MACHINERY'S REFERENCE SERIES

EACH NUMBER IS A UNIT IN A SERIES ON ELECTRICAL AND STEAM ENGINEERING DRAWING AND MACHINE DESIGN AND SHOP PRACTICE

NUMBER 104

AUTOMATIC SCREW MACHINE PRACTICE

PART VI

THREADING OPERATIONS ON THE BROWN & SHARPE AUTOMATIC SCREW MACHINES

By DOUGLAS T. HAMILTON .

CONTENTS

Arrangement of Machin	ne for	· Thre	eading	; Op	erat	tions	3	-	3
Taps and Dies for Scre	w Ma	chine	Work		-	-	-		18
Thread Rolling	-	-	-	-	-	-	-	-	31
				::	•	,	•	:•••	
•				-	· · ·	••	:	•	

Copyright, 1913, The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street, New York City .

Automatic Screw Machine Practice for the Brown & Sharpe automatic screw machines is covered in eight Reference Books, Nos. 99 to 106, inclusive. Reference Book No. 99, "Operation of the Brown & Sharpe Automatic Screw Machines," deals with the construction of these machines and the setting-up of the tools. No. 100, "Designing and Cutting Cams for Automatic Screw Machines," gives detailed instruction on cam design, and describes a simplified method for milling cams. No. 101, "Circular Form and Cut-off Tools for the Automatic Screw Machine," deals with the general arrangement and the calculations of these tools, and describes the different methods employed in their making. No. 102, "External Cutting Tools for the Automatic Screw Machine," deals with the design and construction of box-tools, taper turning tools, hollow mills, and shaving tools. No. 103, "Internal Cutting Tools for the Automatic Screw Machine," deals with centering tools, cross-slide drilling attachments, counterbores, reamers, and recessing tools. No. 104, "Threading Operations on the Automatic Screw Machine," treats on cam design for threading operations, threading dies, taps and tap drills, die and tap holders, and thread rolling. No. 105, "Knurling Operations on the Automatic Screw Machine," describes the construction of knurling holders, and gives directions for the making of knurls and the design of tools and cams used in connection with knurling operations. No. 106, "Milling, Cross-drilling and Burring Operations on the Automatic Screw Machine," describes screw-slotting attachments, index drilling attachments, and burring attachments, giving directions for their use and for the design of cams for them.

CHAPTER I

ARRANGEMENT OF MACHINE FOR THREADING OPERATIONS

The subject of threading on the Brown & Sharpe automatic screw machine is a subject which confuses the beginner on account of the calculations necessary for determining the rise on the cam due to the relation between the speed of the spindle and the driving shaft. The various reversing devices, tripping devices and threading attachments are also of importance. Until the various devices and arrangements used are fully understood, good results cannot be expected.

Reversing the Spindle

On the No. 00 Brown & Sharpe automatic screw machine the spindle is reversed by means of a spring plunger shown at A, Fig. 1; this

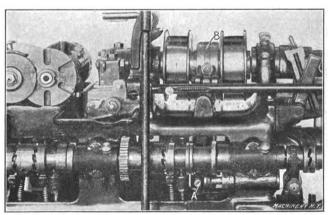


Fig. 1. Rear View of No. 00 Brown & Sharpe Automatic Screw Machine showing Reversing Mechanism

plunger, acting through the medium of the friction clutch B, reverses the spindle, from forward to backward, instantaneously. But, to reverse the spindle from backward to forward, onto a slow speed (as is sometimes necessary when cutting a thread), requires one revolution of the driving shaft. This shaft runs at 120 R. P. M. In a given case, the spindle speed equals, say, 2400 R. P. M.; then the revolutions 2400

required for reversing the spindle equal $\frac{1}{120}$ = 20 revolutions of the

spindle. The 20 revolutions used for this purpose represents lost time, and to obviate this, the Brown & Sharpe Mfg. Co. has provided a speed ratio threading attachment which is used in the turret. This attachment will be described later.

347570

No. 104—SCREW MACHINE PRACTICE

On the No. 0 and No. 2 Brown & Sharpe automatic screw machines, the spindle is reversed instantly from forward to backward by means of cam A and lever B, Fig. 2. The spindle is reversed from backward to forward by means of the same cam A on the driving shaft. There are two lobes on this cam, and it, therefore, requires one-half revolution of the driving shaft to reverse the spindle. For example, let the spindle speed equal 1800 revolutions per minute; let the speed of the driving shaft equal 180 revolutions per minute. Then the number of 1800

revolutions required to reverse the spindle = $\frac{180 \times 2}{180 \times 2}$ = 5 revolutions.

To reverse the spindle from forward to backward and then forward again (as would be necessary where two threading operations come

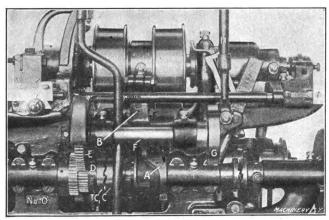


Fig. 2. Rear View of No. O Brown & Sharpe Automatic Screw Machine showing Reversing Mechanism and Belt Shifting Attachment

in succession) requires 4% hundredths of the cam surface on account of the tripping dogs on the drum, which cannot be placed any closer together. This will be referred to further under the heading "Setting the Tripping Dogs for Threading."

On the No. 2 Brown & Sharpe automatic screw machine, the spindle is reversed in the same manner as on the No. 0. For example, let the spindle speed equal 1200 revolutions per minute; let that of the driving shaft equal 120 revolutions per minute. Then the number of revolutions required to reverse the spindle from backward to forward

 $=\frac{1200}{120\times2}=5$ revolutions; to reverse the spindle from forward to

backward and forward again (as we explained regarding the No. θ machine) requires 3% hundredths of the cam surface.

Setting the Tripping Dogs for Threading

The tripping dogs a, Fig. 3, which are used for reversing the spindle, feeding the stock, and revolving the turret are placed on the various

THREADING OPERATIONS

drums on the front shaft as follows: The dog for reversing the spindle is placed on drum A, for feeding the stock, on drum B, and for revolving the turret, on drum C. These dogs operate the levers D, E, and F, respectively, which, in turn, disengage a clutch on the driv-

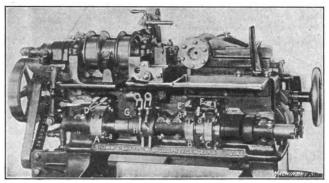


Fig. 3. Front View Showing Feeding, Reversing and Revolving Devices

ing shaft on the rear of the machine, thus operating the reversing, feeding and revolving devices. Where two threading operations follow in succession, the time required to revolve the turret is not always sufficient to bring the second tap or die into position. This is

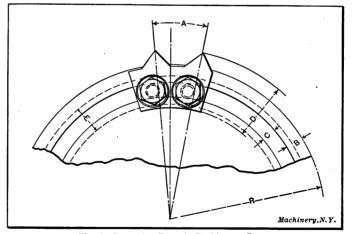


Fig. 4. Reversing Dogs in Position on Drum

illustrated in Fig. 4, where two tripping dogs are shown in position on the drum. To illustrate the method of determining whether extra time should be allowed for clearance, take a practical example. Assume that a set of cams is required to be used on the No. 2 Brown & Sharpe automatic screw machine. Let the spindle speed equal 1200 revolutions per minute; let the time required to complete one

No. 104-SCREW MACHINE PRACTICE

piece equal 20 seconds. Then the number of revolutions to complete $\frac{1200 \times 20}{60} = 400$ revolutions. Referring to the tables for laying out cams in MACHINERY'S Reference Book No. 100, we find

No. of Machine	A	В	С	D	E	R
00 0 2	20° 17° 14°	15 64 16 133 52	1 1 1 1 6	18 132 12	- 1 - 1 - 1 - 1 - 6	2 2 8 81

that it requires five hundredths to feed stock, plus one hundredth for clearance. This gives 6 hundredths to revolve the turret. Referring to the accompanying Table I we find that the angle A is 14 degrees. Then if the number of hundredths of the cam surface utilized in revolving the turret is less than the equivalent of 14 degrees, we would have to add more for clearance. In this case it requires 6

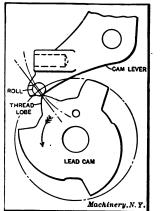


Fig. 5. Position of Roll on Thread Lobe when Spindle is reversed hundredths to revolve the turret. Then, reducing 14 degrees to hundredths, we 100×14

have, ----= 3.88 hundredths. There-

fore, additional cam surface would not be necessary in this case.

Setting the Machine for the Use of Taps and Dies

Before the reversing mechanism can operate, the clutch G must engage with clutch H. (See Fig. 3.) After engaging these clutches, we set the reversing dog aso that the spindle will reverse just as the roll passes over the highest portion of the thread lobe on the rear cam, as shown exaggerated in Fig. 5. When the spindle is reversing at the exact point as men-

tioned, the die or tap holder containing the die or tap is placed in the turret, and brought into position as shown in Fig. 6. The cam roll is set on the thread lobe in the position shown. Here a button die holder A (draw-out type) is shown in position ready to start on the work. The face of the die should be set a distance a, which varies from 1/16 to 3/16 inch, depending on the pitch of the thread and the length of the threaded portion, away from the part to be threaded. If the die does not travel onto the work far enough at the first setting, the holder can be brought further out of the turret. The same procedure can be followed in setting the tap, except that it should be set more carefully, only going into the work a slight

6

THREADING OPERATIONS

distance in starting, and then moving the holder out of the turret until the desired depth is reached. It is sometimes found necessary, after setting the tripping dog, to adjust it slightly, especially when using a draw-out die or tap holder. The turret should not be revolved until the die or tap is clear of the work.

When calculating the revolutions of the spindle required for threading, a greater number of revolutions should be allowed than the exact number of threads required on the piece, depending on the pitch of the thread, and in some cases on the length of the threaded portion, as when a short thread has to be produced, necessitating the threading of a longer portion and then facing it off. This is to allow the die to approach the end of the piece on the rise of the thread lobe. The

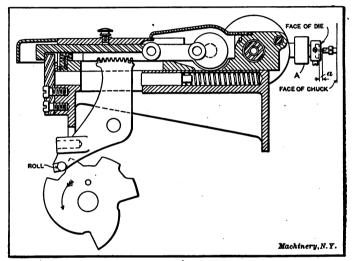


Fig. 6. Position of Roll on Thread Lobe when setting Die or Tap

actual number of revolutions required for threading 'can be found by the aid of the following formulas:

From 14 to 24 threads per inch, R = Lp + 1.5From 28 to 48 threads per inch, R = Lp + 3 (1)

From 56 to 80 threads per inch. R = Lp + 4.5

where L = length of the threaded portion, p = the number of threads per inch, and R = the revolutions of the spindle required for threading.

Owing to the inconvenience of dividing the cam surface into the same number of equal parts as the revolutions required to complete one piece, the Brown & Sharpe Mfg. Co. has adopted the system of dividing the cam surface into one hundred equal parts. The number of hundredths of cam circumference required for any operation is obtained by dividing the number of revolutions for each operation by the total number of revolutions required to complete one piece, taking the nearest decimal with two places. For example, if the number of

No. 104-SCREW MACHINE PRACTICE

revolutions required for the die to advance on to the work is 10, and the total number of revolutions required to complete one piece is 200,

then $\frac{10}{200} = 0.05$, or 5 hundredths of the cam surface.

