. If f(z) 13 a singlewalued function from z = a to
z = b, and if f(z) and f'(x) are continuous between these limits, and
further if f(a) = 0 and f(b) = O, then f'(z,) = 0, wherea < 2, <b.
160. Law of the Mean. Let f(x) be a single-valued function
between £ = a and z = b. Further let f(z) and f'(z) be con-
tinuous between these limits, Fig. 120. It is then apparent from
the figure that at some point P between A and B, the tangent
line to the curve will be parallel to the secant line AB. Hence the
Theorem. If f(z) and f'(z) are continuous between x = a and

z = b, then
(b) f(a)

(@) =
where a < z; < b, or
J®) = f(a) + (b — a)f'(z1). 1
An analytic proof of this law will also be given. Define a
number 8, by the equation
Let f(b) = f(a) + (b — a)8,, or
J®) — f(a) — (b — a)81 = 0. 2
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It will be shown that S; = f’(:m), where ¢ <71 < b. From the
first member of (2) build up the function ¢,:(z) by replacing a
by x.

1(2) = f(b) — f(z) — (b — 2)81. 3

$'1(2) = — f (@) + S 4@

Since f(z) and f’(x) are continuous between z = a and = = b,
¢1(z) and ¢’i(z) are continuous between the same limits. By (3)
and (2), ¢1(a) = 0, and by (3), ¢1(b) = 0. Hence ¢:(x) satisfies
the conditions of Rolle’s Theorem and consequently

Then

¢'1(z1) =0,
or
(@) —8: =0,
or
= f,(xl))

where @ < z; <b. On substituting this value of 8, in (2) we
obtain

f®) = f(a) + (b — a)f'(z),
which proves the theorem.

161. The Extended Law of the Mean. Let f(z) be a function
which with its first and second derivatives, f/(z) and f”(z), is
continuous from z =a to £ = b. Define a number S, by the
equation

(b a)?

f®) =f@) + (b = a)f'(a) + 58, 0]

or
b — a)?
1) = f(@ = 6 = a)f'(a) — %s. -0,
From the first member of the latter equation, form the fune-
tion ¢(z) by replacing a by z:

$i@) = 1) — J(&) — (b - (=) — &5

G2 (9
Then
¢'2(z) = = f'(x) — (b — 2)f"(z) + f'() + (b — 2)Ss
= (b — 2) [S: — f'(2)].
Since f(z), f'(x), and f"(z) are continuous, ¢2(z) and ¢’s(z) are
continuous. Further by (2) and (1), ¢2(a) = 0, and by (2),
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¢2(b) = 0. Hence the conditions of Rolle’s Theorem are satisfied,
and

¢'2(z2) = 0, 3)
where a < z: < b. .
Or :
[b — z.][S2 — f"(x4)] = 0,
or
= f"(z2). 4)
On substituting this value of S: in equation (1), we obtain
—_— 2
1® =50+ 6 - ar@+ 5V re,  ®

where a < z; < b.

162. Taylor’s Theorem with the Remainder. Finally let f(z)
and its first n derivatives be continuous from z = a to z =b.
Define 8. by the equation

) = 1@ + 6 = A7 @) + @ + -
+ 02T e +"’I s, (1)
or
0 = @ = & - '@ - C57 @ -
a]—;%—ﬂ () - ET s, =

Form the function ¢.(z) by replacing a in the last equation by z.-

Pa(z) = fd) — (.3) ® = 2)f'(z) - |2 f'( z) — -

ng_)_._f(ﬂ—l)(x) (b | z) S. (2)
Then - . '
— )1 — )~
#(o) = — ‘ﬁl—fjl—f<~)<x) - ‘—bl-n—i) s ®
Since f(z), f'(z), + - -, f™(z) are continuous, ¢.(z) and ¢’a(x)

are continuous. By (2) and (1) ¢a(a) = 0, and by (2) ¢.(b) = 0.
Hence the conditions of Rolle’s Theorem are satisfied, and

¢'n(3n) =0,
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or
Sa = f®(z,) 4) -

where a < z» < b. Hence the '
Theorem: Iff(:t), f'(z)) f'(.’t), )

fromz =atox =b,
f®) = f(a) + (b — a)f'(a) +

+(b| )

™ (z) are continuous

STRIGES

" jon(a )+ Lok [n =" f(z), (5)

where a < z. < b.

This theorem, which is only an extension of the theorem express-
ing the law of the mean, is called Taylor's Theorem with the
remainder. The last term is called the remainder.

If b is replaced by z, (5) becomes

1) = 1@ + @ = @) + O @ +

(z —a)*—

+ E=0" ) + B g (6)
|n—1 NN

. where @ < z,» < z. This inequality is sometimes written
Zon = a + 0(z — a), where 0 < 0 < 1.
Illustration 1. Let f(z) = e=. Then

f(z) = e f(a) = e
J'(z) = e f'(a) = e
f'(-"’) = ¢* f'(a) = e
f‘"(z) = ¢ (@) = e
Hence by (6)
e==e=[1+(x—a)+(’|‘2“)’+ e +("|;“_)"l"]+(’c - DV en. 7)
Ifa =
2 n—1 "
e==1+z+‘fg+- IZ +Ti£e=~. ®)

Ifa=0andz =1,

e=1+1+|l2+- .

1 1
'+|'m+l—ie"‘- ©)
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The remainder in (8) and (9) can be made as small as we please
by choosing = sufficiently large.

Taylor’s Theorem may be expressed in still another form by
setting b in (5) equal to a + A.

f@ + k) = fa) + k(@) + ,’—‘5 F@+ -+ l’%ﬂ”(x.) (10)

where a < zn< a4+ h,orz. =a+0h 0< 6 < 1.

If the values of a function and its derivatives are known at a,
then the values of the function at a point a + & can be computed
by this formula.

In (10), f(a + k) is represented approximately by a poly-
nomial of degree n — 1in h. The coefficients are the derivatives
of f(z) at z = a. The error in the approximation is given by
the last term. This term gives only a means of estimating the
error, since z, is not known. The maximum error can, however,
be determined by substituting M, the greatest numerical
value of f™(z) in the interval (a, a + k) for f™(z.). The
numerical value of the error is therefore less than

() b
M | "
If a =0, (6) becomes

2 (n—1)
@) = £0) + O x+ £O) g+ -+ O F 1

(o —1)
+ £ (x,) T Y (1)

where 0 <z, < z,0orz,. =02z, 0<0< 1.

In (11) it is assumed that the function f(z) and its first n
derivatives are continuous from z = 0 to z = a. (11) is known
as Maclaurin’s Theorem with the remainder.

Illustration 2. Expand sin z by Maclaurin’s Theorem in powers
of z as far as the term containing z.

f(z) = sinz f(o) = 0
f'(x) = cosz oo = 1 N
f'(x) = —sinz ffo) = o0
f"(z) = — cosx "0 =-1
f¥(z) = sinz o) =, 0
~ f'@@) = cosz 7o) = 1
f(z) = —sinz M0 = o
(@) = —cosz S (zn) = = cos 3.
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Substitution in (11) gives ' .

x3 z‘ z7
R smx=x-l3+'—§ Wcos:n, (12)
where 0<z: < z. - B

Since |cos z+|. < 1, sin z differs from
¥ af

AT RaT

7
by a number less than r—7

In general, since sin z and its derivatives are continuous,

z? zi

sinz =z — '3 |5 (sm Zn OT CO8 Z,), (13)

ln
where 0 < z, < 2. Thus the difference between sin z and

3 zl an—1
AT T n—1

is less than TTL’ a number which for a given z can be made as small

as we please by taking n sufficiently large. Hence the series (13)
can be used in computing the value of sin z. If z is small, only a
few terms of the series need be used to obtain a very close ap-
proximation to sin . Thus in formulas in which sin z occurs,
sin z is frequently replaced by z if the angle is small. Such a sub-
stitution was made in equation 1, §81. It must be remembered
.in making the substitution that z is expressed in radians.

163. Taylor's and Maclaurin’s Series. If f(z) and all of its
derivatives are continuous within an interval, the number of
terms in (6), (10), and (11), §162, can be increased indefinitely.
These equations then become, respectively,

£(x) = £(a) + £(a) (x — 8) + F(a) & S o8, ..

+ 1@ S

bW
) h? gy B '
f(a+h)=f(a)+ f'(a)h + £ (a) I"2“+ R o ¢ (a)]n+ s (2)

o x? ) (o X°
f(!)=f(0)+f(0)x+f"(0)|2+' c o4 f (0)|n+"'- (3)‘,
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In (1), f(x) and its derivatives are assumed to be continuous
from a to z. -

In (2), f(z) and its derivatives are assumed to be continuous from
atoa 4+ A

In (3), f(x) and its derivatives are assumed to be continuous
from 0 to z. '

The series (1) and (2) are called Taylor’s Series and (3) is called
Maclaurin’s Series.

