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PROLOGUE.

CoNSIDERING how many fools can calculate, it is
surprising that it should be thought either a difficult
or a tedious task for any other fool to learn how to
master the same tricks.

Some calculus-tricks are quite easy. Some are
enormously difficult. -The fools who write the text-
books of advanced mathematics—and they are mostly
clever fools—seldom take the trouble to show you how
easy the easy calculations are. On the contrary, they
seem to desire to impress you with their tremendous
cleverness by going about it in the most difficult way.

Being myself a remarkably stupid fellow, I have
had to unteach myself the difficulties, and now beg
to present to my fellow fools the parts that are not.
hard. Master these thoroughly, and the rest will
follow. What one fool can do, another can.






CHAPTER L

TO DELIVER YOU FROM THE PRELIMINARY
TERRORS.

THE preliminary terror, which chokes off most fifth-
form boys from even attempting to learn how to
calculate, can be abolished once for all by simply stating
what is the meaning—in common-sense terms—of the
two principal symbols that are used in calculating.

These dreadful symbols are:
(1) d which merely means “a little bit of.”

Thus dx means a little bit of ; or du means a
little bit of %. Ordinary mathematicians think it
more polite to say “ an element of,” instead of “ a little
bit of.” Just as you please. But you will find that
these little bits (or elements) may be considered to be
indefinitely small.

2) j which is merely a long S, and may be called
(if you like) “the sum of.”

Thus Idx means the sum of all the little bits
of x; or Idt means the sum of all the little bits

of ¢. Ordinary mathematicians call this symbol “ the
C.M.E. A
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integral of.” Now any fool can see that if x is
considered as made up of a lot of little bits, each of
which is called dz, if you add them all up together
you get the sum of all the da’s, (which is the same
thing as the whole of ). The word “integral ” simply
means “the whole.” If you think of the duration
of time for one hour, you may (if you like) think of
it as cut up into 3600 little bits called seconds. The
whole of the 3600 little bits added up together make
one hour.

When you see an expression that begins with this
terrifying symbol, you will henceforth know that it
is put there merely to give yov instructions that you
are now to perform the operation (if you can) of
totalling up all the little bits that are indicated by
the symbols that follow. -

That’s all.



CHAPTER IL
ON DIFFERENT DEGREES OF SMALLNESS.

WE shall find that in our processes of calculation we
have to deal with small quantities of various degrees
of smallness.

We shall have also to learn under what circumstances
we may consider small quantities to be so minute
that we may omit them from consideration. Every-
thing depends upon relative minuteness.

Before we fix any rules let us think of some
familiar cases. There are 60 minutes in the hour,
24 hours in the day, 7 days in the week. There are
therefore 1440 minutes in the day and 10080 minutes
in the week.

Obviously 1 minute is a very small quantity of
time compared with a whole week. Indeed, our
forefathers considered it small as compared with an
hour, and called it “one minlute,” meaning a minute
fraction—namely one sixtieth—of an hour. When
they came to require still smaller subdivisions of time,
they divided each minute into 60 still smaller parts,
which, in Queen Elizabeth’s days, they called “second
minltes” (i.e., small quantities of the second order of
minuteness). Nowadays we call these small quantities
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of the second order of smallness “seconds.” But few
people know why they are so called. '

Now if one minute is so small as compared with a
whole day, how much smaller by comparison is one
second ! :

Again, think of a farthing as compared with a sove-
reign: it is worth only a little more than 1445 part.
A farthing more or less is of precious little importance
compared with a sovereign: it may certainly be re-
garded as a small quantity. But compare a farthing
with £1000: relatively to this greater sum, the
farthing is of no more importance than i34 of a
farthing would be to a sovereign. Even a golden
sovereign is relatively a negligible quantity in the
wealth of a millionaire.

Now if we fix upon any numerical fraction ae
constituting the proportion which for any purpose
we call relatively small, we can easily state other
fractions of a higher degree of smallness. Thus if,
for the purpose of time, g be called a small fraction,
then 4y of & (being a small fraction of a small
fraction) may be regarded as a small quantity of the
second order of smallness.*

Or, if for any purpose we were to take 1 per cent.
('ie, &) as a small fraction, then 1 per cent. of

1 per cent. (i.e,15a5g) Would be a small fraction

of the second order of smallness; and ;553555 Would

*The mathematicians talk about the second order of ¢‘ magnitude”
(s.e. greatness) when theK really mean second order of smallness.
This is very confusing to beginners.
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be a small fraction of the third order of smallness,
being 1 per cent. of 1 per cent. of 1 per cent.

Lastly, suppose that for some very precise purpose
we should regard ogo555 @8 “small” Thus, if a
first-rate chronometer is not to lose or gain more than
half a minute in a year, it must keep time with an
accuracy of 1 part in 1,051,200. Now if, for such a

purpose, we regard 1 5go55s (OF one milliont;h) as a
small quantity, then that is,

1,000,000 o 100 ,000°
1000550000555 (or one billionth) will be a small
quantity of the second order of smallness, and may

be utterly disregarded, by comparison.

Then we see that the smaller a small quantity itself
is, the more negligible does the corresponding small
quantity of the second order become. Hence we
know that im all cases we are justified in neglecting
the small quantities of the second—or third (or
higher)—orders, if only we take the small quantity
of the first order small enough in itself.

But it must be remembered that small quantities,
if they occur in our expressions as factors multiplied
by some other factor, may become important if the
other factor is itself large. Evena farthing becomes
important if only it is multiplied by a few hundred.

Now in the calculus we write dx for a little bit
of x. These things such as da, and du, and dy, are
called “differentials,” the differential of @, or of w,
or of y, as the case may be. [You read them as
dee-eks, oc dee-you, or dee-wy.] If da be a small bit
of «, and relatively small of itself, it does not follow
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that such quantities as x.dx, or #’dx, or a*dx are
negligible. But da x dx would be negligible, being a
small quantity of the second order.

A very simple example will serve as illustration.

Let us think of # as a quantity that can grow by
a small amount so as to become x+dx, where dz is
the small increment added by growth. The square
of this is a?+2x-dx+(dx). The second term is
not negligible because it is a first-order quantity;
while the third term is of the second order of smali-
ness, being a bit of a bit of #. Thus if we took
dz to mean numerically, say, g% of , then the second
term would be 2 of 2, whereas the third term would
be 5 of % This last term is clearly less important
than the second. But if we go further and take
dx to mean only &% of @, then the second term
will be &% of % while the third term will be

1 2
only 1,000,000 of &
x

Fia. 1,

Geometrically this may be depicted as follows:
Draw a square (Fig. 1) the side of which we will
take to represent x. Now suppose the square to
grow by having a bit dz added to its size each
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way. The enlarged square is made up of the original
square a2, the two rectangles at the top and on the
right, each of which is of area a-dx (or together
2x - dz), and the little square at the top right-hand
corner which is (dx)%. In Fig. 2 we have taken dx as

X dx
d e dx 2
il (dx)
x X
%2
N\x-dx
x dx
F1e. 2, Fie. 3.

quite a big fraction of x—about 3. But suppose we
had taken it only 3y—about the thickness of an
inked line drawn with a fine pen. Then the little
corner square will have an area of only 3= of a?,
and be practically invisible. ~Clearly (dx)? is negligible
if only we consider the increment dx to be itself
small enough.

Let us consider a simile.

Suppose a millionaire were to say to his secretary:
next week I will give you a small fraction of any
money that comes in to me. Suppose that the
secretary were to say to his boy: I will give you a
small fraction of what I get. Suppose the fraction
in each case to be 13y part. Now if Mr. Millionaire
received during the next week £1000, the secretary
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would receive £10 and the boy 2 shillings. Ten
pounds would be a small quantity compared with
£1000; but two shillings is a small small quantity
indeed, of a very secondary order. But what would
be the disproportion if the fraction, instead of being
oo had been settled at 1g%v part? Then, while
Mr. Millionaire got his £1000, Mr. Secretary would
get only £1, and the boy less than one farthing!

The witty Dean Swift * once wrote :

“ So, Nat'ralists observe, a Flea

“Hath smaller Fleas that on him prey.

“ And these have smaller Fleas to bite ’em,
“ And so proceed ad nfinitum.”

An ox might worry about a flea of ordinary
size—a small creature of the first order of smallness.
But he would probably not trouble himself about a
flea’s flea; being of the second order of smallness, it
would be negligible. Even a gross of fleas' fleas
would not be of much account to the ox.

*On Pee/ry = Rhapsody (p.>20), printed 1733—usually misquoted,



CHAPTER IIL
ON RELATIVE GROWINGS.

A1y through the calculus we are dealing with quan-
tities that are growing, and with rates of growth.
We classify all quantities into two classes: constants
and variables. Those which we regard as of fixed
value, and call constants, we generally denote alge-
braically by letters from the beginning of the
alphabet, such as @, b, or ¢; while those which we
consider as capable of growing, or (as mathematicians
say) of “varying,” we denote by letters from the end
of the alphabet, such as «, ¥, 2, u, v, w, or sometimes ¢.

Moreover, we are usually dealing with more than
one variable at once, and thinking of the way in
which one variable depends on the other: for instance,
we think of the way in which the height reached
by a projectile depends on the time of attaining that
height. Or, we are asked to consider a rectangle of
given area, and to enquire how any increase in the
length of it will compel a corresponding decrease in
the breadth of it. Or,we think of the way in which
any variation in the slope of a ladder will cause the
height that it reaches, to vary.

Suppose we have got two sucb variables that
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depend one on the other. An alteration in one will
bring about an alteration in the other, because of this
dependence. Let us call one of the variables «, and
the other that depends on it .

Suppose we make x to vary, that is to say, we
either alter it or imagine it to be altered, by adding
to it a bit which we call dz. We are thus causing @
to become x+dx. Then, because £ has been altered,
" ¢ will have altered also, and will have become ¥+ dy.
Here the bit dy may be in some cases positive, in
otners negative; and it won't (except very rarely) be
the same size as da.

Take two examples.

(1) Let « and y be respectively the base and the
height of a right-angled triangle (Fig. 4), of which

dy
y |y
\30°
x ax
Fic. 4.

the slope of the other side is fixed at 80°. If we
suppose this triangle to expand and yet keep its
angles the same as at first, then, when the base grows
so as to become x+dx, the height becomes y+dy.
Here, increasing « results in an increase of y. The
little triangle, the height of which is dy, and the base
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of which is d, is similar to the original triangle ; and

it is obvious that the value of the ratio g—z is the

same as that of the ratio 4. As the angle is 30° it
will be seen that here

dy_ 1

de 178
(2) Let = represent, in Fig. 5, the horizontal dis-
tance, from a wall, of the bottom end of a ladder,

B

\L
X
Fia. 5.

AB, of fixed length; and let y be the height it
reaches up the wall. Now y clearly depends on a.
It is easy to see that, if we pull the bottom end 4 a
bit further from the wall, the top end B will come
down a little lower. Let us state this in scientific
language. If we increase & to x+dx, then y will
become y—dy; that is, when x receives a positive
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increment, the increment which results to g iy
negative.

Yes, but how much? Suppose the ladder was so
long that when the bottom end 4 was 19 inches from
the wall the top end B reached just 15 feet from the
ground. Now, if you were to pull the bottom end
out 1 inch more, how much would the top end come
down? ‘Put it all into inches: =19 inches, y =180
inches. Now the increment of & which we call dz,
is 1 inch: or z+dx =20 inches.

How much will y be diminished ? The new height
will be y—dy. If we work out the height by Euclid
I. 47, then we shall be able to find how much dy will
be. The length of the ladder is

&/(180)24(19)2=181 inches.
Clearly then, the new height, which is ¥ —dy, will be
such that
(y —dy)?=(181)>—(20)2= 32761 — 400 = 32361,
y—dy = /32361 =17989 inches.
Now y is 180, so that dy is 180 —179-89=0-11 inch.

So we see that making dx an increase of 1 inch
has resulted in making dy a decrease of 0'11 inch.

And the ratio of dy to dz may be stated thus:

dy 011
de~ 17

It is also easy to see that (except in one particular
position) dy will be of a different size from da.

Now right through the differential calculus we
are hunting, hunting, hunting for a curious thing,
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a mere ratio, namely, the proportion which dy
bears to dx when both of them are indefinitely
small.

It should be noted here that we can only find

this ratio g;{ when % and x are related to each

other in some way, so that whenever & varies y does
vary also. For instance, in the first example just
taken, if the base x of the triangle be made longer,
the height y of the triangle becomes greater also,
and in the second example, if the distance a of the
foot of the ladder from the wall be made to increase,
the height y veached by the ladder decreases in a
corresponding manner, slowly at first, but more and
more rapidly as a becomes greater. In these cases
the relation between a and y is perfectly definite,

it can be expressed mathematically, being ;—’/g =tan 30°

and 2?+y?=10% (where [ is the length of the ladder)
respectively, and g{% has the meaning we found in
each case.

If, while x is, as before, the distance of the foot
of the ladder from the wall, y is, instead of the
height reached, the horizontal length of the wall, or
the number of bricks in it, or the number of years
since it was built, any change in # would naturally
cause no change whatever in y; in this case dy has

dx
no meaning whatever, and it is not possible to find
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an expression for it. Whenever we use differentials
dx, dy, dz, etc, the existence of some kind of
relation between «, y, %, ete, is implied, and this
relation is called a “function” in «, y. %, ete.; the
two expressions given above, for instance, namely

f%=ta,n 30° and a®+y®=10% are functions of x and .

Such expressions contain implicitly (that is, contain
without distinctly showing it) the means of expressing
either # in terms of y or y in terms of #, and for
this reason they are called tmplicit functions in
« and y; they.can be respectively put into the forms

_ ° __ Y
y=atan 30° or =S
and y=AP=2> or z=nT—3~

These last expressions state explicitly (that is, dis-
tinctly) the value of & in terms of y, or of  in terms
of x, and they are for this reason called explicit
functions of x or y. For example a®+3=2y—T7 is
an implicit function in 2 and y; it may be written
y=w2_;10 (explicit function of x) or x=a/2y —10
(explicit function of y). We see that an explicit
function in a, g, %, ete, is simply something the
value of which changes when &, ¥, z etc, are
changing, either one at the time or several together.
Because of this, the value of the explicit function is
called the dependent variable, as it depends on the
value of the other variable quantities in the function;
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these other variables are called the 4ndependent
variables because their value is not determined from
the value assumed by the function. For example,
if u=a?sin 6, x and 6 are the independent variables,
and % is the dependent variable.

Sometimes the exact relation between several
quantities @, y, z either is not known or it is not
convenient to state it; it is only known, or con-
venient to state, that there is some sort of relation
between these variables, so that one cannot alter
either & or y or z singly without affecting the other
quantities; the existence of a function in «, g, 2 is
then indicated by the notation F(x, y, ) (implicit
function) or by x=F(y, ), y=F(x, z) or z=F(x, y)
(explicit function). Sometimes the letter £ or ¢ is used
instead of F, so that y=F(x), y=/(x) and y=¢(x)
all mean the same thing, namely, that the value of
y depends on the value of & in some way which is
not stated.

We call the ratio le—g; “the differential coefficient of

y with respect to 2.” It is a solemn scientific name
for this very simple thing. But we are not going
to be frightened by solemn names, when the things
themselves are so easy. Instead of being frightened
we will simply pronounce a brief curse on the
stupidity of giving long crack-jaw names; and, having
relieved our minds, will go on to the simple thing
dy

#tself, namely the ?atlo d
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In ordinary algebra which you learned at school,
you were always hunting after some unknown
quantity which you called & or y; or sometimes
there were two unknown quantities to be hunted
for simultaneously. You have now to learn to go
hunting in a new way; the fox being now neither
& nor y. Instead of this you have to hunt for this

curious cub called % The process of finding the
value of % is called “differentiating.” But, remember,
what is wanted is the value of this ratio when both
dy and dx are themselves indefinitely small. The
true value of the differential coeflicient is that to which
it approximates in the limiting case when each of
them is considered as infinitesimally minute.

Let us now learn how to go in quest of d_y

dx
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NOTE TO CHAPTER III.
How to read Differentials.

It will never do to fall into the schoolboy error of
thinking that dx means d times «, for d is not a
factor—it means “an element of” or “a bit of”
whatever follows. One reads dz thus: “dee-eks.”

In case the reader has no one to guide him in such
matters it may here be simply said that one reads
differential coefficients in the following way. The
differential coefficient

% is read “dee-wy by dee-eks,” or “dee-wy over
dee-eks.”

du

So also T is read “ dee-you by dee-tee.”

Second differential coefficients will be met with

later on. They are like this:
@y
d—a;g 3
and it means that the operation of differentiating ¥
with vespect to x has been (or has to be) performed
twice over.

Another way of indicating that a function has been
ditferentiated is by putting an accent to the symbol of
the function. Thus if y=/F(x), which means that y
is some unspecified function of x (see p. 14), we may

write F'(x) instead of d—(% Similarly, F"(x)

will mean that the original function F(x) has been
differentiated twice over with respect to a.
C.M.E. ' B

which is read “ dee-two-wy over dee-eks-squared,”



CHAPTER 1IV. -
SIMPLEST CASES.

Now let us see how, on first principles, we can
differentiate some simple algebraical expression.

Case 1.

Let us begin with the simple expression y=ua?
Now remember that the fundamental notion abe-it
the calculus is the idea of growing. Mathematicians
call it varying. Now as y and «® are equal to one
another, it is clear that if x grows, ? will also grow.
And if a* grows, then y will also grow. What we
have got to find out is the proportion between the
growing of y and the growing of . In other words
our task is to find out the ratio between dy and dz,

or, in brief, to find the value of g—z

Let a, then, grow a little bit bigger and become
x+dx; similarly, y will grow a bit bigger and will
become y+dy. Then, clearly, it will still be true
that the enlarged y will be equal to the square of the
enlarged #. Writing this down, we have:

y+dy=(x+dx)p

Doing the squaring we get:

y+dy=ax*+ 2z - de+(dx)>
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What does (dx)? mean? Remember that dx meant
a bit—a little bit—of . Then (dx)? will mean a little
bit of a little bit of x; that is, as explained above
(p. 4), it is a small quantity of the second order
of smallness. It may therefore be discarded as quite
inconsiderable in comparison with the other terms
Leaving it out, we then haveé:

y+dy=x+2x - dx.

Now y=a?; so let us subtract this from the equa-
tion and we have left

dy=2x-dux.
Dividing across by dx, we find

dy _

(l—;l,' =2z.

Now this* is what we set out to find. The ratio of
the growing of y to the growing of x is, in the case
before us, found to be 2.

* N.B.—This ratio Z_‘Z is the result of differentiating y with

respect to x. Differentiating means finding the differential co-
efficient. Suppose we had some other function of z, as, for
example, u=Tx2+3. Then if we were told to differentiate this

with respect to x, we should have to find %, or, what is the same

thing, W On the other hand, we may have a case in which

time was the independent variable (see p. 15), such as this:
y=b+3at2. Then, if we were told to differentiate it, that means we
must find its differential coefficient with respect to . So that then

our business would be to try to find %, that is, to find a(b+3at?) ;}“‘2).
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Numerical example.

Suppose =100 and .". y=10,000. Then let 2 grow
till it becomes 101 (that is, let dz=1). Then the
enlarged y will be 101 x 101 =10,201. But if we agree
that we may ignore small quantities of the second
order, 1 may be rejected as compared with 10,000; so
we may round off the enlarged » to 10,200. y has
grown from 10,000 to 10,200; the bit added on is dy,
which is therefore 200.

dy 200

dx~
of the prevmus paragraph, we find da,_zw And so
it is; for =100 and 2x=200.

But, you will say, we neglected a whole unit.

Well, try again, making dx a still smaller bit.

Try de=+; Then x+dxr=1001, and

(x+dx)*=1001x1001=10,02001.

——=200. According to the a,ltrebra-workmg

Now the last figure 1 is only one-millionth part of
the 10,000, and is utterly negligible; so we may
take 10,020 without the little decimal at the end.

And this makes dy=20; and d‘/ 39—200, which
01
is still the same as 2.

Case 2.

Try differentiating y=2a® in the same way.

We let y grow to y+dy, while 2 grows to x+dax
Then we have

y+dy=(w+dx)’.
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Doing the cubing we obtain
y+dy =a®+3x* - de+3x(dx)? +(dx).

Now we know that we may neglect small quantities
of the second and third orders; since, when dy and dax
are both made indefinitely small, (dz)? and (dz)®
will become indefinitely smaller by comparison. So,
regarding them as negligible, we have left:

y+dy=a®+ 322 de.

But y=23; and, subtracting this, we haves

dy=3x*- dux,
Y _ o2
and = 32
Case 3.

Try differentiating y=a* Starting as before by
letting both y and 2 grow a bit, we have:
y+dy=(x+dx)
Working out the raising to the fourth power, we get,
Y+ dy =xt+4x3dx+ 62 (dx)? + 4 (dx)® + (dx)s
Then, striking out the terms containing all the

higher powers of dx, as being negligible by com-
parison, we have

y+dy=at+daidx.
Subtracting the original y=a*, we have lef}

dy=4x*dx,
ay_
and p 4o,
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Now all these cases are quite easy. Let us collect:
the results to see if we can infer any general rule.
Put them in two columns, the values of y in one

and the corresponding values found for W in the
dx
other: thus
dy
y dr
a? 2x
a® 3x?
at dx?

Just look at these results: the operation of differen-
tiating appears to have had the effect of diminishing
the power of & by 1 (for example in the last case
reducing a* to a?), and at the same time multiplying
by a number (the same number in fact which originally
appeared as the power). Now, when you have once
seen this, you might easily conjecture how the others
‘will run. You would expect that differentiating a°
would give 5x*, or differentiating &% would give 6.°
It you hesitate, try one of these, and see whether
the conjecture comes right.

Try y=aob

Then y+dy=(x+dx)®

=a®+ 5xtdx+ 1023 (dz)* + 102%(dx)
+ 5x(dx)t + (dx).

Neglecting all the terms containing small quantities

of the higher orders, we have left

y+dy=as+batda,
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and subtracting y =5 leaves us

dy — 5xtdzx,
ay_ . 4
whence o= 22 exactly as we supposed.

Following out logically our observation, we should
conclude that if we want to deal with any higher
power,—call it n—we could tackle it in the same
way.

Let y=a",
then, we should expect to find that
(_'li/ — (n-1)
="

For example, let =8, then y=a8; and differ-
e .ody_ o o
entiating it would give dx—&x .

And, indeed, the rule that differentiating a» gives as
the result na"-! is true for all cases where n is a
whole number and positive. [Expanding (z+dx)* by
the binomial theorem will at once show this.] But
the question whether it is true for cases where n
has negative or fractional values requires further
consideration.

Case of a negative powenr.
Let y=2-2 Then proceed as before:
y-+dy=(@+dw)"?
2

=w_2(1+a_% o
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Expanding this by the blnomlal theorem (see p. 141),
we get

o 2dx 2(2+1) dm
=% 2[1 x | 1x2 —ete ]

—2z-3.dx+ 3z -4(dac)2 —4x-%(duw)*+ ete.

So, neglecting the small quantities of higher orders
of smallness, we have:

y+dy=2-2—2x-3dx.
Subtracting the original y=%-2, we find

dy= —2x%dzx,
dy 3
?d'—z' = 2;7,' 03

And this is still in accordance with the rule inferred
above,

Case of a fractional power.
Let y=x§. Then, as before,
3
y+dy=(w+dw)*=mi’(l+‘—@)
— 1 de 1 (dx)y
=Az+ +terms with higher
T2 Nu 8aNz powers of dwg

Subtracting the original y=a3, and neglecting higher
powers we have left:

_ldxe 1 _4
d ) 7; = é . dw,
and d7/— L3, This agrees with the general rule,
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Summary. Let us see how far we have got. We
have arrived at the following rule: To differentiate
", multiply it by the power and reduce the power by
one, so giving us nx™-! as the result.

Exercises I. (See p. 288 for Answers.)

Differentiate the following:

Q) y=a® @) y=a3
) y=a% 4) u=¢**
(5) z=~/u (6) y=~/z"®
) u=\/% (8) y=2x%

9) y=n/2* (10) y=—-\/};

You have now learned how to differentiate powers
of . How easy it is!



CHAPTER V.
NEXT STAGE. WHAT TO DO WITH CONSTANTS.

IN our equations we have regarded x as growing,
and as a result of x being made to grow y also
changed its value and grew. We usually think of =
as a quantity that we can vary; and, regarding the
variation of x as a sort of cause, we consider the re-
sulting variation of y as an effect. In other words, we
regard the value of y as depending on that of . Both
« and y are variables, but x is the one that we operate
upon, and y is the “dependent variable.” In all the
preceding chapter we have been trying to find out
rules for the proportion which the dependent variation
in g bears to the variation independently made in a.

Our next step is to find out what effect on the
process of differentiating is caused by the presence of
constants, that is, of numbers which don’t change
when 2 or y changes its value.

Added Constants.

Let us begin with some simple case of an added
constant, thus:

Let y=a%+5.
Just as before, let us suppose & to grow to 2+ dx and
y to grow to y+dy.
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Then: y+dy=(x+dx)*+5
=%+ 3axldx + 3x(dx) + (dx)®+ 5.
Neglecting the small quantities of higher orders, this
becomes g4 dy=a®+ 8- da+5.
Subtract the original ¥ =a%+5, and we have left:

dy = 3x*dx.
dy _
Te= 3%

So the 5 has quite disappeared. It added nothing
to the growth of x, and does not enter into the
differential coeflicient. If we had put 7, or 700, or
any other number, instead of 3, it would have dis-
appeared. So if we take the letter a, or b, or ¢ to
represent any constant, it will simply disappear when
we differentiate.

If the additional constant had been of negative value,
such as —5 or — b, it would equally have disappeared.

Multiplied Constants.
Take as a simple experiment this case:
Let y="Ta2
Then on proceding as before we get:
y+dy="1(x+dx)
=T{x?+ 2x-dx+(dzx)?}
=T+ 14z -da+"7(dx)%
Then, subtracting the original y="7x2 and reglecting
the last term, we have
dy=14x-dx.
d

ey _
s 142
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Let us illustrate this example by working out the
graphs of the equations y=72? and Sll—g= l4z, by
assigning to x a set of successive values, 0, 1, 2, 3, ete,,

and finding the corresponding values of y and of Z_Z

These values we tabulate as follows:

a||Oo|1]2|23]|4]5 -1 -2 -3

y ||l 0| 7 |28)|63|112]175 7 28 63

20|14 2842|566 |70 || —14 | —28 | —42
dax

3y S et

!
v |
!
[
(] "
3 4

Fie. 6.—Graph of y="T7x2 F1e. 6a.—Graph of %:143.

Now plot these values to some convenient scale,
and we obtain the two curves, Figs. 6 and 6a.
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Carefully compare the two figures, and verify by
inspection that the height of the ordinate of the
derived curve, Fig. 6a, is proportional to the slope of
the original curve,* Fig. 6, at the corresponding value
of . To the left of the origin, where the original
curve slopes negatively (that is, downward from left
to right) the corresponding ordinates of the derived
curve are negative.

Now, if we look back at p. 19, we shall see that
simply differentiating a? gives us 2. So that the
differential coefficient of 7a? is just 7 times as big as
that of 22 If we had taken 8a?, the differential
coefficient would have come out eight times as great
as that of #% If we put y=aa? we shall get

dy

d—lll_=ax2w.

If we had begun with y=ax", we should have had
%=aan"‘1. So that any mere multiplication by
a constant reappears as a mere multiplication when
the thing is differentiated. And, what is true about
multiplication is equally true about division: for if,
in the example above, we had taken as the constant }
instead of 7, we should have had the same } come
out in the result after differentiation.

*See p. 77 about slopes of curves,
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Some Fuvther Examples.

The following further examples, fully worked out,
will enable you to master completely the process of
differentiation as applied to ordinary algebraical ex-
pressions, and enable you to work out by yourself the
examples given at the end of this chapter.

(1) Differentiate y:“%ﬁ_ S

g is an added constant and vanishes (see p. 26).

We may then write at once
- ody 1

1
da=7% X 5x "
ar (‘—;—Z:ga}‘.

(2) Differentiate y=an/z— %JE

The term %JE vanishes, being an added constant;

and as aa/z, in the index form, is written aa®, we

have
ay _ —aXixatle =P %t

de~""2 2
dy a
or do=5J5

®) If ay+br=by—ax+@+y)W -1,
find the differential coeflicient of y with respect to a.

As a rule an expression of this kind will need a
little more knowledge than we have acquired so far
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it is, however, always worth while to try whether the
expression can be put in a simpler form.

First we must try to bring it into the form y=some
expression involving « only.

The expression may be written

(a=b)y+(a+b)w=(z+y)~/ @b
Squaring, we get
(a—=byy*+(a+byx*+2(a+b)(a—b)xy
=(@"+y*+2xy)(a’ %),
which simplifies to
(a=BPy+ (@+b)a? =a*(a? 1) + (@ = );

or [(a—b)—(a’—b")]y*=[(a"—b")—(a+b)]a?
that is 2b(b—a)y*=—2b(b+a)x?;

hence y=,\/%m and %= ZTII:'

(4) The volume of a cylinder of radius » and height
h is given by the formula V=mr%h. Find the rate of
variation of volume with the radius when r=55 in,
and h=20 in. If r=A, find the dimensions of the
cylinder so that: a change of 1 in. in radius causes a
change of 400 cub. in. in the volume.

The rate of variation of V with regard to # is

av
W = 271"7"&.

If »=55 in. and A=20 in. this becomes 6908, It
means that a change of radius of 1 inch will cause a
change of volume of 690'8 cub. inch. This can be
easily verified, for the volumes with =5 and r=6
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are 1570 cub. in. and 2260'8 cub. in. respectively, and
22608 —1570=690'8.
Also, if

r=h, o2m=400 and r=h=y/0
dr

(5) The reading 6 of a Féry's Radiation pyrometer

is related to the Centigrade temperature ¢ of the

observed body by the relation

b-(0)

where 6, is the reading corresponding to a known tem-
perature ¢, of the observed body.

Compare the sensitiveness of the pyrometer at
temperatures 800" C., 1000° C., 1200° C., given that it
read 25 when the temperature was 1000° C.

The sensitiveness is the rate of variation of the

=798 in,

reading with the temperature, that is @ The formula

may be written dt

0.

':_14#___ 25¢4
1

0=7it"=1000v
and we have
df 100 [

dt ~ 10004~ 10,000,000,000

When ¢=2800, 1000 and 1200, we get %
and 01728 respectively.

The sensitiveness is approximately doubled from
800° to 1000°, and becomes three-quarters as great
again up to 1200°

=00512, 01
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Exercises II. (See p. 288 for Answers.)
Differentiate the following:

1) y=ax®+6. () y=13z%—c.
3) y= 122 + ¢t @) y= .
) u=""" (6) y=11882-+224

Make up some other examples for yourself, and try
your hand at differentiating them.

(7) If [, and [, be the lengths of a rod of iron at
the temperatures ¢°C. and 0°C. respectively, then
1,=1,(14+0°000012¢). Find the change of length of the
rod per degree Centigrade.

(8) 1t has been found that if ¢ be the candle power
of an incandescent electric lamp, and V be the voltage.
¢=aV? where ¢ and b are constants.

Find the rate of change of the candle power with
the voltage, and calculate the change of candle power
per volt at 80, 100 and 120 volts in the case of alamp
for which ¢=0'5x10-2 and b=6.

(9) The frequency = of vibration of a string of
diameter D, length L and specific gravity o, stretched
with a force 7', is given by

_1 T
"=DL N7
Find the rate of change of the frequency when D, L,

o and T are varied singly.
C.M.E.
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(10) The yreatest external pressure P which a tube

can support without collapsing is given by
2E \ &
P=(=3) 7

where E and o are constants, ¢ is the thickness of the
tube and D is its diameter. (This formula assumes
that 4¢ is small compared to D.)

Compare the rate at which P varies for a small
change of thickness and for a small change of diameter
taking place separately.

(11) Find, from first principles, the rate at which
the following vary with respect to a change in
radius :

(a) the circumference of a circle of radius r;

(b) the area of a circle of radius r;

(c) the lateral area of a cone of slant dimension 7;

(d) the volume of a cone of radius » and height 4 ;

(e) the area of a sphere of radius 7;

(f) the volume of a sphere of radius 7.

(12) The length L of an iron rod at the temperature
T being given by L=1[[1+0000012(7"—¢)], where I,
is the length at the temperature ¢, find the rate of
variation of the diameter D of an iron tyre suitable
for being shrunk on a wheel, when the temperature
T varies.



CHAPTER VL

SUMS, DIFFERENCES, PRODUCTS, AND
QUOTIENTS.

WE have learned how to differentiate simple alge-
braical functions such as a2?+c¢ or ax*, and we have
now to consider how to tackle the sum of two or
more functions.

For instance, let

y=@@"+c)+(ax'+b);

what will its % be? How are we to go to work

on this new job ?
The answer to this question is quite simple: just
differentiate them, one after the other, thus:

dy_ 3
o= 2z+4axd. (4Ans.)

If you have any doubt whether this is right, try
a more general case, working it by first principles.
And this is the way.

Let y=wu+v», where « is any function of x, and
v any ocher function of @. Then, letting « increase
to x+dx, y will increase to y+dy; and w wil)
increase to u+du; and @ to v+dw.
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And we shall have:

y+dy=u+dut+v+do.
Subtracting the original y=wu+wv, we get
dy=du+dy,
and dividing through by dx, we get:
dy _du +dv ,
dx ™ dx" dx
This justifies the procedure. You differentiate each
function separately and add the results. So if now
we take the example of the preceding paragraph, and
put in the values of the two functions, we shall have,
using the notation shown (p. 17),
dy _d(x*+c) , d(ax'+b)
de dx dx
=2 +4daxd,
exactly as before.
If there were three functions of @, which we may
call w, v and w, so that
Yy=u+v+w;
dy _du dv  dw
then d—; P P

As for the rule about subtraction, it follows at once
for if the function » had itself had a negative sign, its
differential coefficient would also be negative; so that
by differentiating

y=u—0o,
dy du dv

we should get L=

dx dx dx
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But when we come to do with Products, the thing
is not quite so simple.