Constructing the Thread Lobe

The method of laying out the cam lobe for threading is shown at Fig. 7. The outer circle A indicates the relation between the center of the fulcrum of the lead lever and the cam. This circle represents the path which would be described by the center of the lead lever if

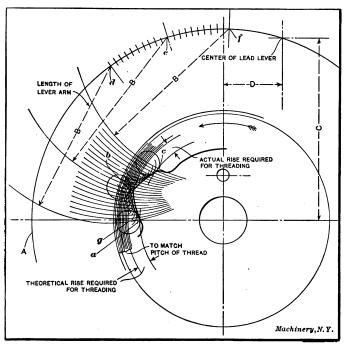


Fig. 7. Graphical Method of Constructing Thread Lobe

it were revolved around the cam. The radius B equals the distance from the center of the roll to the center of the fulcrum on the lead lever. C equals the vertical distance from the center of the cam to the center of the fulcrum on the lead lever, and D equals the horizontal distance. Before constructing the thread lobe, the number of hundredths of cam surface, the rise on the cam for threading, and the amount that the thread lobe is cut below the outer circle of the cam have to be determined. Then, after having drawn the various circles and lines necessary for the construction, we can proceed as follows: First, with the starting point a, the highest point b and the finishing point c of the cam lobe as centers, and with a radius equal to B, describe arcs intersecting the outer circle A at the points

8

d, e, and f. Then divide the spaces between the points d, e, and f into the same number of equal spaces as the number of revolutions required for threading. With a radius equal to B and with centers at the division points on circle A, describe arcs intersecting the thread lobe as shown. On the arc passing through point a locate center g of the roll circle so that this circle will pass through point a, and draw the roll circle. In a similar manner, draw the roll circle passing through point b, the highest point of the cam lobe. With the center of the cam as a center, draw a circle through point g and also a circle through the center of the roll circle which passes through point b. Divide the space between the two circles just drawn in the same number of equal spaces as the distances between d and e and e and f were divided. Then, with the center of the cam as a center, draw circles through these division points. The intersection between these circular arcs and the arcs drawn with the points on circle A as centers determine the center of the cam roll at the various steps of its progress, and cam roll circles drawn with these intersecting points as centers will determine the shape of the thread lobe. The form thus produced would, however, not give satisfactory results as crowding of the tap or die would occur, owing to the spindle speed and the speed of the driving shaft not being constantly in the same ratio. It is, therefore, avisable to cut down the cam lobe after the first couple of threads. This is shown in Fig. 7 where the actual and theoretical rise required for threading is shown.

Improved Method of Constructing Thread Lobe

In the method just described the rise on the thread lobe was determined graphically, this being a very complicated and tedious method. The advantage of the following method lies in its simplicity, as the lobe is determined mathematically. Before the thread lobe can be constructed, the length of the threaded portion, the number of threads per inch and the total number of revolutions of the spindle to complete one piece are required to be known. When the number of revolutions for threading and the number of threads per inch are known, the rise on the cam can be found by the following formulas:

From 14 to 24 threads per inch, $r = (R \div p) \times 0.85$ From 28 to 48 threads per inch, $r = (R \div p) \times 0.88$

(2)

From 56 to 80 threads per inch, $r = (R \div p) \times 0.90$ in which

R = revolutions required for threading,

p = number of threads per inch,

r = rise on cam.

In Tables II and III the results as obtained by formulas (1) and (2) for various numbers of threads per inch are tabulated. To show the advantages of these tables, take a practical example. Assume that a set of cams is required for the No. 00 Brown & Sharpe automatic screw machine. To make the piece as shown at A. Fig. 8, let the spindle speed equal 2400 revolutions per minute; the number of revo-

•

No. 104—SCREW MACHINE PRACTICE

TABLE II. SPINDLE REVOLUTIONS AND CAM RISE FOR THREADING

1 get					_	Num	ber of	Threa	dś per	Inch					
Length of Threaded Portion	80	72	64	56	48	40	86	82	80	28	24	20	18	16	14
Pare Pare				Fi					Spindle am for			1 g ,	,		
	7 00	7.00	8 50	6.50	4 50	4.50	4.00	4.00	4.00	4.00				1	
5 5	0.079	0.088	0.091	0.104	0.082	0.099	0.098	0.110	0.117	0.126					
10									5.00 0.147						
									6.00 0.176			8.50			
1	14.50	13.50	12.50	11.50	9.00	8.00	7.00	7.00	7.00	6.50	4.50	4.00	8.50		
5								1	$0.205 \\ 7.50$						8.50
						· ·	1.	-	$0.220 \\ 8.50$						
18 18	0.219	0.225	0.282	0.241	0.220	0.231	0.244	0.248	0.249	0.267	0.218	0.234	0.236	0.289	0.243
38	0.248	0.256	0.260	0.273	0.247	0.264	0.269	0.275	9.50 0.279	0.283	0.248	0.255	0.260	0.266	0.278
ł									$10.50 \\ 0.808$						
*	27.00	25.00	22.50	20.50	16.50	14.50	18.00	12.00	11.50 0.887	11.00	8.50	7.00	6.50	6.00	5.50
1	29.50	27.00	24.50	22.0 0	18.00	15.50	14.50	18.00	12.50	12.00	9.00	8.00	7.00	6.50	6.00
				1	1	1	1		0.367 13.50						
11 55									0.896 14.50						
흏	0.888	0.394	0.401	0.410	0.885	0.896	0.403	0.413	0.425	0.424	0.872	0.888	0.401	0.898	0.425
18 89									$\begin{array}{c} 15.00 \\ 0.440 \end{array}$						
.1 16									16.00 0.469						
15	42.00	38.50	34.50	31.00	25.50	22.00	20.00	18.00	17.00 0.499	16.00	18.00	11.00	10.50	9.00	8.00
1	44.50	40.5 0	36.50	32.50	27.00	28.00	21.00	19.00	18. 0 0	17.00	18.50	11.50	10.50	9.50	8.50
				1			1		0.528 19.00				4		
#7									0.557 20.00						
9 18	0.559	0.563	0.570	0.579	0.550	0.561	0.574	0.578	0.587	0.597	0.531	0.553	0.543	0.558	0.577
18 88	0.585	0.594	0.598	0.611	0.577	0.594	0.599	0.605	$21.00 \\ 0.616$	0.613	0.567	0.574	0.566	0.584	0.607
5									$22.00 \\ 0.645$						
<u>81</u>	57.00	52.00	46.50	41.50	34.50	29.50	26.50	24.00	2 3.0 0	21.50	17.50	14.50	18.50	12.00	10.50
++	59.50	54.00	48.50	43.00	86.00	30.50	28.00	25.00	$0.675 \\ 28.50$	22.50	18. 0 0	15.50	14.00	12.50	11.00
									0.689 24.50						
Ħ	0. 69 8	0.706	0.710	0.723	0.677	0.704	0.709	0.715	0.719	0.723	0.673	0.680	0.684	0.690	0.698
ŧ.	0.726	0.781	0.738	0.747	0.715	0.726	0.733	0.748	$\begin{array}{c} 25.50 \\ 0.748 \\ \end{array}$	24.00 0.754	19.50 0.691	10.50 0.701	15.00	$13.50 \\ 0.717$	12.00 0.728

THREADING OPERATIONS

TABLE III. SPINDLE REVOLUTIONS AND CAM RISE FOR THREADING

	Number of Threads per Inch 80 73 64 56 48 40 86 33 80 28 24 20 18 16 14														
gth eade	80	72	64	56	48	40	86	82	80	28	24	20	18	16	14
Length of Threaded Portion				Fi					Spindle am for		hreadin ding	g			
<u>95</u> 88	67.00 0.754	61.00 0.768	$54.50\\0.767$	$\frac{48.50}{0.779}$	40.50 0.742	84,50 0.759	81.00 0.758	28.00 0.770	26.50 0.777	25.00 0.786	20.50 0.726	$17.00 \\ 0.728$	15.50	14.00	12.50 0.759
18															18.00 0.789
<u>37</u> 33	72.00	65.50	58.50	52.00	43.50	87.00	38.50	80.00	28.50	26.50	22.00	18.50	16.50	15.00	
78	74.50	67.50	60.50	53.50	45.00	88.00	84.50	81.00	29.50	27.50	22.50	19.00	17.50	15.50	14.00
**	77.00	70.00	62.50	55.50	46.50	39.50	85,50	32.00	80.00	28.50	28.50	19.50	18.00	16.00	0.850
											0.882				0.850 14.50
18	0.894	0.900	0.907	0.916	0.880	0.891	0.904	0.908	0.909	0.927	0.850	0.871	0.871	80.876	0.880
11	0.923	0.981	0.985	0.948	0.907	0.924	0.929	0.985	0.989	0.948	0.885	0.898	8 0. 89 ′	7 0 .90 8	0.911
1	0.951	0.956	0.963	0.972	0.918	0.946	0.953	0.968	0.968	0.974	0.908	0.914	10.920	0. 92 8	15.50 0.941
1 ₁₆	89.50 1.007	81.00 1.018	$72.50 \\ 1.019$	64.00 1.028	54.00 0.990	45.50 1.001	41.50 1.013	37.00 1.018	85.00 1.026	$82.00 \\ 1.005$	27.00 0.956	23.00 0.978	20.5) 18.50 3 0.982	16.50 1.002
1;	94.50	85:50	76.50	67.50	57.0 0	48.00	43.50	39 .00	37.00	84.50	28.50	24.00	22.00	19.50	$17.50 \\ 1.062$
13 13	99.50	90.00	80.50	71.00	60.00	50.50	46.00	41.0 0	38.50	86.50	30.00	25.50	28.00	20.50	18.00
11	104.5	94.50	84.50	74.50	63.00	58.00	48.00	48.00	40.50	38.00	31.50	26.50	24.00	21.50	19.00
1 <mark>5</mark>	1.1.0	99.00	88.50	78.00	66 .00	55.50	50.50	45.00	42.50	40.00	88.00	28.00	25.00	22.50	20.00
18		103.5	92.50	81.50	69.00	58.00	52.50	47.00	44.50	41.50	84.50	29.00	26.50	23.50	$\begin{array}{c}1.214\\21.00\end{array}$
		1.294	96.50	85.00	72.00	60.50	55.00	49.00	46.00	48.50	86.00	80.50	27.50	24.50	1.275 21.50
1 ₇₆															1.305 22.50
1			1.413	1.422	1.875	1.386	1.891	1.408	1.400	1.418	1.828	1.889	1.84	51.854	1.366 28.50
1916				1.478	1.480	1.441	1.452	1.458	31.465	1.476	1.881	1.408	31.89	21.407	1.426
1§								1							24.50 1.487
1 11															25.00 1.518
14				102.5	87.00	78.00	66.00	59.00	55.50	52.00	43,50	36.50	88.00	29.50	26.00 1.578
1 <u>18</u>				106.0	90.00	75.50	68.50	61.00	57.50	54.00	45.00	38.0 0	34.00	80.50	27.00
17				1.100	98.00	78.00	70.50	63.00	59.50	55.50	46.50	89.0 0	35.50	81.50	1.629
								1	1		1				$1.700 \\ 28.50$
1 18															$1.730 \\ 29.50$
2															1.791

No. 104—SCREW MACHINE PRACTICE

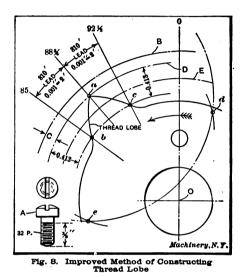
TABLE IV. HUNDREDTHS OF CIRCUMFERENCE EXPRESSED IN MINUTES