If we denote the last term in each of the equations (6), (10), and
(11), §162, by R,, it is necessary that -

mp — 0

in order that (1), (2), and (3) shall represent f(z), f(a + k), and
f(z), respectively. :

Such series represent a function only so long as they are conver-
gent. Later in this chapter means of testing the convergence of
series will be discussed. The series (1), (2), and (3), if convergent,
represent f(z) but do not give a means of estimating the error
made by stopping with a given term. This can best be deter-
mined from the expression for the remainder R, in Taylor's or
Maclaurin’s Theorem with the remainder.

Illustration 1. Represent sin by a power series in (z — a).
Use formula (1). :

fx) = sinz f@) = sina
f'(z) = cosz f(@) = cosa
f'(x) = —sinz f'(a) = —sina.
f"(x) = —cosx f"(@) = —cosa
f¥(z) = sinz - f¥(a) = sina
() = cosz f¥(a) = cosa
Then by (1) ,
—_— 2 -
sinx=sina+cosa(x—-a)—sina(xlza) - (z|3a)
+sina (& I_ia)‘— cos u(z &a)s — e

The corresponding Maclaurin’s Series is obtained by letting a = 0.
. [ AR L A
SIHx—x_E+|__5—-E+ .
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Illustration 2. - Expand tan z in a power series in z.

f(z) = tanz. . fo®=0
f(z) = sectz. =1
f'(z) = 2 sec?z tan z. ffo=o0
= 2(tan z + tan3z). .
f”(x) = 2(secx + 3 tan?z sec?z) 7)) = 2
= 2(1 + 4 tan’c + 3 tan‘z)
f™(x) = 16 tan z sec*r + 24 tan3z sec’z 7o) =0

= 16 tan z 4 40 tan’z + 24 tan®z
f¥(z) = 16 sec’z + 120 tan2z sec?z + 120 tan' sec*zr f¥(0) = 16

On substituting in (3) we obtain

2x8

tanx—x+ +15 + -

The next two terms are g5 27 and 5§35 z°.

Exercises

1. Expand cos z in a power series in z,
2. Expand cos z in a power series in (z — a).
8. Expand cos (a+ k) in a power series in k.
4. Expand sin (@ + k) in a power series in h.
5. Express the remainder after three terms in each of the series
of Exercises 1, 2, 3, 4.
6. Expand e* in a power series in z.
7. Expand et in a power series in k.
8. Expand e* in a power series in (z — a).
9. Expand log (1 + z) in a power series in z.
10. Expand log (1 — z) in a power series in z.
11. Expand tan™!z in a power series in z.
12. By the use of the series already found, compute:
(a) 4/€ to 5 decimal places.
(b) ¥/e to 6 decimal places.
(c) sin 3° to 6 decimal places.
(d) cosine of 1 radian to 4 decimal places.
13. By the use of the result of Exercise 3, find cos 33° correct to 4
decimal places.
14. By the use of the result of Exercise 4, find sm 32° correct to 4
decimal places.
164. Second Proof for Taylor’s and Maclaurin’s Series. These
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series can be obtained very simply in another way if we make
certain assumptions and do not attempt to justify them.

Assume that f(z) can be represented by an infinite power series
in (z — a): .

J(@) =aota1(z—a)+as(z—a)?+ - * -+an(z—a)*+ e ()

where aq, @1, @3, * * *, Ga, * * * are coefficients which are to be
determined. Assume further that the result of differentiating the
second member term by term any given number of times, is equal
to the corresponding derivative o?lthe first member. Then,

f(z) = a1 + 2a:(z — a) + 3as(z — a)?
; +...+Mn(z_a)n-l+...
f"(z) = 2a: 4+ 6as(z — a)
4+ -+ an = Daz — a)~t + - - - [(2)
f"@)=6as+ - - - + n(n — 1)(n — 2)a.(z — a)*34- - -

f(").(:;)'=.|1ta:. + .- A |
Put z = ain (1) and (2).

f(a) = aq,
f(a) = ay,
f’(a) = 2a,,

7"(a) = [3as,

fa) = Inan.

whence
ao = f(a),
a = f'(a),
as = fél)»
as = f'l”_é.a)y
o I @)

|n
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Substituting in (1) we obtain
. a
1@ = 1@ + 1@ - o+ L - ap
. (n)
fléa)(x a)3+_ . ,+]:_I%
By setting a = 0, and z = a + h, we get (2) and (3), respectively,
of the preceding section.

165. Tests for the Convergence of Series. Several tests will
now be given for determining whether or not a series is convergent.
They will be given without proof, though in most cases the proof
is not difficult.

If a series uy + u2 + - - - + un + - - - is convergent,

lim =
niw Un 0.

(z —a)" +

The converse of this statement is not true. Thus the series

A T R o )

is divergent, although
lim 1

n= o n
That this series is divergent can easily be seen as follows:
' 1+1>%

i+t +31>1
I+t AR >

The terms of the series can then be grouped into infinitely many
groups such that the sum of the terms in each group is greater
than 1. But the series

T+i+3+3+3+
is divergent. Much more then is the series (1) divergent.
Test 1. If 'gni Un 18 ot zero the series 18 divergent. This test

is easy to apply and if it shows the series to be divergent, no
further investigation is necessary.
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Test 2. Alternating sertes. A series of decreasing terms whose
stgns are allernately plus and minus and for which

lim Un =0
N
18 convergent.
Thus the series
1-d+d—f+4—4+--- @

is convergent.

The reason for the convergence of such an alternating series
can be seen as follows. Denote by S, the sum of the first n
terms and suppose the (n + 1)*® term positive. (See Fig. 121.)
Then, since the terms are constantly decreasing,

Sns1 > Sn; Sasz < Sat1; Sase > Sa.

-—

Sni1
Sn

< Sp+2 >
Fra. 121.

J¥

It is clear that as n increases S. oscillates back and forth but
always within narrower and narrower limits, owing to the fact
that the terms are constantly decreasing. As n becomes infinite
the amount of this oscillation approaches zero since

li‘m Up = 0.

Sn therefore approaches a limit.

Test 3. Comparison Test. If the terms of a series are in numer-
ical value less than or equal to the corresponding terms of a known
convergent series of positive terms, the series is convergent. If the
terms of a series of positive terms are greater than or equal to the
corresponding terms of a divergent series of posilive terms, the series
18 divergent.

A useful series for comparison is the geometrical series

at+ar+at+tari+ - a4 -, 3)

which is convergent if |r| < 1 and divergent if [r] 21. See also the
series (a) of Illustration 2 of this section.
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Test 4. The Ratio Test. By comparison with the geometrical
series it can be shown that the series '

Urturtus+ -0 tus+ -
18 convergent if

Hm |%n

nél?n f <1’ .
divergent if

lim | Un41

i u—: > 1.
If

lim | Uns1| _ 1

ass © Un =

the test fails. In this case other tests must be applied.

There are a great many tests for the convergence of series but
only a few can be given here. It should be added that there is no
test that can be applied to all cases.

Illustration 1. Test the series

1—f+i-4+4—2+ -

for convergence.
Since
lim
nds o
is not zero, the series is divergent (Test 1). Tt is to be noted that
the terms of the series are alternately positive and negative and
that they decrease, but they decrease to the limiting value 1
instead of 0. Hence test 2 does not apply.
Ilustration 2. Test the series

L4 g tg 4t (a)

for convergence. This series is useful in testing the convergence of
series by comparison.

If t = 1 we have seen that this series is divergent. (See (1).)
If ¢ < 1each term of (a) is greater than the corresponding term
of (1) and hence (a) is divergent. If ¢ > 1 we can compare (a)
with 1 1 1 1 1

1 .
l+5+g+at+tatatat &)
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Each term of (a) is less than or equal to the corresponding term
of (b). But (b) is convergent since it can be written

142 (; )+4()+8()+--~

2 4 8 16
1+'2—,+@+§+1—6,+

or

which is a geometric series whose ratio, ;—‘, is less than 1. Henece

(a) is convergent when ¢ > 1. Summing up:
(a) is divergent if t < 1.
(a) is convergent if ¢ > 1.

Ilustration 3. Test the series
1 1 1
1+ 2 + 3 + [4 +-o

for convergence.

Apply test 4.
1
Up = E
Hence
1
Hm |%a | _ lim |"+1_ lim 1 _
nk o Un = nxow Nk n+ 1 - 0-
I_n

The series is therefore convergent. ‘
Tllustration 4. For what values of z, if any, is the series ’
¥ 28 27 ’

z—B+E—E+

convergent?
xp2n-1
lual =| o =1 |
Then
$2"+l
lim | %) _ lim |2n +1 ~lim | 2 |,
n=w Up n& o zin-1 n o 2n (2n + 1) -

[2n —1
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for all finite values of z. Hence the series is convergent for all
finite values of z, positive or negative.
Illustration 5. For what values of z is
2 28 gzt b
T-gtzy gty Tt

convergent?
fual = | 7
Ua| = |
xn+l
lim [%aq1| _ lim [n4+1]_  lim n_|_
N o Un T nEw zn T n=o xn+1 = le
n
The series is therefore convergent if |z| < 1. Furthermore it is
convergent if £ = 1 (Test 2), and divergent if = — 1. (See
series (1).)

