TS 240 .R6 1921 Copy 1

ATTERN MAKING

RITCHEY-MONROE

1800 Class TS Book. 159 Gopyright Nº___ COPYRIGHT DEPOSIT.

PARTING WALD

. .

х.

PATTERN MAKING

A PRACTICAL TREATISE FOR THE PATTERN MAKER ON WOOD-WORKING AND WOOD TURNING, TOOLS AND EQUIPMENT, CONSTRUCTION OF SIMPLE AND COMPLICATED PAT-TERNS, MODERN MOLDING MACHINES AND MOLDING PRACTICE

By JAMES RITCHEY

FORMERLY INSTRUCTOR IN WOOD-WORKING, ARMOUR INSTITUTE OF TECHNOLOGY

Revised by WALTER W. MONROE

INSTRUCTOR IN PATTERN MAKING, WORCESTER POLYTECHNIC INSTITUTE

ILLUSTRATED

AMERICAN TECHNICAL SOCIETY CHICAGO 1921

COPYRIGHT, 1916, 1921, BY AMERICAN TECHNICAL SOCIETY

COPYRIGHTED IN GREAT BRITAIN ALL RIGHTS RESERVED

NOV -3 1921

21-19226

Two I

OCI. A630154

INTRODUCTION

PATTERN MAKING is an art requiring the skill of a carpenter or wood turner combined with a rare mechanical knowledge and an ability to visualize the machines for which the patterns are to be made. This art has expanded wonderfully in the past few years just as other branches of our mechanical industries have developed, for the work of the pattern maker is the first step in most of the mechanical operations which result in a completed machine. Modern machinery is so complicated and has grown to such a size that the complexity of the patterns has increased in proportion. This has necessitated a greater skill on the part of the pattern maker in the design of the patterns and in the making of the cores, as well as a wider acquaintance with the various foundry methods which have their effect upon pattern construction. Furthermore, with the increase in the duplication of castings in modern manufacturing has come a wider use of metal master patterns, which have given rise to new responsibilities for the pattern maker, and have made him perforce a machinist as well as a carpenter.

¶ This article aims to cover fully the subject of pattern making, giving the tools and equipment necessary, the design details of simple and complicated patterns for typical cases, the use of green and dry sand cores, and finally the construction and design of a typical molding machine with details as to the manner in which the castings are designed to suit this machine. Both the original and the revising authors have had exceptional experience not only in practical work but in the teaching of the subject and it is the hope of the publishers that the book will be found of distinct practical value in its field.

HALT MOLD, 45 INCHES BY 60 INCHES, WY 18 INCHES, WEIGHING 4,000 POUNDS, MADE ON TABOR COMBINED MACHINE Curtesy of Tabor Manufacturing Company, Philadelphia, Pennsylvania

CONTENTS

	PAGE
Practical requirements	. 1
Characteristics	. 1
Working medium	. 2
Ideal material	. 2
Woods used	. 2
Tool equipment	7
Rin saw	
Crosseut saw	. 8
Back saw	. 10
Compass saw	11
Iron plane.	. 12
Common types of planes	15
Special planes.	. 17
Spokeshave.	. 20
Chisels.	. 20
Gouges	. 23
Boring tools	. 24
Bevels	. 27
Rules	. 28
Marking tools	. 29
Calipers	. 31
Forcing tools	. 33
Abrading tools	. 36
Turning equipment	. 40
Sawing machines	. 46
Planers	. 48
Trimmers	. 49
Allowances in construction	. 52
General molding	52
Coping out for solid patterns.	. 54
Molding difficult patterns	. 57
Construction conditions.	. 61
Shrinkage	. 62
Draft	. 62

CONTENT.	2
	0

	PAGE
Construction of patterns	67
Conditions of procedure	67
Green-sand coring	67
Typical construction	68
Shaping pattern	70
Finishing	74
Gluing	81
Clamping	83
Built-un natterns	8.1
Green-sand ring coring	81
Making master nattern	85
Dry-sand ring coring	80
Building rim	02
Forming hubs	92
Construction for special size	05
	95
Dim construction	90
Use of loose hub	97
Core printe	100
Dim moster pottern	100
Standard some minte	100
Standard core prints	105
Flat-back patterns	111
Construction	111
Economical construction	116
Example of faceplate	116
T-pipe connection	119
Pipe elbow	122
Return bend	123
Screw chuck	124
Deep flanges	124
Large cylindrical work	126
Quantity production	128
Intricate coring	128
Globe construction	128
Two-part core	131
Bonnet	133
Small parts	135
Steam-chest nattorn	136
Core boxes	137

CONTENTS

Gear wheels	139
Accurate teeth required	139
Patterned teeth	140
Rim and arms	142
Forming teeth	143
Columns	150
Patterns	150
Cores	151
Follow boards.	151
COMPLICATED PATTERN CONSTRUCTION	
Hand and machine-molded examples	153
Conditions	153
Guide vanes	155
Vane core box	157
Use of core box	161
Bottom core	163
Cover core	163
Molding process	163
Machine-molding practice	164
Adaptation to production	164
Increased uniformity	165
Use of nattern plate	166
Bearing-can nattern	166
Making pattern plate	168
Molding metal pattern and plate	169
	100
Stripping draw-plate machine	171
Flange-coupling pattern for hand molding	171
Equipment for machine use	172
Assembling	173
Styling plots and draw board	170
Parallel device	178
A scomply	100
Assembly	180
Stripping-plate hand-rammed molding machine	182
Tand-molanty conditions.	10%

Stripping plate..... 185

Molding machine..... 185

PAGE

CONTENTS

	PAGE
Stripping-plate hand-rammed molding machine (continued))
Use of stool	189
Use of match plate	190
Alignment	191
Use of roll back	191
Green-sand coring	197
Characteristic usage	197
Molding process	. 198
Cope machine	199
Drag machine	201
Core-box construction	211
Hollow roll cast on steel shaft	. 214
Construction	214
Operation	. 216
Flask construction	. 219
Inside core	221

•

PATTERNG M JUNTED IN VIBRATOR FRAME Upper Left-Patterns in Frame; Upper Right-Drag Half of Mold; Lower Left-Hard Sand Match; Lower Right-Cope Half of Mold Courtesy of Tabor Manufacturing Company, Philadelphia, Pennsylvania

PATTERN MAKING

PART I

PRACTICAL REQUIREMENTS

Characteristics. Pattern making dates back to the time when the first article was made from molten metal for the use of man. The pattern must precede the making of its metal counterpart, and is therefore the first subject to be treated in the working of metal.

Woodworking. The pattern maker is essentially a worker in wood, though, where many castings are to be made from the same pattern, the final or working pattern is made of metal. These metal patterns are very serviceable, and leave the sand more easily and cleanly than those made of wood. Metal patterns are always necessary when the work is of a delicate or very light character. In all such cases, however, the first pattern from which the metal pattern is to be molded is made of wood, allowance being made for double shrinkage, and, when necessary, for double finish. The necessity for this will be clearly explained farther on.

Knowledge of Metals. The pattern maker should possess a practical knowledge of the properties of metals. First of all, he must understand the shrinkage of metals, that is to say, how much smaller the cold casting will be than the molten mass as it flows into the mold; he should know what the strength of the metal is; hé should be familiar with the relative rapidity of cooling, so that internal stresses in the body of the completed casting may be avoided as much as possible; he also should know enough about the practical work of the molder to decide upon the peculiarities of construction of the pattern for any given piece.

Drafting and Designing. The pattern maker must be sufficiently skilled as a draftsman to lay out, without the assistance of the designer, the drawings of the piece to be made. This qualification is one of the most important. It is very true, however, that there are many good pattern makers who do not possess all of these qualifications. The drawings furnished the pattern maker are usually on a small scale. In order to work to the best advantage, he must reproduce a part or all of them at full size, as working drawings. To do this in such a way that the lines and curves of the finished pattern shall be graceful and artistic in appearance requires the same nicety and precision of workmanship that are demanded in the drafting room, and it is essential that the pattern maker have the same complete knowledge of the principles involved. To the extent, then, of being able, when necessary; to make a full-sized drawing of the article to be made, the pattern maker must be a draftsman.

In large establishments, where all the work comes to the pattern shop in the form of carefully executed drawings, the pattern maker is the means of putting the ideas of others into tangible shape. In smaller places, where no draftsman is employed, the pattern maker will be called upon to work out the designs for which he is to make his patterns, and he thus becomes the real designer.

Finally, the pattern maker is seldom required to make two patterns that are identically the same. His work, therefore, is varied, and he must be prepared to apply to the solution of new problems that arise such principles as he may already have learned.

WORKING MEDIUM

Ideal Material. As patterns are subjected to more or less rough usage, and are alternately wet and dry, it follows that the ideal material is one whose hardness is such that it will withstand the wear and tear of handling and at the same time be impervious to the effects of moisture. Such material is to be found in the metals, but, as the cost of working these into the proper shape is considerable, some kind of wood is usually substituted.

Woods Used. White Pine. If, then, wood is to be used, another qualification is to be added—namely, it should be easily worked. The best wood for the purpose is undoubtedly white pine. Care should be exercised in the inspection of the wood, to see that it is clear, straight-grained, and free from knots. The straightness of the grain can be determined by the appearance of the sawed face which should present an even roughness over the whole surface.

The wood should be seasoned in the open air, but preferably sheltered by a roof, and should be piled so that the air has free access to all parts of the plank. In the natural process of air-drying, the moisture slowly works out to the surface and evaporates until the wood is dry or seasoned. One of the characteristics of wood is that moisture is readily given off from its surface if the surrounding atmosphere has a lower humidity, and also readily absorbs moisture in case of being subjected to a higher humidity. In kiln-drying, the stock is robbed of its moisture to a point below that normally contained in outside atmosphere. This means that every time some of the surface stock is removed, exposing a new surface, the stock at this surface will either attempt to absorb moisture and swell, or moisture will dry out, shrinking the stock, and in either case warping and disturbing the stock. This changing is always going on in pattern stock to some degree, but is less in stock that has dried or seasoned naturally to a point where there is about the same amount of moisture in the stock as there is in the atmosphere. It is best to keep the pattern stock for some time before its use as nearly as possible under the same atmospheric conditions as it is in while the pattern is being built. This holds good whether the stock is airor kiln-seasoned.

It may be stated then, that, in the United States, white pine is the material commonly employed for pattern making. Lumber 1 inch, $1\frac{1}{4}$ inches, and $1\frac{1}{2}$ inches thick will be found convenient in the construction of such patterns as are most commonly called for. It results in a great saving of time and labor, after the lumber has been carefully selected, to have it taken to the planing mill and dressed on two sides to the following thicknesses: 1-inch, dressed on two sides to $\frac{7}{8}$ inch; $1\frac{1}{4}$ -inch, dressed on two sides to $1\frac{1}{8}$ inch; 1¹/₂-inch, dressed on two sides to 1³/₈ inch; and, if such can be found well-seasoned, a small quantity of 2-inch, dressed to $1\frac{3}{4}$ inches. In addition to these sizes there should be a moderate amount of 1-inch resawed and dressed to $\frac{3}{8}$ inch or to $\frac{5}{16}$ inch; and the same amount of $1\frac{1}{4}$ -inch resawed and dressed to $\frac{1}{2}$ inch. The last two thicknesses are used for gluing and building up the rims of pulleys, gear wheels, and other light work, where strength and durability are required.

Hard Woods. Although pine is in general the ideal wood for pattern work, it is soft and weak, so that, if small and strong patterns are desired, a harder wood is usually employed, Mahogany is much used for this purpose. Like pine, it is not liable to warp, and, when straight-grained, it is worked with comparative ease. There are many varieties of this beautiful wood, varying greatly in firmness of texture. The soft bay wood, often sold as genuine mahogany, should be avoided for patterns, being but little harder than pine. Cherry is also extensively used, but is not so easily worked to a smooth surface as mahogany, and is more liable than the latter to warp and to be affected by moisture. Black walnut, beech, and maple are used to some extent. Black walnut is stronger than cherry, but, like beech and maple, is likely to warp.

Warping of Wood. Observation shows that if one side of a board is kept damp and the other dried, the former will expand so that the plank, although originally straight, becomes curved, as in

Fig. 1. Or if one side of a board is exposed to the air, while the other is more or less protected,

as in the stack of boards shown in Fig. 2, the exposed side of the upper board will give off its moisture more rapidly than the other side, and the board will warp or bend in the direction shown by the dotted lines. The second board will also draw up and to some extent follow the first, being in turn followed by the third, and so on until the entire stack is warped and bent.

The same thing will be found true of a well-seasoned board if after being planed it is allowed to lie on its side on the work bench. The upper side will give off its moisture more freely than is possible for the under side, the latter being protected and having its moisture retained by the bench. The lower side of the board is thus caused to expand, and the upper to contract, with the result that the board, although originally planed straight, becomes curved For this reason all lumber, even if well-seasoned, should be so placed in racks, or on end, that the air may have free access to both sides of the planks; and newly planed boards, however dry and well-seasoned, should never be stacked together, but so placed that both sides will be exposed alike. This tendency to warp is explained to some extent by the porous nature of all woods, and their inclination to give off or to absorb moisture according to the condition of the surrounding atmosphere. As there is always more or less moisture in the air, and lumber of all kinds contains an amount of moisture which is ever changing according to the conditions of the surrounding atmosphere, this causes corresponding expansion or contraction of the wood.

Even under cover and in a dry place, wood has a tendency to warp on account of the greater shrinkage of the newer as compared with the older cells of the wood tissue or fiber in the side of the board nearest to the outside or sap wood of the tree. The inner side A of the board, Fig. 3, being closer to the heart wood, is older than the side B, and its cells are firmer and more compact than

those of B. As the board seasons, the newer and more open cells of the side B shrink faster and to a

Fig. 3. Effect of Older Fibers in Warping

Fig. 4. Reversing Layers in Building Up

greater extent than those of A, thus causing the board to draw or warp in the direction indicated by the dotted lines.

Correction by Reversing Grain. In gluing or building up stock for a pattern, this tendency may be corrected to some extent by reversing the grain of the pieces that are to be glued, and placing together two outsides, as B, or two insides, as A, Fig. 3. This is fully illustrated in Fig. 4.

In gluing very thin pieces together for the webs or centers of pulleys and for other purposes, it is often necessary to reverse the grain of the pieces, or to place the grain of one piece at right angles to that of the other, for the purpose of gaining greater strength and stiffness. In such cases, if only two thin pieces are used, the result, to some extent, after they have been glued and dried, is as shown in Fig. 5, the shrinkage and strain of the end grain crosswise of the board at a, being sufficient to bend the opposing thin board lengthwise of the grain at b, while on the side cd, the curve is reversed for the same reason. Whenever it is necessary to cross the grain of thin pieces for a pattern, three or more pieces should be used, which will give satisfactory results if placed together, as shown in Fig. 6.

Fig 5 Warping of Two Thin Pieces

in the edge of each, in which thin tongues of wood are inserted and Two disks are glued up, and one glued, as illustrated in Fig. 8.

Fig. 6. Flatness Obtained by Crossing Grain of Three Thin Pieces

obtained if the pieces are fitted and glued tangentially to the hub or other center or opening in the disk, as shown in Fig. 7. The grain of the wood must run lengthwise, and parallel to the longest side of each sector; and, after the pieces have been fitted together, a thin groove is cut

When thin circular disks of large size are to be glued up for patterns of any kind, the strongest, stiffest, and most satisfactory results will be

is turned over so as to reverse the grain of the sectors of one disk on that of the other, as shown by the dotted lines. The disks are then glued together,

making a very rigid construction, and one which, owing to the continual change in the direction of the grain, will not warp.

Should a wide and thin piece of a single thickness be required for a pattern, the board from which it is to be made

strips of 2-, 3-, or 4-inch width-according to the width of the required board-and the strips glued together again with each alternate strip reversed, as shown in Fig. 9. In this way warping is largely corrected, each narrow strip being inclined to warp in an opposite direction to that of its neighbor.

PATTERN MAKING

TOOL EQUIPMENT

Distinction in Use. While many of the tools used by the pattern maker are identical with those used by the carpenter and cabinetmaker, yet the conditions which govern the construction of patterns for the molding of metals, together with the required accu-

racy in dimensions, and the methods of construction used to guard against warping, distortion, and breaking, have very little in common with the

workmanship and methods of the carpenter, the wood turner, or the cabinetmaker.

Following is a descriptive list of the more essential tools used in pattern making, accompanied with instructions in their use.

HAND CUTTING TOOLS

Rip Saw. Hand saws are of two kinds—rip, and crosscut. The former, as the name indicates, is for cutting with the grain, or lengthwise of the board to be sawed. In Fig. 10 is illustrated a rip saw having $5\frac{1}{2}$ points to the inch, which will work rapidly and with ease in pine and other soft woods. If mahogany, cherry, or other hard wood is to be ripped, a 6-point saw should be used.

Hook of Teeth. Rip saws should be filed with all the bevel on the back of the tooth, as shown at b in Fig. 10, the front or throat of

the tooth being at right angles to, or square with, the tooth edge of the blade, as at a. The position of the line cd, whether perpendicular or slanting, is called the *hook* or pitch of the tooth.

Filing and Setting. Rip saws should be filed square across; that is, the file should be held horizontal and at right angles to the side

Fig. 10. Teeth of Rip Saw

of the blade, always filing each alternate tooth from the opposite side of the saw; this, if done by beginning at the heel and working the file toward the point of the saw blade, gives a very slight bevel to the back edge of the tooth, causing it to cut cleaner and to require. less set than if filed otherwise.

PATTERN MAKING

Rip saws require very little set for use in dry well-seasoned lumber, such as is always used in pattern making. The teeth should be set, or bent, only at the points, as shown at e and f in Fig. 10-

Fig. 11. Position in Ripping

in no case should the set exceed more than half the depth of the tooth. When the points only are set, the saw works more freely, and the blade of the saw is not sprung or bent in setting.

In using a rip saw, the front or cutting edge of the saw blade should be held at an angle of about 45 degrees to the board, as shown in Fig. 11. This brings the back of the tooth nearly at right angles to the fibers of the wood, and insures a shearing cut. For fine work

and well-seasoned material, hand saws may be bought ground so thin on the back as to require no set. Such tools work very smoothly and easily, cutting away less wood and doing better work

Kerf Made by Crosscut Saw

than saws that have been set.

Crosscut Saw. The crosscut saw really severs or cuts the fibers of the wood twice, as shown at a in Fig. 12, the intervening projections being loosened and carried out as dust by the thrust of the saw, producing a nearly straight-bottomed kerf, as shown at b.

A crosscut saw for ordinary work should have 5 or 6 points to the inch;

but for fine work 10 or 12 points would be better, especially for dry woods, either soft or hard. A section of a 6-point crosscut saw is shown in Fig. 13, and one of a 13¹/₂-point in Fig. 14.

Shape of Teeth. We find that while the rake or tooth bevel in rip saws is all on the back of the tooth, the rake in crosscut saws is on the side of the tooth, as shown at a, Fig. 13. In ripping, the point of the tooth acts as a chisel, cutting off the fibers of the wood, each tooth chiseling off a shaving as it passes through the board;

but in crosscutting, the side of the tooth does the cutting, and therefore must have its bevel on the side.

In Fig. 13 the *fleam* —angle of the tooth with

Fig. 13. Crosscut Saw Teeth

the plane of the saw blade—is about 45 degrees, and, as shown, there is no hook or pitch, the vertical angles being the same both front and back of the tooth. This form of tooth works well in wet or in very soft wood; but for wood that is well seasoned, and for all

the harder woods, the pitch, or vertical angle or inclination, of the front of the tooth should be about 60 degrees to the tooth edge of the blade, as shown at b, Fig. 15. The amount of pitch in the teeth of a saw may be varied for different purposes or for different woods, but should be

such as to loosen and carry out the intervening wood. Otherwise this would have to be rasped or filed out by the continued action of the saw.

Filing. The fleam or horizontal angle of the side of the cross-

cut saw tooth is very important. When filing, the file should be held horizontally and at an angle of about 45 degrees to the side of the saw, lengthwise of the blade, as illustrated in Fig. 15, and each alter-

nate tooth must be filed from the opposite side of the blade, beginning at the heel and filing toward the point of the saw.

The objection is often raised by saw filers, that, in filing from the handle end of the saw toward the point, a feather edge is made by the file and turned backward on the point of the tooth. The

Fig. 15. Filing Crosscut Teeth

9

first thrust of the saw through the board, however, will remove this featheredge entirely; whereas, if the filing is done from the point of the saw toward the handle, it is necessary to file the teeth bent toward the operator, which causes the saw to vibrate, or chatter, and this not only renders good even filing impossible, but breaks the teeth of the file.

Setting. For hand and back saws, a saw set that acts on the principle of the hammer and anvil, such as the one illustrated in

Fig. 16. Saw Setter

Fig. 16, is best. , The spring sets, so much in use, will not give so regular and even a set to the teeth as will one or more light blows with the hammer on the beveled face of the anvil. By this method the tooth is not bent or sprung beyond the position in which it is intended to remain, and the blade of the saw is not bent or affected by the stroke of the hammer on the point of the tooth. A saw set, of the kind shown in Fig. 16, can be adjusted to set the points of the teeth to any depth desired; and, even if repeated light blows are given, the tooth cannot be bent beyond the required distance. The blow may be struck on a with a light mallet or it may be struck from below with the operator's foot on a treadle connected with e, leav-

ing both hands free to hold and to guide the saw.

In setting a saw, it is always better to use two or three light blows on a tooth than to try to do the work with one heavy blow; and this is especially the case if the saw is hard, as all good and welltempered saws should be.

Back Saw. The back saw illustrated in Fig. 17 is used as a bench saw for light or fine work, and for fitting and dovetailing. Saws of this type are made from 8 to 14 inches in length, the 10- and

12-inch being convenient sizes for general work. As the metal back holds and stiffens the saw, a thin blade should always be selected. The methods of filing, jointing, and setting are the same as those described for the other hand saws. At least two back saws will be

found necessary, one filed for crosscutting, and the other filed as a rip saw for cutting with the grain of the wood, as in the cutting of tenons and dovetails.

Exercise. While for

those who have had experience in carpentry the following exercise in the use of the back saw may not be necessary, it is recommended to all beginners who wish to acquire skill in the use of this important tool.

Take any block of wood from 12 inches to 16 inches long, about 2 inches wide, and about $1\frac{3}{4}$ inches in thickness. With try-square and á sharp-pointed pocketknife, lay it out, as illustrated in Fig. 18, on the upper, front, and back sides of the block. The knife cuts must be at least $\frac{1}{12}$ inch deep, and about $\frac{1}{4}$ inch distant from each other. Next proceed to saw up the block into thin sections, sawing each time so that the saw kerf will be just outside of, but close to the knife line, as indicated at a.

The saw cut through the block should be true to each of the three lines; and while the saw passes along one side of the line, its teeth should not scratch the opposite side of the knife cut, but should leave a smooth clean angle of the knife cut on the block, as shown at b in

Fig. 18, while at the same time it should be so close to the line as to leave no wood to be smoothed off with plane or chisel.

A few hours' thorough and careful practice of this exercise will enable any one to use the saw successfully.

Compass Saw. As the work of the compass saw, Fig. 19, is both with and across the grain of

the wood, the best form of tooth is that shown in Fig. 20, having more pitch, and slightly less bevel, than the crosscut saw. A crosscut saw will rip better than a rip saw will crosscut; hence the shape of tooth should be between the two. Compass saws are

PATTERN MAKING

ground very thin on the back of the blade, but in order to turn easily they should be set the same as hand saws.

And here we wish to impress on the beginner the necessity of keeping his saw—and, indeed, all other cutting tools—perfectly

Fig. 19. Compass Saw

sharp and in good working condition at all times. A sharp saw works faster, and always does smoother and better work with less set and with less expenditure of power, than a dull one. Even to saw well is an art, which cannot be gained through the use of dull,

Fig. 20. Compass Saw Teeth

imperfectly set, and poorly kept tools. To file well will require from the beginner close attention, a study of. the subject, and careful practice, all of which can be given by any one possessing ordinary mechan-

ical ability. If the filing is done slowly at first, care being taken to hold the file at the same angle for all the teeth, a little faithful practice will always bring success.

Iron Plane. The modern iron plane, illustrated in Fig. 21, can now be bought in a great variety of sizes and styles. These planes,

with their true and unchanging faces, and their simple appliances for setting and adjusting the cutter, or plane iron, to the face of the plane and to the required thickness of shav-

ings, are greatly to be preferred to the old-style wooden planes.

Construction. The general construction of the iron plane will be readily understood from Fig. 22, one side of the plane being removed to show the arrangement of the parts. The cutter, or plane iron a is made of the best cast steel, and is of equal thickness through-

out; in all new planes this part will be found ground and sharpened for immediate use. The cap iron f, Fig. 22, is fastened to the plane iron by an adjusting screw, as shown in Fig. 23. For whetting or grinding the cutting edge,

it is not necessary to remove the cap iron, but only to loosen the connecting screw and to slide the cap back to the extreme end of the slot in the plane iron, tightening it there by a turn of the screw. The cap iron will then serve as a convenient.

handle or rest for the workman in whetting or grinding the blade.

The iron lever c, Fig. 22, is held in place below its center by the screw q, which acts as a fulcrum, and the lever is readily clamped down upon the irons by the use of the cam piece d. When this cam is turned upward it ceases to bear upon the irons. and the lever c may then be removed from its place, and the irons released, without turning or changing the adjustment of the screw g, as the lever and irons are properly slotted for this purpose. Should the pressure required for the best working of the plane iron need changing, it can easily be obtained by tightening or loosening the screw q.

When the plane iron is secured in its place, the use of the brass thumb screw b will draw or drive the plane iron, and thus the thick-

Fig. 23. Plane Iron-Cap Iron Connection

ness of the shaving to be taken from the work can be regulated with perfect accuracy. By the use of the lever e, located under the plane iron and working sidewise, the cutting edge can easily be brought

into position exactly parallel with the face of the plane, should any variation exist when the iron is clamped down. To ascertain this, hold the plane up, and look down over its face; the greater projection, if there is any, of one or the other of the corners of the iron, can readily be seen.

The cap iron f, which is not sharp, is not used for the purpose of strengthening or stiffening the cutting iron, as is often supposed, but as a chip break to prevent the cutting edge of the plane iron from chipping, tearing, and breaking the grain of the wood below the surface when the grain turns and twists, or when it is knotty and crooked. In such cases the tendency of the plane iron is to split and tear out the fibers of the wood in front of the cutting edge. To avoid this, the cap iron is screwed on, with its dull edge quite close to the cutting edge, so as to bend and break off the fibers or the shavings before the split gets fairly started below the surface.

The cutting edge of the plane iron is said to have lead in proportion to the distance it is placed in advance of the dull edge of the cap iron. The depth of the splits, or the roughness of the crossgrained surface, will be just equal to the lead of the cutting edge. For soft straight-grained wood the lead may be $\frac{1}{32}$ inch or even more, but this must be reduced in proportion as the wood is curly, crossgrained, or knotty.

Grinding. The grinding, or the whetting, must always be done on the bevel side only of the plane iron, the upper side being kept as flat and as smooth as possible to secure easy working.

All plane irons should be ground slightly rounding to the extent of the thickness of a thin shaving. This rounding of the cutting edge should be the true arc of a circle throughout the entire length of the cutting edge, and not simply a rounding-off of the corners as is sometimes directed. Rounding the edge to the extent of the thickness of a shaving prevents the plane iron from grooving into, or plowing out a wide groove in the surface that is being worked, and also assists greatly in working the edges of the piece to right angles, or square with the face side. To do this, it is not necessary, should one corner of the edge be higher than the other, to tilt the plane on the high edge, but, while holding it flat and firm on the surface of the edge being planed, the plane should be pushed sidewise toward the highest corner in order to reduce that corner. This is readily understood when we remember that the cutting edge of the iron is rounding. If the plane is held so that the middle of the plane iron does the cutting, the shaving planed is of the same thickness on both edges; but if the plane is pushed over to one side, either to the right or to the left, the shaving will be featheredged, or thick on one edge and thin on the other, thus reducing the higher corner of the edge of the piece.

Proper Use. When the plane is to be used, the beginner should first carefully adjust it to the thickness of shaving required by moving the adjusting screw in the proper direction, at the same time holding it up and looking down over the face of the plane, when the projection of the plane iron can readily be seen. The cut should also be tested by trying it on the piece to be planed until the plane is ready for use.

The operator's position should be one of perfect ease, standing well back of the piece to be planed, and pushing the plane to arm's length from, not alongside of, the operator, taking long and continued shavings from the board. When starting the shaving at the end of the board, care should be taken to hold the forward end of the plane down firmly, or the act of pushing it forward will cause that end to tilt up and the plane iron to chatter on the surface as it begins to cut the shaving. This is due to the fact that nearly twothirds of the plane overhangs the end of the board, requiring firm pressure on the forward end to balance it while the stroke is being started.

To insure smooth work, care must be taken to plane with the grain of the wood, and not against the ends of the fibers as they lie in the surface of the board. Should the fibers tear out and the surface become rough, reverse the ends of the boards so as to cut the shaving in the opposite direction, and note the difference in the effect on the planed surface.

Common Types of Planes. Jack Plane. Of iron planes, the most important is the No. 5 jack plane, 14 inches long, and having a cutter 2 inches in width, as illustrated in Fig. 24. When the pattern lumber has first been roughly planed in a planing mill, this No. 5 plane can be used almost exclusively for planing and pattern making.

Jointer Plane. In making or in truing up very large surfaces. or in making long glue joints, the No. 7 jointer plane, 22 inches long and having a cutter $2\frac{3}{8}$ inches wide, will be found necessary. This plane is shown in Fig. 21, and differs from the jack plane only in its length and in its extra width of face.

Smooth Plane. For mahogany or other hard wood, the No. 4 smooth plane, illustrated in Fig. 25, will be found very useful. This

Fig. 25. Smooth Plane

plane is made in several sizes. The No. 4, which is 9 inches long and has a 2-inch cutter, is the best size for general use, particularly for smooth surfaces.

Block Plane. Next in importance to the three planes already mentioned, is the block plane, illustrated in Fig. 26. The No. 19. which is 7 inches long and has a cutter $1\frac{3}{4}$ inches wide, is the most desirable for the pattern maker's use. It has an adjustable throat, as well as the screw and lateral lever adjustments of the other planes.

This plane has the advantage of being so constructed as to be held easily in one hand, a fact which makes it especially adaptable for for short work. Owing to the low angle at which the cutter is placed, it works more smoothly and easily on end wood and on miters than any other plane.

Scrub Plane. In cases where lumber must be dressed from the rough, without being first roughly dressed in a planing mill, the No. 40 scrub plane, illustrated in Fig. 27, will be almost indispen-

sable. It is $9\frac{1}{2}$ inches long, and has a cutter $1\frac{1}{4}$ inches wide. The cutter is a single iron, and is ground and sharpened very rounding on the cutting edge, as shown in Fig. 27, to allow of cutting a very thick shaving without grooving at the edges. This plane works rapidly and

Fig. 28. Circular Plane

easily, preparing the rough-sawn surfaces of planks for the finishing planes.

Circular Plane. For truing and smoothing circular arcs and curves of all kinds, either convex or concave, there is no tool that

equals the circular plane, illustrated in Fig. 28. This plane has a flexible steel face which can easily be shaped to any required arc or curve by turning the knob on the front of the plane.

Special Planes. *Rabbet Plane*. Among the special planes used by the pattern maker, the rabbet plane, llustrated in Fig. 29, is the

most important. The face of this plane is always flat and at right angles to the sides. It is used in working out square angles and corners, or *laps* as they are called in carpentry, and also for working the lap joints, as shown in Fig. 30.

The skew-iron rabbet plane, in which the cutting edge of the plane iron is set diagonally across

Fig. 30. Rabbeted Lap Joint

the face of the plane, works much more smoothly and easily than one in which the iron is set at right angles to the side of the plane. The improved rabbet plane shown in Fig. 31 is fitted with depth gage, and also with a spur cutter, both of which are often of great convenience to the workman.

Fig. 29. Rabbet Plane

Rabbet planes are made in sizes ranging from $\frac{1}{2}$ inch to $1\frac{1}{2}$ inches in width. The 1-inch and 1¹/₄-inch are convenient sizes for general work.

Round and Hollow Planes. These planes are illustrated in Figs. 32 and 33. They are made of different curvatures, and a set

Fig. 31. Improved Rabbet Plane

of assorted sizes, especially the rounds, are almost indispensable to the pattern maker for finishing semicircular core boxes, for making fillets, and for working out curves of every description, both concave and convex.

Core-Box Plane. The core-box plane, shown in Fig. 34, while not indispensable, will be found to be a very rapid working and useful tool for making semicircular core boxes up to $2\frac{1}{2}$ inches in diameter. By using the extension sides, one of which is shown in the illustration, and two pairs of which are always furnished, this

Fig. 32. Round Plane

Fig. 33. Hollow Plane

tool will work accurately a concave semicircle up to 10 inches in diameter.

The core-box plane is constructed upon the principle that if the sides of a right angle lie upon the extremities of the diameter of a circle, the vertex of the right angle will lie upon the circumference of the circle. This is illustrated in Fig. 35, from which it will be seen that if the block of wood has been worked to a perfect semicircle, and the edges of the blades of a try-square or right-angled triangle

touch the semicircular curve at its extremities, the right angle or corner will touch the arc at some point, as b, e, or h, and the angles abc, def, and ghi will all be right angles.

To this kind of plane the objection is often made that it abrades and wears off the corners of the semicircle as it is being worked out.

Fig. 34. Core-Box Plane

Fig. 35. Profile Cut by Core-Box Plane

worked, from a center line on the face of the block, describing on each end of the block a semicircle of the required radius; connect the extremes of the two end arcs by straight lines on the face of the block, as shown in Fig. 36. Two very thin strips of hard wood are tacked along these lines, just outside of the wood to be cut away, as shown at a and at b in Fig. 37. These strips form rests for the sides of the plane while the heavier part of the work is being done. After working

Fig. 36. Block Laid Out for Core-Box

Fig. 37. Protection of Edges in Forming

out the semicircle as far as the strips will allow, as shown by the dotted arc acb, the strips are removed, when the work can be finished without materially affecting the corners at a and b.

When making the finishing cuts with this plane, care must be taken to adjust the cutter centrally, i.e., so that it will cut equally

PATTERN MAKING

to both right and left; otherwise the work will not be correct. If. however, the work has been done with care, the finishing may be completed with coarse, and lastly with fine, sandpaper held on a cylindrical block of radius slightly less than that of the required core box.

Router Plane. This tool, illustrated in Fig. 38, will be found very convenient for smoothing out sunken panels, for letting in

rapping and lifting plates. and for all depressions below the general surface of the pattern. It will plane the bottoms of recesses to a uniform depth from the surface of the work, and will work into

angles and corners that otherwise could be reached only by the use of the paring chisel.

