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PREFACE TO THE FIRST EDITION.

TT is not without apprehension that I give to the public my
elementary treatise upon the Mechanics of Engineering and

of the Construction of Machines. Although I can say to myself

that, in preparing this manual, I have gone to work with all pos-

sible care and attention, yet I fear that I have not been able to

satisfy the wishes of every one. The ideas, wishes and require-

ments of the public are so various, that it is not possible to do

so. Some may find the treatment of a particular subject too

detailed, others perhaps too short ; some will desire a more
scientific discussion of certain subjects, while others would prefer

one more popular. Many years of study, much experience in

teaching and very varied observations and experiments have led

me to adopt, as most suitable to the object in view, the method,

according to which this work has been arranged. My principal

efiort has been to obtain the greatest simphcity in enunciation

and demonstration, and to treat all the important laws, in their

practical applications, without the aid of the higher mathematics.

If we consider how many subjects a technical man must master in

order to accomplish any thing very important in his profession,

we must make it our business as teachers and authors for techni-

cal men to facihtate the thorough study of science by simplicity

of diction, by removing whatever may be unnecessary, and by em-
ploying the best known and most practicable methods. For this

reason I have entirely avoided the use of the Calculus in this

work. Although at the present time the opportunities for ac-

quiring a knowledge of it are no longer rare, yet it is an unde-

niable fact that, unless we are constantly making use of it, we
soon lose that facility of calculation, which is indispensable ; for

this reason so many able engineers can no longer employ the Cal-

i^
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cuius which they learned in their youth. As I do not agree with

those authors, who in popular treatises enunciate without proof

the more difficult laws, I have preferred to deduce or demon-
strate them in an elementary, although sometimes in a somewhat
roundabout, manner.

Formulas without proof will therefore seldom be found in this

work. We will assume that the reader has a general knowledge

of certain principles of natural philosophy and a thorough knowl-

edge of the elements of pure mathematics. My attention has

been especially directed to preserving the proper mean between

generalization and specialization. Although I appreciate the ad-

vantages of generahzation, yet it is my opinion that in this work,

as in all elementary treatises, too much generalization is to be

avoided. The simple is oftener met with in practice than the

complex. It is also undeniable that in considering the general

case we often fail to attain a more ]3rofound knowledge of the

special, one, and that it is often easier to deduce the complex from

the simple than the simple from the complex. The reader must

not expect to find in this work a treatise upon the construction

of machines, but only an introduction to or preparation for it.

Mechanics should bear the same relation to the construction of

machines that Descriptive Geometry does to Mechanical Drawing.

When the pupil has acquired sufficient knowledge of Mechanics

and of Descriptive Geometry, it appears better to combine the

course of Construction of Machines with that of Mechanical

Drawing.

It may be doubted whether it was advisable to divide my sub-

ject into two parts, theoretical and applied. If w^e remember that

this work is intended to give instruction upon all the mechanical

relations of the construction and of the theory of machines, the

advantage, or rather, the necessity, of such a division becomes

evident. In order to judge of a structure or of a machine, we

must have a knowledge of mechanical principles of a very varied

character, e.g., those of friction, strength, inertia, impact, efflux,

&c. ; the material for the mechanical study of a structure or of a

machine must, therefore, be gathered from almost all the divis-

ions of mechanics. Now, since it is better to study all the me-

chanical principles of a machine at once than to collect them from

aU the different parts of mechanics, the advantage of such a di-

vision is apparent.

Having practical application always in view, I have endeav-

ored, in preparing my work, to illustrate the principles laid down
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in it by examples taken from every-day life. I am justified in

asserting that this work contrasts favorably with any other of the

same character in the nnmber of appropriate examples, which are

solved in it. I also hope that the great number of carefully-pre-

pared figures will contribute to the object in view. My thanks

are due to the publishers for having given the book in all respects

the best appearance. Particular care has been taken to have the

calculations correct ;
generally every example has been calculated

three times, and not by the same person. It is, therefore, im-

probable that any gross errors will be found in them. In the ex-

amples, as in the formulas, I have employed the Prussian weights

and measures, as they are probably famiHar to the majority of my
readers. The printing (in this case so difficult) is open to little

complaint. The mistakes in copying, or of impression, which

have been observed, are noted at the end of the book,

I do not think that many additions to this list need be made.

An attentive examination of the illustrations will show that they

have been prepared with care. The larger illustrations, particu-

larly those representing bodies in three dimensions, are drawn

according to the method of Axonometric Projection, first treated by

me (see Polytechn. Mittheilungen Band I. Tubingen, 1845).

This method of drawing possesses all the advantages of Isometric

Projection, while in addition the pictures, which it furnishes, are

not only more beautiful in themselves, but more easily awaken in

us distinct conceptions of the objects represented. The drawings

in this work are made in such a way that the dimensions of the

width or dejoth appear but one-half as large as those of the height

and length of the same size. I cannot omit thanking Mr. Ernest

Eoting, student at the academy in Freiberg, whose revision has

essentially contributed to the accuracy of the work

It is necessary to inform the reader that he will find much
new matter, which is peculiar to the author. "Without stopping to

mention many small articles, which occur in almost every chapter,

I would call attention to the following comprehensive discussions :

A general and easy determination of the centre of gravity of plane

surfaces and of polyhedra, limited by plane surfaces, will be found

in paragraphs 107, 112, and 113 ; an approximate formula for the

catenary in paragraph 148 ; additional remarks upon the friction

of axles in paragraphs 167, 168, 169, 172, and 173. Important

additions to the theory of impact have been made, particularly

in paragraphs 277 and 278 ; for heretofore the impact of imper-

fectly elastic bodies has been too little considered, and that of a
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perfectly elastic with an imperfectly elastic body has not been

treated at all. Very important additions, and in some cases en-

tirely new laws, will be found in the chapter upon hydraulics, a

subject to which I have for a number of years devoted special

study. The laws of incomplete contraction, iirst observed by the

author, will be found for the first time in a manual of mechanics.

The author has also incorporated in it the principal results, so

important in practice, of his experiments upon the efflux of water

through obhque short pipes, elbows, curved and long pipes, etc.,

although the third number of his " Untersuchungen im Gebiete

der Mechanik und Hydraulik " has not yet appeared. The chap-

ter upon running water, upon hydrometry and upon the impact

of water contains some original matter. The theories of the re-

action of water discharging from a vessel and of the impact of

water, which are treated according to the principle of mechanical

effect, are original.

I cannot, however, conceal from the reader that, since the vol-

ume has been finished, I have wished that some few subjects had
been treated differently ; but I must add that as yet I have ob-

served no great imperfections. If at times the reader should

miss something, he is referred to the second volume, which will

supply both the accidental and the intentional omissions, as has

been noted in many places in the first volume.

The printing of the second volume will now go on without in-

terruption, so that we may expect the complete work to be in the

hands of the reader before the end of the year. The pocket-book,

the " Ingenieur," cited in the Mechanics, which contains a collec-

tion of formulas, rules and tables of arithmetic, geometry and
mechanics, will soon appear.

It will be a source of great pleasure and satisfaction to me, if

I have accomplished the purposes for which this work has been

undertaken, namely, to give to the practical man a useful coun-

sellor in questions of application, to the teacher of practical

mechanics a serviceable text-book for instruction, and to the stu-

dent of engineering a welcome aid in the study of mechanics.

JUIilUS WEISBACH.
Freiberg, March IWi, 1846.

I



PREFACE TO THE SECOND EDITION.

rpHE present (second) edition of the Mechanics of Engineering

and of the Construction of Machines has undergone no es-

sential alterations either in method or arrangement. The inter-

nal construction of the work has been changed in many places,

and its size has been considerably increased. The author has

also endeavored, as much as possible, to correct the errors and

omissions of the first edition. The great increase in size is

mainly due to three additions. The first consists of a condensed

Introduction to the Calculus, which has been made as popular as

possible, and has been prefixed to the main work. The object of

introducing it was to avoid too complicated and too artificial de-

monstrations by means of the lower mathematics, and also to

render the reader more independent in his study of mechanics,

and to place him upon a higher stand-point in this important

branch of science. By making use of the principles explained in

the Introduction, it was possible to discuss many subjects of great

practical importance, which previously we could not treat at all,

or, at least, only imperfectly with the aid of elementary algebra

and geometry. In order to avoid interruptions to those who
have not made themselves familiar with the Elements of the Cal-

culus, prefixed to the work, all the paragraphs, in which it is ap-

plied, are designated by a parenthesis
( ).

The second addition consists of a new chapter on Hydrostatics,

in which the molecular action of water is treated. Since a knowl-

edge of the molecular forces (capillarity) is of importance in ex-

periments and observations in hydraulics and pneumatics, the

author has thought it advisable to treat the fundamental princi-

ples of these forces in a separate chapter. Imally, a chapter has

been added to the work in the form of an appendix, which treats
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of oscillation and wave motion. The author found himself com-
pelled to do this in consequence of the importance to the engineer

of a more accurate knowledge of the theory of oscillation. The
great influence of vibration upon the working and durabihty of

machines is a subject to which too much attention cannot be
given. It is also to observations of oscillations that we owe the

latest determination of the modulus of elasticity, which is of such

importance in practice. I have mentioned in the Appendix the

magnetic force, principally because it is of great use to the engi-

neer in determining directions in mines, where the access to day-

light is not easy. The theory of water-waves, which closes the

volume, is a part of hydraulics ; its presence in this work requires,

therefore, no explanation. Unfortunately, it is far from complete.

The changes in the other parts of the work are the following :

the chapter upon elasticity and strength has been much extended

and altered, the subject of hydraulics has been treated more at

length, and some modifications in it have been made, in conse-

quence of the continued experiments of the author.

I trust that the present edition will be received with the same

favor as the last, by which the author was encouraged to continue

his preparation of the work.

JULIUS WEISBACH.
Freiberg, May loth, 1850.
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^T^HE third edition of the first volume of my Mechanics of En-

gineering and of the Construction of Machines, which I now
give to the pubhc, has,'compared with its predecessors, not only

been improved, but also augmented and comj)leted. The changes

are due principally to the advance of science, and in some cases

to the results of more recent investigations. "When not withheld

by some good reason, I have endeavored, so far as possible, to

satisfy the wishes which have been communicated to me from

different quarters in regard to the work. From the extraordi-

nary favor, with which it has been received both in and out of

Germany, on this as well as on the other side of the Atlantic, I

flatter myself that it has suited both in method and size the

greater portion of the public for whom it was intended, and my
efforts in preparing the new edition have been naturally directed to

removing any errors or omissions, that have been observed, and
to incorporating in it the latest experiments, treated in the same
manner and as concisely as possible. I am sorry to be obliged to

remark that the work has been subjected to unjust criticism.

Thus, E.G., Professor Wiebe, of Berlin, in a remark upon pages

245 and 246 of his work upon " die Lehre von der Befestigung

der Machinentheile," (Berlin, 1854), states that I have given

coefficients of torsion for square shafts in my Mechanics (first

edition), as well as in the "Ingenieur," 16 times gi-eater than

those given by Morin. The Professor has here committed an

oversight ; for in my formulas, as is expressly stated in both

works, the fourth power of the half length of the side occurs,

while the formulas of Morin and Wiebe, as well as those of my
second edition, contain the fourth power of the whole length of

the side of the cross-section. Now since 2* is equal to 16, the
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error observed by Professor Wiebe proceeds from a mistake on
his part.

I shall make no reply to the partial criticism contained in

GrunerCs Archiv der Mathematik, as I do not wish to enter upon
a useless controversy here. Besides, Professor Grunert has

already printed in his Archiv enough nonsense about Physics

and Practical Mechanics (as I can easily prove) to demonstrate

his unfitness for criticising works on those subjects.

It would have been easier for me to have given my book a

more scientific form ; but it would then have met with less favor,

as it is intended for practical men.

From another stand-point also the book can easily and with

equal injustice be found fault with. Any one, who has had some
practical experience, will have observed how little theory is made
use of, and how often it is put in the back-ground and looked

upon with disfavor by practical men. The fault of this is no
doubt due in great measure to that method of instruction, which

condemns the study of science for the sake of its applications.

This edition, which has been augmented principally by the

revision of the theory of elasticity and strength, and by the in-

troduction of the latest hydraulic experiments, excels its prede-

cessors not only in substance, but also in appearance, all the

illustrations being new. The printing of the second volume will

continue uninterruptedly.
^

JULIUS WEISBACH.
Fkeibebg, July, 1856.

I
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n^HE fourtli edition of my Mechanics of Engineering and of

the Construction of Machines has undergone no change eithet

in method or arrangement. As three large editions have been ex-

hausted in a comparatively short time, as two have been published

in the English language, one in England and one in North Amer-

ica, and as the work has been translated into Swedish, Pohsh, and

Russian, I may well hope that this manual has met the wishes and

needs of that great practical public for whom it is intended. I

have, therefore, in preparing this edition, endeavored simply to

remove any errors or omissions, which may have been observed,

and to introduce the results of the latest practically important

experiments, together with the newest developments of theory.

Thus, E.G., in the chapter upon friction I have included the results

of the latest experiments by Bochet, and the section upon elasti-

city and strength has been rewritten in accordance with the

present stand-point of science, in doing which I have made use of

the recent works of Lame, Rankine, Bresse, etc. The section

upon hydraulics has been augmented, improved and completed.

The later researches of the author are here discussed. I will men-
tion more particularly the experiments upon the efflux of water

under great and very great pressures, as well as upon the heights

of jets, those upon the efflux of air, and the comparative experi-

ments upon the impact of streams of air and water. The chapter

upon the efflux of air has been entirely rewritten, as the^ author is

of the opinion that the ordinary formulas for the efflux of air

imder high pressures do not represent the law of efflux. The
formulas obtained are very simple, since, without materially affect-

ing its accuracy, I have substituted in the well-known formula
for heat
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0,50 instead of the exponent 0,42, by whicli I obtain

The practical value of a formula does not depend upon its cor-

rectness even at extreme limits, but rather upon the fact that,

within given limits, it fui'nishes values which agree su:^ciently

well with the results of experiment.

Several new paragraphs, in which Phoronomics and Aerosta-

tics are treated with the aid of the Calculus, have been added. In

hydrauhcs the pressure of water flowing through pipes, on account

of its practical importance, has been treated separately in two new
paragraphs (§ 439 and § 440). In the chapter upon the force and

resistance of water I have treated the theory of the simple reaction

wheel, as well as its application as an instrument for proving the

theory of the impact and resistance of water. The more recent

gas and water meters are also discussed, since these instruments

are set in motion by the reaction of the issuing fluid, the intensity

of which can easily be determined by the foregoing theory.

Finally, the Appendix has been slightly augmented by the in-

troduction of the report of the recent experiments of Geb. Ober-

baurath Hagen upon waves of water.

^ ^ ^ ^ ^ :^ -:: ^': -A- -k * *

In answer to the criticism, which has been made in some

quarters, that a more scientific treatment of the subject, based

upon the Calculus, would have been more in accordance with the

object of the book, I would state that my book is intended for

the use of practical men, who often do not possess either the

requisite knowledge of the Calculus or sufficient facility in the use

of it. Having labored dui'ing upwards of thirty years as instructor

in a technical institution, during which time I have been engaged

in practical works of various kinds and have made many journeys

for the pui'pose of technical studies, I can confidently give an

opinion upon this subject.

As I consider my reputation as an author of much more

importance than any mere pecuniary advantage, it is always a

pleasure to me to find my " Mechanics " made use of in works of

a similar character ; but when writers avail themselves of it with-

out the slightest acknowledgment, I can only appeal to the judg-

ment of the public.
JULIUS ^Ti:iSBACH.

Fkeibekg, May, 1863.
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rpHE favor, Tvitli which both the English and American editions

^
of the Mechanics of Engineering and of the Construction of Ma-

chines were received, would sufficiently justify the appearance of a

new one, even if the original work had undergone no change. But

as the first two volumes of the last (fourth) G-erman edition contain

more tlian twice as much matter as those of the first, and since a

third volume of about fifteen hundred pages has been added, the

translator feels not only that the Avork may be considered a new

one, but also that, in offering it to the public, he is supplying a

real want. The text of this edition has been, to a great extent,

rewritten and rearranged, and the translation is entirely original.

Weisbach's Mechanics is now so well known, wherever that sci-

ence is taught, that any eulogy on our part would be superfluous.

A large number of t}Toographical errors, deserved in the German

edition, have been corrected with the approbation of the author,

who has also communicated to the translator some slight modifica-

tions ni the text. The work of translation was begun with the

author's approval, while the translator was a student of the Mining

Academy at Freiberg, but the work was delayed by his professional

engagements. He hopes that it will now appear without interrup-

tion.

At the suggestion of the author, an Appendix has been added

containing an account of the articles upon the subjects treated in

this volume, which have been published by him since the appear-

ance of the last German edition.
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All the tables, formulas, examples, etc., in which the Prussian

weights and measures occur, have been transformed so as to be ap-

plicable to the English system. Where the metrical system was

employed in the original work, it has been retained in the transla-

tion, as the meter is now much used both in England and America.

The " Ingenieur," which is so often quoted in this work, has,

unfortunately, not been translated into English, but all the refer-

ences to it have been preserved, as the work is a valuable one, even

to those who have little or no knowledge of German, and perhaps

an English edition of it may be published.

A list of errors and omissions observed in this volume will be

given in the succeeding one, and the translator will be glad to be

informed of any typographical errors.

He would call attention to the illustrations, which are printed

from electrotype copies of the wood-cuts prepared for the German

edition, and his thanks are due to the publisher and stereotypers

for the excellent appearance of the work.

ECKLEY B. COXE.
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THEOEETICAL MECHAIICS.





INTRODUCTION"
TO

THE CALCULUS

Akt. 1 . The dependence of a quantity y upon another quan-

tity X is expressed by a mathematical formula : e.g., ?/ = Zx^y or

y = a x''\ etc. AVe write y =f (x) or z — (j) (y) etc., and we call y a

function of x, and z a function of y. The symbols/ and 0, etc., in-

dicate in general that y is dependent upon x, or z upon y, but leave

the dependence of these quantities upon one another entirely un-

determined, and do not give the algebraical operation by which y
can be deduced from x, or z from y. A function y z=f(x) is an

indeterminate equation ; it gives an unlimited number of values for x

and y, which correspond to it. If one of them (x) is given, the other

(?/) is determined by the function, and if one of them is changed, the

other also undergoes a change. Therefore the indeterminate quan-

tities X and y are called Variables, or variable quantities ; and the

quantities which are given, or are to be regarded as given, and in-

dicate the operation by which y is to be deduced from x, are called

Constants, or constant quantities. That one of the variables

which can be chosen at pleasure is called tJie independent variable,

and the other, which is determined by means of a given operation

from the first, is called the dependent variable. \\iy=a a;'", a and

m are constants, x is the independent and y the dependent va-

riable.

The dependence of z upon two other quantities, x and ?/, is ex-



34 INTRODUCTION TO THE CALCULUS. [Akt. 2.

pressed by the equation z—f {x, y). In this case z is at the same
time a function of x and y, and we have here two independent

variables.

Akt. 3, Every dependence of a quantity y upon another quan-
tity a;, expressed by a function or formula y —f {x) can be repre-

sented by means of a curve, A P Q, Fig. 1 and Fig. 2.

Pig. 1

M N

The different vahies of the independent variable x answer to the

abscissas A M, A N, etc., and the different values of the dependent

variable to the ordinates MP, N Q, etc., of the curve. The co-or-

dinates (abscissas and ordinates) represent then the two variables

of the function.

The graphic representation of a function, or the referring of the

same to a curve, presents several advantages. It furnishes us in

the first place with a general view of the connexion between the

two variable quantities ; secondly, it replaces a table or summary of

every two values of the function belonging together ; and thirdly, it

affords us a knowledge of the different properties and relations of the

function. If with the radius CA = CB — r we describe a circle

AD B (Fig. 3), corresponding to the function y = |/ 2 r x — x'

where x and y indicate the co-ordinates A M,
MP, this curve affords us not only a general

view of the different values that the function

can assume, but also makes us acquainted

with other peculiarities of this function, for

the properties of the circle have also their

meaning in the function. We know, e.g.,

without farther research, that y becomes equal

to zero, not only when rr = but also when
x=2 r, and that ?/ is a maximum and = r when x = r.

Fig. 3.
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Fig. 4.

Akt. 3. The Laws of Nature can generally be expressed by

functions between two or more quantities, and are therefore in

most cases capable of a graphic representation.

(1) When a body falls freely in vacuo, we have for the ve-

locity y, which corresponds to the height of fall x, y ~ V % g x,

but this formula corresponds to the equation y — Vp x of the para-

bola, when the parameter {p) of the latter

is made equal to the double acceleration

^ (2 g) of gravity. We can therefore repre-

.-2 sent graphically the laws of the free fall

of a body by the parabola A P Q (Fig. 4),

whose parameter p = 2 g. The abscissas

A M, A N, of. this curve are the space

traversed by the body in its fall, and the

ordinates MP, and NQ, the corresponding velocities.

(2) li a is a certain volume of air under the pressure of one

atmosphere, we have according to Marriotte's Law, the volume of

the same mass of air under a pressure of x atmospheres, y —

and we have, for x=\, y = a ; for x = 2, y = -, tor x = 4=, y

of

a
4'

for x^W, y=^; fora;=100,«/= -~^, fora;= oo,y=0.

We see in this manner that the volume becomes smaller as the ten-

sion becomes greater, and that if the law of Marriotte were correct

for all tensions an infinitely great tension would correspond to an

infinitely small volume.

Further, for x — ^,we have y= 2a; for .t~^, we have y — 4:a;

« x = j^Q, " y--:=10a; " x=0, " y= cx:>a;

so that the smaller the tension, the greater the volume becomes

;

and if the tension is infinitely small the volume is infinitely

great.

The curve which corresponds to this law is drawn in Fig. 5.

A M, A N, are the tensions or abscissas x, MP, N Q, the corre-

sponding volumes or ordinates y. We see that this curve ap-

proaches gradually the axes A X and A Y without ever reaching

them.

(3) The dependence of the expansive force of saturated steam
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upon its temperature x can be expressed, at least within certain

limits, by the formula

and by experiment we have within certain limits a= Kb, b = 175,

and m—Q. If we put
m+xv

Fig. 6.

Fig. 5.

75 A M 100 N" 209

and assume the formula to be correct without limit, we obtain

(175\''-J = 1,000 atmosphere,

" ^ = 50°, y = (g|)' = 0,133

^^ x= 0%y = (^y = 0,006

- ^ :^ _75", y = (Ay = 0,000

(1
QiV"

^^j = 1,914

« a: =. 150°, y = (^||)" = 4,517

" a: = 200°, y = (^y|)' = 15,058

P Q, Fig. 6, presents to the -eye the corresponding curve. It

passes at a distance A = — 75 from the origin of co-ordinates
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A through the axis of abscissas and at a distance A 8= 0,00G

cuts the axis of ordinates ; an abscissa A M < 100 corresponds to

an ordinate ifP < 1, and an abscissa A N y 100 belongs to an

oixlinate iV§ > 1 ; and we can also see that not only y augments

as X increases to infinity, but also that the curve becomes steeper

and steeper as x becomes greater.

Art. 4. A function z=f (xy) with two independent varii:-

bles can be represented by means of a curved surface B CD, Fig.

7, in which the independent variables x and y are given by the

abscissas A M and ^ iV^ on the axes A X and A Y, and the de-

pendent vai'iable z by the ordinate P of a point F in the surface

ABC. If for a definite value of x we give different values to y, the

values of z deduced furnish us with the ordinates of the points of a

curve ^PP parallel to the co-ordinate plane YZj if on the contra-

ry for a given value ofy we take different values of x, we determine

the ordinates z of the points of a curve 6^P^ parallel to the co-or-

dinate plane XZ. We can consequently consider the whole curved

surface B CBas the union of a series of curves parallel to the co-or-

dinate planes. The law of Marriotte and Gay-Lussac z = — ^,

by means of which we can calculate the volume z of a mass of air

from the pressure x and the temperature y, is graphically repre-

sented by the curved surface CKP H, Fig. 8. A if is the pres-

Fig. 7. Fig. 8.

sure X, A Not MO the temperature y, and P the correspond-
ing volume z : the co-ordinates of the curve P GH give the vol-

umes for a temperature A N= y, and those of the right line K P
the volumes for the same pressure A M = x.
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Akt. 5. When we increase the independent variable of a func-
tion or the abscissa A3I=x (Fig. 9 and Fig. 10) of the correspond-

ing curve an infinitely small quantityM N, which we will in future
designate by d x, the corresponding dependent variable or ordinate

MP = y becomes NQ=y', being increased by an infinitely small

quantity EQ = JSTQ - MP, to be designated by d y. Both these

increments dx and dyoix and y are called the Differentials of the

Variables or Co-ordinates x and y, and our principal problem now
is to determine for the functions that most commonly occur the

differentials, or rather the ratio of the differentials of tlie varia-

bles X and y belonging together. If in the function y =f (x),

where x represents the abscissa A M, and y the ordinate 3fP, we

substitute, instead of x, x + dx = A M -h M]V= A JV, we obtain,

instead oiy,y + dy = 31P + RQ = NQ; therefore

y + dy=f{x + dx),

and subtracting the first value of y from it, the differential of the

variable y remains, i. e,

dy = df{x) =f{x + dx)-f{x)

Fig. 9. Fig. 10.

M N

This is the general rule for the determination of the differential of a

function, which when applied to different functions furnishes sev-

eral rules more or less general : e.g., if ?/ = ^^ we have

d y = {x -\- dxy — x^

(x + d xy = x"" + 2 X d X + d x"^

d y = 2 X d X + d x"" — {2 x -{- d x) d x ;

and more simply since dx, being infinitely small compared to 2 x,

disappears, or since 2 x \^ not sensibly changed by the addition

of d X, and the latter can therefore be disregarded,

d y — d {xy = 2 X dx.
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The formula ]j
— x^ corresponds to the contents of a square,

A B CD, Fig. 11, whose side is A B = A D = x^

' ^^' ^
^'

and we see from the figure that, by the addition to

the side of BM—D N= d x, the square is in-

creased by two rectangles B and D P =%xdxy
and by a square {d x'), so that by an infinitely

small increase d x of x the square y = x^ is in-

creased by the difierential quantity 2xdx.
11^ Art. 6. The right line, TF Q, Fig. 9 and

Fig. 10, passing through two points P. and Q of
the curve, which are at an infinitely small distance from each other,

is called the Tangent to this curve, and determines the direction

of the curve between these two points. The direction of the tan-

gent is given by the angle P TM = a at which the axes of abscis-

sas ^ X is cut by the line. When the curve is concave, as A P Qy

Fig. 9, the tangent lies beyond the curve and the axis of abscissas

;

but when it is convex, as ^ P ft Fig. 10, the line lies between the

curve and the axis of abscissas.

In the infinitely small right-angled triangle P Q R (Fig. 9 and

Fig. 10), with the base P R = dx, and the altitude R Q = dy, the

angle Q P R is equal to the tangential angle P TM=a, and we

have ^ ^ T^ T^ Q Rtang.QPR^^,

whence , dy
tang, a = ^^;

therefore the ratio or quotient of the two differentials dy and dx
gives the trigonometrical tangent of the tangential angle ; e.g., for

the parabola whose equation is y'^=p x we have, putting y''=px=z,

dz =: (y + dijY -2f = y--^2ydy-hdy'-f = 2ydy + dy\

or as dy' vanishes before 2ydy, or what is the same thing, dy
before 2y,

dz=.1ydy,
and also

dz~p{x-{-dx)—px,

therefore 2 y dy = pdx, whence for the tangential angle of the

parabola we have

tana, a = —^ ~ ^ — Jl— — i^ dx 2y 2xy 2x



40 INTRODUCTION TO THE CALCULUS. [Abt. 7.

The definite portion P T of the tangent between the point of

tangency P and the point T where it cuts the axes of abscissas

Fig. 13. Fig. 13.

M N

is generally calle'd the Tangent, and the projection T M of the

same upon the axes of abscissas the Sub-tangent ; hence we have,

suUang, = P Mcot. PTM
dx

2 X
E,G., for the parabola, suUang. — y— = 2 a;.

The subtangent is therefore equal to the double abscissa, and

from it the position of the tangent for any point P of the para-

bola is easily found.

For the curved surface BCD, Fig. 7, the angles of inclina-

tion a and {i of the tangents P T and P f7 at a point P are

determined by the formulas

:

,
d z , ^ dz

tang, a = -=— tang. [3 = ~—
ax ^^ y

The plane P T U passing through P T and P U is the tan-

gent-plane of the curved surface.

Art. 7. For a function y = a + mf {x) we have

dy=\a-\- mf (x + dx)] — [a -{- mf (x)]
;

= a — a + 771f {x + dx) — mf (x

= m[f{x + dx)-f{x)];
i. e.

I.) • d[a + mf (x)'] = mdf (x),

E.Q.,d (5 + 3x') = 3 [(cc + dx)' —x'] = 3 . 2xdx = 6xdx,

In like manner

:

(? (4 - I x'), = -id (x)' = -i [(x + dxf - x']

= -\ (a:' + 3 x" dx + Zxdx" + dx' - a;')

= — \ .'^x'' dx= — ^x^ dx.
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Hence we can establish the following important rule : The con-

stant member {a, 5) of a function disappears by differentiation, and

the constant factors remain unchanged.

The correctness of this rule can be graphically represented.

For the curve A P Q, Fig. 14, whose co-ordinates in one case are

Fig. 14 Fig. 15.

Ml Ni
A
^
^

If

A M= X and MP = ?/ =/ (x), and in the other A^ Mi = x ^nd
MiP = a-hy = a-\- f{x), we have P R — d x and R Q = d y ~
df ix) and also = f? {a -[- y) = d [a -h f (x)]; and for the curves

A Pi Qi and A P Q, Fig. 15, whose corresponding ordinates M P^

and M P as well as N ft and jSf Q have a certain relation to one

another, the relation between the differentials Ri ft = JY Qi —
MPi and RQ = NQ — MPi^ the same ; for if we put MPi = m .

ifP and iV^ ft = m . JSTQ, it follows that RiQi = NQi- MPi = m.
{NQ -MP) = m . Q R.

^. e. d \_mf {x)'\ = m df {x).

If y = tc + V, or the sum of two variables ii, and f, we have

dy = u + du -\- V + dv — {u + v), i. e., according to Art. 5.

II.) . . . (^ (?^ + f) = f??i + fZt?, and in like manner,

d[f{x) + cp{x)-\ = df{x) + dcp(x).

The differential of the sum of several functions is then equal

to the sum of the differentials of the separate function ; e.g.

d{2x + Zx'' -},x'):=^dx + Q xdx -^x''dx = (24-6rc - I x^) dx.

The correctness of this formula can also be made evident by the

consideration of the curve A P Q, Fig. 15. If M P =f (x) and
P Pi = (p (x) we have

31Pi z=y=f(x) +0 (x) and

dy = RiQi = RiS+ SQi^RQ + SQi = df{x) + d (}^(x);
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for Pi ^S' can be drawn parallel to P Q, and therefore we can put

RjS=^RQandi Q 8 ^ P P,.

Akt. 8 . If y =^u V or the product of two yariables, e.g. the

contents of the rectangle AB CD, Fig. 16, with the variable sides

AB — u and B C= v, we have

dy — {u -{- du) (v + dv) — uv = uv -{• udv + vdu + dudv—uv,
=:udv + vdui-dudv = udv-h{v + dv) du.

But in V -{ dv, dv is infinitely small com-
pared to V, and we can put

V }- dv = V, and (v + dv) du = vdu,
and also

udv 4- (v + dv)du = udv + vdu,

"B^i SO that

in.) . . . d{uv) =: udv -\- vdu,

it follows therefore that

d[f{x).<t>{x)]=f{x)dc}^{x) + cp(x)df{x).

,The difierential of the product of two variables is then equal to

the sum of the products of each variable by the differential of the

other.

When the sides of the rectangle A B CD are increased by

BM—du and D = dv'\i% contents y = A B x AD = uvis aug-

mented by the rectangles C = udv and CM = v du and C P
— dudv, the latter, being infinitely small, compared with the oth-

ers, disappears ; the differential of this surface is only equal to the

sum udv +vdu of the contents of the two rectangles C and CM,
In conformity with this rule we have for y = x (Sx'' + 1)

:

dy = xd{Sx' + 1) -\-(Sx' + l)dx = Sxd{x') -\-{dx' + 1) dx
=z3x . 2xdx + Sx"" dx -h dx= (9a;' + 1) dx.

Further, if w be a third variable factor, we have

d (uvw) — ud(v w) -h V w du,

or since d {v to) — v d w -\- w d v,

d {uvio)=uv dio + utv dv + vivdu, and in like manner

d {u V IV z)— uv IV d z -\-u v z d w~\-u iv z d v -^ v tv z d u

;

if w=v=tv=z, it follows that d (u*) =4 u' d u, and in general

IV.) . . . d {x"')=7n x^'^ dx, if m is a positive integer, e.g.

d{x')^nx'dx, dix'=6x' dx.

If y = x~"\ m being again a positive integer, we have also

?/ a:'" = 1 and d (y x"^) — 0, %. e.

y d (a;'") + x'" dy — 0, and therefore

ydix'") x-'"mx'^-'dx ^, ,

du — — ^—^—^ :== = — m a:"*^' dx,
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or, if we put — m = n,

d{af) = nx'^~^ dx.

The Rule IV. applies also to powers, whose exponents are neg-

ative whole numbers, as e.g.,

d(x~^) = — 3x~* dx= T-, and
^ ' X*

. ^(3^' + l)- = -2{Sx^ + l)-^d(Sx^) = -1|^.
1 m

If in ?/ = a;", "^ is a fraction whose denominator n and whose

numerators are integers, we have also «/" =a;'"and d {!if^=d(xl^\ le.,

n y'^~^ dy — mx^"^ dx, therefore

, mx'^~^dx m x'^'^dx m I!_i,dy = —.— = = — Xn dx.

TYl

If we put— = pAt follows that^
7i ^

dy — d{x^) —'px^^ dx, which agrees with Rule IV., which

can now he considered as general.

Also d {u^') = p u^~^ d u, when u denotes any function de-

pendent upon X.

Hence we have, E.G., d{V x^)=:^d(x^)=^x^ dx=^ Vx^d x,

d V 2 r x—x''=d Vli=d (u^)=^ u~^ d u

__ I d{2 rx — x"") __ 2 rdx— 2xdx _ (r — x)dx
«*^ ^ V^ V2 rx-^'

In order to find the differential of a quotient ?/ = -, we put u =

V y, whence du = vdy-\-ydv, and

dy= ^^-ydv
dii dv

^•) AD
V V

vdii—udv

, I.E.,

V

According to this Rule, e.g.,

(x'-l\ _ (x + 2)d{x' - 1) - (x'-l)d{x + 2)

U + 2/ {x+2y

(X

_(x + 2) . 2xdx- {x' - l),dx _
(
x' + 4a; + 1 \ ,

+ 2)* V {x-h2y r'
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We have also

:

8dx

Art. 9. Tlie function y = x^ is the most important in the

whole analysis, for we meet it in all researches. When we give the

exponent 7i all possible yalues, positive and negative, whole and

fractional, etc., it furnishes the different kinds of curves, which are

represented in Fig. 17. A is here the point of origin of the co-ordi-

nates,XX the axis of abscissas, and Y Y that of the ordinates.

If on both sides of the co-ordinate axes at the distances a; = =t 1

and ?/ = ± 1 from the point A we draw the parallels Xi Xi , X. Xo,

J^i JTi , J% Fo to the axes, and join the points Pi , Pa > Ps ? and P4

,

where they cut each other, by means of the diagonals Z Z, Z^ Z^, we
obtain a diagram which contains all the curves, given by the equa-

tion ij — X". For every point on the axis of abscissasXX we have

t/ = 0, and for every point on the axis of ordinates Y Y, x = 0;

and for the points in the axes Xi Xi and Xg Xo
, y = =t 1, and

for the points in the axes Fj Y^ and Y^ Y., x= ±1.
If in the equation c/ = rj" we put x = 1, we obttiin for all

possible values of 7i, y — 1, and for certain values of 72, also

y = — 1 ; consequently all the curves belonging to the equa-

tion y — x^ pass through the point Pi, w^hose co-ordinates are

A M =\ and ^ X = 1. If we take 7^ = 1 we have y=^x and we

obtain the right line Z A Z, which is eqnally inclined to the two

axesXX and Y Y, and which rises on one side of A at an angle

of 45° I J ), and on the other side dips at the same angle. On the

contrary, for y = — x we obtain the right hne Zy A Zy which dips

on one side of A at an angle of 45°, and rises on the other side at

, the same angle.

'If, however, ny 1, y = x'' becomes smaller for x < 1, and for

X y 1 greater, than x, and when n <Cl,y= x" is greater for x < 1

and smaller for c > 1 than x. The first case (71 > 1) corresponds

to convex curves, which run in the beginning under, and from P,

over the right line (ZA Z), and the second case {n < 1) to concave

curves, where the reverse takes place.

When, in the first case, we take n smaller and smaller until at

last it disappears, or becomes equal to zero, the ordinates approach
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the constant value y = x^ = 1 and the corresponding curve ap-

proaches more and more to the broken line A N Pj X^ ; if, on the

contrary, in the second case, 7i becomes greater and greater, the

values of the ordinates approach the limit y = x^ = xh = oo , and

Fig. 17.

those of the abscissas, on the contrary, approach the value x=y^=l,
and the corresponding curve approximates more and more to the

broken line A M Pi Yi.

If we take n= — 1, whence y = x~^ = -, for x = 0, we have y

= 00 , and for a; = co
, y =z and we obtain curve, which has been

discussed in Art. 3, and drawn in Fig. 5 (1 Pi); it approaches

on one side the axes of ordinates, and on the other the axes of ab-

scissas without ever reaching them.

If the exponent (—n) of the function y = x~^ =-^ is a proper
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fraction, for x < 1, we have y <-, and on the contrary for xyi,

«/ >-, and if this exponent is greater than unity, we haye on the con-
X

trary for x <^ 1, y y -, and for ic > 1, «/ < -. The curve corre-
X ' X

spending to y = x""-, according as n is greater or smaller than unity,

runs in the beginning below or above, and from P^ above or below,

the curve y = x~^ = -. While those curves, which coiTespond
X

to the positive values of n, are placed in the beginning below,

and from P^ on above, the right line Xi Xj, the curves of the nega-

tive exponents {— n) run first above, and from Pj on below, Xx X^.

For the former curves we have, for y =z 0, x ^= 0, and for x = oo,

y — CO , and for the latter, for x = 0, y =: oo
^ and for x = cc,

y = 0. While the former diverge more and more from the co-or-

dinate axes XX and Y Y, the farther we follow them from the

origin A^^ the latter approach more and more on one side the axis

X X, and on the other axis Y Y, without ever reaching them.

The last system of curves approach nearer and nearer the

broken line Y JSf P^ X^ or the broken line Yi Pi if Xas the expo-

nent approaches nearer and nearer the limit ?^ = or ^^ = oo.

If in ?/ = ic*™,m is an entire uneven number (1, 3, 5, 7 . . .), y
,and X have the same sign. Positive values of x correspond to positive

values of y, and negative values of x to negative values of y. If on

the contrary m is an entire even number (2, 4, 6, etc.), y becomes

positive for all values of x, positive or negative. Therefore the

curves in the first case, as e.g., (3 P^ A P^ 3) or (IPi 1, 1 P3 1),

run on one side of the axis of ordinates above, and on the other side

below, the axis of abscissas X A X; on the contrary the curves in

the second case, as e.g., (2 Pi A P4 2) or (2 Pi 2, 2 P4 2), are placed

above the axis of abscissas only, and are contained in the first and

fourth quadrants ; the former corresponds for /?i = ± go to the limit-

ing lines F, MA M^ Y\ and X J/ F,, Xifi F^, the latter on the

contrary to the limiting hues F, M A J/i F, and X M Fi

XMY,.
1

If we have y — x^ % n being an entire uneven number, y and

x have the same signs, and if n is an entire even number, every

positive value of x give^ two equal values for y, one of which
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is positive and the other negative, and on the contrary for every

negative value of x, y is imaginary or impossible. The curves,

as E.G. (l Pi A P3 I),
which correspond to the first case, are found

only in the first and third quadrants, and the curves of the second

case, as e.g. (1 P, A P^ V), only in the first and second quad-

rants: the former become for m = 00 the limiting lines X^ JV

A JV"i X2 and Xj iV^ Y, X2 iVi Y, and the latter the limiting lines

X^ NA N, X, and X, N Y, X, N, Y

Since y = x^" involves x = y^", it follows, that the latter sys-

( --\
tem of curves \^ = x ") differs from the former {y = x"^"') in its

position only, and that by causing them to revolve, the curves of

one system may be made to coincide with those of the other.

Since y = x" \x"l = {x")" we can always give from what

has gone before the general course of a curve, e.g., the curve

for

y = xi = (xi)^ =
(J/^y

has, for both positive and negative values of x, positive ordinates

;

on the contrary, the curve for

1, = xi = (xi)' = (/xj

has, for positive values of x only, real ordinates, and they are equal

in magnitude, but with opposite signs. Further, for the curve

Xi ' '
"'

{;q
y and x have the same sign, since neither the fifth root nor the

cube causes a change of sign.

Finally, the curves, which correspond to the equation y =
m m

~x"y differ from those of the equation y = x" only by their reversed

position in regard to the axis of al^scissas X X, and they form the

symmetrical halves of a complete curve.

Art. ho. From the important formula d [of) = n rr"~^ d x^q
obtain the formula for the tangential angle of the corresponding

curves represented in Fig. 18. It is

tang, a = ^ ~ n af~*,
Cb X
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and therefore we have the subtangent of these curves

~ ^ dy ~ n c(f'~^
~~

n
Hence, for the so-called parabola of Keil, the equation of which

is a y^ = x"' or y = V —, we have

tang.
1 d(xi) 1

, ./ X

i/a d X Va 2

and the subtangent = 'ix.

a^
Farther, for the curve already discussed y =z ~ = a^ x~\

(IT
o d (x-') a'

tang, a — a^ —\
—- — ^

—
dx x^

X
and the subtangent = —- ~ — x. (See Fig. 5.)

Fig. 18.
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Consequently, we have for x = 0, tang, a — — co and a — 90°,

for X — a, tang, a = — 1 and a ^ISS"*

and for a; = co, tang, a = and a = O'', etc.

Art. 1 1. When a right line A 0, Fig. 19, cuts the axis of ab-

scissas at an angle A JC = a, and is at a distance CK = 7i from

the origin of co-ordinates C, the equation between the co-ordinates

CM — N P = X and C N = M P = y oi 2i. point in the same is

y COS. a — X sin. a =z n, since n = M R — M L, M R — y cos. a

and M L ~ x sin. a.

n
', therefore we have n--For X = 0, y becomes C B = h

COS. a'

b COS. a, and y cos. a — x sin. a = b. cos. a or

y — b + X tang. a.

Generally the lines C A and C B, which measure the distances

from the points where the line cuts

the co-ordinate axes CX and C Y
to the origin of co-ordinates, are

called the imranieters of the Hne,

and are designated by the letters a

and b. According to the figure

C A = — a, therefore

CB 5

the straight line becomes

tang. ^ = -^rj

and consequently the equation of

y = b
b ^

, y- a;, or - + T
a a b

1. (See Ingenieur, page 1 64.

)

When a curve approaches more and more a line, which is sit-

uated at a finite distance from the origin of co-ordinates, withoijt

ever attaining it, the line is called the Asymptote of the

Curve.

The asymptote can be considered as the tangent to a j)oint

of the curve situated at an mfinite distance. Its angle of inclina-

tion to the axifi of abscissas can be determined bv

tang, a
_d y
~Ix'

and its distance n from the origin of co-ordinates by the equation

n = y cos. a — X sin. a = (y — x tang, a) cos. a

y — X ta7ig. a

Vl + {tang, af (»-4lh/'M3
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y cotg. a — X
as well as by the formula n=^{y cotg. a—x) sin. a

VI + {cotg. a)'-

dx
^'^y-^y-y '\a,>

(dxV

when we substitute x and ?/ = oo in them.

In order that a tangent to a point infinitely distant can be an

asymptote, it is necessary, that for x or y = co, y — x tang, a or

y COS. a — x shall not become infinitely great.

For a curve whose equation is ^ = ic"""

tang, a = ^ and y — x tang, a = x

X"

m m 4- 1
i

—

tn I __

CC" X"^

and also y cotg. a — x
X

Xm (m + 1) —, thereforem
1) for X = CO, y = 0, tang, a = 0, y — x, tang, a = and n = 0,

and 2) for ^ = oo, a; = 0, tang, a = co, y cotg. — x = and n = 0.

The axis of abscissas XX corresponds to the conditions tang, a

= 00 and n = Q, the axis of ordinates J^ I^ to the conditions

tang, a = and n = 0', therefore these axes are the asymptotes

of the curve, corresponding to the equation y = x""". (Compare

the curves 1 P,l, 2 F,2, and ^ Pi S" in Fig. 18, page 48.)

Akt. is. The equation of an ellipse A D A^ Di, Fig. 20, can

_ be deduced from the equation

x' + y\ = a"

of the circle A B Ai B^, whose ra-

dius isCA = CB=CF = a

and whose co-ordinates are CM
= X and M P — yx, when we
consider, that the ordinate M Q
.— y of the ellipse is to the ordi-

nate M P = y^ of the circle, as the

lesser semi-axis C D = b of the el-

lipse is to the greater semi-axis,

which is equal to the radius of the

circle C B = a. We have then

^ = , whence Vi = v V and x^
a ^ h

^
2/1

f = a^ I.E.
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^ + -|j = 1, tlie equation of the ellipse.

If we substitute in tliis equation for + h\ — b\ wc obtain the

x^ if
equation —^ P = 1?

which is that of the hyperbola formed by the two branches P A Q
and P, A, ft, Fig. 21.

When in the formula

y ^£4/^^^^

deduced from the latter equation we take x infinitely great, a' dis-

appears before x', and we have

I ,-- hx
, ,

11 =^ - V X' — ± — — ±x tana, a,
^ a a

the equation of two right lines C V and C V passing through the

Origin of co-ordinates C. Since the ordmates

± - a: = - |/^ and - V~;^^^'
a a a

tend to become equal as x becomes greater, it follows that the right

lines C U and C V are the asymptotes of the Hyperlola.

If we take G A — a, the perpendicular A B — \- h and

AD— — ^, we can determine the two asymptotes; for the tan-

gent of the angle ± a, formed by the asymptotes with the axis of

abscissas, is

tang. A C B — 7^-^, i.e. tang, a = -, and
o ^ a

in like manner
AD . . h

tang. A CD =
a A I.E. tang. (— a) = .

If we take the asymptotes U U and F F as axes of co-ordi-
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nates, and put the abscissa or co-ordinate CN in the direction of

the one axis = u, and the ordinate or co-ordinate NP in the di-

rection of the other = t', we have, since the direction of u yaries

from the axis of abscissas by the angle a, and that of v by the

a .

CM = X = C JV COS. a -\- ]SfP cos. a — [u -]- v) cos. a, and

MP — y = CN sin. a — NP sin. a ~ (it — v) sin. a.

If we designate the hypothenuse C B ^=^ V a^ + If hj e.

angle

we have

and consequently

COS. a z

COS. a

a

and sin. a —

sin. a 1 T—=-— = — , and
h e

U' + "^ U V + v^

COS. a ^ — sin. a

4zuv = 1.

From the latter we obtain what is known as the equation of the

hyperbola referred to its asymptotes

V = -r- OT
4 4:U

According to this it is easy to draw the hyperbola between the

two given asymptotes.
p

The co-ordinates of the vertex A are CF = E A = -^, and

Fig. 23,

-Y.

the co-ordinates for the point K are C B = e and B K = —', fur-

ther, for the abscissas 2 e, 3 e, 4 e, etc., the ordinates are \-^,\ ^-,

\ T' e*^-
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Art. 1 3. If in the ratio of the differentials -r^, or in the for-
dx

mula for the tangent tang, a of the tangential angle, we substitute

successively the different values of x, we obtain all the different ])o-

sitions of the tangent to the corresponding curve. If we take x = 0.

we obtain the tangent of the tangential angle at the origin of co-

ordinates, and if on the contrary we take a; = oo, we have tlie same

for a point infinitely distant. The most important points are those

where the tangent to the curve runs parallel to one or otlier of the

co-ordinate axes, because here one or other of the co-ordinates x and

y have their greatest or smallest value, or, as we say, is a maximum
or minimum. AYhen the curve is parallel to the axis of abscissas we
have a = 0, and ta?i(/. a = ; when parallel to the axis of ordinates

a = 90°, or tang, a = oo , whence we deduce the following Eule

:

To find the values of the abscissa or independent variable x,

which correspond to the maximum or mini-

mum value of the ordinate or dependent va-

riable y, we must put the ratio of the differ-

FiG. 33.

entials
d X

0, or — 00 and resolve the result-

ing equation in regard to x; e.g., for the

equation y = Qt x — ?, x^ + x% which corre-

sponds to the curve A P Q B in Fig. 23.

'^ = e-9x-h^x'^3{2
Cl X

S X + x"-)

0, we have

3(1 ~ x) {2 - x);

consequently, in placing -~ =z

1 — a; = and 2 — x = 0,

I.E. X = 1 and X = 2.

Substituting these values in the formula

y = e X - -^x' -{- x\

we have the maximum value of y, 31 P = 6

the minimum value, iV § - 12 — 18 + 8 = 2.

Farther, for the curve K P Q R, Fig. 24, whose eqliation is

y — X -^ ^{x — 1)% we have

^ = tang, a = 1 + | (a; - 1)-* = 1 -)-

2

+ 1 = -^, and

2

which becomes = 0, for

Z^x-\
(I)' = i-| = 0.7037, and on the contrary = ^,iox A N — x

3 y^^i
1, I.E. ioY A M = X = \ —

1.
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The first case corresponds to the maximum value,

i¥P = y„ = 1 - ay + ay = -3. = 1.148,

and the last to the minimum value, W Q = y„ = 1.

We have also A
Fig. 24 = 1 for a; = 0, and y =

for the abscissa A X = Xy

corresponding to the cubic

equation x^ -{- x^ — 2 x -h ly

whose value is a:= — 2,148.

Aet. 14. Since in the

equation of a cur\' e which

starts from the origin of

co-ordinates A, and rises

above the axis of abscissas,

y increases with x, d y is

always positive, and since

when the curve on the contrary descends towards that axis, y de-

creases when X increases, d y becomes negative. Finally at the

point Avhere the curve runs parallel to the co-ordinate axis A X^

d y becomes equal to zero, and the differentials of the ordinates,

corresponding to the equal differentials dx = MN= N = P S
= Q T oi the abscissas, are

S Q = P S tang. Q P 8, i.e., d y^ — d x tang, a^,

TB — Q T tang. R Q T, i.e., d y^ = d x tang, a^, etc.

The tangential angles a^, ag , etc., also increase for a convex

curve APE, Fig. 25, and decrease for a concave curve A P By

Fig. 25. Fig. 26. Fig. 27.

A JVI N O A M N O

Fig. 26 ; consequently in the first case

d {tang, a) — d( j^j is positive,

and in the second d (tang, a) = d [j') is negative, and for the

points of inflexion Q, Fig. 27, i.e. for the places Q where the con-
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vexity changes into concavity, or where the contrary takes place,

we have S Q = T R, and therefore d (tang, a) = d& 0.

Hence we have the following Rule

:

If the differential of the tangential angle is positive, the curve is

convex, if it is negative, the curve is concave, and if it is equal to

zero tve have a point of inflexion of the curve to deal 2vith. From
the foregoing we can easily make the following deductions

:

The place, where the curve runs parallel with the axis of abscis-

sas and for which tang, a = 0, corresponds either to a minimum or

to a maximum, or to a point of inflexion of the curve, according as

the curve is convex, concave, or neither, i.e., as d {tang, a) is pos-

itive, negative, or equal to zero. On the contrary, the point, where

the curve runs parallel with the axis of ordinates and for which we

have tang, a = co, corresponds to a minimum, or maximum, or to a

point of inflexion of the curve, according as the latter is concave,

convex, or in part concave, or in part convex : i.e., as d {tang, a)

is negative or positive on each side of this point, or has a different

sign on different sides of it.

A portion of a curve with a point of inflexion of the first kind

is shown in Fig. 28, and a curve with one of the second kind in

Fig. 29. We perceiye that the corresponding ordinate N Q is nei-

ther a maximum nor a minimum, for in this case both of the

neighboring ordinates M P and R are larger or smaller than

N Q. In Geometry, Physics, Mechanics, etc., the determination

Fig. 28. Fig. 30.

M N O

of the maximum and minimum, or the so-called eminent, values of a

function, is often of the greatest importance. Since in the course

of this work various determinations of such values of functions will

be met with, we will here treat only the following geometrical

problem.

To determine the dimensions of a circular cylinder A A^, Fig.

30, which for a given contents V has the smallest surface 0, let us
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designate the diameter of the base of the cyHnder by x and the

height of the same by y ; here we have

and the surface or the area of the two bases plus that of the

curved portion

^ 2 7T X"= —^ + TTxy,

but from the first equation we have

4 V
7T y = —^ or TT X y = 4: V x~'^

substituting this value oi n x y, we obtain

=^ + 4 Vx~\

and since we can treat and x as the co-ordinates of a curve, we have

tang, a = -— = n x — 4: V x~^.
OL X

Putting this quotient equal to zero, we obtain the equation of con-

dition

4 Y
TV X = —r- or TT o;^ = 4 V.

x^

Resolving the equation in reference to x, we have

/ 4- 1/

-, and^V'""

4 V 1/ 64 r 77^
4/4F

^ TT x" ^ tt' 16 F ^ rc

Since d {tang, a) = I 77 + —§-) ^a; is positive, the value found

furnishes the required minimum. "We can employ the same

method when we wish to determine the dimensions of a cylindri-

cal vessel which for a given contents will need the smallest amount

of material. They are already determined directly when the vessel

besides its circular bottom is to have a circular cover, but when

the latter is not needed we have

TT X^= — h 4 V x~\ consequently

TT X 4 V—~ = —— , whence it follows that
2 X
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Wliile in the first case we must make the height equal to the

width of the cylinder, in the second we must make it but one-half

tlie widtli of the latter.

Art. 15, By successive differentiations of a function y =f{x),
we obtain a whole series of new functions of the independent va-

riable Xf which are

'' ax ax

E.G., for . y = f {x) = xl, we have

/, (x) = j 2:?,/, (x) - -V- x-Kf^ (x) = - i? rr-s etc.

For a function which is developed according to a series of the

ascending powers of x

y = f (x) = Ao -{- Ai X -\- A^ x"^ + A-i x^ -h A^ x* + etc., we have

fi{x) = A^ + 2 A2X + 3 A^x'' -h 4: Ai x^ + etc.

f, (x) = 2 A, -{- 2 . 3 A, X -h 3 . 4 A, x' + etc.

f^ (x) = 2 . 3 As + 2 . 3 . 4. A^ X + etc.

Substituting in these series a; = we obtain a series of expres-

sions suitable for the determination of the constants Ao, A-^, A^... viz.

/ (0) = Ao, fr (0) = 1 A,f, (0) = 2 A,,f, (0) = 2 . 3 . J3,

etc., whence we deduce these co-efificients themselves.

A ::./(0), A, =fr (0), A, = ifi (0), A, .= ^/3 (0),

A = -^-^/^ (0) etc.

Thus we can develop a function into the following series, known
as McLaurin's.

. fix) = /(O) + /, (0) .

J
+ f, {0)-~+ /a (0) • j-|^3

For the binomial function y = f (x) = (1 + x)" we have

/i (x) = n{l + xY-\f, {x) = n {n - 1) (1 + xf-'

/3 {x) = n{n - 1) {n - 2) (1 + xy-^ etc.

When we put ic = 0, we obtain

/(O) 3= 1,/ (0) = nj, (0) = n {n - 1)

fz {()) = n {71 — 1) {n — 2), etc., whence the binomial series.
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Tx /-. sr. -. ^ n(n—l) „ n (n — 1) (n — 2) ,
l.){l + xY = 1 + -X -^^ 1:2" "^

;^ 2.3 ^ '^ ^^'

We have also

(X _ ,).^ 1 _ », + ^i^,> _ ?i(^_ll)i!pl),. + etc.,

as well as

1 jr

Farther, putting 1 4- cc = (1 — ;2;)~^ == -, we have ;a!— tr^— and
i- z i. -\~ X

/-. N /-. ^ n -. . ,
^ (^ + 1) 2 n(n + l)(n-i-2) 3(H-2:)"=r(l-^)-"-H-?i2;H ^:,—^^ + ^

., ^\.—-V + ...I.E.

II.) (!+.)» = ! + - (^ + -i__J (__)

^ (n + 1) (y^ + 2) / x V
"^ 1.2. 3 \r+^/ "^

•
*

The series I. is finite for entire positive values of n, and the

series II. for entire negative values of the same.

E.G., (1 + ^)' = 1 + 5 a: + 10 a;' + 10 2;' + 5 2;* + x\ and

(1 + .r = 1 - s (r^J + 10 (-^^J- 10 (^^J

Since 6? + a; = «^(l4- -I, it follows also that

(a + .)"=«»(l + ?)"=«"[! +f(^)

III.) (o + x)" = a" + ~ a- X + ^f^ «"-' ^'

« (w -!)(»- 2) _, ,
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.E.G., ^1009^ = (1000 + 9)? = 100 (1 + 0,009)1

= 100 (l + I . 0,009 + '^' ^^ • (0,009)^ + . . . )

= 100 (1 + 0,006 - 0,000009) = 100,5991.

We have also

(x + ly = Of + n x"-' + —~r—K-^ ^"~' + • . . etc.

and approximately for very great values of x,

(x + ly = x"" + n a;"-'.

From this it follows that

(x + ly— x" ^ ,,

af~^ = ' , further
n

{x - 2)"-'

{X - 3)"-'

n

(x - ly - (x - 2)"

(x- 2)"- {x-^y
n

2" \n

and finally 1"~' =
;

adding the two members of these equations together, we have

af-" + (x - ly-' + {x - 2)^"-^ + {x - ^y-' + . . . + 1

_ {x + 1)"— I''~
n '

or, putting n — 1 = m, and writing the series in the reversed

order, we have

(x + 1")"'+^ — 1
1'" + 2'^ + 3'" H- . . . + (a; - 1)"* + ic'" = ^--^—-L—

.

m + 1

Now since x is very great, or properly infinitely great, we can

put {x + 1)'"+^ =: :r'"+\ and we then obtain the sum of the powers

of the natural series of numbers.

IV;) 1"* + 2"* + 3"* + . . . + rr'" = —-—-,' m 4- 1

E.G., v/l^ + >/y» + Vy^ 4. V^- + . . . + '^1000'^ approximately

= 1^ = i VIOOO^ = 60000.
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Fig. 31.

Art. 1@. The ordinate P = y. Fig. 31, corresponding to

the abscissa A = x, can be considered as composed of an infinite

number of unecjual elements d y, as

FB, G C,HD, KE , which cor-

respond to the equal differentials dx =
AF,=.FL^LM^ MN of

the abscissa. If therefore d y = <p {x)

.

d X were given, we could determine y
by summing all the values of d y, which

we obtain, by substituting successively

m (p (x) d X for x, d x, 2 d x, 3 d x . . . .

to n d X = X. This summing is indi-

cated by the so-called sig7i of integra-

tion /, which is placed before the general expression of the differ-

ential to be summed. Thus we write, instead of

y = [(p {d x) + ({) {2dx) + (p (3 dx) -^ . . . + (p {x)] d x,

y — f (p {x) d X.

In this case we call y the integral of (p {x) d x, and {x) d x the

differential of y. Sometimes we can obtain the integral f (p {x)d x,

by really summing up the series (p {d x), (p (2 d x), (p (3 d x), etc.

;

but it is always simpler in the determination of an integral to em-

ploy one of the Eules of what is known as the Integral Calculus,

which will be the next subject treated.

If n is the number of differentials d x of x^ we have x — n d x
x

OT d X = -, and we can put

./' (X) -^ ^ = [0
( 7^ ) + '^ (" -»'¥ +

nx^

n

4- n d x)

'2 x\

n J ' \ n

Thus for the differential d y — a x d x,wq have

y = f a x d X = a d X {d X + 2 d x + 3 d x + .

= {1 + 2 + 3 -\- . . . + 11) a d x\

or since according to Art. 15, IV., for n = 00 Ave have the sum of

the natural series of numbers

1 + 2 + 3 + 4 + 5.. . + ^ = A n' and d x' = -~,

y — f axdx = }y
71"" a -^ = A a x\

In a similar way we find, if x = n d x or if x is composed of w

elements d x,

y=f(P(x) dx^f^ = \{dxy + {2 dxy-\-{3 dxy+ ... -hiiidxY']—
a \— -J a

=: (1 + 2^ + 3' + .... + w^)—-.
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But from § 15, IV., for n = oo , we have

1 + 2' + 3' + + ^' = -^, whence it follows that

/ x^ dx _n' d x" _ { n d xf _ ^_
a ~~ 3 ' a ~ 3 a ~~ 3 a

Aet. 17. From the formula d{a + mf{x)) — m df{x), we

obtain by inversion

fmdf (x) = a -{- mf (x) = a + mfdf {x\ or putting

df {x) = (p (x) . d X

I.) f mcf) (x) dx = a + m f (f)
(x) dx,

and hence it follows that the constant factor 7n remains, in the In-

tegration as in the Differentiation, unchanged, and that a constant

member such as a can not be determined by mere integration;

the integration furnishes only an indefi7iite integral.

In order to find the constant member, a pair of corresponding

values of x and y = f(l){x)dx must be known. If for x = c,y = k,

and we have found y = f cf) [x) d x = a + f (x) then we must

also have k — a + f (c), and by subtraction we obtain y — h =
f (x) —f {c) ; therefore in this case we have

y = fcb{x)dx = k +f{x) -f{c) =f{x) + h-f{c\

and the constant factor a — h — f (c).

When, E.G., we know that the indefinite integral y = f x d x =

" gives, for a; = 1, ^ = 3 we have the necessary constant a =

3 — ^ = 4, and therefore the integral

/-, X -{- Xxdx = a + ^ =
2 2

Even the determination of the constant leaves the integral still

indefinite, for we can assume any value for the independent varia-

ble X ; but if we wish to have the definite value Ic-^ of the integral

corresponding to the definite value c, of x, we must substitute this

value in the integral which we have found, or, k^^k -\-f (ci) —f (c).

E.G., y ^ f X d X ——-— gives, for a; = 5, 3/ = 15.

Generally the value of x for which y becomes = is known

;

in this case we have ^ = 0, and the indefinite integral of the form
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./' (px {(Ix) ^f (x) leads to the definite one h = f (c,) — f (c),

which can ako be found by substituting in the expression / (x)

of the indefinite integral the two given limits, Ci and c, of x, and
by subtracting the values found from one another. In order to

indicate this we write instead of / (x) d x, I V (^) d x,

if, E.G, fcf>dx^~, £' cp{x)dx = -^^-^^

By the inversion of the difierentiaLformula

d [f (^) + (t>
(x)] = df(x) + d (p (x) we obtain the integral

formula/ [df (x) + d (p (x)] =f (x) -f (p {x), or putting

df (^) ~ '^ (x) d X and d cp (x) = x i^) d x,

n.) f[^{x)dx + x{'^)dx'\—f^(x)dx + fx («) d x.

Therefore the integral of the sum of several differentials is equal

to the sum of the integrals of each of the differentials.

E.G. /(3 + bx)dx — fddx + f^xdx=^x + ^^x\

Art. I 8 . The most important differential formula, IV., Art. 8,

'd {x') — . n af~^ d x, gives by inversion an integral formula which

is equally important.

Itis f n x"-'^ d X = x% orn f a;""' d x = af\ whence

f X"-' dx=.—;
n

'Substitnt»ing »i — 1 = m, and ^ = m + 1, we obtain the following

important integral

:

x"

f x^dx r= -
m V

which is employed at least as often as all the other formulas

together.

The form of this integral shows that it corresponds to the sys-

tem of curves treated in Art. 9 and represented in Fig. 17.

From it we have, E.G.,

f bx' dx = h f x' dx = ^x'-,

.

./• y^d X =/ a;5 dx=^7^ =
-I
VoT;

./ (4 - ^x- + hx')dx = f4:dx - fQx'dx 4- f 5 x* d x

^ ^fdx - ijfx'dx + b f x' dx = ^x - ^ x^ + x^', Uril^tr,

d u ,

putting ^ X — 'I — u, 3 d X = d u, or dx — -^-, we have
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and finally, substituting 2 x^ — 1 — u and 4 x ^ a; == t? t» or

X a X = -r-y we have

r bxdx rhdu . r . . . ul

By the substitution of the limits the indefinite integral can be

changed into a definite one.

E.G.^'' 5x'dx = i{2* - V) = i . (16 - 1) = 18|.

p9 d X

f V^x-'Z ,dx = i{ VW - VV) 1= I (64 - 1) = 14.

If E.G. /(4 — 6 x"" + 6 X*) d X = 7, for a; = we would have,

in general,

f (^- 6x' -}- 5x') dx = H -\- 4.x - 2x' + x\

Art. 19. The so-called ex2Jonential function y = a", which

consists of a power with a yariable exponent, can be developed as

follows into a series by means of McLaurin's Theorem, and its dif-

ferential can then be found.

Putting a' = Ao + A, X + A^i x^ -h A^ x^ + we have, for

t; ^ 0, a^ = a^ = 1, whence Aq = 1;

From a^ = 1 -i- A^ x + A^ x"^ -h A3 x^ -h . . . . we have

a'^' — 1 + A^ d X -h Ai d x"" + A-s d x^ + . . . . and also

d {a') = a'+'' - a' z=z a' a'' - a' = a' {a'' - 1)

= a' (^1 d X -[ Ac^d x" + A^ d x^ + ....)

= a^ (^1 + Ac^d x + . . . .) d X = A^ a^ d X.

Hence, by successive differentiation of the series, we have

f{x) = a' = l-\-A,x + A,x'' + A3x' + .,,

/, (x) =^ = A,a' = A^ -\- 2A,x i- SA,x' -h ,..
ci X
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Mx)=^^^=A^a^ = 2.S.A, + ,,.

Putting a; = 0, it follows that

A, = A„ 2A, = A,\ 2 . 3 . ^3 = A,'

whence ^. - j^ ^.^ A. = j-^ f,
A, = J7^^^.^ &c.

and the exponential series takes the form

The constant coefficient ^i is of course a definite function of

the constant base, as the latter is a function of the former. If one

of the two numbers be given, the other is then determined. The
most simple, or the so-called natural series of powers, whose base

(a) will be designated hereafter by e, is obtained by putting Ai = 1.

Then we have.

X x" x^ x"
11.) ^ = 1+^ + ^^ + ^-^+-^- 2.3.4

+ . ..

and if we put a; = 1 we obtain the lase of the natural series of

powers,

e^ rr: e = 1 + 1 4-
-i

^- i + 2V + == 2,7182828.

1 1
If we put e — oT, or a = &'% we have — = I a, which is the Nape-

rian or hyperbolic Logarithm of a, and

III.) «^ = (-)-- = i + JQ + i^QV
1.2.3 \m/

Since this series corresponds in its form to that of I, we have

also Ai = -, and,
7)1

IV.) d (a^) =z Ai a' d X = — I a . a'' d x, as well as
. .

m
V.) d {e^) = e' dx.

E.G. d {e^'^') = e''+' d(dx -h 1) = S e''+' d x.
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K we put y — a' = e'" we have, on the contrary,

X — loga y and — = ^ ^•

log,, y z=z ml y, and, on the contrary,

I y, or log, y = - log« 2/-

The number m is called the modulus of the system correspond-

ing to the base a. By means of it we can transform the Naperian

logarithm into any artificial one, or one of the latter into the

former. For Brigg's system of Logarithms the base is <x = 10,

whence — — l\^ — 2,30258, and, on the contrary, m — -^—-^ =
m -^

1 10

0,43429.

We have also log y = 0,43429 I y, and

I y = 2,30258 log y.

(See Ingenieur, page 81, etc.)

Akt. 90. The course of the curves which correspond to the

exponential functions y = ^, and y = 10% is represented by Fig.

32. For rr = 0, we have in both cases ?/ = e" = a° = 1. Hence

both curves Q S and Qi Si pass through the same point
( 0)

of the axis of ordinates A Y. For a; = 1 we have.

2 gives

y = e' = 2,718, and

3^ == 10^ = 10,

y = e = 2,718^ = 7,389, and

y = 10^ = 10- = 100, &c.

Both curves rise on the positive side of the axis of abscissas very

steeply, particularly the latter.

For a; ::= — 1 we have e = e'' = ——^ = 0,368 .
.

, and

10^ = 10-^ = 0,1

;

farther, for x = — 2, w^e have

and 10^ = 10-2 = 0,01

;

for a; — — 00 both equations give

5
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Fig. 33.

a

The two cuiTes approach

nearer and nearer this axis of

abscissas on the negative side

of the axis of abscissas, the

last more quickly than the first,

but they never really meet this

axis.

Since we deduce from the

equation

y = e%x = ly
and also from

y = a' ,x =^ loga y
the abscissas of these curves

furnish a scale for the Nape-

rian and common logarithms
;

for the abscissas are the loga-

rithms of the ordinates.

E.G. we have,

AM= IMP
= \oga M Pi, etc.

From the differential for-

mula IV of the last article the

tangential angle of the expo-

nential curve is determined by

the simple formula,

d 11 a'' d X
tang, a = -^^ = —^—

° d X m d X

a'

m
y 7- = y la.

Consequently for the curve Pj Qi Si, Fig. 32, the subtan-

gent = y cofg. a — m, that is, is constant; and for the curve

P Q S it \^ always = 1, e.g., for the point Q, Al, = \ for the

point P, 12 = 1, etc.

Art. 21. If ic = a'', we have also

dx — d (a) = ^,

and by inversion,

dy
m d X m dx

a'
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But y = loQa X, that is, to the logarithm of the variable power

X with the constant base a ; therefore we have the following differ-

ential formula for the logarithmic functions,

y = loga X and y = I x:

m d X 1 dx
I.) d {log, x)

11.) d{lx)=^^^.

X I a x^

If a is the tangential angle of the curve corresponding to the equa-

TTl

tion y = loga x, we have tang, a = —, and the subtangent = yX
X II

cotg. a — ^, or proportional to the area x y of the rectangle con-

structed with the sides x and y.

By means of the differential formulas I. and II. we obtain

d^x_d{x^)__^ x~\ d X _ d X

'X

dx

„ , a ^ X a [x^ ) 'X ^ a X ax ,

X
= d OAx) = \d {I x)

2) dl^^^ = d[l{2 + x) - Ix']
X

= dl{2 -h x) - dl {x')

_ dx 9^^_ {4: -h x) d X

2 -{- x X X (2 + x)

3) ^ (^ J^) = ^ Vi'' - 1)] - ^ Uie' + 1)]

_ d {g") d (e') _ c^ d X e" d x _ 2 e" d x

From d (a'')
—

it follows that / == a\ i.e.,

Art. SS. If we reverse the differential formulas of the fore-

going article, we obtain the following important integral formulas.

a' d X ., „ ^^ ,, , /V d
it follows that /m ^' m

I.) f a' dx — m a' — a' :l a, and therefore

II.) S e dx^e.

Farther, from di^og^x)— , it follows that / = log, x, lb.
X ^ X
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/d X 1— = — logaX = Ix, which is also given by the for-

mula d {I x)

X m
dx
X

'

By their aid we can easily calculate the following examples:

/ e'"^' dx = I f &'-' d{hx -\) = \ &'-\

J lx + 2~ -'J Ix +% -it{lx + ^),

= fxdx + fdx + ^ f^ ^^
~
^ = -^ + a; + 2 /(a; - 1).^ x — 1 2 ^ ''

Art. S3. The first intesrral formula / x'^dx = leaves
^' m + 1

the last integral undetermined ; for putting m = — 1, it follows

/d X f* x^— = j x~^ d X — — ^ 2. constant = go + constant, but

if we put X =^\ \- u, and d x = d u, wq have

— = :; = (1 — to + li^ — u^ + u'' — )du ; and therefore
X 1 + u ^

'

rdx r du /\, o , .

= f d u — f u d u + f u^ d u— f 11^ du -\- ....

It^ u^ u^
= "--T + x--r+--'

W^ W If
we can therefore also put I {1 + u) = it ^ 4- -^ r- + . . .,or

Z O 4:

IV.) Ix = {x - 1) - -^-^ + ^ 3 ^ - ^—^ + ....

With the aid of tliis series we can calculate the logarithm of all

numbers which differ very little from 1 ; but if we require the

logarithm of large numbers we must adopt the following method.

Taking it negative in the foregoing formula, we have

, ,, . u' u' u*l^l^u)^-u-- - ^3- -4-...;

jtnd subtracting one series from the other, we have

I



Art. 23.] INTRODUCTION TO THE CALCULUS. 09

1(1 + u) - I (1 - u) = 2 (tc -h J -h -^ + . .^

Hr^/ = 2 («* + 3- + g + . .

.)
or puttiDg

1 -\- U X — 1 ,= .T, or ^^ = -, we have
1 — ti X + 1

This formula is to he employed for the determination of the

logarithm of such numbers as differ sensibly from 1, since

is always less than 1.

We have also I {x + y) - I x =: I (^-) = ^ (l +
|)

VI.) H^ + y) = i- + ^[^y + \(^J+--]
This formula is used to calculate from one logarithm, that

of a somewhat greater number

E.O.. ^, = a[l^l+-|.(|--i)V...]

— ^ (3 + 3 • ":i7 + 5 • 3IT 3 + • • • j

/ 0,33333 \

= 2 )
^'^l^S'^ = 2 . 0,34656 = 0,69312,

]
0,00082 (

(0,00007) "

more exactly = 0,69314718.

Hence / 8 = ? 2^ = 3 / 2 = 2,0794415, and according to the last

formula, ? 10 = Z (8 + 2)

= '« + 4l6T2+^(iTT-2y+-]
= 2,0794415 + 0,2231436 = 2,302585.
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We can also put ^2 == Zl + 2^-—- + I
/-_—V-f .... 1

farther, ? 5 = Z (4 + 1) = 2 / 2 + 2(i + J
.-1 + .... ), and rinally

we can put 110 = 12 + 15.

(Compare Art. 19.)

Aet. 24. The trigonometrical and circular functions, whose
differentials will now be determined, are of practical importance.

The function of the sine,?/ = sin. a:, gives for .'r = 0, ?/ ^^
;

fora:=:-^-== -^-^- = 0,1864...., y= VI =0,7071,

" X =
-J,

y = 1, £oY X = 7T,y = ;

" X = ^ n,y = —1, for X = 2 n, y = 0, etc.

Taking x as the abscissa A 0, and y as the corresponding ordi-

nate P, we obtain the serpentine curve {A P Btt CYn), Fig. 33,

which continues to infinity on both sides of A.

Fig. 33.

y K E M G

+

iL |l<f^

*"^N/f>
y^Tj^k

/f \

1
\ P ;C yv -ij

;

-Y F L H If
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The function of the cosine,?/ = cos. iP, gives, for a; = 0, ?/ = 1;

for x= ^,y= Vlr, for a; = -^, ?/ = 0; for 2; = tt, ?/ = - 1 ; for

ic = ^ TT, ?/ = ; ioY x — 'Z TT,y — 1, etc. ; it corresponds to exactly

the same serpentine line f + 1 P — i>— + 1 j as the function of

the sine, but it is always a distance ^ '^ — 1,5708 behind or in

front of the curve of the sine.

The curves, corresponding to the function of the tangent or co-

tangent,?/ = tang, a and y = cotang. x, are, however, of an entirely

different form.

If we substitute in ?/ = tang, x, x —0,\ tt^^ tt, we obtain ?/ = 0,

1, 00 , and therefore a curve (A Q E) which approaches more and

more, without ever attaining it, a line parallel to the axis of ordi-

nates A Y, and cutting the axis of abscissas ^ X at a distance -

from the origin of the co-ordinates. Now if we put x =-, rr, | rr,

we obtain ?/ = — 00, 0, + 00, and therefore a curve (F n G), which

continually approaches the parallel lines, passing through 1 • 1 and

(;f
tt), and for which these parallel lines are asymptotes. (See

Art. 11.)

If we increase x still more, the same values of y are repeated,

and therefore the function y = tang, x corresponds to a series of

curves which are separated from each other in the direction of the

axis of abscissas by a distance n = 3,1416. On the contrary, the

function y = cot. x gives for a; = 0, - -^ tt, y = 00, 1, 0, — c», and

therefore corresponds to a curve IkQ- Lj which differs from the

tangential curve only by its position; it is also easy to perceive

that an infinite number of branches of the curve, as, e.g. . IM-^ N\

correspond to this function.

While the curve of the Sine and Cosine forms a continuous,

unbroken whole, the curve of the Tangent as well as that of the

Cotangent is formed of separate branches ; for the ordmates for

certain values of x change from positive to negative infinity, in

consequence of which the curve naturally loses its continuity.
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Aet. 23, The differentials of the trigonometrical lines or

functions are given by the consideration of Fig. 34, in which

C A ^ C P ^ C Q = l,2iTGA P = x,P Q = dx,

PM = sin. X, CM = cos. x, A 8 = tang, x,

OQ = NQ — MP — sin. {x {- d x) ~ sin. x = d sin. x,

P = — (CiV— CM) = — COS. {x + dx)+ COS. x =— d cos. x, and

8 T = A T — A 8 = tang, {x + d x) — tang, x = d tang. x.

Since the elementary arc P § is perpendicular to the radius

C P, and since the angle P C A between the two lines C P and

C Ai^ equal to the angle P Q between the two perpendicular to

them, P Q and Q, the triangles C P M and Q P are similar,

and we have

I.)

OQ
PQ

d {sin. x) -

OP

CM
~C F I.E.

d sin. X _ COS. X
whence

COS. X . d x, and in like manner,

P M
LE.

d COS. X

d X

sin. X
whence

11.)

Fig. 34.

P Q C P'

d (cos. x) = — sin. X d x.

We see from this, that the influence of

errors in the arc or angle upon the sine

increases as cos. x becomes greater, or as

the arc or angle becomes smaller, while on

the contrary their influence upon the co-

sine increases as sine x becomes greater,

that is, the more the arc approaches to -
,

and that finally the differential of the co-

sine has the opposite sign from that of the

arc, for we know that an increase of a;

causes a decrease of cos. x, and a decrease

of X an increase of cos. x.

Letting fall a perpendicular 8 R upon

C Tyfe form a triangle 8 P T which is

similar to the triangle C P M, since the angle li T 8 is equal to

C Q JV or C P M, and we have
^ -1

but we have also

N M
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1 dx
C S = secant, x — , whence S E = and

COS. X COS. X

III.) d (tang, x) = ^^-^.

If instead of x we substitute _ — x, and instead of d x, d I- — x\

— — d X, we obtain

d tang. (^
- x) = - 7^"^—-^. i-E-,

\cos.
(^
-

.jj

IV.) d{cotang.:r) = -^£^,.
By inversion this formula gives for the differential of the arc

, d sin. X d cos. x , \. t ,

a X =. — = .
— {cos. x) a tana, x

COS. X sin. X ^

— — (sin. xy d cotang. x, or

, d sin. X d tana, x ..

dx =
,

-__ = -rr^
-
-.„, as well as

\/\ - {sin. xf 1 + (if^^ff- ^)

^ -, _ d COS. X _ d cotang. x
^' ~ |/r^cos7^' ~

1 -^- {ootang. xf
If we designate sm. x by ^, and x by sin.~^ y, we have

TT \ 7 • 1 ^ y
V.) dsm. y — ——-^—

,

Vi-f
and in the same manner we find

VI.) d cos.-^ y=- --^,

VII.) d tang.-' y- ^ ^
1 + f

dy
VIII.) d cotang.-' y=

i + y-^'

Art. 96. By inversion the latter' differential formulae give

I.) / COS. X d X — sin. x,

II.) / sin. X d X = — COS. x.

IV.) / -— „— = — cotang. x,^ sin. X ^

* Sin. ^ y, tang.-^ y, etc., designate the arc whose sine is y, whose tangent
is y, etc.

—

Tb.
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V.) / —

;

= sinr^ x = — cosr' x, and

/d X
—=r.z=== = tangr' x = — cotangr^ x.

^ ,, r.
•

I. 7 /7 N ^ si^' ^ COS. x.d X
J^ rom the above, since we have a (I sm. x)=—-.

= r
^ ' sm, X sin, X

= cotg. X . d x,^e can easily deduce

VII.) / cotg. X d X = I sm, x, and

VIII.) / tang, x d x — — I cos. x ; further

, ,, ,
. d tana, x d x d x d {% x)

d (I tang, x) — --r—-— — ^-. = . —- = -^—s^^ ^ ' tang, x cos. x^ tang, x sm. x cos. x sm. 3 x

dx
whence d (l tang. ^ x) = —— , and

sm. X

/^ d X X

,,.1 ah a{l—x) + l)il^-x)
Now putting = + — —

, ,^ —r-^,
^ ^ 1 — x' 1 + X 1 — X {1 +x) (1 —x) '

we have 1 = a{l — x) -{- b {1 + x), and taking 1 4 a; = 0, or ^ ==

— 1, we obtain 1 = a{l +1) whence a = i, and putting 1 — a; — 0,

or a; = 1, we obtain 1 = 2 b or b — ^^ whence111
+ —^—

; and finally1— x"" 1 + X 1 — X

/dx , f* d X ^ r d X
, , ,. . , , ,^ .

XI.) / :j J
= ^ I U L and in like manner

XII.) /%^=.;f-^).
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Putting Vl -i- x' = X7J, we have 1 -\- x" = x"" y' and

dx{l — y') =^xydy, whence

dx _dy__-
vr+T^ " r=i^

-''''
\r-^yi

XIII.) /'vT^' =l{x+ i^TT^l and also

/d X
1 1

we have only to change ^ into a series, by division, and then
JL "T" X

integrate each member. We obtain thus

1 — x"" + X* —x"' + x^ — . ... and
1 + x'

I
——:,= / dx— I x"" dx-\- I x'^ dx— I x^dx + ..., consequently

I.) tang.~^ x — x—5- + ^^ s— • • • ^tc, e.g.,
o o 7

-- =: tang.~'^ 1=:1 — \ + i— 4 + i~---5 ^^^ the half circumference

^ = Ml-| + i-4 + i-...).or

whence 7r= 6 VI{1 - i + 4V - y^y +...) = 3,1415926....

In the same manner we obtain from

1

TlTr^ = (1 - ^T' = 1 + i^' + I :?^^ -H Ao:^ + ...

/ ^^L=̂ =Jdx + ^Jx'dx + ^JxUlx + j%J x'dx^. .., i.e.^

T X. — X

TT X • 1 1 x' l.Zx'l.^.bx'
II.) s^^^.-^ = ^ +— 4-,-^ + ,-^;^ + ...,

E.G., ~ = Sinr'i = ia+ 2i + elo + 7^5 +•.•),
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!

1,04167
]

0,00469 ^
^

0,00070

0,00012 )

When we put sin. x = A^ -\- A^x -\- A^x^ ^- A^^x^ -{ A^x* + . .
.

,

etc., we obtain by successive differentiation

d (sin. x)

d X

d (cos. x)

d X

d (si7i. x)

d X

d (cos. x)

— cos.x— Ay + % A.2X + o A-^x" + ^A^x^ + ...

= — sin. X = ^ Ac^ + 2 ."^ A^x + 'S . 4^ A^x"" + . .

.

- — cos. ^ = 2.3.^3 + 2.3.4.^4 3^ + ...

= sin. x = 2.d .4:. A4 + ...
d X

l^ow for X := we have sin. x = 0, and cos. x = 1, therefore

we obtain from the first series A^ = 0, from the second Ai = cos.

= 1, from the third Ac,— 0, from the fourth As= — ^—5, from

the fifth ^4 = 0, etc. If we substitute these values in the supposed

series, we have the series of the sine

m/y* /y*^ /y»^ /y»'

.) sm. X =
1 1.2.3 1.2.3.4.5 1.2.3.4.5.6.7

In the same way we obtain

IV.) cos.x:=^\ - YT^-^ 1.2.3.4 ~ 1.2.3.4.5.6
"^ ''"'

V.) tang. ^ = a; + — + -—- + „ )^ -» + . . . . and

VI.) ootang. x = \-\-3^ -3^^ -' <^te-

(See Ingenieur, page 159.)

Art. 28. When we integrate the differential formula d (u v)

= u d V -\- V d u, of Art. 8, we obtain the expression u v =f u dv
+f V d II, and the following formula for integration

:

f V d u = n V — f u d v, or

f (x) df (X) = (x) f (x) -ff(x)d^ (x).

This is known as the integration by parts.

This rule is always employed if the integral / v d u —
S (p (x) df (x) is not known, and if, on the contrary, / u d v=
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// (x) d
(f)
X is. E.G. By means of this formula we can refer the

integration of the formula,

d y — V\ -\- x" . d X

to another known integral. We must substitute

X d X
(f)

(x) = VI -\- x^, whence d </> (x) = ,- -^

and / {x) = X, whence df{x) = d x, then we have,

Vl + x' dx = X VTTx' - J r-
^
,
but

x" I + x'' 1

Vl+x" Vl+x' Vl+ x'
= vrvx'-

whence it follows that

d X
fVl+x^dx^xVl + x'-f Vl ^x' dx + f VI + x"

d X

or

2

and consequently.

I.) fVl+x^dx^^xVl + x'-hl y^f^
d X

x'

= 1 [x VY+x' + l{x + 4/1 + «')].

In like manner,

II.) f viz:^dx = ixVi^^' + 1/-;^^=^

= ^\x Vl — x"" + sinr^ ic], and

III.) fV-^-Tl dx = IxVx^^l - -I /t^i
= i[xV¥^^ - l(x + Vx^'^^)].

We have also

J'(si?i. xY dx=fsin. X sin. xdx= —fsin. x d {cos. x)— —sin. x cos. x

+ fcos. X d {sin. x) = — sin. x cos. x -\-f {cos. xY dx

= — sin. x cos. X + f[l — {sin, xY] d x,

whence it follows that
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2 / {sin. xf d X =f d x — sin. x cos. x, and

IV.) / (sin. xy d X = i (x — sin. x cos. ^) = i (x — ^ sin. 2 x).

In like manner

V.) / (cos. xY dx=l {x-\-sin. x cos. x)=^{x + i sin. 2 x), and

VI.) / si7i. X cos. X dx —
\ f sin. % x d {% x) =: — \ cos. 2 x,

VII.) / (tang, xf d x = tang, x — x, and

VIII.) / (cotg. xy d X — — (cotg. x + x).

Finally we have

IX.) / X sin. X d x= —x cos. x +f cos. xd x~—x cos. x + sin. x,

X.)

XL)

XII.)

f X e dx ~ f X d (e^) =. X e ~ f e dx = (x — 1) e*,

llx.dx — xlx —
I X — = X (I X — 1), and

/xlx.dx— — Ix
4/ ~J\

X

'X? dx = (Ix- \)-
2 X ^

-^'2

Fig. 35.

S^''

m

MK

Art. ^9. If we wisli to find the quadrature of a curve, A P B,

Fig. 35, I.E., to determine or express by

a function of the abscissas o this curve

the area of the surface ABC, which

is enclosed by the curve A P B and

its co-ordinates A C and B C, we im-

agine this surface divided by an in-

finite number of ordinates M P, N Q,

etc., into elementary stri23S, like MN
P Q, with the constant width d x, and

the variable length M P = y. Since

we can put the area of such an element of the surface

dF=
(

^^^^^
) .M]Sr=:(g + idy)dx = ydx

we will find the area of the entire surface by integrating the differ-

ential y d X, and we have

F = / y d X
;

E.G., for the parabola whose parameter is p we have y^ =z p x, and,

therefore, its surface

Vp / x^i d X =

—

^— = \ x\^p X — \x y.•"/ xd x

iM



Art. 29.] INTRODUCTION TO THE CALCULUS. 79

The surface of the parabola A B Cis therefore two-thirds of

the rectangle A C B D which encloses it.

This formula holds good also for oblique co-ordinates inclined

at an angle X A Y = a, e.g., for the surface ABC, Fig. 36, we

have when we substitute instead of B C — y the normal distance

B N— y sin. a

F — sin. a f y d X,

E.G., for the parabola when the axis of abscissas ^ Xis a diameter,

and the axis of ordinates ^ I^ is tangent to the curve, we have

2 P ^
^ ^

sin. a
(See "Ingenieur," page 177.)

and F = ^ X y sin. a,

I.E., the surface A B C = ^ parallelogram A B C D.

Fig. 37.

For a surface B C C^ B^ — F, between the abscissa ACi = c^

and A C — c, Fig. 37, we obtain, according to Art. 17,

F — I y dx.

E.G., for y =

I.E.,

1 a' d X — a^ {I Ci — I c),

The equation — corresponds to the curve P Q, Fig. 38, dis-

cussed in Art. 3, and if we have A M = c and A JV = Ci, the area

of the surface 31N Q P is



80 INTRODUCTION TO THE CALCULUS. [Art. 30.

-:K3
Fig. 38. K we suppose, for simplicity,

that « = c = 1, and Ci = x, we
obtain

F= Ix;

\ hence the surfaces (1 MP 1),

{1 ]^ Q 1), etc., are the Naperian

logarithms of the abscissas A M.
A N, etc. The curve itself is the

so-called equilateral liyperlola in

which the two semi-axes a and h

are equal ; hence the angle formed

by the asymptotes with the axes is a == 45°
; and the right lines

A X and A Y, which approach nearer and nearer the curre with-

out ever attaining it, are its asymptotes. In consequence of the

relation between the abscissas and the area of the surfaces, the

Naperian logarithms are often styled hyperbolic logarithms.

We can put every integral / y d x = / (f)
(x) d x

equal to the area of a surface F, and if the inte-

gration cannot be effected by means of one of the

known rules, we can find it, at least approximately,

by calculating the area of the corresponding

surface by means of a well-known geometrical

device.

If a surface A B P Q N, Fig. 39, is deter-

mined by the base A N = x, and by three equi-

distant ordinates A B -= y^, M P — y„ N Q
= ^2? "^e have the area of the trapezoid

ABQN=F,:=iyo^y.;)-^;

and that of the segment B P Q S B, if we consider B P Q
to be a parabola

F, = I P S.BR =
I {MP - MS) .AN^i U - ^^^"^ x.

Hence the entire surface is
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)}

= LJ (^0 + 2/2) +iyl]^ = {yo + 4:y^ + y,)

If we introduce in the equation a mean ordinate y and put

F=x y, we obtain

y= yO + 4:y^ +^8

In order to find the area of a surface, lying above a given base

M N = X, and determined by an uneven number of ordinates

«/oj yu ^2) ^3 • • • yn, by which it is divided into an even number
of equally wide strips, we have only to make repeated application

of this rule. The width of a strip is -, and the area of the first
n

FiQ. 40.
pair of strips is

_yo_±±yi_±y^ ^
of the second pair

— y^ ~^ ^y^ '^ y^ ^^~~
6 • n '

of the third pair,

,^4 + 4^5+^6 2_x
^

6
•^^^^^•'

and the area of the first six strips, or of the first three pair, for

which n = 6,is

-F= (3/0 + 4 ^, + 2 ?/2 + 4 3/3 + 2 ^4 + 4?/5 4- ^6)3—

g

Oo + 2/6 + 4 (y^ + yz+y,) -^2 (y, + y^)] ~^\

it is easy to perceive that the area of a surface divided in four pair

of strips is

^= [^0 + ?/8 + 4(1/1 + 2/3 + 2/5 + 2/t) + 2(2/2 + 2/4 + 2/6)] 3^g,

and in general, for a surface divided in n strips, we have

F= [2/0+ 2/^+4(2/,+ 2/3+ ... + 2/n-i) + 2 (2/2 + ^4 + ... +^-0] 3^^
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and tlie mean altitude of such a surface is

,, ^ yo + yn + ^ (yi + ^3 + ... + ^n-Q + 2 (^^ + ^4 + ... + yn-,)

ill which n must be an even number.

This formula, well known under the name of Simpson's Eulo

(.^38 "Ingenieur," page 190), can be employed for the determina-

iijn ofan integral / y dx— I (}) {x)cl x, if we divide x = Ci — c

into an even number n of equal parts, and calculate the ordinates

yo=(f> {c),y, = (c + 1), y, = (c + -^j,

«/3 = (c 4- —^) ... up to ^„ = (x),

and then substitute these values in the formula

/ y d x= / (f){x)dx

Ci— C= [yo + yn + 4: (y, + 2/3 + .. + yn-i) + 2 {y,+ y,+,.+ yn-,) ] -3

E.G., / — gives, since here Ci—c=2-~l= l and ?/=(/) (x) = -,

when we assume ^ = 6 or - = -^-^^- = ^,

X _ Ci— C

y, = \^ 1,0000, y, - i = f = 0,8571, y,=:\^l = 0,7500,-•-6 6

1 "I A

y, = -=§= 0,6666, 2/4=T^=--0,G000,2/5-Ty=0,5454, and 2/6=0,500a

therefore

y, -f ?/e
= 1,5000, y,+y, + y, = 2,0692, and y, + y,= 1,3500,

and we have the required integral

'" dx ,^ __ . , , ^_, . , , ,,,^, ,
_12,4768

if

From Art. 22, III, we have

r ^ ^=(1,5000+4 . 2,0692+ 2 . 1,3500) . -pV
= —t-p-^= 0,69315.

y\ X lo

/'JL5 = ^2 - M = 0,693147.

Wo see that the results of the two methods agree very well.
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Aet. 3 i . Further on, another rule will be given which can be

employed for an uneven number

of strips. If we treat a very flat

segment A M B, Fig 41, as a seg-

ment of a parabola, we have from

Art. 29 the area of the same,

F=IA B .MD,
or, if ^ Tand ^ T are the tan-

;onts at the ends A and B, and therefore C T — 2 C M, we have

CDE

AB.TE
2 I of the isosceles triangle A S B of the same

height, and therefore = | ^ (7 . C ^ = | .4 (7' tang. SAC.
The angle *S'^ C = SB Cis = T a'^C + TA S= TB C-

TB S; putting the small angles T A S and TBS, equal to each

other, we obtain for the same

TBC-TACTA S=TB 8
2

and

S A C=TA C +
TBC-TAC TAC+TBC 6 -{-

e

2 2 2 '

when we denote the tangential angles TA Cand TB Chj^ and e.

Now since A C=BC=^AB = i the chord s, we have

F= '^s' tang. (-^
^

This formula can be employed for the portion of surface

M A B N, Fig. 42, whose tangential

angles T A D = a imd T B E = 3

are given
;
putting the angle formed

by the chord B A D = A^ B E -^ a,

we have

Fig. 42.

/

M'

or, since a — i3 is small,

TA B = d = TA D ~~ B A D
~ a — (j and

TB A -:^ s :=^ A B E - T B E
— c> — (3, whence

d H- £ =::. C — i3,

and the segment over A B

tang.{^-^)

F = ^ tang, {a - f^) =
^^ (iTto^-Vtep)'
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or since a and [i differ but little from each other, and therefore we
can substitute in tang, a tang. (3 instead of a and (3 the mean value

(T, we have

-^ , „ tana. a — tang. fi ., ^ ^ ,,F = J^ s^ . _.^_^_^ :=:
_i_ 5' COS.' o {taug. a - tang, i3),

and substituting for s cos. a the base MN — x,

x'
^ = j2 (^^^^- ^ ~ tang.^\

therefore the area of the entire portion of surface M A B N, when

2/8 and y^ designate its ordinates MA and N B, is

Fx = (?/o + Vx) I
+ {tang, a - tang. /3) ^.

If another portion of the surface NB C adjoins the first and

has a base JV = x, and the ordinates B JV and C = y^ and

y.2. and the tangential angles S B F = (3 and S C G = y, we have

for the area of the sam^

F, = iy, + 2/2) I
+ (tang. P - tang, y) ^,

and therefore for the whole surface, since— tang. 13 csincels-[- tang. (3,

For a surface composed of strips of like width we have, when a

is the tangential angle at the commencement and 6 at the end,

x'
F=^ (i ^^'o -^yx+y^-\-l yz) ^ + {tang, a - tang. 6) ^,

and in general for a portion of surface, determined by the abscissas

x 2 X 2' X
-, -—,

—-. . . .r, and by the ordinates y^ y^, y^ . . . yny and by the
fh n n

tangential angles a^ and a„ of the ends,

F^-{ly, + y,+ y2 + ... + yn-i^ i yn]

4- fV (tang, a — tang. a„) ( -
j

x

An Integral

I
^

y dx — I
' (()(x)dx

= (2 yo + yi + «/. -!-••• + y«-^ + i 2/»)

X

+ i'j
{tang, a — tang. a„) ( -

j



Art. 32.] INTRODUCTION TO THE CALCULUS. 85

can be found by putting x = c^ — c, calculating the values

«/o = 4>{c),y, ^^\c +
I j, ?/., = (c + -^j,

,/ ^ x\ ( nx\ , . ,

yz = (t>[c+ —y..,y,. = (p\c + ~j = (p(c,),

as well as tayig. a — -— = ^p {x)=i{j (c) and tang. a„= V' (ci), and sub-

stituting them in the equation.

E.G., for / —we have, if we take n = 6, since
t/ 1 X

yo

x=Ci — c—2 — 1 and ?/ = (x) = -,
X

7=1^:^1 = ^rrr = f. ^2=1, 2/3=1, 2/4=A. ^5=A and ?/e=/2;

, . d y d ix~^)
also, since v^ = —\

—- —
d X d X

tang, a — — \ — —\ and tang. ,3= — (-) — — |, and therefore

4,1692 - I • T2 • sV = 0,694-87 - 0,00173 = 0,69314.

(Compare the example of the last article.)

Aet. 32. To rectify a curve, or from its equation y =f{x) be-

tween the co-ordinates A M — x and MP = y, Fig. 43, to deduce

an equation between the arc J. P = 5 and one or other of the

co-ordinates, we determine the differential of the arc ^ P of the

curve, and then we seek its integral. If x be increased by a quan-

tity MJ!i=:FE = dx, yis increased hjRQ = dy, and s by

the element P Q = d s, and

according to the Theorem
of Pythagoras we have

Fig. 43.

P Q'=P E^+QR\
I.E.,

M N

ds'=dx'+dy\
d s- Vd¥+df,

hence the arc of the curve

itself is

5 =y V dx' -{ d y\
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E.G., for NeiFs parabola (see Art. 9, Fig. 17), whose equation is

a If— x% we have 2a7/dy = dx-dx, whence

, 3 X' d X T -, , ^ x'^ d x^ 9 X d x^
d y = -^ and d y = -—::~^- = —

,^ 2 ay ^ ^a' y' 4. a '

and d s" = [1 -\- -r^\ d x" , hence

In order to find the necessary constant, we make 5 begin with x

and y, and we obtain

= ~^^ a VV + Con., or Con. = — -^^ a

and s= -i^a [/(l + 1^]' - l],

E.G., for the piece A P^ whose abscissa x = a, we have

s = -^^ a\_ Vl^' - 1] = l,v^36 a.

Introducing the tangential angle QPR = PTM=a (Fig.

43) we have

Q B = P Q . sin. Q P E und P B = P Q cos. Q P B,

I.E., d y = d s sin. a and d x = d s cos. a,

and besides, ta7ig. a = -^ (see Art. 6),

d 1/ d X
also, si7i. a = —^ and cos. a = -~j— ; and finally,

(is d s

d ^ *J Sin. a e/ COS. a

If the equation between any two of the quantities .r, y, s and a

is given, we can find the equation between any two others.

If, E.G., COS. a — — , we have
\'& + s'

a X — d s COS. a = — —, and
Vc' H- s'

r s d s , /^ 2 s d s ^ rd u
, / ,

,
./•— / —,, = }, I

— -— Jr / —j. = \ / u~-idu='j\
d y'^-i ^ g^ ~d ^ffl ^ ^•-' -J |/^^,

-d

= \^c' + s^ + Const., and if .r and 5 are equal to zero at tlie

same time, x = Vc' + s^ — c.
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Art. 33. a right line perpendicular to the tangent P T, Fig.

44, is also normal to the curve at the point of tangency, for the

Fig. 44.

tangent gives the direction of the curve at this point.

The portion PK oi the line between the point of tangency P
and the axis of abscissas is called simply the JS'ormal, and the pro-

jection of the same MK oji the axis of abscissas the Subn^ormal.

We have for the latter, since the angle M P Xis equal to the tan-

gential angle P T 31 = a,

MK = MP . tang, a,

dg
I.E., the subnormal = y tang, a = g dx

Since for the system of curves y — x"^, tang, a ^^ m x'^~\ it fol-

771 tf^

loTvs that the subnormal is = m x'" . a;'"~^ = w x'^"'~'^ — —~, and
X

for the common parabola, whose equation i^ y- — p x, we have thepp.
subnormal = y^ = ^, that is constant.

^ 2y 2

If to a second point ft infinitely near the point P, we draw

another normal Q C, we obtain in the point of intersection of

these two lines the centre (7 of a circle which can be described

through the points of tangency P and Q. It is called the circle of

curvature, and the portions C P and G Q oi the normals are radii

of this circle, or, as they are styled, the radii of curvature. This

circle is the one of all those, which can be made to pass through P
and Q, which keeps closest to the element P § of the curve, and

we can therefore assume that its arc P Q coincides with the ele-

ment P Q of the curve. It is called the oscillatory circle.
•

Denoting the radius C P = C Qhj r, the arc ^ P of curve by

s or its element P Q hj d s, and the tangential angle or arc of

P TMhj a, and its element S UM-S T M, i.e., -TJ S T ^-
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P C Qhj da,we have, since P Q=C P .arc of the angle P C Q,

d s=—r d a, whence the radius of curvatures r = — —-.
da

Fig. 45.

T A M N K ^

We can generally determine a from the equation of the co-ordi-

nates by putting tang, a = —^.
Cl Uy

Now d tang, a
d a

COS. a
, and COS. a

d X
whence

da = cos.^ a . d tang, a = d x'

r = — d s

d s'

d tang, a and

ds'

, and for a

Fig. 46

COS." a d tang, a d x" d tang, a

-c d s d s^
i< or a convex curve r = + -— — + ——-:-—

da d x^ d tang, a
point of inflexion r = cc.

For the co-ordinates A = u and C = v of the centre O of

curvature, we have

ic=A M+R C—x-v G P sin. CPU, i.e., u—x-yt sin. a, and

v= C=MP-HP^y- C P COS. G P H, i.e., v=y-r cos. a.

The continuous line formed

by the centres of curvature forms

a curve, which is called evolute

of A P, and whose course is de-

termined by the co-ordinates n

and V.

If the ellipse A D A, D„ Fig.

46, is laid upon the circle A B
A-i Bi, its co-ordinates C M = x

and M Q = y can be expressed

by means of the central angle

PGB = (l>oi the circle. We have

here
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x^ C P sin. C P M ^ C P sin. B C P ^ a sin. 0, and

y ^ MQ = - MP = - C P COS. CP M^l COS. 0.

From the latter we obtain d x — a cos. (p d (p and d y = — h

sin. d 0, and consequently for the tangential angle of the ellipse

Q TX= a

d y h sin. (p h , ^ j n -.

tana, a — -^ — — — — — - ^a/?^. 0, and fonts com-
-^ d X a COS. a ^

plementary angle Q T C = a^ = 180°— a,

tang, a, = - tang. and cotg. a^ = - cotg. 0.

Hence the subtangent of the ellipse is

MT= MQ cotg. MTQ

= y cotg. «! = ^ ootg. (p = y^ cotg. 0,

when yi designates the ordinate M P of the circle. Since the tan-

gent P T to the latter is perpendicular to the radius C P, we have

also P TM=P C B=(p, and therefore the subtangent MTof the

same is also = MP cotg. MT P—y^ cotg. 0.

Therefore the two points of the ellipse and circle which have

the same ordinate, have one and the same subtangent.

Farther, for an elementary arc of the ellipse

ds''=d x'^df^ {a^ cos.' (p ¥¥ sin.' 0) d (p\

and the differential of tang, a,

d tang, a = d tang. =
a '^ a COS.'

whence it follows that the radius of curvature of the ellipse is

_ d s^ _ (g- COS.- ^- ¥ sin.' 0)i

~ d x^ d tana, a
~

, , i^
a" cos.^ .

a cos.^(p

_ (a' cos.'(p + b'sin.'fp)l~
ah

E.G., for y = 0, I.E., for sin. = 0, and cos. (p= 1, we have the

maximum radius of curvature

-_^ - _^^"'~ ab~ h'
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and, en the contrary, for (j) = 90°, i.e., for sin. (p = 1 and cos. (p

— 0, the minimum radius of curvature

at) a

The first yahie of r corresponds to the point i), and the last to

the point A, and both are determined by the portions of the axes

CL and C K, which are cut off by the perpendiculars erected upon

the chord A^ D 2ii its ends A^ and D.

Art. 04. Many functions, which occur in practice, are com-

posed of the yarious functions which we haye already studied,

such as

y = x"", y — e", and y — sin. x, y = cos. x, etc.

;

and it is easy, with the assistance of the foregoing rules, to deter-

mine their properties, such as the position of their tangents, their

quadrature, their radius of curyature, etc., as well as to construct

the curves, as is shown by the following examples

:

For the curve, whose equation is y = x"^ ll — ^) = x^ — -| x^,

we have d y = 2 x d x — x- d x,

whence tang, a = 2 x — x"^ = x (2 — x).

Since this tangent becomes = for x = and .t = 2, its direction

at these two points is parallel to that of the axis of abscissas.

Farther, d tang, a = 2 d x — 2 x d x =r 2 (1 — .t) d x,

whence for x = 0, d tang, a = + 2 d x,

and for x = 2, d tang, a = — 2 d x,

and therefore the ordinate of the first point is a minimum, and that

of the second point a maximum. If we put d tang, a = 0, we ob-

tain x = 1 and y = ?, the co-ordinates of a point of inflexion in

which the concave portion of the curve joins the convex.

Farther, for an element d s of the curve Ave have

d s' = d x' -^df = d x' + a^ (2 - x)' d .r = [1 + x' (2 -x)'] d ;r,

whence the radius of curvature is

ds' [1 + x' {2-xyy^
r — —

for X

d x' d tang a 2(1- X)

we have, r — -x- — — I
2

, for X == l,r =
2f

2, r = ^ = + i, and for .1-3, r = i .10?= + 7,906.
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Tlie corresponding curve is shown in Fig. 47, in whicli A is the

origin and XX, Y Y the

axe^ of co-ordinates. The
parabola B A B^, which ex-

tends symmetrically upon

both sides of the axis of A Y,

represents the first part yx—x^

of the equation, and, on the

contrary, the curve C A Ci,

which upon the right-hand

side of Y Y descends below

XX, and on the left-hand

side rises above it, and thus

diverges more and more from

the axis X X, as it increases

its distance from Y Y, cor-

responds to the second part

y, = -
i x\

In order to find for a given

abscissa x, the corresponding

point of the curve y = x" —
\ x^, we have but to add alge-

braically the corresponding

ordinates of the first two

curves ; e.g., since for x = 1

we have ?/i = 1 and y.^ =— i,

it follows that the correspond-

ing ordinate of the point W
isy = y, -^y, = l-i = ^;

farther, for x = 2 we have

yi = 4, and ?/. = —
J, and

hence the co-ordinate of the

point J/ is ?/ = 4 — I = 1
In the same way a; = 3 gives

y = ?^, + f/, = 9 — 9 = ; .r—

— \,y—l + ^ = I ; a: r= — 2, ?/ = 4 + f
=

-r?> ^^c., and v/e per-

ceive that the curve from A towards the right has the form A W
MK L, and that in the beginning it runs above the abscissa A K
= 3, but from tliat point it extends to infinity below the axis
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X X, and that from A towards the left it forms but one branch

A P Q . , ., which rises to infinity. From what precedes we see

that IF is a point of inflexion, and M a point of the curve where

the ordinate is a maximum. While the curve has in A and M the

direction of XX, in W'\i rises at an angle of 45°, for we have for

the latter tang, a = ic (2 — a;) = 1 ; on the contrary, the angle of

inclination at K, is tang, a = — 3, consequently a is — 71° 34',

etc. The quadrature of the curve is given by the integral

F— j y d X — I (x^— I x^) clx = I x^ d x — \ I x^ d x

_ x^ x^ _ x^ i x\

~¥~l2~y\4/'
Hence, e.g., we have for the area of the portion of surface

A WM K&boYQA K=d

and on the contrary the area of the portion of surface 3 L 4 below

the abscissa 3 4 is

*
i^. - y (1 - -I)

~ y (1 - I) = - I = - 1.

Finally, to find the length of a portion of the curve, E.G., AWM,

we put

s = f Vl + x' (2 - xf dx= C\{x)dx,

and employ the method of integration explained in Art. 30. Here

c is = 0, and c^ = 2, and taking n = 4: we have d x =

2—0= —— = 1, then substituting successively the values 0, i-, 1, | and

2 for X in the function (r/:) — ^ \ -\- x^ {% — x)", we obtain the

values

^ (0)= 4/1= 1,
0(J)= 4/r+7g-f,0(l)= 4/1+1=1/2= 1,414....

(|)= 4/lT76= f and (2)= |/i= l,

and therefore the length of the arc ^ WM is

s = (0 (0)+4 (i)+2 (l) + 4 (|) + 0(2))^
= (1+5+2,828 + 5 + 1).^ = 2,471.
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By means of the curve y—x" (l— -„ ) we can easily determine the

course of the curve y—x i/ 1—- by extracting the square roots of
o

the values of the co-ordinates of the first, which give the corre-

sponding co-ordinates of the latter. But since the square root

of negative quantities are imaginary, this curve does not continue

beyond the point K to the right ; and since every square root of a

positive number gives two values, equal and with opposite signs,

the new curve (//) runs in two symmetrical branches Q A MK
and Qi A Ml K on both sides of the axis of abscissas.

Art. 35. When the quotient y = y-M of two functions (x)

and \p (x) takes the indeterminate form of - for a certain value a

x^ — a^
of X, which always occurs when, as e.g., in y = , the numer-

X d

ator and denominator of a fraction have a common factor x — a,

we can find the real value of the same by differentiating the nu-

merator and denominator.

If X is increased by d x, and y by the corresponding element

d y, we have

y -{- d y = , ) [
-

T , ) { , but lov x = a^ ^ \p (x) -h d \p (x)

(f)
(^x) = and ip (x) = 0, whence

d (x)

^ -^ d i) {xY

but since d y is infinitely small in comparison to y, we have

(.r) _d(p {x) _(p, (x)

y ip(x) dtp {x) -01 {xy

m which 0i (x) and i/^i {x) designate the differential quotients of

{x) and (a;).

If ^ = 7^^' ^^ ^^^^ ~
n'
^® ^^^ differentiate it anew, and put

_ d 01 (x) _ 02 (x)

y d^,{x) ^,{xy

In the same way the indeterminate expressions y = ~ and
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X 00, etc., can be treated, for 00=-, whence ^ and x 00

can be put = -

:

E.G., y = -—, —i-——

^

T becomes for x = 2, y = -.
^ 5 .1^ — 21 .-c + 24 a; — 4 ^

For this we can put

_ (/ (3 x' - 7 x' -Sx + 20) _ 9 a:' - 14 .T - 8

^ ~ cl (5 x' - 21 a;^^ + 24 .t - 4)
~ 15 x' - ^2 x + 24'

which for x = 2 gives again y = 7., and we can again put

_ d{9x' ~- Ux - S) _ 18 X - 14 _ 9 a; - 7 _ 11

^ ~ d (15 o;^ - 42 X + 24)
""

80 :c - 42
""

is'.-c - 21 ~ T'

The factor (.^ — 2) is really contained twice in the numerator,

and twice in the denominator. If we divide both by a; — 2, we

obtain

- 3 x' - X - 10

^ ~ b'x' - 11 a; + 2'

and dividing the last again by (x — 2)

_ 3 rg + 5
^ - 5x-r

which for a: = 2 gives y — ~,
y

I

We have also for y = —~ when x = 0, -,^ X '

.
^dx

but since d {a — Va- — x) — — d {a' — x)-. = /
^

=?

4 1
in this case y = —-=^=

a — X 2a'

further ?/ =i — . for x = 1, gives y = --,

d X — d X
but dl X — "TT and d Vl — x

^ — '
- - 2^1- x'

hence it follows that y = — = -^- — 0.^
a; 1
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-ri- n 1 — sin. X + COS. X . „ n
Fmally, ?/ = — ,

— ffives for a; = - (90°)
^ -^ —1+sin.x + cos.x^ 2^ '

y = — — = -, we have therefore
^ — 1+1 + 0'

d (1 — sin. X + COS. x) — cos. x — sin. x
y 3^ i L 13:;:

^ 6? (— 1 + sin X + cos. x) COS. x — sin. x

Art. 30. When, for a function 2/ = a u + [3 v, a series of

corresponding values of the variables u, v and y has been deter-

mined by observation or measurement, we can require the values

of the constants a and (3 which are the freest from accidental or

irregular errors of observation and measurement, and which

express most exactly the relation between the quantities u, v and

y, of which u and v are known functions of one and the same

variable, x. Of all the methods that can be employed for the

resolution of this problem, i.e., for the determination of the most

possible, or the most probably correct, values of the constants, the

method of the least squares is the most general, and rests upon the

most scientific basis.

If the results of the observations corresponding to the func-

tion y — a u -\- (i V are,

wi, ^1, yi

u„ V,, y,

Uz, Vz, yz

Un, V^, yr,

we have the following values for the errors of observation, and for

their corresponding squares.

z^=^ yx — {a Ux + |3 v^)

2^2 = «/2 — (» Wg + ^ Vi)

Zz = yz— (a Uz + /3 v-^

z„ = y,^ — {a 11,, + [3 v^)
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Zy=yi— 2au,yi-2l3 v, y. + a' u,' + 2 a {3 u, v, + /3' v,^

z^—y^— 2 a u^ y^2—2 (Sv^y^i- a" u.^ -[-2 a (3 u., v^ + i3' v^

'=yz- -2auzyz--2(3v^ y^+a' ^^/ + 2 a (i u^v, + f3' v^^

Zn'=yn-^au,^,-^(3Vr.y, + a'tC + 2a[3u^v,+j3'vJ'

Employing the sign of summation 2 to denote the sum of

quantities of the same kind, ?/,^ + y<i' + ^;/ + . . . + «/«^ = 2 (?/^),

Vx yi + v^ y^ + «^3 ^3 + • • • + ^« 2/« — -^ ("^ y)^ ®'tc-? we have for the

sura of the squares of the errors

2 {z') = 2 (y') - 2al (uy) - 2fi^{vy) + a' I. {u')

+ 2 a j3 2 (^^ v) + i3^ 2 {v').

In this equation, besides the sum of the squares of the errors

2 {z^), which is to be considered as the dependent variable, only

a and (3 are unknown. The method of the smallest squares

requires us to choose such values for a and (i as shall cause 2 (z^)

to be a minimum ; and therefore we must differentiate the

function 2 (2;''), which we have obtained, once in reference to a

and once in reference to ft and put each differential quotient

of 2 [z") thus obtained by itself equal to zero. In this way we
obtain the following equations of condition for a and ft

- 2 (w «/) + a 2 {u") + iS 2 (t^ ?;) = 0,

- 2 (v ?/) + i3 2 {v') + a 2 (i* v) = 0,

and resolving these we have

_ ^{v')^{uy)-l.(uv)^{vy)
2 {u') 2 (v^) - 2 {u v)^ {u vY

_ 2 {u') 2 {v y)-^ [uv)^{uy)
ino-enieur mo-e 77 \^ -

2T^?y2 7?y^"Y1.5 v) 2 {u vy
^^'' -^^gemeur, page 77.)

These forBiiilas give for a function y = a -^ (3 v, since here

ti
-----

1, and 2 {ii v) = ^ (v), 2 (u y) = ^ (y), and 2 {u') = 1+1
4- 1 -\- .. . = n, I.E., the number of equations or observations,

^ ^ liv^)l{y)-l{v)^{vy)
n 2 {v') - 2 (^^) 2 {v)

'

n ^(vy)- ^(v)^{y)

Tor the still simpler function y —. (3 v, in which a = 0, we have

^_^y)
2«r
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and, finally, for the most simple case y = a, where we have to de-

termine the most probable value of a single quantity,

n

that is the arithmetical mean of all the values found by measure-

ment or by obssrvation.

Example.—In order to discover the law of a uniformly accelerated mo-

tioD, I.E., the initial velocity c and the acceleration p, we have measured

the different times t^^ to, t^, etc., and the corresponding spaces s^, s^, «g,

etc., described, and have found the following results,

Times . . . o I 3 5 7 10 sec.

Spaces . . . o 5 20 38 5H 10 1 feet.

Now if s = c ^ +
pf

is the fundamental law of this motion, we are re-

quired to determine the constants c and p. Puttmg in the foregoing for-

mulas u = t, and v =t'^, and also a = c, /3 = - and y = «, we obtain for

the calculation of c and p the following formulas

:

_ S (P) 2 (. - S (t^) S (s t^)

2 {f) 2 it') - 2 {t') 2 {t')

p _ 2 jf) 2 (8 f) - 2 if) 2 is t)

2 ~ 2 {t') 2 {t') — 2 {t') 2 {t^)
'

from which the following calculations can be made,

t f f r s St sf

I I I I 5 5

1

5

3 9 27 81 20 60 180

5 25 125 625 38 190 950
7 49 343 2401 58.5 409.5 2866.5

10 100 1000 lOOOO lOI lOIO lOIOO

Sum 184 1496 I3I08 222.5 1674-5 I4IOI.5
= S(f) =2(0 =^{n = ^{s) = ^{st) =i{sn.
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from which we obtain

13108 . 1674,5 -

184 . 13108 — 1496

184 . 14101,5 - 1496

1496 . 14101,5 _ 85340

1496 ~ 17386

1674,5 89624
2"^ 184.13108-1496.1496 "173860

Whence the formula for the observed movement is

s = 4,908 t + 0,5155 t\

and from this formula we have

= 4,908 feet, and

= 0,5155 feet.

For the times . o I 3
5

7 10 sec.

For the spaces o 5-43 19.36 37-43 59.62 100.63 f^^t-

Akt. 37.

Fig. 48. b If we consider the times

(t) as abscissas, and lay off

the calculated as well aa

the observed spaces (s) as

ordinates, we can draw a

curve through the extrem-

ities of the calculated ordi-

nates, which will pass be-

tween the points i¥, W, 0, P,

Q, determined by the ob-

served co-ordinates, so that

the sum of the squares of the

deviation of the curve from

these points shall be as small

as possible.

If we have no formula for the successive values of a

quantity ?/, or for its dependence

upon another quantity x, and we
wish to determine its A^alue for a

given value of x, determined by

experiment, or taken from a table,

we employ the so-called method

of interpolation, of which only

the most important part will be

given here.

If the abscissas A Mo = Xq,

A M, = .r, and A M, = x„ Fig.

49, and the corresponding ordi-

nates Mo Po = 2/0, M^ P, = «/„

i/2 P2 = y-i ai'e given, we can

Fig. 49
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express the ordinate MP—y, corresponding to the new abscissa A M
=Xf by the formula y=a-\-P x-{-yx% provided three given points Po,

P„ Psj lie nearly in a straight line or in a shghtly curved arc. If we

change the origin of co-ordinates from A to Mq, the generality of

the expression will not be affected, and we obtain for x — simply

y = a, and consequently the constant member a = y^. Substi-

tuting in the supposed equation, in the first place x^ and y^, and

then in the second place x.2 and y.2, we obtain the two following

equations of condition,

yi — yo = [^ ^i + 7 ^1% and

2^2 — 2/o = /3 ^-2 + y ^'2^ hence

X\ X^ X^ X\

V - (^i - yo) ^2 - {y-2 - y,) X,

from which we have

_^ ( {yi-y^)^'"-iy-2-y^)^"\ ^ ^ liy^-yo)x^--'{y^-y^)^A ^.^

\ X\ X^ Xi2 X-y
'

\ X\ X2 X2 X\ J

If the ordinate y^ lies midway between y^ and «/o, we have x^ —
2 .Ti, and therefore more simply

If but two pair of co-ordinates x^^ y^, and x^, y^ are given, we

must regard the limiting line P^ P^ as a straight line, and conse-

quently put y = y^ + (i X

and y, = y^ -^ (3 x„

whence we have /3 = ^ ^, and

y = y^ (•^")-

When it is required to interpolate by construction between

three ordinates ^„, y^, y^ a fourth ordinate y, we draw, through the

extremities P^, P,, Pg of these ordinates a circle, and take y — to

the ordinate of the same. The centre C of the circle is determined

in the usual way by joining the points P^ Pi Pa by straight lines

and erecting perpendiculars at the middle points of the chords.

The point of intersection C of the perpendiculars is the required

centre.

If the distances of the middle point Pi from the two others Po
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and Pi, are s^ and ^2, and the distance Pi K of the point P from the

chord Po P2 = 5i = h, we have for the angle at the periphery

a — P^ P^ P^z= }^ the angle at the centre Pi C P^

h
sm. a = —

,

So

and consequently the radius of curvature C P = C P^ = C Pi =

2 sm. a 2 A '

consequently we find the centre C of the circle passing through the

points Po, Pi, P2, by describing from P^ or Pi or Pg with a radius

equal to the value of r, calculated by means of this formula, an arc

whose intersection with the perpendicular to the chord P^ Pa erected

at its centre D is the required point.

Aet. S 8 . The mean of all the ordinates upon the line M^ M^ is

the altitude of a rectangle M^ Mc, iVs ^0 with the same base i/j, M.^,

and having the sa^e area as the surface M^ M^ Pg Pi P^, and can

therefore easily be determined from this surface. According to

Art. 29 we have

r2- .

y d x= /
^

(y^ + ^ X + y x')dx

(3 x^ y x^
2/0 ^2 + ^-^ +^

\ X\ Xq — X^ X\ f /v

+ A^i - ^o) ^^ ~ (y^ ~ ^0) ^A ^'

\ X\ Xo Xq X\ I o

~
V^» ^ 6 X, {x, - X,) 6 {x, - X,) J

'

- \-2~) ""' + I 6x, {X, - X,) ;
''^ '

and consequently the mean ordinate is

,, _ -^ _ (2/0 + y^)
, /fa-.yo)^2 -fa-yo)^i\

^

If ^^ ~ ^° were = —, the boundary would be a right line, and

we would have simply

and y.= ^^-^.
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Fig. 50.

If also X, — 2 X,, that is, if y^ is equidistant between y, and

y.^, we have

F={y,-^^y.+ y.) f (see Art. 30), and y,^
:^lo_±±y±+^M

If a surface 31, M, P-, P„ Fig.

50, is determined by four co-or-

dinates M, F, = y,y M\ P, = y„

M, Pa = y-2, i/a Pz = y-i, whicli

are equidistant from one an-

other, we can determine approx-

imately the area of the same in

the following simple manner

:

Let us denote bya^gthe base

M, 3fs, by z, Zx z-i, three ordinates

^ intercalated between y, and y-^,

and equidistant from each other.

we can then put approximatively the surface

M, M, P, P, = F= (iy, + z,+z,+ z, + ^y^) ^; but

Zy -\- z<i } Zs 2zi + 2z.i + 2 03 2. Zi + Zci 2 Zs + Zi ,

-—3 ^
^6 =-T- + —^-"^^

-, / . 2zi + z, ,, 2 23 + 5?,

yi = Zi + i (z, — z,) = ^ , as well as y, = g

—

whence it follows that
Zr + z, -\- zs _y, -T y

-, and

F=[iy. + 1(2/1 + 2/0 + ^^3]
X-i

=
[2/0 + 3 (y, + y,) + y,]

—
', and also

ym = yo + 3 (y, + y,) + 2/3

8

While the former formula for y^ is employed when the surface

is divided into an even number of strips, the latter is employed

when the number of these divisions is uneven.

Hence we can write approximately

J y dx^ J^
(t>{x)dx = [y, + ^(y,-\- tj,) + y^] ^^^-^, if
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«/« = </> (c),2/i = (—3—
j' ^:-' = ^ ( 3^—; and y,= (i>

{c,] are

four known values of y = ([> (x) . e.g., for / — (see example, Art.

30) we have c = 1, Ci = 2 and (x) = -, whence it follows that

2/0 - i - 1, 2/1 -
2 + 2 ~ ^'^^2 -

1 + 4
= I and y = i, and that

the approximate value of this integral is

*'^ rfr 111

160
/^=[l + 3(|+|) + A]. 0,694



PART FIRST.

GENERAL PRINCIPLES OF MECHANICS.





FIRST SECTION.

PHORONOMICS OR THE PURELY MATHEMATICAL
THEORY OF MOTION.

CHAPTER I.

SIMPLE MOTION.

§ 1. Rest and Motion.—Everybody occupies a certain posi-

tion in space, and a body is said to be at rest, (Fr. repos, Ger. Ruhe),

when it does not change that position, and, on the contrary, a body

is said to be in motion, (Fr. mouvement, Ger. Bewegung), when it

passes continually from one position to another.

The rest and motion of a body are either absolute or relative,

according as its position is referred to a point which is itself at rest

or in motion.

On the earth there is no rest, for all bodies upon it participate

in its motion about its axis and around the sun. If we suppose

4he earth at rest, all the terrestrial bodies which do not change

their position in regard to the earth are at rest.

§ 2 Kinds of Motion.—Tlie uninterrupted succession of po-

sitions which a body occupies in its motion forms a space, that is

called the path or trajectory (Fr. Chemin, trajectoire, Ger. Weg) of

the moving body. The path of a point is a line. The path of a

geometrical body is, it is true, a figure, but we generally under-

stand by it the path of a certain point of the moving body, as, e.g.,

its centre. Motion is rectilinear (Fr. rectiligne, Ger. geradlinig)
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when the path is a right line, and curvilinear (Fr. ciirviligne, Ger.

krummlinig) when the path of the moving body is a curved hne.

§ 3. In reference to time (Fr. temps, Ger. Zeit) motion is either

uniform or variable. Motion is uniform (Fr. .uniforme, G. gleich-

formig) when equal spaces are passed through in equal arbitrary

portions of time. It is variable (Fr. varie, Ger. ungleichformig)

when this equality does not exist. When the spaces described in

equal times become greater and greater as the time during which

the body is in motion increases, the variable motion is said to be

accelerated (Fr. accelere, Ger. beschleunigt) ; but if they decrease

more and more with the increase of time, this motion is said to be

retarded (Fr. retarde, Ger. verzogert). Periodic (Fr. periodique, Ger.

periodisch) motion differs from uniform motion in this, that equal

spaces are described only within certain finite spaces of time, which

are called periods. The best example of uniform motion is given

by the apparent revolution of the fixed stars, or by the motion of

the hands of a clock. Examples of variable motion are furnished

by falling bodies, by bodies thrown upwards, by the sinking of the

surface of water in a vessel which is emptying itself, etc. The
play of the piston of a steam engine, and the oscillations of a pen-

dulum, afford good examples of periodic motion.

§ 4. Uniform Motion.— Velocity (Fr. vitesse, Ger. Geschwin-

digkeit) is the rate or measure of a motion. The larger the space

tliat a body passes through in a given time, the greater is its mo-

tion or its velocity. Jn uniform motion the velocity is constant,

and in variable motion it changes at each instant. The measure

of the velocity at a given moment of time is the space that this

body either really describes, or which it would describe, if at that

instant the motion became uniform or the velocity remained con-

stant. We generally call this measure siniply the velocity.

§ 5. If a body in each instant of time describes the space a, and

if a second of time is made up of 7i (very many) such instants,

then the space described within a second is the velocity, or rather

the measure of the velocity, and it is

c = n . o.

During a time t (seconds) n . t instants elapse, and in each in-
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stant the body passes through the space a, and therefore the total

space, (Fr. I'cspace, Ger. Weg), which corresponds to the time t^ is

s = n . t . o — n . o . t, I.E.

I.) s^ct.

In uniform motion the space {s) is a product of the velocity {c)

and the time (t).

Inversely IL) c = -.

III.) t = -.
c

Example.—1. A locomotive advancing with a velocity of 30 feet passes

in two hoars — 120 minutes = 7200 seconds, over the space s = 30 . 7200

= 216000 feet.

2. If we rec[uire 4^- minutes = 270 seconds to raise a bucket out of a

1200 40
pit, which is 1200 feet deep, we have its mean velocity (c) = -^^ = —
= 41 = 4,444-. . . feet.

3. A horse advancing with a velocit}^ of 6 feet requires, to pass over five

26400
miles, or 26400 feet, the time t = —

^
— = 4400 seconds, or 1 hour 13

minutes and 20 seconds.

§ 6. If we compare two different uniform motions, we obtain

the following result

:

As the spaces are s = c t and s^ ~ Ci tx their ratio is - = -—7.
S\ Ci t\

S C 9
If we put t = ti^Q have - = ; if we take c = c, we obtain =

5i Ci Si

t c t

, ; and finally, ii s = Sx it follows that ~ = y.
t\ Ci t

The spaces described in the sarae time in different uniform mo-

tions are to each other as the velocities ; the spaces described with

equal velocities are to each other as the times ; and the velocities cor-

responding to equal spaces are inversely as the times.

§ 7. Uniformly Variable Motion.—A motion is uniformly

variable, (Fr. uniformement varie, Ger. gleichformig veriindert),

when the increase or diminution of the velocity within equal, ar-

bitrarily small, portions of time is always the same. It is either

uniformly accelerated (Fr. uniformement accelere, Ger. gleichfor-
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mig besclileunigt) or uniformly retarded (Fr. uniformement retardo,

Ger. gieichformig verzogert). In tlie first case a gradual augmen-

tation, and in the second a gradual diminution of velocity takes

place.

A body falling in vacuo is uniformly accelerated, and a body

projected vertically upwards would be uniformly retarded, if the

air exerted no influence upon it.

§ 8. The amount of the change in the velocity of a body is

called the acceleration (Fr. acceleration, Ger. Beschleunigung and

Acceleration). It is either positive (acceleration) or negative (re-

tardation), the former when there is an increase, and the latter

when there is a diminution of velocity. In uniformly variable mo-

tion the acceleration is constant. We can therefore measure it

l)y the increase or decrease of velocity which takes place in a

second. For any other motion, the acceleration is the increase or

decrease of velocity, which a body would undergo if, from the instant

for which we wish to give the acceleration, tlie acceleration became

const int, and the motion was changed to a uniformly varied one.

This measure is generally called simply the acceleration.

§ 9. If the velocity of an uniformly accelerated motion in a very

small (infinitely small) instant of time is increased by a quantity

/f, and if the second of time is composed oin (an infinite number
of) such instants, the increase of velocity in a second, or the so-

called acceleration, is

p = n K,

and the increase after t seconds is = nt.fc = nK.t=pt.
If the initial velocity (at the moment from which we begin to

count t) is = c, we have for the final velocity, i.e., for the velocity

{it the end of the time t,

v = c + p t.

For a motion starting from rest c is = 0, whence v — p t ; and

Wiien the motion is uniformly retarded, in which case the accelera-

tion ( — ^ ) is negative, we have

V — c — p t.

Example.—1. The acceleration of a body falling freely in vacuo is

= 32,20 feet. It acquires therefore after 3 seconds the velocity i^ — -pt =
32,20 . 3 = 96,60 feet.

2. A ball rolling down an inclined plane has in the beginning a velocity
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of25 feet, and the acceleration is 5 feet per second. Its velocity after 2| sec-

onds is therefore « = 25 + 5 . 2,5 = 37,5 feet ; i.e., if from the last moment
it moved forward uniformly, it would pass over 37,5 feet in every second.

3. A locomotive moving with a velocity of 30 feet loses, in consequence

ofthe action of the brake, 3,5 feet of its velocity every second ; its accelera-

tion is therefore — 3,5 feet and its velocity after 6 seconds is « = 30 — 3,5 . 6

= 30 — 21 = 9 feet.

§ 10. Uniformly Accelerated Motion.—Within an infinitely

small instant of time r we can consider the velocity of every

motion as constant, and put the space passed through in this

instant

a = V . Ty

and we obtain the space passed through in the finite time t by

summing these small spaces. But the time in which all these

small spaces were described is one and the same r, and we can put

their sum equal to the product of this instant of time and the sum
of the velocities corresponding to the different equal instants.

For uniformly accelerated motion the sum (0 + v) of the ve-

locities in the first and last instant is just as great as the sum

p T + (v — p t) of those in the second and last" but one instants,

and equal to the sum 2 p r + {v — 2 p r) of those in the third and

last but two instants, etc., and this sum is in general equal to v ;

the sum of all these velocities is therefore equal to (^' • o) ^^^^ pro-

duct of the final velocity and half the number of the elements

of the time, and the space described is equal to the product

('1') of the final velocity v and half the number of the elements

of the time and one of these elements. Now the magnitude (r)

of an element of the time multiplied by their number gives the

whole time t, whence the space described in the time t with an

uniformly accelerated motion is 5 = -^

The space described with uniformly accelerated motion is the

same as that described with uniform motion when the velocity of

the latter is half the final velocity of the former.

Example.—1. If a body in uniformly varied motion has acquired in 10

seconds a velocity v = 26 feet, the space described in the same time is

26 . 10 .oA<- *
i = —-— = 130 feet.

2
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2. A wagon whose motion is uniformly accelerated and wliich describe?

25 feet in 2^ seconds, possesses at the end of that time the velocity

3.35 50.4 „„_ . ,

§ 11. The two fundamental formulas of uniformly accelerated

motion
I.) V =p t and

II.) s =
-J,

whicli show that the velocity is a product of the acceleration and

the time, and that the space is the product of half the terminal ve-

locity and the time, furnish two other equations, when we eliminate

in the first place v and in the second t. By this operation

we obtain

III.) 5=^ and

IV.) s = f.
Hence, in uniformly accelerated motion, the space described is

equal to the product of half the acceleration and the square of the

time, and also to the square of the terminal velocity divided hy dou-

ble the acceleration.

From these four principal formulas we deduce by inversion,

and by the elimination of one or other of the quantities contained

in them, eight other formulas, which are collected together in a table

in the " Ingenieur," page 325.

Example.—1. A body moving with the acceleration 15,625 feet, describes

in 1,5 seconds the space —' , ' = 15,625 . — = 17,578 feet.

2. A body, which acquires a velocity v — 16,5 in consequence of an

acceleration 'p = 4,5 feet, has described in so doing the space s =

(1«..5Z = S0,25 feet.
2 . 4,5

§ 12. On comparing two different uniformly accelerated mo-

tions, we arrive at the following conclusions.

The velocities are v = p t and v^ — px t^. The spaces, on

the contrary, are s — -„— and s^ = —^, whence we have

V _ p t A i_ ^ p1_ — uL — t.JPi.

"v^
~

p^ t. Si
~

Pi t,^
~~

Viti~ V,' p
Putting ti

— t we obtain

:



§13.] SIMPLE MOTION. HI

S V T)— — — = -
; the times being equal, the ratio of the spaces de-

Si Vi pi

scribed is equal to that of the final velocities or of the accel-

erations.

If we put pi = p y^e have

V _ t I ^ _ ^^ _ '^'

The acceleration being the same, i.e., when we have the same

uniformly accelerated motion, the final velocities are to each other

as the times, the spaces described as the squares of the times, and

also as the squares of the final velocities.

T) f ^ f
Farther, if we take ?;i = ^ it ffiv.es — = -^ and — = —-: for the

'='

Pi t Si ti

same final velocities the accelerations are to each other inversely,

and the spaces directly as the times.

Finally, for Sj =: 5 we have -t- r= -L = -^ ; for equal spaces de-

scribed the accelerations are to each other inversely as the squares

of the times and directly as the squares of the velocities.

§ 13. For a uniformly accelerated motion with the initial veloc-

ity c we have from § 9

I.) V = c -\- p t,

and since the space c t belongs to the constant velocity c, and the

space ~r- to the acceleration p
</

11.) ^^ct-V
^^'^

2

Eliminating p from the two equations, we obtain

c ^- V .

III.) s = —^ t,

or eliminating t, we find

IV.) . = t^'l.
' 2 p

Example.—1. A body moving with the initial velocity c = 3 feet and

with the acceleration jp = 5 feet describes in 7 seconds the space

«=3.7 + 5.^-=3 21 + 122,5 = 143,5 feet.

2. Another body, which in 3 minutes = 180 seconds changes its ve-

locity from 2| feet to 7^ feet, describes during this time the space

?l^4-^. 180 = 900 feet.
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§ 14. Uniformly Retarded Motion.—For uniformly retarded

motion with the initial velocity c we have the following formulas,

which are deduced from those of the foregoing paragraph by mak-
ing 'p negative.

I.) V = c — J9 ^,

11.) s^.ct- ^,

TTT \
C -^ V ,

ni.) s = —^— . t,

IV.) s =
2p

While in uniformly accelerated motion the velocity increases

without limit, in uniformly retarded motion the velocity decreases

up to a certain time, when it is = 0, and afterwards it becomes

negative, i.e., the motion continues in the opposite direction.

If we put V = in the first formula, we obtain p t ~ c, whence

the time in which the velocity becomes = is t = —
;

substituting this value of t in the second equation, we obtain the

space described by the body during this time, 5 = ——

.

^p
c &

If the time is greater than —, the space is smaller than —

;

2 c
and if the time is = — the space becomes = 0, the body having re-

turned to its point of departure ; finally, if the time is greater than

^ c
'^-, s is negative, i.e., the body is on the opposite side of the point

of departure.

Example.—A body which is rolled up an inclined plane with an in-

itial velocity of 40 feet, and which suffers a retardation of 8 feet per sec-

40 40"^

ond, rises only during - = 5 seconds and reaches a height of-—- — 100
8

*"'

3 . 8

feet, after which it rolls back and arrives after 10 seconds with a velocity

of 40 feet at the point from whence it started, and after 13 seconds is al-

ready 40 . 12 — 4 . 13^ or - (40 . 3 -f 4 . 3") = 96 feet below its point of de-

parture, if the plane continues beneath it.
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§ 15. The Free Fall of Bodies.—The/ree or vertical fall of

bodies in vacuo (Fr. mouvement vertical des corps pesants, Gen
del* freie oder senkrechte Fall der Koi*per) furnishes the most im-

portant example of uniformly accelerated motion. The acceleration

of this motion produced by gravity (Fr. gravite, Ger. Schwer-

kraft) is designated by g, and its mean value is

9,81 meters.

30,20 Paris feet.

32,20 Enghsh feet.

*
31,03 Vienna feet.

31| = 31,25 Prussian feet.

32,7 Bavarian or meter feet.

If any of these values of ^ be substituted in the formulas v=g t.

and s = ^, V = i^2 g s, all possible questions in relation

to the free fall of bodies can be answered.

For the metrical system of measures we have

V = 9,81 . t = 4,429 Vs,

s = 4,905 f = 0,0510 v% _
t == 0,1019 ?;' = 0,4515 |/s;

and for English measures

V = 32,2 t = 8,025 \^s,

s =:. 16,1 f = 0,0155 v%

t = 0,031 V = 0,249 Vs.

Example.—1.) A body attains when it falls unhindered in 4 seconds a

velocity v = 32,3 . 4 = 128,8 feet, and describes in this time the space s =
16,1 .

4' = 257,6 feet. 2.) A body which has fallen from the height 8 =
9 feet, has the velocity v = 8,025 1^9 = 24,075. 3 ) A body projected ver-

tically upwards with a velocity of 10 feet rises to the height s = 0,0155 .

10^ = 1,55 feet, in the time

t = 0,031 . 10 = 0,31,

or nearly | of a second.

§ 16. The following Table shows how the motion takes place as

the time elapses,
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Time in)

j

seconds j

o I 2 3 4 5 6 7 8 9 lO

!
Velocity . o ^9 ^9 19 49 5^ 6g .79 8^ 9^ lO^

1
Space . o

2 i i i6^
2 '4 3.f < '*! 8/

2
lOO"^

2

[Difference o
2 A 4 4 'f 2 < 5f -f -f

The last horizontal column of this table gives the spaces de-

scribed by a body falling freely in each single second. We see that

these spaces are to each other as the uneven numbers 1, 3, 5, 7, etc.,

while the times and the velocities are to each other as the regular

series of numbers 1, 2, 3, 4, 5, etc., and the distances fallen through

as their squares 1, 4, 9, 16, etc. Whence, e.g., the velocity after 6

seconds is = 6 ^ = 193,2 feet, i.e., the body, if from this moment
it continued to move uniformly as on a horizontal plane which of-

fered no resistance, would describe in every second the space 6 (/ =
193,2 feet. It does not really describe this space in the following

or, seventh second, but from the last column we see that it de-

scribes exactly 13 | — 13 . 16,1 = 209,3 feet, and in the eighth

second 15 f = 15 . 16,1 = 241,5 feet.

Remark.—Older German writers designate the space 16,1 feet, de-

scribed by a body falling freely in the first second, by ^, and call it also the

acceleration of gravity. They employ for the free fall of bodies the for-

mulas

« = 2 ^ i = 2 V7«,

3^ ^ g

This usage, known only in Germany, is tending gradually to disappear,

which, on account of the frequent misapprehensions and errors resulting

§ 17. Free Fall with an Initial Velocity.—If the free fall

of a body takes place with an initial velocity (Fr. vitesse initiale, Ger.
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Anfangsgeschwindigkeit) Cy the formulas assume the following

form

:

v = c+gt = c-^ 32,2 t feet = c + 9,81 t meters,

V = Vc' + 2 g s = l/c^'TTpTs feet = VJ~+'i^~Qi's meters,

s = ct +^^f ^ ct + 16,1 f feet ^ c t + 4,905 f meters,

and 5 = '"-^^ = 0,0155 (v' - c') feet = 0,0510 (v' - c') meters.

If, on the contrar}^, the body is projected vertically upwards, we

have

v = c — gt = c — 32,2 t feet — c — 9,81 t meters,

V = V? -2gs = Vc' - 64,45- feet = V'(F^i9,G2's meters,

s = cf -^f = ct - 16,1 f feet = c ^ - 4,905 f meters,

and s = ^ ~ ^ = 0,0155 (c' - z;') feet = 0,0510 (c' - v') meters.
2g

' y \ /

If we consider a given velocity c as a velocity acquired by a free

fall, we call the space fallen through

^ = 0,0155 c' feet = 0,0510 c' meters,

"the height clue to the velocity" (F. hauteur due a la vitesse, Ger.

Greschwindigkeitshohe). By the substitution of the above, several

of the foregoing formulas may be expressed more simply. If we

denote the height (s~) ^^^ to the initial velocity by /j, and that

/— ) due to the final velocity by h, we have for falling bodies,

h = Ic + s and s = h — 7c,

and for ascending bodies,

h = k — s and s = k — h.

The space described in falling or ascending is therefore equal

to the difference of the heights due to the velocities.

Example.—If for a uniformly varied motion the velocities are 5 feet

and 11 feet, and the heights due to the velocities are 0,0155 . S'^ = 0,3875,

and 0,0155 .11'^ = 1,8755, the space described in passing from one velocity

to the other is s = 1,8755 — 0,3875 = 1,4880 feet.
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& — v^
§ 18. Vertical Ascension.—If in the formula s — —^—

-

for the vertical ascension of bodies we put the final velocity v =
0, we obtain the maximum height of ascension,

consequently the maximum height of ascension, corresponding to

the velocity c, is equal to the height of fall h due to the final velo-

city c, and therefore c — V)l g k is not only the final velocity for

the height h of free fall, but also the initial velocity for the maxi-

mum height of ascension k. Hence it follows that a body pro-

jected vertically upwards has at any point the same velocity, which

it would have, in the opposite direction, if it fell from a height

equal to the remaining height of ascension to that point, and which

it really possesses afterwards, when it reaches it upon falling back.

Example.—A body projected vertically upwards, with a velocity of 15

feet, after ascending 2 feet meets an elastic obstruction, which throws it

back instantaneously with the same velocity with which it struck. How
great is this velocity, and how much time does the body require to ascend

and fall back again ? The height due to the initial velocity 15 feet is ^ =
3,49 feet, and the height due to the velocity at the instant of collision is

Ji = 3,49 — 2,00 = 1,49, and, consequently, the velocity itself is = 8,025

i/l,49=:9,8 feet. The time necessary to ascend the entire height (3,49 feet)

would be ^ = 0,031 c ~ 0,031 . 15 = 0,465 seconds, while the time neces-

sary to ascend the height 1,49 is ^^ = 0,031 . 9,8 = 0,3038 seconds, whence

the time necessary to ascend the 2 feet is ^ — ^^ = 0,465 — 0,3038 =
0,1612 seconds, and finally the whole time employed in ascenduig and fall-

3224
ing is = 2 . 0,1612 = 0,3224 seconds. This, therefore, is but ^^, or

about ^ of the time, which would be employed by the body in rising and

falling if it met Avith no obstacle. This case occurs in practice in forging

red-hot iron, for we are obliged to give as many strokes of the hammer
as possible in a short space of time, on account of the gradual cooling of

the iron. If by means of an elastic spring we cause the hammer to be

thrown back, it can, under the circumstances supposed in the example,

make three times as many blows as when its rise was unimpeded.

Remark 1.—In practical mechanics, particularly in hydraulics, we are

often obliged to convert velocity into height due to velocity, or the latter

into the former, A table, by means of which this operation can be per-

formed at once, is of the greatest service to the practical man. Such a

one, calculated for the Prussian foot, is to be found in the "Ingenieur,"

page 326 to 329.
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Remark 2,—Tlie formulas deduced in the foregoing paragraphs are

strictly correct only for bodies falling freely in mcuo ; tliey are, however,

sufficiently accurate for practical purposes, when the weight of the body is

great compared to its volume, and when the velocities are not very great.

They are, besides, employed in many other cases, as will be shown here-

after.

§ 19. Variable Motion in General.—The formula s = c t

(§5) for uniform motion holds good also for every variable motion^

if instead of t we substitute an element or an infinitely small in-

stant of the time r, and instead of s the space o described in this

instant, for we can assume that during the instant r the velocity c,

which we here denote by v, remains constant, and that the mo-

tion itself is uniform.

Hence, w^e have for every variable motion

I.) G =z V r, and V = - (compare § 10).

77ie velocity (v) for every instant is given by the quotient of the

element of the space divided by that of the time.

In like manner the formula v = p t {%!!) iov uniformly accele-

rated motion holds good also for every variable motion, if instead of

t and V we substitute the element of time r and the infinitely small

increase of velocity k during that time, for the acceleration p
does not vary sensibly in an instant r, and the motion can be re-

garded as uniformly accelerated during this instant. Consequently

we have for all motions

II.) K = p r, and p — -.

The acceleration (p) is, therefore, equal to the element of the ve-

locity divided by the element of the time.

If we put the total duration of the motion t — n r^ and the ve-

locities in the successive instants r are Vx, v^, v-^ . . v,„ the corres-

ponding elements of the space are o^ = v, r, Oc^ =z v^ r, g., = v^r . ,

,

^n = v^ T, and the total space described is

s^{v, + v, + v^.. . v„) r = r~~ M n r, i.e.,

T*x /V] -\- V<i +.. . +V,\ , , ,

I*) s = I
—-^— -) t = vt, when

V = — —^^'"
" denotes the mean velocity of the body while

ds.§cribing the space s.
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In like manner if c denotes the initial and v the final velocity,

and if jj?i,^2 • • -Pn denote the accelerations in the equal successive

instants r, we have

v-c={2h +p, + ...pn) r= [^
—

^-^^
—--^j n r, i.e.,

II*) v-c= (ll-±-^'-^--J^'j t--=pt, when

p —Pi—ll—:_•_•

—

ui denotes the mean acceleration.
n

By combining the formulas I* and II. we obtain the following

not less important equation :

III.) V fc = p G.

If, while the space s = no is described, the acceleration assumes

successively the values j^i, jo^ . ..p,„ the sum of the products j? o is

If the initial velocity c is transformed by successive increases

V — c
of tc = into the final velocity v, the sum of the products

V icis

CK -\- {c -T k) tc +— + (v — fc) k-{-vk= [c+{c + k) + . ..-}-{v— K) + v]fc

and therefore we can write

v"^ — & v^ — &
III*) —^— — p s, OY s — —^ (compare IV., § 13).

With the aid of the foregoing formulas we can solve the most

varied problems of phoronomics and mechanics.

The time, in which the space s — no\% described with the vari-

able velocities v^, v^,. .. v„, is

TTTX^ /I 1 1\5/1 1 1\ S

\vi Vo vj n \vx V.2 ^•„ / v

when we put the value -I 1 h . . . H ) = ? whose recip-

rocal V can be considered as the mean velocity.

Example.—When a body moves according to the law v —af^^ we have

c jf- K = a{t -^ rf = a {V' \- % t T \- r-), and /c = a r (2 ^ + r), consequently

p = - = % at.
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The Telocities of the body at the end of the times

r, 2r, 3 r . . . ?i r are a r-, a (2 r)^, a (3 r)- . . a {n t)%

whence it follows that the space described in t = n t seconds is

s = [aT' +a{2Ty + ..a{n r)-] r = (V + 2- + d"" + . . + n"") a r', "

but from Article 15, IV., of the Introduction to the Calculus we have

12 + 2^ + 3'- + . . + w' =-- ~, hence
o

(§ 20.) Differential and Integral Formulas of Phorono-
mics.—The general formulas of motion found in the foregoing

paragraphs assume, when the notations of the calculus are em-

ployed, I.E., when the element of time r is designated by d t, the

element of space a hj d s, and the element of velocity ichj d v^ the

following form

:

I.) V — -=—,, or d s = vdt, whence s = I vdt, and t = -—.
a I ^ o V

II.) p = ~~ or d V =pdt, whence v = / pdt, and t— I —

.

III.) V dv =p d s, or s = I , and—~— = 1 2^ d s,

in which c denotes the initial and v the final velocity, while the

space s is being described.

We see from the above that the difference of the squares of the

velocities is equal to tivice the integral of the product of the accelera-

tion and the differe7itial d s, or equal to the p>roduct of the mean ac-

celeration and the space described hy the hody in passing frojii the

velocity c to the velocity v.

According to the theory of maxima and minima the space is a

maximum, and the motion attains the greatest extension, when we
have

d s ^
di = '' = ^'

and the velocity is a maximum or minimum when

dv
01= P = ''-

The foregoing are the fundamental formulas of the higher

Phoronomics and Mechanics.

Example.—1. From the equation for the space s = 2 + 3 i + ^-j we
•leduce by differentiation the equation for the velocity «)=3 + 2 i, and that
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for the acceleration p = 2\ the latter is constant and the motion is uni-

formly accelerated,

For i = 0, 1, 3, 3 . . . seconds, we have

«) = 3, 5, 7, 9 . . . (Feet), and
*

s = 2, 6, 12, 20 . . . (Feet).

2. From the formula for the velocity

= 10 + 3 if — f , we obtain by integration

s= flOdt + r^tdt - Cfdt = lot + 1 e^-^,

and on the contrary by differentiation p = S — 2t.

Consequently, for 3 — 2 ^=0, i.e., for ^=f seconds, the acceleration is

and the velocity is a maximum (v = 121), and for 10 + 3 ^ — ^^ = 0, i.e., for

^=|4-VlO + f= —X— = 5 the velocity is = and the space is a maxi-
2

mum.
For ^ = 0, 1, 2, 3, 4, 5, 6 seconds we have

^ = 3, 1,-1,-3,-5,-7,-9 feet,

« = 10, 12, 12, 10, 6, 0,-8 feet,

s = 0, HI,
23i,

34i 42|, 45|, 42 feet.

3. For the motion expressed by the formula^ = — /n s,m which /j. des-

ignates a constant coefficient, we have

—-— = I pds = — // I
sds= — ^, or v"^ = c^ — fj,

s"^

\

whence v = \/c'^ — ju s" and s =y .

Wehavealso dt = ^= ^'
= ^

'^

'

Vc' —lis' "

/i_f_^y

CI du

V//|/ 1 - [.fZii
c

V // \
^ V // V

1

when we put ^^/^ = u ; and it follows that (see Art. 26, V., of the Introduc-
c

tion to the Calculus).

t ~ —— sin. -^ u = —zzsin.-^
sjv_m^ ^^^

_ c _
* " /- sin. {t V /z\ as well as

d B ^ ^
v =~ = ccos.{t y fx) and

p = y— = — c ^Tfi sin. {t V7t).

When the motion begins we have, for i = 0, « = 0, « = c and p = 0,

and afterwards for



§21.] SIMPLE MOTION. 121

« A.^= V '''" "^ " 2^' ' " -^-, « = andi> = - c V^^ for

< Vu = TT, or ^ = -7=^ » = 0, i' = - c and^ = 0, for

t \^ = f TT, or i = 3—p) « = — -T"j ^' "= ^ ^^^^ = ^ V//"> and for

27r
tV^ = 2 7r, ori= ,-"~, s = 0, ?j = c and j9 = 0.

The moving point has therefore a vibratory motion upon both sides of the

fixed point of beginning, to which it returns every time that it has de-

scribed, %vith a velocity which gradually increases from to « = rb c, the

space s = d: •

§21. Mean Velocity.—The velocity Ci=:: —, which we find

when we divide the space described during a certain time, e.g.,

during the period of a periodic motion, by the time itself, differs

from the velocity v = — (y- 1 for an instant or during the ele-

ment of time r {cl t). We call the former the memi velocity (Fr.

vitesse moyenne, Ger. mittlero Geschwindigkeit), and we can con-

sider it as the velocity that a body must have, to describe uniformly

in a certain time (t) the space (s) which it really does describe with a

variable motion in the same time. When the motion is uniformly

variable the mean velocity is equal to the half sum of the initial and

of the final velocity, for according to § 13 the space is equal to this

(c + v\—-— ) multiplied by the time (t).

In general, the mean velocity is (according to § 19) Ci =
'

"^
' '

'—
-, in which v,, v^, . . . v„ denote the velocities corre-

n
spending to equal and very small intervals of time.

-While a crank is turned uniformly in a circle V M N,

Fig. 51, the load Q attached to it, e.g., the piston of an

air or water pump, etc., moves with a variable motion up

and down
; the velocity of this load is at the highest and

lowest points Cand a minimum, and equal to zero, and

at halfthe height at IT and iYa maximum, and equal to the

velocity ofthe crank. Within a half revolution the mean ve-

locity is equal to the whole height of ascent, i.e., the diam-

eter U Oof the circle in which the crank revolves, divided

by the time of a half revolution. If we put the radius of the

circle in which the crank revolves, G U = C = r, that
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is, its diameter = 2 r, and the time equal to #, it follows that the mean
2 r-

velocity c^ = — . The crank in the same time describes a half circle

7r T
7T r, and its velocity is c = — , and therefore the mean velocity of the load

t

o 2 ^ •

C-. = — c = ^ ^ . c is 0,6366 times as great as the constant velocity c of
TT 3,141

the crank.