As has been stated there is no one test of convergence which
can be applied with certainty of success to any given series. The
tests which can be most frequently applied have been given. It
is suggested that the following procedure be observed in general.

1. See if limy, = 0.

2. If so, is test 2 applicable?

3. If not, try the ratio test, test 4. This will fail if
lim

n= o

Un+1
Un

=1.

4. In this case, and in cases where the other tests fail or are
difficult, try the comparison test.

Exercises
Test the following series for convergence.

Ly—-t4+¥—-3+4-"""
2.} —-f+t -5+ —-- -
.3+ 4+ +d+A -
L2 13 e 15,
* 10 ' 102 10% ' 10* *

1.2 3 4 |
5.!_2.+|_§+|_4-+|_5.+ .
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L]

1 1 1
1tavctavataat o
Tlomtgm—mte-

1 1 1 1
Bl+mt+mtmatgat:

T2t3atse T .
_For what values of z are the following series convergent?

10. The Maclaurin’s series for ¢*? Exercise 6, §163.

11. The Maclaurin’s series for cos z? Exercise 1, §163.

12. The Maclaurin’s series for sin z? Illustration 1, §163

18. The Maclaurin’s series for log (1 — z)? Exercise 9, §163.

14. The Maclaurin’s series for tan~1z? Exercise 11, §163.

166. Computation of Logarithms. The series of Exercise 9,
§163, for log (1 + z) is convergent only when —1 <z < +1,and
that for log (1 — z), Exercise 10, §163, only when — 1 {z<+ 1
It would appear then impossible to find the logarithm of a number
greater than 2 by these formulas. By a very simple device it is,
however, possible to obtain formulas for finding the logarithm
of any number.

From the series of Exercis&s 9 and 10, §163 it follows that

lg + =log(l1+4+z) —log (1 —z)
3
—2fatf+EHoc] @

where 2] < 1. Letz = 2 :_ T
) 1+z_ z+1
l—z 2z
and
z+1 1 1
log = 2bz+1+3@r+nf+ak+4y*‘ ](”

where z > 0, or

1 1 1
}Og (Z+1)=10g z+2[22 F1 +3(2Z F 1)3+ 5(2z + 1)5+ o ]'(3)

By letting z = 1, log 2 can be computed by this formula. The
series is much more rapidly convergent than that for log (1 +2),
z = 1. In fact, 100 terms of the latter series must be taken to
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obtain log 2 correct to two decimal places, while four terms of the
new series (3) will give log 2 correct to four decimal places. After
log 2 has been found, log 3 can be found by setting z = 2. The
logarithm of 4 is found by taking twice log 2; log 5 by setting
z = 4; log 6 by adding log 3 and log 2, and so on.

Exercise

Compute log 5 correct to four decimal places, given that log 4
= 1.38629. Here, as always in the Calculus, the base is understood
to be e.

167. Computation of w. By letting z = 1 in the series for
tan—1z, Exercise 11, §163, the following equation is obtained from
which 7 can be computed:

Fotanl=1-%+1—3+-

This series converges very slowly. To obtain a more rapidly con-
verging series make use of the relation
tan~11 = tan—1} + tan—'3}.
Then
Ty

il (3){23)*(5)(26) (7)(27>+

, - Ger + @E - me T
168. Relation between the Exponential and Circular Functions.
/ If it be admitted that the Maclaunn s series expansion

which was proved for real values of 2, is also true when z is 1mag1n-
ary, we obtain, on setting z = iz,

: @z)? | (r)* (=)t | (z)°  (ix)® | (@)7

z2 n’ s a8 Gt
On separating real and lmaginary parts this becomes
. [AR A
e =1-— m+4 6
. z3 :c5
+i(emgts \7+ )- @)

21
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Since (Exercme 1 and Illustration 1, §163),

4z
cosr =1— ‘2+|4 [2+

and
. x5 27
S8inz =z « l3+l5 E+
it follows that
e‘=-=cosx+ismx.

On changlng the sign of z it results that
e™* =cosx — isinx.
Solving equations (4) and (5) for cos z and sin z,

e e—s?
COSX = —+§——

and
e’* — @—iz

sinx=A %

[§168

@

)]

(©)

Q]

These interesting relations between the circular and exponential

functions are of very great importance.
. Y

-’

N

Fia. 122. Fia. 123.

If 0 represent the vectorial angle in the complex number plane,
then it is clear from Fig. 122 that e represents a point on the
unit circle (circle of radius 1 about the origin as center) in this
plane. Further, any complex number a 4 bi can be put in the

form pes. For (Fig. 123)

a + bt = p (cos 0 + ¢ sin §) = pe,

where p = 1/a? + b2
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Exercises

Represent by a point in the complex plane:

ir i
1. 3e3. 3. et. B. &, 7. e¥r,
114 i . 3ir
2. 2¢ 3. 4, e2. 6. e~'*. . 8. 5e 4.

9. Express the numbers of Exercises 1-8 in the form a + bi.
169. DeMoivre’s Theorem. The interesting and important
theorem, known as DeMoivre’s Theorem,

(cos @ + isin )" = cos nf + i sin nf (1)
can be easily established by the use of the relation (4) of §168.

For,
(cos & + 17 sin 0)" = (&%)" = ¢ = cos nf + 1 sin né.

Exercises
Find, by the use of (1),
. f1+ 4. - 1
1. The cube of 1 +3 4. The cube of — V3.
1 iv/3 .
2. The square of L;—\ig 6. The cube of ——— V3 -1- L\/§
1+ in/3
3. The cube of +2L\£ 6. The cube of sa +

In (1), n may be a fraction as well as an integer. It will then
indicate a root instead of a power. In this case we do not have
simply one root:

(cos 0 + isind)’lT' = cosﬁ + isini,
m m

’ 1 . .
(n having been placed equal to pout where m.is an integer) but

m — 1 additional roots. This follows from the fact that
= ¢i(0+2p7) 2)

e

wherep‘= 0,1,2,3,4,---,mym+1, --.. Hence we can write

1 1 1
(cos 6 + isin @)™ = [¢¥]m = [¢( + 2PM)]m
or
1 0 +2pm)
(cosf + isinf)m=¢ ™ ,(p=0,1,2,.-") 3)
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It would appear at first sight as if there were infinitely many
roots corresponding to the infinitely many values of p. But a
little consideration shows that when p S m, the roots already
found by letting p take the values 0,1, 2, - . ., m —'1, repeat
themselves, since €#* = 1. There are then exactly m mth roots
of ¢ = cos§ + isin¥, :

g0+ 2m) 't”z”') = cos °—+m2 PT + {sin ’——+m2”', @

wherep =0,1,2, - - -, m — 1.
Illustration. Find the three cube roots of —1.
(=D = (¢in)}

= [ei(’ +2pr)]} (»=0,1,2)
ix + 2pr)
=e¢ 3 (»=0,1,2)
=¢3, ¢7, anded.
Exercises

0
1. Show that the three cube roots of a + bi = pe'® are: v/p €3,
(8 + 2x) (0 + 4x)

veoe 3 ,andvpe 3 . How would these roots be deter-
min aphically ?

2. d the two square roots of 1 + 1.

8. Find graphically the two square roots of :.

4. Find graphically the three cube roots of 1.

170. Indeterminate Forms. It has already been shown that

g has no meaning. See §26. Thus
z2—4
z—2
has no meaning at z = 2. Its value at ¢ = 2 is defined as

lim a:’—-4=
z=2 T —2 4.

Similarly )
sin «
tan a
has no meaning at &« = 0. Its value at @ = 0 ¢s defined as
lim sin @ _
a=0 tm -
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In general, if ¢(a) = 0 and f(a) = 0, the value of the function
o@) at £ = a 18 defined as

lim ¢(z)

z2a f(z)
The calculation of this limit is simplified in many cases by the
application of the law of the mean. See §160.

