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CHAPTER I

THE DESIGN OF JIB CRANES

Among the various types of jib cranes employed for different services

in the industrial field, the simple underbraced type is most common,

and has been selected for analysis in this chapter. In the investigation,

the method of design, and all the possible stresses to which this

type of crane may be subjected, are considered. The treatise may

appear Somewhat lengthy for such a simple machine, and although

some of the stresses discussed are frequently disregarded in actual

practice because of the employment of large factors of safety, yet all

stresses should be investigated and provision made for them, espe

cially in cranes of abnormal capacities or proportions, or both, which

are frequently met with in practice.

As has often been said, sound judgment is a requisite of a successful

designer. No precise rules can ever be formulated to cover all cases

as they arise in practice, and the judgment of the designer is called

upon repeatedly to decide the correct proceeding where there is no

precedent.

The following discussion is of a typical crane, and is treated from

a theoretical as well as a commercial standpoint, such as would be

followed in the engineering office of a manufacturing company.

The type considered consists essentially of a structure in which

GF, a mast, rests on a foundation (see Fig. 1), and is supported at

the top by a suitable connection. AE is a member secured to the

mast, and supported at D by a strut DC, which is bolted or riveted

to a gusset-plate on the member and mast, or connected to these

members either with angles or castings as in Fig. 4. Let us first

investigate the stresses produced. in these members composing the

frame by the external forces acting on the crane. The member A.E,

commonly called the jib, is subjected to stresses produced by the

loads concentrated at the wheels of the trolley, and the weight of

the members themselves, which stresses we will proceed to find. The

trolley carrying the load is supported by four wheels traveling the

length of the jib and producing the loads p, p, placed at a distance d

from each other. The constant distance d is known as the wheel

base. These wheel loads p, p are equal to the sum of the net load to

be lifted, P, plus the weight of the trolley, ropes and bottom block,

divided by the number of wheels supporting trolley, usually four.

The jib is considered as a beam supported at the joints A and D,

having a cantilever end DE, and subjected to axial tensile, eccentric

tensile, eccentric compressive, and flexural stresses. The length of

the cantilever end from D to center line of load, when the load is at

extreme outer end of the jib, is frequently-made about one-fourth the

34 7:53:
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* - e.

distance between supports A and D, since, in general, the maximum

bending moment produced by loads p, p when at the end of the canti

lever, and that produced when the load is midway between A and D

are about equal. But, more accurately, this ratio should be propor

tioned so as to obtain equal maximum fiber stresses in both cantilever

and span, and thus a jib having a constant cross-section, such as a

rolled beam or channel, can be economically employed. When loads

p, p are acting between D and E, the maximum reaction R at D, when

the trolley is at the extreme end of the cantilever, is the sum of the

products of each of the wheel loads multiplied by the ratio of the long

levers AE and AE, to the short lever A.D. Expressing AE, AEI, and

*--- —(b— d.)

.#

| tu K----C--

G | 4——(c-d)——-

- - J

PG

E1

/&

Sk
#

£4. F Machinery, N.Y.

Fig. 1. Diagram of Type of Jib Crane selected for Analysis of Stresses

AD in terms of the dimension letters, we have (see Fig. 1) b, (b– d.)

and l, respectively. Then taking moments about A, the fulcrum of

the lever, we have

b (b — d.)

R=p XT + p X— (1)

This reaction R produces a direct tensile stress between the points

A and D of the jib, and a compressive stress in strut CD.

Let side AC of the triangle ADC in Fig. 1 represent the magnitude

of this reaction R; then side AD represents the value of the tensile

StreSS, Or

side AD

Stress in AD =—X R,

side A.C.

and, employing dimension letters l and g, we obtain
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l

Stress in AD=— X R.

g

Substituting the value of R of formula (1) for R, we have

pb + p (b — d) l ph + p (b — d.)

Stress in AD=—X—=— (2)

- l g g

Before the section of the jib can be determined, it is required to find

the maximum flexural stresses due to the live and dead load bending

moments, and combine them with the axial or direct tensile stresses

acting on span AD, when the absolute maximum bending moment

occurs, that is when the wheel loads p, p are so placed that the center

of the span is midway between the center of gravity of these loads

and one of the trolley wheels. They must also be combined with the

stresses produced by the eccentric pull of the ropes holding the load.

The direct tensile stress in the jib to be so combined is then not the

maximum one just found by formula (2), but that due to the reaction

R, when the trolley is at the position in the span producing the greatest

bending moment, and the value of that reaction R, at D is found by

taking the moments about support A, or,

p(-)
R1 =——

!

Value of R, at A is found by taking moments about support D,

*(-)
!

To obtain the maximum live load bending moment we take moments

about point k under one of the wheels (as shown in Fig. 1); then we

have

! d

Maximum bending moment = R. x. ( 2 - - )*(-) 4

But as R.=—, if we substitute this value of R, in the last

!

equation, we find the greatest live load bending moment from

10 G \?

Live load bending moment = 2. ( - 2 (8)

w!

Dead load bending woment = + - . . . . . . . . (4)
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19 d \? w!

Approximate total bending moment = — ( l — — ) + — (5)

2! 2 8

where d= wheel base,

w = weight of jib between supports A and D, which weight

must be assumed,

l = AD, or Span.

In regard to formula (5) it may be said that the customary approxi

mate method of adding the maximum live load bending moment to

the maximum dead load bending moment is incorrect, except in cases

where the maximum live load bending moment occurs at the center

of the span. The correct method for this case is to add to the maxi

mum live load bending moment its increment of the dead load moment

at that point, and not the maximum value which takes place at the

center of the span. The usual method is sufficiently correct for prac

tical purposes, however, as it is on the safe side.

The unit-stress f, due to bending, in pounds per square inch is

found from

=——u— (6)

The unit-stress due to jib reaction R, is found from

! d

Rı X – p 1. )
g 2

1 — - - - (7)

ag

Unit-stress f, due to tension of rope, is found from

.T T2

fº = a + Tz' (8)

where T= tension in rope in pounds, -

R, + value of reaction at D when greatest live load bending

moment occurs,

2= eccentricity or distance between center line of rope and

center line of member, in inches,

Z= section modulus of section,

a= area of section of member in square inches.

The maximum compressive, stress in top flange of jib section =

f—f, + f, or

p d \? w! d

— l l — — ... + — *(i+.
2! 2 8 2 T T2

Z ag Q Z

or combining
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d

l + -

A9 A d \? w! 2

— l — — . --— + Tz T — p——

2! 2 8 9.

f – f. -- f2 = + (9)

Z 0.

The maximum tensile stress in the bottom flange of jib when such

flange is opposite to the line of action of the rope (see Fig. 3) =

f + f1 – f. (f, in this case being modified to give tensile stress in

bottom flange, due to eccentricity of rope loading), or

p G \? ºwl d

— l — — . --— p lº-H -

27 2 8’ 2 T T2

+ — — —H --

Z ag 0. Z

or combining,

l d

+ -

10 ſ. d. \? w! *( !)
[#(-) ++]. Tz —— T

2! 2 8. - g

f + f1 — fº =

Z 0.

These results should not exceed the specified fiber stress for the

structure. Before selecting a structural shape to resist these maxi

mum stresses just found, the stresses on the cantilever end should be

considered as follows:

f = flexural stress due to bending,

i= tensile stress due to jib reaction,

f,- compressive stress due to tension or pull of ropes.

Live and dead load maximum bending moment -

- C

= exo-ſex e-on-(ex.:) (11)

ând f, or stress due to bending on cantilever

(10)

7CC

per pſe-d) ++

Unit stress f =—- (12)

This maximum flexural stress takes place at D, and immediately to

the left of D, there exists at the same time the direct tensile stress

due to the maximum reaction R, when the trolley is at the extreme

end of the cantilever producing this bending stress, found in formula

(1), which also must be combined with the stress due to the pull of

the rope. Therefore the unit-stress at point D= f -- f| – f.

