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PREFACE

This book as a first course in the Calculus is not designed

to be a complete exposition of the Calculus in either its

principles or its applications. It is an effort to make clear

the basic principles and to show that fundamental ideas are

involved in famihar problems. While formulas and alge-

braic methods are necessary aids to concise and formal

presentation, they are not essential to the expression of the

principles and imderlying ideas of the Calculus. These can

be expressed in plain language without the use of symbols

— one writer challenging the citing of a single instance

where it cannot be done.

The practice is common, at least with ''thoughtless think-

ers," of bUndly using formulas without any true conception

of the ideas for which they are but the symbolic expres-

sion. The formulas of the Calculus are an invaluable aid in

economy of thought, but their effective use is dependent

upon an adequate knowledge of their derivation. The
object of this book is to set forth the methods of the Cal-

culus in such a way as to lead to a working and fruitful

knowledge of its elements, to exhibit something of its power,

and to induce its use as an efficient tool. No claim is made
for absolute rigor in all the deductions, but confidence is

invited in the soundness of the reasoning employed and in

the logical conclusions obtained.

There are students, and engineers also, who when con-

strained to use the Calculus look upon it as a necessary evil.

This attitude is without doubt due to their minds having

never had a firm grasp upon its principles nor a full reahza-
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tion of the efficiency of its methods. A student while tak-

ing a course in the Calculus usually spends at least one-half

his effort in reviewing previous mathematics. In fact, a

course in the Calculus is held to involve an excellent review

of geometry, algebra, and especially of trigonometry; hence,

at the end of a term it is too much to expect of the average

student that he have an adequate knowledge of the Calculus.

If a choice must be made between the ability to solve

equations (including integration processes) and the far more

rare ability to set up equations to represent established facts

and laws, there can be little question as to which type of

abihty should be cultivated. The latter is of higher order

and is hkely to include the former. Engineers, physicists,

inventors and men of science generally find it difficult to

translate their observations into language which the pure

mathematician can understand. In fact, such translation

usually involves the writing of the equation : an undertaking

beyond the capacity equally of the non-mathematical scientist

and the pure mathematician. Integration of the equation,

once set up, the mathematician will undertake; conceiv-

ably, so might a machine. Fruitful deductions and rules

of practice result. The difficulty of reahzing these results

arises not from difficulties in moving about the symbols, but

from inabihty on the part of nearly all persons to state facts

in terms of symbols. It is as if no harmonist knew a melody

and no melodist knew a note. This book aims to keep fact

and symbol in close association, so that the student will

never use the latter without being conscious of the former.

It may then be expected that he will ultimately be able to

visualize the symbolic expression when the fact is known.

Apart from the references in the text and in footnotes,

acknowledgment is here made of the clarifying and logical

ideas embodied in the books on the Calculus by Gibson, by

Taylor, and by Townsend and Goodenough; also in Hedrick's

paper on the Calculus without Symbols.
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The introduction to this book ends with a reference to

the discoverer of the Calculus. It is deemed not unfitting

that the b6ok should close with the Central Forces of the

Principia.

ROBEKT GiBBES ThOMAS.

The Citadel, Charleston, S. C.

February 1st, 1919.
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What we call objective reality is, in the last analysis, what is common
to many thinking beings and could be common to all; this common
part . . . can only be the harmony expressed by mathematical laws.

— H. POINCARE



APPLIED CALCULUS.

INTRODUCTION.

The Calculus treats of the rates of change of related

variables. The factors of life are ever changing, acting and

reacting upon each other. The quantities with which we

have to deal in ordinary affairs are for the most part in a

state of change. Hence the field in which the principles of

the Calculus are directly involved is a wide one.

In observing the changes about us we note that they take

place at various rates, and the determination of the rapidity

of the change may be the controlling factor in many investi-

gations. Whenever the rapidity of the change of anything

is in question, the methods of the Calculus have appropriate

application.

In the case of velocity or speed, there is rate of change of

distance and time ; in a thermometer we have rate of change

of length and temperature, while in the barometer there is

rate of change of height and density; in the slope of ground

or grade of a road we have rate of change of vertical height

and horizontal distance; and in the case of a curve, rate of

change of ordinate and abscissa, or slope of the curve.

In the case of a body in variable motion, it becomes

desirable to determine its velocity at some point of its path

or at some instant of time, that is, the instantaneous velocity.

This notion of rate of change at an instant is common even

to untrained minds.

When one says of a train in variable motion, that it is

now going at the rate of sixty miles an hour, one means that

1
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at the instant considered the rate is such that, if it were

maintained, the train would go sixty miles in an hour, that

being the instantaneous velocity.

The method of the Calculus in getting the rate of change

of a variable at any instant is in accordance with natural

procedure: measure the amount of change in a short period

of time, then the average rate of change during that period

is the ratio of amount of change to length of period; the

limit approached by this ratio, as the period of time is

diminished towards zero as a limit, is the rate of change at

the instant the period began.

In determining the greatest and least values of a variable

quantity, they are found where the rate of change of the

variable is zero. For instance, at the maximum and mini-

mum temperature during a day, the rate of change of the

temperature is zero. There is a difference, however, in that

before the hottest moment the temperature was rising and

then afterwards falling, while at the coldest moment the

reverse was the case. In both cases the temperature's rate

of change was momentarily zero. Here is to be seen the

method of the Calculus as to maxima and mimina.

A distinguishing feature of the Calculus is that in addition

to real sensible quantities it uses ideal hypothetical concepts,

which are quantities that exist if certain conditions are

maintained. The Calculus connects these two classes of

quantities. Passing from the real to the ideal is Differentia-

tion, from the ideal to the real is Integration. The advantage

of introducing ideal quantities is that in many problems an

expression for the ideal is readily formed and from this

expression the real quantity is obtained by Integration. In

other cases the real quantity being given, the problem is

solved by the ideal quantity, obtained from the real by

Differentiation.

The might of the invisible and intangible forces in Nature,

predicated upon a concept {the aether), is generally recognized
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in this day and generation. Therefore, it is not to be

wondered at, that in deahng with material things and in

seeking the inner law by which they act and react upon each

other, we should call to our aid ideal concepts. The exclu-

sive realist in his passion for facts is prone to overlook the

fact that ideas are the first of facts.

It is acknowledged that science is useless unless it teaches

us something about reahty. Let it be acknowledged that

the aim of science is not things themselves, but the relations

between things, and the fruitfulness of the ideal quantities

of the Calculus is recognized. The differentials employed,

when properly defined, are not '^ ghosts of departed quan-

tities," even if in some cases ideal in character. "A^r2/,"

perhaps, but never ^' nothing,'^ they give to the creation of

the mind "a local habitation and a nameJ'

While the ratio of some real quantities may never equal

the ratio of the ideal quantities, nevertheless the former

ratio may approach so closely the latter as a limit that the

exact value of the ideal ratio can be discerned. So the

differentiation of any real variable quantity is possible. On
the other hand, the exact integration of every ideal quantity

is not possible, for in some cases no corresponding real

quantity exists.

In this respect there is an analogy with Involution and

Evolution. Any number may be raised to a power; but

the exact root of every number cannot be found, for no real

root exists for some numbers.

Differential Calculus deals with the rates of change of

continuous variables when the relation of the variables is

known.

Integral Calculus is concerned with the inverse problem of

finding the relation of the variables themselves when their

relative rates are known.

While some problems to which the Calculus is applied may
be solved by other methods, it often furnishes the sunplest
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solution; and there are cases in which the Calculus alone

gives the solution. The Calculus is a tool for the efficient

worker, and in the hands of skillful investigators the Cal-

culus has proved to be a powerful instrument in bringing to

Ught the truths of Nature.

In reference to the mighty intellect that conceived it, there

is pardonable hyperbole in the lines of the Poet :
—

" Nature and nature's laws lay hidfrom sight,

God said, 'Let Newton he,' and all was





ERRORS AND OMISSIONS

Page 24, on last line, f{x) = m for f(x) = m.

161, in Example 3, 35 for 36.

174, on figure, X misplaced.

196, on second line, integral sign omitted.

212, on fifth line, CPi for CP.

232, on fifth line, integral sign omitted.

251, Example* 1, *Miller and Lilly's Analytic Mechanics.

253, at bottom of page, True should be omitted.

259, on second line. Art. 124 for Art. 128.

263, at end of fourth line, period for comma.

345, in equation, x^ for y"^.

358, in (2), x for x.

385, in expansion, factor a omitted.

418, in Note, -w for x in (2) gives e^'^ = 1, should be, -2ir for x in

(2) or 27r for x in (1) gives e^^'^ = 1, whence e^'^ = ±1
hence ...

456, reference, (Ex. 6, Art. 116) for (Ex. 6, Art. 115).



PART I.

DIFFERENTIAL CALCULUS.

CHAPTER I.

FUNCTIONS. DIFFERENTIALS. RATES.

1. Variables and Constants. — A variable is a quantity

that changes in value. It is said to vary continuously when,

in changing from one value to another, it takes each inter-

mediate value successively and only once. If at any value

it ceases to vary continuously, it is said to be discontinuous

at that value.

A constant is a quantity whose value is fixed. If its value

is always the same in every discussion, it is an absolute

constant. If the fixed value may be different in different

discussions, it is an arbitrary constant.

In the equation of the circle, x^ -{- y^ = r^, x and y are

variables that vary continuously from to d= r ; while r is an

arbitrary constant, as its value is fixed only for any one circle.

In the ordinary affairs of life we have to deal with con-

tinuous variables, such as time; the distance of an object in

continuous motion from any point on its path; and with

discontinuous variables, such as the amount of a sum of

money at interest compounded periodically; the price of

cotton; the cost of money orders, etc.

In nature we have constants, such as: the mass of a body,

which is an absolute constant; the weight of a body, which

is an arbitrary constant, as it is fixed according to latitude

5
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and elevation; in mathematics, the ratio of the circum-

ference of a circle to its diameter and the base of Naperian

logarithms are absolute constants. ^

Variables are represented usually by the last letters of the

alphabet; as x, y, z, or p, 6, 0, etc. The letter A, however,

often represents a variable area. ^

Absolute constants are denoted by number symbols, and

there are some absolute constants represented by letters, as

TT, e, for the ratio and base just mentioned, each transcen-

dental but the most important in mathematics.

Arbitrary constants are represented usually by the first

letters of the alphabet; as a, b, c, a, /3, y, etc. Particular

values of variables are constants and are denoted by Xi, 2/1, ;

Zu X2, 2/2, ^2, etc.

2. Functions. Dependent and Independent Vari-

ables. — When two variables are so related that the value

of one of them depends upon the value of the other, the first

is the dependent variable and is said to be a function of the

second, and the second is the independent variable, which in

connection with the function is usually called simply the

variable, or sometimes the argument.

The area of a square is a function of the length of a side.

The area or the circumference of a circle is a function of its

radius. The square, or the square root, or the logarithm of

a number, is a function of the number.

Any function of x is represented by / (x), F (x),
<l)

(x), etc.,

and the symbol f{x) denotes any expression involving x,

whose value depends upon the value oi x. In any discussion

involving x, f (a) means the value of / (x) when x is replaced

by a throughout the expression. In y =f{x), x is the

independent variable and y is the function or dependent

variable. In the equation x'^ -\- y^ = r^, y = Vr^ — x^ or

X = Vr^ — y^, so y == f (x) or x = f (y). If one variable is

expressed directly in terms of another, the first is said to be

an explicit function of the second. If the relation between
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the two variables is given by an equation containing them

but not solved for either, then either variable is said to be

an implicit function of the other. So in x"^ -\- y^ = r^, y is

an implicit function of x and x is an implicit function of y;

but in y = v r^ — x"^, y is an exphcit function of x, and in

X = Vr^ — ?/2, X is an explicit function of y.

A variable may be a function of more than one variable,

thus in ^2 = x^ + y^, or in 2; = xy, 2; is a function of x and y.

The area of a rectangle is a function of its base*and altitude.

The volume of a solid is a function of its three dimensions;

so in y = xyz, V = f (x, y, z).

3. Function— Continuous or Discontinuous. — A func-

tion as/ (x) is said to be continuous between x = a and x = h,

if when x varies continuously from a to h, f {op) varies con-

tinuously from /(a) to f{h). In other words, f (x) is con-

tinuous between x = a and x = b when the locus oi y =

fix) between the points (a, /(a)) and (b, f (h)) is an un-

broken line, straight or curved.

A function is said to be discontinuous at any value when
it ceases to vary continuously at that value, even though its

variable may be continuous.

Some functions are continuous for all values of their

variables; others are continuous only between certain

limits. For example, sin d and cos d are continuous for

values of 6 from 6 = to ^ = 2 tt ; tan 9 is continuous from

= to ^ = 7r/2 and from d = t/2 lo 6 = '^ it, but when
6 passes through 7r/2 or | tt, tan changes from +00 to

— GO
, hence tan 6 is discontinuous for 6 = 7r/2 or | tt.

The Calculus treats of continuous variables and functions

only, or of variables and functions between their limits of

continuity.

4. Representation of Functional Relation. — Often the

relation between the function and the argument can be

expressed by a simple formula. For example, if s is the

distance fallen from rest in time t, then s = / (0 = J gt^.
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In such cases, the value of the function for any value

taken for the variable can be found by simply substituting

in the formula; thus,

si=f{l) =ig, S2=f(2) = ig.2' = 2g,

and so for any value.

A function is tabulated when values of the argument, as

many and as near together as desired, are set down in one

column and the corresponding values of the function are set

down opposite in another column. For example, in a table

of sines, the angle in degrees and minutes is the argument,

and the sine of the angle is the function.

A function is graphed or exhibited graphically by laying

off the values of the argument as abscissas along a horizontal

axis, and at the end of each abscissa erecting an ordinate

whose length will represent the corresponding value of the

function; a curve drawn through the tops (or bottoms) of

the ordinates is called the curve, or the graph of the function.

If y = f(x), the curve is the locus of the equation; but

it is the length of the ordinate up (or down) to the curve,

rather than the curve itself, that represents the function.

If p = f (6), the function may be graphed by laying off at

a point on a line as axis the various angles, — values of the

argument 6, and along the terminal sides of the angles the

corresponding values of the function p; a curve through the

ends of the vectorial radii will be the graph of the function,

and will be a polar curve. Here, too, it is the length of the

radius to the curve, rather than the curve itself, that repre-

sents the function. The area under a curve may be taken

to represent a function while the ordinate or radius repre-

sents some other function. (See Art. 139.)

5. Function — Increasing or Decreasing. — An increas-

ing function is one that increases when its variable increases,

hence, it decreases when its variable decreases. A decreasing

function is one that decreases when its variable mcreases,

hence it increases when its variable decreases. Thus ax and
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a^ are increasing, and ajx and a — ic are decreasing functions

of X.

6. Classes of Functions. — An algebraic function is one

that without the use of infinite series can be expressed by the

operations of addition, subtraction, multipHcation, division

and the operations denoted by constant exponents.

The common forms are: (a =b bx), (a =b bx""), ax, a/x, x"^,

including x'^, x^, Vx, 1/Vx, etc.

All functions which are not algebraic are called trans-

cendental. Of these, the most important are

:

The exponential functions, y = a^ or 6^, and y = e^, and

their inverse forms, the logarithmic functions,

X = loga y or log6 y and x = log^ y.

The trigonometric functions, y = smd,x = cos d,y = tan 6,

and the inverse trigonometric functions, B = arc sin y or sin~^ y,

6 = arc cos x or cos~^ x, 6 = arc tan y or tan"^ y.

The hyperbolic functions, sinh a; = (e^ — e~^)/2, cosh a; =
(e^ + e"^)/2, tanho: = (e^ — e~=')/e^ + e"^); and the inverse

hyperbolic functions,

sinh~i X = y = log {x + Va:^ + l),

cosh"! X = y = \og{x± Vx'^ — l),

tanh~i a; = 2/
= i log (1 + x/1 — x).

Note. — The phenomena of change in Nature, in general,

have been found to be in accordance with one or the other

of three fundamental laws. These have been stated * to be

the parabolic law, expressed by the power function y = ax^'j

where n is constant, positive or negative; the harmonic law,

expressed by the periodic function y = a sin (mx) ; and the

law of organic growth, or the compound interest law, expressed

by the exponential function y = ae^^. It is to be noted that

as X increases in arithmetic progression, y oi the exponential

function increases in geometrical progression; while, as x

* In Elementary Mathematical Analysis, by Charles S. Slichter.
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increases in geometrical progression, y of the power function

increases in geometrical progression also.

Examples in Nature of the working of these three laws

will be given later.

EMPIRICAL EQUATIONS.

Very often the form of a function is given only empirically;

that is, the values of the function for certain values of the

variable are known from experiment or observation, and the

intermediate values are not given; for example, the height

of the tide read from a gauge every hour.

In such cases the Calculus is not of much use unless some

known mathematical law can be found which represents the

function sufficiently accurately.

This "problem of finding a mathematical function whose

graph shall pass through a series of empirically given points is

of great practical importance.

The known values of the function and of the variable are

plotted on cross-section paper, 'logarithmic squared paper"

greatly facilitating the solution, and a smooth curve being

drawn 'Ho fit" the determined points, the equation of this

curve is required. The curve suggested by the plotted

points may have for its equation one of the following forms

:

(straight line) y = a -\-bx, or y = mx;

(parabola) . y = a -{-bx -\- cx^, ov y = a -{- cx^)

(hyperbola) y = a -\- c/x -{-b, y = 1/x", or

xy = bx-\- ay;

(sine curve) y = ci sin (bx -\- c), or y = a sin {mx)
;

(power function) y = ax" (n any number)

;

(exponential function) y = ae^^.

If the curve suggested by the plotted poirits is a straight

line, determine the values of a and b, or of m, from the

observed data. The straight line is not likely to pass

through all the points plotted, even when the straight-line
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law is the correct expression of the relation to be determined;

for the experimental data are subject to error. If the line

fits the points within the limits of accuracy of the experiment,

it may be drawn through two of the plotted points, and a

and 6, or m, may be evaluated from their coordinates.

By appropriate treatment of the data many of the laws

can be transformed into a linear relation. Thus, when the

points plotted suggest a vertical parabola with its vertex on

the 2/-axis, the required equation will be of the form,

y = a -\- cx^. (1)

If t is put for x^ in (1), and the values of t and y plotted,

these values satisfy the relation y = a -\- ct, that is, a straight-

line law. The power function y = ax"^ may be expressed

:

log y = log a -\- n log x, (2)

that is, the logarithms of the given data satisfy a straight-line

law. The straight-line law to fit the logarithms can be

determined and compared with (2) to find a and n, which

are substituted in i/ = ax'^.

The hyperbolic law and the exponential function also can

be transformed to the straight-fine law, and the constants

evaluated. Whether the experimental data can be expressed

by a power function or by an exponential function can be

determined by a test. When the data show that, as the

argument changes by a constant factor, the function also

changes by a constant factor, then, the relation can be

expressed by a power function.

When, however, it is found that a change of the argument

by a constant increment changes the function by a constant

factor, then the relation can be expressed by an equation of

the exponential type. (See Note, Art. 6.)

A full discussion of this problem of finding the expression

of the relation between a function and its argument from

limited experimental data involves the theory of least

squares, and is out of place in a first course in the Calculus.
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This necessarily inadequate treatment of the subject here is

warranted by the importance of the problem.

"^Example. — The amount of water Q, in cu. ft. that flows

through 100 feet of pipe of diameter d, in inches, with initial

pressure of 50 lbs. per sq. in. is given by the following:

(i 1 1.5 2 3 4 6

Q 4.88 13.43 27.50 75.13 152.51 409.54

Find a relation between Q and d.

Let X = log d, y = log Q ; then the values of x and y are

:

x = \ogd 0.000 0.176 0.301 0.477 0.602 0.788

y = logQ 0.688 1.128 1.439 1.876 2.183 2.612

These values plotted give points in the xy plane very nearly

on a straight line ; therefore, taking y = a -\- bx, a and h can

be evaluated by measurement on the figure;

a = 0.688 = log 4.88, h = 2.473.

Hence, log Q = log 4.88 + 2.473 log d = log (4.88 d'-^'^)

;

whence Q = 4.88 d^-^^s. * (Ziwet and Hopkins.)

7. Increments. — The amount of change in the value of

a variable is called an increment. If the variable is increas-

ing, its increment is positive ; if it is decreasing, its increment

is negative and is really a decrement.

An increment of a variable is denoted by putting the letter

A before it; thus Ax, A.y and A{x'^) denote the increments

of X, y, and x^, respectively. If y = fix), Ax and A?/ denote

corresponding increments of x and y, and

^y = ^f{x)=J{x^-^x)-f{x),

^.^
Aj/_ A/(x) ^ /(x + Ax)-/(x)

^" Ax Ax Ax

X denoting any value of x.

In the figure, let OPi ... S be the locus oi y = f (x)

referred to the rectangular axes OX and OY. If when x =
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OMi, Ax = M1M2, then Ay = M2P2 - MiPi = DP2; if

when X =OMz, Ax = M3M4, then Ay = MJ'^-M^P^ = -EP^.

In the last case Ay is negative and is what algebraically

added to M3P3 gives M4P4. When

X = OMi = xi, / (x) = MiPi = / (xi)

;

when

X = OM2 = xi + Ax, /(x) = M2P2 = /(xi + Ax);

hence when

X = xi, A/ (x) = M2P2 - MiPi = / (xi + Ax) - / (xi).

, EXERCISE I.

1. One side of a rectangle is 10 feet. Express the variable area A
as a function of the other side x.

2. Express the circumference of a circle as a function of its radius

r; of its diameter d.

3. Express the area of a circle as a function of its radius r; of its

diameter d.

4. Express the diagonal d of a square as a function of a side x.

5. The base of a triangle is 10 feet. Express the variable area A
as a function of the altitude y.

6. If y =f{x), y -^^y =f{x + ^x);

:. Ay = A/ (x) =f{x+Ax)-f (x),

and hence,
Ay ^ Af(x) _ f(x+Ax) - f (x)

Ax Ax Ax
All

If y = mx + 6, find value of Ay and of --^«

Ax
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^.
Ax

Aw
8. If w = x^, find value of Aw and of -—'

^ ^ ^ Ax

9. li y = x^, find value of A^/ and of --^, assuming the binomial

theorem.

10. li y = f {x) = mx -\- b, write values of

/(O), /(I), /(-I), /(^)-

8. Uniform and Non-uniform Change. — When the ratio

of the corresponding increments of two variables is constant,

either variable is said to change uniformly with respect to

the other.

When y = mx + h, —- = m (constant). (6, Exercise I.)

It follows that any linear function of x changes uni-

formly with respect to x; that is, y changes uniformly with

respect to x when the point (x, y) moves along any straight

line.

When the ratio of the corresponding increments of two

variables is variable, either variable is said to change non-

uniformly with respect to the other.

Av
When 2/ = a;^, -r-^ = 2 X + Ax (variable). (7, Exercise I.)

Thus the area of a square changes non-uniformly with

respect to a side. Any non-linear function of x changes

non-uniformly with respect to x, for evidently y changes non-

uniformly with respect to x when the point {x, y) moves

along any curved line.

Since time changes uniformly, any variable will change

uniformly when it receives equal increments in equal times;

and it will change non-uniformly when it receives unequal

increments in equal times.

Thus in s = vt, where s is the space passed over in time t
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by an object moving with constant velocity v, s changes

uniformly.

In s = J gP, where the object moves with constant accel-

eration g, s changes non-uniformly.

9. Differentials. — The differentials of variables that

change uniformly with respect to each other are their corre-

sponding increments; that is, their actual changes.

The differentials of variables that change non-uniformly

with respect to each other are what would he their corre-

sponding increments if, at the corresponding values con-

sidered, the change of each became and continued uniform.

As with increments, the differentials will be positive or

negative according as the variables are increasing or de-

creasing.

The differential of a variable is denoted by putting the

letter d before it; thus, dx, read '' differential x," is the

symbol for the differential of x. The differential of a vari-

able or function consisting of more than a single letter is

indicated by the letter d before a parenthesis enclosing the

variable or function; thus, d{x'^), dimx-^b), d{f{x)),

denote the differentials of x'^, mx + h, and/(x), respectively.

10. Illustrations of Differentials. — (a) Suppose a rec-

tangle, with constant altitude, is changing by the base in-

creasing. If when the base is

AB its increase is BM, then

d (base) = BM, and d (rectangle)

= BMNC.
Here the variables change uni-

formly with respect to each other,

hence their differentials are their

corresponding increments.

(6) Conceive a right triangle, with variable base and

altitude, is changing by the altitude moving uniformly to

the right. If when the base is AB its increment is BM, then

the increment of the triangle will be BMDC. But if the
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increase of the triangle became uniform at the value ABCy
the increment of the triangle in the same time would evi-

dently be BMNC; hence, BMNC and BM may be taken as

the differentials of the triangle and
of the base, where the base is AB.

In this case the triangle changes

non-uniformly with respect to its

base, so its differential is what would

he its increment if, at the value con-

sidered, the change became uniform.

Since the base changes uniformly, its

differential is its actual increment.

Here increment of triangle ABC =
d (triangle ABC) -f triangle CND,
while A (base) = d (base). If the

change of a variable be uniform, any actual increment may
be taken as its differential. If time be considered, the in-

terval of time, though arbitrary, must be the same for a

function as for its variable.

(c) Let the curve OPn be the locus oi y = f{x), referred

to the axes OX and OY. Conceive the area between OX
and the curve as traced by
the ordinate of the curve

moving uniformly to the

right. Let z denote this

area, and let MMi be A.x

reckoned from the value

OM = x; then MMiPiP
= ^z. But if the increase

of z became uniform at

the value OMP, its incre-

ment in the same interval

would be MMiDP; hence

taken as

X = OM,

MMi and MMiDP may be

the differentials of x and z respectively, when



ILLUSTRATIONS OF DIFFERENTIALS 17

Hence dz = MMiDP = MPdx = ydx,

which shows that area z is changing y times as fast as x.

Here Az = dz + area PDPi.

It is seen here that while the actual change in the area

does not admit of an exact geometrical expression, the

differential of the area, being a rectangle, is exactly and

simply expressed. It will be shown further on how by

Integration an exact expression for the area itself is obtained

from this expression for the differential.

Note. — Historically the Calculus originated through the

efforts to obtain the exact area of figures bounded by curves,

mathematics up to that time having furnished no method

applicable to all curves whose equations were known.

It is true too that historically the method of Integration

was discovered before the method of Differentiation was

developed. The Differential Calculus arose through the

problem of determining the direction of the tangent at any

point of a curve. (See Note, Art. 75.)

(d) Let OPn be the locus oi y - f {x) and s the length

from along the curve. Suppose the point (x, y) to move
along the curve to P and thence

along the tangent at that point.

Then at the value x = OM, the

change of x and y would become

uniform with respect to each

other, as the point (x, y) would

be moving along a straight line.

The change of s would become

uniform also with respect to both

X and y. As x is the independent

variable it may be taken to vary

uniformly, making PD or dx =
Ax orMMI, the actual change in x as the point moves along

the curve from P to Pi. Then dy is DT, the correspondmg
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uniform change of y, and ds is PT, the corresponding uniform

change of s. It is evident that while dx = Ax, dy is not

equal to Ai/ and ds is not equal to As. When, and only when,

the locus is a straight line will dy = Ay and ds = As, after dx

has been taken equal to Ax.

It should be noted that it is not essential that dx should be

made equal to Aa:, for dx may be taken as any value other

than zero, and then dy will be the perpendicular distance

from the end of dx to the tangent and ds will be the distance

from the point (x, y) along the tangent to end of dy. From
figure, {dsY = {dxY + {dyY.

11. Rate, Slope, and Velocity. — The differential triangle

PDT in figure for {d) Art. 10, gives -^^ = tan = slope of the

dv
curve y= f(x) at point {x, y) , and -^ is the ratio of the

change of y to the change of x at the point {x, y), or for any

dii
corresponding values of x and y, and -r- is called the rate

of y with respect to x.

-r-^ is the average slope or the average rate of change of y

with respect to x, while the point {x, y) moves over As on

the curve or while x and y take successive values over any

range.

If s —f{t), where s denotes distance from some origin,

and t, the time elapsed, then -7- is the rate of change of s

with respect to t, what is called velocity, speed, or rate of

ds
motion: v = ^-'

dt

In the case of uniform motion in a straight or curved path,

t? = 7 = -r- = -Tr=a constant. In the case of non-uniform
t At dt

ds
or variable motion, v = -r- = a. variable.

dt
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In figure for (d) Art. 10, it is seen that (dsy = {dxY + {dyf)

dividing by (..)^ gJ = (|)V(S;;

velocity of a point in its path is resultant velocity,

'=S=V(f+(S)'=^s >y\

a:-component i^Vx = -7: = velocity parallel to x-axis,

i/-component mvy = -£ = velocity parallel to ?/-axis;

, ,
dy dy / dx dy dx ^ , ^ ,

dy dy / ds dy ds .

dx dx /ds dx ds

dv
It appears that -p , the rate of y with respect to x, is the ratio

of the time rate of y to the time rate of x.

These expressions for velocity and their relations include

the case in which the motion is uniform or variable along a

straight line.

12. Rate, Speed, and Acceleration. — Acceleration is

rate of change of speed or velocity. Hence, if the speed is

changing, -3- , the time rate of change of speed, is called the

acceleration along the path, or the tangential acceleration,

and will be denoted by at. The total acceleration a is equal

to at, when the path is a straight line; otherwise, they are

not equal. It is desirable to distinguish between speed and

velocity. A body is in motion relative to some other body

when its position is changing with respect to that other.
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Change of position involves change of distance or of direction

or of both distance and direction. If a point moves con-

tinuously in the same direction, the path is a straight line;

if the direction is continuously changing, the path is a curved

line. The direction of motion at any point of a curvilinear

path is the direction of the tangent at that point, and from

one point to another the direction of motion changes through

the angle between the two tan-

gents. Thus from Pi to P2 the

direction changes through angle

4>. When the position of a point

changes the displacement takes

place along some continuous

path, straight or curved, and a

certain time elapses. The rate at which the change of posi-

tion takes place is the velocity of the point.

If the point moves so that equal distances are passed over

in equal intervals of time, the motion is uniform and the

point has constant speed, whether the path is straight or

curved. If the direction also is constant, that is, if the

path is a straight line, the point has constant velocity. Thus

there is uniform motion with constant speed either in a

straight line or in a curved Hne, but there is uniform or

constant velocity in a straight line only.

The extremity of either hand of a clock moves in a circular

path over equal distances in equal intervals of time, but its

direction is continuously changing. The motion is uniform

and the speed constant, but the velocity is not constant since

the direction is variable. Hence, a body may move in a

circle with constant speed and yet its velocity is variable.

In this case the acceleration at along the tangent is zero,

while the total acceleration a, the rate of change of the

velocity, is normal, directed towards the center, and has a

constant value depending upon the speed and radius. (This

value will be derived later.)
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The term speed thus denotes the magnitude of a velocity.

However, the term velocity itself is ordinarily used in the

sense of speed as weU as in the strict sense of speed and

direction. In the great majority of cases the direction is

assumed to be known, and the magnitude of the velocity is

what is in question.

Note. — A velocity having both magnitude and direction

is what is called a vector quantity and can be represented by

a straight hne having the direction of the velocity and a

length denoting its magnitude. Hence the sides of the tri-

angle PTD in figure for (d) Art. 10, may be taken to repre-

sent the resultant velocity v and its components Vx and Vy.

13. Rate and Flexion. — Flexion has been adopted by

some writers as a term for the rate of change of slope. Hence,

when the slope changes, and it always does except for a

dwi
straight line, -p , the rate of change of the slope with respect

to X will be called the flexion of the curve and will be denoted

by h, from the word bend. When the velocity and the slope

are uniform, there is no acceleration and no flexion; that is,

dv ^ , dm ^
-rr = and ^- = 0.
dt dx

14. Illustrations. — Consider the established equations

of motion:

^•
s = vt ov V = -}

L

V = gt = S2t(at = g = 32 ft. per sec. per sec. approximately);

s = ^gt^ = IQ t\

When the motion is uniform the velocity or speed is the

whole distance divided by the whole time ; or any increment

of the distance divided by the corresponding increment of

the time is the velocity at any point, and it is the same as

at any other point, since it is constant.

s ^s ds
, ,

/. 2^ = 7 = TT=Tr = a constant.
t Ai dt
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In the case of variable motion the whole distance divided

by the whole time gives the average velocity over the whole

distance; or any increment of the distance divided by the

corresponding increment of the time gives the average

velocity over that increment of the distance. The velocity

at any point is now given by the distance that would be gone

over in any time divided by that time, if at the point the

motion became and continued uniform or the velocity

became constant.

ds
Thus ^ = -3-. = 32 ^ gives v = 32 ft. per sec. at the end

of the first second ; and means that the distance in the next

second would be 32 ft., if at the end of the first second the

velocity became constant.

As a matter of fact, s = 16 ^^ gives 16 feet for the distance

in the first second, and 48 feet for the distance actually

passed over in the next second. This variation of distance

is of course due to the velocity being constantly accelerated.

So when it is said that a train at any point is moving at

sixty miles per hour, it is not asserted that it will actually go

sixty miles in the next hour; but what is imphed is, that the

train would go sixty miles in any hour if from that point it

continued to move with unchanged velocity.

Therefore, in ordinary language, variable velocity is ex-

pressed by the differential of the distance divided by the

ds
differential of the time; that is, by -77-

In the case above,

ds _ 60 miles _ 1 mile _ 88 feet

.

~di 1 hour 1 min. 1 sec.

thus dt may be taken as any value other than zero, if the

corresponding value of ds is taken.
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EXERCISE n.

1. u = 2 X. Show graphically the change in u when x is given an

increment, by taking x as the base of a variable rectangle of altitude 2,

and iX as the area. Is the change uniform for m ?

2. u = x^. (a) Show graphically the change in u when x is given an

increment, by taking x as the side of a variable square, and u as the

area. Show graphically the change in it if the change became uniform.

(6) Show same when x is taken as the base of a variable right triangle of

altitude 2 x, and u as the area. Show the change in w if the change

became uniform.

3. V = x^. Show graphically the change in V when x is given an

increment, if the change in V became uniform; x being the side of a

variable cube, and V the volume of the cube.

4. If a body is moving with uniform velocity and passes over 1000

feet in 10 seconds, what is its velocity at any point? If distance is

taken as axis of ordinates and time as axis of abscissas, what would the

slope of the graph be ?

5. s = 16 i^. Compute the values of s when t = 1,2, 1.1, 1.01, 1.001.

Get the average velocity between t = 1 and t = 2, between t = 1

and t = 1.1, between t = 1 and t = 1.01, between t = 1 and t = 1.001.

From V = 32 t, get the velocity at f = 1 and compare average

velocities with it. What would be the distance passed over in the

second second, if at the end of the first the velocity became uniform?

What is the actual distance passed over in the second second ? Which

is the increment ? Which is the differential ?

6. If a ship is sailing northeast at 10 knots, what is its northerly

rate of motion ? What is its easterly rate ?

If it is sailing S. 30° W. at 10 knots, what is its southerly rate ? What
is its westerly rate ?

7. If the grade of a road is such that the rise is 52.8 feet in every

mile, what is the slope?

8. If the grade of a road is continuously changing, the average slope

is given by what ? The slope at any point would be the slope of what ?



CHAPTER II.

DIFFERENTIATION. DERIVATIVES. LIMITS.

15. Derivative. — The ratio of the differential of a

function of a single variable to that of the variable is called

dv
the derivative of the function. Thus ^ denotes the deriva-

dx

tive of ?/ as a function of x. Since the derivative may vary

with X, as the slope of a curve varies from point to point, it

is, in general, itself a function of x] hence, the derivative of

f{x) is appropriately denoted hy f{x), and is often called

the derived function. So

K 2/=/(x),

.-. dy = f(x)dx.

Since dy = f (x) dx, the derivative is also called the differ-

du
ential coefficient. The derivative -r- is sometimes denoted

by D^y.

In the case of a curve the derivative is the slope, in the case

of motion it is the velocity, speed, or rate of motion; hi every

case it is the rate of change of the function with resj^ect to the

argument or variable.

Examples. —
li y = fix) = mx + b, the derivative

-f-
= f (x) = m,

24
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ds
If s = /(O = vt, the derivative ^ = f(t) = v,

dv
li V = f{{)

= gt, the derivative -^ = f{t) = g.

Here m, v, and g are constants.

16. Differentiation. — The operation of finding the

differential of the function in terms of the differential of the

argument, or the equivalent operation of finding the deriva-

tive, is called differentiation. The sign of differentiation is

the letter d; thus d in the expression d (x^) indicates the

operation of finding the differential of x^, and in -y- {x^) , that of

finding the derivative. D^y, j- , and /' (x) each denote the

derivative of ?/ as a function of x.

The general method of getting the derivative oi y = f (x)

is by finding the limit of the ratio of the increments of y and

X as they are diminished towards zero as a hmit; for the

limit which the ratio approaches, when defined to be the

dv
derivative, can be shown to be 3—

' dx

17. Limits. — The student has been made acquainted

in Geometry with the notion and use of limits; for exam-

ple, the area or the circumference of the circle, as the

limit of the area or the perimeter of the inscribed and cir-

cumscribed polygons, when the number of sides increases

without limit, or when the length of the side approaches zero

as a limit. A precise statement of a limit as used in the

Calculus is as follows

:

When the difference between a variable and a constant becomes

and remains less, in absolute value, than any assigned positive

quantity, however small, then the constant is the limit of the

variable.

If X is the variable and a is the limit, the notation is

lim X = a, or X = a, or lim {a — x) = 0, or (a — x) = 0;
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in which = is the symbol for approaches as a limit. When
the hmit of a variable is zero, the variable is an infinitesimal.

The difference between any variable and its limit is always

an infinitesimal.

18. Theorems of Limits. — The elementary theorems of

hmits are:

1. If two variables are equal, their limits are equal.

2. The hmit of the sum or product of a constant and a

variable is the sum or product of the constant and the limit

of the variable.

3. The limit of the variable sum or product of two or

more variables is the sum or product of their limits.

4. The limit of the variable quotient of two variables is

the quotient of their limits, except when the limit of the divisor

is zero. (See Note, Art. 20, for proof.)

Note. — The Differential Calculus solves such limits as

the exceptional case just stated.

19. Derivative as a Limit. — The limit of a variable, as

z, is often written It (z).

Limr^l, or It ^, denotes It(^) when Ax = 0.

dv A'Z/
In defining -p as a rate (Art. 11), it is stated that -r^ is the

average slope, or average rate of change of y with respect to

x, over the range Ax. As has been given (Art. 7),

Ay ^ Af(x) ^ fix + Ax)-^f{x)
^

Ax Ax Ax

where y = f (x) and x is any value of x. It remains to be

shown that

lim \^] = i^f±±MjzI(d = ± =/'(^).
ax=oLAa;J az=o Ax dx

(a) By rates without the aid of a locus. Let time rates be

used and let t, x, and y denote any corresponding values of
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t,'x, and y, from which A^, A;r, and A?/ are reckoned. Since

Aiy • Ai/
-rj is the average rate of y over interval At/, -ry is the time

rate of 2/ at a value of y between y and 2/ + A?/;

A^ _ ( time rate of y at the value oi y ( . .

At
I

from which A^ is reckoned. )

^, , Aa; _ ( time rate of a: at the value of x ) .^.

A^
I

from which Ax is reckoned.
)

Dividing (1) by (2), there results,

Ax=o L^^J the time-rate of a; dt / dt dx

(Compare Art. 11.'

,. 1 — i^ I
_ the time-rate of ^ _dy jdx _dy

Thus in showing the derivative as a limit, it appears that the

derivative of a function expresses the ratio of the rate of

change of the function to that of its variable. It is evident

that a function is an increasing or a decreasing function

according as its derivative is positive or negative.

In the above derivation in place of time-rates, the rate of

any other variable of which x and y are functions could be

used.

Remarks. Function of a Function. — It should be

noted that x and y being taken as functions of a third

variable ^, to every value of this auxiliary variable there

corresponds a yair of values of x and ?/, so y is indirectly

determined as a function of x. The derivative of 2/ as a

function of x mediately through t is, as shown;

^ — ^ /do;

dx dt I dt

c, 1 . . dy dy dx
Solving gives

di^di'Tt'
and this gives the formula for the derivative of the func-

tion of a function. For if y is directly given as a

function of x, and x as a function of t, then y is said to



28 DIFFERENTIAL CALCULUS

be a function of a function of t, as it is given as -a

function of t mediately through x. If 2/ is a given function

of z, and z a given function of x, then 2/ is a function of a

function of x, and the formula for the derivative of y is

dy_ _ dy dz

dx dz dx

Functions of functions often occur and there may be

several intermediate variables such as z in above case. A
function, as/ (x), is defined to be continuous for the value a

of X, or, more simply, continuous at a, if / (a) is a definite

finite number, and if lim f{x) = f (a) ; that is, if hm / (x) =

f (lim x) . By this definition the elementary functions of a

single variable are continuous for all values of the variable

except those for which a function becomes infinite.

A concrete case in everyday experience of a function of a

function is the change in length of a metal bar as the tem-

perature changes with time. Here the length is a function

of the temperature, and the temperature is a function of the

time; hence the length is a function of a function of the time.

The length, being directly a function of the temperature, is

indirectly a function of the time through the temperature,

which is directly a function of the time.

The rate of change of length per second is equal to the

product of the rate of change of length per degree and the

rate of change of temperature per second. If I, T, and t

denote the length, temperature, and time, respectively, then,

in accordance with the formula,

dl^dl_ dT
dt dT' dt'

If the length and temperature are taken as changing each

directly with the time, then the rate of change of the length

per degree is equal to the rate of change of length per second

divided by the rate of change of temperature per second.
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The formula would be

dl^^dl /dT
dT " dt/ dt

'

which may be obtained from the other formula by solving;

or the first may be obtained from this. As all variables

change with time, that is, are functions of time, time rates

are most common.

(6) To show geometrically

lini r^l = #^ = slope of

Let OPn be the locus oi y = f{x), PP^S a secant, and PT
a tangent at P. If arc OP = s, arc PPi = As. Let

OM = X, MMi = t^x, then MP = y, DPi = ^y.

Hence

—^ = 7^ = slope of secant PPiS.
Ax PD

Conceive the secant PPiS to be re-

volved about P so that arc PP\

(= As) = 0; then ^x = 0, A?/ = 0, and

the slope of the secant = the slope

of the tangent at P.

Hence hm hr^ = :/ = slope of the curve y = f{x) at
Ax=o L^^J (ix

point {x, y).

dv
The limit is thus shown to be the derivative, whether -j^

dx

is regarded as only a symbol for the limit of the ratio of the

increments of y and x, or as that limit and also a definite

ratio itself of the differentials of y and x.

Corollary. — If when Aa; = 0, -r^ varies, the locus of

Ay
y = f {x) is a curved line; otherwise, if —- is constant, the
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locus is a straight line coincident with the tangent, and

^ = -1-
. So for a straight line, the ratio of the increments

of y and x, being constant, does not approach a limit as Ax
approaches zero, and the derivative is the constant ratio

^x dx

In general, ^ will approach a finite limit except where the

locus is perpendicular or parallel to the :r-axis, when the

slope is infinite or zero. On special curves where there are

two tangents at a point, the limit is not definite. (See Note,

Art. 80.)

Note. — This definition of the derivative as the limit of

the ratio of the increments of y and x as • they converge

towards zero is the fundamental conception of the Differential

Calculus by the method of limits.

In this method since A?/ and Ax are variables each approach-

ing zero as a limit, they are infinitesimals, for any variable

with zero as a limit is defined to be an infinitesimal. If dx

is taken as always equal to Ax, then, except when the locus

is a straight line, dy will always differ from Ay; and dx, dy.

Ay and (A^ — dy) are infinitesimals when Ax approaches

zero, for they each approach zero as Ax approaches zero.

However, dx may be taken as any increment of x and, when
X is the independent variable, may be made a finite constant,

for X may be considered as changing uniformly by finite

increments; but then, except for a straight line, dy is variable

though finite. When Ax is infinitesimal any particular value

of Ax may be taken as constant, for any particular val ue of

an infinitesimal is a fixed finite quantity, small or large as the

case may be. Whether dy and dx are infinitesimals or finite

quantities, their ratio for any particular value of the variable

is, in general, constant; and it is their ratio that is important.

Both ways of regarding differentials are useful. Finite
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differentials are desirable for their simplicity, especially to

make the differential of the independent variable constant.

But when Integration is regarded as finding the limit of a

sum, as will be shown later, differentials are necessarily

infinitesimal.

One advantage in making dx infinitesimal and taking it

very small is that A^ is then very nearly equal to dy, and so

instead of computing A?/ in some investigation the simpler

and easily found dy may be taken for it. In practical work

dx and dy are usually taken very small quantities, but it is

their ratio that is of importance. In this connection it should

be borne in mind that, however small a quantity may be,

it is not an infinitesimal as defined in the Calculus, unless

it is a variable approaching zero as a limit.

20. Illustrative Examples. — In these examples, as

elsewhere, the letter symbol for the argument in general is

used as the symbol also for some particular value of the

argument; this double use of the symbol making for con-

ciseness and generahty.

Example 1. — Let the function to be differentiated be

y = x\ _^ (1)

2/ + A?/ = (a: + ^xf = x^^2x t^x^ b,x
, (2)

A?/ = 2 x^x + Ax^, (3)

g = 2x + Ax, (4)

^ = ^ = lim r^l = lim (2x + Ax) = 2x; (5)

.*. dy = 2x dx. (6)

The actual change of y corresponding to any change of x is

givai by (3). The average rate of change of y from any

value of X to X 4" Ax, or the average slope of the curve over

that range, is given by (4). The rate of change of y with

respect to x at any value of x, or the slbpe of the curve at
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any point {x, y), is given by (5). What would be the change

of y for any change of x, if at any value of x the change of y
became uniform, is given by (6) ; and it shows that, at any

point {x, y), 2/ is changing 2 x times as fast as x is changing.

Example 2. — Let the function to be differentiated be

s= 16^2^ (1)

s + As= 16(^ + A02= l^{t^ + 2t^t + ~^i), (2)

As = 32 ^ A^ + 16 A^^, (3)

(4)

(5)

(6)

(5)

(7)

(8)

(9)

(10)

The distance s passed over by a body falhng from rest in any

time t is given by (1). The actual distance passed over in

time A^, after any time t, is given by (3). The average time-

rate of the distance, or the average velocity from s to s + As,

is given by (4). The time-rate of the distance, or the

velocity at end of any time t, is given by (5). What would

be the distance passed over in time d^ (= A^, if at end of

time t the body moved on with unchanged velocity, is given

by (6). The actual change of the velocity in time Ai is given

by (8). That the velocity is changing uniformly is shown

by (9), since the ratio of the two increments is constant.

As

A^
= 32 ^ + 16 A^,

V
ds

dt
= limr^'] = 32^;

.-. ds = 32tdt.

the function to be differentiated be

V --= 32^.

v-\- H^v = 32 (^ + AO,

.
Av.= 32 A^,

Av

At
'= 32,

a
-""'-dt-Ii-^^'
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The rate of change of the velocity or speed, the acceleration

a or at, is given and shown to be constant by (10).

Av
It is to be noted that ^, being a constant ratio by (9),

does not approach a limit; hence, the derivative -^ is equal

to — and is therefore constant acceleration. (See Corollary

y

(h), Art. 19.)

Note. — If s = 16 ^2 be represented graphically by a curve,

ds
then the slope of the curve is m = -r. = S2 t = v, the veloc-

ity; and the flexion of the curve is 6 = -rr = -7: = 32 = a«,

the acceleration.

Example 3. — Let the function to be differentiated be:

y = mx + h. (1)

y -\- Ay = m {x -\- Ax) + 6 = mx -\-m* Ax -{-h, (2)

Ay = m- Ax, (3)

!=£-. (^)

.*. dy = mdx. (6)

Here again the ratio of the increments, being shown by (4)

to be a constant m, does not approach a hmit; hence, as

dv All
shown by (5) the derivative j~ = T~ = ^j ^tie constant

slope of the line y = mx + h.

That the ordinate is changing m times as fast as the

abscissa is shown by (6).

It is evident that for a linear function not only is the ratio

of the increments the derivative, but the increments are the

differentials as defined.
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Example 4. — Let the function to be differentiated be

1
,y = - or xy = 1.

X
(1)

(x + Ax) (y-{-Ay) = xy-{-x\y-\-yAx + Ax Ay = 1, . (2)

xAy + yAx-\-AxAy=0, or (x + Ax) Ay = —y Axj (3)

^y y
, average slope over Ax, (4)

y = tan (j),

Ax X + Ax

Ax=o V x-\- AxJ

slope at any point (x, y) ; (5)

/. dy=-ldx, (6)

showing that the . oi y is - times the
increase

increase
of X, at any point {x, y).

decrease

Example 5. — In compressing air, if the

temperature of the air is kept con-

stant, the pressure and the volume

are connected by the relation pV =
constant. To find the rate of change

of the pressure with respect to the

dij
volume, that is, the derivative 7^-dV

Let pV = K, (1) o"vt

(p + Ap) (V + AV) = pV+pAV + VAp + ApAV = K, (2)

pAV-{-VAp + ApAV = 0, or (V + AV) Ap = -pAF, (3)

Ap _ p
AV~~V+AV'

average rate of change from F to F + AT
, ^

^ =]!??„ [If] =ii'?o
(- F+af) = -

f

rate of change for any corresponding values of p and Vi

(4)

(5)
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.*. dv = — —dV, showing that the . of pressure is^ V increase

p ,. ,, increase
r- i ^ ^^ ^

^ times the , oi volume at any corresponding values

of pressure and volume.

Example 6. — Let M be the mass of a body, V its volume,

and p its density; then,

AM ^M ^
AV V ^'

the density at any point, when the body is of uniform

density;

,. AM dM
AV=oAV dV ^'

the density at any point, when the density varies from point

to point. Here when the body is not homogeneous, the

density being variable, -r-y. is the average density of the

portion of mass, AM; while the derivative, -tj^, expresses

the density at a point of the body whether the density is

variable or uniform.

Note, — In regard to lim hv = :i^, the derivative of y

as a function of x, it is important to note that, since the

Hmit of the divisor is zero, it is wrong to write

j.^ rA,1 InnAj/ ^
Aa;=o L^^J hm Ax

This case is specially excepted in Theorem 4, Art. 18. To
prove the Theorem 4, Art. 18:

Since y = -'X,
X

lim y = Hm - • lim x, by Theorem 3,
X

,. y limy ..-,.
\ um - = r:

—-
, if lim X IS not zero,

X max
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When lim x is zero, division by it is inadmissible by the laws

of Algebra. If lim x were zero and lim y not zero, then -
X

is infinite and has no hmit; hence the exception in Theorem
y

4. The notation lim - = oo , if so written, means that, as x
x=OX

'

approaches zero as a Umit, - increases without hmit; that is,
X

the limit is non-existent.

Infinity or an infinite quantity is not a limit, and the

symbol oo means a variable increasing without limit.

In Example 4, where y = -, - = — . Here where lim x
^ x' X x^

y .

is zero and lim y is not zero, - is infinite, having no limit.
X

In Example 5, the limit — ^ is finite for finite values of p

and V. From V = y and ^ = r—, p = oo asF = 0; hence

as lim V is zero and lim p is not zero, ^ is infinite;

Ay " ~
7-f AF ^^ i^fi^ite as F = 0,

and lim -r^ is non-existent when V is infinitesimal.

Av
In Example 3, where y = mx + h, Ay = m Ax, and -i^ = m.

If Ax = 0, At/ = 0, but their ratio is constant and ap-

proaches no limit. Since Ay = mAx, the law of change of

the variables is known and the ratio of two infinitesimals is

a finite constant.

In Example 1, where y = x^,

Here the limit of the ratio of two infinitesimals is a finite

constant for any particular finite value of x; but, as x may

Ay
Ay = 2xAx + Ax^, -r-^ = 2 x + Ax, .*. lim

Zax Ax=0
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have any value, the hmit of the ratio may be zero, finite, or

non-existent.

Thus it is seen that, no matter how small two quantities

may be, their ratio may be either small or large; and that, if

the two quantities are variables both with zero as their limit,

the limit of their ratio may be either finite, zero, or non-

existent, but is not 0/0. (See Art. 219.)

To find hm -j-^
, as in the illustrative examples, the limit

of an equal variable is found; which limit is, in general,

determinate and not identical with the indeterminate expres-

sion 0/0. In certain cases the limit of the ratio of two

infinitesimals is found by finding the limit of some other

variable which, though not equal to the ratio, has the same

limit. Examples of such cases will be given further on.

(See Art. 70, Art. 77.)

21. Replacement Theorem. — The limit of the ratio of

two variables is the same when either variable is replaced by any

other variable the limit of whose ratio to the one replaced is unity.

Let 0, 01, (f), and 0], be any four variables, so that

c. (1)It

6

01
1, It

01
1, and <

e

'01
<t>i_

*<Ai'

_ ^1

01* 01

'
<t>i.

< = it
01

01* < «? = lt by(l)

in which is replaced by ^i, and by 0i, but the limit of the

two variables is the same.

22. Limit of Infinitesimal Arc and Chord. — The limit of

the ratio of an infinitesimal arc of any plane curve to its chord

is unity.

Since s (Art. 19 (6), figure) is a function of x,

••• «^ = ?- (1)^x dx ^ ^
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But It
^^Q^^ ^^1 = It sec DPPi = sec DPT = ^ • (2)

Dividing (1) by (2), l^^[^jj2p^] = l. (3)

It follows from Art. 21 that in a limit an infinitesimal arc

may be replaced by its chord.

ALGEBRAIC FUNCTIONS.

23. Formulas and Rules for Differentiation. — By the

general method any function can be differentiated, but it is

usually more directly done by formulas or rules estabhshed

by the general method or by other methods.

In the following formulas u, v, y, and z denote variable

quantities, functions of x; and a, c, and n, constant quan-
'^

c?
"

tities. If in the formulas -r- or '^ Da; " be substituted for

^'^," and in the rules '^derivative" be substituted for differ-

ential, they are still valid.

[I] If y = X, dy = dx.

The differentials of equals are equal.

[II] d(a)^0.

The differential of a constant is zero.

[III] d (v + y + • . . - ;5 + c) = di; + dy + . • - dz.

The differential of a polynomial is the sum of the differentials

of its terms.

[IV] d {ax) = a dx.

The differential of the product of a constant and a variable is

the product of the constant and the differential of the variable.

[Ya] d (uy) = ydu + udy.

The differential of the product of two variables is the sum of

the products of each variable by the differential of the other,

[Vft] d (uyz , , , ) = (yz . . , )du -\- (uz , , , )dy

-\r {uy , , , )dz+ ' ' * '
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The differential of the product of any number of variables

is the sum of the products of the differential of each by all the

vest

.^^', ,(N\ DdN-NdD
[VI] dl^^j = ^

The differential of a fraction is the denominator by the

differential of the numerator minus the numerator by the

differential of the denominator, divided by the square of the

denominator.

nx dx.[VII] d(x^)

The differential of a variable with a constant exponent is the

product of the exponent and the variable with the exponent less

one by the differential of the variable.

24. Derivation of [I]. — If ?/ is continuously equal to x,

it is evident that y and x must change at equal rates;

that is,

dy _ dx

dx dx'

dx

dy = dx.

Since
dx

1, the rate of x is the unit

rate, so in general the rate of a variable

with respect to itself is unity, or the

derivative of / (x), when / (x) is x, is

one.

Geometrically the locus of y = x is the straight line

through origin making angle 4> = j with a;-axis.

jy-dy

tan (^
!^x

1,

1 • A-?/ . ^ ^ ^y dy ^and smce -r^ is constant, -r^ = ~ = \.
Ilx I\x ax

dy = dx.

For examples of [I], if y"^ = 2px, d(y^) = d{2px); or if

X2 + ^2 = (j2^ ^ (^2 + ^2) == ^ (^2) = 0.
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25. Derivation of [II]. — By definition the value of a

constant is fixed, therefore the rate of a constant is zero;

that is,

^ = 0, .-. da = 0.
dx

li y = a, a change in x makes no change in y, hence

Ay . Ay .

Ay = 0, /. -r^ = 0, and since — is constant,

Ax dx *
^

Geometrically the slope of 2/ = ot (a Hne parallel to x-axis)

is at every point zero.

26. Derivation of [III]. — It is manifest that the rate of

the sum of v •\- y -\- • • • — 2! + cis equal to the sum of

the rates of its parts, v, y, . . . —z and c; that is,

d{v -j-y + ' ' ' — z + c) _dv _L_dy ^
^ _^i^

dx dx dx dx dx

Multiplying by dx, since dc = 0, the result is [III]. The
rule shows that differentials are summed like any other

algebraic quantities. For example,

d (6V ± aV - a'^') = d {¥x'') ± d (aY) - d (a^h^). .

27. Derivation of [IV]. — Since A (ax) = aAx, the ratio

of the increments is constant and ax changes uniformly

with respect to x. Hence by definition

^ —^ of differentials d (ax) = adx. li y = ax,

dv
-^ = a, slope of line. Geometrically, if

dz

X MdxM,

z = axhe area of a rectangle of base x and

altitude a, then the rectangle MPPiMi is the change of z

made by a change Ax(= dx) of x, and being a uniform change

is the differential of z,

.*. dz = d (ax) = a dx.
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^y
XI

1

1

p
z=ui/ y y

du

For examples:

d(2px)=2pdx, and d(-) = dl-x]=—
[Va] will be seen to include [IV] as a special case.

28. Derivation of [V^]. — Let z = uy; then z, a function

of 1^ is a function of y also. Geometrically, let u and y be

the base and altitude of a variable rectangle conceived as

generated by the side y moving

to the right and the upper base ^
u moving upward; then z = uy ^
is the area. If at the value

OMPN, du = MMi, and dy =
NNi, the differential of the area ^ ^ ^
is MMiDP + NPBNi, as that

sum would be the change of the area of the rectangle due to

the change of u and y, if at the value OMPN the change of

its area became uniform. Hence dz = d {uy) = y du-\-udy.

Here A^ = A {uy) = d {uy) + P DPiB, since that sum is the

actual change of the area due to the change of u and y.

It is to be noted that iiy = u, then the rectangle is a square

and area z = u^,

.*. d {u^) = udu-\-udu = 2udu.

li y = a, z = au, dz = adu -\- uda = a du, since da = 0.

Hence [IV] is a special case of [Va].

29. Derivation of [V^]. — To prove d {uyz) — yz du -\-

uz dy + uy dz. If in [Vo], yz is put for y;

d {uyz) = yzdu + ud {yz)

= yz du -{• u {z dy -{- y dz)

= yzdu + uz dy + uy dz.

By repeating this process the rule is proved for any number
of variables, li y = z = u,

then d {uyz) = d {u^) = u^du-\- u^ du+'u'^ du = Su^du.

To derive d{uyz) geometrically, let V = xyz = uyz.
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z

^
0,

If a;, ?/, and z be the edges of a variable right parallelepiped

conceived as generated by the face yz moving to the right,

the face xz moving to the front, and the face xy moving

2
upward, then the volume is

the product of the three

edges; that is, V = xyz.

If at the value OP, dx =
AAi, dy =BBi, and dz = Cd,
the differential of the volume

is PAi + PBi + PCi; as that

sum would be the change of

the volume of the parallel-

opiped due to the change of

X, y, and z, if at the value OP
the change of its volume became uniform. Hence

dV = d (xyz) — yzdx -\- xz dy + xy dz.

Here
AV = dV+ PNi + PLi + PMi + PPi,

since that sum is the actual change of the volume due to the

change of x, y, and z. li y = z = x, then the parallelopiped

is a cube and V = x^,

.'. d (x^) = x'^dx -\- x'^ dx -]r x^dx = '^ x^ dx.

30. Derivation of [VI]. — Let z = ~ {x and y indepen-
X

dent), then zx = y.

.'. d (zx) = xdz -^ zdx = dy,

zdx

by[Vc

Solving^ dz = ^

diy]=^

X

x[ _ xdy — ydx

X " x^

Corollary.

d(2U-^;
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. /a\ xda — adx adx . -.

for d[-]= ^ = 2~» ^1^^® ^^ = ^-

Va/ a

„ ^ (x\ adx — xda dx . , „
for a - ; = — ' since aa = 0:

\al 0? a

hence, for a fraction with constant denominator, use

[IV]. For another derivation of [VI], see Corollary of next

Art. 31.

31. Derivation of [VII]. — I. When the exponent is a

positive integer.

(a) If n is a positive integer, x"" = x • x - x ' to n factors;

hence,

d {x"^) = d{x'X - X to n factors)

= a;"~i dx + x'^-i dx + a:"~^ dx -{- • • •

to n terms, by [VJ,

= nx""'^ dx.

(h) By the general method. Let y = x"^.

y -\- t^y = {x -{- l^xY= x''-\- nx''-'^ Ax + (terms

with common factor Ao: ),

Ly = nx"^"^ ^x + (terms with factor Lx )

Ai/—^ = nx""-^ + (terms with factor Ax),

-^ = hm hr^ = nx"~\ .*. dy = nx"~i c?x.

n. When the exponent is a positive fraction.

by
• Binomial

Theorem.

Let y = x'^,

then yn= ^m^

.-. d(y-) = d(x^),

nt/^"^ dy = mx"^'^ dx,

, m x*"~^ , mx'^'^y

n y'^~^ n y"
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\x-) = ax = — x"" otx*
n x'^ n

III. When the exponent is negative.

Let y = x~", n being integral or fractional; then 2/ = — >

•*• ^^ = ^ (i^)
= "?? ^""^ ^^ f^^'' ^^'•' '^'^- ^^'

/. dy = d (x""*) = — nx~"~i dx.

Corollary.— d [
-

j
= d {xy~'^) = i/"^ c^o; — xy~^ dy

_ dx _xdy _ ydx — xdy .^^,
~

y y^
~

y^

Note. — A general proof of [VII] by logarithms, given

further on (Art. 37), includes the case where the exponent is

incommensurable. So the Formula or Rule is valid for any

constant exponent. It is called the Power Formula and is

of most frequent application.

Examples. —

d (Vx) = d (x^) = - x~2 dx =—y='
^ 2Vx

d(—7-=] = d {x~^) = — ^x~^^dx = 7='
WxJ 2 2Vx'

d{x^^)= V2x'^^-'^dx,{= l.^Ux-^^^dx, approximately).

d{x'^) = TTX'^-^ dx (= 3.1416 a;2-^^^^dx, approximately).

d {(ax + 6) ") = n (ax + h) "-^ d (ax -{-h) =na (ax + b) ""^ dx,

/. 4- ((«^ + ^) ") = na (ax + b) ^'K
ax

Note. — The last example may be seen to be an application

of the formula for the derivative of a function of a function.

For let y = (ax + 6)" and put z = ax + b, then y = z^;

now 2/ is a function of z, and ;s is a function of x; that is, y is
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a function of a function of x. The formula given in Remarks,

Art. 19, is ^ = ^-^;
' ax dz dx^

dy d ,. , ,. . d{z'') d(ax-\-h) ^ .

dx dx^^ dz dx

In applying Rule [VII], if all within the parenthesis, as

{ax + 6), is regarded as the variable, the actual substitution

of z may be dispensed with in getting the derivative of such

functions.

EXERCISE m.

By one or more of the formulas I-VII differentiate:

dy =d{Q x^) + d (4 x-^) - d (2 x-') + d {S x'^).

dy^_^ ?_il_l?.
dx ~ ^x V^ ^^ ^

'

2. 2/ = 3 x3 - 4 a:2 - 2.

dy =d(3a;3) -d(4a:2) -d{2).
dy = 9x^dx - Sxdx - 0;

^ = 9x2 -8x = (9^ -8)x;

that is, y changes (9 x — 8) a; times as fast as x.

When x = —1, y is increasing at the rate of 17 to 1 of aj;

X = ^, y is neither increasing nor decreasing;

X = 0, y is neither increasing nor decreasing;

X =
I, y is decreasing at the rate of | to 1 of a;;

X = I, y is changing at the same rate as x;

X = —l,yis changing at the same rate as x]

X = 2,yis increasing at the rate of 20 to 1 of x.

Note. — In this way the meaning of each differential equation may
be shown.

3. t/ = (l+2a;2) (H-4a;3). dy = ix {1 +Sx + lOx^) dx.

dy = (1 -h 2x2) d (1 + 4a;3) _^ (1 ^^x^)d (1 + 2a;2);

or d^/ =£^(1 +2x2 + 4x3 + 8x5).
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4. y ^{x-\- 1)5 {2x- 1)3. dy = (16a; + 1) {x + 1)4(2^ - lydx.

e / 1 \ . / dy a — 3 X
5. , = (a+x)Va-:,. i =

2vj3^-
6. 2/ = (l-3a;2+6x4) (1+^2)3. d^/ = 60 a;^ (1 + ^2)2 da;.

7. ^ = (.^-a^)\
dj^ ^{x^-a^y
dx ^^l

- _ g; + g^ dy _ b — a^

^~x + 6* rf^~ (re + 6)2*

^ (x + b) d (x + o2) - (x + a')^ {x + 6)

10. y =x {x^ + 5)^.

2rc4
11. y

a'- — x"

12. ?/ = Vcfx2 + 6a: + c.

14. 2/ =

15. ?/ =

Va2 - x2

(a; + 6)2

d?/ 2x
dx {X - 1)3

dy _
dx

: 5 (^3 + 1) (^3 + 5)J.

dy 8 a^x^ - 4 x5

dx~ (a2 - x2)2

dy _ 2ax + h

dx ^ Vaa;2 +6a; + c

dy 1

dx (1 -x)Vl- x2

dy a2

dx V(a2-a;2)3

dy na;"~i

dx (1 + x)'H-i

dx

dy.

2 na:"-i

(X- - 1)2

(i+xr

Va2 + a:2 - X dx a? LVa? + a;2 J

Rationalize the denominator before differentiating.

n—\ 7 w—

3

18. a; = « (f2 + a?)~^ . , ^ = (n^2 4. ^2) (^2 _|. ^2) "2".

19. A vessel is sailing due north 20 miles per hour. Another vessel,

40 miles north of the first, is sailing due east 15 miles per hour. At

what rate are they approaching each other after one hour? After 2

hours? Ans. Approaching 7 mi, per hr.; separating 15 mi. per hr.

When will they cease to approach each other, and what is then their

distance apart? Ans. After 1 hr. 16 m_. 48 sec; 24 mi.

20. If a body moves so that s = Vi, show that the acceleration is

negative and proportional to the cube of the velocity. Negative sign

shows what ?
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21. Ji X = at and y - ht — -^cf, find -^ and -t-
2 ' dx dy

dx _ dx / dy _ a

dy dt I dt b — (

bx _lcx^
^ . dy _b _cx _b cat _ b — ct

a 2 a^ ' " dx~ a a^ a a^ a

dy _dy ldx_bj-ct^ dx_dx ld^_ _a_^
rRv Art IPfoU

di'Tt/ dt~ a dy- dt/ dt'b-ct ^^^ ^^' ^^^""^'^

Or y =

22. If p = v^ and = ^2 - 10, find ^.
ua

^^ = ^/§ = ^/2^ = —3- (By Art. 19, Remarks.)
dd dt / dt 2t^/ 4:t^

Or p2 = ^ = (0 + lO)^ .-. 2pdp= 1 =~
2(9 + 10)* 4t^

23. The equation pV = C expresses Boyle's law, C being a constant.

Find Ig: and ^- (See Ex. 5, Art. 20.)
dV dp

24. The heat H required to raise a unit weight of water from 0° C.

to a temperature T is given by the equation,

ff = r + 0.00002 T2 + 0.0000003 T3.

(a) Find -ttf- (&) Compute the numerical value of the rate for

T = 35°. Ans. (b) 1.0025025.

25. A vessel in the form of an inverted circular cone of semi-vertical

angle 30°, is being filled with water at the uniform rate of one cubic foot

per minute. At what rate is the surface of the water rising when the

depth is 6 inches? When 1 foot? When 2 feet?

Ans. 0.76 in.; 0.19 in.; 0.05 in., per sec.

26. Show that the slope of the tangent to the curve y = x^ -{- 4: is

never negative. Find the slope for x = 0, ior x = 2. For what values

of x does the slope decrease as x increases ?

LOGARITHMIC AND EXPONENTIAL FUNCTIONSo

32. Formulas and Rules for Differentiation.

—

[VIIIo] d (logbx) = — dx (x positive),
X

(m = \ogbe = 0.434 . . . , for 6 = 10).

x) = - dx {x positive).

(m = loge6 = l,e = 2.718 . . . ).

[Vlllb] d (loge x) = - dx {x positive).
X



48 DIFFERENTIAL CALCULUS

The differential of the logarithm of a variable is the product

of the modulus of the system and the reciprocal of the variable

by the differential of the variable.

[IXJ d (5*') = b'^ loge h dx (b positive).

[IXfc] d{e^) = e''dx.

The differential of an exponential function with constant base

and variable exponent is the product of the function and the

Napierian logarithm of the base by the differential of the

exponent.

[X] d (y^) = y- logeydx +*y^^ dy,

(y positive and independent oi x).

• The differential of an exponential function with base and

exponent variable is the sum of the results obtained by differen-

tiating as though the base were constant and then as though the

exponent were constant.

33. Derivation of [VIIIJ and [Vlllfi].—

(i) Taking n an arbitrary constant, let

X = ny. (1)

logb X = logb {ny) = logb y + log6 n. (2)

d (logt x) = d (log5 y)[+d (logj, n) = 0]. (3)

Differentiating (1) and dividing result by (1),

dx _dy
X ~ y'

Dividing (3) by (4) gives as result,

d{\og,x)l^^ = d{\og,y)l^'- (5)

It is manifest that the equal ratios in (5) are constant for

any particular value of y. Let m denote the constant value

of the ratio when y = yi; then

d (logb x) = ~ dx, (6)
X

(4)
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when X = nyi] and, as n is-an arbitrary constant, nyi denotes

any positive number. Hence (6) or [Villa] holds true for

all positive values of x, m being a constant. The constant

m is called the modulus of the system of logarithms, whose

base is denoted by b in this derivation. The general base is

often denoted by a.

The system whose mQdulus^.is unity is called the Napierian

or natural system. The symbol for the base of this system

is e, called the Napierian base from the name of the dis-

coverer of logarithms.

Hence d (loge x) = - dx, [VIIIj]
X

(ii) By the general method of limits, {x positive.) Let

y = log6 X. y + ^y = logt (x + Ax),

A2/ = log6 {x + Ax) - \ogbX = \ogb (1 + -~]
,

X
Raising each member to -r— power gives

X

x^ I Ar\^6-=(l+^).

The limit of each member as Ax = gives
X

lim6 ^^ = limH =lim 1 + -
, puttmg

—

=--,

SO that (if X is not zero), as Ax = 0, n = 00
;

lim 6 ^^ = 6 ^^ = lim 1 + - = e
Az=0 n=oo \ nj

(denoting the hmit by that letter)

;

dx dx X X

(m = log6 e = the modulus)

;
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/. dy = d (logb x) = — dx. [Villa]

Hence,

d (loge x) = - dx, since loge e = 1 = the modulus. [VIIIs]
X

The limit of ( 1 + - ) as n is increased without Hmit is e,

the Napierian base. (See next Art. 34.)

34. Lim (l + -T = e. (See Ex. 7, Art. 221.)
n=ai \ TlJ

When n is a positive integer, by the Binomial Theorem,

(+3"= ,
1 n{n-l) 1 n{n-l){n-2) \_

"^ n"^ 1-2 'n^"^ 1.2.3 \^^

\ n) . \ n)\ nl=w+-^^:^+ ^.-g • + ••••

In the expansion there are (n + 1) terms in all, and every

term after the second can be written in the form given to the

3rd and 4th terms. As n = oo ,
- = 0,
n

^„(i+3"=i+i+l+A+2-.i4+---
= e = 2.7182818 ....

Note 1. — The limit is denoted by e, which is an irrational

number, and was proved by Hermite, in 1874, to be trans-

cendental or non-algebraic. The number e was the first

number to be proved transcendental. Not until 1882 was

the attempt to prove the number w transcendental successful.

This was finally done by Lindemann. The proofs consist in

showing that neither of the two numbers is the root of an

algebraic equation with integers for coefficients. Algebraic

real numbers are defined as those real numbers which are

roots of such an equation. The importance of these two

numbers, considered the most important in mathematics,
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warrants gDme notice. They are connected by the remark-

able relation, e^^^^ = 1. (See Ex. 10, Exercise XLIII.)

Note 2. — The above derivation of the Umit is not com-

plete, for the result is true not only when n is ''a positive

integer," but also for n positive or negative, integral, frac-

tional, or incommensurable. The value of the hmit, e, can

be easily computed to any desired degree of precision by
taking a sufficient number of terms of the series. Twelve

l^erms gives the result correct to seven decimals; that is,

e = 2.7182818 . . .

By comparing the sum of (n + 1) terms of the series with

the sum, 1 + 1 + - + ^+ • • • 7^1 , which is greater than

the other, and equal to 3 — i''~S it is manifest that no matter

how great n may be, the sum of the (n + 1) terms is certainly

finite and less than 3. The

may be considered as 5, or as usually written,

to infinity. (See Ex. 5, Art. 215.)

Without expanding, the lim f 1 + -
) can be computed to

any desired number of decimals by giving increasing values

to n; thus,

(1 + ,1^)10 = 2.59374.

(1.01)100 = 2.70481.

(1.001)1000 = 2.71692.

(1.000001)1000 000 = 2.71828.

The last number agrees with the value of e, the required

limit, to five decimals.
1

Corollary.— Lim (1 + n)" = e. (See Ex. 8, Art. 221.)
n=0
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35. Derivation of [LXa] and [IX^]. —
(i) Let y = h^, then lege y = x lege b.

d (lege y) = d{x lege 6) , or — = lege h dx,

:. dy = d (6^) = h'^logehdx (b being positive). [IXa]

Hence, d(e^) = e'^dx (since logeC = 1). [IX^]

(ii) li y = h"", X = logb y. dx = d (\ogb y) = —^—^*

.*. dy = , dx = h^'logehdx (since -. = loge^J. [IXa]

Hence, c^(e^) = e^do;. [IX&]

(iii) By the general method of Hmits. Let

y = G^. y -\- Ay = e^+^^.

Ay = e^+^^ — e^ = e^ (e^^ — 1).

A^ _ e^ (e^^ - 1)

Ao;
~ Ax

lim r^l =p= lim r.= f-^1)] = .^ lim f^^)A.=oL^:cJ dx A.=oL V Ao; /J Az=0\ AiC /

= e^f since Urn (^-r—-)= l) (C^or., Art. 36);

/. dy = die'') = e^dx. [IX^]

Corollary.— d (h^) = ¥ loge h dx. [IXa]

1
XI

For if — = loge h, ¥ = e^ , since 6 = e^

;

m m
:. d (6^) = ¥ loge h dx.

36. Limfl + -V = e^
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1 + -
, if X 7^ 0, by putting n = Nx, when

nj

n = 00 so is AT" = 00
; hence

(+3"=('+r=i('4)T.
and

!f-(^
+3" -Mi' +W\ =

hi' +^)7

=

'-'

since lim/ (a;) = / (lim x), the case of a function of a function.

(See Remarks, Art. 19.)

By exactly the same method as in Art. 34, it may be

shown that

(x\^
1 + -

j
for positive integral values of n.

It can be shown that the limit of this series is a finite

number for all finite values of x no matter how great n may
be. (See Art. 213 and Ex. 5, Art. 215.)

Corollary.— Limf
j
= 1, which may be put in the

form, lim (—r
) = 1.

Ax=o V Ax /

37. Derivation of [X].

—

Let z = y"", then loge z = x loge y. (y Dositive and inde-

pendent of X.)

d{logeZ) = d{x\ogey)i

~ = \ogeydx-\-x-^;

:. dz = d {y") = y^ loge ydx + xy"-^ dy (y positive). [X]

Note. — Formulas [VII], [IXa], [IXb] are seen to result

from [X] as special cases.
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Let y = x"", then loge?/ = nlogeX,

d{\ogey) = d{n\ogex),

dy dx

y X

:. dy = d (x^) = nx''-^ dx. [VII]

If X were negative, to avoid logarithms of negative num-
bers, both members of y = x"" are squared before differ-

entiating.

This derivation of [VII] includes the case where n is

incommensurable.

38. Modulus. — In Art. 33 (ii), it appears that logb e is

the modulus of the system of logarithms whose base is h.

Hence, when the base is 10, as in the common system, and

the value of e is known, a table of logarithms will give the

value of the modulus of the common system to as many
decimals as the table gives. The modulus of the common
system, denoted by M, is logio e = 0.43429 ... If this

value of M is deduced independently of any knowledge of

the value of e, which can be done ; then the value of e can be

gotten from a table of logarithms ; for, since M = logio e,

then e = 10^; that is, e is the number whose common
logarithm is 0.43429. . . .

In Art. 35 (i) and (ii), it appears that loge 6 is equal to

^
log. 10 = r-^„ = -rj^ = 2.3026

log6 5' *• ^V" logio e .434

approximately. (See Ex. 6, Art. 215.)

To get these results independently, let x be any number

whose logarithm in the system with base 10 is I, and in that

with base eisV; then 10^ = x and e^' = x;

/. 10' = e^'. (1)

Let 10^ = e; (2)

/. 10^ = 10^^'; .-. l=MVoY \,
= M, (3)
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and since 10 and e are constant, so also is M, From (2),

M = logioe, or from il) I = logioe^' = Tlogioe;

J,
= logioe = M] or in general, log6e = m.

Since I = MV, or logio x = M loge x, it follows that the com-

mon logarithm of any number is equal to M times the

Napierian logarithm of that number.

Now d (logio x) = Md (loge x) or ^Jj^^''^^ = M,
d{\0geX)

or m for base h, and dividing [Villa] by [Vlllb] gives

jn i = ^) the modulus;
d (loge X)

:. M = logic e = modulus of common system (h = 10),

and m = loge e = 1 , modulus of natural system {b = e).

From (1) above, I log^ 10 = ^ or r- = -——- = M, by (3) ;

approximately.

To summarize m two equations:

Common log = 0.434 times natural log.

Natural log = 2.3026 times common log.

Note. — Since the modulus of the natural system is unity

the differentials of logarithms are simpler when the logarithms

are in that sj/stem; hence, in the Calculus and in most

analytic work, Napierian logarithms are employed for the

most part. Any finite number except one could be made
the base of a system of logarithms. For computation the

common logarithms are the best, as having the base 10

affords rules for the integral part of the logarithms and

obviates the necessity of that part appearing in the tables.

It is usual in writing log for logarithm to omit the subscript
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indicating the base, when no ambiguity results. Hereafter,

when no subscript to log appears, e will be understood.

39. Logarithmic Differentiation. — Exponential func-

tions and also those involving products and quotients are

often more easily differentiated by first taking logarithms.

This method which is used in the last two derivations (Art.

35 and Art. 37) is called logarithmic differentiation.

To derive [Va], let z = uy, then log z = log u + log y,

d(log2) = ^ = 1* +^ = d{\ogu)+d(\ogy);
z a y

:. dz = d (uy) =' ydu -\-u dy.

To derive [Yb], let

V = uyz, then log V = log u -\- logy + log z,

dV du . dy . dz
d(logF) = -^ = - + -+-;

.*. dV = d (yz) = yzdu -{- uz dy + uy dz.

To derive [VI], let z = y/x, then log ;s = log 2/
— log x,

d{logz) =-^= ^-^ = d{logy) -dilogx);
z y J.

• dz = d(-]= — -— = ^dy - ydx
\x/ X x^ x^

40. Relative Rate. Percentage Rate.— The logarithmic

derivative of a function may be defined as the relative rate

of increase of the function. Thus, when y = f (x),

dy

— = \, / is the relative rate of y.
y /W

Hence, when z = xy and therefore, log z = log a; + log !/;

dz dx dy

dx dx
,
dx.

z
~ X y

'
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that is, the relative rate of increase of a product is the sum of

the relative rates of increase of the factors. If the logarithmic

derivative is multiphed 100 times, the product expresses the

percentage rate of increase. Thus when

^ = Ky, 100— =100X
ax y

is the percentage rate of increase, and is here constant.

EXERCISE IV.

By one or more of the formulas [I] to [X], differentiate:*

1. y= logbx^ = Slogbx.
, -£ = -^ = —-

n n \-i
dy 31ogioe,i „ 1.302... ,, .„

2. y = (logio x)\ ^ = —1~ (logiox)2 = (logiox)2.

Z. y = xlogx. -^ = log a; + 1.

4^
1

,

dy ^ 1 + log a;

xlogx dx (a;logx)2
'

*• y-^os''^^ = \oe(ax-b}-\os(ax+b). | = ^|^.
6. 2/ = log ^+ - = log (1 + VJ) - log (1 - Vi).

7.. = iogWr^. 1 = 2^.
B. y = 6^e^ ^ = (1 + log h) 6==e^.

9. y =log(a^ + 6=^).
dy _ g^ log a + b^ log b

dx~ a^ + 6^

10. 2/ = x^ 5^. ^ = x'b' (5 + x log 5).

11. y =x^ ^ = a;^(loga: + l).

ax X

* In some of the examples logarithmic differentiation is employed to
advantage; that is, take logarithms first and then differentiate.
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Here log y = e^ log x :. — = e^ — + log xe^ dx.
y ^

13. y = x'og ^. dy = 2 x^og ^"^ log a; • da;.

U. , = log(logx). | =
,t4^-

16. a;^°sa = a}ogx^ (Differentiate]^both members and verify results.)

16. {x + e^)4 = a:^ + 4 a;%^ + 6 a:2e2^+ 4 xe^"" + e*^. (Do as in 15.)

17. (e^ + e-^)' = e2^ + 2 + e-2^. (Do as in 15.)

c^ — e-^ dy 4
18. 2/

e^ + e-^ dx (e^ + e-^)2

e^ dw 1
19. 2/ = log,^^.

^^ j^^,

20. y = (log x)^. ^1
= (log xr i-^ + log log x\ -

21. Find the slope of the curve y = logio a;, or a; = 10^, showing that

the results are identical. What is the value of the slope at (1, 0)?

What is the slope of the curve y = logg x, or x = e^, and its value at

(1,0)?

2£. Find the slope of the curve x = loge y, or y = e^; and note that

the slope at any point has the value of the ordinate at that point. Value

of the slope ata:=0? Ata: = l? Ata;=— oo?

(X _x\

ea + e a/ at a; = 0.

Ans. 0.

What is the abscissa of the point where the curve is inclined 45° to

the a:-axis ?

Ans. X = a loge (l + ^2).

24.* Find the value of x when logio x increases at the same rate as x.

Ans. X = logio e = 0.4343 . . ,

dx
* Since d (logio x) = logio e • ^-

;

dx = x' "^f""^^"^^ = 2.3026 X . d (logio x)
;

logio e

hence, any number N increases about 2.3 AT times as fast as logio A^.

When

N = 0.4343 . . . ,dN = 0.4343 X 2.3026 d (logio AT) = d (logio iV).

Find how much faster x is increasing than logio a; for x = 1.

Ans. 2.3026 x = 2.3026 . . .
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25. When the space passed over by a moving point is given by
s = ae* -{- be~^, find the velocity and the acceleration, showing that the

acceleration is equal to the space.

26. Find the slope of the curve y

27. Find the slope of the curve y =

e^ -\- e <^

28. Find the derivative of the implicit function y in e^^ = xy.

Passing to logarithms

:

= -{ea- e "«/ at X = 0.

X

ea — e

X

X

a

X
at X -= 0.

Ans.

Ans.

1,

1

a

x + y =\ogx + \ogy. -^ =

Passing to log

ylogx = X log y

dy y{l- x)

dx x{y — 1)

dy 2/2 _ j.y log y
dx x^ — xy log x

30. Find the slope of the probabihty curve y = e-^"-.

Ana. —2xe-^^.

What is the value of the slope at x == ?

Ans. 0.

2
At X = 1? Ans.

e

41. Relative Error. — Since when y = fix), the relative

rate of increase of y is

^ df{x)

dx _ dx _ f {x)

y ~1W~W)'
where dy = f (x) dx

;

hence, Aiy = / (x) Ax, (1)

and
^

^=^#Ja., .(2)
y fix)

are approximate relations. The relation (1) is useful in

finding the error in the result of a computation due to a small

error in the observed data upon which the computation is

based. The relation (2) gives approximately the relative

Ay
error —^•

y
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1. Thus, to find an expression for the relative error in the

volume of a sphere calculated from a measurement of the

diameter when there is an error in the measurement. Here

AD ^gAD
7rD» D

Hence, an error of one per cent in the measurement of the

diameter gives approximately an error of three per cent in

the calculated volume.

2. Again, from the formula for kinetic energy X = i mv^,

to show that a small change in v involves approximately

twice as great a relative change in K. Here

AK V Av ^Av
-^^ = m-i ^ = 2—

3. If a square is laid out 100 ft. on a side and the tape is

0.01 ft. too long, an errojof y^iy of one per cent, the relative

error in the area is, approximately,

M - 2a: ^ - 200-^:^ - 0002

or if of one per cent.

1 +-)

= e=^, in Art. 36, arises in a variety of problems. When a

function has the general form

y = ae^, (1)

then -p = hae^'' = hy;

that is, the rate of change of the function is proportional to

the function itself. Many of the changes that occur in

nature are in accordance with this law, called by Lord Kelvin

the compound interest law. It is so called because of the fact

that the amount of a sum of money at compound interest

has a rate of change at any value proportional to that value,

when the change is continuous.
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Let A = amount, r = rate per cent, P = principal, and t

number of years; then,

A = P(l + r)\ when interest is compounded yearly;

1 + -1
, at n equal intervals each year;

. A = limP ["[l ^-VT = Pe'i (by Art. 36) (2)

is the amount when the interest is compounded continuously.

dA
Here A = Pe*"' and —rr = rPe'"' = rA, hence, the rate of

dt

change of the A is proportional to the value of A, the factor

of proportionality being the rate per cent at which the

interest is reckoned. As a comparison, it may be noted that

$L00 will amount to $2,594, in ten years with interest at 10

per cent, compounded yearly; while the amount will be

$2,718 when compounded continuously.

If in A = Pe'"', t increase in any arithmetical progression,

whose common difference is h, A will increase in a geometrical

progression whose common ratio is e''^; for if t become t + h,

A will become Pe'"('+^), that is, Ae""^. Hence A is a quantity

which is equally multiplied in equal times.

The density of the air towards the sea level from an eleva-

tion is a quantity which is equally multiplied in equal

distances of descent, for the increase in density per foot of

descent is due to the weight of that layer of air which is itself

proportional to the density. Many other instances occur

in physics.

When bacteria grow freely the increase per second in the

number in a cubic inch of culture is proportional to the

number present. The relation between the number N and

the time t is expressed by the equation,

dNN = Ce^'; .-. ^ = kCe'' = kN, (3)
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where N is the number of thousand per cubic inch, and k

is the rate of increase shown by a colony of one thousand per

cubic inch. So many instances of this kind are found in

organic growth— where the rate of growth grows as the

total grows— that the law is called the law of organic growth,

as well as the compound interest law.

When a quantity has a rate of change which 'is proportional

to the quantity itself, if the functional relation is expressed

by an equation, it must be of the form (1).

In the case of the density of the air, the relation (see Art.

226) between the density p and the height h above the sea

level is expressed by

where po is the density at the sea level and A; is a constant to

be determined by experiment. From barometric observa-

tions at different altitudes, it has been found that at the

height of 3| miles above the earth's surface, the air is about

one-half as dense as it is at the surface. Hence, to deter-

mine k,

£ _ .-3.5;t _ 1

;

Po"' ~2'

.-. -3.5 fc = log 0.5, or A; = ^^^ = 0.198;

.*. p = poe~^-^^^^, where h is in miles. (5)

Here, as h increases in arithmetical progression, p decreases

in geometrical progression, the force of gravity and the

temperature being taken constant. The varying density at

different heights is found by giving values to h; thus, making

h = 35, gives — = 0.001 ; hence, according to this law at the
Po

height of 35 miles the density of the air is about one-thou-

sandth of the density at the sea level. As the pressure p is
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proportional to the density, p = k'p; and the same law holds

for the pressure of the air; hence,

p = poe-^'^ ••• ^ = -kpoe-^'^ = -k'p^ (6)

where /c' is a constant to be found by experiment.

