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PREFACE.

THIS treatise is in effect an abstract of a series of lectures
forming a part of the course of instruction at the Stevens
Institute of Technology. It explains the principles of the
more common and convenient graphic processes of deter-
mining at any given instant the direction and velocity of the
motion of a point, whether that motion be constant or vari-
able.

It is intended not only for use in the classroom, but for
the benefit of those who may wish to study the subject
without the aid of an instructor.

C. W. MacCorbp.

HoBokEN, N. J., Oct. 12, 1901.






VELOCITY DIAGRAMS.

1. It is a familiar fact that in the operation of any piece
of mechanism, the parts go through a series of motions in
regular order, finally returning to their original positions ;
after which the same series of motions is repeated, and so
on indefinitely. One complete series is called a cycle; in
completing which it frequently happens that, supposing the
first or driving piece to move uniformly in one direction, the
motions of other parts will vary either in velocity or direc-
tion, and often in both. And in studying the action of any
mechanical movement, or in comparing the actions of differ-
ent ones, it is often desirable to have a clear understanding
of the law of variation, in regard to the motion of a given
piece or a given point.

Now, assuming that for a given motion of the driver, the
motion of the point considered can be determined at any
instant, or in other words in any phase of the action—then
it is beyond question that a graphic representation is the
best if not indeed the only means of conveying to the mind
a distinct and comprehensive idea of the law according to
which the motion varies in velocity and direction.

Such a representation, or « velocity diagram,” is shown in
Fig. 1. It consists merely of a curve whose abscissas, set
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off from left to right upon the line MV, represent times, and
the ordinates 11/, 22/, etc., represent the velocities of the
moving point at the instants indicated by the points 1, 2,
etc.; the positive ordinates, or those above the line, indicate
motion in one direction, that in the opposite direction being
indicated by the negative ordinates, below the line. And a
single glance at this figure is sufficient to establish the claim
above made,—it gives in an instant all the information that
could be gathered from lengthy explanations and tables of
figures.

Fic. 1.

2. Now, given the velocity of the driver, how to deter-
mine the values of these ordinates? We have here to
choose between two methods of procedure, the graphic and
the analytic. There is no question that the members of a
train of mechanism can be represented by symbols, the laws
of their motions embodied in formula, and the desired
values ascertained by algebraic computation. Inthe graphic
method, the motion of a point at any instant is represented
in magnitude and direction by a right line of definite length ;
and relations may be established between lines thus repre-
senting the motions of properly selected points, and other
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lines closely connected with the moving pieces, such that
the values sought can be determined by geometric reason-
ing. Of the two, the latter method is preferable for ordinary
use, being far more simple and expeditious than the former,
while the accuracy attainable is quite sufficient for practical
purposes. Its foundations lie upon a few kinematic princi-
ples, of which we will briefly state the most important.

3. The first is the composition of motion. Suppose the
point 4, Fig. 2, to receive at the same instant two impulses,
which separately would impart to it the motions represented
in direction and velocity b); the lines AB, AC; these are
called components, and the resultant of these, which is the
actual direction and velocity of the motion of the point, is

<Y
K
;
.

Fi: 2.

AD, the diagonal of the parallelogram ABCD. The condition
of things here is that 4 is a free point in space,—as if, by
way of illustration, it were a billiard-ball impelled by the
simultaneous strokes of two cues 4 and ¢, which are not con-
nected with each other or with the ball; a consideration
which, as will subsequently appear, is of no small importance.
There may be more than two components ; in that case, find
the resultant of any two of them, compound that with any
one of the others,and so on to the end. If there be three
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components not in the same plane, these will be three ad-
jacent edges of a parallelopipedon, and the resultant will be
the body diagonal which passes through the moving point:
our attention, however, will be chiefly confined to motions
in one plane or, what is practically the same thing, in
parallel planes. ' :

4. The resolution of motion is the exact converse of the
preceding. If a motion can be determined by compounding
two others, that motion, if given, can be separated or resolved
into its original components. Thus, in Fig. 2, suppose the
motion 4D to be assigned, and let it be required to deter-
mine two components having the directions Ax, Ay, of
which 4D shall be the resultant. By drawing through D
lines parallel to Ax and A4y, it is evident that we shall limit
the required components, AC, AB. But AJD may be the
diagonal of any one of an infinite number of parallelograms;
whence it follows that a given motion may be resolved into
two components respectively parallel to any two lines hav-
ing different directions.

5. Side Component and Longitudinal Component.—In Fig. 3,
let the point 4, of the right line 474, have a motion repre-
sented by 4D. Resolve this into the components 4C per-
pendicular to M4, and AB in the direction of that line ; then
AC is called the side component, and 4B the longitudinal
component. And these components always exist, no matter
how the motion 4D may be resolved. Thus, if it be resolved
into AC", AB’, then A(" itself has a component 44 along M4,
and A4é is equal to B’'B, so that the total longitudinal com-
ponent is A8’ + Ab, = AB.

Again, in Fig. 4, let AD be resolved into AE, AF;
then A can be resolved into the rectangular components
Ae, Ag, and AF into the pair Af, A%; also Af = ¢B, and
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Ak = Cg; Ae and Af lie in the same direction, and the total
longitudinal component is Af -+ Ade,=AB; but since Ag
and A# lie in opposite directions, the actual side component

FiG. 3.
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Fi1G. 4.

is Ag — A%, = AC as before. These rectangular components
4B, AC, may properly be designated abdsolute components.

6. In Fig. 5, let AM represent a rigid and inextensible
line—as a piece of stiff steel wire, and let the point 4 have
a motion AD, of which 4F and AE are the side and longi.
tudinal components respectively. Then any other point, B,
of this wire must of necessity have a longitudinal compo-
nent BG, equal to AE, and in the same direction. And
whatever the actual motion of the point, it follows from the
preceding that the other component must be perpendicular
to AM, so that the extremity of the resultant must lie in the
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indehnite vertical line xx drawn through G. 1f, then, the
direction By is assigned, the intersection Z of zx and By
will determine B,

x
F, D
M B A E
. H
K
T Y
FiaG. 5.

7. In Fig. 6, AM, AN, represent two rigid bars, pivoted
together at A; let AE, AF, be the absolute longitudinal
components, from which it is required to find the motion of

> R
-

Q

Fic. 6.

A. From what has just been shown, the extremity of the
resultant must lie in £z perpendicular to 4/, and also in
Fy perpendicular to AN ; it must, then, be their point of in-
tersection D. Which is obviously as it should be, since the
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resultant 4D thus determined can be resolved either into
the rectangular components AE, AG, or into the pair AF,
AH. Had we proceeded as in Fig. 1, by completing the
parallelogram of which AE, AF are the sides (as one not
familiar with the previous reasoning would be very likely to
do), the diagonal 4K would have neither the right magni-
tude nor the right direction, unless AM and AN were per-
pendicular to each other: and, as will be seen subsequently,
there are other cases than this in which that procedure will
give erroneous results.

8. Effect of Side Components.—In Fig. 7, let A7V be an in-
flexible steel rod, upon which the perforated balls 4, B, C,
are free to slide; then the centres of these balls are points
upon the right line AN, but not of it, and, whatever their
motions may be, the longitudinal components A4, BL, CR
do not affect the line, nor do they have any relation to each
other, and they need not have either the same magnitude or
the same direction. But obviously the side components do
affect the line,—if any two of them are equal, and lie on the
same side of MN, the whole line must be translated bodily
in the direction of those two, and the side components of all
its points must be equal. But if motions be assigned to any
two of these balls, such that their side components either
lie upon opposite sides of MV or are unequal if they lie
on the same side, then these two side components will estab-
lish a rotation of the line about some point of the line itself.
If, for example, we give to 4 and B the motions 4D and BE,
their side components are AG and BK respectively, and,
drawing GK, it is perceived that 7V must turn about the
point O where GK cuts it. Moreover, this latter line deter-
mines the directions and the values of the side components
of the motions of all other points on #//V; thus any point C,
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to the left of O, must move upward, and that at a rate CP -
limited by the prolongation of GK'; any point to the right of
O must move downward in like manner, while if a ball were
placed at O, it could not move sidewise at all, though it

FiG. 7.
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might move endwise in either direction and with any
velocity.

9. Now if,as in Fig. 8, we consider 4, B, C, to be points
of the inflexible and inextensible line MV, and therefore as
remaining always at fixed distances from each other; it is
still true that the side components AG, BK, of the simul-
taneous motions of two points, 4 and B, for example, deter-
mine the rotation of #/Vabout O. But supposing 4D to be
assigned, the motion of B, for instance, would no longer be
entirely arbitrary, since the longitudinal component BL
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must be equal to AA and in the same direction. Thisis also
true of every point of M4, including O, whose absolute mo-
tion must therefore be 0Q, = AH. Consequently in this
case, since GD, 0Q, KE, PF, are all equal, and all parallel
to MN, the line DQEF, joining the extremities of the result-
ants, will be equal and parallel to GOKP, joining the ex-
tremities of the side components.

10. Representation of Angular Velocity.—The linear velocity
of a point at unit distance from a centre about which the
point travels in a circular arc, is the measure of the angular
velocity of the point about that centre. From which it
follows, that whatever the distance of the point from the
centre, we shall always have the value, angular velocity

linear velocity
radius
If then, as in Fig. 9 the point 4, revolving about the

N
M

C A D B
F1G. 9.

centre C, has the linear velocity 4K, the angle 4CK repre-
sents the angular velocity ; if it be desired to find the linear
velocity of B in rotating with the same angular velocity
about D, we have only to make the angle BDL equal to
ACK. 1If the angular velocity of B is to be made twice that
of A4, however, it is to be noted that this is not done by
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doubling this angle; but we make AM = 24K, and then
make the angle BDN = angle ACM.

11. The Instantaneous Axis of Rotation.—In Fig. 10, let 4B
represent an inflexible and inextensible rod, and first let the
points 4 and B move in the plane of the paper, in opposite
directions perpendicular to 4B, with velocities 4%, BK:
these motions establish a rotation of the rod about the point
I, determined by drawing FK. If we now add a longi-

/

F D’

K H
F1G. 10,
tudinal component to the motion of each point, as 4E, =
IG, = BC, the resultant motions of 4 and A will become AD
and BH, and that of 7 will be /G.

Draw, through 4 and 7, lines perpendicular to 4D and
IG respectively, intersecting in O; draw also DO and GO.
Then the triangles 47D, AJO, are similar, whence

AF AD FD ' IG

A’ = 40"~ o' T 1o
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Therefore the angles 40D, GOI, are equal; that is to say,
the two points 4 and 7 are rotating with the same angular
velocity and in the same direction about the centre O.
The same must therefore be true of every other point of
the rigid bar. This may be at once verified as to the point
4D _ AF
A0 A’
therefore the angles 40D, AIF, BIK, are equal, wh;nce

B, as follows; we have already shown that

AF BK IG KH

_— e e———

Therefore the triangles BKH, B/O, are similar, and BH is
perpendicular to BO.

With reference to the bar 4B, the point O is called the
instantaneous axis, because during the motion of the bar, it
changes its position from instant to instant, not only in
space but relatively to the bar itself ; and it is found, when
the simultaneous motions of two points of the bar are
given, as for example 4D, BH, by drawing through each
point a line perpendicular to the direction of its motion;
the intersection of these perpendiculars locates the axis
sought.

And obviously, since the bar is rigid, any point rigidly
connected with it must obey the same law, and rotate about
the instantaneous axis with the same angular velocity and
in the same direction.

12. The Instantaneous Centre.—The rotation about O, then,
is equivalent to a rotation about 7, in the same direction
and with the same angular velocity, combined with a longi-
tudinal motion. '

As a distinctive name, then, this point 7 may properly
be called the instantaneous centre.
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It is, as we have seen, the foot of the perpendicular let
fall from O upon AB. This fact is sometimes of service in
locating the instantaneous axis—as, for instance, when the
directions of the motions of 4 and B being assigned, the
perpendiculars to those directions, Ax and By, intersect
each other very acutely.

Now, in Fig. 10, FK cuts OG in L; and in the triangles
AIF, IOL, the angles AF/, O/L, are equal by reason of the
parallels AF, OI; and the angles A/F, IOL, have already
been shown to be equal. Therefore, since 74 is perpen-
dicular to AF, /L is perpendicular to OL; consequently OG
is perpendicular to DA, which passes through G, and is
parallel to /X, as was proved by Fig. 8. »

That is to say, G is the foot of the perpendicular let fall
from the instantaneous axis upon the line joining the ex-
tremities of the resultants.

13. Contact Motions—Normal and Tangential Components.—In
Fig. 11 are shown two pieces turning about the fixed cen-

Fic. 11.
tres C and D, and in contact at P; if the left-hand one turn
as shown by the arrow, it will push the other out of its
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way, and compel it to turn, in this case in the opposite
direction. Draw the contact radii PC and PD; also draw
through £, 77 the common tangent to the two curves, and
NN their common normal. The point P of the driver must
move in a direction perpendicular to PD; let its linear
velocity be reprcsented by P4, which can be resolved into
the normal component PE and the tangential component PF.
Of these two, the latter is obviously non-effective; it repre-
sents merely the sliding of P along the tangent, and has no
tendency to move the follower. The motion of the point P
of the right-hand piece must be perpendicular to 2C, and
must have a velocity such that its normal component shall
also be PE ;—consequently the extremity B of this resultant
must lie in the line 4£. The component PAH also repre-
sents sliding along the tangent; it is clear, therefore, that in
this case the actual sliding of one piece upon the other will
be PF— PH, or HF.

14. Roberval’s Method of Drawing Tangents.— W hatever the
path described by a moving point, the direction of its mo-
tion at any instant is that of the tangent to that path, at the
position occupied by the point at the given instant.

The law of the motion, even in abstract mathematics,
may often be best explained by describing it as dependent
upon, and produced by, other motions: thus, for example, a
spiral of any kind is usually defined as the path of a point
which travels along a right line, while the line itself revolves
about a fixed centre.