Thus, let it be given that ¢(a) = 0 and f(a) = 0 and let ¢(z)
and f(z) satisfy the conditions imposed in the statement of the
law of the mean. Then

lim ¢) _ lim ¢(a)+ (z—a) ¢'la + b:(z — a)]
a4 f(z) — 2*e f(a) + (z — a) f'[a + O2(z — a)]
lim ¢'la+ 6i(z —a)] _ ¢'(a) 6,
= e Tat bz —a) @ 0 <<l

If ‘'¢’(a) and f’(a) are also zero, we make use of the extended law
of the mean. ~ Thus

¢(a) + (z — a) ¢’(a) + (2 |_2a)2¢"[a + 0:(x— a)]

lim ¢(z) _ lim

=IE T e+ -0 @)+ S 5 — 9’ i+ 04z — a)]
_ lim¢la+6:@—0a)]_ ¢"(a)
z=a f'la + 0:(x — a)] — f"(a)
The process is to be continued further if f"(a) and ¢"(a) are
both zero.
Tlustration 1.

lim e* —1 lim e _

z=0 . z=0 ]
Illustration 2.
lim ¢ —e~*—2z lim e*+e”*—2
e e " Tar ere
z%0 gz —ginz z=0 1 —cosz
lim e*—e~*

T 220 ging
_ lime=+e—*
z=0  cog

= 2.
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The Form % The same process is employed in evaluating

the indeterminate form % The proof is omitted.

Hlustration 3.
lim 2?2 _ lim 2z _ lim E'_O
TEw gz  Thwer  TEw ez

The Form 0. The indeterminate form 0 can be thrown

into either of the forms g orfz. Thus

lim lim = lim 1
220 POV T = oo fanz = 220 et L

Other indeterminate forms are: © — ® 1 ®, 09, 09,
Thus, if ¢(z) and f(z) become infinite for x = a, ¢(a) — f(a) is
defined as

lim 142) — f()].

z=a

This expression can be written

1 1
i fge) — f@) = i 8@ S@),
¢(x)f(x)

an indeterminate form of the type %.

If ¢(x) becomes infinite ‘and f(x) becomes 1 for z = a, [f(a)]"(’"
is defined as

L ()

limy 5zypece
This limit can be calculated as follows. Let y = [f(z)]*'?.
Then

1
log y = é(z) log f(z) = ig#’
¢(z)

an indeterminate form of the type %. If

lim log f(z)

z=a ]

$(@)
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is found to be ¢, then

lim y =e.

The two remaining forms are evaluated in a manner simiiar to

the last.

Many indeterminate forms can be evaluated directly by simple

algebraic transformations.

Evaluate the following:

1, lim logz
tz=lgp —1

lim l—coso.
0=0 cos # 8in? §

lim zcosz — sinz
z&0 z )

lim tanz — sinz
220 "z —gmnz
limx“—l
z=1 g —1
lim sin 3z
2%0 gin 2z
7 lim tan 3z
Czk0 g :
z%0gin x — z
9 lim 22—z — 6
“zk3 T g~ Q
lim 372+ 5
zsbm4z8+1.
lim log 2.
1. z#0 cot
lim tan 2¢
=T tan 5¢
2

4.

6

10.

12

13.

14.

15.

1e.

17.

18.

19.

20

g1, li
22.
28.
24.

Exercises

lim _2%
ze o logz
lim x"

z:hoel
lim €

zd o g3

lim e® tan l-

Zde

lim 2 1 ]
el |77 =1 z—1

:iing [(%" )ma]

1
3*1 loga: x—lJ -

llm cot z
zap (€08 2)%°° %,

z.l.o a- z):

lim (ose z)ten 2,

;I:E:J (sm z)tan z,

lim sin 2.
z=0 g

lim tan 6
6=0 gin 0




CHAPTER XVIII
TOTAL DERIVATIVE. EXACT DIFFERENTIAL

171. The Total Derivative. Let z = j(z, y) and let z and y be
functions of a third variable ¢, the time for example. We seek an

expression for g—:, the derivative of z with respect to ¢, in terms of

dx dy
a and a

As an illustration of what is meant, let z denote the area of a
rectangle whose sides z and y are functions of ¢, and at a given
instant let each side be changing at a certain rate. The rate at
which the area is changing is sought.

Returning to the general problem let ¢ take on an increment Af.
Then z takes on the increment Az and y the increment Ay, and

consequently z the increment Az. We then have

z = f(z,y) 0))
z+ Az = f(z + Az, y + Ay)
Az = f(x + Az, y + Ay) — f(z,y) 2

Az = f(z+ Az, y+Ay) —f(z, y+ Ay) +f(z, y+ Ay) —f(z,y) (3)
Az _ f(z + Az, y + Ay) — f(=z,y + Ay) Az

At Az At
' f(z, y + Ay) — f(=z, y) Ay

Taking the limits of both sides of (4) as At approaches zero, we
have
dz _ 0f(z,y) dz | 9f(z,y) dy . (5)
dt — 9z dt 9y dt’ ~

since Ar and Ay each approach zero as At approaches zero.
Equation (5) can be written in the form
dz _ oz dx 0z dy, o
dt — odx dt ' Jy dt
328

v
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This states that the rate of change of z with respect to ¢ is equal
to the rate of change of z with respect to z, times the rate of change
of = with respect to ¢, plus the rate of change of z with respect to
y, times the rate of change of y with respect to ¢.
If t = z, (6) becomes
de 0z 0z dy
dr ~ 9z " 3y dz
This formula applies when z = f(z, y) and y is a function of z,
eg., y = ¢(2).
Multiplying (6) by dt we obtain y

iz , . 0z
. dz = 7= dx + 3y dy. )
‘This defines dz, which is called the total differential of 2.
D
Z P B_ s
[+}
F ,Q/
R K
A B
o Y
dy
¥
X
Fic. 124.

We shall now give a geometrical interpretation of dz. Let
P, Fig. 124, be the point (z, y, 2) on the surface z = f(z, y).
Let
PC = dy
and
PA = dz.

Then @ is the point (x + dz, y + dy, z + Az). Let PDEF be R
the plane tangent to the surface at the point P. Then PF is I“’
tangent to the arc PR, and PD is tangent to the arc PS. .
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From F draw FK parallel to AB meeting BE in K.

BE = BK + KE
BK = AF = 9z dz.
oz
Since FK = PC and PD = FE, triangle KFE is equal to the
triangle CPD, and
dz
KE =CD = 3y dy.
Therefore

0z 0z
BE = & dr + 5;/ dy.

Hence BE = dz. Consequently dz may be interpreted as the
increment measured to the tangent plane to z = f(z, y) at the point
P (z, y, z) when z and y are given the increments dz and dy
respectively.

Tlustration 1. 1If z = zy, the area of a rectangle of sides s
and y, we obtain by using (7),

dz = ydx + z dy.

The first term on the right-hand side represents the area of the
strip BEFC, Fig. 125. The second term the area of DCGH. The
difference between Az and dz is the

g S area of the rectangle CFLG, which
D el F becomes relatively smaller, the
smaller dx and dy become.
The above expression could have
been obtained by the formula for the
A B4 r differential of the product of two
Fia. 125. variables.

Illustration 2. The base of a
rectangular piece of brass is 15 feet and its altitude is 10 feet.
If the base is increasing in length at the rate of 0.03 foot per hour
and the altitude at the rate of 0.02 foot per hour, at what rate is
the area changing? )

Let z denote the base, y the altitude, and z the area.
Then

z2 =12y
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ad G dr dy
a-Yatey

= (10)(0.03) + (15)(0.02).

Tllustration 3. z = ;
oz _ 1 92 _ _ =z
dz  y ay
and, by (7),
d=Lar— 24
v v Y,
or
dz = yde —xzdy

a result which could have been obtained by differentiating the

quotiént 5 by the usual rule.

Exercises .

Find by formula (7) the total differential of each of the following
functions:

1.z = z%. 4. z = ;i’ 7. 2 = g2,
2. z =y, © B.z==zlogy. 8.z =e*sin y.
2
3.2-3- 6. z = e*cos y. 9. z = €% cos nz.
. . dz,
Fmdd_t if:
10. z = z2cos y. 11. z = e*sin y.

12, The radius of the base of a right circular cylinder is 8 inches and
its altitude is 25 inches. If the radius of the base is increasing at
the rate of 0.2 inch per hour and its altitude at the rate of 0.6 inch
per hour, at what rate is the volume increasing?

18. Given the formula connecting the pressure, volume, and tem-
perature of a perfect gas, pv = Rf, R being a constant. If ¢t = 523°,
p = 1500 pounds per square foot, and » = 21.2 cubic feet, find the
approximate change in p when ¢ changes to 525° and » to 21.4 cubic
feet.

14. I with the data of Exercise 13, the temperature is changing at
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the rate of 1° per second, while the volume is changing at the rate of
0.4 cubic foot per second, at what rate is the pressure changing?

15. The edges of a rectangular parallelopiped are 6, 8, and 10 feet.
They are increasing at the rate of 0.02 foot per second, 0.03 foot per
second and 0.04 foot per second, respectively. At what rate is the
volume increasing?

172. Exact Differential. An expression of the form

Mdz + N dy,

where M and N are functions of z and y, may or may not be the
differential of some function of = and y. If it is, it is called an
exact differential. Thus

sin y dz + z cos y dy )

is an exact differential, for it is the differential of z = z siny.
The coefficient of dz is g—z-; = sin y, and that of dy is 3—; = ZCOoSY.

z?siny dxr + x cos y dy 2

is not an exact differential. It is fairly evident from (1) that we

cannot find a function 2 = f(z, y) such that % = 72 sin y and

9z _- \
" Z Cos Y.