Knowing the pressure at the sea level and observing the

pressure at some height, ¥ is determined; or it can be

determined from the value of the pressure at any two differing

heights. When the pressure is expressed in inches of mercury

in a barometer, the pressure in lbs. per square inch = 0.4908

X barometer reading in inches. Taking pq = 30'' when
/i = 0, and p = 24'', say, when h = 5830 ft., /b' is readily

computed. In millimeters the equation is p = 760 g-'^/sooo,

where h is in meters.

The relation between the decomposition of radium and

time is expressed by the equation

q = qoe-^'; .*. J= -/bgoe"*' = -kq, (7)

where ^o is the original quantity and q is the quantity remain-

ing after a time t. The constant k can be found from the

fact that half the original quantity disappears in 1800 years.

The relation between the varying difference of tempera-

ture of a body and that of the surrounding medium and the

time of cooling is expressed, according to Newton's Law, by

8 = 6o6-^'; .-. ^ = -kdoe-'^ = -k8, (8)

where 5 = r — to, the difference in the temperature of the

body and that of the medium, 5o = ri — to, the difference

when t = 0, k a constant; that is, t = to + (ti — to) e~^\

where —kt indicates the body is cooling.
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TRIGONOMETRIC FUNCTIONS.

43. Circular or Radian Measure. — The formulas for

differentiation of trigonometric functions are simpler when
the angle is measured in radians than in degrees. Hence,

in the formulas that follow, the angle will be in radians.

A radian, the unit of circular measure, is an angle which

when placed at the center of a circle intercepts an arc equal

in length to the radius.

180°
Since 2 irr is arc of 360°, a radian equals , or 57.3°

TV

nearly. In circular or radian measure, an angle in radians

is equal to the length of the intercepted arc divided by the

radius; Q ='-, where d is angle in radians, s is number of

units in arc, and r is the number of units in radius. Hence,

s = rd; that is, in any circle the length of an arc equals the

product of the measure of its subtended central angle in

radians and the length of the radius. If r = 1, then s = d;

that is, the arc and the angle have the same numerical

measure. Trigonometric functions are called circular func-

tions.

44. Formulas and Rules for Differentiation. —
[XI] d* sin e = cos d0.

The differential of the sine of an angle is the cosine of the

angle by the differential of the angle.

[XII] d cos e = - sin e d0.

The differential of the cosine of an angle is minus the sine of

the angle by the differential of the angle.

[XIII] cltan0 = sec^0d0.

The differential of the tangent of an angle is the secant

squared of the angle by the differential of the angle.

[XIV] ' dcot = - cosec^ dQ,

* Parenthesis after d omitted when no ambiguity results.
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The differential of the cotangent of an angle is minus the

cosecant squared of the angle by the differential of the angle.

[XV] d sec e = sec 6 tan dS.

The differential of the secant of an angle is the secant of the

angle by the tangent of the angle by the differential of the angle.

[XVI] d cosec 6 = - cosec cot d0.

The differential of the cosecant of an angle is minus the cose-

cant of the angle by the cotangent of the angle by the differential

of the angle.

45. Derivation of [XI] and [XII]. —
I. Let the point P{x, y) move along the arc XPY of a unit

circle. Denote the number of linear units in the arc XP by
s, and the number of radians in angle XOP by 0.

Then B = s, y = dnS, x = co^d;

:. do — dsj dy — d sin 6, dx = d cos d.

Angle DTP equals 6, and dx is nega-

tive; hence, from the triangle DTP^
by (d) Art. 10,

dy = dsind = cos Odd, since ds = dd;

dx = d cos = — sin ^ dd,

since —dx = sin 6 ds and ds = dd.

It is seen that dy and dx in the figure

are what the changes of the sine and

cosine of 6 would be if, at the value XOP of 6, the changes

were to become uniform.

II. By the general method of limits.

Let y = sin 6, then y + ^y = sin {$ + AS);

Ay = sin {d + Ad) — sin d

AS
ein

Ay

2 sin

sm

Ad Ad

2

coshf)

AS I-cos(^i

/

+
A^^

A^^

As
A^

2

= 1,

, by Trig.;

[(Art. 46).

as AQ = 0;
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de aJ?oLa^J
lim
A9=0|

Sin -2-1

2

j-Kf) cos^;

/. dy = d sin 6 = cos Odd.

Corollary. — d covers 6 = d{l — sind) = — cos 6 dO.

Now let a; = cos ^ = sin (S — ^) i

dx = dcosd = dsinl^ — dj = cosf^ — djdl^ — d);

.*. dcosd = — sin d dd.

Corollary.— d vers S = d{l — cos 6) — sin Q dB.

Let d be the number of radians in the angle NOA, where

the angle is taken acute; by Ge-

ometry, if AT and BT are tan-

gents at A and B,

then,

chord AB < arc A5 < AT + BT,

and therefore

MA < arc iVA < AT.

Hence

that is,

dividing by sin 0,

MA arc iVA AT
OA^ OA ^OA''

smB <B < tan0;

1<J_<J_ or l>EEf>eose.
sm0 COS0

Thus the ratio -—r— hes between 1 and cos B.
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When 6 approaches as its hmit, cos d approaches 1 as its

hmit; therefore, also sin ^/0 approaches 1 as its hmit. (See

Art. 215, Ex. 1.)

Corollary, — Since hm —-— = 1,
6=0 ^

,. 2 MA ,. chord AB , /a ^ or. i xlim ^ ^r A
= lim 7-75- = 1. (Art. 22, also.)

It may be noted that,

since -rjF = 1
—

n = cos B, when = and cos 0=1,AT tan^ ' '

sin0 and tan 6 approach equality; and, since the arc B is

intermediate in value between sin B and tan B, the three

functions approach equality as the angle B nears zero. So

Hm (7—^1= 1 and lim \—z— )= 1, as well as hm (^^—] 1.

These are fundamental examples of the ratio of infini-

tesimals approaching a constant value as a hmit. Con-

sider again the equality of ratios, -j^ = -y^-- Suppose the

points A and B approach N; so long as A and B are not

coincident, that is, so long as AB is really a chord, the

equahty still exists. The ratio MA : AT may be considered

a function of OM, or equally well a function of the angle

NOA. As OM approaches ON as its limit, or as the angle

NOA approaches zero as a hmit, the ratio MA : AT ap-

proaches 1 as its hmit. The nearer OM gets to ON, or the

nearer A gets to N, the nearer does the ratio MA : AT get

to unity. The crucial fact is that the reasoning is vitiated

if OM becomes actually equal to ON; for then the triangles

will cease to exist, the terms of the one ratio will be zero and

those of the other will be identical, and the equation on

which the reasoning is based could not be estabUshed.
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47. Derivation of [XIII].—

Since tan^ = -, atan^
cos^ \cos0/'

, , ^ COS ^ d sin — sin ^ c^ cos d
a tan 6 =

cos^^

(cos2^ + sin2 0)d^
sec^ d de.

cos^^

48. Derivation of [XIV]. —

Since cot 6 = tan
(
9 — ^ )

;

.-. dcot^ = dtQ.n(^-d\ = sec^^^-^^d^^-^]

= — cosec^^d^.

49. Derivation of [XV]. —

Since sec0 =

.*. d sec 6

cos^'

sin d do

Vcos^/ cos^^

= sec^tan^c?^.

50. Derivation of [XVI]. —

Since cosec ^ = sec (^ — ^j

;

.*. dcosec0 = dsec(:^ — 6] = secf^ — ^Jtan (^ — djdl^ — dj

= — cosec 6 cot 6 dd.

Note. — In the derivations of the formulas for the cosine,

cotangent, and cosecant, as given, it may be noted that, as

in the last example of Art. 31, the formula for the derivative

of the function of a function has appropriate application.

Thus for COS0, let a; = cos0 = sinf- — ^j and <!> = -x — dy
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dx _ dx d4
*^®"'

dd~"d4>"dJd'

^^
der^^^ =i^^^^ ^^^(i- ^)= - ^^^^ = - ^^^(l- ^)'

-T^ COS = — sin ^ or d cos ^ = — sin c?0.

In practice the actual substitution of the auxiliary symbol
<t>

may be dispensed with.

The formula applies to such functions as 2/ = sin {ax + 6).

Thus put z = ax -\-h, making y = sin 2 ; then

dy _dy dz

dx dz dx

or
J-

sin (ax + 6) = -r- sin z X -^ (ax -\- b) = cosz^a;

.*. -r- sin (aa; + 6) = a cos (ax + 6)

or d sin (ax + 6) = a cos (ax + 6) dx.

Again, let the function he y = sin^ (ax + 6) and put z =
sin (ax 4- h) ; then

= 2 2; X a cos (ax + 6)

= 2 a sin (ax + 6) cos (ax + 6)

;

.*. d sin^ (ax + 6) = 2 a sin (ax + 6) cos (ax + b) dx,

51. Note on [XI]. — If the angle is measured in degrees,

then d sin = -^ cos 6 dd, since 6 degrees is r-^ radians
loU loU

and sin(9° = sin^^j;

.*. dsin0° = dsinf^^J
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It is thus seen that the formulas for differentiation of the

trigonometric functions are simpler when the angle is

measured in radians than when measured in degrees. For

the same reason that Napierian or natural logarithms are

employed in differentiation, radian or circular measure is

used for angles of the trigonometric functions, when differ-

entiation is to be done.

62. Remarks on [XI]. — The fundamental Hmit of Art.

46, lim (
-——

- ) = 1 means that when is a small number
e=o\ o I

sin Q is approximately equal to Q. For angle of 1°, ^ = -x^r

= 0.0174533 . . . , sin6' = 0.0174524 . . . ; so they are

equal to five decimals. Of course for angle of 1' or 1'', they

are equal to a great many more decimals, but they are never

exactly equal however small the angle may be, since the sine

is always less than the arc.

Since c? sin ^ = cos B dd, if the value 0° is taken for 6 and

(=^)ford^(=A^),

dsmd = cosO°-^ = .0174533 ... or ^^ = 1,
180 dd

A sin (9 = sin (0° + Ad) - sin 0° = .0174524 . . . = sin 1^;

A sin _ .0174524 » ^ . y A sin6> _ casing _ 1

Ad ".0174533 . . . ' M% Ad ~ dd
~

J'
e=o°

From ,. = cosd= cosO° = 1, it is seen that, at d = 0°,
da

the sine of d is changing at the same rate as d is changing; so

the slope of the curve y = sind is unity at the origin, and the

tangent to the curve at that point makes an angle of 45° with

^-axis. The conditions are the same at ^ = 2 tt. As —rr—
dd

IT= cosd = COS 90° = 0, at = ^, the sine of d is not changing,
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the rate being zero, and the tangent to the curve at that

point is parallel to ^-axis. At ^ = tt, cos 180° = —1, so the

sine of 6 is decreasing, at that value of 6, at the same rate as

6 is increasing, and the tangent to the curve at that point

makes angle of 135° with ^-axis. Thus the rate of change of

the sine of 6, at any value of 6, can be found ; and the differen-

7/=sin 9

tial of the sine, the change if the change became uniform,

will always differ from the increment, the actual change of

the sine, when the angle is given an increment. In taking

sines or other functions from tables by interpolation, the

changes are assumed as uniform within allowable limits of

error.

EXERCISE V.

1. y = sin x^.

2. y = sin2 x.

Z. y = cos ax.

dy ^ 2x cos x2 dx.

dy =^ 2 sin x cos xdx = sin 2 x dx.

dy = — a sin ax dx.

4. y =f(d) = tan^ d. ^ =f(0) =m tan"*-! sec^ 0.

5. f(d) = tan 30 + sec

6. fix) = sin (logaa;).

7. f{x) = log (sin ax).

Q sin a: + cosx

3 0. f id) = 3 sec2 3 + 3 sec 3 tan 3 0.

/' ix) = l/xcos (log ax).

/' ix) = a cot ax.

dy 2 sin x
8. y g. dx e^

9. f(d) = log (tan 00).

10. fid) = log (cot 00).

11. fid) = tan (log 0).

f'(o)-- ^"^ - ^^
•' ^"' 2 sin (o0) cos (o0) sin(2o0)

/'(0) = -2 a/sin (2 00).

fid) =l/0secMlog0).

,, ,^. sec tan , ^
12. /(0) = log (sec 0). fid)

sec0
= tan 0.
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13. / (x) = x^i^ ^. f (x) = a^sin X (sin x/x + log a; • cos x).

14. / (x) - (sin a;)^. /' (x) = (sin x)^ {x cot x + log sin x).

16. / (0) = (sin (?)tan e. /' (0) = (sin 0)tan (1 4-sec2 6 log sin 0).,

16. /(0) = itan3 0-tan0+0. /' {$) = tan^^.

-(sec Vl - xy.
17. / (x) = tan VI - a;. /' (x) =

^

2 Vl -X

\/f^18. / (0) = log \/ : .

--
- f (6) = CSC d.

By differentiation derive each of the following pairs of identities

from the other:

19. sin 2 s 2 sin d cos d, cos 2 = cos^ d — sin^ 6.

„^ . ^ ^ 2 tan ^ ^ 1 - tan2 q
20. sm 2d = -—--——: , cos 2

l+tan2 0' l+tan2
21. sin 3 = 3 sin - 4 sin^ d,

cos 3 = 4 cos3 - 3 cos 0.

22. sin (w + n) = sin md cos nd + cos mO sin ri^,

cos (m -\- n) 6 = cos m0 cos n9 — sin md sin n-0.

23. If 6 vary uniformly, so that 360° is described in tt seconds, show
that the rates of increase of sin 6, when 6 = 0°, 30°, 45°, 60°, 90°, are

respectively, 2, V3, V5, 1, 0, per second. (See figure. Art. 52.)

53. The Sine Curve or Wave Curve. — The locus of the

equation

y = smx, (1)

where x is an angle in radians, is called the sine curve, from its

equation, or the wave curve, from its shape. The maximum
value of y is called the amplitude, being unity in (1); and,

since the curve is unchanged when x + 2 tt is substituted for

X, the curve y = sin x is a periodic curve with a period equal

to 2 TT. (See figure, Art. 52, and figure, Art. 73.)

The more general form of the equation is

2/ = a sin mx, (2)

where a is the amplitude and — is the period, m a constant.

The curve is called the sinusoid also, and is of great

importance, since it is the type form of the fundamental

waves of science; such as, sound waves, vibrations of rods,
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wires, plates and bridge members, tidal waves in the ocean,

and ripples on a water surface. The ordinary progressive

waves of the sea are not of this shape, as they have the

form of a trochoid.

54. Damped Vibrations. — When a body vibrates in a

medium Uke a gas or hquid, the amphtude of the swings get

smaller and smaller, or the motion slowly (or rapidly in some
cases) dies out. Thus, when a pendulum vibrates in the air

the rate of decay of the amplitude is quite slow; but when
in oil the rate is rapid. The ratio between the lengths of the

successive amplitudes of vibration is called the damping

factor or the modulus of decay.

In all such cases the amplitude of the swings differ hy a

constant amount or the logarithmic decrement is constant.

Hence the amplitude must satisfy an equation of the form

A = ae-^', (1)

where A is the amphtude and t the time. The actual

motion is given by an equation of the form

V
y = ae~^^ sin oit, where co = - is a constant. (2)

a

(See Art. 73.)

* In plotting a curve whose equation is of this form, say,

2/ = e-^^ sin
I

a;, (3)

much is gained by the following considerations:

1. Since the numerical value of the sine never exceeds-

unity the values of y in (3) will not exceed in numerical value

the value of the first factor e~*^. As the extreme values of

sin^Tra; are +1 and —l,y has the extreme values e~*^ and
— e~^^. Hence, if the curves

2/ = e-*^ and y = — e"^^
(4)

* This illustration is given substantially in Smith and Gales's New
Analytic Geometry.
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are drawn, the locus of (3) will lie entirely between these

curves. They are called boundary curves, and they are

plotted by three or more points, the second being symmetri-

cal to the first with respect to the x-axis.

2. When sin ^ttx = 0, then in (3) y = 0, since the first

factor is always finite. Hence, the locus of (3) meets the

X-axis in the same points as the sine curve

2/ = sin J TTX. (5)

3. The required curve is tangent to the boundary curves

when the second factor, sin J ttx, is + 1 or — 1 ; that is, when
the ordinates of the curve (5) have a maximum or a minimum
value. The tangency is proven by finding the derivative of

y in (3) and noting that, when sin | ttx is +1 or — 1, it will be

the same as the derivatives of y in (4). Hence, the slopes of

the curves and the ordinates being equal for the same values

of X, the required curve is tangent to one or the other of the

boundary curves for those values of x that make sin J ttx =
+ 1 or —1. Thus, differentiating (3) and (4) gives

dy 1 , . 1 , TT ,^ 1
-J- = — -r e~^ ^ sm -TX -\- -x e~i ^ cos ^z tx
dx 4 2 2 2

= — ie-^"", when sin J ttx = 1,

= i e~^ ^, when sin ^ ttx = — 1

.

For the sine curve (5) the period is 4 and the amphtude is 1.

This curve is the broken line of the figure.

The locus of (3) crosses the x-axis at x = 0, d=2, ±4, ±6,
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etc., and is tangent to the boundary curves (4) at x = ±1, d=3,

db5, etc. The discussion having disclosed these facts, the

curve is readily sketched, as in the figure; that is, the wind-

ing curve between the boundary curves (4).

A more general form of the equation of a damped vibration

is

y = ae~^^ sin (cat — a), where a = —^ is constant. (3')
a

This equation may be written either (see Art. 73)

y = e~^^ (A sin kt -\- B cos kt),

where A and B are constants,

or y = A sin {cct — a), where A = ae-^K (3'0

Here A is a variable decreasing amplitude, whose relative

rate of decrease is —dA/dx -^ A = b; that is, the relative

rate of decrease of A is constant.

The successive derivatives from (30 are (by Art. 68):

dy
-jT = ae~^^ [— b sin {oit — a) + co cos {wt — a)],

—^ = ae~^^ [¥o)'^ sin (oit — a) — 2bo) cos {o)t — a)],

whence it follows that

g + 26|+(6^ + co^), = 0. (40

Equations which contain derivatives or differentials are

called differential equations. The equation (4^ is the funda-

mental differential equation for damped vibrations. The
dy

term in -7-, or v, proportional to the velocity, occurs in equa-

tions for vibration only when damping is considered. Vibra-

tions are cases of simple harmonic motion— damping being

caused by resistances, such as friction, etc. Simple har-

monic motion is treated in Art. 73.
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INVERSE TRIGONOMETRIC FUNCTIONS.

55. Formulas and Rules for Differentiation. — The
direct trigonometric functions are single-valued but the

angle has to be restricted to a certain range in order that

the inverse functions may be single valued. To make
the inverse functions single-valued, the angle denoted by
sin~i ^^ cosec"^ x, tan"^ x, cot~^ x, covers"^ x, is taken to lie

between — - and ^ , and the angle denoted by cos~^ x, sec~i x,

vers~^ X, to lie between and t. Thus

i^l) = ^^cos-i(^); sin-i(-^)=-|;sm-^ I
-

1
= - = cos-^

V~2~/ '
^^^~^

(
~"

2/

cos M ^ i ^
"fi"

' sm 1 X + cos ^ x = ^

;

tan~^ X + cot~^ ^ = 9 , if a; be positive,

= —
^ , if a; be negative.

These restrictions will be assumed in the following formulas,

and all will be expressed in terms of the letter x. While the

symbols sin~^ x and arc sin x are both used to denote the

angle whose sine is x, in writing the formulas the notation

sin"i X is preferable.

[XVII] d sin-^ :i; = -7^=.

The differential of an angle in terms of its sine is the differen-

tial of the sine divided by the square root of one minus, the square

of the sine.

[XVIII] dcos-^
dx

X = —
Vi-

The differential of an angle in terms of its cosine is minus

the differential of the angle in terms of its sine.

[XIX] dtan-'* = j^.
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The differential of an angle in terms of its tangent is the

differential of the tangent divided hy one plus the square of the

tangent.

rlv
[XX] dcor'..= -5^.
The differential of an angle in terms of its cotangent is minus

the differential of the angle in terms of its tangent.

fix
fXXI] d sec-^ :*: =

, ,
.

The differential of an angle in terms of its secant is the differ-

ential of the secant divided by the secant and the square root of

the square of the secant minus one.

fix
[XXII] d cosec-^ x= "

.
^ xVx^-1

The differential of an angle in terms of its cosecant is minus

the differential of the angle in terms of its secant.

fix
[XXIII] d vers-^ :*: =

,

The differential of an angle in terms of its versine is the

differential of the versine divided by the square root of twice the

versine minus the square of the versine.

dx
[XXIV] -, /

The differential of an angle in terms of its coversine is minus

the differential of the angle in terms of its versine.

66. Derivation of [XVII] and [XVIU]. —
Let d = sin~i x; then sin $ = x, the differential of which

by [XI] is cos 6 dd = dx;

dx dx dx

cos (9 Vl-sin^^ Vr

Now d cos~i X = dl^— sin~i xj= 7=
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57. Derivation of [XIX] and [XX]. —
Let 6 = tan~i x; then tan d = Xf the differential of which

by [XIII] is secHdd = dx;

iQ _ dx _ dx _ dx
•*• ~

sec2^
~ l+tan2 6>

~
1 + x^'

Now d cot~^ X = di^ — tan~i x] = — r—;—5-

\2 / 1 + x^

58. Derivation of [XXI] and [XXII]. —
Let 6 = sec~^ x; then sec 6 = ic^ the differential of which

by [XV] is sec 6 tan 9dd =dx;
dx dx

dd =
sec 6 tan d x v sec^ d — 1

dx

^ Vx2 - 1

Now d cosec~i x = dl^ — sec"^ x] = ,

V2 J X Vx^ - 1

59. Derivation of [XXIII] and [XXIV]. —
Let 6 = vers~^ x; then vers = x, the differential of which

by Cor., Art. 45, is sin d^ = dx;

,- rfx c?x dx
do =

sin Vl - cos2 Vl - (1 - vers oy

dx dx

Vl-{l-xy V2x-x^

Now (i covers"^ x = dl-p: — vers"^ a;
)=

,

\2 / V2a;-x2

1. d sin-i

EXERCISE VI.

X _ d (x/a) _ dx

« " Vl - (x/a)^
~ V'aF^^'

- , .a; —dx J, ,x adx
2. d cos * - =

, : d tan^

J ^ .X —adx J _,x adx
d cot~i - = -IT-.—s

;

d sec ^ - =
a a^ + x^' ax Vx"^ - a^

, , a; —adx -, .x dx
d csc~^ - =

. ; d vers ^ - =
Vx"^ - a2

'

« V2 aaj -

iVoie.— These may be considered standard formulas.
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« . i ,
dy ^ . , , tanx

3. 2/ = tan x tan~i ^^ ^ = gecs x tan"i x + —-—:•

A -f -1 2a; dy ^ 2 (1 - rc^)

2/ tan
j,_j_^2- ^^ l+6a;2+a;4*

c • -1 2; +

1

c?2/ 1

V 2 da; Vl - 2 X - a;2

« . ^/- • dy Vl+csca;.
6. 2/ = arcsm Vsina;. 3^ =^

da; 2

7. y =x^

S. y = tan~i (n tan a;).

9. 2/ = arc cos
e-^ — e'

—

X

10. y = arc vers
2a;2

1 +a;'

11. 2/ = arc tan :j ^-r,"
1 — o X'

1 — X^
12. 2/ = arcsinj--jj^-

10 ,
a; + a

13. 2/ = arc tan
1 — ax

dy
14. (f>

= arc tan -r-
•

15. 2/ = tan ^

VI -

16. 2/ = arc sin

^ = ^sin-i X /sin ^x
_^ logx

Y
da;

V ^ Vl-xy
dy __

17. 2/ = arc tan (sec x + tan a;).

^ o • /sin a; — cos a;\
18. 2/ = arc sm f 7= •

V ^2 y

ia ^ _i3a;-2
,

^,3a;-12 d2/ a19. 2,=tan^^-+cot^g^^^. ^ = 0.

20. 2/ = arccot^-5,-:3^,. ^ =
^-,,^^:^

dx' C0s2 X -\-n sin2 x

dy -2
dx e^ + e-^

dy _

dx~
2

~ l+x^'

dy 3

dx l+a;2

dy -2
dx 1+^2

dy 1

dx l+a;2

d^y

d<t> dx^

dx *©
dy 1

dx VI - X2

dy -2
dx e^ + e-*

dy

dx

1
2'

dy

dx
= 1.
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21. What is the slope of the curve y = sin x? Its inclination lies

between what values? What is its inclination at a; = 0? What at

x=x/2?
The slope = cos a:; hence, at any point, it must have a value between

— 1 and +1, inclusive. Hence, the inclination of the curve at any point

is between and 7r/4 or between 3 7r/4 and tt, inclusive. (See figure,

Art. 52.)

^ 60. Hyperbolic Functions. — These are certain functions,

recognized as far back as 1757, that have been introduced in

recent years, and that are coming more and more into use.

As the trigonometric functions are called circular because

of their relation to the circle, the hyperbolic are so called

because of their relation to the rectangular hyperbola, the

relations being in some respects the same. The functions

are analogous to the trigonometric functions and their names

are the same. They are the hyperbolic sine, cosine, tangent,

etc., and they are defined as follows:

sinhic \{e'-e-

cosh X = ^ (e^ + e~^

tanh X =
e^ — e~

cscha;

sech X

coth X =

sinha;

1

cosh a;

6^ + e-'

61. General Relations. — Besides the reciprocal rela-

tions given above, the same as those between the circular

functions, there are analogous relations

:

cosh^o; — sinh^a; = 1; 1 — tanh^x = sech^x;

coth^ X — 1 = csch^ a;; sinh 2 a; = 2 sinh x cosh x;

cosh 2 x = cosh^ x + sinh^ x = 2 cosh^ —1 = 1+2 sinh^ x.

62. Numerical Values. Graphs. — The sine may have

any value from — oo to oo
; the cosine any value from 1 to

y.

I

7/=tanhJC
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00 ; the tangent any value between —1 and 1, and the Hnes

whose equations are y = =tl are asymptotes to the graph of

tanh X. The graphs of the sine and cosine are both asymp-

totic to the graph oi y = ^ e^.

63. Derivatives. — Since j- e* = e* and j- e"^ = — e"^,
ax dx

by differentiating the hyperboUc functions as functions of ic,

the several derivatives are readily found to be as follows:

-T-sinhx = coshx; -^-coshx = sinha;;

-T-tanhx = sech^x; -^-cothx = — cosech^x;

-J- cosech X = ~ cosech x coth x

;

-T- sech X = — sech x tanh x.
ax

The differentials are given at once by the derivatives, or

vice versa; thus, d sinh x = cosh x dx, and so for the others.

64. The Catenary. — The curve y = cosh x = J (e^4-6"^)

is called the catenary and is important because it is the

curve of a perfectly flexible and inextensible cord between

two points, and is the curve that a material cable when hung

between two supports is assumed to take.

Since -r- cosh x = sinh x, l^ = o (^"^ ~ ^~'') = sinh x

is the slope of the catenary. The general equation of the

catenary is

. X af ^^ -l)y = a cosh - = o U" + 6 "/,

where a is the distance from the origin to the lowest point

of the curve. (See Art. 146.)

65. Inverse Functions. — The inverse functions are

useful when expressed as logarithms.

li y = sinh~^ x, the logarithmic form of y is found from

X = sinh y = i(ey — e~y),
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which is reduced to

e^y -2xey - 1 = 0;

solving as a quadratic gives

ey = x± VxM-T;

but as ey is always positive,

gj/ = X + Vx^ + l ; .-. sinh-i x = y^\og{x-{- Voj^+l).

In the same way is found, cosh~^ x = log (x ± Vx^ — 1 ) •

Since (x - ^W^l) = (^qrvP^T)

'

/. log {x - ^x^ - l) = -log (x + Vx2- l).

For each value of x greater than 1 there are two values of

cosh~i X, equal numerically but of opposite sign.

In the same way again is found,

tanh-i X = - log , If x^ <\\
2 \ — X

COth~l X = p: log -, if x^ > 1.
2 ^x — 1

66. Derivatives of Inverse Functions. — The derivatives

of the inverse functions are found by differentiating their

logarithmic forms, using formula -r-logx = -•
O/X X

X .

The derivatives, taking - instead of x, are:

d . , . X 1
sinh~^ - =

dx a Vx^ + a^'

-1- cosh~i - = ±
dx a Vx2 - a2

'

-J- tanh-i - = -T 5, (x^ < a^)
;dx a a^ — x^
^

|-coth-i- = -f^, (a;2>a2).
dx a x^ — a^
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Since the inverse cosine is not single-valued, for the positive

ordinate of cosh~^

is used instead of x,

x X
ordinate of cosh"^ -, the + sign must be taken. When -

. , 1 X 1 x-\- Vx^ + a^
sinh~^ - = log

a * a

= log {x + VxM-~^) — log a,

X
so the derivative of sinh~i _ jg ^j^g same as that of log

a

{x + Va;2 -\- o?), since d (log a) = 0. The divisor a occurs in

the logarithmic form of cosh"^ - also, so its presence should

be borne in mind when comparing the same result expressed

in logarithms and in inverse hyperbolic sines or cosines.

The relation of the inverse hyperbohc sine to the equi-

lateral hyperbola is shown in Art. 137, and the inverse func-

tions are again considered in Art. 120.



CHAPTER III.

SUCCESSIVE DIFFERENTIATION. ACCELERATION.
CURVILINEAR MOTION.

67. Successive Differentials. — It is often desired to

differentiate the differential of a variable or to get the deriv-

ative of a derivative. For, while the differential of the in-

dep)endent variable, being arbitrary, is usually supposed to

have the same value at all values of the variable and hence to

be a constant, the differential of the dependent variable,

except when the function is Hnear, is a variable, subject to

differentiation.

The differential of dy is called the second differential of y;

the differential of the second differential of y is called the

third differential of y; and so on. d{dy) is written d^y;

d{d^) or dd dy, is written d^y; and so on. The figure written

like an exponent to d denotes how many times in succession

the operation of differentiation has been performed, dy,

d^y, d^y, , . . d^'y are called the successive differentials of y.

Example. — The successive differentials of y when y = ax^:

dy = dax^dx;

d^y = Zadx ' d (a;^) = 6ax dx^;

d^y = 6

a

dx^ * dx = Qa dx^;

d^y = d(Qa dx^) == 0.

The independent variable being x, dx is treated as a constant.

Note that according to the notation adopted d^y = ddy;

dy'^^idyY; d(y'^)^2ydy.

68. Successive Derivatives. — The derivative of the

first derivative of a function is called the second derivative of

the function; the derivative of the second derivative is

called the third derivative; and so on.

84
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When X is independent,

d^dy^d^y d_d?y ^^y^ d^ d^'-^y ^ d^'y

dx dx
~~

dx^' dx dx^
~

dx^' • • * ' ^^ dx""'^
~

dx"'

The successive derivatives of / (x) are denoted by

fix), r(x), rix), r{x), . . . ,f^{x).

Thus if / {x) = x\ f (x) = 4 x^ }" {x) = 12 x",

S"'{x) = 24.x, f^ (x) = 24, r (x) = 0.

Hence, ii y = f (x) and x is independent,

dx ^
^''^'

dx'' ^ ^""^^ ' ' ' ' dx- ^
^'^^•

The nth derivative of some functions can be easily found by

inspection of a few of the derivatives.

Example l.—f{x) = e'^J'ix) = e'^J^ix) = e^,J"'{x) = e^,

. . . ,
.-. /" ix) = e\

This function e^ is remarkable in that its rate of change, or

derivative, is equal to the function itself.

Example 2.—f{d) = sin 61, f (d) = cos ^, f (d) = -sin 6,

f" (0) = -cos 6, /^^ (d) = sin (9. /' (6) = cos6' = sin (d + ^),

r (d) = COS {^ + l)
= sin (^ + 2 •

^) , r ie) = cos (d + ir)

= sin(^ + 3.|) . . . ; .•./"W=sin(0 + n.|).

Each of the successive derivatives of f (x) equals the x-rate of

the preceding derivative, for f"" (x) = -j- /"~^ (x) = the a:-rate

of/-i(x).

Corollary, — /""^ (x) is an increasing or a decreasing

function of x according as /" (x) is positive or negative, and

conversely.

Note. — The tangential acceleration is,

_ dv _ d ds _ d^s

^'~Jt~dtdt~d^'
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and the flexion is

, _ dm _ d dy _ d^y

dx dx dx dx^

ds
(See Art. 12 and Art. 13.) Hence, the speed -^ is increasing

dh
or decreasing according as the acceleration jr^ is positive or

negative, and the slope is increasing or decreasing according

d^u
as the flexion j^ is plus or minus.

When the second derivatives are equal to zero, the first

derivatives are constant, or conversely. (See Art. 13.)

69. Resolution of Acceleration. — An acceleration, like

a velocity, being a quantity which has magnitude and

direction, may be represented by a straight line, that is, by

a vector.

In general the acceleration a at any point (x, y) of a curvi-

linear path may be resolved into two

components in given directions. The
directions usually taken are along the

tangent and normal at the point, and

in directions parallel to rectangular

axes OX, OY. With the notation of

the figm-e for (d). Art. 10, the com-

ponents parallel to the axes being the

rates of change of dx/dt and dy/dt will be denoted by d^x/dt^

and dhj/df^, respectively. The rate of change of the velocity

is the resultant acceleration

-^7TV = ^(f)V(tJ
To find the component acceleration at along the tangent

at P; resolve the axial accelerations along the tangent, giving

for the sum of tangential components,

d^x , d^y . , dH dx , d^y dy d^s
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by differentiating,

\dtj \dt) '^{dtj

^t= -jT^ = -iT = rate of change of the speed.

Hence, the tangential component is the same as for recti-

hnear motion.

EXERCISE VII.

Find dy, d^y, d^y, when:

1. y = 2 3^ - 5 x' + 20 x^ - 5 x^ + 2x.

d?y = 120 (x2 - x + 1) dxK

o 91/ IN J. 2(x^ -Sx + 3) , ,
2. y = x^ log (x - 1). d^y = ^— tt^—^ dxK

{X — ly
3. ?/ = (x2 - 6 X + 12) e^. d^y = x^e^ dx\

4. ?/ = log sin x. d^y = 2 cos a; sin-^ x dx^.

5. 2/ = tan X. d^y = (6 sec^ x — 4 sec^ x) dx^.

Find the successive derivatives:

6. fix) =a^ + 4.x' + Sx + 2. /vi(x)=[6, /vii(^)=o.

7. / (x) = log (1 + x); find nth derivative.

/' (x) = (1+ a;)-S /" (a:) = (-1) (1 + x)-^

r"{x) = (-1)2L2_(1 +x)-3, P^{x) = (-iy\s_{i+x)-s . . .

.-. r (x) - (-1)"-! |n-l (1 + a:)-^

8. fix) = a^Uoga;. /^^ ix) = 6x-K
d^y _ Q e^ — e~^

9. 2/ = log(e^ + e-^).
dx=« (e^ + e-^)3

10. Find formula, known as Leibnitz's theorem, for d^ (uv).

Let u and v be functions of x; then

d (liv) = du'V-\-udv, (1)

^2 (wy) = d^u 'V-\-dudv + dudv-\-u d^v

= d^U'V + 2dudv + ud^v
; (2)

.-. d^ iuv) =d^U'V + 3d^udv + d du d^v + u d^v. (3)

The coefficients and exponents of differentiation are according to the

Binomial theorem, however far the differentiation is continued;

.-. d" iuv) = d'^w . y + nd^-i udv -]-
^ ^^ ~ ^^

^^^-2^ d^y + • • •

+ wdw d'*"^ y + w d" y.
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11. If a;2 + ?/2 = a^,

^3-If^. + |-. = l^
d2y

dx2

12. If ,^ = 2 p., g= ^,

14.
a2 62 d̂x2

1 !f_»_ __r_

3

64_

70. Circular Motion. — When a point describes a circle

of radius r with constant speed v^ it has a constant accelera-

tion v^jr directed towards the center of the circle.

Let FT be the velocity at P,

and PiTi that at Pi. A velocity

being a directed quantity may be

represented by a vector; that is,

by a straight line whose length

denotes magnitude and whose

direction is the given direction.

Hence from a common origin o,

the vectors op and opi are drawn

equal to the vectors FT and

PiTi, respectively. Since the

speed is constant each vector is

increment, denoted by tS.v. The
Ay

v^ and ppi is the vector

average acceleration for the interval of time A^
A^

directed along ppi, and is laid off as pm.

As Ai approaches zero. Pi approaches P, and pi approaches

p along the circular arc indicated by the dotted line; 'pm

approaches a vector p^ directed along the tangent to the arc

ppi at p. This vector, the lim -r-r L represents the accelera-

tion -TT of the point P moving in the circle of radius r; and

since the direction is at right angles with the tangent at P,

the acceleration is directed towards the center 0, is normal

acceleration, therefore, denoted by «„. To find the magni-

tude of the normal acceleration a^. since the sectors popi

and POPi are similar, the angles at o and being equal,



CIRCULAR MOTION 89

arc ppi _ arc PPi arc ppi _ As

.

op OP '

V r

arcppi V As
, and limr^^V^limr^li

At r At

replacing the arc ppi by its chord, (Art. 22.)

,. rchordppil _ dv _vds
A^<2i L ^i j~ dt

~
r dt'

dv v^ ,^.

• «" =
d«
= r (1)

Otherwise, it may be seen that while the point P describes

the circle of radius r, the point p describes the circle of radius

V, the velocity of p in its path being the acceleration of P in

its path. Since the circles are described in the same time,

the velocities are to each other as the paths of the two points,

or as the radii of the circles.

velocity oi p _ velocity of P

.

V r

dv
velocity of p is -r:, rate of change of velocity v of P,

an V v^
an = -

V r r

Since the speed is constant, the rate of change at is zero,

.*. a = Vat^ + a„2 = a„ = - ; that is, the total acceleration

is the normal acceleration, the change of velocity being change

of direction only. Since

s = 27rr = vt; a = -^, (2)

where T is time of a revolution.

Note. — By Newton's Second Law the measure of the

W
force on a moving body is — a (Art. 71); hence, the force

acting on a body weighing W lbs. revolving in a circle of
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radius r is pounds of force, is directed towards the
gr

center of the circle, and is called centripetal force. The
reaction of the body to this force is by the Third Law equal

in magnitude and opposite in direction. It acts upon the

axis or upon whatever deflects the body from its otherwise

rectilinear path, and has been called the centrifugal force,

although a misnomer. The centripetal force is the active

force, the other is the equal and opposite reaction and should

be called the centrifugal reaction, since it -is the resistance

which the inertia of the body opposes to the force acting

upon it.

71. The Second Law of Motion. — According to New-
ton's Second Law of Motion the rate of change of momentum
of a body is propiortional to the resultant of the impressed

forces acting on the body.

Let a body of standard weight W be moving with velocity

V, then Wv = momentum of the body;

^^KVVV) VY
^^

VY
^^^

YYat.

Hence, if F be the resultant force and a the acceleration, by
the Law,

WaocF or Wa = kF', (1)

that is, the product of the numbers representing the weight

and the acceleration is proportional to the number represent-

ing the force. The value of the factor k depends upon the

units used for the other factors. When these are the usual

units, foot, pound (weight), second, pound (force), it is

found by experiment that h has the value 32, approximately.

Experiment shows that, while the value varies slightly for

different localities, it is the same for all bodies in any one

locality. This value is denoted by g and is called the accel-

eration of gravity*; for when a body falls freely, gravity being

the only force acting, the acceleration is found to be about
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32 feet per sec. per sec. The locality in which g = go =
32.1740 ft./sec.2 has been adopted as the ''standard locality"

and the weight of the body in that locality is called the

standard weight of the body. Putting g for k in equation (1)

it becomes
WWa = gF or F = ~a. (2)
g

If the force F is the force of gravity acting on W, then

dv

* = « = »'

the acceleration of gravity; for the weight W is the force of

gravity acting on the body denoted by the letter W.
Since for any given body the ratio of the force to the

acceleration produced is constant, the value of this ratio,

F/a or W/g, is a characteristic of the body, called its inertia

and the ratio may be denoted by the letter m; then the

equation (2) may be written

F = ma. (3)

In using equation (3) for the solution of problems, with the

usual units, m must be replaced by W/g.

Some writers use the word ''mass" to denote the inertia,

while others use it for standard weight; consequently, there

are some who avoid the use of the word on account of the

resulting confusion.

In Physics the equation (3) is used, the unit of force, called

the absolute unit, being that unit which in equation (1)

makes k = 1, the other units remaining the same, and,

therefore, m measured in pounds the same numerically as

the standard weight W.
Accordingly, if the nimiber g be the number of absolute

units of force with which gravity attracts the unit mass (or

weight), the Law becomes

m -^ = mg, hence -tl = g, the acceleration of gravity.
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The absolute unit of force is thus, that force, which acting on

the unit of mass (or weight) for the unit of time, generates the

unit of velocity. The absolute unit of force is thus 1/g of a

pound avoirdupois, about J of an ounce, and F is given in

this unit when in

F = ma,

m is expressed in pounds, the unit being a pound. The
ordinary unit of force, sometimes called the Engineer's unit,

is one pound and is g times the absolute unit used in Physics.

Newton's Second Law of Motion gives as a definition of

force: force is the time-rate of change of momentum. Using

the much abused term ''mass," the definition is: the force

is the product of the mass times the acceleration. From

W
F = ^a', (2)

y

J,
_W d's

'

_ Wv'

g dt^' gr

^WdH ^Wd^y
^ g dt^' ' g dt'''

the tangential, normal, and axial components of a force F,

corresponding to the accelerations, at, an, ax, ay. Since

kinetic energy of a moving body is E = J mv'^,

dE
-r- = mv,
dv

that is, the i^-rate of E is momentum;

dE dv j^

that is, the time-rate of E is product of force and velocity.

72. Angular Velocity and Acceleration. — When a body

is rotating about an axis the amount of rotation depends

upon the time; so if B is the angle through which any line in

the body, intersecting the axis at right angles, turns, then d
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gives the amount of rotation and is a function of the time t.

Thus in the case of a wheel the rotation is measured by the

angle d through which a spoke turns in a time t. The rota-

tion is imiform if the body rotates through equal angles in

equal intervals of time. The rate of rotation. or the rate of

change of the angle is the angular velocity or speed and is

denoted by co.

If the rotation is uniform, the angular velocity is constant

and 0) = -, 6 being in radians; hence, if the uniform rate of

rotation is co radians per second, the body rotates through cot

radians in t seconds of time.

If the rotation is not uniform the rate at which the body

is rotating at any instant is the angular velocity at that time,

, ,. A^ dd
and CO = lim tt = -r;

•

Af=0 ^t dt

This expression for angular velocity is general and is applic-

able when the rotation is uniform also; for then,

^e ^M ^dd
"^ ~ t~ M~ dV

although, the ratios being constant, no hmit is involved.

Similarly, the angular acceleration is a = -, for constant

acceleration ; and

'^~ dt~ dt [dt ~ df"

is, in general, the time-rate of change of angular velocity,

or the angular acceleration.

If a particle is at a distance r from the axis of rotation, the

relation between the angular velocity of the particle and its

linear velocity follows at once, whether the rotation is uni-

form or not.
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Since in circle As, = r . AS,

A6> 1 As

M~ r
' At'

,. A^ 1 ,. As
lim -irr = - ' lim tt
A<=o At r At=o At

•••
_dd _1 ^ds _v

dt r dt r

the relation sought. Hence, since

the angular velocity of every point

of a rotating body has the same
value at any instant, and the direc-

tion of motion of a particle at any

point is along the tangent at the

point,

tangential velocity v = rco,

if CO is the angular velocity of the

particle about axis at 0.

Since
dv

dt

d{ro))

dt
or

d^ ^ d^
dt^ ~^dt^'

ra..'. tangential acceleration at

the relation between tangential acceleration and angular

acceleration when a is the angular acceleration of a particle

at a distance r from the axis of rotation.

Since
dv v^ r^bP- „

ttn = -77 = — = = rC0%
dt r r

normal acceleration an = ro)'^.

73. Simple Harmonic Motion. — If a point move uni-

formly on a circle and the point be projected on any straight

Hne in the plane of the circle, the back-and-forth motion of

the projected point on the given straight line is called simple

harmonic motion. It is denoted by the letters S. H. M.
Let the point P move upon the circumference of a circle of

radius a with the uniform velocity of v feet per second, so
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that the radius OP rotates with uniform angular velocity at

the rate of - = co radians per second. The projection, P\
a

of P on the vertical diameter, moves

up and down. Let d be the angle that

the radius makes with the o^-axis, then

if the point P was at A when t = 0, the

displacement OP' = y is given by

?/ = a sin = a sin oit.

If the point P was at Po when t = 0, and*at A when t = U

then y = a sin {ojt — a) , where a = coto =
vto

(1)

When the displacement at time t is given by (1) the motion

is S. H. M. Hence, the point P' describes S. H. M.
The velocity of a point describing S. H. M. is, from (1),

dy

dt

and the acceleration is

= oco cos (ojt — a). (2)

d^v

^^^
= aa;2 sm (co« a) (3)

= -oi'^y, from (1), (4)

(5)or

It should be noted that equation (1) may be written in the

form

y = a sin (cot — a) = a [sin o)t cos a — cos oit sin a]

or y = A sin kt -\r B cos kt,

where A = a cos a and B = —a sin a are constants. This

equation and y = asin (kt — a) are the general formulas

for S. H. M.
The acceleration of a particle describing S. H. M., as

shown by (4), is proportional to the displacement and
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oppositely directed. It is oppositely directed since the

motion is one of oscillation about a position of equilibrium.

When the body is above this position the force is directed

downward, and when it is below, the force is upward. In the

figure the point P' has a negative acceleration when above

and a positive acceleration when below 0. The acceleration

is zero at 0, a maximum at B' and a minimum at B) while

the corresponding velocity, as given by (2), has its maximum
numerical value as P' passes through in either direction,

and is zero at B and B' , the ends of the vertical diameter.

The factor of proportionality co^ is connected with the 'period

2'jf
T by the relation T = — , where the period of the S. H. M.

y = asm o)t is the time T required for a complete revolution

.of the point P; that is, coT = 2 7r. The time i - - to
CO

make part of a revolution is called the phase, a being epoch

angle. The number of complete periods per unit of time

is iV = 7p = 5—, where N is the frequency of t'he S. H. M.

Let P' be a tracing point capable of describing a curve on a

uniformly translated sheet of paper, SS', then if the sheet be

>\—7^' -ry^-/^M] fe,'-A-x \
'^f-M pV p\o/

•^Kk-^-P'j^

moved with the same speed as the point P moves on the

circumference of the circle of radius a, P' describing S. H. M.
on the vertical diameter will trace the sinusoid P'BP'B' on

the moving paper. The sinusoid will have as its equation

y a sm -
1

a
asm

where x is the abscissa of any point of the sinusoid referred
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to an origin (as 0') moving with the paper. The circle is

shown in the figure in several positions corresponding to the

different angles through which the radius OP has revolved,

or the different positions of the projected point P' on the

vertical diameter BOB\ The amphtude of the S. H. M. is

the same as that of the sinusoid; that is, the radius a of the

circle. The period of the sinusoid is 2 ira, correspondii^ to

the period, T = — , of the S. H. M. of the point P' on the

vertical diameter.

74. Self-registering Tide Gauge. — The principle by
which the up-and-down motion of a point is represented by

a curve is utiUzed in the self-registering tide gauge for record-

ing the rise and fall of the tide. Such a gauge consists

essentially of a float protected by a surrounding house or

tube, and attached by suitable mechanism to a pencil that

has a motion proportional to the vertical rise and fall of the

float. The pencil bears against a piece of graduated paper

fastened to a drum that is revolved by clockwork. There

will thus be drawn on the paper a curve where the horizontal

units are time, and the vertical units are feet of rise and fall.

The stage of the tide is given for any time.

EXERCISE Vin.

1. The angle (in radians) through which a rotating body turns,

starting from rest, is given by the equation

= 1 ai2 _j_ ^^^ _|_ 0^^

where a, wo, 6o are constants; find the formulas for angular velocity and

angular acceleration after any time t.

CO = -37 = at -\- m, which gives the angular velocity;

-^ = ^^7 = a, which gives the angular acceleration.
at at'

2. A flywheel is brought from rest up to a speed of 60 revolutions

per minute in ^ minute. Find the average angular acceleration a, and
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the number of revolutions required. Find the velocity at the end of

15 seconds.

to = 60r.p.m. = 60 X ^ = 2 tt radians per sec.

.-. at = a- SO = 2t or a = -J = 0.2094 rad./sec^.

= 1 af2 = 1
1^ (30)2 = 15 X 27r = 15 revolutions.

^ ^ ok)

u = at = -^Xl5='ir = 3.14 rad. per sec.

3. If the flywheel of Ex. 2 is 12 feet in diameter, find the tangential

velocity and acceleration of a point on the rim. Find the normal

acceleration at the instant full speed is attained.

V = ro} = QX2ir = 37.7 ft. per sec.

oct = ra = QX^ = QX 0.2094 = 1.256 ft./sec^.



CHAPTER IV.

GEOMETRICAL AND MECHANICAL APPLICATIONS.

dy

dx

75. (a) Tangents and Normals. — Since the derivative

= f {x) represents the slope of the curve y = / (a;) at any

point (x, y),

\-T-\ = slope of PiT = tan = mi,

where is the angle XTQ, measured from the positive

direction of the x-axis to the tangent TPi, and mi is the

slope of the curve at the point Pi (xi, yi) .

Hence from the equation of a line through a given point

{^h Vi)} y — yi = 'in{x — Xi); the equation of the tangent

at the point Pi (xi, yi) is y — yi
Idxji

(x — Xi), in which the

subscript denotes that the quan-

tity is taken with the value

which it has at the point Pi.

Since the sign of the derivative

of a function indicates whether

the function is increasing or

decreasing, when mi is positive

the curve is rising at Pi, and
when mi is negative the curve

is falHng there. If mi is zero

the tangent is horizontal, parallel to, or coincident with the

X-axis; and if mi is infinite, the tangent is vertical, parallel

to, or coincident with ?/-axis.

Points where the slope has any desired value can be found
99
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by setting the derivative equal to the given number and

solving the resulting equation for x.

The slope of the normal NPi, being the negative reciprocal

of the slope of the tangent TPi, is

ni = = — cot = —^ •

Ml I dyji

Hence, the equation of the normal is

(6) Subtangents and Subnormals. — The subtangent

and the subnormal are the projections on the a:-axis of the

part of the tangent and normal, respectively, between the

point of tangency and the a;-axis.

From the figure:

dx
Subtangent TM = yi cot (j) = yi j-

dy
Subnormal MN = yi tan (j) = yi -^

Tangent TP, = Vmp' + tW =
\Jy^'

+ y,' T^l'

=
2/1
V 1 + 1

^J^
= 2/1 cosec </).

Normal NPi = Vmp' + mW =
\J

y^^ + 2/1^ 1"^?

= ^Vl + [II
= 2/isec0.

If the subtangent is reckoned from the point T, and the

subnormal from the point M, each will be positive or nega-

tive according as it extends to the right or to the left. For

any given curve the signs will depend upon the coordinates

of the point of tangency.

Note. — As mentioned before, the problem of tangents

directly led to the Differential Calculus.
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76. Illustrative Examples. — 1. The circle x^ -{-y^ = a^.

Differentiating, . 2 x dx -\- 2 y dy = 0,

dy _ _x
" dx y

Idxji 2/1

Equation of tangent,

Xi , .

y-yi= ~^/^~^i)

or xxi + yyi = a?, after reducing.

Equation of normal,

y-yi = ^(^- ^0

or yxi — yix = 0, after reducing.

The final form of the last equation shows that the normal

at any point on the circle passes through the center.

The subtangent

Idyji \ xj xi xi

The subnormal MN = 2/1 T^l =yJ-^\= -xi.

Since dy = dx, the ordinate of the circle changes
y y

times as fast as the abscissa; and since dy = da; is nega-

tive, unless X and y have different signs, 2/ is a decreasing

function of x in the first and third quadrants; while dy being

positive when the moving point is generating the second and

fourth quadrants, y is an increasing function of x in those

quadrants.

2. The parabola 2/^ = 2 px.

Differentiating, 2ydy = 2pdx,

, dy

dx
2, ' r^i = R.
y

" \_dxji 2/1
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Equation of tangent, y-yi = — (x — Xi) or yyi = p{x-\-Xi)j

after reducing.

Equation of normal, y — yi == —^(x — xi).

The subtangent TM = yj^) = ^1 = ^^' =2xi.

The subnormal MT = -yi (^^) = p.

Hence, for any point on the parabola the subtangent is

bisected at the vertex and the subnormal is constantly equal

to p, the semi-latus rectum. These two characteristics of

the parabola afford ready methods of accurately drawing a

tangent at any point on the curve.

Since dy = - dx, the rate oi y = - times rate of x. To
^ y y

find where the rates are the same, put -^ = - = 1, .*. y = p

and X = ^ ; that is, the extremity of the latus rectum is the

point where the rates of y and x are equal. Hence the tan-

gents at the extremities of the latus rectum make angles of

45° and 135° with x-axis and meet at right angles with each

other at intersection of directrix and x-axis. It is evident

diJi

that at the origin where 2/ = 0, -p = oo
; that is, the 2/-axis

is tangent at the vertex. It is seen also that, as y increases

without limit, the tangent at its extremity becomes more

and more nearly parallel to the x-axis.

3. On the circle x^ -\- y'^ = \^io find the points where the

slope is 1, 0, or 00

.

[11 =-:-:- »=--
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substituting in x^ + 2/' = 1, Xi = =hj V2 and i/i = T^ V2.

W = _ El = 0, /. a;i = and y, = ±1,
L«^Ji 2/1

by substituting in x^ + 2/^ = 1.

[3=-l="' •• ^'=° ^"^ ^^=^^'

by substituting m x^ -\- y^ = 1.

4. To find at what angle the circle x^ + y^ = 8 and the

parabola y"^ = 2x intersect.

Making the two equations simultaneous, the points of

intersection are found to be (2, 2) and (2, — 2)

.

xi 2
For circle, mi =

For parabola, mi =

dx_

'dy

dx
£ = J-
2/1 ±2

For angle of intersection,

_ J l_

tan 4> = — =
1

= t3,
1 + mim2 1 — 2

or = tan~i (=F3), and from table of tangents, = 108° 26'

or 71° 34'.

5. The path of a point is the arc of a parabola y^ — 2 px,

and its velocity is v; find its velocity parallel to each axis.

Let s denote the length of the path measured from any

point on it; then -ri
= v.

From 2/^ = 2 px,

dy _p dx

dt y dt

Substituting these values in

e)"=(S)'+(S)" <"")
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tdxV- _ y^ _ yV dx _ yv

dy p dx pv

dt y dt -y^yi -j- p2

6. A comet's orbit is a parabola, and its velocity is v; find

its rate of approach to the sun, which is at the focus of its

orbit.

Let p denote the distance from the focus to any point on

2/2 = 2px; then p = x -\- ^ p, from point to directrix;

dp _ dx
" di~di'

p being constant. Hence, the comet approaches or recedes

from the sun just as fast as it moves parallel to the axis of

its orbit;

dp dx y
dt dt \/y2 _j_ p2

V. (Example 5.)

At the vertex, y = 0; hence, at the vertex -^ is zero. When

y = v,

dp dx ^ . 2/^1
-jT = -jT <v, smce

/ < 1.
dt dt V 2/2 + p2

^^- ^'
(Examples)

dt \/i/2 +p2'

pv

fdsV ^ (dxV (d^V

\dt) \dt)~^\dt/

la

limit as y increases without limit.

and lim , = o •

y=00 Vi/2 + p2
'

dx , ds
'

-dt^dt^"'
'''"''

Hence -^ = 777 is always less than v and approaches v as a
CLt O/l
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7. To compare the velocity of a train moving along a

horizontal tangent with the velocity of a point on the flange

of one of the wheels, and to compare also the horizontal and

vertical components of the flange point.

Let a wheel whose radius is a roll along a horizontal line

with a velocity v; find the velocity of any point P on its rim,

also the velocity of P horizontally and vertically.

(1)

OM D X

The path of P is a cycloid whose equations are:

X = a{6 — mid), )

y = a{l — cos 6) = a vers d, )

where 6 denotes the variable angle DCP, and a the radius

CD.

Since the center of the wheel is vertically over D,

V = the time-rate of OD

(2)

d(ad)

dt
= a

dd

'dt

dd

dt

_ V

a

Differentiating equations (1) gives, by (2),

dx .. ^.dd .dd .

-TT = a (1 — cos ^) -r: = a vers d-rr- = v vers d
dt ^ ^ dt dt

and
= the velocity horizontally,

-r: = asind -7- = v sin d = the velocity vertically.

(3)

(4)
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= velocity of P along its path. (5)

The velocity of P may be considered as the resultant of two
velocities each = v, one along PT tangent to the circle and

the other along PH parallel to the path of C. The resultant

PB must bisect the angle HPT; :. DPB = 90° and PB is

tangent to the cycloid, the path of P, making PD the

normal.

At 0, d = 0, and
dx dy ds

dt~ dt'di'^-

AtP, = |,
dx 1 dy 1 /- ds

di = r' 1 = 2'^^' di

AtP,,d = '^,
dt dt ' dt

At P2, 61 = TT,

^-ds_ dy _
dt'dt-"^'' dt-^'

From (5) is obtained

ds

dt
: V = V2a'y : a.

-rr = «^.

Hence, the velocity of P is to that of C as the chord DP is

to the radius DC; that is, P and C are momentarily moving

about D with equal angular velocities. (See Art. 72.)

When 6 = 60°, their linear velocities also are equal, as

shown above.

8. Find the equation of the tangent and the values of the

subnormal and normal of the cycloid.

Dividing (4) by (3), Example 7, gives

sin^ V(2 a — 1}j)y/a

vers0

PH ^HB' DH
and

dy _ &md _ V{2a - y)y/a ^ .

/

(2 a - y)

dx vers 6 y/a V y

since sin 6 = -p^ = and vers d =- from (1)

;

CP a a
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is the equa,tion of the tangent at point (xi, yi).

n^i 1 T
dy sin^ sin^ . ^ „^, ,,t^The subnormal = 2/
3^ =y n=y—T- =asme =PH=MD.
ax vers d y/a

Thus the normal at P passes through the foot of the per-

pendicular to OX from C. Hence, to draw a tangent and

normal at P, locate C, draw the perpendicular DCB equal

to 2 a, and join P with B and D; then PB and PD will be

respectively the tangent and normal at P.

Normal = DP = VDB • DH = V2a^y.

9. Eliminating d in equations (1) of Example 7, equation

of cycloid is

X = tt' arc vers ?//a =F V2 ai/ — ?/^,

since B = arc vers y/a and a • sin = =b V(2 a — i/) a.

EXERCISE IX.

Deduce the following equations of the tangent and the normal:

1. The ellipse, x^/a^ + yyh^ = 1, Xix/a^ + yiy/b^ = 1,

2. The hyperbola, x^a^ - ?/V62 = 1, xix/o? - 2/12//&2 = 1

— /727

3. The hyperbola, 2xy = a^, Xiy + ^/ix = a^, ?/i?/ — 0:1.1; = yi^ — Xi^.

4. The circle, x^ -\- y^ = 2 ax, y — yi = (x — Xi) {a — Xi)/yi,

y - yi = {x - xi) yi/{xi - r).

5. Find the equations of the tangent and normal at (3/2 a, 3/2 a):

a^ + y^ = S axy. ^ Ans. x -\- y = Za, x=y.
6. x + y = 2e='-y,Sit (1, 1).

Ans. 3y = x-\-2, Sx + y = 4.

7. ix/ar + (y/br=^2,at(a,b).

Ans. x/a + 2//& = 2, ax — by = a^ — ¥.
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8. Show that the sum of the intercepts of the tangent to the para-

bola X* + 2/^ = a^, is equal to a.

9. Show that the area of the triangle intercepted from the co-

ordinate axes by the tangent to the hyperbola, 2 xy = a?, is equal to o?.

10. Show that the part of the tangent to the hypocycloid x^ -\-y^ = a%
intercepted between the axes, is equal to a.

11. Find the slope of the logarithmic curve x = logb y. The slope

varies as what ? What is the slope of the curve x = logy?

12. Find the normal, subnormal, tangent, and subtangent of the

catenary y = a/2 {e^^"' + e-^/*").

Vy^ - a2 V 2/2 - a2

13. At what angles does the line Sy — 2x — 8 = cut the parabola

= 8 X? Ans. arc tan 0.2; arc tan 0.125.

77. Polar Subtangent, Subnormal, Tangent, Normal. —
Let arc mP = s, and arc PQ = As; then z POQ = Ad,

T

circular arc PM = pA0, and MQ =- Ap. The chords PM
and PQ, the tangents RPU and TPZ, are drawn; and ZR
is drawn perpendicular to PR, Z being any point on the

tangent PZ.

When As = 0, the hmiting positions of the secants PM
and PQ are the tangents RPR and TPZ, respectively; hence,

li ( z PMQ) = z RPK = 7r/2 = z PRZ,
Itiz OQP) = z OPT = tA = Z RZP,

and It z MPQ = zRPZ.
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Now in a problem of limits the chord of an infinitesimal arc

can be substituted for the arc, since the limit of their ratio is

unity (Art. 22 and Cor., Art. 46) ; so

Ap^ MQ ^ sin MPQ
^

As chord PQ sinPMQ'

, . , nA(9 , chord MP , sinMQP
Agam, It -r— = It -j

T ^^ = tt

-

—
r^T.^^ ;^ ' As chord PQ smPMQ'

From (1) and (2), it follows that, if PZ is taken as ds,

ds = PZ, dp = HZ, and pdd = HP.

Drawing OT perpendicular to OP, and PA and ON perpen-

dicular to the tangent TP, the length PT is the polar tan-

gent; PA, the polar normal; OA, the polar subnormal; and

OT, the polar suhtangent.

From the right-angled HPZ

ds'' = dp''-{-p^dd^; (3)

•
,

pdd , dp
, ,

pdd ,..
sm^ = -^, cos^ = ^, tan^ = ^. (4)

Polar subt. = OT = OP tan xp = p^ dd/dp. (5)

Polar subn. = OA = OP cot xp = dp/dd. (6)

Polar tan. = PT = VOP' + OT' = p y/n- p2
^

. (7)

Polar norm. = AP =- VOP' + OA' = y p' + ^- (8)

p = ON = OP sinxp = p2 d6>/ds

P^
(9)Vp2 + (dp/dey

<i>
= yP-\-e. (10)

Corollary. — If PZ represents the velocity at P of a moving
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point (p, e) along its path, PK (= HZ) and PH will repre-

sent its component velocities at P along the radius vector

and a line perpendicular to it.

If the path is a circle with center at 0, \p is 90°; and

I • f\r\o 1 pdd
J.

... ds dd
smi/' — sin90 = 1 = -7-, Irom (4), or -^ = p-^-? /. v = rco;

that is, the linear velocity = radius times angular velocity.

(See Art. 72.)

EXERCISE X.

1. Find the subtangent, subnormal, tangent, normal, and p of the

spiral of Archimedes p = ad.

Ans. subt. = p^/a; subn. = a; normal = Vp2 -|- a^;

tangent = p VF+TVo^; P = P^lip^ + a^)^

2. In the spiral of Archimedes show that tan ^ = d] thence find the

values of \p, when = 2 tt and 4 tt.

Ans. 80° 57' and 85° 27'.

3. Find the subtangent, subnormal, tangent, and normal of the

logarithmic spiral p = a^.

Ans. subt. = p/loga; subn. = ploga; tan. = p Vl -f- (loga)"^;

norm. = p Vl + (log ay.

4. Show why the logarithmic spiral is called the equiangular spiral,

by finding that yp is constant.

li a = e, -^ = 7r/4, subt. = subn., and tan. = norm.

5. Find the subtangent, subnormal, and p of the Lemniscate of

Bernouilli p^ = a^ cos 2 6.

Ans. subt. = — pV«^ sin 2 d] subn. = —a^ sin 2 d/p]

p = pyVp^ + a^ 8111^2 6 = p^la^,

6. In the circle p = a sin 0, find ^ and 0.

Ans. i/- = 0, and <}> = 2 0.

The angle between two polar curves is found as for the other curves.

7. Find the angle of intersection between the circle p = 2 a cos 6,

and the cissoid p = 2 a sin tan 6.

Ans. arc tan 2.



CHAPTER V.

MAXIMA AND MINIMA. INFLEXION POINTS.

78. Maxima and Minima. — One of the principal uses

of derivatives is to find out under what conditions the value

of the function differentiated becomes a maximum or a

minimum.

This is often very important in engineering questions,

when it is most desirable to know what conditions will make
the cost of labor and material a minimum, or will make
efficiency and output a maximum.
A maximum value of a function or variable is defined to

be a value greater than those values immediately before and

after it, and a minimum value to be one less than those

immediately before and after it. It follows that the function

is increasing before, and decreasing after reaching a maxi-

mum value; while it is decreasing before, and increasing

after reaching a minimum value.

The points on the graph oiy = f {x) at which the function

ceases to increase and begins to decrease, or ceases to de-

crease and begins to increase, are maxima or minima points;

and the values of the function at those points are maxima
or minima values.

It is to be noted that a maximum value is not necessarily

the greatest value the function can have nor a minimum the

least; f (a) is a maximum if it be greater than any other value

of / (x) near / (a) and on either side of it ; and / (a) is a mini-

mum if it be less than any other value of / (x) near / (a) and

on either side of it.

79. The Condition for a Maximum or a Minimum Value.

— If / {x) is a function of an increasing variable x; then
111 '
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for / (a) to be a maximum, / (x) must be increasing just

before / (a) and therefore / (a:) must be positive; on the

other hand / (x) must be decreasing just after / (a) and

therefore f (x) must be negative. Hence, as x increases

through the value a, f (x) must change from a positive to a

negative value. Conversely, if as x increases through the

value a, f (x) changes from a positive to a negative value,

/ (a) will be a maximum value of / (x) .

Hence / (a) will be a maximum value of / (x) if, and only

if, / (x) changes from a positive to a negative value as x

increases through the value a.

In the same way it may be seen that/ (a) will be a minimum
value of / (x) if, and only if, f (x) changes from a negative to

a positive value as x increases through the value a.

This condition has been called the fundamental condition

or test.

For the cases of most frequent occurrence; when f (a) is a

maximum or a minimum, f (a) = 0. In most cases it is a

necessary condition for a maximum or a minimum value of

a function that the first derivative at that value shall be

zero. For in most cases the first derivative /' (x) is con-

tinuous; and, when continuous; it changes sign by passing

through the value zero only. But if f (x) is not continuous,

as is the case for some functions, then it may change sign by
becoming infinite for some finite value of x; for if /' (x) is

a fraction whose denominator becomes zero for some finite

value of X, f (x) changes sign as x increases through that

value. For example, when f'(x) = -, ior x = a = 2,
X z

f (^) = o o ^ ^ ' ^^^^ f (^) ^^ negative before, and

positive after x increases through the value 2; hence, / (2)

is a minimum according to the fundamental test. Again,

there are exceptional non-algebraic functions for which/' (x),

as X increases through some finite value a, changes sign
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without becoming either zero or infinite. (See Note,

Art. 80.)

Excepting such rare functions, a theorem may be stated

thus

:

For all algebraic functions any value of x which makes f {x)

a maximum or a minimum is a root off (x) = orf (x) = cc .

The converse of this theorem is not true ; that is, any root

of /' (x) = or f (x) = 00 does not necessarily make / (x)

either a maximum or a minimum. These roots are called

critical values of x, and each root may be tested by rule.

80. Graphical Illustration. — Let P . . . P3 . . . Pt be

the locus oi y = f (x). Then / (x) will be represented by the

ordinate of the point (x, y), and /' (x) by the slope of the

locus at the point (x, y). By definition, the ordinates MP,
M2P2, and M4P4 represent maxima of / (x) ; while 0, MiPi,

M3P3, and M5P5 represent minima. (Art. 78.)

The slopef (x) is positive immediately before a maximum
ordinate, and negative immediately after; while the slope is

negative immediately before a minimum ordinate and posi-

tive after. The slope / (x) is or 00 at any point whose

ordinate / (x) is either a maximum or a minimum. The
slope / (x) is discontinuous at the points P4 and P5, where

it changes sign by becoming infinite as x increases through

the values OM4 and OM5; that is, / (a;) = 00

.
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The slope f {x) is at Pe and oo at P7; but it does not

change sign at either point, and neither M&P^ nor M^P^ is a

maximum or a minimum ordinate; it does, however, change

in value at each point, Pe being a point where the slopef (x) is

a minimum and P7 one where it is a maximum. The points

Pe and P? are inflexion points, at which the curve changes

from being concave downward to upward, or vice versa.

Note. — Points such as P4 and P5 occur on railroad '^ Y's,"

and such points where branches of a curve end tangent to

each other are called cusps.

At a point on a non-algebraic

curve where branches end and

are not tangent to each other,

called a shooting point, f (x)

may change abruptly from a

positive finite value to a nega-

tive value, or vice versa; hence,

/ (a) would be a maximum or a minimum without / (x)

becoming either zero or infinite. The supplementary figure

shows a shooting point at which / (a) is a minimum; / (x)

becoming — 1 as x increases to a, and +1 as x decreases to

the same value a, thus changing from a negative to a positive

value as x increases through the value a.

It is to be noted that, while on an exceptional curve like

the one shown the tangents at a maximum or a minimum
point may have various directions, on any algebraic curve

the tangent is parallel to one or other of the two rectangular

axes; that is, the tangent at a maximum or a minimum point

is horizontal, the slope being continuous; otherwise it is

vertical ; and on only exceptional non-algebraic curves will it

have any other direction.

It may be noted also, as in the graphical illustration

given, that maxima and minima occur alternately; that is,

a minimum between any two consecutive maxima and vice

versa. It may be seen that a maximum may be less than
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some minimum not consecutive, since by definition it is

necessarily greater than those values only immediately before

and after it. It may be seen also that when the slope is

continuous at least one inflexion point must occur between

a maximum and a minimum point. The only inflexion

points marked on the curve are Pe and P7, occurring where

f (x) = and 00 , but f (x) may have any value at an

inflexion point, although its rate, f (x), must change sign

there, becoming or QO . Hence, at any inflexion point, a

point where the slope f (x) is a maximum or a minimum,
/' (a:) = or QO . The converse is not true, for /" (x) may
be or 00 at other points.

81. Rule for Applying Fundamental Test. — Let a be a

critical value given by either f (x) = or f (x) = 00 , or, in

general, any value of x to be tested, and Ax a small positive

number; then:

Iff {'^ ~ ^^) ^'s positive and f {a + Ax) is negative,

f (a) is a maximum off (x)

.

(Art. 79.)

Uf iP'
~ Ax) is negative andf (a + Ax) is positive,

f (a) is a minimum of f (x). (Art. 79.)

If f (^ ~ Ax) and / (a + Ax) are both positive or both

negative, f (a) is neither a maximum nor a minimum of

This rule is general and is valid for all functions that are

continuous one-valued functions, which comprise all those

usually encountered in this connection.

82. While the rule just stated applies in every case;

when /' (x), as well as / (x), is continuous and therefore the

critical values of x are roots of/' (x) = 0, a rule usually easier

to apply may be deduced from the fundamental test or

condition.

Let a be a critical value of x given by /' (x) = 0. If / (a)

is a maximum value of / (x), /' (x) changes from a positive

to a negative value as x increases through a; therefore, near

a,f' (x) is a decreasing function, and therefore, its derivative,



116 DIFFERENTIAL CALCULUS

f" {x), must be negative near a. But if f" (a) is not zero,

then near a the sign of f (x) is that of /' (a). Hence

f (a), if it is not zero, will be negative when/ (a) is a maxi-

mum value of/ (x).

In the same way it is seen that/' (a), if it is not zero, will

be positive when / (a) is a minimum value of / (x)

.

Conversely, / (a) will be a maximum or a minimum value

of / (x) according as /" (a) is negative or positive.

Hence this rule for determining the maxima and minima
values of/ (x) when/ (x), f (x) are continuous:

The roots of the equation f (x) = are, in most cases, the

values of x which make f (x) a maximum or a minimum.

If a he a root of f (x) = 0; then f (a) will he a maximum
value off (x), if f" (a) is negative, hut a minimum, iff" (a) is

'positive.

83. While the above rule is all that is needed in most

cases, it does not provide for the case when the critical value

a makes/'' {x) become zero. When/' (a) = 0,/ (a) may be

either a maxinium or a minimum, or it may be neither, and

the point on the graph of / {x) may, or may not, be a point of

inflexion; so an extension of the rule is needed to provide for

cases where /" {x) and the succeeding derivatives may in

turn become zero for the value, a.

If no derivative is found that does not become zero when
a is substituted for x, then recourse may be had to the funda-

mental test, that rule applying in every case. But if/' (a),

/" (a), . . .
,

/"""^ (a) all are found to be zero, and /"(a) not

zero; then the following rule, inclusive of the preceding,

applies. Let a he a critical value of x given hy /' (x) = 0,

and let a he substituted for x in the successive derivatives

of f (x).

If the order n of the first of the derivatives that is not zero is

an even integer, f (a) will he a maximum or a minimum off (x)

according as this derivative is negative or positive.

If the order n of the first of the derivatives that is not zero is



RULE FOR DETERMINING MAXIMA AND MINIMA 117

an odd integer, f (a) will be neither a maximum nor a minimum

off (x) regardless of the sign of this derivative.

Note. — This conclusion can be deduced by examining

the signs of the derivatives near a; thus, as follows:

If /' (a) and f' (a) be zero but f" (a) not zero; since

/'" {x)j the rate of f^ (x), has when x is a a value not zero;

/" (x), the rate of /' (x), is then increasing or decreasing

according as /''' (a) is positive or negative, and, since it is

zero when x is a, it must change sign as x increases through a
;

therefore, f (x), the rate of / (x), must be either decreasing

before and increasing after, or increasing before and decreas-

ing after x is a, and so, continuing to be positive or negative

according as f" (a) is positive or negative, does not change

sign as x increases through a; hence / (a) is neither a maxi-

mum nor a minimum of/ (x) regardless of the sign oi f" (a).

Nowif /'' (a) also is zero but /^^ (a) not zero; since/^ (x),

the rate oi f" (x), has when x is a a value not zero, /"' (x),

the rate of /" (x) , is then decreasing or increasing according

as /^^ (x) is negative or positive and, since it is zero when x

is a, it must change sign as x increases through a; therefore,

f (x), the rate of/' (x), must be either increasing before and

decreasing after, or decreasing before and increasing after x

is a, and so, continuing negative or positive according as

p^ (a) is negative or positive, does not change sign as x

increases through a; f (x), the rate of / (x), must then be

either decreasing, or increasing before and after x is a, and,

as it is zero when x is a, it changes from a positive to a nega-

tive value, or from a negative to a positive value, as x in-

creases through a, according as /^^ (a) is negative or positive;

hence / (a) is a maximum or a minimum of / (x) according

as /^^ (a) , the first of the derivatives that is not zero, is neg-

ative or positive.

In the same way it follows that, if /^ (a) is the first of the

derivatives that is not zero, / (a) is neither a maximum nor

a minimum of / (x) regardless of the sign of /^ (a) ; and that,
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if /^^ (a) is the first, / (a) is a maximum or a minimum of/ (x)

according as /^^ (a) is negative or positive ; and so on for the

succeeding derivatives: hence the inclusive rule given.

(For proof by Taylor's Theorem, see Art. 218.)

f(a)=f(oJ=o, neithera 7ruix.noraminoff(x) f(a) =f(o)=o, a mm. of (x)

r

-25"-

y=f(x)=-4x^
f(a) ^£i[oJ=o,,mithera rruix^.mra W-itl^ o£f(x)

-25-L

y=f(x)=-x4
ffa)-MJ ^o,a max. off(x)

84. Typical Illustrations. — The foregoing deductions

may be verified by the graphs of the successive derivatives

of x^^ — x^ xS and — x^ referred to the same axes as those of

the graphs of the functions. The usual case when f (a) is
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zero and /" (a) not zero, is well illustrated by the graphs of

the function sin 6 and its derivatives.

f(ej=sinf-)

f'(w<ose

,
iir/2 + nTr)

neh-sine

f{d) = sin^; where ^ is in radians.

f'{d) = cos0 = 0; .-. d = 7r/2, Itt, .

r{d) = -sine, r(j/2)= -;

.-. / (7r/2) = 1 is a maximum value of / (x).

J''
(3 ^) = _|- . /. / (I tt) = - 1 is a minimum value of / (x)

.

j" \e) = - sin^ = 0; .*. ^ = 0,7r, . . ., mr]

:. (0, 0), (tt, 0), . . . are points of inflexion.

f"{e) = -cosd; r{o) = -;

/. f (o) = 1 is a maximum slope.

jf'f
(^^)

^ _|_ . ^.^ f (^) = _ 1 is a minimum slope.

The graphs make manifest that for a maximum or a mini-

mum value of the function the first derivative passes through

zero; being + before and - after for a max., and - before and
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+ after for a min.; and that hence the second derivative is

— for a max. and + for a min. ; also that at an inflexion point

the second derivative is zero. The graph of sin makes
manifest at once the maxima and minima values of the

function and the value of the angle in radians that makes the

function a maximum or a minimmn.

. The graph of the first derivative shows that the first

derivative of any continuous function when continuous itself,

changes sign by passing through zero only, for the ordinate

changes sign by becoming zero only, as the graph crosses the

axis of &; and it shows that in passing through zero the

ordinate changes from plus to minus, or from minus to plus

according as the abscissa of the point of crossing corresponds

to a maximum or a minimum ordinate of the graph of the

function ; and that as it crosses the axis the ordinate is either

decreasing or increasing. The graph of the second derivative

shows by the direction or sign of its ordinate at or near the

point where the graph of the first derivative crosses the axis

whether the first derivative is decreasing or increasing as it

passes through zero at that point, the sign being minus or

plus according as the first derivative is decreasing or increas-

ing; that is, according as the abscissa of the point corre-

sponds to a maximum or a minimum ordinate of the graph

of the function.

85. Inflexion Points. — Where the slop&.oi the graph of

the function is a maximum or a minimum is at the points

where the ordinate of the first derivative has its greatest

positive or negative value, and those points are precisely

where the ordinate of the second derivative is zero, those

values of 6 that make the slope of the function a maximum
or a minimum being those that make its derivative, the

second, zero. These points are inflexion points on the graph

of the function, where the curve changes from being concave

upward to downward, or downward to upward. When a

curve as mn is concave upward its slope evidently increases
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as the abscissa of the generating point increases; hence its

derivative, the second (the flexion), is positive. When a

curve as st is concave downward its slope evidently decreases

as the abscissa increases; hence the second derivative is

negative. At a point of inflexion, as P on mt or sn, the tan-

gent crosses the curve at the point of contact, and on opposite

sides the curve is concave in opposite directions, therefore,

the second derivative has opposite signs. Hence, at a point

of inflexion the first derivative, the slope of the curve, has a

maximum or a minimum value. To test a curve for points

of inflexion is to test its slope for maxima and minima. In

the case of roads or paths that change direction of curvature

in a horizontal plane the inflexion point is usually called the

point of reverse curvature, and when the curved grade

changes direction of curvature in a vertical plane the inflexion

point is where the grade is greatest or least on that part of

the road. The roots of the second derivative = or oo are

the critical values to be tested for points of inflexion, and

the sign of the third derivative, when the critical value is

given by the second derivative = 0, indicates whether the

second derivative, the flexion, is decreasing or increasing as

the critical value is passed, the sign being minus or plus
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according as the second derivative is decreasing or increas-

ing; that is, according as at the critical value the slope is a

maximum or a minimum, or as the curve is concave upward

before and downward after or the reverse. These conclu-

sions are verified by the graphs of sin $ and its successive

derivatives.

When the critical value is given by the second derivative

= 00, or, in general, when any value is to be tested, the

fundamental test may be appUed to determine the sign of

the second derivative before and after the value to be tested,

and thus to determine the concavity and existence or non-

existence of inflexion.

It is evident that at a maximum point on a curve the

curve is concave downward both sides of the horizontal

tangent point and concave upward both sides of a vertical

tangent point, while the reverse is the case at a minimum
point.

Tangents drawn at successive points on a curve that has

maxima and minima points show that as the abscissa of the

moving point increases the tangent turns clockwise through

zero angle at a maximum point until an inflexion point is

reached when it <^urns in the opposite direction through zero

angle again at a minimum point; and then it may without

any inflexion point turn through a right angle at a maximum
point, continuing to turn anti-clockwise until possibly at an

inflexion point it turns back clockwise through a minimum
point when the angle is a right angle again, becoming less as
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the tangent continues to turn clockwise. The points on a

graph at which the ordinate ceases to increase and begins to

decrease, or else ceases to decrease and begins to increase are

sometimes called turning points of the graph, and the corre-

sponding values of the function turning values. The turning

values are evidently maxima and minima values Eind the

turning points maxima and minima points. While the tan-

gent at an inflexion point turns in opposite directions, the

curve is either rising or falling on both sides of the point; but

at a turning point the curve is rising at a maximum and then

falling, or falling at a minimum and then rising. These

considerations make it obvious that at a maximum, the

angle made by the tangent decreasing, its rate, the second

derivative of the function, is negative, and that at a mini-

mum, the angle increasing, the second derivative is positive.

86. Polar Curves. — A polar curve is concave or convex

to the pole at a point, according as the tangent to the curve

at the point does not, or does lie on the same side of the

curve as the pole. It may be seen from the figure that

when a polar curve, as mn, is concave to the pole, p or ON
increases as p increases; hence, the rate of change of p with

respect to p, -^ is positive.
dp

When a curve, as st, is convex to the pole, p decreases as

p increases; hence, 3^ is negative.
dp
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It follows that a polar curve is concave or convex to the pole

at a point according as ~ is positive or negative.

dv
At a point of inflexion on a polar curve, as P on mt, -J-dp

changes sign, and therefore p is Si maximum or a minimum;
and conversely. Hence to test a polar curve for points of

inflexion, p is tested for maxima and minima.

Example. — Examine the Lituus for points of inflexion.

H P^ ^ 2a^p
,

^^^ ^ Vp2 + {dp/ddy V4a4 + p4'

-r- — 5— — ^, " p = a\^ z.
dp (4a4 4-p4)f

Hence, p = a a/2 makes p a maximum; and (a V2, j) is a

point of inflexion.

d7)
The spiral p = a^ has no point of inflexion, since -— is

dp
always positive.

87. Auxiliary Theorems. — By use of the following

theorems, which are obvious, the solutions of problems in

maxima and minima are often simplifled

:

(i) Any value of x which makes c + / (x) a maximum or a

minimum makes / (x) a maximum or a minimum; and

conversely.

(ii) Any value of x which makes c»f{x), c being positive,

a maximum or a minimum makes / (x) a maximum or a

minimum; and conversely. If c is negative and / (a) is a

maximum, c •/ (a) is a minimum.
(iii) Any value of x which makes f{x) positive, and a

maximum or a minimum, makes [/ (x)]'' a maximum or a

minimum, n being any positive whole number.

(iv) Since / (x) and log / (x) increase and decrease to-

gether, any value which makes / (x) a maximum or a mini-

mum makes log/ (x) a maximum or a minimum; and con-

versely.
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(v) Since when / (x) increases its reciprocal decreases, any

value of X which makes / (x) a maximum or a minimum
makes its reciprocal a minimum or a maximum.

EXERCISE XI.

Examine / (x) for maxima and minima when:

1. fix) =0^5-50^ + 5x3-1.

fix) = 5x4 -20o;3-l- 15x2 = 5a;2(a.2_4^ + 3)

= 5 x2 (x - 1) (x - 3) = 0; .-. X = 0, 1, 3.

f (x) = 20 x3 - 60 x2 + 30 x; /'" (x) = 60 x^ - 120 x + 30.

.^ _

r(0)=0, r'(0) =30; .-. /(O) = -1
is neither a max. nor a min.

r (1) = 20 - 60 + 30 = -10; .-. / (1) = is a max.

f (3) = 540 - 540 + 90 = 90; .'. / (3) = -28 is a min.

By plotting the graph of / (x) these results may be verified.

2. / (x) = x3 - 3 x2 + 3 X + 7.

/' (x) = 3 x2 - 6 X + 3 = 3 (x2 - 2 X + 1)

= 3 (x - 1)2 = 0; .-. X = 1, 1.

f' (x) = 6x - 6 = 6 (x - 1); f" (x) = 6.

f (1) = 0;/'"(l) = 6; .-. /(I) = 8 isneither amax. noramin.

3. /(x)= 3x4 -4x3 + 1.

/' (x) = 12 x3 - 12 x2 = 12 x2 (x - 1) =0; .'. x = 0, 1.

/" (x) = 36x2 _ 24x = 12x (3x - 2); /'" (x) = 72x - 24.

r(0)=0;r'(0) = -24; .-. /(O) =1
is neither a max. nor a min.

f'(l)=12; .-. / (1) = is a min.

4. fix) =3x5- 125x3 + 2160X.

/' (x) = 15x4 - 375x2 + 2160 = 15 (x^ - 25x2 + 144) = 0;

.'. X = ±3, ±4.

f (x) = 15 (4 x3 - 50 x)
;
/" (3) is neg. ; .-. / (3) is max.

f (4) is positive; .*. / (4) is min.; /" (-3) is positive; .'. / (-3)

is min.; /" (— 4) is negative; .'. / ( — 4) is max.

5. fix) =x3-3x2 + 6x + 7.

f (x)=3a;2-6x + 6 = 3(x2-2x + 2) = 0; .'. x = l±V3i.
Hence no real value of x makes / (x) a max. or a min.

6. Examine c + V4 a2x2 — 2 ax^ for max. and min.

Let fix) =2 ax2 - x^ (by Art. 87).

/'(x) = 4ax-3x2 =4(4a - 3x) =0; .'. x = 4/3a,0.

f" (x) = 4a - 6x; /" (0) = 4a; .'. /(O) = c is a min.

/"(4/3a) =4a-8a = -4a;

.-. / (4/3 a) = c + 8 a2 \/3/9 is a max.
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7. y = a — S{x — c)^, and y = a — h {x — c)^.

J- = 1 = 00 ; /. X = c, and it can be seen that -rdx S (x - cy dx

changes from + to — when x passes through the value c, hence/ (c) = a

is a max.

When/(a:) =a-hix-c)y, £= -— -^ = oo ; /. x = c;
"^ S{x — cy

dv
here it can be seen that /' (x) or -7- does not change sign as x passes

through c, and, therefore, the function has neither max. nor min.

8. Examine {x — 1)* (x + 2)^ for max. and min.

fix) = (x-iy(x + 2)H7x-i-5)=0; .: a: = 1, -2, -f
/' (1 - Ax) is -, f (1 + Ax) is +; .-. / (1) = is a min.

/'(-f -Ax) is +,/'(-f +Ax) is -; .-./(-f) is a max.

/' (-2 - Ax) and /' (-2 + Ax) are both +; hence / (-2) is

neither max. nor min.

9. Examine ^— for max. and min.
a — 2x

f (x) = {a - x)H4:X - a)/{a - 2 x)^; f {x) = gives x = a, o/4;

/' {x) = 00 gives (a — 2 xy = 0, or a: = a/2.

f (a/4) changes from — to + as a; passes through a/4; .*. f(a/i)

is min. When x = a, or a/2, f (x) does not change sign; .*. f{a) and

/ (a/2) are neither max. nor min.
/p2 7 a; _!_ g

10. Examine z-p:— for maxima and minima.
a; — 10

Ans. f (4) is a max.; / (16) is a min.

(x + 2)^
11. Examine ) :^„ for maxima and minima.

[x — 6)^

Ans. f (3) is a max; / (13) is a min.

12. When fix) = (x - 1) (x - 2) (x - 3), / (2 - I/V3) = f V3,

is a max., and/ (2 + 1/^3 ) = — f Vs is a min.

13. Show that the maximum value of sin 6 + cos 6 is V2.

14. Show that the maximimoi value of a sin + 6 cos 6 is Va^ -}- 6^.

15. Show that e is a minimum of x/log x.

16. Show that 1/ne is a maximum of log x/x'^.

17. Show that e^^^ is a maximum of x^^.

18. Show that 1 is a maximum of 2 tan ^ — tan^ d.

19. Find the maximum value of tan"^ x — tan"^ x/4, the angles

being taken in the first quadrant.
Ans. tan~^ f

.

20. Show that 2 is a maximum ordinate and —26 is a minimum
ordinate of the curve y = x^ — 5x*-^5x^-\-l.
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PROBLEMS IN MAXIMA AND MINIMA.