Spokeshave. The spokeshave is used by the pattern maker for shaping and rounding out small curves, either convex or concave, which cannot be reached with the circular plane. It can be found in a great variety of styles, either in metal, as shown in Fig. 39, or in wood. The all-wood boxwood spokeshave illustrated

Fig. 39. Iron Spokeshave

Fig. 40. Wooden Spokeshave

in Fig. 40, without brass facing or screw adjustment, is to be preferred to all others for the pattern maker's use, especially for working pine or other soft wood.

Chisels. The chisel enters so largely into the work of the pattern maker in paring and shaping patterns that the quality of the tool

20
should be of the best. While carpenters' chisels are made in several styles, they may be divided into two general classes: socket-handled chisels; and firmer or paring chisels. The former are illustrated in Fig. 41, and are used for framing, and for very heavy work of all kinds in which the use of a mallet is necessary.

Common Paring Type. The common firmer or paring chisels, two styles of which are shown in Fig. 42, are the best all-around

Fig. 41. Socket-Handled Chisels

chisels for pattern work. Being lighter and thinner than the others, they are better adapted to the light work on which they are used; moreover, when used with care, they will answer every desired purpose, even for heavy work or with a mallet. The beveled-edge chisel shown at a, Fig. 42, is greatly to be preferred. It is lighter than the other kind illustrated, and, the square angle being removed,

Fig. 42. Paring Chisels

the workman is enabled to reach into angles and under projections difficult to reach with a square-edged tool. A set varying in width from $\frac{1}{4}$ inch to $\frac{5}{4}$ inch by eighths, and from $\frac{3}{4}$ inch to $1\frac{1}{2}$ inches by quarters, nine chisels in all, will be found useful.

Examples of Use. The manner in which the chisel is used is so obvious and simple that any instruction in that direction would seem unnecessary. We shall only say in a general way that, in using a chisel on a flat surface or in a recess, it should always be held with the flat or back of the chisel against the work, and, whenever possible,

it should not be pushed straight forward or straight through an opening, especially when paring across the grain of the wood, but should be moved laterally at the same time that it is pushed forward,

as indicated by the dotted lines in Fig. 43. This insures a shearing cut, which, with care, even when the material is cross-grained, will produce a smooth and even surface.

As an exercise for acquiring the free use of the paring chisel, there is nothing better for the beginner than the simple half-lap joint shown in Fig. 44.

Fig. 44. Half-Lap Joint

Fig. 45. Dovetail Joints

The shoulders or the ends of the openings must be cut with a back saw. The opening is then cut out and the shoulders

smoothed with a wide chisel, and a perfect fit obtained by continued trials.

The two dovetail joints, shown in Fig. 45, may be attempted after having succeeded with the halflap; and these exercises should be continued by the student until such control of the chisel is attained that this and similar work can be done with ease and certainty. For laying out work of this kind the blade of a pocketknife or bench knife should always be used. This gives a clean sharp cut angle for the meeting sides of the joints, which cannot be obtained if a scratch awl is used. The awl tears and breaks the fibers of the wood, producing a rough ragged angle, which, on fitting, cannot produce a smooth and close piece of work. A pencil is equally objectionable because of the indefinite dimensions given by its use.

Gouges. The paring gouges used in pattern making are ground or beveled on the inside, as shown in Fig. 46. These gouges

Fig. 47. Common Firmer Gouge

are made in regular, middle, and flat sweeps. They are indispensable for working out core boxes and other curves.

In selecting a set of paring gouges, they should be not only of assorted sizes, but of different sweeps, so as to work out semicircles and curves of different radii.

The common firmer gouge, illustrated in Fig. 47, is a useful tool for rough or heavy work, but in general its use can be dispensed with in pattern making.

Front Bent Type. An assortment of four to nine carver's gouges, front bent, as shown in Fig. 48, will be found necessary for working out short deep curves, and in places where a straight gouge cannot be used, as in the core boxes for a globe valve-shown in Pattern Making Part II, Figs. 233 and 234-and for similar work.

The full set consists of nine tools, the curves of which are numbered from 24 to 32. The two extremes, Nos. 24 and 32, are

shown in Fig. 48, and also the shapes of the curves of the seven intermediate, Nos. 25 to 31, inclusive. If desired, to save expense,

Fig. 49. Ratchet Brace

each alternate tool might be omitted from the set, only the odd numbers 25, 27, 29, and 31 being selected, and for ordinary work these will be found sufficient.

Boring Tools. Brace. Among the necessary tools

are the brace and an assortment of boring bits. The most desirable style of brace is the ratchet brace, illustrated in Fig. 49. The con-

Fig. 50. Auger Bits

venience of the ratchet will soon be apparent from the necessity, so often arising, for boring holes or driving screws in angles or close to projections where the full sweep of the brace cannot be taken. Braces are made in many sizes, with sweeps varying from 6 inches to 14 inches in diameter.

A brace with an 8-inch sweep is the most convenient in size for boring holes 1 inch or less in diameter in soft wood. For larger

Fig. 51. Extension Bit

holes, and especially in very hard woods, a 10-inch or 12-inch sweep is necessary.

Bits. Wood-boring bits are made in many styles. The most important are the auger bits, two styles of which are shown in

Fig. 52. Gimlet and Wood Drill

Fig. 50. They can be bought in sizes running by sixteenths of an inch from $\frac{3}{16}$ inch to 1 inch. For holes larger than 1 inch, the No. 2 extension bit, shown in Fig. 51, is the best. It has two cutters, and will bore a hole of any size from $\frac{7}{6}$ inch to 3 inches in diameter.

For screw holes, the gimlet bit or the twist drill for wood, both of which are illustrated in Fig. 52, are used. They can be bought in all sizes run-

ning by thirty-seconds of an inch from $\frac{1}{32}$ inch up to $\frac{3}{8}$ inch.

The brace screwdriver, and also the brace countersink for screw heads, are important tools. They are shown in Fig. 53, and can be bought in large, medium, and small sizes.

MEASURING TOOLS

Squares. The best try-squares are now made with blades graduated, and from 2 inches to 12 inches in length. Several sizes

Fig 54. Try-Square with Fixed Blade

Fig 55. Adjustable-Blade Try-Square

Fig 56. Removable-Blade Try-Square

of the fixed-blade type, Fig. 54, are needed, as in many cases the blade must be short to admit of its application in pattern work.

Adjustable Try-Square. The adjustable trysquare, illustrated in Fig. 55, is not expensive, and will be found to fill the requirements of several small squares. It is made in two sizes, with graduated blades 4 inches and 6 inches in length, respectively. The blade of this square can be firmly secured in its seat at any point. When the blade is carried entirely to the front of the handle, it is like an ordinary trysquare; and the moving of the blade makes the square equally perfect down to 1 inch length of blade, or even less. With one adjustable square of this kind, six inches in length, only one 8-inch or one 10-inch ordinary square will be necessary.

A still more convenient, but slightly more expensive, form of adjustable try-square is shown in Fig. 56. It differs from that shown in Fig. 55, in being self-contained, no screwdriver being necessary for moving the blade or securing it in position, and also because the blade can be removed entirely, and an extra blade,

shown in Fig. 57, substituted. The ends of this second blade give both the hexagon and octagon angles, which is a matter of great convenience to the pattern maker. Fig. 57 shows the hexagon end of the blade applied. to a hexagon nut. By

reversing the blade the octagon end will be in position for use. Carpenter's Square. To the above try-squares there should be added a carpenter's steel square, 24 inches by 18 inches, for use in laying out and squaring up large stock and large patterns.

Bevels. The bevel illustrated in Fig. 58, with the clamping screw in the end of the handle, is the most accurate and the most easily adjusted style of this indispensable tool. The blades are made from 6 to 12 inches in length, and have a slot in at one end, which admits of that end being adjusted to meet the requirements of the work.

Universal Type. The small bevel illustrated in Fig. 59, like the adjustable try-square, is not an expensive tool, and will be found

generally useful, especially in working the draft on patterns, and in turning the parts of patterns on the wood lathe which cannot be reached with an ordinary bevel. The offset in the blade increases its capacity and usefulness, so that any angle, however slight, may be obtained.

Fig. 57. Try-Square with Bevel-Ended Blade

One 3-inch universal, and one 8-inch or 10-inch ordinary bevel, will meet all the requirements of the pattern maker for the beveled edges and surfaces and the draft of pattern work.

Rules. For all ordinary measurements, a 2-foot folding standard rule, Fig. 60, will be sufficient, but this rule must not be used

Fig. 59. Universal Bevel

for laying out or for working patterns, or any part of a pattern or core box, to the required dimensions.

Shrinkage Rule. For the molding dimensions of a pattern or core box a shrinkage rule must be used. The reasons are that when a mold made from the wooden pattern is filled with molten metal its temperature is very high, and as it cools and solidifies it con-

Fig. 60. Standard Folding Rule

tracts. Accordingly, to compensate for this, the pattern maker must add to the size of the pattern. In order that this may be done, and exact relations nevertheless be maintained for all dimensions, a shrinkage rule is used. This rule is marked off exactly like an ordinary rule, but if the two are compared, the shrinkage rule will be found to be about $\frac{1}{5}$ inch longer than the other for each foot of length. The contraction or shrinkage of different metals in the molds varies greatly; that for cast iron being, as above stated, $\frac{1}{8}$ inch to each foot. For brass, however, the shrinkage is $\frac{3}{16}$ inch to the foot; and for many of the softer metals it is as great as $\frac{1}{4}$ inch per foot.

Shrinkage rules, Fig. 61, are usually made of a single piece of boxwood or beech; those for cast iron being $24\frac{1}{4}$ inches long, for

Fig. 61. Shrinkage Rule

brass $24\frac{3}{8}$ inches long, and for other soft metals $24\frac{1}{2}$ inches in length. They can also be bought made of tempered steel $12\frac{1}{8}$ inches, $12\frac{3}{16}$ inches, and $12\frac{1}{4}$ inches in length. In making use of the shrinkage rule, the workman will proceed just as though he were using a standard rule; and when the pattern is completed it will be found to be larger in all its dimensions, just in proportion as the extra length of the shrinkage rule makes it greater than the standard rule.

Fig. 62. Improved Marking Gage

Marking Tools. Marking Gage. The marking gage is used for drawing a line at a given distance from, and parallel to, the already trued and jointed surface or edge of a board or piece of wood that is being marked to dimensions.

There are many forms of this tool, but in the improved gage, illustrated in Fig. 62, the head is reversible. The flat side of the head is used for ordinary straight work, while the reverse side, hav-

ing the brass face with two projecting ribs, enables the operator to run a gage line with perfect steadiness and accuracy around curves of any radius, either convex or concave—a feature much to be desired in a pattern-maker's gage.

Dividers. The ordinary woodworker's dividers can be bought in many forms, the most common being the screw-adjusting wing dividers shown in Fig. 63. This form is reliable, and is easily adjusted to the required distance between points. Moreover, when

Fig. 63. Common Wing Dividers

Fig. 64. Removable-Point Dividers

clamped by the thumbscrew, it is not liable to be altered by a slight blow in handling.

Another and improved form is shown in Fig. 64, one leg of which is removable so that a pencil can be inserted. This will be found very convenient for marking and laying out work.

For spacing the teeth of gear wheels, and for other work in which great accuracy is required, a pair of $2\frac{1}{2}$ -inch or 3-inch dividers, such as are shown in Fig. 65, will be found necessary.

Trammel. The trammel is used when the distance between the points to be reached is too great for the ordinary dividers. The trammel points are clamped to a beam of sufficient length to enable them to be set the required distance apart. They may be bought plain, as in Fig. 66, or with one point adjustable, as in Fig. 67. The points are removable for the insertion of a pencil socket and pencil when needed.

For very accurate work, an excellent tool of this kind is illustrated in Fig. 68. The beams furnished are 4 inches and 13 inches in length. By the use of the cone center V, which may be sub-

> stituted for the regular point center, the tool can be used for scribing a line around any hole already bored —sometimes a matter of great convenience. The complete set includes

Fig. 65. Brown and Sharpe Spring-Joint Dividers

Fig. 66. Plain Trammel Points

the pen, pencil, straight and bent points, and the cone center, as shown in the cut.

Calipers. Calipers, like dividers, are made in many different forms with and without screw adjustment. Fig. 69 illustrates the screw-adjusting wing calipers for outside measurements, and Fig. 70 shows the firm-joint outside calipers used for the same purpose. Inside calipers for taking inside dimensions and inside distances are shown in Fig. 71, and the adjustable inside calipers are illustrated in Fig. 72.

Calipers are used for measuring the distances between points external and internal when a rule could not be used with accuracy.

They are indispensable to the wood turner for measuring the diameters of cylindrical forms and other work while being turned to

Fig. 69. Wing Calipers

Fig. 70 Firm-Joint Calipers

required dimensions in the lathe. When used by the pattern maker, they may be applied while the wood is revolving, until it has been

reduced almost to the required dimensions; after which, when the calipers are used, the lathe should be stopped to prevent the surface from being marked by the points, and in order to obtain exact measurements. The calipers should not be pushed or forced over the piece, but in passing over the finished cylinder, the points should

Fig. 71. Inside Calipers

Fig. 72. Adjustable Inside Calipers

touch it lightly without springing the legs of the calipers; otherwise, the required dimensions cannot be obtained with accuracy.

MISCELLANEOUS SMALL TOOLS

Forcing Tools. Hammer and Mallet. There remain to be described a few tools, which, while necessary, are so common as hardly to require either illustration or description. Among these are the hammer, the best form of which for the pattern maker is shown in Fig. 73, and the mallet, of which the best form is shown in Fig. 74.

A mallet that is to be used on the handle of firmer chisels and other pattern-maker's tools, should not be made of hickory or of lignum-vitae, nor have hard-rubber or hard-fiber facing. Mallets

thus made soon mar, splinter, and destroy the tool handles on which they are used. Beechwood and maple furnish the best material for mallet heads for the use of the woodworker who works

Fig. 73. Typical Pattern Maker's Hammer

in pine and other soft woods. It is true that the mallet head will not last so long if made of beech or maple wood, but the chisel and

Fig. 74. Mallet

Fig. 76. Scratch Awl

gouge handles will be protected, which is a matter of much greater importance.

Screwdriver and Awls. Of the screwdriver, illustrated in Fig. 75, at least two or three sizes will be found necessary.

Fig. 75. Ordinary Screwdriver

The scratch awl, Fig. 76—although but little employed at the work bench, where a knife is used in its place for all accu-

rate markings—is indispensable to the pattern maker for

laying out the dimensions on his work while it is revolving in the turning lathe. It should be long and slender, as shown, and is used on the revolving wood by placing it over the required graduation of the rule, while the latter is held on the tool rest.

Brads and small wire nails must often be driven at such an angle to the grain of the wood, or in such a position, as to make it necessary first to bore

a small hole in order to start the brad in the required direction. The brad awl, illustrated in Fig. 77, is a convenient

tool for this purpose. It is commonly ground to a chisel point, as shown at a, but will be less liable to cause splitting, and will work

Fig. 78. Side-Cutting Pliers

faster and with greater ease, if ground to a double spear point, as shown at b. The four corners, if kept sharp, will enter the wood and cut faster than the chisel point.

Pliers and Clamps. Side-cutting pliers, such as are illustrated in Fig. 78, will be found convenient not only for cutting off wire and brads, but for removing small brads and for holding small pieces while being worked to shape.

Every pattern shop should have at least one dozen each of three or four different sizes of hand screws or clamps similar to that shown in Fig. 79. These are adjustable through wide ranges. They are used for clamping together the material that is being glued up to form the different parts of a pattern, and are convenient also for many other purposes. The all-iron **C**-clamp, shown in Fig. 80, is sometimes useful in positions that are hard to reach

Fig. 80. Iron Clamp

with a hand screw. The method of adjusting and of using the hand screw will be fully explained later.

Abrading Tools. Wood Files. The halfround cabinet file and half-round cabinet rasp, shown in Fig. 81, enter

largely into the work of the pattern maker, and should be bought in sizes each of 6 inches, 8 inches, and 10 inches. Larger as well as intermediate sizes may often be found necessary, but will not be needed for ordinary work.

Oil Stones and Slips. As before stated, new planes, chisels, and other edged tools, if of the best quality, are always sold ground and sharpened, ready for use. When used, however, they soon become dulled, and must then be resharpened, and be so kept as to have a smooth keen cutting edge in order to do good work and to work rapidly. The method employed for doing this is the same for all edged tools, whether ground and sharpened on one side or on both sides.

Oil stones are used for plane irons, chisels, and all flat and straightedged tools; and oil slips, having rounded edges, are used for gouges, and for all tools having curved edges. They are made of different sizes, and may be found of many and widely different qualities. The best known and most widely used oil stones in this country, and perhaps in the world, are the Washita, of which the Lily White Washita brand, being carefully selected, is the most even in grade and quality, and is the best-adapted natural stone for woodworkers' tools. For wood-turners' and pattern-makers'

tools, the sharpening qualities of the Washita are unsurpassed; but the quality differs greatly in stones sold under this name, some being uneven in hardness, and some soft and worthless. No trouble will be found, however, if some well selected brand such as the one mentioned above is chosen.

The Arkansas oil stones are claimed to be the hardest and finest oil stones in the world. They are composed of nearly pure silica in the form of minute crystals interpenetrating one another, and differ from the Washita only in the minuteness of the crystals and in their more compact arrangement. They are consequently very much harder, and cut hardened steel more slowly than coarser grades of stone, but impart a finer and smoother edge to the tool. They are used by wood carvers, engravers, watchmakers, and others using tools that require a very fine edge or point. They are expensive, and should be used carefully with equal parts of sperm oil and glycerine.

A good size for an oil stone is 6 inches to 8 inches in length, and from $1\frac{5}{8}$ inches to 2 inches in width. The thickness does not matter, but the stones usually vary from $\frac{3}{4}$ inch to $1\frac{1}{4}$ inches in thickness. The oil slip should be about $4\frac{1}{2}$ inches in length, and from $1\frac{3}{4}$ inches to 2 inches in width, tapering from $\frac{5}{8}$ inch on one edge to $\frac{3}{16}$ inch on the other, both edges being rounded as shown in Fig. 82.

In using the oil stone, care should be taken to hold the bevel of the tool flat, or nearly flat, on the stone, so that the cutting edge may

be kept thin and in easy working condition. The stone is held stationary on the work bench, and the tool is moved forward and backward over its face. In the use of the oil slip, on the other hand,

Fig. 82. Oil Slip

the tool is held stationary, with the cutting edge or end up, and the slip is rubbed over the beveled surface with a circular motion or stroke, until a keen sharp edge has again been imparted to it. An abundance of oil should always be used in order that a finer and smoother edge may be given to the tool, and the pores of the stone be kept clean and free from glazing.

In the last few years an entirely new variety of oil stone and oil slip has been placed on the market. It is called the India oil

Fig. 83. Shapes of Oil Stones

stone, and is made from corundum, the hardest of all mineral substances except the diamond. These stones have wonderful cutting qualities, and differ greatly from other oil stones in that they cut steel much faster, impart better edges, and do not glaze. They are also of uniform texture throughout. India oil stones are furnished in three grades—coarse, medium, and fine—and in all required shapes, a few of which are shown in Fig. 83. Only the fine stones are adapted for woodworking tools and for those classes of tools requiring a fine cutting edge.

Grindstones. Second in importance to a good oil stone is the grindstone, power driven if possible. It should not

be too close-grained. A rapid cutting stone, even if moderately coarse, is greatly to be preferred, as all ground edges must be finally finished on the oil stone however finely they may have been ground on the grindstone. A stone about 36 inches in diameter when new, is a good size, and can be bought with a suitable cast-iron trough underneath, and also with an arrangement for supplying the water necessary to keep the stone wet.

In all stones there will be found great differences of hardness in different parts. Stones soon lose their cylindrical shape and must be turned true. A piece of gas pipe or an old file will be found excellent tools for this purpose, but they must be used without water.

In using the grindstone for plane irons, chisels, and other tools that must be ground with a long bevel or to a thin edge, it is better

to stand so that the stone runs toward the cutting edge of the tool, as shown in Fig. 84. This position grinds the tool much faster, and less of a feather will be turned up on the final edge. Scraping tools, however, and indeed all

Fig. 84. Grinding Long Bevel

tools having a very short bevel, or whose edges are ground to a very obtuse angle, may be held so that the stone will revolve away from the cutting edge of the tool, this position being less liable to cut hollows in the face of the stone. This method of grinding, however, is too slow for tools having a long bevel, and which for that reason require more grinding.

When to use the grindstone is a question that often occurs to the beginner, who sometimes confuses the use of the grindstone with

that of the oil stone. The grindstone is not in any sense an instrument for sharpening woodworkers' tools. When a chisel or a plane iron has been sharpened on the oil stone for several successive times,

the bevel is gradually worn shorter, and its shape changed from that shown at a, Fig. 85, to a shape similar to that shown at b. When the length of the bevel is thus reduced, the angle of the cutting edge is too obtuse to do good work or to work easily. The metal at c must then be ground off on the grindstone, and the bevel of the tool restored to its former correct shape, as shown at a, after which the cutting edge must be sharpened and finished on the oil stone.

MACHINE TOOLS

Turning Equipment. Of all power-driven machines, the most indispensable to the pattern maker is the wood-turning lathe. In a small shop where small patterns only are made, a 14-inch or a 16-inch speed lathe, such as is shown in Fig. 86, may prove sufficient for all purposes; but if only one lathe can be afforded, it should be a regular pattern-maker's lathe, similar to that illustrated in Fig. S7.

Pattern-Maker's Lathe. The pattern-maker's lathe differs from the speed lathe in that the headstock spindle extends through the

Fig. 86. Speed Lathe

left-hand bearing, and is fitted to receive faceplates and chucks the same as on the inside end. The arrangement of the countershaft is also such as to give a much wider range of speed to the lathe head, so that pieces of very large diameter may be turned at a speed proportioned to their sizes. These lathes are also fitted with a handfeed slide rest—either compound, as shown in the illustration, or a plain sliding tool holder moved by a rack and pinion, as may be desired. The tailstock is arranged with a cross adjustment to facilitate turning long cylinders tapering if required. When not in use the slide rest may be removed from the lathe, and the ordinary tool rest and rest socket substituted in its place for hand-turning. The speed at which a lathe should be run is always indicated by the manufacturer, the countershaft usually running at a speed of 500 to 550 revolutions per minute.

Chucks and Faceplates. A variety of chucks and faceplates for holding the work are always furnished with a lathe. Some of these are shown in the engraving, the screw chuck being shown at a,

Fig. 87. Pattern Maker's Lathe

Fig. 87, and two of the iron faceplates are shown, one on each end of the spindle.

In addition to these faceplates, which really form the base only for chucking the pattern, wooden chucks must be used between the iron faceplate and the pattern. These wooden faceplates are constructed in a variety of ways by different pattern makers; but for small patterns it is necessary to use only a plain board $\frac{7}{8}$ inch to $1\frac{1}{4}$ inches thick, of a slightly greater diameter than the required pattern, and screwed fast to the iron faceplate, as shown in Fig. 88. To this, after being placed in the lathe and turned true, the pattern is attached, as will be fully illustrated and described farther on. For patterns of a medium size, say 20 inches to 30 inches in diameter, the board should be stiffened by means of a wide wooden bar firmly screwed across the back, as in Fig. 89.

When needed for very large or heavy work, the chuck, in order to prevent vibration, must be strong in proportion. It is best made

Fig. SS. Construction of Small Faceplate

simple and cheap, and will be found in practice much stronger and more rigid than one built up of sectors or in a more elaborate way.

Turning Gouge. Of lathe hand tools the first to be considered, as also the first to be used, is the gouge. It is used for reducing the stock to be turned, from a rough or rectangular shape to a cylindrical form, preparatory to smoothing and finishing. It is ground and beveled on the back or convex side, and the shape of the cutting edge should be of the same curvature as the inside, or upper side, of the

Fig. 89. Medium-Sized Faceplate Construction

tool. Gouges are made in all sizes, one of which is illustrated in Fig. 91; but for the pattern maker's use four gouges, ranging from $\frac{1}{4}$ inch to $1\frac{1}{4}$ inches, will be found sufficient for all purposes.

as illustrated in Fig. 90, in which the front of the chuck, as shown at a, will be least affected by the moisture in the air if left unglued, or at best only tongued and grooved, being held together by the crossbars only, as shown at b, to which it is firmly screwed.

without glue. This chuck is

Before using the gouge, and indeed any lathe cutting tool, the workman should take care to see that

the tool rest has been elevated above the center line of the lathe centers, from $\frac{1}{4}$ inch for small work, to 1 inch or more for large work. The position of the gouge, when in use, is horizontal and at about a right angle to the tool rest. It should not, however, be laid on

the rest so as to use only the extreme point of the tool, but should be tilted over, first to one side and then to the other, so as to bring all

Fig. 99. Strongly Braced Faceplate for Large Work

parts of the cutting edge, successively, in contact with the wood that is being turned.

The gouge may be used by the beginner without hesitation, as in no position, whether tilted or on its back, will it catch or rip into the wood. The tool should be held firmly by the extreme end of the handle, in the right hand, while the left hand rests against

Fig. 91. Turning Gouge

the tool rest, the blade of the tool being grasped lightly with the fingers, and passing through and under the left hand while resting on the tool rest.

Skew Chisel. As the turning gouge—being curved—can be used only as a roughing-down tool or for turning out hollows, and cannot

Fig. 92. Skew Chisel

be used for finishing, the skew chisel, one size of which is shown in Fig. 92, is used, in common and ornamental turning to make a

straight, true, or smooth surface. This form of chisel is made in all sizes from $\frac{1}{8}$ inch to $2\frac{1}{2}$ inches in width, but, unlike the gouge, requires considerable practice and skill for its successful use.

The skew chisel is held slightly tilted in order that while the short edge of the blade touches the tool rest, the long edge will be

slightly above [the rest, so that the long corner of the skew point extends up and well over the cylinder which is being smoothed, thus preventing the long skew point from catching and tearing into the work. All the cutting must be done with the short part of the skew edge, say $\frac{1}{2}$ inch only of the cutting edge, the tool resting not only on the tool rest, but resting also firmly on the cylinder that is being turned, just as a plane rests on a board while cutting and removing the shavings from its

surface. The right position for this tool is hard to obtain at first, and can be acquired only by patient and continued practice. In no case, however, should the skew chisel be held flat on the tool rest, or used as a scraper, this not being allowable or good practice either in common or in ornamental turning. One skew chisel each of the $\frac{1}{4}$ -inch, $\frac{1}{2}$ -inch, 1-inch, and $1\frac{1}{2}$ -inch sizes will be found sufficient for all ordinary work.

Scraping Tools. While the skew chisel works with great rapidity and does smooth and very satisfactory work in all kinds of orna-

Fig. 94. Cutting-Off Tool

mental turning, the dimensions obtained with this tool are not so accurate for pattern work as those obtained by the regular pattern maker's scraping tools. These tools, whatever may be the shape of the points or cutting edges, are all flat like the skew chisel, and are ground or beveled on one side only. Indeed there is no better wide scraping tool for large surfaces than a common firmer chisel after it has been worn short so as to be free from vibration.

Fig. 95. Two Views of Circular-Saw Bench

Scraping tools are made in many forms and shapes, and are ground by the workman to suit the requirements of his work. A few of the many shapes in common use are illustrated in Fig. 93.

These tools should be ground with a very short bevel, and must be sharpened much oftener than a cutting tool. The revolving wood, passing at right angles to the sharp edge, wears it away more quickly than it can a cutting tool, for the latter is also worn away on the slanting side of the bevel.

Cutting-Off Tool. A very necessary tool for all kinds of wood turning is the parting or cutting-off tool, shown in Fig. 94. This is used as a scraping tool for cutting recesses in the work and for cutting off finished work from the faceplate, and will also be found useful for many other purposes.

Sawing Machines. Circular Saw. As a time-saving and laborsaving machine a good circular-saw bench is necessary in every well-

Fig. 96. Plan of Saw Table

equipped pattern shop, and is unsurpassed in capacity and in the variety of work for which it may be used. As shown in one of the views in Fig. 95, it is permanently provided with two saw arbors one carrying a rip saw and the other a crosscut saw. either of which may be raised easily and quickly to cutting position, the other being depressed at the same time. The front half of the table is made to slide, while the whole table can be tilted to an

angle of 45 degrees, and will remain in any position desired without clamping. As shown, it is provided with adjustable gages for crosscutting or mitering, and with an adjustable fence for ripping, all of which are removable at will, leaving the whole upper surface of the table clear. Fig. 96 gives a view of the table from above. As in the case of the turning lathe, the intended speed of the saw countershaft is indicated by the manufacturer. The single-arbor circular-saw bench, shown in Fig. 97, is a less expensive machine than that just described; but the time lost in having continually to change the saw on the single arbor from rip to crosscut and back again for pattern work is a very annoying as well as expensive inconvenience.

Band Saw. A good band saw, such as the one illustrated in Fig. 98, is indispensable for cutting the curves and irregular shapes that form a part of so many patterns. The best machines of this

Fig. 97. Single-Arbor Saw Bench

description have a tilting table which can be set and clamped at any angle, enabling the workman to give the required bevel or draft to his work.

With a sharp and well-kept saw, there is no more rapid or correct method of cutting out and making circular core boxes of all sizes whose length is within the capacity of the machine. The block from which the core box is to be made must be cut perfectly square on the end which is to rest on the saw table, and, if this end of the block is not large enough to give sufficient base to hold it in an upright position, the block can be supported against the blade of

a try-square, or, better still, against a wooden bracket made for the purpose.

Scroll Saw. The scroll saw, illustrated in Fig. 99, is necessary for cutting inside curves and openings in which a band saw could not be used. Like the band saw, it should have a tilting table. Where both saws cannot be afforded, the scroll saw takes the place of both. While not working so rapidly as the continuously cutting

Fig. 98. Band Saw

blade of the band saw, it is, when kept sharp and in good running condition, a great time- and labor-saving machine.

Planers. Because of the fact that pattern lumber can be bought already dressed to any required thickness, a planing machine is not found in every pattern shop. The ordinary surface planer, however, will not take out the twist, or wind (ī as in find), and the curves from the surface of the lumber-a matter of very great importance in pattern work, and one which requires a great deal of time if the planing is done by hand.

Hand Planer and Jointer. The hand planer and jointer,

illustrated in Fig. 100, is almost indispensable, not only for facing the sides of the boards perfectly true, straight, and free from wind, but also for jointing the edges, and for making perfectly fitting glue joints in a manner superior to any hand work. These machines can be bought in widths of from 12 to 30 inches. A machine 16 inches wide is a very desirable size for pattern work.

It will readily be seen that the running of a board over the hand planer, while facing the surface straight and true, will not reduce the piece to a uniform thickness. To avoid the necessity for much hand work in accomplishing this result, first face the piece on the hand planer so as to make one true side, and then run it through a surface planer similar to the one illustrated in Fig. 101. If they can be afforded, both of these machines, especially the hand planer, will

return large profits on the money invested in them, because of the time and labor saved and the superior quality of the work done.

Trimmers. Among the many labor-saving tools of late years, there is perhaps none more popular and none more indispensable in a pattern shop than the universal wood trimmer. It will cut any end or angle within the capacity of the machine; and an end which would take from 10 to 15 minutes to square and true up correctly by hand, with square and plane or chisel, can be finished in as many seconds with this tool. It is made in many sizes, from the small bench trimmer, two views of which are shown in Fig. 102, to the large machine illustrated in Fig. 103. The small No. 0 machine, shown in Fig. 102, cutting to 6 inches wide and 3 inches high, is so

comparatively inexpensive—considering the time it will save and the quality of the work produced—that it should be on the bench of every pattern maker. The larger machine will cut $20\frac{1}{2}$ inches wide and to a height of $7\frac{1}{2}$ inches. These machines will cut the acute angles between 45 degrees and 90 degrees, and the obtuse angles between 90 degrees and 135 degrees.

Fig. 100. Hand Planer and Jointer

Fig. 102. Front and Rear Views of Bench Trimmer

Fig. 103. Universal Trimmer

ALLOWANCES IN CONSTRUCTION

MOLDING PRACTICE

General Molding. As has already been said, it is necessary that the pattern maker should have some knowledge of molding in order that he may construct his patterns so that they can easily be removed from the sand. A brief description of the general method employed will suffice.

Use of Flask. Ordinarily, a casting is made in a flask, consisting of two parts, each containing its complement of sand-the

Fig. 104. Flask Showing Parting

upper part called the cope, and the lower part the nowel or drag. The pattern is sometimes made in two pieces that separate or part along the line separating the cope and the drag. Thus, in Fig. 104

the pattern separates with the flask on the line AB, and, when so separated, the cope is turned upside down, and the portion Cof the pattern is lifted out. The portion D is lifted out of the drag in the same way.

Cores for Hollow Castings. In the case of molding a hollow object. the internal cavity in the casting is formed by means of a dry-sand core which rests in impressions made in the sand by core prints attached to, and forming a part of, the pattern.

To illustrate this, let it be required to cast the hollow cylinder shown in Fig. 105. The wooden pattern necessary to produce this

Fig. 105. Hollow Cylinder

Fig. 106. Cylinder Split Pattern with Core Prints

hollow cylinder is shown in Fig. 106, which, as will be seen, represents the cylinder only externally by the part A. The core prints, one on each end of A, are represented by x and y. These projections form part of the pattern, and make their impressions in the sand with the part A, which alone represents the required cylinder. For making the core, the length of the inside of the core box, in

which the dry-sand core is formed, will be the extreme length of the pattern including x and y, and the inside width will be the exact diameter of the core prints. In this case, the core being a cylinder,

only a half-core box, Fig. 107, is used. In it are made two semicylindrical cores, which, after being dried, are cemented together, thus forming the complete cylindrical core required.

Molding Split Pattern. To mold this halved or split pattern, as it

is called, the upper half of the pattern is laid on the molding board, and the drag is turned over it with the bottom side of the drag up and the parting side on the molding board, as shown in

Fig. 108. After being rammed up, the drag and molding board are turned over and the board removed, when the parting of the pattern is exposed, the half-pattern being imbedded in the sand.

The second half of the pattern is now placed in position on the first, and dry parting sand is spread over the surface of the wet or green sand; the cope is put

Upon the cope and the drag being separated, the sand separates on the line to which the parting sand has been applied, which, as may be seen, is the line of parting of the cope and the drag, one-half of the pattern remaining in each.

After the halves of the pattern have been removed from the cope and from the drag, respec-

tively, the completed dry-sand core is placed in the molds made by the core prints x and y. This core B is shown in position in Fig. 110, and entirely fills the parts of the mold made by xand y, leaving between itself and the surface of the mold made

Fig. 107. Half-Core Box

Fig. 108. Starting Split-Pattern Mold

by A room for the metal to be poured which is to form the required cylinder.