Rl ph + p (b— d)

Unit-stress f =—=—

ag ag

Stress due to pull of ropes= f; -

T T2

Unit-stress f. =— -H — (8)

0. Z

(13)
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Therefore the maximum fiber stress =

10C

pc + p (c — d) + —

2 pb + p (b — d) T #)
+ f1 - J 2 E + - — — + —-f. -- fi – fa Z ag 0. Z

or combining,

QUC pb + p (b — d).

perpe-a) ++-1. ———— T

g

f + f1 – f = +- (14)

Z 0.

where p = wheel load as before,

w = weight of section of jib from D to its extremity (see Fig. 1).

Side CD

The compressive stress in strut CD is R X—, of the triangle

side AC

e

ADC, or R X —

g

And since R is maximum when the trolley is at the extreme end of

the cantilever, or

pb + p (b — d)

R =— (1)

l

then the maximum compressive stress in strut =

pb + p (b— d.) e

X — (15)

l 9

b + p(b — d)]e

Unit-stress in strut = [pºrpo-ol. (see Fig. 1). (16)

agl

where a equals area of cross-section of strut.

The allowable unit-stress per square inch of section of this member is

found by the usual Gordon formulas:

l

for structural steel, f= 17,100— 57 — (17)

r

l

for yellow pine, f= 1,200— 18 – (18)

t

However, a satisfactory reducing formula of the Rankine type, exten

sively used by bridge companies, and specified by some railroad com

panies, is recommended. It is as follows:

15,000

for structural steel, f=— (19)
w 12

1 -

13,500 rº

1,200

for yellow pine, f =— (20)

l?

1 +

250 tº
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where l = length of strut in inches,

t = thickness of timber in inches,

r= least radius of gyration.

The stress in the strut due to its own weight is neglected as being

very small in most practical cases.

l

Ordinarily the ratio – should not exceed 130; however, this ratio

ºr

is frequently increased if the fiber-stress is well under the one speci

ſied, and as long as its departure from straightness will not subject

the strut to an appreciable bending moment.

The stresses that may exist in the mast are as follows: (See Fig. 1.)

(1): Axial compression due to reaction R, and weight of strugture.

(2) Eccentric stress due to R, when trolley is at extreme position

on jib next to mast for cranes where jib connects to the face of the

mast, and not at the center line of gravity of its Section.

(3) Eccentric flexural stress due to tension in ropes.

(4) Flexural stress due to direct tension in jib AE, and to the hori.

zonal component of direct compression in the strut DC.

(5) Eccentric flexural stress due to weight of drum and other hoist

ing machinery. This last stress is usually disregarded, however, except

where the jib and hoisting machinery are of abnormally large pro

portions.

Rs

Unit-stress fi = —,

0.

pl + p. (l − d)

but Rs ----

l

pl -- p (l – d.)

- l pl + p (1 – d.) -

therefore f": a- – (21)

cº, al

Rs Rs.2,

Unit-stress f a = — -- — (see Fig. 3),

O. Z

pl -- p (l — d)

but Rs =——

W

pl -- p (l'— d) / 1 21.

therefore f"a =—— – + - (22)

! 0. Z

T Tza

Unit-stress fºs = — -- COS 6 (23)

0.

pb + p (b — d.) -

Tension in jib = H = —— (see Fig. 2) (2)

g

The horizontal component of stress in strut is equal to the tension



10 No. 23—CRANE DESIGN

H. The mast is then considered as a beam supported by reactions H

and r. (See Fig. 2.)

p X b + p (b — d) + wi X j

7" E—— (24)

777,

where w, - weight of structural frame,

j= distance from center of mast to center of gravity of frame,

7m = distance between centers of bearings.

The quantity w. X j may be omitted when the frame is not very

large. The maximum bending moment in the mast is then r X u or

!.

OF GRAVITY OF STRUCTURE

2.

Machinery, N.Y.

wi

2

Fig. 2. Outline of Crane for which the Design. is Calculated

r. X v, whichever is greatest. Distances GA and CF, Fig. 1, should be

as Small as consistent with the design to obtain economy.

Tru,

Unit-stress f.ſ at cantilever GA=—

Z

Trºy

Unit-stress f.ſ at cantilever CF=— (25)

Z

The axial compressive stress in the mast due to the whole weight

of the structure, should be added to the flexural compressive stress

f," due to bending when the trolley is at the extreme end of the jib,

since that part of the mast immediately beneath C is subjected to both

at the same time under these conditions.

The stress f. is not added to the stress f,’ as found by formula

(22), because they do not take place at the same time, the maximum

bending taking place when the trolley is at the end of the jib, and the

maximum eccentric compressive stress when the trolley is close to

the mast.

It is sometimes required, when long jib members are necessary, to

brace the two shapes composing the jib at Some intermediate point in
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!

order to reduce the ratio –, and, at the same time, lessen the tendency
*

of the jib members to spread. This is done by securing structural

l

shapes bent clear over the jib trolley. (See Fig. 4.) The ratio - should

r

not exceed that above specified.

The pintles at G and F should be made large enough to resist the

bending moment on them, and also designed for a safe bearing pressure

per square inch of their projected area. This pressure is the quantity

r in formula (24).

The jib end connection is subjected to flexural stresses due to the

tension of the rope or ropes, which should be taken into consideration.

The connection is treated as a beam, and the pull of the rope or ropes

21:6:HoOK RADIUS I

240+-- *184-1

§§ -

*-*----iſſiºner, wr.
Fig. 3. General Dimensions of Crane to be Designed

as concentrated loads in the middle or at equal distances from the

middle, according to the kind of connection employed, the beam in

question being Supported at both ends.

Example

Required to design a jib crane of the underbraced type to lift a load

of 10,000 pounds at a radius of 21 feet 6 inches; distance between

underside of roof truss or top support and floor 13 feet 6 inches; jib

to be constructed of two structural steel frames composed of standard

size channels and connected together (see Fig. 4); trolley mounted

on four wheels running on top flanges of jib member. Maximum

fibre-stress 13,000 pounds per square inch, which is allowable for hand

power machines. For a load of 10,000 pounds we will use four parts

of 7/16-inch—6 strands of 19 wires—plow steel hoisting rope, having a

breaking strength of 17,700 pounds, and will give a factor of safety of

4 × 17,700

= 7.08, which must also take care of the bending stresses

10,000
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in the ropes. This size of ropé will require sheaves of 14 inches in di

ameter, and will allow a wheel base of 36 inches. Two ends of these

two lengths of rope will wind on the drum, and the other two ends

will be supported at the outer end of the jib by an equalizing beam.

Load to be lifted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10,000 pounds

Approximate weight of trolley, ropes and block. . . . 500 pounds

Total . . . . . . . . . . . , - - - - - - - *- - - - - - - - - - - - - - - - - - - - - - 10,500 pounds

10,500

which will make the wheel loads : = 2,625 pounds each.

4

Distance between mast and joint D, Fig. 3, − 208 inches.

Distance between jib and joint C= 120 inches.

Distance between mast and extreme position of outermost wheels of

trolley = effective radius + half the wheel base = 21 feet 6 inches -H

1 foot 6, inches = 23 feet = 276 inches.

Let us first assume the trolley at that position in the span AD pro

ducing the greatest bending moment (see Fig. 1) :

Maximum live load bending moment

2625 36 \?