§ 22. Graphical Representation of the Formulas of Mo-
tion, The laws of motion which have been found in the foregoing

paragraphs can be expressed by geometrical figures, or, as we say,

graphically represented. Graphical representations, as they ren-

der the conception of the formula more easy, assist the mem-
ory, protect us from many errors, and serve also directly for

the determination of quantities which may be required, are

of the greatest use in mechanics. In uniform motion, the space

(s) is the product {c t) of the velocity and

the time, and in G-eometry the area of a rect-

angle is equal to the product of the base by

the altitude ; we can therefore represent the

space described (s) by a rectangle A B C D,

Fig. 52, whose base ^ ^ is the time t, and

whose altitude A D ~ B C is the velocity c,

provided the time and the velocity are expressed by similar units

of length, that is, if the second and the foot are represented by

one and the same line.

§ 23, While in uniform motion the velocity (1/ JV) at any mo-

ment (A M) is the same, in variable motion it is diffcre|it for each

instant ; therefore this motion can only be represented by a four-

sided figure, A B C D, Fig. 53, the base
Fig. 53. ^f ^|^l^3l^ ^ j^^ denotes the time {t), the

other boundaries being the three lines,

A D, B C, and C D. The first two

of these lines denote the initial and final

velocities, and the last one is determined

by the extremities {.N) of the different lines

representing the velocities corresponding

to the intermediate times {M). Accord-

ing to the nature of the variable motion in question, the fourth

line C D is straight or curved, rises or sinks from its origin, and is
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concave or convex towards the base. In every case, however, the

area of this figure is equal to the space (s) described; for every sur-

face A B C Dy Fig. 53, can be divided into a series of small

stripsM P N, which may be considered as rectangles, and the area

of each of which is a product of the base {M 0) and the corresponding

altitude (M N) or {0 P), and in like manner the space described

in a certain time is composed of small portions, each one of which

is a product of an elenient of time and the velocity of the body

during that instant. The figure also shows the difference between

the measure of the velocity and the space actually described in the

following unit of time. The rectangle M L, above the base

MH — unity (1) = «; . 1 is the measure of the velocity M, and on

the contrary, the surface ifX above the same base represents the

space actually described. In the same v/ay the rectangle A F over

A 1 = unity is the measure of the initial velocity A D = c, and the

surface A ^that of the space actually described in the first second.

§ 24. In tiniformly variaUe motion the increase or decrease v—c
of the velocity (= p ?f, § 13) is proportional to the time {t). If in

Fig. 54 nnd Fig. 55 we draw the line D E parallel to the base A B,

we cut oif from the lines B C and M N, which represent the velo-

cities, the equal portions B E and M 0, which are equal to the

line A D representing the initial velocity, there remain the pieces

CE and NO, which represent the increase or decrease in velocity;

for these we have from what precedes the proportion

NO:CE=DO'.DE.
Such a proportion requires that N, as well as every point of the

line C D, shall be upon the straight line uniting C and /), or that

the hne CD, which limits the velocitiesMN, shall be straight. Con-

sequently the space described in uniformly accelerated or retarded

motion can be represented by the area of a Trapezoid A B C Dy
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whose altitude ^ ^ is the time (t) and wliose two ^^cirallel bases

A D and B C are the initial and final velocity. The formula found

in 8 13 5
c -\- V~2~ . t corresponds exactly to this figure. For uni-

formly accelerated motion the fourth side D C rises from the point

of origin, and for uniformly retarded motion this line descends

from the same point. When the uniformly accelerated motion be-

gins with a velocity equal to zero, the trapezoid becomes a trian-

gle, whose area \?> ^ B C . A B = ivt

§ 25. The mean velocity of a variable motion is the quotient of

the space divided by the time ; it gives, when multiplied by the

time, the space, and can be considered as the altitude A F =
B E oi the rectangle A B E F, Fig. 56, the base of which A B i^

equal to the time t, and the area of which is equal to that of the

four-sided figure A B C JSf D, which measures the space described.

The mean velocity is found by changing the four-sided figure A B
CXD into an equally long rectangle A B E F. Its determina-

tion is especially important for periodic motion, which occurs in

almost all machines. The law of this motion is represented by
the serpentine line C D E F G, Fig. 57. If the right line L M,

r^-\ ^^ \

D Y

M

drawn parallel to A B, cuts off the same space as the serpentine

line, then L J/ is also the axis of CD EF G, and the distance A L
= B M between the two parallels A B and L M is the mean ve-

locity of the periodic motion, and, on the contrary, A C, E^ B G,

etc., are the maximum, and N I) and P F the minimum velocities

of a period A 0, B, etc.

§ 23. The acceleration or the continuous increase of velocity in a

second can easily be determined from the fisrure. In uniformlv

accelerated motion it is constant, and is therefore the difference

F Q, Fig. 58 and Fig. 59, between the two velocities P and MN,
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one of which corresponds to a time {M 0) one second greater than

the other. If the motion is variable, but not uniformly, and the line

Fig. 59.

M O

of velocity C D therefore a curve, the acceleration at every instant

is different, and consequently it is not really the difference P § of

the velocities P and MN — Q, Figs. 60 and 61, which are

those at times differing one second M from each other, but it

Fig. 61.

MO B

IS the increase E Q of the velocity M N, which would take place,

if from the instant M the motion became a uniformly accelerated

one, that is if the curve N P (7 became a straight line JV B. But

the tangent J\^E is the line in which a curve D N would prolong

itself, if from a certain point {N), its direction remained unchanged

;

the new line of velocity coincides with the tangent, and the perpen-

dicular R which reaches to this line is the velocity which would

have existed at the end of a second, if at the beginning of the same

the motion had become a uniformly accelerated one, and therefore

the difference R Q between this velocity and the initial one {MN)
is the acceleration for the instant which corresponds to the point

M in the time line A B. We can also of course consider the time

r.nd the accelerations as the co-ordinates of a curve, in which case

the velocities are represented by surfaces.
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CHAPTER II.

COMPOUND MOTION.

§ 27. Composition of Motion.—The same body can possess,

at the same time, two or more motions ; every (relative) motion is

composed of the motion within a certain space, and of the motion

of this space within or in relation to another space. Every point

on the earth possesses already two motions; for it revolves once

every day around the earth's axis, and with the earth once a year

around the sun. A person moving on a ship has two motions in

relation to the shore, his own motion proper and that of the ship

;

the water which flows out of an opening in the side or in the bot-

tom of a vessel carried upon a wagon has two motions, that from

the vessel, and that with the vessel, etc.

Hence we distinguish simple and comjwund motion. The rec-

tilinear motions of which other rectilinear or curvilinear motions

are composed (Fr. composes, Ger. zusammengesetzt), or of which

we can imagine them to be composed, are simple motions (Fr. sim-

ple, Ger. einfach). How several simple motions can be united so

as to form a compound one, and how the decomposition of a com-

p:und motion into sevei*al simple ones is accomplished, will be

shown in what follows.

§ 28. If the simple motions take place in the same straight line,

their sum or difference gives the resulting compound motion, the

former when the motions are in the same direction, and the latter

w^hen the motions are in opposite directions. The correctness of

this proposition becomes evident, when we combine the spaces de-

scribed in the same time by virtue of the simple motions. The

spaces Cx t and Cj t described in the same time correspond to uni-

form motions whose velocities are Ci and c., and if these motions

are in the same direction the space described in t seconds is

S -— Cxt -{ Cit — (Cx + Cs) U

and consequently the resulting velocity of the compound motion is

the sum of the velocities of the simple motions. When the mo-

tions are in contrary directions, we have

«ii
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S z= C^t — dt = {Ci — €2) tj

and the resulting velocity is equal to the difference of the simple

velocities.

Example.—1. A person, walking upon the deck of a ship with a velo-

city of 4 feet in the direction of the motion of the latter, appears to people

on shore, when the ship moves with a velocity of 6 feet, to pass by with a

velocity of 4 + 6 = 10 feet.

2. The water discharged from an opening in the side of a vessel with a

velocity of 25 feet, while it is moved simultaneously with the vessel in the

opposite direction with a velocity of 10 feet, has in reference to the other

objects which are at rest a velocity of only 25 — 10 = 15 feet.

§ 29. The same relations also obtain for variable motion. If

the same body has, besides the initial velocities Cx and Cs, the con-

stant accelerations^! and ^92? the corresponding spaces are Ci t, Cj t,

i Ih i^f i Pi f^y and if the velocities and the accelerations have the

same directions, the total space described in virtue of the compo-

nent motions is

f
s = {Cx + C2) t + {px + 7J2) ^.

If we put c^ -\- c^ =z € and pi + p^ = p, we obtain s = c t + p -,

Fig. 62. whence it follows that not only the sum of the component
^

velocities gives the velocity of the resulting or compound
motion, but also that the sum of the accelerations of the

simple motions gives its acceleration.

Example,—A body upon the moon has imparted to it by the

moon an acceleration ^^ = 5,15 feet, and from the earth an ac-

celeration ^^2 = 0,01 feet. Therefore, a body A, Fig. 62, beyond

the moon M and the earth E, falls towards the centre of the

moon with an acceleration of 5,16 feet, and a body B between M
and U witli an acceleration of 5,14 feet.

§ 30. Parallelogram of Motions,—If a body possesses at the

same time two motions which differ from each other in direction,

it takes a direction which lies between those of the two motions,

and if these motions are of different kinds, e,g., if one is uniform

and the other variable, the direction changes at every point, and
the motion is -curvilinear.

We find the point 0, Fig. 63, which a body moving at the same
time in the direction A JT and A Y, occupies at the end of a cer-
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Fig. 63.

tain time {t) by seeking the fourth corner of the parallelogram A
MOW, determined by the spaces A M = x and A W — y, de-

goribed simultaneously, and by the angle X A Y which the direc-

tions of motion form with one another.

We can convince ourselves of the correct-

ness of this proceeding by supposing the

spaces X and y described not simultane-

ously, but one after the other. By virtue

of one motion the body describes the space

AM— X, and by virtue of the other from

M in the direction A Y, that is on a line

M parallel to A Y, the space A N — y.

If we make M = A N, we obtain in

the position of the body which corresponds to the two motions x

and y, and which, according to this construction, is the fourth cor-

ner of the parallelogram. We can also imagine the space AM—
X to be described in a line A X, which with all its points moves

forward in the direction A Y, and therefore carries M parallel to

A Y and causes this point to describe the path M — A N — y.

§ 31. Parallelogram of Velocities.—If the two motions in

the directions A X and A Y take place uniformly with the ve-

locities Ci and Co, the spaces described in a certain time i are a; =

c, t and 11 — c^ts and their ratio '^ = — is the same for all times,

a peculiarity which is possessed only by

the right line A 0, Fig. 64. It follows

therefore that the direction of the com-

pound motion is always a straight

line. If we construct with the veloci-

ties A B = Ci and A C — C2 the paral-

lelogram A B C D, its fourth corner D
gives the point where the body is at

the end of the first second, but since

the resulting motion is rectilinear, it

follows that it takes place in the direction of the diagonal of the

parallelogram constructed with the velocities. If we designate by

s the space A really described in the time t, we have from the

similarity of the triangles AM and A B D
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A D
-T—f^y whence it follows that this space

s =
x.AD ct.AD = A n.t.AB c,

According- to the last equation the space described in the di-

agonal is proportional to the time {t), and therefore the compound
liioiion is itself uniform and its velocity c equal to A D.

Titerefore the diagonal of a parallelogram, constructed with ttuo

velocities and ivith the angle inclosed hy them, gives the direction

afi^d magnitude of the velocity, with luhich the resulting motion actu-

ally takes place. This parallelogram is called the parallelogram

of velocities (Fr. parallelogramme de vitesse, Ger. Parallelogram

der Geschwindigkeiten) ; the simple velocities are called compo-

nents (Fr. composantes, Ger. Seitengeschwindigkeiten), and the

compound velocity the resultant (Fr. resultante, Ger. die resulti-

rende or mittlere).

§ 32. By emplojdng trigonometrical formulas, the direction

and magnitude of the resulting veloc-

ity can be found by calculating one

of the equal triangles, e.g., A B D,

of which the parallelogram of velocities

is composed, by which we obtain the re-

sulting velocity A D = c in terms of

the components A B = c^ and A C =
Ci and of the angle included between

them B A C — a.

For we obtain c by the formula

c = Vci + c-2 + 2 Ci C2 cos. a,

and the angle B A D — 4>, which the resultant makes with the

1 .^ 1 XT ^ 1 • ^ dsin.a
velocity Ci, by the formula sm. (p = , or

Fig. 65.

tang. 4> =
sm. a

Ci + C'i cos.

We have also

tang. (-^
- ^j

or cotang. (p = cotang. a

Cx — c^ ,
a

C.2 sm. a

If the velocities c, and d are equal to each other, the parallelo-

gram is a Rhombus, and in consequence of the diagonals being at

right angles to each other, we have more simply

c — 2cx cos. A a and = i a.



130 GENERAL PRINCIPLES OF MECHANICS. [§33.

If the velocities are at right angles, we have also more simply

c — Vci + c^ and tang,
(f)
= —

.

Example.—1. The water discharged from a vessel or from a machine

has a velocity c^ = 35 feet, while the vessel itself is "moved with a velocity

Cg = 19 feet in a direction, which forms with that of the water an angle

a" = 130". What is the direction of the resultant or absolute velocity

of the water ?

c = V25^ + 19-^ + 3 . 25 . 19 COS. 130" = V635 + 361 — 50 . 19 . cos. 50".

= V986 - 950 COS. 50" = V986 - 610,7 =V375,3 = 19,37 feet

is the required resulting velocity.

19 <dn ISO"
Further, sin. </» = — ' = 0,9808 »in. 50° = 0,7513, hence the

XVfOt

angle formed by the direction of the resultant with that of the velocity c^ is

= 48" 43\ and the angle formed by it with the direction of the motion

of the vessel is a — ^ = 81" 18'.

3, If the foregoing velocities were at right angles to each other, we

would have COS. a = cos. 90"=0, and therefore the resulting velocity c=V986
= 31,40 feet, and also tang. =^ = 0,76, hence the angle formed by it with

the first velocity is ^ = 37" 14\

§ 33. We can also consider every velocity to be composed of

two components, and therefore under

certain conditions can decompose it

into such components. If, for example,

the angles D A X — (j), and DAY
= ip, Fig. 66, which the required

velocities form with the resultant

A D = c, are given, we draw through

the extremity D of the line represent-

ing c other lines parallel to the di-

rections A X and A Y: the points of

intersection B and D cut off the ve-

locities sought, and we have

A B = Cx and A C — c^.

Trigonometry gives these velocities by the formulas

c sin. if) _ c sin. (f)

^1 ~ ~'—n—:

—

T\f ^i —
sin. (0 + i^y sin. (0 + if))'

Generally, in the application of these formulas, the two velocities

are at right angles to each other, and

(f)
{- ip = 90°, sin. (0 + i/>) = 1, whence

fJ
= c COS.

(f)
and c.> = c sin. (p.

i
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We can also determine, when one component (ci) and its angle

of direction (0) are given, the magnitude and direction of the

other. Finally, if the three velocities c, Cx and Ci are given, we can

determine their angles of direction by the same method that we

employ to find the angles of a triangle, when three sides are given.

Example.—K the velocity c = 10 feet is to be decomposed into two

components whose directions form with that of c the angles ^ = 65° and

\^ = 70", we have

c,=
10si7i.70'_ 9^397

sin. 135^ ~sin. 45
^=13,29 feet and Cg= 10 dn. Q5'_ 9,063

sin. f35° "0,7071
= 12,81 feet.

§ 34. Composition and Decomposition of Velocities.—
By repeated use of the parallelogram of velocities, any number of

velocities can be combined so as to give a single resultant.

The construction of the parallelogram A B D C (Fig. 67) gives the

resultant A D of Ci and Cj, the construction of the parallelogram

A D F E gives the resultant of ^ i> and A U = C3, and from the

construction of the parallelogram A FH G ^\Q obtam the result-

ant A IT = c of A F and A G = Ci^ or that of Ci, c.2, Co and c^.

The most simple manner of resolving this problem is by the

construction of a polygon A B D F H, whose sides A B, B D, D F
and FH are parallel and equal to the given velocities Ci, c^, c^ and

C4, and whose last side is always equal to the resulting velocity.

Fig. 68.

In case the velocities do not lie in the same plane, the re-

sultant can also be found by repeated application of the paral-

lelogram of velocities. The resultant A F = c (Fig. 68) of three

velocities A B = c^, A 0=0^ and A E = Cz, not in the same

plane, is the diagonal of a parallelopipedon whose sides are equal
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to the velocities. We often employ for this reason the term parol-

lelopipedon of velocities.

§ 35. Composition of Accelerations.—By the composition

of two uniformly accelerated motions, beginning with a velocity =
0, we obtain also a uniformly accelerated motion in a straight line.

If we designate the accelerations of the motions in the directions

A Xand^ Yi^ig. 69) byj^i and jt^s, the spaces described during the

time t are
Fig. 69. ^ fA M= X = ^\- and

and their ratio is

y
~ pJ" ~ p^

which is entirely independent of the

time, therefore the path ^ is a

straight line. If we make A B = p^,

and B D = A C = p^^^Q obtain a parallelogram A B D C, and

we have

4_^ = 4^ = kill = 1 f, whence AO^^AD.f
A D A B pi

^

According to this equation the space A of the compound motion

is proportional to the square of the time ; the motion itself is there-

fore uniformly accelerated, and its acceleration is the diagonal A D
of the parallelogram constructed with the two simple accelera-

tions.

We see, therefore, that we can combine several accelerations so

as to form a single one, or decompose a single one into several

others by means of the parallelogram of accelerations (Fr. parallel-

ogramme des accelerations, Ger. Parallelogram der Accelerationen)

according to exactly the same rules as we perform the composition

and decomposition of velocities by means of the parallelogram of

velocities.

§ 36. Composition of Velocities and Accelerations.—
By the combination of a uniform motion with a uniformly ac-

celerated one we obtain, when the directions of the two motions

do not coincide, a motion which is completely irregular. If during

a certain time t, by virtue of the velocity c, the space

A N = y = ct
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is described in the direction A Y, Fig. 70, and if during the same

time, by virtue of a constant acceleration, the space

is described in the direction A X at right angles to the former,

then the body will be in the corner of the parallelogram con-

structed with y = c t and x =
2

' By the aid of these formulas,

it is true, we can find the position of the body for any given time,

but these positions do not lie in the same straight line ; for if we

substitute the value oft = - taken from the first equation, in the

second we obtain the equation of the path

According to this formula the space (x) described in one direction

varies, not as the space, but as the square (y^) of the space described

Fm. 70.

A N
.....^::r>^ 2 3 *-

\i

4 -X.

k
9

--^;b

in the other direction, and the path of the body is therefore not a

straight line, but a certain curve known in Geometry as the parab-

ola (Fr. parabole, Ger. Parabel).

Remark.— Let ABC, Fig. 71, be a cone with a circular base A E BF,
and J) BF & section of the same parallel to the side B C and at right an-

gles to the section ABC, and let OP WQhe a. second section parallel to

the base and therefore circular. Further, let E Fhe the line of intersec-

tion between the base and the first section, and finally, let us suppose the

parallel diameters A B and P ^ to be drawn in the triangular sectionABG
and the axis 1) O in the section D E F. Then for the half chord MN
=M0 we have the equation MIP = PM . M Q\ but ^Q = QB and for
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Pif we have the proportion PM: DM= AG : D G, whence

DM. A GMN^ =BG D G
But we have also G E'^=B G.AG; whence, dividing the first equation

by the second,

D M MN""
B G G E^

The portions cut off from the axis {abscissas) are as the sqtuires of the cor-

responding perpendiculars (Ordinates). This law coincides exactly with

the law of motion just found ; the motion takes place then in a curved

line B N E^ which is one of the conic sections. For the construction, po-

sition of the tangent, and other properties of the parabola, see the Inge-

nieur, page 175, etc.

§ 37. Parabolic Motion.—In order thoroughly to under-

stand the motion produced by the combination of velocity and
acceleration, we must be able to give for any time {t) the directioiiy

velocity, and the space cJescrihed. The velocity parallel to ^ Yh
constant and = c, and that parallel to ^ X is variable and = pt;

if we construct with these ve-
^^^- '^^'

locities Q = csind OP=pt
the parallelogram P R Q,

Fig. 72, we obtain in the di-

agonal R the mean velocity,

or that with which the body in

describes the parabolic path

A U. This velocity itself is

V = Vc' + {pty,

R gives also the tangent

or the direction in which the

body moves for an instant ; con-

sequently, for the angle P R ~ X T =0, which the same

makes with the direction (axis) A X oi the second motion, we

have the following formula

Finally, to obtain the space described or the arc of the curve

^ = 5, we can employ the formula a = vr (§ 19), by the aid of

which we can calculate the small portions which we can consider

as elements. The calculus also gives a complicated formula for the

computation of an arc of a parabola.
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§ 38. We have previously supposed that the primitive directions

of motion were at right angles to each other, and we must now
consider the case, when the direction of the acceleration makes any

arbitrary angle with that of the velocity. If the velocity of

the body in the direction A Yi (Fig. 73) is c, and if, in the

direction A X^ which forms
^^^- '^^-

an angle X, ^ F, = a with

the former, the acceleration

is ^, A is no longer the ver-

tex, and A X^ no longer

the axis, but only the di-

rection of the axis of the

parabola. The vertex of the

parabola is situated at a

point whose co-ordinates, in

reference to the point of be-

ginning of the motion, are (7-6 = a andB A — d, ofwhich the former

lies in the axis of the parabola and the latter is at right angles to

it. The velocity A D = c is composed of the two components

A F= c sin. a and A E= c cos. a. The first of these is constant,

and the latter is variable, and always equal to the variable velocity

p t, provided that the body requires the time t to pass from the

vertex C to the real point of beginning.

Hence we have

(
-t T N

B
"^^"^^

K ,F
b IX

F.N ^T)

M \\\\
3C

^ ^Y.

c COS. a-= p ty whence t = c . COS. a

1) CB = a
2

P
, and therefore

c' cos.^ a

2p
, and

2) B A = b = c sin. a,t = & sin. a COS. a & sin. 2 a

p 2p
If we have determined by these distances the vertex C of the

parabola, starting from this point we can, for any given time, de-

termine the position of the body. Besides, if we put CM= x and

M — y, the general formula

X = py or y = c sin. a holds good.
2 c' sin.' a " ' p

Remark.—One of the most important applications of the theory of par-

abolic motion, just discussed, is to the motion of projectiles. A body pro-

jected in an inclined direction either upward or downward would describe,

in virtue of its initial velocity c and of the acceleration of gravity (g = 32 . 2

feet), an arc of a parabola, if the resistance of the air were done away with,
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Fig. 74

or if its motion took place in 'vacuo. If the velocity of projection is not very-

great and if the body is very heavy compared with its volume, the diver-

gence of the body from a parabolic path is small enough to be neglected.

The most perfect parabolic trajectories are those described by jets of water

issuing from vessels, fire-engines, etc. Bodies shot from guns, etc., e.g.,

musket balls, describe, in consequence of the great resistance of the air,

paths which differ very sensibly from a parabola.

§ 39. Motion of Projectiles.—A body projected in the di-

rection A J^ at an angle

of elevation YAD = ay

Fig. 74, ascends to a cer-

tain height B C, which

is called the Jieight of

projection (Fr. hauteur

du jet, Ger. Wurfhohe),

and it reaches the hori-

zontal plane from which

it started in ^, at a dis-

tanceA D from it,which

is called the range of

projection (Fr. ampli-

tude du jet, Ger. Wurfweite).

From the velocity .c, the acceleration g and the angle of eleva-

tion, we obtain, according to § 38, when we replace p hy g and

a" by 90" + a% or cos. a by sin. a, etc.

the height of projection C B = a = c sin. a

^9
and

half the range of projection A B = b = -c^ sin. 2 a

^g
From the last formula we see that the range of projection is a

maximum for sin. 2 a = 1, or 2 a = 90°, that is for a = 45". A
body projected at an angle of elevation of 45° attains the greatest

range of projection.

We have also

a= ^^'
~ 2 c" COS."" d!

and for a point in the path of the projectile for which CM = x

and M — y,

^- 9f
2 c' COS.'

a'

or when its position is given by the co-ordinates A .N' = Xi and

N = y^f since in that case
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x= CM = B C - N = a - y, and

y = M = A B - A N" = b — a\, we have

_ g(h- x,y
"" ^' ~ 2 c' COS.'

a'

whence

y, = a, tang, a - ^^^-^^
ft <y ^

Substituting in the equation ?/, = x^ tang, a — f \ ,for
/v c COS. a

—5~, the value 1 + taiig.' a, and resolving the same in reference
cos.' a

to tang, a, we obtain the following expression for the angle of eleva-

tion (a), required to reach a point given by the co-ordinates x^

and«/„

(f
X: \g xj \ g Xi /

1 -:!

jf{^-,
or c^ — % g yi & — g' x', then we have

g X\

c = ^g (yi + ^x,' + y{') and

c'
tang, a = .

g ^\

Smaller values of c make tang, a imaginary, and larger values of c

give two values for tang, a ; in the first case the point cannot be

attained, and in the second case it would be attained either in the

rise or in the fall of the projectile.

Example.—1. A jet of water rises with a velocity of 20 feet at an angle

of 66°. The height due to the velocity is ^ = 0,0155 . 20' = 6,2 feet, and
the jet ascends to a height a = h sin.^ a = 6,2 . {sin. 66°)^ = 5,17 feet, the

range of the jet is 2 5 = 2 . 6,2 sin. 132° = 2 . 6,2 sin. 48 = 9,21 feet. The
time, which each particle of water requires to describe the entire arc A CD

, , . . 2 c sin. a 2.20.W2. 66° ^^, , r.,, , . ,

of the parabola, IS t = — = -^^- = 1,14 seconds. The height

corresponding to the horizontal distance A N= x^ =3 feet is

-, <? /.«. Afto
32.2 .9 0,36225

y, = 3 . tang. 66 - —̂ -^---^-^^^^-.^, = 6,738 -
^-^^-^-^^

= 6,738 - 2,189 = 4,549 feet.

2. A jet of water discharged from a horizontal tube has, for a height If

feet, a range of 5^1^ feet ; how great is its velocity ?

\gxj
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From the formula x = ^^ = f-r, we deduce ^ = f-, in which we must

5 25'
substitute x = 1,75 and j^ = 5,25, and thus we obtain h = .

' = 3,937

feet and the corresponding velocity c = 15,92 feet.

§ 40. Jets of Water.—The peculiarities of the motion of jets

of water are explained and shown in what follows. From what

precedes we have

g x' [1 + (tang, af]
I ~-2j^ -and

,^ ^ ,^ ,,^. «^ _ £^lllL±^M^

for the equations of the parabolas formed by the paths of two as-

cending jets of water whose velocities c are the same, and whose

angles of elevation a and a^ are different. If we put x^ = x and

subtract these equations from one another, we obtain

y — y^ = X {tang, a — tang, a^ — —-^{{tang. af — {tang, ai)*]
Z c

= X {tang, a — tang, a^) (l —
f-^

{tang, a + tang. a^)).

If we assume that the two streams have nearly the same angle

of elevation and require the two parabolas to have a point in com-

mon, we must put y^ = ^Z and consequently we have

X {tang, a — tang, a^) ll — '^ {tang, a + tang. aM = 0, or

o X
^-^ {tang, a + tang, a^) = 1,

or, since we can put ai = a we have simply

a X tana, a ^ . ^ <f
^ -^-^— = 1, whence tang, a = —

.

c
^

g X

Substituting this value in the equation

y =:x tang, a - |-^, [1 + {tang, af],

we obtain the equation

^ ~ ^ ~ r? \
"^ 7^7 ~¥g'~ Y?

of the curve D P S P D, Fig. 75, which passes through the neigh-

boring points, in which every two parabolas starting from the same

point A at different angles cut each other, and which, therefore,

touches or envelops the whole system of parabolas A G D, A OR,
etc.
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The height to which a vertical jet of water rises 18 A S =
2/

and the range of projection of a jet ^ CD rising at an angle of

Fig. 75

45° is ^ D = 2 .
^i^ll^ ^2.f =2AS.

If we transfer the origin of co-ordinates from A to S, re-

placing the co-ordinates A N= x and NP =^ yhj the co-ordinates

S U= u and U P — v, we have

y=AS— SU=^ u and x

and the equation

A N=^ UP = V,

IS p

C X
y = ^ i,—5 is thus transformed into

a v' . 2 c'
u = -^—-„ or V =— u,

2 c g
This eq^iation is that of the common parabola whose parameter

2 c'
4 ^ /S', and therefore the eD P S PDof ail
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the jets of water rising from the point ^ is a common parabola,

whose vertex is S and whose axis is S A.

Fig. 7a.

A bunch of jets rising from A in all directions would be envel-

oped by the paraboloid generated by the revolution of the envelope

D P 8P D aioiind A 8. If t is the tmie in which a body rising in

<i parabola describes the arc A 0, Fig. 7G, the co-ordinates of which

are A M ~ x and M -- y, we iiave

c t COS. a and y — c t si?i. a
gf'

, whence

COS. a = and sm. a
ct

"

c t '

Substituting these values for cos. a and sin. a m the well-known

trigonometrical formula {cos. ay + (sin. ay = 1, we obtain the fol-

lowing formula

(cty
il+AlQl - 1 or ^'

If from a point A, Pig. 76, bodies be projected at the same mo-

ment and in the same vertical plane at different angles of eleva-
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tioii, the positions that they occupy after the lapse of a certain

time (/) are determined by the last equation, which is that of a circle

whose radius \^ r — ct and whose centre is situated vertically below

^ at a distance a — \ g f, and which can therefore be written in

the following form,

x' + {y + ay = r\

The circumference of this circle would therefore be reached at the

same moment by all the elementary jets A C D, A P^ A L S—
rising at the same moment from the point A.

X
If in the formula ti = — we substitute a — 45", and x =:

c COS. a

A B = ^-, we obtain ti = ^r- r—: = — r ^, hence the time re-
2 g ^9 ^os. 45" g

quired to describe the whole arc of the parabola A C B is t =

2 ti = — V2, and the radius of the circle B B B, which is reached
if

simulta-neously by the different elements of the water, is

KB = r = ct = ~- V2 = ~ VS = 2,828 ~ = 2,828 . A~S, and
g 2g ' 2g '

the distance of the centre K from A is

^ JT = a =r 1 ^ f = — = 2^ = 2 2^
If we divide BKm ^^ and ^ jff in 16 equal parts, we can, since

r is proportional to t and a to f , from the points of division 1, 4, 9

in A K, describe other circles with the radii \ B K, } B K, and

f
B Ky which cut off the parabolic arcs described in the same time,

E.G., the circle described from 1 with 1 a — \ B K, cuts off in the

points a,a^ , the parabolic paths A a, A a^ , described simul-

taneously, and the circle described from 4 with 4 /3 = ^ B Kcuts off

in the points /3, i3, the parabolic arcs A [3, A /3„ etc., which are

also simultaneously described.

If these circles be revolved about the vertical axis XZ, they de-

scribe spherical surfaces which bound the parabolic paths described

simultaneously, when the jets are projected all around A at all

angles of elevation.

§ 41. Curvilinear Motion in G-eneral.—By the combination

of several velocities and several constant accelerations, we obtain

also a parabolic motion, for not only the velocities but also the ac-

celerations can be combined so as to form a single resultant ; the
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problem is then the same as if there were one velocity and one

acceloration, i.e., as if there were but one uniform and one uni-

formly accelerated motion.

If the accelerations are yariable, they can be combined so as to

give a resultant, as well as if they were constant, for we can con-

sider them as constant during an infinitely small period of time (r),

and the motion as uniformly accelerated during this time. The
resulting acceleration is, it is true, like its components themselves,

variable. If Ave combine this resulting acceleration with the given

velocity, we obtain the small parabolic arc, in which the motion

takes place during this instant. If we determine also for the follow-

ing instant the velocity and the acceleration, we obtain another por-

tion of an arc belonging to another parabola, and proceeding in the

same manner, we obtain approximately the entire curve of the path.

§ 42 We can consider every small arc of a curve as an arc of a

circle. The circle to which this arc belongs is called the circle of

curvature or oscillatory circle (Fr. cercle osculateur, Ger. Krtim-

mungskreis), and its radius is the radms of curvature (Fr. rayon de

courbure, Ger. Kriimmungslialbmesser). The path of a body in

motion can be considered as composed of such arcs of circles, and

we can therefore deduce a

^^^' '^'^'
formula for its radii. Let

A M (Fig. 77) =x=^^~f

be a very small space de-

scribed in the direction A X
with uniformly accelerated

motion,A N— y — ?/'Ta very

small space described uni-

formly and the fourth cor-

ner ofthe parallelogram con-

structed with X and y, that

is, the position that the body

starting from A occupies at

the end of the instant (r).

Let us di'aw A (7 perpen-

dicular to A Y, and lot us

see from what point C in this line an arc of a circle can be de-

scribed through A and 0. In consequence of the smallness of A
we can consider not only CA, but also C F sls perpendicular to
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A Y, so that in the triangle NOP the angle N P can be

treated as a right angle. The resolution of thisj:riangie gives

P = Nsin, NP = A M sin. XAr =^ sin. o,

and the tangent

A P = A N + JSfP = VT -h ^-^ COS. a= Iv + -- COS. a] r,

can be put = vt, for -^^ cos. a can be neglected in the presence of

V, in consequence of the infinitely small factor r. Now, from the

properties of the circle we know that A^ = P 0.(P 0_-f 2 CO),

(ft- since P can be neglected in the presence of 2 C 0, A P' = P
.200; whence it folloYv^s that the radius of curvature is

C A = = r
2 P pr' sin. a p sin. a

In order to determine by construction the radius of curvature,

we lay off upon the normal to the original direction of the motion

A Y the normal acceleration, i.e., its normal component p sin. a

— AD, and join the extremity E of the velocity ^ ^ = z; to i> by

the right line D E, then we erect upon D E o. perpendicular E C\

the point of its intersection with the first normal is the centre of

the osculatory circle of the point A.

By inverting the last formula we obtain the normal accelera-

v'
tion n = p sin. a = — ; from Vv'hich we see that it increases di-

rectly as the square of the velocity, and inversely as the radius of

curvature, or directly as the greatness of the curvature.

Example.—The radius of curvature of the parabolic trajectory pro-

duced by the acceleration of gravity is r = 0,031 —. , and for the vertex
S2/7Z. Q,

of this curve where a = 90°, and therefore sin. a = 1, it becomes r =
0,031 c- feet. For a velocity c = 20 feet we obtain r = 12,4 feet ; the

farther the body is distant from the vertex the smaller a becomes, and con-

sequently the greater is the radius of curvature.

§ 43. If the point A has described the elementary space A =
G, its velocity has changed ; for the initial velocity v in the direc-

tion A l^is now combined with the velocity j^ r acquired in the di-

rection A X, and consequently from the parallelogram of velocities

we have for the velocity i\

v^- = v^ -\- 2 V p r cos. a -i- p- r^ = v"" + p r (2 v COS. a -{- p r),

but^j r vanishes in the presence of 2 v cos. a, and we have
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v^- = v"" ^- 2 p V T COS. a.

But vris the elemgntary space A W— A = 0, and p cos. a is the

tangential acceleration, i.e., the component h of the acceleration p
in the direction of the tangent or of the motion, whence we have

2 ^.2

= k G.
Vi — V

%

Here a cos. a is the projection ^ i^ = ^i of the space upon the

direction of the acceleration, and consequently we have

As the motion progresses v^ changes successively into v^, v^. . -,

v„, and the projections of the elementary spaces are increased by

the quantities ^o, ^3 . . . . ^„, therefore we have

—2 =P ^2' 2 "^^ ^3, ^ =P ^n,

and by addition

^" ^^ = ;? (^1 + ^2 + . .
. Q =p^,

in which x denotes the total projection of the acceleration upon

A X. We can also put
'

when the acceleration is variable and assumes successively the val-

ues ^1,7^2 • . . 'Pn-

We see from the above that the variation of tlie velocity does

not in the least depend upon the form or lengtli of the path de-

scribed, but only -on its projection x upon the direction of the ac-

celeration. For this reason all the jets of water. Fig. 76, have one

and the same velocity on reaching the same horizontal plane H H.

If c is the initial velocity or velocity of efflux, v the velocity atHH,

and h the height of the line H H above A, we have

—-— z=L — gl^ whence

V — Vc' — 2g b.

If at a certain point of the motion we have a = 90°, the tan-

gential acceleration Jc = p cos. a becomes = 0, and the normal ac-

celeration n = p sin. a is equal to the mean acceleration p. In this

case the variation of the squares of the velocities while the element

G of the space is being described, is vi^ — v^ = 0, and we have r, =
v; and if the motion continues in a curve, the direction of the ac-

i
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celeration changing in sucli a manner as always to remain normal

to the direction of the motion (i.e., if there is no tangential accel-

eration), /•,' — ('- = 0, or i'l = I' remains constant while the point is

describing imy finite space, and the final velocity is equal to the

initial velocity c.

The normal acceleration, for which the velocity remains constant,

^s P = p
an example of which is afforded by motion in a circle, for then the ra^

dius of curvature C A = C = C D = r is constant. Inversely

a constant acceleration, which always acts

at right angles to the direction in which

the body is moving, causes uniform mo-

tion in a circle.

Example.—A body, revolving in a circle 5

feet in diameter in such a manner as to make each

revolution in 5 seconds, has a velocity c= —^— =

2^.5 = 2 . T = 6,283 feet, and a normal ac-

FiG. 79.

celeration j?= ^ ' ^
^ = 7,896 feet, i.e., in every

o

second it would be diverted from the straight line a distance v p=i- • 7,896

= 3,948 feet.

(§ 44.) Curvilinear Motion in General.—If a point P, !Pig.

79, moves in two directions A X and A Y at the same time, we

can consider the spaces de-

scribed A li = L F = X

and A L= KP = ysis the

co-ordinates of the curve

A P irformed by the path,

and if ^ Ms the element

of time, in which the body

describes the elementary

spaces P R — d X and R Q
= dy^vfe have (fpom § 20)

the velocity along the ab-

scissa

^. dx
^) « = ^'

and that along the ordi-

nate
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and therefore tlie resulting tangential velocity, or that along the

curve, when the directions A X and A Y of the motions are at

rio-ht angles to each other,

d s
3) ID Vt(;' + v'=y —

-

a/idxV (diiV . /d x' + d y'

in which formula d s denotes the element P Q of the curve which,

according to Art. 32 of the Introduction to the Calculus, is equal to

VJ^'+~dY.
The acceleration along the abscissa is, according to § 20,

Fig 80. V -^ == ^'
and that along the ordi-

nate

5) q =
dv

a =
V

w
u

df
For the tangential an-

gle P TX^ Q P R = a,

formed by the direction of

motion P to with the direc-

tion of the abscissas, we

have,

V dy

<^ and also

COS. a — — =

d s

dx t

w d s

The accelerations 2^ and q can be decomposed into the following

components in the directions of the tangent P 2" and of the nor-

mal P N,

p^— p COS. a and ^?2 = p sin. a,

q\ = q sin. a and q'> = q cos. a.

Consequently the tangential acceleration is

k = pi -h qi = 2^ ^(^s. a + q sin. a

du u . dv V u d u + V d

V

d t w d t

and the normal acceleration is

w w d t
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n -^ p<, ^ q.2
—

}) sin. a — q cos. a

_dic V dv u _v d u — u d V
~~

d t' 10 d t' w ~ w di

But by differentiating li^ -\- v"^ = lo" we obtain

u d u + V d V = ivd lo,

and therefore we have more simply for the tangential acceleration

^. , wdw d to
6) k = ---: = -TT'

IV d t dt

^ ^ V 1,-7, u d V — V d u
jrom tajig. a= -~ we obtain d tang, a = ,

u u
(Introduction to the Calculus, Art. 8) and the radius of the curva-

ture C P — (7 () of the elementary arc P Q (according to Art. 33

of the Introduction to the Calculus) is

d s^

d X' d tang, a!

whence it follows that

and that the normal acceleration is simply

iv^ d s to ds 10

, ,^ ti'^ds" ds^ ds/dsV

e normal

'
r 10 d t rat r

Finally we have

, ^ dio . ds ^ ,

Ic d s = -7- • d s = -r, d 10 =w d tu\
dt dt

from which we obtain (as in § 20),

8) '"^^==fkds,

when we suppose that while describing the space s the velocity

changes from c to lo. Therefore, in curvilinear motion half the dif-

ference of the squares of the velocities is equal to the prodtict of the

mean acceleration (k) and the space s. In like manner

p d X -\- q d y = u d u -\- V d V = lo d to, and therefore

9) —"— =f(p d X -\- q d y) = fp d x + f q d y, and

10) / Ic d s — f p d x + f q d y, or

Ic d s — p d X -\- q d y.

Tlie 'product of the tangential acceleration and the element of the

curve is equal to the sum of the products of the accelerations along

the co-ordinates and the correspionding elements of co-ordinates.
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Example.—A body moves on one axis A X with the velocity u = 12t^

and on the other A T with the velocity » =: 4 ^'^ — 9 ; required the other

conditions of the resulting motion. The corresponding accelerations along

the co-ordinates are

and the co-ordinates, or spaces described along the axes, are

X = f u d t = f 12 t d t = G f; and

y=rvdt= Cii t''-^)dt='^ t'-^t,

in which equations the spaces count from the time ^=0. The tangential

velocity, or that along the curve, is

w = \/v? ^€- ^ Vl44«-^^~(4^-9)^ = \'\G t' + 73 ^^ + 81 = 4 i=^ -|- 9,

consequently the tangential acceleration is

k = ,— = 8 ^ = the acceleration q along the ordinate.

We have also for the space described along the curve

Wlien the direction of the motion is given by the formula,

v 4^^ -9 taj-9
taiig. a = - =

u 12

1

2 V 6 a;

we have a tang, a = d t,

and therefore the radius of curvature of the trajectory is

ds'_ ^ (4 r- 4- 9f .
12^'' _ (4:t' + 9f

^ ~ dx'd tang, a
~

144 t' (4 f + 9)
"~ 13 '

or,r = --.
Consequently the normal acceleration, which produces a constant

change of direction of the motion of the body, is

n = ^ = — 12, or constant.

The equation of the curve of the trajectory of the body is found by sub-

stituting ^ = 4/ -^ in the foregoing equation, and it is

-1/(17- /f=(l-«)/l-
The ordinate 2/ is a (negative) maximum for?? = 0, i.e., for^-=^, or ^ =

3 9 27
-jr-, and X = Q .t"^ = G .-r- =^, andthen
a 4 ^

* 9 3 . 3

y = ir-T- 2 -8x=-»'
and on the contrary, it is = 0, for t"^ = -^ ort = — ^/S, ando? = ^-.
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Tlic curve which forms the path of the body runs at first below tlie axis

/ 27
of abscissas, and after the time t = y -.- it cuts it at a point whose

81
abscissa is a; = — , and from that time it remains above the axis.

The following' table contains a collection of the corresponding values

of t,v,v^iD, .T, y, tang, a, r and s, from which the curve A B G D E, Fig. 81,

is constructed.

Fig. 81.

1
t

I

1

' o

u r V .. X 2/ ^«7Z^. a r «

o —9 9 'oo _ i7
1 4

I 12 -5 13 6 _ _23
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2
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1

i
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i
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22

3

7

24
_ ?^5

12

86
1

3

u-, iSf^ 18 36
81

2 »^;- - 108 27 ^'3
1

3 36 27 45 54 + 9
.J.

4

_675
4

'^
i

' 48
_55_ 75 96 + _^48

3

55

48
_ ..1^75

4 1

364
1

3 i

§45. Relative Motion.— If t^vo bodies are moving simiil-

tancously, a continual change in their relative positions, distances

apart, etc., takes place, the value of which may be determined for

any instant by tlie aid of what precedes. Let A, Fig. 82, be the

point where one andB that where the other motion bedns ; the first
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Fig. 82.

body passes in a giyen time (t) in the direction A Xto the position

M, and the other body in tlie same time in the direction B Y to

the point N. Now if we draw 31 N, this line will give ns the rela-

tive position and distance from

each other of the bodies A and

B at the end of this time. Draw-

ing A parallel to M N, and

making* A = 31 N, the line

A will also give the relative

position of the bodies A and B.

If we now draw N, Vv^e obtain

a piirallelogram, in which iV^is = ^4 31. If, finally, we make B Q
equal and parallel to i\^ and draw Q, we obtain a new parallel-

ogram B N Q, in which the one side B iV^is the absolute space

{y) described by the second body, the other side B Q is, the space

{x) described by the other body in the opposite direction, and the

fourth corner is the relative position of the second bod}^, that is,

in reference to the position of the first body, which we consider

to be fixed. Hence we can determine the relative position of a

moving body {B) by giving to this body besides its motion ( B N)
another, equal to but in the opposite direction from that A J/ of

the body {A), to which its position is referred, and then by com-

bining in the ordinary way, as, e.g., by the aid of a parallelogram,

these two motions.

§ 46. If the motions of the bodies A and B are uniform, we

can substitute for A 31 and ^ iV^the velocities c and c„ that is the

spaces described in one second. In this way we obtain the rela-

tive velocity of one body when we give to it besides its own abso-

lute velocity, that of the body to which we refer the first velocity,

but in the opposite direction.

The same relation holds good for

the accelerations. If, e.g., a body

A, Fig. 83, moves uniformly in the

direction A C with the velocity c,

and a body B moves in the direc-

tion B Y, whicli makes an angle a

with ^Xi, with an initial velocity

= and with the constant accele-

ration p, we can also suppose that

A stands still and that B possesses,

-X
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besides the acceleration j?;, also the velocity (— c) in the direc-

tion B X, parallel to A X\ the body will then describe the parabolic

path BOP.
The spaces described in the time t in the directions B Y

V f
and B X^QXQ B N = --^ and B M = c t, the first of which can be

/v

decomposed into the components NR = -x— cos. a and B B = ~-

sin. a, which are parallel and at right angles to A X.

^N^ow \i A G = a and C B — h are the original co-ordinates of

the point B in reference to A, and A K — x and K — y the co-

ordinates of the same after the time t, we have, since A K = A C
-ON- NRundK ^ C B - B R,

X = a — c t — —^ COS. a and y — b — -^- sm. a,
Z Z

and consequently the correspondmg relative velocities

u = — c — p t COS. a and z' = — p t sin. a.

From the abscissa x we determine the time by the formula

p COS. a \p COS. aJ p COS. a

and, on the contrary, from the ordinate y by the formula

' p sin. a

If the body B moves in the line A X towards A, we have h =
and also a = 0, and therefore

p \pl p
putting :c = 0, we obtain for the time, when two bodies will meet,

%~a 7cV c _ V2ap + c' - c

' p \pi V p
^

If, on the contrary, the body B moves in the line A X ahead

of the body A, then a = 180°, and the distance of the former from

?) f
the latter body is x = a — ct + -^-, and, inversely, the time, at

z

the end of which the bodies are at a distance x from each other, is

p ^p' p
The corresponding velocity ?/ = — c + ^; ^ is = 0, and the dis-

. . c c^
tance x is a minimum' for / = , and its value is ;c = « — ^-

p 2p
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For every other value of x we have two values for the time, one

of which is greater and the other less than -.

Remark.—The foregoing theory of relative motion is often applied, not

only in celestial mechanics, but also in the mechanics of machines. Let us

consider the following case.

A body A, Fig. 84, moves in the direction A X with the velocity c^. and

should be met by another body 5 which has the velocity c^ ; what direction

must we give the latter ? If we draw A B, lay off from B, c^ in the op-

posite direction and complete with c^ and c^ a parallelogram B c^ c c^,

whose diagonal c coincides with A B, we obtain in the direction B c^ = Cg

of its side, not only the direction B Ym which the body B must move,

but also in the point of intersection C of the two

directions A X and B Y, the point where the two

bodies will meet. If a is the angle B A X formed

by A X, and i3 the angle A BY formed hy BY with

A B, we have

sin. /3 _ Cj

sin. a Cg*

This formula is applicable to the aberration of the

light of the stars which is caused by the compo-
sition of the velocity c^ of the earth A around the

sun with the velocity c^ of the light of the star B.

Here c^ is about 19 miles, and Cg about 192,000

miles, consequently

c^ . 19 sin. a sin. a

T92000"
~sin. = sm. a =

Fig. 85.

10105'

hence the aberration or the angle A B C = /3, formed by the apparent di-

rection A B of the star (which can be supposed to be infinitely distant) with

the true direction B (7 or J. D, is ,/3=20" sin. a; and for a=90°, that is, for a

star, which is vertically above the path of the earth (in the so-called pole of

the ecliptic), we have ,8 = 20". In consequence of this divergence we al-

ways see a star 20" in the direction of the

motion of the earth behind its true posi-

tion, and consequently a star in the

neighborhood of the pole of the ecliptic

describes apparently in the course of a

year a small circle of 20'' radius around

its true position. For stars in the plane

of the earth's path this apparent motion

takes place in a straight line, and for

the other stars in an apparent ellipse.

Example.—A locomotive moves from

A upon the railroad track A X, Fig. 85,
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with 35 feet velocity, and another at the same time from B with 20 feet

velocity upon the track B F, which forms an angle B B X= 56° with the

tirst. Now if the initial distances are J. C= 30000 feet, and C B = 24000

feet, how great is the distance A after a quarter of an hour ? From the

absolute velocity B E = c^ =20 feet of the second train, the inverse velo-

city ^ i^'= c = 35 feet of the first, and the included angle E B F= a =
180° — BB C= 180° — 56° = 124°, we obtain the relative velocity of the

second train

B G = Vc- + c^' + 2c Ci COS. a = V'35^ + 20'^ — 2 . d5 . 20 . cos. 56°

= i/1225 + 400 - 1400 cos^W" = ViQ25 — 782,9 = 4/842,1 = 29,02 feet.

For the angle G B F = 6, included between the direction of the rela-

tive motion and the direction of the first motion, we have

C. «m. 56° 20.0,8290 , . ^ r.-nnr^ -. U . OAO ^f.'mn. <p = ^9 Q2
- = —29^2"- ' ^^ *^"' ^=^'^^^90-1, whence 6=34 ,oO .

The relative space described in 15 minutes=900 seconds is B 0=29,02 .

•900 = 26118 feet, the distance A B is= 1/(30000)=^ + (24000)^ = 38419

24000
feet, the value of the angle B A C = A B F, whose tangent is 3qqqq= 0,8,

is i!' = 38° 40', and therefore the angle

^ 5 = -^ 1// = 34° 50' + 38' 40' = 73° 30',

and the distance apart of the two trains after 15 minutes is

A0= ^AT'B'' + BO'' -2AB.BOcos.ABO
= i/38419^ + 26118' - 2 . 38419 . 26118 cos. Id"

= VT5881 90000 = 39850 feet.



SECOND SECTION.

MECHANICS, OR THE PHYSICAL SCIENCE OF
MOTION IN GENERAL.

CHAPTER I.

FUNDAMENTAL PRINCIPLES AND LAWS OP MECHANICS.

§ 47. Mechanics.—Meclianics (Fr. mecaniqne, Ger. Mecbanik)

is the science which treats of the laws of the motion of material

hoclies. It is an apphcation to the bodies of the exterior world of

that part of Phoronomics or Cincraalies which deals with the mo-

tions of geometrical bodies without considering the cause. Me-

chanics is a part of Natural PMlosopliy (Fr. physique generale,

Ger. Naturlehre) or of the science of the laws, in accordance with

v/hich the clianges in the material world take place, viz., that part

of it, which treats of the changes in the material world arising from

measurable motions.

§ 48. Force.—Force (Fr. force, Ger. Kraft) is the cause of the

motion, or of the change in the motion of material bodies. Every

change in motion, e.g., every change of velocity, must be regarded

as the effect of a force. For this reason we attribute to a body

falling freely a force, wliich we call gravity ; for the velocity of the

body changes continually. But, on the other hand, we cannot

infer from the fact that a body is at rest or moving uniformly that

it IS free from the action of any force ; for forces may balance

each other without causing any visible effect. Gravity, which

causes a body to fall, acts as stronglv upon it when it lies upon a

table, but its effect is here destroj^cd by the resistance of the table

or other support.
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§ 49. Equi"ibrium.—A body is in equilihrium (Fr. eqiiilibre,

Ger. Gleicbgewicht), or the forces acting on a body hold each other

in equilibrium, or balance each other, when they counterbalance

or neutrahze each other without leaving any resulting action, or

without causing any motion or change of motion, e.g. When a

body is suspended by a string, gravity is in equilibrium with the

cohesion of the string. The equilibrium of several forces is de-

stroyed and motion produced when one of the forces is removed or

neutralized in any way. Thus a steel spring, which is bent by a

weight, begins to move as soon as the weight is removed, for tlien

the force of the spring, which is called its elasticity, comes into

action.

Statics (Fr. statique, Ger. Statik) is that part of mechanics which

treats of the laws of equilibrium. Dynamics (Fr. dynamique, Ger.

Dynamik), on the contrary, treats of forces as producers of motion.

§ 50. Cla'ssiiiCc^.ticn of the Forces.—According to their

action, we can divide forces into motive forces (Fr. forces motrices

puissance, Ger. bewegende Kriifte), and resistances (Fr. resistances,

Ger. AYiderstiinde). The former produce, or can produce, motion,

the latter can only prevent or dim-inish it. Gravity, the elasticity of

a steel spring, etc., belong to the moving forces, friction, resistance

of bodies, etc., to the resistances ; for although they can hinder or

diminish motion or neutralize moving forces, they are in no way
capable of producing motion. The moving forces are either accel-

erating (Fr. acceleratrices, Ger. beschleunigende) or retarding (Fr.

retardatrices, Ger. verzogerndc). The former cause a positive, Vae.

latter a negative, acceleration, producing in the first case an accel-

erated, and in the second a retarded motion. The resistances are

alv/ajs retarding forces, but all retarding forces are not necessarily

resistances When a body is projected vertically upward, gravity

acts as a retarding force, but gravity is not on this account a re-

sistance, for wiicn the body falls it becomes an accelerating force.

We distinguish also uniform (Fr, constantes, Ger. I^estiindige, con-

stante) and variable forces (Fr. variable, Ger. veranderliche). While

uniform forces act always in the same way, and therefore in the

equal instants of time produce the same eifeet, i.e., the same in-

crease or decrease of velocity, the effects of variable forces are

different at different times ; hence the former forces produce uni-

formly variable motions, and the latter variably accelerated or

retarded motions.



156 GENERAL PRINCIPLES OF MECHANICS. [§51,52,53.

§ 51. Pressure.—Pressure (Fr. pression, Ger. Driick), and

traction (Fr. traction, Ger. Zug), are the first effects of force upon

a material body. In consequence of the action of a force bodies are

either compressed or extended, or, in general, a change of form is

caused.

The pressure or traction, produced by gravity acting vertically

downwards and to which the support of a heavy body or the string,

to which it is suspended, is subjected, is called the iveiglit (Fr. poids,

Ger. Gewicht) of the body.

Pressure and traction, and also weight, are quantities of a pe-

culiar kind, and can be compared only ivith themselves ; but since

they are effects of force they may be employed as measures of tl^e

latter.

The most simple and therefore the most common way of

measuring forces is by means of weights.

§ 52. Equality of Forces.—Two weights, two pressures, two

tractions, or the two forces corresponding to them are equal, when
we can replace one by the other without producing a different

action. When, e.g., a steel sj)ring is bent in exactly the same man-

ner by a weight G suspended to it as by another weight Gx hung

upon it in exactly the same manner, the two weights, and therefore

the forces of gravity of the two bodies are equal. If in the

same way a loaded scale (Fr. balance, Ger. Waage) is made to bal-

ance as well by the weight G as by another G^, with which we have

replaced (r, then these weights are equal, although the arms of the

balance may be unequal, and the other weight be greater or less.

A pressure or weight (force) is 2, 3, 4, etc., or in general n
times as great as another pressure, etc., when it produces the same

effect as 2, 3, 4 . o . , w pressures of the second kind acting together.

If a scale loaded in any arbitrary manner is caused to balance by

the weight ( G) as well as by 2, 3, 4, etc., equal weights
( G^), then is

the weight {G) 2, 3, 4, etc. times as great as the weight {G^).

§ 53. Matter.—Matter (Fr. Matiere, Ger. Materie) is that, by

whicli the bodies of the exterior world (which in contradistinction

to geometrical bodies are called material bodies) act upon our

senses. Mass (Fr. masse^ Ger. Masse) is the quantity of matter

which makes up a body.

Bodies of equal volume (Fr. volume, Ger. Volumen) or of equal

geometrical contents generally have different weights. Therefore
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we can not determine from the volume of a body its weight ; it is

necessary for that purpose to know the weight of the unit of

volume, E.G., of a cubic foot, cubic meter, etc.

§ 54. Unit of Weight.—The measurement of weights or

forces consists in comparing them to some given unchangeable

weight, which is assumed as the unit. We can, it is true, choose this

unit of weight or force arbitrarily, but practically it is advan-

tageous to choose for "this purpose the weight of a certain volume

of some body, which is universally distributed. This volume is

generally one of the common units of space. One of the units of

weight is the gram, which is determined by the weight of a cubic

centimetre of pure water at its maximum density (at a temperature

of about 4° C). The old Prussian pound is also a unit referred

to the weight of water. A Prussian cubic foot of distilled water

weighs at 15° B. in vacuo 6Q Prussian pounds. Now a Prussian

foot is = 139,13 Paris lines = 0,3137946 meter; whence it follows

that a Prussian pound = 467,711 grams. The Prussian new or

custom-house pound weighs exactly h kilogramm. The English

pound is determined by the weight of a cubic foot of water at a

temperature of 39°, 1 F. The pound is equal to 453,5926 grams.

A cubic foot of water weighs 62,425 lbs.

§ 55. Inertia (Fr. inertie, G-er. Tragheit) is that property of

matter, in virtue of which matter cannot move of itself nor change

the motion, that has been imparted to it. Every material body re-

mains at rest as long as no force is applied to it, and if it has been

put in motion continues to move uniformly in a straight line, as

long as it is free from the action of any force. If, therefore,

changes in the state of motion of a material body occur, if a body

changes the direction of its motion, or if its velocity becomes

greater or less, this result must not be attributed to the body as a

certain quantity of matter, but to some exterior cause, i.e., to a

force.

Since, whenever there is a change in the state of motion of a

body, a force is developed, we can in this sense count inertia as one

of the forces. If a moving body could be removed from the influ-

ence of all the forces which act upon it, it would move forward

uniformly for ever ; but such a uniform motion is nowhere to be

found, since it is impossible for us to remove a body from the in-

fluence of every force. K a mass moves upon a horizontal table
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the action of gravity is counterbalanced by the table, and therefore

does not act directly upon the body, but in consequence of the

pressure of the body on the table a resistance is developed, which

will be treated hereafter under the name of friction. This resist-

ance continually diminishes the velocity of the moving body, and

the body therefore assumes a uniformly retarded motion and finally

comes to rest. The air also opposes a resistance to its motion, and

even if the friction of the body could be completely put aside, a

continual decrease of velocity would be Caused by the former.

But we find tliat the loss of velocity becomes less and less, and that

the motion approximates more and more to a uniform one, the more

we diminish the number and magnitude of these resistances, and we

can therefore conclude, that if all moving forces and resistances

were removed, a perfectly uniform motion would ensue.

§ 56. Measure of Forces.—The force (P) which accelerates an

inert mass (If) is proportional to the acceleration {p) and to the

mass (if) itself. When the masses are the same, it increases with

the infinitely small increments of velocity produced in the infin-

itely small spaces of time, and when the velocities are equal it in-

creases in the same ratio as the masses themselves. In order to

produce an m fold acceleration of the same mass, or of equal masses,

we require an m fold force, and an n fold mass requires an n fold

force to produce the same acceleration.

Since we have not as yet adopted a measure for the masses, we

can assume

P =

-or that the force is equal to the product of mass and the accelera-

tion^ and at the same time we can substitute instead of the force

its effect, i.e., the pressure produced by it.

The correctness of this general law of motion can be proved by

direct experiment, when we, e.g., drive along upon a horizontal

table by means of bent steel springs similar or different movable

masses; but the important proof lies in this, that all the results

and rules for compound motion, deduced from the law, correspond

exactly with our observations and with natural phenomena.

§ 57. Mass.— All bodies at the same point on the earth fall in

vacuo ef[ually quickly, namely, with the constant acceleration

g = 9,81 meter --= 32,2 feet (§ 15). If the mass of a body is = Jf
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and the weight which measures the force of gravity = G, we have

from the last formula

I.E., the ^veight of a hody is a product of its mass and the acceleration

of gravity, and inversely

M = —,
9

I.E., the 7nass of a hody is the weight of the same divided hy the accel-

eration of gravity, or the mass is that weight which a body would

have if the acceleration of gravity were = 1, e.g., a meter, a foot,

etc. For that point upon or in the neighborhood of the earth or of

any other celestial body, where the bodies fall with a velocity (at the

end of the first second) of 1 meter instead of 9,81 meters, the mass,

or rather the measure of the same, is given directly by the weight

of the body.

According as the acceleration of gra\aty is expressed in meters

or feet we have for the masses

J/=-9|j = 0,1019(?,or

Hence the mass of a body, whose weight is 20 pounds, is

if =0,031 X 20 = 0,62 pounds, and inversely the weight of a

mass of 20 pounds is G^ = 32,2 x 20 = 644 pounds.

§ 58.—If we suppose the acceleration {g) of gravity to be con-

stant, it follows that the mass of a body is exactly proportional to its

weight, and that, when the masses of two bodies are M and M^ and

their weights G and G^, we have

K - ^
M, ~ g:

Therefore, the weight of a body can be employed as a measure

of its mass, so that the greater the mass a body is the greater is its

weight.

However the acceleration of gravity is variable, becoming

greater as we approach the poles and diminishing as we approach

the equator ; it is a maximum at the poles and a minimum at the

equator. It also decreases when a body is elevated above the level
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of the sea. 'Now since a mass, so long as we take nothing from it

nor add anything to it, is a constant quantity and remains the

same for all points on the earth, and even on the moon^ it follows

that the weight of a body mnst be variable and depend upon the

position of the body, and that in general it must be proportional

to the acceleration of gravity, or that —^ must be = —

.

The same steel spring would therefore be differently deflected

by the same weight at different points on the earth—at the

equator and on high mountains the least, and at the poles at the

level of the sea the most.

§ 59. Heaviness (Fr. densite, Ger. Dichtigkeit) is the in-

tensity with which matter fills space. The heavier a body is, the

more matter is contained in the space it occupies. The natural

measure of the heaviness is that quantity of matter (the mass)

which fills the unity of volume; but since matter can only be

measured by weight, the weight of a . unit of volume, e.g., of a

cubic meter or of a cubic foot of another matter, must be employed

as the measure of its heaviness. Hence, the heaviness of water

at 39°.l F. is = 62,425 pounds, and that of cast iron at 32° F.

is — 452 pounds, I.E., a cubic foot of water weighs 62,425, and

a cubic foot of cast iron 452. In ordinary calculations we assume

that of water to be 62^- pounds. From the volume F of a body

and its heaviness y we have its weight G ^= Vy.

The product of the volume and the heaviness is the weight.

The heaviness of a body is uniform (Fr. homogene, uniforme,

Ger. gleichformig) or variable, (Fr. variable, heterogene, Ger.

ungieiciiformig), according as equal portions of the volume

have equal or different weights, e.g., the heaviness of the simple

metals is uniform, since equal parts of them, however small, weigli

the same. Granite, on the contrary, is a body of variable heaviness,

since it is composed of parts of different density.

Example.—1. If the heaviness of lead is 712 pounds, then 3,2 cubic feet

of lead weigh G = Vy = 2278,4 lbs. If tlie weight of a cubic foot of bar

iron be -180 pounds, the volume of a piece, whose weight is 205 pounds, is

/7 oar;

F =-- =T7^ = 0,4271 cubic feet = 0,4271 x 1728 = 738 cubic inches.
}• 480 '

Note.—In German and French the word " density" is employed to express

the weight of a cubic foot, a cubic meter, etc., of any material. In English,

unfortunately, it is employed as a synonym of specific gravity.

—

Tr.
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If 10,4 cubic feet of hemlock, thoroughly saturated with water, weighs

577, then its heaviness is

^ 577 ^^^ ,

y = 'y-= j^ = 55,5 pounds.

§ 60. Specific Gravity.—Specific weight, or specific gravity,

(Fr. poids specilique, Ger. specifisches or eigenthiiniliches Gewicht)

is the ratio of the heaviness of one body to that of another body,

generally water, wiiich is assurred as the unit. But the heavine;SS

is equal to the weight of the unit of volume ; therefore the specific

gravity is also the ratio of the weight of one body to that of

another, e.g., w^ater, of equal volume.

In order to distinguish the specific gravity or specific weight

from the weight of a body of a given volume, the latter is called the

absolute iceight (Fr. poids absolu, Ger. absolutes Gewicht).

If y is the heaviness of the matter (water), to which the others

are referred, and yi the heaviness of any matter whose specific

gravity is denoted by e, w^e have the following formula

:

e = — and yi = e y,
y

therefore the heaviness of any matter is equal to the specific gravity

of the same multiplied by the heaviness of water.

The absolute weight 6^ of a mass of whose volume is V, and

whose specific gravity is e, is

:

G^Vy,= Fey.

Example.—1. The heaviness of pure silver is 655 pounds, and that of

water 62,425 pounds ; consequently the specific gravity of the former (in

655
relation to water) is = = 10,50, i.e., every mass of silver is 10^

times as heavy as a mass of water that occupies the same space. 2) If we
take 13,598 for the specific gravity of mercury, and the heaviness of water as

62,425, then we have for the heaviness of mercury,

y = 13,598. 62,425 =-- 848,86 pounds.

A mass of 35 cubic inches of the same weighs, since 1,728 cubic inches are

a cubic foot,

G = 848,86 V = ?^m^ = 17,19 pounds.
17/i8

Remark.—The use of the French w^eights and measures possesses the

advantage that we can perform the multiplication by e and y by simply

changing the position of the decimal point, for a cubic centimeter weighs

a gram, and a cubic meter a million grams, or 1,000 kilograms. The

heaviness of mercury is therefore, when we employ the French measure,

y^ = 13,598 . 1000 = 13598 kilograms; that is, a cubic meter of mercury

weighs 13598 kilograms.
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§ 61. The following table contains the specific gravities of those

substances, which are met with the oftenest in practical mechanics.

A complete table of specific gravities is to be found in the

Ingenieur, page 310.

Mean specific gravity of

the wood of deciduous

trees, dry = 0,659

saturated with water = 1,110

Mean specific gravity of

the wood of evergreen

trees, dry = 0,453

saturated with water = 0,839"*

Mercury = 13,56

Lead = 11,33

Copper, cast and dense . = 8,75

" hammered. . . = 8,97

Brass = 8,55

Iron, cast, white . . . . = 7,50

" grey . . . . = 7,10

" " medium . . . = 7,06

'' in rods = 7,60

Zinc, cast = 7,05

" rolled = 7,54

Granite . . . . = 2,50 to 3,05

Gneiss . . . . = 2,39 to 2,71

Limestone . . . = 2,40 to 2,86

Sandstone . . . = 1,90 to

Brick = 1,40 to

Masoniy with mortar made
oflime and quarry stone :

Fresh =
Dry =
]\Iasonry with mortar made

of lime and sandstone :

Fresh =
Dry =
Brickwork with mortar

made of lime

:

Fresh . . . . . = 1,55 to

Dry = 1,47 to

Earth, clayey, stamped

:

Fresh =
Dry =
Garden earth:

Fresh =
Dry =
Dry poor earth . . . . =

2,70

2,22

2,46

2,40

2,12

2,05

1,70

1,59

2,06

1,93

2,05

1,63

1,34

§ 62. State of Aggregation,—Bodies present themselves to

us in three difierent states, depending upon the manner in which

their parts are held together. This is called their state of aggrega-

tion. They are either solid (Fr. solides, Ger. fest) or fluid (Fr.

fluides, Ger. fllissig), and the latter are either liquid (Fr. liquides,

Ger. tropfbar flllssig) or gaseous ((Fr. gazeux, aeriformes, Ger. elas-

tisch fliissig). Solid bodies are those, whose parts are held together

so firmly, that a certain force is necessary to- -change their forms or

to produce a separation of their parts. Fluids are bodies, the

position of whose parts in reference to each other is changed by the

smallest force. Elastic fluids, the representative of which is the

air, arc distinguished from liquids, the representative of which is

""See tlie absorption of water by wood, polytechnisclie Mittlieilingen,

Vol. II, 1845.
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water, by the fact that they tend continually to expand more and
more, which tendency is not possessed by water, etc.

While every solid body possesses a peculiar form of its own and

a definite volume, liquids have only a determined volume, but no

peculiar form. Gases or aeriform fluids possess neither one nor the

other.

§ 63. Classification of the Forces.—Forces are very differ-

ent in their nature ; Ave give here only the most important ones

:

1) Gravity, by virtue of which all bodies tend to approacli the

centre of the earth.

2) The Force of Inertia, which manifests itself when a change

in the velocity or in the direction of the moving body

takes place.

3) Tiie Muscular Force of living beings, or the force produced

by means of the muscles of men and animals.

4) The Elastic Force, or thaj; of springs, which bodies exhibit

wiien a change of form or of volume occurs.

5) The Force of Heat, hj xirtuQ of which bodies expand and

contract, when a change of temperature takes place.

6) The Force of Cohesion, or the force by which the parts of a

body hold together, and with which they resist separa-

tion.

7) The Force of Adhesion, or the force w^ith which bodies

brought into close contact attract each other.

8) The Magnetic Force, or the attractive and repulsive force of

the magnet.

Then we have the electric and the electro-magnetic forces, etc.

The resistances due to friction, rigidity, resistance of bodies,

etc., are due principally to the force of cohesion, which, like the

elasticity, etc., is due to the so-called molecular force, or the force

with wiiich the molecules, or the smallest parts of a body, act upon

one another.

§ 64. Forces, liow Determined.—For every force, we must

distinguish

:

1) The point of application (Fr. point d'application ; Ger. An-

griffspunkt), the point of the body to which the force is

directly applied.

2) The direction of the force (Fr. direction, Ger. Richtung), the

right line, in which a force moves the point of applica-
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tion, or tends to moye it or hinder its motion. The direc-

tion of a force has, Hke every direction of motion, two

senses. It can take place from left to right, or from right

to left, from above downwards, or from below upwards.

One is considered as positive, and the other as negative.

As we read and write from left to right, and from above

downwards, it is natural to consider these motions as

positive, and the opposite motions as negative.

3) The absolute magnitude or intensity (Fr. grandeur absolue,

intensite, Ger. absolute Grosse) of the force, which we
have seen is measured by weights, e.g. pounds, kilograms,

etc.

Forces are graphically represented by straight lines, whose

direction and length indicate the direction and magnitude of the

forces, and one of whose extremities can be considered as the point

of application of the forces.

§ 65. Action and Reaction.—The first effect produced by a

force upon a body is an extension or compression, combined with

a change of form or of volume, wliich conimences at the point of

application, and from there gradually spreads itself farther and

farther into the body. By this inward change in the body the

elasticity inherent in it comes into action "and sets itself in equi-

librium with the force, and is, therefore, equal to it, but acts in the

opposite direction. Hence, action and reaction are equal and oppo-

site. This law is true, not only for the effects of forces acting

by contact, but also for those acting by attraction and repulsion,

among which the magnetic forces, and also that of gravity, must

be counted. A bar of iron attracts a magnet exactly as much as it

is attracted itself by the magnet. The force, with which the moon
is attracted towards the earth (by gravity), is equal to the force

with which the moon reacts upon the earth.

• The force with which a weight presses upon its support is

returned by the latter in the opposite direction. The force, with

.

which a workman pulls, pushes, etc., a machine, reacts upon the

workman, and tends to move him in the opposite direction. When
one body impinges upon another, the first presses upon the second

exactly as much, as the second does upon the first.

§ 66. Division of Mechanics.—General mechanics are di-

vided into two principal divisions, according to the state of aggre-

gation of the bodies

:
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1) Into the mechanics of solid or •rigid bodies (Fr. mecanique

des corps solides, Ger. Mechanik der festen oder starrcn

Korper).

2) Into the meciianics of fluids (Fr. mecanique dcs fluides,

Ger. Mechanik der fliissigen Korper). The latter can

again be divided

:

a) Into the mechanics of water and other liquids or hydraulics

(Fr. hydraulique, Ger. Hydraulik, Hydromechanik) ; and

b) Into the mechanics of air and other aeriform bodies (Fr. me-

canique des fluides aeriformes, Ger. Mechanik der luft-

formigen Korper).

If we take into consideration the division of mechanics into

statics and dynamics, we can again divide it into

:

1) Statics of rigid bodies.

2) Dynamics of rigid bodies.

3) Statics of water, etc., or hydrostatics.

4) Dynamics of water, etc., or hydrodynamics.

5) Statics of air (of gases and vapor) or aerostatics.

6) Dynamics of air (of gases and vapors) or aerodynamics or

pneumatics.

CHAPTER II.

MECHANICS OF A MATERIAL POINT.

§ 67. A material point (Fr. point material, Ger. materieller

Punkt) is a material body whose dimensions in all directions are in-

finitely small compared with the space described by it. In order to

simplify the discussion, we will now consider the motion and equili-

brium of a material point alone. A (finite) body is a continuous

union of an infinite number of material points or molecules. If

the different points or elements of a body move in exactly the same

manner, i.e., with same velocity in parallel straight lines, the

theory of the motion of material point is applicable to the whole

body ; for in this case we can suppose that equal portions of the

mass are impelled by equal portions of the force.
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§ 68, Simple Constant Force.—Ifp is the acceleration with

which a mass J/ is impelled by a force P, we have from § 56

pP = 31p, or inversely the acceleration p = —

C
Putting the mass 31 = — , G denoting the weight of the body

and g the acceleration of gravity, we obtain the force

P

9
1)P = Ig,

and the acceleration

p

We find then the force (P) which moves a body with the accel-

eration (j)) by multiplying the weight {G) of the body by the

ratio (— ) of its acceleration to that of gravity.

Inversely we obtain the acceleration (p), with which a force (P)

will move a mass 31, by multiplying the acceleration [g) of gravity

by the ratio \-^) of the force to the weight of the body.

Example.—Let us imagine a body placed upon a very smooth borizoH-

tal table, which opposes no resistance to its motion, but which countei'acts

the effect of gravity. If this body be subjected to the action of a borizon-

tal force, the body yields and moves forward in the direction of th^ lorce.

If the weight of the body is G^ = 50 pounds and the force which acts

uninterruptedly upon itisP= 10 pounds, it will assume a uniformly accel-

P 10
erated motion, the acceleration of which is ^ = -^ j; = -7. 32,2 = 6,44'-

ix 5 J

feet. If, on the contrary, the acceleration produced in a body weighing

42 pounds by a force P\sp = 9 feet, then the force is P = — G — ^7^^

.42 = 0,031 . 378 = 11,7 pounds.

§ 69. If the force acting upon a body is constant, a nniformly

variable motion is the result, and it is nniformly accelerated, when

the direction of the force coincides with the original direction of

motion, and uniformly retarded, when the force acts in the opposite

direction. If we substitute in the formulas of § 13 and § 14, in-

P P
stead of ^, its value -r? = 7^- ^j we obtain the following:
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I. For uniformly accelerated motion

:

P P P
"

1) v = c + -^qt = c-\- 32,2 -Tc^feet - c + 9,81 -^ t metres,
^ G '^ G G

2) s = ct-}- j^^-J~- = ct -h 16,1-^ f feet =^ct + 4.,dOD-^f metres.
br Ai (jr br

II. For uniformly retarded motion

:

P P P
1) yz=c — -^gt — c — 32,2 -y^ t feet = c — 9,81 -^ t metres.

Cr Cr (jr

2) s = ct - ~-^-^ = ct - lG,l~-ffeet = ct - 4:,dOD -^ f metres.

By means of the above formulas all questions, wliicli can arise

in reference to the rectilinear motions produced by a constant force,

can be answered.

Example.—1) i^wagon weighing 2,000 pounds moves upon a horizon-

tal road, which opposes no resistance to it, with a velocity of 4 feet, and

is impelled during 15 seconds by a constant force of twenty-five 25ounds
;

with what velocity will it proceed after the action of this force ? The

p
required velocity is © = c + 82,2 -^ t, but here we have c = 4, P = 25,

25
G = 2,000 and t = 15, whence v = 4: + 32,2 . ^^ . 15 = 4 + 6,037 =

10,037 feet. 2) Under the same circumstances a wagon weighing 5,500

pounds, which in the three previous muiutes had described uniformly 950

feet, was impelled during 30 seconds by a constant force, so that after-

wards it described 1650 feet uniformly in three minutes. What was this

force L_The initial velocity is c = ~—^ = 5,277 feet, and the final ve-

1G50 JP
locity is V = tt-^ = 9,166 feet, whence --^ g t = v — c—- 3,889, and the

3,889. (? 5500 550
force P = -^ -— = 0,031 . 3,889 . -—r = 0,120559 .—-= 22,10 pounds.

ff
t oO o

3) A sled weighing 1500 pounds and sliding on a horizontal support with

a velocity of 15 feet loses, in consequence of the friction, in 25 seconds, the

whole of its velocity. What is the amount of the friction ? The motion is

here uniformly retarded and the final velocity is © = 0, hence c = 32,2 .

~, and P = 0,031 ^y = 0,031
^''~-- = 0,031 . 900 = 27,9 pounds,

which is the friction in question. 4) ^Vnother sled, weighing 1200 pounds

and moving with an initial velocity of 12 feet, is obliged to overcome a
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friction of 45 pounds when in motion. What is its velocity after 8 seconds,

and what is the space described ?

The final velocity is

and the sjDace described is

13 - 32,2 ^^^ = 12 - 9.66 = 2,34 feet,

m^-c-^v^)—^36 feet.

§ 70. Mechanical Effect.*—Mechanical effect or icork done

(Fr. travail mecanique, Ger. Leistung or Arbeit der Kraft) is that

effect which a force accomplishes in overcoijiing a resistance, as,

E.G., gravity, friction, inertia, etc. Work is done when we elevate

a weight, when a greater velocity is communicated to a body, when
the forms of bodies are changed, wlien they are divided, etc. The

work done depends not only upon the force, but also on the space

during which it is in action, or during which it overcomes a re-

sistance. If we raise a body slowly enough to be able to disregard

the inertia, the work done is proportional to its weight and to the

height which it is lifted for 1) the effect is the same if a body of

the m (3) fold weight is lifted a certain height, or if m (3) bodies

of the weight
( G) are lifted the same height ; it is m times as

great as tliat necessary to raise the simple weight the same height

;

and in like manner 2) the work done is the same, if one and the

same weight be raised the n (5) fold height [n h) or if it is raised

71 (5) times to the simple height, and in general n {6) times so great,

as when it is raised to the simple height. In like manner, the

work done by a weight sinking slowly is proportional to the weight

and to the distance it sinks. This proportion is, however, true for

every other kind of work done ; in order to make a saw cut of

twice the length and of the same depth as another we are obliged

to separate twice as many particles, and the work done is therefore

double ; the double length requires the force to describe double the

distance, and consequently the work is proportional to the space

described. In like manner the work done by a run of millstones

increases evidently with the number of grains of a certain kind

of corn which it grinds to a certain fineness. This quantity is,

however, under the same circumstances proportional to the number

** Energy is the capacity of a body to perform work. Energy is said to be

stored when this capacity is increased, and to he restored when it is diminished.

The unit of energy is the same as that of work.

—

Tr.
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of revolutions, or rather to the space described by the upper mill-

stone while this quantity of corn is being ground. The work

done increases, therefore, directly with the space described.

§ 71. As the work done by a force depends upon the inten-

sity of the force and the space described by it, we can assume as

the unit of ivork or dynamical unit (Fr. unite dynamique, Ger.

Einheit der mechanischen Arbeit odcr Leistung) the work done

in overcoming a resistance, whose mtensity is the unit of weight

(pound, kilogram) over a space equal to the unit of length (foot,

metre), and w^e can also put this measure equal to the product

of the force or resistance into the space described by it in its

direction while overcoming the resistance.

If w^e i)ut the amount of the resistance itself = P and the

space described by the force, or rather by its point of application,

while overcoming it = s, then the work done in overcoming tliis

resistance is '

A — P s units of work.

In order better to define the units of work, (which we can style

simply dynam) the units of both factors P and s are generally

given, and instead of units of work we say kilogram-meters and

pound-feet, or inversely meterkilograms, foot-pounds, etc., accord-

ing as the weight and the space are expressed in kilograms and

meters, or in pounds and feet. For simplicity we write instead of

meterkilogram, m k or k m ; and instead of foot pound, lb. ft.,

or ft. lb.

Example.— 1. Iii order to raise a stamp weighing 210 pouuds, 15 inches

15
high, the work to be done is ^ = 210 . - = 262,5 ft. lbs 2. By a me-— II*

chanical eflfect of 1500 foot pounds a sled, which when moving must over-

come a friction of 75 pounds, will be dra^ii forward a distance

P 7o

§ 72. Not only when the force is invariable, or the resistance is

constant, but also when the resistance varies while the force is

overcoming it, can the work done be expressed by the product of the

force and the space described, provided we assume for the value of

the force the mean value of the continuous succession of forces. The
relation between the time, velocity and space is therefore the same

here ; for we can regard the latter as the product of the time and
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of the mean of tlie velocities. We can also employ here the same

graphical representations. The work done can be regarded as the

area of a rectangle A B C D, Fig. 86, whose base A B i^ the space

(s) described and whose height is either the constant force P or

i\\Q mean value of the different forces. In general, however, the

work done can be represented by the area of a figure ABC N D,

Fig. 87, the base of which is the space s described, and the height

of which above each point of the base is equal to the force corre-

sponding to that point of the path. If we transform the figure

A B C ND in a rectangle A B E F^^ith the same base and the

same area, its altitude A F — B E gives the mean value of the

force.

Fig. 88.

H

§ 73. Arithmetic and Geometry give several different methods

for finding the mean value of a continuous succession of quanti-

ties, the most important of whicli are to be found in the Ingcnieur.

The method known as Simpsoii's Rule is, however, the one most

generally employed in practice, because in many cases it unites

great simplicity with a high degree of

accuracy.

In every case it is necessary to divide

the space A B = s (Fig. 88), in n (as

many as possible) equal parts, such as

A E = E G = GJ, etc., and to deter-

mine the forces EF=P„GH= P,,JK
= P;5, etc., at the ends of these portions

^ ^ ^ J *" of the path. If we put tlie initial force

A D = P, and the final one B C -^ P^

we have the mean force P = (^ P„ + P, + P, + P3 + • • • +
P„._, -}- A P„) : n. and consequently its work

F_^""n

—

---^

D Z^ \

1

P, k h n

P s = (i P, + P, + P, + .. . + P„_, + i P„
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If the number of parts (?^) be even, i.e. . 2, 4, 6, 8, etc., Simp^

son's Rule gives more exactly the mean force

P = (P^ + 4 A + 2 P2 + 4 P3 + . . . +4 P„_, + P„) : 3?^,

whence the corresponding work done is

Ps = (P„ + 4 P, + 2 A + 4 P3 + .. . + 4 P„._, + P,) ~
o 72/

If n is an uneven number, we can put

P s = [i (Po + 3 P, + 3 P, + P3) + i (P3 + 4 P, + 2 P,

+ + 4 P„_, + P„)] ^^. (See Art. 38 of the Introduction

to the Calculus.)

Example.—In order to determine the work done by a horse, in drawing

a wagon along a road, we employ a dynamometer (or force measurer;, one

side of which is attached to the wagon and the other to the horse, and we
observe from time to time the intensity of the force. If the initial force is

P = 110 pounds, that after moving 25 feet 122 pounds, that after 50 feet 127

pounds, that after 75 feet 120 pounds, and that at the end of the whole dis-

tance, 100 feet, 114 pounds, we have for the mean value of the force ac-

cording to the first formula

P = (i-
. 110 + 122 + 127 + 120 + i X 114) : 4 = 120,25 pounds,

and for the mechanical effect

Ps = 120,25 X 100 = 12025 foot-pounds.

According to the second formula we have
1446

P=:(110 + 4. 122 + 2. 127 + 4. 120 + 114) : (3 . 4) = --_- =120,5 pounds,

and the mechanical effect

Ps= 120,5 . 100 = 12050 foot-pounds.

§ 74. Principle of the Vis Viva or Living Forces.—If ^a

the formula .9 — —^

—

-- or ;; s — ----- found in 8 14, we substi-
2p ^

2
^

P
tute for p its value y^ (j[, we obtain the mechanical effect A = P r:

—
n— )^5 0^' designating the heights due to the velocities—-

and - bv/i and Jc,.

2g "

Ps = {h ~ k) G.

This equation, so important in practical mechanics, means that

the mechanical effect (P,9), which a mass absorbs when its velocity

changes from 9. lesser to a greater, or that which it gives out, when

its velocity is forced to change from a greater to a less, is always
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equal to the product of the weight of the mass into the difference of

the heio-hts due to the different velocities (^- --).

Example.—1. In order to impart, upon a j)erfectly smooth railroad, a

velocity of 30 feet to a wagon weighing 4000 pounds, the work to be done

is Ps = ~ G= 0.0155 v^ G = 0,0155 x 900 x 4000 = 55800 pounds, and this
2g

'

wagon will perform the same amount of work if a resistance be opposed to

it, so as to cause it gradually to come to rest. 2. Another wagon, weighing

6000 pounds and moving with a velocity of 15 feet, acquires in consequence

of the action of a force a velocity of 24 feet ; how much mechanical effect

is stored by the wagon, or how much work is jjerformed by the force ?

The heights due to the velocities 15 and 24 feet are I: = -— = 3,487 and^ 2^

h =— = 8,928 feet. Consequentlv the work done P s =. (h — k) G

= (8,928 - 3,487) x 6000 = 5,441 x 6000 = 32646 foot-pounds.

If the space described is known the force can be found, and if the

force is known the space can be found. Let us suppose, e.g., in the last

case, that the space described by the wagon, ^hile the velocity changes from

11 to 24 feet, is but 100 feet, we have then the force P = (h — k)

— = -
^

- = 326,46 i)ounds. If, however, the force was 2000 pounds,

the space would be s = Ql — k) ^ = ^-—- = 16.323 feet. 3. If a sledP 2000

weighing 500 pounds, and moving "udth a velocity of 16 feet, loses in con-

sequence of the friction the whole of its velocity while describing 100 feet,

the resistance of the friction is

P = ^_A^? = 0,0155 X 16-^ X ~-^-^ = 0,0155 x 256 x 5 = 19.84 pounds.

§ 75. The formula for the work done, found in the preceding

paragraph,

holds good not only when the forces are constant, but also when

they are variable, if we substitute (according to § 73) instead of F
the mean value of the force; for according to III*), in § 19, we

have, in general, for every continuous motion
?,'- — c"

Y-'=P''

in which v — ^ -- ' --' -—^" denotes the mean acceleration
71
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with wliich the space s is described, and we have also

J)
— ~ — , whence

P 4- . . + P
in which P = — '-^ denotes the mean of all the forces

measured after the spaces— , —, — . . .— are described.
^ n n n n

The force P can also be calculated by means of one of the

formulas of § 73, when the number n of the parts is not assumed

to be very great.

We are very often required to calculate the change of velocity

that a given mass M undergoes, when a given amount of me-

chanical effect P 5 is imparted to it. The principal equation

which we have found is then to be employed in the following form

Ji = fc -\—^^ or V = y c + 2g -^.

If^w^ have calculated by means of this formula the velocities

5 2 s S s
v„ V.2 . . , v„ which correspond to the spaces —, —, — ... s, we can

Til 7h 71/

calculate by means of the formula

s (I 1 1 1\

71 \Vi V^ Vz Vj

the time in which the space s is described.

2 P 5 P s
Intheform (r=if^= -r—^ = -—, ---. r the principal

^ v'— c'
I {v -{ c) {v — c) ^ ^

formula we have found serves to determine the mass, M, which in

consequence of the mechanical effect P s imparted to it will un-

dergo a change of velocity v — c.

When the motion of a body is continuous and the final velocity

V is equal to the initial one c, then the work done becomes = 0,

i.E, the accelerated part of the motion absorbs exactly as much
work as the retarding portion gives out.

Example.—If a wagon weighing 2500 pounds, moving without fric-

tion with an initial velocity of 10 feet, has imparted to it a mechanical

effect of 8000 foot-pounds, what is its final velocity ?
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Here v = i/lO"- + 64,4 . |^ = l/lOO" + 206,0B = 17,49 feet.

Remark.—"We call, witliout attaching any particular idea to the term,

the product of the mass M= — into the square of the velocity ^y^), that is

Mv"^, the vis viva (Ft. force vive, Ger. lebendige Kraft) of the moving mass,

and we can therefore put the mechanical effect, which a mass which is

moved absorbs, equal to the half of its vis viva. If an inert mass passes

from a velocity c to another v, tlien the work gained or lost is equal to the

half difference of the vis viva at the beginning and of that at the end of

the change of velocity. This law of the mechanical effect bodies produce

by virtue of their inertia is called the principle of vis viva (Fr. principe

des forces ^dves, Ger. Princip der.lebendigen Krafte).

§ 76. Composition of Forces.—If two forces P, and Pg act

upon the same body 1) in the same or 2) in opposite direc-

tions, then their effect is the same as when a single force equal to

1) the sum or 2) the difference of these forces acted upon the body;

for these forces impart to the mass the accelerations

P Pr
^, = -^and^, = -^^;

whence, according to § 28, the resulting acceleration is

and consequently the corresponding force is

P = Mp =z P^± P,.

We call the force P derived from the two forces and capable of

producing the same effect (equipollent) their resultant (Fr. result-

ante, Ger. Eesultirende), and its constituents Px and Pa its com-

ponents (Fr. composantes, Ger. Componenten).

Example.—1) A body lying upon the flat of the hand presses with its

absolute weight on it only so long as the hand is at rest, or is moved with

the body uniformly up or down ; but if we lift the hand with an accelerated

motion, it experiences a heavier pressure ; and if, on the contrary, we allow

it to sink with an accelerated motion, then the pressure becomes less than

the weight, and even = when the hand is lowered with an acceleration

equal to that of gravity. If the pressure on the hand is P, then the body

falls with the force G — P only, if its mass is M = —
; if we put the ac-

c;eleration with which the hand descends = p we have G — P = — p, and

therefore the pressure P= (9— - 6^= (1 --) G. If, on the contrary.
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we raise the body upon the hand with an acceleration p, then the accelera-

tion ^ is opposite to the acceleration g, and the pressure becomes P =(l

+ \G. According as we lower or raise a body with an acceleration of

20 feet, the pressure upon the hand is ( 1 — ^^^ j G = {1 — 0,62) O =

0,38 times the weight of the body, or 1 + 0,62 = 1,62 times the same

weight. 2) If with the flat of the hand I throw a body weighing 3

pounds 14 feet vertically upward, by urging it on continuously during the

first two feet, then the work done is P s = (r A = 3 . 14 = 42 pounds, and

42
the pressure of the body on the hand is P = -^ = 21 pounds. Hence

the body when at rest presses with a weight of three pounds upon the

hand, and, on the contrary, during the act of throwing it, it reacts with a

force of 21 pounds upon the hand.

3) What load Q can a piston movable in a cylinder A A C 0, Fig. 89,

raise to the height D K = s — Q feet, if during the first half of its course

the air which flows in from a very large res-

ervoir acts upon it with a force of 6000

pounds, and if during the second half of its

course this air enclosed in the cylinder ex-

pands according to the law of Mariotte, while

the exterior air acts with a constant pressure

of 2000 pounds in the opposite direction.

Since the air shut in the cylinder at the end

of the second half of the course of the piston

has expanded to double its volume, the

pressure of the same upon the piston at the

end of the course is only ^.P z=z 3000 pounds.

The air inclosed in the cylinder, when the

piston has traveled 3 feet, presses with a force of 6000 pounds upon it, on

the contrary at the end of four feet with a force of f . 6000 = 4500 pounds,

at the end of 5 feet with f .6000 = 3600 pounds, and at the end of the

entire course with a force of f . 6000 = 3000 pounds. Hence the mean
force during the expansion = i [6000 + 3 (4500 + 3600) + 3000] =

Fig. 89.

83300 = 4102 pounds, and consequently the mean force during the whole

of the course of the piston is = 6000 + 4162
5081 pounds. If we sub-

tract the constant opposing force of 2000 pounds from this, it follows that

the weight to be raised by the piston is

Q = 5081 — 2000 = 3081 pounds.

Tlie motive force for the first half of the course is then P — {Q +
2,000) = 6000 — 5081 = 919 pounds, and consequently the acceleration

'P~(Q+ 2000)\ 919 _ ^^ ,
^^ ^),=— .32,2^ 9,6 feet, andof the motion is "=('
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the velocity at the end of the first half of the course of the piston s^ = —
= S feet is V = \/ 2p s^ = V 6 . 9,6 = V 57,6 = 7,589 feet, and the time in

which this space is described by the piston is t^ = —- = j^-^^ = 0,790

seconds. The distance, which has been traveled by the piston when the

force and the load balance each other, that is, when the motive force and

consequently the acceleration is = 0, and the velocity of the piston is a

maximum, is IP \ s 6000 . 3

When the distance
' = 3,2715 feet has been described, the force act-
io

, . . 6000 .

3

mg on the mside piston is — = 5502, and consequently the motive

force is = 5502 — 5081 = 421 pounds, and the mean value of the same

while the piston passes from 3 to 3,543 feet is ~—

•

= 434

A rrv, V 1 ^ •
434 434 . 32,2

pounds. The corresponding mean acceleration is = ^^r—- g = ——-—

—

oOol oOol

= 4,535 feet, and consequently the maximum velocity of the piston at the

end of the space x = s^ + s^ = 3,543 feet is

«^ = V«)^ + 2i>S2 = V 57,6 + 2 X 4,535 x -pIS = V62;525 = 7,907 feet.

The time required to describe the space s^ = 0,543 can be put

= *^ = y(I + -^) = «'^"^ (im + 7^7)
= «'«™ ^'^^°"^^-

If the piston has described the space 5,5 the motive force is -^^vTwr —
o,oOO

5081 = — 1808 pounds, and if the piston is midway between this point

and the point of maximum velocity, this force is then = ^ — 5081
4,5215

1808 X S2

2

=— 1100 pounds, and the corresponding accelerations are= -—

= - 18,89 feet, and = - ^^^1^/^'^ = - 11,49 feet.
, oOol

The mean acceleration while the piston describes the portion of the

r: (.AA onAo -r nrri^ -f ,' xi + 4x11,49 + 18,89
space 5,500 — 3,543 = 1,957 feet is consequently =

= — 10,81 feet, and therefore the velocity acquired at the end of this space is

= V62;525 - 2 X 10^81 x 1,957 = V20,215 = 4,496 feet. On the contrary,

during the first half of the last portion of the ccurse, the mean acceleration is

+ 11 49= ~— = — 5,745 feet, and therefore the velocity at the end of the
2

space 4,5215 feet v^^ = V 62,525 — 2 x 5,745 x 0,9785 = V5l,282 =
7,161 feet, and we have for the time required to describe the space «g =
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l'""' *» = -Hh + "i + i) = "•''" (7-^7 + 7j61 +4^96) = '>'^'^

X 0,9075 = 0,2GG seconds. Finally, we can put the time during which the

last portion s^ — 0,5 of the whole course is described t^ = —~ = , . ^

= 0,2224 seconds, and the time required by the piston to describe its entire

cours.> c=«i + ^3 + ^3 + t^= 0,790 + 0,070 + 0,29G + 0,2224 = 1,378 seconds.

§ 77. Parallelogram of Forces.—If a mass (a material

point) M, Fig. 90, is acted upon by two forces, P, and P,, whose

direction, J/Xand M Y, form an angle X M Y = a with each

other, the forces cause in these directions the accelerations

P P

and by combining them, a resulting acceleration (§ 35) in the

direction M Z, which is determined by

tlie diagonal of a i)arallelogram con-

structed withal, j!?2, and a, is obtained;

this resulting acceleration is

p = V2h^ + p.2 + 'Zpip^ COS. a,

and we have for the angle 0, which its

jdirection makes with the direction

MX of the acceleration pi

»2 sin. a
sin. (b = .

P
Silbstituting in these two formulas the given values of p^ and p^j

we obtain

^ = ^15)'+ ©)"+ ' tt) ffl^»
-^

'

. , /Pa sin. a
*'"* = Ly)^'

and multiplying the first equation by M, we have

Mp = V P,^ + p,^ + 2 P, P., COS. a,

or since Mp is the force P corresponding to the acceleration p, we

find 1) P = ^ P" + P," + ^P'xP.cos.a,

„. . ^ P^sin.a
2) sm. = ^

—

Tlie resultant or mean force is determined in magnitude and di-

rectio7ifrom the component forces in exactly the same manner, as the

resulting acceleration is determined from the component accelerations.

If we represent the forces by right lines, making the ratio of

12
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their length the same as that of the weights (e.g. pounds) to

each other, the resultant can then be represented by the di-

agonal of the parallelogram whose sides are formed by the compo-

nent forces, and one angle of which is equal to the angle formed by

the component forces with each other. The parallelogram thus

constructed with the component forces, the diagonal of which rep-

resents the resultant, is called the 'parallelogram offorces.

Example.—If a body, Fig. 91, weighing 150 pounds and resting on a

perfectly smooth table, is acted on by two forces P^ = 30 pounds, and

Pg = 24 pounds, which fonn with each other an angle P^M P^ ~ a = 105",

in what direction and with what acceleration will the motion take place ?

Since cos. a = cos. 105° = — cos. 75°, we have

the resultant

P = V30V+ 24'^ - 2 X 34 X 30 X 'cos'.!
5^

= V900 + 576- 1440 cos. 75°

= Vi476 -"372,T = 33,22 pounds

and the corresponding acceleration

P
P_

M
Pg
a

33,22 X 32,2 .......j-5^—=: 7,13 feet.

The direction of the motion forms an angle (p

with the direction of the first force, which is de-

termined by the following formula

sin. = -^1%^ sin. 105°=0,7224 sin. 75"=0,6978;

and 9 is = 44° 15'.

Remakk.—The resultant (P) depends (according to the formula just

found) upon the components alone, and not upon the mass ( if) of the

body upon which the forces act. For this reason we find in many works

upon mechanics the correctness of the parallelogram of forces demonstrated

without reference to the mass, but with the assumption of some one of the

fundamental laws of statics. Such pure statical demonstrations are

numerous. In each of the following works we find a different one:

'' Eytelwein's Handbuch der Statik fester Korper ;" " Gerstner's Hand-

buch der Mechanik ;" " Kayser's Handbuch der Statik ;" " Mobius' Lehr-

buch der Statik;" " Riihlman's Technische Mechanik.'" The demonstration

in Gerstner's " Mechanik" is based upon the theory of the lever ; it is really

very simple, and is to be found in old, and also in later works, e.g., in those

of Kiistner, Monge, Whewell, etc. Kayser's demonstration is that of Poisson

in elementary shape. Mobius' discussion of it is based upon a particular

theory of couples (des couples) introduced by Poisson (Elements de

Statique). A peculiar demonstration is given by Duchayla in the Corre-

spondence sur I'ecole polytechnique No. 4, which is reproduced by Brix in
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bis Lehrbucli der Statik fester Korper. It is also §iven in many other

works, E.G., in Moseley's Mechanical Principles, etc. The demonstration

of the parallelogram of forces given by Navier in his " Lepons de Mecan-

ique" (German by Meier, 1851) is also to be found in Riihlmann's " Grund-

ziige der Mechauik," Leipzig, 1860. A theory of this parallelogram,

founded on the laws of motion, is to be found in Newton's " Principia."

It is also employed in many later works, i.e., by Venturoli, Poncelet, Burg,

etc. See " Elementi di Mecanica e d'Idraulica di Venturoli," " Mecanique

industrielle par Poncelet," " Compendium der popularen Mechanik and

Machinenlehre von Burg." A new demonstration by Mobius is to be found

in the Berichten der Gesellshaft der Wissenshaften zu Leipzig (1850), an-

other by Ettingshausen in the papers of the Academy of Vienna (1851), and

a third, by Schlomich in his " Zeitschrift fiir Mathematik and Physik"

(1857).

§ 78. Decomposition of Forces.—With the aid of the paral-

lelogram of forces we can not only combine two or more forces so

as to find a single resultant, but also decompose a given force,

under given circumstances, into two or more forces. If the angles

and -0? which the components If P, = P, and J/Po = P-i, Fig- 91

»

make witb. the given force M F = P are given, then the compo-

nents are determined by the following formulas

p _ F sin. ip p _ P ^^^^-

' sin. (0 + 0)' " sin. (4> + "0)'

If the components are at right angles, then -f- t/; = 90" and sin.

{(f)
-\- xp) =z 1, and we have

Fx = F COS. and P.^ = P sin. 0.

and if, finally, and are equal, we have
P. sin. _ F
sin. 2 ~2 COS.

Example.— 1) How heavily vdW a table A B, Fig. 92, be pressed by a

body M whose weight is G^ = 70 pounds, and which acted on by a force

P = 50 pounds, which is inclined to the horizon

at an angle P M P^ = q> = 40" ? The horizontal

component is

Pj = Pcos. ^ = 50 COS. 40» = 38,30 pounds,

and the vertical component

^ =: Psin. (/. = 50 sin. 40" = 32,14 pounds.

The latter tends to raise the body from the table,

and consequently the pressure on the table is

6^ — Pg = 70 — 32,14 = 37,86 pounds.

2) If a body M, Fig. 91, weighing 110 pounds;

is moved upon a horizontal support by two forces,

*' so that in the first second it describes a distance

of 6,5 feet in a direction, which forms with the two directions of the forceg

P. = P.

Fig. 92.
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the angles ^ = 52° *id V = 77°, tlie forces can be found as follows : The
acceleration is double the space described in the first second, or in this

case^ = 2 . 6,5 = 13 feet, and the resultant is

p G = 0,031 . 13 . 110 = 44,33 pounds.

Hence one of the components is

_ Psin. 77" _ 44,33 sin. 77°

^ ~sin. (520 _,_ 770)— ^m. 51

«

and the other is

55,58 pounds,

„ 44,33 *m. 520

Fig. 93.

§ 79. Composition of Forces in a Plane.—In order to find

the resultant P of a number of component forces P^, Po, P^, etc.

(Fig. 93), we can pursue exactly the same method that we em-

ployed in the composition of velocities. We can, by employing

repeatedly the parallelogram of forces, combine the forces two by

two so as to form one, until but one is left. The force P^ and P^

give, E.G., by means of the parallelogram 31 Pi Q Po, the resultant

M Q = Q; and if we combine this with P3 we obtain, by means

of the parallelogram M Q R P^

the resultant MR ^= R, and the

latter, combined with P^, gives,

by means of the diagonal M P
= P, the resultant of all four

forces Pi, Pg, P3, and P4. It is

not necessary, when combining

these forces, to complete the par-

allelograms and to find their

diagonals. We have but to con-

struct a polygon M P^ Q R P
by drawing its sidesM Pi, Pi Q,

Q Ry R P, equal and parallel to the given components Pi, Ps, P3,

P4. The last side M P, Avhicli closes the parallelogram, is the re-

sultant required, or rather the measure of the same.

Remark.—The solution of mechanical j^roblems by construction is very

useful. Although the results are not as accurate as those obtained by cal-

culation, yet they are of great value as checks against gross errors, and can

therefore always be employed as proofs of calculations. In Fig. 93 we

have drawn the forces as meeting each other and forming the given angles

Pi 3/P2 = 72° 30', P3 M Pg = 33° 20', and P3 J/ P^ = 92° 40'; and

their length is such, that a pound is represented by a line or Jj of a
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Prussian inch. The forces P^ = 11,5 pounds, Pg = 1^)8 pounds, Pg =
8,5 pounds, and P^ = 13,3, are therefore expressed by sides 11,5 lines,

10,8 lines, 8,5 lines, and 13,3 lines long. A careful construction of the

polygon of forces gives the value of the resultant P = 14,6 pounds, and

the angle formed by the direction MP with the direction M P^ of the first

force a = 8Qf.

§ 80. AYe can determine the resultant P more simply by de-

composing each of the components Pj, P^, P3, etc., into two com-

ponents §1 and E^, Q.2 and E^, ft and P3, etc., in the direction of

the rectangular axes XX and Y Y, Fig. 94, by then adding alge-

braically the forces which lie in the same axis, and by seeking the

intensity and direction of the resultant of the two forces which

have been thus obtained, and whose directions are at right angles

to each other. If the angles P, MX, P, MX, P, MX, etc., P„
Ps? Pzf etc., form with the axis of X are = a^, a.,, a^, etc., we
have the components Q^ = P^ cos. a^, E^ = P, si7i. a^; Q2 — Pi

COS. as, E2 = Pi si?i. a^,, etc. ; whence it follows from the equation

e == ft + ft + ft + . .,
that

^) ft^ ^1 (^os. aj + P2 COS. a.2 -f P3 cos. a^ + . .
.,

and also from E = E^ -h E>2-\- E3 . . ., that

2) E = Pi sin. fli + P2 sin. a2 -\- P^ sin. a.^ + ...

We find the value of the resultant of tlie two components Q and E,

just obtained, by the aid of the formula

3) P = V ft + E\
and that of the angle P MX — a, formed by its direction with the

axis X X, by means of the formula

E
4) tang, a Q'

PiQ. 94.

Y

\
R

1

\-

R3 1^3

^^r|- •/
P,^.<;^M 7X ^, ;, , -^ / U., -X
Qi Q-2 Q ^<33 1^4

^A - - _ >^.

In adding algebraically the forces

we must pay particular attention to

their signs ;^for if they are different

for two different forces, i.e. if these

forces act in opposite directions

from the point of application, then

this addition becomes an arithmeti-

cal subtraction. The angle a is

acute as long as E and Q are posi-

tive ; it is between 90''—180", when

Q is negative and E positive ; it is

between ISO**—270", when Q and E
are both negative, and is finally be-

tween 270"—360", when E alone is negative.
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Example.—What is the direction and intensity of the resultant of

the forces P^ = 80 pounds, P^ = 70 jDOunds, and Pg = 50 pounds, whose

directions lie in the same plane and form the angles P^ ^^ ^2 = 56° and

P^MP^ = 1040 with each other ? If we lay the axis X X, Fig. 94, in the

direction of the first force, we obtain a^ = 0°, ag = 56'^, and 03 = 56° +
1040 = 160° ; hence

1) § = 30 . COS. 0° + 70 . COS. 560 + 50 cos. 160 » rr 30 + 39,14 — 46,98

= 22,16 pounds,

2) i? = 80 . sin. 00 + 70 . sin. 56° + 50. sm. 160° = + 58,03 + 17,10

= 75,13 pounds, and

75,13
3) tang, a = ^^^^

= 3,3903,

and therefore the angle formed by the resultant with the positive portion

of the axis ifX is a = 73o 34', and the resultant itself is P ='\/ Q' + M' =
Q R 75,13 75,13 ^^ „„-^ = -• =

. '„ i7r/ = TT^b^i = ^8,33 pounds.
cos.a sm. a 5^/^.730 34' 0,9591 ' ^

§ 81. Forces in Space.—If the direction of the forces do not

lie in the sluiig plane, v/e pass a plane through the point of appli-

cation and decompose the forces into two others, one of v>^liicli lies

in the plane, and the other at right angles to it. The components

thus obtained, which lie in the plane, are combined according to

the rule given in the last paragraph, so as to give a single result-

ant, and those at right angles to the plane give, by simple addition,

anotlier resultant. From these two components, which are at right

angles to each other, we find the resultant according to the well-

known rule (§ 77).

This method of proceeding is graphically represented in Fig.

95. MP, = Pi, 3TT, = F„ WT^ = P3 are the simple forces,

^ P is the plane (plane of projection) and ^^is the axis at right

angles to it. From the decomposition of the forces P, Po, etc., we

obtain the forces S, S2, ejbc, in the plane, and the forces N, K., etc.,

along the normal Z Z. The former are again decomposed into the

components Q^, ()<,, etc., P^, P^, etc., which, by addition, give the

resultants Q and P, from which, as components, we determine the

resultant S, which, combined with the sum of all the normal forces

iV, N-i, etc., gives tlie required resultant P.

If we put the angles of inclination of the directions of the

forces to the plane equal to /3], /3,,, etc., we obtain for the forces in

the plane S^ ~ P, cos. /3„ S^ = P^ cos. 13c,, etc., and for the normal

forces iV, = P, sin. (3^, N^ — P.^ sin. (3.2, etc. Designating the angles

which the projections of the directions of the forces in the plane
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A B form with the axis Jl Xhy a^, a^, etc., that is, putting /S'l ifX
= a,, SiMX = a^, etc., we obtain the following three forces, which

Fig. 95,

torm the edges of a rectangular parallelopipedon (parallelopipe-

don of forces)

:

Q = SiCOS. tti + S.2 COS. as + . . ., or

1) Q = P^ COS. (3 1 COS. a^ + Pc, COS. (3.^ cos. a^ -{- . . .,

2) E = Pi COS. (3^ sin. a^ + P^ cos. (3.2 sin. a., . . . and

3) N = P^ sin. i3y + P^ sin. [3, + . .

.

From these three forces we obtain the final resultant

4) P =z V'Q' + R' + N'\

and its angle P M S = (3 oi inclination to the plane of pro-.

jection by the aid of the formula

5) tang. [3 = — =
S VQ' + R'

Finall}^, the angle SMX=^ a, which the projection of the re-

sultant in the plane A B forms with first axis XX, is given by

the formula

6) tang, a = ~.

If A,, ;io, etc., are the angles formed by the forces Pj, Po with the

axis M X, //], 11.2 . . ., the angles formed by them with the axis

M Y and i^„ v.,, etc., the angles formed by them with the axis M Zy

We have also
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1*) Q — P^ COS. Ai + Pa COS. As + . . .,

2*) B = Fi cos. III -f P2 cos, /Zj + . . . and

3*) JSr=P, COS. V, + P2 COS. V, + , ..

The value of the resultant is given by the formula

4*) p = V~^T^'~nr\
and the direction of the same by the formulas

Q R J^
5*) COS. '^ — ^, COS. P' = p CCS. V =

P'
in which A, n and v denote the angles formed by P with the axes

MX,MY,MZ.
We have also cos. A z= cos. a cos. ft cos. 11 = sin. a cos. ft and

V = 90° — ft or cos. V = sin. ft

Example.—In order to raise vertically a

weight G^ Fig. 96, I and II, by means of a

rope passing over a fixed pully, three work-

men pull at the end of the rope A with the

forces Pj = 50 pounds, P^= 100 pounds and

Pg = 40 pounds; the directions of these

forces are inclined at an angle of 60° to the

horizon, and form the horizontal angles

S^A8z=S^A8s = 135° and S^ A S^ =
90° with each other. Wbat is the inten-

sity and direction of the resultant which we
can put equal to the weight G, and how
great could this weight be made, if the forces

had the same direction ?

The vertical components of the forces are

]^i=Pi sin. /3j=50 dn. 60°=43,30 pounds,

N^=P^^ sin. ,53 = 100 «*«. 60°= 86,60 pounds

and N^ = P^ sin. (3^ = 40 sin. 60° = 34,64

pounds; consequently, the vertical force is

iV^ = iV^i + iV'g + i^Tg = 164,54 pounds.

The horizontal components are

S^ = P^ COS. 3^ = 50 COS. 60° = 25 pounds,

S^ = P2 COS. iS^ = 100 COS. 00° = 50 pounds

and 'S'3=P3 COS. 13^=4:0 cos. 60°= 20 pounds.

If we pass an axis X X in the direction

of the force 8^ , we have for the component

forces in this direction

Q= ^1 + ^3 + Q3 = S^ COS. a^ + 82 COS. Gg +
S^ COS. Og = 25 COS. 0" 4- 50 COS. 135° +
20 COS. 270° = 25 . 1-50 . 0,7071-20 . =
25 — 35,355 = — 10,355 pounds, and for the

component in the direction Y T
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jR = i?j + ^3 + i?3 = S^ sin. a
J + S^ sin. a^ + 8^ sin. a^ = 25 dn. 0" +

50 ain. 135° + 20 sin. 270° = 50 . 0,7071 — 20 = 15,355 pounds, and for the

horizontal resultant

S = '^j'q^'R'' = V 10,355^ + 15,355^ = 18,520 pounds.

The angle a, formed by this resultant with the axis X X, is determined

by the formula

R 15,355

The final resultant is

= — 1,4828, whence a = 180"— 56° = 124°.

P = ViV^"+ aS" = V 164,54'^ + 18,520^ = 165,58 pounds.

The angle of inclination of this force to the horizon is determined by

the formula

s "
^

. /3 = 8,8848, whence we have /3 = 83° 35'

Fig. 97.

18,520

If all the forces acted in the same direction, the resultant would be =
50 + 100 + 40 = 190 pounds, or 190 — 165,58 = 24,42 pounds greater

than the one just found.

§ ^2^_Principle of Virtual Velocities.—From the fore-

going rules for the composition of forces, two others can be

deduced, which are of great importance in their practical api^li-

cations. Let i¥, Fig. 97, be a ma-

terial point, M'^ = Pa and M^
= Pi the forces acting upon it,

andilfP = Pthe resultant of the

forces Pi and P^. If we pass

through M two axes M X and

if ]r at right angles to each other,

and decompose the forces Pj and

Ps, as well as their resultant P,

into their components in the di-

rection ofthese axes, i.e., P, into §„
and Pj, Pi in Q., and P^ and P into

Q and P, we obtain the forces in the

direction of one axis §i, Q.^ and ft and those in the direction of the

other P, Pi and P.,, and we have Q — Q\ -^ Q^ and R — Rx -\- Pa-

If from any point in the axis MX we let fall the pei-pendiculars

P„ Po and L upon the directions of the forces P,, P.2 and

P, we obtain tlie right-angled triangles M L^ MO L.2, and M P,

which are similar to the triangles formed by the three forces, viz.,

A J/ P, CO A M Pi §1,

^ M L,cj^ /I MP, ft,

t. M L a^ ^ M P Q.
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In consequence of this similarity we nave ^^^^ I.E., ^ = irr-?v,

Qo ML^ ,0 ML , , .^ ^. ^1 1 r> /^ ^ -,^ ~ W~n ^ ^ ~ MV> ' substituting these values of gi, Q^ and

^ in the formula Q — Qi + §2> we obtain

P .M L ^ P,,M L, + P,. ML,.
In like manner we have

R, _ OL, R, _ qj^ R _ 0_L
p,~ M a p,~ M p~ M a

whence

P.O L^ P,.0 L,-\- P,.0 L,.

The formulas hold good, when P is the resultant of three or

more forces Pj, P,, P^, etc., since we have, in general,

e = ft + ^2 -^ ft + . . .

P = i?i + P, + i?3 + . . .

"We can, therefore, put, in general,

1) P .WL = P, . IlL, + P, . M~L, + Pz . ^^^3 + . . .,

2) P , 0L = P,. OT, + P, . OT, + P, . OTZ^ + . .

.

The resultant P of the forces Pj, Pg, P3, etc., must correspond

to both these equations, and they can therefore be employed to de-

termine P.

The first of these two formulas can also be employed for a sys-

tem of forces in space, W, Q, R, Fig. 95, since here we have also

2^= iVi + JV, + JV3 + . . . , or

P COS. V = P, COS. I'l + Pi COS. V, + Pz COS. v^-\- . . ., and also

P .MO COS. v=P^. M COS. V, + Po M cos. v, + P^M cos. v^ + ..,

§ 83. If the point of application M, Fig. 98 and Fig. 99, moves

to 0, or if we imagine the point of application moved forward

Fig. 98. Fig. 99.

through the space Jf = ^, we call the projection M L = s of

this space x upon the direction of the force ilf Pthe space described

by the force P, and the product P 5 of the force by the space is the
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icorh done by the force. If we substitute these quantities in the

equiition (1) of the last paragraph we obtain

P s = P^ Si + F, s, + Ps ^3 + . . .

,

hence tJie ivorlc done hy tlie resultant is equal to the sum of the icorlc

done ly the component forces.

In adding the mechanical effects we must, as in adding the

forces, pay attention to the signs of tlie same. If one of the forces

§„ §0, of the foregoing paragraph, acts in the opposite direction to

the others, then it must be introduced as negative quantity ; this

force, as for example, ft in Fig. 94, § 80, is, however, a component

of a force P^ which, under the circumstances supposed in the fore-

going paragraph, opposes the motion M L. of its point of applica-

tion; we are, therefore, obliged to treat the force P, Fig. 99, which

acts in opposition to the motion M L, as negative, if we consider

the force P, Fig. 98, which acts in the direction of the motion M Z,

to be positive.

If tlieJforces are variable, either in magnitude or in direction,

then the formula

P s =: P,s, + P.2S, + PsSs + ...

is correct only for an infinitely small space s, s^, s^, etc.

We call the infinitely small spaces (Jj, 0.2, g^, etc., described by the

forces corresponding to the infinitely small space described by the

material point, the virtual velocities (Fr. vitesses "virtuelles, Ger.

virtuelle Geschwindigkeiten) of the same, and the law correspond-

ing to the formula P g = P^ a^ -{- P.2 o.^ + P^ a, is known as the

principle of virtual velocities.

§ 84. Transmission of Mechsinical Eifect.—According to

the principle of vis viva for a rectilinear motion the work {P s)

done by a force (P), when the velocity c of a mass M is changed

into a velocitv r, is

Now if P is the resultant of the forces P], P.2, etc., which act

on the mass M, and if the spaces described by them are .<?i, s.2, etc.,

while the mass J/ describes the space 5, we have, from tlie forego-

ing paragraph,

P s = Pi 5i + P., 52 + . . .

,

from which we deduce the following general formula,

P,s, + P,s,-\-..,= {^^^^)m;
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therefore the sum of the ivorJc done ly the single forces is equal to

half the increase of the vis viva of the mass.

If the velocity during the motion is constant, i.e., \i v = c and

the motion itself is uniform, we have v' — c" — 0, and therefore

there is neither gain nor loss of vis viva, whence

P.s.-^-P.s, + P,s, +...= 0;

and the sum of the mechanical effects of the single forces is null.

If, on the contrary, the sum of the mechanical effects is null,

then the forces do not change the motion of the body in the given

direction ; if the body ha^ no motion in the given direction, it will

not have any imparted to it in this direction by the action of the

forces ; if it had before a certain velocity in a given direction, it will

retain the same.

If the forces are variable, the variable velocity v can, after a cer-

tain time, become the initial. This phenomena occurs in all peri-

odic motions, which are very common in machinery. But v — c

—-— 1 M = 0, and therefore the gain or

loss of mechanical effect during a period of the motion is = 0.

Example.—A wagon, Fig. 100, weighing G = 5000 pounds is moved
forward on a horizontal road by a force P^ =660 pounds, inclined at an an-

gle a — 24° to the horizon,

Fig. 100, an(j ig obliged to overcome
^' a horizontal resistance Pg

= 450 produced by the fric-

tion, what work must the

force P^ do, in order to

change the initial velocity

of 2 feet of the wagon into

a velocity of 5 feet ?

If we put the space de-

scribed by the wagon M
= s, we have the work done

by the force Pj

= Pj . iifL = P^scos.a = 660 . s cos. 24° = 602,94 . «,

and the work done by the force Pg acting as a resistance is

^(-P3).s=-450.«,
consequently the work done by the motive force is

P s = P^ s COS. a — P^ s COS. = (602,94 — 450) s = 152,94 s foot pounds.

The mass, however, absorbed during the change of velocity the me-

chanical effect
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M O

(-2^) G = (^— ) . 5000= 0,0155 . (25-4) . 5000=1627,5 foot-pounds;

putting the two effects equal to each other we obtain 152,94 . s = 1627,5,

whence the space described by the wagon is

JfO = »=^|a = 10,64 feet,

and finally the mechanical eflfect of the force P^ is

Pi s COS. a = 602,94 . 10,64 = 6415 foot-pounds.

§ 85. Curvilinear Motion.—If we suppose the spaces (o, a,,

etc.,) infinitely small, we can apply the foregoing formulas to cur-

vilinear motion. Let M S, Fig. 101, be the trajectory of the

material point, and M P = I*
^^'

' the resultant of all the forces act-

ing upon it. If we decompose

this force into tw^o others, the

one of which MK — K is tan-

gent and the other ~MN= N
normal to the curve, we call the

former the tangential and the

latter the normal force.

While the material point de-

scribes the element M = o oi its curved path M 8, and its

velocity changes from c to v^, the mass J/ absorbs the mechanical

-—^— ) M, during the same time the tangential force K
performs the work K a, and the normal force the work iV^ . = 0,

and consequently we have

Ka (^) M.

If, while the point describes the space M 8 = s — n o, the

tangential velocity changes from c to v, and at the same time

the tangential force assumes successively the values K^, lu, • • ^m
then

(K, + £, + .. + K..) a = (^l±liJ-_i_L+ -S-".!

and the work done is

>).=(^-)«

/7.2 _ ^n
A — K s = { —^— 1 M, when K = ^, + A^, -f . . + z:

denotes the mean value of the variable tangential force.

If we put the projection of the elementary space M = a upoa
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the direction M L of the force = |, we have also P ^— K (5\ if,

therefore, while the point describes the space M 8 — s — n o

the resultant P assumes successively the values Pi, P^ . . . P„, the

projections of the elementary spaces are successively ^i, ^2 • • • b„,

and we have also

Pi ^1 + A ^. + . . + P. ^« = (^1 + X + . . + ^„) a,

and therefore

When the direction of the force P remains constant, the pro-

jections ^1, ^^ . . 1^ of the portions a, a . . oi the space or that of

the whole space s = n o form a straight line

MR= x = ^, + ^,-\- ..^„.

If we put X — m f, we can also write

^ =: (P, + P, + .. + P,„)^={P, + P., 4- ... + P.) -=PX,
P 4- P + . . . + P

where P denotes the mean —' ?—_IIJ ^ of the forces, whichm
X

correspond to the equal portions ^ = - of the projections of the

path on the direction of the force.

We have, therefore, also

Px=i'^^)M={h-i:)G,

in which h denotes the height due to the initial velocity c and h

that due to the final velocity v, and G the weight M g of the

moving body.

Therefore, in curvilinear motion, the entire loorh done is equal

to the product of the iveight of the tody moved and the difference

of the heights due to the velocities.

Remark.—The formulas, thus obtained by 'Ca^ combination of the prin-

ciple of vis viva with that of virtual velocities, arc particularly appli-

cable to the cases of bodies, which are compelled to descrilie a given path,

either because there is a support placed under them, or because they are

suspended by a string, etc. If such a body is impelled by f2:ravlty alone

then the work performed by its weii^ht Q in descending a distance, whose

vertical projection is s, is = G s, whence

G s — (It — h) G, LE. s — h — h.



§85.] MECHANICS OP A MATERIAL POINT. 191

Whatever may be the path on which a body descends from one hori-

zontal plane A B, Fig, 103, to another horizontal one C i>, the difference

A E

of the heights due to the velocities is always equal to the vertical

height of descent. Bodies, which begin to describe the paths £J F, E^ F^^

E^ F^, etc., with equal velocities (c), arrive at the end of these paths with

the same velocity, although they require different times to acquire it.

If. for example, the initial velocity is c = 10 feet, and the vertical height

of fall ^T^ 20 feet, or A = s + ^ = 20 + 0,0155 .
10" = 21,55 feet, we have

for the final velocity

V = \/'^gh = 8,025 V21,55 = 37,24 feet,

whatever may be the straight or curved line in which the descent takes

place.



THIRD SECTION

STATICS OF RIGID BODIES.

CHAPTER I.

GENERAL PRINCIPLES OF THE STATICS OF RIGID BODIES.

§ 86. Transference of the Point of Application.—Al=

tliough the form of every rigid body is changed by the forces which

act upon it, that is, it is compressed, extended, bent, etc., yet in

many cases we can consider the body as perfectly rigid, not only

because this change of form or displacement of its parts is often

very small, but also because it takes place during a very short

space of time. For the sake of simplicity we will therefore con-

sider, when nothing to the contrary is stated, a rigid body to be a

system of points rigidly united to each other.

A force P, Fig. 103, which acts upon a rigid body at a point A,

transmits itself unchanged

in its own direction XX
through the whole body,

and an equal opposite force

P, will balance it, when its

point of application A^ lies

in the direction X X.

Fig. 103.

Fig. 104.

The distance of these

points of application A
and Ax from each other has no influence upon the state of equi-

librium ; the two opposite forces balance each other, whatever the

distance may be, if the points are rigidly connected. We can
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therefore assert, that the action of a force P, (Fig. 104) remains

the same, no matter in what point A^y A^, .

it may be applied or act upon the body M.
the same, no matter in what point A^, A^f A^, etc., of its direction.

§ 87. If two forces Pi and P2, Fig. 105, acting in the same

plane arc apphed at different points A^ and A^ to a body, their

action upon the body is the same as if

the point C at which the two directions

intersect were the common point of ap-

plication C of these forces ; for, accord-

ing to the law just laid down, both

points of application can be transferred

to C without producing any change in

the action of the forces. If, therefore,

we make

CQ, = A, P, Pi and

6 Qc, — A2 "i

and complete the parallelogram C Qj

Q Q^, its diagonal will give us the result-

ant C Q = P of C Qi and C Q2 and also of the forces P, and Pg.

The point of application of this resultant can be any other point A
in the direction of the diagonal.

If at a point B on the diagonal we apply a force B P = — P
equal and opposite to the resultant A P = P, the forces Pi, P^ and
— P will balance each other.

§ 88. Statical Moment.—If from any point 0, Fig. 106, in-

the plane of the forces we let fall the perpendiculars Xi, L,

and L upon the directions of the component forces P, and Pj

and of the resultant P, we have, according to § 82, •

P . L = P,.0 L, + P,. L,,

and, therefore, from the perpendiculars or distances Pi and L^

of the components we can find that of the resultant by putting

L
P,. L, + P,. L,

While the intensity and direction of the resultant is found by

means of the parallelogram of forces, the position L of the point

of application is obtained by means of the last formula.

13
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If the directions of the forces, when sufficiently prolonged, form

an angle Px C P.2 — a, the value of the resultant is

1) P z= VP,' + P/ + 2 Pi P^cosT^.

If the direction of the resultant

Fig. 106. forms an angle P C P] = a^ with the

direction of the component P^ we

have

^ . Pe sin. a

If, finally, the distances from any

point to the directions C Pj and C P^

of the given forces are Lx = a^ and

X2 = a^, then the distance L =^ a

from this point to the direction .C P
of the resultant is

3) a = ^
By the aid of the last distance a we can determine the position

of the resultant without reference to any auxiliary point C by de-

scribing from with the radius a a circle, and by drawing a tan-

gent L P to it, the direction of which is given by the angle a,.

Example.—A body is acted upon by the forces P^ => 20 pounds and

Pg = 34 pounds, whose directions form an angle P^ C P^ = a = 70° with

each other, and their distances from a certain point are L^ = a^ =4
feet and ig = ^3 = 1 foot ; what is the intensity, direction and posi-

tion of the resultant ? The value of the resultant is

P = |/ 20^ + 34'-^ + 2 . 20 ~Ucos. 70° = 1^400 + 1156 + 1360.0,34203

= .4/2021,15 = 44,96 feet

;

and its direction is determined by the angle a^, whose sine is

34 . dn. 70°

44,96
-, hence log sin. a^= 0,85163 — 1,

and the angle formed by the direction of the resultant with that of the

force P^ isaj = 45° 17'. The position or line of application of the result-

ant is finally determined by its distance L from 0, which is

a =
20.4 + 34.1 114

44,96 44,96
2,536 feet.



§ 89, 90] STATICS OF RIGID BODIES. 195

§ 89.—We call the normal distances Z, --= a, and L^ ~ «..

of the directions of the forces from an arbitrary point 0, Fig. 107,

the arms of the lever, or simply the arms
(Fr. bras du levier, Ger. Hebelarme) of the

forces, because they form an important ele-

ment in the theory of the lever, which will

be discussed hereafter. The product F a of

the force and the arm of the lever is called

the statical moment of the force (Fr. moment
des forces, Ger. statisches or Kraftmoment). Since F a = F^ a^

+ Pa cc-2, tl:^ statical moment of the resultant is equal to the sum
of the statical moments of the two components.

In adding the moments, we must pay attention to the positive

and negative signs. If the forces Pi and F^ act in the same direc-

tion around O, as in Fig. 107, if, e.g., the direction of the forces

coincide with the direction of motion of the hands of a watch, they

and their moments are said to have the same sign, and if one of

them is taken as positive, the other must also be considered as

positive. If, on the contrary, the two forces, as in Fig. 108, act in^

Fig. 108. Fig. 109.

opposite directions around the point 0, they and their statical mo-

ments are said to be opposite to each other, and when one is

assumed to be positive, the other must be taken as negative.

In the combination represented in Fig. 109 we have F a ~
P] «i — P.J a.,, since Po is opposite to the force P,, or its moment
Pa a<i is negative, while in the combination in Fig. 106 P a =
Pi tti + F, a,.

§ 9D. Composition of Forces in the Ssnie Plane.—If

three forces P„ Pg, P-., Fig. 110, are applied to a body at three

different points A^, Ao, A^ in the same plane, we first combine two

(Pi, Pa) of these forces so as to obtain a resultant C Q = Q, and

then combine the latter with the third force (P3) according to the
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same rule, constructing with D Rx = C Q and D E^ — A^ Pz the

parallelogram D R^ R R^. The diagonal D R is the required re-

sultant P of Pi; P2, and P3. It is easy to see how w^e must pro-

ceed, when a fourth force P4 is added.

Here the intensity and direction of the resultant is found in ex-

actly the same manner as when the forces are applied at the same

point (see § 80); the itdes

given in § 80 can be employed

to calculate the first two ele-

ments of the resultant, but

the third element, viz., the

position of the resultant or

its line of application, must

be determined by means of

the formula for the statical

moments. If Li = a^,

L^ = «2> Ls = tti and

L ^-a are the arms of

the three component forces

Pi, Ps, P3 and of their re-

sultant P in reference to an arbitrary point 0, and if Q is the re-

sultant of Pi and P2 and K its arm, we have

P a = Q. (TK + P3 «3 and Q . WK =z P,a, + P, a„

Combining these two equations, we obtain

P a = Px ai + P.2 a.2 + P3 «3,

and in like manner when there are several forces

P a = Pxtt^ + P2 a, + P3 fl^3 + . .

.

I.E., the {statical) moment of the resultant is always equal to the alge-

braical sum of the {statical) moments of the com])onents.

§ 91. If P„ Pg, P3, etc.. Fig. Ill, are the individual forces of a

system, Oj, a^, Cg, etc., the angles P, Dx X, Po D.^ X, P3A X, etc.,

formed by the directions of these forces with any arbitrary axis

XX and ax, a,, «3, etc., their arms Z„ L^, Li, etc., in refer-

ence to the point of intersection of the two axes XX and Y Y,

we have, according to §§ 80 and 90,

1) the component parallel to the axis XX
Q = Px cos. ax 4- Po 'cos. a.2 -f . .

.,

2) the component parallel to the axis Y Y
R = 1\ sin. ax + P, sin. Oj +
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3) the resultant of the whole system

4) the angle a formed by the resultant with the axis for which

tang. « = -^?

5) and the arm of the resultant or the radius of the circle to

which the direction of the resultant is tangent

_ P^a] -\- Pg Cij + • ' '

If b, bi, b^i, etc., denote the distances D, Di, Do, etc., cut

off from the axis X X, we have

a = b sin. a, a^ = bi sin. a^, a^ = b^ sin. a^, etc.,

and therefore also

_ Pi Z>i si7i. Qi + Po b . sin. a^ + . . . _ R^bx + Rih ^ . . .

P sin. a
~

R '

If we replace the resultant (P) by an equal opposite force (— P),

the forces Pi, P^, P3 . . . (— P) will balance each other.

If Xx,Xi... and «/„ y^ . . . denote the co-ordinates of the points

of application A^, A^ ... of the given forces P^, P.2 . . ., the mo-

ments of the components of the latter are Pi Xi, Pa x^. . . and §, y„

Qi yo . . ., and the moment of the resultant is

P a = {R,x, + R,x,-h .,.) - (Qi yi + Q-2y, + > . .),

and its arm is
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Example.—Tlie forces P^ = 40 pounds, P^ = 30 pounds, Pg = 70

pounds, Fig. 112, form with tbe axis XX the angles a^ = 60^, a^ = — 80^,

Og = 140°, and the distances between the points of intersection B^, B^, B^
of the directions of the forces -crith the axis are B^B.^ = 4: feet, and B^ B^
— 5 feet. Required the elements of the resultant. The sum of the com-

ponents parallel to the axis XX is

^ := 40 COS. 60° + 30 cos, (— 80°) + 70 cos. 142°

= 40 cos. 60° + 80 COS. 80° - 70 cos. 38°

= 20 + 5,209 - 55,161 = - 29,952 pounds.

The sum of those parallel to the axis Z 7"is

i2 = 40 sin. 60° + 30 sin. (- 80°) + 70 sin. 142"

= 40 dn. 60° — 30 sin. 80° + 70 sin. 38°

= 34,641 - 29,544 + 43,096 = 48,193.

Fig. 112.

rzX

Hence it follows that the resultant

P = |/r/ + -S' = |/29,952-^ + 48,193^ = ^3219.68 =: 56,742 pounds.

The angle a formed by the latter with the axis is determined by the

formula

R 48,193
tang. a= -~~ — ^-7^-^= — 1,6090, from which we obtain

(^ /cy,9o2

a = 180° — 58° 8' = 121° 52'.

If we transfer the origin of the co-ordinates to B^, -we have the

arm of the force

P^ sin. a, &j + R^ *'"• «<> i^o -f- . . . Pj &! -I- Pg 2'o + . . .

34,641 .(4 4-5)- 29,544 .5 + 164,049
2,891 feet,
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and, on the contrary, the distance cut off on the axis XX
164,049

48,193
OD = l 3,404 feet.

§ 92. Parallel Forces.—If the forces Pi, Ps, Pa, etc., Fig. 113,

of a rigid system of forces are parallel, their arms Lx, L.2,

Xs, etc., coincide with each other; if through the origin we

draw an arbitrary line XX, the directions of the forces will cut off

from it the portions D^, P.., Di, etc., which are proportional

to the arms Pi, Ps, P3, etc., for we have /^ D^ L^ cr> ^
Po Po cc A P3 P3, etc. Designating the angle Pj Pi = P.j Ps,

etc., by a, the arms Pi, L^_, etc., by a^, a^, etc., and the distances

cut off Pi, D.2, etc., by h^, K, etc., we have

a^ = bi COS. a, a^ = b^ cos. a, etc.

Finally, substituting these values in the formula

'

P « = Pi OTi + P2 ^2 + . . . ,

we obtain

F b COS. a — Fibi cos. a + P-ih cos. a + . .
.

,

or, omitting the common factor cos. a, we have

Fb= Pxb, + F,b,-^ ...

In every system of parallel

^^^- ^1^- forces we can substitute for the

arms the distances P,, D^,

etc., cut off' from any oblique line

by the directions of the forces.

Since the intensity and direction

of the resultant of a system of

forces with different points of

application is the same as that

of a system of forces applied in one point, the resultant of the sys-

tem of parallel forces has the same direction as the components,

and is equal to their algebraical sum ; hence we have

1)

3)

P =r Pj + P, + P3 + . . . and

P, a, + P. a, + . .

.

a =
Pi + P, + . .

P, br + P,b,-\-

P, + P, + ..

or
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Example.—The directions of the three forces Pj = 12 pounds, Pg =
— 32 pounds and Pg = 25 pounds cut a straight line in the points B^, D^
and -Dg, Fig. 113, whose distances from each other are D^ D^ = 21 inches,

and i>3 I>3 = 30 inches ; required the resultant. The intensity of this

force is

P = 12 — 32 + 25 = 5 pounds,

and the distance D^ B of its point of application B in the axis XX from

the point B^ is

, 12 . - 32 . 21 + 25 . (21 + 30) - 672 + 1275 ,^^ ^ . ,

I = -^ 5^

—

-—^ = ^ = 120,6 mches.
5

§ 93. Couples.—The resultant of two equal and opposite

forces Pi and — P^ is

and its arm is

No finite force acting at a finite distance can balance a couple,

but two such couples can balance each other. Let P^ and — P,

and — Ps and P., Fig. 115, be two such couples, and L^ = a^, M,
= L,- L, M, = a, - h„ L, = a, and M, = L,- L, M,
= a<i — h their arms measured from a certain point 0, then,when
equilibrium exists, we have

Pi a, - Pi (a, — h,) ~ P,a, + P, {a.2 - h.) = 0, i.e.

Pi §1 = P, b,.

Two such couples balance each other when the product of one
force by its distance from the opposite one is the same for both

couples.

A pair of equal opposite forces is called simply a couple (Fr.

couple, Ger. Kraftepaar), and the product of one of its forces by
.their normal distance apart is called the mo?nent of the couple.
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From the foregoing we see that two couples acting in opposite

directions balance each other, when their moments are eqnal.

That this rule is correct can be proved in the following manner.

If we transfer the points of application of the forces P,,P2 and
- P„- A of the couples (P„ - P.) and (P^, - P,), Fig. 116,

to the points of intersection .^4 and B of their lines of application,

we can combine Pi and P.^

as well as — Pj and — Po

-^^ ^^ means of the parallelo-

lyy^ I
gram of forces and obtain

^ J>K >^p^ the resultants. If the di-

/ ^^ rections of these resultants

-r//^^ n -^^^ ^^ ^^^ prolongation of
" }•< yj -^^^^^ I

^r the line A B, then these

/^/^ / ^"j^2 forces, and consequently the

^.—..J^ corresponding couples (Pi,

—

^

- P,), and {P„ - P.,), bal-

ance each other. If equilibrium exists, the triangle ABC formed

by ^ P and by the directions of the forces — P and P^ must be

similar to the triangles RAP, and B R P„ and consequently we

have the proportion

^ r= ^ or the equation Pr.CA = P,. ClB.

But the perpendiculars A L, — h and B L.^ = h to the di-

rectio-ns of the couples are proportional to the hypothenuses C A
and C B of the similar triangles ACL, and B C L^, and we can

therefore put
P, h, = P., h,.

The moments of two couples which balance each other are con-

sequently equal to each other.

:• If in the formula (§ 91) for the arm a of the resultant

we substitute P = 0, while the sum of the statical moments has a

finite value, we obtain a = go , a proof that in this case there can

be no other resultant than a couple.

If the forces of a system shall balance each other, it is necessary

not only that the resultant P = i Q'-i-R" of the components Q
and R, but also that its moment

P a = Pi tfi + Pa «2 + . • • shall be = 0.
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Example.—If one couple consists of the forces P^ = 25 pounds and
^ 7^ = — 25 pounds and the other of the forces P^ = 18 pounds and
— Pg = — 18 pounds, and if the normal distance between the first couple

is 5 = 3 feet, then to produce equilibrium it is necessary that the normal

distance or arm of the second couple shall be

&2 = —Y^ = H- feet.

§ 94:. Compasition and Decomposition of Couples.—The
composition and decomposition of couples acting in the same jolane

is accomplished by a mere algebraical addition, and is therefore

much simpler than the composition and decomposition of single

forces. Since two opposite couples balance each other, when their

moments are equal, the action of two couples is the same and the

couples are said to be equivalent, when the moment of one couple

is equal to that of the other. If, therefore,

the two couples (Pi, — P^) and {P., — Ps),

Fig. 117, are to be combined, we can replace

the one (Ps, — Pa) by another which has

the same arm A B = bias the former couple

(Pi, — Pi), and can then add the forces thus

obtained to the others, and thus obtain a

single couple. If b-2 is the arm C P of the

one couple and (ft — Q) the reduced couple,

we have Q b^ = P^ b^, and consequently

Pob
Q = —j-^, hence one component of the

resulting couple is

P, + Q = P, +^
and the required moment of the resulting couple is

(Pi + Q)bi = Pi h + P. b,.

In same manner the resultant of three couples may be found.

If Pi b„ Po b,, and P^ bs be the moments of these couples, we

can put

P.^ J, = Qbi and P, b, = B b„ or

Q — _ and B = - 7—,^
b, b,

from which we obtain the resultant

(Pi + Q -T B)b, = Pi b, + P, b, + P, h.

In combining these couples to obtain a single resultant we

must pay attention to the signs, since the moments of the couples
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Fig. 118.

tending to turn the body in one direction are positive, and the mo-

ments of those tending to turn it in the other are negative. We can

novv' adopt the following principle for indicating the direction of

rotation of a couple. Let us assume arbitrarily a centre of rotation

between the lines of application of the forces of a couple ; then if

the couple tends to turn in the direction of tlie hands of a watch,

the couple is to be considered as positive, and if in the other

direction, as negative.

The foregoing rule for the composition of couples is also appli-

cable, when the forces act in parallel

planes. If the parallel couples (P,,

- P,) and (Po, - P.),T-\g. 118, in

the parallel planes J/M and K iV

have equal moments P, Z^i* and

P.2 ho and act in opposite directions

to each other, they will also balance

each other; for they give rise to two

resultants P, + Pa and — (Pi -+-

P.), which balance each other, as

they are applied in the same point

E, which is determined by the equa-

tions

E A,P, = E C.P,,E B.P, = EB.P.and

P, J), = P, b,, I.E. A P.P, = CD. P,, v.'hencc

EAiEBiA B = E C:ED: C B;

hence this point coincides witli the point of intersection of the two

transverse lines A C and B D.

Since the couple {P.2, — P.?j balances every other couple acting

in a piirallel plane with an equal and opposite moment, it follows

that every couple can be replaced by another which has the same

moment, and which acts in a plane parallel to that of the first.

If, therefore, several couples whose planes of action arc parallel

are applied to a body, they can be replaced by a single couple whose

moment is the algebraical snm of their moments, and whose jilane,

which in other respects is arbitrary, is parallel to the planes of the

given system.

§ 95. If two couples (P„ - P,) and (Po, - P,) act in two' differ-

ent planes EME^ and FNFi, Fig. 119, whose line of intersection is
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tlio straight line A B, and which form with each other a given

angle

EAF=E,BF,=^a
we can, after having reduced them
to the same arm A B, combine
them by means of the parallelo-

gram of forces. We obtain thus

from P^ and P^ the resultant i?,

and from — P, and— P^ the result-

ant — R. These two resultants

being equal and opposite, form

another couj^le, whose j^lane is

given bv the direction of R and
- R.

The resultant R can be found

according to § 77 by means of the

formulas

R =

S171.'I3 =

\^;' + Pi + % P,P, COS. a and

Po sin. a

R
in which ,3 denotes the angle E A R = E^ B R formed by the

direction of the resultant with that of the con^ponent Pj. If the

arm is ^4 P = c, and if we put the moment P^c — P a and the

moment Pc, c — Q h ov Pj
Pa

and P. = we obtain

R + Q±
c

+ 2
Pa
c

Qh
COS. a,

C I \ C I c c

or the moment of the resultant of the couples (P, — P) and

{Qr - (?)

Rc = V{Pa) ' + {Qby -^2 P a.Qb. cos. a,

and in like manner for the angle formed by its plane ^vit\l that of

the first couple (P, — P) we have

Qb
sin. (3 = Rc SDi. a.

AVc can therefore combine and decompose couples acting in the

diiferent planes in exactly the same manner as forces applied at the

same point, by substituting instead of the latter tlie m.oments of

the former, and iustead of the angles, which the directions of the

former make with each other, those formed by their planes of action.
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The referring back of the theory of couples to the principle of

the decomposition of simple forces can be greatly simplihed by in-

troducing the axis of rotation instead of the plane of rotation of

the couple. We understand by the axis of rotation or axis of a

couple, any perpendicular to its plane. Since every couple can be

arbitrarily displaced in its plane .without changing its action upon

the body, we can pass the axis of the couple through any given

point.

Since the plane and the axis of a couple are at right angles to

each other, the axes A X, A Y
and A Z, Fig. 120, form the same

angles with each other as the

planes A E K, A FK md A GK
themselves. If one of the couples

is the resultant of the other two,

we see from what precedes, that

the diagonal of the parallelogram

constructed with the moments P a

and Q b will give the moment
of the resultant; if therefore we

lay off upon the axes A X and A Y the moments P a and Q h,

and then complete the parallelogram, we obtain in its diagonal not

only the axis A Z qI the resulting couple, but also its moment R c.

We see, therefore, tliat couples are combined and decomposed in ex-

actly the same way as simple forces, provided we substitute for the

directions of the forces the axes of the couples and the moments
of the latter for the forces themselves. All the rules for the com-

position and decomposition of forces given in § 76 and § 77, etc.,

are in this sense applicable to the composition and decomposition

of couples.

§ 96. Centre of Parallel Forces.—If the parallel forces lie

in different planes, their composition must be effected in the fol-

lowing manner. Prolonging the straight line A^ A^, Fig. 121,

which joins the points of application of two parallel forces Pi and

P^, until it meets the plane which contains the axesMXandM Y,

which are at right angles to each other, and taking the point of

intersection K as the origin, we have for the point of application

A of the resultant P, + Po of these forces

(Pi + PO .KA = P^. KA, + P, . KA„
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Now since B, B, and B<^ are the projections of the points of ap-

plication A, A
J and A.2 upon the plane X Y, we have

AB:A,B,:A,B, = KA: K A, : K A,,

and therefore also

Fig. 121.

(P, + P,),AB = P,.A,B, + F,,A, B,.

If we designate the normal distances A^ B„ A, B„ A^ B,, etc.,

of the points of application

from the plane XX by Zi, z^,

^3, etc., and the normal dis-

tance of the point of applica-

tion A from this plane hy z,

we haye for two forces

(P, + P,)z= P,z, + P,z,\

and for three forces, since (Pj

+ Pg) can be considered as

one force with the moment
P\ ^1 + Ps Ziy

(P, + P, + P3) Z

= P^Zi + P2 ^o+Ps ^3j etc.

Consequently we have in general

(P, + A + Pa + . . .) ^ = Pi ^

and therefore

z =

+ Ps 2^2 + P3 2^3

.

Z, +
Pl + P, + ...

If, in like manner, we denote the distances A C and A D of the

point of application A of the resultant from the planes X Z and

Y Z\i^ y and x, and the distances of the points of application ^1,

^2 . . . from the same planes by y^, ^2 • • • and x^, x^ , . ,, we obtain

2)

3)

2/
=_ Piyi ^ Pi y, +

P, + P.. + .

.

Pi 2:1 + P2 ^-o +

and

P1 + P2 + ...

The distances, x, y and z, from three fixed planes, as, e.g., from

the floor and two sides of a room, determine completely the point A ;

for it is the eighth corner of the parallelopipedon constructed with

.T, ?/ and 2; ; hence there is but one point of application of the re-

sultant of such a system of forces.

Since the three formulas for x, y and z do not contain the angles

formed by the forces with the fixed planes, the point of application

is not dependent upon them or upon the direction of the forces;
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the whole system can therefore be turned about this point without

its ceasing to be the point of application, as long as the forces re-

main parallel.

In a system of parallel forces we call the product of a force by

the distance of its point of application from a plane or line the

moment of this force in reference to the plane or line, and it is also

customary to call the point of apphcation of the resultant the cen-

tre of parallel forces (Fr. centre des forces paralleles, Ger. Mittel-

punkt des ganzen Systems). We obtain the distance of the centre

of a system ofparallel forces from anyplane or line (the latter, when
the forces are in the same plane) by dividing the sum of the stati-

cal moments by the sum of the forces themselves.

ExAiJPLE.—If the forces are Pn 5 - 7 10 4 pounds.

and their distances or the co- f Xn 1 2 9 feet.

ordinates of their points 1 Vn 2 4 5 3 "

of application are 1

Zn 8 3 7 10 "

we will have the moments \

P.x. 5 - 14 36 foot pounds.

Pn.y. 10 - 28 50 12 "

PnZn 40 - 21 70 40 "

Kow the sum of the forces is = 19 — 7 = 12 pounds, and therefore

the distances of the centre of parallel forces from the three co-ordinate

planes are

5 + 36-14 27 9
X = = 2,25 feet,

y =

12

10 + 50 + 12-

12

-28
12

40 + 70 + 40 --21

12

4

44_ 11

12 ~ y
129 43

Yg-
= -^ = 10,75 feet.

= 3,66 feet, and

§ 97. Forces in Space.—If we wdsh to combine a system of

forces directed in different directions, we pass a plane through
them and transfer all their points of application to this plane, and
then decompose each force into two components, one perpendicular

to and the other in the plane. If I3„ [3,... are the angles formed
by the directions of the forces with the plane, the components nor-

mal to the plane are P, sin. f3„ P^ sin. /)\, . . . and those in the plane

are P, cos. (3„ P, cos. [3,, etc. The resultant of the latter can be ob-

tained as indicated in § 91, and that of the former as indicated in
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the last paragraph. Generally the directions of the two resultants

do not cut each other at all, and the composition of the forces so

as to form a single resultant is not possible. If, however, the re-

sultant of the parallel forces passes through a point K, Fig. 122,

in the direction A B of the resultant F of the forces lying in the

plane (that of the paper), a composition is possible. Putting the

ordinates of the points of application ^of the first resultant C
— D K = u and D — C K = v, the arm of the other L ~ a

and the angle BAG formed by the latter with the axis XX,- a,

then the condition for the possibility of the composition is

u sin. a -\- V cos. a = a.

If this equation is not satisfied, if, e.g., the resultant of the nor-

mal forces passes through K^, it is not possible to refer the whole

system of forces to a single resultant, but they can be replaced by

Fig. 122.
-

Fig. 123.

a resultant B, Fig. 123, and a couple (P, — F) by decomposing

the resultant iV^ of the parallel forces into the forces — F and R,

one of which is equal, parallel and opposite to the resultant F of

the forces in the plane.

We can accomplish directly this referring of a system of forces

to a single force and to a couple by imagining a system of couples,

whose positive components are exactly equal in amount and direc-

tion tto the given forces, to be applied to the body at any arbi-

trary point. These couples naturally do not change the state of

equilibrium, for being applied at the same point they counteract

,

themselves. On the contrary, the positive components can be

combined according to known rules (§81) so as to give one result-

ant, while the negative components form with the given forces

couples, whose resultant (according to § 95) is a single couple.

After these operations have been performed, we have only one force

and one couple.
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§ 98. Principle of Virtual Velocities.-^If a system offerees

Pi. Pi, Pi, Fig. 124, Avhich act in a plane, have a motion of trans-

lation, that is, if all the points of application A^, A^, A^ describe

equal parallel spaces A^ B\, A^ B^, A^ B^, then (according to

the meaning of § 81) the work done by the resultant is equal to

Fig. 124.

the sum of the work done by the components, and consequently,

when the forces balance each other, this sum is = 0. If the pro-

jections of the common space Ai B^ = A^ B.^, etc., upon the di-

rections of the forces are A^ L^, A^ L^, etc., = Sx, 5.2, etc., the work

done by the resultant is

P S = Pi 5i + P2 52 + .

This law is a consequence of one of the formulas in § 91. Ac-

cording to it, the component Q of the resultant parallel to the axis

XX is equal to the sum

$1 + §2 + ft + . . .

of the components of the forces P,, Po, etc., which are parallel to

it. Now from the similarity of the triangles A^BxLx and AiFiQi
we know that

,

Ql — ^' ^1 — _fl_
P, ^1 ^1 ~ ^ B'

and therefore we have

Q, = J|, e. = 5|, etc. and Q = ^-
Hence, instead of

<? = ft + ft + ...

we can put
P 5 == P, 5i + P2 52 + . .

.

14
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§ 99. Eqnilibrium in a Rotary Motion.—If a system of
forces P„ Ps, etc., Fig. 125, acting in the same plane, is caused to

turn a very small distance
^^®' ^^^'

about a point 0, the principle

Ai ^ of virtual velocities announced
"^ in § 83 and § 98 is applicable

here also, as can be demon-
strated in the following man-
ner. According to § 89 the mo-

ment of the resultant P . (TX
= P a is equal to the sum
of the moments of the com-

ponents, or

P a = Pitti + P^aci -h . .

.

The space Ai Bi, corresponding to a rotation through a small

angle A^O Bi= fi" or a small arc 13 = -—-
. n, is situated at right

loU

angles to the radius A^, therefore the triangle A^ Bi Ci formed

by letting fall the perpendicular By (7i upon the direction of the

force, is similar to the triangle AiLx formed by the arm Lx — a^,

and we have

OLx _ Ax Cx

OAx~AxBx'

If we put the virtual velocity Ax Cx = Ox and the arc Ax P,

= Ax. 3, we obtain

Ax .Ox Ox , . ,., \ o^
^1 = -TT—A

—
TT = TT? and m like manner «2 = k, etc.

Ax . fi 13 (3

Substituting these values of ax, a^, etc., in the above equation,

we obtain

Po PxOx P,o,
-^ = ^- + -^-+...,etc.,

or since (3 is a common divisor,

P O = PxOx + P,0, + .. .,

as we found in § 83.

Therefore, for a small rotation, the work (P o) done by the re-

sultant is equal to the sum of the work done by the components.

§ 100.—The principle of virtual velocities holds good for any

arbitrarily great rotation, when, instead of the virtual velocities

of the points of application, we substitute the projections
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i/, (7„ Xj C2, Fig. 126, of the spaces described by the ends L^, i/^,

Fig. 126.

etc., of the perpendiculars ; for multiplying the well-known equa-

tion for the statical moment
P a — P, «, + Pj ^2 + . . .

by sin. /3 and substituting in the new equation

P a sin. (3 = F^ tti sin. (i + Pg ^2 sin. 3,

instead of a^ sin. 13, a.2 sin. 13 . . . the spaces

.7^ Pi sin. Lr B, = D, P, z= L, C, = s„

Pa sin. P„ B^ — Di P2 = P,. C2 = s., etc.,

we obtain

P 5 = P, 5i + P2 S2 + . . .

This principle remains correct for finite rotations, when the di-

rections of the forces revolve with the system, or when the point

of application or end of the perpendicular changes continually so

that the arms L^ — Pj, etc., remain constant ; for from

P a = P, a, + P2 «2 + . . V

by multiplying it by /3 we obtain

P a [3 = F, a, 13 + F.2 a, (3 + . . ., i.e.,

F s = P,s, + P2 S.2 + . . .,

when Si ^2, etc., denote the arcs Pi Pi, P2 P2, etc., described by

the points of application Pi, P2, etc.

