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PRECISE SURVEYING AND GEODESY.

Chapter I.

THE METHOD OF LEAST SQUARES.

1. Errors of Observat1ons.

The Method of Least Squares furnishes processes of com

putation by which the most probable values of quantities are

found from the results of measurements. The simplest case

is that of a quantity which is directly measured several times

with equal precision; here it is universally agreed that the

arithmetic mean of the several values is the most probable

value of the quantity.

When a quantity is measured the result of the operation is

a numerical value called an observation. If Z be the true

value of a quantity and Mx and M, be two observations upon

it, then Z — M, and Z — M, are the errors of those ob

servations.

Constant or systematic errors are those which result from

causes well understood and which can be computed or

eliminated. As such may be mentioned: theoretical errors,

like the effects of refraction upon a vertical angle, or the

effects of temperature upon a steel tape, which can be com

puted when proper data are known and hence need not be

classed as real errors; instrumental errors, like the effects of

7



THE METHOD OF LEAST SQUARES. I.

an imperfect adjustment of an instrument, which can be

removed by taking proper precautions in advance; and per

sonal errors which are due to the habits of the observer, who

may, for example, always give the reading of a scale too

great. All these causes are to be carefully investigated and

the resultant errors removed from the final observations.

Mistakes are errors due to such serious mental confusion

that the observation cannot be regarded with any confidence,

as for instance writing 53 when 35 is intended. Obse1va-

tions affected with mistakes must be rejected, although when

these are of small magnitude it is sometimes not easy to

distinguish them from errors.

Accidental errors are those that still remain after all con

stant errors and mistakes have been carefully investigated

and eliminated. Such, for example, are the errors in leveling

arising from sudden expansions of the bubble and standards,

or from the effects of the wind, or from irregular refraction.

They also arise from the imperfections of human touch and

sight, which render it difficult to handle instruments delicately

or to read verniers with perfect accuracy. These are the

errors that exist in the final observations and whose discus

sion forms the subject of this chapter.

However carefully the measurements be made, the final

observations do not agree; all of these observations cannot

be correct, since the quantity has only one value, and each

of them can be regarded only as an approximation to the

truth. The absolutely true value of the quantity in question

cannot be ascertained, but instead of it one must be deter

mined, derived from the combination of the observations,

which shall be the " most probable value," that is to say, the

value which is probably nearest to the true value.

The difference between the most probable value of a

quantity and an observation is called the ' residual error ' of

that observation. Thus, if z be the most probable value of
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a quantity derived from the observations Mt and M„ and v,

and z\ be the residual errors, then

vt = s- Mx, v, = s-M,. (1)

When the measurements are numerous and precise the most

probable value z does not greatly differ from the true value

Z, and the residuals do not greatly differ from the true

errors.

Prob. 1. Eight measurements of a line give the values 186.4,

186.3, 186.2, 186.3, '86.3, 186.2, 185.9 and 186.4 inches, and its most

probable length is their arithmetic mean. Compute the eight

residual errors ; find the sum of the positive residuals and the sum

of the negative residuals.

2. Law of Probab1l1ty of Error.

The probability of an error is the ratio of the number of

errors of that magnitude to the total number of errors. If

there be 100 observations of an angle which give 27 errors

lying between 1" and 2" the probability that an error lies

between these limits is 0.27. Probabilities are thus measured

by numbers lying between O (impossibility) and 1 (certainty).

A marksman firing at a target with the intention of hitting

the center may be compared to an observer, the position of

a shot on the target to an observation, and its distance from

the center to an error. If the marksman be skilled and all

horizontal errors, like the effect of gravity, be eliminated in

the sighting of the rifle, it is recognized that the deviations

of the shots, or errors, are quite regular and symmetrical.

First, it is noticed that small errors are more frequent than

large ones; secondly, that errors on one side are about as

frequent as on the other; and thirdly, that very large errors

do not occur. Moreover, it is known that the greater the

skill of the marksman the nearer are his shots to the center of

the target.

As an illustration a record of one thousand shots fired
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from a battery gun at a target six hundred feet distant may

be considered. The target was a rectangle fifty-two feet long

by eleven feet high, and the point of aim was its central hori

zontal line. All the shots struck the target, and the record

of the number in the eleven horizontal divisions, each one

foot in width, is as follows:

In top division 1 shot

In second division 4 shots

In third division 10 shots

In fourth division 89 shots

In fifth division 190 shots

In middle division 212 shots

In seventh division 204 shots

In eighth division 193 shots

In ninth division 79 shots

In tenth division 16 shots

In bottom division 2 shots

Total 1 000 shots

The figure shows by means of ordinates the distribution of

these shots; A being the top division, O the middle, and B

the bottom division. It will be observed that there is a'

sltght preponderance of shots

below the middle, and there

is reason to believe that this

is due to a constant error of

gravitation not entirely elim

inated in the sighting of the

gun. If this series of shots

were to be repeated again

under exactly similar condi

tions, it might be fair to infer that 0.212 would be the prob

ability of a given shot striking the middle division, and that

0.001 would be the probability of striking the top division.

Thus the probability of an error decreases with the magnitude

of the error.

 



2. LAW OF PROBABILITY OF ERROR.

In treatises on the Method of Least Squares the theory of

mathematical probability is applied to the deduction of the

relation between an error x and its probability y. The

equation deduced is

y = (2)

where c and h are constants that depend upon the precision

of the measurements and e is the number 2.71828- • . This

equation expresses the law of probability of accidental errors

of observations. It shows that y has its greatest value when

 

x is zero, that y becomes very small when x is very large,

and that the same value of y is given by equal positive

and negative values of x. The figure shows the curve

expressed by the equation, x and y being parallel to the axes

OX and OY, and OM being any error whose probability y is

given by the ordinate MN.

This law is deduced under the supposition of a very large

number of errors, and hence in a particular case close agree

ment is not to be expected. For any series of errors the

values of c and If can be computed and the theoretic number

of errors can then be compared with those actually observed.

For example, in the above case of the shots on the target,

the value of c can be found to be 0.234 ar|d that of h* to be

0.173, and the following comparison shows the agreement of

practice with theory:

For division No. 123 4 5 6 7 8 9 10 11

Actual shots 1 4 10 89 190 212 2^4 193 79 16 2

Theoretic shots 3 15 50 118 197 234 197 118 50 15 3

The dotted curve on the graphic representation shows the

theoretic distribution of the shots. In general it may be said



12 I.THE METHOD OF LEAST SQUARES.

that the results of observation are in good agreement with

the theoretic law, and that this agreement is closer the greater

the number of errors considered.

Prob. 2. Given the equation y — o.234^-°•,7^-r, to compute the

values of y when the values of x are 1, 2, 3, 4 and 5.

3. The Pr1nc1ple of Least Squares.

The Method of Least Squares sets forth the processes by

which the most probable values of observed quantities are

derived from the observations. The foundation of the

method is the following principle:

In observations of equal precision the most probable

values of observed quantities are those that render the

sum of the squares of the residual errors a minimum.

This principle was first enunciated by Legendre in 1805,

and has since been universally accepted and used as the basis

of the science of the adjustment of observations. Starting

with the law of probability of error enunciated in the last

Article it may be proved in the following manner:

Let « observations result from measurements of equal pre

cision, so that c and h in (2) are the same in each case.

Then the probability of the error x, in the first observation

is ce ~ *'-rt\ that of the error x, is ce ~ **-*•*, and that of the

error xn is ce~h,*n. If the observations be independent of

each other, the probability of the simultaneous occurrence of

the errors xx, x„ . . . xn is the product of their respective

probabilities, or that probability is

P = fV-*W+*V + ...+-*n•>.

Now the true values of the errors x„ x,, . . . xn and those of

the quantities observed cannot be found, but the best that

can be done is to find their most probable values, namely the

values that give the gr 'test probability P. The greatest

value of P occurs when x* -f- x,' -f- - - - + •*-n' has its least
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value, that is, the most probable values are those that render

the sum of the squares of the errors a minimum. Let z\ ,

v, , ... vn represent the most probable values of the errors

xx , jr, , . . . xa , then

v* -\- i',' -f- • • • + vn = a minimum (3)

is an algebraic statement of the fundamental principle of least

squares.

An application of this principle to the common case of

direct observations on a single quantity will now be given.

Let z be the most probable value of the quantity whose n

observed values are Mx , 31, , . . . Mn , all being of equal pre

cision. Then the residual errors are

v, = z — M„ vx = z — M,, . . . vn = z — M. ;

and from the fundamental principle (3),

0 - M,y +(z- M,y + . . . + (z — Mny = a minimum.

To find the value of z which renders this expression a mini

mum it is to be differentiated and the derivative placed equal

to zero, giving

2(Z - Mx) + 2(Z - M,) . . . + 2(Z - Mn) = o,

from which the value of z is found to be

_ Mx + M, + . . . + MM

n

that is, the most probable value of the observed quantity is

the arithmetic mean of the observations.

It has been universally recognized from the earliest times

that the arithmetic mean gives the most probable value of a

quantity which has been measured several times with equal

care. Indeed some authors have regarded this as an axiom

and used it to deduce the law of probability of error stated

in equation (2). It should be noted that the method of the

arithmetic mean only applies to equally good observations on

a single quantity, and that it cannot be used when observa
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tions are made on several related quantities. For instance,

let an angle be measured and found to be 6o£ degrees, and

again be measured in two parts, one being found to be 40

and the other 20 degrees. The proper adjusted value of the

angle is not, as might at first be supposed, the mean of 6o£

and 60, which is 6o\ degrees, but, as will be seen later, it is

6of degrees, a result which requires each observation to be

corrected the same amount.

Prob. 3. Four measurements of a base line give the observations

1472.34 feet, 1471.99 feet, 1472.25 feet, and 1472.14 feet. Compute

the sum of the residual errors, and the sum of the squares of the

residuals.

4. We1ghted Observat1ons.

Observations have equal precision when all the measure

ments are made with the same care, or when no reason can

be assigned to suppose that one is more reliable than another:

they are then said to have equal " weight." Weights are

numbers expressing the relative practical worth of observa

tions, so that an observation of weight / is worth p times as

much as an observation of weight unity. Thus if a line be

measured five times with the same care, three measurements

giving 950.6 feet and two giving 950.4 feet, then the numbers

3 and 2 are the weights of the observations 950.6 and 950.4.

Thus " 950.6 with a weight of 3 " expresses the same as the

number 950.6 written down three times and regarded each

time as having a weight of unity; or "950.6 with a weight

of 3 " might mean that 950.6 is the arithmetic mean of three

observations of weight unity.

Let Mx , M, , . . . Mn be n observations made upon quan

tities whose most probable values are to be found. Let the

residual errors be v, , v, , . . . vn , and by the principle of least

squares the values to be found for the quantities must be

such that

*',* + »,*+...+ v» = a minimum.
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Now suppose that there are /, observations having the value

M, , or that iJ/, has the weight /, ; also that M, and M, have

the weights /, and Then there will be p, residuals having

the value v, , /, having the value v, , and /, having the

value v,. Thus the condition becomes

P,vt -\-P,v, + • • • + Pfn = a minimum. (4)

Hence a more general statement of the principle of least

squares is:

In observations of unequal precision the most probable

values of the observed quantities are those which

render the sum of the weighted squares of the residual

errors a minimum.

Here it is seen that the term " weighted square of a re

sidual " means the product of the square of the residual

by its weight.

An application of this principle to the case of weighted

observations on a single quantity will now be made. Let z

be the most probable value of the quantity whose observed

values are M, , M, , . . . Mn having the weights A , A , - - • A-

Then the residuals are z — M, , z — M, , . . . z — Mn , and

from the general principle of least squares given by (3),

p,(z — Mx)' + /x,(z — M,)' + . . . + pn(z — M,)' = a minimum.

The first derivative of this, placed equal to zero, gives

pt(z - Mt) +p,(z - M,) + . . . +/n(* - Mn) = o,

from which the most probable value of z is

arithmetic mean, and the method of computing it is fre

quently expressed by the rule: Multiply each observation by

its weight and divide the sum of the products by the sum of

the weights.

Prob. 4. Prove the principle (4) directly from the law of prob-

P,M,+pJf,+ . . . +p.Mn

A +A+ •••+/- '

The value of z thus found is sometimes called
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T

/

-

ability of error given by (2), assuming that //' represents the weight

of the observation whose error is x.

5. Observat1on Equat1ons.

When observations are taken of several related quantities,

the measurements are usually made upon functions of those

quantities. Thus the sum and differ

ence of two quantities might be ob-

served instead of the quantities them-

£ „-"''"?A selves- Such measurements produce

/ ^ "indirect observations" which are

4 lz generally represented by equations

1 called "observation equations." To

illustrate how they arise, let the following practical case be

considered. Let O represent a bench-mark, and X, Y, Z,

three points whose elevations above O are to be determined.

Let five lines of levels be run, giving the results

Observation I. X above O— 10.35 feet-

Observation 2. Y above X= 7.25 feet.

Observation 3. Y above O = 17.63 feet.

Observation 4. Y above Z = 9. 10 feet.

Observations. Z below X = 1.94 feet.

Here it will be at once perceived that the measurements are

discordant; if observations 1 and 2 are taken as correct, the

elevation of X is 10.35 Ieet. and that of Y is 17.60 feet; if 2

and 3 are correct, then X is 10.38 feet and Y is 17.63 feet;

and it will be found impossible to deduce values that will

exactly satisfy all the observations. Let the elevations of

the points X, Y, and Z above O be denoted by x, y, and s,

then the observations furnish the following equations:

1. x = 10.35,
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The number of these equations is five, the number of the

unknown quantities is three, and hence an exact solution

cannot be made. The best that can be done is to find values

for x, y, and z which are the most probable, and these will

be found in the next Article by the help of the principle of

least squares.

Observations are called " direct " when made upon the

quantity whose value is sought, and " indirect " when made

upon functions of the quantities whose values are required.

Thus in the above example the first and third observations

are direct, and the others are indirect, being made upon

differences of elevation instead of upon the elevations them

selves. Indirect observations are of frequent occurrence in

the operations of precise surveying.

Quantities are said to be " independent" when each can

vary without affecting the value of the others; thus in the

above example the elevation of any one station above the

bench-mark O is entirely independent of the elevations of the

others, or in other words there is no necessary relation

between the values of x, y, and z.

Quantities are said to be " conditioned " when they are so

related that a change in one necessarily affects the values of

the others; thus if the three angles of a plane triangle be

called x, y, and z, it is necessary that x + y -f- z = 180° and

the values to be found for the angles must satisfy this condi

tion. In stating observation equations it will often be found

best to select the quantities to be determined in such a way

that they shall be independent; thus if the three angles of

a triangle are observed to be 62° 20' 43", 36° 14' 06", and

81° 25' 08", let x and y denote the most probable values of

the first and second angles, then the observation equations

are

x = 62° 20' 43",

y = 36 14 06,

180° — x — y — 81 25 08,
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the last of which may be written

x + y=9%° 34' 52",

and here x and y are independent quantities. Thus by

properly limiting the number of unknown quantities these

can always be rendered independent of each other.

As a second example of the statement of observation

equations take the following values of the angles measured

at North Base, Keweenaw Point, on the United States Lake

Survey: v

CNM = 55° 57' 58".68,

MNQ = 48 49 13 .64,:

CNQ =104 47 12 .66,

QNS = 54 38 15 .53,

MNS — 103 27 28 .99.

The object of these observations is to find the values of the

four angles around the point N; but if x, y, z, and w repre

sent these angles, then x -f- y -\- z -f- w = 360° and the

quantities are conditioned. To make the quantities inde-

r pendent only three unknowns should be

/ taken; thus let CNM — x, MNQ = y, and

/ QNS = z, then the observation equations are

NL M x= 55° 57' 58"-68,

7\ y = 48 49 1 3 -64,

/ \ x + y — 104 47 12 .66,

,l a s= 54 38 15 -53.

5 y + z= 103 27 28 .99,

and in the next Article it will be shown how the most prob

able values of x, y, and z are to be found.

Thus, in general, observations upon several quantities lead

to observation equations whose number is greater than that

of the unknown quantities, and no system of values can be

found that will exactly satisfy the observation equations.

They may, however, be approximately satisfied by many
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systems of values; and the problem is to determine that

system which is the most probable and hence the best.

Prrfo. 5. State observation equations for the above example, tak

ing SWQ = s, SNM = t, SNC = u.

6. Ind1rect Observat1ons of Equal We1ght.

When observation equations have been written so that the

unknown quantities have no necessary relation to each other,

the case is called that of indirect independent observations.

Let J/, , il/, , . . . Mn be n observations of equal weight made

upon functions of the unknown quantities x, y, s, etc. Let

the observations give the following observation equations:

av* + Ky + *,*+...=!/;,"

+ Ky + v + • • • = M, , ^

anx + bny -f- cns + . . . = Mn , .

in which a, , a, , . . . an , fr, , b, , . . . bn , etc., are known co

efficients of the unknown quantities. The most probable

values of x, y, z, etc., when found and inserted in the

equations will not exactly satisfy them, but leave small resid

ual errors, v, ,z,,,... vn', thus strictly

a,x + Ky + cxz + . . . - Mt = v, ,

a,x + b,y + c,Z + . . . — M, = vx ,

anx + bny + c*s + • • • — Mn = vn ,

and, by the principle of least squares given by (2) in Art. 2,

the sum of the squares of these residuals must be a minimum

in order to give the most probable values of x, y, and z.

In order to find the condition for the most probable value

of x let the terms independent of x in the equations be

denoted by Nt , N, , . . . Nn ; then they may be written

axx -+- Nx =vx,

as + Nx = v, ,

a*x + Nn ' vn •
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Squaring both terms of these equations, and adding, gives

(axx + N,)' + (a,x + NJ + . . . + (anx + Nn)' = 2v\

and this is to be made a minimum to give the most probable

value of x. Differentiating it with respect to x, and placing

the first derivative equal to zero, there results

a,(axx + Nx) + a,(a,x + N,) + . . . + an(a„x + ,Vn) = o, (6)

and this is the condition for the most probable value of x.

In like manner a similar condition may be stated for each of

the other unknown quantities. The conditions thus stated

are called " normal equations," and their solution will furnish

the most probable values of the required quantities.

The following is hence the rule for the adjustment of

observations of equal weight involving several independent

quantities:

For each of the unknown quantities form a normal equa

tion by multiplying each observation equation by the

coefficient of that unknown quantity in that equation

and adding the results. Then the solution of these

normal equations will furnish the most probable

values of the unknown quantities.

In forming the normal equations it should be particularly

noticed that the signs of coefficients are to be observed in

performing the multiplications, and also that when the

unknown quantity under consideration does not occur in an

observation equation its coefficient is O.

As an example the five observation equations at the begin

ning of the last Article will be taken. They may be written

3-

4-

5-

2.

I.

X

x

y

y

z

1o-35.

7-25,

17-63.

9.10,

1.94.
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Now to form the normal equation for x, the first equation is

to be multiplied by I, the second by — 1, and the fifth by

I ; and adding these,

lx — y — z = 5.04.

In like manner to find the normal equation for y, the second

equation is multiplied by I, the third by 1, and the fourth

by 1, whence

- x 4- iy - z = 33.98.

Lastly, to find the normal equation for s, the fourth equation

is multiplied by — 1 and the fifth by — 1, and adding,

— x— y-\-2s = — 11.04.

These three normal equations contain three unknown quan

tities, and their solution gives

x = 10.372, y = 17.61, s = 8.47 feet,

which are the most probable values of the three elevations.

As a second example the three observation equations near

the middle of the last Article are

x = 62° 20' 43",

y = 36 14 06,

x + y = 98 34 52.

Applying the rule, the two normal equations are

2x + y = 160 55 35,

x + 2y = 134 48 58,

and the solution of these gives

x = 62° 20' 44", y = 36° 14' 07",

•whence the third angle of the triangle is 1 80 degrees minus the

sum of these, or 81° 25' 09". By comparing these with the

observed values it will be seen that each observation is cor

rected by the same amount; this is because the observations

are of equal weight and each angle is similarly related to the

other two.
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Prob. 6. Form and solve the normal equations for the observa

tion equations of Prob. 5.

7. Indirect Observat1ons of Unequal We1ght.

The two preceding Articles give the method of adjusting

indirect observations of equal weight upon several independ

ent quantities; now is to be investigated the case of indirect

observations of different weights upon such quantities. Let

P\ , A , • • • Pn be the weights of the « observations Mx ,

M , . . . Mn , so that the observation equations are

",-r+*J + f.-+. • • = M, , with weight /, ,

arv + b,y + cfS + . . . = M, , with weight /, ,

an.v + bny -f- fnS + . . . = Mn , with weight /n.

Now if the first equation were written /, times, the second/,

times, etc., all the equations would have the same weight

and the rule of the last Article would apply. That is, if each

of the above equations be multiplied by the coefficient of x in

that equation, and also by its weight, the sum will be the

condition for the most probable value of x; and in like

manner is found the condition for the most probable value of

each of the other unknowns. These conditions are the

normal equations.

The following is hence the rule for the adjustment of

observations of unequal weight upon several independent

quantities :

For each of the unknown quantities form a normal equa

tion by multiplying each observation equation by the

coefficient of that unknown quantity in that equation,

and also by its weight, and adding the results. The

solution of these normal equations will furnish the

most probable values of the unknown quantities.

In applying this rule the same precautions are to be observed

regarding signs of the coefficients as before stated.
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An algebraic expression of the normal equations can be

made by introducing the following abbreviations:

[/*'] +/,,«,' + . . . + fnan',

\_pab~] = pxaxbx + p,a,b, + . . . + pKanbn ,

[paM] =pxa1Mx + p,ajf, 4- . . . +pjzjfn,

and then the normal equations can be written

[pa']x + \_pab~\y-\- [pac]s-\- etc. — [paM],

[pab]x + y + + etc. = [pbM],

[pac]x 4- + [pc']s 4- etc. = [pcM].
to)

Here it will be seen that the coefficients of the unknown

quantities in the first vertical column are the same as those

in the first horizontal line, those in the second column the

same as those in the second line, and so on. This is a char

acteristic of normal equations and serves as a check when they

are deduced by direct application of the rule. If the

observations are of equal weight, / is to be made unity

throughout, and the method reduces to that of the last

Article.

As a numerical illustration let five observations produce

the five observation equations

1 . + x =0,

2. +y - o,

3- + * = o,

4- + x 4- y = + 0.34,

5- + y + s = - 0.18,

From these the normal equations, formed either by the rule

or by help of the algorithm, are

204.- + lyy =4- 5.78,

174- + 427 + 6s = -j- 4.70,

6/+ 19™ = — 1.08,

with weight 3,

with weight 19,

with weight 13,

with weight 17,

with weight 6.
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whose solution furnishes the results

x — + 0.285, y = + 0.005, s — — o-o59,

which are the most probable values of the required quantities.

Prob. 7. In a plane triangle six observations give A = 42° 17' 35",

three observations give B = 56" 40' 09", and two observations

give C= 81° 02' 10". Compute the adjusted values of the angles.

8. Solut1on of Normal Equat1ons.

The normal equations which arise in the adjustment of

observations may be solved by any algebraic process. It is

desirable, however, to use methods which will furnish the

value of each unknown quantity independently of the others,

as the liability to error is thus lessened. When there are but

two normal equations let them be expressed in the form

A,x + AJ' = A,

A,x + B,y = A ,

then the solution by any method gives the formulas

_ AA - B,D, _ A,D, — A,D^

x - BxA, - B,A\ ' y - A,B, - AxBx '

which can easily be kept in mind by noting the order of the

letters and subscripts. It may be observed also that the two

denominators are equal numerically but of contrary sign.

For three normal equations let them be written in the form

A,x + Bty + O = A ,

A,x + B,y + C> = A .

A,x + B,y + C> = A ,

and the solution leads to the formulas

_ (B,c,- AQA+Cg^,-AQA+Qg.C-AOA '

x - \B,C-B,C,)A,+^\C -BxCtjAM^C,-B,C,)A,'

(^-^QA+(AC-^,QA+(Af,-^,QA I (S)

y- (A.C-A^OEM^.C-si.QXM^C\-AxC,)B,' | K)

_ (A ,A-A ,B,)A+ (A ,A -A , A)A+(^ ,B,-A,B,)D, j

z- (A^B-A^C^iA^-A.B^+iA.B-A^C, '\
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in which the three denominators have the same value. After

a little practice it will be easy to use these formulas with

great rapidity in the solution of normal equations.

When the number of normal equations is greater than

three, general formulas for solution are too lengthy to be

written, and the systematic method of substitution devised

by Gauss is generally employed. This is explained and

exemplified in text-books on the Method of Least Squares,

but lack of space forbids its presentation here.

Prob. 8. Solve the normal equations

3x-y + 2z-s, — x + 4;, + z = 6, 2x + y + 5s=3,

and check the solution by showing that the values of the roots

satisfy the equations.

9. The Probable Error.

The Method of Least Squares comprises two tolerably dis

tinct divisions. The first is the adjustment of observations,

or the determination of the most probable values of observed

quantities. The second is the investigation of the precision

of observations and of the adjusted results. The first is done

by the application of the principle of least squares given in

Art. 3; the second is done by the determination of the

probable error, the rules for which will now be presented.

The following may be stated as a definition of the term

" probable error " :

In any large series of errors the probable error is an

error of such a value that the number of errors less

than it is the same as the number greater than it.

The probable error is hence an error which is as likely as

not to be exceeded. In the figure if the ordinate MN be

drawn so as to divide the area on each side of O Y into two

equal parts, then OM is the probable error. Here the total

area between the curve and the Jf-axis is unity (certainty),

and the area MNYNM is 0.5 ; thus the probability that an
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error is greater than OM is 0.5, and that it is less than OM

is also 0.5.

To render more definite the conception of probable error

let two sets of observations made upon the length of a line

be considered. The first set, made with a chain, gives 634.7

feet with a probable error of 0.3 feet. The second set, made

with a tape, gives 634.64 with a probable error of 0.06 feet;

thus,

/, = 634.7 ±0.3 and /, = 634.64 ± 0.06;

and it is an even chance that 634.7 ls within 0.3 of the truth,

and also an even chance that 634.64 is within 0.06 of the

truth. The probable error thus gives an absolute idea of the

accuracy of the results; it also serves as a means of compar

ing the precision of different observations, for in the above

case the precision of the second result is to be taken as much

greater than that of the first.

It is a principle of the Method of Least Squares that

weights of observations are reciprocally proportional to the

squares of their probable errors. Thus, for the above numeri

cal example,

Hence the second observation has a value about 25 times

that of the first when it is to be used in combination with

other measurements. Weights and probable errors are con

stantly used in the discussion of observations. Weights are

usually determined from the number of measurements or from

knowledge of the manner in which they are made, but prob

able errors are computed from the observations themselves.

X M O M

 

X
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For the case of direct observations on the same quantity,

all being of equal precision, the arithmetic mean is the most

probable value (Art. 3). Subtracting each observation from

the mean gives the residuals v, , v, , . . . vn , and the sum of

the squares of these is represented by 2v2. Then

/ 2v'

r, = 0.6745Y —- (9)

is the probable error for a single observation, and, since n is

the weight of the arithmetic mean,

r = -£= (9)'

Vn

is the probable error of the arithmetic mean. For example,

let six observations of an angle be taken with equal care and

let these be arranged as below in the column headed M.

The sum of these values divided by 6 gives 48° 06' 14". 7 as

M V
*•

48° 06' 12".5 + 2".2 4.84

1S -o -O .3 0.09 r, = 2".s8 r=1".oS

20 .3 -S -6 3136

08 .9 + S -8 3364 *=48°o6' 14".7 ± 1".1

1S 1 -0 .4 0.16

16 .4 - 1 .7 2.89

z = 48° 06' 14".7 o".o 72.98 = 2t?

the most probable value of the angle, the second column

gives the residuals, and the third their squares. Then by

the use of the formula the probable error of a single observa

tion is found to be 2". 58 and that of the arithmetic mean to

be 1".05. Thus if another observation were to be taken it

is as likely as not that it will deviate 2". 58 from the truth.

For the case of n observations of different weights on one

quantity the weighted mean is the most probable value

(Art. 9). Subtracting each observation from this gives the

residuals, and the square of each of these is to be multiplied
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by its weight to give the sum of the weighted squares, which

may be represented by 2pv,. Then

r, =o.6745 ;/|^ (9)"

is the probable error of an observation of the weight unity,

and if 2p represent the sum of the weights,

r=-±=

vzp

is the probable error of the weighted mean. As an example,

let the observations in the first column of the following table

be the results of the repetition of an angle at different times,

18".26 arising from five repetitions, 16".30 from four, and

so on, the weights of the observations being taken the same

as the number of repetitions. Then the general mean z has

Af P V *' pvx

32° 07' 18".26
5

— o".1o 0.010 0.05

16 .30 4 + 1 .86 3.460 13.84

21 .06 1 — 2 .90 8.410 8.41

'7 -95 4 + 0 .21 0.044 0.18

16 .20 3 + 1 .96 3.842 "•53

20 .85 4
— 2 .69 7.236 28.94

z - 32 " 07' 1 8". 1 6 21 =
2p 2pv' = 62.95

the weight 21, the sum of the several weights or the number

of single measures. Subtracting each M from z gives the

residuals in the column v; next from a table of squares the

numbers in the column v* are found, and multiplying each of

these by the corresponding weight gives the quantities pv*

whose sum is 62.95. Then, since n is 6, the probable error

of an observation whose weight is unity is found from the

formula to be r, = 2". 39 and that of the weighted mean to

be r = o".52. Hence the final value of the angle may be

written s = 32° of 1 8". 16 ± o".$2, which indicates a high

degree of precision.
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Prob. 9. Four measurements of a base line give the results

922.220 feet, 922.197 feet, 922.221 feet, and 922.217 feet. Compute

the probable error of the most probable value.

10. Probable Errors for Ind1rect Observat1ons.

It is sometimes required to find the probable errors of the

observed quantities Mx , M, , . . . Mu , and the probable errors

of the quantities x, y, z, etc., whose values have been

obtained by the methods of Arts. 7 and 8. These may be

found by first deducing the probable error of an observation

of the weight unity and then dividing this by the weights

A, A, • . 'A an<l P**PyPt, etc- ^ n is the number of

observations, q the number of unknown quantities, and 2pv'

the sum of the weighted squares of the residuals, then, as

shown in treatises on the Method of Least Squares,

is the formula for the probable error of an observation of the

weight unity, and

are the probable errors of Afx and of x respectively.

The weights /, , are known, but the weights

Px , py, etc.,-are to be derived by preserving the absolute

terms of the normal equations in literal form during the solu

tion. Then the weight of any unknown quantity is the

reciprocal of the coefficient of the absolute term which belongs

to the normal equation for that unknown quantity. For

instance, take the normal equations

 

  

ix — y — 3 = Z>,

— x. + 3/ — z = D,

_ x _ y _|_ 2S = D,, •

1 1
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The solution of these by any method gives

* = |A + IA + *A.

j = *A + *A + iA.

* = *A + 4A + A-

Hence the weight of x is |, that of_y is £, and that of jr is I.

If it be only desired to find the weight of x, the terms D%

and A need not be retained in the computation; if only to

find the weight of z, the terms D, and A can be omitted.

As a numerical example the observation equations given

at the beginning of Art. 5 may again be considered. These

may be written, if x, y, and z denote the most probable

elevations,

x — 10.35 = v, ,

y — x — 7.25 = v, ,

y - 17.63 = v.,

y - z - 9. 10 = vt ,

x - z — I.94 = v,,-

in which v, , z\, etc., are the residual errors. Now in Art. 6

the most probable values were derived,

x = 10.37, y — '7-6l, and z = 8.47 feet,

and substituting these, the residuals are found to be

-}-0.02, V,=—O.oI, !',= — 0.02, Vt— +O.O4, v%=—O.o4.

Now, as the weights are equal, 2f>v' becomes 2v', and its

value is 2v' = 0.0041. Then, since n is 5 and q is 3,

/0.0041

r, = 0.6745W - _ - = 0.031 feet,

which is the probable error of a single observation. By the

method above explained it will be found that the weight of

x is 1.6, whence its probable error is
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and in a similar manner the probable errors of y and z are

O.023 feet and 0.03 1 feet. The final adjusted values may

then be written

x = IO.37 ± O.02, y = 17.61 ± O.02, z = 8.47 ± O.03.

Prob. 10. Four measurements give the observation equations

+ x = 12.27, with weight 2,

— x -f- y — -1.04, with weight 2,

— y + 2 = 3 30, with weight 1,

z — 16.67, with weight 1.

Find the most probable values of x, y, and s, their weights and their

probable errors.

11. Probable Errors of Computed Values.

The determination of the precision of quantities which are

computed from observed quantities is now to be discussed.

For instance, the area of a field is computed from its sides

and angles; when the most probable values of these have been

found by measurement, the most probable value of the area

is computed by the rules of geometry, and tlf|| precision of

that area will depend upon the precision of the observed

quantities.

Let z, and z, be two adjusted values whose probable errors

are r, and r, ; it is required to find the probable error r of the

sum z — z, -f- z,. If etc., be residual errors for zt

and v,', v", etc., be residual errors for z,, then the corre

sponding errors for z are v' = v,' + W, v" = v" -f- etc.

Squaring each of these and adding the results gives

2v' = 2v* + 22vtv, + 2v,',

and for a large number of errors 2vtv, is zero, since each

product vtv, is as likely to be positive as negative. Now

2v', 2v', and 2v* are proportional to r\ r*, and r,* as seen

by (9), and accordingly

r = Vr? + r,"
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gives the probable error of the sum -f- s,. In like manner

it may be shown that the probable error of the difference

zx — is also given by Vr* + rt*- Further, if j = s, ± .sr,

± . . . ± s. , then

r> = r,* + r,' + . . . + r: (1l)

determines the probable error of For example, if a base

line be measured in three parts giving 250.33 ± 0.05, 461.29

± 0.07, and 732.40 ± 0.10 feet, then r = 0. 13 feet, and the

total length may be written 1444.02 ±0.13 feet.

If x be an observed quantity whose probable error is r,

then the probable error of ax is nr. Thus, if the diameter

of a circle be observed to be 42 feet 2 inches ±0.5 inches,

the circumference is 132.47 ± 0. 13 feet.

If X be any function of x, then the error dx in x produces

the error dX in x, and the error r in x produces the error

dX

r~r~ in X. For example, let x be the observed diameter of

dx

a circle and r its probable error; then X — %nx' is its area,

and dX — ^-mfydx, whence the probable error of X is r-\nx.

Thus, if x is 42 feet 2 inches ±0.5 inches, the area is

1396.46 ± 2.76 square feet.

Lastly, let X be any function of the independently

observed quantities x, y, s, etc., and let it be required to find

the probable error of X from the probable errors r, , r, , r, ,

etc., of the observed quantities. If the measurements are

made with precision, so that the probable errors are small, it

can be shown that

M^M'.f)'+(,f)V... (..r

determines the probable error of X. For example, let x and

y be the sides of a rectangular field and X = xy its area.

Then the probable error r, in x gives the probable error rty

in X, and the probable error r, in y gives the probable error
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r^x in X, so that (r,_y)* -(- (r^xf is the square of the resulting

probable error of X. Thus, if x — 50.00 ± 0.01 feet and

r = 200 ± 0.02 feet, the area is 10 Ooo ± 2.24 square feet.

Formula (11)' will be frequently used in the following

pages, it being a general rule that includes all cases. As

another illustration let A and B be two points whose hori

zontal distance apart is /, and let 6 be the vertical angle of

elevation of B above A ; let r, be the probable error of /, and

r, the probable error of ft. The height of B above A is given

by X = h tan 8, and, by the application of the formula,

regarding // as x and 6 as y, there results

r* = (r, tan 6)' + (r,//cos' #)'.

If /= 1035.2 ± 1.3 feet, and #=3° 10' ± 02', then

r, = 1.3 feet, but, to make the computation, r, must be

expressed in the same unit as cos' 6, that is, in radians; since

3438 minutes make one radian, the numerical value of r, is

2/3438. Then are found r, tan # = 0.072 feet, (r,//cos' 6)

- 0.604 feet, whence r — 0.608 feet. The value of A'

being 1035. 2 tan 3° 10' = 57.27 feet, this may be written

57.27 ± 0.61 feet, and thus it is as likely as not that the

error in the computed height is less than 0.61 feet. Here it

is seen that the probable error in the small vertical angle

produces the greater part of the probable error in the com

puted result.

Prob. 11. In a plane triangle ABC let A = 90°, C = 16° 04' 45"

± 30", and a = 6256.8 ± 0.7. Compute the length of the side c

and its probable error.

12. Cr1t1cal Remarks.

The most important processes for the adjustment and

comparison of observations have now been presented, but

the brief space at command has forbidden extended theoretic

discussions like those found in treatises on the Method of

Least Squares. The student has been obliged to take for
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granted the law of probability of error and the formulas for

probable errors, but otherwise the subject has been developed

in logical manner. Legendre, in announcing the principle

of least squares in 1805, gave no proof of its correctness or

validity; he notes, however, that this principle balances the

errors, so that the effect of the extreme ones is neutralized.

In mechanics the center of gravity is a point about which

all the particles of the body balance; so the arithmetic mean

gives a value about which all the errors balance, the sum of

their residuals being zero. The moment of inertia of a body

is a minimum for an axis passing through the center of

gravity; so the sum of the squares of the residual errors is

to be made a minimum in order to find the most probable

values of an observed quantity. The radius of gyration with

respect to an axis through the center of gravity bears also an

analogy to the probable error. Thus the Method of Least

Squares may be justified by the mechanical principles of

equilibrium.

Numerous applications of the adjustment of observations

will be given in the following Chapters, and a simplification

will be introduced whereby the formation of normal equations

from observation equations may be rendered numerically

easier. A treatment of conditioned observations by the use

of "correlate equations" will also be presented, whereby

the work of computation may often be materially shortened.

As measurements become more and more precise the neces

sity for rational processes of adjustment and comparison

becomes greater and greater. In physics, astronomy,

geodesy, and wherever precise observations are taken, the

Method of Least Squares is now universally used, and there

is little doubt but that in future years all books on surveying

will treat more or less of its principles and processes.

A list of writings on errors of observations and on the

Method of Least Squares from 1722 to 1876 will be found in

Transactions of the Connecticut Academy, 1877, vol. IV, pp.
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151-222. Many of these, together with others from 1877 to

1888, are given in Gore's Bibliography of Geodesy, published

in Report of the U. S. Coast and Geodetic Survey for 1887,

pp. 3 1 3-5 12.

Prob. 12. A base line was measured in three parts, the values

found for these being 126.74, 219.18, and 270.40 meters. The total

length was then measured and found to be 616.39 meters. Find the

adjusted length of the base, the weights of the four observations

being 17, 9, 8, and 3.
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Chapter II.

PRECISE PLANE TRIANGULATION.

13. Coord1nates and Azimuths.

Plane surveying is that which covers an area so small that

it is unnecessary to take into account the curvature of the

earth's surface. Surveys of cities, townships, harbors, and

mines are usually of this character. The field operations of

the plane triangulations of such surveys do not differ in

principle from those of geodetic triangulation, the latter

being merely more precise.

In geography the position of a point on the earth's surface

is located by its angular distance north or south of the

equator and by its angular distance east or west of the

meridian of Greenwich, these coordinates being called latitude

and longitude. In plane surveying two straight lines are

imagined to be drawn at right angles to each other, one

coinciding with the meridian, and these constitute a system

of coordinate axes to which points are referred by rectangular

coordinates. The linear distance of a point east or west of

the meridian is called its longitude, and the linear distance

north or south from the other axis is called its latitude. The

coordinate axes are rarely laid out on the ground, but upon

the maps they are drawn, as also lines parallel to them at

regular distances apart, thus forming a system of squares by

which points are readily located.

The azimuth cf a line AB is the angle that it makes with

a meridian drawn through the end A. Azimuths are usually

measured around the circle from 0° to 360°; thus if the
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azimuth of AB is 40° the azimuth of BA is 220° in plane

surveying.

There are in use several systems of reckoning coordinates

and azimuths. The one most commonly used in plane sur

veying has the latitudes positive when measured north and

negative when measured south, while the longitudes are

positive toward the east and negative toward the west. In

this system azimuths are reckoned around from the north

through the east, the azimuth of north being o°, that of east

90°, that of south 180°, and that of west 270°. This system

is used in the Handbook for Surveyors.

In geodetic surveying in America latitudes and longitudes

are reckoned as in geography, north latitude being positive

and south latitude negative, while west longitude is positive

 

and east longitude is negative. Here the azimuths are

reckoned from the south around through the west, the

azimuth of south being o°, that of west being 90°, that of

north 180°, and that of east 270°. This system is also em

ployed for the linear coordinates of plane surveys based on

geodetic triangulations, and it will be used throughout this

volume. For a city survey the origin may be taken through

the tower of the city hall, or, if it is desired to avoid negative

latitudes and longitudes, it may be taken near the southeast

corner of the city. The size of the squares drawn upon the

map will depend upon its scale; the side of a square is
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usually taken as I o00 feet or meters, or 1oo00 feet or

meters.

In thinking of the azimuth of a line the student should

imagine himself to be standing at the end which is first

mentioned in its name and to be looking toward the other

end; then he should imagine a meridian drawn through that

end toward the south, and the angular deviation of these

lines, measured as above described, is the azimuth. Thus,

let the azimuth of AC in the above figure be 115°, then the

azimuth of CA, determined by drawing a meridian through

C, is 115° + 180° or 295°. For all cases in plane surveying

the back azimuth of a line is 180° greater than the front

azimuth, because the meridians are parallel.

When several lines radiate from a station and their azimuths

are known the angle between any two lines is found by taking

the difference of their azimuths. Thus, if the azimuth of

AB is 35° 17' 04" and that of AC is 120° 46' 19" the angle

BAC is 85° 29' 15". Again, for the lines AB and AG let

the azimuth of the first be as before and that of A G be 320°

10' 02", then the angle GAB is 75° 06' 52"; here 360° is to

be added to the azimuth of AB before subtracting from it

the azimuth of AG.

Let Pt and P, be two points in such a plane coordinate

system, Z, and L, their latitudes, Mx and M, their longitudes,

/ the length of the line joining the points, and Z the azimuth

of P,P,- Then, if Z, , Mx , I, and Z are given, the coordinates

of P, are

L, = L, — I cosZ, M, = Mx + I sinZ, (13)

which are always correct if cosZ and sinZ are used with

their proper signs according to the value of Z. For example,

let Z, = + 20 148.3 feet, Mx = + 45 933.7 feet, / = 7 789.5

feet, Z = 205° 36' 07"; here both cosZ and sinZ are nega

tive, and the computation gives L, = + 27 173.0 feet and

M, = + 42 567.7 feet for the coordinates of the second point.
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A triangulation is a cheap and accurate method for deter

mining the coordinates of stations. The stations are first

located on the ground so as to give good-shaped triangles,

two of them being so placed as to form a base line whose

length can be measured with precision. The angles of all

the triangles are then observed, and from these and the length

of the base the lengths of all the sides are computed. The

azimuth of one of the sides is determined by astronomical

observations, and from this and the angles the azimuth of

each side is known. The coordinates of one of the stations

being assumed, the coordinates of all other stations are com

puted. Lastly, the lengths and azimuths of the sides and

the coordinates of the stations are recorded as the basis for

topographic surveys, and the coordinate system being plotted

the stations are laid down in their correct relative positions.

In this Chapter those operations of plane triangulation will

be discussed which depend upon the measurement of hori

zontal angles. Strictly speaking triangulation includes base

line and azimuth observations, as these must be made before

the angle work can be fully computed. It will be con

venient, however, to first discuss the angular measurements

and their adjustments, leaving the base lines to be treated in

Chapter III and the azimuth observations in Chapter V.

Prob. 13. Let the latitude and longitude of Q be + 6 131. 31

meters and -f- 36 414.60 meters, the length QN be 12 454.02 meters,

and the azimuth of QN be 300° 06' 31". Draw the figure and

compute the latitude and longitude of N.

14. Measurement of Angles.

Horizontal angles are measured either with a direction

instrument or with a repeating instrument. A direction

instrument has no verniers, but the readings are made by

several micrometer microscopes placed around the graduated

circle. Any engineer's transit may be used as a repeating
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instrument, and the following notes will treat of work done

with these. A good transit, having two verniers reading to

half-minutes, can easily measure horizontal angles with a

probable error of one second if proper precautions be taken

to eliminate systematic and accidental errors.

Errors due to setting the transit or the signals in the

wrong position cannot be eliminated, and hence great care

must be taken that they are centered directly over the

stations. If the graduated limb be not horizontal the

measured angles will be always too large and hence the levels

on the limb must be kept in true adjustment. All the

adjustments of the transit, in fact, must be carefully made

and preserved in order to secure precise work.

Errors due to inaccurate setting of the verniers, as also

those due to eccentricity between the center of the alidade

and the center of the limb, may be eliminated by reading

both verniers and taking the mean. Errors due to collima-

tion and to a difference in height of the telescope standards

may be eliminated by taking a number of measures with the

telescope in its normal or direct position and an equal number

with it in the reverse position. Errors due to inaccurate

graduation may be eliminated by taking readings on different

parts of the circle. Errors due to pointing and to clamping

may be largely eliminated by taking one half of the measures

from left to right and the other half from right to left.

Lastly, in order to eliminate errors due to atmospheric influ

ences it is well to take different series of measurements on

different days.

The following form of field notes shows four sets of

measurements of an angle HOK, each set having three repeti

tions. The first and fourth sets are taken with the telescopt

in the direct position, the second and third with it reversed.

The first and second sets are taken by pointing first at H and

next at A', the third and fourth are taken by pointing first at

K and next at H. At each reading both verniers are noted.
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The vernier is never set at zero, but the reading before

beginning a set is usually made to differ by about 90° from

that of the preceding set so as to distribute the readings

uniformly over the circle. In the first and second sets the

mean final reading minus the mean initial reading is divided

by 3 to give the angle; in the third and fourth sets the mean

F1eld Notes of Hor1zontal Angle HOK.
 

Reps. oi Reading.
tt
>

'—

°
AnKle.

Remarks.

= S
2 0

°

°' "3 e
A B Mean

• /
IS) z H

H

K

3 D
1O

197

02

17

OO

30

30

60

15.0

45-0

62 25 1O. O
Angle at Slation O.

Sept. 31, 1895, P.M.

H
3 R

too 1 1 30 30 30.0
62 2 = 07 5

Brandis Transit, No. 716

K 287 26 60 45 52-5 John Doe, observer.

R. Roe, recorder.

K

H

3 K
190 01

45

30

15

45

40

37-5

27-5

62 25 23 3 Clear, air hazy.

2

K

H

3 D
280 55

39

45 60

45

52-5

22.5

62 25 30 (' Mean of 4 sets

93 00 HOK = f>2°2S' 17". 7

initial reading minus the mean final reading is divided by 3.

The mean of the four values of the angle is 62° 25' 17". 7,

which is its most probable value as determined by these

observations.

In repeating angles the following points should be noted.

The transit should never be turned upon its vertical axis by

taking hold of the telescope or of any part of the alidade.

The limb should never be clamped when the verniers are

read. The observer should not walk around the transit to

read the verniers, but standing where the light is favorable

he should revolve the limb so as to bring vernier A before

him and then vernier B. The observer should not allow his

knowledge of the reading of vernier A to influence him in

taking that of B. Care must be taken to turn the clamps
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slowly and not too tightly. If these precautions be taken,

and if the observer becomes skilled in manipulation and close

reading of the verniers, it will be possible to obtain the value

of an angle to a high degree of precision with a transit read

ing only to minutes.

Four sets taken in the manner just described constitute a

series. The number of series required will depend upon the

precision demanded in the work. If it be required to render

the probable error of the final result about one second, it

will generally be necessary to take about 6 or 8 series. By

taking these in one day a smaller probable error may be

found than if they were taken on two or more different days,

but the final result will really be more precise in the latter

case because it eliminates numerous errors due to atmospheric

influences.

When three lines meet at a station there are but two inde

pendent angles to be observed, when four lines meet there

are but three independent angles, and in general n lines give

n — I independent angles. It is, however, generally best to

measure all the angles resulting from the combination of the

lines two by two. Thus for three lines OA, OB, and OC,

the angles AOB, AOC, and BOC should be observed; for

four lines six angles should be measured, namely, AOB,

AOC, A 01), BOC, BOD, and COD; in general for n lines

the measurements should be distributed over $n(n — I)

angles. If about 5 series are thought necessary for one inde.
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pendent angle, then for four independent angles 20 series

are required, but if these are distributed over the ten com

bined angles then only 2 series need be taken upon each.

The adjustment of the observed values by the Method of

Least Squares gives finally the most probable values of all the

angles at the station.

Another method, which is used by many observers, is to

measure each of the n angles included between the n lines;

thus for the four lines in the middle diagram the angles

AOB, BOC, COD, and DOA would be measured. The

theoretic sum of these being 360 degrees, the observations

are then to be adjusted to agree with this condition and at

the same time render the sum of the squares of the residuals

a minimum (Art. 21).

In writing the letters designating an angle it is desirable to

do so in the order of azimuths, that is, standing at the vertex

of the angle the letter on the left-hand line should be men

tioned first. Thus AOB means the angle from the line OA

around to OB, but BOA means the angle from OB around to

OA and it is, of course, 360° minus AOB. By this method

an angle is estimated in the same direction around the circle

as is azimuth, and thus uniformity is secured and ambiguity

avoided.