- - (* -- ) = 227,793 inch-pounds. (3)

2 X 208 2

By looking at the table of properties of steel channels in any steel

company’s handbook, we find that a 12-inch channel weighing 20.5

pounds per foot, with an area of 6.03 square inches, has a section

modulus about the axis perpendicular to the web of 21.4, and this value

divided into the live load bending moment will give a stress of 10,644

pounds per square inch, which leaves us a margin for the other stresses

to be yet considered. Therefore, we will temporarily select the above

shape for the purpose of finding the bending-moment due to the uniform

weight of the member itself.

208

Weight of channel between A and D = T2 × 20.5 = 355 pounds.

355 X 208

Dead load bending moment =—- = 9230 inch-pounds. (4)

Approximate total bending moment

= 227,793 + 9,230 = 237,023 inch-pounds. (5)

Unit-stress due to bending

10 d \? w!

- l — — + —-

2! 2 8 237,023

= ----- = 11,076 pounds per sq inch. (6)

Z 21.4

Unit-stress due to reaction R,

36

2625 X 208 + 2

———= 817 pounds per square inch. 7)120 × 6.03 per Sq (
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10000

Tension in ropes = 2500 pounds.

Unit-stress due to tension in rope

2500 2500 × 8

- +-–

6.03 21.4

Total stress on top flange = f– f. -- f, -= 11,076 – 817 -- 1,348 =

11,607 pounds per square inch (9), which stress is under the one

specified; the shape tentatively selected may therefore be used for

this member of the crane.

= 1848 pounds per square inch. (8)

93

Weight of cantilever end of jib=— X 20.5 = 159 pounds.

12

Unit-stress due to bending 93

2625 X 68 + 2625 X 32 + 159 X —

2

- = 12613 pounds per sq. inch. (12)

21.4

Unit-stress due to reaction R

2625 × 276 + 2625 × (276 – 86)

- = 1872 pounds per sq.inch. (18)

120 × 6.03

Unit-stress due to pull in rope

2500 2500 × 8

=— -- —— = 1848 pounds per square inch. (8)

6.03 21.4

Total unit-stress on top flange of cantilever =

12,613 + 1,872— 1,348= 13,137 pounds per square inch, (14)

which is 137 pounds per square inch more than the specified stress. In

practice, this will not be considered of sufficient importance to change

the design.

Total length of jib member = 25 feet 1 inch, or 301 inches.

Ileast radius of gyration of 12 X 20.5 pounds channel= 0.81,

length 301

The ratio—=—= 371, consequently the

least radius or gyration 0.81 -

channels of the two frames should be braced at least at a point midway

between the end connection and the mast. (See Fig. 4.)

Length of strut DC= V120°-H 208° E 240.13 inches. Selecting a

15 × 33-pound channel having a cross-sectional area of 9.9 square inches,

and least radius of gyration of 0.91, for strut, we have the compressive

unit-stress

[2625 × 276 + 2625 (276–86)] × 240.18

- - = 1316 pounds per sq. inch. (16)

208 × 120 × 9.9

15000.

Allowable stress =—=2440 pounds per sq.inch. (19)

240.18%

1 + -

18500 × 0.91?
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The ratio of the length of the strut to its least radius of gyration is

240.13

0.91

very low, only 1,316 pounds per square inch, or hardly more than half

of that allowed by the formula (19). As there is not a channel rolled

by any mill with a greater “least radius of gyration” than the one we

have employed, we may stiffen the strut laterally by riveting an angle

to its web in the inside or back of channel. Unless the ratio 130 must

be adhered to, the channel should be left as it is as long as the mem

ber shows no great deflection under load.

Let us now investigate the stresses existing in the mast, which we

assume is composed of two 12 x 20.5-pound channels. The distance from

center of mast to nearest wheel when the trolley is at the extreme

position next to mast = 11 inches.

2,625 (208–11) + 2,625 (208–11–36)

Then R,- = 4,518 pounds.

208

As the two vertical shapes composing the mast are latticed together,

we will take the two equal reactions Rs (one which acts on one chan:

nel and the other on the opposite one) to be resisted by the two shapes

combined, therefore the least radius of gyration of the mast as built

is then that perpendicular to the web of the channels, whose value is

4.61.

Then the allowable compressive stress

15000

-–- = 13,761 pounds per square inch. (19)

1622

=264, which is excessive; the maximum unit-stress, however, is

+

18500 × 4.61?

Unit stress f",

2625 (208–11)+2625 (208–11 – 86)

6.03 X 208

Stresses fºa do not take place in this gusset-connected frame.

Unit-stress fºs due to tension of rope

2500. 2500 × 16

= — +—X cos 9 deg. 30 min. (28)

6.03 21.4

= 2257 pounds per square inch. (See Fig. 4.)

Horizontal reaction at top and bottom of mast when load is at ex

treme outside end of jib=

2,625 X 276 + 2,625 (276–36)

r=—=8,361 pounds. (24)

= 749 pounds per sq. inch. (21)

162.

Unit-stress f", due to bending moment at top of mast =

8,361 × 22

—=8,548 pounds per square inch. (25)

21.4

Maximum unit-stress immediately beneath point A of mast = f°, +

f",= 8,548 + 2,257 = 10,805 pounds per square inch.
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For the end connection of the jib at E we select a 12-inch X 20.5

pound channel for the sake of symmetry, and proceed to investigate

the bending stress to which it is subjected, due to the pull of the ropes.

The distance between the jib members is 18 inches; the pull on the

ropes 2,500 pounds. The section modulus of the channel in considera

tion about an axis parallel to the web is 1.75. Two ropes, both four

inches from the center of connecting channel are used (see Fig. 4).

Maximum bending moment on channel = 2,500 X (9 – 4) = 12,500

inch-pounds.

12,500

Unit-stress = = 7,143 pounds per square inch.

1.75

Horizontal reaction on pintles

2,625 X 276 + 2,625 (276–36)

r= 2 × = 16,722 pounds. (24)

162

Assuming the pintles to be 6 inches long, and taking moments about

a lever arm from the center of the bearing to the support (= 3 inches),

we have, bending moment= 16,722 X 3= 50,166 inch-pounds. Unit

stress on pintle should not exceed 9,000 pounds per square inch for

machine Steel.

Trdº

Section modulus of a circular section = = 0.0986°, where d=

32

diameter of Section.

, 50,166
Diameter of pintle = d =—=3.84 inches.

0.098 × 9,000

The bearing pressure on pintles should not exceed 1,000 pounds per

16,722

square inch of projected area. Therefore = 16.72 square inches

are required. We will make the pintles 3% inches in diameter X 6 inches

16,722

in length, which will give a bearing pressure of—=719 pounds

3.875 × 6

per square inch.



CHAPTER II

EXAMPLES OF JIB CRANE, CALCULATIONS

The following examples will prove helpful as suggestive of the ordi

nary procedure in jib crane calculations. Two problems are presented

for solution, the first of which may be stated as follows.

Problem 1

The column of the crane, designed as shown in Fig. 5, is of cast

iron, has all the appearance of being sound, and is supposed to have

34 inch thickness of metal. The dimensions are as per sketch. The

compression member consists of two 7-inch channels, weighing 1114

pounds per foot, arranged back to back with a 3-inch Space between

-T-–E–

>

#

`c →h;4–

| | | ,,

H+% METAL
i

| t

H N2-7%hannels |
I 4 Tons —N |

—814–

L 11’ -

|

|

x',ETAL Machinery,N.Y.

Fig. 5. General Construction of Jib Crane in Problem 1

them for the trolley to operate in. These are fastened together at

each end, and the outer ends are supported by two 1-inch rods. The

question raised is whether it will be safe to suspend 4 tons from the

end of the 11-foot jib.