And “ Roberval’s method ” of drawing a tangent to a curve
consists simply in finding the resultant of these component
motions. A simple illustration of this method is shown in
its application to the spiral of Archimedes, Fig. 12. Let a
point move at a uniform rate from Palong the right line PQ,
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while that line revolvesin the direction of the arrow around
Pas a fixed centre, also at a uniform rate. Let the radial
travel be such that, while making one revolution, the point
shall move from Pto A4, then it will trace the curve PEFAG;
and let it be required to draw a tangent at the point O.
The two motions might be supposed to take place indepen-

dently ; if we first imagine the rotation to be arrested, the
N

\_’p% / /4 ;
/ ¢

Fi1cG. 12

point will move, in the time of one revolution, radially out-
ward through a distance ON equal to P4: and we may
therefore let ON represent the velocity of this component.
If we suppose the radial motion to be arrested, then in the
same time the point will describe the circumference of the
circle of which PO is the radius. The direction of this
motion at the instant being that of the tangent to the circu-
lar path, we have as the other component OJ perpendicu-
lar to PO, and equal in length to the circumference; then,
completing the rectangle, the diagonal OR is tangent at O
to the spiral, as required : obviously, both components may
be reduced in the same proportion, without affecting the
direction of the resultant, which is of course independent of
the actual velocity of the tracing point.
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. VR ’
Since IO_N = tan. VOR, the inclination of . he tangent to

the rudius vector can be determined by elementary trigo-
nometry ; and in its application to many other curves, of
high and low degrce, a like simplicity characterizes this
elegant process. Nevertheless, in his treatise on Descrip-
tive Geometry, Mr. J. F. Heather makes this curious remark :
“ This method, which Roberval invented before Descartes
“had applied algebra to geometry, is implicitly compre-
hended in the processes of the differential calculus, on which
account it is not noticed in elementary mathematics”;—
where it would seem, on the contrary, to deserve a conspic-
uous place : it is certainly more easily comprehended than
the calculus, to which indeed it is a natural prelude. At
any rate, it has a natural and direct application to our pres-
ent purpose, since in mechanical devices the actual motion
of a point is, more often than not, controlled by other
motions whose combined effect it is necessary to determine.

15. But in applying it, all the circumstances of the case
must be considered, and all the conditions which may affect
the result must be satisfied. This suggestion may at first
glance appear superfluous; but it seems otherwise in view
of the fact that Mr. Heather, in the only illustration of
Roberval’s method which he gives, has conspicuously failed
to act upon it. The curve selected for this solitary exam-
ple is the ellipse, traced, as in Fig. 13, by a point 2 moving
in such a manner as to keep always taut a thread APB
attached by its extremities to the foci 4 and A.

Mr. Heather’s explanation is as follows: “ Since the
length of the string is constant, the distance 4 Pis lengthened
at each instant of the motion by the same distance as the
distance BP is diminished. The velocity of the describing
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point in the direction AP is therefore equal to the velocity
in the direction PB. If, then, equal straight lines be cut off
from PB, and from AP produced, and the parallelogram
PNOM be completed, the diagonal PO of this parallelogram
will be the direction of the motion of the generating point
at P, and consequently the tangent to the curve at this

4
] .»
l
[
i

Fic. 13.

point. It isclearly seen from this, that in the ellipse, the
tangent bisects the angle BPN formed by one of the focal
distances and the production of the other,” etc., etc.

Mr. Heather elsewhere explicitly states that if the com-
ponents in two directions are given, whatever their relative
magnitudes, the method of Roberval consists in “ complet-
ing the parallelogram and drawing the diagonal.” In the
above example the direction of the tangent is, undeniably,
correctly found in this manner—and the same is true if this
construction is applied to the hyperbola, in which the mov-
ing point recedes from both foci at the same rate, or to the
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parabola, in which it recedes at the same rate trom the focus
and the directrix.

16. In all these cases, however, the components are egual;
but the statement above quoted leads us to expect a correct
determination whether they are equal or not: let us put it
to the test. In Fig. 14,let 4 and B be two fixed points,
with reference to which the point 2 moves subject to the
condition that PB shall always be twice PA. In other
words, the path of Pis the locus of the vertices of all tri-
angles of which 4B is the common base, and one of the two
other sides is twice the third. In order to preserve this
ratio it is clear that Z, in moving to the right, must recede

(o]

F1G. 14.

from B twice as fast as it does from 4. Consequently, set-
ting off on the prolongations of BP and AP, PM = 2PN,
and completing the parallelogram, the diagonal PO should,
in accordance with what immediately precedes, be the re-
quired tangent. But it can be shown that the path in ques-
tion is the circumference of the circle whose diameter is DE,
determined by making BD = 24D, and BE =24E. 1t is
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obvious that PO is not tangent to this circle, and therefore
cannot be the resultant motion of A.

A little reflection will show that two important condi-
tions have been neglected ; the point P lies upon the right
line P4, and must always do so; therefore, if that point
moves as shown, the line must turn about A4 as a fixed cen-
tre ; and similar reasoning applies to the line B. Thus the
situation is in fact more complicated than it seemed at first,
and really presents a special case of the general problem of
determining the motion of the intersection of two right lines
rotating about fixed centres; which therefore must next re-
ceive attention. The elements of this problem are embod-
ied in the mechanical combination shown in Fig. 15, where
AC, BD, represent two steel rods, each formed into an eye
at one end and turning about the fixed pins C, D; upon
these rods two sleeves slide freely, and they are pivoted
together by a pin at P, whose axis, perpendicular to the
paper, intersects the centre lines of both rods.

The operation of this device may perhaps be best studied
by first supposing one rod, as AC, to be held stationary,
while BD turns. The point P of that rod must then at the
instant move in a direction perpendicular to BD; let its
velocity be represented by PG. The pin connecting the
sleeves must move absolutely in the direction PC, since the
rod AC now forms a fixed guide, along which the sleeve
through which it passes is compelled to slide. The other
sleeve, however, not only rotates with BD, but can slide
along that rod : consequently the actual velocity P7 of the
pin P is found by drawing through G a parallel to BD.
Drawing /A parallel to PG, we observe that upon the sup-
position above made the pin 2 moves in the direction 4C at
the rate P/, and in the direction BD at the rate PH.
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Next let BD be held stationary,and let the point Pof the
rod AC move in rotation about C with the velocity PL. By
similar reasoning we shall find the resultant motion of the
pin Pto be PFin the direction BD, and it will be accom-
panied by a motion PE£ in the direction 4C.

17. Now if both rods rotate at once, with the same veloc-
ities as before, the final resultant motion PR of the pin P is
found by considering the partial resultants P/, PF, as com-
ponents, and completing the parallelogram; because, as we
have just seen, these are wholly independent of each other.
But it is to be noted that P will move toward C with a
velocity equal to P/ +4 PE, and toward D with a velocity
equal to PF+ PH. Drawing RM perpendicular to BD, and
RN perpendicular to AC, we have FM = PH,and /N = PE:
so that PM, PV, are the velocities of P in the directions BD,
AC, respectively.

Also, since FR, IR, are merely prolongations of LF and
G1, it will be seen that having assigned the components of
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rotation, PG and PL, the resultant PR may be at once deter-
mined by drawing perpendiculars to them, which will
intersect in R ; then drawing RM and RN, we determine
PM and PN, the total sliding components.

If then, as in Fig. 16, the components PN, PM, are as-
signed, the resultant is found, not by completing the paral-
lelogram, but by drawing Nz, Mw, respectively, perpendic-
ular to AC and BD; these intersect in R, and PR is the
resultant. Had this resultant been assigned, the sliding
components are found at once as above stated, by reversing
this process; and the components of rotation are determined
as readily by drawing Px perpendicular to AC, and Py per-
pendicular to BD, upon which lines we let fall from R the
perpendiculars RZ, RG.

18. This, then, is the proceeding Wthh should have been
adopted in Figs. 13 and 14. Applying it in those cases, we
find the resultant motion of the point 2 upon the ellipse to
be PR instead of PO; the direction is the same, but the
magnitude is different, and plainly will be so except in the
case when PA and PB are perpendicular to each other: in
Fig. 13, when the angle APB is obtuse, as shown at the
right, PO is too great ; and when APB is acute, as shown at
the left, PO is too small. And in Fig. 14 it is seen that the
direction as well as the magnitude of the true resultant PR
is widely different from that of PO; moreover, it can be
proved that PR is in this case perpendicular to the radius
PC, and therefore tangent, as it should be, to the circular
path DPE.

The manner of determining the resultant, when the com.
ponents PM, PN, Fig. 16, are assigned, is in this case pre-
cisely the same as that employed in Fig. 6. But the condi-
tions are by no means the same; in that instance the lines
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along which the given components lie intersect always in
the same point A, whereas in this the point of intersection
moves along both lines; and they both clearly illustrate the
fact that Roberval's method does not always consist in
merely completing the parallelogram of two given compo-
nents and drawing the diagonal.

19. The problem under consideration has thus far been
limited by supposing the fixed centres of rotation to lie
upon the lines themselves. It is clearly not essential that
this should be so,—one or both these centres may be other-
wise located ; and the latter case is illustrated in Fig. 17,
where the rigid rods A4S, B7, are riveted into, and form

Fic. 17. Fic. 18.

parts of, the arms CS, 7D. Suppose, as before, one piece,
as ASC, to be held stationary, and let the other move, the
point P of the latter having the velocity PG ; the direction
of this motion is, of course, perpendicular, not to B7, but
to PD. The resultant motion of the pin connecting the
sleeves must, as before, be in the direction PS; and in order
to produce it there must be compounded with PG, the com-
ponent of rotation, a sliding component in the direction BT :
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because by the structure of the mechanism these are the
only motions of which the sleeve upon the rod B7 is capa-
ble. Therefore, the first partial resultant P/ is found by
drawing through G a parallel to BT ; and the sliding along
BT, by drawing through 7 a parallel to PG—which is per-
pendicular to PD.

Next, keeping B7TD stationary, assign to the point P of
the other rod a rotative component PL, perpendicular to
PC; then by similar reasoning we find the other partial re-
sultant PF, and sliding component PE. Compounding
these two partial resultants as in Fig. 15, we obtain the final
resultant PR, as the motion of the pin 2 when both rods
move with the assigned velocities;—and the total rate of
sliding along each rod is found by drawing RNV perper-
dicular to PC, and RM perpendicular to PD.

20. We are now in a position to make the problem still
more general, and to determine the motion of the point of
intersection of two cxrved lines rotating about fixed centres.
In Fig. 18, the rigid steel rods /X, QO, bent into the forms
of circular arcs, pass through correspondingly curved
sleeves pivoted together at P, and, being riveted into the
arms /D, QC, are compelled to rotate about the fixed cen-
tres D, C. Through Pdraw a tangent to each curve; for
facility of comparison, this combination has been purposely
so drawn that these tangents are parallel to B7, A4S, of Fig.
17, and that the points 7, C, and D, have the same relative
positions as in that diagram.

Proceeding as before, we assign a rotative component
PG to the point P, on the arc /X, the right-hand piece
being held stationary. Then it will be at once seen that
the first partial resultant 2/ must have the direction of the
tangent PS, while the sliding component must have the di-
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rection PT, tangent to /K. Further explanation is needless,
it being now quite apparent that the final resultant PR, and
the total rate of sliding, PM and PN, are determined pre-
cisely as in Fig. 17.

21. Going one step farther, it is to be observed that the
circular arcs /K, OQ, might be tangent at P to any two
curues whatever, circular or otherwise ; and supposing those
curves to rotate about Cand D, the motion of P at the instant
would not be in any way affected by the substitution. It is
true that if the new curves are non-circular, the device of
the sliding sleeves can not be employed. But by this time it
should have been perceived that they are notat all necessary
any case, and that the motion of the point of intersection of
the two lines, straight or curved, is in fact determined by
the rotations alone.

Nevertheless, these sleeves have, as we think, been of
service in the investigation, by making apparent to the eye
the reasons for certain steps in the process of finding the
resultant sought. And though just such combinations as
these may not be met with in mechanism, yet very similar
ones may be, and at any rate it has already been shown that
the main question has an important bearing on some math-
ematical problems; nor need we go far to find instances in
which its solution may be of direct practical interest.

22. For example, given the velocities of the blades of a
common pair of shears, what is the rate of skearing cut #
The same question may be asked in relation to the pruning
scissors with curved blades, shown in Fig. 19. Here C is
the common centre of rotation, AS is tangent to the upper
blade, and BT to the lower one, at their intersection P.
Regarding C as fixed, let PG, PL, be the components of
rotation, both of which are perpendicular to PC. Draw



24 VELOCITY DIAGRAMS.

through G a parallel to B7,and through L a parallel to 4S;
these intersect in R,and PR is the motion of the point of
intersection. This will be readily seen by the aid of the
reference letters to be a case precisely similar to that shown
in Fig. 18; when the blades are straight, as in the common
shears, each edge is its own tangent, and the construction is
made as in Fig. 17.

F16. 19.

23. The direction and velocity of the motion of a point
may also be determined in many cases by means of the in-
stantancous axis. For example: In Fig. 20, C and D are the
fixed centres upon which turn the levers C4, DB ; the points
A and B are connected by the link 458, which is extended
in a curved form to P: the motion of 4 is necessarily per-
pendicular to CA4, and letting AM represent its velocity, it
if required to find the velocity of the points B and 2. Since
B is constrained to move in a direction perpendicular to DB,
the instantaneous axis is found by producing C4, DB, until
they intersect in O; then drawing OM, the angle represents
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the angular velocity of 4 around O: and this must be the
same for every point of the rigid piece 4BP. Also, the
direction of the motion of every such 'point must be perpen-
dicular to the iustantancous radius, or line drawn from the
point in question to the instantaneous axis. Therefore,
drawing through 2 a perpendicular to 50, and through Pa
perpendicular to PO, the required velocities BN, PR, are
determined by making the angles d’, 6", each equal to 6, or
AOM.

~In the present instance this affords, perhaps, the most

0
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simple means of determining the motion of P; and since the
direction of this motion must be tangent to the path of that
point, attention is thus drawn to the fact that by the use of
the instantaneous axis, a tangent to a curve may sometimes
be drawn even more readily than by Roberval's method,
24. But the circumstances may be such that the instan-
taneous axis is inaccessible, or that its determination is un-
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reliable ; one or both of which things would have resulted if,
in Fig. 20, the two levers had been nearly parallel. In this
event other means must be employed, and in Fig. 21 a dif-
ferent process is illustrated, the conditions, for facility of
comparison, being the same as in the preceding figure. The
assigned motion A/ has an absolute component A¢ in the
direction 423, and the motion of B must have an equal com-
ponent B¢ in the same direction. The actual motion of B
must be perpendicular to BD, and its velocity BV is deter-
mined by drawing through ¢ a perpendicular to 4¢. Draw
BP; then BN will have an absolute component B¢ in this
direction, to which Pz’ must be equal. Also draw AP;

Fie. 21,

then AM has an absolute component 4/ in that direction, to
which Pf is equal. Through ¢’ draw a perpendicular to
By, and through /" a perpendicular to A/f”; these intersect
in R, and PR is the required motion of the point P.