Prob. 14. Show that the probable error of the value of HOK

found from the above field notes is 3". 6.

15. Probable Errors and We1ghts of Angles.

In the field note-book the observations are recorded in the

order in which they are made, but it is desirable before the

occupation of a station is concluded that the results for each

angle should be arranged in an abstract and the probable

error be computed. Thus the observer gains a clear idea of

the precision of each angle and is able to decide whether

additional measures are necessary. The weights of the final
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means are, however, usually assigned from the number of

repetitions rather than by the probable errors.

The following is an abstract of the observations of an angle

PNE measured on the precise triangulation around Lehigh

University in 1898, each result being the mean of four sets

taken in the manner shown in the field notes of Art. 15, and

Abstract of Hor1zontal Angles.

Date. No. of

Reps.
Angle PNE. V 7-> Remarks.

1898.

Oct. 3

Oct. 4

Oct. 10

Oct. 11

Oct. 17

Oct. 18

12

12

12

12

12

12

12° 15' 1g".3 - 2.9 8.4 Buff and Berger

Transit.
13 -8 + 2.0

+ O.1

6.8

0.0

29.2

47.6

1.4

16 .3

21 .8 - 5-4

+ 6.9

Each series taken by

a different observer.

09 .5

17 .6 - 1.2
r, = 2". 90

P = 72 12° 15' 16" 4' 2f' := 93-4 - r = 1".18

each being taken by a different observer. Here, proceeding

as in Art. 9, the arithmetic mean of the six observations gives

12° 15' 16".4 as the most probable value of the angle PNE.

The column headed v gives the residuals found by subtract

ing each observation from that mean, and then the sum of

their squares is found to be 93.4. From (9) the probable

error of a single result is computed to be 2". 90 and from (9)'

the probable error of the mean is 1". 18, which shows a good

degree of precision considering that the observers were not

experienced and that the transit reads only to minutes.

A young observer is usually tempted, after having com

puted the mean and found the probable errors, to reject some

of the observations which have the largest residuals, in order

thereby to apparently increase the precision of the results.

This temptation must be resisted, as an unwarranted rejec

tion is equivalent to a dishonest alteration of field notes.
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There are, however, two cases where an observed value may

properly be rejected, namely, if it is evidently a mistake, as

when the degrees and minutes of the angle are wrong, and if

a remark in the note-book shows it was taken under unfavor

able conditions. Some observers allow themselves the

liberty of rejecting an observation when its residual is greater

than five or six times the computed probable error of a single

observation. There are some reasons in favor of this prac

tice, but more observations than one should never be rejected

in this way.

Although the weights of observations are inversely propor

tional to the squares of their probable errors, it is found that

it is better and more convenient to give weights to angles

from the number of repetitions or series which produce them

rather than from their computed probable errors. If the

number of observations were large in each case the two

methods might closely agree, but in ordinary practice they

do not. An observer of much skill and experience may be

allowed to assign weights to his angles with regard both to

the number of repetitions and to the probable errors, but in

general it has been found best to make the weights closely

proportional to the number of repetitions provided the

measurements are taken under the same conditions, that is,

by observers and instruments of equal precision.

To illustrate let PNE = 12° 15' 16".4 ± 1" .2 as found by

6 series, PNF = 35° of 42".$ ± 4". 8 as found from 4 series,

and ENF= 22° 52' 24". O ± 2".4 as found from 6 series.

Here the probable errors indicate that the precision of PNE

is much greater than that of ENF, but in making the adjust

ment it is best to take their weights as equal since each has

been found from the same number of measures. Thus the

weights of the three observations should be taken as 6, 4,

and 6, or as 3, 2, and 3 in making the adjustment.

Prob. 15. Show that the adjusted values of the above observations

are PNE = 12° 15' lf'.o, PNF= 35° 07' 41".6, and ENF =

22° 52' 24".6.



46 II.PRECISE PLANE TRIANGUI.ATION.

 

16. The Stat1on Adjustment.

When several angles have been measured at a station they

are to be adjusted by the methods of Arts. 6 and 7. It is

here only necessary to give additional examples and to

explain an abridgment whereby the numerical work is sim

plified.

As an example involving equal weights let the data be the

same as on page 18, the five observation equations being

4-x = 55° 57' 58".68,

+y - 48 49 1 3 -64,

-f- x -)- y = 104 47 12 .66,

yK M +s= 54 38 15 -53.

+ )' + = = 1o3 27 28 .99,

in which x, y, and z represent the angles

CNM, MNQ, and QNS. Now let x, , y\ ,

and zx be the most probable corrections to

the measured values of x, y, and z, so that

x= 55° 57' 58".68 + .r,,

y = 48 49 !3 -64 + y,,

z = 54 38 15 .53 + *, ,

represent the most probable values of the quantities x, y,

and z. Then substituting these in the observation equations

the latter become

+ xx = o".00,

+ yx = o .00,

+ xx +y, = + o .34,

4- s, = o .00,

+ 7. + = - 0 -18.

Next, by the rule of Art. 6, the normal equations are

2*. + J, = + O.34.

+ 3/, + *, = + 0.16,

yx + 2zt = — 0.18,
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the solution of which gives the corrections

*1 = +o".I5, y, = + 0.64, s, = — O.I I,

and hence the most probable values of x, y, and s are

* = 55° 57' 58".83 = OT, -

y — 48 49 13 .68 = •

- = 54 38 15 -42 = QNS, -

and from these by addition the most probable values of the

other observed angles are

x 4- y — 104 47 12 .51 = CNQ, v

y z = 103 27 29 .10 MNS.'

The residuals for the five observation equations, found by

substituting the most probable values, are + o". 15, + o".04,

— 0.15, — 0. 11, + o. 11, and the sum of their squares is

0.0708, which is smaller than can be obtained by any other

values of x, y, and z. From (10) the probable error of each

of the given observations may now be found to be ± o". 13.

When the weights are unequal the method of Art. 7 is to

be followed. As an example, let the following be three

angles measured at the station 0:

MOA = 46° 53' 29".4 with weight 4,

MOC = 135 27 11 .1 with weight 9,

AOC = 88 33 41 .1 with weight 2.

Now let x and z be the most probable values of any two

angles, say of MOA and MOC. Then the observation equa

tions are

x = 46° 53' 29".4, weight 4,

z = 135 27 11 .1, weight 9,

z — x= 88 33 41 .1, weight 2.

Next let x^ and zx be the most probable corrections to the

observed values of x and z, so that

x= 46°53'29"-4 + *..

3 = 135 27 11 .1 4-
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are assumed probable values of x and z. Let these be sub

stituted in the observation equations, which thus reduce to

xx = o".00, weight 4,

zx = o .00, weight 9,

x, — = 4- 0.60, weight 2.

From these the normal equations are formed ; they are

6-r, — 2zt — + 1.20,

— 2.T, -|- lI.Sr, = — 1.20,

from which the most probable corrections are

x, = +o".2, z, = -o".\.

Finally, the adjusted values of the three angles are

x = 46° 53' 29".6 = MOA,

s = 135 27 11 .0 = MOC,

s — x = 88 33 41 .4 = AOC.

Here it is seen that the observation having the largest weight

receives the least correction, which should of course be the

case.

It is well to note that the numerical part of the assumed

probable values may be anything that is convenient; thus in

the last example 46° 53' 00". o -f- xx might be taken for x,

and 1 3 5° 27' 00".0 -f J, for z, then the values for x, and zx

would be found to be -+- 29". 6 and -(- n".0. The object of

introducing x, , y, , and is, however, to make the numbers

in the right-hand members of the observation and normal

equations as small as possible, and this is generally secured

by taking the corrections as additions to observed values.

After the adjustment is made the azimuths of all the lines

radiating from the station are easily found by simple addition

or subtraction, provided the azimuth of one line is known.

Thus for the last example let the azimuth of OM be given

as 279° 04' 1 8". 4, then the azimuth of OA is 32 5° 57' 48".o,

and the azimuth of OC is 54° 31' 29".4.
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P'-ob. 1 6. Angles measured at the station O between the stations

D, K, M, and Cgave the following results:

DOK = 66° 32' 43".7o, weight 2, -

KOM = 66 14 22 .10, weight 2,

KOC = 108 02 29 .62, weight r,

MOC — 41 48 07 .02, weight 2,

COD = 185 24 47 .65, weight 2.

State the observation equations, form and solve the normal equa

tions, find the adjusted angles, and show that the adjusted value of

COD is 185° 24' 47".41 with a probable error of ± o".2o.

17. Errors 1n a Tr1angle.

The simplest triangulation is a single triangle in which one

side and the three angles are measured in order to find the

lengths of the other sides. The precision of the values found

for these sides will depend upon the probable error of the

base and the probable errors of the measured angles. The

best triangle is one whose angles are each about 60 degrees,

and a triangle having one angle less than 30 degrees is not a

good one, as will now be shown.

In a triangle whose sides are a, b, and c, let the angles

A, B, and C and the side a be obtained by measurement.

The sides b and c then are

sinZ? sinC

b = a . , , c — a —.—7.
s1nyi s1n^J

Now suppose each angle to have a probable error r; then

by the use of (11)' the probable errors in b and c are found

to be

r„ = br Va^~+~cotrZ?, rc = cr ^cot'yj + cot'C. (17)

If A, B, or C is a small angle its cotangent is large and

accordingly rb and rc may be great. As far as b is concerned

the smallest value of will obtain when A = B, and as far

as c is concerned the smallest probable error results when

A = C; or the three angles should be equal and each be 60
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degrees in order that the precision of b and c should be the

same and each be as small as possible.

As a numerical example let a = I o00 feet, A = 90°,

B = lO°, C — 8o°, and let the probable error in each angle

be 1'. Here by computation b = 173.65 feet, c— 984.81

feet, and then

rt= I73-65 X 5-67 X r, rc = 984.81 X 0.176 X r.

The value of r to be used here is l' expressed in radians, or

r= 1/60 X 57°-3 = 0.000291. Accordingly the probable

error of b is 0.29 feet and that of c is 0.06 feet, so that the

computed values of b and c have a large degree of uncertainty.

It will be noticed that b, which is opposite the small angle

B, is liable to a far greater error than is c.

For a second example take the triangle in which a = 1 000

feet, A = 6o°, B = 6o°, C = 60°, and let the probable error

in each angle be 1'. Here b = 1 0OO feet, c = 1 000 feet,

and r — 0.00029 1 ; then from (17) there is found rb = rc =

0.24 feet, so that the probable error of the computed side b

is less than in the previous case.

The uncertainty of a line is the ratio of its probable error

to its length. Thus in the first numerical example the

uncertainty of the computed value of b is 0. 29/173.65 = -jj^

nearly, and that of the computed value of c is 0.06/984.81

= lg ft0D nearly. In the second example, however, the

uncertainties of b and c are 0.24/1 000 = nearly. An

uncertainty of is greater than that of a rough linear

measurement, and an uncertainty of TT^TT is greater than

should occur in the lengths of the lines computed in precise

triangulations. In primary geodetic triangulation work the

uncertainty of the computed sides of the triangles is usually

about jTnrVoir' tnus the probable error in a line 30000 meters

long would be o. 1 meters.

From formula (17) it is seen that the uncertainties in the

computed values of b and c are
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«4 = r VcotM + cot',5, ue = r Vcot'A + cot'C, ( 1 7)'

and hence these may be computed without knowing the

lengths of the sides b and c. If the probable errors of A, B,

and C are different, let them be represented by r, , r, , and r, ;

then from (12),

ut= Vr.'cot'A + rfcofB, uc = Vr,' cot'A + r* cot'C, (17)"

are the uncertainties in the computed lengths of b and c. If

the base a has a probable error ra , this may also be taken

into account by (12), and it will be found that the term

(ra/af must be added to the other terms under the first

radical in (17)".

In laying out a triangulation it is not possible to locate the

stations so that each angle may be approximately 60 degrees,

but it should be kept in mind that this is the best possible ar

rangement and that it should be secured whenever feasible.

Angles less than 30 degrees should not be used except in un

usual cases, or when the distances computed from them are

not to be used for the computation of other distances.

Prob. 17. In a triangle the adjusted values of the observed angles

are 25° 18' 07", 64° 01' 26", and 90" 40' 27", each having a

probable error of 1". The length of the side opposite the smallest

angle is 3 499.39 feet, and its uncertainty is 3T^0. Find the uncer

tainties in the computed values of the other sides.

18. The Tr1angle Adjustment.

When the three angles of a plane triangle have been meas

ured their sum should equal 180 degrees, but as this is rarely

the case they are to be adjusted so as to fulfil this condition.

This is readily done in any particular case by the methods of

Arts. 6, 7, and 16, but more convenient rules for doing it

will now be deduced.

First, let the three observed values be of equal weight, and
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let these be A, B, and C. Let x and y be the most probable

values of A and B; then the observation equations are

x — A, y = B, 180° — x — y = C.

Now let v, and v, be the most probable corrections to be

applied to A and B in order to give the most probable values

of x and y, or

x = A + », , JC = £ + p..

Substituting these in the observation equations, the latter

reduce to

z,, = o, vx = o, p, + », = 1 8o° — ^4 — i? — C.

Letting d represent the small quantity 180° — (A + B + C)

the normal equations are found to be

2J\ + 7'5 = d, v, + 2?'. = d,

whose solution gives v, = id and p, = \d, which are the

corrections to be applied to A and B. Then the correction

to be applied to C is also \d* Hence the rule: Subtract the

sum of the angles from 180° and apply one third of the dis

crepancy to each of the measured values. For instance, if

the three measured angles are 64° 12' 19". 3, 8o° 07' 47".0,

and 35° 39' 5S"-8, their sum is 180° 00' 02". 1, and the dis

crepancy d is — 02". 1. Then o".J is to be subtracted from

each angle, giving 64° 12' 18". 6, 8o° 07' 46". 3, and 35° 39'

5 5". 1 as the most probable values.

Secondly, let the three observed values be of unequal

weight. Let these be A with weight /, , B with weight /, ,

and C with weight The observation equations are the

same as before, but are weighted, namely,

v, = O, with weight /, ,

v, — O, with weight /, ,

v, -f- f, = d, with weight

From these the normal equations are

(A +/>, +A*. =M

A», + (A + AK = A^.
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whose solution gives the corrections x\ and v, and then the

correction v, is d — v, — v,. Accordingly the results are

d d d

Vx=pf' V'=pj>' V'=AP' °8)

in which, for abbreviation, P represents — . These

Pt P, P,

formulas show that the corrections are inversely as the

weights, so that the angle having the smallest weight receives

the largest correction. For example, let the weights of

A, B, and C be 10, 5, and 1 ; then i\ = -fad, v, = T2S^, and

v, = \\df so that the correction for C is ten times that for B

and five times that for A.

If only two angles of a triangle are measured there can be

no adjustment made. If A and B are given by observations

these are the most probable values of those angles, and the

most probable value of C is 180° — A — B. In all precise

primary work the third angle should be measured as a check,

as also to show the precision of the observations, whenever

it is practicable. Spires and other inaccessible points may,

however, be used as stations in secondary triangulation.

Prob. 18. The observed angles of a triangle are 74° 19' 14".3

with weight 3, 35° 10' 4a".6 with weight 7, and 70° 30' 09".4 with

weight 9. Find the adjusted values of the angles.

19. Tr1angle Computat1ons.

The computation of the sides of a triangle is a simple

matter, one side having been measured as a base line or being

known from preceding computations. The theorem used is

that the sides are proportional to the sines of their opposite

angles; thus in the triangle ABC let the side AB be

known, then

log CA — log AB — log sinC -j- log sini?,

log CB = log AB — log sinC -J- log s\nA.
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In making these computations it is desirable that a uniform

method should be followed, and the following form for

arranging the numerical work is recommended, it being

similar to that used by the U. S. Coast and Geodetic Survey.

Computat1on of a Plane Tr1angle.

Lines and

Stations.
Distances and Angles. Logarithms.

A

n I

AB 2753-53 3.4398898

\ >^

C 49° 04' 49" . 28 0. 1216914

A 90 21 24 .66 T. 9999916

v /
B 40 33 46 .06 T.8131011

\x
CB 3643-95 3.5615728

A

CA 2369.64 3.3746823 i

Here the stations are arranged in the order of azimuth, and

that is placed first which is opposite to the given side, the

length of this and its logarithm being put on the top line.

Opposite the second and third angles are written their

logarithmic sines, and opposite the first angle the arithmetical

complement of its logarithmic sine. Now, to find the log of

CB the logarithm opposite B is to be covered with a lead-

pencil and the other three logarithms added. So to find the

log of CA the logarithm opposite A is to be covered and the

other three logarithms added. Lastly, the distances corre

sponding to these logarithms are taken from the table.

If the precision of angle work extends to seconds or tenths

of seconds, as it does on primary triangulation, a seven-place

table of logarithms will be needed. Six-place tables are

rarely found conveniently arranged for rapid and accurate

computation. For a large class of secondary work five-place

tables are sufficiently precise. In taking a log sin from the

tables the student should note that the characteristics 9. and

8. mean 1. and 2. and should write them in the latter manner

in his computations.
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When the above triangle ABC is connected with a coordi

nate system the azimuth of AB is known from previous

computations. Then, from this and the angles A and B, the

azimuths of AB and BC are easily found. Let the azimuth

of AB be 149° 42' 55". 68; then that of BA is 329° 42'

5 5 ".68, and accordingly

Azimuth AC = azimuth AB -\- angle A — 240° 04' 20". 34,

Azimute BC — azimuth BA — angle B = 289 09 09 .62.

As a check on these azimuths it may be noted that the

second minus the first should be equal to the angle C.

The next computation is that of finding the coordinates of

C from those of A and B. For the above triangle suppose

that the coordinates of A have been assumed and that those

of B have been computed from (13), the values being

Station. A B

Latitude 10000.00 12377.76

Longitude 8 000.00 9 388.59

and let it be required to compute the latitude and longitude

of C. These should be found in two ways by the formulas

in (13), so as to check the correctness of the results, and the

form below shows how the numerical work may be arranged

in a systematic manner. In the first column / denotes the

length oi AC or BC, the logarithm of the former being put

in the third column and that of the latter in the fifth column.

Similarly Z denotes the azimuth oi AC ox BC whose values

are given in the second and fourth columns; adjacent to

these are written the values of log cosZ and log sin2T, I.

being written instead of the 9. in the tables. Then log /

added to log zosZ gives log / zosZ, and log / added to log

&\nZ gives log / siniT. The values of / zosZ and / sin.Z' are

next taken from the logarithmic tables and placed in the second

and fourth columns. Opposite Z,, and M, are placed the lati

tudes and longitudes of A and i,, and the values of / cos2T

and / sinZ are added to or subtracted from them as required
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by the signs of cosZ and sin2". It will be better, however,

for the student to determine whether these are to be added

or subtracted by drawing figures at the top of the table.

Computat1on of Coord1nates.

C c

Computed COMHI'TED ]}

Symbols.

noi

A. 1
1
1
I

FROM

Distances and

Azimuths.
Logarithms.

Distances and

Azimuths.
Logarithms.

/ 3.37-16823 3.5615728

log crnZ — I . 6980292 log co&Z - T.5159834

z 240° 04' 20" . 34 289° 09' 0(/'.62

log sinZ = T. 9378462 log siniT = T. 9752699

I cosZ 1 182.26 3.0727115 1 195-53 3.0775612

/ s\nZ 2 053.66 3.3125285 3 442-25 3.5368427

Z, 1OOOO.OO 12 377-76

Af, 8 OOO.OO 9388.59

lat. of C 11 182.26 11 182.23

long, of C 5946.34 5946.24

If the computations be correctly made the two values of

the latitude of C must exactly agree, as also the two values

of the longitude of C. In this case there is a discrepancy of

0.03 in the latitudes and of o. 10 in the longitudes and hence

the numerical work must be revised so as to detect and

remove the errors of computation.

Prob. 19. Revise all the computations in this Article and find the

correct values of the coordinates of C. Also make the computations

for the triangle DEF, in which F= 95° 24' o1".o, E = 54° 58'o8".6,

D = 29° 37' So".4, DE =6 584.20 feet, lat. D = + 15 328.75 feet,

long. Z? = + 12 047.05 feet, azimuth DE = 216° 17' o5".6, and

determine the coordinates of £; finding lastly the coordinates of F

in two ways.
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20. Two Connected Tr1angles.

Let two triangles ABC and CDA have the side AC in

common and let all the angles be measured, the observations

being as follows and all of equal weight:

A, = 45° 19' 07", C, = 50° 19' 37".

A = 48 07 15 , <r, = 37 46 50 ,

A = 93 26 28 , C = 88 06 15 ,

£ = 81 33 18 , Z> = 96 54 19 .

Here it is seen that the sum of A, and A, Is 06" less than A,

that the sum of C, and C, is

12" greater than C, that the

sum of A, , B, and C, is 10"

greater than 180°, and that the &<

sum of A, , £T, , and Z> is 06"

greater than 180°. It is re

quired to find the most prob

able values of the angles which entirely remove these dis

crepancies.

The number of observed angles is eight, but these are

subject to the four conditions just mentioned, and accord

ingly there are really but 8 — 4 = 4 independent angles to

be used in the computation. Take A,, A,, Cx, and C, as

these independent angles and let a, , a,, cx , and c, be the most

probable corrections to be applied to the observed values.

The observation equations then are

rt, = 00", ct = 00",

a, = 00 , c, = 00 ,

«. + «, = + 06 , £, -f- c, = — 12 ,

a, -f- c, = — IO , a, -\- c, — — 06 .

From these the normal equations are formed ; they are

3«. + + c, = — o4",

+ 3*. + e, = 00 ,

a, + 3<r, + c, = — 18 ,

+ ^ + $c, = — 22 ,
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and the solution of these gives

a, = + 00".1, a, = + o1".5, c, = — 04".$, ^,= — os".g,

as the most probable values of the corrections to the four

angles. Then from the geometric conditions the corrections

to the other angles are

a = a, + a, - 06" — — V.4, c = cx + cx -f 12" = -f- 1.6,

b = — a, — c, — 10" = —4.2, ^ = — tf, — <r,—06" - — 3.0,

and applying these to the observed values they become

which are the most probable values of the angles and which

at the same time satisfy the geometry of the figure.

When the observations are of unequal weights these are to

be used in forming the normal equations from the observation

equations. If one or more angles are unmeasured these do

not appear in the observation equations and their values are

to be derived from the adjusted results. If the angles A and

C are not measured, but all the others are, then the only

adjustment required is that of each triangle by the method

of Art. 18.

If the length and azimuth of AB and the coordinates of A

be given, the lengths and azimuths of the other lines .of the

figure, as also the coordinates of B, C, and D, may be com

puted by the methods of Art. 19. Thus a simple triangula-

tion is established. When more than two triangles are con

nected the station adjustments are usually made first, and

afterwards the triangle adjustments ; cases of this kind are

discussed in Chapter IX.

Prob. 20. In the above figure let the observed values be as given

except that of D, which is not measured. Find the adjusted values

of all the angles.

A, = 45° 19'o8".s.

At = 48 o7 '5 -1.

A = 93 26 23 .6,

B = 81 33 13 .8,

C, = $o° 19' 31". 1,

C, = 37 46 45 -5,

C = 88 06 16 .6,

D = 96 54 $6 .0,
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21. D1rect Observat1ons w1th One Cond1t1on.

In Art. 18 are given examples where direct observations

on several quantities are connected by a single conditional

equation, and as other cases are to be discussed in future

Articles it will be well to derive a general method of procedure

which will simplify the numerical work. Let x andj be two

quantities whose values have been found by observation,

these having the weights /, and /,. Let these quantities be

connected by the conditional equation

9S + M = A

in which qx and g, are known coefficients, and D is a known

quantity. Let t\ and z,, be the most probable corrections to

the observed values so that the observation equations are

f, = O, weight/,; v, — o, weight/,,

and the conditional equation reduces to

+ W, = d-

Now let the value of one of these corrections be found from

the last equation and be substituted in the observation equa

tions, and then let the normal equations be formed and

solved, and finally let the other correction be found from the

conditional equation. The results will be

9, d 9*d

in which, for abbreviation, the letter /"represents the quantity

9: ,9:

a + 1;

The same process may be extended to any number of

unknown quantities and similar formulas result. Thus if

vx = o, v, = o, . . . vK = o, with weights /,,/,, . . . /n , and

if the conditional equation is

9tv, + 9,v* + • • • + 9f/n = d,
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then let P = -7- + -7- + . . . + and the most probable

A A A

values are

_ <7, d q,d _qnd

». - f. - A/J- • • • - ^p, (21)

which also exactly satisfy the conditional equation. Formula

(21) hence gives a general solution of this important case.

As a numerical example let there be measured at a station

O the three angles AOB = 97° 18' 20" with weight 5,

BOC — 1 35° 20' 05" with weight 3, COA = 127° 21' 29" with

weight 6. Let x, y, and s be the most probable values, then

must x -\- y + ~ = 360°. Take i/, , z,, , and v, as the correc

tions to the observations, and the conditional equation

reduces to v, -f- v, -f- v, = + 06". Here qt — — g, = 1

and r/ = 6"; also /, = 5, /, = 3, /, = 6, and hence P — 0.7

and d/P = -f- 8.57. Accordingly from (21) the values of the

corrections are vx = -\- 1" .7, vt — -f- 2". 9, 7', = -(- 1".4, so

that the most probable values of the three angles which satisfy

the conditional equation are 97° 18' 21". 7, 1 3 5 ° 20' 07". 9,

and 127° 2 1' 30". 4.

The above is the simplest application of the method of

correlates which is extensively used in the adjustment of

geodetic triangulations ; further examples of it will be given

in Chapter IX. For the case of equal weights the p's dis

appear from the above formulas and /"becomes the sum of

the squares of the ^'s. For instance, if the three observed

angles of the last paragraph be of equal weight, then

P = 1 -j- 1 -|- 1 = 3 and hence z\ — v, — v, - - \d, a result

which agrees with the rule established in Art. 18 ; accordingly

the adjusted values are found to be 19° 18' 22", 135° 20' 07",

and 127° 21' 31", the sum of which is 180°.

Prob. 21. The five interior angles of a pentagon, as found by

measurement, are 8o° 19', 120° 57', 107° 04', 141° 35', and 90° 00'.

Compute the adjusted angles, taking the weight of the last value as

three times that of each of the others.
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22. Intersect1ons on a Secondary Stat1on.

After a triangulation has been established any side may be

used as a base from which to locate a secondary station by

means of two measured angles. If, however, a third station

is also used another computation may be made, and in general

the results will not exactly agree with the first one owing to

errors of observation. An adjustment is hence to be made

in order to obtain the most probable position of the secondary

station.

Let ABC be a triangle whose angles are known, it being a

part of an established triangulation. At the three corners

let the angles A1 , Bx , and C,

be measured in order to locate

a secondary station 5. The

lines determined by these angles

do not in general meet at the

same point, and hence the ob

servations are to be adjusted

to secure this result. The con

dition that the three lines shall meet in 5 is established by

equating the expressions for the length of one as found from

another in two ways; thus let BS be found, first by the

triangle ABS and secondly through the triangles ASC and

BSC; the values are

BS = ASS^, BS = ASslnAt slnCt

smB, s1ne, s1nz?,

and hence the conditional equation is

sin^4, sin/?, sinC, = sinA, sinB, sinC, , *'

which must be exactly satisfied by the most probable values

to be found for At , B, , and Cx. This is called a side equa

tion because it expresses the necessary relation between the
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three lines or sides which meet at 5. By taking the logarithm

of each member it becomes

log sirMt + log sinZ?t -Hog sin Ct— log sinylj— log sinZ?2— log sinCj=o,

which is the form for practical numerical work.

As an example let the given angles of the triangle be

A = 83° 39' o1", B = 57° 19' 42", and C = 39° o1' 17".

Let the three angles, as measured to locate S, be Ax = 41°

05' 10" with weight 2, B, = 30° 15' 12" with weight 3, and

C, = 18° 46' 07" with weight 1 ; it is required to adjust these

so that the three lines may meet in 5 and so that the values

found may be the most probable.

Let a", b" , and c" be -the corrections expressed in sec

onds to be added to the observed values A, , B, , and Cx.

Then 41° 05' 10" + a" is to be substituted for A, in the

above conditional equation and similarly for B, and C,. Now

log sin (A, + a") = log sin A, + a"-d\R. 1', where diff. 1'

is the tabular difference for one second corresponding to

the value of A, ; thus log sin (41° 05' 10" + a") 's 1. 81769

+ o.2S<?", where 0.25 is in units of the fifth decimal place

of the logarithm. In this manner the following tabulation is

made :

Observed Angles. Log. Sines.

A, = 41° °5' 10" T. 81769 + 0.25a"

st = 3o '5 12 I.70228 + 0.35*"

C, — 18 46 07 1. 50751 +o.61f"

I.02748 + o.25a"-f-0.35y + 0.61<r"

-^. = 42 33 5» I.83021 — 0.22a"

B, = 27 04 30 I.65816 — 0.40*"

(7, =20 15 10 I.53928 — 0.58/'

I.02765 — °.22a" — 0.40*" — 0.58/'

the values of A,, B,, and C, being those found by subtract

ing A, , B, , and Cx from A, B, and C, and their corrections

being the negatives of a", b" , and c" . Equating the two

members of the conditional equation, it reduces to

0.47a" + 0.75*" + 1.l9<r" = 17,
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while the observation equations are a" = o, b" — O, and

c" = o, whose weights are 2, 3, and 1, respectively.

By the method of Art. 2 1 are now found q*/ft = 0. 101,

= O.187, <7tVA = I-44o, an^ P= 1-728, whence d/P

= + 9-83- Then a' = 0.225 X 9.83 = + 2". 2, b" =

-4- 2". 4, c" = -f- 1 r".8, and finally the logarithmic corrections

are 0.23*2" = -f- 1, 0.358" = -|- 1, etc. Accordingly, the

most probable values of the angles and of their logarithmic

sines are found to be

Adjusted Angles.

^1 = 41°oS'12,'

A = 3o J5 '4

C, - 18 46 19

4, = 42 33 49

B, = 27 04 28

C, — 2° 14 58

Log. Sines.

I. 81770

" . 70229

-5o758

o2757

83021

65815

53921

02757

and these satisfy the geometric conditions of the figure as

closely as can be done by the use of five-place logarithms.

From these angles and the given lengths of AB, BC, and CA

the distances AS, BS, and CS may now be computed.

The above method also applies when the point J> is without

the given triangle. Thus, if 5

be situated as shown in the

figure, the above notation can

be used by making BAS = Ax ,

CAS = A, , SCB = C, , and SCA

= Cx. If the three points A,

B, and C fall in the same

straight line, the method fails,

as then the conditional side equation is satisfied identically;

in this case the distances AB and BC are known and a differ

ent side equation a1ises which involves these lengths.
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If in the last figure there be given the distances AB and

BC and the angle B, and if A, , B,, and C, be observed, the

condition that the lines AS, BS, and CS shall meet in one

point is

AB. sin/2, sin(^, + Q = BC. sinC, sin(>2, -f B,\

which may be used in a manner similar to that of the above

example. Thus let there be given AB = i 067.950 meters,

BC = 883.839 meters, B = 135° 50' 51". 6, and let there be

observed A, = 75° 56' 00". 5, Bx = 68° 34' 15". 2, and

C, — 81° 06' 35".0, all of equal weight. Then by a similar

process it will be found that the adjusted values of these

angles are A, = 75° 56' 08". 8, Bx = 68° 34' 08". 6, and

C, = 8l° 06' 37". o, and that the two values of BC, computed

from these, are equal.

Prob. 22. Let FG and GHbt two parts of a straight line, each

800 feet long. At F, G, and H are measured the angles which

lines from a station .V make with the base, namely, SFG = 40° 12',

FGS = 92° 58', and GHS = 43° 55'. Compute the length of GS

in two ways, and, if they are not equal, find the most probable

values of the angles which will effect an agreement.

23. The Three-po1nt Problem.

In secondary triangulation the position of a station S is

sometimes determined by measuring the angles 5, and 5,

B
 

subtended at it by three stations A, B, and C whose positions

are known. It is well to measure the three angles at 5 and

then by the station adjustment find the most probable values
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of and S,. The data of the three known points give the

distances AB and BC which will be called a and b, and also

the angle ABC which will be called B. The problem is to

determine the distances SA, SB, and SC.

These distances can be found as soon as the angles A and

C are known. Since the sum of the interior angles of the

quadrilateral is 360 degrees,

A 4- C = 360° - B — 5, - 5, ;

and since the side BS is common to two triangles, the expres

sions for its length when equated give

sin^i b sin5,

sinC a sin5,"

Thus two equations are established whose solution will give

A and C. Let A -\- C' = 2m and A — C = 2n. The value

•of m is known, namely,

m= 18o°-K^ + 5x + 5,), (23)

and that of n is to be found. Let V be such an angle that

rr a sin5,

tanF= . , '; (23)'
* s1n5, v J;

then since A =z m -\- n and B = m — n, the second equation

becomes

sin(;« + n)

—, r- = cot V,
s1n(;« — ;/)

which is readily reduced to the form

tan« = tanw cot(F-f 45°), (23)"

from which n is computed. The solution is hence made by

first finding m from (23), secondly finding V from (23)',

thirdly finding n from (23)", and lastly the value of A is

v; -\- n and that of C is m — n.
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As a numerical example let the following be the given

data for three stations, as determined by triangulation :

Line. Azimuth. Distance.

ID 327° 06' 49" 9 01 1.o ft.

DJ 74 56 58 5 794-5

// 184 25 52 9098.9

Station. Latitude. Longitude.

1 34 104.2 52581.5

D 26 537.2 47 6^8.9

/ 25 032-5 53 284 5

At a station S, within the triangle ID/, there are measured

the angles ISD = 127° 47' 33", DSJ = 87° 38' 18", and

/SI = 144° 34' 09". It is required to compute the lengths

and azimuths of SI, SD, S/, and also the coordinates of 5.

Let station / correspond to A and station D to C; then

drawing a figure and comparing it with that above, the data

are S, = 144° 34' 09", S, = 87° 38' 18", B = 74° 56' 58" -

4° 25' 52" = 70° 31' 06", a = 9098.9 feet, b = 5794.5 feet.

Next A + C— 57° 16' 27" = 2m, and m — 28° 38' 14".

From (23)' log tan V \s found, whence V — 69° 43' 13", and

then from (23)" log tan n is found, whence n — — 14° 06'

42". Accordingly A = 14° 31' 32" = SI/, and C = 42° 44'

56" = JDS. From the triangle IS/ are computed the dis

tances SI = 5600.6 feet and S/ = 3936.6 feet; from the

triangle /SD are found S/ — 3936.6 feet and SD = 4417.3

feet. The azimuth of SD is 74° 56' 58" + 42° 44' 55" +

180° = 297° 41' 54", and that of SI is 169° 54' 20". Lastly,

the lengths of SI and SD are multiplied by the sines and

cosines of their azimuths, giving the differences of latitude

and longitude, which being added to or subtracted from the

latitudes and longitudes of / and D furnish the coordinates

of S in two ways. The latitude of 5 is found to be 28 590.4

feet and its longitude 51 600.0 feet.

A theoretic ambiguity is found in the above solution, since

Kand n may each have two different values corresponding to

the values of tan Jrand tan n. This may be removed by

always taking V as less than 90° and positive, and then tak

ing n as less than 90° but making it positive or negative

according as tan n is positive or negative.
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When the point S in the above figure falls upon the cir

cumference of a circle passing through P, Q, and R, the solu

tion is indeterminate, as should be the case. When 5 lies

very near this circumference the results of the computation

will be uncertain. In such an event a fourth station should

be used in the field work.

When more than three stations are observed from S there

arises the TV-point problem, in which three different locations

for 6' can be computed by taking the stations three at a time.

In this case a process of adjustment by the Method of Least

Squares is to be followed so that the four lines may intersect

in one point. This process will not be developd here, as it

is of infrequent application and the numerical work is lengthy.

Prob. 23. Make the computations for the triangle IDJixom the

above data, letting station / correspond to A and station J to C.

2-4. General Cons1derat1ons.

A series of connected triangles with one or more measured

bases may be called a triangle net. The purpose of the

 

triangulation and the topography of the country will deter

mine the location of the stations and the size of the triangles.

A chain net is one suitable for a river survey, a polygonal

net where the triangles from one or more polygons is some
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times used for a city survey, and a net composed of quadri

laterals each formed by four overlapping triangles is often

used in geodetic work. The three types are, however,

frequently combined together, single triangles, polygons, or

quadrilaterals being used in different parts of the same net.

A chain net is the simplest in adjustment, since no side

equation arises if there be but one base. In the other kinds

there will be one side equation for each polygon and one for

each quadrilateral, but increased labor in computation counts

for little when precision is demanded. A quadrilateral is a

figure securing high precision, and the polygon takes almost

rank with it, since the side equation eliminates accidental

errors that otherwise might be propagated along the net.

In the preceding pages only an introduction to the methods

of adjustment has been given. The subject, however, will

be continued in Chapter IX, where cases involving more than

one conditional equation will be discussed.

It may have been noticed in the use of the side equation

in the preceding Articles that the smallest angles receive the

largest corrections if the weights of the observations are

equal. It hence appears to be important in conducting the

field work to measure angles less than 30° or greater than

150° with a higher degree of precision than those between

30° and 150°. By so doing the weight of the smaller angle

will overbalance the error due to the large tabular difference

in its sine, and the corrections will be more uniformly dis

tributed among the measured values.

Geodetic triangulation nets differ from plane ones only in

the greater size of the triangles and in the fact that the sum

of the angles of each triangle is greater than 180°. All the

preceding methods are hence directly applicable in geodetic

work. When, however, a plane net is extended for some

distance east or west of the meridian where the initial azimuth

was determined, the computed azimuths become less or
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greater than the true ones owing to the curvature of the

earth. In geodetic work this discrepancy is removed by

introducing a correction which renders the back azimuth of a

line different from its front azimuth, each value being the

angle which the line makes with a meridian drawn through

the end considered.

When the plane coordinates of two stations are known the

length and azimuth of the line joining them is readily com

puted. Thus, let Z, and Z, be the given latitudes, then the

latitude difference Z, — Z, is known; also let M, and M, be

the given longitudes, then the longitude difference M, — M1

is known. From (13) it is seen that the azimuth from the

first point to the second is found by

M, - M,
tanZ = - — ,

and the distance / may then be computed from

Z. - Z.

/ =

sinZ

or /= -
cosZ

(24)

(24/

As an example, let the latitudes of two stations F and G be

given as 15420.72 feet and 18 1 15.13 feet, and their longi

tudes as 20 347.19 feet and 14 739.08 feet; here the latitude

difference is -|- 2 694.41 feet and the longitude difference is

Az1muth and D1stanck for FG.

symbols.
Distances and

Azimuth.
Logarithms.

M, - Af, + 5 608 . 1 1 3.7488165

u - z. — 2 694.41 3.4304637

z 244° 20' 17". 1 0.3183528 tanz

1.9549007 sins

T. 6365480 cosz

/ 6221.80

3 -79391 58

3-7939157
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— 5 608. 11 feet. The computation may be arranged in the

form as shown. The second logarithm subtracted from the

first gives log tanZ' and then Z is taken from the table; as

tani? is positive 64° 20' 17". 1 is the azimuth of G7*"and 244°

20' 17". 1 is the azimuth of tG. Then log %\nZ and log

coszT are taken out, and the subtraction of these from the

first and second logarithms gives two values of log / which

must agree within one unit of the last decimal. Lastly / is

taken from the table. Thus the distance and azimuth

between two stations which are not connected by a side of

one of the triangles may be quickly computed in a plane

system of coordinates.

Prob. 24. The latitudes of two stations M and N are 12 900.21

and 9 883.85 feet, and their longitudes are 27 333.16 and 35 640.93

feet. Compute the distance and azimuth from M to N.
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Chapter III.

BASE LINES.

25. Pr1nc1ples and Methods.

The principle involved in the measurement of a base line

is the same as that in common chaining, the unit of measure

being applied successively from one end of the line to the

other. It is very important that length of the measuring

unit should be accurately known in terms of the standard

linear foot or meter, for otherwise its absolute error may be

multiplied so as to give an erroneous length for the base.

As the measuring bars or tapes are of metal they expand

or contract as the temperature rises or falls and hence the

coefficient of expansion of the metal must be known in order

to eliminate errors due to this source. Other systematic

errors, like those due to pull and sag in a tape and those due

to the inclination of the base to the horizontal, must also be

eliminated by computation. Accidental errors due to indefi

nite causes still remain in each result and, in order that the

final length may be largely free from these, the measurement

must be repeated several times and their mean be taken.

Metallic bars from 10 to 20 feet in length have been

extensively used for base measurements. These are of two

classes, end measures and line measures. With end measures

the distance between the extremities of the ends is a unit,

and measurement is made by contact, one bar being placed in

position and another brought into line so that the ends of the

two touch each other; these ends are usually rounded to a

radius equal to the length of a bar. With line measures but
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one bar is required, the distance between two marks engraved

upon its upper surface being a unit; a microscope being

placed on a movable frame over one mark, the bar is moved

forward until the other mark comes into the same position,

and then the microscope is moved forward to the first mark.

In each case the number of bar-lengths multiplied by the

length of one gives the length of the base.

End measures are more convenient than line measures, but

are generally not as precise. In order to eliminate effects of

temperature, compound bars composed of metals whose rates

of expansion are different have been devised and used ; in

these one bar expands more than another, so that by the use

of a compensating lever the distance between the marks or

ends is supposed to remain invariable.

Since 1885 the long steel tape has been extensively used

in the measurement of base lines, and has been shown to give

results of a high degree of precision. As such a tape can

readily be bought and standardized, as its use involves little

expert knowledge, and as a base can be measured with it

very cheaply, a full explanation of the method of procedure

will be given in later Articles.

Prob. 25. Consult Report of U. S. Coast Survey for 1897, and de

scribe the duplex base apparatus, and ascertain the character of its

work.

26. Probable Error and Uncerta1nty.

As a line is measured by the continued application of a

unit of measure the probable error in a result found for its

length should increase with that length. The law of this

increase is found from formula (11); thus if r, be the prob

able error of the unit of measure and / be the length of the

line, the probable error of / is

r = r, VJ, (25)

that is, the probable error in a measurement of a line
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increases with the square root of its length. Thus if two

lines are measured with equal care and the second is four

times as long as the first, the probable error of the second

measurement is twice that of the first one.

Since weights are inversely as the squares of probable errors

it follows that the weights of linear measurements made with

equal care are inversely as the lengths of the lines. Thus, a

measurement of I o00 feet must be twice repeated and the

mean of the results be taken in order to be worth as much as

a single measurement of 500 feet. In combining linear

measures, therefore, the weights of observations should be

taken as the reciprocals of the distances.

The most convenient way to find the value of r, is to make

duplicate measures of lines of different lengths. Let the

lengths of the lines be /,,/,,.../n , the differences of the

duplicate measures be </, , d^ . . . . dn , and n be the number

of lines. Then, as shown in treatises on the Method of

Least Squares, the probable error of a linear unit is

For example, in order to find the probable error of measure

ment with a steel tape four lines were measured as follows:

Here the weights are taken as the reciprocals of the lengths,

since the weight of a line one foot long is taken as unity.

Then by the use of the formula the probable error of a

measurement one foot long is found to be 0.00058 feet, and

accordingly that of one 100 feet long would be 0.0058 feet.

Of course a larger number of observations than four is

required to deduce a reliable value of this probable error.

The uncertainty in the length of a line is expressed by the

 

(26)

I = 4*7-34

I = 427-37

d — — 0.03

p = 0.00234

854.21

854.20

+ 0.01

o . 00 1 1 7

1 281 .71

1 281 . 74

r 708.40 feet

1 7o8-33 feet

+ 0.07 feet

o. 00059

— 0.03

0.00078
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ratio of its probable error to its length (Art. 26), and is hence

given by rj V7, where r, is the probable error of a line one

unit in length. Accordingly, if a certain line has an uncer

tainty of T^VTro* tne uncertainty of a line four times as long

and measured in the same manner is -g-^i^. It thus follows

that greater errors in the computed sides of triangles might

result from a long base than from a shorter one.

Prob. 26. Let the probable error of measurement with a steel

tape be 0.005 feet for 100 feet. A square city lot is laid out with

this tape so as to contain 43 560 scpjare feet. Show that the prob

able error of this area is 3.0 square feet.

27. Bases and Angles.

The uncertainty in the length of a computed side of a

triangle is caused by a combination of the errors in the base

with those in the angles, and the influence of the angles is

usually greater than that of the base. Let the base a in the

triangle ABC be measured with a probable error ra, and let r

be the probable error of the angle measurements expressed

in radians. Then by (11),

rb = b V(r~/ay + r' cotM + r' cot'^

is the probable error in the computed value of b. Now in

Art. 17 it was shown that the best-shaped triangle is an

equilateral one, and for this case the formula gives

as the uncertainty in the computed value of b. Let the

probable error of the angle observations be one second or

0.000004848 radians. Then, if the base were without error,

the uncertainty in b would be Tj-j-jVjnr, but if the base have

also an uncertainty of y^j-Vinr tne uncertainty in b will be

ttA TV-

It is not easy to carry on a triangulation so that the mean

probable error of the adjusted angles shall be less than one
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second, but it is very easy to measure a base of moderate

length so that its uncertainty shall be less than ^-^Votf* In

geodetic work bases have been measured with an uncertainty

of less than TTirf innr- ^ thus appears that even in the best-

proportioned triangle the precision of the base measurement

can be rendered greater than that of the angle work. The

difficulty of finding good locations for bases and the expense

of measuring them renders it customary, however, to use only

one or two in a triangulation net of moderate extent. When

the sides of the triangles are from one to ten miles in length

a base line about a mile long may be used. Care must be

taken that the triangles connecting it with the main net are

well proportioned, no angle being less than 30 degrees. The

topography of the country will determine the location of the

stations to a great extent, but the figures show two methods

 

of gradually increasing the lengths of the sides away from a

measured base AB; the second method is the better one.

In geodetic work bases several miles in length have been

used. For example a base of the U. S. Coast and Geodetic

Survey in Massachusetts is nearly 1of miles long, its meas

urement occupying three months in 1844. The final result,

reduced to the ocean level, was 17 326.376 ± 0.036 meters,

giving an uncertainty of ^-g-yVmr* About 295 miles north

easterly is the Epping base, and 230 miles southwesterly is

the Fire Island base, which were also measured with similar

precision. The length of the Massachusetts base as computed
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through the triangulation from the Epping base was found

to be 17 326.528 meters, and its length computed from the

Fire Island base was found to be 17 326.445 meters. The

actual uncertainties between the measured and computed

values are hence and j-y^Vmr respectively, the effect

of the errors in the angles being four times that of the base

errors in the first case. In general it is found that angle

errors do not increase the uncertainties of computed lengths

to the extent that might be inferred from the preceding

discussion, and this is probably due in part to the fact that

they are largely eliminated in the adjustment of the triangu

lation.

Prob. 27. Four measures of a base line give the values 922.220,

922.197, 922.221, and 922.217 feet. Show that the uncertainty of

the mean of these measures is about ^s^Vinr

28. Standard Tapes.

A long steel tape is the most convenient apparatus for

measuring the base line of a river or city survey, and it has

also been used for geodetic bases with excellent results. It

is necessary that it should be compared with a standard, and

this can be done for a small fee by the Bureau of Weights

and Measures at Washington. The certificate furnished will

state the error of its length for a certain temperature and

pull, or it will state that it is correct at a given temperature

and pull. The coefficient of expansion, or the relative

change in length for 1° Fahrenheit, should also be stated, in

order that the effect of temperature may be eliminated. The

coefficient of stretch, or the relative change in length for one

pound of pull, must also be known. A tape thus standard

ized becomes itself a standard with which other tapes may

be compared.

To compare another tape with the standard tape the

coefficient of expansion of the latter must be known. To
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determine this the tape is stretched out on the floor of a large

room whose temperature can be varied. With a spring

balance at each end it is pulled to a certain tension, the

thermometer noted and a certain length marked on two tin

plates temporarily fastened on the floor. The temperature

1s then raised or lowered and the operation again repeated

under the same pull. The change of length as marked on

the tin plates is accurately measured, and this is divided by

the total length and by the number of degrees to give the

coefficient of expansion. The work should then be repeated

several times using different lengths in each case, and the

mean of the results be taken for the final coefficient.

If a tape is to be used under different tensions its coeffi

cient of stretch should also be determined. The operation

of doing this is similar to that above described, except that

the temperature should be kept constant and the pull be

varied. The change of length divided by the difference of

the pulls and by the total length is the coefficient of stretch.

Sometimes a tape is stretched over two supports A and B,

and thus owing to the sag the measured distance is too long.

Let / be the distance read on the tape under a pull P, let d

be deflection or sag at the middle, and w the weight of the

tape per linear unit. The ^

curve of the tape is closely that -*"7^Z^^^^£in^2^-'^^ '

of a' parabola, and if L be the '

Sd'

horizontal distance, L = / — —j very nearly. Also taking

moments about the middle of the span, Pd = \wl-\l nearly.