Suppose we were asked to differentiate the expression

y=(2?+ ¢) X (ax*+ D),

what are we to do? The result will certainly mnot
be 2 X 4dax?; for it is easy to see that neither ¢ x ax?,
nor 2% X b, would have been taken inte that product.

Now there are two ways in which we may go
to work.

First way. Do the multiplying first, and, having
worked it out, then differentiate. )

Accordingly, we multiply together 2?+¢ and aa*+ b

This gives ax®+ acx*+ bx*+ be.

Now differentiate, and we get:

% = baxs + daca® + 2bzx.

Second way. Go back to first principles, and

consider the equation
Y=uxv;
where » is one function of 2, and v is any other
function of «. Then, if & grows to be x+dx; and
y to y+dy; and u becomes u+du; and v becomes
v+dv, we shall have:
Y+dy=u+du) x (v+dv)
=u-v+u-dv+o-du-tdu-dv.

Now du- dv is a small quantity of the second order
of smallness, and therefore in the limit may be
discarded, leaving '

y+dy=uv+u-dv+v-du.
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Then, subtracting the original y=wu-v, we have left
dy=u-dv+v-du;
and, dividing through by dz, we get the result:
dy dv du
dx d’v+vc—l._1;'

This shows that our instructions will be as follows:
To differentiate the product of two functions, multiply
each function by the differential coefficient of the
other, and add together the two products so obtained.

You should note that this process amounts to the
following : Treat w as constant while you differen-
tiate v ; then treat v as constant while you differentiate
u; and the whole differential coefficient % will be
the sum of the results of these two treatments.

Now, having found this rule, apply it to the
concrete example which was considered above.

We want to differentiate the product
(2> +¢) x (ax*+b).
Call (2*4+c¢)=u; and (ax*+b)=w.
Then, by the general rule just established, we
may write:
dy . » d(am +b) ot Jd(x+c)
dp= (@O = — +(axt + by ==
=(x?+c) 4sa,.7e3 +(ax*+b)2x
=4dax®+ 4acx® + 2ax5 + 2ba,
dy =6ax®+ dacx® +2bx,
dx

exactly as before,
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Lastly, we have to differentiate quotients.
b’ +c
r’+a’
it is no use to try to work out the division beforehand,
because x2+a will not divide into ba®+e¢, neither
have they any common factor. So there is nothing
for it but to go back to first principles, and find a
rule.

Think of this example, y= In such a case

So we will put y=%;
where 4 and » are two different functions of the
independent variable 2. Then, when x becomes
x+dx, y will become y+dy; and u will become
u+du; and v will become v+dv. So then
_u+du

y+dy_v+dv'

Now perform the algebraic division, thus:

w+du ‘3‘+0li‘—“'fl”
w-do 2 v
)

du_u-d'v

v+dv

du - dv
v

u-dv_du'dv

du+

v )
_u-dv_u-dv-dv
v 2
_du-dv u-dv-dv

v + v:
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As both these remainders are small quantities of
the second order, they may be neglected, and the
division may stop here, since any further remainders
would be of still smaller magnitudes.

So we have got:

u+du u-dv,
v v vt

y+dy=

which may be written
w v-du—u-do
=t -
Now subtract the original y=%, and we have left:

vedu—u-dv
dy=—,02—§

ST, dv
@= dr_“dz,

whence ) -
dx v®

This gives us our instructions as to how ¢o differ-
entiate a quotient of two functions. Multiply the
divisor function by the differential coefficient of
the dividend function; then multiply the dividend
Junction by the differential coeffictent of the divisor
function; and subtract the latter product from the
former. Lastly, divide the difference by the square of
the d?;msor Sfunction. b +o

Going back to our example y= Fra’

write b’ +c=u;
and 24 a=wv.
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Then

ay (2 +a) X T (b5+)(m+a)
daw ™~ (.12+a)2
_(@+a)(5bat)— (bm5+c)(2w)

(a’2 + a)2
dy 3baS+ 5abxt—2cx
de~  (@P+ap

The working out of quotients is often tedious, but
there is nothing difficult about it.

Some further examples fully worked out are given
hereafter.

d(bx +c)

(Answer.)

2 2
(1) Differentiate y= % =%+ a_z.
b b b
2
Being a constant, % vanishes, and we have

ZJ ;’2x3xac3 1—3x1xa(:1 -1,

But #'"'=a"=1; so we get:
dy _3a e a?
de" YT

(2) Differentiate y=2an/bax®— 5-325/—“ —2/ab.

Putting « in the index form, we get,

y=2a~/baxt— 30/ ax-1—2:/ab.
Now

dy _ =2an/bx 3 x 2t —3b/ax(—=1)xaz-1-1;

s
dy
or, o —3an/bm +3b“/ a
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(3) Differentiate z= 18\/ ~/9 —-27°.

This may be written: 2=186 t_ga0 27
The 27° vanishes, and we have

dz . .
T=18x - —ex 0 e (—pot
dz _ ~5 -88 -5
or, e —-120% 408867t
or de_088 12
’ NN

(4) Differentiate v=(3t2—1-2t+1)%

A direct way of doing this will be explained latet
(see p. 67); but we can nevertheless manage it now
without any difficulty.

Developing the cube, we get
v=27t5— 32'4¢° + 39'96¢* — 23'328¢3+13:32¢* — 3:6t+13
hence

AV _ 1605 — 16264+ 1598465 — 69-0842 + 26:64¢ — 36,

dt
(5) Differentiate y=(2x—3)(x+1)%
% ?))ol[(.7c+‘lj.lz'§ac+1)]_1_(.”4_1)2

d(ar:+l) (93+1 ]

d(2x—3)

(22

+(x +1)——
d(2w 3)

=(2x— 3)[( 41—

+H@+1y

=2(x+1)[(2x =3)+(x+1)]=2(x+ 1)(3.z'— 2);
or, more simply, multiply out and then differentiate,
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(6) Differentiate y= 0"—).1/3(1 —3).
L 05| -3
=05[a? +(w 3) X 3ut] = 2.,u —4-5x%
Same remarks as for preceding example.
. . 1 ~ 1
(7) Differentiate w= (0 + 0) (\\/ 0+ N 0)-
This may be written
w=(0+06"1)(6°+6*).

'2'
dw—(9+6 l)d(G +6 )

d( 7;3)

+(6;+0—Jy)¢l(6+6 D)

=(0+6-1)(30 2—-}-9 He @t +oHa—-e-2
=10 +0 -0 0 H 1 0T —0T—0h

— 1 1 1
=1(vo-75)+1(75~ 75)
This, again, could be obtained more simply by
multiplying the two factors first, and differentiating
afterwards. This is not, however, always possible;
see, for instance, p. 173, example 8, in which the
rule for differentiating a product must be used.

8) Differentiate y=—— & .
®) Y 1+ an/x+a%
312
F __d(1+ax"+a’x)
dy (A +ax*+a’x)x0 o=
dx— (14 an/x+ ax)?

__a@axtta?)

A +axt + a2y
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2

(9) Differentiate y= PR
@_(w2+1)2¢—w2x2w 2

do~ (FF1) @I
. . +a/2
10) Differentiate y=2T~2.
(10) Differentiate ¥ p—
3
In the indexed form, y=a+w .
a—xt
_o_li/=(a—w%)(%w"’})—(a-{-w’})(—%w‘}):a—w%+a+m*_
(a—aty 2(a - atyat
dy a
hence L=
dz (a—/z)
. . 1—ax/
11) Differentiate §=-—2".
(11) Differentiate 6 Tal/d
Now 0=1_at§-
1+ ath

a9 _(1+ath)(—3atH)—(1—at?) x 3att
dt (1+at)y?

NJ
6(1+a/t%)?

(12) A reservoir of square cross-section has sides
sloping at an angle of 45° with the vertical. The side

5azw_i,.‘g_9a:/z




DIFFERENTIATION 45

of the-bottom is 200 feet. Find an expression for the
quantity pouring in or out when the depth of water
varies by 1 foot; hence find, in gallons the quantity
withdrawn hourly when the depth is reduced from
14 to 10 feet in 24 hours.

The volume of a frustum of pyramid of height H,

and of bases 4 and g, is V=I_§I(A +a+A/da) 1tis

easily seen that, the slope being 45° if the depth be
h, the length of the side of the square surface of the
water is 200+ 2Ah feet, so that the volume of water is

§[2ooz+(2oo+2h)2+ 200(200 + 27)]

= 40,000k + 400h%+ = 4—‘@

Cg— 40,000+800/+4h? = cubic feet per foot of depth

variation. The mean level from 14 to 10 feet is

12 feet, when h=12, ZZ—SOJ 76 cubic feet.

Gallons per hour corresponding to a change of depth

of 4 ft. in 24 hours=4L()’l2Tx—625—= 52,267 gallons.

(13) The absolute pressure, in atmospheres, P, of
saturated steam at the temperature ¢°C. is given by
Dulong as being P =<é0—+—t>5 as long as ¢ is above

140

80°. Find the rate of variation of the pressure with
the temperature at 100° C.
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Expand the numerator by the binomial theorem
(see p. 141).

P=1—4165(405+5x404t+10x403t2+10x402t3
+5 x 40t +1°) ;
aP___1
dt — 337,824 x10°
(5 x $0% 420 x 40% - 30 x 4022+ 20 x 40¢* + 5¢4),

when #=100 this becomes 0036 atmosphere per
degree Centigrade change of temperature.

hence

Exercises III. (See the Answers on p. 289.)
(1) Differentiate

(@) u=l+x+7—5 z

T2t Txexst
) y=ax®+bx+ec. (©) y=(z+a)
(@) y=(x+a)’

(@) It w=at— b, find 2.

dt’
(8) Find the differential coefficient of
y=(@+~ =D x(@—~/=1).
(4) Ditterentiate
y=(1972— 342%) x (7+ 222 — 83x°).

(5) Tt m=(y+3) X (y+5), ﬁnd%l;—"

(6) Differentiate y=137092 x (1126 +45:20222),
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Find the differential coefficients of

_ 2243 _ 142+20%+43a®
M ¥=35+2 ® y="T o ros
_ax+b _a"ta

(11) The temperature ¢ of the filament of an in-
candescent electric lamp is connected to the current
passing through the lamp by the relation

C=a+bt+ct?

Find an expression giving the variation of the

current corresponding to a variation of temperature.

(12) The following formulae have been proposed to
express the relation between the electric resistance R
of a wire at the temperature ¢° C., and the resistance
R, of that same wire at 0° Centigrade, @ and b being
eonstants. R:Ro( 1+at +bt2)

R=R,(1 +at+b/?).
R=R,(1+at+bt?)-".

Find the rate of variation of the resistance with
regard to temperature as given by each of these
formulae.

(13) The electromotive-force E of a certain type of
standard cell has been found to vary with the tem-
perature ¢ according to the relation

FE=14340[1—-0000814(t—15)
+0:000007 (¢ —15)*] volts.

Find the change of electromotive-force per degree,

at 15°, 20° and 25°.
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(14) The electromotive-force necessary to maintain
an electric arc of length I with a current of intensity
¢ has been found by Mrs. Ayrton to be

E= +bl+c+kl

where a, b, ¢, k are constants.

Find an expression for the variation of the electro-
motive force (a) with regard to the length of the arc;
(b) with regard to the strength of the current,.



CHAPTER VII.
SUCCESSIVE DIFFERENTIATION.

LET us try the effect of repeating several times over
the operation of differentiating a function (see p. 14).
Begin with a concrete case.

Let y=a5.
First differentiation, 5x%
Second differentiation, 5 x 4a® = 20a3.
Third differentiation, 5 x4 x 3x? =602

Fourth differentiation, 5 x4 x3x2x =120x.
Fifth differentiation, 5x4x3x2x1=120.
Sixth differentiation, =0.

There is a certain notation, with which we are
already acquainted (see p. 15), used by some writers,
that is very convenient. This is to employ the
general symbol f(a) for any function of x. Here
the symbol f{ ) is read as “function of,” without
saying what particular function is meant. So the
statement y =/(x) merely tells us that y is a function
of x, it may be «? or ax® or cosx or any other com-
plicated function of .

The corresponding symbol for the differential co-

efficient is f“(x), which is simpler to write than %

This is called the “derived function” of a,
C.M.E. D
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Suppose we differentiate over again, we shall get
the “second derived function” or second differential
coefficient, which is denoted by f“(x); and so on.

Now let us generalize,

Let y=f(x)=a

First differentiation, f'(x)=nx"-L

Second differentiation, f"(x)=n(n—1)x"-2

Third differentiation, Jf"(x)=n(n—1)(n—2)x"-3.

Fourth differentiation,

S (@)y=n(n—-1)(n— ")(n 3)ar4
ete., ete.

But this is not the only way of indicating successive
differentiations. For,

if the original function be y=s(x);
once differentiating gives d_ =f(x);

a(%)

twice differentiating gives

=f"(x);
and this is more conveniently written as (dx)? or

2
more usually gy . Similarly, we may write as the

Sy
result of thrice differentiating, g ) — ().
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Examples.
Now let us try y=f(x)=Ta*+3 52> - L’ + =2

@=f'(w)=28w3+ 10522 -2 +1,

d’/-—f (x)=84a?+21x—1,

L ’4_ F(x)= 1682+ 21,

dcl/; _f////( ) 168

d 10177
%{—é =" (x)=0.

In a similar manner if y=¢(x)=3x(x?*—4),
¢(@)= 2 = 3w x 20+ (22— 4) x 1] =332t~ 4),

¢ ()= ‘—l--'/—sxﬁx_wm,

¢Ill(x): d ¢3= 18’

7, (l 7/
¢ (@)="1" -

Exercises 1V. (See page 289 for Answers.)

Fmd du and zll Z for the following expressions:
2
= 942 9y gyt
(1) y=172+122> @)y Pta
,113 ,1.4

® y=1+{ + 1o TxaRE t TROX IR

(4) Find the 2nd and 3rd derived functions in
the Exercises IIL (p. 46), No. 1 to No. 7, and in the
Examples given (p. 41), No. 1 to No. 7.



CHAPTER VIIL
WHEN TIME VARIES.

SoME of the most important problems of the calculus
are those where time is the independent variable, and
we have to think about the values of some other
quantity that varies when the time varies. Some
things grow larger as time goes on; some other things
grow smaller. The distance that a train has travelled
from its starting place goes on ever increasing as time
goes on. Trees grow taller as the years go by.
Which is growing at the greater rate; a plant 12
inches high which in one month becomes 14 inches
high, or a tree 12 feet high which in a year becomes
14 feet high ?

In this chapter we are going to make much use
of the word rate. Nothing to do with poor-rate, or
police-rate (except that even here the word suggests
a proportion—a ratio—so many pence in the pound).
Nothing to do even with birth-rate or death-rate,
though these words suggest so many births or deaths
per thousand of the population. When a motor-car
whizzes by us, we say: What a terrific rate! When
a spendthrift is flinging about his money, we remark
that that young man is living at a prodigious rate.
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What do we mean by rate? In both these cases we
are making a mental comparison of something that is
happening, and the length of time that it takes to
happen. If the motor-car flies past us going 10 yards
per second, a simple bit of mental arithmetic will
show us that this is equivalent—while it lasts—to a.
rate of 600 yards per minute, or over 20 miles per
hour.

Now in what sense is it true that a speed of
10 yards per second is the same as 600 yards
per miaute? Ten yards is not the same as 600 yards,
nor is one second the same thing as one minute.
What we mean by saying that the rate is the same,
is this: that the proportion borne between distance
passed over and time taken to pass over it, is the
same in both cases.

Take another example. A man may have only
a few pounds in his possession, and yet be able to
spend money at ithe rate of millions a year—provided
he goes on spending money at that rate for a few
minutes only. Suppose you hand a shilling over
the counter to pay for some goods; and suppose the
operation lasts exactly one second. Then, during
that brief operation, you are parting with your money
at the rate of 1 shilling per second, which is the
same rate as £3 per minute, or £180 per hour, or
£4320 per day, or £1,576,800 per year! If you have
£10 in your pocket, you can go on spending money
at the rate of a million a year for just 51 minutes.

It is said that Sandy had not been in London
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above five minutes when “bang went saxpence.” If
he were to spend money at that rate throughout a
day of 12 hours, he would be spending 6 shillings an
hour, or £3. 12s. per day, or £21. 12s. a week, not
counting the Sawbath.

Now try to put some of these ideas into differential
notation.

Let y in this case stand for money, and let ¢ stand
for time.

If you are spending money, and the amount you
spend in a short time df be called dy, the rate of

spending it will belfl ; or, as regards saving, with a

minus sign, as _%y
o dt’
not an increment. But money is not a good example
for the calculus, because it generally comes and goes
by jumps, not by a continuous flow—you may earn
£200 a year, but it does not keep running in all
day long in a thin stream; it comes in only weekly,
or monthly, or quarterly, in lumps: and your ex-
penditure also goes out in sudden payments.

A more apt illustration of the idea of a rate is
furnished by the speed of a moving body. From
London (Euston station) to Liverpool is 200 miles.
If a train leaves London at 7 o'clock, and reaches
Liverpool at 11 o'clock, you know that, since it has
travelled 200 miles in 4 hours, its average rate must
have been 50 miles per hour; because 222 =259, Here
you are really making a mental comparison between

because then dy is a decrement,
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the distance passed over and the time taken to pass
over it. You are dividing one by the other. If yis
the whole distance, and ¢ the whole time, clearly the

average rate is ‘% Now the speed was not actually

constant all the way: at starting, and during the
slowing up at the end of the journey, the speed was
less. Probably at some part, when running down-
hill, the speed was over 60 miles an hour. If, during
any particular element of time dt, the corresponding
element of distance passed over was dy, then at that
ill—zg. The rate at
which one quantity (in the present instance, distance)
is changing in relation to the other quantity (in this
case, time) is properly expressed, then, by stating the
differential coeflicient of one with respect to the other.
A welocity, scientifically expressed, is the rate at which
a very small distance in any given direction is being
passed over; and may therefore be written
dy
’U=m-

But if the velocity » is not uniform, then it must
be either increasing or else decreasing. The rate at
which a velocity is increasing is called the acceleration.
If a moving body is, at any particular instant, gaining
an additional velocity do in an element of time df,
then the acceleration @ at that instant may be written

T de’

part of the journey the speed was
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but dv is itself d(Z&) Hence we may put

dy
(gt
TTdr

. . . d?y .

and this is usually written a= g
or the acceleration is the second differential coefficient
of the distance, with respect to time. Acceleration is
expressed as a change of velocity in unit time, for
instance, as being so many feet per second per second ;

the notation used being feet +second?

When a railway train has just begun to move, its
velocity » is small; but it is rapidly gaining speed—it
is being hurried up, or accelerated, by the effort of the
engine. So its Lfl 7 is large. When it has got up its

top speed it is no longer being accelerated, so that

2
then le > has fallen to zero. But when it nears its

stopping place its speed begins to slow down; may,
indeed, slow down very quickly if the brakes are put
on, and during this period of deceleration or slackening

of pace, the value of L that is, of 0¢li —+swill be negative.

To accelerate a mass m requires the continuous
application of force. The force necessary to accelerate
a mass is proportional to the mass, and it is also
proportional to the acceleration which is being im-
parted. Hence we may write for the force f, the

expression f=ma;
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dv .
or f=”lm,

d2
or JS= mdt"

The product of a mass by the speed at which it is
going is called its momentum, and is in symbols mw.
If we differentiate momentum with respect to time
d(mv)

dt

mentum, But, since m is a constant quantity, this

we shall get for the rate of change of mo-

may be written m%, which we see above is the same
as f. That is to say, force may be expressed either
as mass times acceleration, or as rate of change of
momentum.

Again, if a force is employed to move something
(against an equal and opposite counter-force), it does
work; and the amount of work done is measured by
the product of the force into the distance (in its
own direction) through which its point of application
moves forward. So if a force f moves forward
through a length y, the work done (which we may

call w) will be w=fxy;
)

where we take f as a constant force. If the force
varies at different parts of the range y, then we must
find an expression for its value from point to point.
If f be the force along the small element of length
dy, the amount of work done will be fxdy. But as
dy is only an element of length, only an element of
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work will be done. If we write w for work, then an
element of work will be dw ; and we have

dw=fxdy;

which may be written
dw=ma- dy ;

or dw=m>Y d t . dy

dv
or dw= mo dy.
Further, we may transpose the expression and write

dw
dy ="

This gives us yet a third definition of force; that
if it is being used to produce a displacement in any
direction, the force (in that direction) is equal to the
rate at which work is being done per unit of length
in that direction. In this last sentence the word
»qgie is clearly not used in its time-sense, but in its
meaning as ratio or proportion.

Sir Isaac Newton, who was (along with Leibnitz)
an inventor of the methods of the calculus, regarded
all quantities that were varying as flowing; and the
ratio which we nowadays call the differential co-
efficient he regarded as the rate of flowing, or the
fluwion of the quantity in question. He did not use
the notation of the dy and dx, and d¢ (this was due
to Leibnitz), but had instead a notation of his own.
If y was a quantity that varied, or “flowed,” then his
symbol for its rate of variation (or “fluxion”) was
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9. If x was the variable, then its fluxion was called
2. The dot over the letter indicated that it had been
differentiated. But this notation does not tell us
what is the independent variable with respect to
whick the differentiation has been effected. When

we see % we know that y is to be differentiated with
respect to £. If we see z% we know that y is to be
differentiated with respect to 2. But if we see merely
9, we cannot tell without looking at the context
.. dy dy dy

whether this is to mean a5 % 2t d
the other variable. So, therefore, this fluxional no-
tation is less informing than the differential notation,
and has in consequence largely dropped out of use.
But its simplicity gives it an advantage if only we
will agree to use it for those cases exclusively where
time is the independent variable. In that case y will
dy . du . d*x
mean . and % will mean a0 and & will mean e
Adopting this fluxional notation we may write the
mechanical equations considered in the paragraphs

above, as follows:

or what is

distance @

velocity v=2=2,
acceleration a=0=2,
force = md=ma,

work w=x X mia.
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Examples.

(1) A body moves so that the distance x (in feet),
which it travels from a certain point O, is given by
the relation &=02¢2+104, where ¢ is the time in
seconds elapsed since a certain instant. Find the
velocity and acceleration 5 seconds after the body
began to move, and also find the corresponding values
when the distance covered is 100 feet. Find also
the average velocity during the first 10 seconds of
its motion. (Suppose distances and motlon tc the
right to be positive.)

Now x=02¢4+104,
v= w—c—l——OM and a=9'c'—dz =04 = constant,
dt dt?

When =0, =104 and v=0. The body started
from a point 104 feet to the right of the point O:
and the time was reckoned from the instant the
body started.

When ¢=5, v=04x5=2 ft./sec.; a=04 ft./sec
When =100, 100=02{24104, or =448,
and t=21'17 sec.; v=04x 21'17 = 8468 ft./sec.
When ¢=10,
distance travelled =02 x 1024104 — 104 =20 ft.
Average velocity = $$=2 ft./sec.
(It is the same velocity as the velocity at the middle
of the interval, ¢=5; for, the acceleration being con-

stant, the velocity has varied uniformly from zero
when (=0 to 4 ft./sec. when t=10.)
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{2) In the above problem let us suppose
=02+ 3¢+ 104
v=a’c=%=0'4t+3; a=5é=93$=0'4=constant.

When ¢=0, =104 and v=38 ft./sec., the time is
reckoned from the instant at which the body passed a
point 104 ft. from the point O, its velocity being then
already 3 ft./sec. To find the time elapsed since it began
moving, let ¥=0; then 0:4¢+3=0, t=—3=—T7'5 sec.
The body began moving 7-5 sec. before time was
begun to be observed; 5 seconds after this gives
t=—25and v=04x —2:54+3=2 ft./sec.

When a=100 ft.,

100=02£24+3t+10'4; or ?4+15(—448=0;
hence £=14'95 sec., v=0+x1495+43=898 ft./sec.

To find the distance travelled during the 10 first
seconds of the motion one must know how far the
body was from the point O when it started.

When t=—75,

£=02x(—T5)2—3xT5+104= —085 ft.,
that is 0-85 ft. to the left of the point O.

Now, when ¢=2'3,

x=02x2524+3%x25+104=1915.

So, in 10 scconds, the distance travelled was
19:15+0'85 =20 ft., and

the average velocity =29=2 ft./sec.

(8) Consider a similar problem when the distance
is given by x=02{—-3¢4+104. Then »=04¢-3,
a=04=constant. When =0, =104 as before, and
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v= —3; so that the body was moving in the direction
opposite to its motion in the previous cases. As the
acceleration is positive, however, we see that this
velocity will decrease as time goes on, until it becomes
zero, when v=0 or 0'4(—3=0; or =75 sec. After
this, the velocity becomes positive; and 5 seconds
after the body started, =125, and
v=04x125-3=2 ft./sec.
When 2=100,
100=02¢2—3¢t+10'4, or ?—15¢(—448=0,

and ¢=2995; v=04x2995—-3=898 ft./sec.

When v is zero,x=02%x 752—3x754+104= — 085,
informing us that the body moves back to 0-85 ft.
beyond the point O before it stops. Ten seconds later

t=175 and x=02x1752—-3x 175+ 104=1915.
The distance travelled='85+1915=20'0, and the
average velocity is again 2 ft./sec.

(4) Consider yet another problem of the same sort
with £=028-32+104; v=0682—6¢; a=12¢t—6.
The acceleration is no more constant.

When t=90, =104, v=0, a= —6. The body is
at rest, buc just ready to move with a negative
acceleration, that is to gain a velocity towards the
point O.

(5) If we have £=02¢*— 3¢+ 104, then v=06{2—3,
and a=12t,

When ¢=0, 2=104; v=—=38; a=09.

1ne body is moving towards the point O with
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a velocity of 3 ft./sec., and just at that instant the
velocity is uniform.

We see that the conditions of the motion can always
be at once ascertained from the time-distance equation
and its first and second derived functions. In the
last two cases the mean velocity during the first
10 seconds and the velocity 5 seconds after the start
will no more be the same, because the velocity is not
increasing uniformly, the acceleration being no longer
constant.

(6) The angle 6 (in radians) turned through by a
wheel is given by 6=3+2f{—0'1¢%, where ¢ is the
time in seconds from a certain instant; find the
angular velocity w and the angular acceleration o,
(o) after 1 second; (b) after it has performed one
revolution. At what time is it at rest, and how many
revolutions has it performed up to that instant ?

Writing for the acceleration

w=é=z—?=2—0'3t2, oc=9'=(c—l;—§= —06¢.
When £=0, 6=3; w=2 rad./sec.; aa=0.
When t=1,
0=2—-03=17 rad./sec.; .= —0°6 rad./sec
This is a retardation ; the wheel is slowing down.
After 1 revolution
0=27r=628; 628=342t—0'1¢£.

By plotting the graph, 6=3+42t—01¢%, we can get
the value or values of ¢ for which 0=6'28; these
are 2:11 and 303 (there is a third negative value).
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When ¢=2111,
0=628; w=2—134=066 rad./sec.;
o= —127 rad./sec%
When ¢=2303, '
0=628; w=2—2754= —0754 rad./sec.;
o= —1-82 rad./sec®
The velocity is reversed. The wheel is evidently
at rest between these two instants; it is at rest when
=10, that is when 0=2—-03t? or when ¢=2'58 sec.,
it has performed
6 3+2x258-01x258%

— — =1 2 .
o 698 1025 revolutions,

Exercises V. (See page 290 for Answers.)

(1) I y=a+betet; find 2 "/ and illt'z/
Amns. d'[ =20t +4et?; i:ﬁ*2b+120t2.

(2) A body falling freely in space deseribes in #
seconds a space s, in feet, expressed by the equation
s=16¢% Draw a curve showing the relation between
s and . Also determine the velocity of the body at
the following times from its being let drop: ¢=2
seconds; =46 seconds; £=001 second.

(3) If z=at—1gf; find 4 and &.

(4) If a body move according to the law

§=12—45¢+6:282,
find its velocity when ¢=4 seconds; s being in feet.
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(5) Find the acceleration of the body mentioned in
the preceding example. Is the acceleration the same
for all values of ¢?

(6) The angle 6 (in radians) turned through by
a revolving wheel is connected with the time ¢ (in
seconds) that has elapsed since starting, by the law

0=21—32¢t+48¢2

Find the angular velocity (in radians per second) of
that wheel when 1} seconds have elapsed. Find also
its angular acceleration.

(7) A slider moves so that, during the first part of
its motion, its distance s in inches from its starting
point is given by the expression

§=068*—10'8¢; ¢ being in seconds.

Find the expression for the velocity and the accelera~
tion at any time; and hence find the velocity and the.
acceleration after 3 seconds.

(8) The motion uf « rising balloon is such that its
height h, in miles, is given at any instant by the
expression h=054;~/t—125; ¢ being in seconds.

Find an expression for the velocity and the accelera-
tion at any time. Draw curves to show the variation
of height, velocity and acceleration during the first
ten minutes of the ascent.

(9) A stone is thrown downwards into water and
its depth p in metres at any instant ¢ seconas after
reaching the surface of the water is given by the
expression 4
p=m+ 0-8¢—1.

C.M.K, B
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Find an expression for the velocity and the accelera-
tion at any time. Find the velocity and acceleration
after 10 seconds.

(10) A body moves in such a way that the spaces
described in the time ¢ from starting is given by
s=t" where n is a constant. Find the value of »
when the velocity is doubled from the 5th to the 10th
second ; find it also when the velocity is numerically
equal to the acceleration at the end of the 10th second.



CHAPTER IX.
INTRODUCING A USEFUL DODGE.

SOMETIMES one is stumped by finding that the ex-
pression to be differentiated is too complicated to
tackle directly.

Thus, the equation

y=(a*+a’)}
is awkward to a beginner.
Now the dodge to turn the difficulty is this: Write
some symbol, such as u, for the expression x?+a?;
then the equation becomes

y=u},
which you can easily manage ; for

dy_3 3
%—2”/ o

Thaen tackle the expression
u=x*+a*
and differentiate it with respect to &

du_

dw 22-
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Then all that remains is plain sailing;
dy _ dy du

for do=du*dz’

. dy 3 3
that is, dn=3Y X 2z

=3(x*+ad)ix 2
=3x(x?+ a?)};
and so the trick is done.
By and bye, when you have learned how to deal

with sines, and cosines, and exponentials, you will
find this dodge of increasing usefulness.

Examples.

Let us practise this dodge on a few examples.
(1) Differentiate y= Na+w.

Let at+x=u.

du
%_1 y—u H d
dy _dy_ du 1

do—du do” adatz

=jut=§a+x)>

. . 1
(2) Differentiate y=:/m.
Let a+a*=u.
du o e Y
az-—‘w’ y=u; du ot
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(8) Differentiate y= (m —nat+ a%)“

Let m—nxt+pat=u.

‘,j’,—Z= — gt~ par¥;

y=u; —g%mm"'l.

dy dy_ dr a-1 .

day: d?ixd; “(””‘W“a%) (Gnat+4pet).
4) Differentiat 1
(4) Differentiate y= T

3__0/2
Let u=a3—a?

ZZTZ=39”2; y=ut; g% — (@ —ay

dy dz/ du _ Sac?
da=dudz = 2~/(.733—_a”‘)“’.

(5) Differentiate y=+/ -2

I+a
. . (1 _-,qg)r
Write this as g/:-(1 et
d(l x)t d(1+x)
| Sl ta
dy _ (1+2) ~(1-2) dx
dx 1+

(We.may also write y=(1 —w)%(l +.70)_‘17 and differ-
entiate as a product.)



70 CALCULUS MADE EASY

Proceeding as in exercise (1) above, we get

dl-ap 1 g dd+ay_ 1
dr  ~  o/1-=z’ dx o1+
Hence
dy_ _ _ Q4a (Q-ap
de= 2(l+awl-2 2(14+a)W/1+x
_ 1 _ ~/l—:1: .
T a1tz 2NA P
o W_ 1

do~ " (L+uWi-a?

a®

(6) Differentiate y= Tz

We may write this
y=w’3(1 +a07}
d _1 s d[(14+a22 -¥
ﬁ:gw%(uﬁ) by g AL+ 2] e I
Differentiating (14 %)%, as shown in exercise (2)
above, we get

d+a)t___ @ .
do Ja+7y
so that ’
dy_ 3w _ N _NJaB+a?)
do 2./14a A+ 241+
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(7) Differentiate y=(x+~2*+2+a).
Let 2+ 2P+ t+a=u.
du_ .  dl(@®*+z+a)]
1t
=u3; and @_32&2_3( +~/T——'
Y ; du=W=3@+ 2+ x+af

Now let (x®+z+a)f=v and (2*+2+a)=w.

