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PREFACE.

Parr II. of this work is a revision of the author’s
Lessons on Higher Algebra prepared several years ago in
view of the need of a suitable text-book for a brief course
in algebra required in the freghman year at Wellesley
.College.

In developing a short course in higher algebra, it has
seemed desirable and has been found possible to give
unity to the work by proposing one general problem, —
the determination of the roots of higher numerical
equations. Most of the matter of Part II. will be found
to bear on this problem.

It is the author’s experience that students of the
mathematics usually offered in college need to have an
elementary algebra at hand for reference. Part I has
been prepared to meet this need. It is also believed that
for the purposes of high schools and preparatory schools,
Part 1. will prove a helpful supplement to the ordinary
algebra text-books, since it emphasizes cerfain important
aspects of the subject which at present are being more
or less neglected. In writing this part, two classes of
secondary school students have been kept in mind:

those whose mathematical studies will end with the high
iii



iv PREFACE.

school course, and who are entitled on that account to
know something of the spirit and methods of the mathe-
matical fields which they are not going to enter; and
secondly, those who expect to advance to mathematical
work of a more difficult grade, and who ought not to
find an abrupt break between the elementary course of
the preparatory school and the higher work of the col-
lege or university. -
ELLEN HAYES.

‘WELLESLEY, MAss., Jan. 1, 1897.
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PART L

CHAPTER 1.

ALGEBRA AS A LANGUAGBE.

1. When we consider two or more things and attend
merely to the fact that they are distinct one from another,
we may count the things by applying in order the words
one, two, three, ete.

For instance, if we have a handful of roses some of
which are large and red, others small and white, and
others medium sized, very fragrant and pink, we disre-
gard differences of size, color, fragrance, etc., and simply
register the repeated impressions made on our senses by
these objeets as distinct objects; having completed the
registration we declare the number of the roses.

If now we attend to one of the roses and describe it as
a.large rose, we are considering it quantitatively and
are roughly measuring it by means of a rose of medium
size which is our unit of measure. Perhaps we choose a
medium-sized pink rose from the handful and with it as
a unit of measure say that the red rose is twice as large
as the pink one. In doing this we have applied the unit
to the quantity to be measured, and counted the number
of times that this application could be made without

1



2 ALGEBRA.

applying the unit more than once to any one portion of
the quantity.

To illustrate further, if a bin contains an unknown
quantity of wheat, and we find upon trial that a bushel
basket can be filled fifty times in succession before
the wheat is all removed from the bin, we declare that
the bin had fifty bushels of wheat in it. By count-
ing the times the basket was filled we have been able to
count and state as a number the distinet bushels of wheat
composing the quantity of wheat. If at the fiftieth filling
of the basket, we find the basket only half full, we say
that the basket has been filled forty-nine and one-half
times ; what we obviously mean is, that the bin contained
forty-nine and one-half bushels of wheat, and that we
found this out by counting the forty-nine times that the
basket was filled, and then calling the fiftieth time a half
time because the basket was only half full.

2. From the above examples and similar ones it appears
that number relates to the question: How many? and
quantity to the question: How much? also, that the
question, how much, is answered by first noting how
many times a measuring unit is contained in the quan-
tity to be measured; also, that ‘more,’ ‘less’ are neces-
sarily suggested both by number and quantity.

It is to be further observed that we may not know
anything about the tling to be measured except that it
is quantitative, that is, measurable. For example, we may
come across the expression “980 dynes”; in the absence
of all other knowledge in the case we at least know that
a quantitative something which can be expressed in terms
of dynes, whatever a dyne is, has been found to contain
one dyne 980 times; that is, the quantity is composed of
980 dynes.
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3. Arithmetic deals with the relations of number, and
hence also with the relations of measured quantity, when
the numbers or quantities are denoted by figures.

Elementary algebra is arithmetic generalized and ex-
tended, — the generalization being secured by the use of
letters as symbols of quantity. When any letter as a or
n or z appears in an algebraic expression we simply read
the name of the letter; but we are to keep it in mind
that when we say ‘a’ or ‘n’ or ‘x’ we mean: ‘the
quantity (or number) represented by the symbol a,’
‘the quantity (or number) represented by the symbol n,’
ete.

This use of letters is purely conventional ; ‘‘a star or the picture
of a dragon-fly would serve just as well if as easily made and read.”

Besides symbols of quantity, algebra employs symbols
of operation, of relation, and of aggregation. (Arts. 5,
7, 8) '

4. Euclid in his Elements (— 300) stated certain truths
or principles (kowal évvowu) which long before his time
had been found to govern the relations of quantity; of
these principles the leading ones are: “Things equal to
the same thing are equal to each other,” and “The sums
of equals are equal.” Certain other truths or laws*
(Arts. 10 ..- 14), taken in connection with Euclid’s awio-
mata, form the basis of algebra.

The terms ‘more,” ‘less’ imply two fundamental
operations which may be performed on quantity: In-
crease and diminution. All secondary operations will
be found to be combinations of these primary ones.

* For a discussion of the term ‘‘law’’ as used in science, see
Pearson’s Qrammar of Science, Chap. III. The term must be
used even more guardedly in mathematics than in science.

.



4 ALGEBRA.

‘We have, then, quantity symbolically represented, oper-
ations symbolically indicated, and processes carried on in
conformity to a few laws. Algebra is thus a language
devised to express thought, and if we use the term in its
larger sense as including the calculus it will be found
that this language enables us to follow trains of reason-
ing with a power and precision not afforded by any other
language device. The translation into an ordinary lan-
guage as English, French, etc., of the formulas developed
in algebraic processes affords propositions which are often
theorems of great importance, and the theorems will in
many cases contain implicitly rules for other opera-
tions.

5. Symbols of operation. The principal symbols of
operation are: 4+, —, X, +, ~.

The symbol + (plus) denotes addition; it belongs to
the quantity before which it stands,.and shows that the
quantity is to be added to whatever precedes it. If there
is no preceding quantity, it then merely shows that the
quantity to which it belongs is a positive quantity. In
the absence of any sign the plus sign is to be under-
stood.

The symbol — (minus) denotes an operation the oppo-
site of addition; the quantity before which it is placed
is to be subtracted from whatever precedes it. If there
is no preceding quantity it denotes that the quantity to
which it belongs is negative.

The symbol x (multiplied by, or times) denotes that
the quantity preceding it is to be multiplied by the one
following it. Multiplication is also indicated by a dot (-).
Thus a X b is the same as a - b. A still more common
way of indicating multiplication is to write the symbols
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of the factors in juxtaposition without any connecting
sign. If the quantities @ and b are to be multiplied
together we write: ab.

The symbol + (divided by) denotes that the quantity
preceding it is to be divided by the one which follows it.
A more common way of indicating division is to replace
the upper dot by the dividend and the lower dot by the

divisor. Thus a + b is the same as 9’-, and means that a
is to be divided by b. b

The symbol ~ is used to denote arithmetical difference
as distinguished from algebraic difference. a ~ b means
that whichever is the smaller quantity is to be subtracted
from the other.

6. Positive and negative quantities. The classification
of quantities as positive and negative is a feature of
algebra. Illustrations best show what is meant by the
terms. If we begin the counting of the hours of the day
at twelve o’clock noon, three hours past noon would be
+ 3 hours, and two hours before noon would therefore
be —2 hours. If we begin the counting of the years
with the birth of Christ, any year A.p. is positive and
any year B.C. is negative. For instance, Euclid lived
—300. If distance eastward be regarded as positive,
distance westward is negative. If a person walks m
miles due east, and then turns and walks n miles due
west, he is m 4 (— ») miles one side or the other of his
starting-point; whether he is on the east side or west
side of that point depends on the relative arithmetical
magnitudes of m and n; that is, if m and n are viewed as
signless quantities, and m is greater than n, the man is
on the east side of his starting-point, but if m is less than
n, he is on the west side of it.
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7. Symbols of relation. The principal symbols used
to show quantitative relation are: =, =, >, <, «.

The first of these is read: ‘equals, and denotes that
the quantity preceding it contains the chosen unit of
measure exactly as many times as the quantity following
it contains that unit. )

The triple bar, =, denotes identity and may be read:
“is the same as.’

The symbols >, <, denote inequality. Thus a > b
means that the quantity a is greater than 8. The greater
quantity is written at the open end of the symbol.

The symbol o«c denotes variation in magnitude. Thus
aochis read: ‘a variesas b.’

The symbols =, =, >, <, «, are evidently verb sym-
bols; whenever one of them occurs in an algebraic expres-
sion the expression itself is some proposition written in
algebraic shorthand.

8. Symbols of aggregation. The symbols of aggrega-
tion are: the parentheses ( ), the brackets [ ], the
brace { }, the vinculum ™, and the bar |.

Any algebraic expression written within the paren-
theses, brackets, or brace, is to be taken as a whole; and
any operation indicated by some symbol outside of the
symbol of aggregation is an operation to be performed
on the whole aggregated quantity. For example,
a —(b+ ¢—d) signifies that the whole quantity b +c—d
is to be subtracted from a. A horizontal bar, — , over
an expression serves the same purpose as the paren-
theses, etc. Also, a vertical bar is sometimes a conven-
ience for indicating aggregation. l')l‘hus the forms:

a—b+c—d,a—b+c—d, a— ¢, all have the same
signification. —d
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9. In measuring a bin of wheat, the number of bush-
els is found to be the same, in whatever manner we
take the wheat out; in measuring a piece of land or of
cloth, it is immaterial at which end we begin; in count-
ing a handful of roses, we may start with a white one
or a red one, and proceed in any order. Experience
has shown that in counting a set of objects the number
is independent of the order of counting. This may be
regarded as the first law of number.

10. Suppose now that we have a handful of roses and
other roses in a vase; and suppose that by counting the
two sets separately we find that there are seven in
the handful and ten in the vase. If we wish to know
the number in the two sets combined, there are two ways
of proceeding: we may first take the seven roses and then
add the ten roses one by one; or, we may take the ten
roses in the vase and add to them one by one the seven
roses in the hand. But by the first law, it follows that
the number we arrive at as belonging to the combined
groups of roses must be the same, whichever of the two
processes we use; that is, seven increased by ten is just
the same as ten increased by seven. Arithmetic enables
us to express the fact briefly in this way, 7+10=10+7;
but the shorthand of algebra not only expresses the fact
for this particular case but for all like cases. That is,
if a represents any number and b represents any other
number, the law regarding the sum of @ and b, when
stated in the language of algebra is a +b=0+a.

This is known as the law of commutation in addition;
it amounts to saying that the sum is independent of the
order of adding.
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11. If b itself is the same as ¢ + d, we may replace b
by ¢+ d, so that the statement, @ + b = b + a, becomes

at+(c+d)=(c+d)+a=c+d+a;
but by the law of commutation,

c+dt+a=a+t+ct+d=d+a+c;
also, d+a+c=({d+a)+c;
hence, at+(c+d)y=(@d+a)+ec

The principle governing these identities is the law of
association in addition; it expresses the fact that the
sum 18 independent of the grouping of the quantities to be
added.

12. If we have a vases and each vase contains b roses,
we may find the whole number of roses in two ways:
we may count the roses in one vase and then add, by
counting, one by one, the roses in each successive vase.
We then have as the whole number of roses

b+b+4+b+4 - to a terms,

and this we briefly indicate by ab, meaning that b has
been multiplied by a; or, we may take one rose from
the first vase, one from the second, and so on to the
last, when we shall have o roses; and because there
are b roses in each vase, this operation must be repeated
b times; and now the whole number of roses is

a+a+a-+--- tod terms,

that is, ba. Whence it follows that ab = ba. Further,
let us suppose that there are a vases in each one of
e rooms. It is obvious that we shall have the same
number of roses, whether we take all of the roses in
one room and add to them, by counting, all of those
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in a second room, and so on, as indicated in symbolic
writing, ab + ab + --- to e terms, that is, e(ad); or
whether we take one rose from each vase in each room,
and go repeatedly the round of the rooms until all the
roses are counted and indicated by

(a+ a+ --- to e terms) + (@ + a + -+ to e terms) + ---
to b of these terms; that is, b(ea). We have then
e(ab) =b(ea);

whence it appears that the parentheses make no differ-
ence in the result, although they do indicate a difference
in the process by which the result is attained. It also
appears that the order in which the quantities are multi-
plied together makes no difference in the result. Thus
we have what is known as the law of association in multi-
plication: a product is independent of the grouping of
Jfactors; and the law of commutation in multiplication :
a product is independent of the order of multiplying.

13. Finally, let us suppose that the set of b roses in
any one of the vases is made up of ¢ white roses and d
red ones, so that we have b =c+d. The total number
of roses is unchanged on this supposition, since qualita-
tive distinctions are disregarded in counting. Then from
the statement, ab = ba, we have as equally true,

a(c+d)y=(c+d)a.
But since b is made up of the groups ¢ and d, we may, if
we choose, allow color groups to determine our mode of
group counting. Thus, we may take a white rose from
each vase until all the white roses are counted. We
then have as the number of white roses

a+a+a-+ - toc terms,
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that is, ca; and similarly for the red roses we have
a+a+a+ .- tod terms,

that is, da. The total number of roses is the sum total

of the white roses and the red ones; that is, ca + da.

But the number was previously found to be a(c+ d);

hence, a(c+ d) = ca + da.

This is known as the law of distribution in multiplication.

14. Suppose that a quantity consists of a number of
equal factors, say m factors, so that it is expressed by

a-a-a-- tom factors;
and suppose this quantity is to be multiplied by another
quantity consisting of n equal factors, each factor being
a. Then we have as the final result,
(a-a-- tom factors)(a - @ .-- to n factors).

But by the law of association, this product is indepen-
dent of the grouping of the factors, and therefore we
may obtain the true result by multiplying m + » factors
together, introducing the factor a at each operation.
We have then ’

(a-a-- tom factors)(a - a --- to n factors)
= (a-a -+ to m + n factors).
* Now it has been agreed that an expression,
(a - @+« to m factors),

shall be symbolized by writing the factor symbol a only
once and then writing a number above and at the right
to indicate how many such factors there are. By this
convention we have

(a - a-.- to m factors) = a™;
similarly, (a - a - ton factors) = a".
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Hence, instead of the long form,

(a-a-.-to m factors)(a - a .- ton factors)
=(a-a -+ tom + n factors),

we have (@™ (a") = a™+n.

The expression a™ is called the mth power of @, and
m is called the exponent because it indicates the power
to which « is said to be raised. We may now state the
law which is known as the index law: The product of
two (or more) quantities consisting of the same quantity
raised to different powers is the common quantity with an
exponent equal to the sum of the exponents which indicate
the powers.

15. It isimportant for the student to realize that these primary
laws or principles, together with various other laws and theorems
yet to be presented, inhere in the nature of quantity and quantita-
tive relations ; they are not a device of mathematicians, for they
have been discovered, not devised. On the other hand, the system
of symbols by means of which these laws are expressed is a device.
The use of letters to represent quantity, of the parentheses to indi-
cate aggregation, of the double horizontal bar to express equality
—all this is purely conventional. We have an arbitrary short-
hand, any feature of which may be discarded at any time for
something better if somebody happens to hit upon an improvement.
The history of algebra is in part an account of the discovery of
laws and theorems, and in part an account of the evolution of the
present system of symbols.

16. By an algebraic expression is meant an interpreta-
ble combination -of symbols of quantity, operation, and
aggregation. The algebraic expression itself represents
a quantity. When part of an expression is connected
with other parts by the signs + or —, the part is called
a term.
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Expressions are classified as monomials, binomials,
trinomials, etc., according as they contain one term, two
terms, three terms, etc. Binomials, trinomials, quadri-
nomials, etc., are also conveniently classed together as
polynomials.

If a term consists of two or more factors and the
factors be grouped by any assortment into two groups,
one of the groups is the coefficient, that is, the co-factor,
of the other.

For example, in the expression, 3 amx, any grouping
may be made of the four factors concerned, and one of
the groups becomes the coefficient of the other.

Usually the coefficient group is written first, though
this is unnecessary. The context indicates in any case
what is to be regarded as the coefficient. Thus in
some connections, it may be necessary or desirable to
view 3 as the coefficient in the expression 3amx; again,
in some other connection it may be 3 a, or it may be 3 am.

‘When a term consists of a single letter, unity is to be
understood as its coefficient; and similarly unity is its
exponent. Thus z=1x.

The student should guard against the error of saying that a
term such as xz*» has no coefficient. Such a case never arises.
Even if the coefficient is zero, it would be incorrect to say that
the term has no coefficient. The same caution holds in regard
to exponents.

17. A single letter used as a symbol of quantity is
said to be of one dimension; the number of dimensions
of a term, in which multiplication is the only operation
indicated, is the number of letters in the term.

For example, abe, — b%, 4¢* are terms of three dimen-
sions; they may also be described as terms of the third
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degree, the degree of a term having reference to the
number of its dimensions. _

In speaking of the degree of an expression, there may
be some reason afforded by the context why a special
letter or special letters, rather than all of them, should
be referred to as determining the degree.

For example, the expression — b% would be described
as a term of the first degree in ¢, and of the second
degree in b; asaterm in b and e it is of the third degree.

An expression containing at least one termn of one
dimension and containing no term of more than one
dimension is said to be a linear expression.

Thus axz+ by is a linear expression in z and y;
ax 4 c¢ is a linear expression in .

The adjective linear, used to describe an algebraic feature, is
suggestive of geometry. The reason for applying this adjective
to a first degree expression will be found in analytic geometry.

In case a term does not contain the quantity which
governs the dimensions or degree of an expression, that
term is said to be of zero dimensions; it is also called
a constant or absolute term.

In the expression ax + ¢, ¢ is an absolute term, being
of the zero degree in .

An expression is homogeneous when it is of the same
dimensions in every term.

For example, ax + by is a linear homogeneous expres-
sion in « and y; ax’*+ bxr+c is a second degree non-
homogeneous expression in «; ax? + by + ca? is a second
degree homogeneous expression in « and ¥. -

18. If an algebraic expression is so constituted that
an interchange of two letters leaves the expression un-
changed except as to the order of the letters in a term,



14 ALGEBRA.

or as to the order of the terms themselves, the expres-
sion is said to be symmetrical in the two letters. Since
a change in the order of letters in a term, or of terms in
an expression, does not alter the value of the quantity
which the expression represents, it follows that if an
expression is symmetrical in two letters, the expression
is not altered in value when the letters are interchanged.

Thus the expression 2®+ y® — 3axy is symmetrical in
z and y; the expression aa®+ bxy + cy® is not symmetri-
cal in « and y unless a=c.
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CHAPTER 1II.
ADDITION AND SUBTRACTION.

19. Algebraic addition is the combination of two or
more distinct algebraic expressions into one expression
by means of the signs + and —.

If a and b represent any quantities whatever, positive
or negative, their sum is indicated by a + b, and we have:

1. the case in which both a and b are positive (the
case in ordinary arithmetic);

2. the case in which both @ and b are negative;

3. the case in which one quantity is positive and the
other negative.

Under the last case, suppose that a is 5 and b is — 3;
then a + b is 5 + (— 3); that is, 2. Again, suppose that
ais 5 and bis —8; then a + b is 54+ (—8); that is, —3.

In general, if we put the sign — before b in order to
show that the quantity to be added to @ is known to be
or is supposed to be negative, we have a + (—b). Now
the negative quantity — b, combined with the positive
quantity a, has the effect of destroying or undoing or
neutralizing the quantity + b of the quantity a, so that
the result must be expressed: a — b. That is, we have
a+ (— b) =a—>b.

It thus appears that to add to a positive quantity
another quantity viewed as negative, comes to the same
thing as to subtract from the positive quantity the
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second quantity viewed as positive. It follows that one
species of addition is subtraction.

It should be noted that no restriction is made as
regards the comparative magnitude of @ and b. The
negative quantity b may be larger than «; in that case
a —b is the negative quantity which is left over after
all of a has been destroyed or neutralized.

20. The operation of addition is performed as soon
as the individual expressions are connected by the signs
+ and —, so that they become terms in the new expres-
sion; but usually, by virtue of the law of distribution in
multiplication, the new expression may be simplified.

Thus the algebraic sum of aw, — nx, 4 pr, and —x is
immediately ax+ (— nx) +4pz+ (— «); but we notice
that « occurs in each one of the given expressions, and
that in each expression it is combined with a factor
which serves to distinguish the expression from the
others and which may be regarded, for the purposes of
the required operation, as the coefficient of x. Then by
the law of distribution we have

ax+ (—nx) +4pr+ (—2) =(a—n+4p —1)=.

The advantage of the last expression over the first as
regards form is that x appears but once, associated with
a polynomial coefficient.

We may now state a general rule for addition:

Observe whether any quantity appears as a common
Jactor in each of the expressions to be added; collect by
means of their signs all the other factors and write the
result as the coefficient of the common quantity. The final
expression is the algebraic sum of the given expressions.
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The coefficient of the new expression will often admit
of simplification as regards form; if so, it should of
course be simplified. Examples of what is meant by
“¢simplifying an expression’ will be given as we proceed.

21. Since @ — b = a + (— b), we have the general rule
for subtraction:

Regard the expression to be subtracted as having the
opposite sign from that which it really has, and then pro-
ceed as in addition.

22. In learning algebra, the student should, from the start,
require it of himself to perform mentally every operation which
he can. Power will come with practice. It is a mark of faulty
training when, at any stage in his progress, the student is found
habitually setting down on the blackboard or on paper operations
which he ought to ¢ do in his head.”

23. Examples illustrative of addition and subtraction.
1. Find the sum of 45, — 3b, 8.
The sum is 45+ (—3b)+8b;
but 454+(—3b)+8b=4—-3+8)b=9b.
Such an example as this belongs properly to mental algebra.

The student should neither write nor say anything except the
result: 9b. :

2. Find the sum of a? —a, a®

a is common to the expressions to be added; the corre-
sponding coefficients are a, —1, a®. They are therefore
written in succession, connected by the signs belonging
to them, and all enclosed by parentheses. We then have
for the sum, (@ — 1+ a*)a. But by the law of commuta-
tion in addition, we may, if we wish, change the order of
the terms of the polynomial coefficient. This coefficient
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will be more orderly, and hence more simple, if the terms
are arranged according to their dimensions. We there-
fore put the result of the addition of a% — a, @% in the
form (a? + a — 1) a. ‘

3. Find the sum of azy, — bay, (a + b) zy.

The common quantity is seen to be zy; the coefficients
are a, —b, (a + b); the sum of these is a+(—b)+
(a + b), which is 2a. The required sum is therefore

2 axy.

4. Write the expression for the sum of each of the

following sets of expressions:

1. na’y, pay, gy, — sy.

2. (m+n)a, —c(m+n), d(m+n)e.

3. 4@ —ay — ), —(— ¥+ —ay), (—ay -y +2).

5. Find the sum of

a(m +n), b(m —mn), (3 + a)(m + n),
(a +c)(m — n), n(m+n).

Inspection of these five expressions shows that they
have no common factor, but that there is a factor com-
mon to two of them and another factor common to the
other three. The best that we can do is therefore to
form two groups according to the factors m +n» and
m —n. We then have for the sum,

B+ 2a+n)(m + n)+(a+ b+ c)(m — n).

6. Find the sum of

ax+by+czand 1 —a)r+2by — ez
7. From nt® 4+t subtract — m#® +¢.

8. From % — xy + 23 subtract xy + 2% + 2



ADDITION AND SUBTRACTION. 19

9. From (a + b)(m — n) subtract (a — b)(m — n).

10. Perform the operation indicated by

l—(m—[n+§{2a—3})).

The parentheses, brackets, and brace are here used to
prevent confusion. The brace shows that 2a — 3 is to
be taken as one quantity ; therefore we have

l—(m—[n+2a—3)]).

Again, the brackets show that n42 a—3 is to be treated
as one quantity, and the sign — preceding the bracketed
trinomial indicates that the expression is to be sub-
tracted from m. Similarly, m —n—2a+3 is to be
subtracted from I. Hence we have

l—(m—[n+§{2a—3}D=l—(m—[n+2a—3])
=l—-(m—n—-2a+3)=l—m+n+2a—3.
It will be observed that we began with the inner sign
of aggregation and proceeded outwards.

11. For the following expressions write equivalent
expressions without symbols of aggregation :

1. 4z —Bax 4[4 — 2ax]).
2. 2p—-(Bq+[49—p)-
3. & —cx—(ex+[1—4cx+ ca?]).
12. Conversely, introduce into parentheses all terms
after the first monomial term in the expressions:
1. pxr—4qr— a4 tad.
2. a—(m + n)—(m —n)+d.
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CHAPTER IIL

MULTIPLICATION.

24. Sign of a product. We have already observed that
if the quantities ¢ and b are to be multiplied together,
the conventional method of indicating it is to write them
in juxtaposition, ab. Now if ¢ and b represent any quan-
tities whatever, positive or negative, there must arise
three cases just as in addition:

1. both quantities positive;
2. both quantities negative;
3. one quantity positive and the other negative.

We have to inquire what sign belongs to the product
ab in each case.

The first case is that of ordinary arithmetic and re-
quires no special attention; if @ and b are each positive,
their product is positive.

"To meet the other cases, we notice that a negative
quantity comes by taking a positive quantity once and
then changing its sign. To take it once is to multiply
it by unity, and by means of the symbol —1 we may
show the two operations: multiplying by unity, and
reversing the sign.

Thus, —b=[-][]1[6]=[—1][?];
hence, [a] [—b]=[—1] [] [a].

By this symbolism we mean that the positive quantity
a is multiplied by the positive quantity b, resulting in
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the positive quantity ab; ab is taken once and its sign
then reversed, as indicated by the symbol [—1].

Hence, (@)(—b)=—ab.
Again, [—a][—0]=[0][a][—-1][-1].

~ Proceeding from left to riglit and performing the
operations in the order indicated, we have first the posi-
tive quantity ab; the third bracketed symbol sho'vs that
ab is now to be taken once and given the negative sign,
thus becoming — ab; finally the last symbol shows that
the negative quantity ab is to be taken once and given
the opposite sign.

Hence we state briefly: Like signs give + and unlike
signs —. :

Applying the argument used to show that (— a)(— b)
is + ab, we may also show that (— a)(— b)(— ¢) is —abe.
Continuing this operation, we have the general conclu-
sion: dn even number of negative quantities multiplied
together is a positive quantity, whilst an odd number of
negative quantities multiplied together is a negative quan-
tity.

25. Product of two monomials. If an expression con-
taining two or more factor symbols is to be multiplied
by another expression containing two or more factor
symbols, the product is indicated by writing all the fac-
tor symbols in juxtaposition. Thus,

(amz)(bny) = amabny.

By the law of commutation the order of these factors
does not affect the value of the result. Further, as seen
above, the sign of the product is determined by the num-
ber of negative factors.
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Some of the factor symbols may occur in each of the
expressions to be multiplied together; but we have
noticed that the conventional way of indicating the
product of n equal factors is to write the factor symbol
only once and then write in connection with it the expo-
nent n.

For example,

(amz)(ana®) = amzanzs = a*mnad.
We may now frame the following rule for the multi-
plication of one monomial by another:

Wrrite in juxtaposition in whatever order seems desirable
all the factors of the two monomials. If any one factor
occurs more than once, write it only once and give it an
exponent equal to the sum of its exponents in the two
monomials. The result will be positive or negative accord-
ing as there is an even or an odd number of negative factors.

26. Product of a monomial and a polynomial. By the
law of distribution,

(a+b)c=ac+ be,

whatever may be the values of a, b, and ¢; it must there-
fore be true if we regard a as made up of m and n.
Substituting m + n for a,

[(m+n)+b]c=(m+n)c+bc=mc+nc+bc;
that is, (m + n + b) ¢ = me + nc + be.

If besides substituting m + n for a, we had supposed
p—g=>0 and had substituted p — g for b, we should
have obtained

(m +n+p —q)c=mec+ nc+ pc—qc;
and evidently the result may be extended to the multi-

-
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plication of a polynomial of any number of terms by a
monomial.
Hence we have the rule:

Multiply each term of the polynomial, taken with the sign
which precedes the term, by the monomial; the algebraic
sum of these part products is the product of the two expres-
sions.

27. Product of two polynomials. In the statement,
(m +n 4+ p— q)c=mc+ nc+ pc — qc,
suppose c=x+Y;
then we have
(m+n+p—9)(z+y)
=m@+y) +n@+y)+pE+y)—9@+y)
=Mz + my + nx + ny + pr + py — 9T — qY;
or, re-arranging the terms with respect to =,

= mx + nx + pr — qx + my +ny + py — qu.
Evidently the case can be extended so as to be even
more general, and we have a rule for the product of a
polynomial of any number of terms multiplied by any
other polynomial :

Multiply each term of the multiplicand, taken with the
sign which precedes it, by each term of the multiplier, taken
with the sign which precedes it; the algebraic sum of these
part products is the product of the two polynomials. .

28. As has already been stated, if a quantity occurs
twice as a factor, that is if it is multiplied by itself, we
write the quantity once and give it an exponent 2; if a
quantity is multiplied by itself twice, we write it once



24 ALGEBRA.

with an exponent 3; and if a quantity is multiplied by
itself » — 1 times, we write it once with an exponent n.

The term power is applied to such expressions as ?
% 2"; and we speak of the second power of x, the nth
power of x, ete.

The second power of a quantity is also called the
“square’ of that quantity, and the third power is called
the ¢ cube.’

Thus «* is read ‘2 squared’; «® is read ‘=z cubed.’

29. The square of the sum of two quantities is of such
frequent occurrence that it is important to memorize the
expression which results when the operation indicated
by the exponent is actually performed.

Let @ and b be any two quantities; then (a + b)? is
an indicated, that is, an wunperformed operation, and
means that we have (a + b) multiplied by itself.