Eliminating d from these two equations there results

 

from which the true distance L can be computed from the

observed distance /. If the distance AB be subdivided into



78 III.BASE LINES.

n equal parts by stakes whose tops are on the same level as

those at A and B, then

It thus appears that any observation of. a distance read on

a steel tape may contain three systematic errors due to tem

perature, pull, and sag. Let t be the temperature and p the

pull at which the tape is a standard, let T be the temperature

and P the pull at which a measurement / is taken, let c be

the coefficient of expansion, and s the coefficient of stretch,

let w be the weight of the tape per linear unit, and if sag

exists let ;/ be the number of equal spaces in the distance /.

Then the reading / is to be corrected by applying the follow

ing quantities:

As an illustration, let / = 56 degrees, / = 16 pounds,

e — 0.00000703, s = 0.00001782, w = 0.0066 pounds per

linear foot. Let a horizontal distance 309.845 feet be read

at a temperature of 49^ degrees under a pull of 20 pounds,

there being 7 subdivisions in that distance. Then the cor

rection for temperature is — 0.0142 feet, that for pull is

+ 0.0221, and that for sag is — 0.0028 feet. The corrected

measured distance is then 309.850 feet.

Lastly, if the measurement is made on a slope it must be

reduced to the horizontal. For this purpose the difference

of elevation of the two ends is found by leveling. Let h be

this distance and L the length on the slope, then the hori

zontal distance is La / 1 — yj. For instance if the length

 

gives the horizontal distance between A and B.

Correction for temperature = + e(T — t)l,

Correction for pull = -)- s(P — /)/,

Correction for sags
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309.850 feet has 2.813 feet as the difference of level of the

ends, then the horizontal distance is 309.838 feet.

Steel tapes used in base-line work usually vary in length

from 300 to 500 feet. They have division marks at every

50 feet, but near the ends the marks are one foot apart, and

a finely graduated rule is used for reading decimal parts of a

foot.

Prob. 28. A tape is a standard at 41 ° F. when under 16 pounds

pull and no sag, its coefficient of expansion being 0.0000069 and its

coefficient of stretch 0.00000195. Find the pull P so that no cor

rections will be necessary when measurements are made at a tem

perature of 38 degrees and with no sags.

29. Measurement w1th a Tape.

When a base is to be measured with precision it should be

laid out into divisions, each shorter than the length of the

tape, and stout posts be set at its ends and at the points of

division. In these posts are placed metallic plugs, each

having drawn upon it a fine line at right angles to the direc

tion of the base. The elevations of these plugs should be

carefully determined by leveling.

Each division is then subdivided into several equal parts

by light stakes set in line and on grade, the distance between

the stakes being fifty feet or less. The tops of these stakes

should be smooth and rounded so that friction may not

prevent the transmission of a uniform tension throughout the

tape; on the top of each stake two small nails may be driven

to keep the tape in position. Instead of stakes special iron

pins are sometimes used each having a hook to hold the tape.

The measurement should be done on a cloudy day with

little wind in order to avoid errors due to change in tempera

ture. The tape is suspended over two plugs and upon the

intermediate stakes and pulled at both ends by spring

balances to the desired tension. At one plug a graduation
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mark of the tape is made to coincide with the fine line on the

plug, and at the other end the distance between the fine line

and the nearest graduation mark is read by a closely grad

uated rule. Several measures of each division should be

made at different times and with different pulls and the tem

perature be noted at each reading.

F1eld Notes. Base L1ne EG. Oct. 3, 1888, p.m.

No.ofSub
divisions.

Temperature.

Divisions. Dill, in Eleva
tion of Ends.

Pull. Measured
Distance.

Remarks.

feet • lbs. feet

in 7 2.813 51 16 309.865

5o-5 18 3<>9 -857

5«. 5 20 309.842

5o 16 309.870

5o 18 309.857 Cloudy.

49-5 20 309.845

11 7 5.618 48 16 332-736

47-5 18 332.727 No Wind.

47.5 20 332.712

47 16 332-740

47 18 332.726

47 20 332.715

1 6 7.924 47 16 279.850

47 18 279-843

47 20 279.832

48 16 279.848
•

48.5 18 279.840

48 20 279.837

The field notes of one measurement of a short base line

EG, about 922 feet long, will illustrate the method of opera

tion. There were three divisions, designated as I, II, and

III, the first having six and the others seven subdivisions.
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The steel tape used was about 400 feet long, and stated by

its makers to be a standard at 56° Fahrenheit when under a

pull of 16 pounds and having no sag. Its coefficient of

expansion had been determined to be 0.00000703, its coeffi

cient of stretch 0.00001782, and its weight per linear foot

0.0066 pounds. In order to correct the field results the

expressions deduced in the last Article become

Correction for temperature = — 0.00000703(56 — T)l;

Correction for pull = + 0.00001 ?82(P — 16)/;

Correction for sag = — 0.00001815—^-;

from which the corrections are computed. For example, in

division III, where n = 7, the mean of the observed distances

is 309.856 feet and this is taken as the value of / in all the

corrections. These being computed the corrected inclined

distances are found and their mean gives 309.851 feet as the

inclined length. Lastly, this is reduced to the horizontal,

and 309.838 feet is the final length of division III.

Computat1ons, D1v1s1on III, Base EG.

Temp. Pull Measured
Corrections.

Corrected
Notes.

T p JDistance.
Temp. Pull. Sag.

Distance.

a lbs. feet. feet. feet. feet. feet.

51- 16 309.865 — .0109 -.OO43 0 309 8498 n = 7

50.5 18 309-857 — .O12o - .0034 + .O11O 309.8526

50. 20 309.842 — .0120 — .0028 + .0221 309.8493 h = 2.813 ft.

50.5 16 309.870 — .O131 - .0043 O 309.8526

50. 18 309.857 — .O131 - -0034 + .0110 309.8515 — 0.0128 ft.

49-5 20 309.845 — .O142 — .0028 4- .0221 309.8501
•

Mean inclined distance = 309.851 ft.

Mean horizontal distance = 309.838 ft.

Proceeding in the same manner the corrections were found

for Divisions I and II, and the sum of the three mean hori
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zontal distances is 922.223 feet, which is the most probable

length of the base line EG as determined from the observa

tions of one day. Four other measurements of this base,

made on four different days, gave the results 922.220,

922.221, 922.226, and 922.217 feet. The mean of these is

922.221 feet, whose probable error is 0.001 feet nearly, and

accordingly the uncertainty of this final mean is about

TnnrWff- It 's thus seen that work of a high degree of pre

cision can be done with a long steel tape whose constants are

known.

The greatest errors in tape-line measurements are those

due to errors in comparison with the standard and those due

to the fact that the temperature of the metal is not the same

as that of the air. The latter error may be removed by

making some measurements when the temperature is rising

and others when it is falling, and methods have also been

devised of finding the exact temperature of the tape by

means of an electric current passing through it; the former

error cannot be removed except by the use of different tapes

which have been independently compared with the official

standard.

An account of the measurement of a geodetic base of 3780

meters, or about 2.3 miles, by steel tapes is given by

Woodward in Transactions of American Society of Civil

Engineers for October, 1893. It is concluded that the prob

able uncertainty in the final result, arising from all sources

except that of error in the tape, cannot exceed yuTTOFsr-

This precision was secured by four days' work with twelve

men, most of the measurements being made at night. In

general it seems to be an established conclusion that precision

in base measurements may be secured more cheaply by the

use of tapes than by any other method.

Prob. 29. Correct the measurements on Division I of the above

base line EG, and compute the most probable value of its final

length and its probable error.
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30. Broken Bases.

A base line should be perfectly straight and its ends be

intervisible, but cases sometimes arise where obstructions,

like a river or swampy land, render direct measurement im

practicable. In geodetic work such a location should not be

selected for a base line, but in secondary plane triangulation

it may be used if expense is thereby avoided.

The first case is where the base AB is computed from two

distances a and b, measured along the lines BC and AC.

The three angles of the triangle are also measured and

adjusted. The length of the base is then computed from

AB = b cos/1 + a cosB, or from c

AB' = (a + by — 4ab sin'£C. ___^---~~~-jL~~~~~^~~~^\

It might at first be thought that A B

the small angles would introduce a high uncertainty in the

computed length, but on reflection it is seen that this is not

the case because two sides of the triangle are given, and

accordingly the uncertainty due to the angles decreases with

their sines. For instance, if a = b and if C = 170°, it will

be found that a probable error of one minute in C produces

an uncertainty of only 1^^-^ in the computed length of

the base.

A second case is where a stream crosses the base line

between B and C. Here four A £ CD

points are selected on the line,

two on each bank, and at these

the angles are read which the

base makes with lines drawn to

an auxiliary station 5. From

these angles and the measured

distances AB and CD the distance BC is computed in two

ways, namely,

„sin^ s\n(B, + Q _ sinZ> sin(,g, + Q

3L - A sinC, sin(^ + Bt) - sini?, sin^ + Q '

 



84 III.BASE LINES.

and the angles should be measured with such precision that

these agree in the last decimal used in the numerical work.

Another method of procedure in the last case is to measure

only the angles at the station S. Let these be called S, , S,,

and S, , as shown in the figure, and let AB and CD be called

a and b. Then the distance BC may be computed from

where a — b is to be taken as always positive and where y is

an angle whose value is found from

This is the method recommended by the U. S. Coast and

Geodetic Survey. The demonstration of these formulas may

be easily made by applying the second equation of Art. 23

to the three points ABC and then to BCD, and equating the

two expressions each of which contains the unknown distance

BC. In order to verify the result another station S' may be

selected, the angles be measured there, and another compu

tation be made.

Prob. 30. For the last case let there be given a = 90.0242 meters,

b = 120.0316 meters, .S, = 19° 41' 44".6, S, = 39° 20' 45". 2, and

.S, = 26° 19' 32". 8. Using seven-place logarithms show that the

length of BC is 107.8408 meters.

Geodetic base lines must be reduced to mean ocean level

in order that perfect agreement may obtain in the sides of

triangles computed from different bases. Let AB be the

base whose measured length is / and whose mean elevation

above mean ocean level is //. Let ab represent this ocean

level whose radius of curvature Ca or Cb is R. Then,

BC =

a — b a -f- b

2 cos/ 2

tan'y =

4ab sin(5, + S,) sin(5, -j- S,)

(a — by sinis, sinS,

31. Reduct1on to Ocean Level.
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from the two similar sectors, the value of ab is

lx = l-% (30

and therefore the correction to be subtracted from the

adjusted measured length is Ik/R.

For a long base this correction

will be appreciable even when

the base is but a few feet above

the mean ocean level.

In Chapter VII it is shown

how the radii of curvature have

been found for different lati

tudes; it is there seen that for

common cases the logarithm of R may be found by taking

the mean of the logarithms of R, and R, given in Table IV

at the end of this volume. When the azimuth of the base is

given and great accuracy is required R should be computed

from

I cos'-Z sin'Z

R =—rT~ +

in which Z is the azimuth of the base line and Rt and R, are

taken from Table IV.

For example, let the adjusted measured length of the base

be 18207.3267 meters, its mean height above ocean level

523.2 meters, and its mean latitude 40° 36'. From Table IV

the logarithm of R is 6.8044705 and the correction Ih/R is

found to be 1.4943 meters, so that the length on the ocean

level is 18 205.8324 meters. If the azimuth of the base be

75° 40', the more accurate formula gives the logarithm of R as

6.8052175, from which the correction Ih/R is 1.4917 meters,

so that the final length on ocean level is 18 205.8350 meters.

As the lengths of the base lines have been reduced to ocean

level it follows that all distances computed in a geodetic tri-

angulation are really the projections of the actual distances on
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the surface of a spheroid coinciding with ocean level. Thus,

if /, represent the computed geodetic distance between two

stations whose elevation above ocean level is h, it is plain from

(31) that the true distance between those stations is

For example, let /, -— 100 miles and h = 2\ miles; then,

using for R the mean value 3959 miles, the true distance / is

100.06315 miles. Here it is seen that the difference / — /, is

1/1583.6 of the distance so that the error in considering a

computed geodetic distance as the actual distance may often

be a large one.

Prob. 31. A base line measurement, made 374 feet above ocean

level, gives 1725.065 feet. What is the length of the base when

reduced to ocean level?
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Chapter IV.

LEVELING.

32. Sp1r1t Level1ng.

The method of determining differences of elevation by an

engineer's level and rod is called spirit leveling to distinguish

it from the method in which vertical angles are used. In

common work the telescope is made level by bringing the

bubble into the middle of the attached scale. In geodetic

work a sensitive bubble is used and readings of its ends taken

on the scale, corrections to the rod readings being applied

according to the distance of the rod from the instrument.

A level surface is one parallel to that of a fluid at rest, and

the process of leveling consists in finding the elevations of

points above the mean surface of the ocean. The line of

collimation of the telescope of a properly adjusted and leveled

 

instrument, when revolved around the vertical axis, gen

erates a plane which is tangent to a level surface. The line

of sight, however, is depressed below that plane owing to

refraction, and it lies between the tangent plane and the level

surface, but nearer to the former. Thus if / be the telescope

of the instrument, the straight line A'B' represents the

tangent plane, and the curved line ab the level surface, while

the actual line of sight is a'b' , the points a and b ', in conse
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auence of refraction, appearing to be in the tangent plane at

A' and B'.

The rule that front and back sights should be of equal

length in order to secure precision is one that is well known,

and the figure shows the reasons for it. Let rods be set at

A, B, and C in order to find the heights of B and C above

A; then the observer will set the targets at a', b' , and c', and

the readings of the rods will be Aa' , Bb', and Cc'. The

height of B above A will be given by Bb' — Aa' , and that of

C above A will be given by Cc' — Aa'. Now, owing to the

combined effect of curvature of the level surface and of

refraction of the air, the errors aa' , bb' , and cc' have been

made in the rod readings, but the difference Bb' — Aa' is the

same as Bb — Aa if the horizontal distances from B and A

to the instrument are equal, while the difference Cc' — Aa'

is not the same as Cc — Aa if the rod C is further from the

instrument than the rod A.

It will be shown in Art. 37 that the deviation of a tangent

plane from a level surface is about two-thirds of a foot at a

distance of one mile and \n' feet at a distance of n miles, also

that the deviation of the tangent plane from the refraction

surface is one-seventh of that of the level surface. The com

bined effect of curvature and refraction is hence to cause an

elevation of the line of sight above the level surface amount

ing to about 0.57 feet in one mile or 0.57;/' feet in « miles;

a more exact rule is 0.000206 feet in 1co feet and 0.o002o6«'

feet in 100« feet. Thus, in the above figure, if the rods A

and B be at 500 feet from the instrument, aa' and bb' are

each 0.0051 feet, but the difference of level between A and

B is free from error. If the rod at C be 1 000 feet from

the instrument cc' is 0.0206 feet, and hence the difference

Cc' — Aa' is 0.0155 feet in error, for cc' is 0.0155 feet

greater than aa'.

Another class of errors that is largely removed by taking

backsights and foresights of equal length are those due to
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lack of perfect adjustment of the instrument. Thus if the

line of collimation be not exactly parallel to the level bubble

the reading on the rod at A may be too great, but when the

sight is made on B the reading there is also too great, and

hence these equal errors disappear in taking the difference of

the rod readings. It is not desirable to try to do precise

work with an instrument that is not in good adjustment, but

it is essential to note that precise work cannot be done with

back and front sights of unequal length, unless the lengths of

these be measured and a correction be applied for the com

bined effect of curvature and refraction. In common work

pacing, or even estimation, may be sufficient to prevent the

introduction of these errors, but in precise work the distances

should always be measured to the nearest foot.

Prob. 32. Let the rod readings at A, B, and C be 1.073, 3-137,

and 9.271 feet, the distances from the instrument being 200, 250,

and 400 feet. Find the elevations of B and C above A.

33. Dupl1cate L1nes.

In common work with an engineer's level the precision of

the elevations of the bench marks may be increased by

running a second line between them and then taking the

mean of the differences of level. This precaution can never

be neglected in good work, for one measurement affords no

data for estimating the precision of the results. It is better

to run the two lines in opposite directions rather than in the

same direction.

Semi-duplicate lines are those run in the same direction,

having the same bench marks and heights of instruments but

different turning points. Two sets of notes are kept which

are not compared until a check is made on a bench mark.

Thus in the figure let M and N be two bench marks and

/, , /, , /, , and /, the points where the level is set up, while

A, , A,, and A, are the turning points on line A, and Bx ,
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B„ and B, are the turning points on line B. The instrument

being set at /, a backsight is taken on M and recorded in the

A± A. _Aj_

A T

notes for line ^4 ; then another backsight is taken on M and

recorded in the notes for line B. The two turning points A,

and B, having been selected, foresights are taken upon them

in succession and the readings recorded in the notes for lines

A and B respectively. Then the instrument is moved to /,

and backsights taken on At and Bt which are recorded in the

separate notes for A and B. On arriving at ft backsights are

taken upon A, and B, and two foresights upon N. Thus two

lines MA,AyAyN and MBxB,BlN have been run between the

bench marks M and N; if the elevation of N is to be deter

mined from the given elevation of M, two sets of observa

tions are at hand from whose comparison and combination it

can be obtained with a higher degree of precision than by a

single line.

Another method of running semi-duplicate lines is to have

the same turning points but different heights of instruments.

Thus, in the above figure, if /, be a bench mark the level is

set at A t , a backsight taken upon /, and a frontsight upon

then the instrument is set at i?, , a backsight taken upon

It and a frontsight upon /, . This method is not as conven

ient or expeditious as that above described, since it involves

two rodmen, and it would be better to run two independent

duplicate lines in opposite directions between the bench

marks.

By taking proper precautions to preserve equality in the

lengths of back and front sights, shading the instrument from

the rays of the sun, and keeping the rod truly vertical, semi-

duplicate lines may be run with an engineer's level so that

the probable error of differences in elevation shall be less than

0.005 feet for bench marks one mile apart. In precise level
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ing where readings are taken to ten-thousandths of a foot,

the probable error may be made much smaller. The adjusted

elevations of the benches are of course the mean of the values

found by the two lines.

It is sometimes observed that the elevations found by one

line tend to be greater than those found by the other. For

example, a line of semi-duplicate levels run from Bethlehem

to Allentown, Pa., by students of Lehigh University in 1894

may be briefly noted. The total distance was 32 750 feet,

this being divided into 27 sections with 28 bench marks.

Computing the 27 differences of level for lines A and B it was

found that nine were the same for both, that line A had nine

greater and also nine less than line B; computing the eleva

tions of the 27 benches from that of the Bethlehem bench it

was found that 25 of these were greater on line B than on

line A. The discrepancy between the two lines reached a

maximum of 0.009 ^eet at 1^ 000 ^eet from the Bethlehem

bench, then decreased to 0.001 feet, and afterwards increased

until it became 0.005 feet at the Allentown bench. The

probable error of the difference of level between the end

benches, computed by the method of the next Article, was

found to be 0.004 feet. This is perhaps a little smaller than

would be found by independent duplicate lines run in opposite

directions.

Prob. 33. The difference of level of two points fx and P, was

found, by setting the level half-way between them, to be 6.438 feet.

A second observation gave 6.436 feet, and a third one gave 6.437

feet. Show that the probable error of a single observation was

0.0007 feet.

34. Probable Errors and We1ghts.

The probable error of the difference in elevation of two

bench marks increases with the number of times the instru

ment is set up between them, and will hence be greater in a

hilly region than in a prairie country. It will also depend
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upon the precision of the instrument and upon the skill of

the leveler and rodman, so that different classes of work will

have different probable errors.

Assuming that the instrument is set up about the same

number of times in a distance of one mile or one kilometer,

it will be clear that the probable error in leveling is governed

by the same law as that for linear measurements, namely that

it increases as the square root of the distance. Thus if r, is

the probable error in leveling a distance of unity, say one

mile or one kilometer, then the probable error in leveling the

distance / is r = r, Vl. Thus if the probable error for a line

one mile long is 0.006 feet the probable error for a line four

miles long is O.OI2 feet.

By means of duplicate lines of levels the probable error r,

may be obtained by the application of formula (26), the

weights being taken as the reciprocals of the lengths of the

lines. Semi-duplicate lines, like those described in the last

Article, may be used for the same purpose, but probably the

value of r, found from them is somewhat smaller than from

two lines run in opposite directions. As an example of the

method, let Da and Db be the differences of elevation be

tween two bench marks as determined by the two lines,

d the differences, or discrepancies, between these, / the dis

tance between the benches, and / the weight of d in terms

of the weight of the unit of distance. Taking the following

five measurements, and regarding 1000 feet as the unit of

distance, the sum of the five values of pd* is 0.0000404

- 3.801 - 13-429 — 0.363 + 5-528 + 9.657 feet

D„ - 3-803 - 13.426 - 0.365 + 5-532 + 9.653 feet

d + 0.002 — 0.003 + 0.002 — 0.004 + 0.004 feet

I 0.400 0.840 1.500 1.800 2.000 feet/1000

P 2.50 1. 19 0.67 0.56 0.50

fid' 0.0000100 0.0000107 0.0000027 0.0000090 0.000000080

and then from formula (26) the value of r, is found to be

0.0014 feet. Thus, for this class of work, the probable error
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in leveling a distance of 1 o00 feet is 0.0014 feet, and hence

the probable error in leveling any distance is 0.0014 V?, where

/ is the distance in thousands of feet. To find the probable

error for one mile / is to be taken as 5.28, and thus 0.0032 Vn

expresses the probable error of a line of levels n miles in

length.

As weights are inversely proportional to the squares of

probable errors it follows that the weights of differences of

elevation are inversely proportional to the distances over

which the leveling is extended.

For example, let there be run

three routes from P to Q giving

the results

Route. Miles. P above Q.

1 S 37.407 feet

2 6 37-392 feet

3 10 37-414 feet

If the precision of the work per mile is the same, the value

of r, being the same for the three lines, then the weights of

the three results are to be taken as |, and 1i[r. The

adjusted elevation of P above Q is then found by the rule

of Art. 4 to be 37.403 feet.

The probable error r, may be also computed from lines run

between two benches by different routes, as in the last

example. The method to be followed is that of formula

(9)". Thus, taking the weight of a line one mile long as

unity, the residuals v are found and the sum 2fw' is

M v v* p f,v*

37.407 — O.004 O.000016 0.20 0.00000320

37-392 +0.011 0.000121 0.17 0.00002057

37.414 — O.O11 O.OOO121 O.1O O.OOOO12IO

 

z = 37-4o3 0.000258 0.00003587 = ~2pv*

formed. Then, from the formula, r, = 0.0029 leet, which is

the probable error of a difference of level found from a line
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one mile long. Finally, the probable errors of the three

observed differences of level are found from the square-root

rule to be 0.0065, 0.0070, and 0.0092 feet, while the probable

error of the adjusted elevation is 0.0039 feet, so that 37.403

± 0.004 feet may be written as the final result.

Prob. 34. If the probable error in leveling one mile is 0.003 feet>

what is the probable error in a line one kilometer long, and also in

a line 100 kilometers long?

35. Adjustment of a Level Net.

When a closed circuit is made by running from A around

to A, leaving the benches B, C, and D, the adjusted eleva-

B tions of these are to be made by

\. distributing the error of closure in

/ \ direct proportion to the distances

/ J" between the benches. For example,

Ar*/ /—~. / starting from A with the correct

x s^D
\ / elevation of 420. 3 1 7 feet above mean

ocean level, the following elevations of other benches are

found, and on returning to A its elevation is 420.467 feet,

showing a discrepancy of 0.150 feet. The distances between

the benches being 6, 3, 4, and 2 miles, T^ of the discrepancy

is to be subtracted from the elevation of B, ^ from that of

C, and so on. This method of adjustment is one that would

Bench.
Miles

from A.

Observed

Elevation.

Adjusted

Elevation.
Correction.

A 0 420-317 420-317 0.000

£ 6 532.918 532-858 — O . 060

c 9 607 . 200 607 . 1 10 — 0.090

D 13 51O-3I5 510.185 — 0. 130

A '5 420.467 420-317 — 0. 150

be naturally used by every one, and it will be seen that it

agrees with the results obtained by the application of the rule

in Art. 21 to the determination of the most probable differ

ences of the elevations between the benches.
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A net of levels consists of several lines connecting benches

in such a manner that the elevation of one can be deduced

from another by several different routes. An example of the

method of adjustment is given in Arts. 5 and 6, where, how

ever, the weights of the different results are taken as equal.

By introducing the weights according to the method of

Art. 7, taking them as inversely proportional to the lengths

of the lines, the same process may be applied to any given

case. For example, take the

case shown in the figure where

eight differences of elevation

between six benches are ob

served in a net consisting of

three closed figures. These

three figures give three geomet

ric conditions and accordingly

there can be but five independ

ent quantities in the observation

equations. This is perhaps seen more clearly by noting that,

if the elevation of one bench be given, the elevations of the

five others are to be obtained. In general the number of

independent quantities in any net of level lines is one less

than the number of benches.

For example, let the eight observed differences of elevation

be as given below, their weights being taken as the reciprocals

 

of the distances between the benches. Let vx , v, , v, , v, ,

No. Benches. Observed h. Distance. Weight. Adjusted A.

Feet. Miles. Feet.

1 B above A 12.02 4.0 0.25 12.039

2 C above B 23.06 7.2 0. 14 23.012

3 D above C 14-30 S-o 0. 20 14-340

4 D above F 29.44 6-3 0. 16 29-389

s
C above F 15.02 2.0 0.50 15.049

6 F above E 9-34 4.8 0.21 9-372

7 B above E 1-45 3-5 0.29 1 .410

8 £ above A 10.67 8-3 0. 12 10.630
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and i,, be corrections to be applied to the observed values

h, , h, , //, , h, , and h, in order to give the most probable

values. Then the eight observations are expressed in terms

of these five quantities, the condition h, — h, 4- K — o giving

the fourth observation in terms of v, and vt; thus,

+ v, = o,

2. + = O,

3- + v, = o,

4- + v, + V, = + O.I2,

+ v, = o,

+ v, — v, — v, = — o.i$,

+ v, = o,

4- v, — = 4- o. 10.

From these the normal equations are formed by the rule of

Art. 7, using the given weights, and their solution furnishes

the values v, = + 0.019, v, = — 0.048, etc., from which the

above adjusted most probable values of the five quantities are

found. Then the values of ht , h, , and h, immediately result.

The probable error for a line of levels one mile long can

now be computed by formula (10). Each of the corrections

being squared and multiplied by its weight, 2f>v' is found to

be 0.00246; then as n = 8 and q = 5, there results r, =

0.019 feet as the probable error in leveling one mile, and

accordingly 0.019 vl is the probable error in leveling / miles.

The degree of precision of the levels in this net is hence

quite low compared with that required for city work.

Another method of stating observation equations in the

above case is to take the elevations of five benches as the

quantities to be found. Thus, if the elevation of A be

given, approximate values of the elevations of the others are

readily found, and the corrections to be applied to these may

be called vh , vc , etc. Then each observation is expressed in

terms of these corrections, and their most probable values are

found by the solution of the resulting normal equations.
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The adjusted elevations will be the same as those derived

from the adjusted differences that are given above. Thus if

the elevation of A be 312.724 feet, that of B will be 324.763

feet, that of E will be 323.353 feet, and so on.

Prob. 35. The elevation of a bench P is 725.038 feet. Level

lines run between it and the benches Q, R, and S, give the following

observations:

No. Benches. Difference in Elevation. Distance.

Feet. Miles.

1 B above A 35.080 3

2 C below A 8.698 6

3 D below A >9-9o5 4

4 C above D 11. 2 12 3

5 C below B 43-78o 3

6 B above D 54 995 6

State the observation equations, form and solve the normal equa

tions, and find the adjusted elevations of the benches.

3G. Geodet1c Sp1r1t Level1ng.

Engineers' levels are of two types, the Y level and the

dumpy level, the former being easier of adjustment while the

latter is more precise. A dumpy level with two vertical and

three horizontal wires in the diaphragm of its telescope, and

having also a sensitive bubble, may be called a geodetic instru

ment. The rod is to be brought into the field between the

two vertical wires, and readings taken upon it by each of the

horizontal wires or by the help of a micrometer screw. The

limits of the ends of the bubble are read upon the attached

scale. The rod is provided with attached levels for securing

vertically and it is set on a foot-plate planted in the ground.

The distances from the instrument to the backsight and front-

sight positions of the rod are measured.

Each instrument must be tested at intervals in order to

determine the angular distance between the wires and the

angular value of one division of the bubble scale. The usual
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adjustments for the level bubble and collimation axis are to

be made, as also a series of measurements for determining

the small errors still remaining in them. With these data

tables can be made out for reducing the readings of each wire

to the middle wire, for eliminating the error of inclination as

determined by the readings of the ends of the bubble, and

for eliminating the error of collimation.

As precise leveling for geodetic surveys is generally done

in the metric system, the constants of Art. 32 arc not directly

applicable for the elimination of errors caused by unequal

lengths of back and fore sights. If these distances be in

meters and /, and /, their values, the former being the greater,

then, for usual atmospheric conditions,

</= 0.0000675 (/,'- //) (36)

is the correction in millimeters to be subtracted from the

difference in elevation //, — //,. For instance, if /, = 200

meters and /, = 170 meters, then the difference h, — h, as

found from the rod readings is 0.75 millimeters, or 0.00075

meters, too large. If the distances be in feet, then

d = 0.000206 (/,• — /,') (36)'

is the correction in thousandths of a foot to be subtracted

from the difference — hx; thus if /, = 656 feet and /„ =

558 feet, d is 2.5 thousandths of a foot or 0.0025 feet. These

formulas are demonstrated in Art. 37.

The running of a line of geodetic levels is necessarily slow

work, for daily tests of the instrument must be made and

corrections applied to every rod reading in order to remove

the errors above mentioned. The line is divided into sections

from five to ten miles in length, each of which is leveled in

opposite directions. The probable error of the elevations of

the bench marks found by combining the two sets of observa

tions has been made less than two millimeters for a distance

of one kilometer, which is equivalent to about 0.008 feet for

a distance of one mile.
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Notwithstanding the apparent accuracy of leveling by one

of the instruments above described, the item of cost is so

high that it cannot be used except on government work. It

may be remarked, further, that the probable errors deduced

from the discussion of such level lines are but little, if any,

less than those that can be obtained by good work under the

common method. By rerunning the sections several times

by the semi-duplicate plan of Art. 34, using a good engineer's

dumpy level, and eliminating the systematic errors by making

equal the lengths of backsights and foresights, it is not diffi

cult to secure results whose probable errors shall be as low

or lower than those of the so-called geodetic method, while

the cost of the work per mile will be less than half as great.

Prob. 36. Consult Wilson's paper on " Spirit Leveling " in Trans

actions of American Society of Civil Engineers, 1898, Vol. xxx1x,

and Molitor's paper in Vol. xlv, 1901. Compare methods used by

the different U. S. Government Surveys, and collect facts regarding

the cost of running long lines of levels.

37. Refract1on and Curvature.

When light travels through air of varying density, its path

is a curved line. If the surface of the earth were a plane a

ray of light moving horizontally would suffer no refraction

since the air would be of uniform density at all points in its

path. Owing to the curvature of the earth a ray of light

passing from c' to /, in the figure of Art. 32, travels through

air of increasing density because c' is further than / from the

level surface; similarly light passing from c to / tends to do

so in a straight line, but encountering denser air its path

becomes a curve which lies between the chord cl and the arc

cl. Hence refraction is a consequence of curvature.

To develop formulas for the effect of curvature and refrac

tion, it is necessary to take for granted that the earth is a

globe whose mean radius R is about 3 959 miles or 6371 kilo
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meters. Let AO and BO be this radius in the exaggera

ted figure, AC a short distance / which is sensibly equal

to the tangent AB, and bA the path in which light travels

„ from b to A, thus making b appear

—/b at B to an observer at A. The de-

>v/ viation due to curvature in the dis-

/f\ tance / is hence represented by BC

/ and that of refraction by Bb, their

/ difference bC being the combined de-
o /

o/ viation ; let these be called c, kc, and

d respectively, k being an abstract number less than unity

whose value will be shown later to be about \. Thus d

is expressed by (1 — k)c.

The value of c is readily found, from the right-angled tri

angle ABO, to be given by 2Rc -f- c* = /', or since c is very

small its square may be neglected, and thus

C=lR

is the deviation of the tangent plane from the level surface.

The combined deviation due to curvature and refraction, or

the distance bC, is then

(37)

From this, using for k the mean value \, there is found

d = 0.0000000675/', (d and / in meters),

d = 0.0000000206/', (d and / in feet),

from which the formulas in Art. 38 directly result.

If the elevation of the eye of an observer above the ocean

is known the distance to the sea horizon may be deduced

from (38). Thus, for different systems of measures,

/(in kilometers) = 3.85 vV(in meters),

/(in statute miles) — 1.32 Vd (in feet),

:• •: ... ../ ('H nautical miles) =1.13 i'd\\n feet).
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These results, like all in this Article, are mean ones, as

curvature varies in different latitudes, and refraction varies

under different atmospheric conditions.

Prob. 37. If the elevation d above the sea horizon is given in

meters, what is the formula for / in nautical miles ?

 

38. Vertical Angles.

The effect of refraction on any vertical angle is to render

the measured value too large or too small according as it is

an angle of elevation or angle

of depression, while curvature

produces the opposite effect.

In the figure let A and B be

two stations whose horizontal

distance apart is /, the station

B being higher than A. In

order to find the difference in elevation the vertical angle of

elevation BAC, or the vertical angle of depression ABD, is

needed. Let an instrument be set at A and its horizontal

limb be made tangent to the level surface AEC in the direc

tion Ae ; in consequence of refraction the station B appears to

be in the direction Af, and fAe is the measured angle of

elevation. The measured value is thus too large by the

refraction angle fAB and too small by the curvature angle

eAC; the true required angle BAC is hence fAe — fAB-\-

eAC. In the same manner, when the instrument is set at B,

the measured angle of depression is /'Be', which is too small

by the refraction angle ABj' and too large by the curvature

angle DBe'. These effects of refraction and curvature are

small, and sensibly the same at A and B under similar atmos

pheric conditions. Thus the combined effect of refraction

and curvature renders the measured angle at A too small and

that at B too large by the same number of seconds.

Let a be the angle of elevation at A and /3 the angle of
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(38)'

depression at B, and let d" be the correction in seconds, so

that BAC — a + d" and ABD = ft — d" are the true

required angles. In the last Article the linear correction d

normal to / was found. The corresponding angle in radians

is d/l and the corresponding value in seconds is 206 26$d/l,

and accordingly

= 206265(1 - k)^ (38)

is the correction to be added to a and subtracted from ft.

Using the mean value k = \, and. a mean value of R, there

results

d" = 0.01394/, when / is in meters,

d" = 0.00425/, when / is in feet,

as the number of seconds to be added to angles of elevation

and subtracted from angles of depression. Thus if the angle

of elevation of a station 15000 feet distant be observed

to be 2° 19' 07" the true required vertical angle is about

2° 20' II".

It is now to be shown how the coefficient of refraction k

can be found. As the angles a + d" and ft — d" are equal

the value of d", if a and ft are simultaneously measured, is

d" = i(/3 — a). Equating this to the former general value

there is found for the coefficient of refraction

206 265 / '

in which ft — a must be expressed in seconds. For instance

let a = 2° 24' 58". 9, ft = 2° 35' 34".2, and /= 23 661

meters; then using for R the mean value 6371 kilometers

there is found k — 0. 165. A better value of R is that of the

radius of curvature of the level surface through the lower

station A. Numerous simultaneous observations of vertical

angles of elevation and depression have established that k

varies from 0. 12 to 0. 18, a mean value frequently used being

k = 0.143 = t- The average values deduced by the U. S.

Coast and Geodetic Survey are k — 0.158 across parts of the
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sea near the coast, and k = o. 130 between primary triangula-

tion stations at a high elevation.

If the elevation of the eye of an observer above the ocean

is known the dip of the sea horizon in seconds may be

expressed by combining the above value d" with that of /

given at the end of the last Article. Thus

d'' (in seconds) = 58.8 Vd (in feet) — 106. 5 Vd (in meters).

Also if the angle of depression of the sea horizon be measured,

its distance from the eye may be obtained from (39)' and will

be found to be 4.30 kilometers, 2.67 statute miles, or 2.32

nautical miles for each minute of vertical angle. These

results are mean rough ones, since both curvature and refrac

tion vary in different latitudes.

Vertical angles for determining heights are usually small,

and hence a large probable error may occur in a computed

height, even when the probable error of the vertical angle is

not large. The formula h — I tan a gives the height h in

terms of the observed quantities / and ex. Let / be supposed

to be without error and let r be the probable error in a, then

the probable error in // is rdh/da, or /r/cos'a, which is prac

tically Ir, since cos a is nearly unity. If r be expressed in

seconds the corresponding probable error in h is lr/206 265,

or if r be expressed in minutes the corresponding probable

error in // is /r/3 438. Thus, if the probable error of a vertical

angle be one minute, and the horizontal distance h be 6 876

feet, the probable error in the computed height // is 2 feet.

In geodetic work, where leveling by this method is done

between stations many miles apart, it is seen that the prob

able errors in the vertical angles must be rendered very low

in order that the computed heights may have a fair degree

of precision. The uncertainty in a computed height is

/r/206 265A, if r be in seconds; for example, if / = "10352

feet and « = 3° 00' 53" ± 03", then h = 545.19 ± 0. 15 feet,

and the uncertainty of h is about 3 ^Vu •



104 IV.LEVELING.

Prob. 38. If the probable error of / be r, and that of a be r, show

that the square of the probable error of h is found by r," tan3 a -f-

r,Va, where the last term must be divided by 206 265' if r, is in

seconds.

39. Level1ng by Vert1cal Angles.

Leveling with the stadia and transit is often done in

topographic work, and with care will give results whose

probable error should be not greater than 0.5 feet in one mile

or than 0.5 Vn feet in n miles. A greater degree of precision

can be secured by measuring the horizontal distances with a

tape, reading the vertical angles to half-minutes, selecting

the stations so that the angles of depression are about equal

in number to the angles of elevation, and having a fair

uniformity in the lengths of backsights and foresights. In no-

case, however, can this work attain a degree of precision

comparable with that done by spirit leveling.

The difference in elevation of two stations of a triangula-

tion can be computed when the horizontal distance between

them has been obtained. The best method is to make

simultaneous observations of the angles of elevation and

depression. Using the notation of the last Article, it is seen

that a -\- d" and ft — d" are the true angles required, or

since these values are equal the true vertical angle is expressed

by \(a -f- ft), and hence

// = / tan£(« + ft)

is the required difference in elevation. It is thus seen that

the effects of curvature and refraction are eliminated by

taking the mean of the two observed vertical angles a and ft.

In this method it is, however, essential that the two measure

ments should be made as nearly simultaneously as possible in

order that the same atmospheric conditions may affect both

angles, for it is found that the coefficient of refraction varies

with temperature and barometric pressure.
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In a geodetic triangulation measurements of vertical angles

are carried on at the same time with those of the horizontal

angles, and it is not usually possible that the vertical angles

at two stations can be simultaneously measured. Records of

the weather are kept, however, and by taking at each station

a considerable number of observations it is possible to select

for any two stations several which are made under like

atmospheric conditions. When this cannot be done values

of the coefficient of refraction, determined for the region of

the work, may be used, and the correction d" to be applied

to either angle may be found by (38)'. Then, either

// = / tan(a + d") or h = / tan(/J — d")

gives the difference in elevation of the two stations A and B.

The best time for measuring vertical angles is between

10 A.M. and 3 P.M., as between these hours the vertical

refraction is less variable than either earlier or later in the

day. The less the distance between the stations the less is

the uncertainty in the refraction, and the larger the vertical

angles the more reliable are the results. On account of the

variability of refraction and the inherent inaccuracies of small

angles, elevations found by vertical angles are far inferior in

precision to those obtained by spirit leveling.

To illustrate the general method of procedure let A and B

be the two station marks, whose horizontal distance apart is

10352 feet. Let the instru

ment be set at A, the hori-

zontal axis of the telescope

being 6.1 feet above the sta- ^S^s'

tion mark, and pointings be

made on a signal b which is a^^/_

27.5 feet above the station /V""^ _

mark B. Let the mean of all -* 4 *

the observations give 3° of 15" as the probable value of the

angle of elevation bac. From (38)' the mean correction for curv
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ature and refraction is 44", so that the vertical angle 3° 07' 59"

is the value to be used. Then the difference of level between

a and b is found by the use of the logarithmic tables to be

566.6 feet, and applying the correction for height of instru-

Numbcrs. Logarithms.

/ = 10352 feet 4.0150243 566.6

bac = 3° 07' 59" 2.7382768 21.4

be = 566.6 feet 2.7533031 h = 545-2 feet

ment and signal the final difference in elevation between B

and A is 545.2 feet. This is to be regarded as liable to a

probable error of one foot or more on account of the uncer

tainties of refraction. To obtain a better result the angle of

depression at B should be measured, another computation

made, and the mean of the two results taken.

It is customary, when the distance / is large, to reduce the

angle bac to BAC. Thus, if d represent the difference

Bb — Aa, which is 21.4 feet in this case, the number of

seconds to be subtracted from bac is 206 265*///, or 426".

Then the angle BAC is 3° 00' 53", and / tan 3° 00' 53" gives

Numbers. Logarithms.

/ = 10352 feet 4.0150243

BAC = 3° 00' 53" 2-7215257

h = 545.2 feet 2.7365500

at once 545.2 feet as the difference in elevation of the two

station marks.

Prob. 39. The instrument is set 5.9 feet above B, pointing made

on a signal 18.5 feet above A, and the angle of depression found to

be 2° 57' 30". Compute the elevation of B above A.
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Chapter V.

ASTRONOMICAL WORK.

40. Fundamental Not1ons.

In a triangulation covering an area of some extent it is

desirable that the azimuth of one side should be determined

by astronomical work in order that the computed azimuths

may be all referred to the true meridian. Rough azimuths

may be found by the magnetic needle or by making a noon-

mark from shadows of a post cast by the sun. The method

of obtaining the meridian with the solar compass or transit is

known to all surveyors, and it gives results within about one

or two minutes. Azimuth found with an engineer's transit

from the sun or from Polaris furnishes results with about the

same precision. For geodetic work, where an azimuth is

desired with a probable error of only a few seconds, more

accurate methods must be used.

In geodetic triangulations it is also necessary to obtain the

astronomical latitude and longitude for a few of the stations,

while those of the others are computed through the triangle

nets. For the study of the figure of the earth these astro

nomical observations are especially important.

A brief outline of the field operations necessary for the

determination of azimuth, latitude, and longitude will be

presented in this Chapter. It is assumed that the student is

acquainted with the fundamental notions regarding the circles

of th : celestial sphere, that he understands the method of
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locating the position of a star by its right ascension and

declination, that he is familiar with the changes that occur

throughout the year in the declination of the sun, and that

he has a knowledge of the different ways of measuring time.

In short, he should have had a good course in descriptive

astronomy.

In geography the latitude of a place is its angular distance

from the terrestrial equator, and in astronomy it is the

angular distance of the zenith of the place from the celestial

equator. Thus astronomical latitude is determined with

reference to a vertical line at the point of observation. Since

the horizon plane is perpendicular to this line it follows that

latitude is the angular distance of the pole above the horizon.

Thus, if A be any place, repre

sented in the figure by a point at

the center of the celestial sphere,

the vertical line AZ determines the

zenith Z. Let P be the celestial

pole and the north point of the

horizon, then the angle PAN or the

arc PN is the latitude of the place.

In all questions relating to lati

tudes it is well for the student to remember that one minute

corresponds approximately to one nautical mile on the earth's

surface, and one second to about 101 feet (Art. 53).

The above figure sets forth several of the fundamental

notions of astronomy. The horizon of the place A is shown

by a circle joining N and C, the meridian of the place by the

circle NPZ, and its co-latitude by the arc PZ. If 5 be the

sun or a star QS is its declination and PS its co-declination,

CS is its altitude and ZS its co-altitude or zenith distance.

In the spherical triangle SZP the angle at P is the hour-angle

of the sun or star, while the angle at Z gives its angular dis

tance from the meridian, that is, its azimuth. In the summer

the sun's apparent daily path lies north of the equator, at the
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equinoxes it lies on the equator, and in the winter it lies

south of the equator.

Azimuths and hour-angles in astronomy are generally

measured from the south around through the west from o° to

360°, like azimuth in geodesy. It is, however, sometimes

convenient to give them negative values; thus in the figure,

if 5 represents the sun about 10 o'clock in the morning, its

hour-angle ZPS is 330° or — 30°, and its azimuth MZS is

about 310° or — 50°. Azimuths of circumpolar stars are

sometimes estimated from the north toward the east and 180°

is then to be added to give geodetic azimuths.

The methods to be here presented are those that can be

carried out in the field with an engineer's transit or with a

sextant. The results are not as precise as those derived with

the instruments of an observatory or with portable astro

nomical instruments, but the fundamental principles and

.methods are the same and hence this Chapter may serve as

an introduction to the practical field operations of geodetic

astronomy. Azimuth is the most important problem for the

civil engineer and it will be presented first, assuming that the

latitude and longitude of the place have been found from a

map and that standard time is given by a watch. Afterwards

it will be shown how latitude, time, and longitude can be

determined.

In most of the work of practical astronomy an almanac

must be at hand to furnish the declinations, right ascensions,

and other data that are needed in the computations. The

American Nautical Almanac, which is published by the

Bureau of Equipment of the U. S. Navy and can be had

through any bookseller for fifty cents, will give all the data

required for the work of this chapter.

Prob. 40. The declinations of the sun at Greenwich mean noon

on March 20 and 21, 1900, were — 0° 13' 28".4 and + o° 10'

13".4. When, in Eastern standard time, did the vernal equinox

occur ?
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41. Az1muth by the Solar Trans1t.

With a transit having a solar attachment the azimuth of a

line can be found by observing the sun at any time except

between 11 A.M. and 1 P.M., the most favorable hours being

generally from 9 to 10 A.M. and from 2 to 3 P.M. Such an

attachment can be placed upon any transit at a cost of about

fifty dollars. Accompanying it is a pamphlet giving full

directions for use and adjustment, together with tables of the

declination of the sun for Greenwich noon for each day of the

year. Both the transit and the solar attachment should be

in correct adjustment in order to do good work.

Let the upper part of the figure represent a section of the

celestial sphere in the plane of the meridian, A7 and M being

the north and south points of the horizon, P the pole, Z the

zenith, Q the celestial equator, and

.S the place of the sun at noon. Let

A be the point where the instrument

is set, which may be regarded as the

center of the celestial sphere. Then

the angle QAZ, or its equal PAN, is

the latitude of the place of observa

tion. The angle QAS is the declina

tion of the sun, which is positive when

the sun is north of the equator and negative when it is south

of the equator. The lower part of the figure is a plan, A

being the place of the instrument, JVM the true meridian, \V

and E the west and east directions, AS the direction of the

sun about 10 o'clock in the morning, and AB a line whose

azimuth is required to be found.

Let ab represent the telescope of the transit, it being

represented as in the meridian and elevated so as to point to

the celestial equator; this will be the case when the angle

of elevation MAQ is equal to the co-latitude or when

MAQ = 90° — QAZ. Let cd represent the telescope of the
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solar attachment pointing toward the sun; then the vertical

angle between ab and cd is equal to the declination of the

sun QAS. In this position the solar attachment is like an

equatorial telescope, its axis pointing to the pole P, and as

the sun moves the telescope cd can be made to follow it by

simply turning it on its axis.

Before beginning the work a list of hourly declination

settings is to be prepared by help of the table of declinations

which is annually furnished by the maker of the instrument.

This table also gives the corrections to be applied for refrac

tion, these always being added to the true declinations,

because refraction increases the true altitude of the sun.

For example, let it be required to prepare the declination

settings for the afternoon of September 16, 1899, for any

place where Eastern standard time is used. The table gives

-f- 2° 37' 44". 4 as the declination of the sun at Greenwich

mean noon of that day and 57". 91 as the hourly decrease in

declination. At 7 A.M. of Eastern standard time the declina

tion is hence + 2° 37' 44".4, at 5 P.M. it is + 2° 37' 44".4

— 10 X S7"-9l — + 2° 28' o5"-3. ar>d at 4 P.M. it is + 2°

28' 05".3 + 57".9 = + 2° 29' 03". 2. Thus the declination

for each hour is found and placed in the second column. In

Decl1nat1ons for September 16, 1899.

Hour. Declination.
Refraction

Correction.

Declination

Setting.
Remarks.

P.M.

1 + 2° 31' 57" + 0' 48" + 2° 32' 45" For Eastern

2 + 2 30 59 + O 54 + 2 31 53
Standard time.

3 + 2 30 01 + 1 05 + 2 31 06

4 +2 29 03 + 1 32 + 2 30 35 Lat. 40° 36'.

5 +2 28 05 + 2 51 +2 30 56

the third column are placed the refraction corrections as given

in the table, and the fourth column contains the final declina
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tions to be set off on the vertical arc as closely as its gradua

tion will allow. The refraction correction is always additive,

and hence if the declination is south or negative its numerical

value is to be decreased, as the example for December 2,

1899, shows; for that day the table gives the declination at

Greenwich mean noon as — 21° 58' 48". 3 and the hourly

change as 22". 20.

Decl1nat1ons for December 2, 1899.

Hour. Declination.
Refraction

Correction.

Declination

Setting.
Remarks.

A.M.