1. Find the maximum rectangle that can be inscribed in a circle of

radius a. Let 2 x = base and 2 y = altitude; then

area A = 4: xy =4:X Va^ — x^.

Take / (x) = x^ (a^ - x"^) = a^x^ - x^ [by Art. 87];

/' (x) =2aH-4:X^ = 2x (a^ -2x^) = 0; .-. x = 0, a/V2;

J" {x) =2a^-12x^; f" (0) = 2 a^; /. / (0) = is min.

f"ia/V2) = 2o? - 6a2 = -4a2; .-. /(a/V2) = aV4.

/. A = 4V^ = 2 a2

is the area of the maximum rectangle, which is a square.

Note. — By Geometry without the Calculus method:

A =2ay = 2aVa^ - x'-]j^o = 2a2,

since the radical quantity is evidently greatest when x = 0.

2. The strength of a beam of rectangular cross section varies as the

breadth 6 and as d^, the square of the depth. Find the dimensions of

the section of the strongest beam that can be cut from a cylindrical
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log whose diameter is 2 a. Strength oc bd^; .'. strength = kbd^, where

fc is a constant; let

fih)=b (4a2 - 62) = 4,a% - b^;

V-3(2a).

2a 2.. „, 16a3

/'(6) =4a2- 362=0; 6 = -^, d
V3

/ (6) = ^ (4 a2 - ^) = -r^ . = (4 a^) =

Hence, the rectangle may be laid off on the end of the log by drawing

a diameter and dividing it into three equal parts; from the points of

division drawing perpendiculars in opposite directions to the circum-

ference and joining the points of intersection with the ends of the

diameter, as in the figure. The strength of the beam is about 0.65 of

that of the log, but it is the strongest beam of rectangular section.

3. The stiffness of a rectangular beam varies as the breadth 6 and as

d^, the cube of the depth. Find the dimensions of the stiffest beam that

can be cut from the log.

Stiffness oc 6^^; .*. stiffness = hbd^ {k constant); let stiffness

= 6 (4 a2 - 62)3. Take

/(6) = 4a%" - 6«; f (6) = f (a26-' - 6§) - 0;

/. 62 = a2 or 6 = a; :. d = (4a2 - a^)^ = a Vs.

To draw the rectangle, lay off from ends of a diameter chords at angles

of 30° with diameter and join ends of chords with ends of diameter.

4. A square piece of pasteboard is to be made into a box by cutting

out a square at each corner. Find the side of the square cut out, so

that the remainder of the sheet will form a vessel of maximum capacity.

Let a be side of square sheet and x side of square cut out; then
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f{x) =x{a- 2xY.

fix) = -4:x{a-2x)^{(i -2xy = (a - 6 x) (a - 2 x) = 0;

/. a = 1/6 a, 1/2 a.

/ (1/6 a) = 1/6 a (a - 1/3 a)^ = 2/27 a^, maximum capacity.

/ (1/2 a) = 1/2 a (a — a) =0, minimmn.

j: a-2x X

5. A rectangular sheet of tin 15" X 8" has a square cut out at each

corner. Find the side of the square so that the remainder of the sheet

may form a box of maximum contents.

Ans. \\".

6. A channel rectangular in section, carrying a given volume of

water, is to be so proportioned as to have a mini-

mum wetted perimeter. Find the proportions of _^^_

the channel. ;

Let X be the width of the bottom, and y the ^
height of the water surface. Since the given ^^

volume is proportional to the cross section,

xy = V, where V is constant.

2V
p ^ X + 2y = X -\ , from (1)

;

X

m

that is,

^ = 1-^ =
dx ^ x^

^'

2V

X = VJV = \/2

2xy, or x = 2 y.

^y\

To show that this makes p a minimum; note that for a:^ < 2 7, -^ is

negative, and for x^> 2V, -^ is positive, therefore for x^ = 2 7, or

a? = 2 2/, p is a minimum.
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7. Find the dimensions of a conical tent that for a given volume will

require the least cloth.

V = ^ Trr%; :. h = S V/irr^, where r is radius of base and h altitude. (1)

^ = Trr Vr2 + /i2 = Trr {r^ + 9 FV^V)^ = (ttV + 9 FVr^)^

•S denoting lateral surface; let

/ (r) = TT^r^ + 9 7Vr2 (by Art. 87),

/ (0 = 47r2r3 - ^;^ =0, .-. r = — y— ;

f" (r) = 127r2r2 + 54 F2/^^ positive for any r;

hence r = —r- V/— makes ^ a minimum.

From (1), A = V— = r V2; and slant height = r Vs.

8. From a given circular sheet of tin, find the sector to be cut out so

that the remainder may form a conical vessel of maximum capacity.

Ans. Angle of sector = (l- V|) 2 7r = 66° 14'.

9. The work of propelling a steamer through the water varies as the

cube of her speed; show that her most economical rate per hour against

a current running n miles per hour is 3 n/2 miles per hour.

Let V = speed of the steamer in miles per hour;

then cv^ = work per hour, c being a constant

;

and V — n = the actual distance advanced per hour.

Hence, cv^/v — n = the work per mile of actual advance.

Find the most economical speed against a current of 4 miles per hour.

10. The cost of fuel consumed by a steamer varies as the cube of her

speed, and is $25.00 per hour when the speed is 10 miles per hour. The
other expenses are $100 per hour. Find the most economical speed.

Let C = cost per hour for fuel at speed of v miles per hour;



EXERCISE XI 131

then C : $25 = «;3 : (lO)^; /. C = $25 y3/(iO)3;

f(v)= -TTTrrr- • - i ; where a is distance and - is hours.
(10)3 V V V

y3 = 2000, or y = ^^2000 = 12.6 miles per hr.

/ (12.6) = $12 cZ (approximately);

hence cost for one hour about $150; cost for running 10 miles at 12.6

miles per hour about $120, while the cost for running the 10 miles at

10 miles per hour is $125, and at 15 miles per hour the cost for running

10 miles is about $123.

11. The amount of fuel consumed by a steamer varies as the cube of

her speed. When her speed is 15 miles per hour she burns 4| tons of

coal per hour at $4.00 per ton. The other expenses are $12.00 per hour.

Find her most economical speed and the minimum cost of a voyage of

2080 miles. Ans. 10.4 mi. per hr.; $3600.

12. A vessel is anchored 3 miles off shore. Opposite a point 5 miles

farther along the shore, another vessel is anchored 9 miles from the

shore. A boat from the first vessel is to land a passenger on the shore

and then proceed to the other vessel. Find the shortest course of the

boat.

Let hi be the distance the boat goes from first vessel to shore and h2

the distance from the shore to the other vessel; then

/ (x) =hi+h = (32 + x-^y^ + [92 + (5 - x)]^

f (x) = - 5 — X ^
^ ^

(9 + a;2)^ (81 + (5 - a;)2)i

whence re = ± |; h + hi = --i-
-\- -^-= 13 miles.

13. Find the number of equal parts into which a given number n

must be divided that their continued product may be a maximum.
Let

m=(^y; f(.) = g)(log^l)=0;

. . log — = 1 ;
- = e, and x = —

,

"^ X ' X ' e

hence the number of parts is n/e, and each part is e.
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DETERMINATION OF POINTS OF INFLEXION.

1. Examine y = x^ — S x^ — 9 x -\- 9; for points of inflexion.

^ = 3x2-6x-9,
ax

^ = 6a; - 6 = 6 (x - 1) = 0, .-. x = l,
ax^

is abscissa of an inflexion point. The point is (1, —2), to the right of

which the curve is concave upward.

2. Examine a;^ — 3 hx^ + a^y = 0, for points of inflexion.

Ans. (b, 2 ¥/a^) is a point of inflexion, or of maximum slope,

to the right of which the curve is concave downward.

3. Examine y = c sin a; for points of inflexion.

Ans. (0, 0), (±7r, 0), (±2 7r, 0) . . . .

4. Examine the Witch of Agnesi, y = ^ , for inflexion points.

Ans. (±2 a/Vs, 3 a/2); concave downward between these points,

concave upwards outside of them.

Find the points of inflexion of the following curves:

5. (x/a)2 + (y/b)i = 1. Ans. x = ±a/V2.

6. y = {x^ + x) e~^.
' Ans. a; = and a; = 3.

1. y = e-''-e-^. 4^. 2(Mii^log6).
a — h

8. y = x^a^ + a:2.

Ans. (0, 0), (a Vd, 3 a Vf), (-a Vs, -3 a Vf).



CHAPTER VI.

CURVATURE. EVOLUTES.

88. Curvature. — The flexion (Art. 13), 6 =^ = ^,
being the rate of change of the tangent of the angle made
with the X-axis by the tangent to a curve, is one measure of

the bending of the curve at the point of tangency. This

measure, however, is dependent upon the position of the

axes and would change if the axes were rotated.

There is a measure of the bending called the curvature,

which does not depend upon the choice of the axes, as it is

expressed in terms that are the same after the axes are

rotated, or even before any axes are drawn. The curvature

is denoted by K = ~^, the rate of change of the angle of

inclination = tan"^ m, with

respect to the length of arc s.

Thus, let P and Pi be two

points on a plane curve, and

</) + A0 the angles which the

tangents at P and Pi make with

the X-axis, s the arc AP meas-

ured from some fixed point A
on the curve up to P, and As
the arc PPi. The angle is in radians, and A0 is evidently

the angle between the two tangents.

The angle A0 is the total curvature of the arc As, as it is a

measure of the deviation from a straight line of that portion

of the curve between the points P and Pi. The sharper the
133
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bending of the curve between the two points the greater is

A(/) for equal values of As.

The average curvature of the arc As is defined as -r-^, and

is, therefore, the average change per unit length of arc in

the inclination of the tangent hne.

The limit of -r— , when Pi approaches P as its limiting

position, is called the curvature of the curve at P; that is,

the curvature at a point on a curve is K = lim -z— = -^'
As=o As ds

Otherwise, by rates, the curvature of any curve, as APPi
at any point, as P, is the s-rate at which the curve bends at

P, or the s-rate at which the tangent revolves, where s de-

notes the length of the variable arc AP. If <^ denotes (in

radians) the variable angle XTP as P moves along the curve

APPi, then, evidently, the curvature of APPi at P equals

the s-rate of <^ ; that is, X = -p- •

89. Curvature of a Circle. — For a circle of radius R,

As = RAcf) and therefore,

^ _ 1 # _ 1
As "P' ds~ R'

since the ratio of the increments is con-

stant ; that is, the average curvature of

any arc of a circle is equal to the curva-

ture at any point of that circle. In

other words, a circle is a curve of constant curvature and its

curvature is equal to the reciprocal of its radius; that is,

the curvature of a circle equals 1/P radians to a unit of

arc.

For example, if P = 2, the circle bends uniformly at the

rate of J radian to a unit of arc.
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If i^ = I, the curvature of the circle is 2 radians per unit

of arc.

If E = 1, for the circle of unit radius the curvature is

evidently a radian per unit of arc.

90. Circle, Radius, and Center of Curvature. — The
curvature of any curve except the circle varies from one

point to another. A circle tangent to a curve and having

the same curvature as the curve at the point of contact,

therefore, having a radius equal to the reciprocal of the

curvature at that point, is called the circle of curvature at

that point; its radius is called the radius of curvature; and

its center, the center of curvature.

If R denotes the radius of the circle of curvature at any

point of a curve, then, since the curvature of the curve is j-

and equals the curvature of the circle, it follows that,

If at P (Art. 72, figure) the direction of the path of (x, y)

became constant, {x, y) would trace the tangent at P, and ds

might be represented by a length on the tangent ; while if at

P the change of direction of the path became uniform with

respect to s, (x, y) would trace the circle of curvature at P,

and ds would represent an arc of the circle, since it equals

R d(t), where d(t) = ^4> would be the constant change of angle

at center of the circle of curvature.

Thus it is that the curvature is uniform when, as the

moving point passes over equal arcs, the tangent turns

through equal angles; or conversely; and, as this is the case

with the circle only, it is the only curve of uniform curvature.

For any curve the measure of the curvature at a point is

the limit of the ratio between the angle described by the

tangent and the arc described by the point of contact, as

that arc approaches zero; and this limit y- equals the
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reciprocal of the radius of curvature at the point; hence,

ds
the radius of curvature is -r- and equals the reciprocal of the

curvature. The figure shows the circle of curvature for the

point P {x, y) of the ellipse; C is the center of curvature,

and CP the radius of curvature. It is to be noticed that the

B \^^

y^^"''r^
\ 1

"

J(y\\
. ^

circle of curvature crosses the ellipse at P, and this must be

so; for at P the circle and elUpse have the same curvature,

but towards A the curvature of the elUpse increases, while

that of the circle remains the same, being constant. Hence
on the side of P towards the vertex A the circle is outside of

the ellipse. From P towards B the curvature of the ellipse

decreases, and, therefore, on the side of P towards the vertex

B the circle is inside of the ellipse.

So, in general, the circle of curvature crosses the curve at the

point of contact.

The only exceptions to this rule are at points of maximum
and minimum curvature, as the vertices of the ellipse. From
A along the curve in either direction, the curvature of the

ellipse decreases; hence the circle of curvature at A Ues

entirely within the ellipse. From B the curvature of the

ellipse increases in each direction and so the circle of curva-

ture at B lies entirely without the eUipse.
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91. Radius of Ctirvature in Rectangular Coordinates.—
Since = tan"^ m, and since ds^ = dx^ + dy^;

d(b = :;—I—r and ds = V 1 + m^ dx, where m = ^

:

1 + m^ ax

hence the radius of curvature

Tf
_ds _ Vl + m^ dx _ (1 + m^)i

d<f} dm dm
1 +m^ dx

(l+m^)t _ L^+(dj
6 d'^y

(1)

•dx2

R will be positive or negative according as -r^ is positive or

negative, if is always taken as the acute angle which the

tangent makes with the x-axis; for then, whether is posi-

tive or negative, 1 "I" ( j^J f
= sec^0 will be positive and

d^v
the sign of R will be that of -7^. Hence the sign of R will be

plus or minus according as the curve at the point is concave

sec^ d)

upward or downward. R may be in the form —7—

•

If the reciprocals of the members of (1) are taken, then

^ = S = S/[^ +07' ^hi«i'-'"*y be in the form

h cos^ <^.

If -j-^ is zero at any point of a curve, then K = -^is zero

and R is infinite. Thus at a point of inflexion R is infinite.

It may be noted that as a curve approaches being a straight

line, its curvature approaches zero and its radius of curvature

becomes infinite, that is, it increases in length without limit.

So a straight line is the line that the arc of a circle of curva-
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ture approaches as the radius of the circle increases without

limit. On the contrary as the radius of curvature at a point

approaches zero, the curvature at the point becomes infinite

and the curve will approach a mere point, since the circle of

curvature will diminish with zero as a limit for its radius.

92. Approximate Formula for Radius of Curvature. —

Smce K

Mi)T
it is seen that the flexion when multiplied by the factor

1/(1 + m^)^ gives a measure of the bending of a curve

independent of the position of the axes.

The flexion is the rate of change of the tangent of the inclina-

tion of the curve at a point with respect to the abscissa, while

the curvature is the rate of change of the inclination of the

curve at a point with respect to the arc, where the inclination

of the curve is that of the tangent line at the "^oint.

However, when the curve deviates but slightly from a

horizontal straight line, the curvature is approximately the

same as the flexion, since the slope m = ~ being small, l-^)

is very small compared with 1, and therefore the formula

becomes approximately

This approximation for the curvature is used to advantage

in the flexure of beams and columns. The approximate

formula for the radius of curvature is consequently
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EXERCISE Xn.

1. To find R and the curvature of the ellipse -^ + r^ = 1.

^ = _ ^ ^ = _ _^.
dx a^y' dx^ a^y^

Substituting these values in (1), Art. 91, gives

V^aY) \ ¥ J ^i5i
'

^ d<f>_ 1 ^ a'¥

ds R {aY + hH'')^'

The maximum curvature is a/¥, at A (a, 0), where R = ¥/a is a

minimum, and the minimum curvature is b/a% at B (0, h), where

H = a^/b is a maximum. (See Art. 90, figure; Art. 97, figure.)

2. To find R and the curvature of the parabola y^ = 4 px.

dy ^2p ^ ^ _ ^P\
dx y ' da;2 y^

Substituting these values in (1) of Art. 91 gives

±P)}fy' + iy^Yf y'\_ 2 (x +

ds R 2{x + p)^'

At the vertex (0, 0), R = 2 p, the minimum radius; and the maxi-

mum curvature is (1/2 p) radian to a unit of arc. (See Example 1,

Art. 97.)

Since -r^ = j- is negative for positive values of y and posi-

tive for negative values, the curve is concave downward at points

whose ordinates are positive, and concave upward at points whose

ordinates are negative. The sign of R may be neglected, since the

sign of -T-| will indicate whether the curve is concave upward or down-

ward at any point.

3. To find R of the cycloid x = a vers"^ {y/a) ^ ^2 ay — y^.

dy _ V2 ay — y^ d'^y _ a
^

dx y ' dx^ ?/2
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Substituting these values in (1) of Art. 75 gives

At the highest point, y = 2 a, and, therefore, R = 4: a, the maximum of

R. At the vertex (0, 0), R = 0, and also at other points where y is

zero; therefore, R being zero, at those points, which are cusps, the

curvature is infinite. (See Example 3, Art. 97, figure.)

Find R and the curvature of each of the following curves.

4. The equilateral hyperbola 2xy = o?. E = {x^ + 2/^)^/^^.

6. The cubical parabola y^ = o?x.

6. The logarithmic curve y = 6*.

7. The catenary i/ = ^ (e^/«+ e"^/'^).

8. The hypocycloid x' + 2/' = a^.

9. The curve x^ -\- y^ = aK

93. Radius of Curvature in Polar Coordinates. — From

(4) and (10) of Art. 67,

^ = 6 + ^, ^ = tan-i^;

•*•

dd~ '^ dd' dd p2 _|_ (^dp/doy

d4> ^ p^-^2 {dp/dey - p . (IV/c^6>^
,

••
de p' + {dp/dey

. ^ ds/dl ^ [p^ + (^p/(i^)^]^ ,. 77 .ON
•• ^ dct>/dd p^ + 2(dp/ddy-p'd'p/dd'''

^^^-^'^^^

Corollary. .— Since R = cc at a point of inflexion,

p^ + 2{dp/dey-p.^,= o

is a necessary condition for such a point.

K =
d4>

^ ds
'

6aV

(9 y' + a')^

dcj) my
ds {m' + y.)i

d<l>

ds
''

a

R =- 3 {axy)K

K =
d(i> a^

2(x + y)^
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Example. — To find R for the curve p = sin ^. Here

dp

dd

R = (p^ + cosH)i (sin2^ + cos2 6i)^

p2+2cos2^-p(-sin6') sin2 0+2cos2^+sin2^ 2

This curve p = sin 6, a circle with ^

unit diameter, in connection with the

formula for polar curves, tan
\l/
=

;, furnishes a derivation of the
dp/dd

d (sin 6). Since for circle

\l^
= d, tan d

dp/dd

dp
p dd sin

tan 6 tan

that is, d (sin 6) = cos 6 dd.

Also from figure

:

OP p

dd = cos ddd;

tSLlid =
OA cos (9'

and since

tan^

dp

dd

dp/dd'

= cos d = subnormal OA

;

so again, d (sin d) = cos d dd.

This curve serves as an illustration of maxima and minima

in polar coordinates. Thus, p = sin will be a maximum

or a minimum when -^ = cos = 0, when ^ = - or

-^ ; and since -^^ = — sin d, is negative when ^ = o >

. TT ^ . . , ., d'^p • /. •

p = sm - = 1 IS a maximum, while -^ = — sm is posi-
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— 1 is a minimum.trv€ when 6 = -x- ,
.*. p = sm

2 ' • • ^ -'
2

As the denominator of the fractional value of E is 2 for any

value of d, there is no inflexion point, R not being infinite

at any point.

EXERCISE Xni.

Find R in each of the following curves

:

1. The Cardioid p = a (1 — cos0).

2. The Lemniscate p^ = a^ cos 2 0.

Where is an inflexion point ?

3. The Spiral of Archimedes p = ad.

R = 2V2ap/3.

+ 2

4. The Logarithmic Spiral p = a^.

R = a

R = pVl + (loga)2.

94. Coordinates of Center of Curvature. — Let P (x, y)

be any point on the curve ab, and C {a, (3) the corresponding

tocenter of curvature. Then PC is R and is perpendicular

the tangent PT. Hence

Z BCP = Z XTP = 0,

OA = OM - BP, AC = MP-\- BC;

a = x — Rsm(i), ^ = y -\- Rcos(f); (1)

T^dy ^ , -^dx

that is,

or (2)
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Substituting in (2) . the values of R and ds, gives

a = X

dx"

1 +
^ = y +

1^1
\dx/

d^
dx'

(3)

95. Evolutes and Involutes. — Every point of a curve, as

in, has a corresponding center of curvature. As the point

(x, y) moves along the curve in, by equation (3) above, the

point {a, ^) will trace another curve, as ev. The curve ev,

which is the locus of the centers of curvature of in, is called

the evolute of in.

To express the inverse relation, in is called an involute of

ev. The figure shows an arc of an involute of a circle.

96. Properties of the Involute and Evolute. — I. Since

dx/ds = cos cf), dy/ds = sin 0, and ds = R dcj),

dx = cos (l)ds = R cos dcj), (1)

and dy = sin (jtds = R sin </> dcf). (2)

Differentiating equations (1) of Art. 94, and using the

relations given in (1) and (2), there results

da = dx — R cos
<f> d(f) — sin 4> dR = — sin dR, (3)

d^ = dy — R sin <l)d<f> -\- cos 4)dR = cos </> dR. (4)
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Dividing (4) by (3) gives

d^/da = — cot </) = — dx/dy.

That is, the normal to the involute at {x, y),as P (Art. 95, figure),

is tangent to the evolute at the corresponding point (a, /3), as C.

II. Squaring and adding (3) and (4) gives

da^ + d/32 = dRK

Let s denote the length of an arc of the evolute; then,

da^ + d^^ = ds\

Hence, rfs = :±:dR; .*. As = zb Ai?.

That is, the difference between two radii of curvature, as

C3P3 and CiPi (Art. 95, figure), is equal to the corresponding

arc of the evolute, C1C3.

These two properties show that the involute in can be

described by a point in a string unwound from the evolute

o). From this property the evolute receives its name.

It may be noted that a curve has only one evolute, but

an unlimited number of involutes, as each point on the string

which is unwound would describe an involute.

97. To Find the Equation of the Evolute of a Given

Curve.— Differentiating the equation of the given curve and

using equations (3) of Art. 94, a and jS will be expressed in

terms of x and y. These two equations and that of the given

curve furnish three equations between a, j8, x and y. Ehmi-

nating x and y from these equations, a relation between a

and /3 is obtained, and this relation is the equation of the

evolute of the given curve, which would itself be an involute of

the curve found.

Examples. — Find the equation of the evolute of the

following curves:

1. The parabola y^ = Apx. (1)

dy _2p d?y _ _ 4p^

dx y ' dx^ y^
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Substituting these values in (3) of Art. 94 gives

:. x={oi-2 p)/3, 7/ = - v'4^2.

Substituting these values of x and ?/ in (1) gives

i32
= 4 (a- 2 p)V27p,

as the equation of the evolute of 2/^ = 4 yx.

The locus of (2) is the semi-

cubical parabola. Thus, if

iOn is the locus of (1), F
being the focus, then eAv is

the locus of (2) , where OA =

2 7? = 2 OF is the minimum
radius of curvature at 0, the

point of maximum curvature

on the parabola. (Example

2, Exercise XII.)

2. The ellipse

ay + 6V = o'hK (1)

d^ _ _b'^x d}y _ _ h^

dx a^y^ dx^ a^y^

Substituting these values in

(3) of Art. 94 gives

(a^ — 6^) x

145

/3
= (a^ - 6^) y^

¥

W -hy ' ^ w - hy

(2)

Hence, the equation of the evolute of the eUipse aV + Ifx^ =
a^b^ is

(aa)^ + (h^ = (a' - 6^)3.

The evolute is C1C2C1C2. Ci is center of curvature for
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A; C for P; C2 for B; Ci' for A'] C2' for B'. In the figure

shown a = 2h; when a = h V2, then the center of curvature

for B is Sit B' and for 5' at 5. When a <h V2, the centers

for B and B' are within

the elHpse. The points Ci,

C2, Ci, and C2 are cusps.

The length of the evolute

is evidently four times the

difference between R at

B {a, h), and R Sit A (a, 0);

that is, (1, Exercise XII),

4 {ayb - bya) = 4 (a^ - h^)

/ah.

Corollary. — For circle,

since a = b, the evolute is

a point, the center of the

circle.

Y\

The involute of the circle is

given by the equations,

X = a(cos^ + 0sin0),

y = a{smd — 0cos^).

AP is the arc of an involute of the circle.

3. The cycloid x = a vers~^ (y/ct) ^ ^2 ay — y^.

dy _ V2 ay — y'^ (Py _ a

dx y ' dx^ y^

Substituting these values in (3) of Art. 94

:

2/=- ft x = a = 2 V- 2ai8-i32;

.-. a = avers-i (-/3/a) db V -2al3- 13^. (1)

The locus of (1) is another cycloid equal to the given one, the
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highest point being at the origin; that is, the evolute of a

cycloid is an equal cycloid. Thus, the evolute of the arc OPi
is the arc OCi, which equals Pix; and the evolute of Pix is

Cix, which equals OPi.

Since R = 2 V2^ (3, Exercise XII), CiPi = 4 a. Then

OPiX = 2 . OCi = 2 . CiPi = 8a.

Hence, the length of one branch of the cycloid is eight times

the radius of the generating circle. (See Example 3, Art.

142.)

P.

If the figure shown be inverted, the principle of the cy-

cloidal pendulum may be perceived. A weight, suspended

from Ci by a flexible cord, may be made to oscillate in the

arc OPiX, by means of some surface shaped hke the arcs

CiO and CiX causing a continuous change in the length of the

cord as it comes in contact with the surface. The cycloidal

pendulum is isochronal, as the time of an oscillation is

independent of the length of the arc. (See Art. 237.)

4. The hyperbola 6V — a'^y^ = a^"^.

(aa)^ - (6/3)t = (a' + h')\

5. The equilateral hyperbola 2xy = d^.

(a + ©^- (a-^)3 = 2al

6. Find the length of an arc of the evolute of the parabola

^2 _ 4 p^ in terms of the abscissas of its extremities.
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Arc AC = CP-AO = ^(^ + ?^)' -2p (Example 1, figure)

7. Show that in the catenary y = a/2 \e^ + e °/,

a = X — y/a Vy^ — a^, ^ = 2y.

8. Find the equation of the evolute of the hypocycloid

X3 -\-y3 = a^,

(Q: + i8)3 + (a - ^)i = 2ai



CHAPTER VII.

CHANGE OF THE INDEPENDENT VARIABLE.
FUNCTIONS OF TWO OR MORE VARIABLES.

98. Different Forms of Successive Derivatives. — As

given in Arts. 67, 68, where x is independent dx may be

taken as having always the same value and is accordingly

treated as a constant; hence,

d dy _ d^y d_ d^ dy _ d^y

dx dx dx^' dx dx dx dx^'

When neither x nor y is independent, -^^ is a fraction with

both numerator and denominator variable, and d dx = dH,

etc., hence,

d dy _dx d'^y — dy dH , .

dx dx dx^
'

d d dy _ dx^ d^y — dx dy d^x — 3dx d^x d^y -\-Zdy (d'^xY , .

dx dx dx dx^ > ^
J

When y is independent, d'^y = 0, d^y = 0, . . . ; hence

d dy dy dH
dx dx dx^

'

d d dy _Sdy (d'^xY — dx dy d^x

dx dx dx dx^
^

(10

(20

99. Change of the Independent Variable. — In some ap-

plications of the Calculus it is necessary to make a differen-

tial equation depend on a new independent variable in place

of the one originally selected; that is, there is need to change

the independent variable.

149
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When X = cl){z) and it is desired to change the independent

variable from x to z; ior -r-^, -p^, . . , , respectively, the

second members of (1), (2), . . . , above, are substituted;

and in the resulting equation, for x, dx, dH, . . . , their

values gotten from the equation x = ^{z) are substituted.

Example 1. — Given y d'^y + dy^ + dx^ = 0, in which x is

independent, to find the transformed equation in which

neither x nor y is independent; also the one in which y is

independent.

Dividing both members by dx"^, substituting for j^ the

second member of (1) Art. 98, and multiplying both mem-
bers by dx^, gives

y {d^y dx — dH dy) + {dy"^ dx + dx^) = 0,

in which neither x nor y is independent.

Putting d'^y = 0, and dividing by —dy^, gives

dH _ dx^ ^^ _ n

in which the position of dy indicates that y is independent.

Example 2. — To change the independent variable from

a; to in

^ [l + (dy/dxY]\

d^
dx"

given X = p(ios6,y = p sin 6, p being a function of 0.

From the data,

dy — sine dp -{- p cos 6 d6,

dx — cos 6 dp — p sin d dd,

d^y = sin dd^p + 2 cos ddddp- p sin 6 dd^,

and

d^x — cos dd^p — 2 sin ddddp — p cos 6 dd^.
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Substituting these values in value of R and simplifying, gives

U = [P^ +
(^f

/^^)^i;^
, the value of R in Art. 93.

P^ + 2
(dpV_ (Pp

\dd/ ^ dd'

To change the independent variable from x to y; for

d^y/dx^, d^y/dx^, . . . , respectively, the second members of

(10, (20, • • • , above, are substituted; or in the general

result, as in example 1, make d'^y = 0, d^y = 0, etc.

Example 3. — Change the independent variable from x to

2/ in

\dx'^/ dx dx^ dx^ \dx]

d^v d^xi
Substituting for -t\ and -7-|, respectively, the second mem-

bers of (10 and (20 gives after reduction

d^x dH _ ^
d^'^dy^~ '

in which the position of dy shows that y is independent.

EXERCISE XIV.

1. Given x = cos d, change the independent variable from a; to in

2. Given x = -, change the independent variable from x to z in

3. Given x^ = 4 z, change the independent variable from x to 2 in

dx^ X dx ^ dz^ dz ^

4. Given x = cos z, change the independent variable from x to 2 in
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5. Change the independent variable from x to ?/ in

6. Given z = , . , , to find the transformed equation when

X = pQosd,y = p sin 6, and p is independent. Ans. z = p-^r'
dp

100. Function of Several Variables. — A function may
depend upon two or more variables having no mutual rela-

tion, that is, independent of each other. Thus the volume

of a gas depends upon the temperature and also upon the

pressure to which it is subjected, and the temperature and

the pressure may vary independently.

A variable ^ is a function of the independent variables x,

y, . . . when for each set of values of these variables there

is determined a definite value or values of z.

A function of two variables

^ = f(^,y)y where x and y are independent,

is represented geometrically by a surface, plane or curved

according to the form of the functional relation ; and to each

pair of values of (x, y) there corresponds a point on this

surface. When x and y vary, the point takes another posi-

tion, and it will take the new position either by x and y
varying simultaneously or by one remaining constant while

the other changes.

101. Partial Differentials. — A partial differential of a

function of two or more variables is the differential when
only one of the variables is supposed to change. Let z =

f (x, y) be the surface shown in the figure, and P{x, y, z) the

moving point; then if y is constant while x changes, P will

move on the plane curve PA and dx may be represented by
PM or P'M'; on the other hand, if x is constant while y
changes, P will move on the plane curve PB and dy may be

represented by PN or P'N'. The differential of ;s as a
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function of x, y being regarded as a constant, is denoted by

dxZ) and the differential of z when y alone is variable is

denoted by dyZ. These differentials are the partial differ-

entials of z with respect to x and y, respectively.

Note. — The partial dxZ may in the figure be represented

by the distance on the ordinate from the point M to the

tangent TP, and so too, the partial dyZ may be represented

by the distance from N to the tangent T'P, both being

negative in this case as z is decreasing. The A^js; and the

Ay2: are the distances from the points M and N to the surface

curves through P2.

102. Partial Derivatives. — The partial derivatives of z

with respect to x and y are denoted by t- and -j- , respectively,

and they may be represented by the equivalent notation,

fJix, y) and //(a;, y).

In the figure of Art. 101, consider P as the intersection of

the curves CPA and C'PB, cut from the surface by the

planes y = b and x = a, respectively; then the slope of the
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curve CPA is given by the partial derivative -7- , and that of

dz
the curve C'PB by the partial derivative -7-; that is, the

partial derivatives are the tangents of the inclination of the

tangent lines at P to the axes of X and F, respectively. The
values of the slopes for some definite point P on the surface

dz dz
are gotten by substituting in the expressions for — and -j-

,

respectively, the corresponding values of x and y. Thus in

this case (a, h), or P\ being the projection of P on the xy-

plane, a is substituted for x and b for y.

103. Tangent Plane. Angles with Coordinate Planes.

— In the figure of Art. 101, let P be the point (xi, yi, Zi);

PT, the tangent to CPA in the plane y = yi] and PT' , the

tangent to C'PB in the plane x = Xi.

The equations of PT are

z-zi = \^A (^ - ^1)' y = Vh (1)

and of Pr,

z-zi = \^\ (y - yi), X = xi. (2)

The plane tangent to the surface at P has for its equation,

since it is determined by the two intersecting tangents, is

of the first degree with respect to x, y, z, and is satisfied by

(1) and (2).

The equations of the normal through P are those of a line

through {xi, yi, Zi) perpendicular to (3). Its equations are

The angles made by the tangent plane with the coordinate 'planes

are equal to the inclinations of the normal to the axes.

Zi



TANGENT PLANE 155

The direction cosines of the hne perpendicular to (3) are

proportional to [|]_,[|],-1.
Hence, if a, (3, y, are the inchnations of the normal to OX,

OY, OZ, respectively,

Also cos^ a + cos^ jS + cos^ 7 = 1- (6)

From (5) and (6), in general, at any point (x, y, z),

— (11/+(!)+ (I)'—/' + (e)'+(S)"

For the inclination of the tangent plane to XY, from (7),

tan^. =
(|J

+
(|J.

. (9)

From (9), calling the tangent of the angle made by the

tangent plane with the plane XY the slope,

""-=\W^-
Example. — Find the equations of the tangent plane and

normal, to the sphere x'^ -{- y^ -\- z^ = a^, at (xi, yi, Zi),

dz _ _x §^ — _y.
'dx~ z' dy ~ z'

. r^l = _ E.1 r^l = -^1.
Idxji Zi' [dyji Zi'
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Substituting in (3),

z-z,= --{x-xi)-f-{y- yi),
Zi Zi

xxi + yyi + zzi = Xi^ + yi^ + Zi^ = a^. Ans,

From (4) for the normal:

(x -xi)^ = {y - yi) ~ = z- Ziy

1 = — -1 = 1, —=^~ = -. Arts,
Xi 2/1 ^1 ^1 2/1 ^1

EXERCISE XV.

1. Find the equation of the tangent plane and its slope, for the

eUipsoid, x^ + 2y^ + Sz^ = 20, at (3, 2, -\-Zi).

Ans. Sx + 4:y + 3z = 20; f.

2. Find the equation of the tangent plane to the elliptic paraboloid,

2 = 3 x2 + 2 ?/2, at the point (1, 2, 11).

Ans. Qx + 8y — z = ll.

3. Find the equations of the tangent plane and normal to the cone,

3x2-2/2 + 222 = 0, at {xi,y,,z,).

Ans. Sxx^ - yy, + 2zz^= 0; ^^ = ^-^^ = ^-^-
o Xi —yi Zz\

Note. — The equations of the tangent plane and normal

are illusory if formed for the origin. Every tangent plane

to the cone goes through the origin and there is no definite

normal at the origin. When at special points on a surface

the three partial derivatives of the function with respect to

each of the three variables are all zero, there is no definite

tangent plane or normal at the point. Such points are

called conical points, the vertex of a cone being the typical

case.

104. Total Differentials. — When z = f {x, y) is differ-

entiated, both X and y varying, the total differential dz or

df {x, y) is gotten.

The derivations of the formulas for differentiation of al-

gebraic, logarithmic and exponential functions, given in
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Chapter II, hold when u, v, y, and z denote functions of two

or more independent variables; hence the total differential

of / (x, y) may be gotten by the principles estabUshed in

those derivations. The total differential of a function of two

or more variables is eqvxil to the sum of its partial differentials.

liz = f(x, y), then

dz = dxZ -\- dyZ = j-dx -\-
J- dy;

and if t; = f(x, y, z), then,

dv = dxV -{- dyV -}- dzV = -r dx -{- -r dy -{- ^ dz,
dx dy dz

where the last form of the partial differentials is another

convenient notation. In the figure of Art. 101, (Z;^ is repre-

sented by the distance on the ordinate from D to the tan-

gent plane at P and is there negative. As; being DP2, which

is negative.

The truth of this theorem has been illustrated geometrically

in the derivations of d{uy) and d(xyz) in Arts. 28 and 29, and

the theorem is readily established analytically. Thus, it has

been found that all the terms of d{f(x, y)) are of the first

degree in dx and dy; hence, ii z = f {x, y),

dz = (l)(x, y) dx + 01 (x, y) dy, (1)

where </)(x, y) and <^i(a;, y) denote, respectively, the sums of

the coefficients of dx and dy in the several terms of dz.

When a:; alone varies, (1) becomes

dxZ = 4> (x, y) dx. (2)

When y alone varies, (1) becomes

dyZ = 01 (x, y) dy, (3)

Hence, from (1), (2) and (3),

dz = dxZ -\- dyZ =
J-

dx -^
J-

dy.
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105. If. =/(.,,) = . |=-|g. (1)

dz dz
for -T- dx + J-

dy = dz = d (c) = 0, (2)

dv
which solved for -^ gives (1).

This formula for the derivative of an implicit function is

useful in many cases.

Example. — Given x^ — a^xy + ¥y^ = c = z,to find dy/dx.

Here -r- = 4:X^ — a^y and -r- = — a^x + 2 ¥y;

dy 4:X^ — o?y . i /-.x

dx o?x - 2b^v -^ ^
^

EXERCISE XVI.

1. u'= xya^ + yy¥.
du _2x du _2i
dx a^ ' dy b^

X du .y du _ x^ y"^

2dx^2dy~ a^'^b^

2. u = b Xy''- + cx^ + ey^

^£ = bf + 2cx, ^^ = 2bxyi-Sey\

xy du
,

du

6. « = log(e^ + .^), i + ^ = l.

6. w = 6a;i/2 + cx"^ + 62/^. d^^ = {by"^ + 2 ca?) dx + (2 6x2/ + 3 ey^) dy.

7. u = y^. du = y^ log ydx -\- xy^~^ dy.

S. U == ?/sin X. du = ?/sin a; log y COS X da: + ^/sin^-^ sin X dy.

By Art. 105, find dy/dx when:

ax x^ — xy log x
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— 2/ log a; = 0.
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dy y xlogy -y
dx X y log X — X

106. Total Derivatives. — li u = f {x, y, z), y =
<l)

{x),

and z = (t)i{x),- u is directly a function of x and indirectly a

function of x through y and z. The total differential,

'^" = £^^ +
S'^^

+ £'^^ (by Art. 104)

becomes by dividing by dx,

du _ du .du dy du dz .^.

dx dx dy dx dz dx'

where -7- is the total derivative of i^ as a function of x.
ax

Corollary 1. — li u = f {y, z), y = 0(x), and z = <l)i{x),

du _ du dy .du dz .^^

dx dy dx dz dx

Corollary 2. — li u = f (y) and y = (f)(x),

du _ du dy , .

dx dy dx'

du
where -7- is the derivative of a function of a function, and

(3) is the formula that is the subject of Remarks in Art. 19.

Corollary 3. — If u = f {x, y, z) and x, y and z are inde-

pendent of each other, they may be regarded as functions

of time t; hence, the expression for the total differential du

above becomes by dividing by dt,

du _ du dx du dy du dz ,..

dt~dxdi^dy~di~^dzdi' ^ ^

where -^ is the total time-derivative or rate of change of u.

Similarly, when z = f (x, y), x and y being functions of t,

dz ^ dz^ dx dz_ dy . .

Jt~ dx'dt^ dy~dt'
^^
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If 2/ is a function of x, a.s y = <}>{x), putting x for t in (5),

gives

dx dx dy dx ^^

107. Illustrative Examples. — Example 1. — The edges

of a right parallelepiped are 6, 8 and 10 feet. They are

increasing at the rate of 0.02 foot per second, 0.03 foot per

second and 0.04 foot per second, respectively. Show at

what rate the volume is increasing.

Let volume = u = xyz, then by (4), Art. 106:

du dx
, dy , dz

Tt=y'Tt^'''Tt^''ydt
= 80 X 0.02 + 60 X 0.03 + 48 X 0.04

= 1.60 + 1.80 + 1.92 = 5.32 cubic feet per second.

See Art. 29 where du{= dV) is shown geometrically by
figure.

Example 2. — Given the formula for gas, pV = KT,
where p is pressure, V is volume, T is temperature, and K is

a constant. Let K = 50, and let the volume and tempera-

ture at a given time be Fo = 5 cu. ft. and To = 250°. The
corresponding pressure is

po = 5^-^p5? ^ 2500 lb. per sq. ft.

If in this state the temperature is rising at the rate of 0.5

degree per minute and the volume is increasing at the rate

of 0.2 cu. ft. per minute, required the rate at which the

pressure) is changing. Here p = T
50^,

whence
dp

dT
50 dp

_

dV
= -50 T

72

Hence, iin the given state,

dp-

dT
50

5
= 10,

T=Tq
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, dpi 50 X 250 ^^^

V=Vo

Given ^ = 0.5 and ^ = 0.2.
at at

Then

by (5) Art. 106; that is, the pressure is decreasing at the

rate of 95 lb. per sq. ft. per min.
x^ iP" z^

Example 3. — A point on an elHpsoid ^ + f^ + in ~ 1?

in the position x = S, y = — 4, moves so that x increases

at the rate of two units per second, while y decreases at the

rate of three units per second. Find the rate of change of z.

Here

dz^_ 7x_ a^ 7j

dx _ dy _
Tt~^' Tt'"^'

dz l^x 21 y
di~

~ "^

vi-S-l 25v/i-g-

(by (5)

Art. 106)

-77 = * 7= units per sec, the rate of change of z.
dt IsVll

EXERCISE XVn.

1. u = z^ -\- y^ + zy, z = sinx, y = e^; find -^

—

Ans. -J- = 3 e^^ + e^ (sin x + cos x) + sin 2 x.

2. u = V x2 + 2/2, y = mx-\- c. -j- =
,dx Vx2 + (mx + c)2
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u - sin-1 {y - z), y = dx, z = 4: xK
du

dx

w = tan-i^, aj2 _j_ 2/2 = r2.
X

du

dx

du

dx
u = log (x + y), y = Vx^-\- a\

VI -x^

1

Vr2

1

6. With the same data as in illustrative Ex, 2, when the pressure of

the gas is increasing at the rate of 40 lb. per sq. ft. per sec. and the

temperature is falling at the rate of 1 degree per sec, find the rate of

change of the volume.
dV

Ans.
-J-

= —0.1 cu. ft. per sec.

7. A point on a elliptic paraboloid z = 2 x^ -\- 5 y"^, in the position

x = —d,y = 1, moves so that the rate of change of x is 3 units per sec,

and that of ?/ is 2 units per sec Find the rate of change of z.

Ans. -J-
= —16 units per sec

108. Approximate Relative Rates and Errors. — The
method of Art. 41 for finding the errors or small differences

in a function, due to slight variations or inaccuracies in the

independent variable, is applicable to a function of two or

more variables. Since when an area A = f {x, y), the rela-

tive rate of increase of A is

dA dA
dx

,
dy fj{x,y) ,fy(x,y) Uy'(A).

A ' A- A ' A - A '

hence,
. , dA . , dA .

.^^ ^dx^^ + dy
^y

•

(1)

and
^.A dA Ax dA Ay
A '" dx A ^ dy A (2)

are approximate relations. When, for example, the area of

a rectangle is given hy A = xy, and therefore, dA = xdy -\-

y dx, when x and y are the measurements and dx and dy the

errors or inaccuracies, then dA gives the approximate error

in area due to the errors dx and dy.
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If a rectangle is laid out 1000 ft. on one side and 100 ft.

on the other, and the tape is 0.01 ft. too long; then by (1)

AA = y' ^x-\-X' Ay = 100X0.1 + 1000 X 0.01

= 10.00 + 10.00 = 20 sq. ft.

is the approximate error and the exact error is 20.001 sq. ft.,

found by more laborious computation. The approximate

relative error is by (2)

AA^ 20 ^1
A 100,000 5000'

making the percentage error

100 AA 1

A 50
or 0.02 of 1 per cent.

EXERCISE XVm.

1. In the illustrative Example 1 of Art. 107, suppose the error in

measuring the edges was 0.02 ft., 0.03 ft., and 0.04 ft., respectively, find

the approximate error in the volume computed with 6, 8 and 10 ft. as

the edges. Ans. 5.32 cu. ft.

(Exact error, AV = 5.339624 cu. ft.)

2. The total surface of a cylinder with diameter equal to altitude is

to be gilded at a cost of 10 cents per square inch. If the altitude is

measured as 24 in., find the maximum error in cost, measurement being

in.

v^.3. The period of a pendulum is T = 2 tt y —
. Find the greatest

error in the period if there is an error of zLjo ft. in measuring a 10 ft.

L, and g, taken as 32 ft./sec^, may be in error ^^ ft. per sec^. Find

the percentage error,

Ans. 0.0204 sec, f| per cent.

4. In estimating the number of bricks in a pile, if the pile is measured

to be 8 X 50 X 5 ft., and the count is 12 bricks to the cubic foot, find the

cost of the error when the tape is stretched 2 per cent beyond the

standard length, bricks being sold at $10 per thousand.

5. If the side c of a triangle ABC is determined by measuring the

sides a and b and the included angle C, show that the error Ac, due to

inaccurate measurements, is given approximately by the equation,

Ac = Aa cos B -\- AbcosA + aAC sin B.
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6. If the horse power of a steamship is given by the formula H =

Kv^ D^, show that the increase in horse power, due to an increase Ay

in the speed and an increase AD in the displacement, is given approxi-

mately by the equation,

AH = 3 Kv^ D^ • Ay + I Kv^ D"^ • AD.

7. Show that the relative error in the area of the ellipse due to

inaccurate measurements of the semi-axes a and h is given approxi-

^ , , AA b' Aa + a- Ab
matelyby ^ = -^

8. The equation for the length L and the period T of a pendulum
being 4 tt^L = T^g, if L is calculated taking T = 1 and g' = 32 ft./sec^,

while the true values are T = 1.02 and g = 32.01 ft./sec^, show that

the approximate error in L is AL = 0.0326 . . ft., and the percentage

error about 4 per cent.

9. In determining specific gravity by the formula s = A/A — W^
where A is the weight in air and W the weight, find (o) approximately

the maximum error in s if A can be read within 0.01 lb. and W to 0.02 lb.,

the actual readings being A = 9 lb., W = 5 lb., find (6) the maximum
relative error.

Ans. (a) As = 0.0144;

,,, As 23 23
(^^ T = 3600 = 36 P"''"^*-

109. Partial Differentials and Derivatives of Higher

Orders. — If only one of the independent variables is

supposed to vary at the same time, by successive differen-

tiations there are formed the successive partial differentials

QxU, dy^u, dx^u, dy^u, ... or

d^''^' dy^'^y' -M^"^' df'^y^'

For example, if u = x^ + xy^ + y", (1)

dxU = {2x + y"^) dx, dx^u = 2 dx'^, d^u = 0;

dyU =l2xy + 2y) dy, dy'u = (2 x + 2) dy^, dyH = 0.

If u is differentiated with respect to x, then the result with

respect to y, there is gotten the second partial differential,
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For example, if u = x^ -\- x^y^, (2)

dxU = (3 a^2 + 2 xy^) dx, dxy^u = 4:xydx dy.

Similarly, the third partial differential dyx^^u or
^
dy dx^

denotes the result gotten by differentiating u once with

respect to ?/, then this result twice successively with respect

to X.

The symbols for the partial derivatives are

:

d^u d'^u d'^u d^u d^u

dx^ dx dy dy^ dx^ dy dx^ j • • •
•

In getting the successive partial differentials and deriva-

tives of w or / {x, y) , dx and dy are treated as constants,

since x and y are independent variables, varying by uniform

increments. The equivalent symbols for the higher partial

derivatives by another notation are for / (x, y) ,

JJ'{x,y), Uy'\x,y), Jy"{x,y), Sr{x,y), fyj"{x,y),

110. Interchange of Order of Differentiation. —

d^U d^u d^U ^ /-.
etc.

;

(2)
dx"^ dy dx dy dx dy dx^

'

that is, if u is differentiated successively m times with respect

to X and n times with respect to y, the result is independent of

the order of these differentiations.

It can be shown that the order is always a matter of

indifference if fJix, y), fxy'(x, y) or fy{x, y), fyj'ix, y) are

continuous functions of the two variables {x, y) taken

together.

In most cases that call for the application of the methods

of the Calculus to physical problems the partial derivatives

give the same result in whatever order the differention is

done.
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For example, to verify the theorem in some cases

:

Example 1. — Given u = e^ cos y,

du ^ d /du\ d^u= e^ cos y, -^^
(
^ 1 = -^^^^-j^ = -e^ sm y\dx dy\dxj dydx

/du\- ^"sm^/, -i^-^j = ^j:^^ = - e-sm y.— = - eMn — (—] = -^
dy ^' dx \dy) ~ dx dy

Example 2. — Given u = — >

y

du^logz d^u ^ JI_.

dx y ' dzdx yz

du _ _x^ d^u _ 1 .

dz yz^ dxdz yz'

du _ _x log z d'^u _ log z
.

dy y"^ ' * dxdy y^ '

du _ logg d^u _ log 2;

.

dx y ^ dydx y"^ '

du _ X d^u _ x

dz yz' dydz y'^z'

du _ X log z d^u _ _ ^

. dy 2/^ ' dzdy yH

EXERCISE XIX.

Verify the identities (1) and (2) of Art. 110 in each of the following

nine examples:

1. 2i = cos {x -\- y). 2. u = e^ sin y. 3. u = cos xy^.

4. It = x^y^ + ay^. 5. u = log (x^ + 2/^). 6. w = y^.

7. u = xy cos (x -\- y). 8. u = tan"^ -

.

9. w = sin^ x cos y.

10. if« = (x+j,)^ ^_ + j,^-^ = _.

11. liu = (.' + y')K ,.g + 2.,£| + ,^0 = O.

1 ^i^4_^_n
12. If ^ =

(^2 + ^2 + ^2)1

'

da;2
"^

dy^
"^

(^^^ "•
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rihj

13. If w = e^^^ T-^rV = (1+ 3 x?/2 + xV^') u.
ax ay az

14. If w = sin~i (a:i/2),
a^ 1+2 x^yH"^

dxdydz {\ — x^y'^z^)^

111. Exact Differentials. — An expression of the form,

Mdx+Ndy, (1)

where M and N are functions of x and ^, may or may not be

the differential of some function of x and y; if it is, it is called

an exact differential. Some simple expressions may be seen

at once to be exact differentials; thus, ydx-]-xdyis an exact

differential, for it is recognized as the total differential of

xy.

If M dx -\- N dy is an inexact differential, no function

F (x, y) can be found the differentiation of which will give

this differential; thus y dx — x dy is an inexact differential.

In applying the Calculus to problems in physics and

mechanics expressions like (1) frequently arise and some

test is needed to determine whether the expression can be

gotten by the differentiation of any function of the variables

involved.

As an example, the work W of moving a particle in the

XY plane gives rise to the expression

dW = Xdx + Ydy, (2)

where X and Y are respectively the x- and ^/-components of

the force acting on the particle. Since work is the product

of force by distance,

X = -^— and / = —j—}
dx dy

and (2) takes the form

Here (3) was not gotten by differentiation of any function

W = f{x, y) and the question is whether it could be so
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gotten. In general, if M and N are any chosen functions of

X and y, does a function of the independent variables (x, y)

exist that will upon differentiation give M dx -\- N dy?
If there is such a function u = F {x,y), then

du = -:r- d^ -\-
-J- dy. (4)

dx dy ^ ^ ^"

Now if the differentiation of the given function gives

Mdx-^Ndy, (1)

a comparison with the exact differential given in (4) gives

,, du J.J du

.

/_.

that is, M and N must be the partial derivatives of the

function u with respect to x and y, respectively.

According to the theorem of Art. 110, differentiating (5)

gives

dy dxdy dx

Hence, if M = -r- and N = -^ , itis manifest that

— = -— (6)
dy dx

is the necessary condition that M dx -\- N dy may be gotten

by the differentiation of a function F {x, y), and it may be

shown that it is a sufficient condition.

• When the condition (6) is satisfied, M dx -\- N dy is an

exact differential; when the condition is not satisfied, M dx +
N dy is an inexact differential.

Example 1. — Given M dx + N dy = ydx+xdy.

TT ixr AT dM
^

dN .

Here M = 2/, N = x, ^=1, ^ = 1.

The condition (6) is satisfied and ydx -\- xdy is an exact

differential. The test is hardly needed in this simple case,
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as it may be seen at once that the function sought is xy-\-C,

where C is a constant, positive or negative, or zero.

Example 2. — Given M dx -\- N dy = ydx — xdy.

Here, since —r— = 1 and —r— = — 1, the condition (6) is
' dy dx

not satisfied; hence, y dx — x dy is an inexact differential,

and no function of {x, y) exists, the differentiation of which

will give this differential.

Note. — If the equation ydx — xdy = is given, it may
be changed to an exact differential equation; M dx -\- N dy =

0, being called an exact differential equation when M dx -\-

N dy is an exact differential.

Thus, multiplying by y~^, the equation given becomes

ydx -xdy _

which is exact, and the function F (x, y) is given by x/y = C,

Again, multiplied by l/xy, the equation given becomes

dx _dy^Q
X y '

which is exact, and the function F {x, y) is given by log x/y =
log C. Either of these results evidently implies the other.

Multiplying the equation given by —x~^ gives F (x, y) by

y/x = Ci.

Example 3. — Given Mdx -\- N dy = -dx -\-\ogx dy.
X

TT Hr y l^T 1
dM 1 dN 1

Here M = -, N = \ogx, -[- = -, -p- = -•
X dy X dx X

The condition (6) is satisfied and the differential is exact.

It is easy to recognize that F {x, y) is in this case y log x.

Example 4. — Given M dx -\- N dy = sinydx + x cos y dy.

TJ TIT
• AT ^M dN

Here M = sm 2/, N = x cos y, -7— = cos y, -j— = cos y.

The condition (6) is satisfied and the differential is exact.

The function F (x, y) may be seen to be xsiny.
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Example 5. — Given x dy — y dx. Change to value in

polar coordinates, hy x = p cos d,y = pmiO) x dy — y dx =
p2 dd. Dividing by x^,

xdy — ydx p^ dd

p2 cos^ 6
= sec

where the differentials are exactj and the function F (x, y) is

y/x = tan ^. (See Note Example 2.)

EXERCISE XX.

Determine which of the following differentials are exact, and for

such as are exact find the functions that differentiated would give them:

1. ymii2xdx + sin^ x dy. Ans. y sin^ x.

2. (2/e^ + e^) dx + (e^ + xe^)dy. Ans. ye^ + xe'".

3. {y'-2xy)dx-\-iSxy^ -x^)dy. Ans. y^x — x^y.

4. v^dp + npv^'^dv. Ans. pv^.

5. e^ sin ydx + e"^ cos y dy. Ans. e^ sin y.

6.
y^— dx -\- X log X dy. Ans. Inexact.

7. {x^ — y) dx — X dy. Ans. I x^ — xy.

8.
qX

(^2 _j_ ^2 + 2 x) dx + 2 e^ydy. Ans. e^ (x2 + 2/2).

112. Exact Differential Equations. — Equations of the

form
Mdx + Ndy = 0,

are called exact differential equations when M dx -{- N dy is

an exact differential, the total differential of some function

of {x, y), M and A^ being functions of x and y. The solving

of differential equations involves the Integral Calculus, and

the preceding Article with the Examples and Exercise are

introductory to the subject.

The finding of the function from which an exact differen-

tial may be gotten by differentiation is essentially Integra-

tion, the inverse process to Differentiation.

In Part II on the Integral Calculus the subject of differen-

tial equations is given further treatment.



PART II.

INTEGRAL CALCULUS.

CHAPTER I.

INTEGRATION. STANDARD FORMS.

113. Inverse of Differentiation. — It has been shown

that, when a function is given and its rate of change is

required, the derivative, which expresses the rate of change,

is gotten by the differentiation of the function.

It often occurs that the rate of change of a function is

known and the value of the function is desired. In many-

problems in pure and applied mathematics the derivative or

the differential of some function is given and the function

itself is required.

The derivative or the differential of a function being given,

it is a natural inference that an inverse operation to differen-

tiation should yield the function. This inverse operation,

the opposite of differentiation, is called integration and to

integrate any given function (which when continuous is

always the derivative of some other function) means to find

that other function whose derivative is the given function.

The function to be found is called an integral of the given

function, which is called the integrand; that is, a function

is an integral of its differential. The process of finding an

integral of a given function is integration, the inverse oj

differentiation; that is, integration is anti-differentiation and

an integral is an anti-differential.

171
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When dy = d(f(x)); d'^dy) = d--^ {df (x))
,

(read "the

anti-differential of dy equals the anti-differential of d{f{x))'' is

the inverse expression, reducing to y = f (x), as the two

symbols neutraUze each other. The sign of integration is,

however, / , an elongated S; and this symbol indicates

that the differential expression before which it appears is

to be integrated, the whole expression denoting the integral

itself.

Thus Cdy^d-Hdy) and fd (f (x)) ^ d'^df (x))

;

the sign of integration and the symbol of differentiation

indicating inverse operations here neutralize each other, so

/
There is here a close analogy with the algebraic signs of

evolution and involution; for example, Vx^ = x, the two

symbols indicating inverse operations neutralizing each

other. The analogy extends further to the fact that, while

the operation of raising a given number to the second or

other power is a direct operation and involves no difficulty

in any case, the inverse operation of extracting a root may
not be done so directly and in many cases can be done

approximately only. While it has been shown that every

continuous function has an integral,* this integral may not

be expressible in terms of the elementary functions. In

such cases, however, an approximate expression for the

integral may be obtained by infinite series or by the measure-

ment of an area representing the integral. Most of the

functions that occur in practice can be integrated in terms

of elementary functions, either directly by the knowledge

acquired from differentiation, by reversing the rules of

differentiation, or by reference to a table of integrals.

* By Picard, in Traite d'Analyse.
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Except for simple differential expressions the process of

integration is less simple and easy than the process of differ-

entiation. Just as any finite number can be raised to a

power, so can any finite continuous function be differentiated;

and as the roots of some numbers can be expressed approxi-

mately only, so the integrals of some functions can be

expressed approximately only.

There is one function whose integral is not some other

function but is the function itself. This is the function e^,

whose derivative is e^. As I e'^dxj e'^dx = e^, so Vl = 1; the

particular analogy in this exceptional case is manifest.

114. Indefinite Integral. — When

dy

dx f (x) or dy = f {x) dx, V = Jf (^) dx,

read ''y is equal to an integral off (x) dx." An integral of

dy is evidently y, and / (x) is an integral of its differential

f{x)dx.

Thus integrals of many simple differential expressions are

known directly, by merely recalhng the function which

differentiated results in the given expression.

However, since the differential of any constant term of

a function is zero, the function sought may contain a con-

stant or constants no indication of which appears in the given

differential or derivative.

Hence, the integral of a differential expression is in

general indefinite, owing to the lack of knowledge as to

the existence or value, if existent, of constant terms of the

function sought.

If F (x) is a function whose derivative is / (x), then

//(x) dx = F (x) -{- C, is the indefinite integral, where C

is a general constant, called the constant of integration, de-

noting a value either positive or negative or zero.
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dy

dx

116. Illustrative Examples. — Example 1. — When

/' (x) = m, is given as the constant slope of y = fix);

then y = I mdx = mx + C. The result is indefinite be-

cause j^ = m, is the slope oi y = mx + C, y = mx — C,or
ax

y = mx. The constant C added to right member of the

equation includes all constant terms, if any, of the function;

for if the result be written y -\- C = mx + C", then y =
mx + C" — C = mx -^C. The letter C, often omitted,

should be written as part of the result of the integration.

Data may be available in some cases to make the value of

C known, or to eliminate it, and thus to make the result

determinate.

In this example, if it is known that the function has the

value h when x is zero, then y = mx -^ b, since C is equal to

h when x is zero. If y is —b, or if y = 0, when x = 0; then

y = mx — b, or y = mx.

As shown in the figure the function is a straight line

making an angle ( = tan"^ m) with the Z-axis, the con-

stant of integration being the 7-intercept. The indefinite

or general integral is y = mx -\- C, any straight Hne with

slope m.
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Note. — When the value of C is determined the integral

is called a particular integral.

Example 2. — When ^ = 2 x is given as the rate of

change of y with respect to x, then y /2. dx = x^ + C,

where x^ + C is the general integral of 2 a; dx, since the

differential of (x^ + C) is 2 x da:. Here x^ + C is a function

whose rate of change is 2 x, and

if the rate of change is that of

the ordinate to the abscissa, or

the slope of a curve, then the

integral, y = x^ + C, is the equa-

tion of the curve. The locus of

the equation is a parabola with

its vertex at a distance C above

or below the origin, or at the

origin, according as the value

of C is positive, negative, or

zero.

If y is known for some value of x, then the value of C is

easily determined. For instance, if it is known that the

point (a, h) hes on the curve, then y = x"^ -{- C, must be satis-

fied by the coordinates (a, h), giving h = a"^ -]- C, and, there-

fore, C = h — a^. Hence, the particular parabola is ?/ = x^ +
h — 0^. If the curve is known to pass through the origin,

then, since Q is zero, y — x^ \s the parabola with vertex at

the origin.

dA
Example 3. — If a given derivative -^ = 2 x represents

the rate of change of an area A to a length x, then A =

j 2xdx = x^ -\- C, is an area where x^ may represent the

area of a variable triangle formed by the straight Hne y = 2x,

the ordinate at any value of x, and X-axis. In the figui-e
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shown the area A is zero when x is zero, and therefore C is

zero. The area of any triangle being one-half the product

of base and altitude, the result of the integration, A = x^,

is seen to be true. The area A = x"^ -\- C may represent a

square of side-x and some additional area represented by C,

undetermined, as it might be positive, negative, or zero —

•

the derivative of the area in either case being the given

rate 2 x.

dA
Example 4. — If the given derivative is -^ =«= x^, then

-/x^dx = i^-]r Cj smce d(^^-C\ = x'dx.

Here the area -^ is that bounded by the curve, a parabola

y = x^y the ordinate at any value of x, and the X-axis. In

the figure shown the area A is zero when x is zero, and there-

fore C is zero.

It is seen that the area 0PM is exactly one-third of the

area of the circumscribed rectangle. Hence, the area OPN
between the curve, the abscissa at the end of any ordinate,

and the F-axis, is two-thirds the area of the same rectangle.
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Example 5. — The acceleration of a falling body being

nearly constant near the earth's surface, it is required to

find the velocity and the distance after any time. If s

denotes the distance along a straight line positive upward

dh
and t the time, then -^ is the acceleration.

dv d^s

dt~dF-~dr= -3 «^
^\dt)

= ~^^^' (^)

Integrating gives velocity,

v = -^^
= -gl + (.C^v,), (2)

where Vq is the initial velocity, when ^ = 0; then,

ds= —gtdt-\-Vodt,

Integrating gives distance,

s= -igt'-\-vot + (C = so), (3)

where Sq is the initial distance, when ^ = 0. If the body falls

from rest, Vq and So are zero, hence; v = —gt; s = —igt^;
and v'^ = —2 gs, by eliminating t. (See Art. 14.)

Example 6. — Determine v and s in terms of t for a bullet

shot vertically upward with a velocity of 2000 feet per

second, neglecting air resistance.

dv d^s
-tT = ^ttj = —32.2 ft. per sec. per sec.

ds
' = dt I^ = r-32.2rf^ = -32.2^ +(C = Vo = 2000),

V = Vq, when t = 0.

s= jds= j-S2.2tdt-\-2000dt= -16.1f+2000t

+ (C = So = 0), s = So = 0, when t = 0.

To find the time of rising, make v = = —32.2 t + 2000;

.-. ^ = 62.1 sec.
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To find the height it will rise, s = -16.1(62.1)2 + 2000

(62.1) = 62,112 ft.

To find the time of flight, s = = -16.1 f^ + 2000 t',

.'. t = 124.2 sec. and t = 0.

Hence, the time of falling is the same as that of rising,

since the time of flight is twice that of rising. The height it

will rise may be found, by making y = in

.^ = .-2,.; .-. . =g =M = 62,112ft.,

the same as above.

Remarks. — These examples -illustrate the important fact

that the knowledge of the rate of change of a quantity to-

gether with the knowledge of its original' value, makes
possible the complete determination of the value of that

quantity at any time. This must be so, since two different

quantities with the same rate of change always have a con-

stant difference, the rate of change of their difference being

zero. This is in accordance with the undoubted fact that

if the rate of change of a quantity decreases to zero and

remains zero, the quantity ceases to change at all, being

then constant. The fact is formulated in principle (iv) of

Art. 116, and is the converse of the fact that if a quantity is

constant, its rate is zero.

116. Elementary Principles. — While there is a general

method of differentiation, for the inverse process of integra-

tion no general method has been devised. For the integra-

tion of the various differential expressions, rules have been

formulated and special methods have been found, one or

more of which provide for every case in which integration

is possible.

These rules or formulas are derived or disclosed through

knowledge of the rules of differentiation; in fact, the rules

most used are merely directions for retracing the steps taken

in differentiation.
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Elementary principles that apply in integration may be

expressed as follows:

(i) ff(x)dx^F{x)-{-C, if dF(x)^f(x)dx.

This principle furnishes the most direct proof of formulas

for indefinite integration, and provides a decisive test of the

correctness of the result of any integration. Thus,

x''dx =—rT + C, since di—-^) = x'^dx;
n + 1 V^+1/

/

In this manner the test can be apphed to prove any formula,

or to verify the result of the integration of any expression.

(ii) A constant factor can he transposed from one side of the

sign of integration to the other, and a constant factor can he

introduced on one side, if its reciprocal is introduced on the

other, without changing the value of the integral.

For, if a is a constant,

jaydx = a
f
ydx,

since the differentiation of the equation gives, ay dx = ay dx.

Hence,

I ydx = - I aydx = a I -ydx.

(iii) The integral of a polynomial is equal to the sum of the

integrals of its several terms. For

/ (a'-jr x — x^)dx= I adx -\- I xdx ^ l x^dx,

since the differentiation of the equation gives

adx + xdx — x'^dx = adx -j- xdx — x^ dx.
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(iv)
I

= C, since dC = 0.

The integral of zero is a constant.

Thus, if -j7 = '^i
where v is constant velocity,

-=T^ = -^ = 0; that is, acceleration is zero,

'^^'^''^' Iit-^ I^ = ^ = "

117. Standard Forms and Formulas. — There follows a

Hst of standard integrahle forms, that is, differential functions

whose integrals can be expressed in finite forms involving

no other than algebraic, trigonometric, inverse trigonometric,

exponential, or logarithmic functions. To integrate a func-

tion that is not expressed in terms of an immediately inte-

grate form, it is reduced if possible to one or more of such

forms and the formula applied.

The formulas in general are gotten by merely reversing

the formulas for differentiation, and each can be proved by

the principle (i) of Art. 116.

The list will be found to contain the one or more than one

integral to which every integrable form is reducible. These

forms may, therefore, be called fundamental although only

the first three are really fundamental, since each of the others

by substitutions can be reduced to one of the three. While

the Hst is of standard integrable forms, it may be supple-

mented by other integrable forms; but no list of forms is

exhaustive, even when extended into tables of integrals.

After the acquirement of familiarity with the rules of differ-

entiation, and the common methods of reduction with the

standard integrals, the use of tables of integrals for the com-

plicated forms is recommended; much time otherwise given

to formal work in integration being thereby saved.
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X" dx = —r-r + C} where n is not — 1.
n + 1

/dx— = log a; -h C = log x + log c' = log (c'x).

til. fb-dx = r^ + C.
J log 6 '

IV. fe''dx = e^ + C

V. I sin a: da; = — cos x -\- C, or vers x -\- C\

VI. / cos xdx = sinx -\- C, or — covers x +C
VII. / sec^ xdx ^ tan a; + C

VIII. / CSC" xdx = — cot x + C

IX. / sec X tan xdx = secx -jr C.

X. I CSC a: cot xdx = — esc a; + C.

XL / tan xdx = log sec x + C = —log cos x-{-C.

XII. / cot xdx = log sin a; + C = —log esc x-\- C.

XIII. I CSC xdx = log tan ^ + C = log (esc a: — cot x)+ C.

XIV. / sec xdx = log tan (0 + 7) + ^

= log (sec X + tan xj + C.

'^^ = itan-i- + C, or -^cot-i-

XVI. r^^=^log^^+C= itanli-i-+C'. {x^<a^)
J o?—x^ 2a a—x a a

= 1 log^±£+C= icotli-i-+C'. (a;2>a2)
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XVII. r^^ =^log^+C=--coth-i^+C'. {x'Xj?)
J x^—a^ 2a x+a a a ^

2a a-\-x a a ^ ^

XVIIL J^^=^ = ^irr^l^-C, or -cos-i^ + C.

XIX. r-4==log(a;+Vi^+^)+C,orsinh-i-+C'.
J V x^ -\- a^ CL

XX f /

^^
=log(x+Vi^:^)+C,orcosh-i-+C'.

J Vx^ — a^ o,

XXI /
—

/
= - sec-i - + C, or — csc-^- + C.

XXII. / /^
"^

, = vers-i ^ + C, or - covers"! ^ +CJ V2ax — x^ ^ ^

The two forms of the integral in several of the formulas

correspond to different values of the constants denoted by

C and C. Thus in formula V,

vers X + cos x — 1 = C — C

y

and similarly in XVIII,

sin-i- + cos-i- = ^ = C'-C.
a a 2

When the differentials of two functions are equal, their

rates are equal; therefore, the functions will be equal or

differ by a constant; hence the variable parts of the indefi-

nite integrals of the same or equal differentials are equal or

differ hy a constant.

118. Use of Standard Formulas. — When a given func-

tion to be integrated is not expressed in a form immediately

integrable, by various algebraic and trigonometric trans-

formations or substitutions, the effort is made to reduce it to

one or more of the standard forms so as to apply the formula.

When different methods are used the results may have
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different forms, but upon reduction they will always be found

to differ (if at all) only by a constant, in accordance with the

statement above.

Formula I is the standard formula for the Power Form.

It is of most frequent application, and it may be expressed

in words as follows

:

The integral of the product of a variable base with any con-

stant exponent {except —1) and the differential of the base is

the base, with its exponent increased by 1, divided by the in-

creased exponent, and a constant.

The proof has been given in (i). Art. 116; it may be derived

thus: since

j2xdx = x^ + C, J 3x''dx^x^ + C, etc.,

(n + l)x''dx = x"+i + C;

hence, in general,

/'

/x'^dx = ——r + C'.
n -\- 1

When a given integrand is a fraction with denominator

to a power, it may become this form by bringing up the

variable quantity with change of exponent's sign; but, since

the variable quantity is represented by x in the formula, it

is essential that the differential of the variable quantity, and

not merely dx, be present in the integrand before the formula

is apphcable.

If a constant factor is lacking, it may be supphed in ac-

cordance with (ii). Art. 116; but it should be noted that the

principle is only for constant factors.

The value of an integral is changed when a variable factor

is transferred from one side of the sign/ to the other; thus,

Cx^dx = ix^-{-C, but X fxdx = ix^ + C.
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When a change of sign is needed, the constant factor — 1

effects the change. Thus, for an example,

r xdx ^1 r(a2_^2)-|(_2a;dx)= -V^^^^ + C.
J Va^ — x^ ^ J

To verify:

fd{-Va^-x'-^C)= C-^ia'-xTH-^xdx)

f
xdx

:
, as given.

Va2 - x^

When a variable factor is lacking, resort may be had to

expansion and then application of the formula to each term

of the polynomial. Thus, for an example

:

C2{l+x^ydx = 2 C{l+ 2x^-{-x')dx = 2ix+^x^+^x')-{-C,

When the numerator is of higher power than denominator,

reduce by division and then apply formula or formulas, thus

:

= ^x^ -\- X + 2\og{x - 1) + C,

If n = — 1, formula I gives a result that is not finite; but

when n = — 1, the form reduces to form II and that formula

applies. Thus,

I
x~^dx = j — = log a: + C.

Formula II may be stated in words as follows:

The integral of a fraction whose numerator is the differential

of its denominator is the Napierian logarithm of the denomina-

tor^ and a constant. The result will be real only when x is

positive. When

^>a, J ^-zr^ = log (x-a)-\- C;

but, if
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Formula III may be stated in words as follows:

The integral of the product of a constant base with a variable

exponent and the differential of the exponent is the base, with

exponent unchanged, divided by the Napierian logarithm of the

base, and a constant.

Here the base b must be positive and not unity.

Formula IV is the special case of III, the Napierian

logarithm of base e being unity.

In applying these two formulas to given integrands, it

is essential that the differential of the variable quantity,

and not merely dx, be present. Thus, for examples:

fe^/" dx = n fe^/^— = ne^/«+ C.

The following are examples of integration by one or more

of the first four standard formulas.

EXERCISE XXI.

In these examples the results may be verified by (i), Art. 116, and

the verification should be made where the result is not given.

2. fiax + brd. = lfia. + bradx = ^-f^±^ + C.

x^dx
3. C{2a + Shxydx. 4. f—

5. /(l +^y dx. 6.
J«2

(2 _ <3)3 dt.

7. f2Ty(^^^ + iydy. 8. fV2J^ds.

9. CV2pxdx = V2pfx^ dx = f V2px^ ( = ! x V2px) + C.

10. f (ax"+&)^x"-idx=— r(ax"-h&)Pnax"-idx= ^"^""^^^^'t' +C.
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1. j5a;VTr272(ix=-fJ(l-2a;2)^(-4rdx)=-|(l-2a;2)HC.

2. JVrr7^e^dx= - J{l-e^)H-e''dx) = -f (l-e^)* + C.

J x^ J 1 — n '

j~ IV j^x{\-x^)dx,

_ r -{2ax-x^)dx _ -{^ax^-x^)^
' J (3ax2-x3)^ 2

«• /x-^ -^^ = I /Ira! <*^ = '»^ (^^+ 2 -) + ^•

9.
J j5

d:, = 5(^-^ + ^46alogx-2J + C.

20. /(logx)»f = 5^|^ + C. 21. /(log.)'f.

22. J^dx = x-| + |-Iog(x + l)+C.

23- /^=l°8aog.)+C.

24. f^
^ +

I
rfx = X + log (3 a; - 1)^ + C.

%/ o X — J.

sin 2 X , «- /• cot X
drc.26. r,-^24^dx. . 27. r

J 1 + sin2 X J _

28. r(e^-e-*)2da:=-^^^-^^^^-2x+C. 29. {\e^ -\- e~A dx,

-f—r dx. 32. (a^'b^ dx = , "^, , + C
e^ + 1 J log a + log

33. I
-.—^r- dx. 34. I 5 dx.

J sin 2 a; J I ^ x^

«_ r logxdx _ _ 1 r —2 log a; dx

J x(l -log^a;)
~ ~

2 J 1 - log2 x ~x'

* J (1 + x^) arc tan a; J tan~^ x
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119. Derivation of Formulas XI, XII, XIII, and XIV. —
By the application of Formula II the following results:

*tan X sec x dx

I
tan xdx = I

secx

= log sec x + C = — log cos x -\-C. (XI)

cos a;

/cot xdx =
I
-— dx

J smxsmx
log sin X + C = —log CSC x-^C, (XII)

/esc xdx =
I
-—

J smx

-h
dx

2 sin x/2 cos x/2

Or
'cscx (— cotx + CSC a;) dx

j CSC xdx = I
-

CSC X — cot X

= log (esc X — cot x) + C.

j sec xdx =
I
CSC (x + t/2) dx

= log tan {x/2 + 7r/4) + C. (XIV)
Or

'sec X (tan x + sec x) dx
j sec xdx =

j
sec X + tan x

sec X tan xdx + sec^ x dx

sec a; + tan x

= log (sec X + tan x) + (7.

EXERCISE XXn.

By Art. 116, and one or more of the standard formulas I to XIV.

1 r/ • o I sr
• ^\ J cos 3 a;

,

sin 5 a;
,
- x . ^

1. J ( sm 3 a;H-cos 5x—sm-^]dx= 5 1 = h 2 cos 5 +C.

i% C J sin^x
, ^

2. I sm X cos xdx = —

^

f- C.

of -J cos^a;
, „

3.
J
cosxsmxrfx = 2 1"^'
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*•/S+ S?^«)'*=
-/cos-«(-sin<»*) + /sin-<,cosed9.

6. rJ^M= f'^-.t^^>do= C(c.ce-.me)cie.
J smd J smd J ^ '

6. Jsin^0d0 = /5^^^^^^c^ = ia-isin(2^)+C.

7. /cos^0d^=/i±^f-^^cZ^ = i^ + isin(20)+C.

8. fsin^ddB = ^(1 - cos20) sin(9d0= -cosO + Icos^e + C.

9. fsins cos3 d0 = fsin^ 6 (1 -sin2 0)dsmd = i sin* 0- 1 sin^ 0+C.

0. jtan^ xdx =
J

(sec2 a; — 1) dx = tan a: — x + C.

1. fcof^xdx = J(csc2 a; — 1) dx = —cot x — x + C.

2. ftan3 c^ = ftan d (sec^ - 1) d^ = | tan2 - log seed + C

= I tan2 Q _|. log cos + C.

,3. rsec2 (ax2) x Ja; = — tan {ax^) + C.

*• /^iS^<^^= ^/sec(a.^)tan(ax')d(ax^)= isec(ax»)+C.

B. r^^?^= r^2|£^= rcsc(2x)d(2x)
J sm X cos a; J sm (2 x) J

= log tan .T + C, by XIII.

6. I- = rcsca;seca;da;= (- c/a;=logtana:+C,by II.
J sm X cos X J J tan x °

' *^

7. fsec2 6 csc2 Odd = C (sec^ + csc^ ^) d0 = tan - cot + C.

/cot + tan ,^ c r^r. 1^ 1 1 X /« .
'r\

. ^

9. fl^^d«= r(i.=4af)!d9 = 2(tan9-sec9)-9 + C.
J 1 + sm J cos2

^

20. fesinx^^Qg^^^ 21. Je'^^'^'sinxdx.

22. J6*^^(''"^sec2(aa;)c;a;.

120. Derivation of Formulas XVI, XVII, XIX, and XX. —
By the application of Formula II, the following results:
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For XVI, put

(^ — x^ 2a\a-\-x a — x)^

r dx ^ _i_ r dx _ j^ r -d
J o} — x^ 2aJa-{-x 2aja —

dx_

X

= 2^ log (a + x) - 2^ log (a - x) + C

1 , a-\-x . ^= ---\og \-C
2a a — X

= - tanh-i ^ _j_ c\ (x^ < a') (XVI)

or

r dx ^ r -dx _ 1 r dx 1 r_dx_
J a" - x^

~ J x"" - a"
~ 2 aj X + a 2aJ x- a

= ^log^i-^ + C = icoth-i - + C. (x2 > a2)
2a X — a a a ^

The first or second of these results is used according as

a — X or X — a is positive; that is, the form of the result

which is real is to be taken.

For XVII, put

1 - W 1 L_Y
x^ — a^ 2a\x — a x -\- a)

/ dx ^ I C dx I r dx

x^ — a^ 2a J X — a 2aJ ~^x -\- a

= 2^ log {x-a) - 2^ log {x-{-a)-\-C

1 , X — a . ^= TT log—i h C2a x-\- a

= - i coth-i - + C\ (x' > a^) (XVII)
a a ^ ^ / V /

or

r dx ^ r -dx ^ j_ r -dx _ j_ r dx

J x^ — a^~ J a^ — x^ 2a J a — X 2aja + x

= ^log^^+C= -itanh-i- + C'. (x2<a2)
2a ^a-\-x a a ^ ^
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The first or second of these results is used according a.sx — a

or a — a; is positive.

For XIX, let

Vx" -f a2 = z-x; or z = x + Vx"" + a% (1)

/. a^ = z^ — 2 xz.

d{a?) = = 2zdz-2xdz- 2zdx;

{z — x)dz = zdx;

dz dx dx

z z-x Vx2 + a2

/. r^L== ff = log. + C = log(x + ViH^)+ C,

or sinh-i - + C. (XIX)
a

For XX, similarly, on letting Vx^ — a^ = z — x,

I
^^

=log(x+Vx^-a^) + C, or cosh-i- + C'. (XX)

The logarithmic form of cosh-i - is log ( ^ "r ^ x — a \
^

but its derivative or differential is the same as that of log

{x + Va:^ — of), the constant a disappearing in the differ-

ed

entiation; and so too with the sinh~i-. (See Art. 66.)
a

121. Derivation of Formulas XV, XVIII, XXI, and XXII.

— These formulas are merely the reverse of the differential

forms given in Examples 1 and 2, Exercise VI.

They may be derived from the forms for the inverse trigo-

nometric functions of a;. Thus:/f dx

dx 1 I a _ 1 /
"^ Va/ _ 1 . -\^ \ri

smce
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Since

tan-i -=l- cot-i -, d ftan-i -] = d(- cofi -V
a 2 a^ \ aj \ a)

Hence

/;
^^ =-tan-i-+C, or -icot-i- + C'. (XV)

0? -\- x^ a a a a

In the same way the second forms follow for formulas XVIII,

XXI, and XXII.

The standard forms are given in terms of -, because they

are of more use than those in terms of x; the latter, being

special cases where a = 1, are often given as the standard

forms. Integrals may be obtained by reduction to either

form.

EXERCISE XXin.

1 C dx _ 1
f

d {ex) _ 1 ex ^
J 62 + c2a;2 c J 62 + {exY he 6 ^ ^*

he

= c-/r^^^ = 2i'-S^ + ^ (^^^^>^^)

be

r dx r dx _ 1 ,„^-i 3; + 3 ^

Ja:2 + 6x + 5 J (x + 3)2 - 4 4 ^ (a; + 3) + 2 ^ ""

- r x^dx 1

,

x^ — 1
, ^ ^ r dx

„ r xdx 1
, _, ^2 o r dx
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10 r
^^ = 2 r

^^^^
J aa;2 4- 6a; + c J (2 ax + 6)2 + 4 ac - 62

tan ^
-

— + C (4 ac > IP-)

y 4 ac - 62 V 4 ac - 62

1 , 2ax + 6- V62-4ac
,
„ ,. ^ , „,log + C. (4 ac < 62)

V 62 - 4 ac 2 aa; + 6 + V 62 - 4

11 f ^^ + ^
dx-- f (2^ + 4)^^

,
o f ^^

Jx2 + 4x + 5 J a;2 + 4x + 5"^ J (x + 2)2 + l

= log (a;2 + 4a; + 5) + 3tan-i (x + 2) + 0.

J a;2 + 2x + 1
~ J (x + 1)' J (a; + 1)2

= log(x + l)+^-i-^ + e..

^n C dx \ r h dx 1 . , 6a:
, ^

J Va2c2 - 62^2 J V(ac)2 - (6a;) 2 ^ ' «c

1 , 6a; , „,
or — 7- cos 1

\- C.
ac

14. C—=M= = i log (6a;+ Vb^^+~^^) + C, or sinh-i — + C.

16. f ,

"^^ = I log (6a;+ V6^^^"3"^) + C, or cosh-i— + C\
-^ V62a;2 - a2c2 o

^
ac

16.- r^J^= = 4. r ,

^"
= 4-- sin- X \/^ + c.

-^ Va - 6a;2 Vb -^ Va/b - x^ Vb ^ «

17. f-J^= = -l^sin-^x\/l + C. 18. r-7^^-
-'V3-2a;2 V2 '^ 3 -^ V3 - 4a;2

19. f ^

^^
r ^

^^ ^.^.-i2^jti + r-

-^ Vl - X - a;2 J Vf - (x + i)2 V 5

20. r^=== = sin-1 ^V-^ + C-
•^ V 2 + 2 a; - x2 V 3

21. /^=^== 1 r
Vax2 + 6x + c Va "^ V(2 ax + 6)2 + 4 ac - 62

4^ log (2 aa; + & + 2 Va Vax2 + 6a; + c) + C.

22. r
,

= log (x + a + Vx2 + 2ax) + C.
^ V x2 + 2 ax
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23. C—M= = -i^log (xV^+Vax'-b) + C.
J y/ax^ — b V a

nA f dx 1 r 2adx
24.

,
r dx _ _!_ r

^ V- ax^ + 5x + c Va*' V4 ac + 62 - (2 ax - b^

1 . , 2ax — b
, ^^- sm-i

- + C.
V a V 4 ac + 62

J VI - X *^ V 1 - a:2 J Vl - a;2 •^

= sin-i a; - Vl - x^ + C.

•^ Va; — 1 -^ V x2 — 1

dx c cdx _ 1 _, ex

ex V(cx)2 - (a6)2 a6

5 da;

-_ /- da; f c dx 1 , ex
, ^27.

I
,

=
I
7=== = -rsec 1^ + C.

»^ X vc2x2 - a^¥ -^ ex v (cx)^ — {abY ^o ab

28. /
X V 3 x2 - 5

29. f ^±l rfx= r^±^dx =sec-i-+log(x+V^^i3^)+C.
^ X Vx—a ^ X vx2— a2 «

30. f^^ZEZrf^= r '']Z^ dx= C^dx^_r_^dx^
J X J X V x2 - o? -^ V x2 - a2 •'' X V x2 - a2

= Vx2 - a2 - a sec-i - + C.
a

31. r_J^= r_^:i^= r(x-2-i)-ix-3(ix=-^=:+c.
J (1 _ 3;2)i J (a;-2 _ 1)^ J Vl-x2

ort f dx If bdx 1 , 6x , ^
J V2 abx - 62x2 6 J V2 a (6x) - (6x)2 6 a

„„ r — dx 1 , 6x
, ^

33. I
— = r covers^ -r + C.

J V 8 6x - 62x2 6 4

34. f ^

^^
=vers-^— + C.

•^ V ax - x2 «

xdx fa — 2x — a , r(a — 2x)dx a r dx„_ r —xdx _ ra — 2x — a , _ r {a — 2x)dx a r

^ Vax - x2 »^ 2 Vax - x2 ' -^ 2 Vax - x2 2 J Vax — x2

2x= V ax — x"-^ — TT vers~^

36

Vax — x2 — - vers ^ \-C.
2 a

/dx r dx . ./2x — a\ . ^
,

=
I ,

= sin-i I
—-— j + C

Vax - x2 ^ Vay4: - (x - a/2)2 \ a /
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Note. — It may be noticed that the result for Example 34 differs

from the last result for Example 36. The difference is accounted for

by the values of the constants of inte-

gration. As may be seen in the figure,

sm 1

1

1 I + - = vers ^—

,

\ a / 2 a

1
r

;;^
1 x^

// \-¥-}^^^
( 1

1 .-^ \^
1

/ t/^ \x

that iIS,

arc BP + ^ = arc OBP.
o\^ 2x :ma' ^

a=2.:radius=l Each result may be verified by dif-

ferentiation according to (i) Art. 116.

These results illustrate the statement at the end of Art. 117.

122. Reduction Formulas. — A formula by which a

differential expression not directly integrable can be re-

duced to a standard form or a form easier to integrate than

the original function, is called a reduction formula.

A general reduction formula that has a wide application

and is most useful in the reduction of an integral to a known
form is the formula for integration by parts.

Many special formulas of reduction are obtained by apply-

ing this general formula to particular forms.

123. Integration by Parts. — Differentiation gives

d (uv) = udv -\-v du.

Integrating,

uv = Id (uv) =
I
udv -{- I vdu;

transposing,

I udv = uv — I V du. (1)

The formula (1) may be used for integrating u dv when
the integral of v du can be found. This method of integra-

tion by parts may be adopted when / {x) dx is not directl}^

integrable but can be resolved into two factors; one, as dv,

directly integrable ; and the other, as v du, a standard form

or a form less difficult than u dv.
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No rule can be given for choosing the factors u and dv

other than the general direction that the factor of / {x) dx

taken as dv is first chosen as that part directly integrable,

and then what remains whether one or more factors must be

taken as u.