Now (@+b)i:=(a+b)(a+b)=a(a+b)+b(a+b)
=aa + ab + ba + bd
=a’+2ab + b

“It will be instructive to write out this shorthand at
length. The square of the sum of two numbers means
that sum multiplied by itself. But this product is the
first number multiplied by the sum together with the
second number multiplied by the sum. Now the first
number multiplied by the sum is the same as the first
number multiplied by itself together with the first num-
ber multiplied by the second number. And the second
number multiplied by the sum is the same as the second
number multiplied by the first number together with the
second number multiplied by itself. Putting all these
together, we find that the square of the sum is equal to .
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the sum of the squares of the two numbers, together with
twice their product.

Two things may be observed on this comparison.
First, how very much the shorthand expression gains in
clearness from its brevity. Secondly, that it is only
shorthand for -something which is just straightforward
common sense and nothing else. We may always depend
upon it that algebra which cannot be translated into good
English and sound common sense is bad algebra.” *

Omitting the steps in the proof and corresponding por-
tions of the translation, the statement

(a+b?=a’+2ab+ b
affords the theorem,

The square of the sum of any two quantities is equal to
the sum of their squares plus twice their product.

30. Similarly, we have
(@—bp=(@—b)(a—1b) |
= aa+ (= b)a+a(—b)+(—b)(—b)
=a—2ab+ b

Hence, the square of the difference of any two quantities is
equal to the sum of their squares minus twice their product.

It will be noticed that we might have obtained this
theorem even more directly by writing — b for b in the
first formula. For we have

@—by=[a+ (-] =a+2a(—0)+ (-D)’
=a®—2ab+ b2

* Clifford’s The Common Sense of the Exact Sciences.
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31. To find the product of the sum and the difference
of any two quantities, we have

(@+bd)(a—db)=aa+ab+ (—b)a+ (—b)b
=a’+ab—ab—b?
=a?—b%
That is, the product of the sum and the difference of any
two quantities is equal to the difference of their squares.

32. The results in Arts. 29, 30, 31 afford good exam-
ples of truths, more or less general, expressed in the
language of algebra and called formulas, the translations
of which into ordinary language are called theorems.

It will be a valuable exercise for the student to prove
the theorems of Arts. 29, 30, 31 by the graphic method.

Thus, to prove the first theorem, let a straight line 4B
represent @ in magnitude. Produce 4B to C, making
BC represent b in magnitude. Construct squares on 4B
and AC, and notice the areas corresponding to the terms
of the trinomial a? + 2 ab + b2

33. Product of homogeneous polynomials. The prod-
uct of any two homogeneous expressions is homogene-
ous; for if each term of one of the expressions is of m
dimensions, and each term of the other is of » dimen-
sions, each term of the product must be of m + n dimen-
sions, since it is obtained by multiplying a term of the
multiplicand by a term of the multiplier.

EXAMPLES.

1.. Multiply #* — 32y + 2% by $2° —fay + 19~

2. Multiply togethera +b+c¢, —a+b+c¢, a —b+c,
a+baec
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3. Derive a formula for the cube of the sum of two
quantities, and translate the formula into a theorem.

4. By means of the formula for (a 4 b)%, find the cube
of 22+ 5y. Verify the result by performing the indi-
cated operation (2« + 5y)® without the aid of the formula.

5. Find (a —b)
6. By means of the result in Ex. 5, find (} z — %)%

7. Find (e +b 4 c)®. Consider whether the result is
homogeneous in @, b, and c.

8. Show how (a + b + ¢)? may be found by treating
a + b + ¢ as a binomial.

9. Show that if two linear expressions are multiplied
together, the product must contain a term of two dimen-
sions as regards the quantities which made the given
expressions linear.

10. Show that
(@+b0)*+2c(@a+d)+®=0b+c)?+2ab+c)+a?
=(a+c)+2b(a+c)+ b
Show that each one of these expressions is homogeneous

in @, b, and c¢. Also, that each one of them is symmet-
rical with respect to any two of the three letters in it.

11. Prove that

PP+ @+ —p@+9=9+@+p*—9@+p).
Is the expression p?+ (p + q)® — p(p + ¢) homogeneous
in p and ¢? Is it symmetrical with respect to p and ¢ ?
If p and ¢ have exchanged places, and the new expression
equals the old one, why does it not follow that the ex-
pression is symmetrical as regards p and ¢ ? )
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CHAPTER 1V.

DIVISION.

34. In division a quantity, the dividend, is given to-
gether with another quantity, the divisor. The divisor
may be regarded as a factor of the first quantity; it is
then required to find the other factor, the quotient.
Division is thus the reverse of multiplication. Hence,
various rules to be observed in performing division may
be inferred at once from the rules for multiplication.

35. Division of any power of a quantity by any other
power of that quantity.

Let a™ represent @ - a --- to m factors; that is, the mth
power of any quantity a. Also, let a” represent the nth
power of a.

Two cases arise, according as m >n or m<n, with a
transition case when m = n.

1st. Suppose that m > n.

a” _a-a-a--tom factors

‘We have
a* a-a-a---to n factors

Since, by the law of association, factors may be asso-
ciated in any manner whatever, we may place in one
group n of the m factors of the dividend, and in another

group the remaining m — » factors, so that we have

a”_(a-a-a--tonfactors)(a-a-a-.- tom —n factors)
a* - (a - a - a ton factors)
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Now by the law just quoted, pgr=p(qr); hence
p%‘: %(qr), which is gr. That is, one quantity may be
divided by another by dividing one factor of the first
quantity by the second quantity. Therefore, dividing
the first group of a’s in the dividend of the above expres-
sion by the divisor, we have
.“_m=(a-a-a---tom—nfactors)=a""‘.
ar v
It follows, therefore, that the quotient of any power of a
quantity divided by a lower power of that quantity is the
quantity raised to a power indicated by the exponent of
the dividend minus the ewponent of the divisor.

2d. Suppose that m < n.
As before, we have
a_ (a-a-a---tom factors)
@ (a-a-a-tomfactors) (a-a-a - ton —m factors)

in which the n factors of the divisor are grouped into m
factors and n — m factors; and again, since pgr = p(qr),
L __ P _ 1 That is, one quantity may be divided
pyr p(gr) @ » one quantity may

by another by dividing the first quantity by one factor
of the second quantity.

Hence we have @ —1—,
an aﬂ-ﬂ
" when n>m; that is, when any power of a quantity is
divided by a higher power of a quantity.
It will now be convenient to adopt the convention
1
an—m
will cover the first case and the second case also:

= @™, for, by so doing, a rule may be stated which
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The quotient of any power of a quantity divided by any
other power of that quantity is the quantity with an expo-
nent equal to the exponent of the dividend minus the expo-
nent of the divisor.

When n>m, in &, m —n is of course negative. It

a’l
appears, therefore, that negative integral exponents origi-
nate in division when a power of a quantity is divided
by a higher power of the quantity; and it must be care-
fully remembered that any quantity with such an expo-

nent is the same as the reciprocal of that quantity with
the exponent taken as positive.

aﬂ aﬂ
If m=mn, — becomes —,
ar a”

and by the above law,
a_"' =a™ "™ =qa’

aﬂ

But any quantity divided by itself is unity; hence

aﬂ
| e b
therefore a®=1;

that is, any quantity with zero for an exponent is unity.

36. Quotient of one monomial divided by another. The
rule is obtained at once from the corresponding rule in
multiplication :

Compare the factor symbols of the divisor with those of
the dividend.

Write down in any desired order such of the factor sym-
bols as are found in the dividend and not in the divisor.
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Also, write down, after changing the sign of its expo-
nent, any factor found in the divisor and not in the
dividend.

If a factor is found common to both dividend and divisor,
write its symbol once in the quotient with an exponent equal
to its exponent in the dividend minus its exponent in the
divisor. '

Give to the quotient the sign + if the dividend and
divisor have like signs; otherwise give it the sign —.

It is left to the student to establish this rule by con-
sidering that division is the reverse of multiplication,
and that the correctness of an operation in division is
proved by multiplication.

37. Quotient of a polynomial divided by a monomial.
Referring to the corresponding rule in multiplication, we
have the rule:

Divide each term of the polynomial, taken with its sign,
by the monomial. The algebraic sum of the part quotients
18 the required quotient.

For example, let it be required to divide
—4P + ac* — 42+ 10¢ by 2.
The operation is as follows:

2¢x) —4fP+ ac?—4x +10¢
—2c* +4ac —tc '+ 527!

38. Quotient of one polynomial divided by another. This
is the most general case of division, though not the most
common. An example will illustrate the process and
will conduct to a rule. Suppose it is required to divide

@ —3azy+ ¥+ a® by ¢ +y +a.
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The complete operation is as follows :
?—3axy+yP+at@+y+a
@) ...2+2% +a® @ —2y+y*—ax—ay+ a®
—ay—art—3azy + ¥+
@) . -2y —ay’— axy
zy —ax*—2axy + y*+ ol

@) .. 2 + ¥+ay
—ax —2axy — ay® + a®
@.... —ar®— azy—ax
— axy— ay’ + a*x + a®
G ....... — axy—ay’ —aly
a’x 4+ o’y + a®
6 ... .. a’x + o’y + a®

For convenience in multiplication the divisor was writ-
ten at the right of the dividend. As soon as any term
of the quotient was found, it was written in order be-
neath the divisor.

2% the first term of the dividend, was divided by =z,
the first term of the divisor; and 2% the quotient, was
written for the first term of the required quotient.

The entire divisor was then multiplied by the first
term of the quotient; and the product, numbered (1),
was subtracted from the dividend.

— 2%, the first term of the remainder, was then divided
by the first term of the divisor; and — ay, the quotient,
was written as the second term of the quotient.

As before, the entire divisor was multiplied by this
term of the quotient, and the product (2) was subtracted
from the first remainder.
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In this manner the process was carried on until there
was no remainder.

‘What has practically been done is to break up the
given polynomial dividend into part polynomials, num-
bered (1), (2), (3), (4), (5), (6), and divide each one of
these parts by the given divisor. The part polynomial
dividends are seen to be so constituted that each could
be exactly divided by the divisor with a monomial quo-
tient, the algebraic sum of these monomial quotients
becoming the final required quotient.

That the given dividend has been thus broken up into
part dividends will be seen by adding together (1), (2),

(3); (4), (8); (6), thus:

@ 24 2%y + ax?
@ — o’y — oy’ — axy
(3) '+ P+ay’
4) — a2’ — axy — o’w
) —axy — ay* —a’y
6) a’x 4 oy +a®

= — 3axy + i 4 @b

The reasons for the various steps taken in the solution
of the above example hold for any similar example.
Hence we have the rule:

Arrange both dividend and divisor according to the
ascending or descending powers of some letter common to
both.

Divide the first term of the dividend by the first term of
the divisor; this will give the first term of the quotient.

Multiply the whole divisor by the first term of the quo-
tient as just found, and subtract the product from the
dividend.
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Repeat the process until there is no remainder, or until
the remainder is of a lower degree than the divisor.

EXAMPLES.
1. Divide — 7 a’m®z by 4 am'.
2. Divide a®*— b by a—b.
3. Divide 2*+a® by z +a.

4. Divide 2* —a* by # —a. What is the degree of
the quotient as regards z? Is it homogeneous as re-
gards = ?

5. Divide «* + y* —3axy +a® by 2+ y + a by treat-
ing *4+y+ a as a binomial (z+ y) +a and using the
result of Ex. 3.

6. If & + 3z + a is exactly divisible by =+ 2, what
is the value of a ?
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CHAPTER V.
THEORY OF EXPONENTS.

39. Integral exponents. We have seen in previous
chapters that

(@) (@) =,

aﬂ
and —=qm™ ",
aﬂ

m and » representing integral numbers.
It may also be shown that

(am)n = a,um,
(ab)™ = amb™,
LA
b)
m and = being positive and integral.
For (@)y*=a".a™-a™-.. to n factors,
= am+m+m wton tarml,
P aﬂm P aﬂ'l'
Similarly (ab)™=ab - ab - ab .. to m factors,

=(a-a-a---tomfactors)(b:b-b--- tom factors),

= a™b™.
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Also (A" _a . g a :
(b) 55 b to m factors,
_a-a-a---tom factors
b-b.b-... to m factors’
_a
o™
Thus we have the five formulas:-
1. (a™) (a™) = a™*™,
g.".‘ =qm™ "
aﬂ
(am)n p— amn.

(ab)™ = amb™

45

It remains to note the origin and significance of frac-
tional exponents.

oU

40. Reciprocal exponents. Suppose that any quantity
a is to be resolved into m equal factors. Can we give a
an exponent such that if o with this exponent is raised
to the mth power the result shall be simply a? If this’
can be done, the exponent in question serves to indi-
cate one of the m equal factors of a, or the mth root
of a, as it is usually called.

Let us write

a=a.a.al ... to m factors.
What common exponent is required within the paren-

theses ?
By the law for multiplication, we have from the as-

sumed expression



THEORY OF EXPONENTS. 37

a® . a . a0 ... to m factors

= @)+ 0O+ . to mterms

. =q0;

hence a=am0;
but a means a'; .
therefore m()=1,

and hence the quantity required within the parentheses
1
can be none other than s and we have a™, m being posi-

tive and integral, signifying the mth root of a.

For example, the square root of any quantity is indi-
cated by giving the quantity the exponent }; the cube
root, that is, one of the three equal factors of a quantity,
is indicated by the exponent }.

The student should carefully observe that this meaning of an
exponent of the form nlz’ m being positive and integral, is not

itself a convention ; it follows necessarily from the primary con-
vention that the product of m factors, each equal to a, shall be
indicated by am™.

41. Positive fractional exponents. Suppose that any
quantity, as @, is resolved into m equal factors and n of
these factors are then multiplied together; we have thus

1 n
a power of a root, and it is evidently expressed by (a"_') .

I\n 1 1 1
But (a"‘) =a™-a™.a™..- to n factors

a%+:—‘+"l.+ « to n terms
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Therefore, to raise any root of a quantity to any power,
multiply the exponent indicating the root by the index of
the power.

It has just been shown that a positive fractional ex-
ponent indicates two operations. If we can show that

1yn 1
(Cl-"') = (a")™,
we must conclude that the order in which these opera-

tions are performed does not affect the result.
‘Writing as in the preceding article,

ar=a) . a0 . @ ... to m factors,

we have a = @rO+nO+n() + = to m terms
. anm( ) ;
hence mn()=n,

~ and therefore the quantity required within the paren-

a(X
theses must be —1-, and we have a ® as the mth root of a;
m

e "
but aQ ("‘) =a"™,
I\n »
and as (a;) has also been found equal to a™, it follows that

L 1
(am) — (an)vn.
But the first of these expressions indicates a power of
a root, and the second indicates a root of a power.

Therefore the order of performing these operations does
not affect the result.

42, Negative fractional exponents. A quantity affected
with a negative fractional exponent is equal to the recip-
rocal of the quantity with the sign of the exponent
changed. :
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For suppose we have

n

* in which ™ <&,
; n"
that is, i < =P,
mq mq
and therefore ng < mp;

(see chapter on inequalities).

Now let a™M=b;
n ng
am _a™__hm mp 1
then _’;=_."‘_;_W=bnq p—m'
a?  a™
1
Replacing b by its value a™,
1\ (ng-mp)
(a"'") o = —1—1—-——;
1\ —(ng-mp)
(a™)
b n_p 1
that is ar 1=
) a_(;‘_g)

43. Employing the method of Art. 42, we may show
that

VR n.p
(@) (as) = a='.
Formulas 1 and 2 of Art. 39 are thus found to hold for

fractional exponents as well as for integral.
To prove formula 3 for fractional exponents, that is, to

show that
n.p np
(‘1';')i = a™,
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we notice that it has already been shown (Art. 41) that

. o
() = a=;
consequently (czba”)”i = (a%»);’

and we have only to prove that the gth root of this last
expression is indicated by multiplying the denominator

by ¢.
As in former cases, let
pn o
avn__.am() M()’am()"'toqfaﬂtors

_ EO) e

=)

_am

Therefore vl jp "( )
m

and hence the parenthetical factor must be 1
) q

m o pn
Hence one of the ¢ equal factors of a™ is a™;

therefore (a"‘)" = a':‘;

44. To show that (ab)™=a™b™,
we have already (adb)* = a™d";
. 1
therefore (ab)™ = (a"b™)™
. 1
=[(a-a-a-ton factors)(b - b+ b - to n factors)]™

Since factors may be grouped in any manner without
affecting the result, let us group the » factors of the first



THEORY OF EXPONENTS. 41

parenthetical group into m equal groups, and the » fac-
tors of the second parenthetical group into m equal
groups. If we now associate one of the first of these
factors with one of the second, we shall evidently have
one of the m equal factors of the expression within the

brackets; but a factor out of the first group is a™ and

one out of the second is ™.

1 n n
Hence (@)™ = amb™;
and therefore (ab)™ = a™b™.

45. Finally, we may show that

by making it a case under the formula just established.

For %: a(%) = ab—l,
and hence (%)3 = (ab"l);= a;(b'l); ;

bus oy = (" (Art. 41)

therefore (%);‘:: aa/l> _a
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46. Since formulas 1, 2, 3, 4, 5 of Art. 39 have been
shown to hold for fractional exponents as well as for
integral exponents, the translation of the formulas must
accord with this fact. _

For example, formula 5 is equivalent to the theorem:

A quotient affected with any exponent, integral or
fractional, is equal to the quotient obtained if the divi-
dend and divisor are first separately affected with the
exponent.

EXAMPLES.
1. Establish the statement:

(1) when m is positive and » negative,
(2) when m is negative and n positive,
(8) when m is negative and n is negative.

2. Simplify the following expressions :
(@it @l hi;
PR BT (y*)’ -+

3. What are the numerical values of the following
expressions :

ghe (-2 W00}
() 136} ; RO

4. Write the square of g(e; )

5. Multiply a* — (1)°+a* by a ™+ a4+ (1)~
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6. Show by-the use of negative exponents that

6=

and thence state a rule for the multiplication of one
fraction by another.

7. Show in a similar manner that

+2-())

8. Examine the argument of Art. 41,
if ar = am0),
mn()=n.

9. If 2»=19" and p=g¢q, z=y. Prove and translate
this statement.
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CHAPTER VL
SURDS.

47. In the preceding chapter it has been shown that
the exponent —, m being positive and integral, denotes
m

that the quantity to which it belongs is to be resolved

into m equal factors and one of the factors taken. This

factor or mth root is also indicated by the radical sign ¥/,
1

and we have by definition Va is a™, m being the index of
the root. If m is 2 in any case, it is customary not to
express the index.

Thus a? is also written V/a.

48. A surd is an indicated root which cannot be exactly
extracted.

Thus V5 Va® Va? + g are surds.

The term irrational quantity is also applied to a quan-
tity such that an indicated root cannot be exactly found.

Quantities not belonging to the class drrational are
termed rational.

The radical sign may oceur in connection with a
rational quantity; that is, we may have rational quan-
tities in surd form.

VA& /8, ¥a™ are examples of rational quantities
in surd form.

Both true surds and pseudo-surds are often called
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radicals. We shall use the terms surd and radical inter-
changeably.

The order of a surd is indicated by the surd index or
root symbol. '

Thus Va is a surd of the second order; /b is a surd
of the mth order.

Surds of the second order are also called quadratic
surds.

A mixed surd is one which can be resolved into an
irrational factor and a rational factor.

The rational factor is to be viewed as a coefficient of
the true surd.

When the irrational factor is integral, the surd is in
its simplest form.

Also, when surds of the same order contain the same
irrational factor, they are said to be similar or like.

49. Since a surd can always be expressed by means of
a fractional exponent, it is evident that rules for the
treatment of surds must be sought in the principles of
exponents.

For example, if we wish to simplify the third order

surd /16 a’z®, we notice that
VI6d = (160} = (8)} Q) (@) (@)t

Performing the operations indicated, so far as they
can be performed,

V1602 = 2022 2 @)t = 2 aa? V2 a.

It thus appears that the given expression is a mixed
surd, and that by means of theorems regarding exponents
we are able to resolve it into an irrational factor v2a
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and a rational one V/8a%#; this last factor is equal
to 2 ax? and becomes the coefficient of the first factor.

The student is not to infer from this example, however, that in
order to handle a surd it is necessary to convert it into an equiva-
lent expression with fractional exponents. In practice, surds
(radicals) are usually transformed without the introduction of
fractional exponents.

50. Reduction of a surd to its simplest form. Let abd
be any quantity whose mth root is indicated.

1 11
Then Vab = (ab) = amb™ (Art. 44)
= Va¥b.

If now a and m are such quantities that we can actually
extract the mth root of a, whilst b is such a quantity that
it contains no factor whose mth root can be extracted, the
given surd is reduced to its simplest form by expressing
it Va¥b.

This process may evidently be applied to a quantity
containing any number of factors.

51. Surds of different orders can be reduced to the
same order; for if we have ¥/a and Vb,

1
%=a”‘=a’""="%,
1 m
and Vb =b" =bp™ ="V
These surds are reduced to the same order by raising
each quantity under the radical sign to a power equal to
the surd index of the other quantity, and then giving to

each resulting quantity a surd index equal to the product
of the two surd indices.
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If the surd indices have a least (or lowest) common
multiple, we may take advantage of the fact.

For example, let it be required to reduce Va and v/b
to the same order. 24 is seen to be the least common
multiple of the indices.

va = %=a,241'=%‘;
and %=b%=b‘§;=w.

52. Addition of surds. Reduce the given surds to like
surds of the simplest form. Take the algebraic sum of the
coefficients of the common surd factor, and write this sum
as the coefficient of the surd factor.

If surds are unlike, whether the unlikeness is due to
the surds being of different degrees, or being different
irrational quantities of the same degree, their coeﬁclents
cannot be collected.

53. Subtraction of surds. Reduce the two given surds
to like surds of the simplest form. Regard the sign of the
subtrahend as the opposite of that which it actually is, and
proceed as in addition.

54. Product of two surds of the same order. If it is
required to multiply p¥a by ¢¥b, we have

1 1 1
(p¥Va)(q V) = pg (a7) (v) = pg (ab)* = pgVab ;

hence, to multiply together two (or more) surds of the
same order, multiply together the quantities under the radi-
cal sign, and write, as a coefficient of the surd, the product
of the rational factors.

To multiply together surds of different orders, reduce
the given surds to equivalent surds of the same order, and
proceed as before.
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55. Quotient of two surds of the same order. The rule
is inferred at once from the corresponding rule for multi-
plication.

Divide the rational factor of the dividend by the rational
Jactor of the divisor; make this quotient the coefficient of
the irrational factor of the dividend divided by the {rrational
Jactor of the divisor.

Similarly, to divide a surd of one order by a surd of
another order, reduce them to equivalent surds of the same
order and proceed as in the previous case.

56. Rationalization of the denominator. If the division
of one surd by another is indicated by the horizontal bar,
giving a surd fraction of the form -:Lg, the denominator
is said to be rationalized when we multiply both numer-
ator and denominator by any quantity which renders the
denominator rational.

Thus i/z) = \/7\3/5-
vio T

Of course we might rationalize the numerator instead
of the denominator, and cases will arise where this is the
preferable transformation to make; but in general in divi-
sion, if either dividend or divisor must be sacrificed as
regards simplicity of form, it is advantageous to secure a
simple divisor even at the expense of the dividend. The
student will discover the reason for this if he will make
a comparative study of the two cases; one in which the
divisor is a simple quantity, and another in which the
divisor is such a quantity as

3.14159, or 1 + V2, or x —

2 P
2 T3¢t
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57. The commonest case requiring rationalization of
the denominator is that of a fraction in which the
denominator is a binomial with one or both terms surds
of the second order.

Ya
Vb + Ve
comes a surd with a rational denominator by multiplying
both numerator and denominator by Vb — V.

Va
b—+Ve
numerator and denominator by Vb + Ve.

When two binomial quadratic surds differ only in the
sign which connects the terms, they are said to be con-
jugate.

Thus Vb + Ve and Vb — Ve are conjugate. The
product of two conjugate surds is a rational quantity;

for (Vb + Vo) (Vb — Vo) = (VB — (Ve =b—vc.

58. For the purposes of a subsequent article in the
theory of equations, we shall now prove that the square
root of a rational quantity cannot be partly rational and
partly a quadratic surd.

Let us assume that the contrary is true, and suppose

Va="b+ Ve;
squaring these equal expressions, we have
a=0+2bVec+e,

2
and therefore Ve= a_—zcb;b'

As the result of our assumption, we have the statement
that a surd is equal to a rational quantity, which is
impossible; therefore the assumption must be discarded.

If we have the expression immediately be-

Likewise, is rationalized by multiplying both
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EXAMPLES.

1. Reduce the following expressions to their simplest
forms :

@— @ —P@—y)It;  V338pig; ”—;—\/__—63m

2. Write the simplest expression for the sum of

Vdd, —Vab?, (a—b)Va.

3. Find the sum of Vetd+ve—d
rocal. —Ve—d+Ve+d

4. Write the square of v} + 3V/3.

5. Divide \‘/§ by \/5
Yy x

and its recip-

6. Prove that :/—5 = "‘3, and state as a theorem.
Yy Vy

7. Write the following fractions with their denomina-
tors rationalized :

VBE—1 VIF#E—2. @
T+3V8 Vi+&—3 VE+LB+b

8. Write the quotient of @ — b +Va —Vb.

9. The answer to a certain problem in dynamics was

given as 10V2 —+/3; a student obtained as the answer,
5v2(v/8 —1). Do the two expressions agree ?

10. “If two expressions are equal, their like powers
" are equal.”” Establish the proposition.
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11. State and prove a theorem corresponding to the
one given in Ex. 10.

12. Why is not Va+Vb=+Va+b?

13. Given aV/b; it is required to deyive an equivalent
form in which the rational factor shall be under the radi-
cal sign. State a rule for all such cases.

14. Establish independently of the rule for multipli-
cation,

(1) the rule for division of surds of the same order;

(2) the rule for division of surds of different orders.
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*CHAPTER VII.
IMAGINARY QUANTITIES.

5§9. In considering the subject of multiplication we
found that the product of an even number of negative
factors is a positive quantity. If the factors are all
equal, we have merely a special case symbolically ex-
pressed by (— @)™, in which a is positive and m is an
even number.

Now since (—a)"=+a™,

it follows that such a form as — a™, a being positive and
m being even, cannot arise by the ordinary process of
raising a quantity to an even power. Consequently, the
reverse operation, namely the extraction of an even root
of a negative quantity, cannot be performed.

Nevertheless it is convenient to recognize such expres-
sions as indicated even roots of negative quantities, and to
call them imaginary quantities as distinguished from all
other quantities, which are spoken of as real.

60. The commonest imaginary quantity is an indicated
square root of a negative quantity.

By V—a, in which a itself is positive, we shall not
mean any possible arithmetical operation, but shall define
the expression by the statement,

\ V=a)(vV=a)=—a.
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61. Just as a surd admits of simplifying when it can
be resolved into a rational factor and an irrational one,
so the imaginary quantity vV — a may be expressed as
the product of a real factor and an imaginary factor and
thus simplified.

For by definition,

V-D)(V-1)=-1;5
therefore (Vav—1)(VaVv—1)=(—-1)VaVa;
that is, (Vav=1)'=(—1a=—a;
hence Vav—=—1=+v"a.

But this result is what we obtain if we treat vV — a as
surds are treated, writing

V=a=va(=1) = Vav—1.

The imaginary factor v/ —1 is called the imaginary
unit.

An expression of the form a + bV — 1, in which a and
b are real quantities, is called a complex number. If the
real term is zero, the expression is called a pure imaginary.

Since V— a = VaVv —1, it will be seen that rules for
the treatment of imaginaries follow the rules for surds,
and need not be here repeated.

62. Two complex expressions differing only in the
sign preceding the imaginary part are said to be con-
jugate.

We notice two important properties of conjugate im-
aginaries:

1. The sum of two conjugate imaginaries is a real
quantity ;

for @+dvV-=1)+ (a—dV—-1)=2a.
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2. The product of two conjugate imaginaries i8 a real
quantity ;

for (a+b0V—1)(a—-dV—-1)=a’— (bV-1)(dV-1)
=a -0V (—1)=a"+ 0%

63. If the complex quantity a4+ bV —1 is equal to
zero, @ and b are individually equal to zero;
for, from the supposition

a+bvV—-1=0,
we have a=—bV/—1;
and therefore = b (V—1);
that is, a?= — b
and hence a*+b2=0.

But a? and b% are each positive, and the sum of two
positive quantities cannot be zero unless each of the
quantities is zero.

64. The preceding article affords a fair specimen of the kind of
reasoning which prevails in mathematics. (See last chapter.)

As regards form, the proposition follows the type form,

If ais B, vis 3§,
in which the condition, if « i3 B, is specialized as ‘if the complex
quantity @ + bV — T is equal to zero,’ and the conclusion, vy i3 3, is
specialized as ¢ @ and b are individually equal to zero.’

The process of establishing the conclusion, vy is 3, is merely a
matter of setting down in algebraic shorthand a few propositions
which are in accordance with the primary principles of quantita-
tive relations.

A first conclusion is reached, and this in turn becomes a condi-

tion which compels a second conclusion. By repetitions of this
process, the final conclusion is reached.
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EXAMPLES.

1. For the follo;aving expressions write equivalent ones
with real denominators:
z—yvV—1, 2—+V—-3. a+Va
Ve+v—y 1-V=-2 a+V-a

2. Simplify the expressions :

2+V=63; Vzli+V—a (%‘_1)*

3. Simplify 3V —20 +2V—27 —v/—50.
4. Divide vI8 by V—8L

5. Rationalize the denominator of
a+dbV—1_ a—V—b
a—V—b a+bv—-1
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CHAPTER VIIIL

FACTORS.