Coping Out for Solid Patterns. Simple Cylinder. In molding the above cylinder it is not necessary that the pattern should be

Fig. 110. Completed Mold with Core in Place

parted—made in two halves—as shown in Fig. 106. Patterns for small work, and even for large castings, are often made in one piece, as shown in Fig. 111. To mold this solid pattern it is placed on the

Fig. 111. Solid Pattern for Cylinder

molding board with sufficient sand to keep it from rolling, and the drag is inverted over it as before. When the drag has been rammed up, it is turned over, and will then present the appearance shown

Fig. 112. Solid Pattern Rammed in Drag

Fig. 113. Coped-Out Mold for Solid Patterns

in Fig. 112, the entire pattern being embedded in the sand. The sand is now cut away and removed, as shown in Fig. 113, down to the center line of the pattern. The cut sand is smoothed; and, after dry parting sand has been applied to the surface of the wet

sand, the cope is placed in position and rammed up as usual. Upon the cope being removed, the sand will part along the lines de and

cd, leaving one-half of the entire pattern exposed. The pattern can now be lifted out, the core placed in position, and the cope returned to its place on the drag, when it is ready for the pouring, as in Fig. 110.

Spoked Wheel. Another example of a one-piece pattern is the small brass hand wheel shown in Fig. 114. The pat-

Fig. 114. Hand Wheel

tern for this wheel is placed on the molding board, and the drag inverted over it and rammed up. After the drag has been turned

Fig. 115. Wheel Mold Coped Out

over, the sand is cut away and removed, not only down to the center of the rim, but also to the center line of the four arms, as shown by the dotted lines in Fig. 115. All cut surfaces of the sand

are smoothed, parting sand is sprinkled over the parting thus made, and the cope is placed in position and rammed up. When the cope is lifted off, the sand will part half way down on the arms and rim, allowing the pattern to be taken out easily.

Perforated Journal Cap. Still another example in

Fig. 116. Journal-Box Cap

which a single-piece pattern can be used, is shown in the journal-box cap illustrated in Fig. 116. A cross-section of the pattern through two of the bolt-hole core prints is shown in Fig. 117. The pattern is placed on the molding board in the inverted drag, and is rammed

up as usual. When the drag is turned over, the position of the pattern in the sand is as shown in cross-section in Fig. 118. The sand that may have entered the curve cde is lifted out, and the necessary draft is given to the sand at the two ends of the opening cde, as shown at a, Fig. 119. The cope is next placed in position, and when this has been rammed up and lifted off, the sand lying in

Fig. 119. Coped-Out Mold for Cap

the curve cde will be lifted with it. The pattern is now removed, the bolt-hole cores are placed in position, and the cope is returned to its place on the drag.

In this case the core prints should be in length at least twice the thickness of the metal through which the hole is to be cast, and the length of the cores will be equal to the thickness of the metal plus the length of the prints.
Molding Difficult Patterns. Use of Green-Sand Ring. In the small sheave pulley, Fig. 120, we have an example of a casting the construction of the pattern for which, so as to make it easily

Fig. 120. Sheave Pulley

removable from the sand, may give some trouble to the beginner. The pattern is shown in cross-section in Fig. 121, and is molded in

a two-part flask. At first it would seem impossible to place the pattern in the sand so that either half could be removed when the

Fig. 121. Pulley Split Pattern

cope and drag are separated on the parting line of the pattern. This is readily accomplished, however, as follows:

The half pattern C is placed in the inverted drag, with the parting downward on the molding board, and is rammed up in the

Fig. 122. Pulley Mold Coped-Out for Ring

usual way. After the drag is turned over, the sand is cut away and removed to the center of the rim edge, as shown in Fig. 122. The cut is carefully smoothed, and parting sand applied to the cut surface. The part a of the pattern is placed in position on c, and is rammed up carefully, the sand being then cut away to the

Fig. 123. Green-Sand Ring in Split-Pattern Mold

center of the rim edge of A. Parting sand is applied to the new surface, after which the cope is placed in position and rammed up.

Fig. 124. Dovetailed Slide

When the cope and drag have been separated, the upper half A of the pattern is taken out, and the cope is returned to itsplace on the drag. The whole flask is now turned over, and the drag lifted off the cope, when the ring of green sand Z, Fig. 123, will rest on the cope sand and the part

C of the pattern is taken out. We thus have two partings of the sand mold, but only one parting of the flask.

Fig. 125. Loose-Piece Pattern

Many other examples might be given, as the case of the common two-flange pulley, which, when small, is often molded in this way. Loose-Piece Patterns. It is frequently the case that parts of the pattern will overhang so that the pattern cannot be removed from the sand in any direction, even if parted. In such cases the

overhanging parts are fastened loosely to the main part of the pattern by wires or wooden pins. An example of such a casting is shown in the slide, Fig. 124. A cross-section of the pattern for this slide is shown in Fig. 125, in which the two overhanging parts are held

in position by the use of pins. After being rammed up, the part A is removed, leaving the parts b and cstill in their positions in the sand, as shown in Fig. 126. These may now be care-

Fig. 128. Section of Casting, Fig. 127

fully removed toward the center of the opening and lifted out. Use of Dry-Sand Cores. In some cases there is not sufficient room, when the main part of the pattern has been taken from the mold, to remove the projecting pieces. In such cases, the overhanging pieces or projections must be made by using dry-sand cores. To illustrate this, we shall consider the pattern for the small

Fig. 129. Section of Rim and Top, Fig. 127

cast-iron turbine case illustrated in Fig. 127.

A section view of the casting through the line A B, Fig. 127, is given in Fig. 128. The mold is parted on the level cc, and the boss, and the inside and the outside flanges, will be made with dry-sand cores, the

three core boxes being shown in Fig. 130. The boxes shown at h and l have their nearer ends removed so as to illustrate the internal construction.

Fig. 129 illustrates a section view of the rim g, and the top outside flange and web patterns e. The boss a, however, would

Fig. 130. Core Boxes for Fig. 127

prevent the pattern from being removed from the mold, and even if a were made loose it could not be taken out through the narrow space made by the thin side of the pattern g. To overcome this difficulty the boss a is made in the core box l and the core is bedded in, as shown at l in Fig. 131.

Referring to Fig. 131, which is a section

through the vertical center of the pattern, the molding process is as follows: A level bed dd is struck off, and the core *i* is located on this bed or surface at the center of the flask. Over this core are placed the rim g and the required number of outer-flange cores made in core box

h. The core for the lug *a* is next put into its proper location, shown at l, and the mold is rammed to the top of the rim pattern. The sand inside the rim pattern is struck off level, and the web *e* is placed in position and rammed down so as to fit the rim into the groove on the under side of the web. The mold is now filled level with the upper side of the web *ec* and the parting made. The cope mold is now made, and, after being removed, the pattern is drawn. The disk *e* is removed first, and then the rim *g*, when it will be seen that these dry-sand cores, in connection with the pattern, form a mold which will give the casting required.

Examples in molding practice could be multiplied indefinitely, but the foregoing, we think, will give such suggestions as will enable

Fig. 131. Section through Vertical Center of Pattern for Fig. 127

the beginner in pattern making to construct all ordinary patterns so that they can easily be removed from the sand without injury to the mold.

USE OF DRAWINGS

Construction Conditions. As already explained, the pattern maker must understand working drawings in order to construct patterns from them directly. These drawings are usually made to a scale much less than the actual size of the required work, and always represent the completed or finished machine or one of its parts.

Drawings are made for the machine shop to guide the machinist in cutting, turning, planing, and fitting the parts given, so as to produce in the castings the shapes, sizes, and general requirements of the articles to be constructed. Hence there is less liability for mistakes after the castings reach the machinist, as he has before him not only the drawing with its accurate dimensions to work from, but also the castings for the machine or its parts, from all of which the construction and uses of these several parts can easily be understood.

On the other hand, the pattern maker, with the aid of the same drawing, must imagine the casting before him, and must build something in wood which will produce that casting in metal. This pattern, in some cases, will be a duplicate of the required casting, but more often it has only a general resemblance to it, with core prints attached, and is external only, with nothing to show the internal openings, chambers, and winding passages that must be provided for by coring. The core boxes, in which the cores are to be formed, are not shown in the drawings furnished to the pattern maker, but must be provided by him in correct shapes and sizes, in addition to the pattern itself with its added core prints.

In building a pattern the workman, as before stated, must allow for shrinkage. He must also allow for draft and for finish.

Stock Allowances

Shrinkage. The shrinkage of cast iron when cooling in the molds is, as has before been stated, about $\frac{1}{8}$ inch to each foot, and

the manner of obtaining the exact sizes for different parts of the pattern has been explained in the section on Measuring Tools. For brass or bronze castings a greater allowance must be made, averaging $\frac{3}{16}$ inch to each 12 inches. Shrinkage rules for brass allowing $\frac{3}{16}$ inch to the foot can be obtained, and must be used for all patterns made from brass.

Draft. After shrinkage, the second point of importance in a

well-made pattern is draft. By the term draft is meant the bevel or taper made on all vertical parts of the pattern so that it can easily be lifted from the sand without injury to the mold. This is best illustrated as in Fig. 132, in which it will be seen that if the diameter of a pattern at a were to be the same as that at b, the latter point would drag over the whole length of the sand until it reached the former point. As the sand is held together only very lightly, this dragging would be likely to dislodge some of the particles and make it necessary to mend the mold. In order to avoid this, the diameter at a is made slightly greater than at b, so that the body of the gland is tapering, and the moment it is started out the whole surface from a to b is clear of the sand and can be removed without injury thereto. This difference in the diameters at aand b is called the *draft* of a pattern.

Variation. The amount of draft depends upon the length of the part that is to be drawn out of the sand. The allowance for draft, which varies with the pattern, is often greater or less on different parts of the same pattern. For example, the draft on the outside of the pattern of a pulley rim, 24 inches in diameter and

Fig. 133. Draft Template

6 inches face, should be $\frac{1}{8}$ inch to the foot, while on the inside of the rim and on the hub of the pulley it should be in the ratio of $\frac{3}{8}$ inch to the foot. The reason for this difference is that the face of the rim is often turned and finished straight, and for that reason the least possible amount of draft which will allow of the pattern being removed from the sand should be used, while on the inside of the rim a greater amount of draft is necessary if the inside of the pulley mold is to be coped to the center of the arms. This mass of sand hanging from the cope is lifted or drawn from the pattern with the cope flask, and will require a greater draft to be sure of obtaining a perfect lift.

Draft Template. To obtain any required amount of draft correctly, a draft template, kept with other tools and templates,

will be found convenient and useful, saving much time when changing from one ratio of draft or bevel to another. It is made as follows:

Take any straight-grained board 14 inches to 16 inches long and $12\frac{1}{4}$ inches wide, as shown in Fig. 133. Having jointed the edge *a* perfectly straight, draw the line *b* perpendicular to the edge and 12 inches long, using a steel square and a sharp-pointed knife not a scratch awl or a lead pencil. On the edge *a* carefully measure $\frac{1}{4}$ inch on each side of *b*; and at the upper extremity, with the same care, measure $\frac{3}{8}$ inch on each side of *b*; connect the last two points thus found with the first two on the edge *a* by a sharp knife line, and the result will be a right and a left slanting line, each having, with reference to the perpendicular, a slant of $\frac{1}{8}$ inch to a foot. These lines should each be marked " $\frac{1}{8}$ inch", as shown in the drawing.

Now draw a second perpendicular c, at a distance of $1\frac{1}{2}$ inches or 2 inches from the first. On the edge of the board a again carefully mark off $\frac{1}{4}$ inch on each side; at the other extreme mark off $\frac{1}{16}$ inch on each side of c, and again connect the latter points with the former. The result will be a taper of $\frac{3}{16}$ inch to a foot. Again repeat the process, making the taper $\frac{1}{4}$ inch, and lastly $\frac{3}{8}$ inch, to a foot. Mark the pairs of right- and left-hand tapers, " $\frac{3}{16}$ inch", " $\frac{3}{16}$ inch", " $\frac{1}{4}$ inch", " $\frac{3}{8}$ inch", respectively, as shown. These lines having been obtained permanently, the width of the board may be cut down from $12\frac{1}{4}$ inches to 6 inches, as shown by the dotted line AB, and the board then shellacked.

To use this template, place the bevel against the edge a of the board, and carefully adjust the blade to the $\frac{1}{8}$ -inch, $\frac{3}{16}$ -inch, or other draft, right or left, as may be required. It will readily be seen that whatever may be the width of the surface to which the bevel is applied, the taper or draft will be the exact proportion of the given amount for each 12 inches.

Finish. In pattern making, the term finish refers to the additional thickness besides shrinkage and draft, which must be given the pattern in places where the casting is to be planed, turned, chipped and filed, or fitted, in the machine shop. The amount that is to be so added is, to a certain extent, though not wholly, independent of the size of the piece. For small articles whose longest dimension does not exceed 3 or 4 feet, an addition of $\frac{1}{8}$ inch to the surface to be finished is usually sufficient. For larger dimension

sions it may be necessary to add as much as $\frac{1}{4}$ inch or $\frac{3}{8}$ inch, but very rarely more than this. In making this allowance it is also well to bear in mind the tendency of the casting to warp in cooling. Where the thickness of the metal varies to any great extent, there is a greater liability to warp than if a uniform thickness prevails

Fig. 134. Pattern for Plain Bar

throughout the whole. Hence, in such cases, a greater allowance must be made for the finishing.

On small pieces, and where the molding is carefully done, it may be possible to make as small an allowance as $\frac{1}{16}$ inch, but as a general rule sufficient metal should be put upon the casting to allow the cutting tool of the finishing machine to cut well below the surface so that it shall not become dulled by the sand and the hard scale on the outside.

Example of Allowance. A pattern for the plain cast-iron bar illustrated in Fig. 134 will afford a good example of the allowance

Fig. 135. Allowances for Finish and Draft

necessary for finish and for draft. This bar is to be finished all over, the finished sizes being 36 inches

Fig. 136. Position for Molding without Added Draft

long, 1 inch wide, and 1 inch thick. A slender bar of this length is liable to warp or bend when cooling in the mold, and for this reason the bar should have an allowance of at least $\frac{1}{2}$ inch all over for finish, thus requiring a pattern $36\frac{1}{4}$ inches long, $1\frac{1}{4}$ inches wide,

and $1\frac{1}{4}$ inches thick—actual dimensions. Moreover, to enable the molder to remove the pattern from the sand without injury to the mold, we must add on two of the opposite sides a draft of about $\frac{1}{4}$ inch to the foot, making a cross-section through the pattern of the shape and dimensions shown in Fig. 135.

When accuracy is required in testing bars—1 by 1 by 36 inches, and seldom finished—they are often molded partly in the cope and partly in the drag, as shown in Fig. 136, the parting being on the line ab. In this position the inclination of the sides of the pattern in the mold is so great that no draft is required, the pattern being simply a square bar of wood of dimensions 1 by 1 by 36 inches, measured with the shrinkage rule.

•

-

MOLDAR SAND SHOVEL DEFOSYTING 5-ND IN FLASK Courtest of Riches, Browns and Donald, Margels, New York City,

PART II

CONSTRUCTION OF PATTERNS

SIMPLE TYPES

Conditions of Procedure. Whenever the building of a pattern is consigned to the pattern maker, a detailed sketch or drawing of the completed casting should be furnished; also information regarding the number of castings that are required. It may be a repair part, or experimental work, and only one casting required, and, if so, it would often be economy to make the pattern as cheaply as possible, even if the expense of molding is slightly increased. Or it may be for a standard casting, for which it is expected to use the pattern for years, and in this case special study should be given the manner of construction, to prevent the distortion and general breakdown of the pattern, due to its shrinking, warping, and abuse.

INFLUENCE OF MOLDING METHOD One-Piece Patterns

Green-Sand Coring. The simplest patterns are those which are made in one piece, and which require no coring, although the castings themselves may be hollow. Deciding the method of molding indicates the way in which the pattern is to be removed from the sand, and where the parting line of the pattern, if there is one, should be. As an example of a simple pattern of one piece made without a dry-sand core, the stuffing-box gland shown in Fig. 132, Part I, is a good illustration. It is readily seen that, if the pattern of such a gland were to be imbedded in the sand as shown, there is no reason why it could not be lifted out without disturbing any of the surrounding or the internal sand. The drawing represents the pattern with draft and finish added, the finished gland being shown by the dotted lines. Core. Any part of a mold which projects far enough into the cavity to form a hole or recess in the casting is called a core, whether it is formed by the pattern or is placed in the mold after the pattern is drawn. In the case where the core is made by ramming the molding sand—called green sand—into a recess in the pattern, it would be known as a green-sand core, as shown in Fig. 132, Part I.

The use of the green-sand core is limited to cores of comparatively short length and large diameter. To illustrate: A pattern designed for a green-sand core 2 inches long by $\frac{1}{2}$ inch in diameter would be very difficult to draw without lifting or breaking the core, and also the inrushing molten metal would wash away some of the core—for a green-sand core of these proportions cannot be rammed very hard and permit drawing the pattern, although a pattern with a core of this kind $1\frac{1}{2}$ inches in diameter and 2 inches long could be easily drawn and it would have sufficient strength to withstand the pouring process. A green-sand core of comparatively small diameter, should have more draft than those of larger diameter which should have a draft of $\frac{1}{2}$ inch per foot, this being the usual draft allowance for the outside of patterns.

Typical Construction. In order to give a better understanding of the methods employed in pattern making, the object itself will be illustrated, and when it is to be finished, the finished dimensions only will be given. If the object is not to be finished, the sizes of the completed castings will be shown. These dimensions will, in all cases, be arbitrary, and may be changed at will, if for any reason alteration is necessary. The successive steps in the construction of the pattern are given in detail so that the student may fully understand the principles involved.

Dry-Sand Cored Bushing. The first article for consideration is the brass bushing flanged at one end, illustrated in Fig. 137. This bushing is to be finished all over, and as the casting is small, $\frac{1}{16}$ inch will be sufficient for outside finish and the same for turning out the inside. On examining it with regard to molding, we find that if molded on end with the flange up and on the parting line of the flask it can be readily removed from the mold. In making the mold from this pattern, the cylindrical hole in the casting will be made by the use of the dry-sand core as described in the section on Molding Practice in Part I.

The draft in this instance should be $\frac{1}{8}$ inch per foot. It is well to have standard dimensions for the core prints for reasons explained subsequently relative to standard core prints. The lower core print should have the same proportion of draft as the body of the pattern,

but the upper core print is given the excessive draft of $\frac{3}{16}$ inch to its length so that the cope can be easily lifted off and returned again over the tapering end of the dry-sand core without injury to the mold; the parting of drag and cope being on the line ab at the flanged end of the bushing.

Having the finished sizes given, as in Fig. 137, and having decided on the amounts of draft and finish, the pattern will be as represented

Fig. 139 Glued Stock with Heart and Bark Sides Reversed

by Fig. 13S. In the case of this simple pattern, as in all others, a full-size drawing, or sketch, giving all the dimensions of the pattern, should be made by the pattern maker before beginning work on the pattern; this is good practice, and, if carried out, many mistakes and much loss of time will be avoided.

Shaping Pattern. This pattern may be turned from a solid block of wood, but

if durability is desired, the block should be glued up from 4 pieces of $\frac{7}{5}$ -inch pine, care being taken to reverse the annular rings or yearly growth of the wood, as shown in Fig. 139. Place the block in the

Fig. 140. Core Box for Bronze Bushing of Fig. 138 lathe and with the gouge turn to a cylindrical form of slightly greater diameter than the largest diameter of the pattern, say $3\frac{3}{16}$ inches.

Finishing to diameter should be done by the use of scraping tools. For the body of the pattern, a firmer chisel 1 inch wide is a good tool, but the cutting edge must be ground and sharpened slightly rounding, as described for plane irons; otherwise the corners of the tool are liable to catch and form grooves on the surface. For turning the ends to size, use the right- and left-hand skew chisels, not with a scraping cut, but holding the chisel with its edge nearest the point resting on the tool rest.

Forming Core Box. The core box for this pattern is shown in Figs. 140 and 148, which are representative of the half box used for all symmetrical cores.

In this box, two semicircular or half cores are made, which, after being baked in the core oven, are pasted together, first having a

small groove scratched along the center of the flat side of each half, to form a vent for the gases generated during the pouring. A small V-notch, as seen in Fig. 148, should be cut at the center of each

end of the half-core box to assist in making this vent.

Gouging Cylindrical Section. For the part aof the core box, a block of slightly greater length ($\frac{1}{2}$ inch or 1 inch) is first

planed up to the exact size. A center line, shown at b, Fig. 141, is drawn with the marking gage parallel to one of the edges, and also extends across each end of the block. From this center line, at a dis-

tance of $\frac{15}{10}$ inch on each side, the lines d and \dot{e} are also drawn. Then, with a second block or strip of wood placed against the face of the block and flush with the end, the two pieces are clamped together in the bench vise, as

shown in Fig. 142. Now, with the dividers adjusted to $\frac{15}{5}$ inch, describe on each end of the block the semicircle which connects the lines d and e on the ends of the block. This wood may be removed

rapidly with a gouge and mallet, smoothed with a round plane of proper size and curve, and finished by sandpaper rolled on a cylindrical block having a diameter $\frac{3}{16}$ inch less than the width of the required box.

As the work progresses, the accuracy of the curve is tested by

means of a try-square or other 90-degree angle, as shown in Fig. 143.

Right-Angle Methods. Another method frequently used for small boxes, is to work out the center of the curve with a rabbet plane, forming a right-angled opening, as shown in Fig. 144, the

Fig. 142. Layout of Box before Gouging Cylindrical Section

Fig. 143. Right-Angle Test of Circle

Fig. 141. Core-Box Stock with Construction Lines

remaining wood being removed with the round plane and finished with the cylinder and sandpaper as before.

If the machine-saw table can be tilted, as in Fig. 97, Part I, a cut similar to that in the previous method can be made, Fig. 145.

Turning Tapered Section. The tapered end of the box c, Fig. 140, is turned from a block of wood, screwed to the faceplate of the lathe, as shown in Fig. 146. After the hole is turned to the required $\frac{3}{4}$ -inch depth, and to the required

Fig. 144. Rabbet-Planed Opening

 $1\frac{\tau}{8}$ -inch size on the outside, and to $1\frac{5}{8}$ inches at the bottom, it is removed from the faceplate and the piece *c* is cut out, as shown by the dotted lines in Fig. 146. This piece *c* is glued and nailed to the end of *a*. The two ends of the box are now given a slight draft— $\frac{1}{4}$ inch in 12 inches—to allow the half core to leave the box easily. The end strips *d* and *d*, Fig. 140, are then nailed on, and the box is

Fig. 145. Skeleton View of Machine Saw with Table Tilted to 45 Degrees

complete.

Approved Process. While taking up the construction of this core box for a cylindrical dry-sand core, it will be well to consider other methods of procedure, and herein lies one of the engineering features of the trade—to be able to discern which method is best adapted to the requirements.

Another method which has some advantages is that

shown in Figs. 147 and 148. Select stock with a width of about 1 inch greater than the diameter of the required core, with the depth about half this width, and the length slightly longer than the total length of the pattern, including the core prints h. Dress this stock to a parallel thickness and width. Scribe a center line with the marking gage on one side, and cut one piece d, Fig. 148, for the cylindrical part of the core—the length b to include the length of

the nowel core print—and cut another piece e to the length c of the cope core print.

The waste in the semicylindrical hole in d is to be removed as follows: Make two machine-saw cuts, as at i, Fig. 147, about $\frac{1}{16}$ inch deep, and locate them so

as to have the outside edge equal the diameter of the required core a. Cut out the remaining stock as shown, so as to be able to break out the stock left standing. Remove the remaining stock with the core-box plane, as described in the section on Hand Cutting Tools in Part I.

Fig 146. Cope End of Core Box Mounted on Faceplate for Turning Tapered Section at c. Fig. 140

Scribe semicircles on piece e, Fig. 148, for the large and small ends, to correspond to the dimension of the cope core print. If there is a $\frac{1}{4}$ -inch band saw, tilt the table and saw to these lines, or remove the stock with a gouge. In either case, finish smooth on a small

sand roll, unless the hole in the e section is very small, when it should be finished by hand. Size the ends of d and e, and glue together. As soon as the glue is set enough to allow handling, nail the ends f on, and cut the grooves g with the machine saw and glue a spline of soft wood in each. Machine-saw a slight amount of stock from

Fig. 147. Method of Removing Waste Stock

the side and ends to clean the outside. A narrow chamfer should be planed on the outside corners, but no other work done to the outside. The advantage of the spline is, that if the core box is to be altered, by sawing out the spline the box is easily broken apart, and the spline replaced after the changes are made.

Finishing. Shellacking. Having completed the pattern and its core box, the surface of the wood must be covered with some material which will render it hard, smooth, and impervious to the moisture in the sand, and at the same time make it easier to be withdrawn from the mold. Pure grain-alcohol shellac varnish is the best for this purpose. All cheap substitutes, such as wood-alcohol shellac, or

Fig. 148. Completed Core Box

copal varnishes should be avoided; they become flaky and scale off, and do not stand the exposure and moisture. Pattern makers generally make their own shellac varnish, buying only the best quality of shellac gum, and using 95 per cent proof alcohol. The proportions are 3 pounds of gum to 1 gallon of alcohol. The gum is put

in a wide-mouthed bottle, or earthen jar, and the alcohol poured over it; and, if well stirred three or four times during the day, this will—if the alcohol is of the best—give a smooth clear orange-colored varnish, ready for use.

A good grade of white grain-alcohol shellac may be made from bleached gum, or can be bought from the dealers, but it dries more

slowly and does not produce so hard a surface as the orange shellac. Orange or white shellac varnish should never be kept in a metallic can or cup, as the oxidation of the metal will discolor the varnish.

Shellae Pot As the alcohol in shellac varnish evaporates very rapidly, the brush should be kept in a vessel which is closed and air tight. A short bottle having a mouth wide enough to admit the brush is best for this purpose. A 1-inch flat doublethickness fitch hairbrush is good for general work. Do not use a cork, but turn a wooden cap for the bottle, such as is shown in Fig. 149, and of which the shoulder at a may be $\frac{3}{16}$ inch to $\frac{1}{4}$ inch long, but must be at least $\frac{1}{4}$ inch less in diameter than the inside of the mouth of the bottle. Otherwise the shellac will cement it to the glass so that it cannot be removed. Its only object is to keep the cap nearly central on the bottle. The handle of the brush must be tightly fitted into a hole through the center of the cap and fastened with a screw or brad, allowing the brush to reach within $\frac{1}{2}$ inch of the bottom of the bottle. Keep the bottle one-third to one-half full of shellac, and use the brush with the cap on the handle. The shellac will make a tight joint between the bottle and the cap, and, if the proper amount of shellac is kept in the bottle, the brush will always remain soft.

For small patterns, such as the bushing described, the small quantity of shellac needed can be used directly from the bottle. For large work, however, an earthenware cup or mug should be used, but the shellac left over should always be returned to the vessel in which it is kept.

Sandpapering. Having given a perfectly smooth surface to the pattern and core box by the use of very fine sandpaper—No. 0 apply the first coat of shellac. This first coat will raise the grain and roughen the surface of the wood, which, after the shellac is perfectly dry, must be sandpapered a second time until smooth. Now apply a second coat. Should there still be roughness, a second sandpapering will be necessary. At least three coats of shellac should be used. If there is much end wood exposed on any of the surfaces of the pattern, a fourth coat may be necessary on these parts.

Coloring. As regards the color in which patterns are finished, there are different rules in different shops. The general rule, however, is to leave all patterns for brass or bronze in the natural color of the wood, and to shellac the core prints red. If the pattern is intended for molding cast iron, the body of the pattern is made black and the core prints red. The parts of the core box in which the core is to be formed are also colored red and the outside of the core box black. The black color is produced by mixing lampblack with the shellac varnish, and the red color by mixing vermilhon— Chinese is the best—with the shellac. The vermilion is heavy and will settle, hence it must be sturred or well shaken before using. The best method is to first use two coats of the natural colored shellacorange or white—on all surfaces of the pattern, core prints, and core box, then apply the black or red for the last coat only.

As the pattern already described is for a brass bushing, the body should be left the natural color of the pine, and the core prints on the pattern and the inside of the core box colored red. The outside of the core box may be left the natural color or made black, as preferred. The outside of the core box, having no part in the formation of the core, is not necessarily so well and smoothly finished as the inside.

Final-Finishing. All nail holes or any defects in the wood should be filled with beeswax applied with the warm blade of a knife, or narrow chisel, warmed by holding in hot water. The beeswax should always be used after the first coat of shellac has been applied, as it will then hold better. The sandpapering of the pattern, after the first coat, will smooth the wax and bring it even with the surface of the wood. The time required for a coat of shellac to dry is from 8 to 12 hours, depending upon how heavily it may have been applied, even though to the touch the surface may seem dry in 1 or 2 hours. If a hard durable surface is required on the pattern, 12 or better, 24 hours must be given between each coat. The roughness will then sandpaper off as a dry powder without gumming the sandpaper, and leave a hard smooth surface for the succeeding coat of shellac.

Split Patterns

Conditions. The second casting to which attention is called, is the brass bearing represented in Fig. 150, which is to be finished all over. On examining the drawing, first with regard to removing the pattern from the sand, we find that it must be molded on its side, and, that the molder may not lose the time required in cutting away the sand, as in Figs. 112 and 113, Pattern Making, Part I, the pattern must be parted or made in two halves. For finish on this small pattern $\frac{1}{15}$ inch will be sufficient, and draft will be required only on the ends of the pattern and on the ends of the core prints, which, in this case, should be not less than 1 inch long. This is necessary because the core-print molds must sustain the weight of the dry-sand core.

Method of Making. The pattern for this casting is represented by Fig. 151, in which it is seen that, unlike Fig. 138, the body and core prints are perfectly straight, a slight draft— $\frac{3}{16}$ inch in 12 inches—being given to the ends only of the pattern and to-those of the core prints. A slight curve of $\frac{1}{16}$ -inch radius should also be made at the intersection of the body of the pattern and the inside of the flange at *aa*. The wood in being prepared for this pattern should

be cut $2\frac{1}{2}$ inches longer than the finished pattern. The dimensions of the two halves would each be $1\frac{3}{4}$ by $3\frac{3}{8}$ by $8\frac{3}{4}$ inches.

Having fitted the two insides accurately together, and dressed one

Fig. 150. Finished Bronze Bearing Flanged at Both Ends

Fig. 151. Pattern for Bushing, Fig. 150

edge of each straight and at right angles to its face side, with the marking gage draw a center line on each, not only on the face but also across each of the two ends, Fig. 152. Place about $\frac{1}{2}$ inch of the pointed end of a $1\frac{1}{2}$ -inch wire nail on the center line, as shown in Fig. 152, and, striking it with a hammer, make an indentation at each end of both pieces of stock to form the location of the head-

stock and tailstock lathe centers. Glue $\frac{3}{8}$ inch of the joint at each end, and clamp the stock together, being careful to keep the ends and the edges of the stock flush with each other. At the ends insert two metal corrugated fasteners, as shown in Fig. 153, placing

Fig 152 Preparing Stock for Split Lathe Work

Doweling. The dowel-pin holes should be drilled before the stock is turned to a cylinder so as to have them stand perpendicular to the joint. The location of the dowel pins should indicate which way the parts go together. If it is attempted to so locate the dowel pins that the parts can be assembled either way, it is very likely that

lathe.

Fig 153. Split Stock Ready for Turning

they will not assemble accurately both ways—and when the nowel part of the pattern is in the mold it is not so easy to tell which way is correct so, unless the core prints are quite small, locate one dowel pin in the core print and the other in the body of the pattern, as shown in Fig. 154 They could also be located to one side of the center line, if it

them near the center of the end, but not so as to come

in contact with the lathe centers. Drive a nail into the center hole in each end to force out the glue, for, if the glue' should harden, it would be impossible to center the stock in the

is not desirable to put them in the core print. The dowel pins should be placed as far apart as possible to prevent side slip of the pattern when the dowel pins and holes have become worn Mark on one side of the stock the form of the pattern to show the location, and drill $\frac{1}{4}$ -inch holes through the upper half of the stock and to a depth of about $\frac{1}{2}$ inch into the lower half. The dowel pins need not be inserted until after turning. Glue a pin in

the holes drilled just deep enough to have the surface of the pattern turn smoothly. These pins should be made of the same stock as that used for the pattern. The dowel pins should always be inserted in the hole having a bottom, so that the pin cannot be driven below

Fig. 154. Split Bushing Pattern Ready to Take from Lathe

the proper height, and should always be placed in the cope part of the pattern, as in Fig. 151.

Care Required. When centering the stock in the lathe, great care must be taken that the spur on the centers enters the small hole left in the ends of the stock exactly on the parting line of the pattern. Fig. 154 shows the pattern as ready to be taken from the lathe.

Saw off the waste stock, trim the ends true with a chisel, and sandpaper smooth. Shape the hardwood dowels to the proper form, Fig. 155, and, after gluing them in place, clean off any excess glue. These dowel pins will always bring the parts into accurate alignment when used by

Fig. 155. Diagram Showing Proper Proportions of a Dowel Pin

the molder in the foundry. Before removing the turned pattern from the lathe, it should be smoothed and finished with sandpaper, but care must be taken not to allow the sandpaper to come in contact with the sharp corners and angles of the pattern, or they will be rounded off and the work ruined. For pine, only the finest paper—No. $\frac{1}{2}$ and No. 0—should be used on lathe work, and the paper must not be held in one position on the revolving work but must be kept moving laterally, that is, from side to side, to avoid cutting depressions in the surface. When the scraping tools are kept sharp so that they cut freely and without pressure, a light touch of sandpaper only is required.

Construction for Durability. In the construction of this pattern, it may be made of two blocks of $1\frac{3}{4}$ -inch stock as described, but the

Fig 156. Diagram Showing Tendency of Pattern Stock to Warp

tendency of the two halves will be to become rounding on the parting line, as shown by the dotted lines cd and

Fig. 157 Method of Gluing Stock to Prevent Trouble Shown in Fig. 156

ef, Fig. 156. This is caused by the removal of considerable wood in the process of turning, at the angles aaaa, thus exposing fresh surfaces which are farther removed from the original surfaces of the plank than the surfaces on the line of parting. The exposure of these deep inside fibers of the wood will cause a shrinkage of the pores and draw the pattern more or less, according to the position

Fig. 158. Core Box for Pattern, Fig. 151

of the annular growths, and also to the more or less thorough seasoning of the wood, in the direction indicated.