8 — 21° 59' 10" + 6' 01" - 21° 53' 09' For Eastern

9 - 21 59 33 + 2 59 - 21 56 34
Standard time.

10 - 21 59 55 + 2 11 - 21 57 44 Lat. 40" 36'.

11 — 22 OO 17 + 1 54 — 21 58 23

After this list is made out the observer sets up the transit

over the point A in order to find the azimuth of a line AB.

The telescope is leveled by the attached bubble and pointed

in a southerly direction. The declination setting for the

hour is next laid off on the vertical arc, depressing the object

glass if the declination is positive and elevating it if the

declination is negative. The telescope of the solar attach

ment is then leveled by means of its own bubble, and thus

the angle between the two telescopes is the same as the

apparent declination, or the angle QAS in the above figure.

Both telescopes are then elevated until the vertical arc reads

an angle equal to the co-latitude of the place, or the angle

MAQ. The solar attachment is next turned on its axis and

the limb of the transit upon its axis until the sun is seen

inscribed in the square formed by the four extreme cross-hairs

in the focus of the solar telescope. When this is the case

the transit telescope is in the plane of the meridian, and if

desired a point may be set out in the line AS to mark that

meridian.



41- AZIMUTH BY THE SOLAR TRANSIT.

It will be better, however, to read both verniers on the

horizontal circle, then turn the alidade and sight on B, and

read both verniers again. The angle MAB has thus been

measured and, for the position in the figure, this is to be

subtracted from 360° to give the geodetic azimuth of AB.

F1eld Notes for Az1muth of AB.

Time.

October »8,

1895.

Read1ng oo Meridian. Heading on Line AB. Angle MAB. Remarks,

9:15 A.M. 20° 19' 00" 30" 182° 27" 30" 3o" 162° 08' 15" R. Doe,

9:30 80 OO 15 15 242 08 30 30 162 09 OO Observer.

945 140 59 30 15 303 08 45 15 162 09 08

3:15 P.M. 200 01 60 45 2 09 45 30 162 07 45

3:30 260 12 45 30 62 22 15 30 162 09 45 r, = 32''

3:45 320 06 00 00 122 13 45 60 162 07 53 r = 13"

Mean = 162° 08' 38 "

Azimuth of AB = 197° 51' 22"

The above form of field notes shows six observations made in

this manner, and from their mean is found 197° 51' 22" for

the azimuth of AB. The probable error of this mean is

determined by Art. 9 to be about 13", that of a single obser

vation being 32". This degree of precision is greater than

can be generally attained by azimuth observations with the

solar attachment, unless the observer has had considerable

experience; nevertheless by a moderate amount of practice it

is easy to determine an azimuth with a probable error of less

than one-half a minute, both morning and afternoon observa

tions being taken.

Prob. 41. Take several observations of the azimuth of a line by

the solar transit, and find the probable error of their mean. Explain

how the solar transit differs from the solar compass and state the

advantages of the former over the latter.
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42. Az1muth by an Alt1tude of the Sun.

The azimuth of a given line may be determined by taking

the altitude of the sun with an engineer's transit having a

good vertical circle and reading the horizontal angle between

the sun and the line. The latitude of the place must be

known, and a nautical almanac must be at hand for f1nding

the declination of the sun at the moment of observation.

In the figure let A represent the center of the celestial

sphere, P the pole, Z the zenith, N the north point of the

horizon, and .S the position of the sun at the moment of

observation. Then, in the spherical triangle PZS the angle

Z is the azimuth of the sun measured from the north around

through the east, and this is the same as the horizontal angle

NAC. Let AB be the line whose azimuth is to be found;

then if the horizontal angle CAB be measured its azimuth is

known as soon as Z has been found.

In the figure CS is the altitude of the sun, and SZ is the

^ the angle Z can be round from the

equation of spherical trigonometry

sintf = cos^r sin</, -f- sin^r cos0 cosZ.

For accuracy of computation, it is best to put this into

another form; thus by writing cosiT = I — 2 sin'^iT a value

is found for sin^Z, and by writing cosZ = — I + 2 cos'^Z a

value is found for cos$Z; then dividing the first value by the

second there results

if,

 
complement of that altitude or the

zenith distance of the sun; let the

latter be represented by s. Let <j>

be the latitude of the place, or the

arc NP. Let 6 be the declination

of the sun or the arc QS. Then

in the spherical triangle PZS, the

three sides are known, and hence
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tanjZ = JCOS\{; ±^±4 SiUf ± * T S. (41)

* V cos^f* — 0 — 6) smfts — <p + S)' v^ ;

from which is to be computed. In the figure 5 denotes

the place of the sun in the summer half-year when 6 is posi

tive, and S' its place in the winter half-year when 8 is nega

tive. If the observation is taken in the forenoon the geodetic

azimuth (Art. 13) of the sun is 180° + Z, if in the afternoon

it is 180° — Z.

The transit having been put into thorough adjustment it

is set up at A, the end of the line AB whose azimuth is to

be determined. The horizontal limb being clamped, a read

ing of the horizontal circle is taken and the telescope pointed

at B. The alidade is then undamped and the telescope

pointed at the sun, the objective and eye-piece being so

focused that the shadow of the cross-wires and the image of

the sun may be plainly seen upon a piece of white paper held

behind the eyepiece. The cross-wires should be made

tangent to the image on its lower and right-hand sides and

the horizontal and vertical circles be read ; next they should

be made tangent to the image in its upper and left-hand sides

and the two circles be read again. If the transit has a full

vertical circle, which is necessary for the best work, observa

tions should be taken both in the direct and reverse position

of the telescope.

The following record will illustrate the method of making

the measurements and obtaining the data for computation.

The declination 8 for 8:43 A.M., Eastern standard time, of

the day of observation is taken from a nautical almanac.

The mean apparent altitude is 43° 58' 22", and this being

corrected for parallax and refraction the zenith distance s is

found to be 46° 02' 32". By computation from the formula

the azimuth Z, or the angle NAC, is found to be 101° 45'

36", whence the geodetic azimuth of the sun at the middle

of the observation is 28 1° 45' 36". Subtracting from this
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the mean horizontal angle BAC the geodetic azimuth of the

line AB is found to be 2l6° 44' 06".

Az1muth of AB by the Sun.

Time.

May 19,

1897.

Tel.
Vertical Angle.

CAS.

Horizontal

Angle.

BAC.

Data and Results.

A.M. Wires tan

and right

gent to lower

sides.

<p = 40° 36' 27"

8h 40m D 43° 09' 00" 64° 48' 00"

dat 7 A.M. = 19" 43' 10"

55

42 R 43 35 30

Wires tan

and left

65 10 30

gent to upper

sides.

S = 19° 54' 05"

App. altitude = 43° 58' 22"

Par.(+o6"),Ref.(-6o") -54

8 44

46

R 44° 21' 00"

44 48 00

64° 5a' 30"

65 15 00

True altitude = 43 57 28

90

s = 46° 02' 32"

Means = 43° 58' 22" 65° 01 30"
Z= 101° 45' 36"

180

65 01 30

Azimuth AB = 216° 44' 06"

The correction for parallax of the sun is less than 9" and

it is always added to the apparent altitude. For an altitude

of 20° the parallax correction is 8", for 40° it is 7", and fcr

6o° it is 6". In precise work the value of this correction

may be found by multiplying 8". 9 by the cosine of the

apparent altitude of the sun.

The refraction correction is taken from Table I at the end

of this volume; it is always subtracted from the apparent

altitude, since the effect of refraction is to render the apparent

altitude greater than the true altitude.

The probable error of a single azimuth observation made

by this method is usually one or two minutes; to secure a

precise result several observations should be made both in

the forenoon and afternoon and the mean of the computed

values be taken. The best time for the work is when the sun
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is near the prime vertical, that is, nearly east or west. Near

the noon hour the method is of no value, since then a small

error in z causes a large error in Z; moreover when the sun

is on the meridian z = <p — S identically.

More precise results can be obtained by using a star instead

of the sun. In this case the observer looks at the image of

the star in the telescope and brings it to coincide with the

intersection of the cross-wires. The star is usually not bright

enough to illuminate the cross-wires and hence it is necessary

to throw light into the objective end of the telescope by

means of a lamp held about a foot or two on one side of it.

The signal at the end of the line AB must also be illuminated.

The declination of the star is taken from the nautical almanac

with less trouble than that of the sun as its daily change is

inappreciable. The apparent altitude needs no correction for

parallax, but the refraction correction is to be applied. With

these exceptions the method of observation and computation

is identical with that above explained. In the winter season,

when the sun cannot be observed near the prime vertical, a

star favorable for observation can always be found.

Prob. 42. In latitude 38° 53' 18", when the declination of a star

was + 13° 55' 33", the apparent observed altitude was 28° 42' 58".

Find the corrected zenith distance and compute the azimuth of the

star.

43. Az1muth by Polar1s at Elongat1on.

When Polaris is approaching its eastern or western elonga

tion it may be easily followed by the vertical wire in the

telescope of an engineer's transit, and when its motion in

azimuth ceases a horizontal angle may be read between its

direction and that of a given line. The azimuth of Polaris

at elongation being known that of the line is immediately

found.

In the figure let Z be the zenith, P the pole, N the north

point of the horizon, HH the horizon itsel1, and E and W the
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positions of Polaris at the eastern and western elongations.

PN is the latitude of the place of observation and hence PZ

is the co-latitude 90° — <p; PE or PW is the co-declination

of Polaris at elongation or 90° — 6 ; the angle PZE or PZW

is the azimuth of Polaris at elongation measured eastward or

westward from north. Let this azimuth be called Z; then,

as the spherical triangles are right-angled at E and W,

sin£ = costf/cos0, (43)

from which Z can be found for any given latitude when 8 has

been taken from the nautical almanac. The declination of

Polaris is slowly increasing at the rate of about 19" per year,

its value being 88° 46' 26".6 for Jan. 1, 1900, and 88° 46'

45".4 for Jan. I, 1901.

The approximate times of the elongations of Polaris for

each month in the year are given in surveyor's handbooks

and need not be repeated here. Half

an hour before the time the observer

sets the transit at A and places a

signal, illuminated if necessary, at B.

The horizontal circle is read, the lower

limb being clamped, and the telescope

is pointed at B; the alidade is then

undamped, the telescope pointed at

Polaris, which is followed until it reaches

its elongation, and then the horizontal

circle is read again. Thus on August

15, 1899, at about 9:50 P.M. local time,

an eastern elongation occurred and an

observer in latitude 40° 36' took the

reading 87° 09' 30" when the pointing

was made on B and 74° 04' 00" on

Polaris; the horizontal angle HAB is hence 13° 05' 30".

From the nautical almanac the value of S is 88° 46' 19" and

then by the formula the value of Z is 1° 37' 04". Thus for
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this case, as shown in the figure, the direction of AB is

14° 42' 34" to the eastward of the meridian and accordingly

its geodetic azimuth is 194° 42' 34".

By the above method only one reading of the horizontal

circle can be taken on Polaris, and hence there is no oppor

tunity to eliminate the various sources of error of the transit.

It is, however, possible to measure a number of angles before

and after elongation and apply to each a correction to reduce

it to elongation. For this purpose the time of elongation

should be known and this can be found in local time within

less than half a minute by the tables in the Handbook for

Surveyors. Five pointings on Polaris may then be made

during the quarter-hour preceding elongation and five during

the quarter-hour following elongation. A good plan is to

take these exactly at the beginning of three-minute intervals,

then to read the verniers, turn to the signal or mark at B and

read again. Half the angles are read with the telescope in

the direct position and half with it in the reverse position.

The readings are distributed over the circle by making each

one about 20° greater than the preceding. The following

form of field notes will render clear the method of conducting

the work. The eastern elongation was to occur at 9:49 P.M.

in the time indicated by the watch of the observer, and it

was arranged to take the five pointings before elongation 14,

11, 8, 5, and 2 minutes earlier, while those following were

taken 1, 4, 7, 10, and 13 minutes later, as shown in the

second column. Thus ten horizontal angles were measured

between the star and the illuminated mark at B. To reduce

these to elongation a correction c is to be subtracted from

each, this being computed from the formula c — o.opi',

where n is the number of minutes of time preceding or fol

lowing elongation. These values of c are seen in the last

column, and the mean corrected angle HAB is found to be

1 3° 05' 33", from which the final geodetic azimuth of AB is

1 94° 42' 37".
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Az1muth by Tolar1s. August 16, 1899.

Time.
ft Tel. Reading on Polaris. Reading on Mark /I.

Horizontal

Angle.
c

I'.M.

+ "4

« •

9:35 D O 17 00 30 '3 22 40 60 13 05 40 - 13

38 + 11 R 20 43 30 50 33 48 45 50 13 05 47 - 8

41 + 8 40 03 10 20 53 08 40 50 13 05 30 - 4

44 + 5 D 60 40 40 50 73 46 00 10 13 05 20 — 2

47 + * D 80 00 10 10 93 05 50 40 13 05 35 O

5'J — 1 R 100 31 20 05 113 36 40 4o 13 05 27 O

53 - 4 R 120 04 15 10 133 09 60 40 13 °5 37 - 1

56 - 7 D 140 17 5o 5o 153 23 30 30 13 05 40 - 3

59 — 10 I> 160 14 50 50 173 10 50 60 13 06 05 7

10:02 - 13 A' l80 *5 10 00 193 30 50 40 13 05 40 — 12

Time of elongation 9:49 P.M. Mean corrected HAB = 13' 05' 33" -

S = 88° 46' 19" 180 + Z = 181 37 04"

<p — 40 36 00 Azimuth of AB = 194° 42' 37"

Z = 1 37 04 J. Doe, observer and computer.

For work with an engineer's transit the corrections can be

found close enough south of latitude 50° by the approximate

rule c — o.o~«\ but for observations with a theodolite, where

tenths of seconds are to be used, the more accurate formula

given in treatises on practical astronomy should be employed.

The precision of this method depends almost wholly upon

that of the pointings and readings. If the declination of

Polaris be taken from the nautical almanac by interpolating

for the day of observation no error can arise from this source.

The error in the computed Z due to an error of one minute

in the latitude will range from 1" at latitude 30° to about 2"

at latitude 48°. The probable error of a single angle meas

urement may range from 5" to 40", depending upon the skill

of the observer and the kind of transit or theodolite used, and

accordingly the probable error of an azimuth found from a
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series of ten angles may range from 2" to 15". The precision

of the series above given is considerably greater than can be

generally secured by an engineer's transit reading to half-

minutes.

This method is advantageous from its simplicity, but dis

advantageous because at the utmost only two observations

can be taken in twenty-four hours. For a single reading

taken exactly at elongation the time need not be known

further than to be sure of being ready a few minutes before

it occurs. For several readings it should be known within

half a minute, so that the times of the pointings may be

arranged in advance.

Prob. 43. Show that the error in a computed azimuth due to an

error in latitude increases with the tangent of the latitude ; or if d<p

is the error in latitude show that dZ — — tanz tan<p.d0.

44. Az1muth by Polar1s at any Hour-angle.

Polaris or any other circumpolar star may be used at any

position for the determination of azimuth, if the observer's

watch indicates correct time, either local or standard, and if

the latitude and longitude of the place are known. From the

time of observation and the data given in the nautical almanac

the hour-angle of the star is to be found and the solution of

a spherical triangle then gives the azimuth of the star.

Let Z be the zenith, P the pole, S the place of the star,

and N the north point of the horizon. In the spherical

triangle PZS the angle Z is the azimuth of the star east of

the meridian, and the angle at P is its hour-angle minus 180°;

the side ZP is the co-latitude 90° — <p, the side PS is the co-

declination 90° — 6. Let / denote the hour-angle of the star,

that is the obtuse spherical angle JVPS; then the solution for

the angle Z gives

sin/

tanZ — sjn0 cos^ _ cos0 tand"
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—As

/

/

p I

\

r

from which Z is to be computed after the hour-angle t has

been determined.

The field operations may be conducted exactly like those

explained in the last Article. Another method of observation

preferred by many observers is illustrated in the notes be

low. Pointing is first made on the mark

at B and the horizontal circle is read;

then four pointings and readings are

made on the star, two with the telescope

in the direct position and two with it

in the reverse position ; finally a point

ing and reading on the mark is taken

again; each reading is of course the

mean of the two verniers. The time as

indicated by the watch must be noted

for each pointing on the star, and the

mean of these times is that to be used

to find the hour-angle /. The process

of finding t by the help of the nautical

almanac is shown in the lower part of

the table. Then from the formula tan.Z is found to be

negative and hence the star was west of the meridian;

accordingly Z is — o° 59' 06". 3, and finally the geodetic

azimuth of the line AB is 175° 57' 47". 6, the probable error

of which may be estimated at 10" or 15". Making a number

of observations on different parts of the circle and taking

their mean, a fair determination of azimuth may be obtained

by one night's work.

To secure the elimination of the instrumental errors of the

transit more completely, one half of the pointings on the star

may be made by looking at its reflection in a dish of mercury

placed near the objective end of the telescope. When a

geodetic theodolite is used corrections for the error of level

in the telescope standards are to be applied, unless this be

eliminated by taking half the observations in a mercury hori
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zon. If a sidereal chronometer is at hand the time should

be noted by it, as thus the reduction of local mean solar time

to sidereal time is avoided.

Az1muth by Polar1s, August 23, 1897.

Watch Time Tel. Readings on Mark. Readings on Star. Data.
P.M.

D 25° 11' 20" <S> — 40° 36; 24"

R 25 11 20 X = 75° 22' 50"

8b 16™ 30'
R 3(5° 14' 30" 5 — 88° 45' 35". 6

8 18 30 D 30 13 05 a = 1b 20"' 19". 2

8 20 30 D 30 11 50

8 22 30 R

R

D

25 11 OO

25 11 10

30 1O 40 Watch 5'. 5 slower

than Eastern

standard time.

8h j9m 30> 25° 11' 12"5. 30° 12' 3l".2 J. Doe, observer.

05.5 = Watch error,

gh 1gm 35. 5 _ Eastern standard time.

— 01 31 .3 = Longitude correction.

30° 12' 31". 2

25 11 12 .5

8 18 04 .2 = Local mean solar time.

BAH' = 5 01 18 .7

Z = —0 59 06 .3

+ 01 21 .7 = Reduction to sidereal

interval.
BAN— 4 02 12 .4

180
2 30 48 .5 = Sidereal time Greenwich

mean noon.
Azimuth AB = 175° 57' 47".6

R. Roe, computer.

— 00 49 .4 — Longitude correction.

10* 49"" 25' .0 = Sidereal time.

1 20 19 .2 = Right Ascension of Polaris.

gh 29™ 05*.8 = Hour-angle in time.

142° 16' 27". 3 = /

Any circumpolar star may be used by this method, but

preference is generally given to Polaris as it is of second

magnitude and easily identified. Other stars sometimes used

are d" Ursx Minoris and 51 Cephei, which are of fifth magni

tude and hence not so easily located as Polaris.
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Although theoretically the observation may be taken at

any time, yet a discussion of equation (44) will show that the

conditions most favorable to precision occur when / is either

about 90° or 270°, that is when the star is near elongation.

When the star is at either the upper or lower culmination

small errors in 0 and t may produce large errors in Z, and

hence a star should not be observed when near its meridian

passage. Errors due to either 0 or 5 may be eliminated by

observing the star at symmetrical positions east and west of

the meridian, and taking the mean of the two computed

results.

Prob. 44. If an error of 15 seconds had been made in the mean

time of the watch readings in the above example, what error would

have been produced in the resulting azimuth of the line AB ?

45. Lat1tude by the Sun.

When the sun is on the meridian it is at its maximum

altitude very nearly, and if this be measured with a sextant

7 the latitude of the place becomes

known. Thus in the figure let the

circle be a meridian section of the

celestial sphere, P the pole, Z the

ftf zenith, Q the equator, 5 the sun, and

HH the horizon. The arc SH' is the

altitude of the sun, SQ is its declina

tion, and ZQ is the latitude of the

place of observation A. Let h be

the meridian altitude, corrected for refraction and parallax,

tf the declination of the sun, and <p the latitude of the place.

Then, from the figure,

0 = 90° - h + d\ (45)

in which 8 is positive when the sun is north of the equator

and negative when it is south of the equator.

On the ocean the altitude is taken by bringing down the
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image of the sun until its lower limb touches the sea horizon.

On land the image is brought down until the lower limb

touches its reflection as seen in a dish of mercury, and thus

t l1e double altitude is read. The operations are begun several

minutes before apparent noon and a number of measurements

made which give altitudes gradually increasing to a maximum

and then decreasing. The proper corrections are then to be

applied to the maximum altitude, and finally the above

formula gives the latitude, d being taken from the nautical

almanac.

For example on October 1, 1897, the maximum double

altitude of the sun's lower limb, observed with a sextant by

a student at Lehigh University and corrected for index error

and eccentricity of the instrument, was 91° 51' 17".2, one-half

of which, or 45° 55' 38". 6, is the apparent altitude of the

lower limb. To this is to be added 16' 01".6 for the sun's

semi-diameter, giving 46° 1 1' 40". 2 apparent altitude of the

sun's center. The refraction correction to be subtracted is

o' 53". 1 and the parallax correction to be added is 06". 2, and

thus the true altitude h was 45° 54' 51". 6. The declination

of the sun being S. 3° 28' 44". 3, as found from the nautical

almanac, taking account of the difference in longitude, the

latitude of the place by (45) is 40° 36' 24", a result whose

probable error is 5" or more, since but a single reading was

taken on the sextant.

A more precise determination can be made by taking about

six altitudes at intervals of one minute, half being before and

half after the time of maximum altitude. It is well also that

three of them should be taken by bringing the sun's lower

limb into coincidence with its image in the mercury, and

three by bringing the upper limb to coincide with its image;

the mean of the six then gives the double apparent altitude

of the sun's center. This altitude, after correction for the

errors of the instrument and for parallax and refraction, may

be safely used to give a latitude determination with a prob
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able error less than 5", and this can be rendered smaller by

combining the results of several observations made on differ

ent days. Some observers apply to each of the altitudes a

correction to reduce them to the meridian, but this requires

a knowledge of the local time and longitude, and the com

putation generally involves more labor than is justified by the

precision of the vertical angles taken with a sextant or

engineers' transit.

When the local mean solar time is known, or when it can

be obtained from a watch indicating standard time, the

observation may be made at any hour-angle with results as

satisfactory as those found from noonday work. The alti

tudes may be taken at even minutes of time, or the sextant

may be set at even minutes of angle and the watch be read

to seconds of time. Half the altitudes being taken upon the

lower limb and half upon the upper, the mean of all furnishes

the altitude of the sun's center, and the mean of the recorded

times gives the corresponding time from which the apparent

solar time and the hour-angle t are found. Let V be an angle

computed from

tanF= tantf/cos/,

then the latitude <p is found from

cos(0 — V) = sin V sin///sino\ (45)'

For example, ten altitudes measured in about six minutes on

the afternoon of September 27, 1897, at South Bethlehem,

Pa., gave after correction the mean altitude h — 36° 03'

09". 4, and the mean of the ten times of observation was.

2h 16m 18*.9 in local mean solar time. Applying the equation

of time for that day, the local apparent solar time is found to

be 2h 25'" 34M, and hence the hour-angle of the sun is

t = 36° 23' 31". 5. From the nautical almanac, knowing that

the local time of the place of observation is 5h 1m 32s slower

than Greenwich time, the declination of the sun is — 1° 57'
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32".8. Then by computation V is — 2° 25' 59".6 and finally

the latitude 0 is found to be + A°° 36' 24". 6.

The probable error of a single latitude determination made

in this manner is about 2" or 3". To obtain more precise

results a star should be observed, and in general all astro

nomical work on the sun has a much lower degree of precision

than that done on the stars.

Prob. 45. From the values of 6, /, and h, as stated above, com

pute the values of Fand 0. Also using the values of 6, h, and 0,

compute / from formula (47).

46. Lat1tude by a Star.

The altitude of the celestial pole above the horizon of any

place is the latitude of that place. Hence when a circum-

polar star crosses the meridian its altitude plus or minus its

co-declination gives the latitude of the place, or

0 = h ± (90° - 6), (46)

the plus sign being used for the lower culmination and the

minus sign for the upper culmination. As the times of the

culmination of Polaris are given in surveyors' handbooks this

method is well adapted to observations upon it with the

sextant or with the engineers' transit. If the altitude //, be

observed at upper and /z, at lower culmination, then the mean

of these, each being corrected for refraction, gives the lati

tude, or 0 = + //,)• Here h, may be itself the mean of

several altitudes taken at equal intervals before and after the

upper culmination and A, may be the mean of several similarly

taken before and after the lower culmination. With a good

sextant the latitude may be found by a few series of observa

tions with a probable error of one or two seconds of angle,

and with a transit to a less degree of precision.

Formula (45)' of the last Article may be used to find the

latitude from an observed altitude of any star in any position,

if its hour-angle / is known. When a sidereal chronometer is
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at hand the sidereal time of taking the altitude, diminished

by the right ascension of the star, gives the hour-angle in

sidereal time, and fifteen times this is the value of / in

angular measure. For example on December 8, 1897, ten

altitudes of Polaris were taken with a sextant in about thirteen

minutes at Lehigh University, the time of each being noted

on a sidereal chronometer. The mean apparent altitude, after

correction for index error and eccentricity, was 41° 47' 46". 3,

and applying the refraction correction 1' 06". 3, the mean true

altitude is h = 41 ° 46' 40".0. The mean sidereal time of

the times of the ten measurements was oh 1om 54".9, from

which is subtracted the right ascension of Polaris or 1h 50™ .

33*.6 to give its hour-angle 22'' 5om 33".6, whose equivalent in

degree measure is t = 342° 38' 24''. O. The declination of

Polaris being 6 = 88° 46' 11 ".9, the auxiliary Vis found to

be 88° 49' 33". 5, and then from (45)' there results for the

latitude the value 0 = 40° 36' 17". 3. The probable error of

a single determination of latitude made in this manner is

mucl\ less than that of one found from observations on the

sun, say about 1" or 2". When a common watch is used its

error and rate should be known so that the time correspond

ing to the mean altitude may be converted into local mean

solar time and then, with the help of the nautical almanac,

into sidereal time, from which the hour-angle / is found as

before. It is preferable that the student should use a com

mon watch rather than a sidereal chronometer, since the

former is more generally at hand in actual work.

The best time for making this observation is when the star

is near culmination, since then an error in h produces the

smallest error in 0. In the above example the star was

about 1'1 1o"' from the lower culmination and hence in a

favorable position.

Prob. 46. Deduce sin // = sin 0 sin 8 -\- cos 0 cos S cos /, and

show that an error dh gives the least error d<p when / = o° or when

t = 180°.
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47. T1me.

A watch may be set to local apparent solar time by noting

the instant when the sun attains its maximum altitude, and

then, applying the equation of time, local mean solar time is

approximately known. At any telegraph station in the

United States a watch may be closely set to standard time,

Eastern standard time being the mean solar time of the 75 th

meridian and hence five hours slower than Greenwich mean

solar time, while Central, Mountain, and Pacific standard

times are the mean solar times of the 90th, 105th, and 120th

meridians respectively. The mean solar time at any other

meridian is found from standard time by applying to standard

time the correction for difference of longitude, 15 degrees

corresponding to one hour of time. When greater precision

is required an altitude of the sun or of a star is to be taken

and from this the error of the watch can be computed, if the

latitude of the place is known.

In the figure of Art. 42 let 5 be the place of the sun or

star; the arc SZ is the co-altitude or zenith distance s, the

arc SP is the co-declination 90° — 6, the arc ZP is the

co-latitude 90° — <p, and the angle SPZ is the hour-angle of

the star, which is designated by /. The solution of the

spherical triangle gives

coss = sin0 sintf -\- cos<^ costf cos/,

from which / can be computed ; it is, however, customary to

reduce this equation to the form

tan*/ = a /sin*t* + * - tf> sin^" ~ ^ + rf) U7)

V cosi(s + <{> + 6) cosi(* - <t> - 6)' WJ

From this t is found in degrees, minutes, and seconds, and

this value is then changed into time by dividing it by 15.

When the sun is observed this result is apparent solar time;

when a star is observed its sidereal time interval is to be

reduced to mean solar time.
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For example, take the data of Art. 42 where observations

on the sun gave the mean corrected co-altitude z = 46° 02'

32" at 8h 43m 00s A.M. by the watch, the sun's declination

being 8 — 19° 54' 05" and the latitude of the place 0 = 40°

36' 27". Inserting these values in the above formula there is

found / = — 48° 32' 50", which is the hour-angle between the

sun and the meridian; this reduced to time gives 31' 14™ IIs. 3

as the interval between the time of the mean altitude and that

of apparent solar noon. Hence 8h 45™ 58s. 7 was the local

apparent solar time, and subtracting the equation of time for

the given day, there results 8h 42™ 15*. 5 as the local mean

solar time which corresponded to 8h 43™ oos of the watch.

Hence the deviation of the watch from local mean solar time

was on' 449. 5 fast. Further as the place of observation was

o° 22' 35" west of the 75th meridian, and as this corresponds

to oh o1m 30\3, it follows that the deviation of the watch from

Eastern standard time was 45s. 8 slow. The probable error of

this determination may be several seconds.

Far better work can be done by observing a star, and a

good sextant is always to be preferred to an engineer's transit

for taking the altitudes, the image being brought down to

coincide with its reflection in a dish of mercury. The follow

ing is a record of an observation made at Lehigh University

on May 9, 1899, by this method. The watch was supposed

to carry Eastern standard time and it was required to deter

mine its error. The sextant was set successively at even 10

seconds of arc and the watch time of each noted; thus the

observed mean double altitude 90° 05' 00" occurred at

gi' 02m 26". 64 by the watch. This is corrected for index

error and eccentricity, and the apparent double altitude

found, to which a refraction correction, computed from a

formula that takes barometer and thermometer into account,

is applied. Thus the true zenith distance z is found, and

from this and the given latitude of the place and declination

of the star the hour-angle / is computed from the above
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T1me by <t Gem1norum (Castor), May 9, 1899.

Obs.

No.

1

2

3

4

5

6«

7

3

9

10

Means

Double

Altitude.

90° 50'

90 40

90 30

90 20

90 10

90 OO

89 50

89 40

89 30

89 20

90 05 OO

Watch Time

P.M.

8* oo"' 36'.

01 03 .

01 30 .

01 56 .

02 23 .

02 50 .

03 16 .

03 42 .

04 11 .

o4 35 •

gh 02m 36V64

Data and Remarks.

J. H. O., observer. C. L. T., recorder.

Pistor and Martin's Prismatic Sextant

with mercury horizon and glass cover.

Watch carrying approximate Eastern

standard time.

<p = 40° 36' 23". 2

X = 75° 22' 57".3

<r = 7b 28" 11*.30

S = 32° 06' 36". 7

Barometer, 29'" .550

Attached therm., 66°.o F.

Detached therm., 64.7 F

Index Error,

from Arcturus.

- 16' 45"

- 16 50

- 16 55

- 16 55

— 16' 51". 25

* Horizon cover reversed.

Observed ih

Index error

Eccentricity :

2h

Apparent h

Refraction =

True h

x

Hour-angle /

Hour/

90° 05' 00"

— 16 51.25

- 48.85

True sidereal time/+a = llh 12m 10*. 63

Sidereal time mean noon = 3 09 09 .27

89 47 25 90

44 53 42-95

- 55-46

52 47-49

45 O; 12-51

55° 59' 5o"

3" 43™ 59*-33

Sidereal interval after

mean noon S 03 c1 .36

Correction to mean solar

time
- - 01 19 .29

Local mean solar time = 8 01 42 .07

Reduction to 75" meridian = + 01 31 .82

Eastern standard tims = 8 03 13 .89

Watch time = s 02 36 .64

Watch error (slow) = 37'-25

C. L. T., computor.

formula, and converted into time measure. The true sidereal

time then results by adding the right ascension of the star,

and this is converted into. local mean solar time and then into

Eastern standard time, from which finally the watch error is

found to have been 37.25 seconds slow. The probable error

of this determination is less than one-quarter of a second.

The most favorable position of a star for this work is when
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it is on the prime vertical. For, if ds be an error in s, the

corresponding error dt in /, obtained by differentiating the

first equation of this Article, is s\x\z-dz/zos<ft costf sin/, and

since sin^/costf sin/ = sinZ, this gives dt = dz/cos<ft smZ.

Accordingly the azimuth Z should be 90° or 270° in order

that dt may have its smallest value. In the same manner it

is shown that errors in the assumed latitude produce the least

effect when the star is on the prime vertical.

Prob. 47. Using the data of the above observation on Castor, find

the error in the computed Eastern standard time which would be

caused by an error of 01" in the altitude // ; also the error which

would be caused by an error of 01" in the latitude (ft.

48. Long1tude.

When accurate standard time is at hand the comparison of

it with the local mean time gives the longitude. Thus, if the

local mean solar time of a place has been found by a star

observation to be 14mo8*.4 faster than Central standard time,

the place is 3° 22' 04" east of the 90° meridian and hence its

longitude is 86° 27' 56" west of Greenwich. This method is

used at sea, where daily observations for local mean solar

time are made on the sun or stars when the weather permits,

this local time being compared with a chronometer which

indicates either Greenwich mean solar time or that of a port

whose longitude is known. As one second of time is equiva

lent to fifteen seconds of angle, it is seen that this method is

not very precise, particularly when it is considered that the

best watches are liable to vary one or more seconds per day.

The method of lunar distances is extensively used at sea

for finding the Greenwich time. In the nautical almanac will

be found the true angular distances between the moon's

center and several stars and planets for every day in the year

and for three-hour intervals, these distances being stated as

they would appear from the center of the earth. If one of

these apparent distances be measured at any place, as also
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the apparent altitudes of the star and moon, the data are at

hand for computing the true distance as seen from the center

of the earth at the same instant, and thus from the almanac

Greenwich mean time is known. Then, the difference

between local and Greenwich time gives the longitude of the

place. This method involves laborious computations unless

special tables are at hand.

Another method is that of lunar culminations which re

quires that azimuth and time should have been determined.

The instant of the passage of the moon's bright limb across

the meridian is observed, and a correction applied to find the

local mean time of passage of the moon's center. This local

mean time, converted into sidereal time, furnishes the right

ascension of the moon, while the Greenwich mean time

corresponding to the same right ascension can be found from

the almanac. Lastly the difference between local and Green

wich mean time gives the longitude of the place.

As an example of the method of lunar culminations the

following rough observation with an engineer's transit, made

at Lehigh University on May 23, 1899, may be of interest.

On that day the moon crossed the meridian at about 1oh 55m

P.M., and it was accordingly arranged to determine azimuth

by pointing on Polaris a few minutes previous. By a simple

computation it was determined that the azimuth of Polaris at

1oh 45"" local mean time was 180° 36' 23".4 and at- that

instant the cross-hair of the transit telescope was set on the

star. Then the angle o° 36' 20" was turned off toward the

west and the telescope reversed, thus pointing southward in

the plane of the meridian. When the moon's west limb

touched the vertical cross-hair the time was noted as 1oh 53""

34". 1. Reducing this to sidereal time with the assumed

longitude 5h, and adding a correction for the time required

for the semi-diameter of the moon to pass the meridian, the

right ascension of the moon's center when crossing the

meridian of the place is found to be I5h 00m 539.44, and the
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corresponding mean local time 1oh 54m 5 5". 59. From the

nautical almanac the Greenwich mean time at which the

moon's center had this right ascension is found to be I5h 54m

27s. 84, and consequently the longitude of the place of obser

vation is 4h 59™ 42s. 2 5 in time or 74° 55' 34" in arc, a result

which is in error by nearly half a degree, the true value being

75 22 23 .

It thus appears that no close determination of the longitude

of a place can be made by the method of moon culminations

with an engineer's transit. Nevertheless in an unexplored

region the method is of value in making an approximate

determination to be used in time observations and in taking

quantities from the nautical almanac.

Prob. 48. At a certain place on December 5, 1900, the moon's

right ascension was observed as 4h 32™ o5*.31 at 8 p.m. local mean

time. From the nautical almanac it is found that the right ascen

sions 41' 31m o3s.69 and 4h 33™ 37s.82 occurred at 3 a.m. and 4 a.m.,

Greenwich mean time, on December 6, 1900. Find the longitude

of the place of observation.

49. Prec1se Determ1nat1ons.

The methods set forth in the preceding pages give results

whose precision is far lower than that needed for the astro

nomical work of a geodetic survey. When it is required to

determine azimuth, latitude, and longitude at one of the

stations of a geodetic triangulation such methods are generally

used to furnish preliminary approximate values, for it has

been seen that each of these elements depends upon the

others, and hence rough methods must precede precise ones.

These preliminary values may be supposed to give the lati

tude within one or two seconds, the longitude within ten or

twenty seconds, and the azimuth within six or eight seconds.

To make a precise determination of azimuth a direction

theodolite, having a circle divided to 5 minutes and reading

by microscopes to seconds or less, is used. The observations
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are made on close circumpolar stars by the method of Art.

35, great pains being taken to eliminate the error of level in

the horizontal axis of the telescope. By making a sufficient

number of measurements the azimuth of a line running from

the station to a signal may be found with a probable error of

1" or less, and by measuring the angle between this line and

one of the sides of the triangulation the azimuth of the latter

is known with almost equal precision.

To make a precise determination of latitude a zenith tele

scope is to be set up in the plane of the meridian and the

difference of the meridian zenith distances of two stars that

cross the meridian near the zenith, but on opposite sides of

it, is observed. Let tf, and 6, be the declinations of the two

stars, the first being south of the zenith, s, and s, their

apparent zenith distances, and r, and r, their refraction cor

rections. Then for the first star 0 — (J, -|- zt -f- r, and for

the other 0 = S, — s, — r,. The addition of these gives

2 0 =-- tf, + 6, + (~ _ + (r, - r,),

so that it is only necessary to measure — z, by the mi

crometer in the field of the zenith telescope and then apply

the small refraction correction. By this method it is easy

to determine latitude with a probable error less than o". 1.

To make a precise determination of longitude a telegraph

line must connect the station with an observatory whose

longitude is known. A portable astronomical transit instru

ment is mounted in the plane of the meridian and the time

of passage of several equatorial stars is signalled by the tele

graph line to the observatory. When the same stars pass the

meridian of the observatory their time of passage is signalled

to the station. A single clock in the telegraph circuit may

be used to make a chronographic record of both series of

signals, and thus the difference in time is known, from which

the longitude directly results. The probable error of the

difference of longitude thus determined may be made as

small as o" .01 or o". 15.
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Numerous observations made at many different observa

tories have established the fact that small periodic changes in

the latitudes of all places are constantly going on. This is

due to a slight wabbling motion of the earth's mass with

respect to its axis, so that the axis performs an apparent

revolution around its mean position in about 425 days, and

consequently the north pole of the earth makes a similar

revolution around its mean position. The radius of this

circle varies from 0". 16 to o".36, and consequently the lati

tude of any given point on the earth's surface may vary from

o".32 to o".j2 at different times. It is hence seen that

decimals of seconds occurring in common latitude determina

tions have no definite meaning. As all methods for determin

ing the azimuth of a line involve a knowledge of the latitude

of that end where the observation is made, it follows that the

astronomical azimuths of all lines on the earth's surface also

undergo periodic changes; and the same holds true for longi

tudes of places. These changes will be the greater the

nearer the line or place is to the north pole, but near the

equator they will be very small.

In the science of geodesy the words azimuth, latitude, and

longitude have a signification slightly different from that in

astronomy, as will be seen in Chapter VII. These geodetic

elements enable a fixed system of coordinates to be estab

lished by which the relative positions of points on the earth's

surface can be expressed to a degree of precision limited only

by our knowledge of the shape and size of the earth.

Prob. 49. Consult Albrecht's Bericht iiber den Stand der Erfor-

schung der Breitenvariation (Berlin, 1899), and give a sketch show

ing how the true north pole moves around its mean position.
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Chapter VI.

SPHERICAL GEODESY.

50. Early H1story.

Geodesy is the science that sets forth the principles and

methods whereby large areas on the surface of the earth may

be surveyed and mapped with precision. If the surface of

the earth were a plane, as certain ancient peoples supposed,

the science of geodesy could never have arisen, since the

elementary geometry of Euclid would be capable of measur

ing and representing its geographical features. In fact,

however, measurements conducted upon this supposition

become more or less entangled in discrepancies according to

the size of the country over which they are carried. For

instance, let three points be taken on the earth's surface at

considerable distances apart; the sum of the three angles of

the triangle thus formed is found, if measured by an instru

ment whose graduated arc is placed level at each station, to

be greater than 180 degrees. From these and many other

discrepancies it is to be concluded that the earth's surface is

not a plane.

Many facts are known from which it is inferred that the

earth is globular, such as the appearance of the top of a

light-house earlier than its base to a ship approaching the

shore, the dip of the sea horizon, the elevation of the pole

star as we travel north and its depression as we travel south,

the analogy of the other planets which seem to be globular

when viewed through a glass; and the circular form of the
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earth's shadow as observed in a lunar eclipse. To these

must be added the well-known circumstance that travellers,

going ever eastward, pass entirely around the earth and return

to the point of starting. From these facts ib is concluded

that the earth is globular, that is to say like a globe, but

whether spherical, spheroidal, or ellipsoidal, there is thus far

no evidence.

The surface whose size and shape is to be investigated in

the following pages is that of the great ocean which covers

fully three-fourths of the globe. Although this is agitated

by winds and raised in tides its mean level can be accurately

determined. Moreover the land is really elevated but little

above the ocean, for it is now known that the radius of the

earth, regarded as a sphere, is nearly 4 000 miles, while the

highest mountains rise only about 5 miles. Hence measure

ments made upon the land can at the utmost cause an error

of only one eight-hundredth part in the value of the radius.

The early Greek philosophers speculated upon the shape

of the earth. Anaximander (570 B.C.) called it a cylinder

whose height was three times its diameter, the land and sea

being on its upper base. Plato (400 B.C.) thought it a cube.

Aristotle (340 B.C.) gives reasons for supposing it to be a

sphere and mentions, as also does Archimedes (250 B.C.),

that geometers had estimated its circumference at 300 000

stadia. The first recorded observations for determining the

size of the sphere are, however, those made in Egypt by

Eratosthenes (230 B.C.); his method, though rude in meas

urement, is correct in principle, and from it he concluded that

the circumference of the earth was 250000 stadia.

The process by which Eratosthenes deduced the size of the

earth will now be described. He noticed that at Syene in

southern Egypt the sun on the day of the summer solstice

cast no shadow of a vertical object, while at Alexandria in

northern Egypt the rays of the sun on the same day of the
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year made an angle with the vertical of one-fiftieth of four

right angles. From this he concluded that the distance

between Syene and Alexandria was one- s

fiftieth of the circumference of the earth,

and as that distance was about 5 000 stadia i

he claimed the whole circumference to be

250000 stadia. The exact length of the J /

stadium is now unknown, so that the pre-

cision of his result cannot be judged, yet / \ /

the name of Eratosthenes will ever be / \

honored in science as the originator of the \ /

method of deducing the size of the earth P \- \X

from a measured meridian arc. ^

To explain the reasoning of Eratosthenes let the figure

represent a meridian section of the earth, PP' being the axis,

QQ' the equator, P the north pole, A the position of

Alexandria, and B that of Syene, while AS and BS give the

directions of the sun at the summer solstice. Assuming that

the section is a circle and that the rays of the sun are parallel

it is clear that the angle BOA is equal to the angle which the

sun's rays make with OA. Thus, if this angle be /^th of 360

degrees, it follows that the circumference is fifty times the

distance AB. The reasoning of Eratosthenes hence involves

two fundamental conceptions besides those of geometry,

namely, that the earth is a sphere and that the sun is at a

great distance from it. 1

The method of Eratosthenes is called the measurement of

a meridian arc. Thus, let the distance between the two

points A and B be /, and let the angle A OB be 6 degrees;

then in modern reasoning,

1/6 = length of one degree of the meridian,

360//$ = length of circumferences of the earth,

57.2958//$ = length of radius of the earth.

Eratosthenes found the distance / from the statements of
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travellers, later observers rolled a wheel, or measured it with

a chain, but the modern method is to compute it from a pre

cise triangulation. Eratosthenes found the angle 6 from the

shadows cast by vertical posts, but later observers found it

from the latitudes of the places; for the angle QOA is the

latitude of A, while QOB is the latitude of B, and hence 6 is

the difference in latitude between the two ends of the

meridian arc.

For several hundred years after the time of Eratosthenes

the doctrine of the spherical form of the earth was generally

accepted by astronomers. Posidonias (90 B.C.) measured the

meridian arc between Alexandria and Rhodes, using a star to

determine the latitudes and deduced 240000 stadia for the

circumference. But this knowledge of the Greeks was all

lost as their civilization declined, and for more than a

thousand years Europe, sunk in intellectual darkness, made

no inquiry concerning the size or shape of the earth. Only

in Arabia were the sciences at all cultivated during this

period. There the Caliph Almamoun summoned astronomers

to Bagdad, and one of their labors was the measurement, on

the plains of Mesopotamia, of an arc of a meridian by

wooden rods, from which they deduced the length of a

degree to be 56$ Arabian miles, or probably about 71 English

miles.

Prob. 50. If the earth is represented by a sphere 16 inches in

diameter, what is the height in inches of the tallest mountain ?

51. H1story from 1300 to 1750.

In the year 1322 a traveller named Mandeville published

a volume describing his journeys; this is generally regarded

as the earliest English prose work. In it is a lengthy and

labored argument to prove that the " lond and the see ben of

rownde schapp and forme " and that the circumference of the

earth has 360 degrees like that of the heavens. He con
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eludes, " be the Earthe devysed in als many parties, as the

Firmament; and lat every partye answere to a Degree of the

Firmament; and wytethe it wel, that aftre the auctoures of

Astronomy e, 700 Furlonges of Earthe answeren to a Degree

of the Firmament; and tho ben 87 Myles and 4 Furlonges.

Now be that here multiplyed by 360 sithes; and than thei

ben 31 500 Myles, every of 8 Furlonges, aftre Myles of oure

Contree. So moche hathe the Earthe in roundnesse, and

of heighte enviroun, aftre myn opynyoun and myn undir-

stondynge."

These views of Mandeville appear to have produced but

little influence, for it was not until the fifteenth century,

when the first gleams of light broke in upon the darkness of

the middle ages, that men began to think again about the

shape and size of the earth. Navigators began to doubt that

its surface was a level plane, and here and there one, like

Columbus, asserted it to be globular. In the sixteenth cen

tury, the doctrine of the spherical form of the earth was again

generally accepted, and one of the ships of Magellan, after a

three years' voyage, accomplished its circumnavigation.

With the acceptance of this idea arose also the question as

to the size of the globe, and Fernel, in 1525, made a meas

urement of an arc of a meridian by rolling a wheel from Paris

to Amiens to find the distance and by observing the latitudes

with large wooden triangles, from which he deduced about

57 050 toises for the length of one degree. At this time

methods of precision in surveying were entirely unknown.

In 161 7 Snellius conceived the idea of triangulating from a

known base line, and thus, near Leyden, he measured a

meridian arc which gives 55 020 toises for the length of a

degree. Norwood, in 1633, chained the distance from

London to York, and deduced 57 424 toises for a degree.

Picard, who was the first to use spider lines in a telescope,

remeasured, in 1669, the arc from Paris to Amiens, using a

base line and triangulation, and found one degree to be
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57 060 toises. This was the result that Newton used when

making his famous calculation which proved that the moon

gravitated toward the earth.

The toise, it should here be noted, was an old French

measure, approximately equal to 6.3946 English feet or 1.949

meters. It is of classic interest on account of its use in all

the early meridian arcs and in the surveys for deciding upon

the length of the meter.

From 1690 to 17 18 Cassini carried on surveys in France,

more precise probably than any preceding ones, and in 1720

he published the following results regarding three meridian

arcs:

Arc. Mean Latitude. Toises in One Degree.

1 49° S6' 56 970

2 49 22 57 060

3 47 55 57 098

From these it appeared that the length of a degree of latitude

increased toward the equator, or that the earth was flatter at

the equator than at the poles. In other words he claimed

that the earth was not spherical but spheroidal, and that the

spheroid was a prolate one. From the time men had ceased

to believe in the flatness of the earth, and had begun to

regard it as a sphere, their investigations had been directed

toward its size alone; now, however, the inquiry assumed a

new phase, and its shape came up again for discussion.

A prolate spheroid is generated by an ellipse revolving

about its major axis, and an oblate spheroid by an ellipse

revolving about its minor axis. The first diagram of the

figure represents a meridian section of the earth regarded as

a prolate spheroid, and the second shows the section of an

oblate spheroid. In each diagram PP is the axis, QQ the

equator, and A a place of observation whose horizon is AH,

zenith Z, latitude ABQ, and radius of curvature AR. Now

if the earth be regarded as a sphere and its radius be found

from a meridian arc near A, the value AR will result. In
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the prolate spheroid the radius of curvature is least at the

poles and greatest at the equator, and the reverse in the

oblate. Hence if the lengths of the degrees of latitude

decrease from the equator to the poles, it shows that the

earth is prolate ; but if they increase from the equator toward

the poles, it is a proof that it is oblate in shape.

It is now necessary to go back to the year 1687, the date

of the publication of the first edition of Newton's Principia.