65. When an algebraic expression and one of its fac-
tors are given, the rules for division enable us to find a
third expression, which, multiplied by the given factor,
produces the given expression.

In factoring proper, however, no factor is given to start
with, and we must then discover factors either by inspec-
tion or by trial or by classifying the given expression as
some recognizable form whose factors are known.

Certain kinds of factors are often more desirable than
other kinds. In order to discuss them, we notice that
algebraic expressions admit of a classification based on
the absence from the denominator of letters with posi-
tive exponents; or, what comes to the same thing, on
the absence from the numerator of letters with negative
exponents.

If there is no letter symbol of quantity with a nega-
tive exponent in the numerator of any term of the given
expression, the expression is said to be integral. ’

For example, ax + b is an integral expression in each

one of the letters a, z, b; % is integral as regards @, but
not as regards a; a%-‘_ bx + ¢ is an integral expression

as regards x, because x~?in the denominator may be
written 2* in the numerator.
As we have already seen, an expression is rational if
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none of its terms contain quantities with fractional expo-
nents.

It follows that, in order to be both rational and integral,
an expression written with all of its letters in the numer-
ator must not contain negative or fractional exponents.

When a rational integral expression is given, we are
to understand, if nothing is said to the contrary, that
by its factors are meant rational integral factors. This
limitation makes the work of factoring definite and often
short; for it is obvious that if factors with negative or
fractional exponents are admitted, there is no limit to
the variety of factors into which an expression may be
decomposed or resolved.

Thus the rational integral monomial 3 ez’ is seen to
have the numerical factor 3, the rational integral factors
a and y, together with two other rational integral factors
x, «; but if the factors are not thus limited, y, for in-
stance, may be further resolved into y* y* or y‘}, y‘, or
y~% o ete. ; and so with the others.

66. Among expressions which are to be recognized as
factorable into particular binomial factors, which may or
may not be rational and integral, are the following:

1. A trinomial so constituted that two of its terms
have like signs and the third term is plus or minus twice
the product of the square roots of the other two terms is
factorable.

That is, a + b + ¢ is factorable if @ and b have like
signs, and if ¢ = 2V ab.

‘We then have, if a and b are both positive,

a+b+2Vab = (Va+vb) (Va+Vb);
and a4+ b—2Vab=(Va—Vb)(Va—Vb).
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If a and b are both negative, we remove the factor — 1
and proceed as before; then

—a—b—2Vab= —1(a+ b+2Vab)
= —1(Va+Vb) (Va+Vb);
also —a—b+2vab= —1(Va—Vb) (Va—Vd).

2. An expression consisting of the difference of two
quantities is factorable.
That is, a — b is factorable,

for a—b= (Va+Vvb) (Va—Vb).

3. An expression consisting of the sum of two quan-
tities is factorable.
That is, a + b is factorable,

for a+bd=(Va+Vvtv-1)(Va—-VvVbv-1).

As examples of these three cases, 9a%®+ 6axy + y*
has for its factors, 3ax+y and 3ax + y, because the
terms 9a’*? and 3* have like signs and the third term
6axy is twice the product of the square roots of the
other terms.

3a'r* — 2aba’yV3a + b’ = (wa’V3a — by)* for the
same reasons which were found in the first example.

4 2? — 31 has for its factors 22 +Vv3y and 22 — V3.

Similarly, 2+ 4y* may be resolved into the factors
z+42yvV—1and z—2yvV -1

The recognition of the factorability of an expression

,of the form of ax®?+ by* is of importance in analytic
geometry.

67. Itistobe noticed in the three cases just presented
that the binomial factors are rational and integral as
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regards certain letters only when those letters are of
even dimensions in the given expression.
Thus we have in general,

™ + by + 2Vabaty = (Vas® £ Vo)

Now Vax? +Vby? is a rational integral expression in
2 and y if both m and n are even numbers ; but if either
m or n is an odd number, the expression is not integral.

It should be noticed that the expression is rational
and integral in « and y; a and b are viewed as coeffi-
cients and hence there is no objection to the surds Va
and Vb appearing in the factors.

Again,
ao — by = (Vaot +-vBy) (Vaa® — Vi),

and
az” + by = (Vaw® ++=Iviy)(Vazt —v =TIV,

and these factors are integral expressions in z and 'y if
m and n are even numbers; but if either m or n is an
odd number, the factors are not integral.

68. Other forms which may be immediately factored
are: 2™ — y™, m being any integer; «™ 4 y™, m being an
odd number.

One factor in each case is a linear homogeneous bino-
mial; it is left to the student to discover what the
binomial is, and to note the characteristics of the other
factor as regards degree, homogeneity, symmetry, factor-
ability, ete.

69. The general non-homogeneous quadratic expres-
sion in one quantity, as x, requires especial attention
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because of its very frequent occurrence in elementary
mathematics. The expression in question may be writ-
ten ax®+ bx + c¢; evidently it is not the square of an
integral linear expression unless the coefficients a, b, c,
are so related that

b=2Vac,
bﬁ
and therefore C=—.
4a

Now if we are at liberty to change the expression by
adding 4i — ¢ to it, we have
a

b? b
am’+bz+c+<——c)=ax’+ba:+-—
4a 4a

b 2
= m\/& + _—) .
(Voo
Similarly, \ \
b = __b.\.
ax? bx+c+(4—a—c)_(x\/a 2\/_)

The quadratic expression aa’+ bx + ¢ sometimes ad-
mits of resolution into two unequal linear factors, no
change being made in the absolute term. Suppose the
factors are ma + p and nz + ¢; then

aa? + bz 4 ¢ = mna® + (gm + pr)x + py,
and mn=a, gm +pn=>0, pg=c.

In the case of the simpler trinomials, which admit of
resolution into two unequal linear factors, inspection will
usually show the values of m, », p, q.

For example, * + 5z 4 6 = (x + 3) (x + 2).

mn is unity in this case, and p and ¢ must be numbers
such that their product shall be six and their sum five.
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Again, @?+22—3=(@x—1)(@+3).

mn is unity in this example also; and either p or ¢ must
be a negative quantity, since pg= — 3; and since the
sum of p and ¢ is two, the positive quantity must be
three, and the negative quantity must be unity with the
minus sign.

70. H.C.F. The highest common factor of two or
more expressions is the factor of highest degree which
will exactly divide each of them. On the one hand, it
cannot contain any factor not found in each of the ex-
pressions; and on the other hand, it must contain every
factor common to each of the expressions, and contain it
as many times as it is found in that expression which
contains it the fewest number of times.

If the given expressions are analyzed into their fac-
tors, the H. C. F. may be at once formed. If the given
expressions are two polynomials, the H. C.F. is usually
found without preliminary factoring.

Let N and = represent the two polynomials having no
common monomial factors, and suppose N of higher de-
gree than n.

If »n will exactly divide N, it is of course the required
H.C.F.; but, in general, one of the polynomial expres-
sions will not exactly divide the other.

Now let the operation of dividing N by n be begun.
The first remainder will consist of the dividend N minus
some multiple of the divisor n; call the multiple g¢n.
Then this remainder N — gn will be exactly divisible by
the H. C. F., because each term of it is divisible by the
H.C.F.

Let the division of N by » be continued until the re-
mainder is of a lower degree than the divisor. The
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H.C.F. must exactly divide this last remainder for the
same reason that it divides the first remainder. There-
fore, we may as well begin anew, and divide the divisor
n by this remainder, precisely as if they were the two
expressions given at the outset.

By continuing this operation of dividing the last divisor
used by the last remainder found, we come at length upon
a remainder and divisor such that the remainder will ex-
actly divide the divisor used as a dividend. In this case
the last remainder, used as a divisor, is the H.C.F. of
the given expressions.

The conclusion just stated is based on the supposition
that N and » have an H.C.F. higher than the zero de-
gree. However, if the process of divisions has to be
continued until the last remainder used as a divisor is
a linear expression and is not exactly contained in the
dividend, we must conclude that N and = have no
H.C.F.

To illustrate the process above described, let it be re-
quired to find the H. C. F. of

©®?+42°+4+62x+4 and 2*+32+2.

In the first place, we observe that these two expres-
sions have no common monomial factor. If they had
such a factor, we should take it out and set it aside as
one of the factors of the H.C. F.

In the second place, since the H. C. F. will contain only
factors common to the two expressions, we may introduce
any desired factor into one of the expressions. Since it
is not introduced into the other, it is not a factor of the
H.C.F., and hence it will not affect the result. In this
particular example, however, we shall have no occasion
to introduce any factor at any stage of the operation.
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Performing the divisions, we have the following opera-
tion: .
?+422+6x+4(@+304+2
43224+ 2x (z +1

2?44+ 4
2?4+ 3x+2

24+3c+2(@x+2

o422 (x+1
z4+2
x4+ 2

We have thus found that the required H.C.F. is the
divisor = + 2.

The student should compare this operation step by
step with the theory as outlined.

EXAMPLES.
1. Factor the following expressions:
9a? — 2593; 2+ 5 4y*+ 1622
3 + a; o 4yt — 2 amy™; P — ¢

2. Given (ax®+ bwy + cy®). Place the factor a* out-
side of the parentheses. What will be the degree of
thé factor remaining within the parentheses? Will it
be homogeneous ?

3. Write the homogeneous expression of the nth de-
gree in « and y,

PR+ px™ Y+ pgrt o - +p.._xw’y""’+p..wy""‘+p,.+ly",

as an expression of the nth degree in g
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Note. Thus far we have used only letters of the English alpha-
bet to represent quantity ; but it will often be convenient to use
Greek letters, and also English letters with subscripts and primes.

Thus a' is read, * ¢ prime’; a'’ is read, ¢ a second,’ or ¢ a double
prime’; po is read, ‘p sub zero’; ns is read, ¢ n sub three.” The
student will readily see the advantage gained by the use of the
coefficient symbols p;, ps, -+ Pas+1, instead of such coefficients
asa,b,c, .-

4. Employ the method of Art. 70 to determine

whether #* — 22— 6x+4 and 32’ —42x—6 have an
H.C.F.

6. Find the H. C. F. of 2*—32*+22—6 and
322 -6z + 2.
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CHAPTER IX.
EQUATIONS.

71. Thus far we have discussed transformations of
algebraic expressions, the transformations being effected
according to primary laws and by means of an adopted
symbolism.

We have now to consider simultaneous transforma-
tions of two algebraic expressions which are equal to
each other.

The statement that two expressions are equal to each
other is made by means of the verb symbol = (‘equals’).
The statement itself is called an equation.

Suppose that A4 represents any algebraic expression,
and A' any other algebraic expression. The statement
A= A" means that the two expressions, although dif-
ferent in form, are the same in value.

The expressions .4, A4' are called the members or sides
of the equation.

72. Law of the equation. The fundamental law gov-
erning transformations of equations is as follows:

If the same operation be performed on two equal expres-
sions, the resulting expressions will be equal.

The law itself rests on the still more fundamental fact
of experience, that magnitudes or values or quantities are
independent of the method of measuring them and of the
method of expressing their measure.
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73. Just as various adjectives were found convenient
in describing and classifying various kinds of expres-
sions, so we shall use the same adjectives to describe the
equations containing the expressions to which the various
adjectives are applied.

To illustrate this new use of old terms, and also to
introduce certain new terms, let us consider the state-
ment '

ax = b. @

According to the law given in Art. 72, if we subtract
the same any quantity from each member of equation
(1), the expression for the remainders will be equal, and
hence will constitute an equation. Subtracting b from
both members, we have

az—b=0. @

The advantage of subtracting b in this case is that the
expression for the right-hand remainder is zero; and we
thus have the expression for the left-hand remainder
equal to zero. In general, if A= A4'is the initial form
of any equation, we shall bring it to the form 4 —4'=0
before beginning its study.

It should be noted that the operation which is actually
performed is that of subtracting the second member from
each member of the equation; but it is often described
as transposing A'to the left-hand side of the equation.

Besides writing equation (1) in the form numbered (2),
the law of the equation permits us to divide each mem-
ber of equation (1) by the same any quantity. Dividing
by a, we have

IS

; ®
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so that, observing the conditional form,

if ais B, yis

we have,

i w—b=0, z=2.
a

74. Root of an equation. If at the outset we did not
know the value of 2, and if we imagined that it might
have a variety of values, we have found that it has one
and only one value, and we have obtained this value as
an expression in terms of the other symbols of quantity
a and b, each of which is supposed to be known.

In arriving at the conclusion « = g, we solve the equa-

tion for the unknown quantity . The expression b i
called the root of the equation. @
We define a root of an equation as a value of the
unknown quantity, which, being substituted for the un-
known quantity in the given equation, will make the
equation take such a form as to state that an expression
is equal to itself. This is called satisfying the equation.

Thus, if we replace = by 3 in equation (1), we have

s b=0.

The reason why we define a root as a value, instead of
the value of the unknown quantity, will be seen later.

The term ‘root’ as here used must not be confused
with the term when used for one of the equal factors of
a quantity.



68 ALGEBRA.

75. Linear equations. The expression ax —b, in the
equation ax — b =0, is seen to be a linear non-homo-
geneous expression inx ; the equation is therefore called
a linear non-homogeneous equation in 2. It is also called
a literal or general equation because the general quantities
a and b enter into it. If a and b receive particular nu-
merical values, the equation is then said to be numerical.

Thus the equations 2 + 7 =0, 3¢ — } =0, are numer-
ical equations.

Finally, we notice that the solution of the general
equation of the first degree in one unknown quantity,
by virtue of its being general, includes the solution of
any particular (numerical) equation belonging to the
type equation ax — b= 0; and if we translate the state-

ment v= we have a proposition describing the root.

The formal translation is: If an equation of the first
degree in one unknown quantity be written in the form
ax + b =0, the root of the equation is the quotient ob-
tained by dividing the absolute term with its sign
changed by the coefficient of the unknown quantity.

According to this theorem, the root of the equation
3z —1=0 is {%; the root of the equation 2+ 7=0
is —1T7.

76. In the preceding article we have been careful to
describe the equation axz — b =0 as an equation in one
unknown quantity. Suppose this limitation removed, so
that we have one equation of the first degree in two (or
more) unknown quantities; for example, let the equation
be

ax + by +c¢=0, 0))

in which « and y are unknown.
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For the moment, let us regard (4) as an equation in z
alone. Solving for x as in the previous article, we have

Now an unknown quantity cannot be said to be known
when it is expressed in terms of another unknown; and
since this value of « contains the unknown y, it is plain
that if we have no means of determining y, if we grant
that it may have this or that or any value, we then can-
not determine x; it also has various values, changing
when y changes.

It thus appears that a single equation in two unknown
quantities does not admit of solution in the same sense
that a single equation in one unknown quantity admits
of it.

x

77. Suppose now that, besides having equation (4) con-
cerning « and ¥y, we have the accompanying statement,

a'z+by+c'=0. 6)
From (4), as already noticed,
— (by+c¢
similarly, from (6),
!,
= —'(by"" c'). (7)
a

Since (4) and (6) relate to the same quantity, repre-
sented by z, expressions (5) and (7) for this quantity
must be equal to each other. That is,

—(y+o)_ —(y+e)
a - a'

®
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Equation (8) is now an equation in the one unknown
quantity y. Several operations performed mentally and
justified by the law of the equation give us

g_¢
a' a ac'—ca

y=b D ab—ab )
a a

and as this y is the y of (4), we may return to that
equation and substitute expression (9) for y; we then

have
ax 4 b( - ab’)+c—

ac' — ca'
h I:c " b(a'b - avb'):l
ence = )

a

From this it appears that with two linear equations in
two unknown quantities we are able to find the values of
the unknown quantities in terms of known coefficients.

78. When associated equations are statements about
the same quantity or quantities, they are said to be simul-
taneous.

Thus equations (4) and (6) in the preceding article are
simultaneous. If the z and y of (6) had not been the
« and y of (4), we could not have made the combinations
which were made.

Again, when associated equations are different state-
ments about the same quantity or quantities, they are
said to be independent. By different statements we do
not mean that they are contradictory, but that one can-
not be derived from the other. If a',d’,¢'in (6) are so
related to a, b, ¢ in (4) that a' = na, d'=nb, ¢' =nc, the
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two equations are not independent; for, by dividing both
members of (6) by n, we should have (4).

79. Summarizing results thus far reached, one equa-
tion in one unknown quantity is sufficient for the deter-
mination of that unknown; and two equations in two
unknown quantities are sufficient for the determination
of the two unknown quantities; but one equation in two
unknown quantities is not sufficient for the determination
of those quantities.

In general, if we have n unknowns, we need n simul-
taneous independent equations in order to find the values
of the unknowns.

Suppose the equations are:

ax+by+ez+ o +q=0 @
aza+bzy+cgz+ +q2-—0 2
a,,z+b,J+cz+ +q,,—0 (n)

in 2, ¥, 2, --- to n unknown quantities.

From equation (1) we may write the value of z in
terms of the coefficients of the equation and the other
unknown quantities. Substituting this value of z in the
n — 1 remaining equations, these equations will contain
only g, 2, - to n — 1 unknown quantities.

From (2) we may now write the value of y, and substi-
tute it in the » — 2 remaining equations, which will then
contain only

, -+» t0 n — 2 unknown quantities.

Proceeding in this way, we arrive at length at the nth
equation, which will contain only one unknown quantity.
If we had started with n — 1 (or fewer) equations in
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n unknown quantities, we should reach, by the process
above described, a single equation in two (or more) un-
known quantities; and, as we have seen, such an equation
cannot be solved in the sense that we find one root or a
few roots.

It is to be noticed that the order of using the n equa-
tions, and likewise the order of eliminating the unknown
quantities, is of no consequence.

Thus we might have begun with the nth or » — 2th
equation, and solved first for y or 2.

80. In the above argument the equations used are all
linear, because we have thus far discussed only linear
equations; but if they were of different degrees, and we
knew how to solve equations of higher degrees than the
first, the outcome would be the same: we should need as
many equations as we have unknown quantities, in order
to find the values of the unknown quantities.

81. The inquiring student will now naturally ask,
what would happen if we had more equations than we
have unknown quantities ?

To answer this question, let us cons1der the simplest
possible case.

Suppose we have two simultaneous equatlons in one
unknown quantity, and let them bz

ar+b=0 and a'z+b'=0.

From the first r= — 3,
!
and from the second 2= —9.';
a
hence b_ Y ;
a a
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and if b' = nb,
we have also a'=na;

and, consequently, the equations are not independent.
But if it be insisted upon that they are independent,

'
we then must not equate 2 and 3’; we can only say that
the results are discordant and that by some means or
!
other, with the two values of z, g and g—, as material,

we must determine the most probable value of . The
theory of the determination of the most probable values
of » unknown quantities, when more than n equations
are given, belongs to a branch of mathematics far in
advance of elementary algebra and can only be referred
to here. It may be added that the problem of the solu-
tion of » equations involving fewer than » unknown quan-
tities, is a problem of constant occurrence in certain
branches of science.

82. We pass now to the study of the equation which
arises when a quadratic expression in any one quantity
is equated to zero.

The most general form of such an equation is

ar’ 4+ bx + ¢ =0, @

in which the coefficients a, b, ¢ represent any quantities
positive or negative, integral or fractional, rational or
irrational. '

In attempting to factor the expression aa?+4 bz + ¢
(Art. 69), we observed that if we are permitted to add

2
41- — ¢ to the expression, it becomes a perfect square.
a



T4 ALGEBRA.

The law of the equation does permit us to add any
quantity we please to both members of the equation.

Adding 4b—2 — ¢ to each member of equation (1), we have
a

2
ax’+bm+c+4b—a—c=£—c; @
. b 2 2
that is, (\/Ea; + 2712) = 4.%.’_ ¢
2
and hence \/E,x+2_\b/__;=i 4b_a—c;
hence a:=—i;t—1—- b —4ac. 3)
207 2a

Since we have now solved for « in the most general
equation of the second degree in one unknown quantity,
it becomes important to make a careful study of the
result.

However, instead of using the form just obtained, there
will be found to be a certain advantage in first dividing
both members of equation (1) by the coefficient of «°.
We then have

F4+lz4=0. @
a a
For convenience, let f—i: p and %: q.

Equation (4) then becomes
o +pr+q=0, ®

an equation just as general as equation (1), but with
unity for the coefficient of the term of the highest
degree in z.
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To render the first member of equation (5) a perfect
2
square, we need to add P q to it.

4
r r
Then 372+P‘”+Q+Z""I=Z'—Q§ (6)
Py 2
that is, (:c +§> =%_q,

2
and hence x+g= \’%_q;
- [p?
therefore x= _g + % —q. o)

‘We notice that

(1) there are two roots, as contrasted with the one root
of the corresponding first degree equation; in reading
expression (7), the double sign must be read, ¢ plus and
minus,’ not ¢ plus or minus’;

(2) the roots are binomial in form, and differ only in
the sign preceding the surd term;

(3) the first term of each root is half the coefficient of
the first power of x, with its sign changed; and the sec-
ond term is the square root of the square of half the
coefficient of the first power of x, minus the absolute
term.

In speaking of the absolute term and the coefficient of the first
power of x, we mean each of these quantities taken with the sign
which precedes it.

83. Sum and product of the two roots. Denoting the
two roots of equation (5) by « and B, and writing expres-
sion (7) as two separate expressions, we have

’2
a=—§+ %"‘q:
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—_P_\P_
B=—3-N71—¢
Now if we add these expressions, we have
a+B=—p;

that is, the sum of the roots is the coefficient of the first
power of x, with its sign changed.
Again, if we multiply the roots together,

a=(~5+ V-0~V -o)

or, observing that we have the product of the sum and
difference of two quantities, and performing the indicated
operation,

B =q;
that is, the product of the roots is the absolute term.

The student should bear it in mind that the two theo-
rems just obtained assume that the coefficient of «* is
positive and is unity; that is, that the equation is
brought to the form

_ @ +pr+q=0
before solving. If the equation were in the form
— mat 4+ nx =71,

it would evidently not be true that the sum of the roots
is the coefficient of the first power of x, with its sign
changed, that is, —n. Neither would the product of
the roots equal r, the absolute term.

84. Since p and ¢ in equation (7) represent any quan-
tities whatever, it is obvious that the quantity beneath
the radical sign will be sometimes positive, sometimes
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negative, and sometimes it will be signless because its
value is zero.

To get the exact relation of p and g for these three
cases, we write expression (7) in the form

1, —
x=—gi§\/p'—4q. ()

(1) If p*>4gq, the expression p* — 4 ¢ is positive, and
therefore Vp® —4¢ is a real quantity, rational or irra-
tional.

@) If p*<4q, p*—4gq is negative, and therefore
VvV p®—4q is an imaginary quantity.

(3) If p’=4yq, the second term of each root is zero;

hence each root is in this case equal to — g

From the foregoing it follows that
(1) either both roots are real or both imaginary ;
(2) the condition that the roots shall be real is that
p*> or =4g;
(3) the condition that the roots shall be equal is that
pPP=4q.

85. Further observation of expression (7) shows that
if the absolute term ¢ is zero, one of the roots is zero;
namely, the root «, for then

2
a=—12—)+\,%=0;

also, if ¢ is zero, the other root becomes — p, for then

p=—p-\G=-»



78 ALGEBRA.

If p, the coefficient of the first power of «, is zero,
the expressions for the roots become

a=+V—yg,
B=—V—g;
that is, the two roots are numerically equal, with oppo-

site signs.
In case p is zero, equation (5) becomes

This form is called an incomplete or pure quadratic; it
may at once be written

o=—gq;
whence r=+V—gq,
as already seen.
Since Let+B=—p,
and aff =gq,

we may write equation (7)
2 —(e+ Bz +aB=0;
but the first member of this equation can be factored

into
( — )= — B);

(@ — )@ — B)=0.

From this it follows that if a quadratic expression of
the form a?+ px + ¢ be resolved into two linear non-
homogeneous factors of the form x — « and « — 8, « and
B are the roots of the equation obtained by equating the
given quadratic expression to zero.

Conversely, it two roots are given and it is required to
find the equation whose roots they are, we have only to

therefore we have
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subtract the given roots in succession from the unknown
quantity, to indicate the product of the binomials thus
formed, and to equate this product to zero.

Formula (7), the result of solving equation (5), should
be committed to memory so that the student may write
down at once the roots of any given quadratic equation.
This solution of the general equation renders it unneces-
sary to go through the operation of solving any particular
quadratic.

86. Any equation of the form
o™+ pa*+q=0

can evidently be solved as a quadratic; for if we put
z = =", the given incomplete equation of the 2nth degree
becomes

z2+pz+q=0’
2
whence =-1§D + % —q

and therefore m=\'/___£ \/E _
n 2:t i ¢

87. Homogeneous equations. — A homogeneous equation
is a homogeneous expression equated to zero.

Thus? ar? +bay +cf=0 (©)]

is the general homogeneous equation of the second degree
in two unknown quantities.
If we divide equation (9) by % we have

by ey’
a+m+x2—'0y
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and if we put 2 =g, this becomes

cz’+bz+a,=0,

which may now be solved as a quadratic in z; but it
must be noticed that in thus finding the value of z we

have merely found the ratio %; we do not know the
individual values of z and .

Some elementary algebra books give as examples of homoge-
neous equations such forms as
ax? + bxy + cy? =d;

that is, equations consisting of a homogeneous expression equated
to an absolute term which is not zero; but it is to be observed
that such an equation does not admit of the reduction and solution
above given. The importance of having all the terms of the same
dimensions will be appreciated by the student upon taking up the
study of higher algebra and analytic geometry. Consult Burnside
and Panton’s Theory of Equations (3d ed.), Art. 135; Loney’s
Coordinate Geometry, Art. 120; C. Smith’s Solid Geometry,
Art. 69.

88. The equation acquires its importance from the
fact that when a problem is stated in the language of
algebra, the statements are equations, and the solution
of the problem requires combinations and transforma-
tions of equations. Numerous illustrative examples may
be found in almost any elementary algebra text-book;
it is not in the plan of the present work to give such
examples, but rather to develop the theory of the quad-
ratic equation, together with the more important prin-
ciples relating to equations of higher degrees.
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CHAPTER X.
RATIO.

89. Ratio is the relative magnitude of the measures of
two quantities of the same kind.

This definition implies: (1) that we have two quanti-
ties of the same kind, as a handful of roses and another
handful of roses, or a line AB and another line CD, or
dynes and other dynes; (2) that a chosen unit of measure
is applied to the quantities of the same kind: thus the
line AB may contain the unit of measure a times while
the line CD contains it b times; (3) that these expres-
sions for the measures of the two quantities are then
compared. The method of making this quantitative
comparison is not by subtracting one expression from
the other and then saying that one is so much more
than the other; it is rather by dividing one expression
by the other and then saying that one is so many times
the other.

It is evident therefore that a ratio is always abstract.
It takes the form of a fraction and is subject to the
same rules to which fractions are subject; but whilst all
ratios imply division as do all fractions, it by no means
follows that all fractions are of the nature of ratios, for
some fractions, i.e. indicated divisions, are such that one
term may be a concrete quantity.

The ratio expression % is often written a:b in order

to distinguish it from an ordinary fraction. a is called
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the antecedent and b the consequent ; the two together are
called the terms of the ratio.

Whether ‘—; can be expressed in integral form or not,
it is impertant to realize that % is to be regarded as a

single expression representing the relative magnitude of
two quantities; with the absolute magnitude of either
quantity or term we are not concerned. In Part IL. of
this work the student will deal with ratios whose indi-
vidual terms are infinitely small; but the relative magni-
tudes of these terms, that is the ratios, will be expressed
by quantities that are in general finite.

90. Proportion. — If two ratios are equal to each other,
the equation thus formed is called a proportion. If the
two equal ratios are % and 2, the proportion is, by
definition,

a_c

b = d ) @
but to bring out the fact that it is an equality of ratios
rather than of ordinary fractions, it is often written

a:b=c:d, @)
and is read: ‘the ratio of a to b equals the ratio of ¢ to
d’; or more briefly: ‘a is to b as ¢ is to d.
The first and fourth terms of a proportion are called
the extremes ; the second and third terms are called the
means.

91. In order to reach various theorems regarding a
proportion, we only need to use form (1), performing
certain simple operations in accordance with the law of
the equation, and interpreting the results.
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If each member of equation (1) be multiplied by bd,
we have

@::-C_bi.
b d’
that is, ad = be.

But ad is the product of the extremes of proportion
(2), and bc is the product of the means. Hence, the
product of the extremes is equal to the product of the means.

Conversely, if ad = be,
the quantities a, b, ¢, d will be in proportion; for divid-
ing each member of the equation of the condition by bd,

ad_be.

bd bd’
hat i 9_¢
that 1s, b=a
and therefore a:b=c:d.

By similar steps, four additional conclusions are
reached. These associated operations may be exhibited
as follows:

(ad _bo
bd  bd .
i B carb=c:d; @)
ac _ 9¢
od  cd
sd bd vaxec=b:d; 3]
if ad =bc,{ad _ 0c
ol B . bra=d:c; 6))
¢
ab  ab’
- sLdib=c:a; €)]
a0 _ o
ad  oc
x sbid=ae ®) -
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It is to be observed that any one of these conclusions
may be taken as condition, and all the others may be
concluded from it.

92. Mean proportional. —If the consequent of the first
ratio of a proportion is equal to the antecedent of the
second ratio, so that the proportion assumes the form

a:b=b:g 3)
the common mean term is said to be a mean proportional
between the other two terms; the third term is called a
third proportional to the first two terms.

From proportion (3) we have
b = ac,
whence b=+ Vac.