§ 101. A Small Displacement Referred to a Rotation.—
Every small motion or displacement of a body in a plane can be

considered as a small rotation about a movable centre as we will

now proceed to show. Let A and P, Fig. 127, two points of tlie

body (surface or line), be subjected to a small displacement, in con-

sequence of which they now occupy the positions yl, and P„ Ai P,

, being = A B. If we erect at these points perpendiculars to the

paths A Ai, and P Pi, they will cut each other at a point C, about

which we can imagine the spaces A Ay and P Pi, considered as

arcs of circles, to be described. But since ^ P = ^1 Pi, ^ C =
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.4, (7 and ^ C =: B, C, the two triangles ^ ^ (7 and ylj B, C
are similar; the angle B^ C A^ h therefore equal to the angle

B C A, and the angle of rotation A C A^ equal to the angle

of rotation B C B^. If we make A^ D^ = A Dwe^ obtain, since the

angles A ^i C and D A C and the sides C A^ and C A are equal

to each other, two equal, similar triangles C Ai Di and CAB,
in which CD, = C B and Z A, CB, = I A C D. Conse-

quently, Z A C Ai is also = Z D C B.^, and when the displace-

placement of the line ^ ^ is small,

every other point B of it will de-

scribe an arc of a circle. Finally, if^
is a point l3^ng without the line A B
but rigidlyconnected with it, the small

space E E^ described by it can also

be regarded as a small arc of a circle,

whose centre is at (7; for if we make
the angle E, A, B, =z E A B and the

distance A, E^ — A E, we .obtain

again two equal and similar trian-

(S^ ^^
gles A, C E, and A C E, whose sides

C E, and C E and whose angles

A^ G E, and ACE are equal to each other, and the same thing

can be proved for every other point rigidly connected with A B.

We can, therefore, consider any small motion of a surface or of a

solid body rigidly connected with ^4 ^ as a small rotation about

a centre, which is determined by the point of intersection (7 of the

perpendiculars to the spaces A A, and B B, described by two

points of the body.

§ 102. Generality of the Principle ofVircual Velocities.

—According to a foregoing paragraph (99) the mechanical effect

of the resultant is equal to the mechanical effect of its components

for a small revolution of the system, and according to the last

paragraph (101) any small motion can be considered as a revolu-

tion ; the principle of virtual velocities is therefore applicable to

any small motion of a body or of a system of forces.

If, therefore, a system of forces is in equilibrium, i.e., if the re-

sultant is null, then after a small arbitrary motion the sum of the

mechanical effects must be equal to 0. If, on the contrary, for a

small motion of the body the sum of all the mechanical effects is

equal to zero, it does not necessarily folloAV that the system is iu
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equilibrium, for then this sum must be = for all possible small

motions. Since the foitnula expressing the principle of virtual

velocities fulfils but one of the conditions of equilibrium, in order

that equihbrium shall exist it is necessary that this formula shall

be true for as many independent motions as there are conditions,

E.G., for a system of forces in a plane for three independent

motions.

CHAPTER II.

THE THEORY OF THE CENTRE OF GRAVITY.

§ 103. Centre of Gravity.—The weights of the different

parts of a heavy body form a system of parallel forces, whose re-

sultant is the weight of the whole body and Avhose centre can be

determined hy the three formulas of paragraph 96. We call this

centre of the forces of gravity of a body or system of bodies the

centre of gravity (Fr. centre de gravite, Ger. Schwerpunkt), and

also the centre of the mass of the body or system of bodies. If a

body be caused to rotate about its centre of gravity, that point will

never cease to be the centre of gravity, for if we suppose the fixed

planes, to which the points of application of the single weights are

referred, to rotate with the body, during this rotation the position

of the directions of the forces in regard to these planes change, and

on the contrary the distances of the points of application from

these planes remain constant. Therefore the centre of gravity is

that point at which the weight of a body acts as a force vertically

downwards, and at which it must be supported in order to keep

the body at rest.

§ 104. Line and Plane of Gravity.—Every straight line,

which contains the centre of gravity, is called a line of gravity, and

every plane passing through the centre of gravity a j^lctnc of gravity.

The centre of gravity is determined by the intersection of two lines

of gravity, or by that of a line of gravity and a plane of gravity, or

by the point where three planes of gravity cut each other.

Since the point of application of a force can be transferred arbi-

trarily in the direction of the force without affecting the action of

the latter, a body is in equilibrium whenever any point of the ver-

tical line passing through the centre of gravity is held fast.
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Fig. 128.

c

D^^
^ft

f^^ =i:-^M

If a body if, Fig. 128, be suspended at the end of a string C A,

we obtain in tlie prolongation A B of this string a line of gravity, and
if it be suspended in another

way we hnd a second line of

gravity i>^. The point of inter-

section 8 of the two lines is the

centre of gravity of the whole

body. If we suspend a body

by means of an axis, or if we
balance it upon a sharp edge

(knife edge), the vertical plane

passing through the axis or

knife edge is a plane of gravity.

Empirical determinations

of the centre of gravity, such

as we have just given, are seldom applicable ; we generally employ

some of the geometrical methods, given in the following pages, to

determine with accuracy the centre of gravity. In many bodies,

such as rings, etc., tlie centre of gravity is without the body. If

such a body is to be suspended by its centre of gravity, it is neces-

sary to fasten to it a second body in such a manner that the cen-

tres of gravity of the two bodies shall coincide.

§ 105. Determination cf the Centre of Gravity.—Let a:,,

Xi, iCs, etc., be the distances of the parts of a heavy body from one

co-ordinate plane, y^, ?/o, y^, etc., those from the second, and ^„ z^^,

Zz, etc., those from the third, and let Pi, P.^, P?„ etc., be the weights

of these parts, we have, from § 96, for the distances of the centre

of gravity of the body from the three planes

Pi X, + P2 x^ + P3 a:., + . .

.

P, + P.2 + P3 + . . .

'

P,y, + P,y, + P,y, + ...

Pi + P2H-P3+...

Pi z, -^ PoZ, + P^z.-h . ..

and

P,-\- P, + P,

If we denote the volume of these parts of the body by Fi, F^,

F3? etc., and the weight of their units of volume by yj, y.., ys, etc.,

we can write

Fi yi x^ + F2 ya X,, + F3 y-, x^ + .

.

X —
Fiyi + F^y^ + F3 y, +

etc.
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If the body is liomogeneous, i.e., if y is the same for all the

parts, we have

_ (
V, X, + F, .^2 + . . .) 7^~ (F,+F, + ...)r '

or, cancelHng the common factor y,

V, a\ + V, X, + . . .

1) x =
F +-F, + ... '

ox T^l Vl + Fo ?/2 + . . . ,

^) ^= F.+f/i-...
-^^^

3) ,= ^^^^+^^-^ + -.-

F + F, + . .

.

Consequently we can substitute for the weights of the different

parts theii' volumes, and the determination of the centre of gravity

becomes a question of pure geometry.

When one or two of the dimensions of a body are very small

compared with the others, E.G., in the case of sheet-iron, wire, etc.,

we can regard them as planes or lines, and determine their centres

of gravity by means of the last three formulas, substituting instead

of the volumes F, Fs, etc., the surfaces F^, F.2, etc., or the lengths

Ix, h, etc.

§ 106. In regular spaces the centre of gravity coincides with

their centre, E.G., in the case 'of the cube, sphere, equilateral trian-

gle, circle, etc. Symmetrical spaces have their centre of gravity in

the axis or plane of symmetry. A body A D F H, Fig. 129, is di-

vided by the plane of symmetry A B CD
Fig. 129. ^^^^ ^^^^ halves, which differ only in their

position in regard to the plane, and the

^ conditions are therefore the same on both

^^ sides of the plane ; the moments are con-

^^^ sequently the same on both sides, and

\ the centre of gravity is to be found in

^ this plane.

Since the axis of symmetry jE'i^ di-

vides the plane surface A B F C D, Fig.

130, into two parts, one of which is the

reflected image of the other, the conditions are the same on each



216 GENERAL PRINCIPLES OF MECHANICS. [§ 107.

side ; consequently the moments on both sides are the same, and
the centre of gravity of the whole surface lies in this line.

Finally, the axis of symmetry K L of q> body A B O H, Fig.

131, is also a line of gravity of it ; for it is formed by the intersec-

tion of two planes of symmetry A B CD and E F G H.

For this reason the centre of gravity of a cylinder, of a cone and

of a solid of rotation, formed by the revolution of a surface, or by

being turned upon a lathe, is to be found in the axis of the body.

§ 107. Centre of Gravity of Lines.—The centre of grav-

ity of a straight line is at its centre.

The centre of gravity of the arc of a circleAMB = h, Fig. 132,

is to be found in the radius drawn to the middle M of the arc ; for

this radius is an axis of symmetry of the arc. In order to deter-

mine the distance CS — yofi\iQ centre of gravity S from the cen-

tre of the circle, we divide

Fi^- 132- the arc into a very great

number of parts and deter-

mine their statical moment

in reference to an axis X X,

which passes through the

centre C and is parallel to

the chord A B =^ s. If P Q
is a part of the arc and F N

its distance from XX, its statical moment \8 — F Q . F N.

Drawing the radius F C — MC—r and the projection Q Roi F Q
parallel to A B, we obtain two similar triangles F Q R and CF N,

for which we have

-X
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P Q'.Q R=^ C P:P N,

whence we obtain for the statical moment of an clement of the arc

P Q.P N:= QR.GP^QR.r.
But in the statical moments of all the other elements of the arc

r is a common factor, and the sum of all the projections Q E of the

elements of the arc is equal to the chord, which is the projection of

the entire arc ; consequently the moment the arc is = the chord s

multiplied by the radius r. Putting this moment equal to the arc

b multiplied by the distance y, or h y = s r, we obtain

y s sr

r b' ^ b

The distance of the centre of gravityfrom the centre is to the ra-

dius as the chord is to the arc.

If the angle subte.nded by the arc b is = 13° and the arc cor-

/3°
responding to the radius 1 = ^3 =

180'
7T, we have b = p r and

s = 2r sin. ^, and consequently

2 sin. h fi .r

For a semicircle /3 = tt and sin. ^ = 1, whence

2
y = - r = 0,6366 ... r, approximatively -

11
r.

Fig. 133.

§ 108. In order to find the centre of gravity of a polygon or

combination of lines A B C D, Fig.

133, we first obtain the distances of

the centres H, K, L of the lines

A B = l,, B C=l, CD = k, etc.,

from the two axes X and Y,

viz., H H, = ?y„ HH.^ = a\, K K^ =
yjjj K K<i — Xo, etc. The distances

of the centre of gravity from these

axes are

/, ;r, + lo x^ + . .

.

2' =
Zl + /o + . . .

I,y, + hy,-h
.'

/, + Za + .
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E.G., the distance of the centre of gravity S of a wire ABC, Fig,

134, bent in the shape of a triangle from the base A B is

jsrs
a-\- b + c ~ a + b -{- c'2'

Fig. 134

A G

when the sides opposite the angles

A, B, C are denoted by a, b, c

and the altitude C Ghj li.

Ifwe join the middles^, K, M
of the sides of the triangle and
inscribe a circle in the triangle

thus obtained, its centre will co-

incide with the centre of gravity

8 ; for the distance of this point

from one of the sides HK is

2 a + b -h c 2

cJi

A AB C
a + b + c

2 {a + b -\- c)

or constant, and therefore = the dis-

FiG. 135.

tances S E and SF from the other sides.

§ 109. Centre cf Gravity of Plsne Figures.—The centre

of gravity of a parallelogram A B C D, Fig. 135, is situated at the

point of intersection 8 of its diagonals

;

for all strips K L, formed by drawing

lines parallel to one of the diagonals

B D, are divided by the other diagonal

A G into two equal parts ; each of the

diagonals is therefore a line of gravity.

In a triangle ABC, Fig. 13G, every

line C D drawn from an angle to the

centre D of the opposite side A B is q> line of gravity ; for it bisects

every element K L oi the triangle formed by drawing lines paral-

lel to A B, If from a second angle A we draw a second line of

gravity to the middle E of the opposite side B C, the point of in-

tersection 8 of the two lines of gravity gives the centre of gravity

of the whole triangle.

Since B D = i B A and B E = i B C, D E is parallel to A
and equal to ^ A C, the triangle D E 8 is similar to the triangle

CA 8 and C 8 ^ 2 8 D. Adding 8 D, we obtain C 8 + 8 D,
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I.E. CD = 3 /S'i) and inversely SD = i CD. The centre of

gravity /S' is at a distance equal to .5 CD from the middle D of the

base and. at a distance equal to f CD from the angle C If we

draw the perpendiculars CH and S Nio the base, we have also

Fig. 136. Fig. 137.

C.SiDj^

N S— \ C H\ the centre of gravity ^ is at a distance from the

base of the triangle equal to one third of the altitude.

The distance of the centre of gravity of a triangle ABC, Fig.

137, from an axis X Xis 8 8, = D D, \- \{C C, - D D,), but

D D^ = I {A A^ -^ B By), and consequently we have

I.E., the arithmetical mean of the distances of the angles from XX.
Since the distance of the centre of gravity of three equal weights,

applied at the corners of a triangle, is determined in the same way,

the centre of gravity of a plane triangle coincides with the centre

of gravity of these three weights.

§ 110. The determination of the centre of gravity of a trape-

zoid A BCD, Fig. 138, can be made in the following manner.

The right line M N, which joins the centres of the two bases A B
and C Z), is a line of gravity of the trapezoid ; for if we draw a great

number of lines parallel to the bases, the figure will be divided into

a number of small strips whose centres or centres of gravity lie

upon the line M N. In order to determine completely the centre

of gravity 8, we have only to find its distance 8 H from the

base A B.

Let the bases A B and C Dhe denoted by 5, and 5., and the al-

titude or normal distance between the latter by h. Xow if we

draw D E parallel to the side B C, we obtain a parallelogram
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B CD E, whose area is d^2 h and the distance of whose centre of

gravity Si from ^ ^ is = ^, and a triangle A D K whose area is

{h,-h,)h

IS

and the distance of whose centre of gravity from A B

-;>-a

A O HME

The statical moment of the trapezoid in reference to A B
is therefore

h
2'

but the area of the trapezoid is i^ = (Z>i + h.^

consequently the normal distance of the centre of gravity from

the base is

H^i + 2 ^2) li" _ Ji + 2 ^, h
'3'HS = y

The distance of this point from the middle line K L ^^

of the trapezoid is

A „ ^ 3 {h +.h) - 2 (Ji + 2 &,) h __!),us - HS

2

2 "^~ h, + h 6'^'^''^^~^, +T/6-
In order to find the centre of gravity by construction, we have

only to prolong the two bases, make the prolongation C G —l^ and

the prolongation AF — K, and join the extremities jPand G thus

obtained by a straight line ; the point of intersection S with the line

MN \^ the required centre of gravity; for from I£S = -~ =-- .
-

Oi -\- 0^ o

;t follows that

M S = -\ 7- . --TT- and JV S
h, + h^ 3

M_8 _ b , + 2 b,

N 8~ %h -\-h

2b, + b, MN
, or

MF^b, A- h _ MA^-AF
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which, in consequence of the similarity of the triangles M /S' i^and

N 8 Gi is perfectly true.

If we denote by a the projection ^ of the side A D upon

A B, the distance of the centre of gravity from the corner A is

determined by the formula

_ K + ^1 h + h.^ +a{hx +2Z>,)

§ 111. In order to find the centre of gravity of any other four-

sided figure A B CD, Fig. 139, we can

divide it by means of the diagonal A
into two triangles, and then determine

their centres of gravity 8^ and ;S'2 by

means of the foregoing rules ; thus we
obtain a line of gravity 8i 8^. If we
again divide the figure by the diagonal

B D into two other triangles, and de-

termine their centres of gravity, we
obtain a second line of gravity, whose

intersection with 8] 8o gives the centre of gravity of the whole

figure.

We can proceed more simply by bisecting the diagonal A C at

M and laying off the longer portion B B of the other diagonal

upon the shorter portion, so as to have D F — BE. We then

draw PM and divide this line into three equal parts ; the centre

of gravity is at the first point of division 8 from M as can be

proved in the following manner. We have M 8^ = I MB and

M 8. — \MB\ consequently 8^ 8-^ is parallel to B D, but 8 8i

multiphed hj A A CD ^ 8 8, multiplied by A ^ (7 ^ or yS' /S'l

.

D E = 8 8,. BE, whence 8 8,: 8 8, = B E: D E. But we have

B E = D F ami D E = B F, consequently also 8 8^ : 8 8, =
D F: B F. Hence the right line M F cuts the line of gravity

Si 82 at the centre of gravity 8 of the whole figure.

§ 112. If we are required to find the centre of gravity ^ of a

polygon ABODE, Fig. 140, we divide it into triangles and find the

statical moments in reference to two rectangular axesXXand Y Y.

If the co-ordinates A^ = x^, A.2 = y^, B^ = oc^, B.2
—

f/2, etc., of the corners are given, the statical moments of the tri-

angles A B 0, B C 0, C D 0, etc., can be determined very simply

in the following manner. The area of the triangle ^ ^ is, ac*

cording to the remark which follows, = D^ =
.J

{Xi y^ — x^ t/i),
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that of the following triangle B is = D^ = h {x^ yz — x^ y.2),

etc., the distance of the centre of gravity of ^ ^ from Y Y is,

according to § 109,

Xi + X.2 + Xi + x^
u, —

and that from X Xis = v^ -

ity of the triangle B C are

^1 +
those of the centre of grav-

Uo

Multiplying these distances by the areas of the triangles we ob-

tain the statical moments of the latter, and substituting the values

thus found in the formulas

u — and Vi D,+D,+
we obtain the distances u = Si and v = S^ of the required

centre of gravity S from the axes Y Y and X X.

If we divide in two ways a polygon of n sides by means of a di-

agonal into a triangle and a polygon of [n — 1) sides, and then

join the centre of the former with that of the latter, we obtain in

this way two lines of gravity, whose intersection gives the centre

of gravity. By repeated application of this operation, we can find

by construction the centre of gravity of any polygon.

Example.—A pentagon A B C D E^ Fig. 140, is given by the co-ordi-

FiG. 140.

Y

nates of its corners A^ B, C, etc.. and the co-ordinates of its centre of

^^ravity are required.
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Co-ordinates
given. •

1 Double area of the triangles.

The triple co-ordi-

nate of the centre

of gravity.

The sextuple statical

moment.

X y 3 w« 3 ^« ^Dr^U,, 6 D„ v\

24

7

-i6
— 12

i8

II

21

15

- 9
— 12

24. 21-7. 11=427
7 . 15 + 21 . 16= 441
16. 9+12. 15 = 324
12 . 12 + 18 . 9= 306
18. 11 + 24. 12 = 486

31
- 9

+ 6

+ 42

32

36
6

— 21

— I

13237
-3969
-9072

1836
20412

13664
£5876 i

1944
— 6426
- 436

1

1

1

Total, 1984 22444 24572

The distance of the centre of o^ravitv from the axis F F is therefore

8 8,

and from XX it is

3- 1984
-^-'^^

1 24573 ,^,„
3. ^333- = 4,128.

Remark.—If G A^ = 2;^, C Bx= x^^ GA^ = y^ and G B^ =2/2 are the

co-ordinates of two comers of a triangle ABC, Fig. 141, the third corner

(7 of which coincides with the origin of co-ordinates, its area is

Fig. 141. JD = trapezoid ABB^ A^ + triangle

CBB^ -triangle (7^ ^1

f-^)(..- ^2) +

^iVi -^22/1
2 2

•

The area of this triangle is there-

fore the difference between those

of two other triangles CB^ A^ and

G A2 -Bj, and one co-ordinate of

one point is the base of one trian-

gle and the other co-ordinate is the altitude of the second triangle. In

like manner one co-ordinate of the second point is the altitude of the first

triangle and the other co-ordinate is the base of the second triangle.

§ 113. The Centre of Gravity of a Sector, A C B, Fig.

142, coincides with centre of gravity S of the arc A^ B^, which has

the same central angle as the former and w^hose radius C A^ is two

thirds of that CAof the sector; for the latter can be divided by an
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infinite number of radii into small triangles, whose centres of gravity

are situated at a distance from the

centre G equal to two thirds of ra-

dius; the continuous succession of

these centres forms the arc A^ M\ B^.

The centre of gravity S of the sector

hes, therefore, upon the radius which

bisects this surface and at the distance

^ „ chord 2 pri 4 sin. ^y ^CS —y — . ^ CA — -
.—^^—

. r
^ arc Z 3/3

from the centre, when r denotes the radius of sector and jS the

arc which measures its central angle A C B.

For the semicircle j3 — tt, sin. -h (i = sin. 90° = 1, whence

4 14
y = -— r = 0,4244 r, or approximatively^ r.

For a quadrant we have

4 V~-. 41/2

3 7r

r - 0,6002 r,

and for a sextant

4 Lr = - r = 0,6366 r.
n n

Pig. 143.

114. The Centre of Gravity of the Segment of a Circle,

ABM, Fig. 143, is found by putting

its moment equal to the difference

of the moments of the sector A CBM
and of the triangle A B. If r is

the radius O A, s the chord A B and

A the area of the segment A B M, we

have the moment of the sector

= sector multiplied by C /S', —
r . arc chord 2
~X~ * "arc ' 3

s r

the moment of triangle

= triangle multiplied by C 8.[ = -i/ r'
' 2

^

s r
3 12'

and consequently the moment of the segment A
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Hence the required distance is y

225

'sr

12/ ~ 12*

12^'

For a semicircle s — 2 r and A

8 r^ 4 r

- n r\ ana therefore

y
12

7T r Srr'

as we have already found.

In the same way the centre of grav-

ity S of 2i section of a ring A BOB,
Fig. 144, can be found; for it is the

difference of two sectors A C B and

D C E, If the radii are C A =^ r, and

C E = r<i and the chords A B ~ Si

and B E — s^, we have the statical

moment of the sectors -^r^ and -^tt—*

and consequently that of the portion of the ring

8\ Vx — §2 T^ . S2 n-—-
, or smce - = —

,

3
'

Si n

M =

P r,' [3 r.

=«P?9.The area of the piece of the ring is i^

=

in which |3 denotes the arc which measures the central angle

A C B ; hence the centre of gravity 8 of the section of the ring is

determined by the formula

p q _ _ ^ _ ^1'— ^2' 2 5i _ 2 /n^ — T-s'X cho7*d

~y ~'F ~ r,'-r,' '3'W^~3 W - r,'/
' arc

4 sin. 1
13 7\' - ri sin. If3/^ 1 / ^ \M o i.

-3-l^-,T.^Z7;.= -^(l + T^7-j)^^^whenr,-r,

= b and Vi -\- r^ = 2 r.

Example.—If the radius of the extrados of an arch is r^ = 5 feet, and
that of the intrados is r^ = S^ feet, and if the central angle is z?"

= 130",

the distance of the centre of gravity of the front surface of the arch from

ita centre is

5» — 3,5^ 4 . 0,9063 125 - 42,875 3.6252_ 4 sin. 65

3 . 2,2689 ' 25

82,125

6,8067 . 12,75

= 3,430 feet.

16
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(§ 115.) Determination of the Centre of Gravity by the
Aid of the Calculus.—The determination of the centre of gravity

by means of the calculus is accomphshed in the following man-
ner. Let A N P, Fig. 145, be the given

surface, A iV^z= a; its abscissa and NP = y
its ordinate. The area of an element

of the surface is

d F = y d X (see Introduction to the

Calculus, Art. 29) and its moment in ref-

erence to the axis of ordinates ^ J^ is

0~M.dF^AN.dF= xy dx\

if we put the distance L 8 =^ A K oi the

centre of gravity S of the whole surface

F from the axis A Yy ~ u, we have

F u = f X y d X,

fxydx_fxydx
F ~ f y d X

'

Since the centre or centre of gravity M of the element NM P
is at the distance NM — \y from the axis A X, the moment of

d Fm reference to this axis J. JT is

and consequently 1) u

NM.dF^ \y dF ^\f dx\

putting the distance K 8 — A L oi the centre of gravity 8 of the

whole surface F from the axis ^ X, = f, we have

F V = f I
y"^ d X, and therefore

ify^dx _ , ffdx
F ~

"2) V
'" fydx

E.G., for the parabola, whose equation is y^ = p x or y =
we have

P \^% . xh X dx Vp f x^ d X f xi d X

fVp.x^dx Vp f xid X J ^' d X

Vp . x^,

jx^

ix^

V = _ ,
^fxdx _ ,

_. ^ x\
-2Vp r ..i ^ .;

- -i yp 2 ^1

ovL8=AK— IAN, and, on the contrary

fp xdx
Vpfx^i d X

~ ^ ^P Sx\ d

sTpx ^ I y,

K8= A L^^ NP.
or
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§ 116. The Centre cf Gravity of Curved Snrf?.ces.—The

centre of gravity of the curved surface (envelope) of a cyHnder

A B CD, Fig. 146, Hes in the middle S of

Fig. 146. the axis MN of this body ; for all the ring-

V,^^ ,iF~^C shaped elements of the envelope of the cyl-

/
~~

/ inder, obtained by cutting the body parallel

to its base, have their centres and centres of

m' ^
'//Mi'I

gi'^'^'ity upon this axis; the centres of grav-

mi $mmmf ^^^ ^^™-^ ^^^^^ ^ homogeneous heavy line.

kmi" "^'^^HL For the same reason the centre of gravity

of the envelope of a prism lies in the middle

of the line, which unites the centres of gravity of its bases.

The centre of gravity S of the envelope of a right cone A B C,

Fig. 147, lies in the axis of the cone one-third of its length from

the base, or two-thirds from the apex ; for this curved surface can

be divided into an infinite number of infinitely small triangles by

means of straight lines (called sides of the cone). The centre of

gravity ^f all these triangles form a circle H K, which is situated

at a distance equal to two-thirds of the axis from the apex C, and

whose centre or centre of gravity S hes in the axis C M.

Fig. 147. Fig. 148.

H#- js^_ f^ 0^:1^... ic ""j.

I

- \)k\

"^ '^

The centre of gravity of a zone A B D E, Fig. 148, of a sphere,

and also that of spherical shell, lies in the middle 8 of its height

M N', for, according to the teachings of geometry, the zone has

the same area as the envelope F G HK of ^, cylinder, whose height

is equal to that MN oi the zone and whose radius is equal to that

C of the sphere, and this holds good even in the ring-shaped ele-

ments obtained by passing an infinite number of planes parallel to

the base through the zone; bence the centre of gravity of the zone

and of the envelope of the cylinder coincide.

Remake.—The centre of gravity of the envelope of an oblique cone or
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pyramid is to be found, it is true, at a distance from the base equal to one-
third of the altitude, but not in the right Ime joining the apex to the
centre of gravity of the periphery of the base, since by cutting the en-
velope parallel to the latter we divide it into rings of different thicknesses
on different sides.

§ 117. Centre of G-ravity of Bodies.—The centre of gravity
Sof a prism A K, Fig. 149, is the centre of the Hne uniting the

centres of gravity Jf and iV^'of the two bases
A D and G E\ for by passing planes parallel

to the base throngh the body we divide it

into similar slices, whose centres lie in M N,
and whose continuous succession form the

homogeneous heavy line'JSfiV.

For the same reason the centre of gravity

of a cylinder is to be found in the middle of

its axis.

The centre of gravity of pyi-amid A D F, Fig. 150, lies in the

straight line Jfi^joining the apex i^with the centre of gravity M
of the base ; for all slices such as W P Q R have, in consequence

of their similarity to the base ABODE, their centre of gravity

upon this line.

Fig. 151.

If the body is a triangular pyramid, like A B C D, Fig. 151, we

can consider each of the four corners as the apex and the opposite

side as the base. The centre of gravity is therefore determined by

the intersection of the two straight lines drawn from the comers

D and A to the centres of gravityM and N of the opposite surfaces

A B Cand B CD.
If the right lines E A and E D are also given, we have (accord-
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Fig. 152.

ing to § 109) EM = \E Ad^ndiE N=^ I E D. MN is therefore

parallel to A D and = \ A D, and the triangle MN S is similar

to the triangle DAS. In conse-

quence of this similarity we have

2,1^0 M S = I D S ov D S =^M8
SiiidMD^MS-^ SD = 4:MS,

or inversely M S = ^ 31 B. The

distance of the centre of gravity

of a triangular pyramid from its

base along the line joining the

centre of gravity 31 of the base to

the apex I) of the pyramid is equal

to one-fourth of this line.

If the altitudes D B and S G
are given and if we draw the line

H M, we obtain the similar triangles I) HM and S G 31, in which,

as we have just seen, S G = I D H. We can therefore assert that

the distance of the centre of gravity of a triangular pyramid from

its base is one-fourth and from its apex three-fourths of its altitude.

Finally, since every pyramid and every cone is composed 9f tri-

angular pyramids of the same height, the centre of gravity of every

pjTamid and of every cone lies at a distance from the base equal to

one-fourth of the altitude and at a distance from the apex equal to

three-fourths of the altitude.

We determine the centre of gravity of a pyramid or of a cone

by passing a plane, at a distance from the base equal to one-fourth

the altitude, through the body parallel to its base and by finding

the centre of gravity of this section or the point wiiere a line

drawn from the centre of gravity of the base to the apex will cut it.

§ 118. If we know the distances A JL„ B ^„ etc., of the four

corners of a triangular pyramid A B C B, Fig. 153, from a plane

H K, the distance S S^ of its centre of gravity S from the plane is

their mean value

SS,= A A, -^ B B, + C C, + B B,

w^hich can be proved in the following manner. The distance of

the centre of gravity 31 of the base ABC from this plane is (§109)

3f3f,
A A,+ B B, + CC,

3
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aiid the distance of the centre of gravity S of the pyramid is

/5 .^S', = MM, + i(DI),- MM,),

m which D D, is the distance of the apex,

equations, we obtain

Combining tlie last two

D D,

4

The distance of the centre of gravity of four equal weights

placed at the corners of the triangular pyramid is also equal to the

arithmetical mean

A A, -\- B B, -V C C, + D D,
y = 1

-;
.

consequently the centre of gravity of the pyraniid coincides with

that of these weights.

Remark.—-The determination

of the volume of a triangular pyra-

mid from the co-ordinates of its

corners is very simple. If we pass

through the apex of such a

pyramid A B O 0, Fig. 154, three

co-ordinate planes X Y, X Z, Y Z,

and denote the distances of the

corners ^4, B, C from these plants

by 31,22, 23; 2/1,2/2. 2/:i
and a!i,a:2,a'3,

we have the volume of the pyramid

V= =fc IK 2/3 33 + ^22^321 +
^3 ^1^2 («t ih ^2 + ^2 yt ^i
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which is found by considering the pyramid as the aggregate of four ob-

liquely truncated prisms.

The distances of the centre of gravity of this pyramid from the three

co-ordinate planes YZ^ XZ and X Zare

X = j ^, y
2/1 + 2/2 + and z = ^1 +2j

§ 119. The centre of gravity 8 of any polyhedron, such as

A B C D 0, Fig. 155, can be found by calculating the statical

moments and volumes of the triangular pyramids, such SisABCO,
B C D 0, into which it can be decomposed.

If the distances of the corners A, B, C, etc., from the co-ordinate

planes Y Z, XZ andX Y, passing through the common apex of

all the pyramids, are x^, .To, x-^, etc., y^,. y.^, y^^ etc., and z^, z.i, Zi, etc.,

we have the volumes of the various pyramids

V,= ±l {x, y, Zz + X, y., z, + x^ y^ z<, — x, y^ z, - x,y, z^ - x-.y, z,),

Fo = ± \{x^y^z^ + x^y^z^ + x^y.^z^- x.y^z^- x^y,z,- x^y^z,),

etc., and the distances of their centres of gravity fi'om the co-ordi-

nate planes are

u, = x^ + T.2 H- Xs
V, — y^ +

:^^ti3^t..=.^
Z.^ 4- Z-i

X.2 -\- X^ -\- Xa
U<i = , t'a

y-^ + y^ + y^ ,, __ ^^ + ^-^ + ^4 .

From these values we calculate the distances w, v^ lu of the

centre of gravity S of the whole body by means of the formulas
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u = Fi Ui + F2 th + .. . _ Fi ?;i + F2 1\ + . .

.

"~Fr+ F, + .7^'' "" - "Tr+ F, + ... '

^"""^

to =
V^+V, +

Example.—A body A B C D 0, Fig. 155, bounded by six triangles, is

determined by the following values of its co-ordinates, and we wish to find

the co-ordiaates of the centre of gravity.

1

Given Co-
ordinates.

The sextuple volume of the
triangular pyramids

A B C and B C D O

Quadruple
Co-ordi-

nates of the
Centres of
Gravity.

\

Twenty-four fold

Statical Moments.

X

20

y

23

' i
^ 24

Vnttn
24
F„«.

24
VnWn

41 [20.29.281 f 20.40.30
j

6F,=: \ 23.30.12 \ - - 23.28.45 I = 31072 77 92 99 2392544 28586243076128

45 29 30 [4i.45.40J 1 41.12.29 J

12 40!28
1

f 45.35.281 [45.40.201
i

1

1

BT^rr: i 29.20.12 - \ 29.28.38 !- = 17204

130.12.35 J

95 104 78 1634380 1789216|1341912

38 35'20 [30.3840 J

Total 48276 4026924 4647840:4418040

From the results of the above calculation we deduce the distances of

the centre of gravity S of the whole body from the planes YZ^XZ andX J,

40269241

1

1

48276

4647840

48276

4418040

48276

20,853,

= 24,069, and,

= 22,879.

Remabk.—We can also determine the centre of gravity of a polyhedron

by dividing it in two ways by means of a plane into two pieces and by

joining the centres of gravity of each two pieces ; the intersection of the two

lines gives the required centre of gravity. Since both lines are lines of

gravity, the intersection must be the centre of gravity of the whob body.

If the lx)dy has a great number of corners, this process becomes very long,

in consequence of the number of times this division must be repeated.

The five-cornered body in Fig. 155, which must be divided in two ways

into two triangular pyramids, has its centre of gravity at the intersection

of the lines joining the centres of gravity of each two of these pyramids.
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Feg. 156.

§ 120. The centre of gravity of a truncated pyramid or frus-

turn of a i^yramid A D Q N, Fig. 156,

lies in the line G M joining the centres of

gravity of the two (parallel) bases. In or-

der to determine the distance of this point

from one of the bases we must calculate

the volumes and moments of the complete

pyramid A D i^and of the portion N Q F,

which has been cut away. If the areas

of the bases A D and iV^ § are = Gi and

6^2? and if the perpendicular distance be-

tween them = h, the height x of the por-

tion of the pyramid, which is wanting, is

determined by the formula

G, _ {h + xf
G 3,

whence

and

+ 1

h -\- X =

G, X'
'

4/^ .
hVG,

^ G. vg, - vg:

h V G,

Vg^ - Vg,

The moment of the whole pyramid in reference to its base is

G, {h + x) h +x _ 1 ^_^
3 .

*
" 4 1^{VG,- VG.;)'

and that of the part of pyramid, that is wanting, is

G^ X

{"-D
K- Vg^^ h' a/

3 V" ' 4/ 3 VG, - Vg, ^ 12
' (Vg,- Vg,)

hence the moment of the truncated pyramid is

12{VG,-Vg,)'

(6^,^-4 G, V1}~G,

. [G,' - 4.{VG,G,'

^ 3 G.n If

12
{G, + 2 VG,G, + 3 a,).12{G,-2VG, G, + G,)

Now the contents of the truncated pyramid are

y = (G, -^ VG\~G, A- G,)\',

and therefore the distance of the centre of gravity S from the

is
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y =
G, + 2 VG, G, +3 G,

G, + VG: G,+ G, 4

The distance 8^ 8 of this point from the plane K L, passing

through the middle of the body parallel to its base and dividing its

height into two equal parts, is

= ^ _ = [2 {G, + VgVG, + G,)-(G,+ % ^GTG,^ 3 G,)^ h
^'

^ ^ G,+ VWG, + G, 4

^ ( G, --_G, \ h

^G, + V~G7G~-{- gJ ^

If the radii of the bases of 2^frustum of cone are r^ and ^2, or

Gi = TT fx and G<i — r: r/, we have

y
r^ + 2 ri rs + 3 r^

fx + ri 7*2 + r^'
and

2/1 == ~T
Tx - r.

^ r,r^ + 7-2

Example,—The centre of gravity of a truncated cone whose altitude

is A = 20 inches and whose radii are r = 12 inches and r^ = 8 inches lies,

as is always the case, in the line joining the centres of the bases, and at a

distance
12^ + 2 . 12 . 8 + 3 .

8' 5 . 528 2640

12^ + 12 .

from the greater base.

+ 304 304
= 8,684 inches

Fig. 157.

§ 121. An oMisJc, I.E., a body A C Q, Fig. 157, bounded

by two dissimilar rectangular bases and by four trapezoids, can

be decomposed into a parallelopipedon

A F R P, into two triangular prisms

B R R Q SLiid G K R and into a

four-sided pyramid HK R. TBy the aid

of the moments of these component

parts we can find the centre of gravity

of the whole body.

It is easy to see that the right line

joining the middle of one base to that

of the other is a line of gravity of the

body ; we have, therefore, but the distance of the centre of gravity

from one of the bases to determine. Let us denote the length

B C and the width A B o^ one base by /, and h„ and the length

Q R and the width P Q of the other base by I, and h, and the

height of the body or the distance of the bases apart by h. The
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contents of the parallelopipedon are then = 5.2 h h, and its moment

is Ji 4 /i . ^ = i hi li ¥. The contents of the two triangular

prisms are

and their moments are

and finally the contents of the pyramid are

= (h. - h) (h - /.) I
and its moment is

= (5, - J.) (A -h)~. *.

• From the above we deduce the volume of the whole body

V= {6b,l,-{- SdJ,+ dl^h,- 6h,h-i- 2bJ, + 2I?J,-2bJ,-2b2l^) .^

= (2 5i ?i + 2 be, l^ ^- biU + Ix bi) -, its moment

Vy = (6 b, l,+ 2b,I,+ 2hb,-4:b, k+ b, I, + b, I,- b, h ~ h b,) . ^-

=: (3 b, I, + hk + b, I, + b, /,) ^,

and the distance of its centre of gravity 8 from the base bx li

_ bxlx + 3 b, I, + b
x h + b, Ix h

^ ~ 2bxlx + 2bJ,+ \ I, + bVU ' 2'

We can also put (see the " Planimetrie und Stereometric " of

C. Koppe)

^ _ bx + b<i Ix -T 1-2 7 bx — bi Ix — 1-2 li

The distance yx of the centre of gravity from the cross section

through the middle is determined by the formula

_h _ bx Ix — b, I, ,y'~2~y~
3 {bx + b~) {Ix + k) + {bx - b,) {k - 'Q

'

Remark.—This formula is also applicable- to bodies with elliptical

bases. If the semi-axes of one base are a^ and &j and those of the other

(Zg and 6g, the volume of such a body is

F= -g- (2 «i 6i + 2 ^2 ^3 + aj &2 + ^2 ^iX

and the distance of its centre of gravity from the base tt a^ h^ is

a^ 1>^ + 3 ^2 ^2 + «i ^2 + ^2 ^1 ^
y ^

2 «! &i + 2 ^2 ^2 + ^1 ^2 + «2 ^1 ' 2
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Example.—If the emhankment A C Q, Fig. 158, for a dam is 20 feet

high, 250 feet long and 40 wide at the bottom, and 400 feet long and 15

Fig. 158.

feet wide on top, what is the distance of its centre of gravity from its base ?

Here d^ = 40, l^ = 250, h^ = 15, l^ = 400, and h = 20, and consequently

the distance is

y =
40 . 250 + 3 . 15 . 400 + 40 . 400 + 15 . 250 20

2 . 40 . 250 + 2 . 15 . 400 + 40 . 400 + 15 . 250 * 2

4775 ,^~ 7— . 10
517t>

1910

y^y = 9,227 feet.

Fig.

^ I

159.

)

A^^—

M

\ Di

^i^WUZMj]
S— ^^rr

JAM

B,

§ 122. If tlie circular sector A C D, Fig. 159, is revolved about

its radius C D, a spherical sector A C B is generated, the centre

of gravity of which can be determined in

the following manner. We can consider

this body as the aggregate of an infinite

number of infinitely thin pyramids, whose

common apex is the centre C and whose

bases form the spherical zone AD B. The

centres of gravity of each of these pyramids

are situated at a distance equal to | of the

radius CD of the sphere from its centre

C, and they form a second spherical zone

A, A B„ whose radius O D, = I D.

The centre of gravity of this carved surface is also that of the

spherical sector ; for the weiglits of the elementary pyramids are

equally distributed over this surface, which is therefore every-

where equally heavy.

If we put the radius C A = C D = r and the altitude D M of

the exterior zone = h, we have for the interior zone C D^ — J r

and ifi Z>, = I hy and consequently (§ 116) aS'A = ^^ M^D^ = i h,

and the distance of the centre of gravity of the spherical sector

from the centre C is

C S = C D, - S D, = I r - i h = i {?' -^^.

For a hemisphere r = h, and therefore the distance of its centre

of gravity S from the centre C is
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CS=^.^ = §r.
r
'2

§ 123. We obtain the centre of gravity S of a spherical seg-

Fm. 160. ment A B D, Fig. 160, by putting

^^^D^^^ th^e moment of the segment equal

.^^^^ iS^^^%k. ^^ ^^^ ^^ ^^® spherical sector

A^E^" '""'""S""""^^ A D B C less that of the cone

'"^W^:^— ^[ --^ri^r \ ABC. Denoting a^ain the radius

/ ...^'Z^%^''-^^^^Z\' '•: C D of the sphere by r and the

E^C^E^— c^
j-ifi-jF altitude. D M hj h, we have the

'" "."!'""'."
-
"

moment of the sector

= irrr''h.l{2r -h) = i7Tr'h{2r - h),

and that of the cone

= 1 TV h(2 r - h) .{r - h) . i {r - h) ^ irr h {2 r - h) (r - li)%

hence the moment of the segment is

Vy = \7Th{2r -h) {r' - [r - hf) = i tt ?i' {2 r - h)\

The contents of the segment are

and consequently the required distance is

r 9 - ,, - l^h'{^r-hy ^ 3 (2 r - hy
"" "" ~y ~ ^irli' {Zr -h) ^ • ^r -h'

If we put again h = r, the segment becomes a hemisphere, and,

as before, we have C S = | r.

This formula is also true for the segment A^ D B^ of sl spheroid

generated by the revolution of the arc D A^ of an ellipse about its

major axis CD = r; for if we cut the two segments by means of

planes parallel to the base A B into thin slices, the ratio of the

2f A ^ CE"^ y^
corresponding slices is constant and = ^ = = --^, when

MA' CE' ^

b denotes the smaller semi-axis of the elUpse. We must multiply

not only the volume, but also the moment of the spherical segment

by —^ to obtain the volume and moment of the segment of the

spheroid, and therefore the quotient C S — —^°^^^ is not changed.

In general we have C S = y ~ I
^———-̂ , in which r de-

notes that semi-axis about which the ellipse is revolved, when gen-

erating the spheroid.

§ 124. Application of Simpson's Rule.—In order to find

the centre of gravity of an irregular body A B C D, Fig. 161, we
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divide it, by means of planes equally distant from each other, into

thin slices and determine the area of the cross sections thus ob-

tained and their moments in reference to the first parallel plane

A B, which serves as base, and we then

combingthe latter by means of Simpson's

rule.

K the areas of the cross-sections are

^0, F^, F.2, Fs, Fi and the total height or

distance 3fN between the two parallel

planes farthest apart = h, we have, ac-

cording to Simpson's rule, the volume of

the body
hV^ (Fo -i-4.F, + 2F,+ 4.F^ + F,)
12

Multiplying in this formula each surface by its distance from

its base we obtain the moment of the body, viz.,

Vy = {0 . Fo -h 1 .4.F, + 2 .2 F, + S ,4:F, -{• 4.F,)^-~. ^,
and dividing the last equation by the first we obtain the required

distance of the centre of gravity >S^

{O.Fo + 1.4:F, + 2.2F, + 3.4/;+^F^ h
4*

31 S =

1/
=

F,-\-4.F, + 2F, + 4.F,-^F,

If the number of slices = 6, we have

0.j;^1.4i^i + 2.2i^o + 3.4 F,-\-4: .2 F, + 5 .4.F,+ 6 F,

Fo ^ 4: F, + 2 F, -{- 4:Fs + 2 F, -i- 4.F, + F, " 6'

It is easy to see how this formula varies, when the number of

slices is changed. The rule, however, requires, that the number of

slices shall be an even one, or the number of surfaces an uneven one.

In many cases we need determine but one distance, as a line of

gravity is also known. Solids of rotation formed upon the turn-

ing lathe are very common examples of such bodies. Their axis

of rotation is a line of gravity.

This formula is also applicable to the determination of the

centre of gravity of a surface, in which case the

cross sections Fo, Fx, F., etc., become lines.

Example 1. For the parabolic conoid A B C, Fig.

163, formed by the revolution of a portion A B M of

a parabola about its axis A J/, we obtain, when we make

but one section i>^^through the middle, the following.

Let the altitude A J/ = h, the radius B M = r,

A N = NM = - and consequently the radius D N

Fig. 162.

The area of the section through A is F^ = 0,
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that through iV F^ = it D N"" =z -— and that through M^F^ — tt r'.
til

Hence it follows that the volume of this body is

F =
I

(0 + 4 i^, + i^^; =
I

(3 TT r'^ + ;r O =
-I

TT r^ A =
-I

i^2 ^
and that its moment is

Fy == ^ (1 . 2 TT r' -f- 2 TT r^) = i TT 7-^ A» = i i^^g h\

Consequently the distance of the centre of gravity 8 from the vertex is

^ F h?

Example 2. The mean half widths of the vessel A B C I), Fig. 164,

are r^ = 1 inch, r^ = 1,1 inches, r^ = 0,9 inches, r^ = 0.7 inches, and r^

= 0,4 inches, and its height MN = 2,5 inches; required the centre of

gravity of the space within it. The cross sections are F^ = 1 tt,

F^ = 1,21 TT, F^ = 0,81 rr, F^ = 0,49 t and F^ = 0,16 t, and therefore

the distance of its centre of gravity from the horizontal plane A B is

0.177 + 1.4.1,2177 + 2.2. 0,81 77 + 3 . 4 . 0,49 tt + 4 . 0,16 . tt 2,5M S =
177 + 4.1.2177 + 2.0,81

14,60 • 2,5 _ 36,50

9,58" T"
~

38,32

The vacant space in the vessel is F= 9,58

+ 4 . 0,49 77 + 0,16 . TT

= 0,9502 inches.

2,5

12
= 6,270 cubic inches.

(§ 125 ) Determination of the Centre of Gravity of Sur-

faces and Solids of Rotation.—The centre of gravity of curved
Fig. 165. surfaces and of bodies with curved sur-

faces can be determined generally by the

aid of the calculus. In practice, solids

and surfaces of rotation occur most fre-

quently, and we will therefore here treat

only of the determination of the centre

of gravity of these forms. If the plane

curve A P, Fig. 165, revolves about its

axis A C, it describes a so-called surface

of rotation A P P^; and if the surface

A P M bounded by the curve A P and
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its co-ordinates A M and if P is revolved about the same axis a

solid of rotation bounded by a circular surface P M P^ and by a

surface of rotation ^ P Pi is produced.

If we denote the abscissa A if by x, the corresponding ordinate

by y and the corresponding arc A P by 5, and also the element

MN — P P of the abscissa by d x, the element Q R of the ordi-

nate hjdy and the element P § of the curve by d s, we have the

area of the belt-shaped element P Q Qi Pi generated by the revo-

lution of d s, when we put the surface of rotation A P P^ = 0,

dO = 27T,PM.PQ = ^TTijds,

and, on the contrary, the contents of the element of the solid of ro-

tation A P Pi — F, limited by this element of the surface, are

d V= n P M\M]Sr=Trf dx.

Since the distance of both elements from a plane passing

through A at right angles to the axis A is equal to the abscissa

X, the moment of 6? is

xdO— 2nxyds,
and that of 6? F is

X d V = TT X y^ d X.

Now since

= f27Tyds = 2n/yds and

F = / ny"" d X = n f y^ d x,

and since according to the above formulas the moment of is

f27Txyds = 2TT/xyds,
and that of F is

/ TT X y^ d X = n / X y^ d X,

it follows, that the distance A S = y of the centre of gravity Sfrom

the origin A is

1) for surfaces of rotation

_ 2Trfxyds_ fx yds
~ 2 7T f y d s ~ f y d s'

and, on the contrary,

2) for solids of rotation,

_7T f x y" dx _^ f xy^ dx
~

7T f y^ dx ~^ f y"^ ci x
'

E.G., for a spherical zone whose radius C Q = r we have, since

P Q C Q ds r , ,

^5-^ = >r^ i-E. ^— = — oxy d s — rd x,PRQ^JSfdxy^
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f X r d X _ fxdx _ |^
frdx ~ fdx ~ X
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lx=lAM.

(Compare § 116.)

For a segment of a sphere, on the contrary, we have, since we

can put ?/' = 'Z r X — x^,

A S^u f {2rx-x')xd x _ /2rx'dx-fx'dx
f{2rx-x')dx ~ f2rxdx - fx' dx

%rx' - I x* _ (f r - j x) X _ lSr-Sx\ x

r X \x'

l^r — 6x\ x_

V 3 r - a; / ?

and consequently

(2 r - xy

3r — x
(Compare § 123.)

§ 126. Properties of Guldinus,—An interesting and often

very useful application of the theory of the centre of gravity is

the properties of Guldinus (Fr. methode centrobarique, Ger. die

Guldinische Kegel). According to these the contents of a solid

of rotation (or the area of a surface of rotation) is equal to the

product of the generating surface (or generating line) and the

space described hy its centre of gravity while generating the tody

(or surface). The correctness of this rule can be proved as follows

;

If a plane surface A B D, Fig. 166, is revolved about an axis

XX, every element Fx, F.-^, etc. of it describes a ring; if the dis-

tances of these elements F^, i^o, etc. from the axis of rotation

XX are F^ K^, F^, X., etc. = r,, 7-2, etc.,

and if the angle of rotation is FK F^

Ai = S C Si = a° or the arc corresponding

1^^ to the radius 1, = a, the arc- shaped

paths described by the elements are

r, a, r.2 a, etc. The spaces described by
Bi the elements i^„ F^, etc., can be re-

garded as curved prisms whose alti-

tudes are r^ a, r^ a, etc., their contents

are therefore F^ r^ a, F^ r^ a, etc., and

consequently the volume of the whole body A B D Di Bi Ai is

V= Fr, a -\- F,r,a + = {Fi r, -{- F.^ r^ + .. .) a.

16

Fig. 166.
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If ^ = CS is the distance of the centre of gravity S of the gen-

erating surface from the axis of rotation, we have

(F^ + F, + ...)y = F^n + F,r, + ...,

and consequently the volume of the whole body

V= {F, + F,+ .,.)ya.

But Fi 4- i^2 H- . • • is the area of the surface F, and y a is the arc

S 8i = zv described by the centre of gravity; hence it follows

that V = Fw, which is what was to be proved.

This formula is also applicable to the case of the rotation of a

line, since the latter can be considered as a surface of infinitely

small width. In this instance we have F — I w, i.e. the surface

of rotation is the product of the generating line (l) and the space

{iv) described by its centre of gravity.

Example 1. If the semi-axes of the elliptical cross section ABED,
Fig. 167, of a half ring are (7 J. = « and C B = I, and if the distance CM
of its centre G from the axis X X = r, the elliptical generating surface

will he F = TT aJ), and the space described by its centre of gravity (C)

will he w = 7T r. Hence the volume of this half ring is V = tt^ air, and

tbat of the whole ring is V^ — 2 V = 2 n^ air.

If the dimensions are a = 5 inches, & = 3 inches and r = 6 inches, the

volume of one-quarter of the ring is

J . 7r=^ . 5 . 3 . 6 = 9,8696 .5.9= 444,132 cubic inches.

Example 2. The volume of a ring with the semi-circular cross section

ABB, Fig, 168, is, when C A = B — a denotes the radius of this cross

section and M G =^ r that of the hollow space,

„ Tx a^ ^ I 4td\
TT ( r -1- --

J
= TT a- (tt r + f a).

Example 3. If the segment of a circle ABB, Fig. 169, revolves about

the diameter ^i^ parallel to its chord A B, it describes a sjihere A B^B
with a cylindrical hole A B B^ A^m it. If A is the area of the segment
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and s the length of its chords B = A^ B^, we have (§ 114) for the distance

of its centre of gravity 8 from the centre C

and consequently the volume of the sphere with the cylindrical hole is

For a complete sphere we have the chord or height of the hole equal to

the diameter d of the sphere, and consequently its volume

^ - 6 '

as we know.

Example 4. We are required to find the area of the surface and the

contents of the cupola ABB, Fig. 170, of a cloistered arch, when the half

Fig. 169. Fm. 170.

/
^ r""^!

D.

width MA = MB=a and the altitude if i> = A are given. From the

two given dimensions we obtain the radius C A = C D oi the generating

circle

r =

The central angle ^ CD = a is given by the formula
7.

2 a

>y

sin. a =

The centre of gravity 8 of an arc I) A I) ^ = 2 A I) ia determined by
the distances

chord MB r sin. a
^^ = "*

• arc^2>~ = ~-r-~ ^^'^ ^^^= ^^'- "'

consequently the distance of the centre of gravity 8 from the axis MB m
^ r sin. a (dn. a \M a = r COS. a = r \ cos. a I,

a \ a r
and the space described by the centre of gravity in describing the surface

AB Bis
- /sin. a \

w = 2 TV r I COS. a).
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The generatrix i> J. D^ is 2 r a, consequently its half is ^ i> = r a, and
the surface of rotation A D B generated by the latter is

(dn. a \

cos.aj = 3 TT r^ (sin. a — a cos. a).

Very often we have a° = 60°, or

TV .
,—

a = -, sm. a = ^vd and cos. a = ^;

hence the required area is

= TT r^ /V3 - ^)
= 2,1515 . r\

The distance of the centre of gravity of the segment B AB^ = A = r"^

(a — ^ sin. 2 a) from the centre C is

_ (2.MI)y _ 2 r' sin.^a

~ 12'A
""

3 A '

and, therefore, its distance from the axis is

MS = C S — CM= - ^ r COS. a,

and the space described by this centre of gravity in one revolution around

MB i&

2 TT 7* 2 IT T'^

w = -—— (I r^ sin.^ a — A cos. a) = —-z— [f sin.^ a — (a—^ sin. 2 a) cos. a].

The volume of the body generated by the revolution of the segment

B A B^ is found by multiplying this space by A, and the volume of the

cupola by dividing the last product by two. The latter volume is

F= TT r^ [f sin.^ a — (a — ^ sin. 2 a) cos. a]

E.G., if a° = 60°, we have

e = -, sin. a =^ Vs, sin. 2 a = ^ V3, cos. a = ^, and therefore
o

F = TT T-M f V3 —
^

) = 0.3956 . r\

§ 127. The properties of Guldinus are also applicable to bodies

formed by the motion of the centre of gravity of the generating

surface along any curve, as long as the surface remains at right-

angles to the curve ; for every curve can be regarded as composed

of an infinite number of infinitely small arcs of circles. The vol-

ume of the body is here also equal to the product of the generating

surface and of the space described by its centre of gravity. The
properties can also be made use of, when the generating surface in

moving forwards is always at right angles to the projection of the

path of its centre of gravity upon any plane. In tliis case the

generating surface is to be multiplied not by the space described,

but by its projection.
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Fig. 171.

Hence, for example, the volume of one turn of the thread

A H K, Fig 171, of a screw is de-

termined by the product of its cross

section A B D jE hy the circum-

ference of the circle, whose radius

is the distance M S of the centre

of ffravitv S of the surface A B D E
from the axis CM of the screw.

In many cases we can combine

the use of the properties of Guldi-

nus with that of Simpson's rule.

E.G., to find the contents of the

curved embankment AqDqBi D.2 Ac^,

Fig. 172, we need only know the central angles So C S^ = 2 So CSi

= 2 S^C S,= 13, the cross sections Ao Do = Fo, A^ D, = F^, A,A

= F<i and the distances C So = n, C S^ = Vx and C Sc, = r^ of the

centres of gravity So, Si and So of these cross sections from the cen-

tral axis C X. The volume F of the body is determined by the

formula

'Fo n + 4 F, r, + F^ r\ ^^ (
Fo n + 4. F, r, 4- F, r,)

6 / 180° \ 6

= 0,01745 /3» (^LZoJli^lLj^^.).

If the radii ro, r^ and r^ are equal to each other, or if they differ

but little, we can put Tq — r^ = r.^ = r and therefore

"{-

V = 0,01745 13° r (
Fo + 4:Fi + F,

)•

§ 128. The following=is another application of the theory of

the centre of gravity, which is closely allied to the foregoing.
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We can assume that every obliquely truncated prismatic body

A B K L, Fig, 173, is composed of infinitely thin prisms, such as

i^i Gx. If Gi, G^2, etc., are the bases and

hx As, etc., the altitudes of these prismatic

elements, we have the contents

Gx hi, Gi h, etc.

and consequently the volume of tlie

whole obliquely truncated prism

V= G, Ih + G,lh + ....

Now an element Fx of the oblique

section ^ X is to the element G^ of the

base A B = (r as the whole oblique sur-

face F is to the base G : hence we have

6^1 = F
G

Fy, G. = ~ F^, etc., and

{F, h, + FL-h .. .).

Finally, since Fi h^ -h F^^ h^ + . . . is the moment F h of the

whole oblique section, we can put

V- —~ F F}i= Gh,

I.E., the volume of an obliquely truncated prism is equal to the volume

of a complete prism, which stands on the same base and ivhose alti-

tude is equal to the distance S of the centre of gravity 8 of the

oblique section from the base.

The distance of the centre of gravity of the oblique section of a

right triangular pi'ism, which is truncated obliquely, from the

base is

h = ^ -,

and consequently the volume of this prism is

V= Gh = G (^^^ + ^2 + ^3)^
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CHAPTER III.

EQUILIBRIUM OF BODIES RIGIDLY FASTENED AND SUPPORTED.

§ 129. Method of Fastening.—The propositions relative to

the equilibrium of rigid systems of forces, demonstrated in the first

chapter of this section, are applicable to solid bodies subjected to

the action of forces, when we consider the weight of the body as a

force applied at the centre of gravity and acting vertically down-

wards.

Bodies, which are held in equilibrium by forces, are capable of

moving freely, I.E., they can obey the influence of the forces, or

they are in one or more points rigidly fastened, or they are sup-

ported by-other bodies.

If a point (7j Fig. 174, of a solid body is rigidly fastened, any

Fig. 174.

other point P of the body, when put in motion, will describe a path,

which lies upon the surface of a sphere, whose centre is the fixed

point C and whose radius is the distance C P oi the other point

from C. If, on the contrary, we fasten a body in two points Q
and D, the paths described by all other points in consequence of

any possible motion would be circles ; for the path of each point is

the intersection P Q of two spherical surfaces described from

the two fixed points.

The planes of these circles are parallel to each other and per-

pendicular to the straight line joining the two fixed points. The

points upon the latter line remain immovable ; the body, therefore.
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revolves around this line C D, which is called, for this reason, the

axis of rotation or revolution of the body.

The planes perpendicular to this axis, and in which the different

points revolve, are called the planes of rotation or revolution of the

body. We obtain the radius M F of the circle P Qhj letting

fall a perpendicular upon the axis of revolution C D. The greater

this perpendicular is, the greater is the circle, in which the point

revolves.

If three points of a body, not in the same straight line, are firmly

fastened, then the body does not move in any direction, since

the three spherical surfaces, in which the body must move, cut each

other only in a point.

130. Equilibrium of Supported Bodies.—Every force pass-

ing through the fixed point of a body, e.g., through the centre of a

ball and socket joint, is counteracted by the support of the body,

and has, therefore, no influence upon the state of equilibrium of

the body. In like manner, if a body is supported in two points or

bearings, every force whose direction cuts the axis passing through

these fixed points is counteracted by the supports, without pro-

ducing any other effect on the body. A couple would also be

counteracted by the supports of a body, if the plane of the couple

contains the axis of revolution passing through these points, or is

parallel to the same. Every other couple (P, — P), Fig. 175,

produces, on the contrary, a revolution of the body A C B about

the axis of revolution C, if it is not balanced by another couple

(see § 95 and § 97). If the couple retains its direction during the

rotation, its lever arm and consequently its moment is variable, and

both become = 0, when the body occupies a certain position. If a

body A C B, Fig. 175, is rigidly fast-

FiG. 175. ened at C, and if the direction of the

^^ ^X force forms the angle P^ P = a with

^^' :f^ the line A B passing through the

^k ...-•'/ ' two points of application, a rotation

/^k •' A G Ax = {i — 180" — a is necessary

.xT^^ / ^0 annul the moment of the couple

^^^^^^^/ (P, — F) ; the same is also true of a

Mr ^^^0^ body rigidly fastened in an axis and
-^ l^^^l acted upon by a couple, whose^ plane

is perpendicular to this axis.

If a body A B, Fig. 176, rigidly fastened at C, is acted on by a
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force Pf whose direction does not pass through C, we can, by the

addition of two opposite forces P and — P, decompose this force

into a couple (P, — P) and a force + P, appUed in C and coun-

teracted by the point of support. The rela-

tions are the same, when the axis of a body is

rigidly fastened and a force acts upon it in a

plane of revolution. Here, however, the force

+ P is divided between the two points of sup-

port. If a is the distance G A of the point of

application A of the force from the axis C and a

the angle A C Ai, formed by the line C A with

the direction of the force, we have the moment
of the couple (P, — P), which tends to turn the

body, M = Pa sin. a. If the direction of the

force P remains unchanged during the rotation,

M changes with a and is a maximum for a — 90"

and for a = 0" or 180" it is = 0. The work done by the force

P or by the couple (P, — P) during the rotation of the body is

A = P . FZ, ^ Pa (1 - COS. a).

131. Stability of a Suspended Body.—If the force acting

upon a body, supported at one point or in a line, consists only of

its weight, the conditions of equilibrium require, that the centre of

gravity shall be supported, i.e., that the vertical line of gravity

shall pass through the point of support.

If the centre of gravity coincides with the point of support, we
have a case of indifferent equilibrium (Fr. equilibre indifferent, Ger.

indifferentes Gleichgewicht) ; for the body remains in equilibrium,

/"/

no matter how we may turn it. If, on the contrary, the body is
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rigidly fastened or supported at a point C, lying above the centre

of gravity 8, the body is in stalle equilibrium (Fr. stable, Ger. sich-

eres or stabiles) ; for, if we bring the body into another position, one

of the components iV^ of the weight S causes the body to return to

its original position, and the other component P is counteracted by

the fixed point C. If finally the body A B, Fig. 178, is fastened

at a point C, which lies below the centre of gravit}^, the body

is in unstable equilibrium (Fr. eq. instable, Ger. unsicheres or

labiles Gleichgewicht) ; for if we move the centre of gravity out of

the vertical line passing through C, the weight G is resolved into

two components, one N of which, instead of tending to bring the

body back to its original position, moves it more and more from it,

until the centre of gravity comes vertically below the point of

support.

The circumstances are the same, when a body is supported in

two points or in an axis ; it is either in indifferent, stable or unstable

equilibrium as the centre of gravity coincides with, or is vertically

below or above the point of support. If a body is supported at a

point or in a horizontal axis, the moment with which the body seeks

to return to its position of stable equilibrium is if = G a sin. a,

in which formula G denotes the weight, a the distance C 8^ of the

centre of gravity 8i from the axis C and a the angle of revolution

>S' C 8^. The work done is A = G a {1 — cos. a).

§ 132. Pressure upon the Points of Support of a Body.

-When a body GAB, Fig. 179, supported in two points C and

Fie. 179.

D, is acted upon by a system of forces, in order to determine the

conditions of its equilibrium we refer (according to § 97) the
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whole system to two forces, the direction of one of which is parallel

to the axis, while that of the other lies in a plane normal to this

line. Let E~N— N, Fig. 180, be the force parallel to the axisXX
passing through the points of support C and D and A F = F the

other force, whose direction lies in a plane Y Z Y perpendicular to

XX. We can resolve the first force into a force + N, tending to

displace the axis in its own direction, and a couple ( N, — N),
which is transmitted to the points of support in tlie shape of an-

other couple (iV,, — iV,), the components of which are

JV,=^XsLndi- ]\\= -fw,
t I

d denoting the distance E oi the parallel force N from the axis

C D and I the distance C D oi the two points of support from

each other.

Fig. 180.

i' 1- --.P \

/ / L / 1

kr rl
1 /^

^N^Id.^Ix^
-i-.N

In like manner we decompose the force F into a force + F and
a couple (P, — F), and the former again into its components Pj

and P2, the first applied in C and the second in D. Designating

the distances C and D of the points of application from the

two points of support C and D by ?i and />, we have

P.
I

^-ndP.=
^

and it is now easy, by employing the parallelogram of forces, to find

the resultant Sx of the forces iV; and P, at C, and also the resultant

S-2 of the forces — iV, and F^ at D.

If we put the angle Y (+ F) formed by the plane N X
with the direction of the force P or + i? = a, we have also the
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angle N^ C Pj = a and W^ D P^ =z 180" — a, and consequently the

resulting pressures in C and D are

S, = V]^^ + Pi^ + 2 ]V, P, COS. a

and S, = VN,' + P,' ~ 2 iV^ P, cos. a.

If, finally, a denotes the perpendicular' X to the direction of

the force, the moment of the couple (P, — P), which tends to turn

the body, is Jf = P a. If the body is in a state of equilibrium, a

must naturally be = 0, and therefore P must pass through the

axis CD.

Example.—Let the entire system of forces acting on a body rigidly

supported in the axis XX be reduced to the normal force P = 36 pounds,

and the parallel force iV = 20 pounds ; let the distance of the latter force

from the axis be jE^ = ^ = li feet, and the distance C D between the

two points of support be Z = 4 feet ; required the pressure upon the axis

or on the fixed points C and I) supposing that the direction of the force P
forms an angle a = 65° with the plane X F, and that its point of applica-

tion is at a distance C = l^^ = 1 foot from the point C.

The force ^ = 20 produces in the axis in its own direction a thrust

iV = 20 pounds and also the forces

d 1

5

iV^j = - i\r = ^ . 20 = 7,5 pounds and — JSf^ = — 7,5 pounds,

which are counteracted by the supports Cand D. The forceP gives rise to

the forces

P^ = f P = -3_
. 36 = 27 pounds and P^ = -/ P = i

. 36 = 9 pounds.

Combinin<r the latter with the former force, we obtain the resultants

8^= \l 7,5'^ + 2T + 2 . 7,5 . 27 . cos. 65° = V 56,25 + 729 + 171,160

= V 956,410 = 30,926 pounds, and

/S'g = V 7,5-' + 9^ — 2 . 7,5. 9. COS. 65° = V 56,25 + 81 - 57,054

= V 80,196 = 8,955 pounds.

§ 133. If a body C B D, Fig. 181, firmly supported in two

points G and P, is acted upon by a single force R, whose direction

forms an angle P A E = (3 with the plane of rotation F ^, we

can decompose this force into the components

XP = P = R cos. 13 and

A^N--=]Sr= Rsin. (3,

the first of which acts in the plane of rotation and tlie second

parallel to the axis, and we can treat these forces in exactly the

same manner as the resultants P and N of the system of forces in
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the last paragraph. Here the force which the axis must counter-

act in its own direction is iV = i^ sin. 13, and the components of

the couple (iVi, — iVj), which act in Cand D in opposite directions

and at right angles to C D, are

N^ — - N = J R sin. (3 and — iVi = — j R sin, (3,It t •

I denoting the distance C D of the two points of support C and D
from each other and d the distance ^ of the point of application i

A of the force R from the point on the axis.

In like manner the force acting in at right angles to CD is
'

+ P = R COS. (3 and its components in C are '

P, = ^jP = hji cos, ^, and in i> '

P2 = jP =
J

Pcos.fi,

h and k again denoting the distances C and D of the points

and D from the plane of rotation Y Z Y.

Substituting the values of JSf,, P„ and P, in the formulas

S, = V N,' + P; +^N,P,cos.a

S, = V N,' + PV -2N,P,cos.a

for the normal pressures in C and D, in which we designate by a

the angle YAP formed by the component P with the plane

A C D,we obtain
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R
8^= -y-V {d sin. (3y + (l^ cos. py -\- 2 d k sin. (i cos. 13 cos. a

R
8,= -jV {d sin. py + (Zi cos. (Sy - 2 d I, sin. (3 cos. (3 cos. a

The moment of the remaining couple {P, — P) is

Fig. 182.

P.OB— Pa— Rd sin. a cos. [3.

These formulas are applicable to the discussion of the stability

of a body A, Fig. 182, revolving about an inclined axis CD. R
is here the weight G of the body,

d the distance 8= 8i of its

centre of gravity from the axis of

rotation, a the angle 8 8^= 8iL,
which the centre of gravity has de-

scribed in turning from its position

of equilibrium 8 in the plane Y 8 Y
perpendicular to OB, and /3 the angle

G 8i P formed by the plane of revo-

lution with the vertical line, or that

formed by the axis of revolution CD
with the horizontal line D H.

The work done, when the body is

'brought back by its weight to its position of equilibrium and

.8^ to /^, is

A = G .K 8 cos. 13 = Gd cos. /3 (1 - cos. a).

§ 134. Equilibrium of Forces around an Axis.—The re-

sultant P is produced by all the component forces, whose directions

lie in one or more planes normal {o the axis. But in this case

(according to § 89) the statical moment P a is equal to the sum

Pi fli + Ps «2 + • • • of the statical moments of the components,

and, when the forces are in equilibrium, tlic arm ais ~ 0; for this

force then passes through the axis itself, and consequently this sum

P,a,+P,ao-h... = 0;

I.E., a body rigidly supported in an axis is in equilibrium, and

therefore remains without turning, when the sum of the statical

moments of all the forces in relation to this axis is = 0, or when

the sum of the moments of the forces acting in one direction of
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rotation is equal to the sum of the moments of those acting in the

other.

By the aid of the last formula any element of a balanced sys-

tem of forces, such as a force or an arm, can be found, and any

force of rotation reduced from one arm to another.

If we wish to produce a state of equilibrium in a body movable

about its axis, and whose moment of rotation is P a, we have only

to apply a force of rotation § or a couple, the moment of which

Qh — P a, the difference in the two cases being that l^y the addi-

tion of the couple (ft — Q) the pressure on the axis is not changed,

while by that of a force Q a force + Q is added to the pressure on

the axis. If the force Q or its lever arm h is given, we can calcu-

late either

Pa ^ Pa
5 = __ or e = -^.

In tKeJatter case we call Q the force P reduced from the arm a

to the arm ^, and we can thus reduce the given force of rotation P
to any arbitrary arm, or we can replace or balance it by another

force acting with any arbitrary arm.

We can also, by means of the formula

n - -Pi ^1 + -Pe ^2 + . .

.

V-
^

reduce a whole system of forces to one and the same arm.

Example.—The forces P^ — 50 pounds and Pg = — 35 pounds act

on a body movable about an axis with the arms a^ = 1^ feet and a^ =
2|- feet ; required the force I^ which must act with an arm a^ = 4 feet, in

order to produce equilibrium or to prevent motion about the axis. We
have

50 . 1,25 - 35 . 2,5 + 4 P3 = 0, and

P 87,5-62,5 -^. ^P3 = ^^—2~— — ^7^^ pounds.

§ 135. The Lever.—A body movable about a fixed axis and
acted on by forces is called a lever (Fr. levier, Ger. Hebel). If we
imagine it imponderable, we have a mathematical lever; but if not,

it is a material lever.

We generally assume the forces of a lever to act in a plane at

right angles to the axis and substitute for the axis a fixed point

called the fulcrum (Fr. point d'appui, Ger. Ruhe, Dreh, or Stiitz-

punkt). The perpendiculars let fall from this point upon the di-

rection of the forces are called (§ 89) the arms of the lever. If the

directions of the forces of a lever are parallel, the arms of the lever
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form a single right line, and the lever is then called a straight

lever (Fr. levier droit, Ger. geradliniger or gerader Hebel). The
straight lever acted on by two forces only is one or two armed, ac-

cording as the points of application of the forces lie upon the same

or upon opposite sides of the fulcrum. We distinguish also levers

of the first, second and third sort, calling the two-armed lever a

lever of the first sort, the one-armed lever a lever of the second

sort or of the third sort, according as the force (load), which acts

vertically downwards, or that (power), which acts vertically up'

wards, is nearest the fulcrum.

§ 136. The theory of the equilibrium of the lever has been

completely demonstrated in what precedes, and we have only to

make special applications of it.

For the two-armed lever A C B, Fig. 183, when the arm C A
of the force P is denoted by a and that C B of the other force Q,

which is generally called the load, by b, we have, according to the

general theory P a = Q d, i.e. the moment of the force is equal to

Fig. 183. Fm. 184,

A^
fc

®B

i

the moment of the load, or also P '.Q — h'.a, I.E. the force is to the

load as the arm of the latter is to the arm of the former. The

pressure on the fulcrum is R — P -h Q-

For the one-armed lever A B 0, Fig. 184 and B A 0, Fig. 185,

the relations between force (P) and load (Q) are the same, but the

direction of the power is opposite to that of the load, and therefore

the pressure on the fulcrum is ecjual to the difference of the two ;
in

the first case we have

R- Q- l\ and in the second R = P — Q.



§136.J EQUILIBRIUM OF BODIES RIGIDLY FASTENED. 257

If in the bent lever A C B the arms are CN= a and

b, Fig. 186, we have again P : Q — b:a, hut in this case the

Fig. 185. Fig. 186.

S^C

Pi.*'

/Qi

R

pressure R on the fulcrum is the diagonal R of the parallelogram

C Pi R Qi, constructed with the force P, the load Q and with the

angle P^ C Qi = P D Q — a formed by their directions with each

other.

If G is the weight of the lever and C^ == e, Fig. 187, the dis-

tance of the fulcrum C from the vertical line S G passing through

the centre of gravity iS'of the lever, we must put P a zt G e = Q b,

and we must employ the plus sign of G, when the centre of gravity

lies on the same side as the force P, and the minus sign, when
upon that of the load Q.

The theory of the lever is often applicable to tools and ma-

FiG. 187. Fig. 188.

D-L P

chinery. The knee lever A B C D, Fig. 188, which is sometimes

cited as a peculiar sort of lever, is simply a bent lever. The arm,

which is movable around an axis C, is acted upon by a force at its

17
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end A, and acts by means of a rod B D, (which forms with the arm
an acute angle A B D — C B E — a) upon the load, which is ap-

plied at B, If a denotes the length of the arm G A and I the

length of the arm C B, we have the lever arm of Q
CE = 1) sin. a, whence

Pa — Qh sin. a, or

P = - Q sm. a
, and inversely

n — a P

Fig. 189.

^ b sin. a

This lever is employed for pressing together materials. The

pressure increases directly with P and t? and inversely as sin. a. By

diminishing the angle a this force Q can be arbitrarily increased.

Example— 1) If the end J. of a crowbar A C B, Fig. 189, be pressed

down with a force P of 60 pounds, and if the arm C ^ of the power is 13

times as great as the arm CB
of the load, then the latter, or

rather the force Q developed in

A MfffMWiliam^^
-B, is 12 times as great as P, and

we have

Q = 12 .QO = 720 pounds.

2) Ifa load Q, Fig. 190, hang-

ing from a bar, be carried by

two workmen, one of whom
takes hold at A and the other

at P, we can determine how
much weight each has to sus-

tain. Let the load be ^ = 120

pounds, the weight of the

rod be G^ = 12 pounds, the

distance A B of the two work-

men from each other be = 6

feet, the distance of the load

from one of them B he B C =
2|- feet and the distance of the

centre of gravity of the bar S
from the same point he B S =
3^ feet. If we regard B as the

fulcrum, the force P^ at A must

balance the load Q and G, and

therefore we have

Fia. 190.
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P^.BA=^ Q.B a + O . B8, I.E.,

6 Pj = 2,5 . 120 + 3,5 . 12 = 300 + 42 = 342,

and therefore
342 ^^

Pj =r — == 57 pounds.

Ii; on the contrary, A be regarded as the fulcrum, we can put

Pg . A B = Q .A G -{- O . A 8^ or m numbers

6 Pg = 3,5 . 120 + 2,5 . 12 = 420 + 30 = 450,

and the force exerted of the second workm^i is
«

75 pounds.p, = '^

The sum of the forces, which act upwards, is therefore correctly

Pj + Pg = 57 + 75 = 132 pounds,

or as great as the sum of those acting downwards

Q + G« = 120 + 12 = 132 pounds.

8) The load upon a bent lever A G B, Fig. 191, weighing 150 poinds,

acts vertically downwards and is Q = 650 pounds, and its arm G B = 4:

feet, and, on the contrary, the arm of the force

F,GA = Q feet and that of the weight C^ = 1 foot

:

required the force P necessary to produce equili-

brium and the pressure B on the bearings. We have

'GA .P=G~B.Q+ OE. O, i.e.,

6 P = 4 . 650 + 1 . 150 = 2750,

and consequently

2750
P = ~j- = 458^ pounds.

The pressure on the bearings is composed of the

vertical force Q + G = 650 + 150 = 800 pounds,

and of the horizontal force P = 458|^ pounds, and

consequently we have

S

B = ViQ + Gf + P'

= V (800)^ +14581-7

= V 850070 = 922 pounds.

§137. More than two forces P and § may act on a lever; it

also is not necessary that these forces act upon the lever in one and

the same plane of rotation. If Q^, Q^, Q^ are the loads on a lever

A C B^,V\g. 192,. and h„ b,, b, their lever arms C B,, C B„ C B.y

while the power acts with tlie lever arm O A — a, we have

P a = Q,b, + Q,b, + Q,b,\

and if the lever is straight, the pressure on the fulcrum is

R = P ^ Q^ + Q.^+ Q,.

If the several forces of a lever act in different planes of rotation
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upon the lever A C D B^ B^, Fig. 193, the formula for the moment
P a = Q\h\ + §2 2>2 + . . . does not therefore change, but a differ-

ent distribution of the total pressure R = P -\- Q^ + §2 + ft

Fig. 192. Fm. 193.

D

10 B, B, B, 4_a__y~^^«
I

npon the axis takes place between tlie two points of support or

bearings C and D. If we denote by I the length of the axis

O D of the lever or the distance of the fulcrums from each other

and by 4> h; k, the distances C 0, C 0„ 0, of the planes of

revolution from the fulcrum C, the pressures R, and B, on the

bearings at D and C are determined by the following formulas

R p J}
P('- ^») + g. (I - JQ + QAi- h)

If the forces acting upon a bent lever are not parallel, the ex-

pression P a = Q\hi + Q^.hi + ... remains unchanged, but the

pressures in the axis reduced to the fulcrum, e.g., —~, -^, -^—, act

indifferent directions and cannot, therefore, be combined by simple

addition, but, on the contrary, we must combine them in the same

manner as several forces applied to a point and acting in the same

plane (see §§ 79 and 80).

Example.—The lever represented in Fig. 193 supports the loads Q^ =
300 pounds and Q^ = 480, acting at the distances C 0^ = l^ = 12 inches

and .C Og = ?3 = 24 inches from the bearing C with the arms 0^ B ^
=

h^ = 16 inches and Og B^ = i^g = 10 inches; required the force P, which,

acting with the arm A = a = 60 inches, is necessary to produce equili-

brium, and the pressure on the bearings at C and i>, under the assumption,

that the force acts at a distance G = l^ = IS inches from the journal C,

and that the length of the entire axis is (7 i> = Z = 32 inches.

The force required is

/>= QiK+Jkh ^ 300. Ig +480. 10 ^ 30^16 + 480 ^ g^ ^ g^ ^ ^^^
a 60 6

pounds, and the pressures on the bearings are
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B. = 160 . 18 + 300 . 12 4- 480 . 24

32
:562,5 pounds and

i?j = i? - i?3 = 300 + 480 + 160 - 562,5 = 377,5 pounds.

Remark.—The action of gravity on the lever can be employed with

advantage to determine the centre of gravity /S and the weight G of a

body A B, Fig. 194. We support the body

first at a point C and then at a point C^ at a

distance C C^ = d from the former, and each

time we bring the body into equilibrium by a

force acting at the distances C A = a and

C^ A = a-^ = a — d. If the force necessai^

in the first case be = P and in the second case

= Pj, and if the weight of the body be G and

the distance of its centre of gravity 8 from ^ be ^ P = a;, we have

Pa = G (x — a) and F^ a^ = G {x — a^)^ whence

(P - Pi) « »! , •X = ^^^—

—

^ andPa — P, a.

Fig. 195.

§ 138. Pressure of Bodies upon one another.—The law

deduced from experiment and announced in § 65 :
" Action and

reaction are equal to each other," is the basis of the whole mechan-

ics of machines, and we must here explain at greater length its

meaning. If two bodies if and J/i, Fig. 195, act upon each other

with the forces P and Pi, the directions

of which do not coincide with that of the

common normal XX to the two surfaces

of contact, a decomposition of the forces

always occurs ; only that force N or iV,,

whose direction is that of the normal, is

transmitted from one body to the other,

the other component force S or S^, on

the contrary, remains in the body and

must be counteracted by some other force

or obstacle, Avhen the bodies are to be

held in equilibrium. But according to

the principle announced, the two normal

components A^and Xi must be exactly

equal. If the direction of the force P
forms an angle N A P = a with the normal A X and an angle

iS A P = fi with the direction of the other component S, we
have (see § 78)
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^^_^n^^ P sin. a

sin. {a + (iy
'^

sin. (a + j3)'

Designating in like manner N^ A^ P^ by a^ and 8^ A^ P, by /3„

we have also

P sin. /3i ^ ^ P, sin. a^
j\r — __

sin. (aj + /3i)

and, finally, since M = JSfi

P sin. (3

and /S'l =

Pi sin. j3i

sm. (a + 13) sin. (a, + /3i)*

Example.—How are the forces decomposed, when a body M^, Fig. 196,

held fast by an impediment i> B, is pressed

upon by another body M, movable about

its axis (7, with a force F — 250 pounds ?

The angles formed by the directions are

the following

:

PA]Sr= a = 35"

PA ^= /3 = 48°

/ xmM/'iimm»m ^^ ^^ N, = a, = 65"

The normal pressure between the two

bodies is determined by the first formula

and is

P sin. f3

sin. (a + j3)

250 sin.AS' ^^^ ^^= -.-^.-"83^ = ^^^'^^^^^^^^'

from the second we have the pressure on the axis or bearing G
Psin. a 350 sin. 35°

^ = .l^oTl) = ^^.-8-3^ = ^^^'^^ P"^^'^'

'

and, finally, by combining the third and fourth formula we obtain the

component which presses against the impediment I) E
187,18 8i;i. 65" ^^, ,^= 221,46 pounds.

N= N.

N'^ sin. a
J

sin. /?j sin. 50"

§ 139. In consequence of the equality of action and reaction,

the equilibrium of a supported body is not changed, when, instead

of the support, we substitute a force, which counteracts the pressure

or tension transmitted to the support, and which is, therefore,

equal in magnitude and opposite in direction to it. After having

introduced this force, any body supported or partially retained

may be considered as entirely free, and consequently its state of

equilibrium can be treated in the same manner as that of a free

body or of a rigid system of forces.
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If, E.G., a body J/, Fig. 197, is movable around its axis C, the

force iVis transmitted to a second body My, the force S is counter-

acted, by the axis C and we can assume, that the body is entirely

free and that besides P two other forces — i\^and —S act upon it.

If the body M^ presses upon M with the force JSfx and against the

fixed plane D E with the force S^, the equilibrium would not be

disturbed, if instead of these impediments we should substitute two

opposite forces — Ni and — S^ and combine the same with the

forces (e.g. with Pi), which act upon the body. In a state of

equilibrium the resultant of the forces in the one as well as that

Fig. 197.

^r

^ -S

in the other body must be null, and therefore the resultant of

— N and — ^S' must be counteracted by P and the resultant of

- N, and - S, by P,.

Since the forces N and N^y with which the two bodies act upon

each other, are in equilibrium, the forces P, — S, Pi and — ;S^,

must be in equilibrium, when the combination of the two bodies

(i¥, i¥i) is in equilibrium. The forces N, N^ are called the interior

and the forces P, — S, Pi and — 8^ the exterior or extraneous

forces of the combination of bodies or of the system of forces, and

we can therefore assert that not only the interior forces are in equi-

librium, hut that the exterior forces are so also, when, as is repre-

sented in Fig. 198, we suppose the forces applied in any point 0.

§ 140. Stability.—When a body supported upon a horizontal

plane is acted on by no other force than that of gravity, it has no

tendency to move forwards ; for its weight, acting vertically down-

wards, is completely counteracted by this plane, but a rotation of
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the body may be produced. If the body A D B F, Fig. 199, rests

wich the point D on the horizontal plane H R, it will remain at

rest as long as its centre of gravity S is

supported, i.e., as long as it lies in the

vertical line (vertical line of gravity),

passing through the point of support D.

But if a body is supported in two points

upon the horizontal surface of another

body, the conditions of equilibrium

require, that the vertical Hne of gravity

shall pass through the line joining the

two points of support. If, finally, a body

rests upon three or more points on a horizontal plane, equilibrium

exists, when the vertical line of gra^dty passes through the triangle

or polygon formed by joining these points by straight lines.

We must also distinguish for supported bodies, stable and un-

stable equilibrium. The weight 6^ of a

body A B, Fig. 200, draws the centre

of gravity S of the same downwards

;

if there is no obstacle to the action

of this force, it produces a rotation of

the body, which continues until the

centre of gravity has assumed its lowest

position and the body has assumed a

state of equilibrium. We can assert

that the equilibrium is stable, when the

centre of gravity occupies its lowest position (Fig. 201), that it is

unstable, when it occupies its highest position (Fig. 202), and that

Fig. 201. Fig. 203. Fig. 203.

Fig. 200.

finally the equilibrium is indifferent, when the centre of gravity re-

mains at the same height, no matter what may be the position of

the body (Fig. 203).
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Examples.—1) The homf»geneous body A D B F, Fig. 204, composed

of a hemisphere and a cylinder, rests upon a horizontal plaue H B. Re-

quired the height S F = h of the cylindri-

cal portion in order that this body shall be

in equilibrium. Any radius of a sphere is

peri^endicular to the tangent plane corre-

sponding to it, but the horizontal plane is

such a x^lane, and consequently the radius

SB must be perpendicular to it and contain

the centre of gravity. The axis F S L
passing through the centre of the sphere is

also a line of gravity ; the centre S, as inter-

section of the two lines of gravity, is therefore the centre ot gravity of the

body. If we put the radius of the sphere and of the cylinder 8 A =
SB = SL = r, and the altitude of the cylinder S F = BF = ?i, we have

for the volume of the hemisphere F^ = f tt r^, and for the volume of the

cylinderJ^ = ir r"^ h, for the distance of the centre of gravity of the sphere

S^, S S^ = f ^ and for that of the centre of gravity of the cylinder

S^, S 8^ =^ h. In order that the centre of gravity of the whole body fall

in <^we must make the moment of the hemisphere f ^ r\ f r equal to the

moment of the cylinder n r"^ h .^h, whence we have

^^ = ^ 7-* or A = 7- Vf = 0,7071 r.

If the body is not homogeneous, but on the contrary the hemispherical

portion has the specific gravity e^ and the cylindrical portion the specific

gravity eg, then the moments of these portions are f tt r^ . t^ | r and

TT r"^ h e^ . ^ 7i, and consequently by equating them we have

4 r^, OT h = r I
= , 4/-!i- ^ 0,7071

Prn 005

2) The pressure, which each of three legs A, B, C, Fig. 205, of an arbi-

trarily loaded table has to bear, can be

determined in the following manner.

Let S be the centre of gravity of the

loaded table, and S E, C B perpendicu-

lars upon A B. Designating the weight

of the entire table by G and the pres-

sure in C by R. we can treat A B as an

axis and put the moment of i? = the mo-
^ ment of Q, i.e., R . C D = G . 8 E,

from which we obtain

A ABSR = 8E G GCD •

A ABC
and in like manner for the pressure in B, we have

A ACS
Q = aACB '

A B CS
A ABC '

G, and for that in A
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§ 141. Let us now investigate more fully the case of a body

resting with one base upon a horizontal plane. Such a body pos-

sesses stability or is in stable equilibrium, when its centre of gravity

is supported, i.e. when the vertical line passing through its centre

of gravity passes also through its base, since in this case the rota-

tion, which the weight of the body tends to produce, is prevented

by the resistance of the body. If the vertical line passes through

the periphery of the base, the body is in unstable equihbrium ; and

if it passes outside of the base, the body is not in equilibrium, but

will rotate around one of the sides of the periphery of its base and

be overturned. The triangular prism ABC, Fig. 206, is conse-

quently in stable equilibrium, since the vertical line 8 G passes

through a point iV^of its base B C. The parallelopipedon A B CD,
Fig. 207, is in unstable equilibrium, because the vertical line 8 O
passes through one of the edges D of the base C D. Finally, the

cylinder A B CD, Fig. 208, is without stability; for S does not

pass through its base C D.

Fig. 206. Fig. 207.

Stability (Fr. stabilite, Ger. Stabilitat or Standfahigkeit) is the

capacity of a body to maintain by

its weight alone its position and

to resist any cause of rotation. If

we wish to select a measure for the

stability of a body, it is necessary

to distinguish the case of simply

moving the body from that of

actually overturning it. Let us

first consider the former case

alone.

§ 142. Formulas for Stability.—A force P whose direction

is not vertical tends not only to overturn, but also to push forward

the body A B D, Fig. 209. Let us suppose that there is an
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Fig. 209.

obstacle to its pushing or pulling the body forwards, and let us

consider only the rotation around an edge C. If from this edge

we let fall a perpendicular C E — a upon the direction of the

force and another perpendicular

CN — e upon the vertical line of

gravity 8 G of the body, we have

then a bent lever E C iY, to which

the formula Pa— G e or P = - G
a

is applicable. If, therefore, the ex-

terior force P is slightly greater than

Ge— , the body begins to turn around

C and thus loses its stability. Its stability is therefore dependent

upon the^product (G e) of the weight of the body and the smallest

distance of a side of the periphery of the base from the vertical line

passing through the centre of gravity, and G e can therefore be

considered as a measure of stahility, and we will henceforth call it

simply the stability. Hence we see that the stability increases

equally with the weight G and with the distance e, and conse-

quently we can conclude that under the same circumstances a wall,

etc., whose weight is two or three tons, does not possess any more

stability than one, whose weight is one ton and in which the dis-

tance or arm of the lever e is two or three fold.

§ 143. 1) The weight of a parallelopipedon A B C D, Fig. 210,

whose length is /, whose breadth \^ A B — C D = h and whose

height is A D =^ B = h,is G = Vy — I lily, and its stability

St = G . D~^' = G,iClD = ^~ = U'hly,
'Z

"

y denoting the heaviness of the material of the parallelopipedon.

Fig. 210. Fig. 211.

B

Y^^m

G —Ay".

2) The stabilities of a body B D E, Fig. 211, composed of two
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parallelopipedons, in reference to the two edges of the base C and
F, are different from each other. If the heights are B C and E F
= h and Ih and the widths C D and D F — l and ^„ we have the

weights G and Gx of the two portions = h li I y and bx l^ I y ; the

arms in reference to C are CN = It and (7 = ^ -f tJ i^, atid

those in reference to i^are 5i + ^- Z* and \ i^, and the stabihty is,

first, for a rotation around C
St = lGl)+ G,{h -\-^, h), = (A ¥ h -hdbx 7^: -f J bx'hx) ly,

and, secondly, for a rotation about i^

;S'^i= G{bx + lb) +lG,b, = {ibx'Jh + bbji + lb'n)ly.

The latter stability is St^ — St = {h — Ih) bb^ly greater than

the former. If we wish to increase the stability of a wall A C by

offsets D E, we must put them upon the side of the wall, towards

which the force of rotation (wind, water, pressure of earth, etc.)

acts. The stability of a wall A B C E, Fig. 212, which is battered

on one side, is determined as follows. Let

the length of the wall be Z, the width on

top A B =b, the height B C= 7i and the

batter = n, i.e. when the height A E=
1 foot the batter K L = n, or for a height

h feet, = n h. The weight of the parallel-

opipedon A C is G — bli ly, that of the

triangular prism A D.E — Gx = -k nh .

Ill y] the arms for a rotation about E are

EN = E D + ^l = n h -^ I b ?iJi^ E
= l E D = l nil. Hence the stability is

St= G{nh-\-lb) +
'l
Gxnli^{\b'' + nlib +

-} ?v ¥) h I y.

A parallelopipedical wall of the same volume U b -\- h n Ji wide,

and its stability is

Stx = h{b + Uihyjily^ ilb" 4- inhb + in-7r)hly;
tlio stability is therefore ;S'/ — Sti = (b -\- j% 7i h) . ^ n li" I y

smaller than that of a batterina: wall.

The stabihty of a wall with a batter on the other side is

St^ — (b' + nlib + I n- Jr) . i h ly,

and consequently smaller than St by an amount

St - St, = (b + ink) .in h' I y,

but greater by an amount St., — St^ — ^^^ ri" ¥ I y than the sta-

bility of a parallelopipedical wall of the same volume.

Example.—What is the stability per running foot of a stone wall 10

feet high, 1^^ feet wide on top and with a batter of | of a foot on its back ?

The density of this wall can be put (§ 61) = 2,4, consequently its heaviness
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is / = 63,4 . 2,4 = 149,76 pounds ; but we have I = 1, h = lO^b = 1,25

and n = ^ = 0,2, and consequently the required stability is

St =[:^. (1,25)' + 0,2 . 1,25 . 10 + ^ (0,2)^ . 10^] 10 . 1 . 149,76

= (0,78125 + 2,5 + 1,3333) 1497,6 = 4,6146 . 1497,6 = 6911 foot-pounds.

If the same quantity of materials is used, under the same circumstances

the stability of a parallelopipedical wall would be

St^ = [I-
. (1,25)' + ^ . 0,2 . 1,25 . 10 + i (0,2)' . 10'] . 149,76. 10

= (0,78125 + 1,25 + 0,5) 1497,6 = 2,531 . 1497,6 = 3790 foot-pounds.

The stability of the same wall with a batter on its front would be

St^ = [^ (1,25)' + i . 0,2 . 1,25 . 10 + ^ (0.2)' . 10^] 149,76 . 10

= (0,78125 + 1,25 + 0,666) 1497,6 = 2,6979 . 1497,6 = 4040 foot-pounds.

Remark.—We see from the above that we economize material by bat-

tering the wall, by furnishing it with counterforts or offsets, by building

it on plinths, etc. This subject will be treated more in detail in the second

volume, where the pressure of earth, arches, bridges, etc., will be con-

sidered.

§ 144. Dynamical Stability.—We must distinguish from

the measure of stability given in the last paragraph another meas-

ure of the stability of a body, in which we bring into consideration

the mechanical effect necessary to overturn the body. The work

done is equal to the product of the force and the space ; the force

in a heavy body is its weight, and the space is the vertical pro-

jection of the space described by the centre of gravity, and, con-

sequently, in the latter sense the product G s can be employed as

the measure of the stability of a body, when s is the vertical height,

which the centre of gravity of the body must rise, in order to bring

the body from its state of stable into one of unstable equilibrium.

Let C be the axis of rotation and S the centre of gravity of a

body A B CD, Fig. 213, whose dy-

namical stability is to be deter-

mined. IX we cause the body to

rotate, so that its centre of gravity

S comes to Si, i.e. vertically above

C, the body is in unstable equili-

brium ; for if it is caused to revolve

a little more, it will tumble over.

If we draw the horizontal line

S JV, it will cut off the height

J}^Si= s, which the centre of gravity

has ascended, by the aid of which we obtain the dynamical sta-

bility G s. If now we have CS=CS, = r, CM= JST S = e

and the altitude CN = M S — a,WQ obtain
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S^]^=s = r-a= Va- + e' - a,

and the stability in the second sense is

St = G{V'arV^' - a).

The factor s — Va" -\- e" — a gives, ior a = Q, s = e, for a = e,

5 = e ( 4/2 — 1) = 0.414 e,iox a = n e, s = { Vn^ + 1 — n) e, ap-
• 1 6 6

proximatively = (n + n) e = —, thus for a = 10 e, s = —

^and for«=oo,s = —^
= 0; this stability, therefore, becomes greater

and greater as the centre of gravity becomes lower and lower, and

it approaches more and more to zero as the centre of gravity is

elevated more and more above the base. Sleds, wagons, ships etc.

should therefore be loaded in such a manner, that the centre of

gravity shall lie not only as low as possible, but also as near as

possible above the centre of the base.

If the body is a prism with a symmetrical trapezoidal section,

such as is represented in Fig. 213, and if the dimensions are the

following : length = /, height M — h, lower breadth C D — hi,

upper breadth A B — l^, we have

M S = a = — 7- . ^ (8 110) and

CM = e = ^ bi, whence

^^"=^m-(Wi-'d'2 j
^ \d, + h * 3y

and the dynamical stability or the mechanical effect necessary to

overturn this body is

St

Example.—What is the stability of, or what is the mechanical effect

necessary ^ to overturn, the granite obelisk A B 1),

Fig. 214, when its height is ^ = 30 feet, its upper length

1 foot and its lower

The

volume of this body is

h
F = (2 &, ?! + 2 Sg Zg + 5i ?3 + &2 h) g

= (2 . f . 1 + 2 . 4 .
-I + 1 . 4 + I . f) \»

= 40,25 . 5 = 201,25 cubic feet.

If a cubic foot of granite weighs } = 3 . 62,4 = 187.2

pounds, we have for the total weight of the body

G = 201,25 . 187,2 = 37674.

The height of its centre of gravity above the base is

and breadth 1^=1^ and J).^

length and breadth Zg = 4 feet and b^ = 3|- feet ?
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&, L + 3 5i Zi + 1^1^+ &i ?2

265,^2 + 2 &i Z^ + &g l^ +&1 Zg

47 + 33.1 + 1.4+3. 27,75 . 15

40,25
= 10,342 feet.

Supposing a rotation around the longer edge of the base; we have the

horizontal distance of the centre of gravity from this edge, e = ^1)^ =
^ . |- zz: -I feet, and therefore the distance of the centre of gravity from the

Fig. 215.

C S = r = V«-' + e<= V(l,75)-^ + (10,342)-^ = Vll0,002 = 10,489

;

hence the height that centre of gravity must be lifted is

s = r-a = 10,489 - 10,342 = 0,147 feet,

and the work to be done or tlie stability

St= Gs= 37674 . 0,147 = 5538 foot-pounds.

§ 145. Work Done in Moving a Heavy Body.—In order

to find Jhe mechanical effect, which is necessary to change the

position of a heavy body by causing a rotation, we must pursue the

same course as in calculating its dynamical stability. If we cause

a heavy body A C, Fig. 215, to rotate about a horizontal axis to

such an extent, that the inclination M C 8 = a of the line of

gravity C 8 = r becomes 3f C 81 = a,,

the centre of gravity >S' will describe the

vertical space R 8^ = M^ 81 — M 8 — Si

= r {sin. a^ — si7i. a), and therefore if we
designate by G the weight of the body,

the mechanical effect required is

^1 = G s^ = G r {sin a^ — sin. a).

If the axis of rotation is not horizon-

tal, but inclined at an angle /3 to the

horizon, we have

5i = r COS. 13 {sin. a^ — si7i. a) and

A^ — G s^— G r COS. (3 {sin. a, — sin. a). (Compare § 133.)

If in addition the body is moved in such a manner as not to

change its position in relation to the direction of gravity, and if its

centre of gravity and all its parts describe one and the same space,

the vertical projection of which is = ^2, then the moving of the

body will require, in addition to the above mechanical effect, an
amount of work Ac,— G s., and consequently the total work done

A y' B /
' 'v.

1 / <

h4^y
M Ml O

will be
A = Ai + Ao = G [r COS. (3 {sin. a^ — sin. a) + s.^.]

The space described by the body in a horizontal direction does
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not enter into the question, when we suppose the motion to be slow,

in which case the work of inertia can be put equal to zero.

If a body A C, Fig. 216, lying upon a horizontal plane B C is to

be placed upright upon another plane C\ D.^, we have jS = 0", or

COS. i3 = 1 ; and if a and e

Fig. 316. denote the horizontal and

f—[—r

*

vertical co-ordinates of the

/ i \ centre of gravity of the body,

/ j \
when it is in an upright

/ J^^t \, position, the radius C 8x —
. ,Ay' \ \ T— 'V'^M^, and the heigh,t

ry-f' /"^^^^H^- E,8, = ar=.rsin.a,. If a

/ I Y'' d
'^^^^^^^^

is the angle of inclination

/ i/:''v-9^^,^^ B C 8 formed by the' side

'^\''\Y\mi§i^mi J ^^ gravity C S, we have, the

original height of the centre

of gravity above the surface

on which the body rests

K S ~ G Ssin. B CS — r sin. a = Vd' + e" sin. a,

and consequently the height, which the centre of gravity is raised,

while the body is being placed upright is

H8, = Sr = Er8r~ E,H= a - Va' + e' sin. a.

If now ^2 is the vertical distance of the plane Ca D^ above the

first plane B C\ we have for the entire work done in placing the

body upon Co i)o

A ^= G {a ~ Vd' + e^ sin. a + ^g).

This determination of the work necessary to move the body is

perfectly correct only, when the centre of gravity is raised by a con-

tinuous movement from ^S' to S.j. If, on the contrary, the body is

first placed upright and then raised, the mechanical effect neces-

sary is

A= G(FO + s,) = G{(rd-KS-{'S,) = G [VoTTe' {l-sin.a)^s.;];

for the work G . 7Ywhich the body performs, when the centre of

gravity sinks from to /S'uis lost.

§ 146. Stability of a Body on an Inclined Plane,—A body

A G, Fig. 217, resting upon an inclined plane (Fr. plan incline,

Ger. schiefe Ebene), can assume two motions ; it can slide down
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Fig. 217.

the inclined plane, or it can overturn by a revolution around one

of the edges of its base. If the body is left to itself the weight G is

decomposed into a force JV^at right angles to and a force P parallel to

the base ; the first is counteracted entirely by the inclined plane,

the latter, however, moves the body down the plane. If we put

the angle of inclination of the plane to the horizon = a, we have

also the angle G S JV — a, and

consequently the normal pressure

N = G COS. a and

the sliding force

P = G sin. a.

If the vertical line of gravity

^S' G passes through the base C D,

as is shown in Fig. 217, the sliding

motion alone can take place ; but

if the line of gravity, as in Fig. 218, passes without the base, the

body will be overturned and is without stability.

The stability of a body A C upon an inclined plane F H, Fig.

219, is different from that of a body upon a horizontal plane H R.

\i D M = e and if s = a are the rectangular co-ordinates of the

centre of gravity S, we have for the arm of the stability

DE=DO — MN=e cos. a — a sin. a,

while, on the contrary, it is = e, when the body stands upon a hori-

zontal plane. Since e > e cos. a — a sin. a, the stability in refer-

ence to the lower edge D is always smaller upon the inclined plane,

and become null, when e cos. a = a, I.E. when tang, a =

If, then, a body, whose stability is G e when standing upon a hori-

zontal piane, is placed upon an inclined plane, whose angle of incli-

nation corresponds to the expression taiig. a = -, it loses its sta-

18
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bility. On the other hand, a body can acquire stability upon an

inclined plane, although wanting it when placed upon a horizontal

one. For a rotation about the upper edge (7 the arm is CEi= C Ox

+ MN = Bi COS. a + a 8171. a, while for the same position on a

horizontal plane it is CM = e^. If, however, Cj is negative, the

body possesses no stability as long as it rests upon a horizontal

plane; but if placed upon an inclined plane, the angle of inclina-

p
tion a of which is such that we have tang, a > -, the body acquires

a position of stable equilibrium. If, in addition to the force of

gravity, another force F acts upon the body A B C D, Fig. 209, it

retains its stability, if the direction of the resultant N oi. the weight

G of the body and of the force P passes through the base C D
of the body. •

Example,—In the obelisk in the example of paragraph 144, e — \ and

c = 10,342 feet ; consequently it will lose its stability, when placed upon

an inclined plane, for whose angle of inclination we have

7 7000
^^^^•^ = 4.10,342-41368

and whose angle of inclination is therefore

a = 9° 36'.

= 0,16923,

§ 147. Theory of the Inclined Plane.—Since the inclined

plane counteracts only the pressure

pei'pendicular to it, the force P, ne-

cessary to retain the body, which is

prevented from turning over, on the

inclined plane, is determined by the

consideration, that the resultant N,

Fig. 220, of P and G must be per-

pendicular to the inclined plane. Ac-,

cording to the theory of the parallel-

ogram of forces, we have

dn. P N
''

sin. PON'
but the angle P N = angle G N = F ff R = a, and the

angle P N ^ P OK-^KON=(i + 90°, when we denote

the angle P E F = P K formed by the direction of the force

with the inclined plane by /3 ; hence we have

P _ sin. a P _ sin. a

G ^ mi-W+W ^'^' ^ ~ ^os7ff
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N

and the force, which holds the body on the inclined plane, is

_ G sin, a
~

COS. ft

For the normal pressure we have

N_ _ sin. G N
G ~

sin. N G'

or, since the angle G N = ^Q° — {a + ft) ^nd. N G = P JS

=: 90 + i3,

N _ sin. [90 Q - (a + ^) ] _ cos, {a + ft)

G^" sm. (900 4./3) " cos. ft
'

and the normal pressure against the inclined plane is

Gcos.ja-^-ft)

COS. ft

If a^ iS is > 90" or i3 > 90° - a, N becomes negative, and

then, as is represented in Fig. 221, the inclined

plane H F must be placed above the body 0, to

which the force P is apphed. If the force P is

parallel to the inclined plane, ft becomes = and

COS. ft = 1, and we have

P = G sin. a and N — G cos. a.

If the force P acts vertically a -f j3 is = 90%

and we have

COS. ft
— sin. a, cos. {a -{- ft)

— 0,

P = G and N = 0. In this case the inclined

plane has no influence upon the body.

Finally, if the force is horizontal, ft becomes =

= COS. a, and we have

^ G sin. a

COS. a
G tang, a and N G COS.

COS. a

a and cos. ft

G_

cos. a

Example.—In order to retain a body weighing 500 pounds upon a

plane inclined to the horizon at an angle of 50°, a force is employed, whose

direction forms an angle of 75° with the horizon : required the intensity of

the force and the pressure of the body upon the inclined plane. The
force is

500 5^50° 500 «^7^. 50° ,^„

,

P = —-— -—- = —— = 422,6 pounds.
COS. (75" — 50') COS. 2o" ' ^

and the pressure upon the plane is

,^ 500(^8.75° ^^^^

§ 148. The Principle of Virtual Velocities.—If we com-

bine the principle of the equality of action and reaction, explained
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in § 138, with the principle of virtual velocities (§ 83 and § 98), we
obtain the following law. If two bodies ifj and M.^ hold each other

in equilibrium, tlieUyfor a finite rectilinear or for an infinitely small

curvilinear 7notion of the point A ofpressure or contact, not only

the sum of the mechanical effects of the forces of each separate

hody, hut also the sum of the me-

chanical effects of the exterior

forces acting upon the ttvo bodies

{taken together) is equal to zero.

If Pi and 8^ are the forces in

one body and Ps and /S'g those

in the other, when the point of

contact is moved from A to B,

the spaces described by these

forces are A D^^A E^, A Pa and

A E.2, and according to the law

announced above we have

P,.AD, + 8,.AE, + P,AD,+ 8,.AE,=^0,
or without reference to the direction

Pi AD, + 8, . A~E, = P, . AD, + 8, • AE^.
The correctness of this law can be demonstrated as foUows.

Since the normal forces iVi and JV.2 are equal, their mechanical

effects J^i . A C and JV, . A Cmust also be equal to each other, the

only difference being, that one of the forces is positive and the

other negative. But according to what we have already seen, the

mechanical effect of the resultant ]\^, .A Cis equal to the sum

of those Pi J. Pi + ^S'l . A El of its components, and in like man-

ner J^i A C= P.2 . A D, + 8-2 . A E.2 ; consequently we have

Pi . ZPi + 8, . AE, = P, . A'D, + 8, . AE.2.

This more general application of the principle of virtual

velocities is of great importance in

researches in statics, the determina-

tion of formulas for equilibrium be-

ing much simplified by it. If, e.g.,

we move a body A upon an inclined

plane, F H, Fig. 223, a distance A B,

the space described by its weight G
is = A C:^ A Bsin.A B C =
A B sin, FH R = A B sin a,

and, on the contrary, the space de-

FiG. 223.
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scribed by the force Pis = AI) = AB cos. B A D = A B cos. /3, and

finally that described by the normal force iV^is = 0; but the work

done by iV^is equal to the work done by G plus the work done by

P, and we can therefore put

])f.O=-G.ArC-{-P.AD,

consequently the force, which holds the body upon an inclined

plane, is

r, A C ^ G sin. a
T = -::—^ . Or =A D cos. fi

'

Fig. 334.

-IT

a result, which agrees perfectly with that obtained in the foregoing

paragraph.

On the contrary, to find the

normal force iV, we must move

the inclined plane II F, Fig. 224,

an arbitrary distance A B dX

right angles to the direction

of the force P, determine the

space described by the exterior

forces and then put the me-
chanical efiect of the weight G
and of the force P equal to the

mechanical effect of the pressure

JV^upon the inclined plane.

The space described by N is

A D = A B cos.B AD = ABcos.(i',

that described by G is

A C=AB cos. B A C=A Bcos.{a + fi),

and that described by the force P is = 0, hence the mechanical

effect is

K . AD = G . ATC + P . 0,

and ^^ G.AC ^ ^ cos. (a + P)

AD ^'
COS. a '

as we found in the foregoing paragraph.

§ 149. Theory of the Wedge.—We can now deduce very

simply the theory of the wedge. The wedge (Fr. coin, Ger. Keil) is a

movable incHned plane formed by a three-sided prism F H G,
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Fig. 225. The force K P = P acts generally at right angles to

the back F G of the wedge and balances another force or weight

Fig. 335.

A Q = Q, which presses against a side F ff of the wedge. If the

angle, which measures the sharpness of the wedge, is FH G = a

and the angle formed by the direction K P or A I) of the force

with the side 6^iJ is GFK=BAP = 6, and, finally, if the

angle L A II formed by the direction of the load Q with the side

F His = P, the spaces described, when the wedge is moved from

the position F H G to the position F^ H^ G^, are found in the fol-

lowing manner. The space described by the wedge is

A B = FF, = ffH„

that described by the force is

A D = A B COS. B A D = A B cos. 6,

and that described by the rod ^ Z or by the load Q is

. ^ _ A B sin. A B C _ A B sin. a _ A B sin. a
~

sin. A CB ~ siji.IIA C ~ si7i.l3

On the contrary, the space described by the reaction i? of the

base F G £is well as that described by the reaction corresponding

to the pressure against the guides of the rod is = 0.

Now putting the sum of the mechanical effects of the exterior

forces P, Q, R and Ry— 0, we have

P . AD - Q . A~a + R.O-h R,.0 =0,

from which we obtain the equation, of condition

Q . A C _ Q . A B sin. a _ Q sin. a

sin. p COS.
6'P =

AD A B COS. 6 sin. (3

If the direction KE of the force passes through the edge H of

the wedge and bisects the angle FH G,w<d have (5 == -, and therefore
4
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Q sin, a

sin. 13 COS.

2 Q sin. -

sin. (3

If the direction of the force is parallel to the base or side G H,

we have 6=0, and consequently

Q sin, a

sm. (3

and if the direction of the load is also perpendicular to the side

F H, we have j3 = 90°, and consequently

P = Q sin. a.

Example.—The sharpness FH G = a of a wedge is 25°, the direction

of the forceps paiallel to the base, and therefore cJ is = 0, and the load acts

at right angles to the side F H^ i.e., /3 is = 90° : required the relations of

the force and load to each other ; in this case we have

pP= Qdn. aoT - = sin. 25° = 0,4226.

If the load is ^ = 130 pounds, the force is

P = 130 . 0,4226 = 54,938 pounds.

In order to move the load or rod a foot, the wedge must describe the

space

AB = A = 2,3662 feet.
0,4226

Remark 1. The relation between the force P and the load Q of the

wedge F G Hy Fig. 226, can be determined by the application of the

parallelogram of forces in the

following manner. The load

upon the rod J^ Q = ^ is de-

composed into a component

A ]^ = iV^ perpendicular to the

side i^jH'and into a component

A S = S perpendicular to the

axis of the rod. While S is

counteracted by the guides of

the rod, A iV= iV is transmit-

ted to the wedge and combines

there as ^j i^Tj with the force

KP= A^P=P of the wedge to form a resultant A^^R = R, whose
direction must be perpendicular to the base G Hot' the wedge, in which

case it will be transmitted completely to the support of the wedge. The
parallelogram of forces A^ P R N^ gives
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P _sin. R A^ N^ _ sin. FH G _ dn. a

N-^
~

sin. A^ R N^~ sin. P A^ B~ cos.
6"*

and from the parallelogram of forces A N Q 8 wq have

N_ sin. N Q A _ sin. QA 8 _ 1 ^

Q ~ sin. A M Q~ dn. LAH~ sin. (3
'

but since I^^ is = iV", we obtain by multiplying these proportions together,

P N P sin. a

N' Q Q sin.pcos.6'

p _ Q sin. a
~

sin. (3 COS. d'

as was found in the large text of this paragraph.

Remabk 2. The theory of the lever, inclined plane and wedge will

be discussed at length in the fifth chapter, when the influence of friction

will also be taken into consideration.

CHAPTER IV.

EQUILIBRIUM IN FUNICULAR MACHINES.

§ 150. Funicular Machines.—We have previously considered

the solid bodies to be perfectly rigid or stiff bodies (Fr. corps

rigides ; Ger. starre or steife Korper) ; i.e., as bodies, whose vol-

ume and form are unchanged by the action of exterior forces upoTi

them. Very often in the practical application of mechanics the

supposition, that bodies are perfectly rigid, is not permissible, and

it becomes necessary, therefore, to consider these bodies in two

other states. These states are those of perfect flexibility and

of perfect elasticity, and consequently we distinguish flexible

bodies (Fr. corps flexible; Ger. biegsame Korper) and elastic

bodies (Fr. corps elastiques ; Ger. elastische Korper). Flexible

bodies counteract without change of form forces in one direction

only and follow perfectly those acting in other directions ; elastic

bodies, on the contrary, yield to a certain extent to every force

acting upon them.

A rigid body A B, Fig. 227, I, counteracts completely the force
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P, a flexible body A B, Fig. 227, II, follows the direction of the

force P, which acts upon it, in such a manner, that its axis assumes

the direction of the force, and an elastic body A B, Fig. 227, III,

resists the force P to a certain extent only, so that its axis under-

goes a certain deflection. Cords, ropes, straps and in a certain

sense chains are representatives of flexible bodies, although they do

not possess perfect flexibility. These bodies will be the subject of

the present chapter ; elastic bodies, or rather the elasticity of rigid

bodies, will be treated of in the fourth section.

We understand by a funicular machine (Fr. machine funicu-

laire; Ger. Seilmaschine) a cord or a combination of cords (the

word cord being employed in a general sense), which is stretched

by forces, and we will occupy ourselves in this chapter with the

theory of the equilibrium of this machine. The point of the

funiculaire machine to which a force is apjolied, and where, conse-

quently, the cord forms an angle or undergoes a ch^ge of direc-

tion is called a Jcnot (Fr. noeud ; Ger. Knoten). The same is either

pxed (Fr. fixe ; Ger. fest) or movable (Fr. coulant ; Ger. beweg-

lich). Tension (Fr. tension ; Ger. Spannung) is the force propa-

gated in the direction of its axis by a stretched cord. The ten-

'sions at the ends of a straight cord or piece of cord are equal and

opposite (§ 86). A straight cord cannot propagate any other force

but the tension acting in the direction of its axis; for if it did, it

would bend and would no longer be straight.

§ 151. Equilibrium in a Knot.—Equilibrium exists in a

funicular machine, when each of its knots is in equilibrium. Con-

sequently we must begin with the study of the conditions of equi-

librium in a single knot.

Equilibrium exists in a knot K formed by a piece of cord
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Fig. 328.

A K B, Fig. 228, when the resultant X S = S of the two tensions

of the cord K 6\ = Si and K S^2 = S^ is equal and opposite to the

force P applied at the knot; for the

tensions of the cord Si and S^ pro-

duce the same effect in the knot

K as two forces equal to them and

acting in the same direction as

they do, and the three forces are in

equilibrium, when one of them is

equal and opposite to the resultant

of the other two (§87). In like

manner the resultant R of the

force P and of one of the tensions

Si is equal and opposite to the

second tension S<,, etc. We can

profit by this equality to determine two conditions, e.g., the ten-

sion and direction of one of the ropes. If, e.g., the force P, the

tension S^ and the angle formed by them

AE P = 180' - AX S = 180° - a

are given, we have for the other tension

i3 formed by it

with^/S

S,= V P' + S;' -2 P S, COS. a

and for its direction or for the angle B X S

sin. (3 =:
Si sin. a

s,

Example.—If the rope A KB, Fig. 228, is fastened at its end B and

stretched at its end J. by a weight Cf = 135 pounds and at its centre

^by a force P = 109 pounds, whose direction is upwards at an angle of

25° to the horizon, what will be the direction of the tension in the

piece of cord KB'^.

The intensity of the required tension is

S. = V 109- + 135'' - 2 . 109 . 135 cos. (90" — 25")

= '/ 11881 + f8225 — 29430 . cos.Qo' = V 17668,3 = 132,92 pounds.

For the angle /3 we have

135 . sin. 65°S. sin. a
-, log sin. 13 = 0,96401 — 1,

whence /? = 67° 0', and the inclination of the piece of cord to the horizon is

3° — 25° = 67° 0' — 25° 0' = 42° 0'.
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§ 152. If a cord A KB, Fig. 229, forms a fixed knot /fin con-

sequence of one portion of the cord B K lying upon a firm sup-

port J/, while the other portion of

the cord is stretched by a force K &
= S, whose direction forms a certain

angle S K Si = a with the direction

of the first portion of the cord, we
have the tension in the portion K B
of the cord

K Si = Si = S COS. a,

while the second component KN — N — S sin. a is counteracted

by the support M. We have also

,S', = ^ y 1 - {sin. a)\

and therefore, when the angle of divergence is small,

1
S, {sin. ay] S

or inversely
S,

1 -
..-(1 +

(•-t)''.

3 *

Fig. 330.

If a cord is laid upon a prismatical body, and its directions thus

changed successively an amount measured by the angles a^, a^, «3,

the foregoing decomposition

of the force is repeated, so

that in the knot ^ithe ten-

sion S is changed into Si =
S COS. a„ and in the knot JT^

the tension S^ into

So= Si COS. a.-,— S COS. a, COS. a^,

and in the knot K^ tlie ten-

sion S^ into

S^ = S.2 COS. ttz = S COS. a^ COS. a, cos. a..

If the angles a^, a^, a^ are equal to each other and = a, we have

S3 = S {cos. a)"

S„ = S {cos. ay.

If the prism J/ becomes a cylinder, a is infinitely small and n

infinitely great, and consequently

or if we denote the total angle of divergence w a by P, we have
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s„ = (x -«/).,..

a (3

S„ = Sy because a and consequently -^ is infinitely small compared

with 1.

If, therefore, a cord is laid upon a smooth body so as to coyer a

portion of the periphery of its cross section, its tension is not

changed thereby ; and when a state of equilibrium exists the ten-

sion at both ends of the cord are equal to each other.

§ 153. If the knot K is movable, if, e.g., the force F is applied

by means of a ring to the cord A K B, Fig. 231, which is passed

through it, the resultant S of the tensions Si and S^ of the cord is

equal and opposite to the force F applied to the ring; besides the

tensions of the cord are equal to each other. This equality is a

consequenccr of § lo2, but it can also be proved in the following

manner. If we pull the rope a certain distance through the ring,

one of the tensions S\ describes the space s, the other tension S^ the

space — s, aud the force F the space 0. If, therefore, we assume

perfect hexibili.y, the work done is

P . = S\ .g^- S, . 5, I.E. .S-, ,s = S, sorSi = S,.

The equahty of the angles A E S and B K S, formed by the

direction of the resultant S ^vith the directions of the rope, is also a

consequence of this equality of the tensions; Putting this angle

= a the resolution of the rhomb K S^ S So gives

S = F = 2 S^ COS. a, and inversely

F
S, = S,=

% COS. a

Fig. 231.

If A and B, Fig. 232, are fixed points of a cord A K B of &
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given length (2 a) with a movable knot K, we can find the posi-

tions of this knot by constructing an ellipse, whose foci are at A and

B and whose major axis is equal to the length of the rope 2 a,

and by drawing a tangent to this curve perpendicular to the given

direction of the force. The point of tangency thus found is the

position of the knot ; for the normal K S to the ellipse forms equal

angles with the radii vectores K A and K B, exactly as the result-

ant S does with the tensions Si and S., of the cord.

If we draw-J^ D parallel to the direction of the given force,

make B D equal to the given length of the cord, divid6\4 D in

two equal parts at if and erect the perpendicular M K,^q obtain

the position K of the knot without constructing an ellipse ; foi the

angle A KM = angle DK

M

and AK— D K^ and consequently

the angle A K S^ angle B K 8 wi^ A'E ^ K B ^ DK ^
KB^DB.

Example.—Between the points A and B^ Fig. 233, a cord 9 fee^ long is

•tretched by a weight G — Yl^ pounds, hung upon it by m ans of a ring.

The horizontal distance of the two points

from each other is J. (7 = 6|^ feet and the

vertical distance of the same C B — % feet

:

required the position of the knot as well as

the tensions and directions of the two por-

tions of the cord. From the length J. Z> =
9 feet as hypothenuse and the horizontal

distance J. C = 6^ feet, we obtain the ver-

tical line

CD = V92 -6,52 = V 81 -42,25
= V 38,75 = 6,225 feet,

and from this the base of the isosceles tri-

angle BB K
BB= CB- CB = 6,225 - 2 = 4,225 feet.

On account of the similarity of the trianglesB Z"J/and BA (7, we have

Fig. 233.

BK=BE= BM B A = 4,225 . 9 = 3,054 feet,B C 2 . 6,225

whence

AK=9- 3,054 = 5,946 feet.

Hence for the angle a formed by the two portions of the cord with the ver-

tical line we have

COS. a = B M 2,1125

B K 3,054

and finally the tension in the cord is

G 170

= 0,6917, whence a = 46° 14',

81 = aS'2 = o =
ft /v^n-tr, = 122,9 pounds.

'i, COS. a 2 . 0,6917 '
^
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Fm. 234.

§ 154. Equilibrium of a Funicular Polygon.—The con-

ditions of equilibrium of a funicular polygon, i.e. of a stretched

cord acted upon in different

points by forces, are the same

as those of the equilibrium

of forces applied at the same

point. Let A KB, Fig. 234, 1,

be a cord stretched by the

forcesP„P„P3, P4, A; Pi

and P.2 being applied in J,

P3 in K and P4 and Pg in B.

Let us denote the tension of

the portion of the cord A K
by 81 and that of the portion

B Khj S^, then we have Si

as the resultant of the two

forces Pi and P^ applied in A,

Transferring the point of ap-

plication of this tension from A to K, we have So as resultant of

^iS'i and Pj or of Pj, P2 and P3. Transferring the point of applica-

tion of the force S2 from K to P, we have So as the resultant of P4

and P5 ; now, since S^ is the resultant of Pi, P^, and Pg, this system

of forces is in equilibrium ; we can therefore assert, that if certain

forces Pj, P^, P3, etc., of a funicular polygon are in equilibrium,

they loill also hold

Fig. 335. ^ach other in equi-

librium, when they

are applied toithout

change of direction

or intensity to a sin-

gle point, E.G. to

(II). If the rope

AK,K,...B, Fig.

235, is stretched in

the knots Ki, K^,

etc., by the weights

6^1, 6^2? etc., and if

its extremities are

held fast by the ver-

tical forces F, and

F„ and by the hori-
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zontal forces H^ and H,„ the sum of tlie vertical forces is

F, -f F„ -((?, + G.,+ G, + ...),

and the sum of the horizontal forces is H^ — H^,. The conditions

of equilibrium require both these sums to be = 0, and therefore

we have

1) V,+ V^^G, + G,-\- G,+ ... and

2) H, = H„, I.E.

the sum of the vertical forces or tensions at the extremities of the

ropes of a funicular polygon stretched ly weights is equal to the sum

of weights hung upon it, and the horizontal te7ision at one extremity

is equal and opposite to that at the other.

If we prolong the directions of the tensions 8^ and 8n at the

extremities A and B, until they cut each other in C, and if we
transfer the point of application of these tensions to this point, we
obtain a single force P=V^-^V,,\ for the horizontal forces H^ and H^
balance each other. Since this force balances the sum G^ + Gc^ +
G^ 4- ... of the weights attached to it, the point of application or

centre of gravity of these weights must be in the direction of this

force, I.E. in the vertical line passing througli C.

§ 155. From the tension Si of the first portion A K^ of the

rope and from the

angle of inclination

Si A Ri = (Ziwe ob-

tain the vertical ten-

sion Vi = ^iS'i sin. a,

and the horizontal

tension H\ = S^ cos. a^.

If we transfer the

point of application

of these forces from

A to Ki, we have, in

addition to thein,

the weight (t„ which

acts vertically down-

wards, and the verti-

cal tension in the

following portion

Ki K>i of the rope is V^ ~ Vi ~ Gi = Si sin. a^ — 6^„ while the

horizontal tension H^ — Hi = H remains unchanged. The two

latter forces, when combined, give the axial tension of the second

portion of the rope

Fig. 235.
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and its inclination a^ is determined by the formula

, F2 81 sin. «! — Gi
tang, a.^ = —' — ' ^

' I.E.

0^2 = tang, a^

Si COS. «!

IT'

Transferring the point of application of V, and IT, from K^ to

^2, we have, by the addition of the weight G,, sl new vertical force

V, = F2 - 6^2 - F, - {Gi + G,) = S, sin. a, - {G, + G,\
which is that of the third portion of the rope, while the horizontal

force Hi = JT remains unchanged. The total tension in this third

portion of the cord is

and its angle of inclination a^ is determined by the formula

tang, a^

tang, a^

F3 _ Si sin. «i — ( 6^1 + G,)

H
tana, a, —

Si COS. aj

Gi + G,

H

) I.E.

For the angle of inclination of the fourth portion of the cord

we have

Gi -\- G.2 -\- Gz
tang, a^ = tang, a^

ff
etc.

If
Gi -{- G^ + G3

becomes > ta7ig. a^ or (7, + 6^2 + G3 y F„

Fig. 236.

then tang, a^ and consequently a^ becomes negative, and the cor-

responding side K3 X4 of the polygon is no longer directed down-

ward, but upward. The conditions are the same for any point, for

which Gi -h G^ + Gs + ...is > Vi.

The tensions ^1, So, S^, etc., as well as the angles of inclination

a-i, oo, ttg, etc., of the different portions of the rope can easily be

represented geometrically. If we make the horizontal line C A =
B, Fig. 236, = the horizontal tension

H and the vertical line (7^1 — the vertical

tension Fi at the point of suspension J,

the hypothenuse A K^ will give the total

tension S^ of the first portion of the rope,

and the angle CA K^ the inclination of

the same to the horizon. If, now, we

lay off upon C iTithe weights Gi, G^, G^,

etc., as the divisions K^ K^, K^ ^3, etc.,

and draw the transverse lines A Ki, A K^y
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the latter will indicate the tensions of the different succeeding

portions of the cord, and the angles C A K^, G A K^, etc., the

angles of inclination ag, Og, etc., of these portions.

§ 156. From the investigations in the foregoing paragraph we

can deduce the following law for the equilibrium of a cord stretched

by weights :_

1) The horizontal tension is in all parts of the cord one and the

same, viz.:

H= Sx cos. Oi = Sn COS. a„.

2) Tlie vertical tension i7i any portion is equal to the vertical

tension of the cord at the end above it 7ninus the sum of the weights

suspended above it, or

K.= V,-{G,-\- G, + ... 6^_0-
This law can be expressed more generally thus : The vertical

tension in any point is equal to the tension in any other lower or

higher point plus or minus the sum of the weights suspended be-

tween them.

If we know besides the weights the angle a^ and the horizontal

tension H, we obtain the vertical tension at the extremity A by

means of the formula

Vi — H . tang, a^,

and that at the extremity B is

F„= (G^i + 6^2 + ... + (?„) - Fi.

If, on the contrary, the two angles of inclination a^ and a„ at

the two points of suspension A and B are known, the horizontal

and vertical tensions are determined in the following manner;
we have

F„ _ tang. a„

Fi
~~

tang, a,'

and therefore F„ = -4-— "
.

tang, a^

But since Fi + V^ = Gi -^ G-^ + . . . i.e.,

\ tang, a^ }
'

we have

jy^ (G] -^ G<i -]r . . . ) tang. «! , ^ ^ .
•52^'^- «i cos. a„

tang, a, + tang, a^
^ ' sm. (a, + a„)

and

j^ _ {Gi + Gi + . . . ) tang. a„ . sin. a„ cos. a,

tang, a, ^- tang, a^ .

' sm. (a^ + a,j

and consequently

19
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H = Vi cotg. a, = F,. cotg. a, = {G, + G, + . , ,)
COS. a, COS. a„

sin. (aj + a,,)*

K the two ends of the cord have the same inclination, we haA^e

V,= V^ = Gi + G.2 + G.

2
; then one endA carries as much

as the other end B,

These formulas are applicable to any pair of points or knots of

the funicular polygon, when we substitute instead of 6^, + G.2 + . .

.

the sum of the weights, etc., suspended to the cord between the

two points. The vertical tensions of a cord, on which a weight G^
is hung and the angles of inclination of which are a„ and a^ + 1, are

sin. a^ COS. a^_^_i G,„,

F„. = G.

' m -f 1 W"„

t'{am + a^ + i) 1 + cotg. a„

sin. a^^x + i cos. a„,

and

G.

sin. (a,„ + a„, + i) 1 + tang. a„, cotg. a^ + ^

These laws are applicable to any funicular polygon stretched by

parallel forces, when we substitute instead of the vertical the direc-

tion of the forces.

Example.—The funicular polygon A K^ K^ K^ B, Fig. 237, is stretched

by three weights G^ = 20, G^ = 30 and G^ = 16 pounds as well as by

the horizontal force B^ = 25

pounds ;
required the axial ten-

T^r '^^A sions, supposing the extremities

A and B to have the same angle

of inclination. The vertical ten-

sions at the ends are equal and are

r -r - g» + '^^ + ^3
^1 — ^^4 — O

Fig. 237.

^H.

20 + 30 + 16 = 33 pounds.

The vertical tension of the

second portion of the cord is

Fg = Fi - G'l = 33 - 20 = 13

pounds ; that of the third is,

G^ (or G^ + G^3 — Fi) = 33 — 16 = 17 pounds.

The angles of inclination a^ and a^ of these extremities are determined

bv the formulas

F 33

F, = F.

tariff. = tang, a^ = -^^ =
25

1,32;

tnose of the second and third portions by the formulas

tang, a.
^1

tang.a^ — -^ 1,32-

tang. «3 = tang, a.^ —

20

25

16

0,52 and

E 1,32 - ^ = 0,68
;
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whence we have

oj = a^ = 52° 51', Cg = 27° 28', a^ = 34° 13'.

Finally the axial tensions are

g — S^ = VFi' + H"- = V33'' + 25"' = V~1714 = 41.40 pounds,

S = VF„^ + B- = V 13'' + 25' = V'794 = 18,18 pounds and

S. ^/VJ-^ H' = V 17- + 25' = 30,23 pounds.

§ 157. The Parabola as Catenary.—Let us suppose, that

the cord A B, Fig. 238, is stretched by the weights G^, G„ G,,

etc., hung at equal horizontal

distances from each other. Let

us denote the horizontal dis-

tance A M between the point of

suspension A and the lowest

point C hy h and the vertical

distance C if by « ; let us also

put the similarly placed co-ordi-

nates of a point of the funicu-

lar polygon N = y and CN
= X, If the vertical tension in

y
I

have for the angle of inclination to the horizon N T = R Q
— <p oi the portion of the cord Q

^ y ^
tang. "P =

i
- -^^

in which R designates the horizontal tension.

A is = V, that in is consequently F, and therefore we

From this we obtain Q R = OR. tang. (}> = R .

y V
^ . -=y, which is the difference of height of tAvo neighboring corners

Ii

of the funicular polygon. If we put y successively = R, 2 R^

3 R, etc., the latter formula gives the difference of height of

the first, second, third, etc., corners, counting from the lowest

point upwards ; if now we add all these values, whose number we

can suppose to be = m, we obtain the height CN of the point

above the lowest point C. Here we have

V OR,
X = CN = H {0 R + 2 R + 3 R -\- . . . -\- m . R)

V
H

OR'
{l + 2 + 3 + .., + m)=^

V m (m 4- 1) OR"

in accordance with the rule for summing an arithmetical series.
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Finally, putting B = —,we obtain

_ V m (m + 1) y''

or substituting for the value of the tangent of the angle of inclina-

y
tion a of the end A of the rope tang, a = ~

_ m (m + 1
)
^^ tang, a

If the number of the weights is very great, we can put m + 1

= m, and consequently

For X = a,y = t, and consequently we have

_ F i _i tang, a
'^~ H ' 2 ~ 2

or more simply - = ^,

which is the equation of a parabola.

If, therefore, an imponderable string is stretched by an infinite

number of equal weights applied at equal horizontal distances from

each other, the funicular polygon becomes a parabola.

For the angle of inclination we have

tang. 0::=|.-y=2«/.-^=22/.y = yand
%a

tang, a = -y-.

The subtangent for the point is

2 XNT= Ntang.^^y — = 2 a; = 2 C N,

If the chains and rods of a chain bridge A B D F, Fig. 239, were

Fig. 239.

B „ A

without weight or very light in proportion to that of the loaded

bridge DBF, the latter weights alone would have to be considered,

and the chain A C B would form a parabola.
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Example.—The entire load of the chain bridge in Fig. 239 ia G = 2 V
= 320000 pounds, the span is AB = 2h = 150 feet, the height of the arc

GM = a = 15 feet ; required the tension and other conditions of the

chain. The inclination of the chain to the horizon is determined by the

formula
2 a 30 2

tang, a = ^ = — := - = 0,4, whence a = 21'' 48'.

The vertical tension in each point of suspension is

F= 1^ weight = 160000 pounds,

the horizontal tension is

H= Vcotg. a = 160000 . ^ = 400000 pounds,

and the total tension at one end is

/' - (w)'
)8'= V F^ + ^' = FV 1 + cotg.^ a = 160000

= 160000 y ^ = 80000 V29 = 430813 pounds,

§ 158. The Catenary.—If a perfectly flexible and inextensible

cord, or a chain composed of short links, is stretched by its own
weight, the axis of the same will form a curved line, which has re-

ceived the name of the catenary curve (Fr. chainette, Gr. Ketten-

linie). The strings, ropes, ribbons, chains, etc., which we meet

with in practice, are imperfectly elastic and extensible, and conse-

quently form curves, which only approach the catenary, but w^hich

can generally be treated as such. From w^hat precedes w^e know,

that the horizontal tension in the catenary is equal at all points,

while, on the contrary, the vertical tension in one point is equal to

the vertical tension in the point of attachment above it minus the

weight of the portion of the chain between this point and the point

of suspension. Since the vertical tension at the vertex, where the

catenary is horizontal, is = 0, or since the vertical tension at the

point of suspension is equal to
Fig. 240.

the weight of the chain from

the point of attachment to the

vertex, the vertical tension in

any point is equal to the weight

of the portion of the chain or

cord below it.

Ifequal portions ofthe chain

are equally heavy, the curve

produced is the common cate-

nary, which is the only one we
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will discuss here. If a portion of the chain or cord one foot long
weighs y, and if the arc corresponding to the co-ordinates C 31 = a
andMA = i, Fig. 240, is A C ::^ I, we have for the weight of

the portion A C of the chain G = I y.

If, on the contrary, the length of the arc corresponding to the

co-ordinates C JV = x and N = yis = s,v^e have for the weight

of this arc V = s y. Putting, finally, the length of a similar piece

of chain, whose weight is equal to the horizontal tension H, = c,

we have II = c y, and we have for the angles of inclination a and
in the points A and

G ly I .--:= — = - and
II cy c

V _ sy _ s

H cy c

§ 159. If we make the horizontal line C H, Fig. 241, equal to

the length c of the portion of the chain measuring the horizontal

tension and C G equal to the length / of arc of the cliain on one

side, in accordance with § 155, the hypothenuse G H gives the

intensity and direction of the tension of the cord at the point of

suspension A ; for

tang. CH G = -p-jT

tang, a = tang. S A H =

tang, (p = tang.N T =

= - and
c

G H^ *' C G' ^ CH\ = \'V + c\ or

V G' + H' Vr + e .y = G H.y.

Fig. 241.

If we divide C G into equal parts and draw from H to the

points of division 1, 2, 3, etc., straight

lines, the latter give the intensity and di-

rection of the tensions obtained by dividing

the length of the arc of the chain A C into

as many equal parts. For example, the line

^JT gives the magnitude and direction of

the tension or tangent at the point of di-

vision (P) of the arc A P C, since at this

point the vertical tension = C K . y, while

the horizontal tension is constant and =
c . y, and therefore for this point we have

ClT.y CK

as is really shown by the figure.

This peculiarity of the catenary can be

made use of to construct mechanically, approximatively correctly.
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this curve. After having divided the given length of the catenary

to be constructed in very many equal parts and laid off the line

C H — c, which measures the horizontal tension, we draw the

transverse lines HI, 112, Hd^ etc., and lay off on C'^ a division

Ci of the arc of the curve as C a, pass through the point of division

(a) thus obtained a parallel to the transverse line H 1 and cut off

again from it a part a h — CI. In like manner we draw through

the point (h) thus obtained a parallel to the transverse line 11% and

cut off from ith c — Cl equal to a division of the arc. We now

draw through the new point {c) a parallel to ^ 3 and make c d

equal to a division of the arc and continue in this way, until we
have obtained the polygon Cah cde f. We now construct another

polygon Oa(iy6e(f)'bj drawing C a parallel to ^1, a j3 to 112,

(3 y to Ho, etc., and by making Ca = a(3 = (3y, etc., =~C 1 =
12 = 23, etc. If, finally, we pass through the centre of the lines

aa, bl3, cy...fcl)ii curve, we obtain approximatively the catenary

required.

For practical purposes we can often obtain accurately enough

a catenary corresponding to given conditions, e.g. to a given width

and height of the arc or to a given width and length of arc, etc.,

by hanging a chain with small links against a vertical wall.

§ 160. Approximate Equation of the Catenary.—In

many cases, and particularly in its application to architecture and

machinery, the horizontal tension of the catenary is very great

compared to its vertical one, and therefore the height of the arc is

small, compared with its width. Under this assumption, an equa-

tion for this curve can be found in the following manner

:

Let s denote the length, x the abscissa C JV and y the ordinate

iV^ of a very low arc C 0,

Fig. 242. We can, according

to the remark upon page 298,

put approximatively

2
+ 3 «/

],,

and therefore the vertical tension in a point of a low arc of a

catenary is
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and the tangent of the tangential angle T N = is

If we divide the ordinate y into m equal parts, we find the

portion R Q — N U oi the abscissa X corresponding to such a

division Ehy putting

BQ=0^ tang, 0=-O~S.|[l+|(-)'l.

Since x is very small compared to y, we have approximatively

R Q — R .^. Substituting now OR — — and successively for ^

the values —,
—^, —^, etc., we obtain one after the other the differ-m m m

ent portions of x, the sum of which is

the latter equation is that of the parabola.

If we proceed more accurately and substitute in the formula

g^^ox.f[x.i(in,
instead of x, the value ^ just found, we obtain

Putting y again successively equal to —, —,
—^, etc., and

instead of R, — , we obtain successively the different portions ofm
X, and consequently their sum

''-Mi (1 + 2 + 3 + .. .+»)+3L . (^)V + 2'+3'+... + «.=)].

When the number ofmembers is very great, the sum of the cardi-

nal numbers l + 2 + 3... + wis = -^ and the sum of their cubea

m*
is =

-J-
(see " Ingenieur,'' page 88). Hence we have

^^ ^-2c ^ 24c»-2cr + 12-U/ J'

the equation of very powerfully stretched catenary.
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By inversion we obtain

y^ z=z 2cx— -^—. z= 2c X — ^^ „ = 2cx -, whence^ 13 c 12 c 6

2) y = y 2 ex—o"jOr approximatively,

The measure of the horizontal tension is given by the formula

^~2x^2x.l2c''~2x'^2'^x' ~^' ^'^'

The tangential angle is determined by the formula

2a:L^'^ 3 \y] J

=V'[-i(i)'][>-Hi)']-"

'>'-»*=T['*J(i)']-
The formula for the rectification of the curve is

Example—1) The length of the catenary for a width of arc 2 & = 16

feet and for a height of arc a = 2^ feet is

= 16 + 16. 0,065 = 17,04 feet;

and tlie length of the portion of the chain, which measures the horizontal

tension, is

'=^ + f = y + :^ = i^-« + "*'' = ^^'2" *««*'

the tangent of the angle of inclination at the point of suspension is

^an,.a = -^Ll +
-^(^^) J=-.[l+_yj:=---^_=0,6453...,

whence the angle itself is a = 32° 50'.

2) If a chain is 10 feet long and the width of span is 9^ feet, the height

of arc is

a/^1 ^ A3 (10 - 9^) 9^ ,/3 19 /57

= Vl,7813 = 1,335 feet,
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and the measure of the horizontal tension is

¥ a 4.752 1335
^ == 2^ + 6- = 2T-IT335 + -^ = ^'^^^ f^^*-

3) If a string 30 feet long and weighing 8 pounds is stretched as nearly

horizontal as possible by a force of 20 pounds, the vertical tension is

V = ^ G — 4: pounds, and the horizontal force

S= V;S^^F^=V30^-4^ = V384 = 19,596 pounds,
the tangent of the angle of inclination at the point of suspension is

and the angle itself is 11° 32'
; the measure of the horizontal tension is

c = ^ = H:^ = ~H=. 73,485 feet,

the width of the span is

3J=a{l-l.(iy]= 30.[l-l. („-i|gy]=30-0,208=29,793ft.,

and the height of the arc •

1){1-
/ 3 29,792.0,208

V 2 2 . 2
= V 29,792 . 0,078 = 1,524 feet.

Re^vIAEK 1.—We find from the radius CA = CB = CD = r and the

ordinate A M — y of an arc of a circle A B, Fig. 243, the ordinate

A N = B JSf=y^oi half the arc ^ i> = ^ i>, by putting

Z^ = Zlr + ~bW' = AM'' + {G B - G My
= AM^+{GB- ^GA^-AM^)2= 2 GA'-2 GA ^""WJ^ - jT^

Fig. 243.
I.E. Ay^^ = 2 r^ — 2 r \/r''

Hence we have

../. V r^
y

small compared with r,

,
or approximatively, if ^/T is

By repeated application of this formula we find the

ordinate of a quarter of the arc

2>

and that of an eighth of the arc

..-i-('*ft:)=i('-S)('*if?.)('*<«-£)

-i{1 + [1 + i + a)^] ^
Since the ordinates of very small arcs can be put equal to the arcs

themselves, we obtain for the arc A B approximatively
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8 = S .y^ = y (l + [1 + I + (-1)2] ^yX or more accurately

= y (i + [1 + i + (i)^ + (i)' + • • •] i^)-

But 1 + i + a)2 + (i)3 + . .

and therefore

= T-3-1 — t (see Ingenieur, page 82),

1 + y
y\

or substituting instead of r the abscissa BM = x by putting 2 r a; = y^,

we obtain

This formula is not only applicable to the arc of a circle, but also to all

low arcs of curves.

Remark 2. If we compare the equation

/ ^
Fig. 244. y = y ^ c x — —,

o

found above, with the equation of the ellipse

y =-- y 2ax — x^

(see Ingenieur, page 169), we find

— = c and — = i, and consequently

a = d c and 1) = a Va = c V3.

The curve formed by a powerfully stretched string can therefore be

considered as the arc A C B, Fig. 244, of an ellipse, the major axis of which

is^(7=a = 3c and the minor axis is ED— K E = h = c '\/d =
a V| = 0,577 a.

(§ 161.) Equation of the Catenary.—The complete equa-

tion of the catenary can be found in the following manner by the

aid of the calculus. According to § 158, we have for the angle of.

suspension T JV = (p, Fig. 245,

formed by the tangent ^ to a

point of the catenary A C B vrith

the horizontal co-ordinate iV",

when the arc C is denoted by 5

and the horizontal tension hj R ~
cy,

tang. </> = -

But is also equal to the angle

P R formed bv the element of
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the 2lyc P — d s with the element P R — d y qI the ordinate

JSf — y, and hence

s n r^ r, OR d X
tang. P R = -^^-^ = -r-,^ P R dy'

in which i? is considered as an element d x oi the abscissa CN
= X. From the above it follows, that

dx _ s dy^ _ &
dy~c' lix^

~
s^'

But d s"" 18 = d x" + d y\ or d y" = d s" — d x"-, whence

ds- — d x^ _ &
Sv "?•

Clearing the equation of fractions and transposing, we obtain

8ds
d x^ {f + c') — s" ds'yOT dx— ,—. r.' V 5' + c'

Putting s" \- c^ = u, we have

2 s ds = du and dx = i du
u^

By integration we obtain (according to Article 18 of the In-

troduction to the Calculus)

X — I I tr-\ du= \. -^ + Const. = Vu -\- Const.

= Vs' + c^ + Const.

Finally, since for x = 0, s is also = 0, we have = V c^ -h Const.,

I.E. Const. = — c and

1) X = V s^ + c'' — c, or inversely

s = V (x + cf — c' - V2cx -h x\ and

_ s' -x'
""- 2x

ExAivrPLE.—If a chain A C B^IO feet long and weighing 30 pounds, is

suspended in such a manner that the height of the arc is CM = 4 feet, we
have

y = 30^ = 3 pounds,

g3 _ ^.2 52 ^ 42 ^
"" ^ 2x ^ 8

"^ ^'

and consequently the horizontal tension

H=cy = d.^ = S^ pounds.

(§ 162.) As in the last paragraph by eliminating d ywe obtained

an equation between the arc s and the abscissa x, in like manner

by eliminating d x we can deduce an equation between the arc 5

and the ordinate y. For this purpose we substitute in the equation
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d x" s'
^

and obtain the equation

-r- = 11, 01' d it is" + &) — & d s\ whence
c dy ^ ^ '

cds

Dividing the numerator and denominator by c and putting

^cf c d V

- = i;, we obtain
c

dy =

v'wfy
Vl + v'

and the formula XIII, in Article 26 of the Introduction to the

Calculus, gives us the corresponding integral

r dv
^

^)^^^H-
—

-c >

Substituting in this formula s = V2cx + x^, we obtain the

proper equation for the co-ordinates of the common catenary

„, ,(c+x^- V2cx + x\
3) y = cl

[ ), or

^. ,(s -h x\ s' — x' (s -\- x\

Finally, by inverting 2 and 3, we obtain

5) s = L7_g-7}.-and

6)--[i(-^,-7)-l].,

e denoting the base 2,71828 ... of the Naperian system of loga-

rithms (see Article 19 of the Introduction to the Calculus).

Example.—The two corresponding co-ordinates of a point of the cate-

nary are x = 2 and y = d; required the horizontal tension c of this curve.

Approximatively, according to No. 3 of paragraph 160, we have

y^ X 9 2 ^^^
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But according to No. 3 of this paragraph (162), we have exactly

y^Ciy j,I.E.

Substituting for c, 2,58, we find the error

= 3 — 3,035 = — 0,035.

If, however, we assume c = 2,53, we find the error

= 3 - 3,002 = - 0,002.

In order to find the true value of c, we put according to a well known
rule (see Ingenieur, page 76)

c-2,58_ / _ 0,035

c- 2,53 /i 0,002 - ^^'^'

whence it follows that 16,5 . c = 17,5 . 2,53 - 2,58 = 41,69 and

c = ^^ = 2,527 feet.

Remakk.—We can express very simply s, x and y for the common cate-

nary in terms of the angle of suspension
;
for from what precedes we have

c sin. (f)

g = c tang. (j> =

. /-; ;— ^ C (1 — COS. d))= c (V 1 + tang.' (^ — 1) = -^ ^
COS. (j)

and

y = cl {tang. 9 + V 1 + tang.'
(f)
= cl [ ^ 1.

By means of these formulas we can easily calculate the lengths of the

arcs and of the co-ordinates for different angles of suspension, and a useful

table, such as is given in the Ingenieur, page 353, may be thus i^repared.

For this purpose we need adopt as base but a single catenary, and in this

case the best one is that, in which the measure of the horizontal tension is

= 1 ; to obtain s, x and y for another catenary corresponding to the hori-

zontal tension c, we have but to multiply the values of s, x and y given in

the tabie by c. If tang. were not = -, but to -, we would have the com-
c c

men parabola, for which

c r sin. 6 , /I TT + 9\\

c „ c Ism. 4>Y _

« = r tang.^ = „ ( : I
and

2 ' ^ 2 \cos. <p/

c sin. (j)

y = c tang. <!> = -—--.
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§ 163. Equilibrium of the Pulley.—Ropes, belts, etc., are

the ordinary means employed to transmit forces to the pulley and

the wheel and axle. We will here discuss only the most general part

of the theory of these two apparatuses, so far as it can be done with-

out taking into consideration the friction and the rigidity of cordage.

A pulley (Fr. poulie ; Ger. Rolle) is a circular disc or sheave

ABC, Figs. 246 and 247, movable about an axis and around

Fig. 246. Fig. 247.

whose circumference a string is laid, the extremities of which are

pulled by the forces P and Q. The block (Fr. chape ; Ger. Gehause

or Lager) of a fixed pulley (Fr. p. fixe ; Ger. feste R), in which the

axles or journals rest, is immovable. That of a movable pulley

(Fr. p. mobile ; Ger. lose R.) on the contrary is free to move.

When a pulley is in equilibrium, the forces P and Q at the ex-

tremities of the cord are equal to each other ; for every pulley is a

lever with equal arms, w^hich we obtain by letting fall from the

axis C the perpendiculars C A and C B upon the directions D P
and B Q of the forces or cords. It is also evident, that during any

rotation about C the forces P and Q describe equal spaces r (3,

when r denotes the radius CA = CB and 13" the angle of rotation,

and from this we can conclude, that P and Q are equal. The forces

P and Q give rise to a resultant C R = R, which is counteracted

by the journal or axle and is dependent upon the angle A D B = a

formed by the directions of the cords, it is given by construction

as the diagonal of the rhomb C P^ R Qx constructed with P and a;

its value is R=2 P COS. ^.
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§ 164. The weight to be raised or the resistance Q to be overcome

in a fixed pulley, Fig. 246, acts exactly in the same manner as the

force P, and the force is therefore eqnal to the resistance, and

the use of this pulley produces no other efiect than a change of

direction.

On the contrary, in a movable pulley. Fig. 247, the weight E
acts on the hook-shaped end of the bearings of the axle, while one

end of the rope is made fast to some immovable object ; here the

force is

RP =
2 COS.

Designating the chord A MB corresponding to the arc covered

by the string by a and the radius C A — C B, q.s before, by r, we
have

a = 2 AM=2CA cos. C A M =20 A cos. A D M = 2 r cos.

and therefore

and ^5"
a K

2 COS.
^

Fig. 248.

Hence, in a movable pulley, the force is to the load as the

radius of the pulley is to the chord of the arc covered by the string.

If « = 2 r, I.E. if the string covers a semicircle. Fig. 248, the

force is a minimum and is P = A i? ; if a = r or

if 60° of the pulley is covered by the string, we
have P — U. The smaller a becomes, the greater

is P ; I.E., when the arc covered by the cord is

infinitely small, the force P is infinitely great.

The relation is inverted, when we consider the

spaces described ; if 5 is the space described by

P, while R describes the space h, we have Ps =
Rh, whence

s _a
I ~ ?

The movable pulley is a means of changing

the force, and is used to gain power ; by means

of it we can, e.g., raise a given load with a smaller

force ; but in the same ratio as the force is in-

creased the space described is diminished.
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Remark.—The combinations of pulleys, such as block and tackle, etc.,

as well as the influence of friction and of the rigidity of cerdage upon the

state of equilibrium of pulleys, will be treated in the third volume.

Fig. 249.

§ 165. Wheel and Axle.—The wheel and axle (Fr. roue sur

I'arbre, Ger. Radwelle) is a rigid combination A B F E, Fig. 249,

of two pulleys or wheels mov-

able about a common axis.

The smaller of these wheels

is called the axle (Fr. arbre,

Ger. Welle), and the larger

the wheel (Fr.roue, Ger. Rad).

The rounded ends E and F,

upon which the apparatus

rests, are called the journals

(Fr. tourillons, Ger. Zapfen).

The axis of revolution of a

wheel and axle is either hori-

zontal, vertical or inclined.

We will now discuss only

the wheel and axle, movable

around a horizontal axis. We
will also suppose, that the forces P and Q or the .force P and the

weight Q act at the ends of perfectly flexible ropes, which are

wound around the circumferences of the wheel and of the axle.

The questions to be answered are, what is the relation between the

force P and the weight Q, and what is the pressure upon the bear-

ings at E and F ?

If at the point C, where the plane of rotation of the force P
cuts the axis E F, we imagine two equal opposite forces CP = P
and CP — — P to be acting in a direction parallel to that of the

force of rotation P, we obtain by the combination of these three

forces a force C P = P, which acts upon the axis, and a couple

{P, — P), whose moment is = P .
6' y1 = P a, when a designates

the arm of the force A P = P or the radius C A of the wheel.

Now if we imagine the two forces D Q — Q and D Q = — Q iohQ

applied at the point P, where the plane of revolution of the weight

Q cuts the axis E F, we obtain also a force D Q = Q acting upon

the axis and a couple {Q, — §), whose moment is — Q . D B= Qb,

when b designates the arm of the weight Q appUed in B or the
2*0
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radius D B of the axle. Since the axial forces C P = P and

D Q z=z Q Sire counteracted by the bearings, and consequently

can have no influence upon the revolution of the machine, it is

necessary, in order to have a state of equilibrium, that the two

couples, which act in parallel planes, shall have equal moments
(compare § 94), or that

P a = Qh, ov

^Q~ a

In every wheel and axle wliicli is in equilihrium, whatever may
he its length, the moment P a of the power is, as in the lever, equal to

the moment Ql) of the load, or the ratio of the poiver to the load is

equal to that of the arm of the load to the arm of the power.

If more than two forces act upon the wheel and axle, the sum
of moments of the forces tending to turn it in one direction is

naturally equal to the sum of those tending to turn it the other.

§ 166. The axial forces C P = P and B Q = Q can be

decomposed into the vertical forces C Pi = Pi and D Qi — Qi and

into the horizontal forces C P.. = P., and P Q.2= ft ; the first two

forces combined with the weight of the machine G, which acts at

the centre of gravity S of the machine, give the total vertical

pressure on the bearings, which is

Vi+ V, = Pi+ Qi+ G,

while the horizontal forces Po and Q.2 produce the lateral pressures

Hi and Ho on the bearings. If a is the angle of inclination P C P^_

of the direction of the force P to the horizon and /3 that Q D Q.

of the load, we have

Pi — P sin. a and P^ =^ P cos. a, as well as

Q^=: Q sin. (3 and Q^ = Q cos. (3.

If now I is the total length of the axis E F, d the distance C E,

€ the distance D E and c the distance S E of the points of the axis

Cy D and S from one extremity E of the axis, we have, according to

the theory of the lever:

1) When we consider E as fulcrum of the lever E F. which is

acted on by the forces P,, ft and G,

V, . WF= Pi . WC + Qi.Elb + G . WS, I.E.