We seek to find a test for determining whether or not an ex-
pression of the form

Mdz + Ndy 3)

is an exact differential. 1If (3) is the exact differential of a fune-
tion z, we must have,

dz
3% = M 4)
and .
09z ’
a-y =N ] (5)
since
0z

a9z
=32 dr + 55 dy. (6)
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Differentiate (4) with respect to y and (5) with respect to z
and obtain

9% oM
, EY R )
and 2 . .
2
dz0y = 3 @
Since, in general,
9% 9%
dyodz ~ dzdy
it follows that if (3) is an exact differential, we must have
oM _oN

The condition (9) must be satisfied if (3) is an exact differential.
It does not follow, however, without further proof, that (3) is
an exact differential if (9) is satisfied. It can, however, be shown
that this is the case. The proof will be omitted. (3) cannot be
an exact differential unless (9) is satisfied and is an exact differ-
ential if (9) is satisfied.

When an expression of the form (3) is given, the first step is to
determine whether or not it is an exact differential by applying
the test (9). If it is an exact differential, the next step is to
find the function z of which it is the differential. This step will
be illustrated by integrating several differentials for which the
functions from which they were obtained by differentiation are
known.

Ilustration 1. If z = 23 + 2z% + y2 + C,

dz dz
dz=£dx+5?;dy p

= (322 4+ 4xy)dz + (222 + 2y)dy.
If then we are given the exact differential
dz = (3z* + 4zy)dz + (22* + 2y)dy
and are required to find the function of which it is the differential,
we jnote first that
g% = 3x? + 4xzy.

Then
z = 23 4 2z% + a function of y alone.
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And this function of y is to be so determined that
9z
oy = 222 + 2y.

Clearly the term 2x? is obtained by taking the derivative with
respect to y of 2z%y, a term already found, and consequently it
is not to be added. 2y is the derivative of y2 y2? is then the
function of y which is to be added to the terms already found.
Further an arbitrary constant is to be added since its differential
will be zero. Then

' z=a3+ 2% +y*+C

is the function whose differential was given. If, as is usually the
case, it had been given that

(3z* + 4zy)dx + (222 + 2y)dy = 0 (10)

it would have been required to find a function of z and y such that
its differential would be zero. Now the first member is, as we
have seen, the differential of

z = x%+ 2z% + y%
But,if dz = 0,z = C. Then
2+ 2% +y*=C

is the relation between z and y which satisfies the given equation.
Illustration 2. If

2z =e=cosy + x? + siny + ¥,
dz = (e cosy + 2z)dx + (— e*siny + cos y + 3y?) dy
Now let it be given that
(e* cosy + 2z) dx 4+ (— e*siny + cosy + 3y?) dy = 0. (11)

From its derivation we know that the left-hand member is an
exact differential, dz. Let us proceed to find z as if it were
unknown.

‘;—i = e* cos § + 2z.
Then
2z = e* cos ¥ + x2 + a function of y alone. (12)
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The function of ¥ is to be so determined that
(;_; = —e*siny + cos y + 3y2. (13)
The first term is evidently obtained by differentiating e= cos y, a
term already found in (12). The remaining two terms in (13)
are obtained by differentiating sin y + y3. These are to be added
to the terms already found in (12).
Then - ,
) =e*cosy + x® + siny + ¥
But, since dz = 0, z = C. Hence
e‘cosy+:v’+siny +y3=C
is a solution of (2).
IlNlustration 3. Integrate if possible the equation

(e* y+sin y+2z) dz+(e=+x cos y+ev+2y —sin y) dy=0. (14)

We have first to determine whether or not the first member is
an exact differential. Apply the test (9).

Hence (9) is satisfied and the first member of (14) is an exact
differential. On integrating the coefficient of dz with respect to
z we obtain

ey + zsiny + z%
To this we have to add

e + y* + cos y,

the terms which arise from the integration of the coefficient of dy
and which contain y alone. (The other terms in the coefficient of
dy arise from the differentiation of terms already found by integrat-
ing the coefficient of dz.) Then the solution of (14) is

ery +zsiny + 22+ ev + y2 4+ cosy = C.

178. Exact Differential Equations. Egquations involving differ-
entials or derivatives are called differential equations. Those of
the type ‘

Mdz+ Ndy=0 (1)
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where the first member is an exact differential, are called exact
differential equations.

The equations (10), (11), and (14) of Illustrations 1, 2, and 3,
$172, are exact differential equations. The process of finding
the relation between y and z, which when differentiated gives a
certain differential equation, is called the integration of the
equation.

The procedure in dealing with an equation of type (1) is to
determine first whether or not it is exact by applying the test (9),
§172. If it is, integrate the coefficient of dr with respect to z
and to this result add those terms which contain y only, which
are obtained by integrating the coefficient of dy with respect to y.

Exercises

Are the following differential equations exact? Integrate those
which are exact.

1. 3z%tdzr + 223y dy=0. "
1 cos (2) dr — % cos (E) dy = 0.
Yy ) Yy Y.
yev(l+z+y)dr+zev (1 +x+y)dy =0.
yevdr + ze dy = 0.
(z%y + 2x) dxz — (3x% — 5z)dy = 0.

32

(%j-’ -|-1)dz - (? +2y)dy = 0.

S oW N

z z x z x ’
7. ev (2 +1—I)d:c - ev (2 + a)dy =0.
174. In §1656 the envelope of a family of curves was defined,

and its parametric equations were found to be

f(% Y, C) =0 (1)
g—{ = 0. 2

We shall now show that the envelope is tangent to each curve
of the family of curves (1).

At a given point (z,y) of the curve determined by giving ¢
a particular value in (1), the slope of the tangent is found from
the equation

of | Of dy _

(ﬂ_{-«—ﬂdx—o' @
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If the point also lies upon the envelope its codrdinates satisfy
(1) and (2). The equation of the envelope can be regarded as
given by (1) where ¢ is the function of z and y found by solving
(2) for ¢. On differentiating (1) with respect to z, regarding c

as a function of z and y, the slope, a—g, of the tangent to the en-

velope is given by
o L of dy | of de

s toyartocaz= )

where
do _dc 3 dy,
dr 9z ' dy dx

But on the envelope g{ = 0. Hence (4) becomes

of
3z + B_y = 0. (5)
Equations (3) and (5) show that the slope of the tangent line to
the envelope at the point (z, %) is the same as the slope of the tan-
gent line at the same point to a curve of the family (1). Hence
the envelope is tangent to each curve of the family of curves (1).

22



CHAPTER XIX
DIFFERENTIAL EQUATIONS

175. Differential Equations. An equation containing deriva
tives or differentials is called a differential equation. 1f no deriva-
tive higher than the first appears it is called a differential equation
of the first order. If the equation contains the second, but no
higher derivative, the equation is said to be of the second order.
And so on. Numerous differential equations have already
occurred in this course. We shall now consider the solution of
differential equations somewhat systematically.

176. General Solution. Particular Integral. Let

f(@,y,¢) =0 (1)

be any equation between z, y, and the constant c¢. If (1) is
differentiated with respect to z there results the equation

F(z: Y, y'a c)=0. @
Between (1) and (2) the constant ¢ can be eliminated giving the
differential equation of the first order
oz, 9,9) = 0. . ®)
Equation (3) follows for any value of the constant c.
Let
f(z, y, e, c) =0 O]
be an equation involving two oonstants, ¢; and ¢, By differ-
entiating (4) we obtain
F(r,y,9',c1,¢0) =0 (5)
and
¢(I, Y, y'; (ll’, (27) c) = 0. (6)
Between equations (4), (5), and (6), ¢; and ¢, may be eliminated
giving the differential equation of the second order

¥(z, v, y,) y”) = 0. (7)
. 338
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- From the equation (1) containing one arbitrary constant the
differential equation of the first order (3) is obtained. From the
equation (4) containing two arbitrary constants the differential
equation of the second order (7) is obtained. In like manner
from a relation between z and y containing n arbitrary constants
a differential equation of the n'® order is obtalned by differentiat-
ing, and ehmmatmg the constants.

Equation (1) is a solution of equation (3). It is called the
general solution and involves one arbitrary constant of integration,
¢. Equation (4) is called the general solution of (7). It involves
two arbitrary constants, or constants of integration. It can be
shown that the general solution, or general integral, of a differential
equation contains a number of arbitrary constants, or constants
of integration, equal to the order of the differential equation.

A particular integral is obtained from the general integral by
giving particular values to the constants of integration.

177. Exact Differential Equations. This type of differential
equation was discussed in §173.

178. Differential Equations; Variables Separable. The vari-
ables z and y are said to be separable in a differential equation
which can be put in the form f(z) dz + ¢(y) dy = 0. The first
member is equal to a function of z alone multiplied by dz plus a
function of y alone multiplied by dy.