<u> </u>	T			1			_			1	
Hundredths of Circumference	Minutes	Hundredths of Circumference	Minutes	Hundredt hs of Circumference	Minutes	Hundredths of Circumference	Minutes	Hundredths of Circumference	Minutes	Hundredths of Circumference	Minutes
1 00		0.05	1000			05 85			BO 11	10.05	
1.00	216 270	9.25 9.50	1998 2052	17.50	8780 8994	25.75 26.00	5562	34.00	7344 7398	42.25	9126 0190
$\begin{array}{c} 1.25\\ 1.50\end{array}$	824	9.30 9.75	2002	17.75 18.00	8834 8888	26.00	5616 5670	34.25 34.50	7452	$42.50 \\ 42.75$	9180 9234
1.75	878	10.00	2160	18.00	3000 3942	26.50	5724	84.75	750 6	43.00	9288
2.00	432	10.00	2214	18.50	8996	26.75	5778	35.00	7560	43.25	9842
2.25	486	10.50	2268	18.75	4050	27.00	5832	85.25	7614	43.50	9396
2.50	540	10.75	2322	19.00	4104	27.25	588 6	85.50	7668	48.75	9450
2.75	594	11.00	2376	19.25	4158	27.50	5940	85.75	7722	44.00	9504
8.00	648	11.25	2430	19.50	4212	27.75	5994	86.00	7776	44.25	9558
8,25	702	11.50	2484	19.75	4266	28.00	6048	36.25	7830	44.50	9612
8.50	756	11.75	2588	20.00	4320	28.25	6102	36.50	7884	44.75	9666
8.75	810	12.00	2592	20.25	4874	28.50	6156	36.75	7938	45.00	9720
4.00	864	12.25	2646	20.50	4428	28.75	6210	37.00	7992	45.25	9774
4.25	918	12.50	2700	20.75	4482	29.00	6264	87.25	8046	45.50	9828
4.50	972	12.75	2754	21.00	4536	29.25	6318	37.50	8100	45.75	9882
4.75	1026	18.00	2808	21.25	4590	29.50	6372	37.75	8154	46.00	9986
5.00	1080	18.25	2862	21.50	4644	29.75	6426	38,00	8208	46.25	9990
5.25	1134	18.50	2916	21.75	4698	80.00	6480	38.25	8262	46.50	10044
5.50	1188	13.75	2970	22.00	4752	80.25	6534	38.50	8316	46.75	10098
5.75	1242	14.00	8024	22.25	4806	30.50	6588	88.75	8370	47.00	10152
6.00	1296	14.25	8078	22.50	4860	30.75	6642	89.00	8424	47.25	10206
6.25	1350	14.50	8132	22.75	4914	81.Ö	6696	39.25	8478	47.50	10260
6.50	1404	14.75	8186	28.00	4968	31.25	6750	89.50	8532	47.75	10314
6.75	1458	15.00	3240	23.25	5022	81.50	6804	89.75	8 58 6	48.00	10868
7.00	1512	15.25	8294	23.50	5076	81.75	6858	40.00	8640	48.25	10422
7.25	156 6	15.50	8348	28.75	5130	82.00	6912	40.25	8694	48.50	10476
7.50	1620	15.75	8402	24.00	5184	82.25	6966	40.50	8748	48.75	10580
7.75	1674	16.00	3456	24.25	5238	82.50	7020	40.75	8802	49.00	10584
8.00	1728	16.25	8510	24.50	5392	82.75	7074	41.00	8856	49.25	10638
8.25	1782	16.50	8564	24.75	5346	88.00	7128	41:25	8910	49.50	10692
8.50	1836	16.75	3618	25.00	5400	33.25	7182	41.50	8964	49.75	10746
8.75	1890	17.00	8672	25.25	5454	83.50	7236	41.75	9018	50.00	10800
9.00	1944	17.25	3726	25.50	5508	83.75	7290	42.00	9072	50.25	10854

THREADING OPERATIONS

.

TABLE V. HUNDREDTHS OF CIRCUMFERENCE EXPRESSED IN MINUTES


Hundredths of Circumference	Minutes	Hundredths of Circumference	Minutes	Hundredths of Circumference	Minutes	Hundredths of Circumference	Minutes	Hundredths of Circumference	Minutes	Hundredths of Circumference	Minutes
50.50 50.75 51.00 51.25 51.00 51.25 52.00 52.25 52.50 52.75 53.00 58.25 53.50 54.20 54.25 54.50 54.50 55.25	10908 10962 11016 11070 11124 11178 11283 11286 11840 11894 11448 11502 11556 11610 11664 11718 11772 11826 11880 11984 11988	59.00 59.25 59.50 60.00 60.25 60.50 60.75 61.00 61.25 61.50 61.75 62.00 62.25 62.50 62.75 63.00 68.25 63.50 63.75 64.00	12744 12798 12852 12906 12960 18014 18068 18122 18176 18280 18284 18388 18892 18446 18500 18554 18608 18662 18716 18770 18824	$\begin{array}{c} 67.50\\ 67.75\\ 68.00\\ 68.25\\ 68.50\\ 68.75\\ 69.00\\ 69.25\\ 69.50\\ 69.75\\ 70.00\\ 70.25\\ 70.50\\ 70.75\\ 71.00\\ 71.25\\ 71.50\\ 71.75\\ 72.00\\ 72.25\\ 72.50\\ \end{array}$	14580 14634 14688 14742 14796 14850 14904 14958 15012 15066 15120 15174 15228 15282 15386 15380 15444 15498 15552 15606 15660	76.00 76.25 76.50 76.75 77.00 77.25 77.50 77.75 78.00 78.25 78.50 78.75 79.00 79.25 79.00 79.25 79.50 79.75 80.00 80.25 80.50 80.75 81.00	16416 16470 16524 16578 16632 16686 16740 16794 16848 16902 16956 17010 17064 17118 17172 17226 17280 17384 17488 17442	84.50 84.75 85.00 85.25 85.50 85.75 86.00 86.25 86.50 86.75 87.00 87.25 87.50 87.75 88.00 88.25 88.50 88.75 89.00 89.25 89.50	18252 18306 18360 18414 18468 18522 18576 18680 18684 18738 18792 18846 18900 18954 19008 19062 19116 19170 19224 19278 19382	93.00 93.25 93.50 94.00 94.25 94.50 94.50 94.75 95.00 95.25 95.50 95.75 95.00 95.75 96.00 96.25 96.50 96.75 97.00 97.25 97.50 97.75	20804 20858 20412 20466 20520 20574 20628 20682 20736 20736 20730 20844 20898 20952 21006 21060 21114 21168
55.75 56.00 56.25 56.50 56.75 57.00 57.25 57.50 57.75 58.00 58.25 58.50 58.75	12042 12096 12150 12204 12258 12812 12866 12420 12474 12528 12582 12686 12690	64.25 64.50 64.75 65.00 65.25 65.50 65.75 66.00 66.25 66.50 66.75 67.00 67.25	18878 18992 18986 14040 14094 14148 14202 14256 14310 14364 14418 14472 14526	72.75 78.00 78.25 78.50 73.75 74.00 74.25 74.50 74.75 75.00 75.25 75.50 75.75	15714 15768 15822 15876 15930 15984 16088 16092 16146 16200 16254 16308 16362	81.25 81.50 81.75 82.00 82.25 82.50 82.75 83.00 83.25 83.50 83.75 84.00 84.25	17550 17604 17658 17712 17766 17820 17874 17928 17982 18036 18090 18144 18198	89.75 90.00 90.25 90.50 90.75 91.00 91.25 91.50 91.75 92.00 92.25 92.50 92.75	19386 19440 19494 19548 19602 19656 19710 19764 19818 19872 19926 19980 20034	98.25 98.50 98.75 99.00 99.25 99.50 99.75 100.00	21276 21330 21384 21438 21492

-

lutions to complete one piece, 400; time to make one piece, 10 seconds. Referring to A, Fig. 8, the length of the threaded portion is % inch and the pitch of the thread 1/32 inch, or thirty-two threads per inch. Referring to Table II, we find that the number of revolutions required is 15 and the rise on the cam 0.413. To construct the lobe, convert

the revolutions into hundredths of cam surface, or $\frac{15}{400} = 0.0375$,

or $3\frac{3}{4}$ hundredths. Then draw the cam circle *B*, as shown in Fig. 8, and lay off on this circle $3\frac{3}{4}$ hundredths to advance on the screw and

3% hundredths to withdraw. Cut down the amount C below the outer cam circle Bas required. Bisect the rise at E, and with OE as a radius and a, b, and c as centers draw arcs intersecting each other at d and e. With d as a center and radius OE join points b and a: with e as a center and radius OE join points c and a. This gives the shape of the thread lobe. For convenience in cutting, when a Brown & Sharpe circular milling attachment is available, the cam surface used for threading is divided into minutes. Then to obtain the lead (or the number of minutes tra-

versed for each 1/1000 inch rise) divide the number of minutes contained in the portion of the lobe used, by the rise. For example, $\frac{0.810}{0.413} = 1.96$,

or approximately 2 minutes. The equivalents of hundredths and minutes are tabulated in Tables IV and V. The information as derived by the various formulas is recorded on the drawing as shown in Fig. 8, being used by the toolmaker when cutting the cam.

Speed-changing Device

When threading brass, the spindle speed used for the other tools is generally also suitable for taps and dies, but when threading gunscr.w iron, Norway iron, machine steel, tool steel, etc., the speed used is too high. As has been previously explained under the heading "Reversing the Spindle," time would be lost in threading if the machine were reversed from forward to backward and then forward again on the No. 00 Brown & Sharpe automatic screw machine. There are various methods of overcoming this difficulty. One method is to run the spindle backward with the large pulley and forward with the small pulley on the countershaft. There is an objection to this, however, *viz.*, as there are generally other tools in the turret besides the die or tap holder. They would either have to be made to cut left-hand or else run at the same speed as the tap or die. It can easily be seen that in the majority of cases, the tools used in the turret would not be working at their maximum capacity if made to cut right-hand.

Ratio Threading Attachment

The attachment A, shown in position in the turret in Fig. 9, serves to revolve the die or tap in the same direction as that in which the spindle is rotating, but at one-half the spindle speed. As before mentioned, it is used where no other slow movements are required except

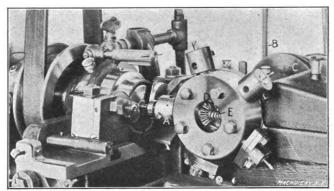


Fig. 9. Ratio Threading Attachment

for threading, enabling the spindle to run at its maximum speed for all the other operations. The attachment is driven by a ³/₄-inch round belt from the overhead works, the shaft passing through the turret head connecting pulley C with bevel gears D, thus driving the attachment A. Spring E acts in the same manner as the spring in the ordinary draw-out die or tap holder. The method of determining the shape of the cam lobe when using this attachment is as follows: Let the spindle speed for the forming and cut-off operations equal 2400 revolutions per minute; then the forward speed of the spindle for threading is 1200, and the speed of this attachment 600 revolutions per minute. Assume the length of the threaded portion to be 3/16 inch and that 40 threads per inch are to be cut. Referring to Table II, we find that the thread cutting will require 10.5 revolutions. But considering that the speed of this attachment is one-half the spindle speed, we would require $10.5 \times 2 = 21$ revolutions of the spindle for cutting the thread. Again, as this attachment rotates in the same direction as the spindle, the speed of the attachment when backing off the work would be 2400 + 600 or 3000 revolutions per minute. Then the number of revolutions of the spindle required for backing off the work would be $\frac{2400}{3000} \times 10.5$, or 8.5 revolutions, approximately. The same rise, 0.231, as given in Table II, is used for each side of the thread lobe, but the distance along the cam circumference in each part of the lobe is different, as it requires 21 revolutions to advance and only 8.5 revolutions to retreat.

Belt Shifting Attachment

The ratio threading attachment as shown in Fig. 9 is only suitable for cutting brass and fine threads on Norway iron, machine steel, etc.

Fig. 10. Example of Design of Thread Lobe when using Belt Shifting Attachment

This attachment would not be entirely satisfactory for the No. 0 or No. 2 Brown & Sharpe automatic screw machine, as a more positive drive is generally required for these machines. In Fig. 2 is shown the No. 0 Brown & Sharpe automatic screw machine equipped with a speed-changing attachment. The countershaft is supplied with a large and a small pulley which will give the desired spindle speeds. This attachment is operated by the same dog and lever that reverse the spindle. When the dog on the cam shaft trips the lever, the clutches C and C_1 engage, thus driving gears D and E. Gear E, being attached to shaft F, revolves disk G on which the eccentric connectingrod H is attached. When the rod H is drawn up or down it shifts the belt from the large to the small pulley or vice versa. The system of gearing provided shifts the belt twice for every revolution of the driving shaft. The number of revolutions of the spindle required to shift the belt with the spindle running at 1800 R. P. M. forward speed equals $7\frac{1}{2}$ revolutions.

To explain the method of designing the thread lobe, we will take a practical example. Assume that it is required to make the piece as shown at A, Fig. 10, on the No. 0 machine, the spindle speeds being 1800 and 900 revolutions per minute, respectively, using the 900 revolutions per minute for tapping. The cams for making this piece are shown in Fig. 10. The time required to make one piece is 17 seconds, or 510 revolutions. The number of revolutions for threading found in Table II is 16.5; but as the tap will run at 900 revolutions per minute instead of 1800, we will require a time equivalent to 16.5×2 or 33 revolutions at the 1800 R. P. M. speed for threading.