Calling a ton 2,000 pounds, the force conditions, reduced to simplest

terms, will be as shown in Fig. 6. A compound beam with compres

sive stress, as indicated in the lower part of Fig. 6, would evidently
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be an equivalent case. Considering the column as a compound beam,

the moment diagram will be as shown in Fig. 7. From this it will

be seen that the maximum bending moment on the column equals

54,630 foot-pounds, exerted in the axis of the jib, or 51% feet from the

upper end of the column.

To find the maximum fiber unit stress for the case of a beam sub

ject to flexure by transverse loads and also to compression in the

9,070%

29,333

29,333

g
sº*11=29,333 *

–8.09:11--6,070
14.5

|3
š 3.3. c.

f

H - }

K2.3. —sº- + --—3– É
3 33 - sº
c cro t -

CO -

6,070 ig;

COMPOUND BEAM-EquivalENT CASE

Machineru, N.Y.

Fig. 6. Forces Acting on Column of Crane

direction of its length, we find in Merriman’s “Mechanics of Materials,”

10th edition, page 256, a formula which can be reduced to the form

M C

where, S, - maximum fiber unit stress,

M= maximum bending moment in inch-pounds,

C = distance from the neutral axis to the remotest fiber,

I = moment of inertia of the cross section,

P= longitudinal compressive force = 8,000 pounds,

E= coefficient of elasticity = 15,000,000 for cast iron,

m and m = numbers depending on design and kind of loading,

1 = length of span of the beam, in inches.
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In the above, M, the maximum bending moment, - 54,630 foot

pounds = 54,630 × 12 inch-pounds, and c = 3% inches.

I, for hollow column, - 0.0491 (d”– d."), where d and d, are the ex

ternal and internal diameters, 73% and 6 inches, and hence I = 91.5.

7,

The approximate value of — is 1-12. The span l, in the equivalent case

770,

of the compound beam, is the distance between supports, or in our

case, 144 inches. ...Hence we have

54,630 × 12 × 3%

1 8,000 × 144°

91.5 —— X—

12 15,000,000

= 27,150 pounds per square inch.

1 =

SH 54,630

al 3 §

3. g ©

s a’.” 1. ... a!

Sº, 4TU- w ~7

•, Machinery, N.Y.

— 15,175

Fig. 7. Moment Diagram for Crane Column

P

To this should be added —, where A is the cross sectional area of the

A

column, for the maximum compressive unit stress. A = 15.9, inches,

P 8,000 P

making —=—= 503, and hence S = S, + — = 27,650 pounds per

Al 15.9 A.

P

square inch, for compression. For tension, S = S, – — = 26,650

A.

pounds per square inch.

Since the average ultimate strength of cast iron in tension is 20,000

pounds per square inch, it follows that the column will probably fail

when a load of 8,000 pounds is lifted at the end of the jib.

The above method applies also to the discussion of the channels
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which are under combined flexure and compression. The slenderness

ratio of this column is too large for good engineering practice, and

entirely insufficient for a load of 4 tons.

Problem 2

Our second problem we will present as follows: How should, the

stresses and sizes of the members for the crane shown in Fig. 8 be

figured? The load is 5 tons. Members are to be built up of two chan

nel irons, back to back.

The calculation of the size of the channels is largely one of trial and

error, and we will simply give. calculations showing the maximum

stresses in the members we have selected as suitable for use in the

case in question, after having tried various sizes. As shown in Fig.

9, it seems best to use 15-inch 33-pound channels for the yard arm, and

12-inch 20%-pound channels for the mast and brace. The channels

forming the mast should be latticed. The calculations given below do

not consider any of the minor factors which enter into the problem,

such as the weight of the beams themselves, the weight of the trolley,

and the pull of the ropes. These factors would appear to be amply

taken care of in the margin of strength given by the channels selected.

The designer, however, should always make sure of this.

The following table gives the properties of the shapes we will con

sider in our calculations:

Depth of channel in inches. . . . . . . . . . . . 15 12 10

Weight per foot in pounds............ 33.0 20.5 15.0

A= area of section in square inches.... 9.90 6.03 4.46

r= least radius of gyration. . . . . . . . . . 0.912 0.805 0.718

Z = Section modulus, axis perpendicular

to web . . . . . . . . . . . . . . . . . . . . . . . . 41.7 21.4 13.4

In addition to the reference letters given in the table above and in

Fig. 9, the following will be used:

M = bending moment, -

S = maximum fiber stress due to bending,

S. = maximum fiber stress due to tension,

S=maximum fiber stress.

First find the maximum fiber stress due to bending at D in the yard

arm, when the load is at the extreme outer position E in Fig. 9.

M=W c= 5,000 × 60= 300,000 inch-pounds.

M 300,000 -

Sb =—= =7,200 pounds per square inch. (26)

Z 41.7

Note that W is only half the total load, since each member of the

structure is composed of two channels, one on each side. The bending

moment at D when the load is at B is found thus:

W! 5,000 × 96

M=—E

4. 4

This being much smaller than in the previous case, it will give less

than half the fiber stress. Unless there is some good reason for the

= 120,000 inch-pounds. (27)
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design of framework adopted, it would be well to make ED about one

fourth of the length of DH. If this is done, the bending moment will

be the same whether the load is at E or B, and, will in either case, be

less than the maximum moment we have just found, so that a smaller

Section could be used.

The vertical reaction at D is found thus:

0. 13

R, - W X —= 5,000 × —= 8,125 pounds. (28)

l 8

-- l
- Ivo - |

5 8 -

\

T

º

<!! 10,000 Pounds

Tº y_

T

Machinery,N.Y. A

Fig. B. General Design of Crane in Problem 2 A.

This produces a tensile stress in DH which may be found by the

parallelogram of forces shown in Fig. 9, or by the following calculation:

l 8

R. R.R., X –= 8,125 × —= 5,420 pounds. (29)

g 12

The stress per square inch in DH due to this force is:

Ra 5,420

S = - = 550 pounds per square inch 30

Al 9.9 (30)
-

Adding this to the stress found in. (26), we have the total stress in

DH:

S= S + S = 550+ 7,200= 7,750 pounds per sq. in. (31)
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which is the maximum fiber stress, in the yard-arm, occurring just to

the right of point D. This is well within the limit of safety, which

may be taken as about 13,000 pounds per square inch.

The allowable fiber stress in the brace may be calculated from the

following formula based on Rankine's formula for columns:

15,000 15,000 h
- - =8895 pounds per sq.inch. (32)e? 1782 po (

1 + +—-

13,500 × rº 13,500 × 0.805*

Fi

ke—-01--13---156––––––– j |

–––c-R =-604– ———!--8-964——— ; |

4 |

|

H
E

2 CHAnnEL--s’

Nºi

|| |

R; | |

2W )= 10,000 pounds 3 | s

W=5,000 pounds : | ;
#| || | ||

D' R3N H' # § |
*

; :: *

©-

|
|

ii

M t |

R2 | |

Rſ. | |

||
w |-Y-

J C

:L.

Fig. 9. Calculating the Stresses in the Channels in Crane Fig. 8

The reaction producing compression in CD is found by the force dia

gram in Fig. 9, or by the following calculation:

e 173

R,+ R, X —= 8,125 X—=9,760 pounds (33)

9. 144

The compressive stress per square inch in the brace is, then,

R2 9,760 -

S= - = 1,620 pounds per square inch (34)

A. 6.03

which is, as may be seen, not quite one-half the allowable amount. The

ratio of the length to the radius of gyration (e + r.) in this strut is
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so great, being about 215, that it is wise to keep the unit compressive

stress down to a very low point.

The mast is most liable to fail by bending at H when the load is at E.