V, 1= Pid + Qie+ G s,



§166. EQUILIBRIUM IN FUNICULAR MACHINES. 307

whence we obtain the vertical pressure

2) considering F as the fulcrum of the supposed lever,

V, . FE= F,.F~C+Q,. F~D + G . ^^, i.e.

V,l= P,{l-d) + Q, (l—e) + G{1- s),

whence we deduce the vertical pressure

_ FJJ-d) + Q,{1- e) + G {I - s)
Fi

Fig. 249.

The horizontal pressures H^ and He, are found, as follows, from

the horizontal forces Po and Q,.

1) Considering B as the fulcrum of the lever ^ i^ acted on bj

the forces P^ and Q^, we obtain

II, . FF = F, . F7J - Q, . El), i.e.

H^l = F^d — Q^e,

whence we obtain the horizontal pressure

F,d- Q, e
H,

2) Considering F as the fulcrum, we have

H, . F~F = F,.FTJ- Q,. FD, i.e.

H,l= F,(l- d) - ft {I - e),

from which we deduce the horizontal pressure

F, (l-d)
- Q, (I - e)

I

H,
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By the application of the parallelogram of forces, we obtain the

total pressures Ri and R^ upon the bearings E and F, and they are

R, = VV;' + ^ and R, = VvTVH^
Finally, if 6^ and 6.^ are the angles Ri E Hx and R^ FH^ formed

by these pressures with the horizon, we have

tang, d^ — —=^ and tang. 6^ = —?.

Ill tL^

Example.—The weight §, suspended to a wheel and axle, acts verti-

cally and weighs 365 pounds ; the radius of the wheel is a = If feet ; the

radius of the axle is 5 = f foot ; the weight of the wheel and axle together

is 200 pounds ; the distance of its centre of gravity from the journal E is

\\ feet ; the centre of the wheel is at a distance ^ = f from this journal

E^ and the vertical plane, in which the weight acts, is e = 2 feet distant

from the same point, while the whole length of the axis is E F =1 = 4t

feet ; now if th^ force necessary to produce equilibrium acts downwards at

an angle of inclination to the horizon of a = 50°, how great must it be and

what are the pressures upon the bearings ? Here we have Q = 365, /? =
90°, and consequently Q^ = Q, sin. [3 = Q and Q^ = Q cos. j3 = 0, P is

unknown, and a is = 50°, whence P^ = P sin. a = 0,7660 . P and Pg
ts = P COS. a = 0,6428 . P, but a is = If = |- and & = f, whence

P == - Q = 3
. 365 = 156,4 pounds, P^ = 119,8 and Pg = 100,5 pounds.

Since Z = 4, fZ = f , e = 2 and s = f , we have I— d = ^:^jl — e = 2

and I — s = f.

1) On the bearing E the vertical pressure is

_ 119,8.f + !

r 2
—

and the horizontal pressure is

100,5 . f - I

^2 = 4

and consequently the resulting pressure is

^ 119,8. f + 365 . 2 +200.

1

Fg = ^^—^ = 280,0 pounds,

_ 100,5. f- 0.2 ^^^
E2 = J = 18,8 pounds,

E^ = VV^^ + H^^ = 4/28O8 + 18,83 = 280,6 pounds,

and its inclination to the horizon is determined by the formula

280
tang, 6„ = t^'-, log tang. 6^ = 1,17300, from which we obtain d^ — 86° 9' 5".

18,8
'

2) For the bearing at E

y^ = 119.8 . -y +j6^ . 2 + 200 . I ^ ^^^^^ ^^^^^^ ^^

B^ = lOO^i^O = 8i,r pounds,

and consequently the resulting pressure is

i2j = 4/ F,2 4- ^1^ :^ 4/404,82 + 81,73 = 413,0 pounds,
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and for its inclination 6^ to the horizon we have

404,8
tang, dj = -jtV^ % ^^^ff- ^K = 0,69502 or 6^ = 78° 35'.

ol,7

We see that these results are correct, for we have

V^ +Vz = 280 + 404,8 = 684,8 = P^ + Q^ + G, and

H^+ff^= 81,7 + 18,8 = 100,5 = P^ + Qz-

CHAPTER V.

THE RESISTANCE OF FRICTION AND THE RIGIDITY OF CORDAGE.

^ § 167. Resistance of Friction.—Heretofore we have sup-

posed (§ 138) that two bodies could act upon one another only by

forces perpendicular to their common plane of contact. If these

bodies were perfectly rigid and their surfaces of contact mathemat-

ical planes, i.e. unbroken by the smallest hills or hollow*s, this law

would also be confirmed by experiment ; but since every material

body possesses a certain degree of elasticity or even of softness, and

since the surface of all bodies, even the most highly polished, con-

tains small hills and valleys and in consequence of the porosity of

matter does not form a perfectly continuous plane, when two bodies

press upon each other their points of contact penetrate, pro-

ducing an adhesion of the parts, which can only be overcome by a

particular force, whose direction is that of the plane of contact.

This adhesion of bodies in contact, produced by their mutual pene-

tration and grasping of each other, is what is called friction (Fr.

frottement, Ger. Reibung). Friction presents itself in the motion

of a body as a passive force or resistance, since it can only hinder

or prevent motion, but can never produce or aid it. In investiga-

tions in mechanics it can be considered as a force acting in opposi-

tion to every motion, whose direction lies in the plane of contact

of the two bodies. Whatever the direction may be in which wc
move a body resting upon a horizontal or inclined plane, the fric-

tion will always act in the opposite direction to that of the motion,

E.G., when we slide the body down an inclined plane, it wall appear

as motion up the same. If a system of forces is in equilibrium, the

smallest additional force produces motion as long as the friction

does not come into play; but when friction is called into existence

a greater addition of force, the amount of wiiich depends upon the

friction, is necessary to disturb the equilibrium.
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§ 168. In overcoming the friction, the parts which come in

contact are compressed, the projecting parts bent over, or perhaps

torn away, broken off, etc. The friction is therefore dependent not

only upon the roughness or smoothness of the surfaces, but also

upon the nature of the material of which the bodies are composed.

The harder metals generally cause less friction than the softer

ones. We cannot establish a prioiH any general rules for the de-

pendence of friction upon the natural properties of bodies ; it is in

fact necessary to make experiments upon friction with different

materials, in order to be able to determine the friction existing

between bodies under other circumstances. The unguents (Fr. les

enduits ; Ger. die Schmieren) have a great influence upon the

friction and upon the wearing away of bodies in contact. The
pores of the bodies are filled and the other roughnesses diminished

by the fluid or half fluid unguents, such as oil, tallow, fat, soaps,

etc., and the mutual penetration of the bodies much diminished
;

for this reason they diminish very considerably the friction.

But vre must not confound friction with adhesion, i.e., with

that union cf two bodies which takes place when the bodies come
in contact in very many points without the existence of any pres-

sure between them. The adhesion increases with the surface of

contact and is independent of the pressure, while for friction the

reverse is true. When the pressures are small, the adhesion appears

to be very great compared with the friction, but if the pressures

are great, it becomes but a very small portion of the friction and

can generally be neglected. Unguents generally increase the adhe-

sions, since they produce a greater number of points of contact.

\ r § 169. Kinds of Friction,—We distinguish two kinds of

friction, viz., sliding and rolling friction. The sliding friction

(Fr. frottement de glissement; Ger. gieitende Eeibung) is that

resistance of friction produced, when a body slides, i.e., moves so

that all its points describe parallel lines. Eolling friction (Fr. £ de

roulement ; Ger. rollende or walzende Reibung) on the contrary,

is that resistance developed, when a body rolls, i.e., vrhen every

point of the body at the same time progresses and revolves and

when the point of contact describes the same space upon the

moving body as upon the immovable one. A body M, Fig. 250,

supported on the plane H R, slides, for example, upon the plane

and must overcome sliding friction, Avhcn all points such as A, B, C,

etc., describe the parallel trajectories A A^, B B^, C C,, etc., and

therefore the same points of the moving body come in contact with
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different ones of the support. The body M, Fig. 251, rolls upon

the plane H R and must therefore overcome rolling friction, when

Fig. 251.

the points A, B, etc., of its surface move in such a manner, that

the space A E B^ — the space A D B — A^ D^ B^ and also that

space ^4 ^ is = the space A D and the space B^ E = B^ i)„ etc.

A particular kind of friction is the friction of axles or journals

which is produced, when a cylindrical axle, journal or gudgeon

revolves in its bearing. We distinguish two kinds of axles, hori-

zontal and vertical. The horizontal axle, journal or gudgeon

(Fr. tourillon ; Ger. liegende Zapfen) moves in such a manner that

different points of the gudgeon, etc., come successively in contact

with the same point of the support. The vertical axle or pivot

(Fr. pivot; Ger. stehende Zar^^fen) presses with its circular base

upon the step, on Avhich the different points of it revolve in con-

centric circles.

Particular kinds of friction are produced, when a body oscillates

upon an edge, as, e.g., a balance, or when a vibrating body is sup-

ported upon a point, as, E.G., the needle of a compass.

Friction can also be divided into immediate (Fr. immediat

;

Ger. unmittelbare) and mediate (Fr. mediat ; Ger. mittelbare). In

the lirst case the bodies are in immediate contact ; in the latter,

on the contrary, they are separated by unguents, as, e.g., a thin

layer of oil.

We distinguish also the friction of repose or quiescence (Fr. f. do

repos ; Ger. R der Ruhe), wdiich must be overcome when a body

at rest is put in motion, from the friction of motion (Fr. f. de

mouvement ; Ger. R. der Bewegung), which resists the continuance

of a motion.

i^ § 170. Laws of Frictions.—1. The friction is proportional

to the nomial pressure between the rubbing bodies. ! If w^e press

a body twice as much against its support as before, the friction

becomes double. A triple pressure gives a triple friction, etc.

If this law varies slightly for small pressures, we must ascribe the

variations to the proportionally greater influence of the adhesion.
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2. The friction is independent of the rubbing surfaces or sur-

faces of contact/ The greater the rubbing surfaces the greater is,

it is true, the number of the rubbing parts, but the pressure upon
each part is so much the smaller, and consequently the resistance

of friction upon it is less. The sum of the frictions of all the parts

is therefore the same for a large and for a small surface, when the

pressure and other circumstances are the same. If the surfaces of

the sides of a parallelopipedical brick are of the same nature, the

force necessary to move the brick on a horizontal plane is the same

whether it lies on the smallest, medium, or greatest surface. When
the surfaces are very great and the pressures very small, this rule

appears to be subject to exceptions on account of the effect of the

adhesion.j

3. (The friction of quiescence is generally greater than that of

motion, but the latter is independent of the velocity; it is the

same for high and low velocities.

4. The friction of greased surfaces (mediate friction) is gene-

rally smaller than that of ungreased surfaces (immediate friction)

and depends less upon the rubbing bodies themselves than upon

the unguent.

5. The friction on axles is less than the ordinary friction of

sliding. The rolling friction between smooth surfaces is in most

cases so small, that we need scarcely take it into account in com-

parison with the friction of sliding.

Remark.—The foregoing rules are strictly true only, when the pressure

upon the unit of surface of the bearings is a medium one, and wlien the

velocity of the circumference of the journal does not exceed certain Umits.

This medium pressure is from 250 to 500 pounds per square inch, and the

mean velocity of the circumference should be 2 to 10 inches. "When the

pressure is much smaller, the adhesion forms a very sensible portion of the

resistance which then becomes dependent upon the magnitude of the rub-

bing surfaces, and Tvhere the pressure and velocity are very great a large

quantity of heat is developed, which volatilizes the unguents, thus causing

the journals to cut very quickly. When, as in the case of turbines, rail-

road cars, etc., we cannot avoid these
Fig. 252. great velocities, we must counteract this

^ heating of the axle by increasing the rub-

^p bing surfaces, i.e., by increasing the length

and thickness of the axles.r%
H^^ mR

X § 171. Co-efficient of Friction.

—From the first law of the foregoing

paragraph we can deduce the fol-

N lowing. If in the first place a body
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A Cy Fig. 252, presses with a force JV against its support, and if

to move it along, i.e., to overcome its friction, we require the

force F, and if in the second place, when pressing with the force

JVi a force F^ is necessary to transfer it from a state of rest into

one of motion, v/e will have, according to the foregoing paragraph,FN. ^ F, ^^-— = -—, whence i^ = -^^- . JSf.

.

F, N' N,

If by experiment we have found for a certain pressure JV, the

corresponding friction i^„ we see from the above, that if the rub-

bing bodies and other circumstances are the same, the friction F
corresponding to another pressure N can he found ly multiplying

this pressure ly the ratio \^) hetimen the values Fx and iV, cor-

responding to the first observation.

This ratio of the friction to the pressure or the friction for a

pressure — 1, e.g. pound, is called the coefficient of friction

(Fr. coefficient du frottement ; Ger. Eeibungscoefficient) and w^ll

in future be designated by 0. Hence we can put in general

F=:Ci>N.

The coefficient of friction is different for different materials

and for different conditions of the same material and must there-

fore be determined by experiments undertaken for that purpose.

If the body A C is pulled along a distance s upon its support^ the

work to be performed is F s. The mechanical effect (j) JV s ab-

sorbed by the friction is equal to the product of the coefficient of

friction, the normal pressure and the space described. If the sup-

port is also movable, we must understand hj s = Si — Si the relative

space described by the body, and F s = (p N s is the work done by

the friction between the two bodies. The body that moves the

most quickly must perform, while describing the space ^i, the me-

chanical effect (p N Si and the body which moves slower gains in

consequence of the friction while describing the space s^ the me-

chanical effect JV^a; the loss of mechanical effect caused by the

friction between the two bodies is

(p N Sx — (p N s. = <p N{si — 5o) = (p JVs.

Examples—1. If for a pressure of 360 pounds the friction is 91 pounds,

the corresponding coefficient of friction is ^ = -^^ — -^ = 0,35.

2. In order to pull forward a sled weighing 500 pounds on a horizontal

and very smooth snow-covered road, when the coefficient of friction is

= 0,04, a force F = 0,04 . 500 = 20 pounds is necessary.

3, If the coefficient of friction of a sled loaded with 500 pounds and
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pulled over a paved road is 0,45, the mechanical effect required to move
the sled 480 feet is <^ i^s = 0,45 . 500 . 480 = 108000 foot-pounds.

§ 172. The Angle of Friction or of Repose and the
Cone of Friction.—If a body

Fig. 253. A C; Fig. 253, lies upon an in-

clined plane F R, whose angle of

inclination is F II E = a, we can

decompose its weight into the nor-

mal pressure N =^ G cos. a, and

into the force 8 — G sin. a paral-

lel to the plane. The first force

causes the friction F = 6 G cos. a,

which resists every motion upon
the plane ; consequently the force necessary to push the body up
the plane is

P = F+S=(I)G COS. a -\- G sin. a

= (sin. a + COS. a) G,

and the force necessary to push it down the same is

Pi ~ F — S = {(j) COS. a — sin. a) G.

The latter force becomes = 0, i.e. the body holds itself upon
the inclined plane by its friction when sin. a = (p cos. a, i.e. when
ta?ig. a — (p. As long as the inclined plane has an angle of incli-

nation, whose tangent is less than 0, so long will the body remain

at rest upon the inclined plane ; but if the tangent of the angle of

inclination is a little greater than 0, the body will slide down the in-

clined plane. We call this angle, i.e. the one whose tangent is equal

to the coefficient of friction, the angle of friction or of repose or of

resistance (Fr. angle du frottement, Ger. Eeibungs—or Euhewinkel).

Hence we obtain the coefficient of friction (for the friction of qui-

escence) by obser^dng the angle of friction p and putting = ta7i(j. p.

In consequence of the friction, tlie surface F H, Fig. 254, of a

body counteracts not only the normal pressure JV of another body

A B, but also any oblique j)ressure F when

the angle N B P = a formed by its direc-

tion with the normal to the surface does

not exceed ihQ angle of friction ; since the

force P gives rise to the normal pressure

B N — P COS. a, and to the lateral or

tangential pressure B iS = S = P sin. a

and since the normal pressure P cos. a pro-

duces the friction P cos. a, which opposes
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every movement in the plane F ff, S can produce no motion as

long as we have

(p P COS. ay P sin. a or cos. a > sin. a, i.e.

tang, a < (/> or a < p.

If we cause the angle of friction C B D = p to revolve about

the normal C B, it describes a cone, which we call the cone of fric-

tion or of resistance (Fr. cone de fr., Ger. Reibungskegel). The

cone of friction embraces the directions of all the forces, which are

completely counteracted by the inclined plane.

Example.—In order to draw a full bucket weighing 200 pounds up a

wooden plane inclined to the horizon at an angle of 50°, tbe coeScient of

friction being o = 0,48, we would require a force

P ='
{6 COS. a + sin. a) a = (0,48 cos. 50° + sin. 50°) . 200

= (0,308 + 0,766) . 200 = 215 pounds.

In order to let it down or to prevent its sliding down, wc would h.ivo ueed

of a force

Pj = {6 cos. a — sin. a) G — — {sin. 50° — 0,48 cos. 50°) . 200

= — (0,766 — 0,308) . 200 = — 91,5 pounds.

§ 173. Experiments en Friction.—Experiments on friction

have been made by man}' persons; those, Avhich were most ex-

tended and upon the largest scale, are the experiments of Coulomb

and Morin. Both these experimenters employed, for the determina-

tion of the coefficient of friction of sliding, a sled movable upon a

horizontal surface and dragged along by a rope passing over a fixed

pulley, to the end of which a weight was attached, as is shown in

Fig. 255, in which A B is the surface, C D the sled, E the pulley,

and F the weight. In order to obtain the coefficients of frictions

for different substances, not only the runners of the sled, but also

the surface upon which it slid, were covered with the smoothest

possible plates of the material to be experimented on, such asAvood,

iron, etc. The coefficients of friction of rest were given by the

weight necessary to bring
^^^- 2^^- the sled from a state of

rest into motion, and the

coefficients of friction of

motion were determined

by aid of the time required

by the sled to describe a

certain space s. If G is

the weiglit of the sled and
P the weight necessary to move the same, we have the friction



316 GENERAL PRINCIPLES OF MECHANICS. [§173

=
(f) G, the moving force = P — cj) G and tlie mass M =—^—^'

g
whence, according to § 68, the acceleration of the uniformly acceler-

ated motion engendered is P — <p G
^ ~ P + G ''

and inversely the coefficient of friction is

P
~~G'

P+ G
G '^0

But we have also (§ 11) s = ^pf. whencep
_ 2s

and

P
~ G

"
P+ G
G

2s

If we allow the sled to shde down an inchned plane, the moving

force is = G (sin. a— cos. a), and the accelerated mass is = ^—

;

consequently the acceleration is

2 s G (sin. a — (p cos. a) , .
,

.

p = -TT = 7^ = g K^f^'^' a — 9 COS. a)

2 s
or —— = sin. a — <p cos. a, and consequently the coefficient of sUding

2 s
friction is = tana, a .

'^

g t cos. a

If h denotes the altitude, I the length and a the base of the

li 2 s I

inclined plane, we have also = -.^ a g a t

In order to determine the coefficient of friction for the friction

of axles or journals, they employed a fixed pulley A C B, Fig. 256,

around which a rope was wound, to which the weights P and Q
were suspended; from the sum of the weights P + § we have

the pressure R upon the axle, and from their difference P — Q the

force at the periphery of the pulley, which is held in equilibrium by

the friction F =^ (j) {P + Q) on the surface of the axle. If now
C A — a — the radius of the axle and CD — r — the radius of the

journal, we have, since the statical moments are equal,

(P_ 0a=i^/- = 0(P + e)r,

and consequently the coefficient of friction of rest

and, on the contrary, when the weight P falls and Q rises in the

time t a distance s, the coefficient of friction of motion is
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*'(i
Q 2 s\a

9 t-/ r

)l s\

+ Q~9~i'l

The engineer Hirn employed in his (the latest) experiments

upon friction of journals the apparatus represented in Fig. 257,

Fig. 256. PiG. 257.

A ,B

?:.:-
i:)' •^i.

'

\^Ilp
f

which he called a friction balance (Fr. balance de frottement, Ger.

Reibungswage). Here C is an axle, which is kept in constant

rotation, as, e.g., by a water-wheel, D is the bearing, and A D B
is a lever of equal arms, which produces the pressure between

the journal and its bearing by means of the weights Pand Q. The

pressure on the axle R = P -\- Q produces the friction

between the journal and its bearing. With this force the revolving

shaft seeks to turn the bearing and the leverAD B, which is attached

to it, in the direction of the arrow ; and therefore, in order to keep

the whole in equilibrium, we must make the weight P on one side

A so much greater than the weight Q on the other, that P — Q
will balance the friction. But the friction F acts with the arm

C D — r — the radius of the bearing and the difference of the

weights P — Q with the arm C A — a, which is equal to the hori-

zontal distance between the axis C of the shaft and the vertical

line through the point of suspension A, and therefore we have

Fr^(t>Rr = (j>{P+Q)r = (P-Q)a,

and the coefficient of friction required

P-Q a

Remark.—Before Coulomb, Amontons, Camus, Biilffinger, Muschen-

brock, Ferguson, Vince and others had studied the subject of friction and

made experiments upon it. The results of all these researches have, however,

little practical value; for the experiments were made upon too small a scale.

The same objection applies to those of Ximenes, which were made about
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the same time as those of Coulomb. The results of Ximenes are to be found
in the work " Teoria e Pratica clelle resistenze de' solidi ne' loro attriti,

Pisa, 1782." Coulomb's experiments are described in detail in the work

:

" Theorie des machines simples, etc., par Coulomb. Nouv. edit., 1821.'-

An abstract from it is to be found in the prize essay of Mettemich, " Yom
Widerstande der Reibung, Frankfurt und Mainz, 1789." The later experi-

ments on friction were made by Rennie and Morin. Rennie employed in

his experiments in some cases a sled, which slid upon a horizontal surface,

and in others an inclined plane, down which he caused the bodies to slide,

and from the angle of inclination determined the amount of the friction.

Rennie's experiments were made with most of the substances, which we
meet with in practice, such as ice, cloth, leather, wood, stone and the

metals ; they also give important data in relation to the manner in which

bodies wear, but the apparatus and the manner of conducting these experi-

ments do not allow us to hope for as great accuracy as Morin seems to have

attained in his experiments. A German translation of Rennie's Experiments

is to be found in the 17th volume (1832) of the Wiener Jahrbiicher des

K*. K. Polytechnischen Institutes, and also in the 34th volume (1829) of

Dingler's Polytechnisches Journal. The most extensive experiments and

those, which probably give the most accurate results, are those made by

Morin, although it cannot be denied that they leave certain points doubtful

and uncertain, and that here and there there are 23oint3, upon which more

information could be desired. This is not the place to describe the method

and apparatus emj)loyedin these experiments ; we can only refer to Moriu's

writings :
" Nouvelles Experiences surlefrottement," etc. A capital discus-

sion of the subject " friction," and a rather full description of almost all the

experiments upon it, Morin's included, is given by Brix in the transactions

of the Society for the xidvancement of Industry in Prussia, 16th and 17th

Jahrgang—Berlin, 1837 and 1838. Later exiDeriments on mediate friction,

with particular reference to the different unguents, made by M. C. Ad.

Hirn, are described in the " Bulletin de la societe industrielle de Mulhouse,

Nos. 128 and 129, 1855," under the title of " Etudes sur les principaux

phenomenes que presentent les frottements mediats, etc. ;" an abstract of it

js to be found in the " Polytechnisches Centralblatt, 1855. Lieferung, 10."

The latest researches upon friction by Bochet are described under the title,

" Nouv. Recherches experimentales sur le frottement de glissement, par M.

Bochet," in the Annales des Mines, Cinq. Serie. Tome XIX,, Paris, 18G1.

Prof. Riihlmann gives some information in regard to the experiments with

Waltjen's friction balance in the "Polytechnisches Centralblatt, 1861.

Heft 10."

'\/ § 174, Triction Tables.—The following tables contain' a con-

densed summary of the coeflicients of friction of the substances,

most generally employed in practice.



gl74.] RESISTANCE OF FRICTION, ETC.

TABLE L

COEFFICIENTS OF FRICTION OF REST.

319

Condition of the surfaces and nature of the unguents.

Name of the rubbing bodies.

0,30

3

0,65

-3

> "2

1

0,14 0,22

C
«

.-§

0,30

1

i

f Minimum value.

Wood upon .

^^^^^

^^^^
[ Maximum "

0,50

0,70

0,68

0,71

— 0,21 0,19

0,25

0,36

0,44

0,35

0,40

,_ , , f Minimum value.
Metal upon

. Mean "
metal . . . . ^

[ Maximum "

0,15

0,18

0,24

—
0,11

0,12

0,16

0,10 0,11 — 0,15

O^fiO 0,65 OJO 0,12 0,12 0,10

Hemp in ropes, f Mini'm value. 0,50

plaits, etc., on < Mean " 0,63 0,87

wood t Max'm " 0,80

Thick sole leath-
r

er as packing On edge . . . 0,43 0,62 0,12

on wood or Flat 0,62 0,80 0,13 — — 0,27

cast iron . . . .

Black leather (
1 Made of wood,

straps over ^

" metal
drums . . . .

[^

0,47

0,54 — — — 0,28 0,38

Stone or brick r

upon stone or Mini'm value,

brick,well pol- Max'ra "

0,67

0,75

ished I

Stone upon wrought ( Min. val.

iron / Max. "

0,42 •

0,49

Pearwood upon stone 0,64
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TABLE 11.

COEFFICIENTS OF FRICTION OF MOTION.

Condition of the surfaces and nature of the unguents.

1

Name of the rubbing bodies.

o

1
1

1

1

J
5

1

X s
PL,

>.

Min. value. 0,20 0,06 0,06 _ 0,14 0,08
Wood upon . ^^^^ a

^^^^^
LMax. "

0,36 0,25 0,07 0,07 — 0,15 0,12

0,48 — 0,07 0,08 — 0,16 0,15

,^ , . r Min. value.
Metal upon

}

0,15 — 0,06 0,07 o;o7 0,06 0,12 — 0,11

^ metal.... 1^-^ " 0,18 0,31 0,07 0,09 0,09 0,08 0,15 0,20 0,13

t Max. " 0,24 — 0,08 0,1110,11 0,09 0,17 — 0,17

Wood uponT^^i^-^^l"^-

metal ^ ^^^^ "

0,20 — 0,05 0,07 0,06 _ — 0,10

0,42 0,24 0,06 0,07 0,08 0,08 0,10 0,20 0,14

[ Max. " 0,62 — 0,08 0,08 0,10 — — — 0,16

Hemi3 in ropes, j On wood,

etc (On iron .

0,45 0,33

— - 0,15 — 0,19

Sole leather flat f Raw . . . 0,54| 0,36 0,16 — 0,20

upon wood or <{ Pounded. 0,3o' —
metal [ Greasy . . —

1

0,25

Tlie same on
f ^^^^ 0,34' 0,31 0,14 0,14

[

edge for pis-
] ^^^^^^^, — 0,24

ton packing. I !

Remark.—More complete tables of the coefficients of friction are to be

found in the " Ingenieur," page 403, etc. The coefficients of friction of

loose granular masses will be given in the second volume, when the theory

of the pressure of earth is treated.

\y § 175. The Latest Experiments on Friction.—From the

experimciiis of Bochet upon sliding friction, we find, that the

results obtained by the older experimenters Coulomb and Morin

must undergo some important modifications. The former experi-
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merits were made with railroad wagons weighing from 6 to 10 tons,

which were caused to shde on a liorizontal raih'oad either upon

their wheels, which were made fast, or upon a kind of shoe (patin).

The shoes were fastened to the frame of the wagon before, between

and behind the wheels, and in the different series of experiments

tliej were covered with soles of different materials, such as wood,

leather, iron, etc., on which a pressure of 2, 4, 6, 10 and 15 kilograms

per square centimetre could be produced. The wagon, thus

transformed into a sled, was moved by a locomotive attached in

front by means of a spring dynameter, which gave the pull or force,

which balanced the sliding friction. In order to prevent, as much
as possible, the resistance of the air, the wagon, which preceded the

sled, had a greater cross-section than the latter.

The correctness of the formula F = (j) W, according to which

the friction F is proportional to the pressure, is proved anew by

these experiments ; but it was found, that the co-efficient of fric-

tion was dependent not only upon the nature and state of the rub-

bing surfaces, but also upon other circumstances, viz. : the velocity

of the sliding body and the specific pressure, i.e., the pressure per

unit of surface. Bochet puts

K — y
'" = it/. + ^'

in which v denotes the velocity of sliding, k the value of for infi-

nitely slow and y the value (j) for a very rapid motion. According

to this formula the coefficient decreases gradually from «; to y as

the velocity increases. The mean value of the coefficient a is

= 0,3, when v is expressed in meters, and on the contrary = 0,091,

when V is given in feet. Hence we can assume the co-efficient of

friction to be constant only, when the velocities vary from to at

most 1 foot and when the other circumstances remain the same.

The co-efficients ic and y are different for different materials and

depend upon the degree of smoothness of the rubbing surfaces,

upon the unguents, upon the specific pressure etc.

The co-efficient of friction k attains its maximum value for

wood, particularly soft wood, leather and gutta-percha sliding upon

dry and ungreased iron rails. Here we have k = 0,40 to 0,70. The

mean value for soft wood is «; = 0,60 and for hard wood ic = 0,55,

The value fc is also very different for the friction of iron upon

iron. If the surfaces are not polished we have k = 0,25 to 0,60

;

and, on the contrary, for polished surfaces we have k — 0,12 to

21
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0,40, The friction of iron upon iron is not diminished by sprink-

ling it with water, but the friction of wood, leather and gutta-

percha is considerably diminished by wetting the rail. When the

surfaces are oiled, «; sinks to from 0,05 to 0,20.

The co-efficient y is always smaller than k. When the velocities

are great, the surfaces smooth, the unguent properly applied and

the specific pressure a medium one, y has nearly the same value for

all substances.

The friction of rest is greater only in those cases where wood

or leather slide upon wet or greased rails, and then it is twice as great.

According to these experiments, we have

1. for dry soft wood, when the pressure is at least 10 kilo-

grams per square centimeter or 142 pounds per square inch,

2. for dry hard wood under the same pressure

3. for half polished iron, dry or wet, under a pressure of more

than 300 kilograms per square centimeter or 4267 pounds

per square inch,

0,15

4. for the same either dry, under a pressure of at least 100

kilograms per square centimeter or polished and greased

under specific pressure of at least 20 kilograms, and also

for resinous wood with water as unguent under the same

pressure,

5. for wood properly polished and rubbed with fatty water or

fat under a pressure of at least 20 kilograms per square

centimeter (284 pounds per square inch),

* = r^-. -«.«•

If V is given in feet, we must substitute in the denominator

0,091i;insteadof 0,3v.

Remark.—It is very desirable that these experiments, made on so large

a scale and giving results which differ so much from those already known,

should be repeated.
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Fig. 258.

§ 176. Inclined Plane.—One of the most important applica-

tions of the theory of sliding friction is to the determination of the

conditions of equilibrium of a body A C upon an inclined plane

FIT, Fig. 258. If, as in § 146,

F H R = ais the angle of incli-

nation of the inclined plane and

F Si = (3 the angle formed by

the direction of the force P with

the inclined plane, we have the

normal force due to the weight G
N^— G COS. a,

the force which tends to move
the body down the plane = S =
G sin. a, the force iY„ with which

the force P seeks to raise the

body from the plane, = P sin. (i and the force 8^ with which it

draws the body up 1th e plane == P cos. (3. The resulting normal

force is

]V= N, - ]Sf, = G COS. a- P sin. /3,

and consequently the friction is

F= (p {G COS. a — P sin. (3).

If we wish to find the force necessary to draw the body up the

plane, the friction must be overcome, and therefore we have

S, = S-{-F, I.E. P cos. (3 — G sin. a + cp (G cos. a — P sin. (3).

But if the force necessary to prevent the body from sliding down
the plane is required, as the friction assists the force, we will have

Si + F= S, I.E. P cos. (3 + (l){G COS. a— P sin. &) — G sin. a.

From these equations we obtain in the first case

sin. a + COS. aP = .

COS. 3+0 sin. /3

p _^ sin. a — (p COS. a

COS. (3 — cp sin. (3

'

G, and in the second case.

G.

If we introduce the angle of friction or of repose p by putting

sin. p
<p = tang, p we obtain

COS. p

sin. a COS. p ± cos. a sin. p

COS. (3 COS. p ± sin. (3 sin. p
0,
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or according to a well-known trigonometrical formula

[§ 176.

_ sm. {a ± p ) ,

^ the upper signs are for the case, when motion is to be produced, and

^ the lower ones, when motion is to be prevented.

^ As long as we have

F> sin, (a 4(^and<^^^^lj^^,
p) COS. (/3 - p)

Fig. 359.

COS. ((3 +
\. ^

^the body will move neither up nor dow^n.

^1 If a is < p, the force necessary to push the body down the

^.plane is

J p ^ S^^- (P - Q^)
g

\^ COS. {p + f^) '

^ The latter formula can be found by the simple application of

the parallelogram of forces P Q G) Fig. 259. Since a body

counteracts any force from another body,

when the angle of divergence- of the di-

rection of the force from that of the normal

to the surface is equal to the angle of

friction p (§ 172), a state of equilibrium

will exist in the foregoing case, when the

resultant Q = Q of the forces P and G
forms an angle W Q = p with the nor-

mal. If, in the general formula

r_ sin. G OQ
G - sin. P OQ'

we substitute GOQ=GON-\-NOQ:=^
a + psindPOQ=POS + S Q = 13 +
90' p, we obtain

P
G

sin. (a 4- p) sin. (a + p)

sin. (13 - p -h 90°) cos. (f3 - p)'

If the force Pi is to prevent the body from sliding down the

inclined plane, the resultant Q^ falls on the lower side of the normal

N, and the angle of friction p enters in the calculation with a

negative sign, and consequently we have

P
G

sm. (a

COS. ((3
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If the body lies upon a horizontal plane, a is = 0, and the force

necessary to move it forward becomes

p _ (j) G _ ^ ^^^^' P
~

cos.(3 + (psm.(3
~

COS. {(i — p)'

If the force acts parallel to the inclined plane, I.E., in the

direction of its slope, we have /3 = 0, and therefore

P = {sin. a ±cp COS. a) G = !!!^ii^^^
. q^ (Compare § 172.)

"^ ^ ^
COS. p

\ 1 « /

If, finally, the force acts horizontally, we have

13= — a, COS. 13 — COS. a and sin. (3 = — sin. a, and consequently

p _ sin. a ± COS. a p _ tang, a ± (/>

~~
COS. a =F sin. a'

""
1 zp (^ tang, a ' ' '

*

P — tang, (a ± p) G, which is also given by the direct

resolution of the parallelogram P Q G.

Farther, the force necessary to push the body up the plane

becomes a minimum, when the denominator cos. {(3 — p) becomes a

maximum, that is, when it is = 1, or when [3 — p is = 0, i.e. when
(3 = p. When the angle formed by the direction of the force with

that of the inclined plane is equal to the angle of friction, this

force is a minimum and is P = sin. (a + p) . G.

Example.—"^'VTiat is the pressure along the axis of a wooden prop

A E^ Fig. 260, wliich prevents the mass of rock A B C D^ weighing G =
5000 pounds, from sliding down an inclined plane (the floor of a mine),

when the inclination of the prop to the horizon is 35°, that of the inclined

plane C -D, 50° and when the coefficient of friction ^ is = 0,75 ? Here

we have

G = 5000, a = 50°, /3 = 35° - 50° = - 15° and (p = 0,75,

and the formula gives

_ sin. a — COS. o-
fy _ sin. 50° — 0,75 cos. 50° r^^^~

COS. (3 —
<l>

sin. (3
' ~ cos. 15° + 0,75 sin. 15°

0,766 - 0,483 _.^ 1420 ,..

.

. oOOO = = 1224 pouncis.

If the prop was horizontal, we would have

i3 = — 50° and tang, p = 0,75, or p,= 86° 52',

from which we obtain

P = G fang, (a — p) = 5000 tajig. (50° — 36° 52')

= 5000 tang. 13° 8'=5000 . 0,2333=1160 pounds.

In order to push the same mass of rock by
means of a horizontal force up the floor, when
the other circumstances are the same, a force

P = G tang, (a + p) = 5000 tang. 86° 52'

= 5000 . 18,2676 = 91338 pounds would
be necessary.
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(/^ 177. The normal pressure, with which a body A C presses

upon the indined plane F ff, Fig. 261, while being pushed up it, is

])^ = Q COS. p =
G sin. P Q
sin. P Q

G COS. (a + /3) COS. p

COS. p
G sin. (90° ~a- P)

sin. ((3 + 90° - p)

COS. (13 — p)

and, on the contrary, when we prevent its sliding down, we have

Nx = Qi COS. Qi iVi = Qx COS. p —
G COS. {a + (3) COS. p

COS. (f3 + p).

If the direction of the force is parallel to the direction of the

plane, we have (3 = and N =^ G cos. a, and when its direction is

horizontal, we have (3 = — a and

G COS. pN
COS. {a ± py

Fig. 281. Fig. 262.

The normal pressure becomes null, when cos. {a + (3) = ot

a + (3 = 90", and becomes negative, when a + /3 is > 90" or (3 is

> 90" — a. In the latter case the inclined plane is not under but

over the body, as is represented in Fig. 262. Here again the two

extreme cases of equilibrium exist when the resultant Q or Q^,

which is transmitted to the inclined plane F ff, diverges from the

normal either above or below it at an angle, which is that of the

friction NOQ = NOQ, = p.

In the foregoing development of the formulas for the equili-

brium of a body upon an inclined plane it is supposed, that the

resultant Q can be completely transmitted from the body A to

the support FH R, which forms the inclined plane ; this is only
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Fig. 263.

possible (according to § 146), when the direction of this force passes

through the supporting surface

C D oi the body A C. Other-

wise the body A C, Fig. 263, has

a tendency to revolve or overturn

about the outer edge C, and this

tendency increases with the dis-

tance OK = e of this edge from

the direction Q oi the result-

ant Q,

If a denotes the distance C L
of the direction P oi the force

and h the distance C E oi the

vertical line of gravity G oi

the body from the outer edge C,

then the moment, with which the body seeks to turn from left to

right about C, \^ Q e — P a — G h.

li P a were = G b or
P
G

-, the resultant Q would
a

pass

through the edge C and would be counteracted by the incHned

plane ; ii P a were < G b, the body would have a tendency to turn

from right to left, which turning would be prevented by its im-

penetrability.

If, on the contrary, P a is > G b the body must receive a second

support or be guided by a second inclined plane F^ H^. If this

second inclined plane counteracts in A the force iV^ and the fric-

tion (p iV^ caused by it, the inclined plane F^ Hi will react upon the

body in A with the opposite forces — N and — iV, which pre-

vent the turning of the body about C, and the sum of the moments

of these forces must be equal to the moment of rotation of the

force Q, i.e. JSf I -{- (p W d = Q e = P a — G b, or

1) N{1 + ^d) = Pa- Gb,

I and d designating the distances C D and CB oi the edge A from C
in the directions parallel and at right angles to the inclined plane.

If, further, iV, is the pressure of the body upon the inclined

plane FH Sit C and (p JV^ the friction caused by it, we can put

2) P COS. (3 = G sin. a + (.V + N,) and

3) P sin. (3 z= G cos. a + N - N,.

Eliminating Nx from the last two equations we obtain the equa-

tion of condition.
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P (cos. (i ^ (f)
sm. (i) = G {sin. a -i- (p cos. a) + 2 (/) iV,

and substituting the value J^ = ——-^—7- from equation (1) we

have the equation

F (cos. ^ + </) sin. P)= G {sin. a + cos. a) + ^ ^ i_P^ - ^ ^)

t -\- (p cl

or P I—~— {cos. iS + sin. (3) — cf) a\

= G
I

—

Y~ (^*^* " + COS. o) —
(i> &),

from which we obtain finally

p _ {I + d) {sin , a + (j) cos. a) — % (ph ^~
{I + (p d) {cos. i3 + sin. 13) - 2 (j) a

{I + (p d) sin. (a + p) — 2 Z> cos. p
~

{I + (p d) COS. {3 — p) — 2 cp a cos. p

If iV is = 0, we have P a = G b and

sin. {a + p) b ,

775-

—

'- = -, whence
COS. {(3 — p) a

p _ sin. {a + p) ^

. G.

COS. {[3 — p)
as we found before.

\/ § 178. The Theory of the Equilibrium of Supported
Bodies referred to the Equilibrium of Free Bodies.—In

investigating the conditions of equilibrium of a body, taking into

consideration the friction, we will accomplish more surely our

object, if we imagine the body entirely free and suppose, that every

body, with which it comes in contact, acts upon it with two forces,

viz. : with one force iV, which proceeds from it and is normal to the

surface of contact, and with another force (p JV, which opposes the

supposed motion of the point of contact on this surface and which

is caused by the friction between the two bodies. In this way

we obtain a rigid system of forces, whose state of equilibrium can

easily be determined according to the rules given in § 90, as is

shown in the following special case.

A prismatical bar A B, Fig. 264, is so placed, that its lower end

rests upon a horizontal floor C ^and that its upper end leans

against the vertical wall C V: at what inclination B A C = a

does it lose its equilibrium ? We can here express the reactions

of the floor upon the body by a vertical force E and by the fric-

tion R, which acts horizontally, and, on the contrary, the reaction
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of the wall by a horizontal force N and by a friction N acting

upwards. Hence, if G is the weight of the rod acting at its centre

of gravity S, we have here a system of ver-

FiG. 364. tical forces (r, 72, if and a system of

horizontal ones N and R.

When these forces are in equilibrium,

we have

1) G = R + (pJSr,

2) (j) R = iV^and

3) G.AB=]Sr.AD + (}>N.AC.

But the arm ^ ^ is = ^ S cos. a —
h A B COS. a, the arm A D — A B sin. a

and the arm A C = A B cos. a, hence the

third equation becomes simply

^ G cos. a — N (sin. a + cos, a).

Combining the first t^i^o equations, we obtain

G = R + i)' R = (1 + (p') R, whence

G , _ G({>R = and JV1+0' 1 + 0"^'

Substituting this value of iV'in the equation (3), we have

G
G COS. a

1 + f
1 +

(sin. a + COS. a), or

20
= tang, a +

and the tangent of the required angle of inclination is

1 +0^ - 2 0'^ _ 1 j-_0' _ 1 - tang.' p

COS.' p — sin."^ p _ COS. 2 p

sin. 2 p

tang, a —
2 tang, p

— cotg. 2 p
2 sin. p COS. p

= tang. (90° — 2 p) ; therefore

Z 5 ^ C = a = 90" - 2 p and Z ^ 7? r^ = i9 = 2 p. ^7

§ 179. Theory of the Wedge.—Friction has also a great

influence upon the conditions of equilibrium of the wedge (see

§ 149). Let us suppose, that its cross section forms an isosceles

triangle A B S, Fig. 265, the acute angle of which A S B = a,

that the force acts in the centre M of the back of the wedge A B
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and at right angles to it and that the body CHK presses with a

certain force iV^ against the surface of the wedge B S, while the

wedge reposes with its

surface A S upon a

horizontal plane. The
body CHKis also in-

closed in two guides

G and K, which com-

pel it, when the wedge

ispushed forward upon

the horizontal plane^

to rise with the load Q
in the direction B C

perpendicular to the surface B S of the wedge.

Since the direction of the force F forms equal angles with the

two surfaces A S and B S of the wedge, tlie normal pressures iV^, iV,

and consequently the frictions cf) JV, (j) JV caused by them, are equal

to each other, and the forces P, JV, iV, JV and JV^ must hold

each other in equilibrium. If we decompose each of the last four

forces into two components, one parallel and the other perpendicu-

lar to the direction of the force P, the sum of the forces having the

same direction as P must, of course, be in equilibrium with P.

But the directions of the forces JV, iVform, with the direction MS
of the force P, an angle 90 — -, and those of the forces N, jV

an angle -, and therefore the components of iY, i\^in the direction
"Z

M S are ISf sin. - and N sin. --, and those of JV^and JV'are JSf
4 Z

COS. -, and N cos. -, and consequently we can put

P = 2 Nsin.-- + 20
Z

Jy CCS. - = 2 j\ {sin. ^ + cos.-j.

In consequence of the friction IV between the surface B S of

the wedge and the base of the body CH K, this body is pressed

with an opposite force — iV^ against the guide G H, which causes

a friction F^ = (jy^ . (}) JV = (p (p^ JV, which resists the upward move-

ment of the body C H K\ hence we have

N - F,= ^ or iV (1 - 0,) = § and

QN^ 1-0 0,
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Substituting this value for iV^in the above equation, we obtain

the force necessary to raise the weight Q

—
^
— ism. ^ + (p COS.

-J,
approximativelyF =

= 2 § (1 + (/),) ysi?i. ^ + COS. ~j

^ _ / . a a . a\= 2 Q \sin. H + </) COS. « + </) 01 S171. j,

or putting the coefficient of friction along the guides equal to

that along the surfaces A S and B S of the wedge, we obtain

2Q

= 2q({1

2
sin.

i^^
+ <p COS. -), approximatively

2/

Fig. 266.

A M B

+ 0') sm. o + *^ ^^^-
9

When a wedge ABC, Fig. 266, is used

for splitting or compressing bodies, the force

upon the back A B corresponding to the

normal pressure Q against the sides A
and B C is

P = 2Q (sin. ^- + COS.
^).

Example.—Let the load on the "wedge repre-

sented in Fig. 265 be Q = 650, the sharpness of

the wedge a = 25"^ and the coefBcient of friction

<p = (p^ = 0,36 ; required the mechanical efifect

necessary to move the load Q ^foot along its guides.

The force is

2 . 650 . . „

^ =
1 - (0,36)^

^''''' ^^^ "^ ^'^^ '"'• ^^^^

1300=
1 _ Q ^ggg

(0,2164 + 0,36 . 0,9763)

1300 737,27

0,8704
^^'^^^^ + '^""'^^ = 0,8-7-64 = ''''' P"""'^^-

The space described by the load is ^^^ = s^ = a foot, and that de-

scribed by the force is

BL = B B^ COS.
E E. a
'-. COS. - =
sm. a 2

2 sin.

0,25

sin. 12?

0,25
1,155 feet.

0,2164

and consequently the mechanical effect necessary is

Ps = 848,2 . 1,155 = 979,6 foot-pounds.

If we neglected the friction, the work done would be P s =^ Q s^ = |

.

650 = 325 ; consequently the friction nearly triples the mechanical effecc

necessary to raise Q.
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Fig. 287.

§ 180. In the same way we can find the force P required, when
a wedge ABC, Fig. 267, raises a load Q vertically upwards, while

moving forward itself upon a horizontal plane HO. Let the

normal pressure between the wedge ABC and the block D, which

is pressed vertically downwards by the load Q, be = N, the normal

pressure of the wedge upon the support H OhQ — R and the normal

pressure of the block against the

guide B Ehe = S. Then P must bal-

ance the forces E, 4>\ Ry — N a.nd

- N, and Q the forces S, (p, S, N
and </) K.

If a is the angle of inclination

A B C oi the surface A B of the

wedge, we can decompose iV^ into the

vertical force iV" cos. a and the hori-

zontal force jV sin. a, and N into

the vertical force N sin. a and the

horizontal force 6 Xcos. a, and there-

fore we can put

1) P — (p^ R A- Nsin. a + Ncos. a,

2) R = N COS. a— Nsin. a,

3

)

Q = N cos. a—(fj Nsin. a—(]).2S and

4) S = N sin. a + (p N cos. a.

From the first two equations we obtain

P = [(1 — 0,) sin. a -^ ((j) -^ 0,) cos. a] N,

and from the last two

Q = [(1 — 0o) COS. a — (0 + 0.) sin. a] N'^

and dividing tlie first by the second, we have

P _ (1 — 0i) sin. a + (0 + 01 ) COS. a

§ ~ (1 — 02) COS. a — (0 + 02) sin. a

If = 0, 1= (p,, we have, since — tang, p and

^-—-"- = tang. 2 p,

P _ sin. a + COS. a tang. 2 p _ tang, a + tang. 2 p

~Q ~ C05. a — sin. a tang. 2 p
~~

1— tang, a tang. 2 p
— tang, {a + 2 p).

If we disregard the friction upon the points of support, we can

put 0, and 0, = 0, and consequently

P ^ sin.a + cp cos.a ^ t(mg^±± ^ ^^^^^ ^^^^^^ ^^^^^^ g l^g ^

Q cos. a — (p sin. a 1— ta7ig. a
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When the load Q acts at right angles to the surface of the

wedge, the equations (3) and (4) must be replaced by the following

Q = ]^~ 0,6^ and

whence Q = {I — (p (pi) ^V, or inversely,

jsr = and
1 "~> v V-i

(1 — </)i) sin. a + (<^ + 0i) COS. a

1 — <^2

»i
= (poy it becomes

sin. a -\- COS. a . tang. 2 p.

P
Q

When (p is --

P
Q

The formula P = Q tang, (a + 2 p) is applicable to the deter-

mination of the conditions of equilibrium, when two bodies ifand iV

are fastened together by

means of a key A B, Fig.

268, I. and II. The force

P applied to the back of the

wedge causes the tension,

with which the two bodies

are drawn against one an-

other,

Q^ Pcotg.{a + 2p).

On the contrary, the

force, with which we must

press upon the bottom B
of the key in order to loosen

it, I.E. to drive it back in the direction B A, is, since a is neg-

ative here,

P, = Q tang. (2 p - a),

or substituting the former value of Q, we have

'

ta7ig. (2 p + a)'

In order to prevent the wedge from jumping back of itself, a

must < 2 p.

§ 181. Coefficients of Friction of Axles.—For axles the

friction of motion alone is important, and for this reason only the

results of experiments upon it are given.
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TABLE III.

COEFFICIENTS OF FRICTION OF AXLES, ACCORDING TO MORIN.

Condition of the surfaces and nature of the ung\ients.

"S — Oil, Tallow, "w

Name of the rubbing bodies. If «-l
or Lard.

"i "Id
'5 '*'

ii

PI c ^

E c

to

t

Bell metal upon bell metal

.

_ 0,097
u u cast iron. ,

.

— 0,049 — —
Wro't iron " bell metal. 0,251 0,189 0,0750,054 0,090 0,111 —

U (i cast iron. . .
_ — — 0,0750,054 — — —

Cast iron " (( — 0,137 0,079;0,075 0,054 — — 0,137
a a bell metal.

.

0,1940,161

0,188i —
— 0,0750,054 0,065 — ^0,166

Wro't iron " lig. vitae . .

.

— 0,125 — — —
{

—
jCast iron " u

0,185 — — 0,1000,092 0,109'0,140

Lign'm vitae " cast iron .

.

— — — 0,116; — — — 10,153
u a lig. vitae. . .

— — — i0,070
!

— 1

From this table the following practically important conclusions

can be drawn : for axles, journals or gudgeons of wrought or cast

iron running in bearings of cast iron or bell-metal (brass), greased

with oil, tallow or lard, the coefficient of friction

is, when the lubrication is well sustained, = 0,054,

and with ordinary lubrication, = 0,070 to 0,080.

The values found by Coulomb differ in some respects from the.

above.

Remark.—By his experiments upon mediate friction, by means of the

friction balance, Him obtained several results, which differ somcTihat from

those already known. The axle employed by him, consisting of a hollow

cast-iron drum 0,23 metres in diameter, and 0,22 metres long, was lubri-

cated upon the outer surface by dipping it in oil and kept cool by causing

water to pass through its interior. The bronze bearing (8 of copper and 1

of tin) was pressed upon it by means of a lever 1| metre long and weigh-

ing 50 kilogr. while the axle made 50 to 100 revolutions per minute. It

is easy to see, that in the experiments made with this apparatus the fluidity

and adhesion of the oil employed as unguent must have played an import-

ant part, since not only the velocity of revolution, but also the rubbing

surface was very great compared to the pressure. The velocity at the cir-
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Cfumference of the drum, since its circumference was 72 centimetres and

since it revolved | to ^ times in a second, was 60 to 120 centimetres, or 24

to 48 inches, while in machines it is generally but from 2 to 6 inches. The

horizontal section of the axle was 22 . 23 = 506 square centimetres, and

consequently the pressure on each square centimetre of this section was

50
only -^r^ = 0,1 kilogram, i.e. 6,45 . 0,220 = 1,42 pounds upon a square inch,

while this pressure in ordinary machines is generally more than one hun-

dred pounds. Hirn's experiments were consequently made under condi-

tions difterent from those generally met with in very large and powerful

machinery, and under which the other experiments, such as, e.g., those of

Morin, were tried, and therefore the variation in the results obtained is

perfectly explicable. The principal results of Hirn's experiments are the

following.

The mediate friction is dependent not only upon the pressure and the na-

ture and character of the rubbing surfaces and of unguent, but also upon

the velocity and upon the temperature of the rubbing surfaces and of the

surroundings, as well as upon the magnitude of these surfaces. The fric-

tion is directly proportional to the velocity, when the temperature is con-

stant ; and if the temperature is disregarded, it increases with the square

root of the velocity. From other experiments Him concludes, that the

mediate friction is also proportional to the square root of the rubbing sur-

faces as well as to the square root of the pressure. In regard to the par-

ticular influence of the temperature, the following formula was given by

these experiments

:

F = —-»—
1,0492''

in which t denotes the temperature of the rubbing surface, F^ the friction

at 0°, and F that at t degrees of temperature.

One of the principal results of these experiments was the determination

of the mechanical equivalent of heat. This subject Tsill be treated more at

length, when we discuss the theory of heat.

^ ^
§ 182. Work Done by the Friction of Axles.—If we

know the pressure B between the axle and its bearing, and if tlie

radius r of the axle, Fig. 269, is given, we can easily calculate the

work done by the friction on the axle during each revolution. The
friction is F = (}) E, the space described is the circumference 2 tt r

of the axle, and consequently the mechanical effect lost by the

friction is A=(f>R.2'rTr=2rT(f)Rr. If the axle makes u
revolutions per minute, the mechanical effect expended in each

second is

L = 27T(p Er . -^ =—1^ = 0,10o . u (p E u
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The work done by the friction increases, therefore, with the

pressure on the axle, with the radius of the axle and with the

number of revolutions. We have therefore the following practical

rule, not to Increase unnecessarily the pressure on the axles in

rotating machines, to make them as small as possible without en-

dangering their solidity and durability and not to allow them to

make too many revolutions in a minute, at least, when the other

circumstances do not require it.

Fig. 269. Fig. S70.

By the use of friction-wheels instead of plumber-blocks^ the

work done by the friction is diminished. In Fig. 270 A B is a

shaft, whose journal C E E^ rests upon the circumferences E H
and El H^ of the wheels (friction-wheels), which revolve around D
and Di and lie close behind one another. The given pressure R
upon the shaft gives rise to the pressure

N R

2 COS.

Here a denotes the angle D C D^ included between the lines join-

ing the centres, which are also lines of pressure. In consequence

of the rolling friction between the axle C and the circumference of

the wheels, the latter revolve with this axle, and the frictions iV"

and ]Sf^ are produced on the bearings ./) and A, the sum of which

If the radius D E ^ D, E,hQ de-

cos.

noted by Cj and the radius of the axle by r„ we obtain the force,

which must be exerted q,t the circumference of the wheels or at

that of the axle C to overcome the friction, and it is
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-^ F= ^\-^
«i

Fig. 271.

while, on the contrary, it is = R, when the axle lies directly on a

step.

If we neglect the weight of the friction-

wheels, the work done when these wheels are

employed is V^
= times as great as

ai COS.
2

when the shaft revolves in a plumber-block.

If we oppose a single friction-wheel G H,

Fig. 271, to the pressure R of the axles and

if we counteract the lateral forces, which in

other respects can be neglected, by the fixed

cheeks E and Z, a becomes — 0, cos, ^ = 1 ^^^ the above ratio

Example.—A water-wheel weighs 30000 pounds, the radius of its cir-

cumference a is 16 feet and that of its gudgeon is r = 5 inches ; how much
force is required at the circumference of the wheel to overcome the friction

or to maintain the wheel in uniform motion, when running empty, and how
great is the corresponding expenditure of mechanical effect, when it makes

5 revolutions per minute ? We can here assume a coefficient of friction

9 = 0,a75, and consequently the friction is i? = 0,075 . 30000 = 2250

16 . 12 192
pounds. Since the radius of the wheel is—-— = —- = 38,4 times as

5 O

great as that of the gudgeon or the arm of the friction, the friction re-

duced to the circumference of the wheel is

0i2 2250 ^^^^
= 38,4 = W"^^'^^P''''''^'-

2 5 TT

The circumference of the gudgeon is — '
' = 2,618 feet ; and conse-

12

quently the space described by the friction in a second is

^m^ = 0,2182 feet,
60

and the work done by the friction duiing one second is

L = 0,2182 .(i>E= 0,2182 . 2250 = 491 foot-pounds.

If the gudgeon of this wheel is placed on friction wheels, whose radii

are but 5 times as great as the radius of the gudgeon, that is, if -^ = |,

the force necessary at the circumference of the wheel to overcome the fric-

22



338 GENERAL PRINCIPLES OF MECHANICS. [§ 18b.

tion would be only ^ . 58,59 = 11,73 pounds and the mechanical effect

expended but ^fi = 98,2 pounds. But in this case the support would be

much less safe.

^ § 183. Friction on a Partially Worn Bearing.—The fric-

tion of an axle A C B, Fig. 272, upon a bearing, which is partially

v/orn, so that the shaft is supported in a single point A, is smaller

than that of a new axle, which touches all points of its bearing.

If no rotation takes place, the axle presses

^^^1^^^' upon the point B, through which the direction

of the resulting pressure R passes ; if the shaft

begins to rotate in the direction A B, the axle

rises in consequence of the friction on its

bearing, until the force 8 tending to move it

down balances the friction F. The result-

ant R is decomposed into a normal force iV^

and a tangential one 8, N is transmitted to

the plumber block and produces the friction F =
(f)
N, which acts

tangentially, 8, however, puts itself in equilibrium with F, and

we have, therefore, 8 — (p N. According to the theorem of Pytha-

goras, we have R^ = N'^ + 8', whence
^2 := (1 + 0^) N\

or inversely the normal pressure

JSf =
.

and the friction F =

or introducing the angle of friction p or </> = tang, p

„ R tang, p _, ^ r> -

*

F = —---— = R tang, p cos. p = R sm. p.

y 1 + tang.^p

Consequently, when the shaft begins to turn, the point of pres-

sure B moves in its bearing in the opposite direction through an

angle A C B = the angle of friction p.

The moment F.C A = Fr of the friction on the axle is

naturally equal to the moment R r sin. p of the pressure R upon

the bed, both being referred to the axis of revolution C. If there

were no motion, we would have

F=cf>R = R tang, p = —'^''-^^
;

.

^
COS. p

'

the friction after the motion begins is cos. p times as great as

before. Generally = tang, p is scarcely j\ and cos. p > 0,995,

BO that the difference is scarcely -,0^00 — Tilo? ^^ can, therefore,

in ordinary cases neglect the effect of the motion.
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Fig. 274.

Fig. 273. If the wheel A B revolves with a nave, Fig.

273, about a fixed axle A C, the friction is the

same as if the axle moved in an ordinary plumber-

block, but when the nave is worn the arm of the

friction is not the radius of the shaft, but that of

the opening in the nave.

- § 184. Friction on a Triangular Bearing.—If we lay the

axle in a prismatical bearing, we have more pressure on the bearing,

and consequently more friction than, when the bearing is circular.

If the bearing A D B, Fig. 274, is tri-

angular, the axle is supported at two

points A and B and at both of them

friction must be overcome. The result-

ing pressure R is decomposed into two

components Q and ^i, each of which is

again deromposed into a normal stress

iV^or iVi and into a tangential one, which

is equal to the friction F = ^ N and

F^ = (p Ni. According to the foregoing paragraph, we can put

these frictions = Q sin. p and Q^ sin. p, consequently the total

friction is F -\- F-^ = {Q + Q^) sin. p.

The forces §.and Qi are found, by the resolution of a parallelo-

gram of forces formed of Q and ^„ with the aid of the resultant 7v,

of the angle of friction p and of the angle A C B =z 2 a, corespond-

ing to the arc ^4 i? included between the two points of contact;

now we have

QOE = ACD-CAO = a-paxid
Q, R = B CD -h CB = a + pand therefore

Q0Qi = a-^p + a + p = 2a.

By employing the formula of § 78, we obtain

= siftj^^l
. 5 and § = 5^ + e)

. R

;

Sin. 2 a ^
sin. 2 a

whence the required friction is

F -{- F^ = {Q -h Q,) sin. p — {sin. \a - p] + sin. [« + p]) . „ .
'- -* *- -^ sm. 2 a

But from trigonometry we know, that sin. {a — p) + sin. (« + p)

= 2 sin. a cos. p, and that sin. 2 a — 2 sin. a cos. a, and we can

therefore put

Ti . -ni 2 ^in. a R sin. p cos. p R sin.2p

R sin. p

2 sin, a cos, a 2 COS. a
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R ^fyi o
which, owinff to the smallness of p, we can make = —, When^

COS. a

SL triangular bearing is used, the friction becomes times greater

than when a circular one is employed. If, e.g., A D B is 60°,

A C B is 180° - 60° = 120° and ^ C D =: a = 60°, we have

7^0 times = twice as much friction as for a circular bearing.
COS. eo''

^

§ 185. Friction of a New Bearing.—By the aid of the latter

formula we can find the friction on a new circular bearing, when
the axle is supported at all points. Let ABB, Fig. 275, be such

a bearing. Let us di^dde the arc ABB along

^^fljj^' which the bearing and axle are in contact into

very many parts, such as J. iV, iV 0, etc., whose

projections upon the chord A B are equal, and

let us suppose that each one of these parts

transmits from the axle to the bearing equal

portions — of the whole pressure E, Here 7i

denotes the number of these parts. According

to the foregoing paragraph, the friction of two

parts N and JVi Oi opposite to each other is

_ E sin. 2 p
""

n '

COS. N C D'
NP

• But COS. N CD is also = cos. N P — ^^-t^? ^P represent-
^

ing the projection of the part iV^ on ^4 B, and therefore

,^ „ chord A B
JS/ P = •

n
consequently the friction corresponding to these two parts J\^ and

^1 0, is _ Esi?i.2p n.WO _ Esm.2p j^~ n ' chord ~~ chord

In order to find the friction for the entire arc A D B, we have

only to substitute instead of iV^ the arc ^ i> = 5 ^ ^ P'y for tl^e

sum of all the frictions is equal to —-.—^— . the sum of all the^ chord

parts of the arc ; consequently the friction on a new bearing is

_ „ . ^ arc ^ i)F= E S171. 2 p . -r

—

-, . p,'^ chord A B
or putting the angle at the centre A C B corresponding to the arc

contained in the bearing — 2a^ and the chord A B = 2 A C sin. a,

we have
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„ R sin.2p a • x- 1F = —-
. -.— or approximatively,

assuming 2 p = 2 sin. p,

aF = R sin. p .
-. .

. sm. a

Hence the initial friction increases with the depth, that the axle

is sunk in its bearing, E.G., if the bearing includes the semi-circum-

ference of the axle, we have a = h tt and 5m. a = 1, and therefore

F = - . R sin. p is X = 1,57 times as great as it is when a bearing
2 2

has been worn. If the axle does not lie deep in its bearing, or if a is

small, we can put sin. a = a — - = a ll — ~Y whence it fol-

lows that F = ll -\- tt] R sin. p or = R sin. p, when a is very

small.

(§ 186.) Poncelet's Theorem.—The pressure R on tlie bear-

ings is generally given as the resultant of two forces P and Q,

which act at right angles to each other, and it is consequently

=z V P'^ + Q^, So far as we need it for the determination of the

friction

F=(t>R^-<P VP^TQ\
we can content ourselves with an approximate value of V P^ + §\
partly because an exact value of the coefficient (p can never be

given, as it depends upon so many accidental circumstances,

partly, also, because the product 7? is generally but a small

fraction of the other forces, which act on the machine, e.g., the

lever, pulley, wheel and axle, etc., which is supported by the bear-

ings. The formula for calculating the approximate value of

V P"" + Q" is known as Poncelet's theorem, and its truth can be

demonstrated in the following manner. We have

\rp^+ e« = p 4/1 + i^^^ = P |/i V X'

in which x = ^, and if Q is the smaller force, .7; is a simple frac-

tion. Now let us put Vl 4- x^ = fi -\- V X, and let us determine

the coefficients ^ and v corresponding to certain conditions. The

relative error is

V\-^x^~li — vx_ u + V X
~ vj + x' ~ vr^~x''
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This equation corresponds to the curve S P, Fig. 276, whose
ordinate, when the abscissa a; = 0, is^ =i/ = 1 — fi, and,when

the abscissaAB = 1, isy = l — ^ ~J . The curve also cuts the
r 3

axis of abscissas in tw^o pointsK and N and at >S' lies at its greatest

distance C S from this axis. K
Fig. 276. ^g p^,^ ?/ = or

^ V 1 -h X' = fJi -h V X,

and solve the equation in relation

to X, we obtain

the values of which are the abscissas A K and A N of the points

E and N, where the curve cuts the axis, and also those values for

which the error is = 0. In order to find the abscissa ^ C of the

maximum negative error C S, we must put the differential ratio

f^?/ _ (i^ J:
^ ^) (1 4- aj'')—> X — V (1 + x'}^ _

dx
~

1 + a;'

~~

(see Article 13 of the Introduction to the Calculus).

This condition is fulfilled by putting

(fi + V x) (1 + x'')-lx = V {1 + xy- or

V
(fJ, i- V x) X — V {1 + x''), I.E. x = -.

^*

V
•According to this formula, the abscissaA C = - gives the greatest

negative ordinate.

t 1 + ^.

In order to have neither a great positive nor a great negative

error, let us put the three ordinates A0 = 1— ijl. BP:=1 —
\i -\- V

a/^' ^^^ ^ "^ ~ ^^^ + v^ — 1 equal to each other, and deter-

mine from them the coefficients [i and v. We have

f^L = ':^-t^, I.E., V = ( V 2 - 1) li = 0,414 u and
y % '_

2 - fi= V~ii' Vv\ I.E., 2 = ^ (1 + V\"+ 0,414'0

and consequently
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jLfc = = 0,96 and v = 0,414 . 0,9G = 0,40.
1 + 1/ 1,1714

We can, therefore, put V 1 + x' = 0,96 + 0,40 . x, and in like

manner the resultant

R = 0,96 P + 0,40 ft

and we know that in this case the greatest error we can make is

± y =: 1 — pi zz^ 1 — 0,^Q = 0,04 =: four per cent, of the true

value.

This formula supposes, that we know, which of the two forces

is the greater ; if this is unknown to us, we assume

VT~Vx^ = /*(! + ^)

and obtain in that way

In this case not only x = 0, but also x = cc gives an error

V
1 — II. If we put x = - = 1, we have the greatest negative error

Putting these errors equal to each other, we obtain

1 _ , = , V-2- 1, or , = --?-. = ^^ = ^^ = 0,828.

In case we do not know, which of the forces is the greatest, we
can write

R = 0,83 (P + Q),

then the greatest error we can make is ± ?/ = 1 — 0,83 = 17 per

cent. = ^T of the true value.

If, finally, we know that x is not over 0,2, we do best to neglect

X altogetlier and to put V P^ + Q" = P -^ if, however, x is over

0,2, it is better to make

V"P^~VQ' = 0,888 P 4- 0,490 . Q.

In both cases the maximum error is about 2 per cent.*

§ 187. The Lever.—The theory of friction just given is appli-

cable to the material lever, to the wheel and axle and to other

machines. Let us now take up the subject of the lever, discussing

at once the most general case, that of the bent lover A C B,

* Polytechnisclie Mittheilungen, Vol. I.
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Fig. 277.

Fig. 277. Let us denote, as formerly (§ 136), the arm of the lever

C A of the power F by «, the

lever arm C B of the load Q by h

and the radius of axle by r, and

let us put the weight of the lever

= G, the arm C E oi the same

= s and the angles A P K and

B Q K formed by the directions

of the forces with the horizon

= a and ^3. The power P produces the vertical pressure P sin. a

and the load Q the vertical pressure Q sin. 13, and the total vertical

pressure is F = 6^ + P sin. a + Q si7i. (3. The force P produces

also the horizontal pressure P cos. a and . the load an opposite

pressure Q cos. (3, and the resulting horizontal pressure is H —
P cos. a — Q COS. 13, and the total pre ssure on the axle is

R — liV+vH=^\ji{G i-Psin. a -i-Q sin. l3)-\- v{P cos. a — Q cos. [3)

in which, however, the second part v {P cos. a — Q cos. 13) is never

to be taken as negative, and, therefore, when Q cos. i9 is > P cos. a

the sign must be changed, or rather P cos. a must be subtracted

from Q cos. 3. In order to find the value of the force correspond-

ing to a state of unstable equilibrium so that for the smallest addi-

tion of force motion will take place, we put the statical moment
of the power equal to the statical moment of the load plus or minus

the moment of the weight of the machine (§ 136) and plus the

moment of the friction ; thus we have

Pa= Qb±: Gs + (f) Er
= Qb±Gs + (p(fj^V+vH)r, whence

P _ Qi ^Gs-h(p[^{G + Q sill. (3) ^ V Q cos. <3] r

a — II r sin. a ^^ v (p r cos. a

If P and Q act vertically, we have simply R = P + Q + G
and therefore Pa=Qb±Gs + (p{P+Q + G)r. If the lever

is one armed, P and Q act in opposite directions to each otlier and

E is = P — Q-\-G and therefore the friction is less. But P
must always enter into the calculation w4th a positive sign, for the

friction R only resists motion and never produces it. We see

from this, that a single armed lever is mechanically more perfect

than a double armed one.

Example.—If the arms of the bent lever represented in Fig. 277 are

a = 6 feet, & = 4 feet, s = ^ foot and r = U inches, if the angles of incli-

nation are a = 70^ (3 = 50", and if the load is Q = 5600 pounds and the

weight of the lever ^ is = 900 pounds, the force necessary to produce
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unstable equilibnum is determined as follows. The friction being disre-

garded, we have P a + G s = Qb and therefore

„ Ql-Gs 5600 . 4 - 900 . ^ _^^ ^p = — = = 3658 pounds.
a Q

If we put // = 0,96 and v = 0,40, we obtain

fi{G + Q sin. ^S) = 0,96 (900 + 5600 sifi. 50") = 4982 pounds,

V Qcos. (3 = 0,40 . 5600 cos. 50° = 1440 pounds,

fi sin. a = 0,96 . dn. 70° = 0,903 and

vcos.a = 0,40 . COS. 70" = 0,137.

It is easy to see, that P cos. a is here smaller than Q cos. 3 ; for since P is

approximatively 3658 pounds, we have P cos. a = 1251 pounds, while, on

the contrary, Q cos. /3 is = 3600 pounds ; therefore we must employ in this

case for v Q cos. (3 and forv<j>r cos. a the lower sign and put

_ 5600 . 4 - 900 . i + r (4982 + 1440)

^ - 6 - o r (0,902 - 0,137")

Assuming the coefficient of friction (p = 0,075, we obtain

(pr = 0,075 . ^ = 0,009375 and 6422 r = 60

and the force required

_ 22400 - 450 + 60 22010 „^^„
^ = 6 - 0,0717— = 5:9928 = ^^^^ l^"^^^^"

Here the vertical pressure, when we substitute the force P — 3658 pounds

determined without reference to the friction, is

V = 3658 sin. 70° + 5600 sin. 50° + 900 = 3437 + 4290 + 900

= 8627 pounds.

and, on the contrary, the horizontal pressure is

H= 5600 cos. 50 — 3658 cos. 70 = 3600 — 1251 = 2349 pounds.

Here jffis > 0,2 F, and therefore we have more correctly

E = 0,888 .H+ 0.490 V= 0,888 . 8627 + 0,490 . 2349 = 8811, and

consequently the moment of the friction is

= or R= 0,009375 .8811 = 82,6 foot-pounds ;

and finally the force

22400 - 450 + 82,6 __^_P= A- = 3672 pounds,

which value differs very little, it is true, fi'om the one obtained above.

\y^% 188. Friction of a Pivot.—If in a wheel and axle there is

a pressure in the direction of the axis, which is always the case,

when the axle is yertical, in consequence of the weight of the

machine, friction is produced upon the base of one of the journals.

Since there is pressure at all points of the base bet^veen the pivot

and the step (or footstep), this friction approaches nearer to the

ordinary friction of sliding, than to what we have previously con-

sidered as axle friction, and we must therefore employ in this case

the coefficients of friction given in Table II. (page 320). In order
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Fia. 278.

to find tlie work done by this friction, we must know the mean
space described by the base A By Fig. 278, of such a pivot. We
assume that the pressure E is equally distributed over the whole

surface, that is, we suppose that the friction upon equal portions

of the base is equally great. If we divide the base by means of the

radii CD, OF, etc., in equal sections or triangles, such as D C E,

these correspond not only to equal frictions, but

also to equal moments, and we need therefore only

find the moment of the friction of one of these

triangles. The frictions on such a triangle can be

considered as parallel forces, since they all act

tangentially, i.e., at right angles to the radius C D
;{I \ and since the centre of gravity of a body or of a

R \ surface is nothing else than the point of application

,^^^ / of the resultant of the parallel forces, which are

equally distributed over the body or surface, we can

consider the centre of gravity 8 of this sector or

triangle D C B as the point of application of the

resultant of all the frictions upon it. If the pressure on this sector

is = — and radius C D = CB — r,it follows (according to § 113),
to

that the statical moment of the friction of this sector is

R
n n

and finally that the statical moment of entire friction of the pivot is

RM n . % t
— 2 Rr.

Sometimes the rubbing surface is a ring A BED, Fig. 279.

If the radii of the same are C A — r^ and C D =
Fig. 279.

^^^ ^g have here to determine the centre of gravity

/S of a portion of a ring. Hence, according to

§ 114, the arm is

C S = r.

. r, — r,

and therefore the moment of the friction is

M •'MS^y
f -f- ft)

If we introduce the mean radius ---^— = r

and the breadth of the ring r^ — r.2 — l, we obtain also for the

moment of the friction
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= <PJi{r^ lU
The mechanical effect of the friction is, in the first case,

A = 2n.'^(f)Er = {n(l)Er, and, in the second case,

From tlie above data it is easy to calculate the friction upon a

journal composed of one or more collars, when a vertical shaft is

borne by it. It is also easy to see, that, in order to diminish the

loss of mechanical effect, the pivots should be made as small as

possible, and that, when the other circumstances are the same, the

friction is greater on a ring than on a full circle.

Example.—A turbine, weighing 1800 pounds, makes 100 revolutions

per minute, and the diameter of the base of the pivot is 1 inch ; how much
mechanical effect is consumed in a second by the friction of this pivot ?

Assuming the coefficient of friction 6 = 0,100, we obtain

(l>
B = 0,100 . 1800 = 180 pounds,

the space described in a revolution is

= .^Tvr =
i-

. 3,14 . ^V = 0,1745 feet,

and therefore the work done in one revolution is

= 180 . 0,1745 = 31,41 foot-pounds.

But this machine makes in a second ^-^^ = |- revolutions, and therefore

the required loss of mechanical effect is

314,1= —^— = 52,3 foot-pounds.

§ 189. Friction on Conical Pivots,—If the end of the axle

A B D, Fig. 280, is conical, the friction is greater than when the

pivot is flat, for the axial pressure R is

decomposed into the normal forces N, iV„

etc., which produce friction and whose

sum is greater than R alone. If half the

angle of convergence A D C = B D C = a,

we have
R

2]V =
sill, a'

and therefore the friction

pivot is

F ^

of this conical

sin. a

If we denote the radius C A — C B of the axle at the place of

entrance in the step by rj, we have, in accordance with what pre-

cedes, the statical moment,
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M:= (pR Rr,
^ ^ sin. a

'

or, since -^—

—

sm. a

sm.a
C A = the side D A of the cone
sm. a

a, we have

M = i (j) R a.

If we allow the axle to penetrate a very short distance into the

step, the friction is less than for a flat pivot, and for this reason

we can employ conical pivots with advantage. If, e.g.,

sm. a 3, or., r sm. a.

the conical pivot, whose radius is r^, occasions only half as much
loss of mechanical effect as the flat pivot, whose radius is r.

If the pivot forms a truncated cone, Fig. 281, friction is pro-

duced on the conical surface and on the flat base, aad we have for

the statical moment of the friction

\ sm. a / ^ r

when r denotes the radius C A at the point, where the pivot enters

the step, ry the radius of the base and a" half the angle of conver-

gence. In consequence of the great lateral pressure N the step

becomes soon so worn that finally only the pressure on the base

EF remains and the moment of the friction becomesM — %<}) Rr^.

Fig. 281. Fig. 282. Fig. 283.

5J i
I I)

1^

Vertical shafts or pivots are \ in it u rounded off as in Figs.

282 and 283. Although by this rounding the friction is not in

any way diminished, yet a diminution of the moment of the fric-

tion can be produced by diminishing the penetration of the pivot

into the step. If we suppose the rounded surface to be spherical,

we obtain with the aid of the calculus, for a hemispherical step the

moment of friction

^ Rr;M
2

and for a step forming a low segment approximatively

M=i[\ + 0,3 (^)'] R n,
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Fig. 284.

in which formula r denotes the radius of the sphere M A = M B
and r, the radius of the step A = C B.

Remark.—The pressure R upon tlie centre A D B, Fig. 284, of the

spindle of a tuming-latlie is perpendicular to

the direction of the axis 1) X and is decom-

posed into a normal pressure N and a lateral

pressure ^parallel to the axis. Retaining the

same notation, that we employed above for

conical pivots, we have

E
iV = and S = E tang a.

COS. a

The moment of the friction caused by iVis

r 3 1 3 r
g^g ^»

or since r^ = CA=:I)A sin. AD C = a sin. a, when a denotes the length

C D oi the portion of the centre which is buried, we have M = ^ <p Ra
tang. a.

The lateral force S is entirely or partly counteracted by an opposite

force iS'j on the other centre.

Example.—If the weight of the shaft and other parts of a whim gin is

R = 6000 pounds, the radius of its conical pivot is = r = 1 inch and the

angle of convergence 2 a of the latter is = 90°, the statical moment
of the friction is

If the shaft in hoisting a bucket out of a mine makes u = 24: revolu-

tions, the mechanical effect consumed by the friction of the pivot during

this time is

RrA = 2 Ttu . % (p
-— = 2 T . 24 . 47,1 = 7103 foot-pounds.

* sm. a
' ^

§ 190. The so-called Anti-friction Pivots.—Supposing

that the axial pressure on a pivot ABBA, Fig. 285, is propor-

tional to the surface of the cross-

.

section, w^e can put the vertical

pressure per square inch i?, = -^,

R being the total pressure and G
the area of the vertical projection

ADDA of the whole rubbing

surface ABBA. If now a is the

angle of inclination C T of the

element of the surface to the

axis C T of the pivot, the normal

pressure on each square inch
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of the bearing, will be iVi = -r-— and the corresponding friction

will be

F, = (j>]^, = (P
-^' (p R
sin. a G sin. a'

and if y denotes the distance or radius of friction M 0, the moment
of this friction is

^ ^ G sm. a'

or, since ~-— = tangent T,
sin. a ° '

F,y=cp^ . 01".

In order to obtain a regular wearing away of the axle and of its

step, the moment Fi y must be the same for all positions, and con-

sequently the tangent T must have the same value for all points

of the generating curve A B of the axle, and therefore the mo-
ment of the friction on the whole pivot is when T = a

M= F,y . G = (jyEa.

The curve A B, whose tangent T^ measured from the

point of tangency to the axis C X, is constant, is a tractrix or trac-

tory, and is generated by drawing a heavy point A, Fig. 286, over a

horizontal plane by means of a string,

Fig. 286. whose end moves along a straight line

C X. This string forms the constant

tangent lines A = al=(32 = y3,
etc. = a. In order to construct this

curve, we draw C A = a perpendicular

to the axis C X and take in C A, a

near to A, and lay off a 1 = a, take /3

in a 1, near to a and lay off /? 2 = «,

here again take y near to ft and lay off

y Z = a, etc., and we then draw a curve

tangent to the sides J a, a /3, /3 y, y cJ . .
.,

etc. This method gives the tractory

the more accurately the smaller the

sides A a, a j3, (3 y, y 6 . . ., etc., are.

Schiele calls this curve the anti-friction

curve. (See the Practical Mechanics'

Journal, June number, 1849, translated in the Polytech nisches

Centralblatt, Jahrgang, 1849.)

If, as is represented in Fig. 285, we make the anti-friction curve
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end at the circumference of the shaft the maximum radius of

friction C A = r is at the same time the constant tangent a, and

therefore tlie moment of the friction 31—
(f>
R r is independent of

the length of the pivot. When the rubbing surface is flat and of

the same radius, the moment of friction is i/i = J /^ r, that is,

one third smaller, and it decreases still more in time; for the exte-

rior portions are more worn than the interior ones, and tlius the

surface of friction becomes less.

The plu(/s and chambers of codes are sometimes made in the

form of the anti-friction curve ; for in this case the conditions are

the same as in a pivot.

Remark.—When the pressure R on the jDivot is so distributed that the

amount of the wearing, measured in the direction of the pressure, is equal

in all points of the circumference of the pivot, we have

sin. a^ sin.a„ sin.a^

and for conical pivots, wbere

a^ = a^ = a^. . .=a; N^y^=N^y^=N^y^...
If Oj, Og, Og ... denote the surfaces, upon which the normal pressures

N^^ N^, N^ . . . act, we have

R = N^ Oj sin. Qj + iVg 0^ sin. a^ + JV^ 0^ sin. a^ + . . .

or for conical pivots R — (iV^^ 0^ + JSf^ 0^ + If^ O^ + . . .) sin. a.

The portions of the surface can be considered as rings of the same

height -, whose widths are—;—
~, and whose radii are v., ?/„, y„, conse-

quently we have
h ^ ^ h h

0, = 2 T y. —^— , Oo = 2 ;r ^2 —=

, 0^ = 2~y^ — , etc.^ -^^ n sin. a ^ ,^^ n sin. a' ^ '^^ n sin. a'

Oo = -^- Oj, 0, = ^ 0. , etc., and also

iV^i Oj = iVg 0^ = JSr^ O3 . . ., and R=n . JST^ 0^ sin. a.

Therefore, under tlie above assumption, the normal pressure on the

equally high rings of the circumference of the pivot are equal.

Inversely we have N. 0. = —,— , hence the moment of the friction
*' ^ ^ n sin. a

on the pivot is

M=<^{N^ 0, y, + iVs O3 2/2 + ^3 ^3 2/3 + • . .)

If we have a truncated conical pivot, whose radii are r^ and rg, we must

put 2/1 + 2^2 + • • • + ^n = hi —^ ^^^^ which it follows that M =

^ R {r^ + To)

2 sin. a

For a complete conical pivot, whose radius is r^ = 0, we have M
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X-.

—

-^ while in a foregoing paragraph (§ 189) we found ir= | o —;—-*-.

See the article by Mr, Reye upon the Theory of Friction of Axles in Vol.

6 of the Civilingenieur, as well as the article upon the same subject by
Director Grashof in the 5th volume of the Journal of the Association of

German Ingenieurs.

§ 191. Friction on Points and Knife-Edges.—In order to

diminisli as much as possible the friction of the axles of rotating

bodies, they are often supported on sharp points, knife-edges, etc.

If the bodies employed were perfectly solid and inelastic, no loss of

mechanical eflPect in consequence of the friction would take place

by this method, since the space described by the friction is immeas-

urably small ; but since every body possesses a certain degree of

elasticity, upon placing it upon the point or knife-edge, a slight

penetration takes place and a surface of friction is produced, upon
which the friction describes a certain space, which", although small,

occasions a loss of mechanical effect. ^\^hen the rotation or vibra-

tion of a body supported in this way has continued some time, such

surfaces of friction are arcs developed by the wearing away of the

point or knife-edge, and the friction is then to be treated as we have

previously done. This mode of support is therefore only employed

in instruments such as compasses, balances, etc., where it is impor-

tant to diminish the friction and wher^ the motion is not constant.

Coulomb made experiments upon the friction of a body sup-

ported by a hard steel point and movable around it. According

to these experiments, the friction increases somewhat faster than

the pressure, and changes with the degree of sharpness of the

supporting point. It is a minimum for a surface of garnet, greater

for a surface of agate, greater for a surface of rock crystal, still

greater for a surface of glass, and the greatest for a steel surface.

For very small pressures, as, e.g., in the magnetic needle, the point

can be sharpened to an angle of convergence of 10° to 20°. If,

however, the pressure is great, we must employ a much larger

angle of convergence (30° to 45°). Tlie friction is less, when a body

lies with a plane surface upon a point than when the point plays in

a conical or spherical hollow. The circumstances are the same for

a knife-edge such as that of a balance. Balances, which are to be

heavily loaded, have knife-edges with an angle of convergence of

90°. Wlien the balance is light, an angle of 30° is sufficient.

If we assume that the needle A B, Fig. 287, has pressed down

the point F C G an amount D C E\ the height of which C M= h,

and the radius of which D M — r, and if we suppose the volume
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I
ny h to be proportional to the pressure i?, the measure of the fric-

tion can be found in the following manner. If we put ^ tt r^ h —
fi R, in which /z is a coefficient given by experiment, and substi-

tute the angle of convergence D C B = 2 a or h = r cotg. a, we

obtain for the radius of the base

(p Rr
/3 /-t R^ tang, a

= ^•'^ RUang.a,

From this we see that we can assume, that the friction on a pivot

increases with the cube root of the fourth power of the pressure

and with the cube root of the tangent of half angle of convergence.

Fig. 287. Fig. 288.

C.

'',.--

A

The amount of friction of a beam A B, Fig. 288, oscillating on

a knife-edge C C„ can be found in like manner. If a is the half

angle of convergence D C J/, I the length C C^ of the edge and R
the pressure, we have

192. Friction of Rolling.—The theory of rolling friction

is as yet by no means established upon a firm basis. We know,

that the friction increases with the pressure, and that it is greater,

when the radius of the roller is small than when it is large ; but

we cannot yet give the exact algebraical relation of the friction to

the pressure and to the radius of the rolling body. Coulomb made
a few experiments with rollers of

lignum-vitae and elm from 2 to 10

inches thick, which were rolled

upon supports of oak by winding

a thin string around the roller and

_ji attaching to the ends of it the un-

equal weights P and Q, Fig. 289.

According to the results of these

experiments, the rolling friction is

directly proportional to the pressure

and inverselv to the radius of the
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rollers, so that the force necessary to overcome the rolling friction
r)

can be expressed by the formula F = f .
—

, R denoting the press-

ure, r the radius of the roller and / the coeflBcient of friction to be

determined by experiment. If r is given in English inches, we
have, according to these experiments,

I'or rollers of lignum-vitae, / = 0,0189

For rollers of elm, / = 0,0320.

The author found for cast-iron wheels 20 inches in diameter,

rolling on cast-iron rails,

/ = 0,0183, and Sectionsratli Kittinger

/ = 0,0193.

According to Pambour, we have for iron railroad wheels about

39,4 inches in diameter

/ = 0,0196 to 0,0216.

The formula F — f— supposes that the force F, which over-

comes the friction, acts with a lever-arm H C = H L = r equal, to

the radius of the roller, and that it describes the same space as the

latter. If, however, it acts on a lever arm HK = 2 r, the space

described by it is double that described by the roUer on the sup-

port, and the friction is therefore

The conditions of equilibrium of rolling friction can be found

in the following manner. In consequence of the pressure Q of the

roller A C B upon the base A 0, Fig. 290, the latter is compressed

;

the roller rests, therefore, not upon its lowest point ^, but upon

the point which lies a httle in front of it. Transferring the

points of apphcation A and B of the forces Q and F, of which the

latter F is the force necessary to overcome the friction, to their

Pjq 290
point of intersection D, and constructing

p with Q and i^ the parallelogi-am of forces,

we obtain in its diagonal D R the force

R, with which the roller presses upon its

support in 0, and it is therefore necessary

that the moments of the forces of the bent

lever A JV^ shall be equal to each other.

If we put the distance N of the point

of support from the direction of the

force = a, and the distance M of the

same point from the vertical line of grav-
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ity of the body = /, we have

Fa= Qf,
from which we obtain the reciuired equation

a

The arm /is a quantity to be determined by experiment and is

so small, that we can substitute instead of a the distance of the

lowest point A from the direction of the force F, as well as instead

of Q the total pressure R.

f
Hence we have F = — R, and consequently, when the force

acts horizontally and through the centre C\ a = r ox

F= ^R,
r

and on the contrary, when this force acts tangentially at the high-

est point K of the roller,
jp _ f r*

~ 2 r

The so-called coefficient of friction/of rolling friction is there-

fore no nameless quantity, but a line, and must therefore be ex-

pressed in the same unit of measure as a.

If a body A S B is placed upon two rollers Cand D, Fig. 291,

and moved forward, the force P required to move the body is very

small, as we have only two rolling

^^^ 2^1- frictions to overcome, viz., one

between A B and the rollers and

the other between the rollers and
11—^P the surface H K. The space de-

scribed progressively by the roll-

ers is but one-half that described

by the load 7?, so that new rollers

must be continually pushed under

it in front, for the points of con-

tact A and B between the rollers and the body A B move exactly

as much backward, in consequence of the rolling, as the axes of

the rollers move forward. If the roller A H has turned an arc

A 0, it has also moved forward the space A A , equal to this arc,

has come in contact with 0„ and the new point of contact 0,

has gone backward behind the former one (.1) a distance A Ox =
A 0. If we designate the coefficients of friction on HK and A B
by/and/,, we have for the force necessary to move the body forward

P =
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Remaek.—The extensive experiments of Moiin upon the resistance of

wagons on roads confirm this law, according to which this resistance in-

creases directly as the pressure and inversely as the thickness of the rollers.

Another French engineer, Dupuit, on the contraiy, infers from his experi-

ments, that rolling friction increases directly as the pressure and inversely

as the square root of the radius of the rollers. The newer experiments of

Poiree and Sauvage by means of railroad wagons, also lead to the conclu-

sion, that rolling friction increases inversely as the square root of the radius

of the wheel. See Comptes rendues de la societe des ingenieurs civils a

Paris, 5 et 6 annee. Particular theoretical views upon the subject of roll-

ing friction are to be found in Von Gerstner's Mechanics, Vol. I, § 537, and

in Brix's treatise on friction, Art. 6. This subject will be treated with

more detail in the Third Part, under the head of transportation on roads

and railroads.

§ 193. Friction of Cords.—We have now to study the fric-

„ tion of flexible bodies. If a perfectly

flexible cord stretched by a force Q is

laid over the edge C of a rigid body

ABB, Fig. 292, and is thus compelled

to deviate from its original direction an

angle D C B = a°, a pressure B is pro-

duced at this edge, which gives rise to a

friction F, in consequence of which a

force F, which is either greater or less

than Q, is necessary to produce unstable

equilibrium. The pressure is (§ 77)

R = V F^ -\- Q"^ — 2 F Q COS. a, and consequently the friction

F = (p V~F' -h Q' - 2 F Q COS. a.

If now we substitute F — F + Q and P' approximatively

= Q" -V2 Q F, we obtain .

F=(pVQ' + 2QF-^Q'-2 Q'~cos. a - 2 F Q cos. a

= V2il - cos. a) (Q' + Q F) = 2 (P sin. ^VQ"'+ Q F,

for which we can write 2 s?';i. ^ (§ 4- A jP), whenwe takeinto

account only the first two members of the square root. Hence we

have

F=
(f)
Fsin. ^ 4- 2 () sin.

^,

and consequently the friction required is
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2
(f) Q sin, -

F=
â'1—0 sm.
^

for which we caD generally write accurately enough

F — 2
(f) Q sin. ^ (1 4 sin. ^j, and very often

F=2(p Q sin. |
when the angle of deviation a is very small. Hence, in order to

draw the rope over the edge C, we need a force

/ 2<t>sin.^ \

P=Q + F=[ 1+ Aq,
\ l-^sm.-J

and, on the contrary, the force necessary to prevent the weight Q
from sinkino: is

P,= Q.{i

a
2 (p sm. --

(I

1 — si?i.
/̂ill

we can put approximatively

P = [1 +-2 sin. \\} + ^ ^^^^'
|)J ft or more simply

P = (1 + 2 (psin.^j Q and

P, = 9. ^,or
a (i\

1 + 20 sin. -
(
1 + sin. ^1

P, = ^
^ := fl - 2 Sin.

l)
Q.

1 + 20 sin. ^

If the cord passes over several edges, the forces P and Pi at the

other end of the cord can be calculated by repeated application of

these formulas. Let us consider the simple case, where the cord

A B C, Fig. 293, is laid upon a body wdth n edges, and where the

deviation at each edge is the same and equal to a. The tension of

the first portion of the cord is

ft = (1 + 2 sin.
^) ft

when that at the end is = § ; that of the second is
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ft = (1 + 2 0sm^) ft 1 -\-2c}>sm.^] ft

that of the third is

ft = (l + 2 ^m.~j ft = (l + 2 sm.|j' ft

and in general the tension at the other end is

P - (l + 2 <?> sin.
^Jq,

when it is required to produce motion in the direction of the force
P.. Interchanging F and ft we obtain the force necessary to pre-
vent motion in the direction of the force Q and it is

P.

(1+20 sin.
~J

Fig. 294.

The friction in the first case is

i^= P - (3 = [(1 + 2> sin. -J- 1] ft

and in the second

F= Q-P, =[[1 + 2 cp sin. 0"- 1] P,

= [1 - (1 +2cpsin.~y'']Q.

The same formulas are also applicable to the case of a body

composed of links, as, e.g., a chain A B E, Fig. 294, which is

passed round a cylindrical body, when n is the number of links

lying upon the body. If the length of one joint of the chain is

= I and the distance C ^ of the axis ^ of a link from the centre
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C of the arc, which is covered, = r, we have for the angle of devia-

tion DBL — ACB — a, sin, - = ^—

.

Example.—How great is the friction on the circumference of a wheel

4 feet high, covered with twenty links of a chain, each five inches long

and 1 inch thick, when one of the ends is fastened and the other subjected

to a strain of 50 pounds ? Here we have

a
Pj = 50 pounds, n — 20, nn. ^ = - 5

3 48 + 1 49

'

now if we substitute for ^ the mean value, 0,35, we obtain the friction, with

which the chain opposes the revolution of the wheel

20-1 r / QK \ 20

50. = [(....0,35.1) -X].50 = [(.. I/-.]

=
[(Jl)'"

- 1] . 50 = 2,974 . 50 ^ 149 pounds.

§ 194. If a stretched cord A B, Fig. 295, lies upon a fixed

cylindrically rounded body A C B, the friction can also be found

by the rule given in the foregoing paragraph.
Fig. 295. jj^j^g ^j^^ angle of deviation is E D B = a' =

:mgle at the centre A C B of the arc A B of the

cord ; if we divide the same in n equal parts and

regard the arc A B as consisting of n straight

lines, we obtain n edges with the deviation —

,

and therefore the equation between the power

and the load is as in the foregoing paragraph

On account of the smallness of the arc -, sin. -— can be re-
n 2 n

placed by -—, and we can put

Developing accoi;ding to the binomial theorem, we obtain

p_/i ,^ 0^
,

n{ii-\) {<^aY
,

n{n -V)(n-'X) [^af \

^-K'^'^'n^ 1.2 ~^~ ^ ""r:2T3 n^~^"-)^^

or, since n is very great and we can put n — \= n—2 =zn — 3 .. ,~n,
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P = (l + a + ^ {i>aY + j--^ . (<p aY + ...)$.

But 1 + re + -j—^ + -

—

-—- -\- . . . = e", e being the base

2,71828 of the Naperian system of logarithms (see Introduction to

the Calculus), and we can therefore write

F = e^ ^
. Q or Q = P e~ ^ ^, and inversely

If the arc of the cord is not given in parts of tt, but in degrees,

then we must substitute a = -—- . tt, and if finally it is expressed

by the number u of coils of the rope, we must put a = 2 n u.

The formula P = e^ . Q shows, that the friction of a cord

P = P — § on a fixed cylinder does not depend at all upon the

diameter of the same, but upon the number of coils of the cord,

and also that it can easily be increased to almost infinity. If we
put = ^, we have

for i coils, P = 1,69 Q
« ^ « P = 2,85 Q
« i " P = 8,12 Q
"2 " P = 65,94 Q
"4 « P = 4348,56 Q.

(Remark.)—From the equation P:= M + 2 </> sin. -\ Q in § 193, it fol-

lows that

P- Q = 2cpsin.~ Q,

or substituting instead of a the element da of the arc and instead of P — Q,

the corresponding increase d P oi the variable tension P of the cord and

putting Q = P, we obtain

dP=2(t>-^P, or ^^ = (j)d a,

whence by integration we obtain

I P = (p a + Con.

In the beginning a is = and P = Q, and therefore we have

P
I Q = -{- Con. and IP— lQ = l~ = (pa^

or inversely

— = 7 ,OTP=e' Q.
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Example.

Fig. 296

v^>1

In order to let down a shaft a verj^ great but indivisible

weight P = 1200 pounds, we vs-ind the

rope, to which this weight is attached.

1|- times around a firmly fastened log

A B, Fig. 296, and we hold the other

end of the rope in the hand. What force

must be exerted at this end of the rope,

when we wish the weight to descend

slowly and uniformly ? If we put here

= 0,3, we obtain for this force'c r.

q= Pe-'^"

= 1200 . e

I Q = l 1200

1200
27r

33

40
= 7,0901 - 2,5918

= 4,4983,

log Q = 1,9536, whence

Q = 89,9 pounds.

§ 195. Rigidity of Chains.—If ropes or bodies composed of

links, etc., are laid on a pulley or a cylinder movable about its

axis, the fi'iction of cords and chains considered in the last para-

graph ceases, because the circumference of the wheel and the cord

have the same velocity, and hence force is only necessary to bend

the rope as it lays itself upon the pulley, and sometimes to

straighten it as it is unrolled from the pulley.

If it is a chain, which winds itself around a drum, the resistance

during the rolHng and unrolling consists of the friction of the bolts

against the links, since the
Fig. 291 former are turned through a

certain angle in their bear-

ings. If A B, Fig. 297, is a

link of the chain and B G
the following one, if C is the

axis of rotation of the pulley,

upon which the chain, stretch-

ed by the weight Q^ winds,

and if finally C 31 and C K
are perpendiculars let fall

upon the major axis of the

links A B and B G, then

M C ^'' = a° is the angle
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turned through by the pulley, while a new link lays itself upon it,

and K B G = 180° - A B G is the angle described by the link

B G with its bolt B D upon the link A B during the same time.

If B I) — B B = r^ is the radius of the bearing of the bolt, the

point D of the pressure or friction describes an arc B B = r^ a,

while a link lays itself upon the roller, and the work done by the

friction at the point D is, = (p^ Q . r^ a. Supposing the force Pj

necessary to overcome this friction to act in the direction of the

greater axis B G, we have the space described by it in the same

time s = C iV^ multiplied by the arc of the angle M CN—CN .a,

and therefore the work done — P^ . N . a, equating the two

mechanical effects, we have Pj . CN . a — (p^ , Q r^ a, and the force

required is

Pi = 0:G^,

a denoting (7 i\^the radius of the drum plus half the thickness of

the chain.

If we neglect the friction, the force necessary to turn the

pulley would be P = §,

but when we take into account the friction caused by the winding

of the chain upon the pulley, we have

If the chain unwinds from the drum, the resistance is the same

;

if, therefore, as on a fixed pulley, the rope is wound upon one side

and unwound upon the other, the required force is

P =; fl -f (/)j —I Q, or approximatively =: (l + 2 0, —J Q.

If, finally, the pressure on the axle is = P and the radius of the

axle — r, the force necessary to overcome all tlie resistances is

Example.—How great is the force P at the end of a chain passing

Fig. 298. round a roller A G B, Fig. 298, when the weight

^glljjilll^ acting vertically is Q = 110 pounds, the weight

i B^ of the roller and chain is 50 pounds, the radius a
'rail ifix

jJPgglJIIJIIIIljB
of the roller, measured to the middle of the chain,

III II
i^ is « = 7 inches, the radius of the axle C is = -| of an

^™'*^ C^ inch and that of the bolts of the chain is = f of an

inch ? If we put ^ = 0,075 and ^^ = 0,15, we obtain,

according to the last formula, the force

^
P=(\+2. 0,15 . -|^yil0 + 0,075.^ (110 + 50 + P),
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or assuminiT in the right-hand member P approximatively = 110

P = 1^016 . 110 + 0,0067 . 270 = 111,76 + 1,81 = 113,0 pounds.

§ 196. Rigidity of Cordage.—If a rope is passed over a pulley

or winds itself upon a shaft, its rigidity (Fr. roideur, Gcr. Steiiig-

keit) comes into play as a resistance to its motion. The resistance

is not only dependent upon the material, of which the rope is made,

but also upon the manner, in which it is put together, and upon the

thickness of the rope ; it can consequently be determined by experi-

ment alone.

The principal experiments for this object are those made by

Coulomb and those made more recently by the author himself.

While Coulomb employed only small hemp ropes from | to at most

lA inches in thickness and made them wind upoji rollers of 1 to at

most 6 inches in diameter, the author employed hemp ropes 2

inches thick and wire ropes from 4 to 1 inch thick and passed

them over rollers from 2 to 64 feet in diameter. Coulomb's experi-

ments were made in two different ways. In

one case, like Amonton, he employed the

apparatus represented in Fig. 299, where A B
is a roller around which two ropes are wound,

the tension being produced by a weight Q
and the rolling down of this roller by a weight

P, which pulls upon this roller by means of a

thin string. In the other case he laid the

ropes around a cylinder rolliug upon a hori-

zontal surface and, after having subtracted the

rolling friction, calculated the resistance of the

rigidity from the difference of the weights,

which were suspended to the two ends of the

rope and which produced a slow rolling motion.

According to the experiments of Coulomb, the resistance of the

rigidity increases tolerably regularly with the amount of the ten-

sion of the rope; but there is also a constant member K, as might

liave been expected; for a certain force is necessary to bend an un-

stretched rope. It was also shown, that this resistance was inversely

proportional to the radius of the roller; that for a roller of twice

the diameter it is only one-half, for one of three times the diam-

eter, one-third, etc. Finally, the relation between the thickness

and rigidity of a rope can only be determined approximativelyfrom

these experiments, as we might have supposed ; for this rigidity de-
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pends upon the nature of tlie material of tlie ropes and upon tlie

size of the fibres and strands. When a rope is new, the rigidity is pro-

portional, approximatively, to d'^'', and when it is old, to fZ^-^, d
denoting the diameter of the rope. The assumption by some

authors tjiat it varies with the first power, and that of others that

it varies with the square of the thickness of the rope, are therefore

only approximatively true.

§ 197. Prony's Formula for the Rigidity of Hemp
Ropes.—According to the last paragraph, the rigidity of hemp
ropes can be expressed by the following formula

:

S=^-^{K+v Q),

in which d denotes the thickness of the rope, a the radius of the

pulley measured to the axis of the rope, Q the tension of the rope,

which passes round the pulley, and n, K and v empirical con-

stants. Prony found from Coulomb's experiments for new ropes

and for old ones

S= — (2,45 + 0,053 0,

8, = ~- (2,45 + 0,053 Q),

in which formulas a and d are expressed in lines and Q and S in

pounds. These formulas are, however, based upon Paris measures

;

for English measures they become, when expressed in inches and

P°^^^^' S = ^ (14,39 + 0,289 Q)

S, = -^ (6,96 + 0.14 Q).

Since even these complicated formulas do not agree as well as

»could be wished with the results of experiment, we can, as long as

we do not take into account the later experiments, write with

Eytelwein .

^ ~ a ^ ~ 3604a-

In this formula a must be expressed in English feet and d in

English lines, but Q and *S' may be expressed in any arbitrary sys-

tem of weights. If we employ the metrical system of measures,

we have
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a

The results given by this formula are not sufficiently accurate, ex-

cept when the tension upon the rope, as is generally the case in

practice, is very great.

The rigidity of tarred ropes was found to be about one-sixth

greater than that of untarred ones, and wet ropes were found to be

about one-twelfth more rigid than dry ones.

Example.—If the tension upon a new rope 9 lines thick, which passes

round a pulley 5 inches diameter, is 350 pounds, the rigidity, according to

Prony, is

8 = ^ (!)'••' (14,39 + 0,289 . 350) = 0,613 . 46,216 = 28,33 pounds,

and according to Eytelwein

Q2 OKA

If the tension were but Q = 150 pounds, we would have, according to

Prony,

S =- 0,613 . 23,1 = 14,16,

and according to Eytelwein

* - 86047^ ~ '

In this case the formulas give results, which coincide better with each

other. We see from tlie above example, how uncertain these formulas are.

Remark.—Tables for facilitating the calculation of tlie resistance due

to the rigidity of cordage will be found in the Ingenieur, page 365. Ac-

cording to Morin (see his Leeons de Mecanique Pratique), we have, when
n denotes the number of strands in the rope and a the radius of the pulley

in centimetres, for untarred ropes

d = V0,13387i centimetres and

^ =^ (0,0297 + 0,0245 n + 0,0363 Q) kilograms

a

and for tarred ropes

d"
(0,1110 + 0,6843^ + 0,1357 ^) kilograms,

d = V 0,186 w centimetres and

8= "-— (0,14575 + 0,0346 n + 0,0418 Q) kilograms

d?=— (0,3918 4- 0,5001 d' + 0,1124 Q) kilograms.
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If, however, d and a are expressed in inches, and 8 and Q, in pounds,

we can put for untarred ropes

/S =— (0,621 + 24,70 d? + 0,3445 q\

and for tarred ones

d?8= — (2,193 + 18,06 d' + 0,2889 Q),

If, E.G., for an untarred rope we have d = ^ inch, a = f inches and

Q = 350 pounds, then

8 = ^.l (0,621 + 24,70 . ~ + 0,3445 . 350)16' 5 16

= jT (0,621 4- 13,893 + 120,575) = 30,4 pounds,

while in this case (last example) Prony's formula gave 8 = 28,33 pounds.

§ 198. Experiments Upon the Rigidity of Thick Ropes.—
The author, in his experiments upon the rigidity of cordage, made
use of the apparatus represented in Fig. 300. The sheave or roller

B D E, over which the rojoe to be

tested is passed, was, together with a

pair of iron wheels C L M, fastened

upon a shaft or axle C, and these

wheels ran upon two horizontal rails

\ PHISP^^Irtir H R. To one end F of the rope a

t K\\\ ^^^M^w /M weight G was attached, and to the

other end A a cross K, upon wliich

weights were hung until the wheels

and pulley began to roll forward

slowly. In order to be as independ-

ent as possible of errors arising from

imperfections in the apparatus, addi-

tional weights were afterwards added

at F until a rolling motion in the

opposite direction was produced. The
arithmetical mean of the weights

added gave, when the rolling fric-

tion was deducted, the rigidity of

the rope. The coefficient of rolling

friction to be used was determined in the same way, except that a

thin string, whose rigidity could be neglected, was employed instead

of a rope. The mean value of this coefficient was given in § 192.
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The resistance due to the rigidity is, according to the author's

views, due less to the rigidity proper than to the friction of the

different wires or strands upon each other; for in passing over the

pulley, they naturally change their relative positions. When a

wire rope passes round a fixed pulley, the first part of this resist-

ance is wanting, as the rope, in consequence of its elasticity, gives

out, when it straightens itself, as much mechanical effect as was em-

ployed in bending it around the pulley. Hence the rigidity of the

rope in this case consists solely of the friction of the wires upon

one another, a conclusion which is confirmed by the author's ex-

periments ; for he found the resistance to be forty per cent, less,

when the ropes were freshly oiled or tarred than when they were

dry. The conditions are different in the case of hemp ropes, for

they do not possess, especially after long use, any elasticity, and

the strands and fibres require force not only to bend them, but also

to straighten them.

§ 199. New Formulas for the Resistance Due to the

Rigidity of Cordage.—Since the rigidity of a rope depends not

only upon its thickness, but also upon the amount of bending it is

subjected to, and also upon the manner in which it is put together,

the author considers, that these conditions can be very well ex-

pressed by the formula

a '

the constants K and v must be determined specially for each kind

of rope. The experiments of the author also showed, that for wire

ropes we should put simply K instead of — , or

a

1. For tarred hemp ropes 1,6 inches thick passing round sheaves

from 4 to 6 feet in diameter, he found

^ = 1,5 + 0,00565 -^ kilograms,

when the radius a is expressed in metres, or

S = 3,31 + 0,222 ^ pounds,

when a is expressed in inches.

2. For a new untarred hemp rope | inch thick, upon a, pulley

21 inches iu diameter, he found ;
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^S'^ 0,086 + 0,00164^ kilograms = 0,1896 + 0,06457 ^pounds.

3. A wire rope 8 lines in diameter, formed of 16 wires, each 1^

lines thick, and weighing 0,68 pound per running foot^ was passed

around puUeys from 4 to 6 feet in diameter, and gave

Q Q
<S' = 0,49 + 0,00338- kilograms = 1,08 + 0,0937 ^ pounds.

4. For a freshly-tarred wire rope, with a hemp centre in each

strand and in the rope, which was 7 lines in diameter, was com-

posed of 4.4 = 16 wires, each 1-J lines thick, and weighed 0,67

pound per running foot, he found, with a pulley 21 inches in

diameter,

>S'r=:0,57 + 0,000694^ kilograms = 1,26 0,0272 ^ pounds.

Remakk.—A detailed description of the author's experiments is to be

found in the Zeitschrift fur Ingenieurwesen (dem Ingenieur), by Bome-
mann, Briickmann and Roting, Vol. I, Freiberg, 1848. The hemp ropes

of 1 were formerly employed in Freiberg for hoisting from the shafts by

means of a water-wheel and drum (Ger. Wassergopel), but of late they

have been replaced by the wire ropes of 3 and 4. Both of these kinds of

ropes can support with sextuple security a load of 30 cwt. It was shown

by the above experiments that, when the load was the same, the resistance

due to the rigidity of wire ropes was less than that due to the rigidity of

hemp ones. If we assume the tension of the rope to be ^ = 2000, and the

radius of the sheave to be a = 40 inches, we have for hemp ropes

S = 3,31 + 0,223 ^^ = 14,41 pounds,

and, on the contrary, for wire ropes

;S^ =1,08 + 0,0937 ^ffa = 5,8 pounds.

§ 200. Theory of the Fixed Pulley.—Let us now apply

the principles just enunciated to the theory of the fixed pulley.

Fig. 301. Fig. 303.

Let A C B, Fig. 301 or Fig. 302, be the pulley, and let a be its
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radius C A = C B, r the radius of its axle, G its weight, d the

thickness of the rope, Q the weight suspended to one end of the

latter, S the resistance due to the rigidity, F the friction upon the

axle, reduced to the circumference, and P — Q -\- F -\- S the foi'ce

at the oriier end of the rope. The rigidity of the rope is shown by

the fact that the rope does not immediately assume the curvature

of i\\? pulley as it is wound upon the sheave, nor straighten itself

immediately, when it is unwound. On the contrary, it approaches

the sheave in an arc, the curvature of which constantly increases,

and leaves in an arc, the curvature of which constantly diminishes.

The difference between the elastic wire ropes and the unelastic

hemp ones is that the former leave the sheave somewhat sooner

and the latter somewhat later ; hence the arm C D of the force in

the first case (Fig. 301) is somewhat greater, and in the second case

(Fig. 302) somewhat less than the radius C A = a of the sheave.

If we neglect the friction upon the axle and put P = (Q + S),

we have

(Q + S).CD= Q.CF,
and consequently the rigidity of the rope is

and the ratio of the arms is

C^ _ S_

CD~ ^ Q'

the value of which can easily be calculated by substituting one of

the values of S.

We can also determine this force P = Q -\- S -\- F without

employing the ratio of the arms of the lever by substituting in

that formula either with Prony* for thin hemp ropes

S=^{K+vQ),

or with the author for wire or thick hemp ropes.

a

and the friction upon the axles reduced to the circumference of

the pulley is

TF = (p ~ {Q -\- G + P), or approximatively,

F =<!>'-- (2 Q + G).

24
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Hence, in the first case, we have

and in the second

P = Q + K -\--^ -h (l>- {2 Q + G),

In the case of the wheel and axle a reduction of the force from

the circumference of the axle to that of the wheel is necessary.

Example.—If a wire rope 8 lines in diameter passes over a pulley

5 feet high, whose axles are 3 inches in diameter, and if the tension upon

the rope is 1200 pounds, we have the required force, when the coefficient

of friction is ^ = 0,075 and the weight of the pulley = 1500 pounds

P = 1300 + 1,08 + 0,0937 . ^%^ + 0,075 . -^ (3400 + 1500)

= 1300 + 1,08 + 3,748 + 14,63 = 1319 pounds;

hence ^| = 1,6 per cent, of the force is lost in consequence of the rope's

passing round the pulley.

If instead of a wire rope we employed a hemp one 1,6 inches thick, we
would have

P = 1300 + 3,31 + 0,333 . ^%^ + 14,63 = 1327

and the loss of force would be

37P - Q = j-z= 3,35 per cent.



FOURTH SECTION.

THE APPLICATION OF STATICS TO THE ELAS^
TICITY AND STRENGTH OF BODIES.

CHAPTER I.

ELASTICITY AND STRENGTH OF EXTENSION, COMPRESSION
AND SHEARING.

§ 201. Elasticity.—The molecules or parts of a solid or rigid

body are held together by a certain force, called cohesion (Fr. cohe-

sion; Ger. Cohiision), which must be overcome, when the body

changes its form and size, or if it is divided. The first effect, which

forces produce upon a body, is a variation in the relative position

of its parts, in consequence of which a change of form and volume

occurs. If the forces acting upon a body exceed certain limits, a

separation of the parts takes place and perhaps a division of the

wliole body into pieces. The capability of a body to resume its

original form, after the force which caused its change of shape has

been removed, is called in the most general sense of the word its

elasticity (Fr. elasticite ; Ger. Elasticitat). The elasticity of every

body has certain limits. If the change of form and volume exceeds

a certain amount, the body remains of the same form after such a

change, although the* forces which have produced the variation

have ceased to act. The limit of elasticity is very different for

different bodies. The bodies, which permit a great change of

volume before their limit of elasticity is reached, are called perfectly

elastic ; those, whose limit of elasticity is reached when they have

undergone a very slight change of form, ai'e called inelastic,



372 GENERAL PRINCIPLES OF MECHANICS. [§202.

although no such bodies really exist. It is an important rule in

architecture and in the construction of machinery, not to load the

materials employed to such an extent that the change of form
produced shall reach, much less exceed, the limit of elasticity.

§ 202. Elasticity and Strength.—Different bodies present

different phenomena, when they are changed in their form beyond
the limit of elasticity. If a body is hrittle (Fr. cassant ; Ger. sprode),

it flies in pieces, when its form is changed beyond its limit of elas-

ticity ; if, however, it is ductile or mallealle (Fr. ductile ; Ger. ge-

schmeidig), as, e.g., many metals, we can cause considerable

changes in its form beyond its limit of elasticity, without causing

a separation of its parts. Some bodies are hard (Fr. dur ; Ger. hart),

others soft (Fr. mou ; Ger. weich) ; while the former oppose great

resistance to a separation of their parts, the latter permit it with-

out much difficulty.

We understand by elasticity, in the more restricted sense of the

word, the resistance with which a body opposes a change of its

form, and by strength (Fr. resistance, Ger. Festigkeit) the resistance

with which a body opposes division. In what follows, both sub-

jects will be treated. According to the manner in which the extra-

neous forces act upon bodies, we can divide elasticity and strength

into

I. Simple and

II. Comhined;

and the former again into

1) Absolute or the elasticity and strength of extension,

2) Reacting, or the elasticity and stre7igth of compression,

3) Relative, or the elasticity and strength offlexure,

4) The elasticity and strength of sheering and

5) The elasticity and strength of torsion or twisting.

If two extraneous forces P and — P act by extension (Fr.

traction, Ger. Zug) in the direction of the axis of a body A B^ Fig.

Fig. 303. 303, the latter resists the

P^_-^^^^^^7T7^p^^— H T
-p extension and tearing by

^ ^^ """"^—i!j^j±Jj^ means of its absolute elas-

ticity and strength or its elasticity and strength of extension (Fr.

elasticite et resistance de traction, Ger. Zug oder absolute Elasticitat
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iind Festigkeit) ; if, on the contraiy, two forces P and — P press

Fig. 304. the body together in the direction

""^"^^^ ^^^-^
3Q^^ gQ ^j^^^ ^j^g latter is compressed

and finally crushed, the elasticity and strength of compression or the

reacting elasticity and strength (Fr. elasticity et resistance de com-

pression, Ger. Druck or riickwirkende Elasticitat und Festigkeit)

must be overcome. If, farther, three forces P, Q, R, which balance

each other, are applied at three different points A, B, C, in the

axis of the body A B, Fig. 305, and act at right angles to the same,

this body would be bent or perhaps broken, and it is the relative

elasticity and strength, or the elasticity and strength offlexure (Fr.

elasticite et resistance de flexion, Ger. Biegungs oder relative Elas-

ticitat und Festigkeit), that must be overcome, in order to bend

or break it. If, in the latter case, the points of application A and

C lie close together, as is represented in Fig. 305, a distortion is

Fig. 305. Fig. 306.

produced in the cross section D D, between the two points A and

C ; if the force P is great enough, the body is divided into two

parts, and in this case the elasticity and strength of sheering (Fr.

elasticite et resistance par glissement cisaillement ou tranchant,

Ger. Elasticitat und Festigkeit des Abschierens) is overcome. If

two couples (P, — P), (ft — Q), which balance each other, act upon

a body C A, Fig. 306, in such a manner that their planes are at

right angles to the axis of the body, a twisting of the body is pro-

duced, which may become a wrenching, and here the elasticity and

strength of torsion (Fr. elasticite et resistance de torsion, Ger. Dreh-

ungs-elasticitat und Festigkeit) is to be overcome.

If several of the forces here enumerated act at the same time

upon a body, the combined elasticity and strength or a combination

of two or more of the simple elasticities and strengths comes into

play.
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Fig. 307.

§ 203. Extension and Compression.—The most simple

case of elasticity and strength is presented by the extension and
compression of prismatic bodies, when they are acted upon by
forces whose directions coincide with the axis of these bodies. It is

of course nc^ necessary

that both should be

motive forces. The ac-

tion is the same, when
the body is firmly sus-

pended or supported at

one end and at the

other end subjected to

a pull or to a thrust.

We can obtain an ex-

ample of this case ei-

ther by suspending to

a prism A B C D, Fig.

307, which hangs vertically, a weight P, or by loading with a weight

P a prism A B C D, Fig. 308, which is supported at the bottom.^

In the first case, the body is extended a certain amount C Ci =
D D^ — X, and in the second case, it undergoes a similar compres-

sion ; if, therefore, the initial length of the body is A £> — B C ~
I it becomes, in the first case,

A D^ = B Cr = A D + n Dy=^l+ X,

and in the second case,

AD, = BC,^AD-DD,.= l—X.

The extension or compression a increases with the pull or thrust

P, and is a function of the same. This function or algebraical

relation between P and A cannot be determined a priori ; it is

dependent upon the physical properties of the body, and is diflFerent

for different materials. If we regard P and A as the co-ordinates of a

curve and construct this curve with the corresponding values of P
and A determined by experiment, we obtain by this means not only

a graphic representation of the law, according to which bodies are

extended and compressed by extraneous forces, but also a means of

determining the peculiarities of this law.

If we lay off from A on the positive side of the axis XX,
Fig. 309, the tensions or tensile forces, which act upon a body, as

abscissas A B, A M, etc., and at their ends the corresponding
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extensions as ordinates B D, M 0, etc., parallel to Y Y, we obtain

a curve A D W, which represents the law of the extension of

this body ; and if, on the contrary, we cut off on the negative side

of the axis XX from A the pressures or thrusts as abscissas A Bi,

A Ml, etc, and at the extremity of the same lay off the correspond-

ing compressions as ordinates B^ Z>i, M^ 0], etc, we obtain a curve

A Dx Ox TFi, by which the law of compression of the body is graph-

ically represented, xlccording to the results of many experiments,

these two curves pass without interruption into one another, have

consequently at ^ a common tangent G A Ox, and are therefore

properly only branches of the same curved line W D ADx Ox Wj.

Although the curve as a whole differs considerably from a right

line, yet in the neigborhood of the origin of co-ordinates A it

nearly coincides with the tangent G A Gx, and since for this line

the ordinates are proportional to the abscissas, we can also assume

that the small extensions and compressions produced hy the pulls or

thrusts A B, A Bx, etc., are proportional to these forces (Hooks'

Law).

The total extension M 0, produced by the pull A 31, consists

of two parts, viz.: the permanent extension or set M Q, which

remains in the body, when the stress has ceased to act, and the

elastic extension Q 0, which vanishes with the pull. It is the same

for compression. The total compression M^ Ox is the sum M^ Qx +
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Qi Oi of the permanent compression or set J/, Qi and of the elastic

one Q^^ Oi. When the forces are small, the permanent change is so

very small compared with the total one, that it can be regarded as

not existing, and consequently the total extensions and compres-

sions can be treated as the elastic ones. If the force exceeds a cer-

tain limit A B i^A B-^), the so-called limit of elasticity, if, E.G., it

becomes A M {A J/i), the permanent change of length or set forms

a considerable portion of the total extension M or of the total

compression Mi Oj. If the pull or thrust reaches a certain value

A U or A Ui, the extensions U R, U W and the compressions U^ Rx

and Ui TFi attain the limit at which the cohesive force of the body

is no longer able to balance the pull or thrust, and consequently a

tearing asunder or a crushing of the body takes place.

If a body has been subjected to a force, which has not extended

or compressed it beyond the limit of elasticity, the body will not

assume any further set, when subjected to another pull or thrust,

which does not reach the limit of elasticity.

§ 204. Fundamental Laws of Elasticity. Modulus of

Elasticity.—The lengthening or extension of a prismatical body,

produced by a force P, is proportional, in the first place, to the

length I of the body, since we can assume that equally long por-

tions are equally extended, and it is inversely proportional to the

cross-section F of the body, since we can sup-
FiG. 310.

pQgg ^YiQ entire stretching force to be equally dis-

jLj— tributed over the entire cross-section of the body.

" If, therefore, a body A B, Fig. 310, whose length

is = unity and whose cross-section = nnity, is

<> il liii
extended an amount (t by a stress P, the exten-

1^ llll
sion produced in another body F G of the same

material, whose length is = I and whose cross-

section is = F, by the same stress is

The extension o is of course dependent upon

the pull F alone and is different for different

^ materials; but according to what precedes

(§ 203) we can assume that for small pulls, which do not exceed

the limits of elasticity, the extension is proportional to the cor-

responding stress, or that the quotient ^ is a constant quantity.
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Now if A B, Fig. 311, represents the tension P of a prism,

whose length is = unity and whose cross-section = unity, within

the limits of elasticity and B D the corresponding extension (t,

and if we denote the angle G A U = D A B of the tangent to the

curve of extension at A by a, we have also

B D o
tang, a = and thereforeAB~ F'

o = P tang, a, whence we obtain

P I tang, a
1) A ^ F

The quantity tang, a is dependent upon the physical proper-

ties of the body and can be determined by experiment only. If

we assume I = 1, F = 1 and P = 1, we obtain tang, a — X, and

this quantity tang, a, to he determined hy experiment, is the exten-

sion which is produced in a prism, whose length is unity and whose

cross-section is luiity, hy the tensile force unity (see Comhes : Traite

de Vexploitation des mines, tome I.). If in the formula (1) we
assume F = 1 and 1 = 1, we obtain the expression

1 = P ta7ia. a, or = cotanq. a = P:
'^

tang, a ^

is that force, which would stretch a prism, whose cross-hence -—
tang, a

section is one square inch (1), its own length, were that possible with'

out surpassing the limit of elasticity.
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This hypothetical empirical quantity — cotg, a is called

the modulus of elasticity (Fr. coefficient d'elasticite ; Ger. Elastici-

tatsmodiil) of the body or material and will hereafter be designated

by the letter E.

According to this we have

or the relative extension, i.e., its ratio to the entire length of the

body
3)

^ - ^
I F E'

InyeTsely the force corresponding to the extension A is

4) P ^\ F E,

The same formulas obtain also for the compression A, caused by

a thrust P, and the modulus of elasticity E — cotang. a is the same

as for extension as long as the limit of elasticity is not sur-

passed, although in this case it denotes that force, which would

compress a prism of the cross-section unity its whole length, or to

an infinitely thin plate, provided that this were possible without

exceeding the limits of elasticity.

Remark 1.—We can also put the modulus of elasticity E equal.to the

weight of a prism of the same material as the body, upon which E acts, and

of the same cross-section unity. If a is the length of this body and y the

heaviness or the weight of one cubic inch of the same material, we have

EE = a y^ and therefore inversely « = —
Tredgold (after Young) used this length as the measure of the elasticity

(see T. Tredgold on the strength of cast iron and other metals). If E is,

E.G., 30000000 pounds for cast steel and 7 = 0,3 pounds, we have

30000000

0,3
= 100000000 inches.

I.E., a steel rod 100000000 inches long-, would extend a steel bar of the same

cross-section its whole length, if the law of extension given above were true

for all limits.

Remark 3,—During the extension or compression of a body a change

of cross-section takes place, which, according to Wertheim (see Comptes

rendues, T. 26), amounts to f of the longitudinal extension or compression.

If I is the initial length, F the initial cross-section and Fthe initial volume

Fl of the body, l^ and F^ being the length and cross-section during the

action of the force P, we have the corresjjonding volume

Fl =F^ l^ =Fl + F(l, -I) -(F-F,) I, or

V,- V=-.F{l^-l)-{F-F,)l,
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and the relative change of volume is

V^-V 1,-1 F-

V ~ I F
F— F, /L — l\

But we know that — „ = | (

—

j
—

),

whence it follows that

V -^\ I J'

I.E., tJie increase in volume is one-third the increase in length.

According to the theory of Poisson, ='M
Example—1) If the modulus of elasticity ct brass wire is 14000000

pounds, what force is necessary to stretch a wire 10 feet long and 2 lines

thick one line ? Here we have

Z = 10 . 12 = 120 inches, A = y^^inch and consequently - = yito

but F ^d^ = 0,7854 (t2^)^ = 0,0218 square inches, hence the force re-

quired is

p = __!__
. 0,0218 . 14000000 = 212 pounds.

2) If the modulus of elasticity of iron wire is 31000000 pounds, and an

iron surveyor's chain 66 feet long and 0,2 inch thick -is submitted to a pull

of 150 pounds, the increase in length is

„
150 66 . 12

^' ~ 0,7854 ."(0;2)^ • 31000000

§ 205. Proof Load, Proof Strength, Ultimate Strength.—
Tlie force A B, Fig. 312, which stretches aprismatical body, whose

= 0,122 inches = 1,464 lines.

Fig. 312.

Y

V
GX.

y^^ R

N

M, Bi A

^^ y=^Q__^^^
V u ^i^X ^"^-qT^L^ B M IJ

Ri ^0,
G.y

Y
M51

x
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cross-section is unity, to the limit of elasticity, is called the modulns

)f proof sirengtli of extension, 'a^Ti^i wi)! in future be designated by

T, wliiie the thrust necessary to compress the same to its limit of

elasticity is called the modulus ofproof strength of compression, and

will hereafter be designated by T^.

From the moduli of proof strength T and T^, with the aid of

the modulus of elasticity E, the extension o and the compression a,

at the limit of elasticity can easily be found ; for we have

j = ^and-=.^.

If F is the cross section of a prismatical body, whose moduli of

proof strength are 2^ and T,, we have their proof strength or proof

load

^x \ for a pull, P = FT
^ } and for a thrust, P^^ F T,.

In constructions the bodies should never be loaded beyond their

limit of elasticity, and the loads should therefore never surpass the

proof strength of the cross-section of the prismatical bodies em-

ployed. Cross-sections must therefore be determined by the follow-

ing formulas

:

PF = Y and

On account of the accidental overloading and concussions, to

which buildings and machines may be subjected, and also on ac-

count of the changes, which the bodies undergo in the course of

time, owing to the action of air, water, etc., we render these con-

structions safer by substituting in the foregoing formula, instead

of the' proof load, only one-half or one-third of the same, i.e. by

making the cross-section two or three times as great as those given

directly by the formula. In order to have an mfold security, we

P P\
must substitute in the formulas F = y^ qy F^ — -^, instead of T

T T
or J',, the worhinn or safe loads — or ---.

^ ./ mm
The force A tJ, Fig. 313, necessary to tear apart a prismatical

body, whose cross-section is unity, is called its modulus of rupture

or of ultimate strength of extension, and is denoted by the letter K;

and in like manner we call the force A C7i which crushes a body,

whose cross-section is unity, the modulus of rupture or of ultimate
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strength of compression, and we denote it by Kx. If the cross-sec-

tion of the prismatical body is F, we have

Fig. 313.

Y

3)
\P= FKfoT the force, which will tear the body, and

F Kx for the force, which will crush it.

The cross-section of bodies is often determined from the modu-

lus of rupture by substituting in the formulas

4)

pF = -^and
XL

F,
K,

K K
instead ofK the loorking load of rupture, i.e. a small part — or —\

E.G., a fourth, sixth, tenth, etc., of the numbers determined by ex-

periment. We call n a factor of safety. If the proof strength of

all substances were the same fraction of the ultimate strength, that

A B T . AB. T,
is, if the ratios

T . AB,^and -T-y^K A Jj^

were fixed constants, theU K A L\ K,

determination of the cross-section by means of the moduli of proof

strength would give the same result as that by means of the work-

ing load of rupture ; but since this ratio is different for different

bodies, the determinations by the aid of the moduli of proof

strengths T and T^, or rather by means of the working or safe loads

T T.— and —, are generally more correct and proper, and the deter-



382 GENERAL PRINCIPLES OF MECHANICS. [§206.

K K
mination by tlie worhing or safe loads of rupture — and —- is only

to be employed, when the modulus of proof strength is unknown.
If the cross-section of a body is a circle, whose diameter is dy we

have -^ = F, whence P = ^ T= 0,7854 d' ^Tand

d = \/^ = 1,128 i^ = 1,128 y^.
Example 1.—What weight can a hanging column of fir support, if it is

5 inches wide and 4 inches thick? Assuming the modulus of proof

strength to be 3000 pounds, the cross-section being i^" = 5 . 4 = 20 square

inches, we have P — F T = 20 . 3000 = 60000 pounds as the proof load

of this column. If, however, we assume the modulus of rupture to be

K = 10000 pounds, and we desire a quadruple security, we have P= FK
— 20 .

^oo"" = 50000 pounds. In order to be secure for a great length of

time, we take but a tenth part of K, and obtain thus P = 20 . 1000 =
20000 pounds.

Example 2.—A round wrought-iron rod is to be turned so as to bear a

weight of 4500 pounds; what should be its diameter? Here T is 18700

poimds, whence d = 1,128 V T^nKh — ^j^^^ f '-^ — ^'^^^ inches. The

modulus of rupture of average wrought-iron is = 58000 pounds ; if, how-

ever, we wish five-fold security, we take K = 11600 pounds, and we have

d = 1,128 \/^Iq = 1,128 |/^ = 0,7025 inches.

§ 206. Modulus of Resilience and Fragility.—When we

stretch a prismatical body by a force, which gradually increases from

to P = A 31 = JV 0, Fig. 314, and by this means lengthen it

from to ?^ = 31 = A iV", a certain amount of work is done,

which is determined by the product of the space or total extension

A iVand the mean value of the pull, which increases gradually from

to P = N 0. This product can be expressed by the surface

A ]V 0, whose abscissa is the extension A N = ?^ and whose ordi-

nate is the pulling stress N = A 3£ = P. If the extension does

not exceed the limit of elasticity, the surface A N can be con-

sidered as a right-angle triangle, whose base and altitude are A and

P, and the work done, corresponding to it, is

L=IX P.

If we substitute in it

A rzr (7 ^ and P = i^ r,
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we obtain the work to be done in stretcldng it to the limit of elc^

ticity a
,

in which V denotes the volume Fl of the body and A a number,

given by experiment, which is called modulus of resilience for

extension and is determined by the expression

In like manner the worlc necessary to comjpress it to the limit

of elasticity is

L,^VA^
in which

A,^\AC,,C,D, = \o,T, = \
_^Tl

E \o,^E

denotes the modulus of resilience for compression at the limit of
elasticity.

Similar formulas can be employed for the work done in tearing

or crushing prismatical bodies ; for the first case we have

L = VB,
and for the second,

X, = VB,,
B = the surface A UW denoting the modulus of fragility for
tearing ; and Bi -— the surface A Ui >Fi, the modulus of fragility

for crushing.
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Wq ae3 from the foregoing that the mechanical effect necessary

to stretch or compress a prismatical body to the limit of elasticity,

as well as that, which is necessary to produce a tearing or crushing

of the same, is not at all dependent upon the different dimensions,

but only upon the volume V of the body ; that, e.g., for two prisms

of the same material the expenditure of mechanical effect in pro-

ducing rupture is the same, when one is twice as long as the other

and the crc^s-section of the former but one-half that of the latter.

Example.—if the modulus of elasticity of wrought iron is ^= 28000000

pounds and the extension of the same at the limit of elasticity a — :r^^y

T
the modulus of proof strength is, since a = —

,

T = a E = —^T^TT^- - = 18700, (approximatively)

and consequently the modulus of resilience for extension is

T"^ 18700
4 = *" y = 2"^ = i"' J^= STYSOo

= 6,33 pounds.

Hence, in order to stretch a prismatical body of wrought iron to the limit

of elasticity, the mechanical effect

L = AV = 6,23 Fis necessary.

If, E.G., the volume of this body were F = 20 cubic inches, the me-

chanical effect would be Z = 6,23 . 20 = 124,6 inch-pounds = —~-

= 10,38 foot-pounds.

(§ 207.) Extension of a Body by its Own Weight.—
If a prismatical body A B, Fig. 315, has a considerable length ?,

it undergoes, in consequence of its weight, a notable extension,

which can be determined in the following manner. Let i^ denote

the cross-section of the body, y its heaviness or the weight of a cu-

bic inch of the matter composing it and x the variable length of a

portion of it ; the tension in an element if iV^ is produced
Fig. 315.

y^^ ^|^g weight of the part of the body B M lying below

it, and consequently [according to § 204, (2)] the cor-

responding extension of the length MN — 6 x oi this

element is

, . y F X -. y ,

d X = ~-^~ ax — ^ X ax.FE E
By integration we obtain the extension of the entire

piece B M

and consequently that of the entire body ^ ^ is
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yV _yFr _^,G
2^ '^FE FE '

in which G — y Fl denotes the weight of the whole body.

If this weight was not equally distributed in the body, but

applied at its end B, the extension would be

^> = :p:^ = ^ '^•

The extension /I = ^ Ai of a body in consequence of its own
weight, is but one half as great as that produced by the same weight

at the end of the body.

The same law obtains of course for the compression X produced

in a body by its own weight.

If in either case a pull or thrust P acts upon the body, we have

the extension or compression produced

~ FE ^ FE ~ FE
in which the upper sign is to be employed, when the force P acts

.

in the same direction as the weight G, and the lower one, when it

acts in the opposite direction. In the latter case, the extension is

of course smaller than when P is the only tensile or compressive

force.

The total extension or compression is = 0, when

i G = P, or 6^ = y i^Z = 2 P, or

2P
y F'

The force P, acting at the end of the body, extends it equally

A P
in all parts, viz., in the ratio -= — -^^-^^ while, on the contrary, the

weight G stretches or compresses it in the variable ratio -r- = -—

.

ax E
The ratio of the total extension at any point, at the distance x from

the point of application of the force P, is

I ~"l^ dx~\F '^'^J E'
If the force P acts in the same direction as G, the maximum*

ratio of extension or compression is for x = I, and it is then

A, /P . \ 1 P + G=(^")^I \F ' ' 1 E ~ FE
25
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and, on the contrary, the minimum is for x = 0, 1.E., at the point

of application of P, and it is — = -^rrf*

If P and G act in opposite directions, we must distinguish the

P P
cases, in which I < ^=— and in which I > -=,—. In the first casePy Py

the ratio of extension or compression —i = (— — yrrl^is a

p
maximum for iP = and = ttt^j ^^^ ^ minimum and =

/P \ 1

(p —
'X 7 ~rf ^^^ X = I In the latter case there is a positive

P / P\ 1
maximum ^^-^ for x = 0, and a negative maximum iyl — —\—

p
for X = I, and, on the contrary, for x =: -=— the function becomes

= zero.

, In order that the body shall be extended or compressed to the

limit of elasticity only, the maximum of the ratio of extension or

/P \ 1 T
compression {— ± y x \ ^ should be at most — a — —, or more

simply the maximum of (-^ =fc y a;j — T. But, when P and G

have the same direction, this maximum is

_ P P + yP l _ P + G
~ F -^y''- F ~ F '

and therefore we must put
^^

— T, or P =z F [T — y l)y

hence the required cross-section is

F ^
T - yX

If, on the contrary, the forces P and G act in opposite directions,

P i P\
we have two maxima, one = -^ and the other == ( y ? — — j, and

therefore the corresponding cross-section is equal to the greater of

the values P , ^ P ^F—-^ and F — — — T.
T y I

If in the formulas we substitute K instead of T, we obtain the

conditions of tearing and crushing, that is, in the first case,

P = F{K — y I), and in the second either

P=:FKovP = F{yl-K).
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For P = we have either

T
yl- T= and^ = -or

y .

•

yl-K= Oand.' = ^;
r

the first formula being applicable to the case, when the body is ex-

tended or compressed to the limits of elasticity, and the second to

the case, when a tearing or crushing of the body takes place.

RsMAKK.—Tlie energy stored by a body, which is extended or com-

pressed by its own weight, can be calculated in the following manner. The

element M N, Fig. 316, whose length is dx^ is gradually stretched by the

weight 7 F^x of the portion of the body BM an amount, which
Fig. 316. y x d x

'

^ increases gradually from to d X =—=,—, and the work done

in accomplishing it is

y^ Fx^= ly Fx. 61 = ^'—^-dx.

Integrating this expression, we obtain the expression for the

quantity of work done in extending all the elements of the rod

from B to i/,

and that done in extending the entire rod

YW ~ ^
' '3FE^ ~ ^ • SFF

T \ ' — 1 L — 1 i n 7

C J

in which (according to § 207) A = A ^r^ denotes the total extension of

the rod.

Example.—If a lead wire, whose modulus of rupture is ^ = 3100 and

the weight of a cubic inch of which is = 0,412 jjounds, is suspended verti-

cally, it will break by its own weight, when its length is

T^ q-jAA

I = — = ^r-r— = 7524 inches = 627 feet.
7 0,412

If the modulus of proof strength is T = 670, it is stretched to the limit

of elasticity, when its length is

T 670
L = — = —— = 1626 inches = 135,5 feet,
* 7 0,412

And if its modulus of elasticity is ^ = 1000000 pounds, we have for the

corresponding extension

T 670
X = —L= T^,r;r^ . 135,5 =: 0,090785 feet = 1,0894 mches.E lOOUOUU

§ 208. Bodies of Uniform Strength.—If the pull or thrust

P upon a vertical prismatical body is sensibly augmented by its

weight G, we must of course put

F + G = FTotF = FT- G = F(T-lyl
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and determine tlie cross-section of this body by means of the for-

mula (compare § 207)

T-ly
If this body, as, e.g.,\4 B, Fig. 317, is composed of prismatical

p,rts, we can save material by giving to each of these parts a cross-

section calculated by means of this formula. If the
'

^
' length of these portions of the body are Zi, Zs, k, etc., and

if the load P is gradually increased by the weights Fi Ix y,

F^ Z2 y? F^ Is y, etc., of the portions to Pj, P^, P3, etc., the

required cross-section of the first portion is

that of the second should be

P, F,T
F,=-

that of the third

T-ky

P.

T-ky'

F,T
etc.T-l,y T-kY

If the length of all the parts is the same, or 1^ = 1^= 4, etc., = Z,

we have more simply

P PITF,=

F,=

F.=

' _ P / 2' \

T -ly~ T \T- ly)

F,T P T _ P / T V
~ T \T-lyl 'T- ly

F,T
(T

P
T

lyf

T— I Y T \T — t y)

or in general for the cross-section of the n\h portion

~ T \T~lyl
If the cross-section of all the pieces are to be the same, that

cross-section should be

P _P
TF=
\T-nly)T— n ly T \T — nty)

While in this case the volume of the whole body would be

V=nFl = — —

,

T—nly
in the former case, where every piece has its own proper cross-sec-

tioD, the volume is determined by the geometrical series
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PI r, T I T W , I T \«-n

But the sum of the geometrical series in the parenthesis is (see

Ingenieur, page 82)

whence it follows, that

and that the weight of the whole body is

G=(F^- F,) T.

If the length I of the parts is very small, and, on the contrary,

their number n very great, and if we denote the total length nlhy
a, we have, reasoning as in § 194,

in which e = 2,71828 is the base of the Naperian system of loga-

rithms, and therefore we have

Pi T \_ P __P ay ^ ay

P
in which F^ = -^ denotes the area of the first cross-section.

We have also approximatively

and, on the contrary.

The volume of the body, composed of very many small por-

tions, is found in the manner shown above to be

approximatively
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while on tlie contrary, the volume of the body with a constant

cross-section is approximatively

The formulas

Pa
ay

__Par ay
1 + ^ + (¥)]

F^ =
p tx
-7p^^ and F„

/ ^ \

hold good, of course, for every body, such as A B, Fig. 318, and

A B, Fig. 319, in which there is a constant variation of the cross-

section. In order to find the cross-section i^„

for any position Jf and the volume of the body
cut off at the same point, we have only to sub-

stitute in this formula for a the distance B M
of the given position from the point of applica-

tion B of the tensile or compressive force. The
bodies thus determined have at every point a

cross-section corresponding to the load they

support, and are therefore called bodies of uni-

form strength (Fr. solides d'tgale resistance,

Ger. Korpervon gleichem Widerstande). These

bodies have (the other circumstances being the

same) the smallest volume, require therefore the least quantity of

material and are for this reason generally the cheapest and most

advantageous that we can employ. If we compare such a body

with a prismatical one, we find from the above approximate formu-

las, that the economy of volume is

V„ = Parlay 5 /a yV n _ P «' y / b a y\
" T" L 2 T" "^6 XT! J

~ 2T' \ 3 "T
/*

2 T 6 V T/ J 2T' V ' ^

Remark.—Since the relative extension and compression of a body of

T
uniform strength is everywhere the same, viz., a = -=,, its total extension is

T
X =z a a = -^a, while for a prismatical body it is only

^ _(P + iG)a _P + i-G T^

^ ~ FE ~ P + G ' E '

Example.—What must be the cross-section of a wrought-iron pump
rod, whose length is 1000 feet, when, in addition to its own weight, it must

support a load P = 75000 pounds ? If instead of the modulus of proof

T
strength 7"= 18600 we employ for safety a working load — = 9300 pounds

and put the weight of a cubic inch of wrought-iron

7,70 . 62,425 ^ ^^^^
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the required cross-section is

P 75000 75000 ,„ ^„^ = Y^^y = 930Cr^200()T0;2783 = 5962 = ^^'^^ ^^"*^^ ^°^^^'

and the weight of the rod ia

Q = F.ay = 12,58 . 13000 . 0,2782 = 42000 pounds.

If we could give this rod the form of a body of uniform strength, we
would have for the smallest cross-section

P 75000 ^^,
^^ = Y^ '9306 "^

'
^^^^^^ mc^Qi,

and for the greatest

F^ = 8,06 .
eV^s^. 1,59 ^ 8,06 e'''"'' = 8,06 . 1,432 = 11,54 square inches,

and the weight of the rod would be

(?„ = r„y = {Fn - F) T = (11,54 - 8,06) 9300 = 32364 pounds.

If the modulus of elasticity of wrought iron is ^ = 28000000 pounds,

the extension of the rod in the latter case would be

T 18600 . 1000 186 93 ^ « «« . x.

^ =^ ^ = -^066660- = 280 = 140^^^* = ^'^^ ^°^^^^'

and, on the contrary, in the first case it is

P •}- I G ^ 75000 + 21000 ^ ^^ 96000 ^ ^^ ^ ^, . ,

-P^G- ^ = 7-5600-^2600 • '^'' =
1T7-660 • '^'' = 6.54inches.

§ 209. Experiments upon Extension and Compression,

—In order to study thoroughly the laws of the elasticity of any

substance, it is necessary not only to submit prismatical bodies of

this substance (which should be made as long as possible) to

extension or compression by weights, which are gradually increased

in amount until rupture is produced, but also to observe the exact

extension or compression produced by each weight. If we place

the bodies to be experimented upon in a vertical position, the

weights can be hung or laid upon them, and they then give

directly the pull or thrust to which the body is subjected. In

order to avoid experimenting with too great weights, we generally

prefer to let the weights act upon the body by means of a lever

with unequal arms ; the weights' are always hung upon the long

arm (a), and the body is acted upon by the shorter arm (i). Mul-

tiplying the weight G by the ratio ^ of the arms, we find the corre-

sponding pull or thrust P = - G. The so-called hydraulic press
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can also be employed with advantage instead of weights to produce

very great tensile or compressive forces. In order to observe the

amount of the extension or compression, a fine line is drawn upon
the bar to be experimented with near each of its ends, or a pair of

pointers, with verniers attached, are fastened to it at those points,

and in order to determine not only the elastic, but also the perma-

nent extension or set, we measure the distance between these lines

or pointers not only before and during the application of the

weights, but also after they have been removed, and it is generally

preferable to allow several minutes or even hours to elapse between

the application or removal of the weights and the measurement

;

for when the forces are very great the extension and compression

do not assume the true value in a moment, but only after a certain

time. This distance is measured either with a bar compass or

directly by means of a division on the rod itself. The so-called

oathometer is also employed for this purpose ; it consists essentially

of a vertical staff and of a spirit-level, which is capable of sliding

up and down the former (see Ingenieur, page 234). In order to

observe the compression on long rods, we must enclose them .in

tube-shaped guides ; they must also be well greased from time to

time, so that they can slide without resistance in their guides.

If we wish to determine the modulus of ultimate strength of a

body, we can employ shorter pieces for the experiments. In

experimenting upon rupture hy

extension^e. employ bodies with

large heads A and B, Fig. 320,

through which holes are bored

exactly in the axis. In the

middle of each hole a circular

knife-edge is made, so that the body shall be pulled exactly in the

line of the axis by means of the bolt CD and the

clevis FE, which is applied to its ends.

In experimenting upon rupture hy crushingf

the two bases of the body {A, Fig. 321) are

made parallel, it is then brought between two

cylinders B and C, whose bases are ground flat

;

while the rounded head of one of the cylinders

is acted on by the compressive force, the other

is supported by the large bed-plate D, and both

slide in the interior of cylinder E F. The

pressure P upon the head H of the cylinder is

Fig. 320.

Fig. 321.
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produced either by a hydraulic press or by a one-armed lever

L 0, such as is partially represented in the figure.

While the rupture of a body by tearing occurs in the smallest

cross-section, and the body is therefore divided in two parts only,

the rupture by crushing takes place generally in inclined surfaces,

and the body is divided into several pieces. Prismatical bodies are

divided, in the first place, into two pyramids, whose bases are those

of the body and whose apexes are at its centre, and in the second

place, into other pyramidical bodies, whose bases form the sides of

the body and whose apexes are also situated at its centre. Bodies,

whose structure in different directions is different, of course do not

act thus ; e.g., a piece of wood would be compressed by a force

acting in the direction of the fibres, in such manner, that at its

smallest cross-section the fibres would be bent out in a spherical

form.

§ 210. Experiments upon Extension.—We are indebted

to Gerstner for the first thorough experiments upon the extension

and elasticity of iron wire. He employed in his experiments iron

wire from 0,2 to 0,8 lines in diameter and made use of the lever

apparatus represented in Fig. 322 with the pointer C D lb feet

Fig. 323.

long, the counter-balance G and the sliding weight Q. The wire

E F, which was about 4 feet long, was firmly fastened at one end E
and the other was wound round a pin Fy which was turned by the
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endless screw S, so that the wire could be subjected to any desired

strain. The extension of the wire was shown by the pointer D
upon a rod ^ 5 in 54 times its natural size. The knife-edge C of

the lever, the pin F, around which the upper end of the wire is

wound, and the endless screw S, which turns the pin, are all repre-

sented on a larger scale in Fig. 323.

Gerstner proves by his ex-

periments, that every extension

is the sum of two extensions, one

of which (the elastic extension)

disappears, when the weight is

removed, and the other (the 'per-

manent extension, or set) remains,

so that the extension A is not ex-

actly proportional to P within the limits of elasticity, and that it

is more proper to replace the formula

P = ^FE [§204(4)]

by the following series

in which a and 3 are numbers determined by experiment.

Quite extensive experiments upon the elasticity and strength

of wrought iron and iron wire were afterwards made by Lagerhjelm

and by Brix. Both experimenters employed in their researches a

bent lever ACE, Fig. 324, the longer arm C B of which was de-

pressed by the weights G, which were laid upon a scale-pan W, and

.(A)>^,

Fig. 324.

^^-*^=-
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thus the iron bar or wire D E, which was fastened to the shorter

arm C A, was stretched to any desired extent. In the apparatus

used by Brix, the ratio of the arms of the lever was yttj = j^,

and one end D of the wire was attached to the arm C A with

clamps, hooks and bolts, and the other end was fastened in the

same way to a screw S, which was turned by means of a train of

wheels by a crank K. The increase in length was given by two

verniers, which were screwed fast to the ends of the wire and

moved along two scales divided into quarter lines. When the wire

had been firmly fastened in the clamps, the scale-pan was gradually

loaded with heavy weights, and in each experiment the wire was

stretched by turning the crank j^ until the lever was lifted from

its support and the tension of the wire balanced the weight G.

The experiments were made with wire I.5 to 1^ lines thick and

gave for the average value of the modulus of rupture of unannealed

wire K — 98000 pounds, and, on the contrar}^, after annealing,

K = G4500 pounds. The average modulus of elasticity, on the

contrary, for annealed and unannealed wire was found to be

B = 20000000 pounds ; it was also found, that the limit of elas-

ticity was reached, when the strain was 0,5 K for unannealed and

0,6 K for annealed wire.

When the tensions were greater, the extension became perma-

nent, and the total extension of unannealed wire at the instant of

rupture was

/I A

J
= 0,0034, and that of annealed wire - = 0,0885,

or 2G times as much. In the apparatus used by Lagerhjelm the

tension on the wire was produced by a hydraulic press, the piston

rod of which was attached to the end of the iron bar.

Lagorhjelm employed in his experiments iron rods 3G inches

long, A inch thick, the cross-sections of which were circular and

square. According to his experiments, the average modulus of

elasticity for Swedish Avrought iron is

E = 46000000 pounds

;

the modulus of rupture or of ultimate strength is

E:= -~E= 92000 pounds

;

and the modulus of proof strength

T =a.E= -^ . 46000000 ='28750 pounds.
1000
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Wertheim, in his experiments upon the elasticity and cohesion

of the metals, allowed the wire to hang freely, and fastened to the

end of the same a weight-box, which was supported upon the floor

by means of feet, which could be raised or lowered by turning a

screw. In order to stretch the wire by means of the w^eights

placed in the box, the foot-screws were turned until the box swung
freely. A cathometer was employed to determine the extension of

the wire.

The experiments were performed at very different tempera-

tures, and with wire made of various metals, such as iron, steel,

brass, tin, lead, zinc, silver, etc. The principal results of these ex-

periments will be found in the table given in § 212.

The apparatus, 'with which Fairbairn performed his experiments,

consists essentially of a strong wrought-iron lever or balance-beam

A C D, Fig. 325, whose fulcrum D is firmly retained by a strong

bolt F, which can be raised or lowered by means of a nut. Two

Fig. 325.

iron pillars give the necessary resistance to the bed-plate H H,

through which impasses. The piece of iron L M to be experi-

mented upon is suspended by means of a chain to the support K K,

which reposes upon the two columns T T and is connected by a

bolt and clevis to the stirrup C of the lever A C D. To the longer
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arm of the latter there is suspended not only a constant weight G,

but also a scale-board for the reception of smaller weights ; the

bolt X serves to support the lever, and the latter is raised by means

of a rope P, which passes over a pulley and is wound upon the

shaft W of a windlass U Y Z. After the weights had been laid on,

the arm E of the lever was allowed to sink gradually by turning

the crank U, until the piece of iron to be tested was finally sub-

jected to the tension produced by N and G,

Remark.—Gerstner's experiments upon the elasticity of iron wire, etc.,

are discussed in Gerstner's Mechanics, Vol. I. For the experiments of

Lagerhjelm, see PfaflF's translation of the treatise : Researches for the pur-

pose of determining the density, homogeneity, elasticity, malleability, and

strength of bar iron, etc., by Lagerhjelm (Niirnberg, 1829), and the informa-

tion in regard to the experiments of Brix is to be found in the treatise on

the cohesion and elasticity of some of the iron wires employed in the con-

struction^f suspension bridges (Berlin, 1837).

The experiments of Wertheim upon the elasticity and cohesion of the

metals, etc., as well as of glass and wood, are discussed in " Poggendorf 's

Annalen der Physik und Cbemie," Erganzungsband II, 1845. In the

latter experiments the modulus of elasticity of the bodies named was de-

termined not only by experiments upon extension, but also by experiments

upon flexion and vibration. For Fairbairn's experiments on the strength

of materials, his '' Useful Information for Engineers" can be consulted.

§ 211. Iron and Wood.—The most complete set of experi-

ments upon the elasticity and strength of cast and wrought iron

are those more recently made by Hodgkinson. By these we have

for the first time acquired a complete knowledge of the laws of ex-

tension and compression for these materials, which are of such

great importance in their practical applications. Although, accord-

ing to these experiments, iron produced in different ways has

diflerent degrees of elasticity and strength, yet it is possible to

express the behavior of this body in regard to extension and com-

pression by means of curves.

The average modulus of elasticity of cast iron (Fr. fonte, Ger.

Gusseisen) is, according to these experiments, for extension as well

as for compression

E — 1000000 kilograms, when the cross-section is one centime-

ter, and consequently

E — 14,22 . 1000000 - 14220000 pounds when the cross-section ia

one inch.

The extension at the limit of elasticity is

_ A _ ^_
"^ ~ l~ 1500'
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This extension corresponds to the modulus of proof strength

1000000 _^ ...~ icAQ - — 667 kilograms, or

^ 14220000 ^,^^~ —1500— ~
pounds.

The compression at the Hmit of elasticity, on the contrary, is

_ 1
""^-750'

and therefore the modulus of proof strength is

^ 1000000 -.oooTi 14220000 ,,,,^
Ti = ^^^ - = 1383 kilograms = —^— = 18960 pounds.