If the pattern is intended for temporary use only, it may be constructed as above; but if durability and permanence of shape are required, the two blocks should each be glued up out of thinner stock, with the annular growths carefully reversed, as shown in Fig. 157. This is done not only because thin plank is more evenly and better seasoned, but because in gluing, the tendency of the pieces to warp or spring is counteracted each by the other, and, in addition, the gluing of several thin pieces together stiffens and makes the resulting piece much firmer and stronger than a large block or piece of the same size obtained without gluing.

Core box. The core for this pattern being straight from end to end, and cylindrical, only a half-core box is required, as shown in Fig. 158. After being laid off and worked out in the same manner as described for the core box, Figs. 140 and 141, cut the ends of awith draft of $\frac{1}{4}$ inch in 12 inches, and glue and nail on the ends c and e, which may be $\frac{3}{8}$ inch to $\frac{1}{2}$ inch in thickness.

Finishing. Shellac and finish as described for the pattern in Fig. 138, giving first two coats of orange or white shellac, and for the last coat on the core prints of the pattern and the inside a of the core box use the red, the body of the pattern being left natural color —with three ccats—and the outside of the core box either natural or black.

FASTENING PROCESS

Gluing. As the use of glue enters largely into the construction of all patterns, some instruction as to its selection and the manner of using is necessary. When building up patterns, the connections should in all cases be made by gluing.

Use of Nails. Nails should never be used except when they can be so placed as \dagger o be entirely removed from all danger of contact with the tools used in turning and shaping the pattern, and when so employed should be used in conjunction with glue. The only advantage in their use is the hastening of the work, because they take the place of hand screws or clamps while the glue is drying. The use of nails, however, is always unsatisfactory, for when the point is passing through the upper piece, small thin slivers are broken from the under surface, which have a tendency to separate the two surfaces instead of exerting the required pressure as when hand screws are used.

Kinds of Glue. For pattern work select only the very best quality of cabinetmakers' glue, or better still, the best quality of white glue. This white glue can always be had in two forms: (1) clear; and (2) opaque. The first is the glue without the addition of any foreign substance. The second looks much white than the first, because of the addition of whiting, or other mineral, to the glue. This addition does not in any way lessen the adhesive qualities of the glue; on the other hand, it sets more readily and dries more quickly, but for this very reason it is harder to use on large surfaces, as the first brushing on one part of the work will begin to set before the entire surface can be covered. As this objection does not apply to small or moderate-sized work, however, the opaque white glue is to be preferred in such cases.

Preparation. Good glue will keep in a dry room of any temperature for an indefinite length of time, but when cooked in the gluepot it deteriorates very rapidly. Each successive reheating and boiling lessens its adhesive qualities, hence it should always be used fresh, or nearly so. A greater quantity of glue than is likely to be used in two or three days should not be cooked at one time.

The cooking and preparing must be done in the regular gluepot, made for the purpose, and sold in all hardware stores. No rule can be given for the relative quantities of glue and water to be used. Some glues, especially the cheaper grades, require much less water than the better and finer qualities. As a general rule, however, pack the glue firmly in the pot and add sufficient cold water to cover it. Fill the outside kettle with cold water and boil until thoroughly cooked, so that it will run smooth and clear from the brush or paddle. It should run freely without returning and gathering in bunches or clots at the end of the paddle, but must not be so thin as to be weak and watery.

If the glue is too thick, no amount of pressure will bring the two glued surfaces in close contact, and if too thin there is danger that the joint will not hold. Always use cold water for cooking and dissolving fresh glue. Hot or boiling water will make the glue stringy and will require a much longer time to cook to an even and smooth consistency. Great care should also be taken to keep the outside kettle, which surrounds the gluepot proper, full of water. If allowed to boil dry the glue in the inner pot will be scorched or burned, and will then be entirely useless. It must then be thrown out, the pot washed or boiled out clean, and fresh glue again cooked. The hot water in the outside kettle should in all cases be used for thinning the glue to the required consistency. Cold water chills the glue and necessitates reheating. Application. In cold weather the precaution must be taken, unless the room is warm and entirely free from drafts, to heat the pieces of wood before applying the glue, else the latter may be chilled and fail to set. The time required for well-made joints to dry so that the hand screws can be removed is from 4 to 6 hours.

Sometimes a difficulty will arise in the case of large surfaces on thin material. When the glue is applied it moistens and expands the surface upon which it is placed, causing the edges to curl up and pull away from the adjoining piece which has a tendency to move in the opposite direction. In such cases never moisten the back of the thin pieces with water from the outside kettle, as is sometimes directed, but, working quickly, spread the glue rapidly, and then place between two thick stiff pieces of board, previously dressed true, prepared and heated for the purpose. Use as many hand screws as can be conveniently placed on the work, and allow it to remain in these clamps until all moisture from the glue is absorbed by the two outside heated boards. Twenty-four, or better 48, hours should be given to this process, if possible.

All such gluing of thin pieces should in every case be done first and allowed to dry while the other parts of the pattern are being constructed. Under no circumstances use water on any surface of seasoned wood. The reseasoning or drying out of such water will invariably distort, curl, and warp the pieces so treated, after being glued together. Even the water contained in the glue is objectionable, while unavoidable, and can be most satisfactorily removed only as directed above.

In all cases where end wood is to be glued, or where the grain of the wood runs diagonally to the plane of the joint so as to present the open end wood pores for the glue, this end wood, or partially end wood joints, should be first sized with thin glue—glue about half the thickness of that used for gluing—and allowed to dry. This will raise the grain and roughen the surface of the joint, which, when dry, must be lightly and carefully scraped off with a sharp chisel, when it will be found that the open pores of the wood are filled with dried glue. The joint may now be glued, and the glue will hold as in ordinary jointing.

Clamping. Use of Hand Screws. The hand screws, illustrated in Fig. 79, Part I, Pattern Making, enter so largely into all gluing for pattern work that some description of their construction and the manner of using is necessary here. The four parts of each hand screw consist of two jaws and two spindles. When using, the jaws must in every case be kept parallel. This is done by the adjustment of the middle or central spindle. The clamping is in all cases done by the outside or end spindle, the middle or adjusting spindle serving as a fulcrum for the jaws, and the leverage and pressure being obtained by the end spindle.

To open and close the hand screws for larger or smaller work, do not screw or unscrew one spindle at a time. Instead, grip the handle of the middle spindle in the left hand, and the handle of the end spindle in the right hand. Hold the hand screw at arms length and whirl it from or toward you as may be needed for closing or opening the jaws. In this way the spindles will each be kept in its proper relative position, and the jaws will, at all distances, remain parallel.

Pressure Regulation. When clamping broad surfaces, care must be taken to see that the pressure of the jaws on the work being glued is the same at the points and at the back part of the applied portion of the jaws. This can be easily changed at will, by slightly loosening or tightening the middle spindle, which, as before stated, is the adjusting spindle and fulcrum, and not used for clamping. After adjusting the jaws parallel and to even pressure on all their length as applied to the work, screw up and tighten the end spindle to the utmost pressure which the jaws will bear, and again examine the clamp and the work to see if the jaws are parallel and the pressure even. If not, loosen the end spindle and readjust the middle spindle by opening or closing as the case may require.

BUILT-UP PATTERNS

Sheave Pulley

Green-Sand Ring Coring. For practical reasons, the first method of molding—for green-sand core, or, in this case, ring the 6-inch sheave pulley shown in Fig. 159 would ordinarily not be used. The expense of molding would more than offset the alternative extra expense caused by making a dry-sand core for the groove in the outer edge of the sheave. However, consideration of this method is offered at this time solely for the study of the manner of building the pattern, as it will be found practical to use this process in making numerous other patterns. The study of the molding process is also of value. The molding of this pattern is as explained in connection with the use of the green-sand ring, under Molding Practice, Pattern Making,

Practice, Pattern Making, Part I.

Making Master Pattern. The wood pattern for this casting, molded as described, is comparatively frail, so a working pattern should be made of some aluminum alloy in order that the weight will not interfere with the molding process. The metal pattern should be lathe finished all over; consequently the wood pat-

Fig. 159. Small Sheave Pulley

tern shall include stock for this finish. Allow $\frac{1}{16}$ inch on each surface for this finish, besides the allowance for the aluminum shrinkage which will be about $\frac{1}{4}$ inch per foot. These must be added to the shrinkage allowed for the metal used in the final castings; if the final castings are to be of iron, and the metal pattern made

Fig 160. Section of Pattern for Sheave

of cast aluminum, the shrink allowance should be based on a shrinkage of $\frac{3}{8}$ inch per foot. The wood pattern is called the *master* pattern.

A cross-section through the finished pattern for this casting is shown in Fig. 160. The groove is a semicircle 1 inch wide, and the rim containing the groove is connected with the hub by a solid web 4 inch in thickness and having four or six holes, each 1 inch in diameter, this web taking the place of arms. If there is to be no finish on

the sheave, as is usual, the only allowance to be made on the pattern, which must be parted, will be for shrinkage and for draft.

Segmental Construction. In all patterns of this kind, the web is first glued up in sectors, Fig. 161, six, eight, or more in number, according to the size of the sheave. The sectors are fitted by hand

Fig. 161. Segmental Construction of Web for Sheave Pattern

or on the trimmer, the ends are glue sized, and when the sizing is dry the joints are carefully scraped smooth and the whole glued together. After drying for 4 or 5 hours, it is sawed to a circle of $\frac{1}{2}$ inch greater diameter than the finished pattern, and the block for the hub is glued over the center. Six segments to form the outer rim are glued around on the outer edge, care being taken to break joints, as shown in Fig. 162. If the groove is to be large, the six segments should be of half the

thickness only, and a second set of segments of like thickness glued over the first, breaking joints not only with the first set, but also with sectors of the web. In other words, in all glued-up rims, no two joints should be directly over each other. All joints

Fig 162. Web with Rim Glued On

Fig. 163. Construction Views of Sheave Pattern

must be so broken and so distributed as to give the greatest possible strength to the rim.

In the present case, our pattern is so small that it is only necessary to use a thin board $\frac{1}{4}$ inch in thickness for each half of the web. After sawing to $6\frac{1}{2}$ inches in diameter— $\frac{1}{2}$ inch for turning—a block $\frac{1}{2}$ inch in thickness is glued on the center of each half to form the hub, and six annular segments $1\frac{1}{4}$ inches wide and $\frac{1}{2}$ inch in thickness are gluëd around on the outer surface of each to form the rim and groove, as shown at *a* and *b*, Fig. 163. Care must be taken to place the segments so that the grain of the web will be crossed by two of the segments, as shown in the drawings.

On the second half, b, of the pattern, a thin circular block $\frac{1}{4}$ inch in thickness is glued on the inside opposite to the hub block, to form the $\frac{1}{5}$ -inch projection which will keep the two halves of the pattern in alignment, as shown in the cross-sectional drawing in Fig. 160. Having glued up the stock as described, and as shown in Fig. 163, the outside must be planed to a level surface, or so that the six segments forming the rim and the center hub block will be in the same plane.

The half pattern a is now screwed on the screw chuck of the lathe, as illus-

trated in Fig. 164, and the inside, or the parting face c is turned perfectly straight and true. The edge is turned down to 6 inches in diameter, and the quartered circle shown by the dotted lines in Fig. 159 is carefully shaped. A template, as at d, Fig. 164, will assist greatly at this stage of the work. A recess is turned at the center and in the face of a, Fig. 160, $1\frac{1}{2}$ inches in diameter and $\frac{1}{2}$ inch deep, to receive the corresponding projection on the half pat-

tern b which is to keep the two halves in alignment.

The half pattern a is now removed from the screw chuck, and the second half b is screwed on and turned in the same manner except

that the central projection is carefully turned to fit in the recess in a. Before removing b from the chuck, test by trying the second half a, and change b until a perfect fit is obtained between the two halves, not only in the central recess and projection, but also in the two curves which form the semicircular groove of the rim

Fig. 164. Stock Mounted on Faceplate

Fig. 165. Section Showing Joint of Sheave Pattern

A cross-section of the pattern at this stage of construction is shown in Fig. 165.

A disk or chuck of wood $5\frac{1}{2}$ inches in diameter is now screwed to the iron faceplate, or the screw chuck, and turned off true on

Fig. 166. Method of Mounting Sheave Pattern on Wood Faceplate

the face, with a projection $\frac{1}{8}$ inch high which will fit into the recess in the middle of the parting face of a. By this projection the half pattern a is centered on the faceplate, and can be held in position by two or four short wood screws driven through the web into the wooden chuck, as shown in Fig. 166. Care must be taken to place the screws in such a position that the screw holes will be cut or bored out when making the four or six openings 1 inch in diameter in the finished web of the pulley. The screws must be small and slender and the heads

well countersunk out of reach of the turning tools. The face of the half pattern is now turned to the required shape, the template shown at e, Fig. 166, being used for the purpose. Having finished

Fig. 167. Sheave Pulley Pattern with Groove Made with Dry-Sand Core

with fine sandpaper, remove the half pattern, and, turning off the projection on the center of the wooden chuck and making a recess instead to receive the projection on b, proceed with this second half as with the first.

The 1-inch holes in the web are bored out with a 1-inch center bit, which, when well sharpened, does not split or splinter the thin

webs of the two halves of the pattern if care is taken to reverse the bore from the opposite side when the point of the center bit comes through. The holes should be given a slight draft, as shown in Fig. 160.

If the wood has been well seasoned, and the work carefully done, a perfect 6-inch sheave-pulley pattern will be obtained. The pattern for a sheave pulley has been explained because it embraces so many profitable points and conditions, not only in gluing and

Fig. 168. Core Box for Sheave Pulley

building up, but especially in chucking and turning, all of which must be done with great care and accuracy.

Dry-Sand Ring Coring. A more practical way to produce castings of a sheave wheel would be to construct a solid wood pattern with a core print, as shown in Fig. 167, and to turn a half-core box, as shown in Fig. 168. In fact, this dry-sand-core method would result in greater economy in the foundry, as the saving in time required to mold the pattern would not be offset by the expense of making the dry-sand core.

When very large sheave pulleys having arms are to be made, such as are common for power transmission by rope or cable, the

patterns are not halved but are made in one piece and the groove is cored around the rim, as illustrated in Fig. 167, with a wide core print *cc* extending entirely around the periphery of the pattern.

Fig. 169. Core Box for Single-Groove Rope Sheave

Segment Core. A segmental core box is made for one-sixth or one-eighth the circumference of the wheel, as shown in Fig. 169, and here again only half of the core box for a full core is needed. When coring the rim as above, the core print must be made deep, at least 2 to 3 times the depth of the groove, so that the core may rest firmly and remain in position without tilting while the metal is being poured into the mold.

Hand Wheel

Conditions. The 12-inch hand wheel, Fig. 170, with five arms and a round rim finished to $1\frac{1}{2}$ inches in diameter, will also serve as a good illustration of pattern construction. On the rim of the pattern $\frac{1}{16}$ inch over all its surface must be allowed for finish, making the diameter of the rim of the pattern $1\frac{5}{5}$ inches and the outside diameter of the pattern $12\frac{1}{5}$ inches, while the inside diameter of the rim will be $8\frac{7}{6}$ inches.

To hold this work a wooden chuck—in this case a plain board $12\frac{3}{4}$ inches in diameter, and $\frac{7}{8}$ inch to $1\frac{1}{8}$ inches in thickness—is

Fig. 170. Five-Arm Hand Wheel

screwed to the iron faceplate of the lathe, and turned true on the face and on the edge to $12\frac{1}{2}$ inches in diameter.

Spider Pattern. The arms in this case should be made $\frac{5}{5}$ inch in thickness at the hub and $\frac{1}{2}$ inch in thickness where they enter the rim of the wheel. The construction

is as shown in Fig. 171. Five pieces, each $6\frac{3}{4}$ inches long, $2\frac{1}{5}$ inches wide, and $\frac{5}{5}$ inch in thickness, are necessary.

Jointing Web. After being carefully fitted on the trimmer, a saw kerf $\frac{5}{16}$ inch deep is cut in each joint, *a*, Fig. 171, into which a thin tongue of wood is inserted and glued, the tongues serving as tenons to hold the arms together. After fitting, and before grooving with the saw kerf, the joints must be glue sized and, when dry, carefully scraped smooth with a sharp chisel. The grain of the wood in the tongues must run at right angles to or crosswise of the joint to insure the greatest strength.

Laying Out Arms. When glued together and dry, mark with dividers set to a radius of $6\frac{1}{4}$ inches, from the center or intersection of the five pieces, and cut off the ends of the arms so that they will project clear through the rim.
From the same center describe a circle $3\frac{1}{8}$ inches in diameter, forming the web of the arms; and from this $3\frac{1}{8}$ -inch circle, taper the arms to $\frac{1}{2}$ inch in thickness at the ends, care being taken to plane the same amount from each side, and to dress the arms evenly so that they will revolve in the same plane. This being done, from the center describe arcs on the outer ends of the arms, with a radius of $4\frac{3}{8}$ inches ($8\frac{3}{4}$ inches diameter, which is $\frac{1}{8}$ inch less than the inside diameter of the rim), and divide the imaginary circle thus formed into five equal parts with the dividers. Draw radii from the points

Fig. 171. Construction of Arm Pattern

thus obtained to the center. These radii will be the central lines of the arms, as shown by the dotted lines in Fig. 171.

On each side of the intersection of the radii and outer circle, measure $\frac{1}{2}$ inch to the right and left, and on the circle denoting the circumference of the web, mark $\frac{11}{16}$ on each side of the radii; connect the points thus obtained, and the result will be five arms $1\frac{3}{8}$ inches wide at the web and 1 inch wide at the rim, as shown in the drawing. The ends of the arms which enter the rim should be, in this case, $1\frac{3}{4}$ inches wide, and the sides are drawn parallel to the radius which marks the center of each arm. The curves which connect the arms at the hub must be drawn of such radius as to make the curve tangent to the circle forming the extremity of the web, and also tangent to the sides of the two connected arms, as shown at d. The small circles at the intersections of the arms with the rim must be tangent

to the edge of the arm and to the $8\frac{1}{4}$ -inch circle which marks $\frac{1}{16}$ inch less than the inside diameter of the rim, as shown at *cc*.

Having laid out the arms as above, and as outlined by the dctted lines in Fig. 171, saw them to shape and, before proceeding

Fig. 172. Stock Prepared for Band-Sawing Segments

further with the arms, build the rim of the pattern on the faceplate.

Building Rim. Prepare stock $\frac{1}{2}$ inch thick, and saw to a length slightly greater than the chord for five segments. Stack and nail three of these pieces together, and lay out one segment, as shown in Fig. 172, as follows: outside diameter to be $12\frac{1}{2}$ inches; width of segment 2 inches; and the chord equaling the diameter multiplied by the

sine of half of the included angle, for example, the included angle being 72 degrees, the sine of 36 degrees equals .5877, and 12.5 times .5877 equals 7.35 inches, the length of the chord. Band saw

Fig. 173. Partially Assembled Rim and Pattern

these segments and use the top segment to lay out the other segments, marking them with a pencil. Glue a sheet of paper to the faceplate on the location of the rim of the pattern, and carefully fit and glue five of these segments to the paper, fastening the segments

at the same time with two 1-inch finish nails. The heads of these nails should be driven below the surface of the stock. Be sure that the segments are concentric with the center of the faceplate. As soon as the glue is dry, turn the face and the outer and inner edges of segments true. Locate the partially completed arms on this ring and fasten temporarily with five small nails, Fig. 173. Remove from the lathe, fit and glue the five segments between thé ends of the arms, clamping these segments with two hand screws each while the glue is drying. Remove the arms as soon as the segments are glued in place, to prevent them from being glued in. As soon as the glue has set firmly, remove the hand screws and turn the inside edge of these last segments to their proper diameter and form, using a small sheet-metal template of zinc to test the form while turning. This turns the rim between the arms. Glue the arms in place, and also the last layers of rim segments, using the hand screws as before. The upper half of the rim can now be turned, using the template.

Before reversing, glue and nail five blocks of wood to the faceplate between the arms, pressing these firmly against the inner edge of the rim; these will serve to center the pattern afterward. The pattern can now be removed from the faceplate with a thin chisel and mallet. The paper will split and the nails will pull themselves either out of the pattern or the faceplate, and may be removed with a pair of pliers. Refasten the pattern on the faceplate by passing slim wood screws through the arms into the faceplate, or up through the faceplate into the rim. The five blocks glued to the faceplate will keep the work concentric. These screw holes can be filled with glued plugs when finishing the pattern.

Shaping Spokes. Trimming the arms to an elliptical form, as shown in the cross-section at Figs. 174 and 175, can be carried on while waiting for the glue in the rim to dry.

The finished shape of the arm, at any point in its length, is found by drawing a cross-section of the arm at that point, as in Fig. 174. Divide the cross-section equally by the line AB; measure out $\frac{1}{16}$ inch, as at ad and cf, and with dividers adjusted so as to be tangent to the sides of the cross-section of the arm, and to pass through adand cf, draw the curves abc and def. After working off the sides of the arms to these curves, the angles at a, c, d, and f are carefully rounded with sandpaper, care being taken not to lessen the width of the arm at any point. The result will be as shown in Fig. 175, which gives a strong firm edge to the arm, and one which will not break or splinter off while being rammed up in the sand.

Forming Hubs. The hubs are to be turned from solid stock and with a draft or taper of $\frac{5}{5}$ inch in 12 inches, and must have a

curve of ¹/₄-inch radius at the base where they unite with the arms. If the hubs and the diameter of the cored hole are not liable to be changed, the nowel hub should be fastened firmly to the arms, and should be chucked into the arms, as shown in Fig. 176. This produces a fillet between hub and arms which is not liable to become loose. The fillets on both nowel and cope hubs should be turned on, and the cope hub should be made loose so that it will lift with

the cope mold. If the pattern is to be completed as cheaply as possible, the hubs can be turned with a short 1-inch dowel, and fitted to a 1-inch hole at the center of the arms. In this case the fillet can be left off the cope hub, as a fillet this way is very fragile and easily broken. The molder will form the fillet in the green-sand mold. If the hubs are to be let into the arms, the recess in the arms can be chucked at the same time the rim is turned.

After gluing on the nubs, smooth off all connected parts of rim, arms, and hub, and finish with three coats of shellac, sandpapering smooth between each coat as already described for other patterns.

Countershaft Pulley

Construction for Special Size. The making of patterns for special pulleys enters largely into the work of many pattern shops. In these patterns the rims are built up of segments $\frac{3}{2}$ inch to $\frac{1}{2}$ inch in thickness. To illustrate this work fully, let us take up the successive steps in the construction of a countershaft pulley 20 inches in diameter and of 6-inch face, made to fit a shaft $1\frac{3}{4}$ inches in diameter. The pattern for such a pulley is shown in Fig. 177.

Allowances in Dimensions. The diameter of the web of the arms is 5 inches, and the diameter of the hub $3\frac{1}{2}$ inches at each end and tapering up to $3\frac{3}{4}$ inches in diameter at the arms.

Fig. 177. Sectional View of Pattern for 20-Inch Pulley

If the rim is to be finished on the face and edges only, $\frac{1}{16}$ inch must be allowed for facing, making the outside diameter of the pattern 20 $\frac{1}{5}$ inches; and the width of the face should be $6\frac{1}{2}$ inches. In addition to $\frac{1}{16}$ inch for finish, the draft on the outside of the rim, from each edge to the center, should be in the ratio of $\frac{1}{5}$ inch to 12 inches, and on the inside of the rim the draft must be $\frac{1}{4}$ inch in 12 inches. The thickness of the rim at its thinnest edge is $\frac{1}{4}$ inch and, with outside and inside draft added, its thickness at the arms will be about $\frac{3}{5}$ inch. The inside diameter of the rim at the arms will be 19 $\frac{3}{5}$ inches.

Arms. This pulley should have six straight arms $\frac{3}{4}$ inch in thickness at the hub and $\frac{5}{8}$ inch in thickness at the rim. The width of

the arms at the web should be $1\frac{3}{4}$ inches and at the rim $1\frac{1}{2}$ inches, exclusive of the connecting curves at web and rim.

Jointing. Six pieces $10\frac{1}{2}$ inches long, $2\frac{3}{4}$ inches wide, and $\frac{3}{4}$ inch in thickness, must be carefully fitted, as shown in Fig. 178. After fitting, the connecting joints are glue sized, and, when dry, carefully scraped smooth with a sharp chisel, and a saw kerf $\frac{1}{16}$ inch deep cut in each. The tongues used for tenons in these kerfs should be a little less than $\frac{5}{8}$ inch long, the grain of the wood running always at right angles to the line of the joint to give the greatest strength to the tenons.

The six pieces should be glued in two groups of three pieces each; and, when dry, these two groups can easily be refitted, if neces-

Fig. 178. Layout of Arms for Fig. 177

sary, and glued.

Laying Out. The next step is to draw, from the center formed by the intersection of the six pieces, a circle 5 inches in diameter, representing the web of the arms, and, near the extremities of the pieces, the arcs of a circle $20\frac{1}{2}$ inches in diameter, representing $\frac{5}{16}$ inch greater diameter than the outside diameter of the rim at the

location of the arms. Carefully divide these last arcs into 6 equal spaces with the dividers, bringing the points thus obtained as nearly to the middle of the six arms as possible; and from the six points thus spaced, draw radial lines connecting them with the center or intersection of the six arms. These radial lines, shown dotted in Fig. 178, are the center lines of each arm.

Saw off the ends of the arms on the above $20\frac{1}{2}$ -inch arcs, and from the center again draw on the six arm pieces a third circle, whose diameter should be at least $\frac{1}{8}$ inch less than the inside diameter of the rim—in this case 19 inches. On these arcs measure $\frac{3}{4}$ inch on each side of the center line, and on the circle representing the web measure $\frac{7}{4}$ inch on each side; connect these points from web to rim, and the arms will be $1\frac{3}{4}$ inches wide at web, and $1\frac{1}{2}$ inches at the rim.

These lines are shown by the dotted lines in Fig. 178. The width of the ends of the arms passing through the rim should be about $2\frac{1}{2}$ inches, and the sides of the end sections should be drawn parallel with the center line of the arm, as shown for the hand-wheel arms in Fig. 171. The radius of the circle connecting the sides of the arms and the web must be such as to be tangent to the edges of the two connected arms, and also tangent to the circle marking the diameter of the web.

The smaller curve connecting the two edges of each arm with the rim must be of such radius as to be tangent to the arm and to the $19\frac{3}{8}$ -inch arcs which mark the inside of the rim in the plane of the arms. All these lines are shown dotted in Fig. 178.

Shaping. The arms are now ready for sawing to shape on the band or scroll saw, care being taken to saw just outside of the lines so that each arm may retain its full size and width. After sawing to shape, the edges must be dressed smooth and free from all irregularities of the sawing.

Next, from the web circle, taper the arms to $\frac{5}{5}$ inch in thickness at the extreme ends, care being taken to see that the taper of both sides of the arms is uniform from the web circle to the rim.

The shape of the arms should be elliptical or nearly so, and a cross-section at any point in an arm may be obtained in the same manner as described for the hand wheel shown in Figs, 174 and 175, and the methods used for shaping and finishing are the same.

Rim. Construction. Use of Chuck. For building the rim, a wooden chuck $20\frac{1}{2}$ inches in diameter will be necessary. A board $\frac{1}{4}$ inch in thickness and having a bar 8 inches wide and of the same thickness, well screwed to the back with wood screws, is all that is necessary for a pulley of this size. To the 8-inch bar, the iron faceplate of the lathe is screwed, and the whole turned off true in the lathe, especially the face of the chuck to which the first layer of segments is to be glued.

Strips of paper will be glued between the first layer of segments and the face of the faceplate so that the completed rim may be casily removed—repeating the process used for similar work in making the 12-inch hand wheel.

Process. Prepare stock $\frac{5}{6}$ inch thick for rim segments, cutting the stock long enough to make 6 segments for each layer, and 11 layers, making 66 segments. Stack the stock and band saw at least 4 segments at one time. Have the layout and process carried out the same as suggested for the 12-inch hand wheel.

The segments should have an outside diameter of $20\frac{1}{2}$ inches, and inside diameter of 19 inches, making a width of $\frac{3}{4}$ inch, and a length $\frac{1}{16}$ inch longer than the outside radius. The grain of the stock should be parallel to the chord of the segment.

The first layer is fitted and glued to the faceplate with paper between, and securely clamped with small hand screws through to each segment. Do not use any nail this time, as the rim is only $\frac{1}{56}$ inch thick at the edge next to the faceplate. When the glue is dry—one hour being sufficient—place the faceplate in the lathe and carefully turn off the face of the segments true, and also turn the inside edge of the segments to the proper diameter and draft.

Before turning the face of the second layer of segments, glue to the faceplate—six pieces of stock $\frac{1}{4}$ -inch thick—using no paper—so that they will bear firmly against the inner edge of the segments in the first layer, to prevent the work from becoming loose. Do not glue these blocks to the rim segments. No nails should be used in any work of this description. Fit and glue the second layer, and when the glue is sufficiently dry, turn the face and also the inside edge as before. Do not turn the outside edge of the segments at this time, but it is best to mark an oversize diameter with a pencil or the point of a chisel to keep the layers concentric. This layer, in turn, is turned off in the lathe, and the third layer is glued on, hand screws being used on each layer as on the first, and the joints of the segments so broken that no two will be directly opposite each other, all joints being carried to right or left of all preceding joints, thus securing the greatest possible strength to the rim.

Having glued on a sufficient number of layers to build the rim up to the edge of the arms—five in this case—fasten the arms temporarily in their correct location, and glue the segments between the ends of the arms. Remove the arms—as noted while considering the 12-inch hand wheel—and turn out the inside of the rim to the finished diameter and draft, and smooth with sandpaper. Glue the arms back into place, first seeing that the fillets which have been used at the outer end of the arms are trimmed to fit the the inside of the rim.

The next five layers of the rim are built on the same way, except that the inside edges need not be turned until all layers are in place. The outside of the rim should be turned straight, with its largest diameter next to the faceplate. This diameter should be $20\frac{1}{4}$ inches, and, as the outer edge of the rim is to be made $20\frac{1}{8}$ inches in diameter to allow facing, this gives $\frac{1}{16}$ inch for draft.

The parting of the mold should be flush with one edge of the rim, and coped down to the center of the arms on the inside of the rim. This allows more than the usual amount of metal finish on one edge of the rim, but, if the face of the rim were crowned or drafted both ways from the center of the arms, a perfect lift would be difficult when the cope mold is lifted to get at the pattern.

Use of Loose Hub. To permit a satisfactory lift, the cope hub should be made loose so that it will lift with the cope mold. In constructing any pattern it is best to so arrange its parts that change may be made in order to adapt the pattern to as many requirements as possible. Even if this pulley is designed as a standard part of some equipment, there are times when it might be used for other purposes that would likely require a larger shaft, a longer, or an offset hub. To meet these conditions, make all hubs and core prints loose.

The pulley being intended for a $1\frac{3}{4}$ -inch shaft, the core prints x and y, Fig. 177, should be $1\frac{1}{2}$ inches in diameter, which will give $\frac{1}{3}$ inch of metal for boring out to fit the shaft. The hubs should be turned from solid stock, having the grain run parallel to the length of the hub. Select stock 4 inches by 4 inches and saw two pieces $2\frac{1}{2}$ inches long. Band saw to a circle $3\frac{3}{4}$ inches in diameter and bore a 1-inch hole through each at the center. Mount these pieces on an arbor; turn to a diameter of $3\frac{1}{2}$ inches at one end, and a draft of about $\frac{1}{4}$ inch per foot should be allowed on the outside diameter. The length of the hubs should be $2\frac{1}{4}$ inches each.

Fillet. No fillet should be turned on the large end of the hubs, as it is easily broken and it will be easier to lengthen the hub by the addition of a thin piece of stock, should occasion demand, if the

hub is made straight. The molder can produce the fillet by slicking the corner of the mold with a fillet tool.

Core Prints. Core-print usage is discussed in the next section, in the paragraph on "Standard Core Prints"

Standard Pulleys

Method of Construction. It is the same with the pulley pattern as with most other patterns—the number of castings required and the complexity of the demands determine the method of molding. Several methods of molding a pulley, and the dependent pattern, are considered.

Iron Rim Pattern. When pulleys of standard sizes for line shafting are manufactured in quantities, a skeleton pattern consisting of hub, arms, and an independent iron rim is used. This iron rim is of moderate width but may be used for obtaining any width of face desired.

Rim Master Pattern. Shrinkage Allowance. Where a wood pattern for the iron rim is to be made, the same care is necessary in the building up of the original wooden pattern. It must be remembered that before the final casting is obtained, two shrinkages will take place; first, the shrinkage of the original casting from which the iron ring is turned, and then the shrinkage of the casting made from this pattern. In addition to this, there must be the allowance for turning the ring both inside and out and for the turning of the outside pulley rim.

Suppose the pattern is to be made for a pulley 2 feet in diameter. The usual allowance for a single shrinkage is made by the shrinkage rule. In this case the allowance must be doubled. Thus, in the above pulley, the diameter of the wooden pattern becomes $24\frac{1}{4}+\frac{1}{4}$ = $24\frac{1}{2}$ inches, standard-rule measurements, or $24+\frac{1}{4}=24\frac{1}{4}$ inches, shrinkage-rule measurements. As a very smooth surface free from holes is required, $\frac{1}{4}$ inch in diameter, or $\frac{1}{5}$ inch all around must be allowed for outside finish on the iron ring, and $\frac{1}{6}$ inch for finish on the rim of the cast-iron pulley.

The outside diameter of the original wooden pattern is $24\frac{1}{4} + \frac{1}{4} = 24\frac{5}{3}$ inches, with shrinkage rule. If the final thickness of the pulley rim is to be $\frac{3}{5}$ inch, this, with the allowance of $\frac{1}{3}$ inch for turning out the inside of the iron ring, makes the inside diam-

eter of the wooden pattern 23 inches, and the thickness of the wooden rim $\frac{13}{16}$ inch, all shrinkage-rule measurements.

Construction. This wooden-rim pattern must be built up on a chuck, as described for the 20-inch by 6-inch pulley, the segments, six in number for each layer, fitted, glued, and clamped with three hand screws to each segment until a width of $6\frac{1}{2}$ inches is reached.

It is then turned to the above dimensions, without any draft, and sent to the foundry, where it may be used for obtaining an iron rim of any required width by first ramming the sand about the pattern, partly drawing it, and then ramming again to a new level.

At least four pieces of stock about 3 inches long by 2 inches wide and $\frac{5}{2}$ inch thick should be furnished the molder to bed in on the outside of the wooden-rim pattern at the mold parting, to permit casting lugs on the rim for clamping the casting to the faceplate while it is being finished to final dimensions, the casting being made wide enough to cut these lugs off when the lathe work is completed.