To find the bending moment at H, we must first find the horizontal re

action at G:

g 13

R, - W X —= 5,000 × —=3,825 pounds (35)

k; 17

The bending moment at H is then:

M= R, X f:- 3,825 × 54= 206,550 inch-pounds (36)

and the maximum fiber stress due to bending at this point is

M 206,550 -

S =—=—=9,650 pounds per square inch (37)

Z 21.4

which is well within the limit of safety.

If the next size smaller standard channels had been used for these

members, the results would have been as follows: A 12-inch 2014

pound channel for the yard-arm gives a maximum unit stress at D of

about 14,000 pounds, which is too much. The unit compressive stress

in the brace, if made of 10-inch 15-pound channels, would be about

2,190 pounds. Rankine's formula for this would allow 2,830 pounds,

but there is not enough margin of safety with the high ratio of e to r,

which is here about 240. The maximum stress in the mast at H would

be 15,400 pounds per square inch. . It will thus be seen that the sizes

we have Selected are the commercial sizes best Suited for the Case in

hand.



CHAPTER III

CALCULATIONS FOR THE SHAFT, GEARS, AND

BEARINGS OF CRANE MOTORS

To illustrate definitely the use of the table and diagrams in the

method of calculation explained in the present chapter the following

example will be taken: -

Given: A crane motor with 4 poles, 15 H. P., 750 R. P. M. at nor

Imal load:

Diameter of armature. . . . . . . . . . . . . . . . . = 9% inches

Air gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 3/32 inch

Area of pole face. . . . . . . . . . . . . . . . . . . . . . = 29 square inches

Density in air gap, given in lines of

force per square inch............... ~ 55,000

Total weight of rotating parts. . . . . . . . = 150 pounds

From a general layout drawing of the motor we have the dimensions

given as in Fig. 10.

Motors for hoisting purposes are usually series wound, and thus

run at different speeds under different loads. Therefore, if the motor

W

-

2 l

Fig. 10. Dimensions and General Arrangement of Shaft

is to be run with a certain overload, we have to take into considera

tion the corresponding speed and density in air gap, which can be ob

tained from the speed and excitation curves of the motor. In this

example we suppose an overload of 25 per cent, and have accordingly:

18.75 H. P., 700 R. P. M., and a density in air gap equal to 58,800 lines

of force per square inch.

Calculating the Gear

For figuring the gear we suppose that the diametral pitch equals 5

and the number of teeth equals 18. This gives us a pitch diameter

18

——= 3.6 inches. Thus, the pitch line speed at 700 R. P. M. =

5

tr X 3.6 × 700

12

= 660 feet per minute.
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It is not advisable to use a pitch-line speed exceeding 1,000 feet per

minute, on account of noisy running. -

Before figuring the width of gear we have to determine the pressure

P on the teeth. This is given by the following formula

H. P. X 33,000

Pitch line speed

where P is expressed in pounds and pitch line speed in feet per minute

Thus for 18.75 H. P. and a pitch line speed of 660 feet per minute

18.75 × 33,000

P=—=940 pounds, approximately.

P=

660

The width of gear is given by the formula:

P

w=—where

f X C, XC,

w=width of tooth of gear in inches,

P= pressure on tooth in pounds,

f= permissible fiber stress in thousands of pounds per square inch,

C= coefficient depending on diametral pitch and number of teeth

in gear. Its values can be obtained from table given on page 25.

C. - coefficient depending on pitch line speed. Its values. can be ob

tained from curve in Fig. 11. If we suppose a gear of steel, we may

use a fiber stress of 8,500 pounds per square inch. We therefore get

as the width of tooth:

940

w=—=4% inches, approximately.

8.5 × 5.2 × 0.5

Forces Acting on Shaft

Besides the weight of the rotating part and the pressure on the gear,

We must, when figuring the shaft and bearings, take into consideration

the unbalanced magnetic pull caused by a displacement of the arma

ture of the motor in relation to the poles. If B is the density given in

lines of force per square inch at air gap, A is the area of pole face in

square inches, and k is a constant which

for 4-pole machines= 2,

6-pole machines= 4.7,

8-pole machines= 7,

B” X A.

k × 72,134,000

pounds. This for

58,800° x 29

2 x 72,134,000

= 700 pounds, approximately. The pull per inch of the circumference.

4 × pull per pole 4 × 700

then the magnetic pull per pole =

mula gives' us in our example a magnetic pull per pole=

of pole bore= =—=92 pounds, approxi

tr X pole bore m X 9.69

mately. -

If we now suppose a displacement of armature of 25 per cent of the
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normal air gap, the ratio between air gap and displacement= 4. In the

diagram, Fig. 12, reading on the vertical side the pull per inch of the

circumference= 92, and on the horizontal side the ratio between air

gap and displacement= 4, the line 55 passing through the intersection

point of 92 and 4 indicates that the half value of the maximum mag

netic pull per inch of circumference of pole bore is 55.

Mmax -

= 55 pounds. Thus Mmax = 55 × 2= 110 pounds. In order

:

.1 .2 6 .9 1.0

coefficient MULTIPLER, c.
Aſachinery, N.Y.

Fig 11

M ax

to give the values of “mas as exactly as possible for a wide range of

values of magnetic pull and displacement ratios, the diagram in Fig. 12

contains two sets of lines, one in the lower right corner on a small

Scale, and one in the upper left corner on a larger scale.

4 X radius of armature X Mmax

The total magnetic pull on armature =

Tr

In our example the radius of armature is 4.75 inches, and the Mmax
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- - 4 × 4.75 X 110

is 110 pounds. The total magnetic pull therefore== - =

Tr

665 pounds.

When the unbalanced magnetic pull is acting in the same direction

as the weight of the rotating part, the shaft is subjected to its worst

strain. Therefore, by adding these two forces we get the resulting

force

W= 665 + 150= 815 pounds.

In general, the location of this force W on the shaft will practically lie

at the center line of the armature.

The forces R, and R, acting on the bearings, as shown in Fig. 10,

will be found from the following equations:

W X b + PX (c -i- L)

R=—-- 1,680 pounds.

R, - W -- P – R, = 75 pounds.

Diameter of Shaft

The diameter of the shaft between the bearings (see Fig. 10) must

be calculated for the maximum bending moment occurring. The bend

ing moment at W is:

Mb= R. X b = 975 inch-pounds.

The bending moment at R is:

- Mb = P × c= 5,050 inch-pounds.

This is, consequently, the maximum bending moment, and the shaft

should be calculated accordingly.

The twisting moment for 18.75 H. P. and 700 R. P. M. is

18.75

M.=—— X 63,024= 1,690.

700

The combined moment Me of M, and M, is:

If M is greater than M.

Me = 0.975 X Mo -- 0.25 × Mi;

or, if Mb is less than Mt

Me = 0.6 × Mb -- 0.6 X Mt.

In our example, where Mb S. M.,

M.= 0.975 × 5,050 + 0.25 × 1,690= 5,340, approximately.

Now, if f= fiber stress in shaft per square inch, and D= diameter

of shaft at W in inches, the moment of resistance

M. = 0.1 x fºx D'

Therefore if we put M. = Me,

3|M, X 10

D = , ||—

- f

If we suppose a fiber stress f=8,500 pounds per square inch, we get

D= 1%. inches, approximately.

This is also the minimum required diameter of the shaft in the
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bearing at R. Of course, ordinarily both bearings are made the same.

It is evidently of advantage to have the diameters of the journals

Somewhat larger than calculated, as strength alone is not the only

consideration; the lubrication of the bearing, a low unit pressure per

square inch of projected area attained without excessive length of

journal, etc., are also important questions to consider. The diameter

of the journals would therefore, in this case, be made, say 214 inches.”

t 2 3 4 5 6 7 8 9 10 11 12 13 14 ſt;

|

120

0

15

RATIO BETweBN AIR GAP AND DISPLACEMENT OF ARMATURE. -

Machinery, N. I

Fig. 12

Now, when the diameters at the journals are made 234 inches, evi

dently the remainder of the shaft at W would not be made as Small

as calculated, or 1% inch in diameter. The mechanical design re

quires that this latter diameter be made larger than the journals, say

2% inches, which diameter we will then use for calculating the deflec

tion, as indicated later.