The modulus of rupture for tearing was found by these experi-

ments to be

K — 1300 kilograms = 18486 pounds,

and, on the contrary, that for crushing

K^ = 7200 kilograms = 102400 pounds.

The resistance of cast iron to crushing is, therefore, 54- times as

great as that to tearing.

For iDTOuglit iron (Fr. fer; Ger. Schmiedeisen) we have for

extension as well as compression

E = 2000000 kilograms = 28440000 pounds,

and the limit of elasticity is reached, when g = - = t^t:?.? whence

;the modulus of proof strength is

T = ^^^- = 1333 kilograms = 18960 pounds.

Finally the modulus of rupture or of ultimate strength of

wrought iron was found to be for tearing

K = 4000 kilograms = 56880 pounds,

, and for crushing

Ki = 3000 kilograms == 42660 pounds.

The modulus of elasticity of wrought iron is therefore about

double that of cast iron, and while the modulus of rupture by tearing

of cast iron is but about { that of wrought iron, the modulus of rup-

ture by crushing of cast iron is nearly 2.^ times as great as that of

wrought iron. The relations of the elasticity and strength of cast

and wrought iron are graphically represented in Fig. 326. From

the origin A on the right-hand side of the axis of abscissas JT JT

the tensile forces, given in thousand pounds per square inch, are

laid off and on the left-hand side the compressive forces, while the
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upper half of the axis of ordinates Y Y represents the correspond-

ing extensions, and the lower half the compressions. It will at

once strike the eye, that the curve of cast iron has a great develop-

ment on the side of compression and that of wrought iron on the

side of extension ; and we also remark, that the curves form

approximatively straight lines near the origin A.

Fig. 326.

Thousandths
Wrought Iron

Cast Iron

_Y-^10 Thousandths

As next to iron luood (Fr. bois ; Ger. Holz) is most generally

employed in construction, the relations of the elasticity of fir,

beach and oak wood are graphically represented in the figure by
a curve. The average modulus of elasticity of these kinds of

wood is

E = 110000 kilograms = 1564200 pounds.

The limit of elasticity is reached, when a =wkk of the length, and

the corresponding modulus of proof strength is

180 kilograms = 2607 pounds.

Finally, the modulus of rupture for tearing is

E = 650 kilograms = 9243 pounds.

^ _ 110000
~" 600"^
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and, on the contrary, for crushing

K — 450 kilograms = 6399 pounds.

.. The ratio 156 : 1422 : 2844 approximatively = 1 : 9 : 19 of the

moduli of elasticity of wood, cast and wrought iron to each other

is expressed in the figure by the subtangents db, ac and ad.

Fig. 327.

Wrought Iron

Tfaoasandths

Thousand pounds

90 &0 70 60 .50 40 30 20 10 X
/A 10 20 30 40 50 GO

1 Thousand pounds

-2

Cast Iron

10 Thousandths

The modulus of resilience A = -h g T for the limit o; elasticity

is expressed by the triangles A a h, A a^ c^ and A a^ c?i, the bases

of which are the small ratios of extension g = A a — --7, and
oOO

G = A (tx — -"^~ (approximatively).

From the above, we have for wood

J = -] (T 7" = A . wrT?. . 180 = 0,15 kilogram centimeters

1
i .

„*_
. 2607 = 2,17 inch-pounds,

for cast iron

1A = { . --^~ . 667 = 0,222 kilogram centimeters = 3,16 inch-

pounds, and for wrought iron



§212.] ELASTICITY AND STRENGTH OF EXTENSION, ETC. 401-

1333
A = 7^ . frnn ~ 0,444 Icilogram centimeters = 6,32 inch-pounds.

Properly, a complete series of experiments is necessary to deter-

mine the modulus of fragility for tearing or crushing ; for this

modulus is" found by the quadrature (see Art. 29, Introduction to

the Calculus) of the complete branches of the curve on either side,

and this is especially necessary for the extension of wrought iron and

for tlio cjmyression of cast iron, since the curves corresponding to

the changes in these bodies differ considerably from right lines.

The extension and compression of wood at the instant of rupture

by tearing or crushing is so little known, that we are unable td

give with any degree of certainty its moduli of fragilit}^ If we
treat the corresponding curve as a right line, we obtain the modu-
lus of resilience for tearing

'K^ 650^
B = I -=^ = --^-^wt:?: — 1,91 kiloarram centimeters — 27,2 inch-

^ E 110000 '
&

pounds, and, on the contrary, the modulus of fragility for crushing is

K^ 450*
B—\ -^= i ' TTF^T^ — ^?^^ kilogram centimetres = 13,07 inch-lbs.

When cast iron is ruptured by tearing, assuming the extension

to be (Ti
— 0,0016 and the mean value of the force to be 560 kilo-

grams, the modulus of fragility is

B = 0,0016 . 650 = 1,04 kilogram-centimetres = 14,8 inch-lbs.

When cast iron is ruptured by crushing, the maximum exten-

sion can be assumed to be cr, = 0,008 and the mean crushing force

to be — 3600 kilograms; hence the corresponding modulus of

fragility is

B, = 0,008 . 3600 = 29 kilogram-centimetres = 411 inch-lbs.

We can assume as the mean value of cr, for the rupture of

wrought iron by tearing, 0,008 and for the mean value of the

fierce 3000 kilograms; hence the corresponding modulus of fra-

gility is

B = 0,008 . 3000 = 24 kilogram-centimetres = 341 inch-lbs.

On the contrary, for the rupture of wTought iron by crushing,

we must assume o — 0,0018 and the mean force to be = 1300

kilograms; whence the corresponding modulus of fragility is

B = 0,0018 . 1300 = 2,34 kilogram-centimetres = 33,3 inch-lbs.

§ 212. Numbers Determined by Experiment.—In the

following tables I and II the mean values of the moduli of elas-

26
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ticity, of proof strength and of ultimate strength of the materials

generally employed in constructions are given. The first table is

for tensile and the second for compressive forces.

The value of the relative extension cr = - for the limit of elas-
V

ticity given in the second column of the tables expresses also the

T
ratio -^ of the values of T and E given in the third and fourth

columns. In practice the bodies are only loaded with — T, e.g.,

I T to I T, or the cross-section is determined by substituting in

the formula

instead of K, for metals the modulus of safe load ~ K — \ K, for
lib

wood and stone = ^^ K, and for masonry but ^o K. On the con-

trar}^, for ropes we can employ I K to I K. We call n a factor of

mfety.

The lower numbers in the parenthesis
•] [

give the values in

kilograms, assuming a cross-section of 1 centimetre square; the

upper numbers express the values in pounds referred to a cross-

section of one square inch.

Remahk.—The moduli given in these tables are for unannealed metals.

For annealed metals (Fr. metaux cuits, Ger. ausgegliite Metalle) the modu-

lus of elasticity is generally the same as for unannealed metals, while the

modulus of rupture by tearing of annealed metals is generally from 30 to

40 per cent, less than that of unannealed ones. Tempered and annealed steel

(Fr. acier trempe et recuit, Ger. geharteter und angelassener Stahl) has the

same modulus of elasticity as untempered steel, but its modulus of proof

strength is 20 to 30 per cent, greater than that of untempered steel. When
it is not otherwise stated, the moduli for metals were determined with

Avdre, which had on the outside a harder crust (caused by the drawing)

than hammered or cast metal rods. For some materials, e.g. wood, iron,

and stone, the moduli of elasticity, of proof strength and of ultimate

strength vary so much that in particular cases a value differing 25 per cent,

(more or less) from those here given may be found.
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TABLE I.

MODULI OF ELASTICITY AND STRENGTH FOR EXTENSION.

Name of the material.

Cast iron

Wro't iron in rods

i

in wire,

in sheets.

German steel, tem-
pered and annealed

Fine cast steel. . . .

Extension

A

at the limit of
Elasticity.

1500
I

1500
I

1000

I

1250
I

I

, Hammered copper
j

^ ^ J4000

: Sheet copper. . .

.

i

I

Copper wire
i

Zinc, melted... .

.

Brass

Brass wire

3650
I

1000
I

4150
I

1320
I

742
I

Bronze,gun metal.. 7590

•Lead
j 477

[Lead wire ^500

= 0,000667

= 0,000667

=: 0,001000

= 0,000800

= 0,001198

= 0,002222

= 0,000250

= 0,000274

= 0,0010001

= 0,000241

= 0,000758

= 0,001350

= 0,000629

— 0,00210

= 0,000667

Modulus
of Elasticity E.

j 14 220000

( I 000000

j 28 000000

( I 970000

(31 000000

( 2 190000

(26 000000

( I 830000

( 29 000000

( 2 050000

[41 500000

( 2 920000

(15 640000
/ I 1 00000

(15 640000

( I lOOOOO

( I 720000

I
I 210000

f 13 500000

1 950000

J 9 looooo

I 640000

f 14 000000

i
b

2? S b
a;!^

9480 3,16
667'

18700

31000
2190

20800

1475,

3473o|2o,8

2460 1,48

0,222

6,23

0,44

15.5

1,10

8,32

92200
6490

3910

102,4

7,20

0,49

^^

275' 0,034

4285'

301

987000

9 800000
690000

711000
50000

I 000000!

700001

1720
1210

3250
229

6890

485

8900

1330

6160

434

1490
105

667

47

0,59

0,041

8,60

0,605

0,392

0,029

2,61

0,184

12,76

0,90

1,94

0,136

1,56

0,110

0,22

0,016

18500
I

1300

1

58200 I
4090 j

88300 )

6210 I

46800 )

3290 I

16500 I
8190 j

145500 /

10230
)

33800 }

2380)

30400 /

2140 j"

60300 )

4240 i

7500)
526)

17700

)

1242)"

51960
(^

3654)

36400 \
2560 j

1850

1

130)

3100)
220

)



404 GENERAL PRINCIPLES OF MECHANICS. [§312.

MODULI OF ELASTICITY AND STRENGTH FOR EXT^EI^SION—Continued.

Name of the materia].

Extension
A.

at the limit of Elasticity.

Tin.

Silver

.

Gold

Platina.

^- z= O.OOIIII
900

= 0,001667
600

600 = °'°°'^^7

Aluminum.

Glass

Wood : beach, oak,

pine, spruce, fir,

in the direction

of the fibres ....

The same kinds of

wood in the di-

rection of the

radii to the

yearly rings. . .

The same kinds of

wood parallel to

the yearly rings

,

Light hemp rope .

.

Strong hemp rope

Wire rope

Chain cable

Leather straps (cow

leather)

Sheet iron (riveted

with one row of

rivets)

Modulus
of ElasticityK

e^

^5^

600
0,001667

5 700000
400000

10 4ooooO|

73oooo|

11 400000J
800000:

22 800000
I 6ooooO|

9 6000000

675000J

10 000000
700000

I 560000
IIOOOO

6300

440

15800
IIOO

19000
1300

° 8^

3,50
0,24

12,00

0,83

15,8

1,09

3800031,7
2700 2,25

185000
13000

II4000
8000

10400

731

2600
180

2,17

0,15

«^

,0)5000

35

41200 )

2900
)

38400

)

2700
j

48300 )

3400
j

28900 )

2030
j

3530)
248;

9200
I

650)

570 }

40 f

640 )

45)
8700)
610

j

6830)
480

47000 ) I

3300
J 47000 I

( 3300)

51900
365

j 4100 Ij
( 290 j

j 37000 I

I
2600

s
!
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TABLE 11.

THE MODULI OF ELASTICITY AND STRENGTH FOR COMPRESSION.

-

^

N
.£

8
c

Name of the

Compression

.ti

J
<u 2 b

•" b

.material. ''^l .^11
'^°'

I"'

c

at the limit of elasticity.
_3
3 _3

3
*o

-3 "3

•H s _3

S S

Cast iron .

750
= °'°°'333

( 14000000

'I 990000
18700

1320
12,44

0,88

104000 )

7310)

I ( 28000000

( 1970000
18700 6;23 31000 }

Wrought " = 0,000667
1500 1320 0,44 2200)'

Copper . .

I— = 0,000250
4000

f 15649000

I
IIOOOOO

3910
275

0,49

0,039

58300)
4100 )

Brass . . .
— — — — ( 10400)

( 731 i

Lead .... — — — J 7250)

i 510)
Wood in

the direc- 1

1

tion of the j 6800 )

"1 480 ifibre. . . .
— — —

Basalt . . .
— — — J

28000 )

I
1970 \

Gneiss and
i

8300 )

I 585^granite . .
— — —

Limestone. — — 1 5200 )

365

Sandstone

.

„ _ J 4150)
( 292 j

Brick . . .
~ — — — J

830 /

/ CO n

Mortar. . .

i

— — —
! ( 37 f

1

Example 1. What should be the cross-section of a wronght-iron rod

1500 feet long, which is subjected to a pull of 60000 pounds ?

T
Neglecting the weight of the rod and allowing a strain of- -^ = 9350

60000

9350
pounds per square inch, we obtain the required cross-section F
= 6,42 square inches. Taking into account the weight of the rod, the

weight of a cubic inch of iron being y = 0,280 pounds, we have
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^ 60000 60000 6000
^ = 9350- 1500. 12To;280 = 9350^ 5^0 = TsT^^^'^^ '^^^'^ '^^^^'•

The weight of the rod is G = Fly =^ 5040 . 13,92 = 70157 pounds, and
the extension of the same by the pull P = 60000 pounds and by the weight

G = 70157 pounds is

(P + 1 G) I 95078 . 18000 142617

FE 13,92 . 28000000 ~ 32480 ~
'

^'-"^s-

Example 2. How thick must the foundation walls of a building 60 feet

long and 40 feet wide on the outside, and weighing 85000000 pounds, be

made when we employ good cut pieces of gneiss '? If we make the thick-

ness of tlie wall equal to x, we can put the mean length of the wall = 60

— X and the mean breadth = 40 — x, and therefore the mean periphery

2 . (60 — X + 4:0 — x) = 200 — 4 ic, and consequently the base of the

whole masonry is (200 — 4: x) x square feet -- 144 (200 — 4 a;) a? = 576

(50 X square inches. The modulus of rupture of gneiss for crushing

is 8300 pounds. If, therefore, we assume a coefficient of security of ^j^ or

a factor of safety of 20 for the wall, v^'e can put the allowable pressure

. , 8300
upon a square inch = 4l5 pounds ; hence we have

20

415 . 576 (50 -x)x= 35000000

whence 50 a? — a?^ = 146,4,

and finally the required thickness of the wall

146,4 + x' 8,57

50
= 2,928 + ~l~ = 3,10 feet.

§ 213. Strength of Shearing.—The strength of shearing (Fr.

resistance par glissement ou cisaillement, Ger. Schubfestigkeit or

Widerstand des Abdriickens oder Abscheerens), which comes into

play when the surface of separation coincides with the direction

of the force, can be treated in the same manner as the strength of

extension. We have here to consider the action of three parallel

forces P, Q, and R, Fig. 328, when the points of application A and

C of two of the forces lie so near each other, that bending is not

possible, and therefore a separation of the body in two parts takes

Fig. 328. Fig. 329.

i^

place between A and C in a surface D D at right angles to the axis

of the body. The strength of shearing, like that of tearing and
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crushing, is proportional to the section of the body, or ratlier to the

area F of the surface of separation, and in the case of wrought iron

is approximately equal to that for tearing, so that the modulus of

rupture K for tearing can also be employed as the modulus of rup-

ture for shearing, and consequently we can put the force necessary

to produce rupture by shearing, when the cross-section is F,

P = FK. In general we have P = F K^y K^ denoting the ultimate

strength of shearing per unit of surface determined by experiment.

The formula P — - FE — o FE ioY tensile and compressive

forces within the limit of elasticity can also be employed for the

C A
shearmg force P, Fig. 329, but here g denotes the ratio l — -^-^

of the displacement C A to the distance O B of the directions A P
and E F of the two forces from each other.

The following Table III. contains the modulus of elasticity (C)

and that of rupture or ultimate strength (^2) for all bodies, for

which they are known at present, and they correspond to the

formulas P = i F C and Pi = F K.2 for the elasticity and strength

of shearing.

TABLE III.

MODULI OP THE ELASTICITY AND ULTIMATE STRENGTH OF
SHEARING

i Names of the Bodies.

1

Modulus of Elasticity C.

Modulus of Ultimate
Strength A'j,

1

Cast Iron

Wrought Iron

Fine Cast Steel ....

Copper

Brass

Wood of deciduous Trees . .

Wood of evergreen Trees . .

( 2840000

( 200000

j 9000000
1 630000

( 14220000

1 1000000

( 6260000
I

\ 440000 1

( 5260000]

1 370000 f

569000
40000

j 616000

t 43300

32300)
2270)

50000 )

3500)

92400 )

6500 j

6831
48 f

2290
}

161
s

C is generally taken = i E and K^ = K,
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The most important application of the formula P = F K^is
to the determination of the thickness d of bolts and rivets, with

which plates and other flat bodies are fastened together. There

are two modes in which bodies
Fig. 330. Fig. 331. may be fastened together in this

way ; either the plates A B and

C D to be joined together are

laid upon one another, as in Fig.

330, and then fastened together

by the bolts or rivets JViV^and

0, or, as is represented in Fig.

331, the plates are butted to-

gether and covered with splicing

pieces D D and E E, and they

are then fastened together by

means of the rivets NN and 0,

which pass through both the plate and the splicing pieces. In the

first method of joining the plates the tensile stress passes from one

plate to the other through the intervention of a couple, which

causes both of the plates to undergo in addition to the stretching

also a bending, and consequently their safe or working load is

diminished. The second method, where no such couple is called

into action and where, consequently, no bending takes place, is for

this reason to be preferred. Since the plates and splicing pieces,

which are thus joined, press upon each other with no inconsidera-

ble force, the strength of the joint is considerably augmented by the

friction arising from this pressure. For greater safety we disregard

this action in determining the thickness of the rivets. On the other

hand, the working load of the plate is diminished by the holes

made for the rivets or bolts, and we must therefore take care that

it is not exceeded by the working load of the rivets. If d is the

thickness of the rivets and v their number, in the case of the joint

in two plates represented in Fig. 331, we have for the working

load of the rivets P = V ~ ,

Xow, if b is the width and .9 the thickness of the pieces to be joined

and v^ the number of the rivets in one row, the cross-section of the

plate submitted to the force P is

F = {h — v^ d) s. and therefore we have P

K denoting the modulus of rupture of sheet iron ; equating these

two values, we obtain

{b-v,d)s—,
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VTT CP

4
K,= {h- V, d) s K, or

_^{h - v,d)sK
^ ~ -dr k;

When the holes in the plates are punched, the strength of

shearing must be overcome, but in this case the surface is not

plane, but cylindrical. If s is the thickness of the plate and d the

diameter of the hole in it, we have the area of the surface of

separation

F ^r: d s,

and consequently the force necessary to punch the hole is

P = FK, --= TTdsK,.

(Compare in the "Civil Ingenieur," Vol. I, 1854, the article "John
Jones' experiments on the force necessary to punch sheet-iron," by

C. Borneman).

Example—1) An iron rivet 1^ inch thick can resist with safety," if we as-

sume ^3 = i . 50000 = 8300 pounds, a force

P=^^K,=
l(^\

8300 = '---If-^ = 14670 po,u,ds,

and the force necessary to punch the hole through the sheet-iron, which is

^iuch thick, is

3 1
Pj = TT J s . ^2 = " . o • o • ^^00^ = ^^^00 ^ == 117810 pounds.

2) If two pieces of sheet-iron are to be joined together by a row of

rivets, and if we denote the thickness of the plate by s and its width for

each rivet by &, we have

(h — d) s = ~ , whence

4: S \ 4c 8/

E.G., for (Z = f and s = ^ inch

^=||1 4-~'j=:5 inches.

CHAPTEU II.

ELASTICITY AND STRENGTH OF FLEXURE OR BENDING.

§ 214. Flexure.—The most simple case of flexure is that of a

body A B C, Fig. 332, acted upon by a force A P = P, whose di-

rection is normal to its axis A B, while the body at the same time

is retained at tw^o points B and C. Let / and /, be the distances
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C A and C B of the points of application A and B from the cen-

tral fulcrum or point of application C, then the force at B is

and consequently the resultant is

R

Fig. 332. Fig. 333.

/jgif^flilig CAA/

iiiiiipi

m iii!giiiiii|i|iiiipii!iii!imilliii

If we wish to prevent one portion of the body from bending,

we must insert between the two points of support an infinite num-
ber of others, or the body must be fastened or solidly walled in

along B C, as is represented in Fig. 333, and we have then to study

only the flexure of the free portion A C of the body. Let us sup-

pose the body to be a prism, and let us assume, that it is composed

of long parallel fibres placed above and alongside of one another

and that, when the body is bent, they neither lose their jDarallelism

nor slide upon one another.

By this flexure those fibres, which are on the convex side of

the body, are extended, and those on the concave side are com-

pressed, while a certain mean layer undergoes neither extension

nor compression. This is called the neutral surface of a deflected

beam (Fr. couche des fibres invariables, Ger. neutrale Axenschicht).

The extension and compression of the various fibres above and

below this layer are proportional to their distance from it. The ex-

tension of the fibres on one side and the compression of those on

the other increase gradually, so that the fibres most distant from

this surface on the one side undergo the maximum extension, and

those on the other the maximum compression. A portion of the

body A K B, Fig. 334, bounded before the flexure by the cross-

sections K L and N 0, assumes, in consequence of the flexure, the

form K L Oy A"„ by which the cross-section N becomes Xx 0„



§214] ELASTICITY AND STRENGTH OF FLEXURE, ETC. 411

Fig. 334.

that is, it ceases to be parallel to K L and assumes a position per-

pendicular to the neu-

tral surface R S. The

length K N of the up-

permost fibre becomes,

in consequence, K N^,

and that of X the

lowest fibre becomes

L Ox. The increase in

length of the former is

there loreN N^, and the

decrease of the latter is

Oi, while the fibre

R Siia. the neutral sur-

face retains its primi-

tive length unaltered.

The intermediate fibres,

such as T U, V W, etc.,

are increased or dimin-

ished in length becom-

ing T C/,, FTf„etc.,and

the amount U Ui,W IFj,

etc., of the increase or

decrease is determined

by the proportions

WW,
0,

8 W ^^^,etc.

Let us assume the length of the fibre

R S= KN= L = unity (1),

and let us denote the extension or compression of the fibres, which

are situated at the distance unity (1) from the neutral surface, by a,

then we have for a fibre, w^hich is situated at a distance S U or

S W = z from this surface, the extension or compression

U U, or W W, = oz.

If the body is but little bent, so that the limit of elasticity is

nowhere surpassed, we can put the strain on the different fibres

proportional to their extensions, etc., and we can consequently as-

sume, that these strains are proportional to their distance from the

neutral surface, as is represented in the figure by the arrows.
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If the cross-section of a fibre is = unity, we have in general the

tension upon it — o z B; and if the cross-section of the fibre = F,

the tensile or compressive strain is expressed by the formula

S = ozFF = o E . Fz,

and its moment in reference to the point S upon the axis is

M=z.ozFE=oz'FE=oE. F z\

§ 2x5. Moment of Flexure.—The tensile and compressive

strains in the cross-section N^ Oi balance the bending force P at

the end A of the body A B. We can therefore apply to these

forces the well-known laws of equilibrium. If wx imagine that

there are in action at S two other forces + P and — P, which
are not only equal but also parallel in direction to the given force

P, we obtain

1) A couple (,P, — P), which produces the flexure or bending

around S, and

2) A simple shearing force S P= P, which tends to cut off the

portion A 8 of the body in the direction S P oy A P. The latter

force can be decomposed into two components P, and Pg? whose

directions lie in the plane of the cross-section N^ 0, and in the neu-

tral axis S R. If a is the angle formed by the cross-section JV"i Oi

with the direction ^ P of the bending force, we have

P^ = P COS. a and

P., = P sin. a.

In ordinary cases in practice the flexure of the body and also a is

so small, that we can put sin. a = and cos. a = 1, and consequently

we can neglect the component P.., which tends to tear off the por-

tion A S at A^i Oi, and, on the contrary, we can put the force P„
which tends to rupture by shearing the piece A S in JV^ 0,, equal

to the bending stress P.

If F denote the area of the cross-section ]S\ Oi and K.. the modu-

lus of rupture for shearing, the sliearing force is determined by

the product F K^.

If we are considering a long prismatical body, P is generally

so small a portion of F K.^ that rupture by shearing can scarcely

occur, and for this reason it will be considered in particular cases

only. {See tlie foUoimig chapter)

Since one couple (P, — P) can be balanced only by another

couple, it follows, that the tensile strains on one side form with the

compressive strains on the other another couple ((>, — Q), and

that the moments of the two couples must be equal. If P„ P?, Ps.

etc., are elements or infinitely small portions of the entire surface
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F, z, + F, z, + F;

F of the cross-section N 6 — N^ Oi, and if the distance of these

portions from the neutral surface or S be denoted by z^^ z^, z^, etc.,

the strains in these elements are

G E . F^z^, o E . F-iZi, o E . F-i z^, etc.,

and their moments
a E .F, z,\ a E . F, z/, a E . F:, Z;\ etc.

Since these forces form a couple (ft — Q), their sum
G E (FxZy + F.2Z^_ + F-iZz \- . . .), and consequently

+ . . . must be = 0.

But this sum can

only be — 0, when the

point S of the axis co-

incides with the centre

of gravity of the sur-

face F = F, + F^ +
i^3 + . .

.
; consequently

the neutral axis ofa lent

body passes through the

centre of gravity S of

its cross-section F. The
moment of the couple

(ft - <?),

G E (F z,' + F, Zo'

+ F, z;' + ...),

should now be put

equal to the moment
of the couple (P, — P).

K we denote the dis-

tance SH of the cen-

tre of gravity 8 from

the direction ^ P of

the bending force by a*,

we have the moment
of the latter couple =
P X, and therefore

Px=i G E(F, z^

-f Ps ^2' + . . .)•

Finally, we have for the radius of curvature M R = M S of
the neutral surface the proportion

MR _ SJl
R S~ UU,'
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or, substituting M R = r, R S = 1, Sil = 1 and U Ui = a,

r _ 1

1~ a

Consequently r (t = 1 or cr = -, whence the moment of force is

Px= — {F, z,' + F,z,' + ,, .).

The radius of curvature at S is therefore

r = -^- {F, z^ + F, z;' + ...).

The expression F^ z^ + F^zi + , . , i^ dependent only upon
(he form and size of the cross-section, and can therefore be deter-

mined by the rules of geometry. We will hereafter denote it by

W and we will call the quantity corresponding to it the measure

of the moment of flexure, and W E the moment of flexure itself

(Fr, moment de flexion ; Ger. Biegungs-moment).*

From the above, we have for the radius of curvature

WE
"== P¥'

;and we can assert tliat the radius of curvature of the neutral axis

of a deflected dody is directly proportional to the measure W of the

moment offlexure and the modulus of elasticity E^ and, on the con-

itrary, inversely proportional to the moment P x of the force.

The curvature itself, being inversely proportional to the radius

of curvature, increases with the moment F x of the force, and

decreases, when the moment of flexure WE increases.

§ 216. Elastic Curve.—If we have determined the moments
of flexure WE for the cross-sections of the bodies, which generally

occur in practice, we can determine by means of these values the

curvature and from it the form of the neutral axis or of the so-

. called elastic curve. The equation

„ .^^ WEP X r — WE or r = --^—P X

indicates, that in the case a prismatical body the product of the

radius of curvature and the moment of the stress is constant for

all parts of the elastic curve A B, Fig. 335, and that consequently

r becomes greater or less as the arm x of the force is diminished or

increased, or as the distance of the point S considered from the

end A of the neutral axis is less or greater. At A we have x — ^^

and consequently the radius of curvature is infinitely great ; at the

fixed point ^, on the contrary, x is a maximum, and the radius of

curvature is therefore a minimum ; hence the radius of curvature

* Moment of flexure is also used for the bending moment P x.—Tr.
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increases by degrees from a certain finite value to infinity, when
we proceed from the fixed point B to the end A.

If we divide a portion A S oi the elastic curve, the length of

which is = s, into equal parts, and erect at the end A and at the

points of division >S'i, S^, Sz, etc., perpendiculars to the curve, they

will intersect each other at the centres Mq, if,, M^ of the osculatory

circles, and the portions cut off Mq A = Mq S^y if. Si = Mi S^,

31.2 Si = M.i Sz, etc., are
Fig. 835.

^j^g required radii of

curvature ?'i, rj, rz of

the elastic curve. (See

Introduction to the

Calculus, Art. 33.) If

n is the number of di-

visions of this line, we
have the length of a di-

vision -
; and if we

n

denote the length of

the arc (for the radius

= 1) of the angles of

curvature A Mq Si =
6,% Si Ml S, = 6,%

S, M, Sz = 6,\ etc., by

6y, (52, ($3, etc., we can

put - = di ri = (52 7*2 =
n

'3, etc., whence we

obtain (5, = , (5, =
nri

, ^z
— -^^, etc.

n r.2 n rz

If we suppose the elastic line to be but slightly curved, w^e can

substitute for the divisions of the arc their projections upon the

axis of abscissas A JT perpendicular to the direction of the force,

I.E. we can put A A' — Hi Si = Ki K^ = K^ Kz, etc., so that the

arms of the force in reference to the points >S'i, S^, Sz, etc., are

Hi Si = -f

H, S, = HiSi -^ SiL, = 2

Hz Sz = H<2 Si + Si Lz 3 -, etc.,
n



416 GENERAL PRINCIPLES OF MECHANICS. [§ 316.

and consequently the corresponding moments of the force or the

values for P a; are Ps2FsdFs
,

, etc.
n

Substituting successively these values for P ^ in the formula'

r — Fx for the radius of curvature, we obtain the following series

of values for the radii of curvature

WE n WE n WE
,

rx — n ^7—, r^ — -^ ^z^, r^ = - -^-
, etc.;

2 Fs' 3 Fs
hence the corresponding angles which measure the curvature are

n n n' WE' '
~ n r, n' WE'

^3 = = 3 . , jj. ^ , etc.
n r-i n WE

Summing these angles, we obtain for the angle of curvature

A S = (p" of the entire arc A S = s = x

= d, + (J, + ^3 + . . . + (^„

F s"^= (1 + 2 + d + ... -h n) WE'

or, since we know that 1 + 2 + 3 +

n' Fs' F s'

n' WE 2 WE'
Fig. 336.

+ w = — , we have

for which we can write,

according to the above

supposition,

F x"

^ "^
2 WE'

This arc or angle

(since the angle be-

tween two lines is equal

to that between their

normals) is equal to the

angle S T U included

between the tangents

A T and .S' T to the

two points A and *S'

or to the angle, which

expresses the differ^

ence between the in-

clination of the curve

to the axis in A and in

>fo S. If we pass from the
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undetermined point S to tlie fixed point B, we must substitute

instead of s the entire length I of A S B, or approximately the

projection A C of the same upon the axis of abscissas, and under

the supposition that the curve at B is perpendicular to the direc-

tion of the stress or parallel to the axis of abscissas, the angle 0.

becomes A D B = fi = ^ ^^

2 WB'
and, on the contrary, the angle of inclination or tangential angle

TSH= S TX, becomes
FT _ Ps* _ P{r- s') _ F (r - x')

"""^ "^"^WE %WE~ 2WB ~ %WE '
.

If the curve at the fixed point B is not perpendicular to the

direction of the force, but inclined at a small angle Oj to the axis,

:

we will have ^ ^
F V i . ^ ^

2 WE '
therefore

F (r - x')

§ 217. Equation of the Elastic Curve.—By the aid of the

latter formula we can now deduce the equation of the elastic curve.

The ordinate of the curve K S = y is composed of an infinite

'

number {71) of parts, such as E^ S^, L^ S.2, L^ S3, etc., which are

found by multiplying an element of the arc

A S^ = S, S\ = S, S-s, etc. = -
n

by the sine of the corresponding tangential angle

Si A /ii, S2 Si X2, S3 Sc^ Z3, etc.

Hence we have

KS=KiSi + L,S, -f L3S3 + ...,0T

gy~- {sin. SiAK + sin, S^ Si L^ + sin. ^S^s -^2 -^3 + . . .).

Substituting the abscissa A K = x instead of the arc A S = s,

and for the sines the arcs calculated from the formula

_ F {r - x')

^ ~ 2 WE '

x 2 X S X
and introducing instead of x successively -, — ,

'— , etc., we obtain
n ti 71

» =I-^['-- ©-'-(¥)•* -(-)•—

Now we have r + r + ...-[-r = nr and

27
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0' fi3[ /?^V ri^V
\ n I \ n ) '

'

' \ n )

= (r + 2' + 3' + ... + »')@'=|(g'
(see Ingenieur, page 88), whence

X P r ^. n^ /a;\'-i

^ = ^•2-^0^^ -3 UJ'^^
- P^(l' - I

^"
)

y ~ 2 WE '

which is the required equation of the elastic curve, when we suppose

that the curvature is not very great.

If we substitute in this equation rr = Z, we obtain instead of y
the height of the arc or the deflection

While the tangential angle a increases with the force and with

the square of the length, the deflection increases with the force and

with the cute of the length.

The work done in bending the body is determined, since the

force

3 WEa
I'

increases gradually with the space described and its mean value is

WEa
1 P

WEa" P'r
by the expresssion

L = iPa = i ^3 -6 ^-^'

If a girder ABA, Fig. 337, whose length is I, is supported at

both ends and acted on in the centre ^ by a force P, the ends are

Fm. 337.

bent exactly in the same way as in the case just treated, but in

this case we must substitute for the force acting at A, ^ P
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and for the length of the arc A B = ^ A A — -} I Consequently

the equation for the co-ordinates A K = x and K S — ^ is

y^ Px{\ r - J
x') p x{3r - A x')

4 WB
I

48 WB
so that for a: = ^ C = - the deflection is

y^BC ax
PI"

J
1 6

PZ»

48 WE '« '3 WE'
I.E., one sixteenth of the deflection of a girder (Fig. 333) loaded at

one end with an equal weight.

If in the first case the elastic curve A B, Fig. 336, is inchned at

a small angle a^ to the axis at the fixed point B, we must add to

the former expression for y the vertical projection of the portion x

of the tangent, i.e., a^ x, so that we have for the ordinate

and for the deflection

TVE

(a,
Pf

3 WE,

Fig. 338.

(§ 218.) More G-eneral Equation of the Elastic Curve.—
A more exact equation of the curve A S B, Fig. 338, formed by

the neutral axis of a deflected beam, can be deduced in the follow-

ing manner by the aid of the calculus.

If we substitute in the general equa-

tion of § 216, W E ^ P xr the value

of radius of curvature {fi^om Art. 33 of

the Introduction to Calculus),

d^s^

dx^ d (tang, a)

and in the latter, according to Art. 33,

WE^ -

ds — \ 1 + {tang, ay . d x,

we obtain

Pxd x[l 4- {ta7ig. a)'] §

dtang. a.

"When the girder is but moderately deflected, the angle a formed

by the tangent with the axis of abscissas is but small, and we can

therefore write

[1 + {ta7ig. af] f = 1 + 3 {^tang. a)\

and consequently
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d (tang, a)
'

or inversely

-WE- = -
rriTto^T^

= - [1 - l( t<^ng, a)
] d (tang. a).

From the latter we obtain

/P X dx f* r
'WW "^~ J ^ ^^^^^' "") "^ ^ e/ (^^^^' "")' ^ (^^^^- "")'

or, according to Art. 18 of the Introduction to the Calculus,

P x"

ex TTT jp
= — tang, a -\- ^ (tang, ay + Con.

But at the vertex B the curve is parallel to the axis of abscissas

and a — 0; substituting, therefore, the projection C A = b oi the

elastic line on the axis of abscissas, we obtain

PF
^ = — ta)ig. + i (tang. 0)' + Con. = + Con,

Subtracting from this the former equation, we have

or inversely, for the tangential angle S TN = a,

_ P (h' - x') ^ P' (h' - xj
""

2 WE ^ - 8 W'E' '

,, ,
p(F -X') /, ,

P'(i'-xy\
I.E., 1) tang, a = -^^^ (l + ^^^^^>

But tang, a = y^ hence we have

/, P= (5' - x-y\ P (V -x')dx ,

+ Con.
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Since for x = 0, y = 0, we have also Con. = 0, and

At the vertex x = b and y is the deflection C B = a, and

therefore

P /
^

P»
6 7\

"^ " 2~WB V ^' + SlTB'^ ' ^^ • * /'

From d s = V 1 -{ {tang, a)^ . 6? a; = [1 + i (^a^^. a)'"'] d x y?e

obtain, by substituting ^fl^^^^. a = —
^

^

,

= fdx+ gpp^-^[y(^'^^^- '^h'x'dx + x'd^'\

_ ^ P' /.. 2 &^ :^;' 2:^- ^ + g^y^jr. ^-^ ^ 3— + y/,

i.E , the length of the arc

If we assume x = b, we have the total length of the girder

Inversely we have

^^ ^
= p^y- = {^- mi^) ^'

"^
15 Pf ^ ^»

and therefore

"" - 3WB V -
IbW^B-^l V + A . -pp-;^.;, or

,. Pr / 3PWM / , P-M
3 WJE \ 15 r^^V V^ ^ 35 • pp ^./.

Neglecting the members containing the higher powers of

P
i^r-^, we obtain, as in the last paragraph.
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p (/2 _ ^n p ^
tang, a = —yjyu ^^^ ^ ""

2 WE ^^' ~ ^ ^'^' therefore,

for
pr p p

0, tang, a = ~-^^, and ioY x = b = l,y = a = --^^,

§ 219. Flexure Produced by two Parallel Forces.—If a
girder A A^ B, Fig. 339, 1, and II., fixed at one end, is bent by two

forces P and P,, whose points of

application A and A^ are at a dis-

tance / from each other, while the

point of application A-^ of the force

Pi is at a distance Aj B = ly from

the fixed point B, the moment of

flexure at a point S of the portion

A Ay is

M= Px,

and, on the contrary, that of a

point Si in the portion ^j P is

M, = P(l + X,) + Pj X,,

in which x and .t, denote the ab-

scissas A Xand A^ K^.

In order to obtain a clear idea

of the manner in which these moments vary, Ave can lay off, as in

II., their different values for the different points as ordinates, e.g.,

M = y = K L, My =z yy =z Ki Lx, and join their extremities L, Z,

etc., by a line A L H Ly Gy, which will limit the values of M and

My for the whole length of the beam.

If the girder were subjected to the force P alone, the line

bounding all the values oi M ov y — P x would be the straight

line A G, the ordinate of the extremity G of which is B G =
P . AB = P (l -{- I,). By the addition of the force P, the por-

tion H G oi this right line is replaced by the right line H G^, whose

extremities ^and Gy are determined by the co-ordinates A Ay — I

and J^TB = P I, and also ATB = I + ly and WH, = WG +

(TG, = P(l + ly) 4- Py ly.

If the force P is negative, the moment M — y — P x of a point

K upon A Ay= I remains unchanged, while, on the contrary, that

of a point ICy upon Ay B becomes My = y^ = P {I -\- Xy) — Py Xy,

and the moment of flexure at the fixed point P is = P (/ + Zi)
-^
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Pi Z], and it is positive or negative as P (^ + li) is greater or less

than Pi li. In both cases the moment of flexure decreases grad-

ually from ^1, remaining in the first case, Fig. 340, positive, and.

Fig. 340. Fig. 341.

on the contrary, in the second case, Fig. 341, becoming

PI
for a

point at a distance A^ = x^^ ^ from Ai, for greaterP.-P
values it takes the negative sign, and at the fixed point B it is

= - [Pi /, - P (? + Zi)].

In the first case the right line II G^, Fig. 340, II., which repre-

sents the moment of flexure at a point K^ between A and P, passes

below the base line A B and ends at a point G^y whose ordinate is

B Gi = P {I + I:) — P^ Zj. In the second case, on the contrary,

the right Hne H Gi, Fig. 341, II., rises from the point above A P,

and the ordinates become K^ Lx = y^ = — [Pi x^ — P {I + x^)]

and B G, = a,= -{PJ,- P(l + k)l

Since the radius of curvature r = —|^- of the girder is inversely

and consequently the curvature itself is directly proportional to the

moment of flexure M, the graphic representations in II. of figures

339, 340 and 341 furnish us also a representation of the variation

of the curvature of the girder. In the case represented in Fig. 339,

where the forces P and P, acting upon the girder have the same
direction, the curvature increases gradually in going from A to P,

but if P and P, have opposite directions, it decreases again grad-

ually as we recede from Ai.
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If, as in Fig. 340, Pj Zi < P (Z + l^), the beam is bent in one

direction only ; but if Pi Zi > P {I + li), there is no flexure at the

point A and also at a point 0, Fig. 343, where a point of inflection

is formed {see Art 14, Introduction to the Calculus), and from

Fig. 342.

towards B the curvature of the girder gradually increases in the

opposite direction. If in the second case, Fig. 342, the forces P and

Pi are equal, for a point K^ between A^ and B,

M^P {I + X,)- Px,=Pl
is constant, and the curvatures of that portion ^i P of the girder

is the same everywhere, i.e., the elastic curve is a circle.

The radius of curvature of the portion ^ ^i is determined in

all three cases by the well-known formula

_ WE^
^ ~ Px'

and that of the portion ^i Pi in the first case by the formula

_ WB
^'- P(l + X,) + Pi X,'

and, on the contrary, in the second and third cases by the formula

WB
n =

P(l-{- X,) - Pi X,

When, in the second case. Pi = P, n becomes
WB
PI or con-

stant, and in the third case, where P, It > P {I -h li), for the point

P I

0, whose abscissa re, = p-ZTp' ^® ^^^® ri = oo (infinitely great),
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and, on the contrary, for the point Ax,r

WE

WE
PI , and for the point By

According as P / is greater or less than Fx l^ — F (l + l^) ete.,

I. E., F ^ 7-1, in the latter case we have r ^ r, or the curvature at

Ai greater or less than that at B.

§ 220. The Elastic Curve for Two Forces —The equa-

tions of the elastic curve, formed by the axis of a girder subjected

to the action of two forces F and P,, can easily be deduced from

the formulas found in paragraphs 216 and 217.

If a denote the angle of incli-

nation of the elastic line at A^, we
have first for the portion of the

curve A A^, Fig. 344, I, the arc

measuring the inclination of the

same at S
^Fit-x')

^^ " = ^^ + -w^ -
and the ordinate K 8 corresponding

to the abscissa A K =^ x
Fx{r -

i x')

(compare § 217).

By putting a: = in (1), we deter-

mine the angle of inclination in A
FT

«o = «. + 2We^
and, on the contrary, by putting x = I in (2), we obtain the ordi-

nate at J, . ^ , FT
A, C ^- a = aj + -^—^^.

For a point in the second portion of the girder A^ B the mo-
ment of flexure P (/ + x,) -{- F^ x, = F I -{- (F -\- P,) x, is com-
posed of the two parts P I and (P + P,) x„ one of which, being
constant, bends this portion of the beam in an arc of a circle,

whose radius is r = WEp J
and whose angle of inclination at a point

aS', situated a distance A^ 8^ = a:, from A and B 8^ = ?, — i, from
B is measured by the arc

0^ = h-x^_ Fl(k - x,)"~ WE '
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The inclination at S of this portion of the girder, due to the

flexure produced by the moment
(P + Pi) x^, is measured by the arc

_ _ (P + Pi) ik' - x,^)

H-2 — "~
2 WIJ

and consequently the total inclina-

tion at the same point is

WE3) i3 = ^, + /3,

+
(P 4- PO (k' - x,^)

% WE
The deflection of B Si, due to the

curvature in a circle measured byjSi,

is according to the well-known for-

mula for the circle

^r o _Bs,^_ {ii-x,ypi
^

^'^'-^W7~~- 2 WE '

hence that of thp entire piece P^i is

T? n — ^ ^ ^1

^^'-%WE'
and the height of the point 8x above A^ is

Pl^^l^l^-^x^ _ Pl{%l,x,- x,^)

2 WE ~
2 WEK, S, = B Ci- Ni Sr

According to what precedes (§ 217) the deflection Ei Si =
(P + PQ Xi {I,^ - ^ Xi^)

2 WE corresponds to the angle of curvature

(P + Pi) (h"^ — X-)
/3o = -^^ TT^^^ i ^^^ t^^e tc>tal deflection is therefore

4 vr J^

4) El Si = yi
P I (2 li Xi - xi') + (P 4- Pi) Xi ill' - I

x{)

2 WE
Substituting in (3) o^i = 0, we ol^tain the angle of inclination j3,

which we had assumed as given, and its value is

^ 2PlIi + (P + Pi) li'

""'

2 WE
Now if we substitute in (4) Xi = li, we obtain by this means the

deflection

3 P??i'' + 2(P+ Pi)li'

6 WEBCi = tti

Finally, the total deflection of the whole girder is
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B D = a + a.

= «! Z +

aJ +

pr 3 p ii;' + 2 (P + p,)k'

Pl{2r + S I,') + 2 (P + Pi) Zi^

6 WE
P{2r + 311,' + 21,') + 2PJ,'

Fig. 345.

6 WB
If the beam ^ P is not horizontal at B, but inclined at a cer-

tain angle ft, we must add in (3) 13^ to (3, and in (4) to ?/„ ft x,.

If the force Pi acts in an opposite direction to P, we must sub-

stitute in the fundamental formulas (3) and (4) P — P, instead

of P + Pi.

§ 221. Girders Supported at One End.—The formulas

of the foregoing paragraph are applicable to numerous cases in

practice. If, for exam-

ple, a girder A B, Fig.

345, is at one end im-

bedded in a wall and

at the other merely

supported, the question

arises, what is the bend-

ing force at ^, or what

force has the support at

A to bear, when the

beam is loaded with a

weight Pi, su^ended at an intermediate point A , ?

P is here negative, /3„ = and, since A and B are at the same

level, the sum of the deflections C A, = a and G, B — a,, is = 0,

pr \ . .
iPii,' + J (P- p,)//

or since a,
~

3

PI I,

I + -

A (P - PO I,

WE

WE
, we have

0,

PPl, + }^{P- P,)l,H + \Pr + hPll,' + 1{P - P,)!.,' = 0.

From this it follows that

(3 / + 2 ?0 ?,- P,

r + 3(r/, +11,') + 1^2'
E.G., for I — ?i, that is, when P, is applied in the middle of the

girder, we have p _ ^ p^ - 16
^"

Hence the moment of flexure at ^j is

and, on tfie contrary, that at B is
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or greater than that at ^j.

If Z — /i and the points A and B are not situated upon the

same level, if, for example, A lies a distance a^ higher than B, we
must put a + a^ = a^. But in this case

(3 P - PO r
a, =

2 WE '

P l^ (11 P - 3 PO Z^

and
3 IF^ 6 Pf^

[3 P + 2 (P - Pi)] /^ _ {bP~2P,)f
6 PF^ ~

6 r^ '

hence we have
(16 P - 5 POr

«2?
6 WE

and consequently „ _ 6 TT^ <22 5 „
~ 16 /^ "^ 16 '*

If the moments at A^ and P should be equal and opposite,

we must put Pl = P^l — 2Pl, %

or 3 P = P„ LE. P = ^^\

in which case we must make
P r P, f

«0
Q W E 18 ITP'

.. Pi
If, therefore, the end of the girder lies 0,0555 ^crr-p higher than

B, the moment of flexure in A and P is = ±
P. I

or smaller than

when A and B are at the same height.

With the aid of the values found for P we can calculate the

radii of curvature, the tangential angles, etc., of the portions A A^

and ^1 P of the curve.

§ 222. Flexure of a Girder supported at both Ends.—
Another case, to which the formulas of the last paragraph are

applicable, is that of a girder A P, Fig. 346, supported at both ends

A and B and acted

Q h . upon by a force Pj,

whose point of ap-

plication A^ is at a

distance I from one of

the points of support

A, and at a distance

Ix from the other.

Fig. 346.
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Here the moment

P . B A — the moment P, . B A^,

I.E. P(l + I.) = P. I.,

and consequently the pressure on the point of support A is

and, on the contrary, the pressure on the point of support B i«

Since A and B are situated in a horizontal plane, we have

0^ + 0^1 = 0,

and the angle i3 is not here = 0, but is a negative quantity C B T^

to be determined.

We have here

^- ^^ + WB "^3 WE'
and also

a--3l + JPll' + iiP -Pdi:

and therefore their sum

i3 (Z + h) - g-^(2 r + 6 r /, + 6 Hi' + 2 I,')

' ^' (3 Ik' -^2 I,') = 0,
' 6 ]VE

or

6/3 (Z + ZO WE = P(2r-]-6riy-{-6Ur' + 21,') -P, {311,' +21,*)

= [2r + 6ri, + 611,' +21,' -{311, +-21,') {1 + I,)] P,

from which we deduce the angle of inclination at B
^ Pl{2r + 311, + 1,') _ P,ll,{2r + 311, + 1,')

^ ~ Q{1 + I,) WE ~ Q{1 + l,y WE
and that at A

_ p,ii,{r + 3 11, + 2 1,')

""
~

6 {l + l,Y WE
If, for example, P, is suspended in the middle, we have

I, = ZandP = Q = ^,
and therefore

With the aid of the angle [3, thus determined, all the relationa
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of the flexure of the girder can be determined by the formnlas

found in what precedes.

Tlie mai'imu7n value of the moment of flexure is for the point

of application A-^, and it is

and it is a maximum for I = Zi, I.E., when the weight is hung in

the middle, its value is then

Pi {I + h)M = ^jP.l

§ 223. A imiformly loaded Girder.—If the load is uniformly

distributed over the girder A B, Fig. 347, and if the unit of length

bears a weight = q, or the whole

girder, whose length is /, bears the

load Q — I q, and a portion of the

girder A 8 = s the load q Sy we must

substitute, instead of the moments12 3
- P s,- P s, -P s,etc., the moments
n n n

for the centres of gravity of the loads q \- \ q\-j-\ q\— )
etc.,

lie in the middle of -,
, , etc., and their arms are ^ -, h —\

n n n ~ n " n
3 s

4 ^, etc. In this wav we find the ansrles of curvature of the ele-

ments of the arc

6 - 1 -^
' ~ -' n' W E, c5, .= 1 .

2'
. ^ g^

n' WE' ~ "'
Ti" WE , etc..

and therefore the angle of curvature of ^ >S^ = 5 is

<P

qs'
(1^ H- 2^ + 3^ + . . . + n')

qs^

n- W E^^ ' " ' " ' 2n' WE' 3

6 W E'

If a; = Z, we have the tangential angle TA (7 = U T B of the

end A qP _ _QJ_
^ ~ 6 WE~ 6 WE'

and therefore for a point S, ^"hose abscissa \s A K = x,

_ q

„ approximatively = ^ ^^. ^ .

/3-0
6 WE (r-.T').
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Fi-om the latter measure for the angle we find for an element

of the ordinate x _ x ^ /p 3\

(X Y / 2 X \^ / 3 X Y—
j, { —

J)
(
—^ h we

obt^iin the required equation for the ordinate K S = y,

X a r „ ( X Y m" -\

m Q ]\ El \ 771 / 4: y

y~ Qw Ev 4. r
Assuming again x — l,\fQ obtain the deflection

a - -ll- 3 Z3 - _liL _ _Q^ - 3 _GZ_
QWE"" %WE SWE ^'3WE'

I.E., I of what it Avould be, if the load acted at the end of the girder.

The ordinate of the middle of the girder is

^' ~ 12 WE \ 32/ 12.32 WE'
hence the distance of this point below the horizontal line passing

through^ is _ _ 11 qV
y.-a y,- j^— 3^ g^,

and therefore the mechanical effect corresponding to the deflection

a or to the sinking (?/.,) of the centre of gravity of the load Q =^lq,

when Q is gradually applied, is

r _ 1 n _ 1 7 - 1^ ^ll" - 1^ Q" ^
^ - - ^ y^ - 3> g ^ y. - 21732 TF:^ - 24.32. WE

If the girder is acted upon simultaneously by a uniformly dis-

tributed load Q and a force P at the end, we have the deflection

_ Pr Q? _ /P Q\ r
^ ~ 3 WE "^

8 ir^ "" U "^ 8/ WE'
If the girder ABA, Fig. 348, is supported at both ends and

carries not only the weight P applied at its centre, but also the

i/i,^ X Fig. 348. ^, ^
loa^ Q = Iq uniformly dis-

^y^^ ^C^/Q) tributed over its length, we
find the deflection C B = a by

/r\„^
, ^^ substituting in the expression

(f - f

)

W E
for the case represented in

Fig. 347, instead of P the
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pressure or reaction ——-^ at the extremity A, instead of Q the

load —J which is equally distributed upon one-half B A, and

instead of I half the length of the girder BA = ^AA = ^l
In this manner we obtain

"^ ~\ 6 16/ 8W^ - ^^ + B (J)

If F — 0, we have a = ^ , that is, when the entire

Fig. 349.

^ '48 WB'
load is uniformly distributed upon a beam, supported at both ends,

the deflection is but | of what it would be, if the load was sus-

pended at the centre of the girder.

The tveight G of the beam has exactly the same influence upon

the deflection as a load Q, which is equally distributed, and there-

fore enters in exactly the same manner into the calculation.

§ 224. Reduction of the Moment of Flexure.—If we
know the moment of flexure W, ^of a body A B C D, Fig. 349,

in reference to an axis N^ Nx without the

centre of gravity, we can easily find this

moment in reference to another axis N N,

passing through the centre of gravity and

parallel to the first. If the distance H H^

= K Ki between the two axes is = d, and

if the distances of the elements of the sur-

faces i^], /I, etc., from the neutral axis

iV^ iV^ are = z^, z.^, etc., we have their dis-

tances from the axis N^ N^, — d + z^, d + 2:25

etc., and the moment of flexure is

W, ^ = [F, (d + z,y + F,{d + z,y + . . .] ^
= [F, {d' + 2dz, + z{) + F,{d' + 2dz, + ^/) +
= [d' {F, + F,-h...)+2d {F, z, + F,z, + .. .)

4- {F,z,' + F,z,' + ...)]^-
But

F,-{-F, + ...

being the sum of all the elements is the - cross-section i^of the

entire body, and
F, z, + F.z, ^ . . .

being the sum of the statical moments in relation to an axis pass-

ing through the centre of gravity is — 0, and

(F, z,' + F,z: -\- .,.) E

.\E
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is the moment of flexure W E in relation to the neutral axis N N\
consequently we have

and inversely

W=: \\\- Fd\
Therefore, the measure W of the moment offlexure in reference to the

neutral axis is equal to the measure W^ of the moment of flexure in

reference to a second parallel axis minus the product of the cross-

section F and the square {d^) of the distance between these axes.

From this we see that, under any circumstances, the moment
of flexure in relation to the neutral axis is always the smallest.

The moment of flexure of many bodies in reference to some par-

ticular axis can often be found very easily, and we can employ it

to determine, by the aid of the formula just found, the moment in

reference to the neutral axis.

225. Let CK = X and C L -— y, Fig. 350, be the coordinates

of a point F, referred to a sys-

tem of rectangular co-ordinates

XX, YY, and let CM = u
and C iV^ = z; be the co-ordinates

of the same point, referred to an-

other system of rectangular co-

ordinates U U, V V, and, finally

let 6'i^= r be the distance of the

point i^from the common oi'igin

C of the two systems of co-ordi-

nates ; according to the theorem

of Pythagoras we have
y"" = u^ + v"" — r^ and also

+ Fy^ = Fu"" + Fv''-= Fr\
If in this equation, instead of F, we substitute successively the

elements i^i, F^^, F^, etc., of the entire cross-section, and in like

manner, instead of x, y, u and i\ the corresponding co-ordinates

Xy, aJs, Xz, etc., «/i, y.i, y-i, etc., u^, th, u., etc., and Vi, v^, Vz, etc., we obtain

by addition the following formulas

F,x,' + F,x.^ + ... + F,y,' + F,y,' + ...

= F, u,' + F, h^ + .. + F,v,' -\- F, v^ -f

= F, r,' + F, r^ 4-

and if we denote

28
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F^ x,^ 4- i^2 ^2' + . . . by 2 {Fx"")

F,y;' ^ F,y,' +
Fy u,' + F, u,' +
F^ V,' + F, vi +

..by2(i^yO

..by 2 ^Fu^)

. . by 2 {Fv") and

..by2(i^r^),F, r,' + i^, r^ +
<re have

2 {Fx") + 2 (i^/) = 2 {Fv:") + 2 (i^y^^) = 2 (i^r').

TJierefore the sum of the measures of the moment of flexure, in

reference to the tivo axes XX and Y Y of one system of axes, is

equal to the sum of the measures of the moments offlexure, in refer-

ence to the two axes of another system of axes, and equal to the

measure of the moment of flexure, in reference to the origin, i.E.

equal to the sum of the products of the elements of the cross-section

and the square of the distancesfrom the axis C.

If the cross-section A C C^, Fig. 351, of a deflected body is a

symmetrical figure, and if the axis XX at right angles to the

plane of flexure is an

axis of symmetry of

the figure, there will

be still another rela-

tion between the mo-
ments of flexure of the

body. Let S K = x

and F F^ = y be the

co-ordinates of an el-

ement of the surface

Fi in reference to the

system of axes X X
and rr;andlet^iV
z=z V he the distance

of the same element

from the axis U Ui

which forms an angle X S U= a with the first axis X X, we

have then

v = MF- M]V= MF- XL
= F F^ cos. XFiM — S Ksin. K8 L — y cos. a — x sin. a,

and therefore

v"^ = x^ (sin. ay- -^ y^ (cos. of —%xy sin. a cos. a,

Fi v^ = (sin. ay F^ x" + (cos. ay F^ y" — sin. '^a FyXy, and

I (Fv') = (sin. ay 2 (Fx') + (cos. ay 2 (Ff) - sin. 2 a 2 (Fx y).
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In consequence of the symmetry of the figure, every element

Fx, F^. . . corresponds to another opposite element F^, F^ , . ., for

which y, and consequently the entire product, is negative ; hence

the sum of tlie corresponding products for two such elements, and

also the whole sum
^(Fxy) =0,

and therefore we have

1 {Fv') = {sin. ay 2 (Fx') + {cos. af 2 {Fy'), or

W = {sin. af W^ + {cos. a)' W,,

in which W denotes the measure of the moment of flexure in refer-

ence to any axis U U, Wi that in reference to the axis of symme-

try XX and W<i that in reference to the axis Y Y 2X right angles

to the axis of symmetry, provided that the axes TJ U and Y Y 'a&

well as the axis of symmetry XX pass through the centre of

gravity S of the figure.

By the aid of foregoing formulas we can often find, from the

known moments of flexure of a body in reference to a certain axis,

its moment of flexure in reference to another axis.

§ 226. Moment of Flexure of a Strip.—In order to find

the moment of flexure of a known cross-section A B, Fig. 352, I,

of a body in reference to an axis XX, let us imagine the cross-

section di^-ided by lines perpendicular to X X into small strips

and every such strip as C ^ to be divided again into rectangular

elements F^, F.^, F^, etc. If z^, z.j, z^, etc. are the distances {C F) of

these elements from the axis X X, we have the measure of the

moment of such a strip

F, z,' + F, z.! + F,zi + ...

= F,z,.z, + F^ z,.z^-\-F^Zz.z^ + ...

Now if we lay off in Fig. 352, II, A B at right angles to and
equal to C A, and join B and

C by a straight hne, it cuts

off from the perpendiculars to

C A, erected at the distances

{C F) = z^y Zi, Zo, etc., pieces

of the same length {F G) -

-

Zi, z-i, Zz, etc., and F, 2;,, F. z.,

etc., can be regarded as the

volumes of prisms, and F^ 2, . 2,,

F^ z^ . Zi, etc., as their statical

moments with reference to the

]Fig. 352.

I. II.

--A- /'

1 (

^

—

1-\

-/G
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axis C, The prisms F^ Zi, F.^ z., etc., however, form together a tri-

angular prism, whose base h A B C, and whose height is the

width of the strip A C (I) ; the sum of the above statical moments
is therefore equal to the moment of the prism ^ ^ C' in reference

to the axis X X. If we put the height C A — z and the width of

the prism — i, we have the volume of such a triangular prism

and since the distance of the centre of gravity from (7 is | 2; (see

§ 109), we have the statical moment of the above prisms, and con-

sequently the measure of the moment of flexure of the strip C A
W=: -lbz\iz = ibz\

In order to find the moment of flexure of the entire cross-sec-

tion A D, we have only to add together the moments of flexure of

the strips, such as C A, into which the entire surface is decomposed

by the perpendiculars to the axis X X.

The most simple case is that of a rectangular cross-section

A B C D, Fig. 353. The strips into which the surface is divided

are here all of the same size and form to-

gether but a single strip, whose width A D
= Z* is that of the entire rectangle.. If the

height ^ ^ of this rectangle is = h, we

have for the height of a strip

z = ih\

consequently the measure of the moment
of flexure of half of this surface is

'24 '

finally, the measure of the moment of the entire rectangle is

^^ ^ U 12

§ 227. Moment of Flexure of a G-irder, whose Form ia

that of a Parallelopipedon.—From the foregoing we see that

the moment offlexure of a parallelopipedical girder W E = -
-^ -^

increases with the width and with the cuhe of the height of the girder.

Substituting this value for W E in the first formula

we obtain the deflection of a girder, whose cross-section is rectangu-

lar, and which is fixed at one end,

Fig

A
353

D

N
t

)

B ©-
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_ pr
"^-^'hh' E'

Substituting it in the second formula of the same paragraph

_ 2_ PJ_^
"^ ~ 48 W E'

we have for a beam supported at both ends

_ FT
^"Ibh'E'

Inversely, from the deflection a we obtain in the first case the

modulus of elasticity

and in the second

Example—1) A wooden girder 10 feet = 120 inches long, 8 inches

wide and 10 inches high is supported at both ends and carries a uniformly

distributed load of Q = 10000 pounds ; how much will it be bent ?

The deflection is

_ g
QP _ ^

10000 . 120 ^ _ 50000 . 12^ _ 1350000
^ ~ * ~i¥¥E ~ ^ ' "8 .10^^ ~ 82. 8^ ~ T7^~*

Substitutinor E = 1560000, we have a = -.—^- = 0,216 inches.° '
• 4 . lo6 '

2) If a parallelopipedical cast-iron rod, supported at both ends, is 3

inches wdde and |- an inch thick, and is deflected l of an inch by a weight

P — 18 pounds placed upon it at its centre, the distance of the supports

from each other being 5 feet, the modulus of elasticity is

PP 18.60' 18.60'
^ =

-A—TTi = J—1

—

h-7TV3
=

-. = 'J'3 • 216000^:15552000 pounds.

§ 228. Hollow, Double-Webbed or Tubular G-irders.—
The moment of flexure of a hollow^ parallelopipedical girder

A B C D, Fig. 354, is determined by subtract-

ing from the moment of the whole cross-sec-

tion the moment of the hollow^ portion. If

A B = b and B C — h are the exterior and
A^ Bi = bi and B^ Ci — li^ the interior width

and height, we have the measures of the mo-

ments of flexure of the surfaces^ (7 and A^ d
b h' , b, h'

and consequently by subtraction the measure oj

the moment of flexure of the tubular girder

bh'-b, h,'W =
12
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Fm. 355.

D C

The moment of flexure of the single-webbed girder A B C D,
Fig. 355, is determined in exactly the same man-
ner, li A B — h and B (J — h are the exterior

height and width, and if A B — A^ B^ =^ h, and
B^ Ci = Jh are the sum of the widths and the

height of the two cavities, we have by subtrac-

tion

J

W
12

N

A B

The moment of flexure of the body A B C D, Fig. 356, the

cross-section of which is a cross, is found in a

similar manner, li A B = h and B C — h are

the height and width of the central portion, and

AiB^— A B = bi is the sum of the widths,

and ^1 C\ — Ai the height of the lateral por-

tions, we obtain by addition the measure of tlie

moment of flexure

Fig. 356.

D-

»- 9i
(1N
^h

JA B W bji^ + b, h'

12 *

In the same manner we can determine the moments of flexure

of many bodies which occur in practice. Thus for a body A^ B^ CD,
Fig. 357, with a T-shaped cross-section, whose dimensions are

A B = CD^b,
AB - A,B, = A A, + B B^z=bi,

A D ^ B C = hand
A D, = B C, = B C - C C, = h,,

the measure of the moment of flexure in

reference to the lower edge ^i ^i is — mo-

ment ofthe rectangle A B (7i>minus moment
of the rectangles Ai A and B^ C\, i.e.,

b{2hY . b,{2h,Y _bh'-bji{'
W,

' 12 '' 12 3

These moments are found by assuming each of these rectangles to

be the half of rectangles twice as high ; for these the axis J\\ iV, is

the neutral axis.

Now the surface A^ Ci D = F = b h — b^ li^, and its statical

moment is

F.e, = bh . h h .

h.
4 {b ¥ - I, W) ;

conse(^ently the lever arm is
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2{bh — bi hi)

the product
F.ei' = \{I) h' - h, h;y :{bh- b, h,)

and the measure of the moment of flexure of the body in reference

to the neutral axis M A", passing through the centre of gravity Sy is

pr= Wi - F, e,' = ih'-^^^i' _ 1 (j;^. -b,h,r ' (fih- hh)

__ 4:{bh' - b, Ih') {bh-b, h,) - 3 {b h' - b^ JhJ~
12 {b h - h h,)

__ {b ¥ - b, h'Y -^bhb, Ih {li - Ihf~
12 {b h - h h)

It is also easy to perceive, that the high webbed and flanged

girders have, for the same quantity of material, a greater moment
of flexure than the wide and massive ones. Since this moment
increases with the surface {F) and with the square {z^) of the dis-

tance from the neutral axis, the same fibre is better able to resist

the bending the farther it is removed from the neutral axis. If,

for example, the height of a massive parallelopipedical girder is

double the width b, the measure of moment of flexure is either

>' - ^^
- 3 ^ , or _ ^^ - , ^ ,

the first formula obtaining, when we place its greater dimension

2 b vertical, and the latter, when it is placed horizontal ; in the

first case the moment of flexure is four times as great as in the

second. If, again, we replace the solid girder, whose cross-section

is J A by a double webbed one, in which the hollow is equal to the

massive part of the cross-section b^ hi — bh, or iibxlh — b h :=^bhy

I.E., bi hi = 2 b h, or bi = b V 2 and hi — h V 2, the measure of

the moment of flexure for the latter girder is

hi hi' -b¥ b V~2{h V~^Y -b¥
12 12

I.E., three times as great as for the first one.

b¥

§ 229. Triangular Girders.—The measure of the moment of

flexure of a body with a triangular cross-section ABC, Fig. 358,

can be found, in accordance with what has been stated in the last

paragraphs, in the following manner.

The measure of the moment of flexure for the prism with a rec-

tangular cross-section A B C D \^, when we retain the notations

of the next to the last paragraph, = —.-, and consequently that of
12
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its half withjhe triangular cross-section A B Cm reference to the

central line JVi iVi is

Fig. 358.
^1-2

Vx Y

-Z-

-N-

-Z

D

X
-N

-Zi

w= w\
y,.Y

©>=

12 24*

But the Hne of gravity WN of the

triangle is at a distance I A B = ^ h
from the central line or line of gravity

iVi iV, of the rectangle, and, therefore,

according to § 224, the measure of the

moment in reference to WJV is

dh' _ hji^

24 72

""
36 ~ ^ * 12~*

The measure of the moment of flexure W of a girder with a

triangular cross-section is but one-third of the measure of the mo-
ment of flexure of a parallelopipedical one, the cross-section of

which has the same base and altitude. But since the latter girder

has but double the volume of the former, it follows, that for equal

dimensions the moment of flexure of a triangular girder is but |

that of a rectangular one.

For the axis Z^ Z^ passing through the base B C, the measure

of this moment is

W,= W + ©• F
36 *" 18 ~ I2 '

and for the axis Z Z^ passing through the edge A,

111'

4

These formulas do not require the cross-section to be a right-

angled triangle. They hold good for any other triangle ABC,
Fig. 359, whose base ^ C is at right angles to the bending force

P ; for it can be de-
F1G.359. composed into two

right-angled trian-

C P B gles^i)i?and^(7Z>
^ whose bases BD = l)x

and DC— J2 form

together the base B C
— h of the triangle

A B C^^o that we have for this triangle
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W = A^. h' +
-3G ^^

^' (b, + h) ¥ =
"36*

It is also of no importance whether the base B C lies above or

below the axis, i.e., whether it is placed as in I or II. The mo-
ment of flexure in both cases is

WE
36

when the modulus of elasticity for extension is the same as that for

compression. The same formulas can also be employed, when the

cross-section is a rhomb A B C D, Fig. 360, with' the horizontal

diagonal B D, If B D — b is the width and A C — h the height,

we have for the body with this cross-section

'' ~ • 12 \ 2 /
~ 48 ~ 4 12"'

I.E., one quarter of the measure of the moment of a girder with a

rectangular cross-section of the same height and width. From this

it follows, that for a double trapezoid A BED, Fig. 361, the height

of which is -4 C ^ B D - li, tlie exterior width A B ^ C D = h

and the interior width E F = Z*,,

12
(^ - ^0 48

=h' _ (3 ^ + b,) ¥
48

Fig. 360.

E A F
Fig. 361.

H C G

-X D

§ 230. Polygonal Girders.—The foregoing theory can be

applied to a body with a regular polygonal cross-section ACE,
Fig. 362, whose neutral axis X X is at the same time an axis of

symmetry. Since such a polygon can be resolved into triangles,

having a common vertex 8, the determination of its moment
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consists essentially in the calculation of the moment of flexure of one
of those triangles A 8 B. It we denote the sideAB =iB G—CD
of the polygon or the base of one of the triangles composing it by s

and the altitude 8 K of the

same by h, we have the measure

of its moment of flexure in ref-

erence to the axisXX
~ * * 12 ~ 48~'

on the contrary, this moment
in reference to a second axis

Y Y i^ — -—
-, and conse-

4

quently the sum of these two

moments is

4
+

48

s li

(" * iy

W, + W,

This sum holds good (according to § 225) for every other trian'

gle, and therefore, for a polygon of n sides, we have

when its area n . -^, is denoted by F.

If we designate the angle A 8 X hj a, the measure of the

moment in reference to the axis A 8 L is

— Wx (sin. af + W\ (cos. af ;

but the latter is also equal to the measure of the moment IVi in

reference to K 8 D or X X, and therefore we have

Wr = W, {sin. ay + W, {cos. a)%

or W, [1 - {sin. a)'] = W, {cos. a)%

I.E. Wi {cos.'ay — W2 {cos. ay, and consequently

For an axis U U, forming an arbitrary angle X 8 U — cj) with

the axis XX of symmetry, the measure of the moment is

W= W.sin.' = Tfj {sin.'' </) + cos."" (p) = TFj.

Now if we substitute in the above equation

we obtain for any arbitrary axis of a regular polygon the measure

of the moment of flexure
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W= IF, = W,=^(h^ + g),

or, putting the radius of the polygon S A = S B = r and there-

fore 7i' = r' — -^,

§ 231. Cylindrical or Elliptical Girders.—For the circle,

considered as the polygon of an infinite number of infinitely small

sides, 5 = 0, and therefore the measure of the moment of flexure

of a cylinder is

F nr*W= ~r' = --- = 0,7854 r\
4 4

For a hollow cylinder or tube, whose exterior radius is r, and

whose interior one is n, we have by subtraction

" ~ 4 ~ 4 ~ 4

in which F — n {r^^ — i\^) denotes the area of the ring-shaped

cross-section, r — -^—x—^ the mean radius and h ^ r^ — r^ the

thickness of the wall of the tube. The hoj'izontal diameter divides

the entire circle D E, Fig. 363, into two
FiG.^63.

semicircles A D B and A E B, and the

measure of the moment for such a

^N / j. \ N semicircle in reference to the diameter

C ; _ ,
^^ _ ^^

'"-t—

-

But the distance of the centre of

gravity S of the semicircle from the

centre C of the circle is els' = ^— (see § 113), and therefore the

measure of the moment for the parallel axis ^Y N is

V/ = W\ - F. CW = W, - F. (|-^y

while, on the contrary, for the semicircle, whose diameter is vertical,
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W=-~ = 0,3927 r\
o

In reference to an axis JV JV, which forms an angle ]V SX = a

with the axis of S3^mnietry C D, Fig. 364, the measure of the

<noment of the semicircle is

= (0,3927 sm." a + 0,1098 cos.' a) r\

Fig. 364

B X

From the formula

W
4 '

for the measure of the moment of flexure of the full circle, that of

an ellipse A B A B, Fig. 365, is easily deduced. In consequence

of the relation of the ellipse to the circle given in Art. 12 of the

Introduction to the Calculus, when A B^ A B^ represents a circle

whose radius C ^ is equal to the major semi-axis a of the ellipse,

and when the other semi-axis C B of the ellipse is represented by

D E
h, we have the ratio ^ ^ of the width i) ^ of an element of the

ellipse to that D^ E^ of a similarly placed and equally high element

of the circle

_ B B _ CB_ _l
'~

B, B\ ~ ~CB, ~ a

But since the moment of flexure of such a strip increases with the

simple width, the moment of a strip D E oi the ellipse is to that

of the corresponding strip of the circle as i is to a, and conse-

quently the measure of tlie moment of flexure of a body with an

elliptical cross-section is equal - times that of a body with a circu-

lar cross-section, i.e.

a 4
~4~
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If this body contains also an elliptical hollotv, the semi-axes of

which are «i and bi, we have for this body

iv - ^ (^' ^ - ^i' ^i)

4

If a body with a rectangular cross-section has an elliptical hoi-

low around its axis, or, as is represented in Fig.

3G6, has an elliptical cavity on the side, we have

the measure of its moment of flexure

b h^ n aC b^W
b and h denoting the length A B and the height

A A — B B oi the rectangular cross-section

ABBA, and, on the contrary, a^ and bx the

semi-axes C E and C F oi the semi-elliptical hol-

low D F E,

§ 232. The measure IF of the moment of flexure of a cylinder

or a segment of a cylinder may be determined very simply in the

following manner. We divide the quadrant A D oi the segment

of the cylinder A B X, Fig. 367, into n equal parts, pass

through the points of division vertical

planes, such sls D E, F G, etc. and de-

termine the moment of flexure for each

one of the slices D E F G, which we
consider to be right paralleloplpedons.

The sum of the moments of these

slices gives the moment of flexure of the

semi-cylinder A B, and by doubling

this moment we obtain the moment of

flexure of the entire cylinder. If r de-

notes the radius A — C oi the cir-

cular cross-section A B ]^, a division D G oi the arc =
- . — = -— , and in consequence of the similarity of the triangles

D G H and CD K, we have for the thickness K L oi the slice of

the cylinder DEFG^^DGLK
K L= G H = K D

. D G = KB TT r

Tn .KD.CD C D ^ n 2 n

Now according to the formula of § 226, the measure of the moment
of flexure of the slice D E F G is

_ irL.{%KDy _ 8 TT _ ^-
12 -i3-2lt-^^ -^n'^-
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If we put the variable angle A C D, which determines the dis-

tance of the slice from the vertical diameter, = 0, we obtain the

ordinate or half-height of the slice, D K — r cos. (p, and therefore

the last measure of the moment of flexure can be put = -— (cos. (bV
S n ^ ^^

_7Tr' S +4 COS. 2 </) + COS. 4 ^\4_3 + 4 cos. 2 + cos. 4^
- 3^ 8 ' ^' ^'''- ^^

-
"8

(see the " Ingenieur," page 157). In order to find the measure of

the moment of flexure for the semi-cylinder, we must substitute in

the factor 3+4 cos. 20 + cos. 4 0, for successively the values

1 .
-— , 2 . -^-., 3 .

-— , to 71 .
-— , then add the results found, and

2 n 2 71 2 n 2 n

finally multiply by the common factor ^-7— • Now the number 3

added n times to itself gives 3 n, the sum of the cosines from to n

is = 0, since the cosines in the second quadrant - to tt are equal

TT

and opposite to the cosines in the first quadrant to - , and the sum

3
.of the cosines in the third quadrant "n- to -. tt cancel those in the

3
fourth quadrant - 77 to 2 tt ; therefore the measure of the moment of

2

flexure of the semi-cylinder is

TT" _ TT r* _ TT r*

y - 24^ • ^ '' - ~8~'

and that of the entire cylinder is

W='^ = 0,7854 r\ or

W = ^-f-'
= 0,04909 d\

o4

d — 2 r denoting the diameter of the cylinder.

(Remark.)—If we employ the formulas of the Calculus, d (p denotes an

T TT

element of the arc ^, and the element I) G = ^~ = r 6 f; hence the meas-

ure of the moment of the element D E F G of the surface is

2d<i>.r* ,, 2 r* d (j> /d + 4: COS. 2 <p + COS. 4
(l>\

= -r- ^^^- ^> = —3- ( 8 ")
r* r*— —(d + 4:Cos.2<b + c/)s.4: (f)d(l>= jz{dd(i> -\- 4:Cos.2(l>d(t> -[ cos.4:(i> dtp)

12 1-^

r*= ^
- [d d6 + 2 COS. 2 6d{2 (f) + I-

COS. 4 9 rf (4 0) 1,
12
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and consequently that of the portion A B E I) of the cylinder is

W = ^-^U / d(j)+ 2 / COS. 2 (p d{2 (f) + I / COS. 4: (l>d (4: (j))\ i.e.

r*
IT = r- (3 ^ + 2 sin. 2 ^ + i sin. 4 (j)). (See Introduction to the Calculus^

La

§ 26, L).

TT

Substituting 9 = 7:, »in. 2 <!>
— sin. tt = 0, and sin. 4: <p = sin. 3 tt = 0,

and doubling the result obtained, we have the measure of the moment of

flexure of the entire cylinder

W='- ^^ 2 = ^^.
13 • 2 • 4

•

For the segment I) B, on the contrary, we have

irr* r*W = -^ (3 6 + 3 sin. 2 <p + I sin. 4 ^)
—

Ttt — 3 (^ /3 sin. 3 <^ + a szw. 4 0\"| ^= [—8~~ - [ ^1^ )V
r*= [Q {tt — 2 (p) — S sin. 2 (p — sin. 4 (p] -rz.
4o

By simple subtraction we obtain, by means of the latter formula, the

measure of the moment Woi' a board I) B F. G of a finite thickness K L.

(§ 233.) Beams with Curvilinear Cross-sections.—The
measure of the moment of flexure W of bodies with regular curvi-

linear crosS'Sections is determined most surely by the aid of the

calculus. For this purpose w^e decompose such a surface A N P,

Fig. 368, by ordinates into its elements, and we determine the

moments of such an element in reference to

the axis of abscissas A X and also in refer-

ence to the axis of ordinates A Y.

If X is the abscissa A N and y the ordi-

nate N P, we have the area of an element

d F = y d X

(see Introduction to the Calculus, Art. 29)

and therefore the measure of the moment
of flexure in reference to the axis A X

dW, = lf.dF=:l f d X

(see § 226), and, on the contrary, that in reference to the axis A Y
d Wi = x^ y d X,

since all points of the element are at the same distance x from A Y,

By integration we obtain for the whole surface A N P — F
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Wr= ify'dx
and

Wi — I x^ y d X.

If we have determined (according to § 115) the centre of gravity

of the surface A N P and its co-ordinates A K = u and K 8 = v,

we find the measures of the moments of flexure in reference to the

axes passing through the centre of gravity and parallel to the co-

ordinate axes by putting

W, = I fy^ dx - v' F
and

TFs = Jx^ ydx -u" F.

E.G., for a parabolic surface A N P, whose equation is y- — p x,

we have {according to Art. 29 of the Introduction to the Calcuhis)

F = f X y, and {according to § 115)

u = '^ X and v — ^ y,

hence

and

Since also from y- = p x, it follows, that x = -^ and d x —

l.u du ^-^-—^, we have

-,47 2f 2 ..

Ibp 15

12 o 1 ^ o

= 5-3^^-^'^5^^"
and

J^ydx= J^.^^-^- = -^Jy^dy=-^=^^a^y

3 2 „ 3 ,,

Finally we obtain

W. = \ Ff - ©' Ff = Q - '^^Ff = ^ Ft and
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Fig. 369.

Y
For a symmetrical parabolic surface

A D B, Fig. 369, whose cord A B = s and

whose altitude C D — h, we can put the

measure of the moment in reference to the

axis of symmetry XX
^' ~ '^ y - 20 ~ 30'

while, on the contrary, that in reference

to the axis Y Y at right angles to it re-

mains
12 „,„^_8

175

If we are required to

W.= ^^F1^ h's.

Fig. 370.

§ 234. Curvilinear Cross-sections.

calculate the moment of flexure of a body, whose cross-section

forms a compound or irregular figure, we must either divide this

cross-section into parts, for which the measure W is already known,

or we must decompose the same by vertical lines, calculate the

measures of the moment of flexure of these strips (according to

§ 226), and, finally, add these values together, in doing which we
can employ with advantage Si7npson's or Cotes^ rule.

If, E.G., ABE C, Fig 370, is such a figure or such a portion of

the cross-section of a body and if its mo-

ment of flexure in reference to the axis

A X is to be determined, we calculate first

the measure W^ for the portion of surface

A B G D and then the measure W^ for the

part C E D\ subtracting the latter from

the former, we obtain the required moment
W = ir, - W,.

If the base A D of the first part = x,

and the altitudes of the same at equal dis-

tances from each other are Zq, z^, z^, z-^, z^, w^e

have the corresponding measure of the mo-
ment, according to Simpson's rule,

(z: + 4.Z,' + 2 z.^ + 4 ^^3^ + z:\w, = X

12

If, on the contrary, the width C D of the piece C D E to be

subtracted be = x^ and the altitudes of the same are y^, ?/„ ?/o, ?/3,

we have, according to Cotes' rule {see Introduction to the CalciduSy

Art. 38),

29

+ 3 ^,^ + 3 y,^ + y/).
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If A X does not pass through the centre of gravity S of the

entire surface, we must reduce it by the well-known rule (§ 224) to

the axis passing through S. In the same manner other parts 3f

the cross-section, which lie below A X or alongside of A Y, may
be treated. The centre of gravity 8 can be determined either

according to § 124, or empirically by cutting a pattern of the

section out of thin sheet iron or paper and laying it upon a sharp

knife-edge. If we determine in this way two lines of gravity, their

point of intersection gives the centre of gravity.

Example.—JL B G E G/va Fig. 370, is a portion of the cross-section

of an iron rail, which can be considered as the diflFerence of two surfaces

A B G D and G E D. If the width of the first is | inches and that of the

second 1 inch, and if the heights of the first are

z^ = 2,85; Sj = 2,83; z^ = 2,74; z^ = 2,60; ands^ = 2,30,

and those of the second

y, = 0,20 ; y\ = 1,50
; y^ = 1,80 and y, = 2,15,

we have for the measure of the moment of flexure of the first portion

Wi =
I

.

I
.
i

. [2,853 + 2,303 + 4 . (2,823 + 2,603) + 2 . 2,743]

27

1

(23,149 + 12,167 + 4 . 40,002 + 2 . 20,571)

= -^ . 236,47 = 8,7584,

and, on the contrary, that of the second portion

TTg = i
. 1 .

i
. [0,30^ + 2,15^ + 3 (1,50^ + 1,80^)1

1 37,5674- ^ . (0,0080 + 9,9384 + 27,6210) = -~^^~ = 1,5653,

consequently, the required measure for the entire surface A B G E G is

Tr= TF"i - Tfg = 8,7584 - 1,5653 = 7,1931.

Remark.—We can also put

l^ = ^(|y(1.0^2/o + 4.1^^, -l-2.2^2/, +4.3^y3 + 1.4^yJ

=
1I2

(^ 2/1 + 8 2/g + 36 2/3 + 16 2/J,

when 2/0, 2^1, yii y^i 3^4 denote the widths measured at the distances

A3, is, |2, |s, Isfrom J[X

§ 235. Strength of Flexure.—If we know the moment of

flexure of a body A K B, Fig. 371, fixed at one end B and at the

other end A subjected to a force P, we can find the strain in every-

one of its cross-sections NO. If S denotes the strains per square

inch at a distance S X = e from the neutral axis S, the strains at

z z
the distances z^, z^2, * • * •, are 8x — ' 8, 8-2 = "'

8, and their mo-
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ments for the cross-sectious F^, F^ . . .
.

, are

My = F, S,
S S

F, z,' . - -, M, = F, S, z, = F, zi ~ -, etc.,

Fig. 37L

and consequently the sum of the strains in the cross-section iV is

M=M, + M,-\-.., = {F, z,' + F,zi +., .) -^- = -^^.

Now if :c is the dis-

tance S Hof the cross-

section N from the

point of application A
of the force P, we have

also M = P X, and

consequently

1) P X = ,or
e

Pxe= WS,
and the strain in the

body at the distance e

from the neutral axis is

The latter increases

with X, and is therefore

a maximum for x = I,

I.E., at the fixed point

B. In like manner it

increases with c, and is

therefore a maximum
for the point most dis-

tant from the neutral

axis.

If the body is no-

where to be stretched

beyond the limit of elasticity, the maximum strain S should at

most be equal to the modulus proof strength T, and consequently

Pie
we must put

or

S

Pl =

w
W T

from which we obtain the proof strength of the girder A K B
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p_ WT
.

la'
In like manner we have for the ultimate strength or force

necessary to break the body at B
_ WK

^' - ~Te\
in which we must substitute for K the modulus of ultimate

strength determined by experiment upon rupture. The funda-

WE
mental formula P x = , found in 8 215, can be obtained

directly as follows.

If we denote by a the extension NN^ produced by the strain S,

we have S = a U, and substituting in the proportion

SJV ~ ME'
]^ III =: a, S JV = e, R 8 ~ 1, and ME = r, the radius of curva-

(7 "1. e
ture, we have - =z - or o = -: hence it follows, that

e r r' . .

S = - U ov— = —,
r e r

and therefore also

WB WSP X — • = ——

.

re • >

pi
f%

If in the formula L — \ -^r-p (§ 217) for the work done in

T W
bending the body A K B we substitute the moment P I —

and the modulus of proof-strength T = g E, we obtain

But (according to § 206) \ o"^ E is the modulus of resilience A
;

therefore the work done in bending a body to the limit of elasticity

is T A
'^'^

If h is the greatest width of the body, we can imagine the whole

cross-section F of the body to be divided in n equally wide strips,

whose width is -, and whose altitudes are z^, z-2, z^ . . ., and we can put
n

E == - (z^ 4- z.^ + Zr^ + . . .) and
71

^
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W=^^W^<^^! + H'...),

and therefore also

\z, + z, + z.,'-\- . . .1 12'

We can make z^ = //, ,e, z.^ = [i., e, z-^ = ^i.,^ e, ftj, /Xg, 1^3 denoting

numbers dependent upon tlie form of the cross-section, and there-

fore we have

Wl ^ ill,' + II,' + jt^/ + . A FJ
'
e' \ Ml + ftg + it^3 + . . . / 12'

and consequently the mechanical effect

3 \ fi^ + fi, +
fj,.,

-{- . . . I 12'

But ^-5 — is a coefficient ib, dependent upon the form

of the body alone, and Fl = F is the volume of the body ; hence

the work done L = ^^ i) A F is not dependent upon the indi-

vidual dimensions, but only upon the form of the cross-section and

the volume of the body, which is bent. When the bodies are of the

same nature and of similar cross-sections, the work done is propor-

tional to the volume of the body.

For the work done in producing rupture we must put

W 1

B denoting the modulus offragility.

§ 236. Formulas for the Strength of Bodies.—For a paral-

lelopipedical girder A C B, Fig. 372, the length of which is I, the

width h and the height h, we have
Fig. 372.

e = 1 h, and, according to § 220,

W = —- - ; hence — = —--, the prooi
12 e b

'

strength of the girder is P =
b Ji^ T T
-7- -r-, and its moment \BPl=h¥ . -„ .lb b

From this it follows, that the mechanical effect necessary to bend

the girder to the limit of elasticity is

^ AWl A hh'2l
, . , , ,

, , j^L = = ~-
. ~—--y- = ^ A b hi = I A V.

3 e e S 6 h ^
^
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If the girder is liollow, and if its cross-section is shaped as is

represented in Fig. 373 and Fig. 374, we have

W h If - h, Ih' I W - I, 7z/ ,~~ —
, whence

e

P

12 . ^ 7i

h If - h Ih'

6h

6 hi
T,

h and li being the exterior and i^ and Ji^ the interior width and

Fig. 373. Fig. 374. Fig. 375.

JJ
—

height of the cross-section. For a body with a rliomUc cross-sec-

tion, such as Fig. 375, we have

W hlf hlf ,. ^,.

T = 48711 =24'^^^^^^^*^^^

_^^ T^^ ,hjf T^

Z • 24 ~ 4 ^ • 6
'

I.E. I as great as for a parallelopipedical girder of the same height

A.C = h and width B D = d. For a girder, whose cross-section is

a double trapezoid, such as is represented in Fig. 376, we have

W _ (3 g> + h) If _ (3^ + h) li\

48. 1^ 24

hence the moment of the proof strength is

(3 I + ^r) If T^

4 • 6'PI

1) denoting the upper and bx the central width and h the height of

the cross-section.

For a girder with a recjidar %n sided base, such as A D F, Fig.

377, I and II, we have, if r denotes the exterior radius C A, s the

length of the side A B, h the interior radius C L and F the entire

area of the cross-section.
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If the neutral axis iV^ 0, as in Fig. 377, I, passes through the

middle of the opposite sides, e = r; and if, as in Fig. 377, II, it

passes through the opposite corners,

Hence it follows, that in the first case

P I = —-——

—

T, and, on the contrary, in the second

Pi I = — '- T, while m both cases
xZ ti

F = \nsli^nh Vr' - 7? ^\ns V r' - (J- sf.

P r
The ratio p- of the proof strengths is = t-

K the number n of the sides of a polygon is uneven, as in Fig.

377, III, we must substitute e = r, and therefore we must employ

the first formula only; provided always that the direction cf the

force coincides with that of the axis of symmetry.

For a square cross-section we have s = 2 h = r V2, F -^ ^.

and the moment of the proof load

Pl^

and, on the contrary.

6 V% 3
T = 0,333 r' %

P^l T^ r' V'2
T = 0,471 r^ T,

6 3

For a hexagonal cross-section we have

s = r = —:-, F = —— - s- ~ 2,598 s\ and therefor©
V 3 ^

P I = ^4^1 s' T= -~/^ r' T= 0,541 r' T, and
lb lb

P,l= ^s' T= Ir' T= 0,625 r' T.

For a regular octagonal cross-section we have
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PI

and

Pvl

F= Ash = 2 VT . r

4 (2 VT + 1)

2 V2
^- l/"2"

^2 i/ 2 + 1

; hence

3 V" 20 + 14^ s^ T=
[

Q^
) r^ r = 0,638 /^ T,

4(2./2 + l) ..3^^^^_J:i_ .3^^o,,,^^
3 i/ 17 + 12 |/-2 ^ V 2 + |/^

For a massive cylinder, whose radius is 7% we have

= —— , and therefore
4r 4

0,785 r' TFl = -r T
4

^ ^ TT/-^ Z - .
2 7

i i^r . r, and .

3 4^1^ 1^

But if the cylinder is holloio, we have, on the contrary,

1 + \2rl

4 ri

Fr

-i
T (compare § 231),

7-1 denoting the exterior, r^ the interior and r = Tx + ^2

2
the mean

radius, F — i: {r^ — ^2^) the annular cross-section of the cylinder

and h = ri — r.2 its width.
Fig. 379. ^or a girder, whose

g cross-section is elliptical,

as is represented in Fig.

378, when the direction

of the semi-axis C A = a

is that of the force, and

that of the semi-axis C B
— 1) coincides with the

neutral axis, we have

T ^ \FaT.

Finally, for a parallelopipedical girder hollowed out on each

side in the shape of a semi-ellipse, as is represented in Fig. 379,

we have

Pl^ -rr a^ h

Pl =
'\h

t W — 3 TT Ji «i'

67i "
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and, on the contrary, if the cross-sections of the hollows are para-

bolas,

^ , V- * 1^" - A ^1 «>' rp _ 5 h ¥ — 32 h, a,'

^ ^ - -^
Jh

"
30 7.

b denoting the exterior width, h the exterior height, J, the depth

of the hollow and «, the height of the same.

8 237. Bifiference in the Moduli of Proof Strength.—
W T

The formula P ^ —j- for the proof load of a girder fixed at one

end A, Fig. 380, holds good only, when the extension a and the

compression o^ of the body are equal

^^^- ^80- to each other at the limit of elas-

ticity ; for under those circumstances

only can the modulus of proof

strength for extension

... .
, , T = G E\mmmmm

be equal to that of compression

T, = a, E.

For wrought iron this assumption seems to be nearly correct, and

for wood approximately so, but these relations are entirely different

in the case of cast iron ; the latter has not only a much greater

modulus of ultimate strength for crushing than for tearing, but

also the compression (t, at the limit of elasticity, which can, how-

ever, be given only approximatively, is about twice as great as the

extension cr, and consequently the modulus of proof strength T^

for compression is twice as great as the modulus of proof strength

T for extension.

In order to find the proof strength of cast iron or of any other

body, for which there is a perceptible difference between cs and a,

or between T and Ti, we must first see which of the quotients

T T T
and -- is the lesser, and substitute that instead of — in the

e Bx e

formula p _ ^ ^
~ ^T *

The other half of the beam, corresponding to the greater ratio

(T TA
- or —

- 1, is of course not stretched to the limit of elasticitv. In

order to reduce this cross-section and consequently that of the

whole body to a minimum and thus to economize as much mate-

rial as possible, it is necessary, that both the halves of the girder

shall be strained to the limit of elasticity. Therefore we must give

the beam such a form and such a position that we will have
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e ~ e^ e,
~ T,~ o,'

I.E., that the ratio of the greatest distances e and e^ of the fibres on
the two sides from the neutral axis shall be equal to the ratio of

the moduli of proof strength T and T^ for compression and ex-

tension.
rp „

If, then, for cast iron we have ^ =— = 2 (see
1 (7i

211), we

^ shallmust so fashion the cross-section of a cast iron girder that

be as near as possible =2. A triangular girder must be so placed,

that the half with a triangular cross-section shall be compressed,

and that with the trapezoidal cross-section shall be stretched. If

we place one of the sides of the prism horizontal or at right angles

to the force, we have — = -, while in the opposite position, we
c J-

have — = -.
e 2

We can also give cast-iron girders, whose cross-section approach

the shape of a T (as is represented in Fig. 381), such dimensions

that the ratio — shall be equal to 2.

Fig. 381.

B C

LN

A H M H

Let the entire height of the beam be ^ ^
= h, the width of the upper flange he B B =
2 B C—l, the height ofthe hollow on the side be

A D = hi = 1^1 7i,

the width of the same be

2irG = l^ =v,h,
the height of the lower flange be

H L = ho = fh h

and its projection on both sides be

2LJV h
then the distance of the centre of gravity s of the whole surface

from the lower edge H is

MS 1 hh'

2

hJh' 4- hh
h h — hy h] + bi /^2

_ h /I — iH^ v^ + /2./ v\
~ 2 \ 1 — ihv^ + m v. I

(see § 105 and § 109). If we substitute 2 and e + 6', — h, we

have e =
I
h and <', § h, and therefore the equation of condition
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^h
1 ^1 + />t-/

/^2^2^) 1 — fix V^

which, when transformed, becomes

^1 i\ (4 — 3 ii^i)
— ^2 -I'a (4 - 3 //,) = 1.

By the aid of this formula, when three of the ratios /^i, v^, fi.y and I'j

of the dimensions are given, we can calculate the fourth. If we

make jUo = 0, we have the cross-section represented in Fig. 382, the

moment of flexure of which has already been determined (§ 228),

and for which we have fii v^ [4= — 3 jj^^) = 1.

• Remakk.—Moll and Reuleaux (see their work, "Die Festigkeit der

Materialen," Brunswick, 1853) recommend for the determination of the

most advantageous cross-section the use of a balance, the beam of which

forms a table. Patterns of the cross-section, cut out of sheet-iron, are

placed upon it in such a manner that the neutral axis, determined by the

e a
ratio — = — , shall lie exactlv above the centre of rotation of the beam.

If the pattern has the most advantageous form, the beam will balance; if

it does not, we must cause it to do so by cutting away portions from the

side of the body, until the beam balances, when the pattern occupies the

above position.

Example 1.—If the cross-section of a cast-iron beam has the form of

Fig. 381, and if the ratios of the heights are

- _ '^- ^

^ - 8' /^2 - 1 8
"^"

8'

we have for the ratios of the width the condition

8r 8/'^ sr sr^
77 v^ - 29 v^ = 64.

If the lower flange is omitted, then v^ = 0, and we have

I.E.

h. 64

'^=T = 77

and the thickness of the web proper is d

If, on the contrary, we make v^ = -^

0,831,

Fig. 382.
consequently

-
5i = 0,169 h.

we have (77

0.887 and v.

29
] i\ = 64, and

: -; . 0,887 =

0,148. For h = S inches and h

= 7 inches, ?i^ = 1 inch, h^ =
= 5 J- inches, /?, is

5 inches and &„

= I inch ; so that the thickness of the upper and

lower flange is 1 inch, and that of the vertical

web but ^ inch.

Example 2.—For a girder with a T-shaped

cross-section. Fig. 382, we have found (§ 228)

(5Z^2 _ j^ ;^^2)2 _ 4 55^ ^, ^^ c^ _ ^^)2W
12 (b h- b^ h^)
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in which we must put

^1 - 2 111 — &j h^ '

hence, if one end is fixed and the other loaded, w^e have

If we put li^ = /u^ h and 5^ = x;^ 6, we obtain

and therefore if the beam is cast-iron and we substitute /^^ =r e. ^nd v^ = |-,

p._(TV)^-3(^r ?a^ 13 &^
tV

* 6 ^1 - 70 • 6 ^1-

K, E.G., A is = 10 and 5 = 8 inches, and consequently

\ = ^.l{) = ^ = ^^n-h^ = If inches,

5j = 7-
. 8 = 7 and & — 5^ = 1 inch,

we have

'~70 • 6 •
^1 - 21 !•

If we substitute T^ = 18700 pounds, we have for the moment of the

proof strength, which, for the sake of safety, we should put = 150000

520
P I = -^ . 18700 = 463048 pounds.

/ii.

If this beam is 100 inches long, its safe load at the free end is

„ 150000P = ..^^ = 1500 pounds.

If the girder is supported at both ends and carries the load in the middle,

we have

P = 4 . 1500 = 6000 pounds.

While in the first case the flange must be placed on top, in the latter it

must be put at the bottom.

§ 238. Difference in the Moduli of Ultimate Strength.—
If we determine the moduli of elasticity and of proof strength

by means of experiments on bending, making use of the formulas

^ P Ir
, ^ Pie

the values found for E and T generally agree very well with those

given by direct experiments on extension and compression, when the

formulas PIP
JEJ = -^ and T = -p are employed.

But this relation is entirely different for the modulus of ulti-
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mate strength. Since we cannot consider the modulus of elasticity

E to be constant beyond the limits of elasticity (for it decreases,

when the extension or compression increases), and since the mod-

ulus of elasticity for extension is no longer equal to that for

compression, the strains in the superposed fibres are no longer

proportional to their distances from the neutral axis, and conse-

quently that axis no longer passes through the centre of gravity

;

the values of g and ^, differ in that case essentially from what they

are, when the limit of elasticity is not surpassed.

If W denotes the measure of the moment of flexure for the

stretched half of the girder and E the mean modulus of elasticity

of the same, and if W^ denotes this measure for the compressed

portion and E^ the mean modulus of elasticity, we have for the

moment of the bending force, when the bending becomes excessive,

p, _ WE + W, E,
IT I — ,

r

and if we put, at least approximately, — — - and ~p = -—, ^and

Ki denoting the moduli of ultimate strength for tearing and

crushing, the moment of the force necessary to break it is

P , .,, /r (WE-^W, E,) K, {WE -\- W,E,)P I either -— —^
==, or = ^ ^ -.

E e E^e^

If we again denote the statical moment of the cross-section of the

stretched portion of the body in reference to the neutral axis by M
and that of the cross-section of the compressed portion of the body

in reference to the same axis by M^, we have the force on one side

= and on the other — —^

—

\ and since the two forces must
r r

form a couple, M E = M^ E^. This equation serves to determine

the neutral axis by means of the distances e and e,.

For a girder with a rectangular cross-section we have

M^'- and M, = ^|L,

and therefore

E e'^ = E,e,\

From this we obtain

ei -'^ e;
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Substituting this value in the equation ^ + e, = ^, we have

~
and e, =

ve+ ve, \f~E -^ v^;
The measures of the moments of flexure are in this case

1^ = -g- and TT, = -^,

and consequently we have

hh' E E,

^^-A(^-
3 , rT,3x _ h¥ lEE,\nE,-\-EE,\rE\

3 ^ {\^E \- V~E,y'

and therefore the moment necessary to produce rupture is

PZeither=i4^.^_£^W = ^^.^ ^^
3 Ee ( |/^+ ^^^)2 3 •

' VE+ VE,

'h¥ ^ \fE
or — —- K,

3 i/^ + ^/E,

For E — E-^^Q have, of course,

o

For t(^oo^ and wrought iron, E is really about = Ei, and there-

fore we can write approximately

in which we must substitute forK the smaller value of the modulus
of ultimate strength. For cast iron, E, is much greater than E,

and therefore P I approaches the value -^ K, K being the modu-
o

lus of rupture for extension. For wood we must substitute the

mean value of the modulus of ultimate strength for crushing,

JT, = 480 kilograms = 6800 pounds, which value agrees very well

with the results of the experiments of Eytelwein, Gerstner, etc.

In like manner, for a wrought iron girder we must substitute

instead ofK the modulus of ultimate strength for crushing K, =
2200 kilograms = 31000 pounds. While under the same circum-

stances Avood and wrought iron break by crushing, cast iron breaks

by tearing. If for the latter K were about = K,, we would have

to substitute for cast iron girders, in the above formulas, the

modulus of ultimate strength of tearing, i.e., K — 1300 kilograms
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= 18500 pounds; but, according to the results of many experi-

ments, we must put

K — 3200 kilograms = 45500 pounds,

LE., about the mean value of the modulus of ultimate strength for

tearing and of that for crushing.

This great difference is caused not only by the difference of the

moduli of elasticity E and Ex, but also by the granular texture of

the cast iron, which precludes the supposition that the beam is

composed of a bundle of rods.

Many different circumstances influence the elasticity, the

proof strength and the ultimate strength of a body, so that nota-

ble differences occur in the results of experiment.

The wood, for example, near the heart and root of the tree is

stronger than the sap wood and that near the top, and wood will

resist a greater force, when the latter acts parallel to the yearly

rings than when it acts at right angles to them ; finally, the soil

and position of the place where the wood grew, the state of

humidity, the age, etc. influence the strength of wood. Finally,

the deflection of a body, which has been loaded very long, is always

a little greater than that produced, when the weight is first laid on.

§ 239. Experiments upon Flexure and Rupture.—Experi-

ments upon elasticity and strength were made by Eytelwein and

Gerstner with the apparatus represented in Fig. 383. A B and

A B are two trestles, upon which two iron bed-plates C and C are

fastened, and D D is the body to be experimented upon, which is

Fig. 383.
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placed upon them. The weight P, which is to bend the body, is

placed on a scale board E E, which is suspended to a stirrup M N,

whose upper end is rounded and rests upon the centre M of the

girder. In order to find the deflection produced by the weight,

Eytelwein employed two horizontal strings Pi^and O G and a

scale M H, placed upon the middle of the girder. Gerstner, on

the contrary, employed a long sensitive one-armed lever, which

rested upon the beam near its fulcrum and whose end indicated on

a vertical scale the deflection of M in 15 times its real size.

Lagerhjelm employed a pointer, which was moved by means of a

string passing over a pulley, and which showed the deflection of

the beam magnified upon a graduated circular dial. Others, as>

E.G., Morin, made use of a cathometer to determine the deflection.

The object observed was a point fastened in the centre of the girder.

In the English experiments a long wedge was used to measure this

deflection ; it was inserted between the centre of the beam and a

fixed support. In order that the accuracy of the measurement

may not be affected by the yielding of the supports of the girder,

it should rest during the experiments either upon stone founda-

tions (Morin), or a long ruler should be placed a certain distance

above the girder and fastened at its ends to the ends of the latter,

but in such a manner that it cannot bend with the beam, and in

each experiment the distance between the lower edge of the ruler and

the centre of the deflected girder should be measured (Fairbairn).

The manner in which Stephenson, etc., determined the deflec-

tion and strength of tubular sheet iron girders, is shown with the

principal details in Fig. 384. The tube v4 P is 75 feet long (the

front portion being omitted in the figure), is supported at both

ends, as, e.g., in C, upon blocks of wood and its centre rests upon

a beam D D, which is carried by two screw-jacks. An iron arm,

the end i^ of which 'only can be seen in the figure, passes through

the middle of the tubular girder near the bottom, and from this

two stirrups G, G hang, to which the scale-board // H to receive

the weight P is suspended. Before the experiment and during

the laying on of the weights, the entire load was supported by the

l)eam D D ; when the screw-jacks were lowered D D sank and

placed itself upon the supports E, E, while the centre of the tube

A F, loaded with P, remained free and could assume a deflec-

tion corresponding to the force P. This deflection was measured

by means of a wedge. *

In order to avoid the use of very large weights in experiment-
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ing upon large girders, they are generally made to act upon the

latter by means of a lever with unequal arms. With the same

object in view, Hodgkinson caused the force of the lever to be

Fig. 384

applied not to the centre of a girder supported at both ends, but to

one end of a girder, which was supported in the middle and the

other end of which was fastened by a bolt to the foundation.

Tlie results of experiments, made under very different circum-

stances and with very different kinds of materials, particularly of

wood and iron, have shown the theory laid down in the foregoing

pages to be correct in all important particulars. In regard to the

rupture of parallelopipedical girders it was proved, that those of

wood and wrought iron, under the same circumstances, gave way
by crushing, and that in the case of cast iron the rupture began

either by the exterior fibres being torn apart or by a wedge break-

ing out at the most compressed part (in the middle).

We can satisfy ourselves of the truth of the hypothesis, made
in § 214, in regard to the behaviour of the fibres of a body, sub-

jected to flexure, by making saw cuts upon the compressed side of
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parallelopipedical wooden rods and then filling them up with pieces

of wood, by drawing a series of lines upon the side of a beam at

right angles to its longitudinal axis, and finally by fastening two
thin rods to the beam, one along the extended and the other along
the compressed side.

§ 240. Moduli of Proof and Ultimate Strength —In the

following table the moduli of elasticity, of proof strength and of

ultimate strength or of rupture, as determined by experiments

upon bending and breaking are given. The first differ but little

from those determined by the experiments on extension and com-
pression ; but, for the reasons given above (§ 238), this is not

true of the modulus of ultimate strength. The upper of the

two quantities in a parenthesis ] t gives the value in English meas-

ures (pounds per square inch) and the lower one the same in

French measures (kilograms per square centimeter).

TABLE
OF THE MODULI OF ELASTICITY, OF PROOF STRENGTH AND OF

ULTIMATE STRENGTH OR OF RUPTURE OF DIFFERENT BODIES
IN RELATION TO BENDING AND BREAKING.

Names of the Bodies.
Modulus of Elasticity

E.

Modulus of
Proof

Strength T.

Modulus of Rup-
ture or of tritimate
Strength K (K,).

Wood of deciduous Trees

Wood of evergreen Trees

Cast Iron

Wrought Iron ....

Limestone and Sandstone

Clayslate

( 1280000

( 90000

( 2130000

( 150000

f
17000000

( 1200000

28400000
2000000

3100
220

4300
300

10670

17000
1200

9240)

12800 )

900 )

45500 1

3200 j
1

32700 )

2300)

1760
1

124)

j 5000 )

( 350)

In order to determine from the value in the foregoing table the

load, which a girder can carry securely, we must introduce a factor
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of safety and substitute in the formulas for the proof strength

akeady found for wood

either instead of T, ^ Tot instead of ^, y^g ^y

for cast iron

either instead ofT,^ T or instead of K, \ K,

and for wrought iron

either instead oi T, ^ T or instead of K, \ K
Consequently we can hereafter put for wood

T =1^ kilograms — 1000 pounds,

for cast iron

T = 510 kilograms = 7000 pounds

and for wrought iron

T = 660 kilograms = 9000 pounds.

We cannot employ these values in calculating the dimensions

of shafts and other parts of machines ; for, on account of their

constant motion and of the wearing away of the parts, a greater

factor of safety must be introduced, which requires us to assume a

smaller value for T.

If we substitute these values in the formulas

T T T
o 4 oZ

for parallelopipedical and for cylindrical girders, we obtain the fol-

lowing practical formulas

:

For wood
Pl=167hh' = 785 r' = 98 d' inch-pounds.

For cast iron

P I = 1167 bh' = 5500 r' = 687 d' inch-pounds.

And for wrought iron the greatest value

P I = 1500 bh' = 7070 r' = 884 d' inch-pounds.

If with Morin, and in accordance with the practice in England,

we put for cast iron

-ff' IT
instead of 7^, — to — = 750 kilograms,

and for wrought iron

instead of T, — = 600 kilograms,

we obtain for cast iron

P I = 1778 bh' = 8376 r' = 1047 d' inch-pounds,

and for wrought iron the smaller value

Pl = 1422 b 7i' = 6700 r' = 838 d' inch-pounds.

K the load Q is not applied at the end of the beam, but is
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equally distributed over the same, the arm of the load is no longer

I, but -, and consequently, the moment being but half as great, we

mustput Ql WT ^, c.
WT

If the girder is supported at both ends (Fig. 337) ajid the load

P acts midway between the two points of support, whose distance

p
from each other is = Z, the force at each end is = -^, its arm is =

^ and its moment

PI WT , „, ^ WT—r- = and P I = 4: .

4 e e

-. Therefore, under the same circumstances, the girder bears twice

as great a load in the second and four times as great a one in the

tiiird as in the first case.

K, finally, a girder uniformly loaded along its whole length is

supported at both ends, it is in the first place bent upwards by a

force ~r, whose arm is -, and in the second place downwards by a

force -^, whose point of application is the centre of gravity of one

of the halves of the load, whose lever arm is therefore - and whose
4

moment is ^. Consequently the moment with which one end of
o

the girder is bent upwards is

_Ql_Ql^Ql
4 8 8

'

W T
hence we have Q I = S . The proof load of the girder is in

e

this case 8 times as great as in the first one.

For a parallelopipedical girder we have in the first case

TP I = h h^ —tj in the second
D

Ql= 2 bh'^, in the third

TP I = 4:b h'^ — and in the fourth
b

Ql = Sbh'^,

^denoting the width and 7i the height of the rectangular cross-section.
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Example—1) What load can a girder of fir carry at its middle, when

its width is 5 = 7 and its height A = 9 inches, and when the point of ap-

plication of the load is 10 feet distant from the supports ? Here we have

^ I = 10 . 12 = 120 inches, and therefore, according to the above formula,

P Z = 4 . 167 & A'^ = 4 . 167 . 7 . 81,

and the required working load is

P = ^^^^^- = 58,45 .27 = 1578 pounds.
240 ^

2) A cylindrical stick of wood, firmly imbedded at one end in masonry,

is required to bear a weight Q = 10000, uniformly distributed over its

whole length Z = 5 feet ; what should be its diameter ? We have here

7T r^ T
Ql = 2 —^- = 2 . 785 . r%

and consequently by inversion

r — Q±
1570

10000 . 60

1570
= V 382 = 7,2G inches,

and the required diameter is = 2 r = 14,52 inches.

§ 241. Relative Deflection.—The bending of the moving

parts of machines, such as the shafts, axles, etc., has often a very

bad effect upon their

^^^- ^^^- working, either by giv-

ing rise to vibrations

and concussions, or by

preventing the different

parts of the machine

from engaging perfect-

ly. We are therefore

in certain cases re-

quired to determine the

cross-sections of these

parts of macliines, not

"with reference to the

modulus of proof

strength, hut to the

deflection, by assum-

ing the deflection to

be a very small definite

portion of the entire

length of the body or

part of the machine.

We have already found (§ 217) the deflection for a prismatic

body A S By Fig. 385, fixed at one end B and loaded at the other

A, to be
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and we can put its ratio to the length A B, which is given

e = ^= ^^'

I 3 WE'
whence, by inversion,

Pr = SO WE.
Hence we have for 2i parallelopipedical girder

PI _ze--E = ^^,
and for a cylindrical one

PV = se'^-E= ^TTdr' E,
4 4

Generally a relative deflection ^ = j = ^io is admissible, and

we can put

Ifwe substitute for wood the modulus of elasticity E = 1600000,

we obtain

pr = 800 b h' = 7540 r\

For cast iron we have E — 15000000 pounds, and therefore

pr = 7500 b h' = 70700 r\

and for wrought iron E = 22000000 pounds and

P r = 11000 i ¥ = 103700 r\

On the contrary, when the deflection reaches the Hmit of elas-

ticity, we have (§ 235)

^
e e

and, therefore, equating the two values of P T, we obtain

^- = 36 WE,
e

and consequently the ratio of the length I of the beam to the maxi-

mum distance e, when both the deflection and strain reach at the

same time their limit values 6 and T, is

l_ _ 3d^_ _ S_d

e
~ T ~ a'

hence for parallelopipedical bodies

h ''a
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and for cylindrical ones

I 3d I e

r o d " o'

a denoting the extension or compression at the limit of elasticity

corresponding to the strain T.

I 3
If - < — , we obtain from the first formula the greater valueGO

7 ^ fl

for P I and if, on the contrary, - > — , the second formula gives

the greater value for the moment of the force. Therefore for a

given moment of force (P I) the greater dimensions for the cross-

section are given in the first case, where the length of the body is

— ) e, by the formula

W T
e

and in the second case, where I > I— ) e, by the formula

3 e W E = Pl\
7 o /a -I

If we substitute in the ratio - = — for the limit, 6 = ——,
e G 500

we have for all materials - = ^7^7^— =
, and, therefore, for

e 500 o a

wood, for which a = -— , - = 0,006 . 600 = 3,6, and more par-
uUU 6

ticularly for a prismatical beam of this material

If we assume for cast and wrought iron a — zrr?r^, we obtain for

these substances

- = —'—^— = 9 and therefore
e 500

h''d = 2 = ^'^•

The formula

2000 2000

is of course applicable to the normal case above, i.e., when the body

is loaded at one end and fixed at the other. For a load equally

distributed we must substitute (according to § 223), instead of

P, I Q, If the body is supported at both ends and the load is sus*
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P 7

pended in the middle, we have, instead of P, — and, instead of /, -,

and therefore

^ ^ - ^ • 2000 ^ -" ^ • "^000~*

If the girder is supported in the same manner and the load

5 Q
uniformly distributed, we must substitute for P, -^.

8

Example— 1) What load placed upon the centre of a wooden beam,

supported at both ends, will produce a relative deflection 6 = ^i^, if its

width is & = 7, its height ^ := 9 inches and the distance between the sup-

ports is Z = 20 feet ? Here we have

„ ^ 800 & h^ 6400 .7.9^ „ ^,P = 8,—^=^^^-^,- = 7.9^ = 567pounds,

while in the foregoing paragraph, under the assumption that the beam
should be bent to i\iQ hmit of elasticity, we found P = 1578 pounds.

2) How high and wide must we make a cast iron girder (the ratio of

its dimensions being ^ = 4), which, when supported at both ends, will

sustain a load Q = 4000 pounds, uniformly distributed over its length,

which is 8 feet ? Under the latter supposition, we have

I QP =z%. 7500 & /i^

I.E., f . 4000 .
8' . 12^ = 8 . 7500 -^ or A^ = 4* . 6,

consequently

A = 4 Ve = 1,565 . 4 = 6,26 mches and

h
i = - = 1,565 inches.

Accortling to the formulas of the foregoing paragraph, we would have

Ql = 8, 1167 5 h\ or 4000 . 8 . 12 = 8 . 1167 . -^,

whence the required height is

A = 4 y^ = 4 . 1,37 = 5,48 mches,

and the required width

d = j = 1,37 inches.

§ 242. Moments of Proof Load.—From the formula

T
Pl = bh'

b̂

for the moment of the proof load of a imrallelopipedical girder we

perceive tliat this moment increases with the loidtli h and with the

square of the height h, that the proof load itself
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~
I 6

is inversely proportioYied to the length {I) and that the lieight has a

much greater influence than the width upon the solidity of such a

girder. A girder, whose width is double that of another, will bear

but twice as great a load as the latter, or as much as two such

girders placed side by side. A girder, whose height is double that

of another, bears, on the contrary, (2') = 4 times as much as the

latter, when their widths are the same. For this reason we make

the height of parallelopipedical girders greater than their width,

or we place them on edge, or in such a position, that the smaller

dimension shall be perpendicular to the direction of force P and

that the greater dimension shall be parallel to it.

Since b h expresses the cross-section F of the beam, we have also

T

hence the moments of the proof load of bodies of equal cross-section,

mass or weight are projjortional to their height. If, for example,

h and h are the width and height of one body and - and 3 h those
o

of another body or F = -S h = b h the area of both their cross-

sections, the bodies have the same weight, when the other circum-

stances are the same, but the latter bears three times as great a

load as the former.

If ^ = h, the cross-section of the beam is a square, and we can

diminish the moment of proof load by placing the diagonal in a

vertical position. In this case, W, as we know from § 230, remains

unchanged and is = —^ = j^, while e becomes equal to the semi-

diagonal h b V 2 = b V ^. Therefore we have

T
while, if it were laid on one of its sides, we would have P l — b^ --^.

D

See § 236.

The equations for parallelopipedical girders are analogous to

those for girders with an elliptical cross-section. We have in the

latter case (according to § 231) W — —
^
— and e = a, the semi-

axis a being supposed parallel and the semi-axis b perpendicular to
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the direction of the force or, as is generally the case, horizontal.

Here we have for such a girder

4 4

the area of the elliptical cross-section being F = i: ah. The mo-
ment of the proof load of this beam increases, therefore, with the

area and with the height a of the cross-section.

lih — a = r, we have a cylindrical girder, whose radius is r,

and the equation becomes

Pl=-j-T=Fr^,
4 4

The moment of proof load of this body increases, therefore, with

the product of the area of the cross-section and its radius.

If the cross-sections or weights are equal, the ratio of the mo-
ment of proof load of a body with an elliptical cross-section to that

of one with a circular cross-section is -. Therefore, we should
r

always prefer the elliptical to the cylindrical girder.

This holds good for all other forms of cross-section ; the regu- •

lar form (the square, the regular hexagon, the circle, etc.) has

always, for the same area, a smaller moment of proof load than a

form of greater height and less width.

Eegular forms of cross-section should, therefore, be employed

only for shafts and other bodies, revolving about their longitudinal

axis, in which case during the rotation a continual change in the

position of the dimension of the cross-section takes place, i.e., after

one-quarter of a rotation the height becomes the width and the

width the height.

§243. Cross-section of Wooden G-irders.—If a cylindri-

cal girder has the same cross-section F — it r"^ — ]f o,^ 2i parallelo-

pipedical beam, whose height and width is = l, we have the ratio

- = 4/^ = 1,77245,
r

and, on the contrary, the ratio between the moments of proof load

if and M^ (3Q is in the first place, when the latter body is laid

upon one of its sides,

3f r h S r ^

M,- V 6
=U = 2-V^ = ''''''''' = '''''''

and in the second place, when its diagonal is placed in a vertical

position,
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M r bi^ 3

M =V^ = W-. = ''''''' -''''''

The moment of proof load of the cylinder (with circular base)

is in the first place smaller and in the second place greater than

that of a parallelopiped'on with a square base.

Since wooden parallelopipedical girders are cut or sawed from

the round trunhs of trees, the question arises, what must be the

ratio of the dimensions of the cross-section of such a beam, in order

that it shall have the greatest moment of working load ?

Let A B D E, Fig. 386, be the cross-section of the trunk of the

tree, A D — d\i% diameter and

AB ^ D E=

h

the breadth and

A E= B D = h

the height of the beam ; then we have

h' + h' = d\ or

je = d' - h\

and the moment of proof load is

The problem now is to make
1) (d' - h")

as great as possible. If we put, instead oi h, h ± x, x being verj

small, we obtain for the last expression

(b ± t) cr - (b± xY = bd' - b' ± (d' -^b"~)x -^bx\
when x" is neglected. Now the difference of the two expressions is

2/ = =F (^' - 3 ¥) X + Zb x\

In order that the first value shall always be greater than the

second, the difference

y = ^ {d-^ •- Zb'')x ^-Zbx^
must be positive, whether we increase or diminish b by x. But
this is only possible when fZ- - 3 ^' = ; for this difference is then
= 3 6 :c' or positive, while, on the contrary, when yZ' - 3 Z»' has a
real positive or negative value, Zb x" can be neglected, and the sign
of the difference if (^Z^ - 3 b') x varies with that of x. Therefore,

putting d' - S b' = 0, we obtain the required width

b = d V\, and the corresponding height

h = VW^^b' = dVl^
the ratio of the height to the width is
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Y — —7=- = 1,414 or about X.

h 4 1

We should, therefore, cut the trunk of the tree in such a man-
ner as to produce a beam, whose height is to its

.
Fig. 387.^ width as 7 is to 5. In order to find the cross-

section corresponding to the greatest strength,

we divide the diameter A D, Fig. 387, into three

equal parts, erect in the points of division M and

N the perpendiculars M B and N E and join

the points B and E, vdiere they cut the circum-

ference, T\*ith the extremities A and D by straight

lines. ^ ^ i> ^ is the cross-section of greatest resistance ; for we

have
A3I:AB = AB:ADsLndA^^:AE = AE:AD,

and consequently

AB = b= VA M .ad = V \d,d =- ^ i/I and

AE=7i= VA N .ad = 4/5 d.d = d Vf, or

- =
, which is what was required.

1

Remark 1. The moment of jDroof load of the trunk of the tree is

and that of the beam of greatest resistance, cut from the same, is

77 _ T 8 T

6 ^ ^ V 243 V 243 '

and coDsequently the beam loses by being cut

^-vlS-^ = ^-"'*'^ = '''^^'

I.E. 35 per cent, of its proof strength. In order to reduce this loss, the

beam is often made imperfectly four-sided, i.e. with the comers wanting.

The moment of the proof load of a beam with a square cross-section, hewed

from a tree of the same size is

since the width is = height = d \% = 0,707 d ; the loss is

1 ?—r. - = 1 ?-^ = 1 - 0,60 = 0, 40,
6 . 2 V2 ^ 3 TT \'2

I.E. 40 per cent.

(Remakk 2.) In order to cut from a trunk of a tree a parallelopipedical

beam, whose moment of flexure is a minimum, or for which ^ = ^ is as

small as possible (compare § 241), we must have
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W = \^ orbh' = h' v'cZ2 - A^, or (6 hy = A« (d^ - A^)

= d^ h^ — h^

as great as possible. The first differential coefficient of the latter expres-

sion in reference to 5 is 6 d^ h^ — 8 A', which is equal to zero for h^ = ^ d^,

I.E. for

r- d V 3
A = <Z v| = t>

a^cl

& = Vd^-h^ = Vi<Z2 =_

For these values the moment of flexure of the beam is a minimum (sec

Introduction to the Calculus, Art. 13).

Here we have ^ = — = 1,7321, or about |, while above we found for

ttie maximum of the moment of proof load r =^-

This condition corresponds to the construction in Fig. 387, when we
make AM=I)N'=^AD.

§ 244. Hollow and Webbed Girders.—We have, accord-

ing to § 228, for a hollow parallelopipedical heam

_ I ¥ - h, h'

and therefore the moment of proof load is

WT W T 11 ¥ - h h,Pl^

and

~\ h / 6*

If we put —^ = /z and —^ = v, we obtain

and, since the cross-section of the body is

F= bh - bih, = bh (1 - fi v),

\1 — f.L V I 6

Since
^ ~^' ^ = l-^v^^v-^^v ^ ^ ^ (1 - f^')f^v

increases with v, we obtain the maximum value of P Z for v = i,

and it is

If, on the contrary, wo put f*
= v, we obtain

2) Pl^(l + t^')Fh^.
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In both cases we must make /x as great as possible, and there-

fore nearly = 1. If we wish the proof strength of the girder to be

a maximum, we must make the webs as thin as possible. Hence
we have for ft = 1 in the first case

T TP I — ?> F li — — F h ^, and in the second case

T T
PI — %Fli~ — Fh—, and, on the contrary, for/z = 0,

In all three. cases the proof load of the girder, when the cross-

section (i^) or the weight is the same, increases with the height

{Ji) ; but in the first case, where the girder consists of two flanges,

it is a maximum ; and in the second case, where it forms a paral-

lelopipedical tube, it has a mean value ; and in the third case,

where it is composed of one or two webs, a minimum one.

If, for example, a massive girder, whose dimensions are J, and

7i„ has the same cross-section or weight as the supposed tubular

girder, we have

F z=z hxh^ — hli — hx ^1, I.E. 2 Z>, Ih = h li or -^ =
fj,
v = i.

ok

If we assume ~ = ~, we have a = v = V},, and therefore the
fi

ratio of the proof loads of the two beams is

I = ^^^"^ A = (l^i) V^ = iV^ = zn = 3.13;
Pi 1 — IX V h^ \i — y

the tubular girder is therefore capable of carrying more than double

the load that an equally heavy massive girder can, whose form is

that of the hollow of the first girder.

The same relations also obtain for I-shaped girders, since (see

§ 228) the measure of the moment of flexure W is the same for

both. These formulas can also be emplo3^ed for bodies with more

than two ivehs, as, e.g., bodies with the cross-section represented in

Fig. 388, in which case h denotes the width of the

upper and lower rib, h the entire height A D = B C,

&i the sum A the widths and hy the height of the

hollow spaces if, N, 0, P.

The formulas for a pipe or lioUoio cylinder are

analogous to those for a parallelopipedical beam. If r

is the exterior and r, = // r the interior radius, the

moment of proof load of this body is
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= (l + l^')Fr.^.

This value increases as /tx = — approaches unity, and therefore

as the wall of the pipe becomes thinner. If we put \l = 1, we ob-

tain the corresponding maximum moment of proof load

T T
4 Z

If we compare the proof load of this tube with that of a massive

iron cylinder, whose radius r^ = i-i r = r Vl, we have then for the

latter „ , ^ T ^ T
''

P^l = F r^-r — a F r — and
4 4

exactly what we found under the same suppositions for parallelo-

pipedical girders.

We can see from the general equation

6 G

that the moment of proof load of a body increases as the distances

0, = /Li, e, Zi — fj'-i
c, etc., of the portions Fi, F.2, etc., of the cross-sec-

tion fi'om the neutral axis become greater. But since this distance

can at most be = e, tliose girders will have the greatest moment
of proof load, the different portions of whose cross-section are at

one and the same distance (the maximum one) from the neutral

axis. Such a beam consists of tico flanges. Since the webs which

unite the two flanges cannot satisfy tlie conditions of maximum
moment of proof load, it is impossible to attain this maximum, and

we must therefore content ourselves with increasing the proof

strength of the girder by hollowing it out, by thinning it in the

neighborhood of the neutral axis, or by adding flanges at the

greatest possible distance from the same axis.

The thickness, wliich the web must possess in order to resist the

shearing strain, will be determined in the following chapter.

Remark.—Under the supposition that the proof strength increases and

decreases with the ultimate strength, the English engineers increase the

size of that portion of cast-iron girders, which is subject to compression
;

for that material resists compression best. On the contrary, they increase

the dimensions of the compressed side of girders of wrought iron, as the
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latter resists extension best. If the girders are to be supported at both

ends, their form must depend upon the substance of which they are made.

If the beam is of cast iron, we make the bottom flange larger than the

other; if of wrought iron, the upper flange, or the upper part of the

girder is constructed of two flanges, united by vertical webs, as is repre-

sented in Fig. 388. The forms T and T, discussed in a previous paragraph

(§ 237), are employed for cast iron.

Example.—An oak girder 9 inches wide and 11 inches high, which has

up to the present time shown suflScient strength, is to be replaced by a

cast-iron girder, whose exterior width is 5 inches and whose height is 10

inches ; how thick should it be made ? If we put the double thickness of

the metal = «, the width of the hollow is = 5 — a;, and its height is

= 10 — aj, and consequently we have for the hollow girder

5i A/ - &2 ^2' = 5 • 10' — (5 - «) (10 - xy = 2500 a;— 450a;2 + 35 «' — x*,

7000
hence the moment of proof load isPl = ^-y^ (2500 ir-450 x"" + 35 x^—x').

If the moment of proof load of the massive wooden beam is P Z

9 , 11^ = 1
. 1089000, we must put

700 . (2500 X — 450 x'' + 35 a;' — x*) = 1089000, or

2500 X - 450 x^ + d5x^ — X* = 1556.

1556

1000
"6"

In the first place, x is approximatively =
2500

= 0,62, for which, how-

ever, X = 0,65 should be put. From this we obtain 450 x^ = 450 . 0,4225

= 190,12, 35 x^ = 9,61, x' = 0,18, and finally

X = 1556 + 190,12 - 7,56 + 0,18 _ 1738,7

2500 ~ 2500

and consequently the required thickness of metal is

X

= 0,695 inches,

= 0,3475 inches.

215. Eccentric

Fig. 389.

Load.—If the force which acts upon a

girder supported at both ends

A and B, Fig. 389, is not applied

at the centre, but at some inter-

mediate point, situated at the

distances D A = l^ and D B —
li from the points of support, tlie

proof load is greater than when

the force is applied in the mid-

dle. Let us denote the forces,

with which the points of support

A and B react, by P, and P^

and the entire length of the gir-

der ^ ^ = Z, -I- I2 by I. Now,

if we put the moment of Pi in
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reference to the point of support B equal to that of P in reference

to the same point and in like manner the moment of Pi in refer-

ence to A equal to that of P or Pi / = P k and P^l = P Z„ we

obtain the reactions at the points of support

and consequently their moments in reference to the points of

application p 7 _ p 7 _ ^ ^i ^2

For any other point E, whose distance B E from the point of

support ^ is = a;, we have this moment

P^,B~E=^-
smaller than that just found, and consequently at B we have the

greatest deflection, and therefore we must determine the proof load

in reference to this point alone, for which we have

Pk k _ W T
f ~ e '

If we substitute l^ = - — x and L = - + x, we obtain the

moment of the force

I I I
'

hence the proof load is

p _ I WT IW T
t| tg V ti

(j
- '•)X ] e

and therefore greater or less as x is greater or less. For x = -j

I.E., for ?i = 0, in which case P is transferred to the point of sup-

port A, we have ^ I W T
^=1)7.- = "'

and on the contrary for x = 0, i.e. if the force P is applied at the

centre, the proof load is a minimum and is

W Tp — A

as we know already from § 240. A prismatical girder supported

at both ends will sustain the smallest load, when the latter is ap-

plied at the centre, and more and more as the weight approaches

the points of support.

If we lay off as ordinates the moments of the force, which are
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inversely proportional to the radius of curvature ^nd directly to the

curvature itself, as ordinates at the different point's upon the girder,

we obtain a clear representation of the variation of the deflection

at the different points upon the girder.

PI L .

If, in the case just discussed, the moment of the force
I

m

D is represented by the ordinate D L and if from its extremity L
the right lines L A and L B he drawn to the extremities of the

abscissas D A = l^ and D B = I2, these lines will limit the differ-

ent ordinates (as for example E N) representing the measures of

the deflection for the different portions of the body; for since

it follows thatE B D B'

E~N E B
D B

as we had previously found.

Fig. 390.

D L = Plx Pk x

Another case which

often occurs in practice

is, when the weight is

equally distributed over

a portion E F = c of

the entire length I of

the girder A B, Fig.

390. Let us again de-

note the distances of

the middle D of this

weigh t from the points

of support A and B by

?i and 4 and the reac-

tion of the abutments

by Pi and P^, then we

have again

If Q were not distributed, but if, on the contrary, the force was ap-

plied at A the moment for D would be = ^J ', and, representing



§245.] ELASTICITY AND STllIDNGTH OF FLEXURE, ETC. 48o

the same by an ordinate D L, the moment for the other points of

A B will be cut off by the right lines L A and L B. But, since

for the points within E F the forces P, and Po act in opposition

to the weight placed upon it, the ordinates between E G and FH
will be diminished. For the centre D of the loaded portion E F
the moment of half the weight

|.£=^
must be subtracted, and there remains, therefore, of the ordinate

WL = ^-j^ only the portion

For another point iV, whose abscissa is A N^ the moment is, on

the contrary,

NE _ ^ ^ {x -l,+l_cyqP,.NA- NE . q .
-~- z=z P, X -

and if P, x is represented by the ordinate N R and ^^
— '"

by the portion S R, the ordinate N S will give the total moment
(x-l, + l,crqr,x —

.

This is of course very different for different values of x^ i.e. for dif-

p
ferent points, but is a maximum for a: — /, + -1 c = — ', and then

its value is

Hence we must put the proof load of this girder

I \ 211 ~ e''

Example.—"What weight will a hollow parallelopipedical girder, made
of ^ inch thick sheet iron, support, if its exterior height is 16 inches and its

exterior width is 4 inches, when it is loaded uniformly along 5 feet of its

length, the middle of the loaded portion being 8 and 4 feet distant from

the points of support ? Here we have

bh' — l.h.^ 4. 16? -3. 15^

T^-^
=

16
= 391,3

and
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^(-a=i--(-^)=
33. 1 9

24
~ 76

3'

and the weight required is therefore

3 T 195,6
(2 = 391,2.^.- =

76
. 9000 = 23160 pounds.

Remark.—If the weight Q, is not uniformly distributed over E F^ but

if half is applied at the extremity E and half at the extremity F, the line

(3^ if^ is then a right line, and the maximum moment is the ordinate

WE~ for which

Zj denoting the greater distance D A and l^ the smaller distance J) B of

the middle I) from the two extremities A and B.

§ 246. Girders Fixed at Both Ends.—If a beam A B,

Fig. 391, is loaded in the centre C and fixed at loth ends, it will be

Fig. 39L

iiiiiiiiii!iiiii!iiiiiy|

iiiiiiiiiiiiiiiiLniiliI

curved upwards at the centre, and at the points of support A and

B downwards, and there will be formed at the centres D and E of

the semi-girders C A and C B points of inflection, where there is

no curvature or where the radius of curvature is infinitely great.

One-half of the weight P is supported h^ A D and the other half

by B E, and we can therefore assume that both the quarters A D
and B Eof the beam are bent downwards at their ends E and E by

p
-, and that, on the contrary, the half D E of the girder is bent

upwards at its ends D and .E' by /—
J.

The arm of each of these
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forces A D
ment is

C D, etc., is = A B I

4'
consequently their mo-

2 '4

PJ ^
8 ~

= —
8

WT
, and therefore

; hence we can put the proof load

4:]VT
I e I e

Such a girder will bear twice as great a load as when it is

simply supported at both ends.

PI
If we make the ordinates A H ^=^ B K — C L and

draw the right lines H L and K L, they will cut off ordinates

{M N) for every other point (if) upon the beam proportional to

the moments of the force and to the deflection.

If in \hQ formula, which we have found, we substitute the modu-

lus of rupture K instead of the modulus ot proof strength T, we
obtain, of course, the force necessary to break the beam, which is

8 WKP =
I e

Since the curvature is the same in A, B and (7, the rupture will

take place at the same time in ^, ^ and C.

If the position of the girder is the same and the load Q — I q

is uniformly distributed, the girder assumes, it is true, two curva-

tures upwards and two downwards, but the points of inflection

Fig. 392.

H K

D and E, Fig. 392, do not lie at the centres of the semi-girders

;

for the deflecting forces i?, R of the portions A D and B E are
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aided by the weight upon the latter, and, on the contrary, the

action of the bending forces ~ R, — R oi the central piece D is

diminished by this load. Let us put the length A D = B E = l^,

the length C D = C E = l^ and the total length of the beam I =
2 (/i + ^2), and let us denote the weight upon A D or B E hj

Q^ = q Zj, and that upon D E\>y Qc^ = % R - % q L Now, since

^ D is bent downwards by R and §i,we have, according to § 216

and § 223, the angle of inclination to the horizonE D T-D E T
= a at the point of infleci^on D

— ^ ^^ %ilL.
"" ~

2 WE "^
6 WE'

and since C D is bent upwards by (— R) and downwards b\ $.2,

we have for the same position D also

Ea = Rk'
2 W

Equating the two values of

6 WE'
we obtain the relation

3 R {V - I,') = ft /r + Q, If, or

3 q I (li - in = q (?i' + ^n, I.E.,

3/{'.-6-'lh'.-6-'.)"
Eesolving this equation, we obtain

/. and L a-^il
2 '

* 2

and, therefore, the moment of force in relation to the middle C is

M - jiC- -^ - ^ - ^ - 24 ~ 24'

and that in reference to the extremitv A or B is

Fig. 393.

-E
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= ^' (1 - VJ) (1 + Vi)

~
8 12 24*

The proof load of this beam is therefore

n io WT_3 SWT
^ le 2 le '

I.E., ^ times as great as in the former case, where the weight acted

at the centre C.

If we lay off ^7^ as ordinate in A and B and also ^- as ordi-
-^ 12 24

nate in C, making A H = B K = - -^ and 7/ L = — ^ , we ob-
X/i 24

tain three points H, K and L of the curve HD L E K, which

represents the variation of the deflection of the girder.

Example.—How high can grain be piled in a grain house, when the

floor rests on beams 25 feet long, 10 inches wide ana 12 inches high, if the

distance between two beams is = 3 feet and if a cubic foot of corn weighs

46,7 pounds 'i If we employ the last formula Q Z = 12 . 167 . 6 A^, we
must put

6 = 10, 7t = 12, Z = 25 . 12 = 300, and consequently

^ 12 . 167 . 10 . 144
Q = 300 ~" = ^^^^ pounds.

Now a parallelopipedical mass of grain 25 feet long, 3 feet wide and

X feet high weighs 25 . 3 . a; . 46,7 pounds; if we substitute this value for

(2, we obtain the required height of the mass

9619
^
=

-75-746:7 = 2'^5f«^'-

§ 247. Beams Dissimilarly Supported.—If a beam ABC,
Fig. 394, IS fixed at one end A and supported at the other B and if

the load acts in the middle between A and B, we have, according

to § 221, the reaction of the support B

P — ^_ p.

and therefore the moment of the force in reference to C

Pa 5^^--2 =32^^'
and, on the contrary, that in reference to A is
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AS^-Fl-F.l = Pl(l-^) = ^,Pl

Fig. 394.

P =

or greater, and consequent-

ly we can put the proof

load

16 W T
d ' le

'

For an intermediate point

M, at a distance CM — x

from the centre C, this mo-
ment is

I

MJ^^ "i*')
Px= P,

If we assume x
IP, I

- (P - Pi) X.

_ 6^
~ 22

I, we obtain

Fig. 395.

P - Pi 16-5 t

that point, for which the moment is equal to zero and the radius

of curvature infinitely great. ' The variation of this moment and

the deflection of the girder are represented by the ordinates of the

right lines ff L and L B, passing through the extremities of A H

= ^ P Z and of (7P = ^ P ?.

If, finally, a girder A B, Fig. 395, supported in the same man-
ner as the last, is uniformly

. p loaded, as we have previous-

ly generally supposed, with

a certain weight q upon the

running foot of the girder,

we can determine the reac-

tion Pi at the support B in

the following manner. If

the length of the beam is I,

the entire load is Q = I g

and tlie moment of the force

in reference to a point M,

at a distance B M = x from

the point of support P, is

™-l
l^J-^

.1
1', [ ^^^^
s&s A ^
Ihtliiilii' .'iiNril
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and consequently the angle of inclination

_ P. {r - X-) _ q {r - x'')

""~
2 WE 6 WE '

and (according to § 217 and § 223) the corresponding deflection is

^~
i W E 6 WE

t

*But since A lies on the same level with B, the ordinate in A,

I.E. for X = I, \^ y — 0, and we must put

dP^.'ir = q,'il\

from which we obtain the reaction at B

If we substitute this value for P, in the expression for the mo-

ment, we obtain

R S = I Qx — -— = %r {j I — x); and therefore for a; = /

qr _ QiAH= - V =
8 »

For x = B D = I I this moment is = 0, and for x = B E =
I Z it is a maximum

Since^ = -— Q I > -^ Q I, the moment A Hm reference

to the fixed point A is greater than the moment KEm reference

to the middle E of B D, and the proof load corresponding to the

moment^ must therefore be determined, i.e. we must put
o

W T

in which case we assume, of course, that the modulus of proof

strength for extension is the same as that for compression.

This proof load is 8 . j^g = ^ times as great as it would be if

the weight were concentrated in the middle.

§ 248. Girders Loaded at Intermediate Points.—If a

girder A B, Fig. 396, loaded at both ends with equal weights P, P,
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Fig. 396.

^^u

4i!ri|il!llii!li!!!l|!l!i!!ii!lli!!l|!!ll|!!!l^' k

is supported at two points C
and D, which are at the same

distance A C— B D — l^ from

the ends, the reaction of each

of these points of support is

equal to the force P, and for a

point if upon CD the moment
of flexure

C L= D O^MN
U C IVI D

" = P {X, — ly) ~PX^ = —PI,
is condant, and the form of

neutral axis of C Z) is therefore a circle, while, on the contrary, for

a point U upon A C' this moment U V —- P x \^ variaUe and

smaller than P l^.

WE
The radius of curvature of the middle piece C i> is = r = -p-

,

and the angle of inclination of the axis of the beam in (7 and D is

I PI I

consequently a^ = -— = — _[-,, I denoting the length of this

middle piece. From this we obtain the deflection

(j ly _ J^ _ pjn,
2 r "" 8 r ~ 8 W EMS = c

«j = ai ly +

, as well as the deflection of C ^

PI,'

3 IF E
P I U

+
PV

2 WE ' 3 WE
The mordent of proof load for this girder is P I, =

il I

A

(-2 + 3 •

Pk'
WE \ 2 ' 3

WT
e

If the same beam A B is uniformly loaded, as is shown in Fig.

397, with q per running
Fig. 397. iooi, under certain circum-

stances the moment of

flexure for some points is

positive, and for others

negative, and therefore at

two points IJ and V it is

equal to zero.

For a point upon A C
and B D this moment is

I q x", and, on the con-

trary, for a point between

6' and tlie middle M, or between D and M, since the. value of the

reaction at C and Z> is ^ Q ~ {\ I + I,) q,\iis R 8 = y — I
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{x -f- hY q — {> I + h) X q — \ {x:" — I X -\- l^^) q, and therefore

— for x' — Ix = - U\ I.E. for

I

G U X = "¥ li^ and for

-"'"U^'Q 7^

which of course requires that li

I

< ^, I.E. C A < C3L Under

Fig. 398.

any other circumstances the moment of flexure remains always

positive, as is shown in Fig. 398.

The moment of flexure is a maxi-

mum or minimum for x = - and

while the moment of flexure in O
and D is (rZ= D'O = -] q l,\

If, therefore, in the first case,

nfuiinii

>

> 6' L, and since q =
load equal to

Fig.397,(0-/,^>/ror(y

2 /r, I.E. l> I,V8, we have ^fW

we must put the moment of proof

]V T
, while, on the contrary, we have

Qi.' W T
, when I < /, VS./q

F[g. 399.

2(/-f-2?,) e

§ 249. G'rders not Uniformly Loaded.—If a beam A B,

Fig. 399, is not uniformly loaded, but in such a manner that the

load on the running foot increases

towards the extremities of the girder

regularly with ^e distance from its

centre, the statical relations wijl be as

folio \vs.

lil = A B zzz'^ a A = "2 C Bis
the length of the beam, measured be-

tween the points of support A. and B,

q the Aveight of tlie load per unit of

surface of the cross-section and p iha

angle of inclination A C D — B C E
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of tlie planes C D and C E, which bound the load, we have the

weight of the prism ACD = BCF of the load, sustained by one

l)oint of support,

|- == i AC, AD. q = hQj tc^ng. p,q = IqT tang, p,

and consequently the moment of this force in reference to a point

N, at a distance A N = x from A, is

yi = -^-^ = lql''^ tang. g.

The weight ofthe heavy prism above A i\"=a: is q i ——— ) A N,

and the centre of gravity of the same is at a distance N =^

, ^— ^^ -r
. —FT- from N, and consequently the moment ofAD ^ N

L

3 ^ J

this prism in reference to iV^ is

y, = q{2AD-\^NL) —^ = g [^ tang. P + (2
~ ^) ^^^^-

p\ \

=^ tang, p [i I - x),

and the entire moment of ^exure for the girder at JV is

^^^= 2/ = y. - y. = ^-^^ {SPx- 6lx' + ix')

if we put C J^ — Xi = - — X or measure the abscissa x^ from C.

I q r
This is a maximum for x = - and equal to -— tang, p, and

the moment ofproof load of this girder is

q I' . Ql W T

while for an uniformly loaded beam the moment of flexure is

«[©'-']Q

Q I _ W T
hence the moment of proof load is ^^ 8 e

§250. Girders Sustaining Two Loads.—If a girder A B,

Fig. 400, supported at both ends is loaded at a point C, which is at

the distances C A = h and C B = I2 from the points of support
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A and B, with a weight P and in addition carries a uniformly dis-

tributed load Q = q I, the reaction of points of support A and B
h P O I P Q

are R^ = — 1- -^ and E.2 = -4— + ^ , and the moment of

flexure at a point N, situated at a distance A N =^ x from the

point of support J, is

Fig. 400. Fig. 40L

This moment is a maximum for

2 E, R.
X = X, I.E., for X — —, and is then

q q'

y-^^ 2\ql -2q- 2q\ I ^ 2 ) ' TQ \l
^ ^ Yf'

It is here assumed, that C A > C B, i.e., I, > l^ and x < /,.

If x = li the maximum of the moment of flexure is at C (Fig. 401),

and consequently

^
2 12 21 \ 21 r

Q\l_
q \ I •' 2/ Q

If we substitute

^ ~ W "^ 2 / ~ ^". we obtain

P _ h - i I _ 2 I, - I _ I, - I,

Q k 2 k 2^2 '

and the moment ofproof load of the girder, when

i<^jr'''
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[—
r- ^ ) n-T) = y aii<i? 0^ the contrary, when

P_

Q
U

{.+!)
Q\kh

, it is

WT

These formulas are specially applicable to cases, where the

weight G of the beam is taken into consideration ; here G must
be substituted for Q.

Fig. 402.

rr

§ 251. Cross-section of Rupture.—In all the cases, which

we have previously treated, we have a-ssumed the body A B,

Fig. 402, to be prismatical and, there-

fore, the moment of flexure WE to

be constant, hence we could conclude

from the fundamental formula

Pxr = WE,
that the radius of curvature

WE

was inversely, or the curvature itself directly, proportional to the

moment (P x) of the force P acting upon the body and that con-

sequently the curvature becomes a maximum or a minimum at the

same time that P x does. If, therefore, the force P is constant,

or if it increases with x (as, e.g., in the case" represented in Fig. 403,

where Q = q x), the curvature in-

creases or diminishes with x and be-

comes with it a maximum and mini-

mum. "When, on the contrary, the

cross-section F of the body is difler-

ent in different points, then W =
I {F Z-) is also variable, the radius of

curvature is proportional to the quo»

W
tient -:,c— and the curvature itself toPx

the expression
Px
^, If we are required to find the points of great-

est arid least curvature, we have only to determine those, for which

Px
W

\r is a maximum and a minimum.



§ 251.] ELASTICITY AND STEENQTH OF FLEXURE, ETC. 495

In like manner, according to the formula

„_Pxe

of § 235, the strain ^S' in a body is proportional to the expression

Pxe
—^^, and becomes a maximum or a minimum simultaneously

with it.

W

.

If the body is prismatical, — is constant, and the maximum

strain S is proportional to the moment P x of the force only. If

W
the cross-section of the hody varies, — is a variable quantity, and

e

this strain is dependent upon this quotient also. In the first case

the strain becomes a maximum with P x, e.g., when the beam is

acted upon at one point by a force P and by a load Q = $- a; uni-

formly distributed over a distance x, for x = I; in the second case

this maximum cannot be determined unless we know how the

cross-section varies. In order to find the point of maximum strain,

it is necessary to determine by algebra the maximum of the expres-

P xe
sion —^. In any case the part of the body where this maximum

strain occurs is also that point at which, if the load is sufficient, the

strain iS' first becomes equal to J' and also to A^, and, consequently,

where the limit of elasticity will first be attained or where rupture

will take place. This . cross-section of the body corresponding to

(P xe\
—yr- I is therefore called the section of rup-

ture (Ft. section de rupture, Ger. Brechungsquerschnitt) or also

the dangerous (weak) section.

If the body has a rectangular cross-section^ with the variable

width u and the variable height v, we have

P X
and the section of rupture is determined by the maximum of ^^ ^ u v"

or by the mmimum of -^—

.

^ P X

For a body with an elliptical cross-section, whose variable semi-

axes are u and v, we have

W _ 7T u v"
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and we must therefore again determine the minimum value of

u v'^

-p— , when we wish to know the weakest point in the body.

When the weight is constant, P can be left out of consideration,

uv'
and we have to determine onlv the minimum of If, on the

contrary, the weight Q = q x is uniformly distributed upon the

girder, we must determine the minimum of—^ in order to find the

section of rupture.

§ 252. If a body A CDF, Fig. 404, forms a truncated wedge

or a horizontal prism with a trapezoidal base A E B F, whose con-

stant width is B C = D B = h, and if the force F acts at the ex-

tremity D Fof the same, we

have to find only the mini-

V'mum of — in order to deter-

FiG. 404.

mine the section of rupture.

Putting the height I) G =
B Foi the end = h and the

heightF U of the truncated

portion HK U — c, and as-

suming, as pre^dously, that

the section of rupture B MN is at a distance U V = x from the

extremity D B F, we obtain the height of this section

MB = v = h ^^h = h(l + -),
c \ cfc \ c.

and we have therefore but to determine the minimum of the ex-

pression

(-.-)•= '•(^^?)•
1 X

or, since h and c are determined, only that of—I

r,

2
If we assume r = c, the latter expression becomes — -

; but if
c

we make x a little {.(\) greater or less than <?, we obtain

(^-3
1

(l ^ ?.. + ^) and
c \ ^ c &f
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consequently

X c c c

2
or in any case greater than -. Hence x = c gives the minimum

c

required, i.e. the section of rupture X J[f iV is at a distance from

the end DBF equal to the height K U = c or to the distance of

the truncated edge HK from the same end D E F in the other

direction.

The height of this section of rupture is

V = h ^— . c — 2hy
c

and consequently the proof load is

_ h (2 ny r _ 4& ^^ r
c

* 6 ~ c • 6*

For a parallelopipedical girder, which has the same length 1= c,

the same width h and equal volume V = b h I, the height is

, h + 2h - ,
hi =—^ = ih

and consequently the proof load is

b_hl T^ _ 9bJ^ r
~

c * 6 ~ 4 c • 6'

and such a girder bears, therefore, but j% as much as the wedged-

shape body just treated. If the body is a truncated pyramid, the

edges A B, B D, etc., when sufficiently prolonged, cut each other

in a point, and if we designate the height of the truncated portion

by c, we have

M]^=u = i(l + ^^SindLM=v = h ll + ^]-

and therefore the minimum of

uv
X

or of

(' - ?)

1 3 X x^
- + — + —
X c c

must be determin*ed, in order to find the section of rupture. By
the differential calculus we obtain

32

X^^Cy
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and we can easily satisfy ourselves that this value is correct by first

substituting x = ^ c + x^ and then x = ^ c — x^. In both cases

we obtain a greater value than

- + :^ + J- = —, which IS the value
c 2c 4c 4c

the expression

1 ^ dx x' _—I ^ H—-„ assumes for a? = A c.

The distance of the section of rupture from the end D F is then

equal to half the height c of the portion of the pyramid, which is

cut off. The dimensions of this surface are

u = b (1 + i) = -^bandv = ^, h,

and, consequently, the required proof load of the beam is

_ -i
b (j hy T^_r[bJlT_

~ he 6 ~ 4 c 6*

For a body, the form of which is a truncated cone, we have,

when the radius of extremity is r and the height of the truncated

portion is c, the radius of the section of rupture r, = | f, and

therefore

§ 253. Bodies of Uniform Strength.—If a body is so bent,

that the maximum strain 8 upon the extended and compressed

side of the neutral axis is at all points the same, we have a body of

the strongest form, or of uniform strength (Fr. corps d'egale resist-

ance, Ger. Korper von gleichem Widerstande). By a certain force

such a body is strained to the limit of elasticity in all its cross-

section at the same time, and has, therefore, in each part a

cross-section corresponding to its proof strength ; it requires,

therefore, when the other circumstances are the same, a smaller

quantity of material than any other body of the same strength.

Therefore, for the sake of economy and to avoid unnecessary

weight, such forms are to be preferred in construction.

Since the greatest strain in a cross-section is determined by

the expression

8 =^^ (see § 351),

P X e
& body of uniform strength requires that ~^ shall he constant for

all cross-sections of the body.
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If the force P is constant and applied at the end of tlie body,

we have only to make

ex W
,,y orW ex

constant, and when the force Q = q x is uniformly distributed

upon the girder!

W ^^ex'

must be constant. For a girder with a rectangular cross-section (sco

§ 251), whose dimensions are u and v, we must make in the first

case , and in the second —- constant.
x x'

If at another place at the distance I from the extremity the

width is b and the height h, we must have consequently in the

nrst case = -7—, and m the second —5- = -^5-
x I

'

x" r

For the constant width u — I, w^e have in the first case

— = -r-, I.E.,
X I

v' X V ./x

X .

Since the equation -^ = is that of a parabola (see § 35, Re-

mark), the longitudinal profile A B E, Fig. 405, of such a body

Fig. 405. Fig. 406.

D^r-^
Is

1^
'f,,,g|i,j::.,,i|,j^

r^

l^
||l|:i|t!li!nii

lliMiiilii

iiiiil

C

lttli"!'IH;lf,

[mil

^ %.

^^^H I|p

has the form of a parabola, whose vertex E coincides with the ex-

tremity or point of application of the load P.

If a beam A B, Fig. 406, whose width is constant, is supported

at both ends and sustains the load P in the middle, or if the beam
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A B, Fig. 407, is supported in the middle and is acted upon at its

ends A and B by two forces, which balance each other, its eleva-

tion must have the form of two para-

bolas united in the middle. As ex-

amples of the latter case, we may
mention working beams, balance

beams, etc. As the beam is weak-

ened by the eyes, made for the shafts

A, B and C, lateral or central ribs

are added to it.

If the height v ^=^ h \% constant,

we have

II _x

and the width is proportional to the distance from the end ; the

horizontal projection of the beam ACE, Fig. 408, is a triangle

BCD and the entire girder is a wedge, the vertical edge of which

coincides with the direction of the force.

- = T or ^ =

Fig. 408. Fig. 409.