Illustration 1.

14+ y)zrde+ (1 + z¥)ydy = 0.
On dividing by (1 4 »?)(1 + z?) this equation becomes

zdr 4+ Y ydy
1422 " 1+ y2

= 0.
Integration gives

C3log (1 + 2%) + 4log (1 + ¢?) = C.
This reduces to

A+ 21 +y?) =€ =,
or 4

. C,
2 = 71
y 14z L
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Illustration 2.
V1 =ytdz + /1 —ztdy = 0.
Then
dz dy
- =0
\/l—z’+\/l—y’ ’

and the variables are separated. Integration gives -
sin~'z + sin~'y = C.

Take the sine of each member, observing that the first member is
the sum of two angles, and obtain

zvV/1 —y*+yV/1 — 22 =sinC = C\.

Exercises

Solve the following differential equations:

1. 1 —2)dy — (1 + y)dz = 0. Ans. (1 +u)(l—z)

2. sin z cos8 y dz = cos z 8in y dy.

8. z — V1420 V1+ yidz = (1 + z%dy.

4. :—: = 5ytz.
v+4a+s

T ofisys ="
6. (1 + z)dy = y(1 — y)d=. Ans. y=c(l +2z2)(1 — p).
7. (1 —z)ydz + (1 + y)zdy = 0.

dy
8. 5z t ey =yt
9. (z’ + yzt)dy — (y’ — zyNdz =
10. z + 2y = xy dz

11, 3e‘sm ydz + (1 — e*) cos ydy = 0.
12. (zy + z*y)dy — (1 + y*)dz = 0.
Ans. (1 +2)(1 + y?) =c2
179. Homogeneous Differential Equations. The differentisl
equation
Mdz+ Ndy =0 1)
is said to be homogeneous if M and N are homogeneous functions
of z and y of the same degree.

.
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A function f(z, y) of the variables z and y is said to be homogen-
eous of degree m if after the substitutions £ = Az, y = Ay’ have
been made,

=z, y) = ™S, ¥).

az? + bry + cy?

Thus

is homogeneous of degree 2. For, on making the substitutions
indicated, it becomes

A(ax'? 4 ba'y’ + cy'?).
The expression

az\/z* + y? + bz® tan~! (g)

is homogeneous of degree 3. For, after the substitutions indi-
cated above, it becomes

A [ax"\/x'_z'-l:? + ba's tan™! (57)]

A homogeneous differential equation of the form (1) is solved by
placing y = vz, and thus obtaining a new differential equation
in which the variables, v and z, are separable.

Tllustration:
(z* + y?) dx + 3zy dy = 0.
Let
Yy = vz,
Then )
e dy =vdr 4+ zdy,
and

z%(1 + v?) dx + 3vx*(vdx + x dv) = 0.
z2(1 + 4v?) dz + 3vzddy = 0.
Separating the Variables
3y dy
Tt g =0
log [z(1 + 40)3] =

z(1 + 40?2)¥ = C,.
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On substituting » = % we obtain as the solution of the given
equation

zi(z? + 47t = C,,
or

z2(x® + 4y?)? = Ca.

Exercises

Solve the following differential equations

1. y’+z’—~ =zy§i

2. z2ydr — (2 + y¥) dy = 0.

8. (8y + 10z) dz 4+ (5y + 7z) dy = 0.
4. 2vVzy —2)dy + ydz = 0.

b oy VEF

ydy _ y_
‘G.xcosxdz—ycosz z.

d -
7. xd—z —y=z—y
8. (y —z)dy + ydx = 0.
180. Linear Differential Equations of the First Order. The
equation

dy _

where P and Q are functions of z only, is called a linear differential
equation. 1t is of the first degree in y and its denvatlve Multi-
ply the equation by

de:c ¢
e

and obtain
ede;[dy +Py] dez Q. @)

The left-hand member is the derivative of

efl’d:y’

as may be confirmed by differentiating this product. The inte-
gration of (2) gives
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P Pd.
e:f dxy=erf xd:c+0.

dy _
de T 7Y =2 3)
Here P =z and Q@ = 3. Then

f f g
Pdz zdz )
¢ e = ¢ =32.

z?
Multiply both members of (3) by ez.

Tllustration 1.

zrdy oz
ez[dz+xy] = e2 28,
Integration gives

z? T2
yet = | ezz3dx + C
z2 z?
=e¢222 — 22 4 C.
Hence
x2

. y=x2—2+4+Ce™ 2,
Tllustration 2.

dy 1

d—;+;y-—x*+3x+4. 4)
dz

efpdz=ef?=e-]°”=x.

Multiply both members of (4) by z.
x[g—z+iy] = 2% + 322 + 4x.
Integration gives
4

oy =T +2+ 2+,

or
z3 (4
y=7gtz*+2+ -

This illustration is inserted to call attention to the well-known
simple relation ¢l°%€* = z, which there will be frequent occasion
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to use in solving equations of this type. It should be recalled
that e"198% = 108 (=) = zn  Thus

—logz

8=

e

Exercises
Z—Z+2xy =7
-—y+ycos:c = gin 2z.
. cos’:c +y— tan z.

. (:t’+1)d—z+2zy = 4z2,
dy 2y
+$+1 (z + 1
. :v(l — z?) dy + (222 — 1)y dz = az?dzx.
dy y

= e = "
dz nx e*z".

:c’)dy+(:vy —i)dz =0.
dy 1—-2z
- Iz + Y= 1.

10. (1 + y?ydz = (tan~ly — z) dy.

181. Extended Form of the Linear Differential Equation. An
equation of the form

'09»:'@9-»«."!-“

d
dfg + Py = Qy» )]

is easily reduced to the linear form. , For, on dividing (1) by y*,
we obtain

Wy Py = Q. @

The first term of the left-hand member of (2) is, apart from s
constant factor, the derivative of y—»+!, which occurs in the second
term. If we let z = y—nt1 we obtain the linear dlﬁer,entul

equation
1

l—nd.r

+PZ—Q,
or
%—i—(n—l)Pz= - (n - 1)Q.
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Illustration 1.
Z—Z + y cos z = y*sin 2z.
Dividing by y*
g4 gg + y~%cos z = sin 2z.
Let z = y=3. Then

and the equation becomes
—§%+zcosx = gin 2z,
or

dz — 3zcosx = — 3 sin 2.
dz

This equation can be readily solved by §180; y~—2 is to be sub-
stituted for z in the result.

Exercises
NP 1 : d
l.a-g+;,y=z’y‘. ‘4'(1‘”’),1—:—W=awy’.
d dy 2
2'd_:+1/=‘°1/'- 5.3‘%+;y=3x3y&.
.32 _7p -zt 6. 2% 4y = yrloga.
dy 2 z3

Tartzri?y =y

182. Applications. Let there be an electric circuit, whose
resistance is B, whose coefficient of self-induction is L, and which
contains an electromotive force, which at first we shall suppose
constant and equal to E. It is required to find the current ¢ at
any time ¢ after the time ¢ = 0, at which the circuit was closed.
The equation connecting the quantities involved is readily set up.
The applied E.M.F., E, must overcome the resistance of the circuit
and its self-induction. The former requires an E.M.F. equal to
iR, and the latter an E.M.F. proportional to the time rate of

change of current, viz., (di—:, and equal to L %: The applied E.M.F.,
E, must equal the sum of these two E.M.F.’s.
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Hence

di .
L‘Tt+Rz=E. 1)

The student will show that, if ¢ equals zero when ¢ equals zero,
the solution of this linear equation is

i=—g—[1—e'%]. @

If the battery or other source of E.M.F. is suddenly cut out of
the circuit, the current falls off in such a way that the differential
equation

di R
, L di +Ri=0 3)
is satisfied. Show that the law at which the current falls off is
R
i=1pe L (t— ta)’ 4)
if the instant at which the battery is cut out is the time ¢t = ¢,
and if the current at this instant is ¢ = 1

If the E.M.F. is variable, the relation between the quantities
involved in the circuit is still governed by (1),

di | .. '
L at Ri = E, 1)
in which E is now variable. Suppose E = Eos8in wt. This sup-

poses that an alternating E.M.F. is acting in the circuit. The
differential equation to be solved is

L di + Ri = E,sin wt (5)
Show that
R R
i} &2
ie” =%R’l [Izsmwt—wcoswt] Lt +C
T
E, R,
=Rt iR sin wt — wL cos wt)e ~ + C
R
E . ‘
*—sin (wt — ¢)e +C,

SVR WL
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- where
sin ¢ = ki :
VE Tt ol
o8 = —— T
VB oL¥
Then,
R
E, Tt

t= _\/1'3_’—+T sin (wt — ¢) + Ce
Since the last term becomes negligible after a short time because
of the factor
-r,
el ’,

it is scarcely necessary to determine C. On dropping out the
last term as unimportant except in the immediate vicinity of t =

we have
E,

\/W o — gin (ol — ¢). (6)
The current, therefore, alternates with the same frequency as the
E.M.F., but lags behind it and differs from it in phase by ¢. It

is to be noted that the maximum value of the current is not 73-‘-'

but ﬁ The quantity 4/R? 4+ w?L? replaces, in alt.,er-

nating currents, the resistance R of the ordinary circuit. It is
called the impedance of the circuit.

