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PREFACE

These Notes form the substance of a course of lectures in

Practical Astronomy and Geodesy given to students of the

Third Year in Civil Engineering of the Faculty of Applied
Science . and Engineering of the University of Toronto.

These lectures are only designed to meet the requirements of

the engineer or land surveyor in his ordinary practice, or

those of the explorer wishing to determine his position in an
unsettled country, and therefore barely touch upon the precise
methods of the geodetic surveyor. The subjects treated,

however, and the methods of treatment, are fundamental;
so that the course serves as a useful introduction for those

who desire to extend their studies to the higher parts of the

subject.

LOUIS B. STEWART.





NOTES ON PRACTICAL ASTRONOMY
AND GEODESY.

PRACTICAL ASTRONOMY.
In these notes it is proposed to set forth in outline the most

useful methods for determining positions and directions on the

surface of the earth. It is assumed that the observer is provided

with an engineer's transit, or a nautical sextant, so that the

methods described are only such as are adapted to the use of

those instruments. More precise methods, necessitating instru-

ments of the highest class, are therefore entirely omitted, or but

briefly referred to.

1. Spherical Co-ordinates. Solution of the Astro-
nomical Triangle.

Determination of the position of a point.

Fig. J

In Fig. 1 CAO and ABO are fixed planes of reference;

is the point of observation. The direction of the line OS
is determined when the angles AOB and BOS are known;
also when the spherical angle ACS and the arc CS are known.

Planes of reference
The planes of reference used in astronomy are those of the

equator, the ecliptic, the meridian, and the horizon.

The plane of the equator is that of the earth's equator.
As the direction of the earth's axis is nearly fixed in space,

being subject only to slow changes of direction due to pre-
cession and nutation, therefore the plane of the equator is,

nearly a fixed plane.
The plane of the ecliptic is the plane of the earth's orbit.



The plane of the observer's meridian is a plane determined

by the earth's axis and the point of observation.
The plane of the horizon is a tangent plane to the earth's

surface i.e., to the surface of standing water at the point
of observation. It is therefore perpendicular to the observer's

plumb line.

The celestial sphere
This is an imaginary sphere of infinite extent, whose centre

is coincident with the centre of the earth. Upon its surface

the heavenly bodies may be assumed to be, as they apparently
are, set like brilliants.

The reference planes above denned are assumed to be

produced to intersect this sphere in great circles. The plane
of the horizon, as above denned, may be assumed to intersect

the sphere in the same circle as that determined by a parallel

plane through the earth's centre, owing to the infinite extent

of the celestial sphere.

Fie.2

Fig. 2 shews a projection of the celestial sphere on the

plane of the meridian, the reference circles being represented.
Thus

PZHR is the meridian,
EFR the equator, or equinoctial,
HDN the horizon.



The ecliptic is not shewn, but V is a point in which it

intersects the equator.
If S now be the position of a star (by that term denoting

any heavenly body), and secondaries ZSD and PSF to the

horizon and equator respectively be drawn through it, these

arcs, with the meridian PZ, form a spherical triangle PZS,
which, from its frequent use in the solution of astronomical

problems, is termed the astronomical triangle.

Definitions

The circle ZSD is a vertical circle; PSF a declination or

hour circle. P is the celestial pole; Z the zenith. SD is the

altitude of S; ZS its zenith distance; SF its declination; PS its

polar distance; the angle PZS its azimuth; and ZPS its hour

angle. PSZ is generally called the parallactic angle.

As the observer's latitude is the angle between the direction

of the plumb line at the place of observation and the plane
of the equator, it follows that the latitude is the angle ZOE
or the arc ZE. This is also equal to the arc PN.
The following notation will be used:

h denotes the altitude SD of 5.
"

denotes the zeiith distance ZS.
8 demotes the declination SF.

p denotes the polar distance PS.
t denotes the hour angle ZPS.
A denotes the azimuth PZS.
C denotes the parallactic angle.

<t> denotes the observer's latitude EZ or PN.
a denotes the right ascension VEF.

Systems of Spherical Co-ordinates.

1st system Altitude and azimuth.
The arcs SD and DN serve to determine the position of 5

with reference to the horizon and the meridian.

A small circle parallel to the horizon is termed an almu-

cantar.

A vertical circle is a great circle perpendicular to the

horizon.

The prime vertical is that vertical circle which passes

through the east and west points of the horizon.

2nd system Declination and hour angle.
The arcs SF and FE determine the position of S with

reference to the equator and the meridian.

A parallel of declination is a small circle parallel to the

equator.

3rd system Declination and right ascension.



The planes of the equator and the ecliptic intersect in a

right line called the line of the equinoxes. This line inter-

sects the sphere in the vernal and autumnal equinoxes.
The vernal equinox is the point through which the sun

passes in going from the south to the north side of the equator;
it is shewn at V, Fig. 2.

The equinoctial colure is the declination circle passing
through the equinoxes. The solstitial colure is the declination
circle passing through the solstices the points of greatest
north and south declination on the ecliptic. It is therefore
at right angles to the equinoctial colure.

The co-ordinates in this system are the arcs SF and FV.

4th system Celestial latitude and longitude.

V

Fig.3

In Fig. 3 VEAR is the equator, VHAK the ecliptic, VA
the line of the equinoxes, VPA the equinoctial colure, and
EPR the solstitial colure.

The co-ordinates in this system are SG, the latitude of S,

and GV the longitude. These are denoted by /3 and X respec-

tively.
In the first system the co-ordinates change continually

and irregularly on account of the diurnal rotation of the earth.

In the second system the declination is unchanged by that

rotation, and the hour angle changes uniformly with the time.

In the third and fourth systems the co-ordinates are unchanged

by the diurnal rotation.



The third system of co-ordinates is for this reason used in

the construction of ephemerides.
Although unchanged by the diurnal rotation, the co-ordi-

nates of the third and fourth systems are changing continually

though slowly on account of precession and nutation.

Solution of the Astronomical Triangle.

(1) Given the altitude and azimuth of a star, and the latitude

of the place, to find the star's declination and hour angle.

Fie. 4
If we denote the angular points of the astronomical triangle

ZP and Shy AB and C, respectively, then in Fig. 4 we have

given
A=A, 6 = 90-/z, c = 9O-0;

and it is required to find

a = 90 -5, and B = t.

These are given by the first of (1) and (5), Sph. Trig., p. 69
which become

sin 5 = sin h sin 0+cos h cos cos A.
sin A cot t = cos tan h sin cos A.

The first of these may be written

sin 5 = sin h (sin 0+cot h cos cos A)
Then introducing the auxiliary such that

tan = cot h cos A (1)
it becomes

sin 5 = sin h (sin^-fcos < tan 6)

_
sin h sin (0+0) (2)

COS0

The second equation may be written

sin A
tan t =

cos
<f>
tan h sin

cf> cosA
sin A

tan h(cos <j> sin </> cot h cos A)
sin A

tan h(cos sin tan 0)

sin A cos

tan h cos(0+0)



Eliminating tan h by (1) this becomes

tan A sin (3)
tan T =

(j. i a\
COs(0+ 0)

Equations (1), (2) and (3) give the solution.

(2) Given the declination and hour angle of a star, and
the latitude of the place, to find the altitude and azimuth of

the star.

In the spherical triangle, Fig. 4, we have given
a = 90-8, c = 90-<t>, and = r

and b =90-handA
are required. These are given by the second equations of (1)

and (5), Sph. Trig., which become
sin h = sm 8 sin 0+cos 5 cos < cos t

sin t cot A = cos tan 8 sin <f> cos t

These may be written
sin h = sin 6 (sin < + cos 4> cot 8 cos t)

. sin t
tan A =

r? 1 = i Ti ^tan 5(cos sin
<f>

cot 5 cos t)

Then substituting cot Q\ = cot 8 cos t (4)

they become
. , sin 5 cos(0i </>) (5)

sin h = r
sin 0i

sin t sin B\
tan .4 =

tan 8 sin (0i 0)

Then eliminating tan 5 from this last by (4) it becomes
. tan t cos 0i

tan A =
sin^-0) (6)

0i being given by the equation
tan 8 (7)

tan 0i =
COS T

These two problems serve for the transformation from the

first system of co-ordinates to the second; and conversely.

(3) Given the altitude and declination of a star, and the

latitude of the place, to find the azimuth and hour angle.
In this case we have given

a = 90-5, b = 90-h, and c = 90-<f>
and are required to find

A =A, and B = t

These are given by the first and second of either set of

equations (6), (7) or (8), Sph. Trig. In these equations we
have

s =Ka+&+c) =9O-K0+5-r)
s-a =$(-c+6+c)= Kr+5-0)



s-b = \(a-b+c) =90-i(r+<+5)
sc = (a+b-c) = Kf+0-8)

so that on substituting 5' = |(f+0+5) they become

sin2 \A =



and are required to find

B = t, and b = 90-h.
The first of these is given by the second of (5), Sph. Trig.,

which becomes
sin t cot A = cos 4> tan 5 sin

<j>
cos t

or sin r cot A-\~ sin (f> cos r = cos <f> tan 5

which may be thus transformed:
cot A (sin r+ tan A sin < cos t) =cos tan 5

or, substituting tan 2
= tanVl sin

<f> (16)

this becomes
cot A sin(r+02) . s

;
= cos <b tan 5

cos 02

or, transposing
sin(T+02 ) =cos 4> tan 8 cos 2 tan A

Then eliminating tan A by (16) we have

sin(r-|-02 ) =cot <f> tan 5 sin 0j (17)

Equations (16) and (17) determine r.

We may now find h by applying one of equations (3),

Sph. Trig., to the astronomical triangle, which gives

7 sin t cos 5 (18)
cos h = ;

-
A

sin A
We may also find h directly from the data by means of

the first of (1), Sph. Trig., which gives
sin 8 = sin h sin 0+cos h cos <j>

cos A ;

which may be written
sin 8 = sin </>(sin h-\-cos h cot <j>

cos A);
in which substituting

cot 3
= cot (f>

cos A
we have

sin 8= sin <(sin &+ cos h cot 03)

sin <f> cos(h 63)

(19)

Also . tan <j> (20)
tan 3

=
-.

cos A

(6) To find the altitude, hour angle, and azimuth of a

circumpolar star when at elongation, or maximum azimuth.

It is assumed that the latitude of the place is known.

When a star is at elongation the angle C, Fig. 4, is a right

angle, and the solution is given by equations (26), (28) and

(27), Sph. Trig., which become

.
7 sin<*> tan* . A cos 8 (21), (22), (23)

sin h= . r, cos t= r, sin A =
.

sin 8 tan 8 cos *



(7) To find the altitude and hour angle of a star when on

the prime vertical.

Here the azimuth A is equal to 90, and it is assumed

that 4> and 8 are given. Then applying equations (26) and

(28), Sph. Trig., we find

tan 5 . ,
sin 5 (24), (25 j

COS T =
tan $

sin h =
sin <f>

(8) Given the right ascension and declination of a star,

and the obliquity of the ecliptic, to find the latitude and

longitude of the star.

In the triangle PP'S, Fig. 3,

PS = 90 -5 P'S =90-P
SPP' = 90 + a SP'P = 90-X
PP' = t

and we have by equations (1), (4)and (3), Sph. Trig.,

sin /3
= sin 8 cos e cos 5 sin e sin a

cos /3 sin X = sin 8 sin e+cos 8 cos e sin a

cos 13 cos X = cos 5 cos a

Then substituting
m sin M= sin 5

m cos M= cos 5 sin a

they become
sin /3

=m sin (Jlf e)

cos /3 sin X =m cos(Af c)

These may be written

}

(26)

(27)

(28)

(29;

tan M= tan 5

sin a

. sin 5 sin(M e)
sin /3

= = ,jsin M
tan a cos(Af e)

tan X =

(30)

cos M
The quadrant in which M is situated is determined by

equations (27), m being assumed always positive.

(9) Given the latitude and longitude of a star, and the

obliquity of the ecliptic, to find the right ascension and declin-

ation of the star.

As in the last case we have
sin 8 = sin /5 cos e+cos /3 sin e sin X

_ "j

cos 5 sin a = sin (3 sin e cos /3 cos e sin X
J-

(31)

cos 5 cos a = cos /3 cos X ; J

in which substituting
n sin iV= sin /3 ) (32)

w cos N= cos sin Xf

9



they become
sin 8 = n sin(7V+e)
cos 5 sin a = n cos(iV+e)
cos 5 cos a = cos jS cos X

From these we derive

tan

(33)

(34)

(35)

tan N=

sin 5 =

tan a =

sin X

sin j3 sin(7V+e)

sin N
tan X cos(7V+6)

cos N

(36)

It



2. Time.

The sidereal day.
The earth's motion of rotation, as far as can at present be

ascertained, is uniform; though theoretical considerations

point to a possible retardation of
its, velocity. If such retarda-

tion exists, its amount must be extremely minute, as up to

the present time none has been detected. The time of ap-
parent rotation of the starry sphere is therefore sensibly
constant, and may consequently be adopted as a unit of time
and be denoted the sidereal day. Owing to the proper
motions of the fixed stars the practical sidereal day is the
time of rotation of the vernal equinox.

Sidereal time.

The sidereal day is assumed to begin at the instant of

upper meridian transit of the vernal equinox, which point
will in future be denoted by and referred to as the point V;
and the sidereal time at any instant is the hour angle of V
at that instant. It is thus equal to the right ascension of

any star which is on the meridian of the observer at that
instant.

The solar day.
A unit of time dependent on the sun is necessary for the

purposes of daily life.

F/g.5
On account of the earth's orbital motion about the sun

the latter body has an apparent motion among the stars,

11



so that it returns to the meridian of a place nearly four
minutes later on any given day than on the previous day, as
shewn by a clock regulated to sidereal time.
This apparent motion of the sun, however, is not uniform.