The translation of this result affords another form of
definition of a mean proportional.

93. Composition and division. — If proportion (2) be
written in form (1) and unity be added to each member,
we have

FH1=5+41;
that is, “;‘ =c'; :
and therefore a+b:b=c+d:d. “4)
Also, subtracting unity from each member of (1),
a—b_c—d,
b d’

therefore a—b:b=c—d:d ®)
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Proportion (4) is described as one in which the terms
a, b, ¢, d are taken by composition; in (5) they are said
to be taken by division.

Dividing each member of the equation

‘a+b=c+d
b d
by the corresponding member of the equation
a—b=c—d
b d’
the result is
a+b=c+d_
a—b c—d’
that is, a+b:a—b=c+d:c—d. * (6)

In proportion (6) the terms are said to be taken by
composition and division.

94. If several ratios are equal, we may find an impor-
tant expression for any one of them in the following
manner : .

Suppose we have three equal ratios, represented by
a ¢ g
o d

For convenience, let each one of them equal some
quantity as k.

From the equalities

e_C_9_
i
we obtain a=>bk, ¢c=dk, g=Dhk.

Then o™= b"k™, c*=d"k™, g™ = h"k™,

m being any exponent.
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Adding the corresponding members of these equations,
a4 ¢+ g = k(0™ + d™ + k™),

1
and therefore k= w;
(" + dn + k)

but % represents each one of the ratios; hence

a,

| b
(@+c+gmH"_ e,
Gk Sk S
@ +a+ry |
A

.

As a special case m may equal unity, and it follows that
if several ratios are equal, each one of them ts equal to the
ratio of the sum of the antecedents to the sum of the conse-
quents.

It is left to the student to state the corresponding
theorems when m = 2, when m = 3, ete.

EXAMPLES.
1. If a:b=c:d,
show that va'+ b2= Vet d
b d
2. If a:b=c:d,
is ar:bm=c*:d"?
3. If a:b=b:q¢

show that a:a+b=a—b:a—c.
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4. Find a mean proportionﬁ] between the quantities
(m+mn) and (m —mn); also between the quantities
(m +n)? and (m — n)%

5. Given é =% = g, with the relation 2+ m?4+n?*=1;

a

show that - =" .
A+ +
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CHAPTER XI.

PROGRESSIONS.

95. By a series is ' meant the algebraic sum of a num-
ber of expressions formed according to some common law.
Each expression is called a term.

96. Arithmetic progression. A series is said to be an
arithmetic series or arithmetic progression when the terms
increase or decrease by a common difference.

Thus, 1 4+447 4+ 10 + .-. is an arithmetic series in
which each term is obtained from the preceding one by
adding 3 to it; 7T+5+43+1—1—3—-... is an arithmetic
series in which the common difference is — 2.

97. nth term. If we consider a general form for an
arithmetic series, say the form

a+@+D+@+2d)+@+3d)+ -,
we notice that the coefficient of d in the third term is 2,
of d in the fourth term is 3, and so on; that is, the coeffi-
cient of the common difference as it occurs in any term

is one less than the number of that term.
Hence the general or nth term must be a +(n — 1)d.

98. Sum of n terms. If s be the sum of n terms,

s=a+[a+d]+[a+2d]+--
+[a+@® —2)d] + [a +(n —1)d].



. PROGRESSIONS. 89

‘Writing these n terms in the reverse order,
s=la+(@n—-1d]+[a+®n—2)d]+ -
+[a+2d]+ [a+d] +a.

Adding the first term and the nth term, the second
term and the » — 1th term, and so on,

2s=[2a+(Mn—-1)d]+ [2a+(n—1)d] + -
+[2a+(n—1)d] +[2a +(n—1)d]
=n[2a+(n—1)d].

-8 =§[2a +(n—1)d}

99. Arithmetic mean. * When three quantities fulfil
the requirements of an arithmetic progression, the mid-
dle one is said to be the arithmetic mean of the other
two; it is also commonly called the average of the other
two.

Thus, a is the arithmetic mean of a — ¢ and a + ¢.

If it be required to find the arithmetic mean between
any two given quantities, as m and n, let 2 be the unknown
mean, and we have '

m—T=T—n;

whence 22=m +n,
and z=" '2" n

which is the formula for the average of two quantities.

100. Harmonic progression. When three quantities
are so related that the second is the arithmetic mean of
the first and third, the reciprocals of these quantities
constitute what is called a harmonic progression.
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Suppose that b is an arithmetic mean between a and c.

Then a—b=>b—c,
d 1=0=2%
an b—c

Multiplying both members of this equation by %

c_¢ —b
a a\b—c/

If the reciprocals of a, b, ¢ are respectively denoted by
a', by ¢!, we now have

! ' __p! . . .
This formula, a—,=;—b’, is sometimes given as ex-
c —c
pressing the condition that three quantities, as a', d', ¢/,
shall be in harmonic progression.

101. Harmonic mean. In the last formula of the pre-
ceding article, b', the middle term, is called the harmonic
mean between the other two quantities.

If any two quantities, as p and ¢, are given, and it is
required to find z, the harmonic mean between the two,
we have
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2 1 41 p+gq

whence =5 + 7= P
2

and therefore = p_g%

102. Geometric progression. A series is said to be
a geometric series or geometric progression when the
terms increase or decrease by a common factor.

Thus, 3 46 + 12 + 24 + ... is a geometric series, each
term being obtained by multiplying the one before it by
the factor 2.

Conversely, the constant factor may be found by divid-
ing any term by the preceding one.

103. nth term. Considering the representative geo-
metric progression,
a+ar+ar+ar® + ...,
we see that in the third term the common factor is
raised to the second power, in the fourth term it is
raised to the third power, and so on. The nth term
must therefore be a (7).

104. Sum of n terms. To find the sum of » terms in

geometric progression, we may write
s=a+ar+ar’+art+4 .o +arl;
rs=ar 4 ar* 4+ ar® + «-« + ar*! +ar
Subtracting the first of these expressions from the second,
s(r—1)=—a+ar
s ™—1) a(l—17)

T or—1 7 1-—r

a __art
1—r 1—7
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Now if r is a proper fraction, the greater the value of =,
the smaller is the value of »*; and as neither a nor r

may be made as

changes in value, the fraction lm'”

small as we please by taking n sufficiently large. The

entire expression i e _ lar" is then said to approach
—r 1—7r
2 asits limiting value.
But the expression — 9" is the sum of n
1—r 1—7r

terms; hence the sum of n terms approaches l—a— as
—_r

its iimit as more and more terms are included.

105. Geometric mean. When three quantities are in
geometric progression, the middle one is said to be a
geometric mean between the other two.

If we have «, b, ¢ in geometric progression,

b_e.

a b’
therefore b = ac,
and hence b=+ Vac.

It thus appears that a geometric mean and a mean
proportional are the same thing.
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CHAPTER XII.

INEQUALITIES.

106. Any quantity is said to be greater than another
when the first quantity minus the other is a positive
quantity.

If a represents the minuend quantity, and b the sub-
trahend, three cases arise:

a and b may both be positive ;
one may be positive and the other negative;
both may be negative.

(1) If @ and b are both positive quantities, and if
a — b is positive, @ > b by definition.
This is the case of common arithmetic.

(2) If a is any positive quantity, and b any negative
quantity, « —b is necessarily positive, and therefore
a>b.

That is, any positive quantity is greater than any neg-
ative quantity.

Hence also, zero, the transition state (no magnitude)
between positive and negative quantities, is greater than
any negative quantity.

(8) Finally, of two negative quantities, the one which
is numerically nearer to zero is greater than the other.

For example, —3 > —7 because —3—(—7)=4, a
positive quantity.
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107. 1f a>Db,
and ¢, any positive quantity, be added to each member of
the inequality,

a+c>b+g

for (@a+c)—(b+c)=a—1b;
but a — b is a positive quantity by the condition a > b.

Again, if ¢, any positive quantity, be subtracted from
each member of the inequality,

a>b,
a—c>b—ec
because (@a—c)—(d—c)=a-0,

and a —b is a positive quantity.

Hence, if uny positive quantity be added to or subtracted
Jrom each member of an equality, the tnequality still holds
good.

108. If a>b,
and each member be multiplied by any positive quantity,

as ¢,
ca>ch;

for ca — cb =c(a—b),
and both ¢ and a—b are positive by the conditions
stated.

If a>b,
and each member be divided by any positive quantity,
as ¢,

ab
c” ¢
a b 1

for Z—Z—Z(a—b)’

and each factor of this last expression is positive.
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Hence, if each member of an inequality be multiplied or
divided by any positive quantity, the inequality still holds
good.

100, If ' a>b,
and — ¢, any negative quantity, be added to each member,
a+(—0)>b+(—0),
for f[a+(—c)]—[b+(—c¢)])=a—0b

The case is evidently identical with that of subtracting
the positive quantity ¢ from each member of the equation.

Similarly, subtracting any negative quantity, as —c,
from each member of the inequality is the same as add-
ing the positive quantity ¢ to each member.

Hence, if any negative quantity be added to or subtracted
Srom each member of an inequality, the inequality still holds
good.

It follows that a term may be transposed from one
member to another if its sign be changed; '

for if a>b+c
adding — ¢ to each member to the inequality,

a—c>b

110. If a>Db,

and each member be multiplied by any negative quantity,
as —¢,
—ca < —cb,

for —ca—(—ch)y=—c(a—0d);
and since a — b is positive, — ¢ (a — b) is negative.

Again, if a>b,
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and each member be divided by any negative quantity
as —e¢,

_a__b
—<—%
a b 1
for :—é—:-—-_—c(a—b),

and this last expression is a negative quantity.

Hence, if each member of an inequality be multiplied or
divided by any negative quantity, the result is an inequality
with the sign reversed.

As a special case, suppose —cis —1,

then if a>b,
—a< —b;

that is, changing the sign of each member of an inequality
reverses the sign of inequality.

111. If two inequalities,
a, > by,

Gy > by

are given and it is required to find the relation of
a, + a; to b, + by,

let a;=a,+m and b,=b,+n;
then a;+a,=2a,+m and b, +b,=2b,4+n;
hence (a, + a;) — (b, + b;) becomes 2 (a, — b,) + (m — n),

in which a, — b,, and hence 2(a, —b,), is positive in the
condition;

now since a, +m > b, +n,

(ay — by) + (m — n) is positive ;
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and therefore
2(a, — b)) + (m — n) is positive;
hence a4+ ay > by + by

This operation can evidently be extended to any num-
ber of inequalities.

Hence, the sum of all the greater members of a series of
inequalities is greater than the sum of all the less members.

112, If a, > b, and a, < by,

we can reach no conclusion in regard to the relation of
a, + a, and b, + b,

Using the notation of the preceding article, a, < b,
becomes a, +m < b, + n;
hence a—b<n—m;
that is, . n—m>a — b
and since a, — b, is positive by the conditions given,
n — m must also be positive.

Combining the given inequalities as proposed, we have
as new members,

2a,4+m and 2b,+ n;

but 2a,+ m) — (2b, +n),
that is, 2 (a, — b)) + (m — n),
or 2 (a, — by) — (n — m),

is of unknown sign; for, although, as we have seen,
n —m is positive and greater than a,— b, we do not
know whether it is greater or less than 2(a, — b)); it
will be greater in some cases and less in others.
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" For example, if we have the inequalities,
7>5 and 4 <9,

the sum of the first members is at once seen to be less
than the sum of the second members; and if we use the
formula 2 (a, — b,) — (n — m), we ought to find

n—m>2(a, —b),
and hence 2 (a, — b)) — (n — m), a negative quantity.

a="T b=25,

a¢=a1+m§4=7+m, som=—3;

by=b+n=9=5+n .. n=4;
hence n—m=",

and 2 (a, — b) — (n — m) =4 — 7 = a negative quantity.
Again, from the inequalities,
11 >8 and 3 <4,
m=—28 and n=—4;

hence 2(04 — b)) — (n — m) = 6 — 4 = a positive quantity.

113. If a>b
and ay > by,
and the four quantities, a;, b,, a,, b, are all positive,
4,0y > byby;

for suppose a, = b+ ¢, in which ¢ is necessarily posi-
tive; if we multiply the first member of the first in-
equality by a,, and the second member by b, + ¢, we have

a,a, > bb, + bic; (Art. 108)

hence a,a, — b,b, — byc is a positive quantity
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in which the three terms a,a, bb;, bc are individually
positive;

hence a,a; — byb, is positive,

and therefore a0 > b1b,.

It is left to the student to examine the case in which
the four quantities a,, b, a,; b, are negative, and also
the case in which the members of one of the inequalities
are positive and the members of the other inequality
negative.

114. If we have any number of inequalities as a, > b,
ay > by, a3 > by, -+ @, >0b,, in which a,, ay, a ---a, and
by, by by +-- b, are positive quantities, then by a repeti-
tion of the process of the preceding article,

Q005 o+ Ay > blb'lbs e bn'

If . Q=A=03= +++ =Qq, =0,

and b=b=b=..-=0b,=1,

we have, from the inequality just obfained,
ar > b

when ¢ > b and a and b are positive.

EXAMPLES.

1. If mn >1, and m is a proper fraction, what is the
relation of n to the reciprocal of m ?

2. If o® > % what is the relation of a to b ?
3. Show that a?+ b2 > 2 ab.

N 2pq
4. Which is the greate pta or —~~7?
gr T rp+q
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6. If a is any real positive quantity, show that
1=
a+ a> 2.

6. If a, b, ¢ are positive quantities,
a? 4 b+ ¢ > be + ca + abd.

7. If a>b,
what relation holds between a~" and b~ a, b, n being
any positive quantities.

8. If aQ > bl a:nd ag > b’,
examine the threefold statement

a,—a,zbl—b,.
<

Can two of these signs of relation be ruled out of the
formula ? °

9. If a,>b, and a,> by,

does one of the signs of relation hold, to the exclusion of
the others, in the expression

a,>b,_

a; < by
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CHAPTER XIII.

VARIATION.

115. One quantity is said to vary directly as another
quantity when the two quantities are so connected that
if one is changed the other changes in the same ratio.

Suppose that the quantities are a and b, and that when
a has the values a,, ay ag, ---, b has corresponding values
by, by by, +ee.

By definition,

@M 2 B 2 _% .
b b b b b b
BB _ B .. =
hence B b, b, k,
in which % is the value of any one of the ratios.
Then a, = kb, a,= kb, az= kb, ---.
It thus appears that
if ac«b,

a = b multiplied by some constant factor.

It follows that, if the conditions of a problem enable
us to state a variation relation, the introduction of an
undetermined constant factor enables us to pass from the
variation relation to an equational relation. The value
of this factor must then be determined from the data of
the problem.
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For example, we know from geometry that the circum-
ference of a circle varies as the radius. If ¢ be the cir-
cumference and r the radius, we have

cerT;
then c=kr

If we make r equal to unity, we discover the meaning
and value of %: it is the circumference of a circle whose
radius is unity; and from geometry we know that the
circumference of such a circle is 2 =;

that is, c=2qxr.
116. One quantity a is said to vary inversely as

another quantity b when a varies directly as the recip-
rocal of b.

That is,

2
8

IR oum

~

and therefore a=

For example, if the compression of a gas be so con-
ducted that its temperature remains constant, the volume
of the gas varies inversely as the pressure to which it is
subjected. If v represents the volume and p the press-
ure,

1
voe =
p
and v= _7€;
p
1
hence also, px
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117. If any quantity @ depends upon two quantities
b and ¢, varying as b when ¢ is constant and varying as
¢ when b is constant, then a varies as the product of b
and ¢ when b and ¢ vary together.

Suppose, first, that @ and b vary together, ¢ remaining
constant; and let the simultaneous values of the three
quantities be a,, ), ¢; then suppose that a, and ¢ vary
together, b, remaining constant, and let the three quan-
tities be indicated by as, b, ¢;; we have

a_b

=3

and h_ ¢,
ay G

Multiplying the corresponding members of these expres-
sions together,

a _a_ b c.

— — ——— x —_—

0 az 1 Cl
that is, a_ b

a; b :
and hence, a= <_’) be;
b
but ay, b), ¢, are particular states or values of the varying
quantities a, b, ¢; hence the expression b_ is a constant,
l 1

and therefore a o be.

For example, the stress between two gravitating bodies
varies as the product of their masses and inversely as
the square of the distance between the bodies; hence,
if F represents the stress, or force of attraction, between
the bodies, and m and m' represent their masses, and r is
the distance between them,

!
mm
F«

2
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EXAMPLES.

1. If zoc} and yoc%, show that z oc2.

2. If acx and xocy, express a relation between a
and y.

3. If a «b, show that a"cc b™
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CHAPTER XIV.

REVIEW,

118. An Introduction to Algebra may well include the
following words of general advice given by Professor
Chrystal. The advice is equally pertinent to what has
preceded this chapter and to what is to follow in Part II.

“Never make a step that you cannot justify by refer-
ence to the fundamental laws of algebra. In other re-
spects make the freest use of your judgment as to the
order and arrangement of steps.

“Take the earliest opportunity of getting rid of redun-
dant members of a function, unless you see some direct
reason to the contrary.

“Cultivate the use of brackets as a means of keeping
composite parts of a function together, and do not expand
such brackets until you see that something is likely to be
gained thereby, inasmuch as it may turn out that the
whole bracket is a redundant member, in which case the
labor of expanding is thrown away, and merely increases
the risk of error.

“Take a good look at each part of a composite expres-
sion, and be guided in your treatment by its construction;
e.g. by the factors you can perceive it to contain, by its
degree, and so on.

“ Avoid the unthinking use of mere rules as much as
possible, and use instead processes of inspection and
general principles. In other words, use the head rather
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than the fingers. But if you do use a rule involving
mechanical calculation, be patient, accurate, and syste-
matically neat in the working. It is well known to
mathematical teachers that quite half the failures in
algebraical exercises arise from arithmetical inaccuracy
and slovenly arrangement.

“ Make every use you can of general ideas, such as
homogeneity and symmetry, to shorten work, to foretell
results without labour, and to control results and avoid
errors of the grosser kind.” *

EXAMPLES FOR REVIEW.

1. Show that the sum of two linear expressions will
in general be linear.

2. Give an example in which the sum of two or more
linear expressions is of zero dimensions.

3. If a is a negative quantity and b a positive quan-
tity, what is the sign of the expression

(=1 (@) ®)"

(1) when = is odd, (2) when = is even ?

4. If a is negative and b is positive, what is the sign
of the expression

(=1 (—a) )™
(1) when = is odd, (2) when = is even ?
5. (a) Prove that the product of two homogeneous
expressions is itself a homogeneous expression.

(b) If one of the factors is of m dimensions and the

“nther of n dimensions, the product will be of what dimen-

* Chrystal’s Algebra, Part I, p. 143.
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6. Give a definition of a reciprocal of a quantity as
implied in the context of chapter V.

7. What is the reciprocal of the reciprocal of a quan-
tity ?

z 2
8. What operations are indicated by M?
, oz

9. Analyze the statement

(a4 b =a®+ 3a? + 3 ab® + b5,
with reference to law and convention.

10. What is the value of a quantity if it is equal to
its own square root ?

11. Write the square of the binomial a¥? — a-V2

12. If 42°+4 > =4 xy, find the ratio of = to y.
a—b __c—d,
a—2b c—2d
14. Given V2 + V5o +1=1. State the degree of
this equation, and give a consistent definition of ‘degree.’

13. If a:b=c:d, show that

15. Perform the operation indicated by

(2a;§—by’2)2.
16. Given Vet+l-vae—1_= Find the value
Veri+vz—1 2
of .

17. Find the sum of the series
1+3+4+%+ - to6 terms.
18. Find an expression for  from the equation
?»+2x°—-3=0.
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19. Simplify %\/-2_7.(’_—\'/"_;@(\/__1)6.

20. What is the degree of the equation

=_%
y 1 +wg’
viewed (1) as an equation in , (2) as an equation in y,
(3) as an equation in « and y?

21. What is the degree of the equation
2
y= 2a—2
viewed (1) as an equation in z, (2) as an equation in g,
(3) as an equation in x and y.

22. If ii— =2, write the value of « in terms of z.

23. The product of the two roots of a quadratic equa-
tion is 12, and the sum of the roots is 8; what is the
equation ?

24. Write down the roots of

Z—(a+1x+ (a2—1)=0.
26. If p equals zero in the equation
o +pr+qg=0,
how must ¢ be limited in order that the roots may be

real ?

*2, If the area of a plane triangle varies as the height
when U= base is constant, and varies as the base when
the he‘ghf\constant show that the area varies as the
product of they o 00y ee ight.

N
Y

A
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27. If the volume v of a sphere varies as r the radius
and as the area of a cross-section through the centre, and
the cross-section varies as the square of the'radius, show

that
vt

Books of reference recommended for teachers of ele-
mentary algebra.

BaLL, W. W. R. A Short History of Mathematics.
Cagory, F. A History of Elementary Mathematics.
CHRYSTAL, G. Algebra.

Curivrorp, W. K.  The Common Sense of the Exact Sciences.
Conaxt, L. L.  The Number Concept.

McLELLAN, J. A., AND DEWEY, J. The Psychology of Number.
PearsoN, K. The Grammar of Science.






PART IL

CHAPTER XV.

DERIVATIVES.

119. In the definition of direct variation given in
Art. 115, two things are implied :

(1) quantities may be viewed as varying in value;

(2) quantities may be so connected that if one varies
in value, the other necessarily varies in value.

When one quantity thus depends on another for its
value, the former is said to be a function of the latter.

Ex. 1. 277, the circumference of a circle, changes in
value as 7 changes; it is therefore a function of r.
Ex. 2. If the volume of a gas varies inversely as the
pressure, that is,
k

if v=- Art. 116
7 (Ar. 116)

v is a function of p, increasing in value as p diminishes,
and decreasing as p increases.

Ex. 3. If Foe™™, (Art. 116)

r2

and the masses of the two bodies do not change, F' the
stress, or gravitation force, between them is a function
of r, the distance between the bodies.

111
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If « represents the fundamental quantity or independent
variable, the usual symbol for the dependent variable or
function of x is f(x). To distinguish one function from
another, we use similar symbols, as ¢(x), F(x), fi(), ete.

It should be carefully noticed that a new convention is now
introduced. The parentheses merely serve to separate the quan-
tity symbol z from the other symbol f, ¢, F, etc., which is not a
quantity symbol, and hence not a factor. f(x), ¢(%), etc., is only
algebraic shorthand for the expression, ¢a function of the varying
quantity .’

It is also to be noticed that the term ¢function’ might
have been used in many connections in which the term
‘expression’ was used in Part I.

Thus the expression ax + b is evidently a function
of z; its value must change if x changes, and this is the
test of one quantity’s being a function of another.

120. The term constant has already been used to
denote a quantity which is viewed as not changing in
value in a given expression. Two kinds of constants,
literal and numerical, have also been noticed (Art. 75).
To a literal or general constant we shall now apply the
term arbitrary, because an arbitrary value may be as-
signed to it. All other constants will be classed as
absolute.

Thus the expression ax + b contains the arbitrary or
general constants @ and b, while the expression 42— 2

contains the absolute or particular constants 4 and — 2.
Again, if f(x) =%1rav3, 4, 3, and = are absolute con-

stants, n is arbitrary and independent of .

121. Two modes of variation present themselves.
(1) The number of roses in a handful may be varied by
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adding one, and another, and another, until the number
has changed from a to . Or, we may add several at a
time until the number has changed from a to . But we
cannot do less than add one whole rose at a time; for, in
this case, the variation element is a whole unit; that is, a
whole rose, and not any fraction of it. Again, in measur-
ing the quantity of wheat in a bin, the variation element
was taken in Art. 1 as one whole bushel, the chosen unit
of measure; and the quantity of wheat in the bin varied,
becoming less by a bushel at a time.

(2) Suppose now that the fifty bushels of wheat are
ground to the finest flour, and the flour allowed to run
through a very small hole; we have a rude example of
another kind of variation. The quantity of wheat is
diminishing in this case also; but the variation element
is so small that we say the variation is continuous.

To illustrate further, we may measure a day with a
minute as a unit of measure, and say that a day contains
1440 minutes; but this is only an artificial convenience.
Time does not increase a minute at a time, or even a sec-
ond at a time, but by elements of time which are immeas-
urably small fractions of a second.

By the term variable we shall mean a quantity which
changes in the second manner described: not by jumps
or finite amounts, but by indefinitely small amounts.

122, Functions may be classified as algebraic and
transcendental. '

Algebraic functions are those which involve only the
six operations, — addition, subtraction, multiplication,
division, involution, and evolution, the exponents indi-
cating the last two operations being constant.

The consideration of transcendental functions must be



114 ALGEBRA.

preceded by a study of trigonometry and the theory of
logarithms. Until the chapter on the theory of loga-
rithms is reached, it is to be understood that f(x) denotes
only algebraic functions.

A rational algebraic function of a quantity is one in
which the quantity is free from fractional exponents
(Art. 48).

An integral algebraic function of a quantity is one in
which the quantity is free from negative exponents
(Art. 65). :

The expression

P+ ™t + pa™ P4 e + P+ P

is a rational integral algebraic function of x, n being pos-
itive and integral, and the coefficients p,, p,, -+ p,, being
independent of . The limitations in regard to the expo-
nents are to be understood to apply only to the exponents
of x; the coefficients p,, p,, etc., may have negative and
fractional exponents.

Whenever the above expression is used in the following
pages, n is positive and integral unless the contrary is
expressly stated ; also p,, p,, etc., are real quantities.

It is to be further observed that this expression is non-
homogeneous and of the nth degree, and that it contains
n 41 terms if none of the constants p,, p,, -+ p, are zero.

123. As z in f(x) changes, it is obvious that the value
of f(x) must change also, whatever kind of function it
may be.

For example, let f(x) = $=a®; if we assign the value
3 inches to =, the volume of the sphere is 36 = cubic

121 if the radius is 4 inches, the volume is 85}«

(1) The num.
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Suppose « to change by taking an increment A, so that
JS() becomes f(w+ k). If the first value of the function
be subtracted from the second,*the remainder

Se + k) — flx)
is the increment of the function due to the increment

of the variable, and &I—L’)zi(x) is the ratio of the

increment of the function to that of the variable.
Let & now be supposed to diminish without limit, 7.e. to
decrease until it differs from zero by less than any assign-

able quantity. The value of the ratio f@+—72—@’

when this supposition is made regarding %, is represented
by f'(x), and is called the first derived function of f(x)
(or, briefly, the first derivative), since it is derived from
f(2), and is itself, in general, some function of x. When
h diminishes without limit, f{x + h) — f(x) also dimin-
ishes without limit, so that in f'(#) we have the ratio of
two infinitely small quantities; but the ratio itself is, in
general, some finite quantity.

In case the function is such that any real finite value
of x renders f(x) imaginary or impossible, f'(x) also
becomes imaginary or impossible. For such a value of
@, flzr) is said to be discontinuous.

To illustrate the nature of L&+ ") — /@) ’;z) —J (a:)’
let S(x) =32

Then we have, when  takes an increment,

1 Sfle + h) =3 (@ + h)’=3 (&® + 2ah + kP,
an
S+ k) —flx) 3+ 2xh+ 1% — 322
h - L

=6x4 3h;
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but 62+ 3h =6 when h is made infinitely small.
- S(x) =6

124. We have now to find expressions for the first
derivative of a function when the given function is com-
posed of other functions of the fundamental variable.

We begin with a function which consists of the alge-
braic sum of two functions. -

If S@) = /(@) + fa(2),

and « takes the increment &, we have

S+ k) — &) _ALE@+h) +fi(@ -!; ) — fi(x) —fi(=)
h z

_SE+h —h@)  fiE+h) —hE@),

- ) ) ’
and in the limit f'(z) =f'(x) + £'(x) ; @
hence, the derivative of the sum of two functions is the sum
of the derivatives of the functions.

It is evident that the same proof would apply to any
number of functions connected by plus and minus signs.

A constant, because it is a constant, has no increment;
and if we attempt to express its derivative we have
nothing to divide by k. This amounts to saying that
the derivative of a constant is zero.

125. Let the given function consist of the product of
two functions, as expressed by

f@) = f(@) f(2) ;
what is the expression for f'(x) ?
Let w=fi(x), and w4+ hy=fi(x+h), h, being the
increment of w due to the increment %, which x has
taken; also let v = fy(w), and v 4 by, = fo(x + L).
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Then flx + k) = fi(x + k) fo(x + k) = (u + k) (v + hy),
and S+ h) — @) = (u+ =) (v + hy) —uv

= Vhy + uh, + Ry
h) — ! hy
lience I’(&;Lﬂ:/l%'f'%ﬁ'%;
but when % diminishes without limit,
3 hy
T= /@), and 7= /@),
hlhz . . e . . .
and the term - s disposed of by writing it in the

form 2, ’,i: and observing that as A, diminishes without
limit, any quantity (except o) multiplied by A, dimin-
ishes without limit and is therefore dropped.

Hence we have

S'(@) =vh'(@) + wh'(@)
= fa(@) /i'(®) + /(@) f'(@); @

and this result when translated becomes the theorem,
the derivative of the product of two functions is the deriva-
tive of the first function multiplied by the second function,
plus the derivative of the second function multiplied by the
Jirst function.