Instead of the parabolic girders. Fig. 405, we generally make
use of girders, Fig. 409, with plane surfaces. In order to econo-

mize as much material as possible the girder is made in the mid-

dle M of the same height MO — 7i,„ = h \^, as the parabolic

girder would have been, and the limiting plane surface CZ) is made

tangent to the corresponding parabolic surface. We have

B C _ 3 A M _ 3 A^ _ AM _ ^M 0~ ^ AM " -^ M 0~ ^AM ~ -

and consequently, if we denote the greater height B C by ^i and

the lesser one A Dhj ^2, we obtain

h, z= I 7i, = I A ^T = 1.-0607 h and

h,= }^h^= hh^= 0,3536 hy
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"

for which we must determine the height B N = h by means of

the well-known formula P I = b h' -w^.

The volume of such a girder, w^iose faces are planes, is

l)l{Jix_±Jhl ^ 0,7071 h I h, while that of the parabolic girder of

equal strength is lJ)lh = 0,667 h I h, i-E., 5,7 per cent, smaller.

In like manner we can

construct the girder A JSfA,,

Fig. 410, which is supported

at its extremities A and^„
of two portions, bounded by

plane surfaces, which have a

common height B C = hi =
1,0607 h at the point of ap-

plication of the load, and at the extremities the altitude

ATD = 27a = ho = 0,3536 h.

Here the altitude B N = h must be determined by the formula

Phi, _ hh' T
I ~ 6

§ 254. If the body ABB, Fig. 411, is to be made with all its

cross-sections L M N, A B C, etc., similar, w^e must put

V
Fig. 411. , = J and therefore

h

I.E.

hh"^

I
'

U V

^ I

u . w' h^

li^ _x _

The width and height are therefore

proportional to the cube root of corres-

ponding arms of the lever. When the

distance from the end becomes eight-fold, the height and width

are only doubled.

We can replace this body hy a truncated pyramid A C E G,

Fig. 412, at the middle of w^hose lengtli the height is M = h„, =

"^l.h = 0,7937 h and the width !/.¥ := b„ = VT
. h = 0,7937 b

and the strength of this body is exactly the same as that of the body

just discussed. For the tangential angle of the curve , ^ .

7. r ;'
or

Vi
a;3, we have, according to Art. 10 of the Introduction
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to the Calculus, tang, a — w-tj- ^~* = 5-it^=^' therefore it follows,
6 Vi ^ y/ Ix'

that for

X
j = hil tang, a = J A -^Z Q' = '- A V4 = |

VT = 0,8646 h.

and in like manner we have for the curve

u l/x , „ b
and

^ I tang, d = ~ ^h

From this we can calculate the dimensions of the base ABC
A B = h, = h,;, + ^ / tang, a = -^ V^

. 7i = 1,0583 h and

B C = b, = h,, + I I tang. /3 = | ^5 . Z> = 1,0583 Z>,

and those of the smaller base E F G

Fig. 412.
' Fig. 413.

C

F G = h, = hrr, — II tang, a = | ^^i . li = 0,5291 h and

EF =h, = K- \l tang. ^ = 1^1.1 z^ 0,5291 I.

We must of course put P I

l¥T

If we make the cross-section of the body of uniform strength

circular, we have for the variable radius the equation
3 /-

X
11 — V \ V

and if we replace this body by a truncated cone ABE, Fig. 413,

its radii must be

Jf =: r^ = ^i . r == 0,7937 r, (7^ = r, = 1,0583 r and

h E ^ r, = 0,5291 r,

and the radius r of the base of the solid of uniform strength must

be calculated according to the formula

77 r^

4
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If the girder is uniformly loaded and its width is constant, I.E.

\i u = h, we have V' _ X'

V _ X

Ji~ V
and its form must be that of a wedge, whose elevation is a trian-

gle A B D, Fig. 414.

Fig. 414 Fig. 415.

tJb

If the height is constant, we have - = — ; hence the horizontal

section of the girder is a surface limited by the two inverted arcs

of a parabola B D and CD, as is shoAvn in Fig. 415.

If we again make the cross-sections similar, we have

and the vertical and horizontal profiles are ciihic paralolas, the

cubes of the ordinates of which are proportional to the squares of

the abscissas.

If a body ABB, Fig. 416, supported at both ends, is uni-

formly loaded with the weight q
per running foot or upon its whole

length A B = I with Q — ql,^Q

have the moment of the force at

a point 0, situated at the distance

A = X from one of the sup-

ports A,

Fig. 416.

X
,x — qx |a. x'^,

2 ^2
and, on the contrary, at the cen-

tre C
Q I ^Ql^q_l
2 • 4 8 8

•

Assuming the width h of the body to be constant, we have
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V

dv\^ = ^{lx-x') and

^^ • 6 " 8 '

h denoting the height C F of the body at the centre, and by divi-

sion we obtain
I X — ic'

4 ^

If ^ = H, ^^' would be = Z .?; — x', and therefore the longitu-

dinal profile would be the circle A D, B, described with the

radius i Z ; but since I x — x^ must be multiplied by f j-J in order

to obtain the square v"" of the height M = W at any point, the

circle becomes an ellipse A D B ov A E B, whose semi-axes are

C A^a, = ll and CD :=. CE = h, = h.

We can replace this body by a girder A A B D B, Fig. 417,

with plane surfaces, whose

height at the distance A M
— \ I from the points of sup-

port B and B is M = h^

Fig. 417.

The angle of inclination a of

the surface B D to the axis ^ Cis given by the equation

h ' ll-x _2 h -J lA
tang, a ^j-^. ^^^^T'-^ " T ^A ^^ IVd

2 4/0 _.

consequently we have ^ tang, a = J V3 . ^ and the height of the

body in the middle

(7i> = Jf + ^ tang, a = i Vd . h = 1,1548 h,

and, on the contrary, the height at the ends is

A B = MO -^j tang, a = i f'Z . h = 0,5774 h.

(§ 255.) The deflection of a body of uniform strength is, of

course, under the same circumstances, greater than that of a pris-

matioal girder. For the case, where the beam is fixed at one end
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and subjected to a stress P at the other, the deflection is found as

r E
follows. The well-known proportion - — - gives us the formula

E e
r = —nTi ill which the radius of curvature is a function of the dis-

tance e. If we know the dependence of e and x upon each other,

we obtain an equation between r and x, from which we can deduce

(in the way explained in § 218) the equation of the co-ordinates of

the elastic curve. If we assume the deflection to be small, we can

again put the length of arc s equal to the abscissa x, and conse-

quently equate the differentials d s and d x ; hence we can, as be-

fore, assume d x

da
From this we obtain

d X = — -=^ e d a,

and, by integration, the tangential angle

T rdx
" = - ^y V

For a girder with a rectangular cross-section e = ^ v, and
therefore 2 T rd x

If the width is constant or ii = h, we have

V X— = - (see § 253), and therefore

ij z=z h y ~ and

. -^y x-^dx =--j^ •-^- 2i/-^ +. Cons,,E
or, since for re = Z, a = and consequently

n '^ T VI
Con. — -^= 7- 94//E ii • ^ ^ ^

4.T Vl
" = E T (

^'^ - ^)-

If we put a = —̂ , we obtain
dx

^ 2/ = -^ -^ ( /7 - 1/^) f/ X,

and, therefore, the required equation of the co-ordinates is

4:T VI ^^ T V~l

^^~E~h {x^l-\xVx) = 4 ^ -^ ( i// - f Vx) X.
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For X — l,y becomes «; the deflection is then

TV
""-^WK

But P Z = 5 ^^ - or r = -j^, and, therefore, the deflection

is given by the formula
,

Eh¥~ Ehlf
I.E

,
it is twice as great as in the case of a parallelopipedical girder,

whose height is li and whose width is h (compare § 227).
If the force acts at the middle of a girder, supported at both

P 1
ends, we have only to substitute -- for P, and - for /, and we obtain

_ _, S PI'

I.E., it is 16 times smaller than when the force acts at the end.

For a body of uniform strength wdth a triangular iase, as is

represented in Fig. 408, the variable width is u = - b, and
c

jy II W -^ 111' X ^

Z 7 3 ^ TTT
*

hence the radius of curvature r — —- . -p is C07istant, the curve

formed is a circle, and the corresponding deflection is

_ i!_ _ ^Z _ 3 iZ.i'
^ ~ 2r ~ hie E~ ^' hh'E'

I.E.,
-J
times as great as for a parallelopipedical girder.

§ 256. Deflection of Metal Springs.—The most common
examples of bodies of uniform strength, as well as of those which

bend in a circle, are steel or other metal springs. The springs, of

which the spring dynamometers are made, are of the finest steel and

are from ^ to 1 meter long, from 4 to 5 centimeters wide and in

the middle from 8 to 21 millemeters thick. They form bodies of

uniform strength, and their longitudinal profile is composed of two

parabolas united in the middle (see § 253). In order to increase

the action, the spring dynamometer is made of two such parabolic

springs A A and B B, Fig. 418, which are united at their ends A
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by means of the links A B, A B (see Morin's Lemons de Mecanique

Pratique, Resistance des Materiaux,

No. 198). These dynamometers

measure the force F, which is ap-

pHed to the hook I) in the middle

of one of the springs, by the space

described by the point Z, which is

of course equal to the sum of the

deflections of the two springs. But

from what precedes we know that

and consequently we have here

s ~ "l a

and, therefore, the force

corresponding to the space s described by the pointer.

In experimenting with such an instrument, whose springs were

of the following dimensions: h — 0,05, li = 0,0211, 1 — 1,0 meter,

the space described by the pointer was 8 — 9,7 millemeter, when

the load was P — 1000 kilograms ; the coefficient of this dynam-

eter was therefore

"i^^=
I =™" =«»'.

and for other cases we must put

P — 103,09 s kilograms,

when s is given in millimeters, or when the scale is divided into

millimeters.

If, instead of jDarabolic springs, we employ triangular ones of

uniform strength, we have

I
= «^ = T6 • il^^ ^^^' therefore,

I.E., one-third greater than for a dynamometer with parabolic

springs.

Wagon springs should unite great flexibility with great strength,

while, on the contrary, it is not necessary to know the exact relation

between P and s. For this reason, these springs are often formed

of a number of simple springs laid upon one another.
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If the compound spring is composed of n simple parallelopiped-

ical springs, placed upon one another, we have, when the width is

/;, the thickness li and the length /, the deflection corresponding to

4 p ^3

the force P at the end A of the entire sprint a —

proof load

P = n —z.—— , and therefore also

and the

T r T I

'^-^Eh'^l~^E li

If the entire spring A C D, Fig. 419, consists of n simple tri-

angular springs, we have

hlf T
)

I

a
6 P r—rTT-T,"^? while P
n Eh h^ 6

remains unchanged, and therefore

a
TV a

El'''

I

T l_

E Ji'

Therefore, in both cases the measure - of the flexibility in-

T I

creases with the ratios -^ and j and is the same as for a simple

spring of n times the width {n b).

Fig. 419. Fig. 420.

In order to economize material, we superpose springs of difier-

ent lengths and construct them of such a shape, that by the action

ot the force P at the end A of the entire spring they are bent in

arcs of circles of nearly or exactly the same radius. The force P
bends the lowest triangular piece A A of the the entire spring

A B II, Fig. 420, whose length — -, in the arc of a circle, whose

Z 7-3 ET

71 :.- . -„ , and in order that the remaining paral-radius is r

lelopipedical portion shall be bent in like manner, it is necessary
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that the same shall exert a pressure at yi upon the succeeding

spring, which shall be equal to the force F ; for the moment of

PI
flexure of this spring is then equal to the moment of a couple

To

7

(P, — P) whose arm is -. The relations of the flexure of the first

spring repeat themselves in the second, which is - shorter than
ft/

it ; it is bent in a circle whose radius r = -^r^j~ • -77? when its end

A I Aois triangular and the other portion is parallelopipedical, and

if it presses on the third spring with a force P. This is also the

case for the third spring A.2 G D, etc., up to the last piece, which has

no parallelopipedical portion, and which, by the action of the force

P, is bent in a circle of the above radius r. The entire deflection of
72

f\ p P
this compound spring is a = — = —

WlTh^' ^^^ ^^^ proof load is

P = n —r- —-, hence

_ r r ^ _ ^l'^~ E h'^'^ I
~

PJ h'

The relations of the flexure are here exactly the same as for a

spring composed of single triangular springs ; it can also easily

be proved, that both sets of springs require the same amount of

material.

It is not, however, necessary to make the ends of the springs

exactly triangular ; we can employ any other form of equal curva-

ture, E.G., we can make them of the constant width i and then at

the distance x from the end A the height must be

Such a double spring is represented in Fig. 421. Here the

Fig. 421.

total proof load is 2 P; the length must not, however, be meas-
ured from the middle, but from the ends B D, B D oi the fastening.
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Remark.—The reader can consult upon the subject of wagon springs :

F. Reuleux : Die Construction und Berechnung der fiir den Maschinenbau

wichtigsten Federarten. Winterthur, 1857; also Redtenbacher : die

Gesetze des Locomotivenbaues, Mannheim 1855, and Philips : Memoire sur

les ressorts en acier, etc., in the Annales des IVIines, Tome L, 1852.

CHAPTER III.

THE ACTION OF THE SHEARING ELASTICITY EST THE BENDING
AND TWISTING OF BODIES.

§ 257. The Shearing Force Parallel to the Neutral

AkIs.—In a body, which is subjected only to a tensile or com-

pressive force, the bases A B and C D of an element A B C D of

-P

Fig. 422.

j^B^^B —»-

the body, Fig. 422, are only acted upon by the two opposite forces

F and — F, which balance each other, while the sides A B and

Pjg, ^g C B remain free from the ac-

tion of extraneous forces ; for

the neighboring elements of

the body are subjected to the

same axial strain as the sup-

posed element A B C D itself

But the case is different when

the body is bent ; for on one

side A B of the element

A B C D a strain is pro-

duced Avhich is opposite in di-

rection to that upon the other

side C D of the element, and

in consequence of the cohesion
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in A B and C D, the element A B C D is subjected to the action

of a couple. This couple is a maximum for an element which lies

in the neutral axis ; for the element is here subjected on the side

^ ^ to an extension, and on the side C D to a, compression.

If S is the strain upon a fibre at the distance e from the neu-

tral axis, when the cross-section = 1, the strains upon the portions

I], F.2y F-.i ... of the entire cross-section, winch are situated at the

distances 2i, 2;.j, z-^ . , . from the neutral axis, are

^.S',^^^,:^-^^,etc.,
e e e

and the total strain in the cross-section F^ + i^2 + i^s . . • is

Q = -^{F,z, + Fz, + ...)= -^{Fz).

Now if i^i + i^ + . . . is the part of the cross-section on one

side of the neutral axis, Q is the total strain on that side of the

neutral axis. The strain on the other side is, according to the

theory of the centre of gravity (compare § 215), equal in intensity

to it,, but opposite in direction.

P xe S P X
Besides we have, according to § 235, S = —^> or — = -f^,

P X
whence also Q — -^ (i^, z^ ^ F^ z<i -^ . . .).

Tn a cross-section, which is at a distance A B — x^ from the first

one, the strain is

e, = ---^-- (^1 ^i + i^, ^, + . . .),

and therefore the total force Avith which the piece A B ^ tends to

slide upon ^ ^ is

e - Ci = ~^Y ^^' ^^'r F,z,-V ,. .)•

Now if h^ is the width of the cross-section at the neutral axis,

the shearing force along the unit of surface in this axis is

If, therefore, the girder is not to be ruptured by a sliding along

the neutral axis, we must put X^ = the modulus of ultimate

strength, and in order that it shall be as secure against rupture

by shearing as against breaking across, it is necessary that Jlo shall

be at most equal to the modulus of proof strength T, i.E. that
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h^^~^ {Fz),

2 (F z) is also = F^ s^ = F^ s,, when F, and F, denote tlie

areas of the portions of the entire cross-section F ^ F^ + F.2, lying

on the opposite sides of the neutral axis, and Sx and s^ the distances

of the centres of gravity of the two portions from that axis.

For a rectangular girder, whose cross-section F = d h, we have

2(i^.).-=i^,5, =^\| = ^', r^^y^, and h= h, whence

For a cylindrical girder» whose cross-section is i^— —j-? we

2
have, since the centre of gravity is situated a-^t a distance -— d from

6 TT

the centre,

IT fJ^ 'H H^
S {Fz) = F,s,= ~~

.
--- d = ~ and, according to § 23.2,

Tf' = 777-, and ^0 = d, whence

i^=.TT^4^^=-J^^^,and

^ = 4 1/3-^ - 1,303 /J

.

In like manner for an elliptical girder, since W = —
j—

,

Fi s.i = —^—
- . , ^^ a= I fl^'' i and &„ — 2 ^, we have P = ^nab T,

">' "^Z-nff = '''''' /f
Finally, for a tithular idarallelopipedical girder, whose cross-

section \& F —Ih — I, /^l (Fig. 354, § 228), we have

hence P - ^ ^zJhU^Jl^l^^DXnence r -
.,

^ ^^, _ ^^ ^^^,

The shearing force X diminishes as the distance of the surface,

in which it exists, from the neutral axis increases, and becomes

finally null at the surface of the body, where the distance from the

neutral axis is a maximum. The intensity of the sliearing force



§258.] ACTION OF THE SHEARING ELASTICITY, ETC. 513

Fig. 424

X at a given distance B = h^ from the neutral axis of the body

M N, Fig. 424, is also given by the formula X = —v—Vr^— found

above, if instead of 2 {F z)

we substitute the sums of the

products Fi Zi, F^ z.2 . » . on

one side of ^ ^ C D, and in-

stead of /;„ the width b^ of the

surface at the given distance

hi. The sums of the products

Fn z„, F„ + i Zr, + i
for the other

side is, however, equal to the

sum of the products F^ z^y

F.2 z<i . , . since the products

of the elements, situated on

the opposite sides of the neutral axis within the distance ± h,

balance each other.

E.G. if the cross-section of a girder is rectangular, we have for

the point situated midway between the neutral axis and the limit-

ing surfaces, i.e., at the distance - from the neutral axis

+ P

4
2 (Fz) ^ F,Sr =

and, therefore, the shearing force is

while at the neutral axis its value is X„

n = /, b h\

0^^
« bh'

.1
' bJi

§ 258. The Shearing Force in the Plane of the Cross
section.—As the tensile and compressive forces of the ends of ai

clement ABC I), Fig. 424, are in equilibrium, so also the shearing

forces in this element, which form two couples, balance each other.

Now if ^ is the length A B and ^ the height B of the element,

we have the shearing forces along A B and CD, ^ Xand — ^ JT,

and the moment of the couple, formed by them, ^ X . ^ = b C X,

and the shearing forces along B C and D A are C ^ and — ^ Z,

and the moment of the couple formed by the latter is = (^ Z . ^ =
^ ^ Z; now if equilibrium exists, we must have ^ ^X = ^ ^ Z, i.e.,

that X= Z.

33
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The formula X = —iTw ^®' therefore, also applicable to the

determination of the shearing force Z along the entire cross-section.

It is, E.G., in a girder with a rectangular cross-section, for an ele-

P
ment in the neutral axis = | -7-^, and for one at a distance ± \h

P
from the neutral axis = | j—j, etc.

The sum of the shearing forces along the entire cross-section,

must of course be equal to the force P, or, if several forces act at

right angles to the axis of the beam, equal to the sum 2 (P) of

these forces. This can be proved as follows: if we divide the

maximum distance e of the elements of the surface from the neutral

axis into n equal parts, w^e can imagine the cross-section upon the

coiTesponding side of the neutral axis to be composed of the strips

h\ -, h -» ^35 -5 etc., whose moments in reference to the neutral
n n n

axis are

hv
'(.7).».(;)'»-(i)-*'

and the sum of the latter is

= (-)'(!&, + 2^, + 3^3 + 464+...).

In reference to the axis, which is at a distance - from the neu-
n

tral axis, the sum of these moments is

in reference to the axis at the distance 2 -, it is
n

('i)<=

and therefore the sum of all these sums to the distance e is

- (~)'[^t + (2 + 2)b, + (3 + 3 + 3)^>3 + ...]

It follows that the sum of all the shearing forces along cross-

Bection on one side of the neutral axis is
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= -TTr- timesW n

w\nr

times the sum last found

But the measure of the moment of flexure for this half of the

cross-section is

=©< r . Z"! + 2^ J, + 3^ Z's + . . . 4- ?^^
. Z',,),,

whence it follows, that the required shearing force along this sur-

face is
r> _ F W^
^'' - "W

In like manner we find for the half of the cross-section, situated

P W
on the other side of the neutral axis, the shearing force JRc, = —

tjt-^,

and finally it follows that the shearing strain for the entire cross-

P(Wi+ W,)
section is E W P, since the measure W of the mo-

FiG. 425

ment of flexure of the entire cross-section is equal to the sum
IFi + TFo of measures of the moments of flexure of the two por-

tions of it.

§ 259. Maximum and Minimum Strain.—If the strains

in any section are known, the strain in any gi\en cross-section

can be found by employing the ordinary methods for the com-

position and decomposition of forces. ' In order to find the

strains in an element A C, Fig. 425, of

the surface, whose plane forms the varia-

ble angle B A C = ip with the longitu-

dinal axis of the body, we decompose the

tensions in the projections A B and B C
of this element of the surface into two

components, one of which acts in the

plane oiAC and the other at right- angles

to it, and we then combine the compo-

nents in A C, so as to form a single

shearing force, and the components, acting

in a direction at right-angles to A C, so as to form a single tensile

or compressive force. If the width of the elements A B, B and

A C of the surfaces is unity, we can put the shearing force along
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A B, = A B . X and decompose it into its components A B . X
COS. rp and A B . X sin. i/j, and in like manner we can put the

shearing force along B C, = BC.Z = BC.X and decompose

it into its components

- B C. Xsi7i. V and B C . X cos. ip.

S
The components of the tensile force B C . Q = B C . —, whose

direction is perpendicular to^ C, on the contrary, are B C . Q cos. ip

and B C . Q sin. tp, and it follows that the entire shearing strain

along A C referred to the unit of surface is

U = (T^. Xcos. ip - WC. Xsin. ^p + B~C. Q cos. ip) : A 0,

and that the tensile strain at right-angles to ^ C is for the unit

of surface

V = (ATB'. Xsi7i. ^ + B~^. Xcos. ip + B~C. Q cos. xp):Aa
AT? Ti n

But -j—^ = COS. ip and -r-^ = sin. ip, whence it follows also that

TJ — X {cos. ipy — X (sin. ipY + Q sin. ip cos. ip and

U = 2 X sin. ip COS. -0 + § {sin. ipy, or, since

{cos. Ipy — {sin. -xpy = COS. 2 ip and 2 si7i. ip cos. ip = sin. 2 ip,

S z
TJ — X COS. 2 Ip -\- ^ Q sin. 2 ip = X cos. 2 ip -{- -— sin. 2 ip and

a ^
V =z Xsin. 2ip -h Q {sin. ipY ~ Xsin. 2 ip -\- r— {1 — cos. 2 ip).

/v 6

The strains in the surfaces A D and C D, which together with

the surfaces A B and C D fully limit the element A B C D, give,

of course, equal and opposite shearing and tensile forces. On the

contrary, for a similar element of the body upon the compressed

side Q is negative, and therefore

SzU — X COS. 2 Ip — ^ Q sin. 2 ip = X cos. 2 ip — ^— sin. 2 ip and

Sz
V=Xsin. 2ip-^^Q{l- cos. 2 ip) =2^ sin. 2'ip - — (1 - cos. 2 i/O-

In order noAV to find the values of the angle of inclination t/?,

for which the shearing force Cand the normal one P^ assume their

maximum or minimum values, we substitute for ip, 2 ip + fi, fi de-

noting a very small increment, and require that by it the corres-

ponding values of TJ and V shall not be changed. For U =
X cos. 2 Ip + ^^ Q sin. 2 ip, we obtain thus a second value

C7, = Xcos. {2ip -{- fji) -^ i Q sin. (2 ip + /x)

= X {cos. 2 Ip cos. /i — si7i. 2 ip sin. fi) + \ Q {si?i. 2 ip cos. fi

+ cos. 2 Ip sin. ;/), or, since we can put cos. /i — 1,
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Z7, = Xcos. 2 i/> + J- <2 8in. 2 V'
— {X sin. 2 V'

— i § cos. 2 V) '^in. fi.

Now if we put Ui = U, we must have X sin. 2 i/^ — i § cos. 2\p =
and therefore • « , ^ ^ ,

sm. 2 ip = w COS. 2 -0, I.E.,

tang. 3 v> = -^ = ^-^.

From this it follows also that

s^?^. 2 V = ---izzi.^ —
,

= _ and
VQ' + 4. X' V{S zf + (2 X eY

2Xe 2Xe
COS. 2 t/j

VQ"- + 4X' V{Szy + (2Xey'

and that, finally, the required maximum value of the shearing force

i7is

In the neutral axis § is = 0, and therefore U,„ = X and tang.

2^p = 0, I.E. 2 V^ = and 180°, or i/; = and 90°. For the most

remote fibres, on the contrary, X is = and z = e; therefore

f/„ = -|- =r A and fang. 2 i/^ = oo, or 2 V^
= 90° and ip = 45.

In passing from the neutral axis to the outmost fibre, the

angles of inclination for the maximum strain change gradually

from and 90 degrees to 45 degrees, and the maximum strain

varies from X^ to -^

.

In order to be certain that this strain shall not become greater

than the axial strain S, which is calculated by the aid of the for-

P xe
mula S = and is equal to the modulus of proof strength T,

we must make X^ at most = S, or rather

Pl{Fz) Pxe E{Fz) ^

If, then, in the formula V = X sin. 2 V^ + ^ (1 — cos. 2 ip)

we put ip + fi instead of ip and again make cos. fi = 1, we obtain

F, = X {sin. 2 xf) COS. ii + cos. 2 V^ sin. jx) + ^ (1 — cos. 2 ip cos. fi
Z

+ sin. 2 -0 sin. \i) = X sin. 2 i/^ + -^- (1 — cos. 2 i/^)

Z

+ \X COS. 2 i/' + ^ 8in. 2 '^\ sin. \i.
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and in order that ^ shall cause V to become a maximum or a min-

imum, Vi must be == F or X cos. 2 i/j + -^ sin. 2 o/^ = 0, i.E.

tang. 2 ip = ^ = — -^^—, as well as

2X Q
sin. 2 V = T-T^:^^ and cos. 2 V = ± Tf^f^-
The corresponding minimum of P^ is

*^" ~"
''7^ + 4 X^"^ 2 V |/a^ +4XV~ Y '^^

\2/
^

VQ'-{-4:X''^ 2 V |/g^ +4XV~Y

2e

and, on the contrary, its maximum is

^(fy
We must require the maximum V^n to be at most equal to tiie

modulus of proof strength T or

In the neutral axis § is == 0, and therefore tang. 2 ip = — cc

or 2 i)
= 270° and ip = 135 or 45 degrees, and F„ = — X„ on

the contrary, F;„ = + X^. In the most distant fibre," on the con-

trary, X is = and Q — 8, and therefore tang. 2-0 = or 2 V
= or 180° and i/; = or 90°, and F„ -= 0, on the contrary,

Y^^^
— S. In ordinary girders the maximum strain F« increases

, ,, ^ ^ P^{Fz)^ ^ Pxe
gradually from X^ — — to 8 = —^ as we pass from the

neutral axis to the outmost fibre.

For a parallelopipedical girder we have 2 [P z) = —- , W =

.

—
^ , Z>o

= b and e = -^, and therefore the limit values are X^ = |

.

12 2

"(l-KHP Q P X .„ .

^-v and S = -T-p-; ^^^ in general we have X = ^-^

6 P r/hV ,1 ^ /S' 2; 12 P a: ^ , , , .
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^- = -^1^"- ^\-iir) -"
(f-j?) 1(2) -d

j-Ax z +y {x zY +
( (^)

— ^') lforexample,for2;=^ A,
6P
b

TVli'
^"^ "^ VirVQifhT], and for a; = 0,

^'" = 8TA'
''''

If such a girder A B, Fig. 426, is fixed at one end B^ the di-

rections of the maximum and minimum normal forces V,„ and V^

can be represented by two systems
Fig. 426. r, ^^ u- 1. + ^u ^1of nnes, which cut the neutral axis

at an angle of 45°, and the outer

fibre and each other at an angle of

90°. The curves, which are concave

downwards, correspond to the tensile

forces, and those which are concave

upwards to the compressive forces.

The steeper end of any curve cor-

responds to the minimum and the flatter end, on the contrary, to

the maximum forces. At the ends D and D^ both these strains

become equal to zero, while for the ends C and (7, their values are

the greatest.

§ 260. Influence of the Strength of Shearing upon the

Proof Load of a Girder.—The capability of a girder to support

P xe
a certain load requires not only that the strain S = —p^^ in the

outermost fibre, but also that the shearing force X^ = —jrKi/^ ^^

the neutral axis shall not exceed the modulus of proof strength T.

In the last chapter we have repeatedly given the moments which,

in ordinary cases, we must substitute for P x in the expression for

>V; we have, therefore, only to give the values, which w^e must sub-

stitute for the force P in the expression for X^.

If the girder is fixed at one end and acted on by a force P
at the other end, P can be directly employed in the formula

p \\ I f 'A

Xq = —Y—HT— • J^f the beam supports, in addition, a uniformly

distributed load, whose intensity upon the unit of length is q, we
must substitute for P in this expression P ]- q x and P + q l.
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when we wish to determine the maximum value of X^,. If, on the

contrary, the girder is supported at both ends and sustains at the

distances k and h = I — l^ from the points of support a load P,

we must substitute for one portion of the beam y P, and for the

h
other - P instead of P in the formula for X^, in order to find the

shearing force in the neutral axis. If, on the contrary, this girder

sustains an equally distributed load q I, each of the points of sup-

port bears ^, and the shearing force of the whole cross-section at

any point at the distance x from the points of support \^ P = q

(^ — x\. The latter is = in the middle, where x = -, becomes

greater and greater towards the end, and at the point of support

If a girder, supported at both ends, sustains a load, which is

equally distributed over a part c of its total length, while the other

portion ^ — c is not loaded, the point of support of the first por-

tion bears a part q c (l — ^1 of the total load q c and that of the

a &
second portion a load —--, and the vertical shearing force at the

distance x from the first point of support is

q &
The value of the latter becomes for a; = c, — ^"7? ^"^^ ^^^is value

remains the same for any distances x > c. If the load covers

exactly one-half of the girder, i.e. \i c — ^, we have

(¥-)^r— x\ or for X — ^'-'i
Fig. 437. If, finally, the girder A B,

Fig. 427, bears a load p I equal-

ly distributed over its entire

length I and a load q c equally

distributed over the length A C
= c, the reactions of the points

of support are

R =_pl -,q(c- |1) and R.. = ^^ +
q_c

2 1
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whence it follows, that the vertical shearing force at the distance

A = X from the point of support A is

for X = c the latter expression becomes jo (- — c) — \-p and for

any distances a; > c it is

The vertical shearing force P — p \,-- c\ — ~y in C is =

for c' +— / c = ^ /^ I.E., for
(1 9.

( - f- ^(f
)'-

f )'c
q \q.' q

If, in general, at a point of the girder the shearing force is

P = E — q X, we have for the moment of flexure

This, however, for x = x, i.e., for x = — , is a maxi-
q q

mum, in which case P becomes = ; the moment of flexure of a

girder becomes a maximum for the same point at which the verti-

cal shearing force is = 0, and in the foregoing case c gives that

length of the load q c, for which the moment

becomes a maximum, and it is then = -^——-—

.

These formulas are applicable to girders for bridges, where q c

denotes the intensity of the moving load.

Pi (Fz)
The shearing force X^ = —, , - must be specially consid-

ered in the case of bodies of uniform strength, the cross-section of

which, according to what we have seen above (§ 253), might in

some parts be infinitely small. For example, for the parabolic

' P
girder in Fig. 406, we have X^ — T = n . ^-^-, and therefore, the -

^0 ''o

p
necessary cross-section at each end is f\ = b^ h^ = j ^, in which

7^ denotes the modulus of proof strength for shearing.
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§ 261. InHiience of the Elasticity of Shearing upon the
Fo:m of the Elastic Curve.—We have yet to determine what
influence the elasticity of shearing has upon the form of the elastic

curve or upon the form of the neutral axis of a loaded girder A B,

Fig. 428. According to the formula P = l F C, in which C de-

notes the modulus of the elasticity of
Fig. 428. shearing and F the cross-section of the

beam, the inclination the beam ^i B pro-

duced by the shearing force is l — ~,

and, therefore, the corresponding deflec-

tion of the end A^ of the girder, whose

length Aq B = /, is

XJ _P l^ (Fz)
J±Q Jl-l Ci\ t l>

C h w c

To this must be added the deflection A^ A = a., produced by

the flexure of the beam, and which, according to § 217, is a^ —
p r

- ^„ ', the total deflection of the girder is therefore

p 1 ( ^ (Fz) r \BC=A,A=a = a, + a.^ = ^^^ [^^ + ^^).

For a parallelopipedical girder 1)^ = 1),^ (F z) — -^- and W-

---, consequently

8

4 P r r. . ^
a = ^r- b*^mn

or, assuming -^ = 3,

4: p r
E.G., for I = 10 h, we have a = 1,01125 . ^3-^^ if then the

girder is ten times as long as thick, the deflection at the loaded

end, due to the shearing force, is so small compared with that due

to the flexure of the girder, that in most cases we can neglect it.

In order to determine the modulus of elasticity of a girder A B,

we load it first with a small weight P at the greatest distance /, and

afterwards with a large weight Pi at a smaller distance /, from the

point of support B, and we observe the corresponding deflections

a and a, of the length I of the girder. Xow we have
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PlI.iFz) FT
a =

a, =

b, W
P,l^ (Fz)

3 \VF
and

pjni-k)
b, W C ' 3 WF ' 2 WF '

In order to eliminate C, divide tlie first equation by F and the

second by P, and subtract the equations obtained from one

another. Thus we obtain

.3

a ai _ 1 /I

F ~ T,~ WF \ I W F\i 2 "^ 6;>3 2

and therefore the modukis of elasticity for tensile and compressii^

F F,

Tvi
u,

^
+0;)forces is ^ = - „ ,.,

•^ {aF, - a, F)

With the aid of this expression and the formula for a, we

determine the modulus of elasticity for shearing by the formula

F I _dl(Fz)F
a

3 W E a FT

§ 262. Elasticity of Trrsion.—In order to investigate the

theory of the hvisting or torsion of a body (see § 202), we can again

.

begin with the case of a body H C D L, Fig. 429^ fixed at one end,

but, in order to avoid any
Fig.

429.^^^^^^^ complex change of form, we
'

\^ must assume that tlie free

end is acted upon by a couple

{F,-F) wliose plane AIIB
coincides with the plane of

rotation of the axis C D.

Let us imagine the body to

be composed of long fibres,

such as H K, Vvhich, in

consequence of the tor:^ion,

assume the form of a helix,

by which H K comes into

the position L K and tb.o

whole base is turned through an angle /f (7Z = a.. If the portions

H^ K,, H. Ko, etc., of the fibres, whose lengths are unity and whose

cross-sections are i^„ F.2 etc., undergo a lateral displacement through

the distance H^ Z, = (t„ H. i,. = o^ etc., we can put, when the modu-

lus of elasticity for shearing is C, the corresponding shearing forces

Sx = (Ti F] C, Si = o^ F^ C, etc. Now if the corresponding angle
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of torsion is B, Lr — II, L, = cp and if the distances of these

llbres from the axis CD of the body are II, = z,, K, = z^, we
liave (J, = fp Zi, Gc, =

(f) Zo . . ..; hence the strains
.
are /S', = </> C F^ z„

S. =
(f)
C F.2 Z.2 . . ., and their moments are

SrZ, = (pCF, z,% S, z, = </) C F, z.^ . . .

All the forces /S'l, /S'o . . . of a cross-section H, L.2 must in any
case balance the couple {F, — F); if then a is the lever arm A B
of this couple or F a its moment^ we can put

F a ^ S,z, ^- 8^z. ^ . . . = <p C F,z{ \- (p C F.2Z.^ ^ , .

,

= C {F,z,' + F,z.^ + ...)•

^ow if we designate the geometrical measure F, z^ + i^oV +
of the moment of torsion by TT", we have F a — <^ C W.

But the angle of torsion for the entire length C D = I oi the

body is a = (p I, therefore we can put

1) Fa = ^-^, or Fal= a C W,

and the angle of torsion

F a I

2) a =
a w

As we have done previously (§ 215), we can call W C the

moment of torsion, and consequently PFthe measure of the moment

of torsion, and we can then assert, that the moment of the force F a

increases directly as the angle of torsion and inversely as the length

of the hody.

The work done in producing a torsion equal to the angle a is

P _ a' W a _ F"- aU
^-"2 •'"''-

2/ ~ 2 WC'

for the space described by the force P, which causes it, is a a.

These formulas hold good for prismatical bodies alone, for bodies

with other forms we must substitute in them instead of the ratio

-.v- a mean value of it.

)i

§ 263. Moment of Torsion or Twisting Moment.—The

measure W"— F, z^ + F.. z^ + ... of tlie moment of torsion can

easily be calculated, according to the rule explained in § 225, from
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the measure of the moment of flexure for the same cross-section.

If, for example, Wi is the measure of the moment of flexure of a

surface A B D, Fig. 430, re-

ferred to an axis X X and W<>

the same in reference to an axis

Y Y 2X right angles to the first,

we have for the measure of the

moment of torsion in reference

to the intersection of the two axes

TT = PFi + W,.

For a shaft with a square cross-

section A B D E, Fig. 431, we
have, when h denotes the length

of the side A B=D E, according

to § 226, the measure of the mo-

ment of flexure in reference to each axis XX and Y Y

and consequently the measure of the moment of torsion is

and the moment of the force

For a shaft with a rectangular cross-section {b h) we would

have^ on the contrary,

^''-
127

^ 0,0833
âbh(¥ + h') C

Fig. 431. Fig. 433. _q

-X

P Q

For a cylindrical shaft with circular cross-section A B, Fig.

432, whose radius is C ^ =: r, the measure of the moment of

flexure in reference to an axis XX or F F is (according to § 231)
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r, = TT, = ^,
anct therefore the measure of the moment of torsion in reference to

the point C in that axis is

Now if the twisting couple {P, — P) acts with an arm H K
= «, or each of its components with an arm C H = CK = ^,

we have

P« = ^=^:L!^^=. 1,5708^.
•

If the shaft is hollow and its radii are r, and /-g, we have the fol-

lowing formula

:

P , = <^^(n^-r.')G ^ 1,5,08 .^^^
The torsion of a shaft ABM, Fig. 432, is generally produced

by two couples (P, — P), (ft — Q), which balance each other,

and therefore, instead of ?, we must substitute not the entire lengtti

of the shaft, but the distance between the planes in which the two

couples act ; it makes no difference, however, whether we make the

moment of torsion equal to the moment of the couple (P, — P) or

to that of the couple (ft — Q). If we denote the arm HK oi the

'Couple (P, — P) by «, and the arm iV^ of the other couple

(ft - Q) by Z>, we have

P a= Qh = —p-.

The foregoing theory gives us for bodies limited by plane sur-

face moments of torsion, which vary somewhat from tlie exact

truth ; for we suppose, in calculating them, that the bases of the

prism subjected to the torsion remain plane surfaces, while, in re-

. ality, they become warped. According to the researches of Saint

Venant, Werthheim, etc. (see the " Comptes rendus des seances de

I'academie des sciences a Paris," T. 24 and T. 27, as well as "I'ln-

genieur," Nos. 1 and 2, 1858; in German in the " Civilingenieur,"

4 Vol., 1858), we have for a square shaft

P« = 0,841 ^,-^- = 0,1403^*1^,

in which h denotes the length of the side of the square cross-section.

For bodies, the dimensions of whose cross-sections differ very
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much from each other, these variations are greater ; e.g., for a pris-

matical body with a rectangular cross-section, whose width is h and

whose height is A, we have

W = Wi + W^ = -^ + -^ = ^^ , and therefore

_a WO _ abh(¥ -i-h')

Now if this formula requires a correction, when h = h, in which

case Pa — -7.-7-? it is natural to expect that when h differs ma-
o I

terially from A, in which case the surface of the sides will become

more warped, it will no longer be sufficiently accurate. In fact,

taking into consideration the warping of the surfaces, we find by

means of the calculus

ah'F CPa —
3 {¥ + ¥) V

and according to the later experiments of Werthheim, the mean
value of the required coefficient of correction is = 0,903 ; conse-

quently we must put

P. ^0,903^-^-;^,;= 0,301^^^^^^
3 (p' + li') I

~ ' {¥ + h') X

If & is very small compared to li, we have

P,= 0,301 '^^.
If the angle of torsion is given in degrees, putting a = -3-^^

180

= 0,017453 a\ we obtain

1) for prismatic girders or shafts with a circular cross-section,

the diameter of which is <^ = 2 r

J
_ CL ^ r^ p _o. ^ d^ p,

_CL° tt"^ r* ^ _a'' tt"^ d'^rat- ~^- L - -— G - -^^^ G _ -—, ~t

= 1,571 ar* C= 0,0982 a d* C = 0,02742 a° r' C
= 0,001714 a" d' (7;

2) for prismatic girders, axles or shafts with a square cross-section,

the length of whose side is b, when we neglect the coefficient of

correction,

Pal=^- = 0,1667 ab*C=: °-^^S = 0,00291 a° b' C,
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Inversely we have

a = 0,637 ^^j-^ = 10,18 -^^ = 6 -^^, and

^0 oaA^^^ Koto^f^^ c,..Pal
a =36,4^:^=583^^ = 344^^.

The values for C must be taken from Table III. in § 213.

Hence we have, e.g.,

• 1) For cast iron, C = 2840000, whence

P al ^ 77900 a' r' = 4867 a' cV = 8264 a" h' and

a' = 0,00001281° ?^ = 0,0002053° ^^

= 0,0001211° ^^.

3J) For ivrought iron, C — 9000000, whence

P al = 246780 a° r' = 15426 a° d' = 26190 a° ^* and

a° =r 0,00000404° ^^=0,0000648° ^^=0,0000382°^.
• 3) For tvood, C = 590000,

Pal = 161800 a° r' = 1011 a° ^* = 1712 a° ^^ and

a° =,0,0000617°^^ = 0,000988° ^^^ = 0,000583°^^^. '

7* fl

Example—1) What moment of torsion can a square wrought-iron shaft

10 feet long and 5 mches thick withstand, without suffering the angle of

torsion to become more than ^ of a degree ? Here, according to this table,

we have
625Pa = 26190 .

i
. TTT—jTj

= 34102 mch-pounds = 2842 foot-pounds.
10 . 1(S

2) What is the amount of torsion sustained by a hollow cast-iron shaft,

irhose length is Z = 100 inches and whose radii are r^ = 6 inches and

9*2 = 4 inches, when the moment of the force is P a = 10000 foot-pounds ?

consequently

Pal 10000.12.100

77900 {r^* — r^')
~ 77900(62 _,. 42) (62—42)

120000
~ 779 . 52 . 20

= :.-^^^^ degrees — 8,887 minutes = 8 minutes 53 seconds.
10127 ^

§ 264 Resistance to Rupture by Torsion.—If in a prism

CK L, Fig. 433, twi*ted by a couple ( P, — P) the shearing force

per unit of surface at a certain distance e from the axis C D is = S,
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the shearing force at any other distance z^ is = - S, and its mo-

Fig. 433. ment is = — S, and for a

cross-section F^ it is

F,z:
8

s
F^z,'-,

e

S

s
F, z..

e e

in like manner the moments

of the shearing forces of other

cross-sections F^, i^s . . .,

which are at the distances

z^, z-i . . . from the axis C D,

are — /!, z^^ — F^, z.^, etc.;
e e

hence the total moment of tor-

sion of the body is

' +-F,z^' + ..,

1)P a

= — {F, z,' + F,z,' + ., .), I.E.

SW ^ o TT^ 1 W P a
, OT P a e = S W, and — = —^.

Substituting for S the modulus ofproof strength T for shearing,

and for e the greatest distance of the elements of the cross-section

from the neutral axis, we obtain in the formula

2) P ae— T IF an equation for determining the dimensions

of the cross-section, which the body must have if it is not to be

strained at any point beyond the limit of elasticity. If, instead of

the modulus of proof strength T, we substitute the modulus of

rupture K for shearing, we obtain the moment Px a, which will

break the body by wrenching ; it is

For a massive cylindrical shafty whose diameter ^ = 2 r, we
have

W _
e
~

Pa =

P,a =

34

7T r 7T r
-T.— = -z— , and therefore
2r 2

^r'T nd' T
2 ^ 16

16

0,1963 d' Z and also

0,1963 d" K.



530 GTENERAL PRINCIPLES OF MECHANICS. [§ 264,
"

If the shaft is Uolloio and the diameters are J^ = 2 rj and d,, =
2 ^2, in which case

— =
^ -, we have, on the contrary,

in which F = —^^~Z denotes the cross-section of the body.

For a prismatical body with a square cross-section, the length

of whose side is h, we have

W — -zr and e = I b V % = h V I. whence
6

^ = ^^ - ^4= and P a = ^-L = 0,2357 h' T,
e 6/J 3^/2 3|/2

If in the fundamental formulaPa = (p C W of ^ 262 we substi-

tute (h = - — —~—, in which e denotes the distance of the most^ e e

remote fibre from the axis of rotation CD and S the angle HK Ly

which this fibre has been turned from its original position by the

torsion, we obtain

P a e = C W tang. 6 ; but we have also

P a e = 8 W, hence

S = C tang. (5, and therefore

TT = G tang. 6, or tang. 6 = —^

in which d denotes the angle of displacement, when the strain

has reached the limit of elasticity.

The mechanical effect, which is required to twist the shaft

through an angle a, is, according to § 262, L = ur n "* ^^^ there-

fore if we substitute Pa — , we can put L — -.-z -^—.f, in
e 2 e

which S denotes the maximum strain.

At the limit of elasticity S = T\ hence it follows that the me-

chanical effect necessary to twist the body to the limit of its elas-

ticity is

^ _ T' Wl
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For a prismatic body with a circular cross-section W = r

and e = r, whence

r _ Zl ^y - T V
2 C 2

" ~ 4 C^ '

and, on the contrary, when the cross-section is a square

W = -X- and e" =: --, and therefore
o Z

Now p->; = -^^ = -i^- is the modulus of resilience for the

limit of elasticity ; hence we have for the cylinder L = ^^ A V, and

for the parallelopipedon L = I A V.

The work done in both cases is proportional to the volume of

the body alone (compare § 206 and § 235).

We can also put for the mechanical effect necessary to rupture

of the body by wrenching L = ^ B V and j B V, in which B
denotes the modulus of fragility for wrenching.

If we assume with General Morin for all substances

6 ^ 0,000667
~

or the angle of displacement (5 = 2 min. 18 sec, we obtain for

cast iron

T = 200000 . 0,000667 = 134 kilo. = 1906 lbs.,

therefore, when we employ the French measures

P a = 26,3 d^ = 31,6 F kilogr. centimeters,

and, on the contrary, when we employ the English measures

P a = 374 d' = 449 h' inch-pounds.

Under the same conditions we have for wrouglit iron

T = 630000 . 0,000667 = 420 kilo. = 5974 lbs.,

and therefore

Pa — 82,4 d^ — 99,2 V kilogram centimeters,
or

P a = 1173 d"" = 1408 ¥ inch-pounds.

Likewise under the same conditions we have as a mean for

wood
F = 41650 . 0,000667 = 27,8 kilogr. = 395 lbs.,

whence
P a = 5,46 J' =: 6,55 l^ kilogr. centimeters,

or

P a = 77,5 d' = 93,1 h' inch-pounds.
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The coefficients of these formulas are correct only for bodies

at rest or for shafts, which turn slowly and smoothly ; for common
shafts we give double security, i.e., we make the coefficients but

half as great. When their motion is very quick and accompanied

by concussions, we are obliged to make the coefficient but one-

eighth of those given above.

Example—1) The cast iron shaft of a turbine wheel exerts at the cir-

cumference of the cog-wheel upon it, which is 6 inches in diameter, a

pressure of 4000 pounds. Required the thickness of the shaft. Here the

moment of the force is P a = 4000 . 6 = 24000 inch-pounds, and conse-

374
quently the diameter of the wheel, when we put P a = -— d\ is

2

_ f/24000 . ^, . ,

d = \/ ^r^- = 5,04 inches.

If the distance from the cog-wheel to the water-wheel is Z = 48 inches,

we have, according to the foregoing paragraph, the angle of torsion

24000 48= 0,0002053°
g Q^l = 0,367° = 22'.

2) A force P = 600 lbs. acts with a lever arm « = 15 feet = 180 inches

upon a square fir shaft, while the load Q acts with an arm of 2 feet at a

distance Z = 6 feet = 72 inches in the direction of the axis ; how thick

should the shaft be made and what is the angle of torsion ?

In order to have quadruple safety, we must put

93 1 S'
Pa = 600 . 180 = 108000 = -^-,

hence the width of the side is

;/4. 108000 ,^^^. ,

5 = 4/ —— = 16,68 mches,
^ yd,!

and the angle of torsion is

m
(16,68)*

108000 72
a" = 0,000583 - ...^^qw = 0,0586 degrees = 3| minutes.

CHAPTER IV.

OF THE PROOF STRENGTH OF LONG COLUMNS OR THE RESIST-

ANCE TO CRUSHING BY BENDING OR BREAKING ACROSS.

§ 265. Proof Strength of a Long Pillar Fixed at One
End.—If a prismatic body ^ ^ (I), Fig. 434, is fastened at one end
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B and acted upon at the other by a force P, whose direction is that

of the longitudinal axis of the pillar, the relations of the flexure,

Fig. 434.

under these circumstances, are very different from what they are

where the force acts, as we have seen in § 214, etc., at right angles

to this axis. Tlie neutral axis A B (II) assumes in this case

another form ; for the lever arm of the force P is represented by

the ordinate M = y and not by the abscissa A M = x, and its

moment is not P x, but P y ; consequently the radius of curva-

ture ^ = r is determined by the expression

WE
r = Py'

while, according to § 215, for a bending force acting at right

angles to the axis we must put
WE

r = P X

At the point By where the pillar is fastened, y becomes the de-

W E
flection B C = a, the radius of curvature r Pa IS a mmimum

and the curvature itself a maximum. On the contrary, at the point

of application A, where y — 0, the radius of curvature is infinite

and the curvature itself null.

If we denote by d the arc, which measures the angle K Oioi

curvature of the element 0, = <t of the curve, we haveV = .,

o

and therefore P y o — W E 8\ and if {^'^ is the angle of inchna-

tion 0^ N oi the same to the axis A C, we can put the element

JV of the ordinate = v = a (3, and therefore

P y V = WE 13 d, and in like manner
Pl{yv) = WE^{f3 6).
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In order to find the sum 2 (y v) for the arc A 0, let us substi-

tute ioT y,v,2 v,d V ... n v in the above equation. Thus we
obtain ^ {y v) = v 1 (y)

— v (y -\- 2 v. + 3 v + . . . + n v) = v

-^r- = —^^i 01' Since n V — M — y,

^{y^)= ^^SindPl{yv) = iPf.

In lik© manner, to find 2 {fi S), we substitute for 13 successively

i3, i3 + (5, i3 + 2cJ.../3 + n 6, and complete the summation as

follows

:

= 6[n(3 + (1 + 2 + 3 + ,.. + n)d]

If the angle of inclination at^, = a, we can put (3 -^ n d = a,

and therefore

2 ((3 6) = (a- f3) (^ + ^-^-^] = I (a - f3) {a + (3) = A (a' - iS^,

whence

]V£!I.(13 (5) ^ A IF JS' (a"- - i3'0, and finally

Py-=WB(a' -8').

For the end B,y = a and i3
— 0, and therefore

Pa'= W Fa' and

P{a'-f-)=: WE(3\
from this we obtain the tangential angle

From (3 and the element N — v oi the ordinate we obtain

the element of the abscissa

(3 ^ P {a^ — /) y «^ — ^ P

/IF ^ ~
|/a^ - y

If with the hypothenuse C B = a of the right-angled triangle

^ C D, Fig. 435, whose altitude is B D = y
Fig 4r5 . ' o ' ./

B and whose base \^ C D — Vd- — ?/^, we de-

scribe an arc A B, we have for the element

A

B = j/' the proportion

B _ CB^ f__
(^

BN ~ CD '
^'^'

v ~ Va' - y''

whence

I
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: -and
Va'- y

2 {^) = \ 2 (^).

But 2 (^) is the sum of all the elements of the abscissa and is

= X, and 2 (i/^) is the sum of all the elements of the qic A B and

is equal to the arc A B itself; therefore we have also

F SLTc A B ' , y— — sm.

a — a sm

whence

W E a a

The abscissa of tlie elastic curve A B, Fig. 434, II, is therefore

./TF^ .
, y

2) X = y —yj-- . si7ir' s
and its ordinate is

3) y = asin.\^xy -^^r^j.

If X = A B — A C — I, the length of the column, we have

y = the deflection B C — a; therefore

'»• (^ V f^).
I-E-, sin. {l \/^) = 1,

I y -v^-^ = —, from which we obtain the bending force

Since this formula does not contain the deflection a, we can

assume that the force F, determined by it, is capable of holding the

body in equilibrium, however much the body may be bent. This

peculiar circumstance is owing to the fact that the increase of

the flexure is accompanied not only by an increase of resistance, but

also by an increase of the lever arm a, and consequently of the

moment F a of the force.

The force necessary to rupture the pillar by breaking it across,

is therefore

WEE = 2,4674
(f,)»- r

Remark.—If we substitute in the formula y = a sin. Ix y^^^^)» P =

(k-j) W E^ we obtain the following equation of the elastic curve for this

case of the action of a force
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Substituting in this .X = I 21 SI 4:1 51 6 I, etc.,

we obtain -y = a — a a 0, etc.

If, then, a column, whose length is Z, is increased any amount in length,

a force P= (— j WB will bend it in the shaj)e of the serpentine line

A B A^B^A^ . . ., Fig. 436, which is composed of a number of similar arcs

AB'diTid is cut by the axis J. X at the distances AA^^AA^^
. . ., and at the distances A C, A C^, A Cg, the curve is

at its maximum distances C B = a, G^ B^^ = — a^ C Bg = a

from this same axis.

§ 266. Parallelopipedical and Cylindrical

Columns.—For a parallelopipedical column, the

greater dimension of whose cross-section is b and the

A, _ ih'

Fig. 486.

A

smaller one is h, we have W
12

(see § 226), and con-

sequently the force necessary to rupture the same

|Bi by breaking it across is

^ I
IT Vh¥ E ^^r^^g bh' E

^ = (2l)-12-=^''^'^'-T-
The resistance of a parallelopipedon to breaking

across is directly proportional to the width b and to the

cube (If) of the thickness or smaller dimension h of its

[
cross-section and inversely proportiondi to the square

{r) of the length.

For a cylindrical pillar, whose radius is r or whose diameter is d^

(see
4

'• = (fJ--r^ = S

64

16

231), consequently we have

E
r 256

d' E = 1,9381
r' E
r

0,1211 -^^.

Therefore the (reacting) strength of a cylindrical cokcmn, by

which it resists bending or breaking across, is directly proportional

to the fourth poiuer of its diameter and inversely proportional to the

square of the length.

For a holloio column, whose radii are r and /'i, and whose diam-

eters are d and d^ = [jl d, we have
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p _ ^' (r* - r,*) E _ TT^ (d' - a:) E
16 r ~ 256 P

= — (1
256 ^

d' E ,.d*F
^-=: 0,1211(1-/.^)-^

If the column ABA, Fig. 437, is not fixed at the lower end

Af but only stands upon it, it will bend in a symmetrical curve,

each half B A and B A^ having the form of the axis of a column

fixed at one end (Fig. 434). The above formula can be applied

directly to this case by substituting-instead of ^ ; ? of course denotes

the total length of the pillar. The proof load is therefore four

times ag great as in the first case, and it is

This case of flexure occurs when, as is represented in Fig. 437,

Fig. 437 Fig. 438.

i
P P

III

!

I ,j in

I B %%

A-

r

I. and III., the ends of the pillar are rounded or when they are

movable around bolts. An example of the latter case is the con-

nectiyig rod of a steam engine.

If a pillar is fixed at both ends, as is represented hy B A B,,

Fig. 438, I. and III., its axis will be bent m a curve B A C A, B„
Fig. 438, II., with two points of inflection A and A,, and in which
thQ normal case of curvature is repeated four times, substituting,

therefore, in the formula for the normal case -, instead of I we ob-
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tain the proof load of such a pillar fixed at both ends

/ 27r

V I

)•WE =
3 I'

E = d'

iQ r
E.

According to Hodghinsonh experiments, the proof load is only

tioelve times as great as in the normal case, while according to the

above formula it would be sixteen times as great.

The principal example of this case of flexure is that of the

piston rod of steam engines, etc.

If, finally, a column A B, Fig. 439, is fixed at one end B and

at the other prevented from sliding sideways,

the proof load P is eight times as great as in

the normal case, or

\2 ?/ 6 r 32 r

The force wiiich is necessary to crush a

column, whose cross-section is F and whose

modulus of rupture is K^ is given, according to

§ 205, by the simple formula P ^ F K.

If we put this force equal to the force

necessary to produce rupture by breaking across

in the normal case, we obtain the equation

FT _ /Try
' W ~ V2/

^
7-^,orZ W~ 2^ K'

For a cylindrical pillar, whose thickness is d, in which case

F 16
-=^ = -^, it follows thatW d

I _ n V^
d~ l^ K

For cast iron E = 17000000 and K == 104500, hence

0,3927 •/|

For wrought ron E

* K

V 162,68 = 12,8 and 5.

28400000 and K = 31000, hence

= V 916 30,3 and \ = 12.
d

Finally for wood we have as a mean

E -= 1664000 aud K = 6770, hence
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/-!̂ = V 24:6 --= 15,7 and ^

If a column is free at both ends, the values of - are twice as

great as those found above.

When the ratio of the length to the thickness is that just given,

the resistance to breaking across is equal to that of crushing, and

it is only Avhen tlie pillars are longer than this, that the resistance

to breaking across exceeds the resistance to crushing. In tliis case

the dimensions of the cross-section are to be calculated by the

above formula.

Example—1) The working load of a cyhndft-ical pine column 13 feet

long and 11 inches thick, assuming 10 as a factor of safety, is

P^f^"^^^ 0,4815 (yy . 166400 = 80620 . 0,7061 = 56900.
64 I' 10 V12/

2) How thick must such a column of cast iron be made, when its length

is to be 20 feet and the load 10000 pounds ? Here, if we pufc instead of E,

w~ = 1700000, we have

4 /-^A ISIT ^ /PI' _ y640000 . 240"

00000 ^ 31 . 1700000

= y 82:34375 = V 9^0^ = '^'^ ^"^^^^^

According to the formula for the strength of crushing

or, substituting -— = 10400 pounds m the calculation, we have

, ATToooo , /"Too
~"

i / 50"
^ . ^

If the length of the pillar does not exceed 10 . 1,106 = 11,06 inches, the

required thickness would then be but 1,106 inches.

(§ 267.) Bodies of Uniform Resistance to Breaking
Across.—If a pillar A B, Fig. 440, fixed at one end, is so shaped,

that in all its cross-section the strain is the same, a solid of uni-

form resistance is formed, which requires the minimum amount of

material for its construction (see § 208 and § 253). The cross-

section of such a body is certainly a maximum at the fixed end B,

and it decreases gradually towards the end A. The law of this

decrease is found as follows : denoting again by x and y the co-

ordinates of a point in the axis of the column, by a the tangen-
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tial angle MAO for this point, by W the measure of the moment
of flexure, by z the radius Oi of the cokimn at this point and by

S the strain at the surface A 0, ^,, which is there-

fore that at the point 0, of the cross-section through

0, we have

_ Mz _ P y z
(see § 235) and

M= Py WE WE d tang, a

(see § 218), whence

^ T^ d tana, a . d yS^= — E z
-J \

- or, smce tang, a = -—

,

ax ax

8dy E z tang, a d tang. a.

^ , . n .1 .. W n z-

But, since lor a circular cross-section — —
z 4

'

dy z

whence

z ' 4 P 1/ 7^

S = P y -~ = ——/-, or - S z' = P y, and we have

""

4 P d (z') =

7T Z

3 7T S'
(z^) = -—- -^ z" d z and Sd y — —r- -p z^ d z.

3 n S'

4 PE
By integration we obtain

-^ PE

tang, a d tang. a.

z" — Const. — tang.^ a,

and, if we denote the radius of the cross-section at B by r, we have

I TT ^-^ (r' — z") = tang.- a, since a = ; hence

tang, a = S V

Putting taiig. a = -y

~^PE'
Vr' - z

z'dz
' dx'

and

2

we obtain

^IT E u'

./SrrE z'dz
^ 4.P ' dx ~ Vr' - z'

z'dz

when - is denoted by u.

du

Vr' - z'
4.P

'

Vl - u'



§ 267.] PROOF STRENGTH OF LONG COLUxMNS. ETC. 541

But

It' 1 -

and therefore

r u'd

- le

- u'

u
J 1/1 _ tr

- 4^1 - tr +
i/1 - u^

- ' ^ " ^ i/1

J Vl - ti' .du + J -

= - ^, u Vl -^ + if-
d u

Vl — u

= — ^ ti Vl — u'^ -\- ^ stnr^ u.

(See the Introauction to the Calculus, Art. 27 and 26.)

Hence we have

For X = I, z = r, the radius of cross-section of the base, for

which sin.~^ - = sinr^ 1 = -, and
r 2

z r r' — 2;^ = 0. Therefore it follows that

^ — 9
^''

r -in p ^^^d th^t the proof load is

that is, three-fourths of the proof load of a cylindrical pillar, whose

radius is r (compare § 265). Consequently the radius of the base

of a column of uniform strength is = ^ | = 1,075 times the

radius of a column of the same length whose proof strength is the

same.

Comparing the abscissa x with the total length / of the column,
we obtain

X "^ r . , z ^ / I zV\ n
^ =2 ^sinr' r | 1 — ( I J

= « ^i^^s tlie area of the

2 z
segment of a circle, whose radius = 1 and whose chord = - ..

r

2 X
If, then, we regard - as the area of the segment of a circle, we

can determine, by means of a table of segments (see the Ingenieur,

page 152), the corresponding angle at the centre, and from it we
can calculate for a given abscissa x the corresponding radius of the
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cross-section z — r sin. ^; e.g., for x = I I,
— - = - = 0,3183,

and we find from the table of segments = 93° 49'; hence the

radius of the cross-section of the pillar is

z = r sin. 46" 50' = 0,729 r.

To resist rupture by crushing, the radius of the cross-section

of the pillar at the top must be r^ = \/ —^-, and this radius must

always be employed for all points, where the formula for breaking

across gives smaller values for z.

If the pillar stands with its base unretained, as is represented

in Fig. 437, the calculation must be made in the same manner for

one-half ( - j of it. The maximum radius r is, of course, that of

the cross-section in the middle, and it corresponds to the formula

§ 268, Hodgkinson's Esperiments.—The recent experi-

ments of Mr. Hodgkinson upon the resistance of columns to

breaking across (see Barlow's report m the " Philosophical Trans-

actions," 1840) confirm, at least approximatively, the correctness

of the formulas deduced m the foregoing pages. According to this

^experimenter the formula

\2 11 \2 // 64 \2 // 12

for prismatical columns with circular or square cross-sections is

correct for wood when we introduce a particular value for E ; but,

on the contrary, it can be employed for wrought iron only when

w^e substitute for fZ* the poAver 6^^'", and for cast iron it is sufl[i-

ciently correct when cV and /" are replaced by the powers ^^f '" and /'''.

The chief results of Hodgkinson's experiments upon prismatic

pillars with circular and square cross-sections are given in the fol-

lowing table. The coefficients given in it refer to the case when

the pillars are cut off" at both ends at riglit angles to tlieir longitu-

^ dinal axis and repose upon these bases. AYlien the ends arc rounded

so that these extremities of the columns are not prevented from

assuming any inclination, these coefficients are nearly three times

as small. If, on the contrary, the column is fixed at one end and

the other capable of turning, the coefficient is but half as great as

in the first case. If, finally, one end of the pillar is fixed and the
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otlier capable of being turned and of sliding, the proof load is but

one-tenth of that of the first case, where both ends are fixed.

TABLE OF THE FORCES NECESSARY TO RUPTURE COLUMNS BY
BREAKING THEM ACROSS.

(

1

Name of the prismatic pillars.

1

Breaking stress.

English measure,
tons.

French measure,
kilograms.

Prussian measure,
new pounds.

1

Cast-iron pillars with circu-

lar cross-section . . . .

Wrought-iron pillars with

circular cross-section . .

i Square pillars of dry Dantzic

oak

Square pillars of dry fir . .

44,16
^,.

133,75-^-

7,8i^

io9°o
^,,,

46140
p

I770y

94700 .,

284400— -

b'

16840^

In the column for English measure d and b are given in inches,

I in feet, and P in tons of 2240 pounds. In that for the French

measures, on the contrary, d and b are given in centimetres, I in

decimetres, and P in kilograms, and in the last column d and b are

expressed in inches, I in feet, and P in new pounds.

Mr. Hcdgkinson also found that cast-iron pillars, with round

ends, were sooner crushed than broken across, when I <C 15 d, and

when the ends were flat as long as I was < 30 d. Dry wood possesses

double as much strength as timber just felled. When employing

this formula for calculating the Avorking load of columns, we employ

a coefficient of security of ] to jlj or a factor of safety of from 4 to 12.

Hence, with sextuple security, we can put for cast-iron pillars,

when d and I are given in inches,

P_ iM.6 10M ^^^_ 44,16

6 •

-^^
• V^^

~ ""6^

and d = 0,0173 (P /'^)''-^«" inches.

For tvrought-iron pillars we have, when we adopt the same

coefficient of security,

T3210

68,3 -j^ --= 502,688 —j tons,

tons and

d = 0,01028 {P I')
'-''' inches.
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For inllars of oah luood, employing a coefficient of security of

y^, we have

P = lu7,68
( ^
y^ = 157,68 j, = 267,69 ^^ tons,

b = 0,2822 (P ly and d = 0,2472 (P P)l inches.

Finally, for pillars offir wood, we have

11,46 (/y.F = 112,46 190,92 ~
h = 0,307 {P ly and d = 0,269 (Pf)i

Example.—For a cyliodrical fir post, 11 inches thick and 13 . 12 = 144

inches long, fixed at both ends, the proof load is

/ -1 9 1 \ 2

P = 190,92
( 1^ )

= 1B4,802 tons.

If the ends of such a pillar are capable of moving freely, the proof load

P = ^ P = 44,934 tons, while according to the theoretical formula we
have P^ = 56900 lbs. = 35,402 tons. (See Example 1 of § 266.)

§ 269. More Simple Determination of the Proof Load
of Columns.—The foregoing formulas for the bending and

breaking across of pillars are calculated upon the assumption that

the force P is applied exactly at the end A of the longitudinal axis

of the pillar. Now since m practice this is scarcely ever perfectly

true, and since the action of the force ceases to be central as soon

as the pillar bends, it is advisable, in determining the proof load

of a beam, to take into consideration from the beginning the

eccentricity of the point of application of the force. Assuming
that the point of application D of the force P is at a distance

I) A = c from the end A of the axis A B, Fig. 441, of the column

and that the deflection B C — a of the pillar is small,

compared with <?, we can consider the elastic curve

formed by the axis of the pillar to be a circle, whose

f
radius is r = - . But now

%a
P (a + c) r —
P {a + e) I' =

PV- c
a = .. .^^ „ ^^;:^ -, and

WE, whence

2 W E «, as well as

a. + c

WE - P f

2 W^Ec
~

2 II E - Pf
If F denotes the cross-section of the pillar and e half its thick-

ness, measured in the plane A B D, the uniform strain produced

in each cross-section by the force P is
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P

545

S,=
F'

and the strain produced at the exterior surface by the moment
P {a + c) of the force is

P{a-¥c)e_ %PEce
^0 W 2 WE- Pl^

and consequently the maximum strain in the pillar is

P 2 P E ce _ P /-, %EFce
\S P 2 WE- P l'

Putting S — to the modulus proof strength T, we have

P(2 WE - Pr + %E Fee) = (2 WE- P 1^) F T.

Now if F r is small compared with {W -A- F e e), we can put

2 WEFT FT

P =

'^ E{W + Fee)

FT

FTl" Fee FT
^ w ^ %we''

, or

</) + 1/;

in which and V' are empirical numbers.

The civil engineer Love (see " Memoire sur la Resistance du fer

et de la fonte, etc.," Paris, 1852) deduced from the experiments of

Hodgkinson the values — 0,45 and y\> = 0,00337 ; hence we have

FTP = XFT
1,45 + 0,00337 (-^)'

from which the following table for the coefficient

^ =
1,45 + 0,0033777^'

"^"^ '^"'° calculated.

©

A:=|o,559:o.357

30
I

40
j

50 j 60 70 80 90

o,223^o,i46io,ioi!o,o735o,o556;o,o435;o,o347 0,0285

These values of x niust be multiplied by the modulus of proof

strength T for compression, when the modulus of proof strength

for long pillars is to be determined for a given ratio of length.

General Morin gives, after Rondelet, the following table, which

35
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furnishes too great values for %, when the pillars are of medium
length.

d~

X =

I 12 24 36 48 60 72

I i '2
1
3

1
b' T2

i

Example—1) What load can a pine post bear, whose length is 15 feet

and whose tiiickness is 12 inches ? According to the table upon page 404,

the modulus of proof strength for a short pillar is T = 2600 ; but since the

I

ratio of the length to the thickness is -^ = V-, we have

^ ^ 1,45 + 0,00337 . 15^
"^

2,208
"^ ^'^^^'

whence we obtain the modulus of proof strength x T = 0,458 . 3600 =
1178 pounds; hence the proof strength of the pillar is

P= 1178 -j-
4

1178 . 0,7854 . 144 = 133000 pounds.

If we employ a factor of safety 3, we can put

133000 ,,_^P = -^— = 44300 pounds.
o

2) How thick must a hollow cylindrical pillar of cast iron, 25 feet

long, be made, when it stands vertical and is required to support a

load P = 100000 pounds ? Assuming the diameter d^ of the hollow part

to be three-fifths of the exterior diameter (d) of the pillar, we can substi-

tute in the theoretical formula

P = E (§ 226),

r' =
16

^4— [1 — (1)"] = 0,0544 d\ whence we obtain

d = V-^i
4.PP

,0544 TT^ E
Substituting in this expression P r= 100000, P = (25 .

12)'' = 90000,

Tc^ = 31, and, instead of E^

E _ 14220000

10 ~ 10
= 1422000,

we obtain the required thickness of the pillar

aooooToo _ '

0;054r:^TlL422
~" V 1,6864 . 237

6000000

^v 187500

0,0527 . 237
= 11,07 inches.

If we make d = 11,25 inches, we obtain d^ = 0,6 . 11,25= 6,75 inches.
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According to our last formula we bave, when we assume

for the required cross-section of the pillar

r /IV'\P 3,556.100000 355600
F = [l,45 + 0,00337

(^) J ^ = ^
2^

= ~-f~^
and putting, according to § 212,

T = —^ = 6200 pounds,

we obtain

355600 , ,F = = 57,35, and therefore, since

F = lid' - d,') = [1 - (f)^] "^f
= 0,16 rr ^%

the required exterior diameter of the pillar

Assuming d = 11 inches, we obtain

CHAPTER y

.

COMBINED ELASTICITY AND STRENGTH.

§ 270. Combined Elasticity and Strength.—A body is

often acted upon at tlie same time by two forces, e.g. a tensile and

a bending one, etc., by which a double change of form is produced,

as, E. G., an extension and a bending. AVe call the force with which

a body resists this two-fold change of form its comMned elasticity

and str^ength, and we will proceed to investigate the most important

cases of this kind.

Properly speaking, the case (§ 214) of the bending of a body

A K B 0, Fig. 442, is really one of combined strength ; for the

force A P = P, which acts at the end A of the body, can be re-

solved into a couple (P, — P) and a force ~SP = P. The former,

which alone we have previously considered, tends to bend the por-

tion A S of the body, and the latter tends to tear this piece from.



548 GENERAL PRINCIPLES OF MECHANICS. [§ 270.

Fig. 442.

the remaining portion S B, The latter force can be resolved into

two components

Pi = P COS. a

and

Pci=: P sin. a

(§ 215), one of which

acts at right angles to

the direction of the fibres

and the other in the di-

rection of the axis of the

fibres. The latter com-

ponent combines with

the strain in the fibres

produced by the bend-

ing and increases the ex-

tensions upon the side of

the tensile strains and

decreases the compres-

sion .upon the other side.

The magnitude of the

extension of each fibre

R8=KN,
etc., whose length = 1,

by the tensile force P
sin. a is (§ 204)

FE
F denoting the cross-section N oi the body.

If at this distance from the line iVi Oi, Fig. 443, which deter-

mines the ends of the fibres, that have been extended by the bend-

ing, we draw a line Nc, 0-2 parallel to it, it will form the boundary

of the fibres which have been submitted to both causes of change

of length, and it Avill cut the original limit in a point S^, which

corresponds to the fibre, that is unchanged in length, and conse-

quently gives the new or true position of the neutral axis. The

distance S S^ = e^ of this neutral axis from the original one, which

corresponds to the moment of flexure, is determined by the pro-

portion
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whence Ci = - o^.
a

But we have also - = - (§ 235),
e r

hence

e, — rG,—
P r sin. a

F E
The radius of curvature r^ of

the neutral axis determined in

this more accurate manner is

greater by the quantity [e^ than

that of the neutral axis previously considered ; hence we have

P sin. a>

IP

The angle a, which the variable cross-section N^ O, or N^ 0,

forms with the direction of the force P, is equal to the tangential

angle a (found in § 216) ; hence, as this angle is small, we can put

P {? - x^)

/^ \ /-, P sin. a\

sin. a
2 WB

or, since
WE

r sm. a — ra

e,
—

%x

p (r

-, from which we obtain

2 F Ex
Hence for the point B, where the beam is fixed and for which

a; = Z, we have e^ = 0, and for the point A at the other- end, where

X = 0, e, = -77— = 00 ; on the contrary, for x = -^-r--—^ we

have e^ = e; consequently the neutral axis coincides at B with

the original one, and in passing from P to ^ it separates more and

more from it, until, finally, it reaches the concave side of the body,

and, if prolonged beyond the body, at the end A it is at an infinite

distance from the other axis.

The maximum extension produced by the flexure is

Pex
a — WE'
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and that produced by the tensile force P sin, a is

F sin. a
O, =z

hence the total extension is

FE '

F /e 2X sm. a
+E \ W ' F "

T
and, if the latter has reached the limit of elasticity y^-, we can put

jy
(ex sin. a\

and the proof load is

F --=
W T

X + -^ sm. aF X -f-

W^

'^Tfe'
For a moderate deflection, which is all these girders are gene-

rally exposed to, this value is a minimum for x = I, and it is

_ WT
^ ~ 'el'

as we have already found.

Fig. 444.

I.

Remahk.—If tlic girder, as, e.g., A A^ B,

Fig. 444, I., II., III., is acted upon by two

forces, two or even three displacements of

the neutral axis from the centre of gravity

may take place. If the two forces act in

the same direction as represented in Fig.

444, I., this displacement on one side of the

cross-section A^ is determined by the

formula

P r sin. a

and, on the contrary, on the other side by

the formula

(P 4- Pj ) r sin. a

At the point of application A^ this dis-

placement changes from

A, V, = e, = -P r sin. a

F E to

B-)-
when we pass from one side to the other,

on the contrary, at the fixed point 5, where a = 0, we liave e^ = 0.

i
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If the two forces act in opposite directions and the moment

of the negative force is greater than the moment

P . AlB = Pil^ + I)

of the positive one, in which case the girder is bent in two opposite

directions, which meet in a point of inflection F, the neutral axis consists

of three branches V V,, V^ W^ and W^ B (Fig. 444, II.), which are not

continuous, and the normals at the point of inflection F is an asymptote

to the last two of these curves ; for here r = co and consequently

Pr sin. a

If, although the forces act in opposite directions, we have P (Z + ?i) > -Pj ^i,

as represented in Fig. 444, III., the displacement of the neutral axis upon

one side of ^j is

,
——

r

P r sin. a

and that upon the other is

^2 — ^Z
—

FE

(P — P^)r sin a

and at the cross-section through A^ there is a break in the two branches

F„ B of the neutral axis, the value of which isU Fi and

V~v _P,rsin

Fig. 445.

§ 271. Eccentric Pull and Thrust.—If a column A B, Fig.

445 and 446, acted upon by a tensile or compressive force, whose

direction, although parallel to, is not that of the longitudinal axis

of the body, the combined elasticity and strength will come into

play. This eccentric force can, as we know, be replaced by a force

P in the direction of the axis,

and a couple (P, — P), whose

lever arm c is the distance G A
of the point of application, of the

force Pfrom the axis of the body,

and whose moment is therefore

= P c. The force ^ P = P in

the line of the axis produces in

all the fibres the constant strain

P
8,

F'
in which F denotes the

cross-section of the body ; the
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couple, on the contrary, bends the body in a curve, whose radius

is determined by the well-known formula (§ 215) P x r = WE,
in which we must substitute for the moment of the force the

moment P c of the couple. Consequently r = ~— is constant,

when PTor the cross-section i^is constant, and therefore the curve

formed by the axis of the body is an arc of a circle.

If e is the maximum distance of the fibres from the neutral axis

passing through the cross-section of the body, we have the maxi-

mum strain produced in the body by the couple

Pee

and hence the total strain is

F W
consequently, when we put this equal to the modulus of proof

strength T, or assume that the most remote fibre is strained to the

limit of elasticity, we obtain

F ^ W \ ^ W ) F
Hence the proof load of the pillar is

FTP =
^ Fee'
1 + W

E.G., for one with a rectangular cross-section, the dimensions of

which are h and h,

p_ FT
,6 c'

and for one with a circiilar cross-section, whose radius is r,

p_ FT

r

From this we see that the strength of a body is tried much
more severely by an eccentric pull or thrust than by an equal one

acting in the direction of the longitudinal axis of the body.

If the column is prevented from bending by a support upon the

side, as, e.g., B A C, Fig. 447, represents, P remains of course

= FT.
If the force acts at the periphery of a parallelopipedical pillar

A B, Fig. 448, and at the distance c — - from the axis, we have
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Fig. 447.

P =

Fig. 448. Fig. 449.

= \FT',
FT

1 +'3

and the proof load is but one-fourth of what it would be if the

weight were applied in the prolongation of the axis of the body

(Fig. 449).

For a cylindrical pillar, with

a force acting at the circum-

ference, we have c — r, and

consequently

F TP = -—- ^ I F T,1+4 ^ '

I.E., but one-fifth what it would

be if its point of application was

in the axis of the body.

These formulas can be applied

to rupture by extension, com-

pression and breaking across ; it

is only necessary for each species

different coefficient of ultimateof separation to

strength, or put

substitute a

FK F

1 + ^^
IF K,

"*" WK,

Fig. 450.

in which K^ denotes the modulus of rupture by compression (or

extension) and K^_ that for breaking across.

§ 272. Oblique Pull or Thrust.—The theory of combined

elasticity and strength is particularly applicable to the case, where

the direction of the force P forms an acute angle R A P ^=^ ^ with

the axis of the beam A B, Fig. 450. One of the two components

B = P COS. S acts as a tensile force

and the other P sin. d as a bending

one upon the body, and the strain

^ P COS. S

produced in the whole cross-section

by the first component combines with

the strain

P sin. 6 . I e

We '

produced by the moment P I sin. S of the second component in

the outside fibres, and causes the strain

S,
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or more simply
^cos. 6

P COS. d Pie sin. 6

T= P
(^

I e sin. 6\

W
Hence the required proof load is

FTP ^
cos. o + -—- sm. o

or, inversely, the required cross-section is

Fie
W sin. oV

Or, if we substitute a modulus of proof strength T^ for bending

different from that (T) for extension we have

-^ „ (cos. 6 Fle.\
^ = ^ \rw + -\vT.

'"' V-

il gira

, and consequently

For a parallelopipedical giixler we have

Fe _Q
W ~

It

6 I

and for a cylindrical one

T "^
li Y ^^^- ^)>

F_e
, whence

„ o /cos. 6 4.2 . A

The same formula holds good for the case represented in Fig.

451, in which the first component R produces compression in the

girder. If here again d denotes

the angle, which the direction

"^"^"^ of the force P malces with the

Zli^i^ axis of the girder, the values of

Fig. 451.

^^^^^=^j^ -^— --: the components are

;s:-{h'— - r t —^ E = P COS. o and

_^ iV^ = P sin. d.

^^^^ In order to find the proof

load of the girder, we m.ust com-

bine the strain produced by R
8,^
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with the greatest strain

Q _ P le sin.

6

^' - W
produced by the bending, and then we must substitute in the

formula

-y, -^ / COS. 6 le 8171. 6\

^ P / . Fie . A
^ — w y^^' " ^—fr' ^'^^^- °

)

just found, instead of T, not the modulus of proof strength for ex-

tension, but that for compression.

In both the cases treated above the displacement of the neutral

layer of fibres from the centre of gravity is

_ <7i __ 8x _ Vv cotfj. 6

^ ~
0.2 S.2 F e X '

which, E.G., for parallelopipedical beams, becomes

_ h cotg. c5

b X

It is also easy to see that by the combination of the maximum
extension or compression with the extension or compression of the

fibres, which is equally distributed over the entire cross-section of

the body, there is produced an extension or compression

,S', :±z S, P ICOS. (5 / e sin. 6)

F \ F "^ W '}
<Ti ± (72 =: =— - = ^ -—— ±

If we introduce the modulus of proof strength T and for the

T
sake of security employ for wood and iron only ~- , we obtain

o

1

)

for wood in both cases

p ^ 780 F ^ _ 780P_

cos. + -y- S171. o cos. OH sin. o
h r

2) for cast iron, in the first case (Fig. 450)

3640 F 3640 F

cos. o + ^- S171. cos. o -\ sin. o
h r

and in the second case (Fig. 451)

9360 F 9360 FP =
cos. d -\- -— sm. o COS. o -\ sin. o

II r
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§ 273. The case just treated occurs often in practice. If, e.g.,

a weight P is hung from a girder A B, Fig. 452, which is inclined

to the horizon, we have, wiien the angle of inchnation of the direc-

tion of the axis h P A R = d, the tensile force R = P cos. 6 and
the bending force N = P sin. 6, and therefore

FT-P =
COS. •+ -y- Sin. o

h
Fig. 452. Fig. 453.

If, as is represented in Fig. 453, not only the direction of the

stress P is inclined to the axis of the body, but also its point of

application lies without it, in calculating the proof load w'e must
consider the point of application transported to D in the pro-

longation of the axis A B of the girder, i.e. we must substitute in

place of the length B A = I the length B D = B A + A D = I +
o

—r^ -.5 ill which the horizontal distance C A is denoted by c, and
sin. o ^

the angle C D A, formed by the axis of the girder with the verti-

cal, is represented by 6.

In like manner, for the pillar A />, Fig. 454, which is inclined

at an angle 6 to the vertical, we have the proof load

FT FTP 3=

cos.

6j"

h

~
4:1

'

sin. 6 COS. 6 -\ sin. d
r

in which we must substitute the modulus of proof strength for

compression, while in the former case Ave should employ that for

extension.

If a loaded girder A A, Fig. 455, is not freely supported, but

wedged between two walls, a decomposition of ihQ forces takes

place into components producing compression and into compo-

nents producing a flexure. If the terminal surfaces A, A of this
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beam form an angle 6 with its cross-section, and if a force F acts

in the middle B of the girder, the reactions of the walls upon the

ends of the girder are Q and Q, and these forces are incHned at an

Fig. 454. Fig. 455.

angle 6 to the horizon and give a resultant C P = — P, which

balances the force P.

Hence

P = 2 Q COS. A C P = 2 Q sin. 6,

or inversely

^ ~ 2 sin.
6'

The reactions of the walls can be decomposed into a compres-

sive force in the direction of the axis of the girder

P cos. 6
1 D ^ ^— ~.—^ = i P cotg. 6

2 sm. ^
^R — Q COS. 6

and into a force

N — Q sin. 6
2'

which is perpendicular to the latter and produces a bending ; con-

sequently we have
N.^l
W

I.E.

P cotg. d Pie
2 F ^ 4.W'

and the proof load of the girder is

2 FT
cotg, 6 +

Fie
W

The condition of affairs is the same, when an inclined prop A B,

Fig. 456, carries a load which has been dumped upon it. But here

Q can be resolved into a force Q^ at right angles to the axis of the
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prop and into a force ]\\ at right angles to the side (in miners'

language, the floor). Neglecting, for greater safety, the friction of

the loose masses of stone upon
the floor and denoting the angle

formed by the terminal surfaces

of the prop with its cross-section

by (5, and the inclination of the

floor B C to the horizon by /3, we
obtain Q^ = Q sin. 13 and

2FT
cotg. 6 -f

(see
i

=

Fie
W

240), and therefore

2 FT
(^cotcj. S +

F I

W I
sin. 13.

Example— 1) What must be the dimensions of the cross-section of the

inclined girder ^4 B, Fig. 452, which is made of pine and is 9 feet long and

'Vviiose direction forms an angle of 60^ with tbe horizon, when it bears at

•the .extremity A a weight P = 6000 pounds? The formula

p^ FT
.

6Z . ^
COS. 6 4- --,- sin.

li

giyes, when we substitute P = 6000 pounds, T = 780, d = 90^ — 60'

30" and Z = 9 . 12 = 108 inches, and assume y = -f,

F = 111 = 6000
780"

648

COS. 30'

0,500^

6. 108
ein. 30') I.E.

/ 648 . 0,500\ ^ „ 3489
h-" = 10,77 (0,866 + ~— ) = 9,33 + -^.

Approximatively, we have

h = V3489 = 15,17,

more accurately

h = V3489 + 9.33".l547 = V3631 = 15,37 uiches,

and consequently

Z» = I A = 10,98 inches.

2) At what distance from each other must tvro 12 inches thick collars

A B of ?i so-called overhand stoping ABC, Fig. 456, be laid, when the

gob is piled 60 feet high upon it in a vein 4 feet thick, dipping at 70

v/e assume that the weight of the gob is 65 pounds per cubic foot ?

noting the required distance by a?, we have the weight

', it'

De-

upou each collar
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Q = 4: . 60 . 65 :?! = 15600 x, and consequently the pressure upon each

'Collar is

Q^ = Q sin. 70" = 15600 x sin. 70" = 15600 . 0,9397 x = 14659 x ibs.

If the ends A A of the collar form an angle of 70° with the axis, or if'

J = 20°, we have

2 FT _ 2. 113,1. 780 176436

cotg. 20° + V^~ 3,747 +
^'^^

14659 X =
10.747

'

d 12

and therefore

176436 = 1,12 feet = 13,44 inches.

m
PM

10,747 . 14659

The required distance between the two collars is therefore

X — d = 1,44 inches.

(§ 274.) Flexure of Girders Subjected to a Tensile

I'orce.—The nor7nalproof load P of a girder A B, Fig. 457, is dimin-

ished by the application of a small force in the direction of the axis

only when the girder is short. If, on the contrary, the length of the

Pj^ ^g-, girder and the tensile

force exceed certain

limits, the moment of

the latter acts in the

opposite direction to

the moment of the

bending stress, thus di-
''

minishing the deflec-

tion of the body and increasing its proof load.

If we put again the co-ordinates of the elastic curve A S B^

Pig. 457, formed by the axis of the girder, A K — x and K S = y,

we have the moment of the forces in reference to a point 8 in the

axis ' P X — Q y,

we can therefore write (according to § 215}

{Px- Qy)r= WE,
substituting

_ dx

in which a denotes the tangential angle 8 T K, and denoting, in

order to simplify the expression, y -rrr-^ by ^, and y -.^^ by $',

obtain the equation

, dx (P X — Q y) d X . ^ 2 \ 7da =_-_.= _ A _!^11 ^ _^fr^_ qUj)dx.

we
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Now making:
iJ 00

Fig. 458.

P
w
m

in which m and n de-

note constants, to be

determined, and e the

base of the Naperian

system of logarithms

(see Introduction to the

Calculus, Art. 19), we
obtain

«-=ff=l
and since the differential of l^he last equation, viz.,

da— — (m e'' "^ -{- n e~'''') (f d x,

when substituted in equation 1), gives the above fundamental

formula

da = \^y -^^^q' dx ^ - {p' X - q' y)dx,

the correctness of the above expression for y is proved.

Since for a; = we have «/ = 0, we obtain by substituting these

values in 1) the following equation

=r — (m e" + w e"), I.E.,

m + ?^ = 0,

a;id since for ic = ?, a = 0, we obtain by substituting these values

in 2) the equation
if= ^-^ — (me'^^ — ne-"^) q,
q

and substituting the value n — — m taken from the foregoing

equation, we have

whence

m

P - mq {e''^ + e"' %

n = f
q' (e'^ +£-'')

and the moment of the forces is

P X - Qy = Qm (e'^' - e-'-^)

P /e'^" — £-P /e'^" — £-'n

The latter is certainly a maximum for the fixed point B, the

co-ordinates of which are x = A C = I and y = B C = a, and

then its value is
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li q Ih a proper fraction, that is, if the girder is short and the

/<7rce i?^ the direction of the axis is small, we can put

e''^ ^1 + ql +^ + -^ + . . .

,

and also

e--"=l-ql+^-^-^-^-^,,,,

hence we have the moment of the forces

If, on the contrary, the force Q is so great that q I becomes at

least = 2, we can then neglect

when it occurs with e' ^, and therefore we can put
£'' - e-'i' _ fc^' _

80 that the moment of the forces becomes simply

(§ 275.) Proof Load of a Girder Subjected to a Ten-

sile Force.—By the aid of the moments of the forces P and Q,

found in the foregoing paragraph, we can determine by the method,

which we have so often employed, the proof load of the girder.

The force Q produces a tension per unit of surface

in the direction of the axis of the body, and the moment PI — Q a

of the two forces P and Q produces a tension in the fibres at the

maximum distance e from the neutral axis, which is

{PI - Qa)e
'' = w

hence the total tension is

>b _ ^j + ^, _ -^- + ,

36
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When the latter reaches the limit of elasticity, S = T, and we
can put

G ^ {Fl-Qa)e
^ ~'F ^ W

If the modulus of proof strength T^ for compression is different

from that T for extension, we have

^'- F '^ W
in which e denotes the maximum distance of the compressed fibres

from the neutral axis. In both cases we must substitute

^
q \e'' ' + £-" 7

so that the required proof load of the body becomes either

_ (
B'^'+e-^\ L _ _Q\ WT q^ -\^^'- e-^'IV ft) e '

or

_ /e^^^^^'x / ^ \ WT.jt
~ W'- e-^7 \ "^ FTj e '

For a S7naU tensile force Q we can put

SO that, when we take into consideration the extension only, we
have

^ {FT-Q)W _l QP \ I _ _Q_\ WT

Without the tensile force Q the proof load of the body would be

P -El
hence we have the ratio

P
p;

from which it is easy to see, that the proof load is increased or

diminished by Q, as ^^ is greater or less than ^, i.e., as

\ \ ^3WF/\ FTP

"=^ is greater or less than -^.

When the tensile force is great, in Avhich case we can put

Fl~Qa = P\/^-^,
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we have the proof load

\ FTl^ E ' e ^

This expression becomes a maximum with the expression

V Q — ^7-^. By differentiating the latter and putting the differ-
Jo 1

ential equation obtained equal to zero, we obtain

FT
Q = ^--.

This maximum value is

_ ,
JfWt r

and the ratio of tlie latter to the proof load P, of a girder, which

is not subjected to a tensile force, is

P,~ '^ 3 WE ^ ^ 3 n*

For a parallelopipedical beam, Vvhose height is li and whose

width is h, we have F = h li, W — ~c and e = i A, whence

F, Sh ^ E 3h
If the beam is of wood,

_ T _ 1

^ ~ E " 600'

and therefore

/"Y 7 7— = 4 4/'' — — 0544 -

E.G., for
I
= 30, P = 1,632 P,

;

the girder carries nearly two-thirds more than when it is not sub-

jected to a tensile force.

^ I 10000 7

7l
^ Tm~ ^ ^^*^' ^' "^ ^' ^^^^ ^^^' ^''^^^^^^ ^^

7
smaller

than 18,4, P, is smaller than P, and the proof load P of the beam
is diminished by the stress Q.

§ 276. Torsion Combined with a Tensile or Com-^
pressive Force.—If a column A B, Fig. 459, is acted upon at

the same time by 21, force Q, whose direction is that of its axis, and
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by a cou;ple (P, — P), which tends to twist it, both the elasticity

of torsion and that of extension (or compression) come into play.

The result of the combination of these two elasticities may be in-

vestigated as follows : If the strain per unit of surface produced

by the force Q \^ 8x — ^ and that produced by the moment of

torsion at the distance e from the longitudinal axis of the body is

P a e
Sa — —:^^~, we can assume, that a parallelopipedical elementW

Fig. 459.

s%-^

Z -S,

A B C I), Fig. 460, of the body, is acted upon by the normal forces

A B . S] and — C D . S^ upon A B and C D and by the couple

{A B . Si, — C^ . /S'o) along A B and CD and by the opposite

couple {B C , Z, — A D . Z) along B C and A D. If the diagonal

plane A C forms an angle ip with the axis of the body or with the

direction of the strain S^, the components of the forces 8^, S^ and

Z upon one side oi A C are

A B . Si sin. ip, A B . S^ cos. -0, and B C . Z sin. ip,

and consequently the total normal force upon A C i^

ATI . S = A'B . S, sin. i/> + ATB . ^S', cos. ^ + BC . Z sin. ^,

or, since the moment of [B C . Z, — A D . Z) is equal to the mo-

ment of (AB . S,, - (TD . S,), I.E.

A B . B 0. Z = B C. A B . S\ or Z = S„ .

ACr. S = A~B~. S, sin. ip + (A^ cos. ^ + BlTsin. i/^) S„

so that, finally, the normal strain upon the unit of surface of

A a is
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8 == -jj, . S, sin. i}) + y^-^ COS. -^p + ^-^ S171. ipj S,.

S = Si (sin. xp'') + 2 S^ sin. -0 cos. ip = S^ (sin. ^pf + S^^ sin. 2 ip

= SA -^—^1 + S.2 sin. 2 ip (compare § 259).

This equation gives a maximum value for S, when tang. 2 ip =

or sm. 2'ip = and cos. 2\p— ~
^i ' v~Si' + (2S,y Vs;'+{2S,y'

and this maximum yalue is

^ \ Vs,' 4- (2 s.yf Vs,' + (2 8,y

2
= ^+/(y)'V>^^/

Substituting the above values for S^ and ^2 in this equation,

we obtain the required maximum strain

S.,=
2

Now, since the body should resist with safety the actions of

these forces P and ft we must put S^ — to the modulus of proof

strength Tor

from which we obtain the equation of condition

\ W J F '

The allowable moment of torsion is therefore

1) Pa=~\/T' -^,
e ^ F

and the allowable force in the direction of the axis is

F IP a eV
^)^ =^^-fm

In order to find the dimensions of the cross-section correspond-

ing to the forces P and Q, we put

W ^ Pa

^ F
when the force producing torsior is the greater, and, on the

contrary,
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T \ W J

when that in the dh^ection of the axis is the greater.

For a parallelojnpedical column, whose dimensions are i and A,

we have

F^hh, W = {¥ + Ir) \4 and ^ = A VFTJ", consequently

— = -— VI?' + Jr = —-=_^-^=:=_ = ---1 - y-y^- and
e Q Qrn T \ h h T

^ bh

w^hi- i = ^ri-/ ^^ Vr^

If we know the ratio i^ = -- of the dimensions, we can calculate
li

the dimensions themselves hy means of this formula.

For 2i pillar icith a square hase h — h, and therefore

¥ V2 P a

6

For a cylindrical pillar or shaft we have

7T r^p = 71 r^ IF = — -, and e = r, whence

nr^ _ Pa
^ and ,• = /3^Zf' (i _ __^) \ a. well as

nr

n r^ = -«--,-- and r = J'AI [i _ (^-J^XT\
rj^_ \J^PaX ^ IT TV \nr'T/ J



§ 377.] COMBINED ELASTICITY AND STRENGTH. 567

Fig. 461.

If the force Q in the direction of the axis is a compressive one,

the formulas found above still hold good ; for

not only the direction of the force ^'i (Fig.

461) is opposite, but also the forces So and Z
can be assumed to act in the opposite direc-

tion, when we wish to obtain the maximum
resultant S„,.

Example.—If a vertical wooden shaft weigh-

ing 10000 pounds is subjected to a moment of tor-

sion P a = 72000, the required radius, assuming

Q \-^

-K r'

T — 400 pounds, is

= V 0,6366 . 180 (1 — -^) .

Approximatively, we have

r = Vll4^ = 4,85, whence

7,958 7,958

_W _ 3/0,6366 . 72000/ 1000 V

¥} ~y 400 \ ~ 400Vr2J

23,52

7,958\-i

(-^7

= 0,3383, and

V 0,6617
1,071,

so that the required radius is, more accurately,

r = 4,85 . 1,071 = 5,194 inches,

and consequently the diameter of the shaft is

d = 10,d9 inches.

§ 277. Flexure and Tcrsion Combined.—Cases often oc-

cur where a girder or shaft is acted upon at the same time by a

bending force and a twisting couple. Horizontal shafts are gei.-

erally submitted to both of these actions. In order to investigate

the relations of the combined action of

these two forces, let us imagine a pris-

matic body A B CD, Fig. 462, fixed at

one end B D, to be acted upon at the

other end by a bending force § and

at the same time by a twisting couple

(P, - P). If I is the length A C of

the shaft, TF, the measure of the mo-

ment of flexure and e, the maximum
distance of an element of the cross-sec-
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tion from the neutral axis, we have the maximum strain produced

in the direction of the axis by the force Q

S, = ^^- (compare § 235).

If, on the contrary, a denotes the lever arm HK of the couple

(P, — P), >rthe measure of the moment of torsion and e the

greatest distance of any element of the cross-section from the axis

C D of the body, we can put the maximum shearing strain pro-

duced by the couple

^ _ Pae
^' - ~w

Now here, as we can easily understand, the strain S^

takes the place of the absolute strain iS, = -^ of the foregoing par-

agraph, and therefore we can put for the maximum strain in the

whole body A B G D, Fig. 462,

^ ~ % r, + ^ \ 2 wj "^ v w r
from which we obtain the equation of condition

(PaeV_ rp. _ Q l.e,T

V W I
~

W, '

The allowable moment of torsion is therefore

n Pa - ^^i/r^ - ^A^-^^Vi - ^^l)Pa---yi - ^ _ ^ 1/ 1 ^,^,

ana the bending force is

2) Q = --^^ \t' - (—T^--) 1, from which we obtain either

W P^a

El - e^i

^ t\ w r

For a square shaft

— = ----— and — = "-, whence
e 6 ^1 6
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as well as

ti- f TV IfT) '

6 hr^ /6/I F aV-]-^ ,

while, on the contrary, for a cylindrical shaft,

W
e

—7-- and— = --—
; hence we can put

2 61 4 ^

as well as

2 Pa/, 4.QlA-i ^= - -Ft
1 ^) .and

7T T \ rrr^ T/

_l/^l[a/ _^±lA-^

^ IT T I

p P aV-V

Fig. 463.

Very often it is not a couple, but a force P, acting eccentrically

to the axis, which produces the torsion in the body B CD, Fig. 463.

Since such a force can be decomposed into an

equal central force C P — + P and into a

couple {P, — P), whose lever arm is the dis-

tance C A between the axis C D of the body

and the line of application of the force P, we
have here a case of combined strength, al-

though there is no other force Q ; for the

twisting produced by the couple (P, — P),

combines with the bending produced by the

axial force + P. The above formulas can

be employed directly for determining the

thickness of such a body, when we substitute in them P I = Q I,.

If, in addition to the eccentric force P, there is another Q,
whose moment is Q l„ we must substitute instead of P I, P I + Ql^.
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Fig. 464.

§ 278. Bending Forces in Different P:anes.—If a girder
or shaft B C\ Fig. 464, is acted upon by two bending forces Q, and

Q,, whose directions C\ ^jand C, Q,,

although at riglit angles to the axis C\ B
of the body, are not parallel to each

other, the portion 6^ B of the body will

be bent by two couples (()„ — ft) and

(fe — ft)? the resultant of which must
be found, when we wish to determine

the nature and magnitude of the bend-

ing. If ^1 and L denote the arms of the

forces ()i and Q., in reference to the fixed

point B, Qi l^ and Q.2 k are their mo-
ments, and if a is the angle formed by the

directions of the forces, when passing

through the same point, we have, according to § 95, the moment
of the resulting couple

R c = V'CQ, l,y + {Q,W~+ ^{Q^l^) {Qj^'coTa,
and for the angle /3, which the plane of this couple makes with that

of the couple (ft, — Q^),

sin. 13 = -^--.
E c

In order to find the intensity and the plane of this couple

{R, — R), we can reduce the force ft, from 62 to (7i, combine the

reduced force Q = —~- by means of the parallelogram of forces

with the force ft and thus determhie the resultant 7?, : the pro-

duct Ri h = R c is the value of the moment of the resulting couple

and the angle 0^ C\ R is the angle /3, which the plane of this couple

forms with that of the couple {Q^, — ft). This plane is of course

that in which the body is bent, and by the aid of the moment R^ /,

^:=^ R c, just found, we obtain the maximum strain in the body

^=:
Rce

^(ft lY + {Q^k^"
+"^'

(ft k) (ft>'y ^cos.

or, putting this equal to the modulus of proof strength T, we have

TW
G

If a twisting couple {P, — P), whose moment is F a, also acts

upon this body A B, the maximum strahi becomes

PTeV
^l ~ 2 ~W~

"^
//R

nfwf( w
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in which TF, denotes the measure of the moment of flexure, W that

of torsion, e^ the greatest distance of any element of the l)ody from

the neutral axis and e that of any element from the longitudinal

axis of the hody at D.

From the above we obtain

lP_aey__ ^, Rce^T
[ W I

~ W
= T- [(Ci l^r + (e.y^ ^ (ft ^.) (ft y cos. a] 'i^r.

By the aid of the formulas of the foregoing paragraph the

required dimensions of the cross-section of the body can be found

by substituting in them instead of Q I the sum Q^ l^ + Q^ l^.

If only one bending force Q^ acts upon the body and if at the

same time it is acted upon by a single twisting force P instead of

a couple (P. — P), this force P can be resolved into a tAvisting

couple (P, — P) and a force P acting upon the axis, so that

instead of Q^ k we must substitute in the latter formula P /.

FiKAL Remark.—Although there is no portion of mechanics which has

been the subject of so many experiments as the elasticity and strength of

bodies, yet much remains to be investigated and many points are still

uncertain. Experiments upon this subject have been made by Ardant,

Banks, Barlow, Bevan, Brix, Busson, Burg, Duleau, Ebbels, Eytelwein,

Finchan, Gerstiier, Girard, Gauthey, Fairbaim and Hodgkinson, Lageijhehn,

Musschenbrock, Morveau, Navier, Rennie, Rondelet, Tredgold, Wertheim,

etc. The older experiments are discussed at length in Eytelwein's " Hand-

buch der Statik fester Korper," Vol. II., and also in Gerstner's " Handbuch

der Mecbaaik," Vol. I. A copious treatise on this subject by v. Burg is

given in the 19th and 20th volumes of the Jahrbiicher des Polytechn.

Instituts zu Wien. Theories which differ somewhat from those given in

this work are also to be found in this treatise. The experiments of Brix

and Lagerjhelm have already been mentioned (page 3G4}. New and very

varied experiments upon the reacting strength of different kinds of stone

by Brix are reported in the 32d year (1853) of the transactions of the

" Verein zur Beforderung des Gewerbefleiszes in Preussen." A simple

theory of flexure by Brix is to be found in the treatise " Elementare Berech-

nuugdes Widerstandes prismatischer Korper gegendie Biegung," which is

printed separately from the transactions of the Freussiscben Gewerbeve-

reins. Wertheim's latest experiments upon elasticity have already been

mentioned (page 396). An abstract of Hodgkinson's experiments is to

be found in Moseley^s "Mechanical Principles of Engineering and Archi-

tecture." Hodgkinson's principal work, the title of which is " Experimen-

tal Researches on the strength and other properties of cast iron, etc.," was
published by John Weale in 1846. A French translation of it by Pirel
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appeared in Tome IX., 1855, of the " Annales des Fonts et Chaussees," and
an abstrcct of it by Couche in Tome XX., 1855, of the " Annales des
Mines." Tredgold has published a treatise upon the strength of cast iron

and other metals. The following works -are also recommended for study.

Poncelet's "Introduction a la Mecanique Industrielle." Part I.. Navier's

Resume des Lemons sur I'application de la Mecanique, Part I, translated

into German by Westphal under the title " Mechanik der Bankunst," to

which work Poncelet has made some additions in his theory of the resist-

ance of rigid bodies (see his Manual of Applied Mechanics, Vol. II., trans-

lated into German by Schnuse). We would also recommend particularly

the " Resistance des Materiaux " (Lecons de Mecanique Pratique), by A.

Morin, which has been much used in preparing this work. We may men-
tion further the " Theorie der Holz-und Eisenconstructionen mit besonderer

Riicksicht auf das Bauweseu," by George Rebhan, Vienna, 1856, the work
of Moll and Reuleaux (already quoted in page 469) ujion " die Festigeit

der Materialien," a " IMemoire sur la Resistance du Fer et de la Fonte, par

G. H. Love, Paris, 1852," as well as Tate's work upon the strength of mate-

rials as applied to tubular bridges, etc. The theory of combined elas-

ticity and strength was first treated by the author in " der Zeitschrift fiir

das gesammte Ingenieurwesen (dem Ingenieur), by BorDcmann, etc.. Vol. I.

Tn the first volume of the new series of this magazine (Civilingenieur,

1854) the graphic representation of the relative strength is treated by Mr.

Bornemann, and the results of the experiments made by Bomemann and

by Leniarle are also given.

Tlie theory of elasticity and strength will be treated of again when we
discuss the theory of oscillation and of impact.

Mr, Fairbaim's Useful Information for Engineers, I. and II. Series, gives

the results of many experiments upon the strength of wrought iron of dif-

ferent forms, as well as upon stone, glass, etc. From a theoretical point

of view, we can particularly recommend, " Le;;'ons sur la theorie mathe-

matique de I'elasticite des corps soiides," par Lame, " A Manual of Applied

Mechanics," by W. J. Rankine, the " Cours de Mecaniaue appliquee." I.

Partie, by Bresse, and the " Theorie de la resistance et de la flexion plane

des solidcs," par^Belanger. The treatise of Laissle and Schublen, " Ueber

den Bau der Briickentrager," is a fair exponent of the state of science ujjon

this question, when it was written, and is therefore to be recommended.

Riihlmann's " Grundziige der Mechanik," 3. Auflage (1860), contains also

a treatise upon the resistance of materials worth reading.

The " Civilingenieur " and the '' Zeitschrift des deutschen Ingenieur-

vereins " contain several valuable treatises upon the theory of elasticity

and strength, particularly those by Grashof, Schiwedler, Winkler, etc., as

well as several good translations from the French and English of Barlow,

Bouniceau. Fairbairn, Love, etc. The results of many experiments by Fair-

bairn, Karmarsch, Schonemaun, Volkers, etc., are also given in these journals.



FIFTH SECTION.

DYNAMICS OF RIGID BODIES,

Fig. 465.

CHAPTEH I.

THEORY OF THE MOMENT OF INERTIA.

§ 279. Kinds of Motion.—The motion of a rigid body is

either one of translation, or of rotation, or a comlination of the two.

In the motion of translation (Fr. mouvement de translation ; G-er.

fortschreitende or progi-essive Bewegung) the spaces described

simultaneously by the different parts of the

body are parallel and equal to each other

;

in the motion of rotation (Fr. mouvement
de rotation ; Ger. drehende or rotirende

Bewegung), on the contrary, the parts of

the body describe concentric arcs of circles

about a certain line, called the axis of rota-

tion (Fr. axe de rotation ; Ger. Umdre-

hungsaxe). Every compound motion can

be considered as a motion of rotation around

a movaUe axis. The latter is either varia-

ble or constant. The piston D E and the

piston-rod B F of Si pump or steam engine,

Fig. 465, have a motion of translation, and

the crank A C has a motion of rotation.

The connecting rod A B has a compound

motion ; for one of its extremities B has a

motion of translation, while the other A
has a motion of rotation. The axis of rota-

tion of a cylinder, which is rolling, is con-

/
/
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stant, while that of the eonnecting rod A B is variable ; for its

position is determined by the intersection J/ of the per]3endicular

B K to direction C B of the axis of the piston-rod and of the pro-

longation of the crank C A (see § 101).

§ 280. Rectilinear Motion.—The laws of motion of a mate-

rial point, discussed in § 82 and § 98, are directly applicable to a

rectilinear motion of translation. The elements of the mass i/„

i/g, Miy etc., of a body, moving Avith the acceleration 7;, resist the

motion, by virtue of their inertia, with the forces M^p, M^^p, M^p^

etc. (§ 54), and since the motions of all these elements take place

in parallel lines, the directions of these forces are also parallel ; the

resultant of all these forces due to the inertia is equal to the sum
M,p 4- M.p + M^p + . . . = (J/i + J/o + J/3 + . .

.) j9
= Mp,

when M denotes the mass of the whole body, and the point of ap-

plication of the resultant coincides with the centre of gravity. In

order to set in motion a body, whose mass is J/ and whose weight

is Cr — Mg and which in other respects is free to move, we re-

quire a force

P ~ M p = —--,

whose direction must i)ass through the centre of gravity >S' of the

•body.

If, in conse(|uence of the action of the force P, the velocity c is

••changed to the velocity v while the space s is described, tlie eiiergy

^stored by the mass is (§ 72)

Example.—The motion of the piston and i3iston-rod of a pump, steam-

engine, blowing-machine, etc., is variable ; at the beginning and end of its

stroke the velocity is = 0, and near the middle of it it is a maximum. If

the weight uf ihe piston and piston-rod = (?, and if the maximum velocity

at the middle of its stroke = i", the energy stored by them in the first half

of the stroke and restored in the second half is

L =- - 6T.

If O ~ 800 pounds and v = o feet, we have

L = 0,0155 .
5-

. 800 = 310 foot-pounds.

Now if half the stroke of the jjistomis s = 4 feet, vve have the mean

force, which is necessaiw to produce the acceleration of the piston in the

first half of the stroke and which the piston exerts in the second half, when

it is retarded.
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P= —
2gs

. O
310
"4~ 77|- pounds.

P-^

§ 281. Mcticn of Rot?.tion.—If the motive force P of a

body A B, Fig. 460, does not pass through its centre of graWty S,

the body turns around that point, and at the

same time moves forward exactly as if the foro3

acted directly at the point ^S', as can be shown in

the following manner. Let us let fall from tlie

centre of gravity 8 a perpendicular S A upon

the direction of the force and contmue it in the

other direction until the prolongation 8 B i*3

equal to the perpendicular 8 A, and let us sup-

pose that two forces 4- 4 P and — .1 P, winch

balance each other and are parallel to P, are applied at B. The
force + 2 jP combines with half the force P acting in A and gives

rise to the resultant

P, = ^P + IP^P
applied at the centre of gravity, while, on the contrary, the force

— I P forms with the other half (37 P) of the force P applied in A
a couple ; hence the force P, applied eccentrically, is equivalent to

ii fdrcePi — P, whicli is applied at the centre of gravity, and which

moves this point and with it the body, and to a couple {h P, —
^- P), which causes the body to turn around its centre of gravity 8
without producing a pressure upon it. The statical moment of

this couple is

r=iP./S^r+ iP.^ni^ P.'8A'= Pa,
or equal to the statical moment of the force P applied in A in

reference to the centre of gravity 8; the resulting rotation vroalJ

therefore be the same if the centre of gravity 8 Vv'ere fixed and P
alone were acting.

If a body A B, Fig. 467, is compelled,

by means of guides P E, Pi P^, to assume

a motion of translation, the eccentric force

Feg. 4(:

_N

IF

mK'.

A P = P produces the same effect upon

the motion of the body as an equal force

acting at the centre of gravity, and the

couple (A P, — h P) is counteracted by

the guides If a is the eccentricity 8 A
cf the force P, or the distance of its direc-

tion froi^ the centre of gravity 8 of the

body, and if b denotes the distance II II
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between the pei-pendiculars to the guides at the diagonally opposite

points i^and 6^ and (JV, — iV^) the couple, with which the body

acts on the guides, w^e have, by equating the moment of the

couples Q P, - IP) and {N, - N),

Nh = Pa, and therefore

JV
a

Fig. 468.

If, finally, the body A B, Fig. 468, is prevented from moving
forward by the fixed axis C, the eccentric force

A P = P produces the same effect upon the

rotation of the body abont this axis C as a

couple (1 P, - ^ P) with the arm 2 C A =
2 C B = 2 a, or with the moment ^> P . 2 a

—

P a ; for the remaining central force P^ =^

Pj = P is counteracted by the bearings of the

axis (compare § 130).

§ 282. Moment of Inertia.—During the rotation of a body

A By Fig. 469, about a fixed axis C, all points M^, M^, etc., of it de-

scribe eqnal angles at the centre M^ C iV^,

= Jfs C iVo, etc., = (p\ which, when the

radii C P, = C D.^, etc., = one (1) are

equal, correspond to the same arc

P, E, = P, P„ etc., = cp=. ^-, n.

Since the velocity is determined by

the quotient of the element of the space

and the corresponding element r of the

time, the angular velocity (Fr. vitesse an-

gulaire, Ger, Winkelgeschwindigkeit), i.e. the velocity of those

points of the body which are situated at a distance equal to the

unit of length (e.g. a foot) from the axis cf rotation, is therefore

one and the same for the whole body, and its value is

.

and in like manner the a^ignlar acceleration, or the acceleration of

the rotating body at the distance = unity from the axis of rota-

tion, is the same for the whole body, and its value is
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h) denoting the increase of angular velocity in the element of

time r.

In order to find the spaces Si, So, etc., the velocities i\, v., etc.,

and the accelerations p^, p^, etc., of the points M^, M^, etc., of the

body, which are situated at the distances C Mi = r^, C M.2 = rs,

etc., from the axis of rotation C, we must multiply the angular

space 0, the angular velocity w, and the angular acceleration p by

Ti, r.2, etc. ; thus we obtain

Si =, <P /*!, 82 = (p r.2, etc.,

Vi = G) Ti, V2 = (*) r.2, etc., and

Pi = K ^1, p<2 = K rs, etc.

If the whole mass J/ of the body is composed of the parts ifj,

Mi, etc., which are at distances equal to the radii r^, r^, etc., from

the axis of rotation C, the forces with which these elements of the

mass resist the rotation are

Pi = M^pi = K J/i 7*1, Pa = M.2P.2 = K M.2 r.2, etc.,

and their moments are

P^Ti = fc M. ri\ P.2 ra = n M^ r^, etc.,

and the moment necessary to cause the body to rotate with the

angular acceleration fc is

Fa = fc Ml ri% + n M.2r,' + ...

= n {Ml ri' + M, r,' + M, r,' + .

.

.).

In like manner (according to § 84) the energy stored by the

elements Mi, M^, etc., while they acquire the velocities r„ v.-., etc., is

Ai = iMiVi^ = iGy^iMiri\

A^= ^ Jfa v./ = i(^^ M^ r^, etc.,

and therefore the worh done in communicating to the whole body

the angular velocity w is

^ = ^1 + ^2 + ...

= I w^ {Ml ri' + M, r,' + M, r^' + .. .).

The force of and the energy stored by a body in rotation de-

pends principrJly upon the sum of the products Mi ri 4- M.2 r^ 4-

M^r-i ^- . . . of the different elements M^, M.2, etc., of the mass and

of the squares of the distances ri, r.2, etc., from the axis of revolu-

tion. This sum is called the moment of inertia (Fr. moment d'*in-

ertie, Ger. Tiagheits-, Drehungs- or Massenmoment), and we will

hereafter denote it by J/r^ or If". Hence the moment of the force,

by which the mass M = Mi + J/2 + . . ., whose moment of

inertia is

W = Mr' = Ml ri' + M, r.2' + . . .,

37
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has imparted to it tlie angular acceleration k, is

1) F a = K Mr' = n W,

and, on the contrary, the work done in putting the mass M in ro-

tation with the angular velocity w is

2) P s == i w^ M r = J id' W.

If the initial angular velocity of the mass was e, the work done

in increasing it to w is

Ps= I 0)' W -le' 1V= i (io' - e') W.

We can also determine from the v/ork done and the initial ve-

locity £ the final velocity w ; it is

0) = \/t
2Ps

+ W
Example.—If the body A B, Fig. 469, movable al^out a fixed axis G

ftnd in the beginning at rest, possesses a moment of inertia of 50 foot-

pounds, and if it is set in rotation, by means of a rope passing round a

pulley, by a force P = 20 pounds, which describes the space s = 5 feet,

the angular velocity produced is

V2P1 V2 . 20 . 5 ,-

- = V'-W- = y -^0~" = ^4 = 2 feet,

I.E., every point at the distance of a foot from the axis of rotation de-

scribes, after this work has been done, 2 feet in each second. The time of

one revolution is

2 a

t =— = 3,1416 seconds,

aEnd the number of revolutions in a minute is

60 60

^=T = 3;i416 = l^'^-

If the angular velocity « = 2 feet, just found, is transformed into a ve-

locity e = f foot, the work performed by the body is

P^ Sj = [2- - (f)'] . -V"
= (4 — tV) • ^^^ = tI • 25 = 85,93 foot-pounds,

E.G., it has lifted a weight of 10 jDounds 8,593 feet high.

§ 283. Reduction of the Mass.—If the angular velocities of

two masses i/i and J/o are the same, if, s.G., they belong to the

same rotating body, their living forces are to each other as their

moments of inertia TFi = M^ r^ and W^ == J/2 ri, and if the latter

are equal, botli masses have the same living force. Two masses

have, then, equal influence upon the state of motion of a rotating

body, and one can be replaced by the other, without causing a

change in that state, when their moments of inertia J/, 1\' and

M^ T.2 are equal, or when the masses themselves are to each other

inversely as the square of their distances from the axis of rotation.

\
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Witli the aid of the formula M^ i\^ = 31.2 r^ we can reduce a mass

from one distance to another, i.e. we can find a mass a¥o, which at

the distance 1\ has the same influence on the- state of motion of the

rotating body as the given mass M^ at the distance ^i, and this

mass is ^^ J/i r," Wx

I 2 I i

I.E., the mass reduced to the distance r^ is equal to the moment of

inertia of the mass divided hy the square of that distance.

Two weights Q and ft, fixed upon a disc A C B, Fig. 470, at

the distances C B — h and C B^ = a from

the axis of rotation XX, have the same

influence upon the movement of the disc

in consequence of their inertia, when Q^ a'

Q If— Q ¥ or §1 =: —— . If, therefore, a force
a

P, whose arm i^ C A — G B^ — a, causes

a body, whose weight is Q and whose dis-

tance from the axis of rotation is C B = b,

to rotate, we must reduce the latter to the

arm a of the force P and put instead of Q,

^'-
a^

'

and the mass moved by P is

consequently the acceleration of the weight P is

_ Force _ P _ Pa"
^ ~ MasT ~ T T~¥ ' ^ ~ P~cf+'Q¥ ' ^'

and the angular acceleration is

_ p _ Pa
" ~ a~ Pa' -^ Q¥- '

^'

Example.—If the weight of the rotating mass is Q = 360 pounds, its

distance from the axis of rotation is & = 2,5 feet, the weight acting as

moving force is P = 24 pounds and its arm is a = 1,5 feet, the mass

accelerated by P is

M=[p + (^^X Q'j:g = 0,031 (^4 + ^ . 36o) = 0,031 . 1024

= 31,74 pounds,

and the acceleration of the weight is

24
P = 3Yy4

= 0,756 feet,
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on the contrary, that of tlie mass Q is

& 5 5 . 0,756

and the angular acceleration is

K =^ = 0,504.

After four seconds the angular velocity is

0) = 0,504 . 4 = 2,016 feet,

and the corresponding space described is

^cot = ^^^^^ '

^ = 4,032 feet,

hence the angle of rotation is

^0 ^ .^ ^

-^gQo ^ ;^^2834 . 180« = 231" 1'
TT

and the space described by the weight P is

»f 0,756.4^ ...^.
8 = -^ = -^-^ = 6,048 feet.

§ 284. Reduction of the Moments of Inertia.—If the

moment of inertia of a body or of a system of bodies in reference

to an axis passing through the centre of gravity 8 of the body is

known, the moment of inertia in reference
Fig. 471.

^^ ^^^ other axis, parallel to the former, can

easily be determined. Let S^ Fig. 471, be

the first axis of rotation, which passes through

the centre of gravity, and B the other axis

of rotation, for which the moment of inertia

is to be determined ; let SB— ^ be the dis-

tance between the two axes and 8 N^ — x^

and N^ J/, = ?/, the rectangular co-ordinates of an element 3/^ of

the mass of the whole body. The moment of inertia of this ele-

ment in reference to B will be

^M,.B M{ = M, (B i\? + N, M{) = J/, [{cl + x,Y + Vx]

and in reference to 8

and, therefore, the difierence of these moments is

=:= i¥, {(F + 2(1 X, + X,' 4- y,') - M, {x{ + y,') = M, d' +% M, dx,.

For another element of the mass it is

= 3Ld' + 2 3Ldx,,
for a third it is

= 3f,d' + 2 3f,dx„

and, therefore, the moment of all the elements together is

== (M, + M, + M, + '")cr + 2d{M,x, + 3Lx, + M,x, + .
. .)•

1
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But J/i + 1/2 + ... is the sum M of all the masses and J/j x^ 4-

M.2 x.i + il/3 Xz is the sum M x of the statical moments ; hence it

follows that the difference between the moment of inertia Wx of

the whole body in reference to the axis D and its moment of^inertia

W in reference to 8 is

. W,-W= Md' + '2dMx.
But since the sum of the statical moments of all the elements

upon one side of every plane passing through the centre of gravity

is equal to that of the moment of those on the other, the alge-

braical sum of all the moments is — 0, and we have M x = 0, and

consequently

W,- W=Md',
I.E W,= W + M 6f

.

The moment of inertia of a body in reference to an eccentric axis

is equal to the moment of i7iertia in reference to a parallel axis

passing through the centre of gravity plus the product of the mass

of the hody by the square- of the distance of the tioo axes from each

other.

We see from this that of all the moments of inertia in reference

to a set of parallel axes that one is the least, whose axis is a line

of gravity of the body.

§ 285. Radius of Gyration.—It is very important to deter-

mine the moment of inertia for various geometrical bodies ; for the

values thus deduced are frequently employed in the diffei-ent calcu-

lations in mechanics. If the bodies, as we will hereafter suppose,

are homogeneous, the different portions J/i, M^, etc., of the mass, are

proportional to the corresponding portions Fi, Fy, etc., of the vol-

ume, and the measure of the moment of inertia, or as it is generally

called, the moment of inertia, can be replaced by the sum of the

products of the portions of i\\Q volume and the square of their

distances from the axis of rotation. In this sense we can also

determine the moment of inertia of lines and surfaces. Ii we

imagine the entire mass of a body concentrated in one point, we
can determine the distance of the same from the axis, if we sup-

pose that the moment of inertia of the mass, which is thus concen-

trated, is the same as it was, when distributed through the whole

space. This is called the radius of gyration (Fr, rayon d'inertie,

Ger. Drehungs- or Tragheitshalbmesser). If TF is the moment of

inertia, M the mass and Jc the radius of gyration, we have

M k"^ = W, and therefore ,
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We must also remember that this radius does not give a definite

point, but only a circle, in whose circumference the mass can be

distributed arbitrarily.

If in'^the formula }}\ = W + M d' we substitute W = M Jc'

and Wi = M h^', we obtain

]c,' = ¥ + d\

I.E., the squiire of the radius of gyration in relation to any axis is

equal to the square of the radius of gyration in reference to the line

of gravity parallel to that axis plus the square of the distance of

the two axes from each other.

§ 286. Moment of Inertia of a Rod.—The moment of inertia

of a rod A B, Fig. 472, which revolves about an axis X X passing

through its middle 8^ is determined in the fol-

lowing manner. Let the cross-section of the

rod be --- /'"and half its length be =-- I, and the

angle, which its axis makes with the axis of

:::^;^B rotation, i.e. A S X, be = a. Let us divide the

half length of the rod into n parts, the contents

F

I

of each of which are ; the distances of the
n

different portions of it from the centre S are

-, —, — , etc., hence their distances from the
n n 71

axis of X X, such as M N, are -- - sin, a,
n

— sin. a, — sin. a, etc., and the squares of the
n n

, ,, (Isin.aV
^

(l sin. aV ^ (Isin.aY ^
latter are ==( — h 4 ( ), 9 (—^

- 1 etc.

Fl
Multiplying these squares by the contents — of an element

and adding the products thus obtained, we obtain the moment of

inertia of the rod

^ _ Fl -'-•-'- -'' "-- "'' "-'- "''

(1^ + 2= + 3M- . . . + n%

n

F P sin. a"

n'

but since 1^ + 2' + 3' + . . . + -^^ == -^,
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we have

W F f sin." a

Now since F lis> the volume of the half rod, which we treat as

the mass M of the body, we have

W M. sm. a.

The distance of one end of the rod from the axis XX is

A = B D = a = I sin. a,

and, therefore, we have more simply

W= lM(f,

which formula applies to the entire rod, when we understand by

M the mass of the whole rod.

The moment of inertia of a mass M^ at the end A of the rod is

i¥i a^ ; if, therefore, we make M^ ~ \ 31, ifj has the same moment

of inertia as the rod. Hence, so far as the moment of inertia is

concerned, it makes no difference whether the mass is equally

distributed along the rod, or whether one-third of it is concentrated

at the end A. If we put W — Mlc\ we obtain Ic' =
therefore, the radius ofgyration of the rod is

h =^ aVJ, =: 0,5773 . a.

a-, and.

If the rod is at right angles to the axis

of rotation a = I, and consequently

W^ ^ 31 P.

If, finally, the rod does not lie in the

same plane as the axis of rotation, if the

shortest distance between the axis of rota-

tion and the axis of the rod is

.S^ S, = C C, = D n, = d,

and if the normal distances A C = B D of

the ends A and B of the rod from the axis

CD, passing through the centre of gravity

S of the rod and parallel to C\ D^ is a, we
have (according to § 284) the moment of

inertia of the rod

}l\ = JV ^-
I Ma' = 31 (d' + i a").

§ 287. Rectangle and Parallelopipedon —The moment.3

of inertia of plane surfaces are found in exactly the same way as

their moments of flexure W — F^ z^ + F<i z^ + . . . We can, con-
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sequently, employ here the values of W, found in the last section

for various surfaces, as their moments of inertia W.

For the rectangle A B C D, Fig. 474, the moment of inertia in

reference to the axis X X, which runs

parallel to one side and through the

middle S of the figure, is, according to

§ 226, w-'^J^
^^ ~ 12

'

h denoting the width A B — GD paral-

lel to the axis of rotation and h the

length A D = B C of the surface.

But the area of this surface can be re-

garded as the mass M, and therefore

we have

W M¥
12 ~

3 W'
LE. equal to that of one-third of this mass concentrated at the dis-

tance S F = S G
h
from the axis of rotation.

If this rectangle turns upon an axis Z Z, which is at right

angles to its plane and which at the same time passes through the

middle B of the figure, we have, according to § 225,

,,^ Mil' Mh'
TV ^ J

12 ^ 12 12 ~ 3
[©-m

M IdV

Fig. 475.

d designating the diagonal A G = B D oi the rectangle. We can

imagine here also one-third of the whole mass to be concentrated

at one of the corners A, B . . .

Since a regular parallelopipedon B E F^ Fig. 475, can be decom-

posed by parallel planes into equal

rectangular slices, this formula is

applicable, when the axis of rota-

tion passes through the centres of

two opposite surfaces. It follows

also that the moment of inertia of

the parallelopipedon is equal to the

moment of inertia of one-third of

its mass applied at one of the corners A.

-X
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§ 288. Prism and Cylinder.—By the aid of the formula for

the moment of inertia of a parallelopipedon, we can also calculate

that of a triangular prism. The diagonal plane A D F divides the

parallelopipedon into two equal triangu-

lar prisms, whose bases A B D, Fig. 476,

are right-angled triangles. The moment
of inertia for a rotation about an axis

X X, passing through the middles C and

K of the hypothenuses, is = j'^ M d^.

Now if we employ the rule given in

§ 284, we obtain the moment of inertia

in reference to an axis Y Y passing through the centres of gravity

S and S,

I.E.

W

W =

Md} -M.C S' = ^^{^- G ^^)')

4l2 m
Md\

and it follows also that the moment of inertia in reference to the

edge B His

W,= W -h M. S~B' = y'g Md' + M (I dy = j\ Md'
= lMd\

d denoting the hypothenuse A D oi the triangular base.

For a prism A D F E, Fig. 477, whose bases are isosceles tri-

les, the moment of inertia in reference to an axis X X, joining

the centres of gravity of the bases, is Wi
= I M d'^, d denoting the side A D =
A F of one of the bases ; for this surface

can be divided by the perpendicular A B
into two right-angled triangles. Xow if

the altitude A B of the isosceles triangles,

which form the bases, is = h, we have the

moment of inertia of this prism in refer-

ence to the axis Y F passing through the

centres of gravity of the bases

W= ^M d' - M (^y
= M (i d' i 'V)

= i^ad'-in
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and, finally, the moment of inertia in reference to the edge, passing

through the points A and F of the bases, is

= iM(hcr + Jr).

By the aid of the latter formula, we can calculate the moment
of inertia of a regular right prism A D F K, Fig, 478, vv^hich re-

volves about its geometrical axis. Let C A
= C B = r he the radius of base or of one

of the triangles composing the base, h the al-

titude C i\" of one of these triangles A C B,

andM the mass of the whole prism, then, ac-

cording to the last formula, when we substi-

tute r for d, we have

ir=|J/(-f + 4
The regular prism becomes a cylinder, when 7i becomes equal

to r, and the moment of inertia of the cylinder in reference to its

geometrical axis is

W M
(i

+ ') M

X

The moment of inertia of a cylinder is equal to the rdoment of

inertia of half the mass of the cylinder concentrated upon its cir-

cumference, or equal to the moment of inertia of the whole mass at

the distance

Tc = rVi = 0,7071 . r.

If the cylinder ABBE, Fig. 479, is holloiv, we must subtract

the moment of inertia of the hollow space

from that of the solid cylinder. Let I

denote the length, r the radius C' ^ of

the exterior and r^ that C G of the interior

cylinder, then we have, according to the

above formula, for the moment of inertia

of the hollow cylind^er

W=^ (M, r,' - M, r,') = 1^ (n^ . r,'- k • r.^) 1 = ^^ (n*- n") I

= lir (r,' - r/) {r,' + r,') I = ^, M (r/^ + r.{)
;

for the volume of the body, which may also be considered as its

m.ass, is = - (ri' — r./) I. If r denotes the mean diam.eter ^

and b the width r^ — r^ of the annular surface, we have

4
W= M [r, + -^)
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289. Cone and Pyramid.—AVith the aid of the formula

for the moment of inertia, of a cyUnder we can

calculate those of a right cone and of a pyramid.

Let A C B, Fig. 480, be a cone turning upon its

geometrical axis and \Qi r — D A = D B Ij^ the

radius of its base and h = CD its altitude, which

coincides with the axis. If by passing planes

through it, parallel to the base and at equal dis-

tances from each other, we divide it into n slices,

we obtam n discs, whose radii are

and whose common height is -
; the volumes of

these slices are

' h /2rV h

\n/ n \n I n \n I n
and consequently their moments of inertia are

""W •2«''' Kill ' ^n'"" \n )

etc.,

'in'
etc.

The sum of these values gives the moment of inertia of the entire

cone

ir =
77 r' h

2 n

I.E., since 1' + 2' + 3* -f

TT r' h

+ n'
—

M =

W =

(1^ + 2^ + 3* + . . . + n%

and the mass of the cone is

^ Mr\
10

TT r
- . r

10

-^ r* h

~W~
In like manner we have under the same cir-

cumstances for a right pyramid ACE, Fig. 481,

whose base is a rectangle,

TT = ^ Md\
in which formula d denotes the half D A oi the

diagonal of the base.

We obtain, by subtracting one moment of

inertia from another, the moment of inertia of a

frustum of a cone {A B E F, Fig. 480) in refer-

ence to its geometrical axis X X.

If we denote the radii D A and i^by ri and r^

and the altitudes CD and C by hx and h<i, we have
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W=^{r.^lH

or, since the mass is

M=^ {r,' h - r,' h) = ^ (rr - r/),

§ 290. Sphere.—In the same manner the moment of inertia

of a sphere, revolving upon one of its diameters D B = 2 r, is

determined. Let us divide the hemisphere A D B, Fig. 482, by

planes parallel to its base A C B, into n

equally thick slices, such as G K H, etc.,

and let us determine their moments. The
square of the radius G K of one of, these

slices is

GH' = Clr - CTW ^ r" - (TY\
and, therefore, its moment of inertia is

r
(r^ - cK'y

Tx r= —- ir' -2r' . CK' + C K').

Substituting successively for C K, -, — , —, etc., to — and

adding the results, we obtam the moment of inertia of the hemisphere

nr V , 2r' n' r \' n'
^r— \nr ^ • IT + ( ' / -^2nL n^ 3 \n' 5

I.E.,
71 T

3 + 1)
4 71 r'

Now since the contents of a h'emisphere are J/ — | tt r% we can

put W= |.| 7rr^r^ = |ifr^
and if Vv^e consider M as the mass of the whole sj^here, the formula

still holds good.

The radius of gyration is

]c = rV% = 0,6324 . r
;

two-fifths of the mass of the sphere, at a distance equal to the

radius of the sphere from the axis of rotation, has \hQ same moment

of inertia as the entire sphere. The formula

holds good also for any spheroid whose equatorial radius is = r.

(See § 123.)
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If the sphere revolves about another axis at the distance d from

the centre, we must put the moment of inertia

W = M {(T- + I r').

§ 291. Cylinder and Cone.—The moment of inertia of a

circle ABLE, Fig. 483, in reference to an axis passing through

its centre C and at right angles to the plane of the circle, since all

points are at a distance C A — r from the axis, is

W=Mr% _ __

and consequently that in reference to a diameter X X or Y Y
(compare 8 231) is

On the contrary, the moment of inertia of a circular disc

A B D E, Fig. 483, which revolves about its diameter B E, is

found* to be, like the moment of flexure of a cylinder,

_ 7T r* _ Mr^
~ ~ 4" ~ 4

'

consequently the radius of gyration of this surface is

h:=r\^\ = ^,r,

I.E., half the radius of the circle.

Fig. 483. Fm. 484.

-X-
-X

From this we can calculate the moment of inertia of a cylinder

ABBE, Fig. 484, which revolves around its diameter E G, which

passes through its centre of gravity S. Let I be the half height

A i^and r the radius C A — C B oi the cylinder, then the volume

of one half of it is — tt r^ /, and if we pass through it planes

parallel to the base and at equal distances from each other, we
Tc r^ I

decompose this body into n equal parts, each of which is =:

I 21
and the first of which is at a distance , the second at a distance—

,

n n
3 1

the third at a distance — , etc., from the centre of gravity S. By

means of the formula in § 284, we obtain the moments of inertia

of these discs oi* slices
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7rrH\

71 r

(¥)•].

W

irr' I

+ 2' + 3' + . . . + ^^ ')]

whose sum is the moment of inertia

nrUrn r^

n L 4:

4.^ n' 3/ U ' 3y

of half the cylinder. This formula holds good for the lohole cylinder^

when M denotes its mass.

The moment of inertia of a rigid prism A B D, Fig. 485, in

reference to a transverse axis XX passing through the centre of

gravity S is determined in a similar way. Let k be the radius of

gyration of the base A B oi the prism in reference to an axis N N,

passing through the centre of gravity C of the base and parallel

to XX, and let I denote the half length or height C 8 := D S oi

the prism ; we have the required moment of inertia in reference

to the axis XX

-IT.

Fig. 486.

In like manner we find for the right cone ABB, Fig. 486,

whose axis of rotation passes through its centre of gravity at right

andes to its oreometrical axis C B,

W = ^ m(^ r' + A
|.

§ 292. Segments.—The moment of inertia of a paraboloid of

revolution BAB, Fig. 487, which revolves around its axis of

revolution A C, is determined in a similar manner to that of a

sphere. If the radius of the hase is B = C B = a, and the

altitude C A — h, and if we divide the body into slices of the

heisfht . we have their contents
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h 1 , h 2 , h 3 , ,— ~ n . - a ,
- rr . - a , - 7T . - a , etc.,

n n n n n n

for the squares of the radii are as the altitudes or distances from

the vertex A. From this we obtain the moments of inertia of the

successive disc-shaped elements of the body, which are

^h n a* h n 4: a* h n 9 a'^

and consequently the moment of inertia of the toliole paraholoid is

TT «" ^ .. , . ^0 . „,. . . ^. _!: a" h n^ _ Ti a" li

^
~~

~2rnF ' y "" ~~6~

a

W =
2 7l'

TT a^ h

{r + 2^ + 3' + .

1 Ma';

for the volume of this body is M
2

This formula may be applied to a low

segment of a sphere.

If the altitude h of such a segment is

not very small compared witli a, we have

for the moment of inertia of one of its

slices

"" ^'
. h' (2r- hy

2 n 2 n
77 h

2n (4 r' ¥ - 4:r h' + h'),

in which r denotes the radius of the sphere.

Now if we substitute for h successively the values -,
,
—

^, etc.,

we obtain the moment of inertia of the segment of the sphere

=»('»•• 15rh + 3 ¥).

The volume or the mass of the segment of the sphere is

M= nh' (r-ih),
and therefore

2 7^W=nh^r-ih).^(^r-,% 4- -'-^ 90 •

h'

^Mh[r--^h +
J hJ'

4 /J

generally it is sufficiently correct to put

W = ^ Mh {r - i\,h) = i M (a" ^ ^ h').

This formula is applicable to the hoi of a pendulum.
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§ 293. Parabola and Ellipse.—For tlie surface A B D,

Fig. 488, of a parabola, if; instead of the surface F, we substitute

the mass M or change i^ into if, and if we
denote the chord A B\i^ s and the height

of the arc C i> by h, we have (according to

§ 233) the moment of inertia in reference

to the geometrical axisX Xof this surface

^^' - 20
'

and that in reference to the axis Y Y,

passing through the centre of gravity S at

right angles to X X, is

Hence the moment of inertia in reference

to an axis, passing through S at right angles to the surface of the

parabola, is

For such an axis, passing through the vertex D of the parabola,

the moment is, since D S = | ^ (§ 115),

and, on the contrary, the moment in reference to an axis passing

through the centre C of the chord is

nw TF+ Jf (I hy = i^[(y)V Vi']

This formula is also applicable to a^^r/*^??^ whose bases are para-

bolas, E.G. a Avorking-beam, wliich consists of two such prisms

oscillating about an axis passing through their middle C.

The moment of inertia of an ellipse A B A B, Fig. 489, whose

semi-axes are C A = a and B = b, in

reference to the axis B B, is (according

to § 231)

_ ^} _ ^^a"
^'1- 4 - 4 '

and that in reference to the axis A A is

Tvab' _ M_h\

Fig. 489.

|['., =

hence the moment of inertia in reference
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to an axis, passing through the centre C at right angles to the pla?ie

of the figure, is

W= W, + W,= I- J/(«^ + ¥).

(§ 29^.) Surfaces and Solids cf Revolution.—The mo-
ments of inertia oi surfaces and solids ofrevolution can be determined

with the aid of the Calculus by means of the following formulas.

1) If a zone or belt P Q Q, F„ Fig. 490, whose radius is MP
— y and whose width is P Q = d s, is

caused to revolve around its geometrical

axis A C, we have (according to § 125) its

area

dO = 2'nyds,
and its moment of inertia is

y"" d — 2 7: y^ d s\

hence the moment of inertia of the whole

surface of revolution A P P^m reference

to its axis A C \s

Fig. 490.

W 27rTrffds.

2) For a slice P Q Qy P„ whose volume is fZ F = r: y"- d x, the

moment of inertia in reference to the axis ^ C' is (according to

§ 288)

d V. y' _ nfdx
2 ~ 2 '

and consequently the moment of inertia for the whole solid of rev-

olution ^ P Pi is

W Ify^dx,

If ^ P is an arc of a circle, in which case the surface generated

by its revolution is a spherical cup or zone, we have
y"" = ^rx — x" and y ds — r d x,

and consequently the moment of inertia of this zone is

IF= 2 TT / {2rx — x'^)rdx = ^TT r (%r I xdx — I x- dx\

= 2 TT r (/• x'' - yj,

or, if we substitute h for the altitude A M = x, we have

TF==2TrrA^(r-J-)=..¥7.(r-|),

since the area or mass of the zone \s M — 2 rr r h.

38
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For the entire surface of the sphere h = % r, and therefore

W^lMr\
If, on the contrary, J. P is the arc of an ellipse, and conse-

quentl}^ the solid of revolution A P P^ generated by the rotation

of the plane surface A P M q> segment of an ellipsoid of revolution,

we will have

and tlierefore its moment of inertia in reference to the axis A C is

IT

^ 2

= ^—f / (4 a- x' — 4:ax^ + ^*) d x

E.G. for the entire ellipsoid, in which case x = "l a,

l'F= f^^T.h' a=l.\ixalf .V ^^My"',
If

for the contents of this body are expressed by ^ . | tt «^ = | tt a J-

(compare § 123).

3) If the belt P Q Q^Pi revolves about an axis passing through

A at right angles to its geometrical axis A C, we have (see § 284

and § 291) its moment of inertia

= d {x' H- i f) = 2 TT (ic^ + 1 f) yds,
and, therefore, the moment of inertia of the whole zone ^ P Pj is

TT^ = TT / (2 X- + ?/) y d s.

4) If the entire disc P Q Q^ P^ revolves around this same axis

passing through A, its moment of inertia is

and, therefore, that of the entire body ^ P Pi is

W=- f(x-' + \y')fdx.

Tor a paraboloid of revolution (see § 292), we have, when we
denote its altitude ^ if by h and the radius of its base MP hj a,

y" _ ^

li'~h'
and consequently the moment of inertia in reference to the axis of

ordinates passing through A is

^ ct" fi ^ ^ ,
a" x\ , ^«'

/i 4 , ,
d' x\
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or, when we substitute x = h,

IF = I 77 a: It (7r + i «') = i if (A' + \ a'),

since the volume of this body is =-^ tt a' h (corap. § 124).

Hence we have the moment of inertia of this body in reference

to an axis, passing through the centre of gravity 8 at right angles

to A C
W, =.^M{]i^ +ia;)- (XrM¥ = i M (a' + i li').

§ 295. Accelerated Rotation of a Wheel and Asle.—
The most frequent appHcations of the theory of the moment of

inertia are to machines and instruments ; for rotary motions

around a fixed axis are very common in them. Since throughout

this work we shall meet with very many applications of this theory,

we shall treat here but a few simple cases.

If two weights P and Q act by means of two perfectly flexible

strings upon the ivlieel and axle A C D B, Fig. 491, if their arms are

CA —a and D B ^^ h and if the jour-

nals are so small that the friction can

be neglected, the machine is in equi-

librium, when the statical moments

Fig. 431.

P . C A, amd Q . D B, are equal to

each other, or when P a = Q h. If,

on the contrary, the moment of the

weight P is greater than that of Q,

or Pa> Qb, P will fall and Q will

rise ; on the contrary, if P a <C Q 1),

Let us therefore seek the relations of

the motions in this case, taking, e.g., P a^ Q1). The force,

which acts with the arm h and corresponds to the weight Q. pro-

duces a force — , whose arm is a and wliich acts in opposition to

P will rise and Q will fall.

the force corresponding to the vreight P, so that the motive force

a
in action at A isP The mass — , reduced from the arm h to

:.M^
9

the arm a, is -, hence the mass moved by the force P
g a- ^

.

M

or, if the moment of inertia of the wheel and axle is W = G¥

IS

and
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G h"^
therefore the mass of the same reduced to A is = r» we have

9 a
more accurately

M={P +'^ + ~):g = (P a' + QV+0 V) : g a\

Hence the acceleration of P or of the circumference of the

wheel is r, Q ^

_ motive force _ a
^ ~ ^ss~" ~ ITd' + Q¥ + G ¥ ' ^ ^

_ Pa—Qb
~~ Pa' + Q¥+ G¥'^^'

hence the acceleration of the rising weight Q or of the circum-

ference of the axle is

_h _ Pa- Qh
^ ~ a^ ~ P a' + Q h' + G¥ ' ^

The tension of the cord, to which P is attached, is

li^pU-t
9 ^ 9>

and that of the cord, to which Q is attached, is

and, therefore, the pressure on the bearings is

S^-S^-P + Q--^- + ~- -P+q
Pa^ + Qh'+G¥'

The pressure on the hearing of a.whe3l and axle, when in rota-

tion, is consequently less than when it is standing still.

From the accelerations 2^ and q the other relations of the mo-

tion can be found ; after t seconds the velocity of P is

V = p t

and that of Q is

v, — qt\
Fig. 492^ the space described by P is

and that by §,

s, = i q t\

Example.— Let the weight upon the

wheel, Fig. 492, be P— 60 pounds and that

on the axle, Q = 160 pounds ; let the arm

^ of the former be (7 Jl = « = 20 inches

^ and that of the latter D P = 5 = 6 inches,

and let the axle be composed of a massive cylinder, weighing 10 pounds,
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and the wheel of two rings, one weighing 40 pounds and the other 12

pounds, and of four arms, weighing together 15 pounds ; finally, let the

radii of the large ring A Ebe = 20 and 19 inches and those of the smaller

one i^ G^ be = 8 and 6 inches. Required the conditions of motion of this

machine. The motive force at the circumference of the wheel is

P _ - ^ = 60 - /o • 160 = 60 — 48 = 12 pounds,
d

and the moment of inertia of the machine, w^hen we disregard the masses

of the ropes and journals, is equal to the moment of inertia of the axle,

which is TF 53 10.62
=-^- = -^r = ^^^'

plus the moment of the smaller ring, which is

^ E, (r,2 + r,^) ^ 12.(82+62) ^ ^^^^
2 2

plus the moment of the larger ring, which is

_ B, (7-32 + r,2) ^ 40 . (202 4. 192)—
^

— g— — lO^^U,

plus the moment of the arms, which is, approximately,

_ A(r^^ -r^^) _ ^(r^2 + r,r^ + r^2) ^ 15 . (192 .^19 ^ 8 + 82) ^^^^- ~S(r,-r,) -" "3 - ~-3 " ^^^^
'

hence, by addition, we obtain

G Tc^ = 180 + 600 + 15220 + 2885 = 18885,

or, taking the foot as the unit of measure,

18885 ,^, ,,= -14^=lSl'14- *

The whole mass, reduced to the radius of the wheel, is

.r It. Qi^+G^'-\ \'^ ... /6\' 18885-1

(-jQQQRjX
60 + 160.0,09 + ^^-j. 0,031

= (60 + 14,4 + 47,21) . 0,031 = 121,61 . 0,031 = 3,76991 pounds.

Hence we have the acceleration of the weight P, or that of the circum-

ference of the wheel,

a2
and, oil the contrary, that of Q is

9 = ~P = ^' 3,183 = 0,955 feet

;

the tension on the rope to which P is hung is

^S^ = (1 -^) . P - (1 - 1^^) . 60 = (1 - 0,099) . 60 = 54,06 pounds,

and that of the rope supporting Q is

S^ = (1 +^\ Q = Ci + 0,955 . 0,031) . 160 = 1,03 . 160 = 164,8 pounds

;

consequently the pressure on the bearings is /S + S^ — 54,06 + 164,8

= 218,86 lbs., or, if we include the weight of the machine, it is = 218,86
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+ 77 = 295,86 pounds. At the end of 10 seconds P lias attained the ve-

locity 1) = 2^t = 3,183 . 10 = 81,83 feet, and has described the space s =

— = 31,83 . 5 = 159,2 feet, and Q has been raised up s. = - s=0,3 . 159,2

= 47,76 fset.

§ 296. The weight P, which imparts to the weight Q the ac-

celeration

_ P ah - Q¥
^ ~ P a' + Qh' +~Gk' ' ^'

can be rephiced by another Pi, without changing the acceleration

of Q, when the arm of the latter is «i, in which case we have

P,a,-Ql) Pa - Qh
Pi a;' + Qb' + G k' ~ P a' + Ql' + G ¥

If we designate the quantity ^—^

—

-^-t by c, we obtain

Qhih + c) + Gk''
a{ - ca,= ^ -^ 3

and the required arm of the lever

We find, also, by the differential calculus that the greatest ac-

celeration is imparted to Q by P, when the arm of the latter cor-

responds to the equation Pa^ — "^Qab^ Qlf + G ¥,ox when

„ = ^ + /f_|)V QJL±o]i

The foregoing formulas become very complicated, when vre take

into consideration the friction of the journals and the rigidity of

the ropes. If we denote the resistance due to both of these, reduced

to a radius r, by P, we must substitute, instead of the motive force

P 0, the expression P — ^
, and then we have the

a^' ^ a '

acceleration of Q
_ {Pa- Fr)h- Qh'

^ ~ Pa' + Qh' + G ¥ '
^

and

Qh 4- Fr JiQ±±F_rS,^ Q^±AK

Example— 1) If the Tveights P = 30 pounds and (> = 80 pounds act

v.'ith the arms a = 2 feet and & = \ foot upon a wheel and axle, and if the

moment of inertia of this machine is G 7j'- = 60, the acceleration of the

rising weight.^ will be
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_ 30 . 2 .
I-
- 80 . gy _ _J0^20 ^ ^ 32,2

^ ~ 30 .
2^ + 80 . i^y + 60 • ^ ~ 120 + 20 + 00

'
"'" 20

= 1,61 feet.

Now if we wish to produce tbe same acceleration with a Aveight P^ =
45 i)ounds, the arm of P^ must be

/7W^ 80 . 1 (^ + cj + 60»-^v¥- 45

but 200

60-40 = 10,

hence a^=5 ± 1/25 - ^ = 5 ± i . 11,358 = 5 ± 3,786

= 8,786 or 1,214 feet.

2) The acceleration of § is a maximum when tlie arm of the force or

radius of the wheel is

i
. 80 /T^OV 20 + 60 4 ^ /I6 24 4 + V40

^ =V + r (3o)+"3o- = 3 + r T + y =—B—
= 3,4415 feet,

and this maximum acceleration is then

/ 30 . 1,7207 - 20 \ 31,621 o qqq ^ ,

^ = (30T(3;44157"TXo) ' = 435732
'
' = ''''' ''''

3) If the moment of the friction and of the rigidity of the ropes be

Fr = 8, we must substitute, instead of ^ &, Qd + F r = 4.0 + 8 = 4:8,

whence it follows that

"^ = § + V^( I5
)'+

I ^ ^'^ + ^^-'^^^ = ^'^^^ ^^'*'

and that the corresponding maximum acceleration is

30 . 1,943 - 8 .
i - 20 34,29 ^^ ^ ^ ^^ ,

" = -wimvtw- ^ =w • '''' = '•'' f-'-

§ 297. Atwood's Machine.—The formulas for the wheel

and axle found in § 295 are applicable to the simple fixed pulley;

for if we put b = a, the wheel and axle becomes 2^ fixed pulley. Ee-

taining the same notations that we employed in the foregoing

paragraphs, we have the acceleration with which P sinks and Q
rises

{P - Q) a'

^ ^ ~ (P -^ Q) a' + G F*^'
or, taking the friction into consideration,

- - (P - Q) a' - Fa r

^ ~ ^ ^ {P + Q) a' + G ¥ '
^'

In order to diminish the friction, the axle C of the pulley A B,

Fig. 493, is placed upon the friction-w^heels D E F and D, E^ F^.

[N'ow if the moment of inertia of these wheels is Gx h^ and their
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radius \^ D E — Di E^ = «], we have, when F designates the fric-

tion reduced to the circumference of the axle C,

_ (P - Q)a' - Far
P

(P + Q) a' + G¥ + G,
a,'

Fig. 493.

for the moment of inertia of these friction rollers, reduced to their

G k"^
circumference or that of the axle of the wheel, is = —^-5-.

ai'

Inversely we have the acceleration of gravity

(P + Q)a' + GF -i- G,^
^ (P - Q)d' - Far

When the diiference P — ^, of the two weights is small, the

acceleration p is small and the motion is

consequently very slow ; hence the resist-

ance opposed to the weights by the air

is unimportant, and the acceleration of

gravity can be determined with a certain

degree of accuracy by means of such an

apparatus, while the determination of it by

observations upon a body falling freely is

impossible. Experiments of this kind were

first made by an Englishman named At-

wood (see Atwood's treatise on Kectilinear

and Eotary Motion), and for this reason

the apparatus is known as Atwood's Ma-

chine. The scale H K, along which the

nrjlj arrti weight P falls, serves to measure the

IJIQ N|:|-[Ni
distance fallen through. From the spaces

fallen through and the corresponding time

t we obtain

2.5

but if during the fall we remove the motive

force by causing the weight L P, which is

made in th« shape of a ring and is equal to the force, to be caught

by the fixed ring N N,, the remainder of the space 5,, through which

the weight P tails, will be described uniformly, and the velocity,

which is determined by the time t, (which can be observed by

means of a good watch), is

U'
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and the acceleration is

601

V = V

tt;

If we make z^i = ^ = 1, we obtain directly by the experiment

p —
Sx. Substituting this value of p in the above-mentioned

formula, we obtain the acceleration g of gravit}'.

§ 298. Accelerated Motion of a System of Pulleys or

Tackle.—The accelerations of the weights P and Q, which are

supported by a system composed of a fixed pulley A B, and a loose

pulley E G, Fig. 494, are found in the following

manner. Let the weight of the pulleys ^ i? and

E G\)Q= G and G^, their moments of inertia G Ic^

and Gx ^^^ their radii C A — a and D E = a^ and

their masses reduced to the . circumference M =
G, h,'

Fig. 494.

— . -^ and i/i
g a' g a{

a certain distance s, Q + Gx rises A .5

If the weight P sinks

164), the

work done is therefore P s — {Q+Gx) ^. Now if

in sinking the weight P has acquired the velocity v,

V
then the velocity ^ is communicated to Q -\- Gx, the velocity of the

pulley A B at the circumference is 7' and the pulley E G acquires

at its circumference the velocity - ; for in rolling motion the mo-

tions of translation and of rotation are equal to each other. The

sum of the living forces, corresponding to the masses and velocities, is

L.^^i±3
ii)-

+
G7c' o Gxk

9 g ^^/ ^« g ci{

putting the half of it equal to the work done, we obtain the equation

4 "^ «-^ ^ 4
P ')-(

ax' / 2 g

Hence the velocity corresponding to the space s, described by P, is

2gs{. Q + ^1'

P + Q +
G ¥ Gxjcl

4 ax'
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For the acceleration p we have p s = --, and therefore

p + ^ + ^^ + ^' + <^i ^^'

4 a" 4 a.