The earth moves in an ellipse, of which the sun occupies
one of the foci, and its angular velocity about the sun varies

inversely as the square of its radius vector; the angular
velocity of the sun on the ecliptic therefore varies in the
same manner. An inequality in the lengths of the solar days
results from this; but a further irregularity is due to the

obliquity of the ecliptic; for, even if the sun's motion on the

ecliptic were uniform, its motion in right ascension would
not be so.

F/g. 6

This is illustrated in Fig. 6, which is a projection on a

plane perpendicular to the earth's axis. Pi and P% are two
consecutive positions of the earth in which the sun is on a

given meridian. The earth in the interval has performed a

complete rotation on its axis plus the angle M'PiM"
'

,
which

equals PiSP2 ,
which is the angle through which the pro-

jection of the radius vector has revolved during the interval.

This angle varies from day to day, owing to the causes above

mentioned, viz., the eccentricity of the earth's orbit and the

obliquity of the ecliptic. The solar day, being equal in length
to the time of an absolute rotation of the earth on its axis

plus the variable angle P1SP2, is therefore variable in length.
The angle P1SP2 is clearly the motion of the sun in right
ascension in the solar day.
To obtain an invariable unit of time dependent upon the

sun astronomers invented a fictitious sun, called the mean
sun, and denoted by S in Fig. 7, which is assumed to move
at a uniform rate on the equator and to return to the vernal

equinox at the same instant as another fictitious sun Si,

12



assumed to move at a uniform rate on the ecliptic. Sy i*

also assumed to pass through perigee, and therefore apogee,
at the same instant as the true sun.

Fig. 7

The relative positions of the three suns at different times
of the year are shewn in Fig. 7. There, the points VBXA
shew the positions of the sun when the earth is at correspond-
ing points in Fig. 5.

Solar time.

Apparent solar time at any instant is the hour angle of
the true sun at that instant.
Mean solar time is the hour angle of the mean sun.

Apparent noon is the instant when the sun is on the meridian
of a place. Mean noon is the instant when the mean, sun is

on the meridian.
The equation of time is the difference between apparent

13



and mean solar time ; or, it is the difference of right ascen.si.yn

of the true and mean suns.

Tracing out the relative positions of the three suns in

Fig. 7 shews that the equation of time changes its algebraic
sign four times in the year, about April loth, June 14th,

Aug. 31st, and Dec. 24th. It therefore has four maximum
values.

Civil and astronomical time. 6-t*f+-9*<~
/?&& .

The civil day begins at the instant of lower meridian
transit of the mean sun, or at midnight; while the astro-

nomical day of the same date begins at upper meridian
transit 12 h. later.

Time at different meridians.

F/g.8

At any instant at two places in different longitudes, the
hour angles of the sun, or of V, differ by an amount equal
to their difference of longitude; consequently the difference!

between the local times of the two places, either solar cr

sidereal, is equal to their difference of longitude.
This as shewn by Fig. 8. Thus if PA and PB are the

meridians of two places, S and V the mean sun and the

vernal equinox, respectively; then the M.T, at A is the

angle APS
,
and the sidereal time the angle APV. The

corresponding times at B exceed these by the angle APB
(denoted by L).
Standard time.

For convenience, since 1883 the time used ac any place in

N. America, instead of being the local time of the place, is

theoretically the time which differs by the nearest who!e
number of hours from Greenwich time. This is called st.n-

14



The change in the astronomical day.

Since the beginning of the year 1925 the astronomical day
has been discontinued, or made coincident with the civil day.
This change necessitates certain modifications in the method
of converting sidereal to mean time.

Equations (37) and (38) remain unchanged in form, thus:

Q= (T+L)(l+k')+ V -L (37)

T=(0+L)(l-k)+M-L (38)

In the former of these equations T-\-L denotes the G.M.T.

corresponding to the given time, and reckoned from midnight,
and V the G.S.T. at the previous Greenwich O h

.

In the latter equation, if 0+L > 24* it must be diminished

by 24/f before being reduced to the equivalent mean time inter-

val. The value of the quantity M must be that given in the

ephemeris for the immediately preceding Greenwich sidereal

noon. Thus, if, when M is taken for the given date, the

quantity

(e+L)(i-&)+M

is less than L, then M must be taken for the next following
date ; but, if that quantity is greater than 24h

-\-L, then M must
be taken for the previous date. For intermediate values M
must be taken for the given date.





dard erne. Thus, the time which differs by 5h from Gr.
time 2s used at all points whose longitudes lie between i*
30m and 5h 30m W. The following standard times ?ve
used in N America:

Atlantic, differing by 4h from Gr time;
Eastern, differing by 5h from Gr. time;
Central, differing by 6h from Gr. time;
Mountain, differing by 7h frorc Gr. time;
Pacific, differing by 8h from Gr. time;
Yukon, differing by 9h from Gr. time.

Relation between the lengths ofthe solar and sidereal units oftime.
The tropical year is the interval of time between two cdb

secutive passages of the mean sun thiough the niran vern^
equinox

Fig. 9
In Fig. 9 let 5 and S' be the positions of the mean sui

relatively to 7 at the instants of two consecutive 1 ransiti

over the meridian of some place. Then it is evident that the
mean solar day is equal to the sidereal day plus the motion
of the mean sun in right ascension in one mean solar day.
(See also Fig. 6.) Therefore if

D the length of the solar day, and
D' = the length of the sidereal day, and
n =the number of mean solar days in 1 tropical year;

then
1 tropical year = rZ>

rv{D'+D')n
= (-r l)D'.

15
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But 1 tropical year = 365.24222 mean solar days
.'. 1 tropical year = 366.24222 sidereal days,

Tf then
M any interval of time expressed in mean solar days,
eS = the same interval expressed in sidereal days;

M 365.24222 , ,

TS^ 366^4222
==1-^ aSSUme;

. S 366.24222
,

. ,,*** M '365.24222
= 1+*

in which = 0.00273043
'=0.00273791

Also
24h M.S.T. = 24h 03m 56s .555 Sid. T.
24 Sid. T. = 23 56 04 .091 M.S.T.

The cor.version of a given interval of M.S.T. into

the corresponding interval of Sid. T., or conversely, is

best effected by means of tables given in the Nautical
Almanac.

To convert the mean time at a given meridian into the corre-

sponding sidereal time.

Let T the given local M.T.;
G -the corresponding Sid. T ;

L =the longitude of the place;
V, =the Gr Sid. T. at the previous Gr. mean noon.

Then
e = (r4-L) (l+k') + V -L (37)

V is taken from the ephemeris. Instead of using the

factor k' the reduction of T-k-L to the equivalent sidereal

interval is made by means of tables given in the N. A

To convert the sidereal firz> at a given meridian into the

corresponding mean time.

Using e same notation, and in addition denoting by
M the mean time at Gr. of the previous Gr sidereal noon,
we have

r-(e-fL) {l-k)+M-L (38)
Here again the tables of the N A. are used instead of the

factor k.

The value of M, to be taken from the N. A., is to be that

for the date of the transit of V immediately preceding the

given time. Thus if

(9-j-L) (l-k)+M>2&
then the. value of M must be taken for the previous date.

16



To convert the apparent solar time at a given meridian into

the corresponding sidereal time.

This may be done by first reducing to M.T. by applying
the equation of time to be taken from the N. A. and then

reducing to sidereal time by the method given above.

A more convenient method, however, is to interpolate
from the N. A. the value of the sun's right ascension

at^
the

Gr. instant corresponding to the given time. Then if in Fig. 8

So represents the true sun it is clear that if / = the hour angle
of the sun, or the apparent time, then

= ;+a (39)

To determine the hour angle of a heavenly body at a given

time.

If in (39) it is assumed that the hour angle / may have

any value up to 24h
,
then that equation is general and

applies to every case and any heavenly body. It may be

necessary in some cases to deduct 24h from t -\- a. Transpos-
ing we have

t =Q-a (40)

Here it may be necessary in some cases to increase by
24h to render subtraction possible.
The hour angle denoted by r, found by solving the astro-

nomical triangle the parts of that triangle being limited

to values less than 180 , being given, we have
/ = r if west
= 24h -r if east.

The hour angle of the sun may be found by equation (40)
if the sidereal time is given. If the mean time is given, it

may be reduced to apparent time by applying the equation
of time, thus finding the required hour angle.

Reduction of time to arc ; and conversely.
These reductions may be made by means of the following

numerical relations:

l
h =15 l = 4m

lm = 15' l' = 4s

Is =15"

17



3. Determination of Time by Observation.

Correction and rate of a chronometer.
As the term implies the correction of a chronometer is

the amount that must be added to the chronometer time to

give the true time.

The rate of a chronometer is the amount it loses in a unit
of time.

Thus, if

7\ and !T2 = the true times at given instants;
T\ and r'2

= the chronometer time at those instants;
A7"i and A2"2

= the chronometer corrections;
57"= the chronometer rate.

Then LTX=TX-TA (41)
AT2

= T2-T2'f
Ar2-Arx (42)

7Y-7Y
These equations give the corrections and rate with their

proper algebraic signs. The rate is thus given in terms of the
chronometer interval.

1st method By transits.

(a) Meridian transits.

A transit instrument having been adjusted in the meridian,
the time of transit of any heavenly body across the vert,

wire may be observed by a chronometer whose correction is

to be found.
If the chronometer is regulated to sidereal time the true

sidereal time of transit is at once given by the right ascension

of the body, whence the chronometer correction at once
follows by (41). If regulated to mean time, the sidereal

time of transit of the body must be reduced to mean time.

If the sun is observed, the time of transit of each limb
should be noted and the mean taken; thus finding the time
of transit of the centre. If only one limb can be observed,
then the observed time must be corrected by the "time of

semi-diameter passing the meridian", which may be taken
from the N. A., or computed by the equation

5 (43)/=- =- sec 5
v '

15

in which 5 is the angular semi-diameter of the sun.

If the correction of a M.T. chronometer is to be found

by a transit of the sun, the true M.T. of transit may at once
be found by applying the equation of time to the apparent
time of transit (fi

1
.

18



(b) Transits across any vert, circle of known azimuth.
In this case the latitude of the place and the declination

of the heavenly body must be known; then the hour angle
may be computed by means of (16) and (17), which may be
written

tan = tan A sin </>

sin(r+0) =cot </> tan 5 sin 6

The sidereal time then follows by (39), or the M.T. by apply-
ing the equation of time as already shewn.
The rate of a chronometer may be found by observing two

consecutive transits of a star across the same vert, circle.

The true interval between the transits is

24h Sid. T. or 23h 56m 04s .09 M.T.

(c) Transits across the vertical circle of Polaris.

This method will be described under Azimuth.

2nd method By a single altitude.

The method of observing an altitude of a heavenly body is

described below, p. 65 et seq.

Corrections to be applied to an Observed Altitude.

(a) Refraction.
The ray of light that reaches an observer from a star, in

traversing the earth's atmosphere is continually bent down-
wards from a rectilinear path by the increasing refractive

power of the air with density as the surface of the earth is

approached. In consequence, the apparent direction of a

F/g. /O

star is that of a tangent to the curved path of the ray at the

point where it reaches the observer. This is illustrated in

Fig. 10.
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An observed altitude must then be diminished by an
amount equal to the angle between the final direction of the

ray and the straight line drawn to the star, as appears in the

figure. The magnitude of r decreases as the altitude increases,
and its value is best found from tables. These contain
corrections depending upon the readings of the barometer
and thermometer. An approximate value of r may be found

by the equation
r = bl".l tan f

or a closer approximation by the formula
9836

r=
460+7 tanr

in which
b =the barometer reading in inches; and
/ = the temperature of the air in degrees F.

(See Field Astronomy for Engineers, by Prof. G. C. Comstock).

(b) Semi-diameter.
In observing the sun or moon the altitude of its upper or

lower limb is observed. To find the altitude of its centre a
correction for semi-diameter must be applied. This may be
found in the N. A.

(c) Parallax.

As the centre of the celestial sphere is coincident with that
of the earth, if the directions of a heavenly body from that

point and from a point on the earth's surface differ sensibly,

F/G //

then a correction must be applied to any observed co-ordinate

to reduce it to the centre of the earth. This is only necessary
with members of the solar system.
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In Fig. 11 .S is the centre of the heavenly body observed,
the centre of the earth, A the point of observation. The

triangle ASO gives

sin p = sin C

p being the parallax in altitude. If f'
= 90 the resulting

value of p is the horizontal parallax. Denoting it by ir we
have

sin 7r =
a

sin p = sin w sin $"' ; (44)
or very nearly

P = t sin f
' = it cos &' (45)

This gives the correction for parallax with sufficient accuracy
for any body except the moon.

(d) Dip of the horizon.

At sea the altitude of a heavenly body is measured with a

sextant from the sea horizon, the observer standing on the
deck of a ship. A correction must therefore be applied to

the observed angle on account of the dip of the visible below
the true horizon.

Fte. /2 F/G./3

In Fig. 12 we have from PI. Geom.

AB J(2a+ h)h V2ah
tan D' =

a a a nearly

or D' = V
2)i

a

This gives the dip uncorrected for refraction; but, as shewn
in Fig. 13,. the ray of light which reaches the observer from
the horizon follows a curved path, so that the apparent dip
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D is less than D' . The mean value of the ratio of D to D'
is .9216 : 1, so that

D = .9216 -i/ 2h_
a

or in seconds of arc

.9216 /ITD = \"sinl' v a

Substituting a mean value of a in feet, this becomes

D = 58".82JT (46)

h being in feet.

The rule known to navigators: "Take the square root of

the height of the eye above sea level in feet and call the result

minutes", is thus very approximately correct.