When the function given to be integrated contains more

than one factor that is directly integrable, there is some

choice to be exercised in selecting the factor dv, and in some

cases a different choice may be necessary, if the first choice

results in v du being non-integrable. It may be that one or

more applications of the formula to I v du will be effective.

The use of the formula is illustrated in the following

examples, the formula being written,

I
f{x)dx = I udv

= uv — j V du. (1)

sin~i -dx = X sin~i - + v a^ — a;^ + C

X
Let dv = dx : then u = sin"^ - >

a

, dx
V = X, du =

V a2 - x^

Substituting in (1)

:

/> t X 1 • f X I X OjX
sin~i -dx = X sin~i I ,

a a J Va2 - x^

= a;sin-i - + V a2 - x"" + C.
0/

(Compare example in Art. 118.)

Example 2.— j X' cosxdx = X'sinx — j sinxdx

= a; sin a; + cos a; + C,
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Example 3.—

I
x^ sin xdz = 2x sin x — (x^ — 2) cosx + C

I
x'^-smxdx= cc^ (— cos x) +2 cos X' xdx

= a;^ (— cos x)+ 2 (x sin x+cos x)+ C, by Ex. 2,

= 2 a; sin a; — (a;2 — 2) cos x + C.

Example 4. —
a;Mog xdo; = —^^ (logo: -

^^^J
+ C,

I logiC'ii;''ax= ——r 'logx— / —r—
•
—

J n + 1 ^ Jn + la;
/y. n+1 /* /« n+1

-logx-
J ^_ , ,,, + C

n + 1 ^ J (n + l)2

.n+1

= 7-^ (log X —r
) + C.

n + lV ^ + 1/

Example 5.— / a;e^ c/o: = xe"" — e^ + C.

I
e'^'xdx = e'^-ix^ — i j x^-e'^dx.

The last form is not so simple as the original, indicating

that a different choice of factors should be made. Another

choice gives

j X'B^dx = X'e"" — j e^'-dx.

= xC" — e^ + C
Example 6. —
fVa^-x^dx = ^xVa^-x'' + ^sin-i- + C, (1)

/Va^ — x^ • da; = Va^ — a;^ • a; + I ,

*J V a2 - a;2

= X Va^ — a;2 -{- / , dx
^ V a^ — x^

= a; Va2 - a;2 + a^ sin-i - +C' - fVa^'^^^dx.
a J

Transposing the last term and dividing by 2 gives (1).
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Example 7.*—
fV¥To^dx==^xV^+a^+^anog{z+V^+a^)-\-C (2)

= i X V¥+a^+ I a" sinh-i - +C\ (2')

Example 8.*—
CV^^^dx= ^xVx2-a2-ia21og(x+Vx2^^)+C (3)

= lx V^^^- i a^ cosh-i - -\-C'. (30

Note. — The integrals of the three last examples are of

sufficient importance to be considered as standard forms.

Example 9.—
I X (

—

jdx =
I
X' sinh xdx = x cosh x — sinh x -{- C.

I X • sinh xdx = X' cosh x — I cosh a; • do;

= a; cosh x — sinh a; + (7.

EXERCISE XXIV.

Verify the following by j udv = uv — i vdu.

1. fcos-i -dx = x cos-i - - Va2 - x^ + C.
J a a

2. ftan-i - (Za^ = a: tan-i ^ _ 1 log (^2 + a;2) + C.

3. f cot-i - (^o; = a; cofi - + i a log (a2 + x^) + C.
J Cb Oj Z

4.
J
log a; c?a; = x (log a; — 1) + C

5. \x log a; da; = I ^2 (log a; — J) + C

6.
J a;3 log a; (ia; = \x?' (log x — |) + C

* By same method as in Example 6.
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7. Cx (e«^ + e-«^) dx = - (e«=^ - e""^) - \ (e«^ + e"'^*) + C.

8. f e^ sin x da; = | e^ (sin x — cos a;) + C.

Take w = e^ and apply the formula, then take u = sin x, apply

formula; add results.

9. 1^2 cosxdx = 2x cos a; + (a:^ — 2) sin x + C.

10. j (log x)2 (^a: = a; [(log x)^ - 2 log a; + 2] + C.

11. fx^iios.yd. =^ [(logx)^ -^ttt'o^^ + (^J +^-

12. r^x^ tan-i X = (a; - i tan-i x\ tan-i x- log (Vl + x^) + C.

124. Reduction Formulas for Binomials. — By applying

the formula for parts to j x"^ {a + hx^'Y dx that integral may

be made to depend upon a similar integral, with either m or

p numerically diminished.

There are four such formulas, which are useful for refer-

ence, but there is no need that they should be memorized.

/x"^ (a + bx'^y dx = —7-7—V-^

—

,
: .

[np + m + 1

)

_ a{m — n -{- 1)

h {np + m + 1)

or

/ x'^-^ (a + hx'^y dx, (A)

np + m + 1 Tzp + m +U
or

a(m+l) a(m+l) J
or

an(p+l) ari(p+l) J

Formulas (A) and (B) are used when the exponent to be
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reduced, m or p, is positive; (A) changing m into m — n,

and (B) changing p into p — 1.

Formulas (C) and (D) are used when the exponent to be

reduced, m or p, is negative; (C) changing m into m + n,

and (D) changing p into p + 1.

When any denominator becomes zero the formula is in-

applicable, and the integral can be obtained by some method
without the use of reduction formulas.

Formulas (A) and (B) fail when np + m + 1 = 0.

Formula (C) fails when m + 1 = 0.

Formula (D) fails when p + 1 = 0.

EXERCISE XXV.

1. f f""^^ = sin-i - + C, when m = 0, Standard Form XVIIL

rxd^^
r(^2_3.2)-^a;^a;= _Va2-x2+C, whenm= l. (1)

x'^dx r^,. „x-4 ,
a:"^i Va2 - x^

r ,

^
= (x"^ {a^ - x^y^^ dx

im-XWr^^^^^
by (A).

+ ^ sin-i - + C, when m = 2. (2)

rx^^ = fxs (a2 - x2)-^ (ia: = - I Va2 - a;2

»^ Va2_a;2 J 6

+ o a^ I , , when m = 3,
3 J Va2 - x^

= -
I' Va2 - a;2 - |a2 Va^ - x^ + C, by (1). (3)
o o

CJ^M= = Cx' (a2 - a;2)-^ dx= -"^ V^^IT^
J Va2-x2 ^ '

'
4

,
3 , f x2 (^a; , .+ - a2 I

^ , when m = 4,
4 J Va2 - x2

4;"^T^/ "^4^^^^ '-+C'»by(2). (4)
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2. I
x"^ va^ - x2 dx = —

r

-TT I
, , by (B).

J m + 2 m-\-2J Va^ — x^

r V^TT^e^a; = ? V^i":::^ + |'
f .

"^^
, when m =0,

•/ ^ I J Vn2 _ .V.2

2
^^ ^ + 2

''''
a + ^-

V 6, Art. 123. )

(x^ V^rr^^a; =
^^^'~^'

+ ^ (^M=., when m = 2,

=
(f

- 1^)V^^^^ + 4^ sin-i ^ + C, by (2) of Ex. 1.

3. r-^Ii^ = |V^Mr72_|log(^ + V^r+^2)+c, by(A),

- £ V^M^2 _ ^'
sinh-i - + r'

/"Compare Ex. \-^^x-\-a ^sinh ^ + C.
\^ 7^ Art. 123. /

4. f /^^ =fV^rr^ + |'iog(a;+V^nr^) + c, by(A),

= ^V^^Tr^ . ^cosh-i-+C'
/Compare Ex. 8,\

2
vx a + 2

cos^ a+ ^ •

V Art. 123. )

5. I x^ va:2 ± a2 c?a: = ± -r I , , by (B),
J 4t 4: J a/t2 -Ur72

(j±|^)V^±^-^log(x+ V^^±^)+C, byExs.3,4.

r^m+i Vx2 ± a2 a2
(B).6. I x"* V ic2 ± a2 da; = -^r ±—p^ I ^==, by

J w + 2 m + 2J Vic2 ± a2

7 f
^^ _ Vrc2 ± a2

Ja;2Vx2=fca2~^ o?x
"^

Jx^ (x2 ± a2)"^ dx, by (C).

=Fa2

(-1 -2 + 2 + 1

=Fa2

I r_^^___ = _ ^^^ ~ ^^
4- C

•^ a:2 Va2 - x'^
^^^

Jx-^ (a2 - xT" dx = "'"'^l""''^'

- rl(-l-2^+2 + l) j^ (,. _,.)-!,,, by (C).
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/x-Hx2-a2)~^dx =^^^^^|^^+ 2^ Jx-Hx^-a^r^cZa;, by (C),

= ^"^1"/!^' +A sec-i - + C, by Standard Form XXI.

/da: 1 1 _, re
,
„

J
=

,
r sec 1 - + C.

I x^ (x2 — a2) * do: = ^ —-—

- i ^x-^ (^' - o')~^ dx, by (D),

= -L=r - ^sec-1- + C.

11, r ^^ _ ^ _ _|_ Q^
*^ (a2 - x2)2 a2 Va2 _ x^

C( 2 2^-s A x{a^ - x^y^
J(a2-x2)fd^=- 2^,^_,^

12. rV2ax-x2 da: = ^^ V2ax-x2 + |' sin-^ ^-^^ + C,

or —^r— V 2 ax — x2 + —vers ^ - + C.

Or
^ ^ \ in succession. /

rV2 ax - x2 dx = rVa2 - (x - a)2 dx

X — a V2 ax - x2+^ sin-i ^

—

-+ C, by Ex. 2,
^ ^ a

^ - « ./Fi 5 1

«^
_i a?

, ^, / See Ex. 36, \= „ V2 ax — x2 + — vers ^ - + C. ( -^ . vvttt )2 2 a \Exercise XXIII.

/

13. (x^ V2ax-x2 dx = fx^l V2a-x dx = - ^"""^ (^^-^ - ^')^

<2m + l)a r ^_, V2ax-x2dx, by (A).m + 2 J
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x"^ dx x^-^ V2 ax - x^"•/

15./

V2 ax-x^ w
.
(2m - l)a r x'^'^dx , ,,,+ ^^ —

I / , by (A).

dx V2 aa; — x'-

X- V2ax -x^ .(2m- 1) ax''

m — 1 /• da;m —

1

/• da; , ,^.

(2m-l)aJ x"'-iV2ax-a;2' "^

da: Va2

^ xW a^ - x^ 2 a2x2 2 a^ Va2 _ a;2 + a

r _w 2 ,^_i ,
a;-3+i (a2 - a;2)^

Jx3(a2-a:^).da; = ^,^-3-p3y-

-'^-':lt''-'^ f^-ia^-^^)-dx, by(C),

Va2-a;2
,

1 f dx o tt 10

dx Vx2 + o2 1
C.17 C ^^ = _ ^^ + a^ 1_ , X

•^ x3>/x2 + a2 2 a2x2 2 a^ ^ _^ \/x2+ a^

Jx^(x2+.a2).dx= ,.(13^1)

Vx2 + a2 1 f dx o TT in= --2^i^-2^2J ^V^Hr^ '
SeeEx.l9.

18. r ^^^ =llog-—^ +C.
•^ X V a2 - x2 « V a2 - x2 + a

Here m + 1 = 0, therefore Formula (C) fails.

Let a2 - x2 = ^2; /. -a;dx = 2d2, x2 = a2 -22.

/
dx _ r dz 1_, a — z ^

X Va2 - x2
"'^ z^ -a^~ 2a ^^a + z'^

1 , a - Va2 - x2
, ^= TT- log

, + C
2a

ct + Va2-x2

= -log ^ +C.
» a + V a2 - x2
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19. f ^j^_ = llog ,-^^ +C.

Again m + 1 =0, and Formula (C) fails.

Let a2 + x2 = ^2; .-. X c^a; = 2 cZs, x^ = z^ - a?,

J X Va;2 ^a^~ J z^ -a^~ 2a ^^2 + a"^

= jr- log . h C2a ^ Va;2 + a2 + a

= -log ^ + C.
a Va;2 + a2 + a

A^oie. — The integrals of Examples 18 and 19 may be considered as

additional standard forms.

„^ fVa2-x2 , ,/^—, , 1

^
,
^ /By (B) and\



CHAPTER II.

DEFINITE INTEGRALS. AREAS.

125. Geometric Meaning of / / (x) dx. — As the repre-

sentation of an integral by an area between a curve and an

axis is of fundamental significance, and as the effort to find

an expression for the area of plane figures bounded by

curved lines gave rise

/ to the Integral Calcu-

lus, such representa-

tion will be given

further treatment
than illustrated in the

examples of Art. 115.

Let P2OP1 be the

locus oi y = f{x), and

let the area between

the curve and the
"^' ic-axis be conceived as

generated by the va-

riable ordinate MP or y, as the point (x, y) moves along the

curve and x increases. Let A denote the area bounded by

the a;-axis, y = f (x), some undetermined fixed ordinate as

MoPo or M2P2, and the moving ordinate MP.
Let Ax = dx be MMi; then, while AA the actual incre-

ment of the area A is MPPiMi, dA is MP DMi, the incre-

ment that A would get if, at the value MqPqPM, the change

of A became uniform and so continued while x increased

uniformly from the value OM to OMi. Hence
204

J^'^^M^
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dA = MPDMi = ydx=f{x) dx,

/. A =
I
ydx =

I
f(x) dx,

where A is indeterminate so long as the fixed ordinate MqPq
or M2P2 is indeterminate.

dA
126. Derivative of an Area. — Since dA = y dx, -j- = y;

that is, //je derivative of the area with respect to x is the ordinate

of the hounding curve.

This important result may be obtained by the method of

limits also, taking the increments infinitesimal. Thus,

AA = MPPiMi,
AA > 2/ Ax, and AA < (?/ + Ay) Ax,

.-. yAx<AA<{y + Ay) Ax,

AA

dA ,. AA
•*• "1— = hni -T— = V,

dx Aa;=0 Ax
smce

lim (y + A?/)
Ax=0

2/, Ai/ = as Ax = 0.

In case y decreases as x increases,

the curve falls from P to Pi, and the

inequahty signs are reversed, but the

result is the same.

Let A be the area between the i/-axis

and the curve; then,

dA ,. AA
-r- = lim -T— = x,
dy Ay-o Ay

or dA = xdy,

I xdy.

dA'NPBNl

Here, the derivative of the area with respect to y is the abscissa

of the hounding curve.
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127. The Area under a Curve. — Let the curve y = f (x)

of Art. 125 hey = x\

Let OMq = a and OMi = h; then

MoPoPM = A= Cx'dx = ^ + C.

As the area is measured from x = a,

... A = = | + C, C=-|,

.-. A. = S-f^ (1)

where A^is the variable area MqPq PM. Making a; «= 6 in

(1) gives

a
MoPoPiMi = ^6 =

I
- |- (2)

The usual notation is

128. Definite Integral. — In general, when h > a the

increment produced in the indefinite integral F (x) -{- C by

the increase of x from a to 6 is

F(h)+C- {F(a) + C) ^F{h) -F{a).

This increment of the indefinite integral of f{x) dx is called

*Hhe definite integral of /(x) dx between the limits a and 6,"

and is denoted by I / (a;) da;. Hence,

X'f{x)dx'=F{h)-F{a).
a

The operation is that of finding the increment of the indefinite

integral of/ (x) dx from x = ato x = h, where h is called the

wpper or superior limit, and a the lower or inferior limit,

although they are more precisely termed ''end values" of
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the variable, as they are not ''hmits" in the usual sense of

the word. If the upper end value is variable, then

P/ (x) dx = F (x)T =F(x)- F{a) .

When the lower end value a is arbitrary, —F (a) may be

represented by an arbitrary constant C, hence

Xf{x)dx = F{x)+C.

Since

^ f{xy_dx=:F{x)-\-C,
I'

an indefinite integral is an integral whose upper end value

is the variable and whose lower end value is arbitrary.

Hence, when the integral is represented by an area and

the area is known for some value a of x,

A = Cf{x)dx = F{x) -F{a),

where C is —F (a), and the area A is determinate.

If the area under the curve y — x^ (Art. 127) be reckoned

from X = 0; when x is zero, A is zero, therefore, C is zero

and A^ = -^, the area of 0PM, (3)

(See Example 4, Art. 115.)

Ay =
fy^

dy = ly^ = l x\ the area of OPN. (30

Making x = am (3) gives

Aa = -1^, the area of OPqMq, (4)
o

and making x = 6, gives

¥
Ab = -^, the area of OPiMi. (5)

o
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As definite integrals,

If, in Example 3 of Art. 115, the area A is from x = a to

or
3 Jo

X = b; then

A = r2xdx = x^\ = h^-a^

the area of a trapezoid. It may be noted that, when the

integral is '' between Umits," it is not customary to write

the constant, as it will be eliminated.

129. Positive or Negative Areas. — The area under or

above a curve y = f (x), from x = a to x = h, will be posi-

tive or negative according as y is positive or negative from

X = a to X = h; hence, when the curve crosses the x-axis,

the areas are gotten separately, otherwise the result will be

the algebraic sum of the areas and may be zero, since the

areas above and below the axis may for some curves be equal.

For example, the areas for the curve of sines or of cosines

as shown in Art. 140 illustrate the principle.

130. Finite or Infinite Areas — **Limits" Infinite.

—

From the geometrical meaning of an integral it follows that

/ (x) dx has an integral whenever / (x) is continuous, hence

the end values a and h are in

general taken so that/ (x) will be

finite, continuous, and have the

same sign, from x = a to x = h.

lix = b = 00 , then

/ (x) dx = lim I / (x) dx,
a 6=00 K/ x=a

X where the Hmit nfiay, or may notj

exist. When the limit of the in-

tegral is finite the total area is found; but if as b becomes

infinite the integral becomes infinite, then no limit exists and

the area \x^tox = b becomes infinite as b becomes infinite.
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Example 1. —
A= I -^ c^:c = lim / -r c^a; = lim =1.

Jl X^ 6=00 Ji x^ 5=^ L xji

Limit exists although as x approaches zero, f(x) = — be-
x^

comes infinite.

A =
I ~^dx = hm I ~dx = ]im\ \ ,

Jo x^ b=oo Jo x^ 6=00 L ^Jo

which does not exist, since = oo
; that is, the area

up to a; = 6 becomes infinite as b becomes infinite.

A =
I -zdx = Hm / —dx = ]im\ L
Jo X^ a=oJa X^ a=o\_ xja

which does not exist, since = oo , the area becoming
xjo

mfinite as x approaches zero.

-2.0 -IS -1.0 -0.5

Example 2. —
1.0 1.5

A =
I

C'dx = lim / e^'dx = Hm e^ = e^J —CO a=— QO Ja o= — oo|_ Ja

is total area under curve up to ordinate at P {x, y).
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Area to right of y-axis

= OMPB = A= f e^dx = e^f = e^ - 1.
Jo Jo

Area to left of y-Sixis

= 1 e'^dx = lim l e'^dx = lim e^ =1.
tJ —<Xi a= — 00 tJ

a

a=—oo ]_ Ja

Note. — When y = f (x) = e^, y, the function, is the ordi-

nate, equals the slope at the end of the ordinate, and may
represent the total area under the curve up to the ordinate.

(See Art. 138.)

131. Interchange of Limits.— Since the definite integral

X'f(x)dx = F(b)-F(a);

it follows that

Jf(x)dx=- I f (x) dx,

since the second member is — [F (a) — F {b)]= F(h) — F(a).

It follows also that the definite integral is a function of its

limits, not of its variable; thus

X/ (y) dy has the same value as / / (x) dx.

each being F(b) — F(a).

The algebraic sign of a definite integral is changed by an

interchange of the limits of integration, and conversely.

132. Separation into Parts. — A definite integral may be

separated into parts with other limits or end values. Thus,

P/ (x) dx = pf (x) dx + fV (x) dx. (1)

Let the curve y = / (x) be drawn and the ordinates^Pi,

EPi, CP2, be erected at the points for which x = a, x = b,

X— c.
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Since area APPiB -= area APP2C + area CP2P1B, (1)

follows.

c ^ c

If OC = c', and C'Ps is the corresponding ordinate, then,

area APPiB = area APP3C' - area BPiPsC;

and hence

rf(x)dx^ rf(x)dx- r s{x)dx

= f fW dx + Pf (x) dx, by Art. 131.
*J a *J c'

Note. — It may be seen that

Jf(x)dx= I f(a — x) dx,

for each is F(a) — F(o). Thus,

- Cfia -x)d{a-x)= -F{a- x)T = F{a)-F (0)

= / f{x)dx,

133. Mean Value of a Function. — The mean value of

/ {x) between the values / (a) and / (6) is

tJ a
dx

b — a

Let area APPiB represent the definite integral I / (x) dx.
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Then

J f (x) dx =

INTEGRAL CALCULUS

areaAPPi5

= area of a rectangle with base AB and height

greater than AP but less than BPi

= AB . CPi

= (6 — a)f{c), where OC = c.

Hence f(c)

x) dx

where/ (c) is the mean value off (x) for values of x that vary

continuously from a to 6.

The mean value may be defined to be the height of a

rectangle which has a base equal to 6 — a and an area equi-

valent to the value of the integral.

Example 1. — To find the mean value of the function Vx
from X = 1 to X = 4:. Let OPPi be the locus of

y

f(c)

Vx, OA-= 1 and OB = 4.

£'Ux
_i

3
>- 1] =

14

4- 1 9

= 1| = 1.551 = CP', mean value,

c = X = (-V^)2 = -W- = 2.42 = OC.
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Example 2. — To find the mean value of sin as varies

from to 7r/2, or from to tt.

I sinBde -cos<9

7r/2-0 ^ V2 " ^2 """

TT

I
sinddd — cos ^

^^^^ ^r- = J-0 = f = 0.6366.
TT — U TT X

Example 3. — To find the mean length of the ordinates of

a semi-circle of radius a, the ordinates for equidistant in-

tervals on the arc.

£' sinddd — acos^ ^

= - J^ = — = 0.6366 a.
TT — TT

Example 4. — To find the mean length of the ordinates of

a semi-circle of radius a, the ordinates for equidistant inter-

vals along the diameter.

r Va' - ^ ^^ . „ _ . .

J -a 1 ^/-7 ^ ,
a^ . .xf Tra^ 1

7 r = -xVa^ - a;2 + - sm-i - = -— x ^c-
a — (— a) 2 2 gj-a 2 2a

a;2 dx

= - X Va^ — a:

2a

= 7a = 0.7854 a.
4

134. Evaluation of Definite Integrals.

EXERCISE XXVI.

1. fVrfx^^T^ ''"^'-^'
-

./a n + 1J a 71 + 1

2, J\x^dx = x^T =1Q-1 = 15.

3.
^''(f

- 2^) = log a; + log (2 - a;)][^ = log {2x- x^)j'

= log (2 a; -x2).
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Jr-oo 1
~1°°

1

a Jo a

TT TT TT

X^
sin /"^ ~l ^ /-—— dd =

I cos-2 d sin d0 = sec ^ = V 2 - 1.
J cos2 Jo Jo

6. I ,
= arc sm - = -•

Jo Va^ — x^ ^Jo "^

„ r"" dx 1 , a;"!'' TT
7. I -7-;—^ = - arc tan - = -j—

Jo a^ -{ x^ a aJo 4 a

8. f'
-; ""^^

=8r.
Jo

9. f liiy'-h'^Ydy

10.
I

:j—^—r = ^arctana;2 = -.
Jo 1 +^* 2 Jo 4

11.
I :i—

;—^ = ai'c tan e^ = arc tan e^ — -r
Jo 1 +e2^ Jo 4

^« r^ • o^ 7. f^l-COS20,^ TT

12.
j^

s^nHdB^j^ 2 ^^ = 4*

13. (Kos^edS^ f\±^llde=\-
Jo Jo ^ 4

Note. — Considering the areas between the axes and the graphs:

IT TT

sin" a; dx =
I

cos" x dx, where n is positive,
Jo

TT

J
sin" a; da: = 2 | sin" a: dx, where n is positive,

"^O

TT

J
cos" a: da; = 2 | cos" x dx, if n is an even integer,

-^o

but = 0, if n is an odd integer.

135. Areas of Curves.— As has been shown, the formu-

las in rectangular coordinates are

A = j ydx and A = I xdy.
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(a) Let A denote the area between the curves y = f (x)

and y = F (x); let a; = OM, dx = PE; then, the variable

area A = PoP'P and dA = PP'DE = (/ (x) - F (x)) dx;

area PoPTiP = A= r\f{x)-F (x)) dx,

where the points of intersection are (xo, 2/0) and (xi, 2/1).

If the locus oi y = F (x) is the a;-axis and Xo and Xi are a

and h, this formula reduces to

/ S{x)dx.

(b) In polar coordinates,

A = ijp'dd.

For let Po be any fixed point (pc, ^0) and P (p, ^) any variable

point.

Consider the area PoOP to be generated by the radius

vector p as increases from ^0, and denote it by A. With

OP as a radius draw the arc PD and let dd = Z. POPi) then

dA = OPD = ip'pdd = ip^de,

the increment of ^1, if uniform, as in a circle.

/. A = i fp^dd, or A = i Cp^de, if ^0 = 0.
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By method of limits, increments infinitesimal:

I p2 A(9 < AA < i (p + Ap)2 A^, where AA = OPPi,

. dA ,. AA 1 , . A . r^ \n ' n
.*. -^ = lim -rr- = ^ p% smce Ap = as A0 = 0.

eta A0=o t^t/ Z

EXERCISE XXVII.

1. Find the area between the parabola i/^ = 4 x, the x-axis, and the

ordinate at any value of x; from x = 1 to x = 4=.

2. Find the area between the parabola a:^ = 4 ?/, the 2/-axis, and the

abscissa at any value of y; from y = 1 to y = 9.

3. Find the area between the two curves y^ = ix and x"^ = iy.

4. Find the area between the cubical parabola 4 ?/ = x^, and the

a;-axis from a; = to x = 2; from x = Otox = — 2; from x = —2 to

x = 2.

5. Find the area of the semi-cubical parabola 4 z/^ = x^, bounded by
the double ordinate at x = 4.

6. Find the area between the line y = x, and the curve 4 2/^ = x^,

in the first quadrant.

7. Find the area included between the parabola x* + 2/^ = a% and

o?
the axes of X and Y. Ans. tt*

8. Find the area bounded by the curve 2/ (1 + x^) = x, and the line

y = I X. Ans. log 4 — |.

9. Find the area included between the parabola x^ = 4 ay, and the

witch 1/ (x2 + 4 a2) = 8 a\ Ans. (2 tt - f) a^.

10. Find the area bounded by the witch ?/ (x^ + 4 a^) = 8a^ and

its asymptote y = 0.

Area = 2 I „ , . „ = Sa^ arc tan ^r— =4 xa^.
Jo a;2 + 4a2 2aJo

11. Find the area bounded by the hyperbola xy = \, its asymptote

2/ = 0, and the lines x = \ and x = n. Ans. log n.

When n = 00 , log n = 00 ; hence the limit does not exist, and the

area between the hyperbola and an asymptote is infinite. Since the

area is the Napierian logarithm of the superior limit, Napierian loga-

rithms are sometimes called hyperbolic logarithms.
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12. Find the area of the lemniscate p^ = c? cos 2 Q,

4.q2 y.¥

Area = -^ | cos 2 ^ d^ = a^.
^ «/0

13. Find the area of the cardioid p = 2 a (1 — cos 6),

Area = 2a2 f ''(I - coae)^dB = Qira^

14. Find the area of the circle p = 2 a sin ^.

Area = 2a^ r''sin2 Odd = ira^.

16. Find the area of the circle p = 2 a cos 0.

Area = 2a^ f'cos^ddd = -n-a^.

«/o

16. Show that the difference between the areas of the two circles

above, from 6 = to d = 7r/4, is a^; also that the area of one circle

intercepted by the other is twice the area of the first circle from «=

to = 7r/4.

17. Find the area of the part of the circle

p = a sin + 6 cos 6, from 6 = to 6 = 7r/2.

18. Find the area of one loop of the curve p = a sin 2 0.

IT IT

Area = ^ I
a^sm^2ddd = ^ i {l-cos4d)dd. Ans. ^'

Z Jo 4 */o o

19. Find the area between the first and second spire of the spiral of

Archimedes p = ad.

Area = ^ d'^dO -^ i d^ dd -= 8aV.
2 J2t 2 Jo

20. Find the area of one arch of the cycloid x = a {6 — sin 6),

y = a{l — COS0).

X2
7ro /»2ir

ydx = a^\ (1 — cos oy dd,
Jo

(when X = 0, 6 = 0; and when x = 2Tra, 9 = 2t, and dx = a (1 —
cos d) dd)

= a2 f '^

(1 - 2 cos + cos2 d) dd = Sira^;
Jo

that is, the area is three times that of the generating circle.
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21. Determine the area of the circle x^ -^ y^ = a^.

Area = 4j ydx = 4 f Va^ — x^ dx.

Using the parametric equations of the circle, x = a cos 6, y = a sin. d,

where 6 is the variable parameter, gives dx = —asinddd. Sub-

stituting the values of y and dx gives:

Area = 4 f Vd^ - x^ dx = -4 f a?- sin2 d dd,

I

I when a; = a, = 0; x = 0, ^ =%)
IT

a2 sin2 d0, by Art. 131

= 4 2 f- - EEI^I^ /Compare Ex. 14 above\
12 4 Jo V and Ex. 12, Art. 134. /

= '7ra2.

To get
J
Va^ — x^ dx, the indefinite integral; let a; = a sin ^; dx=a

cos0d0; then,

J
Va2 — x2 da; = a2

J
cos^ ^ d(j), where ^ is the complement of d above,

= f J(l+cos20)(^0

= f (0+ i sin2<^) + C = I (0 + sin(^cos0)+ C

= fsin-^ + |V^^^^ + C,

the indefinite integral. Compare Ex. 6, Art. 123.

Area = 4 C Va^-x^ dx=4[^ sin-i -+iV^^+cl ° = Tra^, as above. ,
•^0 L^ a 2 Jo

Corollary.— Area of Ellipse = 4 - f Va^ — x^ dx = 4 - ^ = 7ra&.
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136. To find an Integral from an Area. — An integral

may be found from an area, when it can be gotten geomet-

rically from the figure.

Example 1. — Find / Va^ — x^ dx from the figure of the

circle y = Va^ — x'^.

Area = BOMP = BOP + OMP = ia^ + ixy

= -pr sin~i - + -X V a^ — x\
2 a 2

M A

If the initial ordinate is not OB and is undetermined, then,

Area = / Va^ — x^ dx |Va2-x2 + |-sin-i- + C,

as above, C being independent of x and indefinite when the

initial ordinate is undetermined.

Example 2.— Find / V2ax — x'^dx, using circle

y = V2 ax — x^.

Area = OBPM = OBPC + PCM
1 ^^ . X- a

= 2^^ + ~2~^

a^ ,x,x — a V2 ax
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Area = CBPM = BPC 4- PCM

sm-1
X — a , X — a V2ax-x\

If the initial ordinate from which area is reckoned is

undetermined, then

/V2 ax — x^ dx
X — a 1

^ V2ax-x' + ^a2 sin-i -—- + C,
2 2 a '

7ra^
where C = ^ , if Area = 0, when x = 0;

or
X — a

^ V2ax - x" + ^a2 vers-i- + C

where C = 0, if Area = 0, when a: = 0.

As may be seen in the figure,

sm-
x — a , TT+ ;i = OCP = vers-i -

;

a 2 a

that is,

a^ / . .x — a
, Tr\ a^ .2K^ + 2J=2^'

x — a . ira^ a^
4--r = Trvers"^-'

a 4 2 a

(See Note at end of Exercise XXIII.)

Either result gives

^2 ax — x'^dx = \Tra^ = areaof 05A.
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Example 3. — Find / (mx + h) dx, by means of line

= mx + h.

Area = OMPB = BDP + OMDB
= ix' mx -\- X'b

mx^
hx.

If the initial ordinate is riot OB, and is undetermined, then

/
mx'

mx -\-b) dx = -^ + 6a; + C.

137. Area under Equilateral Hyperbola. — As in the

figure of the circle y = Va^ — x^,

f Va^ — X? dx = -^x Va^ — x^ + ^ a^ sin~i

X .

expresses the area BOMP and a^ sin"^ - is represented by

twice the area of the circular sector BOP] so

V^^T^^dx =lx \/^M^2 _|_
1
a' sinh-i - (Ex. 7, Art. 123)

'0 ^ Z a

may be shown to express the area AOMP under the equi-

lateral hyperbola y = vaM-^> and a^ sinh-i - to be repre-

sented by twice the area of the hyperboUc sector AOP,
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To get

I Va^ +x^dx; let x = asinh^, dx = acosh0d0;

then,

/
"^VoHP^ dx = a2 fcosh^ d0 = |- (</) + sinh (^ cosh 0)

= io; Va^ + x2 + 1 a^sinh-i -,
2 2 a

as also in Ex. 7, Art. 123.

If X = a cosh 4) and dx = a sinh d0 be substituted in

/ Vx'^ — a^dx;

then,

X Vx^ — o? dx = ^x ^x^ — a^ — — cosh~i -

1 X
(as in Ex. 8, Art. 123), and ^a^ cosh-i- will be represented

by the area of a sector of the equilateral hyperbola

y = Vx'^ — a^.
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138. Significance of Area as an Integral. — The units of

the number represented by A as the measure of an area will

depend upon the units chosen for the abscissa and the

ordinate. If the unit for x be one inch and that for y be ten

inches, then a unit of A would represent ten square inches;

if on the graph the unit of x is one-tenth of an inch and the

unit of y is one inch, these representing one and ten inches

respectively, an area on the graph of one-tenth of a square

inch will represent the area of ten square inches.

The integrals represented by areas may be functions of

various kinds, such as lengths, surfaces, volumes, velocities,

accelerations, weights, forces, work, etc. Hence, the physi-

cal interpretation of the area will depend upon the nature

of the quantities represented by abscissa and ordinate.

(a) If, in the figure of Art. 125, the ordinate represents

velocity and the abscissa represents time, then the area

represents distance; and, since velocity

ds
' = 11

= "^'

where a is acceleration,

dA
—rr=v = at.
dt

Hence, A= f atdt = hat^ + C = MJ'^PM,

and since s = \ af^ -\- Sq, C is So, initial distance or area; and

the number of square units of A ( = MqPqPM) will equal the

number of linear units of distance passed over by a moving

point in the time t = MqM.
(h) If the ordinate represents acceleration and the ab-

scissa still represents time, then the area represents velocity;

and since acceleration

_dv dA _ _ dv

""'It' W'^^'dt'
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Hence,

A= fdv= Cadt = at-\-C = MoPoPM,

where a is constant acceleration, and since v = at -\- vo, C is

Vq, initial velocity or area; and the number of square units

of A will equal the number of units of velocity acquired by a

moving point in the time ^ = MqM.
(c) If the ordinate represents a force acting in a constant

direction, and if the abscissa represents the distance through

which the force has acted, then the area A = MqPqPM
will represent the work done by the force acting through the

distance represented by MqM. If the force is constant in

magnitude as well as in direction, the area will be a rectangle,

dA r
since -z- = F, constant, gives A = j Fds = Fs -{-C.

Whether the force is constant or variable the area

A = j F ds represents the work done, the area being that

under the graph of the equation y = f (F), representing the

force. If the force is not constant in direction, the area will

still represent the work, provided the ordinate represents

the component of the force along the tangent to the path of

its point of application.

By means of certain contrivances the curve y = f (F) may
be plotted mechanically by the force itself, as, for example,

in the steam engine by means of the indicator. Having the

curve, the mean force may be easily found; it is given

ds MqM, the area divided by the distance through

which the force acts.

The area may be read off at once by the polar planimeter,

and the work done found directly.

It is manifest that a function may be represented graphi-

cally either by the ordinate of a curve or by the area under a

curve; if the ordinate is made to represent the function, the

by/F
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slope of the curve is the derivative of the function; if the

area under a curve is taken to represent the function, then

the derivative of the function is the ordinate of the curve,

since the ordinate is the derivative of the area.

It is usually preferable to represent by the ordinate * that

which in the investigation is mainly under examination;

therefore, if this is the derivative, the latter method, where

the area is the function and the ordinate is the derivative,

should be used rather than the former method, which is to

be used when the function is mainly under consideration.

The function e^ is exceptional, in that the ordinate repre-

sents the function, the slope of the curve, and the area under

the curve. (See Example 2, Art. 130.)

139. Areas under Derived Curves. — It has been shown
(Art. 84, figures) by drawing the graphs of a function and

its successive derivatives that the variation of the function

is exhibited to advantage.

2 0' 2

It may now be seen that the area under any derived curve

is represented by the ordinate of its primitive curve. Thus
the area under the graph of y = f (x) is represented by the

ordinate oi y = f{x), that under the graph oi y = j" {x) by

* Irving Fisher, A Brief Introduction to the Infinitesimal Calculus.
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the ordinate oiy = f {x), and so on for the successive derived

curves.
/v»3

. Drawing the graphs of y = f(x) = -^and y = /'" (x) = 2

together with those oi y = f (x) = x^ and y = f {x) = 2 x

(shown in Examples 3 and 4, Art. 115), it is seen that the

areas are represented as stated.

It may be seen also that I f{x)dx= j x'^dx = -:^ = A,

being represented by the ordinate of 2/ = -^, is an integral

function of x^ and the graph an integral curve of x'^.

If 2/ = 2 be the fundamental curve, then y = 2 x is the

first integral curve; y = x'^, the second; y = -^, the third;

x^
y =^ j^j the fourth; and so on.



CHAPTER III.

INTEGRAL CURVES. LENGTH OF CURVES. CURVE
OF A FLEXIBLE CORD.

140. Integral Curves. — li F (x) has / (x) for its deriva-

tive, then F(x) is called an Integral Function or simply an

Integral oi f{x). The General Integral is / / (x) dx = F (x)

+ C, called also the Indefinite Integral.

The graph of an integral function is called an integral

curve. If the original or fundamental function is

y=f(x), (1)

then y = F(x) (2)

is the first integral curve of the curve (1), where F (x) is that

integral of/ (x) which is zero when x is zero. In the general

figure of Art. 125, F (x) is the area 0PM under the curve

y = f (x)', in the figure of Art. 139, ii y = f (x) = x^, then

F{^x) is the area under y — x^ and is the ordinate of the

integral curve 2/ = o"*

It is manifest that for the same abscissa x^ the number

that indicates the length of the ordinate of the first integral

curve is the same as the number that represents the area

between the original curve, the axis (or axes for some func-

tions), and the ordinate for this same abscissa. Hence, the

ordinates of the first integral curve may represent the areas

of the original curve bounded as stated.

It may be seen also that for the same abscissa x^ the number

that expresses the slope of the first integral curve is the same

as the number that measures the length of the ordinate of

227
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the original curve. Hence the ordinates of the original

curve may represent the slopes of the first integral curve.

. The integral curve of the curve of equation (2) is called

the second integral curve of the original curve of equation

(1). The integral curve of the second is called the third

integral curve of the original curve (1), and so on. Thus
for any given curve there is a series of successive integral

curves.*

The function cos 6 and the first and second integral curves

are shown with their graphs.

Let y = cosd be the fundamental function, then

y = I cosedd = sine -\- C,

where C is zero, as y is zero when d is zero; and

y = I sine de = —cosd -\- C,

* The statements in the three paragraphs above with some difference

of words are given in Murray's Integral Calculus, where a fuller treat-

ment will be found in the Appendix.
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where C is one, as y is zero when 6 is zero. Hence,

y = sind and y = 1 — cos 6 = vers d

are the first and second integral curves of the curve y = cos 6.

It is seen that the ordinate of the first integral curve at

e = 7r/2 is +1, that number being the same number that

measures the area under the fundamental curve for the same

abscissa; the ordinate being zero at ^ = tt indicates that the

algebraic sum of the areas of the fundamental curve is zero

and hence that the area below the axis from 6 = 7r/2 to t is

exactly equal to that above from ^ = to 7r/2; the ordinate

being zero again a,t 6 = 2 w indicates that the areas of the

fundamental curve above and below the axis are exactly

equal up to ^ = 2 tt.

It is manifest that the ordinates of the second integral

curve indicate the corresponding areas for the first integral

curve, the number being +2 from ^ = to tt and 2 — 2 =
up to ^ = 2 TT.

In the case of this function the series of integral curves

can be extended indefinitely without any difficulty.

It is manifest also that the ordinate at any point on the

fundamental curve gives the slope at the corresponding

point on the first integral curve, the ordinate for the first

gives the slope of the second, and so on.

The subject of successive integral curves has useful appli-

cation to problems in mechanics and engineering.

Illustrative examples follow, showing the appUcation to

the expression and graphical representation of the shearing

force and bending moment throughout the length of a loaded

beam; also to the slope and deflection of the elastic curve,

the curve of the mean fiber of the material of the beam.

141. Application to Beams. — As given in the Mechanics

of Beams, the Vertical Shear at any section of a loaded beam
is the algebraic sum of the vertical external forces on either

side of the section, and the Bending Moment is the algebraic
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sum of the moments of those forces about a point in the

section. The moment of a force about a point is the product

of the force and the length of the perpendicular from the

point to the hne of action of the force. (See Art. 172.)

The Elastic Curve is the curve assumed by the mean fiber

along the axis of a longitudinal section through the centers

of gravity of the cross sections of the beam, the Slope is the

slope of the tangent to the curve at any point, and the

Deflection is the ordinate at that point.

Taking abscissas to denote as usual horizontal lengths,

the ordinates will represent the quantities to be depicted by
the curves. The fundamental curve is the curve for L, the

load; the Shear S is represented by the first integral curve;

the Moment M by the second integral curve; EI upon the

Slope m, by the third integral curve; and EI upon the De-

flection (?, by the fourth integral curve, where E and / are

constants denoting the Modulus of Elasticity and Moment

of Inertia, respectively.

Example 1. — Let a beam of length I between supports

be simply supported at each end and loaded with a uniform

load of w lbs. per hnear ft.

L = y = —w, w taken with negative sign as a downward
force.

S = y = I
—wdx = —wx

-\- (Sq = -^,S being zero when ^^ = o)
•

M = y=
I

(-^ - wxjdx = Y^ —^ + (^0 = 0, ikf when

x = 0).

wl „ wx^M (m - 2/) = J (|-x - ^j da; =

+ f mo = ~ 24 ^^^' ^ when x = 0, m being zero at rr =
^J
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6 24.
dx

12

wx^ wlH- 24" - -24" + (^0 = 0, d at a; = 0).

EXAMPLE 1.

LoadLine

IlilllllliniMiriniiiri^^
--^niminiixQjjjj^^

ShearLine

Inflexion Poini d=-^^,mca:. InflexionPoint

XDefleciion
Curve

384 EI

'^^^^liillLlllllilMlllllllimilLUU-^

J,/i\i/

rnilllllMMIIIinTTTnT-r.

<-Hy^J/2-->i^ -ysV5i=o.58-t -y^ii-yj-yfj/i'

0.2LJ ;

^-rrmTTTTTTTrmTTT^ '
^^^'"^

J
XSlope

CiiTue

M:=y24iifi^TTiax.

M=-yj2 wll max.Tveg.

ShearandLoad Lines the same asExample1.

XMoment
Curve
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Example 2. — Let a beam of length I between supports be

fixed at each end and loaded with a uniform load of w lbs.

per linear ft.

L = y = —w.

S = y = —wdx=—wx

-\- [So = -K- ) S being zero when x = -)•

7,^ C l^^l \ 7 "Wl WX^

wP
+ (Mo, M at X = 0), Mo = - To > s^^ below.

+ Moa; + (mo = 0, m at X = 0)

wl wx^ ivdi \= -rX^ ^

—

{^x= —MqXU from m = at x = L

"" "12' ~ 24
~ "^4~ + (^0 = 0, c^ at a: = 0).

Example 3. — Cantilever Bridge.* In the cantilever

bridge the joints are placed at the inflexion points, where

the Bending Moment would be zero if the bridge were con-

tinuous over the whole span.

Let the beam of Example 2 have joints at the inflexion

points, and let the length of each cantilever arm be denoted

by a and the length of the suspended span by h.

The Shear hne and the Moment curve will be unchanged

but the Slope and Deflection curves will not be continuous as

they were without joints in the beam. For slope and de-

* The essential features of this example are given by H. E. Smith

in his " Strength of Material."
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flection each part is to be considered as a separate beam, the

arms having in addition to their uniform load a concentrated

load at their jointed ends, equal to half the uniform load on

the middle span h, since that part is supported at the joints

by the arms.

idiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinmiiHiiiiiiiiiiiiiiiimiiiimii^

I

<&-rsy2j^i i/^Yzi ->te7^^->
0.151

L = —w.

0.71 0151

S= C-wdx= -m + (5o = |(2a + 6),

S being zero when x =
^J'

w wx^ wa
From M = = 2 (2a + &) ^ - ^ - -^(« + fe),

X = a and x = a -\-h,

that is,

x=(l-iV3)Z/2 and x = (l + i Vs) 1/2,

and

6 = 1 V3 ?, from M = Q ^ -^ 2'~12^ Example 2.
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It is seen that the maximum negative moment tV wV^ at

the fixed ends is twice the maximum positive moment ^5 wP
at the middle. For equal strength, the bending moments at

the ends and middle of the beam should have equal numeri-

cal values; this requires that

wa , ,
, . wly^

that is,

4a2-l-46a = &2. or 4a2 + 4fea + 6^ = 2fe2;

or (2a + 6)2 = 262,

/. 6 - J V2I and a = {l - \ V2) 1/2.

It follows that

_ = _ and --(a + h) = -j^,

giving equal strength at ends and middle of beam.

Example 4. — Let a beam of length I between supports be

fixed at the right end and simply supported at the left end;

and let it be loaded with a load uniformly increasing from

zero at the left end to w lbs. per linear ft. at the right end.

J w
L = y = - j^'

/w w— jxdx = — ^x"^ -{- {So =S, when x = 0).

+ {Mo = 0, M when x = 0).

EI {m = y) = f(s^ - ^^x^dx =^- ^x^

+ [Wo = "oT TT- , m at o; =
J

, from m = at a; = Z.

S/(d = 2/) = j (24
-^ +^ - 24^^7^

= 24^~ ~2~^^~Q' ~
i20]

+ (^o = 0,dwhena; = 0).

M = y = I (So — ^x^] dx = SoX — ^'x
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EI{d^y) =

wl

wl^ Sd' , S,P wl'

24
+

6 120
-,, when X = I,

/. So = jx, supporting force at 0.

. S = v = ---x'l =--wl

Si at right end; supporting force = + jrwl.

°r"''""'''''™^™mimmMMS^M§S

'

iniiniiiiiiiiii — —^mrnimiinjj^
Shear Curue

irnmnTTTTrr.
M=^0.05wp,max.

at right end,M= 0. 06% wl^ max. neg.

y3VS^5t=0.V7-t
>|

LoadLine

Moment
Curve

X
Slope Curve

^""""m^ jppj^^— XDeflection
Curve

d= 0.916 wl'^
384 FT

'^ ^ 10 2i^ '

/. X = I a/5 I = 0.447 . . . Z, when the shear is zero.

V5,, wl wxM = y= z^x
DX^~\ _
6i Jx=iV5Z rs

wP = 0.03 wP,
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maximum positive moment where shear is zero, since

^ = s = o.
ax

TIT ^^

-^L=-3^^'^=-«-°«^"''^'
maximum negative moment.

T,, „ wl wx^
^ = ^=10^-^'

/. x = V§l = i V3X 5 = 0.77 , . . I,

where moment is zero and where there is'an inflexion point

on the Elastic Curve, the fourth integral curve, since M is

second derivative of d with respect to x.

EIim = y) = -^ +^^-
24;J^^^=

-j^,EI upon slope

at left end.

120"^ 20 Wr
.*. X = i Vs Z and I, when slope is zero.

TIT / 1 \ wl^ , wlx^ wx^ 1 0.016 /- ,.

^/ (<i = 2/) = - 120-
+

-60- - l20]L^r
-
-1^ "^^ "'

= -0.002385 wP = -^^rf,J^/upon max. deflection.
OOTt

The deflection is zero at x = and x = Z, as used above.

142. Lengths of Curves. — Rectangular coordinates. — It

has been shown in Art. 10, (d) that ds^ = dx^ + dy^; now let s

denote the length of the arc whose ends are the points

(xo, 2/o) and {x, y), then ds = Vdx^ + dy^; whence

or

-£[-(1)']'*
according as ds is expressed in terms of x or of y.
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In getting the length of any curve, that formula which

gives the simpler expression to integrate is the preferable one

to use.

EXERCISE XXVm.

1. Find s of the circle x"^ -\- y- = a^, and the circumference. Here

dy _ _x^ (dyV _ ^ .

dx~ y' \dx) ~ y^
'

hence ^ ^ TS} ^ "']
^^

^^ ^ f ^^' "^
"^'^^

^^' ^i^S (D'

J'^

dx . .x~\^ . ,x . ,xq

xo Va2 — x^ ^-1^0 ^ ^

Circumference, s = 4 a sin~i - = 4 - a = 2 xa.
aJo 2

2. Find s of the semi-cubical parabola ay^ = a;^. Here

\dx) ~ 4:a*

From the origin, s =
^y [(^ + 4I)

"
^J

•

3. Find s of the cycloid x = a arc,vers - =F V2 ay — y^. Here

(dxV ^ y .

\dy) 2a -y'

:. s = VYa f^ (2 a- y)~' dy, using (2),
''2/0

= 2 V2^ [(2a - 2/0)^ - (2 a - yf].

Making 2/0 = and y = 2 a and taking twice the result gives 8 a for

the length of one arch. (See Ex. 3, Art. 97.)

Note. — Finding the length of a curve is called rectifying the curves

since it is getting a straight line of the same length as the curve. The
semi-cubical parabola was rectified by William Neil and by Van Heu-
raet also, and it is the first curve that was absolutely rectified. The
second rectification, that of the cycloid, was by Sir Christopher Wren
and by Fermat also, and the third was of the cissoid by Huygens.
These rectifications were effected before the development of the

Calculus.
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4. Find s of the parabola a;^ = 2 'py, {xo, yo) being the origin. Here

fdyV^o^,
\dx) p2'

= -
[I
V^^+^+ ^ log {x +Vp2+^2)JJ [Ex. 7,Art. 123.]

= 2^V2^ + x» + |log- ^

6. Find s of the catenary y = a cosh - = |(e" + e "j. Here

:. s =
J I

1 +1^6" -2 + e « jj cZa;

6. Find s of the ellipse 2/2 = (1 - e^) {o? - x^), and the length of

the curve, e being the eccentricity. Here

dy ^ -(1 -e^)^x
.

/dyy ^ (1 - e^) x""
.

dx Va^ — x^
' \<^a:/ a^ _ 2;2 '

J*
1 dr

{o? - eH^Y—^—

;

(1)
a;o Va2 - a;2

hence, the length of the elliptic quadrant Sg is

Sg = C (a2 - eH^)^ ,

^^
• (2)

For the integration of (1) and (2), see Ex. 5, Art. 203 and Note.

7. Find s of the circle, and the circumference, using the parametric

equations x = a cos d, y = a sin 6. Here

fdx\^ sin2 d ,

I T" I = —v~n ;
dy = a cos Odd;

\dy/ cos2 ^
' ^ '

do = a{d -do) \
=2 ira.

-J Jo
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More directly;

nO ~l27r

ds = add; :. s = a\ dd = a {d - do) \
=2x0.

JOq Jo

8. Find s of the involute of the circle, and length of the arc between

6=0 and 6 = ir, using the equations

X = a (cos 6 -\- dsind), y =a (sin 6 — cos 0).

(See Cor. Ex. 2, Art. 97.) Ans. | aB^; | ar^

9. Find s of the cycloid, and the length of one arch, using the para-

metric equations x = a {6 — sind), y = a {I — cos 6). Here

dx = a{l — cosd) dd; dy = a sind dd;

:. s = f (dx^ -\-dy^)' =a^2 f (1 - QOse)^dd

^^0

A Q

sin - dd, since Vl — cos = V2 sin -

= -4ac0S2j^^ = 4«(^C0S2-C0S2JJ^ '

.'. Z = 8 a, for one arch.

10. Find s of the parabola y"^ = 2 px, (xo, 2/0) being the origin,' and

the length of the arc from the vertex to the end of the latus rectum.

Z = p/2[V2 + log(l + V2)].

11. (a) Find s of the hypocycloid x^ -\- y^ = a^, and the length of

, the curve. (a) Ans. fa* {x^ — xo'); 6 a.

^
'
^

(6) Ans. 4 I a sm^ = 6 a.

143. Lengths of Polar Curves. — It has been shown in

Art. 77, (3), that for a polar curve ds^ = p^ dd^ + dp\ Now
let s denote the length of the arc whose ends are (po, ^0) and

(p, d), then ds = Vp^dd^ + dp^; whence

s=
I

Vp2 (^6I2 + (^p2 or s = . / \/p2 ^612 + dp\ (1)

according as ds is expressed in terms of or of p.

If the formulas of the preceding Article for lengths of

curves be transformed to polar coordinates by making
X = p cos $ and y = psin 6, (1) of this Article results.
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EXERCISE XXIX.

1. (a) Find s of the circle p = 2 a cos d, and tlie circumference.

s = C V4a2cos20 + 4a2sin2 dB = 2a C dd

= 2a(0-0o)T = 27ra.
Jo

(6) For the circle p = a;

fQ pB ~127r

s = I pdB = a \ dQ = a{Q -B^)\ = 27ra.
JBa JOo Jo

2. Find s of the cardioid p = 2 a (1 — cos d), and total length.

Here dp = 2 a sin dd;

:. s = f^ [4 a2 (1 - cos oy + ia^ sin^ d]^ dd
J do

= 2a C V2 {1 - cosd)' dd '= 4:a f sin-dd
JOo Jdo 2

= 8 a cos ^ — cos 2 = 16 a.

3. Find s of the spiral of Archimedes p = cud, and the length of the

first spire. Here

ds = Va202 + a2 dd = a VT^^dB]

... s = a fVl+T^ dd = ^\d Vi + 02 + log (0 + vTT^)T''''

= a [tt Vl +47r2 + i log (27r + Vl+47r2)].

4. Find s of the logarithmic spiral p = e°^ from po to p, and the length

from the pole (p = 0) to p = 1.

aB = logp; .'. add = — or pdd = —

;

p a

s

5. Find s of the conchoid p = a sec d, and the length of the arc from

d = Oiod = ir/4. Here

dp = asec0tan0d0;

... s= ( Va2 sec2 + a2 sec^ d tan^ ddd = a C sec^Bdd
Jdo Jdo

a tan d\ = a (tan — tan do) = a.
J»o J
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144. Curve of a Cord under Uniform Horizontal Load—
Parabola. — When a flexible cord supports a load which is

uniformly distributed over the horizontal projection of the

cord, as, for example, the cable of a suspension bridge,

which supports a load distributed uniformly per foot of

roadway, the curve assumed

by the cord is a parabola.

This is evident geometri-

cally, and the curve can be

shown analytically to be a

parabola.

Consider a portion OP of

the cord AOB, being the

lowest point of the cord.

The equihbrating forces

acting on OP are the ten-

sions H and T at the ends,

and the weight of the load, acting at the center of OM,
Since three forces to be in equilibrium must meet in a point,

the tangent to the cord at P passes through the middle of

OM. Now it is a property of the parabola that the sub-

tangent is bisected at the vertex, in which case OC = ^

NP = CM. Hence the curve assumed by the cord is a

parabola.

Otherwise the analytic conditions of equiUbrium give

XMp* = WX':^- Hy 0; y- 2H^' (1)

the equation of a parabola. The same result is gotten by

taking the sides of ^he triangle PDT to represent the three

forces T, H, and wx, and then,

dy

dx

wx
. _ A wx dx _ wo^

~h''
'' ^~ Jo ~H~~ 2H (1)

* Algebraic sum of moments of forces about point P.
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T coscj) = H and T sin = wx give by division

,

' wx dy , „

tan ^ — ~Tj = -f^ as before.

Also, T = = Vi/2 _|_ {y)xY gives the tension at any

point of the cord.

The curve is thus shown to be a parabola with its vertex

at and its axis vertical. If the supports at A and B are at

the same elevation and I is the span, the sag d at is y, for

X ^^ 2 l)

.-. H =
f.',

and Ti = -^. (3)
8 a cos 01

dy ^ ,
wl 4:d ...

where <^i is the angle of inclination of PT at the supports.

The length of the cord for a given span and sag is gotten by

^dyV'\h , , dy wx , ^„
y) dx, where

~f-
= -tt and s = OB."CM

Let V? = -, or — = a, to simplify: then,Ha w

s= f'\i-^t'fdx = - r (a^ + x')i dx (5)
Jo \_ Cl J ciJo

W 1 ~|a;=§^

Replacing 77 = - , s = Si

-sv/f^+f„'«^[(-wi^)ai" <«
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Total length = 2 OB = 2 si

wl

2H

Corollary. — Expanding the two terms of (7) into series

(as shown later) and adding Hke terms, the total length of

the parabola in terms of I, w, and H is

Total length = Z + 24^ -^^^ + ^jgg^ , (8)

or in terms of I and d, since B. = ^-^^from (3),

Total length = Z +_ - -^ + -y^ - • • • . (9)

Also, expanding (5) by the binomial theorem and integrating

gives

a Jo

aJo L 2a Sa^ 16a^ J

_ir . x^ x^ x' 1

~ar^"*"6a 40a3"^ 112^6 '

*

J

,
x^ x^ , x"^ , 1 w;

= ^+6^"40¥^+ll2^ '
^^"^"

a = g-

.*. Total length, /S = 2 si

"^24^2 640 JY^"^ 7168 ^6 *
* * * ^^

The total length can be found by (8) or (9) to any desired

degree of accuracy and it can be gotten exactly by (7) ; when
d is quite small compared with I, then the third and succeed-

ing terms in (8) and (9) are so small that they may be neg-

lected giving:

wH^ 8 (P
Total length, S = l-{- kt-tt^ = ^ + "^Tj approximately. (10)
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When >S and H are given to find I, a cubic equation results,

the solving of which may be avoided by putting S^ for P,

since they are nearly equal when c? is small; then,

2^2^ approximately. (11)l = S

145. The Suspension Bridge. — The cables of a suspen-

sion bridge are loaded approximately uniformly horizontally,

since the roadway is horizontal, or nearly so; and the extra

weight of the cables and the hangers near the supports is a

small part of the total load carried by the cables. As shown
in Art. 144, under the conditions stated, the curve of the

cables is the parabola whose equation \^ y = frjj, where H
is the horizontal tension.

Example 1. — The Brooklyn Bridge is a suspension bridge

which has stays and stiffening trusses to prevent oscillation.

The span between main towers is 1595 feet.

If the sag OD is 128 feet and the weight per foot supported

by each cable is 1200 lbs., without considering the stays or

stiffening trusses, to find the terminal and horizontal ten-

sions, substitute the numerical values in (3) of Art. 144. For

terminal tension,

Ti = H sec <^i or

For horizontal tension,

Ti = /7sec0i =

-.=v/(f + HK

2,981,279 lbs

vol

Sd
VZ2 + 16^2 = 3, 128,929 lbs.
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Example 2. — A cord loaded uniformly horizontally with

1 lb. per foot is suspended from two supports at same eleva-

tion and 200 feet apart with a sag at middle of 50 feet. Find

the length of the cord.

Here tan (j)i is equal to -|§ = 1
;

^ ^
wl 200 w

,
,. tanc/„ = 2^ = ^^=l;

••• ^ =
260 -• ^=100 lbs.

= J^ 2 = _J_ 2

^ 2H^ 200^*

13 y>

S = total length = I + 24^2 " 540^4 + * *
*

=
2^^+24f5&-6S?+ • • • =228.33, approx.

= V(IooF+(Ioo? + iooiog[l5^±^fiioo)!]

= 100 V2 + 100 log [1 + V2] = 141.42 + 88.14

= 229.56, exactly.

146. Curve of a Flexible Cord— Catenary.— If a per-

fectly flexible inextensible cord of uniform density and cross

section be suspended from two fixed points A and 5, it

assimies a position of equilibrium under the action of gravity.

The curve thus formed is the Catenary, whether the hne

joining the points of support is horizontal or not.

To find the equation of the curve AOB; let w denote the

weight of a unit length of the cord and s the length of the

arc whose ends are the lowest point (0, 0) and the point

(x, y), or P; then ws, the weight of the arc OP, is in equi-

librium with the tangential tensions at and P. Denote
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the horizontal tension, which is the same at all points, by

H^wo,. If c ' PT represents the tangential tension T at P,

c • PD and C' DT will represent, respectively, the horizontal

and vertical tension at P.

Hence,

dy _ c DT _'ws^ _s
dx~ C' PD wa a

s _ Vds^ — dx^

a

dx ds

X ^ p ds ^ ^^
Vs + V g' + sn

a~ Jo Va2 + s2 ^^ L ct J

The exponential equation is

e" =
a

ae^ = s + Va2 + s2,

which solved for s gives for length of OP,

s = -(6« — e '^)=a smh - •

2 \ / a

(Compare Ex. 5, Art. 142.)

(1)

(2)

(3)
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du
Substituting in (3), s = a^ from (1), gives

g = l(J-e-^)=sinh^; (4)

y -\- a = -^[e'' -\- e « j = a cosh- (5)

is the equation of the catenary referred to the axes OX, OY.

If the origin of coordinates is taken at a distance a below

the lowest point of the curve and the curve be referred to

the axes OiXi and OiY, its equation is

(X x\

The horizontal line through Oi is called the directrix of the

catenary, and Oi is called the origin.

Corollary I. — Since a = OiO is the length of the cord

whose weight is equal to the horizontal tension, and there-

fore the tension at the lowest point 0, it follows that if

the part AO of the curve were removed and a cord of length

a, and of the same weight per unit length as the cord of

the curve, were joined to the arc OP and suspended over a

smooth peg at 0, the curve OPB would still be in equilibrium.

Corollary II. — Since the sides of the triangle PTD are

proportional and parallel to the three forces under which

the arc OP is in equiHbrium, it follows that:

tension at P cPT T^ ds y

tension at c • PD wa dx a'

from (3) and (5i), by differentiating (3);

/. T = wy;

that is, the tension at any point of the catenary is equal to the
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weight of a portion of the cord whose length is equal to the ordi-

nate at that point.

Therefore, if a cord of uniform density and cross section

hangs freely over any two smooth pegs, the vertical portions

which hang over the pegs must each terminate on the direc-

trix of the catenary.

Corollary III. — Subtracting the square of (3) from the

square of (5i) gives

y' = s' + a'; (6)

dx^
and from (6), after substituting a^ = V^jj fi"om Corollary II,

s^yf, (7)

From M, the foot of the ordinate at P, draw the perpendicu-

lar MTi, then PTx = y cos MPTi = Vj-y which in (7) gives

PT^ = s = the arc OP; (8)

and since y' = PTi' + TiM% from (6) and (8),

TiM = a. (9)

Therefore, the point Ti is on the involute of the catenary

which originates from the curve at 0; TiM is a tangent to

this involute; and TiP, the tangent to the catenary, is

normal to the involute. As TiM is the tangent to this last

curve, and is equal to he constant quantity a, the involute

is the equitangential curve, or tractrix.

147. Expansion of cosh x/a and sinh x/a.— Expanding
X X

e^ and e ^^ in series and taking the sum of the two series term

by term gives for (5i),

j/ = acosh^ = a[l +^ +^ +
/y.2 /V.4
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Taking the difference of the two series gives for (3),

s = a sinh - = a - + -^-5-: + -r-^-, + • • •

a \_a a^Sl a^5\ J

" ^ "^ 6^ "^
120^4 + • • • ; (11)

/. for (4),

X
For these expansions, put - for x in Examples 8 and 7 of

Exercise XLIII.

148. Approximate Formulas. — The series in Art. 147

are rapidly convergent when x is small compared with a.

X
Near the origin - is a small quantity, s is nearly the same as

dxi s X
X, and -y- = - - -\ hence, neglecting the terms with the

(XX CL a

higher powers of x;

(x^ \ x^ X?

^+^!J = " + 2^' "^ 2/-a = 2^; (1)

(X X^ \ x^
s

^ = tan0 = - + -|^ = - +~ (3)

Equation (1) is the equation of a parabola with its vertex

at (0, a), the lowest point of the catenary. Where the cord

is very taut with small sag, s is very nearly the same as x,

and as they are nearly equal in any case near the vertex

dii
where -p is small, if x is put for s in (1) of Art. 146, then

dy _ ^
. . _ n xdx _ x^

dx~ a^ " Jo a 2a'

the equation of the parabola with its vertex at (0,0) or 0.
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Hence, near its lowest point the catenary approximates

in shape a parabola. When xi = ^l,yi = a-\'d,d denoting

the sag; hence, for the sag at the lowest point of the curve,

or, approximately,

d = ^ = ||; ••• i? = g [(2)ancl(3),Art. 144]. (4)

Also at the supports tan </>! is, approximately

2a~2H~ltan0i = ;^ =^ = i^
[(4), Art. 144]. (5)

When ^1 = 2'

^'"2"^48a2+ ' ' ' "2+48:^2+" ' "2+ "6l"''*
" '

^^^

Hence, when the supports are at the same elevation,

73 ..,273

Total length = 2si = Z + ^rf^ = ? -f
24a2 ' 24/^2

= Z +^, approx. [(10), Art. 144]. (7)

Note* — When the sag is 1 per cent of the span, the error

in H or d, from using these approximate formulas, compared

with the value from those for the true catenary, is about 2^4

of 1 per cent. For a sag of 10 per cent of the span, the error

is about 2 per cent.

149. Solution of s = a sinh x/a. — While in practice the

approximate parabolic formulas of the preceding article are

generally used, the curve y = a cosh - appropriately mag-
CL

nified fits any cord hanging under its own weight, the con-

stant a depending upon the tautness of the cord.

When the horizontal distance Xi, from the lowest point of

* Poorman's Applied Mechanics.
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the curve to one of the supports B, and the length of the arc

OB = si are given, then approximate values of a, yi, Ti, H,

and d = yi — a can be found. For putting Xi for x in (3),

then

prVe^— e "y = asinh—

)

Si = p:\e'^ — e "/ = asinh—

J

(1)
2 a

where Si and Xi being given, a is found by solving the trans-

cendental equation. The solution is by approximations and

use of tables of the hyperbolic functions. When the supports

are at the same elevation and I denotes their horizontal

distance apart or the span, I = 2 Xi, and for total length of

cord,

S = 2si = a\e^- e"^^), (2)

where S and I being given, a is found by solving the equation.

The curve heretofore considered is called the Common
Catenary, the cord being of uniform cross section.

In the Catenary of Uniform Strength, the area of the cross

section of the cord at any point is varied so there is a con-

stant tension per unit area of cross section. The equation

is

y = clog sec (x/c).

Example 1. — A chain 62 feet long, weighing 20 lbs. per

ft., is suspended at two points in a horizontal line 50 ft. apart.

Find a; the horizontal tension; the terminal tension; the

sag of the chain.

Here

s = ^\e^-e «; = ^Ve«-e «; = 31. (1)

a: + g^ = 25 +1^ = 31, by (2), Art. 148;^ _ o. .
(25)

(25)^ ^ 6X6 .

a2 25 '

— =
"E
~ J- '2, approximately.

a o
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25 25
Now let — = z: ^, a = — , which substituted in (1) gives

a z

Let j{z) = e" — e~^ — 2.48 2: = 0, where 1.2 is approx-

imate value for z. Reference to a table of hyperbolic sines

will show that the value of z is between 1.1 and 1.2.

The following is a method of getting a closer approxima-

tion to the value of the root z without the use of tables. Let

z = Zi-\-h, where Zi is an approximate root differing from

the root by a small quantity h.

By Taylor's Theorem:

J{z) = /fe + h) =f{z,) + hf fe) + |V"fe) + • • • = 0.

Neglecting higher powers of h,f{zi) + hf (zi) = 0;

.', z = Zi — n,^ Y as first approximation for z.

Let this value be Z2, differing from zhyk < h;

1.2

.-. f{z) =f{z, + k) =f{z.2) + hf fe) + |/"fe) + • • • = 0.

Neglecting higher powers of k, f (Zi) + hf (22) = 0;

•• "
/'fe)' •• ' ^'

f'izd

as second approximate value for z.

By repeating this process a value which approximates

closer and closer to the true value of the root can be gotten.

Applying the method to this example:

fiz,) _ e''^-e-^-'-2ASXl.2 _ 0.04 _ ,,,,

f(^i)~ ei-2 + 6-1-2 -2.48 - 1.14- "-^^^^

/. Z2 = Zi-h = 1.2- 0.035 = 1.165.
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Now

"'
/,1.165 _L_ x,-1.165 O /1C 1 rkOQ V^.WUU,

giies - g-Li65 _ 2.48 X 1.165 ^ _ 0.005

4_ e-1.165 _ 2.48 ~ 1.038

/. 2 = 2:2 - A; = 1.165 - 0.005 = 1.16,

an approximation close enough, the value found from the

table by interpolation being the same.

Hence,

a = ?5 =^ = 21.55 ft.
z 1.16

f^ = tya = 20 X 21.55 = 431 lbs.

2/1 = Vsi2 + a2= V(31)2 + (21.55)^^ = 37.75 ft.

(6) Cot. Ill, Art. 146.

J = 2/1
- a = 37.75 - 21.55 = 16.20 ft.

r = ^2/1 = 20 X 37.75 = 755 lbs. Cor. 11, Art. 146.

Example 2. — To get the correction for the sag in measur-

ing horizontal distances with a steel tape unsupported except

at the ends where puU is apphed.
' A 100 ft. steel tape was weighed and its weight found to

be If lbs., making w = 0.0175 lb.

Using the equation of the parabola,

y = ^-p, where P = H is the pull in pounds;

d = ^^, exact if I is span, approx. if I is arc or tape,
o Jr

Length of tape = s = 1 + -^y — -^-^ + • • •

= ^ + 24P"2
~

640P"4 + • • •
^ (8), Art. 144;

_ _7_8c^2_ ^2^3 C approx. correction for one ( ..
^~^ ^^~24P2 ^tapelength, (10),Art. 144^' ^^

True horizontal distance

ID 9i= Z= s — .

p^ , approx., s^ being put for P. (11), Art. 144. (2)
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In (1) when s and P are given to find I a cubic equation

results, the solving of which may be avoided by putting s^

for l^, since they are nearly equal, the correction being small.

Substituting the pull P in lbs. in (1) or (2), the correction or

the horizontal distance, respectively, for each tape length

will be found. The pull may be measured with a spring

balance. Since sag shortens the distance between tape ends

and pull lengthens it by stretching the steel, there is some

pull at which the two effects are balanced. The stretch is

given by

where P is pull in lbs., I is length of tape, A is area of the

cross section, and E is modulus of elasticity, usually expressed

in lbs. per sq. in.; for steel, E = 30,000,000 lbs. per sq. in.

To find the pull that will just balance the effect of sag,

put the values of x from (1) and y from (3) equal;

wH' PI . ^ ,= -rr=, approximately;
24 P2 AE

whence,

-^- -^— , approximately.

In this example the width of the tape was x% in. and the

thickness ^V in., making area A = 0.00525 sq. in.

V 2^

'^^^'^•^^(100)^30 = 27 lbs.
24 (1000)

This pull to balance effect of sag can be determined experi-

mentally by marking on a horizontal surface two points 100

feet apart, and then noting the pull on a spring balance when

the ends of the suspended tape are exactly over the points

marked.

150. The Tractrix. — The characteristic property of the

tractrix is that the length of its tangent at any point is
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constant. Denote the constant length of the tangent PT
by a.

If a string of length a has a weight attached at one end

while the other end moves along OX in a rough horizontal

plane XOY^ the point P of the weight, as it is drawn over

the plane, will trace the tractrix APPi ....

Let AO be the initial position of the string and PT any

intermediate position. Since at every instant the force

exerted on the weight at P is in the direction of the string

PT, the motion of the point P must be in the same direction;

that is, the direction of the tractrix at P is the same as that

of the line PT, which is, therefore, a tangent to the curve.

To find the length and equation of the curve: let

PD = ds; then -PN = dy and ND = dx;

ds^ _ _ Pp^ _ _ ^ (^\
•*• dy- PN~ y

^^^

Hence, if s is reckoned from A (0, a), then the length

s=-a p* = alog^. (2)
Ja y y

Also, from the figure,

^ = - ^
or — = - ^^' ~ ^'

> (3)
dx Va2 - 2/2' dy V '
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/. x= r - Va^-y^^= - Va2 - y^

+ a\og\^—^—^j (See Ex. 20, Exercise XXV.)

is the equation of the tractrix.

Example 1. — To find the area bounded by the tractrix in

the first quadrant, the x-axis, and the y-axis.

A = lydx=- fVa^-y^dy (from (3))
•

«>'0 *Ja

Example 2. — To find the area bounded by the catenary,

the X-axis, the y-axis, and any ordinate y.

A=^ f\e^ + e"V dx = ^- (e« - e~«) = a^ sinh - (1)
Z t/ Z a

= a^ Ve"^ — e "/ = as,

where s = length of arc. (See (3), Art. 146.)

For area up to x = a.

Hence, by (1),

a cosh -dx = a^ sinh - •

a a

151. Evolute of the Tractrix. — It has been shown in

Art. 146, Corollary III, that the involute of the catenary is the

tractrix. Conversely, it may be shown that the evolute of

the tractrix is the catenary. Let {a, (3) be the coordinates of

C, the point of intersection of the normal at any point

P (x, y) of the tractrix and the perpendicular to x-axis at T,

end of tangent, PT = a. From the figure (Art. 150),

or = « = X + Va2 - y\ (1)



EVOLUTE OF THE TRACTRIX 257

and {TC and PC being drawn)

TC = jS = -, since
y

Equation of tractrix,

^^ ^ a^ . /3 a ( from similar triangles , .„.
TC = ^ = -, smce - = -\ ^^^ a iDrri^j V (2)

y a y \ PTC and PTM '

(3)x= - V a2 - 1/2 + a log — ^

Eliminating x and y from these three equations gives

a L a J

.-. e^ = ^-±^^!ZZ.
(4)

Solving (4) for /3 gives for the relation between a and j8,

which is the equation of the catenary with origin at 0; and

its lowest point at A, one end of the tractrix.

The normal PC to the tractrix, the involute, is the tangent

to the catenary, the evolute, and is equal in length to the

arc AC (not drawn) of the catenary.

If the equations for coordinates, a and jS, of the center of

curvature, given in Art. 94, be used, the values found in

(1) and (2) will result.

Note. — It may be shown independently of Art. 146,

Corollary III, that the catenary is the curve which has the

property that the line drawn from the foot of any ordinate

of the curve perpendicular to the corresponding tangent is

of constant length a.

Thus, let B be the angle which the tangent CP makes with the

jr-axis and it is evident from the figure {CP being drawn) that

a . 1 1
COS0 =

^ Vl+tan2^

Mt)
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da

a v^

(I Jo Ja

d^

.: ^ = log(, + V,-^)T=log(^±^^);
U Ja \ G /

... ^ = l±^^FEI.
(4)

a

a( - --\
Hence, j8 = ^ V^'" + ^ "A as before.



CHAPTER IV.

INTEGRATION AS THE LIMIT OF A SUM. SUR-
FACES AND VOLUMES.

152. Limit of a Sum. — A definite integral has been

defined (Art. 124) as an increment of an indefinite integral.

It will now be shown that a definite integral equals the limit

of the sum of an infinite number of infinitesimal increments or

differentials.

Many problems in pm'e and applied mathematics can be

brought under the following form

:

Given a continuous function, y = f (x), from x = a to

X = h. Divide the interval from x = a to x = b into n equal

parts, of length Ao^ = (6 — a)/n. Let Xi, X2, X3, . . . Xn be

values of x, one in each interval; take the value of the function

at each of these points, and multiply by Ax; then form the sum:

/(xi)Ax+/(x2)Ax+ . • . +/(xn)Ax. (1)

Required, the limit of this sum, as n increases indefinitely and

Ax approaches zero.

This problem may be interpreted geometrically as the

problem of finding the area under the curve y = f (x)j

between the ordinates x = a and x = b; each term of the

sum representing the area of a rectangle whose base is Ax
and whose altitude is the height of the curve at one of the

points selected.

Let the area MiPiBX be denoted by A; let OMi = a,

OX = b, and PiB be the locus oi y = f (x).

Let Ax be one of the equal parts of MiX, although the

parts need not be made equal provided the largest of them
approaches zero when n is made to increase indefinitely.

259
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It is easily seen that the difference between the sum of the

rectangles as formed and the area A is less than a rectangle

whose base is Ax and whose altitude is a constant, / (6)
—

/ (a). Since this difference approaches zero as Ax = 0. the

sum of either set of rectangles approaches the area A as a

M^ M^ M^ M^ M^ M^X

limit. It is evident that the sum of the rectangles which

are partly above the curve is greater than A, while the sum
of those which are wholly under the curve is less than A.

By the notation of a sum, letting T be the difference,

A = ^ j{x)Ax±.T, where T, <f{h)Ax, =0, as Ax = 0;
a

:. limit TV (^) Ao; = A = T / (x) dx. (2)
Ax=0 a *J a

The equation (2) is true, for it has been already shown that

A =Jj (x) dx =Jf (x) dx~^^^-ff (x) dx]^^ = F(b)-F (a),

where
j f(x) dx = F (x). It follows that the hmit of (1) is

\im\f(x,)Ax+f{x2)Ax+- ' '+f(xn)Ax] = F{h)-F(a), (3)

where a and b are end values of x and / f(x)dx = F(x),
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Tra'

The theorem of this Article summarized in equation (2) may
be said to be the fundamental theorem

of the Integral Calculus.

As a simple example of the determi-

nation of an area by getting the limit

of a sum of an indefinite number of in-

finitesimal elements of area, let a circle

of radius a be divided into concentric

rings of width Ax; then for the area

A,

A = limit y 27ra;Ax = 27r / xdx = 2-^x^12 =

Here AA = 2 tt (a; + i Ax) Aa; and dA = 2t^x dx.

153. The Summation Process. — On account of the

frequency of the occurrence of the summation process, it

may be said that an integral means the limit of a sum, the

Hmit being in most cases most easily found as an anti-

differential or anti-derivative ; that is, by the inverse process

to differentiation, namely, by integration.

The symbol / for integration, the elongated S, is derived

from the initial letter of summa, the integral being originally

conceived as a definite integral, the limit of a sum. Accord-

ing to Art. 128, the indefinite integral also may be regarded

as the limit of a sum.

The fact that the summation of an indefinitely large

number of indefinitely small terms is in most cases easily

effected by a comparatively simple process is of the highest

importance. Thus integration replaces the tedious and often

difficult process of direct summation and gives an exact

result, while the other often gives but an approximation at

the best.

While the process of summation has been illustrated

geometrically by the determination of an area, the reason
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of the process by no means depends upon geometrical con-

siderations. The method is appHcable to the determination

of the hmit of the sum of small magnitudes of all kinds—
volumes, masses, velocities, pressures, heat, work, etc. For

an example of finding the hmit of the sum of small volumes,

consider the volume V generated by revolving the area

MiPiBX of the figure of Art. 152 about OX as an axis.

Each of the rectangles P1M2, . . • , PnX will generate a

cylinder whose volume will be expressed by t {f {x)y Ax;

hence,

a

where T, < tt (/ {h)y Ax, = 0, as Ax = 0;

/. hmit y.^TT (/ {x)Y Ax=V = Ttt (/ (x))2 dx, (1)

Example. — Find volume of a sphere by revolution of

y"^ = o? — x^ \V = I IT (a^ — x^) dx = ^ ira^.

For another example of finding the limit of the sum of

small volumes, find the volume of the sphere considered as

made up of concentric shells of thickness Ap.

F = lim T4 7rp2 . Ap = 4 TT / p2 dp = | wa^.

154. Approximate and Exact Summations. — When the

rate of change (or the derivative) of a variable quantity is

given, the total amount (or the integral of the rate) can be

obtained approximately by direct summation, and exactly

by finding the limit of a sum; that is, by integration.

For example, suppose the speed of a train is increasing

uniformly from zero to 60 miles per hour, in 88 seconds;

that is, from zero to 88 ft. per sec. in 88 seconds, the increase

in speed each second (the acceleration) is 1 foot per second.
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Hence the speeds at the beginnings of each of the seconds

are 0, 1, 2, 3, ... , etc.

Taking the speeds as approximately the same during each

second as at the beginnings, the total distance.

07,00
s = + l+2 + 3+ • • • +86+87 = ^^ = 3828 ft.,

which is evidently less than the true distance.

Taking the speed at the end of a second as that during

the second,
00. oq

s =1+2 + 3+4+ . • • +87 + 88 = ^Y^
= 3916ft.,

which is evidently greater than the true distance. These

values for the distance differ by 88 ft. and it is certain that

the true distance is between 3828 ft. and 3916 ft. When the

length of the interval during which the speed is taken as

constant is reduced more and more, the result will be more

and more accurate, nearer and nearer to the true distance.

Manifestly, the exact distance is the limit approached by

this simimation of small distances as the interval of time

Lt approaches zero:

]<=88
'=88 /»<=88 /2-l<=88

= \imy.vM=
I

tdt = }.\ = 3872ft.

In general,

s = limit^ V At = I atdt = i at^,

a being constant acceleration.

In mechanics, the determinations of centers of gravity,

centers of pressure, moments of inertia, varying stress, etc.,

involve the summation principle; and the greater number
of the integrations in practice appear more naturally as

limits of sums than as reversed rates, anti-derivatives, or

anti-differentials.

The summation of an infinite number of terms is always
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involved when one of the factors entering into the problem

varies continuously. For example, in the problem of finding

the mass of a body, defined as the product of density and

volume; when the density p varies continuously,

m limit ypA7= fpdV,
A7=0 J

where the integral taken between 'limits," that is, with

end values for the independent variable, is the limit required.

Hence the mass is given by a definite integral, which can be

evaluated when the density p is a known function of the

volume V, that is, of the variables x, y, z or r, d, cj), in terms

of which the volume may be expressed. When the density

p is constant, it is evident that the mass is

m = 5)pAy = p fdV = pV.

Thus, when the body is composed of different liquids of

varying densities in the layers or strata, the total mass is

found by the addition of a finite number of terms. For if

Vi, V2, V3, . . . Vn denote the volumes of the separate

parts, and pi, p2, ps, . . • Pn the corresponding densities, then

^ = plVi + P2V2 + P3V3 + • • • + PnVn,

where the summation is made without integration.

The above will give an approximate result even when the

density varies throughout the whole mass. When, however,

the density varies continuously as in the atmosphere, the

total volume is divided into n parts each equal to AF and

each part is multiplied by the density at that part of the

body. There are then n elements of the form pAF, and

when n is finite their summation will be an approximation

to the mass of the whole; but to get the exact value, the

limit of the sum, as n becomes infinite and AF = 0, must be

found, and hence the exact value of the whole mass is deter-

mined by the process of integration.
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Example 1.— li y = x^, find ^ x^ Ax for different values

,^2 1

of Ax, and get lim^ x^ Ax. Get limV x"^ Ax.
Ax=0 '1

When Ax = 0.2,

,2

Ax=0

^ x^ Ax = (V + l72 -\-h? + i:S' + Is') 0.2 = 2.04.

When Ax = 0.1,

2)%2^x= (p + n' + r2'+ • • • + 19') 0.1 = 2.18.

When Aa; = 0.05,

V%2 A:c = (P + iM' + n' + • • . + L9?) 0.05 = 2.26.

X-N^
/*2 ^3"]2 8—1

Lim 2^ x'^ Ax =
I

x^dx = -^\ = —-—
Ax=0 ^1 J

I

oji d

= 2.33J square units in M1P1P2M2.

SI
ri ^3-11

I
x"^ Ax =

I
x^dx = ^\ = -

Jo / ojo o

= 0.334 = J of rectangle OikTiPiiVi.

K

I

/

^, ^o

1 ^4^^
Example 2. — If y = -, find ^ — for different values of

X ^^ 1 X

.4 Ax Ax
Ax, and get hmV — Get V — as Ax = 0,

Ax=0^1 0? ^0 X
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When Ax = 1,

When ^x = 0.5, T — = 1.593.'^1 X

— = 1.426.
1 X

LimT-^= / -:^ = log:c = log4- logl = log4
Ax=0 ^1 X Ji X Ji

= 1.386 = Area M1P1P4M4.

LimT — = I — = loga; =logl-loga= — loga =00;
Ax=0 a ^ t/a ^ Ja Ja=0

hence, when a = 0, the Hmit does not exist, as T, — = qo .^Q X Jax=0

(Compare Ex. 11, Art. 135.)

Note. — For examples of appHcation see Art. 189.

EXERCISE XXX.

1. If ?/ = X, find ^ a: Ax, when Ax = 1; when Ax = 0.5; when

Ax=»0.2. Getlim V xAx. Ans. 18; 19; 19.6.
Ax=o '^^a

Ans. 20.

2. If 2/ = tan 0, find ^ tan A0, when A0 = ^ ; when A0 = ^

;

I
2E

whenA0 = r^. Get Hm V'tan^A^. Ans. 0.316; 0.328; 0.340.
15U Ae=o ^^-^ /-

^ Ans. loge V2 = 0.346.

Determine the following quantities (a) approximately by summation

of a limited number of terms; (b) exactly by finding the limit of the'sum

of an infinite number of terms by integration.

3. The area under the curve y = a?, from x = to x = 2; from

a; «= —1 to X = 1.

4. The distance passed over by a body falling with constant accelera-

tion g = 32.2 per sec.^, from t =^ 1 to t = 4, v = gt being the relation

of V and t.
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6. The increase in speed of a body falling with acceleration of

g = 32.2 per sec.2, from t = Otot = 3.

6. The number of revolutions made in 5 minutes by a wheel which

revolves with angular speed co = ^VlOOO radians per second.

7. The time required by the wheel of Ex. 6 to make the first ten

revolutions.

155. Volumes. — The volumes of most solids may be

found approximately by the summation of a finite number of

parts and exactly by finding the limit of the sum of an infinite

number of terms by integration.

Example. — To find the volimie of the right circular cone

whose altitude is h and the radius of whose base is a. Divid-

ing the volume into parts, each A 7, by passing planes Ax
apart parallel to the base Ah, and denoting a section at a

distance x from the vertex at the origin by Ax, then, since

Ax/Ah = x^/h^, V is given approximately by

XA7 = T AxAx = X
and exactly by

Ah ^ Ax

7 = hm X ^k
Ax=0

^ Ah x^>

/i2 3

h^
Ax

^Ah p
h' Jo

x'^dx

I
A./,.

(1)

(2)

(3)

While AF is a frustum of the cone, dV may be represented

by the cyhnder PMMi = Ax' Ax = iry^ dx.

It is to be noted that the equations all apply to a pyramid

with any plane base Ah^^ well as to the cone.
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For another example : to find the volume of a sphere with

radius a, divide by planes perpendicular to OX; then, since

V = lim X'A,^-^^x = ^ r {a' - x^) dx
Ax=0 —a Ci (X *J— a

Aof . x^l" Ao 4 „ 4 „ - . „= -r a^a; — 17 = —? * o ^ = o 7^o^^ where Ao = wa^,
c?

\_ 3J_a a^ 3 3

Otherwise;

2) AF = 2) Ax Aaj = 2) ^?/^ ^^' where Ax = tti/^;

x-\ r« 4
.*. F = Hm X TTi/^ Ax = TT I (a^ — x^) dx = -^ iroF.

156. Representation of a Volume by an Area. — In Art.

138 on the significance of an area as an integral it was stated

that the integrals represented by areas might be functions

of various kinds. To show an example of a volume as an

integral represented by an area under a curve, let the volume

of the paraboloid of revolution, between x = and x = 4,

be first found as the limit of the sum of the parts between
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the parallel planes Ax apart, as Ax = and the number

of the parts increases without limit. The equation of the

generating parabola being y'^ = I x,

V = Umit y\ rf Ax = -T I xdx = -r-pr\— 2Tr cubic units.
Ax=o ^0 - 4 Jo 4 2 Jo

•^JC

To represent this volume graphically by an area, the Kne OP^

is drawn by the equation y = jx, this being the function

which was integrated to get the volume of the soUd P^OP^.

Producing the ordinate M2P2 to P", the area OM2P"
graphically represents the volume of the sohd P^OP'i- For,

Area OM^P" = I ydx=j I xdx=j-^\ =2Tr square units.
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The last result may be verified by noting that the ordinate

M2P'\ for X = 4, being t, the area of the triangle is 2 tt.