The acceleration of ^ + 6^i is 7^1 = --, and the rotary accelera-

tion of G^ is also the same. The tension on the rope B F, which
unites the two pulleys, is

S=P-(p + ^)P;

for the force (P h ^V^ is expended in producing the accel-

eration of P and G\ the tension on the rope G ^, which is

fastened at one end, is, on the contrary,

for the pulley U G is set in rotation by the difference S — S^ of the

tensions on the rope.

Example.—The weights P = 40 pounds and Q = 66 pounds hang

upon the system of j)ulleys or tackle represented in Fig. 494, and each of the

pulleys weighs 6 pounds ; required the acceleration of each of the weights.

TI18 motive force is

^ + ^1 .. 66 + 6
p _ :^ —1 = 40 — — = 4 pounds.

The masses of these pulleys, reduced to their circumferences, are

and the total mass is

/^ Q+G^ G¥ GJc^'\ ,,, ,. 3 ,,
247

hence the acceleration of the sinking weight is

4 16. j7 16.32,2 515,2 ^ ... . ,

and that of the rising weight is

p^=^^ = 1,043 feet

The tension of the rope £ E is

8= P- (p + ^-] ^- = 40 - 43 .
^",1^4 = 40 - 2,785 ^ 37,215 pounds.

\ 2 / (/ 62,2

and that of the rope G His

S, = 8-^~
.

l^^
= 37,215 - 3 .

^g^l
= 37,118 pounds.
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§ 299. The motion is more complicated, when the pulley E G,

Fig. 495, hangs only upon a cord wound around it. Let us sup-

pose that P sinks with the acceleration p, and that Q
Fig. 495. ^^ggg ^yith the acceleration q, then the acceleration of

Ab the motion at the circumference of the loose pulley is

I^ow if we put the tension of the cord A E, — S\ we

obtain

and
^ S-{Q+ G;) = {Q+ Gr)j;

for, according to § 281, we can assume, that S acts at the centre of

gravity I) of E G. Finally we have

^ G. K' q,

since we can assume that the centre of gravity D is fixed and that

the pulley is put in rotation by 8.

The last three formulas give the accelerations

P - S IS ~{Q + G,)\ , Set,'

a

substituting all three in the equation q^—p — q, w^e obtain

Sal_ _ P - S _ S - (Q + G, )

Grk;'-^
-
^ ^ GJ^^ Q+G, '^'

a"

whence it follows that the tension of the rope is

% P cr + G¥
S

((^i^^q^-g)^''^-'^^^^'
From this value of S we find by the application of the above formula

the accelerations of the weights P and Q.

If we neglect the mass G of the fixed pulley and put — 0,

we obtain simply

^Pce . G , h,' _ % P G, K
~ P {a,' + h{) (C + Gee K ~ G, Jc{ + P {a,' +%')'

If the end of the cord A E, instead of passing over the pulley,

is fixed, we have the acceleration p — 0, and therefore q^ = —
q^

and the tension
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for g = 0, we have

S^ G^ k{'

a;' + h'
If the rolling body G^ is a massive cylinder, we have

.^^^^ -^G
and the tension in the first case is

q — ^ ^ ^\
^ ~ 2>p + g;

and in the second

If in the first case the weight P must rise, we have y negative

and 8 > P, i.e.,

2 PG,k;'y P G, k,' + P' {a,' + k,%
or simply

p^ ^ kr
in order that Gi shall sink it is necessary that S < G^, or that

^ ^ 1 _ ^'

P -^

^^'*

Example.—If the rope G H of the system of pulleys in the example of

§ 298, Fig. 494, suddenly breaks, the rope B will be, for an instant at least,

stretched by a force

c ^ G¥
2 P Ĥ

a" 2 . 40 + 3

^ ^ aF-\
^

^-{^ + ^V) (40 + 3) + 1

83 . 72 5976
5,210 pounds

25 . 43 + 72 1147

Hence the acceleration of the sinking weight P is

and that of the sinking pullev is

and the acceleration of rotation of this pulley is

J. = 0;., =
?f». 32,3 = 55,92 feet.
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§ 300. Rolling Motion of a Body on a Horizontal

Plane.—If a round body A C D, Fig. 496, is pushed forward t^ith

a certain initial Telocity

^^' ^^^' c upon the horizontal

^^?^^ f^""^\
/'—

\

V^^^ ^ ^^ i^ will' i^

{—-A ] consequence of the fric-

Vl^Z .g tion upon this path, as-

*"^^.s .i sume a motion of rota-

tion, the yelocity of

which will gradually increase ; its acceleration p is determined by

the formula

_ Force _ (f)
G a" _^^~ Mass ~ MF ~

h'
^'

in which cf) denotes the coefficient of friction, G = Mg the weight,

<p G the friction, M ¥ the moment of inertia and a the radius C D
of rotation of the body. The velocity of rotation at the distance

C D from the axis c, engendered by this acceleration in the

time t, is

On the contrary, the forward motion of the body suffers a re-

tardation q, which is determined by the formula

Eesistance (b G
? = "Tlasr- = ^' = *'^'

hence the velocity of this motion after t seconds is

Vi = c — qt = c — (pgt

Now if we put Vi = v, or

a'
<l>-j^,gt = c-(pgt,

we obtain the time after w^hich the velocity of rotation becomes
equal to that of translation and the rolling of the lody begins.

This time is

c ¥ c
t =

(' - i)
a' -^¥' (t> g

At the end of this time the common velocity is

a^ ^ _,
a" c

and the space described by the centre C of the body is

2 a' +_¥ c ¥ _c_ _ {%a'^¥)¥ (*

¥' 2' a' + ¥'
((>
g~ (a' + ¥)' '

2<f>gV"2~/ ^ - "S
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If the coefficient of rolling friction was = 0, the body A C
d' c

would roll on forever with the constant velocity Ci = -^ 77, upon
d -7- IC'

the horizontal plane without coming to rest ; but since the rolling

f n
friction -— constantly opposes this motion (see § 192), the body,

after describing a certain space s^y will come to rest. At the end

f G s
of this space the work ^ of this friction has consumed the whole

a

of the energy

G_cl G_F cl_ _ id' + Jc\ GjI
2^ "^ a'

• 2 ^
~

V a' ) 2g

stored by the mass of the body, and therefore we can put

fGs, /a' + F\Gc,'
e-)a \ a' J 2 g

'

hence the space

a' + ¥ Ci^ a
s,

fa '2g f{a' + F)2g
is described in the time

2 Si c^ -\- ¥ Cx ac
U

ci f(^'9 f9
^2 ^2

For a rolling ball — = |, and for a cyhnder -^ = I (see § 290).

c
In the latter case t = I -—, d =% c,s — I tt—— and s^ — |

a &

CHAPTER II.

THE CENTRIFUGAL FORCE OF RIGID BODIES.

§ 301. The Normal Force.—The force of inertia manifests

itself not only when the velocity of a moving body changes, but also

when there is a change in the direction of the motion ; for a body.

f
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bf virtue of its inertia, moves uniformly and in a straight line (see

§ 55). The action of inertia, when tlie direction changes continu-

Riij, I.E. when the motion of a body takes place in a curved line,

and particularly in a circle, will be the subject discussed in this

chapter.

If a material point moves in a curved line, it is at every point

eubjectt^d to an acceleration, which causes it to ^Jeviate from its

former dhection. This acceleration has already been treated of in

phoronomics under the name of the normal acceleration. Let the

radius of curvature of the path of the moving body be = r and its

velocity v, then ihe normal acceleration is

Now if the mas^^ of the point ~ If, the acceleration corres-

ponds to a force

„ ,^ if?;"

which we must consid^?^ as the origisial cause of the continued

change of the direction oi motion of the point. If the point is

acted upon by no other (tangexitial) force than the normal one, its

velocitv will be constant and = c, and therefore the normal force

p = ¥-1
r

is dependent only upon the curvature or radius of curvature, i.e.

smaller for a smaller curv^ature or for a greater radius of curvature,

and greater for a greater curvature or for a smaller radius of curva-

ture. When the radius of curvature is doubled, the normal force

is but one-half as great as before. If a material point M, Fig. 497,

is obliged to pass over a horizontal

Fig. 497. plane in a curved line A BD FH,
ifwe neglect the friction, the point

will have in all points the same ve-

locity and the pressure against the

side wall in every position will be

equal to the normal force. While

the point describes the arc A B

this pressure is = -

—

-\ while

M & ' M c^
it describes B D \ih = ^-— ; for the arc i> i^ it is = zr:=-^ and

EB GD
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M r^
for the arc F H, ^ ==, C A, E B, G D 2Ln^ K F denoting tlieKF
radii of curyature of the portions A B, B D, D F and FH of the

path.

§ 302. Centripetal and Centrifugal Forces.—If a material

point or body moves in a circle, the normal force acts radially

inwards, and for this reason it is called the centrijoetal force (Fr.

force centripede, Ger. Centripetal- or Annaherungskrafj:), and the

force in the opposite direction, i.e. radially outwards, with which

the body through its inertia resists the former force, has received

the name of the centrifugal force (Fr. force centrifuge, Ger. Centrif-

ugal-, Flieh- or Schwungkraft). The centripetal force is the one

which acts upon the body inwards, and the centrifugal force is the

resistance of the body, which acts in the opposite direction. In the

revolution of the planets around the sun, the attraction of the sun

is the centripetal force ; if the moving body is compelled to describe

a circle by a guide, such as is represented in Fig. 497, the guide

acts by its resistance as the centripetal force and opposes the centrif-

ugal force of the body. If, finally, the revolving body is connected

by means of a string or rod with the centre of rotation, then it is

the elasticity of the rod, which puts itself in equilibrium with the

centrifugal force of the body and acts as the centripetal force.

C
If G is the weight, and therefore M = — the mass of the re-

volving body, r the radius of the circle, in which the revolution

takes place, and v the velocity of revolution, we have, according to

the last paragraph, for the centrifugal force

r gr 2 g

v' G

or F : G =:2. — : r, %

I.E., the centrifugal force is to the weight of the hody as double the

height due to the velocity is to the radius of rotation.

If the motion is unifonn, which is always the case when no

other force (tangential force) l^esides the centripetal force acts

upon the body, we can then express velocity v = c in terms of the

dnration if of a revolution by putting c = -}. = —,—, and the® time t

I
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expression for the centrifugal force becomes

(¥J — = —^ , M r = —J, . G r.
r t' g t^

Since 4 -' = 39,4784, and in feet - = 0,031, we have, in a more

convenient form for calculation, the value of the centrifugal force

'

„ 39,4784 ,^ ^ ^^.^^ G r
,P = —~ . 3fr = 1,2238 .

-— pounds.

The number u of revolutions per minute is often given, in which

case, substituting for t, — , we have

39 4784P = -^^r~~ It" Mr ^ 0,010966 ti' Mr = 0,0003399 it' G r pounds.
obUO

We have also P = 4,0243 --^ = 0,001118 u' G r kilograms.
V

Since -— is the angular velocity w, we can also write

P = G)\Mr.

Hence it follows that for equal times of revolution^ i.e. for tlie

same nimiber of revolutions in a given time or for the same angular

velocities, the centrifugal force increases as the product of the mass

and the radius of gyration ; and if the other circumstances are the

same, it is inversely proportional to the square of the time of revolu-

tion, or directly proportional to the square of the number of

revolutions and to the square of the angular velocity.

Example—1) If a body, weighing 50 pounds, describes a circle of 3 feet

radius 400 times in a minute, the centrifugal force is P = 0,0003399 .

400^ . 50 . 3 = 3,399 . 16 . 50 . 3 = 339,9 . 24 = 8158 pounds.

If this body is connected with the axis by a hemp rope, the mocluiii3

of ultimate strength of which is (§ 212) 7000 lbs., we should put 8158 =

7000 . F, and therefore the cross-section of rope should be i^ = —-^ =
^ 7000

1,165 square inches, and its diameter should be

= ./*Z 0,5642 .
''4.660 = 0,5642 . 2,159 ^ 1,22 inches.

In order to have triple security, we must make d = 1,22 v'3 =
1,22 . 1,732 = 2.11 inches.

2) From the radius of the earth r = 20f million feet, and the time of

39
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revolution or length of day t = 24: hours = 24 . 60 . 60 = 86400 seconds,

we obtain for the centrifugal force of body upon the earth at the equator

F - l,2.o8
. —86400^— " ^64"^ • ^ - 290 * ^'

24
but if the day were 17 times as sliort, or — = Ih. 24' 42", this force would

be 17- = 289 times as great, and the centrifugal force would be nearly

equal to the weight G of the body. At the equator, in that case, the cen-

trifugal force would be equal to the force of gravity, and the body would
neither fall nor rise.

3) The centrifugal force arising from the revolution of the moon around

the earth is counteracted by the attraction of the latter. If Q is the weight

of the mooD and r is its distance from the earth, and t the time of revolu-

tion around the latter, the centrifugal force of this body is

Q r= 1,2238 . ~r.
t

Now let a be the radius of the earth, and let us assume that the force

of gravity at different distances from its centre is inversely i)roportional to

the nth power of this distance ; we have the weight of the moon or the

attraction of the earth ^ r I^Y

and putting both forces equal to each other

1,2238 . ^.(")

But - = -—, r = 1251 million feet, ^ = 27 days 7 hours 42 minutes =
r bO

39342 minutes = 39342 . 60 = 2360520 seconds, whence

/ 1 \"_ 1,2238 . 1251 _ ^_ _ My
\60/

~ 393,4'^ . 36 ~ 3600 ~ \60/
'

hence n = 2, i.e. the attraction of the earth (or gravity) is inversely pro-

portional to the square of the distance from its centre.

§ 303. Mechanical Effect of the Centrifugal Force.—
If the path CAB, Fig, 498, in which the body 31 moves, is not

at rest, but turning upon an axis C, it

imparts to the body a centrifugal force

P, by virtue of which it either gives out

or ahsorhs a certain amount of mechanical

effect. The former occurs when, in mov-
ing in its path, it departs from, and the

latter when it approaches the axis of rota-

tion C. Let MhQ the mass of the body,

6) the constant angular velocity with which

the path, e.g. a top (Fr. sabot, Ger. Krei-

sel), turns around its axis (7, and let z de-
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note the variable distance (JM of the body, which is moying in

the path C A B\ we have the centrifugal force of the body

and the work done by this force, while the body describes an ele-

ment M oi its path and the radius (7 if is increased by an

amount iV = ^, is

Let us imagine the radius z to be composed of n parts, each = C?

then if we put z — n ^ and assume that the body begins to move

at the centre of rotation (7, we obtain the work done by the cen-

trifugal force of the body, while the body is describing the S|)ace

C A M, during which time the distance of the body is gradually

increasing from to z. By substituting successively in the last

equation, instead of z, the values C? ^ s ? 3 s , • • ^- ^j and then adding

the values thus found, Ave obtain this mechanical effect

A-=oi' J/C(C+2 C+3 ^+. . .+ n ^)= G)'M^' (1 + 2 + 3 + . . • +n\
or, since 1 + 2 + 3 + . . . + ^^, when the number of members is

great, = — , we can write

11 '^

A = o)'3fC-~ = I i^' Mz\
2

Now the velocity of rotation of the top at the distance CM- z

from its axis is

V = ^^i z,

hence we can write more simply

when we substitute, instead of the mass of the body, the weight

G = Mg.
If the body begins its motion, not at C, but at any other point

A without the axis of rotation, and at a distance C A = z^ from

C, where the velocity of rotation is

the w^ork h ^^ M z^ done by the centrifugal force while the body is

passing from C to A must be omitted, and we have the work done

by the centrifugal force while the body passes from A to J/

^ = i w^ Mz' - I G)' Mz,' = io)'M (z' - z,')

If a body moves in a rigid joath or groove, which revolves about

a fixed axis, the vis viva of this body is increased or diminished by
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?<^,

the product of the mass {M) and the difference of the heights due

to the yelocities of revolution (
-— and -— ) at the two ends A

and M of the path. The increase takes place when the motion is

from within outward, and the decrease when the motion is from

without inward.

Fig. 499.

304. If a body begins its path A M B upon a top ABC,
Fig. 499, at A with a relative velocity d,

and leaves the top at B mth the relative

velocity c.,, and if the velocities of rotation

of the top in A and B are v^ and i\, the

energy stored by the body in describing

the path A If B, supposing no other force

to act upon it, is

^9 O = v.;

^9
G,

^/ and therefore

c; — Cx

Vi — Vi

vi — v^\

and consequently the velocity of exit is

(o denoting the angular velocity of the top and r.^ and Vi the dis-

tances C A and C B of the points {A and B) of entrance and exit

from the axis of rotation C.

The relative velocity of exit Ci is determined in like manner,

when the body enters at B upon the top with the relative velocity

c-j and moves upon it from without inwards. It is then

c, = Vci - (v? - ih') = Vci - CO-' {r} - 7\').

Since the body in describing tlie path A MB has, besides its

relative velocity [c] in the path, also the velocity of rotation v of

the path, it must be introduced at A witli an absolute velocity

A Wi ^= fL\, which is determined in intensity and direction by the

diagonal of the parallelogram constructed with Ci and Vx, and the

body leaves at B with an absolute velocity B w.2 = w.., determined

by the diagonal of the parallelogram B c. w.^ v.., constructed with

the relative velocities Cc, and v^.

The energy restored, or stored, by the body in describing the

path A MB on the top, which ha3 been gained or lost by the

top, is
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If a body should transmit all its energy^ 6^ to the top, while

describing the path A M B, the absolute velocity of exit must be

lu^ = 0, and Co must be not only equal to v., but also exactly oppo-

site to it ; the path must therefore be tangent to the circumference

at J?.

ExAikiPLE.—If the interior radius of the top, represented in Fig. 499, is

CA = rj = 1 foot and tLe exterior one C B = r^ = 1^ feet and if it

revolves 100 times per minute, the angular velocity is

TTU 10
(j = ^^ = 3,1416 .

-- = 10,472 feet,

and consequently the velocity at the interior circumference is

v^ = u r^ = 10,472 feet, and at the exterior one

?jg = w rg = 10,47 2 . 1,5 = 15,708 feet.

Now if we cause a body, whose velocity is ic^ = 25, to enter the top at

A^ in such a direction that the angle w^ A v^ formed by its absolute mo-

tion with the direction of revolution is a = 30'', we have for the relative

velocity Cj, with which the body begins its motion on the top,

Cj^ = «/ + w^"" — 2v^ w^ COS. a = 109,66 — 453,45 + 625,00 = 281,21,

and therefore

Ci = 16,77 feet.

If the body is to enter without impact, we must have for the angle

v^ A c^ = ^ formed by the path with the inner circumference of the top

sill. /? w^
-.—- = -i, or
sin. a Cj

. ^ 25 sin. 30"
sin. (3 =

16,77 '

whence /? = 48" 12' |-.

For the relative velocity of exit c^ we have

c^^ = c,' +V2'- v^' = 281,21 + 109,66 [(f)^
- 1'^] = 418,28,

and consequently

C3 = 20,45 feet.

And, on the contrary, for the absolute velocity of exit.w^, when the canal

or groove A M B forms with the exterior circumference an angle 6 = 20"

or v^ B c^ = 160", we have

wjg2 ^ ^^2 _^ ^^2 _ .2 ^^ ^^ ^^^ ^ ^ 418,28 + 246,74 - 603,72 = 61,30,

and consequently

^2 = "^jSO feet.

Finally, the heights due to the velocities are

^ = 0,0155 . 625 = 9,69 feet, and J^ = 0,0155 . 61,31 = 0,95 feet,
'i 9 2 g

'
'

^

and the amount of mechanical effect imparted to tbe top by a body, whose
weight is O, while passing over the top, is
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or, if its weight G =
A = 8,74

"

^g
'
)

Gf = (9,69 - 0,95) G = 8,74 G,

10 pounds,

10 = 87,4 foot-pounds.

Remark.—The foregoing theory of the motion of a body on a top is

directly applicable to turbine wheels.

§ 395. Centrifugal Force of Masses of Finita Dimen-
sions.—The formulas for the centrifugal force found in the fore-

going paragraphs are not directly applicable to an aggregate of

masses or to a mass of finite extent ; for we do not know what

radius r of gyration must be substituted in the calculation. To
determine this radius, the following

method may be adopted. Let C Z,

Fig. 500, be the axis of rotation and

CX and C Y two rectangular co-ordi-

nate axes and let M be an element of

the mass and MK = x, 31 L = y and

M^ = z its distances from the co-or-

dinate planes Y Z, X Z and X Y.

Since the centrifugal force P acts in the

direction of the radius, we can transfer

its point of application to its point of

intersection with the axis of rotation.

If we decompose this force into two components in the directions

of the axes CX and C Y, we obtain Q = Q and Ij E = E, for

which we have

Q: P := L: 31 and E ; P ^ E : 3f,

whence

e = - P and i? = ^ P,
r r

r designating the distance 31 of the element of the mass from

the axis of rotation. If we proceed in the same w^ay with all the

elements of the mass, we obtain two systems of parallel forces, one

in the plane X Z and the other in the plane Y Z, and each of

which acts at right angles to the axis C Z. Employing the indices

1, 2, 3, etc., to distinguish the various elements of the mass, i.e.

putting them. = J/,, 3L_, M^, etc., and their distances — x^, x^, x^,

etc., we have the resultant of one system of forces

<2 = (>. + e. + ft + ... = -^'-^ + ^j^ + — +

= (t), . {31, Xi + 3L a-o + . . .), ,

1
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and that of the other

E =- R^ + B, + ,., = G)\{M,^, + M, ?/.,+ .. .),

If, finally, we put the dis-

tance C Oi, C O2, etc., of the

elements of the mass from

the plane of X IJ" = z^, z^,

etc., we obtain for the points

of application U and V of

these resultants the ordi-

nates C V =11 and C V = v

by means of the formulas

(ft + ft 4- . . .) ^^

= §1 ^1 + ft 2^2 + . .

.

and (i?i + i?2 + . . .) ^ =
R^Zi + R^_z.2 + .

.

., whence

ifi X^ Z^ + M^ .T2 2^2 + . . .

""i/l ^1 + i/2 ^2 + . . .

My y, z^ + 1/0 7/2 ^2 + • »

>

" ~ R, + R, + ... ~ M,y,-\-M,ij^ + ...'

Hence we see that generally the centrifugal forces of a system

of masses or of finite bodies can be referred to two forces, which

cannot be combiijed so as to give but a single resultant when u
and V are unequal.

Example.—Let the masses of a system be

M^ = 10 jjounds, ifg = 15 pounds, M^ — 18 pounds, M^ = 12 pounds,

and their distances

and

Qiz, 4- ft z, -h ...

ft + ft + ..

R.z, + R, z, -h ...

= 2 inches, x^ = Q inches,

= 3

= 2

= 1

= 3

2^3
= 5

= 3

2^4

2.

then the resultants of the centrifugal forces are

Q = 6;^ . (10 . + 15 . 4 + 18 . 3 + 12 . 6) = 168 .

i? = w3 . (10 . 3 + 15 . 1 + 18 . 5 + 12 . 3) = 171'.

and consequently their distances from the origin C are

and

and

10 .2 + 15 4. 3 + 18. 2. 3 + 12 6 .

10.0 + 15 .4 + 18 .2 + 12.6

10 3 .2 + 15 .1 3 + 18 5 3 + 12. 3.

288

168

12
=: 1,714 inches,

375 125

10 . 3 + 15 . 1 + 18 . 5 + 12 .

3

=1-71= -gy= 2,193inclies.

The difference of these values of u and v shows that the centrifugal

forces cannot be replaced by a single force.
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306. If the elements of the mass lie in a plane of rotation,

LE. in a plane X G JT, Fig. 502,

which is at right angles to the

axis of rotation, as J/j, M^

.

. ., do,

their centrifugal forces will give

a single resultant ; for their di-

rections cut each other at one

point (7 of the axis C Z. If we
retain the notations of the last

paragraph, we obtain the re-

sulting centrifugal force in this

case

a)V[(ifi :^i +ilf2 ^, + .. .)^ + (Jf, ^, + if, ?/,+ .. .y^].

Now if CK ~ X and C L — y are the co-ordinates of the

centre of gravity of the system of masses Jf = ifi + J/j + • • •,

we have
iH/i iCi + i/2 2:2 + . . . = Mx ,

M,y, + J/, ?/, + ... = My, '

whence it follows that the centrifugal force is

P= VQ' + B'

P = oi' VM'x' + M'y' = 0)2 3lVx' + y' = cj'lfr,

in which r = Vx^ + y^ designates the distance S of the centre

of gravity from the axis of rotation C Z.

For the angle P CX — a, formed by this fqrce with the axis

C X. we have
,

B My y
tana, a = ^~ = -^r^ ~ ^:

^
. Q Mx x'

consequently, tlie direction of the centrifugal force ^Msses through

the centre of gravity of the system, and that force is precisely the

same as it would he if all the elements of the mass were concentrated

at the centre of gravity.

For a disc A B at right angles to the axis of rotation Z Z,

Fig. 503, the centrifugal force is also =
0)^ M r, ifM denotes its mass and r the dis-

tance C S of its centre of gravity from the

axis. If the centres of gravity of the ele-

ments of the mass of a body lie in a plane of

rotation, or if this plane is a plane of symme-

try of the body A D F F„ Fig. 504, the cen-

trifugal forces of the elements of the mass of

the body can be combined so as to give a

single resultant acting at the centre of gravity of the body, and
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this resultant corresponds to the distance of this point S from the

axis of rotation and can therefore be determined by the formula

Mr
Fig. 504.

—

Z

In order to find the centrifugal force of a body A B D E,

Fig. 505, let us divide it into disc-shaped elements by planes per-

pendicular to the axis Z Z, and then find their centres of gravity

>S'i, S^, etc. ; we can then determine by the aid of the latter the cen-

trifugal forces, by decomposing these into their components in the

directions of the axes C Xand C Fand by combining the compo-

nents m the plane Z C X, we. obtain the resultant Q, and by com-

bining those in the plane Z C Y,vfQ obtain their resultant R.

If the centre of gravity of all the discs lie in a line parallel to

the axis of rotation, we have x — x^ — cca, etc., and «/ = ?/i = y^, etc.,

and therefore r = r^ = r^, etc., whence it follows that the centrif-

ugal force of the whole body is

P = w- (J/i r + M,r +...) = of- Mr,
and that the distance of the point of application from the plane

xris
_ (if, z^, + MoZ. -^ . . .) r __ M, Zi + M^ z. + = z.

(i¥i + i¥2 + . . .) r i/i + i/g -H . .

.

From these equations we see that the centrifugal force of a body,

which can be divided vct^o discs, whose centres of gravity lie in a

line parallel to the sixis of rotation, is equal to the centrifugal force

of the mass of the body concentrated at its centre of gravity, and

the point of application of this force is at the centre of gravity.

Hence we can find in this manner the centrifugal forces of all

symmetrical todies (see § 106), whose axis of symmetry is parallel

to their axis of rotation, and also that of all solids of revolution,

whose geometrical axis is parallel to the axis of rotation. If the

axis of rotation and the geometrical axis coincide the resulting

centrifugal force is = 0.
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Example.—The dimensions, heaviness and strength of a mill-stone

ABBE, Fig. 506, are given ; required the angular velocity o -when the

stone is torn apart by the centrifugal force. Putting the radius of the

millstone = r^, the radius of its eye

= rg, its height A E = H L = I,

its heaviness = y and the modu-

lus of ultimate strength = JT, ^e
have the force necessary to tear the

stone apart in a diametral plane

the weisfht of the stone

G=^{r,'^ ^ 7,

—

Z

axis of revolution (see § 114),

4

and the radius of rotation for each

half of the stone, i.e. the distance

of its centre of gravity from the

At the moment of tearing apart the centrifugal force of one-half the stone

is equal to the breaking load of the stone, and v^e have

I.E.,

1(^1^ -^2^ 2 (r^ - T^) I E.

Cancelling 2 Z on both sides of the equation, -wq have

^2') 7
= / ^gX

24 inches, rg = 4 inches, K = 750 pounds and

the specific gravity of the stone = 2,5, or the weight of a cubic inch of it

Now^ if r
J
= 2 feet

62,4 . 2,5
^ 1728

the tearing begins,

= 0,09028 pounds, we have the angular velocity, when

V
/ 3 . 12 . 32,2 . 750 V 3375. 16,1 ,,^„. ,

= ^43To;090^ = ^^^'^'^^^"'-
688 . 0,09028

If the number of revolutions in a minute = u, we have

30 . 118,^

60
and

inversely u
30 cj . , .

, or m this case, 1129-1-.

Generally the number of revolutions of such a stone is 120 dr about nine

times less. For a fly-wheel we can put r^^ + r^ r^ = ^ r"^, r denoting

the radius of the middle of the ring, and consequently we have

= ./!
K

fi y
1) = 0) r = \/ .

§ 307. If all the parts J/,, M^ of a system of masses, Fig. 507,

or the centres of gravity of the elements of a body are in a plane
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fassing tliroiigh tJie axis of rotation, the centrifugal forces form a

system of parallel forces and can be referred to a single force. Let

the distances of the elements of the

mass from the axis of rotation ZZhQ
0, M, = r„ Oo M, = r„ etc.,

then the centrifugal forces are

Fig. 507.

P. 3/i r„ Pa = w" ^^2 ^'j etc.,

and their resultant is

F^ = 0)' (i/i r, + M,r, + .. .)

= 6)2 M r,

r denoting the distance of the centre

of gravity of the whole mass M from

the axis of rotation. The distance

of the centre of gravity from the axis

of rotation must be considered here as the radius of rotation. In

order to find the point of application of the resulting centrifugal

force P, we substitute the distance of the elements of the mass

from the normal plane, viz., C Ox — z^, C 0^ — z^, etc., in the formula

CO M] r, Zx + i/o r^Zo \- . . .

M, r, -H "i/o r, + . . .

For a rod A C\ Fi^

Fig. 508.

By the aid of the formula P =: oy^ M r the centrifugal forces

of solids of revolution and of other geometrical bodies can be deter-

mined, when the axis of these bodies is in the same plane as the axis

of revolution.

508, whose length i^ A C = I and whose

angle of inclination A C Z to the axis

of rotation is = a, we have

r = K 8 = II sin a,

and consequently the centrifugal force

P = oj^ 4 3/ / sin. a
;

but in order to find the point of appli-

cation of this force, we must substi-

tute in the expression

. M
X sm. a . X- COS. a

M
X sin. a COS. a

M
for the moment ^^ of the rod successively, instead of x, the ele-
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, etc., and add the expressions thus obtained to-ments
n n' n

gether. In this manner we find

M rp u — 0)^ — si7i. a COS. a —
,

(1' + 2' + 3' + . . . + n")
n n '

=
I

(sT M I- sin. a cos. a,

hence the arm C L — 0^ O or

u — \ (jT M r sin. a cos, a : -A o)'^ M I sin. a = ^ I cos. a,

and the distance of the point from the end (7 of the rod, which
hes on the axis, is

a
3 ^'

If the rod A B, Fig. 509, does not reach the axis, we have

P = -I G)"^ F l^ sin. a — }, w- F 4' sin. a

= i w^ Fsin. a {I,' - I,'),

and the moment
P u = I cd^ F sin. a cos. a (Z,' — //);

for the mass of 6' ^ (= cross-section muhipUed by the length) is

= Fh and the mass of C B, ^ F l.

It follows, therefore, that the distance of the point of apphca-

tion from the point of intersection C with the axis is

CO o /i V
or CO =1 + {h - kV

I,' - // 12 1 '

I denoting the distance C S of the centre of gravity and li — h the

length of the rod.

Z Fig. 509. Fig. 510.

This formula holds good also for a rectangular plate A B D F,

Fig. 510, which is divided into two similar rectangles by the axial

plane C Z, and whose plane is at right angles to this axial plane;

for the points of application of the centrifugal forces of the shces,
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obtained by passing planes throngli it perpendicular to C Z, are

in the medial line F G. Now if the distances C F and C G of the

two bases A B and F E from the origin C are l^ and h, we have

here also

CO
h'

= 1 +

Fig. 511.

In like manner the centrifugal force of a right cone A B D,

with a circular base, Fig. 511, which turns about an axis C D
passing through its apex, is found by

substituting in the formula P — W- M r

for r the distance K S oi the centre of

gravity S of this body from C Z. If h

denote the altitudeKD of the cone, and

a the angle B C Z formed by the base

of the cone with the axis of rotation,

we will have

K 8 ^ D~8 COS. D SK^ 111 cos. a,

and consequently the required centrifu-

gal force is

F zzz 6)2 Jf I hcos.a.

The point of application of this

force is determined by the co-ordinates

D L = u and L = v, for which we
find with the aid of the Calculus, under

the supposition that the axis of rotation C Z does not pass through

the cone, the following expression

(r tang. a>

r denoting the radius K A = KB of the base.

§ 308. If all the different parts of the body lie neither in a

plane normal to the axis of revolution, nor in one containing that

axis, the resulting centrifugal forces

Q = iJ (M, Xi + M, X.2 + .. .) and R — g)' (M, y, + M^y,_ + .. .)

will not give a single force, but it is possible to replace them by a

force

applied at the centre of gravity, and by a couple composed of Q
and R. If we apply at the centre of gravity four forces + Q and — Q
as well as + i? and — R, which balance each other, the positive

forces will give the resultant

and I Ji cos. .[1 + n
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Fig. 512.

while the negative ones — Q and — R, together with the centrifu-

gal forces applied at U and V (see Fig. 501) form the couples

{Q, — (?) and {R, — R), which can be combined so as to form

a single couple.

In order to understand better this referring of the centrifugal

forces of a revolving body to

one force and one couple,

let us consider the following

simple case. The rod A B,

Fig. 512, which revolves

about the axis Z Z^ is paral-

lel to the plane Y Z and its

end A reposes upon the axis

C X. Let us denote the

length A B di the rod by l^

its weight by G, the angle

A B B^, formed by the rod

with the axis of rotation, by

a and its distance C A from

the plane J" Z, which is also

its shortest distance from

the axis Z Z by a. JSTow if

ME is an element— of the rod,
n

and y = A E, the horizontal projection of its distance A E from

the end A, we have the components of the centrifugal force P^ of

this element

n
CA = w^

3f M M— a and R^ — w- .
—

. A Ei = w- . — y,
n n n ^

and their moments in reference to the plane X C Y of the base,

since the distance of the element from this plane X Y is

E^E — A Ex cotcj. (I — y cotg. a, are

ft ^.

R, z.

M M
(si^

.^—
. C A . E^ E = (^- .^-^ a tf cotg. a and

n n ^

M
y'^

. cotg. a.

The resultant of all the components parallel to X Z is

M
Q z= Q, + Q, + , . . = n .o)\ — a = 0)'

. Ma,



§ 303.] THE CENTRIFUGAL FORCE OF RIGID BODIES. e2S

and its moment is

M
Q ic := Qi Zi + Q2 Zci -h . . . = (*)^

.
— a cotg. a (^i + Vs + • « •)>

I sin. a 2 1 sin. a 3 1 sin. a
,

•

or, smce 7/1
=

, y^ = ,^3 =— ,etc.,aEdcof^.c.
n 7i n

sin. a = COS. a, we haveMl Ml 71^

Qu — i>y^. — a COS. a. ,- (1 + 2 + 3 + . . . + w) = w^ —a cos. a - .
—

n -/^ n n %

= ^ 0)'^
. M a I COS. a.

The distance of the point of apphcation of this component from

the plane JT 1^ of the hase is

^ „ }i dy M al COS. a . ,

Si S = u = :rir^ = ^ I COS. a,
0)- Ma

I.E., this point coincides with the centre of gravity of the rod.

The resultant of the components parallel to Y Zis

M
n

2
M I sin. a ^^ 1 2 71^7 • i -j. i.

•= (t)2 . .
-— = 1 ofM Ism. a, and its moment is

n n ^2, ^

MRv — of — . cotg. a [y^ + ?/2^ + • . •)
n

^ M , (ilsin.af (% I sin. a)- \= of .— . cotg. a ^ -^—^ + -^^

r>
+ . . .)

n ^ \ n n^ f

M V— of .— . ^ (sin. ay cotq. a (1 + 4 + 9 + . . . + ^-)

, M f . n'= 0). — . —^ sm. a COS. a .
---

n n 3

=: \ od^ M V sin. a cos. a.

Hence the distance of the point of application of this force

from the plane X Y is

w MV sin. a cos. a
Q^ = V — -—-—

T-T't~i
— — % I COS. a,

\ 0)' M I sm. a ^

I.E. this point lies at a distance (f
— i) I cos. a = i I cos. a verti-

cally ahove the centre of gravity, or, in general, S = ^ of the

length of the rod A B.

From the two components Q ^=^ <^" M a and R — ^ of Ml
sin. a, it follows that the final resultant, which acts at the centre

of gravity of the rod, is

P = V'~^T~R' ^ w' MVa' + 1 r'sin7^\

that the, couple is {R, — R), and that its moment is
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B. 80 = ^0)'^ Ml sin. a . I I cos. a

= -j\ Gf M r sm. a COS. a — ^\ w^ M V sin. % a.

§ 309. Free Axes.—The centrifugal forces of a body revolv-

ing uniformly upon its axis generally exert a pressure upon the

axis, yet it is possible for these forces to balance each other, in

which case the axis is subjected to no pressure from them. As ex-

amples of this case we may mention solids of revolution turning

around their axis of symmetry, or geometrical axis, the wheel and

axle, water wheels, etc. If a body in this condition is acted upon
by no other forces, it will remain forever in revolution, although

the axis is not fixed. This axis of rotation is therefore called a

free axis (Fr. axe libre, Ger. freie Axe). From what precedes, we
know the conditions, which are necessary when an axis of rotation

becomes a free axis. It is necessary that not only the two re-

sultants Q and R of the forces parallel to the co-ordinate planes

X Z and Y Z, but also that the sums of the moments of each of

the two systems of forces shall be = 0, whence it follows that

1) 3/i x^ + il/o a:^ + . . . = 0,

%) M,y^^ M,y,^ ...^%
3) iUfi x^ z, + i/2 a;, ^0 + . . . = and

4) i¥i 2/1 z^ + J/2 y. 2.2 + . . . = 0.

The first two conditions require the free axis to pass through

the centre of gravity of the body or system of masses. The two

latter, however, give the elements required for determining the po-

sition of this axis. It can also be proved that every body or system

of masses has at least three free axes, and that these axes are at

rifjht angles to each other and intersect each other at the centre of

gravity of the system.

The higher mechanics distinguishes from the free axes other

axes, which may intersect each other at any point of the system and

which are called 'principal axes (Fr. axes principaux, Ger. Haupt-

axen). It is also proved that the moment of inertia of a body in

reference to one of the principal axes is a maximum, and in rela-

tion to the second it is a minimum, and in relation to the third it

has a mean value, and that for a point which lies in the free axes

the principal axes are parallel to the free axes, i.e. to the principal

axes passing through the centre of gra^-ity.

§ 310, Free Axes of a System of Masses in a Plane.—
If the parts of a mass are in a plane, e.g., if they form a thin plate

I
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or plane figure, then the straight Hne, passing through the centre

of gravity of tlie entire mass at right angle to that plane, is

a free axis of the mass ; for in this case the mass has no radius

of rotation, and therefore the only possible centrifugal force is — 0.

In order to find the other two free axes, we employ the following

mL^thod. Let aS', Fig. 513, be the centre of gravity of a mass and

let TJ U and F F be two co-ordinate

axes in the plane of the mass and let us

determine the elements of the mass by

means of co-ordinates parallel to these

axes, E.G. the element M^ by the co-or-

dinates M^N—Ux and M^ = v\. Now
ifXX is one free axis and Y Y an axis

at right-angles to the same and if the

angle USX, which the free axis makes

with the axis of co-ordinates 8 U and

which is to be determined, = </>, then

putting for the co-ordinates of the elements of the mass in refer-

ence to XX and Y Y, x^, x^ . . . and t/i, y^ . . ., e.g. for those of

the mass M^
M^ K = X, and M^ L = y„

we obtain

Xx=MxK=S R +R L— 8 cos, (jy+O M^ sin. (p=Ui cos. (p + v^ si'^. <p,

y,z=zM,L=-OR-\-OF=^ - SOsin.(f> + OM,cos.(l)

= — «i sin.
(f)
+ i\ cos. (p,

and therefore the product

Xi yi = {ui cos. (p -^ Vi sin. </>) . {— Ui sin. (p -{- Vi cos. </>)

= — {ui" — v^^) sin. (p cos. (j) + Ui v^ (cos. 0^ — sin. </>'),

or, since si7i. cos. (p = i sin. 2 and cos. 0' — sin. 0^ — cos. 2 0,

x^y^ ~ —
.! (mi^ — Vx^) sin. 2 + ^^i v^ cos. 2 0,

and therefore the moment of the element M^ is

M, X, y, —
2

iii^ — -^1^) sin. % (p -\- M^u^Vx COS. 2 0,

and in like manner the moment of the element M. is

M.x.
M.

{u^ — v.?) sin. 2 -{- M.2U. t'o COS. 2 0, etc.,

and the sum of the moments of all the elements or the moment of

the entire mass itself is

Jf] x^ ?/, -{- M^x^y.^ ^ ...= — I sin. 2 [(ifi u^^ + M^ u^ + . .
.)

— (if, V^^ + Mo Z^a" + . . .)] + COS. 2 (i/, Ui Vi -\- M^U^Vs + .. .).

40
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In order that XX shall be a free axis, this moment must be

— ; we must therefore put

i-
sin. 2 [{M, u,' + M, u^^ + ...)- (^i ^i' + ^2 "^^ + ".

.
.)]

— COS. 2 (j) (i/i tii v^ + iJfs ^^2 ^2 + •..) = 0,

from this we obtain the equation of condition

_ sin. 2 _ 2 (M^ u^ i\ 4- M^ u^ v^ { ...)
tang. Zcp - ^^^^j-^ -

(jf^^;^ +M,u,' + ...)- (M, v,' ^ M^^J'^^)

_ Double the moment of the centrifugal force
~ Difference of the moments of inertia.

This formula gives two values for 2 cf), which differ from each

other 180°, or two values of differing 90° from each other ; this

angle therefore determines not only the free axis X X, but also

the free axis Y Y perpendicular to it.

§ 311. The free axes of many surfaces and bodies can be given

without any calculation. In a symmetrical figure, e.g., the axis of

symmetry is a free axis, the perpendicular at the centre of gravity

is the second, and the axis at right-angles to the surface of the

figure the third free axis. For a solid of revolution A B, Fig. 514,

the axis of rotation Z Z is one free axis and in hke manner every

normal X X, YY. . .to this line and passing through the centre

of gravity is another. For a sphere every diameter is a free axis, and

for a Tight parallelo2n2^edon A B D, Fig. 515, bounded by 6 rectan-

FiG. 514. Fig. 515.

Z

gles they are the three axes XX, YYandZ Z, passing through

the centre of gravity perpendicular to the sides B D, A B and A D,

and parallel to the edges.

Let us now determine the three axes for a rliomhoid A B C D,

Fig. 516. We begin by passing two rectangular co-ordinate axes

V ?7"and V F through the centre of gravity, so that one is paral-
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lei to the side A B of the rhomboid, and by decomposing the rhom-

boid by parallel lines in 2 ^ equal strips, such as F G. Now if one

side A B — % a and the other A D — "ll) and the acute angle A D (J

between two sides = a, we have the length of the strip E G,

situated at a distance S E = x

from UU,
— KG-\-EK— a^x cotg. a,

and that of the other part E F
= a — X cotg. a,

-X and since -- sin. a is the width of
n

both, we have the areas of these

strips

b sm. a
[a -t X cotg. a) and

sin. a
{a — X cotg. a)

;

n ^
" ' n

and consequently the measures of the centrifugal forces of the two

portions in reference to the axis V V are

b sin. a
, , , x i / ,

/ \ ^ -^^'^- « / , ^ vi= (a + x cotg. a) .
-J-

[a -^ X cotg. a) =
^ ^^

(a + x cotg. a)
2n

and
sin. a

2n
{a ~ X cotg. ay,

and their moments in reference to the axis U U are

l sin. a .
. \i J ^ sin. a ,

, \2-— (a -^ X cotq. ay x and —- [a — x cotq. ay x.
%n ^ -^ ' 2n ^ -^ '

Since the two forces act in opposition to each other in reference

to V V, by combining their moments we obtain the difference

—
^
—'— [{a + X cotg. ay — {a — x cotg. a)'] = ^ ah x^ cos. a.

If we substitute in this formula successively

3 h sin. a

h sin. a 2 b sin. a

n n

,etc., and add the results, we obtain the measure of the

moment of the centrifugal force of one-half the parallelogram

2 ab
n

COS. a .

¥ si)i.^ a

n

= ^ ab^ sin.^ a cos. a,

and for the whole parallelogi'am we have

{V + 2' + S'+... + n')= 2ab'sin.'acos.a,
3 n'
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Ml Uy Vi + ifj ^2 ^2 + • . . = I ^ ^' sin.' a cos. a.

The moment of inertia of one strip F G in reference to F T^is

b sin.

n

a / {a -\- X cotg. ay {a — x cotg. a)^
~

I ~d
"^ 3"

/

2 h sin. a o,ox ., ah . , . o9,on— —^ {a^ +^a x^ cotg} ^) = i — sm. a (a^ + 3 x^ cotg? a).

ci T, x-x X- i? • 1 ^ sin. a % h sin. a di sin. a ^
•Substituting tor x successively , , , etc.,

and summing the resulting values, we obtain the moment of inertia

of one-half the rhomboid, which is

= \ ah sin. a {(f + F cos."^ a),

and for the whole rhomboid it is

= ^ a b sin. a [a" + ¥ cos.^ a).

In reference to the axis of rotation U U the moment of inertia

of the parallelogram is

b"^ sin."^ a ^ 7, . , - ^ ^^^v= 4: a b sin. a = | a b sm. a (see § 287),

and the required difference of the moments is given by the equation

(M^ u,^ + M,ui + ...) - (J/i v;' 4- M,y,' + . .
.)

— ^ ab sin. a {(f + b'^ cos.^ a) — ^ a V sin? a

= j ab sin. a [a^ + b^ {cos.^ a — si?i.^ a)]

= j a b sin. a {a? + F cos. 2 a).

Finally, we have for the angle U 8X = 0, which the free axis

XX makes with the co-ordinate axis U U or with the side A By

according to § 310,

2 (ifi Ui Vi + Mo u, v,-+ . . .)
tang. ^ _

^^^^ ^^, ^ M,ui + ...)- (M, v;' + M,v,' + ...)

_ 2 .
f^
aF sin.^ a cos. a _ If sin. 2 a

^ a b sin. a [a^ + b'^ cos. 2 a) a' -h b^ cos. 2 a

For the rhombus a — b, and

sin. % a 2 sin. a cos. a 2sin.acos.a
,

tanq.^cp— ^— = — ^ r-^ = -—
^ = tang, a,^

1 + C05. 2 a \ \- cos.^ a — sm.^ a 2 cos.^ a ^

^ a
or 2 (p — a and cp = -.

Since this angle gives the direction of the diagonal, it follows

that the diagonals are free axes of the rhombus.
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Example,—The sides of the rhomboid A B G D, Fig. 516, are A B
2 a = 16 inches, aud i? C = 2 & = 10 inches, and the angle A B C= a

60°
; what are the directions of the free axes ?

Here we have

tang. 2 ^

5- sin: 120^* 25 sin. 60"_ _ 25 . 0,86603

8' + 5' COS. 120" ~ 64— 25r^s. 60" ~ 64-25 . 0,5

0,42040 = tang. 22° 48' or tang. 202° 48'

;

hence it follows that the angles of inclination of the first two free axes to

the side J. 5 are (^ = 11° 24' and 101° 24'. The third free axis is perpen-

dicular to the plane of the parallelogram. .
These angles determine the free

axes of a right parallelopipedon with a rhomboidal base.

§ 312. Action upon the Axis of Rotation.—If a material

point M, Fig. 517, revolves with a variable motion around a fixed

axis C, the latter must coun-
^^' '^^'-

teract not only the centrifu-

—T gal force, but also the force

ofinertia of this point. While

the centrifugal force acts ra-

—

X

^x '\ K A y dially outwards, the force of

inertia acts tangentially either

in the opposite or in the same

direction as the movement of

rotation, according as the ac-

celeration of this motion is

positive or negative (Retard-

ation). We can therefore as-

sume that the centrifugal force

MN = C N— N acts directly upon the axis C, and that the force

of inertiaMP— — P is composed of a couple ( P, — P) and an

axial force, — P, and consequently the entire force, acting upon the

axis, C R = R is represented by the diagonal of a right-angled

parallelogram formed of N and — P. If r is the distance CM of

the mass M from the axis of rotation (7, w the angular velocity and

K the angular acceleration, we have, according to § 302 and § 282,

and P — K M r,

and therefore the required resultant is

R = VN' + P' =: VI)' + k' ,Mr,
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and for the angle E C W = ((>, made by this force with the

direction OM of the centrifugal force, we have

-P P fc

Since in consequence of the acceleration k, w is variable, the

centrifugal force JV and the resultant E are variable.

In order to combine the centrifugal forces and the forces of

inertia of the masses Jfi, Mo. etc., we decompose each of these forces

into two components parallel to the directions of two axesXX and

Y Y, then if we combine them by algebraical addition, so as to

obtain two forces acting in the direction of each axis, we have only

to determine the resultant of these two forces. If x and y are the

co-ordinates CA^and C L of the material point M in reference to

the co-ordinate axes XX and Y Y, we have the two components

of the centrifugal force N
iVi = -^ X = cj' J/ X and

r

N,^'^- X^oy" My,

and, on the contrary, those of the force of inertia

Pi = ^P = K J/?^'and

P,^^ P = kMx,
r

and therefore the entire force in the axis XX is

§ = iVi + Pi = w^ Mx + K My,

and that in the axis Y Y \^

E = X, - P2 = of M y - K M X,

If we have a system of points or masses M^, 31^, etc., which are

revolving about a fixed axis C, Fig. 518, and if the co-ordinates of

these points in reference to the axis XX are

C Ki = x„ C lu = ^-2, etc.,

and those in reference to the axis Y Y are

C Ly = y^, C Lc^ = ?/o, etc.,

the entire force in the direction of the first axis is

^ = w' M, X, + nM.y^ + w' i/o x.2 + KM^yc, + .. ., i.e.

Q = iS' {M, X, + M, X, + ...) + « {M, y, + M,y, -h .. .),

and that in the direction of the other axis is

E=^(o' {M, y, + M, y, + ...)- K (M, x, -{- M,x, + .. .).
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Now if we denote the entire mass M^ + i/o + . . . by M and

the co-ordinates of its centre of gravity in reference^ to the axes

XX and Y Y\)^ x and ij, we have (see § 305)

Fig. 518.

—

Y

ifi iCi + ifs i??2 + . . . = Mx
J/i ?/i + i¥2 ?/2 + . . . = My,

and therefore, more simply,

§ = w' Mx + K- My and

R = i^^ My -nMx,
From Q and R we obtain the resultant

8 = V Q' + R%

and for the angle X C S = </> of its direction

tang, <p

R
Q

Since Mx and My are the statical moments of the centre of

gravity, it follows that in determining the pressure S upon the axis

of a system of masses, situated in one and the same plane of revo-

lution, we can consider the whole mass to be concentrated at the

centre of gravity ; and since the distance of the centre of gravity

of the svstem of masses from the axis of rotation is

r = Vx" -r y\
we have also

^S' = |/[(w^ Mx + K Myf + {g)' My - kM xY\
= M^[oi* {x' + f) + fc' {x' + y')]

= MVo)' + k' Vx' 4- y' = Vo)* + k' . Mr
Remakk.—If a triangle ABC, Fig. 519, revolves about its corner (7,

and if the other comers A and B are determined by the co-ordinates
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(«!, y^) and (ajg, y^^), we have, according to § 112, the co-ordinates of its

centre of gravity S

Fig. 519.

and

C S.

C8^ = y =

^1 + ^z

Vx

3

+ 2/2

and the mass, if we measure it by its super-

ficial area, is

2

Its moment of inertia in reference to the axis

of rotation C can be determined by the for-

mula

M
= g- («l' + ^1^2 + ^2 + Vx +2/12/2+ 2/2')-

This formula is also applicable to a H^^^ prism, whose base is the tri-

angle ABC.
Example.—A right prism with the triangular base A B C is, caused to

revolve around its edge (7 by a force which acts uninterruptedly, so that

at the end of the time ^ = 1 it has made u =z ^ revolutions; required not

only the moment of this couple, but also the action of this motion upon

the axis C. Let the base of this body be determined by the co-ordinates

«i = 1,5, 2/1. = 0,5 ; x^ = 0,4, ^3 = 1,0 feet,

and let its length or height be Z = 2 feet, and its heaviness 7 = 30 jjounds.

From these data we calculate, first, the area of the base

F = '2-^2yx 1,5.1,0-0,4. 0,^5 1,3

2 2

and the mass of the whole body

Fl

= 0,65 square feet,

M =

Now
ff

^ 0,031 .0,65

^x"- + ^1 ^2 + ^2"

2 . 30 := 1,209 pounds.

= 2,25 -1- 0,60 + 0,16 = 3,01 and

2/1' + 2/1 2/2 + 2/2' = 0'25 + 0,50 + 1,00 = 1,75,

hence the moment of inertia of the body is

W= (3,01 + 1,75) ~ = 4,76 .
i^ = 0,95914.

In consequence of the constant action of the couiDle, the movement of

rotation is uniformly accelerated, and consequently the angular 'selodty of

the body at the end of the time t = 1 second is (see § 10)

2s 2.27TU 2. 2. 5 TT
^i Ato i^ ^

u = —- — — = = 31,416 feet,it i

and the mecJianical effect required is
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A = ^-o- W= -} (31,416)^ . 0,95914 = 473,3 foot-pounds.

The angular acceleration is

i

and therefore the moment of the couple

Pa = K W = 31,416 . 0,95914 = 30,13 foot-pounds.

The distances of the centre of gravity S of the base from the co-ordi-

nate axes XX and T Y are

x^ + x^ 1,5 + 0,4

3
0,6333 and

y =H^ = "^'" = 0,5000,

consequently the distance of the centre of gravity from the axis is

C 8 = r = -^x' ^ y"" = 0,6511.

Besides we have

6)* = 31,416^ = 974090 and

k" = 31,416- = 987,

whence

Vcj* + k' = V975077 = 987,46,

and the pressure upon the axis increases during the accelerated rotation from

P = K Mr = 31,416 . 1,209 . 0.6511 = 24,73 pounds

to

R = V;7T^ . 3Ir = 987,46 . 1,209 . 0,6511 = 777,33 pounds.

If after one second of time the couple ceases to act, the motion of rota-

tion of the body becomes uniform, and the pressure upon the axis from

that moment consists only of the centrifugal force, which is

]^= u"" Mr = 986,96 . 0,7872 = 776,94 pounds.

The pressure upon the axis, which increases gradually from 24,73 to

777,33 pounds, is in the beginning at right-angles to the central line of

gravity C S, but approaches more and more this line as the velocity

increases, so that at the end of the time t = 1 second, it makes but an

angle o with that line, and this angle is determined by the expression

P 24,73
to,. «=^ = -—J = 0,03183,

for which 6 = 1° 49'. If the couple ceases to act, the direction of the

axial force N = 776,94 pounds, coincides of course with the central line of

gravity C S and revolves with this line in a circle. If instead of the couple

a single force P acts with the arm a upon the body, another pressure equal

to this force P must be added to the pressure on the axis.
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Fig. 520.

§ 313. Centre of Percnssion.—If the different portions

J/i, M.2, etc., Fig. 520, of a system of revolving masses are not in

one and the same plane, the

directions of the forces

§] = w' M^ Xi + K M^ ?/i,

§2 = <^' Mi X.2 + n M.2 y^, etc.,

no longer coincide with the

co-ordinate axis X X, but

lie in the co-ordinate plane

X Z^ and those of the forces

i^2 = w' M^ y^ — It M\, X,, etc.,

no longer lie in the axis

Y Y, but in the co-ordinate

plane Y Z. The system of

forces ^1, ft, etc., and i?„ ^o,

etc., give, according to § 305,

the resultants

Q—Qx^rQ^^,,. and

i? := i^l + i?2 + . . .

Now since the lines of ap-

plication TJ Q and F i^ do

not generally lie in the same

plane, but cut the axis C Z
of rotation at different points U and F, it is impossible to obtain a

single resultant by combining them, but we can refer them to a

single force and a couple. The components are, of course, as above,

Q ^ or {M,x, + M,x, + , , ,) -^ n {M, yi + M,y, + ...)

and

= Gf 31 X + K M y

E = 0)' {M, y^ + Moy^ + .,,) — K (M^ x^ {- If^x, + .

.

.)

^:^ cd" M y -\- K M X,

if denoting the entire mass ifi + i/g + • • • and x and y the dis-

tances of its centre of gravity S from the co-ordinate planes Y Z
and X Z.

Now if we put the distances of the masses i¥i, yY,, etc., from the

plane of rotation X Y, which is perpendicular to the axis of rota-

tion C Z, equal to z^, z^, etc., we obtain, as in § 305, the distances

of the points of application U and F of the forces Q and R from

the origin C,
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u —

and

V —

0, + ft - . . .

(S- (il/i X, z, + 3Lx^

z

, + . . .) -\- li {M, y, z, + Jfo y, z, ]- . . .)

ay^MT^i + M^..2 + ...) + /£ (iJf
1 y, + i¥2 ^"+ . . .)

i?i ;^] 4- i?2 2^2 + . .

.

_ w' (J/, _?/, 5;, -^ J/"^ y.2 Zo + . . .) ^ K. ( Jf, a^f ^1 4- M.2 x. z^ + . «)~
w'-' ( J/i ?/i -f J/o 2^2 + ...) — /<: (J/i Zi + i/2 Xq + . . .)

If the axis C' Z is retained at two points A and ^ (the pillow

blocks), which are at the distance C A = l^ and C B = h from

the origin of co-ordinates, the force Q is decomposed into two com-

ponents

and the force E into the components

Now the pressure upon the bearing A is

and that upon the bearing B is

.^2 = ^X2-^ + F2^

If tlie acceleration of the rotation is produced not by a couple,

whose moment is P a, but by a force P, whose arm is a, a third

pressure equal to the force P is added to the two axial forces Q
and E. If we cause this force P to act, at the distance F = a
from the axis of rotation, parallel to the axis C FancL perpendicu-

lar to the plane X Z, and if we assume that its line of application

is at a distance C F = H = b from the co-ordinate plane X Y,
the force R only will be increased by an amount P, and the portion

of it F, at the bearing A will be increased by

and the part Yc, at the bearing B by
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If i/i X, 4- ifa a;, + . . . = 0,

M,yr + M,y, + ... = {),

Ml XiZi + 312^2 Zo + ... = and

Ml yiZi + M,tj,z, + ...=: 0,

C Z is a free axis, and not only the forces Q and R, but also

their moments Q ii and R v become = ; and we can, therefore,

conclude that when a system of masses rotates about a free axis

not only the centrifugal forces, but also the moments of inertia

balance each other (compare § 309).

Let us assume thi,t the system of masses is at rest, i.e., o) = 0,

or let us neglect thn action of the centrifugal force upon the axis

of rotation, then we have more simply for the pressures in the axes

Q = ^ My = K(Miyi + M, y, -\- . . .) and

R ^- - K.M X — — fc (Ml Xi + MoX.2 -]- . . .), and also

Q It :=. K (Ml yi Zi ^ Mc^y^z-i + . . .) and

Ry =: — K {Ml Xi Zi + MoX.Zo -{- . . .)•

When the plane ofX Z is plane of symmetry and consequently

f ' m^'ixp f>f y;ravity,

Ml yi + M,y, -h ,.. —
and

Ml yi Zi + 31, y.2 Z.2 + . > . == 0,

and, therefore,

Q =
and also

Q u = 0.

N^ow if we require that

the force of rotation

a

Fig. 521.

P =

shall be counteracted by the

force of inertia J2, so that

there shall be no action npon

the axis of rotation, we must

have

P + i? :=

and

PI ^ Rv^^,
I.E.,
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K W — K {M, X, + M, X, + ...) =

and

El
a

K (ifi X, z, + M.^ X.2 2, + . . .) — 0,

a =
+ 3L

and consequently

Wx ~~

and

'ilfl Xi Zi + M.2 X.2 Z.2

+
i/i X, + 3f, X,

'{ W
-.)

Moment of inertia

Statical moment

ifi X^ Z^ + ifo X^ Z2 +
31

I :Ji + M2X2 -\- . . .

_ Moment of the centrifugal force
"~

Statical moment.

These co-ordinates determine a point 0, which is called the

ce7itre of percussion (Fr. centre de percussion ; Ger. Mittelpunkt

des Stosses) ; for every force of impact P, whose direction passes

through this point and is at right angles to the plane of symmetry

X ^ of the body passing through the axis of rotation or fixed axis

C Z, will be completely balanced, when the collision takes place,

by the inertia of the mass, without producing any action upon the

axis of the body.

Example—1) The moment of inertia of a straight line or rod G E^

Fig. 532, of uniform thickness throughout, which at one end C meets the

axis G Z at* a given angle Z G E^ when M is its mass

Fig. 522. and r the distance D E oi its other end from the axis

Z of rotation, is

W= MTc^ =:^Mt^ (see § 286),

and, on the contrary, the statical moment is

Mx = ^ Mr^

and finally the moment of the centrifugal force, since,

if h denotes the projection G D of the length G E oi the

rod on the axis of rotation G Z, we have

Ml G 0^ _ z^ _h
7~P

M^ x^ z^
h

Jfj x^^.M^x^z.^
r -

', etc.,

M^ x^ z^ + Jfg x^z^+... =
^ (3/, x^^+M^x^^+ ...) = -. i Mr^=^Mhr.

Therefore, the co-ordinates of the centre of percussion of this rod are

determined by the formulas
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F Moment of inertia -V Mr^
a = —

—

and
hMr

C F= I

Statical moment

Moment of centrifusfal force tMhr
= 1^

Fig. 523.

Statical moment ""
^ M r

and this centre is situated at |- of the length C E of the rod from the end

G and -|- of the same from the end K
2) The moment of inertia of a surface ABC, Fig. 523, whose form is a

right-angled triangle, which turns around its base G A,

is, when we denote the mass by M and its base and

per23endicular G A and G Bhj 7i and r,

h r^ li r T^
r = -- = -^ . - = i Mr^ (see § 229),

and its statical moment, since the centre of gravity 8

T
is at a distance - from the axis G A, is

o

Mx = Mr

consequently the distance of the centre of percussion

of this surface from this axis is

F = a

For an element K L of the triangle, whose shape is that of a strip,

whose length is x and whose width is -, and which is situated at a dis-

tance GK = z from the apex C, the moment of the centrifugal force is

M'xz=-x.^xz,
n ^

X r r
or, since - = v, or a^ = r s,

'

z V

Mxz h IrV

n \Ji}

h Ir^^

Substituting for z successively the values 1 (-j, 2 f-j, 3 f -) . . . 7? f- j,

and adding the values thus obtained for Mxz, we have the total moment

of the centrifugal forces

M,x,z^+M,x,z,+... = l-^ Uj (13 + 2^ + 3^ + . . . + n^)
(^-)

li /rV n' fhV ^ „ ^„ r 7i ^

= ^n\k) •tU=*^-^' = ^-^^'

= l3frJi,

and, therefore, the distance of the centre of percussion from the comer

Cis
^ M rhGF=l = \^^ = lh.
4 Mr *
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CHAPTER III.

OF THE ACTION OF GRAVITY UPON THE MOTION OF BODIES
IN PRESCRIBED PATHS.

§ 314. Sliding; upon an Inclined Plane.—A heayy body can

be hindered in many ways from falling freely. We will, however,

consider but two cases here, viz., the case of a body supported by

an inclined plane and the case of a body movable around a hori-

zontal axis. In both cases the paths of the bodies are contained m
a vertical plane. If a body lies upon an inclined plane, its weight

is decomposed into two components, one of which is normal to the

plane and is counteracted by it, and the other is parallel to the

plane and acts upon the body as a motive force. Let G be the

weight of the body A B C D, Fig. 524, and a angle of inclination of

the inclined plane I^^ IfR to th?

horizon, according to § 146 tV

normal force is

]Sf —.G COS. a,

and the motive force is

P = G sin. a.

Fig. 524.

The motion of the body can

be either a sliding or a rolling

one. Let us consider the former

case first. In this case all the

parts of the body participate equally in its motion, and have there-

fore a common acceleration jt?, determined by the well-known formula

force P G sin. a,

^ mass' M G '^ -^
'

hence j) '•

fj
= sin. a : 1,

I.E., the acceleration of a hody upon an inclined plo.ne is to the accel-

eration of gravity as the sine of the angle of inclination of the plane

is to unity. But on account of the friction this formula is seldom

sufficiently accurate. It is, therefore, very often necessary in prac-

tice to take the friction into consideration.

If a body moves upon a curved surface the acceleration is
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variable, and is in every point equal to the acceleration correspond-

ing to the plane, which is tangent to the curved surface at that

point.

§ 315. If a body slides down an inclined plane without fric-

tion and its initial velocity is = 0, then, according to § 11, the

final velocity after t seconds is

V = g sin. a ,t — 32,2 sin. a . t feet = 9,81 sin, a . t meters,

and the space described is

s= \ g sin. a .f — 16,1 sin. a . f feet = 4,905 sin. a . f meters.

When a body falls freely v^ — g t and Si ~ \ g f\ and we can

therefore put

V : i\ — s '. Sx = sin. a : 1,

I.E., the final velocity and the space described by a body sliding upon

the inclined plane are to the velocity and the space described by a
body falling freely as the sine of the angle of inclination of the plane

is to unity.

In the right-angled triangle F G H, Fig. 525, whose hypothenuse

Pig. 525.
F Gi^ vertical, the base is F If

FGsin.FH R
F Gsin.FG H^

F G sin. a, when a denotes the

inclination of the base to the horizon, and therefore

Fff: F G = sin. a: 1;

the body, therefore, describes the vertical hypothenuse

F G and the inclined base F H in the same time.

Hence the space described by a body upon an inclined

plane in the time, in which, if falling freely, it would

describe a given space, can be found by construction.

Since all the angles F H^ G, F Ho G, etc., inscribed in a semi-

circle F H^ G, Fig. 526, are right angles, the semicircle subtended

hj F G will cut off from all inclined

planes beginning at F the distances

F Ilx, F H.2, etc., described simultane-

ously with the diameter. For this rea-

son we say that the chords or diameter

of a circle are described simidtaneously

or isochronously . This is true not only

when the chords, as, e.g., F H^, F H,
etc., begin at ih^ highest point F^ biit

also when the chords, as, e.g., K^ G, K^ G,

etc., end at its lowest point G] for we

Feg. 526.
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can draw through F the chords F K^, F K^_, etc., which have the

same length and position as the chords G H^, G H^, etc.

§ 316. From the equation

s ~ -— — -. for the space described,
27J 2 g . sm. a ^

we obtain

s sin. a = —-, and. inversely.

V = V 2 gs sin. a.

Now s sin. a is the height F R (Fig. 527) of the inclined plane

or the vertical projection li of the space FH = s. If, therefore,

several bodies, whose initial velocities are = 0, descend inclined

Fig. 527. planes F H, F H^, etc., of different inclina-

tions, but of the same height, their final

velocity will be the same and equal to that

acquired by a body falling freely through.

the distance F R (compare § 43 and § 84).

^ ^^ From the equation s = ^ g sin. a . f wq
obtain the formula for the time

/ 2 5 _ 1 i/2 s sin. a _ 1 /2 h
' g sin. a sin. a g sin. a' ^ g '

If a body falls freely through the height F R = li, the time is

t\ = y — , whence
9

t:t,^l: sin. a = s:h = FH '. F R.

Hie time required hy a body to descend an inclinedplane is to the

time offalling freely through the heiglit of this plane as the length

of the plane is to its height.

Example—1) The top F of an inclined plane F H, Fig. 528, is given,

and we are required to determine the other extremity H, which is situated

in such a position upon a line A B that a body descending the plane will

reach this line in the shortest time. If through F we draw the horizontal

line F G until it cuts A B, and make G R = G F, we obtain in R the
point required, and in FH the plane of the quickest descent ; for if we
pass through F and H a circle, to which the lines FR and G R are tan-

41
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Fig. 528.

gents, the chords F K^, F ^3, etc., described simultaneously, are shorter

than the lines F H^, F H^^ etc., drawn from i^to

the line A B; consequently the time required to

descend this chord is less than that required to

descend these lines, and the inclined plane F H,

which coincides with that chord, is the plane of

quickest descent.

2) Required the inclination of the inclined

plane F H, Fig. 527, which a body will descend

in the same time as it will fall freely through the

height F R and move with the acquired velocity

upon a horizontal plane to H. The time required

to fall throug-h the vertical distance FH = his

2 h
, and the velocity acquired is

v = ^/2 gh.

If no velocity is lost in passing from the vertical to the horizontal mo-
tion, which is the case when the corner B is rounded off, the space B H
= Ji cotg. a will be described uniformly and in the time

Ji cotq. a li cotq. a /~^Ji^ - ^ cotrj. a ^/^A,U =
V 2 gh f g

The time in which a body will descend the inclined plane is

szji. a ' g

Now if we put t

1

^ + t

= 1+1^ cotg. a or

3, we obtain the equation of condition

tang, a

sin. a

|. In the corresponding

a +
Sfin. a

Resolving this equation, we obtain tang, a

inclined plane the height is to the base is to the length as 3 is to 4 is to

6, and the angle of inclination is a = 36° 52' 11".

3) The time in which a body will slide down an inclined plane, whose

base is a. is

r g sm. a V g sm. a cos. a r g

4:a

g sm. a f g sm. a cos. a r g sin. 2 a

this is a minimum when sin. 2 a is a maximum, i.e. = 1 ; then 2 a° = 90

or a° = 45°. Water flows quickest down roofs whose pitch is 45°.

§ 317. If the mifial velocity of a body upon an inclined plane

is c, we must employ the formula found in § 13 and § 14 ; hence,

when a body ascends an inclined plane, we have the velocity

V — c — g sin. a . t,

and the space described
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s = c t — I g sm. a . f,

and for a body descending the inclined plane we must put

V = c + g sin. a . t and s — c t + ^ g sin. a . t\

In botli cases, howeyer, the following formula

v' - c' . , v' - c' v' c'
-, or s sin. a = h~

2 g sin. a' 2g 2 g 2 g
is applicable.

T/ie vertical 2Jrofection {7i) of the space (s) described upon the in-

clined plane is ahvays equal to the difference of the heights due to the

velocities.

When two inclined planes F G Q and G H R, Fig. 529, meet in

a rounded edge, a body descending the plane will experience no

impact in passing from one to the other

;

^ hence, if we have such a combination oi'

i
planes, there will be no loss of velocity,

and the following rule will be applicable

to the case of a body descending these

planes: height of fall equal to height due

to velocity. We can easily understand that

when a body ascends or descends a series of such planes or a curved

line or surface, its motion will take place according to the same law.

Example—1) A body ascends, with an initial velocity of 21 feet, an

inclined plane, the inclination of which is 22°. What is its velocity and

what is the space described after 1|- seconds ?

The velocity is

v = 21 — 32,2 sin. 22°
. 1,5 = 21 - 32,2 . 0,3746 . 1,5 = 21 - 18,09

= 2,91 feet,

and the space is

C-+ V 21 + 2,91 23,91 . 3
s = —^ . t = —'—

. I = = 17,93 feet.

2) How high will a body, whose initial velocity is 36 feet, rise upon a

plane inclined at 48° to the horizon ? The vertical height is

h = ~ = 0,0155 .
«2 = 0,0155 . 36^ = 20;088 fget,

and therefore the entire space described upon the inclined plane is

h 20,088
8 = -. = ~-j^o = 27,031 feet,

si)i. a sm. 48 '

and the time required to describe it is

2 . s 2 . 27,031 27,031^^-^-^ ~~W~ = -18^ = 1'^ ^^^^^^^•

§ 318. Sliding upon an Inclined Plane when the Fric-
tion is taken into Consideration.—The sliding friction has
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great influence upon the ascent or descent of a body upon an in-

clined plane. From the weight G of the body and from the angle

of inclination a we obtain the normal pressure

JSf ~ G- COS. a,

and consequently the friction

F — (j) N = (j) G COS. a.

If we subtract the latter from the force Pj = G sin. a, with which

the gravity pulls it down the plane, there remains the motive force

P = G sin. a ~ <p G COS. a,

and we have for acceleration of a body moving down the inclined

plane

force /G sin. a — (b G cos. a\ , . ^
.

^ = Sii^s
= ( —a ) ^ = (**'* " - * '"' ") ^-

For a body ascending an inclined plane the motive force is neg-

ative and = G sin. a + (p . G cos. a, and the acceleration p is also

negative and = — {sin. a 4- cos. a) g.

If two bodies placed upon two different inclined planes F G and

^ ^ F H, Fig. 530, are united by a perfectly

c
*

flexible cord, which passes over a pulley

C, it is possible that one of the bodies

will descend and raise the other. De-

noting the weight of these bodies by G

B/^tfSJ "^v ^^^
'
^1' ^-"^^ ^^^® angles of inclination

jJJ of the inclined planes, upon which they

rest, by a and a^, and assuming that G
descends and draws up G^, we obtain the motive force

P = G sin. a — Gi sin. a^ ~ <j) G cos. a — (j) G^ cos. a^

= G (sin. a —
(f)

COS. a) — Gi {sin. a^ + (p cos. a^),

and the mass moved

T,^ G -\- Gi

9
and therefore the acceleration with which G descends and G^

ascends is

G (sin. a — d) cos. a) — Gi (si7i. a^ -{- (b cos. a,)

p = -^— G^o\ • ff-

Since the friction, which is a resistance, cannot produce mo-

tion, we must have, if G descends and Gi ascends,

G {sin. a — (p COS. a) > Gi {sin. a^ + 6 cos. a^), or

G sin. «! + (/) COS. a, ^ ^ '^^*^^- (^i + P)

Gx sin. a — (p COS. a ' '
'

Gi sin. {a — p)
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If, on the contrary, G^ descends and G ascends, we must have

Gi ^ sin. a -\- (b cos. a
7T > — ^ J

or
Or S171. a^ — (j) COS. ttj

G sin. «! — COS. «! ^ / ^^'^' (^1 ~ P)

Gx ^ sin. a -\- (p cos. a ' ' ' G^ sin. {a + p)'

As long as the ratio -^ is within the limits

sin. a^ + (h cos. a^ , sin. a, — cos. a^__ z i and —^

—

, or
sm. a — (p COS. a sifi. a + (p cos. a

sin. (tti + p) sin. {a^ — p)

sin. {a — p) sin. (a + p)
'

the friction will prevent any motion.

ExAiMPLE—1) A sled slides down an inclined plane covered with snow,

150 feet long and inclined at an angle of 20 degrees, and on arriving at the

bottom it slides forward upon a horizontal plane until the friction brings

it to rest. If the coefficient of friction between the snow and the sled is

= 0,03, what space will the sled describe upon the horizontal plane (the

resistance of the air being neglected) ?

The acceleration of the sled is

p = {sin. a — (b COS. a) g = (sin. 20° — 0,03 . cos. 20°) . 32,2

= (0,3420 - 0,03 . 0,9397). 32,2 = 0,3138 . 32,2 = 10.104 feet,

and therefore its velocity on arriving at the bottom of the inclined plane is

V = V"2ys = V2. 10,104 . 150 = 73031^2 = 55,06 feet.

Upon the horizontal plane the acceleration is

p^ = —(bg = — 0,03 . 32,2 = - 0,966 feet,

and therefore the space described is

«2 3031,2
h = H— = -rF^ = 1569 feet.
^ 2 (p g 1,932

The time required to slide down the inclined plane is

2 s 300
t = — = 'Tri^ = 5,45 seconds

;

V 55,06 ' '

that required to slide along on the horizontal plane is

T. ^o^ .3 s. 3138
Fig. 531. t^ =.- —^ = ---— = 57 seconds,

V 55,06 '

and therefore the duration of the entire journey is*

t -{- t^ = 62,45 seconds = 1 minute 2,45 seconds.

2) A bucket K, Fig. 531, which, when filled, weighs
250 pounds, is drawn up a plane, 70 feet long and in-

clined at an angle of 50°, by a weight G^ = 260 ; what
time will be required Avhen the coefficient of the fric-

tion of the bucket upon the floor is 0,36 ?
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The motive force is

= G — (sin. a + dcos. a) K = 260 — (sin. 50° + 0,36 cos. 50°) . 250

= 260 - 0,9974. 250 = 10,6 pounds,

and tlierefore the acceleration is

10,6 10,6
^- 25^^260= 510 = ^'^^«^^^^*'

the time of the motion is

and the final velocity

2 s 140 , ^„ ,

§ 319. Rolling Motion upon an Inclined Plane.—When
a wagon runs down an inclined plane, it is the friction on the axle

which offers the principal resistance to the acceleration. If G is

the weight of the wagon, r the radius of the axle and a that of the

wheel, we have

—- iV =^ -— G COS. a,
a a

and therefore the acceleration

p = isin. a — -— COS. a) g.

If a round tody A B, as, e.g., a cylinder or a sphere, etc., rolls

down an inclined plane F H, Fig. 532, we have at the same time a

motion of translation and of rotation. As
the acceleration of translation j) is generally

equal to that of rotation (§ 169), if we put

the moment of inertia of the rotating body

= G h' and the radius C A of rotation = «,

we obtain for the force A K — K, with

which the roller (in consequence of the mu-

tual penetration of its surface and that of

the inclined plane) is set in rotation,

^ G¥
^ get'

But the force K opposes the force G sm. a, which tends to

cause the body to slide down the plane, and therefore the motive

force for the motion of translation is

P = G sin. a — K,

and its acceleration is

G sin. a — K
p = g .g
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Eliminating K from the two equations, we obtain

Gi) = G g sin. a -^ .p,
ill

and consequently the required acceleration

g sin. a
V

1 + —
-a

For a homogeneous cylinder W — )^a^ (§ 288), and therefore

q sin. a

but for a sphere ¥ = \ a" {^ 290), and therefore

a sin. a
P = . g = iff sm.a;

~^ 5

the acceleration of a rolling cylinder is but f and that of a rolling

spliere is but f as great as that of a body sliding without friction.

The force which produces the rotation is

_ ^ sin. a Gh' _ G If sin. a
~

^
¥' q a-

~
(T + ¥

As long as this force is less than the sliding friction <\> G cos. a,

so long will the body descend the plane with a perfect rolling

motion. But if

Ky cf) G cos.a,i.'E.,ifta7ig. a > (l + -p),

the friction is no longer sufficient to impart a velocity of rotation

equal to that of translation ; the acceleration of translation

becomes, as in the case of sliding friction,

G sin. a — (b G cos. a . . .

p =
y^

. g = (sm. a — d) cos. a) g,

and that of rotation

G COS. a of

If the weight of a wagon is G, the radius of its wheels a and
their moment of inertia G ¥, we will have

T
^ , 3 G sin. a — (p - G cos. a — K

k — p =— and ;; — ^ . q,^ g a^ ^ G ^
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I.E.,

V

T
(b - COS. a)

G,k;-

Gd'

Example—1) A wagon, which, when loaded, weighs 3600 pounds and

whose wheels are 4 feet high and have a moment of inertia of 2000 foot-

pounds, rolls down a plane whose inclination is 12°
; required the accelera-

tion, when the coefficient of friction upon the axles is ^ = 0,15 and the

thickness of tlie axles is 2 r = 3 inches.

Here we have

'W = .0-^.-1. = «.^-- ^l = 0.- • ^. = »>-,

and therefore the required acceleration is

_32,2(.9m. 12 ° -0,0094 . cos. 12°) _ 32,2 . (0,2079 — 0,0094 . 0,978)

^ ~ 1 + 0,139
~

1,139

32,2 . 0,1 987 ...^. ,=—^3ir- = ^'^^^^^^*-

2) With what acceleration will a massive roller roll down a plane whose

angle of inclination is a = 40° ?

If the coefficient of sliding friction of the roller upon the plane is

^ = 0,24, we have

^ ( 1 + -^) - 0,24 (1 + 2) = 0,72.

Kow tang. 40° = 0,839, and tang, a is therefore greater than <p it + jjh

and the acceleration of the rolling motion is smaller than that of the mo-

tion of translation.

The latter is

p = (sin. a - cp COS. a) g = (0,648 - 0,24 . 0,7660) . 32,2 = 0,459. 32,2

= 14,78 feet, and the former is

p^ = 0,24 . 2 . 32,20 cos. 40° = 15,456 . 0,776 = 11,99 feet.

§ 320. The Circular Pendulum.—A body suspended from

a horizontal axis is in equilibrium as long as its centre of gravity

is vertically under this axis ; but if we move the centre of gravity

out of the vertical plane containing the axis and abandon the body

to itself, it assumes an oscillating or vibrating motion (Fr. oscilla-

tion, Ger. Schwingende Bewegung), i.e., a reciprocating motion in

a circle. A body oscillating about a horizontal axis is called a

pendulum (Fr. pendule, Ger. Pendel or Kreispendel). If the

oscillating body is a material point, and if it is connected with the

axis of rotation by a line without weight, we have a simple or

theoretical pendulum (Fr. p. simple, Ger. einfaches or mathema-
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tisches P.) ; but if the pendulum consists of a body or of several

bodies of finite dimensions, it is called a compound pendulum (Fr.

pendule compose, Ger. zuzammengeseztes, physisches or materielles

Pendel). Such a pendulum can be considered as a rigid combina-

tion of a number of simple pendulums, oscillating around a

common axis. The simple pendulum has no real existence, but it

is of great use in discussing the theory of the compound pendu-

lum, which can be deduced from that of the simple one. If the

pendulum, which is suspended in C, Fig. 533, is moved from its

vertical position G M to the position C A and left to itself, by

virtue of its weight it will return towards GM with an accelerated

motion, and it will arrive at the point M
with a velocity, the height due to which is

equal to D M. In consequence of this

velocity it describes upon the other side

the arc M B — M A, and rises to the

height D M, It falls back again from B
to M and A and continues to move back-

wards and forwards in the arc A B. If we
could do away with the friction on the

axis and the resistance of the air, this

oscillating motion of the pendulum would continue forever ; but

since these resistances can never be entirely removed, the arc in

which the oscillation takes place wiU gradually decrease until the

pendulum comes to rest.

The motion of the pendulum from ^ to ^ is called an oscilla-

tion (Fr. oscillation, Ger. Schwung or Pendelschlag), the arc A B, the

amplitude (Fr. amplitude, Ger. Swingungsbogen), and the angle

measured by half the amplitude is called the angle of displacement.

The time in which the pendulum makes an oscillation is called the

time, duration^ or period of an oscillation (Fr. duree d'une oscilla-

tion, Ger. Schwingungszeit or Schwingungsdauer).

§ 321. Theory of the Simple Pendulum.—In consequence

of the frequent use of the pendulum in common life, viz. for clocks,

it is important to know the duration of an oscillation ; its demon-
stration is therefore one of the most important problems in

Mechanics. To solve this problem, let us put the length of the

pendulum A G = M G ~ r, Fig. 534, and the height of rise and
fall during an oscillation M D — h. Assuming that the pendulum
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has fallen from A to G, and making the vertical height D II of fall

corresponding to this motion ==' x, we have the velocity acquired

at G
V = V2 g X,

and the element of time, during which

the element of its path G^ ^ is described,

G K G K
Fig. 534.

• -^ V2 g X

If we describe from the middle of

MD ^ li with the radius OM = 0D =
A h the semicircle MND,^YQ can cut from

the latter an elementary arc N P, which

will have the same altitude P Q =
K L — RH 2& G K^ and whose relation

to the latter can be very simply ex-

pressed. In consequence of the sim-

ilarity of the triangles G K L and C G ff we have

01^ _ C_G^

K L~ G IP
and in consequence of the similarity of the triangles N P Q and
NH

N P _ q^N
P~Q ~ NH'

dividing the first of these proportions by the second and remem-
bering that K L = P Q, we obtain the ratio of the above elements

of the arcs

GK_ C G.NH
N P ~ G II. ON'

From a well-known property of the circle we have

GIP = 3IH{2CM - 31 H) and NH' = M II . D II,

whence it follows that

G li C G . VdH r Vx
NP ON V2 a M - MH h ^^ V2 r - {h - x)

and the time required to describe an element of the path is

rVx N P 2 r

- {h ~ x)

NP
li — X

V2g~x f^V2g[2r- {h - x)]

NP
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Generally in practice the angle of displacement is small, and

then -r—, TT- and -7^— are such small quantities, that we can
2 r 2 r 2 r

neglect tliem and their higher powers and put

Jr NP

The duration of a semi-oscillation or the time within which the

pendulum describes the arc A M is equal to the sum of all the

elements of the time corresponding to the elements G K or N P.

Now since j . y - is a constant factor, we can put the sum equal

to y i/ - times the sum of all the elements forming the semi-
h "^

g _
"

1 /r /n 7i\
circle D N M. i.e., = - 4/ - times the semicircle ( —r- ), or

h ^ g \ 2 /

1 .//r TT h 7T . /r
^' h' g' ^ ^ ' g

The same time is required by the pendulum for its ascent ; for

the velocities are the same but opposite in direction, hence the

duration of a complete oscillation is double the latter, or

t = 2t, = ni/-.
g

(§ 322 ) More Exact Formula for the Duration of an
Oscillation of the Circular Pendulum.—In order to determine

the duration of an oscillation with greater precision, as is some-

times necessary, when angles of displacement are large, we caii

transform the equation

into the series

^ 2r ^ « • V 2r / ^
"•'

and then we have the time in which an element of the path is

described

+ ^-l-27-;^---J^^--x-
1 + 4

.

^ -^
~'2r " \ '4> r / -^ ' g
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Putting the central angle D W = (p\ or the arc

Fig. 535. D N=^ D .(}) 2"'

we obtain the height

^ MR= h M - H =

+ ^ COS. = (1 + COS. (p)
~

;

and therefore the element of time

h

4 r
T = [l + 1 . (1 + COS. 0)

or, since

(1 + COS. 0)' =: 1 + 2 COS. + {cos. 0)' = 1 + 2 COS. +
1 4- COS. 2

2
= J + 2 COS. + A C05. 2 0,

h
r = fl + i (1 + COS. 0) j^ + I (I + 2 <?05.

NPcos.cj) ,. . / h y WF cos.2(p\ ./r

Now the sum of all the elements li P is = the arc D NP —
h

, N P COS. (p is = N Q and the sum of all the N Qis — tht

ordinate NH = - sin. and also the sum of all the —^ -,

—

'-—
is = sm. 2 0, therefore the time required to describe the arc A G is

^- ,,,,..., (A)- -i*),./^.
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The time required to describe the arc A M is, since we have

here (p = ir, sin. (p = sin. tt and sin. 2 = si7i. 2 n = 0,

As the velocity decreases in the same manner, when the pen-

dulum ascends on the other side, as it increased during the descent,

the time required for describing the entire arc or the duration of

the complete oscillation is

If the pendulum oscillates in a semicircle, we have h = r, and

consequently the duration of an oscillation is

In the most cases in practice the amplitude of the oscillations

is much less than a semicircle, and the formula

('%4)'/
is sufficiently accurate.

If the angle of displacement be denoted by a, we have cos. a =

= 1 or- = l — cos. a, and therefore
r r r

7i _ ^ 1 — COS. a

Vr ~ ~^'
2 (..^.|);

from the latter formula we can determine the correction to be

applied for any given amplitude. If, for example, this angle is

a = 15°, we have

-- = J- [sin. —-1 = 0,00426,

and, on the contrary, for a — b°

J^ = 0,00047

;

8 r

for this last amplitude the duration of an oscillation is

t = 1,00047 . 7T \/~.
^ 9
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Consequently if the amplitude is less than 5", we can put with

sufficient accuracy the duration of an oscillation

t = n i/- = -^ Vr = 0,554 Vr,
g Vg

§ 323. Length of the Pendulum.—Since in the formula

9
the angle of displacement does not appear, it follows that the

duration of small oscillations of a pendulum does not depend upon
this angle, and that pendulums of the same lengths, when their

amplitudes, although different, are small, oscillate isochrojially or

have the same duration of oscillation. A pendulum, when its am-

plitude is 4 degrees, make an oscillation in (almost) the same time

as when it is 1 degree.

If we compare the duration t of an oscillation with the time U

of the free fall, we find the following relation. The time required

by a body to fall freely a distance r is

hence

the duration of an oscillation of a pendulum is to the time required

by a body to fall freely a distance equal to the length of the pen-

dulum as the number tt is to the square root of 2. The time re-

quired to fall the distance 2 r is

g ^ g
therefore the duration of an oscillation is to the time required to fall

a height equal to twice the length of the jpendidum as rr is to 2.

If we put the durations of the oscillations of two pendulums,

whose lengths are r and ri, equal to t and ^i, we obtain

t:t,= VV: VV„
When the acceleration of gravity is the same, the durations of the

Dscillations are proportional to the square roots of the lengths of the

pendulums, l^ow if n is the number of oscillations made by one

pendulum in a certain time, as, e.g., in a minute, and n^ the num-
ber made in the same time by another pendulum, we have

\/~V: V r^ = - : —

,
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and inversely n\nx = VT^ : 4^ r

,

I.E. tlie number of oscillations is inversely proportional to the square

root of the length of the pendulum. A pendulum four times as

long as another makes but one-balf as many oscillations in the

same time.

A pendulum is called a second pendulum (Fr. pendule a seconde,

Ger. Secundenpendel), when the duration of its oscillation is a

r
second. Substitutine: in the formula t = tt i/ —, ^ = 1, we obtain

g

the length of the second pendulum r = -~- ; for English system

of measures
r -= 3,26255 feet = 39,1506 inches,

and for the metrical system

r = 0,9938 metres.

By inverting the formula t = rr y —, we obtain g = ( -
J r, by

means of which we can deduce from the length r of the pendulum

and the duration t of its oscillation the acceleration g of gravity.

We can determine the value of g more simply and more accurately

in this manner than with Atwood's machine.

Remark,—By observations upon the pendulum, the decrease of the force

of gravity, as we proceed from the equator to the poles, has been proved,

and its intensity determined. This diminution is caused by the centrifugal

force arising from the daily revolution of the earth upon its axis, and also

by the increase of the radius of the earth from the poles to the equator.

The centrifugal force diminishes the action of gravity at the equator ^-i^ of

its value (§ 302 ), while at the poles the action of the centrifugal force is null.

By observation upon the pendulum we can cletermiue the acceleration of

gravity at the place of observation. This acceleration, when (3 denotes the

latitude of the place, is

rj = 9,8056 (1 - 0,00259 cos. 2 (3) metres;

therefore at the equator, where ,3 = and cos. 2 [3 = 1, we have,

g => 9,8056 (1 - 0,00259) = 9,780 metres,

and at the poles, where j3 = 90°, c^s. 2 = cos. 180° = — 1,

g = 9,8056 . 1,00259 = 9,831 metres.

Upon mountains g is smaller than at the level of the sea.

§ 324. Cycloid.

—

We can put a body in oscillation or cause it

to assume a reciprocating motion in an infinite number of ways.

Any body moving in such a manner is called a pendulum. We
distinguish several kinds of pendulums, as, for example, the circu-

lar pendulu7n, which we have just discussed, the cycloidal pendulum,
where the body, by virtue of its weight, swings backwards and for-
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Fig. 536.

wards in a cycloid, and the torsion pendulum or torsion balance,

where a body oscillates in consequence of the torsion of a string or

wire, etc. We will here discuss only the cydoidal pendulum.
The cijcloid (Fr. cycloide, Ger. Cycloide) A Pj D, Fig. 536, is a

curve described by a

point A of a circle

A P B, which rolls

upon a straight line

B D. If this gene-

rating circle rolls for-

ward the distance

B B, = C C, and

comes into the posi-

tion Ax 7?], it turns

through the arc A P
~ A^ Pi = B B^ = P P^, and the ordinate 31 P^ corresponding

to any abscissa ^ if is = ordinate M P of the circle plus the arc

A P, which the circle has turned. In this rolling the generating

circle turns always upon its point of tangency to the base line B D;
if it is in ^1 B^, it turns about B^, and thus describes the element

Pi Qx of an arc of the cycloid ; consequently the chord P, P, gives

the direction of the normal* and the chord A^ Pj that of the tangent

Pi T at the point Pi of the cycloid. The prolongation P § of the

chord A P reaching to the ordinate Qx is equal to the element

Pi Qx of the cycloid; since the space P P due to the motion of ro-

tation is equal to that R Q due to the motion of translation, P § is

the base of an isosceles triangle, and is equal to twice the line P JV",

which is cut off by the perpendicular R ]Sf\ P N is finally the dif-

ference of the two neighboring chords A R and A P, and conse-

quently the element P, Q^ of the cycloid is equal to twice the

difference {A R — A P) of the chords. Since the successive ele-

ments of the cycloid compose the arc A P„ and the sum of the

differences of the chords the entire chord A P, tve have the length

of the arc A Pi of the cycloid equal to twice the chord A P of the

generating circle. The diameter of the circle is the chord corre-

.sponding to the semi-cycloid, and the length of the semi-cycloid is

therefore twice the diameter (2 A B) of the generating circle.

§ 325. Cycloidal i^endulum.—From the properties of the

cycloid, found in tlie foregoing paragraph, we can easily deduce the

theory of the cijcloidal pendulum, or the formula for the duration

of an oscillation of a body vibrating in the arc of a cycloid. Let
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A KM, Fig. 537, be half the arc of the cycloid, in which a body

oscillates, and M E the generating circle, whose radius is G E ~

CM = r. •If the body has described the arc A G oy fallen from

the height D H — x (compare § 321), it has attained the velocity

V = V^ g X, with which it describes the element G K of the arc in

the time
GK GK

'" V^gx
In consequence

we have
GK

of the similarity of the triangles G L ^and FHM,

FM
KL ~ j^ir

or, since F M"" = MR. ME,
VM H.M EGK VM E

KL MH Vmh'
and in consequence of the simil

ONE
NP ON

arity of the triangles N P Q and

P Q
~ NW

or, since N H' = M H. D H,
NP ON
P Q VMH.DH

Now K L — P Q, hence by division we have

GK VWE VMH.D H VME , D H
NP ONVMH

or, since N, half the height fallen through,

D H ^ X,

n

ON'
M E = 2 r md

GK
N P

V2 r X 2|/2 r X

IJi

42
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If we substitute G K ~ 2|/2 r X

G K
V2g~x

h

we obtain

T = 2 \% rx NP

NP m the formula

\/-.NP,
9V2gx.h

The time required to fall from A to M is the sum of all the

values of r, obtained by substituting for A^P all the divisions of

the semicircle D N M, ox

= T V - times the semicircle D NM (- /^).
h ^ g \2 4

Hence we have the time required to describe the arc A M

and since the time for ascending the arc M B is equal to it, we have

for the time required to describe the whole arc A M B

t =2ti:=2 7T i/- = 7T i/—

.

Since this quantity is entirely independent of the length of the

arc, it follows that the times of the oscillations^ for all arcs of the

same cycloid are mathematically exactly equal, or that the cycloidal

pendulum is perfectly isochronal. If we compare this formula with

the formula for the duration of the oscillations of a circular pen-

dulum, we find that the durations are the same for both pendulums,

when the length of the circular pendulum is four times the radius

of the generating circle of the cycloid.

Remark.—In order to make a body suspended by a flexible cord oscil-

late in a cycloid and thereby to form a cycloidal pendulum, we must hang

2 h ^ g

Fig. 538. the same between two arcs G and C 0^ ,

Fig, 538, of a cycloid, so that during

each oscillation the cord will unwind

from one and wind upon the other arc.

It can easily be shown that, when the

cord COP wraps and unwraps, the end

P describes a cycloid equal to the given

one, but in an inverted position. The

length of the semi-cycloid is G A =^

G D = 2A B and the arc ^ is = the

straight line P, which has been un-

wound ; but the arc A = twice the

chord ^ jP = 2 G« 0, and therefore
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P G = G = A F and HN = A E. Describing upon B H = A B a

semicircle B KH and drawing the ordinate N P^ we have KH = P G

and, therefore, also

P K = GH=AH— AG = AH—FO = arc A F B - s^yc A F =
arc B F = arc B K,

and, finally, iV^P is = the ordinate iV^ -ff of the circle plus the correspond-

ing arc B K; If^Pis therefore the ordinate of a cycloid B P A corre-

sponding to the generating circle B K H.

Upon the application of cycloidal pendulums to clocks, see " Jahrbii-

cher des polytechn. Institutes in Wien," Vol. 20, Art. U. Also Prechtl'a

technologische Encyclopadie, Bd. 19.

(§ 326.) The Curve of Quickest Descent.—It can be proved

by the Calculus that the cycloid, besides the property of isochronism

or tcmtoclironism, possesses also that of hrachystonism, i.e. it is the

line in which a body descends from one given point to another in

the shortest time.

We can prove this (as Jacob Bernoulli did) in the following

manner.

Let the relative position of two points A and B, Fig. 539, be

given by the vertical distance A C = a and the horizontal one

B C ^= h, and that of a horizontal

line B E hj the vertical distance

A D = h; required the point K, in

which a body falling from A to B
must intersect the line D B in order

to reach B in the shortest time. If

the body arrives at A with the ve-

locity V, the velocity at K is

v^ = Vv' + 2 g h;

and supposing that J, IC and B are

infinitely near each other, or that a, b and h are very small com-

pared to V, we can assume that ^ ^ is described uniformly with

the velocity v and K B uniformly with the velocity i\, or that the

time, in which A K B is described, is

, AK KB
^1

Denoting D K by z, we have

AK ^ VF + ? and KB = V{a

and therefore

ny + (6 _ z)\
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_ Vh' + z' V{a - hy + (5 - zy
Z — "t~ •

V Vi

This quantity will Le a minimum, when we make its first dif-

ferential coefficient

d t _ z h — z

d z~ V VFT"? V, V{a - hy + {b - zy

But

z K D

= 0.

Vli" + K A
= COS. A K D = COS.

and
b - z B L

B K = COS. KB L — COS. 01,

V{a-hy + (5- zy

<f>
and 01 denoting the inclination of the paths A K andK Bio the

horizon ; hence we have for the equation of condition

COS. (p _ COS. 01

Putting the heights due to the velocities v and v^, M A = y and

WX = «/i, or

^ V = V2g y and v^ = V2 g y^,

our equation becomes

COS. _ COS. 01
'
Vy ~ Vy,^

and if we apply this formula to the case of a curved line 8 A K B,

it follows that for every point of this curve the quotient —^ must
Vy

be a constant quantity, such as ——=.
V2r

This property corresponds to a cycloid S G M, Fig. 540 ; for

we have for an element G K of this curve



§327.] THE ACTION OF GRAVITY, ETC. 661

COS. ^ - Q j^- pj^ - ^-^^^EM ~ ^ EM ' ^ 2?

and therefore

COS. _ 1

Vy ~ V2r

r denoting the radius CM— G E oi the generating circle E F M.

An arc S G of a cycloid is therefore tlie arc in which a tody

descends in the shortest time from one looint S to another point G,

§ 327. The Compound or Material Pendulum.—In order

to determine the duration of an oscillation of a compound pendulum

or of any body A B, Fig. 541, oscillating about a horizontal axis G,

we must first find the centre of oscillation (Fr. centre
^^'

. d'oscillation, Ger. Mittelpunkt des Schwunges or

^^^ Schwingungspunkt), i.e., that point K of the body

which, if it oscillates alone around G or forms a

simple pendulum, has the same duration of oscilla-

tion as the entire body. We can easily perceive

that there are several such points in a body, but we
generally understand by it only that one, which

lies in the same perpendicular to the horizontal

axis as the centre of gravity does.

From the variable angle of displacement K G F ^= we obtain

the acceleration of the isolated point K, which is

= g sin. (f);

for we can imagine that it slides down a plane, whose inclination is

KITE = X G F =: (p. If M ¥ is the moment of inertia of the

entire body or system of bodies A B, M s its statical moment, i.e.

the product of the mass and the distance G S = s of its centre of

gravity from the axis of oscillation G, and r the distance GX of

the centre of oscillation from the axis of rotation or the length of

the simple pendulum, which vibrates isochronally with the material

pendulum A B, we have the mass reduced to K
_MF
-

r'
'

and therefore the rotary force reduced to this point is

s Mg sin. 0;

consequently the acceleration is
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force s ,, . , MTc" M s r
p = = - M a sin. :

——
- = - ,>-t^ . a sm. 0.

' mass r ^ ^ ^^^ m ¥ -^ ^

In order that the duration of an oscillation of this pendulum
shall be the same as that of the simple pendulum, it must have in

every position the same acceleration as the other ; hence

Ms r

Jl^T ' 9 sm, (p = g sm. 0.

This equation gives

M If moment of inertia

Ms statical moment
We find, then, that the distance of the centre of oscillation from

the point ahout luhich the rotation talces place, or the length of the

simple pendulum having the same duration of oscillation as the com-

pound pendulum, is equql to the moment of inertia of the compound
pendidum divided hy its statical moment or the moment of its iveight.

Wl

Substitutino- this value of r in the formula ^^ = tt 1/ —, we ob-

tain for the duration of an oscillation of a compound pendidum

M¥ . / F
M g s gs

or more accurately

By inversion we obtain from the duration of an oscillation of a

suspended body its moment of inertia by putting

Mlf = (4)'- MgsoT F =
(^^Jg

s.

Remark—1) In order to determine the moment of inertia M h"^ of a

body from the duration of one of its oscillations, it is necessary to know its

statical moment 31 g s — G s. The latter is found by drawing the body

A C, Fig. 542, out of its position of equilibrium by means of a rope ABB,
which passes over a pulley and to which a weight P is suspended. The

perj)endicular (7iV, let fall from the axis (7 upon the direction of the rope

A B, is the arm a of the weight P, and Pais equal to the moment G . CH
of the weight G^ which acts vertically at the centre of gravity S. Denoting

by a the angle V G 8 = C S R, which the body is raised by the weight P,

we have

CH = C S sin. a = s sin. a,

and therefore

G s sin. a = P a,

from which we deduce the required statical moment

G s = -'. .

sin. a



§ 327.] THE ACTION OF GRAVITY, ETC. 663

2) A very simple and useful pendulum A D F^ Fig. 543, may be made

of a ball of lead A about 1 inch in diameter, suspended by a silk thread,

Fig. 542. Fig. 543.

whose upper end is fastened into a ferrule D by a clamping screw. This

ferrule has upon its end a screw, which passes through the arm E F
and is made fast by a nut G, when the arm has been screwed into a

door-frame or some other solid support. If the length is (7 JL = 0,2485

or nearly i meter, then this pendulum will beat half-seconds for almost

an hour, although the arcs in which it oscillates will continually decrease.

Example— 1) If the point of suspension of a prismatical rod A B,

Fig. 544, is at a distance G A = l^ from one end A and C B = l^

from the other B, its moment of inertia, when F denotes its cross-sec-

tion, is (§ 286)

and its statical moment is

3Is = -}Fil,^-l,^);

fience the length of the simple pendulum, which oscillates isochronally,

is

M Ic" „ l^' + l^' P + dd'
Fig. 544.

^'

if, h' 6d
I denoting the sum l^ + l^ and d the difference Zj

rod should beat half-seconds, we must make
L. If this

r = i
. -^ = i

. 39,15 = 9,79 inches,

and if the rod is 12 inches long we must put

144 4- 3 d^
9^79 = ^f or d^ - 19,58 d =

hence
d =

6d
19,58 - V 191,3764

48,

19,58 - 13,83= 2^ inches

;

from which we obtain
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l,=
I + d

andL
l-d = 6

55
- It. It, " ;. 2

2) If O is the weight and I the length of the rod of a pendulum with

a spheroidal bob A B^ Fig. 545, and if K is the weight and r^ the diam-

eter MA = MB of the latter, we will have

Fig. 545.

0P + K[(l + r,y +

If the wire weighs 0,05 pounds and the ball 1,5 pounds, and

if the length of the wire is 1 foot and the radius of the ball 1,15

inches, we have the distance of the centre of oscillation of this

pendulum from the axis of rotation

_ i . 0,05 .
12^- + X(13,15^ + I . 1,15^) 2,4 + 260,177

0,3 + 19,725^ . 0,05 . 12 + 1,5 . 13,15

262,577 ,„,,^. ,

^P^-
= 13,112 mches.

260 177
If we neglect the wire, r = — ' = 13,190 inches, and if we assume

19, i /iO

the mass of the ball to be concentrated at its centre r = 13,15 inches. The

duration of an oscillation of this jDendulum is

t = TT |/- = 0,554 j/-^^ = 0,554 Vl,0926 = 0,5791 seconds.

§ 323. Reciprocity of the Point of Suspension and the

Centre of 0.3Cillation.—The ^jomt of suspension and the centre

of oscillation are reciprocal (Fr. reciproqne ; Ger. wechselseitig),

I.E. one can be changed for the other, or the pendulum can be sus-

pended at the centre of oscillation without changing the duration

of the oscillation. This can be proved, by the aid of what was

said in § 284, in the following manner. Let W be the moment of

inertia of the compound pendulum A B, Fig. 546, referred to an

axis of rotation passing through its centre of grav-

ity 8, for an axis of rotation passing through C\

which is at a distance C S = s from the centre of

gravity 8, we have

Vi, = TF+ Ms\
and therefore the distance of the centre of oscilla-

tion from the axis of rotation C is

_W,_ W + M s' ^ W_
^ - Ws ~ Ms ~ Ms

Denoting the distance K 8 = r — s oi the centre

of oscillation K from the centre of gravity by 5„ we obtain the

W
equation s s^ = -^,

+

in which s and Sx present themselves in the
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Fig. 547.

same manner, and therefore can be changed for one another. This

formula is consequently applicable not only to the case, where s

expresses the distance of centre of rotation and s^ that of the cen-

tre of oscillation from the centre of gravity, but also to the case,

where s expresses the distance of the centre of oscillation and Si

that of the centre of rotation from the centre of gravity. There-

fore C becomes the centre of oscillation, when K becomes the point

of suspension. We employ this property in the revers-

alle 2^endulimi A B, Fig. 547, first suggested by Bohnen-

berger and afterwards employed by Kater. It is provided

with two knife-edge axes C and K, which are so placed,

that the duration of an oscillation remains the same,

whether the pendulum is suspended from one axis or the

other. In order to avoid changing the position of the

axes in reference to each other, two sliding weights are

applied to it, the smaller of which can be moved by a

small screw. If by sliding the weights we have brought

them to such a position, that the duration of an oscilla-

tion is the same, whether the pendulum be suspended in

C or K, we obtain in the distance C K the length r

of the simple pendulum, which vibrates isochronally with

the reversable pendulum, and the duration of the oscilla-

tion is given by the formula

g

§ 329. Rocking Pendulum.—The rocking of a body with a
cylindrical base can be compared to the oscillation of a pendulum.

This rocking, like every other rolling motion, is composed of a mo-
tion of translation and one of rotation, but we can consider it as a

rotation about a variable axis. This axis of rotation is the point

of support, where the rocking body A B C, Fig. 548, rests upon
the horizontal support H R. Let

the radius CD— C P of the cylin-

drical base A D B he = r and the-

distance C S of the centre of gravity

S of the whole body from the centre

C of this base be =r s, then we have

for the distance 8 P = y of the cen-

tre of gravity from the centre of rota-

tion, corresponding to the angle

SOP =. 4>,
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y"" = r + s' — 2r scos. (p = (r — sY -f 4 ?• 5 lsi7i. -|l.

If we denote the moment of inertia of the whole body in reference

to the centre of gravity S by M k'-,rwe obtain the moment of inertia

in reference to the point of snpport F

W M (F + f) = m\Jc' + (r -sY + 4.rs {sin.
^^^,

for which for small angles we can putM [F' + (r — 5)' + r <? 0'] or

even M [k- + (r — sY], 'Now since the moment of the force —
G . S JV = 31 c/ . C S sin. (j) = M g s sin. 0, we have the angular

acceleration for a rotation around P
_ moment of force _ 31

f/
s sin. _ 9 ^ -^?''?-

moment of inertia J/[^•" + {r — s)'^ k' -f (r — s)'^'

For the simple pendulum it is = / , when ^1 denotes its length.

If they should oscillate isochronally, we must have

g s sin. _ g sin.
^
_ Ic' + (r — sY

-, I.E., r
k' + {r — sY n .

s

The duration of an oscillation of the rocking hody is, therefore,

Fig. 549.
t
^^^^ji^^/i^i^^^

A ' g ' gs

m
m--

Wm

This theory is applicable to a pendulum A B, Fig. 549,

with a rounded axis of rotation C 31, when we substitute

for r the radius of curvature C 3f of this axis. If instead

of the rounded axis a knife-edge axis D is used, the dura-

tion of an oscillation would be

,A- + D S' _ ^ /If + {s - xY
'' g.D S " " ^ g {s - x)

when the distance C D oi the knife-edge D from the cen-

tre C of the rounded axis is denoted by x. The two pen-

dulums will have the same duration of oscillation, when

¥ + (s - xY ¥ + (r - sY k' ¥' + r „
^,

.

^ '- = ^ -, or — x = 2 r

;

S — X s S — X s

k"^ k^ k' X
putting approximatively = — H ,- and neglecting r, we

S — X S S

obtain _ 2 r s""

"" ~ ?"^=^-

Remark.—The conical peDdulnm will be discussed in the third part,

in the article upon the " Governor."

In the appendix to tbis volume the subject of oscillation is treated at

leno'th.
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CHAPTER IV

THE THEORY OF IMPACT.

§ 330. Impact in General.—On account of the inipenetra=

bility of matter, two bodies cannot occupy the same space at the

same time. If two bodies come together in such a way that one

seeks to force itself into the space occupied by the other, a recipro-

cal action between them takes place, which causes a cliange in the

conditions of motion of these bodies. This reciprocal action is

what is called impact or collision (Fr. choc, Ger. Stoss).

The conditions of impact depend, in the first place, upon the

lazv of the equality of action and reaction (§ 65) ; during the im-

pact one body presses exactly as much upon the other as the other

does upon it in the opposite direction. The straight line, normal

to the surfaces, in which the two bodies touch each other, and

passing through the point of tangency, is the direction of the

force of impact. If the centre of gravity of the two bodies is upon

this line, the impact is said to be central; if not, it is said to be

eccentric. When the bodies A and B, Fig. 550, collide, the impact

is central ; for their centres of gravity Sx and S.2 lie in the normal

iV" iV^to the tangent plane. In the case represented in Fig. 551 the

impact of A is central and that of B eccentric ; for S^ lies in and

Si without the normal line or line of impact N N.

When we consider .the direction of motion, we distinguish direct

impact (Fr. choc direct, Ger. gerader Stoss) and oUiqiie impact (Fr.

choc oblique, Ger. shiefer Stoss). In direct impact the line of im-
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pact coincides with the direction of motion ; in obhque impact the

two directions diverge from each other. If the two bodies A and
B, Fig. 552, move in the directions

^^^- ^^^'
S^ C, and S, C% which diverge from

the hne of imjoact N N, the impact

which takes place is obhque, while,

on the contrary, it would have been

direct if the directions of motion had

coincided with JSf N.
/'

.

-' We distinguish, also, tlie impact

of free bodies from that of those par-

tially or entirely retained.

§ 331. The time during which motion is imparted to a body or

a change in its motion is produced is, it is true, very small, but by

no means infinitely so ; it depends not only upon the force of im-

pact, but also upon the mass, velocity and elasticity of the colliding

bodies. We can assume this time to consist of two parts. In the

first period the bodies compress each other, and in the second they

expand again, either totally or partially. The elasticity of the

body, which is brouglit into action by the compression, puts itself

into equilibrium with the inertia, and thus changes the condition

of motion of the body. If during the compression the limit of

elasticity is not surpassed, the body returns to exactly its former

shape, and it is said to be perfectly elastic ; but if the body, after

the impact, only partially resumes its original form, we say it is

imjoerfectly elastic ; and if, finally, the body retains the sliape it as-

sumed under the maximum of compression or possesses no ten-

dency to re-expand, we say that the body is inelastic. This classi-

fication of impact is correct within certain limits only ; for it is

possible that the same body will act as an elastic one when the im-

pact is slight, and as an inelastic one when the impact is violent.

Strictly speaking, perfectly elastic and perfectly inelastic bodies

have no existence ; but we will hereafter consider elastic bodies to

be those which apparently resume their original form, and inelastic

bodies to be those which undergo a considerable change of form in

consequence of the impact

In practical mechanics the bodies, such as wood, iron, etc.,

which are subjected to impact, are very often regarded as inelastic,

because they either possess but little elasticity or lose the greater

part of their elasticity in consequence of the repetition of the im-
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pact. It is very important in constructing machinery, etc., to avoid

impacts as much as. possible. If this cannot be done, we should

diminish their intensity or change them into elastic ones ; for they

give rise to jars or concussions and cause the machinery to wear

very fast, and in consequence a portion of the energy of the ma-

chine is consumed.

§ 332. Central Impact.— Let us first investigate the laws of

the direct central impact of bodies moving freely. Let us suppose

the duration of the impact composed of the equal elements r, and

the pressure between the bodies during the first element of time to

be = Pi, during the second to be = Po, during the third to be

= P3, etc. Now if the mass of the

body A, Fig. 553, = Jfi, we have the

corresponding accelerations

P P.

P^ = M^
etc.

But, according to § 19, the vari-

ation in velocity corresponding to p
and to an element of the time r is

hence the elementary increments and diminutions of velocity in

the foregoing case are

_ Pi T

M,
-, etc..

and the increase or decrease in velocity of the mass J/i after a cer-

tain time is

-\- a^ -\- Ko -{ {P, + P, + P, + . . .)

i/i'

and the corresponding variation in velocity of the body B, whose

mass is M^, is

The pressure acts in the following or impinging body in oppo-

sition to the velocity c, producing a diminution of velocity, and
after a certain time the velocity, which the body still possesses, is
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V,:=Cr- (Pi + P2 + ...) ^.

The pressure acts upon the body B, which is in advance and which
is impinged upon, in the direction of motion, its velocity d is

increased and becomes

V, - C, + (P, + P, + Pa + . . .) ^.

Eliminating from the two equations (Pj + P2 + P3 + . . .) r,

we have the general formula

I. ifi (ci — v^) — Jfa (^2 — Co), or

il/i Vi + M^ v^ — ifi c, + M^ c„

The product of the nxass of a body and its velocity is called its

momentum (Fr. quantite de mouvement ; Ger. Bewegungsmoment),
and we can consequently assert that at every instant of the impact

the sum of the momentums (i/i v^ + M^ v^) of the tivo todies is the

same as before the impact took jolace.

At the instant of greatest compression, the two bodies have the

same velocity v, hence if we substitute this valiic v for v^ and v^ in

the formula just found, we obtain

i¥i V -^ 3Lv = M^c^ \- M.2 C.2,

from which we deduce the velocity of the bodies at the moment of

greatest comp)ression

_ Ml Cx + 1/, gg

If the bodies A and B are inelastic, i.e. if after compression

they have no tendency to expand, all imparting or changing of

motion ceases, when the bodies have been subjected to the maxi-

mum compression, and they then move on with the common
velocity

V =
M, + M,

Example—1) If an inelastic body B weighing 80 pounds is moving

with a velocity of 3 feet and is impinged upon by another inelastic body

A weighing 50 pounds and moving with a velocity of 7 feet, the two move

on after the collision with a velocity

50 . 7 4- 30 . 3 350 + 90 44 11

^ = ^^0T-8"0— = -80— = y = y ^ ^^^''''

2) In order to cause a body weighing 120 pounds to change its velocity
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from c = 1^ feet to v = 2 feet, we let a body weighing 50 i)ouncls strike

it ; what velocity must the latter have ? Here we have

(v - c,) 2fo „ (2 - 1.5) .120 ^ 6 „ ^ ,.

c, = + ^^ j/^-- = 2 + ^

^^
= 2 + - = 3,2 feet.

§ 333. Elastic Impact.—If the colliding bodies are perfectly

elastic, they expand gradually during the second period of the im-

pact after having been compressed in the first one, and when they

have finally assumed their original form, they continue their mo-

tion with different velocities. Since the work done in compressing

an elastic body is equal to the energy restored by the body, when
it expands again, no loss of vis viva is caused by the impact of

elastic bodies. Hence we have for the vis viva the following equa-

tion

11. 31, t\' -f- 3f, i'/ = 31, c' + 31, c./, or

31, {c' - v{) = 31, (v/ - c:).

.
From equations I. and II. the velocities v, and v, of the bodies

after the impact can be found. First by division we have

Cx — I'l' V.2 - C.^

C\ — Vi V, — c,

I.E.,

C\ + V\ = v-2 + c„ or V, — v, — c, — c, ;

substituting the value

V, = c, + V, — c„

deduced from the last equation, in equation I., we have

31, V, + 31, V, + 31, (ci — c.^ = 31, c, + 31, c,, or

{3f, + J/,) V, = {31, H- J/,) c,-2 31, {c, - c),

whence

2 3f, {c, - c) ,

'' = '^- -MrvMT ^""^

2 3L {c, - c.) 2 31, (c, - c.)

"^ = '^-'^^'^'-
3I,\3I, -'^'--31,^31, '

Hence if the bodies are inelastic, the loss 'of velocity of one

body is

_ 31, C, -r J/o c, _ 3L{c, — c,)

'' ^' - ^' - —MTSTMr -
31, + 31,

'

and when they are elastic, it is double that amount, or
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_ 2 M, (g i
- g.)

and while for inelastic bodies we have the gain in Telocity of the

other body

_ _ M, c, + 31, c, _ _M, (ci - c,)

for elastic bodies it is

_ 2 31, {
c, - c,)

M, + M, .

'

or double as much.

Vc, — c<i=^

Example.—Two perfectly elastic balls, one weighing 10 pounds and

the other 16 pounds, collide with the velocities 12 and 6 feet. What are

their velocities after the impact ? Here M^ = 10, e^ = 12, M^ = 16 and

Cg = — 6 feet, and the loss of velocity of the first body is

2 . 16 (12 + 6) 2 . 16 . 18

and the increase of the velocity of the other is

v,-c, = ^-^-^^ =13,846 feet.

The first body, therefore, rebounds after the collision with the velocity

«j = 12 - 22,154 = — 10,154 feet, and the other with the velocity v^ = —Q +
13,846 = 7,846 feet. The vis viva of these bodies after the impact is

= M^ v^' + M^ «2' = 10 • 10,154^ + 16 . 7,846^ = 1031 + 985 = 2016 or

the same as that before impact ifj c^ + M^ Cg = 10 ,
12'' + 16 .

6'' — 1440 +
576 = 2016.

^ fj

If the bodies were inelastic, the first body would lose but -^—^

—

-

/y /•

= 11,077 feet of its velocity and the other would gain ———^ = 6,928
2

feet; the velocity of the first body after the impact would be 12 — 11,077 =
0,923 feet, and that of the second — 6 + 6,923 = 0,923 ; a loss of me-

chanical effect

[2016 - (10 + 16) 0,923^] : 2 r/
= (2016 - 22,2) . 0,0155 = 30,9 foot-pounds,

however, take:- place.

§ 331-. Particular Cases.—The formulas found in the fore-

going paragrapli for the final velocities of impact are of course

applicable, when one of the bodies is at rest, or when the two

bodies move in opposite directions and towards each other, or

when the mass of one of the bodies is infinitely great compared

to that of the othei*, etc. If the mass 31.2 is at rest, we have c. =
and therefore for inelastic bodies
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— ^' ^^

and for elastic ones

2 M, c, 3fr - M,
Ci - c„ and

J/. + M, " M, + M,
^^'

_ '2M,c, 2 J/,
''-' - ^ "^

J/, + 2L - M\ + M, "

If tlie bodies move towards each other, c^ is negative, and there-

fore for inelastic bodies

M,c,-M,c,
31, + M,

'-, and for elastic ones

'•2 — ^2 4- ^ — C.2-ir </ C^ + <^2 j

_ 2 M, {c, + c,) -,
. _ 2 J/i (gi + c.,)

Vi — Ci ry
^

^T and. Z'2 — ^o + ^^7^ ^ ^7 •

If in this case the momenta of the bodies are equal, or M^ Cx ==

iV/o Co, when the bodies are inelastic, v = 0, i.e., the bodies bring

each other to rest, but if they are elastic,

Vi = Ci ,V
^

1^—- = Ci — 2 Ci = — Ci, and

2 (
Jfo ^2 + 31

, Co)

the bodies after the impact proceed in the opposite direction with

the same velocity they originally had. If, on the contrary, the

masses are equal, we have for inelastic bodies

and for elastic ones

Vi = — c.> and r^ = c,,

I.E., each body returns w^ith the same velocity that the other body

had before the impact. If the bodies move in the same direction,

and if the one in advance is infinitely great, we have for inelastic

bodies

3f.-,c<i

^ =^ = ^»

and for elastic ones

i\ = c, — 2 (ci — Co) = 2 C2 — Ci, V, = c.2 + = Co

;

the velocity of the infinitely great body is not changed by the

impact. If the infinitely great body is at rest, or if c^ = 0, we have

for inelastic bodies

t' = 0,

and for elastic ones

^'i = — c,, V, = ;

here the mfinitely great body remains at rest; but in the first case

43
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the impinging body loses its velocity completely, and in the second

case it is transformed into an equal opposite one.

Example—1) With what velocity must a body weighing 8 pounds

strike a body weighing 25 pounds in order to communicate to the latter a

velocity of 2 feet ? If the bodies are inelastic, we must put

^^'^ -,i.E.2=
^-'^

M^ + J/^3 8 + 25'

whence we obtain c^ = ^^ = 8|^ feet, which is the required velocity ; if

they were elastic, we would have

-ir-, whence c^ = ^ = 4^ feet.
M^ + .¥<

2) If aball 3/j,Fig. 554, strikes with the velocity c^ the mass Jfg =n M^^

Fig 554 which is at rest, if the second mass

jyi
strikes a third M^ = n M2 = ri^ M^,

j^^^^ ^^^^ *^^-3
]vi

"^i^h the velocity imparted to it by

f <5 W^ ^^|^]^\^ ^ the impact, and if this third mass

^^.^m^^^^^^^^^ ^ strikes a fourth M^ = n M^ =
^^^^

n^ M^, etc., we have, when these

masses are perfectly elastic, the velocities

2ifi 2 2.¥2 2

If, for example, the weight of each mass is one-half that of the pre-

ceding one, we have the ratio of the geometrical series formed by the

masses

hence

v^ =4c„^3 =(frc„^, =(trCi...,^^o = (f)'^i = 13,32. c,.

§ 335. Loss of Energy.—When two inelastic bodies collide,

a loss of vis viva always takes place, and therefore they do not

possess so much energy after the impact as before. Before the im-

pact the vis viva of the masses M^ and J/a? which move with the

velocities Cx and c., is

but after the impact they move with the velocity

V — —^y ^7— and
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their vis viva is

by subtraction we obtain tJie loss of vis viva caused by tlie impact

K = 31, ic' - v') + M, {c,' - v')

= 31, (c, + v) (ci - v) - 31, {c, + v) (v - c), but

3f, ic.
- V) = M, (V - c.) =

^^^'-^f^\
whence

,. ,
^3f,3f,(c,-c,) {c,-c,y3f, 3I, {c-c,f

A = (., + ._.,-.)^^^-^-=
J/, + jiT-^r-^'

If the weights of the bodies are G^ and 6^0, or if

31, = ^ and M, = ^,
g 9

we have the loss of energy or the work done

. ^ {c, ~ c,y G, G,

%g 'G, + g;

We call -^-—^ the Ivdrmonic mean between G, and G,, and we

can assert tliat the loss of energy^ caused dy the impact of two inelastic

bodies and expended in changing their form, is equal to the product

of harmonic mean of the two masses and the height due to the differ-

ence of their velocities.

If one of the masses 31.2 is at rest, we have the loss of

mechanical effect

^ ^ G, G,

^g' G, + g:

and if the moving mass 31, is very great, compared to the mass at

rest, (x2 disappears before G, and the formula becomes .

We can also put

K = 3f, {c' - v') + 31, (e/ - v')

= 3f,{c,'-2c,v + v' + 2c,v-2v')-\-3f,{G,'-2c,v + v' + 2c,v-2v,')

= 31, {c, -vf +2 M, v [c, -v) + M, (c, - v)' + 2 M, v {c, - v)

^ 31, {c, - vy + 3f, {c, - vY ;

for 3f, (c, — v) = 31, {v — c).

From this we see that the vis viva lost by the inelastic impact is
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equal to the sum of tlie products of the 7nasses mid the squares of

their gain or loss of velocity.

Example—1) If in a macliine 16 impacts per minute take place be-

tween the masses

M. lbs. and Jfo = lbs.,

whose velocities are c^ = 5 feet and Cq = 2 feet, the loss of energy, in con-

sequence of these impacts, is

(5 — 2y 1000 . 1200^=^' 27^ •
2200 = tV . 9 . 0,0155 Ao o

o ^ 20,29 foot-lbs.

per second.

2) If two trains of cars, weighing 120000 and 160000 jDounds, come into

collision upon a railroad when their velocities are c^ = 20 and Cg = 15

feet, a loss of mechanical effect, which is expended in destroying the loco-

motives and cars, ensues ; its value is

/20 + 15y 120000 . 160000

280000
= 35= . 0,0155

1920000

28
' 1302000 foot-lbs.

§ 336. Hardness.—If we know* the modnkis of elasticity of

the colliding bodies, we can find also the compressive force and the

amount of compression. Let the cross-section of the bodies A and

B, Fig. 555, be F^ and F^, their length

/i and L, and their moduli of elasti-

city be E^ and ^s- If they impinge

upon one another, the compressions

produced are, according to § 204,

and their ratio is

_ F, E, I,

Fi Ex k

and Ao = PI,

Fo Eo

If, for the sake of simplicity, we denote --—-— hy Hi and -——

^

by H,, we obtain

and

P P^ and A, = —

,

Calling, with Whewell (see the Mechanics of Engineering,

§ 207), the quantity -y— the hardness (Fr. durete raideur, Ger.
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Harte) of a body, it follows that the depth of compression is in-

versely proportional to the hardness.

C
If the mass M — — impinges with the velocity c upon an im-

movable or infinitely great mass, all its vis viva is expended in com-

pressing the latter body, whence, according to § 206,

^-=¥ = ^j-
But the space c is equal to the sum of the compressions Aj and

P P
As? and we have Ai = ^^ and X.^ = ^r^ whence

Hi ±1.2

or inversely ^^ Hi Ho

H, + H,

Substituting this value of P in the above equation, we obtain the

equation of condition

1
^^ ^^

n" — —- r
^'•R. + K, ~ "^ g '

or JH, + H, G

by the aid of which the values P, Aj and Ag can be calculated.

Example.—If with a sledge, that weighs 50 pounds and is 6 inches long

and the area of whose face is 4 square inches, we strike a lead plate one

inch thick, and the area of whose cross-section is 2 square inches, with a

velocity of 50 feet, the effect can be discussed as follows. Assuming £^j =
29000000 as the modulus of elasticity of iron and E^ — 700000 as that of

lead, we find the hardness of the two bodies to be

F^E^ 4 . 29000000
^1 = ^— '- = g = 19333333 and

Pg E^ _ 2 . 700000

Substituting these values in the formula

E^ = ~^j-^ = "'
"j^ = 1400000.

a = c y -

E^ + B, a

and putting \he weight of the sledge = 4.6. 0,29 = 7 pounds, or

G— = 7 . 0,031 = 0,217,
g ' '

we have for the space described by the sledge in compressing the lead

_ «A A
/~20733333To;2T7~ ^^ /0,4499r

'-^^V 19333333 .T4^0000=^H 27^666=^'^^^^ inches=0,245 lines.
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Hence the pressure is

E. H. 19333333 . 1400000
^ = W^Vk ' ' ^ ~~m3333-3 •

^'^^^4 = ^^^^^ P«^^^« 5

the compression of the hammer is

P 26632 ^ . ,

^^= H,= r9333333 = ^'^^^^ ^^^"' = ^'^^^ ^""^^^

and that of the lead

P 26632 _^. ,

Ag = — =
1400000

~ '
i^<^^^s = 0,228 lines.

§ 337- Elastic -inelastic Impact.—If two masses M^ and Jf2

are moviDg with the velocities c^ and c^ in the same direction, their

common Telocity at the moment of maximum compression is, ac-

cording to § 332,

_ if, Ci + M^ C.2

^ ~ M, + ^~'
and the work done during the compression, according to § 335, is

^ {c, - c.;)' M, M, _ (ci - c,y G, G,

2 ' M\ + 21,
~ 2^ •6^1+6^/

but this mechanical effect can be put

1 P (7 = ^ P (A, + A,

whence we obtain for the sum of the compressions of the two

masses

from which the compressive force P and the compressions A, and

Ag of the two masses can be found.

If the bodies are inelastic, they remain compressed after the

impact ; but if one only is inelastic, the other resumes its original

form in a second p^iod, and the work done in expanding produces

another change of velocity. If, for example, the mass J/, =

—
^ is elastic, the work done in the second period of the impact is

^^^^--^' H,- 2hM. + hJ
""

^ {c^ - c.y- G, G,
H,

2g ' G, + G,' H, + H'
We have, therefore, when the velocities after the impact are i\ and

Vo, the formulas
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M^ ih + M, v., ~ 31, Ci + Mo C2 and
ir AT TT

M, V,' + M, V,' = M, cC + M, c/ + (e, - cf . ^^^^ •

^^^^f^^

I.E.

3/, .- + AL ./ = 3/. c/ + .Tf. ./ - (.. - c,y . -^^ .^^.
If we put the loss of velocity Cj — v^ = x, we have the gain in

velocity

_ M,x
^^ ~ ""^ ~ ~m;'

and the last equation assumes the following form

:

. (3 0, - ^) - . (3 ., + ^) - (0, - e.)^3^-^^^ . ^^^-^^ = 0,

or

if.
Multiplying by -^ ^ and remembering that

we obtain the quadratic equation

or

H,
(^ - ('' - ^=> iTT^} = (^' - '^^' [m^)- h; + ^/

by resolving which we obtain the loss of velocity x of the first body

c, - ., = (., - 0,)^^^ (1 + \^~^),
and the gain of velocity of the other

V. - 0, = (0, - 0,)
^^A_

(1 + /^-^^.)
Example,—If we assume that in the example of the foregoing para-

graph the iron sledge is perfectly elastic and that the lead plate is perfectly

inelastic, we obtain the loss of velocity of the hammer, which weip^hs 7

pounds and falls with the velocity of 50 feet, since we must put Cg = and
ifg = QO,
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^1 - «i

/
. / ^2 \ /. . / 1400000 \

^ (l + Vs^ts:) = ''{' + 1/20783833)

= 50 (1 + 0,26) = 63 feet

;

hence the velocity of the sledge after the blow is

v^ == Ci - 63 = 50 - 63 = - 13 feet.

The velocity of the lead plate, "which is retained, of course remains = 0.

§ 338. Imperfectly Elastic Impact.—If the colliding

bodies are imperfectly elastic^ they expand only partially in the second

period of the impact and the mechanical effect expended in pro-

ducing the compression in the first period is not entirely restored

in the second period. IfAjand A.^ again denote the amount of

compression and P the pressure (called also tlie force of distorsion),

we have the mechanical effects expended during the compression

= i P Ai and h P A2, and if during the expansion but the /xth

part or more generally during the expansion of the first body

but the jitith and during that of the other but the /^sth part of the

mechanical effect is restored, the entire loss of mechanical effect is

A = ^,P[{1- II,) A, + (1 - /x,) AJ,

P P
or, putting Aj = -- and X^^ = --,

ti\ -ti^

The force with which the bodies react in the second period is

called the force of restitution.

But according to the foregoing paragraph we have

^ = ^H^/^^^ = ^'^ - ^^) ^^m^Tm, • -bTb^'
hence the required loss of mechanical effect is

^ ^ {c, - c,y M,M, H,H, /I - II, ^ 1 - ii,\

2 ' M, + -M, ' H, + H,\ H, H.
U_ (1

-

_ {c, - c-^f M,M, I _ m H, + yi, H\

To find the velocities v, and v^ after the impact, we employ the

equations

M, V] + M.> V.2 = M, c, + ifo C.2 and

M, V,' + M, V,' = M, c^ + M., c^

which we must combine and resolve. In exactly the same manner

as in the last paragraph the loss of velocity of the first body is found

to be
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and the gain in velocity of the hody, which is in advance, ?

. M,
I

./%H, +>, Ha
,^ - ^. = {c. - c.)

^^-:^rM, V^y ~h7VhV \

These two formulas include also the laws of perfectly elastic

and of inelastic impact. If we substitute in them \i^ = ji., = 1, we

obtain the formula already found for perfectly elastic bodies, and

if we assume
ij,^
=

ij,^
= 0, we obtain the formulas for inelastic im-

pact, etc. If both bodies are equally elastic, or /Xi = (j^^,, we have

more simply

and

.,-., = (0. -.,)^^ (1 + 1^).

If the mass M^ is at rest and infinitely great, it follows that

Cx — Vi = C,{1 -\- V fl), I.E.,

Vx — —
c-i V fi, or inversely

"=©'
If we cause a mass M^ to fall from a height h upon a rigidly

supported mass M^, and if it bounces back to a height h^, we can

determine the coefficient of imperfect elasticity of the body by the

formula h^

'' = ¥•

Newton found in this way for ivory,

f = (W = If = 0,79,

for glass

1^ = (I |)^ = 0,9375^ = 0,879,

and for cork, steel and wool

fl = (5)^ ^ 0,555' = 0,309.

We assume, in this case, that the falling body is a sphere and

that the body upon which it falls is flat.

General Morin by causing cannon balls, weighing from 6 to 20

kilograms, to fall upon masses of clay, loood and cast-iron, whicli

were suspended from a spring balance or spring dynamometer
found that for clay and wood ji is nearly = 0, and that, on the

contrary, for cast-iron it is nearly = 1, i.e. that the impact of
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Fm. 556.

bodies of former substances can be considered as inelastic and that

of those of the latter substances as perfectly elastic (see A. Morin,

Notions fondamentales de Mtcanique, Art. 67-70).

Example.—What will be the velocities of two steel i)late3 after impact, if

before the impact their velocities were c^ = 10 and c^= — 6 feet, and if one

weighs 30 and the other 40 pounds ? Here we have

c, - ^, = (10 + 6) . f|(l + I) = 16 . t . V =^ = 14,22 feet,

hence the required velocities are

v^ = Cj - 14,23 = 10 - 14,22 = - 4,22 feet

and
^3 = Cg + 10,66 = — 6 + 10,66 = 4,66 feet.

§ 339. Oblique Impact.—If the directions of motion 8^ C^

and S^ Cg of the two bodies A and B, Fig. 556, diverge from the

normal A^A^to the tangent plane,

an oblique impact takes place. The
theory of oblique impact can be re-

ferred to that of direct impact by

decomposing the velocities S^ C\ — Ci

and. >% C\ = c-i into their components

in the direction of the normal and

tangent ; the components in the di-

rection of the normal produce a

direct impact, and are, therefore, changed exactly as in the case of

direct impact, while the velocities parallel to the tangent piano

cause no impact, and, therefore, remain unchanged. If we combine

the normal velocity of any body, obtained according to the rules

for direct impact, with the tangential velocity, which has remained

unchanged, the resultant is the velocity of the body after the im-

pact. Putting the angles formed by the directions of motion with

the normal equal to a^ and a.,, or C^ S^ JV = a^ and 0^2 So ]V= a.,, we
obtain for the normal velocities Si E^ and S.2 E.^ the values c, cos. a^

and c, COS. a., and, on the contrary, for the tangential velocities S^ F^

and S.2 F^ the values Cx sin. a, and c.2 sin. a.,.

The normal velocities are changed by the collision, the first one

becoming

-K-

?', = Ci COS. a, — (ci COS. Oi

and the second

C2 COS. aA
Mo

COS. a.y + (c, COS. «] — Cc, COS. Oo)

3f, + M,

M,

(1 + ^^),

(1 + ^/^),
31, + M,

in which M, and .¥"„ denote the masses of the two bodies.

1
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From i\ and c^ si7i. a^ we obtain the velocity S^ G^ of the first

body after the impact

Wi = Vi\^ +- Cy sin-' a,,

and from Vo and Cj sin. a^ the velocity S., Go of the second body

W2 — Vv^ + C.2 sin.^ a^
;

the angles formed by the directions of the velocities with the

normal are given by the formulas

„ Cx Sin. «i n , n ^^ <^^'^^- ^2
tang. (3^ = and tmig. [3^ = ,

(3i denoting the angle Gi Si JV and (3.2 the angle G.2 S^ iV.

Example—1) Two balls, weighing 30 and 50 pounds, strike each other

with the velocities c^ = 20 and Cg = 25 feet, whose directions form the

angles a^ = 21° 35' and Co = 65^" 20' with the direction of the normal to

the tangent plane ; in what direction and with what velocity will these

bodies move after the impact ? The constant components are

Ci sin. a^ = 20 . sin. 21° 35' = 7,357 feet and

Cg sin. a^ = 25 . sin. 65° 20' = 22,719 feet,

and the variable ones are

Cj COS. Cj = 20 . cos. 21° 35' = 18,598 feet and

C2 COS. a^ = 25 . COS. 65° 20' = 10,433 feet.

If the bodies are inelastic, we have ^ = 0, and therefore the normal

velocities after the impact are

i\ = 18,598- (18,598 - 10,433) . |^ = 18,598 - 5,103 = 13,495 feet and

^3 = 10,433 + 8,165 . I = 10,433 + 3,062 = 13,495 feet.

Hence the resulting velocities are

w^ = Vl3,495'^ + 7,357- = v236,24 = 15,37 feet and

«^2 = Vl 3,495^ + 2"27n9' = V698"^ = 26,42 feet

;

and their directions are determined by the formulas

7 357
tang. (3^ = 1^^955 %• ^^^9- /^i

= 0,73653 - 1, i3^ = 28° 36' and

22,719 ,
tang. (3^ = ^ -^— , log. tang. 0^ = 0,22622, l3^ = 59° 17'.

§ 340. Impact against an Infinitely Great Mass.—If the

mass A, Fig. 55 7, strikes against another mass, which is infinitely

great, or against an immovable object B B, or if c. = and
M.2 = Qo , we have

t\ — c'l COS. a, — Ci COS. tti (1 + Vfi) — — Ci cos. a^ Vfi and

t?2 = + c, COS. a, —^ -^l =.-0+0 = 0,
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if in addition fi = 0, we have i\ ~ 0, but if ii = 1, i\ = — c^ cos. a,,

I E., when the impact is inelastic, the normal force is complete-

ly annihilated, hut, on the contrary,

tvhen it is perfectly elastic, the normal

force is changed i7ito an equal ojyposite

one. The angle formed by the di-

rection of motion after the impact

with the normal is determined by the

-^ equation

c, sin. a, _c^n. a,

tang, p, =
v^ Ci cos. «! Vfl

= — tang. a^\ --

for inelastic bodies

, ^ tang.a^ ^
tang. f3,

= —^— = oo ; i.e. (3, 90"

and for elastic ones

tang. 13^=— tang, a^, i.e. 3^ = — a^.

After an inelastic body has impinged upon an inelastic obstacle,

it moyes on with the velocity Cj sin. a^ in the direction of the tan-

gent plane. When an elastic body has impinged upon an elastic

obstacle, it moves on with its velocity unchanged in the direction

S G, which lies in the same plane as the normal N N and the

original direction X B, and makes with the normal the same angle

G S iVthat the direction of motion before the impact made with

it. The angle X 8 N, formed by the direction of motion before

the nnpact with the normal or perpendicular, is called the angle of

incidence (Fr. angle d'incidence ; Ger. Einfalls-winkcl), and the angle

G S N, formed by the direction of motion after the impact with

the same, is called the angle of reflexion (Fr. angle de reflexion ; Ger.

Austritts- or Reflexionswinkel) ; we can therefore assert that when

the impact is perfectly elastic, the angles of incidence and of reflexion

lie i?i the same plane as the normal and are equal to each other.

When the impact is imperfectly elastic, the ratio S^\i of the

tangents of these angles is equal to the ratio of the velocity pro-

duced by the expansion to the velocity lost by tlie compression.

By the aid of this law we can easily find the direction in which

1
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a body A, Fig. 558, must strike against an immovable obstacle

B B, when we wish it to take a given direction S Y after the im-

pact. If the impact is elastic, we let fall

Fig. 558. from a point Y of the given direction

f^
a perpendicular Y upon the normal

'-y"^ N N and prolong it until the pro-

'^
-J

longation Y^ is equal to the per-

^^
pendicular itself; S Yi is then the

p direction in question ; for, accord-

ing to the construction, the angle

WS Y,= 'WSY. If the impact is

imperfectly elastic, we must make Yi = Vfj, . Y; then Yi S
is the required direction, for

fang, ^i _ Y^ _ ^
If we let fall the perpendicular Y R upon the line S R parallel

= \/Irto the tangent plane and make the prolongation RX = y - R Y,

aS^X will be, as we can easily see, the required direction of incidence.

• Remark.—The principal application of the theory of oblique impact

is to the game of billiards. See '' Theorie Mathematique cles eflfets du jeu de

billard, par Coriolis." According to Coriolis, when a billiard ball strikes

the cushion the ratio of the velocity of recoil to the velocity of impact is =
0,5 to 0,6 or /^ is = 0,5^ = 0,25 to 0,6^ = 0,36. By the aid of these values

the direction, in which a ball A must strike the cushion B B when it is

to be thrown back towards a point F, can be determined. We let fall

from Fthe perpendicular TB to the line of gravity parallel to the cushion,

prolong the same a distance B X = a/ - = i^ to ^^ of its length, and

draw the line Y^ X; the point of intersection D is the point towards which

the ball must be driven, when we wish it to rebound towards Y. The twist

of the ball causes this relation to vary somewhat.

§ 341. Friction of Impact.—When oblique impact occurs,

the pressure between the colliding bodies gives rise to friction, in

consequence of which the components in the direction of the tan-

gent plane are caused to vary. The frictiou F of impact is deter-

mined in the same way as that of pressure. If P denote the

pressure of impact and the coeflScient of friction, then F = (p P.

It differs from the friction of pressure in this only, that, Hke the

impact itself, it acts but for an instant. The changes in velocity
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produced by it are not, however, immeasurably small ; for the

pressure P during impact (and therefore the portion P of it) is

generally very great. Denoting the impinging mass by M and the

normal acceleration produced by the force of impact P hj p, we
have

P = Mp and F =
(f) Mp,

and also the retardation or negative acceleration of the friction

during the impact

I.E. (/) times that of the normal force. Now the duration of the ac-

tion is the same for both forces ; therefore the change of velocity pro-

duced hy the friction is </> times the change of the normal velocity

frodnoed hy the impact.

If a mass M falls vertically upon a horizontal sled, and if the

velocity c of this mass is entirely lost by the collision, the retarda-

tion of the motion of the sled, whose mass is if,, is

F _ (j) Mp
M-h M, ~ W+1^,'

and consequently the loss of velocity is

(f)
M

V — -^r^ ^-f C.M + M,

Morin has proved the correctness of this formula by experiment

(see his Notions fondamentales de Mecanique).

If a body strikes an immovable mass B B at an angle a. Fig.

559, the change in the normal velocity is, according to the last

paragraph,

w — c cos. a (1 + V^l)
;

hence the variation produced in the

tangential velocity is

=
(f)
w = 4) c {1 + ^i^) cos. a.

After the impact the component csin.a

becomes

c sin. a —
(f)

c (1 + VJi) cos. a

= [si7i. a — ^ cos. a (1 + Vfi)] c;

for perfectly elastic bodies it is

— {sin. a — 2 cos. a) c,

and, on the contrary, for inelastic bodies it is

= {sin. a — cos. a) c.

Fig. 559.
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The friction very often causes the bodies to turn around their

centres of gravity, or if, before the iDipact, a motion of rotation ex-

ists, it is changed. If the moment of inertia of a round body A in

reference to its centre of gravity S \^ = M ¥, and if its radius S C
= a, we have the mass of the body reduced to the point of tan-

gency C

and therefore the acceleration of the rotation produced by the fric-

tion i^is

^' ~ Mir '.a'
- MW'.a- ~ "^ ^ ' ^

F[ _±Mp_
h-.a'~ M ¥ : c

and the corresponding change of velocity is

2 2

la^ =
(f)
-—

, i/j =z (f) ^ (^l -\- v^ij c COS. a.

For a cylinder ^ = 2, and for a sphere -- = |, therefore, it fol-

lows that the dianges of velocity of rotation of these round bodies,

produced by impact against a plane, are

?i;j = 2 (/) (1 + \^\i) COS. a and ?(;.= | (1 + Vii) cos. a.

Example.—If a bilhard ball strikes the cushion with a velocity of 15

feet, in such a manner that the angle of incidence a = 45°, what will be

the conditions of motion after the impact ? Putting for \'fi its mean value

0,55, we have the normal component of the velocity after the impact

= — V/7. ccos. a= — 0,55 . 15 . COS. 45° = — 8,25 . v^= — 5,833 feet,

and assuming, with Coriolis, ^ — 0,20, we obtain the component of the ve-

locity parallel to the cushion, which is

= csin.a — (p(l + '/ii)c COS. a = (1 — 0,20 . 1,55) . 10,607 = 0,69 . 10,607

= 7,319 feet,

and consequently for the angle of reflection v/e have

7 310
tanrj. = ~~^- = 1,2548 or /3 = 51° 27';

hence the velocity after impact is

_ 5,83
~~

COS. oV

The ball also acquires the velocity of rotation

5 833= b^/ = 9)360 feet.
COS. ol 27'
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I 6 . 1,55 . 10,607 = 8,220 feet

about its vertical line of gravity.

Since the bail does not slide, ])ut rolls upon the billiard table, we must
assume that, besides its velocity c = 15 feet of translation, it has an equal

velocity of rotation, and that this can also be resolved nito the components
ccos. a z= 10,607 and c sin. a = 10,607.

The first component corresponds to a rotation about an axis parallel to the

axis of the cushion, and becomes

c COS. a — f (1 + V/I) c COS. a = 10,607 ~ 8,220 = 2,387 feet
;

the other component c sin. a = 10,607 feet corresponds to a rotation about

an axis normal to the cushion and remains unchanged.

§ 342. Impact of Revolving Bodies.—If two bodies A and
B, Fig. 560, revolving around the fixed axes G and K, impinge upon

one another, changes of velocity take

place, which can be determined from

the moments of inertia J/j Jci^ and

ifs ^s'^ of these bodies in reference to

their fixed axes by the aid of the

formulas found in the preceding para-

graphs. If the perpendiculars G H
and K L, let fall from the axes of ro-

tation upon the line of impact, be

denoted by ai and a^, we will have the

masses reduced to the extremities H and L of these perpendicular

• Fig. 560.

^N

to the line of impact = M, h.
and

ifo/^o
, substituting these values

for M^ and ifo in the formula for central impact, we obtain the vari-

ations of velocity of the points R and L (§ 338).

M^ h^ : «/
Cx — V^ — (Ci — ^'o)

= (c, — ^2)

V^ — C., — (Ci — Ca)

= (Ci — Cc.)

M, h' : a,^ + M, h: : a.,

i/2 Ic^ ax

Mx hx ai + M^ K' ax

Mx kx' : ax'

Mx hi : ai + M.-, ki : a,

Mx ki ai

(l + V 11)

(1 + V 11) and

, (1 + ^^7)

0^ + ^^),
Mx ki ai + M, ki ai

in which Ci and c, denote the velocities of these points before the

impact.

To introduce the angular velocities, let us denote the angular

velocities before the impact by Ci and €2 and those after the impact
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by Wj and Wg, thus we obtain Ci = a^ Cj, c^ — a.2 e^, Vi = a^ (o^ and

^2 = «2 ^2? and the loss of velocity of the impinging body is

gj — Wi = «i («! fii — «2 £2)
M, hi' a^' + 7^2 k^' oi\

and the gain in velocity of the impinged body is

e.i = tto {a^ £1 — ^2 £2)

The angular velocities after impact are

G)i = Si — «i («i £1 — a^ £2) (1 + 1^ /^)

Ml h^ a^' + i¥2 ^2' «i

i/2^0'

(1 + ^ /^),

(1 + VJ).

and

Wg = £2 + 0^2 (^1 £1 — <^2 £2) {1 + V 11)

M, Tc^

M, Tc,' a,' + M, k.! a,^'

If both bodies are perfectly elastic, we have /x = 1, or ^

1 + i/^T zz. 2,

and if they are inelastic, \x = 0, or

1 + t/"^ = 1.

In the latter case the loss of vis viva occasioned by the impact is

M, lei' . M, h,^= {Ct, £1 — «2 £2) •

M, k,' a,' + M, k,' a,'

Example.—The moment of inertia of the shaft A G, Fig. 561, in refer-

ence to its axis of rota-

tion, O IS

= Jf^ Z^i^ = 40000 : g,

and that of the tilt ham-
mer ^ ^ in reference to

its axis K is

= 150000 : g,

the arm G C of the shaft

is two feet and that K G
of the hammer is 6 feet, and the angular velocity of the shaft at the mo-

ment it impinges upon the hammer is = 1,05 feet ; how great is the velocity

after the impact and how much mechanical effect is lost by each blow, sup-

posing both bodies to be completely inelastic ? The required angular

velocity of the shaft is

4 . 1,05 . 150000
"'" '^^ 40000 . 36 + 150000 . 4

= 0,741 feet,

and that of the hammer is

105
\ 204/

1,05 . 0,706

2.6. 1,05 . 4 , GO
also = u^ . --—^ = 0,741 . f = 0,247 feet

Ji. Li204

44
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I.E., three times as small as that of the shaft. The loss of mechanical effect

for each impact is

(2^1^052 _J0000.150000___ _600000_

2g ' 40000 . 36 + 150000 . 4 ~ "' ^^' ^ * 144 + 60

150000 10253,25= 0,0155 . 4,41 —g|— = gj^— = 201,05 foot-pounds.

§ 343. Impact of an Oscillating Body.—If a body A,

Fig. 562, which has a motion of translation and is

Fig. 582. unretained, impinges upon a body B C K, movable

around an axis K, we can find the velocities after

impact by substituting in the formulas of the pre-

ceding paragraph instead of a^ Cj and a^ Wi the ve-

locities of translation c^ and v-^ and instead of

--^^-Y- the mass M^ of the first body ; the other no-

tations remain unchanged. The velocity of the

first mass after the impact is therefore

Vi = Ci - (c, - a, e;){l + V fi).
M, a{ + i/2^2".

and the angular velocity of the second is

jf.
«, = e._ + a, (., - «. e,) (1 + V ^) . ^^^^^-^-,

If the mass i/g is at rest, or if e^ = 0, we have

n , a/—\ ^2^2'

and

If Ml is at rest, i.e., if the oscillating mass impinges upon it,

we have Ci = 0, and hence

Vi eAl + ^rt-
Mok,

M, a,' + M, k,'

and

o>, = ., (1 - (1 + VH) ^^-^i^—^.

The velocity, which is imparted to a mass at rest by another

by a blow, depends not only upon the velocity of the blow and the

masses of the bodies, but also upon the distance K L = a. at which

the direction of the impact is situated from the axis K of the body

Avhich is capable of rotation. If the free body impinges upon the

oscillating body, the angular velocity of the other becomes
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= c, (1 + i/»

and if the oscillating body strikes against the free one, the latter

acquires the velocity

both velocities increase, therefore, when
a, 1

M, a,' + 31, k

k.^

1 or
-m M- -^-L 9 Kin

3f, a, + -^—

increases, or 31^ a, + 3f.2 -^ decreases.
Cl-2

Substituting for a,, a ±: x, x being very small, we obtain for

the value of last expression

MAa±x) + —^ z=3f,a±3I,x+ —^-^ h =p _ -f _ + ...)^ ' a ± X a \ ' a a- J

or, since the powers of x are very small.

3L k,' («-»•) X + ..

3Lko'
'N'ow if a is to correspond to the minimum value of J/j a, +

member ± (-Mi %^) ^ must disappear; for its sign is

different, Avhen a is increased a quantity {x) from what it becomes,

when a is decreased by a quantity {— x); hence we must have

the

Fig 583.
/ ^^ 3f, h'\
{^31, ^j X = 0, I.E.,

ITok, = 3Ii, and consequently

V
31,

k J^^^-

Now if one body strike against the other at

this distance (a), the latter assumes its maximum
velocity, which is

1) (J, = (1+ V fi)
2 k-

r -ji/r (^ + ^")2^'
when the oscillating body is impinged upon; and

'3f,

when the free body receives the blow.

3) V, = ifce,{l + ^) |/4^==(1 +/7)
''''
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/Id
The extremity L of the distance or lever arm a — h.^ \' -^,

which corresponds to the maximum velocity, or the point, where

the latter line intersects the line of impact, is sometimes, though

incorrectly, called the centre of percussion j a more correct term

would be the point ofpercussion.

We should be careful not to confound it with the centre of per-

cussio7i (§ 313), whose distance from the axis of rotation is ex-

pressed by the equation _ M^ h^ _ h^^
a =

M,s s'

in which s denotes the distance of the centre of gravity of the mass

ifs from the axis of rotation. If the direction JVW of the impact

of the masses J/i and M^ passes through the centre of percussion,

the reaction upon the axis of rotation becomes = 0.

In order, for example, to prevent a hammer from jarring, le.

reacting upon the. hand, which holds it, or upon the axis, about

which it turns, it is necessary that the direction of the blow shall

pass through the centre of percussion.

If a suspended body XB is struck by a mass M^ with force P

at the point of percussion, or at a distance a = hi y ^ from the

axis Kf the reaction upon the axis is

P, = P + R=P-KMiS (see § 313).

Since P = -^—^- , we have the angular acceleration k =

and K Mi s = - ,!. .^ P ; hence the required reaction is
Mo K

Example—1) The centre of percussion of a prismatical rod G A, Fig.

564, which revolves about one of its ends, is

Fig. 564. at a distance

42 '1
"^^^^^^ from the axis. Now if we grasp the rod at

one end and strike with the point 0, which is

at the distance C = ^ C A, upon an obstacle, we will feel no recoil.

/ jf
The point of percussion, on the contrary, is at a distance r y ^-j^- from

C, and if the mass of the body struck M^ =- M^, we have this distance

= — = 0,5774 r. The rod C A must therefore strike a mass at rest at this

V3
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distance from C, when we wish to communicate the greatest possible ve-

locity to the latter.

2) The distance of the centre of percussion of a i^aralleiopipedon

B D E, Fig. 565, from an axis X X, which is parallel to four of its sides

and is at a distance S A = s from the centre of gravity, and about which

the body rotates, is

+ ^d^

Fig. 565.

d denoting the seuai-diagonal C JD of the sides,

thi'ough which the axis XX passes (§ 287). If the

force of impact passed through the point of per-

cussion, we would have

K
- = h]/§ = \/'{8' + i d')

if.

and the reaction upon the axis would be

§ 344. Ballistic Pendulum.—The principles discussed in the

preceding paragraphs are applicable to the theory of the ballistic

pendulum of Robins (Fr. pendule ballistique ; Ger. ballistische Pen-

del). It consists of a large mass M, Fig. 566, which is capable of

Fig. 566,
turning around a horizon-

tal axis C. It is set in os-

cillation by means of a

cannon-ball, which is shot

against it, and serves to

determine its velocity. In

order to render the im-

pact as inelastic as possi-

ble, upon the side where

the ball strikes, a large

cavity is made, which from

time to time is filled with

fresh wood or clay, etc.