In Book III of that great work are discussed the observations

of Richer, who, having been sent to Cayenne, in equatorial

South America, on an astronomical expedition, noted that

his clock, which kept accurate time in Paris, there continually

lost two seconds daily, and could only be corrected by

shortening the pendulum. Now, the time of oscillation of a

pendulum of constant length depends upon the intensity of

the force of gravity, and Newton showed, after making due

allowance for the effect of centrifugal force, that the force of

gravity at Cayenne, compared with that at Paris, was too

small for the hypothesis of a spherical globe; in short, that

Cayenne was further from the center of the globe than Paris,

or that the earth was an oblate spheroid flattened at the

poles. He computed, too, that the amount of this flattening

at both poles was between ajid of the whole diameter.

Now it will be remembered that Newton's philosophy did

z 

p
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not gain ready acceptance in France; this investigation, in

particular, called forth much argument, and when Cassini's

surveys were completed, indicating a prolate spheroid, the

discussion became a controversy. Then the French Academy

resolved to send expeditions to measure two meridian arcs

that would definitely settle the matter, one near the equator

and another as far north as possible.

Accordingly two parties set out in 1735, one for Lapland,

the other for Peru. The Lapland expedition measured its

base upon the frozen surface of a river, executed its triangu-

lation and latitude observations, and returned in two years

with the results / = 92 778 toises, 6 = I °.6221. The Peru

vian expedition measured two bases, executed its triangula-

tion and latitude work, and returned in seven years with the

results /= 176875 toises, #=3°. 1176. From these the

values of the length of one degree were found, and then the

following results could be written :

Arc. Mean Latitude. Toises in One Degree.

Lapland N. 66° 20' 57 438

France N. 49 22 57 060

Peru S. 1 34 56 728

These figures decided the question. Since that time every

one has granted that the earth is an oblate spheroid rather

than a sphere or an prolate spheroid.

Prob. 51. From the above data compute the radius of curvature for

the Lapland arc and for the Peruvian arc.

52. Measurement of Mer1d1an Arcs,

The general principles regarding the measurement of a

meridian arc have been given in Art. 50, but it is now to be

noted that the successful execution of the work demands

accurate instruments, good observers, and long-continued

labor. The latitude observations are now made by the zenith

telescope method of Art. 49, the bases, angles, and azimuths
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are measured with corresponding precision, while the adjust

ment by the Method of Least Squares reduces the residual

errors to a minimum. In the last century these precise

methods were unknown, yet the results deduced gave valu

able information and progress was constantly made in

methods of observation and computation. It will be of

historic interest, perhaps, to give a brief account of the firs'

meridian arc measured in the United States.

In 1763 the proprietors of Pennsylvania and Maryland

employed two astronomers named Mason and Dixon to locate

the boundary lines between their respective possessions.

This occupied several years, and while engaged upon it,

Mason and Dixon noted that several of the lines, particularly

the one between Maryland and Delaware, were well adapted

to the determination of the length of a degree, being on low

and level land, and deviating but little from the meridian.

Representing this to the Royal Society of London, of which

they were members, they received tools and

money to carry on the work. The measured

lines are shown in the annexed sketch. AB

is the boundary between Delaware and

Maryland, about 82 miles long and making

an angle of about four degrees with the

meridian; BD is a short line running nearly

east and west; CD and PN are meridians

about five and fifteen miles in length respec

tively; CP is an arc of the parallel, the same

in fact as that of the southern boundary of

Pennsylvania. In 1766 Mason and Dixon

set up a portable astronomical instrument at

A, the southwest corner of the present State of Delaware,

and by observing equal altitudes of certain stars, determined

the local time and the meridian, after which the azimuth of

the line AB was measured, and the latitude of A found by

observing the zenith distances of several stars as they crossed
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the meridian. At N, a point in the forks of the river

Brandywine, the zenith distances of the same stars were also

measured, from which it was easy to find the latitude of N,

and the difference of latitude between A and N. In 1768 they

made the linear measurements by means of wooden rectan

gular frames 20 feet in length. All the lines had in previous

years been run in the operation for establishing the boun

daries, and along each of them " a vista" cut, which " was

about eight or nine yards wide, and, in general, seen about

two miles, beautifully terminating to the eye in a point."

Toward this point they sighted the wood frames, made them

truly level and noted the thermometer in order to correct for

the effect of temperature. Through the swamps they waded

with the wooden frames, but across the rivers they found the

distance by a measured base and triangle.

The results of this field work, as sent to England in 1768,

were as follows: latitude of A = 38° 27' 34", latitude of

A^= 39° 56' 19", azimuth of AB at A = 176° 16' 30", angle

BDC=9l° 27' 30", ^# = 434011.6 feet, BD = 1489.9

feet, Z>C= 26608.0 feet, PN = 78290.7 feet, DC and PN

being true meridians while CP was an arc of the parallel.

From these results the difference of latitude between A

and N is 6 — 1°.47917. To find the linear distance /, an

approximate value of the radius of the earth was assumed

and each of the measured lines projected upon the meridian

AN' by arcs of parallels AW, PP', etc. Thus were found

^= 433 078.8 feet, B'D'=z8g.8 feet, D'P' = 26 608.0

feet, and P'N' = 78 290.7 feet, whose sum is / = 538 067.3

feet. The length of one degree of the meridian now is

1/6 = 363 764 feet = 68.894 miles,

from which the radius of curvature is

R, = 57.2958//# = 3947-4 miles.

These are the final results of the measurement of the
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meridian arc made by Mason and Dixon ; they are now

known to be too small, the present accepted values for the

mean latitude of the arc being 68.984 miles and 3 952.4

miles, but in view of the primitive methods employed it is

surprising that the agreement is so close.

During the fifty years following 1 750 a number of meridian

arcs were measured, one in South Africa, one in Italy, one in

Hungary, one in Lapland, while in France and England

geodetic surveys furnished the data for computing other arcs.

Most important of all was the triangulation executed in

France and Spain about 1800 for determining the length of

the meter, which embraced an arc of ten degrees in length.

All these arcs confirmed the conclusion that the earth is not

a sphere, but an oblate spheroid flattened at the poles.

Prob. 52. Compute the length of a quadrant of the meridian in

meters, using the results of Mason and Dixon and supposing the

earth to be a sphere.

53. The Earth as a Sphere.

Although the earth is not a sphere it is sufficient in many

investigations to regard it as such, since the amount of

flattening at the poles is not large. In fact, if the earth is

represented by a globe sixteen inches in equatorial diameter

the polar diameter would be 15.945 inches, so that the differ

ence between the two diameters would not be perceptible to

the eye. The question now arises as to what value shall be

taken for the radius of the earth and what is the mean length

of a degree of latitude on its surface. This question cannot

be answered without anticipating to a certain extent some of

the conclusions of the next chapter.

The mean length of a degree of latitude is the mean of the

lengths of all the degrees from the equator to the poles, or

one-ninetieth of the elliptical quadrant. The value adopted

for the quadrant in this book is

q = 10 001 997 meters = 32 814 886 feet,
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and from this is deduced the following useful table of mean

lengths of arcs on the earth's meridian :

One degree — 1ll 133 meters = 364610 feet,

One minute = 1 852.2 meters = 6076.8 feet,

One second = 30.87 meters = 101.28 feet.

The mean length of one degree may also be stated in round

numbers, easy to remember, as 69 statute miles or 60 nautical

miles, one nautical mile thus being one minute of latitude.

The mean radius of the earth, considered as a sphere, must

be the arithmetical mean of all the radii of the spheroid.

This is evidently the same as the radius of a sphere having a

volume equal to the volume of the spheroid. Let a be the

equatorial and b the polar radius of the oblate spheroid,

whose accepted values are 6378278 and 6356654 meters

respectively; its volume is ^na'b. Let R be the radius of

the sphere whose volume is ^ttR,. Equating these values,

there is found

R = 6 371 062 meters =

or, in round numbers,

R = 6371 kilometers -

for the mean radius of the earth.

This mean value of the radius is, however, incongruous

with the above mean length of a degree of latitude, for the

quadrant of a circle corresponding to a radius of 6 371 kilo

meters is nearly six kilometers greater than the true elliptical

quadrant. In certain cases it might be more logical to use

the radius of a circle whose quadrant is equal to the true

quadrant; this requires the equation $nR = 10 001 997

meters, from which

,R = 6 369 kilometers = 3 957 statute miles,

and this is less by two miles than the mean radius of the

sphere. This discrepancy is unavoidable, since the proper-

20902 416 feet,

3 959 statute miles,
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ties of a sphere and a spheroid are not the same. Thus it is

impossible, when precision is demanded, to regard the earth

as a sphere.

Prob. 53. Taking the area of the earth's spheroidal surface as

196 940 400 square miles, find the radius of a sphere having the

same area.

54. L1nes on a Sphere.

The intersection of a plane and a sphere is always a circle.

When the plane passes through the center of the sphere the

circle is called a great circle, its radius

being R and its circumference 2nR.

When the plane does not pass through the

center the radius of the circle is less than

R, say r, and its circumference is 2wr.

All great circles cut out by planes passing

through the axis of the earth are called

meridians and these, of course, converge

and meet at the poles. All small circles

cut out by planes perpendicular to the

axis are called parallels. Latitude is

measured north and south on the meridians

from the equator toward the poles, while

longitude is measured east and west on the parallels from

the meridian of Greenwich.

Using the mean figures of the last Article, one minute of

latitude corresponds to 1852 meters or 6077 feet. One

minute of longitude on the equator has the same value, but

one minute of longitude on any parallel circle is smaller the

nearer the circle is to the pole. Thus if A be a point on a

parallel whose radius A C is r, and whose latitude A OQ is <j>,

and if R be the radius of the sphere, then r = R cos<p, and

accordingly znr — 2nR- cos0, that is, the length of the

parallel circle is equal to the length of a great circle multiplied
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by the cosine of the latitude. Hence the length of one

degree or one minute of longitude at any latitude is found by

multiplying the values of the last Article by the cosine of the

latitude. Thus, using 1 852 meters or 6 077 feet for the

length of one minute at the equator, the length of one

minute of longitude at latitude 40° is 1 419 meters or 4655

feet, while at latitude 8o° it is 322 meters or 1 055 feet.

The above figure shows two orthographic projections of the

meridians and parallels of a sphere, the first being a projec

tion on a plane through the axis, and the other a projection

on the plane of the equator. The parallels appear as straight

lines in the first diagram and as circles in the second.

The shortest distance on the surface of It sphere between

any two points is along an arc of a great circle joining them.

This can be rigidly demonstrated by establishing a general

expression for the length of a line on the spherical surface

and making it a minimum, but it will be just as well for the

student to satisfy himself of the truth of the proposition by

actually drawing and measuring lines on such a surface. As

an illustration, the distance from A to B in the above figure

may be computed by the route ACB along the parallel and

by the route APB on the great circle. The length of the

first is nR cos<£and that of the second is nR — 2<pR. Thus,

if 0 be 45 degrees or \n radians, the first route has the length

2.22R while the second has the length 1.57/?. In like

manner the distance from A to C is 1. 1 \R along the parallel,

but l.o^R along a great circle passing through A and C.

The azimuth of a line on a sphere is estimated, as in a

plane, from the south around through the west; thus the

northward azimuth of all meridians is 180 degrees. As all

meridians converge at the poles the back azimuth of an

oblique line is not equal to its front azimuth plus 180°. A

great circle passing through C with an east and west direction

at that point cuts the neighboring meridians at different

angles and finally crosses the equator and attains the same
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southern latitude as C on the opposite side of the sphere.

All the meridians cut the equator at right angles, but they cut

other parallels at smaller angles. An oblique line crossing all

meridians at the same angle is of a spiral nature and is called

a loxidrome.

Prob. 54. What part of the surface of a sphere is north of north

latitude 60 degrees ?

55. Angles, Tr1angles, and Areas.

A spherical angle is the plane angle between the tangents

to the arcs of the great circles at their point of intersection;

thus the spherical angle BAC is the same

-as the plane angle bAc. When a horizontal

angle is measured at a station A on the sur

face of the earth, the limb of the instrument

is made level or tangent to the spherical

surface, and hence when pointing is made

upon B and C the plane angle bAc is the

result of the work. If the triangle be of

sufficient size it will be found that the sum

of the three measured angles is greater than 180 degrees.

A spherical triangle is one included by three arcs of great

circles. It is a well-known geometrical theorem that the

sum of the angles of a spherical triangle is greater than two

Tight angles, and that the excess above two right angles bears

the same ratio to a right angle as the area of the triangle

bears to the area of the tri-rectangular triangle. The tri-

rectangular triangle, shown by PQO in the figure of the last

Article, is one-eighth of the surface of the sphere or ^nR*.

Thus from the theorem the spherical excess is given by

Excess in right angles = area of triangle/^/?',

or, since there are 90 X 60 X 60 seconds in a right angle,

Excess in seconds = 648000 a.rca/nR''. (55)
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Taking for R the mean value of the radius of the earth con

sidered as a sphere (Art. 53), this becomes

Excess in seconds = area in square kilometers/197 , v,

= area in square miles/76,

which are convenient approximate rules for practical use»

Thus a triangle has one second of spherical excess for each

197 square kilometers or 76 square miles of area.

The same rule applies to quadrilaterals or polygons on the

earth's surface bounded by great circles, the word excess

meaning the excess of the sum of the interior spherical angles

over the theoretic sum for a plane figure. Thus a polygon

or triangle of the size of the State of Connecticut has a

spherical excess of about 64 seconds; this amount is rarely

exceeded in the triangles of geodetic triangulations and is

usually much smaller.

A geodetic triangle is necessarily small since the stations

must be intervisible, and hence its curved surface does not

sensibly differ in area from that of the plane triangle formed

by lines equal in length to the spherical arcs. These are the

distances computed from the triangulation work, and the

corresponding plane angles are found by subtracting one-third

of the spherical excess from each spherical angle. For

instance, let two sides of a triangle be a = 36 440 meters,

b = 23 700 meters, and their included angle C = 49° 05';

then the area is \ab sinC = 326.3 square kilometers, and by

(55)' the spherical excess is 01 ".66.

It will be seen later that the above equation. (5 5) is directly

applicable to triangles on a spheroid by taking for R the

radius of the sphere osculatory to the spheroid at the center

of gravity of the triangle. In many common cases, however,

the rough rules of (55)' will give the spherical excess correctly

to hundredths of a second.

The area of a zone of the sphere bounded by the parallel

circles whose latitudes are Z, and Z, is easily derived. The
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differential expression is 2nrRdL, where r is the radius of the

parallel and R that of the sphere. But r — R cosZ, and hence

A = 2nR'J^cosLclL = 2nR* (sinZ, — sin Z,)

is the area of the zone between the upper latitude Z, and the

lower latitude Z,. Thus to find the area between latitude

30° and the equator, Z, = 30° and Z, = o°, whence A = nR*

or one-sixteenth of the surface of the sphere.

The area of a trapezoidal degree, that is, of a surface

bounded by two parallels one degree apart and by two

meridians one degree apart, may be readily deduced from the

last equation and will be found 0.000304614^ cosZ, in which

Z is the middle latitude of the trapezoid. Thus, taking R =

3 959 miles and Z = 45°, the area of the trapezoidal degree

is 3 376 square miles.

Prob. 55. In a spherical triangle two angles are observed to be

79° 03' 41".93 and 59° 35' 44".38, and the included side is 23 700

meters. Compute the spherical excess and find the other spherical

angle.

56. Lat1tudes, Long1tudes, and Az1muths.

Let A and B be two points on

the surface of the sphere, Z and M

being the latitude and longitude of

A, and Z' and M' those of B. The

latitudes are estimated northward

from the equator and the longitudes

westward from the meridian of

Greenwich, both in degrees, min

utes, and seconds of arc. Let a

great circle connect the points A

and B, and let its angular length

be 5. Let the meridians through

A and B be produced to meet at

the north pole P and to cross the equator at Q and Q.'
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The azimuth of AB is the angle QAB, which is called Z,

and the azimuth of BA is the obtuse angle Q'BA, which

is called Z'. Let the latitude and longitude of A be given,

together with the length and azimuth of AB. It is re

quired to find the latitude and longitude of B and the azi

muth of BA.

In the spherical triangle ABP the side PA is 90° — L, the

side PB is 90° — L', and the side AB is S; the angle A is

180° — Z, the angle B is Z — 180°, and the angle P is

M' — M. Writing the formula of spherical trigonometry for

the cosine of PB in the notation here used, it becomes

cos (90°—Z')=cos (90°—Z) cos-S+sin (90°—Z) sin-Scos (180°— Z),

which reduces immediately to

sinZ/ = sinZ. cos5 — cosZ sin5 cosZ, (56)

and the latitude L is hence expressed in terms of known

quantities.

In the same triangle, using the theorem that the sines of

the sides PB and AB are proportional to the sines of the

opposite angles,

sin (90° — Z')/sin5 = sin (180° — Z)/sin (M' — AT),

or sin (M' — M) = sin5 sinZ/cosZ', (56)'

from which the longitude M' can be computed after the lati

tude Z' has been found.

To deduce Z' one of the formulas known as Napier's

analogies will be most convenient in numerical work, namely,

tan i(A + B)/cot$C = cosftPB - PA) cos^PB + PA),

and, reducing this to the notation in hand, it becomes

cot \(Z'- Z) = tan \(M' - M) sin \(L + Z')/cos J(Z' - Z), (56)"

from which the back azimuth Z' can be computed.

These formulas apply to a spherical arc of any size on any

sphere. For example, let L = 40° 45" and M— 73° 58',

these being values for New York City, and let it be required
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to find L' , M', and Z' , for a point whose angular distance is

S = 35° and whose azimuth at New York is Z = 90°. From

formulas (56) and (56)'

log sin// = I.72812, L' = 32° 19',

log sin (M' — M) = I.83172, M' - 11 6° 43',

which indicates that the point is located in the vicinity of

San Diego, California. To find Z' the formula (56)" gives

log coti(Z - ZT) = I.36852, Z = 243° 42',

which shows that if a great circle be drawn between the two

places the direction of this is due west at New York, but at

San Diego its direction is N. 64° E. As the earth is not a

sphere, these results may be a degree or more in error.

When a line AB runs due north its azimuth Z is 180°; then

(57) reduces to L' = L + 5 and (57)' gives M' = M, while

(57)" shows that Z' = Z+ 180° = o°. If it runs due south

Z is o°; then (57) gives L — L — S and (57)' gives M' = M,

while (57)" shows that Z' = Z + 180° = 180°. If the two

points are on the same parallel of latitude, then L' = L and

5 is their angular distance on a great circle.

For most geodetic triangles the lengths of the sides are so

small compared with the radius of curvature R that it is suffi

cient to take cos5 = 1 and sin5 = l/R, where / is the length

of the arc or chord joining A and B. Then the above

formulas may be directly applied to such triangles, and in

Art. 64 it will be shown how they are further simplified.

Prob. 56. Given L = 4°" 36' 22".452, M = 75° 22' 51".15o,

Z= 193° 56' 28".!, and /= 1726.60 meters. Taking ^ = 6371

kilometers, compute latitude L', longitude M', and azimuth Z'.
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Chapter VII.

SPHEROIDAL GEODESY.

57. Propert1es of the Ell1pse.

Since an oblate spheroid is generated by the revolution of

an ellipse about its minor axis, the equator and all the sec

tions of the spheroid parallel to the equator are circles, and

all sections made by planes passing through the axis of

revolution are equal ellipses. Let a and b represent the

lengths of the semi-major and semi-minor axes of this

meridian ellipse, which are the same as the semi-equatorial

and semi-polar diameters of the spheroid; when the values of

a and b have been found all the other dimensions of the

ellipse and the spheroid become known. It is necessary first

to deduce several equations expressing the properties of the

ellipse, and then by discussing them in connection with the

results of measurements of meridian arcs the form and size of

the spheroid is to be found.

The eccentricity of an ellipse is the ratio of the distance

between focus and center to the semi-major axis, and the

ellipticity is the ratio of the flattening of one pole to the

semi-major axis. Let e be the eccentricity and / be the

ellipticity, then

/
=

a - b

a a

The relation between these two fractions is

e = V2f-f\ /= i-Vl-e\
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and b may be expressed in terms of e and f in two ways,

b = a V\ —e, b = a(l-/).

Thus two quantities determine an ellipse; those generally

used are a and e, and when these have been found b and /

are known.

The equation of the ellipse referred to the rectangular axes

QQ and PP is a,y, + b*x* = a'b*, in which y and x are the

ordinate and abscissa of any point A. Let L be the latitude

of A, that is, the angle ABQ, and let it be required to find

/ j

the relation between x and L. At A draw the tangent AT,

and, since the angle A TB is 90° — L,

tan(9o° + Z) = g = -g,

whence

b'x

y = — tan/,.

Inserting this in the rectangular equation of the ellipse, and

replacing b' by its value a'(\ — e'), there is found, after

reduction,

x = a cosZ/(1 — e' sin'Z)*, (57)

which is an equation of the ellipse in terms of the variables

x and L. If L = o° then x = a, and if L = 90° then x = o.

To find the radius of curvature of the ellipse at A the rect

angular equation of the ellipse may be written in the form
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and the first and second derivatives of y with respect to x are

dy bx d'y ab

dx = ~~ a(a, - x'f dx' = - («' _ x'f

and then, replacing b3 by a\l — e*) and x by its value from

(57).

R. = (! + = "(l ~ - * sin^' (57)'

which is the required radius of curvature. If L = O° then

R, = b'/a; if Z = 90° then R, = a'/b.

To find the length of an arc of the ellipse the differential

element R,dL is to be integrated between the limits o and L.

This furnishes an elliptic integral which cannot be evaluated

except by a series; thus

/ = a(i - ^)fo\l + V sin'Z + y^' sin4/. +. . .)dL,

the integration of which gives

/=<.(.- f>)[u + i'' + + ...)/--«*'+ W + ••-) + W«'4 + ...) «fn4i-.. ] (57)"-

for the length of a meridian arc from O° to If. If Z = 90*

= £/r, then

/, = \na(\ - y - ^e> - ^e' -...),

which is the length of a quadrant of the ellipse.

Prob. 57. Given tf = 0.082271, and a — 6 378 206 meters, to com

pute the length of the quadrant to the nearest meter.

58. D1scuss1on of Mer1d1an Arcs.

Since a spheroid is determined by the two elements a and

c of the generating ellipse two equations are required to f1nd

their values. These may be established by the discussion of

two meridian arcs in different latitudes. Let /, and /, be

their lengths, 6, and 6, their amplitudes or the number of

degrees of latitude between their northern and southern ends,

Z, and Z, the latitudes of their middle points, an I R, and R,
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the radii of curvature at these points. Regarding these arcs

as arcs of circles, their radii of curvature are

180/,

but considering the middle points as lying upon the circum

ference of an ellipse their radii, as given by (57)', are

A> = r _ - *')
' (1 - e' sin'Z,)s' ' (1 - e' sin'Z,)''

Equating the values of Rx and also the values of JZ, there are

found two equations whose solution gives

1 — «

. = us1n L, — 1t s1n Z,

_ 18o/,(1 - <•* sin'Z,)1 _ 18o/,(1 - sin'Z,)' (59)

Q

by which the eccentricity of the ellipse and its major axis

may be computed from the data of two measured meridian

arcs.

It is plain that these elements will be most accurately

determined when one arc is as

near the pole as possible while the

other is at the equator. These

conditions exist in the Lapland

and Peruvian arcs (Art. 51), the

results of which became known

about 1745. The data for these arcs are as follows:

Lapland Arc.

= 92 777.98 toises

».= 1°37'19".57

Z, = + 66° 20' 1o".o5

Reducing the amplitudes to degrees, and substituting in (59),

there results

e* = 0.00643506, whence c — 0.0802 19,

C- 1

U-r. /A?

/ '/
' '

Rj R2 y

1
>

Peruvian Arc.

/, = 176 875.5 toises

= 3°o7'o3".46

Z,= - 1°31'oo".34
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and then substituting the value of e* in either of the values of

a there is found a =3 271 652 toises. These two values

completely determine the ellipse and the oblate spheroid

generated by it. Then, from the expressions of the last

Article, /= 0.003223, and the length of the quadrant is

5 130 817 toises, or 10000 150 meters.

It is often customary to state the values of e and f as vulgar

fractions, since thus a clearer idea of the oblateness of the

spheroid is presented. For this case the rough values are

12.5' J 310.3'

or the distance of the focus of the ellipse from the center is

T^Tth and the flattening at one of the poles is 7TYTth of the

equatorial radius.

About the year 1745 the results of the surveys instituted

by the French Academy became known ; these have been

given in Art. 51 in toises. The length of one degree of lati

tude is 1/6, if 6 be in degrees, and thus these data give every

thing necessary for computing u, e, and a from the above

formulas. From these three arcs three computations were

made by the above method, and these gave results about as

follows for the ellipticity of the spheroid:

From Lapland and French arcs, f = T^s,

From Lapland and Peruvian arcs, f =

From French and Peruvian arcs, f —

Now, if the earth be a spheroid of revolution, and if the

measurements be precise, these values of the ellipticity should

be the same. Since, however, they disagree the conclusion

was easy to make either that the assumption of the spheroid

was incorrect or that the surveys were lacking in precision.

After the year 1750, when the results of the Lapland and

Peruvian arcs had become known, great interest was mani

fested in securing additional data by the measurement of
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other meridian arcs in order to determine whether or not the

earth was a true ellipsoid of revolution. The following table

Mer1d1an Arcs.

No. Locality of Arc. Middle Latitude.
Length of

One Degree.

Toises.

1 Lapland, + 66° 20' 57405

2 Holland, + 52 o4 57 145

3 France, + 49 23 57 Q74i

4 Austria, + 48 43 57086

5 France, 4- 45 43 57 034

6 Italy, + 43 01 56 979

7 Pennsylvania, 4- 39 '2 56888

8 Peru, - 1 34 56 753

9 Cape of Good Hope, - 33 '8 57037

gives the results of nine arcs which were measured during the

eighteenth century and discussed by Laplace in 1799. For

this purpose he took the expression for the radius of curva

ture given in (57)', developed it by the binomial formula, and

divided it by 18o/7T, thus obtaining

d=~[\- /)(1 + |*» sin'Z + Y sin'Z + . . .)

as an expression for the length of one degree of latitude. It

thus appeared that the length of a degree could be expressed

by

d = M + N sin'Z + P sin'Z + . . .,

in which M - na(\ - ^)/18o, N = fe'M, P = ^M, ....

and Laplace in discussing the above data concluded that it

was unnecessary to retain the term containing P since its

value is small. Accordingly he wrote

d = M + N sin'Z,

and then proceeded to find probable values of M and N from
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the nine observations of the above table, and from these to

deduce the values of a and e.

At that time the Method of Least Squares was unknown,

but Laplace wrote the nine observation equations, and then

used the two conditions that the algebraic sum of the errors

should be zero and that the sum of the same errors all taken

positively should be a minimum. He thus obtained two

resulting equations from which he found M — 56 753 toises,

./V =613.1 toises, and accordingly

d = 56 753 + 6l3-1 sin'Z

is an empirical formula for the length of one degree. From

these values of J/ and N he found e' — 2N/^M' — 0.007202,

and then f =

The last step in Laplace's investigation is the comparison

of the observed values of the lengths of the degrees with

those computed from his empirical formula. For the Lapland

arc, for instance, observation gives 57 405 toises, while

the formula gives d = 57 267 toises, the difference, or residual

error, being 138 toises, a distance equal to nearly 900 feet,

or to nearly 9 seconds of latitude. These errors, says

Laplace, are so great that they cannot result from the in

accuracies of surveys, and hence it must be concluded that

the earth deviates materially from the elliptical figure.

At the beginning of the nineteenth century it was the pre

vailing opinion among scientists, founded on investigations

similar to that of Laplace, that the contradictions in the data

derived from meridian arcs, when combined on the hypothesis

of an oblate spheroidal surface, could not be attributed to

the inaccuracies of surveys, but must be due in part, at last,

to deviations of the earth's figure from the assumed form.

This conclusion, although founded on data furnished by sur

veys that would nowadays be considered rude, has been

confirmed by all later investigations, so that it can be laid

down as a demonstrated fact that this earth is not an oblate
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spheroid. Yet it must never be forgotten that the actual

deviations from that form are very small when compared with

the great size of the globe itself. In some of the practical

problems into which the shape of the earth enters it is suffi

cient to regard it as a sphere, in many others a spheroid must

be used, while in only a few cases is it required to regard the

deviation from the spheroidal form. Now it was agreed by

all in the early part of the nineteenth century, that for the

practical purposes of mathematical geography and geodesy it

was highly desirable to determine the elements of an ellipse

agreeing as closely as possible with the actual meridian section

of the earth, or, in other words, that the most probable

spheroid should be deduced from the data of observation.

This search after the most probable ellipse resulted in the

discovery by Legendre, in 1805, of the Method of Least

Squares, and the first problem to which this method was

applied was a discussion of the elements of the ellipse result

ing from five portions of the French meridian arc.

Important geodetic work was carried on in France and

Spain by Delambre and Mechain for determining the length

of the meter, which, with the accompanying office work,

lasted from 1792 to 1807. The meridian arc embraced an

amplitude of nearly ten degrees, and the methods for the

measurement of bases and angles were greatly improved, in

fact approaching for the first time to modern precision. The

results were combined with those of the Peruvian arc to find

the eccentricity, and this gave for the ellipticity 3£T and for

the quadrant 5 130740 toises. This was equivalent to

10000000 meters, since by the French law the meter had

been defined to be one ten-millionth part of the quadrant.

It is now known that this length of the quadrant is too small

by nearly 2 000 meters (Art. 60).

Prob. 58. Explain how the method of least squares is to be applied

to the deduction of an empirical formula for the length of one degree

from the data in the above table.
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59. Plumb-l1ne Deflect1ons.

During the nineteenth century many investigations of the

size and shape of the elliptical meridian of the oblate spheroid

were made. The most important of these gave the results

for the ellipticity and for the length of the quadrant which

are stated in the following table:

D1mens1ons of Sphero1ds.

Year. By whom. Ellipticity.
Quadrant in

Meters.

l8lO Deiambre '/334 1O OOO OOO

1819 Walbeck 1/302.8 1O OOO 268

1830 Schmidt 1/297. S 1O 000 075

1830 Airy </299-3 10 000 976

1 841 Bessel 1/299.2 10 000 856

1856 Clarke 1/298. 1 10 001 515

1863 Pratt 1/295-3 1O OO1 924

1866 Clarke 1/295.0 10 001 887

1868 Fischer 1/288.5 10 001 714

1878 Jordan 1/286.5 1O OOO 68l

1880 Clarke '/293-5 10 001 869

Most of these results were determined by a discussion of the

data of several meridian arcs by the Method of Least Squares,

and a brief explanation is now to be given as to how such

computations are made.

The principle of the Method of Least Squares (Art. 3)

requires that the sum of the squares of the errors of observa

tion shall be rendered a minimum in order to give the most

probable values of the observed quantities. The first inquiry

then is as to where the errors of observation in a meridian

arc lie; are they in the linear distance / or in the angular

amplitude 6 ? The error in a linear distance that is computed

from a good triangulation is known to be very small, say
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less than nnrVmr**1 Part °^ 'ts lengtn (Art. 26). The error

in an observed latitude found by the zenith-telescope method

cannot exceed half a second (Art. 49). Neither of these

errors can account for even a small part of the discrepancy

that is found between the observed and computed length of

a degree of latitude (Art. 59).

Early in the nineteenth century it was suspected that the

cause of these discrepancies was due to deflections of the

plumb lines from the normal

to- the spheroid. To illus-

trate let the sketch represent fm\^ /,

a very small part of a meridian ^S!!Hr!15%__ M

section of the earth. O is the --"

ocean, M a mountain, and A

a latitude station between

them ; eee is a part of the C

meridian ellipse coinciding with the ocean surface; Ac repre

sents the normal to the ellipse, and Ah, perpendicular to Ac,

the true level for the station A. Now owing to the attraction

of the mountain M, the plumb line is drawn southward from

the normal to the position AC, and the apparent level is

depressed to AH. If APbe parallel to the earth's axis, and

hence pointing toward the pole, the angle PAh is the latitude

of A for the spheroid eee; but as the instrument at A can

only be set for the level AH, the observed latitude is PAH,

which is greater than the former by the angle hAH. These

differences or errors are usually not large, rarely exceeding

ten seconds, yet since a single second of latitude corresponds

to about 31 meters or 10 1 feet, it is evident that the error

due to these plumb-line deflections may be very great com

pared with any accidental error in the measured length of

the meridian arc.

It is not necessary, of course, that there should be any

plumb bob on an instrument for determining latitude, but

whatever affects a plumb line affects the level bubble by
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which the graduated limb is made horizontal. Even when a

sextant is used the effect of gravity upon the mercury in the

artificial horizon may make its surface deviate from parallelism

to the tangent plane of the spheroid. Thus, the term

plumb-line deflection means really the elevation or depres

sion of the astronomical horizon with reference to the plane

tangent to the spheroid. Astronomical latitude is determined

with reference to a vertical line at the place of observation

(Art. 40), but geodetic latitude is with reference to a normal

to a spheroid at that point, and the difference of these is

called the plumb-line deflection. A plumb-line direction and

an astronomical latitude are real things, but a normal to a

spheroid and the corresponding geodetic latitude are artificial

things, and hence a plumb-line deviation depends upon the

particular spheroid to which it is referred.

In deducing the elements of an ellipse from the data of

meridian arcs, the lengths are hence to be taken as without

error, and the sum of the squares of the errors in the latitudes

is to be made a minimum. For this purpose let / be the

length of an arc and 6 its amplitude in seconds; the radius of

curvature, regarding it as an arc of a circle, is 206 265//$, and

equating this to the expression for the radius of curvature

given by (57)' there is found

6 = 206265/(1 — e' sin'Z)3/rt(1 — S),

in which L is the middle latitude. Now if L' and L" be the

latitudes of the north and south ends of the arc, this expres

sion becomes, after developing the parenthesis and neglecting

powers of e higher than the second,

L, - L" = 2*JL6*! + 206 265/(1 - f

This equation contains the two elements a and e* whose values

are to be found, while the other quantities are the data of the

meridian arc. Now let vt and v, be corrections to be applied

to the observed latitudes L' and L" , these being the plumb
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line deviations from the normals to the spheroid; also let x

be a correction to be applied to an assumed value of a, and y

a correction to be applied to an assumed value of e*. Then

this equation may be put into the form

v, — v, = mx + ny + /,

where m, n, and / are known functions of the observed

quantities. Now if there be three meridian arcs, each having

two latitude stations, there will be six plumb-line deviations;

thus for the first arc the two corrections may be written

v, = v, + mx + ny -f /,

V, = v, ,

and sim1larly for the other arcs. If the left members be

made zero these are the six observation equations which

contain the five unknown quantities v, , vt, v, , x, and y.

The normal equations are now formed, and their solution

gives the most probable values of x and^, from which those

of a and e, are found, and also the most probable values of

the plumb-line deviations.

Such is a brief outline of the process of determining the

size of the earth from several measured meridian arcs. In

practice the numerical work is abbreviated by using the

method of correlates (Art. 78), but even then is very lengthy,

several weeks being required to form and solve the normal

equations when many arcs are used. Each arc, moreover,

generally has several latitude stations, so that the number of

observation equations is more than twice as many as there

are meridian arcs. The spheroid thu:, deduced is the most

probable one that can be derived from the given data, for the

sum of the squares of the errors in the latitudes has been

made a minimum.

Prob. 59. Consult Clarke's investigation of 1866 in Comparison of

Standards, published by the British Ordnance Survey, and ascertain

the number of meridian arcs used, the number of normal equations,

and the greatest values of the plumb-line deflections.
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60. D1mens1ons of the Sphero1d.

The most important investigations for the determination

of the size of the spheroid are those made by Bessel in 1841

and by Clarke in 1866. The data employed by Bessel

included ten meridian arcs, namely, one in each of the

countries Lapland, Denmark, England, France, and Peru,

two in Germany, and two in India. The sum of the ampli*

tudes of these arcs is about 50.5 degrees, and they include

38 latitude stations. In the manner briefly described above,

there were written 38 observation equations, from which 12

normal equations containing 12 unknown quantities were

deduced. The solution of these gave the elements of the

meridian ellipse, and also the residual errors in the latitudes

due to the deflections of the plumb lines. The greatest of

these errors was 6/'.45, and the mean value 2 ".64. The

spheroid resulting from this investigation is often called the

Bessel spheroid, and the elements of the generating ellipse,

Bessel's elements; the values of these will be given below.

In 1866 Clarke, of the British Ordnance Survey, published

a valuable discussion, which included a minute comparison

of all the standards of measure that had been used in the

various countries. The data were derived from six arcs,

situated in Russia, Great Britain, France, India, Peru, and

South Africa, including 40 latitude stations, and in total

embracing an amplitude of over 76°. The mean value of the

plumb-line deflections, or latitude errors, was found to be

1 ".42. This investigation is generally regarded as the most

important one of the last quarter of a century, and the values

derived by it as more precise than those of Bessel. The

Clarke spheroid, as it is generally called, has been used in

most of the geodetic work done in America since 1880, as it

is found to represent the earth's true figure in this continent

somewhat better than the spheroid of Bessel.

All the results and computations in the following pages of
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this volume will be based on the Clarke spheroid of 1866, but

it is well for the student to be acquainted with the Bessel

spheroid also, since it is extensively used in Europe. The

following table gives the complete elements of the two

spheroids, and it will be noted that the spheroid of Bessel is

smaller than that of Clarke and also less elliptical or oblate.

In order to form an idea of the precision of these results it

may be noted that the probable error of Bessel's quadrant is

498 meters and that of Clarke's quadrant slightly less.

Elements of the Sphero1d.

Bessel, 1841. Ctarke. 1866.

1 meters
Sem1-major ax1s a < ,

6 377 397

20923 597

6 378 278

( feet 20 926062

e - - 1 S meters
Sem'-m1nor ax's b \

6356079 6356654

I feet 20853654 20 855 121

Meridian quadrant in meters 10000 856 1O OO1 997

Eccentricity e 0.081 697 O.082 271

e' 0.00667437 O.O0676866

Ellipticity/
1

29915 294.98

The above values of the axis and quadrant of the Clarke

spheroid are expressed in legal linear units of the United

States, the meter being denned by the statement that it is

ifrJ yards, and it will be noticed that they differ slightly from

some values used in the preceding pages. Clarke's results

were deduced in feet, and then transformed into meters by

the relation that a meter contained 3.2808693 feet, as deter

mined by his comparisons of standards. This quantity has

since been found to be too great, and according to present

knowledge the legal ratio of the United States is very closely

the correct and actual one. In the following pages this legal

ratio will be used exclusively, namely, one meter = 3.2808333

feet; or the following logarithmic rules may be employed to

change meters into feet:
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log meters + 0.5 1 59841 = log feet,

log kilometers + I-7933502 — log miles.

It is well for the student to keep the first of these rules in

the memory, but should it be forgotten, it can be found by

referring to the last page of the text of this book.

Prob. 60. Compute the lengths of one second of latitude in feet at

the pole and at the equator of the Clarke spheroid, using the lengths

of one degree as m 701 meters and no 568 meters.

61. Lengths of Mer1d1an and Parallel Arcs.

The elements a and e for the Clarke spheroid, substituted

in the equations of Art. 57, furnish practical formulas for

numerical work. To find an expression for the length of an

arc of the meridian between the latitudes Z, and Z, the

general expression (57)" is to be integrated between these

limits; then representing the mean latitude i(L, -+- Z,) by

Z and the amplitude Z, — Z, by 6, it can be put into the

form

/= 1 1 1 1 33.30$ — 32 434.25 sin(9 cos2Z -j- 34.41 sin20 Cos4Z,

in which 6 is in degrees and / is in meters. For logarithmic

work this may be written in the more convenient way,

/ = [5.0458443]$ — [4.5 1 10039] s'n^ COS2Z 4- [r^68] sin2# COS4Z,

where the numbers in brackets are the logarithms of the

constants in the first formula. For instance, to find the

length of the meridian from latitude 45° to the pole, put

Z, = 45°, Z, = 90°, whence $==45° and 2Z = 1 35° ; then

I — 5 017 160.6 meters, or 16 460 649 feet.

The length of one degree of the meridian for the latitude

Z is found by making 6 = 1°, and then

/ = 11 133.30— [2.752859] cos2Z + 0.0796] COs4Z. (61)

For example, let Z = 37°, then / = 110 976.3 meters, which

is the distance on the meridian from latitude 36^° to latitude
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37i°- By dividing this by 60 the length of one minute

results, and a second division by 60 gives the length of one

second.

To find an expression for the length of an arc of the

parallel, or an arc of longitude, at the latitude L, let the

radius of this circle be called r ; then the circumference is 2nr

and the length of one degree is nr/180. The value of r is

given by (57), and by expanding the radical, and substituting

the values of a and e for the Clarke spheroid, the length of

one degree in meters is

/=[$.0469490] cosZ— [1.97562] cos3L+[1.075 1] cos5£, (61)'

and the length of 6 degrees is then 61. For example, if

L = 89° then / = 1 949.35 meters is the length of one degree

of longitude, and accordingly the distance around the earth

on this parallel is about 693 kilometers, or 430 miles.

A more expeditious method of computation, which is

sufficiently accurate for arcs of the meridian less than 3 or 4

degrees, and strictly correct for all arcs of parallels, is by the

use of the radius of curvature for the given latitude. Thus

if R, be the radius of curvature of the meridian at latitude L,

then f/R, is the angle in radians, or / = R8 is the length if 6

be in radians. Accordingly

/ = Rt6 arc 1°, when 6 is in degrees,

/ = R,6 arc 1', when 6 is in minutes, (61)"

/ =: R,6 arc 1", when 6 is in seconds.

The logarithms of R, are found in Table IV and those of

arc 1°, arc 1', and arc 1" in Table VI. For instance, let it be

required to find the length in meters between two points on

the same meridian whose latitudes are 39° 18' I2".8 and 38°

04' 15". 2. The mean latitude L is 38° 41' 13". 8, and for

this, by interpolation in the table, log^?, is found to be

6.8034789. The amplitude 6 is 4 437".6 and logfl is

3.6461482, while log arc 1" is 6.6855749. The sum of these
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gives 5.1352020, whose corresponding number is 136522.6,

which is the distance in meters on the meridian between the

two given latitudes; if the result is desired in feet the addi

tion of the constant (Art. 60) gives 5.6511861, which is the

logarithm of 447 905 feet.

The same process applies to obtaining the length of an arc

of longitude, the radius r being used instead of Rx. For

many rough computations the values of the lengths of arcs

given in Tables II and III will enable numerical work to be

done without using the above formulas.

Prob. 61. Compute the length of the meridian arc from latitude

45° to the equator, and also the length from the pole to the equator.

62. Normal Sect1ons and Geodes1c L1nes.

At any point on the spheroid let a tangent plane be drawn

and perpendicular to this plane let a line be drawn through

the point; this line is called the normal and any plane pass

ing through it cuts from the

spheroid a normal section. Of

these the meridian section is the

most important, and next is the

prime vertical section, which is the

normal section cut by a plane

perpendicular to the meridian.

These two sections are called prin

cipal normal sections because the

properties of all other normal sec

tions can be derived from them. The figure shows a point

A on the spheroid, NS being the meridian and WE the prime

vertical section, while LL is the parallel of latitude and BB

an oblique normal section through the point A.

An expression for the radius of curvature of the meridian

is given by (57)'. Taking the logarithm of both members

and inserting the values of a and f* for the Clarke spheroid,

it can be put into the form
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log .#,=6. 8039641 — [3.82884] cos2Z^-[0.758] cOs4Z, (62)

where the numbers in brackets are logarithms to be added to

the logarithms of cos2Z and cOS4Z. A few of the values of

logR, are given in Table IV at the end of this volume.

The radius of curvature of the prime vertical normal sec

tion at its intersection with the meridian is the length of the

normal AN from the point A to the intersection with the

^

( C

/

/R
f

minor axis. It is hence equal to AD/cosL, where AD is the

radius of the parallel given by (57). Accordingly

R, = a(\ - e* sin'Z)-1

is the radius of curvature of the prime-vertical normal section.

Developing this, there may be deduced

log .#,=6.8054402 — [3.35172] COs2Z+[0.28l] cOs4^, (62)'

from which logA, may be computed for any given value of L.

A few of these values will be found in Table IV.

The radius of curvature of any other normal section at the

point A is intermediate in value between R, and R,. If Z be

the azimuth of any normal section at the point A, its radius

of curvature at that point, as shown in works on the differen

tial calculus, is given by

I

A'

cos'Z_|_ sin'Z

X, 1 R, '

which, for numerical work, is better written

R= /(I + tan'Z).cos'Z/ v 1 R, '
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For example, let it be required to find the radius of curvatu1e

of a normal section at a point A in latitude 39°, its azimuth

being 45°. Taking the logarithms of R, and R, from

Table IV and performing the operations there is found

\ogR — 6.805 123o. whence .£ = 6384443 meters. This

formula is useful in reducing base measurements to ocean

level (Art. 31).

When an instrument is leveled at a station A and pointed

to a second station B, points set out in the line of sight fall in

B the curve AaB which is cut from the

spheroid by the normal section at A. When

the instrument is leveled at B and pointed

at A, the curve BbA will result, this being

cut from the spheroid by the normal section

at B. These two curves differ very slightly

in azimuth; for a line 100 miles long the difference cannot

exceed o".1, so that it is of slight importance in common

geodetic triangulation. These normal sections are plane

curves.

The alignment curve between two stations A and B is a

curve traced by starting at A, setting out a point in the

direction of B, then moving the instrument to that point,

backsighting on A, setting a second point in the direction of

B, and so on. The broken line AcB in the figure represents

this curve, which is one of double curvature; at any point c

the vertical tangent plane to the curve passes through both

/] and B. The alignment curve is, of course, a shorter path

between A and B than that on either of the normal sections.

The shortest line between two stations on the spheroid is

called a geodesic line, or simply a geodesic. It is not shown

in the above figure, but may be closely represented by a

curve of less curvature than AcB and crossing it near c ; it is,

like the alignment curve, a line of double curvature. The

geodesic has the property that the plane containing any

element of the curve is normal to the spheroid at that
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element. The differential equation of the geodesic can be

deduced and its properties be studied, but this is not

expedient or necessary in an elementary book of this kind,

particularly as the line is of no importance in the practical

operations of geodesy.

On a sphere the two normal sections and the alignment

and geodesic curves between A and B coincide in an arc of a

great circle. On a spheroid they also coincide when the two

stations are on the same meridian; but in other cases they

are separate and distinct. For any two intervisible points

on the earth's surface, however, they do not appreciably

differ in length, and it is only in the case of the longest lines

that a difference in their azimuths can be detected.

Prob. 62. A base line 8046.74 meters long has an azimuth of about

60° and its elevation above ocean level is 1609.35 meters. What is

the length of the base reduced to ocean level ?

63. Tr1angles and Areas.

A triangle on the surface of a spheroid has the sum of its

three angles greater than two right angles. An exact expres

sion for this spheroidal excess might be esfablished, but, since

only triangle sides between intervisible points can be used in

geodesy, it is always sufficiently accurate to regard these

points as lying on the surface of a sphere osculatory to the

spheroid at the middle point of the triangle. The radius of

this osculatory sphere is i/'R,R, , where Rx and R, are the

radii of curvature of the two principal normal sections

through the point. Accordingly the formula (55) becomes

Excess in seconds = 206 265 area./R,R, , (63)

in which log.fi, and log/?, may be computed from (62) and

(62)' or be taken directly from Table IV, while the logarithm

of 206 265 is found in Table VI.

As this computation is one that is frequently required the
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quantity 206 may be called 2m and the logarithms

of values of m for different latitudes be tabulated as is done

in the last column of Table IV. Thus the practical formula

for the computation of the excess in seconds is

in which ab sinC is double the area of the triangle, a and b

being two sides and C their included angle; here the area

must be in square meters, or a and b must be in meters. For

instance, let it be required to compute the spherical excess

for a triangle whose area is 197 square kilometers, the latitude

of its middle point being 37£°. From Table IV the logarithm

of m for the given latitude is taken and this added to the

logarithm of double the area in square meters gives 0.00026

as the logarithm of the excess in seconds, whence excess

= 1 ".00 1, which differs by only o".001 from the value given

by the rough rule of Art. 55.

Among the many interesting questions relating to the

spheroid is that of the areas of zones and the areas of trape

zoids bounded by meridians and parallels. The differential

expression for the area of a zone is 2nrRxdL, where r is the

radius of the parallel and Rt the radius of curvature of the

meridian at the latitude L. The values of r and Rx are

given by (57) and (57)', and thus is found

which, when integrated between the limits Z, and Z, , gives

the area of the zone between those latitudes. The integral

contains a hyperbolic or logarithmic function and hence is

rather tedious in computation, but tables have been made

giving its values. Among the best of these is Woodward's

•Geographical Tables, published by the Smithsonian Institu

tion, where the areas of trapezoids bounded by meridians

^.nd parallels are given in square miles.

Prob. 63. Prove that the entire surface of the spheroid is expressed

Excess = m . 2 Area = m . ab sinC, (63)'
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by 2»a'|1 -(- ——— log, j-jj-jj, and show that this reduces to ^na*

for the sphere whose radius is a.