* For a more thorough discussion of the subject ofgºlf and bearings, see

MACHINERY's Reference Series No. 11, Bearings, page 3, The Design of Bearings.
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Calculation of Journals

In the bearings, it is not advisable to exceed a pressure per Square

inch of projected area of 150 pounds, nor should the product of this

pressure by the peripheral velocity in feet per minute in the journal be

greater than 55,000, when grease lubrication is used. For oil lubri

cation this product can be somewhat higher. If in our example we

assume a pressure of 130 pounds per square inch, with the diameter

of shaft at R, = 244 inches, we obtain

1,680

length of journal=—=5% inches.

130 X 2.25

At 700 R. P. M. and diameter of shaft- 214 inches, and a pressure

of 130 pounds per square inch in journal, the product of pressure by

130 X m × 2.25 X 700

velocity will be=—=53,500, approximately.

12

Maximum Deflection of Shaft

For calculating the maximum deflection S of the shaft we have the

following formula:

W × a × b X (2 L – a) Jº

9 × E. × I X L. 3

where S is in inches and

W= the resulting force acting on the shaft in pounds,

L= distance between centers of journals in inches,

a= shortest distance between center line of one bearing and the

acting point of force W,

b= L– a in inches,

E=modulus of elasticity,

= 29,000,000 for steel,

=27,000,000 for wrought iron,

I= moment of inertia of shaft = 0.0491 X D*, where D is the diam

eter of shaft in inches.

In this example we get the maximum deflection,

S= 0.0027 inches, approximately.

Most of the formulas given above are empirical, and give only ap

proximate results, but they are exact enough for practical use.



CHAPTER IV

FORCE REQUIRED TO MOVE CRANE TROLLEYS

In designing crane trolleys and similar constructions the force re

quired to move them is not always calculated to a nicety, and the

design then based upon the figures. This may be the conception of

the man fresh from college, but it more frequently happens. that past

experience of a case similar to the one in hand is relied upon entirely.

This is both a safe and quick method, when conditions make it pos

sible, provided good judgment is exercised in allowing for differences

between the past construction and the proposed new one. The de

signer is, however, often confronted by a problem in which he has no

past experience to draw upon and for which he has no applicable data

at hand, or the design may be of a type similar to that of past experi

ence, but so different as to sizes that he is compelled to calculate from

elementary principles. Two troublesome questions then arise: First,

what theoretical conditions should be taken into account and what

ones may be safely neglected? and second, what values should be as

signed to the various constants and assumed factors entering into the

calculations? The practicability of his designs will depend almost

entirely upon the manner in which the above questions are answered.

Taking up the subject of crane trolleys, of the type in which the

load is suspended by ropes passing over sheaves in the trolley and

hanging block, as illustrated in Figs. 13, 14, and 15, the above questions

may be considered as mutually dependent upon each other, and might

be answered as follows:

Take into account journal friction of the trolley wheels, trolley

sheaves and hanging block sheaves; also the separate weights of load

to be carried, hanging block, and trolley. -

Neglect friction of ropes in grooves of sheaves, power necessary to

bend ropes over sheaves, and the rolling friction of the trolley wheels

on the track, allowing these to be taken care of by the assumed coeffi.

cient of journal friction.

Neglect inertia, also, for the usual speeds of crane trolleys, since the

difference between the coefficient of rest and of motion is sufficient to

produce the necessary acceleration.

In choosing the coefficient of friction, consider the general conditions

of lubrication as being poor, and consider that it is the coefficient of

rest which is required. Assume this coefficient to be the same for all

journals. A fair value is 0.1. Having settled these preliminary con

siderations, general formulas may be developed.

Case 1. (See Fig. 13.) The conditions are: Two parts of rope sup

porting the load, one sheave in hanging block, and two sheaves in

trolley.
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Let W =weight of load to be carried,

We= weight of hanging block,

W.=weight of trolley,

P = pull on trolley to overcome friction,

Sb = diameter of sheave in block,

Js - diameter of journal in block,

S =diameter of sheave in trolley,

J.- diameter of journal in trolley sheaves,

D= diameter of trolley wheels,

A = diameter of trolley axle journals,

C= coefficient of friction,

i-Si----

*=\k- |
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C E (o)]— P.

|-D-->

Tºft

|-

--Fº

<--—t--

Machinery,N.Y.

Fig. 13. Trolley with sheave suspended by Two Parts of Rope

Fb= friction of hanging block sheave,

Fle= friction of trolley sheaves,

Fºw = friction of trolley wheels.

For Case I,

Jb

F = (W1 4- Wº) C– (38)

Sb

The load being supported by two ropes, the load in each is % (W. --

Wº) and the arc of contact of the rope on the trolley sheaves being

90 degrees (a), the resultant pressure on the journals of each of these

Cº.

sheaves is 3% (Wi + W.) 2 cos7– % (Wi + W.) 2 cos 45 degrees.

For the two sheaves the resultant pressure amounts to

1.4 (W1 + Wº).
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From the above we get:

J

F. = 1.4 (Wi + W.) o: (39)

t

For the friction of the axle bearings of the trolley wheels, the weight

of the load, hanging block, and trolley must be considered, thus:

A

Fºx = (W. -- Wh -- Wi) C – 40)

D (

o) {d b wº ſo [[3]] —-P,

i.

:

Machinery,N.Y.

Fig. 14. Trolley with Sheave Suspended by Four Parts of Rope

We have, then, for the total friction

P = F + Fis + Fºw, or

Jº J. A

P = C (W. H. W.) #114) + (W. -- W -- W.) — I (41)

Sb St D

CASE II. (See Fig. 14.) The conditions are: Four parts of rope

supporting the load, two sheaves in the hanging block, and three

sheaves in the trolley.

Let the notation be as for Case I with the addition of:

Set = diameter of sheave at center of trolley,

Jet = diameter of journal for this sheave.

Then, F = same as for Case I (equation 38).

Fºw = same as for Case I (equation 40).
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The friction of the two end sheaves in the trolley is one-half of that

in Case I, or

J.

0.7 (W. H. W.) C —.

St

The friction of the central sheave is

Jet

0.5 (W. H. W.) C.

Je- — -Set---

- * - §:
as ZFS 2+ is Z-S -

9) : O O ( Ow, O (g)]−P.
N-Z S-TN-Z jº

| |

p-N-ºf

w( QīSī; OTE:2%Ö ZT. j.

w,

Machtnery,N.Y.

Fig. 15. Trolley with Sheave Suspended by Six Parts of Rope

The total friction of the trolley sheaves is then

J. Jet

Fis = (Wi + Wh) C |0.7 — + 0.5 — (42)

St Set

The total frictional resistance of the trolley is:

P = Fh + Fis + Fºw, or

Jb J: Jet

P = C I (W. H. W.) ; +07; +0.5;
b t Sct

A

+ (W. -- Wh + wo;| (43)
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Jet J. -

when: - S.’ as it often will be, equation (42) becomes:

ct t

J.

F, - 1.2 (W. -- Wº) C — (44)

S;

Under these conditions equation (43) reduces to

- Jb J. A.

P = C I (W. -- Wº) ||— + 1,2–| + (Wi-i- W - W.) — (45)

Sb t D

CASE III. (See Fig. 15.) The conditions are: Six parts of rope

supporting the load, three sheaves in hanging block and four sheaves

in trolley.