183. Lipear Differential Equations of Higher Order with Con-
stant Coefficients and Second Member Zero. A typical differen-
tial equation of this class is the following:
anz;,{"‘aljzn 1+ de”zz"' +a,._,z—z+a,,y=0, (]_)
where ao, @1, * - -, a. are constants. As the equations of this
class which occur in the applications are usually of the second order
we shall confine our discussion in this article to linear differential
equations of the second order. Consider

d2
ao#ﬁ + alg-% + ay = 0. 2)
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Let us assume that

y = e 6)]
and ﬁnd if possxble, the values of m for which (3) is a solution of
(2). The substitution of (3) in (2) gives

em= (agm? + am + a;) = 0. (4)

The first factor cannot vanish. The second, equated to zero, gives
a quadratic equation in m. Call its roots m, and ms. Then (3)
is a solution of (2) if m has either of the values m, or m,, the roots
of

am? + aim + a2 = 0. (5)
The equation (5) in m, obtained from the given differential equa-
dly dy

tion by writing m? for izt and m for o is called the auziliary

equation.
Two solutions of (2) are
y=e™ and y = em=. ‘
Furthermore,
y = C.em*

is a solution of (2). For, after the substitution of this value of ‘
¥ in (2), C, can be taken out as a common factor and the other
factor vanishes in accordance with (4) or (5). In the same way,

y = Coemr
is a solution of (2). And finally the sum of the two solutions
y = Ciem= + Coems® (6)

is a solution of (2). This can be seen by substituting in (2) and
recalling that m; and m. are roots of (5). When m, is not equal
to ms, (6) is known as the general solution of the differential equs-
tion (2). It contains two arbitrary constants, the number which
the general solution of a differential equatlon of the second order
must contain.

The values of these constants are determined in a particular
problem by two suitable conditions.

Illustration.

d?
5% ey =0,
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The auxiliary equation is
m? — 5m + 6 = 0,
(m — 2)(m — 3) = 0.
Hence m; = 2, my = 3. The general solution is then
y = Cie? + Cae®.

Exercises
1.%—3—1—6y=
2.%}:—4y=0
s.%{—7g—z+my=o.
4.2—;%+3—z-—12y=0.

. 5.:%;—1:+7Z——Z=0.

184. Auxiliary Equation with Equal Roots. The method just
given fails when the suxiliary equation has equal roots, m, = ma.
For, equation (6), §183, becomes

y = Clem,z + Cyems®
= (Cl + Cz)e"‘!’.
But C, + C: is an arbitrary constant and the solution contains
only one arbitrary constant instead of two. When the auxiliary
equation has equal roots, m; = m,, equation (2) can be written
in the form
dy dy _
pri 2m, e + my%y = 0.
Its general solution is
y = (C1 + Cyz)e™™

This solution can be verified by direct substitution.
Illustration.
d%y
i
The auxiliary equation is
m?—4m + 4 = 0.
my = me = 2.

dy
d_z+4y_ 0.
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The general solution is
y = (Cy + Cax)e?=,

Exercises

1. 457 ch+12 Y 19y=0
d?

- d—x + 16y = 0.
d¥y

3. = 0.

185. Auxiliary Equation with Complex Roots. If the auxiliary
equation has complex roots the general solution can be written
in a form different from (6), §183. The importance of the result
will be evident at once when it is observed that it contains the
harmonic functions sine and cosine. If the coefficients of the
" given differential equation (2), §183 are real, and if m, and m;
are complex, they must be conjugate imaginary numbers. Let
my = a +-1b. Then m; = a — 1b. Then (6) becomes

y = Cleaz + bz Cze az — bz
= goz (Cles'bz + Cze-ibz).
Now, by (4) and (5), §167,

edz = cos bz + tsin bz
e~bz = cos bz — 1 sin bz.

2.

o>

Then i
y = e [(Cy + C) cos bz + 1(C, — C) sin bz]

On placing C, + C; = A and i(C, — C;) = B, we obtain
y = e* (A cos bz + B sin bz)
= e%* C cos (bx — ¢).

In the last form the two arbitrary constants of integration are
C and ¢.
Tllustration 1.

2y+4 +13y—0

The auxiliary equation is
m? + 4m + 13 = 0.
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Hence
m= -2+ 3i.
Then
y = e~ (A cos 3z + B sin 3z).
Tllustration 2. g T
a;% +4y = 0. \‘
m?2+4=0. )
Whence
m= %21 =0+ 2i.
Then ) :

y = A cos 2z + B sin 2z. |

Exercises /

dty dy
1';1?’+3d—5'+5y=0'

dy
2. et + 9y = 0.

ayy

S.a—z—,+y=0.

d
4, an + w20 = 0.

186. Damped Harmonic Motion. The resistance offered by the
air to the motion of a body through it, is roughly proportional to
the velocity, if the velocity is a moderate one. In §81, the differ-
ential equation of the motion of the-simple pendulum was derived
on the assumption that the force of gravity was the only force .
acting upon the bob of the pendulum. If the resistance of the air
is also taken into account we shall have to add to the second

2
member of the equation, lZTf = — g sin 0, a term, — 2kl %‘3 pro-

portional to the velocity ! %tq See equation (1), §81. The differ-

ential equation of the motion is then

d? .
Et—g=—gsm0—2klg- (1)
The negative sign is used before the last term because the force

due to the resistance of the air acts in a direction opposite to that

l
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of the motion. The advantage of ciloosing 2k as the proportion-
ality factor instead of k will appear later. % is a positive constant,
From (1) we obtain

d20 do g .
at?+2lci+l—sm0=0. (2)
As in §81 assume that 6 is small and replace sin 6 by 6. Also let

= w? Then (2) becomes

~lq

2+2Ic b+ o0 =0

This is a linear differential equation of the second order with
constant coefficients and can be solved by the method of §186.
The auxiliary equation is
m? + 2km + w? = 0,
whence
m=—k+Vk-wt

When the velocity is not very great, as in the case of an ordinary
pendulum, % is very small for air and is much less than w. The
expression under the radical sign is negative. We write then

m=—ktive® -k,

w? — k? being positive.

The solution of (3) is

0 = Ae~* cos [tn/w? — k* — ¢,

or, multiplying both sides by ! and replacing Al by B,
‘ s = Be™* cos[tn/w? — k2 — €.
The motion is a damped harmonic motion. The amplitude de-
is a little greater

creases with the time. The period ————
peried =

2 . .
than —‘:—r, the period of the free motion.
Since % is very small in comparison with w, we can, for an

approximate solution of our problem, neglect k2 in comparison
with w2, Equation (4) becomes

s = Be~* cos (wt — ¢). (6]
This represents the motion with a high degree of approximation.
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The arbitrary constants B and e can be determined by suitable
initial conditions. For example, let it be given that s = s, and

%‘; = 0 when { = 0. On differentiating (5) we obtain
Z_t‘?: Be~*| — k cos (wt — €) — w sin (wt — ¢)]. (6)
For ¢t = 0 we obtain from (5) and (6)
8o = Bcos e

0 = B(—k cos e + wsin ¢€).

From the latter of these two equations

tan e = _’i
w

From the former

B = sysece = s 1+;2=so

to the degree of approximation used above. We have then as the
approximate equation of motion _

8 = S¢e~*t cos (wt — €) )
where

€= tan'lf—o = %» approximately.

Since k is very small, € is very small.

It follows from (5) and (7) that the period of the pendulum
in the case just considered is very little different from that of
the same pendulum swinging in a vacuum. The amplitude of
the swing, however, is affected and diminishes continually with
the time.