25. Composition of Revolution and Rotation.— Numerous
mechanical devices are practically employed, in which one
wheel not only rotates about its own axis, but at the same
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time travels in an orbit about another fixed axis, thus con-
stituting what is called a planetary train. Any point con-
nected with the planetary wheel then travels in a path de-
pendent upon both these circular motions, and consequently
called an aggregate path. The general principle is illustrated
in Fig. 22 ; the wheel W, whose centre is C, has its bearings
in the train-arm AD, which turns about D as a fixed centre ;
and this wheel may be made to turn in its bearings, inde-
pendently of the motion of the arm, by any suitable means.
Supposing the arm to be stationary, let the wheel rotate as
shown by thearrow x, with such a rate that a pin P fixed in
the side of W shall move with a velocity PQ, the direction
of this motion being necessarily perpendicular to PC.

Next, suppose W not to turn at all about C, and let the
train-arm move as shown by the arrow y, the velocity of 4

R

Q
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being represented by AAM, perpendicular to 4D. Since the
arm and the wheel now move as one piece, this will impart
to P a motion perpendicular to PD, the velocity PV being
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determined by making the angle ¢’ equal to the angle 4.
Now, if these two movements take place simultaneously, the
resultant motion of P will be determined by compounding
PQ and PN,—that is, by completing the parallelogram and
drawing the diagonal PR ; because the rotation about € and
the revolution about D are wholly independent of each
other, both in direction and in velocity.

26. Before proceeding to the construction of a complete
velocity diagram, we propose to give a series of examples
showing how the principles and processes above described
may be combined and applied in determining the motions
of certain points in detached mechanical movements. It is
immaterial whether the combinations selected are, or are
not, parts of actual machines, because it would be difficult
to contrive a ‘“mechanical movement” of practical form
which might not some time be found adaptable to a useful
purpose. And the study, or better still, the actual execu-
tion, of such exercises, in which attention is confined to the
action of comparatively few parts, will be found the best
means of acquiring thorough familiarity with the principles,
and facility in their application.

27. In the first of these examples, Fig. 23, the lever CPis
pivoted at C to a socket which slides along the fixed guide
77, and at A4 the link 4Q is joined to this lever. Let AL
be the absolute component of the motion of 4, in the line of
this link, and let CM be the resultant motion of C along the
guide; it is required to find the actual motions of the points
A and P. Resolve CM into the components CD in the di-
rection PC, and CE perpendicular to it; then PH, AF, will
be the absolute components of the motions of Pand 4 in the
line of the lever, each being equal to CD. Draw through Z
a perpendicular to 40, and through # a perpendicular to
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PC; these intersect in &, and AN is the required resultant
motion of 4. The side component of AN is AG; and the
two side components AG, CE, determine a rotation of PC
about the point /7, where it intersects the prolongation of GE.
The prolongation of £G limits PK, the side component of
the motion of P, which, compounded with PH, determines
PR, the required resultant.

One test of the accuracy of the construction is to draw
the line RNVM through the extremities of the resultants;
this should be parallel to KGE, and when produced to cut
the prolongation of PC in B, /B should be equal to CD.

Another test is to find the instantaneous axis of CP, by
drawing, through P and C, lines perpendicular to PR and
CM respectively. Theseintersect in O: and not only should
all the angles marked 6 be equal to each other, but O/should
be perpendicular to P7, and OB perpendicular to RA.

28. In Fig. 24, a lever turning about the fixed centre D

F1G. 24.

1s jointed at Pto a rod PR, which slides freely through a
sleeve formed in the outer end of a rigid arm £C, which
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turns about the fixed centre C. Given the motion P4 of the
point 2, it is required to find the motions of R and of the
point £ of the arm £C, and also the rate of sliding of the
rod through the sleeve.

The only motions of which the rod PR is capable, are
those of revolving around the centre C, and of sliding end-
wise through the sleeve. We may, then, resolve P4 into
the sliding component PV in the line of the rod, and the
rotative component PM perpendicular to PC. The former
gives at once the rate of sliding, and the latter determines
the angle PCM, or B, which represents the angular velocity
of the rotation about C; this is the only motion of which
the curved arm is capable, and £F, the required motion of
the point £ on that arm, is perpendicular to £C, and limited
by making the angle £CF equal to 8. The motion of R has
also a rotative component R/, determined in like manner,
and also a longitudinal component RG,= PN ; completing
the parallelogram, RB is the resultant sought.

Otherwise, the instantaneous axis of the rod PR might
have been found thus: draw C7 perpendicular to PR, then,
in rotation about C, the motion of the point 7 would be per-
pendicular to (7, and therefore longitudinal in respect
to the rod. This must be true also in the rotation about the
instantaneous axis of the foot of the perpendicular from that
point upon the rod; consequently, that {oot can be no other
than the point 7, and the instantaneous axis O may thus be
found by producing C7 to cut the prolongation of DP.
Then drawing A0 and OR we may determine the absolute
motions of R and of 7 by making the angles marked ¢ equal
to each other.

A test of this may be applied by resolving P4 into
the components PQ along the rod, and AS perpendicular
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to it ; resolve RB in a similar manner, then PQ, /W, and RU,
should be equalto each other, and S7 should pass through 7.

The point £ of the rod must have an absolute component
EV = PQ; this does not indicate the whole sliding, since
EF, the motion of £ on the arm, has a sliding component £/
in the opposite direction ; the sum of these, or /7, is equal
to PV, which waspreviously determined by another method.

29. In Fig. 25, D is the fixed centre about which turns
the lever DB, jointed at B to the bar ABP. The motion of
A is constrained by the lever AC, which turns about C as a
fixed centre. Given the motion BM, it is required to find
the motion of 7.

This may be done in three different ways.

First. Resolve B into the rectangular components BE,
BF, then AF', PF”’, must be equal to BF and in the same di-
rection. The motion of 4 must be perpendicular to AC, is
limited by #'/V perpendicular to 4B, and has the side com-
ponent AE’. A line through £ and £ limits the side com-
ponent PE”,and PR isfound by compounding PE” with PF".

Second. (Same Figure.) Produce CA4 to cut BD in O,
the instantaneous axis of AP ; draw MO and PO, also Px
perpendicular to PO. Construct the angle POy equal to the
angle BOM; Px cuts Oy in R, and /R is the resultant
sought.

Tkird. 1In Fig.: 26, find BF, AN, and AE’, as in the first
solution. Now, the motion of P may be regarded as com-
pounded of a rotation around 5 and a revolution around D.
The former component is PG perpendicular to ABP, limited
by the prolongation of £’8; the latter is PH perpendicular
to PD, determined by making the angle PDH cqual to the
angle BDM. Completing the parallelogram, the diagonal
PR is the required resultant.
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Either of these processes may be used as a check upon
the other—and in practice it is often advisable to apply such
tests, which may lead to the detection of an error; or, what
is still more satisfactory, prove that none has been made.

30. Of Rolling Conmtact.—There are numerous mechanical
devices in practical use, in which the motions of certain
parts are determined by their connection with a curve which
rolls upon another line which is itself stationary, and may
be either curved or straight.

The nature of perfect rolling contact may perhaps be
best illustrated by a study of that which is not perfect.
Thus, in Fig. 27, the polygon rolls upon the fixed right line
with a hobbling motion ; in the position shown, the point 4
is at rest, and the whole figure turns about it as a centre
until B comes into LM at D; it will then turn about B until
the face BE coincides with.LM, and so on: the perimeter
of the polygon “ measuring itself off ” upon the straight line
along which it rolls.

If the number of sides be increased, their length will be
less, and the hobbling will be diminished, until, when the
number becomes inconceivable, it willbe come imperceptible.
The broken contour then becomes the dotted curve, tangent
to the base line upon which it rolls, and the change from
one centre of rotation to another goes on continuously.
But this does not alter the facts, that at any instant the
point of contact is a¢ 7est, and that every point of the curve,
as well as every point rigidly connected with it, is at the
instant turning about that point of contact as a fixed centre.

In this case the polygon, being a regular one, ultimately
becomes a circle ; and when it does, the path of its centre is
a right line parallel to ZM. And it will now be apparent
that the 7olling of this circle upon is tangent is the resultant
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of a rectilinear translation indicated by the arrow ¢, and a
rotation about the centre C of the circle indicated by the
arrow . On LM set off AN equal to the quarter circumfer-
ence ABE, and erect the perpendicular NC’; thenif the
circle, without rotating, be moved bodily to the right until
C reaches (’, the single point A4 of the circle will have been
brought into contact with every point of ANV,—and this is
pure sliding contact. On the other hand, we may suppose
C to remain fixed, and the circle to turn as shown by the
arrow 7 through the angle £C4, or go°; then every point of
the quadrant 4BE will have been brought into contact with
the single point A4 of the tangent,—and this also is pure
sliding contact.

31. But if these two motions take place simultaneously
and uniformly, it is obvious that the circumference will
measure itself off upon the tangent, the point 1 on the arc
going to 1’ on the tangent, 2 going to 2’, and £ going to M.
The consecutive points of the arc, then, come into coinci-
dence with the consecutive points of the line, each in their
order of sequence ; and this is pure ro//ing contact ; no point
of either comes in contact with more than one point of the
other, and the length of the line rolled over is precisely
equal to the length of the arc which rolls over it. More-
over, it is clear that the motions of the point 4, due to the
rotation » and the translation ¢, respectively, are opposite
in direction and equal in velocity ; they therefore neutralize
cach other, leaving the point of contact for the instant sta-
tionary, as previously stated.

Now, in Fig. 28, the base line LA, instead of being
straight, is a part of a circle whose centre is D. Set off the
arc AN equal to the quadrant A ; then if the point 4 of the
upper circle s/ides over the arc AN, since the two circles
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must be always tangent, both C and 4 must move with the
same angular velocity about D. This being true of two
points in the moving circle, must be true of all other points;
the movement above supposed would therefore bring C to

FiG. 28.

(', and E to E’,—the arcs AN,CC’, EE’, all having the com-
mon centre D, and measuring equal angles.

32. That is to say, the motion represented by the arrow
¢ is one of revolution about D, the centre of curvature of the
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base line LM—which in Fig.27is one of straight translation
simply because the radius of curvature of LM is, in that
case, infinite.

In either case, the linear velocity of 4, due to the rota-
tion about C, indicated by 7, is equal and opposite to that
due to the revolution indicated by #; the point of contact
being therefore at rest for the instant.

This fact of itself seems almost conclusive proof that the

oC
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point in question is the instantaneous axis of the moving
piece: this, however, is capable of still more general and
rigorous demonstration, which we give here, because the
fact is of importance in relation to some combinations pres-
ently to be considered, and ought therefore to be firmly
established.
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33. In Fig. 29, neither the fixed nor the moving curve is
circular, but C is the centre of curvature of the lower one,
and D that of the upper one, at their common point 4 ;
therefore CD is their common normal. Let o, s, represent
points on these curves consecutive to, and equidistant from,
A. Then, if the upper curve s/ide upon the lower, the point
o can be brought into coincidence with A4 of the lower curve
only by a rotation about D, indicated by the arrow »; and
the point A of the upper curve can be brought into co-
incidence with s only by a revolution about C, indicated by
the arrow ¢, Let the linear velocities of the point 4 of the
upper curve, due to these motions, be represented by Az,
Az, and let these be equal to each other, since Ao, 4s, are
equal by hypothesis,

Now let 2 be any point rigidly connected to the moving .
curve. The motion of P will be the resultant of rotations
about D and C; the components are therefore perpendic-
ular to PD and PC, respectively,and as their values we shall
have

Ax.PD )
PH =
AD ) E_PD.AC (1)
PE Az.PC | ©7 PE  PC.AD’ g
~ AC

Completing the parallelogram, the diagonal PR is the
resultant motion of 2. Next draw P4, and also ANV parallel
to PC, and AK parallel to PD. We shall then have:

PN _AC | oy _PD.AC
PDCD" - oD ’] PN PD.AC
and [ PK T PC.AD (2).
PK_AD . pp _PC.AD

pc=cp " ~T ¢cp '
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The second members of Equations (1) and (2) being iden-
PH _PN
PE  PK’

But the angles, #PE, NPK, are equal; therefore the
parallelograms HE, NK, are similar, and the angles RPE,
APC, are equal. Consequently,

EPA 4+ RPE,= RPA, is equal to EPA 4 APC, = EPC.
Now EPC is a right angle by hypothesis; therefore PR,
the absolute motion of 7, is perpendicular to a right line
drawn from P to the point of tangency A. Since P was

tical, their first members are equal; z.e.,

chosen at pleasure, it follows that lines perpendicular to the
motions of any other points connected rigidly with the
moving curve, will intersect in A, which must therefore be
the instantaneous axis of that curve: and it is perfectly
clear that a rotation about 4 will bring the point ¢ into
coincidence with s, which we have already seen to be a con-
dition of rolling contact.

84, The utility of this fact is well illustrated in Fig. 30,
which shows a simple planetary train. The shaft of the
wheel W, which rolls around the fixed wheel I has its
bearings in the crank or “train-arm” (€D, and, projecting
through that arm, has secured upon it a second crank DA.
The crank-pin 4 operates the link 42, of which the opposite
end Pis caused by guides, not shown, to travel in the line
CP. The point A4 traces the epitrochoid shown in dotted
line; and its position, for any given position of CD, is read-
ily found as follows : starting with the two cranks coinciding
in one right line Cda, and 72 as the point of contact, set off,
on the two circles, equal arcs 70, mo; then in the rolling, o
will go to O, od then becoming the contact radius 0D, while
the angle oda will remain unchanged.

The motion of 4, for any assigned velocity of D, might



40

VELOCITY DIAGRAMS.

----- = ---

F1G. 30.



VELOCITY DIAGRAMS. 41

be determined as in Fig. 22, since it is the resultant of a
revolution around C and a rotation about D; these are
essentially independent of each other, notwithstanding the
engagement of the two wheels, which is but one of many
possible methods of fixing the relative directions and veloci-
ties of those two motions.

But the determination can be made in a much more
simple and direct manner, because O is the instantaneous
axis. Let DN be the motion assigned to D; then the motion
of A must be perpendicular to the instantaneous radins OA,
and its velocity 447 is found by making the angle AOM
equal to the angle DON.

If it be further required to find the velocity of P, the
argument is, that on the prolongation of 4P a component
should be set off equal to AL the absolute component of
AM, and at its extremity a perpendicular to 4P should be
erected, which would cut CP produced, at a point limiting
the required resultant. This, obviously, would result in the
construction of a right-angled triangle similar and equal to
ALR, formed by drawing through 4 a parallel to CP, cut-
ting ML (produced if necessary) in R; which gives AR as
the required velocity of 2. This abbreviation may evidently
be employed in any case where the motion of one end of a
link is given, and that of the opposite end in a given direc-
tion is required.