The casting thus obtained is then turned to the dimensions called for by an ordinary pattern; that is to say, the shrinkage-rule measurements would leave it $23\frac{1}{4}$ inches in diameter on the inside and $24\frac{1}{8}$ inches on the outside, permitting a final finishing of the outside of the rim of the pulley to a diameter of 24 inches. When this is done, two $\frac{3}{8}$ -inch holes should be drilled near one edge of the rim and diametrically opposite each other, into which hooks may be inserted for drawing the pattern. This rim should also be turned straight and without any draft.

Arms. The arms are usually made with a wooden pattern, which has a dowel-pin hole on each side at the center for attaching the hubs that are loose, the object being to change their length and diameter to suit the width of the rim and the diameter of the shaft upon which the pulley is likely to be placed.

Shape. The arms of all pulleys should be straight, because of the greater strength given to the pulley as a whole, the driving and resisting power being at least one-third greater than in a pulley of the same dimensions having curved arms. Curved and shaped arms of all kinds are now used only for ornamental purposes and for very light work.

Size. The arms should be six in number, except for very small pulleys, when five, and even four, are often used. The dimensions

of the arms vary greatly, depending on the purpose for which the pulley is to be used, and the weight of the machinery to be driven. For the beginner, the following formula is safe to follow:

$$b = \sqrt[3]{\frac{d \times w}{n \times 8}}$$

in which-all dimensions being taken in inches-

b = the breadth of the arm at the outer end d = the outside diameter of the pulley w = the width of the rim n = the number of arms

Thus, for a pulley 24 inches in diameter, with a rim 6 inches wide and fitted with 5 arms, the formula becomes

$$b = \sqrt[3]{\frac{24 \times 6}{5 \times 8}} = \sqrt[3]{3.6}$$

= 1.53 inches, or say $1\frac{1}{2}$ inches

The width of the arm should be one-fourth greater at the hub than at the rim. The thickness at the hub and rim should be onehalf the width, and the section should be elliptical. The arm just calculated then becomes

- $1\frac{1}{2}$ inches wide at rim
- $\frac{3}{4}$ inch thick at rim
- $1\frac{7}{8}$ inches wide at hub
- 1 inch thick at hub

As a rule, all of the dimensions of the pulley should be furnished the pattern maker by the designer.

Lifting Plate. Use. In molding patterns made as above, the molder will require a lifting plate. The lifting plate is anchored to the top of the cope block flask and will lift the center of the mold without any liability of its dropping.

Pattern. The patterns for this lifting plate can be made as follows: From a piece of stock $\frac{3}{4}$ inch thick, band saw six

Fig. 180. Lifting Plate Arm

pieces, as shown in Fig. 179, making them about ³/₄ inch smaller all around than the space between the two adjoining arms and the inside of the rim. Chamfer one edge all around so as to leave the vertical edge about $\frac{1}{4}$ inch thick. Band saw six pieces from $1\frac{3}{4}$ -inch stock

Fig. 181. Assembled Lifting Plate for Six-Arm Pulley

to the proportions shown in Fig. 180, and reduce the thickness at one end so as to form a draft. These pieces are drawn from the mold endwise, and the casting appears as shown in Fig. 181. Three circular pieces of stock $1\frac{1}{2}$ inches in diameter by 1 inch thick are furnished to form bosses, which are tapped for a 3-inch or 3-inch rod.

Hubs. An ordinary rule is to make the outside diameter of the hub twice the diameter of the shaft. The two half hubs-one on each side of the arms-are usually loose and are held central by a

single dowel pin. Their diameters are adapted to the size of the shaft upon which the pulley is to run, and the length is proportioned to the width of the rim as well as its diameter. The length of the hub should be about two-thirds the width of the rim, except in the cases of tight and loose pulleys, where the hub should be a trifle

Fig. 182. Rapping and Draw Plate

longer than the width of the rim, and it may then project about $\frac{1}{6}$ inch on the sides in contact, and $\frac{1}{4}$ inch on the outside.

Rapping Plate. Use. When a pattern is imbedded in the sand, the latter is closely compressed all about it, and slightly adheres.

The molder is therefore in the habit of rapping the pattern gently in order to loosen it in the sand before attempting to draw it. If the pattern is not provided with a metal plate, the molder will drive the sharp point of a lifter into the wood and strike it alternately on opposite sides and at the same time use it to lift the pattern from the

Fig. 183. Rapping Plate and Draw Key

sand. This mars the pattern and will in time ruin it.

The rapping plate shown in Fig. 182 is a piece of thin metal $\frac{1}{8}$ to $\frac{1}{16}$ inch thick, inserted so that it is flush with the parting face of the pattern and is held by wood screws with countersunk heads. These plates are drilled and tapped for a $\frac{3}{8}$ -inch screw and should be the same for all patterns in the foundry so that one set of rods can be used interchangeably. The method of using is to screw the rod into the plate and rap it gently to and fro until the pattern has been loosened, when it may be lifted.

The Acme key rapping plates, Fig. 183, are quickly attached to the pattern, the mortise being bored out with a bit.

Placing. For small patterns, one rapping plate will be sufficient and this should be so placed that the hole for the lifting rod comes directly over the center of gravity of the piece. This prevents tilting of the pattern as it is lifted from the sand. However,

if there is a portion of the pattern away to one side of the center of gravity, which by its nature is liable to resist drawing more than the other side, the rapping plate should be located away from the center of gravity toward this side of the pattern so that in drawing the lift will be nearly over the resultant center of resistance. For mediumsized patterns, two rapping plates should be provided so that the pattern can be raised from two opposite sides. For still larger patterns three or four rapping plates are used, the object being to give such perfect control when drawing that there can be no tearing away of the sand. Standard Core Prints. Economy in Use. While standard dimensions of the cylindrical core prints are not universally used, many large corporations operating pattern shops and foundries have adopted a standard, and the economy of this practice should recommend it to all. Most foundries will keep on hand cylindrical dry-sand cores, whether the cores are made in wood or in metal core boxes or with the core machine.

The value of the fixed taper and length to the cope core print is most apparent. This form can then be made at one end of the core box, and the machine-made cores can be ground to a fixed angle by having a guide table fitted to the emery-wheel stand. A foundry equipped in this manner can always fit a pair of prints to the pattern and be sure that the cope end of the vertically set cores will

Fig. 184. Proportions of Standard Core Print

fit the print mold. It will also save the pattern maker the expense of turning a pair of prints every time their use is required. A pattern shop, having a dozen pattern makers employed, will get a dozen different forms to the cylindrical core prints if no standard is followed, and much time will be used in the foundry filing cores to fit.

Stock Sizes. If you know where the pattern is to be sent, better find out if the foundry has a standard for their stock cylindrical cores, and build your core prints to conform to it.

There need be no standard length for the prints of a horizontally set core, for in this case the print should be long enough to give a seating sufficient to hold the core from either settling or rising. The upward strain of a core during pouring will be greater than the downward strain due to its own weight.

Dry-sand cores are usually kept in stock from 1-inch up, by eighths, viz, 1-inch, 1¹/₄-inch, 1¹/₄-inch, etc. All core prints used on

patterns considered here will use prints dimensioned according to Fig. 184, unless they require a change in size due to extreme length and weight of the core, or to some special process of molding.

Large Cored Pulley

Molding Method. For the larger sizes of cast pulleys, including spur gears, rope sheaves, and balance pulleys, the wooden-arm and metal-rim patterns are impractical. In Fig. 185 are shown the dimensions of a single six-arm solid pulley which is molded by means of dry-sand cores and sweeping. The patterns for the double-arm,

Fig. 185. Dimensions of Cored-Arm Pulley

clamped between the arms, and clamped through the arms, are adaptations of the same process.

Arm Core. First prepare an arm core box, Fig. 186, which shows the core box with the near side removed so as to exhibit the hub and arm pattern in place. This box should be made of $1\frac{1}{2}$ -inch stock, and $3\frac{1}{2}$ inches deep by 10 inches wide inside; one end will be fitted to form a 60-degree angle, while the other end will be left open. Make the inside length about 48 inches, as this core box can be used for larger diameter pulleys. Have the core box well screwed together, cleated on the bottom, finished smooth, and shellacked on the inside.

Fig. 187 shows a section through the center of hub a, arm b, and inside rim pattern c, these three parts being made separate, so that by slight alterations they can be used for other diameters. The hub a is made of three pieces of stock, the lower being the

Fig. 186. Core Box for Arm

thickness of one-half of the arm. The grain of this stock should be parallel to the length of the core box. Lay out from the center line the 60-degree angle and form of the arm at the center of the pulley, as shown in Fig. 187. The next two pieces of stock, a' and a'', should have the grain at right angles to the length of the core box; the thickness of a' to be $\frac{5}{8}$ inch, out of which is carved the fillet. These two pieces are to be fitted into the core box, and the arcs from the outside of the hub scribed from the center on the core box. The outside of a'' may be smoothed with a spokeshave and sandpaper before the three pieces are nailed—not glued—together, but

Fig. 187. Construction Diagram for Arm Pattern

the fillet on a' had best be carved after the assembly. Trim section a at d to make the round beading between the arms, and trim a at f to a half ellipse.

The rim end of the arm pattern c and its parts c' and c'' are constructed by the same process, fitting the pieces of stock into the

core box and scribing the arcs for the inside of c' and c''. The inside of c'' should be finished smooth, using a spokeshave or a circular plane, as described in Part I. Carve the fillet on c' after assembling.

Fig. 188. Section of Hub Core Box

The arm b is planed to the required form of half the arm. These three parts are shellacked in the same manner as described before, and are fastened into the core box with wood screws. Be sure that the arm is central in the core box.

Fig. 189. Incide Flange Core Box

Hub-End Core. The pattern for the ends of the hub receive our next consideration. The arm core box was made $3\frac{1}{2}$ inches deep, so there remain $4\frac{3}{4}$ inches of hub outside the arm core box on each side, allowing $\frac{1}{4}$ inch for metal finish on the ends of the hub, as indicated in Fig. 188, Glue $1\frac{1}{2}$ -inch stock together, to make the hub $12\frac{1}{2}$ inches in diameter by 5 inches long. Plane one end true, bore a 1-inch hole at the center, and, after band sawing to a rough diameter, fasten to a faceplate having a 1-inch pin at its center. Turn to the required diameter and length, allowing a slight draft to the outside. Bore a 1-inch hole at the center. If the hub is not too large, it should be turned on an arbor, and also if quite large the hub may be con-

Fig. 190. Centering Spindle and Rim Strike

structed of two circular heads, nailing and gluing narrow stock lagging—to the periphery of these heads or ends, and turning the hub after the glue is dry, as noted above.

The core prints in this case can be made of flat stock fitting a 1-inch pin at center, and nowel b and cope core prints should be about 2 inches thick. An addition c to the core prints, 3 inches in diameter and about 14 inches thick, should be fastened and turned with them. The upper end of this 3-inch piece shall be flush with the frame, forming the outside of the core. If the foundry is equipped with iron pulley-rim patterns, one of these can be used, striking down to the top of the 3-inch print c if the edge of the rim pattern is too high.

Flange Core. The length of the core box for the inside flange, Fig. 189, will be made to allow twelve half cores. Multiply the inside diameter of the rim, 70 inches, by the sine of half of the included angle, .2588, which will equal 18.11 inches for the longest length of the inside of the core box. The thickness of the stock used for the

Fig. 191. Section of Cored-Arm Pulley Mold

core box should be about $\frac{7}{8}$ inch, and the other dimensions are given in Fig. 189.

Two patterns for the flange will be made, one to be nailed in place in the core box, and one to be used to mold the upper inside flange.

Strike. The strike a, Fig. 190, is made of two pieces of stock $1\frac{1}{8}$ inches thick by 5 inches wide, halved together. The finger board b strikes the beading between the arms, and the inner end is sawed to the sectional form shown in Fig. 187. The length of strike a will be $24\frac{1}{2}$ inches long, allowing for $\frac{1}{4}$ inch for metal finish on each edge of the pulley face.

Molding Process. A brief description of the molding process will make the use of this equipment clear.

Twelve half cores are made in the arm box, Fig. 186, and pasted together to make six dry-sand arm cores.

In the hub box shown in Fig. 188 one core is made for the lower end of the hub mold, and one core with the core print b cut through to the top of the core to clear the sweep spindle. Twelve cores are made in the flange core box.

A check flask is bedded in the ground a and the standard with spindle is also bedded in, as shown at b in Fig. 191. The bed is struck off and the flange cores set concentric with the spindle. Block up under the lower hub core at c and under the arm cores at c' and c'' to locate the arms at the center of the face. A brick wall is loosely laid up just outside the lower flange cores, to the height of face required. The center is then filled with green sand and rammed hard, the upper hub core being placed over the spindle. The brick wall is now torn down and the strike set in position, striking off the green sand, to the end of the arm cores.

The check flask being put into position a'a'', the mold is rammed in green sand outside of the lagging which is placed next to the inside mold to give the thickness to the rim. The check is removed and slicked. The upper flange is bedded in at d; the spindle is withdrawn and replaced with the shaft-hole core; the check is replaced; flat covering cores are placed over the rim mold e; and the cope is rammed. The gates, sprues, risers, and pouring basins will not require any pattern labor.

Some molders prefer to make the outside of the rim with drysand cores, and this is always the method employed for rope sheaves.

FLAT-BACK PATTERNS Solid Engine Crank

Construction. The heavy engine-crank pattern illustrated by Fig. 192 should be built of five layers of stock, gluing heart sides and bark sides of each piece together, as shown in Fig. 193. Dress the stock true on one side and edge for a working face and a working edge. Machine-plane the opposite side and edge parallel to these faces. Lay out the plan of the crank on one face and also a side elevation on one side of the stock. Square around the stock for the

location of the holes-15-inch centers-and bore 1-inch holes on both sides of the stock at these centers. Carefully band saw to line

Fig. 192. Detail Drawings for Heavy Engine Crank

a, Fig. 193, and leave stock at b so as to keep the top of the stock parallel to the band-saw table when sawing the line c. This stock

b may be removed with a chisel after all band-saw work is completed. Have the band-saw table tilted when sawing to line c so as to produce a slight draft— $\frac{1}{5}$ inch in 12 inches —fo the sides of the pattern.

Turn a nowel and cope core print $3\frac{3}{4}$ inches and also $2\frac{3}{4}$ inches in diameter, according to the standard adopted for core prints. The bosses *e* and *f* are to

Fig. 193. Diagram of Pattern for Crank, Fig. 192

be made of flat stock $\frac{3}{5}$ inch thick. Prepare a wood faceplate with a 1-inch pin at its center. Having a 1-inch hole at the center of

the boss, fasten the bosses to the faceplate with four $\frac{3}{4}$ -inch wire nails; now turn them to the diameters required by the drawing and bevel the edge about 30 degrees. Nail and glue on the bosses, being sure the holes are in line with the holes in the body of the pattern.

The sectional view in Fig. 192 shows the form of the crank at mid-length, and the pattern should be finished to this form, using a template to test the accuracy of the round corners. The dowels of the nowel core print should fit tightly, but are not to be glued to the pattern unless it is known that the size of the cored hole will not be altered. The cope core prints should fit loosely, so that they can be removed while ramming the nowel mold. The mold parting will then occur on line pp, Fig. 193, and the parting will be coped

down to the round corners. Patterns like Fig. 193 and Fig. 195 are known as flat backed; no part of the pattern except the cope core prints extends into the cope mold.

Disk Crank

Construction. Fig. 194 illustrates a finished

Fig. 194. Disk Crank

cast-iron disk crank for an engine of 12-inch stroke. This crank is finished on the face, on the outer edge, and on the end of the hub. It is bored out $3\frac{1}{4}$ inches to fit on the engine shaft, and $2\frac{1}{4}$ inches to receive the wrist pin. An addition of $\frac{1}{6}$ inch must be allowed on the pattern for finish of the face, and the same on the end of the hub; $\frac{3}{16}$ inch will be sufficient to add for finish on the outer rim, making the diameter of the pattern $16\frac{3}{8}$ inches, and the thickness of the disk $\frac{3}{4}$ inch. A sectional view of the pattern is shown in Fig. 195.

Disk. The disk or web for this pattern is to be made of six sectors, Fig. 196. The finished thickness of the web will be $\frac{5}{8}$ inch, and, allowing $\frac{1}{8}$ inch for metal finish, the web of the pattern will be $\frac{3}{4}$ inch thick. Each section after being fitted should have the edges

glue sized, and be grooved for a spline. The grain of the stock used in these splines should be at right angles to the joint, as mentioned in the consideration of the hand-wheel pattern, Fig. 171. Band saw this web to a diameter $\frac{1}{4}$ inch greater than required for the completed pattern, bore a 1-inch hole through the web at the center,

Fig. 195. Section of Pattern for Disk Crank

and fasten to a wood faceplate having a 1-inch pin at its center, with six l_2^1 -inch wood screws, as shown in Fig. 196. Turn the rabbet in the web at d and chuck the center at e, as shown in Fig. 195.

Rim. The first layer of segments for the rim or flange are to have the inner edge fitted into the rabbet, and are made wide enough to make the wood fillet c. The other layers of the flange will not be required to be as wide, but make all segments of the same thickness, which should be about $\frac{5}{2}$ inch, six segments to the layer, and put the work into the lathe before gluing on a layer of segment, and turn

Fig. 196. Web Stock for Disk Crank and Faceplate

haver of segment, and turn the face of the preceding layer true and concentric with the center of the pattern. Fit the segments carefully and use three hand screws to hold each segment while the glue is drying. A wait of about two hours should be allowed between gluing a layer of

segments and turning; so take advantage of the noon hour, and overnight.

Bosses. The work on the hub, wrist-pin boss, and counterweight should be proceeding while building the stock for the web and flange. The hub shall be turned from a solid piece of stock or from glued stock if the dimensions of the hub are too great. The grain of the stock used in the hub and wrist-pin boss should be parallel to the length of the hub. If positive that the diameter of the cored holes will not be changed, the nowel core prints may be turned as a part of the hub and boss. The cope core prints x and y, Fig. 195, shall be loose on the pattern so that when the nowel mold is rammed these core prints can be removed when the pattern is laid on its back on the mold board. The core prints should be shellacked a different color from the body of the pattern.

The fillet at the base of the hub should be turned from the hub stock, as shown in Fig. 195. The hub is to be turned before it is glued to the web; the fillet, however, should be turned after the hub is in place so as to be tangent to the face of the web.

Counterweight. The counterweight b is next shaped from a single piece, or it may be glued up of 2 thicknesses of $1\frac{1}{8}$ -inch stock. In sawing this block to shape, the band-saw table should be tilted so as to give it a draft of $\frac{3}{8}$ inch in 12 inches. Give the inside of the rim, the hub, and the boss a, the same draft as the counterweight, but the outside of the rim should not have a draft of more than $\frac{1}{8}$ inch in 12 inches.

Fillet. When turning on the inside of the rim, a fillet or curve of $\frac{3}{3}$ -inch radius, as shown at c, Fig. 195, must be made where the rim joins the disk. Around the counterweight block, and also around the wrist-pin boss, a $\frac{3}{3}$ -inch leather fillet can be used.

FILLETS

Usage. The fillets spoken of in connection with Fig. 195 are used in all except the most simple patterns. They consist of a small quarter curve varying in size from $\frac{1}{3}$ -inch radius upward, depending

on the size of the pattern and the room they can be allowed to occupy. They should be placed in corners so that there may be no sudden changes in the direction of the surface of the casting, which causes weakness, the fillets adding greatly to the strength of the casting. Round corners and fillets should be used wherever possible, as they make a cleaner

Fig. 197. Section of Wood Fillet

mold, the metal flows into and through the mold easier, the metal is not so liable to wash away the sand at the corners, and the shrinkage strains of the cooling metal are not so liable to start cracks at the corners. Types. Wood. These fillets are made in various ways, the wooden fillet, cut as in Fig. 197, being commonly used for all long straight angles, or for very flat curves to which it can be bent. On large patterns intended for one or two castings, the fillets are three-sided pieces of stock nailed into the corner, giving a chamfered corner to the mold. The molder slicks this corner if necessary.

Wood fillets, where they can be built in, are more durable, and should be used on all patterns intended to be standard, as in Fig. 198.

Wax and Leather. For irregular angles and for short radius curves, beeswax was formerly used, but the modern leather fillet has almost entirely superseded beeswax and other material for this purpose. It is easily applied, shaping and adapting itself to any and all positions and angles. It can be bought in all sizes from $\frac{1}{6}$ inch up, the sizes running by sixteenths.

The method of applying it is to cut it to the necessary length and lay it on a board where the glue can be easily brushed over it. It is then laid in the angle and rubbed into position by means of a dowel rod, the end of which must be rounded. The dowel rod must be of such size as to impart the required curve to the soft pliable leather fillet. As soon as the fillet is rubbed into position, all surplus glue must immediately be wiped off before it sets. This is easily done with a small piece of waste or a rag dipped in the hot water of the outer gluepot and wrung out nearly dry, care being taken not to wet any part of the pattern more than can possibly be helped, after which it must at once be wiped dry. These leather fillets will be found more pliable and more easily placed and rubbed into position if the glue used is first allowed to cool slightly. Very hot glue stiffens and crinkles the leather, causing it to work hard.

Putty. For patterns intended for temporary use, fillets made of linseed oil putty are often used. While this type takes some days to become hard, it is very low in cost and can be used for patterns of this class to good advantage.

ECONOMICAL CONSTRUCTION

Coring to Obviate Machining

Example of Faceplate. It is sometimes advisable to use cores even if it is quite possible to construct the pattern so that it would core its own holes. This is the case where it is desired that the faces of the casting and the holes shall be smooth and as true as possible without expensive machine work. The finished faceplate of an engine lathe, illustrated in Fig. 198, is a good example of such work.

It will be readily seen that the pattern for this casting could be put in the sand and withdrawn from the mold, leaving the sand standing where the holes are located. The trouble that arises from this method is due to the fact that, when the metal is poured and allowed to flow about the fragile projections that are left to form the holes, the sand washes away, so that the holes in the casting are

Fig. 198. Typical Metal Faceplate

irregular and much smaller than those in the pattern. For these reasons the holes should be cored, as the core sand is firm and better able to resist the washing action of the flowing metal.

Core Prints in Drag. Where a large flat surface is to be given a finish, it is desirable that the metal should be as clean and free from sand and blowholes as possible. As the iron has a greater specific gravity than the sand of the mold, all particles of sand that may be washed away and all gases generated, rise to the surface of the molten metal. Those imprisoned by the cooling of the iron form the dirt and blowholes that disfigure the completed casting. In a casting such as the faceplate under consideration, it is desirable

that the face should be upon the lower side when the metal is poured as it is to be planed smooth and should be clean iron. For the sake of convenience in setting the cores, the prints are put upon the face and make their impress in the sand of the drag.

diameter is more than two feet, the grain of stock used in the web should be parallel to the radius. Each sector as it is fitted should be screwed to the wood faceplate, leaving a space of $\frac{1}{16}$ inch between each to allow for the swelling and shrinking of the stock.

The ribs are fitted and fastened in place after the lathe work is com-

Fig. 201. Tee Pipe Fitting

Fig. 202. Section of Tee

pleted; one extra rib should be furnished the molder for mending up the mold. Leather fillets are to be used in the corners made by

the ribs. Iron draw plates are to be fitted in both ends of the hub, at a, Fig. 199. The core box for the cores making the holes in the web is shown ir Fig. 200.

Molding. In molding, a threaded rod is passed through the cope mold, into the draw plate in the cope end of the hub. It is

securely fastened above the cope flask, so that the pattern will be drawn from the nowel with the cope. By rapping on this draw iron, the pattern can be rapped so as to obtain a perfect draw from the nowel mold. After the cope mold has been turned over, the pattern

Fig. 203. Elevation of Completed Pattern for Fig. 201

is drawn as usual and any mending required to the mold is facilitated by the extra rib furnished.

Examples of Simplified Work

T-Pipe Connection. Many patterns which at first may seem to be quite formidable, will, after a little study, resolve themselves into a few very simple parts, nearly all the work for which may be done in

the lathe. Of this the T-pipe connection shown in Fig. 201 is a good illustration. A sectional view of the casting, threaded and having a pipe screwed into the right-hand end, is shown in Fig. 202.

The completed pattern for this casting is illustrated

Fig. 204. Plan View of Completed Pattern for Tee

in Fig. 203, with its core prints a, a, and a, and must be parted, as shown in Fig. 204. The entire pattern may be made at a single turning, as illustrated in Fig. 205. The preparation of the wood for this pattern is similar to that described for the pattern, Fig. 151, of the brass bearing.

End Fastening. Some device should always be used at the ends of stock glued in this manner to assist in making a firm joint. The metal corrugated fastener is best suited for most requirements. In

Fig. 205. Pattern for Tee, Fig. 201, as Mounted in Lathe

some cases a flat head wood screw can be inserted at each end, Fig. 205, and the form of the pattern may require a wooden screw to

Fig. 206. Steel Center Plate

Fig. 207. Steel Pinch Dog

be inserted near the center of the work to prevent its springing open at the center, due to the centrifugal forces at high revolutions.

Lathe Mounting. In mounting heavy split patterns in the lathe, a special metal dog should be provided, and one such as in Fig. 206 will be found to meet most requirements for this class of

120

work. In using this dog, which is also the center on which the work revolves, cone lathe centers should be used, and a steel pin should be bolted to the lathe faceplate and inserted in a hole in the end of the stock to drive the work. Several holes can be counter-

Fig. 210. Section of Double-Elbow Pattern

sunk in these metal lathe dogs when parts of the pattern are to be turned on several centers. The metal pinch dog, Fig. 207, is not adapted for lathe work, as it is liable to fly out when the work revolves, endangering the operator.

Jointing. When the turning is completed, it is only necessary to cut a V-shaped opening into the two halves of e, into which the

part f is to be fitted and glued. When the glue has set and is sufficiently dry, the joint may be further strengthened by nailing, or by inserting and screwing a thin metal connecting plate flush with the parting side of each half of the pattern. This, however, will be necessary only when patterns are large and heavy, or when unusual strength is required.

Fig. 211. Method of Turning Up Elbows

Core Box. The core box for this pattern, as will be seen in Fig. 208, is the usual half box and is made by working out the box in one piece long enough to make the two parts a and b. The two parts are united by cutting a V-shaped opening in the part a and fitting b into it in the same way as described for the pattern. The

whole is then glued and screwed to the board c, and the two triangular blocks d and d are glued in the angles to add strength to the completed box. In case the pattern is for a very small pipe, $1\frac{1}{2}$ inches or under, the part b may be abutted against the side of a, as

Fig. 212. Turned-Up Flanges and Core Prints

shown by the dotted line, and the side of a at e cut away to the same curve as b, giving the same results as in the former method.

Pipe Elbow. The pattern for the 2-inch elbow, Fig. 209, is another illustration of how such work may be simplified, and time saved, by doing the greater part of the work in the lathe.

Double Pattern. As these elbows are usually cast in large numbers, the patterns should be made double, as shown in Fig. 210.

Fig 213. Construction of Core Box for Elbow Fitting

To construct the double pattern, a ring is first turned like Fig. 211, a cross-section of which is a semicircle, as shown in the lower righthand corner of the drawing. This ring is cut into quarters, and the four pieces e, e, e, a and e make the quarter turns for the two halves of the double pattern.

The ends, including the core prints and connecting tenons, are turned in one piece, as shown in Fig. 212, the stock for which is prepared, with the inserted dowel pins all in position in the same manner as described for the T-pattern, Fig. 205. The quarters e, e, e, and e, Fig. 211, are clamped together two and two, and the ends

carefully bored to receive the tenons which are then glued in position and further strengthened by a wooden screw.

Core Box. In Fig. 213 the core box for this double pattern is

shown, and, as will be seen, the most difficult part of the work can be done in the lathe. Fig. 214 shows two pieces jointed and clamped together which must be screwed to the faceplate of the lathe and turned out to make the two corners c and c. The three straight parts d, d, and d are worked out in one long piece and after-

ward cut to the required lengths, after which the five pieces are glued and screwed to the board a. The ends e and e are next put on and the required half-core box is complete.

Supported Core. Another reason why the pattern for pipe elbows should be made double is that otherwise the core prints

would require to be made of great length in order to balance, sustain, and keep the heavy core in position; the tendency being to sag in the middle, or float on the molten iron, and thus make

Fig. 215. Return-Bend Pipe Fitting

Fig. 216. Section of Pattern for Pipe Fitting

the upper side of the casting too thin, all of which is avoided in the double pattern.

Return Bend. A pattern for the return bend, Fig. 215, may be built up and constructed in the same manner as described for the elbow; the semicircular returns, not only for the pattern, but also for the core box, being turned in the lathe, together with the ends and core prints for the pattern. As there will be no middle support

for the core in this case, the core prints must be made as shown in the half pattern, Fig. 216, of sufficient length to balance the heavy semicircular core, and also to keep it in its true position in the mold.

Screw Chuck. The small wood lathe chuck, a vertical section of which is shown in Fig. 217, will serve as a simple illustration of

Fig. 217. Screw Center Lathe Chuck

the long core print and balanced core. The casting must be countercored; that is, the cored opening must be enlarged at the forward end, adding to the size and weight of that end of the core, which, as will be seen, has no support except that afforded by the extra length of the core at the opposite end. The pattern for this chuck is shown

Fig. 219. Core Box for Lathe Chuck Pattern

in Fig. 218, and the core print must have a length at least twice as great as the depth of the hole in the chuck. The core box is shown in Fig. 219.

Deep Flanges. When pipes or cylinders are of moderate size, with deep flanges for bolting together, Fig. 220, the flanges for the pattern are turned out of a separate disk, as shown in Fig. 221, and

firmly glued and nailed on over the core prints and against the ends of the main body of the pattern; the core print being made of suffi-

Fig. 220, Flange Pipe Pattern

cient length to receive the flange. A recess is sometimes turned in the inside end of the core print to receive the inner edge of the flange,

as shown in the diagram, Fig. 222; it can easily be seen that when the flange is fitted therein, it adds greatly to the strength of the joint.

Fig. 223. Interchangeable Flanges on Pipe Pattern

Flanges are often fastened to the pipe pattern by screws only, so that flanges of different diameter can be attached, Fig. 223.

Stock. The flanges should be made by gluing up three pieces and crossing the grain of the pieces so that the grain of each will run at right angles to that of the adjacent one. In gluing pieces together for thin disks, three pieces should always be used. Two thin pieces glued together will always warp.

A still better and stronger method of making large flanges is to cut out segments, five or six for each course, and fit and glue up on a chuck and faceplate in the same way as described for the handwheel rim, Fig. 173. Two or three courses are used for each flange, which, after being turned to the required size and form, is sawed

in two with a very thin saw, and each half fitted into place on the pattern.

Fig. 224. Method of Assembling Wood for Large Pipe Pattern

Fig. 225. . Light Pattern Construction for Cylinder

Large Cylindrical Work. The patterns for the larger pipes or columns are to be glued up, as shown in Fig. 224, and, for turning, the two halves are held together by means of lathe dogs such as shown in Fig. 206. The treatment of this glued up stock in the lathe, is the same as employed in turning the small pipe shown in Fig. 220. The method of constructing the core box for this or similar patterns is shown at b, Fig. 224. Tees, elbows, and other bends and connections, when large, are built up in a similar way.

Hollow Construction. For large cylinders, a much lighter and simpler method of constructing the pattern is shown in Fig. 225. For each half of the pattern the two end disks and the middle semicircular disk are connected together by a strong center bar, which is fitted, glued, and screwed into each, serving not only to strengthen the pattern, but also to hold the connecting dowel pins. When the two halves of the pattern are clamped together, it serves also as a secure means of centering in the lathe.
The staves forming the body of the cylinder are fitted and glued to each other, and screwed or nailed to the disks. After the cylinder has been turned, the core prints and flanges are built up

Fig. 227. Typical Core-Box Construction

and turned separately, and glued and screwed to the ends of the cylinder from the inside of the end disks.

Fig. 226 illustrates still another and better method of building up the cylinder and core prints in one piece and completing the hole at a single turning. The core prints, as shown, are staved up first,

Fig. 228. Gated Pipe-Coupling Pattern

and then the staves to form the body of the pattern are fitted, glued, and screwed, or nailed, over the ends of those which form the core prints. For long cylinders use one, two, or more middle semicircular disks.

A similar construction for the core box is shown in Fig. 227, and is to be preferred to all others, because, if laid out and built to the exact size, the labor required to reduce the staves to a perfect semicircle of the required radius is very little.

Quantity Production. Patterns for such work as pipe fittings would come under the head of standard patterns, as usually these parts are required in large numbers. The present-day practice of molding patterns for the smaller sizes of pipe fittings is to either have a number of similar patterns gated, Fig. 228, or resort to plate molding and stripping-plate molding machines. Some presentday methods of machine-molding pipe fittings are considered in Part III, Pattern Making.

INTRICATE CORING

Globe Valve

Globe Construction. The globe valve, shown in section in Fig. 229, is a good illustration of a pattern in which, while the out-

Fig. 229. Section of Globe Valve

side may be very simple, the inside is intricate and requires considerable practice and skill to so construct the core boxes that the core can be withdrawn from them, and at the same time give uniform thickness and strength to all parts of the shell and to the internal partitions. In Fig. 230 is shown a sectional view of the body of the valve, and in Fig. 231 an illustration of the completed pattern, from which

it will be seen that almost the entire work, with the exception of fitting, placing the dowel pins, and forming the two hexagonal ends,

Fig. 231. Appearance of Pattern for Globe Valve

is done in the lathe. The construction is shown in the sectional illustration of the half pattern, Fig. 232. The wood for the two

Fig. 232. Sectional View of Pattern and Template for Globe Valve

halves must be of sufficient length to allow for gluing at each end. In turning, the greatest care must be taken to center exactly on the parting line of the two halves. Use of Template. A carefully shaped template, such as is shown at a, Fig. 232, must be used in turning. This template may be made of a thin piece of wood, but for all purposes for which templates are required in pattern making, and their use is necessarily very great, sheet zinc is the best material. It is soft, and easily cut and filed, and does not dull the cutting tools so much as other metals.

Before marking out the template, that the lines may be more readily seen, it should be cleaned with a piece of emery cloth and have a dark coating of the following solution. Dissolve an ounce of sulphate of copper in about 4 ounces of water and to this add 1 teaspoonful of nitric acid. Treat the surface of the zinc with this solution, rubbing on with a piece of waste. A thin coating of copper will thus be given to the zinc—or, similarly, to steel or iron. When applied to finished surfaces they should be rubbed dry, as iron or steel will be rusted.