Having applied the necessary corrections to the observed

altitude, the reduction may be made by either of the equa-
tions (11), (12) or (13). If a number of observations are to

be reduced an equation derived as follows is more convenient:

Taking the equation
cos f = sin 5 sin 0+cos g cos cos t

it may be written

1 versin f = sin 5 sin 0+cos 5 cos $(1 versin r)
= cos(0 5) cos cos 5 versin t

= 1 versin (0 5) cos cos 5 versin t

versin f versin (0 5) (47)
versin r = r

cos cos 5

This requires the use of tables of natural and logarithmic
versins. In the absence of such a table the following form of

the equation may be used

. , cos(0-5)-cos f (48)
Sin^ f r = r

2 cos cos 5

Example. The following observations were taken with a

sextant and artificial horizon on Aug. 1, 1892, at a place

in latitude 52 31' 04", and approximate longitude 7h 50m W.;
to find the watch correction.

2 -alt. O Watch
52 11' 30" 7h 21m 29s A.M.

10 22 54
30 24 27

30 25 28

00 28 18

10 29 52
10 30 54

Index error =+20".
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First find the approximate Gr. M.T., thus:

Mean of extreme times = 7h 26m ll8

Ast. time, July 31 =19 26 11

Long = 7 50
Gr. M.T., Aug. 1 = 3 16 11

For this time we take from the N. A.
8 =+17 48' 56"
S= 15 48
E= 6ra 03s

.6

Reduction of first observation:
Obs'd. 2-alt. =52
Index error

h'

r

P

h

f

Eq. (13) s'

s'<f>
s'-S

log sin (s' 4>)

log sin (s' 8)

log cos s'

log cos 0' f)

11' 30"
+20

2)52
= 26
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The errors being small may be regarded as differentials,

so that (49) gives the effect of errors in 8, h, and <f> upon the

resulting hour angle r. It shews moreover that the effect of

those errors is least when A and C are both large, or when the

star observed is near the prime vertical.

3rd method By equal altitudes of a heavenly body.
Method of observation with a transit or sextant.

Equal altitudes of a heavenly body on opposite sides of

the meridian correspond, generally speaking, to equal hour

angles. This is the case of a fixed star, whose change of

declination between the two positions may be neglected.
The mean of the times of equal altitudes is then the time of

meridian transit. The method is therefore an indirect one
for observing the time of meridian transit.

In the case of the sun, however, allowance must be made
for the change of declination in the interval between the two
observations. An expression for the correction to be applied
to the mean of the observed times is derived as follows:

F/e. 14

Fig. 14 shews a projection of the celestial sphere on the

plane of the horizon. S\ and 52 are the two positions of the

sun's centre at the instants of the two observations; S\ the

position it would have occupied if there had been no change
of declination. The two triangles PZSi and PZS't are then

equal in all respects. It is therefore required to find the

change of hour angle resulting from a small change of declin-

ation. Taking the equation
cos f sin 5 sin cos 5 cos <t> cos r
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we find by differentiation

dr cos 5 sin sin 5 cos # cos t

d8 cos 5 cos <j>
sin t

tan <f> tan 8

If we now write

this becomes

sin r tan t

dr=-2AT d8 = 2A8

-2Ar =(^-^Y2A5\ sin t tan r /
or in seconds of time

. AS /tan </> tan 5\
15 \sin r tan t/

(50)

This is the "equation of equal altitudes."

In this equation
AT = the correction to be applied to the mean of the

observed times to find the time of meridian transit;

A5 =half the change in the sun's declination in the

interval between the observations, positive if the

sun is moving north.

t may be assumed equal to half the elapsed interval between
the observations. Attention must be paid to the algebraic

sign of 8; it is positive if north.

The advantages of this method are that the absolute

altitudes need not be known; and small errors in 4> and 8

have no appreciable effect.

To find the time of rising or setting of a heavenly

body.
Take the equation

sin A = sin 8 sin #+cos 5 cos <f> cos t;

which may be written
cos r = sin h sec <f>

sec 5 tan <j> tan 5 (51)

In the case of the sun, when its upper limb is just visible

in the horizon it is in reality below the horizon by the amount
of the refraction, 34' approximately; and its centre is below

the limb by the amount of the semi-diameter, which may
be taken as 16'; parallax may be neglected. Therefore

}i= 50', and sin 50' = 0.0145 ; .". the above equation becomes
cos t= 0.0145 sec <t>

sec 5 tan <f> tan 8 (52)

The time of rising of the moon's centre is usually computed.
In this case the effect of parallax is important. Assuming its

amount as 57', the altitude of the moon's centre when it is
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apparently in the horizon = 57' -34' = 23'. Also sin 23' =
0.0067; so that (51) becomes

cos t = 0.0067 sec
<f> sec 8 tan <f>

tan 8 (53)

Having computed the hour angle, the time readily follows.

Construction of sun dials.

The horizontal dial and the prime vertical dial only will

be considered.

In any form of dial the edge of the gnomon which casts the
shadow must be parallel to the earth's axis, as the position
of the shadow cast upon any plane is then independent of

the sun's declination

Fig. 15 shews the construction of the horizontal dial.

The edge of the gnomon if produced will intersect the celestial

F/0 /6

sphere in the pole P, Fig. 16. PON is the meridian plane,
NOL a horizontal plane, and POL a plane through the
sun's centre. LON (denoted by a) is the angle which an
hour line, corresponding to a given hour angle t, makes with
the noon line. The triangle PLN then gives

tan a = sin
cf> tan t (54)
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The construction for a prime vertical dial is shewn in

Fig. 17. OPZ' is the meridian plane; OMZ' that of the

Fig. 17

prime vertical; and OP'M a plane through the sun's centre.

is the required angle corresponding to the hour angle t.

The triangle P'MZ' gives
tan /3

= cos tan t (55)

A sun dial gives apparent solar time.
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4. Determination of Latitude by Observation.

As shewn on p. 3, the latitude of a place is equal to the

altitude of the pole, or the declination of the zenith, i.e., to

either arc PN or EZ, Fig. 2.

1st method By meridian altitudes or zenith distances.

Fte/8

If the altitude or zenith distance of a heavenly body be
observed when crossing the meridian, and the necessary
corrections be applied, the latitude at once follows by one
of the following equations, depending upon the position of

the body. For the star

So. . . .0 = f+ 5 (5 being negative) (56)
S3 ....<j>=5-{ =h-p
SA . . . .0 = 18O-5-f = fc+p

If S3 and S4 are the positions of the same star observed at

both culminations, then by taking the mean

h+h' p-p' (57)
* = ~2 2T

the accented letters belonging to lower culmination.

If S\ and 53 are two stars observed at nearly equal zenith

distances, we have by taking the mean of the first and third

of (56)

5+ 5' r-f (58)
</,= ~2~ + ^r

the accented letters belonging to the north star. This formula
is the basis of Talcott's method of determining latitude, the

observed quantity being the difference of zenith distance of

the two stars, which are selected so that that difference is

small enough to be measured by a filar micrometer placed in

the focus of a telescope. Details of method outlined.
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If the direction of the meridian is not known the maximum
altitude of the heavenly body may be observed. If that

body is the sun the maximum altitude differs slightly from
the meridian altitude, owing to its rapidly changing declin-

ation. The resulting error is entirely negligible, especially
if instruments of only moderate precision are used; its

value is given by the expression

()' ^^ or [5.54861, (^(tan,-tan 8)

in which A5 is the hourly change in the declination expressed
in seconds. The correction is always subtractive.

Example. On July 10, 1914, the meridian altitude of

the sun's upper limb was observed (Cir. L) to be:

68 11' 30".

To find the index error of the transit used the following
V.C.R's were taken on a terrestrial point:

Cir. L 034'30"
Cir. R 31

Diff.

I.E.

Obs'd alt.

I. E.

h'

r

3 30
1 45



To the observed altitude the necessary corrections must
be applied, and the hour angle derived from the observed
time. The latitude then follows by means of (15)

, i. sin h sin
COS(d> d)= :v J

sin 8

6 being found by the equation

a tan 5
tan =

cos r

To find the effect of errors in the data we have by trans-

posing (49)

d<t>= cos C sec Add+ sec Adh-\- cos "<j>
tan Adr (59)

This equation shews that the effect of errors in the data is

least when A is small and C large, though the second con-
dition is unimportant, as the error in the declination is always
small in comparison with the other errors. These conditions
are fulfilled, however, by observing a close circumpolar star

near elongation.

Hence the method by means of the pole star.

As the altitude of this star never differs much from the

latitude, the method consists in computing a correction to

apply to the former to give the latter. An expression for this

correction is derived as follows:

Taking the equation
sin h = sm < sin 5+cos 4> cos 5 cos t

and substituting in it

(j)
= h-}-x

8 = 90-p
we have

sin /* = sin(/z+x)cos p-\-cos(h-\-x)s'm p cos t

Then expanding the sin and cos of h+x, and again expanding
the sin and cos of x and p and neglecting the powers of their

circular measures above the second, we have

sin h = \ sin h ( 1 -~- ) + x cos h > ( 1 ~ )

+ ) cos fe I 1
J

x sin h Kp cos r

x2
. p

2

= sin h sin h-\-x cos h ~ sin h + p cos f cos h
z

px cos t sin //.

Whence
x cos h= p cos h cos T-\-\(x

2J
rp"--\-2px cos t) sin h

or x= p cos T-\-\{x
2
-\p

2
-\-2px cos t) tan h.

31
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Assuming now as a first approximation
x= p COS T,

and substituting in the right-hand member, we have
x= -p cos r+ i(

2 cos2 r+p2-2p2 cos2
t) tan h

= p cos r+ 2 sin' t tan h
or in seconds of arc

x= p cos T-\-hp
2 sin 1" sin2 t tan /z

We have then finally

<f>
=h-p cos t+ |

2 sin 1" sin2 r tan h (60)
The effect of the omission of the smaller terms in the

above expansions can never amount to 0".5.

Example. The following observations of Polaris were
taken on June 14, 1904, with a small transit:

Cir. V. C. R. Watch
R. 45 44' 14h 50 04s

L. 45 43 53 46
R. 45 45 57 10
L. 45 44 59 44

The watch was regulated to sid. time, and its correction was
20s

. The star's co-ordinates were:
a = ih 24m 26s

8 =88 47' 27" (."./)
= 4353").

The mean of the first and second observations being taken,
and that of the third and fourth, the reduction is made as

follows:

Eq. (60) r = 14h 51m 55s = 14h 58m 27s

AT = -20 = -20

6
a

t

T

V
r

h

log p
log COS T

= 14 51 35
= 1 24 26

= 13 27 09
= 10 32 51
= 158 12' 45"

= 45 43 30
56

= 45 42 34

= 3.638789
= 9.967813

log 1st term = 3.606602w

=



log 0.5

log
2

log sin 1"

log sin 2 r

log tan h

log 2nd term =

h
1st term
2nd term

<t>

1.698970
7.277578

6.685575
9.139134
10.010756

=



If higher powers of small quantities be retained in the
above expansions the expression for y becomes

y = y'~ ^^tan * y* + 25"J*(i+3 tan \) y'
-

(61')

in which y'
=

6

cos 4> cos 5 2 sin2
\ t

cos h ' sin 1
//

and log^- =6.3845449, log
S

-^- = 12.5929985.

Then h =
h-\-y

In applying this method stars giving values of h approach-
ing 90

5

must be avoided. If = 45
a
and h = 60 the second

term of (61') will not exceed 1" for values of t less than 13m
,

and the third term for values less than 33m .

The value of log m is given in Table III.

Example. The following observations were taken with a
sextant and artificial horizon on Sept. 2, 1893:

2 -alt.
_

Watch
89 59' 15" ll h 53m 369

90 00 15 56 37
90 00 45 59 28
89 59 15 12 03 57
89 58 30 05 46
89 57 30 07 11

89 55 15 09 13

Index error = 0; watch correction = 8s
.

An approximate value of the latitude is found by regarding
the maximum observed altitude as the meridian altitude, as

follows :

Max. 2 -alt. =90 00' 45"
Eccentric error +2 00

Obs'd alt.

r

90
= 45



f =44 43 36
5 = 7 37 54

(approx.) = 52 21 30

The hour angles corresponding to the observed times may
be found by first finding the watch time of culmination, thus

App. time of culm'n = 12h 00m 00s

E = -21

M.T. =11 59 39
AT = 08

Watch time of culm'n =11 59 47

From this follow the hour angles tabulated below. The
corrected zenith distances are also found as above. We then

proceed as follows:

log cos 4> =9.785843

log cos 8 =9.996136

log cos h =9.847403

9.781979
9.934576

logra =1.87545

log (h -h) =1.81003
h -h =64".57

The remaining corrections are computed in a similar

manner, and are tabulated below.

f t h h f
44 44' 21" 6m 11 s

1' 05" 44 43' 16"
43 51 3 10 17 34
43 36 19 00 36
44 21 4 10 29 52
44 43 5 59 1 00 43
45 13 7 24 1 32 41
46 21 9 26 2 30 51

Mean =44 43 39
6 = 7 37 54

<f> =52 21 33
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3rd method By two observed altitudes of a star, or the
altitudes of two stars, and the elapsed time between the
observations.

In addition to the latitude this method also serves to

determine the time and azimuth.

F/g/9

Let S\ and S2 be the positions of the star or stars at tht
instants of observation. The first step in the reduction is

to determine the difference of hour angle S1PS2. If the sun
is observed twice, this angle is equal to the elapsed interval
of apparent time between the observations, though usually
the effect of the change in the equation of time may be

neglected. If one fixed star has been observed the angle
S1PS2 is equal to the elapsed sidereal interval between the
observations. If two stars are observed at the times T\ and
r2 ,

the right ascensions being ai and a2 , then

S.PS, = ( ai
-

a,)
- (TV- r2) (62)

Si being the more easterly star. The interval 7\ T2 must be
in sidereal time.

Then, PS\ and PS? being known, the triangle S1PS2 may
be solved, finding S1S2 and PS1S2. The three sides of the

triangle ZS1S2 are now known, so that it mav be solved,

finding the angle ZSiS2 . Then PSiZ = ZS1S2-PS1S2 . The
triangle PZS is finally solved, finding PZ the co-latitude.

Completing the solution gives also the hour angle ZPS and
the azimuth PZS.