In the same way it may be seen that any part of the area,

as OMP', represents the corresponding part of the volume

of the soHd; that is, there is the same number of square units

in the one as there are cubic units in the other.

If OP'P"'y the first integral curve of OP'P"j whose equa-

tion is

=x -rxdx = -^ (see Art. 140)

be drawn, its ordinates will represent both the areas of the

parts of OMiP'' and the volumes of the parts of the parab-

oloid measured from ; that is, the measure of the ordinates

in linear units will be the same as that of the areas in square

units and that of the volumes in cubic units.

Length of M2P'" ^ V — ~o~\ = 2 tt Hnear units.

Note. — The volume of the cone of Art. 155 may be graphi-

cally represented by the area under the parabola y = -r^x^,

and the volume of the sphere by the area under the parabola

2/
= TT (a^ — x^) . If the first integral curves.

An
3^,x3 and = .(a^x-|)

be drawn, their ordinates will represent both the areas and the

volumes in the two cases, respectively.

157. Surface and Volume of Any Frustum. — A solid

bounded by two parallel planes is, in general, called a

frustum. One or both of the truncating planes may in

special cases, as in the sphere, touch the frustum in only

one point and be tangent planes.

The method of dividing the soHd into thin slices and taking

the sum of the approximate expressions for the small parts

as an approximate expression for the whole, and taking the
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limit of the sum as an exact expression for the whole, may be

applied to any solid even when the solid is not regular and

the sections not regular plane curves.

Let the solid represented in the figure be divided into

slices by planes perpendicular to an axis OX; then, taking

Ax^x as an approximate expression for the volume of the

sHce P — NiMiRi, Ax being the area of the section PNMR
at a distance x from plane ZOY, the approximate expression

is
x=h

X^v = XA.^x,

where h{= OA) is the distance between the truncating or

bounding planes. The exact expression is

V = \imy,Ax^x= I Axdx. (1)
A„^n-*-< Jx=0Ax=0 x=0

When the area of a section is a function of the distance x

from one of the bounding planes and hence Ax can be ex-

pressed in terms of x, the limit may be found by integration.

The frustum formula for volumes is, therefore,

Jr*x
= h px=h
F{x)dx or V=

I
x=0 Jx=hi

F{x)dx, (10
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where Ax is F(x), some function of x; the one form giving

the whole volume and the other a segment or any part

thereof.

To get expressions for the area of the surface S, let P be

the curve NPR, then AS = NPRRiP'Ni, and the approxi-

mate expression is

where As = NNi and s is the length of CN.
The exact expression for the surface is

S = ]imity\PAs= I Pds. (2)
As=0 s=Q Js=0

When the curve P is a function of s, the bounding curve in

XZ plane, and can be expressed in terms of s, or when ds

can be expressed in terms of P, with change of end values,

the limit can be found by integration. If the surface S is

conceived as generated by the curve NPR as it moves with

its plane always perpendicular to OX, when its plane is in

the position as shown, at a distance x from plane YZ, let

NN\ be drawn equal to ds but parallel to OX; then since the

surface is cylindrical, the increase of S, if the increase became

uniform, is

dS^P ds, the surface NPRR'P'Ni']

Pds. , (2)
s=0

If the curve NPR is a circle, as in soHds of revolution, with

the center at M on the a;-axis, then P = 2 tt^/ and Ax = irifi

(2) and (1) becoming

>S = 27r r^^'yds (3)
Js=0

Jrx=h
y^dXy (4)

x=0
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where dV = iry^ dx is the volume of the cyhnder generated

by the area of the circle iry^, as it moves uniformly through

Ax = dx.

Note.— In deriving (1) and (4), in the figure, NNi = Ao; =

dx; while in deriving (2) and (3), ds, the uniform change of

5 along a tangent to the curve CN at the point N, is drawn

parallel to OX and represented in length by NNi, although

it is not the same as Ax = dx but is really longer.

Example 1. — To find the lateral surface of the cone of

Art. 155: by (3),

S = 2^
I

yds = 2Trl -^ sds, where s = -y = OPf

n Si
-= 2 TT 7 pr = -wal, where I = OPh, an element.

6 z Jo

Again,

J'^Sft
/•2/=a

I /I \ I

yds = 2Tr
I

y-dy, since ds = d(-y]= -dy^
Jo ct \a / a

limit or end value being changed from I to a.

Example 2. — To find the surface of the paraboloid of

Art. 156:

J^l
1 1

2/ [1 + 64 y^]''dy, from 2/^ = 7 x,
4

.[l + (64,^)i]J = ^ ((65)1-1)
27r

1281

0^ (65 V65 — 1) square units.
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Example 3. — To find the surface of the sphere of Art. 155,

or any part of it, as a zone.

For a change take origin at A' on the circumference,

making y = a/2 ax — x^ and 2 iry the curve P bounding the

section A^; then by (2) or (3),

Pds = 2t
I

yds = 2t I adx
Jq Jxo

(where y ds = a dx, from similar triangles, OMP and PDT)
]x I2a

= 2 7ra (o; — Xo) or 2 i^ax — 4 Tra^.

xo Jo

Ddx T

Drawing PT = ds from P parallel to a;-axis, 2 iry ds is the

lateral surface of the cylinder PT\ which is equal in area

to that of the cylinder DT\ which is 2 ira dx.

The volume is again, with origin at A', by (4),'

yidx= ir
j^

{2ax-x')dx = ir\^-'^\ = 7ra^

Example 4. — To find the lateral surface of a quadrangular

pyramid. Let Ph = perimeter of base and I = OPh = slant

height. Let PMN be the position of the generating perim-

eter P when s = OP. Since P and Ph are similar,
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P
Ph

OP
OPh

s
hence, P = -^ s, in (2)

;

^ =
Jo

^^^ = TJo^^^ = T2jo="2-'

that is, the convex surface of any pjramid or cone (Ex. 1)

is measured by half the product of perimeter of base and

slant height.

y

For the volume,

V= I Axdx = ^i x^dx, since-T^=7^, Ax= areaPilfiV,
t/o ti Jq Ah ft

nh
IAh X^

h^ 3

that is, the volume of any pyramid or cone ((3), Art. 155) is

measured by one-third the product of its base and altitude.

Note. — The foregoing, for the purpose of illustration, have

been for the most part examples of elementary soUds whose

surfaces and volumes are known from soUd geometry. The
fruitfulness of the method is seen in the determination of the

surfaces and volumes of the frusta of unfamiliar and complex

solids.

The following are some examples:

Example 5. A monument is to be built in horizontal rec-

tangular sections, one side of a section to vary as the dis-

tance below the top and the other as the square of this
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distance. The base is to be a square 30 feet on a side, and

the height of the monument is to be 20 feet. Find the vol-

ume when it is made up of rectangular blocks with vertical

sides; and also the volume when the sections vary contin-

uously from top to base.

Taking origin at top and z positive downward, let Aa =
4:xy,2y = az,2x = hz^; 22/ = 20a = 30; /. a -= ^•, 2x =
400 6 = 30; .*. h

for curve OA. A,

2=20

4^>

4x2/

y = i

ahz^ =
z, for line OB; x = -ijjZ^

9 ^3
so 2 )

2=20

1 = 5 . ^9_ [0 + 53 _|_ 103 + 153 + 203]
Ja2=5

= 7031i cu. ft.

Hence, as Az, the thickness

of the blocks, is made less

and less, the volume will

approach 4500 cu. ft., the

volume when sections vary

continuously. The plan is

shown on reduced scale.

The projection of OD, the

curve of intersection of the

JO

JO

iB IDL .]s J

\ 1 X
\ 1

1 /

/I \

15

A

/ 1 \^ 1 \
IS 15

plane surface OBD and the curved surface OAD, is O'D
on plane parallel to X7 plane. The equation of O'D is
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if = 15 X, by eliminating z from y = %z and x = ^\ ^.

The plan shows the corners of the blocks on this curve.

Example 6. Find the lateral sm-face of the mommient of

Ex. 5. When built of rectangular blocks, the sum of the

rectangular areas gives the area of the surface. When the

stone is shaped to make sections vary continuously, or when
this is effected by using concrete in shaped forms, find the

areas of the surfaces OBD and OAT) separately.

E = OAT>^ fpds = £l.ds ^iP[l +(1)7..

3 p Til /3 Vl^^ 3 1600 2r/^
,

9 Ml'^

=f[f^!5-']:-

4 (OAD) = 1|2[46:|^-] ^ 200
^ 3^ ^ ^ 3^^ sq. ft.

'=^^^=
f''^

=
n^''^

= torb + (2)7 '^

3 8000 ,^. „^= ^.-^= 125 sq.ft.

4 (OBD) = 4 X 125 = 500 sq. ft. Total surface = 1362 sq. ft.

Note. — Since OBD is a plane surface, its area may be

found by

A =
I

xds = I z-^ s^ ds = 777^ • :5- =125 sq. ft.,

Jo Js=0 i^o iZo Ojo

as above. Here x = yfj s^ is the equation of curve OD in

the oblique plane of sx, for since OB = 25, y = i s, and

2/2 = 15 X becomes ^5 s^ = 15 a:, or x = its s^-

In Ex. 5 above, y'^ = 15 x is given as equation of pro-

jection of OD on xy plane, or any plane parallel thereto.
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While OD is given as a line in space by two equations, by
rotating axis OY about OX through tan-^ f§ = cos-^ f , it is

given by one equation, s^ = ^f^ x, in plane of sx.

Example 7. Find the volume common to two right circular

cylinders of equal radius a, whose axes intersect at right

angles.

Let the two cylinders be x^ -\- z^ = a^ and y"^ -\- z^ = a^;

then A, = LMPN = xy = a^ - z^, and

8 pA. dz = Sr (a2 - ^2) dz = S \ah - ^1'
16 3

The total volume common, being 8 times Z — OACB, is ^3^- aP,

Example 8. A dome has the shape of the figure of Ex. 7,

find the area of the curved surface.

The surface ZBC is equal in area to the surface ZAC, and

is one-eighth part of the surface of the dome, which surface

is the upper half of the surface of the common volume of

Ex.7.

Hence the surface of the dome of eight equal parts is

given by
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S = 8ZBC = 8 r^Pds = 8 r^NPds

-dz = 8a I dz = Sa^.
y Jo

The result shows that each of the curved surfaces of the sohd

Z — OACB is equal in area to

its base OACB; the surface of

the dome being just twice that

of its base.

Note. — Another determina- ^
tion of the area of ZBC may
be made by developing the

curved surface upon a plane

and finding the area as a plane

area. Thus, developing ZBC
as the plane area Z'BC, with B as origin;

area Z^BC = area ZBC J\'dz\

where a; = x' = a cos 6, and z' = ad

cos 6d (ad) = a? sin Q
'I=«-

Example 9. Given a right cyUnder

of altitude h, and radius of base a.

Through a diameter of the upper base

two planes are passed, touching the

lower base on opposite sides. Find the volume included

between the planes.
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y = r A, dx = 4 r {MNPR) dx = 4: tyz dx
t/O t/O Jo

= 4 r(a''-x')^^ia-x)dx
Jo a^ '

= — pa (a2 - x^)-^dx-— r (a2 - x^)"^ x dx
a Jo a Jo

[_Z Ji ajo o tt Jo

TTO^h— 5 a2/i= (vol, of cylinder) — (vol. outside the planes).

Here

OA '

MN = RP = y = (a" - x"^)^.

lY

NP = z = -{a-x);

It may be noted that, when
h is equal to a, the volume

outside of the planes being |

a^, is one-fourth of the volume

common to the two cyhnders of

Ex.7.

Example 10. Two cyhnders

of equal altitude h have a

circle of radius a, for their

common upper base. Their

lower bases are tangent to each

other. Find the volume com-

mon to the two cylinders.

7= f^Aydy^ r {PMM')dy= txzdy
*y hi t/ —a J—a

=
I

x-xdy = -
I
x^dy=-

I
{a^ — y^)dy
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Here, PMM' being similar to ZAA'j

NP = OZ'NM
OA '

or z = -Xj where x^
a t

P is on curve of intersection of the cyUnders.

It is seen that the volume found is equal to the volume

outside the planes of Ex. 9.

Example 11. A torus is generated by a circle of radius h

revolving about an axis in its plane, a being the distance

of the center of the circle from the axis.

Find the volume by means of sections perpendicular to

the axis.

Aydy =
I [t (a -\-xy-Tr{a- xY] dy

hi Jx=-h

= TT P~^ [(a + V62 - 2/2)2 -{a- V62 - y'')^] dy

= 7r / 4:aVh^ -y^dy

|V6^";=:^ + ^6^sin-i^J^^

.2}

= 47ra

= 47ra 2Tr^a¥ = 27ra.7r62.
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Note. — The last form of the result shows that the volume
is the product of the area of the cross section and the length

of the circumference described by the center of the revolving

circle, radius a being mean of a + 6 and a — b.

EXERCISE XXXI.

1. Find the volume of the right conoid whose
base is a circle of radius a, and whose altitude

is h.

(a) With origin at 0, on the circumference;

y^ = 2ax - x\

(6) With origin at C, center; y^ = a^ — x^.

Ans. ^-.

2. An isosceles triangle moves perpendicular to the plane of the

ellipse x^/a^ + y^/V^ = 1, its base is the double ordinate of the ellipse,

and the vertical angle 2 A is constant. Find the volume generated by
the triangle. . 4 ab^ cot A

o

X? ifi Z^
3. Find the volume of the ellipsoid -^+r^ + i = Iby considering

the volume generated by moving a variable ellipse along the axis of X.

Area of ellipse = irab. From result get volume of a sphere.

Ans. jTrabc.

4. A football is 16 inches long and a plane section containing a seam

is an ellipse the minor axis of which is 8 inches in length. Find the

volume (a) if the leather is so stiff that every cross section is a square;

(6) if the cross section is a circle. Ans. (a) 341^ cu. in.

(6) —^ cu. m.

5. To fell a tree 2 a feet in diameter, a cut is made halfway through

from each side. The lower face of each cut is horizontal; the inclined

face makes an angle of 45° with the horizontal. Find the volume of

the wood cut out. Compare Ex. 9 of illustrative examples.

Ans. J a^ cu. ft.

6. Find the volume of the eUiptic paraboloid 2x = — + - cut off

by the plane x = h. Ans. ir "^pq h"^.

7. Find the volume of Ex. 9 by moving the trapezoidal section along

the F-axis. Note that the triangular section of the volume outside the
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cutting planes will at the same time generate that volume, the same as

the volume of 5 above, when h = a.

8. A cap for a post is a solid of which every horizontal section is a

square, and the corners of the square lie in the surface of a sphere 12

inches in diameter with its center in the upper face of the cap. The
depth of the cap is 4 inches. Find the volume of the cap. Compare
Ex. 7 of illustrative examples.

Ans. 490f cu. in.

9. Find the surface of the cap of 8, above. Compare Ex. 8 of

illustrative examples.

Ans. Curved surface = 192 sq. in.; surface of top = 72 sq. in.

10. Show that the volimae of the frustum of any pyramid or cone is

equal to ^ (Aq + Ah + VAoAh) where Ao and Ah are the bases, and h

is its height.

158. Prismoid Formula.* — If two solids contained

between the same two parallel planes have all their corre-

sponding sections parallel to these planes equal, that is, if

the area A/ of the one is the same as the area A/' of the other,

then their total volumes are equal, since the two volumes

are given by the same integral. Let the distance between

the bounding planes be, in general, s = x, or y, or z.

If the area A^ is a section of a solid included between two

parallel planes and is a quadratic function of s,

As = as^ + 6s + c, (1)

where s is the distance of the section As from one of the two

parallel planes, then the volume is given by

]s=h f*s=h r ^3 o2 -[s=h

=
J ^ (as'' + hs + c)ds = \a^^-\-b^ + cs\^

= -3- + "2- + c/i, (2)

where h is the distance of the terminal plane from the initial

plane of reference; that is, the height, or length, of the solid,

as the case may be.

* This derivation of the formula is substantially that given in Davis's

Calculus.
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The area Ao =As

the area Ah =As

= as^ -\- hs -\-

c

s=0

= as^ + bs + c
s=h Js=h

- ah^ -\-hh-\-c)

and the area i4.^ = A8 =as^ + hs-}-c\ =-r+7r+ c,

where Am is the area of a section midway between the end

sections, Ao and Ah.

The average of Ao, A^, and 4 times A^, is

g (Ao + Aa + 4 A^) = — + — + c;

and this average section multiplied by h is the total volume

:

Ao+A;,H-4A^^^ , a¥ . hhj^ . , . ._. .^,
g X/i=-^+^ + c/i,asm(2). ... (3)

Js=0

This is the Prismoid Formula, so called because it holds

not only for every solid whose volume is given in elementary

geometry hut for any prismoid, that is, for a solid with any end

sections whatever, with sides formed by straight Hues joining

points of one end section with points of the other end section.

159. Application of the Prismoid Formula. — The for-

mula holds even for many solids that are not prismoids, for

example, spheres and paraboloids. It holds for all solids

defined by equation (1), Art. 158, and even for all cases

where A a is any cubic function of s:

As = as^ + 6s2 ^cs + d. (1)

When / (x) is a quadratic or a cubic function of x; then,

in general.

£;V(.).. = [/(«)+4/(^^)+/(.)]V' (2)

in accordance with the prismoid formula. The practical

appHcation of the formula is mainly for the close approxi-

mation it gives to the volume of objects in nature; for any
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elevation or irregularity of the crust of the earth can be

approximated to quite closely, either by the frustum of a

cone, sphere, cylinder, pyramid, paraboloid, wedge, or prism;

and as the formula holds for these solids as well as for any

combination of them, it can be applied without determining

which of the solids actually approximates most nearly to

the object whose volume is desired. While it is thus used

to approximate to the volumes of irregular soHds, it is to

be remembered that it gives the exact volume, when the area

of a section As is either a quadratic or a cubic function of s,

including of course a linear function as a special case of the

quadratic or cubic function.

Example 1.— In the case of the cone or pyramid, Art. 155,

it is seen that A^ = A;i 7^ is a quadratic function of x, and

hence V = ^(o + A, + 4^)/i = ^ A,/i.

Example 2. — In the case of the sphere.

Ax = Aq T (a^ — x^),

hence, y = |(0 + + 4Ao)2a = ^ Aoa = f ira^, where Aq
= Am = Tra^.

Example 3.— In the case

of the paraboloid of revolu-

tion, about the axis OY, of

the curve y = x"^;

7=i(0 + A, + 4AJ/i

Here As = Try is a Hnear

function of the distance y,

for by (1), Art. 158, a = 0,

h = TT, c = 0; hence the

formula holds.
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Example 4. — The prismoid shown in figure is composed

of a prism, a wedge, and two pyramids. Let Aq be the

smaller end section, Ah the larger, and Am the mid section.

V = Aoh = -(Aq-\-Ao + 4: Ao), for prism,

y = a;
I
= ^(o + a; + 4 ^^), for wedge,

(o + A'jI + -—^j, for pyramid.V-A"h-^

The formula is seen to hold for the three forms of solids

composing the prismoid.

As a practical case, let the figure represent a section of a

railway embankment 100 feet in length.

A fill of 10 ft. with side slopes 1 J to 1, makes Ao = 250 sq. ft.

A fill of 20 ft. with side slopes IJ to 1, makes Ah = 800

sq. ft.

A fill of 15 ft. with side slopes IJ to 1, makes 4:Am = 1950

sq. ft.

Hence, 7= H^ (250 + 800 + 1950) = 50,000 cu. ft.
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Here V = h/2 (Ao + Ah) = H^ (250 + 800) = 52,500 cu. ft.,

by average end areas.

V = hAm= 100 X 487.5 = 48,750 cu. ft., by mean area.

It is seen that the error of the approximation by the average

end areas is twice that by mean area and of opposite sign.

Since the errors vary as the square of the difference in dimen-

sions of the two end areas, when the end areas are very

different, the true prismoid formula should be used, but

when the end areas are ahke, or nearly so, the approximate

formulas may give results as nearly exact as may be desired.

EXERCISE XXXII.

1. Get the volume of a frustum of a solid included between the

planes s = and s = h, when the area As of a parallel cross section is a

cubic function, as^ + hs^ + cs + d, of the distance s from one of the

bounding planes; first by direct integration using the frustum formula,

then by the prismoid formula. Thus prove the statement at the

beginning of Art. 159.

2. Show according to (2) Art. 159, as in the case of volumes, that the

area under any curve y = f (x), where / (x) is any quadratic or cubic

function of x, between x = a and x = b, is

—Q-^(ya-\-yb + 4:ym), (1)

where ya, yb, ym represent the values of y at x = a, x = b, and x =

I (« + h).

3. Find, first by direct integration, and then by (1) of Ex. 2, the

areas under each of the following curves.

(a) y = x^, between x = and x = 2.

(6) y = x^ -\-2x -JrS, between x ^ 1 and a; = 5.

4. Show that, when (1) of Ex. 2 is used to get area under the curve

y = x^ between x = 1 and x = S, the error is about 4.2 per cent.

5. Find the volume made by revolving the area between the curve

y = x^ and the x-axis about the a:-axis, between x = and x = 2. See

Ex. 3, Art. 159. Find first by (1) of Art. 153; then by the prismoid

formula show that the result by that formula is in error about 4.2

per cent.

Note. — The prismoid formula is not applicable for exact results,

when As is given by a higher function than a cubic; in that case, it and
the general formula (2), Art. 159, for / (x), give approximations.
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160. Surfaces and Solids of Revolution. — To get an

expression for the area of a surface made by the revolution

of a curve y = f (x)

about the axis OX, let

-Po {xo, 2/0) be a fixed

point and P {x, y) a va-

riable point on the curve

OPoP. Let PoP = s,

and PP' = As, and let

PD and P'R be drawn

each parallel to OX and

equal in length to As.

Let S denote the surface generated by the revolution of PqP

about the x-axis; then A>S equals the surface generated by

PP'. It is evident that

surface PD < A>S < surface P'/2;

that is, 2'Ky^s<^S<2^^{y-\- \y) As;

A.S
dividing by As, 27^y<^<2'I^{y-\-^y)',

hence, limit
| -^ = -7- = 2 tt^/, since A?/ = 0, as As = 0;

As=0 LAs

dS = 2Try ds or S = 2ir r
Jo

yds. (See (3) Art. 157.) (1)

Here dS = 2 7ry ds may be represented by the lateral surface

of a cylinder MPT', the circumference of whose base is 2 iry

and whose length is PT', drawn parallel to OX and equal to

PT, which represents ds along the tangent at P. This is so,

for this surface is what the change of >S would be, if at P the

change became uniform, ds being* the uniform change of s

as X increases uniformly from that point. The surface S
may be considered as generated by the circumference of a

circle of varying radius y and hence the point P moving on

the curve according to the law expressed by its equation

y=f{x). Since
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ds = idx^ + dy¥ = [l+{fjjdx or
[{^J

+ l] dy,

(1) becomes

Similarly, when the y-axis is the axis of revolution,

These formulas may be derived as the limits of sums; thus,

S = ^ (surfaces As) = lim 2) (surfaces chord As),
As=0

/ arc As

Vchord As

Aa;= lim y 2 Try As = lim T 2 tt?/ 1 +
Ax=0 ^0 Ax=0 ^Xo L m'

The other forms may be derived in the same way, which is

an abbreviation of a rigorous derivation.

In any particular example to which these formulas are

applicable, use that form which involves the simpler inte-

gration.

For volumes of sohds of revolution;

y = TT r%2 ^x = TT r (/ {x)Y dx, (See (4), Art. 157) (6)

when the revolution is about the a^-axis; and

V = T f\'dy = ir f\f(y)ydy, (7)

when the 2/-axis is the axis of revolution.
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A derivation as the limit of a sum has been given in Art.

153. In the figure of this Art. 160, if V is the volume made
by the revolution of the area MqPqPM about OX, then dV
is the volume of the cyhnder MPN, whose base is iry^ and

whose length is PN = dx. This is so, for this volume is

what the change of the volume V would be, if at P the change

became uniform, as x increased uniformly by l^x = dx from

that point. As in the case of the surface S the volume V
may be considered as being generated by a circle of varying

radius y, the center of the moving circle always on the a;-axis

and the point P moving on the curve according to its equation.

By the method of limits, it is evident that, if P'R = As,

volume MM'P' > AF > M'MP;

that is, Triy -\- AyY Ax >AV > wy'^ ^x;

AV
dividmg by Ax, tt (y -\- Ayf >^ > ^2/^>

hence, lim -r— = ^r- = 'tt/^, since Ay = 0, as Ax = 0;
Ax=oL^^J dx

.*. dV = iry'^dx or V = t
f

y^ dx. (6)

If the revolution is made about a line y = h, then

V = 7r f\y-hydx, (8)

and when the revolution is about a line x = a, then

y = 7r f\x-aydy. (9)

Note. — It may be noted that the cone and the sphere of

Art. 155 and the paraboloids of Art. 156 and Art. 159 are all

solids of revolution, and hence the formulas of this Art. 160

are apphcable to the determination of their surfaces and

volumes.
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Example 1. — Find the volume generated by the revolu-

tion of the area of the equilateral hyperbola xy = 1 about

OX.

\_Xo Xjx=x,

hence, the entire volume has no limit.

r 1 l>°=i
y = 7r = IT cubic units;

\_Xo Xja;=oO

hence the limit of the volume, from the section at Xq = OMq
= 1, extending indefinitely to the right, is the same as the

volume of the cylinder generated by the revolution of NPq,

the abscissa of Po, about OX. Thus, while the area under

the curve y = 1/x, from the ordinate MqPq at x = 1, in-

definitely to the right, is unlimited (as shown in Ex. 11, Art.

135), the volume made by its revolution about OX has a

definite limit. According to Art. 156, if the curve y''=Tr/x
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is drawn, any one of its ordinates in linear units will represent

the volume of the solid extending indefinitely to the right of

that ordinate; thus, in the figure the ordinate MqPq" = tt

represents the volume to the right of PqMqPo', and the

ordinate MiPi" = i tt, the volume to the right of PiMiPi.
In general, the ordinate MP'' at x = OM represents the

volume of the soHd to the right of the section at any distance

X from the origin, and it represents also the area under the

curve y = ir/x^ to the right of the ordinate to that curve.

Example 2. — Find the volume to the left of the iz-axis of

the solid generated by the revolution of the exponential curve

^ = e^ about the ic-axis.

y^dx = IT
f

e^x ^^ == g2a; = cubic units.

(See Ex. 2, Art. 130, for figure.)

EXERCISE XXXm.

In these examples, a segment of a solid of revolution means the

portion included between two planes,perpendicular to its axis, the solid

or its segment being, in general, a frustum; and a zone means the convex

surface of a segment.

1. Find the area of a zone of the paraboloid of revolution about the

a:-axis . y^ = 2 px, the plane curve . Ans.' -^[(p'^-\-y^)^— (p^+ y^?) ^] .

.

6 p
See Ex. 2, Art. 157, where p = i, yo = 0.

2. Find the area of a zone of the ellipsoid of revolution about the

rr-axis; that is, a zone of the prolate spheroid. Get entire surface.

52

2/2 = — (a2 — a;2) = (1 — e^) (a2 — x^), where e is the eccentricity.

y ds = - V a^ — e'^x^ dx.

.-. S = 2t- C Va^ -eH^dx
a Jx

= ir-\x Va2 - 6^x2 + - sin-i-T .

a L e a Jxo

The entire surface = 27r?) [6 + ia/e) sin~i e].
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The surface of a sphere= limit 2 7r6 [6+ {a/e) sin"^ e] = 2 ira [a+a] = 4 Tra^,

since for circle e = 0, limit ^^—- = lim -— = l ; o = 6.

e=o L e J e=o Lsm^J

3. Find the area of the smiace generated by the revolution of the

cycloid about its base.

Taking the parametric equations of the cycloid,

X = a(d — sine), y = a (1 — cos6);

dx = a{l — cos 6) dd, dy = a sin 6 dd;

ds = Vdx^ + dy^ = a V2 (1 - cos d) dd.

S= 2Tjyds = 2Ta''J^''V2(l-GOseydd = 16wa^Jsm'(^d(^--

4. Find the surface generated by revolving the catenary about the

y-SLxis, from x = to x = a. Also about the a:-axis.

Here y = ^\e^ -\- e~^) , ds =
^
\e« + e~y dx.

S = 2xCxds==Trf a: \e« + e ^)dx

r /^ _A .a/f _E\ 1
= Tr\x'a\e^ — e ^/— a J

\e° — e °/ dx , by parts,

= TT ax f e« - e~ ^) - o? \e« + e~ "j = 27ra2 (1 - g-i).

About X-axis: ;S = 27r j ?/ds = 2 7r
J

- \e^ + e °y dx

= TT I (e^ - e~ """j + ax = ^' (e^ - e-2 + 4).

5. Find the entire surface generated by revolving the h3rpocycloid

about the x-axis. x^ + t/^ = c^ is the equation of the curve.

J« 12

6. Find the area of a zone of the surface generated by the tractrix

revolving about the x-axis. (See Art. 150.)

^ = 27r J 2/ rfs = 27r J% (- ^)= 27ra [-?/]" = 27ra (2/0 - 2/).
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7. A quadrant of a circle is revolved about a tangent at one extrem-

ity. Find the area of the curved surface generated.

S = 2Tf{a-x)ds = 2x j"" {a-x)(l + -y dx,

when tangent to x^ + 2/^ = cfi is perpendicular to x-axis,

r r"' o?dx _ r"' xdx ~|

= 2^^ Uo Vo? - x^ -^0 Va2 - x^i

= 2 TT fa' sin-i - + a Vo^ - x^l
"" = tto? (tt - 2).

V. ci Jo

8. Find the volume of a segment of the prolate spheroid, and the

entire volume. Find the latter to be two-thirds the volume of the cir-

cumscribed cylinder of revolution.

Ans. ~\o?{x — Xq)—^ (x3 — a^o^) •

9. Find the volume of the oblate spheroid, that is, the ellipsoid of

revolution about the minor axis which is on the z/-axis.

Find the volume to be two-thirds of that of the circumscribed cyl-

inder of revolution.

10. Find the volume of the paraboloid made by a;^ = 2 j>y about the

?/-axis. (Compare Ex. 3, Art. 159.)

Find the volume to be one-half that of the circumscribed cylinder of

revolution.

11. Find that the volume of the solid generated by revolving an

arch of the cycloid about its base is five-eighths of the circumscribed

cylinder.

Here V = 2^^ C"'—£^=^ or V = -wa^ C"" {I - co^eydB.
•^0 ^2 ay — y"^ -'o

12. Find the volume generated by the catenary revolving about

the a;-axis, from x =^ a \>o x = —a. Also find the volume by the area

with the same arc revolving about the ^-axis.

Here F = tt f ~\f ^ e <') dx = ^-\%e'' ^2x -%e M
J —a 4 4 \_Z £t J—

o

= "^ (e^ + 4 - e-2) = 8.83 a\

/ X x\

And 7 = TT f x^dy^'^-^ ^2 Ve« - e~ «/ dx.
J

Q

2i «/o
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Integrating by parts gives ^-^

y =^ ax^^e" +e V - 2a^x\e^ - e~ ~^) -\- 2 a^ \e^ +e~A

= ^' (e + 5 e-i - 4) = 0.878 aK

13. Find the volume of the solid generated by the revolution of the

tractrix about the a:-axis.

Xoo fO , -jrnS

y'dx= -w i Va^-y2ydy='^-
'fa 6

14. Find the volume generated by the revolution of the hypocycloid

about the x-axis.//\a on

if dx = -K I (a^ — x^)"^ dx = —prz-KO?.
J—

a

105

15. Find the volume generated by the revolution about the ?/-axis

of the equilateral hyperbola xy = 1, from x = to a: = 1.

F=7r| x^dy ^ -K
\

-^=— - =7r cubic units.
J:c=o "^ Jy=\ y^ yJi

(Compare Ex. 1, Art. 160.)

16. Find the volume of the segment of the solid generated by the

revolution of the equilateral hyperbola x'^ — y^ = o? about the x-axis,

the altitude of the segment being a, measured from the vertex.

Ans. f Tra^

17. Find the volume generated by revolving about either axis the

part of the parabola x^ + y^ = a^ intercepted by the axes.

Ans. yV Trav-

is. Find the volume of the solid generated by the quadrant of a

circle revolved about a tangent at one extremity.

V = irj\a - xydy =-K ^\a- V^f^^f dy = wa' (5 _ "0.

19. Find the volume generated by the revolution of the cissoid

2/2 = -——— about the a:-axis, from the origin to a; = a.

Ans. |7ra3(31og2 - 2).

20. Find the volume generated by the revolution of the cissoid about

its asymptote x = 2 a. Ans. 2 ir^a^.



CHAPTER V.

SUCCESSIVE INTEGRATION. MULTIPLE
INTEGRALS. SURFACES AND VOLUMES.

161. Successive Integration.— As the inverse of succes-

sive differentiation there is successive integration. If a

start is made with a function y = f (x), considered as an nth

derived function, a single integration gives another function,

the integral; the integration of this function gives a second

integral, and so on. The result of n integrations is the nth

integral of the given function.

In Art. 140 on Integral Curves successive integration was

indicated, and in Art. 141 the process was employed in

application to beams. For successive integration with

respect to a single independent variable, in general; let

hix)=Jj{x)dx, (1)

f2(x)=JfUx)dx,- (2)

fz(x)=Jf2{x)dx. (3)

Since /2W = / lfiix)]dx,

it follows from (1) that

f2{x)=^J^ff{x)dxyx; (4)

and since fsix) = / [f2{x)]dx,

296
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it follows from (4) that

f^(^)=f\f [ff (^) ^^] ^^
I

^^- (^)

The integral in (4) is called a double integral and is written

JJf{x)dx\

Similarly, the integral in (5) is called a triple integral and is

written

///fix) dxK

If an integral is evaluated by two or more successive in-

tegrations, it is called a multiple integral.

For example, to evaluate the multiple integral I I I e'^dx^;

e^ + C\ is the first integral,

6=^ + CiX + C2 is the second integral,

CxX^
e"" H

—

-—h CiX + C3 is the third integral.

Hence T f fe- dx^ = e- +^ + C^x + C3.

If Hmits are given for each successive integration, the

integral is definite; if Hmits are not given, it is indefinite.

d'^s
Example 1. — Given the acceleration -tj^ = —g to find s.

This is Ex. 5 of Art. 115, and may be written thus:

s=^JJ-gdt\

s = I (— gt + vo) dt, where Vq is the constant of integration,

s = —\gt^-\-VQt-\- So, where So is the constant of integration.

Example 2. — Determine the curve for every point of

which the rate of change of the slope is 2.
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TT d^y _ d /dy\ _ dm _
dx^ dx \dx) ~ dx ~

'

.*. y=fj2dx^

y =
I

(2 X+ Ci) dx, where 2x + Ciis the first integral,

y = x^ -\- Cix + C2, the second integral.

This is the equation of any parabola that has its axis parallel

to the y-axis and drawn upwards, and its latus rectum equal

to 1. All such parabolas may be gotten by giving all possible

values to Ci and C2, the arbitrary constants of integration.

Example 3.— Determine the locus of the equation ;j-^ = 0.

y=JJodx%

y = I mdx, where m is the constant of integration,

y = mx + b, where h is the constant of integration.

The locus is the system of straight lines, the arbitrary con-

stants m and h representing the slope and ^/-iJ^tercept,

respectively.

Example 4. — In the theory of flexure of beams

dx^ E/r ^^^
2

where E, I, M, R, and w are constants. Get an expression for

y and dexermine the constants of integration from the con-

ditions, y = when x = 0, and y = when x = L
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" ^' Ell 2 6 "^24
J'

^ _]_ VM^ Rx^ wx^ Ml RP win
'^ ~ Ell 2 ^ Q 24 2 6 "^24]'

/•2 f*3 PA

Example 5.— Evaluate III x^dx^.
t/O Ji J2

Letting I denote the integral and making the integrations

in order from right to left;

I

60 rM'da; = 120 Pdx = 240.

Example 6. — A point has an acceleration expressed by
the equation at = — rco^ sin o)t, where r and co are constants.

Get expressions for the velocity and the distance or space

passed over.

d^s c r
Here a^ = -p = — rco^ sin oit and s = j / — rco^ sin ot dt^,

.'. ^ ~ ;77
^

/ ;j72 ^^ ^ ~ ^^^
/ ^^^ ^^ ^^ ^ ^^ ^^^ ^^ + ^i>

s = I -r.dt = ro) j cos co^ di + I Ci rf^,

s = r sin co^ + Ci^ + C2,

which is the law of simple harmonic motion. (See Art. 73.)

EXERCISE XXXIV.

1. Evaluatefjf {x' - 1) dx\ Ans. ^ -
f +

^' + ^'2^ + C,.

2. Evaluate JJJJ*^da;4.

Ans. -i log X + i x3 + I C2X2 + C3X_+ 04.
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3. Evaluate lilt sinaxdx^////
Ans. l/a^ sin ax + ^ Cix^ + I CiX"^ + Czx + C*.

4 /»3 /.2

4. Evaluate f f f a^^t^^^, ^^s^ 16
»'2 Jl ^0

5. Evaluate f f f x^dx^. Ans. 80
•/2 ^0 *^1'0

6. Find the curve at each of whose points the rate of change of the

slope is four times the abscissa, and which passes through the origin

and the point (2, 4). Ans. Sy = 2x{x^ - I).

7. Evaluate r^ r fsin^d^'. Ans.wifi — a).
Jo Ja Ja

d^s
8. The differential equation of falling bodies is -t-^ = —g; show

that s = -~ -\-Cit + C2', and find Ci and d, if s = and y = 100,
A

when t = 0.

9. A point has an acceleration expressed by the equation at =
—ru? cos (Jit, where r and w are constants. Find expressions for the

velocity and the distance passed over. Find C\ and C2, if s = r and
e; = 0, when i = 0.

Ans. V = — rco sin coif + C'l; s = r cos wt + Cii + C2

162. Successive Integration with Respect to Two or

More Independent Variables. — In the preceding Article

successive integration was of functions with respect to a

single independent variable. Successive integration of

functions of several independent variables are now to be

considered. Suppose there is given a function / (x, y, z) of

three independent variables.

Let /i (x, y,z)=jf {x, y, z) dz, (1)

/2 (x, y,z)= j /i {x, y, z) dy, (2)

/3 (x, y,z)=J /2 {x, y, z) dx, (3)

where in (1) the integration is with respect to z, that is, as if

x and y were constants. Likewise in (2) it is with respect
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to y, as if x and z were constants, and in (3) with respect to

X, as if y and z were constants.

Equation (2), by substitution from (1), becomes

/2 (x, y,z) =
J \jf {x, y, z) dz\ dy; (4)

and equation (3), by substitution from (4), becomes

/s (x, y^ ^^ ==
J ] J \J

(^' y^ ^)
^^J

^y i
^^- (^)

The integral in (5) is called a triple integral and is written

jjjf{x,y,z)dxdydz, (6)

where the order of the integrations is from right to left; that

is, the differential coefficient / {x, y, z) is to be integrated

with respect to z, that result to be integrated with respect to

2/, and finally the last result is to be integrated with respect

to x.

Similarly, the double integral in (4) is written

:

//fix, y, z)dydz.

As to the integration signs, the first on the right is to be taken

with the first differential on the right, which is dz in (6), the

second sign from the right with the second differential from

the right, and so on.

If when limits of integration are given, they are constant

hmits, the order of the integrations may be reversed without

affecting the result, but when the definite integral has variable

limits the order of the integrations can be changed only by
new limits adapted to the new order. In practical problems

the limits for one variable are often functions of one or more

of the other variables.

163. The Constant of Integration. — The evaluation of

an indefinite multiple integral differs from that of an indefi-

nite single integral in the form of the constant of integration.
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Thus /
I
4:xy dxdy being given, to find a function u oi x

and y such that

is the problem. It is evident the operations represented by

, , dx dy must be reversed in order to get u.

That is, u =
j I

-7—7- dxdy = j I 4:xydx dy, (1)

which indicates two successive integrations, the first with

respect to y, x and dx regarded as constants, and the second

with respect to x, y being regarded as constant. Hence the

first integration gives

-7- = 2 xy^ + constant of integration.

Since x was regarded as constant during the integration,

the constant of integration may depend upon x, that is, it

may be some function (j){x), or it may be simply C. This is

so, since differentiating either 2 xy^ + C, or 2 xy^ + </> (a:),

with respect to y gives the same result, 4 xy. Hence,

where (x) is an arbitrary function of x and may be a con-

stant C.

Integrating this result, with y constant, gives

u = xY + J<i> ix) dx + F (y), (2)

where, since y was regarded as constant during the integra-

tion, the integration constant is an arbitrary function of y

and may be C with a constant value, possibly zero.
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u = x^ -\- xV; ,^ 7 dxdy = 4: xy dx dy\

By referring to Art. 109, (2), it will be seen that if

dy

that is, (/) (oj) = 3 ^2 and F (y) = 0, for that function u of

fe y)'

The indefiniteness of the result in (2) is manifest, for

u =
I j

4:xydxdy = x'^y'^

if both constants of integration are zero, that is, </> (x) =0
and F (y) = 0. The indefiniteness is removed when limits

for the variables are given, the integral being then a definite

integral.

Example. —

I I
xyz dxdydz= I j xydxdy\-\

-£^xdx r- , „

2 Jo^(^"
- y') dy

-£'x^ . 21 „

EXERCISE XXXV.

Evaluate the following integrals

:

1. Jfx^ydxdy. Ans. \::?y^^F{x) -\-fi{y),

Jo Jo
'-y dx dy. Ans.

^5

) p2 sin ddpdd = ^Jo o

p

Jo '^'^

2

• 22/

I
xy dy dx =* ^^ 6*.

Jy—b
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TT

J'»^

/*2acos9 TT

•/2 6 cose -6

Xh fy 5^ — a?

J
p2 sin edpdd = —-— (cos - cos y),

ph plot
8. 1 I

Vst-t^dtds = 6¥.
Jo Jt

n2
/•S

j xy'^ dx dy dz = 17i

10. f r f xy"^ dz dy dx = 24|.
J2 J\ •'2

11. ^ { ^ xy^ dz dy dx = 17|.
%/2 •'1 •'2

12. r f r a^V^Jf^ajfii/fis = ia362(63 _a3).

(
r e'^+y+'dxdydz=^—^ -~-^e\

. Jo Jo o 4

14. f ^ C^ V2^ dxdy = l V2~g {h^ - hx^) b.
Jo J hi

Jo J a(l— COS0) o

16. r C {lo \-2v)dvdw= -W- a'.

17. r^" r f^'^aj^ ^2 dx dy dz = 32 a',
j

./O •'0 »/2y

164. Plane Areas by Double Integration — Rectangular

coordinates. — It has been shown in Art, 135, that the area

between two curves y = f(x) and y = F (x) is given by

A= r\f{x)-F{x))dx, (1)

where the points of intersection are (xq, 2/0) and {xi, yi) . The

area is thus given not by a single integral but by the differ-

between two integrals, / f{x)dx — \ F (x) dx. The

result is gotten also by double integration, finding the hmit

of two sums. Let the element of area be A?/ Aic, (ic, y) being

any point P of the area. If the elements are summed

ence
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up with respect to y, with the Hmits MD and MN, or F{x)

and f {x), X being constant, the area of the strip DN' is

gotten. If the strips are summed up with the hmits a and

h for X, then

x=a\_F{x) J "-Fix)

is the expression for the sums. Taking the hmits of the

Y

sums, first as Ai/ = 6 and then as Lx = 0, the area ADEN
is given by the double integral

Pb nf{x)

A = / I dxdy,
Ja JF{x)

(2)

which integrated first with respect to y gives

A=£{f{x)-F{x))dx. (1)

If the elements are summed up in reverse order, first with

respect to x with the limits H'H and H'S, or f~^{y) and

^~^{y)j y being constant, and then with respect to y with

hmits c and d, there results

*F-Hy)

dy dx, (3)
Jc Jf-i (y)
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where f~^ (y) and F~'^ (y) are the inverse functions of / (x) and

F {x), respectively.

Integrating (3) the area ADEN is gotten, as given by (2).

Hence, in general,

A= f fdx dy (4)

is the formula for area by double integration, the limits being

taken so as to include the required area. The order of

integration is indifferent provided the limits be adapted to

the order taken.

Corollary. — dxy^A = dx dy and dyx^A = dy dx.

Example 1. — Find the area bounded by the parabolas

y^ = 2px and x^ = 2 py.

The parabolas intersect at the points (0, 0) and (2 p, 2 p).

I
dxdy = ^ p^, by formula (2).

J x2

Jo J «2

2p2/

dydx = ^ p"^, by formula (3).

2p

Example 2. — Find the area bounded by the circle x^ + i/^

= 12, the parabola y^ = 4 a;, and the

parabola x^ = ^y.

For the part OPP2 the limits for x are

and 2, while for the part PP1P2, they

are 2 and Vs, the point P being (2, Vs)

-X and the point Pi (Vs, 2). For both parts

the lower limit for y is the ordinate of

a:^ = 4 2/; for OPP2 the upper limit for y is the ordinate of

y^ = 4:X, and for PP1P2, that of x^ + i/^ = 12.

A = OPP1P2 = OPP2 + PP1P2 = r r ' dx dy
Jo J x'i

/
dxdy

2 Jx^
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Example 3. — Find the area between the parabola

and the circle y^ = 2ax — x^.

ax

nv2ai-xa
dxdy

^.

= 21 iV2ax - x2 - Vo^) dx
Jo

7ra'
"2"

4a^

3

Note. — It may be seen that in finding some areas there is

no advantage in using double integration, as after the first

integration with the limits substituted, the remaining in-

tegral is what might have been formed at first. There are,

however, cases where double integration furnishes the only-

method of solution; hence the need for some practice in its

application.

EXERCISE XXXVI.

1. Find the area between the circle x^ -\- y"^ = a^ and the line y

a — X.

ra /»va2— x2

A = I
I

dxdy =
-2

2. Find by double integration the area between the parabolas

1/2 = 8 X and x^ = 8y.

. Ans. 21i
3. Find the area bounded by the circle x^ -\- y^ = 25, the parabola

y^ = -^/ x, and the parabola y = ts ^^•

Ans. 7.55.

4. Find by double integration the area of the

x^ ifi

ellipse - + p = 1.

5. Find the area of any right triangle, using

double integration.

A- f f dxdy = £ {-Ix + a'j dx = — -
-7Z +ax \ =7:00.

Jo Ih 2
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165. Plane Areas by Double Integration — Polar coor-

dinates. — As has been shown in Art. 135(b), the area in

polar coordinates of P1OP2,

generated by the radius

vector p as ^ increases from

$1 to 02 is given by

(1)

To find the area between

two polar curves by double

integration, let the elenient

of area be PDD'P', bound-

ed by the two radii 0P\
OD', and the two circular arcs, concentric at 0.

Let the coordinates of P be (p, 6) ; then from geometry,

sector POD = i p^ A^,

sector P'OD' = i (p + ^pY A(9.

Hence, A^ = PDD'P' = i (p + Ap)^ ^6]- J p^ A(9

= (p + JAp)A^Ap.

Keeping A0 constant and summing the elements of area

with respect to p gives an area AA'B'B, expressed by
OA r^oA

AS • lim T (p + i Ap) Ap = A6> / pdp.
Ap=0 OA' JOA'

Making the summation now with respect to 6, the sum of

the radial slices is gotten, and the limit of this sum is

^^2 fOA roi roA
A = lim y A^ • / pdp=

I I
pdpdd.

Replacing OA' and OA by F{e) and / {B) respectively, the

formula is

'

I pdedp. (2)

When F (d) = 0, the area P1OP2 between the curve p = f (d)
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and the radii is (1), A p2 do, where (2) has been in-

tegrated as to p.
*

If the summing of the elements of area be made first with

respect to 6, keeping Ap constant, RSDP, a segment of a

circular ring, is gotten. A second summation with respect

to p gives the sum of such ring segments, the limit of which

sum is the area A. The resulting formula is

'(p)

(p)

p dp do, (3)

where F-^{p) and/^^p) are the inverse functions of F{d) and

/ (d), respectively.

Corollary.— dop^A = pdddp and dpe'^A = pdpdB are rec-

tangles with sides p dS and dp.

Example 1. — A simple case of the application of the

formulas is in finding the area of the circle p = a.

(2)

(3)

I
pdddp = i / p^ddl

t/0 Jo J
-j27r

= ia^d\ = Tra

n27r
ra 127r

pdpde=
I

pdpdl
Jo Jo
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In (2) the sectors are summed, while in (3) the rings are

summed. In this case of the circle it is to be noted that no

limit need be invoked,

since the integral is the

sum in each case, the in-

crements being the differ-

entials, the variables all

increasing uniformly.

Example 2. — Find the

area between the two tan-*

gent circles p = 2a cos 6

and p = 2 6 cos ^, where

a>h.

—X

/t/26co Ipdddp = 4:{a^-

= 7r(a2-62).

Example 3. — Find the areas between the cardioid p =
2 a (1 — cos 6) and the circle p = 2 a.

n2a pdddp
_a(l-cos0)

IT

= 4a2
j

(2cose-cos,^d)dd = Sa^-Tra\
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J^»7r

/'2a(l-cos0)

/
pdddfy

TT t/2a
2

= 4a2 r"[(l -cos(9)2- i]^0

-2 cos ^ + cos2 d)dd = 80^+ Tra\
'^'fy

EXERCISE XXXVn.

1. Find by double integration the entire area of the cardioid p =
2a(l— COS0). Ans. 6 Tra^.

2. Find the area (1) between the first and the second spire of the

spiral of Archimedes p = ad; (2) between any two consecutive spires;

(3) the area described by the radius vector in one revolution from 6 = 0,

and the area added by the nth. revolution.

Ans. (1) -2/7r3a2; (2) (n^ + 2 n + f) Tr^a^
; (3) fTr^aM (n^ - I)7r3a2.

3. Find by double integration the area of one loop of the lemniscate

p2 = a^ cos 2d. Ans. | a^.

4. Find by double integration the area between the circle p = cos

and one loop of the lemniscate p^ = cos 2 6. Get the area between the

circle and the line 6 = 7r/4 and then between that line, the lemniscate,

and the circle. . tt — 2 w — 2
,
w — 2

166. Area of any Surface by Double Integration. — Let

the surface be given by an equation between the rectangular

coordinates, x, y, z. Let the equation of the given surface

be

Passing two series of planes parallel, respectively, to XZ
and YZ, will divide the given surface into elements. These

planes will at the same time divide the plane XY into ele-

mentary rectangles, one of which is P'P^, the projection

upon the plane XF of the corresponding element of the

surface PP2.

Let X, y, z be the coordinates of P and x + ^x, y + A?/,

z + Az, those of P2, x and y being independent; then P'M' =
Ax and P'N' = \y. The planes which cut the element PP2
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from the surface will cut a parallelogram from the tangent

plane at P, the projection of which on the plane XF is P'P2

= Ax Ay, the same as the projection of the element PP2.

The projection is the product of the area of the parallelogram

and the cosine of the angle made by the tangent plane with

the plane XY; hence, denoting the angle by 7 and the

parallelogram cut from the tangent plane by PT,

area PT = area P'P2 • sec 7
= Ax Ay secy.

As Ax and Ay approach zero, the point P2 approaches the

point P, and the areas PT and PP2 approach equality; that

is, the element of surface approaches coincidence with the

parallelogram, a portion of the tangent plane at P; hence,

areaPP2 = AxJ^S = Ax A?/ sec 7, approximately;

that is,

area PP. = A./S^A.A,sec.; li^„[^] = see.; ("^^
Ay=0

dxy^S = sec 7 • dx dy.

)

(1)
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fi 4- /^Y-i- /^Y?. ( ^^^ figure \

\S^\dx) ~^\dy) J
' VofArt. lOl.y

FromArt.l03(8),secT

hence from (1),

(2)

the Hmits being so taken as to include the desired surface.

"Let S denote that part of the surface z = fix, y), z being

a one-valued function, which is included by the cyhndrical

surfaces y =
(l^o (x) , y = (j) (x) , and the planes x = a, y = h;

J a Xo(x) L W/ \dy)
dxdy. (20

In finding the area of the given surface a more convenient

form of the equation of the surface may be either x —

f (y, z), or y = f {z, x). The formula for the area will be

then either

//[-(i)'+(s)":

or //['+(2)'+(2)7

dydz,

dxdz,

(3)

(4)

with the proper limits of integration.

In applying the formulas, the values of the partial deriva-

tives are gotten from the equation of the surface the area of

which is sought; hence, when there are two surfaces each of

which intercepts a portion of the other, the partial derivatives

in each case are taken from the equation of that surface

whose partial area is being sought. This will be illustrated

in the following examples.

Example 1. — To find the surface of the sphere whose

equation is

x^ + y^ -\- z^ = a^.
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Let - ABC of the figure (Art. 166) be one-eighth of

the sphere.

dz^ _ _x ^ _ y

'

dx z dy z^

,2\dx/ \dyj z^ z^ z^ o} — x

V a

dxdy

^ — x^— y^
by (2)

dx= 8a f\m-^^^=T
Jo Va2 - xUo

A C"' J A I Compare Ex. 2, \= 4:7ra I dx = 4 ira^. ^ .^ ^^^'
Jo V Exercise XXXIII. /

Here the integration was over the region OAB, the projec-

tion of the curved surface ABC on XY plane. The first

integration with respect to y summed all the elements in a

strip LL'K'K, y varying from zero to NL', that is, between

limits and v a^ — ^2
^ ^j^g equation of the intersection of the

surface with the XY plane being x'^ -\- y'^ = a^. Integrating

next with respect to x, the surface ABC is gotten by sum-

ming all the strips from x = io x = a.

Example 2. — Find the area of the portion of the surface

of a sphere which is intercepted by a right cylinder, one of

whose edges passes through the center of the sphere, and

the radius of whose base is half that of the sphere.

Note. — This is the celebrated Florentine enigma, pro-

posed by Vincent Viviani as a challenge to the mathemati-

cians of his time. (Williamson's Integral Calculus.)

Taking the origin at the center of the sphere, an element

of the cylinder for the ;2-axis and a diameter of a right section

of the cylinder for the x-axis, the equation of the sphere will

be x^ -\- y'^ -\- z^ = a^, and the equation of the cyUnder,

^2 _|_ ^2 ^ ax.
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The area of APCD is one-fourth of the area sought, and since

thiS'^surface is a portion of the surface of the sphere, the par-

tial derivatives -p , -r must be taken from x^ -\-y^ + z^ = a^,
ax ay ^

giving, as in Ex. 1, using formula (2),

n _ r r adxdy
~ J J Va^ -x'-y'-

to be integrated over the region OP'A. Hence,

Area = aS = 4 I I
^ = (2 tt — 4) a^.

Jo Jo Va^ -x^-v^

The limits for y are from x^ -\- y"^ = ax, the equation of the

curve OP'A, the boundary of the projection of the surface

APCD on the XY plane.

Example 3. — Find the surface of the cylinder of Ex. 2,

intercepted by the sphere.

The area of APCOP' is one-fourth of the area sought,

and since it is a part of the lateral surface of the cylinder

x^ -{-y^ = ax, the partial derivatives in formula (2) must be
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taken from this equation. But from this equation -—=00,

dz_- = cx) and formula (2) does not apply, which is, more-
dy

over, evident since the element of surface is dx dz in the strip

P'P, and the area of the surface APCOP' cannot be found

from its projection on the XY plane, for this projection is the

arc AP'O. The projection is made on the XZ plane and

formula (4) used.

The partial derivatives are found to be

dy ^ a-2x dy^^
dx y ^ dz

Since P is on the sphere,

pp' = ^2 = ^2 _ (^2 ^ ^2) = ^2 - ax,

since P is on the cylinder. Hence,

^-^

=

' = '£sr"v + ^-^11'^''
pa rVa^-ax ^^ ^^ CWa^ - ax= 2a \ I =2a

IJo t/0 V ax — x^ Jo \ax — x^
dx

2a r\/-dx = 4:a\

Here the integration is over the region OAP"C, AP"C being

the projection of APC on XZ plane. The first integration

sums up the elements of surface in the strip P'P and the

next integration sums up the strips from x = io x = a.

By eliminating y from x^ -{- y^ -\- z"^ = a^ and x^ -{- y^ = ax,

z^ = a^ — ax (as found above), which is the equation of

AP"C, from which the limits of z are taken.

EXERCISE XXXVm.

Find by double integraition the areas of the surfaces given in the

following examples:

1. The zone of the sphere, x^ -\- y^ \- z"^ = r^, included between the

planes x = a and x = b. Ans. 2 irr (6 — a).
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2. The surface of the right cyhnder x^ -{- z^ = a^ intercepted by the

right cyhnder x^ -\- y^ = o?. Compare Ex. 8, Art. 157. Ans. 8 a^.

X 11 z
3. The part of the plane - + f + - = 1, in the first octant, inter-

a c

cepted by the coordinate planes. Ans. ^^o?W + a^d^ + ¥c^.

4. The surface of the cyhnder x"^ -\- y^ = a^, included between the

plane z = mx and the XY plane. Find by both formula (3) and

formula (4), and show why formula (2) does not apply.
Ans. 4 ma^.

5. The surface of the paraboloid of revolution y^ -\- z^ = 4: ax,

intercepted by the parabolic cylinder y^ = ax and the plane x = 3 a.

Jo Jo L 4 ax — 2/2 J 9

6. The surface of the cylinder of Ex. 5, intercepted by the parabo-

loidof revolution and the given plane,

/
\iy_rJ^L±.dxdz = 2VS i {4:ax + a^ydx

Jo 2y Jo

= (13V13-1)-^.
v3

167. Volumes by Triple Integration — Rectangular Co-

ordinates. — Let the volume be that of a solid bounded by

the coordinate planes and any surface given by an equation

between the coordinates x, y, and z.

Let P be any point {x, y, z) within the solid ~ ABC, the

surface being given hy z = f (x, y), where / {x, y) is a con-

tinuous function. Let K' be the point {x + Ax, y + \y,

z + A;?), the diagonally opposite corner of the rectangular

parallelopiped formed by passing planes through P and K',

the planes being parallel to the coordinate planes. Let more

planes be passed. Taking first the sum of the elementary

parallelopipeds whose edges lie along the line NT, the Hmit

of this sum, as A;2 is made to approach zero, is the volume of

the prism whose base is ^x Ay and whose altitude is NT,
X, y, Ax, and At/ remaining constant during the summation.

Next with x and Ax constant, sum the prisms between the

planes MHL and SDR. The hmit of this sum as Ay is made
to approach zero is the volume of the cyhndrical shce
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LR'D'HMS. Finally, when taking the sum of the sHces

parallel to the YZ plane, as Ax approaches zero, the volume

of the cylindrical slice approaches that of the actual sHce

LRDHMS; hence, the limit of the sum of the slices, as Ax
approaches zero, is the volume of the sohd.

z
c

/ >L R'

tX / X X

A
/ \

\

/
/

/

\ /

\
/ / \
/P' \i / y-

\

1

1
/-->:~K'

I
y

if
<fi

—

-^y^fy^S y
/ y^;/

H D''

Jf^OA nMH nNT
I I

dxdy dz,
Jo Jo

where V is the volume of — ABC. Let V denote the

volume bounded by the curved surfaces z = fo{x, y), z =

f{x, y); the cyUndrical surfaces y = <l>o{x), y = 0(x); and

the planes x = a, x = h; then

/ dxdydz. (1)
. JM Jfo {x, y)

Corollary. — dxyiV = dxdydz, dyzxV = dydzdx, . . .

If z is expressed in terms of x and y, and /o (x, ^) = 0;

n4>{x) z dx dy.
.
:>{x)
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Note. — The formula, V = I I I dx dy dz, may be de-

rived from the figure by the definition of differentials.

Thus, the variables x, y, z, being independent, dx, dy, dz

may be taken as finite constants, the parallelopiped PK' being

dx dy dz. When x and y are regarded constant, PK' is the

differential of the prism NK. Hence, integrating dx dy dz

between the Hmits z = and z = NT gives the prism

NT dx dy, which is the differential of the sohd MSR'L - T.

Integrating NT dx dy between the Hmits y = and y = MH
gives the cyHnder MLH — D', or MLH dx, which is the differ-

ential of the solid OBG — M. Integrating MLH dx between

the limits x = and x = OA gives the volume OBC — A, or

V. Hence, V = I I f
dx dy dz, the limits being so chosen

as to include the volume sought.

Example. — Find the volume of the ellipsoid

^2 -t- 52 -t-
c2

-^•

The entire volume is eight times that in the first octant,

where the limits are

:

z = 0, z = cVl- xya^ + yy¥;

y = 0, y = b V 1 — x'^/a^;

X = 0, X = a;

ahc
/

dxdydz =^
Jo c

4
Corollary. — For sphere, a = b = c; .'. V = -

naVl -2/2/52 /»cVl_x2/a2-t/2/62

/
dy dx dz

Jo

/
dz dx dy.

Jo
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EXERCISE XXXIX.

Find by triple integration the volumes required:

1. The tetrahedron bounded by the coordinate planes and by the

plane
X . y . z ^ . ahcahc 6

See Ex. 3, Exercise XXXVIII, for the surface of the plane.

2. The volume bounded by the cylinder x^ -\- y^ ^ o? and the planes

4 7Y10?
3 = and z = mx. Ans. —^

—

3. A cylindrical vessel with a height of 12 inches and a base diam-

eter of 8 inches is tipped and the contained liquid is poured out until

the surface of the remaining liquid coincides with a diameter of the

base. Find the volume remaining in the vessel, Ans. 128 cu. in.

Note that the volume is one-half that given by Ex, 2, above.

4. The volume included between the paraboloid of revolution

2/2 _|_ 2;2 = 4 ax, the parabolic cylinder y"^ = ax and the plane x = S a.

See Exs. 5 and 6, Exercise XXXVIII, for the surfaces.

^sa ^Vax /•(4ax— 2/2)2 . ,-..

Ans. 7 = 4) 1 1
dxdydz = iQ7r + 9Vs)a\

Jo Jo Jo

5. The volume included between the paraboloid of revolution

x^ -\-y^ = az, the cylinder x^ -{- y^ = 2 ax, and the XY plane.

,
x^ + y^

r>%a W2ax-x^ f a
Ans. F = 2 I I I dxdydz = fxa^

6. The entire volume bounded by the surface

^"^'^^JoJ. Jo
dxdydz^-^-

7. The entire volume bounded by the surface

I I I I I I A 47ra^
x^ -\-y^ +z^ = a^. Ans. -^r^'

6o

8. The volume of the part of the cylinder intercepted by the sphere.

The radius of the sphere is a and it has its center on the surface of a

right cylinder, the radius of whose base is a/2. See Exs. 2 and 3,

Art. 166.
'

I
I dxdydz = I {Tr-f)aK

»/o fc'O
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168. Solids of Revolution by Double Integration. — In

the figure of Art. 164, where P{x, y) is any point in the area

ADEN, X and y being independent, Aa; A?/ is the element

of area. Conceive the area ADEN to revolve through 6

radians about OX as an axis; then

ey . Ax A?/ < A,yW < d {y + Ay) • Ax Ay;

••• 'y<iS-y<'^y+^y^'

hence,^ Um .

^^. = -,—^ = dy
;

Ax,Ay=o\_AxAy_\ ax ay

:. dW = dydxdy;

Jrxi rf{x)

/ ydxdy. (1)
Xq JF{x)

Similarly, about OY,

Jryi rf-Hy)

I X dy dx. (2)
yo Jf-Hv)

Putting 6 = 2 TT, the formulas give the volumes generated

by a complete revolution of the area.

Corollary. — If the axis of revolution cuts the area, (1)

or (2) will give the difference between the volumes generated

by the two parts. Hence F = 0, when these two parts

generate equal volumes. Integrating (1) first with respect

to y, and (2) first with respect to x, the upper limits being

the variables y or x and the lower limits zero, gives

y = ^ r^y^dx (10^ Xo

and y = 7r / x^dy, (20

the formulas for soHds of revolution, single integration.

169. Volumes by Triple Integration — Polar Coordinates.

— Let the point P (p, 6, 0) be any point within a por-

tion of a sohd bounded by a surface and the rectangular

planes. As usual, p is the distance OP from the pole at the

origin, 6 is the angle ZOP which OP makes with the 2;-axis,
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and is the angle XOP' which the projection of OP on the

XY plane makes with the o^-axis. Let the soUd be divided

into elementary volumes like PDDiQi by the following

means.

(1) Through the 2!-axis pass a series of consecutive planes,

dividing the solid into wedge-shaped slices such as COAB.
(2) Round the ;S-axis describe a series of right con^s with

their vertices at 0, thus dividing each slice into elementary

pyramids hke - RSTV.
(3) With as a center describe a series of consecutive

spheres. Thus the soHd is divided into elementary sohds

like PDDiQi, whose volume is given approximately by the

product of three of its edges, PPi, PP2, and PQ.

Let edge PQ = Ap, angle POP2 = ^6, angle AOB = angle

PO'Pi = A0; then edge PPi = psind A(/), and edge PP2 =
p^e.

Hence, the volume of the elementary solid is given ap-

proximately by p2 sin 6 AS A0 Ap. It can be expressed
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exactly but the additional terms vanish when the three in-

crements are made to approach zero. Therefore, the volume

of the sohd is given by the limit of

Z 2 X p'sin^A^A^Ap;
A0=O A0=O Ap=0

/. V=
I j I

p^ sine ddd(l) dp, (1)

each integral to be taken between the limits required to find

the volume sought. The summation can be made in any

order so long as the volume is continuous.

For a solid of revolution with the ^-axis as the axis of

revolution, the formula (1) for the volume becomes

V = 2t
j I

p^ sine dd dp, (2)

since the hmits for are then evidently and 2 w. The
limits for p and 6 are then the same as are used in getting

the area of the plane figure revolved.

Corollary. — dpe^W = p^ sin 6 dS d(f) dp is an elementary

rectangular parallelopiped ; and dpeW = 2Trp'^ sin Odd dp is a

circular ring with rectangular section.

Example 1. — Find the volume of a sphere of radius a,

using polar coordinates, pole at end of a diameter.

By formula (1); or by (2), if the volume is considered as

generated by revolving the semicircle about the initial fine,

the line from which 6 is measured,

2 a cos

p^ sin 6 do dp
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Example 2. — Find the volume generated by revolving the

cardioid, p = 2 a (1 — cos 6) about the initial line.

y = 27r

167ra'

J^TT
/'2 a (1-

Jo

cos 6)

p2 sin 6 dd dp

64
cos Oy sin Odd = -^-Tra^.

Example 3. — Find the volume made by revolving the

lemniscate p^ = a^ cos 2 d about the initial line.

Jo Jo

a V cos 2 d

p^ sin 6 do dp

4:Td'
~3~

TraM

J/
^ ^x 3 • ^ 7o 4 7ra^

(cos 2^)2 sm0(i^ = ^r—
o

log (V2 + 1) 1\

r (2cos2(9-l)^sin(9(

2\/2 6;

170. Volumes by Double Integration — Cylindrical Co-

in finding the volume of some solids the

integration is performed more

readily with the use of cylin-

drical coordinates.

In this system of coordi-

nates the position of a point

is given by the cylindrical co-

ordinates {r, </), z), where (r, 0)

are the polar coordinates of

the projection (x, y, 0), on the

XY plane, of the point {x, y, z).

It is evident that the equa-

tions of transformation from

rectangular to cylindrical co-

ordinates are:

x = r cos 0, 2/
= ^ sin 0, z = z) (1)
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and those from cylindrical to rectangular,

-iV
r = Vx^ + 2/2, = cos-i - = sin-i ^ = tan-i ^, z = z. (2)

To derive a formula for volume the differential element of

area in the XY plane may be taken as the rectangular base

of an elementary right prism with altitude z, the base of the

actual prisms into which the solid may be divided being

bounded by lines two only of which are right lines, the other

two being circular arcs, and the altitude of possibly only one

edge being z, since the surface of the solid may be curved,

or not parallel to the XY plane, even when plane.

The expression for the volume of the solid is

V = JJzrd(j>dr, (1)

where z must be expressed in terms of r or (^ in order to effect

the integration, and where the hmits are to be such as will

give the volume sought.

Corollary. — 5r/7 = zr dcp dr is a right prism with rectangu-

lar base. The double integral in (1) is the Umit of the sum of

the elementary solids into which the given soHd is conceived

to be divided, or it is to be considered simply as the anti-

differential of a second partial differential, when the differ-

entials are taken as finite constants. Either way of regard-

ing the differentials leads to the same result.

Example 1. — To find the volume of a sphere of radius a.

Taking the pole at the center of the sphere, by (1),

J^27r
fa .

/ Va''-r^rd(f>dr
«/o

X27r d(f) = ^ ira^.

Example 2. — A cylindrical core with h as the radius of a

right section is cut from a sphere of radius a. Find the
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volume of the remaining portion of the sphere, when h < a

and the axis of the core includes a diameter of the sphere.

7 = 2 r^ ; Va2 - r^rd(l)dr
Jo Jb

:. Vol. of core = ~{a^- (a" - V')i).
O

Example 3. — Find the volume in first o^^tant cut from a

right cylinder, with its base of radius ri on XF plane and axis

the 2!-axis, by the plane - + ?+-= 1. Here
a c

V = c
j I

(1 Goscj) —
J-
sin (I)] rd(l)dr

^ rrn' riYcos0
,
sin0\1 ,, „ Ftt n/1 ,

1\-|

Example 4. — Find the volume of Ex. 8, Exercise XXXIX,
by using formula (1), which will give the volume sought

more easily than by i / j dx dy dz.

IT

Va" - rH d4>dr = I {it - %) a\

Example 5. — Find the volume of the segment of the right

cylinder which has its base a loop of the lemniscate r^ =
a^ cos 2 (^ in the XY plane and its upper surface a plane

which intersects the XY plane in the ^/-axis at an angle of 45°.
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Here z = x = rcos<});

Jf*^
r*a^COS 2 4>

I r cos 0r d<l> dr
«/0

= -^ I cos 2 2 cos a
o Jo

r- I (1 - 2sin2 0)^cos0(^
5 Jo

2

3

7rV2a'

16

171. Mass. Mean Density. — As stated in Art. 154,

the mass of a body, being defined as the product of density

and volume, when the density * varies continuously,

m = KmitT7A7= fydV, (1)
AF=0 ^ J

which becomes m =
j I j ydxdydz, (2)

/ / j yp'^sinddd dcf) dp, (3)or m

according as rectangular or polar elements of volume are

used. In these expressions y denotes the varjdng density

at the different points within the body. The mean density

of the body, denoted by y, is given by the equation

fydV
7 = y = —y- ' (4)

When the mass is considered as distributed continuously

over a surface, the element of volume dV is replaced by
dA = dx dy or pdd dp; and when the mass is considered as

* Density will now be denoted by y, instead of p used in Art. 154.
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distributed along a line, straight or curved, dV is replaced

by dsj the element of length.

When the integral is considered as an anti-differential the

elements are expressed directly in terms of the finite differen-

tials; when, however, the integral is considered as the limit

of a sum or sums, the elements are expressed in terms of the

infinitesimal increments, the differentials appearing under

the integral sign.

Example 1. — Find the mean density of a sphere in which

the density varies as the square of the distance from the

center.

Here the distance p of a volume element determining its

density, the polar element should be used.

Taking the density at a distance p from the center as

kp^j h being a constant, and the volume element as

p2 sin d A0 A0 Ap, from (4)

,

n27r
Pa

I kp^8indded(l>dp
Jo = ha\

fTra^ 5

Again, since the density is the same for all points at the same

distance p from the center, taking for the volume element

a spherical shell of thickness Ap, AF = 4 Trp^ Ap, whence

47r Ikp'dp
T = 1 5 = H ^^ '

4 Trno KTra^ 5

The mean density is thus shown to be three-fifths the

density at the surface of the sphere.

[The mean density of the earth according to the best

determinations is very nearly 5.527 times that of water,

while the average density of rocks at or near the surface

is only about two and a half times that of water; hence,

the mean density of the earth is about twice the average

density at the surface.] See Corollary at end of Art. 190.
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Example 2,— Find the mass and mean density of a semi-

circular plate of radius a, whose density varies as the distance

from the bounding diameter. Here y = ky,

m
I

kydxdy = f W;
•a*/0

- _ ^ka^ _ 4:ka

I ira^ 3 TT

Or m =
I I kp^ sin Odd dp = i ka^,
Jo Jo

where ky = kr sin 6.

By a single integration, the element of area being

X • A?/ = Va^ — y'^ A^/,

m = 2 jkVa^ - y'^ydy = f fca^.

Example 3. — Find the mean density of a straight wire of

length ly the density of which varies as the distance from

one end.
n

ksds ,

,

'0 klX'

Example 4. — Find the mass and mean density of a hemi-

spherical solid, radius a, the density varying as the distance

from the base.

m kZTTX^ dz = I kw (a^ — z"^) zdz = j irka"^;

Jo

iTr/ba^ 3,
•• ^ = 1^=8^^-

Here the element of volume is a spherical segment, ttx^ ^.z =
TT (a^ — z^) As!, at a distance z from the base.

Example 5. — Find the mean density of a right circular
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cone of height h, in which the density varies as the distance

from a plane through the vertex perpendicular to the axis.

/kzTTX^dz kTrjii I z^dz ^

Here origin is taken at the vertex and element of volume is

irX^ Az = TTji: Z^,

a being radius of base; 7 = kz.



CHAPTER VI.

MOMENT OF INERTIA. CENTER OF GRAVITY.

172. Moment of a Force about an Axis. — The moment
of a force about an axis perpendicular to its line of direction

is the product of the magnitude of the force and the length

of the perpendicular from the axis to the Une of action of

the force. The moment is the measure of the tendency of

the force to produce rotation about the axis.

The moment of a force about a point is identical with the

moment about an axis through the point, perpendicular to

the plane containing the point and the hne of action of the

force.

173. First Moments. — Let a line, surface, or solid be

divided into elements; let each element (As, AA or AF) be

multiplied by the distance of a chosen point within the

element from a reference line or plane.

The limit of the sum of these products as the elements are

taken smaller and smaller is called the first moment of the

line, surface, or solid.

For the first moment Mx of a plane curve about the x-axis,

Mx = \\my.y^s= [yds; (1)
As=0 ^ J

and for the first moment of a plane area about the same axis,

M, = lim T 2/ AA = fy dA. (2)

The first moment of a solid with respect to one of the co-

ordinate planes, say the XY plane, is given by the equation,

M,y =\im y,z^V = fzdV. (3)

331
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For AA and AF appropriate expressions for the area and

volume elements are to be used and the values corresponding

for dA and dV substituted, in order to effect the integrations.

The elements may be so taken that a single integration is

sufficient, but double or triple integration will in general be

required.

174. Center of Gravity of a Body. — Let a given mass be

referred to a system of rectangular coordinates, and let Mxy,

Myz, Mxz, denote the first moments with respect to the three

coordinate planes.

The first moments of the mass of a soHd are derived from

those of the geometrical sohd by the introduction of a

density factor.

There will be a point G {x, y, z), given by the equations,

JyxdV fyydV JyzdV
m^

I
ydV; x=— , y=-p, -, ^ = -p y (4)

ydV J ydV JydV

in which the letter y denotes the density.

The point G thus determined is the centroid of the mass.

It is also the center of gravity of the weight W, Since W =
mg, the masses of particles of a body are directly proportional

to their weights; hence, the center of gravity is the same as

the center of mass. The force of gravity acting on any mass

is an example of a force distributed through a volume. If

w denote the weight per unit of volume, at any point in a

given mass, W its entire weight, and x, y, z, the coordinates

of the center of gravity, the point where the resultant force

exerted by gravity would act; then, from (4) or (3),// wxdV j wydV I i

wdV; x=^ , y =^ , -z=^
jwdV . wdV jwdV

If in (4) and in (5), y and w are constant, that is, if the mass

wzdV
-. (5)
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is homogeneous, they may be taken from under the integral

;Sign and canceled; whence,

fxdV JydV JzdV
m=yV,W = wV; x=~—^^^-, y= —y— , z= y , (6)

the coordinates of the centroid of a volume, or of a homo-

geneous body.

The quantities j xdV = xV,
f
ydV = yV,

J
zdV = zV,

equal the moments of the volume with respect to the YZ, XZ,
and XY planes, respectively.

175. Center of Gravity of a Plane Surface. — If in the

formulas (6) for the centroid of a volume dV is replaced by
t dA and z taken equal to zero, then

I
xtdA j xdA j ytdA I ydA

V = tA,x =^ = '^ ,y=^. =^ , (1)

ItdA I dA tdA
I
dA

where the point (x, y) is in the XY plane, and in which dA
is the area of an element of the surface of a thin plate of

uniform thickness and material, making tdA = dV. HA
be the area of the middle layer, it is evident that

xA =
I
xdA and yA = j ydA, (2)

which are called the moments of the area A with respect to

the i/-axis and the a;-axis. By the center of gravity of a

plane surface is meant that point which is the center of

gravity of a thin plate of uniform thickness and material

whose middle layer is the surface given. The formulas for

its coordinates are, therefore, those given in (1),

j xdA I ydA
^ =—A

—
> y =—A

—
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It is evident that the moment of an area about an axis

through its center of gravity will be equal to zero.

176. Center of Gravity of any Surface. — The formulas

(6), Art. 174, become for any surface,

j xdA I ydA
I
zdA

^=^—' y-^r-' ^=-x- (i>

By the same method as in Art. 174, it can be shown that the

coordinates of the center of gravity of any surface, plane or

curved, are given by the equations (1).

177. Center of Gravity of a Line. — If in the formulas

(5), Art. 174, for the coordinates of the center of gravity of

a body of weight W, w dV is replaced by w ds, and ^ = 0;

then,

j wxds j xds j wyds I yds

^ = -n— = -p—
' ^"'T

—

^~r
—

'
^^^

I
wds j ds

. j wds
I
ds

where the point (x, y) is in the XY plane, and in which w ds

is the weight of an elementary length of a slender rod of

uniform section and material whose weight per unit of

length is equal io w. If s be the length of the center line of

the rod, it is evident that

{ xds and ys = j y ds, (2)

which are called the moments of the line with respect to the

2/-axis and the a:-axis. The rod may be straight, in whicJi

case the center of gravity will be at the middle point of its

center Une. If the center line of the rod is a plane curve in

the plane XY, the coordinates of the center of gravity are

given by (1). By the expression, center of gravity of a line,

is meant the point which is the center of gravity of a slender

rod of uniform section and material, of which the given Une

xs
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is the center line. The coordinates of a Hne are, therefore,

those given in (1). It is evident that the moment of a Hne

about an axis through its center of gravity will be equal

to zero.

If the center line of the rod, or any given line, is not a plane

curve, from (5) as before, the equations are

j xds
I
yds I A

ds Jds J
ds

The moments of the line with respect to the YZ, XZ, and

XY planes, respectively, will be

xs = j xds, ys = j y ds, zs = I '<

178. Center of Gravity of a System of Bodies. — If,

instead of a single body, there is a system of bodies whose

volumes are Vi, Yi, Yz, . . . Yn, the coordinates of their

centers of gravity being, respectively, (^i, yi, Zi), etc.; and,

if (^0, yo, io) denote the coordinates of the center of gravity

of the system and Yo its total volume, thtn

Fo = Fi + 72 + F3 + • . • + Yn;

Myz = YlXi + 72^2 + • • • YnXn = ^ ^= ^0^0'

Similarly,

M:cz=^Yy ^ Yoyo, and M^y = ^Yz= YqZq.

Hence,

_ X^'^ - X^y - 2^

where the numerators are the sum of the moments of the

system with the respective coordinate plane, the equalities

following from equations (6) of Art. 174. Similar equations

hold for weights or masses upon substituting T7 or m for F,

and for any group of surfaces by substituting A, where Aq
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is the sum of the areas of the several surfaces. If the sur-

faces are plane,

The last equations are useful in getting the center of

gravity of plane figures composed of parts, the centers of

gravity of which are known or easily found.

Similar equations hold for a system of lines; so being the

sum of the lines,

xo = ^— , y = ^^— , z = '^^—j
So So So

if the lines are not all in one plane; and ^o = when they

are in one plane, taken as the plane of XY.
179. The Theorems of Pappus and Guldin — First

Theorem. — An arc of a plane curve revolving about an axis in

the plane of the curve, hut not intersecting it, generates a surface

of revolution, the area of which equals the product of the length

of the revolving arc and the length of the path described by its

center of gravity.

Second Theorem. — A plane area, hounded by a closed

curve, revolving about an axis in its plane but outside the area,

generates a solid, the volume of which equals the product of the

revolving area and the distance traveled by its center of gravity.

To prove the first theorem; let the x-axis be the axis of

revolution, then the surface generated by the revolution of

the curve about the x-axis is

./.yds. (1) Art. 160.

From (2), Art. 177, for a plane curve,

ys = j yds.

Hence >S = 2Tys. (1)
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It is evident that, if only part of a revolution is made, the

area of the surface generated will be given by

Si = dys, (2)

where 6 denotes the angle in radians through which the plane

containing the curve is turned. It is to be noted that the

theorem and proof include the case of a segment of a straight

line revolving about any axis.

To prove the second theorem; let the a:-axis be the axis

of revolution, as before; then, denoting by AA an element

of the plane area, the volume generated by a complete

revolution of the area is

V = lim y,2^ry^A = 27r CydA,

Now fydA = yA; (2) Art. 175;

hence, V = 27ryA. (3)

It is evident that if only part of a revolution is made, the

angle turned through by the plane of the area being d

radians, the volume generated will be given by

Vi = eyA' (4)

Example 1. — Find the center of gravity of a semicircle of

radius a. Find it for the semicircular arc also.

Taking the diameter along the iZ-axis, the length of the

path described by the center of gravity as the semicircular

area is revolved about the i/-axis is 2 irx. The semicircle by

its revolution describes a sphere whose volume is | ira^;

hence, by the second theorem of Pappus,

2 TTX • i Tra^ = f ira^j

- 4.a
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Also the arc describes the surface of a sphere, 4^a^; hence,

by the first theorem of Pappus,

27rX"ira = 4:7ra^;

_ 2a
.'. X =

Example 2. — Find the center of gravity of the semi-

X 77

elUpse, - + ^ = 1.

Taking the x-axis as the axis of symmetry and applying

the second theorem of Pappus

as in Ex. 1, it is found that

X = r— , also ; hence, as ^ = 0,
OTT

the centers of gravity of the

two areas are identical.

Example 3. — Find the

center of gravity of the

'^ ^ quadrant of the ellipse.

Let AOB be the quadrant

of the elUpse, and the element of area a narrow strip parallel

to ?/-axis.

dA = ydx =^ - Va^ — x^ dx.
a

/xdA - I X Va^ — x^ dx
a Jo

X =
Iwah

Ih^^'-^'H
jirab

_ 4 a /The same abscissaN

3 TT \as for semi-ellipse . /

-46
Similarly, it is found that 2/ = 5—

•

OTT

_ _ 4a
Corollary. — For the circle, x^ -\-y^ = a^; a; = 2/ = 5

—
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/

Example 4. — Find the center of gravity of a circular arc.

Let AB be a circular arc, whose radius is a and whose center

is at origin 0. Let Oi and 02 be

the angles with a;-axis made by

the radii OB and OA to the ends

of the arc. From

xds
I
yds

X = —^ and y = '-p ;

I ds
I

ds

using polar coordinates, x = a

cos d, y = a sin 6, ds = a dO;

o? cos QdB a sin / . ^ - ^\
J^ _ a (sm ^1 — sm 02)

and

/ a^si
— *J 09

sin 6 dd
-\9.

— acos0 , - ..
J92 _ g (cos 62 — cos Bi)

J92

di — 02

When 02 = 0, the equations reduce to

X =
a sin 01

01
y =

a(l — cos^i)

01

Corollary.— When 0i = ^1, ^2 = -^1; x --
^^^^ ^

When

01
'

01 = 90°, 02 = 0; x = —
,
j^=—

-

0.

Example 5. — Find the center of gravity of a triangle.

Let the triangle ABC have base h and altitude h, and let the

rc-axis be through the vertex parallel to the base, and the

2/-axis positive downwards. Take dA = L dy, where L is
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the length of an elementary strip, parallel to the base and at

a distance y from x-axis.

dA = j^ydy;

hence

L :y = h :h;

y =

Similarly, by taking strips parallel to h or the 2/-axis,

X = -h
A

a:

1 /
\ /l

VI
l„y-

///////F/M

B

Y

/I

/ !

m C

Hence the perpendicular distance of the center of gravity

from the base will be \ h, and, since the center of gravity of

each elementary strip will be its middle point, the center of

gravity of the triangle will be on the median line Am, at

one-third the distance from m to A. Similarly, it is on the

median line from B; hence it is at the intersection of the

medians.

Example 6. — Find the center of gravity of a semicircular

plate of radius a, whose density varies as the distance from

the center.

Here, the density being determined by the distance from

the center, the polar element is used.
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Let the density 7 = kp, and the x-axis as in Ex. 1 ; then

JyxdA f_^fjkf^
COS ede dp

IydA
I Ikp^dddp

cos Odd

27r'
and y =" 0.

dd

Example 7. — Find the center

of gravity of the volume cut from

a right cyhnder, the radius of

whose base is a, by the planes

z = and z = mx, the volume

above the plane of XF alone con-

sidered. Here

h

I xdxdydz

2h r<

a Jo

a2-x2

x^Va^ x^dx = 1T0?h

X =
Tra%/8 Tva^h/S

W'
F = f a^/i from Ex. 2, Exercise XXXIX.

h

I I zdxdydz
./_\/a2-x2 t/o

= -5 / x^Va^ — x^dx = —TTT-. )

a^ Jo 16

- 7ra%yiQ -KamiXfS 3 , , _
. =—^r- = -T^— 32^/^; and y 0.
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EXERCISE XL.

Find the coordinates of the center of gravity:

1. Area of the parabolic half segment, y'^ = 4 ax, x = to x = a.

Ans. (f a, fa).

2. The area under one arch of the cycloid, x = a {d — sind),

y = a {1 — COS0). Ans. {ira, f a).

(X _x\
ea

-J- e aj,x = 0tox = a.

Ans (^^ g (e^ + 4 - e-^) \

4. A semicircular plate of radius a, the density varying as the

distance from the bounding diameter. Ans. {j\Tra,0).

5. A homogeneous right circular cone, radius of base, a, and altitude

h. The axis on the x-axis. Ans. x = lh,y=z = 0.

6. A homogeneous paraboloid of revolution from the origin to x = h,

Ans. X = ^h, y = 0.

7. A hemisphere whose density varies as the distance from the base

whose radius is a. Ans. {0, 0, ^j a.)

8. The eighth part of a sphere in the first octant, the density of the

mass varying as the distance from the pole or origin at the center.

Ans. X = y = I a.

9. The circular sector subtending the angle di, radius a.

/ \ T? n a r \ A /2a(sin0i) 2a(l — cos0i)\
(a) For e,=e,. (a) Ans.

(^g—^— , 3 '^

_ 4 ^
(&) For di = 90°, the quadrant. (6) Ans. x = y = -^—

O TT

(c) For di = 180°, the semicircle. (c) Ans. a; = 5— , 2/ = 0.
O TT

10. Find the center of gravity of a T-section. Using the method of

Art. 178, with the dimensions on figure, taking the moments of the three

rectangles composing the section,

y, _S^^_ 4X7| + 6X4 + 8X| _ 58 _ 29 _
y' Ao 4 + 6 + 8 "18-9 -^-2291118.

xo = 0, as the center of gravity will be on the axis of symmetry. Here
advantage is taken of the knowledge that the center of gravity of each
of the rectangles is at the center of the rectangle.

Note. — This is the method of finding the centers of gravity of the

various shapes, or built-up sections, used in constructions.
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J-
k-/l<'>

I/O

\o

11. Find the center of gravity of the trapezoid OAao. Let the upper

base be 6 and the lower base B, the altitude h. Divide the trapezoid

into two triangles by diagonal Oa, then the distances of the centers of

gravity from OX are \ h and | h for the triangles, respectively. Then

Bh h hh 2h
2
^3'^2^

3 ^h /B_±2h\
3\B + bJ'2/0

= X^y
(B+h)

t
V^rC

-^

m
^"TX

~

y

M
-B-

The center of gravity of each strip of area parallel to the bases will be

its middle point, hence the center of gravity of the whole area is on the

median line mM of the trapezoid. Graphically, the center of gravity

is located by again dividing the trapezoid into two other triangles by
the diagonal oA, and drawing lines connecting each pair of centers of

gravity; the intersection of these connecting lines is the center of

gravity G of the trapezoid.
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12. From Art. 178, show that the center of gravity of two volumes,

masses, areas, or Hnes, lies on the line joining their separate centers of

gravity and divides that line into segments inversely proportional to

the two magnitudes.