35. Fig. 31 also exhibits a simple planetary combination,
in which, however, the central (or sun) wheel W is not fixed,
but turns freely about the axis €. The planet-wheel W is
rigidly secured to the connecting-rod LP, the point P being
made to travel in the line CP; and the two wheels are kept
in gear by means of the link CD. This arrangemeunt is
¥nown as “ Watt’s sun-and-planet wheels,”” having been em-
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ployed by the illustrious engineer as a substitute for the
crank, upon which, as connected with a rotative steam
engine, some one had secured a patent.

If, now, we assign to D a velocity DA, the motion of P is
ascertained, as usual, by making PQ equal to D25, the abso-
lute longitudinal component of DN, and drawing QR per-
pendicular to DP. It is next to be noted that the motion of
W' consists of a revolution about C and a rotation about its
own centre D; and the same is true of the motion of 2, since
it is rigidly connected with that wheel. Resolving PR
accordingly, PE is the component of revolution, and FF
that of rotation. The angular velocity of the revolution is
represented by the angle PCE, which of course is equal to
DCN; and A4/ is the linear velocity of 4, due to this motion.
The angular velocity of the rotation is represented by the
angle PDF,and L[ is the additional circumferential velocity
due to that motion, to which /47 is made equal, giving AM
as the actual velocity of 4: and ACM represents the
angular velocity of W.

36. A test of the accuracy of both the analysis and the
construction may be applied by producing DC to cut the
prolongation of £P in O, the instantaneous axis of the planet-
wheel and its attached rod. Draw NO and RO; then the
two angles marked g should be equal, and VO should pass
through the point #7: also it is to be observed that when O
is accessible, this affords the readiest means of determining
AM when DN is given, and vice versa.

It is quite apparent that if the velocity of D is constant,
the velocity of W will vary, unless DP is infinite, W’ then
having a motion of circular translation ; on the other hand,
if W turns uniformly, the motion of D will be variable.
Consequently the law of variation in the piston speed will
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be different in an engine in which this arrangement is used,
from that obtaining in one provided with an ordinary crank,
the main shaft revolving uniformly in each case. If the
circumferential velocity of W be assigned, as AM, the
velocity of P may be found thus: draw P4 and produce
it, find the absolute component AKX along that line, make
PH equal to it, and draw AR perpendicular to P4 ; other-
wise find the instantaneous axis O, and make the angle
POR equal to the angle 40M.

37. In Fig. 32, the engaging wheels of which W, W’, are
the pitch circles, turn about the fixed centres D and C. In
the front face of W' is fixed a pin B, turning freely in a
block, which slides in a slot formed in one arm of a bent
lever; this lever turns about the fixed centre £, and in the
extremity # of the other arm is a pin upon which is hung
a swinging lever FP: from the front face of W projects a
pin 4, connected with the free end of the swinging lever by
a link AP. Considering 4 as the driving point, and assign-
ing to it a motion AM (necessarily perpendicular to the
radius DA4), it is required to determine the motion of 2.

Produce DA to / on the circumference of W, at which
point draw a tangent, limited by its intersection at Z with
the prolongation of DM ; /L thus determined is the circum-
ferential velocity of W. That of W’ is necessarily the same;
therefore, producing CB to cut the circumference at /,
draw the tangent /'L’ equal to /L; draw CL.’, and at B
draw a perpendicular to CB, cutting CL’ in N; then BN is
the linear motion of B. Resolve B.V into two components,
one in the line BE, the other perpendicular to it; the longi-
tudinal component merely produces a sliding of the block
in the slot, but the side component Bd establishes a rotation
of the bent lever about £, of which the angular velocity is
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represented by the angle g, or BE4. The point F must
have the same angular velocity, and must move in a direc-
tion perpendicular to EF, so that its linear velocity FQ is
determined by constructing the angle 8’ equal to 8, and the
absolute component of FQ along PF is Fe,to which P¢ must
be equal.

Returning now to the pin 4 ; its motion AM has an ab-
solute component Az in the line 4P, to which P2’ must be
equal. Then, erecting at @’ a perpendicular to 47, and at
¢ a perpendicular to FP, the intersection R of these per-
pendiculars is the extremity of the required resultant mo-
tion PR.

38. In Fig. 33, the planet-wheel W’, which rolls inside
the fixed annular sun-wheel W, has its bearings at the ex-
tremity C of one arm of a bent lever CDE, which turns
about D the centre of I¥. At the extremity £ of the other
arm of this lever, is the bearing of a pin which projects from
the farther side of the arm or lever £F, and is made in one
piece with it. The lower end of this arm is formed into a
sleeve, through which slides frecly the rod BS, perpen-
dicular to £F; this rod is formed, at the left-hand end, into
an eye, fitted upon a pin B, which is fixed in the planet-
wheel and projects from its front face. Finally, to the free
end of EF is pivoted the link or connecting-rod FP, of which
the farther end P is made to travel in the line PD.

Suppose for the moment the annular wheel W to be
removed, and the bent lever CDE to be stationary, while
W' revolves about C as a fixed centre. Then it is to be
noted that the kinematic action of the virtual crank-arm CA
and the bent lever BEF is precisely the same in this figure
as in the preceding one; in this case the sliding in the
direction BE occurs in the sleeve at £, whereas in Fig. 32 it
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was accommodated by the motion of the block at B in the
slotted arm BE. In either case, then, the rotation of B
about C causes F to vibrate in a limited arc about £. Now
when Wis replaced and CDE is made to reyolve about D,
this vibration goes on as before, so that the length of the
virtual crank-arm DF, by which Pis actuated, is continually
varying within certain limits. Let C turn about 2*as indi-
cated by the arrow ¢, then W’ will rotate about C in the
direction shown by the arrow 7.

39. Assign to C a velocity CM, then its angular velocity
about the instantaneous axis 4 will be represented by the
angle CAM'; the motion of B will be perpendicular to the
instantaneous radius 45, and its linear velocity BV is deter-
mined by making the angle BAN equal to CAM. The
motion of £ is EL perpendicular to DE, the angle £EDL
being made equal to the angle CDM. The absolute com-
ponents of BN are Bb, Bn; those of EL are Ee, Ef. Join
the extremities of the side components by the line &e, cut-
ting BE in /. This point is the instantaneous centre about
which BS is rotating; and by reason of the connection be-
tween EF and BS, it is clear that £/ must also rotate about
7, in the same direction and with the same angular velocity.
Therefore the motion of 7 has’'a component of rotation FX
perpendicular to F7, the angle F/K being made equal to the
angle E/e; and also a component of translation 7%’ parallel
and equal to £%. Completing the parallelogram, the motion
of Fis the diagonal FG. This has a component £/ in the
line of FF, to which PQ is equal; then draw at Q a perpen-
dicular to PF cutting PD, the line of travel, in &, and PR is
the resultant motion of 2.

40. Now, the point £ is common to BS and £F, and both
pieces have the same instantaneous centre /; consequently
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their instantaneous axes must lie in a perpendicular to BS
through 7. This perpendicular cuts the prolongation of
AB m O, which is the instantaneous axis of BS; and it cuts
DE in O, the instantaneous axis of £F. The actual motion
of the point £ on BS is £H, the resultant of the components
Ee, and En’ equal to Br, and OF is perpendicular to £H;
(incidentally, the sliding at £ is equal to £Z+ E#’): also,
O'Fis perpendicular to FG, the motion of F.

Again, the actual motion in space of the line EF, is
determined by the two motions £Z, FG; the absolute com-
ponents of £L, as above seen, are £/, Ee,—those of FG are
Fg, F¢'. Draw gk cutting £F in /’; then it is seen that the
motion of £F may be regarded as a rotation about /" as an
instantaneous centre, combined with a longitudinal transla-
tion in the line EF.

41. And this motion is equivalent to a rotation about an
instantaneous axis, which must lie in a perpendicular to £F
through the point /’; this perpendicular must, therefore,
pass through O’, which has already been shown to be the
instantaneous axis. And since all the longitudinal com-
ponents must be equal, it follows that 7¢’ = Ee. Also since
at /' there is no side component, the absolute motion of that
point is in the direction FE, and equal to £Ze. In the small
diagram at the left, this motion, 7’¢", is seen to be the
resultant of a rotative component /’4, perpendicular to /7
(the angle 7I'/% being equal to the angle £/¢), and a com-
ponent of translation /%", equal and parallel to £Z.

42. A peculiar device for producing aggregate motion,
the action of which is at first glance rather obscure, is shown
in Fig. 34. It consists of a crank 4D, turning about the
fixed centre D; a connecting-rod 4B, and a lever BC, which
vibrates about C as a fixed centre. Upon the pin B are
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hung the wheels 7 and X; these are secured together, and
turn freely on the pin, and X engages with a wheel ¥, which
turns freely about its centre C.

A wheel Uis secured to the crank AD, and communi.
cates motion to W through the intervention of an idle wheel
V, whose bearing is the pin E, fixed in the connecting-rod.

In this arrangement the crank 4D is the driver, and the
ultimate follower is the wheel V; given the velocity of the
crank-pin 4, then, the problem is to find the circumferential
velocity of that wheel.

It needs no argument to show that if this problem be
attacked analytically, any formula expressing the action of
such a train will be so complicated as to render the solution
tedious, if not difficult; but if treated graphically it is both
simple and easy, and requires only the application of princi-
ples already explained. .

Supposing the crank to turn to the right, let A repre-
sent the motion of 4. Resolve AM into the rectangular
components Aa, Ab, and set off Ba’ equal to Aa; draw at @’
a perpendicular to 4B, and at B a perpendicular to BC;
these intersect in A, and BN represents the motion of 2.
At P, the point of contact between the circumferences of X
and ¥, draw PQ perpendicular to B(, and limited by its
intersection with C/NV. Suppose for the moment the wheel
W to be removed ; there would then be nothing to cause X
to rotate about B, so that X, ¥, and BC would move as one
piece, turning about C, and PQ would represent the circum-
ferential velocity of the wheel Y.

But when W is restored, this value PQ will be affected
by two things; of which the more important is due to the
rotation of ¥ about its centre £, caused by its engagement
with U, which is secured to the crank 4D.
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In order to determine the velocity of this rotation, draw
7T, tangent to U and ¥V at their common point %, and join
b4 the extremities of the side components of 44/ and BN.
Then 64 cuts 77T in O, and FO is the tangential component
of the point # on the circumference of V,supposing U'to be
removed. But Fis also a point on the circumference of U,
and its absolute motion when so considered is G, perpen-
dicular to FD, and limited by constructing the angle FDG,
equal to the angle ADAM. Draw GH perpendicular to 7'7T;
then FH is the tangential component, and OH is the cir-
cumferential velocity of V;in its rotation about £—the direc-
tion being as indicated by the arrow ». This rotation will
impart to I an equal circumferential velocity; therefore
we make K/, the common tangent of /" and W, equal to OH.
Draw /B to limit LS tangent to X and parallel to /X, then
LS should be in this case added to PQ on account of the
rotation of 7 about its centre £.

43. But this is not all; as previously stated, the value PQ
is affected by another thing, which is due to the motion of
the link AB (carrying V with it), in relation to BC. This
will be clear when it is considered that if 7 did not turn at
all about £, but moved as though fixed to the link, the point
K on its circumference would still have a motion X7, deter-
mined by the intersection of 4" with K/, which also would
be imparted to W. Draw ;B cutting LS ins; it will then
be clear that PQ must is this case be increased by an amount
OR equal to LS + Ls, which gives PR as the circumferential
vclocity of the last wheel in the train.

It is apparent that the motion Ls is due to the folding up
of the link 4B upon the lever PC; which will continue
until the lever reaches the position (2, the extreme limit ot
its outward excursion. On the return, the directions of
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both PQ and Ls will be reversed ; and the actual velocity of
P will be PQ 4+ Ls— LS, since the rotation of ¥ about £
goes on continuously in the same direction.

It is also evident that LS is always greater than Ls; so
that, while the wheel ¥ turns first in one direction and then
in the other, it is driven farther to the left than to the right
during each reciprocation of the lever B(, and consequently
it will ultimately make complete revolutions about its cen-
tre C, in the direction of the arrow y.

Now, because the motion of a point in the circumference
of Yis reciprocating, and of less velocity in one direction
than in the other, it follows that a “ velocity diagram” rep-
resenting the motion will be of the general form ABCDE in
Fig. 35; the point 4 representing the instant when the wheel
begins to turn in the direction of the arrow, the point C the
instant of reversal, and the point £ the instant when it again
comes to rest. Since all this is accomplished during one
revolution of the driving crank, 4E represents the time
occupied by that revolution, of which the velocity is
uniform.

44. Obviously it is desirable that such a diagram should
begin and end at zero. But in this case we are confronted
at the outset by the question, at what position of the crank
is the wheel at rest? Clearly it is easy enough to determine
the dead centres 1, 2, of the crank, and the corresponding
positions 1, 2, of the pin B; at which instants the lever BC
is at rest : but at either of those instants the wheel ¥ will be
found to have a definite velocity, which may be determined
by the processes above set forth.

In such a case the construction of the velocity diagram
is the readiest means of determining the required dead
points of the driven wheel. In Fig. 36, make FL equal to
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AE of Fig. 35; place the crank in the position 1.0, the lever
in the position 1C, determine the velocity of P, and set up
the ordinate FG equal to it; then the ordinate LM/ will
plainly be equal to #G. Without entering into the details
of the construction, suppose the velocity diagram GH/M to

FiG. 35.

hs
L

K

F1aG. 36.

be drawn ; this curve will cut FZ at the points 7, X, which
represent the instants when ¥ is at rest.

Then supposing the crank-pin 4, in Fig. 34, to start from
point 1 upon its circular path (which corresponds to 7 in
Fig. 36), divide the circumference of that path into parts
proportional to F7, /K, KL. The points of division corre-
sponding to / and K will then be the positions of the crank-
pin at the instants when the wheel V is at rest; and the
positions of the lever BC at those instants can then be read-
ily found in the usual manner.

Now if, in Fig. 36, we set back F/V equal to LK and copy
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the portion MK in the position G, we shall have the curve
NHIJK, the required diagram, identical in form and arrange.
ment with ABCDE in the preceding figure.

45. A further example of planetary wheel-work forms
part of the combination shown in Fig. 37.

The central, or “ sun,” wheel Wis stationary, as shown
by the screws securing it to the frame.

The shaft D of this wheel turns freely in its bearings,
and an eccentric is keyed upon it, in which are the bearings
of the shaft of the planet-wheel W', whose centre is C'; thus
the eccentric itself forms the train-arm. The shaft C has
keyed upon it the wheel W’ at the back, and the crank CE
is in front of the eccentric; the eccentric-rod is pivoted at B
to a sliding socket which moves upon guides; and this
socket carries a pin F, upon which turns one end of the
lever FP; and this lever is connected with the crank CE by
a link £H. Now, supposing the eccentric to turn about D
at a given rate, it is required to determine the direction and
velocity of P’s motion at the instant when the parts occupy
the position shown.