This method is further developed in works on navigation,
in which graphical solutions are given.

4th method By transits of stars across the prime vertical.

A star whose declination lies between the limits and <

will cross the prime vertical above the horizon twice in its

diurnal course.

The times of transit across the p. v. may be observed by
means of a transit adjusted in the p.v. If S\ and S2 are the

two positions of a star at the instants of observation, then



the elapsed sidereal interval between the observations is

equal to the angle SiPS2 ,
and half that interval is the hour

F/G.20

angle of the star at either observation. Transposing eq. (24)
we have

tan 4>

tan 8 (63)

COS r

by which the latitude may be found.
This method is little used with small instruments, but

when applied to the astronomical transit instrument it is

one of the most precise methods known for determining
latitude.

5th method -By observations of stars at elongation.
If two circumpolar stars be selected, whose times of elonga-

tion, one east and the other west of the meridian, are not

widely different, we have for the two stars, applying eq. (23)

cos 5i A cos <5 2 (64)

whence

sin A\= sin A 2
=

cos 4>

sin A 1 cos 5i

sin A2 cos 82

cos

From this by composition and division

sin ^4i+sin A2 cos 81 -f- cos 52

sin A\ sin A 2 cos 81 cos 82

or tan %(A!+A 2) = - cot \ (5i+ 52) cot \ (5i-52);
tan %(Ai-A 2)

from which finally
tan %(Ai Ai) = -tan ^(^4 1 +i4 2)tan |(5i+ 52)tan J(*i k) (65)
From this may be found the difference of the azimuths of

the two stars when their sum is known. The sum of the

azimuths may be observed by poirting the telescope of a

transit to each star in turn, when at elongation, noting the
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readings of the horizontal circle and taking their difference.

From the sum and difference of A\ and A* their separate
values may be found. The latitude then follows by either

equation
cos 5i cos 52 (66)

cos 4>
=

sin^4i sin^lj

This method was due to Prof. J. S. Corti.

The best stars for observation are those having large
azimuths when at elongation, or whose declinations do not

greatly exceed the latitude. Their elongations then occur
at high altitudes, and therefore this principle must not be

pushed to an extreme, as the effect of an unknown inclina-

tion error of the horizontal axis of the transit increases

rapidly with the altitude.



5. Determination of Azimuth by Observation.

1st method By meridian transits.

The time of meridian transit of any star may be computed
as shewn on pp. 11 and 16. If the correction of a chrono-
meter be known, the chronometer time of transit may be
found. By directing the sight line of a well adjusted transit

to the star at that instant, it will thus be placed in the meri-

dian plane, and a meridian line may then be established on
the ground; or by horizontal circle readings when pointing
to the star and a mark, the azimuth of the latter may be
determined.

It is clear that a slow-moving circumpolar star is best ior

this observation, as then the effect of an error in the computed
time of transit is a minimum. The rate of change of azimuth
of a star when crossing the meridian is given by the relation

A A 1 - A
cos 5 (67.)AA = lo.Ar -r 7-

- rr
sin \4> 8)

(see eq. 75) AA being expressed in arc and At in time. In
the case of the pole star over 2m are required for a change
of azimuth of I', when crossing the meridian.

2nd method By transits across any vertical c'~Je, the
latitude being known.

Having computed the hour angle from the observed time,
the data of the problem are r, 8, and <i>, and the azimuth of the
star may be computed by means of (6) and (7), or

tan 5 . tan t cos 6
tan 9 =

,
tan A -

n r-
cos t sin 'yd <p)

The same considerations as in the last method lead to the
choice of a close circumpolar star for this observation. The
equation from which (6) was derived may be placed i \ more
convenient forms. Thus it may be written,

tan A =

cos tan 5 sin
<f> cos

then multiplying the right-hand member through by sec j>

cot 5, this becomes

. sec <j> cot 8 sin r (68)tan A ~z
-

.

1 tan <f> cot 5 ccs r

This form is convenient when subtraction log's are available.

(See Manual of Survey of Dominion Land*.)
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Again, the above equation (68) may be written

. tan A '

tan A =
1 m

in which
tan A ' = sec </> cot 5 sin r (a)

and m=ta.n </> cot 5 cos r

= tan A' sin 4> cot r (&)

Taking logarithms and expanding, we have

log tan A =log tan A' log (1 m)
= log tan yl'+/x (m-\-\ m2

-\-\ m3
-\-)

= log tan A'+ii m-\-\ /j, m--\-l /x w3+ (69)

H being the modulus of the common system of logarithms-

We also have

log M =1.6377843

log |/i
= 1.3367543

log \n =1.1606631

The algebraic sign of m is the same as that of cot t. The
third term of (69) is seldom required.

In taking the observation the procedure is as follows:

Point to the reference point and note H.C.R.
Then point to the star, note time and H.C.R.
Then reverse instrument and again point to the star and

note time and H.C.R.
Then point to the reference point and note H.C.R.
The means of the H.C.R's on the star and reference point

are then taken, increasing or diminishing one in each case by
180; and also the mean of the times of pointing to the star,

from which the hour angle is derived.

Having computed the azimuth by (68) or (69), let:

A s denote the azimuth of the star reckoned from the north

in the direction ESW;
A p that of the reference point.
Rs the H.C.R. on pointing to the star

Rp that on pointing to the reference point.

Then A p -A, =RP -Rs

or A p =A S +RP -Rs (70)
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Example. The following observations were taken in
Aug., 1904, at a place in latitude 46 54':

PL obs'd. Cir. H.C.R. Watch
R-P. R. 178 14'.5
Polaris R. 57.5 15h 55m 08s

Polaris L. 181 02 .5 16 01 05
R.P. L. 358 14 .5

The watch correction was found by observing the meridian
transit of a Scorpii, as follows:

Watch time of transit = 16h 23m 00 s

R't ascension of star =16 23 34

Watch corr'n = +34

From the N.A.
a (of Polaris) = l h 25m 03 s

8 =88 47' 28"
.'. p =4352"

The computation then proceeds as follows:
Mean of obs'd times = 15h 58m 06 s

Watch corr'n = -f 34

Eq. (40) Sid. time =15 58 40
a = 1 25 03

1 =14 33 37
T = 9 26 23

= 141 35' 45"

Eq. (68) log sec = 10.165405 log tan <j>
= 10.028825

log cot 8 = 8.324328 log cot 8 = 8.324328
log sin r= 9.793235 log cos r= 9.894122w

8.282968 8.247275w
Subt. log= 0.007610

log tan 4= 8.275358
A= 1 04' 48"

Eq. (70) A s
= 1 04' 48"

RP =178 14 30

179 19 18

Rs = 1 00 00

A p -178 19' 18"
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The computation by (69) is as follows:

Eq. (a)

Eq. (6)

iog sec

log cot 8

log sin t



Pt. obs'd. Cir. H.C.R. V.C.R. Watch
R.P. R. 23 26'.5

_| R. 219 22 2826'.5 4h 56m 39 s
p.m.

|o~ L. 40 34 27 23 .5 59 47.5
R.P. L. 203 26

The reduction is as follows:

To find the azimuth:
Mean of V.C.R's. =27 55' 00"

r 1 49

P

h

r

4>

8

s'

s'-4>
s'-8

s'-Z

log cos s'

log sin (V 5)

log cos(>'-f)
log sin (s' <t>)

27 53 11

8

= 27 53 19

= 62 06 41
= 44 24 09
= 18 34 07

= 62 32 28
= 18 08 19
= 43 58 21
= 25 47

= 9.663807
9.841555

9.999988
9.493203

9.505362
9.493191

To find the time:

log sin (>'-</>) =9.493203

logsin(5'-5) =9.841555

log cos s' =9.663807

logcosO'-f) =9.999988

log tan \t
h
T

A.T.
E

M.T.

Stand. T
Watch

AT

9.334758
9.633795

logtan^r =9.670963
= 9.835481
= 34 23' 54"
= 68 47 48
= 4h 35m ll s .2

= +6 16 .0

= 4 41
18



Example. The following observations were taken with a
small transit in Sept., 1899, to determine azimuth, time and
latitude.

PL obs'd. Cir. H.C.R. V.C.R. Watch
R 157 10' 27 21' 7h 43m ll s

p.m.
L 337 58 27 06 46 23
R 158 42 26 46 .5 49 35
L 339 37 26 19 53 24
R 160 22 25 59 .5 56 43
L 341 16 25 33 8 00 29
R 225 45
L

Arcturus
Arcturus
Arcturus
Arcturus
Arcturus
Arcturus
R.P.
Altair

Altair

Altair

Altair

Altair

Altair

R
L
R
L
R

34 23
34 25
34 27 .5

34 29
34 30
34 32

16 55
19 11

21 18
23 00
24 45
27 19

A mean time watch was used. Arcturus was to the west of

the meridian, and Altair near the meridian and east of it.

The approximate meridian altitude of Altair was observed
to be

34 39' 30"
whence a value of the latitude for reducing the azimuth
observations was found as follows:

h' = 34 39' 30"
r = 1 23

h
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log tan \r =9.828960

\t =33 59' 54"
t =67 59 48

= 4h 31m59 s .2

Reducing the remaining observations in the same way, the
hour angles are:

4h 31m 59s .2

38 45 .1

45 54 .4

Mean = 4 38 52 .9

The difference of r.a. of the two stars is

5h 34m 50s
;

therefore the hour angle of Altair
= 4h 38m 53s

-5 34 50

= -55 57

(the star being east of the meridian) at an instant equal to

the mean of the observed times, or

7h 51m 37 s .5

Then as the change of hour angle of a star is equal to the

change in the sidereal time, the hour angle of Altair at the

time of the first latitude observation is found as follows:

Observed time, 1st obs'n = 8h 16m 55 s

Mean of times of az. obs'ns = 7 51 37 .5

Diff. = 25 17 .5

Equivalent sid. interval = 25 21 .7

Hour angle at mean of times = 55 57

Hour angle at 1st lat. obs'n. = 30 35

The hour angles of Altair are thus found to be
-30m 35s

28 19

26 12

24 29
22 44
20 10

The latitude observations are now reduced as follows:

Eq. (61) h' =34 23' 00'

r 1 24

\"

= 34 21 36
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Description of method of taking the observation.
In the case of the pole star, assuming a = lh 26m

,
5 = 88 50',

we find t = 5h 58m 20s
,
and .'. G = 7h 24m 20s

,
the sidereal time

of western elongation. This may be used to compute ap-
proximately the time of either elongation at any time of the

year.

5th method By transits of stars across the vertical circle

of Polaris.

From the observed times of transit of two stars across the
same vertical circle, the azimuth of that circle may be com-

puted.

F/g.21

To find the azimuth: In Fig. 21, S\ is the position of Polaris

at the time of transit and 6
1

that of an equatorial star. SZS\
is then the vertical circle of the instrument, and PZ the
meridian. The angle SPS\ (denoted by A) differs from the
difference of r.a. of the two stars by the sidereal interval

between their transits, or

A = (a 1 -a)-(r1-D (71)

T\ and T being the observed times of transit of Polaris and
the other star, respectively, ai and a their right ascensions.

In computing A the subtractions should be algebraic; A will

then be affected by the + sign if the star S is west of the

meridian, and by the sign if east.

We next take the equations:
sin A cot C= cos 8 tan Si sin 5 cos A
sin r cot C= cos 5 tan <f>

sin 8 cos r

. cos 5 sin C
sin A =

cos (f>

which are obtained from (5) and (3), Sph. Trig. From the
first of these we have

tan C=
sin A

cos 5 cot p sin 8 cos A
sin A

cos 8 cot p(l tan p tan 8 cos A)
'

4S



= tan (l+ tan p tan 5 cos A+),
cos 5

_ p sin
(14-^ tan g cos a) (72 )cos 5 v ' ;

neglecting p
3

. Again, from the second equation we have

cot C . tan
sin t .

- + cos t = -
,

sin 5 tan 5

cot C .. t2 tan ^
r T

^inT + 2 "tan 5
'

again neglecting the cube and higher powers of small quanti-

ties; /.

cot C f_ tan _ _ sin (0 8)

sin 5 2 tan 5 cos sin 5
'

Then assuming as a first approximation
cot C __

sin (0 5)

sin 5 cos sin 5
'

sin (0 5) _
or r =

,

tan C,
cos

we have by substitution for t2 in the above equation
sin (0 5)

t=
,

tan v ,-

cos

sin (0 5)sin A /1 , s A \s= : -
(1 i p tan 5 cus A)

cos cos 5

by (72) ;
or in seconds of arc

p sin(0 5)sin A /i , , . ir,. f ... (73)t=- -
(l-*-/>sinl"tan 5 cos A)

cos cos 5

If the time star be observed below the pole, then 5 changes
its sign, and r becomes the hour angle reckoned from lower

culmination.
To find the azimuth we have from the third of the above

equations

COS

or by (72) , p sin A
,.,

.
s

. .,, . s (74.)y v J A = -(l+ sm 1'' tan 5 cos A)
COS

A and p being in seconds of arc.

Comparing equations (73) and (74) we see iu^t

, sin (0-5) (75)
t = A

cos 5
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Example. The following observations were taken at
Toronto, Mar. 29, 1899:

PL obs'd. H.C.R. Watch
R.P. 45 18'

Polaris 73 33 .5 8h 30ra 51 s

r Hydrae 73 33 .5 8 34 43
The apparent places of the stars were:

a 8

Polaris lh 21m 21 s +88 46' 23"
f Hydrae 8 50 06 + 6 19 35

We have then the following data:
A =111 13' (Eq. 71.)
4>
= 43 39 36"

8 = 6 19 35

p =4417";
so that the computation proceeds as follows:

Eq. (74) log sin A =9.96952
logp =3.64513

Eq. (70)

Eq. (75)

log COS
<j>



r 3470" -231s = 3m 51 s

o(f Hydra) = 8 50 06

G r 8 46 15

L = 5 17 35

9(atGr.) =14 03 50

Equiv. M.T. int'l - 14 01 32
M.T. of sid. noon =23 33 23

37 34 55
13 34 55

Standard Time = 8 34 55
Watch = 8 34 43

Watch corr'n = +12

6th method By the observed angular distance of the sun
from a terrestrial point.
This method is useful when the sextant is the only instru-

ment available.