23
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Acceleration, 52, 83, 136, 138
angular, 138
average, 52
Algebraic function, 4, 55
definition of, 56
rational, 6
Alternating series, 316
Angle,
between two lines, 321
between two planes, 236
Angular acceleration, 138
velocity, 138
Anti-derivative, 46, 49
Applications, 218
Arec, .
differential of length of, 100,
181
length of, 218
Area, .
by double integration, 253,
258
moment of inertia of, 281
polar coordinates, 183, 218
of surface of revolution of,
112, 219, 274
under a curve, 75, 218
Arithmetic mean, 116
Axes, codrdinate, 228

Base,
change of, 147
naperian, 146
natural, 146

Cable, parabolic, 82
Catenary, 161

Center,

of curvature, 290, 294

of gravity, 250, 254, 274

of mass, 263
Centroid, 263, 265, 274, 281 '

of a line, 268

of an area, 268

of a solid, 268
Change of base, logarithm, 147

of limits of integration, 199
Circle,

curvature of, 290

of curvature, 290
Circular and exponential func-

tions, relation between,
321

Circular functions, 122, 321
Comparison test, 316
Complex numbers, 323
Compound interest law, 155
Computation

of =, 321

of logarithms, 320
Concavity of curve, 90
Conicoid, 242
Constant, 1
Continuous function, 31
Contraction of curve, 7
Convergence of series, 315
Convergent series, 303
Coordinate axes, 228

planes, 228
Cosines, direction, 230
Curvature, 289

approximate formula for, 293

center of, 290, 294
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Curvature, circle of, 290
of a circle, 290
defined, 289
parametric equations, 292
radius of, 290
Curve,
contaction of, 7
direction of, 178
elongation of, 7
orthographic projection of,
7
shear of, 7
translation of, 7
Curves
of hyperbolic type, 2
maxima and minima points
of, 20
of parabolic type, 2
Cylindrical surfaces, 244

Damped harmonic motion, 351
Definite double integrals, 255

integrals, 88, 103, 104
DeMoivre’s Theorem, 323
Dependent variable, 1
Derivative, 21

first, 21

of a constant, 43

of a function of a function, 66

of a quotient, 58

of circular functions, 122,'

124, 131

of exponential functions, 145

of logarithmic functions, 145

of sin u, 122

of the product of two func-
tions, 57

of the sum of a function and
a constant, 39

of the sum of a constant and
a variable, 56

of thesum of twofunctions, 43

INDEX

Derivative of u,, 42, 59
second, 70
total, 328, 329
Derivatives of higher order, par-
tial, 247
partial, 246
Différential, 88, 95
exact, 328, 332

of length of arc: polar
codrdinates, 181, 218
rectangular codrdinates,
100, 218
Differential equation, 338
exact, 335
linear, 342

of higher order, 347
order of, 338
variables separable, 339
Differentiation, 31, 97
implicit, 44
logarithmie, 153
Direction cosines, 230, 239
of curve, 178
Distance
between two points, 230
of a point from a plane, 237
Divergent series, 303
Double integration, 251, 253, 258,
255
Duhamel’s theorem, 105

Element of integration, 113
Fllipsoid, 242
Elliptic paraboloid, 244
Elongation of curve, 7
Envelope, 289, 296, 336

of normals, 300
Equation,

differential, 338

exact differential, 335

homogeneous  differential,
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Equation, linear differential, 342, Functions, logarithmic, 145
347 power, 1
of first degree in z, ¥ and z, rational, 6
233 integral, 6

of a plane, 233
intercept form of, 234
normal form of, 232
Equations of a line, 238
parametric, 67
Evolute, 289, 294, 300
the envelope of the normals,
.300
Exact differential, 328, 332
equation, 335
Exponential functions, 9, 145, 321
Extended law of the mean, 307

Falling body, 22
Family of curves, 297
Formulas, integration, 185, 201,
203, 205, 206, 207
Formulas, Wallis’, 204
Fractions, partial, 211
Function, 1
a*, 9
a cos z + b sin z, 9, 165
acosz, 9 ,
az? + Bz + v, 165
bsin z, 9
sin z, 9
maximum and minimum val-
ues of, 20
mz + v/a? — z2, 168
z2, 16
Functions,
algebraic, 4, 5, 56
circular, 122, 321
continuous and discontinu-
ous, 31
exponential, 145, 321
hyperbolic, 159
implicit, 44

transcendental, 6
transformations of, 10

General solution of a differential
equation, 338

Harmonic motion, 140
damped, 351
Homogeneous differential equa-
tion, 340

Hyperbolic functions, 159

paraboloid, 244
Hyperboloid,

of one sheet, 244 |

of two sheets, 244

Implicit differentiation, 44
Improper integrals, 218, 223, 226
Increments, 13
Indefinite integrals, 104
Independent variable, 1
Indeterminate forms, 30, 31, 303,
304
Infinite limits of integration, 226
Infinite series, 303
Infinitesimals, 29, 88
limits of ratio of two, 93
order of, 91
Infinity, 29
Inflection, point of, 70
Integral, the

fsec‘ z dz, 204
fe“ sin nz dz, 202

fe“cosnzdz,202

Integrals, improper, 218
Integration, 46, 49, 185



358

Integration, by parts, 201
double, 251, 253, 258
formulas, 185, 201,

205, 208, 207
of expressions containing,
az® + bz + ¢, 190
Var+1%, V-1
V3 = at, 196
powers of z and of a + bz,
192

of f asinz +50052 909

203,

csinz + dcosz
of powers of trigonometric
functions, 193
successive, 250
triple, 250, 260
Intercept form of the equation of
a plane, 234
Inverse functions, 67
Involutes, 302

Law of the mean, 306
extended, 307

Length of are,
polar codrdinates, 181, 218
rectangular codrdinates, 100,

111, 218

Limit,
definition of, 27
of the quotient of two

infinitesimals, 93

of Zf(z)z, 102

Limits,
infinite, of integration, 226
of integration, change of, 199
theorems on, 30

Line,
direction cosines of, 230
equations of, 238

Linear differential equation,
of first order, 342
of higher order, 347

INDEX

Loci, theorems on, 10
Logarithmic differentiation, 153
Logarithmic functions, 145
Logarithms, computation of, 320

Maclaurin’s series, 311
theorem, 303, 310
Maxima and minima, 20, 60, 165
applications of, 174
by limits of curve, 169
determined by derivative,
169
second derivative test for,
172
Maximum and minimum values
of functions, 60
Maximum defined, 20
Mean, arithmetic, 116
Mean value of a function, 117
Mean, law of the, 306, 307
Minimum defined, 20
Moment, 263
Moment arm, 263
Moment of inertia, 250, 277
of area, 280, 281, 283 -
of a solid, 284
polar coordinates, 283
translation of axes, 280
with respect to a plane, 285

Naperian base, 146

Natural base, 146

Normal form of the equation of a
plane, 232

Normal, length of, 68

Normals, envelope of, 300

Octant, 229

Order of differential equation,
338

Orthographic projection of curve,
7
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Pappus, theorems of, 274
Parabolic cable, 82
Paraboloid,
elliptic, 244
hyperbolic, 244
of revolution, 24
Parallel planes, 236
Parameter, 297
Parametric equations, 67, 292
Partial derivatives, 246
of higher order, 247
Partial fractions, 211
Particular integral of a differen-
tial equation, 338, 339
Path of a projectile, 85
Pendulum, the simple, 141
Per cent, rate, 159
Perpendicular planes, 236
Plane,
general equation of, 234
intercept form of equation
of, 234
normal form of equation of,
232
Planes,
angle between two, 236
codrdinate, 228
parallel, 236
perpendicular, 236
Point of inflection, 70
Points, distance between, 230
Polar coordinates, 178
area, 183, 258
centroid, 276
differential of are, 181
direction of curve in, 178
moment of inertia in, 283
Polynomials, 4
Power function, 1, 33
derivative of, 33, 35, 41, 42
hyperbolic type, 2
law of, 3
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Power function, parabolic type, 2
Power series, 305
Projectile, path of, 85

Quadric surface, 242
Quotient, derivative of, 58

Radius of curvature, 290
approximate formula for, 293

Radius of gyration, 278

Rate of change, 37

Rational algebraic function, 6

Relative rate, 159

Rolle’s theorem, 305

Second derivative, 70, 172
Series, 303
alternating, 316
convergence of, 315
convergent, 316, 303
divergent, 303, 315
infinite, 303
Maclaurin’s, 311
power, 305 .. _ _
Taylor’s, 311
test for convergence, 315
Shear of curve, 8
Simple harmonic motion, 140
pendulum, 141
Slope of tangent line, 17
Solid geometry, 228
Solid of revolution, 109, 218
surface of, 219
volume of, 109, 218, 260
Solution of differential equation,
338
Subnormal, length of, 68
Subtangent, length of, 68
Successive integration, 250
Surface of revolution, 112, 219
Surfaces,
cylindrical, 244
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Surfaces of revolution,
274
quadric, 242
Symmetric form of the equations
of a line, 238

240,

Tangent,
length of, 68
slope of, 17
Taylor’s series, 311
theorem, 303, 308
Tests for convergence, 316
Theorems of Pappus, 274
Total derivative, 328
differential, 329
Transcendental functions, 6
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Transformation of functions, 10
Translation of curves, 6
Triple integration, 250, 260

Variable, 1
Velocity, 16, 52, 136, 138
average, 16
of a falling body, 22
Volume by triple integration, 260
of a solid of revolution, 109,
218, 274

Wallis’ formula, 204

Water pressure, 114, 219

Work done by a variable force,
77,107, 219 '
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