The centre of the eccentric is 4 ; let AM be the motion
assigned to it; then CM', the velocity of C, is found as shown
by prolonging DM.

Now, the crank CE and the wheel W’ being virtually one
piece, are at the instant rotating about the instantaneous
axis 7, the point of contact between the sun-wheel and its
planet.

Therefore, drawing /M ', IE, and EL perpendicular to /Z,
then E£LZ, limited by making the angle E/L equal to the
angle C/M ', will be the motion of £; this has a component
Eg in the direction of £/, to which Hg’ in the same direc-
tion must be equal. Draw 4B and produce it, making Ba’
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equal to 4a, the component of AM in the line 48 ; and draw
4’ N perpendicular to Ba’ to determine B, the motion of B3,
to which the motion £/ of the point Fis parallel and equal.
Then, with reference to FP, F/ has the side component £z,
and the longitudinal component Fd; and both Ad’ and Pd”
in the direction FP must be equal to Fd.

Draw at 4’ a perpendicnlar to FP, and at ¢’ a perpendic-
ular to £H ; these intersect in K, and AK is the resultant
motion of A, which has a side component Ae. The prolon-
gation of ¢z will limit the side component Pf of the motion
of P; the longitudinal component is P4, and the diagonal
PR of the completed rectangle is the required resultant
motion ; and /KR will be a right line parallel to cef, if the
construction has been correctly made.

46. In Fig. 38, W is the pitch circle of a wheel formed in
one piece with an eccentric keyed upon the shaft D ; for the
sake of avoiding confusion, this pitch circle is drawn of the
same diameter as the eccentric.

As in the preceding figure, the eccentric rod is pivoted
at B to a piece which slides upon guides, and carries a pro-
jecting pin G, upon which turns the lever GP. Then 4
being the centre of the eccentric, and 4 M representing its
motion, the motions BNV and its equal GV are determined as
in Fig. 35, so that no more need be said of them.

The eccentric rod in this case has a projecting portion
on the upper side, in which is fixed a pin C, with a wheel w
turning freely on it; and w engages with W. The smaller
wheel has also a projection from its front face, in which is
fixed a pin £ by which a link is pivoted to it, whose other
end is pivoted at P to the lever GF. Then, knowing AM,
we are to ascertain the motion of 2 in velocity and direc-
tion. To begin with, since GV is already known, we find
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with reference to GP its side and longitudinal components,
G/t and Gm; then, since P’ must be equal to G, it remains
to find the absolute component of the motion of 2, or, what
is the same thing, of £, in the line of the link EP.

Now, considering the wheel w by itself, it turns on its
bearing at C solely by reason of its engagement with W;
so that, if the latter were removed, it would move as one
piece with the eccentric rod. And the motion of that rod
consists in a rotation about / (the intersection of 48 with
the line 44’ joining the extremities of the side components
of the motions of 4 and B), combined with a translation in
the direction 48,—and the magnitude Aa of the latter is
already known.

The wheels W and w touch each other at the point O on
AC; then Oc, perpendicular O/, of such length that the
angle O/c is equal to the angle A/, is the rotative compon-
ent of the point O on the connecting-rod ; the component of
translation is Oa” equal and parallel to Ae, and OQ, the
diagonal of the completed parallelogram, is the resultant
motion, which would be the same for the point O on the
smaller wheel were the larger one removed.

47. But the motion of the point O on the wheel W, is 0S
perpendicular to OD, limited by making the angle 0DS
equal to the angle ADM. Now draw 77, the common tan-
gent to the two wheels, and upon it let fall the perpendicu-
lars QF’, SJ; these, of course, should be equal to each other
and to the normal components of the motions 0Q, 0S. The
tangential components OE’, 0/, lie in the same direction, so
that their difference £/ represents the circumferential
velocity of the rotation of w about C. For the sake of per-
spicuity we have placed the point £ upon the circumference
of w, so that £/, perpendicular to CE, and equal to £/, is
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one component of the motion of £, and is due solely to the
engagement of the two wheels. But were W removed, E
would be to all intents and purposes a point of the connect-
ing-rod; and its motion might be determined (since the
instantaneous axis is inaccessible) just as OQ was, which is
the method here exhibited ; £4 perpendicular to £7, making
the angle £/d equal to the angle 475, is one component, while
Ea'" equal and parallel to Ae, is the other; then EX the
diagonal of the completed parallelogram is the resultant
motion upon this supposition. Finally, complete the paral-
lelogram JEKL, and its diagonal £L is the resultant motion
of £ when the whole mechanism is set in action; this has a
component £/ in the line PE, to which 2/ must be equal;
erecting at /' and ' perpendiculars to PE and PG, respec-
tively, they intersect in R, and PR is the resultant required.

In reference to PG, the side components at 2 and G are
Pg, Gk ; draw g% cutting PG in f, and at this point erect a
perpendicular to PG ; this should pass through 7, the instan-
taneous axis of PG, which is the intersection of PF, GF,
respectively perpendicular to PR and GV.

SIMULTANEOUS DEAD-POINTS IN LINK-WORK.

48. In the train of link-work shown in Fig. 39, the driv-
ing crank DA, by means of the connecting-rod 4.5, imparts
a vibratory movement to the lever C£; which, in its turn,
causes the bent lever FGH to vibrate through the interven-
tion of the link £F; finally, to this bent lever is pivoted the
link AP, whose extremity P is constrained by guides (not
shown) to travel in the vertical line /Z. And the problem
is, assigning any velocity to the crank-pin 4, to determine
the resultant velocity of P.
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Now this combination, consisting as it does of simple
levers and links, presents no new feature, except in the two
critical positions when the crank-pin 4 reaches either a
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or a’. The proportions here given are such that CG =

CE — EF4 FG; so that when A reaches either of the
above-mentioned points, the centre lines CE, EF, and FG,
coincide in one line CfeG: the link being thus folded up
upon both levers, we have two simultaneous dead-points.
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It is stated by Prof. Rankine (‘‘Machinery and Mill-
work,” p. 193), that in these circumstances the ratio of the
angular velocities of the two levers is indeterminate ; were
this so, then the ratio between the linear velocities of the
points £ and F would also be indeterminate. I propose to
show that neither of these things is true.

Since the motions of £ and Z, in the position under con-
sideration, are both perpendicular to the line joining those
points, the motion of the link must, at the instant, be one of
rotation about some point on EF or its prolongation, and
the first step is to find that point; the method of doing this

ey
R E—

T L
c B 4 H P S
vV
w
HA=x

BD=R HB=x+1

AC=r HC=x+r
Y HD=R-l—x

FiG. go.

is illustrated in Fig. 40. The upper part of this figure gives
a side view of two levers CA4, DB, connected by a link 45,
at the instant of collapse. In the movement diagram
below, it must be understood that CV, DY, do not represent
positions of the levers, but that AV, BY, and AW, represent
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the motions of the points 4 and B, and of A the required
instantaneous axis, at the critical instant.

The actual magnitudes of these lines are immaterial, but
the relative velocities must be such, and / must be so situ-
ated, in all cases, as to satisfy the following conditions, viz.:

1. Because the link 438 is, at the instant, turning about
M as a centre, the line YV or its prolongation, must pass
through A.

2. Because A is the virtual intersection of the centre
lines of the levers A4C and BD, the magnitude of W must
be such that the prolongations of CV and DY shall pass
through W.

49. The lines of this diagram form three pairs of similar
right-angled triangles, from which the following propor-
tions are readily deduced, viz.:

Ay _ac
HWZHC | Av _HA _HD AC
HW HD [ BY' =~ HB = HC X BD
BY ~— BD

Or, substituting the symbols given in the figure,

x R—-Il—x r
x+17 x4r xR

whence
27/ _er—rP
TR+ P r = R47r"

x

and this gives

_* VRHER—I41r)—1
x= R¥r .

Which proves that the distance of the instantaneous axis
H {rom the point 4 is not indeterminate, but must have one
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of two definite and easily ascertained values: and the ratio
of the linear velocities of the points 4 and B is the same as
the ratio of their distances from the instantaneous axis,—i.e.,

AV _HA
BY — HB

In the figure the proportions are as follows: R =6,

r = 3, / = 2.25, and the resulting values are, A4 = + 1.087,

AH = —2.587. The first value is the one taken in Fig. 40:
the result of taking the second is shown in Fig. 41. It is

C H B A

oD

v
FiG. 41.

apparent that the diagrams can not be constructed with cer-
tainty until these values have been computed; though the
rudest sketch will serve the purpose in making the calcula-
tions.

50. The ratio of the linear velocities being, then, deter-
minate, and the lengths of the levers fixed, the ratio of their
angular velocities must also be determinate. In order to
find its value, let v represent the angular velocity of R, 7
represent the angular velocity of r; then, since angular

linear velocity

radius , we shall have

velocity =
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Lo BY
~R’| v _BY r HB 7
AV (TS AVXRTHAXF
7J'=—-.J
r
. _ _ v _riz+7),
Or, since HA =%, and HB==x-/, 7= Re )

whence, substituting in this equation the value of #, already
, found, and reducing, we have finally

_ X7 VYRIr(R—I47r)+Rlr
T +RYRI(R—1I47)—Rir

YR

This expression, with the assigned lengths of the link
and levers, gives the values,

)

~

.= g—g (very nearly), for Fig. 40.

<

_2_ ““ “ 113 1
=200 Fig. 41.

e

51. Now a question of at least theoretic interest arises
in regard to the action of the mechanism shown in Fig. 39.
It is usually held, I believe, that only the component in the
line of the link is effective in transmitting either force or
motion from one lever to another. And, so long as there is
any such component, there is no occasion, and, it may be
said, no ground, for questioning the correctness of that
dictum. Nor yet in the case of a single dead centre; thus,
in Fig 39, the link 48 merely rotates about its instantaneous
axis B; which is at the instant stationary, for the simple
reason that it can not move both ways at once : so, although
there is no component in the line of the link, no motion nor
force is transmitted to the lever CBE.
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But we may imagine BD in Fig. 40 to drive, with a con.
stant velocity, for a limited distance on each side of the crit-
ical position ; in that case the velocity of 4C will be variable,
of course, but it will not vanish at the instant of collapse,
notwithstanding the fact that there will then be no compon.
ent in the line of the link—forit has been shown that it must
have a definite value as compared with that of BD. This
arrangement, then, seems to present a remarkable exception
to the general proposition referred to, whether regarded
kinematically or dynamically.

52. It may be (and has been) said that owing to the elas-
ticity of materials, to the impossibility of securing absolute
freedom from “ play " or lost motion,—in short, to the per-
verse nature of inanimate things and to all that prevents the
realization of abstract desiderata, there will practically be a
small rotation about A at the critical instant; after which
there would be a longitudinal component of motion or of
force. Were this the true explanation, this component
would be very small in comparison with its effective lever
arm, unless the rotation about 4 were very considerable;
from which it would follow that the levers would “go hard”
across the line of centres; and that the more, the better the
fitting. So that, were the fitting absolutely perfect, the
levers could only cross the line of centres by the aid of
momentum, even if friction were entirely eliminated ; and
if once stopped upon that line, no force applied to either
lever could move the other.

53. But a study of the action ot a model made for the
Stevens Institute of Technology leads me to the conclusion
that the exact contrary is the case. The proportions of this
model are the same as those of the figures accompanying
this article ; and the levers pass the critical position with the
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greatest ease. From which it would seem that the link at
that instant acts as a lever whose fulcrum is the instanta-
neous axis, and operates by side pressure instead of by end-
long thrust or pull.

Another interesting point in regard to the action of the
model is this: that when the levers are placed on the line
of centres, the mechanism exhibits no hesitation in making
a choice between the two possible positions of the instanta-
neous axis. If the lever BD is the driver, the combination
moves as indicated by the diagram in Fig. 40; but when 4C
is the driver, the motions correspond to Fig. 41.

It may be added, in conclusion, that the dead points may
also occur simultaneously when the two levers point in the
same direction ; and since the proportions may be varied in
many ways, the diagrams may present appearances very
unlike those here given. But this method of reasoning may
be applied in all cases; and in no one of them will the veloc-
ity ratio be found indeterminate. :

“ SLOW ADVANCE AND QUICK RETURN " MOTION PRODUCED
BY ELLIPTICAL WHEELS.

54. In Fig. 42, C and D are the fixed centres of a pair of
elliptical wheels, in contact at 2. In order that these may
move in continuous rolling contact, the two ellipses must be
identical, each must be centred upon one of its foci, and the
distance between the fixed centres must be equal to the
major axis ; in practice, both wheels must be provided with
teeth, which are omitted in the diagram, since the action is
best seen and discussed by consideration of the pitch curves
only.

Since the point of contact must always lie upon the line
of centres CD, its motion must be perpendicular to that line,
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and its linear velocity is the same whether it be regarded as
belonging to one ellipse or the other, so that the angular
velocities are inversely proportional to the contact radii ;
thus, letting

v = ang. vel. about D, and |

1/’= 113 “ “« C’ we have
v PC . ..
'? =5 in the present position,

and setting off the equal elliptical arcs PEK, PI/,then, when
/ and K meet, we shall have

v _JC . C .
o =KD °P drawing /C and joining K with
F, the free focus of the right-hand ellipse, this latter value
may be written

F

KD

Q\] Q

In order to bring K and / into coincidence, it isapparent
that while the driver turns as indicated by the arrow,
through the angle PDK, the follower must turn in the
opposite direction through the angle PC/; and this, it is to
be noted, is equal to the angle PFK.

55. These ellipses are so situated and proportioned that
PCand PF are respectively perpendicular to the major axes;
and, producing these lines to cut the ellipses in A and G, the
arcs PIH and PEG are equal; whence it follows that while
the driver turns through the angle GDP, the follower will
have made a half revolution.

While it is making the other half, the driver must com-
plete its own, thus turning through an angle much greater
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than GDP; since the two ellipses have equal perimeters and
necessarily revolve in equal times about their fixed centres
of rotation.

Now let a pin, fixed in the follower at any point 4 in the
major axis, actuate a link whose farther extremity B is con-
strained by guides (not shown) to travel in the line of that
axis, then the traverse of B along that line will be equal to
AL = 24C; it will make the upward stroke while the driver
turns through the angle GDP, and the downward stroke
while the driver is completing its revolution. If, then, the
driver turns uniformly, the down stroke of B will occupy a
greater time than the up stroke; which is just what is
required in a shaping machine, which calls for a “slow
advance ” of the tool-holder while making the cut, and a
“ quick return ”’ for saving time while no work is done. As
here arranged, the cut would be made on the down stroke,
and by the “ pull” of the link; this is merely for the sake
of saving épace in the illustrative diagram; and it will be
evident that had B been below A instead of above, the con-
dition would have been reversed, the work being done by
the “push ” of the link ; both arrangements have been used
in practice, but the kinematic action is the same whichever
be adopted.