In a similar manner, we may find the derivative of

the product of three or more functions of x.
Thus if

1) = K@ AE@AE),
F@) = FOADA@ +A@A@L @) + @A @),

126. By means of the result in the preceding article,
we may now find the derivative of a function which
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consists of some function affected with any positive
integral exponent ; that is, we may find f'(x) when

S(@) =[]
n being positive and integral.
Let J(@) = fi(@) fol®) -+ ful@) 5
then
J'(@) = ['@) 1) -+ fu(@)
+ L' @A@L[E) - [u®) + L' @A) L) - fu(®)
+ - + L @A@LE) - fua(2), 3

a polynomial of x terms.
Now suppose

Si(®@) = fo®) = -+ = [i(2) = $(2);

then @) = [$@)]
and (3) becomes
J'(@) = n[$(@)]"'¢'(@). ®

The translation of formula (4) affords a rule for find-
ing the derivative of [¢(x)]"
One important special case requires notice ; namely, the
case in which ¢(z) is simply .
The derivative of the fundamental variable itself is
h

seen to be unity, being 7 hence
it $(@) ==, $/(z)=1;
and therefore (4) becomes
@) =nar - ®)
127. Formula (4) will now enable us to find the

derivative of a function which consists of some function
affected with any exponent whatever.



DERIVATIVES. 119

Suppose the exponent is a positive fraction, so that
we have

»
S(@) =[$()],
p and ¢ being positive and integral.
Raising f{z) to the gth power, and also raising to the
gth power the expression to which f(x) is equal,

(@) ] = [$(=)]

Now the value of an expression is independent of its
Jorm (compare Art. 72). It follows that two expressions
or functions which are different in form but equal in
value will receive the same increment when the funda-
mental variable common to the two functions takes an
increment.

Hence, the ratios of these equal increments to the
increment of the fundamental will be equal. That is,
if two functions are equal, their derivatives are equal.

Applying (4) to each member of the equation

@) =[]
and equating the resulting derivatives,
o[ =)' (@)] = p[$(@) F'4'(2);
and solving for f'(x),
Fia) =2 [¢@)]''(®),
g S
If, now, each of the two given equal functions, f(x)
?
and [¢(x)]%, are raised to the (¢ — 1)th power, we have

_ 2(g-1)
@) =@

and, substituting the second member of this equation for

its equal, the first member, which occurs in the denomi-

nator of the expression just obtained for fY(z),
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) PB@Y @)
2(g-1)

CICINE
= gw@oﬁ‘ $'@). ©)

128. If the function whose derivative is sought con-
sists of some function affected with a negative integral

exponent, we have '
. S@) = [¢@)]™
n being integral.

. - 1
Since [p@) ] = [_‘f’(—“")]"’
0= [
and JS@[(@)]"=1.

The derivative of the first member of this equation
is found by applying the rule for the derivative of the
product of two functions, together with the rule for the
derivative of a power of a function.

The derivative of the second member is zero because
that member is a constant. Equating the derivatives of
the two members,

S'@[e@)]" + n@)[$(@)]"'(z) =
solving for f'(x), and eliminating f{x) by means of the
given equation, we have

J'(@) =—n[¢()]""'¢'(). ™

129. Finally, if the case is that of a function affected
with a negative fractional exponent, we write

fa) = ($@]

p and ¢ being individually integral and positive.
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Then S@) =

[4’(50)]"
that is, Si@) [¢(w)]i =

and hence, raising each member to the ¢gth power,

L&) @F =1.
Proceeding as in Art. 128, we find that

[ p -£a '
F'@) ==2[4@1 7 @ ®)
130. Comparing formulas 4, 6, 7, 8, it is seen that
if J@) = [@)]"

7@ = [s@]" '$'@)
for all cases; that is, when =n is positive and integral,
positive and fractional, negative and integral, negatlve
and fractional.
The translation of the formula,

J'(®@) =n[$(@)]"'¢'(),
therefore furnishes the only rule that is needed for find-
ing the derivative of a function affected with any con-
stant exponent.

It should be noticed, however, that since this expres-
sion for the first derivative contains ¢'(x) as a factor,
we may require various other rules if we are to find the
expression for which ¢'(x) is the symbol.

131. Since first derivatives are themselves functions
of the fundamental variable, their first derivatives may
be found. These last are called the second derivatives of
the original function. This operation may be extended
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until we have third, fourth, fifth derivatives, etc. Second
derivatives are usually indicated by the symbol f''(x),
and third derivatives by f'"'(z).

EXAMPLES.

1. Find the first derivatives of the following functions :
2a°%c; —3ob; w?; 32t—cd’+1; a4+ b+
%
_ 442 add 3-’%; @ — 1)@ + 2).
@

2. Find also the second and third derivatives of these
functions.
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CHAPTER XVI.
RATIONAL INTEGRAL FUNCTIONS.

132. In this chapter it is proposed to establish certain
theorems relating to the function,

P + P+ p i ek o+ Pu i@ + Py
described at the close of Art. 122.

We shall first inquire what this representative rational
integral function becomes when x is increased by any
quantity as h.

Let S@) =pa® + pa"t + <+ + P+ Paj
then fle + k) =py(x+ )" + pi(e + A)"' + -+

+pn—l(w + h) +pn'

Developing each term by the binomial theorem (Art.
140), and arranging the result according to the ascending
powers of &, we have

P + ptt 4 ..l + Pnai® + Dn
+ hnpe™t 4 (n — 1)pa™ " + o+ + 2P0 % + Poi]
2
+ é[n(n—l)m*u(n—l)(n—2>p1w~-s+ e 2, 0]
+

l_*
* By the symbol {n is meant the product of the numbers,
1,2,38,..-m.
Thus (6 =1x 2 x 3 x 4 x5, and is read : * factorial five.’

— [n(n — 1) -+ @) (o]
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The polynomial written on the first line does not con-
tain %; it is therefore the absolute term of the entire
expression; it is remarkable also for being the original
given function.

Further, the part written on the second line is com-
posed of the factor % with .a polynomial coefficient.
Attention to this coefficient shows that it is the first
derivative of the given function.

Similarly, the third line contains the second power of
h with a polynomial coefficient which is seen to be the
first derivative of the preceding coefficient, and which is
therefore the second derivative of the given function.

These part polynomials are sufficient to indicate the
composition of the omitted parts; each term will contain
h raised to a power higher by one unit than the power
of L in the preceding term, and each polynomial coeffi-
cient of & is the derivative of the polynomial of the
preceding term. The factorial divisor accompanying h
is also to be noted.

By this regular formation of the entire expression, it
must contain n + 1 parts, and the last part or term will
contain A" together with the divisor |n and a coefficient
which is the nth derivative of the given function.

Having noticed the features of this expression for
fl® + k), we are now able to write it in a compact sym-
bolic form, and we have

_ 2 ey iy o
Sfle+m)=f (w)+hf’(w)+@f' (x)+L?:f @+ +|ﬁf"(x)-

This formula is a particular case of a theorem known

as Taylor’s theorem.

133. Although the fundamental quantity represented
by @ varies continuously, as explained in Art. 121, and
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although any function of the fundamental necessarily
varies with the fundamental, it does not follow that all
functions vary continuously. Some functions* are of
such a nature that when @ varies from some specified
value to another, the function becomes imaginary, or
infinite, or impossible, or it changes abruptly from one
value to another value differing from the first by a finite
amount.

Now by means of the formula established in the pre-
ceding article, we can show that if the function is a
rational integral algebraic function it varies continu-
ously; that is, it changes by real and indefinitely small
amounts just as the fundamental changes.

For we have

F@+ W= f@=1 @)+ @)+ -+ @),

12 [
in which the first member is the amount of change in
the function when x changes by the amount k. This
quantity f(xz + k)— f(x) -will be possible, real, and finite
if the second member is possible, real, and finite.

We therefore examine the second member upon the
assumption that f(x) is a rational integral function.

Considering the way in which first, second, and suc-

* After the student has made sufficient advancement in mathe-
matics, he will find examples of such functions in studying the
curves of the following equations:

22 2

i 1, the hyperbola ;
[

y = tanz, the tangent curve;
y = log z, the logarithmic curve ;

2
@V 2 av_

. =—4 the curve of the potential.
dr2 o dr b P
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cessive derivatives are formed, it is evident that no
derivative of a rational integral function can be either
imaginary or infinite for any real finite value of .

Neither is there any reason for saying that any of
these derivatives are impossible in the sense in which
we say that loga is impossible when x is any negative
quantity.

Further, the expression as a whole cannot be infinite.
by virtue of being the summing of an infinite number
of terms; for, since n is positive and integral, it follows
that the expression consists of only a finite number of
terms.

Finally, we notice that % occurs in each term, and
occurs only in the numerator and with a positive expo-
nent; hence, by supposing % to diminish, we can make
the value of the second member as small as we please.

And thus we learn that the first member is an indefi-
nitely small quantity when % becomes indefinitely small.
This being the nature of the increment of the function,
we know that the function itself is continuous.

since TEFN=IE) _

out limit, if & is positive, f(z + h)— f(«) and f'(x) must
have the same sign. Consequently, when f'(x) is positive,
S(x) is increasing with «; and when f'(x) is negative,
S(x) diminishes as  increases.

when % diminishes with-

134. A function is said to be evaluated for any con-
stant, absolute or arbitrary, when that constant replaces
the variable wherever the variable occurs in the function.

If f(x) is evaluated for any constant as a, we express
the fact symbolically by f(a) or by f(z)]..

If one of two differently formed but equal functions is
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evaluated for any constant, evidently the other must be
evaluated for the same constant.

If a function contains an absolute term, the evaluation
of the function for any constant cannot affect the value
of that absolute term.

Suppose now that we have an equation whose members
are two differently formed functions of the same variable,
and one of the members contains an unknown or undeter-
mined constant.

Let the equation be i

J@)= (=, ¢).

The form in which the second member is written is
meant to indicate that the function contains the unknown
constant c.

It follows from what has been said above that we may
evaluate f(x) and ¢(x, ¢) by assigning any chosen value

to #, and the value of ¢ will not be thereby affected.
" Let us then assign some convenient known value to z,
so that the equation reduces to an equation containing
only known constants and the unknown constant c.

Solving this equation for ¢, we may now return to the
original equation in = and replace ¢ by its value which
we have found.

Suppose that the data and conditions of a problem are
such that b is a convenient and desirable quantity to use
in evaluating. Then

J(®)=¢(b, ¢),
and hence ¢ equals an expression containing b and other

known quantities. Let « represent this expression.
Then the original equation becomes

J@) = ¢(=, x).
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The principle above outlined is of such wide applica-
tion in the mathematical sciences that the student should
become thoroughly familiar with it.

135. If any rational integral function of the nth de-
gree is divided by a linear function of the form = — a,
the quotient, according to the principles of division, will
also be a rational integral function, and will be of the
n — 1th degree.

If we carry on the division until the remainder is of
zero dimensions in #, what is the value of the remainder ?

Let f(x) represent the given function, ¢(x) represent
the quotient, and r represent the remainder. Then

F@) = @ — a)$(@) + 7.

According to the principle explained in Art. 134, we
may assign any value we please to x without affecting
the value of r, whatever it is, because r does not con-
tain a.

If we let # = a, the equation becomes

f(@) = (a—a)p(@) +r,
but (a — a)¢(a) = 0¢(a) =0;
hence Sf(a)=nr.

It thus appears that the remainder is the given function
evaluated for a.

The reason why we chose to evaluate for a rather than
any other quantity is evident.

An important special case arises: that in which the
given function is exactly divisible by the given linear
binomial. Since r equals f(a) in all cases, f(a) now
equals zero because r is zero.

Conversely, if f(x) equals zero when x equals a, f()
is exactly divisible by « — a.
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For we have
f(x) = (a’ - a)‘#(w) +
and F@) = (a—a)$(@) + r="0;
and since (a — a)¢p(a) is zero,
r must be zero.

136. The preceding article suggests that any given
rational integral function may be made to vanish, that is
to equal zero, if it is evaluated for certain values.

The questions arise: How many such values may there
be in any given case ? Have they any special relation to
the constants in the function, and if so, what is the rela-
tion ?

In the present chapter we shall see what conclusions
follow when the assumption is made that a rational inte-
gral function of the nth degree vanishes for more than n
values of the variable.

Let f(2) = pi" + pi™~ + pa™* + ++0 + Po1 @+ Py
and suppose that f(z) vanishes when x is made equal to
each of the values a,, a, a3 -+ a,, no two of these quan-
tities being equal.

By the preceding article f(x) is exactly divisible by
* — a;, and we have

J@) = (@—a)(pp"' + ),
the second factor being of the (n — 1)th degree.

Again, since f(x) is divisible by « —a, and since
x—a, and © —a, are prime to each other, the factor
(pex*! + ---) must be divisible by « — a,, and hence

J(@) = (@ — a)(@ — a)(pr* " + ).

Continuing the factoring in this manner, we have

finally
F@) =@ —a)(@—ag) - (&~ a,)po
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and f(x) is thus resolved into n linear binomial factors
with one other factor p,. ,

Suppose now that f(x) vanishes for a quantity b, this
. quantity not being equal to any of the quantities ,, a,,
oo @y

Then f(b) = (b — a)(b — a)(b — d5) -+ (b — a) po=0.

Since none of the factors b—a;,, b —ay, .-+ b—a, can
equal zero, we must conclude that p, equals zero.

Continuing this process, it is shown that each one of
the coefficients p,, p,, -+ p, must equal zero.

Hence, if « rational integral function of the nth degree
vanishes for more than n values of the variable, the coeffi-
cient of each power of the variable must be zero.

137. Let us now suppose that two rational integral
functions of the nth degree are equal for more than n
values of the variable.

Let  p® +p@* '+ o+ + Ppa® + Py
=p'@* +p " + e P+ Pl

2 having more than n values.
Transposing,

(po—plo)a + (P — P& + -+
+ (Par—Pa-)T+pa—ph=0,
and we have a function of the nth degree vanishing for
more than n values of the variable. Therefore by the
preceding article,
Po—p'o= Oy 4 _'p’l = O) A U _p'u = 0;
ie. po=p'y p =ph, ete.
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Hence the two expressions
P + Pt + ot + Puss® + Puy
: p'(?’c” +p'lw"—l+ o +p'n—lm+p’n7
are identical term for term, and the assumed equation
reduces to such a statement as ¢(x) = ¢(x), which holds
true for any and all values of .
Hence, if two rational integral functions of the nth degree

are equal for more than n values of the variable, they are*
equal for all values of the variable

138. If the conclusion of the preceding article be taken
as a condition and expressed,

7 Pix® + Pix*' + +++ + PaiX + Pn

=P+ p'x"+ - +phX +ph
Sor all values of x, then it will follow that the coefficients
of the like powers of x are equal and the expressions are
identical.

For, since the expressions are equal for all values of ,
they are equal when z is zero; in that case, p,=p",.
Dropping p, and p', and dividing by =z,

PR+ P e Py = Pl P e Pl

Making z again équal to zero, p,_,=p',.,; dropping
these equal terms and dividing by =,

P+ p@ Pt e 4 Py =P+ " e Py

Continuing this operation, the coefficients of the like
powers of x are found to be equal.

139. The proposition proved in Art. 138 is known as
the principle of undetermined coefficients. The principle
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is much used for developing a function into a series in
ascending powers of the variable.

In the preceding demonstration we notice that neither
expression contains more than n 41 terms, a finite num-
ber; also, that we might have written

Pn+ Dpi® + - +p1:c"“ + p
=p’n +p',._1m+ ces +p'lwn-l +p,ow,"

If, now, instead of a finite number of terms, we have
the series

Dot Puci® + P+ oo =Pl + o i® + Pla®® + -1,

and this equality holds for all values of x, the demon-
stration would proceed as before, with the conclusion
that the coefficients of the like powers of z are equal.

To illustrate the use of the principle, let it be required

to develop 1 _T_x into a series including the third power
of x.
Let Y — A4 B+ O+ Dt 4 e
142

T

Here we assume that the given function i+ can be

developed into a series in ascending powers of wx; our
problem is to discover what values the quantities 4, B,
C, etc., must have in order that the function may equal
such a series.

-Multiplying both members of the equality by 1 + =,

z=A+ (A+ B)x+ (B+ C)x* 4+ (C + D)a® + .
The first member may be written
0+ 2+ 02"+ 02+ ..o,
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Equating the coefficients of the like powers of ,
" A=0, (A+B)=1, .. B=1;
B4+C=0, ... OC=—1;
C+D=0, .. D=1.

The coefficients are now determined. Placing their
values in the assumed series, ’

x
== dHd—

Ex. 2. Develo .
P v o

Assume
=A + Bx + Ox* + Dx* + Ea* + -.-.

@+t
Squaring both members of this equality,

1 gL ABlz+ AC| 2+ AD B4 AE| A+
1+= AB B BC BD
AC BC c?
AD BD
AE

the quantities at the left of any vertical line being the
terms of the complete polynomial coefficient of the power
of = written at the right of that line.

Multiplying both members of the equality by 1 + «,

1=A42+ AB|z+ AC|x*+ AD |23+ AE | 2A+ ...
AB B2 BC BD
A? AC BC Cc?
2AB AD BD
B*4+2AC AE

2AD+2 BC
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Equating the coefficients of the like powers of =, as in
- the first example,
A =1,
2AB+ A= 0,
2AC+2AB+ B*=0,
24AD+2BC+2A4C + B*=)0,
2AD+2BC+2BD+2AE+ (*=0.

Thus we have a set of five simultaneous equations
from which to determine the values of the five unknown
quantities involved. If these values be substituted in
the assumed series,

LR VA 9 S S S Y 10 S
A+ 2)% )

EXAMPLES.

1. Prove that a rational integral function evaluated
for any real finite value, will be real and finite, as stated
in Art. 133.

2. Show that if a rational integral function of the nth
degree be divided by a rational integral function of the
mth degree, the quotient will be a rational integral func-
tion of the n — mth degree.

3. Show that the nth derivative of a rational integral
function of the nth degree is a constant.

4. What would the remainder be if the function
¥ —22 —2*+ 32?4+« — 1 were divided by 2 — 2 ?

5. The quantity ¢ has such a value that 2’ — 42 4
is exactly divisible by # —c. Find the value of ¢ by
Art. 135.

6. Develop the following functions into series :

a 142 1-32
*;_‘7; 4 —; 5 .
®) b+ cx @ 142+ a? ®) 142
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CHAPTER XVII.
BINOMIAL THEOREM,

140. In Art. 29 is given the full text of Clifford’s
translation of the statement

(a+ b2 =a+2ab+ b2
We have now to consider the corresponding expressions
for (a + b)%, (a + b)4, etc., and to reach, if possible, a
general form; that is, an expression for (a + b)™ when
the indicated operation is performed, m indicating that
a + b is multiplied by itself any number of times.
(a + 0= (a+b)(a+ b)?=(a+bd)(a*+ 2adb + V)
=a*+3a® +3ad®+ b
Proceeding in this way, by introducing the factor a + b
into the expression for any particular power of a4+ b,
we have the expression for the next power.
Writing the series of expressions in order,
(a +b)¥=a*+2ab+ b’
(a + b =a® + 3’ + 3ab® + b°,
(a+b)}=a'+4a’ + 6a®* + 4ab®+ b4,
(a + b)Y’ =a® + 5a'b + 10 a®* + 10 a®0® + 5 ad* + V°,

(ot oy =
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An examination of these expressions shows that

1. ‘each expression is rational and integral as regards
both @ and b; . ‘

2. it is symmetrical in o and b;

3. it is homogeneous in @ and b;

4. it is a complete homogeneous expression; that is,
every term is present which is consistent with homo-
geneity ;

5. the terms are in descending powers of a and ascend-
ing powers of b;

6. as a result of 4, the number of terms is one greater
than the number of units in the exponent of a + b;

7. the coefficient of the highest power of a is unity,
and the coefficient of the second term is the exponent of
a+b;

8. the coefficient of any particular term may be ob-
tained by multiplying the coefficient of the preceding
term by the exponent of @ in that term and dividing it
by the number which is one unit greater than the expo-
nent of b in that term.

For example, the expression for (a + b)* may be written

4(3 4(3)(2 4(3)(2)1

a+dat + £ Qa4 5O D + b R 5

These characteristics of the forms obtained by actual
multiplication now justify us in writing
m(m —1)

2
+ m(m — lé(m —2) a3
+

(a + )™= a™ + ma™'d + a™ ?

+m(m—1)(m-—@_---(’m—m—1)bm.
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The method of reasoning here employed is known as mathe-
matical induction. It consists in comparing a number of special
forms and observing their common characteristics, and thence
inferring a general form.

The student of logic will notice that there is a fundamental
difference between this method of arriving at a general proposition
and the method of true induction as used in science.

141. In Art. 140 we have arrived at a formula which
will enable us to write at once the expression for any
power of any binomial without going through the work
of multiplying.

In that formula m is positive and integral; we pro-
ceed now to derive an expression for the development
of any binomial affected with any exponent whatever,
positive or negative, integral or fractional.

Since there is no reason why one of the terms may not
be a variable, we shall use the form (a + )™ instead of
(a 4 b)™ used above.

Our problem may then be stated :

To develop the function (a + X)™ into a series, m being
positive or negative, integral or fractional.

Let (¢ + )= A+ Bx + Co* + Do + Ext + .-,

in which A4, B, C, ete., are coefficients to be determined.
Finding the first, second, and successive derivatives of
the given function, and also of the assumed series, we
have
S@=m(a+ay
=B+2Cx+ 3Ds* +4 Ex* 4+,

S'@)=m(m —1) (@ + 2y
=2C+2.3Dx+3-4Ex’+ ...,
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S"'@)=m(m —1)(m —2)(a +2)**
=2.3D+2.-3-4Ex+ -+,
77@)=m(m —1)(m — 2) (m — 3) (a + 2)*
=2.3:4E + ---.
Since x is a variable, and these equations therefore

true for all values of x, they are true when 2 equals
zero; in that case we have

A=a"; B=ma"?; 2C=m(m—1L)a"?

and C’=—"~lg-'}2——1)-a"‘"2; 2.3D=m(m—1)(m — 2)am3,
and D=m(m —DHm—2 a™3; and so on.

18
Substituting in the assumed series the coefficients as
thus determined,

(@+a)" = am + ma™z + m——(m@__ L) go-as
m(m — 1|§)(m — 2)a"‘-39;3

+m(m— 1)(m|i-— 2)(m — 3)a"‘

+

ol T

This is the binomial theorem, of which the formula of
Art. 140 is now seen to be merely a special case.

Comparison of several successive terms in this series
shows us the law of the formation of each term so that
we can write any specified term without first writing all
the preceding ones.

Thus, the nth term is

mm =) —=2) e (n (0 —2)) oy,
n—1 ’




BINOMIAL THEOREM. 139

and the (n + 1)th term is
m(m — 1) (m —2) -+ (m —(n — 1))

|ﬁ a™ "z,

The student should now consider which of the charac-
teristics numbered 1, 2, 3, 4, 5, 6, 7, 8, in Art. 140, hold
good for the three cases:

m fractional and positive;
m fractional and negative;
m integral and negative.

EXAMPLES.

1. Develop into series by the binomial theorem :
@) @—2)*; @) (ga+r0)*; (3) (ga+ra")™

2. Describe the binomials given in Ex. 1, and by
means of the series found in that example, develop the
following functions to five terms:

@-9) Ba+28); G+t

3. How must the expression (ga + rb)™ be limited in
order that when developed it shall be symmetrical in a
and b?

4. Develop the expressions given in Ex. 2, by the
binomial formula directly ; and compare the results with
the results obtained in the manner prescribed in Ex. 2.

5. Write the 6th term of the development of (4-m)'§.

6. Write the expression for the ratio of the (n 4 1)th
term of the binomial formula to the nth term.

7. Translate

(a + )™ = a™ + ma™'w + Mmtz.—_l) a4 ..y
giving prominence to the fact that ascending powers of
the variable appear and that a and m are constants.
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" CHAPTER XVIII.

CONVERGENCY OF SERIES.

142 The definition of a series has been given in
Art. 95. If a series is of such a nature that it comes to
no natural termination but consists of an unlimited
number of terms, it is called an infinite series.

The student has discovered that only when m is posi-
tive and integral does the development of (a + «)™ contain
only a finite number of terms. The binomial theorem,
the exponent of the binomial not being limited to posi-
tive integral values, becomes therefore an example of an
infinite series.

An infinite series is said to be convergent when the
sum of the first n terms cannot numerically exceed some
finite quantity, however great » may be.

If by taking » large enough the series can be made
numerically greater than any finite quantity, the series
is said to be divergent.

Preliminary to the search for a test of convergency,
we shall consider the geometrical series

14 z4+a®+ a8+ e

The sum of = terms of this series is 11_‘””- Let

< 1; then as n increases, 2* diminishes, and by taking
n sufficiently great we can make 2" as small as we please.”

— 2 tends to the limit - 1

—x —_

1 ..
Hence as n is increased.
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1—a

1—-2’

the sum of n terms, becomes indefinitely large. The

given series is therefore convergent for values of x less

than 1, and divergent for values greater than 1.
Similarly, the sum of n terms of the series

1—z4+22—af+ ...
is 1—(=1)""
142
When z <1, the limit of the sum of this series is

Let # >1; then by taking n indefinitely large

1 _— .
7 and the series is convergent as in the first case;
x
but when « > 1, 2" increases as n increases, and the sum
. of the series has no limit; ¢.e. the series is divergent.

143. The following proposition can now be established:
If, in a series of positive terms, as

mtpetpgt e+ pat paga ooy

the ratio '—:?—1 be less than a certain quantity itself less than

unity, for all values of n beyond a certain number, the series
s convergent.
Suppose k to be a fraction less than unity and greater
than the greatest of the ratios
Buit .. beyond the number =,

then ";“ <k, o < Fopns 1)
Hnt2
ﬁ;i < k’ Co e < k/"’n+1; (2)
Ponts
F":z <k, <o et < Ko 6))

and so on.
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Since kp,>p,.1, if we substitute kp, for u,,, in (2), we
have p,,,<k°%w, Making a similar substitution in (3),
etc., and adding the corresponding terms of these inequal-
ities,

(f"n+l + "'n+2+ Pnis -‘: "') < (k”'n +k2I"'n + ks"'n + "')‘

But since % is a proper fraction, k + k*+ k*+ -.- is a

converging series with k % for its limit. The other

factor u, decreases as n increases, tending to zero as its
limit.

Hence the second member of the above inequality has
zero as its limit. The first member of the inequality is
the sum of the series after the nth term, and since it is

k n
less than i f =

Now the sum of the »n terms preceding p,;; + pnyz + -+
is a finite quantity, being the sum of a finite number of
Jinite terms. Adding this to the series beginning with
Pns1, the limit of the entire series is seen to be a finite
quantity ; hence the conclusion that the series is con-
vergent.

On the other hand, if the ratio

it must also have zero as its limit.

’L;“ is greater than 1

for all values of n beyond a certain number, the series is
divergent.
Proceeding as before, let £ >1; then

(/"'n+l +/“'n+2+ "’) >I-"n(k + k2+ k8+ "')'

Now both factors in the second member of this in-
equality increase without limit; consequently the first
member, which is always greater than the second mem-
ber, must increase without limit; the series is therefore
divergent.
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In the preceding argument we have assumed that the
terms p, ps, ps, etc., are all positive. The conclusions
reached may be shown to hold in case the terms of the
series are alternately positive and negative; for k¥ now
becomes negative, and the series will be convergent or
divergent according as —k is < or > 1.

144. The necessity of examining a series with reference
to convergency rests in the fact that no practical use
can be made of a diverging series.

If a series is found to be diverging, it is rejected for
such values of the variable as render it diverging; or it
is transformed into a series which converges, and, if pos-
sible, into one which converges rapidly, in order that
only a few terms need be used.

An important example of such transformation will be
found in the chapter on the theory of logarithms; and
an example of a series that converges for all values of
the variable, occurs in the theory of the construction
of trigonometric tables.*

145. Since the binomial theorem covers so many cases
of series, it is important to know what limitations must
be imposed in order that the formula itself shall be
converging.

* Hayes' Elementary Trigonometry, Chap. VIIL., Art. 82.

The series referred to is either one of the following:

ing=t_2¥_ & _

sma:_.l L3+L5_ |l+ .
2 gt B

=1-Z;r_z, ..
CcCOoS X 2+lé &—}-
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To make the investigation, let a =1 in the formula.
Then we have

(1+x)~=1+mx+ﬂmz;1)¢2

m(m — 1)(m — 2)
+ 3 a4 e

mim —1) --- (m— (n—2)) 01
+ [n—1 -

mim—1) .- (m — (n —
" o

1)) JR

Now the ratio -1 is seen to be m_—""'l:c, which
Pon n

equals <— 14+ % + 7_1;) x.

The factor in parentheses tends to the limit —1 as »
increases indefinitely. If @ <1, the limit of the entire
expression is therefore some proper fraction, and the
geries i8 convergent; but if x> 1, the series is divergent.

Hence values of x greater than 1 are not admissible in
the development of (1 + )™

The more general function (a + )™ may be written
a"‘(1+§)m. Let §=z; applying. the above results to
(1 +2)™, 2z must be less than 1; otherwise the series
would be divergent. But if z is less than 1, x is less
than a.

Hence the binomial theorem, that is, the theorem
expressing the development of (a + «)™, does not hold
when x> a.
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EXAMPLES.
Determine whether the following series are convergent
or divergent:
z o x? z*

1. 4+ % .
+5 3t3 1T 5

1.272.373.4 oo

2 3 4
2. 14242 454 ..
ettt
3. VI+ VI+VE+VE+ -
4. 14 304+52°+Ta8 +9ad + --..
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CHAPTER XIX.
THEORY OF EQUATIONS,

146. As defined in Art. 71, an equation is a statement
in the language of algebra that two expressions (func-
tions) are equal to each other.

If the functions are regarded (1) as functions of one
quantity only, and if (2) they are differently constituted,
each value of the quantity for which the statement is
true is called a root of the equation.