F/g.22

In Fig. 22 5 is the centre of the sun, and the terrestrial

point. The observation comprises:
Measuring the angular distance SO,
Noting the time of observation, and

Measuring the altitude of 0.

The latitude being known, the altitude and azimuth of

the sun's centre are computed by (4), (5) and (6). The
apparent altitude is then found by subtracting the parallax
and adding the refraction The measured angular distance
is corrected for semi-diameter. We have then

01 sin (s ZS) sin (s ZO)
tan^ 4 a = -

in which s =

51

sin 5 sin (s SO)
ZS+ZO+ SO



If then, h' =the apparent altitude of the sun

H = the altitude of

D = the angular distance SO
we find on substituting

,_ h'+H+D
S ~"

2

! sin(s'-#)sin(/- /Q (76)

cos s cos(s D)
If H is so small that it may be neglected, as is often the

case in hydrographic surveys, then (76) becomes

tan2
|a = tan %(D+h') tan h(D-h') (77)

The azimuth of then is

A * a

If the correction of the watch is not known the observer

may proceed as follows:

Measure the altitude of the sun, then the angular distance

SO, then again the altitude of the sun, noting the watch
time of each of the three measurements. The altitude of

the sun at the instant of measuring SO may then be inter-

polated. The altitude of is measured as before. A may
then be computed from the data h 8 and <f> by either (8), (9)
or (10). The remainder of the reduction is as before.
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6 Determination of Longitude by Observation.

The engineer is seldom called upon to determine longi-

tude, so that only some methods useful to the explorer will

be here :' escribed, and also in outline the most precise method
known, \ z., that by the electric telegraph.
The difference of longitude between two places may be

defined as the angle between the planes of their meridians.

It was seen p. 14 that the local times of two places
differ by an amount equal to their difference of longitude,

expressed in time. Any method, therefore, that serves to

compare the local times of the two places, at the same absolute

instant of time, will determine their difference of longitude.

1st method By portable chronometers.
If the correction of a chronometer on the local time of a

place A is found by observation, and also its rate, and the

chronometer is then transported to another place B, and its

correction on the local time of that place found, the local

times of the two places may be thus compared : Let

AT, 57"= the correction and rate found at A at the time T;
AT' = the correction found at B at the time T (

= 7"+/)
Then at the instant T the true time

itA = T+t+AT+t . 8T,
atB = T+t+AT;

the difference of which is

AL = AT+t . ST -AT,
or the difference of the corrections of the chronometer on
the times of the two places at an assumed instant of time.

2nd method By signals.

Any signal that may be seen at the two places may be used
to compare their local times. A chain of observing stations

may be established between the extreme stations, with inter-

* (VfV > x* f

F/o.23
mediate signal stations, so that the method may be used
between points at a considerable distance apart. The signal
used may be the disappearance of a light, a flash of gun-
powder, etc.

Let A ard B be the terminal stations, C and D intermediate

stations, and S\ S* and S3 signal stations (Fig. 23). Then if

a signal be made at Si which is perceived at A at the titr:? 7\
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and at C at the time T%', and if then a signal be made at 5 2

which is perceived at C at the time T3 and at D at the time
Di} etc.; then, A being the more easterly station, we have

AL = (Tl-Ti)+ (T3-Ti)+ (Tb-T6)

= Tl -(T2-T3)-(Ti-T5)-T6 ;

which shews that it is not necessary to know the corrections

of the chronometers at the intermediate stations, but only
their rates. The times T\ and Tq, are the true local times at
A and B, respectively.

Eclipses of Jupiter's satellites are also used in longitude
determinations. As the satellite appears to fade out gradu-
ally the observed time of an eclipse will depend upon the

power of the telescope used. But for this objection this

method would be a useful one for finding longitude.
Reference may be made to the ephemeris.

3rd method By the electric telegraph.
The observer at each station must be provided with a

transit instrument, chronometer, and electro-chronograph,
for determining time with precision, and also a portable
switchboard by waich connections can be made with the

main telegraph line for sending signals to the other station.

F/e.24
The connections for observing the transits of stars in

determining time are shewn in diagram in Fig. 24, and for

sending arbitrary signals in Fig. 25.

The procedure at each station is to observe a set of stars

for determining time and the instrumental constants. Then
a series of signals is sent to the distant station, which are

also recorded on the local chronograph. A second set of

stars is then observed. By means then of the two time sets

the correction of the chronometer on local time at the epoch
of the signals can be interpolated.
These operations may be repeated on as many mutually

clear nights at the two stations as may be considered neces-

sary, say five nights.
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In Figs. 24 and 25
C is the chronometer,
By the chronometer battery,
Rx the chronometer relay,
B t the chronograph battery,M the chronograph magnet,
K the transit key.

F/g.25
Also in Fig. 25

LL is the main line,

R2 the sounder relay,
S the sounder,
Rz the signal relay,
Rh a rheostat,
G a galvanometer,
K' the telegraph and signal key.

A signal is made by breaking the main line circuit by means
of the signal key, which may be a special break-circuit key.

If now at a time T\ at. station A a signal is made which
is recorded at B at the time T\ ;

and if ATi A7Y are the chrono-
meter corrections on local time at the two stations, and x the
time of transmission of the signal; then the difference -of

longitude is:

AL=--(7\4-r-(7Y4-A7Y-*)
= AZ,i+x

in which AL 1
= (r1+A7

,

1)-(2V'fA7Y)
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If a signal now be made at B at the time 7Y, and recorded
at A at tne time T2 ; then

AL = (r2+Ar2 -.r)
- (7Y+A7Y)

=AL2 x
in which AL2 = (r2+Ar2) -(7Y+A7Y)
Taking the mean of these values of AL x is eliminated, and

we have
.

T
AL t+AL2-

2

4th method By moon culminations.
An examination of the moon's hourly ephemeris contained

in the N. A. will shew that the motion of that body in right
ascension is very rapid. If then a value of that co-ordinate
be found by observation, and the corresponding Gr. time be

interpolated from the ephemeris, the error in the time due
to the error in the observed quantity will not be excessive.

The Gr. time being thus found at the instant of the observa-

tion, which also serves to determine the local time, the longi-
tude follows by taking the difference of the two times.

To determine the moon's r.a. the meridian transit of the

moon's limb and that of some neighbouring star are observed.
Then let

and 6' = the sidereal times of transit of the moon's centre

and a star.

a and a' = their right ascensions
and we have

a-a' = 9-e'
or a = a'+e-e'
which gives the moon's right ascension.

To find the sidereal time of the semi-diameter passing the
meridian in order to correct the observed time of transit of

the limb, let

a = the sid. time of the S.D. passing the meridian
.S = the moon's angular S.D.
Aa = the increase of the moon's r.a. in lm of M.T.

then r =the increase of the moon's r.a. in 1 sid. second;
oU.lol

and

Act . . . , .

o" hn ifu
~

lts increase in the interval a;

j .
Act 5 sec S

and -'
'-'60T64

=
"IS"

as each side of the equation expresses the time of S.D. passing
the meridian if there were no change of r.a.; .".
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5
a

15 cos5
O-ecok)

60.164 S
15 cos 5 (60. 164 -Aa)

This quantity is given in the N.A.
To interpolate the Gr. M.T. corresponding to an observed

value of the moon's r.a., let

a =the ephemeris value nearest to a,

To =the corresponding Gr. M.T.,
T = the Gr. M.T. corresponding to a,

x = T T (in seconds) ,

Aa =the increase of a in 1 minute of M.T. at the time T
,

ha = the increase of Aa in 1 hour.

Then the increase of Aa in the interval x is

x
*

. da;
3600

.*. the value of Aa at the middle instant of the interval x is

Aa + ^oiT 5a

and .*. the increase of a in the interval x is

~6cr(
Aa +w 5a

)'
X / X "\

and.'. a = a +
-^r-f

Aa + ^qq 3a
)'

Then x= 60 (a
~ a ) _ 60(a-ao )

60 (a a ) /, X 6a \
,

C
1 -

-7200- Aa"/
nearlyAa

, x'2 8a .= X ~
"720T -Aa~

nearly

... , 60 (a a )
in which x =

Aa

Then T=T + x

If then 6 is the Gr. sid. time corresponding to T we have
L = e-a

A more accurate method than the foregoing is to take

observations for determining a on the same night at the
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station whose longitude is required and also at another

station whose longitude has been well determined. Thus
the increase in a while the moon is passing over the interval

between the two meridians is determined. This increase,

divided by the increase in 1 hour of longitude, gives the

difference of longitude in hours. Thus if

en and a.i =the values of a found at the two stations,
H= the increase of a in 1 hour of longitude while

passing over the interval between the two
meridians;

then ^^P"
H may be taken troin the ephemeris.
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7. The Theodolite and the Sextant.

The Theodolite.

For a knowledge of the construction and method of ad-

justment of the engineer's transit theodolite reference may
be made to any standard work on surveying.
A well constructed and adjusted transit should fulfil the

following conditions:

(1) The vertical and horizontal axes should pass through
the centres of the horizontal and vertical circles, respectively,
and should be perpendicular to their planes.

(2) The axis of the alidade of the horizontal circle should

coincide with the axis of the circle.

(3) The line joining the zeros of the verniers of either

circle (assuming that each is read by two verniers) should

pass through the centre of the circle.

(4) The extreme divisions of each vernier should coincide

at the same time with divisions of its circle.

(5) The horizontal axis should be perpendicular to and
intersect the vertical axis.

(6) The sight line of the telescope should be perpendicular
to and intersect the horizontal axis, and in all positions of

the focusing slide. It should also intersect the vertical axis.

(7) The two threads in the telescope, whose intersection

determines a point on the sight line, should be truly hori-

zontal and vertical, respectively, when the instrument is

adjusted for observation.

(8) The levels attached to the horizontal plate should read

zero when the vertical axis is plumb.
(9) When either vernier of the vertical circle reads zero,

and also the level attached to the alidade of that circle, the

sight line should be horizontal.

conditions 1, 2, 3, 4 and the second part of 6 are fulfilled

by the maker in the construction of the instrument; the

others, and sometimes 3, can be attended to by the observer.

With regard to 9, the alidade of the vertical circle of a transit

intended for astronomical observation should be provided
with a level capable of detecting a change of inclination

considerably smaller than the least count of the vernier.

The position of the alidade should be adjustable by means
of a slow-motion screw, so that the bubble of its level may
readily be brought to the centre, after plumbing the vertical

axis of the instrument.
It is proposed to examine the effects of these errors of

C(ns ruction and adjustment, shewing how in most cases

they may be eliminated.
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(1) The effect of an inclination of the horizontal axis.

In Fig. 26, which is a projection of the celestial sphere on

the plane of the horizon, the horizontal rotation axis of the

transit is assumed to be inclined at a small angle to the

horizon, so that the collimation axis defined as a right line

through the optical centre of the objective perpendicular to

the horizontal axis traces on the celestial sphere the great

circle A'PZ'. P being any point and APZ a vertical circle,

F/g.26

the true altitude of P is the arc AP; and the apparent altitude,

affected by the inclination of the axis, the arc A'P. Z' is

the zenith of the instrument, and ZZ' is equal to the inclin-

ation b. It is clear that the effect of b on the H.C.R. is

shewn by the spherical angle AZA' . To find an expression
for this angle we have in the triangle PZZ'

+ p77 ,
tan PZ'

tan PZZ =

or cot AA X

sin ZZ' .

'

cot ti

sin b
'

or tan Ayli = tan h' sin b;

or, as AAi and b are small, we may write this

AA^btanh', (79)

or the effect of an inclination of the horizontal axis on the

H.C.R. varies as the tangent of the altitude of the point

sighted.
In measuring the horizontal angle between two points it

is evident that the effect of b is nil if the altitudes of the two
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points are equal, and that it increases with the difference of

the altitudes. A reversal of the instrument reverses the

algebraic sign of A^li, so that its effect on a horizontal angle
is eliminated by the reversal.

To find the effect of b on the measurement of a vertical

angle we again refer to the triangle PZZ', from which we
have

cos PZ = cos PZ' cos ZZ'
or sin h =sin h' cos b

Then denoting h' h by Ah and expanding cos b we have

sin(h'-Ah)=sm h' (l -
-y)

or sin h' Ah cos h' = s'm h' ^-sin h'

by expanding the sin and cos of Ah and neglecting its square
and higher powers; .*.

b2

Ah = tan h'

It appears then that the effect of & on a vertical angle
varies as the square of b. Introducing the values of Ah and
b in seconds we have

., sin 1''
Ah = - b- tan h (80)

This is a very small quantity; for, assuming 6 = 1' and h' =
45, we find A/z = 0".0087; it may therefore be safely neg-
lected. It is not eliminated by reversal.

fie. 27
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(2) The effect of a collimation error; i.e., an error arising
from non-coincidence of the sight line and the collimation

axis as above defined.

Assuming that there is no inclination error the sight line

in this case will trace on the celestial sphere a small circle

parallel to the great circle traced out by the collination

axis. In Fig. 27 PZ' is the small circle, and A'BZ the great
circle traced out by the collimation axis. H and H' are the

poles of those circles, Z' being the zenith of the instrument;
ZZ' or PB is the collimation error, denoted by c.

To find the effect of c on a H.C.R., denoted by AAt, we
have in the triangle BZP

_ tan BP
tan BZP =~.^jr=-

sin BZ

or tan AAz =
tan c

cos h'

or very nearly AA 2
= c sec h' (81)

or the effect of a collimation error on a H.C.R. varies as the
secant of the altitude of the point sighted.