‘le 2w+1; v=w; d——§w}

dv_d
O =2 x W=+t ay 2w+ I

du 1+ 2x+1
dx™ o+ +a

dy dedu
dx du” dz

=@+ Fatap(1+etl )

Hence

1

ot vtz t+al

: 2
(8) Differentiate y= 4/ Zzi \/ Z: ¥ .'1,2'

We get
(@t 2D (a2—
T (a— )2+ x")&

C_l?_/ — (2 2 J;d[(a2 - -’)3‘2)—%] d[(a?+x2)¥]
dx (a?+2?) do +(a2 e

=(a?+ wz)%(az - “.2)—
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Let u=(a?—2?)% and v=(a®?—a2).
w=v d_u_ 1 _% d?)
- Cdo 6 dw
gl;y_du dv_1 o a3
de ™~ dv > d —w(a — @)
Let w=(a?+2*t and z=(a?+a?).
b Ww_1 4 dz_
W=2" & Te% dx
dﬂ)_Gl_’l,U @_1 2 2\~§
de~ dz x(lw_gw(a +a)
Hence

d_?/_ 2.4 2\
dm_(a +a7)

=2,

x + @ .
3(a?— mz){, 8(a?— .'1,'2)*(0(,2 +22)¢ 5

@ x /a2+
T dx 3 (a?— w2)7 N wz)(a2+m2)5]

(9) Differentiate y™ with respect to y°
d@y™) _ny" _m .
) By s

(10) Find the first and second differential coefficients

of y=%}~/(a—w)w.
dy _w d{l(a-2)al} , Sa=o)z,
dx b de b
Let [(a— x)2]* =w and let (4 — )@ =w; then u=wh

dw 20 2wt "o a—m)z




INTRODUCING A USEFUL DODGE 73

dw
dx
@xczz_v_czgz a-%w_
dw” dx dx 24/ (a—x)x
Hence
dy  x(a—2x)  ~la—x)x_ 2(30a—47)
%—QbJ(a—w)w b 20 (a—x)w
Now ,
&y 26/ (a——w)w.(f}a —8x)— (B :/‘iz -)—bw()aw— 22)
dat™ 4b*(a—ax)x

_ — 122+ Sa?
4b(a—x)a/(a—x)x

(We shall need these two last differential coefficients
later on. See Ex. X. No. 11.)

Exercises VI. (See page 291 for Answers.)
Differentiatc the following:

1) y=Aa2+1. (2) y=A2*+a?

1 -t .

@ v=Terz ®r=-Tea

~/w a, Nt ta

(5) Yy=———= (6) y= Jw3+a
) y=l_'*i’”_

(a+xy
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(8) Differentiate y° with respect to %2

2
(9) Differentiate y—“/l 60

The process can be extended to three or more
dy dy dz v

differential coefficients, so that dv=ds g v % T
Examples.
(1) Tf z=8a; v=-; y=~/TF9, find %.
) 22 s dx
We have

dy 1 dv_ 14, dz_
dv 2J1+q; - @ dx 1243

dy _ 168z* 28
de~ ~ 2J/1+v)s 325/ +7
Ta? dv
b — — fin .
@) If t= 5~/9,w t+2,v T T d
dv _Tx(50—6) dr_ dt 1

dx~ 3 (@—1y 1)4’ dt 3+ 8~ 1068
dv_ Te(52—6)(3t°+1)
Hence a0~ " 30 Vw1 /O )
an expression in which x must be replaced by its
value, and ¢ by its value in terms of 6.

Satx JI= 6
3) If O_Ja:"" 0="31g and ¢= J3—72

find %
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We get L
-1, — 1—6-
0=3a%c 2 w= 1-_|-_6, and P= ;\/3-—-7
a9_ _ 8a*  do_ 1
de  o/z3’ d0  (1+0)/1—6°
(see example 5, p. 69); and
dp__1
do o 2w?
dp 1 1 3a?
So that —-
O T Jaxe A+ oVI=0  ad/at
Replace now first w, then 0 by its value.

Exercises VII.
You can now successfully try the following. (See
page 291 for Answers.)

1 dw
— 3 . —_ 2Y —_ .
(1) If u=4a®; v=3(u+u?); and w=s, find 7

. - — 1

2) If y=3x? 2; z=A1+y; and v=—pm—-—.

()l y=322+~/2; z=a/T+y; and v T
find éﬂ-

fna 0

1
3) If y= ,./3’z (14y)y;and u-—:/I-,;N s

T2



CHAPTER X.
GEOMETRICAL MEANING OF DIFFERENTIATION,

It is useful to consider what geometrical meaning can
be given to the differential coefficient.

In the first place, any function of , such, for
example, as a%, or Nz, or ax+b, can be plotted as
& curve; and nowadays every schoolboy is familiar
with the process of curve-plotting.

Y

Fa 7.

Let PQR, in Fig. 7, be a portion of a curve plotted
with respect to the axes of coordinates OX and OY.
Consider any point @ on this curve, where the
abscissa of the point is # and its ordinate is y.
Now observe how y changes when x is varied. If @
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is made to increase by a small increment dx, to the
right, it will be observed that ¥ also (in this particular
curve) increases by a small increment dy (because this
particular curve happens to be an ascending curve).
Then the ratio of dy to dx is a measure of the degree
to which the curve is sloping up between the two
points @ and 7. As a matter of fact, it can be seen
on the figure that the curve between @ and 7' has
many different slopes, so that we cannot very well
speak of the slope of the curve between @ and 7' If,
however, @ and T are so near each other that the
small portion @7 of the curve is practically straight,
dy
d
the curve along Q7. The straight line Q7 produced
on either side touches the curve along the portion @7
only, and if this portion is indefinitely small, the
straight line will touch the curve at practically
one point only, and be therefore a tangent to the
curve.

This tangent to the curve has evidently the same

slope as @7, so that

then it is true to say that the ratio = is the slope of

a_:g; is the slope of the tangent to

d
the curve at the point @ for which the value of Z—Z

found. )

We have seen that the short expression “the slope
of a curve” has no precise meaning, because a curve
has so many slopes—in fact, every small portion of a
curve has a different slope. “The slope of a curve at
o point” is. however, a perfectly defined thing; it is

is
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the slope of a very small portion of the curve situated
just at that point; and we have seen that this is the
same as “the slope of the tangent to the curve at that
point.”

Observe that da is a short step to the right, and
dy the corresponding short step upwards. These
steps must be considered as short as possible—in fact
indefinitely short,—though in diagrams we have to
represent them by bits that are not infinitesimally
small, otherwise they could not be seen.

We shall hereafter make considerable wuse of this

circumstance that @/ represents the slope of the curve
at any point.

Y
dy

F1a. 8.

If a curve is sloping up at 45° at a particular point,
as in Fig. 8, dy and dx will be equal, and the value

ofgz_
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If the curve slopes up steeper than 45° (Fig. 9)

dy .
v will be greater than 1.

Y Y]
Pl [

(o) — x O =
F1a. 9. Fia. 10.

If the curve slopes up very gently, as in Fig. 10,
g—g will be a fraction smaller than 1.

For a horizontal line, or a horizontal place in a

@ _o,

curve, dy =0, and therefore dx

o

Fig. 11.

If a curve slopes downward, as in Fig. 11, dy will
be a step down, and must therefore be reckoned of
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:les,gf)ative value; hence g% will have negative sign

If the “curve” happéns to be a straight line, like

that in Fig. 12, the value of % will be the same b

all points along it. In other words its slope is constant.
Y

O X
Fia. 12,

If a curve is one that turns more upwards as it

goes along to the right, the values of g—g will become
Y]

dy

6 ' X

Fia. 13.
- greater and greater with the increasing steepness, as
in Fig. 18.
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I a curve is one that gets flatter and flatter as it

goes along, the values of dy will become smaller and

dx
smaller as the flatter part is reached, as in Fig, 14

Y| Y

|
]

\Q\ l

H 1

: : i

i Y min !

! ! ! !

(0 X O X
Fic. 14, Fia. 15.

b - -

If a curve first descerds, and then goes up again,
as in Fig. 15, presentiny a concavity upwards, then
clearly 5_;/, will first be negative, with diminishing

values as the curve flattens, then will be zero at the
point where the bottom of the trough of the curve is

reached; and from this point onward % will have

positive values that go on increasing. In such a casey
is said to pass through a mintmum. The minimum
value of y is not necessarily the smallest value of y,
it is that value of y corresponding to the bottom of
the trough; for .instance, in Fig. 28 (p. 101), the
value of y corresponding to the bottom of the trough
is 1, while y takes elsewhere values which are smaller
than this. The characteristic of a minimum is that

y must increase on either side of it.
C.M.E. F
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N.B—For the particular value of x that mag3s

y % manimum, the value of lez =0.

If a curve first ascends and then descends, the
. values of g% will be positive at first; then zero, as

th; summit is reached; then negative, as the curve
slcpes downwards, as in Fig. 16. In this case y .is
said to pass through a maximum, but the maximum
value of y is not necessarily the greatest value of y.
In Fig. 28, the maximum of y is £}, but this is by no
means the greatest value y can have at some other
point of the curve.

Y Y

)
i
1
! .
O X O X

F1a. 16. Fre. 17.
N.B.—For the particular value of x that makes
y & maximum, the value of %’;—/ =0.
If a curve has the particular form of Fig. 17, the

values of g—z will always be positive; but there will
be one particular place where the slope is least steep,
% will be a minimum ; that 1s,
less than it is at any other part of the curve.

where the value of
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If a curve has the form of Fig. 18, the value of %
will be negative in the upper part, and positive in the
lower part; while at the nose of the curve where it
Z—Z will

becomes actually perpendicular, the value of
be infinitely great.

Y

(o) X
Fic. 18,

Now that we understand that Z—E measures the

steepness of a curve at any point, let us turn to some
of the equations which we have already learned how
to differentiate.

(1) As the simplest case take this:
y=x+Db.
It is plotted out in Fig. 19, using equal scales
for 2 and y. If we put =0, then the corresponding

ordinate will be y=b; that is to say, the “curve”
crosses the y-axis at the height 6. From here it
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ascends at 45°; for whatever values we give to « to
the right, we have an equal y to ascend. The line
has a gradient of 1 in 1.

Now differentiate y=x+5, by the rules we have

already learned (pp. 22 and 26 ante), and we get % =1

The slope of the line is such that for every little
step dx to the right, we go an equal little step dy
upward. And this slope is constant—always the
same slope.

Y] Y

L

(2) Take another case:

. y=ax+b.
We know that this curve, like the preceding one, will
start from a height b on the y-axis. But before we
draw the curve, let us find its slope by differentiating ;

1

X o X
Fig. 19. Fia. 20,

which gives us %=m The slope will be constant, at

an angle, the tangent of which is here called a. Let
us assign to @ some numerical value—say 3. Then we
must give it such a slope that it ascends 1 in 3; or
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dx will be 3 times as great as dy; as magnified in
Fig. 21. So, draw the line in Fig. 20 at this slope.

(8) Now for a slightly harder case.

Let y=ax’+b.

Again the curve will start on the y-axis at a height
b above the origin.

Now ditferentiate. [If you have forgotten, turn
back to p. 26; or, rather, don’t turn back, but think
out the differentiation.]

dy

dr= 2azx.

Y

0 ' X.
Fie. 22,

This shows that the steepness will not be constant:
it increases as @ increases. At the starting point P,
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where =0, the curve (Fig. 22) has no steepness
—that is, it is level. On the left of the origin, where-

« has negative values, @l will also have negative

dx
values, or will descend from left to right, as in the
Figure.
Let us illustrate this by working out a particular
instance. Taking the equation
y=éw2+3)

and differentiating it, we get

d

;Z%=§w.
Now assign a few successive values, say from 0 to
5, to «; and calculate the corresponding values of y
by the first equation; and of % from the second

equation. Tabulating results, we have:

x o | 1 2 3 4 5

y |l 3 3| a || 7| 9

d
ﬂ-’/ogll;zzg

Then plot them out in two curves, Figs. 23 and 24
in Fig. 23 plotting the values of y against those of .

and in Fig. 24 those of g—g against those of z. For
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any assigned value of a, the height of the ordinate
in the second curve is proportional to the slope of the
first curve.

G- cosnass

I'1e. 23. Fic. 24.

If a curve comes to a sudden cusp, as in Fig. 25,
the slope at that point suddenly changes from a slope

Y

(0} X
Fic. 25.

upward to a slope downward. In that case % will

clearly undergo an abrupt change from a positive te
a negative value.
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The following examples show further applications
of the principles just explained.

(4) Find the slope of the tangent to the curve
1 N
Y=g, T3

at the point where z= —1. Find the angle which this
tangent makes with the curve y=2a2+2.

The slope of the tangent is the slope of the curve at
the point where they touch one another (see p. 77);

that is, it is the g{% of the curve for that point. Here
dy 1 dc/ 1 L.

dn= "o and for x= -1, dp= "3 which is the
slope of the tangent and of the curve at that point.
The tangent, being a straight line, has for equation

y=ax+b, and its slope is %=a, hence g = —%. Also
if x=-1, y= 2(11)+3 2%; and as the tangent

passes by this point, the coordinates of the point must
satisfy the equation of the tangent, namely

go that 2} = —-x( 15+b and b=2; the equation of
the tangent is therefore y= — ')(:+2

Now, when two curves meeﬁ, the intersection being
a point common to both curves, its coordinates must
satisfy the equation of each one of the two curves;
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that is, it must be a solution of the system of simul-
taneous equations formed by coupling together the
equations of the curves. Here the curves meet one
another at points given by the solution of

{y=2x2+2,
y=—4tx+2 or 22°+2=—3x+2;

that is, x(2x+1)=0.

This equation has for its solutions £=0and x=—4%.
The slope of the curve y=2x2+2 at any point is

For the point where 2 =0, this slope is zero; the curve
is horizontal. For the point where

1 dy_
o O
hence the curve at that point slopes downwards to
the right at such an angle 6 with the horizontal that
tan 6=1; that is, at 45° to the horizontal.

The slope of the straight line is — § ; that is, it slopes
downwards to the right and makes with the horizontal
an angle ¢ such that tan ¢=3%; that is, an angle of
26° 34'. It follows that at the first point the curve
cuts the straight line at an angle of 26° 34, while at
the second it cuts it at an angle of 45°—26° 34'=18" 26"

(5) A straight line is to be drawn, through a point
whose coordinates are =2, y= —1, as tangent to the
curve y=x2—5x+6. Find the coordinates of the
point of contact.
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The slope of the tangent must be the same as the
% of the curve; that is, 22— 5.
The equation of the straight line is y=ax+b, and

as it is satisfied for the values =2, y=—1, then

. Lody "
—1=ax2+b; a,lso,lts(%—a—2w 5.

The x and the y of the point of contact must also
satisfy both the equation of the tangent and the
equation of the curve.

We have then
Y=22—=52+6, .ccocvrrininnnnn. @)
Y=ax+b, .coovvviiniiiininnnns (ii)
—1=2a+bd, .....evvvvivinrnannn. (ii1)
a=2x—5, .....ociiiiiiiinnns (iv)

four equations in a, b, x, ¥.

Equations (i) and (ii) give #*— 52+ 6 =ax+b.
Replacing @ and b by their value in this, we get
x?—5x+6=2r—5)x—1-2(2x-5),
which simplifies to #*—4x+3=0, the solutions of
which are: =3 and 2=1. Replacing in (i), we get
¥ =0 and y =2 respectively ; the two points of contact

are then x=1, y=2; and =3, y=0.

Note—In all exercises dealing with curves, students
will find it extremely instructive to verify the dedue-
tions obtained by actually plotting the curves.
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Exercises VIII. (See page 291 for Answers.)

(1) Plot the curve y=3$x?—5, using a scale of
millimetres. Measure at points corresponding to
different values of a, the angle of its slope.

Find, by differentiating the equation, the expression
for slope ; and see, from a Table of Natural Tangents,
whether this agrees with the measured angle.

(2) Find what will be the slope of the curve
y=0122%—2,
at the particular point that has as abscissa x=2.
(8) If w=(x—a)(x—>b), show that at the particular
point of the curve where c_lg=0' 2 will have the value
/ dx
3(a+b).
(4) Find the z—% of the equation y=a*+3x; and

calculate the numerical values of g'—;{ for the points

corresponding to =0, z=4%, x=1, x=2.

(5) In the curve to which the equation is x?+y*=4,
find the values of x at those points where the slope=1.

(6) Find the slope, at any point, of the curve whose
2 2
equation is §§+g§=1; and give the numerical value

of the slope at the place where «=0, and at that
where x=1.

(7) The equation of a tangent to the curve
y=>5—2x+05x% being of the form y=ma+n, where
m and n are constants, find the value of m and n if
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the point where the tangent touches the curve has
x=2 for abscissa.

(8) At what angle do the two curves
y=385x*+2 and y=a’-52+95
cut one another ?
(9) Tangents to the curve y= + +/25 — % are drawn
at points for which #=3 and =4, the value of y being

positive. Find the coordinates of the point of inter-
section of the tangents and their mutual inclination.

(10) A straight line y=2x—b touches a curve
y=3x%+2 at one point. What are the coordinates
of the point of contact, and what is the value of &?



CHAPTER XL
MAXIMA AND MINIMA.

A QUANTITY which varies continuously is said te
pass by (or through) a maximum or minimum value
when, in the course of its variation, the immediately
preceding and following values are both smaller or
greater, respectively, than the value referred to. An
infinitely great value is therefore not a maximum
value. Y
One of the principal uses P —-
of the process of differen- ¢
tiating is to find out under s
what conditions the value 4}
3

2

of the thing differentiated
becomes a maximum, or a
minimum. This is often ex-
ceedingly important in en-
gineering questions, where
it is most desirable to
know what conditions will make the cost of working
a minimum, or will make the efficiency a maximum.

Now, to begin with a concrete case, let us take the
equation y=a?—dx+T.

By assigning a number of successive values to a,
and finding the corresponding values of y, we can

-~ fe=——==r-
Wl mm—————
| et

2 X

Fia. 26.
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readily see that the equation represents a curve with
& minimum.

@ ol 1]2 3 4| 5

yl 7434|712

These values are plotted in Fig. 26, which shows
that y has apparently a minimum value of 3, when 2
is made equal to 2. But are you sure that the
minimum occurs at 2, and not at 2} or at 1§ ?

Of course it would be possible with any algebraic
expression to work out a lot of values, and in this
way arrive gradually at the particular value that
may be & maximum or a minimum.

Fia. 27.
Here is another example :
Let y=3x—x%

Calculate a few values thus:

x -1]0}1|2]3 4 b

yll ~ajo|2|e|lo]| -4|-10
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Plot these values as in Fig. 27.

It will be evident that there will be a maximum
somewhere between x=1 and x=2; and the thing
looks as if the maximum value of y ought to be
about 2}. Try some intermediate values. If z=1%,
y=2187; if x=14 y=225; if =16, y=224.
How can we be sure that 2:25 is the real maximum,
or that it occurs exactly when x=1%?

Now it may sound like juggling to be assured that
there is a way by which one can arrive straight at a
maximum (or minimum) value without making a lot of
preliminary trials or guesses. And that way depends
on differentiating. Look back toan earlier page (81) for
the remarks about Figs. 14 and 15, and you will see
that whenever a curve gets either to its maximum

or to its minimum height, at that point its Z—Z =0,

Now this gives us the clue to the dodge that is
wanted. When there is put before you an equation,
and you want to find that value of x that will make
its ¥ a minimum (or a maximum), first differentinte

4t, and having done so, write its g"’z as equal to zero,
and then solve for x. Put this particular value of x
into the original equation, and you will then get the
required value of y. This process is commonly called
“equating to zero.”

To see how simply it works, take the example with

which this chapter opens, namely
y=a?—4dax+7.
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Differentiating, we get:

Now equate this to zero, thus:
2x—4=0.
Solving this equation for x, we get:
2x=4,
x=2,
Now, we know that the maximum (or minimum)
will occur exactly when x=2.
Putting the value =2 into the original equation,

we get y=22—(4x2)+7
=4—38+7
=3.

Now look back at Fig 26, and you will see that the
minimum occurs when £=2, and that this minimum

of y=3.
Try the second example (Fig. 24), which is
y=3x—z%
Differentiating, ay_ 3—2x,
dx
Equating to zero,
3—2x=0,
" whence x=1};
and putting this value of 2 into the original equation,
we find: y=43—(1x1),
y=2¢

This gives us exactly the information as to which
the method of trying & lot of values left us uncertain.
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Now, before we go on to any further cases, we have
two remarks to make. When you are told to equate

g—g; to zero, you feel at first (that is if you have any

wits of your own) a kind of resentment, because you

know that z—z has all sorts of different values at

different parts of the curve, according to whether it
is sloping up or down. So, when you are suddenly
told to write dy

=0,

dx

you resent it, and feel inclined to say that it can’t be
true. Now you will have to understand the essential
difference between “an equation,” and “an equation
of condition.” Ordinarily you are dealing with equa-
tions that are true in themselves; but, on occasions,
of which the present are examples, you have to write
down equations that are not necessarily true, but are
only true if certain conditions are to be fulfilled ; and
you write them down in order, by solving them, to
find the conditions which make them true Now we
want to find the particular value that x has when
the curve is neither sloping up nor sloping down, that

is, at the particular place where dy _ =0. So, writing

dx
filJ 0 does mot mean that it always is =0; but you

write it down as a conohtwn in order to see how
much & will come out Jf is to be zero,

d.’L'

C.M.E. G
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The second remark is one which (if you have any
wits of your own) you will probably have already
made: namely, that this much-belauded process of
equating to zero entirely fails to tell you whether
the 2 that you thereby find is going to give you
a maxzimum value of y or a minimum value of y.
Quite so. It does not of itself discriminate; it finds
for you the right value of x but leaves you to find
out for yourselves whether the rorresponding y is a
maximum or a minimum. Of course, if you have
plotted the curve, you know already which it will be.

For instance, take the equation :

1
Y= 4x +5.
Without stopping to think what curve it corre-
sponds to, differentiate it, and equate to zero:

dy _ 2_a_L_p.
%—4—50 =4 w2—0,

whence x=1;
and, inserting this value,

y=4
will be either a maximum or else a minimum. But
which? You will hereafter be told a way, depending
upon a second differentiation, (see Chap. XIL, p. 112).
But at present it is enough if you will simply try
any other value of x differing a little from the one
found, and see whether with this altered value the

corresponding value of y is less or greater than that
already found,
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Try another simple problem in maxima and minima.
Suppose you were asked to divide any number into
two parts, such that the product was a maximum ?
How would you set about it if you did not know
the trick of equating to zero? I suppose you could
worry it out by the rule of try, try, try again. Let
60 be the number. You can try cutting it into two
parts, and multiplying them together. Thus, 50 times
10 is 500; 52 times 8 is 416; 40 times 20 is 800; 45
times 15 is 675; 30 times 30 is 900. This looks like
a maximum: try varying it. 31 times 29 is 899,
which is not so good; and 32 times 28 is 896, which
is worse. So it seems that the biggest product will
be got by dividing into two equal halves. .

Now see what the calculus tells you. Let the
number to be cut into two parts be called n. Then
if « is one part, the other will be % —x, and the product
will be x(n—x) or nc—a? So we write y=nx—a2
Now differentiate and equate to zero;

W o=
d—w =n—2x=0.
Solving for x, we get g’=w.

So now we know that whatever number n may be,
we must divide it into two equal parts if the product
of the parts is to be a maximum; and the value of
that maximum product will always be = in

This is a very useful rule, and appliec to any number
of factors, so that if m+n+p=a constant number,
mXnXp is a maximum when m=n=p.
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Test Case.

Let us at once apply our knowledge to a case that
we can test.

Let y=a2—2x;
and let us find whether this function has a maxiinum
or minimum ; and if so, test whether it is a maximum
or a minimum, :

Differentiating, we get

%{} =2¢~1
Equating to zero, we get
20—1=0,
whence 2=1,
or =1

That is to say, when x is made =1, the corresponding
value of y will be either a maximum or a minimum.
Accordingly, putting =1 in the original equation. we
get =31

or y=—1

Is this a maximum or & minimum? To test it, try
putting @ a littie bigger than },—say make x=0¢
Then  y=(06)*~-06=036—06=—024,
which is higher up than —025; showing thal
y=—025 is a minimum.

Plot the curve for yourself, and verify the cal-
culation.
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Further Examples.
A most interesting example is afforded by a curve
that has both a maximum and a minimum. Its

equation is: y=3a3 -2+ 3x+1.
d.’[_ 2
Now dn=% —~4x43.
-
)
)
[ ]
[}
'
[ ]
(]
[]
!
0
i
o2
s X
?
| -2
H
' -3
Y )

Fie. 28.

Equating to zero, we get the quadratie,

2:—4x+3=0;
and solving the quadratic gives us fwo roots, viz.
{m =3
x=1.

Now, when =3, y=1; and when x=1, y=23%
The first of these is a minimum, the second a

maximum.
The curve itself may be plotted (as in Fig. 28)
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from the wvalues cdlculated, as below, from the
original equation.

@ -1 0|1 2134|516

y|-4]|!

2y (13| 1 | 23|73 |19

A further exercise in maxima and minima is
afforded by the following example :

‘The equation to a circle of radius #, having its
centre C at the point whose coordinates are x=a,
y=>, as depicted in Fig. 29, is:

(y—by+(@—a)=1r>%
This may be transformed into
y=ri—(x—a)l+b.
Y|

0]

Fre, 29,

Now we know beforehand, by mere inspection of
the figure, that when z=a, y will be either at its
maximum value, b+47, or else at its minimum
value, b—7. But let us not take advantage of this
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knowledge; let us set about finding what value
of x will make y a maximum or a minimum, by the
process of differentiating and equating to zero.

dy 1 1

—_— %X (2a—2
due™ 2/r=(x— a)zx( a2,
which reduces to
dy a—x

&~ T —Gw=aF

Then the condition for y being maximum or
minimum is:
a—x

Nr—@=ay

Since no value whatever of x will make the de-
nominator infinite, the only condition to give zero is

r=a.
Inserting this value in the original equation for
the circle, we find
y=n7r+0b;

and as the root of 7% is either 47 or —#, we have
two resulting values of y,
{y=b+r
y=b—r
The first of these is the maximum, at the top;
the second the minimum, at the bottom.
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If the curve is such that there is no place that is a
maximum or minimum, the process of equating to
zero will yield an impossible result. For instance:

Let y=ax*+bx+ec.

Then zll”

Equating this to zero, we get 3ax?+b=0, 2=

-3ax’+b.

-b
°__ 3a’
and = \/ ;_ab., which is impossible, supposing & and &
to have the same sign.

Therefore ¥ has no maximum nor minimum,

A few more worked examples will enable you to
thoroughly master this most interesting and useful
application of the calculus.

(1) What are the sides of the rectangle of maximum
area inscribed in a circle of radius R?

1f one side be called @,

the other side=+/ (hdiagonal)‘2 X%
and as the diagonal of the rectangle is necessarily a
diameter, the other side = /4 RZ— 22
Then, area of rectangle S =xn/4RI— 22,
ds d(WiR*=a?
PRl

If you have forgotten how to differentiate /3R> — 7

here is 8 hint: write 4R*—a?=w and y=/2, and

dy dw
seek O—Z—— and —— 7z

get on refer to page 67.

SRy o IO
dx

fight it out, and only if you can’
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You will get ‘

2 _ 92
o=~ Y R s
For maximum or minimum we must have
AR —22%
NART a2

that is, 4R?—2x2=0 and = Ra/2.

The other side =A/4R2—2R2=Ra/2; the two sides
are equal; the figure is a square the side of which is
equal to the diagonal of the square constructed on the
radius. In this case it is, of course, a maximum with
which we are dealing.

(2) What is the radius of the opening of a conical
vessel the sloping side of which has a length 7 when
the capacity of the vessel is greatest ?

If R be the radius and H the corresponding height,
H=\P-R

Volume V=7R2x %’ =7R?x

E—R?
=

Proceeding as in the previous problem, we get

av P2 R 27rR
aR~TEx gty VPR
_2rR(P—RY)— sz o
3J/P—R?

for maximum or minimum.

Or, 27 R(2— R?)—7R®*=0,and R=1IA/%, for a maxi-
mum, obviously.
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(8) Find the maxima and minima of the function

x  d—x
=
We get
dy (4—-2)—(—2) —x— (4« x)
do= G-y T =0
for maximum or minimum ; or
4

(4——-_.’1,’)2__—2=0 and =2,

There is only one value, hence only one maximum
or minimum.
For z=2, y=2
for x=145, y=227,
for =25, y=227;

it is therefore a minimum. (It is instructive to plot
the graph of the function.)

(4) Find the maxima and minima of the function

=a1+z+~/T—2 (It will be found instructive to
plot the graph.)

Differentiating gives at once (see example No. 1,

. 68)
P dy 1 1

dr 2/1+z 21—z
for maximum or minimum.
Hence &/1+2=a/1 -2 and 2=0, the only solution,
For =0, y=2.
For = +0'5, y=1'932, so this is a maximum.
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(5) Find the maxima and minima of the function

x?—5
Y= %e—%
We have
dy _(2x—4) X 230—(.902—5)2:0
dx (2 —4)?
for maximum or minimum ; or
2w2—8w+10_0 .
Qu—4y
or 22—4x+45=0; which has for solutions
‘ x=5+—1
These being imaginary, there is no real value of 2
dy

for which d:L':O; hence there is neither maximum nor
minimum.

(6) Find the maxima and minima of the function

(y—a?}=a"
This may be written y=ax?+at.
Z—';{ =2+ §at =0 for maximum or minimum ;

that is, £(2+52%)=0, which is satisfied for =0,
and for 24+ 5a%=0, that is for x=1%. So there are
two solutions.

Taking first £=0. If x=—05,y=025+/—(3),
and if =405, y=0‘25if/F5_‘)? On one side y is
imaginary ; that is, there is no value of y that can be
represented by a graph ; the latter is therefore entirely
on the right side of the axis of y (see Fig. 30).

On plotting the graph it will be found that the
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curve goes to the origin, as if there were a minimum
there ; but instead of continuing beyond, as it should
do for a minimum, it retraces its steps (forming what
is called a “cusp”). There is no minimum, therefore,
although the condition for a minimum is satisfied,

namely E%.:O. It is necessary therefore always to

check by taking one value on either side.

4
03

02

01

0 02 04 96 08 10\ x

Fic. 30.

Now, if we take £=18=06+ If x=064,y=07373
and y =0'0819; if =06, ¥ becomes 06389 and 00811,
and if =07, y becomes 0-8996 and 0-0804.

This shows that there are two branches of the curve,
the upper one does not pass through a maximum, but
the lower one does.

(7) A cylinder whose height is twice the radius of
the base is increasing in volume, so that all its parts
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keep always in the same proportion to each other; .
that is, at any instant, the eylinder is similar to the
original cylinder. When the radius of the base is
r feet, the surface area is increasing at the rate of
20 square inches per second; at what rate per second
is its volume then increasing ?
Area=8=2(7r*)+27r X 2r==67rk
Volume = V=772 X 2r= 2773

as_ ., dr .. dr_ 20 |
ae == T o
av N

(—lt——ﬁwr di and

av ., 20

Et—=677'7' Xm-——lor.

The volume changes at the rate of 10 cubic inches
per second.

Make other examples for yourself. There are few
subjects which offer such a wealth for interesting
examples.

Exzercises IX. (See page 292 for Answers.)

(1) What values of x will make y a maximum
.. oo X,
and a minimum, if y—a?—}_—l ?

(2) What value of # will make y a maximum in

. x
the equation y=-——?
q. az+ wz
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(3) A line of length p is to be cut up into 4 parts
and put together as a rectangle. Show that the area
of the rectangle will be a maximum if each of its
sides is equal to  p.

(4) A piece of string 30 inches long has its two
ends joined together and is stretched by 3 pegs so
as to form a triangle. What is the largest triangular
area that can be enclosed by the string ?

(Himt: Apply last three lines of p. 99.)

(5) Plot the curve corresponding to the equation

10, 10 .
Tx 8=z’
also find dy and deduce the value of a that will

c%r
make ¥ a minimum; and find that minimum value
of y.

(6) If y=a®—5x, find what values of  will make
% 8 maximum or a minimum.

(7) What is the smallest square that can be in-
scribed in a given square ?

(8) Inscribe in a given cone, the height of which
is equal to the radius of the base, a cylinder
() whose volume is a maximum; (b) whose lateral
area is a maximum; (¢) whose total area is a
maximum.

(9) Inscribe in a sphere, a cylinder (a) whose
volume is a maximum; (b) whose lateral area is a
maximum; (¢) whose total area is a maximum.
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(10) A spherical balloon is increasing in volume.
If, when its radius is r feet, its volume is increasing
at the rate of 4 cubic feet per second, at what rate is
its surface then increasing ?

(11) Inscribe in a given sphere a cone whose volume
is a maximum.

(12) The current C given by a battery of N similar

nxXFE
————, where E, R, r, are constants

rn
R+T\T_
and » is the number of cells coupled in series. Find
the proportion of % to N for which the current ig
greatest.

voltaic cells is C=



CHAPTER XIL
CURVATURE OF CURVES.

RETURNING to the process of successive differentia~
tion, it may be asked: Why does anybody want to
differentiate twice over? We know that when the
variable quantities are space and time, by differ-
entiating twice over we get the acceleration of a
moving body, and that in the geometrical interpreta-

ﬂ Y]

\

\

0
L )

|

L

[
I .

|
cmce=bea

1

|

'

[} : : |- —: :- 'r =
PL Pl
o X @ X
Fic. 3L 16, 32
tion, as applied to curves, g—/ means the slope of the

curve. But what can g—;/ mean in this case ? Clearly

it means the rate (per unit of length ) at which the
slope is changing—in brief, it is an indication of the
mamner in which the slope of the portion of curve
considered varies, that is, whether the slope of the
eurve increases or decreases when x increases, or, in
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other words, whether the curve curves up or down
towards the right
Suppose a slope constant, as in Fig. 31.

Here, g— is of constant value.

Suppose, however, a case in which, like Fig. 32,
the slope itself is getting greater upwards; then

dy
d___(da,) that is >y
dx " da®
If the slope is becoming less as you go to the
right (as in Fig. 14, p. 81), or as in Fig. 33, then,
even though the curve may be
going upward, since the change
is such as to diminish its slope,

will be positive.

its zzliz will be negative.

It is now time tc initiate
you into another secret—how 5
to tell whether the result that X

. Fie. 33.
you get by “equating to zero”
is amaximum or a minimum. The trick is this: After
you have differentiated (so as to get the expressiou
which you equate to zero), you then differentiate a
second time, and look whether the result of the second

2
differentiation is positive or negative. If le—z comes
out positive, then you know that the value of y

which you got was a minimum; but if %yz comes

C.M.E. H
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out megative, then the value of y which you got must
be a mawimum. That's the rule.