Then the hundredths required equals $\frac{33}{510} = 0.0647$, or approximately

 $6\frac{1}{2}$ hundredths. The rise on the cam is given in Table II as 0.403. Referring to Table II, MACHINERY'S Reference Book No. 100, we find that it will require 4/100 to feed the stock, or 5/100 to revolve the turret; this equals 25.5 revolutions to revolve the turret. Then the actual number of hundredths of cam circumference between the last operation and the starting of the thread lobe, to revolve the turret and reverse the spindle is 25.5 + 7.5 = 33 revolutions. Converting this into hundredths, we get 6.47 or approximately $6\frac{1}{2}$ hundredths. It is always good practice to allow plenty of clearance for threading as the die or tap holder intended for the job may have to be replaced by one which would require more clearance.

CHAPTER II

TAPS AND DIES FOR SCREW MACHINE WORK

In Fig. 11 is shown the common form of spring screw threading die with its adjustable ring. Dies of this type are used to a large extent on the Brown & Sharpe automatics, but the results obtained are not always entirely satisfactory. There are a number of objections to this type of die. The common method of making these dies is to hob them out with a tap larger in diameter than the basic screw, and then to close them in by means of the adjusting ring shown. This produces an imperfect thread if a tap much larger in diameter than the basic size of the screw is used. The correct method of tapping out a die of this kind is to use a taper tap which gives clearance at

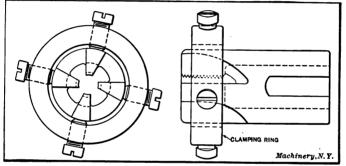


Fig. 11. Spring Screw Threading Die and Adjusting Ring

the back of the die. This necessitates the making of taper taps which adds to the expense of the die. This type of die is also difficult to harden without springing the prongs, thus causing chattering and producing a thread which is not correct in shape. Making a die with three prongs or cutting edges obviates chattering and produces a more nearly perfect thread. When cutting a small screw, the work sometimes breaks off in the die, making it practically useless, because in drilling out the broken pieces, the thread in the die is almost always injured. A type of die which overcomes this latter objection is shown in Fig. 12, the die here shown being split, allowing the broken screw to be easily removed. The location of the cutting edges on spring screw threading dies should be radial for brass, and about one-tenth of the diameter ahead of the center for Norway iron, machine steel, etc.

Adjustable Round Split Threading Dies

The adjustable round split die has an advantage over the spring screw threading die for the following reasons: It can be hardened

TAPS AND DIES

without springing out of shape, and can be held more rigidly, which produces good results; and although it cannot be ground to advantage, its first cost is so much less than that of the spring screw threading die that it can be discarded when dull. On account of the rigid manner in which this die can be held, the cutting edges in all cases can be located ahead of the center about one-tenth of the diameter

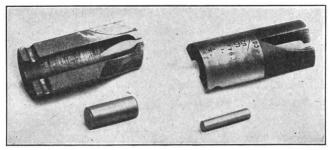


Fig. 12. Split Spring Screw Threading Die

which gives good results. In Fig. 13 is shown a type of adjustable round split button die as used by the Northern Electric & Mfg. Co., Ltd., of Montreal. This type of die has been found to give such favorable results that it is used by this firm in preference to all other types for screw machine work. In Tables VI and VII are given the sizes used by the above firm in making their dies for the

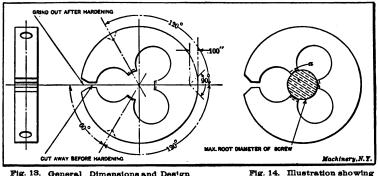


Fig. 13. General Dimensions and Design of Approved Type of Adjustable Round Split Button Die

Fig. 14. Illustration showing Clearance for Adjustable Round Split Button Die

A. S. M. E. standard and special screw sizes. The formulas used for the dies are as follows:

External diameter = basic external diameter of screw, Pitch diameter = basic pitch diameter of screw.

0.10825

Root diameter = basic root diameter of screw +

No. of threads per inch

This latter amount _______ is added to the basic root No. of threads per inch

diameter to provide for wear. While the sizes as given have been used by the firm mentioned, for a considerable time, theoretically it is not the correct way of making the die, because, to cut a clean thread, a die should have clearance as shown at *a*, Fig. 14, and as a screw is generally cut below the maximum diameter, the sizes as given would not provide any clearance at all; in fact it would be just the reverse, as the die would have to be closed, instead of opened up. When good results are desired the die should be tapped out smaller

the second se			
 Size of Screw and Number of Threads Per Inch 	External Diameter	Pitch Diameter	Root Diameter
$\begin{array}{c} 0.060 & - 80 \\ 0.073 & - 72 \\ 0.086 & - 64 \\ 0.099 & - 56 \\ 0.112 & - 48 \\ 0.125 & - 44 \\ 0.138 & - 40 \\ 0.151 & - 36 \\ 0.164 & - 36 \\ 0.164 & - 36 \\ 0.177 & - 32 \\ 0.190 & - 30 \\ 0.216 & - 28 \\ 0.242 & - 24 \\ 0.268 & - 22 \\ 0.294 & - 20 \\ 0.320 & - 20 \\ 0.346 & - 18 \\ 0.372 & - 16 \\ 0.398 & - 16 \\ \end{array}$	$\begin{array}{c} 0.060\\ 0.073\\ 0.086\\ 0.099\\ 0.112\\ 0.125\\ 0.138\\ 0.151\\ 0.164\\ 0.177\\ 0.190\\ 0.216\\ 0.242\\ 0.268\\ 0.294\\ 0.320\\ 0.346\\ 0.372\\ 0.398\\ \end{array}$	$\begin{array}{c} 0.0519\\ 0.0640\\ 0.0759\\ 0.0874\\ 0.0985\\ 0.1102\\ 0.1213\\ 0.1330\\ 0.1460\\ 0.1567\\ 0.1684\\ 0.1928\\ 0.2149\\ 0.2385\\ 0.2615\\ 0.2875\\ 0.3099\\ 0.3314\\ 0.3574 \end{array}$	$\begin{array}{c} 0.0424\\ 0.0535\\ 0.0640\\ 0.0739\\ 0.0827\\ 0.0930\\ 0.1028\\ 0.1119\\ 0.1249\\ 0.1330\\ 0.1431\\ 0.1658\\ 0.1834\\ 0.2040\\ 0.2236\\ 0.2496\\ 0.2678\\ 0.2841\\ 0.3101\\ \end{array}$
0.424 - 14 0.450 - 14	0.424 0.450	0.3776 0.4036	0.3235 0.3495

 TABLE VI. ADJUSTABLE ROUND SPLIT SCREW THREAD BUTTON

 DIE SIZES FOR A. S. M. E. STANDARD SCREWS

than the basic screw, and then opened up, as this would give a good clearance as shown, enlarged, at a, Fig. 14. Making the root diameter of the die the same as the minimum screw would give the desired results. This has been experimented with and the results obtained were perfectly satisfactory. The following formulas should then be used for obtaining the sizes of adjustable round split button dies:

External diameter == basic external diameter of screw, Pitch diameter == minimum pitch diameter of screw, or basic pitch 0.168 diameter of screw -------

No. of th'ds per inch No. of th'ds per inch +40

20

Making the external diameter equal to the basic external diameter allows for clearance, which is necessary, as the external diameter of the die should not be used for cutting the screw to size. This should be accomplished either by a finishing box-tool or by the cross-slide forming tools. It is obvious that making the dies to the sizes given in the formulas permits them to be used longer and still cut a clean thread. The work should be turned slightly smaller than the finished diameter required, depending on the material and the pitch of the thread.

Size of Screw and Number of Threads Per Inch	External Diameter	Pitch Di a meter	Root Diameter
0.073 - 64	0.073	0.0629	0.0510
0.086 - 56	0.086	0.0744	0.0609
0.099 - 48	0.099	0.0855	0.0697
0.112 — 40	0.112	0.0958	0.0768
0.112 - 36	0.112	0.0940	0.0729
0.125 - 40	0.125	0.1088	0.0898
0.125 - 36	0.125	0.1070	0.0859
0.138 36	0.138	0.1200	0.0989
0.138 - 32	0.138	0.1177	0.0940
0.151 - 32	0.151	0.1307	0.1070
0.151 - 30	0.151	0.1294	0.1041
0.164 - 32	0.164	0.1437	0.1200
0.164 30	0.164	0.1424	0.1171
0.177 — 30	0.177	0.1554	0.1301
0.177 - 24	0.177	0.1499	0.1184
0.190 — 32	0.190	0.1697	0.1460
0.190 - 24	0.190	0.1629	0.1314
0.216 - 24	0.216	0.1889	0.1574
0.242 - 20	0.242	0.2095	0.1716
0.268 - 20	0.268	0.2355	0.1976
0.294 - 18	0.294	0.2579	0.2158
0.320 - 18	0.320	0.2839	0.2418
0.346 - 16	0.346	0.3054	0.2581
0.372 - 18	0.372	0.3359	0.2938
0.398 - 14	0.398	0.3516	0.2975
0.424 — 16	0.424	0.3834	0.3361
0.450 - 16	0.450	0.4094	0.3621

 TABLE VII.
 ADJUSTABLE ROUND SPLIT SOREW THREAD BUTTON

 '
 DIE SIZES MOR A. S. M. E. SPECIAL SCREWS

Tables for laying-out button dies are given in MACHINERY'S Data Sheet Book No. 3, "Taps and Dies," pages 30 and 31.

Machine Taps

Internal threading on the automatic screw machine presents certain difficulties. There is a tendency for the chips to clog and to break the tap at the moment of reversal, as the chips then lodge back of the cutting edges, tending to prevent the tap from reversing. The spindle revolving at a high rate of speed also has a tendency to break the tap. Taps for screw machine work should have liberal space for the chips, the lands being made just strong enough to resist the cutting pressure.

f Corone			Manufactu	Manufacturing Limits			Diameter	1 1	
Number of Threads Per Inch	External Diameter	Diameter	Pitch D	Pitch Diameter	Root Di a meter	lameter	Stubbs' Wire	Leugu of Threaded Portion	Length Overall
	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Inches		
80	0.0632	0.0623	0.0538	0.0533	0.0466	0.0447	51	*	14
- 72	0.0765	0.0755	0.0660	0.0655	0.0580	0.0560	47	27	1%
- 64	0.0898	0.0888	0.0780	0.0775	0.0689	0.0668	42	9/16	1%
- 56	0.1033	0.1021	0.0897	0.0892	0.0793	0.0770	36	9/16	1%
- 48	0.1168	0.1155	0.1010	0.1004	0.0888	0.0862	31	%	$1\frac{1}{2}$
- 44	0.1301	0.1288	0.1129	0.1122	0.0995	0.0968	29	%	$1\frac{1}{2}$
- 40	0.1435	0.1421	0.1246	0.1239	0.1097	0.1069	26	%	$1\frac{1}{2}$
- 36	0.1569	0.1555	0.1359	0.1352	0.1193	0.1164	21	11/16	$1\frac{1}{2}$
- 36	0.1699	0.1685	0.1489	0.1482	0.1323	0.1294	17	11/16	$1\frac{1}{2}$
- 32	0.1835	0.1819	0.1598	0.1590	0.1411	0.1380	12	34	$1\frac{5}{8}$
- 30	0.1968	0.1952	0.1716	0.1708	0.1515	0.1483	×	34	1%
- 28	0.2232	0.2215	0.1961	0.1953	0.1745	0.1712	14	1	$2\frac{1}{2}$
- 24	0.2500	0.2483	0.2184	0.2176	0.1931	0.1896	9/32		$2\frac{1}{2}$
0.268 - 22	0.2765	0.2747	0.2421	0.2412	0.2144	0.2108	9/32	н	$2^{1/2}$
- 20	0.3031	0.3013	0.2653	0.2643	0.2346	0.2309	5/16		24_{2}
- 20	0.3291	0.3273	0.2913	0.2903	0.2606	0.2569	11/32	H	$2\frac{3}{4}$
0.346 - 18	0.3559	0.3539	0.3138	0.3128	0.2796	0.2758	3%		$2\frac{34}{4}$
- 16	0.3828	0.3808	0.3354	0.3344	0.2968	0.2928	13/32		$2\frac{3}{4}$
- 16	0.4088	0.4068	0.3614	0.3604	0.3228	0.3188	7/16		$2\frac{3}{4}$
- 14	0.4359	0.4338	0.3818	0.3807	0.3374	0.3333	15/32		$2\frac{3}{4}$
0.450 - 14	0.4619	0.4598	0.4078	0.4067	0.3634	0.3593	1/2	H	2%

ļ

TABLE VIII. MACHINE TAPS FOR A. S. M. E. STANDARD SIZES

-.