When the curves of the template will allow of sawing, the zinc template is easily shaped by placing a piece of zinc of the necessary size between two boards and nailing them together. The required shape having been drawn on the upper board, the whole may be sawed to the form required on the band saw or scroll saw, but preferably on the latter, with a fine-tooth narrow saw blade which will give a smoother edge to the zinc. If the boards are firm, the metal will offer no resistance whatever to the saw, nor will the saw be perceptibly dulled. For small curves, lay the zinc on a piece of hard board, and with a pair of sharp pointed dividers the zinc can be scratched half way through its thickness, then by turning it over and placing the dividers in the same center, the other side may be cut in the same way, or so nearly through that it will break off. This affords a truer and more uniform curve than can be obtained in any other way. The legs of the dividers must be stiff and firm so as to be entirely free from vibration. After cutting, the sharp edges of the zinc may be dressed with a fine double-cut file, or better with fine emery cloth or sandpaper rolled over a wooden holder.

The lathe should always be stopped when testing the work with the template, and great care must be taken to make the two ends of the pattern symmetrical. When the turning is nearly completed the template itself may be tested by reversing the ends. If not true, it should be filed to the proper shape. Branches. The branch e must be turned in the same way as described for the main part of the pattern which is pared off, or planed off in a large pattern, to the exact size of the base of the branch, and when the pattern is large and heavy, one or two wood screws should be used in the tenon of the branch to assist in keeping it in place.

In all small and moderate-sized values the flanges are hexagonal in shape, as shown in Figs. 229 and 231.

Two-Part Core. The core for a globe valve is made in two parts, and the core box for each part must be made in upper and

Fig. 233. Upper Iron Core-Box Details

lower halves, making four parts to the core box. This is necessary in order to allow for the removal of the core from the boxes. The internal shapes of the boxes are difficult to illustrate on paper, but if the drawings given in Figs, 233 and 234 are carefully studied in connection with the sectional views of the valve shown in Fig. 230, their shape and construction should be readily understood. Three additional illustrations of the core as made in these core boxes are shown in Figs. 235, 236, and 237.

Forms for Baking. If the form of the core is such that there cannot be a flat side upon which to bake the core, a metal form must

be provided. The drying form can either be placed on the core after that side of the core box has been removed, or it can be the core box itself. For this reason, and because of the necessary wear

Fig. 234. Lower Iron Core-Box Details

Fig. 235. Dry-Sand Cores before Pasting Fig. 236. Sectional View of Dry-Sand Core Together

and fragile character of wood for boxes of this kind, this core box will be made of iron. The wooden pattern for the metal core box must then have an allowance for double shrinkage, and to avoid excessive weight, the box is made in the form shown in Figs. 233 and 234. In this form all unnecessary metal is removed, and lugs should be added to the upper part of the core box to align the two parts

while ramming the core, as shown at b, Figs. 233 and 234. The lower part of this core box, as shown, is to have projections cast on at a so that this half can be used for holding the core sand during the baking process. Several drying forms are furnished the core maker, if a considerable

Fig. 237. Assembled View of Dry-Sand Core

number of castings are required.

Bonnet. Fig. 238 illustrates the pattern for the stuffing box and bonnet of the valve, with core print turned on

Fig. 238. Pattern for Stuffing Box

Fig. 239. Core Box for Stuffing Box

each end, which, like the main pattern of the valve, must be parted or made in two halves. Core Box. Figs. 239 and 240 are illustrations of the core box and core for the stuffing box and bonnet. The process of building

Fig. 240. Half Core of Stuffing Box with Drying Ring in Place

this core box is very similar to that used for the bronze bushing shown in Fig. 150. Saw the stock at a, b, c, and d. Have the total length of all parts equal the total length of the pattern. Scribe the half circles on the ends of each piece, and gouge to form required. Glue all parts together, saw for splines, and complete as before.

Fig. 243. Valve Spindle. (This pattern is not split)

Drging Ring. A pattern for the drying form or ring should be made to the shape shown in Fig. 239, which is to be fitted into the core box at e. After drying the core, these rings are slipped endwise toward the chamber and then can be easily removed.

Small Parts. The pattern for the nut for the bonnet is shown in Fig. 241, and those for the valve and valve nut are shown in Fig. 242. The patterns should be so made as to form their own cores, as indicated by the dotted lines in the drawing. Fig. 243 is an illustration of the pattern for the valve spindle.

Engine Cylinder

Type of Pattern. The slide-valve engine is built in a great variety of forms. Fig. 244 represents a sectional view of the cylin-

der of a very common type. At e, Fig. 245, we have a cross-section through the steam chest and exhaust port at AB, and at F, a cross-section at CD through the steam port.

When the cylinder is small -10 inches or under in diameter -the pattern is usually built up solid, but if more than 10 or 12 inches in diameter it should be built of staves, as shown in Fig. 246. When the size is 30

Fig. 244. Section through Slide Valve Cylinder

inches or over, a loam mold is usually made, as is fully described in the section on Foundry Work. The size limit, however, varies greatly in different foundries.

Fig. 245. Sections through Slide Valve Cylinder at AB and CD, Fig. 244

The construction of the pattern is illustrated in Fig. 246 and needs no description here, it being the same as already given for

Fig. 246. Section of Cylinder Pattern

Fig. 226. The flanges, however, should be built up of segments of two or three layers each, as shown in Fig. 247. After gluing up to

Fig. 247. Built-Up Flange for Cylinder Pattern

the necessary thickness to make the flange, it is sawed in two halves, jointed, and carefully centered on a wooden chuck, and turned to the dimensions required. The centering must be done with accuracy, or onehalf of the flange ring will be larger than the other.

Steam-Chest Pattern. The steam chest is next built and fitted

centrally on the upper half of the cylinder pattern, as in Fig. 248. The projections aa, which give the extra width of metal for the

Fig. 248. Two Views of Cylinder Pattern Including Steam Chest

bolts of the chest cover, are left loose, being kept in place by long, wires or dowel pins, as shown at cc, so that they can be withdrawn

separately from the mold after the main part of the pattern has been taken from the sand. These four strips should be recessed into the corners of the chest $\frac{1}{4}$ inch, as shown by the dotted lines, to prevent them from being rammed out of place after the dowel pins are taken

out. The boss i for the valve-rod stuffing box, and also the boss k around the steam-pipe opening, must be loose so as to be taken out of the mold after the pattern has been removed. The pieces oo at each end of the steam chest, which form a thickness of metal over the steam ports, are then fitted in

Fig. 249. Views of Core Box for Steam Chest

place, as is also the exhaust passage n, which must be parted on the line of parting of the two halves of the cylinder pattern.

Core Boxes. *Cylinder*. The main core box for the cylinder is made in the same way as has been already described for Fig. 227.

Steam Chest. The steam-chest core box is shown in Fig. 249, in which P is a side view, one side of the box being removed to show the valve seat v, and the core prints x, z, and y, which form recesses in the core into which the upper ends of the two steam-inlet cores

and the central exhaust-passage core are placed. Q is an end view of the box with one end removed, and R is a view looking into the box from above.

Exhaust Passage. For the core forming the exhaust passage, two half-core boxes, one right and one left will be nec-

Fig. 250. Exhaust Port Core Box

essary. One-half of this box is illustrated at S, Fig. 250, as also a sectional view at T. The dotted lines show the manner in which the passage is widened to retain the full size of the opening throughout.

Inlet Passages. Only one core box will be needed for the two steam ports. Three views of the box are given in Fig. 251. At Gone side is removed, giving a side view of the construction of the box. H shows a cross-section through G with the end u removed, and F is a view from above. The core is swept off on the upper side for the length of cc, and the bar ec as well as the end u must be movable so that the core can be taken from the box. Both ends of the core change from circular into straight parts just at the entering of the cylinder and at the entering of the steam chest.

Facility of Construction. The entire set of patterns is simple and easy of construction if carefully made drawings are furnished

Fig. 251. Views of Live Steam-Port Core Box

to work from; the time and labor required depending entirely upon the size of the cylinder.

Separated Steam Chest. In some slidevalve cylinders, the steam chest is cast separate and bolted to the cylinder, thus affording free access to the valve seat v and a better opportunity for finishing and fitting. In this

case, the main cylinder core and the two steam-inlet cores are made together in the same box, as illustrated in Fig. 252, in which one side of the core box is cut away to a depth of onehalf of the length of the steam-port openings, or to the line cc, which must be just one-half of the inside width of the box, as shown at H and at F, Fig. 251. The part which has been cut away is replaced by the three blocks a, a, and b, which are shaped to give the required size and form to the steam-port cores. These blocks are fastened by dowels, loosely, to the main part of the core box, and, after the core has been rammed up, the whole box and core is turned over on its face and the main part of the box is lifted off, after which the two loose blocks a and a can be drawn away endwise and the block b can also be lifted out with ease.

GEAR WHEELS

Accurate Teeth Required. In this special class of pattern work, the greatest accuracy and care must be taken, not only in building up the rim of the wheel, but in fitting and placing on the rim the blocks out of which the teeth are to be formed, and most of all in laying out the teeth regularly and accurately on the tooth blocks. A pattern for a gear wheel whose teeth are carelessly made is almost

Fig. 252. Bore and Live Steam-Port Core Box as Arranged for Small Cylinders

worthless, the time lost in chipping and filing for the purpose of correction being too great to allow the use of such a pattern.

Teeth Machine Cut. It is common practice in some pattern shops to build the pattern with the teeth stock fastened to the rim permanently, and having the teeth cut in a gear-cutting milling machine. To insure greater accuracy and smoother running gears, it is now the custom in many shops to have the wooden pattern made in the form of a blank without teeth, from which a metal pattern is cast. This cast pattern is turned up and placed in the milling machine where the teeth are cut and spaced with accuracy and to the exact form of tooth required. This metal pattern is used without draft. This method of making gear patterns, however, is expensive, and is used only when many wheels are to be cast of the same size and number of teeth from the same pattern, and, as in the case of pulleys, the wooden pattern is still used for all special sizes of gears.

At its best, the cast gear can never compete with the cut gear for smoothness of running and the efficient transmission of power. The modern machine practice calls for machine-cut gears, and consequently the cast gear is only for certain classes, as slow-moving machines where considerable backlash can be allowed, and when the teeth can be of such size as to be molded easily. For these reasons, the present-day pattern maker rarely ever gets so far as to cut the teeth of the gear pattern. However, several methods of constructing the arms, rims, and teeth sections of these patterns will be considered, and a few hints given as to the best methods of construction.

Patterned Teeth. Form. As the form of the tooth used by the draftsman will play no part in the construction of the pattern,

Fig. 253. Wood Spur Gear Showing Teeth Dovetailed to Rim

we think it would be out of place here to enter into a discussion of the relative merits of the single-curve, double-curve, or other form of tooth. The single-curve or involute tooth, however, has the great advantage of being the only form of gear which can be run at varying distances between axes and transmit an unvarying velocity and amount of power. The common contention that two gears will crowd harder on their bearings when the single-curve or involute form is used has not been proven in actual practice. The practical methods for obtaining the curves for either the involute or for the epicycloidal tooth, the two forms in most common use, are taken up in Mechanical Drawing. In the illustrations here given, the single-curve form of tooth is used. Fastening Methods. In the construction of gear-wheel patterns, the methods employed in making and fastening the tooth, or the blocks out of which the teeth are to be formed, to the rim of the wheel are model. It

the wheel vary greatly. It was formerly the custom to dovetail the tooth into the rim of the wheel, as shown in Fig. 253. This was the case especially when the teath were large, as in 2-pitch or larger. This is, however, an unnecessary expense and a waste of time, and, in addition, the cutting of the dovetails and

Fig. 254. Wood Spur Gear with Teeth Fastened with Wood Screws, Filler Pieces Glued between Teeth

the driving home of the dovetailed tooth often have the effect of distorting the rim to some extent.

A better, or at least a more economical, method, is to fit the tooth blocks as shown in Fig. 254, which for strength and durability is

Fig. 255. Arms, Hub, and Core Prints of Spur-Gear Pattern

found to be in no way inferior to dovetailing, and the saving of labor and time is very great. In this method we have always the advan-

tage of a smooth clean fillet at the root of each tooth, and having the grain of the wood, not only for the fillets, but also on the whole depth circle, run in the same direction as the grain of the wood which

Fig. 256. Section Showing Rim Formation

forms the tooth. This means a smoother pattern, more easily molded, and a better casting. In the former method, Fig. 253, it is almost impossible to form a fillet on each side of the tooth, as it

runs off to a thin featheredge which continually splinters and chips off; still further, the bottom of the tooth space, that is, the whole depth circle is the rim of the wheel, composed of layers of segments

with changing grain which will not mold so smoothly as in the second method.

The blocks for the teeth.should always be cut in strips 2 or 3 feet in length, in order to season the wood so far as is possible while other parts of the wheel are being constructed. Only straight-grained wood should be used for teeth.

Rim and Arms. The segments for building up the rim should be cut out next, then the arms put together and shaped as required. It is a good plan to fasten the arms central to the faceplate of the lathe, and to turn out a recess, say $\frac{1}{16}$ inch or $\frac{3}{22}$ inch deep, to receive the hubs, as shown in Fig. 255. This makes a stronger connection and does away with the trouble of fitting and connecting the hub, with the thin featheredge of the hub fillet, to the surface of the web of the arms. The same method is of great advantage when fitting the hubs of pulleys and other wheels.

The arms must be put together, with inserted tongues in the joints, as illustrated and described in connection with Fig. 171; and if they are to be worked to an elliptical section, it is easier to do this before fixing them in the wheel. At A, Fig. 255, the construction

of the arms is shown, and at B the core prints, hubs, and arms, with the manner of connecting these parts.

After building up enough courses of segments to equal half the

width of the rim plus half the thickness of the arms, the inside only of this part of the rim is turned out to the required shape, including the central rib a, Fig. 256, which must be of a thickness just equal to the thickness of the ends of the arms. The recesses to receive these ends are then cut into this half rim, and the arms fitted and glued in place, but not so tightly as to strain the rim and cause it to spring after it is removed from the chuck. Refer also to the method of building stock for arms and rims used in making the 20-inch pulley, which has the advantage of requiring less labor. The remaining courses for the rim are now fitted and glued on, and the rim turned and finished to the required size and shape.

Forming Teeth. *Placing Blocks*. The face should be glue sized to prepare it for the blocks which are to form the teeth of the

gear. After sizing and removing the raised grain of the wood, the periphery of the wheel must be spaced for the required number of teeth. With a try-square and very sharp awl draw lines through the points

Fig. 258. Spacing for Teeth

obtained by the spacing, as shown in Fig. 257. Should the teeth be of moderate size, say 3-pitch or less, the tooth blocks should be glued on so as to meet each other on the rim of the wheel, as shown in Fig. 258, and, not being screwed on, must be nailed with brads from the face of each tooth into the rim after being shaped and finished.

Each block must be so fitted as to reach only from line to line, Fig. 257, care being taken to have each block parallel to and coincide with its own line, reaching exactly to the line. When all the blocks are placed and glued, the wheel is returned to the lathe and the periphery turned off straight and to the required diameter for the addendum or tops of the teeth. The ends of the blocks are also turned even with the edge of the wheel rim, and before removing from the lathe, a circular line must be drawn on the ends of the blocks, on both sides of the rim, indicating the whole depth of the teeth. The use of this line will be explained later; it is the only circular line needed for laying out, or for working out the teeth. When the teeth are large, a tooth block is first fitted on and screwed from the inside of the rim, as shown in Fig. 254, one edge of the block touching, but not covering its line on the face of the rim. The thin strip is next fitted, glued, and bradded against the block, with the opposite edge of the strip reaching just to, but not covering the next line. A second tooth block is fitted and screwed in place, then a second strip, and this alternate placing of blocks and strips is continued until the surface of the rim is covered, having a block and strip for each tooth required. Care must be taken not to allow any glue to get between the blocks and the strips when gluing and nailing the strips on, as each block must be taken off, one at a time, after being laid out, to work the tooth to shape.

Spacing. When all the blocks and strips are in place, the wheel must be returned to the lathe and the face of the blocks turned to the diameter required for the addendum or tops of the teeth, and the ends of the blocks also turned even with the rim. The whole depth or clearance circles are marked, one on each side, while revolving in the lathe, as explained for a wheel with smaller teeth. All parts of the rim should now be made perfectly smooth with fine sandpaper, using a holder or block to prevent rounding the corners or angles of the tooth blocks.

Beginning at the middle of a block, space the required number of teeth on the periphery of the tooth blocks, and should the first trial not result in even spaces, the trial spacing must be continued until the greatest accuracy has been obtained, that is, until all distances from point to point are exactly equal. Through each spacing point, found as above, very sharp but light lines are drawn across the face of the blocks, as was shown for the wheel rim in Fig. 257. When drawing these lines it will be found best to draw along the inside edge of the try-square blade instead of the outside as is usual. The reason for this is that on small or medium-sized wheels a much firmer base will be given for holding the square, and more accurate lines will be the result. A coat of shellac brushed over the ends and faces of the blocks, if sandpapered smooth after being allowed to dry, will greatly assist in laying out the teeth, hardening the surface, and enabling sharper lines to be drawn.

Tooth Template. A template must next be made of the exact form of the tooth required. This will always be given full size in the detail drawings furnished to the pattern maker. Should the wheel be of small diameter, the template may be laid out and cut on the end of a long strip of zinc, but it is better to fasten the template to the end of a wooden bar, as shown in Fig. 259, a narrow slot having been cut through the back end of the zinc to allow of exact adjustment to the diameter of the wheel. This wooden bar is hung centrally on a peg or dowel which must be placed exactly in the center of the hub. For this purpose it is customary to use a block of wood as a temporary hub, the center of which may be easily found from the periphery of the blocks by the dividers. A very slight sharp notch is made in the exact center of the end-of the tooth template, which must be radial to the hole in the opposite end of

Fig. 259. Template Used to Lay Out Teeth of Spur Gear

the bar on which the template revolves. This notch is shown in Fig. 259.

To use the template, place it over the center pin and bring the notch exactly in line with one of the spacing lines on the outside of a block, and with a very sharp pointed awl mark the tooth on the end of the block. Then swing the template to the next line and mark as before, continuing the process until a tooth has been laid out on the end of each block. The wheel is now turned over and the same process repeated on the other side. It will be readily seen that if the spacing lines have been squared across the face of the wheel with accuracy, the teeth laid out on the two sides will be true and perpendicular to each other, a spacing line forming the exact center of each tooth, and for this reason these lines should always be very light but sharp and clearly defined.

Cutting and Paring. For convenience in cutting and paring, a second series of lines should now be drawn across the face of each

block connecting the extreme ends of the lines which describe the shape of the tooth on each end of the block. Should the wheel be small and within the capacity of the band saw, all superfluous wood may easily be removed from between the teeth.

If the band saw is sharp and evenly set, and the operator skillful, the teeth may be sawed so as to need but very slight correction with the paring chisel and gouge. As the hubs usually project beyond the rim on each side of the wheel, they should be left loose and removed before placing the wheel on the saw table.

For large wheels and heavier teeth, each tooth block should be unscrewed and removed, one at a time, and planed to the lines

Fig. 260. Section Showing Small Gear Made from Glued-Up Stock

marked on its ends and face, after which it is returned to its place before a second one is taken off. This is continued until all the teeth are shaped, when it will be necessary only to construct fillets at the base of the teeth, and also to work each space down to the whole depth or clearance circle, the circle having been drawn

for this purpose and also as a guide for bringing all tooth spaces to the same depth.

Solid Pinions. Small gears, or pinions, as they are called, are usually made with a solid web instead of arms, and are glued up in solid blocks of end wood, the grain of the entire block running parallel with the face of the teeth. Such an end-wood pinion is shown in Fig. 260. It is turned and the gear laid out and cut in the same way as described for the larger wheels, except that the teeth are not glued on but are cut out in the solid disk.

Bevel Gears

Built-Up Construction. Patterns for bevel and miter gears are built as illustrated at a and b, Fig. 261. The segments are to overlap

as shown, which is not only a saving of stock, but also saves time which would be required to turn the angular rim from a square construction. It will be best to make a full size layout of a radial

section of hub, arm, rim, and tooth. Marking the thickness of segments on this layout will show the diameter dimensions, which can be taken directly from the layout.

Rim. The process of gluing the segments will be the same as used for the pulley rims previously considered—gluing paper between the faceplate and the first layer of segments, and also nailing through the segments into the faceplate, or placing wood screws through the faceplate into the first layer of segments. When a sufficient number of courses have been glued together, including the temporary fitting of the arms, the face f and the edge e are to be turned to correct angle and diameter. Make a template for the angle shown in Fig. 261, taking the dimensions from the full-size layout. The rib c, which will finally be a continuation of the arms, is also turned to shape and to the thickness of the ends of the arms. The rim will then present the appearance shown at b, Fig. 261.

Remove the rim from the faceplate and nail and glue six blocks to the faceplate. Turn these blocks to the inside diameter of the ring c and fasten the rim to the faceplate with six clamp pieces, shown at d, Fig. 262. In this position the edge g and the inside of rim h is turned and finished as shown. It is not necessary here to describe the method used in finding the required angles for the face and edges of the rim, but, as in the case of spur-gear teeth, the student should refer to Mechanical Drawing.

Drawing Arms. The arms, partly shown in Fig. 263, are next fitted and fastened to the rim. It is well to glue a small disk on each side of the web of the arms, as shown, which not only strength-

Fig. 263. Part of Arm Pattern for Miter Gear

ens the arms, but serves as a fillet around the hub of the wheel.

Loose Pieces. In Fig. 264, the hub H and the ribs of the arms RR are often made loose so as to lift with the cope, which is of great advantage in molding.

Fitting Teeth. The blocks for the teeth are next fitted in place, either as illustrated in Fig. 264, or in the form of alternate blocks and

strips as was shown for the spur gear, Fig. 254. After all the blocks are in place, the wheel must be put in the lathe and turned to the sizes and angles required for laying out the teeth. A sharp line must be drawn on the face of the blocks, while in the lathe, to serve as a guide for the dividers while spacing the teeth.

Use of Centrolinead. To obtain the center lines for the tooth faces after spacing on the blocks, it will be readily seen that the ordinary try-square cannot be used as in the case of the spur gears. A temporary square or centrolinead may be made for this purpose as follows:

Take a piece of hard wood about 6 inches long, $3\frac{1}{2}$ inches wide, and $\frac{1}{2}$ inch in thickness. Dress the two edges perfectly parallel and from the upper edge *a*, Fig. 265, with a try-square and a sharp pointed knife, draw the line *c*, equally distant from each end of *A*,

and at right angles to the edge a. Lay the edge b of A against another board B, of the same thickness, and continue the line c on this board, as shown by the dotted line. With the dividers set on the extended line c on the board B, and with a radius equal to the longest distance of the outside edges of the tooth blocks from the gear center, describe the arc xy on A. Cut the edge b to this arc,

and see that it perfectly fits

Fig. 264. Section of Miter Gear, Showing Stock Assembled for Teeth

the outer rim of the tooth block. Next make a thin blade of hard wood and screw it to the head A, using the greatest care to have one edge of the blade coincide exactly with the line c. After screwing the blade to the head, its accuracy may be tested by placing a try-square against the edge a. The result will

be as shown in Fig. 266, in which the edge c is radial to the arc xy. This edge will describe the center lines of the teeth radially, as required.

This temporary square can be used, within the limit of its blade, on wheels of larger diameter than that to which it has been fitted, but cannot be used for smaller wheels. For the larger gears the position will be as shown in Fig. 267, which will give the correct perpendicular if the angles at x and y are carefully made. By using in this way, only a few squares will be needed for a great number of

wheels.

Fastening. When the teeth are large, they must be screwed on from the inside of the rim. If small, they should be bradded from the outside or face of the tooth into the rim after the teeth have been shaped and finished.

Templates. Two templates will be necessary for laying out the ends of the teeth, the outer ends being larger than the inner. These tem-

Fig. 265. Construction of Template

plates are made as described for spur gears, and have the outer end bent to fit over the angles of the rim.

Figs. 266 and 267. Templates for Face of Teeth

COLUMNS

Patterns. Cast-iron columns are often ornamented or fluted as shown in the half section of a fluted column in Fig. 268. In all such cases the body of the pattern is made octagonal, as shown by the outline ABCDE. The loose pieces forming the flutes are held to the main body by pins that stand at right angles to the line AE. After the sand has been rammed, the body included in the outline ABCDE may be lifted out, [leaving the parts AabB, BbcC, etc., imbedded in the sand; then, one after another, these latter may be

lifted out. These fluted sections should never be so few in number that they cannot be lifted out without tearing the sand. Eight or twelve sections will be needed.

Other forms of ornamentation are put upon columns in a similar a manner. Leaves or flowers are held by pins or in grooves in such a way that the main body of the pattern may be lifted out without disturbing them, and they then may be withdrawn from the sand through the cavity left by the main pattern.

Cores. Cores for columns may be made in core boxes as in the case of those for pipe, but where the core is long and straight no core box is needed. The core is usually bui't of loam about an iron pipe, as explained in Foundry Work.

Where the core is to follow the lines of the ornamental moldings on the outside of the column, it may be provided with a special core box or better with a sweep, as shown in Fig. 269. This sweep is used to shape the loam core that is to be built up on an iron pipe. Fig. 269 is the outline of the template that is to be used in sweeping the core for the interior of the columns shown in Fig. 270.

Follow Boards. All thin patterns that are likely to suffer distortion from the pressure of the sand, while being rammed up, must be provided with accurately fitbe provided with accurately fit-for Making Loam ting follow boards. These follow Core for Column

Fig. 268. Section of Ornamental Col-umn Showing Loose Pieces Picked-In

Fig. 270. Completed Column Pattern

boards may be made to fit on either one or other of the sides of the pattern.

When the outlines of the pattern are very irregular, the follow boards are often made of plaster or other composition, which, when

Fig. 271. Follow Board

dry, is used to support the pattern while the drag is being rammed.

Fig. 271 represents a section of a railing cap. If the pattern

B were to be set with the edges aa resting upon the molding board and the sand of the drag rammed down upon its upper face, it would be sprung out of shape. To avoid this the follow board A is made to exactly fit the under side of the pattern. Then when the sand is rammed, the whole pattern is supported and there will be no distortion. When the cope is rammed, the follow board is removed and the sand of the drag supports the pattern while the cope is being rammed.

152

• •

•

In this settler, the separation of the lead and sing takes place. The blast furnace is in the background. Corrector of United States M stale Refering Company. BLAST FURNACE SETTLER

PART III

COMPLICATED PATTERN CONSTRUCTION

HAND= AND MACHINE=MOLDED EXAMPLES

HAND-MOLDED HYDRAULIC TURBINE

Conditions. This class of work requires a very clear conception of the principles of pattern making. The working drawings are for the completed casting as usual, Fig. 272, while the several core boxes are designed and constructed by the pattern maker. Extreme accuracy must be exercised, for the slightest variance will be noticed when the cores are assembled, and also in the results of the output and efficiency of the turbine when installed. The type of turbine shown is adapted to fairly high head or fall of the water, relatively small power output, and low speed. The form of the guide vanes and rotor vanes—the latter commonly and erroneously called buckets—shall be furnished by the designer, and a sheet-zinc or brass template should be made to this design. If possible, have the designer check these templates and have them carefully stamped with the diameter and other data, so that they may be readily identified.

In all the illustrations, like letters will denote like parts. Fig. 272 is the working drawing of the guide ring, showing the principal finish dimensions. No attempt will be made to give data for the form of the vanes, but the shape shown will be close enough to that used in practice, for the considerations of the pattern maker. To have it clear just what is being built, it should be understood that the rotor ring is the revolving portion, while the guide ring is stationary, and that water passing through the guide ring from outside to inside continues on through the rotor ring and discharges into and out through its center. The guide ring is bolted to the casing and the rotor ring is bolted to the rotor hub. The casing and hub are not shown. Durable Core Boxes. The core boxes for the guide vanes are often made of wood, having those parts which are subjected to the

most wear lined with sheet brass, or perhaps hard wood. These boxes are not made of solid glued stock, but are framed together in such a way as to prevent as much as possible of the distortion due to shrinkage. However, in our consideration it is intended to produce a set of core boxes for these castings which may be used

for years. The core boxes for the guide and rotor vanes will be constructed of cast iron, for these parts of a turbine are often required to be replaced, and wood core boxes are liable to become distorted and wear out of shape so as to give unsatisfactory results.

Guide Ring Coring

Guide Vanes. The illustrations and descriptions are for the guide-ring casting; the equipment for the rotor-ring casting being very similar to that for the guide ring except in dimensions. Fig. 273 is a plan view of two cores, set together so that the space between

Fig. 273. Top View of Two Cores for Guide Ring

forms the mold for one of the guide vanes. The radius d is the outside of the ring casting, including the finish allowance, and c is the inside of the casting, including the finish. The difference between the radii o and r equals the radial width of the dry-sand core. This is also indicated in Fig. 274, where are shown the core box halves. The radial dimensions denoted by the differences between d and o, and r and c depend somewhat on the diameter of the ring; for a guide ring with outside diameter of about 5 feet, this radial difference should be $2\frac{1}{2}$ inches each.

Template. On a new sheet of zinc carefully lay out arcs with the radii o, d, c, and r, and the form of the face and back of the vane

per data given by the designer. The chord e must be carefully spaced to give the proper number of vanes. Multiply the diameter of the outside of the cores by the sine of $\frac{1}{2}$ of the included angles for this chord length. As a dry-sand core swells slightly while it is being dried, this chord e should be made a little short of the figured

length. Experience is the best teacher as to how much should be allowed for this expansion, different mixtures of core sand, hardness of ramming, and rate of drying, all having effect, and the bottom of a core expanding more than the top, due to settling from its own weight. Make the chord $e_{\frac{1}{24}}$ inch short for this casting. Sixteen vanes are shown in Fig. 272 so as not to appear too complicated, but twice this number would be nearer that used in practice. The wooden pattern for the core box is to be made double shrink— $\frac{1}{4}$ inch per foot—so double shrinkage should be allowed when laying out the form of the zinc template. The form of this template is shown in Fig. 273 by the letters *tttt*, and another template with single shrink of $\frac{1}{8}$ inch per foot, should be made for checking the dimensions of the iron core box.

Vane Core Box. Flanged Sides. Preliminary to making the durable iron core box, Fig. 275, prepare stock for the flanges for the wooden core box $\frac{3}{5}$ inch thick, obtaining the form and dimensions

Fig. 275. Diagram of Completed Iron Core Box

from the double-shrink zinc template, and making the inside edge $\frac{1}{4}$ inch outside of the template so as to run the stock for the outside wall from bottom to top, as shown in Fig. 276. The perspective sketches in Figs. 275 and 276 illustrate the appearance of these flanges, the pieces j and k being sawed to the full length and the tenons produced with the machine saw. The grain of the stock should be as nearly parallel to the length of each piece as possible.

The layout for these flanges need only be made on one piece of stock. Nail two or more pieces of stock together, as the needs may be, band sawing all from the one layout. In nailing stock together for this purpose, use two slim finish nails and drive them

one at each end—not near each other at the center, and not in the waste stock. These same nails will then hold the pieces firmly together while the edges are being trimmed smooth and true. Should the depth h be over 12 inches, an intermediate flange should be made and placed between the openings m and m. Glue j and j_1 together, using care that the angle between them is correct. A slight draft should be made on these flanges, the outside edges being the thinnest.

Fig. 276. Flanges and Partially Assembled Rear Half of Core-Box Pattern

With stock for the pieces ww dressed to size. the flanges are nailed and glued together, as shown in Fig. 276. All parts should be hand-planed before they are assembled. Always nail each joint in correct location -driving the nails only far enough to locate each piece-before the glue is applied. When the nails are driven through the joint after the glue is applied, the glue acts as a lubricant for a few seconds, causing the parts to slip, and some of the glue will be pressed out of the joint so as to ob-

scure the construction lines, with the result that often a joint will be finally fastened together a little out of position.

Another rule that must be followed by the accurate pattern maker is never to use a lead pencil or a scratch awl for marking center and construction lines; use a thin pointed knife and make sharp deep lines. Pencil lines are too broad, and the awl tears the stock. Center lines should always show on the surface of the completed pattern, but construction lines should not, unless they mark the location of some future alteration or addition. The center lines are necessary for checking the dimensions of the pattern.

Having the flanges assembled, nail and glue the walls x in place. This stock is to be $\frac{1}{4}$ inch thick, with the grain running vertically. Where the radius is short, narrow pieces should be used as shown. The work on the opposite half should be carried

Fig. 277. Vertical Section of Core Box on Line i i, Fig. 274

on at the same time. Smooth the inside of each half and the whole to fit the template.

Slots and Draw Pieces. The slots mm shall be carefully laid out to the dimensions a and b, shown in the vertical section of the core box, Fig. 277. Bore holes at each end, and saw with a thin backless saw. It will be necessary to start the cut with a keyhole

saw. The edges should be trimmed with a chisel and have a decided draft to each side, as the slot is molded with a greensand core. See that there is no back draft at the ends, and to prevent this, the slot should be made shorter than the required width, being filed out in the casting.

A pattern for the draw

pieces l and l is to be made as shown in Figs. 274, 277, and 278; the radii c and d being shown in Fig. 272. The thickness is u, and an enlargement at one end is provided to serve as a handle. Two castings from this pattern are required.

Bottom Plate. A cast-iron bottom and top will require a right- and left-hand pattern, illustrated in Fig. 279. Stock should be glued of narrow pieces, say 3 inches wide, with the heart side of

Fig. 278. Draw Pieces for Core Box

the stock reversed, and should be cut to the form shown in Figs. 275 and 279. The small blocks or lugs are so placed that they center the bottom with the sides. This bottom can be centered with the sides by dowel pins in holes drilled through the flange. However, as the bottom and top should extend outside of the flanges, to provide means for lifting, there will be plenty of room for these lugs.

The piece y which forms the mold for the upper and lower crown is glued to the plate, and stock should be removed with carving

Fig. 279. Bottom of Vane Core Box

gouges from the opposite side to prevent as much weight as possible. This piece is sawed to the form of the template and the radii c and d. The face shall be carved to the bevel and round corner shown in Fig. 272. A radial template of thin wood can be made to show the form of this surface. If the template with its edge coated with blue chalk is passed over this surface, it will indicate the high spots.

These can be reduced with the carving gouges until nearly to dimension, when the surface should be smoothed with one of the flat iron spokeshaves.

Stop-offs, shown in Fig. 279, should be screwed to the outside of these wooden patterns to prevent warping. They should have liberal draft, say about 3 inches to the foot, and should be finished to some color different from the body or core-print portions of the pattern. The imprints of these stop-offs are filled in after the pattern is drawn, and do not come in the casting for the metal core box.

Pouring Gate. The block p, Fig. 279, forms a pouring gate and generally is used in four of the cores. It can be made of hard
wood or iron, and is held in place by two small steel dowels. The pattern maker should consult the molder for the dimensions of this gate.

The gate continuation should be made of a dry-sand core,

Fig. 280. Perspective View of Core Box for Gate with Side Removed

which is shown in Fig. 286, and the core box for which is illustrated in Figs. 280 and 281.