The reason of it ought to be quite evident. Think
of any curve that has a minimum point in it, like
Fig. 15 (p. 81), or like Fig. 84, where the point of
minimum y is marked M, and the curve is concave
upwards. To the left of M the slope is downward,
that is, negative, and is getting less negative. To the
right of M the slope has become upward, and is

Y Y
M
1
1
i
: ynuu
1
]

o U —

R
(o) PA O >
Fic. 34. Fic. 35.

getting more and more upward. Clearly the change
of slope as the curve passes through M is such that

2
-
the right, is to convert a downward slope into an
upward one.

Similarly, consider any curve that has a maximum
point in it, like Fig. 16 (p. 82), or like Fig. 35, where
the curve is conver, and the maximum point is
marked M. In this case, as the curve passes through
M from left to right, its upward slope is converted

is positive, for its operation, as x increases toward
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into a downward or negative slope, so that in this
azy
da?

Go back now to the examples of the last chapter
and verify in this way the conclusions arrived at as to
whether in any particular case there is a maximum
or a minimum. You will find below a few worked
out examples.

case the “slope of the slope” is megative.

(1) Find the maximum or minimum of
(a) y=42>—9%—6; (b) y=64+9x—4a?;
and ascertain if it be a maximum or a minimum in
each case.

(@) d—’/—Sw 9=0; x=1}; and y= —11-065.
g—mz—S, it is 4 ; hence it is & minimum.
dy _

) o =9—8x=0; x=1}; and y= +11-065,
%=—8; it is —; hence it is a maximum,

(2) Find the maxima and minima of the function
y=a*—3x+16.

YW oo 8_ 0 421- =

d_.'v—3w —3=0; 2°=1; and z=+1.

LY _ 6z —1:ibis 4+

Jw—é—ﬁw, for x=1; it is +; —
hence =1 corresponds to & minimum y=14. For
o= —1 it is —; hence = —1 corresponds to a maxi-

mum y =418,
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. . . . r—1
(8) Find the maxima and minima of 7/=m-
@!_(xz+2)xl—(m—l)x2x_2x—a:2+2-_0.
de (x®+2)? To(xi42e

or x2—2x—2=0, whose solutions are 2= 4+273 and
x=—073.

dy _(.702+2)2x(2m—2)—(x2—2m—2)(4m3+8m)

da? (2% +2)"
3 223 — 6t — 8 — 82 — 24+ 8
- (w2+2)4

The denominator is always positive, so it is sufficient
to ascertain the sign of the numerator.

If we put =273, the numerator is negative; the
maximum, y=0183.

If we put &= — 073, the numerator is positive; the
minimum, ¥ = —0683.

(4) The expense C of handling the products of a
certain factory varies with the weekly output P

. . b
according to the relation C=aP+ pary 2 +d, where

a, b, ¢, d are positive constants. For what output
will the expense be least ?

ac b

ﬂ_P=a_(?-¥—-W=O for maximum or minimum;
b aapogafi
hence =GPy and P= + A

As the output cannot be negative, P= + 4/ 3—0.
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&0 b(2c+2P)
dP:~ " (¢+ P}’
which is positive for all the values of P; hence

Now

b .
P=+ /\/ a4 corresponds to a minimum.

(5) The total cost per hour C of lighting a building
with N lamps of a certain kind is

EP(JC>
1000 /7
where E is the commercial efficiency (watts per candle),

c=N(%+

P is the candle power of each lamp,
t is the average life of each lamp in hours,
C,=cost of renewal in pence per hour of use,
O, =cost of energy per 1000 watts per hour.
Moreover, the relation connecting the average life
of a lamp with the commercial efficiency at which it
is run is approximately ¢=mE" where m and n are
constants depending on the kind of lamp.
Find the commercial efficiency for which the total
vost of lighting will be least.

C PC
(Y - e ,
We have (=N (m E-4+ 1000 )
dC _ A (PC. _nCi p_fuiny
7= (o6~ " Zo0) =t
for maximumn or minimum.
y 2+ [TANN < 7Y
E'"+1=]OOO x nC, and E= 1000 xnC;.

mPC, ~ mPC,
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This is clearly for minimum, since
a:C G
=N (D 0]

which is positive for a positive value of E.

For a particular type of 16 candle-power lamps,
C,=17 pence, C,=5 pence; and it was found that
m=10 and n=346.

B \/1()0()x 36 x 17
10x16%x5

=2'6 watts per candle-power.

Exercises X. (You are advised to plot the graph
of any numerical example.) (See p. 292 for the
Answers.)

(1) Find the maxima and minima of
y=a*+a*—10x+8.

dy

dx’

for gixz, also find the value of x which makes y a

maximam or a minimum, and show whether it is
maximum or minimum,

(2) Given y= gm——cwz, find expressions for and

(8) Find how many maxima and how many minima
there are in the curve, the equation to which is
o at
y=1-grop’
and how many in that of which the equation is
xt b

y=1- +24 730"



CURVATURE OF CURVES 118

~ (4) Find the maxima and minima of

5

(5) Find the maxima and minima of
— 3_.. —
Y= ratl
(6) Find the maxima and minima of
bz
Y= PRy
(7) Find the maxima and minima of

Y=m_3t3 +5

(8) Divide a number N into two parts in such a
way that three times the square of one part plus
twice the square or the other part shall be o
minimum.

(9) The efficiency # of an electric generator at
different values of output x is expressed by the

general equation :
x

u=a+bx+cw2;

where @ is a constant depending chiefly on the energy
losses in the iron and ¢ a constant depending chiefly
on the resistance of the copper parts. Find an ex-
pression for that value of the output at which the
efficiency will be a maximum,
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(10) Suppose it to be known that consumption of
coal by a certain steamer may be represented by the
formula y=0'3+40001v%; where y is the number of
tons of coal burned per hour and v is the speed
expressed in nautical miles per hour. The cost of
wages, interest on capital, and depreciation of that
ship are together equal, per hour, to the cost of
1 ton of coal. What speed will make the total cost
of a voyage of 1000 nautical miles a minimum ?
And, if coal costs 10 shillings per ton, what will that
minimum cost of the voyage amount to ?

(11) Find the maxima and minima of
y=+Z/a(10-a).

(12) Find the maxima and minima of
y =" =t —20+1



CHAPTER XIIL
OTHER USEFUL DODGES.

Partial Fractions.

WE have seen that when we differentiate a fraction
we have to perform a rather complicated operation;
and, if the fraction is not itself a simple one, the result
is bound to be a complicated expression. If we could
split the fraction into two or more simpler fractions
such that their sum is equivalent to the original
fraction, we could then proceed by differentiating
sach of these simpler expressions. And the result of
differentiating would be the sum of two (or more)
differentials, each one of which is relatively simple;
while the final expression, though of course it will be
the same as that which could be obtained without
resorting to this dodge, is thus obtained with much
less effort and appears in a simplified form.

Let us see how to reach this result. Try first the
job of adding two fractions together to form a resultant
fraction. Take, for example, the two fractions E%T
and 2. Every schoolboy can add these together

w—1 3x+1

and find their sum to be =1 And in the same
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way he can add together three or more fractions.
Now this process can certainly be reversed : that is to
say that, if this last expression were given, it is certain
that it can somehow be split back again into its
original components or partial fractions. Only we do
not know in every case that may be presented to us
how we can so split it. In order to find this out
we shall consider a simple case at first. But it is
important to bear in mind that all which follows
applies only to what are called “proper” algebraic
fractions, meaning fractions like the above, which have
the numerator of a lesser degree than the denominator;
that is, those in which the highest index of x is less

in the numerator than in the denominator. If we
2

have to deal with such an expression as = we can

1 bl
simplify it by division, since it is equlva.lent to

3 . 3
1+w—-2_ i and prowy |
to which the operation of splitting into partial fractions
can be applied, as explained hereafter.

is a preser algebraic fraction
prep 4

Case I. 1f we perform many additions of two or
more fractions the denominators of which contain only
terms in 2, and no terms in a2 a3, or any other powers
of @, we always find that the denominator of the final
resulting fraction is the proauct of the denominators
of the fractions which were added to form the result.
It follows that by factorizing the denominator of this
final fraction, we can find every one of the denomina-
tors of the partial fractions of which we are in search,
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Supﬁose we wish to go back from wf+1 to the
. 1 2
components which we know are oy | and —— =1 1t

we did not know what those components were we can
otill prepare the way by writing :
3x+1 3x+1
=1 (w+1)(@w—1) x+1
leaving blank the places for the numerators until we
know what to put there. We always may assume the
sign between the partial fractions to be plus, since, if
it be minus, we shall simply find the corresponding
numerator to be negative. Now, since the partial
fractions are proper fractions, the numerators are
mere numbers without « at all, and we can call them
A, B, C ... as we please. So, in this case, we have:
3e+1_ A B
—1_w+1+w—1
If, now, we perform the addition of these two
A(x—1)+B(x+1)

+

partial fractions, we get @+D@=-1) and this
3z+1
must be equal to @Wm—-:—l—j And, as the de-

nominators in these two expressions are the same,
the numerators must be equal, giving us:

3x+1=A(x—1)+B(xz+1).
Now, this is an equation with two unknown

quantities, and it would seem that we need another
equation before we can solve them and find A and B,
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But there is another way out of this difficulty. The
equation must be true for all values of x; therefore
it must be true for such values of x as will cause
x2—1 and x+1 to become zero, that is for =1 and
for = —1 respectively. If we make x=1, we get
4=(4 x0)+(Bx2), so that B=2; and if we make
x=—1,we get —2=(1 X —2)+(Bx0),s0that 4=1.
Replacing the A and B of the partial fractions by

these new values, we find them to become bc—-lif? and

a

a7_2:i; and the thing is done.

As a further example, let us take the fraction
4?4 20— 14
P +3aP—x—3
x is given the value 1; hence x—1 is a factor of it,
and obviously then the other factor will be 22+ 42+ 3;
and this can again be decomposed into (z+1)(x+3).

So we may write the fraction thus:
4?4 22— 14 _ A n B + c
B+3a—x—3 x+1 x—1" x+3
making three partial factors.

The denominator becomes zero when

Proceeding as before, we find
4+ 20 —14=A(x—1)(x+3)+ B(x+1)(x+3)
+C(x+1)(x-1).
Now, if we make =1, we get:
—8=(4 x0)+B(2x4)+(Cx0); that is, B= -1,
If x=—1, we get
=12=A4(—-2x2)+(Bx0)+(Cx0); whence 4 =3.
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T 2= —3, we get:
16=(4 x0)+(Bx0)+C(—2x —4); whence O=2.
So then the partial fractions are:
3 1 2
PR Ry gk
which is far easier to differentiate with respect to a

than the complicated expression from which it is
derived.

Case II. If some of the factors of the denominavor
contain terms in a2 and are not conveniently put
into factors, then the corresponding numerator may
contain a term in x, as well as a simple number, and
hence it becomes necessary to represent this unknown
numerator not by the symbol 4 but by Ax+ B; the
rest of the calculation being made as before.

: —a’—3
Try, for instance: AT @ +1)
— "3 _Am+B+ C .
@+ D+ 22+1 Tx+l’

—a*—3=(4x+ B)(x+1)+ C(x*+1).

Putting = —1, we get —4=0«K2; and O=—2;
hence —22—3=(Ax+B)(x+1)—2x*-2;
and x2=1=Ax(x+1)+B(x+1).

Putting =0, we get —1=0;
hence

=1l=Ax(x+D—x—1; or ®+x=Ax(x+1);
and x+1=A4(c+ 1D
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so that 4 =1, and the partial fractions are:

x—1 2
o?+1 o+T1
Take as another example the fraction
x®—2
(@®+1)(@*+2)
We get
a3—2 Ax+B  Cx+D

@D @+ &+l T2
_(4z+B)(2*+2)+(Cx+D)(22+1)
(*+1)(2*+2)

In this case the determination of 4, B, C, D is not
so easy. It will be simpler to proceed as follows:
Since the given fraction and the fraction founa by
adding the partial fractions are equal, and have
identical denominators, the numerators must also be
identically the same. In such a case, and for such
algebraical expressions as those with which we are
dealing here, the coefficients of the same powers of x
are equal and of same sign.

Hence, since
a?—2=(Ax+ B)(x*+2)+(Cx+ D)(a2+1)

=(A+C)x*+(B+D)x*+ (24 + C)x+2B+ D,
we have 1=4+C; 0=B+D (the coefficient of a2
in the left expression being zero); 0=24+C; and
—2=2B+D. Here are four equations, from which
we readily obtain A=-1; B=-=2; C=2; D=2;
2(x+1) 2+2

2*+2  2*+1

8o that the partial fractions are
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This method can always be used; but the method
shown first will be found the quickest in the case of
factors in x only.

Case I1I. When among the factors of the denomi-
nator there are some which are raised to some power,
one must allow for the possible existence of partial
fractions having for denominator the several powers
of that factor up to the highest. For instance, in

3a?— 2z +1
(w+ 1w —2)
the possible existence of a denominator x+1 as well
as (z+1)% and (x —2).

It may be thought, however,that, since the numerator
of the fraction the denominator of which is (xz+41)
may contain terms in x, we must allow for this in
writing Az + B for its numerator, so that

3-2041 AwtB, C D
(x+1DAx—2) (x+1)?  x+1 -2
If, however, we try to find A, B, C' and D in this case,
we fail, because we get four unknowns; and we have
only three relations connecting them, yet
3t —22x+1 x—1 + 1
@+ z—2) @+1F¢ w+1 z=2
But if we write
3x?—2x+1 A + B n %
@+ 1)Pw—2) @+1¢ z+1 z-2
we get
3x2—2x+1=A(x—2)+ B(x+1)(x—2)+ C(xz+1)2

splitting the fraction — we must allow for
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which gives ¢ =1forg=2 Replacing C by its value,
transposing, gathering like terms, and dividing by
x—2,we get —2w=A4 + B(x+1), which gives 4 =—2
for x=—1. Replacing A by its value, we get
2= —24+DB(x+1).
Hence B=2; so that the partial fractions are:

2 2 1
x+1 (w+1)2 x—2

() 1
instead of +1+(.L+1

the fractions from which ——

)2+ 5 stated above as being

32— 2.L'+1
@+ TFa—2) ",
The mystery is cleared if we observe that @F1r can

2
+ v+l @rip ™
that the three fractions given are really equivalent to

2 1 2 2 1
P 1T mrl @Rt e—2 2+l @+ip a-2
which are the partial fractions obtained.

We see that it is sufficient to allow for one numerical
term in each numerator, and that we always get the
ultimate partial fractions.

When there is a power of a factor of 2? in the
denominator, however, the corresponding numerators
must be of the form Ax+ B; for example,

3x—1 Am+B+C:v+D+ E
CaE—Dw+1) @ui—13" 22—1 ' o+1’

was obtained.

itself be split into the two fractions ——
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which gives
3x—1=(Azxz+B)(x+1)
+(Cx+ D) (x+1)(22*—1)+ E(2x?-1)2
For = —1, this gives E= —4. Replacing, trans-
posing, collecting like terms, and dividing by x+1,
we get
1623 =152+ 3 =202+ 2Dx* + (A — C)+ (B~ D).
Hence 2C=16 and C=8; 2D=-16 and D= —8;
A—C=00r4A—3=0and A=8;and finally, B—D=3
or B=—5. Sothat we obtain as the partial fractions:
S5 8@=-1)_ 4
x:—1)2" 222=1 ax+1°
It is useful to check the results obtained. The
simplest way is to replace x by a single value, say

+ 1, both in the given expression and in the partial
fractions obtained.

Whenever the denominator contains but a power of
a single factor, a very quick method is as follows:

Taking, for example,
x=2—1

41
0 1=2: th
__(w+l)3’ let £+1=z; then

Replacing, we get
4(z—1)4+1_ 42-3 4

3
= ==_5.
2 # 2t 28

The partial fractions are, therefore,

4 3

(w+17 (x+1)P
C.M,E, 1
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Applying this to differentiation, let it be required
5—dy

to differentiate y = =3 W have
dy (624 Tx—38) x4+ (5—4x)(122+7)
dx (B + Tz — 3)?
24> — 60 — 23

= 62+ Tz—3)F
If we split the given expression into
1 2
Sx—1 2x+3

we get, however,

dy 8 " 4

de™ " @u—1p" Qu+3%
which is really the same result as above split into
partial fractions. But the splitting, if done after
ditferentiating, is more complicated, as will easily be
seen. When we shall deal with the integration of
such expressions, we shall find the splitting into
partial fractions a precious auxiliary (see p. 230).

Exercises XI. (See page 293 for Answers.)

Split into fractions:

3x+5 3x—4
@) (@—3)w+4) & @—=1)(z—=2)
3x+5 4) x+1

@) Prw—12 2—Tr+12
a2—13x2+26

xr—8
O @rnEe=y O e-e-2-5
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a2—3x+1
N G=hH@+2@=9
®) Ba24-Te+1
Qr+1)(Bz—2)(3x+1)
@ gy a0 iy
52246 +4 x
W) Gin@+a+ny P Gene-2¢
@ x+3
@ @-DEFiy W Grore—1
3?42 +1 5x248x—12
W) Gro@rariy GO TGrap
Ta?+9x—1 x?
SR (%) @—s)@—2y

Differential of an Inverse Function.

Consider the function (see p. 14) y=38x; it can be
expressed in the form w=%; this latter form is called
the inverse function to the one originally given.

_y dz_1
"3 dy 38
dy 1 dy dx

a—‘—” = {lﬁ or (TZ' X d—y =1.
dy
dy

2

3
w=%, and de__ 1 ___ 1 _1

If y=3x, %:3; if 2 ,and v;re see thai

Consider y=4a?, =8x; the inverse function 1s
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dv/ dx
dx dy

It can be shown that for all functions which can be
put into the inverse form, one can always write

dy dx dy 1
an¥dy=! " G T

=1

Here again

It follows that, being given a function, if it be
easier to differentiate the inverse function, this may
be done, and the reciprocal of the differential coeflicient
of the inverse function gives the differential coefficient
of the given function itself.

As an example, suppose that we wish to differentiate

Y= \/ ——1. We have seen one way of doing this,

d1/ and d_u This
du dx

by writing u=§—1 and finding
gives
dy _ 3 )
dx~ ;
2x® \/ 3_4
If we had forgotten how to proceed by this method,
or wished to check our result by some other way of
obtaining the differential coefficient, or for any other
reason we could not use the ordinary method, we could

proceed as follows: The inverse function is = T:gy-"-
9@ 3x 2y 6y .
dy” T+ T @+
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hence
3
a1 aapr_ ) s
do de— Gy 3 Qx/c%
5 6xq2-1  2f>-1

Let us take, as another example, g/=-£7v;?-
5

The inverse function is =5 5 or 0=y-%—5, and

‘Jlgz- —3y~t= -3/ (0+5)%
. dy 1
It follows that 6= WD
been found otherwise.

We shall find this dodge most useful later on;
meanwhile you are advised to become familiar with
it by verifying by its means the results obtained in
Exercises I. (p. 25), Nos. 5, 6, 7; Examples (p. 68),
Nos. 1, 2, 4; and Exercises VI (p. 73), Nos. 1, 2, 3
and 4.

as might have

You will surely realize from this chapter and the
preceding, that in many respects the calculus is an
art rather than a science: an art only to be acquired,
as all other arts are, by practice. Hence you should
work many examples, and set yourself other examples,
to see if you can work them out, until the various
artifices become familiar by use.



CHAPTER XIV.

ON TRUE COMPOUND INTEREST AND THE
LAW OF ORGANIC GROWTH.

LET there be a quantity growing in such a way that
the increment of its growth, during a given time,
shall always be proportional to its own magnitude.
This resembles the process of reckoning interest on
money at some fixed rate; for the bigger the capital,
the bigger the amount of interest on it in a given
time.

Now we must distinguish clearly between two
cases, in our calculation, according as the calculation
is made by what the arithmetic books call “simple
interest,” or by what they call “compound interest.”
For in the former case the capital remains fixed,
while in the latter the interest is added to the cap-
ital, which therefore increases by successive additions.

(1) At simple imterest. Consider a concrete case.
Let the capital at start be £100, and let the rate
of interest be 10 per cent. per annum. Then the
increment to the owner of the capital will be £10
every year. Let him go on drawing his interest
every year, and hoard it by putting it by in a
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stocking, or locking it up in his safe. Then, if he
goes on for 10 years, by the end of that time he will
have received 10 increments of £10 each, or £100,
making, with the original £100, a total of £200 in all.
His property will have doubled itself in 10 years.
If the rate of interest had been 5 per cent., he would
have had to hoard for 20 years to double his property.
If it had been only 2 per cent., he would have had

to hoard for 50 years. It is easy to see that if the
value of the yearly interest is }—Z of the capital, he

must go on hoarding for n years in order to double
his property.
Or, if y be the original capital, and the yearly

interest is %, then, at the end of = years, his property
will be Y +n'% =2y.

(2) At compound interest. As before, let the owner
begin with a capital of £100, earning interest at the
rate of 10 per cent. per annum; but, instead of
hoarding the interest, let it be added to the capital
each year, so that the capital grows year by year.
Then, at the end of one year, the capital will have
grown to £110; and in the second year (still at 10 7/)
this will earn £11 interest. He will start the third
year with £121, and the interest on that will be
£12. 2s.; so that he starts the fourth year with
£133. 2s., and so on. It is easy to work it out, and
find that at the end of the ten years the total capital
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will have grown to £259. 7s. 6d. In fact, we see that
at the end of each year, each pound will have earned
1 of a pound, and therefore, if this is always added
on, each year multiplies the capital by 1}; and if
continued for ten years (which will multiply by this
factor ten times over) the original capital will be
multiplied by 2:59375. Let us put this into symbols.

Put y, for the original capital; ?—lz for the fraction

added on at each of the = operations; and ¥, for the
value.of the capital at the end of the n® operation.

Then Yn=1, (1 + %)71.

But this mode of reckoning compound interest once
a year, is really not quite fair; for even during the
first year the £100 ought to have been growing. At
the end of half a year it ought to have been at least
£105, and it certainly would have been fairer had
the interest for the second half of the year been
calculated on £105. This would be equivalent to
calling it 5 9/ per half-year; with 20 operations, there-
fore, at each of which the capital is multiplied by £3.
If reckoned this way, by the end of ten years the
capital would have grown to £265. 8s.; for

(14 )*°=2654.
But, even so, the process is still not quite fair; for,
by the end of the first month, there will be some

interest earned ; and a half-yearly reckoning assumes
that the capital remains stationary for six months at
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a time. Suppose we divided the year into 10 parts,
and reckon a one-per-cent. interest for each tenth of
the year. We now have 100 operations lasting over
the ten years; or

Y= £100 (1413
which works out to £270. 8s.

Even this is not final. Let the ten years be divided
into 1000 periods, each of iy of a year; the interest
being % per cent. for each such period; then

yn=£100 (1-+ 7)™
which works out to £271. 14s. 21d.
Go even more minutely, and divide the ten years

into 10,000 parts, each 'y of a year, with interest
at 135 of 1 per cent. Then

Yo =£100 (1 452-)1000;

10,000
which amounts to £271. 16s. 4d.
Finally, it will be seen that what we are trying to
find is in reality the ultimate value of the expression

(1 +%> , which, as we see, is greater than 2; and

which, as we take n larger and larger, grows closer
and closer to a particular limiting value. However
big you make %, the value of this expression grows
nearer and nearer to the figure

2:71828...
& number never to be forgotten.

Let us take geometrical illustrations of these things.
In Fig. 86, OP stands for the original value. O7 is
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the whole time during which the value is growing.
It is divided into 10 periods, in each of which there is
an equal step up. Here Z—Z is a constant; and if each
step up is 4% of the original OP, then, by 10 such
steps, the height is doubled. If we had taken 20 steps,

U

q===—-

wp--——-p---
of~=md----

[V R,

H -

each of half the height shown, at the end the height
would still be just doubled. Or % such steps, each

of 717, of the original height OP, would suffice to

double the height. This is the case of simple interest.
Here is 1 growing till it becomes 2.

In Fig. 87, we have the corresponding illustration of
the geometrical progression. Each of the successive
n+1

n
its predecessor. The steps up are not equal, because

ordinates is to be 1 +%, that is, times as high as
each step up is now % of the ordinate at that part of

the curve. If we had literally 10 steps, with (1++%)
for the multiplying factor, the final total would be
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(145 or 2:593 times the original 1. But if only
we take n sufficiently large (and the corresponding

1 . 1\»
- sufficiently small), then the final value (1 +;&> to
which unity will grow will be 271828,

(5N ittt st

P
{
o

Epsilon. To this mysterious number 2-7182818
etc., the mathematicians have assigned as a symbol
the Greek letter e (pronounced epsilon) or the English
lettere. All schoolboys know that the Greek letter
(called p?) stands for 3-141592 etc.; but how many of
them know that epsilon means 2-71828? Yetitisan
even more important number than !

What, then, is epsilon ?

Suppose we were to let 1 grow at simple interest
till it became 2; then, if at the same nominal rate of
interest, and for the same time, we were to let 1 grow
at true compound interest, instead of simple, it would
grow to the value epsilon.

This process of growing proportionately, at every
instant, to the magnitude at that instant, some people

A p——- -r-

[ SR
ohF-=---
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call a logarithmic rate of growing. Unit logarithmie
rate of growth is that rate which in unit time will
cause 1 to grow to 2718281, It might also be
called the organic rate of growing: because it is
characteristic of organic growth (in certain circum-
stances) that the increment of the organism in a
given time is proportional to the magnitude of the
organism itself.

If we take 100 per cent. as the unit of rate,
and any fixed period as the unit of time, then the
result of letting 1 grow arithmetically at unit rate,
for unit time, will be 2, while the result of letting 1
grow logarithmically at unit rate, for the same time,
will be 2-71828....

’

A little more about Epsilon. We have seen that
we require to know what value is reached by the

expression (1 +%)n, when 7 becomes indefinitely

great. Arithmetically, here are tabulated a lot of
values (which anybody can calculate out by the help
of an ordinary table of logarithms) got by assuming
n=2; n=>5; n=10; and so on, up to % =10,000.

(1412 =295,

A+3y = 2489,
(1+5)° = 2594,
(14 54)? =2:653,
(I+3)° =2704,

At roloe)®®  =2717L,
(14 15h55)1000 =27182
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It is, however, worth while to find another way of
calculating this immensely important figure.
Accordingly, we will avail ourselves of the binomial

theorem, and expand the expression (1+1)n in that
well-known way. "

The binomial theorem gives the rule that

n-1 n-25H2
il b+’n(u—1)a b

L 12
n-3
+n(n—l)(n—-2)a—L§—w+etc.

(a+d)y'=a+n

Putting a=1 and b -——71—2, we get

1\ 1 /n—1 1 (n—1)(n—-2)
(1+3) =1+1+g(7>+§—n2
1 (m=1)(n—-2)(n—3)

+ B B +ete.

Now, if we suppose % to become indefinitely great,
say a billion, or a billion billions, then # -1, n—2,
and n—3, ete., will all be sensibly equal to n; and
then the series becomes

1,11
e—1+1+|;2-+E+E+etC....

By taking this rapidly convergent series to as
many terms as we please, we can work out the sum to
any desired point of accuracy. Here is the working
for ten terms:
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1-:000000

dividing by 1 1000000
dividing by 2 0500000
dividing by 3  0:166667
dividing by 4 0041667
dividing by 5 0008333
dividing by 6 0001389
dividing by 7 0000198
dividing by 8 01000025
dividing by 9 0000002
Total 2718281

€ is incommensurable with 1, and resembles # in
being an interminable non-recurrent decimal.

The Exponential Series. We shall have need of yet
another series.

Let us, again making use of the binomial theorem,

. 1\"® <y .
expand the expression (1 +%> , which is the same
as e when we make n indefinitely great.

1n=- 1(1 1nz- 2(1)

T +nw(nm 1)———L——

1nz- 3 <1>3

+nx(ne—1)(ne— 2)——l§_i—+ete.

=14 ng

1 nzmz—nm

+ L 1 n3m3 3224 2nx
ERNT

+ete
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=1 +ax+ Bl + B +ete.

But, when % is made indefinitely great, this
simplifies down to the following:

&= 1+m+ +etc vee

|2 L_ 4

This series is called the exponential series.
 The great reason why € is regarded of importance
is that e® possesses a property, not possessed by any
other function of @, that when you differentiate it
its value remains unchanged; or, in other words, its
differential coefficient is the same as itself. This can
be instantly seen by differentiating it with respect
to x, thus:

d(e") 4a®
°+1+ +1 5 3+ 733
St
+tiz3.5.5tete

a2 a® xt
or =lte+is+iogtrs.g.atetes

which is exactly the same as the original series.

Now we might have gone to work the other way,
and said: Go to; let us find a function of a, such
that its differential coefficient is the same as itself,
Or, is there any expression, involving only powers
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of @, which is unchanged by differentiation ? Accord-
ingly. let us asswme as a general expression that

y=A4 + Bx+ Ca*+ Dx*+ Ext +ete,,
(in which the coefficients 4, BB, C, ete. will have to be
determined), and differentiate it.

Z—Z=B+ 20w +3Da* + AEx* +ote.
Now, if this new expression is really to be the same

as that from which it was derived, it is clear that

A must = B; that C=§= i; that D=Q=L-
2 1.2 3 1.2.3°
that E=Q=—A— ete
4 1.2.3.4 77
The law of change is therefore that
xz, x° a® at
y=a (]t Tyt g tete)

If, now, we take 4 =1 for the sake of further
simplicity, we have

x  a? x® xt
y=l+t1+iztiostrg.gatete

Differentiating it any number of times will give
always the same series over again.

If, now, we take the particular case of 4 =1, and
evaluate the series, we shall get simply

when =1, y= 2718281 etc.; that is, y=e;

when =2, y=(2"718281 etc)?; thatis, y=e?;

when =3, y=(2718281 etc.)®: thatis, y=e3;
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and therefore
when x=x, y=(2718281 ete.)*; thatis, y=¢
thus finally demonstrating that

x8 xt

T2 3tTz.aatete

e=1+7+7 K

1.2

[Note—How to read exponentials. TFor the benefit
of those who have no tutor at hand it may be of use
to state that e® is read as *“epsilon to the eksth power;”
or some people read it “exponential eks” So e is
read “epsilon to the pee-teeth-power” or « exponential
pee tee.” Take some similar expressions :—Thus, e-2is
read “epsilon to the minus two power” or “exponential
minus two.” €% is read “epsilon to the minus
ay-eksth’ or « exponential minus ay-eks.”]

Of course it follows that €/ remains unchanged if
differentiated with respect to y. Also €%, which is
equal to (e%)?, will, when differentiated with respect
to a2, be ae*®, because a is a constant.

Natural or Napieriamn Logarithms.

Another reason why e is important is because it
was made by Napier, the inventor of logarithms, the
basis of his system. If y is the value of €% then @
is the logarithm, to the base ¢, of . Or, if

y==¢,
then x=log.y.
The two curves plotted in Figs. 38 and 39 represent

these equations.
C.M.E. &
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The points calculated are:

x| 01056 1 |15 | 2

For Fic. 38
y || 1 165|271 450|769

yll1]e |3 |4]s
For Fia. 39
x 0 [069]110[1-39|2-08

&

(%)
)
]
'
1
|
[ XY R .

It will be seen that, though the calculations yield
different points for plotting, yet the result is identical.
The two equations really mean the same thing.

As many persons who use ordinary logarithms,
which are calculated to base 10 instead of base ¢, are
unfamiliar with the “natural ” logarithms, it may be
worth while to say a word about them. The ordinary
rule that adding logarithms gives the logarithm of
the product still holds good ; or

log. a+log.b=log. ab.
Also the rule of powers holds good ;
n X log. a=log. a™
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But as 10 is no longer the basis, one cannot multiply
by 100 or 1000 by merely adding 2 or 3 to the
index. One can change the natural logarithm to
the ordinary logarithm simply by multiplying it by
04343 or log,, 2 = 04343 x log. «,
and conversely, log. z=23026 X log,, 2.

A UseruL TaABLE OF “ NAPIERIAN LOGARITHMS ”
(Also called Natural Logarithms or Hyperbolic Logarithms),

Number Log, Number Log,
1 00000 6 17918
11 00953 7 1:9459
12 01823 8 2:0794
15 04055 9 2:1972
17 05306 10 2:3026
20 06931 20 2:9957
22 07885 50 39120
25 09163 100 46052
27 09933 200 52083
28 1-0296 500 62146
30 1-0986 1,000 6:9078
35 1-2528 2,000 7-6010
40 1-3863 5.000 85172
45 1:5041 10,000 92104
50 16094 20,000 99035

Exponential and Logarithmic Equations.
Now let us try our hands at differentiating certain
expressions that contain logarithms or exponentials.
Take the equation:
y =log. 2.
First transform this into
V=,
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whence, since the differential of e/ with regard to y is
the original function unchanged (see p. 143),
dx

dy =
and, reverting from the inverse to the original func-
tion, dy_1 _1_1
de dx~ e &
dy
Now this is a very curious result. It may be
written
d(l;w @) —l.

Note that 2! is a result that we could never have
got by the rule for differentiating powers. That rule
(page 25) is to multiply by the power, and reduce the
power by 1. Thus, differentiating a® gave us 3a%;
and differentiating a? gave 22!, But differentiating
a® gives us 0 X x~1=0, because a° is itself =1, and
is a constant. We shall have to come back to this
curious fact that differentiating log.x gives ug

;—c when we reach the chapter on integrating.