22

No. 104—SCREW MACHINE PRACTICE

	Length Overall		1%	13_{6}^{3}	$1\frac{1}{2}$	$1_{1_{2}}$	$1\frac{1}{2}$	$\frac{1}{2}$	$^{1}_{2}_{2}_{2}$	$\frac{1}{2}$	1_{2}	$1\frac{1}{2}$	$1 \frac{1}{2}$	$1_{1_{2}}^{1_{2}}$	$1_{1_{2}}$	1%	1%	1^{-1}_{-8}	1%	$2 y_2$	24_{2}	24_{2}	$2\frac{1}{2}$	$2\frac{3}{4}$	$2\frac{3}{4}$	23_{4}	23_{4}	23_{4}	2¾
T.enoth	Threaded Portion		12	9/16	9/16	58 8	%	%ì	%	%	8%	11/16	11/16	11/16	11/16	%	%	%	%	Ч	1			1	-1		H	H	H
Diameter of Shank.	Stubbs' Wire Gage or	Inches	47	42	36	31	31	67	57	97	97	20	20	17	17	12	12	~	2	1/4	9/32	9/32	5/16	11/32	%	13/32	7/16	15/32	1/2
	Root Diameter	Minimum	0.0538	0.0640	0.0732	0.0809	0.0774	0.0939	0.0904	0.1034	0.0990	0.1120	0.1093	0.1250	0.1223	0.1353	0.1246	0.1510	0.1376	0.1636	0.1789	0.2049	0.2238	0.2498	0.2668	0.3018	0.3073	0.3448	0.3708
	Root Di	Maximum	0.0559	0.0663	0.0758	0.0837	0.0803	0.0967	0.0933	0.1003	0.1021	0.1151	0.1125	0.1281	0.1255	0.1385	0.1281	0.1541	0.1411	0.1671	0.1827	0.2087	0.2276	0.2536	0.2708	0.3056	0.3114	0.3488	0.3748
Manufacturing Limits	ameter	Minimum	Q 0645	0.0762	0.0874	0.0979	0.0962	60TT'0	7801.0	0.1522	0.1200	0.1330	c.1318	0.1460	0.1448	0.1578	0.1526	0.1720	0.1656	0.1916	0.2123	0.2383	0.2608	0.2868	0.3084	0.3388	0.3547	0.3864	0.4124
Manufactur	Pitch Diameter	Maximum	0.0650	0.0767	0.0880	0.0986	0.0969	0.1116	660T.0	0.1229	0.1208	0.1338	0.1326	0.1468	0.1456	0.1586	0.1534	0.1728	0.1664	0.1924	0.2133	0.2393	0.2618	0.2878	0.3094	0.3398	0.3558	0.3874	0.4134
	Diameter	Minimum	0.0758	0.0891	0.1025	0.1161	0.1165	0.1291	0.1295	0.1425	0.1429	0.1559	0.1562	0.1689	0.1692	0.1822	0.1833	0.1949	0.1963	0.2223	0.2493	0.2753	0.3019	0.3279	0.3548	0.3799	0.4078	0.4328	0.4588
	External Diameter	Maximum	0.0768	0.0903	0.1038	0.1175	0.11/9	0.1305	6021.0	0.1439	0.1445	0.1575	0.1578	0.1705	0.1708	0.1838	0.1850	0.1965	0.1980	0.2240	0.2511	0.2771	0.3039	0.3299	0.3568	0.3819	0.4099	0.4348	0.4608
Size of Screw	Number of Threads Per Inch		0.073 - 64	I	Ĺ		Ĺ		1		L	1	0.151 - 30	L			0.177 - 24	1	Ĺ	Ŧ	0.242 - 20	0.268 20	0.294 18	0.320 18	0.346 16	0.372 18	0.398 - 14	0.424 16	0.450 16

TABLE IX. MACHINE TAPS FOR A. S. M. E. SPECIAL SIZES

TAPS AND DIES

23

Of course, the flutes must not be made too deep, so as to reduce the cross-section of the tap too much. The cutting edges are, in general, radial.

In Tables VIII and IX are given the manufacturing limits, as adopted by the Northern Electric & Mfg. Co., Ltd., Montreal, for the A. S. M. E. standard and special sizes. The taps are made from Stubbs' imported drill rod. The diameters of shank used are given in the tables, and also the length of the threaded portion and the over-all length. All taps 0.100 inch in diameter and less, have three flutes, and all taps over 0.100 inch in diameter have four flutes. The formulas used by the above firm for the manufacturing limits are as follows (*T. P. I.* = threads per inch):

EXTERNAL DIAMETER		0.224
Maximum == basic external diameter of screw +	T. P. I.	$+ \frac{1}{T. P. I. + 40}$
Minimum = basic external diameter of screw + -	0.10825	0.112
PITCH DIAMETER	T. P. I.	T. P. I. + 40
Maximum == basic pitch diameter of screw +	0.224	
Т. Н	P. I. + 40	
Minimum == basic pitch diameter of screw +	0.168	
T. F ROOT DIAMETER	P. I. + 40	
	0.336	
	P. I. + 40	
Minimum == basic root diameter of screw +	0.112	
	P. I. + 40	

The only changes from the A. S. M. E. formulas for the taps are the minimum external diameter, and the minimum pitch diameters. The reason for increasing the minimum external diameters can easily be seen by comparing the results as obtained by the formulas used by the Northern Electric & Mfg. Co. and the A. S. M. E. respectively. For example: Take a tap 0.164-36 threads per inch. The minimum external diameter given by the A. S. M. E. is 0.1656 inch. Now the maximum or basic screw is 0.164 inch. This leaves 0.0016 inch for wear, when the tap has been made the minimum size. This amount has been found not to be sufficient. The minimum external diameter, as found by the formula used by the Northern Electric & Mfg. Co., is 0.1685 inch, which gives 0.0045 inch over the basic screw. As will also be noted, this decreases the limit between the maximum and minimum external diameters of the tap, allowing only 0.0014 inch. In all cases the limits as derived by these formulas have been found to be sufficient. It will also be noted that the minimum pitch diameter is also increased to extend the life of the tap. In Table X the results

24

TAPS AND DIES

as obtained by the various formulas are given, which simplifies the calculations necessary in determining the limits, as the amounts given are added to the basic sizes of the screw. In the last two columns are given the single and double depth of the thread.

TABLE X.	CALCULATED VALUES FOR FORMULAS FOR FINDING MANUFACTURING
	LIMITS FOR TAP AND DIE SIZES

No. of Threads Per Inch	Value of 0.10825'' T. P. I.	Value of 0.112' T.P.I.+40	Value of 0.224'' T. P. I. + 40	Value of 0.336" T. P. I. + 40	Value of 0.168'' T. P. I. + 40	Value of . 064952" T.P.I.	Value of 1.°9904" T. P. I
80 72 64 56 48 44 40 36 32 30 28 24 22 20 18 16 14	$\begin{array}{c} 0.0014\\ 0.0015\\ 0.0017\\ 0.0019\\ 0.0023\\ 0.0025\\ 0.0027\\ 0.0030\\ 0.0034\\ 0.0036\\ 0.0039\\ 0.0045\\ 0.0049\\ 0.0054\\ 0.0060\\ 0.0068\\ 0.0077\\ \end{array}$	$\begin{array}{c} 0.0009\\ 0.0010\\ 0.0011\\ 0.0012\\ 0.0013\\ 0.0013\\ 0.0014\\ 0.0015\\ 0.0016\\ 0.0016\\ 0.0016\\ 0.0018\\ 0.0018\\ 0.0018\\ 0.0019\\ 0.0020\\ 0.0021\\ \end{array}$	$\begin{array}{c} 0.0019\\ 0.0020\\ 0.0022\\ 0.0023\\ 0.0025\\ 0.0027\\ 0.0028\\ 0.0029\\ 0.0031\\ 0.0032\\ 0.0033\\ 0.0035\\ 0.0036\\ 0.0037\\ 0.0039\\ 0.0040\\ 0.0041 \end{array}$	$\begin{array}{c} 0.0028\\ 0.0030\\ 0.0032\\ 0.0035\\ 0.0038\\ 0.0040\\ 0.0044\\ 0.0044\\ 0.0044\\ 0.0047\\ 0.0048\\ 0.0048\\ 0.0053\\ 0.0058\\ 0.0058\\ 0.0058\\ 0.0060\\ 0.0062\end{array}$	$\begin{array}{c} 0.0014\\ 0.0015\\ 0.0016\\ 0.0018\\ 0.0019\\ 0.0020\\ 0.0021\\ 0.0022\\ 0.0023\\ 0.0024\\ 0.0025\\ 0.0025\\ 0.0025\\ 0.0025\\ 0.0026\\ 0.0027\\ 0.0028\\ 0.0029\\ 0.0030\\ 0.0031\\ \end{array}$	$\begin{array}{c} 0.0081\\ 0.0090\\ 0.0101\\ 0.0116\\ 0.0135\\ 0.0148\\ 0.0162\\ 0.0180\\ 0.0203\\ 0.0217\\ 0.0232\\ 0.0271\\ 0.0295\\ 0.0325\\ 0.0361\\ 0.0406\\ 0.0464 \end{array}$	$\begin{array}{c} 0.0162\\ 0.0180\\ 0.0203\\ 0.0232\\ 0.0271\\ 0.0295\\ 0.0325\\ 0.0361\\ 0.0406\\ 0.0433\\ 0.0464\\ 0.0541\\ 0.0590\\ 0.0650\\ 0.0722\\ 0.0812\\ 0.0928 \end{array}$

An ordinary machine tap is suitable for cutting brass, but it does not give satisfactory results when tapping Norway iron, machine steel, etc. In Fig. 15 is shown a tap which gives good results in threading Norway iron or machine steel. This tap should be slightly tapered towards the back for clearance. The end is ground at an angle of about 55 degrees, and slightly cupped at the center, and backed off as

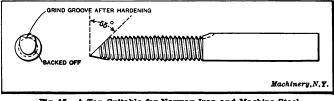


Fig. 15. A Tap Suitable for Norway Iron and Machine Steel

shown. A groove is ground the entire length of the threaded portion, after the tap has been hardened. This allows the oil to penetrate to the point in threading, and also provides clearance for the chips to back out. When made from Stubbs' imported drill rod and carefully hardened, this tap can be worked at a cutting speed of from 35 to 40 feet per minute, which would be impossible with an ordinary tap. Taps for threading copper have their flutes cut spirally and should also have an odd number of flutes. A right-hand spiral of about one turn in 12 inches should be used.

Tap Drills

The tapping size drills as recommended by the A. S. M. E. are not suitable for general work. The question of tap drills cannot be settled by giving a table and saying that the sizes therein contained are the best. Of course, to a certain extent, the sizes used in various shops do not vary greatly, but nevertheless there is really no standard size.

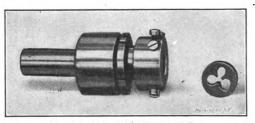


Fig. 16. Button Die Holder of the Draw-out Type

Considering this, the writer submits a list of tapping size drills which have been adopted by the Northern Electric & Mfg. Co. for general work. These sizes have given good results in practice. The sizes as given in Table XI are used for all

classes of work and material. The amount of thread obtained by these sizes is from $\frac{5}{5}$ to $\frac{3}{4}$ of a full thread.