Core-Box Top. The top of the core box is made to the same dimensions as the bottom, but is made the opposite hand. The gate p is to be fitted to both bottom and top.

Use of Core Box. These guide rings are made both for turbines which rotate in a right-hand direction and also for left-hand

Fig. 281. Details of Core Box for Gate

rotation. The same core box can be used for both; consequently what is the bottom of the core for the right-hand turbine becomes the top of a left-hand turbine.

The hooks for locking the box together, while ramming the core, are iron or soft-steel forgings and can be fitted by the metal-pattern

maker. In ramming the core, the sides are clamped together and placed on the bottom. Core sand is rammed to the underside of

Fig. 282. Elevation of Guide-Ring Core Looking from Ring Center Outward

the lower draw piece, and is then struck off with the strike shown in Fig. 277. Inserting the draw piece, the ramming goes on and the strike is again used when the upper draw piece is reached. With both draw pieces in place, the box is rammed to the top. Using the

Fig. 283._ Core Box for Bottom Core

Fig. 284. Details of Bottom Core

strike, it is possible to ram the sand firmly under each draw piece, where it would be rather difficult to ram in any other way. Sand is now cut out at the top nearly to the shape of the top crown, and the top of the core box pressed into place. This top may have to be re-

moved several times until the right amount of sand has been removed. When the top of the core is completed, the space forming the top crown of the ring is filled with green sand, a drying plate placed on top and the core box and all are rolled over. The bottom can now be removed and the draw pieces drawn out through the side, forming the mold for the intermediate crowns ll, Fig. 272. The sides can now be taken from the core, which appears as in Fig. 282.

Bottom Core. The core box for the bottom core is shown in Fig. 283, and the core in Fig. 284, and in the radial section of the assembled cores, Fig. 286. The number of flat cores to go around should not be the same as the number of vane cores, but enough to give an outside chord length of about 20 inches. The dimensions of this core, shown in Fig. 284, are not arbitrary, and should be made to correspond to the requirements of the weight of the

Fig. 285. Gage for Setting Bottom Cores

vane cores. The illustration of the core box shows the construction; the thickness of the bottom should be about $\frac{7}{8}$ inch, and the sides about $1\frac{1}{4}$ inch. The bottom can be made of pine or mahogany, and the sides of mahogany, maple, or birch.

Radius Gage. A measuring stick, Fig. 285, must be provided to locate the bottom cores. The semicircular notch at the inner end shall be the diameter of the spindle, which should be about 3 inches, and a small block should be nailed and glued on, or a notch cut in one edge, at the outer end. The radius r should be the same as the inner radius of the vane cores.

Cover Core. The covering core x, in Fig. 286, can be made in the core box for the bottom core by fitting a loose piece z, as shown in Fig. 283, into the core box to stop off the shoulder.

Molding Process. After bedding the drag flask in the foundry floor, a spindle made of a piece of steel shafting, bolted in the hub of an old pulley, or any other method which will hold the spindle

in a vertical position, is bedded in the sand at the center of the flask. The sand inside the flask is rammed hard and struck off level to form what is called the bed. The spindle must stand vertical to this bed. Place the bottom cores on the bed and set them concentric with the spindle, using the measuring or gage stick, Fig. 285. Upon these cores the vane cores are placed, and the covering cores are placed on top of the vane cores. The spindle then is drawn out and the gate cores set. A portion of the shoulder on the bottom cores will be cut out to complete the gate into the mold, as shown in the assembly, Fig. 286. The sprue is made with a tapering wooden pattern placed in position at the junction of the

Fig. 286. Radial Section of Guide-Ring Core on Line / f, Fig. 273

gate cores. Iron or wood cheek flasks are placed outside of the cores, and rammed full of molding sand. The cores are thus held securely in place and the mold is made without having to turn the drag mold over, which is quite an advantage in heavy work of this class.

MACHINE-MOLDING PRACTICE

Adaptation to Production. The adaptation of patterns to the present-day demands on the foundry for large output of duplicate castings makes it imperative to so arrange the equipment that the largest number of castings per molder-day shall be obtained. This will reduce the labor cost per casting, and where machine molding does not increase the output, it will be possible to employ unskilled workmen, which will lessen the cost. To accomplish this, various arrangements of the patterns have been worked out and the castings all come under the heading of machine molded castings. Special Study. The concern manufacturing molding machines often contracts to mount on their machines such patterns as are required, and in that case the design and molding operations are worked out by the designing department. However, in many pattern shops the adaptation of the patterns is left wholly to the pattern maker. Now the study of the problems presented is such that the pattern maker soon becomes a specialist, and, if just taking up this work, it will be well to consult the foreman of the foundry, for many questions will arise where the pattern maker would find it difficult to give a practical decision.

Every class of castings calls for a different solution about the equipment that makes the work special. A machine mounted pattern that is a success in one foundry will often be a failure in another. A pattern fitted for machine molding, with the expectation of an order for 1000 castings, probably would not be the same arrangement if the order were for 100,000 castings. Greater expense could be put into the pattern equipment for the larger order, and should be done if the output could be increased. The output per day should be considered, and where a number of small duplicate patterns can be molded in one operation, the flask should not be so large that the operator cannot handle the mold easily.

All in all, this field offers a study of molding and the patternmaking propositions not found in the usual classes of hand-molded patterns. To attempt to offer a complete work on this branch of pattern making would be folly in the extreme. The personal experience of any one expert would require a large amount of space, and the possibilities would only be touched upon.

Increased Uniformity. The changes that have taken place the past few years in the process of machining steel are also evident in the methods of machining castings. In machining large numbers of duplicate castings the machinist resorts to jigs for holding the piece while the work is being completed. It is the case that handmolded castings will vary in dimensions to some slight amount, due to the slight difference in rapping during molding, which cannot always be kept constant. Patterns are sent first to one foundry and then to another and made today by one molder and tomorrow by another. Even if a machine-molding equipment does not

increase the output, the uniformity of castings and the unskilled labor that can be employed will generally pay for the outlay.

USE OF PATTERN PLATE

Bearing-Cap Pattern. Shrinkage. For the use of a pattern plate with the pattern for the ring-oiling ball-and-socket shaft-

Fig. 287. Cap for Hanger Bearing

hanger bearing cap, Figs. 287 and 288, the process of constructing the wooden pattern is identical with that for a handmolded pattern, except that two shrink allowances are to be made. If the final bearing casting is to be of iron, an

allowance of $\frac{1}{10}$ inch or $\frac{1}{3}$ inch per foot will be made for shrinkage, and if the metal pattern is iron, double this amount. With an aluminum pattern, the combined iron and aluminum shrinkage, amounting to $\frac{3}{3}$ inch per foot, must be allowed for.

Stock Preparation. For best results the stock should be glued of several pieces, as shown in Fig. 289, reversing the heart

side of each piece, and using only very dry and sound stock. Dress the glued stock to a parallel thickness and width. The width shall be equal to d, the height c, and the length e. The edges shall be dressed square with the two sides, and longitudinal or transverse center lines are to be laid out on all surfaces. On the working face the complete outline of the pattern should be made as illustrated by the lines h in Fig. 289. On one edge

Fig. 289. Partially Completed Stock for Cap Pattern

produce a layout showing the height or thickness of the pattern, as illustrated by the line i.

Forming. The semicircular hole is cut out with a core-box plane, to a diameter of t, which is larger than the shaft, as this is

Fig. 290. Cap Pattern Stock Mounted on Wood Arbor Ready to Turn Outside

a babbitted bearing. Band saw to the line i, leaving stock at jj so that when band sawing to the lines hh the top surface or working face of the stock will be kept parallel to the table. The stock at j may be cut off with a chisel after the band sawing is completed.

Prepare an arbor and fasten the pattern to it, as illustrated in Fig. 290, with six wooden screws. The pattern may now be put into the lathe, and all parts that are concentric with the arbor mm, nn, and l, may be turned. The lathe should be run at its slowest speed and the turning done with a narrow square-nose chisel. The parts kk, which are over the recess for the oil rings, should not be turned. The surfaces mm and nn can be worked to

size by trimming to a template, but the suggested method of trimming will work out very well and produce accurate results. The stock at *l* is to be cut down to the diameter of the pattern at *n*, and at *o*.

Fig. 291. Preparing Stock for Babbitt Ledges

where the center lines which were made on the squared stock intersect, the center of the boss q, Fig. 288, should be found.

The babbitt ledges r, Figs. 287 and 288, are semicircular rings band sawed from stock of the required thickness, Fig. 291, and the grain of which should be as illustrated. This gives the greatest strength to these parts after they are nailed and glued in place. One small finish nail at each end will be all the nailing required, and the inner diameter will be smoothed on a sandpaper roll. The flanges vv, Figs. 287 and 288, are thin strips of stock glued into a rabbet sawed after the turning is completed, and this flange is cut out so as to leave the rim w. The oil cups are turned and fitted into the holes p, Fig. 290. The recesses uu, Fig. 287, are carved with gouges, and the form determined by the use of a template. A little blue chalk on the template will indicate where the stock is to be removed to obtain the correct form.

Making Pattern Plate. The equipment that the molder will require to mold this pattern plate will be a mold board, a pattern for the plate, and four strips of wood to nail to the parting edge of the wood flask.

Pattern Board. The pattern board, an illustration of which is shown in Fig. 292, should be made of pattern stock. Upon locating the pattern, fit and nail the pieces xx in place. In the section view, Fig. 293, the form of these pieces is shown more clearly. They form the coped parting, which in hand-molding is cut out by hand, or is formed by a sand or a plaster match. The ribs w w should be fitted into the mold board so that the flange v will rest upon the mold board.

Plate Frame. The pattern for the plate is an open frame about $\frac{1}{4}$ inch thick. The opening should be large enough to fit

Fig. 292. Pattern Board

over the pattern and the parts of the mold board marked xx. The extension at each end should be large enough for the flask pinholes, and also serve as handles. The other portions of the plate pattern should not be larger than the flask.

Molding Metal Pattern and Plate. After ramming the drag mold, it is turned over onto a bottom board, and the pattern board

Fig. 293. Section of Pattern Board

removed, leaving the cap pattern in the mold. The cope mold then is rammed and removed, following which the plate pattern is placed on the parting, and strips of wood the same thickness as the plate pattern are nailed to the edges of the flask. The drag mold at this stage has the appearance illustrated in Fig. 294.

Molding sand is now rammed into the space between the plate pattern and the flask, forming a new parting $\frac{1}{4}$ inch above the parting

Fig. 294. Drag Mold of Cap for Hanger

made by the pattern board. The cap and plate pattern then are removed and the gates cut.

Closing the cope forms a mold that will produce a pattern plate,

Fig. 295. Completed Plate Pattern

an illustration of which is shown in Fig. 295, and on the reverse side of which will be the opposite side of the cap pattern.

Use of Steel Frame. A system used in some foundries is to have a steel frame for the plate pattern, and, leaving this frame in the mold, cast the pattern and the balance of the plate of aluminum, or some special alloy. This process produces a lighter weight plate and it is intended to melt the pattern out of these steel frames in case the pattern becomes obsolete.

Gate. The pattern for the gate illustrated in Fig. 295, at y, may be fastened to the pattern board and cast on the plate, or cast of brass separately and fastened to the plate with two machine screws. This last method allows the gate to be readily removed and altered should a change become necessary.

STRIPPING DRAW-PLATE MACHINE

Flange-Coupling Pattern for Hand Molding. In Fig. 296 is illustrated one half of a flange coupling such as is commonly used

on mill shafting. Fig. 297 illustrates a radial section view of a pattern for handmolding this coupling.

Wooden Construction. The web c is to be made of glued and splined segments, as recommended for the web of the disk crank in Part II, Pattern Making. A shoul-

Fig. 296. One-Half of Complete Flange Coupling

der is turned at the edge of the web to receive the rim, which is built of several layers of segments, the whole being turned on a faceplate. The hub d and core prints e and f are to be made loose. The hub stock will have a 1-inch hole through its center and be turned on a hard-wood or steel arbor. A rabbet is turned at one end, and five or six segments fitted, glued, and nailed into this rabbet to form the stock for the fillet. The hub should have a normal draft— $\frac{1}{3}$ inch per foot—and a small chamfer or rounded edge on its outer end. The grain of the stock should be parallel to the axis of the hub, whether the stock is made of glued stock or not. The dowel pin m should be glued in the hub. Having the hub and core prints loose allows the coupling to be adapted to several diameters of shaft. This requirement occurs when an increase or reduction of the diameter of a line of shafting is made.

Equipment for Machine Use. It is now desired to construct a molding machine, Fig. 298, with as little expense and delay as possible, whereby a machine molder may produce the casting. The principle used will be a hand roll over stripping-plate process. Figs. 298, 299, 300, and 301 are used to show the equipment requirements, and like letters represent like parts in all figures.

Fig. 297. Section of Hand-Molded Pattern-Loose Hub and Prints

Fig. 299 illustrates a section of the completed machine, on a center line through the flask pins ii.

Pattern. The only alteration in the pattern for the flange and web of the couplings will be in the thickness of the web c, which must be thick enough to reach through the stripping plate b and is to be

fastened to the draw plate a with three or four flat-head wooden screws. Follow the process already established when making the web, flange, and hub. The hub shall be made loose, and the core prints also, unless the diameter of the cored hole is standard to the hub, when it will be best to make the nowel core print a part of the hub.

Stripping Plate. The stripping plate, Figs. 298 and 299, at b, and the core plate, Fig. 298, at n, are alike in size. The width should not be greater than the flask, Fig. 301, so that what sand falls over the outside of the flask should fall to the floor. The length, however, should extend beyond the flask far enough to include the flask pins *i*. The stock for these plates is to be about $1\frac{3}{5}$ inches thick, and had better be made of narrow strips of stock glued together, with the heart side reversed on alternate pieces so as to prevent warping. The stock should be dry, and have a heavy spline glued in each end, as shown.

Draw Plate. The draw plate should be about the same length and thickness as the stripping plate. The width may be somewhat less than the stripping plate, but not less than the diameter of the pattern, and not so as to cause the outfit to tip during the ramming of the mold. This plate is not splined at the ends, but heavy cleats are glued and screwed in place, as shown in Figs. 298 and

Fig. 298. Simple Form of Molding Machine which Embodies Stripping-Plate and Turn-Over Ideas

299, first cutting out stock at the ends of the plate to form hand holes.

Assembling. On both the stripping and draw plates lay out a center line for the location of the pattern and the flask pins, and

also a checking line parallel to this center line, spaced off exactly one-half of the diameter of the flange of the pattern, $\frac{c}{2}$. After establishing the location of the pattern and flask pins, the 1-inch hole can be bored in the cope plate, and the hole in the stripping plate for the flange c can be carefully sawed with a jig saw or keyhole saw. This hole should be fitted over the pattern by blue-chalking the outside of the flange and trimming the stripping-plate stock where the chalk shows. This hole will have to be about $\frac{1}{32}$ inch larger in diameter than the pattern so there will not be any binding when the pattern is drawn through the stripping plate. The stock

Fig. 299. Section through Center of Nowel Mold Machine

is bound to swell to some extent, but a small amount of sand geiting between pattern and stripping plate will grind out the stock, so there will be little trouble from this source.

Flask Connection. The flask pins *i* are to be made of cast iron or machine steel. The diameter of the pin is to be about $\frac{3}{4}$ inch, and the flange about 2 inches in diameter and $\frac{3}{8}$ inch thick. The diameter of the pin should be parallel, to a height of about $\frac{1}{2}$ inch, and slightly tapered above this point to a total height of about $1\frac{1}{4}$ inches. The flange should be drilled and counterbored for three flat-head wooden screws, or, better yet, tapped for three flat-head stove bolts, which will be passed up through the plate stock. Counterbore holes in the stripping plate and cope plate, for the flanges of these flask pins, being very careful to center these holes accurately. Fasten the pattern to the draw plate and place the stripping plate in position. Test the dimensions gg with inside calipers, as shown in Fig. 299 also check the dimension h with the flask-

Fig. 300. Jig for Locating Centers of Flask Pins on Machines

pin jig shown in Fig. 300. This jig is made of flat steel stock, and the holes are drilled with the same jig which is used for drilling the holes in the flask, Fig. 301. Test the distance from the checking line to the flask pins with hermaphrodite calipers, as shown in

Fig. 301. Sketches of Cast-Iron Flask Showing Closing Pins

Fig. 298. Test the location of the cope core print in the same manner. The flask pins can be adjusted by loosening the screws and driving a wedge between the pin and the plate stock so as to force the pin into the correct location. The alignment of the pattern

and the flask pins should be such that the mold can be closed with the cope either way around; however, the location of the sprue will determine this.

Gate. The pattern for the gate k, Fig. 298, is crescent shaped and is nailed to the stripping plate. The pattern maker had better consult the experienced molder for the dimensions of this gate. A small hole should be drilled in the cope plate at o, Fig. 298, so as to locate the sprue opposite the center of the gate pattern.

Identification Marks. Pattern numbers, size of coupling, or other means of identification should be marked on each end of the stripping plate. In this location they can readily be seen when the patterns are on the storage rack. Do not place these marks on the ends of the draw plate, as the pattern is rapped by striking the ends of the draw plate before the pattern is drawn. Closing pins, Fig. 301, are used while closing the mold, and these are then to be removed.

Parallel Drawing Device

Typical Deep-Draw Work. When the pattern, like the spur gear illustrated in Fig. 302, has considerable depth of draw d, there is liability of one end of the draw board being lifted ahead of the other, which will cant the pattern and loosen the sand between the teeth of the pattern, making it impossible to obtain a perfect casting. With the parallel device shown, the draw will be perfectly true and very delicate molds can be made. It is not intended that patterns mounted in this manner should compete for accuracy with an all metal stripping-plate machine, but its ease of handling and roll over suggests its use for many castings frequently mounted on the stripping-plate machine.

Spur-Gear Pattern. The gear pattern is to be made of mahogany —the stock glued to obtain the required dimensions, and having the grain parallel to the axis. Band saw nearly to diameter, bore a 1-inch hole through it at the center, and turn on an arbor. In the assembly, Fig. 303, the length d shall be the sum of the face of the gear and thickness of the stripping plate. Have the teeth cut in a gear cutter. This is the same machine used to cut the teeth of metal gears, and commercial gear cutters generally have one of their machines adapted to this work. The spindle upon which the milling cutter is mounted is run at a speed that will insure

Fig. 302. Draw Plate for Spur-Gear Casting

Fig. 303. Elevation of Spur Gear and Draw Plate

smooth work, and a single cutter, called a fly cutter, is fitted to the spindle in place of the milling cutter.

Stripping Plate and Draw Board. The stock for the stripping plate and draw board may be prepared while waiting for the gear pattern. These are to be made of glued stock, splined and cleated the same as in connection with the flange coupling. While not shown, a cope plate shall be made which will be similar to the cope plate for the flange coupling illustrated in Fig. 298. This should be made along with the drag machine. At h, in Fig. 304, bore H-inch holes through both the stripping plate and the draw board. Mount the stripping plate on a faceplate using care to have the center of the stripping plate and lathe concentric, and turn

Fig. 304. Section Showing Loose Nowel Core Print

a hole with a diameter equal to the bottom of the gear teeth; also chuck a recess for the brass wear plate if one is used. Machines have been made without this brass plate, but better results can be obtained with it. It may be cut from sheet brass or a casting may be used.

Metal Parts. If a brass plate is used on the stripping plate, the projections which extend into the tooth space should be carefully filed to pass over the pattern easily. Mark the stripping plate to this form and jig-saw it. After fastening the brass plate with several flat-head wooden screws, the hole is to be trimmed so that the pattern will not bind.

The metal pattern maker or a machinist can furnish the metal parts, or if necessary tools are at hand, the pattern maker will not find much difficulty in making them. The flask pins, however,

should be machine turned all over and made duplicate, for, in case of breaking, the labor of replacing will be very much lessened if the pin can be replaced without changing the alignment of the pattern.

Parallel Device. For the side arms of the parallel device, Fig. 306, the stock should be black iron, $1\frac{1}{2}$ inches long by $\frac{1}{4}$ inch, and the length 1 or 2 inches less than the length of the draw board. Make a full-size layout of the motion of the parallel device as

Fig. 305. Layout for Side Arm of Parallel Motion Device

illustrated in Fig. 305. The radius r and the dimension s must be the same.

Side Arms. From points a, e, and q, project vertical lines a j and qb. Make all straight lines with a knife point. With f for a center, scribe arc blop with radius k, which is the sum of r and s. Locate above f the point g with dimension w, and point j with dimension $d+\frac{1}{5}$ inch. Dimension w is as in Fig, 303, and the $\frac{1}{5}$ inch added to d is to insure drawing the pattern clear of the mold. Point i is to be located approximately $\frac{2}{3}$ of d above g. These points g, i, and j are to be projected on vertical line ln. Through the intersections of these horizontal projections with arc b p at o and p, lay out radial lines centering at f, and extend these lines to intersect line ln at m and n.

Project points b, c, and d to the plan of the side arm, and transfer dimensions t and u to intersect these lines, giving three points upon which to lay out a curve which will be the center line of the slot. Lay out these centers on one piece of stock, and, clamping the four pieces together, drill out at one time. The hole at e will be for a $\frac{5}{16}$ -inch rivet, and the holes drilled to form the slot at qwill be the same diameter as a No. 16 screw. These screws over which the slot slides should be round-head, No. 16 wire, and about $2\frac{1}{4}$ inches long.

Cross Rods. The rods v, Fig. 306, which connect the opposite sides are to be $\frac{5}{5}$ inch in diameter, and the ends are to be field to a

Fig. 306. Details of Parallel Motion Device

square, and a $\frac{15}{2}$ -inch hole drilled at a, Fig. 305, will be filed square to fit these squared ends. Two side arms are to be riveted together at e, Fig. 305, reversing the slots, as shown in Fig. 306, and the $\frac{5}{2}$ -inch rods riveted to one pair of side arms; the other pair will be riveted after passing the rods through the stripping plate and draw board.

Short pieces of flat iron, of the same section as the side arms, are furnished with a §-inch hole at center, and a hole near each end countersunk for a flat-head wood screw, as illustrated in Fig. 306.

Assembly. Assemble the device on the wooden plates. Fasten the bearing plates in the correct location, and, having the draw

board and stripping plate held tightly together, insert the roundhead screws in the slots. Try the lift of the draw board, Fig. 307, and, if not equal to $d+\frac{1}{8}$ inch, lengthen the slot to obtain this dimension. All parts should have three or four coats of a shellac finish before assembly. Fasten the pattern to the draw board with three

Fig. 307. Draw Plate Turned over and Pattern Drawn; Flask and Bottom Board Also Showa. A further Lift of Drawboard Removes Machine from Mold

or four wooden screws. The flask pins should be located to fit the flask-pin gage, as illustrated in Fig. 303. The mold board for the cope mold should have a 1-inch hole at its center to receive the devel of the cope core print and a hole for marking the location of the sprue.

Horn-Sprue Gate. The horn-sprue gate should be made of hard wood or metal and should be furnished by the pattern maker. The dimensions should be suggested by the molder, and the dimen-

sions of the flask used should be selected so as to provide room for this gate. The gate should be round in section, and gradually taper from the parting of the flask to the pattern. The inner and outer sides should be true circles so that it can be drawn out endwise. A steel pin is to be fitted in each end of the gate pattern and a hole drilled in the stripping plate and pattern to locate the gate. The sprue in the cope mold must be located so as to match the gate in the drag.

STRIPPING-PLATE HAND-RAMMED MOLDING MACHINE

Hand-Molding Conditions. Before taking up the design and construction of the parts required to adapt the patterns to machine

Fig. 308. Working Drawing of Holder Frame that Requires Side Draw

molding, the conditions presented by the hand-molded patterns may be briefly considered. The working drawing, without dimen-

182

sions, of a holder frame is illustrated in Fig. 308; and in Fig. 309 is a view of the iron-gated patterns. The cover is designed to pass

Fig. 309. Original Gated Patterns, Showing First Attempt to Increase Production. They Require Dry-Sand Core for Each Casting. With Machine-Mounted Patterns, Entire Mold Is Made in Green Sand

Fig. 310. Nowel or Drag Stripping-Plate Hand-Rammed Molding Machine

endwise onto the holder frame, as indicated in Fig. 308, the bevel on the inside of the lugs o being molded with a dry-sand core, and the round recesses in the holder also being molded with a dry-sand core. The least imperfection to these dry-sand cores means that considerable fitting has to be done to get the parts assembled. With

Fig. 311. Drag Machine with Pattern in Position to Make Mold

Fig. 312. End Elevation of Pattern Equipment for Reid Hand-Rammed Stripping-Plate Machine

the machine-molded castings, the castings and the hard-wood bearings are literally thrown together.

Molding Machine. In Fig. 310 is illustrated the drag machine, and in Fig. 311, the machine with the pattern in position for molding. An end view of the stripping plate, draw plate, and assembled mechanism of the drag machine is illustrated in Fig. 312, and Fig. 313 is a section through the center of one pattern. This machine is fitted to make four molds which are all gated to one sprue. The mechanism unit is duplicated for each pattern.

The proposition with this drag machine is to draw the pattern at an angle of about 30 degrees from the vertical, and therefore

Fig. 313. Section Elevation through One Pattern; Dotted Lines Show Position of Parts with Pattern Drawn

the pattern cannot be bolted directly to the draw plate a. To obtain space beneath the stripping plate to install the mechanism spacers are interposed between the top of the machine frame and the underside of the stripping plate, as shown at m and m. In Fig. 313 the pattern is illustrated in its raised position, and the dotted lines illustrate the position of the draw plate and levers when the pattern has been drawn.

Stripping Plate. A perspective sketch of the stripping plate is illustrated in Fig. 314, part of the casting having been broken away to illustrate the position of the holes through which the pattern is drawn, and Fig. 315 is a sketch of the pattern for the stripping

plate. Small blocks o_1 of cast iron or steel are to be fastened at each end of the depression after the machine planing is completed.

Fig. 314. Diagram of Stripping Plate. One End Broken to Show Holes through Which Pattern Is Drawn

Fig. 315. Pattern for Stripping Plate

Plate Pattern. The plate is made of narrow strips of stock, glued so as to reverse the heart side of adjoining pieces. It will not be necessary to spline these patterns, for only one casting is usually required and the pattern is generally molded as soon as it is completed.

Molding. What is to be the top of the casting is molded in the drag mold so as to be sure of obtaining a clear surface. Most

Fig. 316. Core Box for Core, Fig. 317

of the causes of imperfections in castings rise to the top of the mold while the metal is being poured, and thus, if there are gas or dirt

blowholes in a casting, they will be found in the cope side of the casting. The casting is parted where shown, and the cope part of the pattern should be located on the drag with two dowel pins.

Coring. The core for the cope shall be made in a skeleton core box. No sketch is shown of this core box, but its construction would be

of this core box, but its Fig. 317. Dry-Sand Core for Making Holes in Stripping Plates through Which Pattern Is Drawn

similar to the core box for the part g, illustrated in Fig. 318. Fig. 316 illustrates the dry-sand core used in the drag mold, and Fig. 317 the core box for the core. This sketch shows the box

partly assembled and cut away so as to illustrate the construction. When it is certain that the parts are accurately cut to the required dimensions, they should be nailed and glued. One end is fastened to one side of the box, and the opposite end to the other side. No dowel pins are required as the shoulder holds the sides in alignment. Produce a slight draft to the parts forming the holes p, and a filing finish of about $\frac{1}{34}$ inch should be allowed on the sides of these holes.

Fig. 318. Casting Pattern and Core Box for Part g, Fig. 312

Brackets. The sketches of the parts g and k, Figs. 318 and 319, should readily explain themselves. A dry-sand core is used to mold the part g, a sketch of the pattern and skeleton core box being given in Fig. 318. This was deemed necessary owing to the length of the dimension g_1 . At best, the pattern would be quite fragile. The pattern for the part k, Fig. 319, should be made without a core print.

The master pattern and core box for the part c, Fig. 320, which is the pattern for the drag machine, are illustrated in Figs. 321 and 322. When making the wood pattern, double shrink should be allowed, and a filing finish of not over $\frac{1}{32}$ inch should be added to all surfaces. The sketch of the core box shows a construction similar to that of those described in Part II, Pattern Making.

The round hole at the lower end of the casting is to be finished to slide easily over the stool.

Use of Stool. Whenever it becomes necessary to strip an internal surface of a pattern, as illustrated in the socket or housing for the hardwood bearing used in the holder frame, Fig. 308, some means must be provided to support the molding sand, and

Fig. 319. Sketch of Cast-Iron Part k, Fig. 312

this part of the equipment is called a *stool*. Illustrations of the stool for this pattern are shown in Figs. 312, 313, 323, and 324.

The top surface of these stools are made to the form of the hole or recess which it is desired to strip, and are usually yoked to the underside of the stripping plate. In this case, a projection cast to the underside of the stripping plate serves as a support for the stools. They are to be made of machine steel, and, together,

Fig. 320. Casting for Pattern c, Fig. 312

Fig. 321. Master Pattern for Part c

with the levers and links, Fig. 325, do not require a pattern, but accurate sketches or drawings, preferably full size, should be made by the pattern maker for these parts for the use of the metalpattern maker.

Owing to the expense of the stripping plate equipment, this method should not be employed unless some feature of the casting prohibits the use of the simpler methods. Use of Match Plate. A large part of this pattern which will be molded in the cope, has an abundance of draft, and as the other

parts are not over $\frac{1}{2}$ inch thick, a slight draft can be allowed to these parts, and a draft of fully 1 inch per foot can be allowed in the square hole. Therefore, it will be perfectly practical to mold

Fig. 322. Core Box for Master Pattern, Fig. 321

this side of the casting on a match plate, Fig. 326, and, while a pneumatic vibrator is shown, possibly it may not be necessary.

The vibrator is operated while the plate is being drawn or lifted from the cope mold, causing a very rapid vibration to the pattern and plate, and greatly facilitating the drawing of intricate patterns.

Mochine Steel Stools & Required

Fig. 324. Drawing of Steel Stool, Fig. 323

Fig. 325. Machine Steel Lever and Links

The iron plate should be finished on both sides, as the parting must match that made on the drag machine. The part q_1 is a

separate casting, and this must be machined to fit the recess q in the stripping plate.

Fig. 326. Match Plate for Cope Mold with Vibrator Attached

Fig. 327 illustrates the master pattern. Double shrink and a file finish must be allowed.

Gate. A pattern for the gate, Fig. 328, must be furnished, and is usually made of cast brass. The location of feeding into the

mold and its dimension should be suggested by the molder. It never should feed against a green-sand core, as the core would very likely be washed away.

The parts q_1, c_1 , and the

C C

Fig. 327. Master Pattern

gate pattern are attached to the plate with flat-head machine screws. Alignment. Of course the alignment of the patterns on the

cope and drag machines must be very exact to produce perfect castings, but this is the work of the metal-pattern maker. To avoid errors, there should always be a trial casting made and accepted before the outfit

Fig. 328. Master Pattern for Gate

is passed to the foundry ready for the commercial product. Use of Roll Back. Figs. 329 and 330 are illustrations of the cope and drag machines for molding the cover. The distinctive

feature of the pattern for the cover is the roll-back method of drawing the pattern on the cope machine, which is illustrated in section

Fig. 329. Cope and Drag Machines for Molding Cover

in Fig. 331. The pattern c is shown in position for molding and also after being drawn. The patterns cc are assembled on the pin P and mounted in the forged yoke or hanger H, which is bolted

Fig. 330. Cope and Drag Machines with Pattern in Position for Molding

to the underside of the stripping plate B. The heads of the set screws which are illustrated on the draw plate A press against the

192

patterns at E, raising the patterns to the desired height. Upon lowering the draw plate, this allows the coil springs which are

Fig. 331. Sections Showing Mechanism of Machine with Pattern in Place for Molding and __yith Pattern Drawn or Rolled Back

interposed between the pattern members and the stripping plate to force the pattern out of the mold with an oblique or roll-back motion.

Cope Pattern. The master pattern illustrated in Fig. 332 is constructed of three pieces of stock, nailed and glued together. As in the case of all master patterns, use the double-shrink rule and also add a filing finish allowance of about $\frac{1}{32}$ inch to such surfaces as form the pattern. Two

Fig. 332. Master Pattern

castings are required from this master pattern for each pattern mounted on the machine. Fig. 333 illustrates the forged yoke H_{e}

Cope Stripping Plate. A perspective view of the stripping plate for the cope machine is illustrated in Fig. 334. The angle and

Fig. 333. Forge Steel or Iron Pattern Hanger

dimensions of the recess J in the top are determined from the original drawing, Fig. 308, and from the location of the patterns on the machine. A finish allowance of $\frac{1}{8}$ inch should be added to the top surface

of the stripping plate, and cast-iron filler pieces riveted at the ends of the recess, as shown at K in Fig. 329. The core box for the

Fig. 334. Pattern for Cope Machine Stripping Plate

Fig. 335. Core Box for Cope Stripping Plate

shown in Fig. 335. Coring. The core

cope stripping plate is

prints must be accurately placed, and the length and width shall be slightly smaller than the finish sizes to allow for the accurate alignment of the metal patterns, and the cored hole should

be enlarged below the top surface of the stripping plate. This will lighten the labor of fitting these holes to the patterns. The small pieces of cast iron or steel, D, Fig. 331, are fastened to the top of the stripping plate with flat-head machine screws.

Drag Stripping Plate. Cope the parting to the top of the pattern, and a recess to match this is planed in the top of the drag

Fig. 336. Pattern for Drag Machine Stripping Plate

stripping plate, as shown by the dotted line L in Fig. 336. These features are also to be seen in Figs 329 and 330.

Stop-offs should be screwed to the underside of the strippingplate pattern, Fig. 334, as the pattern will be weakened by cutting

Fig. 337. Core Box for Stripping Plate

out the stock at J. This recess J can also be made with a drysand core if it is desired not to weaken the pattern as suggested above. Skeleton Core Box. The stripping plate for the drag machine is illustrated in Fig. 336, and the core box in Fig. 337. As this

construction is largely repetition, the cuts should explain themselves. This skeleton core box, however, has one new feature; it is made in three parts. After the core has been rammed, the end M is drawn, the ends of the

sides NN holding the core sand so that end M is stripped out of the core. The sides can then be removed.

This illustration clearly shows the method of enlarging the lower end of the holes which are cored in the stripping plate. The

Fig. 339. Pattern for Part F, Fig. 329

dimension Q shall be the height of the core print plus $\frac{3}{5}$ inch, and R shall be the total thickness of the pattern including the core print.

Drag Pattern. Fig. 338 shows a perspective sketch of the master pat-

tern for the nowel or drag machine. This pattern must be extended to reach through the stripping plate down to the draw plate. The feet marked uu shall have a metal-finish allowance on the underside, and the weight of the casting can be greatly reduced

Fig. 340. Master Pattern of Gate for Holder Frame Cover

by coring. The core print is to be made first and the other parts nailed and glued to it. Use great care to have all parts very accurate, keeping the dimensions slightly over size, for the exposed portions
will be file-finished. A simple skeleton core box will do for this core.