56. Now if, in the design of a shaping machine to be ac-
tuated by elliptical wheels as above shown, the ratio of the
times to be occupied by the advance and the return be
assigned, the first thing is to determine the eccentricity of
the ellipses which will satisfy the requirement: the manner
of doing this may also be illustrated by Fig. 42. Let the
time of the return be to the time of the advance as misto #,
for instance; then about any point D on the indefinite
horizontal line AN describe a circle with any radius MD.
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Divide the upper semicircumference into a number of equal
parts represented by » - #, and set off #/Fequal to m parts,
then FV = parts. Draw DF and produce it; this will be
the direction of the major axis of the driver: draw at Fa
perpendicular to DF, cutting AN in P; then P is a point
upon the ellipse, of which D and F are the foci, and the
major axis is equal to PF+4 PD. On HN set off PC equal
to PF; produce FP to A, making PA equal to PD; then C
and 4 will be the foci of the other ellipse. In the figure,
the advance is assumed to occupy three times as many sec-
onds as the return ; that is to say, = 1, » = 3, consequently
the semicircumference MF#N is divided into 4 equal parts,
and MF being made equal to one of these parts, #V is equal
to the other three.

It need hardly be added that the link may be operated
by a crank keyed in any convenient position upon the shaft
of the driven ellipse, with the understanding that it must be
upon a dead centre when the ellipses occupy the relative
positions shown in Fig. 42.

57. Our problem now is, to construct a diagram repre-
senting the varying velocity of B throughout the revolution
of the driving ellipse, whose angular velocity is assumed to
be constant. In order to do this, we must be able to deter-
mine at any given instant the motion of the crank-pin 4
(which, for the sake of simplicity only, has been placed in
the focus of the driven ellipse). The dérection of A’s motion
is known, being always perpendicular to AC, which line
revolves about C in a direction opposite to that of the driver.
In determining its velocity, we have only to remember that
angular velocity may be represented by the linear velocity
of a point at unit distance from the axis (the magnitude of
this unit, for purposes of comparison, being arbitrary); and
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we have already shown that the angular velocities of the
driver and follower are inversely proportional to the radii
of contact, at any given instant. .

Assuming then, in Fig. 42, CA4, which is equal to DF, as
the unit distance, and assigning to F any linear velocity at
pleasure; from what precedes we shall have, when for
instance / and K meet upon the line of centres,

KF:KD::lin. vel. F:lin. vel. A.‘

The required velocity of 4 may then be easily determined
graphically as in Fig. 43. Upon either of two lines inter-
secting in X at any convenient angle, set off from X the dis-
tances K7, KD, taken from Fig. 42; on the other line set off
KV, the assigned linear velocity of #; draw V7, and through
D a parallel to it, cutting the prolongation of 'KV in V7
then X7” is the required linear velocity of A, since by
similar triangles we have
KF:KD::KV:KV".

58. We repeat in Fig. 44 the construction for determin-
ing the velocity of B when that of 4 is known; AC repre-
senting the position of the crank, 42 that of the link, and
CB the line of travel. Let AM, perpendicular to AC, repre-
sent the velocity of 4 ; this has a component A in the line
of the link, to which BV must be equal. Then drawing at
N a perpendicular to 4B, cutting CB in R, we have BR as
the resultant velocity of B. This work may be abbreviated
by drawing AR’ parallel to CB, and limited by the prolonga-
tion of Mm perpendicular to 4B, since the triangle AmR’
thus formed, is similar and equal to BNVR. v

Now, in constructing a velocity diagram such as is
required, it is clearly advisable not to select random points
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ol contact between the driver and follower, like X and / in
the preceding illustrations, but to proceed in an orderly and

—

(5}
Fi1c. 44.

F1G. 45.

systecmatic manner. For the purpose of showing clearly
how this may be done, we have in Fig. 45 reproduced the
driving cllipse in the same position as in Fig. 42; PD being
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the initial contact radius, and PDG the angle through which
the driver turns during the ‘ quick return” stroke of 5.
About the fixed focus D, describe a “measuring circle
large enough to lie well outside the ellipse, as in the figure,
and produce DP, DG, to cut its circumference. Divide the
quadrant which measures the angle PDG into any number
of equal parts, and from the points of division, 1, 2, 3, ctc,,
draw radii to D, cutting the perimeter of the ellipse at
a, b, ¢, etc.; from these points draw finally the lines a/7, 6F,
etc., to the other focus of the ellipse.

The points a, 4, etc., will evidently become contact points
at equal intervals of time ; and as each one does so, the cor-
responding positions and velocity of the crank-pin 4 arc to
be determined as above explained in reference to the point
K in Figs. 42 and 43, and finally the velocity of B for each
position is to be found as in Fig. 44.

59. These values of the velocities of B are the ordinates
of that portion XUY of the curve in Fig. 46, which pertains
to the return stroke. Any distance XY on the line of abscis-
sas, representing the time occupied by that stroke, is divided
into as many equal parts as the quadrant in Fig. 45; any
point of subdivision, as & for instance, represents the instant
when the corresponding point of the ellipsein the preceding
figure becomes a contact point, and the ordinate represents
the velocity of B at that instant.

Since the advance stroke is made during the remaining
three-fourths of the revolution, that fraction of the measur-
ing circle is next divided into any convenient number of
equal parts as indicated by the figures 1, 2, 3, etc,, inside the
circumference in Fig. 45 ; in Fig. 44, YZ = 3XV, is similarly
subdivided, and the diagram is completed by setting up at
each point an ordinate representing the velocity of 2 at the
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instant represented by that point, ascertained by construc-
tions identical with those already explained.

Now, since the abscissas represent times and the ordi-
nates represent velocities, and since also

Time X Velocity = Space,

it is clear that the areas of the two curves XUY, YW_Z,
should be equal, each representing the length of the stroke.

60. By the mode of construction, as seen in Fig. 42, the
major axis of the driving ellipse bisects the angles through
which it turns during both strokes. And it is practically
advantageous to subdivide both these angles so that, as in
Fig. 45, the successive contact points upon that ellipse,
which are made use of in determining the ordinates of the
velocity diagram, shall be symmetrically disposed with re-
spect to that axis. Because, the ratio of the focal distances,
and therefore the velocity of the crank-pin 4, will be the
same for @ and ¢, for 4 and 4, and so on, thus saving much
time in determining the velocities of 4. In regard to the
number of ordinates to be determined, it is impossible to
give any specific directions; but, in constructing these or
any other curves, it is plain that the points through which
they must pass should be nearest each other where the
curvature changes most rapidly; as, for instance, in the
region of U the vertex of the return stroke-curve in Fig. 46.

61. Another diagram of interest is given in Fig. 47,
where the curve UVW represents the varying angular
velocity of the driven ellipse, the constant velocity of the
driver being represented by the horizontal line #//N. Since
the driver and the follower turn in opposite directions, it
would, perhaps, be more consistent to place UV and
MN on opposite sides of A8 ; but the directional relation in
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a case like this is hardly likely to be lost sight of, and the
varying velocity can be more readily compared with the
constant one by adopting the arrangement shown in the

figure.
The ordinates of this curve are the linear velocities of

F1G. 46.

Fi1c. 47.

B, as determined in constructing the preceding diagram.
The velocity of 4 will be greatest when E of Fig. 42
(corresponding to ¢ of Fig. 45) is the driving point of con-
tact, and least at the end of a half revolution, when the
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opposite ends of the major axes come together. In the
former position we shall have for the velocity ratio,
v ED . v EF

5 T ER and in the latter;‘_—, =ZD’
reciprocal of the other; and if either of these positions be
selected as the initial one, it is clear that the resulting dia-
gram will be symmetrical with respect to its central ordinate,
because the ellipse is symmetrically divided by its major

the one value being the

axis.

We prefer to make the first ordinate the least, as AU in
Fig. 47, where AJM represents the constant velocity of the
free focus of the driver, and is equal to XV in Fig. 43.
Since each ellipse completes its revolution in the same time,
it follows that the area of the curve UVW must be equal to
that of the rectangle AN, and that the areas of the shaded
portions UMX, XZc, must be equal to each other.

62. It may be added that in using elliptical wheels for
this purpose, the writer hereof has shown that any given
ratio between the times of the advance and the return may
be secured by means of ellipses whose eccentricity varies
between certain limits, so that a given pair of elliptical
wheels might be used for shaping machines with different
conditions as to the relative times of advance and return:
in the course of the investigation it was also demonstrated
that for a given ratio between those times, the construction
illustrated in Fig. 42 gives the minimum eccentricity.

This is a point of practical importance ; for since it is
clearly impossible to preserve a running balance in the ro-
tating parts of mechanism of this description, it is as clearly
advantageous to reduce the unavoidable vibration to the
lowest attainable limit.
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OTHER “ SLOW ADVANCE AND QUICK RETURN "’ MOTIONS.

83. In Fig. 48 is represented the device known as “ the
> which in various forms has been
extensively used for producing the slow advance and quick
return motion in shaping machines. D is the fixed centre
of the driving crank, whose pin 2 turns in a block which
slides freely in the slotted arm C4, of which Cis the fixed
centre. To the extremity 4 of this arm is jointed a link,
of which the other extremity B is constrained by guides
(not shown) to travel in the line KA. The excursion of the
arm CA is plainly limited by the lines CG, C/, tangent at £
and F to the circular path of 2.

With G and 7 as centres, describe with radius 48 arcs
cutting the line of travel of B in A and K; these points limit
the traverse of B in its assigned path. When P is in the
position shown, let 0 perpendicular to PD represent its

crank and slotted arm,

linear velocity.

Resolve PO into components PV in the line AC, and PL
perpendicular to it; the former represents the sliding, which
is accommodated by the slot, and the latter, L, is the linear
velocity of the point Pin the line CA4, in rotation about C.
Therefore, AM, perpendicular to AC, and limited by the
prolongation of CL, is the linear velocity of 4. The com-
" ponent of AM in the direction B4 is AN, to which BQ must
be equal, and a perpendicular to B4 at Q cuts the line KA
in R, giving BR as the resultant velocity of B.

Asin previous cases, this may be abbreviated by drawing
through 4 a parallel to K4, cutting M/N produced in T
since the triangle ANT thus formed is similar and equal to
BOR.

64. In this arrangement it is obvious that the arm CA4
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will swing through the arc /G while the driving crank turns
through the arc FPE, and A will return from G to / while
the crank turns through the remaining part of the circum-
ference, EF.

Consequently, if the ratio between the times of the
advance and return be assigned, as for instance as z is to #;
describe a circle about any centre D with any radius DPZ,
divide its circumference into m - »# parts, and make EF
equal to # parts; then £PF = m parts. At £ and F thus de-
termined, draw tangents to the path of 2, intersecting at C':
this determines the proportions of the moving pieces and
the relative positions of the fixed centres—it being obvious
that the lengths of CA4 and of AB, as well as the direction
of B’s travel, are entirely arbitrary in theory, although in
" practice they are limited by various considerations which
need not here be discussed.

The link, indeed, may be dispensed with altogether ; thus
in Fig. 48a, the outer extremity A4 of the slotted lever is
formed into a pin projecting from the front side of the lever;
this pin works between jaws formed or a piece S, by which
the cutting tool is carried, and this piece is constrained by
guides (not shown) to travel in the direction of the arrow.
In this case, the motion 447 of the point 4 is to be resolved
into the components 4AX, and AY; the former alone is
effective, and represents the resultant motion of the sliding
head S.

85. This combination has also been used in a curvilinear
slotting machine, the tool being carried directly by a curved
extension of the vibrating arm, as shown in Fig. 49. This
figure represents an application to the work of reducing the
thickness of portions of the rim of a locomotive driving-
wheel W, when the latter had proved not t~ be in correct
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running balance : as described and illustrated in Professor
Goodeve's “ Elements of Mechanism.”

F1G. 49a.

The crank is here replaced by a disk, provided with a
slot to enable the pin P to be fixed at a greater or less dis-
tance from the centre D, in order to regulate the length of
the stroke. This adjustment, however, affects the ratio
between the times of the advance and return; as the effec-
tive crank-arm is diminished, the relative time of the return
will be increased. This will be clear by the aid of Fig. 474,
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where it is obvious that the angle DCE’ is less than the
angle DCE, and since the angles at £’ and £ are both right
angles, it follows that CDE’ is greater than CDE.

66. In Fig. 50 is shown the modification of the “ crank
and slotted arm ” device known as the Whitworth motion;
it differs from the preceding in that the centre C lies within
the path of P instead of outside of it, so that C4 makes a
complete rotation for each revolution of the driving crank.
The path of Pis divided at £ and F, exactly as in the pre-
ceding case, for the purpose of securing any desired ratio
between the times of the advance and return; the chord
EF is then bisected in order to locate C; and this chord is
also the line of travel, in the practical use of the movement.
In determining the speed of 5 when that of P is assigned,
the proceeding is precisely the same as in Fig. 48, and since
the two diagrams are lettered similarly throughout, no
further explanation is required.

87. It is very evident that the device shown in Fig. 50 is
in that form perfectly impracticable as a working machine,
since the shaft € would interfere with the crank DP, if it
projected behind CA4, while if it projected in front of the
slotted arm it would interfere with the link 4B. These
difficulties were most ingeniously evaded by the distin-
guished inventor, and an extremely serviceable machine
constructed in the manner illustrated in Fig. 51. The crank
is here replaced by a wheel ¥, riding loose upon a fixed
shaft whose centre is D, and driven by a pinion 7; in the
front face of this wheel is fixed the driving crank-pin P.
The fixed shaft D has bored in it a hole at C, as shown more
clearly in Fig. 52. Into this hole projects a pin forming a
part of the piece SS, Fig. 51, at the back of which is a slot
in which slides a block fitted upon the pin 2. In the front
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face of SS there is also a slot in which the pin which drives
the link 4B can be fixed in any desired position.

By varying the distance between A and C, then, the
length of the stroke may be controlled at pleasure; but in
this case there is no change in the ratio between the times
of the advance and the return, since the relative positions
of P, D, and C, which fix this ratio, are not affected by any
variation of 4C.

68. Another method of producing a slow advance and
quick return movement, by the use of levers and links only,
is shown in Fig. §3. In this combination, the driving crank
DA, by means of the link 4B, actuates the vibrating lever
BC. To the extremity, B, of this lever is pivoted the link
BP, whose free end, P, is constrained to move to and fro in
the path AX.