Notation the same as for Cases I and II.

F = same as Cases I and II (equation 38).

Fºw=same as Cases I and II (equation 40).

The load in each rope is 1/6 (W. H. W.).

In Case I the load in each rope was 1/2 (W1 + Wh)

The frictional resistance of the two end sheaves is therefore 1/6 –-

1/2 = 1/3 as much for this case as for Case I, and is equal to 0.47

- - J. -

(W. -- W.) C —. The friction of the two central sheaves is 2/8

St

Jet

(W) + W.) C The total friction of the trolley sheaves is then

ct

Jt. Jet -

F, - (W. -- W.) C(a s + 0.67 —— (46)

t ct

The total friction of the trolley is P = F + Fls + Fºw, or

- Jo J. Jet

P = C I (W. -- W.) (. + 0.47 — + 0.67 —-

bS St Sct

A

+ (W. -- W -- Wi) — (47)

D

Jet J: -

When —— = s’ as would usually be the case, equation (46) reduces to

Sct t

- J.

Fis = 1.14 (Wi + W.) C — (48)

St

Under this condition equation (47) becomes

Jb J. A.

P = C L (W. -- W.) ||— + 1.14 – ) + (W. -- W -- W.) — I (49)
- Sb St D

If we assume that the ratio of journal diameter to sheave diameter

is the same for all sheaves and also the same for the trolley wheels

Jº J. Jet A

and their axle journals, i. e., that —=—= —=—, or that this

Sb S. Set
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condition is approximately true, and let R= this ratio, the foregoing

formulas for the value of Pf may be reduced to the following form:

For case I, P = C R [8.4 (Wi-F W by + W.] (50)

For case II, P = C R [3.2 (W. H. W.) + W.] (51)

For case III, P = C R [3.1 (W. H. W.) + W.] (52)

It is seen from the above that the friction is nearly the same for

the three cases, provided the value of R be the same. Equation (51)

being the intermediate condition may then be considered as representa

tive of all.

A PPENI)IX

CALCULATION OF PILLAR CRANES

The maximum stresses in the different parts of a pillar crane are

due to the maximum load lifted (the live load) and the weight (dead

load) of the crane parts themselves. Fig. 16 shows a conventional

design of a hand pillar crane, and assuming, for an example, the maxi

mum load Q= 5 tons, the height H= 12% feet, and the radius A =

13 feet, the stresses in the different parts of the crane are calculated

as shown in the following.

Stresses in the Boom

Fig. 16 shows plainly that the stresses in the boom and tie-bars are

not due to the live load only, but that the weight of the eccentric

parts of the crane (i. e., boom, tie-bars, hoist, sheave wheels, crane

hook and hoisting rope) and the pull of the hoisting rope must also

be considered. As it is not possible to determine the dead load accu

rately before the crane is calculated and designed, it must be assumed.

A practical method is to assume the weight of the above mentioned

eccentric parts of the crane as half of the maximum live load, and its

center of gravity at a distance equal to one-fourth of the radius of

the crane from the center line of the pillar. These assumptions ex

pressed in formulas read:

() 10,000

; or Q1 = = 5,000 pounds. (1)Q =–

2

A. 13

a =—; or a =—= 314 feet. (2)

4

in which Q = the weight of the eccentric parts of the crane, and a=

the distance of the center of gravity of Q, from the center of the crane.

If the actual figures, determined after the crane is calculated, differ

considerably from these assumptions, corrections have to be made.

The next step is to determine the height h of the pillar, a practical

rule being to make h about 0.6 of the radius of the crane:

h = 0.6 A.; or h = 0.6 × 13 = 8 feet, approximately. (3)
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The frame diagram shown in Fig. 17 can now be drawn. Accord

ing to the law of equilibrium the sum of moments of the external

forces must be equal to the sum of moments of the internal forces

about the same center. The moment Mi of the internal force in the

boom is the product of its compressive stress C and its lever arm e

(5% feet) about center K:

Mi = Ce (4)

-F-----zº

! Machinery, N.Y.

i

i

Fig. 16. General Lay-out of Pillar Crane

The moments of the external forces about Center K are:

The moment of Q =M =Q A (5)

The moment of Q1 = M1= Q,a (6)

The moment of Q2= M.= Q2b (7)

Dimension b is found to be 4 feet by Scaling.

Substituting the values:

M = 10,000 × 13= 130,000 foot-pounds,

M.= 5,000 × 3% = 16,250 foot-pounds,

M2= 5,000 × 4= 20,000 foot-pounds.

The sum of above moments is:

Me=M + M, -|- M. = 130,000 + 16,250 + 20,000 = 166,250

foot-pounds. (8)
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As explained before

Mi= M, (9)

Or

C e= Ms and transposing

Ms

C=—=the compressive stress in the boom. (10)

e

Substituting the values in above formula

166,250

C=—=28,910 pounds.

5%

The unsupported length of the boom scales about 17 feet, and as in

this case it is made up of two channels the load on each channel is

C

— or 14,455 pounds. The inclination of the two channels towards each

2

other need not be taken into consideration as the increase of load is

very small. Consulting any handbook of information relating to struc

tural steel we find that a 6-inch X 8-pound channel has a sectional area

of 2.38 square inches and a radius of gyration with respect to an axis

perpendicular to its web of 2.34 inches. Only this radius of gyration

need be considered as the flanges of the two channels are latticed to

gether. For the ratio of the length L of the boom in feet to the radius

of gyration r in inches

L 17

—=—=7.2,

r 2.34

which is not excessive. The elastic limit for soft steel may be taken

at 30,000 pounds per square inch. Dividing the load on one channel

by its sectional area the actual unit stress will be

14,455

= 6,075 pounds,

2.38 -

which shows that two 6-inch X 8-pound channels are quite sufficient to

stand the load.

Stresses in the Tie-bars

To find the tensile stress in the tie-bars the same method as just

explained will be used. Taking Ki as a center of moments and refer

ring again to Fig. 17, the moments of the external forces are:

Moment of Q =M = QA, (5)

Moment of Q1= M1= Q, a, (6)

Moment of Q2= M2=— Q.f. (11)

Dimension f is found by scaling to be 2% feet.

Substituting the values in these formulas:

M = 10,000 × 13 = 130,000 foot-pounds,

M = 5,000 × 314 = 16,250 foot-pounds.

a =—5,000 × 2% =— 12,500 foot-pounds,

and the sum M, of these moments is

M. = 130,000 + 16,250 — 12,500 = 133,750 foot-pounds. (12)
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The moment Mi of the internal stress T in the tie-bar is

Mi = Tal (13)

Dimension d Scales 7% feet.

Since Mi must be equal to Ms

T'd= Ms (14)

and transposing:

Ms

T=— (15)

d

Fig. 17. Diagrammatical View of Pillar Crane

Substituting the values in formula (15) the tensile stress in the

133,750

tie-bars is: T=—=17,830 pounds.

7% -

17,830

As there are two tie-bars the load on One is = 8,915 pounds.

Using a safe fiber stress of 10,000 pounds per square inch, the area of

8,915

= 0.892 square inch with the corresponding diameterone bar =

10,000

of 1 1/16 inch.

Stresses in Pillar

The stresses in the pillar are due to the bending moments of the

loads Q and Q, and to the direct vertical loads Q and Q. The bending

moments of Q and Q, were found by formulas (5) and (6) to be 130,000

foot-pounds and 16,250 foot-pounds, respectively. The sum of these

moments is

Ms – M + M,- 130,000 + 16,250= 146,250 foot-pounds (16)
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or 1,755,000 inch-pounds. This bending moment in inch-pounds must

be equal to the product of the section modulus of the pillar cross-sec

tion, times the safe unit fiber stress. Considering the sectional area

of a hollow cylinder for the cast iron pillar, the section modulus is

Tr (D*- d')

S =— (17)

32D

in which D= the outside diameter of the pillar, and

d= the inside diameter of the pillar.