Now, try to differentiate
y=log.(x+a),
that is e=x+a;

we. have d(a;;— a)—ey. since the differential of e¥

remains ev.
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This gives g; =¢'=x+a;
hence, reverting to the original function (see p. 131),
we get dy 1 1
do~ dz” z+a
dy
Next try y=log,, 2.

First change to natural logarithms by multiplying
by the modulus 04343. This gives us
y=04343log.x;
dy _04343

whence
dx x

The next thing is not quite so simple. Try this:
y=a". ‘
Taking the logarithm of both sides, we get
log.y=xlog.a,

or o 108Y _
log.a log.a

X log.y.

Since 1—1— is a constant, we get
0g. &

€
de_ 1 1 1 .
dy log.a”y a*xlog.a’
hence, reverting to the original function,
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We see that, since

da d‘/ =1 and g _ 1 ! 1><§— lo

dy X d dy y log,a y dx Lo

We shall find that whenever we have an expression
such as log.y=a function of x, we always have
1 dy
y do
so that we could have written at once, from
log.y=alog.a,

1dy

7w log.a and % =a”log.a.

=the differential coefficient of the function cf =z,

Let us now attempt further examples.

Examples.
(1) y=€e"%. Let —ax=z; then y=¢2
‘Zl'/ € g; —a; hence %—Z:—ae'“’.
Or thus:
log.y= —ax; ?7% —-a; %— —ay=—ae-%,

22 2
(@) y=es. Let T =2; then y=¢"
dy dz _2x dy 2x ’;’

- dx= 3 ds 3
Or thus: p »
_a 1dy_ 2% dy 2%
logy=3 yau= 8 do~3°
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R

@ y=etr
Io 2¢ ldy 2(x+1)—2x,
Y=+l yde  @+1p °

) dy “i
hence do— @+ 1 ) 5€

=%

Check by writing Z _|_ 1

e log.y=(at+a)k

(4) y=e
dy _xx 7+

ldy =
= and —*= T
yde (*+a)t dx (2*+a)*
(For if (a2 +a)f =u and 22 +a=v, u=1%,
du_1  dv 9y du__ =z )
dv 20t dm T de (+a)t
Check by writing /22 +a=2.
(5) y=log(a+a?®). Let (a+a®)=z; then y=logs
dy 1 dz_, ,. dy _ 3a?
&=’ %—3.90 ; hence do=at i
(6) y=log {322+ /a+a?}. Let 3x2+Aa+at=5;
then y=log.z.
dy 1.  dz x
=13 —Z=6 —
dz 2z dx w+~/w2+a

6
dy _ $+~/w2+a 2(14+6/22+a)
o~ 3521 Jat 2 B+ tawzr+a
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(@) y=(a+3yVz—2.
log.y=2log.(x+3)+ 3 log.(x—2).

ldy_ .2 . 1

yde (x+3) 2x-2)’
d_?/_ 2 T{ 2 1 }
do= @ TN T st e o)

(8) y=(a®+3)¥(a?—2)k
log.y =3log.(x?+3)+% log.(x®—2);
ld_?/=3 2 23:62: 6 +2a:2'
yde 2*+3 3a*—-2 2?43 2*-2
(For if uw=log (2*+3), let 2?4+ 3=2 and u=log.x

du_1 di_,  du_ %
dz 2z’ de "7 dx 2?43

Similarly, if v=1log.(a®—2), % = a/‘"gf' 2) and

d_y_ 2 3,3 _}{ 6 2.’1}2}
d = @@ =2 m gt

) y= NP ta

N

Iog,y:% log.(x®+a) —513- log.(x® — a).

ldy 1 22 1 82 x _ a2
ydr 2a*+a 32°—a x2°+a 2*—a
dy i/m2+a{ x 22 )
a WP - .
an de ~at—al\xi+a ms—a}
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1
(10) Y=Tog.w
1
dl_logixxo—lx.%_— 1
da™ log’z . wloglx
(A1) y=</log.w=(log.w)}. Letz=log.a; y=2
dz 3" ' dw x dx 3ws/loglw

1 ax
a2 y=(z)"
log.y = —axlog.a®= —ax?.log.a.
ldy
ydw— 2ax . log.a
dy _ 1\ o e
and d———Q(MU(a;) Jdog.a= —2xa .log.a.

Try now the following exercises.

Exercises XII. (See page 294 for Answers.)

(1) bifferentiate y=b(e**—e~ ),
(2) Find the differential coefficient with respect ta
t of the expression’ u=at*+2log.t.
d(log.y).
¢

(3) It y=nt, fina 22D
o 1 ab | dy_ -
(4) Show that if y=; Togea’ d =
n dw
(5) If w=pv", find T’
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Differentiate .
(6) y=log.x™ () y=8¢ =1,
(8) y=(8a®+1)e-5= 9) y=log.(x*+a).

(10) y=(8a2—1)(a/2+1).
_log.(x+3)
D y="%1s
(13) It was shown by Lord Kelvin that the speed of
signalling through a submarine cable depends on the
value of the ratio of the external diameter of the core
to the diameter of the enclosed copper wire. If this
ratio is called y, then the number of sigrials s that can
be sent per minute can be expressed by the formula

(12) y=a®x 2°

s=ay?log. ‘%/ ;

where @ is a constant depending on the length and
the quality of the materials. Show that if these are
given, s will be a maximum if y=1+a/c
(14) Find the maximum or minimum of
y=a*—log.x.
(15) Differentiate y=Ilog.(axe®).
(16) Differentinte y=(log.ax)’.

The Logarithmic Curve.

Let us return to the curve which has its successive
ordinates in geometrical progression, such as that
represented by the equation y=~bp=.

We can see, by putting &=0, that b is the initial
height of y.

Then when

x=1, y=bp; x=2, y=bp?; x=3, y=>bp’ etc.
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Also, we see that p is the numerical value of the
ratio between the height of any ordinate and that of
the next preceding it. In Fig. 40, we have taken p
as ¢; each ordinate being ¢ as high as the preceding
one.

L T T y——
e rcrcrcrc e

&
>

~p -
N
LN S

X 0o X
Fia. 40. Fia. 41.

3 4

If two successive ordinates are related together
thus in a constant ratio, their logarithms will have a
constant difference; so that, if we should plot out
a new curve, Fig. 41, with values of log, i as ordinates,
it would be a straight line sloping up by equal steps.
In fact, it follows from the equation, that

log.y=log.b+x-log.p,
whence log.y—log.b=x+log.p.

Now, since log.p is a mere number, and may be
written as log.p=a, it follows that

]og(‘g
and the equation takes the new form
y=be,

=qar,
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The Die-away Curve.

If we were to take p as a proper fraction (less than
unity), the curve would obviously tend to sink down-
wards, as in Fig. 42, where each successive ordinate

is # of the height of the preceding one, .
The equation is still
y=0bp:
Y

[ T

|
L
5 6 XX

(1) S,
e ———-

O

]
=
@

but since p is less than one, log.p will be a negative
quantity, and may be written —a; so that p=e€-9
and now our equation for the curve takes the form
y=>be =
The importance of this expression is that, in the
case where the independent variable is ¢ime, the
equation represents the course of a great many
physical processes in which something is gradually
dying away. Thus, the cooling of a hot body is
represented (in Newton’s celebrated “law of cooling )
by the equation 0,=0,e"%;
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where 6, is the original excess of temperature of a
hot body over that of its surroundings, 6, the excess
of temperature at.the end of time ¢, and @ is a con-
stant—namely, the constant of decrement, depending
on the amount of surface exposed by the body, and
on its coeflicients of conductivity and emissivity,
ete.
A similar formula,

Q=@

is used to express the charge of an electrified body,
originally having a charge @,, which is leaking away
with a constant of decrement a; which constant
depends in this case on the capacity of the body and
on the resistance of the leakage-path.

Oscillations given to a flexible spring die out after
a time; and the dying-out of the amplitude of the
motion may be expressed in a similar way.

In fact €% serves as a die-away factor for all
those phenomena in which the rate of decrease
is proportional to the magnitude of that which is
decreasing; or where, in our usual symbols, %%— is
proportional at every moment to the value that y has
at that moment. For we have only to inspect ths
curve, Fig. 42 above, to see that, at every part of it,
the slope % is proportional to the height y; the
curve becoming flatter as y grows smaller. In sym-

bols, thus y=be-
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or log.y=log.b—axlog.e=log.b—ax,
and, differentiating, 1dy =—q;

y dx
hence _ Z—Z—be Zx(—a)y=—ay;

or, in words, the slope of the curve is downward, and
proportional to  and to the constant a.

We should have got the same result if we had
taken the equation in the form

=bp?;
for then Z/ bp*® x log. p.
But log.p=—a;
giving us g/—yx( —-a)=—ay,
as before.

The Time-constant. In the expression for the “die-
away factor” e-*, the quantity @ is the reciprocal of
another quantity known as “ the time-constant,” which
we may denote by the symbol 7. Then the die-away

factor will be written e'%; and it will be seen, by

making £=T that the meaning of 7' (or of é) is that

this is the length of time which it takes for the original
quantity (called 6, or @, in the preceding instances)

to die away to %th part—that is to 0-3678—of its

original value.
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The values of e* and e-* are continually required
in different branches of physics, and as they are given
in very few sets of mathematical tables, some of the
values are tabulated here for convenience.

x [ s 1-¢*
000 1-0000 1-0000 00000
010 1'1052 09048 00952
020 12214 0-8187 01813
050 16487 06065 03935
075 21170 04724 05276
090 24596 04066 05934
1-00 27183 03679 06321
110 30042 03329 0'6671
120 3:3201 0-3012 06988
125 3'4903 02865 07135
1-50 44817 02231 07769
175 65764 01738 08262
2:00 7-389 0°1353 08647
2:50 12°183 00821 09179
3:00 20°085 00498 09502
3:50 33115 00302 09698
4:00 54'598 00183 Gr9817
4:50 90017 00111 09889
5'00 14841 00067 09933
550 24469 00041 0°9959
6:00 40343 0'00248 099752
750 180804 000053 099947

1000 22026°5 0000045 0999955

As an example of the use of this table, suppose
there is a hot body cooling, and that at the beginning
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of the experiment (4.e. when ¢=0) it is 72° hotter than
the surrounding objects, and if the time-constant of its
cooling is 20 minutes (that is, if it takes 20 minutes

for its excess of temperature to fall to %part of 72%)

then we can calculate to what it will have fallen in
any given time ¢ For instance, let £ be 60 minutes.
Then —;—,= 60+20=38, and we shall have to find the
value of €-3, and then multiply the original 72° by
this. The table shows that e-% is 0-0498. So that
at the end of 60 minutes the excess of temperature
will have fallen to 72°x 010498 =3586°.

Further Examples.
(1) The strength of an electric current in a con-
ductor at a time ¢ secs. after the application of the

electromotive force producing it is given by the ex-
Rt

pression O=%{1 - e—T}.

The time constant is g

"It E=10,R= 1 L=001; then when ¢ is very large
the term 1—¢” 7 becomes 1, and 0—%—10 also

: L |
Its value at any time may be written:

t
O=10—-10¢ 091,
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the time-constant being 001. This means that it

takes 001 sec. for the variable term to fall to
0

103678 of its initial value 10€501=10,

To find the value of the current when #= 0001 sec.,
say, %FO'], €-91=09048 (from table).

It follows that, after 0001 sec., the variable term
is 09048 x10=9'048, and the actual current is
10—9048=0952.

Similarly, at the end of 01 sec.,

12

T
the variable term is 10 x 0000045 = 0:0004:5, the current
being 9:9995.

(2) The intensity I of a beam of light which has
passed through a thickness / cm. of some transparent
medium is /=T, e~ X!, where I, is the initial intensity
of the beam and K is a “constant of absorption.”

This constant is usually found by experiments If
it be found, for instance, that a beam of light has
its intensity diminished by 187/ in passing through
10 cms. of a certain transparent medium, this meuns
that 82=100x e~ &x10 or ¢-10£=()82, and from the
table one sees that 10K =020 very nearly; hence
K=002.

To find the thickness that will reduce the intensity
to ha!f its value, one must find the value of [ which
satisfies the equality 50=100x €%, or 0-5=¢- 002,

C.M.E. L

=10; €-1°=0000045;
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It is found by putting this equation in its logarithmie
form, namely,
log 0'5=—002xIxloge,
which gives _
I= jg%%othw =345 centimetres nearly.

(8) The quantity @ of a radio-active substance
which has not yet undergone transformation is known
to be related to the initial quantity @, of the sub-
stance by the relation @ =@, e-*, where A is a constant
and ¢ the time in seconds elapsed since the trans-
formation began.

For “Radium A,” if time is expressed in seconds,
experiment shows that A=385x10-3, Find the time
required for transforming half the substance. (This
time is called the “mean life ” of the substance.)

We have 05 = ¢~ 0°00385¢,
log 0°5= —000385¢t x log €
and t =3 minutes very nearly.

Exercises XIII. (See page 294 for Answers.)

t
(1) Draw the curve y=be 7; where b=12, T=8§,
and ¢ is given various values from 0 to 20.

(2) If a hot body cools so that in 24 minutes its
excess of temperature has fallen to half the initial
amount, deduce the time-constant, and find how long
it will be in cooling down to 1 per cent. of the originai
excess.
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(3) Plot the curve y=100(1—e-%).
(4) The following equations give very similar curves:

(1) y= + b ;
(i) y=a(l—e'?);
a b
(iii) y= go° are tan <Z>
Draw all three curves, taking @ =100 millimetres;

=30 millimetres.

(5) ¥ind the differential coefficient of y with respect
0o @) y=am; ®) y=(F; @ y=¢

(6) For “Thorium A4,” the value of A is 5; find the
“mean life,” that is, the time taken by the trans-
formation of a quantity @ of “ Thorium 4 ” equal to
half the initial quantity @, in the expression

Q= Qe ™™;
¢ being in seconds.

(7) A condenser of capacity K'=4x10-5 charged
to a potential V=20, is discharging through a resist-
ance of 10,000 ohms. Find the potential ¥ after («) 0'1
second; (b) 001 second; assuming that the fall of

t
potential follows the rule V=V %z,

(8) The charge @ of an electrified insulated metal
sphere is reduced from 20 to 16 units in 10 minute,
Find the coeflicient u of leakage, if @=@Q,x e *; ¢,
being the initial charge and ¢ being in seconds. Hence
tind the time taken by half the charge to leak away.
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(9) The damping on a telephone line can be ascer-
tained from the relation ¢=¢,e-#, where ¢ is the
strength, after ¢ seconds, of a telephonic current of
initial strength ¢,; I is the length of the line in kilo-
metres, and B is a constant.. For the Franco-Knglish
submarine cable laid in 1910, 8=0-0114. Find the
damping at the end of the cable (40 kilometres), and
the length along which ¢ is still 89/ of the original
current (limiting value of very good audition).

(10) The pressure p of the atmosphere at an altitude
h kilometres is given by p=pe-**; p, being the
pressure at sea-level (760 millimetres).

The pressures at 10, 20 and 50 kilometres being
199-2, 42-2, 0:32 millimetres respectively, find % in
each case. Using the mean value of %, find the per-
centage error in each case.

(11) Find the minimum or maximum of y =a%
1
(12) Find the minimum or maximum of y=az.
1
(13) Find the minimum or maximum of y =xas.



CHAPTER XV.
HOW TO DEAL WITH SINES AND COSINES.

GREEK letters being usual to denote angles, we will
take as the usual letter for any variable angle the
letter 6 (“ theta”).

Let us consider the function

y=sin6.

Fig. 43.

d(sin 0),

dao ’
or, in other words, if the angle 6 varies, we have to
find the relation between the increment of the sine
and the increment of the angle, both increments being
indefinitely small in themselves. Examine Fig. 43,
wherein, if the radius of the circle is unity, the height
of y is the sine, and 0 is the angle. Now, if 0 is

What we have to investigate is the value of
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supposed to increase by the addition to it of the
small angle d6—an element of angle—the height
of y, the sine, will be increased by a small element dy.
The new height y+dy will be the sine of the new
angle 6+ d0, or, stating it as an equation,

y+dy=sin(0+db);
and subtracting from this the first equation gives
dy =sin (04 d0)—sin 6.

The quantity on the right-hand side is the difference
between two sines, and books on trigonometry tell
us how to work this out. For they tell us that if
M and N are two different angles,

M+N . M-N

0] e S1n 3

If, then, we put M=60+d0 for one angle, and
N =0 for the other, we may write

dy= 20086_+cl29+6 iG-HéG—O,
or, dy =2 cos (6 +%d6) - sin £d0

But if we regard df as indefinitely small, then in
the limit we may neglect $d6 by comparison with 6,
and may also take sin }df as being the same as 3d0.
The equation then becomes:

dy=2cos0x}do;
dy=cos 6 db,

dy
do

sin M —sin N =2 cos

and, finally, =co0s 0.
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SINES AND COSINES

The accompanying curves, Figs. 44 and 45, show,

>

=gin 0, and dy

Y

plotted to scale, the values of

a6 = %8 6,

for the corresponding values of 6.

i 30° 60° 90° 120° 150° 18Q°

o
-05
-7

F1a. 44,

t 30° 60° 9\°

[2]
a5
=]

F1a. 45,
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Take next the cosine.
Let y=cos0.
o ™
Now cosO=sin (§ - 9).
Therefore
. (T (.
dy=d(sm (5—6)) =cos (5—9) X d(—0),
=CO8 (—2“:-—9) X (—do),

(cii—y= —Cos (Zz’-e).
And it follows that

@= —gin 6.

do

Lastly, take the tangent.
Let y=tan6,

_sin @
cos @

d(s;; 6), and

the differential coefficien’ of cos 0 is d%? 6). Apply-

The differential coefficient of sin @ is

ing the rule given on page 40 for differentiating a
guotient of two functions, we get
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d(sinf) . ,d(cos6)
@—cos 94(” —sin 6 a0
do cos?0
__cos?0+sin?0
~ cos?O
1
" cos?@’
ol ZZTZ =sec?0.
Collecting these results, we have.
dy
4 a0
sin 6 cos 0
cos 0 —sinL @
tan 6 sec? 0

Sometimes, in mechanical and physical questions,
us, for example, in simple harmonic motion and in
wave-motions, we have to deal with angles that in-
crease in proportion to the time. Thus, if 7' be the
time of one complete pertod, or movement round the
circle, then, since the angle all round the circle is 27
radians, or 360°, the amount of angle moved through
in time ¢, will be

0=27rit,-, in radians,

or 6=360£, in degrees,
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If the frequency, or number of periods per second,

be denoted by %, then n=—;,—, and we may then write:
0=2mnt.

Then we shall have
y =sin 2wnt.

If, now, we wish to know how the sine varies with
respect to time, we must differentiate with respect, not
to ¢, but to £. For this we must resort to the artifice
explained in Chapter IX, p. 67, and put

dy _dy do
dt—do’dt
Now %9 win obviously be 277 ; so that

dt

dy
m—cosex%rn

=27n.+ cos 27ndt.
Similarly, it follows that

‘_iici’i;”mt) = — 27rn - sin 27nt.

Second Differential Coefficient of Sine or Cosine.

We have seen that when sin 0 is differentiated with
respect to 0 it becomes cos §; and that when cos 6 is
differentiated with respect to 6 it becomes —sin6;

or, in symbols,
d*(sin 6) _

a0 —sin 6.
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So we have this curious result that we have found
a function such that if we differentiate it twice over,
we get the same thing from which we started, but
with the sign changed from + to —.

The same thing is true for the cosine; for differen-
tiating cos§ gives us —sinf, and differentiating
—sin 6 gives us —cos 0 ; or thus:

d—(d‘igf——i) = —cos 0.
Sines and cosines are the only functions of which
the second differential coefficient is equal and of
opposite sign to the original function.

Examples.

With what we have so far learned we can now
differentiate expressions of a more complex nature.

(1) y=arcsin .

If y is the arc whose sine is z, then x=siny.

L
ay~ Y

Passing now from the inverse function to the original
one, we get

dy_1 _ 1
de dx cosy
dy
Now cosy=a/1—sin?y=a/1—22;
dy 1
hence L=,
dr  J1—a?

o rather unexpected result.
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(2) y=cos®6.
This is the same thing as y (cos 0).

Let cosO=wv; then y=15; d =32
dv
0 —sin 6.
dy _dy dv_ _ 2
d6=dn " d0= 3 cos?O sin O.

(3) y=sin(z+a).
Let z+a=wv; then y=sinw.
W _ s T ay_ \
ap=C08?; d_w_l and dw—cos(w+a,;
(4) y=log.sin 6.
Let sinf0=v; y=log.v.

dy 1, dv_
dv—v a9
Zg lexmse cot 0.

cos O
(5) y=co te—ﬂ

dy_ —sint0—cost0
do— sin?6
= _(l +cot29)= —cwecze:
(6) y=tan 36.
Iﬂt 36 v; y tan v ; Zﬁ—:ﬂecz'v

dv_,. dy 2
(79_3’ 0= =3sec?30.
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(1) y=A/1+3tan%0; y=(1+3tan’6)
Let 3tan‘f=w.

dy _
_ 3. Yy
y—-(1+v) ’ dv 2\/1_-{-__ (See P 68)'!
dv 9
0= 6 tan 0 sec®(
(for, if tan H=u,
dv du

. 2. 22U _ . 22 28 «
v=23u?; du—ﬁu, a0 sec2@;
hence zl—lé—(itanesec 0);
dy _ 6 tan 0 sec?0
d9 2. /143 tant0
(8) y=sinxcos 2.

dy
d—/—smw(—s1nx)+cos xXeosx

hence

= cos’x —sin?r.

Baercises X1V. (See page 295 for Answers.)
(1) Differentiate the following:

(i) y=Asin (9— %)
(ii) y=sin®6; and y=sin 26.
(iii) y=sin%0; and y=sin 36.
(2) Find the value of 0 for which sinOxcosf is a
waximum.

(8) Differentiate y = %’_ cos 27nt.
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(l?/

dx

(56) Differentiate y=1log.cos .

(6) Differentiate y =182 sin (x+ 26°).

(7) Plot the curve y=100sin(0—15°); and show

that the slope of the curve at 6=75° is half the
maximum slope.

(8) If y=sin O-sin 26, find

(4) If y=sina? find

dy
do

(9) If y=a-tan™(6"), find the differential coefficient
of y with respect to 6.

(10) Differentiate y = e®sin?.

(11) Differentiate the three equations of Exercises
XIIL (p. 163), No. 4, and compare their differential
coefficients, as to whether they are equal, or nearly
equal, for very small values of @, or for very large
values of #, or for values of 2 in the neighbourhood
of 2=30.

(12) Differentiate the following :

(i) y=seca.
(ii) y=arccos .
(iii) y=arctan .
(iv) y=arcsec .
(v) y=tanxx/3seca.
(13) Differentiate y =sin (26+ 3)?3.
(14} Differentiate y =6°+3sin (0 +3)—3ein6—36,

(15) Find the maximum or minimum of y=6cos0.



CHAPTER XVL
PARTIAL DIFFERENTIATION.

WE sometimes come across quantities that are fune-
tions of more than one independent variable. Thus,
we may find a case where y depends on two other
variable quantities, one of which we will call % and
the other ». In symbols

y=Su, v).

Take the simplest concrete case.

Let y=uxo.

What are we to do? If we were to treat v as a
constant, and differentiate with respect to u, we
should get dy,=vdu;
or if we treat w as a constant, and differentiate with
respect to v, we should have:

dy,=udv.

The little letters here put as subscripts are to show
which quantity has been taken as constant in the
operation.

"Another way of indicating that the differentiation
has been performed only partially, that is, has been
performed only with respect to one of the independent
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variables, is to write the differential coefficients with
Greek deltas, like 0, instead of little d. In this way
o _
=Y
%
ov
If we put in these values for » and w respectively,
we shall have

_%
dy,= aualu,l
dy. al/dv, J

But, if you think of it, you will observe that the
total variation of y depends on both these things at
the same time. That is to say, if both are varying,
the real dy ought to be written

=U.

which are partial differentials.

%y

dy=2au+ L iv;

and this is called a total differential. In some books

it is written dy= (g—;i) du+ (%) dv.

Example (1). Find the partial differential co-
efficients of the expression w=2ax?+ 3bxy+ 4cy®
The answers are:

gw = 4ax + 3by.
o =3bx+12cy>

E
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The first is obtained by supposing y constant, the
second is obtained by supposing x constant; tlier

dw = (dax+ 3by)dx+ (3bx+12¢y?) dy.

- Example (2). Let z=a¥ Then, treating first y
and then x as constant, we get in the usual way

o

—— = y-1
YT \'
%

=Y 4
e X xlogex,[

so that dz=ya¥ -1dx+a¥ log.x dy.

Ezxample (3). A cone having height k& and racdins
of base r, has volume V =37r%. 1f its height remains
constant, while = changes, the ratio of change of
volume, with respect to radius, is different from ratio
of change of volume with respect to height which
would occur if the height were varied and the radius
kept constant, for

3]
5= |
a_V_“' 2 l
3"

The variation when both the radius and the height
change is given by dV = 2% rh dr + = rian.

Example (4). In the following example } and f
denote two arbitrary functions of any form whatso-
ever. For example, they may be sine-functions, or

exponentials, or mere algebraic functions of the two
0.M,E. M
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independent variables, ¢ and «. This being under
stood, let us take the expression

y=F(x+at)+f(x—at),

or, y=F(w)+f(v);
where w=x+at, and v=x—at.
Then dy _oF(w) dw  of(v) dv

dr~ ow dx' w dx

=F(w) -1+ f(v)-1
(where the figure 1 is simply the coefficient of 2 in
w and v);

d )17/ . 7,
and d;JZ F(w)+f(v).
- dy _oF(w) dw , of(v) dv
Also At~ ow dt " o0 db
=F(w)-a—f(v)a;
and gg F(w)ya*+ f'(v)a?;
&y _ .d
whence = =a’ dat

This differential ejuation is of immense importance
in mathematical physics. (See also page 247.)

Maxima and Minima of Functions of two
Independent Variables.

Example (5). Let us take up again Exercise IX,,
p- 110, No. 4.

Let 2 and y be the length of two of the portions of
the string. The third is 30 ~ (2 +y), and the area cf the
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triangle is A =a/s(s—a)(s—y)(s—30+x+7), where
8 is the half perimeter, 15, so that 4 =/15P, where
— (15— 2)(15— y)(@+y—15)
=2y + a2y — 1522 — 1532 — 45y + 4502 + 450y — 3375.
Clearly A is maximum when P is maximum.
oP oP
dP = 3% dx+ e dy.
For a maximum (clearly it will not be a minimum in
this case), one must have simultaneously

oP oP
aw =0 and 5, =05
that is, 2y — 30+ y?— 45y +450=0,
2ay — 30y +a®— 452+ 450= 0.}
An immediate solution is x=y.
If we now introduce this condition in the value
of P, we find
=(15—a)%( 22— 15)=2a° — 7522+ 9002 — 3375.
For maximum or minimum, ‘ll—P =622 -150224900=0,
which gives =15 or x=10.
Clearly x=15 gives zero area; x=10 gives the

2
maximum, for %: 122 —150, which is <+ 30 for

#=15 and —30 for x£=10.

Ezample (6). Find the dimensions of an ordinary
railway coal truck with rectangular ends, so that,
for a given volume V the area of sides and floor
together is as small as possible.
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The truck is a rectangular box open at the top.
Let a be the length and y be the width; then the

.V . 2V 2V
depth is w The surface area is S =.7(:y+—w~+—?7‘

as=25 dm+%‘—§ dy=(y-27) dx+(x—%7‘;) &y,

For minimum (clearly it won't be a maximum here),

2V, L 2,
@ Y

Here also, an immediate solution is &=y, so that

4V dSs 1V
— 2 Z
S—z+a/

, = =2p——=0 for minimum, and
 da 2 ’

z=x/2V.

Exercises XV. (See page 296 for Answers.)
(1) Differentiate the expression %3—2a,-3y—2y2w+?§l

with respect to x alone, and with respect to y alone.
(2) Find the partial differential coefficients with
respect to 2, ¥ and #, of the expression
222+ xy’z+ xyl + 22y

(3) Let r’=(x—a)®*+(y—06)*+(z—c)

Find the value of g+ a_r+a_r Also find the value

ox oy oz
e O O

o oy T ¥
(4) Find the total differential of y=u"

of
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(5) Find the total differential of y=wu?sinv; of
y=(sinz)*; and of y= loge

(6) Verify that the sum of three quantities , ¥, 2,
whose product is a constant %, is minimum when
these three quantities are equal.

(7) Find the maximum or minimum of the function

u=x+22y+y.

(8) The post-office regulations state that no parcel
is to be of such a size that its length plus its girth
exceeds 6 feet. What is the greatest volume that
can be sent by post (@) in the case of a package of
rectangular cross section; (b) in the case of a package
of circular cross section.

(9) Divide 7 into 3 parts such that the continued
product of their sines may be a maximum or minimum.

+y
(10) Find the maximum or minimum of = i

(11) Find maximum and minimum of

u=y+2x—2log.y—log.x.

(12) A telpherage bucket of given capacity has
the shape of a horizontal isosceles triangular prism
with the apex underneath, and the opposite face open.
Find its dimensions in order that the least amount
of iron sheet may be used in its construction.



CHAPTER XVIL
INTEGRATION.

THE great secret has already been revealed that this
mysterious symbol |, which is after all only a long S,

merely means “the sum of,” or “the sum of all such
quantities as.” It therefore resembles that other
symbol X (the Greek Sigma), which is also a sign
of summation. There is this difference, however, in
the practice of mathematical men as to the use of
these signs, that while = is generally used to indicate
the sum of a number of finite quantities, the integral

sign j is generally used to indicate the summing up

of a vast number of small quantities of indefinitely
minute magnitude, mere elements in fact, that go
to make up the total required. Thus Idy=y, and
_‘-dw=w. \

Any one can understand how the whole of anything
can be conceived of as made up of a lot of little bits;
and the smaller the bits the more of them there will
be. Thus, a line one inch long. may be conceived as
made up of 10 pieces, each & of an inch long; or
of 100 parts, each part being 35 of an inch long;
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or of 1,000,000 parts, each of which is ;—=2—— of an

1,000,000
inch long; or, pushing the thought to the limits of
conceivability, it may be regarded as made up of
an infinite number of elements each of which is
infinitesimally small.

Yes, you will say, but what is the use of thinking
of anything that way? Why not think of it straight
off, as a whole? The simple reason is that there are
a vast number of cases in which one cannot calculate
the bigness of the thing as a whole without reckoning
up the sum of a lot of small parts. The process of
“gntegrating ” is to enable us to calculate totals that
otherwise we should be unable to estimate directly.

Let us first take one or two simple cases to
familiarize ourselves with this notion of summing
up « lot of separate parts.

Consider the series:

1+3+i+3+ S+t tete
Here each member of the series is formed by taking
it half the value of the preceding. What is the value
of the total if we could go on to an infinite number

of terms? Every schoolboy knows that the answer
18 2. Think of it, if you like, as a line. Begin with

L L I Y |
| pr——————~4 Sy ) |
1 2 B

Fic 46.

one inch; add a half inch; add a quarter; add an
eighth; and so on. If at any point of the operation
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we stop, there will still be a piece wanting to make
up the whole 2 inches; and the piece wanting will
always be the same size as the last piece added.
Thus, if after having put together 1, 4, and }, we stop,
there will be } wanting. If we go on till we have
added 44, there will still be 4 wanting. The
remainder needed will always be equal to the last
term added. By an infinite number of operations
only should we reach the actual 2 inches. Practically
we should reach it when we got to pieces so small
that they could not be drawn—that would be after
about 10 terms, for the eleventh term is 1554 If we
want to go so far that not even a Whitworth’s
measuring machine would detect it, we should merely
have to go to about 20 terms. A microscope would
not show even the 18 term! So the infinite number
of operations is no such dreadful thing after all
The 4ntegral is simply the whole lot. But, as we
shall see, there are cases in which the integral
calculus enables us to get at the exact total that
there would be as the result of an infinite number
of operations. In such cases the integral calculus
gives us a rapid and easy way of getting at a result
that would otherwise require an interminable lot of
elaborate working out. So we had best lose no time
in learning how to integrate. '
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Slopes of Curves, and the Curves themselves.

Let us make a little preliminary enquiry about the
slopes of curves. For we have seen that differentiating
a curve means finding an expression for its slope (or
for its slopes at different points). Can we perform
the reverse process of reconstructing the whole curve
if the slope (or slopes) are prescribed for us?

Go back to case (2) on p. 84. Here we have the
simplest of curves, a sloping line with the equation

y=ax+b.

F----p -
e
-4 -~
R R —

cemmpee—-

)

1

1

]

'

‘

]

-t

I

1

:

-
X

1

We know that here b represents the initial height

Fia. 47

of y when =0, and that a, which is the same as %,

is the “slope” of the line. The line has a constant
slope. All along it the elementary triangles A dy
o

have the same proportion between height and base.
Suppose we were to take the da’s and dy’s of finite



186 CALCULUS MADE EASY

magnitude, so that 10 dx’s made up one inch, then
there would be ten little triangles like

AA0A08A0AAA0AA4

Now, suppose that we were ordered to reconstruct
the “curve,” starting merely from the information

that %:a. What could we do? Still taking the

little d's as of finite size, we could draw 10 of them,
all with the same slope, and then put them together,
end to end, like this:

Y -

o

Fic. 48.

And, as the slope is the same for all, they would join
to make, as in Fig. 48, a sloping line sloping with the
correct slope %:a. And whether we take the dy’s

and dx’s as finite or infinitely small, as they are all
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alike, clearly % =a, if we reckon y as the total of

all the dy’s, and x as the total of all the da’s. But
whereabouts are we to put this sloping line? Are
we to start at the origin O, or higher up? As the
only information we have is as to the slope, we are
without any instructions as to the particular height
above O; in fact the initial height is undetermined.
The slope will be the same, whatever the initial height.
Let us therefore make a shot at what may be wanted,
and start the sloping line at a height C above O.
That is, we have the equation
y=ax+C.