Speeds for Dies and Taps

As a general rule, a die can be operated at a higher rate of speed than a tap, for the following reasons: A die can be left harder than a tap; and the die can be supplied with oil much easier than can the tap. The following surface speeds have been found suitable for taps and dies made from ordinary carbon steel and used on the materials specified below:

SURFACE SPEEDS FOR DIES

Material Fe	et per Minute
Brass (ordinary quality)	190-200
Norway iron and machine steel	30-40
Drill rod and tool steel	20-30

SURFACE SPEEDS FOR TAPS

Material	Feet per Minute
Brass (ordinary quality)	150-160
Norway iron and machine steel	25-30
Drill rod and tool steel	. 15-20

Die and Tap Holders

The manner in which a die or tap is held when being applied to the work has a considerable bearing on the results obtained. The die or tap holders supplied by the Brown & Sharpe Mfg. Co. give satisfactory results in most cases, and, therefore, these holders should be used for general automatic screw machine work. In Fig. 16 is shown a button die holder of the draw-out type, as made by the above firm. This holder gives good results when the work is not required to be threaded up to a shoulder. In Fig. 17 is shown an improved design of releasing button die holder also made by this firm, a section through the holder

	Decimal Equivalent of Tap Drill	0.1440 0.1660 0.1660 0.1660 0.1850 0.1820 0.2016 0.2016 0.2016 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2280 0.2770 0.2770 0.2770 0.2888 0.2898 0.2898 0.2888 0.2888 0.2888 0.2898 0.2898 0.2898 0.2888 0.2898 0.29988 0.29988 0.29998 0.29998 0.29988 0.29998 0.29998 0.29998 0.29998
	Size of Tap Drill	ののののは、「「「」」、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
Bre Instaut -	Size of Screw and Number of Threads Per Inch	$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$
- Decisi sizes sta market	Decima1 Equivalent of Tap Drill	0.0465 0.0595 0.0595 0.0780 0.0780 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0880 0.0160 0.1180 0.
	Size of Tap Drill	\$\$\$\$\$\$ \$\$\$\$\$\$ \$\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	Size of Screw and Number of Threads Per Inch	0.060 - 80 0.073 - 72 0.073 - 73 0.073 - 73 0.073 - 64 0.086 - 64 0.086 - 64 0.089 - 56 0.112 - 48 0.112 - 48 0.112 - 48 0.112 - 48 0.112 - 48 0.112 - 48 0.112 - 88 0.135 - 40 0.135 - 88 0.135 - 88 0.135 - 88 0.135 - 88 0.151 - 88 0.151 - 88 0.151 - 88 0.151 - 88 0.151 - 88 0.151 - 88 0.157 - 80 0.177 - 80

TABLE XI. TAP DRILLS FOR A. S. M. E. STANDARD AND SPECIAL MACHINE SCREWS

Special sizes are marked *

TAPS AND DIES

27

No. 104—SCREW MACHINE PRACTICE

being shown at A. The main feature of this die holder is that it can be reversed without shock; therefore, when threading small screws, it has less tendency to break off the screw in the die. At B and Care shown two views at the cross-section XY. At B and C are also

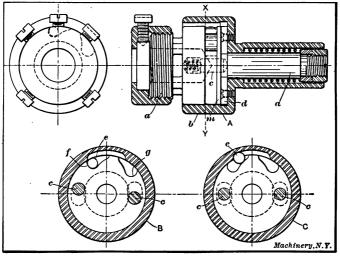


Fig. 17. Illustration showing Operating Parts of Releasing Button Die Holder

shown two small balls e which are used, allowing this die holder to reverse without shock. The operation of the holder is as follows: When the die holder or spindle a draws out from the body b, the driving pins c are also withdrawn, so that the ends of these pins are drawn out flush with the plate m. When the machine spindle is reversed, spindle

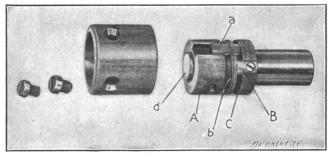


Fig. 18. Releasing Tap Holder

a revolves with the work, the centrifugal force throwing the ball e out of the deep part of the pocket as shown at B into the position as shown at C. This locks the holder, allowing it to be backed off the work. This holder can be used either for right- or left-hand threading simply by inserting the balls e in the different pockets, e. g., when ball

e is placed in pocket f it will cut a right-hand thread, and when placed in pocket g it will cut a left-hand thread. This holder is used to advantage, especially when cutting up to a shoulder.

In Fig. 18 is shown a releasing tap holder. The spindle A carries a pawl a, which is held back against the shoulder C by the spring b. When the spindle A is drawn out, the beveled portion on the pawl aallows it to slide past block B, thus allowing the spindle A to make one

Fig.19. Cutting Thread Lobe on a Circular Milling Attachment

revolution, when the opposite face of pawl b comes in contact with block B, thus allowing the tap to back out of the work. A blank bushing d is shown in the holder.

Using Two Taps

When a full thread is desired and the size of the tap will not stand the cutting pressure, it is sometimes found conto use two venient taps. The first tap should be ground tapered somewhat similar to a starting tap used for hand tapping. The taper should extend back a distance equal to that which the tap is to go into the work, so that the first thread in the work will be to the full diameter. The second tap is left with a full To set the taps. thread. the dogs on the drum

should be set so that the spindle will be reversing at about the same point on both the thread lobes. Then the first tap is set and made to travel into the work the desired distance. The second tap is then set in the turret, the distance from the face of the turret being the same as for the first tap. If this procedure is followed, little difficulty will be encountered. A releasing tap holder as shown in Fig. 18 is preferable to the draw-out type for this purpose, as the taps are not required to be set as accurately.

Cutting the Thread Lobe

In Fig. 19 is shown a circular milling attachment in position on the Brown & Sharpe universal milling machine, equipped with a vertical

milling attachment. Before cutting the cam the various lobes are laid out in their respective positions as designated on the drawing, and the metal is removed either by shearing in a punch press or by drilling a series of 3/16-inch holes about 1/16 inch from the outline of the various lobes. The cam is then placed on block A, as shown, which has a projecting stud, nut B being used to hold down the cam tightly against the face of this block. The block is held to the circular milling attachment by two screws not shown in the illustration. То cut the cam, raise the knee until the end mill passes the lower face of the cam C as shown, and bring the end mill into position at the bottom of the lobe, in other words, at the point where the die would start on the work. Then feed in the end mill the desired distance. The micrometer collars on the shafts carrying handles D and E are then set at zero. Referring to Fig. 10, we find that the lead on the lobe is one thousandth inch for each $3\frac{1}{2}$ minutes of its circumference, but the smallest division on this attachment is five minutes. We will, therefore, revolve the attachment five minutes for each 0.0015 inch that we feed in the cam, continuing in this manner until that side of the lobe is finished. The attachment is then swung around and the other side of the lobe completed in the same manner. Milling the cam in this manner leaves a series of slight flats on the lobe which can be removed by filing, giving the cam lobe an approximately true curve.

CHAPTER III

THREAD ROLLING

The rolling of threads has for a considerable time been practiced in the manufacture of machine and wood screws, the threads being formed by dies which have V-grooves in their opposing faces, cut at an angle equal to the helix of the thread. The operation of rolling a screw in a thread rolling machine consists in passing the screw be tween two flat dies, one of which is stationary and the other reciprocating. This is the principle on which some of the thread rolling machines on the market work, while others have one stationary hollow cylindrical die and one revolving circular die. However, the principle on which they act is the same; that is, part of the material is raised to form the thread by forming a corresponding depression in the blank. This action makes the diameter of the finished screw larger than the blank.

The adaptation of thread rolling to the automatic screw machine is, however, of comparatively recent application—hence the scarcity of definite information on the subject. After considerable experimenting with this class of work, the Brown & Sharpe Mfg. Co. has found that the rolling of threads on steel parts is a very unsatisfactory practice, and thus confines the rolling of threads to brass and similar materials. The information given in this chapter, therefore, applies exclusively to the rolling of threads on these materials.

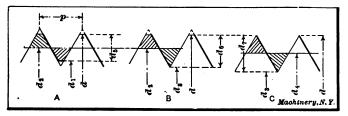
Obtaining the Diameter of the Blank

The rolling of a thread differs from cutting a thread with a V-tool, in that by the former method no material is cut away, the thread being formed by displacing the material, as stated. Theoretically, in a sharp V-thread, the volume of one convolution of thread above the pitch diameter should be greater than that of the space between the threads below the pitch diameter, on account of the greater circumference. Therefore, the diameter of the blank before rolling should presumably be greater than the pitch diameter. This, however, is not the case for all materials, brass in particular being an exception. As a rule, the diameter of the blank for brass should be approximately equal to the pitch diameter.

When rolling a U. S. standard thread, the pitch diameter is found to be slightly greater than the required diameter of the blank, because of the impracticability of making the thread roll with a flat top. If a thread roll is not made with a sharp V at the top, it will require a considerably greater pressure to force it into the work, and the roll does not produce as smooth and perfect a thread. Therefore, it has been found advisable to make all thead rolls, whether for forming a sharp V or a U. S. standard thread, with a sharp V top and bottom. It is not necessary to make the bottom of the thread on the roll sharp, but there would be no advantage in having it flat, as the outside diameter of the screw is governed by the diameter of the blank.

The shape of the thread produced by a thread roll when the U. S. standard form is required is shown at B in Fig. 20. The pitch diameter d_2 is the same as the pitch diameter of the U. S. standard form shown at A. The root diameter d_3 , however, is less than the root diameter d_1 of the U. S. standard thread shown at A. The pitch diameter d_2 is slightly greater than the required diameter of the blank, which can be found approximately by the following formula:

$$D = d_2 - \frac{d_s}{8} \tag{1}$$


in which

r.

D = diameter of the blank,

 $d_2 =$ pitch diameter of the screw.

 $d_5 =$ depth of U. S. standard thread. (See A Fig. 20.)

The depth of the thread
$$d_s$$
 can be found by the following formula:
 $d_s = \frac{3}{4} \times p \times \cos 30 \deg = 0.6495 p$ (2)

where p = the pitch of the thread or number of threads per inch The pitch diameter is found by the formula:

 $d_2 = d - d_5$

1

(3)

where d = the nominal external diameter of the screw.

When rolling a thread having a sharp V-form, the pitch diameter d_i , as shown at C in Fig. 20, can be used as the approximate diameter of the blank. The correct diameter of the blank in any case cannot be found by any formula, but by experiments only. It might be possible, however, to derive an empirical formula by making a series of experiments, and in each case determining the hardness of the metal. Then the results could be tabulated and used under similar conditions —when the metal is of the same hardness and the thread of the same shape. It is a simple matter, however, in the automatic screw machine, to reduce or increase the diameter of the blank, so as to give the correct finished diameter; thus it seems that any elaborate method of accurately obtaining the diameter of the blank by calculation is unnecessary.

THREAD ROLLING

Preparing Work for Thread Rolling

In most cases that part of the work on which a thread is to be rolled can be formed by the circular form tool. The thread to be rolled is generally at the rear of a shoulder, so that the thread roll has to be of a certain width, thus making it necessary to bevel the edges of the roll to prevent the threads at the ends from chipping. It is, therefore, desirable, when the work is to be threaded up to a shoulder, to make the form tool of such a shape that it will neck the work, as shown at A in Fig. 21, and also to reduce the diameter at Bwhere the work is to be cut off.

The angle a should be 45 degrees, and the distance C should be equal to at least half the single depth of the thread, so that the part Bwill be slightly smaller than the root diameter of the finished piece. The distance E should be made equal to C, and the distance F equal to

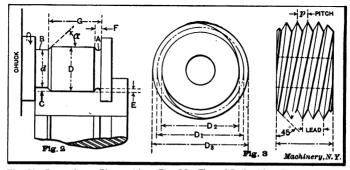


Fig. 21. Preparing a Piece with Fig. 22. Thread Roll with a Double Thread a Circular Form Tool ---Note Beveled Edges

at least the pitch of the thread. When it is not necessary to roll the thread up to a shoulder, the work need not be necked. However, better results are obtained, in most cases, by necking the work, whenever it would not be seriously weakened thereby.

Making the Thread Roll

The best results are obtained by using a thread roll with a single thread, but when the piece to be rolled is less than $\frac{6}{2}$ inch in diameter, it is necessary to make the roll with a multiple thread in order to have it of the proper size. The roll should be made the opposite hand to that which it is required to produce; that is to say, for a right-hand thread, the thread roll is cut left-hand.