If the function constituting the second member of the
equation is transposed to the first member, so that the
equation takes the form

F(z) — ¢(z) = flz) =0,
then, in accordance with Art. 74, a root of the equation
is a value of « which causes f(z) to vanish, so that the
expression which is equal to itself is zero.

If condition (1) holds and (2) does not, the equation
reduces to an identity.

For example, ® —5 =2 —5 is an identity, and the
statement is true for all values of «.

If condition (2) holds and (1) does not, the equation is
said to be indeterminate; and the statement is true for
an indefinite number of sets of values of the quantities
involved. .

For example, the equation 22 —3y+ 1=0 is inde-
terminate if viewed as an equation in # and y. We may
assign to a all values that we please, and by properly
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assigning values to y, may keep the statement of equality
true. Thus, if =1, y must equal 1; if x=2, y=3;
if z=—1, y=—14, ete.

In what follows, we shall consider equations in which
the above stated conditions (1) and (2) hold, together
with a third condition that the functions shall be ra-
tional integral algebraic functions; and our problem is:
to discover the roots of such equations, — their number
and character and values.

Except when otherwise defined, the symbol flx) will
be used to denote the rational integral function

@+ patt + patt 4 oo 4 Py + P,

147. Number of roots. In the chapter on equations,
Part I, it has been shown that the general equation of
the first degree has one root, and that the general equa-
tion of the second degree has two roots. We have now
to inquire whether there is any special relation between
the degree of the equation and the number of the roots
which holds for any degree.

If the equation f(x) =0 is of the nth degree, and it
be admitted that some of the coefficients p, po, sy -+ Du
are not zero, it then follows from Art. 136 that f(x) can-
not vanish for more than n values of the variable; that
is, the equation f(x) =0 cannot have more than = roots.

Now let &, be a root, then f{e;) =0; also, by a preced-
ing article, f(x) is exactly divisible by = — &, and we

have
f@) = (@ — ay) fi(x) =0,

in which the factor fi(#) is of the (n — 1)th degree.
Dividing both members of this equation by z — «;, we
have fi(z) =
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Suppose «, is a root of fi(x) = 0; then, as before,

S(x) = (@ — &) fi(x) = 0;
in which fy(«) is of the (n — 2)th degree.
Repeating this operation, we have finally an equation
of the first degree, and

N@) = (2 — @) ( — ) (r— &) -+ (* — &) =0.

Thus the first member of the equation is resolvable
into » linear binomial factors, and the second term of
each binomial is a root of the equation.

Hence, assuming that every equation of the form f(x)=0
has a root, real or imaginary, if the equation be of the nth
degree, it has n roots and no more.

Two or more of the roots may be equal; the binomial
factors remain » in number, and we still speak of the
equation as having n roots.

If the multiplication indicated by

(@—a)(@—ay) (2 — ) (z— ,)

be performed, it is evident that the term p, of the origi-
nal polynomial equals

(= 1) asopery +o ety sty

Hence, p,, the absolute term in the equation f(x)=0, is
exactly divisible by each root of the equation.

148. Imaginary roots. If f(x) is divisible by the prod-
uct of any number of linear factors of the form & — a, it
is, of course, divisible by any one of the individual linear
factors.

Thus, if f(z) is exactly divisible by («* — 8%, it is
exactly divisible by # — B and « + 8 separately; and B
and — B are roots of the equation f(x)= 0.
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Also, if f(x) is exactly divisible by (x — «)?— 8, it is
exactly divisible by # — (« + 8) and x — (e — B); hence,
in this case « + 8 and a — B are roots of the equation
F@=0.

Also, if f(x) is exactly divisible by (2 — «)? + 82 it is
exactly divisible by x—(¢+8V —1) and —(a— BV —1);
and in this case the equation f(x)= 0 has the conjugate
imaginary roots « + 8V —1 and @ — 8V —1.

It thus appears that an equation whose coefficients are
real may have tmaginary roots; but these roots must occur
in pairs, and must be conjugate, for the product of a
binomial of the form z— (¢ + Bv/—1) by any binomial
of the form  — @ will conduct to imaginary coefficients;
and likewise, if ® —(a + 8V — 1) be multiplied by any
binomial of the form @ — (y + 8V — 1) (in which y does
not equal « and & does not equal — B), imaginary coeffi-
cients will result.

149, Irrational roots. By a proof similar to the one
given in the preceding article, it may be shown that
though the coefficients of an equation are rational, it
may have surd roots; but these surd roots, if occurring
at all, must occur in pairs, and must be the correlated

forms « + VB and « — V.

EXAMPLES.
1. Form the cubic equations whose roots are :
@ -1, 2, 5
@ - % 4
6)) a, =3, 3.
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2. Form with real coefficients the equations of the
fourth degree whose roots are:

Q 4/-1, 1, -1,
@2 2-v-=3, % —2;
® pv—-1, ¢gvV-1
8. Solve the equation
?—8a+6x+52=0,
one of the roots being 5 —v—1.

4. Solve the equation
& — AP+ 4+ 4w —8 =0,
one of the roots being V2, and another 1 ++v—1.

5. What can be affirmed of the roots of equations
under the following conditions:

(1) Coefficients all positive ;

(2) Coefficients of the even powers of x preceded by
the same sign, and the coefficients of the odd powers
preceded by the contrary sign;

(3) Equation containing only the even powers of z, and
the coefficients having the same sign;

(4) Equation containing only the odd power of «, and
the coefficients having the same sign.

Nore. The absolute term is regarded as an even power term.

150. Rule of signs. In any series of quantities given
with their signs a succession of two like signs is called
a permanence of signs, and a succession of two unlike
signs, a variation. Thus, if we write in order the signs
of the terms of the polynomial a® —a?—1, we have
+ — —; the first and second constitute a variation, the
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second and third a permanence. The following is known
as Descartes’ rule of signs for positive roots:

No equation can have more positive roots than it has
variations in the terms of its first member.

Suppose that the signs of the terms of the polynomial
flz) are

+-+-=-=—4++ -
The signs of a binomial of the form = — &, where a is a
positive root, are + —. We proceed to show that if the

polynomial be multiplied by the binomial, there will be
at least one more variation in the product than in the
original polynomial.

Writing down the signs only of the terms in the mul-
tiplication, and placing an ambiguous sign wherever two
terms with different signs are to be added, we have

+—F - =+ + -

+ —

+ -+ ———++ -
—+-+++-—+

+-+-xx£+ -+

In this product, we notice that

(1) an ambiguity occurs whenever + follows +, or —
follows —, in the original polynomial;

(2) the signs before and after an ambiguity, or set of
ambiguities, are unlike;

(3) a change of sign is introduced at the end;

(4) in general, the suin of the permanences and varia-
tions is n + 1 if the sum was # in the original polynomial.

On account of (2), the number of variations is not
diminished, and in whatever way this series of signs is
read, the number of variations is at least one greater than
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in the original series; and this is true even if we omit
the ambiguous signs altogether in reading, the variation
being gained at the end.

If the original series ends with a permanence, it will
be seen, as before, that there is an additional variation.
Thus we may have

-——++

+ -+

+_.
F—+-———++
—+—+++— —
F-F+ -t +x—

Therefore, if we suppose the binomial factors formed
from the negative and imaginary roots to have been
already multiplied together so that ¢(x) contains only
these roots, each factor of the form x — « corresponding
to a positive root, introduces at least one variation.

151. If, in the expression
J@=@—m)(@—a) - (z—a),

we write — 2 for «, we shall have

f)=(—2—a)(—z—a) - (—z—a,)
=(-1)"@+a) @+ a) (@ + ) - (@ + ).

‘Whence it appears that — «;, — a, --+ — @, are the roots
of the equation f(— ) =0, and therefore the roots of
f(—) =0 are equal to those of f(—)=0 with the
signs changed; i.e. the positive roots of f(—«)=0 are
the negative roots of f(z) = 0.

But by the first rule, f(—x) = 0 cannot have more posi-
tive roots than there are variations in the signs of the
terms of r (—a); which is the same as saying that

h
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the equation f(x) =0 cannot have more negative roots
than there are variations in the signs of f(— x). This is
Descartes’ rule of signs for negative roots.

The student is cautioned against drawing the conclu-
sion that an equation will necessarily have as many
positive roots as there are variations in the signs of
Sf(x), and as many negative roots as there are variations
in the signs of f(—x). It will be observed that, in
general, Descartes’ rule merely furnishes us with outside
limits of the number of positive and negative roots;
other considerations must determine the number of roots
of each kind as well as their value.

EXAMPLES.

1. Find the superior limit to the number of real roots

of the equation
B2+3x+4+a=0,

(1) when a is positive, and (2) when a is negative.

2. Find the superior limit to the number of real roots

of the equation
r?—ar+br—c=0,

a, b, and ¢ being essentially positive.

[The equations of examples 1 and 2 are of great importance in
astronomy. ]

3. Show that the equation
O —2t422—1=0
has at least four imaginary roots.

4. Find the least possible number of imaginary roots
of the equation

P+t 4224+ 2=0.
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5. Examine the equation
r—1=0
for real and imaginary roots (1) when = is even, and (2)
when = is odd.

6. Examine *r+1=0,
(1) when = is even, and (2) when = is odd.
7. Given 2?rar+b=0,

where a and b are essentially positive; show that in the
first equation we have one negative and two imaginary
roots; and in the second, one negative root, while the
.other two are both imaginary or both positive.

152. Whenever it is required to find the value of f(x)
for some particular value of z, the result may be obtained
more readily than by direct substitution. Thus if

@t + pi@ + pa® + pst + Py
is to be evaluated for z = @, the process is as follows:
write the detached coefficients with their signs, multiply
1, the coefficient of the highest power of , by «, and add
the result to the next coefficient; multiply this sum by
o, add the product to the third coefficient, and so proceed
till the last term has been used. The last sum is the
value of f(x) when x=ea. The reasons for this rule will be
found in considering the process itself as exhibited below.

1 +p +p; + ps
o E4+pe o® 4 P10 4 poce
e+p  E4pe+p P+ ped 4 padp;

. + Py

ot + Py + pye® 4 pae

ot + p1o® + P’ + pyer + py
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It is evident, also, that if any given function of z is
incomplete, i.e. if any power of « is absent, its coefficient
0 must be written in the series of coefficients.

Ex. 1. Find the value of 2*—22*+ 32+ 4 when x =2.

1 0 -2 0 43 44 (2
2 4 4 8 22

2 2 4 11 26
-~ f(2)=26.
Ex. 2. Determine whether — 3 is a root of
P4 Tar 4 5a?— 31z —30 =0

1 +7 45 =31 -3 (-3
-3 12 21 30
4 -7 10 0

Since f(—3)=10, —3 is a root of f(x)=0.

153. The process of the preceding article also enables
us to divide f(x) by * — & when « is a root of f(x)=0.

Let f(x) be evaluated for a as before; the required
quotient f(x)+(x — @) will be, supposing f(x) is of the
fourth degree,

2+ (e + p) @+ (e + pree + po) & + (e + pro® + poex + py).

The function is one degree lower than f(x); and the
coefficients of « after the first are the successive sums
obtained in the process of evaluating, the last sum van-
ishing, since & is now supposed to be a root of f(z)=0.

That this is the quotient when f(x) is divided by z — &
appears at once by multiplying this new function by
x — a; thus:
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2+ (e + p) 2 + (e + pia + P)2 + (¢® + pra? D2 + p,)

r — @

(“3 + pra® 4 P20t 4 pya
— (“‘+P1“3 +p.0? —+ pae)
@+ @ + pat + pr— (o + prad® + D20 4 pua)

Since ot + pe® + Do® + pya + py=0,

T4 (e + p) 2 + (a? +pe 4 py)? +
— P’ — (e’ pa) 2 — (3+ P+ Pat) T

or ot + pre® + P 4 poor = — Dy
we have finally for the product
@+ p + pe® + p + p,,

the original function.

To illustrate the use of this principle let it be required
to obtain an equation of lower degree than

o4+ T+ 522 — 31z — 30 =0,
Evaluating for —3 as above, we may write at once
4402 — T —10,
the quotient that would be obtained by dividing

P4+ T3+ 522 31z—30
by z+ 3 in the usual way.
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CHAPTER XX.

GRAPHS.

154. A root of f(x)=0 has already been defined as a
value of x which will render the statement, f(x) =0,
true; that is, if « be a root, f(«) vanishes. If any other
value not a root, as 8, be assigned to «, the function thus
evaluated will not vanish; ¢.e. we shall have f (B) equal
to some quantity not zero.

Now if z be viewed as a variable and be conceived
to pass through all real values from — o0 to + o0, it is
evident (1) that we shall have as many values for the
function as for the variable, (2) that in general the value
of the function will not be zero, and (3) that whenever 2
reaches a root value the function will be zero.

It is possible to represent graphically the changes in
the function corresponding to the changes in the variable.
To do it, draw a horizontal line with a second straight
line at right angles to the first. Call the horizontal line,
XX, or the X-axis; the vertical line Y'Y, or the Y-axis;
and their point of intersection O, or the origin.

Beginning at O as the zero point, lay off with any
convenient unit of length the positive values of z to
the right on the X-axis; and the negative values to the
left on this axis. At the end, remote from O, of this
line which represents the value of x, draw a perpendicular
(using the same unit of length) to represent the corre-
sponding value of f(oo).' The perpendicular is to be
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drawn upward from the X-axis in case f(x) is positive,
and downward from this axis when f(z) is negative.

Thus a point is located in the plane, and if many values
be given to 2, —any two consecutive values differing but
little from each other, — we shall have a correspondingly
large number of points with small distances separating
them ; and the assemblage of points will ultimately form
a continuous line, straight or curved, which may be called
the graph of f(x). The values of x are called abscissas,
and the values of f(x), ordinates ; the two together are
known as co-ordinates.

To illustrate: let us take the equation z4+2=0
and construct the graph of f(x), having in this case
SJ@)=x+2. When 2=0, f(x) =+ 2; when 2=+1,

¥ B
£
i
3
b.of o X
(A
A
YI
Fe. 1.

f(®)=+3; when 2=+ 2, f(x) =+ 4; ete. Taking the
first pair of values, since # =0 we have no distance to
measure off on the X-axis, and since f(z)=+2, we
measure upward two units, thus locating the graphic
point P,. Again measuring one unit to the right and
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three units upward, we have the point P, If z=-—1,
f(x) =+ 1; hence, measuring one unit to the left on the
X-axis and then one unit upward, we have a third point P;.

If many points are located in this way, they will be
found to lie on the straight line determined by any two of
them. (It will be shown in analytic geometry that the
graph is always a straight line when f(2) is of the first
degree.) We shall therefore draw the straight line AB
passing through the points determined. :

For our present purposes, especial attention must be
given to the fact that the distance from the origin O to the
point where the yraph cuts the X-axis represents a root of
f(x) =0. »

This is evidently true, since only root values of 2 make
f(x) vanish, and when f(x) vanishes, we have to measure
neither up nor down from the X-axis; that is, the points
determined are the particular points of the graph which
lie on the X-axis.

In the above example the distance OP,(=— 2) repre-
sents the one root of the equation 2 +2 = 0.

It will now be seen that having any equation f(x) = 0,
of any degree, if we can construct its graph, the several
distances from O to the points where the graph cuts the
X-axis will be the real roots of the equation; we are
thus furnished with one method of solution of equatious.

Ex. 2. Construct the graph of f(z) when
S@=o"+2—6;
and by means of it show that the roots of the equation
2?+2—6=0are —3and + 2.
Writing a value of x and the accompanying value of f(x)

in parentheses, we have, for instance, the following pairs
of values: (0, —6); (1, —4); (—1, —6); (=3, 0); (2, 0).
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Locating the corresponding points as in the first example,
and drawing a curve through them, the graph is as seen

Y in Fig. 2. If many points
X’ _3 o +2 | x be located, they will be
4 B found to lie on the curve

as drawn; there are no
small bends -or other ir-
regularities in the curve.
Moreover, the graph of any
particular quadratic func-
tion, when determined in
this experimental manner,
will be found to be similar
to the graph in Fig. 2.
Y’ In analytic geometry it
Fie. 2. is proven deductively that
the graphs of all functions of the form ax* 4 bx + ¢ are
similar to that of Fig. 2.

155. If we move any graph upwards through one unit,
or what would amount to the same thing, move the X-axis
down through one unit keeping it parallel to itself, we
increase every value of the function by one unit. But
we may increase the value of the function by one unit
by adding a unit to the absolute term.

Hence, the geometrical signification of the algebraic
operation of increasing the absolute term of f(x) by any
quantity as p,,, is this: the graph of f(x) is moved
upwards through the distance p,,,; and if the absolute
term is diminished by p,.,, the graph is moved down-
wards through the distance p, ;.

Now if any graph, such as the one in Fig. 2, is moved
upwards the two quantities which 04 and OB represent
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arve approaching equality; and if we move the graph
upwards just far enough it will merely touch the line XX'
and the points 4 and B are infinitely near to each other.
Any further motion upwards brings the graph to a position
so that the line X X' does not touch it at all, and we say
that the X-axis cuts the graph in two imaginary points.

Since this motion of the graph was accomplished by
increasing the absolute term, and since the intercepts
04 and OB constantly represent the roots of the equa-
tion f(x) =0, it follows that an increase in the absolute
term causes a pair of unequal real roots to change so that
they first become a pair of equal real roots, and finally
become conjugate imaginary roots.

If the graph had another bend in it, a bend above the
X-axis and convex upward so that the graph should cross
the X-axis at C to the left of 4, we should need to move
the whole graph downwards in order to change the two
unequal real roots, 04 and OC, into two equal real roots
and then into conjugate imaginaries.

Thus in Fig. 3, if the graph marked f(x) is moved
downwards, the intercepts OP and OP' approach equality ;
that is, two roots of the equation whose absolute term is
being diminished are approaching the limit of their real
values, and when the bend PB'B"P' is below the X-axis
and free from it, the roots in question are two conjugate
imaginaries.

To illustrate this change in roots, if 22 be added to the
absolute term of the equation in the above example, we
have #® + x + } = 0, an equation whose roots are —} and
—3%; the two unequal intercepts, —3 and +2, on the
X-axis have been replaced by the two coincident inter-
cepts —% and —}.

If a still greater change be made in the absolute term
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of &’ + # — 6, the graph will no longer touch the X-axis;
the two equal roots of the equation will be replaced by
two imaginary roots, and the graph is cut by the X-axis
in two imaginary points. For instance, if the absolute
term } were changed to }, we should have the equation
@® + x4+ } =0, whose roots are —} +3v —}. .

156. “The mode of representing a function by a graph
is due to Descartes, and its invention is one of the great
milestones in the progress of mathematics. The graph is
largely employed by statisticians, by engineers, by physi-
cists, by chemists, and by many others who are able to
employ mathematical methods intelligently; and its sys-
tematic discussion is the subject-matter of co-ordinate
(analytic) geometry.” *

EXAMPLES.

1. Construct the graph of «* — 4« + 4, and show that
the equation .
has two equal roots.

2. Construct the graph of 2® — 22 + 4, and show that

the equation
2*—22x+4+4=0
has no real roots.

Compare examples 3 and 4, and notice that a change in the
position of the graph with respect to the X-axis may be accom-
plished in other ways besides a change in the absolute term.

3. Construct the graph of «* — 62® 411z — 6, and by
means of it show the roots of the equation

2®—6a2’+11x—6.

* N. F. Dupuis’ Principles of Elementary Algebra.
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4. Show that the equation
P+208+4x+8=0
has only one real root, and that this root is negative.
5. Construct the graph of
o —62*+132 - 122 + 4,

and show that the equation formed by equating this func-
tion to zero has two pairs of equal roots.

6. Form an equation of the fourth degree in real
coefficients that shall have two of its roots zero and a
third root 3V —1; and exhibit the roots graphically.
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CHAPTER XXI.
SPECIAL ROOTS.

157. In this chapter it is proposed to examine condi-
tions whose conclusions relate to real roots, equal roots,
roots which are multiples of other roots, and roots which
are infinitely great.

158. Suppose that
a—h, a a+h

are three values of = taken in order, and that « is a root
of the equation f(x) =0.
Then the three accompanying values of the function

are
Sfle—k), f(a), fa+h),

of which f(«) is zero and the other two are not zero.

It is required to compare the signs of f(e —h) and
S(e+h),

(1) when there is an odd number of roots having the
value a;

(2) when there is an even number of roots having this
value.

To make the case perfectly general, let o), o5 - , o,
be the real roots, and let ), By -+ B:n be the imaginary
roots, and suppose.

@) =(@—L)(@— B (z— Pon)-
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Then we have

J@)=(z—a)(@— ) - (& — &p_m) { ¢ (¥)} = 0.

As f(x) is supposed to contain only real coefficients,
¢ (¢) must be of even degree. No real value of = can
cause ¢ (x) to change sign; for if we form the equation
¢ (x) =0, it has only imaginary roots; therefore the
graph of ¢ (x) does not cut the X-axis, and all the per-
pendiculars representing values of ¢ (z) are on the same
side of the axis. Hence, in examining f(x) for changes
of sign, we need consider only the product

(@ —0) (@ —a) o+ (& — Ctygm)-

Suppose z to start with some value less than the least
root, and to increase continuously until it becomes greater
than the greatest root. So long as « is less than the least
root, all the factors (z —a;,), (® — @), etc., are negative;
but when « passes the value of the least root, say a,, the
factor containing that root becomes positive, and if there
is no other root equal to a,, this factor will be the only
one which will change sign; consequently the sign of
the entire product is changed.

Further, if there is an odd number of roots having the
value @;, an odd number of factors will change sign, and
the sign of the entire product is changed; but if there
is an even number of roots having the value a,, an even
number of factors will change sign, and therefore the
sign of tlie entire product remains unchanged.

As z goes on increasing after it has passed the first
root, it is evident that the factor containing this root
cannot become negative again, and does not need to be
considered in determining the subsequent signs of f(x).

The above argument is repeated in the case of each
T0Ot @y, @y -+ @,_sm, and thus the theorem is established
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that £(x), of the equation £(x) = 0, will change sign when x
passes through any real root, as a, if there is an odd num-
ber of roots having the value a; but if there is an even
nwmber of such roots, £(x) will not change sign.

159. Suppose that upon evaluating f(z) in succession
for two quantities, as a and b, the results f(a) and f(b)
have unlike signs: we have then, on the graph of f(z),
two points whose co-ordinates are [a, f(@)] and [b, f(b)],
and since it is assumed that f(a) and f(b) have unlike
signs, the two points must lie on opposite sides of the
X-axis. Now f(x) is of the form

@+ pE"t e 4 P+ P,

a rational integral algebraic function, and no finite value
of « can render the function equal to co. Moreover, as
shown in Art. 133, f(x) varies continuously from f(a)
to f(b); d.e. it passes through all intermediate values
while 2 changes from a to b; hence .the graph must
cross the X-axis in order to connect the points [a, f(a)]
and [b, f(b)], but at the point of crossing f(x)=0, and
there is therefore a root of f(x) = 0 between a and .

It evidently follows that the graph, by cressing the
X-axis an odd number of times, may connect points lying
on opposite sides of the axis. Therefore if f(a) and
J(b) have unlike signs, there may be more than one real
root of f(x)=0 between the values a and b but the num-
ber of them is an odd number.

We thus conclude that if f(x) be evaluated in succession
for two quantities, a and b, and if the results, f(a) and
£ (b), have unlike signs, the equation f(x)=0 must have at
least one real root between a and b.

For example,
if Sf@)=a+2—1,

S(=H=—2% and f(1)=1;
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hence there is a root of the equation

P?4+r—1=0
between — } and 1; and the graph of #®*+ 2 —1 must
cross the X-axis at least once between the point x =— }

and the point 2 =1.

160. It has been shown in a former article that an
equation whose coefficients are all real may have pairs of
conjugate imaginary roots. In case f(x) is wholly made
up of the product of quadratic functions of the form
(x — «)* + B there is then no real quantity which sub-
stituted for # makes f(x) vanish; and since f(x)= 0 has
thus no real roots, the graph of f(x) must lie altogether
on one side of the X-axis; and if we can determine the
sign of f(x) for one value of x, we shall know its sign
for all values of #. The equation f(x)= 0, where

f@)=a"+ pa* T+ oo 4+ P&+ Py,

may be written
1 1 1 1) _
w"{l+plx+pgm,+ + Pary 1t P =0.
As 2 increases, the value of the function tends to
become «", and when =+ o, f(#)=(+ )", a positive
~quantity infinitely great.

Hence, if there exists no real quantity which, substituted
Jor x, makes f(x) vanish, then f(x) must be positive for
every real value of x.

For example, the graph of the fourth degree function
[(x —1)* + 2] (= + 2)* + 3]
must lie altogether above the X-axis.
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161. Under the condition stated in the last article,
the function is necessarily of even degree, being com-
posed of quadratic functions. Suppose now that

J@=2"+pa* '+ -+ Pz +pa=0,
n being an odd number. Since imaginary roots enter the
equation in pairs, if 2m be the number of imaginary
roots, the number of real roots is n — 2m, an odd num-

ber. It can now be shown that one of these n — 2m real
roots is of opposite sign to that of p,.
x=— oo, f(x)is negative;

If { =0, the sign of f(z) is the same as that of p,;

x=+o0, f(x) is positive.

If p, is positive, the graph of f(x) must cross the
X-axis between — o0 and 0; that is, there is one nega-
tive root; and if p, is negative, the graph crosses the
axis between 0 and + oo; that is, there is a root between
0 and + 0.

Hence, every equation of an odd degree has at least one
real oot of a sign opposite to that of its last term.

162. Let it now be assumed that an equation is of an
even degree and that its last term is negative.

Substituting as in the preceding demonstration, we
have:

z S(@)

)
|
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Since f(x) has changed sign between — o and 0, and
again between 0 and + oo, there must exist at least one
real negative root and one real positive root.

Hence, every equation of an even degree whose last term
is negative has at least two real roots, one positive and one
negative.

163. As a preliminary to a method for testing an
equation for equal roots, we shall show that if the
equation f(#) =0 has no equal roots, f(x) and f'(x) have
no H. C. F. (see Art. 70).

Let /(@)= — ) (@—ap)- (@—a),

in which no two of the quantities al; o, +++ @, are equal
to each other.

Then [f'(@) =+ ( —ay) (x — 0tg) -+ (& — )
+@— ) @ — ) e @) + o
+ @) @ =) @ — ),
No one of the linear binomial factors of f(x) is a
factor of f'(x); and since these linear factors are the

prime factors, the two functions f(x) and f'(x) have no
H.C.F

164. Equal roots. If we make a supposition the oppo-
site of that made in the preceding article, we find that
f(x) and f'(x) have an H.C.F.

For let «! be one of the m equal roots of f(x) =0, and
let the other roots be e, ag +++ @,_n;1; then

S@) =@ — )" (@ — a) o (T — tpmy)
= (z — @)"$(2).
Hence f'(2) = m(z — &) '$(2) + (@ — a)"'(2).
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" By the preceding article, ¢(x) and ¢/(x) have no H.C.F.;
therefore (x — e,)™! is the H. C. F. of f(2) and f'().
Now if we put this H. C. F. equal to zero, we have

x—a)*'=0,

an equation of the (m — 1)th degree, having for its roots
o, taken m — 1 times. Thus the number of equal roots
in the given equation is greater by one than the number
obtained from the equation (x — «;)" 1= 0.

Hence, if f(x) =0 has equal roots, the H. C. F. of f(x)
and f'(x), when equated to zero, constitutes an equation
which has for its roots these equal roots, and no others.

If f(x) = 0 has two sets of equal roots, so that

J@) = (@ — )@ — a) @)
the above process may be repeated, and the H.C.F. of
f () and f'(x) will be found to be

(x — o)™}z — a)? .
The solution of the equation,

@ — &))" (@ — ) =0,

will evidently give roots having the values e; and
m — 1 roots with the former value and ¢ —1 with the
latter value.

The process will be the same for any number of sets
of equal roots.

165. If f(x) =0 has m equal roots, f'(x) =0 has m —1
equal roots whose value is the same as that of one of the
equal roots of the first equation.

If an equation is suspected of having equal roots, the
H.C.F. of f(x) and f'(x) should be found.

Suppose, f{)r example, that the factor is * —4z+4;

\
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the roots of 2> —42 4+ 4 =0 being 2 and 2, we have now
m —1 of the m equal roots which the given equation
S (%) = 0 must have; hence 2, 2, 2 are roots of the equa-
tion, and since f(x) is divisible by (x — 2)(x — 2)(x — 2),
we may, by dividing, reduce the degree of the equation
so that there is left for solution an equation whose degree
is (n —3).

166. Thus far we have considered only such equations
as have unity for the coefficient of the highest power of
2. In case the coefficient of the highest power is not
unity, the equation may be transformed into one in
which the coefficient of the highest power is unity and
the other coefficients are integral, the original coefficients
being integral.

Suppose we have

D" + P+ patt 4 oo 4P @+ =05

pn—l + & - 0.

then a:"+ a:""+p "3 4 .. +

Now let 2= _Z, in which A is at first an undetermined
quantity.
Substituting this value of z,

Yy " YLV DPar Dn
LA lad = =0.
(A> +Po <A> toe (A) + Do

Multiplying by A",

Apl 1 A"—lpn-l A”pn
e =0.
v Do vt + Do y+ Do

If, now, 4 be taken equal to p, we have an equation
of the form

¥+ Py '+ Pyt + o + Py + P =0,
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in which the coefficients P,, P, etc., are all integral.
After solving this equation in y, the root-values of x in
the original equation may be found from the relation

w:%.

167. Roots infinitely great. It is sometimes necessary
to impose upon an equation, whose coefficients are literal
or partly literal, the condition that one or more of its
roots shall be infinitely great.