 

64. Lat1tudes, Long1tudes, and Az1muths.

The formulas established in Art. 56 for the spherical

triangle may be adapted to any practical case arising on the

spheroid with any required degree

of precision. The problem to be

solved is as follows: given the lati

tude and longitude of a point A, the

szimuth of AB and its length, to find

the latitude and longitude of B and

the azimuth of BA. The notation

will be the same as that in Art. 56,

the given latitude and longitude

being designated by L and M, the

given distance and azimuth by / and

Z, while the required quantities are

V, M', and Z '. Let SL be the

difference in latitude L' — L, and SM be the difference in

longitude M' — M; also let 6Z be the angle by which the

meridian at B deviates from parallelism to that at A, so that

dZ=Z' -Z — 180°. Then when SL, SM, and 6Z are

known, the required quantities will be given by

L = L+6L, M' = M+ SM, Z = Z-\- 180° + SZ. (64)

The problem now is to find formulas for computing SL, SM,

and SZ. The solution here given will be sufficient to furnish

the results correctly to thousandths of seconds for all cases

when the length / does not exceed about 20 kilometers or

12 miles.

Resuming formula (56), and writing L -f- SL in place of L,

it becomes, after developing the first member and dividing

by cosZ,
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— sin<?Z = sin5 cosZ (cosdZ — cos5) tanZ.

Now as both SL and 5 are small arcs their sines may be

taken as equal to the arcs themselves; and also cos5 =

I — iS * and similarly for costfZ. Accordingly the equation

reduces to

- SL = 5cosZ-f iS' tanZ - i(tfZ)' tanZ.

Here the first term of the second member is an approximate

value of SL, the second term being small since it contains S'.

Accordingly, SL in the third term may be replaced by

S cosZ. Further, since SL and 5 are in radians the value of

S is l/R, if R be the radius of curvature at the locality.

Accordingly the equation becomes

/ cosZ /* sin'iT tanZ

-£L = —^— + ^ .

The next question to be considered is regarding the value

of R. With regard to the first term, which is the controlling

one, it plainly should be the radius of curvature of the

meridian passing through the middle of the arc, but as the

latitude of that point is not known it is to be taken as that

of the meridian at A. With regard to the second term it is

not important, since its value is small, what radius should be

taken, and it is customary to take that of the osculatory

sphere at A. Now let R, and R, be the radii of curvature of

the principal normal sections at A, the values of these being

as given in Art. 62 ; then the equation becomes

l cosZ r sm'Z tanZ

- tfZ=-/?r+—jrjt~-

This value is a close approximation, but it can be rendered

closer by adding a term to reduce it to the radius of curva

ture of the meridian at the middle point of the line /. This

term will be SL—^—p— where Rm denotes that radius.

Introducing the general values of the radius from (57)' for
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the latitudes Z and Lm , replacing Lm by L — developing,

and neglecting terms containing powers of e higher than the

square, the additional term is found to be

, TR. — R„ , « sinZ cosZ

Xm V ' (1 - t sin'Z)1

and accordingly the final formula for the difference of latitude

is

— SL = I cosZ . B + /' sin'Z . C + /1' . D, (64)'

in which A denotes the value of 8L as found from the first

and second terms, and in which the letters B, C, and D are

factors depending only on the dimensions of the spheroid

and on the given latitude L. In order that SL may be found

in seconds the above expressions for the constants are to be

multiplied by the number of seconds in a radian, and thus

206265 n 206265 tan/. f^' sinZ rosZ

B = n , C = —r— , D =.

' 2*1** 206265(1 -/sin'Z)"

are the final factors which can be computed and tabulated for

different values of the latitude Z.

In order to find the difference of longitude between A and

B, formula (56)' may be used, M' — M being replaced by

SM. Since this is small the sine may be replaced by the

arc, giving

SM = cos5 sinZ/cosZ'.

Here, as before, 5 may be replaced by l/R and the value of

the radius should be that of the prime-vertical normal section

through B. Introducing this, and reducing from radians to

seconds, it becomes

/ sinZ . A' 206 26;

6M - where A = -HT' ™

in which A' is to be used for the latitude Z'.

To find the difference in azimuth SZ, formula (56)" is
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resumed, and replacing Z' — Zby l8o° -\- SZ, and M' — M

by SM, it becomes

- tan^tfZ = tanjdj/ sin£<7- + L')/cosi(L' - L).

Also, since the differences of azimuth and longitude are very-

small, their tangents are proportional to the number of

seconds in their arcs, and

- 6Z = SM sin£(Z. + L')/cos\$L (64)'"

is final formula for computing the difference in azimuth.

The above formulas were derived by Hilgard in 1846, and

together with values of the logarithms of the factors A', B,

C, and D, will be found in Appendix No. 7 of the Coast and

Geodetic Survey Report for 1884; an abridgment of those

tables is given in Table V at the end of this book, the proper

change being made for the fact that the ratio of meter of that

Appendix to the meter of this book is 1. 00001 1. By the

help of these the computations may be expeditiously made,

as will be illustrated in Art. 66. When using the formulas

in connection with these tables it should be remembered that

the distance / must be taken in meters.

As a simple example of one application of the formula for

SL let it be required to find the number of seconds in a

meridian arc whose length is 1 1 076.4 meters and whose

southern end has the latitude 26°. Here Z = 180°, cosZ

= — 1, whence — SL = — l-B -\- (/Z?)'Z>, and by the use of

Table V there is found -f- SL = 360".953 — o".002, so that

the latitude of the north end of the arc is 26° 10' 00".Q51.

Prob. 64. Given L = 42°,M= 8o°, / — 1000 meters, and Z = 90°

for the point A. Compute L', M', and Z' for the point B.



THE COORDINATE SYSTEM.

Chapter VIII.

GEODETIC COORDINATES AND PROJECTIONS.

65. The Coord1nate System.

The system of coordinates used in geodesy is generally the

angular one employed in geography, latitudes being estimated

north and south from the equator and longitudes east and

west from the meridian of Greenwich. In North America

both latitudes and longitudes are taken as positive and the

signs of the coordinates of a point are hence the same as in

the linear system of Art. I. Thus, if a point is determined

to have the latitude 40° 19' 04".237 and the longitude

85° 07' 35".026, it can be at once located roughly on a small-

scale map or be precisely located on a large-scale map upon

which the meridians and parallels are accurately drawn in a

certain system of map projection.

It is well to keep in mind the approximate rules of Art. 53

regarding the lengths of one degree, one minute, and one

second of latitude. One second of latitude being about 31

meters or 101 feet, one-tenth of a second is about 3 meters

or 10 feet, one-hundredth of a second is 0.3 meters or 1 foot,

and one-thousandth of a second is 0.03 meters or 0. 1 feet.

Precise geodetic work should hence carry the latitudes to

thousandths of a second of angle in order to secure a precision

comparable with that of precise plane triangulation.

A second of longitude is nearly the same as that of latitude

on the equator, but at any other place it is smaller, a rough

rule being that it is equal to a second of latitude multiplied
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by the cosine of the latitude. Thus at latitude 40$°, since

cos4o£° is 0.774, the length of one second on the parallel is

about 78 feet.

The formulas of Art. 61 furnish expressions by which the

lengths of one degree, one minute, and one second of both

latitude and longitude can be computed for any given lati

tude L, and values of some of these will be found in Tables

II and III. These are sometimes of service in changing

angular differences of latitude and longitude between the

stations of a secondary triangulation into linear differences,

but a more extended table is necessary in order to make such

computations with rapidity.

The sketch below gives a representation of the coordinate

system of geodesy, the meridians and parallels being roughly

drawn on the polyconic projec

tion method which is explained

in Art. 69. Station Pis located

at latitude 40° 45' and at longi

tude 86° 43', while station P' is

located at latitude 40° 36' and

longitude 86° 58'. The straight

line, or geodesic, joining the

points is very slightly curved in the projection. The azimuth

of PP' is about 53° 43', this being measured from the south

around toward the west. The azimuth of P'Pls about 233°

33', this being also measured from the south around through

the west and north. Owing to the convergence of the

meridians that pass through Pand P', the back azimuth of

P 'P differs by 10' from the azimuth of PP' plus 180 degrees.

This coordinate system is not a convenient one for the use

of local surveyors, but in an area of considerable extent it is

a necessary one for the location of points in their relative

positions on the spheroid. For an area of moderate size it

may be modified in many ways, one of these being the well-

known system of the public land surveys of the United
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States, while another and more satisfactory system is that of

linear rectangular spherical coordinates which is described

in Art. 70.

It is well to note again that the latitudes and longitudes

used in geodetic work do not generally agree with the lati

tudes and longitudes obtained by astronomical observations.

Thus, if these coordinates be found astronomically for an

initial station /'together with the azimuth of PP' , and if the

distance PP' be directly measured or be found by computa

tion from a measured base, then the latitude and longitude

of P' and the azimuth of P'P can be computed by the

methods of the last Article, and these computed values are

called geodetic ones. If further astronomical observations be

made at P', the results will generally differ from the geodetic

ones owing to the plumb-line deflection at P'. That is to

say, the Clarke spheroid passed through P and oriented by

the astronomical work <lone there,- has a tangent plane at P'

which is not parallel to the astronomical horizon at that point

(Art. 59). The differences of latitude and longitude as found

by geodetic triangulation are, in fact, always far more precise

than those derived from astronomical observations, and it is

only by the field operations of geodesy that coordinates of

stations can be found so as to form a reliable basis for accu

rate surveys.

Prob. 65. From the above data for stations P and P' determine

roughly, with the help of Tables II and III, the length of the line

PJ" in miles.

t,6. LMZ Computat1ons.

When the latitude L and longitude M of a station P are

given, together with the distance / and azimuth Z from it to

a second station P', the latitude L' and longitude M',

together with the back azimuth Z' , can be computed. The

formulas of Art. 64 will determine the latitudes and longi

tudes correctly to thousandths of a second when the length
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of the line does not exceed about 20 kilometers or 12 miles,

and correctly to hundredths of a second for much longer dis

tances. These formulas will now be exemplified.

Let the given station be one called Bake Oven, whose

known latitude is 40° 44' 54". 109 and whose known longitude

is 75° 44' 02".222. Let the distance and azimuth to a

second station called Packer Spire be 33 932.55 meters and

297° 36' 49"-42- Ln the form below these data are seen in

italic type, together with the logarithm of / in two places;

then log s'mZ and log cosZ are found and put in their places,

while the logarithms of /' and sin'..? are found by doubling

those of / and sin.Z', and the logarithms of the factors B, C,

and D are taken from Table V. By addition the logarithm

of / cosZ-B, or h, is found, and its double is the logarithm

of A*. Then the logarithms of the second and third terms are

found, and thus the final value of — SL is 5 1 r".8, from which

the latitude of Packer Spire at once results as also the mean

latitude \(L -f- L'). The longitude computation is now made

as indicated by the formula, the factor^' being taken for the

latitude L'. Lastly, SZ is computed, and the back azimuth

from Packer Spire to Bake Oven is determined by the rule

Z' = Z+ 180° + SZ.

A second or check computation should always be made

whenever there is another station that furnishes sufficient

data. For this case the latitude of a station called Smith's

Gap is 40° 49' 21". 787 and its longitude 75° 25' 21".9o6,

while the distance and azimuth from it to Packer Spire are

24 332.28 meters and 35 1° n' 08". 84. Inserting these data

in another form, and carrying out the computations in the

same manner, the value of L' will be found to agree within

o".006, or 0.6 feet, with that of the first computation, while

the value of M' will be found to agree within o".oo2. These

discrepancies are due to the fact that both lines exceed 20

kilometers in length. The back azimuth from Packer Spire

to Smith's Gap is found to be 171° 12' 52". 29, and the
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Form for LMZ Computat1on.

Packer Sp1re computed from Bake Oven.

- 8L = I cosZ. B + /' sin'Z. C + A'. D

4
1
Abake oven

+ SM = I sinZ. A'/cosL'
; \.

- SZ = SMs\n\(L + L') ; PACKER SPIRE^

Z Bake Oven to Packer Spire »97° jo' 49"-42

8Z + 13 53 -59

180° 180

Z' Packer Spire to Bake Oven »7' 50' 43 " 01

L 40' 44 j4". j 09 Bake Oven M 75" 44' 02". 122

SL — 08 31 .859 I = 33 93'-55 meters SM — 21 18 .904

L' 40° 36' 22". 2 50 Packer Spire M' 75° 22' 43"-318

/ 4.J306/66 /' 9.06123

cosZ I.6660576 sin'Z I.89496 A* 5-4'49

B 2.5107900 C 9.33974 D 8.3882

h 2.7074642 0.29593 S.8031

1st term + 5o9"-8755 2d term 1".9767 3d term o".oo64

2d and 3d terms 1 .9831

— SL + 5» .859
/ 4.5306/66

I.9474790sinZ

\SL _ 04' 15".93

ML 4- L'\ ao° so' tf'.iS

A' 2.5090982

c) 0.1 196432

SM 3.1068370

Sin}(i:+Z')i.814l128cosZ'(«

3.1068370 2.9209498

+ SM - 1 278". 904 -SZ - 833"-59

difference between this and the back azimuth to Bake Oven

is 53° 22' 09". 28, which furnishes a final check on the work,

as this is the value of the spherical angle at Packer Spire.

The best way to carry on these two computations is to

enter the data in both, find log smZ and log cos.Z for both

at the same time, take out the factors B, C, and D for both,
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and thus finish the computation of SL in both at the same

time. If these values agree, as they should unless the lines

are too long, the two computations for SM may be made, and

lastly the two for SZ. The signs of SL and SM can in, all

cases be found from the signs of cosZ and sin.Z, but it will

be just as well for the student to determine them from the

figure that should always be drawn at the top of each com

putation sheet.

The above formulas may be used in finding coordinates to

tenth of seconds or to single seconds for primary lines of

almost any length, but when these are required to thousandths

of seconds additional terms are needed. These terms and

the form for computation will not be presented in this ele

mentary book, but they may be found in the paper of the

Coast and Geodetic Survey cited in Art. 64.

Prob. 66. Using the above latitudes and longitudes of the stations

Bake Oven and Smith Gap, and also the data that the distance and

azimuth from Bake Oven to Topton are 30433.63 meters and

351° 48' 49". 11, and from Smith Gap to Topton are 44 239.59 meters

and 29° 54' 1 7". 84, make the two LMZ computations for Topton,

and check the back azimuths by comparison with the spherical angle

at Topton, whose value is 370 53' 19".01.

67. The Inverse LMZ Problem.

When the latitudes and longitudes of two stations are

given, it is possible, if they are not too far apart, to compute

the length of line joining them and the front and back

azimuths of that line. This is readily done in a plane system

of coordinates, as illustrated in Art. 24, but in a geodetic

system it is more difficult. This is called the inverse LMZ

problem, and it will now be shown how the formulas of

Art. 64 are applied to its solution.

Since the latitudes L and L' are given, as also the longi

tudes M and M ', the values of SL and SM are known. Then

formulas (64)' and (64)" may be written in the form
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- SL = (/ cosZ)B + (/ sinZyC + (SL)' . D, (67)

+ SM - (I smZ)A'/cosL' , . (67)'

in which / and Z are two unknown quantities to be found.

From (67)' the value of (/sinZ) at once results and this

inserted in (67) gives the value of (/ cosZ'); then, by dividing

the former by the latter tanzT is found and hence Z. Also

dividing (/ s\x\Z) by sinZ the value of / results. Lastly SZ is

computed by (64)"' and Z' by (64). The form used in

Art. 66 may be advantageously employed in making the

computations, as will now be exemplified.

Let the latitudes and longitudes of the stations Smith Gap

and Bake Oven be given as stated in the last Article, and let

it be required to compute /, Z, and Z'. These, with the

resulting values of SL and SM, are first inserted in the form

as seen in italic type. From Table V the factors A', B, C,

and D are taken. The logarithm of SM is found, then those

of cosZ.' and A', and accordingly the logarithm of (/ s\nZ)

results. From SL the logarithm of (SL)' is found, and that

of (/ s\nZy being also known, the second and third terms of

the value of SL are determined, and finally the first term

whose logarithm is then known and from which the logarithm

of (/ cosZ) results. Then tanZ is obtained as explained

above whence Z is found; then the logarithm of / and its

value in meters is determined. Lastly, the computation of

SZ is made and the back azimuth Z' is obtained.

A check computation for this case should also be made by

changing the order of the stations; thus the values of L and

M may be taken for the station Bake Oven and L' and M'

for the station Smith's Gap. If the lengths of the lines do

not exceed 20 kilometers the values of the lengths and

azimuths should exactly agree with those of the first com

putation. This inverse solution is often advantageous in field

work in determining the directions between stations which

are not connected by a triangle side.
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Inverse LMZ Computat1on.

- SL = (/cosZ)jS + (/sinZ)'C + (SL)'D

+ SAf- (ls\nZ)A'/QOsL'

- SZ - SAf s\n\(L + L')

 

Z

SZ

1So°

Z'

Smith's Gap to Bake Oven

Bake Oven to Smith's Gap

72° 39' o7".24

— 12 11 .82

180

252° 26' 55".42

L 40° 49' 21".787

SL — 04 27 .678

V 40° 44 54". 109

Smith's Gap

I — 27535 °3 meters

Bake Oven

Af 7s° 2f 21".gob

SAf — j8 40 .316

M' 75° 44' 02".222

(cosz)
3.9143619

2.5107842

[cos'ZJ
8.83935

9.34087

h 2.4251461

1st term — 266". 162

2d and 3d terms -f 1 .516

- SL — 267". 678

\ogSL 2.42762

l(L+L) 40° 47' 07".9

0.18022

2d term + 1-5r43

(sinz)
4.4196765

/

A' 2.5090946

cosZ'(« . c) 0.1205694

3.0493405

+ SAf - 1 120".31b

(SL)'

D

4855a

8.3884

3.2436

3d term + o".oo18

SAf 3.049340

sin}(£-f /.') I.815066

2.864406

-SZ - 731°.82

(/sinZ) 4.4196765

(/ cosZ) 3.9143619

tanZ 0.5053146

(/ sinZ) 4.4196765

sinZ 1. 9797815

I 4.4398950

Prob. 67. Make the inverse LMZ computation for the above data,

taking L and M for the station Bake Oven and L' and M' for the

station Smith's Gap.
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68. Map Project1ons.

 

As a surface of double curvature cannot be developed on a

plane it is impossible to devise any method of representing a

large area on a map without some distor

tion. The method of orthographic pro

jection is perfectly satisfactory for a small

area, but when applied to the whole

earth, or even to a large county, the

features near the edges of the map are

crowded together so as to appear un

natural. For instance, in the lower dia

gram of the figure, which shows an ortho

graphic projection of the northern

hemisphere on the plane of the equator,

it is seen that the distance between

parallels of latitude near the outer parts

of the map is much less than near the central part; in the

upper diagram, which is an orthographic projection on the

plane of one of the meridians, a similar distortion is also

observed.

A projection devised by Flamsted to avoid this distortion

consists in dividing the central meridian NS into parts pro

portional to the distance be-

'v tween the parallels, and through

these points drawing straight

lines to represent those paral

lels. Each parallel is then

divided into the same number

of equal parts, and the merid

ians are drawn through these

points of division. In this method each trapezoid has the

same area and consequently much of the distortion of the

orthographic method is avoided.

/V // /

////
\\\\\

///// \\\\

///II \ \ \ \

2 §
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A projection devised by Bonne is constructed in a similar

manner to that of Flamsted, except that the parallels are

concentric circles. The center of these circles is in the

middle meridian and at a distance of a cotZ from the middle

parallel whose latitude is L; thus in representing half of the

hemisphere the radius of the middle parallel is equal to the

equatorial radius a, and the radius of any other parallel is

a ± d, where d is its distance from the middle parallel. This

method gives trapezoids of equal area and an orthographic

projection along the middle meridian and parallel, but the

shape becomes rather awkward where a large area is repre

sented.

Mercator's projection of the surface of a sphere is made

by projecting the parallels upon a circumscribing cylinder by

lines drawn from the center of the sphere, and then develop

ing the cylindrical surface. If QPQ be a meridian section of

the spheroid and d any point upon it, then d is projected at

D on the cylinder, and thus the parallel through d is projected

upon the cylinder in a circle whose diameter is D'D. The

cylinder being developed on a plane tangent to the cylinder,

the circle D'D rolls out into the straight line D,D„ while the

equator rolls out in its true length on the line Q,Q,. If L

be the latitude of any parallel and R the radius of the

sphere, the distance of the parallel from the equator on the

development is R tanZ. Thus the distances between

parallels increases toward the poles and the poles themselves

cannot be shown on this projection. The equator being

divided into equal parts, representing degrees of longitude,.

jy 
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the meridians are drawn parallel to each other, and accord

ingly one degree of longitude has the same length on all

parts of the map.

 

D, D2

Q1 Q2

180° 1io° 60° 6 180

75

In the case of the spheroid the same principles apply for

the construction of a Mercator projection, but the distance

of any parallel from the equator will be

d = a tanZ. — ae* sin£(1 — e' sin'Z)-*,

as may be proved by finding an expression for BQ in the

figure of Art. 57 and multiplying it by tanZ, since in that

figure the cylinder is to be made tangent to the spheroid at

QQ and BA is to be produced to meet it. This projection

is a favorite one with navigators, since the course of a ship

is plotted on the map in a straight line as long as it runs on

the same true bearing. It is, however, an inconvenient pro

jection for plotting distances. Along the equator the projec

tion is orthographic and a distance may be laid off in its true

length. At any latitude L a distance / has the length

//cos'Z when laid off along a meridian and the length //cosZ.

when laid off along a parallel. In the polar regions the dis

tortion is so great that the projection is unsatisfactory north

of latitude 60 degrees.

Prob. 68 Deduce the algebraic expressions in the last paragraph,

and state something about the life of Mercator.
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69. The Polycon1c Project1on.

The map projection that is used exclusively in geodetic

work is one in which each parallel circle of latitude is devel

oped on a conical surface, there being as many cones as there

are parallels. In the figure let A be any point on the spheroid

 

p

whose latitude is L and let r be the radius of its parallel of

latitude whose value is given by (57). Let a tangent cone be

drawn touching the spheroid at this circle of latitude; in the

figure A T is one element of this cone, its vertex being at T

where A T meets the polar axis. If this cone be developed,

as in the second diagram, the parallel of latitude rolls out

into a circle ASA,, whose radius is the same as TA. In the

same manner a tangent cone may be rolled out for any other

circle of latitude, its radius being different from that in the

first case.

For large-scale maps the radius TA, or r' , is so long that

it is impracticable to describe the circle ASA, with the com

pass, and hence it is usually constructed by finding the

abscissas x and the ordinates y with respect to a point 5 on

the central meridian TS. Since the angle A TN is the same

as L the value of r' is r/sinZ.. Now if it be desired that SA\

shall correspond to n degrees of longitude, the length of this

parallel arc is rn, but in the projection its length is r'O, where

0 is the angle A,TS. Therefore, equating these, the value

of 6 is given by

0 = n sinZ. (69)
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After 6 is found the abscissa and ordinate result from

x — r' sin#, y — r\i — costi) = 2r' sin'£6>, (69)'

in which r' has the value stated above. In numerical work

"t is preferable to express r' in terms of R„ the radius of

curvature of the prime-vertical section at A (Art. 62), whose

value is the same as that of the line AN. Since R, = r tanZ.,

it follows that

r' = R, cotZ, (69)"

and thus r' can be easily computed by the help of Table IV.

For example, at latitude 40° let it be required to find the

values of x and y, for 2°, 4° and 6° of longitude. From

Table IV the logarithm of R, is 6.80531 15, and accordingly

for n = 2° 4° 6°

6= 1°17'o8".o7 2° 34' 16". 14 3°51'24".21

x = 170780 341475 511 996 meters

y— 1 916 7663 17238 meters

and by these three points may be located on each side of the

central point 5 of the developed circle of latitude.

In order to construct a polyconic projection for an area

embracing twelve degrees of longitude and eight degrees of

latitude, with meridians at

intervals of two degrees, five

computations like the above

are to be made. If the am

plitude is from latitude 40°

to latitude 48°, a straight line

NS is drawn for the central

meridian. At 5 a straight 40^j

line normal to NS is drawn,

and then six points on the 40° circle are located with the help

of the above values of x and y. The distances S(7, UV,

VW, and IVN are next laid off by the help of Table II and

through the points thus determined straight lines are drawn

48

111

 .V

u

-1° h° is
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normal to NS, and on each of these the values of x and y are

laid off as computed for the latitudes 42°, 44°, 46°, and 48°,

thus locating six points on each parallel. Through these

points curves are drawn and the coordinate system is com

pleted.

Tables of the lengths of arcs of the meridian and of values

of the coordinates x and y are indispensable in the construc

tion of polyconic projections. Extended tables in meters

may be found in Appendix No. 6 of the Report of the U. S.

Coast and Geodetic Survey for 1884, while similar ones for

the English system may be found in Woodward's Geographi

cal Tables, published by the U. S. Smithsonian Institution.

The polyconic projection furnishes a system of coordinates

that gives an excellent representation of the earth's surface

or of any part of it. The parallels and meridians everywhere

intersect at right angles. Distances are correctly represented

on the central meridian and on all the parallels. The dis

tances on meridians near the borders of the map are a little

too long, and it is here that the distortion is greatest. On

the whole this method gives the best projection of angles

with the least possible distortion of figures.

Prob. 69. Make all the necessary computations and construct a

polyconic projection on a scale of 1/2 000000 for the portion of the

spheroid indicated by the above figure.

70. L1near Spher1cal Coord1nates.

For the purposes of local surveys the angular system of

coordinates is not a convenient one, as surveyors require all

distances to be expressed in linear measures. The system of

rectangular linear spherical coordinates, now to be described,

is a generalization of the linear method given in Chapter II,

and can be applied satisfactorily to a territory of several

thousand square miles. This system has been extensively

used in Europe, but is little known in America, where precise

detailed surveys of large areas have as yet not been made.
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Let O be an origin of coordinates at the center of the terri

tory to be covered by the system, NS a central meridian, and

R the radius of curvature of the

spheroid at 0, that is, the radius of a

sphere osculatory to the spheroid at

the origin. Through any point Px

let an arc of a great circle of this

osculatory sphere be drawn normal

to the meridian NS, meeting it in

Mx. Then the linear distances 0Mx

and MxPx are the linear rectangular !

spherical coordinates of Px, and these

will be expressed by the letters Lx and M,. Similarly, for

another point P, the latitude L, is the distance 0M,, and the

longitude M, is the distance M,P,. Here latitudes are taken

as positive when measured northward of 0, and longitudes as

positive when measured westward from NS.

Through Px and P, let circles be drawn parallel to the

central meridian NS, and let the angle which the line PxP,

makes with the circle through Px be called Zx. Here Zx is

not strictly an azimuth, and it is best to call it a direction-

angle. Similarly, the direction-angle of P,Px at P, is

called Za. These direction-angles are measured from the

south around through the west, north, and east exactly like

geodetic azimuths.

Let / be the length of the line P,P, , and let also the lati

tude L, , the longitude Mx , and the direction-angle Z, be

given; it is required to find the latitude L, , the longitude

M, , and the direction-angle Z,. The solution in the case of

a plane is

L, = Lx — l cosZ, , M, = Mt + / sinZ, , Z, = Z, + 180°,

and in the case of the sphere the same expressions will result

with the addition of terms of small numerical value which

contain the radius of curvature R. The formulas here given
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are those deduced by Soldner in 1809; the demonstration,

though not difficult, will be omitted. First, let m and n be

computed from

1n = I cosZ, , n = / sin^,.

Then the required quantities are determined by

^,= J/| + „+___

mAf,' mn

' ' _ w ~~ TJF + riff5"'

^ , „ o 206 265w^/, 2o6 265;««

Z, = Z,+ 18o ^ . + ____,

in which the terms containing are easily computed by the

use of four-place logarithms. Since R' = R,R,, where Rt

and .ff, are the radii of curvature of the two principal normal

sections, the logarithm of R* is readily found from Table IV

at the end of this book.

For example, suppose such a coordinate system to be used

for a region whose middle latitude is 40°. From Table IV

the logarithms of the constants are, in meters,

\og(i/2R') = 13.0901, log (1/6R') = li.6130,

log (206 26$/R') = O.7055, log (206 265/2 j?*) = 5.4045.

Now take / = 27516.0 metres, M, = -4- 42 585.934 meters,

L, = + 51 449.866 meters, and Z, — 16° 47' o6".38. Then

m — 4- 26 343.669 meters, n = 4~ 7 946.133 meters, and

My = 42 585-934 + 7 94(,-133+0-233-o-°23 = +So 532-277 meters,

J. = 51 449.866 — 26 343.669— o.123+o.oo7 = -(-25 106.081 meters,

Z, = 16° 47' o9".38 + 180° - o3".66+oo".53 = 196° 47' o6".25,

and thus the point P, is completely determined.

One of the great advantages of this system is that the

difference of the front and back direction-angles of a line

differs but little from 180°, and either may be used by a local

surveyor to check his topographic work. With geodetic
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azimuths, on the other hand, the orientation of such local

work may be more accurately made at the starting station,

but when checking on a second station the large difference in

direction is liable to lead to confusion. Undoubtedly the

system of linear spherical coordinates must in time come into

use in America, and by it or some similar method the results

of the geodetic triangulations can be made more generally

available for use in precise detailed surveys of large areas.

For a fuller account of the system, as also for the method of

finding the distance and direction-angle between two stations

whose latitudes and longitudes are given, reference is made

to Vol. II of Jordan's Handbuch der Vermessungskunde.

Prob. 70. Given Z, = -f- 50 000, M, = — 10 000, Z, = + 60 000,

and = — 20 000 meters, to find the distance from JPx to P, and

the direction-angles Zx and Z,.
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Chapter IX.

GEODETIC TRIANGULATION.

71. Reconna1ssance.

The first thing to be done in a reconnaissance for selecting

the stations of a geodetic triangulation is to make a careful

study of all existing maps. Small-scale sketch maps should

be prepared, showing the principal watersheds and mountain

ranges as far as they are known, and these are to be taken

into the field by the reconnaissance party. Such a party

consists of two or three men and it is equipped with aneroid

barometers, prismatic pocket compasses, binocular field

glasses, and photographic cameras, together with apparatus

for climbing trees.

Ascending to one of the highest elevations in the region a

series of sketches showing the visible horizon and intermediate

hill ranges is made. On this are marked the magnetic bear

ings and the estimated distances to all prominent peaks and

gaps. Photographs of the portions of the horizon where it

seems probable that stations may be located should also be

taken, and the names of all mountain ranges and peaks be

ascertained. Then, ascending to another elevation several

miles away, a similar series of sketches is made, and after

several of these observations the party obtains a fair idea of

the topography of the country. The heights of all the posi

tions occupied in this work are to be obtained as closely as

can be done with the aneroid.

The results of these operations are to be plotted from day



RECONNAISSANCE. J 99

to day on the sketch maps, the visible horizon as seen at each

station .being roughly drawn, and the intersection of these

horizon lines, together with the observed heights, will give

information regarding the approximate positions to be selected

for the primary stations. In many cases there are one or two

peaks so prominent that no doubt exists as to their avail

ability for stations, while regarding others much additional

field work must be done before a final decision can be made.

The intervisibility of adjacent stations must of course be

insured, and in a prairie country where high towers are to be

erected this requires the application of the rules of Art. 37

regarding curvature of the earth and refraction. The primary

stations are to be so selected as to secure the best triangle,

polygon, or quadrilateral nets to cover the given area under

the prescribed conditions of precision and cost, care being

taken to avoid angles less than 30 degrees, except in quadri

laterals (Art. 17). As a general rule for primary triangula-

tion the longest possible lines are to be obtained which are

consistent with the formation of well-proportioned triangles.

As an example of one of the field computations, suppose

that two stations 28 miles apart are 65 and 105 feet, respec

tively, above the ocean level, and that the highest point

between them is on a ridge 10 miles from the first station and

20 feet above ocean level. It is required to find the height

of towers at the two stations so that the line of sight may

pass 10 feet above the top of the ridge. Assuming that the

line of sight is parallel to a tangent to the level surface at

the ridge, the combined effect of curvature and refraction

is 0.57 X 1oJ = 57 feet for the first station and 0.57 X 182

= 185 feet for the second station. Hence the height of the

tower at the first station should be 57 + 3o — 65 = 22 feet,

and at the second station 185 -f- 30 — 105 = 1 10 feet.

Reference may be made to the Reports of the Coast and

Geodetic Survey for 1882 and 1885 for a full account of the

rules of reconnaissance, and to Final Results of the Triangu



200 IX.GEODETIC TRIANGULATION.

lation of the New York State Survey (Albany, 1887) for an

interesting description of the detailed field work.

After the reconnaissance party has established a few stations

a triangulation party may start at work in the measurement

of angles. It is the duty of this party to mark the stations,

erect the towers and signals, and make the observations of

the horizontal and vertical angles. Sometimes the reconnais

sance and triangulation work are done by the same party,

this method usually saving expense. Base-line measurement

and astronomical work are, however, usually done by specially

trained parties.

Prob. 71. A station B is 325 feet above A, but between them, at a

distance of 15 miles from A and 25 miles from B, is a ridge which

is 10 feet above A. If no tower is built at B and one 50 feet high

at A, how much above the ridge does the line of sight pass ?

72. Stat1ons and Towers.

The marking of a station in a permanent manner is usually

done by the first triangulation party which takes the field,

the reconnaissance party merely selecting and describing the

approximate location. It is believed, however, that if the

responsibility of marking the station were assigned to the

reconnaissance party, a better location would often be made.

The name of the station is usually assigned by the reconnais

sance party, and this should be the same as the local name

of the peak or ridge on which it is situated.

The stations are marked by bolts set into the rock, or by

stone monuments set in the ground. In the latter case it is

customary to bury beneath the monument a bottle or crock

whose center marks the center of the station. When this is

done the knowledge of the bottle or crock should be con

cealed from the people of the neighborhood, and it should be

covered with a large flat stone having a hole drilled in its

upper surface. The bottom of this flat stone should be about
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six inches above the crock, its top about three feet below the

surface of the ground, and upon it the foot of the monument

may be set. The centers of the underground mark, of the

hole in the flat stone, and of the top of the monument should

be in the same vertical. Near the top of the monument

" U. S." or other appropriate letters should be cut. Detailed

instructions regarding the methods of marking stations may

be found in the Reports above cited. Reference points

should be located on surrounding rocks, or by auxiliary

monuments, from which bearings and distances are to be

measured to the station. The geodetic surveyor should

always make his description of the station clear and full, so

that it may be found after the lapse of many years. For this

purpose it is well to run a traverse line to the nearest public

road, if there is one within a reasonable distance, and erect

there a monument which may serve as a starting point for

future parties.

A tower is a structure erected over a station for the support

of the theodolite and observer. It consists of two parts, an

interior tripod to carry the instrument, and an exterior

scaffold entirely surrounding the tripod but unconnected with

it. The interior tripod is usually made of three posts braced

together, while the outside scaffold is a structure like a braced

pier having four posts. Rough towers made of timber cut

on the spot can be built for about $1.00 per vertical foot up

to heights of 30 feet, exclusive of the cost of the timber.

Towers higher than 50 feet are usually built of sawn timber

bolted together, and one 150 feet high makes a heavy item

in the expense of triangulation. At some stations no towers

are required as the instrument may be directly upon the

ground. Even in such cases a low tower ten feet in height

is to be recommended, as it adds much to the comfort of the

observer in warm weather, and has the advantage of elevating

the line of sight above the surrounding earth.

The four posts of the exterior scaffold should be extended
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about eight feet above the platform so as to allow canvas to

be spread to protect the instrument from the sun and wind.

The effect of the sun on the interior tripod is in high towers

often very marked, the top moving in a lateral direction so

as to describe an ellipse. To lessen this effect, and also for

protection against wind, it is often screened by a canvas

covering placed around the upper part of the scaffold.

The views of two triangulation stations of the U. S. Coast

and Geodetic Survey here given may be of interest to

first view the theodolite is not visible, but in the second it Li

seen mounted upon the tripod. In both views heliotropes

for flashing to the adjacent stations may be distinguished.

Detailed information regarding the erection of towers will

be found in the Report of U. S. Coast and Geodetic Survey

for 1882, pages 199-208.

Sometimes a church spire, or other inaccessible point, is

used as a station and angles are measured at other stations

by sighting upon it. This is of frequent occurrence in second-

 
students. The first shows a tower

130 feet in height erected by

Mosman at Tate, Ohio, and the

second the method used by the

author at Port Clinton, Pa., where

no tower was required. In the
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ary triangulation, but should be avoided in primary work.

Sometimes in primary work an eccentric station is occupied

near the true one, the angles

observed there, and their values

then reduced to the true sta

tion. Let A be the true sta

tion and a the eccentric one,

and let it be required to find

the true angle MAN from the observed angle MaN. To do

this the distance Aa must be carefully measured and also the

angle AaM, and the distances AM and AN must be found

from the triangulation. Let Aa = d, AaM = 6, AM — m,

AN = n, MaN — a, and MAN = A. Then, as the opposite

angles made by the crossing lines are equal, A -\- M equals

a -f- N, and accordingly the required angle is

A = a — M -|- N, (72)

in which M and N are to be computed from

d d

sinJ/ = —sin#, siniV = —sin(# -4- a), (72Y

or, for most primary work, since m and n are large,

d d

M = 206 265—sin(9, N — 206 265 - sin(# + a), (72)"

where M and N will be found directly in seconds. For

example, let </= 2.2145 meters, log;« = 3.90891, log« =

3 95713, 6 = 28° 07', a = 64° 18'2o".13. Then J/= 26".550

and N = 50". 372, whence A = 64° 18' 43". 95.

The angle 0 is here measured from the fixed line aA around

to the left-hand station and its value may range from 0° to

360°; hence the signs of M and N will depend upon the signs

of sintf and sin(# + a). Thus if M and N were located at the

left of a in the figure, 6 would be over 180° and sin# would

be negative. With regard to the use of (72)' and (72)" it
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may be said that the former need not be employed unless M

and N are greater than 1 5 minutes.

Prob. 72. Draw the figure for the case where d = 2.2145 meters,

logw = 2.90891, logn = 2.95713, 6 = 208° 07', a = 96° 07' o3".72,

and compute the true angle A.

73. S1gnals.

A signal is a pole, target, or other object erected at a

station upon which the observer at another station points in

measuring the angles. The simplest signal is a pole, but its

use involves a liability to error in sighting upon the illumi

nated side, and hence for the most accurate work plane

targets are preferred. These are made of a wooden frame

work covered with either black or white muslin. For a dis

tance of fifteen or twenty miles good dimensions for a target

are 2 feet in width and 12 feet in height. The target has the

disadvantage of requiring to be set anew whenever the

observer changes his station, but it has the advantage of

being more easily seen than a pole. The old practice of

putting a tin cone on a pole and of sighting on the illuminated

side cannot be recommended, except for reconnaissance work.

For long lines neither pole nor target can be recognized,

and the heliotrope must be used. This instrument consists

essentially of a mirror which

s'S reflects the sunlight to the

// observer s station. The

usual size of the mirror is

about two inches in diam-

and it should be

mounted so that it has a

motion about a vertical and a horizontal axis. The mirror

may be placed at one end of a board about three feet long

upon which are two sights in the same line with the center of

the mirror. The sights being pointed at the distant station,

the mirror is constantly turned by an attendant, called a

auum

r^-|^----^--^^rrrrr4-y------r eter,

/ vS vl moun
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heliotroper, so that the shadow of the rear sight falls upon

the front one, and the sunlight then is reflected to the

observer, who sees it as a star twinkling in the horizon. As

the apparent diameter of the sun is about half a degree, the

reflected rays form a cone having the same angle, so that it

is only necessary to point the heliotrope within a quarter of

a degree of an object in order that the light may reach it.

The light of a heliotrope may be seen through haze of

moderate intensity if the observer knows where to point his

telescope in order to find it.

Lines from ten to fifteen miles in length are usually

observed with pole or target signals. For lines from fifteen

to forty miles a combination of target and heliotrope is

advantageous, the former being used on cloudy days and the

latter in sunshine; in this case the heliotroper erects the

target over the station and places his instrument in line in

front of it. For lines exceeding fifty miles in length the

heliotrope is the only feasible signal unless the atmosphere

be unusually clear. Probably the longest side yet observed

is one of 192 miles in California, where the heliotrope had a

mirror of 77 square inches.

Night signals have been successfully used. These are

generally large kerosene lamps with reflectors, which are

placed in position and lighted by the heliotropers on leaving

their stations in the evening. A magnesium tape whose

burning is regulated by clockwork has been also employed.

Night work should be usually combined with day work, the

observer being on duty from noon to midnight. The best

time for measuring horizontal angles is from six until nine

o'clock in the morning, and from three in the afternoon until

after sunset, as then the air is the clearest and the lateral

refraction disturbances are the smallest. For vertical angles,

on the other hand, the best time is during the two hours

preceding and following noon, the vertical refraction being

then the least variable.



206 IX.GEODETIC TRIANGULATION.

In measuring horizontal angles it is sometimes necessary

that a signal should be set at a short distance to one side of

the center of the station.

This is called the case of an

eccentric signal, and a correc

tion is to be applied to the

observed angle to reduce it to

the true angle. For instance, in 1878 an observer at the

station O measured the angles COa and aOB, where the

heliotrope had been set at a instead of at the true station A.

The distance Aa was reported as 16 feet 2 inches, and the

angle OaA as 129° 35'. Later, in 1883, the work had pro

gressed so that OA was found to be 29556 meters. The

value of the small angle AOa in seconds is computed from

206 26$Aa smOaA/AO and will be found to be 26".63, and

this is the correction to be added to aOB and to be sub

tracted from COa.

An eccentric signal should be avoided. Indeed it is best

that heliotropers should not know that it can be used, other

wise they will be often tempted to set their heliotropes

eccentrically from considerations of personal comfort and may

neglect to take the measurements that are necessary for cor

recting the angles.

Prob. 73. Compute the correction AOa when the side OA is not

very large compared with Aa, say when OA — 295.56 meters.

74. Hor1zontal Angles.

Two classes of triangulation are always recognized in

geodetic work; the primary series, which connects directly

with the bases and has the longest possible lines, and the

secondary series, which locates stations within the primary

triangles. To these are ultimately added a tertiary series for

establishing stations at closer intervals for the special use of

plane-table and stadia parties. It is generally required that
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the probable error of an observed value of a horizontal angle

shall not exceed o".30 on primary work and o".8o on

secondary work. On primary work repeating and direction

theodolites are used, on secondary work repeating theodo

lites, while for the tertiary work the engineers' transit gives

all the precision desirable. In fact a good engineer's transit

will give as precise results as those required for secondary

triangulation, provided the length of the lines be such that

the signals can be clearly seen with its telescope.

A repeating theodolite does not differ in principle from an

engineers' transit. The telescope, however, is so long that

it cannot be turned over on its axis, but must be lifted out

of the standards in order to be reversed in position. The

graduated limb is usually from 8 to 12 inches in diameter, is

divided into ten-minute divisions, and reads by three verniers

to 3" or 5". Circles 16 and 20 inches in diameter were

formerly used, but it is now known that the precision of

these is little if any superior to those of 8 and 10 inches.

The method of observation, in order to eliminate systematic

and accidental errors, is in all respects the same as that

described in Art. 14. Owing to the

atmospheric disturbances on long lines

of sight it is important that the work

on each angle should be distributed

over several days, and this is easy to

arrange, since the rarity of good

weather usually requires a party to

remain two or three weeks at a sta

tion when several lines concentrate

there.

The following is a record of the

work done with a repeating theodolite

at Bear's Head station in Pennsylvania from July 20 to July

30, 1885. During these eleven days there were only eight

when the weather permitted observations, and on five of
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Angles at Bear's Head.

Name of Angle.
No. of

Reps.
Observed Value. Adjusted.

Penobscot—Knob 48 51' 19' 59"- 71 60'. 1 5

Penobscot—Bake Oven 40 85 52 32 •39 33 -22

Penobscot— Port Clinton 43 139 24 06 •97 06 .91

Penobscot—White Horse 40 180 39 48 •43 47 -24

Knob—Bake Oven 48 34 32 33 .16 33 07

Knob—Port Clinton 48 88 04 05 • 75 06 .76

Knob—White Horse 48 129 19 47 • 57 47 .09

Bake Oven—Port Clinton 48 53 31 34 •27 33 .69

Bake Oven—White Horse 40 94 47 12 -71 14 .02

Port Clinton—White Horse 48 41 15 39 -97 40 .33

these no measurements could be made until about three o'clock

in the afternoon. The total number of measures is seen to

be 456, or an average of 1 14 for each independent angle.

The station adjustment being made by the method of Art.

16, the average probable error of a single observed value is

found to be o".ji and that of an adjusted value about o".60.

It is thus seen that the adjustment has greatly increased the

precision.

A direction theodolite has no verniers, but is read by three

or more micrometer microscopes placed around the limb.

The circle in the figure represents the field of

view of one of the microscopes in which three

divisions of the graduated limb are seen. By

turning the micrometer screw the cross-hair is

moved to a or b, thus reading the distance ac or

be in seconds. When pointing on the first station the cross

hair may be set at a graduation mark, and when pointing at

the second the reading is taken as just described. Such

theodolites have large circles so that the limb may be divided

to 5 minutes while the micrometers will read to seconds, and

by taking the mean of all the micrometer readings a close
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determination of the angle can be made. No repetitions are

possible by this method, but different series of readings are

taken on different parts of the limb in order to eliminate

errors of graduation, measures are made both from left to

right and from right to left in order to eliminate errors due

to clamping and twist, and the work is distributed over differ

ent days to eliminate atmospheric influences.

There are two methods of measuring the angles at a station

with a direction theodolite. The first, called the method of

single angles, is to determine each angle independently by

the process above described; thus in the case of four lines

meeting at O each angle is measured by reading first on the

left-hand line and second on the right-hand line; thus the

value found for BOC or BOD is independent of any reading

made on AOB. In this method all the results are to be

treated and adjusted exactly as if they had been made by a

repeating theodolite.

In the second method of observation, called the method of

directions, a line OA is taken as a reference line and pointing

and reading taken on it; then the limb is turned and readings

taken on B, C, and D in succession. Another line OB is

then taken as a reference line, and readings taken on C, D,

and A in succession. Here it is seen that the values found

are not independent, as the initial reading enters into all the

results of each series; consequently the adjustment is more

complicated than that of the other method.

 

-D
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Prob. 74. Regarding the above observations at Bear's Head sta

tion as of equal weight, compute the probable error of a single

observed value.

75. The Stat1on Adjustment.

The station adjustment for all cases except the method of

directions is made by the method of Art. 16, which need not

be further explained here. When the weights are so nearly

equal as those of the case given in the last Article, it is an

unwarrantable refinement to take them into account. With

regard to the probable errors it is to be noted that those of

the adjusted values need rarely be computed by the method

of Art. 10 except in special scientific investigations. It is

well, however, to find the probable error of a single observa

tion by formula (10), and this ought to have a reasonable

agreement with the average probable error of the observed

values as computed from (9)'.

Some observers prefer to measure the « angles included

between the n lines meeting at a station instead of combining

the lines to make — 1) angles as in the example of the

last Article. This case is called "closing the horizon," and

thus the conditional equation is introduced that the sum of

the 71 single angles shall be 360 degrees. The adjustment

may be made by the method of Art. 16, employing only

n — 1 independent quantities, but the numerical work will

usually be shorter by the method of Art. 21.

The method of directions requires a slightly different

process of station adjustment. To explain it take the case

where the three lines OA. OB,

and OC meet at the station O,

and let x and y be the most prob

able values of the angles A OB

and AOC. Suppose that OM

denotes the direction of the tele

scope when the mean reading of the three microscope microm
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eters is o° 00' oo".00, and let m denote the most probable

value of MOA. Then let the three readings on A, B, and C

give the three observation equations

m = 60° 1 8' 20".5,

m -\- x = 85 04 13 .O,

m = 119 50 14 .2.

Next let the circle be turned so that ON gives the zero direc

tion and let n be the angle NOA. Then three readings being

taken on A, B, and C again, there are three additional

observation equations

n = 120° 1f c»5".o,

« + x = 145 02 S3 .0,

n + y = 179 48 59 5.

Again if the circle be turned about 60 degrees further and

three readings be taken upon A, B, and C there will be three

more observation equations, while a fourth, fifth, and sixth

set will each give three others. Thus for six positions of the

circle there will be 18 observation equations involving 8

unknown quantities; from these the normal equations are

formed by the rule of Art. 6, or, if they are of unequal weight,

by the rule of Art. 7, and their solution will furnish the most

probable values of x and y. The quantities m, «, . . . may

be eliminated from the normal equations, before solving for

x and y, as their numerical values are not required.

The numerical work may be abbreviated by introducing

corrections to assumed values of the quantities. Thus, for

the above case, let mx and «, be corrections to the observed

values of m and «; also let ^ = 24° 45' 52". 5 + j1t, and

y = 59° 31' 53". 7 -{"Jt- Then the six observation equations

reduce to

m, = o, -f x, - o, + y, = o,

«, = o, «, + x, = - 04". 5, «, + y, = + o".8,

and from these the four normal equations are
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I.n, + x, + yx= oo".o,

3". + + ?t = — o3 -7.

+ + 2^. = — 04 -5.

m, + «, + = + 00 -8.