Owing to the displacement of the metal in forming a thread by rolling, there is no point in the formation of the thread where the contact is perfect. If the pitch diameter of the roll was made an exact multiple of the pitch diameter of the piece to be rolled, the contact would be perfect when the thread was completed, but not at any other point during the formation of the thread, and, therefore, would not allow the metal to flow. The Brown & Sharpe Mfg. Co. has found that the pitch diameter of the roll should not be an exact multiple of the pitch diameter of the finished piece, but should be slightly less. The pitch diameter of the roll for a U. S. standard thread can be found by the following formula:

$$D_1 = N \times \left(D - \frac{d_e}{3} \right) \tag{4}$$

in which,

 $D_1 =$ pitch diameter of roll (see Fig. 22),

N = approximate ratio between pitch diameter of roll and pitch diameter of piece to be threaded,

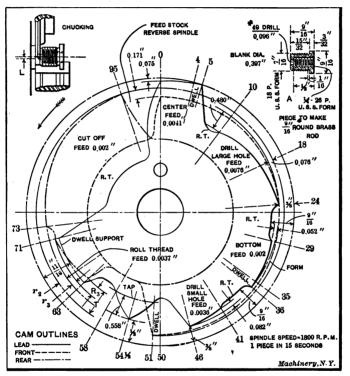


Fig. 23. Lay-out of a Set of Cams for Performing a Thread-rolling Operation

D = diameter of blank (see Fig. 21),

 $d_e = \text{depth of thread (see B, Fig. 20)}.$

;

The depth of a U. S. standard thread as produced by thread rolling can be found by the following formula (for notation see B, Fig. 20):

 $d_{\mathfrak{s}} = \frac{\gamma_{\mathfrak{s}}}{\gamma_{\mathfrak{s}}} \times p \times \cos 30 \text{ deg.} = 0.7578 p \tag{5}$ where p = the pitch of the thread.

To illustrate clearly the method used in designing a thread roll for producing a U. S. standard thread, as shown at B in Fig. 20, take a practical example: Assume that it is necessary to design a thread

roll for producing the thread on the piece shown at A in Fig. 23. As this is a U. S. standard thread, and it is impracticable to use a roll with a flat top, we use the blank diameter for calculating the pitch diameter of the roll, instead of the pitch diameter of the thread, as would be the case with a sharp V-thread. The blank diameter can be found by Formula (1). Before finding the blank diameter, however, it is necessary to find the depth of the thread, which can be found by substituting the known values in Formula (2), as follows:

 $d_s = 0.6495 \ p = 0.6495 \times 0.0555 = 0.0360$ inch.

Then

 $d_2 = d - d_5 = 0.4375 - 0.0360 = 0.4015$ inch and

$$D = d_2 - \frac{d_5}{8} = 0.4015 - \frac{0.036}{8} = 0.4015 - 0.0045 = 0.397 \text{ inch.}$$

The pitch diameter of the thread roll can then be found by Formula (4), but before finding the pitch diameter it is necessary to find the depth of the thread d_e (see *B*, Fig. 20) by inserting the values in Formula (5):

 $d_s = p \times 0.7578 = 0.0555 \times 0.7578 = 0.042$ inch. Then

$$D_1 = N \times \left(D - \frac{d_s}{3}\right)$$

= 2 × $\left(0.397 - \frac{0.042}{3}\right) = 0.766$ inch.

The root diameter D_2 and the outside diameter D_3 of the thread roll (see Fig. 22) can be found by the following formulas:

$$D_2 = D_1 - d_7 \text{ (See } C, \text{ Fig. 20)}$$
(6)
$$D_2 = D_1 + d_7$$
(7)

inserting the values, we have:

 $D_2 = 0.766 - 0.048 = 0.718$ inch,

and

$$D_{2} = 0.766 + 0.048 = 0.814$$
 inch.

The same method as that given for the U. S. standard form of thread is used for the A. S. M. E. standard screws when designing a thread roll. A thread roll for a sharp V-thread, however, is calculated from the pitch diameter, which is also used as the approximate diameter of the blank. For a sharp V-thread the root, pitch and outside diameters of the roll are found by the following formulas:

$$D_1 = N \times \left(d_4 - \frac{d_7}{3} \right)^{-1} \tag{8}$$

$$D_2 = D_1 - d_7$$
(9)
$$D_3 = D_1 + d_7$$
(10)

in which

 $D_1 =$ pitch diameter of thread roll, $D_2 =$ root diameter of thread roll, $D_s =$ outside diameter of thread roll,

- N = approximate ratio between pitch diameter of roll and pitch diameter of piece to be threaded,
- $d_4 =$ pitch diameter of thread or diameter of blank,

 $d_{\tau} = 0.866 \ p$ (see C Fig. 20).

In making a thread roll the outside diameter is turned to the size required, and the ends are beveled at an angle of 45 degrees, as shown in Fig. 22, to prevent the threads on the ends of the roll from chipping. If the roll is to be made with a multiple thread, the lathe must, of course, be geared to correspond. Before cutting the thread it is preferable to bevel the edges at an angle of 30 degrees, or equal to the angle of one side of the thread. This facilitates the starting of the thread tool. After the threads have been cut, the roll should again be beveled, but at an angle of 45 degrees.

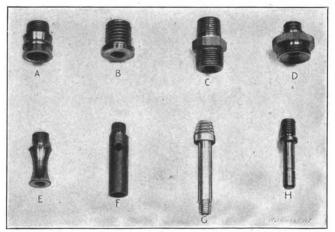


Fig. 24. Samples of Pieces having Rolled Threads

Thread rolls should be made from steel containing a high percentage of carbon. Precautions should be taken in hardening, because if the sharp edges become burnt the roll will be useless. Thread rolls, as a rule, are lapped after hardening. This is done by holding them on an arbor in the lathe, and using emery and oil on a piece of hard wood. A thread roll, to give good results, should not be made to fit loosely in the slot in the holder, but should be made a good running fit. If the roll is made to fit loosely in the holder, it will "chew up" the threads. The hole in the roll should also be made a good running fit on the pin in the holder, and in most cases should not be larger than 5/16 inch, 14 inch being usually adopted for rolls 1 inch in diameter or less.

Applying a Thread Roll to the Work

The shape of the work and the character of the operations necessary to produce it, govern, to a large extent, the method employed in applying the thread roll. There are, however, other considerations to be observed, some of which are as follows: 1. Diameter of the part to be threaded.

2. Location of the part to be threaded.

3. Length of the part to be threaded.

4. Relation that the thread rolling operation bears to the other operations.

5. Shape of the part to be threaded, whether straight, tapered or otherwise.

6. Method adopted in applying the support.

When the diameter to be rolled is much smaller than the diameter of the shoulder preceding it, a cross-slide knurl-holder should be used.

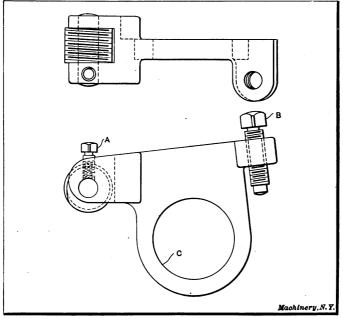


Fig. 25. Top Cross-slide Roll-holder

If the part to be threaded is not behind a shoulder, a holder on the swing principle should be used. When the work is long-greater in length than two-and-one-half times its diameter—a swing roll-holder should be employed, carrying a support. When the work can be cut off directly after the thread is rolled, a cross-slide roll-holder should be used. The method of applying the support to the work also governs to some extent the method of applying the thread roll, but as this depends entirely on the shape of the work, it would be impossible to say what method should be employed, unless the shape of the work were known.

When no other tool is working at the same time as the thread roll, and when there is freedom from chips, the roll can be held more rigidly by passing it under instead of over the work. When passing the roll

No. 104-SCREW MACHINE PRACTICE

over the work, it has a tendency to raise the cross-slide, while, on the other hand, if the roll is passed under the work, the pressure is downward, and hence the holder is more rigidly supported. Where the part to be threaded is tapered as shown on the aluminum piece G in Fig. 24, the roll can be best presented to the work by holding it in a cross-slide roll-holder.

Holders for Thread Rolls

As previously mentioned, certain considerations govern the method of applying the thread roll; the holder for the roll, therefore, has to be designed to suit these requirements. There are various types of special holders in use for holding thread rolls; a few of the more common or standard types will be described.

In Fig. 25 is shown what is called a "top" roll-holder. This holder

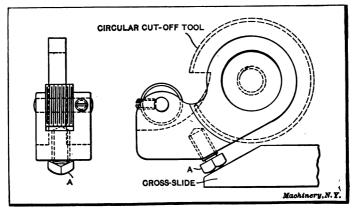


Fig. 26. Holder used when the Roll is passed under the Work

is held on a boss turned on the circular cut-off tool, and is clamped by the circular cut-off tool and the screw which holds the latter to the toolpost. The thread roll is held in a slot cut in the forward end of the holder on a pin, the latter being driven into the holder, as shown. As considerable pressure is required to force the roll into the work, there is a tendency to turn the pin in the holder; to obviate this, a flat is filed on the pin and a setscrew A is provided. The set-screw B is used for setting the roll to the proper depth, and rests on the toolpost. By making hole C in the holder to fit the screw in the toolpost, this holder could be held on the outside of the toolpost, instead of fitting on the circular cut-off tool. This thread-roll holder can be used for holding rolls for threading pieces such as shown at A, B and Cin Fig. 24.

A thread-roll holder which is held on the cross-slide but passes under the work is shown in Fig. 26. This holder is held on a projection on the cut-off tool in a manner similar to that shown in Fig. 25. The support, the set-screw A, rests on the cross-slide, and is used for adjusting the roll to the proper depth, as well as for supporting the holder. This holder can be held more rigidly than the top roll-holder shown in Fig. 25; it is used when no other tool is operating on the work at the same time, and also where there is an absence of objectionable chips. Thread-roll holders which are held on the cross-slide

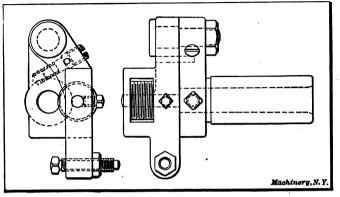


Fig. 27. Swing Holder for Holding a Thread Roll

can only be used when the work is cut off directly after the thread is rolled, and for this reason they should be held on the same slide as the cut-off tool. If the roll is brought back over the work, it produces a poor thread.

When it is necessary to bring in the cut-off or form tool more than once for the same piece, a cross-slide holder should not be used. Of

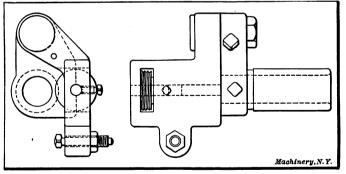


Fig. 28. Another Swing Roll-holder

course it would be possible to design a holder in which the roll would be held in a member free to oscillate, and held in position by a spring. This type of holder would be objectionable, however, owing to the fact that chips would get in between the movable member and the body, and prevent the part holding the roll from coming back into the same place each time, thus causing an endless amount of trouble. No. 104-SCREW MACHINE PRACTICE

When the work is of such a shape as to necessitate bringing in the form and cut-off tools more than once for the same piece, a swing holder should be used. Two holders of this type are shown in Figs. 27 and 28. These holders are made on the same principle as the ordinary swing tool, with the exception of the change in the swinging member to hold the roll. A hole is drilled in the shank of the holder and a set-screw provided for holding a support.

A thread-roll holder which is held on the cross-slide and holds a roll for threading the beveled piece shown at G in Fig. 24, is shown in Fig. 29. This holder is held to the toolpost in a manner similar to

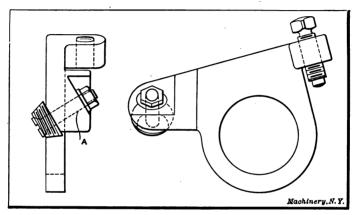


Fig. 29. Cross-slide Holder for applying a Thread Roll to a Beveled Piece

that of the holders previously described, but the roll in this case is held at an angle on the stud A.