In Ex. 11, the point G, the center of gravity of the trapezoid divides

the line GiG-i connecting the centers of gravity of two triangles, inversely

as the areas of the triangles, and it divides the line G'G" in the same

way.

In this way the common center of gravity of the Earth and the Sun
is found. Taking the distance from the Earth to the Sun as 92,400,000

miles, and the mass of the Sun as 327,000 times that of the Earth,

makes the distance of the common center of gravity from the center of

the Sun '
' miles, or only about 280 miles; so that the Sun is

considered practically at rest relative to the Earth.

180. Second Moments — Moment of Inertia. — The
term moment of inertia is applied to a number of expressions

which are second moments of lines, of areas, or of solids.

Let each of the elements of length, of area, or of volume

(As, AA, or Ay), into which a line, a surface, or a soUd may-

be supposed to be divided, be multiplied by the square of the

distance of some chosen point in the element from a reference

line or plane.

The hmit of the sum of these products as the elements are

taken smaller and smaller is called the second moment of the

given line, surface, or solid with respect to the reference line

or plane.

Formulas for second moments are derived from those for

first moments by squaring the distance factor. Denoting

the second moment by I, the general symbol for moment of

inertia, the following formulas correspond to (1), (2), (3),

Art. 173.

(1)

(2)

(3)

For a plane curve, h = Jy'ds.

For a plane area, h = fy'dA

For a volume, hy = Jz-'dV.
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As applied to an area, the moment of inertia is a numerical

quantity entering into a large number of engineering com-

putations and takes its name from the analogy between the

mathematical expression for it and that for the moment of

inertia of a mass or solid. It is evident from the form of the

expression that the moment of inertia is always a positive

quantity, being unhke the first moment in that respect. In

distinction from the moment of inertia, the first moment is

sometimes termed the statical moment.

181. Radius of Gyration. — The radius of gyration of a

solid is the distance from the reference line, called the in-

ertia axis, to that point in the solid at which, if its entire

mass could be concentrated, its moment of inertia would be

unchanged. Thus, if m, the entire mass of a body, be con-

sidered as concentrated at a point, and k denote the distance

from the inertia axis to that point, the expression for the

moment of inertia, / r^ dm, will be equal to k^m. Therefore,

/ = k^m and k = \ ~, k being the radius of gyration of

the solid of mass m.

In the case of the plane area, by analogy,

h = fx^dA = k^A, and k = \/j,

where A is the entire area and k is its radius of gyration with

respect to the x-axis.

The radius of gyration of both the soUd mass and the

plane area will evidently be expressed in hnear units.

182. Polar Moment of Inertia. — The polar moment of

inertia of a plane area is the moment of inertia about an axis

perpendicular to its plane. The moments of inertia about

any two rectangular axes in the plane of the area are called

rectangular moments of inertia when they are mentioned

in connection with the polar moment. It is evident that



346 INTEGRAL CALCULUS

for an area in the plane of XF, the moment of inertia about

the ^-axis is a polar moment of inertia, and that it is equal

to the sum of the two rectangular moments.

y

'0

Thus, let the point F (x, y, 0) be in the element of area,

then, L= jr'^dA

is the polar moment of inertia of the area about the 2;-axis or

with respect to the point in its plane. But since

x' + y\ L =
J{y'

+ x')dA,

hence, 1^ = 1^ + ly.

The symbol for the polar moment of inertia is, in general,

the letter J.

183. Moments of Inertia about Parallel Axes. —
Theorem. — The moment of inertia of an area about an axis

in its plane, not passing through its center of gravity, is equal

to its moment of inertia about a parallel axis, passing through

its center of gravity, increased by the product of the area and

the square of the distance between the two axes.
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Let the origin be at Og, the center of gravity of the area,

and take the i/-axis parallel to the inertia axis through in

the plane. Let the point P {x, y) be in the element of area,

then its coordinates with respect to the axis through are

(x + a, y). The moment of inertia Ig= j x^ dA, and that

about the aids through is

I^ C{x + aydA

= f{x' + a'-{-2ax)dA

= fx''dA+ fa''dA+ C2axdA

= 7G-f Aa2 + 2a CxdA. (1)

The quantity I x dA must be equal to zero, since the 2/-axis

passes through the center of gravity (Art. 175). Therefore,

I = lG + Aa\ (2)

It is evident that equation (1) gives the relation between

the moments of inertia with respect to any two parallel axes

in the plane of the area, OgY being replaced by an axis

through any point in the plane.

In the same way it can be proved that the polar moment
of inertia of the area, with respect to any point 0, is equal

to its polar moment of inertia with respect to its center of
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gravity plus the product of the area and the square of the

distance between the point and the center of gravity.

Corollary 1.— It follows from (2), that, of all parallel axes,

the axis through the center of gravity, called the gravity

axis, has the least moment of inertia.

Corollary 2. — When the inertia axis is a gravity axis, the

radius of gyration, then called the principal radius of gyra-

tion, is the least radius for parallel axes; from (2),

AF = Aka^ + Aa^ :. k^ = kg^ + a^, (3)

where kg . is the principal radius of gyration and a is the

distance between it and a parallel axis.

184. Product of Inertia of a Plane Area. — The product

of inertia of a plane area is a numerical quantity which is of

value only as it is found to enter into the determination of

the relations between moments of inertia with respect to

different axes. The product of inertia of an area A with

respect to the axes of x and y is a, second moment,

/xydA,

and may be defined as the limit of the sum of the products

of the elementary areas and the product of their distances

from the two coordinate axes. Unlike the moment of

inertia, the product of inertia may evidently be either posi-

tive or negative, depending upon its distribution in the

different quadrants; and the area may be so located that

its product of inertia will be zero.

The axes may be so chosen as to make the product of

inertia of an area zero, and such axes are called principal

axes, the corresponding moments of inertia being called

principal moments of inertia. It can be shown that for any

point of an area (or body) there exists a pair of rectangular

axes for which I xy dA = 0, and that the moment of inertia

is a maximum when taken with respect to one of the principal
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axes, and a minimum when taken with respect to the other.

The relation between the polar moment and the two rec-

tangular moments (Art. 182) shows that if one of the two is

a maximum the other is a minimum, and vice versa.

185. Least Moment of Inertia. — In designing a column

an engineer needs to know the least radius of gyration, and

consequently the least moment of inertia, of the cross section,

since the resistance to bending is least about that axis which

has the least moment of inertia. It has been stated that

the moment of inertia of an area is least about a principal

axis through the center of gravity, and it is necessary, there-

fore, to determine those principal axes which pass through

the center of gravity.

In many cases the position of the principal axes are known

at once, for all axes of symmetry are principal axes, / xy dA

being equal to zero for such axes, since for every point {x, y)

there is another (x, —y).

For example, any diameter of a circular area, the axis of

a parabola, either axis of the ellipse or of the hyperbola is

a principal axis. For a rectangle it is obvious that the lines

through the center parallel to the sides are principal axes,

but the diagonal of a rectangular plate is not a principal

axis at its middle point. The gravity axes parallel and

perpendicular to the web of the cross section of an /-beam,

channel, or T-beam are principal axes.

When the section is unsymmetrical, it is necessary to

evaluate the integral, I xy dA, in determining the principal

axes.

Remark. — A full treatment of the subject of moment of

inertia and product of inertia is beyond the scope of this

book. What has been given has been confined for the most

part to areas, as that part of the subject has more immediate

application in engineering.
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186. Deduction of Formulas for Moment of Inertia. —
1. Rectangle of base h and altitude h:

L =
fy'

dA = J'bf dy = tV W.

§)=!la'b' =^h-\-Aa'^j^ h¥ + bh hh\

ly = jx^dA = r hx^dx = j\¥h.

bh

Again,

Ia'b' = £by'dy = ibh\

Ix = tV^^ J = |6^; for square.

A

Y

f

X'-^-

A'

-- -

_i__.
X

B'

2. Triangle about the axes:

(a) Through the apex parallel to the base.

(5) Through the center of gravity parallel to the

(c) Through the base.

(1)

(2)

(3)

J = h + h = f^hh' + ^Vh = '^{V + h^). (4)

(2')
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Let the base be b and the altitude h.

,. J r . . , b¥ .bh /h^\ hW

y

1

1 /\
1 /////////a y//m.
1

h / V

\
-

\....... b- /
3. Circle:

(a) Polar moment of inertia, axis through center.

(6) Moment of inertia about a diameter.

(a) J = Tr^ dA = J\ tt/ dp = ^' wd^
32*

351

(1)

(2)

(3)

(1)



352 INTEGRAL CALCULUS

For a sector with angle 6,

J = j'dpdp = 4'

_ ^1 _ 7rr^

(2)

(3)

(4)

/. + /, = 27, = J

For a circular quadrant, 7, = 7

For a semicircle, Ix — I

(6) Since for the circle the moments of inertia about all

diameters are equal,

16'

_ _ _ 7rr*

^~2^ ~ 8
*

4. Ellipse:

_ 1

^"2
1

(5)

(6)

(7)

7, = Jx' dA = ^/"x2 (a2 - a;2)l d(a; = ^.

/x + 7, = ^(a2 + 62).

(1)

(2)

(3)

187. Moment of Inertia of Compound Areas. — Since

the moment of inertia is always positive, the moment of

inertia of an area about any axis is equal to the sum of the
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moments of inertia, about that axis, of the parts into which

the area may be divided. In some cases the area being

considered the difference of two areas, its moment of inertia

will be equal to the difference of the moments of inertia of

the two areas.

Example 1 .
— Find the moment

of inertia of the T-section shown

with the dimensions on figure.

(a) About the axis of X
through top of section.

(6) About the axis Zo through

the center of gravity.

(a) 7. = i6¥ = 1(4- 1) P+ i (1 X 4^) = !+¥= ¥- (ins.)*.

4" V
-x-| 1 1 1

—

a:
—

^

f"

^

</

1"

(h) yo =
^Ay 3X i + 4X2 9i 19.

-^ = Ti ins.
7 14A 3 + 4

/o= /x-At/o2 = -V—7(H)' = 22.33-9.32= 13.01 (ins.)*.

Example 2. — Hollow rectangular sec-

tion:

/. = tV (b¥ - hihi'), tV Q>' - h") for

hollow square.

h

Example 3. — Hollow circular section:

/ = T (^2* — n^), about a diameter;

J =
2 {t2^ — Ti^) , about axis

center.

through

Or in terms of the diameters:

/ = ^(^^-^1^),

J = l^W-d.^),
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Example 4. — Find the moment of inertia of the section

shown.

3
= ^ (6)^ -^' - T (2)^ (3)^ + 2.3-4^ = 46.33 (ins.)*.

J = h + Iy = 92.66 (ins.)*.

Example 5. — Find the moment of inertia of the trapezoid:

(a) about its lower base; (b) about the gravity axis.

ix ^on -t^2^fi 4 ^ 12

= 216 + 144 = 360 (ins.)^.

Ig = Ix- Aa' = 360 - 36 (f)2 = 104 (ins.)*.



CHAPTER VII.

APPLICATIONS. PRESSURE. STRESS.

ATTRACTION.

188. Intensity of a Distributed Force. — A distributed

force is one that acts on a surface, such as the pressure of

water against the surface of contact, the pressure of a weight

upon the surface of its support; or, one that acts through a

given volume, such as the attraction of the earth on a body.

All forces are really distributed forces since no finite force

can act at a point of no area; although this is true, in some

cases it is convenient to regard a force, whose place of appli-

cation is small, as though it were applied at a point. Such

a force is called a concentrated force. A distributed force is

conceived as ''equivalent to" a concentrated force called

the resultant force, when the force of gravity acting on every

particle of a body is taken as acting at a point within the

body, called the center of gravity. A distributed force is

regarded as the limiting case of a system of concentrated

forces whose number becomes larger as their individual

magnitudes become smaller. It is thus that a force is re-

garded as having a definite point of application and a definite

line of action: when so regarded it is a localized vector quantity.

When a force is distributed over an area, the intensity of the

force at a point is the number of units of force acting on a

unit of area including that point.

Briefly the intensity is defined as the force per unit of

area. If the force is uniformly distributed, the intensity p
will be equal to the force P, acting on the entire area, divided

by the area A ; that is,

.-f- (1)

355
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If the force is not uniformly distributed, the intensity at

any point of the area will be given by

r fAPl dP

the hmit of the ratio of the force, acting on a small element

of the area, to that element as it approaches zero as a hmit.

When the intensity varies from point to point over any area,

the force on that area divided by that area gives the average

intensity on the area. In any case the entire force is given

by

P = JpdA, (3)

where p, if variable, must be expressed in the same terms as

dA in order to get P by integration.

If p is constant.

V j dA = pAy and 2^ = T* (1)

189. Pressure of Liquids. — The pressure of a liquid

on a surface is normal to the surface, and the intensity of

pressure varies as the depth of the point below the free

surface of the hquid. The intensity is given by

p = wh, (1)

where w is the weight of a cubic unit of the liquid and h,

called the head, is the depth of the point below the free

surface.

If w is expressed in pounds per cubic foot, h should be in

feet, and p will then result in pounds per square foot. For

water w is usually taken as 62J lbs. per cubic foot, and the

intensity of pressure given in pounds per square foot. When
the intensity p is constant on any horizontally immersed

plane surface the total pressure P is, by (1) Art. 188,

P = Awh = Q2.b Ahlh^. (2)
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When the surface under pressure is not horizontal, by (3),

Art. 188,

hi

wxdAf (3)

where the Umits of x are the least and greatest heads on the

area. When the area extends to the surface of the liquid,

the lower limit becomes zero and the upper may be taken

as h.

Since in (3), j xdA =xA, by (2), Art. 175,

=/wxdA = Awx = 62.5 Ax lbs.

Hence, the total pressure on an immersed area is the product of

that area, the weight of a cubic unit of water, and the head upon

its center of gravity.

In general, the pressure of any liquid upon an area is equal

to the weight of a column of liquid whose base is the area pressed

and whose height is the depth of the center of gravity of the area

helow the surface.

Example 1. — The vertical face of a dam subjected to the

pressure of water is h ft. in height and b ft. in breadth. The
pressure of the water varies as the depth; the intensity at

a depth x is wx, w being the constant weight of a cubic unit

of water. Required the total pressure on the face of the

dam, and the location of the center of pressure.

Let the area of pressure be divided into strips of width Ax
and length b, then wx -b /S.x is approximately the pressure on

the element of area— for wx is the intensity of pressure at

the top of the strip.

The sum of a finite number of terms of the form wbx Ax

would give a result for the total pressure less than the actual

value; but the exact value is

_. ,. ^'^ , . 7 P J wbx^l'' wbh'^ wh ,, .^.P= lim X wbx/!:ix = wb I xdx= —^^ =—^r-=-^'bh. (1)
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The intensity of pressure is a uniformly varying force having

zero value at the surface of the water and value wh at the

bottom. The center of pressure, being the point of applica-

tion of the resultant pressure, is given by taking the moment

^=^A

of P about the surface line equal to the limit of the sum of

the moments of the elementary pressures about that line

:

X'P = I whx^ ax = —5— = —5—
,

Jo o Jo o

£ whx'^ dx

i whxdx

wb¥/S
wbhy2 h- (2)

In general, the center of pressure of a rectangle with a

side at the surface is two-thirds the height of the rectangle

below the surface. When the top of the area is hi below the

surface and the bottom is h below, the total pressure is

tJhi ^

and

M x^'

2

h

hi

x^dx
2hlj-hl
3 hi" - h/ (3)
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It may be noted that the second moment in the numerator

is the moment of inertia of the area, and the first moment in

the denominator is the statical moment.

Note. — That P = l wbx dx in (1) is the reversal of a

rate may be seen by considering the rate of change of the

total pressure when the depth x is increased by Ax, for then

the pressure P on the area is increased by AP= vox • h ^x,

approximately, and AP/Ax= whx (nearly).

Hence
,. AP dP
lim -T— = -7- = whx,
Ax=o Ax dx

the rate of change of P; and P = I whx dx as in (1); so

the total pressure is a function of h and its rate of change

is whx = ph, where p = wx is the pressure on a unit of

area.

Note. — Whenever an external force acts on a body it

induces a resisting force within the body. This is in accord-

ance with Newton's third

law of motion. This in-

ternal resistance is due to

the molecular forces or

stresses within the body.

A stress is a distributed

force acting on a surface

Example 2. — A verti-

cal rectangular section

ABBiAi of a beam of

breadth h and depth d is

subjected to a stress of

tension and compression uniformly varying in intensity from

zero at the middle fiber to St and Sc at the outside fibers, at

the distance, yi = i d, from the neutral axis or middle fiber

of the section.



360 INTEGRAL CALCULUS

Find the total tensile and compressive stresses and the

centers of stress on each half of the section.

The intensity of stress at the distance y from the neutral

axis is S/yiy, hence S/yiyh Ay is approximately the stress on a

strip A 2/ in depth— the intensity at the edge of the strip

being taken. The sum of a finite number of such terms

would give a result less than the total stress on the half

section; but the exact value is given by

P.= hm2^ -ybAy=—l ydy
Ay=0 ^0 2/1 2/1 t/0

d

Sh yn^^ Sh f Shd

For the center of stress, the point of apphcation of the total

stress,

- D P'^^ 2^ Shy^y^ Sh J Sbd\

- Shd' /Shd 1 ,

When S = St = Sc, P = Pi; hence, the total tensile and

compressive stresses form a couple with arm f d, the moment
being

^.U^'-^,c.neAti.esectionmodulus.
4 o o

By the mechanics of beams, ifM denote the moment of the

external forces acting on the beam, M = —^—
Example 3. — A vertical circular section of a beam is

subjected to a stress of tension and compression uniformly

varying in intensity from zero at the horizontal diameter

2 a of the section to St and Sc at the top and bottom fibers,

respectively.
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Find the total stresses on the upper and lower semicircles

and the centers of stress on the semicircles.

Denoting by P the total stress on either semicircle, and

taking St = Sc = S;

P = lim 5j -y '2x^y = — I Va^ — y'^ydy
A2^=o "^0 o, a Jo

y>P=—-j Va^-y^yHy
a Jo

= 2^r^(2.2_^2)V^J3^+^%in-i^TP^^^-2'Exer-\

2S TTO^

a ' 16

Swa' Sird'

8 64

" ^ 64/6 32
*

Hence the couple formed by the forces P has an arm,

2^ = TQT^d^ and

M = -^Sd"^ • Y^Trd = ~o^j the section modulus.

Example 4. — Find the total water pressure upon the end

of a circular right cylinder immersed lengthwise, one element

of the cylinder just at the surface of the water. Find the

center of pressure of the circular area.
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The intensity of pressure at a depth y being wy^

approximate pressure on a strip iswy'2x ^y.

the

2wxy ^y)
ny=v

P = 2w f
" {2ay-y'^)^ydy = 2wa

(
\2ay-y^)^dy

Jo Jo

7ra^= 2wa'-— = wira^; (Ex. 13, Exercise XXV.)

2w
I

(2ay-y^)y^dy ia'2w I {2ay-y^)^ydy
— _ Jo Jo
^
~

P
~

wira^

= i^^ =^a = ^d. (Ex. 13, Exercise XXV.)
WTTO' 8

EXERCISE XLI.

1. (6) The pressure upon one side of the gate of a dry dock, the

wetted area being a rectangle 80 ft. long and 30 ft. deep, is to be found

exactly. Take w = 62^ lb. for the weight of a cubic foot of water.

(c) Find the depth of the center of pressure. Ans. (c) 20 ft.

(a) Find the pressure approximately by a limited number of terms.

(See Art. 154.) Ans. (h) 112^ tons.

2. The pressure on the gate that closes

a water main half full of water, the diam-

eter of the main being 8 ft. Get the

exact (6) pressure only, (c) Find the

center of pressure.

Ans.{b)P = ''i^w\ha. (c) ^ = f tt ft.

3. Find the exact pressure on a cir-

cular disk 10 ft. in diameter, submerged

below water with its plane vertical and

its center 10 ft. below the surface. Here
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p^y^C^" {lO-y)2xdy = 2wC " {10 - y) {a^ - y^^^ dy
J—5=—a •/— 5=—

o

= 20wC {d? - 2/2)^ dy -2wC (a^ - y^)^ y dy

= 20i/; • ^/ TT + f (a2 - ?/2)^T"" = 250Trw
J—5=—

a

= 2507r-62|lb.

4. Find the pressure on the face of a temporary bulkhead 4 ft. in

diameter closing an unfinished water main, when water is let in from

the reservoir. The center of bulkhead is 40 ft. below the surface of the

water in the reservoir. Ans. Nearly 16 tons.

5. Find the pressure on ,the end of a parabolic trough when it is full

of water. The parabola has its vertex downward, the latus rectum is

in the surface and is 4 ft. long. Here

P = lim 2I 2w{l — y) xAy
Ay=0 ^^0

2w r2(l -

iwC y'dy - C y^dy
Jo Jo

[1
2/^

-f2/^J^
= 11^ = 661 lbs.

y^dy

4 w; I ?/^

<

T

Y
4- -"1

^X J-y y\^y^y//////////jy///////y'///^ /"^-^—^—^x

6. A horizontal cylindrical tank is half full of oil weighing 50 lb. per

cubic foot. The diameter of each end is 4 ft. Find the pressure on

each end. Find the pressure when the tank is full also.

Am. 2661 lb.; 12561b.

190. * Attraction. Law of Gravitation. — Every portion

of matter acts on every other portion of matter with forces

of attraction or repulsion. According to Newton's Law of

Universal Gravitation, every particle of matter attracts

every other such particle with a force which acts along the

line joining the two particles, and whose magnitude is pro-

* This article is based on a discussion in Fuller and Johnston's

Applied Mechanics.
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portional directly to the product of their masses and in-

versely to the square of the distance between them.

If the masses of the particles are m and mi and the distance

between them is r, the law may be expressed algebraically by

F = K^, (1)

where F is the attractive force between the particles and
K is a constant, determined by experiment, its numerical

value depending on the units in which F, m, mi and r are

expressed. The value of K having been determined in one

case is then known for all cases.

While formula (1) expresses the law of gravitation, the

general algebraic expression for the law of attraction would

be

where 0(r) is some function of the distance between the

particles, depending on the nature of the attractive force,

X is a constant, and m and mi other quantities than the

masses of particles.

In interpreting formula (1), it is to be noted that it applies

strictly only to particles; for the particles having finite

masses must have finite dimensions and hence, as the distance

between them is diminished, r cannot be less than a certain

finite quantity and the maximum value of F, when the

particles are in contact, will b^ a finite quantity. If r were

taken to be zero in any case, F for finite values of m and mi

would become oo which would be impossible under the

conditions.

The formula, while applying strictly only to particles,

gives, to a close approximation, the attraction between two

bodies of finite size, whose linear dimensions are small

compared to the distance between them. In the appHcation

of the law the attraction of one particle on another may be
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regarded as acting at a point. It will be shown that any

sphere attracts any outside particle as if the whole attraction

was towards a point at the center of the sphere, but, in

general, the attraction of bodies on exterior particles is not

always towards the center of gravity of the attracting body.

Attraction of gravitation is a mutual action between two

particles or bodies; that is, each exerts an attractive force

upon the other, the two forces being equal in magnitude and

opposite in direction. This is implied in the Law, and it is

also in accordance with the law of '^ action and reaction,"

Newton's third law of motion.

It is evident that, in formula (1), K is equal to the force

with which two particles of unit mass at a unit distance

apart attract each other.

If the equation is divided by mi, then

^=a = K^, (3)

where a is the acceleration which would be produced in the

mass Wi by the attraction of the mass m at a distance r.

771

The quantity K -^ would also equal the force of attraction

exerted by the mass m on a mass unity at a distance r.

Briefly this is called the attraction at the point, at which the

unit mass is situated, exerted by the mass m.

The attraction at a point exerted by any mass is called the

strength of the field of force, or briefly, the strength of field, by
which the space through which the attraction of the mass is

exerted is expressed.

Electrostatic and magnetic attraction and repulsion are

other examples of forces, which are governed by laws similar

to that of gravitation.

The following examples are based on the law
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'V

A4^^
p'

0K~
^-^OTp.^-

where F is the attraction of a particle of mass m for a par-

ticle of unit mass, the body being taken as homogeneous, of

uniform density; that is, each

cubic unit having the same

weight.

Example 1. — Attraction of a

Rod of Uniform Section. — (a)

Let the rod of small section be

in the form of a circular arc;

to find the attraction at the

center of the circle.

Let r be the radius, a the

angle subtended at the center,

and m the mass of a unit length

of the rod. Take the axis OX
bisecting the angle a, and let d

be the angle which the radius

to any point P makes with OX. The attraction at of a

particle at P is

N

jB'

AF = Km As Km Ad
(1)

Since all the elementary forces of attraction are directed

to the point 0, the resultant R is found from the sum of the

components of the elementary forces.

X^=^/ . ,. 2Km . a
cos Odd = sm ^j

r 2

at

~ 2

the attractions being neutralized.

Hence, R = ^JXW+^ljf =

1171. D 2KmWhen a = IT, R =

2Km . a
sm--

r 2
(2)

(3)
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When a = 2Tr, R = 0; since the arc being a circumfer-

ence of a circle, the attractions neutrahze each other.

(6) Let the rod be straight; to find the attraction at a

point. Let r be the shortest distance from a point to the

rod. Taking as origin, the equation of the rod is x = r

(constant).

When the rod is B'AB the angles may be taken as in (a)

for the circular arc. The attraction at of a particle at P'

on the rod is

^^ = JOPT^ ^
r'

^'
^ ^

The resultant attraction is found as in (a) ; since y = r tan 0,

-, rdd

2Km .a - , ^= sm-, as m (a).
r 2

a

^Y =^Jcos' d sine dy =^T ^^^^^^ = ^'

Hence, R = sin-, as in (a). (2')
T A

It is thus shown that if the straight rod B'AB is of the

same mass per unit length as P2P1, the resultant attraction

of B'AB at is the same as the attraction of P2-P1, since the

sum of the attractions of the elementary masses m l^y and

the sum of the attractions of the elementary masses m As

have the same limit.

(50 Let the rod be still straight but AiB, the angles with

OX of the lines from to the ends being ai and a^] then,

X^
Km r«2 Km , . . .

A = I cos Odd = (sm 0:2 — sm ai),

V^ ^^ Km r"2 . Km , .X F =
I sm QdQ = (cos ai — cos 012).
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Hence,

R = V2 [1 — cos (a2 — Oil)] = Sin

—

^
—

-, (3')
r

and

. ^ -^ ^ cos Q!2 — COS Q!i ^ Q!2 + «1
tan 0r = S— =

-• -• = tan—-—

,

V X sin a2 — sm ai 2

0:2 + 0:1

.. er-—^—,

the line of action of R bisecting the angle AiOB^ subtended

by AiB at 0.

(6") Let the point be at A, making r = and (3')

indeterminate. Then,

Jy^ y^ \yi 2/2/

Kmiy2-yi) ^KM
2/22/1 2/22/1'

where M = the entire mass of the rod.

If the point is taken at the end of the rod, 2/1 = and

equation (4) gives R = 00 . This is impossible; for, as

stated in Art. 190, r cannot be zero for finite particles. If,

however, 2/2 = 00

,

R = ^,
2/1

making R a finite quantity for any length from Ai.

If the point were taken on the rod between Ai and B,

with lower hmit, —1/1,

R= -Km
\2/i 2/2/

and, if were taken at the middle point of the rod, it is

evident that R = 0.

Example 2. — Attraction of a Spherical Shell at a Point. —
Find the resultant attraction of a spherical shell of uniform

density and small uniform thickness on a particle of unit

mass, ikf ' being the mass of the shell.
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(a) Let the point P outside the shell be the position of

the particle.

Let 7 be the density and t the thickness of the shell," its

center, and a the radius ON; let NP = r and OP = d. If

the circle be revolved about OP as an axis through an angle

2 TT, a thin spherical shell of thickness t will be generated, and

an elementary volume will be generated by the elementary

area at N, whose mass will be AM' = yt ' 2 ira^ sin d Ad,

approximately.

The attraction of the elementary mass at N for the particle

of unit mass at P is

Kyta Ad
A^F (1)

This attraction may be resolved at P into a component X
along PO and a component Y perpendicular to PO. To
every elementary mass at N there is a corresponding mass

at N', whose attraction at P is X along PO, and — Y per-

pendicular, which neutralizes Y. Hence the attraction of

AM' is along PO, and is given approximately by

AF
Kyt'27ra'^smdAe

COS0. (2)

From the geometry of the figure,

r2 = a2 + d2- 2adcose,
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which differentiated gives

T dv
» rdr = ad^inBdB', .'. sin0

and from the figure, cos <^ =

ad'dd'

d — a cos

r

Substituting these values in (2) gives exactly,

at /d^ — a^ + r^\ , ,„,
dF = KjT ^ (^

~~^—j dr; (3)

hence, F = ii:^.
^, X_^ ( ^ )dr

(4)

It follows from (4) that the attraction is the same as

though the mass of the shell were concentrated at its center.

It follows also that a sphere, which is either homogeneous or

consists of concentric shells of uniform density, attracts a

particle without the sphere as if the mass of the sphere were

concentrated at its center. This law holds almost exactly,

for bodies slightly flattened at the poles, if the particle is not

too close to the attracting body. Since both these con-

ditions exist in the case of the Earth and other members of

the Solar System, this law has important apphcations.

(6) Let the point P' inside the shell be the position of the

particle. The equation (3) in case (a) is true for this case

too, but the Umits for r are now a — d and a -\- d. Hence,

that is, the resultant of all the attractions of the elementary

masses of the spherical shell on a particle within the shell

is zero.

(c) Let the point where the particle is be on the surface

of the shell.
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In (4) making d = a gives

F = 4:KyTrt = ^^' (6)

Corollary. — If a particle be inside a homogeneous sphere

at a distance d from its center, all that portion of the sphere

at a greater distance from the center than the particle has

no effect on the particle, while the remaining portion attracts

the particle in the same way as if the mass of the remain-

ing portion were concentrated at the center of the sphere.

Thus the attraction of the sphere on the particle is

^ = ~~d^=~~Y~' ^^^

that is, within a homogeneous sphere the attraction varies

as the distance from the center. The attraction of a sphere

of mass iif on a particle at the surface is from (7), making

d = a,

p 4j^ KM ,_,F = -^Kirya = -^- (8)

Hence, the attraction for an external particle is

KM
(9)

where d is the distance from the particle to center of sphere.

Note. — The propositions respecting the attraction of a

uniform spherical shell on an external or internal particle

were given by Newton (Principia, Lib. I, Prop. 70, 71).

It was in 1685, nineteen years after he had conceived the

theory of universal gravitation, that he completed the veri-

fication of the theory, by proving that a sphere in which the

density depends only upon the distance from the center

attracts an external particle as if the mass of the sphere were

concentrated at its center. Thus was the great induction

by this supplementary proposition finally estabUshed.
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Example 3. — Attraction of the Earth. ^ — I. Find the

relation between the attraction of the Earth on a body at

the surface and at a point h feet above the surface.

Taking the Earth as a sphere whose density is a function

of the distance from the center, R as the radius, and F and F'

as the Earth's attraction upon the body at the surface and

at h feet above the surface,

F/F' =(R + hy/R' (by Ex. 2, (8) and (9)),

or F' = FRy{R + h)\ (1)

If /i is a small fraction of R, then approximately,

r = F{1-^ h/R)-^ = F (1 - 2 h/R). (2)

Since the '^ weight" of a body is the force with which the

Earth attracts it, the equations (1) and (2) give the relation

between the weight of a body at the surface and at a height

h feet above the surface. And, if g and g' are the values of

the acceleration of gravity at the surface and at the point h

feet above the surface, since F/F' = g/g', the equations give

the relation between g and g' also.

(a) Find approximately at what height above the surface

will the weight of a body be tV of one per cent less than at

the surface.

Taking the mean radius of the Earth as 20,902,000 ft.,

F'/F =l-2h/R=l- 1/1000;

, R 20,902,000 ,^.r,,f .•
••• ^^2000^ 2000

-lM51feet.

Corollary. — A mass which at the surface weighs one pound

at 10,451 ft. will weigh 0.999 lb.

(6) Find how much the value of g is changed by a change

of elevation of one foot above the surface.

¥ = 7 = 1 - IT = 1 - 2Pil;000
= 1-0.0000000957.

* This example is based on examples Lq Hoskins's Theoretical Me'

chanics.
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The value of g for different latitudes and elevations is given

by the following formula, in which g is in feet per second, I

is the latitude, and h the elevation in feet above sea level

:

g = 32.0894 (1 + 0.005243 sin^ I) (1 - 0.0000000957 h).

This gives

g = 32.0894 at the equator at sea level, and

g = 32.174 at 45° latitude at sea level

;

this latter value, g = 32.174 ft. per sec. per sec. is the

standard value.

II. Find the relation between the attraction of the Earth

on a body at the surface and at a point h below the surface,

(a) Taking the Earth as a sphere of uniform density of radius

R,

Y"IF = {R- h)/R =l-h/R (by Cor. Ex. 2), (3)

where F and F" denote the attraction at the surface and at

h below the surface.

Corollary. — Under these conditions, the weight of a body

and the value of g would decrease with the depth h below the

surface.

(6) Taking the Earth as a sphere whose density is a

function of the distance from the center, let y denote the

mean density of the whole Earth and 70 the mean density

of the outer shell of thickness h.

Let M be the mass of the whole Earth, M'' that of the

inner sphere of radius R — h, m the mass of the attracted

body, F and F'' the attraction at the surface and at h below

the surface. Then F is equal to the attraction between two

particles of masses M and m whose distance apart is R, and

F" is equal to the attraction between two particles of masses

M'' and m whose distance apart is R — h. That is,

F = KMm/R\ F'^ = KM"m/{R - h)';

, F'' M" I R V
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Now M = ^TvR'y; M - M" = Ittto [R' ~ {R - hf];

M
M--'-?['-(V)>(-?)-?(v;. <«

which substituted in equation (1), gives

^ = ('-?)(s^jH-(V> '«

If /i is a small fraction of R, equation (6) may be reduced

to the approximate formula,

Corollary. — If the mean density of the outer layer of the

Earth is less than two-thirds the mean density of the whole

Earth, the weight of a body increases as it is taken below

the surface of the Earth. (See Ex. 1, Art. 171.)

The mean density of the Earth being taken as 5.52 and

that of the layer near the surface as 2.76, about the density

of the rocks, makes 70/7 = i and equation (7),

F'^F = W'lW = g"lg = 1 + V2 R. (8)

That the weight of a body increases as it is taken below the

surface has been shown by actual trial. From (8), the depth

to which a body must be taken in order that it gain j^q of

one per cent in weight is approximately,

, 2X20,902,000 .,„„,.
^-

10,000
^^^^Q^^-

that is, a mass weighing a pound at the surface will weigh

1.0001 lb. at a depth of 4180 ft. below the surface.

Compared with case I, it may be seen that, under the

conditions, for the same value of /i, the gain in weight is one-

fourth as much as the loss in weight when the body is above

the surface, the same ratio of change applying to the value

of gf also.
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191. Value of the Constant of Gravitation.* — From the

foregoing as to the attraction of a sphere, it follows that the

formula for the attraction of two particles,

F = k'^ [(1) Art. 190]

will apply to two spheres, which are either homogeneous

throughout or composed of a series of concentric shells, each

one of which is of uniform density, m and m' being the masses

of the spheres and r the distance between their centers.

By measuring the force of attraction between two spheres

of known mass and distance apart, the value ofK the constant

of gravitation has been found. As stated in Art. 190, its

numerical value will depend on the units used for the other

quantities in the equation. The relation between the

constant K and the mass of the Earth, taking the Earth as a

sphere whose density is a function of the distance from the

center may be shown as follows.

Let the units be the British gravitation units, and let R
be the radius of the Earth in feet, M its mass, 7 its mean
density. Consider the attraction of the Earth on a body of

mass m at the surface. By the formula (1) of Art. 190, the

value of the attraction is KMm/R^; but (since the unit force

is the weight of a pound mass) expressed in pounds force,

its measure is m. Hence, m = KMm/R'^ or

KM = R\ (1)

Since the value of R is known, either K or M can be found

when the other is known. Putting for M its value in terms

of 7,

K'^irR^y = R' or Ky = ^' (2)

\ Arts. 191 and 192 are based on Articles in Hoskins's Theoretical

Mechanics.
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Taking y = 345 lbs. per cu. ft. and R = 20,900,000 ft. gives

K = -r^ = 3/(47r X 20,900,000 X 345) = 3.31 X lO"".
4 7rii7

Otherwise, if the value of K, found by direct measurement

of the attraction of two spherical bodies, is substituted in (2)

the value of 7, the mean density of the Earth is found to

be 5.527. The density of water being unity, and its weight

62.4 lbs. per cu. ft., the mean density of the Earth is about

345 lbs. per cu. ft., as used above.

192. Value of the Gravitation Unit of Mass.* — As
stated in Art. 190, the force with which two particles of unit

mass at a unit distance apart attract each other is equal

to X, the constant of gravitation; this is evident from the

equation,

F = k'^- [(1) Art. 190.]

Let m pounds be the mass of each of two particles which,

when one foot apart, attract each other with one pound force.

Substituting K = 3.31 X 10~^\ as given above, putting

F = 1, m = m\ and r = 1; gives

m = 1/Vk = 173,800 lb.

If a mass equal to 173,800 pounds be taken as the unit

mass, the constant K becomes unity and the formula for

attraction is then

p, ^ mm'

The gravitation unit of mass is thus shown to be a mass equal

to about 173,800 pounds, distance being in feet and force in

pounds-force.

193. Vertical Motion under the Attraction of the Earth.

— Let the Earth be taken as in Example 3, Art. 190, r as

the radius and s the distance of the moving particle from

* See Footnote on page 375,
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the center 0. Taking distance, velocity, and acceleration

as positive outward, then, as in (1) Ex. 3,

F g s'
or g' = '-^

Since -rr = « and -j: = v, ehminating dt
at at

gives V dv = a ds.

Hence, a = —g' = —^, neglecting air re-
o

sistance, which gives

I vdv = j — grh~^ds;

integrating, ^ = S^^'«"M^ = S'^'
1^^:

" -
)

;

then, v^ = 2gr^(^^-fj (1)

gives the velocity of a particle towards the Earth from any

distance s.

For the velocity acquired by a body in falhng to the surface

from a height h, put s = r + /i in (1), giving,

2gr'
\r r -\-hl

= 2 gh, approximately.

(1')

(2)

if h is small, which is the formula when g is constant, as it is

taken near the surface. When - is small, putting

rrj-o+r— (^e)"-©"+---.
(2) becomes

v'=^2gh{l- (h/r) + (h/ry - (h/rY +•.•]. (3)
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By taking any number of terms of this series, an approxi-

mate result may be gotten as nearly correct as desired. If,

in (1), s = 00 , z; = V2 gr; so if a body fell toward the Earth

from an infinite distance, its velocity, neglecting air resist-

ance, would be V2 gr = 6.95 miles per second, for r = 3960

miles. If falling from a finite distance s, the velocity must

be less than this. Hence, a body can never reach the earth

with this velocity; and if air resistance is considered, the

velocity for s = oo is less than a/2 gr. If projected outward

with velocity a/2 gr and air resistance be neglected, the body

would go an infinite distance. This velocity is called the

critical velocity or velocity of escape, for under the conditions

it is supposed that certain particles of the atmosphere may
escape from the attraction of the Earth.

In this connection, it is to be recalled that due to the

Earth's rotation, there is at its surface a centrifugal force

mgr/289, exerted by a particle of mass m, which lessens the

value that g would otherwise have.

194.* Necessary Limit to the Height of the Atmosphere.
— The centrifugal force of a particle of mass m on the surface

of the Earth is mojV = -pr^, and at a distance s from the

center it would be mco^s = ^Ji . The Earth's attraction at
289 r

TYior'^

that distance being —^, in order that the particle be re-
s

tained in its path these two forces must equal each other;

mgs _ mgr^
•*•

289r ~ ~7~'

or s^ = 289 r^,

hence s = a^289 r = 6.6 r

= 26,000 miles approximately;

that is, a height above the surface of about 22,000 miles. The
actual height of the atmosphere is probably much less than

* Bowser's Hydromechanics.
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this. The estimates of the height by various scientists have

been very divergent— from 40 miles to 216 miles; but the

latter appears to be the most hkely, for meteors have been

observed at an altitude of more than 200 miles and, as they

become luminous only when they are heated by contact with

the air, this is evidence that some atmosphere exists at that

height. It is supposed that at a height much less than 5.6 r,

the air may be hquefied by extreme cold.

195.* Motion in Resisting Medium. — Consider the

motion of a body near the surface of the Earth under the

action of gravity taken as a constant force and the air taken

as a resisting medium of uniform density, the resistance

varying as the square of the velocity.

Let a particle be supposed to descend towards the Earth

from rest, and let s be the distance of the particle from the

starting point at any time t, gk'^ the resistance of the air on

a particle for a unit of velocity— gk^ being the coefficient

of resistance. The resistance of the air at the distance s from

/dsV
the origin will be gk'^i-r-j , acting upwards, while g acts

downwards, the mass being a unit.

The equation of motion is

/^o\2

(1)

r\T

dh ..fdsV

or

Integrating,

1 , dt

^ "dt

t = 0,v = 0, giving C = 0.

* Bowser's Analytic Mechanics.'
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Passing to exponentials,

ds _1 e^^* — e~^°*

dt~ k e^ot _|_ Q-kgt ' (2)

which gives the velocity in terms of the time. To get it in

terms of the space, from (1),

2gVds;

.-. log [l - 1<? gj] = -2gh\ s = 0, z) = 0; C, = 0, (3)

which gives the velocity in terms of the distance. Also,

integrating (2);

gkh = log (e*^' + e-*^0 - log 2;

which gives the relation between the distance and the time

of falhng through it.

As the time increases the term e~^^' diminishes and from

(5) the space increases, becoming infinite when the time is

infinite; but from (2) as the time increases the velocity

becomes more nearly uniform, and when ^ = oo , the velocity

= 1/k) and although this state is never reached, yet it is

that to which the motion approaches.

196. Motion of a Projectile. — If a body be projected

with a given velocity in a direction not vertical and be acted

on by gravity only, neglecting the resistance of the air, it is

called a projectile. The path, called the trajectory, will result

from a combination of the motions due to the velocity of

projection and to g, the vertical acceleration of gravity.

Let the plane in which a particle is projected with a velocity
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V be the plane of XY, and let the hne of projection be inclined

at an angle a to the x-axis, making v cos a and v sin a the

resolved parts of the velocity of projection along the axes of

X and y.

Y s D n'

/
/ 4

>^2
p \

/ ^i c B ^

Let {x, y) be the position of the particle P at the time t)

then, since the horizontal acceleration is zero and the vertical

acceleration negative,

d}x _ d'^y _
d^~ ' d? ~ ~^'

Taking the first and second integrals of these equations,

determining the value of the constants of integration corre-

sponding to ^ = and t = t, gives

dx
-fj = V cos a

;

dt

dy
-^ = vsma — gt;

V cos at; y = V sin at — \ gf^.

(1)

(2)

Equations (1) and (2) give the coordinates of the particle

and its velocity parallel to either axis at any time t.

Eliminating t between equations (2), gives

,2

y = X tan a — gx'
(3)

2 v^ cos^ a
'

which is the equation of the trajectory, and shows that the

path of the particle is a parabola.

Putting equation (3) in the form

2 v^ sin a cos a

9
x =

2 v^ cos^ a
y>
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or
/ v^ sin a cos aV 2v^cos^a/ v^sm^a\
(' -g

—
)
=
—

~[y-^r)' ^'^

and comparing this with the equation of a parabola,

{x-hy== -2p{y-k),
it is seen that:

V sin ci cos (Y

the abscissa of the vertex = ; (5)

v^ sm^ ex

the ordinate of the vertex = — ; (6)
2g

the latus rectum = (7)
g

By transferring the origin to the vertex, (4) becomes

X^=-?^^^y, (8)

which is the equation of a parabola with its axis vertical and

the vertex the highest point of the curve.

The distance between the point of projection and the point

where the projectile strikes the horizontal plane, called the

Range, is

OB = X = , (9)
9

when y = 0, from (3); which is evident geometrically, since

OB = 2 OC; that is, the range is equal to^wice the abscissa

of the vertex.

It follows from (9) that the range is greatest for a given

velocity of projection, when a = 45°, in which «iase the

range = — . It appears from (9) that the range is the same
if

for the complement of a as for a. The greatest height CA
is given by (6) which, when a = 45°, becomes v'^/4: g.

The height of the directrix,

^7^ ^4 . A T^ v^ silica
,
12v^cos^a v^

CD = CA-^AD = —TT h T = :^-
2g 4: g 2g
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Hence, when a = 45° the focus of the parabola is in the

horizontal Hne through the point of projection, for then

CA = i CD.

To find the velocity V at any point of the path, from (1),

>-(D'+(S)"
= v^ cos^ a + {v'^ sin^ a — 2 1; sin agt + gH"^)

= v''-2gy, or ^ = ^ - y = MS - MP = PS.
2g 2g

72
Since ^^ is the height through which a particle must fall

from rest to acquire a velocity V, it follows that the velocity

at any point P on the curve is that which the particle

falHng freely through the vertical height SP would acquire;

that is, in falUng from the directrix to the curve; and the

velocity of projection at is that which the particle would

acquire in falHng freely through the height CD.

For the time of flight, put ^ = in (3) and solve for

2 v^ sin a cos a ^ - , j- •
^ t ^ • ^- <.

X =
J
which divided by v cos a gives, time of

2 V sm oi

flight — ; or in (2) put y = and solve for t, giving

r^ J ^ 2?;sinQ: , »

t = and t = , as before.
g

197. Motion of Projectile in Resisting Medium. — If

the resistance of the air is taken to vary as the square of the

velocity and the angle of projection is very small, the pro-

jectile rising but a very Uttle above the horizontal, the

equation of the trajectory above the horizontal line can be

found. Thus the equation

gx^ gkx^
y = X tan a — p—^—^ 7^-^ ^ * • *

>^ 2v^ cos^ a Sv^ cos^ a '

may be derived under such conditions; where the first two
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terms represent the trajectory neglecting air resistance, as

found in (3), Art. 196.

For the high velocities of cannon-balls the trajectory is

found to be very different from the parabolic path and the

range much less than that deduced for it.

Experiments show that the angle of projection for greatest

range is about 34°, rather than 45°, as deduced for the para-

bohc path.

The simplest formula for making out a range table is

H6he's:
qx^ / 1 , kx\

2cos2a\i;o Vo/

where k = 0.0000000458 -, d being the diameter of the
w

projectile in inches, and w its weight in pounds.

In addition to the resistance of the air, allowance has to

be made in firing for the drift, that is, the tendency for most

projectiles to bear to the right upon leaving the gun, due to

the right-handed rotation given to the projectile.



CHAPTER VIII.

INFINITE SERIES. INTEGRATION BY SERIES.

198. Infinite Series. — When a series consists of a

succession of terms whose values are fixed by some law and

the number of its terms is unlimited, it is an infinite series.

Let Ui, Wy Us, . , . be an infinite succession of such values

and let the sum of the first n of these values be denoted by

Sn, that is,

Sn = Ui + Ih -\r
'•'-{- Un- (1)

When n becomes infinite, then the infinite series is

U1 + U2 + U3+ ' ' ' , (2)

If Sn has a definite limit as n becomes infinite, that limit

is called the value of the infinite series, and the series is said

to be convergent.

If Sn has no definite limit, either oscillating between two

finite values or increasing in value beyond any finite value,

the series is said to be divergent. Thus the geometrical series,

a -\- ar + ar"^ -{- ar^ -{- • • •

(3)

is convergent only when r is between — 1 and +1, for

Sn = a-\-ar+ ar^-\- • • • -\-ar''-^=-\ - = -
:;

,

1 — r 1 — r 1 —

r

and

lim Sn = lim —^ =
^

, when — 1 < r < 1.
n=oo n=oo i- r i r

Since *S„=oo = —^^
= 00 , when — 1 > r = 1,

1 — r

and oscillates between and a when r = — 1, the series

for those values of r is divergent, *Sn=oo having no definite

limit.

385
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The terms of a series may be functions of some variable x;

then the series is said to converge for any particular value

of this variable, say x = a, when, if x is replaced by a in each

term, Hm Sn (a) exists. When the corresponding limits exist
n=oo

for all values of x in a certain interval, say from x = a — h

to X = a + A, the series is said to converge throughout the

interval and to define a function in the interval.

Example 1. — Let the given series be

1+ X + ^2+ a;3 + . . . + x^-^ + • • • . • (1)

Here lim Sn (x) — hm ——— = -——-, for — 1 < x < 1

;

n= oo n=oo ji X L X

and within the interval x = — ltox= +1, not including

the end values, the series defines the function f{x) =
1 — X

For the end values x = — 1 and x = + 1, and for all values

beyond, the series is divergent and does not define a function.

Example 2. — Similarly the given series,

l-x + x^-x'-i- • • • + i-iyx^-'^ + • • • (2)

has hm Sn{x) =
, for — 1 < x < 1,

n= oo J-
I
X

and within the interval x = —1 to x = +1, the series de-

fines the function /(x) = —--

—

JL "Y" X

For the end values x = —1 and x = -\-l, and for all

values beyond, the series is divergent and does not define a

function.

199. Power Series. — An infinite series of the form

ao + aix + CL2x'^ + asx^ + • • * + anX"" + • • •
, (1)

where ao, ai . . . , an, etc., are constants, is called a power

series in x. One of the form

ao -\- ai{x — a) + a2 {x — ay + as (x — a)^ + • • •

+ a. (x - a)- + • •
•

(2)

is called a power series in {x — a).
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The series (1) and (2) of the preceding examples (Art. 198),

are power series in x, representing the functions and
-L jC

for certain values of x. Such series are of importancel+x
because of the frequency with which they occur and the

special properties which they possess.

For instance, the sum of a few terms of an infinite series

representing some function may be a very close approxima-

tion to the value of the function. Thus, if in the series (1),

(Ex. 1, Art. 198), x = \, the well-known series converging

to the value 2 results

:

^ =2=Hh~ + i + i+ • • • +^+ • . . . (3)l-x 2 4
'

8

If the terms In (1) (Ex. 1, Art. 198) after x^-i be neg

lected, the error would be,

k

x^ + a;^+5 + • • • + x^ +
^

1 -x
X

This error, , would be very small compared with the
x X

value of the function, :;
, and would decrease as k was

I — X

increased; that is, a closer and closer approximation would

be made to the value of the function the greater the number
of the terms retained. For the particular value x = \, it

may be noticed that the error made in stopping with any

term is exactly the value of that term.

For smaller values of x a very much closer approximation

would be made even when only a few of the terms are taken.

This method of approximation is practically useful when the

exact value of the function is unknown or does not admit of

exact numerical expression, for examples, the numbers e and

TT; the logarithms of numbers, and the trigonometric func-

tions of angles in general. In Articles to follow power series

for such functions will be given.
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200. Absolutely Convergent Series. — A series the abso-

lute values of whose terms form a convergent series is said to

be absolutely convergent ; other convergent series are said to

be conditionally convergent. For example, the series

1 - 4 + i - i + • • • (Ex. 2, Art. 198), (1)

is an absolutely convergent series, since it converges when
all terms are given the positive sign, as (3), Art. 199. On
the other hand, the series

1 - i + 4 - i + J . . . (2)

is conditionally convergent, since the series

resulting from making all terms positive, is divergent.

The series (3) may be seen to be divergent in the form,

^ Vn + ;r+I + • •
• + 2{n-l) + • • • '

for the sum of the terms in each of the parentheses is greater

than J, and as the number m of such groups that can be

formed in the given series is unlimited,

>Sn=oo > (m X i) = 00.

This result reveals the important fact that while the defini-

tion of an infinite convergent series, requiring Sn=oo to have

a definite limit (Art. 198), makes lim t^n = a necessary

condition, that condition is not sufficient to insure conver-

gency. In other words, a series is not necessarily convergent

when the terms themselves decrease and approach zero, as

the number of terms increases without limit. For the series

(3), the condition is fulfilled; the nth term approaches zero

as a limit, as n increases without limit, and yet the sum of the

first n terms has no limit and the series is divergent.
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When, however, the terms of the decreasing series are

alternately positive and negative the condition is sufficient

to prove convergency. Thus the series (2) being such a

series is convergent, though not absolutely so. This series

may be put in the forms,

(1 - 4) + (4 - }) + a - i) + • • •

,

or 4 + T 2 + ^V + • • •
,

1 - (4 - 4) - (i - «... ,

or 1 - 4 - 1^0 - • • •
,

where it can be seen that the sum of n terms of the series is

greater than | and less than 1. It will be shown further on

that the limit of the sum is log 2 = ;0.69 . . . (Ex. 1, Art. 203).

While it is thus seen that the series (2) is conditionally

convergent, the following series is absolutely convergent

:

1 - i -4- 1 - i -J- 1 - . . (A\
2^ 3^ 4^ 5^

' ^^

since 1 + 2~2 + 3~2 + 4! + 5^ + * *
' (^)

is convergent, as may be shown by comparison with the series

1+1+1 + 1+1+-...
2 2^ ^ 2^ ^ 2^ '

or 1 + 4 + 4 + 4+---, (3), Art. 199,

known to be convergent.

The series (5) is the more general series

lp'2^3p4p^*np' ^^

when p = 2; and the series (3) of this Article, called the

harmonic series, is the series (6) when p = 1.

This series (6) is, therefore, divergent for p = 1; for

p < 1, every term after the first is greater than the corre-

sponding term of the series (3), hence (6) is divergent in this

case also.
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For p

1 + /1

> 1, compare

5P -r gp -r
y^y

with

P ^ V2^
+ 2^) + (r.+

/I

i +l+n

1 \

+ 15.)
+

Hk^- +^.) +

(6)

• (7)

There is the same number of terms in the corresponding

groups of the two series and the sum of the terms in those of

(6) is in each group less than the sum in those of (7). Now
(7) may be put in the form

Ip^ 2p 4:P S^
'

2
a geometrical series, whose ratio, — , is less than unity. Hence

by (3) of Art. 198, (7) is convergent and consequently (6)

is convergent.

The series (6) and the geometrical series are useful as

standard series, with which others may often be compared

to test convergency.

201. Tests for Convergency. — It has been seen that a

conditional test is that in every convergent series the nth term

must approach zero as a limit, as n is increased without limit.

This condition is involved in and may be deduced from

the definition (Art. 198), that the infinite series

ui-\-u2 + m-\- ' '
• (1)

is convergent, if lim Sn exists.
n=oo

For since

Sn = Sn-1 + Un, lim Sn = Hm Sn-1 + li^l Un = Hm Sn-1,
n= oo n=oo n=oo n=oo

if lim Sn exists ; .*. lim Un = 0. The converse is not true.
n=oo n=<x>
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In the same way it may be shown that the Remainder after

n terms of a convergent series must approach zero as a hmit

as n becomes infinite; thus, letting Rn denote the series of

terms after the nth,

Rn = Uu+i + Un+2 + Un+3 + * • ' .

Now if S denotes the value of the series (1), it is the limit of

the sum of the terms in the series; that is,

S = ]mi{Sn + Rn) = limAS^„;

:. lim Rn = 0.
n=oo

For example, in (3), Art. 199, Rn = (i)""^; .*. Hm Rn = 0.
n=oo

It was seen in (3), Art. 200, that although the nth term

approaches zero, the series is not convergent, hence the

remainder after n terms does not approach zero as a limit in

that series, as it is a divergent series.

For convergency, lim Rn = is & decisive test; lim Un =
n=oo n=oo

is a decisive test only when the terms alternately have dif-

ferent signs; it is a conditional test when all the terms have

the same sign. For divergency, lim Un not equal to zero is a

decisive test. Hence, when lim Un = 0, unless the terms
n= oo

alternately have different signs, the test is indecisive.

The Comparison Test. — It may often be determined

whether a given series of positive terms is convergent or

divergent, by comparing its terms with those of another

series known to be convergent or divergent. The method

of applying this test and the standard series useful for com-

parison have been given in the preceding Article 200. This

test is often available when other tests fail to be decisive.

The Ratio Test. — A given series

U1+U2+UZ+ ' • + Un^l +Un+ ' ' '

is convergent or divergent, according as lim—— is less or greater
n=(X) Un—1

than 1.
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This test applies when some of the terms of the series are

negative as well as when they are all positive. It is no test,

u
however, when Um —— = 1 ; in that case other tests must

n=ao Uji—l

be appHed.

For example, let the given series be

x^ , oc^
>n-^l

Here lim—- = lim (—, / 7 777 ) = Hm - =
n=ooWn-i n=oo\n!/ (n — 1) !/ n=oo n

for any finite value of x. Hence the series (2) converges for

all finite values of x.

This series (2), as given in Art. 36, is the expansion of 6^;

and, when x = 1, the limit of the series is the number e, in

Art. 34 (see Ex. 5, Art. 215, also). The ratio test is found

to be true by comparing the given series with the geometrical

series; hence, when lim —— = 1 and the test fails to be de-
n=<x>Un—l

cisive, recourse is to the comparison test, as shown in Art.

200, for the harmonic series

EXERCISE XLII.

1. Find whether the following series are convergent or divergent:

(1) 1 + i + i + ^ + • • • .

(2) I + i + 1 + I + • • • .

^^^ ]T2 + 2^3 + 3^+ 475 + • * *
•

V^; 1 -r
2 ^ 22 ^ 23 ^ 2^

^

(5) 2 + 3'! + 4! + 5'!+ * '
*•

02 Q3 44

(«) l + 2! + 3! + 4!+----
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(7) I - I + f - t + TT

+

(9)
1

n2 + l

1
= +

1 + VI 1 + V2 1 + V3

(10) 1 + ^ + 1 + 1^ + ^+ ....

2. Examine the following series for convergency:

(1) logf-logf + logt-logf + . . •
.

(2) sec ;r — sec -7 + sec p
o 4 5

secg +

(3) sin2| + sin2| + sin2^ + sin2|+ ....

202. Convergence of Power Series. — A power series in

X may converge for all values of x, as in (2), example of the

Ratio Test; but generally it will converge for certain values

of X and diverge for others, as in Examples 1 and 2, Art. 198.

Applying the ratio test to the power series,

ao + aix + aix^ + asx^ + • • • + anX" + • • • . (1) (Art. 199.)

=
; lim

'^n—1 Cln—l n=oo

Un = lim
anX

Oin-l
X 1 lim

ttn-l

The series (1) is convergent or divergent according as

I

X
I

lim
OLn

ttn-l

that is, according as

\x\ < Mm
n=oo

The case 1x1 = lim

<1,

an-i

an

Cin-l

or

or

X
I

lim
a„

Cln—l
>i;

X
I
> lim

(In-l

an
is undecided by this test.

When, however, a power series is convergent for any value

of X, say a, it is absolutely convergent for all values of x such

that
I

X
I
<

I

a; |.

For example, given the series

l + 2x + 3x2 + 4x3+ . . . nx"-i + (n + 1) X" H ; (2)
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here = —r-r , lim —-— = iim r = 1

;

an n-\-l n=oo n-\-l n=oo
-, ,

1

n

hence (2) is convergent or divergent, according as

|a;| < 1 or |a;| > 1;

that is, (2) is convergent when — 1 < x < 1, and the interval

from —1 to +1 is the interval of convergence. Here the

interval does not include the end values, (2) being divergent

when
I

oj
I

= 1.

203. Integration and Differentiation of Series. — A
power series has the important property that, when the

variable of the function is restricted to the interval of con-

vergence, it is possible to get the integral or the derivative of

the function by integrating or differentiating term by term

the series which defines the function. Hence, if / (x) is

defined by the power series,

f{x) = ao + aix + a2X^ + • • • + anX"" + • • •
; (1)

then

Jf{x)dx= j aodx-{-
I

aixdx-\- • • + / anX'^dx-^ • • •

,

and
dfjx) ^ d(ao) djaix)

^
^

^
djarX") .

dx dx dx dx '

when the restriction necessary to insure convergence is placed

upon the value of x.

Example 1. — For — 1 < x < 1,

^_L_ = 1 _ X + x2 - x3 + . . .
. (Ex. 2, Art. 198.) (2)

Hence,

JT—j— = / dx— I xdx-\- I x'^dx— I x^dx-jr ' ' '
,

1 + a; Jo Jo Jo Jo

thatis, log(l+a:) = a:-|' + f-|'+ • '• .
.

(1)
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This is the logarithmic series with base e, and is true for

— 1 < X = 1; that is, it is true for values of x within the

original interval of convergence, including the end value 1;

but for the other end value — 1, it decreases without limit.

: On putting x = 1 in (1),

log 2=l-§ + J-i+---= 0.69 .... (See Art. 200.)

On putting a; = — 1 in (1),

logO= - (l+i + i + i+ • • • ) = -00. (See Art. 200.)

In the same way, for — 1 < a; < 1, the integration of

-J_ =i-^x + x^-\-x^-\- ' • • (Ex. 1, Art. 198) (1)

gives \og(l — x) = —X — ^x^ — ix^ — Ix"^ — • • •
, (2)

which may be gotten by putting —x for x in (1).

This logarithmic series is true for —1 ^ a: < 1; that is,

it is true for values of x within the interval of convergence,

including the end value —1; but for the other end value 1,

it decreases without hmit.

For X = — 1, (2) gives log 2 as above, and for x = 1,

log as above. Hence by neither series can the logarithm of

a number greater than 2 be found. By a combination of

the two series the logarithm of any number can be found.

By subtracting (2) from (1),

1 -\- X
log (1 + x) - log {1- x) = log——

:

i X

= 2{x + ^ + f+- •), for|a;|<l. (3)

For X = ^,

lo,]±l^lo^2=2{l+^,+^,+^,+ - •)=0.6931 ....

For X = i,

logi±|= log3 = 2(i+3i23+5^+7^+- • )= 1.0986. . ..
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This series (3) converges very much more rapidly for

values of x less than 1 than the series (1), which converges

so slowly that 100 terms give only the first two decimals

correctly for the log 2, while (3) gives four decimals correctly

taking only four terms of the series. Any number may be

1 + a;

put in the form -—— , but it is necessary to calculate directly
JL X

the logarithms of the prime numbers 2, 3, 5, 7 only, as the

others can be expressed in terms of these. Thus,

1 + - 5 5
log Yzri = ^^S 3 , and then log 5 = log - + log 3;

and again,

1 + - 7 7
log

:j
1 = log -, and then log 7 = log ~ + log 5.

To get the common logarithms whose base is 10, multiply

these natural logarithms by 0.4343 . . . , the modulus of

the common system. (See Art. 38 and Ex. 6, Art. 215.)

Example 2. — For — 1 < a; < 1,

-A_ = 1 + ^ _|_ ^2 _|_ ^3 _|_ . . .
, (Ex. 1, Art. 198.) (1)

J. X

By differentiation,

^ =l+2a;+3x^+4xH • (See (2), Art. 202.) (2)
(1 X)

By differentiation again,

^j4^=^(l-2 + 2-3a: + 3.4x2+. • • ). (3)

Hence, the general series,

1 /i \ «, -I . ,

m(m + 1) „
(1 — x)-"^ = l+mx-\ ^^-^—-x^

(1 - x)^
' ' ' '

2!

I

^ (m + 1) (m + 2) ^,
^ ^^^
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Example 3. — For — 1 < a; < 1, by (4) of Ex. 2, or by
division,

Hence, l :;—;—^= I dx — I x^dx-{- I x^dx— • - - .

Jq l+x^ Jq Jo Jo ' \
that is,

arc tan x = x— tt + t-"***' (2)
o o

This is Gregory's series, named after its discoverer, James

Gregory.

Although series (1) oscillates when x = 1, series (2) is

convergent and defines arc tan a; even when x = 1. On
putting X = 1,

, ^
TV

^ 1,11,
arctan 1 =

J
= 1 - - + - -

y + • • •

;

... „.(,-i,i-.,...).

While the value of tt may be found approximately from this

series, the series converges so slowly that it is better to use

other more rapidly convergent series, such as.

and

TT 1 1
- = 4 arc tan - — arc tan ^^ (Machines Series),

J = arc tan - + arc tan - • (Euler's Series.)
4 ^ o

Example 4. — For - 1 < x < 1, by (4) of Ex. 2,

1 =(l-a;r^=l+^^^+^x^+^^« +
Vl-x^ 2 '2-4 '2-4-6

hence,

X
dx . ,1 x\l-3 x\l'S-5 x\

Vl-a;^ 2 3 2-4 5 2-4-6 7

This series, due to Newton and used by him to compute the

value of TT approximately, converges rapidly for a; < 1.
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When X = i, this series gives

. 1 TT 1
,

1 , 1-3 .
1.3.5

arc sin ^ = -= 77+ ^ „ ^„+
2 6 2'2.3.23'2.4.5.25'2.4.6.7-27'

To ten places, tt = 3.1415926536 ....
By means of series the value of w has been carried to 700

decimal places.

(a^ — eV) 2 This can-
V a^ — x^

not be integrated directly, but on expanding (a^ — e^x^)^ by

the binomial theorem the terms of the resulting convergent

series can be integrated separately. Thus,

(a2 - e2^2)| == a-~--~~-^- ' ' '
, where e < 1, (1)

(a2 - e^x'')^ ^^r
Jo Va^ — x^ (See Ex. 1, Exercise XXV.)

J'^a
dx _ e^ r« x'^dx __e^

f"
x^ dx

Va'^-x^ 2 a Jq Va^-x^ 8aVo Va^-x^ '^

= ![^/i _ !! _ /Li^Y!' __ /Lli^Y!! _ \ r2^
2 V 22 \2.4/ 3 V2-4.6y 5 ' '

•/ ^ ^

When X = asind,
IT

r {a' - eV)^ ,

^^
= a C (^ - ^^ sin^ 0)^ ci6>;

Jo V a^ - x^ Jo

a Pci - e''smH)^dd

(-©•-(Hn-G^jf--)- «'
7ra

~2
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Example 6.— Given

r ,
^"^"^"^ (See Art. 236.)

Jo V2gih-x)i2ax-x^)

This does not admit of direct integration, but on expanding

it into a power series in x/2a the integral can be evaluated

approximately. Thus,

Jo V2g(h-x){2ax-x^) \gJoVhx-xA 2a/ '

by (4) of Ex. 2,

\ gJo l^^2\2aj^2'^[2a)
^

JVa^^=^'

by integrating,

When h is small in comparison with a, all terms containing

jz~ may be neglected, and the approximate value is tt t /^.
z a \ g

If the given integral is put in the form

2 V - f (1 ~ ^' sin2 0)-2 dcl>; [Art. 2365
^ Q JogJo

then,

2V- f\l-k^sm''(l>)-^
<7t/o [by (4) of Ex. 2.]

= 2y/^J^'(l+i/c2sin20 + ^-|/c^sin^^+ . • .

)
c^0,

By integrating,

-'/;h(i)''-+(Hr'-+(S^)''-+ ] <»



400 INTEGRAL CALCULUS

When k is small, the approximate value of the integral is

v~agam
' 9

Note. — The integral forms in Examples 5 and 6 are called

elliptic integrals.

TT IT

The forms / . and | Vl — e^ sin^ dcf)

Jo Vl - Fsin2 Jo

are known respectively as ''elHptic integrals of the first and

the second kind."

In the first kind k = sin ^ ; and, in Ex. 6, a is the angle

each side of the vertical through which a pendulum of length

a vibrates, the approximate time of a vibration being tt y -,

as found. (See Art. 236.) Tables give values for varying

values of a.

In Ex. 5, e is the eccentricity of an ellipse and 6 is the

complement of the eccentric angle. By taking a few terms

of the final series, when e is small, an approximate value of an

elliptic arc of a quadrant's length is obtained. When e =
the result is the length of a quadrant of the circumference of

a circle.



CHAPTER IX.

TAYLOR>S THEOREM — EXPANSION OF FUNC-
TIONS. INDETERMINATE FORMS.

204. Law of the Mean. — The mean value of / (x)

between the values / (a) and / (b) is, by Art. 133,

I f(x)dx

b — a

where c is some value between a and h.

If the function of x is </> (x) = f (x) and Xi is some constant

value between a and x, then

X — a X — a

or f(x)=f(a)+f{x{)(x-a), (1)

the Law of the Mean, or Theorem of Mean Value.

If the curve in the figure be the graph oi y = f{x); then

the ordinate at Pi will be f{xi), the mean value of f{x)

between /(a) at Pa and /'(a:) at any value x, the integral being

represented by the area under the curve from x = aiox = x.

If the curve \sy = f (x), it may be seen that there must be

at least one point Pi between the points (a, / (a)) and (x,

f (x)) at which the slope of the tangent is equal to the slope

of the secant through those points; that is

^ ^^^^ ~ x-a ~ Ax'

and hence (1).

401:
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This may be put in the form,

which may be used to determine increments approximately,

and is the Theorem of Finite Differences.

The theorem may be extended so as to express in terms of

the second derivative the difference made in using the first

derivative at x = a in place of its value at a; = Xi. Thus,

if the function of x is (x) = f" (x), and x^ is some constant

value between a and x, then,

/"(%) = Jj"
(x) dx

_ f (^) ~ / (^) /by mean value,V
X — a X — a \ Art. 133, /

or f (x)=/(a)+r(x2)(x-a).

Integrating this equation between the limits x = a and

X = X, f (a) and /' (X2) being constants, gives

fix) = /(a) +/' (a) (X - a) +/" (x,) (£^, (2)

a second Theorem of Mean Value, or the Law of the Mean.
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If the tangent at Pa meet the ordinate MP produced at R,

then, MR=f (a) +f (a) {x-a); MP = f (x),

and, therefore, both in sign and in magnitude,

RP = MP - MR = }" (X2) ^^Z_^'.

Here the deviation of the curve at P is below the tangent at

Pa, J" {X2) being negative, and, measured along the line of

the ordinate MP, is equal to f (X2) -—q"^' ^^^^ ^^®

curve is above the tangent, f fe) will be positive and RP
upward.

205. Other Forms of the Law of the Mean. — The
theorems (1) and (2) may be given in the following forms.

In the theorems x, the symbol for the argument in general

has been used for any value of the argument, a definite value

but not constant. Now, if Xi be any number between a and

X, then Xi — a and a; — a are of the same sign whether a is

less or greater than x; therefore, (xi — a)/ (x — a) is a posi-

tive proper fraction, 6 say, and Xi = a -{- 6 (x — a) will

denote any number between a and x.

Letting x = a -{- h, x — a = h; then theorem (1) will

become

f(a + h)=f{a)+ hf (a + dh), (IJ

and theorem (2) will become

f{a-\-h)=fia)+ hf (a) + ^f ' (a + d,h). {2a)

The di of (2a) is not necessarily the same as the 6 of (la).

If a is replaced by x, the forms become

f{x + h)=f{x)-{-hf(x + dh), (I5)

f{x + h)=f(x)+ hf (x) + ^r (x + d,h), (25)
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If a is made zero and then x is put for h, the forms are

/W=/(0)+*/'(to), _ (1,)

f(x)=f (0) + xf (0) + p" (9:x). (2c)

Example 1. — To find the value of 6, if f(x) = x^. Here

fix) = 2x; f(a + eh) = 2(a + eh);

and {a + hy = a''-}-2ah-{-h^ = a''-\-h'2{a + ih);

also, by (la),

(a + hy =f(a)+ hf (a + dh) = a''-\-h'2 (a-\-eh);

hence in this case d = ^.

To find at what point on the parabola y = x^, the tangent

is parallel to the secant through the points where x = 1 and

a; = 3. By theorem (1),

/. xi = 2; or by theorem {la), Xi = a + dh = 1 -\- ^ (2) ^ 2,

since d = i.

Example 2. — To find at what point on the curve y =
sin X, the tangent is parallel to the secant through the points

where x = 30° and x = 31°. Here

.,, ,
sin31°-sin30° 0.51504 - 0.5 ^^ai^Tf {xO = cosx. = 3io_3QO = 0.01745 ^ ^'^^^^^^

.. xi = cos-i 0.86177 = 30° 29';

hence 2/1 = sin 30° 29' = 0.50729, 6 = ff

.

Example 3. — To show that sin x is less than x but is

greater than x — \x^.

f{x) = sinx; f {x) = cos a;; f" ix) = — sinx;

/(O) = 0; f (0) = 1; r{e,x) = - sin (M-
• By theorem (Ic),

sina; = + ic cos (dx), < x, since cos (dx) < 1.
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By theorem (2^),

sin X = + a: — -^ sin (dix) > x — —, since
|
sin (dix)

\
< 1.

Example 4. —-To show that cos x is greater than 1 ~ J x^.

f{x) = cosx; f (x) = — sinx; f"{x) = — cos a;;

/(O) = 1; r (0) = 0; r (Bix) = - cos (M-
By theorem (2c),

cos X = 1 — ^x^ cos (01^;) > 1 — J a;^, since
|
cos (dix)

|
< 1.

206. Extended Law of the Mean. — The law of the

mean or the theorem of mean value in its several forms may
be used to obtain approximate expressions for a given

function in the neighborhood of a given point x = a. Still

closer approximations may be obtained from the law when
extended in the form of a series arranged according to ascend-

ing powers oi X — a with the successive derivatives as con-

stant coefficients.

For values of x near to a, the higher powers of x — a may
then become negligible. The most convenient theorem for

this purpose is the one which follows.

207. Taylor's Theorem. — Iff{x) is continuous, and has

derivatives through the nth, in the neighborhood of a given point

X = a, then, for any value of x in this neighborhood,

fix) =/(a) +^(s - a) +i^ (x-af+---

• • • +£^ (^ - "'"" +"^"^ (^ - ''^"' ^^)

where X is some unknown quantity between a and x.

The last term

Rn{x)=^^-^{x-ar

is the error in stopping the series with the nth term, the term

in (x — a)"~i; and the formula is of practical use only when
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this error becomes smaller and smaller as the number of

terms is increased.

The form of the remainder Rnix) is seen to differ from the

general term of the series only in that the derivative in the

coefficient of the power of {x — a) is taken for a; = X instead

of for X = a.

The simplest proof of this theorem is the extension by

integration of the law of the mean— a further extension

than already used for the theorems of mean value.

Thus, if the function of x is {x) = f" (x), and X is some

unknown constant value between a and x, then,

r /'' {x) dx = f" (X) {x - a) (by mean value, Art. 133)

Integrating this equation between the limits x = a and

x = x,

f (X) - r (a) - f" (a) {x~a)= /'" (X) ^^^,
[f (a) andf (X) being constants.

Integrating again, / (a) also being constant, gives

fix) = f{a) +f (a) {X - a) ^f (a)^^^+r (X) ^^ ~ ^^^

23
As this process can be continued to include the nth deriv-

ative, by induction Taylor's Theorem results.

208. Another Form of Taylor's Theorem. — If in the

form (1) X is put for a and {x + h) for x, it becomes
'

/(a; + /i)=/(x)+/'(x)^+/"(x)|+ • • •
,

where the last term is the remainder after n terms, and B is

some positive proper fraction. In (1), (a + ^ (x — a)) may
be used in place of X; and in (2), it becomes (x + 6h)
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— {x — a)^, since called by his
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Another form of the remainder called Cauchy's is

RUx) =/n(a + ^ (X - a))
^"^ ~

^]"i\~/^^"'
-

Note. — Taylor's Theorem is the discovery of Dr. Brook

Taylor, and was first published by him in 1715. He gave it

as a corollary to a theorem in Finite Differences and there was

no reference to a remainder. It was Lagrange who, in 1772,

called attention to its great value and found for the remainder

f[a + d_^-a)]
n\

name. It has become to be regarded as the most important

formula in the Calculus.

The formula known as Maclaurin's Theorem, after Colin

Maclaurin, was published by him in 1742, but he recognized

it as a special case of Taylor's Theorem. The two theorems

are virtually identical as either can be deduced from the

other.

209. Maclaurin's Theorem. — If, in the form (1), a is

made 0;

/W=/(0)+^-^.+«x^+---

where X = 9a; is some unknown quantity between and x.

Another form of Maclaurin's Theorem is

where the last term is the remainder after n terms, and 6 is

some positive proper fraction.

Cauchy's form of the remainder is
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210. Expansion of Functions in Series. — It has been

shown in examples of Chapter VIII on Infinite Series how
useful it is to be able to represent a function by means of a

series. Apart from the purpose of computation such rep-

resentation may be an aid to an understanding of the proper-

ties of functions. Taylor's Theorem and Maclaurin's

Theorem furnish a general method of expanding or develop-

ing any one of a numerous class of functions into a power

series.

For when the error term in Taylor's and in Maclaurin's

Theorem approaches zero as n increases, each becomes a

convergent infinite series, called Taylor's series and Mac-
laurin's series for the given function, about the given point

X = a.

Some functions may be expanded by division, some by
the binomial theorem, others by the logarithmic or the

exponential series. All of these series are but particular

cases of Taylor's Theorem.

211. Another Method of Deriving Taylor's and Mac-
laurin's Series. — 1. Maclaurin's Series. — If a function

of a single variable is expanded or developed into a series

of terms arranged according to the ascending integral powers

of that variable, and the constant coefficients found, the

development will be the form of Maclaurin's Theorem with-

out the remainder. Thus, let / (x) and its successive deriv-

atives be continuous in the neighborhood of x = 0, say

from X ^ —a to X = a, and assume that for values of x

within that interval,

fix) =A+Bx + Cx'' + Dx'-\-Ex'+ • • •
(1)

If equation (1) is identically true, then the equation

resulting from differentiating both its members, viz.,

f{x)=B + 2Cx + 3Dx^ + 4:Ex'-\- • • •
,

also is identically true for values of x in some interval that

includes zero. For similar values of x, the following equa-
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tions resulting from successive differentiations are identically

true

:

f'ix) = 2C + 2.3Z)a; + 3-4&2^ ....

f"{x) = 2.3i) + 2.3-4&+ • . • .

f^(x) =2-3.4^+ • • • .

Putting a; = in each of these equations gives

:

A =/(0), B =/'(0), C=m p JllM, E=M, etc.

Hence, on substituting these values in equation (1),

/(x)=/(0)+/'(0)x+-M^ +O0^+ ...

+^^+---',
'

(2)

which is Maclaurin's series as in (3), Art. 209, without the

remainder.

If fix) is not continuous, no development according to

powers of x is possible. Thus if J{x) = log x, / (0) = — 00

.

A power series represents a continuous function, hence no

power series in x can be expected to develop log x.

It is evident that, whenever the function or any one of its

derivatives is discontinuous for x = 0, the function cannot

be developed in a Maclaurin's series.

2. Taylor^s Series. — Let / (x) and its successive deriva-

tives be continuous in the neighborhood oi x = a, say from

x = a — h to x = a-\-h, and assume that for values of x

near x = a,

f{x)=-A+B(x-a)+C{x-ay + Dix- ay

+ E(x-ay-\-..., (3)

is an identically true equation.

Then the following equations resulting from successive

differentiations are identically true for values of x near x = a.
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fix)=B + 2e{x-a)+SD{x-ay+4:Eix-ay-{-' - • .

fix) = 2C-\-2-3Dix-a)-\-S-4:E{x-ay-\- • • • .

f''{x)= +2'SD-\-2'S'4:Eix-a)-{- ' ' '
.

r{x) = +2.3.4E+ ....

Putting X = ain each of these equations gives

A = /(a), B =/'(«), C =ffl Z>=q^, ^=« etc.

Hence, on substituting these values in equation (3),

fix) =f{a) +-^ (X - a) +f^ (x-ay+ .

•^"^f (x-a)"+ • • •
, (4)

n\

which is Taylor's series as in (1), Art. 207, without the

remainder.

If in (4) X is put for a and (x + h) for x, it becomes

f{x + h) =f{x) +/' (x) ^ +/" {x)^_+

which is Taylor's series as in (2), Art. 208, without the

remainder.

Here the development is not according to powers of x, but

of some value (x — a) orh near to the value x = a. Hence,

when the values of the function and all its derivatives are

known or can be found for some one value of x, say a, then

the value of the function ior x = a -{- h can be found from

the development. Thus, when /(x)=loga;; / (1) = 0,

f (1) = 1, r (1) = -1, ni) = 2!, . . . /(")(!) = (-1)"+!

(n — 1)!; and the series will be

7,2 7,3 /,4

iog(i + ;») = /i-|- +|-j+ •••.

which agrees with (1), Ex. 1, Art. 203.
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212. Expansion by Maclaurin's and Taylor's Theorems.
— If, on applying to a given function any one of these

formulas, the last term becomes 0, or approaches as a limit

when n becomes infinite, the formula develops this function;

if not, the formula fails for this function. That is, if Rn (x)

= when n = co , Maclaurin's or Taylor's series is the devel-

opment of f(x) or f(x + h), respectively.

If/" (x) increases (or decreases) from/''(0) to/" (x), and the

sum of the first n terms in Maclaurin's series is taken as the

x^
value oi f{x), the error, being /" (dx) —^, hes between

/"(O)-. and fHx)-,'

If /"(x) increases (or decreases) from/"(x) to/"(x + h), and

the sum of the first n terms in Taylor's series is taken as the

value oif{x-\-h), the error, being/" {x + dh) —^, lies between

/»W^ and fix + h)'^,-

213. Since —. =
/ytl /y» /y» />• /y '>•'>•
«*/ »t/ U/ .*/ Uy Uy Uy

nl 1 2 3 ' ' ' n-2 n- 1 n

/ytl

—. = when x is finite and n CX)

for last factor approaches zero.

Hence, Rn=oo{x) = when /"(^x) is finite, or when
/" {x + Oh) is finite, in Maclaurin's or Taylor's Theorems,

respectively.

214. If / (a;) = f ( — x), the expansion of/ (x) will contain

only even powers of x; while if / (x) = —/ (— x) the expan-

sion of/ (x) will involve only odd powers of x. For examples,

see the expansions of sin x and of cos x following.
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215. Examples. — 1. Sin x.— Expansion by Maclaurin^s

Theorem

:

fix) = sinx, /(O) = sinO = 0,

r{x) = cosx, /(0) = 1,

r{x) = -sin a:, r(0) = 0,

nx) = -cosx, /''(0) = -l,

^f^{x) = smx, /iv(o)=o,

/Mx) = sin(x + ^), /nO) = sin(^),

f^{ex)=sm(dx-^'fj'

Since sin [
—

J
is or d= 1 according as n is even or odd, the

coefficients of the even powers of x will be zero, and only odd

powers of x will occur, the terms being alternately positive

and negative. Thus,

x^ , x^ x"^
, .

^" • //I ,
^'"N

smx = x-^^ + ^-^^+ . . . +-sm[dx+-j'

Here, Rn (x) = —^ sin f ^x + -o" ) >

x^
not numerically greater than —., which has zero for limit;

/. R (x) = 0. Hence the series

/y>3 /y»5 /Vi /y»9

sinx = x-3j + 5|-7| + 9i-
••• (D

is absolutely convergent for every finite value of x.

The series converges rapidly and may be used for comput-

ing the natural sine of any^angle expressed in radians.

Thus, for the sin (5°43'46''.5 = yV radian),

sin (0.1 radian) = 0.1 - ^^ + ^^' = 0.09983 ....
oi o!
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180
For the sin (

1° = tL radian = 0.017453 . . A
sinl= = sin(^) =

^-(j^J^,
+ (iror5V--- =0-017452...;

/. sin 1°= arc 1°, to five places of decimals. (See Art. 40.)

2. Cos X. — Expansion may be made by Maclaurin's

Theorem as is done for the sin x, or the differentiation of the

sine series term by term gives the series

/y*^ /y»4 rpx) /y>Cj

cosx=l-2| + 2n-6! + 8!" ' ' ' ' ^^^

which is absolutely convergent for every finite value of x.

For the cos (5°43'46''.5 = yV radian),

(0 lY (0 lY
cos (0.1 radian) =1-^^ + ^^^ • - = 0.995007 . . . .

For the cos ^1° = -|^ radian = 0.017453 . . . ],

cosi° = cos(^) =
1 - (iioy^+(iioyf!

—

= 0.999847 . . . ;

/. cos 1° = 1 - 0.00015 . . .

3. Sin {x + h).— Expansion by Taylor's Theorem. Here

f{x + h) = sin(x + /i);

/. / (x) = sin X, f ix) = cos x, f (x) = — sin x, etc.

Hence,

sm \x-\-h) — sm x-\-h cos x — ^. sm x— ^ cosx+ —̂ sm x + • • •

= smx(^l-2j + 4|-gj+ • • ')

+ cosx(^/i-3j + ^-^+ • • -j (1)

= sin X cos h + cos x sin h, {h for x in Exs. 1 and 2)

the well-known relation true for all values of x and h.
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h^ h^ K^
When X = m (1), sin/i = /i — ^ + ^ — ;^+ • • •

,

as in Ex. 1 for x. The series (1) is rapidly convergent for

TT 1
small values of h. Thus, let a; =77 and h = -7^ of a radian

6 100
= 34' 22^^65; then,

. /tt ^ 1 V . irL (0.01)2 (0.01)4 X

+ cosg^0.01--3^ +-^- ...j;

sin 30° 34' 22^65 = 0.5 (0.99995 . . . )+ 0.86603 . . .

(0.00999 . . . ) = 0.50863 ... = 0.5 + 0.00863 . . .

4. Cos {x -\- h). — Expansion may be made in the same

way as for sin {x -\- h), or the differentiation of the series (1),

h being constant, gives
*

cos (a; + /i) = cos a; ( 1 -
2^ + ^ -

g|
+ • • )

-smx(^/i-3j+^-yj+ • • •

j
(2)

= cos X COS /i — sin X sin h, the well-known relation.

h? h^ h^
When X = in (2), cos /i = 1 — ^^ + t] "" ^ +- * * *

»

as in Ex. 2 for x.

When x='^ Siiidh = -^oisi radian - 34' 22".65, in (2)

;

o luU

then cos 60° 34' 22".65 = 0.5 (0.99995 . . . ) - 0.86603 . . .

(0.00999 . . . ) = 0.49132 . . . =0.5-0.00868

5. a^ and e*'.—Expansion by Maclaurin's Theorem. Here

f{x) = a^, /(0)=a°=l,
fix) = a- log a, /'(O) = loga,

/"(x) = a-(loga)2, /"(0) = (loga)2,

nx) = a^{\ogay, /"'(0) = (loga)^

/^ (x) = a=^ (log ay, /" (0) = (log a)^

/"(^x) = a^^(loga)^
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.. a^=l+-^—+
2! + 3! "^ * *

•

Since f"" {x) = a^ (log a)", when a is positive, f(x) and all its

successive derivatives are continuous for all values of x.

When X is finite, a'^ is finite. By Art. 213, ^ 7^^ = 0,
(xloga)'*

_^

n\

when n = 00 and x log a is finite. Hence Rn (x) = when
n = (X)' and x is finite. Therefore, the exponential series

xloga (^jogo)^
,

(xlogg)"-!
,

is the development of a'' when a is positive and x is finite,

being then absolutely convergent.

Value of e^. — Putting a = e in (1), gives (since log e = 1)

/v» /y>2 ^3 /yi /y«n—

1

'' = '+T+h+h+h+ +i^+ (2)

FaZiie o/ e. — Putting a: = 1 in (2), gives

= 2.718281 .... (See Art. 34.)

6. Log„(l + A:). — Expansion by Maclaurin's Theorem.
Here

/ (a;) = logo (1 + x), / (0) = loga 1 = 0,

/'W =
rf^' /'(0) = «,

/"W = -(r^2' /"(0) = -m,
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/"W = ^^^^7r+iy;^' /"(0) = (-i)"-i(»-i)!m,

^„(,,)^
(-!);-'(» -!)!>»

;

/. loga (1 + X)

/ ^2 0,3 ^.4 fx-dxY /(-1)"~'\= m(x--+ 3--+ . . . +(__j .(^^j.

When X < — 1, loga (1 + x) has no real value.

When X = —1, the odd derivatives are discontinuous.

When X > —l,f(x) and all its successive derivatives are

continuous.

Cauchy's form of remainder,

Rn (X) = f- (dx)
{n-l)\

J.
, . (x-BxY (-1)"-!

gives ^"W = ir+^j --TT^^'

in which the second factor is finite, and the first factor « 0,

when n = ao and x > —1 and < 1 or a; = 1.