Supposing as before that the time of traverse in one di-
rection along HKis to be to the time occupied in the return
as m is to n, the skeleton movement is laid out thus: about
any centre D describe a circle with any assumed radius, as
DA ; and divide the circumference at £ and F so that
EAF = m parts, while FE = n parts, as in the preceding
cases. Assuming any reasonable length for the first link 4B,
set off £DI equal to this assumed length; this locates the
point 7, the crank being at an inward dead point. Next
draw DF and produce it, making 7G also equal to 48 ; then
G is the extremity of this link when the crank is at an
butward dead point. Draw /G, bisect it by a perpendic-
ular, and on the bisector take any point C as the fixed cen-
tre of the vibrating lever CB; in practice the angle /CG
should never exceed 60°, and if possible it should be less:
the length of BP and the line of travel of P, are clearly
arbitrary.
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This being merely a combination of links and levers,
with no new or peculiar features, it is not necessary to give
a detailed explanation of the process of determining the
velocity of 2 when that of A4 is given.

69. But it may be suggested that in constructing a
velocity diagram for either of these combinations, the arc
EF should be subdivided into equal parts, and the remain-
der of the circumference then divided in like manner by

\‘I

/) ah

O~

F1G. 53.

itself; it might at first glance appear more expeditious to
divide the whole circumference at once—but the proceed-
ing suggested will, on trial, be found far more satisfactory.

It is to be admitted that the combination in Fig. 53 is
not particularly suitable for use in a shaping machine; but
it is given as one of various methods of producing the
required motion,—and moreover, combinations essentially
the same in principle have been practically employed in
various forms of hot air and gas engines, with very satis-
factory results.

70. Thus far in determining the motion of a piece driven
by a lever through the intervention of a connecting-rod. or
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link, we have adhered to the direct process, by means of the
longitudinal component of the motion of the driving point,
because the reasoning is clear and simple, and perfect famil-
iarity with that method is essential. We now proceed to
explain one or two other methods, which in some cases are
more expeditious, although the reason why they are correct
is not by any means so obvious.

Fig. 54 shows the crank and connecting-rod of a direct-
acting steam-engine, the cross-head pin O travelling in the
horizontal line OC. At C erect the vertical line QX, and
produce the line of the connecting-rod GF, it necessary, to
cut CX in the point 4. Then, if the velocity of Pis repre-
sented by a line equal to CP, the velocity of O will be repre-
sented by a line equal to CA4.

For, setting off PM perpendicular and equal to ~C, and
drawing MB perpendicular to P4, and PB perpendicular to
CA, the triangle PAC is similar and equal to the triangle
PMB. And it has already been shown that if P/ is the
velocity of P, PB is equal to the velocity of O; and CA4 is
equal to PB. -

If for any reason it is desirable to represent the velocity
of the crank-pin by a line greater or less than CP, as for
instance CL, it will now be obvious that, drawing LX par-
allel to OP, we shall have CK equal to the velocity of the
cross-head pin,

71. Fig. 55 also represents the crank and connecting-rod
of a direct-acting engine. In this construction, PR, the
velocity of the crank-pin, of any magnitude at pleasure, is
- set off on the prolongation of CP; draw through R a par-
allel to PO, cutting at T a vertical line through O, then OT
is equal to the velocity of O. For, first setting off as before
PM perpendicular to PC and equal to PR, draw PQ parallel
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and equal to O7, MB perpendicular to RQ, and PB perpen-
dicular to PQ. Then the triangles PMB, PR(Q, are similar
and equal, and we have PQ = OT, = PB.

If we lay off the velocity CL from the centre C, and

FiG. 55.

FiG. 56.

draw LXK parallel to PO, cutting the vertical through C in
K, the triangles CLK, PRQ, are similar, so that CK will be
the velocity of O, as in Fig. 54.
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72. In Fig. 56 we have two levers DP, CO, connected by
a link PO. The construction here is analogous to that of
the preceding figure; setting off PR, the assigned velocity
of P, on the prolongation of DP, draw through R a parallel
to PO, cutting the prolongation of CO in the point 7: then
OT is the velocity of O. And the demonstration is also the
same as before; for drawing PM, = PR, perpendicular to
DP, draw also PQ equal and parallel to O7, MB per-
pendicular to RQ, and PB perpendicular to PQ; we have
then, by reason of the two similar and equal triangles,
PQ =0T, = PB.

In order to save the reader the annoyance of referring
to preceding diagrams, we have in Fig. 56 repeated all the
steps of the direct determination; thus, PF is the absolute
longitudinal component of PM, and OF is equal to PF; ON,
the resultant motion of O, is perpendicular to €O, and is
limited by drawing EN perpendicular to PO. Then, the
triangles OEN, PFB, being similar and equal, we have
PB = ON.

And thus we see that the simplest demonstration that
the expeditive processes are correct, is made by proving
that they give results concordant with those of the original
direct method.

73. We have already explained and illustrated the rep-
resentation of varying angular velocity, in the case of a
crank rotating continuously in the same direction. That is
no doubt the case in which such a representation is most
striking and most readily understood; but the same meth.
ods of construction are equally applicable in the case of the
circular reciprocation of a vibrating lever, although the
result does not appeal so directly to the eye, and the dia-
gram is not quite so easily read.
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To illustrate, we give in Fig. 57 a skeleton of the “ crank
and slotted arm” movement, like that in Fig. 48; and in
Fig. 58, a time-diagram of the angular velocity of the vibrat-
ing arm AC. The slotted arm 4C moves from the position
CE to the position CF while the pin P of the driving crank
travels through the arc £ZF, and back again while the crank-
pin describes the remaining arc of the circumference, F£;
in this instance the former arc is twice the latter,—that is, if
used in a shaping machine, the time of the advance will be
twice that of the return: consequently, in Fig. 58 we make

M N
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FiG. 57. F1G. 58.

HQ = 2Q7T. In Fig. 57is shown the process of determining
one ordinate of the required curve. Since angular velocity
= linear velocity of a point at unit distance from the centre,
the first step is to describe about € an arc BG with radius
CB = DE. In this particular case this arc will be tangent
to the arc E£F, because £DC = 60°, whence CD = 2DE. ‘
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74. Now, when the driving crank is in any position as
DP, assign to P any velocity as PO ; the component PL per- -
pendicular to PC is the velocity of the point P on PC.
Then, PC cuts the arc BG at /; and /X, perpendicular to PC
and limited by LC, is the value of the ordinate sought.
Then, in Fig. 58, divide #Q so that

Hi:7Q :: arc EP:arc PZF,

and set up the ordinate £ equal to /7K.

Now, making A M = PO = constant velocity P, the rec-
tangle /AN represents the space traversed by the crank in
the time AQ, which is the arc £ZF; and the area of the
curve HJQ represents the space traversed by the point B
in the same time, or the arc BG, =3} EZF: therefore the
area of the rectangle should be four times that of the curve.
On the return stroke, the ordinates are negative, QR is
equal to PO, and since GB = § FE, the area of the curve
QVT is half that of the rectangle OS.

It is hardly necessary to point out that the curves A/Q,
QVT, are symmetrical about their central ordinates /W,
UV, so that itis only necessary to determine the ordinates
for one half of each.

75. At the outset, a * velocity diagram ” was defined as a
curve whose abscissas represent Zimes, while the ordinates
represent the velocities, linear or angular, of a moving
point at the instants indicated by the feet of the ordinates.

This is what is distinctively called a “ velocity-time ” dia-
gram, and attention has purposely been thus far confined to
it alone, because we consider it to be the most explanatory,
and most generally useful, method of graphically exhibiting
the phenomena of varied motion: but it is not by any
means the only method.
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In Fig. 59, we have shown a skeleton of the “ Whit-
worth Motion ” (Fig. 50); DP is the driving crank, CA4 the
slotted arm, 4B the link, BC the line of travel. Assign to
P any velocity at pleasure, determine from that the linear
velocity of B, and set down, perpendicular to the line of
travel, the ordinate B2’ equal to that velocity. Do the
same for as many different positions of the crank and arm
as may be deemed necessary, and draw a curve through the
extremities of the ordinates, for both the advance and the
return. This curve is technically called a velocity-space dia-
gram, and the ordinates of course show the velocity of B in
its different positions.

These same ordinates, it is clear, are the ones used in
constructing the “ velocity-time ” diagram, Fig. 6o: in the
former the abscissas represent varying distances traversed,
in the latter they represent the equal times of traversing
them.

76. As a matter of interest, we give in Fig. 61 the angu-
lar velocity-time diagram for the same movement ; in which
AM is the constant angular velocity of 2, and the curve
UVW represents the varying angular velocity of 4.

It is obvious from inspection of Fig. 59 that the mini-
mum velocity 4 U will be reached when both the crank and
the slotted arm are on the vertical line and pointing up-
ward ; and the maximum, ZV, after a half revolution from
that position, when both point downward. The ordinates
of the curve are numbered to correspond with the subdivi-
sions of the circles of Fig. 59; and it is to be noted that
the curve crosses the horizontal line A7V at the point
X, coincident with the ordinate 8-8, at which instant
the slotted arm is horizontal.

The ratio of the time of advance to the time of return
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is, in this particular case, two to one; but it is of interest
to observe that the above coincidence

will occur, whatever the ratio. This B
may be demonstrated by the aid of
Fig. 62, where PB is the assigned a

PN

velocity of P, PF the component —(
effective in driving C4, and AR the re-
sultant velocity of 4. We have then, < oA
PF:PC:: PB:PD,= CA,
.*.PF.CA=PC.PB;
also, B

2
PC:CA :: PF: AR, \R
. PC.AR = PF.Cid, = PC. PB, Fic. 62.
whence, AR=PB.... ....... 0. E. D.

77. Varying velocity may also be represented by a curve
drawn through the extremities of lines of different lengths
radiating from one central point, forming what is called a
polar velocity diagram. Thus in Fig. 63, the circle repre-
sents the path of the pin 4 in Fig. 59; its circumference is
similarly subdivided, and on the radii are set off the corre-
sponding angular velocities, taken from Fig. 61. The re-
sulting curve, then, serves to show the angular velocity of
the slotted arm in any given position.

In Fig. 64,the circle represents also the path of 4 in Fig.
59, but it is divided into equal parts like the path of 2 in
that figure. The distances set off on the radii are the same
as in Fig. 63, and the polar diagram exhibits the angular
velocities of the slotted arm at equal intervals of time.
And it is quite obvious that similar diagrams could be made
to represent the /Zznear velocities of 4 at different points, or
at different times.
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78. Fig. 65 represents the crank, link, and vibrating lever
movement that was given in Fig. 53 as one means of pro-

F1c. 63. F1a. 64.

Fic. 6s.

ducing aslow advance and quick return motion. The linear
velocities of B in its different positions are laid off from the
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arc /G upon lines radiating from C, so that the resulting
curve is in effect a modified velocity-space diagram in which
the line of abscissas is a circular arc instead of a right line.

These velocities, as shown, are determined by the
method of Fig. 56; and this figure incidentally shows
another demonstration that the method is correct. For,
when the parts are in the positions drawn in heavy lines, O
is the instantaneous axis of the link ; consequently, linear
velocity A : linear velocity B::0A4 : 0B; and the triangles
OAB, 03’3/, are similar.

79. Still another mode of representing varied motion is
shown in Fig. 66, the movement being merely the crank,
connecting-rod, and cross-head, of a direct-acting engine.

— ]

>
o
=(
-2

F1c. 66.

The circular path of the crank-pin is divided into equal
parts at 1, 2, 3, etc., which represent equal intervals of time ;
and on the radii through these points are set out from the
centre, the velocities of the cross-head pin at the corre-
sponding instants : and the curve determined by these points

on the radii is for some occult reason designated as a polar
| velocity-time diagram of the motion of the cross-head pin.
The linear velocity of the crank-pin being here represented
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by a line equal in length to the crank, the required veloc-
ities are, as is obvious on inspection, determined by the
method of Fig. 54.

But it must be admitted that this diagram does not so
instantly appeal to the eye, or explain its own message so
clearly, as those do in which the radial ordinates, as in
Figs. 63 and 64, indicate the velocities of the radii them-
selves in circular movement.

80. The utility of velocity diagrams is nowhere more
conspicuous than in comparing the actions of different com-
binations which effect the same result.

For example, Fig. 67 is the skeleton of an oscillating
engine, with the trunnions at the end of the cylinder; in
Fig. 68 the trunnions are placed at the middle of the length
of the cylinder ; and Fig. 69 is the common crank and con-
necting-rod movement: the lengths of all the cranks are
equal. Supposing the rotative velocity to be also the same,
it is of interest to compare the piston speeds with each
other, and also with the piston speed of another engine
having an infinite connecting-rod, or slotted cross-head, of
which no skeleton is given.

The velocity-time diagrams of these four arrangements,
for one stroke from left to right, are given in Fig. 70.
That for the engine with the infinite connecting-rod is the
curve marked A4 ; this, being a perfect sinusoid, is symmet-
rical about its central ordinate @, which is also the maximum,
and equal to the constant velocity of the crank-pin; the
crank-arm being at that instant vertical.

81. Curve No. 1 shows the piston speed of the oscillating
engine of Fig. 67; the maximum ordinate ¢, is equal to a,
but since this corresponds to that phase of the movement
when the piston rod is tangent to the path of the crank-pin.
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which does not occur until after the crank has passed the
vertical line, this ordinate is some distance to the right of a.

The engine of Fig. 68 gives curve No. 2; this is quite
similar to No. 1, but its maximum ordinate, 4, is still further

N2 _ .-
zIN

-\

\z
7IN

to the right—the reason for which is quite apparent from a
comparison of the two movements.

The engine of Fig. 69 gives the curve No. 3, which is
strikingly different from either of the others, in having zwo
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ordinates, @ and 4, which are equal to the velocity of the
crank-pin: the maximum ordinate lies somewhere between
these two, but there is no geometric process knownfor de-
termining its exact location. If, however, as in the figure
we find by trial and error the centre o of a circle which sen-
sibly agrees with the curve for a reasonable distance in the
region of the vertex, a vertical ordinate £ through the cen-
tre will, it is safe to say, be as near to the precise position
as is necessary for any practical purposes. Then the dis-

Fi1G. 70.

tance between @ and £ will be a certain fraction of the half-
length of the line of abscissas; and if the same fraction of
the quadrant be set off to the right from the vertical line in
Fig. 69, the phase of the movement at which the piston has
the maximum velocity will be practically determined.