Taking the values of «, and «/, from the first and second

equations and substituting them in the others, these become

4-r, - 27, = — 09". 8, - 2JT, + 4j, = + 06". I,

from which x, = — 02". 25 and yt = + 00".40 are the most

probable corrections, whence jr = 24° 45' 50". 25 and _y =

59° 31' 54"- 10 are tne adjusted values of the angles AOB

and AOC, and accordingly the most probable value of BOC

is 24° 36' 03".85.

The angles found by the station adjustment are spherical

angles, because the graduated circle is made level, that is

parallel to a tangent plane to the spheroid at the station.

Strictly speaking the level position of the graduated limb is

an astronomical and not a geodetic one (Art. 59), but this

slight discrepancy of a few seconds can produce no measur

able effect on the observed angles. It should be borne in

mind that it is of great importance to avoid inaccuracy of

level when measuring angles, since this renders their values

too large, and there is no method of eliminating its influence.

Prob. 75. Given the observed angles AOB = 86° 07' 17" with

weight 6, BOC = 89° 10' 35" with weight 4, and COA =

184° 41' 55" with weight 1. Compute the most probable values of

the angles.

76. Tr1angle Computat1ons.

After the angles have been measured at a number of

stations and the length of one side has been obtained, either

by connecting with an adjacent triangulation or by measuring

it as a base, computations of the lengths of the triangle sides

are to be made. The three angles of a triangle do not add

up to 180 degrees and hence the results obtained for the sides
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are only approximate, but they are more than sufficiently

accurate to compute the spherical excess of the triangle.

These computations are the same in every respect as those

explained in Art. 19, except that five-place logarithms should

be used, the logarithmic sines taken to the nearest 10" of

angle, and the lengths determined only to the nearest 10

meters.

The formula for spherical excess established in (63)' of Art.

63 may now be used and the excess be found for each tri

angle. In order to take the factor m from Table IV the

mean latitude must be known roughly. In the first instance

this may be estimated, but in later work it will be found from

the results of the LMZ computations. Then,

Spherical excess — 1n. ab sine?,

in which a and b are any two sides of the triangle and C is

the angle included between them.

As a numerical example of the computation of spherical

excess the following data of a triangle will be used :

c, • Angles adjusted Approximate Approximate
stat'ons. at Stations Distances. Latitudes.

Pimple Hill 49° 04' So".13 27 540 meters 41° 02'

Smith's Gap 90 21 25 .53 36 440 meters 40 49

Bake Oven 40 33 46 .91 23 700 meters 40 45

Sum = 180° 00' o2".57 Mean L. = 40° 52'

Now C can be taken as any one of these angles and a and b

as the two adjacent sides. It is advisable to make two check

computations for the excess, thus:

Numbers. Logarithms. Numbers. Logarithms,

factor m 5.40441 factor m 9.40441

a = 36 440 4-56l58 a = 23 700 4-37475

b= 23 700 4-37475 ^=27540 4-4399o

C = 49° 04' 50" 1.87831 C— 90° 21' 30" T.90999

Excess = o1".66 0.21905 Excess = 01 ".66 0.21911

The adjustment of the angles of a spherical triangle is to
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be made, when the angles are of equal weight, by applying

to each of the given angles one-third of the discrepancy

between the theoretic sum and the actual sum (Art. 18).

For instance, using the above triangle, the correction to be

o,_ti Angles adjusted Spherical Plane
stattons. at Stations Angles Angles.

Pimple Hill 49° 04' 5o".13 49".&3 4S>".28

Smith's Gap 90 21 25 .53 25 .22 24 .66

Bake Oven 40 33 46 .91 46 .61 46 .06

Sum = 180° 00' o2".57 o1".66 oo".oo

180" + Excess =180 00 01 .66

Discrepancy = — 00 .91

subtracted from each given angle is 00". 30, and thus are

found the adjusted spherical angles whose sum is 180°

00' cm ".66. Then, to find the plane angles between the

chords of the spherical arcs, one-third of 01 ".66 is subtracted

from each spherical angle.

When the weights of the given angles are very unequal it

is advisable to take them into account by the method of (18).

Thus if the triangle KPS have 8 sets measured on K and 48

on both P and 5, and if the computed spherical excess is

01". 83, the spherical angles are found by applying corrections

Stations Weights Angles adjusted Spherical Plane
Mattons. Weights. at Stations. Angles. Angles.

K 1 4'°2o'34".34 35".5* 34".91

P 6 79 03 41 .73 41 .93 41 .32

.S 6 59 35 44 .18 44 -38 43 -77

Sum = 180° oo' oo".25 01".83 oo".bo

180° + Excess =180 00 01 .83

Discrepancy = +01 .58

proportional to the weights, and then the plane angles found

by diminishing each spherical angle by one third of the

excess.

After these adjustments have been completed a second

computation of triangle sides is to be made with seven-place
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logarithms and using, of course, the plane angles just found.

The method is in all respects identical with that exemplified

in Art. 19. The following form, which may be used for this

computation, shows the angles at the stations, the adjusted

spherical angles, and the plane angles, the spherical excess

for this case being 02". 82. The triangle sides thus computed

are the lengths of the spherical arcs on the surface of the

spheroid, the length of the base having been reduced to that

surface by the method of Art. 31.

Computat1on of a Spher1cal Tr1angle.

Lines and

Stations.

Angles at
Corr.

spherical

Angles.

sph.

Excess.

Distances and

Plane Angles.
Logarithms.

AB

stations.

43075 -54 4.6342308

C 54° 58' 08". 84 + o".o8 08". 92 -o".94 07".98 O.086S007

A 95 29 01 .87 + 0 .08 01 .96 -0 .94 01 .02 T.9980079

B 29 32 51 .86 + 0 .08 51 .94 - 0 .94 51 .00 I.6929746

CB 52364 .80 4.7190394

CA 25942 .16 4.4140061

The spherical angles here determined give the azimuths of

AC and BC when the azimuths for the other side are known.

Thus, if the azimuths of AB and BA are 204° 10' 36".05 and

24° 14' 07".92, the azimuth of AC is 299° 39' 38".01 and

that of BC is 350° 41' 15". 98. If the latitude and longitude

of A and B are known, the two LMZ com

putations for finding the latitude and longi

tude of C and the azimuths of CA and CB

may now be made by the method of Art.

66, the logarithms of the lengths of the

sides being transferred from the above

form. Then the next triangle, having AC

or BC as its base, may be treated in like

manner, and thus from one measured base

and one astronomical station a chain of s1mple triangles is

adjusted and computed.
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Prob. 76. Make all the computations described in this Article for

the data of the following triangle, taking the angles as of equal

Stations Angles adjusted Approximate

at Stations. Latitudes.

Knob 50° 37' 17". 20 40° 54'

Bake Oven 98 37 05-05 40 45

Smith's Gap 30 45 41 .35 40 40

weight, the length of the side opposite Knob as 27535.63 meters,.

and the azimuth from Bake Oven to Smith's Gap as 252° 26' 55".42.

77. The F1gure Adjustment.

There are two classes of conditions to be satisfied in the

adjustment of a geodetic triangulation, those arising at the

stations and those arising from the geometry of the figure.

B The station adjustment has.

already been discussed, and

now the figure adjustment is to

receive attention. This figure

W \ adjustment gives rise to condi-

/1^c^^^ tions of two kinds, called angle

*c conditions and side conditions.

The requirement that the sum of the adjusted spherical

angles of a triangle shall equal 180 degrees plus the spherical

excess is an angle condition, while the requirement that the

length of any side shall have the same value by whatever

route it be computed is a side condition. For instance, in

the figure ABCS there are four station adjustments to be

made, if the angles are measured at the four stations; then,

the figure adjustment requires that three angle conditions and

one side condition shall be satisfied.

The strict method of making the adjustment of the case

shown in the above figure is to state observation equations

involving the angles at the stations, and conditional equations

involving all the requirements of both station and figure

adjustments. Thus, if three angles be measured at each

station there will be twelve observation equations; for illus
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tration suppose the angles have been measured only to the

nearest degree, and that the observation equations are

^ = 84°, ^,=40°, ^,=43°, B= 56°, Bt= 30%^= 27°,

C=Ao0, C,= 19°, C=2ia, 5,= 1o6°, 5,= 135°, 5,= 120°,

where S, is the angle subtended by AB, and S, and S, those

subtended by BC and CA. Then, the station adjustments

give the four conditions

A=A,+A„ B=B,+B,, C=C.+C,, S,+S,+S, = 360°.

The figure adjustment, supposing the triangles to be plane

ones, requires the three angle conditions

^*+Jff1+5, = 18o°, B,+ C,+S,= 180°, C,+A,+S,= 180°,

and also, as shown in Art. 22, the side condition

sin^4, sini?, sinC, = sin^4, sini9, sin£",.

The problem now is to determine the most probable values

of the twelve observed angles which at the same time satisfy

the eight conditional equations.

This problem is capable of rigorous solution, but when a

figure contains many triangles it leads to very laborious com

putations. The custom has hence arisen of dividing the work

into two parts; first, the station adjustments are made, each

independently of the others, and secondly the values found

by these station adjustments are then corrected so as to

satisfy all the conditions of the figure adjustment. The

station adjustments are generally made in the field, but the

figure adjustment, which is far more lengthy, is reserved for

the office, and is made by the method of correlates that is

explained in the next Article.

In applying these principles to a triangle net consisting of

a chain of simple triangles, having

one side AB measured as a base and

all angles observed, it is seen that

the figure adjustment has as many

angle equations as there are triangles, and no side equations.

 



2l8 IX.GEODETIC TRIANGULATION.

The figure adjustment is hence very simple, each triangle

being treated in succession by the method of Art. 76, and

the spherical angles and plane angles thus found are the final

adjusted values. If, however, another side HK be also

measured as a base, then a conditional side equation is to be

introduced to express the requirement that the length HK as

computed from AB shall be the same as the measured length ;

an illustration of this case for two triangles is given in the

last paragraph of Art. 22.

In primary geodetic triangulation all stations are occupied

and all lines sighted over in both directions. In secondary

work a few of the stations may not be occupied, these being

church spires or other inaccessible points. Thus in the last

figure if one of the stations between B and H be not occupied

the number of angle equations will be diminished by three,

because there will be three triangles, in each of which one

angle has not been observed and hence its value is to be

found from those of the observed angles.

In stating the conditional equations that enter into a figure

adjustment care should be taken to introduce no unnecessary

ones, and the following rules will be useful for that purpose;

these rules suppose only one base to have been measured.

Let n be the total number of lines and «' the number of lines

sighted over in both directions, let s be the total number of

stations and s' the number of stations occupied for angle

measurements. Then, in the figure adjustment,

Number of angle equations = ri — s' -\- 1, . .

Number of side equations = n — 2j+ 3.

For instance, in the figure ABCS, at the beginning of this

Article, «' = n = 6, s' = s = 4, and hence there are three

angle equations and one side equation; if, however, the

station S had not been occupied, then »' = 3, « = 6, s' = 3,

s = 4, and accordingly there would be one angle equation

and one side equation.
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P1ob. 77. How many angle and side equations are there in the

figure adjustment of each of the triangle nets shown in Art. 24, one

base and the angles being measured '

78. Cond1tloned Observat1ons.

By the proper selection of the unknown quantities it is

generally possible to state observation equations so that these

quantities will be independent (Art. 25), but a shorter method

of adjustment, known as the method of correlates, may be

established. In this method each observed quantity is repre

sented by a letter and all the conditional equations are

written, as in the illustration of the last Article. Let x, y,

s, etc., represent the quantities whose values are to be found,

and let the conditional equations be

+ a*y + • • - = a,

ctx + c,y + • • • = c,

in which the coefficients and constant terms are theoretic

numbers. Now let Mx , M,, M,, ... be the values found

by the observations for x, y, s, . . if these values be in

serted in the conditional equations they will not reduce to

zero, owing to the errors of the measurements. Hence, let

. 7't , v, , - • • be small corrections which when applied to

Mx, M,, M,, . . . will render them the most probable values.

Then if x, y, . . . be replaced by Mx -j- v, , M, -f- v, , . . . the

conditional equations reduce to

, + a,v, + a,v, + ... = </, ,

bxvt + 6,v, + b,v, + ... = </,, (7g^

ctv, + c,vx + c,v, + . . . = d, ,

in which d1 , d,, d,, . . . are small quantities called discrepan

cies. The problem now is to find values of z,, , v, , z\ , . . .

which exactly satisfy these equations and which at the same

time are the most probable values.

4



220 IX.GEODETIC TRIANGULATION.

The following is the solution of this problem which is

deduced in treatises on the Method of Least Squares. Let

A • A , A ' • • • be the weights of the observations M, , M, ,

M, , . . . and let k, , k,, k, , . . . be quantities which are

determined by the solution of the normal equations

5>. + [t> + [7> + - -• = *••

+ U>' + [?>, + •--=«• W

[?> + [?> + [?> + ---*•

These equations are the same in number as the number of

conditional equations, k, being known as the correlate of the

first equation, k of the second, and so on. The brackets

indicate summation in accordance with the same notation as

that employed in Art. 7, namely,

and the coefficients have similar properties to those in the

normal equations for independent observations.

By the solution of these normal equations the values of

kx , k, , k, , . . . are found ; then the corrections are

V, = T-*, + T-*. + + • • • ,

F, F, F,

and these added to Mxt Mx , . . . give the most probable

values of x, y, . . . which exactly satisfy the theoretic con

ditions. When there is but one conditional equation there

is but one normal equation and one correlate, kx, whose value

is <a/[^], anc* tnus values of vt , v, , . . . agree with
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those deduced in Art. 21, where dx is called d, and q is used

instead of a.

As an illustration of the method, let there be five measure

ments on five quantities, giving the observation equations,

1. x = 47.26, with weight 3,

2. y = 39.04, with weight 19,

3. z= 6.35, with weight 13,

4. w = 86.64, with weight 17,

5. u = 35.21, with weight 6,

which are subject to the two theoretical conditions,

x -\- y — w — O, y -\- z — u =. 10.

Let v, , vy, v,, vt, and i\ be the most probable corrections

to the observed values, so that the observation equations

become

I. ». = 0,
A.= 3,

2. *. = 0, A = 19.

3- v. = 0, A = 13,

4- v. = 0, A = 17.

5- */, = 0, A = 6,

and the conditional equations reduce to

v, + v, — z\ = + 0.34,

f, + V, — f, = — o. 18.

Now, by comparison with the notation in (78),

a, = + ', «. = + ', «. = o, «, = - », «. = o. = + o-34,

*, = o, = + », = + = o, <», = — 1, d, = — 0.18,

and thus the normal equations of (78)' become

0.445^ + 0.053^ = + 0.34,

O.OS3/&, -\- 0.296k, = — 0.18,

whose solution gives k, = -\- 0.855 and k,= — 0.759. Then

by (78)" the values of the corrections, or residual errors, are

^', = +0.285, ^,= +0.005, z,,= —0.059, »,= —0-05o. p,=-fo.1a6,

and hence the adjusted values of the observations are

* = 47-545, y = 39045. 2 = 6.291, w = 86.590, u = 35.336,
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which are the most probable results that exactly satisfy the

two conditional equations.

The probable error of an observation of the weight unity

may be computed by the formula

r, = 0.6745./—^—,,

V n - 1 + n

in which n is the number of observation equations, q the

number of unknown quantities, and «' the number of condi

tional equations. For the above example the residuals are

already found; squaring them, multiplying each by its.

weight, and adding, gives 2pv* — 0.428, whence r, = 0.309.

Accordingly the probable error of the first observation is

0.309/4/3 =0.18, and the weight of the adjusted value of

that observation -must be somewhat smaller than 0.18.

Prob. 78. Four lines OA, OB, OC, and OD meet at a station O,

and the following angles are observed, all of equal weight :

AOB = 19° 47' 13", BOC = 40° 38' 04", COD = 65° 12' 1o'\

DOA - 54° 22' 29",BOD = 105° 50' 1b", DOA = 119°3o'42".

Let x, y, z, and w represent the four angles first named. Compute

their adjusted values by the method of correlates.

79. Adjustment of a Polygon.

Let the diagram represent a polygonal figure having an

interior station S, and let the angles which each side makes

with the line to 5 be measured,

5 being an unoccupied station.

D By applying the rule of the last

Article it is seen that there are

two conditions in the figure

adjustment, one angle equation

" E and one side equation. If the

figure be a plane one the angle condition is that the sum of

the ten interior angles when adjusted shall be 540 degrees

for a five-sided polygon. The side equation results from the
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condition that, if one side be computed from another by two

routes, the two expressions for its value shall be equal.

To express the first condition algebraically let v, , v, ,

. . . vx, be corrections in seconds to be added to the observed

values of the angles. Let d, be the difference in seconds

between the theoretic sum and the sum of the ten observed

values; then

v, + v, + v, + vt + v, + v, + v, + v, + v, + v„ = d,

is the conditional angle equation. To state the second con

dition let expressions for the side SD, as computed from SA

by two routes, be written; if these be equated there results

sin^, smB, sinC, sin/?, sin.£, = sirM, sin/?, sinC, sinZ>, sin^10

as the conditional side equation. This is to be expressed in

terms of the corrections in a similar manner to that used in

Art. 22, log (A, + being written as log A, + v, diff. 1",

where diff. 1" is the tabular logarithmic difference of the

logarithmic sine corresponding to the angle Ax.

Let the observed values be those written below, all being

of equal weight. As the sum of these is 540° 00' 10" the

discrepancy d, is — 10", the angle equation is known, while

Observed Angles. Log. Sines.

Ax = 25° 47' n" I 6385588 + 43. s»,

B, = 56 31 22 I. 92 1 2 208 + 1 4. OV,

C, = 8S 28 57 I.9986487+ 1.7*/,

A = 83 12 39 I.9969439+ 2.5P,

£, = 41 16 «5 1-8192933 + 23-9*',

I-3746655

A, = 5ou
1 a' 54" I.8856162 + 17. 5V,

A = 48
5a 13 1.8769214 + 18.4*/,

C, = 61 58 02 I.9458027 + 11 .2V,

A= 38 25 07 J -7933543 + 26.5-^,

£„ = 48
'5 19 I.8728079 + 18.8»„

l-3745025

the side equation is found by equating the two sums of the

logarithmic sines. Thus



224 IX.GEODETIC TRIANGULATION.

"x + + »1 + r'« + r'l + -'6 + r', + + + =—1°",

4J-5»'|- ^^"l+M-o:'!— 18.4f<+t.7f,— n.ar,+a.5T', — 26.5Z',4-J3.9rt — t8.8t',g= -t6jo,

where the second member of the last equation is in units of

the seventh decimal place of logarithms.

By the method of the last Article the solution is now

readily made, placing at = + 1, a, = + l, • • . d, = — 1o

and b, = -f- 43-5. b, = — 17.5, ...</, = -|- 1630. The two

correlative normal equations are found to be

4- 10^ — 6.8£, =: — 10, — 6.8£, + 4494. 5&, — — 1630,

from which k, = — 1.248 and k, — — 0.364. Then by (78)"

^=-17".!, v,=-6".z, v,= -1".g, v, = -2".2, r,=-9".g,

*', =+ 5"-", f'. = +5"o, *:=+*"•&, r.=+S".4, r1° = +s"-6,

are the most probable corrections to the observed values, and

applying them the sum of the adjusted values will be found

to be exactly 540°, and then the angles at .S may be obtained.

Also, multiplying each v by its tabular difference, the correc

tions to the logarithms may be found, and the sums of the

two sets should then be exactly equal.

For a large polygon where the spherical excess of the tri

angles can be detected the method of adjustment is the

same, the two conditional equations being slightly modified.

First, the theoretic sum of the ten angles exceeds 540 de

grees by two-thirds of the spherical excess of the entire poly

gon; thus if this excess be 18". o the discrepancy d, will be

18".o — 10".o = -(- 8".0. Secondly, each observed angle is

to be diminished by one-third of the spherical excess of its

triangle before placing it in the side equation; for instance,

if the spherical excess of the triangle ABS is 03". o, then the

value of Ax to be used in the side equation is 25° 47' 22".

The solution is now made as before and the corrections

vx, v,, ... f10 found; these, added to the angles used in

the side equations, give the adjusted plane angles, or, added

to the observed values, they give the adjusted spherical

angles.
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When the station 5 is occupied and all the angles there are

observed there will be five angle equations and one side

equation in the figure adjustment. The side equation is the

same as before and the five angle equations may be taken as

those expressing the conditions that the sum of the angles in

each triangle shall equal its theoretic value. Thus, for the

triangle ABS, if the sum of the observed angles be 18o" 00'

05" and the spherical excess be 03".o, the angle equation is

v, -f- v, -f- vu — -\- 02". These six equations lead to six

correlative normal equations, by whose solution the six cor

relatives are found, and then the fifteen corrections are

obtained. Lastly, the adjusted spherical angles result by

adding these corrections to the observed values, and the

adjusted plane angles are found by subtracting from the

spherical angles the proper amount for spherical excess. It

may be remarked, however, that this solution can be abbre

viated by an artifice similar to that used in the next Article.

Prob. 79. In the first diagram of Art. 77 let there be given

^, = 4oF, A, = 43i°, Bx = 2o§°, B, = 26|°, C, = 19°, C, = 21°.

Adjust these observations so that the results shall satisfy all the con

ditions of the figure adjustment.

80. Adjustment of a Quadr1lateral.

In the quadrilateral ABCD let the two single angles at

each corner be equally well measured. The rule of Art. 77

shows that the figure adjustment c

requires three angle equations and

one side equation. The three angle

equations may be written by taking

any three of the triangles and im

posing the conditions that in each

the sum of the adjusted values shall equal the theoretic sum;

the three triangles that have the point B in common will be

chosen for this purpose. Let d, , d,, d, be the discrepancies

for these triangles, d, being that for the triangle whose large
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angle is A, while d, and d, are those for the triangles whose

large angles are B and C; also let d, be the discrepancy for

the fourth triangle CDA. Let vx, v, , . . . v, be the correc

tions in seconds to be applied to the observed values. Then

the three conditional angle equations are

vx + f. + v, + vt = d, ,

v, + v. + v, + v, = d, ,

w, + «/, -f v, + z/, = </, ,

and the conditional side equation is

sin^, sini?, sinC, sinZ>, = sinA, s\nBt sinC, sinZ>„.

For given numerical values of the eight angles the adjustment

may now be made by the method of Art. 78, there being

four correlatives and four normal equations.

It is, however, frequently required to make an approximate

adjustment, whereby the three angle equations will be satis

fied, the side equation not being used. Taking, then, three

correlatives, the normal equations (78)' are, since all weights

are unity,

4k, -f 2k, = d, ,

2k, + 4k, + 2k, = d, ,

2k, -j- 4k, = d,.

Solving these and substituting the values in (78)", the cor

rections are found, and, remembering that d,-\-dt=d, -f- d, ,

these may be written

vt = v, = K + - d,\

v, = vt = id, + i(d, - d,), (Sq)

v. = v, = K- iW - d,), V-

v, = v, = K - i(ds - d,),

which are very easy in numerical application. For instance,

let the three triangles have the spherical excesses s, = o".48,

s, = 1".05, s, = 1"-4i, and st = o".84, and let the observed

values of the eight angles be arranged in four sets, one for

each triangle. The sum of the observed angles for the first

set subtracted from the theoretic sum gives the discrepancy
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dx = +02". 73, and similarly for the other sets. Then by

(80) the corrections are -\-o".62, +o".74, -|- o".6j, and

-|- o".56, whence result the adjusted values of the spherical

angles. The sum of these is 360° 00' 01". 88, which is a

check on the work, since the spherical excess of the figure is

J-, + s, = s, + st = 1 ".89, the error of one unit in the second

decimal being due to the lost digits in the third decimal.

Lastly, the plane angles are found by subtracting the proper

amounts from the spherical angles, these amounts being com

puted from (80) by using the given excesses instead of the

discrepancies.

Observed Angles. Adjusted Angles.

A B C D Spherical. Plane.

Vx =
580

44' 38"-98 38".98 39". 60 39-51

A, = s»5 18 16 .80 •16 .80 17 .42 17-33

A, = 53 54 57 -54 57". 54 58 .28 58.14

B< = 37 02 04 .43 04 .43 05 -17 05.02

= »7 38 46 .48 46".48 47 -15 46.77

C. = 56 24 09 -77 09 -77 10 .44 10.06

C, = 33 53 35 .14 35 .14 35 .70 35.38

£>t = 6a 03 27 -56 27 .56 28 .12 27.80

179 59 57 -75 58 .22 58 -95 58 .48 01 .88 oo.ot

[80 00 00 .48 01 .05 01 .41 00 .84 01 .89 00.00

+ 02 .73 + 02 .83 + 02 .46 -f 02 .36 00 .00 00.00

The adjusted values thus found will not, in general, satisfy

the side equation, but by the following process a second series

of corrections may be obtained that will insure this result.

Let i/, , v, , . . . v, be the additional corrections to be applied

to the above values of the plane angles. Then the angle

equations are

v, + v, -|- v, + v, = o,

». + ». + vt + v, — o,

v, + v, + », + v, = O,

and the side equation takes the form

+ <V, + a,v, + atvt — a,v, — a,v, — a,v, — a,v, = d,

where ax, a,, . . . a, are the tabular differences of the loga
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rithmic sines corresponding to the values of the plane angles

and d is the difference between the sums of the logarithmic

sines of the even and odd angles. Now let

v, = «, + «4 = «• +

V. = «. = «x
—

v, - -
«, + 0. =

—
«, + «•.

V, =
-

«,
—

«. , v, = -
«,
—

and thus the angle equations are satisfied, while

(«t + «. + «. + *r — «• — «, — «• - *.X + («. + ".)«.

+ (a, - «.)*. + (^4 + + (—*. + = ^

is the side equation in terms of the new quantities. This

may be treated by the method of Art. 78, and after the u's

are found, the values of v are known. For the above

numerical case this side equation becomes

59-9". + 57-4*. - I5-2K, + 54-2«4 - 20. 1«, = + 3,

where the second member is in units of the seventh decimal

place of the logarithms. Then the single correlative equa

tion gives = 0.000288, whence /<-, = -|-o".0017, and the

other k's are smaller still; accordingly the corrections z\ , v,,

. . . v, do not in any case amount to one one-hundredth of a

second. The final adjusted values of the angles are hence

those above given; had the corrections due to the side equa

tions been appreciable they would have been added to both

spherical and plane angles in order to give the final adjusted

results.

Prob. 80. All the angles at stations A, B, and C are measured, but

none at D. Find the number of equations in the figure adjustment

and state them.

81. F1nal Cons1derat1ons.

The preceding principles will enable the student to adjust

and compute any common triangle net having but one meas

ured base. If the net be composed of triangles only, each
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succeeding the other, the adjustment is made by starting with

the base and computing each triangle in succession by the

method of Art. 76. If it be composed of polygons only, each

is separately adjusted by Art. 79, and the triangle sides then

computed from the plane angles. If it be composed of

 

quadrilaterals only, the adjustment of each is made by Art.

80, and the sides then found from the plane angles. If it be

made up of triangles, polygons, and quadrilaterals, as is

generally the case, the same process may be followed, by

starting at the base and treating each part in succession.

Lastly the latitudes, longitudes, and azimuths are computed

by the method of Art. 66 if the triangulation be a geodetic

one, or by that of Art. 19 if it be plane.

When two bases are measured, or two stations occupied for

astronomical work, the adjustment becomes so complex that

it cannot be discussed in this elementary book. Such adjust

ments can only be successfully done by an office force

specially trained in precise computation, and several weeks

are perhaps required to solve the correlate normal equations

that arise; this work is to be carried out in a systematic

manner so that constant checks on the accuracy of the

numerical work may be secured, and the probable errors of

the final adjusted values may be determined.
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It is not difficult to measure a single angle so that the final

mean shall have a probable error as low as o".5, but the

probable error of the adjusted value of the same angle as

found from the figure adjustment will usually be somewhat

larger. In this case the comparison of the probable errors

does not perhaps give the fully correct idea, for there can be

no doubt but that the figure adjustment has been most

useful in eliminating accidental errors due to the pointings on

signals, which in the measurement of a single angle may

perhaps be a constant source of error. Undoubtedly the

precision of the results of the figure adjustment is materially

greater than that of the angles as determined by the station

adjustment.

Throughout the entire field and office work all the coordi

nates, distances, and azimuths are to be regarded as approxi

mate until the final figure adjustment is finished and the LMZ

computations based on these are completed. In the begin

ning of the field work the latitudes and longitudes are known

very roughly, being taken from such maps as are available,

or found from compass readings and estimated distances.

Later they become known to within a minute from rough

triangle and LMZ computations, and at the close of the

season's field work the various determinations of a station

should check within a tenth of a second. After the office

work of adjustment is finished, however, the latitudes and

longitudes will agree to thousandths of a second, and then

the triangle net may be regarded as definitely completed.

During the progress of the field work vertical angles are

often taken by the method briefly described in Chapter IV.

Such angles are to be measured by an instrument having a

full vertical circle so that the double altitude, or double zenith

distance, may be obtained by reversal. This vertical "angle

work, although its results cannot compare in precision with

that of spirit leveling, furnishes valuable information in a new

country which will repay its slight cost.
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Boundary lines between countries are run most accurately

after a triangulation has covered a strip along the general

route. The location of the stations being thus determined,

that of the boundary line is computed from the principles of

geodesy and then points are set upon it by running out

traverses from the stations. Many boundary lines have

been run by determining astronomically the latitudes and

longitudes of stations and then running out traverses and

deflection lines from these. Owing, however, to the uncer

tainty of the plumb-line deflections these boundaries cannot

compare in precision with those determined from a geodetic

triangulation.

Prob. 81. Consult Report of the Commission on the Survey of the

Northern Boundary of the United States (Washington, 1878,) and

-explain how points were located on the 49th parallel of north

latitude.
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Chapter X.

THE FIGURE OF THE EARTH.

82. The Earth as a Spheroid.

In the preceding chapters the fundamental principles for

determining the size and eccentricity of the spheroid that

best represents the earth have been presented, and the

methods for computing geodetic surveys for given spheroidal

elements have been explained. Now in conclusion a few

other methods will be briefly discussed by which the dimen

sions or oblateness of the spheroid may be determined.

Pendulum observations give information regarding the

ellipticity of the spheroid, since the length of a pendulum

beating seconds is proportional to the force of gravity and

since this force is greater in the polar than in the equatorial

regions. Clairaut in 1743 deduced a remarkable theorem for

the length of the seconds' pendulum at any latitude, namely,

s = S + (f& - f)S sin'/;, (82)

in which s is the length at the latitude L, and S is the length

at the equator, k the ratio of the centrifugal force at the

equator to the force of gravity, and /the ellipticity of the

earth regarded as an oblate spheroid. This theorem is limited

only by the assumptions that the earth is a spheroid rotating

on its axis, and that its material is homogeneous in each of

the concentric spheroidal strata. Now if the values of S and

— f)S can be found from observations, then \k — f is

known, and since from the principles of mechanics k can be

closely ascertained, the ellipticity / is determined.
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For example, the following are a few of the many observa

tions that have been made on the length of the seconds'

pendulum :

Place. Latitude. Length of Pendulum.

Spitzbergen 79° 49' 58" 39.2147 inches

Hammerfest 70 40 05 39.1952

London 51 31 08 39. 1393

New York 40 42 43 39.1017

Jamaica 17 56 07 39-o35'

Sierre Leone 8 29 28 39.0200

St. Thomas o 24 41 39.0207

For each of these observations there may be written an

observation equation of the above form ; letting T represent

the coefficient of sin'Z, the first one is

39.2147 = S + 0.968847",

and similarly for each of the others. Then, applying the

Method of Least Squares, the most probable values of 5 and

7" are found to be 39.0155 and 0.2021 inches. Accordingly

the ratio of T to 5 is 0.005 181, a°d this is the value of

\k — f. But the value of k is about ^-Lj as found from the

known facts regarding the intensity of gravity and the

velocity of rotation at the equator; consequently the value

of f is about Numerous discussions of pendulum obser

vations appear to lead to the conclusion that the ellipticity of

the earth, considered as a spheroid, is not far from ^^.y or

tj-J-j. This is slightly larger than the value found from the

discussions of meridian arcs, and the conclusion must hence

be drawn that probably the spheroidal strata are not strictly

homogeneous.

A theoretic discussion by Newton of the form assumed by

a rotating homogeneous fluid under the action of gravity and

centrifugal force led to the conclusion that the ellipticity was

A similar one by Laplace indicates that /is about 7JT.

This value is, however, far too great, and it is accordingly

indicated that the earth was not an homogeneous fluid at the
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time it assumed the present shape. For a full exposition of

this branch of the subject reference is made to Todhunter's

History of the Theories of Attraction and of the Figure of

the Earth, London, 1873.

The shape of the earth may also be found from astronomi

cal observations and computations. Irregularities in the

motion of the moon were first explained by the deviation of

the earth from a spherical form, and then these irregularities

being precisely measured, the ellipticity may be computed,

the value found by Airy being ¥^T, which is a little smaller

than the result deduced from meridian arcs.

The size of the spheroid may also be deduced from

measured arcs of a parallel between points whose longitudes

are known. It is evident that such arcs have a special value

in determining whether or not the equator and the parallels

are really circles. The field work of a triangulation net

extending across the American continent along the parallel

of 39° north latitude was nearly completed in 1899 and the

results of its discussion will soon be available. It may be

noted, finally, that the elements of the spheroid may be

deduced from a single geodesic line whose end latitudes and

azimuths have been observed, or from such a line derived

from a geodetic triangulation. The discussion of a geodesic

line, extended through the Atlantic states from Maine to

Georgia, by the U. S. Coast and Geodetic Survey, indicates

that its influence upon our knowledge of the figure of the

earth is to increase but slightly the dimensions of Clarke's

spheroid of 1866 without appreciably changing his value of

the ellipticity.

Three hundred and fifty years ago, when men first began

to think about the shape of the earth on which it was their

privilege to live, they called it a sphere, and they made rude

measurements on its great surface to ascertain its size. These

measurements, after nearly two centuries of work, reached an
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extent and precision sufficient to prove that its surface was

not spherical. Then the earth was assumed to be a spheroid

of revolution, and with the lapse of time the discrepancies in

the data, when compared on that hypothesis, proved also that

the assumption was incorrect. Granting that the earth is a

sphere, there has been found the radius of one representing it

more closely than any other sphere; granting that it is a

spheroid, there has been also found, from the best existing

data combined in the best manner, the dimensions of one that

represent it more closely than any other spheroid. It has

been seen that the radius of the mean sphere could only be

found by first knowing the elliptical dimensions, and here it

may be also thought that the best determination of the most

probable spheroid would be facilitated by some knowledge of

the theory of the size and shape of the earth considered under

forms and laws more complex than those thus far discussed.

In the following Articles, then, there will be given some

account of the present state of scientific knowledge and

opinion concerning the earth as an ellipsoid with three

unequal axes, the earth as an ovaloid, and lastly the earth

as a geoid.

As the sphere is a particular case of the spheroid, so the

spheroid is a particular case of the ellipsoid. The sphere is

determined by one dimension, its radius; the spheroid by

two, its polar and equatorial diameters; while in the ellipsoid

there are three unequal principal axes at right angles to each

other that establish its form and size. As in the spheroid, the

ellipsoid meridians are all ellipses, but the equator instead of

being a circle is an ellipse of slight eccentricity. Let a, and

a, denote the greatest and least semi-diameters of the equator

of the ellipsoid, and b the semi-polar diameter; the ellipti-

cities of the greatest and least meridian ellipses then are

83. The Earth as an Ell1pso1d.

b

and /, =

 

a



236 X.THE FIGURE OF THE EARTH.

while all other meridian ellipses have intermediate values.

For the equator the ellipticity is (a, — a,)/ar When the

values of a, , a,, and b are known, the dimensions and pro

portions of the ellipsoid and of all its sections are fully

determined.

On an ellipsoidal earth the curves of latitude, with the

exception of the equator, are not plane curves, and hence

of observation whose horizon is AA and latitude ABQ. Let

now the least meridian ellipse, projected in the line PP, be

conceived to revolve around PP until it coincides with the

plane PQPQ and becomes seen as PQ'PQ'. To find upon it

a point A' that shall have the same latitude as A, it is only

necessary to draw a tangent A'H' parallel to AH touching

the ellipse at A', then A'B' perpendicular to A'H' makes the

same angle with the plane of the equator QQ as does AB.

If the least meridian section be now revolved back to its true

position, A' becomes projected at D' . Therefore', while a

section through A parallel to the equator is an ellipse ADA,

the curve joining the points having the same latitude as A is

not plane, but a line of double curvature AD'A.

The process for determining from meridian arcs an ellipsoid

to represent the figure of the earth does not differ in its

fundamental idea from that explained in the last chapter for

the spheroid. The normal to the ellipsoid at any .point will

usually differ slightly from the actual vertical as indicated by

the plumb line, and the sum of the squares of these devia

tions is to be made a minimum in order to find the most prob

able elements of the ellipsoid. An expression for the differ-

 P
cannot properly be called

parallels. This results from

the definition of latitude as

Q

r

Q may be seen from the dia

gram, where PP is the polar

axis, PQPQ the greatest

meridian section, A a place



83- THE EARTH AS AN ELLIPSOID. 237

ence of these deviations at two stations on the same meridian

arc is first deduced in terms of four unknown quantities, three

being the semi-axes at, a,, and b, or suitable functions of

them, and the fourth the longitude of the greatest meridian

ellipse, referred to a standard meridian such as that of Green

wich; and in terms of four known quantities, the observed

linear distance between the two stations, their latitudes and

the longitude of the arc itself. Selecting now one station in

each meridian arc as a point of reference, there are written

for that arc as many equations as there are latitude stations,

inserting the numerical values of the observed quantities.

These equations will contain four more unknown letters than

there are meridian arcs, and from them as many normal

equations are to be deduced as there are unknown quantities,

and the solution of these will furnish the most probable values

of the semi-axes at , a, , and b, with the longitude of the

extremity of at , and also the probable plumb-line deviations

at the standard reference stations. The process is long and

tedious, but it is easy to arrange a system and schedule, so

that the computations may be accurately carried out and

constant checks be furnished.

The first deduction of an ellipsoid to represent the figure

of the earth was made in Russia, by Schubert, about the year

1859. He found fx = and /, — for the two meridian

ellipticities, and -^^j for that of the equator. The longitude

of the ellipse of greatest eccentricity was found to be about

41° East of Greenwich, and the length of its quadrant was

determined as 10 002 263 meters, that of the quadrant of

least eccentricity being 10 001 707 meters.

It is, however, Clarke of the British Ordnance Survey to

whom is due the credit of the most careful investigations in

this direction. His discussion of 1866 included meridian arcs

amounting in total to nearly five-sixths of a quadrant and

containing 40 latitude stations, while his discussion of 1878

included the same data and several additional arcs. The fol
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lowing table gives the result of these discussions. The linear

dimensions are in meters, the meter used being one equiva

lent to 3.28086933 feet and hence slightly longer than the

U. S. legal meter that has been employed in the preceding

Chapters.

Clarke's Elements of the Ell1pso1d.

1866. 1878.

Greatest equatorial semi-diameter, «t 6 378 294 6 378 380

Least equatorial semi-diameter, a, 6 376 350 6377916

Polar semi-axis, b 6 356 068 6 356 397

Greatest meridian quadrant, q\ 10 001 553 10 001 867

Least meridian quadrant, q, 10 000024 10001 507

Quadrant of the equator, Q 10017475 10 018 770

Greatest meridian ellipticity, ft 1/287.0 1/289.5

Least meridian ellipticity,/ 1/314-4 1/295-8

Ellipticity of the equator, F 1/3281 1/13706

Longitude of qx 15° 34' East 8° 15' West

In comparing these ellipsoids the different positions of the

greatest meridian attract notice; in the first it passes through

Germany and in the second through Ireland, the angular dis

tance between them being about 24 degrees. The least

meridian, 90 degrees distant, passes through Pennsylvania

for the first spheroid and through Kansas for the second. It

would thus appear that the radius of curvature is greater on

the American than on the European continent.

It seems to be the prevailing opinion that satisfactory

elements of an ellipsoid to represent the earth cannot be

obtained until geodetic surveys shall have furnished more and

better data than are now available, and particularly data from

arcs of longitude. The ellipticities of the meridians differ so

slightly that measurements in their direction alone are insuffi

cient to determine, with much precision, the form of the

equator and parallels. In Europe and America several longi
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tude arcs will soon be available, and it will then be possible

to obtain more reliable elements of the spheroid. At present

the ellipsoids represent the figure of the earth as a whole very

little better than do the spheroids, although, for certain small

portions, they may have a closer accordance. For instance,

the average probable error of a plumb-line deviation from the

normals to the Clarke ellipsoid of 1866 is 1 3 5 , while for the

spheroid derived from the same data it is 1".42. Further,

the marked differences in the ellipticities of the equator of the

two Clarke ellipsoids, due to comparatively slight differences

in data, are not pleasant to observe. Lastly, the ellipsoid is

a more inconvenient figure to use in calculations than the

spheroid. For these reasons the earth has not yet been

regarded as an ellipsoid in practical geodetic computations,

and it is not probable that it will be for a long time to come.

84. The Earth as an Ovalo1d.

In a spherical, spheroidal, or ellipsoidal earth the northern

and southern hemispheres are symmetrical and equal; that is

to say, a plane parallel to the equator, at any south latitude,

cuts from the earth a figure exactly equal and similar to that

made by such a plane at the same north latitude. The

reasons for assuming this symmetry seem to have been three:

first, a conviction that a homogeneous fluid globe, and hence

perhaps the surface of the waters of the earth, must assume

such a form under the action of centrifugal and centripetal

forces; secondly, ignorance and doubt of any causes that

would tend to make the hemispheres unequal; and thirdly,

an inclination to adopt the simplest figure, so that the labor

of investigation and calculation might be rendered as easy as

possible. These reasons are all very good ones, but gradually

there have arisen certain considerations leading to the conclu

sion that there are causes which tend to make the southern

hemisphere greater than the northern. These considerations
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embrace a vast field of inquiry in astronomy and physical

geography of which only a brief statement can be given here.

The earth moves each year in an ellipse, the sun being in

one of the foci, and revolves each day about an axis inclined

some 66£ degrees to the plane of that orbit. When this axis

is perpendicular to a line drawn from the center of the sun to

that of the earth occur the vernal and autumnal equinoxes,

and at points equally removed from these are the summer and

winter solstices. For many centuries the earth's orbit has

been so situated in the ecliptic plane that the perihelion, or

nearest point to the sun, has nearly coincided with the winter

solstice of the northern hemisphere and the summer solstice

of the southern hemisphere. The consequences are: first,

the half of the year corresponding to the winter is about seven

days longer in the southern hemisphere than in the northern;

secondly, during the year the south pole has about 170 more

hours of night than of day, while the north has about 170

more hours of day than of night; and, thirdly, winter in the

northern hemisphere occurs when the sun is at his least dis

tance from the earth, and in the southern when he is at his

greatest. From these three reasons it would seem that the

amounts of heat at present annually received by the two

hemispheres should be unequal, the northern having the most

and the southern the least. Now, on considering the physi

cal geography of the globe, these two facts are seen : first,

fully three-fourths of the land is in the northern hemisphere

clustered about the north pole, while the waters are collected

in the southern; and secondly, the south pole is enveloped

and surrounded by ice to a far greater extent than the

northern. There is then a considerable degree of probability

that some connection exists between these astronomical and

terrestrial phenomena, that the former, indeed, may be the

•cause of the latter. The mean annual temperature of the

southern hemisphere may have been for many centuries

sufficiently lower than that of the northern hemisphere to
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have caused an accumulation of ice and snow whose attraction

drags the waters toward it, thus leaving dry the northern

lands and drowning the southern ones with great oceans.

Hence there appear to be causes which tend to render the

earth ovaloidal, or egg-like, in shape, the large end being at

the south pole.

The process of finding the dimensions of an ovaloid of

revolution to represent the figure of the earth would be the

same in principle as that already described for the spheroid

and ellipsoid. The equation of an oval should be stated, and

preferably one that reduces to an ellipse by the vanishing of

a certain constant. From this equation an expression for the

length of an arc of the meridian for both north and south

latitude can be deduced, and this be finally expressed in terms

of the small deviations between the plumb lines and the

normals to the ovaloidal meridian section at the latitude

stations. The solution of these equations by the Method of

Least Squares will give the most probable values of the con

stants, determining the size and shape of the oval due to the

data employed. Such computations have not yet been

undertaken, on account of the lack of sufficient data from

geodetic surveys in the southern hemisphere. Since such

surveys can only be executed on the continents and largest

islands, it is clear that the data will always be few in number

compared with those from the northern hemisphere. Pendu

lum observations, discussed on the hypothesis of a spheroidal

globe, by Clairaut's theorem, are able to give some informa

tion; since they can be made on small islands as well as on

the main lands, it is possible thereby to obtain knowledge

concerning the separate ellipticities of the two hemispheres.

An important idea to be noted in this branch of our subject

is that the surface of the waters of the earth is, probably,

not fixed, but variable. About the year 1250, the perihelion

and the northern winter solstice coincided, and the excess in

annual heat imparted to the northern hemisphere was near its
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maximum. Since that date they have been slowly separat

ing, and are now nearly eleven degrees apart. This separa

tion increases annually by about 61".75,"so that a motion of

180 degrees will require about 10450 years, and when that is

accomplished the perihelion will coincide with the southern

winter solstice. Then the condition of things will be exactly

reversed, and perhaps the ice will accumulate around the

north pole, the waters will flow back from the south to the

north, and the lands in the southern hemisphere become dry

while those in the northern hemisphere become submerged.

The change is so slow that it might remain undetected for

centuries and yet ultimately be sufficient to perceptibly alter

the relative shapes and sizes of the two hemispheres. These

considerations, though interesting, are speculations only, for

causes not now known may intervene to produce results which

as yet have not been even faintly imagined.

85. The Earth as a Geo1d.

The word Geoid is used to designate the actual figure of

the surface of the waters of the earth. The sphere, the

spheroid, the ellipsoid, the ovaloid, and many other geometri

cal figures may be, to a less or greater degree, sufficient prac

tical approximations to the geoidal or earthlike shape, yet no

such assumed form can be found to represent it with perfect

accuracy. The geoid, then, is an irregular figure peculiar to

our planet; so irregular, indeed, that some have irreverently

likened it unto a potato; and yet a figure whose form may

be said to be subject to fixed physical laws, if only the funda

mental ideas implied in the name be first clearly and mathe

matically defined.

The first definition is that the surface of the geoid at any

point is perpendicular to the direction of the force of gravity,

as indicated by the plumb line at that point; from the laws

of hydrostatics it is evident that the free surface of all waters
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in equilibrium must be parallel to that of the geoid. The

second definition determines that our geoidal surface to be

investigated is that coinciding with the surface of the great

oceans, leaving out of consideration the effects of ebb and

flood, currents and climate, wind and weather. Under the

continents and islands this surface may be conceived to be

produced so that it shall be at every place perpendicular to

the plumb-line directions. If a tunnel be driven on the sur

face from ocean to ocean it is evident that the water flowing

from each would attain equilibrium therein and its level

would show the form of the geoid along that section of

the earth.

The following figure may perhaps give a clearer idea of the

properties of the geoid and of its relation to the spheroid. It

represents a small part of a meridian section, the northern part
 

being land and the southern part being the ocean. The full-

line curve shows the section of the spheroid, while the lighter

line shows that of the geoid. At any station 5 the line SN

is normal to the spheroid, while the line SZ is the direction

of the plumb line or of the force of gravity. Hence the sur

face of the spheroid is normal at each station to the line SZ.

The line PP being drawn parallel to the axis of the earth and

QQ parallel to the equator, it is clear that the angle which

SZ makes with QQ is the astronomical latitude of the station

S, while the angle which SJV makes with QQ is the geodetic

latitude. The angle ZNS is hence the difference of these

latitudes, or the so-called plumb-line deflection.
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The figure represents roughly the probable relative positions

of the spheroid and geoid. Under the continents the geoid

tends to rise higher, while on the oceans it tends to sink lower,

than the surface of a spheroid of equal volume. The attrac

tion of the heavier and higher continents lifts, so to speak,

the geoidal surface upward, while the lower and lighter ocean

basins allow it to sink downward. To this rule there are,

however, many exceptions, and these exceptions teach that

the earth's crust is of variable density; for instance, south

ward of the great mountains in India it would be expected

that the plumb-line deflections would all be toward the north,

but this is by no means the case.

It may now be seen that the plumb-line deflections are

really something artificial, depending upon the use of a par

ticular spheroid. The geoid is an actual existing thing; the

spheroid is not, but is largely an assumption introduced for

practical and approximate purposes. At any station S in the

above figure, the direction SZ is the only one that can be

observed, and the angle made by it with QQ can be measured

with a probable error of less than one-tenth of a second of arc.

The angle ZSN, or the so-called plumb-line deflection at S,

will hence vary with the elements of the particular spheroid

employed, and with the correct orientation of geoid and

spheroid. A geodetic latitude (or spheroidal latitude as it

should perhaps be more properly called) is something that

cannot be directly measured, and therefore it seems that the

plumb-line deviations for even a particular spheroid cannot

be absolutely found until observations have been made over

an extent of country wide enough to enable us to judge of

the laws governing the geoid itself. A very slight change in

the position of the above elliptical arc may add or subtract a

constant quantity from each of the angles between the true

verticals and the normals. The differences of the plumb-line

deflections at neighboring stations will, however, remain

closely the same. For instance, if two plumb-line deflections



86. 245CONCLUSION.

are 3". 50 and 1".25 for a certain spheroid, another spheroid

may be drawn making them 2". 75 and o".so, the difference

being 2". 25 in both cases.