The part F, Fig. 339, must be finished to the same dimensions as the recess J on the cope machine. This piece is screwed to the center of the nowel stripping plate, as shown in Fig. 329.

Gate. The master pattern for the gate is shown in Fig. 340. This is a brass casting and is illustrated in Fig. 329 fastened to the top of part F. A steel pin, shown at W on the cope machine in Fig. 329, locates the sprue.

Advantages. These machines are in successful operation, the improvements over the hand-rammed castings being more castings per flask, doing away with the expense of making and setting the dry-sand cores, and the uniformity of the castings requiring less fitting.

GREEN-SAND CORING

Expanding Pattern

Characteristic Usage. The bearing-cap casting seen in Fig. 341 was first produced with a hand-molded pattern, using a heel core

Fig. 341. Sketch of Bearing-Cap Casting

to mold the square hole in the upright position shown at d. This heel core and the setting of it was an expense; there was always an unevenness at the surface of the casting caused by the heel of the core, which had to be ground smooth. To avoid these objectionable features, what is called an expanding pattern may be adopted.

Molding Process. The principal stages of the molding process will be considered to give a clear conception of the purposes of the several parts.

Fig. 342. Drag and Cope Machines in Position for Molding

Fig. 343. Pattern Expanded Ready to Be Drawn through the Stripping Plate

Drag Mold. Fig. 342 illustrates the cope and drag machine, with the patterns in position for molding. As the sand is rammed to cover the pattern c, the operator pinches the facing sand into

the hole d with thumb and forefinger. The handle h is then depressed, this motion opening or expanding pattern c, as illustrated in Fig. 343. The mold now has the dimensions required and a green-sand core that will form the square hole d. Lowering the draw plate a

Fig. 344. Same Machines as Fig. 342, with Patterns Drawn

draws the patterns c and c_1 through the stripping plate b, and the drag mold is completed. The pattern c_2 is not drawn through the stripping plate, as enough draft can be given to this part to allow the mold to be easily lifted, the flask pins guiding the mold until the pattern is clear.

Fig. 344 illustrates both machines with patterns drawn.

Fig. 345. End Elevation of Cope Machine

Cope Machine. Taking up the construction of the several parts, the cope machine will be fitted first. The stripping plate will be of standard dimensions, and it will be well to adopt several sizes and mount all patterns on these plates so as to avoid the ex-

pense of the numerous sizes of flasks required. The stock strippingplate machines are built with circular and rectangular frames. The rectangular frames usually are 12 inches, 14 inches, 16 inches, and 20

Fig. 346. Master Pattern for Cope Pattern c, Fig. 345

inches square, but it is possible to extend the stripping and draw plate so that a 12by 14-inch, 12- by 16-inch, and 12- by 20-inch flask can be used on a 12- by 12-inch machine. The machine for these patterns has a frame 14 inches by 14 inches, outside dimensions.

There are to be four patterns mounted, but, in describing the parts, only one

will be referred to, it being understood that the four patterns are connected together and operated by the same motion. A section of the cope-pattern c, and stripping and draw plates are

Fig. 347. Assembled View of Mechanism for Drag Machine

shown in Fig. 345. Core the holes in the stripping plate by the same method as used before. An illustration of the cope masterpattern c is shown in Fig. 346. That portion of the pattern above the dotted line is above the top of the stripping plate, and should have a file-finish allowance. The bottom of the bolting flange should have a finish allowance of $\frac{1}{16}$ inch.

Drag Machine. The illustration in Fig. 347 is a sketch of the assembled parts of the drag machine. The stripping and draw.

plates are broken away, and the frame of the machine is not shown. Spacers must be furnished for this machine, as shown at m in Fig. 311. The stripping plate is bolted to the outside frame and the draw plate to the draw frame of the machine. The pattern is made of four parts. A master pattern for a bronze casting of c_2 shall be made, and this part is to be riveted to the stripping plate. Part c_1 is bolted direct to the draw plate. Parts cc are supported by the stand qwhich in turn is bolted to the

Fig. 348. Drag Pattern c1, Fig. 347

draw plate *a*. The lower end of the right-hand pattern *c* is connected by a steel pin to the link j_{1} , not shown; the left-hand *c* is connected to the link *j* by a longer steel pin, which passes through a slot in link j_{1} , into a hole in link *j*.

Fig. 349. Master Pattern for Part c1, Fig. 348

Connecting the link j and j_1 by the arms l and l_1 to diametrically opposite points on the disk k transmits an opposing motion to links j and j_1 , moving the parts cc away from each other, pressing the

mold to the form desired, and leaving a green-sand core at dto form the square hole in the casting. The draw plate can then

Fig. 350. Core Box for Pattern, Fig. 349

be lowered, drawing and stripping the patterns cc and c_1 through the stripping plate. The links j and j_1 extend the length of the

Fig. 351. Nowel End Elevation of Drag Machine

machine, conecting with the four patterns. The recess o is stripped with a stool p, Figs. 351 and 357. These stools and the yoke q,

Figs. 347 and 356, upon which they are attached, are bolted to the underside of the stripping plate, as shown in Fig. 351.

Drag Pattern. The pattern c_1 , an illustration of which is shown in Fig. 348, will require a finish allowance of $\frac{1}{16}$ inch on the under-

Fig. 352. Expanding or Crush-Back Motion

side of the foot, and a file-finish allowance on that part which protrudes above the stripping plate. The master pattern with its core

Fig. 353. Master Pattern of Part c, Fig. 352

box is illustrated in Figs. 349 and 350. As before, the core-print stock should be dressed to dimension first, and that part of the pattern representing iron nailed and glued to it. Use the doubleshrink rule or allow double shrinkage when making these master

patterns, and allow planing, turning, and file finish where needed. The core box, one side of which is shown removed so as to show its construction, is intended to make two cores which when pasted. will make the core as used in the mold.

The surface on the pattern enclosed by the dotted line at rshall be shellacked to same color as the core prints, as the core

Fig. 354. Stand-Support for Pattern c. Fig. 353

cuts through at this point, and if it is not indicated in this manner the molder would be in doubt as to whether the core should or should not cut through. Mold-

Fig. 355. Bracket and Bearing for Operating Device

ers have been known to file the core to be sure of getting metal in a case like this, the reasoning being that if a hole is wanted it can be cut out easier than the hole could be filled in, should the core be allowed to cut through. The molder should not be left to surmise what is wanted. Always mark patterns by some under-

tern of Stool

stood method so that there will be no need of verbal instructions to the molder.

Expanding Motion. Fig. 351 is an end view of the nowel or drag mounting, and in Fig. 352 the layout of the patterns cc is illustrated. Make a full-size layout of this motion; the dimension v shall be such that when the pattern c is drawn it will not strike and

break down the green-sand core d. This dimension v+x must be slightly less than $\frac{w}{2}$, w being the dimension of the width of the pattern.

Fig. 353 illustrates the master pattern of the part c. Two castings from this pattern can be fitted together as shown in

Fig. 352. The length from the center to the lower end is optional, but the top of the stripping plate should be kept as low as possible. The operator can work

Fig. 358. Master Pattern of Gate

easier and mold the pattern quicker if he does not have to shovel the sand too high.

The parts g and n, illustrated in Figs. 354 and 355, and their object, as shown in Fig. 347, should explain all that is necessary. Their dimensions are fixed by the dimension requirements of the commercial casting.

Fig. 356 illustrates the stool yoke q. The parts y extend into the pattern c_1 , as shown in Fig. 351, and the stool p is attached as shown. The top of this stool, a sketch of which is shown in Fig. 357, is fitted to the recess o in the pattern c_1 , shown in Fig. 348, and is used to prevent the sand in this recess from following the pattern when the pattern is drawn; in other words, it acts in just the same manner as the stripping plate does with the outside of the pattern.

The sheet-metal cover over the expanding-motion device, shown in Fig. 342, is intended to prevent the molding sand getting into the bearings and causing excessive wear. The handle h will be made of machine steel, threaded on the machine end, and screwed into the periphery of the disk k, as shown in Fig. 347. This handle should be designed to be easily removed, while storing the machine, to prevent breakage.

Gate. Fig. 358 illustrates the master pattern for the gate pattern. This will be a bronze casting and is fastened to the cope machine. A steel pin should also be fitted to this gate pattern to locate the sprue.

Double-Draw Stripping-Plate Machine

Typical Feature. The feature of this arrangement used for molding the jaw clutch, Fig. 359, is that the pattern is used as a stripping plate for the hub and the clutch jaws. It was specified that there was to be no draft on these parts, and that the corners between the disk g and the jaws f must be very sharp and clean.

Construction. In Fig. 360 the right-hand section is taken midway between two jaws, and the left-hand section through the center of one of the jaws.

Stripping Plate. The stripping plate is constructed to the same dimensions as used for the other castings. As described, it is fitted for one casting mounted on a square frame machine, but a round

Fig. 359

machine will do as well. or two patterns can be fitted by extending the plates a and b. The pattern hole in the stripping plate is cored and machined to dimension, and the underside must be finished parallel to the top side for a space of about h inch outside the hole.

Disk Pattern. A Casting Molded on Double-Draw Stripping- shoulder is made on the Plate Machine outside of the disk pat-

tern q to act as a stop to prevent the pattern from being raised above the height desired. The dimension i should be such that pattern g will be held rigidly between the stripping plate and the draw plate when the latter is in a raised position.

Fig. 361 illustrates the master pattern for disk pattern q. The holes through which the jaw patterns f pass are designed to be made by the metal-pattern maker, the stock not being over $\frac{1}{2}$ inch thick. Allow a finish of $\frac{1}{16}$ inch to $\frac{1}{8}$ inch on all outside surfaces, but the inside is not to be machined.

Hub Pattern. The pattern for the hub e can be made of a casting or of machine steel, and is bolted to the draw plate, as shown in section in Fig. 360.

Jaw Pattern. Six castings will be required of the jaw pattern f. A sketch of the master pattern is shown in Fig. 362. A file finish is to be allowed to the upper end and a planing or milling finish of $\frac{1}{16}$ inch allowed to the underside of the foot. These parts are to be bolted to the draw plate.

Draw Rods. There are to be three bosses on the underside of the disk, illustrated at j in Fig. 361, and into tapped holes in these

Fig. 360. Section of Pattern, Stripping Plate, and Draw Plate for Casting, Fig. 359

bosses $\frac{1}{2}$ -inch soft steel rods are fitted, as shown at k in Fig. 360. These bosses are located so as to come between every other jaw pattern, and holes are to be drilled in the draw plate through which the steel draw rods k will pass.

Open springs are placed on the draw rods between the pattern g and the draw plate, and they should be capable of holding the pattern g in place until the hub e with the jaws f have been stripped, when the underside of the draw plate, upon striking the nuts on the

draw rods, draws the pattern g through the stripping plate. In raising the pattern the operation is reversed, the draw plate forcing

Fig. 361. Master Pattern of Disk

Fig. 362. Master Pattern of Clutch Jaws

the pattern g into the correct position at the end of its upward motion.

Cope Plate. The cope mold is made on a cope plate having only the cope core print, the locating pin for the sprue, and the flask pins.

Gate. The gate pattern will be similar to that used for the flange coupling, as is seen in Fig. 298.

Green-Sand Core Box

Suitability. Such castings as short lengths of pipe, and elbow and T-pipe fittings of reasonable diameter lend themselves readily to this method of molding. It would not be economy to equip for this method if a very few castings are required, or where the requirements would suggest the costly equipment for casting pipes on end. Like other methods of molding, it has its scope, and the pattern maker should not attempt to design an equipment for this work without first consulting with the master molder.

Pipe Pattern. The casting considered will be a short length of cast-iron pipe, 72 inches long, 6 inches inside diameter, and flanged at one end. The construction of the pattern will not be considered, as it is a parted pattern with a detachable flange similar to that considered before. In fact there is no difference in the pattern used with a dry-sand or with a green-sand core.

Green-Sand Core. Fig. 363 illustrates the iron core box, the halves being hinged together as shown at a. The arbor, Fig. 371,

Fig. 363. Iron Core Box for Green-Sand Core

Fig. 364. Core Box Closed

is placed in the drag half, the ends extending through the notched ends of the core box. Green sand is rammed in drag and cope and struck off level with the top of each half. The core box is closed

by lifting on all four handles like closing a book, print upward, then rolling over into position shown in Fig. 364. The upper half

Fig. 365. Pipe Core Set in Mold

of the core box can now be returned to its first position, leaving the cope half of the core resting on the drag itself. The complete

Fig. 366. Start of Core Box

core can then be drawn from the core box—lifting it by the arbor extensions—and placed directly in the mold. The flask ends should be notched to receive the arbor extensions, as illustrated in Fig. 365.

210

Core-Box Construction. Several methods of constructing the master pattern for the core box may be utilized. As only two castings are required—one for each half of the core box—the quickest

Fig. 367. Pattern Assembled on False Cope Ready for Ramming Cope Mold

method of constructing the pattern should be used, provided the results are accurate. A nailed and glued pattern using a green-sand core for molding the inside would produce the smoothest casting, Fig. 366. The pattern, however, would be very fragile, and a form

Fig. 368. Wooden Form

should be made to fit the inside to hold it in shape while ramming the drag mold.

Use of Form. The construction considered will be to furnish the molder with separate flanges and lagging, and assemble the parts on a wooden form, Fig. 367, or a dry-sand core can often be used in place of the wooden form. The form, Fig. 368, is constructed of thin strips of wood nailed to several semicircular heads shown at h; the length to be the inside length of the core box. The strips of lagging should be about $\frac{3}{2}$ inch thick; the edges need not be fitted together, but the diameter must be of the dimension required. The pieces h should be made $\frac{1}{2}$ inch over the half circle; that is, the center of the circle is $\frac{1}{2}$ inch in from the edge, as shown at i in Fig. 369. This $\frac{1}{2}$ inch is for a metal finish allowance on the face of each half, as the core box must close

Fig. 369. Ends, Flanges, and Hinge Lugs

accurately its entire length. Part b is the end flange, and c is a lug, shown in Figs. 367 and 369. The space between b and c is wide enough to allow the part d to turn easily. This form of hinge, having a double shear to the steel pin a, is very strong and much better than if only one lug were used on each half of the core box. The part e is the transverse flange, while f and d form the end of the cope half. Lagging is to be provided which should be about $\frac{1}{4}$ inch thick and $\frac{1}{4}$ inch wide. This is shown in Fig. 367 at k, and the part g, Figs. 365 and 367, is nailed to one of these strips of lagging, as shown in Fig. 369.

Fig. 367 illustrates the several parts of the pattern assembled on what is called a false cope. This cope flask is rammed and struck off level with the joint; the form j is placed in position; the flanges l and the lagging k are laid upon this form. The ends band the lugs c are located, and that part m of the hinge lugs is bedded into the false cope, Fig. 367. The drag mold can now be rammed and turned over, the false cope removed and the form j removed. The cope mold is now made and the pattern can be drawn.

Fig. 370. Core Box for Cast-Iron Handle

If it should be desired to mold the inside of the core-box casting with a dry-sand core, the form j may be omitted and the pattern parts assembled directly on this core.

Handles. Handles should be cast on each half of the box, as illustrated in Figs. 363 and 364. These handles are molded in a dry-sand core and rammed in the mold, as shown at n in Fig. 367. The core box for this handle is illustrated in Fig. 370. The length of the handle should be about $4\frac{1}{2}$ inches, the diameter about $1\frac{3}{3}$ inches, and the diameter of the hole $\frac{7}{8}$ inch. Allow about 1 inch of core sand on each side of the handle pattern and a draft of fully $\frac{1}{2}$ inch on each side. The height or depth will be $5\frac{1}{2}$ inches for a handle of these dimensions, making the top end of the core print flush with the top of the core box. A cylindrical stock core $\frac{1}{6}$ inch in diameter is pasted into this core, so as to cast a hollow handle.

Arbor. The skeleton frame used for reinforcing the drag half of the core is an iron casting. This is illustrated in Fig. 371. The pattern consists of a rectangular arbor r and of several patterns for the flanges s. These flanges should be notched to fit over the arbor, but need not be attached in any other way, the molder placing them in the position required; his judgment of the spacing would naturally be better than the pattern maker's. The end flanges should be placed at the extreme end of the core. The outside diameter o would be about $\frac{3}{4}$ inch less than the outside diameter

Fig. 371. Cast-Iron Arbor

of the core, and the thickness about $\frac{1}{4}$ inch. The outside circular edges should be chamfered to a thin edge, so as to prevent soft ramming under the flanges. The width q should be $\frac{1}{4}$ inch less than the half circle, as it is required to have the sand rammed over the top of the arbor. The arbor extensions at each end, however, shall be constructed to the center, so that the cope flask will rest upon these ends, preventing the arbor and core from lifting when the mold is poured.

HOLLOW ROLL CAST ON STEEL SHAFT Split-Pattern Method

Construction. In the first of the two methods of making the cast-iron roll, Fig. 372, to be considered, the steel shaft is placed

in the mold, and, having been spotted with a drill on the portions which are in the hubs, is practically bonded with the hubs.

Fig. 372. Section of Cast Roll, Four-Arm Spider at Each End and Steel Shaft Cast In

Fig. 373. Split Pattern for Cast-Iron Roll

Fig. 374. Core Box for Making Roll by First Method

Pattern. The split pattern illustrated in Fig. 373 is constructed of wide lagging nailed and glued to heads. The core prints are assembled as separate members and fastened to the body of the pattern with wood-screws. The pattern is to be assembled complete with dowel pins, and the halves are held together by metal lathe centers, such as considered on similar work in Part II, Pattern Making.

Core Box. The core box can be made of glued stock, as shown in Fig. 374, or a skeleton form of construction can be used if the roll is very large. The glued stock illustrated in this figure will probably stand up under the wear and tear of the foundry longer than the skeleton construction. Glue the bark side and the heart side of adjoining pieces of stock together, and the center pieces may be made of narrow stock, thus saving considerable material.

Fig. 375. Part of Core Box, Fig. 374

Cut the inside to a semicircle with a core-box plane. At g and ithe stock is mortised to receive the ends of the arm pattern which is illustrated in Fig. 375. Two patterns will be required of this part as shown in gg, Fig. 374. The dimension e, Fig. 375, should be slightly larger than the diameter of the steel shaft. The part j, Fig. 374. which fits into the recesses e

of the arm pattern is semicircular in section, and forms the recess in which the steel shaft is placed. The parts hhhh are patterns of the gate. They are not fastened to the arm pattern but are bedded in the top face of the core.

Operation. After ramming the core and bedding in the parts h and j, these parts together with the arm pattern are drawn, and the space is filled with molding sand. This molding sand prevents the core sand from settling when the core has been turned over onto its flat side. When pasting the halves together the steel shaft is placed in position.

The mold is cast on end, the sprues being connected to the gate h. The metal passes through the upper hub, then on into the lower hub and out through the arms, filling the rim; in this manner the steel shaft is brought to a very high temperature, which fuses the shaft with the hub castings and makes a very firm joint.

Stripping-Ring Method

Characteristics. The following description will show a second method for making the cast roll. This arrangement produces clean and accurate castings, the machine-finish allowance being $\frac{1}{6}$ inch. Fig. 376 illustrates the cheek flask *a* resting on and keyed to a castiron mold plate *d*. The open ring *b* on top of the flask is a stripping

ring which holds the molding sand in place while the pattern c is being drawn. The pattern in this case has been drawn about 6 inches, the power being supplied by a crane. Fig. 377 is a section view of the arrangement shown in Fig. 376. The mold plate d should either be bolted to a sunken plate to hold it down while the pattern is drawn, or bedded in concrete as was done in the equipment here shown.

Roll Pattern. The pattern is a hollow casting with four arms cast at each end, and finished all over, and no draft is to be allowed. The pattern construction will be the same as suggested for the first method of making this roll, but without the steel shaft.

Fig. 376. Pattern Being Drawn through Stripping Ring

Mold Plate. The mold-plate pattern is shown in Fig. 378. This illustration is upside down, and as only one casting is required, too much expense should not be put into its construction. The upper surface of the casting is to be finished and the recess for the dowel in the lower end of the pattern may be made by the machinist.

Stripping Ring. Fig. 379 illustrates the stripping ring b. A pattern for this part is to be furnished allowing finish on the under-

Fig. 378. Under Side of Pattern of Mold Plate

side and in the diameter of the hole. This ring should pass easily over the roll pattern, and, as soon as the pattern has been drawn, this ring is removed and the cheek is complete.

Fig. 379. Stripping Ring

Fig. 381. Cope Mold on Mold Plate

Flask Construction. Cheek. The pattern for the flask will be molded by striking a green-sand core, lagging this to obtain the

thickness, and molding the lower flange with a dry-sand core, and the upper flange with loose segment pattern bedded in. Where iron pulley-rim or similar patterns are available, they may be used

Fig. 382. Pattern for Centering Ring

for the flask pattern without much expense. Allow a metal finish on the outside face of the flanges, and the inside of the flask for a depth of about $\frac{3}{4}$ inch is to be turned true, but no finish allowance need be made on this surface.

Drag Flask. The drag flask will be of the same diameter as the cheek flask, but the depth need be only long enough to include the steel shaft. A hub is fitted at its center i, which will be machined to fit the finished end of the shaft. A shoulder is turned on the

Fig. 383. Core Box for Arm Mold

A should is tunned on the shaft, and the upper end of this hub is finished so as to locate the vertical height of the shaft. The drag flask is rammed on a cast-iron mold plate, as illustrated in Fig. 380. The flat disk dry-sand core is placed on this plate and rammed in, as illustrated in Figs. 380 and 384. For this core a wooden core box should be furnished.

Cope Flask. The cope flask, Fig. 381, is similar to the drag flask excepting the

ring k and the radial bars. This ring should be large enough to provide space for the two sprues l. The upper inside edge of this ring is finished to a bevel to fit the centering ring m, Fig. 384. A sketch of the pattern for this ring is shown in Fig. 382.

The mold plate j, illustrated in Fig. 381, can be used for both drag and cope molds.

Inside Core. Fig. 383 illustrates the wooden core box for the inside of the mold. The rings n are made of two layers of segment. glued and screwed together, and the walls of glued lagging firmly nailed and glued to the top and bottom rings. It should then be

Fig. 384. Section of Complete Mold

mounted on a faceplate and turned true on the inside and on the ends. A very slight draft—about $\frac{1}{16}$ inch—should be allowed on the inside, and the height of the box will be 12 inches. The print o, hub p, and arm q patterns are fastened to the bottom board r:

the ends of the arms centering the outside of the core box with the print o. This print o should be at least $\frac{1}{16}$ inch larger than the steel shaft used. Two cores with the arm mold are required, and a center core without the arm mold. The length of this core is varied to produce rolls of different lengths. A bottom board is furnished without the arm and hub patterns, and the length is struck off to the height desired.

Fig. 384 illustrates a section of the complete mold.

CONCLUSION

Resume. It may have been noticed that while great accuracy has been insisted upon, there have been no difficult problems of pattern making required in the adaptation of patterns to the molding machine.

Just as soon as the manufacturing requirements demand metal patterns mounted for machine molding, the bench work will be simplified.

The permanence of the master patterns is not a question, as they are usually molded soon after being completed, but these parts must be very accurately made.

There is plenty of opportunity for the display of mechanical ingenuity, but always consult the foundry experts regarding any new venture, for, as stated at the beginning, many patterns have been adapted to machine-molding that have proved to be failures when tried out in the foundry.

· •

A	PAGE
Allowances in construction of patterns	. 52
drawings, use of	. 61
molding practice, general	. 52
pulley dimensions, countershaft	. 95
Arbor in green-sand core box	. 214
Awls	. 34

в

Bearing-cap expanding pattern 1	97
Bearing-cap pattern, use of pattern plate with 1	66
Bearing pattern, flanged	76
Bevels	27
Bits	25
Block plane	16
Box cap, pattern for simple journal	55
Brace	24
Built-up patterns, construction of	84
hand wheel	90
pulley, countershaft	95
Pulley, large cored	06
pulley, sheave	84
pulley, standard	00
Bushing, pattern for	68

C

Centrolinead for bevel gear layout	148
Chisels	20
paring	21
skew	43
use of	21
Chuck pattern, screw	124
Chucks and faceplates, use of	41
Circular plane	17
Clamping process in pattern making	83
hand screws, use of	83
pressure regulation	84
Clamps	35
Clutch, expanding pattern for jaw	206
Coloring patterns	75
Columns, construction of	150
cores	151
follow boards	151
patterns	150

Construction of complicated patterns	
double-draw stripping-plate machine	
expanding pattern for green-sand machine coring	
green-sand core box	
hand-molded turbine guide ring	
hollow roll cast on steel shaft	214
machine-molding practice	222
pattern plate, use of	166
stripping draw-plate machine	171
stripping-plate for hand-rammed molding machine	182
Construction of simple patterns	67
built-up patterns.	84
clamping process	83
columns,	150
coring intricate	128
coring to obviate machining	1 ;
flat-back nattarns	111
fillate '	115
most wheels	130
gluing process	£1
one nices nettorns	67
precedure conditions of	67
simplified work gramples of	110
simplified work, examples of	76
Coning out	51
avlinder simple	
isympole on perferenced	
journal cap, periorated	
Come has a sector of an and	
form use of	
form, use of	
Complexe holder former	
Core box, noider-irame	
Core box, methods of ite	
Core box, skeleton	
Core boxes, turbine guide-1.	
Core-box-plane	
Core prints, standard	
better	
Dottom	
cover	
ary-sana	
09, 100, 100, 110, 121, 120, 124, 120, 102, 101, 100, 100, 100, 100, 100	
raceptate for economical machining	
green-sand	
Coupling mottors dance	171
Coupling pattern, nange	112
brank pattern, nat-back disk	111
Dosses, construction of	115
counterweight construction	110
(IIIII CODSTRUCTION	114

	pattern, flat-back disk (continued)	P	AGE
	!let		115
	m construction		114
	nk pattern, flat-back solid		111
13	ing-off tool		46
С.	nder pattern, engine		135
	core boxes		137
	steam chest	6,	138
Су	linder, pattern for plain hollow		52
Су	lindrical work, patterns for large		126

р

, D	
Dividers	- 30
Double-draw stripping-plate machine	206
Doweling split patterns	78
Draft in patterns	62
template for	63
variation of	63
Drafting and designing required, knowledge of	1
Drawings, use of	61
allowances for stock	62
construction conditions.	61
Dry-sand coring.	52
bushing, bearing 66	8 81
chuck, screw	124
lumns	151
inder, engine	137
indrical work large	196
"aceptate to obviste machining in	116
Transition and machining m.	189
	216
	210
101	102
	123
the second state of the se	100
· · · · · · · · · · · · · · · · · · ·	105
,	- 89
turbine case	-59
turbine guide ring.	155
valve, globe	131

ing	•	·																		
• • •	•	•																		
									E	1										

	pan west wattern, use of	197
1	bearing cap, example of	197
	cope machine in	199
З.	drag machine in	201
	molding process, machine	198

 \mathbf{F}

Caceplate, pattern for cored lathe	116
Faceplates, use of chucks and	41

DACE

ïles, wood	6
'iling and setting saw teeth'	7
'illets 11	5
putty 11	6
usage of 11.	5
wax and leather	6
wood 11	6
inish, allowance for	4
inishing process, pattern	1
coloring	5
final-finishing	6
sandpapering	5
shellacking7	1
langes, patterns for deep. 12-	1
lat-back patterns 11	1
leam of crosscut saw teeth	Э
ollow boards for thin patterns	1

G

Gears, patterns for bevel
arms, construction of 148
construction, built-up
rim, construction of 147
teeth, fitting of 148
Gear-wheel patterns
rim and arm construction
stripping draw-plate machine used with
teeth, machine-cut
teeth, patterned
tooth construction
Gluing process in pattern making
application of glue 83
glue, kinds of 81
nails, use of 81
preparation of glue
Gouges
front-bent
turning 42
Green-sand core box
arbor with 214
construction of 211
pipe pattern, for 208
suitability
use of 209
Green-sand coring
bearing cap using expanding pattern
jaw clutch using stripping plate 206
pipe fittings 208
ring type of
Grindstones 38

H PAGE Hammer.... 33 83 Hand screws, use of Holder frame, patterns for machine molding...... 182 Hollow plane..... 18 7 Hook of saw teeth..... J Jack plane..... 15Jointer and hand planing machine..... 48Jointer plane..... L Lathes and equipment..... 40chisel, skew..... 43 chucks and faceplates..... 41 cutting-off tool..... 46 gouge..... 42scraping tools.... 44

М

Lifting plate for pulley molds, use of

Machine-molding practice	4
production, adaptation to	4
uniformity, increased 16	5
Mallet	3
Marking gage	9
Master pattern construction	5
bearing cap, cope section of special	0
bearing cap crush back, special	3
bearing cap, drag section of special	1
hearing cap gate, special 20	ă
bearing cap stool special 20	4
core hox for nine green-sand	ĩ
geer wheel 13	9
holder frame, cope section of 10	1
holder frame, cope section of 10	e.
holder frame cover, drag section of	7
holder frame drag section of	6
holder frame, drag section of	1
holder-frame gate	
holder-frame roll back	3
jaw-clutch disk	6
jaw-clutch jaws 20	7
pulley rim, standard 10	0
Match plate in stripping-plate machine, use of 19	0
Material, ideal working	2
Metals, knowledge required of	1
Molding, general	2
coping-out for solid patterns 5	4

 $\mathbf{\tilde{5}}$

102

Molding, general (continued)	3	AGE
cores for hollow castings		52
dry-sand cores, use of		59
flask, use of	 	52
green-sand ring, use of	 	57
loose-piece patterns		59
split pattern	 	53
Molding, machine	 	164
stripping draw-plate	 	172
stripping-plate hand-rammed		185

0

Oilstones and slips	 							 			36
One-piece patterns								 			67
construction, typical	 							 			68
core box, methods of forming	 										70
coring, green-sand											67
finishing process	 										74
shaping pattern											70

P

Pattern making	1–222
construction, complicated pattern	
construction, simple pattern	. 67-152
requirements, practical	1–66
Pattern plate, use of	166
bearing-cap pattern, example of	166
making pattern plate	168
molding metal pattern and plate	169
Pine as pattern material, white	
Pipe-connection pattern, T	119
core box	121
end fastening	120
jointing	121
lathe mounting	120
Pipe-elbow double pattern	122
core box	123
Pipe pattern used with green-sand core	208
Pipe return-bend pattern	123
Plane, hand	12
block	16
circular	17
construction of iron	12
core-box type	18
grinding iron	14
jack	15
jointer	16
rabbet	17
round and hollow	18
router	

T	N	T	F	Y
٠	- 1	1		27

Plane, hand (continued)	PAGE
scrub	17
smooth	16
use of, proper	15
Planing machines	48
Pliers	35
Pulley pattern, countershaft	95
arms, construction of	95
construction for special size	95
coreprints	100
hub, use of loose	99
rim construction	97
Pulley pattern, large cored	106
arm core	106
flange core	110
hub-end core	108
molding method	106
molding process	111
rim strike	110
Pulley pattern, sheave	7,84
coring, dry-sand ring	89
coring, green-sand ring	7,84
master pattern, making	80
Pulley patterns, standard	100
arms	101
bube	100
lifting plate use of	103
ranning plate	102
rim master nattern	100
	100
Q	
Quantity production, patterns for	128
R	
Rabbet plane	17
Rapping plate, use of	103
allowanees in construction	50
drafting and designing	1
metals knowledge of	1
tool equipment	7
woodworking ability.	T
working medium	2
Roll back in stripping-plate machine, use of.	191
cope pattern	193
cope stripping plate	194
core box, skeleton	196
coring	194
drag pattern	196

~	-	-	1000	1000	100.00	
	- 1		1.1	1	- 84	
- 1	12.7				. ^	

Roll back in stripping-plate machine, use of (continued)	AGE
drag stripping plate	195
gate	197
Roll cast on shaft, hollow	214
split-pattern method for	214
stripping-ring method for	217
Round plane	18
Router plane	20
Rules, measuring	28

\mathbf{s}

Sandpapering	75
Saw, back	10
exercise in using	11
Saw, band	47
Saw, circular	46
Saw, compass	11
Saw, hand crosseut	8
filing	9
setting	10
teeth, shape of	8
Saw, hand rip	7
Saw, scroll	48
Scraping tools for turning	44
Screwdriver	34
Scrub plane	17
Shaping simple pattern, method of	70
Sheave-pulley pattern	7, 84
Shellacking	74
Shrinkage, allowance for	62
Shrinkage rule	-28
Smooth plane	16
Split patterns	- 88
hollow roll cast on shaft, for	214
making, method of	76
molding, general	53
Spokeshave	20
Square	26
carpenter's	27
try	26
Stool in stripping-plate machine, use of	205
Strike for cored-pulley rim	110
Stripping draw-plate machine, use of	171
assembling	180
deep-draw work, spur-gear	176
equipment for machine use, pattern,	172
flange-coupling, pattern for hand molding	171
parallel drawing device for	179
stripping plate and draw board	178
INDEX

	PAGE
Stripping-plate hand-rammed machine, use of	182
advantages	197
alignment of patterns	191
hand-molded patterns, conditions in	182
match plate, use of	190
molding machine	185
roll back, use of	191
stool, use of	189
stripping plate	185
Stripping-plate machine, use of double-draw	206
Stripping ring, use of	217
characteristics of	217
core for, inside	221
flask construction for	219

Т

Template for turbine vanes	155
Template, globe-valve	130
Templates, gear tooth	144
bevel	150
Tool equipment	7
abrading tools	36
bevels	27
boring, wood	24
calipers	31
chisels	20
gouges	23
hammer and mallet.	33
lathes	.40
marking surface	
nlaning, surfaces	18
planes hand	5 17
planes, hald	0, 17
rulas maneuring	00
souring machine	40
sawing inactinities	40
saws, nanu	0, 11
and reshours	34
spokesnave	20
squares	26
Transmers	49
Trammel	30
Try-squares	26
Turbine case, pattern for	59
I urbrine guide ring, patterns for hand molding	153
Dottom core	163
core box, use of	161
cover core	163
guide vanes	155
molding process	163
Valle corebox	157

7.	PAGE
alve, pattern for globe.	128
bonnet construction	133
branches, construction of	131
core, two-part	131
globe construction	128

W

Warping of wood	4
correction by reversing grain	5
Wheel pattern, hand	90
hubs, forming	94
rim, building 9	92
spider pattern, construction of	90
spokes, shaping	93
Woods used as pattern material	2
hard	3
pine, white	2
warping of	4
Woodworking, knowledge required of	1

v