In order to do this, let z =31/, and substitute this value
of z in the equation

P+ Pt 4 e + P @+ P =0; @)
then we have

n n-1
Po(}/) + Pl(%) il pn—l@)"'pn =0,

or Pot+ Py + -+ + Pay + iy =0. @

If p,, which has now become the absolute term, be of
the nature of an undetermined coefficient, we may equate
it to zero, and equation (2) then becomes

Y(Pi+py + - + Py + Py =05

and consequently, zero is one of its roots. But when
y=0,z=0

Hence, the condition that one of the roots of an equation
shall be infinity is that the coefficient of the highest power of
the unknown quantity shall be zero. If both p, and p, are
zero, two roots of equation (2) are zero; hence two roots
of (1) are infinitely great.

The principle of this article is of importance in the
theory of asymptotes. See Williamson’s Differential Cal-
culus, Chapter XIII.

N
N

N

\
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168. Identical equations. Two equations are said to
be identical if their corresponding coefficients are propor-
tional.

Thus  pea" + pa™™ + +++ + Par® + P =0 @
and Pg"+ Pa* '+ - +P, z+P,=0 ®
are identical if

Po_Dr_  _Pa1_ Pn
PP P, P

and equation (3) might have been derived from (1) by

P P
multiplying the first term by Fo’ the second by 7‘, and
0 1
so on. See Art. 78.

EXAMPLES.

1. Find the roots of the following equations:
1. @*—32*—62+8=0.
2. #—-22"4+1=0.
3 #4424+ 2> —8x—6=0
4. P+ 20 —82°—622=0.
2. Examine the following equations for equal roots:
1 e*—422+ 32 +42—-4=0.
2. *—62°4+62"4182—27=0.
3 ##—62"+32*+122*—92* —6x+4+5=0.
4. B2 —-522+32+9=0.

3. Find the condition that the equation
P+ 3ar*+36x+c=0

shall have two roots equal.



174 ALGEBRA.

4. Find the condition that the equation
?+at+b=0

shall have equal roots, and determine whether it can
have three equal roots.

5. Show the general features of the graphs for equa-
tions of the following description:

1. An equation of the third degree, all of its roots real
and two of them equal.

2. An equation formed by equating to zero the first
derivative of the function in the preceding example.

3. An equation of the third degree, all of its roots
equal and positive.

4. An equation of the fourth degree, all of its roots
imaginary.
6. Find the roots of the following equations:
1. 1022 —-1T2*+246=0.
2. 38 —222—6x+4=0.
3 22— 32+22x—-3=0.
4, ot — (x4 g = 0.

7. Given the equations:
1. (mz+ n)(@®*+ 3a%) = 2>
2. (mx+n)®— (62— 2% =0.
3. (mzx+n)’+a®—a*=0.
4. 2+ (mx + n)® = 3 ax(mx + n).
Perform the indicated operations and arrange the terms
in descending powers of x; then impose the condition

that each equation shall have two-roots infinitely great,
and find the resulting values of m and = in each case.
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CHAPTER XXII.

STURM’S THEOREM.
169. Let

f@) =@ — a)(@— a))(@— ag) -+ (x — ,) =0.

If the multiplication here indicated be performed, we
have

o — (e + g+ -+ + )2 4 (e + ooy + g + o0 )2
oo (= D (a2 = 0.

It will be seen that the coefficient of z* is 4 1; the
coefficient of 2"~! is the sum of the roots, preceded by
the minus sign; the coefficient of #"~? is the sum of the
product of the roots taken two and two; the coefficient
of &% is the sum of the product of the roots taken three
and three, and preceded by the minus sign.

The law of the formation of the coefficients is now
apparent, and we have finally for the last term the
product of all the roots, preceded by the minus sign if
there is an odd number of roots. If this equation be
identical with

@ + Pt + pt T 4 e 4 Pai®@+ P =0,
by Art. 168 we have

(et -+ a)=py,
+ (alaZ + @03 + 05 + ) = Py

(_ 1)"(421(42(13 o ll,,) =Dns
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" a set of n independent equations in the » unknown quan-
tities a,, ay, --- a,, the known quantities being p,, py «++ p,.

Now it is obvious from the definition of a root, and in
advance of investigation, that a root of an equation must
be some function of the coefficients in that equation; and
it would seem as if the above set of equations furnished
us with material for determining what functions the roots
are of the coefficients; that is, it would seem as if we
might solve these n equations, obtaining the value of
each root. A general solution would, of course, furnish
formulas by means of which the roots could be deter-
mined in any particular case.

Since the quantities a;, &y, a3, etc., are all involved in
the same way in these n equations, there is no advantage
in eliminating certain quantities rather than others.

Suppose the » — 1 quantities a,, og, @, --- a,, eliminated
8o that we have finally an equation in «,. In whatever
way the elimination is effected, this equation is of the
nth degree in «,; in fact, it presents the original function
with ¢, in place of x; hence no progress is made toward
the solution of the given equation in .

170. The principles of previous chapters are of service
in the determination of the roots of equations, but it has
been seen that some of the principles apply only to
equations having special characteristics, while others
afford methods which are more or less tentative. We
proceed to a theorem which enables us to determine the
number and situation of the real roots of any numerical
equation of the form

" +plw"<l + e +pu;lx +pn = 0)
n being positive and integral, and the equation having no
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equal roots. This theorem, named from its discoverer,
Sturm,* is as follows:

Given the equation f(x) =0 without equal roots. Let
the operation of finding the H. C.F. of f(x) and f'(x)
be performed with this modification, that the sign of every
remainder 18 changed before it is used as a divisor. The
given equation having no equal roots, we arrive at last
at a numerical remainder not zero. Let the sign of this
remainder also be changed. Let f(x), f3(x), -- f,_(X) be
the series of the modified remainders so that we have for
the entire series £(x), £'(x), £,(x), £,(x), -+« £,_1(X), the series
decreasing in degree from the nth to the zero degree inclu-
sive. Let a and b (where b > a) be any two real quanti-
ties; then the number of real roots of f(x) =0 between a
and b is equal to the excess of the number of variations in
the series of signs of f(a), f'(a), fi(a), - £,_,(a) over the
number of variations in the series of signs of f(b), £'(b),
fl(b)’ o fn—l(b)‘

Si®), fo(®), ++ fo_1(x) may be called Sturmian functions.
Let gy ¢, -+ 9.2 denote the successive quotients which
arise in the process of ploducmg the Sturmian functions;
then we have

S (@) = '@ — (@),
1@ = afi(@) — f(®),
@) = 0:£(@) — /@),
fa(w) m@) J:(w),

f “_3(27) Qn—2f n—2(m ) j:i 1(“’)

* Ce grand géométre communiqua & 1’Académie des Sciences,
en 1829, la démonstration de son théoréme qui constitue I'une des
plus brilliantes découvertes dont se soit enrichie 1’Analyse mathé-
matique. — Serret.
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From these relations two conclusions can be drawn:

First, two consecutive functions cannot vanish for the
same value of x. Suppose the contrary to be true, and
assume that fi(x) and fx(x) become equal to zero for the
same value of x; then from the third of the above equa-
tions, fy(x) must also equal zero; and if fy(x) and f3(x)
vanish simultaneously, f,(x) must also vanish in order
that the fourth equation may be true. Finally we shall
have f, ,(x) vanishing with the rest; but this last Stur-
mian function, being a constant, cannot vanish for any
value of .

Second, when any intermediate function vanishes, the
Sunction preceding and the one succeeding have wunlike
signs. Suppose, for instance, that fy(x) vanishes for
some value of z, as c. We have just seen that neither
Jfo(®) nor f(x) can vanish simultaneously with f();
hence the fourth equation of the above set becomes
Ji®)=— f(@).

Now no alteration can be made in the series of signs
of the functions

f (9’)’ f’ (w)’ fl(w)’ '"fn-l(x)’

except when 2 passes through a value which makes some
function vanish. We proceed to the proof of the follow-
ing sub-propositions :

1. No variation s lost or gained in consequence of X
passing through a value which makes any function except
f(x) vanish.

2. When x passes through a value that makes f(x)
vanish, one variation, and only one, is lost.

Let ¢ be a value of # which makes some other function
than f(x) vanish. For example, suppose fy(c)=0. As
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neither fy(«) nor fi(x) vanishes when x = c, neither of
them can change sign as « passes through ¢, but f(x)
will or will not change sign, according as the equation
fi(x)=0 has an odd or even number of equal roots of
the value c¢; hence the signs of fy(x) just before z=c¢
and just after = ¢ may be any one of the four cases,
++, ——, +—, —+; hence if ¢ — & be the value of
x just before © = ¢, and ¢ + h its value just after z = c,
and if f(x), fa(2), fi(x) be evaluated first for ¢ — A, and
then for ¢+ &, all the possible arrangements of signs
that can occur are:

r=c—h r=c+h
Se(e — k)| fa(c — k)| fa(c — h) Se(c + k)| fs(c+h)|fa(c+h)
+ + - + + -
+ - - + - -
+ + - + - -
+ - - + + -
- + + - + +
- - + - - +
- + + - - +
- - + - + +

These signs should be read horizontally; it will be
noticed that in every case there is one variation and
one permanence.

If h =0, so that fs(c F k) is actually zero, the middle colummn
of signs drops out, and we have simply +— or —4; t.e. one
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variation as before. Further, non-consecutive functions may van-
ish for the same value of x. When x reaches such a value, the
number of signs in the series to be considered is at that instant
diminished by the number of functions which vanish; but from
the above argument it is seen that only permanences disappear,
and that these re-appear as soon as x has passed that value which
causes the several non-consecutive functions to vanish.

We have finally to consider the effect of a passage of =
through a root of f(x)=0.

Suppose e a root, so that f(¢)=0. Let & be a positive
quantity, so that « — h is the value of x just before the
assumed root value is reached, and « + % is the value of
x just after passing that value. By Art. 132,

Fa—1)=f(a)— bf'(e) + Ii;f”(a)— ’é’f"xa) T
also

S+ k)= f(e)+ hf'(e)+ |:f"( >+ B

Since f(«)= 0, these two equations may be written

Je=l) - fia )+Lf"(u)

f'"(a\ +

h
M = f &)+ = Lf"(a)_|. ey
or if & be taken indefinitely small,
He=D o r), ®
LEED) _ | pia). )
Now since the equation f()=0 has no equal roots,

and consequently the equations f(z)=0 and f'(z)=0
have no common root, it follows that f(x) changes sign
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when z passes through the value a, and f'(x) does not
change sign; .. the quantities f(« — ) and f(x + &)
have unlike signs, whilst f'(e — &) and f'(x 4 k) have

like signs.
Summarizing the argument, we have
Sle—mit, fle—=m){F,
Sle+BiF, Se+hm)iF.

Reading the upper signs of the functions in the first
horizontal line, and then the upper signs in the next
line, and reading the lower signs in the same manner, we
see that in each case a variation is succeeded by a per-
manence.

Therefore if the entire series of functions f(x), f'(x),
Si(@), fo(2), etc., be evaluated for « — h where « is a root
of f(x)=0, and & is indefinitely small, and if the series
be then evaluated for « + h, the second series of signs
must have one less variation than the first series has;
and since one variation must thus give way to a per-
manence each time that « passes through a root of
f(@)= 0, and since no variation can be lost as x passes
‘through other values, the theorem is established.

171. In order to find the whole number of real roots of
an equation f(x) =0, we first make & = — o0 in the series
of functions f(x), f'(#), fi (%), etc., and note the number
of variations; we then make x =+ oo, and note the num-
ber of variations. The excess of the number of varia-
tions in the first series over the number in the second
series is the whole number of real roots. If z is made
equal to 0 in the series, the excess of the number of
variations when 2= — o over the number when =0
determines how many of these real roots are negative.
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It is to be understood that in forming the Sturmian
functions, not only must the sign of each remainder be
changed before it is used as a divisor, but a negative
factor must not be introduced at any other point in the
operation.

It is left to the student to show why the remainders
with their signs changed, rather than the ordinary remain-
ders, are taken for the Sturmian functions.

Since f(x) and f'(2) must have unlike signs just before
x reaches each real root of the equation f(x) =0, it fol-
lows that the real roots of the equation f'(2) =0 are
intermediate between those of f(x)=0. Hence if the
equation f(#) =0 is of the nth degree, and has m real
roots, f'() =0, an equation of the (n — 1)th degree, has
at least m — 1 real roots.

172. The chief features of the demonstration of Sturm’s
theorem may be illustrated by means of the graphs of
S @), f'(®), fi (@), ete.

For example, let

f@)=2"—2s—62+4,
then Sl(®) =32*—42—6,

and the Sturmian functions f; (x) and f;(x) are 112 —6
and +882. In the construction of the graphs in this
instance, no use will be made of Sturm’s theorem to dis-
cover the roots of f(x) =0. Since the equation is one of
an odd degree, it has at least one real root; and since its
last term is positive, it has a negative root. Evaluating
for negative quantities, we find that — 2 is a root. Low-
ering the degree of the equation and solving the resulting
. quadratic #* — 42 + 2 =0, the other roots are found to
be real and positive (2 + V2).
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Since we now have the three points where the graph
crosses the X-axis, it may be constructed in its essential
features, and, in connection with it, the graph of f'(z),
the roots of f'(x) =0 being 2 + 1 V22. When 2= — o,
f(®) is — and f'(x) is +; hence the graph of f() enters
the finite field surrounding the origin from the lower left-
hand quarter, whilst that of f'(x) enters from the wpper
left-hand quarter.

Therefore when  is less than the least roots of both
equations f(z)=0 and f'(x) =0, for instance, when
= 0A (Fig. 3), f(#) and f'(x) have unlike signs, as
represented by the ordinates AB and AC. When

z=—2(= OP), f(x) vanishes, ie. f(—2)=0, and
the graph crosses the X-axis. f(2) and f'(r) now
have like signs, as seen in the ordinates A'B' and 4'C';
and this is the case until x reaches a root (0Q) of
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S'(x) =0, when f'(x) vanishes, and its graph crosses to
the lower side of the X-axis. f(x) and f'() now have
unlike signs until  reaches the next root (OP'=2 —/2)
of f(xr) =0, when f(x) changes sign again. When =z
reaches the value 0Q'(=3%+1V?22), f'(z) again van-
ishes, and thus the signs are unlike until the last root of
Jf(x) =0 is reached, when the graph of f(x) crosses the
axis for the last time, and both graphs go off to 4+« in
the upper right-hand quarter.

Thus the graphs are seen to cross the axis alternately,
the roots of the equation f'(x) =0 being intermediate
in value between those of f(x) =0.

Also, if we construct the graph of the function fi(z),
a straight line in this example, it is seen to cross the
X-axis at R(OR = ), a point between the two points
where the graph of f'(x) crosses it.

The graphs of no two consecutive functions cross the
axis at the same point; ¢.e. no two consecutive functions
vanish for the same value of z, as shown in the dem-
onstration.

It will be observed that, in the construction of these graphs, the
unit of distance for vertical measurements is only about one-fourth
the unit employed for horizontal distances. This is done in order
to bring the figure within proper limits. The essential features
of the curves, and hence their mutual relations, are preserved,
however, and therefore the principles of the theorem are illustrated
as well as if only one scale were used.

173. Resuming the series of functions,
@) =2* -2 — 6244,
fl(®)=382*—4x—6,
filz) = - 11z — 6,

Si(x) =+ 882,
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we will employ Sturm’s theorem in order to compare the
results which it furnishes with those obtained above.
The following table may be formed :

-® 4o 0 -8 -2 -1 +1 +2 +8 +4

f@ - + + - 0 4+ — — — 4
f@ + + - + + + - - + +
@) - + — — = — + 4+ + +

@)+ + + + + + + + + +

The first column of signs presents the signs of the
several functions when the functions are evaluated for
— o ; the second column, when they are evaluated for
+ w0, and so on. In the — o column, we note three
variations, and in the 4 o column, no variations; hence,
since three variations have been lost, the equation f(z)=0
has three real roots. In the zero column, two variations
appear; consequently one variation is lost between — oo
and 0, and there is one negative root. In the column
headed — 3, there are three variations; therefore we
know that the negative root does not lie between — oo
and — 3. Evaluating for — 2, we observe that the num-
ber of variations is two; hence, since a variation has
been lost between — 3 and — 2, we know that there is a
root between — 3 and — 2; and since f(— 2) vanishes,
this root is — 2.

Since we have found one root exactly, we might use it
to lower the degree of the equation, but in this case we
will continue evaluating in order to exhibit more fully
the use of Sturm’s theorem. When z =0, two varia-
tions appear in the series of signs, but evaluating for
+ 1 we obtain only one variation; therefore there is a
root between 0 and + 1.
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Continuing in this manner, it is found that the last
variation is lost between + 3 and + 4; therefore the
third root is situated between + 3 and +4. We may
continue this process, narrowing the limits between
which any root is situated ; thus we may evaluate for .5,
and so determine whether the second root is between 0
and .5, or betwéen .5 and 1. It is plainly possible to
determine the roots to as many decimal places as may be
desired, although the labor of evaluating increases as we
go on. For Horner’s Method of evaluating, see Tod-
hunter’s Theory of Equations.

174. A study of the above table of signs, and of other
similar tables, shows that although no variation is lost
except when z passes through a root of f(x) =0, yet
there is a shifting of the signs as « progresses through
all values from — % to + oo ; for, of course, the sign of
any Sturmian function must change whenever x passes
through a root (or an odd number of equal roots) of
fu(®) =0, f.(x) representing any Sturmian function.

The demonstration of Sturm’s theorem involves the
assumption that the equation f(z) = 0 has no equal roots.
It does not follow, however, that the theorem is inappli-
cable when we are not sure in advance that a given
equation has no equal roots; for the process of forming
the Sturmian functions is essentially the process of find-
ing the H.C. F. of f(z) and f'(x); and if the given
equation does contain equal roots, the last remainder,
i.e. the last Sturmian function, will be zero, and the
next to the last Sturmian function will be the H.C.F.
In such a case, the equation f(2)=0 may be reduced
by dividing f() by the product of the m linear factors
(¢ — @) (x — &) +--, where « is one of the m equal roots;
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or, if f(x) =0 has more than one set of equal roots,
by dividing by the product of the different sets of
linear factors. Suppose the quotient to be ¢(x), so
that we now have ¢(2) =0 for solution. Beginning
de novo, we find ¢'(x), and form the Sturmian func-
tions. The series of functions ¢ (x), ¢'(x), ¢ (@),
¢y(x), ete., evaluated in the usual manner, furnish the
number and situation of the real roots of ¢(x)=0;
these roots, together with the equal roots previously
found, are the required real roots of f(x) =0. Thus the
theorem is applicable in all cases.

175. It is evident that the functions in the series f (a:),
['(®), Ai(®), -+ fua(®), Will, in general, be n + 1 in num-
ber; but in certain cases, owing to the absence of terms
in the given function, some of the remainders will be
wanting. This can occur only when the given equation
has imaginary roots; for it is clear that, in order to
ensuré a loss of n variations in the series of functions
during the passage of « from — 0 to + oo, all the func-
tions must be present. Moreover, they must all take
the same sign when # = + o0, and alternating signs when
2 =— oo. Since the leading term of an equation is taken
with the positive sign, we may state the condition for
the reality of all the roots of any equation as follows:
In order that all the roots of an equation of the nth degree
may be real, the leading coefficients of all the Sturmian
Sunctions, n — 1 in number, must be positive.
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EXAMPLES.
1. Find by Sturm’s theorem the number and situation
of the real roots of the following equations:
1. 24+2—-3=0.
P—Tx+T7=0.
?—152—5=0.
*—322—6x—2=0.
-3 +2x—6=0.
20t — 2 — 62—z +2=0.
o —8at4+262°— 4427+ 402 —16=0.
8 at—322—-62x—2=0.

NS U ®N

2. Extract the cube root of 30 by solving the equation
2?— 30=0.
3. Find the condition that the incomplete cubic
Z4+ar+b=0
shall have all of its roots real.
4. Show that the equation
2 —3aat + %3 =0

has three real roots situated as follows :
one root between £ a and % a,
one root between 31 a and 42 a,
one root between — §a and — ¢ a.

Examine this equation with special reference to equal
roots.
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CHAPTER XXIII.

DETERMINANTS.
176. Suppose we have two linear equations in two
unknown quantities, as
ax+by+c =0,
a2 + by + ¢; = 0.

Multiplying the first by a, and the second by a,, and
subtracting the latter product from the former, we obtain

(aghy — ayb2)y + ase, — i, =03

A€y — 040
whence y= Py —— See (9), Art. 77.
.. b 016 — 0y bzcl
Similarl =
rary = a,bg azbl

Since the given equations are general, these values of
z and y are formulas which may be used for finding the
values of x and y in special linear equations in two
unknown quantities. It will be observed that the two
formulas have the same denominator, and that this
denominator involves only the coefficients of 2 and y.
Again, the numerator of the formula for z does not
involve the coefficient of #, and the numerator of the
formula for y does not involve the coefficient of .
Further, the six constants are involved in such a regular
manner in these formulas that they may be sorted out
and arranged in lines.
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. . . b
Thus the binomial b,c, — b,c; may be written L b 5
¢ C
and the binomial a,b, — a,b;, f % H
by b

b b

¢
so that = G .

a a,

bl bg

‘When the function a,b, — a,b, is written in the above
form, it is called a determinant. The quantities a,, a,, b,
b,, are called constituents ; the lines of constituents, when
read horizontally, are called rows; when read vertically,
they are called columns. The determinant is said to be
developed when it is written in its usual algebraic form.
This is accomplished by multiplying together the con-
stituents in the diagonal, beginning with the upper left-
hand constituent, and subtracting from this the product
of the constituents in the other diagonal. That is, by
definition,

G G

= a,by — ah;.
b, b 102 — azb;.

Developing in the same manner the determinant

a b
ay by

H

we have aby, — agh,.

Hence a determinant of the second order is unaltered in
value when rows are changed into columns and columns
into rows.
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Again, since
a;
by b

Ay o

=0 — by = — (aby — by) =— b b
2 O

)

it follows that the interchange of the two columns changes
the sign of the determinant,; and since

b b,
ay G

azhy — arby =

i

the interchange of the two rows changes the sign of the
determinant.

177. Passing now to the case of three linear equa-

tions as ‘
ax+by+cz+d =0,

aw + by + ez +dy =0,
as® + by + ¢z +ds =0,
if y and 2 be eliminated by the usual algebraic processes,
we have
(@1bacs — 01b3Cs + Asbse) — AsbiCs + AzhiC, — ashoc))w
+ dybycs — dibyCy + dobycy — dobics + dghic; — dghycy =05
hence
—_ hbyCy — dibiCy + dobsty — dgbiCs + dgbicy — dabzcl.
G1DyCs — Gyb3Cy + ADsC; — Ash1Cs + azhic; — aghue,

@)

Analogous expressions may be obtained for y and z.
Now the polynomials in these values of z, y, and z may
be written in terms of determinants of the second order.

Thus considering the denominator

01DsCs — aybaCy + Abye; — abics 4+ adic, — azhyey,  (2)
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we may write it
a3 (DsCs — bses) + a5(bsey — bics) + as(byc; — byer),  (3)
b, b by by| +a,|b b
2 3 1 3 3 1 2 . ( 4)
G a ¢ a

This expression may be defined as equal to the deter-
minant of the third order,

or @, —a,

a a; dg
by b, bg|. ®)
G G G

The three determinants of the second order are called
the minors of the constituents a,, a, a;. Each minor is
seen to consist of constituents which do not occur in the
row or column of the corresponding constituent. Thus
the minor of a;is
b, b,
G C

If we let the three minors equal A4,, 4,, A4; respectively,

(4) may be written
04, — a4, + a4, (6)

A determinant of the third order may be developed by
first writing it in terms of its minors as in (4), or it may
be developed directly if we consider the composition of
the original polynomial,

1y — @yDsCz + Ay — AbiCs + AshiCr — Ashacy.

This polynomial is seen to consist of six terms, three
of which are preceded by the plus sign, and three by the
minus sign; the positive terms being a;bacs, @bycy, aghico.
Of these, the first is the product of the constituents in
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the diagonal of (5), beginning with the upper left-hand
constituent; the second is the product of the constitu-
ents in a parallel diagonal beginning with the second
constituent in the first column, this product being multi-
plied into the third constituent of the first row; the
third consists of the third constituent of the first col-
umn into the product of the remaining two constituents
in a diagonal parallel to the primary (or principal) diag-
onal. Similarly, we obtain the three negative terms,
beginning with the diagonal containing the constituents
¢y by ag and proceeding upward until each constituent
in the first column is used, the minus sign being prefixed
to each one of these three produects.

Disregarding signs, each term is seen to consist of the
product of one constituent, and only one, from each column
and each row.

178. The polynomial
1DeCs — A1DsCs + AsbsC) — AghiCs + aghiCy — aghscy
may be written
y(byts — bycs) — bi(@sCs — sCy) + €1(AgDs — aghy),
b —ba +cla, b,
S T P e PO

which may be condensed into the third order deter-
minant,

or a;

a b ¢
a by o ®
as by ¢

Comparing this with (5), which is also equal to (2), it
follows that in a determinant of the third order rows may
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be written for columns and columns for rows without chang-
ing the value of the determinant.

179. Expression (4) may be written

—ay|by by|—ax|b by|—as|b; b
G C ¢ G C; € ’
which equals
—| & a3
b, by byl
¢ G G
Hence
a G ag a a3 Qg
bl b2 b3 = — bl bs bz 5 (9)
¢ C G G G G

that is, if two adjacent columns, or rows, of the determinant
are interchanged, the sign of the determinant is changed, but
its value remains unaltered.

If an even number of interchanges be made between
adjacent columns, or rows, the sign of the determinant
remains the same; but if an odd number of interchanges
be made, the sign of the determinant is changed.

180. Suppose that two rows, or two columns, of a
determinant are the same, as in

@ b oq
a b ¢l
as b; ¢

Let D be the value of this determinant. Interchang-
ing the first and second rows, its value becomes — D ; but
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the determinant is unaltered ; hence D = — D, and there-
fore D =0.

Hence, if two rows, or two columns, of a determinant
are identical, the determinant vanishes.

181. If each constituent in any row, or any column, of
a determinant is zero, the determinant vanishes.

For such interchanges may be made that the given
zero r6w, or zero column, shall become the first row;
then developing the determinant in terms of its minors,
each minor has zero for its coefficient; hence the expres-
sion vanishes.

182. Let the coefficient of each minor in (4) be multi-
plied by »; then we have
b2 b3

C C

by b b b
G G G G

which equals » times the original polynomial.
Hence

nay — nay + nag

H

na, na; nNog a Gy Qg
by by by|=n|b b bs; (10)
] Cg Cs G C G

that is, ¢f all the constituents of any row, or any column,
be multiplied by the same quantity, the determinant s mul-
tiplied by that quantity.

183. If each constituent in any row or column consists
of two terms, the determinant can be expressed as the
sum of two determinants; for the determinant

uto b e
at+og by o
as+a; by ¢
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can be written
(o1 + &) Ay — (ay + ) Ay + (005 + 0g) Ay,
or (0, 4; — a0z d; + agds)+ (0 d; — e dy + a3 4y),

which equals
0 A 4 o & o

bl bg ba + b] bg b3 . (11)
G G C ¢ C G

184. Since the value of (3) will not be changed if
we add and subtract the same quantity, we may write
in place of it

@y (baCs — DgCy) + nby (bycs — scy)
+ ay(bye, — bics) + 1y (bse; — bics)
+ a5 (b6, — byey) + nby(bicz — byey) 5
but this expression equals
(a1 + nby) 4, — (ay + nbs) Ay + (a3 + nbs) Ag;
hence
a b ¢ a+nb b ¢
a by ¢|=|a3+nby b c; (12)
a by c| |ag+nby by ¢
that is, any multiple of any column, or row, may be added

to any other column, or row, without changing the value
of the determinant.

185. If the equations in z, y, 2, Art. 177, are supposed
homogeneous, d,, d;, d; are each zero, and consequently
the numerator of (1) is zero. Hence, if & is not zero, the
denominator of (1) must also equal zero, and we have
2 = §, an indeterminate quantity.
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Thus the condition that the three linear homogeneous
equations
axr+by+cz=0,

ag® + by + ¢z =0,
ast+ by +cx =0
shall be consistent is
a b ¢
a, b, ¢|=0. a3
as by ¢

186. In case we have two linear homogeneous equa-
tions in three unknown quantities, they may be treated
as non-homogeneous equations in two unknown quanti-
ties. For the equations

oz + by +cz=0,

B ax + by + ¢z =0,
may be written

X
a+b0+6=0,

z y
a2;+b2;+03— 0,

in which the ratios ; and % may be regarded as the

unknown quantities.
Then, by Art. 176,

_ bic, — by Y_ a — a6,

T
z ah— ash, 2" b, — ab,’
z y 2z

hence = =
bics — Doy, — aye, anby — aghy’

(14)
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x y z
or i = = 5 1
by b, A O a Qg ’ ( 2

G G C € b b

that is, the quantities x, y, and z are proportional to the
determinants formed as shown in (15).

The preceding principles govern the ordinary operations per-
formed on determinants of the second and third orders. From the
manner in which the third order determinant was obtained, it is
evident that there may be determinants of the fourth and higher
orders. Fora more extended treatment of determinants in general
the student is referred to Burnside and Panton’s Theory of Equa-
tions, Todhunter’s Theory of Equations, and similar works.