Using a safe fiber stress s= 3,000 pounds per square inch, the above

mentioned equation reads:

ºr (D*— d")

Ms =—X s (18)

32D

ASSuming an outside diameter of 24 inches, the inside diameter d is

found by transposing the formula (18) :

4. 32 Ms D

d = D*—— (19)

- S Tr

and substituting the values:

- 4 32 × 1,755,000 × 24

d = 24*—— =20% inches.

3,000 × 3.14

As mentioned before, not only the bending moment, but also the

direct Vertical loads Q and Q, must be considered. As the bending

moment produces a tensile stress on one side of the column and a

compressive stress on the other side, the additional vertical loads Q and

Q, naturally increase the compressive and reduce the tensile unit

stress somewhat.

The unit stress in the pillar caused by the vertical loads is

Q —- Q1 15,000

S =—= = 137 pounds per square inch. (20)

Area 110 -

110 Square inches is the sectional area of the pillar at the dangerous

Section. -

The sectional area of the pillar was calculated for a bending stress

of 3,000 pounds. Adding the unit stress for the bending moment and

the unit stress for the vertical loads, the actual compressive unit stress

is found to be:

3,000 + 137 = 3,137 pounds per square inch. (21)

Substracting the unit-stress produced by the vertical loads from the

unit bending stress the actual tensile stress in the pillar results:

º

3,000 — 137 = 2,863 pounds per square inch. (22)

Vertical Tie-rods

The vertical tie-rods, connecting the crosshead with the lower end

of the boom, receive the vertical component of the tensile stress T in
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the ties, and the vertical component of the compressive stress C in the

boom, or what is the same, the added load Q and Q1.

Qa = Q -- Q = 15,000 pounds. (23)

in which Qa= the stress in the two vertical tie-bars.

Each of the two tie-rods receives half of this load or 7,500 pounds.

Using a safe unit fiber stress of 10,000 pounds, the area of one tie-rod is

7,500

= 0.75 square inch, with a corresponding diameter of one inch.

10,000

Pintle

The reaction Pº on the pintle (see Fig. 18) is caused by the loads Q

and Qi, whose moments about K must equal the moment of P. about

the same center: -

QA + Qa = Pºh = P,h (24)

and this formula transposed and the values substituted

10,000 × 13 + 5,000 × 314

P, = P, =——= 18,280 pounds. (25)

The reaction P. produces a bending moment on the pintle, and refér

ring to Fig. 18, this bending moment

P.L

2

in which L = the length of the pintle. Assuming the length L = 1% D1,

the formula (26) reads:

P, X 11% D,

Mb =—.

2

This moment has to be equal to the product of the section modulus

of the sectional area of the pintle times the safe unit stress. The sec

Tr - -

tion modulus for a circular section being — D,”, and assuming the safe

32

unit stress s= 8,000 pounds the equation reads:

P., X 11% D, Tr

—=—D,” s (27)

2 32

and transposing

—or (28)

P., X 1% X 32

D1=

2 m S

18,280 × 11% X 32

D1=—=414 inches approx.

2 × 3.14 × 8,000

and L = 1% X 4% =6% inches.

Besides the bending moment produced by the reaction P, the direct

vertical loads Q and Q, also produce stress, and this stress per square

inch is found by dividing the sum of the vertical loads by the sectional

area of the pintle in square inches:
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10,000 + 5,000

s, -—=1,060 pounds per square inch. (29)

14.19

The maximum unit stress on the pintle is then:

8,000 -- 1,060 = 9,060 pounds per square inch. (30)

Foundation Bolts

Considering an axis A A in Fig. 19, which shows a plan of the base

of the pillar, the sum of the moments of the overturning loads Q

and Q, about this axis must equal the sum of the resisting moments.

The latter are due to the stress in the foundation bolts and to the

weight of the pillar. This weight can easily be calculated as the cross

section of the pillar is already known, and in this case is found to be

|||—

Machinery, M. P.

i
:

Fig. 18. Pintle of Pillar Fig. 19. Lay-out of Arrangement

Crane of Flange Bolts

Q, = 5,000 pounds. The moments of the overturning loads with respect

to axis A-A are:

M.= Q (A— m) (31)

M, = 10,000 (13– 1%) = 115,000 foot-pounds,

M.= Q, (a— n) (32)

M.= 5,000 (3% – 1%) = 8,750 foot-pounds,

in which m = distance of the foundation bolts from the center of the

crane. In this case n is found by scaling to equal 1% foot.

The sum of the Overturning momentS=

M, + M, = 123,750 foot-pounds.

The resisting moments of the foundation bolts are:

M. = 2P,n + (2P, X 2n) (33)

in which P, equals the stress in one foundation bolt. The resisting

moment of the weight Q, of the pillar is:

M. - Q,n = 7,500 foot-pounds. (34)

The sum of the resisting moments is therefore equal to

M, + M,= 2P,n + (2P, X 2n) + Q,n (35)
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and transposing

(M. + Ms) — M.,

P. =— - (36)
3 -

67,

Substituting the value s, the stress on one foundation bolt

123,750— 7,500

Ps –—=12,910 pounds.

6 × 134,

Using a safe unit stress of 12,000 pounds, the area of one bolt is

12,910

= 1.08 square inch with, a corresponding diameter of 114 inch.*

12,000

Foundation

Referring to Fig. 16, we find the moments which tend to overturn

the crane with its foundation about an axis passing through e to be:

Sum of overturning moments =

D D

•( – ) + Q1(-) (37)

2 2

This sum of the overturning moments is resisted by the moment of

the combined weights Qs of the foundation and the pillar:

w D

Sum of resisting moments = Qs— (38)

2

The equation of moments therefore reads:

D JO AD

Q A — — —- Qi a — — = Qs — (39)

2 2 2 -

and transposing

D D

Q |A — — —- Q, a — —

2 2

Q =— (40)

D

2

Assuming the diameter D of the foundation to be 9 feet and Substitut

ing the values:

10,000 (13 — 4% ) + 5,000 (334 — 41% )

Q3 = m = 17,500 pounds.

4%

Deducting from this combined weight of foundation and pillar the

amount for the latter, we get the theoretical weight of the foundation:

17,500 — 5,000= 12,500 pounds.

* The calculation of the foundation bolts as here given is correct only on the

assumption that the base flange of the crane and the bolts are made of inelastic

materials. For a more fundamental treatment of the subject of foundation

bolts, see MACHINERY, December, 1906, engineering edition : Flange Bolts, or

MACHINERY's Reference Series No. 22, Čhapter III. For an article on the Work

ing Strength of Bolts, which should also be considered in this connection, see

MACHINERY, November, 1906, engineering edition, or MACHINERY's Reference

Series No. 22, Chapter II.
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Using a factor of safety of 3, the weight of the actual foundation

must be:

12,500 × 3 = 37,500 pounds.

Having calculated the different parts of the crane as described it is

good practice to test the pillar for its rigidity, as the amount of deflec

tion must not be too great. The load on the unsupported end of the

pillar was found by formula (25) to be P. = 18,280 pounds. The deflec

tion N in inches is: -

P.hº

N = (41)

3 EI

in which

h = the height of the pillar in inches = 96 inches,

E=the modulus of elasticity = 12,000,000 for cast iron,

Tr

I= the moment of inertia =— (D*— d") = 7,257.

64

Substituting these values we find the deflection

18,280 × 96%

N =—=0.062 inch,

3 × 12,000,000 × 7,257

or about 1/16 of an inch, which is not excessive.
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