F/&.88

The effect of this error on the measurement of a horizontal

angle evidently also increases with the difference of the
altitudes of the two points sighted, and is eliminated by a
reversal of the instrument.
To find the effect of c on the measurement of a vertical

angle we have in the triangle BZP
cos PZ. = cos BZ cos BP

or sin & = sin h' cos c

As this is the same equation as was derived in the discussion
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of the last error, it follows that equation (80) also epressexs
the error in this case.

(3) To find the effect of a non-fulfilment of condition 1, 2
or 3, so that the line joining the zeros of the two verniers
does not pass through the centre of the circle.

The circle in Fig. 28 represents the graduated circle, of
which is the centre. 0' is the centre of the alidade. Also
the line joining the zeros of the two verniers does not pass
through the point 0'. It is clear from the figure that if in any
position of the alidade the reading of the vernier Vi is less

than what it would be if the line ViV2 occupied a parallel

position passing through 0, then the reading of F2 will be
in excess by the same amount. By taking the mean of the
two values of an angle, found by taking readings of both
verniers, the effect of eccentricity is therefore eliminated.

By a different process it may be shewn that the effect of

eccentricity may be eliminated by any number of equi-
distant verniers.

With regard to condition 8, it is convenient that the plate
levels should be in good adjustment, but in any case it is

advisable to use the more precise level attached to the alidade
of the vertical circle, or the telescope level, in plumbing the
vertical axis. The effect of the error arising from imperfect
leveling may be shewn as follows:

fiG.29

In Fig. 29 Z is the zenith, Z' the point to which the vertical
axis is directed. P is any point. The triangle PZZ' gives
the equation

sin 6' cot = sin d tan h' cos d cos d'
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Then expanding sin d and cos d and neglecting all but the
first power of d we have

sin 6' cotd = d tan A'+cos 0'

or sin 0' cos cos 0' sin 6 = d tan h' sin

or sin (9' d)=d tan A' sin

or as 0' is small

d'e = d tan A' sin

Now if there are two points sighted in turn, and 0/ and 0/
are the values which 0' takes, respectively, we have

6i6i = d tan A/ sin di

e-i'-d2
= d tan A2

'
sin 2

so that, taking the difference

(02
/

-0i
/

)
-

(02 -0i) =d(tan A2
'

sin 2 -tan /*/ sin 00 (82)
This expresses the error in the horizontal angle between

the two points. It appears to be a maximum when 2
= 27O

and 01 = 90, and for high altitudes its value may exceed d.

It is not eliminated by reversal.

To find the effect on a vertical angle, we have in the triangle
APA'

, tan h
cos /= rr,J

tan h'

, ,
tan k tan h

i /, , f*\or tan V =
7-

= ^ = tan h I 1 + ~ I,

cos/ 1 _ /_. V 2 /
2

nearly. Then writing h' = h-\-Ah we have
tan /*' = tan(A+Aft)

= tan h-\-Ah sec2 &

by Taylor's theorem.

f
2

AA sec2 h = ^r- tan A

ft
or Ah= tan A cos2 A

Zi

Again, in the triangle PZZ'

sin 0' sin J

cos A

d sin 0'

sin/=

or /=
cos h

Substituting in the above expression for Ah we have

. , d2 sin2
0' 7,7

A/* = -

T~r- tan h cos- #
2 cos2 h
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(83)

= sin2
6' tan h

Zi

sin 1"
or in seconds Ah = = d2 sin2

8' tan h
Zi

This is never appreciable.

(5) It is convenient that adjustment 9 be nearly perfect,
the ugh not essential, as the effect of imperfect adjustment is

elin inated by reversal.

F/g30

In Fig. 30 the circle represents the vertical circle of the

transit; OP is the sight line, directed to some point P. The
error of VA

,
the reading of the vernier V, is evidently =

e+e'.
If the telescope now be transited, turned in azimuth, and

again directed to the point P, it amounts to the same thing
as transiting and directing to a second point P' which has the
same absolute zenith distance as P. The reverse reading is

then VA' whose error is =
~(e+e')

The mean of VA and VA', the two readings of vernier V,
is therefore the altitude of P freed from the effect of index
error.

To observe an altitude of a heavenly body with a transit.

It has been shewn that errors of adjustment have no

ippreciable effect upon a vertical angle, except the index
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error, whose effect may be eliminated by reversal. In ob-

serving the altitude of a star, therefore, the method is to make
two pointings to the star, reversing the instrument between
the pointings. The telescope is first directed so that the
star is very near and approaching the horizontal thread at
a point a little to the right or left of the centre. The time of

crossing the thread is then noted, and also the V.C.R. The
instrument is then reversed and directed as before, with the

star at about the same distance on the opposite side of the

centre, thus eliminating the effect of any inclination of the

thread. The time of passage across the thread is again
noted, and the V.C.R. If azimuth is required as well as

time, the star must be observed on the intersection of the
horizontal and vertical threads. The mean of the two V.C.R's.
is then the observed altitude freed from the effect of index
error corresponding to the mean of the observed times.

It is thus assumed that the change of altitude of a star,

during short intervals of time, is proportional to the time.

This assumption will seldom lead to an error exceeding
3
.1

for an interval of 3m between the observations.

In observing the sun the same general method is followed
as in observing a star, but as there is no definite point at

the sun's centre that can be observed, the procedure is as

illustrated in Fig. 31. The sun's image is first brought to the

F/g3/

oosition shewn by the broken circle Si, so as to be in contact
.vith the horizontal thread and slightly overlapping the

vertical thread. It may then be kept in contact with the

horizontal thread by turning the altitude tangent screw;
its own motion will then bring it into contact with the vertical

thread, as shewn by the full circle Si. After noting and
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recording the time and the readings of the circles the instru-

ment is reversed and the observation repeated, bringing the

sun into the position S2 . The figure represents an afternoon

observation for time and azimuth, taken with an inverting

telescope. If time alone is required the contact of the sun's

image with the vertical thread is not important. The means
of the readings of the two circles may now be regarded as

corresponding to a pointing to the sun's centre at an instant

equal to the mean of the times.

A form of record is shewn on p. 43.

The Sextant.

The principle and construction of the instrument.

In Fig. 32 AB is the graduated arc, Mi the index mirror,

M2 the horizon mirror, M{V the index arm to which the

mirror M\ is attached, and carrying the vernier V at its

extremity. The instrument embodies the principle that if

a ray of light SMi be incident upon the mirror Mi, then

Fig.32
reflected from it to the mirror M2 ,

from which it is again

reflected, then the angle c between the first and last direc-

tions of the ray is equal to double the angle d between the

mirrors. This is readily proved, for in the triangles MiM2C
and MiM2D we have, respectively

2b = 2a+c
and b = a+d
or 2b = 2a+2d

c = 2d
The mirror M2 is attached permanently to the frame of

the instrument, and half of its surface is unsilvered, while
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Mi is attached to the index arm and turns with it. The
sighting telescope is directed along the line CM2 . The mirrors
are so placed that when their planes are parallel the index
V is at the zero A of the graduated arc AB. The arc is divided
into twice the number of degrees that it subtends at its centre

Mi.
To measure the angle between two points the instrument

is held so that its plane passes through the two points, and
the left-hand point is seen in the field of the observing tele-

scope through the unsilvered half of the mirror M-i. The
index arm is then turned until the other point, seen by double
reflection from the two mirrors, appears to coincide with
the first. The reading of the arc is the angle subtended by
the two points at the point C. It is to be remarked that C is

not a fixed point for all angles.

Adjustment of the sextant.

To observe an altitude of the sun with a s?xtant and
artificial horizon.

The artificial horizon is a horizontal reflecting surface,

usually the surface of mercury contained in an iron trough.
In observing the altitude of a heavenly body the angle is

measured between its image, seen by reflection in the arti-

ficial horizon, and that seen by reflection from the mirrors of

the instrument. Fig. 32 shews that this angle is equal to

double the apparent altitude of the body. In observing the

sun, instead of superposing the two images seen in the field

of the telescope, it is best to bring them into external contact,
thus observing either the upper or the lower limb. As the
horizon image appears erect in the field of an inverting
telescope, and the other image inverted, the identification

of either image shews which limb has been observed.
To determine the index error of the instrument after

observing the sun, set the vernier nearly at zero and then
direct the sight line to the sun; the two images will now be
seen nearly in coincidence. Then turn the tangent screw
until the images are in external contact, and read the arc.

Then reverse the motion of the screw, causing the images
to pass one over the other until they are again in contact,
and again read the arc. One of the readings will be on the
extra arc. Half the difference of the two readings is the
index error, positive if the reading on the extra arc is the

greater. The sum of the readings is twice the sun's angular
diameter.
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8. Formula of Spherical Trigonometry.
cos a =cos b cos c+sin b sin c cos A
cos b =cos a cos c+sin a sin c cos B
cos c =cos a cos 6+sin a sin b cos C

cos .4 = cos B cos C+sin B sin C cos a
cos B = cos ^4 cos C+sin A sin C cos b

cos C = cos A cos 2?+sin ^4 sin B cos c

sin A sin 5 sin C
sin a sin 6 sin c

sin a cos 5 =sin c cos & cos c sin b cos ^4

sin a cos C =sin 6 cos c cos 6 sin c cos A
sin 6 cos A =sin c cos a cos c sin a cos 5
sin b cos C = sin a cos c cos a sin c cos B
sin c cos ^4 =sin b cos a cos Z> sin a cos C
sin c cos 5 =sin a cos b cos a sin b cos C

where

sin A cot 5 = sin c cot 6 cos c cos ^4

sin 5 cot A = sin c cot a cos c cos B
sin 5 cot C = sin a cot c cos a cos B
sin C cot jB =sin a cot 6 cos a cos C
sin .4 cot C =sin 6 cot c cos b cos ^4

sin C cot .4 =sin 6 cot a cos b cos C

\

sin

sin-

sin*

L
. sin (s b) sin (? c)

sin b sin c

1R sin (s a) s'm(s-c)
sin a sin c

kr _
sin (s a) sin (s b)

sin a sin 6

5 =

cos2 \A

cos-
2

cos'

iB =

^C

a+b-\-c

2

sin 5 sin(.y a)

sin 6 sin c

sin 5 sin(s b)

sin a sin c

sin s sin(s c)

sin a sin b

= sin (5 6) sin (5 c)

sin 5 sin(s a)

1 r sin (s a) sin (5 c)

sin 5 sin(s b)

lr sin (s a) sin (5 6)
2^- ;

-

sin s sin (5 c)
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tan2 \A =

tan2

tan2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)



.
9 i COS

sin2 a = Scos(S-A)
'

sin B sin C

sin2
2
i, cos 6

1

cos (S
sin A sin C

(S-B)

sin2
\c =

cos

where

5 cos (S
sin yl sin B

C)

cos2 a =

cos2
\b =

cos2
\c =

^

c ,4+5+ C
=

2

cos (5-5) cos (S-C)
sin 5 sin C

cos (S-A) cos (S-C)
sin .4 sin C

cos (S-A) cos (S-B)
sin yl sin B

S cos(S-A)
(S-C)

i _ cos 5 cos(S-A)'

cos (S-B) cos (S-C,

tan2
\h = cos 5 cos (<>-)

cos (5-^) cos (5- C)

tan2 Ac = - _ cos ^ cos (^-Q
2

cos (S-A) cos (5-5)
s analogies

cos (S-A) cos (5-

Delambre's analogies

sin h(A+B) cos i(g _ft)

cos \C cos c

sin \(A -B) sin Ha~ft)
o ir1

=
-

cos \C sin ^c"-"j 2*-' 0111 2'

cos Q4+) cos | (a +6)
sin \C cos fc

cos \HA-B) _
sin |C

Napier's analogies-

sin
i _

sin \c

HA+B)tan |(.

tan h(A-B)

cos ^
1

(a-b)
cos ^(a+6)

sin_(a &)

cot \C

cot C

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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Case 5. Given two sides and an angle opposite one of

them, as a, b and A.
1st solution By means of equations (3), (16) and (18), or

. _ sin b sin A
sin B = -

:

sin a

, cos| (a b) . , .
,
_ N

tan^C= 1) ,
, ; cot$(A+B)2

cos (a+6)
v '

, cos h(A+B) ..
, ,.

tan|c =
cosK^-^) tanKa+&) '

2nd solution By means of equations (3), (5) and (1), or
sin b sin A

sin B =
:

sin a
sin C cot A =sin b cot a cos fr cos C

cos a = cos 6 cos c+ sin b sin c cos A
These equations may be thus adapted for log's.

tan 4
= tan A cos b

sin(C+04) =tan b cot a sin 4

tan 5
= tan b cos A

. n . cos a cos 5

cos(c 5)= 7
cos b

Case 6. Given two angles and a side opposite one of

them, as A B and a.

1st solution By means of equations (3), (16) and (18), as
in the last case, (3) being written

. . sin B sin a
sin b = -. -.

sin A
2nd solution By means of equations (3), (2) and (5), or

. , sin B sin a
sin b= : -.

sin A
cos A = cos B cos C+sin B sin C cos a
sin B cot A = sin c cot a cos c cos B

Adapting for log's, we have
tan 6

= tan B cos a tan 7
= tan a cos B

//- i \ cos yl cos 06 / n . .

cos (C+06)
= 5 sin (c e-i)

= tan B cot ,4 sin 0,
cos B
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GEODESY.
1. Figure of the Earth.

In any survey the extent of which is such that the curva-
ture of the earth's surface must be taken into consideration,
the figure of the earth may be regarded as that of an oblate

spheroid, the elements of a meridian section of which are,
as determined by Col. A. R. Clarke, 1866:

Major semi-axis, a = 20926062 ft.

Minor semi-axis, 6 = 20855121 ft.