EXAMPLES,

1. Find the value of the following determinants:

123 -1 -1 1 4 -1 -2
2 3 4/; |—-3 1 —4f; [0 3 ol
345 2 -3 -5 3 —7 4

2. Find the value of @ in the equation

111
a z c¢|=0.
b b =
3. Show that
a a 1

b, b 1 =(a—c)(b—c)(a—D).

¢ ¢ 1
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4. State the condition that the equations
dx' + By' +C=0,
Ax" 4+ By" 4+ C=0,
sz!l! + By!" + 0= 0,
shall be simultaneous and independent.
5. (a) Write formula (1), Art. 177, as the ratio of two
determinants of the third order.

(b) By means of the result in (a), write the value of
z in each of the following sets of equations:

x4+ y+ z=9, }rx+3y+12=062
2+3y—32=T, (x+iy+12=47,
*—4y+82=8. I+ 3y+42=38.
x4+ 3y =100, ay + bxr=c,
y + 32 =100, cx + az = b,
2+ ;o =100. bz+ cy=a.

6. Show that

b+c a—b a

c+a b—c b

a+b c—a ¢
=|b a a|l—1|b b a|+]|c a a|—|c b a
¢c b b ¢c ¢ b a b b a ¢ b

a ¢ ¢ a a ¢ b ¢ ¢ b a ¢

=3abc—a®— b —c’
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CHAPTER XXIV.

THEORY OF LOGARITHMS.

187. The logarithm of a quantity is the exponent with
which a given fixed finite number called the base is to be
affected in order to produce the quantity.

Thus if a be taken as the base of a system of loga-
rithms, and we have a*=n, then z=log,n, which is
read: z equals the logarithm of » to the base a. Sup-
pose the base is 4; then 2 =log,16, } = log,2, etec.

188. Since logarithms are exponents, the laws of expo-
nents hold in the theory of logarithms, and we have the
following theorems:

1. The logarithm of 1 is 0, whatever the base may be.

If a*=1, x =0; hence log,1 =0.

2. The logarithm of the base itself is 1.

If a* =a, x=1; hence log,a =1.

3. The logarithm of the product of two quantities is equal
to the sum of the logarithms of the two quantities.

Let p and ¢ be the two quantities, and suppose
m = logp and n = log g, the base being a.

Then a”=pand a"=gq;
therefore pg = ama" = a™*t";
hence log.(pg) =m + n;

and since m 4+ n = log, p + log,q, the theorem is estab-
lished.
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4. The logarithm of the quotient of one quantity divided
by another equals the logarithm of the dividend minus the
logarithm of the divisor.

As before, let a® = p and a" =g

then §=Z—"= a™";

hence log,(g) =m —n = log,p — log.g.

5. The logarithm of any power of a quantity equals the
logarithm of the quantity multiplied by the index of the
power.

Let p=a™; then p'=(a") =a™;
therefore log,(p") = mr = rlog,p.

6. The logarithm of any root of a quantity equals the
logarithm of the quantity divided by the index of the root.
1

1 m
Let p=a"; then p" = (a") = a';
m

1
therefore log(p7) = -= %_log,l P

189. To find the relation of any two systems of loga-
rithms, let @ be the base of one system and let b be the
base of the other. Let p be a quantity whose logarithm
we take in each system. If n and n'are the logarithms
of this quantity in the two systems, we have a" = p and
b" = p; therefore a" = b".

Now let m be the logarithm of b to the base a; i.e. let
a™=b. Raising both members of this equation to the
n'th power, a™ = b"; therefore a™ = a", and hence
mn' = n, :

08, @)

or log,p = log.b
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The translation of this equation affords a rule for
obtaining the logarithms of numbers in a second sys-
tem when the logarithms of those numbers are already
known in one system.

1
log,b,
is called the modulus of the b-system.

If we have a third system whose base is ¢, then from
(1) we may write

the constant which connects the two systems,

log.p
log.p= 15003 @)
and eliminating log,p from (1) and (2), we have
1
log, p 10g.,b.
log. p 1
log,c

Hence the logarithms of the same number, taken in
different systems, are proportional to the moduli of those
systems.

190. Logarithms to the base 10 are called common
logarithms.* If we wish to find directly the logarithms
of the numbers 2, 3, 4, etc., when 10 is taken as the base,
we have to solve the series of equations:

10:=2, 10°=3, 10°=4, etc.

The functions of x appearing in these equations belong
to the class referred to in Art. 122 as transcendental : the

* Togarithms were invented by John Napier of Merchiston,
Scotland. The work, entitled Mirifici logarithmorum canonis
descriptio, in which Napier announced his discovery, was published
in 1614. The system of common logarithms was introduced in
1617, by Henry Briggs, an English mathematician.
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equations containing them are accordingly termed tran-
scendental equations; as such, they only admit of approx-
imate solution, although we can find the value of = to
any desired degree of accuracy. However, instead of
finding directly the common logarithms of 2, 3, 4, ete.,
it is usual first to calculate the logarithms in a system
known as the Napierian, and then to calculate them
for the common system by means of the principle of
Art. 189.

191. We proceed now to the investigation of formulas
which will enable us to construct a table of logarithms.

Let the function (1 + %)", in which n is taken >1, be
developed by the binomial theorem, and we have

ne(ne—1) 1
e ow
+m>(na:——1)(nx 2) 1

E

av( —,l—l)+"’( ‘3?)( _§)+ @

=l+e+—p H

<1+)_1+ nz— +

+

Since this is true for all va.]ues of z, we may put z=1;

thus obtaining

1-1 ( _1)( _2)
1\* n n n

“Y=1+41 oo, (2

(1+n) bt @

But (1 ¥ %): { (1 + —};)" } ;s
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therefore series (1) is the ath power of series (2); that is,
(1) e

1+z+ @” + ”@ A

N O

1+1+4 lg |§

If n be indefinitely increased, equation (3) becomes

1+w+£’+£+...=(1+1+12.+|__]?;+...>2. (4)

2 3 12
The series
1.1 .1
1414444
+ +@+@+E+
is denoted by e; hence
2 B
=1 i S el eee?
+x+L2_+l§+|ﬁ+ H )
writing ¢z for z, this becomes
- caf O ot
e“_1+w+|2+|§+|$+ . (6)

Since ¢ is any constant, we may let e°=a, so that
¢ = log,a; substituting this value of ¢ in (6), we have

22(1 2 2 8
az=1+mlog‘a+ (?2gea) + ((l)g'g‘ea’) +.". (7)

Equation (7) is known as the exponential theorem.

192. The series .
1. 1

1
1 LT DT N T
+1+2+B+M+ ,
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for which e stands, is of great importance, as it is the
base of the primary (Napierian) system from which
any other system is derived. Logarithms occurring in
abstract mathematics are usually Napierian logarithms,
whilst common logarithms are employed for the pur-
poses of numerical computation.

193. An approximate value of e may be calculated in
the following manner:

1 + 1 =2.0000000

1_ " 5000000
2

1_ 1666667
13

1_ 0416667
|4

1

1_ 00

5 83333
1_

5 0013889
1

1_ o

7 001984
1_ 0000248
8

1

1_ 000002
5 00028
1 0000003
o ,

- (13)
- e=2.7182819
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To obtain the term 13, we have only to divide the pre-
ceding term by 3; to obtain the term é, we divide the

preceding term by 4; and so on. By including a greater
number of decimal places in these quotients and a greater
number of terms in the series, the value of e may be
found to any desired number of decimal places.

194. Having the exponential theorem, we may now
proceed to the expansion of log, (1 4+ «) in ascending
powers of . From (7), Art. 191,

_ y’(log,a)* , y*(og,a®
@ =1+ylog,a+ E + B A eees
therefore,
a—1

V 2 3
=log,a+y(l(')§‘a) +y2(lt)I§g',a) + oo

_ (Qogay ylogea, Y.

If y be now diminished indefinitely, the terms contain-
ing y in the right-hand member of (8) will also diminish
indefinitely ; so that, as y approaches zero as its limit,

we have
-1

=log,a. ®
Writing 1 + z for a, (9) becomes
log,(1+a;)=:l/{(1+w)’—1};

or, developing (1 + x)?,
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log,(1+%) = {yw+y(y Do 90=D@=25 , ., }
2 8
cet¥=1le G-DG-2),
=x+ B 2+ B 24 ... (10)
But (10) is only another form for (9), and (9) supposes
that y approaches zero as its limit;
hence (10) reduces to the form,

\log,(l—}-w)—x-af-{-ms "’+ 1)

This is the logarithmic series.

It will be observed that (11) is a diverging series when
x>1; hence it holds only when 2 <1. However, we
know, without applying the test for convergency, that
(11) is true only when 2 <1; for the derivation of this
series involves the development of (1 + x)?, and we have
seen in a former article, Chap. XVIII,, that the develop-
ment of (1 4 «)* holds only when z < 1.

195. Although the logarithmic series itself is diver-
gent, we may obtain from it a series which is conver-
gent, and which may be used in constructing a table of
logarithms.

Let — « be written for x in (11);

then log,(1 — ) =—w—22j—£s— 12)

3
Subtracting (12) from (11), we have

log.<1+w>—log.<1—m>=2(x+§’+ +- )

”
5
that is, log,<i+$>=2< +‘”s+”’+ ) a3)




208 ALGEBRA.

.

1 1+a: _z+1
Let th
¢ eyl M1 e

Substituting these values in (13), we have,
log (21 _of_1 1 1 Y
°g‘< 2 ) 2e+1 3@et 1) B@arlr )
and hence log, (2 + 1)

1 1 1
=1 o).
Og'z+2(2z+1+3(2z+1)3+5(2z+1)5+ ) 14)

196. Our object is to compute the Napierian loga-
rithms of the numbers 2, 3, 4, etc. For such numbers,
(14) is evidently a converging series; at the same time
the relation between x and z is such that the requirement
that « shall be less than unity is fulfilled as z is made
successively equal to 1, 2, ete.

The computation of the Napierian logarithm of 2 Wlll
illustrate the use of this series. Making z =1, we have

1 1
2_2<2 ritserotseryt )

Performing the indicated operations in a manner simi-

lar to that in the computation of e, we have

log,

3{2.00000000
9| 66666667 1/.66666667
9| .07407407 3|.02469136
9| .00823045 5(.00164609
9| .00091449 7/.00013064
9| .00010161 9/.00001129
9| .00001129 11/.00000103
9| .00000125 13(.00000009
00000014 15/.00000001

.. log,2 = .69314718.
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Similarly, the logarithm of 3 may be computed by
making z=2.

197. It will be observed that it is only necessary to
compute the logarithms of prime numbers, since the log-
arithm of a composite number equals the sum of the
logarithms of its factors.

Thus log,10 =log,5 + log,2. By making z=4, and
so computing log,5, and then adding the result to log,2
found above, we shall obtain log,10 = 2.30258508.

198. In order to apply the theory of Art. 189 to the
relation of Napierian logarithms and common ones, let
a become the base of the Napierian system, and b the
base of the common system.

log.p
log, 10

Since log,10 has been found to be 2.30258508, the
modulus of the common system

_ 1 _ 1
" log,10 2.30258508
(approximately).
The Napierian logarithms, computed by the method
of Art. 196, have only to be multiplied by .43429448+,
and the table of common logarithms is formed.

Then logp =

= 43429448

199. It will be seen from the nature of logarithms
that by their aid the operations of multiplication, divi-
sion, involution, and evolution may be performed. To
illustrate, let it be required to multiply 8 by 4 by means
of logarithms to the base 2.
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logd =2; log,8=3.
logy(8 x 4) =log8 + logA = 5.
o8 x4 =20=32

200. In the tables formed as described in the preced-
ing articles there will be no logarithms of negative num-
bers; for it is evident that no value of x will render
either of the functions e*, 10* negative.

However, the fact that negative numbers have no log-
arithms occasions no practical difficulty; for if such
numbers enter into an operation, they may be treated as
if they were positive, their signs being taken into account
only in writing the final result.

Thus if it is required to multiply — 8 by 4, we use the
factor — 8 as if it were positive, obtaining the numerical
result, 32, as above; but the true product is, of course,
— 32, since one negative factor is involved.

201. Since

10* =100 log100 = 2
10t = 10 log 10= 1
10° = 1 log 1= 0
10— 1]"® have to the base 10, log 1=—1
102= .01 log 01=—2
ete. ete.

Hence the following propositions relating to common
logarithms:

1. The logarithm of any number between 1 and 10 is a
Sfraction between O and 1.

2. The logarithm of any number having two integral
places is 1 4+ some fraction; and in general the number
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composing the integral part of the logarithm is one unit less
than the number of integral places in the quantity whose
logarithm s given.

3. The logarithm of a proper fraction is negative.

4. 1If one number is i of another, its logarithm will be
less by unity.

For example, log 5 = .69897 (carried to the fifth deci-
mal place inclusive);

log % = log 5 — log10 = .69897 — 1 = — .30103.

log 1§5 = log % — log 10 =.69897 — 1 — 1 = — 1.30103.

202. Instead of combining .69897 and — 1 in the above
example, we may write 1.69897, which must be taken as
equal to — .30103.

Similarly, we have

log.05 = 2.69897,
log .005 = 3.69897,
log50 = 1.69897,
ete.

To illustrate further, suppose we have a number con-
sisting of several figures, as 3.274. Since this number is
>0 and < 10, its logarithm must be a proper fraction.
From a seven-place table we find that log 3.274 = .5150787.
Employing the method used in the first example, we
obtain

log .03274 = 2.5150787,
log .3274 =1.5150787,
log 3.274 = 0.5150787,
log 32.74 =1.5150787,
log 327.4 = 2.5150787,
ete.
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Generalizing, let ! be the logarithm of any number as
N where Nis >0 and < 10. Then if N be multiplied
by any power of 10, as (10)", we have

log(10yN=r+log N=7r+1;
and if N be multiplied by any power of .1, as (1),
log(1yN=—r+1

In these formulas ! is limited to positive fractional
values, and r to positive integral values.

203. Logarithms are written as shown in the examples
of the preceding article. The integral part is called the
characteristic, and the decimal part the mantissa. The
minus sign is placed above the characteristic rather than
before it in order to indicate that the characteristic alone
is negative. The propositions of Art. 201, together with
the method just explained for writing negative loga-
rithms, afford two important rules:

Rure 1. The characteristic of the logarithm of an inte-
gral number, or of a mixed integral and decimal fractional
number, i3 one less than the number of integral places in the
number.

RuLe 2. The characteristic of the logarithm of a num-
ber entirely decimal fractional is negative, and numerically
one greater than the number of O0’s immediately following
the decimal point.

204. It has been implied, Art. 199, that only four
operations — multiplication, division, involution, evolu-
tion —can be performed by means of logarithms. It
should be added, however, that tables based upon loga-
rithmic tables have been made by means of which the
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operations of addition and subtraction may be performed.
Zech’s Tafeln der Additions und Subtractions-Logarithmen
is of this description. Let it be required to add, or take
the difference of, two numbers, a and b, where a > b.
Let A represent the argument and F the function for
addition, and A' represent the argument and F' the
function for subtraction. To use Zech’s Tables we have,
then, the following formulas:

loga —1logb= A4,

log (a + b) =log a + F.

loga —log b = A4/, or F',

log (@ — b) =loga — F",orloga — A"

For addition J{

For subtraction {

Tables of addition and subtraction logarithms are of
great service in certain astronomical computations in
which the operations of addition and subtraction cannot
be avoided.*

For explanation of the way in which logarithmic
tables are to be used, the student is referred to the
explanatory text which usually accompanies tables of
logarithms. '

. EXAMPLES.
1. Given:
log 2 = 0.3010300,
log 3 = 0.4771213,
log 7 = 0.8450980 ;
show that

log .128 = 1.1072100,
log 14.4 = 11583625,
log 4% =0.6690067,
log V3% = 0.0563521.

* See Oppolzer’s Lehrbuch zur Bahnbestimmung der Kometen
und Planeten. Erster Band, zweiter Theil.
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2. Given log2 and log 3, find the value of z in the
equation 3*~?=25; also, find the value of # in the equa-
tion 5 =10%

3. Show that log %: — log g , and translate the equa-
tion into a theorem.

4. Giveny= —le-"; solve for z.

T

a\®
5. Given the expression @3 write it in its simplest

b
EC

form by means of logarithms.

In the article Logarithms in the Encyclopedia Britannica, the
student will find a history of logarithms, and also much addi-
tional theory. The article Tables in the same Encyclopzdia gives
an account of all the important logarithmic tables which have
been constructed, beginning with Briggs’ Arithmetica Logarithmica
(London, 1624).
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CHAPTER XXV.

MATHEMATICAL REASONING.

205. Mathematics deals with propositions of the form:
Ifais B, yis s @

E.g. ‘If two planes are perpendicular to a third plane,
their intersection is normal to the third plane.’

2
‘If aa?4 bx + ¢=0, x=_2iai‘l4ia’—:—;,.,

Mathematical demonstration, whether short and sim-
ple or long and complex, consists in showing that the
case of y being 8 is necessarily involved in the case of o
being B.

The first part, if ¢ is B, is marked by the various
terms: premise, condition, assumption, supposition, datum,
hypothesis.* .

This formal condition, if « is 8, may be simple or com-
pound ; in the latter case it contains sub-conditions. Also,

* Modern inductive science employs the term ¢hypothesis® in a
sense sp entirely different from that ordinarily assigned to it in
mathematics, and the word is of so much more service as a term of
science, that the interests both of mathematics and science would
probably be advanced if it were no longer used in works on alge-
bra and geometry. For an account of the role of the scientific
hypothesis, the student is referred to Fowler's Inductive Logic;
Gore’s Art of Scientific Discovery; G. K. Gilbert’s Inculcation of
Scientific Method (American Journal of Science, vol. xxxi.).
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it is frequently presented in the form of an adjective or
a modifying phrase, as when we speak of an isosceles tri-
angle or an equation of the nth degree.

The chief rules governing the condition are that it
must not contradict any simultaneous condition, and it
must accord with previously established conclusions of
the branch of mathematics to which it belongs.

The part, y is §, is usually called the conclusion ; it may
express all or only a portion of that which is involved in
the case of a being .

In form, the conditional proposition of mathematies is
identical with the conditional proposition of science :

If a is b, ¢ is d; )]

in which the part, if a is b, stands for cause, and the
part, ¢ is d, expresses effect. The parts: if ¢ is 8, if a is
b, may be conveniently referred to as antecedents, while
the parts: vy is §, ¢ is d, are termed consequents.

Aside from form, (1) and (2) have nothing in com-
mon. A ‘datum’ in mathematics can scarcely be said to
be even analogous to a ‘cause’ in science. The tasks
presented are also in great contrast: the student of
mathematics seeking to understand necessary relations
and conclusions, while the student of science is engaged
in discovering the possible causes, and singling out the
actual cause of a given effect, or in learning the effect of
an actual or assumed cause.

206. The fallacy of affirming the consequent, ¢ is d,
and thence inferring the antecedent, a is b, is of frequent
occurrence in the non-mathematical proposition (2). This
fallacy usual arises from a failure to observe that the
full form of (2) is:
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If a,is b,
or

If a, is b,
or ¢ is d; 3)
or
If a,is b,
and that we must have means for the elimination of all
the antecedents except one; the one that remains being -
the cause, simple or compound, of ¢ being d in the case
in question. On the other hand, to affirm or assume the
consequent, y is 8, and thence infer the antecedent, « is
B, in (1) does not necessarily involve a fallacy. This
reversed form: if y is §, « is B, is evidently what is
known in mathematics as the converse; as such it
requires proof, although it may be observed that in
many cases, if not in all, this proof is unnecessary pro-
vided that the conclusion, y is 8, adequately expresses
what is involved in o’s being B; we may then begin with
either as premise, and make the other the conclusion.
For example, suppose we have the proposition :

‘If n lines are parallel, they make equal angles (6)
with a given line.’

This cannot be copverted into the proposition: :

‘If »n lines make equal angles (f) with a given line,
they are parallel.’

But the conclusion may be taken for condition, and the
condition for conclusion, in the more complete statement :

‘If n lines are parallel, they make equal angles
6, 6', 6'") with three given lines.’

In reading the calculus the student will find examples
of incomplete conclusions. Thus we have the theorem :
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‘If f(x) is a maximum, f'(z) equals zero.’

It does not follow that if f'(x) equals zero, f(%) is
necessarily a maximum. But suppose the theorem
stated as follows:

¢‘If f(x) is a maximum when « = a, the first derivative
which does not vanish in the development of f(a + %)
is an even derivative, and is negative.’

The converse of this proposition is true, and requires
no proof; or more properly speaking, it is proved as
soon as the direct proposition is proved. See William-
son’s Differential Calculus, Art. 138.

Forms (1) and (2) may be avoided by employing the
equivalent form:

. « being B) . v being 8.

The case of { a being b } is the case of { ¢ being d. ()]

Finally, (4) may be expressed,

All Pis @ ®)

207. A proposition in form (5) is described as a uni-
versal affirmative. The subject is said to be distributed,
whilst the predicate is, in general, not distributed. Thus,

All freshmen are undergraduates,

is a proposition referring to all freshmen, but not to all
undergraduates. What we mean is, that all freshmen
are some undergraduates. Evidently the subject cannot
be taken for predicate, and predicate for subject, in
another universal affirmative. We may only affirm that

Some undergraduates are freshmen

thus converting a universal into a particular affirmative.
The equivalence of forms (1), (4), (5) may be shown in
an example as follows:
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‘If an equation is of the third degree, it has at least
one real root.

‘The case of an equation being of the third degree is
the case of its having at least one real root.

¢All equations of the third degree have at least one
real root.’

Whenever all @ is referred to through all P, the prop-
osition may be reversed, forming a new universal affirm-
ative. If, then, we write a double form for (5), as

. ( (some) @
All Pis { o 2 ®)
we shall have the corresponding double form:
Some Q) .
All Q } is P. )

Mathematics is chiefly concerned with propositions
which conform to the second type under (6), i.e. prop-
ositions in which the predicate as well as the subject is
distributed. .

Thus in Art. 164, the theorem is established by showing
that if f(x) has equal roots, the H.C.F. of f(z) and
f'(x) is itself a function of x, and the argument involves
the proposition: ¢All equations having equal roots are
all equations such that the H.C.F. of the function and
its first derivative is a function of z;’ i.e. all Pis all Q;
and conversely, all @ is all P.

The student will find many universal affirmatives in
the preceding pages, although they may not at first
appear to be such. It is important to observe that a
proposition of this description is under discussion when-
ever we employ the equation

f(w) =" +plxn—l + . +Pn—19’+1’n=0;
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for, by using the arbitrary constants n, p,, p,, --- p,, one
equation is made to include all equations of all finite
degrees in one unknown quantity; and in establishing
any truth in regard to this equation, that truth is estab-
lished for all equations of the class embraced in the gen-
eral equation.

208. The process by which we discover the conclu-
sions necessarily implied or involved in given conditions
is described as deductive reasoning. The most common
variety of such reasoning is characterized by the pres-
ence of two categorical propositions called premises, one
of which must be universal, and one of which must be
affirmative; from these a conclusion, either universal or
particular, is drawn, or is said to follow.

As an example of this kind of reasoning, if we make
the two affirmations:

All freshmen are undergraduates;
All freshmen study mathematics ;

we are obliged to conclude that
Some undergraduates study mathematics.
Again, from the statements:
All logarithms are exponents;
.301030 is a logarithm ;
it follows that
.301030 is an exponent.
As another illustration :
No determinants have an odd number of constituents;
2 0

is a determinant;
1 3 ’

therefore 0 has not an odd number of constituents.
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Here the first premise is a universal negative, the
second premise a particular affirmative, whilst the con-
clusion is a particular negative. The student will easily
add other combinations of premises to those given above.
Thus a case might be given in which one premise should
be a universal affirmative, and the other a particular neg-
ative.

209. Besides arguments composed entirely of simple
categorical propositions, deductive reasoning includes
certain other forms in which there appear categorical
propositions united by a conjunction.

Thus if we affirm:

P iS 1 OF g5 OT ++- OT @,,; ®
pisq;

we conclude that
p is not ¢, or gz or --- or q,.

Again, from the statements:

pis g orgor.-.org,; ®
p is not ¢, or -+« or ¢,;
it follows that

p1s gy

An illustration will occur to those who have read

analytic geometry. In the study of the equation

ar’ +2hwy + by’ + 2924+ 2fy +c=0,
the function h? — ab is formed. In any given equation
of the second degree in = and y, h? —ab is 0 or >0 or
< 0; suppose it is > 0; then it is not 0 or < 0.

The object in introducing in this connection any of
these forms, whether categorical or not, is mainly to call
attention to their constant occurrence in mathematics.

For a detailed and systematic examination of deductive
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reasoning, the student is referred to any of the standard
text-books on the subject.

Besides the disguising of the universal affirmative,
already referred to, the frequent suppression, or non-
expression, of a premise should be observed. These
suppressed preinises are, however, none the less present
and essential to a sound argument.

Finally, as regards the universal affirmatives of mathe-
matics, the fundamental ones are the two axioms: ‘Things
equal to the same thing are equal to each other,’” and
‘The sums of equals are equal’ These are the xowal
évvoar which stand at the head of Euclid’s list. The
other so-called axioms which relate to pure quantity
may be derived from these elementary truths.

210. Occasionally a method other than the deductive
is followed in order to establish a mathematical proposi-
tion. Thus in Art. 152, instead of taking an equation
of the nth degree as in most of the other articles, an
equation of the fourth degree has been used. Any truth
established respecting the equation of that article will be
general so far as the coefficients are concerned, but it will
be particular as regards the degree of the equation. But
from the operation performed on the fourth degree equa-
tion the student perceives what the result would be in the
case of equations of the fifth, sixth, and higher degrees.
He performs the operation potentially on equations of
those degrees also, and reaches a general result, i.e. a
truth concerning the equation of the nth degree, without
actually using that equation in the process.

A similar generalizing occurs when, by examining the
coefficients of the first few terms of the binomial theorem,
we are able to express the law of their formation in the
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formula for the nth term. Reasoning of this kind has
been called ¢ mathematical induction’ because it bears a
resemblance to some of the methods employed in induc-
tive reasoning proper. The results of mathematical in-
duction are general, but its material consists of particular
truths.

In some instances, mathematics presents problems
which suggest methods partaking of the nature of ex-
periment. A simple case occurs in connection with the
graph of x4 2, Art. 154. In that article it is stated
that the graph is always a straight line when f(x) is of
the first degree, and the required graph was drawn accord-
ingly ; but independently of that statement, the student
might have located a large number of graphic points, and
then observed that the line connecting them was very
nearly straight, becoming more so as the measurements
were made more precise. The construction of the graphs
of several special linear functions would doubtless have
led to the conviction that all functions of the first degree
have rectilinear graphs. But the universal proposition
would not have béen proven; the number of graphs con-
structed would have been insignificant compared with
those left unconstructed, and no adequate reason could be
assigned why the next graph should not be a curved line.

On the other hand, if the properties of the graph of
the general linear function ax + b could be discovered
from a study of the function itself, and if it could be
proven deductively that the graph of ax + b is a straight
line, there would be no need to raise the question of the
nature of the graph of any particular linear function.

The peculiar power of analytic or co-ordinate geometry
consists in the fact that being algebraic it deals with
universals, and is enabled to employ the methods of
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algebra to establish universal affirmatives which admit
of a geometrical interpretation.

In so far as the experimental determination of a graph
is inductive in character, the above comparison of this
method with the deductive may suggest that inductive
reasoning is less conclusive or less important than deduc-
tive; but this single case is no just ground for an infer-
ence, even if the example in question fairly represented
the nature of any true inductive process. To infer, on
the above evidence, the inferiority of inductive methods
would be to fall into the same fallacy that would be com-
mitted if we were to construct the graph of one special
linear function, and thence infer, without other proof,
that all linear functions have rectilinear graphs; the
fallacy being the common one of hasty generalization
from comparatively few instances.

For a discussion of the methods of inductive logic, and
the reliability of the results of those methods, one should
read Mill’'s System of Logic. The great importance of
induction will be evident when it is realized that it fur-
nishes deductive reasoning with premises. In this con-
nection reference may again be made to the Euclidean
axioms which have been spoken of as constantly occur-
ring in mathematical argument. The question arises:
How were they established ? At present the best evi-
dence supports the hypothesis that these axioms are
themselves generalizations from the universal experience
of mankind. If this theory is the true explanation of
the origin of axioms, mathematics is no exception to
the law that deductive reasoning presupposes induc-
tively established truths and rests upon them.
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EXAMPLES.

1. Supply premises for the conclusion:

‘The equation 2 —22°+ 2 +1 =0 has at least one
real root.’ o '

2. ¢If the coefficients of an equation are all real, imag-
inary roots enter it in conjugate pairs’ State this
theorem in categorical form, and prove that both subject
and predicate are distributed.

3. ‘The opposite angles of any quadrilateral which can
be inscribed in a circle are supplementary.’ Examine
this theorem with reference to necessity of proof of the
converse.

4. Examine the theorem of Art. 175 with reference to
necessity of proof of the converse.

5. Distinguish between the conditional forms in the
following cases (a) and (b):
If two triangles are mutually equi-
angular,
If two triangles have their corre-
sponding sides proportional, L they are similar. (a)
If two triangles have their sides
respectively perpendicular,

If there is a strike among

miners,
If mines become exhausted, }the price of coal rises. ()
If new markets are opened,
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6. Express the reductio ad absurdum method of proof
symbolically, using a notation similar to that of (8) and
9), p. 221.

7. ‘The general equation of the second degree in x
and y represents a conic.’” Is the predicate distributed
or not ?

8. Point out the error in the following:

A conic can be made to pass through any five points;

A parabola is a conic;

Therefore a parabola can be made to pass through any
five points.

9. Supply premises for the conclusion:
‘No ellipse has asymptotes.’