It becomes evident now that in this case the added
constant means the particular value that y has when
x=0.

Now let us take a harder case, that of a line, the
slope of which is not constant, but turns up more and
more. Let us assume that the upward slope gets

greater and greater in proportion as x grows. In
symbols this is: '

=Z =qu.
dx

Or, to give a concrete case, take a =1, so that
dy _
@ = %w.
Then we had best begin by calculating & few of

the values of the slope at ditferent values of a, and
~ also draw little diagrams of them.
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When $=0, Z’l/ 0 o——
9a
w=1, W_oe2, J—
dxz
d
@=2 ;=04 e
_a dy_
@=3, dx =06, A
~4, 9L~ A
xz=4, T =08,
a=5, gh=1o0 A
dx

Now try to put the pieces together, setting each so
that the middle of its base is the proper distance to
the right, and so that they fit together at the corners;
thus (Fig. 49). The result is, of course, not a smooth

Y

O

Fia. 49.

curve: but it is an approximation to one. If we had
taken bits half as long, and twice as numerous, like
Fig. 50, we should have a better approximation. But
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for a perfect curve we ought to take each da and its
corresponding dy infinitesimally small, and infinitely
numerous.

Y P

ot A :
(o) 7 2 3
F1a. 50.

?
]
]
!
' re

2 5 X

Then, how much ought the value of any ¥ to be?

Clearly, at any point P of the curve, the value of
y will be the sum of all the little dy’s from O up to

that level, that is to say, Idy=g/. And as each dy is

equal to tx - dx, it follows that the whole y will be
equal to the sum of all such bits as 1. dx, or, as we

should write it, j%w - dx.

Now if & had been constant, J%m-dx would have
been the same as ix|dz, or ta? But x began by

being 0, and increases to the particular value of & at
the point P, so that its average value from 0 to that

point is 2. Hence j%acdm= Tox?; or y=;a2

But, as in the previous case, this requires the addition
of an undetermined constant C, because we have not



190 CALCULUS MADE EASY

been told at what height above the origin the curve
will begin, when #=0. So we write, as the equation
of the curve drawn in Fig. 51,

y=7s2*+C.

Exercises XVI. (See page 296 for Answers.)
(1) Find the ultimate sum of $+3 44+ 1+ +ete.

(2) Show that the series 1—143—3+31—1+1 ete.,
is convergent, and find its sum to 8 terms.
2 4
(8) Iflog.(1+x) =.’Jc—'%+%‘3 —%—+ ete., find log,. 13,

(4) Following a reasoning similar to that explained
in this chapter, find y,

(a) if SZ2=31x; (D) if %:cosw.

G It %=2m+3, find .



CHAPTER XVIIL

INTEGRATING AS THE REVERSE OF
DIFFERENTIATING.

DIFFERENTIATING is the process by which when y is
given us (as a function of x), we can find Z—i/c

Like every other mathematical operation, the
process of differentiation may be reversed. Thus, if

differentiating y=a* gives us % =428, then, if one

begins with %=4x3, one would say that reversing the
process would yield y =% But here comesin a curious

ill—i;/;=4sw3 if we had begun with
any of the following: a*, or a*+a, or x*4¢, or at
with any added constant. So it is clear that in
dy
dx
provision for the possibility of there being an added
constant, the value of which will be undetermined

point. We should get

working backwards from to y, one must make
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until ascertained in some other way. So, if differ-
entiating 2" yields na"-!, going backwards from
g—ayc=nm"'1 will give us y=a"+C; where C stands
for the yet undetermined possible constant.

Clearly, in dealing with powers of @, the rule for
working backwards will be: Increase the power by 1,
then divide by that increased power, and add the
undetermined constant. ’

So, in the case where

dy
="
working backwards, we get

1

+1
Y= n_Hw" +0.

If differentiating the equation y=ax"™ gives us

dy_ n -1
d—:i—cmw y

it is a matter of common sense that beginning with

: _‘_i_?l_. n-1
dm—anw s

and reversing the process, will give us
y=ax"

80, when we are dealing with a multiplying constant,
we must simply put the constant as a multiplier of
the result of the integration.
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o Ay 2 .

Thus, if o 4a?, the reverse process gives us
y=‘gm3 .

But this is incomplete. For we must remember
that if we had started with

y=ax*+C,
where C is any constant quantity whatever, we should
equally have found
dy

=2 =anx™"L
dzx

So, therefore, when we reverse the process we must
always remember to add on this undetermined con-
stant, even if we do not yet know what its value
will be.

This process, the reverse of differentiating, is called
integrating ; for it consists in finding the value of
the whole quantity y when you are given only an

expression for dy or for % Hitherto we have as

much as possible kept dy and dx together as a dif-
ferential coefficient: henceforth we shall more often
have to separate them.

If we begin with a simple case,

d?lr_ 2
d—w-—ﬁ .

We may write this, if we like, as
dy = x’dx.
Now this is a “differential equation ” which informs
us that an element of y is equal to the corresponding

element of & multiplied by 2% Now, what we want
C.M:\E. N
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is the integral ; therefore, write down with the proper
symbol the instructions to integrate both sides, thus:

J. dy= j .

[Note as to reading integrals: the above would be
read thus:

“Integral dee-wy equals integral eks-squared dee-eks.”]

We haven't yet integrated: we have only written
down instructions to integrate—if we can. Let us
try. Plenty of other fools can do it—why not we
also? The left-hand side is simplicity itself. The
sum of all the bits of y is the same thing as y itself.
So we may at once put:

y =I xdx.

But when we come to the right-hand side of the
equation we must remember that what we have got
to sum up together is not all the dz’s, but all such
terms as a?dx; and this will not be the same as

a:zj dx, because 22 is not & constant. For some of the

dx’s will be multiplied by big values of &2 and some
will be multiplied by small values of a2, according to
what 2 happens to be. So we must bethink ourselves
as to what we know about this process of integration
being the reverse of differentiation. Now, our rule
for this reversed process—see p. 191 ante—when
dealing with & is “increase the power by one, and
divide by the same number as this increased power.” -
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That is to say, a?dx will be changed * to 123 Put
this into the equation; but don't forget to add the
“constant of integration” C at the end. So we get:

u=}x*+C.
You have actually performed the integration. How
easy |
Let us try another simple case.

Let i‘y = a2

where a is any constant multiplier. Well, we found
when differentiating (see p. 29) that any constant
factor in the value of y reappeared unchanged in the

value of g—% In the reversed process of integrating,
it will therefore also reappear in the value of . So

we may go to work as before, thus:
dy=ax?. dux,

Idy = jam“ - dzx,

Idy = ajw”dw,

y=axdx®+C0.
So that is done. How easy !

* You may ask: what has become of the little dx at the end?
Well, remember that it was really part of the differential coefficiens,
and when changed over to the right-hand side, as in the x%dz,
serves as a reminder that x is the independent variable with respect
to which the operation is to be effected ; and, as the result of the

roduct being totalled up, the power of x has increased by one

ou will soon become familiar with all this.
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We begin to realize now that integrating is a
process of finding our way back, as compared with
differentiating. If ever, during differentiating, we
have found any particular expression—in this example
ax'’—we can find our way back to the y from which
it was derived. The contrast between the two pro-
cesses may be illustrated by the following illustration
due to a well-known teacher. If a stranger were set
down in Trafalgar Square, and told to find his way to
Euston Station, he might find the task hopeless. But
if he had previously been personally conducted from
Euston Station to Trafalgar Square, it would be
comparatively easy to him to find his way back to
Euston Station.

Integration of the Sum or Difference of two

Functions.
dy — 2
Let p ol + a8,
‘then dy = x*dx+2’de.

There is no reason why we should not integrate
each term separately: for, as may be seen on p. 35,
we found that when we differentiated the sum of two
separate functions, the differential coefficient was
simply the sum of the two separate differentiations.
So, when we work backwards, integrating, the integra-
tion will be simply the sum of the two separate
integrations,
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Our instructions will then be:
jdy:j'(muws)dw
=Iw2dm+_“w3dw
y=%ta*+1at+C.
If cither of the terms had been a negative quantity,
the corresponding term in the integral would have

also been negative. So that differences are as readily
dealt with as sums.

How to deal with Constant Terms.

Suppose there is in the expression to be integrated

a constant term—such as this:
dy
da
This is laughably easy. For you have only to
remember that when you differentiated the expression

Yy = ax, the result was %= a. Hence, when you work

the other way and integrate, the constant reappears
multiplied by 2. So we get

dy=x"dx+Db - dx,
jdy = jx"dx + jbdo&,

=a"+b.

y= L lw"+1+bm+0.

Here are a lot of examples on which to try your
newly acquired powers.

7
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Lxamples.

(1) Given gg: 242", Find y. Ans. y=2x2+C.
(@) Find I(a+b)(w—|—1 Vdw. Tt is (a+ b)J-(w+ 1) das

or (a+b)[jwdx+jdx] or (a+0)(%+a)+0.

(3) Given %%:gt*. Find u. Ans. u= %gt"}+ C.

4) %=m*——w2+m. Find y.
dy=(a*—a*+x)dx or
dy=2*dr—a*dr+xdx; y:_“m‘!dw_ wda+ \wde;
and y=1at—}aP+ 122+ C.
(5) Integrate 975" dx. Amns. y=32""+C.

All these are easy enough. Let us try another case.
Let d—”=a.7u‘1.

dx
Proceeding as before, we will write

dy=ax!-dz, jd;// = a_[ac “ld.

Well, but what is the integral of x-1dz?
If you look back amongst the results of differen-
tiating #?® and a® and 2", ete., you will tind we never

got 2! from any one of them as the value of g—z

We got 3x% from 2?; we got 2x from a?; we got 1
from at (that is, from a itself); but we did not get
a1 from af° for two very good reasons. First, a° is
simply =1, and is a constant, and could not have
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a differential coefficient. Secondly, even if it could
be differentiated, its differential coefficient (got by
slavishly following the usual rule) would be 0x -1,
and that multiplication by zero gives it zero value!
Therefore when we now come to try to integrate
x-ldx, we see that it does not come in anywhere
in the powers of x that are given by the rule:

Iac" dx=

It is an exceptional case.

Well; but try again. Look through all the various
differentials obtained from various functions of a, and
try to find amongst them a-! A suflicient search

antl,

n+1

will show that we actually did get :;g =1 as the

result of differentiating the function y=logx (see
p- 148).

Then, of course, since we know that differentiating
log.z gives us -1, we know that, by reversing the
process, integrating dy=x-'dx will give us y=log.x.
But we must not forget the constant factor @ that
was given, nor must we omit to add the undetermined
constant of integration. This then gives us as the
solution to the present problem,

y=alogx+C.

N.B.—Here note this very remarkable fact, that we
could not have integrated in the above case if we had
not happened to know the corresponding differentia-
tion. If no one had found out that differentiating
log.x gave -1, we should have been utterly stuck by
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, the problem how to integrate #-'dx. Indeed it should
be frankly admitted that this is one of the curious
features of the integral calculus:—that you can’t
integrate anything before the reverse process of differ-
entiating something else has yielded that expression
which you want to integrate. No one, even to-day,
is able to find the general integral of the expression,

dy_ .

="
because @~ has never yet been found to result from
differentiating anything else.

Amnother simple case.
Find I(m+1)(w+2)dm.

On looking at the function to be integrated, you
remark that it is the product of two different functions
of . You could, you think, integrate (x+1)dz by
itself, or (z+2)dx by itself. Of course you could.
But what to do with a product? None of the differ-
entiations you have learned have yielded you for the
differential coefficient a product like this. Failing
such, the simplest thing is to multiply up the two
functions, and then integrate. This gives us

j(aﬂ + 32+ 2)d.
And this is the same as
Im2 dx+ ‘[3:vdm +J 2dx.

And performing the integrations, we get
3+ S+ 22+ C.



SOME OTHER INTEGRALS 201

Some other Integrals.

Now that we know that integration is the reverse
of differentiation, we may at once look up the differ-
ential coefficients we already know, and see from
what functions they were derived. This gives us the
following integrals ready made :

x~! (p.148); \z-ldx =log.x+C.

w+a (p. 149); .w+ ——dzx =log.(x+a)+C.

@ (p143): |ede =esC.

L Ie"’dx =—e*4+C

(for 1f:1/——l % %I:e‘“).

sinz (p. 168); Isinwdw = —cosz+C.
cosx (p. 166); jcoswdw =sinz+C.
Also we may deduce the following :

log.x; jlog.xdm=m(logew—1)+0

(for if y=alog.x—2, Zy ? flog.z—1 =log. ).
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log,,; logy,x dae=04343x(log. x—1)+C.
. 149); [aea a

a®  (p-149); Jatdw —log€a+0.

cos ax; cosax dx= -}z sin ax+C

(for if y=sinax, % =acosax; hence to get cosawx

one must differentiate y= c_lz sin ax).
sinax; Isinawdm= —écosaw+(].

Try also cos?; a little dodge will simplify matters:
cos 20 =cos?0 —sin?f=2cos?f—1;

hence cos? =% (cos20+1),

and jcoszede - %I(cos 20+1)d0

=%|cos260d0+ %J‘d&

sm 29+9+(] (See also p. 227.)

See also the Table of Standard Forms on pp. 286, 287,
You should make such a table for yourself, putting
in it only the general functions which you have’
successfully differentiated and integrated. See to it
that it grows steadily !
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On Double and Triple Integrals,

fn many cases it is necessary to integrate some
expression for two or more variables contained in it;
and in that case the sign of integration appears more
than once. Thus,

[[ @ ydzdy

means that some function of the variables « and y
has to be integrated for each. It does not matter in
which order they are done. Thus, take the function
a*+y% Integrating it with respect to & gives us:

j(w2+y2)dw=aw3+wy2-

Now, integrate this with respect to y:

[ aer +ayay=tary+iay,

to which of course a constant is to be added. If we
had reversed the order of the operations, the result
would have been the same.

In dealing with areas of surfaces and of solids, we
have often to integrate both for length and breadth,
and thus have integrals of the form

” w - dxdy,

where % is some property that depends, at each point,
on 2 and on y. This would then be called a surface-
integral. It indicates that the value of all such



204 CALCULUS MADE EASY

elements as u- dax - dy (that is to say, of the value of «
over a little rectangle da long and dy broad) has to be
summed up over the whole length and whole breadth.

Similarly in the case of solids, where we deal with
three dimensions. Consider any element of volume,
the small cube whose dimensions are da dy dz If
the figure of the solid be expressed by the function
S (z, y, ), then the whole solid will have the volume-
integral,

volume ='”. S(@ vy 2) de-dy-dz

Naturally, such integrations have to be taken be-
tween appropriate limits* in each dimension; and the
integration cannot be performed unless one knows in
what way the boundaries of the surface depend on
x, y, and z If the limits for & are from x, to x,,
those for y from y, to y,, and those for z from z,
to z,, then clearly we have

volume = rjhj N S(x,y,2) - da-dy - dz.

QY N
There are of course plenty of complicated and
difficult cases; but, in general, it is quite easy to
see the significance of the symbols where they are
intended to indicate that a certain integration has to
be performed over a given surface, or throughout a
given solid space.

*See p. 208 for integration between limits.
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Exercises XVII. (See p. 297 for the Answers.)

(1) Find ] y dx when y?=4ax.
(@) Find % da. (3) Find B Pda.
(4) Find "(a;2+a) da. (5) Integrate 5%
(6) Find n(4a;3 + 32+ 22+ l)dw.
() It ‘ZJ =02 DL O find .
(8) Find | <i L‘Z) de.  (9) Find .[(w+ 3)da.
{10) Find “(w+ 2)(x—a)da.
(11) Find "<~./;-+ )32 dx.
(12) Find |(sin6— 1%
(13) Find [cos?ad do. (14) Find [sin20 a0
(15) Find [sin?a6 do. (16) Find jewm.
(7) Find 1‘% (18) Find Lde




CHAPTER XIX.
ON FINDING AREAS BY INTEGRATING.

ONE use of the integral calculus is to enable us to
ascertain the values of areas bounded by curves.
Let us try to get at the subject bit by bit.

Fie. 62.

Let AB (Fig. 52) be a curve, the equation to which
is known. That is, ¥ in this curve is some known
function of @ Think of a piece of the curve from
the point P to the point @.

Let a perpendicular PM be dropped from P, and
another QN from the point @. Then call OM =,
and ON =x,, and the ordinates PM =y, and QN =y,.
We have thus marked out the area PQNM that lies
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beneath the piece PQ. The problem is, how can we
calculute the value of this area ?

The secret of solving this problem is to conceive
the area as being divided up into a lot of mnarrow
strips, each of them being of the width dx. The
smaller we take dx, the more of them there will be
between @, and x,. Now, the whole area is clearly
equal to the sum of the areas of all such strips. Our
business will then be to discover an expression for
the area of any one narrow strip, and to integrate it
so as to add together all the strips. Now think of
any one of the strips. It will be like this:
being bounded between two vertical sides, with
a flat bottom dx, and with a slightly curved
sloping top. Suppose we take its average
height as being y; then, as its width is du, its
area will be ydx. And seeing that we may
take the width as narrow as we please, if we
only take it narrow enough its average height will be
the same as the height at the middle of it. Now
let us call the unknown value of the whole area
S, meaning surface The area of one strip will be
simply a bit of the whole area, and may therefore
be called dS. So we may write

area of 1 strip=dS=y-du.
If then we add up all the strips, we get
- total area S= } dS = J ydx.

So then our finding § depends on whether we can
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integrate y - dx for the particular case, when we know
what the value of y is as a function of .

For instance, if you were told that for the particular
curve in question y=>b+ ax? no doubt you could put
that value into the expression and say: then I must

find j (b+aa?) da.

That is all very well ; but a little thought will show
you that something more must be done. Because the
area we are trying to find is not the area under the
whole length of the curve, but only the area limited
on the left by PM, and on the right by QN, it follows
that we must do something to define our area between
those ¢ limits.

This introduces us to a new notion, namely that of
antegrating between limits. We suppose x to vary,
and for the present purpose we do not require any
value of x below x, (that is OM), nor any value of
« above x, (that is ON). When an integral is to be
thus defined between two limits, we call the lower
of the two values the inferior limit, and the upper
value the superior limit. Any integral so limited
we designate as a definite integral, by way of dis-
tinguishing it from a general integral to which no
limits are assigned.

In the symbols which give instructions to integrate,
the limits are marked by putting them at the top
and bottom respectively of the sign of integration,
Thus the instruction .,_,.

[
o

2=
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will be read: find the integral of y.dx between the
inferior limit 2, and the superior limit x,.
Sometimes the thing is written more simply
j 2y - da.
Eat
Well, but how do you find an integral between limits,
when you have got these instructions ?

Look again at Fig. 52 (p. 206). Suppose we could
find the area under the larger piece of curve from
A to Q, that is from =0 to £=x,, naming the area
AQNO. Then, suppose we could find the area under
the smaller piece from A to P, that is from #=0 to
&=, namely the area APMO. If then we were to
subtract the smaller area from the larger, we should
have left as a remainder the area PQNM, which is
what we want. Here we have the clue as to what
to do; the definite integral between the two limits is
the difference between the integral worked out for
the superior limit and the integral worked out for the
lower limit.

Let us then go ahead. First, find the general

integral thus: J‘ yda,
and, as y = b+ aa? is the equation to the curve (Fig. 52},
[@+aatyda

is the general integral which we must find.
Doing the integration in question by the rule

'p. 196), b
P- 196), we ge bw+%w3+0;

C.M.E. (0]
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and this will be the whole area from 0 up to any
value of x that we may assign.
Therefore, the larger area up to the superior limit
x, will be
2 bw2+%w23+0 ;
and the smaller area up to the inferior limit 2, will be
b, + Za,+C.

Now, subtract the smaller from the larger, and we
get for the area S the value,

area S=0b(x,—x,)+ %(9023 —x.%).

This is the answer we wanted. Let us give some
numerical values. Suppose b=10, a=006, and 2,=8
and 2;=6. Then the area S is equal to

10(8—6) + 2o (88— 67)
=20+4002(512 —216)
=204002 x 296
=25'92.

Let us here put down a symbolic way of stating
what we have ascertained about limits:

=

=y
ydr=y,—y,,

x=2
where y, is the integrated value of yda correspondin
to ,, and y, that corresponding to ;.
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All integration between limits requires the differ-
ence between two values to be thus found. Also note
that, in making the subtraction the added constant C
has disappeared. ‘

Eramples.

(1) To familiarize ourselves with the process, let us
take a case of which we know the answer beforehand.
Let us find the area of the triangle (Fig. 53), which

has base =12 and height y=4. We know before-
hand, from obvious mensuration, that the answer will
come 24. '

Now, here we have as the “curve” a sloping line
for which the equation is

&€
y=§.

The area in question will be

x=12 z=12
X

J y-dx-J §-dm.
z=0 z=0

Integrating %cd:v (p. 194), and putting down the
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value of the general integral in square brackets with
the limits marked above and below, we get

F]_ 1 2 ]x 12

_ _—+0:l z=12

[ 46]-[%40]

= 134 =24, Amns.

Note that, in dealing with definite integrals, the
constant O always disappears by subtraction.

Let us satisfy ourselves about this rather sur-
¥ prising dodge of calcula-
tion, by testing it on
= a simple example. Get
some squared paper, pre-
1 ferably some that is

s 6 9 2 ryled in little squares of

Fie. 54. one-eighth inch or one-
tenth inch each way. On this squared paper plot
out the graph of this equation,

x
¥y=3
The values to be plotted will be:

area =

[=) B X

x 0 3 6 9 12

Yy 0 1 2 3 4

The plot is given in Fig. 54.
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Now reckon out the area beneath the curve by
counting the little squares below the line, from =0
as far as =12 on the right. There are 18 whole
squares and four triangles, each of which has an area
equal to 1} squares; or, in total, 24 squares. Hence

24 is the numerical value of the integral of gdw

between the lower limit of =0 and the higher limit
of x=12.

As a further exercise, show that the value of the
same integral between the limits of =38 and =15
is 36.

(2) Find the area, between limits =, and =0,

of the curve Y= ira

v

Qo

.(—“'---"-"-“‘-‘

O?
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—b|1 B
b[og.(ac+a)+0]o
=b[log.(x,+a)+C—log.(0+a)—C]
=blogew‘—+a. Amns.

a

Let it be noted that this process of subtracting one
part from a larger to find the difference is really a
common practice. How do you find the area of a

Fia. 56.

plane ring (Fig. 56), the outer radius cf which is »,
and the inner radius is 7,7 You know from men-
suration that the area of the outer circle is 77,%; then
you find the area of the inmer circle, 7#,?; then you
subtract the latter from the former, and find area of
ring = w(r,2—r,%); which may be written

m(ry+ 1) (rp—1y)
=mean circumnference of ring x width of ring.

(3) Here’s another case—that of the die-away curve



FINDING AREAS BY INTEGRATING 215

(p. 156). Find the area between =0 and z=a, of
the curve (Fig. 57) whose equation is

y=be"=
Area= br?'—x . da.
x=0

The integration (p. 201) gives

-]

=b[—e-0— (-]
=b(l—e-9)
v p
b
' A

p - 2 ¥/ d
O~ X ¢, :

a 4 —~

Fia. 57. szIG. 58.

(4) Another example is afforded by the adiabatic
curve of a perfect gas, the equation to which is
pvr=c, where p stands for pressure, » for volume,
and n is of the value 142 (Fig. 58).

Find the area under the curve (which is proportional
to the work done in suddenly compressing the gas)
from volume v, to volume v,.
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Here we have
v=1y
area=| cvo"-dv

v=v;

1
=c[ v“":r‘
l—n n

(,021 -n_ vll —n)

=C

1—-n

—=C L__l__)
042 ,020‘42 ,010'42 ¢

An Ezxercise.
Prove the ordinary mensuration formula, that the
area A of a circle whose radius is R, is equal to wR=

Consider an elementary zone or annulus of the
surface (Fig. 59), of breadth dr, situated at a distance

Fi1c. 59.

r from the centre. We may consider the entire sur-
face as consisting of such narrow zones, and the
whole area A will simply be the integral of all
such elementary zones from centre to margin, that is,
integrated from =0 to r=R.

We have therefore to find an expression for the
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elementary area dA of the narrow zone. Think of
it as a strip of breadth dr, and of a length that is
the periphery of the circle of radius #, that is, a
length of 2mr. Then we have, as the area of the

narrow zone, dA =27rdr.

Hence the area of the whole circle will be:

r=R r=R
A =IdA =j 27rr'dr=2wj 7 dr.

r=0 r=0

Now, the general integral of r-dr is §#% Therefore,

A= 27:'[%’)‘2]::;
or A =27[}R*—}(0)*];

whence A=7I

Amnother Exercise.

Let us find the mean ordinate of the positive part
of the curve y=x—2a? which is shown in Fig. 60,

Y M

%7 N

7
F1a. 60.

To find the mean ordinate, we shall have to find the
area of the piece OMN, and then divide it by the
length of the base ON. But before we can find
the area we must ascertain the length of the base,
80 88 to know up to what limit we are to integrate.
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At N the ordinate y has zero value; therefore, we
must look at the equation and see what value of x
will make y=0. Now, clearly, if x is 0, ¥ will also be
0, the curve passing through the origin O; but also,
if 2=1,y=0: so that #=1 gives us the position of
the point N.

Then the area wanted is

z=1 11

= [ w—at) dw=[ 12—y | ~[1-11-[0—-0]=4.

But the base length is 1.

Therefore, the average ordinate of the curve=1.

[N.B—It will be a pretty and simple exercise in
maxima and minima to find by differentiation what
is the height of the maximum ordinate. It must be
greater than the average.]

The mean ordinate of any curve, over a range from
=0 to x=wa,, is given by the expression,

2 =1,

mean y= 531—1 L_yo - da.

If the mean ordinate be required over a distance not
beginning at the origin but beginning at a point
distant 2, from the origin and ending at a point
distant 2, from the origin, the value will be

1 jﬁ X9
dax.
z -2, ).,

mean y=
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Areas in Polar Coordinates.

When the equation of the boundary of an area is
given as a function of the distance # of a point of it
trom a fixed point O (see Fig. 61) called the pole, and

B _A

0 pd
Fig. 61.

of the angle which » makes with the positive hori-
zontal direction OX, the process just explained can
be applied just as easily, with a small modification.
Instead of a strip of area, we consider a small triangle
OAB, the angle at O being d6, and we find the sum
of all the little triungles making up the required
area.
The area of such a small triangle is approximately
pal
ATDX 7 or TT(ZGXT; hence the portion of the area
included between the curve and two positions of #
corresponding to the angles 8, and 6, is given by

0=0,
%j 2 do.
0

=0,
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Ezxamples.
(1) Find the area of the sector of 1 radian in a
circumference of radius @ inch.
The polar equation of the circumference is evidently
r=a. The area is
€=1 0=
5[ w2 do="" j =2
0=0 0=0
(2) Find the area of the first quadrant of the curve
(known as “Pascal’s Snail”’), the polar equation of
which is r=a(l +cos 0).

Area= }j 2 32(1 4 cos 0)*d0

=%2I _5(1 +2 cos 0+ cos?0)G:0

sin 26

=3 |:9+2 sin 6+ +

_a*(3T+8)
- 8

Volumes by Integration.

What we have done with the area of a little strip
of a surface, we can, of course, just as easily do with
the volume of a little strip of a solid. We can add
up all the little strips that make up the total solid,
and find its volume. just as we have added up all the
small little bits that made up an area to find the final
area of the figure operated upon.
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Examples.

(1) Find the volume of a sphere of radius 7.

A thin spherical shell has for volume 4wa?dx (see
Fig. 59, p. 216); summing up all the concentric shells
which make up the sphere, we have

=7 37
volume sphere = .‘ drddr =4 [%] =475,
z=0 0

Y

dr::,
x|
! A

F1a. 62.

We can also proceed as follows: a slice of the
sphere, of thickness da, has for volume wy?dx (see
Fig. 62). Also x and y are related by the expression

YPo=12— %

Hence volume sphere= 2j 7 (r*—a?)dx

=0 z=0
3T 4
2ol
0

(2) Find the volume of the solid generated by the
revolution of the curve y?=6x about the axis of a,
between =0 and x=4.
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The volume of a slice of the solid is 7y2de. -

Ty dx= 67rr

r=4

4
Hence volume= j xdx
0

=0

w2 4
=67r|:—_—:| =487 =150'8,
2 1o

On Quadratic Means.

In certain branches of physics, particularly in the
study of alternating electric currents, it is necessary
to be able to calculate the quadratic mean of a
variable quantity. By “quadratic mean” is denoted
the square root -of the mean of the squares of all the
values between the limits considered. Other names
for the quadratic mean of any quantity are its
“virtual ” value, or its “R.M.8.” (meaning root-mean-
square) value. The French term is valeur efficace. 1f
y is the function under consideration, and the quad-
ratic mean is to be taken between the limits of =10
and x=1; then the quadratic mean is expressed as

2 1- ?2—'
\/ 7.[0 yide.
Examples.

(1) To find the quadratic mean of the function
y=ax (Fig. 63).
Here the integral is J a*x?dzx,
0
which is 1a?P.
Dividing by 7 and taking the square root, we have

quadratic mean = % al.
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Here the arithmetical mean is }al; and the ratio
of quadratic to a,rithmetical mean (this ratio is called

the form-factor) is ~/— =1155.
Y
y
[0 e —— X
A
Fie. 63.

(2) To find the quadratic mean of the function y = a%

r=1 a+1
S . o . ’
The integral is L=Ow dx, that is SaT1
H drati g B
ence quadratic mean= Sat1

(3) To find the quadratic mean of the function y -—:a;

=1 z=1
The integral is [ (a?) dz, that is j a*dx,
Jz x

=0

a® 'lx:l

or log.al.-¢

.. ar—1
whien is ———-
log.a

. . 2af=1
Hence the quadratic mean is A/57——
tlog.a
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Exercises XVIII. (See p. 297 for Answers.)

(1) Find the area of the curve yw=a2+2—5 be-
tween =0 and =6, and the mean ordinate between
these limits.

(2) Find the area of the parabola y=2as/2 between
=0 and x=a. Show that it is two-thirds of the
rectangle of the limiting ordinate and of its abscissa.

(3) Find the area of the positive portion of a sine
curve and the mean ordinate.

(4) Find the area of the portion of the curve y = sin%a

from 0° to 150, and find the mean ordinate.
(5) Find the area included between the two branches

of the curve y=w2iw’? from =0 to =1, also the
area of the positive portion of the lower branch of
the curve (see Fig. 30, p. 108).

(6) Find the volume of a cone of radius of base #,
and of height A.

(7) Find the area of the curve y=a%—log.ax be-
tween =0 and x=1.

(8) Find the volume generated by the curve
y=J 1+22, as it revolves about the axis of wx, be-
tween =0 and =4

(9) Find the volume generated by a sine curve
revolving about the axis of a.

(10) Find the area of the portion of the curve
2y =a included between =1 and x=a. Find the
mean ordinate between these limits.
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(11) Show that the quadratic mean of the function
y=sinz, between the limits of 0 and 7 radians, is

72. Find also the arithmetical mean of the same

function between the same limits; and show that the
form-factor is =1-17.

(12) Find the arithmetical and quadratic means of
the function 22432+ 2, from =0 to xx=3.

(13) Find the quadratic mean and the arithmetical
mean of the function y =4, sinz+ 4, sin 3.

(14) A certain curve has the equation y=342¢"%%.
Find the area included between the curve and the
axis of x, from the ordinate at =2 to the ordinate
at =8, Find also the height of the mean ordinate
of the curve between these points.

(15) Show that the radius of a circle, the area of
which is twice the area of a polar diagram, is equal
to the quadratic mean of all the values of » for that
polar diagram.

(16) Find the volume generated by the curve

Y= :I:%’ ~/ (10 — ) rotating about the axis of .

C.M.E., P



CHAPTER XX.
DODGES, PITFALLS, AND TRIUMPHS.

Dodges. A great part of the labour of integrating
things consists in licking them into some shape that
can be integrated. The books—and by this is meant
the serious books—on the Integral Calculus are full
of plans and methods and dodges and artifices for
this kind of work. The following are a few of
them.

Integration by Parts. This name is given to a
dodge, the formula for which is

jud:v =uw—j.wdu+ C.

It is useful in some cases that you can’t tackle
directly, for it shows that if in any case |axdu can
be found, then Iudx can also be found. The formula
can be deduced as follows, From p. 38, we have,

d(ux)=udx+xdu,
which may be written
udzx = d(ux) —xdu,

which by direct integration gives the above expression,
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Erxamples.

(1) Find jw - sin w dw.

Write % =w, and for sin w - dw write dz. We shall
then have du=dw, while jsin w-dw= —cosw=2a.

Putting these into the formula, we get

~“'w-sinwdw=w(—cos w)~—j—coswdw

= —wecosw+sinw+C.
(2) Find |xe* de.
Write u=x edr=dv,
then du=dzx, v=¢",
and Iwe" dr=xe"— je’ dz (by the formula)

=xef—e*=e*(x—1)+C.
3 Try Icos26 dé.

uw=cos 9, cosddi=dv.
Hence du= —sinfdf, wv=sinb,

_‘-cosze dO=cos 0 sin 4+ |sin%0 dO

=2eos 8 i1 —coste)ap
in?
_ SH})‘G +|d6 —_“cos‘le de.
Hence 2j00820 do== n220+ 0

sin20 6
and icos20 df= — + 3 +C.
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(4) Find I:z:z sin @ da.

Write x*=u, sinxdr=dv;
then du=2x dx, V= —CO0S X,

ngsinwdw= —a2cosx+2|xcos x d.