Denoting the eccentricity by e we have

. _ a?-b> (1)
e-

a2

The following log's are of frequent use:

log a =7.3206875

log e =2.9152513

loge
2 =3.8305026

log(l-e
2
) =1.9970504

log ^ =3.8334522lei

loS l/i 2
=2.9167261V 1=

Radii of curvature Any section of the spheroid by a

plane is an ellipse. If the plane contains the normal, or

plumb line, at a point, the resulting section is a normal
section. Any straight line so called traced on the earth's

surface is therefore a portion of an elliptic arc; for practical

purposes, however, if its length does not exceed 100 miles,
it may be regarded as a circular arc whose radius is the
radius of curvature of the normal section, of which it is a

portion, at its middle point. If the normal section coincides

with the meridian an expression for its radius of curvature is

0(1 -e2
) (2)

pm ~'

(l-e
2 sin2

</>)f

If the normal section is perpendicular to the meridian its

radius of curvature is

a (3)
Pn

(l-e
2 sin2

</>)

This is also the length of the normal AN or BN', Fig. 39
terminated in the minor axis of the spheroid. These are
termed the "principal radii of curvature" at a point whose
latitude is 4>. The radius of curvature of a normal section

whose azimuth is a may be expressed in terms of these; thus
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1 cos2 a sin2 a (4)

Pa P Pn

or = (1+ q ; cos2 cos2 a
)

Pa Pn \ l-e- J
By substituting in (2) and (3)

sin 6 = e sin

they become pm =a{l-e2
) sec3

(6)

pn =a sec (7)

Eq. (4) may also be placed in a convenient form for com-

putation. Thus writing it

Pm Pn

pn cos2 a + pmsin
2 a

it may be thus transformed

Pn Pn
Pa =

sin2 a + -^- cos2 a sin2 a (l + ^- cot2

a^)
Pm \ Pm /

Then writing cot2 a = cot2 x
Pm*

it becomes
Pn Pn

Pa "

sin2 a(l+cot
2
x) sin2 a cosec2 *

sin 2 x
Pn

~
n

sin2 a

pa is then given by the equations
/
p^~.._ sin2 * (8), (9)

tan x = -i/ cHL tan a Pa
= Pn

sin 2 a
Pn

By expansion in series the log's of these radii of curvature

may be thus expressed:

log Pm =7.3199482 -[3.3448221] cos 20

+ [6.27371. .] cos 40- (10)

log p = 7.3214243 -[4.8677005] cos 20

+[7.79659..] cos 40- (11)

log pa =log pn [3.4712365] cos2 cos2 a

+ [5.00366. .] cos4 cos4 a- (12)

The numbers in brackets are the log's of constant numerical

coefficients.

For tables giving the values of pm p , etc., see the Supple-

ment to the Manual of Dom. Land Surveys, also Table IV.
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A Trigonometric Survey.

Objects of such a survey.
Choice of stations. Well-conditioned triangles. The base

net.

Height of stations in order to overcome the earth's curva-
ture:

f/e.33

Let A and B be two stations whose heights above sea
level are Hx and H2 ,

and distance apart 5. is the centre of
curvature of the arc s. The curved line AB is the path of the

ray of light between the two stations, z is the zenith distance
of B observed at A. We have then in the triangle ABO:

B0_ _
sm BAO

AO
'' =

sin ABO
P+Hj sin(z+r) sin(z-fr)

p-\-Hi sin(z+r <r) sin(z-}-r)cos a cos(z+r) sin a'

Ml
P 1

or

or

or

1 +

1+
P̂

1 - o- cot(z-{-r)

Q + v) 0~ 7
1

) =l+*cot(2 + r) +
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Hi-Hi.
,

. ,
,

<r
2

or =o-(cot s r cosec- 2) +
P

v ' '

2
'

expanding by Taylor's theorem. Then as

per s, r ma,
m denoting the coefficient of refraction, and 2 is nearly 90,
we have

c-2

H2-Hx
= s

(cot
2

j
+

2P

s
2

eq.



results may also be obtained with a well standardized steel

tape by working in cloudy weather or at night so as to avoid

sudden changes of temperature.
In making a measurement the tape is stretched clear of

the ground by applying a considerable tension, and rests at

its zero points on supports in the form of tripods or stakes

driven firmly into the ground. The rear zero division of the

tape having been placed in coincidence with a fine mark on
the head of its support, the relative positions of the forward

zero division of the tape and the mark on its support may
then be measured with a scale. The distance between the

marks on the two supports may be found by applying certain

corrections to the tape length. These corrections are:

For temperature,
For tension,
For sag, and
For grade.

Correction for temperature:

cx
= aL(t to) (16)

in which
L =the standard length of tape;
t = the temperature at which it is standard ;

/ = temperature at time of measurement;
a = coefficient of expansion.

Correction for tension:

c2 = eTL (17)
in which

e = extension of unit length due to unit tension.

T= tension in lbs.

Correction for sag:

i _L_ / W\* (18)

24 T2 24 V T )
cz
=

in which
w =wt. of unit of length of tapeW= wt. of tape.

Correction for grade: Denoting the difference of elevation

of the end supports, determined by levelling, by h, we have

a =L-(L2-h2
)i

~L L y 2 U 8 U 16 u
"
)

1 W 1 h4

2 L +
8 U +



t +
t(t)'+

h h
,

h / h\*
2~

This first term in this expression is nearly always sufficient.

The following may be used as the coefficients of expansion
for steel and invar tapes:

Steel, 0.0000114

Invar, 0.00000041

In the absence of experimental data the extension of a
steel tape may be computed from its modulus of elasticity,

28000000 lbs. The extension of invar may be taken to be

0.00000004394 ft.

per lb., per foot, per sq. in. of cross section.

The distance between the supports, reduced to the horizon-

tal, then is

L =L+Ci-\-ci CzCi (20)

Reduction of a base measurement to sea level

F/g.34
o

Let, B = measured length of base, h being its height above
sea level ;

b =its length reduced to sea level.

Then we have

or b=B p

B p+h P+h

B-b =B (\ ^ =B
V

1

P+h)
B
P+h

=B -

p

p \ p p- p J
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-tf-J-O-
(21)

The first term here is usually sufficient.

A broken base It is sometimes necessary to measure a

base line in two parts, deflecting through a small angle at

their point of junction.

Let a and b, Fig. 35, be the two parts, making the small

angle C with one another. It is required to find the length c

We have
C2 =a2+b2+2 ab cos C,

= a?-+b
2 + 2ab(l \ nearly,

= (a+byabC\

-^-()
= (a+b) i - | -^i), nearly,

= a + b-

or, if C is in seconds

x abC2

2 a+6 '

sin2 1" aC2
(22)

*

a+b
sin2 1" _

log -s- -
=11.0701198

7*0 interpolate a portion of a base Sometimes a portion
of a base cannot be directly measured. In Fig. 36, a and b

and the angles P Q and i? are measured ; it is required to find

the length x. We have

BE sin A CE sin A
sin Qa



F/g.36

Again
BE - s[n (A +R) E sin (A + 22)

g '

6+x sin (22-P) 6
"

sin (22-0
BE = (b+x) sin (22 -Q)
CE bsin(R-P)

.*. equating, we have

ab sin Q sin(P-P)

sinPsin(P-(2)
-^+*M&+*)
= aZ>-f-(a+&)#4-#

2

Then write

2
-, 4a&sin(gsin(P-P) (23)

(o-&)
2
sinPsin(P-<2)

and we have
x2+(a+b)x+ab-Ua-b) 2 tan2 K =

x= ~%(a+b) y/\(a+b)
2-ab+\{a-by tan2 K

= -\{a+b) \/|(a-&)
2+(a-&) 2 tan2 K

= -\{a+b){a-b) secK
If a = b this solution fails. In that case write

2 , _
a& sin Q sin (22-P)

"

sinPsin(i2-0
then we have

x2+ (a +b)x+ab -tan2 K' =

and x= -\ {a+b)V\(a+b) 2 -ab+tan2 K'

= - \{a +b) Vi(a-6) 2+tan2 K'

= -|(a+6)tan K' (26)

Measurement of angles The angles of a triangulation
may be measured either with a direction theodolite, or one
of the repetition pattern. The circle of the former instrument
is usually read by three equidistant verniers or microscopes.

(24)

(25)
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In measuring the angles at a station each of the distant

stations is sighted in order, from left to right, and the micro-

scopes read. The telescope is then transited, or reversed in

the standards, and each station is again sighted, in the order

from right to left, and the microscopes again read. A value

of each angle is thus obtained from each microscope, and in

each position of the instrument, direct and reversed. The
mean value of the angle thus obtained is free from the effect

of eccentricity and errors of adjustment of the instrument.

With three microscopes the effect of reversal is to give, for

each station sighted, six readings distributed at equal inter-

vals round the circle, thus minimizing the effect of division

errors of the circle. If the construction of the stand permits
the circle may now be turned to a new position and the angle
measurements repeated, etc., thus further diminishing the

effect of division errors.

A repetition theodolite is usually read by verniers, and
with this pattern of instrument the repetition principle may
be used to advantage. It may be thus described:

Let A (the left-hand station) and B be two stations, the

angle between which is to be measured.
Point to A and read verniers. Loosen upper clamp and

point to B and read verniers. Then loosen lower clamp and

again point to A. Then loosen upper clamp and again point
to B, thus obtaining a reading equal to double the angle.
This process may be repeated until a final reading is obtained

equal to, say, six times the angle between the two stations.

Next loosen the lower clamp, transit the telescope, and

point to B. Then loosen upper clamp, turn vernier plate
in a clockwise direction, and point to A, thus diminishing
the final reading of the first set of repetitions by the amount
of the angle between the two stations. Repeat this opera-
tion as often as in the first set, thus obtaining a final reading
approximating closely to the initial reading.

It is to be noted that in both sets of repetitions the vernier

plate is always turned in a clockwise direction; that in the

first set the instrument is turned from A to B with the upper
clamp loose and the lower clamp tight; and that in the second
set these conditions are reversed.

The required angle is now found by taking the mean of the
differences between the initial and final readings in the two
sets, and dividing by the number of repetitions. This result

is largely free from the effect of a drag of the circle by the
vernier plate.

Reduction of an observed angle to centre of station This
reduction is necessary when for some reason the centre of a
station cannot be occupied by the observer.
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In Fig. 37 A is the centre of the station, the point occu-

pied. The angles /3 and y are measured, and the distance
m. The angle A is required. We have

f/G.37

A =BDC-x = 0-x+y;
, . m sin /3 . m sin yand sin x = sin y = -

c
J

b

Then x and y being small we may substitute their circular
measures for their sines, and write them in the form x sin 1"
and y sin 1", x and y being expressed in seconds, so that we
have

,4=0-
m sin /3 m sin y
csinl"

+ (27)

b sin 1"

Distant stations are rendered visible by means of acetylene
lamps for night work, and heliotropes for day work. De-
scription of some forms of heliotrope.
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3. Computation of the Triangulation.

The portion of the surface of the spheroid contained within

a triangle is assumed to be a portion of a spherical surface

whose radius is the geometric mean of the principal radii of

curvature at the central point of the triangle.

Spherical excess of a triangleIt is shewn in spherical

geometry that the sum of the angles of a spherical triangle

exceeds two right angles by an amount termed the "spherical
excess" of the triangle.

To find the spherical excess of a given triangle :

f/G.38

Let ABC be a spherical triangle, and A'B' and C points

diametrically opposite A B and C. The surface of the hemi-

sphere is made up of the three lunes ABA'C, BCB'A, and
CAC'B this last being equal to the sum of the two triangles
CAB and CA'B' less twice the area of the triangle ABC.
Denoting these by Lune A, etc., and the area of the triangle

by A, we have

Lune A = 2wR2 = 2AR2

K

LuneJS =2BR*
Lune C = 2CR2

2AR2+2BR2+2CR 2 -2A = 2TrRt

A
or A+B+ C tt= -=

R*
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or, denoting the spherical excess by e we have in seconds

A (28)=
R2 sin 1"

For a triangle on the earth's surface this may be written

e =
A (29)

pm Pn Sin 1"

The area of the triangle, in all but extreme cases, may be

computed as if the triangle were plane, so that we may write

ab sin C (30)

2pm pn sin 1"

a2 sin B sin C (31)Or =
;

2pm pn sin 1" sin (B-\-C)
The value of 1/2 pm p sin 1" which we may denote by m

may be computed by the expression

log 2Pm Pn sin 1"
= 10^372023+ [3.469754] cos 20 (32)

the number in brackets being the log. of a constant coefficient.

The following table was computed by (32) :

<f> log m
50 10.37151
51 141
52 131
53 121
54 111

55 101
56 092
57 082
58 073
59 064
60 055

Legendres theorem This theorem may be thus stated:
If the sides of a spherical triangle are small in comparson
with the radius of the sphere, it may be solved as a plane
triangle by first diminishing each angle by one-third of the

spherical excess of the triangle.
To prove this, let

A B and C be the angles of the triangle,
a b and c the sides, expressed in radians,
A'B' and C the angles of a plane triangle, whose sides

a /3 and y have the same lengths expressed in feet as

those of the spherical triangle.
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Then we have

cos a cos h cos c
cosA =

sin b sin c

2r2

_ 24r* V 2r* 24rV \ 2'2 24>V
""*

(A. _ ."\ /x _ t\
V r or%) \ r Qr3J

i__ , *L_/i_ , Jl t_ , V , y^\
2r2 ^24r4 \ 2r2

~r
24r4 2r2 ^ 4r4 "^

24^/
<3t 187

3 ~^T
r
2

"

6^
""

6r*

/3
2+7

2 -a2 a4-^4_ 74_ 6/3
2
7

2

2r2 +
24r*

py A /3
2+72

r
2 (1

- ^r\
\ 6r2 J

/ ^+7
2-a2 a4-^4_ 74_ 6^27

2 X x ^+72\

V 2/3T 24/3Tr2 / V 6r2 )
^2+72_ a2 B j8

4_7 _
6/3 7

1

207
'

24/37r
2

l
84 4-

/3V-a2
/3

2+ /
327

2+74 -a2
7

2

12/37r2

= /3
2+7

2-a2 a4
+/3

4+7
4 -2a2

<3
2 -2a2

7
2-2

i
82
72

(c)

2/37 24/37Z-
2

Now in the triangle A'B'C we have

., )8
2+72-a2

(b)cosA =
Wy

sin2
,4' = l-

/ j3
2+7

2 -a2Y
V 2/57 /
a4
+/3

4+ 7
4~ 2a2

ff
2~ 2"V~ 2/3

2
72

(c)

4/3
2
7

2

.*. by (a) (6) and (c) we have

cos A = cos A sm~ A -^-r

Then assume ^4 = ^4'+0
and we have cos A =cos A' B sin yl'

by Taylor's theorem. Therefore comparing with (d) we have

sin ^' = sin2 ,4' -J^-or1
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By sin A' 1 . . , .

or d= P7
6r2

=
3^. iPy sin A'

3r2 3

This proves the theorem.
If the three angles of a triangle are measured, the spherical

excess may be computed by (30) or (31) using the values of

the angles given by measurement. The closing error then is

180 + -
(A +B+ C)

which may be divided among the angles, giving to each a

correction which is inversely proportional to its weight. One
*hird of the spherical excess is then deducted from each angle,
o.nd the triangle solved as a plane triangle. If the three

jigles have equal weights the closing error may therefore be
iound as if the triangle were plane and divided equally among
them.