But the phases of the movement at which the piston
speed is equal to the crank speed, can be graphically deter-
mined in a very simple manner.
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82. Thus in Fig. 71, the crank C4 is vertical. 4B isthe
connecting rod, AM the velocity of A4,s.nd Am the longi-
tudinal component, to which Bz must be equal. Drawing
nNV perpendicular to 45, it is evident that the two triangles
AmM, BnN, are similar and equal, so that BNV =AM, And
this accounts for the fact that in Fig 70, curve No. 3 cuts
curve 4 at the extremity of ordinate ¢ ; the crank being ver-
tical in both cases. In order to avoid confusion, the other
phase is shown &elow the horizontal centre line in Fig. 71;

Fic. 71.

the relative positions of the parts being such that the pro-
longation of the connecting-rod F£ shall pass through D, the
lowest point of the path of the crank-pin. Let £G, perpen-
dicular to CE, be the velocity of the crank-pin; draw GH
perpendicular to FED, also E/ parallel to the path of Fand
consequently perpendicular to CD, then £H will be the ve-
locity of 7. But by the construction the triangles CED, GEH,
are similar ; and since CE = CD, it follows that HE = EG.
Now, if the ]engths‘ of the crank CE and the connecting-
rod EF are assigned, there is no geometrical method of
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locating £ or F. But the locations of both pcints may be
determined with great accuracy, by marking on the edge
of a straight slip of paper, two points indicating the length
of EF. Then, moving this slip around so that the point £
shall always lie on the crank-path, while the edge of the slip
passes through D, mark the corresponding location of F for
a number of positions of £. The points thus marked deter-
mine a curve zy, which cuts the line of travel in the point F;
and an arc about this point as centre, with radius equal to
the given length of the connecting-rod, intersects the path
of the crank-pin at the required point £, determining the
corresponding position CE of the crank.

Now, the differences between the results of these four
arrangements are very decided, and of no small interest ; and
it is safe to say that these differences can be more readily
compared, and are made more conspicuous, by the dia-
grams in Fig. 70, than they could be by any other means
whatever.

83. As another example, let us consider the two slow
advance and quick return motions shown in Figs. 72 and 73.
The first is the Whitworth movement, which has already
been described ; the second was devised by the writer, with
a view of avoiding the sliding in the slotted arm of the
former. In order to do this, the two cranks are connected
by a short link 4B; and the method of construction is
shown in Fig. 74. '

Describe about D a circle with radius D2 the length of
the driving crank, and divide its circumference so that the
arc BMF shall be to the remainder of the circumference as
the time of the return is to the time of the advance; draw
BF, and bisect it by a perpendicular, which locates the
fixed centre C. Next draw the link B4 parallel to CD;
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the length of this link may be varied within narrow limits,
but must always be greater than MV and less than MO;
and finally draw A4C, the driven crank. If now we suppose
the driver to turn in the direction of the arrow, it will be
seen that while B describes the arc BMF, A will have been
driven through the arc ANE, or 180° the two cranks then
having the positions DF, CE; and that in order to make 4
describe the other semicircumference and return to its
original position, B must travel through the remaining
portion FER of its own path.

This combination, clearly, is the well-known drag link;

FiG. 75.

but we have never met with any suggestion of using it for
this particular purpose. In so applying it, the diameter
ACE must, evidently, be the line of travel of the remote
extremity of the link which moves the tool-holder, as
shown in Fig. 73.

Now, these two movements have been drawn on the
same scale, and constructed to have the same proportion be-
tween the times of advance and return ; and there is a pro-
nounced difference between the velocity-space diagrams.
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But the most interesting and valuable comparison is that
between the velocity-time diagrams, which, drawn on a
larger scale, are in Fig. 75 shown as superposed; the line
of abscissas, and the scale of the ordinates, being the same
for each, exactly as in Fig. 7o0.

84. Again, comparisons between angular velocities may
be advantageously made in the same manner. When one
rotating piece has a constant angular velocity, this fact has
already been illustrated (see Figs. 47, 58, 61). But in Fig.
76, the two equal reciprocating levers, BC and EF, both
move with varying angular velocities; and it may be de-
sirable to compare their variations.

The driving crank 4D actuates the lever B2C by means

Fi1G. 76.

of the link AB, thus causing B to traverse the arc /H,
exactly as in Figs. 51 and 63; and BC actuates £F by means
of another link BE. These two levers were made of the
same length, it may be stated, simply to lessen the labor of
construction; for taking that length as unity, the linear
velocities of B and £ at once represent their angular veloci-
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ties. And the values of these velocities are the ordinates
of the two curves shown in Fig. 77, the one drawn in the
heavy line relating to the lever BC, and the other to the
lever EF; the area of the latter, it is seen, is the greater, as
it obviously should be, since the arc KL is greater than /.

Fi1G. 77.

85. Now, if we divide the ordinates of one curve by
those of the other in their order, we obtain a series of frac-
tions ; each of these has a numerical value, which is either
equal to, or greater or less than, unity, and expresses the
value of the velocity ratio at the corresponding instant.
And by setting up ordinates with these values, we may
construct a curve exhibiting the variations of the angular
velocity ratio. By inspection of Fig. 77, it will be seen that
the value of this ratio will be unity where the curves in-
tersect, as at 6 on the right and at 3 on the left, since there
the ordinate is the same for each.

And since these ordinates become more nearly equal as
‘we approach the zero points, it is clear that unity is the
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C . o .
limiting value when the ratio becomes Srasit does when

the driving crank in Fig. 76 is on the dead centres.

In the nature of things a ratio conveys no idea of direc-
tion, 50 that 1n constructing such a curve the ordinates may
all be set up on the same side of the line of abscissas, thus
requiring but one line for unity value; and this has been
done in Fig. 78, in which the line of abscissas is equal in

ANGULAR VELOCITY RATIO DIAGRAM

8 7 6 5 4 3 2 108 7 6 5 4 3 2 1
Fic. 78.

length to that in Fig. 77, and subdivided in the same
manner. :

The values ot the ordinates were obtained by dividing
those of the curve aaa in Fig. 77, by those of the curve 464;
but 1t 1s proper to state that all this work has been done
upon a small scale, and for illustrative purposes only, and of
course the results are by no means to be regarded as equal
in accuracy to those exhibited in many of the preceding
diagrams

This then shows that variable velocity ratios may be
graphically represented by a curve. But a ratio is essen-
tially a compound idea; and though its value at any instant
may be represented by the ordinate of a curve, as in Fig. 78,
such a curve conveys no idea of the actual velocities which
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determine that value. Of the two, then, Fig. 77 is far more
explanatory and withal more readily understood, since both
terms of the fraction are shown at the same time and on the
same ordinate. Still, there may be cases in which a com-
parison of variations in angular velocity ratio might be
desirable ; and then the construction shown in Fig. 78 may
prove to be of great utility.

ACCELERATION.

86. We pass now to the consideration of some graphical
operations which, while not directly connected with the
construction of velocity diagrams as heretofore considered,
are nevertheless closely related toit,and are of at least equal
interest.

In Fig. 79, mark on the line of abscissas, beginning at
zero on the left, the equidistant points 7, 2, 3, etc., each rep-
resenting an instant; then the spaces between them will
represent equal periods of time. Set up at 7 an ordinate za,
representing on any convenient scale the distance traversed
by a moving point during the first period. Let the distance
traversed during the first two periods be represented by an
ordinate 254, twice as great as za. At the end of three
periods, let the distance be three times as great, at the end
of four, four times as great, as indicated by the ordinates
3¢, 4d,and so on. It will then be obvious that the line
drawn through the points g, 4, ¢, 4, etc., will be a right line
passing through the zero point; and also, that the difference
between any two ordinates will represent the distance trav-
ersed by the moving point during the intervening period
—thus, 4d—zra = kd, the distance traversed during three of
the equal periods first set oft. Similarly, drawing through
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¢ the horizontal line ce, we have de as the space traversed in
space
time
velocity at the instant 3; and if we regard ce as a unit of
time, de itself will be equal to the velocity ; and accordingly
34’ is set up equal to de. In this case the velocity is clearly
uniform—and may accordingly be represented by a hori-
zontal line through &'; as it is quite obvious that for any

¢

the time ce, and since

. de
= velocity, 5 represents the

L/
. SPACE
ettt oomy
S TIME
&
b
k a g ' ih
0 1 2 3 4
e
F1G. 79.

other instant, as for instance z, the same process will give
for the velocity, bﬁ = é'
“ag ce

The line drawn through the extremities of the ordinates

(in this case ad) may properly be called the Zine of displace.
ment ; and it is straight because the differences between suc-
cessive equidistant ordinates are equal. Had they been un-
equal, that line would have been a curve; as for example zy;
and let us suppose the conditions to be such that zy is tan-
gent to ad at the point ¢. The velocity of the moving point
at the instant 3, being measured by the distance which it
would travel in a unit of time if that velocity were uniform,
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would clearly be the same as that just determined. And
had that curve of displacement been assigned, the velocity
at that instant would be ascertained by erecting an ordinate
cutting the curve at ¢, drawing through that pointa tangent
line and also a horizontal line of a length ce representing the
unit of time, and erecting the vertical line ed.

87. To illustrate a practical application of this process,
let us take the crank and connecting-rod movement of Fig.
80; supposing the rotation to be uniform, the circumference
is divided into equal parts, and the corresponding positions
of the cross-head pin are determined as usual. Then the
distances o1, 02, 03, etc., are set up as ordinates at the equi-
distant points 7, 2, 3, etc., in Fig. 81, the spaces between
them representing equal times; and thus we construct the
time displacement curve as shown. The velocity at ¢ is
determined as above explained, and the same process being
repeated for the other instants, we have a velocity diagram,
derived from the curve of displacement; the whole process
being entirely different from anything previously described.
And setting up the ordinates of this curve at the corre-
spondingly numbered positions in Fig. 8o, we can construct
the velocity-space diagram.

Now in order to test the accuracy of this new method
by comparing it with the old, we must know the circumfer-
ential velocity of the crank-pin; this is found by means of
the fact that, as has previously been shown, it is equal to
that of the cross-head pin when the crank is vertical, that is
to say, to the ordinate 3-3. Applying this test, the results
of the two methods were found to be identical, in this case :
but so happy a coincidence is not always to be looked for,
since the new process depends upon the accurate drawing
of a series of tangents, which in dealing with a curve of
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unknown geometrical properties is sometimes quite a diffi-
cult, not to say an uncertain task; particularly if the curve
is very flat.

88. As to the theoretical correctness of this process,
however, the argument given in connection with Fig. 79
would appear conclusive; but corroborative evidence is
found by its application to a displacement curve of known
properties, to which the tangent can be drawn by geometri-
cal construction; of which Fig. 82 is a good exémple. In
order to give the diagram a more convenient form, the
times are set up on the vertical line, as at 7, 2, 3, etc., and
the corresponding spaces, as 7z, ¢, 9, etc., are laid off on the
horizontal line, and the time-unit is four times the space-
unit. Since the spaces are proportional to the squares of
the times, the displacement curve is a parabola, of which F
is the vertex and the horizontal line through Fis the axis;
the tangent to which at any point is most conveniently
drawn by aid of the property that the subtangent is bisected
at the vertex. To draw the tangent at A, then, set off
FG = Fr6, and draw GA. By the same process as in

Fig. 81, then, we have g% as the value of the velocity at

the instant ¢, and B4 being unity, we set off za = BC.

Now to find the numerical value of BC, we have by
, gg: ﬁ:—g,or%‘= %, whence BC = 8.
If this process be repeated, we shall find in a similar man-
ner that the velocities at the instants z, 2, 3, etc., are re-
spectively 2, ¢, 6, etc, showing that the velocity diagram
is a straight line, and agreeing with the well known law o
falling bodies, that the velocity varies directly with the
time, and the space with the square of the time.

similar triangles
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89. Now, just as the difference between two consecutive
ordinates of the displacement curve indicates the velocity
(or the rate at which the displacement is changing), so the
difference between two consecutive ordinates of the velocity
curve indicates the acceleration, or rate at which the
velocity is changing. And by applying to the latter curve
the same process that was applied to the former, we may
determine an acceleration curve as in Fig. 81, exhibiting
this rate of change at each instant of the motion. Thus KP
is tangent to the velocity curve at X, through which point

the horizontal line KZ is drawn, and % represents the ac-

celeration at the instant 5; since KZ = unit time, the ordi-
nate 5-5 is made equal to LZP. But it is measured down-
ward from the line of abscissas, because P is below the
horizontal KL, indicating that the velocity is undergoing
retardation; which it obviously must be, since the maxi.
mum velocity was reached between the instants 3 and 4.

In Fig. 82, the time-velocity is represented by a right
line, and as in Fig. 79, the application of this process will
produce another right line, parallel to the axis on which
the times are measured. The distance of this line of ac-
celeration may be found thus: By similar triangles we have

D, b . .
_Z% = F;’ or jtf = ;_g, whence éc = 2 ; which accords with

the other law of falling bodies, that the acceleration is con-
stant, and equal to the velocity acquired at the end of the
first instant, counting from the state of rest as zero.

90. This process may be and has been described as one
of graphical differentiation; and correctly, too; for the ratio

%—, in Fig. 81, will remain the same, no matter how short
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AM may be, and when 4 and M become consecutive, the

WUN . .
fraction ‘%[1—”— will become, in the language of the calculus,

d . . .
merely d%c, , or the first differential coefficient of the curve

of displacement, from which the velocity curve is derived
by differentiation.

PL . .
And similarly, RL representing the first differential

coefficient of the second curve, represents also the second
differential coefficient of the original one. But the explana-
tion given in connection with Fig. 79 will, we think, make
the matter clear to those not familiar with the language of
analysis. '

It is to be observed that in Fig. 81, the final ordinate 66
of the acceleration curve is equal to TR, to obtain which a
tangent P7 is drawn to the curve at its extremity, and 6R is
set off equal to the unit of time. Also, P7 makes a greater
angle with the horizontal, than any other tangent which
slopes downward toward the right; and of those which
slope downward toward the left, the greatest angle is made
by the tangent at the zero point. Consequently, the maxi-
mum ordinates of acceleration and retardation respectively,
correspond to the beginning and the end of the stroke;
which is clearly as it should be in this case.

91. But it is by no means true in all cases; a good illus-
tration of this is given in Fig. 83, where the velocity curve
" of a Whitworth movement.
Here it is evident that the inclination of the curve to the

is that of the “quick return’

horizontal (which is measured by that of its tangent), in-
creases as we recede from the zero point, untii the point of
contrary flexure is reached, when it reaches its maximum,
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and so does the ordinate of the curve of acceleration.
When the velocity is at a maximum, it is clear that the
acceleration will be nil; the tangent is at that instant hori-

-
o
=
=
=)

-

zontal, and after that it will slope downward to the right:
and similar reasoning to the above applies to the negative
acceleration, or retardation.

Since the motion begins at zero and ends at zero, it is
clear that the retardation and the acceleration must exactly
balance, so that the area of that part of the curve above the
line of abscissas should be equal to the area of the part
below.

F1G. 83.
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