Rise on Cam when using Cross-slide Roll-holder

In thread rolling, the roll is first brought against the work, then fed at a certain feed per revolution until the center of the roll is in line with the center of the work, and finally removed from the work on the quick rise of the cam. As the roll is removed from the work, the cut-off tool is brought into position. The rise on the cross-slide cam for thread rolling, when using a holder held to the toolpost, can be found by the aid of the following formulas derived from the diagram Fig. 30. This shows the outside circumference of the thread roll touching the circumference of the blank, and a horizontal line is drawn tangent to the root diameter of the finished screw.

Let D = diameter of blank,

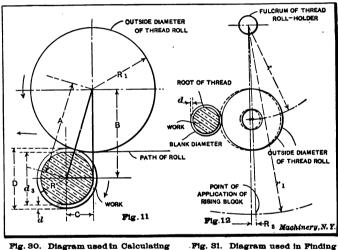
- d_{s} = theoretical root diameter of screw,
- R =blank radius,
- $R_1 =$ largest or outside radius of thread roll,
- d =difference between radius of blank and radius of root of thread.

40

THREAD ROLLING

Then,

$$A = R + R_1 \tag{11}$$


$$B = R + R_1 - d \tag{12}$$

$$C = \sqrt{A^2 - B^2} \tag{13}$$

For example, let it be required to find the rise on the cross-slide cam for threading the piece shown at A in Fig. 23. Substituting the known values of the diameter of the roll and the diameter of the blank in the above formulas, we have:

A = 0.1985 + 0.407 = 0.6055 inch. B = 0.1985 + 0.407 - 0.0218 = 0.5837 inch. $C = \sqrt{(0.6055)^2 - (0.5837)^2} = \sqrt{0.02634} = 0.162 \text{ inch.}$

Then the rise R_3 on the cam (see Fig. 23) equals C (Fig. 30) plus from 0.010 to 0.015 inch, depending on the diameter of the roll and work.

the Rise on the Cam for Thread Rolling when a Cross-slide Holder is used Fig. S1. Diagram used in Finding Rise on Cross-slide Cam when using Roll-holder of the Swing Type

This calculation is for rolling a U. S. standard thread, but the same method can be used for rolling any other shape, substituting, of course, the correct values.

Total Rise on Cross-slide Cam

As the work is cut off with the same cam, it is necessary to find the total rise on the cam for thread rolling and cutting off the piece; this can be found by the following formulas, which are derived from the diagram Fig. 32. Here the thread roll is shown touching the circumference of the blank, and the circular cut-off tool and thread-roll holder are shown in their relative positions.

Let T = total rise on cam (see Fig. 23),

- C = distance from center of roll to center of work,
- $R_s =$ actual rise required to roll thread, which equals C + from 0.010 to 0.015 inch,

 $\begin{array}{l} R = \mbox{radius of theoretical root of thread on piece,} & d \\ r_1 = \mbox{radius of work turned down with circular form tool, or} & - \\ & (see Fig. 21), & - \\ L = \mbox{distance of bevel on cut-off tool (see Fig. 23),} \\ r_2 = \mbox{actual rise on cam to cut off piece, which equals } r_1 + L + \\ & 0.010 \mbox{ inch (to approach)} + 0.005 \mbox{ inch (to pass center),} \end{array}$

 $R_1 =$ outside radius of thread roll,

 $R_4 =$ largest radius of circular cut-off tool,

 $R_{\rm s}$ = radius of thread-roll holder,

c = distance that cut-off tool is cut below center,

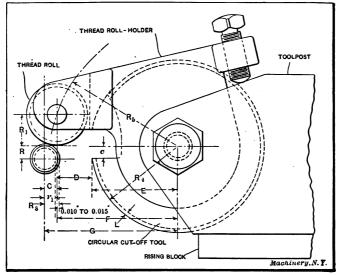


Fig. 32. Diagram used in Finding the Total Rise on the Cam for Thread Rolling and Cutting-off

- E = distance from center of circular tool to edge, when tool is cut down below center,
- F = distance from center of cut-off to center of roll, when it is touching piece as shown.

Then if

$$X = R + R_1 - c$$
$$F = \sqrt{R_5^2 - X^2}$$

Now the difference between the dimensions E and F, or the distance D, always remains constant, so that it is only necessary now to find the actual distances or rises required on the cam for thread rolling, approaching the work with the cut-off tool, and cutting the piece from the bar.

The rise r_3 required to bring the cut-off tool up into position, after thread rolling, to cut off the piece $= D - r_1 + 0.010$.

The total rise T on the cam equals $R_3 + r_2 + r_3$.

	ter 80	Blank	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Boot	Diame- bit 100 100 100 100 100 100 100 100 100 10	Blank	·····································
	72 64		0045 0.0040 0055 0.0045 0055 0.0055 0055 0.0055 0075 0.0055 0075 0.0065 0075 0.0065 0075 0.0075 0075 0.0075 0075 0.0075 0075 0.0075 0088 0.0075 0088 0.0075 0088 0.0075 0088 0.0075			72 64		0025 0.020 0028 0.0026 0038 0.0025 0038 0.0035 0045 0.0045 0045 0.0048 0045 0.0048 0.0050 0.0050 0.0050 0.0053 0.0
	56		0.0085 0.0045 0.0045 0.0045 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0045 0.0055 0.0005 0.0055 0.0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 00005 00005 000000	TABL		56		0.0015 0.0025 0.0025 0.0025 0.0085 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0053
	48		0.0080 0.0035 0.0045 0.0045 0.0045 0.0055 0.0065 0.0065 0.0065 0.0065 0.0075 0.0075	TABLE XIII. F		48		0.0010 0.0015 0.0025 0.0025 0.0030 0.0035 0.0045 0.0045 0.0045 0.0045 0.0045
	44		0.0035 0.0036 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0075 0.0075 0.0075 0.0075	44		0.0005 0.0016 0.0016 0.0016 0.0016 0.0018 0.0028 0000000000		
Number of	40	Feed per	0.0020 0.0025 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0055 0.0055 0.0055	FEEDS FOR TEREAD ROLLING	Number of Threads per Inch	40	Feed pe	0.0005 0.0010 0.0010 0.0010 0.002000 0.00200000000
	36	per Revolution in Inches	0.0015 0.0010 0.0005 0.0030 0.0015 0.0010 0.0005 0.0030 0.0015 0.0010 0.0015 0. 0.0030 0.0025 0.0020 0.0015 0. 0.0035 0.0030 0.0035 0.0030 0. 0.0045 0.0045 0.0045 0.0045 0. 0.0055 0.0055 0.0045 0.0045 0.0045 0. 0.0055 0.0055 0.0045 0.0045 0.0045 0. 0.0055 0.0055 0.0045 0.0045 0.0045 0.0045 0. 0.0055 0.0055 0.0055 0.004			36	per Revolution in Inches	0.0005 0.0005<
Threads per	82	tion in I	$\begin{array}{c} 0.015 \left[0.\ 0010 \left[0.\ 0005 \right] \\ 0.025 \left[0.\ 0015 \left[0.\ 0015 \right] \\ 0.025 \left[0.\ 0015 \left[0.\ 0010 \left] 0.\ 0005 \right] \\ 0.025 \left[0.\ 0025 \left[0.\ 0010 \left] 0.\ 0005 \right] \\ 0.025 \left[0.\ 0025 \left[0.\ 0025 \right] \\ 0.025 \left[0.\ 0025 \right] \\ 0.0025 \left[0.\ 0025 \right] \\ 0.\ 0045 \left[0.\ 0045 \right] \\ 0.\ 0045 \left[0.\ 0025 \right] \\ 0.\ 0045 \left[0.\ 0045 \right] \\$	IM DNIT		32	tion in Ir	00005 0 0 0 <t< td=""></t<>
r Inch	30	nches	0010 0.0005	WITH SWING HOLDERS	Inch	30	Iches	0005 0.0005 0.0005 0010 0.0015 0.0005 0010 0.0015 0.0005 0015 0.0015 0.0005 0025 0.0025 0.0025 0025 0.0025 0.0025 0028 0.0032 0.0032 0028 0.0033 0.0032 0028 0.0035 0.0032 0028 0.0035 0.0032 0028 0.0035 0.0035
	88		0005 0010 0 . 0005	ing eo:		28		
	24		0005: 0005: 0010 0.0005 0.0005 0015 0.0015 0.0015 0025 0.0015 0.0015 0025 0.0015 0.0015 0025 0.0025 0.0025 0025 0.0025	LDERS		24		002280 002800 00280 000200000000
	22		0005 0015 0015 0015 0015 0025 0025 0025			22		0005 0 0015 0 0025 0 0015 0 0025 0 0 0025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	- 50		0005 0010 0015 0010 0015 00010 00015 00015 00015 00015 00015 00015 00015 00015 00015 00015 00015 00015 00015 00015 00015 00010 00015 00010 00015 00010 00015 00010 00015 00010 00000 00010 00000 00010 00000 00000 00000 00000 00000 00000 0000			20		0006 0016 0016 0015 0015 0015 0015 0025 0025 0025 0025
	. 18		00400 000000			18		0.0026
	16		0005: 0005: 0010 0.0005 0.0005 0015 0.0015 0.0005 0.0005 0025 0.0015 0.0015 0.0015 0.0005 0.0005 0025 0.0025 0.0025 0.0015 0.0015 0.0005 0025 0.0025 0.0025 0.0015 0.0015 0.0015 0.0015 0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 00240 0.0035 0.0035 0.0025 0.0025 0.0025 0.0025 00240 0.0035 0.0035 0.0036 0.0035 0.0025 0.0025 00240 0.0035 0.0035 0.0035 0.0025 0.0025 0.0025 00240 0.0035 0.0035 0.0035 0.0025 0.0025 0.0025 0025 0.0025 0.0035 0.0035 0.0025 0.0025 0.0025 0025 0.0025 0.0035 0.0035 0.0035 0.0025 0.0025 0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0025 0.			16		
	14		0.0005			14		0.0018

THREAD ROLLING

A No. 104 - CREW MACHINE PRACTICE

Rise on Cross-slide Cam when using Swing Roll-holder

When using a roll-holder of the type shown in Figs. 27 and 28, the rise on the cam can be found by the following formula derived from the diagram Fig. 31, where the thread roll is shown in two positions— before and after rolling the thread. The distance d, which in this case is taken to be 0.020 inch, represents the distance between the radius of the blank and the theoretical root diameter of the thread of the piece to be rolled. To this dimension, from 0.010 to 0.015 inch is added for the roll to approach the work. Let $d_1 = d +$ from 0.010 to 0.015 inch.

Then,

$$R_3 = \frac{d_1 \times r_1}{r} \tag{16}$$

For example, let $d_1 = 0.030$ inch, $r = 1\frac{1}{3}$ inch, and $r_1 = 2\frac{1}{4}$ inches. Then

$$R_{\rm s} = \frac{0.030 \times 2\frac{1}{4}}{1\frac{1}{8}} = 0.060 \text{ inch.}$$

There is another method of holding the thread roll when applying it to the work which has not been mentioned. This consists in holding the roll in a holder fastened to the cross-slide, but instead of passing the roll over or under the work, it is presented radially to the work. The rise on the cross-slide would then be d + from 0.010 to 0.015 inch (see Fig. 31).

Speeds and Feeds for Thread Rolling

When the thread roll is made from high-carbon steel and used on brass, a surface speed as high as 200 feet per minute can be used. Better results, however, are obtained by using a lower speed than this. When the roll is held in a holder attached to the cross-slide, and is presented either tangentially or radially to the work, it can be fed at a considerably higher speed than if it is held in a swing tool. This is due to the lack of rigidity in a holder of the swing type. Table XII gives the feeds to be used when a cross-slide roll-holder is used; and Table XIII gives the feeds to be used for thread rolling with swing tools.

The feeds given in Tables XII and XIII are applicable for rolling threads without a support when the root diameter of the blank is not less than five times the double depth of the thread. When the root diameter is less than this amount, a support should be used. A support should also be used when the width of the roll is more than two-andone-half times the smallest diameter of the piece to be rolled, irrespective of the pitch of the thread. When the smallest diameter of the piece to be rolled is much less than the root diameter, the smallest diameter should be taken as the deciding factor for the feed to be used.