The above figure gives a very exaggerated picture of the

relation between spheroid and geoid. The greatest plumb-

line deflections are about 30", and it is unusual to find them

exceeding 15"; this small angle could not, of course, be seen

in a common drawing, and hence in any true representation

the spheroidal and geoidal sections should be drawn parallel.

It is further to be noted that these plumb-line deflections

in longitude as well as in latitude, and also that the astronomi

cal and geodetic azimuths of a line, do not agree. Thus at

Parkersburg station, on the U. S. Lake Survey, the plumb-

line deflection in latitude was 1".47 toward the south, the

deflection in longitude was o'.70 toward the west, and the

discrepancy in azimuth was o".j6. The greatest deflection

in latitude found on this survey was 10". 77, and the greatest

one in longitude 12". 13, while the greatest discrepancy in.

azimuth was 1 1 ". 56.

86. Conclus1on.

There have now been briefly set forth a history of geodesy

and the elements of geodetic theory and practice. It has

been seen that the first idea of the shape of the earth was

that of the plane, and the second that of the sphere. Assum

ing it to be a sphere measurements and computations were

made to find its size; these being discordant it was assumed

to be a spheroid and more elaborate investigations were

undertaken. Assuming it to be an ellipsoid other computa

tions were made. The question now arises whether the form

of the geoid can be deduced so that definite statements can

be made regarding its size and figure.

Compared with a spheroid of equal volume, the geoid has

a very irregular surface, now rising above that of the spheroid.
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now falling below it, and ever changing the law of its curva

ture, so as to conform to the varying intensity and direction

of the forces of gravity. Where the earth's crust is of greatest

density there it rises, where the crust is of least density and

thickness there it sinks. From a scientific point of view it

will be valuable to know the laws governing its form and size;

from a practical point of view it appears that until these are

known the earth's figure can never be accurately represented

by a sphere or spheroid or ellipsoid, or other geometrical

form. For instance, if it be desired to represent the earth

by an oblate spheroid, the best and most satisfactory one

must be that having an equal volume with the geoid, and

whose surface everywhere approaches as nearly as possible to

the geoidal surface. Such a spheroid cannot, of course, be

found until more and better data concerning the geoid have

accumulated, yet what has already been said is sufficient to

indicate that the dimensions at present used are probably

somewhat too large. Granting that in general the geoid rises

above this spheroid under the continents and falls below it on

the seas it seems evident, since the area of the oceans is

nearly three times that of the lands, that the intersection of

the two surfaces will generally be some distance seaward from

the coast line, as seen at b in the figure of the last Article.

Now geodetic surveys can only be executed on the continents,

and even if they be reduced to the sea level at the coast, or

to a in the diagram, the elements of a spheroid deduced from

them will be too large to satisfy the above condition of

equality of volumes, for the ellipse through a is evidently

larger than that through b. At present it would be purely a

guess to state what quantity should be subtracted from the

semi-axes of the Clarke spheroid on account of these consid

erations.

For a locality where precise astronomical and geodetic work

has been done a fair picture of the relation of the spheroid to

the geoid may be obtained. But on the oceans, where such
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work cannot be executed, it will generally be impossible to

secure numerical comparisons. The word Geoid, in fact,

with all the fruitful ideas therein implied, is comparatively

new, it having been coined in 1872. Its mathematical

properties, resulting from its definition, have been studied,

and Bruns has demonstrated that the mathematical figure of

the earth may be determined independently of any hypotheti

cal assumption, provided that there have been observed at

and between numerous stations five classes of data, namely,

astronomical determinations of latitude, longitude, and

azimuth, base line and triangulation measurements, vertical

angles between stations, spirit leveling between stations, and

determinations of the intensity of the forces of gravity.

These five classes are sufficient for the solution of the

problem, but also necessary; that is, if one «f them does not

exist, a hypothesis must be made concerning the shape of the

earth's figure. These complete data have, however, never

yet been observed for even an extent of country so small as

England, a land probably more thoroughly surveyed than any

other. To render geodetic results of the greatest scientific

value, it is hence necessary that either the pendulum or some

other instrument of precision should be employed to deter

mine the relative intensity of the forces of gravity at the

principal triangulation stations, and that trigonometric level

ing by vertical angles should be brought to greater perfection.

These conclusions appear to neglect the circumstance that

the geoid is not a fixed and invariable figure. Atmospheric

influences are continually at work to tear down the mountain

ranges and fill up the ocean basins; as this goes on the geoid

tends to become more uniform in curvature. Internal fires

cause parts of the earth's crust to slowly rise and fall, and

immediately the geoidal surface undergoes a like alteration.

These changes are, however, probably slight compared to

those caused by the conical rotation of the earth's axis around

its mean position in its period of about 425 days. Owing to
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this rotation all astronomical latitudes, longitudes, and

azimuths are subject to periodic changes, and the position of

the geoid with respect to the spheroid is constantly varying.

It is hence plain that the geoid can never be used as a figure

for standard reference in geodetic surveying. On the con

trary, a spheroid of revolution, or an ellipsoid with three

unequal axes, must always be employed as the standard

figure, its size and shape being so determined as to render a

minimum the sum of the squares of all the plumb-line deflec

tions that occur during a complete cycle of the conical axial

rotation.
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Chapter XI.

TABLES.

87. Explanat1on of the Tables.

The following tables have been mostly compiled from the

extended tabulations given in Reports of the U. S. Coast and

Geodetic Survey and in the Smithsonian Geographical Tables.

They will be sufficient for the solution of the problems given

in this volume, although in some cases the larger tables will

be more convenient in interpolation. All dimensions of the

earth are for the Clarke spheroid of 1866.

The meter used in these tables agrees with that of the

Smithsonian volume, its relation to the yard being exactly

expressed by the fraction and to the foot by thus,

the number of feet in a meter is 3.2808333; the meter of the

tables of the Coast and Geodetic Survey published prior to

1897 is, however, 3.2808693 feet, this being the value

deduced by Clarke's comparisons of 1866.

Table I contains mean values of the correction for refrac

tion to be added to all vertical angles taken upon celestial

objects. The values given are mean ones, the word mean

implying average atmospheric conditions. Under unusual

extremes of temperature and barometric pressure the actual

refraction may be greater or less than these mean values, and

in precise work thermometer and barometer readings are to

be taken. For the class of work described in Chapter V the

mean values of the table will be amply sufficient. Further, it

may be remembered that for altitudes greater than 30° the

mean refraction is expressed by 57". 7 cotA, where h is the

apparent altitude.
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Tables II and III contain lengths of arcs of the meridian

and parallels in miles, meters, and feet. The length stated

for a meridian arc is the length of an arc whose middle point

has that latitude; thus the length of one degree of latitude

at latitude 40° is the length from latitude 39° 30' to latitude

40° 30'. The lengths given for arcs of longitude are measured

on the parallels of latitude. The manner of computing these

tables is explained in Art. 61.

Table IV contains logarithms of the radii of curvature of

the meridian and of the prime-vertical normal section; the

derivation of these values is explained in Art. 62. The addi

tion of the two logarithms gives the logarithm of the square

of the radius of the osculatory sphere, since R,R, = R'. The

fourth column contains logarithms of the radii of curvature

of the parallels, computed by the formula r = R, cosZ.. The

last column gives values of the logarithm of 206 265/2^?,^?,,

which is to be added to the logarithm of twice an area, in

meters, in order to obtain the logarithm of the spherical ex

cess of the area, as explained in Art. 63.

Table V contains logarithms of the constants to be used in

computing geodetic latitudes, longitudes, and azimuths. The

expressions for these constants and the manner of obtaining

their values are given in Art. 64. The factor E, given in the

last column, will be needed in computing large triangles and

is hence retained in the table, although its derivation has not

been explained in this volume.

Table VI contains constants and their logarithms which

will be of service in many computations. It will rarely be

necessary to use more than seven of the nine decimals.

It may be noted that in these tables and throughout this

book the logarithms of numbers less than unity are written

with a negative characteristic; thus, log sin O° 01' is 3.24903,

not 8.24903 as given in most tables. When using logarithmic

tables the student should note that 8 and 9 mean 2 and 1 and

should write them thus in his computations.
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Table I. Mean Celest1al Refract1on.

Apparent
Altttude.

Refrac Apparent Refrac- App arent Refrac Apparent Refrac

tion. Altitude. ion. Alti Lude. tion. Altitude. tion.

• 0 / /'

1 O1.80 00 34 54-1 8 OO 6 29.6 23 00 2 15-2 43

ro 32 49.2 20 15-2 30 12.0 44 0 59-7

20

30

40

30 52.3

29 03.5

27 22.5

40 01.8
08.9

06.O

45

46

57-7

55-7

53-8

24 00 a

9 OO

20

40

5 49-3

37.6

26.5

30
47

25 49.8 a 48 51.950 25 00 03.2

1 00

10

20

30

40

24 24.6

23 06.7

21 55 - 6

20 50.9

19 51.9

10

11

OO 5 16.2

06.4

57-2

30 OO. 5 49 50.2

30
26

27

00 1 57-8

55-3

52.8

50.5

50

51

52

53

0 4S.4

46.7

45-1

43-5

40 4

4

30

OO 48.5
00 1

50 18 58.0 20 40. 2
30

54 41.9

28 48.2

46.0

40.4

38.9a 00 18 08.6
40 32.4 00 1 55

56
10 17 23.0 12 OO 4 25 .0

30

43-8
57

58

59

37-5

36. 120 16 40.7 20 18.0 29 00 1

30 16 00.9 40 11. 3 30 41.7
34-7

40

50

15 23.4

14 47.8
'13 OO

20

4 04.9

58.8

30 00 1 39-7

37-7
60

61

0 33-3

32.03 30

3 00 14 14.6 40 53-0
31 00 1 35-8 62 30.7

• 10 13 43-7
14 00 3 47-4 30 33-9 63 29.4

20 .

30

15.0

12 48.3
20 42.1

37.0
32 32. 1

64

65

28.2

26.940
00 1

30.340 23.7 30
66 25-7

50 00. 7 15 00 3 32. 1
33 00 1 28.7 67 24.5

4 00

10

20

11 38.9

18.3

10 58.6

20 27-4

22.9
30 27.0 68

69

23.3

22.2
40

16 00 3 18.6 34 00 1 25.4

23. S 70 0 21.0
30 39.6 20 14-5

35

30

1 22.3
71

72

73

19.9

18.840 21.2 40 10.5 00

50 o3-3
17 00 3 06.6

30 20.8
17.7

5 00 9 46-5 20 02.9 36 00 1 19.3 74 16.6

10 30.9 40 a 59-3 30 17-8 75 15-5

20

30

40

16.0

01.9

8 48.4

18 00

20

a 55-8

52-5

49-3

37 00 1 16.5

15. 1

76

77

78

14-5

13-4

12.3
30

50 35-6
40

38 00 1 13.8 79 11. 2

6 00 8 23.3
19 00 a 46. 1 30 12.4

80 0 10.2

10 11. 6
20 43-1

39 00 1 11. 2 81 09. 1

20 00.3
40 40.2

30 09.9 82 08. 1

3o

40

50

7 49-5

39-2

29.2

20 00 a 37-3

34-5

31.9

08.7

07.5

83

84

85

07.1

06.1

05.1

20
40 00 1

40
30

7 00 7 1g-7 21 00 a 293

26.8

41 00 1 06.3 86 04. 1

10 10.5 20
30 05.1 87 03.1

88 02.1
20

6 53-3

01.7 40 24.3 42 00 1 04.0
89 01 . 1

30

45-1

37-2

22 00 a 21 .9
30 02.9

40
30 18.5

50
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Table II. Lengths of Arcs of the Mer1d1an.

Latitude.

One Degree.
One Minute.

Meters.

One Second.

Miles. Meters. Meters. Feet.

0° 68.703 11o 568 1842.81 30.713 1OO. 766

5 .709 577 2.95 .716 •773

10 -725 602 3-37 •723 • 797

15 •751 644 4.06 •734 •834

20 68.786 11o 700 1844.98 30- 75o 100.886

21 •794 713 5.21 •737 .897

22 .802 726 5-44 •741 .910

23 .810 740 5.68 761 .922

24 .819 754 5.91 .765 •935

25 68.829 1 10 769 1846. 15 30.769 100.949

26 .838 785 6.41 -773 .963

27 .848 800 6.67 •778 •977

23 .858 816 6.94 .782 .992

29 .868 833 7.21 •787 101.007

30 68.879 11o 850 1847.49 30.791 101.022

31 .S89 867 7.78 .796 .038

32 .900 884 8.07 .801 .054

33 .911 002 8. 37 .806 .070

34 923 920 8.67 .811 .086

35 68.934 1 10 939 1848.98 30.816 1 01 . 103

36 .946 957 1 849 . 29 .811 . 120

37 •957 976 9.60 .827 •137

38 .969 995 9.92 .832 -155

39 .981 111 014 1850.24 •837 .172

40 68.993 111 034 1850.56 30.843 101.190

41 69.005 053 0.89 .848 .208

42 .017 073 1.22 • 854 .225 .

43 .029 093 1-54 •859 .243

44 .042 112 1.87 .865 .261

45 69.054 111 132 1852.20 30.870 101.279

46 .067 152 2-53 .876 • 297

47 .079 172 2.86 .881 315

48 .091 191 3.19 .886 -333

49 . 103 211 3-51 .892 -351

5" 69.115 111 231 1853.84 30.897 1O1.369

51 .127 250 4. 16 .903 .387

52 .139 269 4.49 .908 .404

53 .151 288 4.81 .913 .422

54 . 163 307 512 .919 •439

55 69.175 111 326 1855-43 30.924 101.456

60 .230 416 5 69 •949 .538

65 .281 497 5.82 .971 .612

70 324 567 5-95 .991 .676

75 69.360 111 624 1860.40 31 .007 101.728

80 .386 666 1 . 10 .018 .766

85 .402 692 1-53 .026 .788

90 .407 701 1.68 .028 • 797
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Table III. Lengths of Arcs of Parallels.

Latitude.

One Degree.
One Minute.

Meters.

One Second.

Miles. Meters. Meters. Feet.

o° 69.171 1ll 322 1855-36 30.923 1O1.452

5 68.911 101 901 1848.35 30.806 1O1.069

10 68.128 1O9642 1827.36 30.456 99.921

«5 66. 830 107 553 1792- 55 29.709 98.018

20 65.026 104 650 1744.16 29.069 95-372

21 64.606 103 973 1732.89 28.881 94-755

22 64. 166 103 265 1721.08 28.685 94. 1 10

23 63.706 102 525 1708.76 28.479 93-436

24 63.227 101 755 1695.91 28.265 92.733

25 62.729 100953 1682.55 28.042 92.003

26 62.212 100 121 1668.68 27.811 91.244

27 61.676 99258 1654.30 27.562 90.458

28 61. 121 98365 1639.41 27.322 89 . 644

29 60. 548 97 442 1624.03 27.067 88.803

30 59-956 96 489 1608.16 26.803 87-935

31 59-345 95 507 1591-79 26.530 87.040

32 58.717 94 496 1574-94 26.249 86.118

33 58.071 93 456 1557-61 25.960 85-171

34 57-407 92 388 1539-80 25.663 84.197

35 56.726 91 291 1521.52 25-359 83. 198

36 56.027 90 167 1502. 78 25.046 82.173

37 55-3" 89015 1483-58 24. 726 81 . 123

38 54-578 87 836 1463-93 24-395 80.048

39 53- 829 86 630 1443-83 24.064 78.949

40 53-o63 85 937 1432.28 23.871 77.826

41 52.281 84 138 1402.31 23.372 76.679

42 51-483 82 854 1380.90 23.015 75-5o8

43 50.669 81 544 1359-07 22.651 74-315

44 49 . 840 80 209 1336. 82 22.280 73.098

45 48.995 78 850 1314-17 21 .903 71859

46 48.135 77466 1291 .11 21.518 70.599

47 47.261 76 059 1267.65 21.128 69.316

48 46.372 74 629 1243.81 20.730 68.012

49 45.469 73 175 1219.58 20.362 66.687

50 44-552 71 699 1194.65 19. 911 65.342

51 43621 70 201 1170.01 19.500 63-977

52 42.676 68 681 1144.68 19.078 62.592

53 41.719 67 140 1119.01 18.650 61.1S8

54 40.749 65 579 1092.98 18.216 59-765

55 39.766 63 997 1066.62 17-777 58.323

60 34-674 55 803 930.05 15.501 50.855

65 29 315 47 178 786.30 13.105 42.995

7^ 23.729 38 189 636.48 10.608 34.803

75 17.960 28 904 481.73 8.029 26.341

80 12.051 19 395 323.24 5-387 17.675

85 6.049 9 735 162.25 2.704 8.871

90 0 0 0 0 0
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Taele IV. Logar1thms for Geodet1c Computat1ons.

1N MKTERS.

Radius of Curvature.

Latitude.
Of Meridian, Of Prime Vertical

Normal Sectton. A',.
Of Parallel,

r.

. Factor m for
Sphertcal Excess.

o° 6.801 7538 6. 804 7034 6.804 7o34 9 . 40 694

5 7873 7137 •803 0579 689

1O 8868 7478 .798 0993 676

15 6.802 0492 8019 •789 7457 664

20 6.802 2698 6.804 8754 6.777 8612 D.40 624

21 3204 8922 •775 0439 618

22 3729 9098 •7720757 6ll

23 4274 9279 . 768 9540 604

24 4838 9467 .7656769 596

25 6.802 541S 6. 804 9661 6. 762 2418 9.40 5S9

26 6016 9860 . 758 6462 582

27 6633 6.805 0065 •7548874 571

28 7264 0275 .7509624 565

29 7918 0492 . 746 8685 555

30 6.802 8572 6.805 o712 6. 742 6018 &.40 546

31 9246 0938 •738 1594 536

32 9933 1176 •733 5382 527

33 6.803 0631 1399 •728 7313 518

34 1341 1635 •723 7377 509

35 6.803 2062 6.805 1876 6.718 5611 9.40 500

36 2791 21 18 .713 1694 490

37 3528 2364 .707 5850 480

38 4273 2613 . 701 7934 470

39 5025 2S63 .695 7889 460

40 6.803 5782 6.805 31'6 6.689 5656 9.40450

41 6545 3369 .683 1168 440

42 73" 3625 .676 4350 430

43 8080 3880 .669 5155 419

44 8S51 4138 .662 3479 409

45 6. 803 9623 6.805 4395 6.6536575 §.40 399

46 6.8040395 4652 .6472365 389

47 1 166 4908 .6392741 379

48 1935 5166 .631 0275 368

49 2V05 5422 .622 4851 358

50 6 . 804 3466 6.805 5677 6.613 7252 9.40 34S

51 4224 5929 .604 4647 338

52 4976 6180 . 594 9600 328

53 5723 6429 .585 1059 ' 318

54 7195 6676 .5748863 301

55 6 . 804 8626 6.805 6919 6. 564 2832 &.40 284

60 6. 805 0693 8086 - 504 7786 252

65 3857 914 1 .431 8624 210

70 6591 6. 806 0052 . 340 0569 173

75 6.805 8809 6.806 0791 6.2190753 9.40 144

80 6.806 0443 1336 .045 S038 125

85 1444 1670 5 . 746 4630 108

9o 17S2 1782 — °O 104
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Table V. Logar1thms for the LMZ Problem.

1N METErs.

Latitude. A' D E

0° 2. 509 9613 2.5126713 — °0 — °° f5.6124

5 7"4 6378 IO.34885 8.6275 .6223

1O 6773 5383 .65308 .9220 .6511

'5 6232 3759 .38460 8.0871 .6970

20 2.509 5497 2.512 1553 IO.96732 8. 1964 15-7574

21 5329 1047 _ . 99036 .2138 .7712

22 5153 0522 S.01252 . 2302 • 7852

23 4972 2. 511 9977 .03389 •2487 •7997

24 4784 9613 •05455 .2629 .8146

25 2.509 4592 2. 511 8834 §.07456 8.2762 15.8300

26 4391 8231 •09399 .2885 .8458

27 4186 7619 .11289 .3000 .8620

28 3976 6988 .13131 •3107 .8785

29 3760 6341 .14931 3206 •8955

30 2- 509 3540 2. 511 5681 §16691 8.3298 I5.9127

31 3315 5006 .18415 •3382 .9304

32 3086 4320 . 20107 .3460 9484

33 2853 3621 .21771 •3532 .9667

34 2617 291 1 . 23408 •3597 •9853

35 2.509 2377 2. 511 2191 9.25023 8.3656 H.0043

36 2134 1462 .26616 3709 .0237

37 1888 0724 .28192 -3756 .0433

38 1639 2.5109979 .29752 -3797 • 0633

39 1389 9227 -31298 •3833 .0836

40 2.509 1136 2.5108469 5.32833 8.3863 14.1C43

41 0882 7707 •34357 .3888 •1253

42 0627 6941 •35874 •3907 .1467

43 0471 6172 •37385 .3921 .1684

44 01 14 5401 .38893 •3929 .1905

45 2.5089856 2.510 4629 9.40399 §•3933 14.2130

46 9599 3857 .41905 3932 •2359

47 9342 3086 •43413 •3924 .2592

48 9065 2316 •44925 .3912 .2830

49 8830 1550 .46442 .3894 .3071

5o 2.508 8575 2.5100787 8.47967 63871 14. 3318

5t 8323 0028 .49501 •3842 •3569

52 8072 2.509 9275 .51047 .3808 .3826

53 7823 8529 .52607 .3768 .4088

54 7576 7790 .54182 •3722 •4355

55 2.508 7333 2.509 7059 9.55776 8.3671 I4.4629

60 6166 3559 .64108 .3320 .6102

65 5111 0394 • 73342 .2790 .7802

70 4199 2.508 7660 .84066 .1998 .9836

75 2.508 3460 2.508 5442 9.97338 8.0909 I3.2410

80 2915 3808 8.15493 9.9262 .9986

85 2581 2807 •45913 •6319 I2.2038

90 2469 2469 + » — °° + »
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Table VI. Constants and the1r Logar1thms.

(Radius of circle or sphere = 1.)

Name.
Symbol. Number. Logarithm.

Area of circle

Circumference of circle

Surface of sphere-

Tt

271

4*

3 141 592654

6.283 185 307

12.566 370 614

O.497 149 873

O.798 179 868

1 . 099 209 864

Quadrant of circle

Area of semicircle

Volume of sphere

i*

i*

**

i*

0.523 598 776

O.785 398 163

1.570 796327

4.187 790205

T.718 998 622

I.895089 881

0. 196 119 877

0.622 088 609

71* 9.869604401

1.772 453 851

O.994 299 745

0.248 574 93671*

Degrees in a radian

Minutes in a radian

Seconds in a radian

1So/jc

10800/ff

57-295 779 513

3 437-746 771

206 264 . 806

1.758 122 632

3 .536 273 883

5.314425 1336480OO/ 71

1/*

I/X*

0.318 309 886

0.564 189 584

0. 101 321 184

L502 850 127

i.751 425064

I.005 700 255!/*•

Circumference/360 arc 1°

sin 1°

0.017453 293

0.017 452 406

2.241 877 368

a. 241 855 318

Circumference/21600 arc 1'

sin 1'

0.000 290 888

0.000 290 888

4.463 726 117

4.463 726 111

Circumference/ 1296000 arc 1"

sin 1"

0 . 000 004 848

0.000004848

6.685 574 867

6. 685 574 867

15 t=e Naperian system of logs

Modulus common system of logs

Naperian log of 10

1 2.718 281 828

0.434 294482

2.302 585 093

0.434 294 482

I.637 784311

0.362 215 689

M

l/M

Probable error constant

hr

hr V2

0.476 9363

0.674 489 7

I.678 4604

I.828 9754

Feet in one meter

Miles in one kilometer

m/ft.

km/mi.

3.280 833 3

0.621 369 9

0 .515 984 1

I.7933502
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INDEX.

Accidental errors, 8, 9

Adjustment of angles, 18, 43, 209, 211

observations, 25, 219

triangles, 17, 51, 213

Adjustments, complex, 229

figure, 216

levels, 94

polygon, 222

quadrilateral, 225

station, 18, 51, 209

Alignment curve, 174

Almanac, nautical, 109

Anaximander, 138

Angles, 18, 28, 39, 206

and bases, 74

at stations, 18, 51, 60, 209

horizontal, 39, 206

geodetic, 215

on sphere, 151

vertical, 33, 101, 104, 105

Archimedes, 138

Arcs on meridian, 160, 170, 252

parallel, 171, 253

Areas, error in, 32

spherical, 151

spheroidal, 175

Aristotle, 138

Arithmetic mean, 7, 13, 27, 34

Astronomical latitude, 108, 166, 244

notions, 108

work, 107-135

Atmosphere, 98, 249

Axis of earth, 136, 169, 247

- Azimuth, astronomical, 107, 109, 134

by altitude of sun, 114

Azimuth, by Polaris, 117, 121

by solar transit, no

geodetic, 36, 177

on sphere, 150, 153

on spheroid, 177, 215

plane, 36, 55, 69

Base lines, 71-86

Bars, measuring, 71

Bessel's spheroid, 168

Bonne's projection, 190

Boundary lines, 230

British Ordinance Survey, 168, 237

Broken bases, 83

Bruns, 247

Cassini, 142

Celestial refraction, 251

Centrifugal force, 233 '

Central standard time, 129

Circles, 148, 256

Circuit of levels, 94

Chain triangle nets, 67

Clairaut's theorem, 232

Clarke's ellipsoids, 238

spheroid, 168, 237

Coefficient of expansion, 76

refraction, 102

stretch, 76

Columbus, 141

Conditional equations, 59, 218

Conditioned observations, 17, 59.219

Constant errors, 7

Constants, table of, 256

Coordinates, 36, 55, 69, 181, 194
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Coordinate systems, 36, 182, 194

Correlates, method of, 6o, 220

Cost of towers, 201

Culmination of Polaris, 127

moon, 133

Curvature of earth, 88, 99

radii of, 157, 173, 254

Curve of probability of error, ll, 26

Declination of Polaris, 118

sun, 111

Deflection of plumb-line, 164, 243

Degree of meridian, 141, 147,181,252

parallel, 149, 171, 253

Degree, trapezoidal, 153, 176

Delambre, l6j

Direct observations, 17, 59

Direction-angle, 195

Direction theodolite, 39, 207

Directions, method of, 209, 210

Dumpy level, 97

Duplicate level lines, 89

Earth, figure of, 137-149, 232-248

orbit of, 240

radius of, 148

radii of curvature, 173, 254

Eastern standard time, 129

Eccentric signals, 205

stations, 202

Elements of ellipsoid, 238

spheroid, 159, 166, 168

Ellipse, equation of, 157

properties of, 156

radii of curvature, 158

Ellipsoid, earth as, 235, 238

Ellipticity, 156, 168, 232

Elongation of Polaris, 118

End measures, 71

Engineers' level, 97

transit, 114

Equations, normal, 20, 22

observation, 16, 19, 22

side, 61, 218

Eratosthenes, 13S

Error, law of probability, 9

probable, 26

Errors, accidental, 8

constant, 7

residual, 8

Errors in angles, 40

base lines, 78, 82

triangles, 49

Eccentricity of ellipse, 156

Excess, spherical, 151, 156, 176, 213

Expansion, coefficient of, 76, 78

Fernel, 141

Field notes, 41, 44, 80

Figure adjustment, 60, 216

Figure of earth, 137, 140, 147, 232-248

Flamsted's projection, 189

Functions of observations, 32

Gauss, 25

Geodesy, 137-256 |

Geodesic lines, 174

Geodetic bases, 75

coordinates, 181

latitude, 183, 245

leveling, 87, 97

projections, 181, 189

tables, 194, 249

triangulation, 50,68,85,105,

1 98-23 1

Geography, 36, 108, 181, 240

Geographical tables, 176, 194

Geoid, 242, 243, 245, 247

Gore, 35

Greeks, speculations of, 138

Heights, determination of, 87, 103,

105

Heliotrope, 202, 204

Hilgard, 180

History of geodesy, 137-144, 160,

232, 242

Horizon, 108

Horizontal angles, 39, 44, 109, 206

Hour angle, 109
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Independent angles, 42, 210

observations, 17

Indirect observations, 17, 19, 22, 29

Inverse LMZ problem, 186

Jordan, 197

Latitude, 36, 108, 165

astronomical, 107

by a star, 127

by the sun,. 126

ellipsoidal, 236

geodetic, 157, 183, 245

spherical, 153

spheroidal, 177

variation of, 136

Lamp signals, 205

Lapland arc, 144, 160

Laplace, 161, 233

Law of error, 9, 11

Least squares, 7-35

history of, 163

literature of, 34

principle of, 12, 15

theory of, 33

Legendre, 34, 163

Lengths of arcs of meridian, 170, 252

parallel, 171, 253

quadrant, 164,169

Level surface, 87, 100

Leveling, 16, 87-106

Linear coordinates, 37, 194

measurements, 26, 71

Literature of geodesy, 3;,

L.MZ compulations, 183, 186, 255

constants, 180, 255

Logarithms for geodetic computa

tions, 254, 255

Logarithms of constants, 254-256

Longitude, 36, 132, 135, 153, 177

Lunar culminations, 133

distances, 132

Magellan, 141

Mandeville, 140

Map projections, 189

Mason and Dixon, 145

Measurement of angles, 39, 44

lines, 79

meridian arcs, 139,

144

with tape, 79

Mercator's projection, 190

Meridian arcs, 139, 144, 147, 158, 160.

167, 168, 170, 252

Metallic bars, 71

tapes, 76

Meter, 163, 169, 180

Method of least squares, 7-35, 162

Mistakes, 8

Monuments, 200

Mosman, 202

Most probable value, 8, 13, 15, 33

N- point problem, 67

Nautical almanac, 109

Navigation, 126, 191

Net of level lines, 95

triangles, 67, 109, 217, 229

Newton, 142, 143, 232

New York state survey, 200

Normal equations, 20, 22, 24

sections, 172

Norwood, 141

Oblate spheroid, 143

Observation equations, 16, 19

Observations, conditional, 17

direct, 17

independent, 17

indirect, 17-22

weighted, 14

Ocean level, reduction to, 84

surface, 138, 241, 242

Orbit of earth, 240

Orthographic projections, 150, 189

Osculatory sphere, 175

Ovaloid, 239

Parallax of sun, 116
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Parallel of latitude, 149

lengths of, 171, 234, 253

Pendulum observations, 232, 241

Pentagon, 60

Peruvian arc, 144

Photographs, 198

Picard, 141

Plane triangles, 54

triangulation, 36-70

Plato, 138

Plumb-line deflections, 164

Polaris, azimuth by, 117, 121

declination of, 118

latitude by, 127

magnitude of, 123

Posidonias, 140

Polyconic projection, 192

Precise astronomical work, 134

leveling, 97

triangulation, 36

Precision of measurements, 12, 25

Primary triangulation, 206, 218

Prime vertical, 132, 173

Probable error, 25

of angles, 43, 206

azimuth, 113, 116

bases, 75

conditioned observations, 222

computed values, 31

level lines, 91, 93, 96

linear measures, 72

indirect observations, 29

Probability curve, 11, 13

Projections, 181, 189

Prolate spheroid, 143

Quadrant of ellipsoid, 238

spheroid, 163, 164

Quadrilateral, 67, 152, 225

Radian, 33, 256

Radii of curvature, 85, 173, 175, 254

Radius of earth, 148

Reconnaissance, 198

Rectangular coordinates, 37, 183, 193

Refraction, celestial, 112, 115, 199,

249, 251

terrestrial, 8, 88, 99, 101

Rejection of observations, 44

Repeating theodolite, 206

Repetition of angles, 41

Residual errors, 8, 19, 30

Sag of tape, 77

Schubert, 237

Secondary stations, 61, 64, 202

triangulation, 53, 64, 202

Semi-duplicate level lines, 89

Sextant, 125, 128, 130

Shooting at target, 10

Side equations, 61, 68

Signals, 203

Slope, correction for, 78

Smithsonian tables, 176, 249

Snellius, 141

Solar transit, 110

Soldern, 196

Solution of equations, 24

Sphere, lines on, 149

areas on, 151

Spherical angles, 151, 212

coordinates, 154, 194

excess, 152, 213

geodesy, 137-155

Spheroid, dimensions of, 168, 232,246

oblate, 143

prolate, 143

Spheroidal geodesy, 156-180

Spirit leveling, 87, 94

Standard time, 129

Star, azimuth by, 117

latitude by, 116

Station, adjustment at, 18, 42, 46,

209, 211

Stations, 200

Sun, azimuth by, 11o, 114

declination of, 1n

latitude by, 124

Systematic errors, 7, 40

Tables, 249-256
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Tapes, standard, 71, 76

Target shooting, 9

Temperature, 7, 71, 76, 78

Time, determination of, 169

standard, 161

Theodolites, 206, 207

Three-point problem, 64

Todhunter, 234

Toise, 142

Topography, 198

Towers, 200, 202

Transit, engineers', 39

Trapezoidal degree, 176

Triangle adjustment, 17, 21, 49, 51

computation, 53,57,212,215

net, 67

on sphere, 151

spheroid, 175

Triangulation, geodetic, 198-231

plane, 36-70, 107

Uncertainty of a base, 72, 74

line, 50

U. S. Bureau of Equipment, 109

Weights and Meas

ures, 76

U. S. Coast and Geodetic Survey.

75,84, 102, 180, 194, 109, 202,

231, 234, 249

Lake Survey, 18, 245

Northern Boundary Survey,

231

Variations in geoid, 247

latitude, 136

of ocean surface. 341

Verniers, 40

Vertical angles, 33, 101, 230

Weighted mean, 28

observations, 14

Weights, 19, 22, 25

of angles, 43, 45, 214

levels, 91

lines, 73

Wilson, 99

Woodward, 82, 176, 194

Yard, 169, 249

Zenith telescope, 135

Zone, spherical, 152

spheroidal, 176
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Law of Contracts 8vo, 3 00

Law of Operations Preliminary to Construction in En

gineering and Architecture 8vo, 5 00

Sheep, 5 50

Winthrop's Abridgment of Military Law 12mo, 2 50

MANUFACTURES.

Allen's Tables for Iron Analysis 8vo, 3 00

Beaumont's Woollen and Worsted Manufacture 12uto, 1 50

Bolland's Encyclopaedia of Founding Terms. ... 12mo. 8 00

The Iron Founder 12mo, 2 50

Supplement 12mo, 2 50

Eissler's Explosives, Nitroglycerine and Dynamite 8vo, 4 00

Ford s Boiler Making for Boiler Makers 18mo, 1 00

Metcalfe's Cost of Manufactures 8vo, 5 00

Mctcalf's Steel—A Manual for Steel Users 12mo, 2 00

* Kcisig's Guide to Piece Dyeing 8vo, 25 00

Spencer's Sugar Manufacturer's Handbook . . . .16mo, morocco, 2 00

" Handbook for Chemists of Beet Sugar Houses.

16mo. morocco, 8 00

Thurston's Manual of Steam Boilers 8vo, 5 00

Walke's Lectures on Explosives. . . .. 8vo, 4 00

West's American Foundry Practice 12mo, 2 50

Moulder s Text book 12mo. 2 50

Wiechmauu's Sugar Analysis Small 8vo, 2 50

Woodbury's Fire Protection of Mills bvo, 2 50
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MATERIALS OF ENGINEERING.

(See also Eng1neer1ng, p. 7.)

Baker's Masonry Construction 8vo, $5 00

Bovey's Strength of Materials 8vo, 7 50

Burr's Elasticity and Resistance of Materials 8vo, 5 00

Byrne's Highway Construction 8vo, 5 00

Church's Mechanics of Engineering—Solids and Fluids 8vo, 6 00

Du Bois's Stresses in Framed Structures Small 4to, 10 00

Johnson's Materials of Construction 8vo, G 00

Lanza's Applied Mechanics 8vo, 7 50

Marteus's Testing Materials. (Ileuning.) 2 vols., 8vo, 7 50

Merrill's Stones for Building and Decoration 8vo, 5 00

Merriman's Mechanics of Materials 8vo, 4 00

" Strength of Materials 12mo, 100

Paiton's Treatise on Foundations 8vo, 5 00

Rockwell's Roads and Pavements in France 12mo, 1 25

Spalding's Roads and Pavements 12mo, 2 00

Thurston's Materials of Construction 8vo, 5 00

" Materials of Engineering 3vols.,8vo, 8 00

Vol. I., Non-metallic 8vo, 2 00

Vol. II., Iron and Steel 8vo, 3 50

Vol. III., Alloys. Brasses, and Bronzes 8vo, 2 50

Wood's Resistance of Materials 8vo, 2 00

MATHEMATICS.

Baker's Elliptic Functions 8vo, 1 50

•Buss's Differential Calculus 12mo, 4 00

Briggs's Plane Analytical Geometry 12mo, 1 00

Chapman's Theory of Equations 12mo, 1 50

Compton's Logarithmic Computations 12mo, 1 50

Davis's Introduction to the Logic of Algebra 8vo, 1 50

Halsted's Elements of Geometry 8vo, 1 75

Synthetic Geometry 8vo, 150

Johnson's Curve Tracing 12mo, 1 00

" Differential Equations—Ordinary and Partial.

Small 8vo, 3 50

'* Integral Calculus 12mo, 1 50

" " " Unabridged. Small 8vo. (In press.)

" Least Squares 12mo, 1 50

•Ludlow's Logarithmic and Other Tables. (Buss.) 8vo, 2 00

• •' Trigonometry with Tables. (Bass.) 8vo, 3 00

•M-than's Descriptive Geometry (Stone Cutting) 8vo, 1 50

Merrimau and Woodward's Higher Mathematics 8vo, 5 00
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Merriman's Method of Least Squares 8vo, $2 00

Rice and Johnson's Differential and Integral Calculus,

2 vols, in 1, small 8vo, 2 50

" Differential Calculus Small 8vo, 8 00

" Abridgment of Differential Calculus.

Small 8vo, 1 50

Totten's Metrology 8vo, 2 50

"Warren's Descriptive Geometry 2 vols., 8vo, 3 50

" Drafting Instruments 12mo, 125

" Free-hand Drawing 12mo, 1 00

'« Linear Perspective 12mo, 1 00

" Primary Geometry 12mo, 75

" Plane Problems 12mo, 125

" Problems and Theorems ". 8vo, 2 50

•* Projection Drawing 12mo, 1 50

"Wood's Co-ordinate Geometry 8vo, 2 00

" Trigonometry 12mo. 1 00

"Woolf's Descriptive Geometry Large 8vo, 8 00

MECHANICS-MACHINERY.

(See also Eng1nee1ung, p. 7.)

Baldwin's Steam Heating for Buildings 12mo, 2 50

Barr's Kinematics of Machinery 8vo, 2 50

Benjamin's Wriuklcs aud Recipes 12mo, 2 00

Chordal's Letters to Mechanics 12mo, 2 00

Church's Mechanics of Engineering 8vo, 6 00

" Notes aud Examples In Mechanics 8vo, 2 00

Crehore's Mechanics of the Girder 8vo, 5 00

Cromwell's Belts and Pulleys 12mo, 1 50

" Toothed Gearing 12mo, 1 50

Compton's First Lessons in Metal Working 12mo, 1 50

Comptou and De Groodt's Speed Lathe 12mo, 1 50

Dana's Elementary Mechanics 12mo, 1 50

Dingey's Machinery Pattern Making ISmo, 2 00

•Dredge's Trans. Exhibits Building, World Exposition.

Large 4to, half morocco, 5 00

Du Bois's Mechanics. Yol. I., Kinematics 8vo, 3 50

Vol. II., Statics 8vo, 4 00

" Vol. III., Kinetics 8vo, 3 50

Fitzgerald's Boston Machinist 18mo, 1 00

Flather's Dynamometers 12mo, 2 00

Rope Driving 12mo, 2 00

Hall's Car Lubrication 12mo, 100

HoHy's Saw Filing 18mo, 75
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•Johnson's Theoretical Mechanics. An Elementary Treatise.

12n'o, $3 00

Jones's Machine Design. Part I., Kinematics 8vo, 150

" " " Part II., Strength and Proportion of

Machine Parts 8vo, 3 00

Lanza's Applied Mechanics 8vo, 7 50

MacCord's Kinematics 8vo, 5 00

Merriman's Mechanics of Materials 8vo, 4 00

Metcalfe's Cost of Manufactures 8vo, 5 00

•Michie's Analytical Mechanics 8vo, 4 00

Ricbards's Compressed Air 12mo, 1 50

Robinson's Principles of Mechanism 8vo, 3 00

Smith's Press-working of Metals 8vo, 3 00

Thurston's Friction and Lost Work 8vo, 3 00

The Animal as a Machine 12mo, 100

Warren's Machine Construction 2 vols., 8vo, 7 50

Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)..8vo, 5 00

'- Mechanics of Engineering. Vol. III., Part I.,

Sec. I. (Klein.) 8vo, 5 00

Weisbach's Mechanics of Engineering. Vol. III., Part I.,

Sec. II. (Klein.) 8vo, 5 00

Weisbach's Steam Engines. (Du Bois.) 8vo, 5 00

Wood's Analytical Mechanics 8vo, 3 00

Elementary Mechanics 12mo, 1 25

" " " Supplement and Key 12mo, 1 25

METALLURGY.

Allen's Tables for Iron Analysis 8vo, 3 00

Egleston's Gold and Mercury Large 8vo, 7 50

Metallurgy of Silver Large 8vo, 7 50

• Kerl's Metallurgy—Steel, Fuel, etc 8vo, 15 00

Kunhardt's Ore Dressing in Europe 8vo, 1 50

Metcalf's Steel—A Manual for Steel Users 12mo, 2 00

O'Driscoll's Treatment of Gold Ores 8vo, 2 00

Thurston's Iron and Steel 8vo, 3 50

Alloys 8vo, 2 50

Wilson's Cyanide Processes 12mo, 1 50

MINERALOGY AND MINING.

Barringer's Minerals of Commercial Value. .. .Oblong morocco, 2 50

Beard's Ventilation of Mines 12mo, 2 50

Boyd's Resources of South Western Virginia 8vo, 3 00

" Map of South Western Virginia Pocket-book form, 2 00

Brush aud Penfield's Determinative Mineralogy. New Ed. 8vo, 4 00
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Chester's Catalogue of Minerals 8vo, $1 2"

•' '* •* " Paper, 50

" Dictionary of the Names of Minerals 8vo, 3 00

Dana's American Localities of Minerals Large 8vo, 1 00

" Descriptive Mineralogy. (E. S.) Large 8vo. half morocco, 12 50

'* First Appendix to System of Mineralogy. ... Large 8vo, 100

" Mineralogy antl Petrography. (J. D.) 12mo, 2 00

" Minerals and How to Study Tbem. (E. S.) 12mo, 150

" Text-book of Mineralogy. (E. S.).. .New Edition. 8vo, 4 00

♦Drinker's Tunnelling, Explosives, Compounds, and Rock Drills.

4to, half morocco, 25 00

Egleston's Catalogue of Minerals and Synonyms 8vo, 2 50

Eissler's Explosives—Nitroglycerine and Dynamite 8vo, 4 00

Hussak's Rock forming Minerals. (Smith.) Small 8vo, 2 00

Ihlseng's Manual of Mining 8vo, 4 00

Kunbardt's Ore Dressing in Europe 8vo, 1 50

O'Driscoll's Treatment of Gold Ores 8vo, 2 00

* Pen field's Record of Mineral Tests Paper, 8vo, 50

Rosenbusch's Microscopical Physiography of Minerals and

Rocks, tlddings.) 8vo, 5 00

Sawyer's Accidents in Mines Large 8vo, 7 00

Stockbridge's Rocks and Soils 8vo, 2 50

•Tillman's Important Minerals and Rocks 8vo, 2 00

Walke's Lectures on Explosives 8vo, 4 00

"Williams's Lithology 8vo, 3 00

Wilson's Mine Ventilation 12mo, 1 25

" Hydraulic and Placer Mining 12n'o, 2 50

STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.

(See also Eng1neer1ng, p. 7.)

Baldwin's Steam Heating for Buildings 12mof 2 50

Clerk's Gas Engine Small 8vo, 4 00

Ford's Boiler Making for lloiler Makers 18mo, 1 00

Hcmenwny's Indicator Practice 12mo, 2 00

Kent's Steam-boiler Economy 8vo, 4 00

Knenss's Practice and Theory of the Injector 8vo, 1 50

MacCord's Slide Valve 8vo, 2 00

Meyer's Modern Locomotive Construction 4to, 10 00

Peabody and Miller's Steam-boilers 8vo, 4 00

Peabody's Tables of Saturated Steam 8vo, 1 00

*' Thermodynamics of the Steam Engine 8vo, 5 00

" Valve Gears for the Steam Engine 8vo, 2 50

" Manual of the Steam-engine Indicator 12mo, 1 50

Pray's Twenty Years with the Indicator Large 8vo, 2 50
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Pupin ami Osterberg's Thermodynamics 12mo, $1 25

Reagun's Steam ami Electric Locomotives 12mo, 2 00

Rontgen's Thermodynamics. (DuBois.) 8vo, 5 00

Sinclair's Locomotive Running 121no, 2 00

Snow's Steam-boiler Practice 8vo. 3 00

Thurston's Boiler Explosions 12mo, 1 50

Engine and Boiler Trials 8vo, 5 00

" Manual of the Steam Engine. Part L, Structure

and Theory 8vo, 6 00

•' Manual of the Steam Engine. Part II., Design,

Construction, nnd Operation 8vo, 6 00

2 parts, 10 00

" Philosophy of the Steam Engine 12mo, 75

" Reflection on the Motive Power of Heat. (Camot.)

12mo, 1 50

" Stationary Steam Engines 8vo, 2 50

Steam-boiler Construction and Operation 8vo, 5 00

Spaugler's Valve Gears 8vo, 2 50

" Notes on Thermodynamics 12mo, 1 00

- Weisbach's Steam Engine. (DuBois.) 8vo, 5 00

Whitbam's Steam-engine Design 8vo. 5 00

Wilson's Steam Boilers. (Flather.) 12mo, 2 50

"Wood's Thermodynamics, Heat Motors, etc 8vo, 4 00

TABLES, WEIGHTS, AND MEASURES.

Adriance's Laboratory Calculations 12mo, 1 25

Allen's Tables for Iron Analysis 8vo, 8 00

Bixby's Graphical Computing Tables Sheet, 25

Comptou's Logarithms 12mo, 1 oO

CrandaU's Railway and Earthwork Tables 8vo, 1 50

Davis's Elevation and Stadia Tables Small 8vo, 1 00

Fisher's Table of Cubic Yards Cardboard, 25

Hudson's Excavation Tables. Vol. II 8vo, 1 00

Johnson's Stadia and Earthwork Tables 8vo, 1 25

Ludlow's Logarithmic and Other Tables. (Bass.) 12mo, 2 00

Totten's Metrology 8vo, 2 50

VENTILATION.

Baldwin's Steam Heating 12mo, 2 50

Beard's Ventilation of Mines. 12mo, 2 50

Carpenter's Heating and Ventilating of Buildings 8vo, 3 00

Oerhard's Sanitary House Inspection 12mo, 1 00

"Wilson's Mine Ventilation 12mo, 1 25
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MISCELLANEOUS PUBLICATIONS.

Alcott's Gems. Sentiment, Language Gilt edges, $5 0#

Emmou's Geological Guide-book of the Kocky Mountains, .8vo, 1 60

Ferrel's Treatise on the Winds 8vo, 4 00

Haines's Addresses Delivered before tlte Am. Ry. Assn. ..12mo, 2 50

Motfs The Fallacy of the Present Theory of Sound. .Sq. 16mo, 1 00

Ricbards's Cost of Living 12mo, 1 00

Ricketls's History of Hensselaer Polytechnic Institute 8vo, 3 00

Rotuerhau1's The New Testament Critically Emphasized.

12mo, 1 50

" The Emphasized New Test. A new translation.

Large 8vo, 2 00

Totten's An Importaut Question in Metrology 8vo, 2 50

HEBREW AND CHALDEE TEXT-BOOKS.

Fou Scnoo1.s and Theolog1cal Seminah1es.

Gesenius's Hebrew and Chaldee Lexicon to Old Testament.

(Tregelles.) Small 4to, half morocco, 5 00

Green's Elementary Hebrew Grammar 12tno, 1 25

Grammar of the Hebrew Language (New Edition ).8vo, 8 00

Hebrew Chrestomathy 8vo, 2 00

Letteris's Hebrew Bible (Massoretic Notes in English).

8vo, arabesque, 2 25

MEDICAL.

Hammarsteu's Physiological Chemistry. (Mandel.) 8vo, 4 00

Mott's Composition, Digestibility, and Nutritive Value of Food.

Large mounted chart, 1 25

Ruddiman's Incompatibilities in Prescriptions 8vo, 2 00

Steel's Treatise on the Diseases of the Dog 8vo, 8 60

Woodhull's Military Hygiene 16mo, 1 50

Worcester's Small Hospitals—Establishment and Maintenance,

including Atkinson's Suggestions for Hospital Archi

tecture 12mo, 1 25
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