Now find jm cos z dx, integrating by parts (as in
Example 1 above):
xcos . dx=xsin x+cosx+C.
Hence

jwzsinwdw= —a2cose+2xsinxe+2cosx+C”
2[wsxnw+cosw(1——>]+0’
(5) Find jJ 1—-a2dw.

Write u=1-2% dr=dv;
then du= —-fl—(% (see Chap. IX,, p. 67)

and x=v; so that
2
N N e e A
Here we may use a little dodge, for we can write
1—-2®)dx dx x*dx
AR i el

.[ - 1—a? N1=x JJS1—a%
Adding these two last equations, we get rid of

L/ldw

and we have

le —dr=x1—x+ I

iz
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Do you remember meeting :/——2 ? it is got by

differentiating y=arcsina (see p. 171); hence its in-
tegral i3 arcsin &, and so

IJI —dp =N "% .;_wz_*—% arcsin 2+ C.
You can try now some exercises by yourself; you

will find some at the end of this chapter.

Substitution. This is the same dodge as explained
in Chap. IX,, p. 67. Let us illustrate its application

to integration by a few examples.
1) _‘-;\/ 3+x dux.
Let 3+x=u, dr=du;

replace Iu%du =2ut =33 +x)k

dx
(2) Ie“+e‘”'
du:e", and dm=€—x,

Let =y, d
du du

| dx du
so that _‘e”+e‘”=,“ex(e“+e'”)_ju<u+l) w1’

du_; the result of differentiating arc tan w.

T?i-_ué 18

Hence the integral is arctan €%

(3)"' j‘ dx =-" dv_ _
x2+2w+3 2+ 20+1+2 J(x+1)24+(2)?
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Let w+l=u, drx=du;
then the integral becomes ILL_, but _du_ is
° w2+ (/2) w'+a?

the result of differentiating c}tarc tan g.

Hence one has finally :/l—éare tan a:}-él for the value

of the given integral.

Formulw of Reduction are special forms applicable
chiefly to binomial and trigonometrical expressions
that have to be integrated, and have to be reduced
into some form of which the integral is known.

Rationalization, and Factorization of Denominator
are dodges applicable in special cases, but they do not
admit of any short or general explanation. Much
practice is needed to become familiar with these pre-
paratory processes.

The following example shows how the process of
splitting into partial fractions, which we learned in

Chap. XIIL, p. 122, can be made use of in integration.
dx

1
mto partial fractions, this becomes (see p. 232):

Take again ; if we split

1 D‘ dx _j' da :I
o/ —2Uari—v=2 Jo¥i+o—2
_ 1 Io z+1—a/—-2
T3 /=2 S ztita/—2

Notice that the same integral can be expressed
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sometimes in more than one way (which are equivalent
to one another).

Pitfalls. A beginner is liable to overlook certain
points that a practised hand would avoid; such as
. the use of factors that are equivalent to either zero or
infinity, and the occurrence of indeterminate quantities
such as §. There is no golden rule that will meet
every possible case. Nothing but practice and intelli-
gent care will avail. An example of a pitfall which
had to be circumvented arose in Chap. XVIIL, p. 199,
when we came to the problem of integrating x-1 da.

Triwmphs. By triumphs must be understood the
successes with which the calculus has been applied to
the solution of problems otherwise intractable. Often
in the consideration of physical relations one is able
to build up an expression for the law governing the
interaction of the parts or of the forces that govern
them, such expression being naturally in the form of
a differential equation, that is an equation containing
differential coefficients with or without other algebraic
quantities. And when such a differential equation
has been found, one can get no further until it has
been integrated. Generally it is much easier to state
the appropriate differential equation than to solve it:
the real trouble begins then only when one wants to
integrate, unless indeed the equation is seen to possess
some standard form of which the integral is known,
and then the triumph is easy. The equation which
results from integrating a differential equation is
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H

called * its “solution”; and it is quite astonishing
how in many cases the solution looks as if it had no
relation to the differential equation of which it is
the integrated form. The solution often seems as
different from the original expression as a butterfly
does from the caterpillar that it was. Who would
have supposed that such an innocent thing as

dy__ 1
de a?—a?
could blossom out into
_1 atx, ~,
Y=3g108 510"

yet the latter is the solution of the former.
As a last example, let us work out the above together
By partial fractions,

1 _ 1 1
-zt 2a(a+z) " 2a(a—x)
dzx dx

dy =2a(a,+w)+2a(a—w)'
1 dx dx
'y=ﬁ(.[a+w+ a—w)

= %& (log.(a +x)—log.(a —x))

1
- 1Ogsm
2a a—x
*This means that the actual result of solving it is called its
‘“solution.” But many mathematicians would say, with Professor
Forsyth, ‘‘every differential equation is considered as solved when
the value of the dependent variable is expressed as a function of
the independent variable by means either of known functions, or of
integrals, whether the integrations in the latter can or cannot be

expressed in terms of functions already known.”

+C.
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Not a very difficult metamorphosis !
There are whole treatises, such as Boole’s Differen-
tial Equations, devoted to the subject of thus finding

the “solutions ” for ditferent original forms.
Exercises XIX. (See p. 298 for Answers.)

(2) Find [m log.z d.

(1) Find

(3) Find

(5) Find a_lacos (log.@)dz. (6) Find |2%e* dar.

NaE =z dz.

x°log.x dz.

(7) Find (1982’ g (8) Find (%% .
J x ) Jxlog.x

. [ Bx+1 .1 [(@?—38)dx

(9) Flnd _,z—'_—2+x—2dw' (10) Flnd um'
(11) Find a% (12) Find ,%’
. ([ dx . dx

(18) Find | %2 14) Find | —2&__.

) Fin Jiza (14) Fin oTaiR

(4) Find |€” cos e* da.




CHAPTER XXIL
FINDING SOLUTIONS.

IN this chapter we go to work finding solutions to
some important differential equations, using for this
purpose the processes shown in the preceding chapters.

The beginner, who now knows how easy most of
those processes are in themselves, will here begin to
realize that integration-is an art. As in all arts, so
in this, facility can be acquired only by diligent and
regular practice. He who would attain that facility
must work out examples, and more examples, and yet
more examples, such as are found abundantly in all
the regular treatises on the Calculus. Our purpose
here must be to afford the briefest introduction to
serious work.

Example 1. Find the solution of the differential
. dy _
equation ay+b o =0.
Transposing we have
dy

d_.’l}'= — )
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Now the mere inspection of this relation tells us
dy is
dx
proportional to . If we think of the curve which
will represent y as a function of a, it will be such
that its slope at any point will be proportional to
the ordinate at that point, and will be a negative
slope if ¥y is positive. So obviously the curve will
be a die-away curve (p. 156), and the solution will
contain €-% as a factor. But, without presuming on
this bit of sagacity, let us go to work.

As both y and dy occur in the equation and on
opposite sides, we can do nothing until we get both
y and dy to one side, and dx to the other. To do
this, we must split our usually inseparable companions
dy and dx from one another.

that we have got to do with a case in which

—=——d
Yy

Having done the deed, we now can see that both
sides have got into a shape that is integrable, because

dy

we recognize 7’ or %d?, as a differential that we

have met with (p. 147) when differentiating logarithms.
So we may at once write down the instructions to

integrate, j.(h/ J. bdx,

and doing the two integrations, we have:

log.y=— %x+ log. C,
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where log. C' is the yet undetermined constant* of
integration. Then, delogarizing. we get:
y= Ce™5*,

which is the solution required. Now, this solution
looks quite unlike the original differential equation
from which it was constructed: yet to an expert
mathematician they both convey the same information
as to the way in which y depends on a.

Now, as to the O, its meaning depends on the
initial value of y. For if we put =0 in order to
see what value y then has, we find that this makes
y=Ce"%; and as e-°=1, we see that C' is nothing else
than the particular valuet of y at starting. This we
may call y,, and so write the solution as

Y=o >
Example 2.
Let us take as an example to solve
ay+ bd'/

where g is a constant. Again, inspecting the equation
will suggest, (1) that somehow or other e* will come
into the solution, and (2) that if at any part of the

*We may write down any form of constant as the ‘‘constant of
integration,” and the form loge C is adopted here by preference,
because the other terms in this line of equation are, or are treated
as logarithms; and it saves complications afterward if the added
constant be of the same kind.

+Compare what was said about the “ constant of integration,”
with reference to Fig. 48 on p. 187, and Fig. 51 on p. 190.
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eurve y becomes either a maximum or a minimum, so

that dy =0, then y will have the value=7. But let
dx a

us go to work as before, separating the differentials
and trying to transform the thing into some in-
tegrable shape.

dy_ .
bﬁ_g ay
dy_a(g_\.
%“E(a y)’
dy _a
—= bdm.
“a

Now we have done our best to get nothing but y
and dy on one side, and nothing but dx on the other.
But is the result on the left side integrable ?

It is of the same form as the result on p. 148; so,
writing the instructions to integrate, we have:

dy __[a, .
Y a

and, doing the integration, and adding the appropriate
constant,

a
log. (?/-g) =—g&+log.C;
whence y— g - C’e_%”;
and finally, y= g + Ce'%”.

which is the solution.
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If the condition is laid down that y=0 when 2=0
we can find C; for then the exponential becomes =1;
and we have

=9
O_a+0’
or o=-9
a

Putting in this value, the solution becomes
y=21-e).
But further, if 2 grows indefinitely, y will grow to

a maximum; for when x=ow, the exponential =0,

giving Ymax, = 6%. Substituting this, we get finally

Y= ymax.(l - e-;“—’)

This result is also of importance in physical science.

Ezample 3.
dy .
Let ay+b g =9 sin 2mnt.

We shall find this much less tractable than the
preceding. First divide through by .

du
+ by 3 9 sin 27nt.
Now, as it stands, the left side is not integrable.
But it can be made so by the artifice—and this is
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where skill and practice suggest a plan—of multiplying
all the terms by e, giving us:

dJ b g b 3
dteb +bye =3¢ - sin 27nd,

which is the same as

dJ & +y (;; )—%egi-sin 27wnt;

and this belng a perfect differential may be integrated

a %t
thus:—since, if u= 'c/e—‘, %‘_‘%@‘_‘_yd(‘;’ ),

yer =%_“ez +sin 27wnt dt+C,

or’ y=%e_a5tje%t-sin Qant - dt+Ce .. [a]

The last term is obviously a term which will die
out as ¢ increases, and may be omitted. © The trouble
now comes in to find the integral that appears as a
factor. To tackle this we resort to the device (see
Pp. 226) of integration by parts, the general formula for

which is judv=uv—jvdw For this purpose write

u=e¢°;
dv=sin 27nt - dt.
We shall then have

du=e5‘x%dt;

v=— -1— cos 27nt.
2mn
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Inserting these, the integral in question becomes:

Ies‘ . 8in 27nt - dt

. €'« cos 2wnt—j—2—1- cos 2mnt - €5 - Lt
™ b

27n

1 g a 2,
— b — e . .
€b cos 2mnt + ) b -‘.6 cos 27nt dt. coee [B]

The last integral is still irreducible. To evade the
difficulty, repeat the integration by parts of the left
side, but treating it in the reverse way by writing:

w=sin 27nt;
dv=e*'dt; -

du=27n-cos 27nt - dt;
whence b 2
v=-¢°
a

Inserting these, we get

S .
“-eb «8in 27t - dt

27nb

b, ¢ . sin 27rnt~ jeb - cos 27mt - dt. ....[C]

a
Noting that the final intractable integral in [c] is
the same as that in [B], we may eliminate it by

multlplymg [B] by 27mb’ and multiplying [c] by

o b’ and adding them.
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The result, when cleared down, is:
je%t .8in 27t - dt
2 (ab - sin 2wnt— 27nb?. cos 2mnt
=€’ { A ATnh? }'"'-[D]
Inserting this value in [A], we get
a - sin 27nt—27nb - cos 27nt
y=9 .

a*+ 47n®b?
To simplify still further, let us imagine an angle ¢
such that tan ¢=-2—7raib.
. 27nb
Then sin ¢ = —a—z_‘_mw ’
md S

Substituting these, we get:
co8 ¢ - sin 27t —sin ¢ - cos 2wnd
A a*+4m*ntb? ’

y=9

which may be written
__sin(2mnt—¢)

y_gJa2+4w2n25i ’

which is the solution desired.
This is indeed none other than the equation of an

alternating electric current, where g represents the
amplitude of the electromotive force, » the frequency,

a the resistance, b the coefficient of self-induction of
the circuit, and ¢ is an angle of lag.

C.M.E. Q
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Example 4.
Suppose that ~ Mdz+ Ndy=0.

We could integrate this expression directly, if M
were a function of z only, and N a function of y
only; but, if both M and N are functions that depend
on both & and y, how are we to integrate it? Is it
itselt an exact differential ? That is: have M and N
each been formed by partial differentiation from some
common function U, or not? If they have, then

And if such a common function exists, then

oU oU
%dx+@dy

is an exact differential (compare p. 175).

Now the test of the matter is this. If the expression
is an exact ditferential, it must be true that

dM_ax.
dy  dx’

d(dU)_d(dU)

for then Tudy dy = dyda’

which is necessarily true.
Take as an illustration the equation
(14 3xy)de+a?dy=0.
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Is this an exact differential or not? Apply the
test.

d(1+3xy) — 32,
dy
d(x?)
de 2,

which do not agree. Therefore, it is not an exact
differential, and the two functions 1+43xy and «?
_have not coms from a common original function.

It is poss1ble in such cases to discover, however, an
antegrating factor, that is to say, a factor such that
if both are multiplied by this factor, the expression
will become an exact differential. There is no one
rule for discovering such an integrating factor; but
experience will usually suggest one. In the present
instance 2x will act as such. Multiplying by 2z, we

get (2z+ 6x%y)dx + 2x3dy =0.
Now apply the test to this.

d(2z+6x%y) _ —6a?,
ody
d(2x%)
dx
which agrees. Hence this is an exact differential, and
may be integrated. Now, if w=2x%,

dw =62y dx+223dy.
Hence ijzy dx +j‘2x3dy =w=2x%;
g0 that we get U=ax>+22%y+C.

= 6?2,
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Example 5. Let Zl“z +nly=

In this case we have a differential equation of the
second degree, in which y appears in the form of
a second differential coefficient, as well as in person.

d*y
2,
Transposing, we have F_ —n2y.

It appears from this that we have to do with a
function such that its second differential coefficient is
proportional to itself, but with reversed sign. In
Chapter XV. we found that there was such a func-
tion—namely, the sime (or the cosine also) which
possessed this property. So, without further ado,
we may infer that the solution will be of the form
y=Asin(pt+q). However, let us go to work.

Multiply both sides of the original equation by 2 —2
d* d dy
Tt G

dt

and integrate, giving us 2 =0, and, as

1y
%)
d*y dy _~\dt dy ) o
2T G (dt) oyt - =0,
O being a constant. Then, taking the square roots,
WS TE—F and — L
Bw=" -y an J‘@z’_—,yz:"'dt'
But it can be shown that (see p. 171)
1 ~ a <arc sin %) '
NCE— y? - dy ’
whence, passing from angles to sines,

arc sin - 0— nt+C; and y=Csin(ni+ C)),
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where (] is a constantangle that comes inby integration.
Or, preferably, this may be written
y=A sinnt+ Bcosnt, which is the solution.

d2
Example 6. ;ﬁz—nﬁy =
Here we have obviously to deal with a function 4
which is such that its second differential coeflicient is
proportional to itself. The only function we know
that has this property is the exponential function
(see p. 143), and we may be certain therefore that the
solution of the equation will be of that form.
Proceeding as before, by multiplying through by
o %y

= i i _dzyd_y 90, Y _
d -, and integrating, we get 2dw2 dm_zn Y s =0,
s
a dx 2
wd,as 2k === () -+ or=0,
dy TR
o —n P+ Y+ct=0,

where ¢ is a constant, and

~/ y
Now, if w=log.(y+ J_—cz) =log. u,
dw_1 du_, . ¥y __y+y+e
du uw dy N+t NyPE+E
de 1
Hence, integrating, this gives us
log.(y+ Ny + ) =na+1log, C,
Y+ NP ED) =0, oo 1)
Now (H+Ny+&)x(—y+yi+E)=¢;
whence —y+~/m=%e‘”"’. ................. (2)

and
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Subtracting (2) from (1) and dividing by 2, we

then have 1 ¢2
y=5 O’e’”‘— 30 ™

which is more convenlently written
y=Ae™”+ Be-"=

Or, the solution, which at first sight does not look
ag if it had anything to do with the original equation,
shows that y consists of two terms, one of which
grows logarithmically as @ increases, while the other
term dies away as x increases.

Ezample 7.

d? Y, dy
Let baptog toy=0

Examination of this expression will show that, if
b=0, it has the form of Example 1, the solution of
which was a negative exponential. On the other
hand, if a=0, its form becomes the same as that of
Example 6, the solution of which is the sum of a
positive and a negative exponential. It is therefore
not very surprising to find that the solution of the
present example is

y=(e"™)(Ae"+Be™™),
where m—% and n= 42_[,22_%'

The steps by which this solution is reached are not

given here; they may be found in advanced treatises.
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Example 8.
@y_ .y
de: da?
It was seen (p. 177) that this equation was derived
from the original

y=F(x+at)+f(x—at),
where F' and f were any arbitrary functions of ¢.
Another way of dealing with it is to transform it
by a change of variables into
Ay __
du-dv
where u=x+at, and v=x—at, leading to the same

general solution. If we consider a case in which
F vanishes, then we have simply

y=Slz—at);

- and this merely states that, at the time ¢=0, y is a
particular function of «, and may be looked upon as
denoting that the curve of the relation of y to « has
a particular shape. Then any change in the value
of ¢ is equivalent simply to an alteration in the origin
trom which x is reckoned. That is to say, it indicates
that, the form of the function being conserved, it is
propagated along the a direction with a uniform
velocity a@; so that whatever the value of the
ordinate y at any particular time ¢, at any particular
point &, the same value of y will appear at the sub-
sequent time ¢, at a point further along, the abscissa
of which is x,+a(f,—¢,). In this case the simplified
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' equation represents the propagation of a-wave (of any
form) at a uniform speed along the 2 direction.
If the differential equation had been written

@y _,d%
m;l‘{:'z‘ —-LEEZ,

the solution would have been the same, but the
velocity of propagation would have had the value



CHAPTER XXII.

A LITTLE MORE ABOUT CURVATURE
OF CURVES.

In Chapter XII. we have learned how we can find out
which way a curve is curved, that is, whether it
curves upwards or downwards towards the right.
This gave us no indication whatever as to how much
the curve is curved, or, in other words, what is its
curvature.

By curvatwre of a line, we mean the amount of
bending or deflection taking place along a certain
length of the line, say along a portion of the line the
length of which is one unit of length (the same unit
which is used to measure the radius, whether it be
one inch, one foot, or any other unit). For instance,
consider two circular paths of centre O and O’ and of
equal lengths A B, A’B’ (see Fig. 64). When passing
from A to B along the arc AB of the first one, one
changes one’s direction from AP to B@, since at A
one faces in the direction A P and at B one faces in
the direction B@. In other words,in walking from 4
to B one unconsciously turns round through the angle
PCQ, which is equal to the angle AOB. Similarly,
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in passing from A’ to B, along the arc A'B’, of
equal length to AB, on the second path, one turns
round through the angle P'C'Q), which is equal to the
angle A’0’B’, obviously greater than the correspond-

’

AP

Fia. 64,

ing angle AOB. The second path bends therefore
more than the first for an equal length.

This fact is expressed by saying that the curvature
of theé second path is greater than that of the first
one. The larger the circle, the lesser the bending,
that is the lesser the curvature. If the radius of the
first circle is 2, 3, 4, ... etc. times greater than the
radius of the second, then the angle of bending or
deflection along an arc of unit length will be 2, 3,
4, ... etc. times less on the first circle than on the
second, that is, it will be 4, 4, 1, ... etc. of the bending
or deflection along the arc of same length on the
second circle. In other words, the curvature of the
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first circle will be 1, , 1, ... etc. of that of the second
circlee. We see that, as the radius becomes 2, 3, 4, ..
etc. times greater, the curvature becomes 2, 3, 4, ...
ete. times smaller, and this is expressed by saying that
the curvature of a circle is inversely proportional to
the radius of the circle, or
curvature=% X ——,
radius
where k is a constant. It is agreed to take k=1, so

that

curvature = ———r
radius
always.

If the radius becomes indefinitely great, the curva-

ture becomes =zero, since when the denomi-

1
fnfinity
nator of a fraction is indefinitely large, the value of
the fraction is indefinitely small. For this reason
mathematicians sometimes consider a straight line as
an arc of circle of infinite radius, or zero curvature.

In the case of a circle, which is perfectly symmetri-
cal and uniform, so that the curvature is the same at
every point of its circumference, the above method of
expressing the curvature is perfectly definite. In the
case of any other curve, however, the curvature is
not the same at different points, and it may differ
considerably even for two points fairly close to one
another. It would not then be accurate to take the
amount of bending or deflection between two points
as a measure of the curvature of the arc between
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these points, unless this arc is very small, in fact,
unless it is indefinitely small.

If then we consider a very small arc such as 4 B (see
Fig. 65), and if we draw such a circle that an arc AB

o' X
F1e. 65.

of this circle coincides with the arc A B of the curve
more closely than would be the case with any other
circle, then the curvature of this circle may be taken
as the curvature of the arc AB of the curve. The
smaller the arc 4B, the easier it will be to find a
circle an arc of which most nearly coincides with the
arc AB of the curve. When A and B are very near
one another, so that A B is so small so that the length
ds of the arc AB is practically negligible, then the
coincidence of the two arcs, of circle and of curve,
may be considered as being practically perfect, and
the curvature of the curve at the point 4 (or B),
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being then the same as the curvature of the circle,
will be expressed by the reciprocal of the radius of

this circle, that is, by OLA’ according to our way of

measuring curvature, explained above.

Now, at first, you may think that, if A B is very
small, then the circle must be very small also. A little
thinking will, however, cause you to perceive that it is
by no means necessarily so, and that the circle may
have any size, according to the amount of bending of
the curve along this very small arc AB. In fact,
if the curve is almost flat at that point, the circle will
be extremely large. This circle is called the circle of
curvature, or the osculating circle at the point con-
sidered. Its radius is the radius of curvature of the
curve at that particular point.

If the arc AB is represented by ds and the angle
" AOB by d#, then, if r is the radius of curvature,

ds=rdf or a0 _1
ds r

The secant A B makes with the axis OX the angle

0, and it will be seen from the small triangle A BC

that %:tan 0. When AB is indefinitely small, so

that B practically coincides with A4, the line AB
becomes a tangent to the curve at the point A
(or B).

Now, tan 0 depends on the position of the point 4
(or B, which is supposed to nearly coincide with it),
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that is, it depends on «, or, in other words, tan 0 is
“ga function” of ax.

Differentiating with regard to a to get the slope
(see p. 112), we get

a()
dx) _ d(tan 0) or dy sec? edO 1 db
de =~ dx dzt~ dx  cos?Odx
‘ (see p. 168);
hence 36 =cos? Odgy
2
de _ do dad dac
But %—cos 0, and for s One may write b ds’
therefore @
1_db_do 5 4@ dew _ 0%y dy _ da? .
r ds dx’ds_ dx?” sec’
but secd=a/1+tan?g; hence
d’y Ty
1_ dx? _ dax? .
7 (J1+tan?6) {1 + dz/ }
(@)}
14-(2Y
and finall r= {_+‘iaf_ .
ok P2

@y

dx®
The numerator, being a square root, may have the
sign + or the sign —. One must select for it the
same sign as the denominator, so as to have » positive
always, as a negative radius would have no meaning.
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2,
It has been shown (Chapter XII.), that if ?H‘Z is

positive, the curve is convex downwards, while if
2,
%/2 is negative, the curve is concave downwards. If
d?y . s infini
e =0, the radius of curvature is infinitely great,
that is, the corresponding portion of the curve is a bit
of straight line. This necessarily happens whenever
a curve gradually changes from being convex to con-
cave to the axis of a or vice versa. The point where
this occurs is called a point of inflexion.
The centre of the circle of curvature is called the
centre of curvature. If its coordinates are a;, y,, then
the equation of the circle is (see p. 102)

(@—2)+y—y =1
hence 2{x—a,)dx+2(y—y,)dy=0,

d
and . m—w1+(y—yl)d—-ayc =0. cereeennrens 1)

Why did we differentiate ? To get rid of the con-
stant 7. This leaves but two unknown constants
and y, ; differentiate again ; you shall get rid of one of
them. This last differentiation is not quite as easy as
it seems; let us do it together; we have:

dy
d(w)_’_d[(y—y‘)ﬁ]_ .
dx dx e
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the numerator of the second term is a product ; hence
differentiating it gives

dy
Y=g (dm ) + gzd(ydx%) - 1) daﬂ (d?/)

8o that the result of dlﬁ'erentiatmg (1) is
dy,
1+ (2 + -y T4 =

from this we at once get
dy\?
1+ (dw
h=Y+—— dg
sz‘

+(1

@=@) Y=y ldm
dx?
dy dy
2+ (@)}
Ty
dx®
a, and y, give the position of the centre of curvature,
The use of these formulae will be best seen by care-
fully going through a few worked-out examples.
Example 1. Find the radius of curvature and the

coordinates of the centre of curvature of the curve
y=2x>—x+3 at the point x=0.

Replacing in (1), we get

and finally, @xy=a—
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dy _ &y _
We have %_433_1, d__ 4,
dy\?\ ?
. @) graeyp
- a2y - 4
da?
when 2=0; this becomes
A+ _NS_
4 ) =0"707

If a,, y, are the coordinates of the ceantre f curva-
tuve then

Zz%{ +<ZZJ;> } (4 —1){1 + (d—1)3
— = 2
dwz

$1=w—

D+ (=13 1

[\

when =0, y=3, so that

dy
L+ ()
du 1+(@dw—1Y 1+4+(—1)
=y +—g=y+ Fegr gy
dw2

Plot the curve and draw the circle, it is both in-
teresting and instructive. The values can be checked
easily, as since when £=0, y=3, here

wl2+(yl—3)2=7‘2 or 524 52= 50="7072%

C.M.E, R
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Example 2. Find the radius of curvature anc the
position of the centre of curvature of the curve
y?=ma at the point for which y=0.

; 3

—mdat, W Lppt o™

Here y=mia®, - =smiw 2t
a’y _ _1x@ s___'m,’ff,

dmz 2 - 4m'g,

hence

T '1 +/d.,c> } i{1+4w}% (4.')0+'m)er

0_l_2_ B m* - omb
da?

taking the — sign at the numerator, so as to have »
positive.

4
Since, when y=0, =0, we get r="v_"
omt 2

Also, if @,, y, are the coordinates of the centre,

2@ i +4w}
d*y =

Pz

1= &

4.70"
_m+é£tm_3 +2,

when 2=V, then w1=%~
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Also
dy\? m
B Ry S £
dw2 4t

when =0, y,=0

Example 3. Show that the circle is a curve of
constant curvature.

If x,, y, are the coordinates of the centre, and R
is the radius, the equation of the circle in rectangular
coordinates is

(x—2,+(@y—y)=R;
this is easily put into the form

y=NB—@—a )+ = R—@—a) P g,
To differentiate, let R*— (m .'I;l)2=v ; then

y=’v%+:l/1, — % ) Cl___2(w ml)
dy _ d -3
ggg & x%’_’= —HR —(w—a)} X 2(w—a,)
__ —(r—w)

B—@—m)
Differentiate again ; using the rule for differentiation
of a fraction, we get

(B2 x o (— @)}~ (@}

d
2y X SR — (w— a3
dx® R —(x—ux )
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(it is always a good plan to write out the whole
expression in this way when dealing with a compli-
cated expression); this simplifies to

(B—(@—w )y —1)——@=%)

@y _ . (R —(w—w)%t
da? R:—(x—x,)
N
{R—(z—a)BY
hence
(x—,)? E
j{ } {1 T G- Py _(®t_o
R? ’

& B —(w —a)
the radius of curvature is constant and equal to the
radius of the circle.

Ezxample 4. Find the radius and the centre of cur-
vature of the curve y=a?—2x?+2x—1 at points where
=0, =05 and £=10. Find also the position of
the point of inflexion of the curve.

Here %=3m2—4m+1, LY _6p—a.

d 2
{1+(3x2 4.«w+1)2}¥
6x—4
(B’ —dx+1){1+(3x2—4da+1)%
P =x— 6 2
x— 4

_y LB —dw4 1)
yl_?/'l' 6o —4
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When 2=0, y=—1,

r=“/78-=0-707_ ®,=0+3=05, gy =—1—}=—15.

Plot the curve, mark the point =0, y=—1, take
two points on either side about half an inch away and
construct geometrically the circle passing by the three
points; measure the radius and the coordinates of
‘the centre, and compare with the above results. On a
diagram, the scale of which was 2 inches =unit length,
the construction gave a circle for which r=072,
®, =047, y,= —153, a very fair agreement.

When £=05, y= —0875,

— —0 21 3
r= {1+(_1025)}y=1
—025x 109

-1

‘09,

@y == 05— =033,

Yy= — 0875+ 20— 196,
The diagram gave r=098, x,=033, y,= —183.
When =1, y=—1,
(140)?
2
1 9x(+0)_,
DA b

= =~

r= =05,

2
Y= _1_*_1_'%&: - 05,

The diagram gave »=037, 2, =096, y,= — 044,
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2
At the point of inflexion g—m%=0, 6x—4=0, and
x=4%; hence y=0925.
Example 5. Find the radius and centre of curva-

ture of the curve y=%{65+6_5}, at the point for

which £=0. (This curve is called the catenary, as
a hanging chain affects the same slope exactly.) The
equation of the curve may be written

z
a -—
y——e“+ €%

then (see p. 150 Examples)

d/al al—fl’—”-’f)
ds—2%a® "2%a¢ “‘2(‘3“‘”'
Similarly
d*y 1 : ;’:»}_1 2y vy
dn = e+€ =2 % “a?
172 _n2)¥
{1+—(e“—e “)} 2 2
) 2 z a3
r= Y =Sal_ <2+€a+€ a)’
a
z_z
since €¢* ¢=¢’=1, or

SN s

N o BN v B
1

when 2=0, :'/——(e°+€°) a, Zliia/fé( 0—e%)=0;

2
o

hence r=—=a.
a
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The radius of curvature at the vertex is equal to
the constant a.

Also w1=0—0(++0)=0,
a
1+0
y1=y+—'{_—=a+a=2a.
a

You are now sufficiently familiar with this type of
problem to work out the following exercises by your-
self. You are advised to check your answers by
careful plotting of the curve and construction of the
circle of curvature, as explained in Example 4.

Exercises XX. (For Answers see p. 299.)

(1) Find the radius of curvature and the position
of the centre of curvature of the curve y=e® at the
point for which 2=0.

(2) Find the radius and the centre of curvature of

the curve y=u 'g—l> at the point for which x=2.

(3) Find the point or points of curvature unity in
the curve y=2a2

(4) Find the radius and the centre of curvature of
the curve xy =m, at the point for which z=/m.

(5) Find the radius and the centre of curvature of
the carve y*=4ax at the point for which 2=0.

(6) Find the radius and the centre of curvature of
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the curve y=a? at the points for which =409 and
also x=0.

(7) Find the radius of curvature and the coordi-
nates of the centre of curvature of the curve

y=a*—x+2

at the two points for which #=0 and x=1, re-
spectively. Find also the maximum or minimum
value of y. Verify graphically all your results.

(8) Find the radius of curvature and the coordi-
nates of the centre of curvature of the curve

y=at—x—1

at the points for which x=—2, £=0, and 2=1.
(9) Find the coordinates of the point or points of
inflexion of the curve y=a®+ x>+ 1.
(10) Find the radius of curvature and the coordi-
nates of the centre of curvature of the curve

y = (4o —x2—3)}

at the points for which =12, =2 and xz=25.
What is this curve ?

(11) Find the radius and the centre of curvature of
the curve y =2°—3x?+22x+1 at the points for which
=0, = +15. Find also the position of the point
of inflexion.

(12) Find the radius and centre of curvature of

the curve y=sin6 at the points for which 9=% and

0=

™

5 Find the position of the point of inflexion.
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(13) Draw a circle of radius 3, the centre of which
has for its coordinates =1 y=0. Deduce the
equation of such a circle from first principles (see
p-102). Find by calculation the radius of curvature
and the coordinates of the centre of curvature for
several suitable points, as accurately as possible, and
verify that you get the known values.

(14) Find the radius and centre of curvature of the

curve y=cos 6 at the points for which 6=0, 0=?—;

and 9=%-

(15) Find the radius of curvature and the centre of

2 2
curvature of the ellipse "5—2—+%2=1 at the points for

which #=0 and at the points for which y=0.



CHAPTER XXIIL

HOW TO FIND THE LENGTH OF AN ARC ON
A CURVE.

SINCE an arc on any curve is made up of a lot of
little bits of straight lines joined end to end, if we
could add all these little bits, we would get the
length of the arc. But we have seen that to add a
lot of little bits together is precisely what is called

v Y S
N
s, Yoz
ds dy
" dx Q
, P
7 M
T
\
X, X, (o] * ¥, X
(o] 1 (a) 2 X (b) 2
FiG. 60.

integration, so that it is likely that, since we know
how to integrate, we can find also the length of an
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arc on any curve, provided that the equation of the
curve is such that it lend itself to integration.

If MN is an arc on any curve, the length s of
which is required (see Fig. 66a), if we call “a little
bit” of the arc ds, then we see at once that

(ds) = (da)’+ (dy)”,
or either

ds= \/ 1+ <%3)2dy or ds=A/l1+ (Z—?C)de.

Now the arc MN is made up of the sum of all the
Iittle bits ds between M and N, that is, between a,
and a,, or between y, and y,, so that we get either

g 2 Ya 2
8=L1\/1+(%> de or s= L,n“““(%) dy.
That is all !