For triangles the lengths of whose sides do not greatly
exceed 6 miles the error due to the neglect of spherical excess

is not likely to amount to 0.01 ft.

In the case of a triangulation consisting of an intricate

chain or network of triangles, the angles must be subjected
to a rigid process of adjustment before the triangles are

solved. The adjustment of a triangulation constitutes a

subject in itself, which is beyond the scope of these notes.
T eading principles outlined).
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4. Geodetic Positions.

The latitude and longitude of one of the stations, and the

azimuth of a triangle side extending from that station, having
been determined astronomically, the geographical co-ordinates

of all the stations of the triangulation may now be computed.
The problem thus presented for solution is:

Given the latitude and longitude of a point on the earth's

surface, and the length and initial azimuth of the line drawn
from it to a second point, to determine the latitude and

longitude of this point, and the azimuth of the first point as

seen from the second.

In Fig. 39 A is the first point and B the second ; C is the

oole. AC and BC are the meridians of A and B. is the

centre of the spheroid. AN and BN' are normals to the
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spheroid at the points A and B. A'B'C is a spherical tri-

angle, the centre of the sphere being at N. We have given
then

0i ai and s

and are required to find

</>2 AL and a2

To find A0( = 2 0i)

In the triangle A'B'C we have given b c and A'( = ai), and
must find a( =9O-02 '), C( = AL), and 5.

We have
cos a = cos 6 cos c-f sin b sin c cos A'

or sin 02'
= sin 0i cos c+cos 0i sin c cos ai

= sin fa ( 1 s" j +c cos 0i cos ai

c2

or sin 2
'

sin 0i = c cos fa cos ai ^-sin fa
m

But sin 2
'

sin 0i = sin(0i+A0') sin 0!

= sin 0i / 1 j+A0' cos 0i sin fa

, , A0'
2

.= A0 cos 0i jr- sin 0i

A0'
2

. c2 .

. . A0 cos 0i sin 0i = c cos 0i cos en -~- sin 0i

, A0 /2 c2

or A0 ~- tan fa= c cos ai tan fa.
2

Assuming as a first approximation

A0' = c cos ai

and substituting in the term in A0'
2

,
we have

c2 c2

A0' = c cos ai s~ tan 0i+ tan 0i cos2
a\

c2= ccosai- -x- tan 0i sin2
ai (33)

Then substituting c= N
we have (A0' being in seconds)

, ,, 5 cos ai 1 /^cosaiN 2
, . .. /<3/nA* -

AT sin-1"
-

2 (iViETF')
ta" * tan"

"' Sm J (34)

This gives the difference of latitude on an imaginary sphere

whose radius is N( = p), whereas the radius should be
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assumed equal to the value of pm for the mean of the latitudes

of A and B, or, with sufficient precision, for the latitude

0!-HA<'. We have then

. t
N (35)

Pm
Also <j>2

=
(t> 1 +A<t> (36)

To find AL
Again, in the triangle A'B'C, we have

. _, sin c sin A'
sin 6 =

;

sin a

. T sin c sin <n
or sin AL =

,
COS fa

or, substituting arcs for sines

c sin a\AL =
cos fa'

, AT 5 sin ai (37)or in seconds AL = -=r=~. 777 rN sin 1" cos 4>2

To find Aa( = a' ai)

We have

tan \{A'+B') - ^f^TS cot ff
cos(a+o)

But 4'+3' = ai+ 180-a',
= 180-(a'-a 1),

= 180-Aa;
a -& = 90-4>2-90

o
+tf>i,

= -(<fe-fo) = -A0;
a+6 = 9O-02+9O-0i

= l8O-(0i+fc);

cot|Aa=
CO

f ^
A0

cot \ AL;
"

sin m

or tan ^Aa =
sm

1 A

w
tan \ AL;

cos fA0
or, substituting arcs for tangents

Aa =AL*^-. <38>

cos %A<t>

This is termed the convergence of the meridians of A and B.
Then finally

a2
= 180-fa'
= 180

o+ a!+Aa (39)

89



An expression giving Aa directly in terms of the data is

sometimes useful. It may be derived as follows: Taking the

equation
sin A' cot J3' = sin c cot b cos c cos A',

it may be thus transformed

sin ai
tan B

sin c cot b



By writing
x = s sin oi y = s cos a\

equations (34), (35), (37) and (40) become

y x2 tan </>i (41)A0 =

AL =

pw sinl" 2p m psinl"
x (42)

p cos fa' sin 1"

A" = OT+wlrr (1+2tan! *')(43

These equations should not be used for distances exceeding
20 miles. (38) should be used in preference to (40) or (43)
when all the unknown quantities are required.

For longer distances approaching 100 miles the following
equations may be used :

^ sin on 5 cos ai
x = y =

Pn Pn

A , _ y y
s tan2

en x2 tan <j>' (44)* =

sin 1"
+

3 sin 1" 2 sin 1"

</>'
= 0i+ lst two terms

Atf>
= A0' -^

Pm
...2 1//

AL = (45)_____ sin2 1" / _ cos2
2
'\

cos <h' sin 1"
+

6
lAjL J

V
1

sin 2
ai /

AZ/ = lstterm 2
' = </>i+A0'

Afl --
AL sin *" _ sin2 *"

rA ai /i _ cosHA0\ (46)

cosiA0 12
K
-
a)

\
l

sin2
<j> m J

</>m=0i+ |A0 Aa' = lstterm.

The following log's are here useful :

log 1/ sin 1" = 5.31442513 log sin 2

l"/6 =
1^.59300

log 1/3 sin 1" =4.83730 log sin 2
1"/12 = 12.29197

log 1/2 sin 1" = 5.0133951

Example. Let s = 20 miles, 0i=44 30', ai = 48 20'.

To find A0', eq. (34)

log 5 (in ft.)
= 5.0236639

log cos ai = 9.8226883

logp = 7.3214108

log sin 1" = 6.6855749
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4.8463522
2.0069857

log 690.8225 = 2.8393665

5.67873

log 0.5 = 1.69897

log tan 0!
= 9.99242

log tan2
ai =10.10129

log sin 1" = 6.68557

4>x

log 1.4355 = 0.15698

Ad/ = 689".387
= 11' 29".387

To find Ac/), eq. (35)

log Ad/ - 2.8384631

log Pn
~ 7.3214108

\ogPm = 7.3199151

10.1598739

logAd, = 2.8399588

Ad, = 691".765
= 11'31".765
= 44 30'

to -44 41' 31".765

To find AL, eq. (37)

log 5 =5.0236639

log sin ai =9.8733352

log Pn =7.3214108

log sin 1" =6.6855749

log cos to
1 =9.8518109

4.8969991
1.8587966

log 1091.952 =3.0382035

AL = 1091".952
= 18' 11".952

The second term in eq. (45) in this example =0".0005.
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To find Aa, eq. (38)

log AL
log sin

<t> m



X
s =

AL =

sin ai cos ai

x

p n cos 02 sin 1"

Any other problem in which three of these six quantities
are given may be solved in a similar manner.
The foregoing equations may be used in reducing to differ-

ences of latitude and longitude the courses of a traverse line.

Only the first terms are here necessary, so that we may write

x = s sin a y = s cos a

A0 =

AL =

Pm sin 1

x

pn cos 4> sin 1"

. x tan 4>Aa= : 777
= AL sin

<j> (52)
pn sin 1

In latitude 45 the maximum values of the second terms of

the above expressions, for a length of 1 mile, are, respectively
0".0066

.0093

.0098

The use to be made of Aa is to correct the azimuth of a

course referred to the meridian of the initial station of the

traverse, to refer it to the meridian of the initial point of the

course. As a correction it is additive. The algebraic s gns of

x and y must be carefully observed.
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5. Certain Problems which occur in the Dominion
Lands System of Survey.

A general description of that system of survey. .

(1) To find the amplitude of a meridian arc having a given

length; and conversely.
We have

A0 =
(53)

Pm sin 1"

A4> being in seconds; and conversely

s = A(f) . p, sin 1" (54)
If the arc is at a height H above sea level, then

A0=
(p M +tf)sinl"

Pm (l+ Vinl
"

V p>/

VO-S (55)

Pm sin

nearly. Conversely , #. (56)
s = A<t> . p m sin 1

Example. Find the amplitude of an arc whose length is

24 miles, middle latitude 52, and height above sea level

1200 feet.

Eq. (55) log 24

log 5280



For rinding the length of a meridian arc exceeding about a

degree the following expression may be used:

s = [5.56182842]A</> (in" degrees)

-[5.0269884] cos 2< sin A<

+[2.0527848] cos 4<t> sin 2A0

-[1.17356. .] cos 6</> sin 3A0+
in which

A0 = the difference of latitude of its extremities,

4>
= the mean of the extreme latitudes.

The numbers in brackets are logarithms.
This expression is sufficient for finding the length of a whole

quadrant.

(2) Given two points on the same parallel of latitude, at

a given distance apart, to find their difference of longitude,
and the convergence of their meridians.

F/g.40

A and B are the two points; ADB a normal section, and
AEB a parallel of latitude. PD is drawn at right angles to

ADB. The triangle PDB gives

sin BD
sin BPD =

sin PB
s

or sin
AL

sin
2N

2 cos 4>

or, as AL is assumed to be small, this rray be written

s *
AL =

lV cos



A AT S {L'b}
\>r in seconds aL = -r= -

: 777N cos 4> sin 1

If the higher powers of AL and s/27V are retained in the

expansions, this becomes

AL =
Tt

s
. + ^^ (AL')

3 sin2
<f> (59)N cos sin 1 24

in which AL' is the first term. As
TV cos cf>

= P,

the radius of the parallel of latitude, this may be written

^ = ^7, + ^f-c^-h^)' * (eo)P sin 1 24 \P sin 1 /
For a chord 6 miles in length, in latitude 52, the second
term of (60) amounts to only 0".00008, a quantity quite

inappreciable, so that the first term may be considered exact.

Again, in the triangle PDB we have

__ tan BD (61)



Equating these we have

p-s = ( ) sin2 0iVcos024 y N cos </> /

24 v^vy
tan* <{>

^
To find the length of an offset from the chord to the parallel

of latitude.

Applying eq. (33) to the arc DE, Fig. 40, we have, denotingAD and DE by x and y, respectively,
x

N N' 2 V N_

y x l / x v
-^ cos a- -,- 1 tan 4> sin- a

and by*(61) cos a = tan <f>

.'. writing sin2 a = l we haveis

'N'T ^N tan0 ~
2^ tan<*

x(5 x)=
"2i^" tan<A



6. Trigonometric Levelling.

A and B are two stations whose difference of elevation is

to be determined; A' and B' are the apparent positions of

A and B, affected by refraction. The altitude h of B, observed
at A ,

and the distance s, are assumed to be known.

F/G.^-I

Denoting the height BC of B above A by H, we have

sin BACH=AC
sin ABC

a
BAC' = h-r+ CAC' = h-r+- ,

= h ma + -tt ,

ABC = 90 -h+ r- a

= 90-h+tn<r-o
=
90-{/;+ (l-m)<x}.
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sin
{h+ {\-m)c } (65)

cos! A+(l m)a\
See Supp. to Manual of Dominion Land Surveys.

For the numerical value of m see p. 76.

In eq. (65) it is assumed that the distance 5 is equal to the
chord AC. If A and B are stations of a trigonometric survey ,

and 5 is obtained by the solution of a triangle, then it is the
distance AB reduced to sea level. The correction to 5 for

elevation is

H,
s

,

P

Hi being the height of A above sea level. Also the correction

to reduce from th ; arc to the chord is

24V, p)
so that the length of the chord AC is

<<+f)i>-i(i)T
the second correction only becoming appreciable for con-
siderable distances.

Reciprocal zenith distances
If the zenith distances z and z' be observed simultaneously

at the two stations the effect of refraction is eliminated, if

it can be assumed to affect the two zenith distances equally.
Thus, returning to the above equation for H, we have

BAG' = 90
-z-r+-^-

ABC = 180 -z'-r
But we have also

A'AB = z+ r = l?0-(z'+ r)+a

so that r =

which therefore becomes known. Substituting this we have

BAC = Z~^

ABC =90- -'
2

.". substituting in the first above expression for H gives

H= s
sin \{z'-z) (66)

cos Kz'-s+ o-)

* having been corrected for elevation, and if necessary for
curvature.
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TABLE I. Mean Refractions. (Bar. 29.6 ins., Ext. therm. 48.)

App.



TABLE II. Corrections to Mean Refraction.

F*



TABLE III. m =
2 sin 2 I

sin 1

T



TABLE III. Cont. m :

2 sin2
|t

sin 1

T



TABLE IV. Values of Log pn & Log pm (in feet).

o /