Hence the logarithmic series

loga (I+X)

I
X'.X' X'. (-l)n-2^n-l \

=n^-2+3-4+"-+ n-1 +"•; (1)

is the expansion of loga (1 + x) when x > — 1 and < 1 or

a;= 1.

Putting —X for X in (1), gives

(/y»2 /y»3 /y»4 \

-x-|-|-|+ • • •

j. (2)

Subtracting (2) from (1), gives

, 1+x ^ f . a^ . x\ x\ \ /Compare (3), \ .^.
log" rz^ = 2»(^+ 3 + 5 + 7 + • • j- (ex. 1, Art. 203j ^^^

T ^ 1 .

,

1 + X 2; + 1 , ..

Let X = 7^—r-^; then :j
=- -•

(4)
2z-\- I 1 — X z
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Substituting in (3) the values in (4), gives

••• l<'S.(^+l)=log«.+2™(2^ + 3-^2^+---). (6)

When 2;>0, 0<x<l; hence the series in (6) is conver-

gent for all positive values of z.

When 1 is put for z, loga 2 is found ; then 2 for z^ and loga 3

is found; thus loga (2: + 1) can be readily computed when
loga 2; is known. (See Ex. 1, Art. 203.)

Whenm = 1, a = 6, the Napierian base; thus (5) becomes

2 + 1
Dividing (5) by (7) and denoting by iV, gives

z

loga iV/log A/" = m\ that is, logaiV = mlogA^. (8)

Yalue of m. — Putting A/" = a in (8), gives

1 = mloga; that is, m = 1/loga, (9)

or N = e, gives, loga e = m;

.'. 1/loga = logae, or 1 = log a • loga e. (10)

Value of M. — Denoting the modulus of the common
system whose base is 10 by M; from (9) and (10),

^
0.434294 .... (Compare Art. 38.)

2.302585

Note. — When a = 10 and m = M, or when a = e and

m = 1, all the series in this example become common loga-

rithmic series, or Napierian logarithmic series, respectively.
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EXERCISE XLin.

2. secx = l+2+-24+;-720]+'---
V''^!<2)-

/v»3 /y^ /yi /y»9

3. tan-'x = x-3 + 5-y+g- •••.

/y»2 /)f3 ^4

6. e^ = l+x + | + |j + f,+
....

/Y»2 /v»3 'y^

6. e~^ = 1 — a; + — — ;r-j + —J — • • •
, by replacing x by — x in 5.

p^ p
—

^

/v»3 /v»5

7. sinha:=—2— =:r + 3-j + ^ +
e^ J- g—

^

a;2 /p4

8. cosh X = —2— ^-'^ + 2T~'~4T~^*''' ^^ combining terms

of 5 and 6, or by differentiating terms of 7.

^ , , sinha; x^
,
2x^ 17 a;' ,

9. tanh x =—7— = x — -^ -\- -r^ ^-^ + • * • •

cosh a; 3 15 315

10. From 5 and (1) and (2) of Examples 1 and 2, making

"^ X = V— 1 ' X = ix,

get e*^ = cos X + ^ sin x, (1)

and e~"^ = cos a; — i sin a;. (2)

Note.— Putting tt for a; in (1) gives the remarkable relation, e*'^ = — 1

;

while putting — tt for a; in (2) gives e'^^ = 1, hence iir is an imaginary

value of log 1, the real value being zero.

11. From (1) and (2) of 10, by subtraction and by addition get

eix _ e-ix eix _}_ g-ix
sma: = —^ (3), cos a; = -• (4)

(by combining termsX

of 5 and 6. /

12. Evaluate Ce-'^'dx = f' (1 - x2 + ia;4 - ix6 ^ . . .
) ^^,

Jo »/o

Get result when end value is 1. When end value is 00 the value of

the integral is | v^.* This integral is important in the theory of

probabihty.

* WilUamson's Integral Calculus, Ex. 4, Art. 116, also Gibson's

Calculus, Ex. 3, Art. 136.
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216. The Binomial Theorem.— I . The binomial theorem

is seen to be a special case of Taylor's Theorem by expanding

(x + /i)"^ in a power series in h by Taylor's formula. Thus,

f{x-^h) = (x + h)^; :. f (x) = x^,

f (x) = mx"^-^, f " ix) = m (m - 1) x'^-'^,

f" {x) = m (m - 1) (m - 2) x"^-^,

/«-i(x) = m (m - 1) . . . (m - n + 2) x'^-'^+i.

Substituting these values in Taylor's series (5), of Art. 211,

{x + h)^ = X- + mx--i h + ^^^~ ^\-^-^h?

^

m (m - 1) (m - 2) ^^_,^,
^

^ ^ ^

is the resulting Binomial Theorem.

Here /'^ (x) = m (m — 1) . . . {m — n -\- \) x""""".

Hence, / (x) and all its successive derivatives are continu-

ous for all values of x.

h'^ii — ey-^
Cauchy's form of remainder, Rn (x) =/" {x-\-BK) . _ .^ ,

gives

P , . _ m (m - 1) . . . (m - n + 1) A - dhV (x + ^/t)"^
^"^^^"

(^-1)! 'U +W * 1-^ *

When \x\> h and n = cc , the product of the first and

second factors = 0, and the last factor is finite; hence,

R (x) = 0.
n=oo

Hence, the binomial theorem holds true when the first

term of the binomial is greater absolutely than the second.

When m is a positive integer, the series (1) stops with the

(m + l)th term, since/" (x) = when n > m, and is therefore

a finite series of m + 1 terms,
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li \h\> X, the expansion may be a power series in x; thus,

{h + x)"^ = /i- + m/i--i X + ^(^-^1)^""%
2 _!_...

m(m- 1) . . . (m-n + 2)/^"^--+i
__, ,•••+

(n-1)! "^ +•••
^^^

is a true expansion when
|
/i

|
> x.

II. (1 -\- x)"^ may be expanded in a power series in x by
Maclaurin's Theorem, giving

/i I
N^ 1 I I

m(m— 1) „
,

m(m— l)(m— 2) „
,(l+a;)^=l+mx + —^^j

—

Lx^-\ ^ ^ '-x^-{- • • •

. . . ,

rnjm- 1) . . . (m - n + 2)+ (n-1)! "^ + •
^^^

As in case I, when m is a positive integer, the series (3)

stops with the (m + l)th term and is therefore a finite series

of m + 1 terms. If m is negative or fractional, the series is

infinite. The ratio test shows that the infinite series con-

verges absolutely when
|
x

|
< 1 and diverges when \x\> 1

;

therefore Rn (x) needs examination only for
|
x

|

= 1.

Here /** (x) = m (m - 1) . . . (m - n + 1) (1 + x)"^-"",

f"" iSx) = mim - I) . . . (m - n + 1) (1 + Bx)'^-''.

X" (1 — ^)"~^
Cauchy's form of remainder, Rn {x) =/" {Bx) —

j
~—

,

gives

For values of x between and ±1, the last factor is finite

for every n; the second factor is always positive and cannot

exceed unity; the first factor approaches zero as a limit as

n increases without limit, since it is the expression for the

nth term of the convergent series
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Hence, R (x) = 0, and the infinite series converges to
n=oo

(1 + x)"^ for every value of m, when
|
a;

|
< 1.

For X = ztl, the following results may be found

proved in Chrystal's Algebra. These cases are not so

important.

When X = -\-l, the series converges absolutely if m > 0,

but ' conditionally if > m > —1, oscillates if m = — 1,

and diverges if m < —1.

When X = —1, the series converges absolutely if m > 0,

and diverges if m < 0.

If a > 5, (a + 6)"* can be written a"^ (1 + h/a)"" and

expanded by Maclaurin's formula, since h/a < 1 may take

the place of x in (1 -i- x)"^. Hence, in this case,

(a + h)^ =a^ + ma^-^ ^ _^
m (m^- 1) ^^_, ^, _^ ^ • •

, (4)

which agrees with (1) and is the Binomial Theorem, proved

true for a > 6 whether m is positive or negative, whole or

fractional.

If a < 6, interchange them in (4) and the result will agree

with (2) and be a true expansion of {b + a)"".

217. Approximation Formulas. — Often a function may
be replaced by another having approximately the same

numerical value but a form better adapted for computation.

In such cases the given function may be expanded in a series

and a certain number of terms, beginning with the first,

taken as an approximate valife of the function; the number
of the terms taken being according to the precision desired

for the result.

The hinomial theorem furnishes one of the most useful of

the approximation formulas. Thus^ if m denotes a small

fraction, expanding (1 ± m)'' gives

(1 zfc m)« = 1 ± nm + "^^^7^^ ^' ± • • •
,
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where, since m is small, neglecting powers higher than the

first, the approximate relation,

(1 6zmY = Idznm (1)

results. For the special case n = J,

Vl±m = l±im. (2)

For h small in comparison with a, the general form is

V^^±fc = a(l±2^,)- (3)

For examples: Vl -}- x = 1 -\- ^x — • • •

;

1
1 .

1 . 1 ,

1+:^ ' Vl+x 2

For extraction of roots in general,

1

(a- ±hr = a(l:±: ~J
= a (1 =b x)^,

7 1

where x = —. Expanding {1 dcx)"^ gives

(4)

^ n n? 2\ n^ 3

!

Example. — v^IOOO = ^^1024 - 24 = 4 (1 - yt^)i

Substituting y|^ for x in the series

^ ^) - ^ 5 5 j^ 5 10 l5 '
' * '

gives to six figures 0.995268; hence,

\/l000 = 4 X 0.995268 = 3.981072.

Since e=^=lH-x+^ + ol+ • • •
, when x is small

e-=l+x (6)

is the approximate relation.
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From the series for sin x, cos x, and log (1 -\- x),

sino; = x(l - Jx2), (7)

cos X = 1 — i x^, (8)

log(l+a;) =x-ia;2, (9)

are the approximate relations when x is small.

When x is small compared with a,

sin (a it x) = sin a db X cos a, (10)

log(a + a;) = loga+^- 2^> (11)

^ =-=F-, + ?-^ (12)
a zfc X a a^ a^

are approximate relations when succeeding terms of the

respective series are neglected.

In all these cases the error made in taking the approxima-

tion for the value of the function may be

closely estimated from the value of Rn (x),

the error term, for the particular series em-

ployed.

Example. — In considering the length of a

circular arc and its corresponding chord in

railway surveying, use may be made of the

approximate relation (7). Thus, letting s

denote length of the arc, r the radius, c the

chord, a the angle in radians ; s = ra and c = 2 r sin

When a is small,

a
2'

^ . a ^c. q; f-, 1 focY'
c = 2rsm2 = 2r2[l-g(2J_

= ra — ^V ^«^
;

•*• s — c = 2kro?,

4oi4ioU

thfi prrnr nf tVip nnnrovimflfinn os\.inr\nt pvpp«
, ra^

1920
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EXERCISE XLIV.

1. Expand (x + ?/)'". 2. Expand (x + y^.

3. Expand 6^+^". 4. Expand log sin (x -f- A).

5. Expand sin-i (x + A). 6.
" Expand e^^^^.

7. Given / (x) = a;^ - 4 a; + 7, find / (x + 3) and f (x - 2) by
Taylor's series. Then find / (x + 3) and / (x - 2) by usual algebr<%ic

method and thus verify results.

8. Using the approximation formula (12) compute the reciprocal

of 101; and of 99. Compare results with those obtained by division.

9. Find the length of the chord of an arc of radius 5729.65 feet

subtending an angle of 1°: (a) by trigonometric methods; (6) by the

approximation formula (7). Find results when the radius is 5729.58

feet. Compare results and find error of approximation.

10. Find the length along the slope of a road that rises 5 ft. in a

horizontal distance of 100 ft. by the approximation formula (3). Deter-

mine to how many places of decimals is the result correct.

218. Application of Taylor's Theorem to Maxima and

Minima. — This Article is supplementary to Art. 83, being

an additional proof of the rule given in that Article for the

determination of whether a critical value x = a, Sb root of

f (x) = 0, makes / (x) a maximum, a minimum, or neither.

Let / (x) be a function of x such that f (a -\- h) and

f {a — h) can be expanded in Taylor's series, and let / (a) be

the value to be tested.

Developing f (a — h) and f (a -{- h) by formula (2), Art.

208:

f{a-h)=fia)-hf{a)-\-^^r(a)-^r^^ia)+ • • •

+ ^f/"(«-W, (1)

/(a + /i) = /(a) + hf (a) + |/(a) + p''[{a) + • • •

' ^^^V(« + W, (2)

in which ^i and 62 are between and 1 in value.
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When the first n — 1 derivatives of/ (x) are zero for a; = a

and the nth derivative is not zero for x = a, then,

f{a-h)-fia) = ^-^f (a - e,h), (3)

f{a + h)-f{a)=^_fia + e,h). (4)

Since / (x) and its successive derivatives are assumed to

be continuous at and near x = a, the signs of /" (a — dih)

and /" (a + dih), for very small values of h, are the same as

the sign of /^(a).

It is manifest that if n is an even integer, / (a) will be a

maximum or a minimum according as /"(a) is negative or

positive; and if n is odd, f (a) will be neither a maximum nor

a minimum wl^ether the sign of /" (a) is negative or positive.

These conclusions are manifest because when n is even and

/"(a) is negative, the left members of (3) and (4) are both

negative, and hence / (a) > f {a — h), / (a) > f {a -\- h);

that is, / (a) is a maximum.
When n is 6z;en and /" (a) is positive, the left members are

both positive, and hence/ (a) < f (a — h),f (a) < f (a + h);

that is, / (a) is a minimum.
When n is oc^c?, whether /" (a) is negative or positive, the

left members have different signs, and hence/ (a) ^/ (a — /^),

/ (<^) > / (<^ H" ^) ; that is, / (a) is neither a maximum nor a

minimum regardless of the sign of f"" (a)

.

219. Indeterminate Forms. — It was noted at the end

of Art. 20 that the derivative oi f{x),

.Ax=o ^x dx '' ^
'^'

may be finite, zero, or non-existent, but not 0/0.

The symbol 0/0 is called an indeterminate form, and

when / (x) takes that form for some value of x, say a, then

/ (x) is really undefined for x = a, although it may be defined

for any other value of x. It is possible, however, that / (x)
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may have a definite limit A when x converges to a; it is

customary then to call / (a) = 0/0 an indeterminate formy

and to define A as the value of / {x) when x = a, calling it

the true value of f {x) ior x = a.

The advantage of having this 'Hrue value" assigned by
definition is that / {x), being in general continuous, thereby

becomes continuous up to and including the value a.

x^ — 4
Take, for example, the function y = —. For every

X ^

value of X other than x = 2, the function has a definite value,

4 — 40
but for a; = 2 it becomes = -

. Since the function has
Z Ji u

no definite value when x = 2, the limit which the function

approaches as x converges to the value 2 is assigned as the

value of the function when x = 2. If

x = 2 + h, lim^|±4^^^=lim(4 + /i) = 4;
h=0 Z -h Al — Z h=Q

lim = 4.
x=2 X -2

Thus the true or limiting value of this function which takes

the indeterminate form 0/0 is 4.

For values of x other than 2,

y = -—
o = ^ + 2;

X''-4:l

X- 2j^=2
= lim {x + 2) = 4.

On the graph of y = x -\- 2, the ordinates of points for

values of x other than 2 represent the values of the function,

but for X = 2, the function having no definite value may be

represented by any ordinate lying along the line x = 2. Of

the values that may be assigned to the function for x = 2,

there is one value represented by MP = 4, which is the

limit of the values represented by the ordinates of points on
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y = X + 2 SiS X approaches 2; and it is desirable to select

this value of y as the value of the function when x = 2.

By this selection the function is defined for a; = 2 and thus

becomes continuous through that value of the variable x.

In general, lim / (x) defines the value of the function when

f{x) is indeterminate for x = a. The expression f {x)]a

denotes the value of / (x) when x = a.

; The value of a function of x ior x = a usually means the

result obtained by substituting a for x in the function.

When, however, the substitution results in any one of the

indeterminate forms.

0/0, 00 /OO, O.OO, 00-00, 0' 00

the definition must be enlarged; thus, the value of a function

for any particular value of its variable is the limit which

the function approaches when the variable approaches this

particular value as its limit.

This definition need be used only when the ordinary

method of getting the value of the function gives rise to an

indeterminate form.



428 INTEGRAL CALCULUS

220. Evaluation of Indeterminate Forms. — In many-

cases the limits desired are easily found by simple algebraic

transformations or by the use of series. When the function

that assumes the indeterminate form is the quotient of two

polynomials, or can be put in that form, the following direc-

tions may be of service.

f (x)
1. If the function is of the form vt-^ and becomes 0/0 for

<f>{x)

X = 0, divide both numerator and denominator by the lowest

power of x that occurs in either. If the fraction becomes

00 /oo for x = 00, divide both terms of the fraction by the

highest power of x in either.

f(x)
2. If the function has the form ) : and becomes 0/0 for

(f>{x)

X = a, divide both terms by the highest power of (x — a)

common to both

EXAMPLES

x^ + Sx'^ — 5x1 5
^1 =
3 a; JoSx'- 2a:3 + 6a;|o 6

When X = 0, this fraction takes the indeterminate form

0/0. Hence to evaluate it for x = 0, its limit when x = 0,

must be found. For values of x other than 0,

x^ + Sx^ - 5x x''-\-Sx- 5 ,~

2.

Sx^- 2x^ + 60; 3x3- 2x2 + 6'

x3 + 3x2-5x ,. x2 + 3x-5
iTo 3x4 - 2x' + 6x " iS 3x3 - 2x2 _,_ q

5

6

x3 + 3x2-5x1
3x4- 2x3 + 6xJ^

13 5

x3 + 3 x2 - 5 X X x2 x\
3x4-2x3 + 6x ^ 2,6'
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i^ 3x^-2x3 + 60;
~

i^fi ^ 2 . 6 " 3
~

X X'

VlH- X - Vl
Jo

1.
X _lo

By rationalizing numerator,

Vl-\-x- Vl-x /Vl+x-Vl-x\ iVl+x + Vl-x

nvT+x+ vi
l-x \

lim
x=0

\/l+x + Vl -X
Vl +x - Vl - x'

n=iin
J x=

lim -^ =]-
=0 Vl + X + Vl

4. Vl+x - Vil = 0.
Joo

By changing form,

vr+^~v^=(vr+^-v^) i^^+^
(Vl + X + Vx)

_ 1 + X — X
~ Vi + x + VJ'

.-. lim (Vl+x - V^) = lim .——
,
—7= = 0.

x = oo x=« LVl + X + VxJ

- X — sin xl _ 1

By expanding sin x in series,

X — sin X _ 1 r / x^ ^5 \

-|

x^

1 _x^ x^

6 5!^7!
• •

, if X ?^ 0;

,. X- sinx ,. ri x2 , X* 11
lim r = lim ' — -I + — — . . . = 7T'

x=o x^ x=oL6 5!^ 7 J 6
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6.
smx — X cos

Jo 3x" Jo 3

By expanding sin x and cos x in series,

sin x — X cos

x'
- = ^[("

0^ x^ _
3!

"^5!"

^4! )]

lim
x=o L

sm X — X cos

"] = ';
lim

_x'\

= lim
x=0 30

30

+

4-
)]

1

3*

221. Method of the Calculus. — For the form 0/0, to

which all other indeterminate forms may be reduced, Tay-

lor's Theorem furnishes a general method of evaluation.

I. When/(x) and </> {x) are continuous functions of x and

fix)
; i reduces to the form 0/0 for x

<l>{x)

a, the value of

lim ^-^ is desired.

That is, if the ratio of two functions of x takes the form 0/0

when X = a, then the ratio of these functions when x = a is

equal to the ratio of their derivatives when x = a.

li f{x -\- h) and ^{x ^ h) can be expanded by Taylor's

formula in the neighborhood oi x = a, it is seen that

h=Ql4>{a-\-h)\ <l>'{a)' L</>WJ« \J> {x)]a

By Taylor's Theorem [Art. 208, formula (2)], putting

a for X,

f{a + h) ^ f{a)+hf{a + dih) ^ f (a + d,h)

<t>{a-\-h) <t>
(a) + h(j)' (a + Oih) 4>' {a + ^s/i)

'

since /(a) = 0, <A(a) = 0; [See also (!«), Art. 205]
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h=o U (a + ^) J h=o U (« + WA 4> {o)

lif{a) and <t>' ip) are both zero, then [(2a), Art. 205]

i'SU (« + /»)J ™ U" (a + «4/i) J 0" (a:

In this way it is seen that if, for x = a,f (x) and
<t> (x) and

their successive derivatives, including their nth derivatives,

are zero, while /"+' (a) and (^"+' (a) are not both zero, then

(2)

f (x)
If the function . . takes the form 0/0 when x is infinite,

<t>{x)

by putting x = - the problem is reduced to the evaluation
z

of the limit for 2; = 0, and hence the method applies to this

case also.

fix)
II. Form GO /oo .

— When the function ^^—
-r takes the form

0(x)

cc/qc, it can be reduced to the form 0/0, by writing it in

the form —y-z / tt^- This form can be evaluated as before.
4>{x)/ f{x)

Thus, let / (a) = 00 and (a) = 00 , a being finite or in-

finite; to show T^l =[^1.

Now ~rr^ = —7-^ / jy-r , which is in the form 0/0. Ap-
0(a) <f>(a)/ f{a)'

plying formula (1),
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*'(a)

[/(a)?

U(x)J<. r^iMl U'wJ"

If ^^V^ is indeterminate, continue according to formula (2)
(a)

until two derivatives are obtained whose ratio is deter-

minate, which ratio is the limiting value sought for the

function.

III. Other Forms. — The evaluation of the other indeter-

minate forms may be made to depend upon the preceding.

(a) Form • oo . — When a function f {x) '
<l>

{x) takes the

form • 00 for X = a, it may be reduced to the form 0/0 or

cxd/oo
; thus,

}{x)'(t>{x)='-Y' or -^•

<i>{x) Six)

ih) Form oo — oo .
— By some transformation and simpli-

fication, a function taking the form oo — oo may be reduced

to a definite value, or to one of the preceding indeterminate

forms.

(c) Forms 0°, oo°, 1°°.— These forms arise from a func-

tion of the form [f {x)Y'^'^\ This function may be reduced

to the form %. Thus let y = [} (a;)]'^(^\ whence

log2/ = <^(a;).log[/(x)]. (3)

Since for each of the given forms, (3) takes the form O.oo,

the evaluation is effected as in (a), the value of y being

found from log y.
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EXAMPLES.

1.
5--
X^1-

a; — sin x~] _ 1

^' ~^' Jo~6*
X — sin x] _ . . a; — sin x~| _ 1 — cos x^

x^ Jo
~

' •** x3 Jo
~ 3x2 J^

_ sin x~| _ cos a:~| _ 1

6 X Jo 6 Jo 6

3. = na''-^.
X — a ]a

^n _ ^n-| Q x"" — a"1 nx'^^n ,

X — a Ja X — a Ja 1 Ja

^ a^ — 6^1 , a
4. = logr-

X jo o

= n J • • = log a • a^ - log • 6*
a: Jo x Jo * Jo

a^ - 6^"

= log a — log b = Jog ^-

6.
e--e---2x

X — sm x Jo].

10, .
e^- e-^- 2x1 _ e^ -f g-^ - 21

Jo ' *

*

X — sin X Jo 1 — cos X Jc

Jo cosx Jo

X — sin X Jo U

'

X — sin X Jo 1 — cos x Jo

sinx

«
"°«('+i)L*»-
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log(n-^)'] =a;log(l+^)] = a (by Ex. 6);

•• i'^l)']?'- • (4)1- CD

.*. (1 + x)^ = e. (Compare Cor., Art. 34.)

-1 1
9. (1 - x)^ = - or e-^.

Jo e

log(l - xy] = i-log(l - x)l = :^1 = -L
Jo X Jo 1 — ^Jo

or

EXERCISE XLV.

Evaluate the following indeterminate forms:

^ 1 — cos x~\ 1
j^

a; — 1 ~| _ 1

4

1.

I. sec X — tan x L = 0.

- tan X — sin a;~j _ 1

sin^x Jo 2

4. (sinx)*^^^1_

5. x^^^^l = 1.
Jo

6. sin X log x]o = 0.

7. a;^]o = 1.

8. (l+x^)^^ = l.

10. {^y\-n^'

a; — IJi

12. ^^^] = 2.
sm re Jo

^« x — sin~^ x~\ _ 1
^^- ""^^

Jo
-^6"

sm-^o;

tan x — X
14.

X — sm a;

15. (loga;no = L

!-•

16. a;i-^J,=-e-i.
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222. Evaluation of Derivatives of Implicit Functions.—
1. Find the slope of x" - a'xy + bY = at (0,0). Here

dy

dx

Hence

dy

dx

1 =4^^^1 =% (Art. 105)

Jo.o

12x2
dy

dx

dx lo.O " _ 9 7,2

d̂x

dx

0,0

2Vp
dx_ 0,0

(„._26.^)+a^^l =0; whence 1^1 =0or^
V dx) dx^Qfi axjo.o o-

2. Find the slope of x^ - 3 axy + 1/^ = at (0,0).

Arts. -Y-\ = or 00

.



CHAPTER X.

DIFFERENTIAL EQUATIONS. APPLICATIONS.
CENTRAL FORCES.

223. Differential Equations. — A differential equation

is one that involves one or more differentials or derivatives.

An ordinary differential equation is a differential equation

which involves one independent variable only. The deriv-

atives in such an equation are therefore ordinary derivatives.

The order of a differential equation is the order of the

highest differential or derivative which it contains.

The degree of a differential equation is that of the highest

power of the highest differential or derivative which it con-

tains, after the equation is freed from fractions and radicals.

For examples:

dy = m dx, (1)

are ordinary differential equations. Equation (1) is of the

first order and first degree, (2) is of the second order and first

degree, and (3) is of the second order and second degree,

after being rationalized.

224. Solution of Differential Equations. — It has been

seen in foregoing chapters how when an equation expressing

a functional relation between two variables is given, the

differentiation of the equation gives a differential equation

expressing the rate of the function. On the other hand, it

has been seen that the rate of a function being given a differ-

436
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ential equation is thereby formed, the integration of which

yields the function, indeterminate though it may in general

be.

It is this finding of the function from an equation involving

the derivative that constitutes the solving of a differential

equation.

The general solution of a differential equation is the most

general equation free from differentials or derivatives, from

which the given equation may be derived by differentiation.

The general solution, for example, of the equation

J=C, is 2/ = Cx + CIj

and of T^ = 0, is y = Cx + Ci, also.

Thus, when -~ represents the slope and j\ the flexion,

this function is any non-vertical Une in the plane. Here,

y = Cx, y = Ci, y = Oy y = X, y = 2 X -\- I, . . .are par-

ticular solutions, which are included in the general solution.

(See Ex. 1, Art. 115.)

[Note. — The general solution of a differential equation

may not include all possible solutions. A solution not in-

cluded in the general solution is called a singular solution.

The discussion of such solutions is beyond the scope of this

book.]

The general solution of a differential equation of the nth

order contains n arbitrary constants of integration (for ex-

amples, see Arts. 140, 141, 161) ; to determine these constants,

n conditions connecting the function, the variable, and the

successive derivatives must be known. The general solution

is called the complete integral or primitive of the differential

equation.

225. Complete Integral. — When a differential equation

is given, passing by integration to the complete integral is
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solving the equation. It has been proved that every differ-

ential equation has a complete integral, and that when the

equation is of the nth order the integral contains n arbitrary-

constants. The complete integral then contains one, two,

... or n constants that do not appear in the differential

equation, when that equation is of the first, second, ... or

nth order. If the complete integral be differentiated these

constants are eliminated, whatever may be their particular

values, hence they are called arbitrary.

Example 1. — Let a given equation be

differentiating,
h

^ ~
^ ^^^

differentiating again, ^ = - = -^ (from (2)); (3)

••• -S-| = 0, ((2) Art. 223) (4)

is the differential equation.

To find a general form for the complete integral of (4),

dy d^y dTYi
solve by letting m = -^; then -7^ = -j-; substituting in

... . dm „ dm dx
(4) ,

gives X-. m = 0, or — = —

:

^ ^' ^ dx m X

integrating, log m = log x + log c = log ex,

where c is a constant;

/. m = ex, or -p = ex; (2)

integrating again gives

2/=|x2 + ci, (10

the complete integral, in which c and Ci are the arbitrary

constants; and which has the form of equation (1).

Whatever be the value of Ci, equation (!') represents a
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2
parabola on the ?/-axis with latus rectum - ; hence (20 is the

c

differential equation of all such parabolas.

Equation (4) is the differential equation of all parabolas

whose axes are on the 2/-axis.

Suppose (4) is given, and the problem is to find a function

y that shall satisfy that equation, have its first derivative

equal to 1/p when x = 1, and be equal to k when x = 0,

These conditions give, from (!') and (2'),

k = + Ci; l/p = c,

and hence the function,

y = xy2 v + k. (Compare Ex. 2, Art. 161.) (1)

In this way the constants can be determined when the

necessary conditions are known.

N.B. — Equations of the second order with one variable

fd^v dv \
j^, -7^ , X

J
= 0, may often be solved by the

method used in this example. (Art. 232, IIL)

Example 2. — Let the equation be

g + 26g+(62 + co^)i/ = 0. ((4) Art. 54.) (1)

It is seen in Art. 54 that this differential equation results

from the differentiation of the equation

y = ae~^' sin {o)t — a), or y = e~^' {A sin cot-\- B cos coQ . (2)

To show that (2) is the solution of an equation of the

(3)

form of (1), let, y = e-^^u and (1) becomes

d'^u . „ ^

where co2 = 62 + co2-(i.26)2;

then by Ex. 3, following,

u = Asinojt + B cos mt,

and y = e-^^{A sin o)t -{- B cos oot).

(Compare Art. 233, III.)

(2')
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Example 3. — Let the equation be

^ +0)2^ = 0. ((3) of Ex. 2.)

Multiplying by 2 du gives

integrating,

(^J
= -0,2 (1^2 4_ (7^) =. ^2 (^2 _ ^2)^ taking Ci = -aS

extracting root, '17 '^ ^ ^^ ~ ^'

Integrating, /^^.^ =/,

gives sin~i - = coi + C2,

or, solving for w,

w = a sin (coi + C2) = A sin coi + B cos co^,

where A = a cos C2 and B = a sin C2 are arbitrary constants.

Example 4. — Let the equation be

dH 2 „

Multiplying by 2 di^ gives

integrating, f-^j = co2(?^2 + (7^);

extracting root, 17 ~ ^ ^'^ ~^ ^i*

Integrating, / , = / co di,

gives log {u + Vi^2 + Ci) = coi + C2,

or, solving for it, w = Ae"^ + -Be~*^*,
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where 2 A = e^ and 2 B = — Cie~^ are arbitrary constants.

By means of the hyperbohc functions this result may be

written in the form

u = a sinh (ot) + b cosh (coQ,

where h-\-a = 2A and b — a = 2B.

Hence, in this case, a solution of (1) of Ex. 2 is

Example 5. — Let the equation be

resulting from (3) of Ex. 2, when 6^ + co^ = 6^, or co^ = 0.

du
Integrating gives -j- = Ci,u = Cit -{- C2.

Hence in this case, the solution of equation (1) of Ex. 2, is

where Ci and C2 are constants.

Note. — The foregoing examples are solutions of important

differential equations, that of Ex. 2, as shown in Art. 54,

being the typical form for damped vibrations.

226. The Need and Fruitfulness of the Solution of

Differential Equations. — Attention has heretofore been

called to the need of finding the inverse of a rate, in solving

many problems that arise in everyday life as well as in science.

In fact the inverse problem is more often the real question

demanding solution. It has been shown (Ex. 5, Art. 115)

how, when the acceleration, the rate of change of the speed

of a moving body, is known, the velocity and the distance for

any time are found by the solving of a differential equation.

(Ex. 1, Art. 161.)

It has been shown (Art. 42), that when a function has the

general form y = ae^^, the rate of change is proportional to

the function itself, and that so many changes in Nature
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occur in this way that the law of change, known as the

Compound Interest Law, is also called the Law of Organic

Growth. Now, if it is known that some function changes at

a rate proportional to itself, expressing this by the differen-

tial equation,

-^ = ky, or kdx = —;
dx ^'

2/

then, kx =
I
— = loge y + c, or y = e^^-^ = Ce^^,

*J y

where C = e""^ is an arbitrary constant.

The only function whose rate of change is proportional to

itself is thus shown to be of the form Ce^^^ (or ae^^), where C
and fc (or a and 6) are arbitrary, and k (or h) is the factor

of proportionahty. This may be expressed also by the

statement, that the only function, whose relative rate of

change (logarithmic derivative) is constant, is Ce^^ (or ae^^).

It has been shown (Art. 73), that when a point has simple

harmonic motion its relative acceleration is a negative con-

stant. Thus, when the displacement of a point is given by

the equation y = asm (oit — a) , there results the differential

d^y
equation -^ = —^'^y, where co is constant, and hence the

relative acceleration is -p / 2/ = — co^.

Conversely, when the motion, as in a vibration, is due to

a force that increases with the distance from the central

position, the acceleration, being according to Newton's

second law of motion proportional to the force, is

dh ,„

where, as the force acts towards the origin, the acceleration

is negative when s is positive and positive when s is negative.
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From the relation v dv = atds, gotten by eliminating dt in

dv/dt — at and ds/dt = v;

Cvdv=
I
- kh ds; .: v^ = Ci- fcV;

putting Ci = k^a^,

y = ^=:kV^r^^; f /' = fkdt;
dt ' J Va^-s^ J

whence . sin-^ (-) = /c^ + C2

or s = a sin (kt + C2) = A sin kt -\- B cos kt,

where A = a cos C2 and 5 = a sin C2 are arbitrary con-

stants. This equation for s is the characteristic equation of

simple harmonic motion; the amplitude of the motion is a,

the period is 2 w/k, and the phase is — C2//C.

Thus, it is found that, when the acceleration along a

straight line is a negative constant times the distance from

a fixed point, the only motion resulting is the simple har-

monic motion.

In general, it has been shown that, whenever the rate of

change of a function of a single independent variable is

known and also the value of the function for some one value

of the variable, it is possible to find by integration the value

of the function for any value of the variable.

Hence it has followed that the solution of a differential

equation gives the area under any curve whose equation is

known, thus solving the problem that had baffled the

mathematicians of the ages before the discovery of this

general method of effecting the quadrature of curves of any

degree.

When it is recalled that the magnitude of any quantity

whatever, whether of volume, mass, weight, force, work,

etc., may be represented by an area under a curve, the fruit-

fulness of the solution of many differential equations is

recognized.
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Note. — In this chapter and in the foregoing chapters the

differential equations that have been solved have been for

the most part ordinary, involving the function and one

independent variable. While a general discussion of differ-

ential equations, including those other than ordinary, is too

large a subject for a first course in the Calculus and is beyond

the scope of this book, some of the special equations are so

important that their solution has been given, and some more

will follow. In Art. Ill, the solution of some differential

equations that have the form M dx + N dy = was effected,

and in Art. 112, the definition of an exact differential equa-

tion of that form was given.

227. Equations of the Form Mdx + Ndy = 0.— In this

form M and N are functions of x and y. The variables are

said to be separated when M, or the coefficient of dx, contains

x only, and N contains y only.

When M dx -\- N dy is an exact differential (as defined

in Art. Ill), the total differential of some function of x and

2/, then
Mdx + Ndy = 0, (1)

is an exact differential equation. After applying the test

l^=dx' «6) Art. Ill),

and finding the condition satisfied, integrate the coefficient

of dx regarding y as constant, putting

fMdx+f{y), (2)

and then determining / (y) so that

du
. =N. (3)
dy

Or regarding x first as constant, put

u = fNdy+f(x\ (4)
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and so determine / (x) that

dx
(5)

These equations involve the conditions,

,^ du ,r du

dx dy
(6)

Example. — Solve (3 a;^ + 4 xy) dx + {2x^-\-2 y) dy == 0.

-—- = 4aj = —— , hence, the condition is satisfied.
dy dx

J{3x^ + 4:xy)dx +f{y) = x^ + 2x'y +f(y);

f'{y) = 2x^ + 2y,

f'{y)=2y and f(y)=y';

^=2x'+f(y) = 2x^ + 2y,

hence

u = x^ -\-2 x^y + 2/^; •*• x^ + 2 x'^y -\- y'^ = C

is a solution and is the complete integral.

When the equation,

M dx -\- N dy = 0,

is not exact, it may be multiplied by some factor that will

make it exact in some cases. This factor is called an inte-

grating factor. Rules have been given for finding an in-

tegrating factor, but in many cases a factor, or several

factors, that will make the equation become exact, may be

found by inspection. For Example, see Ex. 2, Note, Art. HI,

ydx — xdy =

is made an exact differential equation by either the factor

^-2^ y-2^ Qj. {xy)~^, and a solution effected in each case.

For another example,

(1 -]rxy)ydx-\-{\- xy)xdy = 0,

ydx-\-xdy -\- xy^ dx — x^y dy = 0,

or d {xy) + xy^ dx — x^y dy = 0;
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dividing by x^'if' gives

d{xy) dx dy ^ ^^

{xyY X y '

1 X -
h log - = log c, ox X = cye'y.

xy ^y *^
'

228. Variables Separable. — An equation of the form

Mdx-\-Ndy = 0,

in which the variables are separated can be solved by in-

tegrating its terms separately. The variables are separable

when the equation can be put in the form

J{x)dx + F{y)dy = Q.

Example 1. — cosxdx — sin ydy = 0.

Here sin x -jr cosy = C is evidently the general solution.

Example 2. — Va^ — y^dx -}- Va^ — x^dy = 0.

Dividing by V^iF^^ \/W^^^ ; .

^^ + .

^^ = ;Va^ — x^ V a^ — 2/2

X V
integrating, sin"^ - + sin"^ - = C

;

a a ^

taking sine of each member, the first member being a sum,

gives X Va^ — y"^ -\-y Va^ — x^ = a^ sin C = d.

Example 3. — (1 — x) dy — {1 -\- y) dx = 0.

Dividing by (l-x)(l+2/); T^-T^ = ^\
X -\- y i X

integrating,

log (1 + 2/) + log (1 - x) = log c or Ci,

or (1 -\-y) (1 — x) = c or e^K

The final equation may be gotten at once by inspection.

229. Equations Homogeneous in x and y. — If an equa-

tion is homogeneous in x and y, the substitution of

y =^ vx



EQUATIONS HOMOGENEOUS IN X AND Y 447

will give a differential equation in which the variables are

easily separable.

Example 1. — Solve (x^ + y^) dx — 2xydy = 0.

Putting y = vx and dividing by x^ gives

(1 -\- v^) dx — 2 V {x dv -{- V dx) = 0;

separating the variables, _ ^
= 0;

integrating, log lx{l — v^)] = \ogc;

putting y/x for v, the solution becomes

x2 — 2/2 = ex.

Example 2. — Solve {x^ + y^) dy — xydx = 0.

Putting y = vx and dividing by x^ gives

(1 + v"^) {xdv -\- V dx) — vdx = 0;

separating the variables, —|

f- ^ =
;

' V X v^

integrating, log v + log x — ^v'"^ = C = log c;

V V x^
putting - for v gives log- = -^t—^j

X c ^ y

or y = ce^y\

Example 3. — Find the system of curves at any point of

which as {x, y), the subtangent is equal to the sum of x and y.

dx
From the conditions, the subtangent being y-r-y

hence,

dividing by y

dx

''dy^
' x + y.

ydx- xdy =ydy;

2
ydx — xdy dy

'.
y. "J'

X
integrating, - = log ?/ + log Ci = log Ciy,

or y = cey

is the general equation of the system of curves.
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230. Linear Equations of the First Order. — A " linear

differential equation is one in which the dependent variable

and its differentials appear only in the first degree.

The form of the linear equation of the first order is

dy + Pydx = Q dx, (1)

where P and Q are functions of x or are constants.

The linear equation occurs very frequently. The solution

of dy -{- Pydx = 0, or dy/y -\- P dx = 0,

is log ?/ + log e-^
"" = log c, or ye^ "^ = c.

Differentiating the latter form gives

ey'^'\dy + Pydx) = 0,

which shows that e-^ ^ is an integrating factor of (1). Mul-

tiplying (1) by this factor gives

e^ ^ (dy -{- Py dx) = e^ ^Qdx;

and this, on integration, gives

/'''=fe/'''Qdx. (2)ye-'

The equality expressed in (2) may be used as a formula

for solving any linear equation in the general form (1).

Example 1. — Solve x dy — y dx — x^ dx = 0.

Putting it in the general form (1), it becomes

dy — -dx = x^ dx.
^ X

Hence, i P dx = —
j
— = — log a: = log -

;

/Pdx log- 1

X

and / e-/ '^Qdx=jxdx = — -\-C.
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Substituting these values in formula (2) gives

| = ix2 + C, or y = ^x'-\-Cx.

Example 2. — Solve dy -\-ydx = e~^ dx. y = (x -\- C) e~*.

Example 3. — Solve cos X' dy -\- y sin x- dx = dx.

y = smx-\-C cos x.

Example 4. — Solve (1 + x^) dy — yxdx = a dx.

y = ax + C Vl + x^.

Th a
Example 5. — Solve dy -\--ydx = —dx. x'^y = ax-\-C.

231. Equations of the First Order and nth Degree. — An
equation of the first order and nth degree, which is resolvable

into n equivalent rational equations of the first degree, may
be solved by the solution of the equivalent equations. To

dt/
illustrate, let p = -7^ in the examples.

Example 1. — Solve ^^Y + (x -\- y)^ + xy = 0.

The given equation is p^ -{- (x -\- y) p -\- xy = 0; factoring,

(V + 2/) (P + ^) = 0) which is equivalent to the equations,

p -\- y = 0, p -{- X = 0, oi which the solutions are,

\ogy + x + C = 0, 2y + x^ + 2C = 0.

The combined solution is

(log?/ + x + C)(2y + x'-\-2C)=0.

Example 2. — p^- ax^ = 0. 25 {y + C)^ = 4 axK

Example 3. — p^ - 5 p + 6 = 0.

(y-2x-C){y-Sx-C) =0.
Example 4. — p^ _ ax^ = 0. 343 {y + Cy = 27 d^.

Example 5. — p^ + 2 xp'^ — y^p"^ — 2 xy^p = 0.

(y -C)(y-\-x'- C) {xy + C|/ + 1) = 0.

232. Equations of Orders above the First. — Examples

will be given of solving four special forms of such equations.
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I. Equations of theform -r-^ = f{x).

The solutions of equations of this type can be gotten by
n successive integrations. Examples have already be6n

given in Art. 161 and in other Articles.

Example. — d^y = x^ dx\ 2/ = i^ H—^ H—^ + C^x + d.

d^ti
II. Equations of the form j-^ = fiy)-

For these equations 2 dy is an integrating factor.

Example. — Solve ^ + a^^ = 0. (1)

Multiplying by 2 dy gives

integrating,

/^y = -ay + Ci = a2 (ci^ - 1/2), where Ci = aV. (2)

From (2), dy/Vci" - y'' = adx; (3)

integrating (3) sin-^ y/ci = ax -{ C2, (4)

or y = Ci sin {ax + 02), (5)

which may be written,

y = Asinax -\- B cos ax. (6)

See Ex. 3, Art. 225, where this solution was obtained, and

in Art. 226, the equation for simple harmonic motion results;

and there, for the differential equation,

dh _ ,
^

df ~ ^ ^'

2 ds might be used as an integrating factor.

(d^y dy \
-j-^, . . . , -7^, xj = 0; that

is, equations of the nth order with y absent.
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The solution of a differential equation of this form was

given in Ex. 1, Art. 225.

p + — ^y +u d^ _dp d/^ _ d^'-'^p
^"^^ ^~dx' ^^^"^

dx'
~

dx' ' ' ' ' dx-~ ~d^^'

Substituting these values in the general form gives

Jd--^p dp \ „ ...

which is an equation of the {n — l)th order between p and x.

Example 1. — To show that the circle is the curve for

which the expression for radius of curvature is constant.

[-(i)T_
d^
dx'

Substituting p for dy/dx, inverting the fractions, and sepa-

rating the variables, gives

dp _ dx
^

integrating, -^^=±^,
a being arbitrary constant;

1 . - dy
,

X — a
solvmg tor p, p =

-f-
= zL

dx Vr^ - {x- ay

whence y — b = zL VR"^ — (x — ay,

h being arbitrary constant; hence, {x — ay -{- {y — by = R^j

for all circles of radius R.

When n is 2, the equation being of the second order, the

substitution

_ dy dp _ d^y

dx' dx dx^'

reduces the equation given to an equation of the first order

in dp/dx, p, x. Solving, if possible, gives a relation of the
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form / {p, X, C) = 0. This is still of the first order, in x and

y, and may be integrated.

d}s 1 1
Example 2. — Solve

;772 + T + 72
"= ^•

Putting p = ^ gives ^ + - + ^ = 0.

Separating variables, — dp = —^— dt]

integrating, — P = — t + log ^ + Ci.

Integrating again,

8 = log^ - t\ogt + (1 - Ci)t - C2,

which gives in the case of motion the relation between the

space or distance and the time.

(d^v\ dii \

dx^)' ' ' ' ' dx' V^^'

Put «-^- then^-^^, ^-^2^ i^/W ...i'ut p -
^^, then

^^,
- p ^^, ^^3

- p ^y2-^P[^y) ,
etc.

Substituting these values in the general form gives an

equation of the (n — l)th order between p and y.

Thus when n is 2, the equation being of the second order,

the substitution

_ dy dp _ d^y

^~dx' '^d^'d^^

reduces the given equation to an equation of the first order

in y and p. This is solved, if possible; and then dy/dx put

for p, giving an equation in x and y of the first order to be

integrated ior y.

dh
Example. — Solve at = j^ = f{s).

Put p = „ = - then ^=^ = /W,

giving the known relation vdv = at ds.



LINEAR EQUATIONS OF THE SECOND ORDER 453

Integrating gives — = I f{s)ds + C, the energy integral,

called so from the relation

the equation of kinetic energy, where Fs is work done by a

force F through a distance s.

When / (s) is given, v is replaced by ds/dt and the integra-

tion of the resulting equation gives the solution in terms of s

and t and the equation may be solved for s.

Special examples under this case were given in II and in

Art. 225, Exs. 3 and 4.

233. Linear Equations of the Second Order. — The
general form of the equation of the second order is

where P, Q, R are functions of x alone or constants.

The complete integral of all linear equations is the sum of

two functions, called the complementary function and the

particular integral.

The complementary function is the complete integral of

the equation when R, the term independent of y and its

derivatives, is zero. This function will contain two arbitrary

constants, when the equation is of the second order.

The particular integral is any solution of the equation as

it is in the general form, and contains no arbitrary constant.

To consider the complementary function in which P, Q
are constants, let the equation be

I. Let y = e^^, k constant; then substituting in (1) gives

(/b2 -{-ak + b) e^^ = 0.

If fc is a root of the quadratic equation,

fc^ + a/c + 6 = 0, (2)
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called the auxiliary equation, e** will satisfy (1). The two
roots ki, /c2 of (2) are

and e^'i^, e^^^ are two solutions of (1). Hence the complete

integral of (1) is

where u = v J a^ — 5. For special cases:

II. If a^ = 4 b, equation (2) has two equal roots, h = k2 =
— ^ a. In this case (3) becomes

y = {A +5)e-^«^,

where (A + B) might be replaced by one constant C. When
a^ = 4 6, let y = e'^^'^u and (1) becomes, without the

factor e-2«^,

dx ^'

of which the complete integral is u = A -\- Bx.

Examples of this solution have been given in Arts. 224 and

225. The complete integral of (1) when the auxihary equa-

tion has two equal roots, each — J a, is

y = {A -^ Bx) e-^*^^. (4)

III. If a^ < 4 b, the roots of (2) are imaginary. Again,

let y = e~^"^ u and equation (1) becomes

g + m^« = 0, (5)

where | a^ — 6 = — m^ and m is real. Now (5) is satisfied

hy u = cos mx, u — sin mx ; its complete integral is then

u = A cos mx + B sin mx,

and therefore the complete integral of (1), when a^ < 4 6, is

y = e~^^^u = g-^ax
(^^ cos mx + B sin ma;). (6)

To show how (3) and (6) are written when the roots of (2)
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are known: when the roots of (2) are real, let i a^ — 6 = n^;

the roots are then, —ia-\-n,—^a — n; and the solution is

y = g-iax (^gnx _j_ Be-'''');

when the roots of (2) are imaginary, let J a^ — 6 = — n^,

and the roots are then, —\a-\-ni, —^ a — ni; and the

solution is

y = Q-'^ax
(^^ (>Qg Yix -\- B sin nx)y

so that instead of e"''^, e~"^^, there are cos nx, sin nx.

It may be noted that the auxiliary equation is written by

putting k^ for -^ , k ior -^, and omitting y.

The solving of a linear equation of the second order in-

cluding these three cases has been given in Art. 225, Ex-

amples 2, 3, 4, 5; for the equation for damped vibrations.

Example 1. — Solve^ + 8^ + 25 2/ = 0.

The auxiliary equation is

/c2 + 8 /c + 25 = 0,

and its roots are /ci = — 4 + 3 ^, /c2 = — 4 — 3 i. Hence,

the complete integral is

y = e-4a; (A COS 3 a: + B sin 3 x).

Example 2. — Solve

^ - 2^ - 35 2/ = 0. fc2 - 2 /b - 35 = 0.
dx^ dx

The roots of the auxiliary equation are

ki = -5, /C2 = 7.

Hence, the complete integral is

y = Ae-^^ + Be^^ = e (Ae-^^ + Be^^).
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APPLICATIONS.

234. Rectilinear Motion. — I. When the acceleration is

constant,

da dh ^ dh ds

dt
= de = ^' dF = "' " = d^

= «' + "°:

s = ^af + Vot + So.

For bodies falling freely towards the earth from moderate

heights, the acceleration g being taken constant,

V = vo — gt, s = Vot- i gt^ + So;

from rest,

v= -gt, s= -\gt\ (Ex. 5, Art. 115.)

Projected outward from rest, h = v^t — \ gt^ (Ex. 6, Art.

116), where h is height from point of projection.

II. When the acceleration varies as the distance. Let

dh
a = -775 = —ks, where /c, a constant, is the acceleration at

a unit's distance from the origin ; and let the body be of unit

mass at an initial distance r; then,

/dsV
t;2 = (-77 1 = Ci — ks"^ = kr^ — ks^, where kr^ = Ci;

V = -r- = 0Vr^ — s^;
at

t = r- f /^ = k-^ cos-1 - (+ C2 = 0),

t = 0, when s = r;

whence

s = r cos (kn) = r sin I kH -{--])

where the last result is gotten if the positive sign of the radical

is taken in integrating.
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Putting s = 0, gives v = r Vk, the velocity at the origin,

and t = 7r/2 k~^f | Trk'"^, f irk'"^, . . . , or s = r, gives t = 0,

27r/A;2, 4 7r//c2 , . . . Hence the motion is periodic, the

period being 2Tr/k^, which is independent of the initial

distance.

Differentiating s = r cos (k^t), gives

'^ — ~j1 — ~ ^^'* sin ik^i)
,

which expresses the velocity in terms of the time that the

body has been moving.

It is seen that this is a case of simple harmonic motion.

(Arts. 73 and 226.)

It has been shown in Art. 190, Cor., that the attraction of

a sphere of uniform density for an internal particle varies as

the distance from the center. Hence, a particular case of

the periodic motion just considered would be that of a body

which could pass freely through the earth, taken as a homo-

geneous sphere. Such a body would vibrate through the

center from surface to surface. To find the time of this

half period

:

t = Trk~^ = 3.1416 V20900000/32.17 sec.

= 42 min. about.

III. When the acceleration varies inversely as the square

of the distance.

Let k be the acceleration at unit distance from origin;

dh k
then, a = ^=--,,

where s is to be taken always positive; multiplying by 2 ds,

integrating, ^ =
(|J

= 2fc g -
J),

(1)
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where s = r, when v = 0, which gives the velocity of a

particle at any distance s.

For the time,

2fc ,, —sds— at = . 1

negative, since s decreases as t increases,

- ["1 r-2s _ r 1
"I

|_2 Vrs — s^ 2 Vrs — s^J

integrating between limits corresponding to t = t and

t = 0, gives

When the particle arrives at the origin, s = 0, therefore, the

time to the origin from the point where s = r is

t = —

It is seen from (1) that the velocity = when s = r, and
= 00 when s = 0; hence the particle approaches the origin

with increasing velocity. While the attractive force causing

the acceleration is very great near the origin, there can be

no attraction at the origin itself; therefore, the particle

must pass through the origin; and the conditions being the

same on either side of the origin the motion must be retarded

as rapidly as it was accelerated; hence, the particle will go

to a point at a distance r equal to that from which it started

and the motion will continue oscillatory.

An illustration of this general case has been given in

Art. 193, where the attraction of the Earth for an external

particle was considered as the cause of motion.

IV. When the acceleration varies as the distance and the

motion is away from the origin.
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Let k again be the acceleration per unit mass at unit

distance from the origin; then

a -
^^2

- ics;

''' g) = 2..<^a;

using 2 ds as an integrating factor gives

2d^

dt

fdsV
integrating, v^ = i-rrj = ks"^ -\- Vq^,

where Vq is the initial velocity; whence,

s = -^, (e^'^ - 6-^^0. (See Ex. 4, Art. 225.)
2 k"^

Here, as t increases s also increases, and the particle

recedes further and further from the origin ; and the velocity

also increases and becomes oo when s = t = oo. Thus in

this case the motion is not oscillatory.

V. When the acceleration is constant and the motion is

in a medium whose resistance varies as the square of the

velocity.

In Art. 195 the case where the motion was towards the

Earth has been given. Let now the particle be projected

outward with a given velocity vq. Using again gf/c^, as the

coefficient of resistance, the resistance of the air on a particle

for a unit of velocity, and taking the particle of unit mass,

with g constant,

g=-.-..^g; (1)

whence, ttt^ = —kgdt;

integrating, tan-MA;-,-j = tan-^ (kvo) — kgt,
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where C = tan"^ (kvo) ; solving,

V =
ds _ 1^ kvp — tan kgt

dt~ k' 1 -{-kvotsin kgt'
^^^

which gives the velocity in terms of the time. To get it in

terms of the space; from (1),

±M1 -2gk^ds;

integrating,

log
^+K'-:J
1 + kW

where c = log (1 + A;W); whence,

= -2

-=(fj=
1

v,^e-^9k^s _
^^ (1

g-2 gk^s\
^

Writing tan kgt in (2) in terms of sine and cosine and

integrating,

s = T^ log {kvo sin kgt + cos kgt),
K g

which gives the space described by the particle in terms of

the time.

235. Curvilinear Motion. — Let a body slide without

friction down any curve ah. The
acceleration caused by gravity

at any point P is ^ sin a, where

a = PTD, PT being a tangent

to the curve.

Let PT = ds; then -PD =
dy; hence.

d's = gsma — n^y
(1)

d^2
^—

^ds

Let t/o be the ordinate of the initial point on the curve; then

V = when y = yo.
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Integrating (1) gives

^=Jl
= ^2g(2/o-2/). (2)

It follows from (2) that the velocity of a body acquired

by moving freely down any frictionless path is the same,

and is what it would acquire in falling freely through the

vertical height between the initial and terminal points.

/ds— , the time will depend upon the path.

236. Simple Circular Pendulum. — Consider the motion

of a particle on a smooth circular arc under the action

of gravity as the only force.

—Y

Taking the axis of x as vertical, the equation of the circle is

\f-
— 2ax — x^. (1)

Let K {h,k) be the point where the particle starts from rest,

and P {x, y) where it is at the time t. Then the particle will

have fallen through the height h — x, and hence from (2),

Art. 235,

ds
. = ^ = V2,(/» x). (2)

It is seen from (2) that the velocity is a maximum when

X = and a minimum when x = h; so the particle will pass
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through following the curve to the point K' where x = h

and will oscillate between K and K'.

To find the time in passing from K to K' ',
from (2),

^l — ——=== , negative since s decreases as t increases,
V 2 g{h — x)

— adx „ /-.NT adx
from (1) ds = -—'

(3)V2g{h- x) (2 ax - x^)

While this expression does not admit of direct integration,

approximate values of the integral can be gotten as shown
in Ex. 6, Art. 203. When the arc is small, the approximate

value of the time can be gotten from (3) thus

:

T=2t= -~ r
V2a.A

adx

h V(/i — x)x{2a — x)

a r^ dx
, by taking {2 a — x) = 2a,

' aJo Vhx

If instead of moving on a curve, the particle is assumed to

be suspended by a rod or cord of no weight, it becomes a

simple pendulum, existing in theory.

To reduce (3) to the form known as ^'an elliptic integral"

of the first kind; let h = a vers a, x — a vers 6, a = KCOj
being constant and 6 variable; then

h — X = a (vers a — vers 6) = a (cos 6 — cos a)
;

dx = a sin 6 dO; and (2 ax — x'^) = a^ sin^ d.

Substituting in (3)

:

_ _J_ f" 2 g
' g sin ^ d(9

'\/2g Jo Va (cos ^ — cos a) a^ sin^ Q

-ill
a T" dd

9 Jo \/sin2a/2- sin2^/2
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i'r

= v^X

Jo 2 V \sin a/2/

2 sin q:/2 cos d0

S' Jo sin a/2 V 1 - sin^ (^ V 1 - sin^ a/2 sin^

= 2 V - / . -, by cancellation. (5)
^ S' Jo Vl - sin2Q;/2sin2(/,'

Here is defined by sin <j> = ^—4^, giving by differenti-
sin a/ ^

ation,

, ,^ cose/2dd/2
COS0rf0 = r^ j^

,

sm q;/2

whence,

,2 sin a/2 cos cjidcj) _ 2 sin a /2 cos <^ d^

cos ^/2
~

a/i - sin2a/2sin2

For change of hmits, 6 = a when = 7r/2, and =
when = 0.

Putting k = sin a/2 in (5), it becomes

•^
1

(1 - /c2 sin2 <f>)-^ d(t>

g Jq

=Vs['+©'''+6-l)'"+fi11)"'-+ ](«>

The form / {I — ¥ sin^ 0)~^ c?</) is ''an elliptic integral

of the first kind.'\

When a, and hence k, is small, only the first two terms of

the final series will give a close approximation to the value

of T, and the first term alone gives the value tty - , the expres-
y
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sion usually taken as the time of a vibration; 27ry - being

the value taken for a complete oscillation back and forth.

237. Cycloidal Pendulum. — A particle moves along the

arc of a cycloid; find the time of descent.

From (2) of Art. 235,

dt
= V2g{yo-y). (1)

The equation of the cycloid referred to OX and OF is

X = a vers~^ y/a + a/2 ay — y^.

Hence, ds = —V2a/y dy, which substituted in (1), gives

^ gJy Vyoy-y^ ^ {

vers" -i?y~f\.
yojy

'

i/^L_vers-i^l
^ ^L 2/0 JVoy-y'

:. t=Tv\J-, when i/ = 0, and 2^=T = 2xy-,

the time of one oscillation of a pendulum if it swings in the

arc of a cycloid.

The time of an oscillation being independent of the length

of the arc, the cycloidal pendulum is isochronal.

The pendulum is described in Art. 97, Ex. 3.

The cycloid is the curve of quickest descent, the Brachysto-

chrone; that is, the curve down which without friction

gravity will cause a particle to fall in the shortest time.



CYCLOIDAL PENDULUM 465

The following is a comparison between the times down the

chord of a circular arc, a circular arc, and the arc of a cycloid.

For the time down the chord I of a circle

r 2rx-x^; t = 2\/--

From (1), Art. 235, ^^ = gdna = g—, from the circle,
dt^

ds gl
^ = ^ = 27^ (+C = 0, since v = 0, when t = 0),

5 = 1^
^' (+C = 0, since s = 0, when ^ = 0),

= v/^=V>hen. = L

cV

^ \\r
^ ^v.
B TTa ^V

(' ^ P^^
\:.j^^^

For the time down the circular arc A0\

(6^\
236/

= ^V^ [1+0.07+0.01+ . . . ]=0.547ry/-=(L7...)\/-.

For the time down the arc of a cycloid from A to 0;

4 Y
2-T-r-- = 0.539Vr(i-6--.)v1^ least.
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From the figure,

r = —-— a OY a =
4r

7r2 + 4

hence k^ = - or P = (2r.2a).

Hence, Vr ^''^ * * V^ <(l-7 • • V^ < 2 V^-

It is at once evident that

9 9

9 ^9
It may be seen that the approxiniate value

|s/r = (1.57...)v/r< (1.6...)y/r.

238. The Centrifugal Railway. — The centrifugal rail-

way is an example of a simple circular pendulum where the

cord of suspension is replaced by a track.

Neglecting the resistance of

friction and of the air, the forces

acting on the car are the force of

gravity and the normal reaction

of the track. If h' is the diam-

eter of the circular track and h

the height from which the car

starts from rest, find the relation

between h and h', so that the car

will make a complete revolution without leaving the track.

The centrifugal reaction at the highest point of the track

must be great enough to overbalance the weight of the car.

The velocity at 5 is i; = V2gh; Sit T, v = V2g {h- h'))

Wv^ W
whence,

^^72
= ^^72"^^^''"'''^ = ^'

giving 4: {h — h') = h'; hence h = ^ h\ to balance; and,
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therefore, h should be greater than | h' , for the car to com-

plete the revolution without leaving the track.

239. Path of a Liquid Jet. — If a small orifice be made
in the vertical side of a vessel containing a liquid like water,

and a short tube be inserted so as to direct the current

obliquely, horizontally, or vertically upward, the velocity of

efflux will be the same, since the pressure of fluids at the

same depth is the same in every direction. To find this

velocity, let v be the velocity, w the weight of the liquid

issuing with that velocity per second, and h the head or

height of the surface of the liquid above the orifice; then

the equation for energy is

wh = - — v%
2 g '

in which wh is the work w can do in falling through h, and

1 w
- — y2 is stored up energy in w as it issues from the orifice.

Supposing no loss of energy, they are equal; hence,

v^ = 2gh or v = V2gh; (1)

that is, the velocity of efflux is the same as that of a body which

has fallen freely through the height h.

Now each particle of liquid issuing from the orifice will

have the same velocity and will follow the same path. The

path, when the tube is not vertical, will be a parabola whose

directrix is fixed in the surface of the liquid supposed to be

kept at a constant level by more liquid entering the vessel

(Art. 196). If the Hquid issue obhquely, its equation is

given in (3), Art. 196. If the liquid issue horizontally, o: = 0,

and the equation becomes

x' = ~y = 4:hy. (2)
y

The equation (2) may be derived thus : let a particle issue
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from the orifice with a velocity v, and in t seconds be at a

point P; then

X = vt (distance, v constant),

y = iot^ (freely falling body).

Eliminating t between these equations gives

„ 2v^

If the X and y of any point of the jet is measured, the equa-

tion (2) can be used to determine the actual velocity of flow

from the orifice. If this is done, the coefficient of velocity

is given by
actual velocity

Cv =
theoretical velocity

the actual velocity being less than the theoretical on account

of friction at the edge of the orifice.

The path is derived without taking into account the

resistance of the air, as when the path is in a vacuum.

When the orifice is at the center of the vertical side of a

vessel kept constantly full of liquid, it can be easily shown

that the horizontal range of the jet is a maximum and equal
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to 2 h, the height of the vessel; and at equal distances above

and below the center the range will be the same.

The coefficient of velocity for a small sharp edge orifice is

0.98; and, for a short tube, it is about 0.82.

240. Discharge from an Orifice. — If a is the area of^a

small orifice, then the theoretical discharge, or the quantity

of liquid issuing in a unit of time, is

Q = av = a V'2gh. (1)

On account of the contraction of the jet at the orifice and the

diminution of the velocity the actual discharge is

Q = CcCvav = 0.6 a V2 gh, (2)

where Cd = CcCv = 0.62 X 0.98 = 0.6 about, for a standard

orifice; for a standard short tube, Cd = 0.82, the coefficient

of contraction being unity.

K
V

1

f y.
'^

< --* ->

For a small orifice the head is taken as constant and as

that on the center, and for heads greater than twice the

height of the orifice that gives the discharge almost exactly.

For large orifices under low heads the variation of head over

the orifice, causing a variation in the velocity of the jet and

therefore in the discharge, makes the formulas above in-

apphcable for exact results.

Let h be the head on the center of a rectangular orifice of

breadth h and depth d; and let the rectangle be supposed
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to be divided into horizontal strips of area h Ax, x being the

distance from the center Hne of the rectangle. The quantity

d

Q = lim y;5 Ax V2g{h-x) = b V2g T {h - x)^ dx;
Ax=0 ^ J_d

2

d

= 5V2^ f (l - ^ -^, - . . . )dx
(.by.^-P-^idA

J d\ 2h Sh^ I Vmg m series /

= 6,V2-^(l-g-|l-2^f^...). (3)

It is seen that the quantity in the parenthesis is less than

unity, and the discharge is therefore less than that given

by (1).

For h = 2 d, the value of the parenthesis factor is 0.997,

so for heads greater than twice the height of the rectangle

the discharge may be figured from Q = caV2 gh, where c is

the coefficient of discharge.

Integrating without expanding (h — x)^ gives
d

Q = hV2gT {h - x)Ux = hV2g{- Uh - x)il

-hHhtf-i'-tf}
If the orifice extends to the surface and the bottom is h

below,

Q = hV2~g^-Uh- x)t
J
= f hh V2^, (5)

which is just f the quantity that would flow through an orifice

of equal area placed horizontally at the depth h, the vessel being

kept constantly full.

The mean velocity Vm is seen in (5) to be | V2 gh.

For any vertical orifice formed by a plane curve whose

vertex is at the depth hi below the surface of the liquid in
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a vessel of height h, kept constantly full, the formula for dis-

charge is

Q =
J'"'^

2 y V2g{h + x) dx. (6)

To get the time of emptying the vessel; let the surface be

z below the top at the end of the time

t, z = when ^ = 0; then the quantity

discharged in an element of time is

dQ = 2 V2g
I \ Vx-\-hi- zdx dt,

z being constant during this integration;

and since in the same time the quantity

discharged through the orifice must be

A dz, A being the area of the section of the vessel at depth

z, it follows that

(7)

zdx

Example. — Water is flowing from an orifice in the side

of a cylindrical tank whose cross section is 100 sq. ft.

The velocity of the jet is a/2 gx, x being the height of the

surface above the orifice; and the cross section of the jet is

0.01 sq. ft. Find the time it will take for the water to fall

from 100 ft. to 81 ft. above the orifice.

For this example the formula becomes

A r^i _i
t = 7= I X ^ dx (where x is height of surface

caV2gJh

above orifice and a is area of the orifice)

100 r "2<ix =
10000

0.01 V2 g J 100 8

= 2500 (10 - 9) = 2500 sec. = 41f

2/iM
Ji

/taking\

[g = 32/

mm.
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CENTRAL FORCES.

241. Definitions. — A central force is one which acts

directly towards or from a fixed point and is called an attrac-

tive or a repulsive force according as its action on any particle

is attraction or repulsion. The fixed point is called the

center. The intensity of the force is some function of its

distance from the center.

The path of the particle is called its orbit. All the forces

of Nature that are known are central forces.

242. Force Variable and Not in the Direction of Motion.

— Let a particle of unit mass be projected in any direction

and acted on by an attractive

force F. The path will be in

the plane passing through the

center of force and the line of

projection.

In this plane let 0, the center
^ of attraction, be the origin and

the pole, and let (x, y) or (p, 8) be the position of the par-

ticle P at the time t. The equations of motion are, from

the components of F parallel to the axes OX and OY,

^=-Fcosd=-F-, ^=-FBme= -F^- (1)
dt^ p dv p

Multiplying the first by y and the second by x and sub-

tracting,

d^y d^x ^ /».

integrating,
^~i~^'£^^' ^^^

where his o, constant.

From X = p cos 9 and y = psin 6,

dx = cos 6 dp — p sin 6 dd,

dy = sin dp + p cos 6 dd, (4)



FORCE VARIABLE 473

which in (3) gives

de

dt
(5)

Multiplying equations (1) by 2 da; and 2 dy and adding:

2dx^x_±2^dy_d^ ^ _ 2F {xdx -\- ydy)
,

dt' P
'

<&h<M}> -^*' (6)

+ P^'f^=-2Fdp, by (4);

[?©"+?]=-¥*. ^^<«- (')

Putting p = - and hence dp = ^, (7) becomes
XL U

dm+u(du^
,

^ 2F,

whence
d'^u

,

F-—
- = (8)

which is the differential equation of the path; and as the force

F will be given in terms of p, and therefore in terms of u, the

integral of the equation will be the polar equation of the path.

Let the central attraction vary

inversely as the square of the dis-

tance; to find the path.

Let the particle be projected

from the point Pq with a velocity

V, R the value of p for the point

Po, /3 the angle between R and the

line of projection; and let K be

attraction for the unit mass at unit distance, and t = when
the particle is projected. Then since the perpendicular from

the origin to the tangent is

P
dd

[Art. 77, (9)], the velocity -n = -, from (5);
ai 7j
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and as at Po, p = R sin jS,

F=^^; h=VRsm^.

As the force varies inversely as the square of the distance,
77"

1

F = ^ = Ku^, where u = -;
p2 p

(Pu K
hence, dF'^^^ ¥' ^^^^ ^^^' ^^'^

Using 2 du as integrating factor and integrating,

when i = 0, ^ = - = ^, and
(^^j

+^^ =
7^, by v^ = -,

and Art. 77 (9);

V^ 2K _ Vm-2K
'

h' hm h'R '

substituting this gives

^ ^ ^ Vm-2K 2Ku

Hence,

which shows that the velocity is greatest when p is least, and

least when p is greatest.

Changing the form of (9) to

dv? Vm-2K
,

K^ IK V /1AN+ TT - (^p
- ^^j ' (10)

and simphfying by letting -^ — h, and 7^^ h tt = c^,
fi It U hr

gives

[c^ - (m - 6)2]*
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the negative sign of the radical being taken. Integrating

gives

_.u — h . ,

cos ^ = d — c,
c

where c' is an arbitrary constant;

.*. u = b-i-c cos {d - c'). (11)

Replacing in (11) the values of h and c and the value of h,

and dividing both terms of the second member by K, gives

P=i = BWHin^m

which is the polar equation of the path and is the equation

of a conic section, the pole being at the focus, and the angle

{d — c') being measured from the shorter length of the major

axis. For if e is the eccentricity of a conic section, p the

focal radius vector, and cj) the angle between p and that point

of a conic section which is nearest the focus, then

p = - = -^ '-, or -^ '-'
(13)

u 1 + e cos (/) I -\- e cos 4>

Comparing (12) and (13), it is seen that,

e^ = 1/K^ {V^R -2K) RV^ sin^ ^8 + 1

;

(14)

<l>
= e - c'. (15)

Since the conic section is an ellipse, parabola, or hyper-

bola, according as e is less than, equal to, or greater than

unity, and from (14), e is thus, according as V^R — 2K\i
negative, zero, or positive; therefore, it is seen that

V^ < -^-, e < I, and the orbit is an eUipse,

2 K
V^ = —f^, e = 1, and the orbit is a parabola,

K
2 K

V^ > -^ , e > 1, and the orbit is a hyperbola.
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Corollary 1. — By (1) of Art. 234, III, it is seen that the

square of the velocity of a particle faUing through an infinite

distance to a point R distant from the center of force is under

the law of attraction now considered 2K/R. Hence the

conditions above may be expressed by stating that the orbit,

described about this center of force, will be an ellipse, a

parabola, or a hyperbola, according as the velocity of pro-

jection is less than, equal to, or greater than the velocity

through an infinite distance.

Corollary 2. — From (15) it is seen that ^ — c' is the angle

between the focal radius vector p, and that part of the

principal axis which is between the focus and the point of

the orbit which is nearest the focus; that is, it is the angle

POA in the figure; and hence, if the principal axis is the

initial line, c' = 0.

2 K
Corollary 3. — If the orbit is an elhpse, V^ < —^ ; hence,

£1

e2 = 1 - 1/^2 (2X _ v^R) RV^ sin2 ^, from (14) . (16)

The polar equation of the ellipse is

^ g (1 - e^)
.

1 + e cos </)

'

comparing it with (12), corresponding terms give

RWsin^^,
a (1 - e') = K

substituting for 1 — e^ its value from (16) and solving for a;

KR /17\
" = 2K-V'R' ^^^'

which shows that the major axis is independent of the direction

of projection.

In the figure, Po is the point of projection; FPo = R; PqT

is the line along which the particle is projected with velocity

V; FPoT = ^, the angle of projection; FP = p; PFA = d;
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PT = p = Rsin^; if i3
= 90°, the particle is projected from

an apse, A or A', an end of the major axis.

du
To determine the apsidal distances, FA and FA^; -^ = 0;

du

. 2KU.2K V^ _
f

... ,,.,

•• "-^^ + Ffl-¥ = °'^''°"^(^)' (^^)

the two roots of which are the reciprocals of the two apsidal

distances, a(l — e) and a (1 + e).

Since the coefficient of the second term of (18) is the smn
of the roots with their signs changed,

^ +r7TV7V = ^; .-. a{l-e^) = ^, (19)
a(l-e) ' .a(l+e) ¥ '

^ ' K
which is one-half the latus rectum.

From (5) p^ dd = h dt; and area swept over by the radius

vector is

which shows that the areas swept over by the radius vector in

different times are proportional to the times, and equal areas

will be described in equal times, li t = 1, A = ^ h; hence,

h = twice the sectorial area described in a unit of time.

For the time of describing the ellipse, calling the time, T;

rp _ 2 area of ellipse _ 2Trah~
h ~~h~

= 2 7ra^Vn^ (f,om (19))

^Ka (1 - e2)

= 2^1-g_' (20)

which is the periodic time.

243. Kepler*s Laws of Planetary Motion. — From a long

series of observations of the planets, especially of Mars,

Kepler deduced the following three laws which completely

describe planetary motion.
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I. The orbits of the planets are elUpses, of which the sun

occupies a focus.

II. The radius vector of each planet describes equal areas

in equal times.

III. The squares of the periodic times of the planets are

as the cubes of the major axes of their orbits.

The statement of these laws marked an epoch in the

development of mechanics, for the investigations of Newton
as to the nature of the attractive force led to his discovery of

the law of universal gravitation. The conclusions deduced

by Newton from Kepler's three laws will be briefly shown.

244. Nature of the Force which Acts upon the Planets. —
(1) From the second of Kepler's Laws, it follows that the

planets are retained in their orbits

by an attraction tending towards

the Sun.

Let (x, y) be the position of a

planet at the time t, referred to

rectangular axes through the Sun

in the plane of the motion of

the planet; X, 7, the component

accelerations due to the attraction acting on it, resolved

parallel to the axes; then the equations of motion are,

^ = Y ^ = y-

By Kepler's second law, if A be the area described by the

radius vector, dA /dt is constant,

••
'i - \'''ft=\

(from (5), Art. 242)

=^ o\^-^ — y-n) = ^ constant, from
Z\ dt at/

(3)^ Art. 242.
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Differentiating gives

d'x 0;

. xY -yX = (from (1)) )

•

X
' Y

X
-, or
y

y =
X

which shows that the axial components of the acceleration,

due to the attraction acting on the planet, are proportional

to the coordinates of the planet; and therefore by the

parallelogram of forces, the resultant of X and Y passes

through the origin. Hence, the forces acting on the planets

all pass through the Sun's center.

(2) From the first of Kepler's laws it follows that the

central attraction varies inversely as the square of the

distance.

The polar equation of the ellipse, referred to its focus, is

a(l-e^) 1 l+ecosB
P = r~i n or - = u= —jz ^>

1 + e cos p a (1 — ^2)

which by differentiation gives,

fu ^ 1

d^2 + ^ a (1 - e")
'

and, therefore, if ¥ is the attraction to the focus, by (8),

Art. 242,

a(l -62) p2'

Hence, ij the orbit be an ellipse, described about a center of at-

traction at the focus, the law of intensity is that of the inverse

square of the distance.

(3) From the third law it follows that the attraction of

the Sun (supposed fixed) which acts on a unit of mass of each
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of the planets, is the same for each planet at the same
distance.

By Art. 242 (20), ^ = ^a\

Since by the third law, T^ varies as a^, K must be constant;

that is, the strength of the attraction of the Sun must be the

same for all the planets. Hence, not only is the law of force

the same for all the planets, but the absolute force is the same.

The third law shows also that the law of the intensity of

the force is that of the inverse square of the distance.

Since the planets move in ellipses slightly different from

circles, assume for simplicity that their orbits are actually

circles. If Ri, R^, Rs are the radii and Ti, T2, T3, the respec-

tive times of revolution of the planets, Kepler's third law

may be written as follows

:

Ri' R2' R,'
, ,^=^=^= ••• =a constant.

The expression for the central acceleration of motion in

a circle is a = v^R = 4:Tr^R/T^, or T^ = Air^R/a (Art. 70 (2)).

Substituting this value gives

aiRi^ = a2R<i' = azRz' = constant; or a = constant/i^^.

Note. — Arts. 242, 243, 244, are based on the discussion

in Bowser's Analytic Mechanics. For a fuller discussion, see

Tait and Steele's Dynamics of a Particle, and Percival Frost's

translation of Newton's Principia, Sec. I, II, III.

245. Newton's Verification. — The greatest of Newton's

achievements is considered an achievement of the imagina-

tioUj his conception of the universaHty of natural law. At an

early age he (in 1666) conceived with his far-reaching mind

the then daring idea that the sublime, inscrutable, central

force was nothing but commonplace gravity, known to exist

on and near the earth. He verified his idea first in the case

of the moon. He discovered that the same acceleration that

controls the motion of an object near the earth also pre-
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vented the moon from moving away in a rectilinear path

from the earth, and that its tangential velocity prevented

it from falling to the earth.

Assuming that the moon's orbit is circular, its acceleration

towards the earth is (by Art. 70 (2)),

a = ^ = ^YT = 0.0089 ft./sec.^,

where R = 238,800 miles and T = 27.32 days.

From the law of inverse squares

:

a _ r^ _ r^ _ 1 ^

'g~W~ (60.267r)2~3632'

a 32.089

3632 3632
0.0088 ft./sec2.,

where 32.089 is the value of g on the earth at the equator,

and R is 60.267 times r, the radius of the earth.

As these results differ by only rooooth of a foot, the

conclusion is that the centripetal force on the moon in its

orbit is due to the earth's attraction, acting according to

the law of inverse squares.

Owing to an inaccurate value of the earth's radius which

was in use at the time Newton first made the computation,

the result then obtained seemed to show that the law of

attraction was not that of inverse squares.

Records show that Newton, although unshaken in his

behef, laid aside his calculations; and it was not until

thirteen years afterwards that, a new determination of the

radius having been made, he repeated the investigation and

found the verification sought for.

Five years later (in 1684) he was induced to consider the

whole subject of gravitation; and then he solved the supple-

mentary problems in regard to the attraction of a sphere

for an external particle, which established his theory—
now known as Newton's Law of Universal Gravitation.
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Cone, 267, 270

Conic section, 475
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as a limit, 26

as slope of curve, 29

of area, 205

partial, 153, 164

successive, 84, 149

total, 159

Derived curves, 118, 225

function, 24
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Equation of evolute, 144

of involute of circle, 146

of involute of cycloid, 146

of normal, 100

of tangent, 99
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221

Error term, 421

Errors, percentage, 163

Euler's series, 397

Evaluation of definite integrals,

213

of derivatives of implicit func-

tions, 435

of indeterminate forms, 428

Evolute, 143, 144, 256

Evolution, 3

Exact differential equations, 167,

170, 444

Examples, illustrative, 31, 76, 160,

174, 412

Expansion by Maclaurin's and by
Taylor's Theorems, 411

of cosh x/a and sinh x/a, 248

of fimctions in series, 408

Explicit function, 6

Exponential function, 9, 47

Extended law of the mean, 405

Factor, integrating, 445

FalUng bodies, 21, 177, 297

First moment, 331

Flexion, 21, 133

Force, central, 472

centrifugal, 90, 378

centripetal, 90

concentrated, 355

definition of, 92

distributed, 355

variable, 472

Forms, indeterminate, 425, 428

standard, 180, 181, 183, 203, 403

Formula, prismoid, 283

projectile, Helie's, 384

Formulas, 38, 47, 64

approximation, 421

reduction, 194, 198
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Frustum, surface and volume of

any, 270

Function, 6

algebraic, 9, 38

continuous, 7

discontinuous, 7

exponential, 9, 47

hyperbolic, 9, 80

inverse, 76, 82

logarithmic, 9, 47

of a function, 27

power, 9, 10

transcendental, 9

trigonometric, 9, 64

several variables, 152

Functional relation, 7

Fundamental conception, 30

condition or test, 112

rule for applying test, 115

theorem, 261

g, acceleration of gravity, 90

Gas, formula for, 160

Gauge, self-registering, 97

Geometric meaning of integral,

204

Geometric progression, 9, 10

series, 385

Grade, 23

Graphical illustration, 113

Graphs, 8, 80, 118

cosine, 119, 228

cycloid, 105

sine, 71, 119, 228

versine, 228

Gravitation, law of, 363, 371, 481

unit of mass, 376

Gravity, acceleration of, 90, 91

center of, 332, 333, 334

Gregory's series, 397

Guldin's theorems, 336

Gyration, radius of, 345

Harmonic law, 9

motion, 94, 442, 457

series, 389, 392

Helie's formula, 384

Homogeneous equations, 446

Hyperbola, equilateral, 140, 221

Hyperbolic functions, 9, 80

logarithms, 216

Hypocycloid, 140, 148

Ideal quantity, 2

Ideas, 2

Illustrations, 21

typical, 118

Illustrative examples, 31, 76, 160,

174, 412

Implicit function, 7

Increasing function, 8

Increment, 12

Indefinite constant, 173, 301

integral, 173, 301

Independent variable, 6, 149

Indeterminate forms, 425

Inertia, 91

moment of, 230, 345, 346, 349,

350, 352

product of, 348

Inexact differential, 168

Infinite series, 385

Infinitesimal, 30, 36, 37

arc and chord, 37

Infinity, 36

Inflexion, point of, 114, 120, 132,

140

Integral, complete, 437,- 453

Calculus, 3, 171

definite, 206

energy, 453

from an area, 219

general, 227

indefinite, 173, 301

multiple, 297
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Integral, particular, 175, 453

Integrals, elliptic, 400, 462, 463

Integrand, 171

Integrating factor, 445

Integration, 2, 17, 170, 171

double, 304, 308, 324

constant of, 173, 301

parts, 194

series, 394

successive, 296, 303

triple, 317, 321

Intensity, 355

Interchange of limits, 210

^of order of differentiation, 165

of order of integration, 299, 301,

306

Interest, compound, law of, 9, 60

Inverse functions, 9

hyperbolic functions, 81

of differentiation, 171

trigonometric functions, 76

Involute, 143

of the catenary, 248

Involution, 3

Jet, liquid, path of, 467

Kepler's laws, 477

Kinetic energy, 92

Lagrange's remainder, 407

Law, compound interest, 9, 60,

442

extended, of the mean, 405

of organic growth, 9, 62, 442

of the mean, 401, 402, 403

of motion, 90, 359, 365

parabolic, 9

planetary motion, 477

universal gravitation, 363, 371,

481

Lemniscate, 110, 142, 217, 326

Lengths of curves, 236, 239

Limit of a sum, 259

of height of atmosphere, 378

of infinitesimal arc, 37

Limits, 25, 26, 30, 206, 208, 210

Linear equations, 448, 453

Liquid jet, 467

pressure, 356

Lituus, 124

Locus, 8

Logarithmic differentiation, 56

curve, 140

functions, 47

series, 395

spiral, 142

Logarithms, 54, 55

common, 55

hyperbolic, 216

natural, 55

Machin's series, 397

Maclaurin's theorem, 407

series, 408

Mass, 91, 327

unit of, 376

Maxima and minima, 111

application of Taylor's theorem,

to, 424

problems, 127

Maximum and minimum. 111

Mean density, 327, 374

law of the, 401, 402, 403

value of a function, 211

Method of the Calculus, 430

of limits, 30

Modulus, 54

of elasticity, 230, 254

Moment, 331, 345, 355

of inertia, 230, 350

least moment of inertia, 349

of inertia for parallel axes, 346

principal moment of inertia, 348
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Moments of area, 333, 352

first, 331

of line, 334

second, 344

of volume, 333

Momentum, 92

Motion, circular, 88

curvilinear, 460

in resisting medium, 379, 383,

459

planetary, 477

rectilinear, 456

second law of, 90

simple harmonic, 94, 442, 457

third law of, 90, 359, 365

•Napierian or natural base„ 49, 50,

54

. logarithms, 55, 70, 216

Newton, 4, 90, 359, 363, 371,

480

Normal acceleration, 20, 89, 94

Normal, 99

polar, 109

Notation for functions, 6

Number e, 6, 50, 418

TT, 6, 50, 398, 418

Orbit, 472, 475

Order above the first, 449

first, 449

of a differential equation, 436

Ordinary differential equation,

436, 444

Organic growth, 9, 62, 442

Orifice, discharge from, 469

Oscillating series, 385, 397

^, 6, 50, 398, 418

Pappus, theorem of, 336

Parabolic cable or cord, 241

law, 9

Partial derivations, 153, 164

differentials, 152, 164

Particular integral, 175, 453

values, 6

Parts, integration by, 194

Path of a projectile, 381

of a liquid jet, 467

Pendulum, simple circular, 461

cycloidal, 464

Percentage rate, 56

error, 163

Period, 96

Periodic time, 477

Plane, tangent, 154

Plane areas, 304, 308

Planetary motion, 477, 478

Points of inflexion, 114, 120, 132,

140

Polar curve, 8, 123

moment of inertia, 345

subtangent, subnormal, 108

Power form, 183

formula, 44

function, 9, 10

series, 386, 393

Pressure of air, 62

hquid, 356

Primitive of differential equation,

437

Principles, 371, 480

Prismoid formula, 283, 284

Probability integral, 418

Problems, maxima and minima,

127

Process, summation, 261

Product of inertia, 348

Progression, 9, 10

Projectile, path of, 381

Quadrature of curves, 443

Quotient, differential of, 39, 42

limit of, 26, 35
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Radian, 64, 70

Radium, 63

Radius of curvature, 135, 137,

140

of gyration, 345

Railway, centrifugal, 466

Range formula, Helie's, 384

Rate, 18, 19, 21

of change, 1, 2

percentage, 56

relative, 56, 162

Rectification of curves, 237

Rectilinear motion, 456

Relative error, 59, 162

rate, 56, 162

Remainder, Cauchy's, 416

Lagrange's, 407

Remarks, 27, 70

Replacement theorem, 37

Representation of functional re-

lation, 7

volume by area, 269

Resisting medium, 379, 383, 459

Rotation, 92

Secant, 29, 65, 68

Second derivative, 84, 86

moments, 344

Semi-cubical parabola, 145, 237

Separable variable, 446

Separated differential equation,

444

Separation into parts, 210

Series, infinite, 385

absolutely convergent, 388

convergent, 385, 393

divergent, 385

Euler's, 397

for e, 50

Gregory's, 397

geometric, 385

harmonic, 389, 392

Series, integration and differen-

tiation of, 394

logarithmic, 395

Machin's, 397

Maclaurin's, 408

Newton's, 397

oscillating, 385, 397

power, 386, 393

Taylor's, 409

Shear, 229

Shooting point, 114

Significance of area, 223

Simple circular pendulum, 461

harmonic motion, 94, 442, 457

Sine curve, 72

differential of, 64, 65

graph of, 71, 119, 228

ratio to arc, 66, 67

Slope, 18, 23, 99

rate of change of, 21

Solids of revolution, 288

by double integration, 321

Solution of a differential equation,

436

of s = a sinh x/a, 250

Speed, 1, 18, 19

Sphere, 268, 274, 285, 313, 323

Spherical shell, 368, 371

Spheroid, 294

Spiral of Archimedes, 110, 142

logarithmic, 110, 142

Standard forms, 180, 182, 203

Statical moment, 345, 359

Stiffness of beams, 128

Strength of beams, 127

Subnormal, 100, 108

Subtangent, 100, 108

Successive derivatives, 84, 149

differentials, 89

differentiation, 84

integration, 296, 300

Summation process, 261
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Summation process, approximate

and exact, 262

Surface of any frustum, 270

of revolution, 288

Suspension bridge, 244

Tangent, equation of, 99

plane, 154

polar, 109

Tangential acceleration, 19, 86, 94

Taylor's theorem, 405, 406, 407

series, 409

Test, comparison, .391

for convergence, 390

ratio, 391

Theorem, replacement, 37

binomial, 419

finite differences, 402

Maclaurin's, 407

Taylor's, 405, 406, 407

Theorems, auxiliary, 124

of limits, 26

of mean value, 401, 402

Theorems of Pappus and Guldin,

336

Tide gauge, 97

Time, periodic, 477

rate of change, 19

Total derivative, 159

differential, 156

Tractrix, 254

Transcendental functions, 9

numbers, 6, 50

Trapezoid, 343

Trigonometric functions, 9, 64

Triple integration, 317, 321

Typical illustrations, 118

Uniform change, 14

speed or velocity, 20

Unit of force, 91

of mass, 91, 376

Universal gravitation, 363, 371,

481

Use of standard formulas, 1^

Value, mean, 211

Variable, 5

continuous, 5

dependent, 6

discontinuous, 5

independent, 6, 149

separable, 446

Vector quantity, 21, 355

Velocity, 18

angular, 92

average, 22, 23

constant, 20

instantaneous, 1

on a curve, 94

tangential, 94

uniform, 20

Verification, Newton's, 480

Vibrations, damped, 73

Volume by an area, 268

of frustum, 270

Volumes, 267

by double integration, 324

by triple integration, 317, 321

Water pressure, 357

Wave curve, 72

Wetted perimeter, 129

Witch of Agnesi, 132

Work, 167
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Elastic Arches. (Science Series No. 48.) i6mo, o 50
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Maximum Stresses. (Science Series No. 38.) i6mo, 50

^Practical Dsigning Retaining of Walls. (Science Series

No. 3.) •. i6mo, o 50

Theory oi Steel-concrete Arches and of Vaulted Struc-

tures. (Science Series, No. 42) i6mo, o 75
Theory of Voussoir Arches. (Science Series No. 12.)

i6mo, o 50

Symbolic Algebra. (Science Series No. 73.) i6mo, o 50

Calvert, G. T. The Manufacture of Sulphate of Ammonia
and Crude Ammonia i2mo, 4 00

Carpenter, F. D. Geographical Surveying. (Science Series

No. 37.) i5mo,

Carpenter, R. C, and Diederichs, H. Internal-Combustion

Engines 8vo, *5 00

Carter, H. A. Ramie (Rhea), China Grass i2mo, *3 00

Carter, H. R. Modem Flax, Hemp, and Jute Spinning. .Svo, *4 50
Bleaching, Dyeing and Finishing of Fabrics Svo, *i 25

Cary, E. R. Solution of Railroad Problems With the Use of

the Slide Rule i6mo, *i 00

Casler, M. D. Simplified Reinforced Concrete Mathematics,
i2mo,

Cathcart, W. L. Machine Design. Part I. Fastenings. . .Svo,

Cathcart, W. L., and Chaffee, J. I. Elements of Graphic

Statics . Svo,

Short Course in Graphics i2mo,
Caven, R. M., and Lander, G. D. Systematic Inorganic Chem-

istry i2mo,

Chalkley, A. P. Diesel Engines Svo,

Chalmers, T, W, The Production and Treatment of Veg-
etable Oils 4to,

Chambers' Mathematical Tables Svo,

Chambers, G. F. Astronomy i6mo,

Chappel, E. Five Figure Mathematical Tables Svo,

Charnock. Mechanical Technology Svo,

Charpentier, P. Timber Svo,

Chatley, H. Principles and Designs of Aeroplanes. (Science

Series".) i6mo,

How to Use Water Power. , . . . i2mo,
—— Gyrostatic Balancing Svo, *i 25

*I GO
*3 00

*3 00
I 50

*2 00

*4 00

7 50
I 75

*i 50
*2 00
^•'3 00

*7 25

50
-,-j 50



10 D. VAN N0S1\-.AND COMPANY S SHORT-TITLE CATALOG

Child, C. D. Electric Arcs 8vo, *2 oo

Christian, M. Disinfection and Disinfectants. Trans, by
Chas. Salter i2mo, 3 00

Christie, W. W. Boiler-waters, Scale, Corrosion, Foaming,

8vo, *3 00

Chimney Design and Theory 8vo, *3 00

Furnace Draft. (Science Series, No. 123) i6mo, o 50
Water, Its Purification and Use in the Industries. . . .Svo, *2 00

Church's Laboratory Guide. Rewritten by Edward Kinch.Svo, *i 50

Clapham, J. H. Woolen and Worsted Industries Svo, 2 00

Clapperton, G. Practical Papermaking Svo, 250

Clark, A. G. Motor Car Engineering.