The second integral is useful when there are several
points of the curve corresponding to the given values
of x (asin Fig 66b). In this case the integral between
2, and x, leaves a doubt as to the exact portion of the
curve, the length of which is required. It may be
8T, instead of MN, or 8¢, by integrating between
9, and y, the uncertainty is removed, and in this case
one should use the second integral.

If instead of x and y coordinates,—or Cartesian
coordinates, as they are named from the French
mathematician Descartes, who invented them—we
have » and O coordinates (or polar coordinates, sec
p- 219); then, if MN be a small arc of length ds on
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any curve, the length s of which is required (see
Fig. 67), O being the pole, then the distance ON will
generally differ from OM by a small amount dr. If
the small angle MON 1s called d6, then, the polar
coordinates of the point M being 6 and 7, those of N
are (0+df) and (r+dr). Let MP be perpendicular

Fic. 67.

to ON, and let OR=0M ; then RN =dr, and this
is very nearly the same as PN, as long as df 1s
a very small angle. Also RM=rd6f, and R is
very nearly equal to PM, and the arc MN is very
nearly equal to the chord MN. In fact we can write
PN=dr, PM=rdd, and arc MN =chord MN with-

out appreciable error, so that we have.

(ds)*=(chord MN)*=PN?+ PM?=dr*+rd6®.

Dividing by d6? we get <%>2= r*+ <%>:; hence

o) i do= s G
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hence, since the length s is made up of the sum of all
the little bits ds, between values of =0, and 0 =0,

we have
Oz b dr
— - 2
‘j o 5= 5 ,,1‘/ Tt <d6> do.

We can proceed at once to work out a few examples.

Ezample .. The equation of a circle, the centre of
which is at the origin—or intersection of the axis of
a with the axis of y—is a?+y?=7?; find the length
of an arc of one quadrant.

dy x
2 — 2 2 — = ——"
yr=r*—x* and 2y dy= —2x dx, so that ] 7

[+ z]dw=w<:+;iz>

and since y*=7r>—a?

j «/ - I J(sz =

The length we want—one quadrant—extends from
a point for which =0 to another point for which
@=r. We express this by writing
j‘x=' rdx
z=0 ‘\/ (7.2 wz)

or, more simply, by writing

hence

rdx
j on/ (1P—22)
the 0 and » to the right of the sign of integration
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merely meaning that the integration is only to be
performed on a portion of the curve, namely that
between =0, x =7, as we have seen (p. 210).
Here is a fresh integral for you! Can you manage
it?
On p. 171 we have differentiated y=are (sin «) and
dy .
found do= A=) (1 If you have tried all sorts of
variations of the glven examples (as you ought to
have done!), you perhaps tried to differentiate some-

thing like y=qa arc (sin 'g), which gave

dy _ e or d a dw

dz~ J(@—2) v="Ja—2%

that is, just the same expression as the one we have
to integrate here.

Hence s= I J(rz zy=" are (sm >+0 C being a

constant.
As the integration is only to be made between
=0 and =1, we Write

_j ~/(r2 wz) rarc(sm >+O:,
proceeding then as explained in Example (1), p.211,

we gob 8=1rarc (sm r> +C—rarc (sm 2) C,

aw
or 8=7‘X§,
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ul
2
the constant C disappears, as has been shown.

The length of the quadrant is therefore %r, and

since arc(sin 1) is 90° or 5 and arc(sin 0) is zero, and

the length of the circumference, being four times this,

nr
?— 2.

is 4x
Example 2. Find the length of the arc A B between
;=2 and x,=35, in the circumference 2?+y?=062 (see

Fig. 68).
Y]

Fia. 68.

Here, proceeding as in previous example,

8= ['r are sin (%) + O’]: = [6 arc sin ('g) + 0]:

=6| arc sin (g) —are sin (%):I =6(09850—0'3397)

= 388718 inches (the arcs being expressed in radians).
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It is always well to check results obtained by a
new and yet unfamiliar method. This is easy, for

cos AOX=2=1 and cos BOX=%

hence AO0X="70°32, BOX =83°34/,
and AOX—BOX =A0B=36°58
:z? ggGZ radian =0'6451 radian=3-8706 inches,

the discrepancy being merely due to the fact that the
last decimal in logarithmic and trigonometrical tables
is only approximate.

Example 3. TFind the length of an arc of the curve

y:%{e&+e"5}

between =0 and £=a. (This curve is the catenary.)

z z z z
y:%eﬁ-{-g “a, g—"g %{GE—G_E},
1( 2 _x\2
8=-“'\’ 1+£{€“——€ a} dx

1

2
=—I +ea+e a—2£a adw
Now
z_% 1 T m
e a=e"=1, so that s=§I 2+cea+te adxe;

-
we can replace 2 by 2xXe°=2xes"a; then
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1( [ %=
s=3 ea+2ew a+e adw

1( z z\ 2 z 3
=% \/(ei+e'5) dm=%j<eﬁ+e—5>dm

1( 2 1 -2 al[ 2 .2
=§~ eadm-{-gje adx=§|:ea—e a]-

Here [ea—e a:la——Lel—e‘1+1 l]

1
and s= 2(6‘—; .

Example 4. A curve is such that the length of the
tangent at any point P (see fig.69) from P to the

Y
D
ay PdS
dxx
A O N T~ X B
Fia. 69.

intersection 7' of the tangent with a fixed line A B is
a constant length @. Find an expression for an arc
of this curve,—which is called the tractrix,—and find
the length, when @ =3, between the ordinates y=a
and y=1.

C.M.E. S
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We shall take the fixed line for the axis of .
- The point D, with DO=a, is a point on the curve,
which must be tangent to OD at D. We take OD
as the axis of y; AB and OD are what are called
axes of symmetry, that is the curve is symmetrical
about them ; PT=a, PN=y, ON=u.

If we consider a small portion ds of the curve, at
P, then sin 0=(c]li_?s/= —g (minus because the curve
slopes downwards to the right, see p. 79).

Hence gi: —g, ds=—a‘1‘7—/ and s=—a_‘.@,
dy y Yy y
that is, s=—alog.y+ 7
When =0, $=0, y=a, so that 0= —alog.a+C,

and C=a log. a.
It follows that s=alog.a—alog.y=alc g,c—; .

When a=3, s between y=a and y=1 is therefore

3
s=3|log, ;-3/] —3(log. 1 —log, 3)=38 x (0—1:0986)
1
= —3296 or 3296,
as the sign — refers merely to the direction in which
the length was measured, from D to P, or from P
to D.

Note that this result has been obtained without a
knowledge of the equation of the curve. This is
sometimes possible. In order to get the length of an
arc between two points given by their abscissae, how-
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ever, it is necessary to know the equation of the curve;
this is easily obtained as follows:

%:-tan9=—~/a y,smcePT a;
hence dw=___;y_dg/.

The integration will give us a relation between z
and y, which is the equation of the curve

w=_j~/a2—y2dy= 2j dy . de
y y~/a2 ~/OL2
To integrate
_dy _ dy 1 _ gy
y~/a2 = let y= then pr Rl
so that @= _ &,
Y 2z

The integral becomes — I 7 To integrate

a2zz
this let &/a%2—1=v—az, that is,

a2t —1 =9+ a%?—2avz
and 0=2v dv—2az dv—2av dz,

from which de=2"2%dv, so that, replacing, we get
_ ]'v—azx 1 dw

av v—az

_I & _
i —1
dv

——lj———llo v
=Ta) v "a %Y
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so that I Ji;/ log,‘H' “/;’ —v +0,.
Now, for
?/dy ___ydy
Ja,2 let = ~/a"' J ; then dz= —76;——_—? 5
hence
.“JZ;EI/ = jdz= —z=—Aa?—9y?+C,
We have then, finally,
2
a;:alogew# ~/a2 y_I_C

When £=0, y=a, so that 0=alog.1—0+C, and
C=0; the equation of the tractrix is therefore

wzalogew_;“—iz_Jctz—_gjz.

If @ =38, as before, and if the length of the arc from
=0 to =1 is required, it is not an easy matter to
calculate the value of 3 corresponding to any given
numerical value of . It is, however, easy to find
graphically an approximation as near the correct
value as we desire, when we are given the value of
a as follows:

Plot the graph, giving suitable values to y, say 3,
2,15, 1. From this graph, find what values of y
correspond to the two given values of # determining
the are, the length of which is needed, as accurately
%3 the seale of the oraph allows. Tor =0, y=38 of
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course ; suppose that for =1 you find y=172 on
the graph. This is only approximate. Now plot
again, on as large a scale as possible, taking only
three values of y, 1'6, 1'7, 1'8.  On this second graph,
which is nearly, but not quite a straight line, you
will be probably able to read any value of y correct
to three places of decimals, and this is sufficient for
our purpose. We find from the graph that y=1723
corresponds to =1. Then

8ye=1 81723
=3[1 e-:| =3[1 “:l
8 og 7o og. s
=3(log. 1'741—0)=166.
If we wanted a more accurate value of ¥ we could
plot a third graph, taking for values of y 1722, 1-723,
1724, ... ; this would give us, correct to five places of

decimals, the value of y corresponding to =1, and
so on, till the required accuracy is reached.

Example 5. Find the length of an arc of the
logarithmic spiral 7 =¢? between =0 and 6=1radian.
Do you remember differentiating y=¢e*? It is an
easy one to remember, for it remains always the same

whatever is done to it: Z—Z=e’ (see p. 143).

Here, since r=e, ——=€e=7r

do
If we reverse the process and integrate je"d@ we

get back to »+C, the constant C being always intro-
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duced by such a process, as we have seen in Chap.
XVIIL
It follows that

s=j \1/[7‘24'(%)2] d6=.‘.~/(r2+r2) do
=2 [rao= V3| edo=nz (@ +0)

Integrating between the two given values 6=0
and =1, we get .

5= \/[73 ]de [Jz(ee-;-(,*)]

=J261_Jze°= N2(e—1)
=141 x 1713 =242 inches,
since r=¢€=1 inch when 6=0.
Example 6. Find the length of an arc of the
logarithmic spiral r=e® between =0 and 6=0,.
As we have just seen,

s=~/§jzle"d6=~/§ [e"l—e"]:Jé (e"l—l) .

Example 7. As a last example let us work fully a
case leading to a typical integration which will be
found useful for several of the exercises found at the
end of this chapter. Let us find the expression for

the length of an arc of the curve y =%m2+3.

Z’TJcaw, =j~/1+a2m2" .
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Integrate this by parts: let
u=a1+a*2® and dr=dv;
a’x dx
N1+aia?
by the method of differentiation explained in Chap. IX,
Since ju dv=wuv— jv du (see p. 226), we have

then x=v and du=

d
j-~/1+a2w'2dw a1+ aat— “2.{,\/i0+ aiwz a)

Also, we can write

_— 1+a’x?)dx
[V o [ e
&1+ a2x?
hence
- 2
jvmEE - e[ s @
Adding (1) and (2) we get

2]~/1+a2w2dw PINAEr

. @3
+j N1+ a?a? a2 x? ®)
for this purpose

Remains to mtegrate I 7 da

1+a? 2’
let T+ a2 =v—ax; then
1+ a?x?=v*—2avx+a’x? or 1=v>—2qux.
Differentiating this, to get rid of the constant, we get:
0=2vdv—2avdx—2axdv or avdr=vdv—axdv;

(v—ax) dv
v

that is dx= ; replacing in j

2
—— W

obtain Ni+alaz?
I(v ax) dv 1 (v——am)dfv 1({dv_1
avJ1+a2m2 v(w—ax) alv a

~log.v;
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de

V1+ata?

Replacing in (3) and dividing by 2 we get, finally,

8=IJ1+a2mz dx

hence }L log. (ax+ a1+ a%z?).

='7§c 1 +a2m2+21—a10g,(am+Jl+a2m2),

which can easily be calculated between any given
limits.

You ought now to be able to attempt with success
the following exercises. You will find it interesting
as well as instructive to plot the curves and verify
your results by measurement where possible.

The integration is usually of the kind shown on
P- 225, Ex. (5), or p. 229, Ex. (1), or p. 278, Ex. (7).

Ezxercises XXI. (For Answers, see p. 300.)

(1) Find the length of the line y=3x+2 between
the two points for which =1 and x=4.

(2) Find the length of the line y=ax+b between
the two points for which x=a? and = —1. '

(3) Find the length of the curve y=32a? between
the two points for which =0 and z=1.

(4) Find the length of the curve y=a? between the
two points for which =0 and x=2.

(5) Find the length of the curve y=ma? between

the two points for which =0 and r=g
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(6) Find the length of the curves r=acos 6 and
r=asin O between =6, and 6=0,.

(7) Find the length of the curve r=asec6.

(8) Find the length of the arc of the curve y?=4dax
between =0 and x=a.

(9) Find the length of the arc of the curve

x
between =0 and x=4.

(10) Find the length of the arc of the curve y=e®
between =0 and x=1.

(Note. This curve is in rectangular coordinates,
and is not the same curve as the logarithmic spiral
i#=¢® which is in polar coordinates. The two equa-
tions are similar, but the curves are quite different.)

(11) A curve is such that the coordinates of a point
on it are x=a(0—sin ) and y=a(l—cosH), O being
a certain angle which varies between 0 and 27. Find
the length of the curve. (It is called a cycloid.)

(12) Find the length of an arc of the curve y*=ma

between =0 and w=%-

(18) Find the expression for the length of an arc of

the curve y? _2
a

(14) Find the length of the curve y?=8x® between
the two points for which #=1 and x=2.
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(15) Find the length of the curve y¥+at=a? be.
tween =0 and x=a.

(16) Find the length of the curve r=a(l - cos6)
between =0 and 0=.

You have now been personally conducted over the
frontiers into the enchanted land. And in order that
you may have a handy reference to the principal
results, the author, in bidding you farewell, begs to
present you with a passport in the shape of a con-
venient collection of standard forms (see pp. 286, 287).
In the middle column are set down a number of the
functions which most commonly occur. The results
of differentiating them are set down on the left; the
results of integrating them are set down on the right.
May you find them useful !



EPILOGUE AND APOLOGUE.

IT may be confidently assumed that when this
tractate “Calculus made Easy” falls into the hands
of the professional mathematicians, they will (if not
too lazy) rise up as one man, and damn it as being a
thoroughly bad book. Of that there can be, from
their point of view, no possible manner of doubt
whatever. It commits several most grievous and
deplorable errors.

First, it shows how rldlculously easy most of the
operations of the calculus really are.

Secondly, it gives away so many trade secrets. By
showing you that what one fool can do, other fools
can do also, it lets you see that these mathematical
swells, who pride themselves on having mastered such
an awfully difficult subject as the calculus, have no
such great reason to be puffed up. They like you to
think how terribly difficult it is, and don’t want that
superstition to be rudely dissipated.

Thirdly, among the dreadful things they will say
about “So Easy ” is this: that there is an utter failure
on the part of the author to demonstrate with rigid



284 CALCULUS MADE EASY

and satisfactory completeness the validity of sundry
methods which he has presented in simple fashion,
and has even dared to use in solving problems! But
why should he not? You don’t forbid the use of
a watch to every person who does not know how to
make one? You don’t object to the musician playing
on a violin that he has not himself constructed. You
don’t teach the rules of syntax to children until they
have already become fluent in the use of speech. Tt
would be equally absurd to require general rigid
demonstrations to be expounded to beginners in the
calculus.

One other thing will the professed mathematicians
say about this thoroughly bad and vicious book : that
the reason why it is so easy is because the author has
left out all the things that are really difficult. And
the ghastly fact about this accusation is that—it
is true!  That is, indeed, why the book has been
written—written for the legion of innocents who have
hitherto been deterred from acquiring the elements of
the calculus by the stupid way in which its teaching
is almost always presented. Any subject can be made
repulsive by presenting it bristling with difficulties.
The aim of this book is to enable beginners to learn
its language, to acquire familiarity with its endearing
simplicities, and to grasp its powerful methods of
solving problems, without being compelled to toil
through the intricate out-of-the-way (and mostly
irrelevant) mathematical gymnastics so dear to the
unpractical mathematician,
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There are amongst young engineers a number on
whose ears the adage that what one fool can do,
another can, may fall with a familiar sound. They
are earnestly requested not to give the author
away, nor to tell the mathematicians what a fool
he really is.
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1 xta tx*t ax+C
a ax $ax?+C
20 o? 3+ C
-1 " +1
na & s lac" +C
-2 x! logex+C
:;llz g;_@ utvtw Iudxijvdxijwdx
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cos & 1 x
_ : __ logetan =+ C
sin%a sin getan g +
_sin2x 1 —cotanax+C
sin‘y sin?x
sin?ac — cos?x 1 log. tan &+ C'
sin%x - cos?a sin &+ cos X ¢
auslnme - sin ma - sin nac | $cos(m - n)x - ¥ cos(m+n)x+C
o sin2ax
. - x
2+ sin 2a. sinZaa 5 i T C
a2 . sin 2aae
. 2 x
—2a.8in 20 cos’ax et —ig +C
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Exercises I. (p. 25.

1) %:13@2. @ %= -Sx‘%- @) %=2aw(za—n.
4 ‘%:2-40'4. ®) %=§u‘§- (6) %= —gw"@.
) ‘C%‘;: - gm—“s"‘. ®8) % =202,

© ghr - ¥ o

Exercises IL. (p. 33.)

d -
(1) g/g=3ax2. 2) d—i: 13x %:)c*}. ®3) g%=6w 2
(@) %:%cix-*‘f. (5) 3—’;:%’—2"-1. (6) % =236,
al

(7) 54 =0000012x J,

(8) ‘E=ab Ve-1, 098, 3:00 and 7'47 candle power per volt
d respectively.
) dn_ 1 (9T dn__ 1 _,[9T
dD  LD*N#o’ dL  DI?N nd’
dn__ 1 _\J9T dn__1_.[g
de~ 2DL Vne® AT 2DL VwaT
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(10) Rate of change of P when # varies_ D,
Rate of change of P when D varies ¢
d.D_ 0-0000127,
12) L2 et
(12) ar

w

(11) 2m, 2z, wl, dwrh, 871, 4mrt

Exercises III. (p.46.)

M) @ 14+x+Z+Z 12 4) 2qm+D. () 2m+2a.

2 6 24 °
(d) 3x*+6ax+3a
@) %:a_bt_ @) %:Qx.
(4) 141102t —65404% — 224462+ 81926+ 1379.
(5) %:Qyw. (6) 18590226542 +154-36334,
-5 6.xt+ 634 9.x2
) —- 8) & T TEL,
) (Bx+2)? ® (1+x+2x?)?
9y .ad—bc _, 10) arx "'+ bnx ' +2npt
) (cx+d)? (19) (" +b)*
(11) p+2ct.
b Ry(a+2bt) . R*(a+20t)
12 +2bt), —, 0
(12) Ro(a+25t) Ro(a+2v£) Flat ). o B

(13) 1-4340(0-000014£—0+001024), —0+00117, —0-00107, —0-00097.
14) QE_g ke AE_ _ctkl,
ay Gr=b+ -

i di i

Exercises IV. (p. 51.)

2
1) 17424x; 24. 9y & +2aw—a; 2a(a+1)
@ @) (x+a)? (x+a)?
2 3 2
1 AR, A | X,
@) I+rt st oxs TG

(4) (Ezercises I11.):
@®» @ g;lg=%=l+x+%m2+%x3+.... ®) 2a, 0.
(c) 2, 0. (d) 6x+6a, 6.

C.M.E. T
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@) -b,0. (3) 2,0.
(4) 564402° — 1962122 — 44882+ 8192,
169320xc% — 3924240 — 4488.
(5) 2,0. (6) 37180453, 371'80453.
270
@ Bx+2)¥ ~ Br+2)
(& ’mmples, p-41):

@ 62 (2) 3B _6bVa 18b¥a 3avb
B2 ’b2 N/ S S W3
@2 _Lose g 16
Je Xew Xge 3Jgn
(4) 810¢* — 6483+ 4795242 — 139-968¢ + 26°64.
3240¢° — 194482+ 959-04¢ — 139°968.
() 12c+2, 12. (6) 6xc%—9x, 122— 9

™ (’\/0 NNCIAY <~/67 «/03)
B(Joﬁ ~/1.93 15(]99 Jlov

Exercises V. (p. 64)
(2) 64; 147-2; and 0-32 feet per second.
3) x=a—gt; Z=-g. (4) 451 feet per second.
(5) 12+4 feet per second per second. Yes.
(6) Angular velocity=11+2 radians per second; angular ac.
celeration=9-6 radians per second per second.
(M) v=20442-108. =40-8{. 1728 in./sec., 122-4 in./sec?

i 1
( ) a: -_— 3 ———
T30V G125y 45/ (1 —125)3

—0- 8¢ 2442
) v-—08—(4+t2)2, a= (4+t2)8’07926 and 0-00211.
{10) n=2, n=11.
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Exercises VI. (p. 73.)
x a 1
O G Owre O Wt
4 ax ®) 2a?% — a?
'\/(a a2y . a3\t — 2 a2
g) iir@+a)-@+a)] () 2a(@—a)
(2 + a)f(a3 + )t (x+“)3

8) §u% . S
®) §y° (9)(1-0)41——_62

Exercises VIL. (p. 75.)
o) dw_ _ 3x*(3+3x%)
da: T 27 (33 + facb)?
( ) dv_ _ 122
dw N1+82+322 (V3 + 481 +n2+322)
_ a(WB4ad)

Sk o

Exercises VIII. (p. 91.)

(2) 144

4) %=3w2+3 ; and the numerical values are :
3, 33, 6, and 15.
(6) 2.
4
(6) c—i_g= —§§. Slope is zero where x=0; and is =F3‘\/~l~§
where ac=1.
(7 m=4, n=-3.
(8) Intersections at x=1, &=—3. Angles 153°26', 2°28"
(9) Intersection at x=357, y=357. Angle 16°16"%

{10) =%, y=23%, b=-4§
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Exercises IX. (p. 109.)
(1) Min.: =0, y=0; max.: &= -2, y=-4

) x=a. (4) 25/3 square inchew

_lo, 10

{6) Max. for x=—1; min. for x=1.
(7) Join the middle points of the four sides,

®) r=:%R, r=%, no max.
—pafZ B ..
) r—Rz\/g, r="7z r=08506 R.
(10) At the rate of 8 square feet per second.
75 p

(1) r=R“/§ (12) n= EE-

Exercises X. (p. 118)

(1) Max.: = —219, y=24'19 ; min. : x=152, ¢y=-138
&) %_9_20 32 5= —2¢C; w=2_2,—c (a maximum).
(3) (2) One maximum and two minima.

(b) One maximum. (x=0; other points unreal.)
(4) Min.: x=171, y=614. (5) Max: x=—"6. y=4
(6) Max.: x=1414, y=1"7675.

Min.: x=~1414, y=—-1'7675.
(7) Max.: x=—3565, y=212.

Min. : oc= 43565, y="7-88.
(8) 0aN, O'6N. 9) 2= \/‘l-

(10) Speed 838 nautical miles per hour. Time taken 115°47 hours,
Minimum cost £112. 12s.
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(11) Max. and min. for x=75, y=+5414. (See example
no. 10, p. 72.)
(12) Min.: =%, y=025; max.: = -3}, y=1408.

Exercises XI. (p. 130.)
W2ty O sty ® egtag
O x—i‘ii“&ii‘é' ®) ET215?+—3)_ 13(32—5
© 5r3tamswa
@ %cl 1)+15(olcl+2)+10(:; 3)
® 9<3Z+1>+63<37£_2>—7<2§+1y
©) 3(.'1: 1)+3(.702‘9f|-+:;cl+l) (10) m*a(mn*srz«lﬂ—-imTfy
M) FitarasT 9 o1 mmgtemgw

(18) 3 1)_4(9cl+ 1)+2(oc:- %

a9 9(904— 0 9(oc4+ 5~ 3(9;2)2'

(15) oc_}ré - ngj—:cl-l- 17 (? +;c+ ¥
(16) x + 4 (.9}::-;{-24)2 + (m:f4)3

@ 3(3; 2)2+9(39505— 2)3+9(3;3— oy
18) gr= 2)+3(ocl— 22 6 LT
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Exercises XII. (p. 153.;

(1) ab(e**+e). (2) 2at+%. {3) logen.
7] n
(6) npv™L (6) e
1) (’;‘ ;;2 (8) 6xe~5*—b(3at+1)e
ax 1622+ 1282 — 1
x*+a 0 —— %

(1) _(I;g;g;' st (12) a*(aa~! 4" logeat).

(14) Min. : y =07 for x=0694.

a5) L= 1+” (16) f—c(log. ax)

Exercises XIII. (p.162.)
(1) Let %=ac (. £=8x), and use the Table on page 159
(2) T=34'627 ; 159°46 minutes.
(8) Take 2{=2a; and use the Table on page 159.
(®) (@) a*(1+logea) ; (B) 2x(e?); (¢) € xoe*(1 +logeach
(6) 0°14 second. (7) (a) 1'642; (b) 15°58.
(8) p=0:00037, 31"},
(9) 718 634 ¥ of 7,, 221'55 kilometers,

(10) Working as accurately as possible with a table of four-figure
logarithms, £=01339, 0'1445, 0°1553, mean=0'1446;
percentage errors :—10°2 7, practically nil, +71'9 %.

(11) Min. for x=". (12) Max. for z==,
(13) Min. for x=log.a.
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Exercises XIV. (p 173°
) @) g/—g=A cos (0—72—'-) H

(ii) de—2sin0cost9=sin20 and %:2%8203

(i) 52 d4l =3sin%0cos § and g/—g =3 cos 36.

(@) 6=45° or Tradians.  (3) E%= - sinSrnd.

) =222 _tanm

z x
(4) a*logea cosa® P

(6) 18'2 cos (xc+26°).

(7) The slope is %?-IOOcos(G—lff), which is a mazximum

when (6-15°)=0, or §=15°; the value of the slope
being then =100. When =75 the slope is
100 cos {75° — 15°) =100 cos 60° =100 x 3 =50.

(8) cos tsin 20+ 2 cos 26 sin 6 =2 sin 6 (cos? §+ cos 26)
=2sgin 6(3 cos?d—1).

(9) amne™!tan™1(6") sec? ™
(10) e’(sin2w+sin 2x); €(sin*x+2sin 2xc+2 cos 2
b b
D @) P2 @ 55 ) g% sy
(12) (i) d_oz::sec xtanx;
1 won & 1
OF) @— - )
(w) 1 ; = ) dy_~3secx (3 secir — )}
dx NP1

@3) %=4-e<29+3)"’cos 20+3)%
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(14) %:13924-3 cos (0-[- 3)- l()g'E 3(COS O x 3siné +30).
(16) O=cot; = +086; y= +0'56; is max. for + 0, min. for-@,

Exercises XV. (p. 180.)
(1) a?-6x’y—2y%; 3-2x°-4xy.
(2) 2xyz+Yy*%+24y+2xcy%?;
Yz + xc% +acz? 4 20y 2 5
2ucyz + 2%y + eyt + 20ty %

@ L@-ay+@y -+ (- op=SEU (0019 B,

@) dy=vw-'du+ulog.udv.
(56) dy=3sinvudu+uscosv dv,
dy =wu sin x*~1cos x dac + (sin x)*log sin & dut,
11 1
d/y—;) ﬁdfw— log.u o dv.
(7) Minimum for x=y=-4.
(8) (@) Length 2 feet, width=depth=1 foot, vol.=2 cubit
feet.
(b) Radius= ;2; feet=17-46 in., length=2 feet, vol.=2'64
(9) All three parts equal ; the product is maximum,
(10) Minimum =¢ for x=y=1.
(11) Minimum =2307 for =%, y=2.
(12) Angle at apex=90°; equal sides=length= X2V

Exercises XVI. (p. 190.)
Q) 13 (2) 0'6344. (3) 02R24.
(4) (@) y=§x?+C; (b) y=sinx+C.
() y=a?+3x+C.
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Exercises XVII. (p. 205.)

@ 4~/Em +C. @ - 0%3+C, ®3) 4@;+ C.

() §x3+cwo+0. ©) -2+ C..

6) at+a3+at+x+C. (M = ax b9w3 @ iC.

®) agj Ig=m-a (;’Ig by division. Therefore the answer

2
is % —ax+(a*+a)log.(x+a)+C.
(See pages 199 and 201.)

(9) +3ac3+ m~+27x+C (10) xa 2- a 22— 2ax+C.
(11) a2t + 3%+ C. (12) —%cos 6-316+C.
0 sm 2a.6 6 sin20
13) 5+ i +C. 14) 5-—3 +C.
6 sin2af 3z
) - +C (16) 3+ C.
(17) loge(1+2)+C. (18) -log (1 -x)+C.
Exercises XVIIL (p. 224.)
(1) Area=60; mean ordinate=10.
(2) Area=% of ax 2aNa.
(3) Area=2; mean ordinate =12—r=0'637.
(4) Area=1-57 ; mean ordinate=0°5.
(5) 0'572, 0:0476. ®) VOlume=7rr2%'4

(7) 1-25. (8) 79°6.
(9) Volume=4-9s45; (from O to ).

(10) alog. a, (T%IOgea‘

(12) Arithmetical mean=y0 ; quaaravic mean=1085.
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. 1
(13) Quadratic mean=;/—§J A2+ A?; arithmetical mean=0,

The first involves a somewhat difficult integral, and may be
stated thus : By definition the quadratic mean will be

1 . .
VQTT,/;) (4, sin x+ A, sin 3x)dee.
Now the integration indicated by
f(Alz sin2ax+24 ;A4 ;sin  sin 3+ .4 5> sin?3xc) dae

is more readily obtained if for sin?xc we write

1—cos2x
2

For 2sin xsin 3¢ we write cos 22 — cos 42 ; and, for sin?3w,

1—cos 6
2 ) .
Making these substitutions, and integrating, we get (see
p. 202)
Az?{ sin2c sin 2'v sin 4 , A4 sin 6
=\ )+A1A i )T (”‘ 3 )
At the lower limit the substltution of 0 for z causes all
this to vanish, whilst at the upper limit the substitu-
tion of 27 for x gives A2r+ Ag%r. And hence the
answer follows.
(14) Area is 62'6 square units. Mean ordinate is 1042,

(16) 436'3. (This solid is pear shaped.)

Exercises XIX, (p.233.)

o 2 2
)& al-a? w2+a‘ sin-1= +C (2 %(IOgcw_'&H'o“

a 2 2

® 25 (log. )o@ sinerc
(6) sin (log, x)+C. (6) €(x?-2xc+2)+0-
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() ylog 1+ C. (8) log,(log, 2)+C.
(9) 2log, (—1)+3log, (x+2)+C.
(10) 3log, (x—1)+1log, (2 — 2)+ % log, (¢ +3)+ C.

b x—a a?-1
(1) 5o loge s o +C- (12) loge_ g3+ C.

(13) %log, %ﬁ+§ arc tan c+ C.

(14 -\—/lglog,ﬁ_;/j&_ ba”, (Let 916=fv; then, in the result,

let '\/fv2 —%=v;u.>

You had better differentiate now the answer and work
back to the given expression as a check.

Exercises XX, (p. 263.)

) r=2v2, x,= -2, =3  (2) 7=2'83, a,=0, y,=2.
(3) x= +0383, y=0°147. @) r=2, x;=y1=2Wm.

2

3

Y3
) r =2a, x,=2a+3x, Y= - oi when =0, 2, =2a, 71=0
a

(6) When x=0, =y, =infinity, x,=0.
When x=+09, =336, x;=—221, y;=+20L
When x=-09, =336, x;=+221, y=-201.
(7) When =0, =141, a,=1, ¢,=3.
When =1, =141, ,=0, y,=3.
Minimum =1-75.
(8 For x= -2, r=112'3, x,=1098, 3= —-172
For =0, =2, =y, =infinity.
For x=1, =186, x;=—-067, y4,=-017.
(9) x=-033, y=+108.
{10) r=1, =2, y=0 for all points. A circle.
(11) When =0, =186, x;=167, 9,=0°17.
When x=1'5, r=0365, a; =159, 7/,=098,
a=1, y=1 for zero curvature.
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(12) When =73, r=1, ,=3, 41=0.

When e=’£, =2598, x,=2285, y,= — 141,
(14) When =0, r=1, a,=0, y,=0.
When =7, r=2598, 2, =07146, 3, = — 141

When 0=g, =2, =1, =infinity.

2.4 big2)¥ 2 b —a?
(15) "'=WT4xl’ where x=0, fr=%, =0, 9;= —

Exercise XXI. (p. 280.)

(1) s=948. @ s=(1+a?f  (3) s=12L

@ s= [ VT mde= VT ER + 1 log, (o +VTTED) |,
— 464,

®) s=(%7. ©) s=a(,—0).  (7) S=NTi—aZ.

®) s=]oa'\/l+gdx and S=an2+alog, (1+~2).

5=680.

Mz =12+ 1+14 log, {(c—1)+~(xe—1)*+1}and

{(10) s=/yTOliy+;y—z+[j{ i?:/z Let y=% in the first and
Nj 1+y?=2? in the second; this leads to
Y

s=1+y*+log, m and $=200.

(11) s=2a,[sin—gd0 and s=8a.
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(12) s=~/5c\/m+%+%—nlog. («/97:+ \/a?i—@) and

S=-—~/—+—]oge(1+~/—)
13) s__{1+(9.70>\1

(14) s= f; N1+ 18x dae. Let 1418x=2, express 8 in terms of 2

and integrate between the values of z corresponding
to x=1and x=2. §=527.

(5) 5= (16) 4a.

Every earnest student is exhorted to manufacture more
examples for himself at every stage, so as to test his powers.
When integrating he can always test his answer by differ-
entiating it, to see whether he gets back the expression from
which he started.

There are lots of books which give examples for practice.
It will suffice here to name two: R. G. Blaine’s The Calculus
and its Applications, and F. M., Saxelby’s A Course in Practicad
Mathemaitics.