Vol. I. Construction *3 00

Vol. II. Design (In Press.)

Clark, C. H. Marine Gas Engines. New Edition 2 00

Clark, J. M. New System of Laying Out Railway Turnouts,

t i2mo, I 00

Clarke, J. W., and Scott, W. Plumbing Practice.

Vol. I. Lead Working and Plumbers* Materials. .Svo, *4 00

Vol. II. Sanitary Plumbing and Fittings (In Press.)

Vol. III. Practical Lead Working on Roofs (In Press.)

Clarkson, R. B. Elementary Electrical Engineering.

(In Press.)
Clausen-Thue, W. ABC Universal Commercial Telegraphic

Code. Sixth Edition. (In Press.)
Clerk, D., and Idell, F. E. Theory of the Gas Engine.

(Science Series No. 62.) i6mo, o 50

Clevenger, S. R. Treatise on the Method of Government

Surveying i6mo, mor., 2 50

Clouth, F. Rubber, Gutta-Percha, and Balata Svo, *6 00

Cochran, J. Treatise on Cement Specifications Svo, *i 00

Concrete and Reinforced Concrete Specifications. .. .Svo, *2 50

Cochran, J. Inspection of Concrete Construction Svo, *4 00

Cocking, W.C. Calculations for Steel-Frame Structures. lamo, 3 00

Coffin, J. H. C. Navigation and Nautical Astronomy. . i2mo, *3 50

Colburn, Z., and Thurston, R. H. Steam Boiler Explosions.

(Science Series No, 2,) , i6nio, o 50
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Cole, R. S. Treatise on Photographic Optics ..i2mo, i 50

Coles-Finch, W. Water, Its Origin and Use 8vo, *5 00

Collins, C. D. Drafting Room Methods, Standards and
Forms 8vo, 2 00

Collins, J. E. Useful Alloys and Memoranda for Goldsmiths,

Jewelers i6mo, o 50

Collis, A. G. High and Low Tension Switch-Gear Design . 8vo, *3 50

Switchgear. (Installation Manuals Series.) i2mo, o 50

Comstock, D. F., and Troland, L. T. The Nature of Matter
and Electricity. .

.

' i2mo, 2 00

Coombs, H. A. Gear Teeth. (Science Series No. 120). . . i6mo, o 50

Cooper, W. R. Primary Batteries 8vo, *4 00

Copperthwaite, W. C. Tunnel Shields 4to, *9 00

Corfield, W. H. Dwelling Houses. (Science Series No. 50.) i6mo, o 50
^ Water and Water-Supply. (Science Series No. 17.). . i6mo, 050

Cornwall, H. B. Manual of Blow-pipe Analysis 8vo, *2 50

Cowee, G. A. Practical Safety Methods and Devices. .. .Svo, *3 00

Cowell, W. B. Pure Air, Ozone, and Water i2mo, *3 00

Craig, J. W., and Woodward, W. P. Questions and Answers
about Electrical Apparatus i2mo, leather, i 50

Craig, T. Motion of a Solid in a Fuel. (Science Series No. 49.)

i6mo, o 50

Wave and Vortex Motion. (Science Series No. 43.) . i6mo, o 50

Cramp, W. Continuous Current Machine Design Svo, *2 50

Creedy, F. Single-Phase Commutator Motors Svo, *2 00
Crehore, A. C. Mystery of Matter and Energy i2mo, i 00

Crocker, F. B. Electric Lighting. Two Volumes. Svo.

Vol. I. The Generating Plant 3 00
Vol. II. Distributing Systems and Lamps

Crocker, F B., and Arendt, M. Electric Motors ....Svo, *2 50
and Wheeler, S. S. The Management of Electrical Ma-

chinery i2mo, *i 00

Cross, C. F., Bevan, E. J., and Sindall, R. W. Wood Pulp and

Its Applications. (Westminster Series.) Svo, *2 00
Crosskey, L. R. Elementary Perspective Svo, 1 25
Crosskey, L. R., and Thaw, J. Advanced Perspective . . Svo, i 50

Culley, J. L. Theory of Arches. (Science Series No. S7.). i6rao, o 50
Cushing, H. C, Jr., and Harrison, N. Central Station Man-

agement *2 00
Dadourian, H. M. Analytical Mechanics Svo. *3 00
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Dana, R. T. Handbook of Construction Plant. .i2mo, leather, *5 oo——Handbook of Construction Efficiency {In Pres.s.)

Danby, A. Natural Rock Asphalts and Bitumens 8vo, *2 50

Davenport, C. The Book. (Westminster Series.) 8vo, *2 00

Davey, N. The Gas Turbine 8vo, *4 00

Davies, F H. Electric Power and Traction 8vo, *2 00

Foundations and Machinery Fixing. (Installation Manuals
Series) i6mo, *i 00

Deerr, N. Sugar Cane 8vo, 9 00

Deite, C. Manual of Soapmaking. Trans, by S. T. King . . 4to,

De la Coux, H. The Industrial Uses of Water. Trans, by A.

Morris Svo, *6 00

Del Mar, W. A. Electric Power Conductors Svo, *2 00

Denny, G. A. Deep-Level Mipes of the Rand 4to, *io 00

Diamond Drilling for Gold *5 00

De Roos, J. D. C. Linkages. (Science Series No. 47.). . . i6mo, o 50

Derr, W. L. Block Signal Operation Oblong i2mo, *i 50

Maintenance of Way Engineering {In Preparation.)

Desaint, A. Three Hundred Shades and How to Mix Them.
Svo, ID 00

De Varona, A. Sewer Gases. (Science Series No. 55.)... i6mo, o 50

Devey, R. G. Mill and Factory Wiring. (Installation Manuals

Series.) i2mo, *i 00
Dibdin, W. J. Purification of Sewage and Water Svo, 6 50

Dichman, C. Basic Open-Hearth Steel Process Svo, *3 50

Dieterich, K. Analysis of Resins, Balsams, and Gum Resins
Svo, *3 75

Dilworth, E. C. Sfeel Railway Bridges 4to, *4 00

Dinger, Lieut. H. C. Care and Operation of Naval Machinery

i2mo. 3 00

Dixon, D. B. Machinist's and Steam Engineer's Practical Cal-

culator i6mo, mor., i 25

Dodge, G. F. Diagrams for Designing Reinforced Concrete

Structures folio, *4 00

Dommett, W. E. Motor Car Mechanism i2mo, *2 25

Dorr, B- F. The Surveyor's Guide and Pocket Table-book.

i6mo, mor., 2 00
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Draper, C. H. Elementary Text-book of Light, Heat and

Sound i2mo, i 00

Draper, C. H. Heat and the Principles of Thermo-dynamics,

i2mo, 2 00
Dron, R. W. Mining Formulas. lamo, i 00

Dubbel, H. High Power Gas Engines 8vo, *5 00

Dumesny, P., and Noyer, J. Wood Products, Distillates, and
Extracts 8vo, *6 25

Duncan, W. G., and Penman, D. The Electrical Equipment of

Collieries 8vo, *6 75
Dunkley, W. G. Design of Machine Elements 2 vols.

i2mo, each, *2 50

Dunstan, A. E., and Thole, F. B. T. Textbook of Practical

Chemistry i2mo, *i 40
Durham, H. W. Saws Bvo, 2 50

Duthie, A. L. Decorative Glass Processes. (Westminster

Series) 8vo, *2 00
Dwight, H. B. Transmission Line Formulas 8vo *2 00

Dyson, S. S. Practical Testing of Raw Materials , 8vo, *5 00
and Clarkson, S. S. Chemical Works 8vo, 9 00

Eccles, W. H. Wireless Telegraphy and Telephony. .i2mo, *8 80

Eck, J. Light, Radiation and Illumination. Trans, by Paul
Hogner 8vo, *2 50

Eddy, H. T. Maximum Stresses under Concentrated Loads,

8vo, I 50
Eddy, L. C. Laboratory Manual of Alternating Currents,

i2mo, o 50
Edelman, P. Inventions and Patents i2mo *i 50
Edgcumbe, K. Industrial Electrical Measuring Instruments

.

8vo, (In Press.)
Edler, R. Switches and Switchgear. Trans, by Ph. Laubach.

8vo, *4 00
Eissler, M. The Metallurgy of Gold 8vo, 9 00

The Metallurgy of Silver 8vo, 4 00
The Metallurgy of Argentiferous Lead 8vo, 6 25—— A Handbook of Modern Explosives 8vo, 5 00

Ekin, T. C. Water Pipe and Sewage Discharge Diagrams

folio, *3 00
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Electric Light Carbons, Manufacture of 8vo, i oo

Eliot, C. W., and Storer, F. H. Compendious Manual of Qualita-

tive Chemical Analysis i2mo, *i 25
Ellis, C. Hydrogenation of Oils 8vo, (In Press.)

Ellis, G. Modern Technical Drawing 8vo, *2 00

Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, *4 00

Applied Thermodynamics 8vo, *4 50

Flying Machines To-day i2mo, *i 50

Vapors for Heat Engines i2mo, *i 00
Ermen, W. F. A. Materials Used in Sizing Svo, *2 00

Erwin, M. The Universe and the Atom i2mo, *2 00

Evans, C. A. Macadamized Roads {In Press.)

Ewing, A. J. Magnetic Induction in Iron Svo, *4 00

Fairie, J. Notes on Lead Ores i2mo, *o 50—— Notes on Pottery Clays i2mo, *2 25

Fairley, W., and Andre, Geo. J. Ver-tilation of Coal Mines.

(Science Series No. 58.) i6mo, o 50

Fairweather, W. C. Foreign and Colonial Patent Laws . . .8vo, *3 00

Falk, M. S. Cement Mortars and Concretes Svo, *2 50

Fanning, J. T. Hydraulic and Water-supply Engineering . Svo, *5 00

Fay, I. W. The Coal-tar Colors Svo, *4 00

Fernbach, R. L. Glue and Gelatine Svo, *3 00

Findlay, A. The Treasures of Coal Tar. i2mo, 2 00

Firth, J. B. Practical Physical Chemistry. i2mo, *i 25

Fischer, E. The Preparation of Organic Compounds. Trans.

by R. V. Stanford i2mo, *i 25
Fish, J. C. L. Lettering of Working Drawings. . . .Oblong Svo, i 00

Mathematics of the Paper Location of a Railroad,

i2mo, paper, *o 25

Fisher, H. K. C, and Darby, W. C. Submarine Cable Testing.

Svo, *3 50

Fleischmann, W. The Book of the Dairy. Trans, by C. M.

Aikman Svo, 4 50

Fleming, J. A, The Alternate-current Transformer. Two
Volumes Svo,

VoL I. The Induction of Electric Currents *5 50

Vol. II. The Utilization of Induced Currents *5 50
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5

Fleming, J. A. Propagation of Electric Currents 8vo, *3 oo
A Handbook for the Electrical Laboratory and Testing

Room. Two Volumes 8vo, each, *5 oo
Fleury, P. Preparation and Uses of White Zinc Paints. .8vo, *3 50

Flynn, P. J. Flow of Water. (Science Series No. 84.) .lamo, o 50

Hydraulic Tables. (Science Series No. 66.) i6mo, o 50

Forgie, J. Shield Tunneling Svo. {In Press.)

Foster, H. A. Electrical Engineers' Pocket-book. {Seventh

Edition.) 1 2mo, leather, 5 00
Engineering Valuation of Public Utilities and Factories,

Svo, *3 00

Handbook of Electrical Cost Data Svo. {In Press)

Fowls, F. F. Overhead Transmission Line Crossings .... i2mo, *i 50

The Solution of Alternating Current Problems Svo {In Press.)

Fox, W. G. Transition Curves. (Science Series No. no.). i6mo, o 50

Fox, W., and Thomas, C. W. Practical Course in Mechanical

Drawing i2mo, i 25

Foye, J. C. Chemical Problems. (Science Series No. 69.). i6mo, o 50

Handbook of Mineralogy. (Science Series No. 86.)

.

i6mo, o 50

Francis, J. B. Lowell Hydraulic Experiments 4to, 15 00

Franzen, H. Exercises in Gas Analysis i2mo, *i 00

Freudemacher, P. W. Electrical Mining Installations. (In-

stallation Manuals Series.) i2mo, *i 00
Friend, J. N. The Chemistry of Linseed Oil i2mo, i 00

Frith, J. Alternating Current Design 8vo, *2 50

Fritsch, J. Manufacture of Chemical Manures. Trans, by
D. Grant Svo, *6 50

Frye, A. I. Civil Engineers' Pocket-book i2mo, leather, *5 00

Fuller, G. W. Investigations into the Purification of the Ohio

River 4to, *io 00

Furnell, J. Paints, Colors, Oils, and Varnishes 8vo,

Gairdner, J. W. I. Earthwork Svo (/n Press.)

Gant, L. W. Elements of Electric Traction Svo, *2 50

Garcia, A. T. R. V. Spanish-English Railway Terms. . . .Svo, *4 50

Gardner, 5. A. Paint Researches and Their Practical

Application 8vo, *5 00
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Garforth, W E. Rules for Recovering Coal Mines after Explo-

sions and Fires i2mo, leather, i 50

Garrard, C. C. Electric Switch and Controlling Gear 8vo, *6 00

Gaudard, J. Foundations. (Science Series No. 34.) i6mo, o 50

Gear, H. B., and Williams, P. F. Electric Central Station Dis-

tributing Systems 8vo, 3 00

Geerligs, H. C. P. Cane Sugar and Its Manufacture 8vo, *6 00

Chemical Control in Cane Sugar Factories 4to, 5 00

Geikie, J. Structural and Field Geology 8vo, *4 00

Mountains, Their Origin, Growth and Decay Svo, *4 00

The Antiquity of Man in Europe Svo, *3 00

Georgi, F., and Schubert, A. Sheet Metal Working. Trans.

by C. Salter Svo, 4 25
Gerhard, W. P. Sanitation, Water-supply and Sewage Dis-

posal of Country Houses lamo, *2 00

Gas Lighting. (Science Series No. in.) i6mo, 50

Gerhard, W. P. Household Wastes. (Science Series No. 97.)

i6mo, o 50
House Drainage. (Science Series No. 63.) i6mo o 50

Sanitary Drainage of Buildings. (Science Series No. 93.)

i6mo, o 50
Gerhardi, C. W. H. Electricity Meters Svo, *6 00

Geschwind, L. Manufacture of Alum and Sulphates. Trans.

by C. Salter Svo, *5 00
Gibbings, A. H. Oil Fuel Equipment for Locomotives . . . Svo, *2 50

Gibbs, W. E. Lighting by Acetylene i2mo, *i 50

Gibson, A. H. Hydraulics and Its Application .8vo, *$ 00

Water Hammer in Hydraulic Pipe Lines i2mo, *2 00
Gibson, A. H., and Ritchie, E. G. Circular Arc Bow Girder. 4to, *3 50

Gilbreth, F. B. Motion Study lamo, *2 00
Bricklaying System Svo, *3 00
Field System i2mo, leather, *3 00
Primer of Scientific Management i2mo, *i 00

Gillette, H. P. Handbook of Cost Data. . . . . . .i2mo, leather, *5 00

Rock Excavation Methods and Cost i2mo, leather, *5 00

Handbook of Earth Excavation (In Press.)

Handbook of Tunnels and Shafts, Cost and Methods
of Construction (In Press.)

Handbook of Road Construction, Methods and Cost. .(In Press.)
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Gillette, H. P., and Dana, R. T. Cost Keeping and Manage-

ment Engineering 8vo,

and Hill, C. S. Concrete Construction, Methods and

Cost 8vo,

Gillmore, Gen. Q. A. Roads, Streets, and Pavements.. .lamo,

Godfrey, E. Tables for Structural Engineers. .i6mo, leather,

Golding, H. A. The Theta-Phi Diagram i2mo,

Goldschmidt, R. Alternating Current Commutator Motor . 8vo,

Goodchild, W. Precious Stones. (Westminster Series.) .8vo,

Goodell, J. M. The Location, Construction and Maintenance
of Roads 8vo,

Goodeve, T. M. Textbook on the Steam-engine i2mo,

Gore, G. Electrolytic Separation of Metals 8vo,

Gould, E. S. Arithmetic of the Steam-engine i2mo,

Calculus. (Science Series No. 112.) i6mo,

High Masonry Dams. (Science Series No. 22.) . . . i6mo,

Practical Hydrostatics and Hydrostatic Formulas. (Science

Series No. 117.) i6mo,

Gratacap, L. P. A Popular Guide to Minerals Svo,

Gray, J. Electrical Influence Machines i2mo,

Gray, J. Marine Boiler Design - - . . i2mo,

Greenhill, G. Dynamics of Mechanical Flight Svo.

Gregorius, R. Mineral Waxes. Trans, by C. Salter. .. lamo,

Grierson, R. Modern Methods of Ventilation Svo,

Griffiths, A. B. A Treatise on Manures i2mo,
Griffiths, A. B. Dental Metallurgy Svo,

Gross, E. Hops Svo, *6 25

Grossman, J. Ammonia and its Con'r)ounds i2mo, *i 25

Groth, L. A. Welding and Cutting Metals by Gases or Electric-

ity. (Westminster Series.) Svo, *2 00

Grover, F. Modern Gas and Oil Engines Svo, *3 00

Gruner, A. Power-loom Weaving Svo, *3 00

Grunsky, C. E. Topographic Stadia Surveying i2mo, 2 00

GUldner, Hugo. Internal-Combustion Engines. Trans, by
H. Diedrichs. , 4to, 15 00

*3 50

*5 GO

I 25

*2 50

*2 00

*3 00

*2 00

I 50

2 00

*3 50

I 00

50

50

50

*2 GO

2 00

*I 25

*2 50

*3 50

3 GO

3 00
*4 25
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Gunther, C. 0. Integration 8vo, *i 25

Gurden, R. L. Traverse Tables folio, half mor., *7 50

Guy, A. E. Experiments on the Flexure of Beams 8vo, *i 25

Haenig, A. Emery and the Emery Industry 8vo, *3 00

Hainbach, R. Pottery Decoration. Trans, by C. Salter. i2mo, *4 25

Hale, W. J. Calculations of General Chemistry i2mo, *i 25

Hall, C. H. Chemistry of Paints and Paint Vehicles. .... i2mo, *2 00

Hall, G. L. Elementary Theory of Alternate Current Work-
ing 8vo,

Hall, R. H. Governors and Governing Mechanism 1200,

Hall, W. S. Elements of the Differential and Integral Calculus

8vo,

Descriptive Geometry . 8vo volume and 4to atlas,

Haller, G. F., and Cunningham, E. T. The Tesla Coil i2mo,

Halsey, F. A Slide Valve Gears i2mo,
The Use of the Slide Rule. (Science Series No. 114.)

i6mo,
Worm and Spiral Gearing. (Science Series No. 116.)

i6mo,

Hancock, H. Textbook of Mechanics and Hydrostatics. ... Svo,

Hancock, W. C. Refractory Materials. (Metallurgy Senes.(In Press.)

Hardy, E. Elementary Principles of Graphic Statics i2mo, *i 50

Haring, H. Engineering Law.
Vol. I. Law of Contract Svo, *4 00

Harper, J. H. Hydraulic Tables on the Flow of Water. i6mo, *2 00

Harris, S. M. Practical Topographical Surveying (In Press.)

Harrison, W. B. The Mechanics' Tool-book i2rno, ^^ i 50

Hart, J. W. External Plumbing Work Svo, ^3 25

Hints to Plumbers on Joint Wiping Svo, *4 25
—— Principles of Hot Water Supply Svo, *4 25

Sanitary Plumbing and Drainage Svo, *4 25

Haskins, C. H. The Galvanometer and Its Uses i6mo, i 50

Hatt, J. A. H. The Colorist square i2mo, *i 50

Hausbrand, E. Drying by Means of Air and Steam. Trans.

by A. C. Wright i2mo, *3 00

Evaporating, Condensing and Cooling Apparatus. Trans.

by A. C, Wright Svo, *7 25

*2 50

*2 25

*3 50

*i 25

I 50

50

50

I 50
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Hausmann, E. Telegraph Engineering .8vo, *3 00

Hausner, A. Manufacture of Preserved Foods and Sweetmeats.

Trans, by A. Morris and H. Robson 8vo, *4 25

Hawkesworth, T. Graphical Handbook for Reinforced Concrete

Design 4to, *2 50
Hay, A. Continuous Current Engineering 8vo, *2 50

Hayes, H. V. Public Utilities, Their Cost New and Deprecia-

tion Svo, *2 00
Public Utilities, Their Fair Present Value and Return,

Svo, *2 00
Heath, F. H. Chemistry of Photography.. Svo {In Press.)

Heather, H. J. S. Electrical Engineering Svo, *3 50
Heaviside, 0. Electromagnetic Theory.

Vols. I and II Svo, each, *5 00

Vol. Ill Svo, *7 50

Heck, R. C. H. Steam Engine and Turbine Svo, *3 50

Steam-Engine and Other Steam Motors. Two Volumes.

Vol. I. Thermodynamics and the Mechanics Svo, *3 50

Vol. II. Form, Construction and Working Svo, *5 00

Notes on Elementary Kinematics Svo, boards, *i 00

Graphics of Machine Forces Svo, boards, * i 00

Heermann, P. Dyers' Materials. Trans, by A. C. Wright.

i2mo, *3 00
Heidenreich, E. L. Engineers' Pocketbook of Reinforced

Concrete i6mo, leather, *3 00

Hellot, Macquer and D'Apligny. Art of Dyeing Wool, Silk and

Cotton Svo, *2 00

Henrici, 0. Skeleton Structures Svo, i 50
Hering, C, and Getmann, F. H. Standard Tables of Electro-

chemical Equivalents *2 00

Hering, D. W. Essentials of Physics for College Students.

Svo, *i 75
Hering-Shaw, A. Domestic Sanitation and Plumbing. Two

Vols Svo, *5 00
Elementary Science Svo, *2 00

Herington, C. F. Powdered Coal as a Fuel Svo, 3 00

Hermann, G. The Graphical Statics of Mechanism. Trans.

by A. P. Smith lamo, 2 00

Herzfeld, J. Testing of Yarns and Textile Fabrics Svo, *6 25
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Hildebrandt, A. Airships, Past and Present 8vo,

Hildenbrand, B. W. Cable-Making. (Science Series No. 32.)

i6mo, o 50

Hilditch, T. P. Concise History of Chemistry lamo, *i 25

Hill, C. S. Concrete Inspection , i6mo, *i 00

Hill, C. W. Laboratory Manual and Notes in Beginning

Chemistry {In Press.)

Hill, J. W. The Purification of Public Water Supplies, New
Edition {In Press )

Interpretation of Water Analysis {In Press )

Hill, M. J. M. The Theory of Proportion ^. 8vo, *2 50

Hiroi, I. Plate Girder Construction. (Science Series No. 95.)

i6mo, o 50

Statically-Indeterminate Stresses i2mo, *2 00

Hirshfeld, C. F. Engineering Thermodynamics. (Science

Series No. 45) i6mo, o 50
Hoar, A. The Submarine Torpedo Boat lamo, *2 00

Hobart, H. M. Heavy Electrical Engineering 8vo, *4 50

Design of Static Transformers i2mo, *2 00

Electricity 8vo, *2 00

Electric Trains.. - Svo, *2 50

Electric Propulsion of Ships .8vo, *2 50

Hobart, J. F. Hard Soldering, Soft Soldering, and Brazing

i2mo, *i 00

Hobbs, W. R. P. The Arithmetic of Electrical Measurements
i2mo, o 75

Hoff, J. N. Paint and Varnish Facts and Formulas . . . f2mo. *i 50

Hole, W. The Distribution of G-as Svo, *8 50

HoUey, A. L. Railway Practice. folio, 6 00

Hopkins, N. M. Model Engines and Small Boats i2mo, i 25

Hopkinson, J., Shoolbred, J. N., and Day. R. E Dynamic

Electricity. (Science Series No, 71.) i6m0; o 50

Horner, J. Practical Ironfounding Svo, *2 00

Gear Cutting, in Theory and Practice Svo, *3 00

Horniman,. R. How to Make the Railways Pay for the War,
i2mo, 3 CO

Houghton, C. E. The Elements of Mechanics of Materials. i2mo, *2 00

Houstoun, R. A. Studies in Light Production i2mo, 2 00
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Hovenden, F. Practical Mathematics for Young Engineers,

*ii2mo, ""I 50

Howe, G. Mathematics for the Practical Man. - i2mo, *i 23

Howorth, J. Repairing and Riveting Glass, China and Earthen-

ware .8vo, paper, *i 00

Hoyt, W. F. Chemistry by Experimentation i2mo, *o 70

Hubbard, E. The Utilization of Wood-waste 8vc, *3 00

Hubner, J. Bleaching and Dyeing of Vegetable and Fibrous
Materials. (Outlines of Industrial Chemistry.) .8vo, *5 00

Hudson, O. F. Iron and Steel. (Outlines of Industrial

Chemistry.) Svo, *2 00

Humphrey, J. C. W. Metallography of Strain. (Metallurgy

Series) (In Press.)

Humphreys, A. C. The Business Features of Engineering

Practice Svo, *i 25

Hunter, A. Bridge Work Svo (In Press.)

Hurst, G. H. Handbook of the Theory of Color Svo, *4 25

Dictionary of Chemicals and Raw Products Svo, *6 25
t Lubricating Oils, Fats and Greases Svo, *7 25

Soaps Svo, *7 25

Hurst, G. H., and Simmons, W. H. Textile Soaps and Oils,

Svo, 4 25

Hurst, H. E., and Lattey, R. T. Text-book of Physics Svo, *3 00
' Also published in Three Parts:

Vol. I. Dynamics and Heat *i 25

Vol. II. Sound and Light *i 25

Vol. III. Magnetism and Electricity *i 50

Hutchinson, R. W., Jr. Long Distance Electric Power Trans-

mission i2mo, *3 00

Hutchinson, R. W., Jr., and Thomas, W. A. Electricity in

Mining (In Press.)

Hutchinson, W. B. Patents and How to Make Money Out of

Them i2mo, i 00

Hutton, W. S. The Works' Manager's Handbook. Svo, 6 00

Hyde, E. W. Skew Arches. (Science Series No. 15.).. . . i6mo, o 50

Hyde, F. S. Solvents, Oils, Gums and Waxes Svo, *2 00
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Induction Coils. (Science Series No. 53.) i6mo, o 50

Ingham, A. E. Gearing. A practical treatise 8vo, *2 50

Ingle, H. Manual of Agricultural Chemistry 8vo, *4 25

Inness, C. H. Problems in Machine Design lamo, *3 00

Air Compressors and Blowing Engines i2mo,

—— Centrifugal Pumps lamo, *3 00

The Fan i2mo, *4 00

Jacob, A., and Gould, E. S. On the Designing and Construction

of Storage Reservoirs. (Science Series No. 6.). .i6mo, 50

Jannettaz, E. Guide to the Determination of Rocks. Trans.

by G. W. Plympton i2mo, i 50

Jehl, F. Manufacture of Carbons 8vo, *4 00

Jennings, A. S. Commercial Paints and Painting. (West-

minster Series.) 8vo, *4 00

Jennison, F. H. The Manufacture of Lake Pigments 8vo, *3 00

Jepson, G. Camsand the Principles of their Construction. . .8vo, *i 50

Mechanical Drawing 8vo {In Preparation.)

Jervis-Smith, F. J. Dynamometers Svo, *3 50

Jockin, W. Arithmetic of the Gold and Silversmith. . . . i2mo, *i 00

Johnson, J, H. Arc Lamps and Accessory Apparatus. (In-

stallation Manuals Series.) i2mo, *o 75

Johnson, T. M. Ship Wiring and Fitting. (Installation

Manuals Series.) i2mo, *o 75

Johnson, W. McA. The Metallurgy of Nickel {In Preparation.)

Johnston, J. F. W., and Cameron, C. Elements of Agricultural

Chemistry and Geology. i2mo, 2 60

Joly, J. Radioactivity and Geology. i2mo, *3 00

Jones, H. C. Electrical Nature of Matter and Radioactivity

i2mo, *2 CO
Nature of Solution Svo, *3 50

New Era in Chemistry i2mo, *2 00

Jones, J. H, Tinplate Industry Svo, *3 00

Jones, M. W. Testing Raw Materials Used in Paint. .. .i2mo, *3 00

Jordan, L. C. Practical Railway Spiral lamo. Leather, *i 50
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Joynson, F. H. Dwigning and Construction of Machine Gear-

ing 8vo, 2 00
Juptner, H. F. V. Siderology: The Science of Iron 8vo, *6 25

KapP) G. Alternate Current Machinery. (Science Series No.

96.) i6mo, 50

Kapper, F. Overhead Transmission Lines 4to, *4 00

Keim, A. W. Prevention of Dampness in Buildings 8vo, *3 00

Keller, S. S. Mathematics for Engineering Students.

i2mo, half leather,

and Knox, W. E. Analytical Geometry and Calculus.. *2 00

Kelsey, W. R. Continuous-current Dynamos and Motors.

8vo, *2 50

Kemble, W. T., and Underhill, C. R. The Periodic Law and the

Hydrogen Spectrum 8vo, paper,

Kemp, J. F. Handbook of Rocks Svo,

Kendall, E. Twelve Figure Cipher Code 4to,

Kennedy, A. B. W., and Thurston, R. H. Kinematics of

Machinery. (Science Series No. 54.) i6mo, o 50

Kennedy, A. B. W., Unwin, W. C, and Idell, F. E. Compressed

Air. (Science Series No. 106.) i6mo,

Kennedy, R. Electrical Installations. Five Volumes 4to,

Single Volumes each,

Fljang Machines ; Practice and Design lamo,

Principles of Aeroplane Construction Svo,

Kennelly, A. E. Electro-dynamic Machinery Svo,

Kent, W. Strength of Materials. (Science Series No. 41.), i6mo,

Kershaw, J. B. C. Fuel, Water and Gas Analysis Svo,

Electrometallurgy. (Westminster Series.) Svo,

. The Electric Furnace in Iron and Steel Production. . i2mo,

Electro-Thermal Methods of Iron and Steel Production,

Svo,

Kindelan, J. Trackman's Helper. .
.- lamo, 2 00

*0 50

*I 50

*I2 50

50

15 00

3 50

*2 50
*2 00

I 50

50

*2 50

*2 00

*3 00
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Kinzbrunner, C. Alternate Current Windings 8vo, *I 50

Continuous Current Armatures 8vo, *i 50

Testing of Alternating Current Machines 8vo, *2 oc

Kirkaldy, A. W., and Evans, A. D. History and Economics

of Transport 8vo, *3 00

Kirkaldy, W. G. David Kirkaldy's System of Mechanical

Testing 4to, 10 00

Kirkbride, J. Engraving for Illustration 8vo, *i 75
Kirkham, J. E. Structural Engineering 8vo, *5 00

Kirkwood, J. P. Filtration of River Waters 4to, 7 50

Kirschke, A. Gas and Oil Engines i2mo, *i 50

Klein, J. F. Design of a High speed Steam-engine Svo, *5 00

Physical Significance of Entropy Svo, *i 50

Klir^genberg, G. Large Electric Power Stations 4to, *5 00

Knight, R.-Adm. A. M. Modem Seamanship Svo, *6 50
Pocket Edition fabrikoid, i2mo, 3 00

Knott, C. G., and Mackay, J. S. Practical Mathematics. . .Svo, 2 00

Knox, G. D. Spirit of the Soil lamo, *i 25

Fi-'nox, J. Physico-chemical Calculations i2mo. *i 25

Fixation of Atmospheric Nitrogen. (Chemical Mono-

graphs.) i2mo, I 00

Koester, F. Steam-Electric Power Plants 4to, *5 00

Hydroelectric Developments and Engineering 4to, ''5 00

KoUer, T. The Utilization of Waste Products Svo, *6 50

Cosmetics Svo, *3 00
Koppe, S. W. Glycerine i2mo, '''4 25

Kozmin, P. A. Flour Milling. Trans, by M. Falkner. .Svo, 7 50

Kremann, R. Application of Phydco Chemical Theory to

Technical Processes and Manufacturing Methods.

Trans, by H. E. Potts Svo, ^3 00

Kretchmar, K. Yarn and Warp Sizing Svo, *6 25

Laffargue, A. The Attack in Trench Warfare 32mo, o 50

Lallier, E. V. Elementary Manual of the Steam Engine.

I2mO, *2 GO

Lambert, T. Lead and its Compounds Svo, "^425
Bone Products and Manures Svo, "^4 25
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Lamborn, L. L. Cottonseed Products 8vo, *3 oo

Modern Soaps, Candles, and Glycerin 8vo, *7 50

Lamprecht, R. Recovery Work After Pit Fires. Trans, by

C. Salter " 8vo, *6 25

Lancaster, M. Electric Cooking, Heating and Cleaning. .8vo, *i 00

Lanchester, F. W. Aerial Flight. Two Volumes. Svo.

Vol. II. Aerodonetics *6 00
Vol. I. Aerodynamics *6 00— The Flying Machine Svo, *3 00
Industrial Engineering: Present and Post-War Outlook,

i2mo, I 00
Lange, K. R. By-Products of Coal-Gas Manufactuie. .lamo, 3 00
Larner, E. T. Principles of Alternating Currents lamo, *i 25
La Rue, B. F. Swing Bridges. (Science Series No. 107.) . i6mo, o 50

Lassar-Cohn, Dr. Modern Scientific Chemistry. Trans, by M.

M. Pattison Mtiir 1 2mo, *2 00

Latimer, L. H., Field, Co J., and Howell, J. W. Incandescent

Electric Lighting. (Science Series No. 57.) i6mo, o 50

Latta, M. N. Handbook of American Gas-Engineering Practice.

Svo, *4 50

American Producer Gas Practice . 4to, *6 00

Laws, B. C. Stability and Equilibrium of Floating Bodies.Svo, *3 50

Lawson, W. R. British Railways, a Financial and Commer-

cial Survey Svo, 2 00

Leask, A. R. Breakdowns at Sea i2mo, 2 00

Refrigerating Machinery . i2mo, 2 00

Lecky, S. T. S. "Wrinkles" in Practical Navigation .... Svo, *io 00
Danger Angle i6mo, 2 50

Le Doux, M. Ice -Making Machines. (Science Series No. 46.)

i6mo, o 50

Leeds, C. C. Mechanical Drawing for Trade Schools. oblong 4to, *2 00

Mechanical Drawing for High and Vocational Schools,

4to, *i 25

Lef^vre, L. Architectural Pottery. Trans, by H. K. Bird and

W. M. Birns 4to, *8 50

Lehner, S. Ink Manufacture. Trans, by A. Morris and H
Robson Svo, ^'3 00

Lemstrom, S. Electricity in Agriculture and Horticulture. . Svo, *i 50

Letts, E. A. Fundamental Problems in Chemistry Svo, *2 00
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Le Van, W. B. Steam-Engine Indicator. (Science Series No.

78.) i6mo, o 50
Lewes, V.B. Liquid and Gaseous Fuels. (Westminster Series.)

8V0, *2 GO

Carbonization of Coal 8vo, *4 00

Lewis Automatic Machine Rifle ; Operation of . . i6mo, *o 60

Lewis, L. P. Railway Signal Engineering 8vo, *3 50

Licks, H. E. Recreations in Mathematics izmo, 1 25

Lieber, B. F. Lieber's Five Letter Standard Telegraphic Code,
8vo, *i5 00

Spanish Edition Svo, *i5 00
French Edition Svo, *i5 00

Terminal Index Svo, *2 50

Lieber's Appendix folio, *i5 00

Handy Tables 4to, *2 50
Bankers and Stockbrokers' Code and Merchants and

Shippers' Blank Tables Svo, *i5 00

Lieber, B. F. 100,000,000 Combination Code Svo, *io 00

Engineering Code Svo, *i2 50
Livermore, V. P., and Williams, J. Ho^ to Become a Com-

petent Motorman i2mo, *i 00

Livingstone, R. Design and Construction of Commutators . Svo, *2 25

Mechanical Design and Construction of Generators. ..Svo, *3 50

Lloyd, S. L. Fertilizer Materials 2 00

Lobben, P. Machinists' and Draftsmen's Handbook Svo, 2 50

Lockwood, T. D. Electricity, Magnetism, and Electro-teleg-

raphy Svo, 2 50

Electrical Measurement and the Galvanometer i2mo, o 75
Lodge, 0. J. Elementary Mechanics. i2mo, i 5c

Signalling Across Space without Wires Svo, *2 00

Loewenstein, L. C, and Crissey, C. P. Centrifugal Pumps. . *4 50

Lomax, J. W. Cotton Spinning i2mo, i 50

Lord, R. T. Decorative and Fancy Fabrics Svo, *4 25

Loring, A. E. A Handbook of the Electromagnetic Telegraph,
i6mo, o 50

Handbook. (Science Series No. 39) i6mo, o 50

Lovell, D. H. Practical Switchwork. Revised by Strong and
Whitney (In Press.)
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Low, D. A. Applied Mechanics (Elementary) i6mo, o 80

Lubschez, B. J. Perspective i2mo, *i 50
Lucke, C. E. Gas Engine Design 8vo, *3 00

Power Plants: their Design, Efficiency, and Power Costs.

2 vols {In Preparation.)

Luckiesh, M. Color and Its Application 8vo, *3 00
Light and Shade and Their Applications Svo, *2 50

The two when purchased together *5 00

Lunge, G. Coal-tar Ammonia. Three Parts Svo, *25 00

Manufacture of Sulphuric Acid and Alkali. Four Volumes.

Svo,

Vol. I. Sulphuric Acid. In three parts *i8 00

Vol. I. Supplement 5 00

Vol. II. Salt Cake, Hydrochloric Acid and Leblanc Soda.

In two parts {In Press.)

Vol. III. Ammonia Soda (In Press.)

Vol. rV. Electrolytic Methods (In Press.)

Technical Chemists' Handbook i2mo, leather, *4 00
Technical Methods of Chemical Analysis. Trans, by

C. A. Keane. In collaboration with the corps of

specialists.

VoL I. In two parts Svo, *i5 00

Vol. II. In two parts Svo, *i8 00
Vol. III. In two parts Svo, *iS 00

The set (3 vols.) complete *5o 00

Technical Gas Analysis Svo, *4 50

Luquer, L. M, Minerals in Rock Sections Svo, *i 50

MacBride, J. D. A Handbook of Practical Shipbuilding,

i2mo, fabrikoid 2 00

Macewen, H. A. Food Inspection Svo, *2 50

Mackenzie, N. F. Notes on Irrigation Works Svo, *2 50
Mackie, J. How to Make a Woolen Mill Pay Svo, *2 25

Maguire, Wm. R. Domestic Sanitary Drainage and Plumbing

Svo, 4 00

Malcolm, C. W. Textbook on Graphic Statics Svo, *3 00

Malcolm, H. W. Suomarine Telegraph Cable (In Press.)

Mallet, A. Compound Engines. Trans, by R. R. Buel.

(Science Series No. 10.) i6mo,
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Mansfield, A. N. Electro-magnets. (Science Series No. 64)
i6mo, o 50

Marks, E. C. R. Construction of Cranes and Lifting Machinery
i2mo, *2 00

Construction and Working of Pumps i2mo,

Manufacture of Iron and Steel Tubes i2mo, *2 00

Mechanical Engineering Materials i2mo, *i 50
Marks, G. C. Hydraulic Power Engineering 8vo, 4 50

Inventions, Patents and Designs i2mo, *i 00

Marlow, T. G. Drying Machinery and Practice 8vo, *5 00

Marsh, C. F. Concise Treatise on Reinforced Concrete . . 8vo, *2 50

Marsh, C. F. Reinforced Concrete Compression Member
Diagram Mounted on Cloth Boards *i 50

Marsh, C. F., and Dunn, W. Manual of Reinforced Concrete
and Concrete Block Construction. .. .i6mo, fabrikoid,

(In Press.)

Marshall, W.J., and Sankey, H. R. Gas Engines. (Westminster

Series.) 8vo, *2 00

Martin, G. Triumphs and Wonders of Modem Chemistry.

Svo, *2 00
Modern Chemistry and Its Wonders Svo, *2 00

Martin, N. Properties and Design of Reinforced Concrete,

i2mo, *2 50
Martin, W. D. Hints to Engineers lamo, i 50

Massie, W. W., and Underhill, C. R. Wireless Telegraphy and

Telephony i2mo, *i 00

Mathot, R. E. Internal Combustion Engines Svo, *4 00

Maurice, W. Electric Blasting Apparatus and Explosives ..Svo, *3 50

Shot Firer's Guide Svo, *i 50
Maxwell, F. Sulphitation in White Sugar Manufacture. i2mo, 3 75
Maxwell, J. C. Matter and Motion. (Science Series No. 36.)

i6mo, o 50

Maxwell, W. H., and Brown, J. T. Encyclopedia of Municipal

and Sanitary Engineering 4to, *io 00

Mayer, A. M. Lecture Notes on Physics Svo, 2 00

Mayer, C, and Slippy, J. C. Telephone Line Construction . Svo, *3 00

McCullough, E. Practical Surveying , .-. i2mo, *2 00
Engineering Work in Cities and Towns., Svo, *3 00
Reinforced Concrete i2mo, *i 50

McCullough, R, S. Mechanical Theory of Heat.o Svo, 3 50
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McGibbon, W. C. Indicator Diagrams for Marine Engineers,
8vo, *3 50

Marine Engineers' Drawing Book oblong 4to, *2 50
Marine Engineers' Pocketbook lamo, leather, *4 00

Mcintosh, J. G. Technology of Sugar 8vo, *7 25
Industrial Alcohol 8vo, *4 25
Manufacture of Varnishes and Kindred Industries.

Three Volumes. Svo.

Vol. I. Oil Crushing, Refining and Boiling

Vol. II. Varnish Materials and Oil Varnish Making *6 25

Vol. III. Spirit Varnishes and Materials *7 25

McKay, C. W. Fundamental Principles of the Telephone
Business Svo, (In Press.)

McKillop, M., and McKillop, D. A. Efficiency Methods.
i2mo, I 50

McKnight, J. D., and Brown, A. W. Marine Multitubular

Boilers *2 50

McMaster, J. B. Bridge and Tunnel Centres. (Science Series

No. 20.) i6mo, 50

McMechen, F. L. Tests for Ores, Minerals and Metals. . . i2mo, *i 00

McPherson, J. A. Water-works Distribution Svo, 2 50

Meade, A. Modern Gas Works Practice Svo, *8 50
Meade, R. K. Design and Equipment of Small Chemical

Laboratories Svo,

Melick, C. W. Dairy Laboratory Guide i2mo, *i 25

Mensch, L. J. Reinforced Concrete Pocket Book.iGmo, leather *4 00
"Mentor." Self-Instruction for Students in Gas Supply,

i2mo, 2 50
Advanced Self-Instruction for Students in Gas Supply,

i2mo, 2 50
Merck, E. Chemical Reagents: Their Purity and Tests.

Trans, by H. E. Schenck Svo, i 00
Merivale, J. H. Notes and Formulae for Mining Students,

i2mo, I 50
Merritt, Wm. H. Field Testing for Gold and Silver . i6mo, leather, 2 00
Mertens, Colonel. Tactics and Technique in River Crossings.

Translated by Major Walter Krueger Svo, 2 50
Mierzinski, S. Waterproofing of Fabrics. Trans, by A. Morris

and H. Robson Svo, *3 00
Miessner, B. F. Radiodynamics i2mo, *2 00
Miller, G. A. Determinants. (Science Series No. 105.). . i6mo,
Miller, W. J. Historical Geology i2mo, *2 00
Mills, C. N. Elementary Mechanics for Engineers i2mo, *i 00
Milroy, M. E. W. Home Lace-making... i2mo, *i 00
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Mitchell, C. A. Mineral and Aerated Waters 8vo, *3 oo

——and Prideaux, R. M. Fibres Used in Textile and

AUied Industries 8vo, ^^4 25

Mitchell, C. F. and G. A. Building Construction and Draw-

ing i2mo
Elementary Course, *i 50
Advanced Course, *2 50

Monckton, C. C. F. Radiotelegraphy. (Westminster Series.)

8vo, *2 00

Monteverde, R. D. Vest Pocket Glossary of English-Spanish,

Spanish-English Technical Terms 64mo, leather, *i 00

Montgomery, J. H. Electric Wiring Specifications. .. .i6mo, *i 00

Moore, E. C. S. New Tables for the Complete Solution of

Ganguillet and Kutter's Formula 8vo, *5 00

Moore, Harold. Liquid Fuel for Internal Combustion Engines,
8vo, 5 00

Morecroft, J. H., and Hehre, F. W. Short Course in Electrical

Testing 8vo,

Morg.n, A. P. Wireless Telegraph Apparatus for Amateurs,
i2mo,

Morgan, C. E. Practical Seamanship for the Merchant
Marine i2mo, fabrikoid {In Press.)

Moses, A. J. The Characters of Crystals 8vo,

and Parsons, C. L. Elements of Mineralogy Svo,

Moss, S. A. Elements of Gas Engine Design. (Science

Series No. 121) i6mo,
The Lay-out of Corliss Valve Gears. (Science Series

No. 119.) i6mo,
Mulford, A. C. Boundaries and Landmarks i2mo,

MuUin, J. P. Modern Moulding and Pattern-making. . . . i2mo,-

Munby, A. E. Chemistry and Physics of Building Materials.

(Westminster Series.) Svo,

Murphy, J. G. Practical Mining i6mo,

Murray, J. A. Soils and Manures. (Westminster Series.). Svo,

Nasmith, J. The Student's Cotton Spinning Svo,

Recent Cotton Mill Construction i2mo,

Neave, G. B., and Heilbron, I. M. Identification of Organic

Compounds i2mo, *i 25
I^eilson, R. M. Aeroplane Patents Svo, *2 00

*I 50

*I 50

ress.)
*2 00

*3 50

50

*i
50
00

2 50

*2 00

I 00
*2 00

3 00

2 50
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1

iNerz, F. Searchlights. Trans, by C. Rodgers 8vo, *3 oo

Neuberger, H., and Noalhat, H. Technology of Petroleum.

Trans, by J. G. Mcintosh 8vo, *io oo

Newall, J. W. Drawing, Sizing and Cutting Bevel-gears. .8vo, i 50

Newbigin, M. I., and Flett, J. S. James Geikie, the Man
and the Geologist 8vo, 3 50

Newbiging, T. Handbook for Gas Engineers and Managers,
8vo, *6 50

Newell, F. H., and Drayer, C. E. Engineering as a Career.

121UO, cloth, *i 00

paper, o 75
Nicol, G. Ship Construction and Calculations 8vo, *5 00

Nipher, F. E. Theory of Magnetic Measurements i2mo, r 00

Nisbet, H. Grammar of Textile Design 8vo,

Nolan, H. The Telescope. (Science Series No. 51.) i6mo, o 50

Norie, J. W. Epitome of Navigation (2 Vols.) octavo, 15 00
—>— A Complete Set of Nautical Tables with Explanations

of Their Use octavo, 6 50
North, H. B. Laboratory Experiments in General Chemistry

i2mo, *i 00

Nugent, E. Treatise on Optics i2mo, i 50

O'Connor, H. The Gas Engineer's Pocketbook. .. i2mo, leathei, 3 50

Ohm, G. S., and Lockwood, T. D. Galvanic Circuit. Trans, by

William Francis. (Science Series No. 102.). . . .i6mo, o 50

Olsen, J. C. Textbook of Quantitative Chemical Analysis. .Svo, *3 50

Olsson, A. Motor Control, in Turret Turning and Gun Elevating.

(U. S. Navy Electrical Series, No. i.) . ...i2mo, paper, *o 50

Ormsby, M. T. M. Surveying i2mo, 2 50

Oudin, M. A. Standard Polyphase Apparatus and Systems . .8vo, *3 00

Owen, D. Recent Physical Research Svo,

Fakes, W. C. C, and Nankivell, A. T. The Science of Hygiene.

Svo, *i 75
Palaz, A. Industrial Photometry. Trans, by G. W. Patterson,

Jr Svo, *4 00

Pamely, C. Colliery Manager's Handbook 8vo, *io 00
Parker, P. A. M. The Control of Water Svo, *5 00
Parr, G. D. A. Electrical Engineering Measuring Instruments.

Svo, *3 50

Parry, E. J. Chemistry of Essential Oils and Artificial Per-

fumes 10 00
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Parry, E J. Foods and Drugs. Two Volumes 8vo,

Vol. I. Chemical and Microscopical Analysis of Food
and Drugs *io oo

Vol. II. Sale of Food and Drugs Acts *4 25
and Coste, J. H. Chemistry of Pigments... 8vo, *6 50

Parry, L. Notes on Alloys 8vo, *3 50
Metalliferous Wastes .Svo, *2 50
Analysis of Ashes and Alloys Svo, "^'2 50

Parry, L. A. Risk and Dangers of Various Occupations. .Svo, *4 25

Parshall, H. F., and Hobart, H. M. Armature Windings .... 4to, *7 50

Electric Railway Engineering. 4to, *io 00
Parsons, J. L. Land Drainage Svo, *i 50

Parsons, S. J. Malleable Cast Iron Svo, *2 50

Partington, J. R. Higher Mathematics for Chemical Students

i2mo, *2 00
Textbook of Thermodynamics Svo, *4 00

Passmore, A. C. Technical Terms Used in Architecture . Svo, *4 25

Patchell, W. H. Electric Power in Mines Svo, *4 00

Faterson, G. W. L. Wiring Calculations. i2mo, *3 00

Electric Mine Signalling Installations i2mo, *i 50

Patterson, D. The Color Printing of Carpet Yarns Svo, *4 25

' Color Matching on Textiles Svo, *4 25
Textile Color Mixing Svo, *4 25

Paulding, C. P. Condensation of Steam in Covered and Bare

Pipes Svo, *2 00

Transmission of Heat Through Cold-storage Insulation

i2mo, *i 00

Payne, D. W. Founders' Manual Svo, *4 00

Peckham, S. F. Solid Bitumens Svo, *5 00

Peddie, R. A. Engineering and Metallurgical Books. . . . i2mo, *i 50

Peirce, B. System of Analytic Mechanics 4to, 10 00

Linnear Associative Algebra 4to, 3 00

Pendred, V. The Railway Locomotive. (Westminster Series.)

Svo, *2 00

Perkin, F. M. Practical Method of Inorganic Chemistry . . i2mo, *i 00

and Jaggers, E. M. Elementary Chemistry i2mo, *i 00

Perrin, J. Atoms Svo, *2 50

Perrine, F. A. C. Conductors for Electrical Distribution . . . Svo, *3 50
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Petit, G. White Lead and Zinc White Paints 8vo, *2 50

Petit, R. How to Build an Aeroplane. Trans, by T. O'B.

Hubbard, and J. H. Ledeboer 8vo, *i 50

Pettit, Lieut. J. S. Graphic Processes. (Science Series No. 76.)

i6mo, o 50

Philbrick, P. H. Beams and Girders. (Science Series No. 88.)

i6mo,

Phillips, J. Gold Assaying 8vo, *3 75
Dangerous Goods 8vo, 3 50

Phin, J. Seven Follies of Science i2mo, *i 25

Pickworth, C. N. The Indicator Handbook. Two Volumes

i2mo, each, i 50

Logarithms for Beginners i2mo, boards, o 50
The Slide Rule i2mo, j ^o

Pilcher, R, B., and Butler-Jones, F. What Industry Owes
to Chemical Science i2mo, i 50

Plattner's Manual of Blowpipe Analysis. Eighth Edition, re-

vised. Trans, by H. B. Cornwall 8vo, *4 00

Plympton, G.W. The Aneroid Barometer. (Science Series.). i6mo, o 50

How to become an Engineer. (Science Series No. 100.)

i6mo, o 50

Van Nostrand's Table Book. (Science Series No. 104).

i6mo, o 50

Pochet, M. L. Steam Injectors. Translated from the French.

(Science Series No. 29.) i6mo, o 50

Pocket Logarithms to Four Places. (Science Series.) i6mo, o 50

leather, i 00

PoUeyn, F. Dressings and Finishings for Textile Fabrics . 8vo, *4 25

Pope, F. G. Organic Chemistry lamo, *2 50

Pope, F. L. Modern Practice of the Electric Telegraph.. . 8vo, i 50
Popplewell, W. C. Prevention of Smoke 8vo, *4 25

Strength of Materials Bvo, *2 150

Porritt, B. D. The Chemistry of Rubber. (Chemical Mono-
graphs, No. 3.) i2mo, *i 00

Porter, J. R. Helicopter Flying Machine i2mo, *i 50

Potts, H. E. Chemistry of the Rubber Industry. (Outlines of

Industrial Chemistry.) 8vo, *2 50
Practical Compounding of Oils, Tallow and Grease 8vo, *4 25
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Pratt, K. Boiler Draught i2mo, *i 25
High Speed Steam Engines. 8vo, *2 00

Pray, T., Jr. Twenty Years with the Indicator 8vo, 2 50

Steam Tables and Engine Constant 8vo, 2 00
Prelini, C. Earth and Rock Excavation 8vo, *3 00

Graphical Determination of Earth Slopes Svo, *2 00
Tunneling 8vo, *3 00

Dredging. A Practical Treatise Svo, *3 00

Prescott, A. B. Organic Analysis Svo, 5 00

and Johnson, 0. C. Qualitative Chemical Analysis . Svo, *3 50

and Sullivan, E. C. First Book in Qualitative Chemistry
i2mo, *i 50

Prideaux, E. B. R. Problems in Physical Chemistry Svo, *2 00

Theory and Usib of Indicators Svo, 5 00

Prince, G. T. Flow of Water i2mo, *2 00

Pullen, W. V/. F. Application of Graphic Methods to the Design

of Structures i2mo, *2 50

Injectors: Theory, Construction and Working. .. .i2mo, *2 00

Indicator Diagrams Svo, *2 50

Engine Testing Svo, *5 50

Putsch, A. Gas and Coal-dust Firing Svo, *3 00

Pynchon, T. R. Introduction to Chemical Physics Svo, 3 00

Rafter, G. W. Mechanics of Ventilation. (Science Series No.

33-) i6mo, o 50

Potable Water. (Science Series No. 103.) i6mo, o 50

Treatment of Septic Sewage, (Science Series No. 118.)

i6mo, o 50
and Baker, M. N. Sewage Disposal in the United States

4to, *6 00

Raikes, H. P. Sewage Disposal Works Svo, *4 00

Randau, P. Enamels and Enamelling Svo, *7 25

Rankine, W. J. M. Applied Mechanics Svo, 5 00
Civil Engineering. Svo, 6 50

Machinery and Millwork Svo, 5 00

The Steam-engine and Other Prime Movers Svo, 5 00

and Bamber, E. F. A Mechanical Textbook Svo, 3 50
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Eansome, W. R. Freshman Mathematics i2mo, *i 35

Raphael, F. C. Localization of Faults in Electric Light and

Power Mains 8vo, *3 50

Rasch, E. Electric Arc Phenomena. Trans, by K. Tornberg.
8vo, *2 00

Rathbone, R. L. B. Simple Jewellery 8 vo, *2 00

Rateau, A. Flow of Steam through Nozzles and Orifices.

Trans, by H. B. Brydon 8vo, *i 5c

Rausenberger, F. The Theory of the Recoil of Guns..,.8vo, *5 00

Rautenstrauch, W. Notes on the Elements of Machine Design,

Svo, boards, *i 50

Rautenstrauch, W., and Williams, J. T. Machine Drafting and

Empirical Design.

Part 1. Machine Drafting Svo, *i 25

Part II. Empirical Design {In Preparation.)

Raymond, E. B, Alternating Current Engineering i2mo, *2 50

Rayner, H. Silk Throwing and Waste Silk Spinning. . .Svo,

Recipes for the Color, Paint, Varnish, Oil, Soap and Drysaltery

Trades Svo, *6 50

Recipes for Flint Glass Making i2mo, *5 25

Redfern, J. B., and Savin, J. Bells, Telephones. (Installa-

tion Manuals Series.) . i6mo, *o 50

Redgrove, H. S. Experimental Mensuration .i2mo, *i 25

Redwood, B. Petroleum. (Science Series Ino. 92.) . . . .i6mo, o 50

Reed, S. Turbines Applied to Marine Propulsion *5 00

Reed's Engineers' Handbook Svo, *9 00

Key to the Nineteenth Edition of Reed's Engineers* .

Handbook Svo, *4 00
Useful Hints to Sea-going Engineers i2mo, 3 00

Reid, E. E. Introduction to Research in Organic Chemistry.

{In Press.)

Reid, H. A. Concrete and Reinforced Concrete Construction,

Svo, *5 00

Reinhardt, C. W. Lettering for Draftsmen, Engineers, and

Students oblong 4to, boards, i 00

The Technic of Mechanical Drafting, .oblong 4to, boards, *i 00
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Reiser, F. Hardening and Tempering of Steel. Trans, by A.

Morris and H. Robson i2mo, *3 00

Reiser, N. Faults in the Manufacture of Woolen Goods. Trans.

by A. Morris and H. Robson 8vo,
< Spinning and Weaving Calculations 8vo,

Renwick, W. G. Marble and Marble Working 8vo,

Reuleaux, F. The Constructor. Trans, by H. H. Suplee. .4to,

Reuterdahl, A. Theory and Design of Reinforced Concrete
Arches 8vo,

Rey, J. Range of Electric Searchlight Projectors Svo,

Reynolds, 0., and Idell, F. E. Triple Expansion Engines.

(Science Series No. 99.) i6mo,

Rhead, G. F. Simple Structural Woodwork i2mo,

Rhodes, H. J. Art of Lithography Svo,

Rice, J. M., and Johnson, W. W. A New Method of Obtaining

the Differential of Functions lamo,

Richards, W. A. Forging of Iron and Steel lamo,

Richards, W. A., and North, H. B. Manual of Cement Testing,
i2mo,

Richardson, J. The Modern Steam Engine Svo,

Richardson, S. S. Magnetism and Electricity i2mo,

Rideal, S. Glue and Glue Testing Svo,

Riesenberg, F. The Men on Deck i2mo,

Rimmer, E. J. Boiler Explosions, Collapses and Mishaps. Svo,

Rings, F. Concrete in Theory and Practice i2mo,

Reinforced Concrete Bridges 4to,

Ripper, W. Course of Instruction in Machine Drawing., folio,

Roberts, F. C. Figure of the Earth. (Science Series No. 79.)

i6mo, o 50

Roberts, J., Jr. Laboratory Work in Electrical Engineering

Svo, *2 00

Robertson, L. S. Water-tube Boilers Svo, 2 oa

Robinson, J. B. Architectural Composition Svo, *2 50

Robinson, S. W. Practical Treatise on the Teeth of Wheels.

(Science Series No. 24.) i6mo, o 50

Railroad Economics. (Science Series No. 59.) . . . . i6mo, o 50
Wrought Iron Bridge Members. (Science Series No.

60.) i6mo, o 50

-^3 00
^6 25

5 OQ
*4 GO

*2 GO

''a 50

50
*i 25

6 50

50

I 50

*i 50
*3 50
*2 GO

*6 50

3 GO

*i 75
*2 50

*5 GO

*6 GO
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Robson, J. H. Machine Drawing and Sketching 8vo, 2 00

Roebling, J. A. Long and Short Span Railway Bridges. . folio, 25 00

Rogers, A. A Laboratory Guide of Industrial Chemistry . 8vo, 2 00

Elements of Industrial Chemistry i2mo, 3 00

Manual of Industrial Chemistry 8vo, *5 00

Rogers, F. Magnetism of Iron Vessels. (Science Series No. 30.)

r6mo, o 50

Rohland, P. Colloidal and its Crystalloidal State of Mattel.

Trans, by W. J. Britland and H. E. Potts . . i2mo, *i 25

Rollinson, C. Alphabets obloii|^ i2ino, *i 00

Rose, J. The Pattern-makers' Assistant 8vo, 2 50

Key to Engines and Engine-running i2mo, 2 50

Rose, T. K. The Precious Metals. (Westminster Series.) . .8vo, *2 00

Rosenhain, W. Glass Manufacture. (Westminster Series.) . .8vo, *2 00

Physical Metallurgy, An Introduction to. (Metallurgy

Series.) Svo, *3 50

Roth, W. A. Physical Chemistry Svo, *2 00

Rowan, F. J. Practical Physics of the Modern Steam-boiler.Svo, *3 00

and Idell, F. E. Boiler Incrustation and Corrosion.

(Science Series IVo. 27.) i6mo, o 50

Roxburgh, W. General Foundry Practice. (Westminster

Series.) Svo, *2 00

Ruhmer, E. Wireless Telephony. Trans, by J. Erskine-

Murray Svo, *4 50
Russell, A. Theory of Electric Cables and Networks Svo, *3 00

Rutley, F. Elements of Mineralogy i2mo, *i 25

Sandeman, E. A. The Manufacture of Earthenware. .i2mo, 3 50

Sanford, P. G. Nitro-explosives Svo, *4 00

Saunders, C. H. Handbook of Practical Mechanics i6mo, i 00

leather, i 25

Sayers, H. M. Brakes for Tram Cars Svo, *i 25

Scheele, C. W. Chemical Essays Svo, *2 00

Scheithauer, W. Shale Oils and Tars Svo, *5 00

Scherer, R. Casein. Trans, by C. Salter Svo, *4 25
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*2 25

*I 75
*3 OQ

I 50
*3 00

*4 .SO

2 50
*6 00
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Schidrowitz, P. Rubber, Its Production and Industrial Uses,
8vo,

Schindler, K. Iron and Steel Construction Works lamo,

Schmall, C. N. First Course in Analytic Geometry, Plane and

Solid i2mo, half leather,

Schmeer, L. Flow of Water 8vo,

Schumann, F. A Manual of Heating and Ventilation.

i2mo, leather,

Schwartz, E. H. L. Causal Geology 8vo,

Schweizer, V. Distillation of Resins 8vo,

Scott, W. W. Qualitative Analysis. A Laboratory Manual,
New Edition

Standard Methods of Chemical Analysis 8vo,

Scribner, J. M, Engineers' and Mechanics' Companion.

i6mo, leather, i 50
Scudder, H. Electrical Conductivity and Ionization Constants

of Organic Compounds Svo,

Searle, A, B. Mcdern Brickmaking Svo,

Cement, Concrete and Bricks Svo,

Searle, G. M. " Sumners' Method." Condensed and Improved.

(Science Series No. 124.) i6mo,

Seaton, A. E. Manual of Marine Engineering .Svo,

Seaton, A. E., and Rounthwaite, H. M. Pocket-book of Marine

Engineering i6mo, leather, 5 qo
Seeligmann, T., Torrilhon, G. L., and Falconnet, H. India

Rubber and Gutta Percha. Tra.is. by J. G. Mcintosh

Svo, *7 25
Seidell, A. Solubilities of Inorganic and Organic Substances,

Svo, *3 00
Seligman, R. Aluminum. (Metallurgy Series) {In Press.}

Sellew, W. H. Steel Rails 4to, *io 00

Railway Maintenance Engineering i2mo, *2 50

Senter, G. Outlines of Physical Chemistry. i2mo, -''2 00

Textbook of Inorganic Chemistry i2mo, *3 00

Sever, G.F. Electric Engineering Experiments ... 8vo, boards, *i 00
and Townsend, F. Laboratory and Factory Tests in Elec-

trical Engineering Svo, *2 50

*3 00
*7 25
-^6 5f>

50

8 00
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Sewall, C. H. Wireless Telegraphy 8vo, *2 oo

Lessons in Telegraphy i2mo, *i oo

Sewell, T. The Construction of Dynamos 8vo, *3 oo

Sexton, A. H. Fuel and Refractory Materials i2mo, *2 50

Chemistry of the Materials of Engineering . . .. i2mo, *2 50

Alloys (Non- Ferrous) 8vo, *3 00

and Primrose, J. S. G. The Metallurgy of Iron and Steel,

8vo, *6 50

Seymour, A. Modern Printing Inks 8vo, *3 00

Shaw, Henry S. H, Mechanical Integrators. (Science Series

No. 83.) i6mo, o 50
Shaw, S. History of the Staffordshire Potteries 8vo, 3 00

Chemistry of Compounds Used in Porcelain Manufacture,
8vo, *6 oo

Shaw, T. R. Driving of Machine Tools i2mo, *2 50
Precision Grinding Machines lamo, 5 50

Shaw, W. N. Forecasting Weather 8vo, *3 50
Sheldon, S., and Hausmann, E. Direct Current Machines. i2mo, *2 50

Alternating-current Machines i2mo, *2 50
Electric Traction and Transmission Engineering. .i2mo, *2 50
Physical Laboratory Experiments 8vo, *i 25

Shields, J. E. Note on Engineering Construction i2mo, i 50

Shreve, S. H. Strength of Bridges and Roofs 8vo, 3 50
Shunk, W. F. The Field Engineer i2mo, fabrikoid, 2 50
Simmons, W. H., and Appleton, H. A. Handbook of Soap

Manufacture 8vo, *5 00
Simmons, W. H., and Mitchell, C. A. Edible Fats and Oils,

8vo, *4 50
Simpson, G. The Naval Constructor i2mo, fabrikoid, *5 00

Simpson, W. Foundations 8vo (hi Press.}

Sinclair, A. Development of the Locomotive Engine.

8vo, half leather, 5 00

Sindall, R. W. Manufacture of Paper. (Westminster Series.)

8vo, *2 00
and Bacon, W. N. The Testing of Wood Pulp 8vo, *2 50

Sloane, T. O'C. Elementary Electrical Calculations ..... i2mo, *2 00
Smallwood, J. C. Mechanical Laboratory Methods. (Van

Nostrand's Textbooks.) i2mo, fabrikoid, *3 00
Smith, C. A. M. Handbook of Testing, MATERIALS. .8vo, *2 50

and Warren, A. G. New Steam Tables 8vo, *i 25
Smith, C. F. Practical Alternating Currents and Testing. 8vo, *3 50

Practical Testing of Dynamos and Motors Svo, *3 00.
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Smith, F. A. Railway Curves i2mo, *i oo
Standard Turnouts on American Railroads i2mo, *i oo

. Maintenance of Way Standards i2mo, *i 50
Smith, F. E. Handbook of General Instruction for Mechanics.

i2mo, I 50
Smith, G. C. Trinitrotoluenes and Mono- and Dinitroto-

luenes, Their Manufacture and Properties i2mo, 2 00
Smith, H. G. Minerals and the Microscope i2mo, *i 25
Smith, J. C. Manufacture of Paint 8vo, *3 50
Smith, R. H. Principles of Machine Work i2mo,

Advanced Machine Work i2mo, *3 00
Smith, W. Chemistry of Hat Manufacturing i2mo, *4 50

Snell, A. T. Electric Motive Power 8vo, *4 00

Snow, W. G. Pocketbook of Steam Heating and Ventilation, .

{In Press.)

Snow, W. G., and Nolan, T. Ventilation of Buildings. (Science

Series No. 5.) i6mo, o 50

Soddy, F. Radioactivity 8vo, *3 00

Solomnn, M. Electric Lamps. (Westminster Series.) 8vo, *2 00

Somerscales, A. N. Mechanics for Marine Engineers. .i2mo, *2 00

Mechanical and Marine Engineering Science 8vo, *5 00

Sothern, J. W. The Marine Steam Turbine 8vo, *i5 00

Verbal Notes and Sketches for Marine Engineers .... Svo, *9 00

Sothern, J. W., and Sothern, R. M. Elementary Mathematics

for Marine Engineers i2mo, *i 50

Simple Problems in Marine Engineering Design. .i2mo,

Southcombe, J. E. Chemistry of the Oil Industries. (Out-

lines of Industrial Chemistry) Svo, *3 00

Soxhlet, D. H. Dyeing and Staining Marble. Trans, by A.

Morris and H. Robson Svo, *3 00

Spangenburg, L. Fatigue of Metals. Translated by S. H.

Shreve. (Science Series No. 23.) i6mo, o 50

Specht, G. J., Hardy, A. S., McMaster, J. B., and Walling. Topo-

graphical Surveying. (Science Series No. 72.). . i6mo, o 50

Spencer, A. S. Design of Steel-Framed Sheds Svo, *3 50

Speyers, C. L. Text-book of Physical Chemistry Svo, *i 50

Spiegel, L. Chemical Constitution and Physiological Action.

(Trans, by C. LuedeHng and A. C. Poylston.) .i2mo, *i 25
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Sprague, E. H. Elementary Mathematics for Engineersi2mo, 2 50—— Elements of Graphic Statics 8vo, 2 50

Sprague, E. H. Hydraulics i2mo, *3 00

Stability of Arches i2mo, 2 50
Stability of Masonry i2mo, *2 50
Strength of Structural Elements i2mo, 2 00

,Stahl, A. W. Transmission of Power. (Science Series No. 28.)

i6mo,
- and Woods, A. T. Elementary Mechanism i2mo, *2 00
Staley, C, and Pierson, G. S. The Separate System of

Sewerage Svo, *3 00

Standage, H. C. Leatherworkers' Manual Svo, *4 50

Sealing Waxes, Wafers, and Other Adhesives Svo, *2 50

Agglutinants of All Kinds for All Purposes i2mo, *^ go
Stanley, H. Practical Applied Physics (/;/ Press.)

Stansbie, J. H. Iron and Steel. (Westminster Series.) . .Svo, *2 00

Steadman, F. M. Unit Photography i2mo, *2 00

Stecher, G. E. Cork. Its Origin and Industrial Uses..i2mo, i 00

Steinman, D, B. Suspension Bridges and Cantilevers.

(Science Series No. 127.) o 50
Melan's Steel Arches and Suspension Bridges Svo, *3 oc

Stevens, E. J. Field Telephones and Telegraphs for Army
Use i2m'0, I 20

Stevens, H. P. Paper Mill Chemist i6mo, *4 25

Stevens, J. S. Theory of Measurements i2mo, *i 25

Stevenson, J. L, Blast-Furnace Calculations. .i2mo, leather, *2 00

Stewart, G. Modern Steam Traps i2mo, *i 75

Stiles, A. Tables for Field Engineers i2mo, i 00

Stodola, A. Steam Turbines. Trans by L. C. Loewenstein.Svo, *5 00

Stone, H. The Timbers of Commerce Svo, 3 50

Stopes, M. Ancient Plants Svo, *2 00

The Study of Plant Life Svo, *2 00

Sudborough, J. J., and James, T. C. Practical Organic Chem-
istry i2mo, *2 00

Suffling, E. R. Treatise on the Art of Glass Painting. .Svo, *4 25

Sullivan, T. V., and Underwood, N. Testing and Valuation
of Building and Engineering Materials (In Press.)

Sur, F. J. S. Oil Prospecting and Extracting Svo, *i 00

Svenson, C. L. Handbook of Piping 4 00

Essentials of Drafting Svo, i 50
^wan, K. Patents, Designs and Trade Marks. (Westminster

Series.) Svo, *2 00
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Swinburne, J., Wordingham, C. H., and Martin, T. C. Electric

Currents. (Science Series No. 109.) i6mo, o 50-

Swoope, C. W. Lessons in Practical Electricity i2mo, *2 00

Tailfer, L. Bleaching Linen and Cotton Yarn and Fabrics.Svo, *8 50

Tate, J. S. Surcharged and Different Forms of Retaining-

walls. (Science Series No. 7.) . i6mo, o 50

Taylor, F. N. Small Water Supplies i2mo, *2 50

Masonry in Civil Engineering 8vo, '2 50

Taylor, T. U. Surveyor's Handbook i2mo, leather, *2 00

Backbone of Perspective i2mo, *i 00

Taylor, W. P. Practical Cement Testing 8vo, *3 00

Templeton, W. Practical Mechanic's Workshop Companion,

i2mo, morocco, 2 00

Tenney, E. H. Test Methods for Steam Power Plants.

(Van Nostrand's Textbooks.) lamo, *2 50-

Terry, H. L. India Rubber and its Manufacture. (West-
minster Series.) 8vo, *2 oo-

Thayer, H. R. Structural Design 8vo,

Vol. I, Elements of Structural Design *2 00

Vol. IL Design of Simple Structures *4 00

Vol. III. Design of Advanced Structures {In Preparation.)
Foundations and Masonry {In Preparation.)

Thiess, J. B., and Joy, G. A. Toll Telephone Practice. .8vo, *3 50

Thom, C; and Jones, W. H. Telegraphic Connections,

Thomas, C W, Paper-makers' Handbook. {In Press.)

oblong i2mo, i 50

Thomas, J. B Strength of Ships 8vo, 300

Thomas, Robt. G. Applied Calculus i2mo (In Press.)

Thompson, A. B Oil Fields of Russia 4to, *7 5©

Oil Field Development and Petroleum Mining 8vo, *7 5°

Thompson, S P Dynamo Electric Machines. ''Science

Series No. 75.) i6mo, o 50

Thompson, W P. Handbook of Patent Law of All Countries,

i6mo, I 50

Thomson, G Modern Sanitary Engineering lamo, *3 00

Thomson, G. S. Milk and Cream Testing lamo, *2 25

-— Modern Sanitary Engineering, House Drainage, etc. .8vo, *3 oc-
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Thornley, T. Cotton Combing Machines 8vo, *3 00

Cotton Waste 8vo, *4 50

Cotton Spinning 8vo,

First Year '^2 00

Second Year *4 25

Third Year *3 50

Thurso, J. W. Modern Turbine Practice Svo, *4 00

Tidy, C. Meymott. Treatment of Sewage. (Science Series

No. 94.) , i6mo, o 50

Tillmans, J. Water Purification and Sewage Disposal. Trans.

by Hugh S. Taylor Svo, *2 00

Tinney, W. H. Gold-mining Machinery Svo, *3 00

Titherley, A. W. Laboratory Course of Organic Chemistry.Svo, *2 00

Tizard, H. T. Indicators {In Press.)

Toch, M. Chemistry and Technology of Paints Svo, *4 00

Materials for Permanent Painting i2mo, *2 00

Tod, J., and McGibbon, W. C. Marine Engineers' Board of

Trade Examinations Svo, *2 00

Todd, J., and Whall, W. B. Practical Seamanship Svo, S 00

Tonge, J. Coal. (Westminster Series.) Svo, *2 00

Townsend, F. Alternating Current Engineering. .Svo, boards, *o 75

Townsend, J. Ionization of Gases by Collision Svo, *i 25.

Transactions of the American Institute of Chemical Engineers.

Eight volumes now ready. Vols. I. to IX., 1908-1916,

Svo, each, *6 00
Vol. X. Un Press.)

Traverse Tables. (Science Series No. 115.) i6mo, o 50

mor., I 00

Treiber, E. Foundry Machinery. Trans, by C. Salter. . i2mo, *i 50

Trinks, W., and Housum, C. Shaft Governors. (Science

Series No. 122.) i6mo, o 50

Trowbridge, D. C. Handbook for Engineering Draughtsmen.
{In Press.)

Trowbridge, W. P. Turbine Wheels. (Science Series No. 44.)
i6mo, o 50

Tucker, J. H. A Manual of Sugar Analysis Svo, 3 50

Tunner, P. A, Treatise on Roll-turning. Trans, by J. B.

Pearse Svo text and folio atlas, 10 00
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Turnbull, Jr., J., and Robinson, S. W. A Treatise on the '

Compound Steam-engine. (Science Series No. 8.)

i6mo.

Turner, H, Worsted Spinners' Handbook i2mo, *3 50

Turril], S. M. Elementary Course in Perspective i2mo, *i 25

Twyford, H. B. Purchasing 8vo, *3 00
Storing, Its Economic Aspects and Proper Methods. .8vo, 3 50

Tyrrell, H. G. Design and Construction of Mill Buildings. 8vo, *4 00

Concrete Bridges and Culverts i6mo, leather, *3 00

Artistic Bridge Design Bvo, *3 00

Underhill, C. R. Solenoids, Electromagnets and Electromag-

netic Windings i2mo, *2 00

Underwood, N., and Sullivan, T. V. Chemistry and Tech-

nology of Printing Inks 8vo,

Urquhart, J. W. Electro-plating i2mo,

Electrotyping i2mo,

TJsborne, P. 0. G. Design of Simple Steel Bridges ...... 8vo,

Vacher, F, Food Inspector's Handbook i2mo,

Van 'Nostrand'is Chemical Annual. Fourth Issue 1913.

fiabrikoid. i2m0,

Year Book of Mechanical Engineering Data (In

Van Wagenen, T. F. Manual of Hydraulic Mining i6mo, i 00

Vega, Baron, Von. Logarithmic Tables 8vo, 2 50

Vincent, C. Ammonia and its Compounds . Trans, by M. J.

Salter 8vo, *3 00

Volk, C. Haulage and Winding Appliances 8vo, *4 00

Von Georgievics, G. Chemical Technology of Textile Fibres.

Trans, by C Salter 8vo,

• Chemistr:^ of Dyestuffs. Trans, by C. Salter 8vo, *4 50

Vose, G. L. Graphic Method for Solving Certain Questions in

Arithmetic and Algebra. (Science Series No. 16.)

i6mo, o 50

Vosmaer, A. Ozone 8vo, *2 59

Wabner, R. Ventilation in Mines. Trans, by C. Salter. .8vo, *6 50

Wade, E. J. Secondary Batteries 8vo, *4 o

-3 00

2 00

2 00

*4 00

*3 00

*3 00

Press.)
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Wadmore, J. M. Elementary Chemical Theory i2mo, *i 50

Wagner, E. Preserving Fruits, Vegetables, and Meat..i2mo, *3 00

Wagner, J. B. A Treatise on the Natural and Artificial

Processes of Wood Seasoning 8vo, 300
Waldram, P. J. Principles of Structural Mechanics. .. i2mo, *3 00

Walkter, F. Dynamo Building. (Science Series No. 98.)

i6mo, o 50

Walker, J. Organic Chemistry for Students of Medicine. 8vo, *3 00

Walker, S. F. Steam Boilers, Engines and Turbines. .. .8vo, 3 00

Refrigeration, Heating and Ventilation on Shipboard,
i2mo, *2 00

Electricity in Mining Bvo, '% 50

Wallis-Tayler, A. J. Bearings and Lubrication 8vo, *i 50
Aerial or Wire Ropeways 8vo, *3 00

Preservation of Wood 8vo, 4 00

Refrigeration, Cold Storage and Ice Making 8vo, 5 50

Sugar Machinery i2mo, *2 50
Walsh, J, J. Chemistry and Physics of Mining and Mine

Ventilation i2mo, *2 00
Wanklyn, J. A. Water Analysis i2mo, 2 00

Wansbrough, W. D. The A B C of the Differential Calculus,

i2mo, *2 50
Slide Valves i2mo, *2 00

Waring, Jr., G. E. Sanitary Conditions. (Science Series

No. 31.) i6mo, o 50
Sewerage and Land Drainage *6 00
Modern Methods of Sewage Disposal i2mo, 2 00

How to Drain a House i2mo, • i 25
Warnes,^ A. R. Coal Tar Distillation 8vo, *5 00

Warren, F. D. Handbook on Reinforced Concrete i2mo, '2 50

Watkins, A. Photography. (Westminster Series.) 8vo, *2 00

Watson, E. P. Small Engines and Boilers i2mo, i 25

Watt, A. Electro-plating and Electro-refining of Metals. 8vo, *4 50
Electro-metallurgy i2mo, i 00

The Art of Soap-making 8vo, 4 00

Leather Manufacture Bvo, *6 00
Paper Making 8vo, 3 75

Webb, H. L. Guide to the Testing of Insulated Wires and
Cables i2mo, i 00

Webber, W, H. Y. Town Gas. (Westminster Series.). ..8vo, *2 00
Wegmann, E. Conveyance and Distribution of Water for

Water Supply 8vo, 5 00



*6 00
*7 50
*3 75
*2 50

3 00

*"! 50
*2 25
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Weisbach, J. A Manual of Theoretical Mechanics 8vo,

sheep,

and Herrmann, G. Mechanics of Air Machinery. .. .8vo,

Wells, M. B. Steel Bridge Designing 8vo,

Wells, Robt. Ornamental Confectionery lamo,

Weston, E. B. Loss of Head Due to Friction of Water in Pipes,

i2mo,
Wheatley, 0. Ornamental Cement Work 8vo,

Whipple, S. An Elementary and Practical Treatise on Bridge
Building 8vo, 3 00

White, C. H. Methods in Metallurgical Analysis. (Van
Nostrand's Textbooks.) lamo,

White, G. F. Qualitative Chemical Analysis lanio.

White, G. T. Toothed Gearing i2mo,
White, H. J. Oil Tank Steamers i2mo, paper,

Whitelaw, John. Surveying 8vo,

Widmer, E. J. Observation Balloons : i2mo,

Wilcox, R. M. Cantilever Bridges. (Science Series No. 25.)

i6mo,
Wilda, H. Steam Turbines. Trans, by C. Salter i2mo,

Cranes and Hoists. Trans, by Chas. Salter i2mo,

Vnikinson, H. D. Subm^arine Cable Laying and Repairing . 8vo,

Williamson, J. Surveying 8vo,

Williamson, R. S. On the Use of the Barometer .4to,

Practical Tables in Meteorology and Hypsometry. .4to,

Wilson, F. J., and Heilbron, I. M. Chemical Theory and Cal-

culations i2mo,

Wilson, J. F. Essentials of Electrical Engineering 8vo,

Wimperis, H. E. Internal Combustion Engine 8vo,

Application of Power to Road Transport ,i2mo,

Primer of Internal Combustion Engine i2mo,

Winchell, N. H., and A. N. Elements of Optical Mineralogy .8vo,

Winslow, A. Stadia Surveying. (Science Series No. 77.) . i6mo,

Wisser, Lieut. J. P. Explosive Materials. (Science Series No.

70.) i6mo, o 50

Wisser, Lieut. J. P. Modern Gun Cotton. (Science Series No.

89. ) i6mo, o 50

Wolff, C. E. Modern Locomotive Practice 8vo, *4 20

2 50

*I 25

*2 50
I 50

4 50

3 00

50
*2 50
=^2 50

*6 00

*3 00

15 00

2 50

*i 00

2 50

*3 00

*i 50

*i 00

*3 50

50
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Wood, De V. Luminiferous Aether. (Science Series No. 85.)

i6mo, o 50

Wood, J. K. Chemistry of Dyeing. (Chemical Monographs
No. 2.) i2mo, *i 00

Worden, E. C. The Nitrocellulose Industry. Two vols..8vo, *io 00

Technology of Cellulose Esters. In 10 vols 8vo.

Vol. VIII. Cellulose Acetate *5 00

Wren, H. Organometallic Compounds of Zinc and Magnesium.
(Chemical Monographs No. i.) i2mo, *i 00

Wright, A. C. Analysis of Oils and Allied Substances 8vo, *3 50
. Simple Method for Testing Painter's Materials. .. .8vo, *3 00

Wright, F. W. Design of a Condensing Plant i2mo, *i 50
Wright, H. E. Handy Book for Brewers Svo, *6 00

Wright, J. Testing, Fault Finding, etc. for Wiremen (Installa-

tion Manuals Series) i6mo, *o 50
Wright, T. W. Elements of Mechanics Svo, *2 50

and Ilayford, J. F. Adjustment of Observations .... Svo, *3 00

Wynne, W. E., and Spraragen, W. Handbook of Engineerinf

Mathematics i2mo, leather, *2 00

Yoder, J. H. and Wharen, G. B. Locomotive Valves and

Valve Gears Svo, 3 00

Young, J. E. Electrical Testing for Telegraph Engineers. . .Svo, *4 00

Youngson, P. Slide Valve and Valve Gearing 4to, 3 00

Zahner, R. Transmission of Power. (Science Series No. 40.)

i6mo,

2eidler, J., and Lustgarten, J. Electric Arc Lamps Svo, *2 00

Zeuner, A. Technical Thermodynamics. Trans, by J. F.

Klein. Two Volumes .Svo, *S 00

Zimmer, G. F. Mechanical Handling and Storing of Materials,

4to, *I2 50
Mechanical Handling of Material and Its National Im-

portance During and After the War 4to, 4 00
Zipser, J. Textile Raw Materials. Trans, by C. Salter. .Svo, *6 25

Zur Nedden, F. Engineering Workshop Machines and Proc-

esses. Trans, by J. A, Davenport Svo, *2 00
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