The ball remains, there-

fore, after every shot,

sticking in this mass, and

oscillates together with

the whole body. In order

to determine the velocity
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of the ball, it is necessary to know the angle of displacement ; to

determine this angle, a graduated arc B D is, placed under it, along

which a pointer, placed directly below the centre of gravity of the

pendulum, moves.

According to the foregoing paragraph, the angular velocity of

the ballistic pendulum, after the impact of the bail, is

__ . M^a^ Ci

"^ ~. M,a^ + M,Tcr
M^ denoting the mass of the ball, J/, /I'/ the moment of inertia

of the pendulum, Ci the velocity of the ball and a^ the arm C G of

the impact or the distance of the line of impact NK from the axis

of rotation. If the distance C M of the centre of oscillation M of

the entire mass, including the ball, from the axis of rotation C, i.E.

if the length of the simple pendulum, oscillating isochronously

with the ballistic one, = r, and the angle of displacement E C D
= a, the height ascended by a pendulum oscillating isochronously

will be

h = CM — C II = r — T COS. a = r (I — cos. a) = 2 r I sin. - ) :

hence the velocity at the lowest point of its path is

V = V2 g h — % Vg r sin. -,

and the corresponding angular velocity

a
" = W^-r ^ r 2

equating these values of the angular velocity, we have

J/i a., r 2

E"ow, according to the theory of the simple pendulum,

^
_ moment of inertia _ 3ii o'/ + 31^ Ic^

~
statical moment ~~

(J/i + J/o) s
'

s denoting the distance C S of the centre of gravity from the axis

of rotation ; hence it follows that

ili; tto' + J/g ^'2*' = (J/i + 3I2) s r and

_ (31, 4- 3L\ s ./-—- . a

If the pendulum makes n oscillations per minute, the duration

of an oscillation is

ny — =: - , and therefore V a r — -;
g 71

^ nn
hence the required velocity of the ball is



§345.] THE THEORY OF IMPACT. 695

31, 4- 3L 120 as a
Ci = ^j

—- .
^-

. sin. -.

J/, n n a.2 4

Example.—If a ballistic pendulum weighing 3000 pounds is set in os-

cillation by a 6-pound ball shot at it, and the angle of displacement is 15°,

if the distance s of the centre of gravity from the axis = 5 feet and the

distance of the direction of the shot from this axis is = 5,5 feet, and,

finally, if the number of oscillations per minute is 7i — 40, the velocity of

the ball, according to the above formula, is

3006 120 . 32,2 . 5 . ^^^ 501 . 3864 . sin. 7° 30'
"

'=-^'
407M4r6T5-;5

^"^- '^ = 4473,4416 = ^^^^ '''''

§ 345. Eccentric Impact.—Let us now examine a simple

case of eccentric impact, where the tiuo masses are perfectly free.

If two bodies A and B E, Fig. 567, strike each other in such a

manner that the direction 3iN of the impact

passes through the centre of gravity S^ of one

body, and beyond the centre of gravity ^S' of

the other, the impact will be central for one

body and eccentric for the other. The action

of this eccentric impact can be found accord-

ing to the theorem of § 281, if we assume, in

the first place, that the second body is free

and that the direction of impact passes

through its centre of gravity 8, and, in the

second place, that this body is held fast at

the centre of grarity, and that the force of impact acts as a rotating

force. Now if c, is the initial velocity of ^, c that of the centre of

gra\dty of B E, and if the two velocities become v, and v, we have,

as in § 332, 31, v, -\- Mv = 31, c, + 3£ c. If, further, e is the

initial angular velocity of the body B E, in turning about the axis

passing through its centre of gravity perpendicular to the plane

3^ N S, and if, in consequence of the impact, this becomes w, de-

noting the moment of inertia of this body in reference to 3 by

31 h"", and the eccentricity or the distance 8 K of the centre of

gravity 8 from the line of impact by s, we have

3f, V, H =—
. s oi = 3f, c, + —— s £.

s s-

If the bodies are inelastic, both points of tangency have the

same velocity after impact, then i\ — v 4- 5 w. Determining from

the foregoing equations v and w in terms of f„ and substituting the

values thus obtained in the last equation, we obtain
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from which we determine the loss of velocity of the first body

_ _ Mh' (c, — c - se)
^' ^^ ~ (M, 4- M) ¥ + M, s''

the gain in velocity of translation of the second

_ J/i F (ci — c — s e)
'^- ^ - (Jf, + 31) k' + M^''

and its gain in angular velocity

_ _ Ml s {c^ — c — s e)

"^ - ^ -
IM, + Jf ) F + M, s''

When the impact is a perfectly elastic one, these values are

doubled, and when it is imperfectly elastic, they are (1 + Vfi) times

as great.
,.

Example.—If an iron ball A^ weighing 65 pounds, strikes with a ve-

locity of 36 feet the parallelopipedon B E, Fig. 567, which is at rest and

is made of spruce, if this body is 5 feet long, 3 feet wide and 2 feet thick,

and if the direction of impact iViV^is at a distance S K, = s = If feet from

the centre of gravity 8, we obtain the following values for the velocities aftej^

the impact. If the specific gravity of spruce is = 0,45, the weiglit of the

parallelopipedon is = 5 . 3 . 2 . 62,4 . 0,45 pounds = 842,4 pounds. The

square of the semi-diagonal of side B D F parallel to the direction of the

impact is

(1)^ + (F = ^,35,

whence (according to § 287),

¥ = ^ , 7,25 = 2,416,

gMie = 842,4 . 2,416 = 2035,2,

and g {M^ + if ) F = 907,4 . 2,416 = 2192,3;

hence the velocity of the ball after the impact is

__MJ^^ - qfi r 1 _ 3Q35,2 X

(ifi + if ) P + M^ s^
~ \ 2192,3 + 65 . 1,75V

/ 20^5 2\= 36 M - 1^^ ) = 36 . 0,149 = 5,364 feet,

and that of the centre of gravity of the body struck is

M. F c. 157,08 . 36

»i = c. —

= 2,364 feet

;

= 1,712 feet.

{M^-^ M) ¥ + ifi s^
~ 2391,4

and finally the angular velocity is

_ M^sc^ _ 113,75 . 36
"" ~

(M^ ^ M) l^ + M^s^~ 2391,4

§ 346. Uses of the Force of Impact.—The weight of a body

is a force which depends upon its mass alone and increases uni-

formly with it ; the force of impact, on the contrary, increases not

only with the mass, but also with the velocity and with the hard-

ness of the colliding bodies (see § 336 and § 338), and it can therefore

be increased at will. Impact is consequently an excellent method of
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obtaining great forces with small masses or weights, and it is very

often made use of for breaking or stamping roclc, cutting or com-

pressing metals, dri\dng nails, piles, etc. On the other hand, im-

pact occasions not only a loss of mechanical effect, but also causes

the different portions of the machine to wear rapidly or even to

break, and the durability of the structure or machine is seriously

affected by it. For this reason it is necessary to make the dimen-

sions of those parts of the machine larger than when the latter are

subjected to extension, compression, weight, etc., without impact.

If a rigid body A B, Fig. 568, strikes upon an unhmited mass

C D C oi soft matter, it compresses the latter with a certain force,

whose mean value P is determined by means
Fig. 568.

^^ ^^^ ^^^^^ ^^ ^^^ impression K L ^ s,

WM____ when we put the work done P s during

Ig^^ the compression equal to the energy of the

r"! mass of the striking body. If M be the

:j.^J^^C mass, or 6^ = ^ if the weight, of this body

^^SHhB^» ^ ^ ^^^ ^ ^^^ velocity with which it strikes

^^^^^^^P"

"

upon CD C,we will have

and the required force with which the soft matter will be com-
pressed is

" s 2 g s

Dividing this force by the cross-section of the body F, we obtain

the force with which each unit of surface of the soft material is

compressed and which such a unit can bear without giving way,

_ P _ v' G
^ ~ F ~ Yg'l^s

For safety we only load such a mass with a small portion of p,

for example with one-tenth part ( —
r

).

The bodyM acquires its velocity v by being allowed to fall freely

from a height h = ^. If we substitute this height, instead of^^g Zff

in the foregoing formula, we have

P = -5-, or for the unit of surface p = -^^-.
3 ^ F s
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The force or resistance P, with which soft or loose granular

masses oppose the penetration of a rigid body A B, is generally

variable and increases with the deptli s of tlie penetration. In
many cases we can assume it to increase directly with s, i.e., that

it is null at the beginning and double at the end what it is in the

middle. Now since the value of P, deduced from the above
formula, is the mean value, the resistance or proof load P; of soft

materials is twice as great as the value P obtained by the formula,

I.E., P, = 2P = ^Gh

Example.—If a commander A B, Fig. 568, whose weight G = 120 lbs.

falls upon a mass of earth from a height h = 4 feet, and if the latter is

compressed i an inch by the last blow, a surface of this material equal to

the cross-section of the stamper will support a weight

P = Gh 120 . 4
23040 pounds.

N"ow if the cross-section i^of the commander is f square feet, the force

per square foot supported by this mass of earth would be

P = F = 23040 = 18432 pounds:

^\ p = 1843,2

Fig. 569.

instead of which, for the sake of safety, we should take but
pounds.

§ 347. Pile-driving.—If we drive piles

such as A B, Fig. 569, into earth or any

other soft material C D C, we increase its

resistance much more than we would by

simply stamping it. Such piles (Fr. pieux

;

Ger. Pfiihle) are from 10 to 30 feet long, 8

to 20 inches thick, and are provided with

an iron shoe B. The body M, the so-called

ram (Fr. mouton; Ger. Eammklotz, Eamm-
bar or Hoyer), which is allowed to fall from

3 to 30 feet upon the top of the pile, is gen-

erally made of cast iron, more rarely of oak,

and weighs from 5 to 20 hundred weights.

If the ram falls the vertical distance li, the

velocity with which it strikes the pile is

c r= VYJli,

and if its weight = G and that of the pile
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= 6^1, we have, when we suppose that both bodies are inelastic, the

velocity of the same at the end of the impact (see § 332)

Oc

hence the corresponding height due to the velocity is

2^ ~ \G+gJ ' %g W+ Gj
^'

Now if the pile sink during the last blow a distance s, the re-

sistance of the earth and the load which the pile can support is

or more correctly, since the weight 6^ + 6^i of the pile and ram act

in opposition to the resistance of the earth,

In most cases G -\- G^'\^ so small, compared to P, that we can

neglect the latter part of the formula.

If the weight G^ of the pile is much smaller than the weight G
of the ram, we can write

G c

' = Gira, = '

and simply P = - G.

The foregoing theory suffices in practice, when the resistance P
is moderate and, consequently, the depth s of the impression is

not very small ; for in that case the compression of the pile, etc.,

can be neglected. If, on the contrary, the resistance P is very

great and, consequently, the depth s of the impression very small,

the compression o of the pile can no longer be regarded as null, and

must therefore be introduced into the calculation.

The pile of course does not begin to sink until the force of

impact has become equal to the resistance P of the earth. Now
JP P 7P TP

if IP = —.— and PI^ = ~'^~~ denote the hardness of the ram and

that of the pile (in the sense of § 336), the sum of the compressions

of the two bodies, when the force of impact is P, is

P P /I 1 \

and the mechanical effect expended in producing this com-

pression is

^ _ P(7 _ /I 1 \ P^



700 GENERAL PRINCIPLES OF MECHANICS. [§347.

Now if this first impact of the two bodies causes the Telocity c of

c
the ram to become v, its mass if = — performs the work

L = iMc'-l Mv-' = {e - v-) ^ = {^^) 0;

hence we can put

(^^) ^ = (ff + ^j y
from which we obtain

consequently the velocity of the ram, when the pile begins to pen-

etrate the earth, is

We infer from this that a pile (and also a bolt or nail in a wall)

will begin to enter the resisting obstacle when

or when the weight of the ram and its velocity have the proper re-

lation to the resistance of the earth. During the penetration of

the pile the force of impact and, consequently, the compression of

the pile, etc., diminish as long as the velocity of the ram exceeds

that of the pile ; w'hen both attain a common velocity i\ and the

force of impact becomes a maximum, the bodies begin to expand

again. During this expansion not only the velocity of the ram,

but also that of the pile becomes gradually = ; the pressure be-

tween the two bodies becomes again P, and consequently at the

moment, when the pile ceases to penetrate, the whole energy ^
—

G of the ram is consumed by the work

il^ 1_\ P^

\II ^ JlJ 2

expended in compressing, and by the work

Ps
done in driving the pile to the depth 5.

Hence we have

r^ /I 1 \ P^
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and therefore the load which corresponds to the depth of penetra-

tion s is

/I 1 \ P' .

If the compression
(
^- + -j^j — is considerably smaller than

the space s described by the pile, we can write simply

P = =
, or, more accurately,

2g s s
-^

Gh
/I 1 \GK

Comparing the work done in driving in the pile

P s =
+1^ + -..)/-

with the work done G li in raising the ram, we see that the former

approaches the latter more and more as ( — + -y^ ) — becomes

FE F.Ex
smaller or as the hardness 11= -^— of the ram and that Ily = - -----

-

of the pile become greater, i.e. the greater the cross-sections F and

Fx and the moduli of elasticity E and E^ of these bodies are and the

smaller the lengths are.

The action of the weights of the two l)odies can be entirely neg-

lected, smce they generally form but a small portion of the resist-

ance P. We can also neglect the energy, which the bodies possess

in consequence of their elasticity (although the latter is imperfect)

after the pile has come to rest ; for the body, which is thrown back

l)y their expansion, is generally, upon falling again, incapable of

overcoming P and setting the pile in motion. For safety's sake,

tlie pile, which has been driven in, is loaded with only j'^ part of

the resistance P, just found, or perhaps with even less. Accordmg
to some late experiments made by Major John Sanders, IT. S. A.,

at Fort Delaware (communicated by letter) we can put, approxi-

matively, the resistance

P= ^A

Example.—A pile, whose cross-section is 1 foot = 144 square inches,

whose length is 25 feet = 25 . 12 = 300 inches, and whose M'eight is 1200

pounds, is driven by the last tally of ten blows of a ram, weighing 3000
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pounds and falling 6 feet = 72 inches, 2 inches deeper, what is the resist-

ance of the earth ? If we neglect the inconsiderable compression of the

cast iron and put (according to § 212) the modulus of elasticity of wood
E^ = 1,560000, we obtain

^(^ + i) = « +
300

2F^E^
Now since G h = 2000 . 72

2 . 144 . 1,560000 1497600'

144000 inch-pounds and the depth of the pen-

= 0,2 inches, we obtain for the determina-

tion of P the following equation :

- £' , + 0,2 P =: 144000 or P^ + 299520 P = 215654400000.
1497600 '

Resolving this equation, we obtain

p= - 149760 + V 238082457600 = 338177 pounds.

According to Sanders' formula

_ G7i 144000

0,
240000,

while the old formula, on the contrary, gives

_ G'h _ G__ GJh _ 2000
^ ~ ~ "3200

144000

~0,2{G ^ G^)s~ G + G^ s

= 450000 pounds.

From P = 338177 pounds we obtain

iw "^
M~) ^ ^ '^^^^^ inch-pounds,

and therefore the height from which a ram weighing 2000 pounds must

fall in order to move the pile is

P' 76365

"-(i-i:) 2 G 2000
38,2 inches.

Fig. 570

A

348. Absolute Strength of Impact.—By the aid of the

moduli of resilience and fragility (see § 206) Ave can

easily calculate the conditions under which a prismatical

body A B, Fig. 570, will be stretched to the limit of elas-

ticity or broken by a blow in the direction of its axis. If

G be the weight and c the velocity of the impinging

body, the work done, when the prismatical body, Avhose

weight we will denote by G^, is struck, is

L =
2g ' G + G,'

or denotins^ the height due to the velocity -— by h, we
'^9

B bave more simply

L = G'h
G+ G,
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This mechanical effect is chiefly expended in stretching the rod

A B, upon which the second body hangs ; if, therefore, II is the

hardness, I the length, i^ the -cross-section, E the modulus of elasti-

city, P the force of impact and A the extension of the rod produced

by it, we have
PX_ P'._, FE

^~-¥-%lT-^-^^ -TV-
and consequently

FE _ G'h
^l ~ G-\- G,'

from which the extension A of the rod, caused by this impact, can

be easily calculated.

If the rod is to be extended only to the limit of elasticity, we
have, when A denotes the modulus of resilience (§ 206),

L = A V= AFl,
and therefore a n — ^^ ^^

the velocity of impact c = V 2 g h, which is necessary to stretch it

to the limit of elasticity, is determined by the height

(x

If we are required to find the conditions of rupture of the rod,

we must substitute, instead of the modulus of resilience A, the

modulus of fragility B.

We see from this that the greater the mass of the rod is, the

greater is the blow it can bear. Hence we have the following im-

portant rule, that the mass of bodies subjected to impacts should

be made as great as possible.

Since G and G^ fall the distance X during the impact, it is more
correct to put

or for the case, when the limit of elasticity is reached,

in which j — ^ expresses the extension corresponding to the limit

of elasticity.

If, finally; we wish to take into consideration the mass and
weight 6r2 of the rod, we have, since its centre of gravity sinks but
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A F = G'
.y + {G-h G^ -r i G,)a.G + G,+ G, I

We have a similar instance of the action of impact, when a

(J Q
moving massM— — , Fig. 571, puts another mass M, = —hm mo-

FiG. 571

>-c

tion by means of a chain or rope. If c is the velocity of M at the

moment, when the chain is stretched, v the velocity with which
both bodies move after the impact, we have again

'^ ~ M + M,~ G + G,'

while, on the contrary, the work expended in stretching the chain is

MM,
M~^l\i\

A {M + M,) v" --

c" _ G G,__

y ~
~G + G,

M M,

M -j- M,;)

.h.

If, therefore, this chain, etc., is to be stretched only to the limit

of elasticity, we must put

G GiAFl KG + G,

F denoting the cross-section and I the length of the chain.

Example— 1) If two opposite suspension-rods of a chain bridge sup-

port a constant weight of 5000 pounds, which is mcreased 6000 pounds by

a passing wagon, if the modulus of resilience A of wrought iron is 7 inch-

pounds and if the length of the suspension-rods is 300 inches and their

cross-section 1,5 square inches, we have the dangerous height of fall

7 . 2 . 1.5 . 200 . 11000_AFl{G + G,)

36000000

7.11 77
"nK' = oa = 1,28 inches.
oO 00

If the wagon passes over an obstacle 1,3 inches high, the suspension-rods

would already be in danger of being stretched beyond the limit of elag-

ticity.

2) If a full bucket or loaded cage in a shaft is not gradually set in mo-

Lioii, but if by means of the rope, which has been hanging loosely, it is sud-

denly brought to a certain velocity by the revolving drum, the rope wil]

often be stretched beyond the limit of elasticity, and sometimes even
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broken. If the mass of the drum and shaft, reduced to the circumference

of the iormer, is ilf= — = , the weight of the full bucket or cage

is (r = 2000 pounds, and the weight of the rope = 400 pounds, then if

the weighi; of a cubic inch of rope is = 0,3 pounds, its volume will be

G, 400 4000 , . . ,Fl = - — TT^r = --^- cubic inches,
A U,o o

and, finally, if the modulus of fragility of this rope is = 350 pounds, we

have the height due to the velocity, which will break the rope,

G-h G^ _ 4000 100000 + 2000 _ 1400000 103

"G'G^ ~
' 'Y' ' l00000~7 2000 ~ 3 ' 200000

= 338 inches = 19,83 feet,

and, therefore, the velocity of the rope at the beginning of the strain is

c = ^2gh = ^ 64,4 . 19,83 = 35,74 feet.

§ 349- Relative Strength of Impact—The foregoing the-

ory is also applicable to the case of a prismatic body B B, Fig.

572, supported at both ends and exposed to the blows of a body

A, which falls from the height A O = h npon its middle C. Let

— = if be the mass of the falling body and J/i that of the body

B B, reduced to its middle (7, then the energy of the bodies after

the impact is

r - -^
^' - —-

^ M - ^^ r
2 * if + i/i

"
c' M

Fig. 572.

0^
j

The mass M^ of the beam B B can be determined in the follow-

ing manner. Let G^ be the weight, I half the length B D, Fig.

573, of this beam, x the abscissa B N and y the corresponding

ordinate N oi the curve, formed by ^ ^ at the moment of

greatest flexure, and, finally, let a denote the maximum deflection

CD of this curve. If we imagine B C to be divided into n (an infi-

nite number of) parts, the weight of an element of the rod will

45
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be —, and therefore the mass of an element of the rod, reduced
n

from N to D, is

_ G^ IN Oy_ G,f
~~ ng'\C Dl n g (f

But, according to § 217,

- ^ ^
ii^ _ ^\

or

lat the element of the mass

9 a^ :e {l^ - I V X- 4-
y)

9 W E''

whence it follows that the element of the mass of the rod is

4.71 gf

Now if instead of x we substitute successively -, 2 -, 3 -
. . .
—

"^ n n n n
and add, etc., the values thus obtained, we obtain the mass of the

rod B B, reduced to its middle (7,

^^' ~4f/r V '3 "^^ • 5 ^ ^7/
7 ^^

gr \ -6 -^ D - 7/
''' g'

If we substitute this value, we can put the work done by the

impact

M + J/i G + -jj G,'

and obtain the condition of bending to the limit of elasticity (see

§ ^35),

Wl _ G'li

^e'~ G + 11 G;

If the beam is a parallelopipedon, we have

^^ ''- G + -II
G,'

and therefore

, AV,{G -^ iiG,) ,^. ^^
^ G,

h =—Vt?^"^
—

'
^'' p^'**'^^ ^ "" y

_ ^(9,( 6^ + jX^)
^ - 9 y

6^-^

If we substitute B instead of A, the expression becomes

, __BG,{G + ii G^)

" - 9"y G'

and gives the height, from which the weight G must fall in order

to break the parallelopipedical rod.
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Example.—From wlaat a height must an iron weight G = 200 pounds

fall, in order to break by striking it in the middle a cast iron plate o6

inches long, 12 inches wide and 3 inches thick, which is supported at both

ends ?

The modulus of fragility

B = 14,8 inch-pounds

(see § 211), and the volume of the plate is

V^ =I)hl = 12 .d . m = 1296 cubic inches,

and, since a cubic inch of cast iron weighs y = 0,259 pounds, its weight is

G^ = 1296 . 0,259 = 335,7 pounds

;

the required height is

14,8 . 335,7 (200 + U . 356,4)' ^^, . ,

"
=

97WnofoO—- = ''i ^^<=''^^-

§ 350. Mechanical Effect of the Strength of Torsion.—
We can also investigate the action of impact in ticisting shafts.

According to § 262 the mechanical effect which is required to pro-

duce a torsion a in a shaft, whose length is I and the measure of

whose moment of flexure is PF, is

_ ^« _ g'
. W C _ P' a" I

we can also put

e denoting the distance of the most remote fibre from the neutral

axis and S the strain in that fibre.

If we substitute for S the modulus of proof strength T, and for
/TT rp

—-^ = — - the modulus of resilience A, we obtain the work to be

performed m stretching the remotest fibre to the limit of elasticity

L-A ^^

and the mechanical effect necessary to rupture the shaft by wTench-

ing, when we substitute for the modulus of resilience A the modu-
lus of fragilityB ; its value is

For a cylindrical shaft W = --^c— and e = r, hence

L = ^,nr' 1 = 4^ V8indL, = ~.Trr'l= ~- V

when V = 7T r"" I denotes the volume of this shaft.

For a shaft with a square cross-section, the length of whose side

is b, we have



708 GENERAL PRINCIPLES OF MECHANICS. [§350.

W= —Qnde = bV ^,

and consequently

DO O

If a revolving wheel and axle, whose mass reduced to the point

of impact is M = — , impinges upon a mass M^ = ~, which is at

rest, with the velocity c, both will move on after the impact with

the velocity

M c G c

consequently the mechanical effect

L

which is expended in twisting the axle and bending the arms of the

wheel, is lost (see § 335).

But L is also the sum of the mechanical effects expended in

producing the torsion of the axle and in bending the arms of the

wheel, etc., i.e.,

L ^ A .
-— \- A^ —^,

when A^ denotes the modulus of resilience, W^ the measure of mo-

ment of flexure and e^ the distance of the exterior fibre from the

neutral axis (see § 235) ; we can therefore put

A Wl A, Wr I, G G, c"

^ e,' G + G, 2 n

W I V
If the shaft is cylindrical, we have -^- = —, and if it is four-

Wl V
sided, we have -^- = --, when V denotes its volume ; and for the

6 o

four-sided arm we have -—^ = — , where Vi denotes the volume

of the arm.

Hence for a cylindrical shaft we have

A^ A, G_G^ ^
2 9' G + G\ 2 g'

and, on the contrary, for 'ii four-sided shaft

^ ^ Y A. .„' y — L __
3 9' G -t G, 2 g
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The volumes Fand F, have a certain relation to each other,

which can be expressed as follows. The moment of flexure of the

arms is equal to the moment of torsion of the shaft.

Hence

= --^—
^, or

e ex

T and T^ denoting the moduli of proof strength for torsion and

bending and d the diameter of a round, and b the length of the

sides of a four-sided shaft, while Ih is the thickness and h^ the sum
of the widths of all the arms of the wheel.

But we have also F = —.— I — Jf I and F = bi Ih h, and

therefore

2)

'n d^ I A h h l\ Ax _ G Gx c"

8 ^ ~""9 - 'G^Gx %~g
'''^'^

b, lix IxAx _ G Gx c'

Now if the ratio z^ = -^ of the dimensions is given, we can cal-

culate the thickness d or li of the shaft or the thickness lix and the

width bx of the arms by means of equations (1) and (2). We must

introduce into this calculation

1) for cast iron

7^2 -j QQ/^2

A. = 3,16 and A = - - ^_g_- = 0,640 inch-lbs.,

2) for wrought iron

A.= 6,23 and ^ = ^, = yT-gOOOlM = ^'^^^ ^°°'^-''^^-'

3) and for wood, the mean value

T^ QQ52
A. = 2,n and A = ^^= ^^^^^^ = 0,133 inob-lbs.

Example.—Let tbe mass of the wheel, etc., of a tilt-hammer, reduced to

the point of application of the cam, be J!f= pounds, and the mass of

25000
the hammer reduced to the same point be M — pounds, and let the
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distance from the wheel to the ring, in which the cams are set, be Z = 15

feet = 225 inches, and the length of the arms of the wheel be li = 10 feet =
120 inches. Now if the hammer, every time it is lifted, is struck with a

velocity of 2 feet, how thick must the shaft and the arms of the wheel be

made in order .to sustain this impact without being damaged 1 If the shaft

and arms are of wood, we have

and if the number of arms is n — 16, we can put

l^ = V .n \ = 0,707 . 16 Ai = 11,3 . h^,

whence we obtain

But

^A,l, =i.2,17
and also

a+ G^
. ^ = 12.0,0155.4.

3^7

y 16000. 11,3 _

A I = 0,182 . 225 ^ = 11,66,
o

120 = 28,9,

200000 . 25000 ^ ,
, 5000000

z=i 744
200000 + 25000 ' * 225

= 16533 inch-pounds
;

hence we have the equation of condition

(2,9)'^ . 11,66 A/ + 11,3 . 28,9 h^-^ = 16533, i.e.,

98,1 h\^ + 326,6 /i^" = 16533,

hence the required thickness of the arm

, /16533 ^^, . ,

^^ =V 424/7 ^ ' ^°

the width of the arm

5j = 0,707 Aj = 4,41 inches,

and the thickness of the shaft

d = 2,9 h^ = 18,1 inches.

For the sake of security we make the dimensions considerably larger.

Remark.—It is only of late years that much attention has bfen paid to

the strength of impact. We find something in regard to it in Tredgold's

work on the strength of cast iron, in Poncelet's " Introduction a la

Mecanique Industrielle/' and in Riihlmann's '' Grundziige der Mechanik

und Geostatik." The discussion in the latter work is based principally

upon Hodgkinson's experiments on the resistance of prismatic bodies to

impact, upon which subject an article by Bornemann is to be found in the

'•' Zeitschrift fiirdasgesammtelngenieurwesen" (the Ingenieur).

The experiments of Hodgkinson agree essentially with the foregoing

theory of the strength of impact ; they apply particularly to relative
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strength, and were made in the following manner : large weights swinging

like 2^endulums were caused to strike against rods supported at both

ends. The formula L = 7^^ . ^ , which we found by assuming that the
Or + -|- Cr^

impact was perfectly inelastic, was yerified completely; the mechanical

effect L was found not to depend upon the nature of the colliding bodies.

Equally heavy bodies of different materials (cast iron, cast steel, bell metal,

lead) produced, when they fell from the same height, equal deflections of

the same rod (of cast iron or cast steel) ; the deflections were almost ex-

actly the same as those given by the theory for a perfectly elastic rod.

FiXAL. REiTAKK.—For the study of the Mechanics of rigid bodies, be-

sides the older works of Euler, Poisson, Poinsot, Poncelet, Navier and

Coriolis, and those of Whewell, Mosely, Eytelwein and Gerstner, the follow-

ing are recommended :

Duhamel, Cours de Mecanique, Paris, chez Mallet-Bachelier, 1854;

Sohnke, Analytische Theorie der Statik und Dynamik, Halle, 1854 ; Broch's

Lehrbuch der Mechanik, Berlin, 1854 ; Morin, Lecons de Mecanique pra-

tique, Delauuay, Traite de Mecanique rationelle, Paris, 1856 ; Rankine, A
Manual of Applied ^Mechanics, second edition, London, 1861—a valuable

work, too little prized in England. A translation of a new Monograph
upon impact, by Poinsot, has lately appeared in the third year of Schlo-

mich's Zeitschrift fdr Mathematik und Physik.



SIXTH SECTION.

STATICS OF FLUIDS

CHAPTER I.

OF THE EQUILIBRIUM AND PRESSURE OF WATER IN VESSELS

§ 351. Fluids.—We consider /z^i^s to be bodies composed of

material points, whose coherence is so slight that the smallest force

suffices to separate them from each other (§ 62). Many bodies

which are met with in nature, such as air, water, etc., possess

this distinguishing property of fluids in an eminent degree, while

others, on the contrary, such as oil, tallow, softened clay, etc., pos-

sess a less degree of fluidity. The former are called perfectly, and

the latter imperfectly fluids or viscous bodies. Certain bodies, as,

E.G., dough, lie midway between the solids and the fluids.

Perfectly fluid bodies, of which only we will treat in the discus-

sion which is to follow, are at the same time perfectly elastic, i.e.

they can be compressed by extraneous forces, and when these forces

are removed, they reassume the primitive volume. But the amount

of change of volume corresponding to a certain pressure is very dif-

ferent for different fluids ; while in liquids this change is quite un-

important, in gaseous or aeriforr)% fluids it is very great, and they

are therefore called elastic or comjoressiUe fluids. On account of

the slight degree of compressibility of liquids, they are treated in

most of the researches in hydrostatics (§ QQ>) as incompressible or

inelastic fluids. As water is the most generally diffused of all

liquids and is the most generally employed in practical life, we

regard it as the representative of all these fluids, and in the re-

searches in the mechanics of liquids we speak only of water, with
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the tacit -understandiiig that the meclianical relations of other

liquids are the same.

For the same reason, in the mechanics of elastic fluids we speak

only of common atmospheric air.

Remark.—A column of water, whose cross-section is one square inch,

is compressed by a weight of 14,7 pounds, corresponding to the weight of

the atmosphere, about 0,00005 or one fifty millionth of its volume, while a

column of air under the same pressure occupies but one-half of its primi-

tive volume. See Aime " Ueber die Zusammendriickung der Fliissigkeiten"

in Poggendorflfs Annalen, Erganzungsband (to Vol. 72), 1848. According

to the formula P = j F E (% 204), we have, when P = 14,7 pounds, F =

1 5 1 -s^ ' t •' A . I

1 square inch and j- = ^777^^7, = , the modulus of elasticity of water
I lOOvJUO 20000

PIE --= -=^ = 14,7 . 20000 = 294000 pounds.

^ § 352. Principle of Equal Pressure.—The characteristic

property of fluids, by which they are principally distinguished from

solid bodies and which forms the basis of the theory of the equili-

brium of fluids, is the capacity of transmitting the pressure exerted

upon a portion of their sxirface unchanged in all directions. In solid

bodies the pressure is transmitted only in its own direction (§ 86)

;

if, on the contrary, w^ater is subjected to pressure on one side, the

same pressure is exerted throughout all the mass of fluid and can

consequently be observed at all parts of the surface. In order to

convince ourselves of the correctness of this law, we can employ

an apparatus filled Avith water, like
Fig. 574.

^t, i 1 • ^ 1

the one whose horizontal cross-sec-

tion is representedm Fig. 574. The

tubes A E, B F, etc., which are of

the same size and at the same dis-

tance above the base, are closed by
~^^ pistons, which are easily movable

and which fit the tubes perfectly

;

the water will then press upon each"

of them, by virtue of its weight, ex-

actly as much as upon the others.

Let us for the present disregard

this pressure and regard the water as imponderable. If we exert

against one of the pistons A a certain pressure F, the water will

F. b
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transmit tlie same pressure to the other pistons B, C, D, and to

preserve the equilibrium or to j)revent these pistons from moving
backwards, an equal opposite pressure P (Fig. 575) must be exerted

against each of the other pistons. We are therefore authorized to

assume that the pressure P exerted upon a portion A of the surface

produces a strain which is propagated not only m the straight

line A C, but also in eyery other direction B F, D H, etc., upon any

equally large portions C, B, I) of tlie surface.

Fig. 575. Fig. 576.

If the axes of the pipes B F, C G, etc., Fig. 576, are parallel to

eacli other, the forces acting on the pistons can be combined so as

to giye a single resultant ; if n is the number of the equally large

pistons, the total pressure upon them wall he •

P, = nP',

in the casj represented in the figure

P, - 3 P.

Now the aggregate area Pi of the surfaces B, C, P, upon which

the pressures are exerted, is also = n times the area P of one

Pi P,
of the pistons; n is therefore not only = -p, but also -^, or in

general

Pi Pi Pi

P
= ^ and P, =. ^ P.

Now if we cause the tubes B, C, D to approach each other,

until they form, as m Fig. 577, a single one, and if we close the

latter by a single ])iston, Pj becomes a single surface and Pi is the

pressure exerted upon it ; hence we haye the general law : the

2oress7{res exerted hj a fluid upon tlie different parts of the ivalls of

the vessel are proportional to the areas of those parts.
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This law corresponds also to the prmciple of virtual veloci-

f. If the piston A D = F, Fig. 578, moves a distance A A^ = s

inwards, it presses
Fig. 577. Fig. 578. the prism of water

F s out of its tube,

and the piston B E
= F: moves out-

wards the distance

B B^ — s^ and leaves

behind it the pris-

matical space F^ s^.

Now as we have

assumed that water can be neither expanded nor compressed, its

volume must remain tlie same after the pistons have been moved,

or the increase F s must be equal to the decrease F^ s^. But the

equation F^ s^ = F s gives

F, _s_
F ~ s:

F\

Fand by combining this proportion with the proportion

we obtain ^i _ ^

hence the mechanical effect P^ s^ = P s (see § 83).

Example.—If the diameter of the piston A I) is 1|- inches and that of

the piston B E is 10 inches, and if the pressure exerted by the former upon

the water is 36 pounds, that exerted upon the latter piston is

F. 10' 400
. 36 = 1600 pounds.-^ PF 1,5'

36 =

If the first piston moves 6 inches, the second moves but

F 9.6
s^ = y s = ^^ = 2^0 = 0,135 inches.

Remark.—In the following pages we will meet with many applications

of this law, E.G., to the hydraulic press, water pressure engines, pumps, etc.

§ 353. Pressure in t'le Water.—The pressure exerted by

Fig 5*^9 ^^^® particles of w^ater against each other

must be estimated in exactly the same

manner as the pressure of the water against

the wall of the vessel. The pressures upon
both sides of any surface F C G, which di-

vides the water in a vessel B G //, Fig. 579,

into two parts, when equilibrium exists,

are equal. Now as a rigid body counter-
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acts all forces whoso directions are at right angles to its surface,

the conditions of equilibrium will not be disturbed, when one-half

E G R of the liquid becomes rigid, or if its limiting surface

becomes a wall of the vessel. If the fluid
Fig. o80.

jj^lf BB G in one portion C D = F, of

the imaginary surface of separation E C G
exerts a pressure P^ upon the rigid half

E G H, the latter counteracts this pres-

sure completely and will react with an equal

opposite pressure (—Pi) upon C D = F^.

Since the conditions of equilibrium mil

not be changed, when this mass of water

E G H becomes fluid again, the latter will react with an equal

pressure (— P) upon the mass of water E B G\ hence the pres-

sure of the water upon both sides of a surface C D — Fis also de-

termined by the proportion

Pi _ Pi

P ~ P'

when all the water is pressed in a surface ^ P = P by a force P.

Hence the pressure upon any given surface E\ in any arbitrary

position is

P - ~^P

The law of the transmission of pressure in water, expressed by

the last proportion, is only applicable when we consider water as

an imponderable fluid, and it must therefore be modified, when it

is required to determine in addition the pressure arising from the

iveiglit of the ivater. If we imagine a part of the v/ater in a vessel

C D E, Fig. 581, to become rigid and to have the form of an infi-

nitely thin horizontal prism A P,
Fig. 581.

j^ J3 (.^gy ^q g^.^^ w^c^^ w^q 2:)ressures

j~, B ^^ ^^^^ water, that remains fluid,

j_^__ _„™...__._^ ^^ upon the sides of the rigid part
'• y^ balances the weight G of the prism

/ and that the horizontal pressures

{ upon the vertical bases A and B
of this part counteract each other.

These pressures (P and — P) must

therefore be equal and opposite to

each other. Since the state of equilibrium is not changed, when

A B again becomes fluid, it follows that the pressures of the
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water against the vertical elements A and B of the surface, which

are situated m one and the same horizontal plane, must be equal

to each other, and since the pressure upon an element does not

change, when its inclmation or dn-ection changes, it follows that

the water in a horizontal layer, as, e.g., G H, K L, etc., exerts the

same pressure m all directions and in all positions.

If we imagine a vertical prism A B, whose cross-section is infi-

nitely small, to become rigid in the mass of water CH K, Fig. 582,

we can conclude from the conditions of its equi-

librium with the remaining liquid that the

pressures exerted by the latter upon the vertical

sides of the prism balance each other and that

the weight G of the latter body is in equilibrium

with the excess P^ — P of the pressure Pi upon

lower base B above the pressure P upon the

upper base ^4. Hence P^ — P — G, i.e. the

pressure P^ of the water upon any elementary

surface B is equal to its pressure P upon an ele-

ment A, of equal size aud situated above it, plus

the weight 6^ of a column of water A B, wdiose

base is one or other elementary surface and

whose height is the vertical distance between the

two elements. According to what precedes this

rule is not only applicable to two elements,

situated vertically above one another, but can also be employed

for determining the pressure upon the walls of the vessel ; for the

two pressures P and P, are transmitted unchanged in the hori-

zontal planes G H and K L. Hence the pressure i? upon an ele-

mentary surface B, X or L of the horizontal plane K L is equal to

the pressure P upon an equally great element A, G or H in a

higher horizontal plane plus the weight of the column of water,

whose base is this element F and whose height is the distance

A B = h oi the horizontal planes G H and K L from one another.

If y is the heaviness of water, this weight is

G = Fhy, and therefore P, = P -^ G = P + Fhy.
If the areas of the elements of surface are unequal ; if, e.g., the

area of the upper one (in G II) is F and that of the lower one

(in K L) is P„ the pressure upon the latter is

P. = ~{P + Fhy)^^P + F,hy.

By means of the same formula the pressure P upon an element
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Fin the horizontal iplsme G //can be determined, when the exterior

pressure Fq upon an element of the surface CD = F., -which is at

a distance 7i above or below G II, is known.

^ F
It is

f:
F„ ± Fhy.

Smce the pressures upon equal elements in a horizontal plane

are equal to each other, it follows that the foregoing formula is

applicable to horizontal surfaces of finite dimension, as, e.g., where

the water serves to transmit the force F,
Fig. 583. which acts upon a liorizontal piston F^

Fig. 583, to another horizontal piston Fy
This formula

P, = F F + / h y = F.
(J-

+ h 7')

gives directly the pressure P^ upon this

surface, when h denotes the vertical height

6"/) between the surfaces of the two pistons.

F P,
If we denote the pressures -^r and -=

^ F F^

upon the units of surface by p and jh, ^^'e

have more simply

p, — p + h y.

Example.—If the diameters of the two pistons/' and/j of a hydrosta-

tic press A C B, Fig. 583, are d = 2|- inches and ^^ = 9 inches, and if they

are situated at the distance (7 /> = 7^ = 60 inches above one another, and

if the larger piston is to exert a pressure i^ = 1600 j)ounds, we have the

force which must be apphed to the smaller piston

Pi - Fh

-iSf

<rj-'
-n d'

h

1600
60 62,

'28
123,46 — 10,66 = 112,8 pounds.

§ 354. Surface of Water.—In consequence of the action of

gra^dty upon water, all the elements of it tend to descend, and

really do so when they are not prevented. In order to keep a quan-

tity of water together, it is necessary to confine it in a vessel The

Avater in a vessel ABC, Fig. 584, can only be in equilibrium when

the free surface /TP is at right angles to the direction of gravity, or
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Fig. 584.

horizontal ; for so long as this surface is curved or inclined to the

horizon there will be elements of the water, such as E, which, be-

ing situated above the others, will, in consequence of their great

mobility and their weight, slide down those

below them as upon an inclined plane. Since,

when the distances are very great, the direc-

tions of gravity cannot be considered as paral-

lel lines, the free surface or the surface of the

water in a very large vessel, e.g. in a large sea,

will not, under these circumstances, form a

plane surface, but a portion of the surface of a

sphere. If another force acts, in addition to gravity, upon the ele-

ments of the water, then, when equilibrium exists, the free surface

of the water is at right angles to the resultant of this force and that

of gravity.

If a vessel ABC, Fig. 585, is moved forward with the constant

acceleration 2h the free surface of the water forms an inclined plane

D F\ for in this case every element E
of this surface is drawn vertically down-

wards by its weight O and in* a horizon-

tal direction by its inertia P = - G, the
9

two forces giving rise to a resultant i?,

whose direction forms, with that of

gravity, a constant angle R E G = a.

This angle is at the same time the angle D FH formed by the

surface of the water (which is at right angles to the resultant) with

the horizon. It is determined by the equation

Fig. 585.

tang, a
P
G

Fig.

X

586.

If, on the contrary, a vessel A B C, Fig. 586, is caused to re-

volve uniformly about its vertical axis X X,
the surface of the revolving water forms a

hollow A C, whose cross-section through

the axis is a parahoJa. If oj is the angular

velocity of the vessel and of the water in it,

G the weight of an element E of the water,

and y its distanceM E from the vertical axis,

we have the centrifugal force of this ele-

ment

-^F

L
-X

3SiO
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and therefore for the angle REG— T EM = (p, formed by the

resultant with the yertical or by the tangent E Tto the profile of

the water with the horizontal line M E,

F
tang, (j)

G
^ y

9

From this formula we see that the tangent of the angle, formed

by the tangent line with the ordinate, is proportional to the ordi-

nate. Since this is one of the properties of the common parabola

(see § 157), the yertical cross-section A V of the surface of tlie

water is a parabola, whose axis coincides with the axis of rotation

XX.
If the velocity of rotation of the water in the vessel A B D, Fig

588, were constant and = c, we would have F = G

9 y
and there

fore tang, (p — ; hence the subtangent of the curve, formed by
9y

^^

the cross-section A E B oi the water, M T — m = — or constant.
9

According to Article 20 of the Introduction to the Calculus, the

equation of such a curve is
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y = r e'" = r e^'' ,

r denoting tlio ordinate of tlie beginning A.

If we cause a A'essel A B H, Fig. 589, to more nniformly in a

vertical circle around a horizontal axis C, the surface of the water

will assume a cylindrical form, with a circular cross-section D E H.

If we prolong tlie direction of the resultant R of the weight G and

of the centrifugal force F of an element E until it cuts the vertical

Jine C K, passing through the centre of rotation, we obtain the two

similar triangles ECO and E F R, for which we have

CO _ F^ _ G^^

E C ~ E F ~ F'
but if we put the radius of gyration E C = y and retain the last

?Gy
notations, we have F

g
whence it follows that the line

CO 9
293G

feet
894,6

meteri

/

u denoting the number of revolutions per minute. Since this value

of C is the same for all the elements of the water, it follows that

the resultants of all the elements of the water forming the cross-

section D E II are directed towards 0, and that the cross-section,

which is at right-angles to all these directions, is the arc of a circle

described from 0. Hence the surfaces of the water m the buckets

of an overshot water-wheel are always cylindrical ones, described

from the same horizontal axis.

§ 355. Pressure upon the Bottom.—The pressure in a

vessel A B C D, Fig. 590, is a minimum immediately below the

surface, increases with the depth, and is

a maximum at the bottom. This, al-

though a consequence of § 353, can also

be -proved as follows. Let us supjoose

that the area of the surface H^ R^ of the

water is i%, and that a pressure P„ is ex-

erted uniformly upon V:, e.g. by the at-

mosphere l^'ing above it or by a piston,

and let us imagine the entire mass of

water to be divided by very many hori-

zontal planes, such as H^ R^, Ho R., etc., into equally thick layers.

If F^ is the area of the first layer 11^ i?„ X its thickness, and y the

heaviness of water, we have the weight of the first layer 6^, = F^ a y,

and that portion of the pressure in H^ i?, produced by the pressure

46

Fig. 590.
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P„ upon the surface of the water H^ R^, according to the principles

enunciated in § 352, is

K'
Adding both these pressures, we obtain the pressure in the horizon-

tal section H^ Rx
P F,

P. = ~~ + F,Xy,

Dividing by F^, we obtain the equation

P P
j(
= j^ + A y,

.

^ P Pi
or, since — and -^ denote the pressures 2\^ and />, in 11^, R^ and

H^ R] referred to the unit of surface, we have

Ih = p, + A y.

The pressure in the following horizontal layer I!., Ro is deter-

mined exactly in the same manner as the pressure in the layer

H^ Ry, but we must not forget that the initial pressure upon an

element of the surface is in this case jo, == 2\ + ^ T? while in the

first case it was 2h' Hence the pressure in the horizontal layer

H> Ro IS

p, = p, + A y = p^ -^ X y -{- A y = p^, + 2 A y,

Fi«. 591- in like manner the pressure in the third

layer H^ ii^ is

=
i^o + 3 A y,

in the fourth

= ^„ + 4 A y,

and in the nth.

= Po + nXy.
But n X is the depth K — li of this

^th layer below the surface of the water

;

we can therefore put the pressure upon each unit of surface in

the ?zth horizontai layer

Ip — p^ + h y (compare § 353).

We call the depth li of one element of surface below the level

of the water its head or height of tmter (Fr. charge d'eau ; Ger.

Druckhohe), and we find the pressure of the water upon any unit

of surface by adding to the pressure applied from without the

weight of a column of water, whose base is unity and whose height

is the head of water. When a surface is horizontal, as e.g. the

bottom C D (F^'g. >91), the head of water h is the same for all

positions, and if its area is = F, the pressure of the water upon it is
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P={p.^hy)F= Fp, + Fhy = F, + Fh y,

or, if we neglect the external pressure, F — Fh y. The pressure

of the water upon a horizontal surface is therefore equal to tJieweigltt

of the column of water F h above it.

This pressure of the water upon a horizontal surfaxje, e.g. upon

the horizontal bottom or upon a horizontal portion of the wall of a

vessel, is entirely independent of the form of the vessel ; whether

the vessel A C, Fig. 592, is prismatic as m a, or wider above than

below as in h, or wider below than above as in c, or inclined as in

d, or with spherical walls as in e, etc., the pressure upon the bottom

is always equal to the weight of a column of water, whose base is

the bottom of the vessel and whose height is its depth below the

level of the water. Since the pressure of water is transmitted in

all directions, this law is also applicable when the surface, as e.g.

B C, m Fig. 593, is pressed from below upwards. Each unit of

surface of the layer of water B I\, touching B C, is subjected to the

pressure of a column of water, whose height is ff B = R K — h,

and the pressure against the surface C B is = Fh y, F denoting

the area of that surface.

Fig. 592. Fig. 593.

A

wmiMf

'',-- r-

Fig. 594.

Hence it follows that the water in the communicating tubes

A B C and D E F, Fig. 594, will stand at the same height, when

m equilibrium, or that the surfaces A B and E F will be in the

same horizontal plane. In order to preserve the equilibrium it is

necessary that the layer of water H R shall be pressed downwards

by tlie column of water E R above it as much as it is pressed up-

wards bv the mass of water below it. Since in both cases the
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surface pressed upon is the same, the head of water must be the

same, and the level of the water at A B must be at the same height

above H E as that at B F.

§ 356. Lateral Pressure.—The formula just found for the

pressure of water against a horizontal surface, is not directly appli-

cable to a plane surface inclined to the horizon ; for in this case the

head of water is different at different points.

The pressure p = h y upon every unit of surface within the

horizontal layer at the depth h below the surface of the water acts

in all directions (§ 352), and, consequently, at right angles to the

walls of the vessel, by which (§ 138) it is entirely counteracted.

JSTow if F^ IS the area of an element of the side ABC, Fig. 595,

and A] its head of water F^ H^, we have the pressure perpendicular

to it

P. = F,.h,y;

if F.> is the surface of a second ele-

ment and 7^2 its head of water, we have

the normal pressure upon it

P, = F,h,y;

and in like manner for a third ele-

ment

Ps^F.hy, etc.

These normal pressures form a

system of parallel forces, whose result-

ant P is the sum of these pressures^

I E
' P = {F,h, + F,h, + ...)y.

But Fi h^ -h Foh-i -{-... is the sum of the statical moments of

F^, F2, etc., in reference to the surface A B of the water and

= F h, when F denotes the area of the whole surface and h the

depth S of its centre of gravity S beloAv the surface of the water

;

hence the entire normal pressure against the plane surface is

P = Fhy.
If we understand by the head of water of a surface the depth of

its centre of gravity below the surface of the water, the following

rule will be generally applicable, viz. : the pressure of neater against

a plane surface is equal to the weight of a column of water, ichose

base is the surface and lohose height is its head of water.

We must here observe that this pressure does not depend upon

the duantity of water above or m front of the surface pressed, thus.
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H
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E.G., if the other circumstances are the same, a wall A B CD, Fig.

596, has to resist the same pressure whether it dams up the water of a

small trough A C EF ov that of a large dam A C G H or that of a

lake. From the width A B = C D = b smdi the height A D =
B C = a oi the rectangular wall we obtain the surface of the same

F — ah and the head of

water S = -, and, there-

fore, the pressure of the wa-

ter against it is

P = ah . - y = i a'' b y.
z

The pressure increases

therefore with the width and with the square of the height of the

surface pressed upon.

Example.—If the water in front of a sluice gate, made of oak, 4 feet

T\ide, 5 feet high and 2a inches thick, stands 3| feet high, liow great a force

is required to lift it ?

The volume of this gate

4 . 5 . ^5_ _ _2^ cubic feet.

Assuming the heaviness of oak, saturated with water, to be according to

§ 61, 62,5 . 1,11 = 69,375 pounds, the weight of this gate is

a = ^- . 69,375 := 25 . 11,5625 = 289,06 pounds.

The pressure of the water against the gate and the pressure of the lat-

ter against its guides is

p = 1 (|)2 , 4 , 62,5 = 49 . 31,25 = 1531,25 pounds

;

putting the coefficient of friction for wet wood (§ 174) ^ = 0,68, we have

the friction of the gate upon its guides

F = ^P = 0,68 . 1531,25 = 1041,25.

Adding to the latter the weight of the gate, we have the force necessary to

draw it up
= 1041,25 + 289,06 = 1330,31 pounds.

\( 357. Centre of Pressure of Water.—The resultant P =
Fh y of all the elementary pressures F^ h^ y, F^ h.2 y, etc., has, like

the resultant of any other system of parallel forces, a definite point

of application, which is called the centre of pressure. By retain-

ing or supporting this point the whole pressure of the "water

upon a surface will be held in equilibrium. The statical moments
of the elementary pressures F^ li^ y, F.^ Ih y> etc., in reference to the

plane of the surface of the water A B 0, Fig. 595, are

F, Ih y . Ih = F\ h,' y, F, h, y . 7i, = F, h,' y, etc.,

and the statical moment of the entire pressure of the wuter in

reference to this plane is
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{F, K^ + F, K' 4- . . .) y.

Denoting the distance K M of the centre M of this pressure from

the surface of the Avater by z, we have the moment of the pressure

of the water

Pz^ {F, h, + F,h, + . ..)zy,

and by putting these moments equal to each other we obtain the

distance of this centre M below the surface of the water

F, K + F,h,' + ... F, h,' + F. hi + ...

Fh1) or
F^ h, {- F, h, +

when, as above, F denotes the area of the entire surface and h the

depth of the centre of gravity below the surface of the water.

In order to determine completely this point of pressure, we
must find its distance from another line or plane. If we put the

distances F^ G-^, F^ G.2, etc., of the elements F„ F^, etc., of the sur-

face from the line A C, which determines the angle of inclination

of the plane, = «/„ y.^, etc., we have the

moments of the elementary pressures

in reference to this line

= Fx h, y, y, F, h, y, y, etc.,

and the moment of the entire surface

= {F, h, y, 4- F, h, y, + . . .) 7

;

denoting the distance M N of this

centre M from that line by v, we

have also this moment
= {F, h, + F, h, ^ ...)vy.

Equating these two moments, we

obtain the second ordinate

^)
F, h, y, + F. h, y., + . . . FJi, y, + F, h. y.^ +

V = —^7^-. ^' / or — "-^

F,h, + F,h, + . . .
^^ Fh

If a denote the angle of inclination of the plane A B C to the

horizon, x^, x^, etc., the distances E^ F^, E., F^, etc., of the elements

_Fi, i^2, etc., and n is the distance L M of the centre of pressure M
from the line of mtersection A B of the plane with the surface of

the Avater, aa^c have h^ = x^ sin. a, h.^ ~ x, sin. a, etc., and also z = n

sin. a ; substituting these A-alues of z and % in the expression, Ave

obtain

^i = F, x{ + F, x,^ + Moment of inertia

F, X^ + i^2 ^2 +
F, x^ y, 4- F, X, y.

and

F^ X, + F^ X, +

Statical moment

_ Moment of the centrifugal force

Statical moment
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We find then the distances u and v of the centre of pressure

from the horizontal axis A Y and from the axis A X, formed by

the hne of dip, when we divide by the statical moment of the sur-

face with reference to the first axis, in the first place, the moment of

inertia in reference to the same axis, and, in the second, the mo-

ment of the centrifugal force of the same in reference to both axes.

The first distance is also that of the centre of oscillation from the

line of intersection with the surface of the water. Besides it is

easy to perceive that the centre of incisure of water coincides 'per-

fectly with the centre of percussion, determined in § 313, when the

line' of intersection A Y of the surface with the surface of the

water is reo-arded as the axis of rotation.

9 ^v\w: § 353. Pressure cf Water against Rectangles and Tri-

angles.—If the surface pressed upon is a rectangle A C, Fig. 598,

with a horizontal base line C D, the centre M of pressure is found

in the line of dip K L, which bisects the base line, and it is at a

distance equal to two-thirds of this line from the side A B, which

lies in the surface of water.

Fig. 598.

If the rectangle, as in Fig. 599, does

Fig. 599. Fig. 600.

^mpc^;m9^r^

not reach the surface of the water, then, if the distance K L of the

lower line G D from the surface of the water = l^ and that E
of the upper one A B, — h, we have the distance KM of the cen-

tre of pressure from the surface of the water

The distance KM of the centre of pressure M of a riglit-angle

triangle ABC, Fig. 600, wdiose base A B lies in the surface of the

water, from A B (Example § 313) is

F . r-— -ui
6

iF.l
when I denotes the altitude B C of the triangle.

The distance of this point M from the other side B C is, since

this point lies in the line C 0, which bisects the triangle and
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hruns from the apex C to the middle of the base, NM — v

h denoting the base A B.

If the apex C is situated at the surface of the water, as in Fig,

601, and if the base ^ ^ is below the apex, we have

I FlKM
NM =

iFi
— I I and

2
— 3 ^

Ftg. 601. Fig. 602.

If the whole triangle ABC, Fig. 602, is immersed in the water,

and the base J. i? is at a dis-

tance A R = li and the apex

C at the distance C H — l^

from surface H E, we deter-

mine the distance MK of the

centre of pressureM below the

surface of the water '^i? by

means of the formula

k - k)

Fig. 603.

^ k' + 2 ?i Z, + 3 // .

4 (2 /, + k) 2 (/, + 2 4) •

The centre of pressure of other plane figures can be determined

in the same manner.

Example.—What force Pmust we employ to raise a circular clack-

valve A B^ Fig. 603, which is movable

about a horizontal axis B ? Let the

length of this valve be = \\ feet, its di-

ameter J. 5 be = 1^ feet, and the distance

of its centre of gravity S from the axis B
be i> /S' = 0,75 feet, and its weight be

G^ = 35 pounds; further, let the distance-

B H of the axis of rotation B from the

surface of the water, measured in the

plane of the valve, be = 1 foot and the

angle of inclination of this plane to the

horizon be a = 68°.

The surface upon which the pressure

is exerted is

F = ttt" 0,7854 . ^ = 1,2372 square feet,
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and the head of water or depth of its centre C below the water level is

C = h = H G. sin. a = {HD + D C) sin. a = {HD +I)B + B G) sin. a

= {I + 0,25 + 0,625) sin. 68° = 1,875 . 0,9272 = 1,7385 feet,

and, therefore, the pressure of the water upon the surface A B = F\&

Q^Fhy = 1,2272 . 1,7385 . 62,5 = 133,34
;

the arm & of tliis force with reference to the axis of rotation D is the dis-

tance D 3/ of the centre of pressure 3/ from it, hence

6 = HM~ HD.
But we have

1,875 + ^--i^^.(-^y= 1,9271 feet,"HM = HG + -r-^H G
whence ft = 1,9271 - 1,0000 = 0,9271 feet,

and the required statical moment of the pressure is

Q h = 133,34 . 0,9271 = 123,62 foot-pounds.

The arm of the weight of the valve is

I)K= ITS COS. a = 0,75 . cos. 68° = 0,75 . 0,3746 = 0,2810 feet,

and therefore its statical moment is

= 35 . 0,2810 = 9,84 foot-pounds.

By adding these moments, we obtain the entire moment necessary to

open the valve
Pa = 128,62 + 9,84 = 133,46 foot-pounds.

Now if the arm of the force, which opens the valve, is B JV = a = 0,75

feet, the intensity of that force must be

133,46P = -^-^ = 177,95 pounds.

\/ § 359. Pressure upon Both Sides of a Surface.—li a plane

surface A B, Fig. 604, is subjected upon hoth sides to the pressure

of water, the two resultants of the pres-
FiG. 604. sures on the two sides give rise to a

A
^

new resultant, which, as they act in

Sl: : - >. 1 ii-=- =^ opposite directions, is obtained by sub-

tracting one from the other.

If F is the area of the portion A B
subjected to pressure on one side of the

surface, and h the depth A S of its

centre of gravity below the surface of

the water, and if is is the area of the portion A^ B^ on the other

side, which is subjected to the pressure of the w^ater, and lix the

depth A^ Si of its centre of gravity below the corresponding surface

of the water, the required resultant will be

P =z Fhy - F, h, y = (F h - F, h,) y.

If the moment of inertia of the first portion of the surface with

reference to the line, in which the plane of the surface cuts the first
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surface of the wa^er, = F ¥, we have the statical moment of the

pressure of the water upon one side

and if the moment of inertia of the second portion of the surface,

with reference to its Kne of intersection with the other surface of

the water, = F^ h^^ we will have in like manner the statical mo-

ment of the pressure of the water on the other side, with reference

to the axis in the second surface of the water,

Putting the difference of level ^ ^i of the two surfaces of the

water = a, we have the increase of the latter moment, when we pass

from the axis A^ to the axis A,
= F^ Ih a y,

and consequently \hQ statical moment of tlie pressure F^ h^ y, in

reierence to the axis A in the first surface of water, is

=r F, h,' y + FJi^.a.y = (F, Jc,' + F, a Jh) y.

Hence it follows that the statical moment of the difference of

the two resultants is

= {FF - Fl:;' - aFJi,)y,
and the arm of this difference or the distance of the centre of

pressure from the axis in the first surface of water is

_ Fk' - F,k,' - aF,h,
^^
~

Fh-FJi,
If the portions of surface which are subjected to pressure are

equal, as is represented in Fig. 605, where the whole surface A B
= i^ is submerged, we have more simply

^'-•^^^^- P ^ Fiji- h)y,
H^^g^l ' and since ¥ ^ Jc,' + % a h, + a' (see § 224)

R^ and h — h^ = a^ we have

-^^_^ _ Ic" — hi' — a h^ _ a Ih + «^

^^^ h — hi a

^^^ = h^ + a = li.

^^^^^^^^^^ In the latter case the pressure is equal to

the weight of a column of water, whose base

is the surface pressed upon and whose height is the difference of

level R H^ of the water on the two sides of the surfaces, and the centre

of pressure coincides with the centre of gravity S of the surface.

This law is also correct when the two surfaces ofwater are subjected to

equal pressure, e.g. by means of pistons or by the atmosphere ; for if

the pressure upon each unit of surface — p and the height of the

corresponding column of water is Z = - (§ 355), we must substi-
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tute. instead of li, li + I, and instead of li,, h, + l\ by subtraction
we obtiiln tlie pressure

P ^{h + 1- [h^ 4- q) Fy = {h - h,) Fy.
For tliis reason we generally neglect tli^ pressure of the air in
bydrostatical experiments.

Example.—The depth A B oi the water in the head-bay, Fig. 606, is

7 feet, the water in the chamber of the lock rises 4 feet upon the gale, and
the width of the canal and lock-chamber is

7,5 feet; what is the resulting pressure upon
the gate of the lock ?

Here

F = 1

F^= 4

1

2'

a = 1 -

h =

49
and ^.

7,5 = 52,5 square feet,

7,5 = 30,0 square feet,

= 2' '^i = 2
"" ^ ^eet,

4 = 3 feet,

1 .„ 16
4^ =

30. 2). 62,5

8 6 - 6
hence the required resultant is

p=(Fh-F,h,)r= (52,5.1

= 123,75 . 62,5 = 7734,4 pounds,
and the depth of the point of application below the surface of the water u

y-^-^^
_ 517,5

123,75

49
52,5 . ^ - 30

o = 4,182 feet

y
52,5 . X - 60

2

§ 360. Pressure in a Given Direction.—In many cases we
wish to know but one part of the pressure, yIz. : that exerted in a

certain direction. In order to find such a component, we decom-

pose the normal pressure M P = P on the surface A B ^ F, Fig.

607, into two components, one in the given direction MX and one

at right angles to it, viz.

:

M P, = P, and M P, = P,.

Now if a is the angle P Jf X
formed by the direction of the normal

pressure with the given direction MX
of the component, the components

will be

Py — P COS. a aud P. = P sin. a.

If we project the surface A B upon

a plane perpendicular to the given di-

rection M X, we have the area of the projection B C
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F, = F.cos. A B C,

or, since the angle of inclination A B C oi the surface to its pro-

jection is equal to the angle P MX = a, formed by the direction

of the normal pressure apd that of its component Pj,

Fi — F COS. a, and inversely

F,
COS. a ~ ^^ ;F

the required component is therefore

P — P ±1

Now, since the value of the normal pressure is P = P ^ y, we
liave

"

P^ — F^ li y,

I.E., the pressure exerted hy icater in any direction upon a surface is

equal to the iveight of a column of tvater, icliose base is the projection

of the surface at right angles to the given direction and whose height

is the depth of the centre of gravity of the surface leloiu the surface

of the tcater.

In most cases in practice we are only required to determine

the vertical or a horizontal component of the pressure of the

water against the surface. Since the projection at right angles to

the vertical direction is the horizontal projection and that at right

angles to a horizontal direction is a vertical one, we find the ver-

tical pressure of the water against a surface by treating its hori-

zontal projection as the surface subjected to pressure, and, on the

contrary, the horizontcd pressure of the water in any direction by

treating the vertical projection, or elevation, of the surface at right

angles to the given direction as the surface pressed upon, and in

both cases we must regard the depth 8 of the centre of gravity

S of the surface below the surface of the water as the head of water.

Hence, if we wish to determine in the case of a prisraatical em-

ianhnent or dam A B D E, Fig. 608, the horizontal pressure of

the water, we must con-

sider the longitudinal

___=^^^=^4w^,^ elevation A C, and if

z '--^^^^^^ V the vertical pressure i^

to be determined, the ho-

Vd rizontal pj'ojection B C
'i^ of the surface A B must

Nip be considered as the sur-

face pressed upon. Put-

\ ting the length of the
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dam — /, its height A C = h and horizontal projection of the slope

B C = a, we have the horizontal pressure of the water

and its vertical pressure

V — al.^y — \alliy.

!N"ow if the width of the top of this dam \^ A E — l, the hori-

zontal projection of the other slope D F — a^ and the heaviness of

the material of the dam = yi, the weight of the dam is

and the entire vertical pressure of the dam upon its horizontal base is

Putting the coefficient of friction = </>, we have the friction or

force necessary to ;pusli the dam forward

F^cp{V+ G) = [iay+ (b -i- --^) y^] cp h I

When the horizontal pressure pushes the embankment forward,

we must have

ih'ly = [lya+ (b + ^-^) y,] . i> h I,

or more simply

(f)(a+ (2b + a + a,) —).h
7

If we wish to prevent the dam from being moved, we must make

h < (f)
(a + (2b + a -^ ai) — ), or

For the sake of greater security we assume that the water has

penetrated below the base of the dam to a great extent, and for

this reason, in the worst case, we must consider that an opposite

pressure = (b + a -{- a^) I h y is acting from below upwards

;

hence we must put

h<cp]^(2b-\- a + a,) (^ " l) " ^1}

Example.—If the density of the clay composing the dam is nearly

double that of water, or

^ = 2 and ^ - 1 = 1,

7 2^
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we can write simply

h < (j) {2 d + a).

It has been found by experiment that a dam resists sufficiently, when
its height, top and the horizontal i)rojections of its slopes are equal to

each other. Hence, if we substitute in the last formula

h = h = a, we obtain 9 = ^,

for which reason in other cases we must put

h = ^^i21> + a + a,) (2a_i^_«J
and for clay dams in particular

h = ^ (2 d + a), or inversely

If the height of the dam is 20 feet and the angle of inclination of the

slope is a =: 36°, the horizontal projection is

a = h cotg. a = 20 . cotg. 86' = 20 . 1,3764 = 27,53 feet,

and therefore the width of the top of the dam must be

* = ?^^M? = 16,24 feet

§ 361. Pressure upon Curved Surfaces.—The law of the

pressure of water in a given direction, deduced in the foregoing

paragraph, is applicable only to plane surfaces or to a single ele-

ment of a curved surface, but not to curved surfaces m general.

The normal pressures upon the different elements of curved sur-

faces can be decomposed into components parallel to a given direc-

tion and into others perpendicular to the first. The first set of

parallel components forms a system of parallel forces, whose result-

ant gives the pressure in the given direction, and the other set of

components can also be combined so as to form a single resultant,

but the two resultants are not capable of further combination,

unless their directions intersect each other (§ 97). Hence we are

generally unable to combine all the pressures upon the elements

of curved surfaces so as to form a single resultant ; there are, how-

ever, cases where it is possible.

If Gi, Go, Gs, etc., are the projections and Jh_, lu, Ih, etc., the

heads of water of the elements F^, F.., F3, etc., of a curved surface,

the pressure of the water in the direction perpendicular to the

plane of projection is

P = {G,h + GJh + G,h + ...)y,

and its moment in reference to the plane of the surface of the water is

Pu= (G, Iw + G,h^ + G,h.^ +-...)%

If we can decompose the curved surface subjected to the pressure
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into elements, wliicli have a constant ratio to their projections,

1.E.5 if we can put

F. F<,

Gi = —, G2 = — , etc., and therefore
n n

Fx Ih F.n. \ _ IF, h, + F,h,-h.. .\ Fit^ IF\1h ,
FVh,^ \ ^ IF.li, -r F,li,-\-..\

y — y
n

F denoting the area and h the depth of the centre of gravity of the

entire surface below the level of the water. But we have

F= F.i-F, +,.,=nG, + nG^ -h... = n{G, +,G^ ^ ...) — nG,
G denoting the area of the projection of the entire surface ; hence

P = —• y = G h y,
n

as in the case of a plane surface, or the pressure of water in one

direction is equal to the weight of a prism of water, ivhose lase is

the projection of the curved surface upon a plane perpendicular to

the given direction and whose height is the depth of the centre of

gravity of the curved surface helow the surface of the ivater.

Thus, E.G., the vertical pressure against the side of a conical

vessel A C B, Fig. 609, which is filled with water, is equal to the

weight of a column of water, whose base is the
Fig. 609.

j^g^gg Qf ]^\-^q conQ and whose height is two-thirds

^
the length of the axis CM', for the horizontal

j^ projections of the surface of a right cone, as

m ! m ^^^ ^® ^^^^ surface itself, can be decomposed

M 1 'm^ into elementary triangles, and the centre of

1vm/""s' !f^W^ gravity S of the surface of the cone is at a dis-

^b i >\#\ tance from the apex of the cone equal to two-

iS " "
i

thirds of its height h (§ 116). If r is the radius
A^ ^I .^^ ^ of the base and h the height of the cone, we

have the pressure upon the base = tt r'^ h y and

the vertical pressure upon the sides = | tt r^ A y ; now as the base

and the side are united together and the pressures are in opposite

directions, it follows that the force with which the entire vessel is

pressed downwards is

= (1 — 'D 7: r"" h y — I TT r"" h y
= the weight of the entire mass of water. If we cut the base loose

from the conical portion of the vessel it will exert a pressure upon
its support = 71 r"* h y, and to prevent the side of the vessel from

being raised by the water we would have to exert a pressure upon
\t = l IT r^ h y.
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Remaek.—The pressure exerted by the steam of a steam-engine or the
water of a water-pressure engine is perfectly independent of the shape of

the piston. No matter how much we may increase the

surface pressed upon by hollowing out or roundino- the
piston, the force, with which the water or steam moves
the piston, remains the same and is equal to the product
of the cross-section or horizontal projection of the piston

and the pressure upon the unit of surface. If the piston

A B, Fig. 610, is funnel-shaped and if its greater radius

is G A = C B = r and its smaller G D= O E ~r^, the

pressure upon the base is = i: r^ p and the reaction

lipon the conical surface is = tt (7*2 —r^'^)^; hence the

resulting pressure is

P = p — TT (r^ — r^^) p = Tvr^^ p

—P.

= the cross-section of the cylinder multiplied by the pressure upon the

unit of surface.

§ 362. Horizontal and Vertical Pressure.—Whatever may
be the form of a curved surface A B, Fig. 611, the horizontal pres-

sure of the water against it is always equal to the weight of a

column of water, whose base is

the vertical projection A^ B^ of

the surface at right angles to the

given direction and whose height

is the depth S of the centre

of gravity S of this projection

below the surface of the water.

The correctness of this . assump-

tion is shown directly by the

formula

P = {GJi,+ G,li,-\- ..,)y, .

when we remember that the heads of water h^, h^_, etc., of the ele-

ments of the surface are also the heads of water of their projections

or that 6^1 Ji] -f G, h., + ... is the statical moment of the entire

projection, i.e., the product G li of the vertical projection G multi-

plied by the depth li of its centre of gravity below the surface of

the water. Hence we must again put

P = Gliy
and remember that li is the head of water of the vertical projection.

The vertical section, by which we divide a vessel and the water

contained m it into two equal or unequal parts, is at the same time

the vertical projection of both parts, the horizontal pressure upon

one part of the vessel is proportional to its vertical projection
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multiplied by the depth of its centre of gravity below the surface

of the water ; consequently the horizontal pressure upon one portion

A B of the wall of the vessel is exactly as gresit as the horizontal

pressure upon the opposite portion A
i
B^, which acts in the opposite

direction^ and the two pressures balance each other. The vessel

will therefore be subjected to equal pressure in all directions by the

water contained in it.

The vertical pressure P^ = Gi hi y of the water against an ele-

ment Fi, Fig. 612, of the wall of the vessel is, since the horizontal

projection G^ of the element can be regarded as the cross-section,

and the head of water h^ as the height, or Gi Jh

as the volume, of a nrism, equal to the weight

of a column of water IT F^, extending above

the element to the plane ff E of the surface

of the water. Hence the elementary surfaces,

which form a finite portion A B of the bot-

tom or wall of the vessel, support a pressure

which is equal to the weight of the columns

of water above them, i.e. to the weight of the

column of water above the entire portion.

Putting its volume equal to Fj, we obtain

the vertical pressure of the water

P = V,y.

The vertical pressure upon another portion

A I Bi of the wall of the vessel, which lies

vertically above the former and which limits the volume A^ Bilf=
V„ is

Q= y.y\

but if the two portions are rigidly connected together, the result-

ant of the two forces, which acts vertically downwards, will be

n^{P - Q)^ (F, - F,)y = Fy
= to the loeiglit of the column of water contained hetiveen the two

surfaces. If we apply this rule to the entire vessel, it follows that

the entire vertical pressure of the luater against the vessel is equal to

the weight of the water contained in it.

If we make an opening in the side of the vessel H B R, Fig.

613, I and II, that portion of the pressure, which corresponds to

the cross-section of this opening, is wanting and the pressure upon
the surface F opposite to it remains unbalanced. If the opening

(as in I) is closed by a stopper K, which is prevented from yielding

by a resisting object L on the outside, an equal distribution of the

47
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horizontal pressure upon the walls of the vessel no longer takes

place, but, on the contrary, the vessel is moved forward with a

force P =^ Fhy, which is counteracted on the opposite side by

Fig. 613.

I n

Fia. 614.

the stopper. If the stopper is removed and the water allowed to

flow through the opening 0, as in II, the reaction of the discharg-

ing water increases this pressure P from F h y to P^ =. '^ F h y,

as will be shown hereafter.

Example.—The vertical pressure P^ upon the lower hemispherical sur-

face A D B^ Fig. 614, is equal to the weight of a column of water bounded

above by the surface of the water H R and below

by the hemispherical surface. If r is the radius C A
= GD of this surface and h the height C of the

surface of the water above the horizontal plane A B,

which limits it, the volume of the hemisphere A BD
will be Fj = f TT r^, and that of the cylinder above

A B, V^ = Tc r^ h; hence

Pi= (F, + F3) 7 = (I ^ r^ + TTT"^ h) y ^ (y^ + f r) Trr^ 7.

The pressure, which is directed vertically upwards
upon the upper hemisphere AJSB, is, on the contrary,

and therefore the entire vertical pressure

is equal to the weight of water in the entire sphere.

The horizontal pressure upon one of the hemi-

spheres BAB and B B E, which join each other in

the vertical plane B G E^ is measured by the weight of a prism, whose

base is D G E = -n r"^ and whose height is G = h; tliis pressure is

B = IT r^ 7i y.

§ 363. Thickness of Pipes.—The application of the theory

of the pressure of water to the determination of the thickness of

pipes, boilers, etc., is of great importance. In order that these

vessels shall sufficiently resist the pressure of the water and not be
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broken, their walls must be made of a certain thichness, which de-

pends upon the head of water and the internal diameter of the

vessel. The rupture of the pipe may be caused either by a trans-

verse or by a longitudinal tearing. The latter form of rupture is

most likely to occur, as will appear from the following discussion.

If the head of the water in a pipe = h or the pressure upon the

unit of surface of the pipe is 7; = A y, the width of the pipe MN
— 2 CM = 2 r, Fig. 615, and the cross-section of the body of

water m it i^ = tt r"^, the pressure, which is exerted upon the sicr-

face of the end of the pipe and which must be sustained by the

cross-section of the tube, is

P = Fp ~ t: r"" h y = TT r'^ p.

Now if the thickness of the pipe is ^ i) = ^ ^ = e, its cross-

section is

— -n {r -^ ey — -n r" — 2nre + e'' = 27Trell + —- K

and if we denote the modulus of proof strength of the material, of

which the pipe is composed, by T, the proof strength of the entire

tube in the direction of the axis is

Fig. 615. P ={l + ^\2nre T.

J^-—

^^ Hence we can put

40^^^^^^. 1 + ^^} 2 7T r e T = t: r p, or

z^:3:^^5r2ai (i ^ ^)2e T= rp (see § 205)

;

Wj^'^^^^^^^^^m ^^ resolution of this equation gives

^^^^^'^^^W ^^ thickness

^^^11^^ _ r p

r<r

i^-f)^
of the pipe, for which we can generally write with sufficient accu-

racy

_ r p _ rhy
^ ~ YY '~

~2~T'

The mean pressure, which the water exerts upon a portion of

the wall A M B, whose length is I and whose central angle is

A C B =^ 2 a\ is, since the projection of this portion at right

angles to the line CM passing through the centre is a rectangle,

whose area \^ A B A — 2 r I sin. a,

P = 2 rl sin. a . p = 2 r Ih stn. a . y.
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This force is held in equilibrinm by the forces of cohesion R,

R in the cross-sections A D .1 and B E . I = e I of the wall of the

pipe; it is therefore equal to the sum 2 Q of the components

B Q = Q and E Q = Q of the latter forces, which are parallel to

the Hne G M. Now if we put R — el T\ we obtain

Q — R sin, A R Q = R sin. A CM = el T sin. a,

and therefore

2 e I T sin. a = 2 r Ip sin. a, i.e. e T = r p;
hence the required thickness of the pipe is

_ r p _ rhy

which is entirely independent of its length.

Since the first calculation gave e only = -5-^, it follows that

to prevent a longitudinal tear we must make the wall twice as

thick as would be necessary to prevent a transverse one.

From the formula
_r p _ rhy

6 - -jT - -Y~
just found, it follows that the thickness of similar pipes must he

proportional to the width and to the head of water or pressure upon

the unit of surface. A pipe, which is three times as wide as

another and which has to bear a pressure five times as great as the

first, must be fifteen times as thick.

We must give to holloiv spheres which sustain a pressure p upon

each unit of surface the thickness

_^ r p

for here the projection of the surface pressed upon is the great

circle t r^, and the surface of separation of the ring is 2 tt r e

(1 + -— |, or approximatively, when the thickness is small, = 2 Tire.

The formulas just found, give for ^ == also e = ; hence

pipes, which have no internal pressure to resist, can be made infi-

nitely thin ; but since every pipe in consequence of its own weight

must sustain a certain pressure and also must be made of a certain

thickness to be water-tight, we must add to the value found a

certain thickness e in order to have a pipe, which under all circum-

stances will be strong enough. Hence for a cylindrical tube or

boiler we have
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ex +
rhy

or more simply, if d is the interior width of the tube, jo the pressure

in atmospheres, each corresponding to a column of water 34 feet

high, and ft a coefficient determined by experiment,

e = 61 + [I p d.

It hag been experimentally determined tliat for tubes made of

Sheet iron

Cast iron

Copper .

Lead

Zinc , .

Wood ,

Natural stone

Artificial stone

Example.—If a Tert

e = 0,0008-8 p d + 0,12 inches,

. e = 0,00238 7^ d + 0,34 "

. e = 0,00148 7:>(^ + 0,16 "

. e = 0,00507 pd + 0,21 "

. e = 0,00242 2^ d + 0,16 "

. e = 0,0323 p d -f 1,07 "

, e = 0,0369 j; d + 1,18 "

. e = 0,0538 p d + 1,58 "

leal water-j)ressure engine has an inlet cast-iron

pipe- 10 inches wide inside, how thick must its walls be for a depth of 100,

200 and 300 feet ? For a depth of 100 feet this thickness is 0,00238 .

^ . 10 + 0,34 = 0,07 + 0,34 = 0,41 inches ; for a depth of 200 feet =
0,14 + 0,34 = 0,48 inches; and for a depth of 300 feet = 0,21 + 0,34 =
0,55 inches. Cast-iron conduit pipes are generally tested to 10 atmo-

spheres, in which case we have

e = 0,0238 d + 0,34 inches,

and for pipes of 10 inches internal diameter we must make the thickness

e= 0,24 -I- 0,34 = 0,58 inches.

Remark—1) In the second part of this work the thickness of tubes ex-

posed not only to hydrostatic pressure, but also to hydraulic impact, will

be calculated.

2) In the second part the thickness of the walls of steam-boilers will be

treated. Upon the theory of the thickness of pipes, we can consult the

treatise of Geh. Regierungsrath Brix in the proceedings of the " Vereins

zur Beforderung des Gewerbefleisses, in Preussen," year 1834, and Wiebes

"Lehre von den einfachen Maschinentheilen," Vol. I, and also Rankine's

"Manual of Applied Mechanics," page 289, and Scheffler's '' Monograpliieu

iiber die Gitter- und Bogentrager, und iiber die Festigkeit der Gefassioandey

The technical relations and the testing of pipes are treated in Hagen's

" Handbuch der Wasserbaukunst," Part 1st, and also in Geniey's " Essai

sur les moyens de conduire, etc., les eaux," and in the " Traite theoretique

et pratique de la conduite et de la distribution des eaux," par Dupuit,

Paris. 1854.
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CHAPTER II.

EQUILIBRIUM OF Vv'ATER WITH OTHER BODIES.

§ 364. Upward Pressure, Buoyant Effort.—A body im-

mersed in imter is subjected to pressure upon all sides, and the

question arises, what is the magnitude, direction, and point of

application of the resultant of all these pressures ? Let us imagine

this resultant composed of a vertical and two horizontal compo-

nents, and let us determine them according to the rules of § 3G2.

The horizontal pressure of the water against a body is equal to the

horizontal pressure against its vertical projection ; but every eleva-

tion A C, Fig. GIG, of a body is at the same time the projection of

the rear part A D C and of the fore part A B C of its surface, and

consequently the pressure P upon the hind part of the surface of a

body is equal to the pressure — P upon the fore part ; and as the

directions of these ]3i'essures are opposite, their resultant is = 0.

Since this relation exists for any given horizontal direction and its

corresponding vertical projection, it follows that the resultant of

all the horizontal pressures is equal to zero, and that the body A C,

w^hich is under w^ater, is subjected to equal pressure in all horizontal

directions, and therefore has no tendency to move horizontally.

Fig. m6. Fig. 61'

In order to find the vertical pressure of the water upon a body

A B D, Fig. 617, immersed in it, let us imagine it to be decompose(i
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into the vertical elementary prisms A B, C D, etc., and let us de-

termine the vertical pressure upon their bases A and B, C and D,
etc. Let the lengths of these columns be l^, k, etc., the depths

H B, K D of their upper ends B, D below the surface of the Avater

Ehe Ih, Ih, etc., and their horizontal cross-sections be F^, i^o, etc.,

then we have the vertical pressures which act from above down-
wards upon their ends B, D, etc.,

Q„ Q,, etc., = F, 7h y, F, h, y, etc.,

and, on the contrary, the vertical pressures which act from below

upwards against the ends A, C, etc., are

P„ P„ etc., = F, {h, + I,) y, F, (Ji, 4- h) y, etc.

By combining these parallel forces we obtain the resultant

P = P, + i>, + ...- (^^ + ft + ...)

=- F, {Jh + /i) r + F, (Ji, + l,)y + ...~F,h,y- FJi,y- ...

= (F,l, -i- F,I,+ .,.)y=Vy,
in which V denotes the volume of the immersed body or of the

water displaced by it. Henre the upward pressure or buoyant effort,

with luliich loater tends to raise up a body immersed in it,, is equal to

the loeight of the -water displaced or of a quantity of ivater luhich has

the same vohcme as the submerged body.

Finally, in order to determine the point of application of this

resultant, let us put the distances E F^, E F^, etc., of the elemen-

tary columns A B, D, etc., from a vertical plane X equal to

a„ «2j etc., and let us determine their moments in reference to this

plane. If *S' is the point of application of the upward thrust, which

is called the centre of buoyancy, and ^ aS' = a; its distance from

that plane, we have
Vy X ^ F^Uy .a^ + F.l,y .a. + . . .,

and therefore

_ F, I, a, + F^ha, + . . . _ V, a, -h V. a, -{- . .

.

^ ~ F,l, + F,k-+ ...
~

V, + V, + ...
'

Fi, F2, etc., denoting the contents of the elementary columns. Since

(according to § 105) the centre of gravity of a body is determined

by exactly the same formula, it folloivs that the point of application

8 of the ujnvard thrust coincides loith the centre of gravity of the

ivater displaced. The direction of the buoyant effort is called the

line of support ; when it passes through the centre of gravity of the

body, it is called the line of rest.

§ 365. Upward Pressure, or Buoyant Effort, when the

Body is Partially Surrounded by Water.—If a body, such as

ABB, Fig. 618, is not entirely surrounded by the water A IIB,
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and the surface A B, whose area is F, is united to the wall of the

vessel, or if the body, where its cross-section is A B = F, passes

through the wall of the vessel, the pressure which the water would

have exerted upon this surface A B, if the body was free or in con-

tact with the water alone, is absent.

If we denote the head of water upon
Fig. 618. ^ ^^ j j, ^^iq depth of its centre of grav-

M ity below the surface of water H R, by

/^^^BJI^B h, the pressure of the water upon A B
/^^^^^^W will be P = F hy\ and if Y^ denotes

"^^^^^^^^W ^^^ volume of water displaced hy A B D,

''^^9S^mW ^^ buoyant effort of the water, or the

^^^Sii^^W force, with which the body would tend

^^miff^^^ '

^^ ^^^® ^^ ^^ ^^^^ fr^6> is Pi = Fi y.

^^^^^^ However, since the pressure upon
4mpr ^^ '

A B is wanting, the entire action of the

/ water upon the body is the resultant B
of P, =: F, 7 and - P = - P A y.

In order to determine this resultaijt, we prolong the vertical line

of gravity of the water displaced and the right line passing through

the centre M of the pressure perpendicular to ^ P until they meet

at the point C; then, assuming the forces Pi and — P to be ap-

plied at this point, we combine them by means of the parallelogram

of forces and obtain the resultant C R = R.

If the inclination of the surface A B to the horizon as well as

the deviation of the force P from the vertical = a, the angle

formed by the directions of the forces P and — Pi with each other

will he = M C B = 180 — a, and therefore the resultant, which

measures the whole effect of the pressure of the water upon the

body ABB, will be
'

R = VH' + P' - 2 P Pi COS. a

= y V Fi'^ + {FhY - 2 Fi Fh cos. a.

According to the principle of action and reaction, the body will

react with a pressure — R upon the water. If F^ is the volume

of the water in the vessel or F^ y its weight G, the pressure, which

acts vertically downwards upon the vessel, is

Q= F-„ y 4- P, = ( F„ + Fi) y, i.e. Q= Vy,
when V = V, + F denotes the volume of the space occupied by

the water and the body ABB.
Combining this with the pressure P = P 7^ y, we have the entire

pressure sustained by the vessel
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R, =VQ' + F' -2 QF COS. a

Fig. 619.

= y VP + {Flif -2VFh COS. a.

If the surface A B were horizontal or a = 0°, we would haye

i? = ( Fi - i^70 r and i^i = ( F - F h) y.

If also V, =^ 0, R would be = - Fliy (see § 355).

§ 366. Equilibrium of Floating Bodies.—The buoyant

effort F upon a body floating or immersed in water is accompanied

by the weight G of the body, which acts in the opposite direction,

and the resultant of the two forces is

i^ =: 6^ - P or = (e - Ij Fy,

in which e denotes the specific gravity of the body.

If the body is homogeneous, its centre of gravity and that of the

water displaced coincide, and this point is consequently the point

of application of the resultant R := G — F\ but if the body is

heterogeneous, the two centres of gravity do not coincide and the

point of ap23lication of the resultant does not coincide with either

of them. Putting the horizontal distance S H, Fig. 619, of the two

centres of gravity from each other = b

and the horizontal distance S A of the

required point of application A from the

centre of gravity S of the water dis-

placed, = a, we have the equation

Gb = Ra,
whence we obtain

_ G_h __ Gb
""-

'^R
- ~G^r^'

If the immersed body is abandoned to

the action of gravity, one of three cases

may occur. Either the specific gravity

e of the body is equal to that of the water, or it is greater, or it is

less. In the first case the buoyant effort is equal to the weight, in

the second it is smaller, and in the third it is greater. While in

the first case the buoyant effort and the weight are in equilibrium,

in the second case the body will sink with the force

6^ - Fy = (£ - 1) Fy,

and in the third case it will rise with the force

Yy - G = {I - e) Fy.

The body will continue to rise until the volume V^ of the water

displaced by the body and limited by the plane of the surface of the
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water has the same weight as the entire body. The weiglit 6^ ==

F e y of the body A B, Fig. 620, and the buoyant effort P =
Fi y form a couple, by which the body is turned

until the directions of these forces coincide or

until the centre of gravity of the body and the

centre of buoyancy come into the same vertical

line, or until the line of support becomes a line

of rest. From the equality of the forces P and

G we have the expression

The line passing through the centre of gravity of the floating

body and the centre of buoyancy is called the axis of floatation (Fr.

axe de flottaison ; Ger. ^chwimmaxe), and the section of the float-

ing body formed by the plane of the surface of the water is called

the plane of floatation (Fr. plan de flottaison; Ger. Schwimme-

bene). From what precedes we see that any plane, which divides

the body in such a manner- that the centres of gravity of the two

portions will be in a Ime perpendicular to it, and that one portion

of the body will be to the whole as the specific gravity of the body

is to that of the liquid, will be a plane of floatation of the body.

§ 367. Depth of Floatation,—If we know the form and

weight of a floating body, we can calculate beforehand by the aid

of the foregoing rule the cleptli of iminersion. If G is the weight

of the body, we can put the volume of the
Fig. 621. water displaced
A E B Q

y> = -,
B_ '
J E .

. . .

^
'^ sf ifwe combine this with the stereometric formula

K ^ for this volume Fj, we obtain the required

^ IE equation of condition.

^ M For a prism ABC, Fig. 621, whose axis is

^g^E£""""^g*'^Er vertical, we have F = Ft/, when P denotes the

-<—^^::^^—^— cross-section and y the depth O D of immer-

sion ; hence it follows that

^ G , G G7i
F y = — and y — ^^ = -j^—,

in which F denotes the volume and li the length of the floating

prism.

For a p}Tamid ABC, Fig. 622, floating with its apex below
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the surface of the water, we have, since the contents of similar
pyramids are proportional to the cubes of their heights,

Y = -j^, and consequently the depth of immersion, is-

in which F denotes the volume and h the height of the pyramid.

Fia. 622. Fi(j q23.

A E B

Fig. 624.

For a pyramid, ABO, Fig. 623, floating with its base under
water, we obtain, on the contrary, the distan(§e CD = y, from the
apex to the surface of the water by putting

Y = ~^W^' whence y, = li \\ - ^ ^ i \/^ __ __^^

For a sphere A B, Fig. 624, whose radius is C A = r,

F. =7r/(r-|);

we have therefore, in this case, to
solve the cubic eq^uation

f-3ry^+^^-^=0
TT y

in order to find the depth of the
immersion i> ^ = ?/ of the
sphere.

If a cylinder A K, Fig. 625,

floats with its axis horizontal and
its radius is ^ C= B C= r,we have, when a' denotes the central
angle A C B oi the immersed arc, for the depth of immersion D E

y = r (1 — COS. A a)
;

now in order to find the arc a we must put the volume of the water
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-^ i minus the triangle (—o ~~)' "^^^^^P^^®^

bv the length B K = Z of the cylinder, or

Fia. 625. (^ - «"^- '^) X "" y
/^" ^i^g^r̂ ^^ and resolve the equation

^^^^. Ja::^^^^^^^=^^^:^=r^ by approximation with reference

^~""""''^^
Example—1) If a wooden sphere

10 inches in diameter, which is float-

ing, is immersed 4|^ inches in the water, the volume of the water disjDlaced is

— 81 7 567 '"

Fi = TT (1)^ (5 - I)
- " •

• = —~ = 222,66 cubic inches,

while the volume of the sphere itself is

7T d^ TT . 10^—--- = —'—— = 523.^ cubic inches.
6 6

Therefore 523,6 cubic inches of the mateinal of the sphere weigh as much
as 222,66 cubic inches of water, and the specific gravity of the former is

^ 222,66 ^ ,„^
•^ = -^8X = *''*'^-

2) How deep will a wooden cylinder 10 inches in diameter sink, when
tioating, if its specific gravity is ? = 0,425 ? Here

a — sin. a tv r^ I . e y ^ ,^^ . ^.
^r = —:r-7,

= 7T e = 0.425 . tt = 1,3852.
2 I r- 7

Now the table of segments in the " Ingenieur," page 154, gives for the area

a — sin. a

2
1,32766 a segment of a circle, whose central angle is a" =

166', and for -—^— = 1,34487 an angle a" = 167" ; we can, therefore,
. 2

put the angle at the centre, corresponding to the sector 1,3352

1,33520-1,32766 „ ,
754'' _„ ^,

«" = ««" + i:34487 - 1.82766 '

'' = '''" + 1721 = "«" •'''

The depth of immersion is, therefore,

y = r (1 — C9S. -1- a) = 5 (1 — cos. 83" 13') = 5 . 0,8819 = 4,41 inches.

§ 368. The most important application of the above principle

is to the determination of the depth of immersion of boats and

ships. If the boats have a regular form this depth can be calcu-

lated by geometrical formulas ; but if the form is irregular, or if its

equation is unknown, or if it is composed of very many forms, the

depth of immersion must be determined by experiment.
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An example of the first case is furnished by the boat A CE G H,
represented in Fig. 626, whose sides are plane surfaces. It con-

FiG. 626.

sists of a parallelopipedon A C F and two four-sided pyramids

C E F and B G H, which form the bow and stern, and its plane

of floatation is composed of a parallelogram K L P and of two

trapezoids L MN and KP Q R which limit the space, from

which the water is displaced and which can be decomposed into a

parallelopipedon K C T, into two triangular prisms U VMN
and WXRQ, and into two four-sided pyramids C FJ/ and BXR.

Let us put the length ^1 D = B C of the central portion = I, its

width A G = b and its height A B = h, the length of each of the

two beaks = c and the depth of immersion ulider water, i.e. B K
— C L = y. It foliow^s that the immersed portion K G T oi

the middle piece is

= BC .~C~8 .VL = lly.

Putting the width G U of the base of the pyramid C V My = x

and the height of this pyramid = z, we have

z= - — ^, whence
c h

2/ and 2; = ly,h ^ h

hence the volume of this pyramid is

and those of the two pyramids (C VM and B X R) together are

- 2 ^^f

The cross-section of the triangular pyramid U VN is

= ' ?/ 2; =^ and the side MN =. V^y "111
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hence the contents of the two prisms V UN and X W Q together

are

=-^;-K^-i)=¥(^-f)-
Finally, by adding the volumes first found, we obtain that of

the water displaced

Now if the gross weight of the boat = G, we must put

^ ^
c ^ h cy

By resolving this cubic equation we obtain from the gross

weight G of the boat its de^dh y offloatation.

Example—1) If the length of the middle portion of a boat is Z = 50

feet, the length of each terminal pyramid is c = 15 feet, the width 6 = 13

feet and the depth ^ = 4 feet, the total load for an immersion of 2 feet is

G^ = [50 + 15 .
1 -

I-
. 15 . (f)'^] .12.2. 62,5

= [50 + 7,5 — 1,25] 24 . 62,5 = 84375 pounds.

2) If the gross weight of the above boat was 50000 pounds, we would

have for the depth of immersion

y^ _ 12 t/^ _ 160 y + 213,33 = 0.

From this we obtain

approximatively, y = 1,333 + 0,00625 (1,333)^ — 0,075 (1,333)'

= 1,333 + 0,0148 — 0,1333 = 1,215, and more exactly

y = 1,333 + 0,00625 (1,215)^ - 0,075 (1,215)^ = 1,2338 feet.

Remark.—In order to find the weight of the cargo, vessels are provided

on both sides with a scale. The divisions of the scale are generally deter-

mined empirically by finding the immersion for given loads. This subject

will be treated more at length in the third volume.

§ 369. Stability of Floating Bodies.—A body floats either

in an upright or inclined position, and imth or ivithout stahility.

A body, E.G. a ship, floats in an upright position, when at least one

of the planes passing through the axis of floatation is a plane

of symmetry of the body, and in an inclined position, when the

body cannot be divided into two symmetrical parts by any plane

passing through the axis of floatation. A floating body is in stable
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equilibrium, when it tends to maintain its position of equilibrium

(compare § 141), i.e. if work must be done to move it out of this

position, or if it returns to its original position of equilibrium after

having been moved from it. A body floats in unstable equilibrium,

when it passes into a new position of equilibrium as soon as it has

been moved from its original one by being shaken, by a blow, 'etc.

If a body A B C, Fig. 627, which was floating in an upright

position, is brought into an inclined one, the centre of buoyancy S
moves from the plane of symmetry and assumes a position 81 in

the half of the body most immersed. The buoyant efibrt P = V y,

which is applied at S^, and the weiglit of the ship G = — P, which

is applied at C, form a couple which will always turn the body

(see § 93). No matter around what point this rotation takes place,

the point C, yielding to the weight G, will always sink, and the

point Si or another if, situated in the vertical line ^1 P, yielding

to the action P, will rise, and the axis or plane of symmetry E F
will be drawn downwards at C and upwards at M, and therefore

the body will right itself when if, as in Fig. 627, is above (7, and.

on the contrary, it will incline itself more and more when, as is

represented in Fig. 628, M is situated below C. Hence the stability

of a floating body, such as a ship, depends upon the point M, where

the vertical line, which passes through the centre of buoyancy 8x,

cuts the plane of symmetry. This point is called the metacentre

(Fr. metacentre; Ger. Metacentrum). A ship or any other body

floats with stability when its metacentre lies above its centre of

gravity, and without stability when it lies below it; it is in indif-

ferent equilibrium when these two points coincide.

The horizontal distan>ce D of the metacentre M from the

centre of gravity C of the ship is the arm of the couple formed by

P and G — — P, and its moment, which is the measure of the
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stability, is = P . C D. If we denote the distance C M by c, and

the angle SM Si, through which the ship rolls or through which

its axis is turned, by </>, we have for the measure of the stabihty of

the ship

S = P c sin. ;

it ihcreases, therefore, with the weight, with the distance of the

metacentre from the centre of gravity of the ship and with the

angle of inclination.

§ 370. Determination of the Moment of Stability.—In

the last formula
S = P c sin. 0,

the stability of the ship depends principally upon the distance of

the metacentre from the centre of gravity of the ship, and it is,

therefore, iipportant to obtain a formula for the determination of

this distance. While the ship ABE, Fig. 629, passes from its

upright to its inclined position,

^^- ^^^ the centre of buoyancy S moves to

^^^ Si, and the wedge-sliaped space

^^HB^^ H Hi passes out of the water

^^^^^B|^^^,^ drawing the wedge-shaped piece

ilSBS9i9Hnik R O Ri into it, and the buoyant

—^=^^^^--- ^^=J^^^P i^ ^s increased by an equal force Q,

^^i--
- ,

-- -^— - "^^^^iW acting at the centre of gravity O
, ^^-^J^E^^^^^^^^^

of the space R R^. Therefore--—
-(^jjg force P applied at Si replaces

the force originally applied at S and the couple {Q, — Q), or, what

amounts to the same thing, an opposite force — P, acting in Si,

balances the force P applied at S together with the couple {Q, — Q),

or more simply a couple (P, — P), whose points of application are

S and Si, balances the couple
( Q, — Q). Now if the cross-section

H E R = Hi E Ri oi the immersed portion of the ship = F and

the cross-section H Hi = R Ri of the space, which is drawn

out the water on one side and immersed on the other, — Fi, if the

horizontal distance K L of the centres of gravity of these spaces

from each other = a and the horizontal distance M T of the centres

of gravity S and Sx from each other, or the horizontal projection



§370.] -EQUILIBRIUM OP WATER WITH OTHER BODIES. 753

S Si of the space described by S, during the rolling, = s, we have,

since the couples balance each other,

F s = Fi a, whence s — ^ a and

M T s F, a8M
sin. (p sin. F sin. (f

The line CM — c, which enters as a factor into the measure

of the stability, i^ — C S + S M] denoting, therefore, the distance

C S oi the centre of gravity C of the ship from the centre of buoy-

ancy S by e, we obtain the measure of the stability

S = F c sin. (j) =: F I—^^—1- e sin. (pj.

If the angle through which the ship rolls is small, the cross-

sections H Hi and R Ri can be treated as isosceles triangles.

If we denote the width II R = Hi R^ of the ship at tlie surface of

the water by J, we can put

as well as sin. = 0; hence the measure of the stability of the

ship is

If the centre of gravity C of the ship coincides with the centre

of buoyancy 8, we have e = 0, whence

and if the centre of gravity of the ship lies above the centre of

buoyancy, e, on the contrary, is negative and

It also follows that the stability of a ship becomes null, when e

is negative and at the same time = „ .

I/O !<

We see from the results obtained that a ship's stability is greater

the wider the ship is and the lower the centre of gravity is.

Example.—The measure of the stabihty of a parallelopipedon A D,

Fig. 630, whose width ^ 5 = &, whose height A E = h and whose depth

^ — y
of immersion EH = y \^^ since F =hy and e = —

,

48
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S = F,(:_
2

"^
2)•^2by

or if the specific gravity of tlie material of which the parallelopipedon is

composed be put = e

From this we see that the stability ceases

when
i^ = Q h~ t (1 — e), I.E., when

V = V6 £ (1 — e).

For e = 1^ we have

I
= V|~i = Vf = 1,225.

If in this case the width is not at least 1,225 times the height, the paral-

lelopipedon floats in unstable equilibrium.

371. Inclined Floating.—The formula

S= F (^ ± e sin. ]

for the stability of a floating body can also be employed to determine

the various positions of floating bodies ; for if we put S = 0, we
obtain the equation of condition of the position of equilibrium, and

by resolving it we obtain the corresponding angle of inchnation.

We have, therefore, to resolve the equation

F, a

F ± e sm. (})
—

in reference to (p.

In the case of a parallelopipedon A B D F, Fig. 631, the cross-

section F is = H ED F = H, E,D F = b y, b denoting the

width A B = H E and y the depth of immersion F H = D E,

and the cross-section

F, = HOH, = EOE,
is a right-angled triangle, whose base

is H = E = hh,

and wdiose altitude is

HH, = EE,=: Ihtang.cp,

whence

F, = iF- tang. cp.

Now since the centre of gravity Jf

is at a distance

FV=\HH, = '^htang.<p

D
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from the base H R and at a distance U = ^ H — \1) from

the centre 0, it follows that the horizontal distance of the centre

of gravity F from the centre

= E = N + NK = Ucos. (p + F U sin, (p

= i h COS. (j) + ^ b tang. </> sin. (p,

and the arm of the lever is

a = XL = 2 d~K = I Z> COS. (p + i b --^.^ ^ cos.cp

Hence the equation of condition of the inclined position of

equilibrium is

^ h" fang. (;j b cos.' (p -^ I b sin." 0) _ ^ ^.^^ ^ ^
b y cos. (p '

'

sin. (b

or, substituting—'— = tang, (p,

sin. (p [{j2 + 2? tang."^ ^) ^^ — ^ y] = 0,

which equation is satisfied by

sin. = and by

ta?ig. = /2 ^/-^ - 1.

The angle = 0, determined by the first equation, is applicable

to the body when in an upright position, and that, given by the

second equation, to the body when floating in an inclined position.

If the latter case is possible, ~ must be > j'^. Now if h is the

height and e the specific gravity of the parallelopipedon, we have

y = ehande = --^ = (l - e) -,

whence it follows that

and the equation of condition for inclined floating is

5 ' ^ 6 e {1 - e)

Example 1) If the floating parallelopipedon is as high as wide, and if

its specific gravity is £ =: |, we have

tang. = V2 Vs.^ — 1 = Vs — 2 = 1, whence ^ = 45°.

2) If the height h = 0,9 of the width h and the specific gravity is again

^, we have

tang. = V3 . 0,81 - 2 = V0,43 = 0,6557, whence = 33° 15'.
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§ 372. Specific Gravity.—The law of the buoyant effort or

upward thrust of water can be made use of to determine the heavi-

ness or specific gravity of bodies. According to § 364 the buoyant

effort of the water is equal to the weight of liquid displaced \ hence,

if we denote by V the volume of the body and by y^ the heaviness

of the liquid, we have the buoyant effort P — V y-^. Now if yg is

the heaviness of the material of the body, we have its weight

G = F 72, whence the ratio of the heavinesses is

y,_G_
y.
- P'

I.E., the heaviness of the immersed body is to the heaviness of the

fluid as the absolute iveight of the body is to the buoyant effort or

loss of lueight during immersion.

Hence jc^ — -— y^ and y-^ = -— y^^ or if y denotes the heaviness

of water, £] the specific gravity of the fluid, and £2 that of the body,

we have, putting y^ = e^ y and yg = £2 y,

If we know the weight of a body and its loss of weight when
immersed in a Hquid, we can find from the heaviness or specific

gravity of the hquid the heaviness and specific gravity of the ma-

terial of which the body is composed, and, inversely, from the

heaviness or specific gravity of the latter, the heaviness and specific

gravity of the former.

K the liquid in which we weigh solid bodies is water, we have

£] = 1 and yi = y — 1000 kilograms = 62,425 pounds ; the former

when we employ the cubic meter and the latter when we employ

the cubic foot as unit of volume ; therefore in this case the heavi-

ness of the body is

G absolute weight i,. ,. n, ,, , . «
ys = p- y = ^j— ^

-
.
" multiplied by the heaviness 01 water,

and its specific gravity is

_ (^ _ absolute weight

P loss of weight

In order to find the buoyant effort or loss of weight, we employ,

as we do when determining the weight G, an ordinary balance. To
the under side of one of its scale-pans is attached a small hook, from

which the body is suspended by means of a hair, wire or fine thread

before it is immersed in the water, which is contained in a vessel

placed under the dish of the scale. A scale thus arranged for
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weighing under water is generally called a hydrostatic halance (Fr.

balance hydrostatique ; Ger. liydrostatische Wage).

If the body whose specific gi'avity is to be determined is less

dense than water, we can combine it mechanically with some other

heavy body, so that the compound mass will tend to sink in the

water. If the heavy body loses in the water a weight P^ and the

compound mass Pj, the loss of weight of the Hghter body is

P = P, - P,
Now if G denotes the weight of the lighter body, we have its spe-

cific gravity _ ^ _ ^''-p- -p;:irp;

If we know the specific gravity e of a mechanical combination

of two bodies, and also the specific gravities Cj and £2 of the compo-

nents, we can calculate from the weight G of the whole mass, by

means of the well-known principle of Archimedes, the weights G^

and G.2 of the components.

We have 6^1 + 6^2 = G, and also

G ^ G, , G
volume — + volume = volume —^.or.

Cj y e.^y ey

G] G^ G— + — = —.

Combining the two equations, we obtain

^,.^A l):(l_i),or
\e £2/ \£i £2/

(,, = W1-1):(1-1).
\£ £1/ \£2 £1/

Example—1) If apiece of limestone weighing 310 grams becomes 131,5

grams lighter in water, the specific gravity of this body is

310 = 3,55.~ 131,5 ~ '

3) In order to find the specific gravity of a piece of oak, a iDiece of lead

wire, which lost 10,5 grams in weight when weighed in water, was wrapped
around the piece of wood, which weighed 426,5 grams. The compound
mass was 484,5 grains lighter in the water than in the au' ; hence the spe-

cific gravity of the wood is

426,5 426,5= -7^ = 0,9.
484,5 — 10,5 474

3) An iron vessel completely filled with mercury weighed 500 pounds,

and lost, when weighed in water, 40 pounds. If the specific gravity of the

cast iron is = 7,2 and that of the mercury is = 13,6, the weight of the

empty vessel is
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SCO . 0,00647 3235
(0,1388 - 0,0735) = ~~ 5"^ = ^5;^ = ^^'^ P°'^<i''

and the weight of tlie mercury contained in it is

G, = 500 . (0,08 -- 0,1388) : (0,07353 - 0,1388) = -^r^- = ^r
= 450,2 pounds.

Remark—1) We can determine the specific gravity of fluids, loose

granular masses, etc., by simply weighing them in the air ; for by enclosing

them in vessels, we can obtain any desired volume of them. If the weight

of an empty bottle is = G, and when filled with water it is = G^j, and if,

when filled with some other liquid, its weight is Gq, the specific gravity

of the latter liquid is

_ G,-G

In order, e.g., to obtain the specific gravity of rye (in bulk), we filled a

bottle with grains of rye, and, after shaking it well, weighed it. After

subtracting the weight of the bottle, that of the rye was found to be

= 120,75 grams, and the Aveight of an equal quantity of water was 155,65

;

hence the specific gravity of the rye in bulk is

-^^i^ = 776
"155,65 '

'

and a cubic foot of this grain weighs

0,776 . 62,5 = 48,5 pounds.

2) The problem, first solved by Archimedes, of determining from the

specific gravity of a composition, and those of its components, the propor-

tion of each of the components, is of but very limited application to chem-

ical combinations, alloys of metals, etc, ; for in such cases a contraction

generally, and an expansion sometimes, takes place, so that the volume

of the composition is no longer equal to the sum of the volumes of the

components.

§ 373. Hydrometers, Areometers.—We generally employ

for the determination of the density of fluids areometers or liydrom-

eters (Fr. areometres ; Ger. Araometer, Senkwagen). These instru-

ments are hollow, symmetrical about an axis, have their centre of

gravity very low down, and give, when we float them in any liquid,

its specific gravity. They are made of glass, sheet brass, etc., and,

according to the uses they are applied to, are called hydrometers,

lactometers, salinometers, alcoholmeters, etc. There are two kinds

of areometers, viz. : those ivith loeiglits (Fr. a volume constant ; Ger.

Gewichtsaraometer), and the graduated areometers (Fr. a poids
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constant; Ger. Scalenaraometer). The first are often used to de-

termine the weight or specific gravity of solid bodies.

1) If V is the volume of the part of an areometer ABC, Fig.

632, which is under water, when the latter floats vertically im-

mersed to a point 0, G the weight of the whole apparatus, P that

of the weights placed upon the dish A, when the apparatus floats

in water, whose heaviness = y, and Pi their weight when the ap-

paratus floats in another liquid whose density is yi, we will have

Vy = P-{-G,
Vy, =. P, + G.

Hence the ratio of the heavinesses or

specific gravities of these liquids is

y ~ P + G'

2) Let P be the weight, which must

be placed upon the dish in order to im-

merse the areometer ABC, Fig. 633,

to a point 0, and let Pj be the weight,

which must be placed upon the dish A
with the body to be weighed in order

to produce the same immersion, then

we have simply

Gi = P- P„
But if we must increase Pj by P^ when
the body to be weighed is placed in the

lower dish C, which is under water, in

order to preserve the same depth of im-

mersion, the upward thrust is = P.2 and

the specific gravity of the body is

Po ~ P. '

The hydrometer with the dish sus-

pended below is employea for the de-

termination of the specific gravity of

solid bodies, such as minerals, etc., and

is called Nicholson^s hydrometer.

3) If we put the weight of an areom-

eter B C with a graduated scale A B,

Fig. 634, = G, and the immersed vol-

ume, when it floats on water, = V, we have G — V y. If the

areometer rises a distance X = x, when immersed in another

e =
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liquid, we have, when the cross-section of the shaft is denoted by

Fy the Yolume immersed

= F- i^a:, and therefore G = (V - F x) y„

Dividing the two formulas by each other, we obtain the heaviness

of the liquid

F
in which fi denotes the constant quotient ^.

If the liquid in which the areometer floats is hghter than water,

it will sink in it a distance x, and we will have

'G = {V + F x) y, and therefore

r
y, = .

1 + IJLX

F
In order to find the coefl&cient jLt = ^, we increase its weight

by an amount P, e.g. by pouring mercury in the areometer at the

upper end, so that it passes to the bottom of it, rendering the ap-

paratus so much heavier that, when floating in water, a consid-

erable portion of the length of the stem, to which the scale is

applied, is immersed. Putting P — Fly, I denoting the immer-

sion produced by P, we obtain

_ ^ _ _ZL - ^
^ ~ V ~ yiy~ GX

Example— 1) If an areometer, weighing 65 grams, must have 13,5

grams removed from the dish in order to float at the same depth in alcohol

as it had done in water, the specific gravity of alcohol is

65 — 13,5= —-^ = 1 - 0,208 = 0,792.
bo

2) The normal weight of a Nicholson hydrometer is 100 grams ; that

is, we must place 100 grams upon the dish in order to sink the instrument*

to 0, but we must take away 66,5 grams after having laid a piece of brass

which we wish to weigh upon the upper dish, and 7,85 grams had to be

added when the brass was removed to the lower dish. The absolute weight

of the brass is then 66,5 grams and its specific gravity is

7,85
- ^'*^-

3) A graduated areometer, weighing 75 grams, rises, after 31 grams of

the substance, with which it was filled, has been removed, a distance Z = 6

inches = 72 lines ; the coefficient // is therefore

31

= 75T73 = «'««"''•
-
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It was then refilled until its weight became again 75 grams, when it was

placed in a solution of salt ; it fhen rose a distance of 29 lines ; the specific

gravity of the liquid is therefore

= 1 : (1 - 0,00574 . 29) = 1 ; 0,833 ~ 1,2.

Remaek.—A more extended treatment of this subject belongs to the

province of chemistry, physics and technology,

§ 374. Liquids of Different Densities.—If several liquids

of different densities exist in a vessel at the same time without

exerting any chemical action upon one another, they will place

themselves, in consequence of the ease with which their particles

are displaced, above each other in the order of their specific gravi-

ties, viz : the most dense at the bottom, the less

dense above it and the least dense on top. When
in equilibrium the limiting surfaces are hori-

zontal ; for so long a^s the limiting surface E F
between the masses ifand N, Fig. 635, is inclined

so long will there be columns of liquid, such as

G K, Gx Kx, etc., of different weights above the

horizontal layerH R ; hence the pressure upon

this layer cannot be the same everywhere and

consequently equilibrium cannot exist.

The liquids arrange themselves also in the communicating tubes

A B and C D, Fig. 636, according to their specific gravities above

one another, but their surfaces A and D G do not lie in one

and the same horizontal plane.

Fig. 635.

If i^is the area of the cross-section R R of sl piston. Fig. 637,

in one leg A B oi two communicating tubes and h the head of

water or the height B H of the surface of the water in the second

tube C D above H R, we have the pressure upon the surface of the

piston

P = Fhy.
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If we replace the force, exerted by the piston, by a column of

liquid H A Ry Fig. 636, whose height is Ih and w^hose heaviness

is yi, we have

equating the two expressions we obtain

h, y, = h y,
or the proportion

]h ^ y_

h ~
yi*

TJierefore tlie heads or ilie heiglits of the columns of liquid^

measuredfrom the common jjlane of contact of two different liquids,

which are in equilihrium m two communicating tubes, are to each

other inversely as the heavinesses or specific gravities of tliese liquids.

Since mercury is about 13,6 times as heavy as water, a column
of mercury in communicating tubes will hold in equilibrium a

column of water 13,6 times as long.

CHAPTEE III.

OF THE MOLECULAR ACTION OF WATER.

§ 375. Molecular Forces.—Although the cohesion of waiter

is very slight, it is not null. The molecules (Fr. molecules ; Ger.

Theile or Molekiile) not only cohere together, but also adhere to

other bodies, e.g., to the sides of a vessel, so that a certain force is

necessary to destroy this union, which we call the adhesion (Fr. ad-

herence ; Ger. Adhasion) of the water. A drop of water, which

hangs from a solid body, demonstrates the existence of the cohe-

sion and of the adhesion of the water. "Without cohesion the

water could not form a drop and without adhesion it could not

remain hanging from the solid body
;
gravity is here overcome not

only by the cohesion, but also by the adhesion. The actions, arising

from the combination of the forces of cohesion and adhesion, are

called, to distinguish them from the actions of inertia, of gra^dty,

etc., the molecular actions. Capillarity or the raising or depressing

of the surface of w^ater or mercury in narrow tubes or between plates,

placed close together, is an important instance of molecular action.

§ 376. AdhesJon Plates.—The cohesion and adhesion of

water have been determined by means of adhesion plates. To
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accomplish this object, such a plate is suspended (instead of the

scale pan) at one end of the beam of a balance, which is brought

into equilibrium by means of weights ; the vessel containing the

liquid to be examined is then caused to approach gradually, until

the surface of the liquid comes in contact with the plate. Weights

are now gradually placed upon the dish at the other end of the

beam, until the plate is torn away from the surface of the water.

The results of such experiments depend particularly upon the fact

whether the plate is moistened by the water or not. In the first

case after the contact a thin sheet of water remains hanging to the

plate ; hence in tearmg the latter from the water, we overcome not

the adhesion, but the cohesion of the water. Hence the force

necessary to tear different plates from the surface of the water

does not depend upon the nature of the material, of which

the plates are composed. Other liquids, on the contrary, require

different forces to be applied to the adhesion plates^ Du Buat

found that the adhesion between w^ater and tin plate was from 65

to 70 grains per square inch (old Prussian measure). This gives a

force of about 5 kilograms for a square meter, or 1,024 pounds per

square foot. Acliard found values differing but little from the

above for lead, iron, copper, brass, tin and zinc. Gay Lussac ob-

tained the same results v/ith a glass disc, and Hiitli with different

kinds of wooden plates.

If, on the contrary, the surface of the disc is not moistened by

the surface of the water, the results obtained are totally different

;

for in this case it is not the cohesion, but the adhesion of the water

which is overcome. It appears that the duration of contact has a

great influence upon the force necessary to tear the disc loose, e.g.,

Gay Lussac found that, with a glass plate 120 millimeters in diam-

eter, a force varying from 150 to 300 grams, according as the dura-

tion of contact was long or short, was necessary to tear it loose from

a surface of mercury.

Remark.—In Frankenheim's "Lehre der Cohasion"' the phenomena of

cohesion, as, e.g., those presented when moistened plates are torn from the

surface of water, are called " Synaphy^^'' and, on the contrary, the phenomena

of adhesion, as, e.g., those occurring during the sejjaration of unmoistened

plates from the surface of a liquid, " Prosa'pliyP

§ 377. Adhesion to the Sides of a Vessel.—If a drop

of water spreads itself out upon the surface of another body and

moistens it, the adhesion is in this case predominant ; but if, on
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the contrary, the drop retains its spherical form upon the surface

of a solid or fluid body, the cohesion is the strongest. The com-

bined action of these two forces upon the surface of a liquid near

the walls of the yessel is particularly remarkable ; the water rises

up and forms a concave surface when the cohesion is less powerful

than the adhesion, and the wall becomes moistened in consequence

;

the surface of the water, on the contrary, is curved downwards in

the neighborhood of the walls of the vessel and forms a convex*

surface when the side of the vessel is not moistened or when the

cohesion is predommant.

These phenomena can be easily explained as follows.

A molecule E in the surface H E of the water (Fig. 638) is

drawn downwards in all directions by the surrounding water, and

the resultant of all these attractions is a single force A acting ver-

tically downwards ; on the contrary, a molecule E at the vertical

wall B E, Fig. 639, of the vessel is acted upon by the wall with a

Fig. 638. Fig. 639.

Fig. 640.

horizontal force P and by the water filling the quadrant B E
with a force A, whose direction is inclined downwards to the hori-

zon ; the direction of the resultant R of these two forces is at

right angles to the surface of the water (see § 354). According as

the attractive force of the wall of the vessel is greater or less than

the horizontal component A^ of the mean force of cohesion A of

the water, the resultant R v/ill assume a di-

rection either from v/ithout inward or from

within outward. In the first case (Fig. 639)

the surface of the water at E rises along

the wall, and in the second case it descends

along the wall B E, as is represented in Fig.

640.

These relations change, when the water reaches to the brim of

the vessel ; for the direction of the attractive force of the wall of

the vessel is then different. If, e.g., the surface of the water E 0,

Fig. 641, which in the beginning reached to the brim C of the vessel

B C 0,is caused to rise gradually by adding water, the inclination

of the force of adhesion to the horizon will gradually increase, and
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Fig. 641.

its horizontal component will, in consequence, gradually decrease,

until it becomes less than the horizontal component A^ of the force

of cohesion A. Consequently the form of the surface of the water

at E changes continually, until its con-

cavity becomes a convexity and the de-

pression below the brim of the vessel be-

comes an elevation, which must attain a

certain height before the water will flow

over the side of the vessel.

§ 378. Tension of the Surface of the Water.—Since each

molecule in the surface HE, Fig. 638, of a liquid is attracted down-

wards by the mass of liquid below it with a force A, we can assume

that a condensation and a coherence among the molecules of the

liquid upon the surface will be the result and that a certain force

will therefore be necessary to overcome this coherence or to tear

the surface of the liquid. This coherence of the surface of a liquid

shows itself not only whenever a foreign body is dipped into it,

but also whenever the surface
Fig. 642. ^f ^^le liquid becomes curved,

as, E.G., m the neighborhood

of the wall of the vessel. If

we assume with Young that

the tension or cohesion of the

surface of a liquid is the same

in all parts of it, we can de-

duce, as Gelieimer Olerlau-

rath Hagen has proved, from

that hypothesis all the laws

of capillary attraction which

coincide best with the results

of experiment.

In the neighborhood of a

plane wall D G, Figs. 642 and

643, the surface of the liquid

forms a cylindrical surface

D A H, which is convex either

upwards or downwards. If P
is the normal force upon an

element A E B = a of this

surface, 8 the tension of this

Fig. 643.
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%r

element and r its raxiius of curvature C A = C B, vfQ have, in

consequence of the similarity of the triangles E P 8 and ABC,
P _A B _a

Fig. 644. ^ " C^ "
r'

^ and, therefore, the normal or

bending force is

r

Now if the elementABB
of the surface is at the vertical

distance R = y above or

below the surface of the water

which is free from the influ-

ence of the wall D G, and if y
denotes the heaviness of the

liquid, we have, according to

(§ 356) the well-known law of

hydrostatics, the pressure of

the water upon the element

ATB = a

P = ayy;
we can therefore put

G y y = - 8 and

lil^ : -NX-^XX ..XXXXV^KXWSXXV..^

Fm. 645.

y
_8
r y

Hence the depression or elevation of an element of the surface

of a liquid in reference to the free or unaffected part of this surface

is inversely proportional to the radius of curvature.

§ 379. In the vicinity of a curved wall, e.g., of a vertical cylin-

drical surface, the surface of the water forms a surface o:f double

curvature and the column of water below the rectangular element

F G H K, Fig. Q^^, of the surface is solicited by two forces P, and

P3, one of which is the resultant of the tensions ^1, Sx in the nor-

mal plane ABE, parallel to the side F G — H K\ the other is

the resultant of the tensions 8^, 8^ in the normal plane C D E,

parallel to the side G H = F K. The former plane corresponds

to the greater and the latter to the least radius of curvature
;
put-

ting the two radii = r-^ and ro and the length of the sides F G — o^

and G H = Oo and denoting the tension for a width = unity by 8,

we have the tensions acting in the two planes
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Si = Go 8 and 8^ = o^ 8
and the normal forces resulting from them

(7i 8 (7i (^2

P, = a,8

P, = a,8

P = Pr-r P.

Fig. 646.

(72 ^ ^1 <^2

/2
"~

r.
and their resultant is

8 a, G, (— 4- — ).

If here also y denote the

height of the element FGHK
of the surface (which may be

regarded as a rectangle, whose

area is g^ g^) above the low-

est or general surface of the

"water, we have the force, with

which this element is drawn
K normally upwards or down-

wards by the "water above or

below it,

P ^ y GiG^y, .

equating the two values for

P, we obtain

y G^G.y = 8

y

^\ <^2 (
1

1 J whence

\ ri rJ
8_

y vn r,/

When the wall is cylindrical the elevation (depression) of the

surface of the water above (below) the general water level is at

every point proportional to the sum of the reciprocals of the maxi-

mum and minimum radii of curvature. This formula contains

also that of the foregoing paragraph ; for if the normal section

C F I) is Si right line, we have

^2 = 00 , whence

— = and
^2

(§ 380.) Curve of the Surface of Water.—The curve

formed by the vertical cross-section of the surface of the water
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Fig. 647.

near a plane wall, can be found, according to Hagen, in the follow-

ing manner. Let A R, Fig. 647, be the surface of the water

attracted by the yertical wall B K,

H R the general level of the water,

and let the point of intersection H of

the two surfaces be the origin of co-

ordinates. Let us put the co-ordinates

of a point of the surface A R,HM
= X and M = y, the arc A = s^

the tangential angle TM = a, and

the elements Q, Q P and P re-

spectively = d X, d y and d s.

q
Since y = —, and, according to

Article 33 of the Introduction to the

Calculus,

r. = — ^f— and d y =da ^

Sda
yds
S

d s sin. a, we have

S sin. a . d a

ydy -, or

y d y = ~ sin. a . d a,

by integrating which we obtain

= — / sm. a . a a
y u

Con. COS. a.

Since for the point R, a and y are both 0, we have .

Con. COS. 0, whence Con. — — and
r y

2/S'
y' = (1 — COS. a)

_^8 (1 - COS. a) __ 4 ^
{sin. i a)\

hence

y
./I

r
stn. ^ a.

For a = 90°, we have si7i. ^ a = sin. 45° = V^ ; hence the

maximum elevation of the water immediately against the wall is

h = 2 y — ' V^ — y —, or inversely

8_

7

h V2i . sin.

~ = J/^^and

1) y
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Dififerentiating this expression, we obtain

d y = I h V2 COS. ^ a , d a =z hV\ cos. ^ a . d a,

and since d y = — d x . tang, a, it follows that

, ^/- COS. \ a ^ ^
^r- COS. \ a cos. a ^

d.c = — h y A . 7 ^— .da = —kV^ . ^. . d a
^ tang, a ^ sm. a

^ _ ^ V4 .
^Q"^- J^ \{cos.\aY -{8in.\ay^

^ ^
^

'

2 sm. l a . COS. ^ a

^ 2 sm. i a

= — h VI . I .
^, sin. I a) d a,

^ \sm. I a ^ J

But now

/ sin. ^ a . d a = — 2 cos. J a and

/—.—z— = 21 tang, l a
sm. la ^ *

(see Introduction to the Calculus, Art. 29)

;

hence we have

X = — hV^ (l tang. I a + 2 cos. i a) -\- Con.

Now since for a; = 0, a° = 90°, tang. \ a = tang. 22^° = i^ — 1

and COS. i a = V^, it follows that

Con. = hVl[l(V2 -1) + 2 Vll and

= h[l - V2. COS. ia - VU{V2 + 1) tang. I a].

For a = we have

COS. I a = 1 and I tang. \ a = — 00

,

and therefore

ic = + 00
;

H R\s consequently the asymptote, which the section A R oi

the surface of the water continually approaches.

Remabk.—If we invert the formula (1) and put

sin. i a = ^ V|-

we can calculate for every value of y, first a and then by means of (2) the

corresponding value of x.

49



770 GENERAL PRINCIPLES OF MECHANICS. [§ 381.

The measurements made by Hagen to test this theory, show that it

agrees very well with the results of experiment. They were tried with a

dead polished brass plate upon spring water, and gave the following results.

y measured in lines

X calculated.

1,37

0,00

0.00

0,31

0,33

0,63

0,64

0,34

0,94

0,24

1,26

0,961 1,28

0,18

1,56

0,12

1,88

1,95

0,07 0,04

3,13

2,47 3,01

0,016

3,74

3,90

Fig. 648.

D i D

These values are given in Paris lines. From h = 1,37 lines we calcu-
c

late —^ = 0,94 and the minimum radius of curvature r = 0,68 lines. Plates

of boxwood, slate, and glass gave the same results.

§ 381. Parallel Plates.—The water between two plates

D E, D E, Fig. 648, toliich are placed near each other, rises not

only on the outside, but also between them

and the cross-section of its surface is nearly a

semi-ellipse. One semi-axis of the ell'ipt'ical

cross-section is the half width C A = a, the

other semi-axis C B = b is equal to the differ-

ence A F — B G = hi — hxoi the maximum
and minimum elevations of the elliptical sur-

face ABA above the general water level.

^^ According to the " Ingenieur," page 171, the

radius of curvature of the ellipse at A is

¥ ^ (h^ h,Y

a

:

A ,L A

B'
mm

, and that at B is

I ijh - h,)
'

hence we have, according to § 378, the elevation of the surface of

the water at A

^ ^ ^ aS
^'- r,y- {h-hf'Y

and, on the contrary, that at B

^ rsy a' y

Subtracting the latter equation from the former, we obtain

S / a hi — hi

~y\{Jh-h,)^'
or

\{h, - h,) '

~~ 7r
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whence

1) h — 1h = a y -^
S + a' Y

1 ' /.^ /Si T^

2)
a ' y \y r

3)
a y ^ IS + a'7

and, finally, tlie ratio

n -

Ih — Jh «^ y = a'

If a is very small. we can put

Ih ^' a' y
the elevation of the surface of the water is then inversely proportional

to the distance of the plates from each other.

We have, however, more accurately.

1 S'

a y \ ^ 8 } ay ^

By inversion we obtain

8 , a'— = ah^ + -^
y 3

These formulas agree very well with the results of observation,

especially when -j- does not reach 4.
til

Hagen found, from his experiments with two parallel plane

plates in spring water, as a mean

hx = 1,55, ki = 2,09, and h = 1,38 Paris lines,

and by calculation

-- = 1,04, h<i = 2,12, and h = 1,44 Paris lines.

r
More recent experiments (see Poggendorff's Annalen, Vol. 77)

gave for

a = 0,360 ; 0,5875 ; 0,7575 lines,

^1= 2,562; 1,429; 1,068 lines, and

— = 0,949; 0,907; 0,917 lines,
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I.E. as a mean value

7
(Compare the foregoing paragraph.)

0,9243 and ;S^ = 0,01059 grams.

Fig. 649.

D D

§ 382. Capillary Tubes.—We can easily calculate the height

to which the surface of water will rise in narrow vertical tubes,

called capillary tubes (Fr. tubes capillaires ; Ger. Haarrohrchen), by

starting from the formula

y — — [— \- —\
• y \ /*! T^J

of § 379 as a basis and assuming that the sur-

face (the meniscus) forms a semi-spheroid

ABA^ Fig. 649, whose circular base A A coin-

cides with the cross-section of the tube. If we
retain the notations of the foregoing paragraph,

I.E. if we put the radius C A oi the tube = a

and minimum and maximum heights B G
and ^ i^ of the .water in the tube above the

general level of the water H R, = hi and h,

we must substitute in

he, = — I— + — I, rj = « and rj = '^ -, and m
y \ri rj a

I
^ / 1 1 \ a'

hi =^ — I 1 1, ri = r<i = 1 thus we obtain

As := —(- + 7T TTi) and
y \a {h^ — hi) /

hi

y \a {hi — hi)'

28 {h, - hi)

y ' a^ '

hi — hi

Subtracting the last equation from the one preceding it, we

obtain

S_ /I a _ 2 {hi

y
or

1 = — -
y \a {hi — Ai) ' {hi — hif

and also

/I a

\a {hi — hi)

(
1

\a {hi — hi )
+

{hi

^
- h)\
a' P

a 2\
- hiY a' r

If a is smalL we can put

h --Ah- hiY
Cb

a.
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whence it follows that

h^ — hi = a;

assuming h^ — hi = a -^ 6 and putting (Aj — ^i)'' = a^ -\- 2 a 6,

and also {h^ — hiY — aJ" + 3 a' (5, we obtain

(|- + ^) {o^ + 3 «M) - i (a^ + 2 «^ d) = «,

or

1_
8

whence it follows that

6 = y a

Hence we have

, or approximatively, (5

h^- hi — a — —g,

whence

hi — . — (« — —^1 = -.— — - and
y a \ 4 iS / ay 2

y U ^ a \^ ^ 2 /SVj « y ^ 2

T^e mean elevation in capillary tubes is inversely proportional

to the width of the tube.

We have also for the determination of S the formula

S , ^ a'- = ^^ahi + -j.

Observations made by Hagen with capillary tubes in spring

water gave the following results :

Width of tube a, lines 0,295 0,336 0,413 0,546 0,647 0,751 0,765

Elevation A^, " 10,08 8,50 6,87 5,17 4,28 3,72 3,59

Measure of ) ^
tension ' y '

^ 1,508 1,455 1,458 1,478 1,473 1,512 1,494
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According to these experiments ttie mean values are
a
— = 1,482 and S = 0,0170 grams.

The variations in these values are due to the fact that the ten-

sion S of the surface of the water diminishes with the time, and is

much smaller in water that has been boiled, than in fresh. We
can now assume that the tension of the water in every strip 1 line

wide is S=^ 0,0106 to 0,0170 grams.

§ 383. The foregoing theory is also applicable, w7ie7i the wall is

not moistened hy the liquid ; here, however, it is not an elevation

but a sinking of the surface which takes place, and the latter is

concave instead of convex. The vertical force P, which is due to

the difference of level B G and acts from below upwards, is balanced

by the tensions 8 and 8 of the surface ABA, Fig. 650, of the

liquid in the tube. The force of adhesion of the solid body does

not, according to the foregoing theory, come into play in this case.

Immmrm'm'rf/m

If we make the force, with which the wall of the tube attracts

to itself the column of fluid B G, Eig. 651, proportional to the

circumference of the tube, if, e.g., for a cylindrical tuhe we put this

force P ~ 11% TT a,m which ju denotes a coefficient, we have

7T a"^ h = 2 jji TT a,

and, therefore, the mean elevation of the water in the tube is

a

For two parallel plates, on the contrary, we have P = 2 fi I and

P = 2 a h I y, I denoting the undetermined length of the column

of water, and, therefore.

I.E., half as great as in a tube, when the distance 2 a of the plates
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from each other is equal to the diameter of the tube. This agrees

also with the results of the last paragraph.

According to- ffagen's experiments the strength or tension of

the surface of liquid does not depend upon its degree of fluidity,

but it increases in intensity, the more the liquid adheres to other

bodies. According to others, particularly Brunner and Franhen-

lieim (see Poggendorf 's Annalen, Vols. 70 and 72), the height h, to

which water rises in capillary tubes, increases and S consequently

diminishes, when the temperature of the liquid is augmented. For

alcohol 8 is about one-half and for mercury about eight times the

strength of the surface of water.

Remark—1) Hagen found by measuring and weighing drops of liquid,

which tore themselves loose from the base of small cylinders, about the

same values as he did by his observations upon capillary plates. In like

manner the experiments with adhesion plates have furnished results, which

coincide very well with the former, when we assume that the force neces-

sary to tear the plate loose is balanced by the weight of the cylinder of

liquid raised and by the tension upon the su-rface of this cylinder.

3) The number of treatises upon capillary attraction is so great that we
cannot cite them all here. The greatest mathematicians, such as La Place,

Poisson, Gauss, etc.^ have given their attention to it. A complete account

of the older literature is to be found in Frankenheim's " Lehre von der Co-

hasion." The treatise which was specially used in preparing this chapter is

the following: " Ueber die Oberflache der Fliissigkeiten," by Hagen, a

memoir read in the Royal Academy of Science in Berlin, in 1845. A new
physical theory of capillary attraction, by J. Mille, is contained in Vol. 45

of Poggendorff's Annalen (1838). Here also belong Boutigny's Studies

of Bodies in a Spheroidal Condition.
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CHAPTER IV.

OF THE EQUILIBRIUM AND PRESSURE OF THE AIR.

Fig. 652.

I'

§ 384. Tension of G-ases.—The atmospheric air, which sur-

rounds us, as well as all other gases (Fr. gaz ; Ger. gase) possess, in

consequence of the repulsion between their molecules, a tendency

to expand into a greater space. We can therefore obtain a limited

quantity of air only by enclosing it in a perfectly tight vessel. The

force with which the gases seek to expand is called their tension

(Fr. tension ; Gej^. Spannkraft, Elasticitat or Expansivkraft). It

shows itself by the pressure exerted by the gas upon the walls of

the vessel enclosing it, and differs from the elasticity of solids or

liquids in this : it is in action, no matter what the density of the

gas may be, while the expansive force of solids and

liquids is null, when they are extended to a certain de-

gree. The pressure or tension of the air and other

gases is measured by haromMers, manometers and valves.

The harometer (Fr. barometre ; Grer. Barometer) is em-

ployed principally to measure the pressure of the atmo-

sphere. The most common kind is the so-called cistern

harometer, Fig. 652 ; it consists of a glass tube, closed

at one end A and open at the other B, which, after be-

ing filled with mercury, is turned over and placed with

its open end under the mercury contained in the vessel

C D. After the instrument has been inverted, there

remains in the tube a column B S oi mercury, which

(see § 374) is balanced by the pressure of the air upon

the surface H R. Since the space A 8 above the col-

umn of mercury is free from air, the column has no

pressure upon it from above, and the height of this

column, or rather that of the mercury in the same,

aboye the level If R of the mercury in the vessel can

be employed as a measure of the pressure of the air.

In order to measure. easily and correctly this height,

an accurately graduated scale is added, which can be

moved along the tube and which is sometimes provided with a

movable pointer S.

mIL*
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Remark.—It is the province of physics to give more detailed descrip-

tions of different barometers, to explain their use, etc. (See Miiller's Lehr-

buch der Physik mid Meteorologie, Vol. I.)

§ 385. Pressure of the Atmosphere.—By means of the

barometer it has been found that in places situated near the level

of the sea, when the atmosphere is in its average condition, the

pressure of the air is balanced by a column of mercury at a tem-

perature of 32° Fahr., 76 centimetres long or about 28 Paris inches

= 29 Prussian inches = 29,92 English inches. Since the specific

gravity of mercury at 32° temperature is 13,6, it follows that the

pressure of the air is equal to the weight of a column of water

0,76 . 13,6 = 10,336 metres = 31,73 Paris feet = 32,84 Prussian

feet = 33,91 English feet. We often measure the tension of the

air by the pressure upon the unit of surface. Since a cubic centi-

metre of mercury weighs 0,0136 kilograms, the atmospheric pres-

sure or the weight of a Column of mercury 76 centimetres high, the

base of which is 1 square centimetre, is

p = 0,0136 . 76 = 1,0336 kilograms.

But a square inch is 6,451 square centimetres, and therefore the

mean pressure of the air is also measured by 1,0336 . 6,451 — 6,678

kilograms = 14,701 pounds upon a square inch = 2116,9 pounds

upon a square foot. Assuming the exact height of the barometer

to be 28 Paris inches = 29 Prussian inches, we obtain for the

pressure of the air upon one square inch 14,103 Prussian pounds

and upon the square foot 2030 Prussian pounds.

The standard usually adopted, where the English system of

measure is used, is 14,7 pounds upon the square inch, which cor-

responds to a column of mercury about 30 (exactly 29,922) inches

and to a column of water about 34 (exactly 33,9) feet high. It is

very common in mechanics to take the pressure of the atmosphere

as the unit and to refer other tensions to it; they are then given in

pressures of the atmosphere, or simply in atmospheres. Thus a

column of mercury 30 . n inches high, or a weight of 14,7 . n Eng-

lish pounds, corresponds to the pressure of n atmospheres, and, in-

versely, a column of mercury h inches high to a tension — =

0,03333 h atmospheres and the teusion -^ly = 0,06803 p atmo-
14:, /

spheres to a pressure of^ pounds upon a square inch. Besides the

equation = ~~z gives the formulas for reduction

h = 2,0355 p inches and p = 0,4913 h pounds.
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For a tension of li inches = j) pounds the pressure upon a sur-

face of F square inches is

P ^ Fi3 =. 0,4913 Fli pounds

= Fhy = 2,0355 F 2:) inches.

Example—1) If the level of the water is 250 feet above the piston of a

water-pressure engine, the pressure upon the 23iston is

= -rj- = <,4 atmospheres.

2) If the air in a blowing cylinder has a tension of 1,2 atmospheres, the

pressure upon every square inch of the same is

= 1,2 . 14,7 = 17,64 pounds,

and upon the piston, whose diameter is 50 inches,

— 50"
= '^-^ . 17,64 = 34636 poimds.

JO^

Fig. 653.

Since the atmosphere exerts an opposite pressui-e —
^
—

. 14,7 = 28863

lbs., the force of the piston is .

P = 34636 — 28863 = 5773 pounds.

§ 386. Manometer.—In order to determine the tension of

gases or vapors which are enclosed in vessels, we employ instru-

ments, which resemble barometers and are called ma-

nometers (Fr. manometres ; G-er. Manometer). These

instruments are tilled with mercury or water and are

either open or closed ; in the latter case the upper part

may be free from air or filled with it. The manome-
ter tvitli a vacuum, above the column of mercury, as is

represented in Fig. 653, is like the common barometer.

In order to be able to measure with it the tension of

the air in a gasholder, a tube C ^ is added to it, one

end of which C opens into the gasholder and the other

end E enters above the level of the mercury H R into

the case H D E of the instrument. The space HF R
above the mercury is thus put in communication with

the gasholder; the air existing in this space assumes

the tension of the air or gas in the gasholder and

presses a column of mercury B S into the tube, which

balances the tension of the air that is to be meas-

ured.

The syplion manometer ABC, Fig. 654, which is

open at the end -4, gives the excess of the tension of the

gas in a vessel above the pressure of the atmosphere

;

for that tension is balanced by the combination of the pressure of

the atmosphere upon S and of the column of mercury R S. li h
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is the height of the barometer and h that of the manometer, or tlie

distance R 8 between the surfaces H and S of the quicksilver in

the two legs of the manometer, the pressure of the air which is in

communication with the short leg will be expressed by the height

of the column of mercury

or by the pressure upon a square inch

2) = 0,4913 {]) + h) pounds,

or, if 1) is the mean height of the barometer,

p = 14,7 + 0,4913 h pounds.

The cistern manometer A B C D, Fig. 655, is more common
than the syphon manometer. Since in the former the air acts

upon the column of liquid through the medium of a large mass

of mercury or water, the vibrations of the air are not so quickly

Fig. 654 Fig. 655. Fig. Qm.

communicated to the column of liquid, and consequently the meas-

urement of the column, which is less agitated, can be made more

easily and more accurately. In order to facilitate the reading of

the instrument, a float, which communicates by means of a string,

passing over a pulley, with a pointer, which is movable along the

scale, is often placed on top of the mercury in the tube.

Manometers can also be used for the purpose of measuring the

pressure of water and other liquids ; in this case they are called

piezometers (Fr. piezometres ; Ger. Piezometer).

By the aid of a valve D E, Fig. 656, the tension of the gas or

steam, contained in a vessel M N, can be determined, although not

with the same accuracy, by placing the sliding weight G in such a po-

sition that it balances the pressure of the steam, li C S = 5 is the

distance of the centre of gravity of the lever from the axis of rota-

tion C, C A — a the arm of the lever of the sliding weight and Q
the combined weight of the valve and lever, we have the statical

moment, with which the valve is pressed downwards by the weights.
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= G a ^ Q s',

now if the pressure of the gas or steani upwards = P, the pressure

of the atmosphere downwards = P^ and the arm of the lever C B
of the valve = J, we have the statical moment with which the

valve tends to open
= {P- p.) h,

equating the two moments, we obtain

P h — Pih — G a + Q s, and consequently,

Ga + Q s

If r denote the radius of the valve D U,p the interior and pi

the exterior tension, measured by the pressure upon a square inch,

we have P = tt r^ p and P^ = it r"^ p^, whence

G a -\- Qs
n r

Example—1) If the height of the mercury in an open manometer is

3,5 inches and that of the barometer 30 inches, the corresponding tension is

^ = & + Aj = 30 + 3,5 = 33,5 inches, or

p = 0,4913 . h = 0,4913 . 33,5 = 16,46 pounds.

2) If the height of a water manometer is 21 inches and that of the

barometer is 29 inches, the corresponding tension is

21
h = 29 + ^rjTTi = 30,54 inches = 15,0 pounds.

3) If the statical moment of a safety valve, when not loaded, is 10 inch-

pounds, if the arm of the lever of the valve, measured from the valve to

the axis of rotation, is Z> = 4 inches and its radius is r = 1,5 inches, the

difference of the pressures upon the valve is *

150 + 10 160
^-P^= . (1,5)- . 4 = 9^ = ^'^^ P^^^^-

If the pressure of the atmosphere were p^ = 14,6 pounds, the tension

of the air under the valve would be

p ^ 20,26 pounds.

§ 387. Mariotte's Law.—The tension of a gas increases with

the condensation ; the more we compress a certain (juantity of air,

the greater the tension becomes, and the more we expand or attenu-

ate it, the less the tension becomes. The relation between the

tension and the density or volume of gases is expressed by the law

discovered by Mariotte (or Boyle) and named after him. It asserts,

that the density of one and the same quantity of air is proportional to

its tension, or, since the spaces occupied by one and the same mass

are inversely proportional to their densities, that the volumes of one

and the same mass of air are inversely proportional to their tensions.
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Fig. 657.

If a certain Quantity of air is compressed into half its original

volume, that is if its density doubled, its tension becomes tTvice as

great as it was in the beginning, and if, on the contrary, a certain

quantity of air is expanded to three times its original volume, its

density is diminished to one-third of what it was, and its original

tension is also diminished in the same proportion. If the space

below the piston E F of a. cylinder A C, Fig. 657, is filled with

ordinary atmospheric air,' which in the beginning

acts with a pressure of 14,7 pounds upon each

square inch, it will act with a pressure of 29,4

pounds, when we move the piston to B^ F^ and

thus compress the inclosed air into one-half its

initial volume ; the pressure will become 3 . 14,7

= 44,1 pounds, when the piston in passing to

^2 ^2 describes two-thirds of the entire height.

If the area of the surface of the piston is one

square foot, the pressure of the atmosphere against it is — 144 . 14,7

= 2116,8 pounds ; hence, if we wish to depress the piston one-half

the height of the cylinder, we must place upon it a gradually

increasing weight of 2116,8 pounds, and if we wish to depress it

two-thirds of the height of the cylinder, 2 . 2116,8 = 4233,6 pounds

must gradually be added, etc.

We can also prove Mariotte^s Laic by pouring mercury into the

tube 6^0 H, which communicates with the cylindrical air vessel

A C, Fig. 658. If we begin by cutting off a certain volume A C
of air, of the same tension as the exterior air, by

means of a quantity D E FH oi mercury, and

if we then compress it by pouring in quicksilver,

until it occupies one-half, one-quarter, etc., of its

original volume, we wiU find that heights G^ Hx,

6^2 H2, etc., of the surface of the mercury in the

tube are equal to the height of the barometer h

multiphed by one, three, etc. Consequently, if

we add the height corresponding to the pressure

of the atmosphere, we find that the tension is

double, quadruple, etc., that of the original

volume.

The correctness of the law of Mariotte in regard to expansion

can easily be proved by dipping a cylindrical tube (of regular cali-

bre) A B, Fig. 659, vertically into mercury (water) and, after

properly closing the upper end A, expanding the enclosed volume

Fig. 658.
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of air A E (I) by carefully drawing up the tube so that the air

shall occupy a volume A^ E^ (II). The densities of the air in

the spaces A E and A^ E^ are in-

versely proportional to the heights

A C and A-^ d, and its tensions are

directly proportional to the differ-

ences between the height Z> of the

barometer and the heights C D and

Ci i>i of the columns D E and D^ E^

of mercury standing above the level

H B of the mercury ; hence, accord-

ing to Mariotte's law,

A C _ h-C,D,
A,C^ " b- CD'

which can be verified by observing any given immersion of the

tube A B.

If h and h^ or p and p^ are the tensions, y and yi the corre-

sponding densities or heavinesses, and V and Fi the corresponding

volumes of the same quantity of air, we have, according to the

above law,

V J = ^, or F y = Fi yi and Fj p^ — Vp^ whence

:.4ly = ^yandF, = 4-F=^F
Ji ' p ' ht pi

By means of these formulas we can reduce the density and also

the volume of the air of one tension to those of another.

Remark.—It is only when the pressures are very great that variations

from the law of Mariotte are observed. According to Regnault, when the

volume V of atmospheric air at one meter pressure becomes the volume

Fj, the pressure is

p = Li[t- 0,0011054 (^- l\ + 0,000019381 /-^ - 1 V 1 meters,

so that for

we have .

.

= 5F
p =4,97944

10

1,91622

15

14,82484

20

19,71988 meters.

Example 1) If the manometer of a blowing machine marks 3 inches,

on I q

and the barometer stands at 30 inches, the density of the blast is —^^— =

33
-^ = 1,1 times as great as that of the exterior air.

2) If a cubic foot of air, when the barometer stands at 30,05 inches,
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63,425
weigos

inches ?

pounds, what is its weight when the barometer stands at 34
770
Its weight is

62,425 34 42,449 = 0,09173 pounds.
770 • 30,05 ~ 462,77

3) How deep can a diving-bell (Fr. cloche a plongeur ; Ger. Taucher-

glocke) A B C B, Fig. 660, be immersed in water, when the water is not to

rise in it above a certain height CH= y. In the

beginning the bell with its opening C B stands

above the level of the water R B, so that the

whole space F is filled with air at a pressure

equal to that of a column of water, whose height

is = d. If afterwards the bell sinks to a

depth C = X and a volume W of water is

thus introduced into it, the volume of the in-

closed air, when none is pressed back through

the hose, becomes V — TTand the height of the

water barometer becomes 1) + x — y\ hence

l + X — y _ V
J

I

whence we. obtain

X — y — l +
VI
r—w

w

= y +
Wh
V- W

If the mean cross-section of the lower part of the bell = F, we can put

W = Fy and therefore

-(1 +
Fh \

- ^yJ'
If the height of barometer = 34 feet of water, the volume of the bell F=

100 cubic feet, the mean cross-section of the lower half ^ = 20 square

feet, and the height, to which the water is to be admitted, h y = 3 feet, the

volume of this water is W= Fy = 20 . S =60 cubic feet; hence that of

the confined air is F — , TT = 40 cubic feet, and its density is = -—- = 2^

times that of the exterior air, and the corresponding depth of immersion is

x = S + ^^-n^ = 3 -H 51 = 54 feet.
40

§ 388. Work Done by Compressecl Air.—The energy stored

hy a given quantity of air ivlien it is compressed to a certain degree,

as well as that restored by it when it expands again, can not be de-

termined at once ; for the tension varies at every moment of the

expansion or compression. "We must therefore seek out a particular

formula for the calculation of this quantity. Let us imagine a

certain quantity of air ^ i<^ to be shut off in a cylinder A C, Fig.

661, by a piston E F, and let us calculate what mechanical effect is
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necessary to move the piston a certain distance E E^ — F F^. If
the initial tension = p and the initial height of the space in the
cylinder A E = s, and if, on the contrary, the tension after the

space E E^ has been described — jh and the height

E^ A of the remaining volume of air = s^, we have
the proportion

Fig. 661.

p^ : p = s : S:, whence pi = — p.

While the piston describes a very small portion

El E.2 = o of the space, the tension p^ can be re-

garded as constant, and the work done is = Fp^ a =
F p s o—

, F denoting the area of the piston.

According to the theory of logarithms,* a very small quantity

X = 1(1 + x) = 2,3026 log. (1 + x),

I denoting the Naperian and log. the common logarithm ; conse-

quently we can put

Fps— = F p

= 2,3026 Fp s log. (l + —

V

But now

hence the elementary work done is

Fp s — = Fp s [I {si + g) — I 5,].

Let us imagine the whole space E E^ to be composed of n parts,

such as G, I.E., let us put E E^ — n g, we will then find the work

corresponding to all these parts by substituting in the last formula

successively, instead of s^, the values s^ + g, Si + 2 a, 5, -f- 3 <t, . . .

up to Si 4- {n — 1) G, and instead of s^ + g, the values s, + 2 (t,

Si 4- 3 (T, etc., up to Sx + n G or s, and if we add the values de-

duced, we will obtain the whole work done while the space s — Si

is described

* According to the series ^ = 1 + « + + (see §194
1 . 2 ' 1 . 2.3

and also the Introduction to the Calculus, Art. 19) for a very small «, we

have e^ = 1 + X, and therefore

1(1 -\- x) =x.
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I {Sx + G) — I Sx

I {Si + 2 a) - l{s, + a)

l{Sy + Sa) - I (sx + 2 g)

A = Fp s

l{sr + na) - I [5i + (^ ~- 1) a]

= Fp s [I {si + n g) — I 5i]

= Fps (Is - Is^) = Fpsl (^);.

for the first terni in each line is cancelled by the second term in

the next.

Since — — —^ = ^,wq can put the work done
Si h p ^

If we make the space described by the piston s — Si = x, we
find for the mean value of the pressure on the piston, when the air

is compressed in the ratio

hi _ p\

p^A=Fp'-l(Pl\
X ^ X \p!

Putting F —\ (square foot) and s = 1 (foot), we obtain the

following formula for the work done

This formula gives the mechanical effect necessary to transform

a unit of volume (1 cubic foot) of air from a lower pressure or ten-

sion p to Si higher one p^, and in so doing to compress the air into

a volume of (— ) cubic feet. On the contrary,

A=p,l{^) = 2,3026pjog.(^)

expresses the work done by the unit of volume of a gas which passes

from a greater tension ^j to a lesser one ;;.

In order to compress a quantity of air, whose volume is V and

V
whose tension is p, into a volume Fj of the tension p^ = ^ p, the

work to be done is Vp I l^j, and if, on the contrary, the volume

50
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Vi of the tension p^ becomes a Yolume V, whose tension is ^ =
Y
-~

Pi, the energy restored is

Vpl(^)=V.pj{^}
Remark.—The mechanical effect necessary to produce moderate dif-

ferences of tension (p^ — j9), or small changes of volume {V^ — ^) can be

expressed more shnply by the formula

or more accurately by the aid of Simpson's rule, when z denotes the press-

s -\- s
ure at the middle of the path——^ of the piston, by the formula

-H'-BC^l—)-
But now

_s_ _ s _ 2 s _ 2 _ 2p^

V ~
i (s + «i)

~
8 + Si

~
^ _j_

P_~ P+Px
Pi

whence it follows that

ExAMPiiE—1) If a blowing machine changes per second 10 cubic feet

of air, at a pressure of 28 inches, into a blast at a pressure of 30 inches,

the work to be done in every second is

A = 17280 . 0,4913 . 28 . Z (~) = 287711 . (Z 15 - Z 16)

= 237711 . (2,708050 — 2,639057) = 237711 . 0,068993

= 16400,4 inch-pounds = 1366,7 foot-pounds.

The approximate formula, given in the remark, gives for this work

(30 8 2 28\

28 "^ ^~ ~
3o) = ^^^^^'^

•
^'^^^^"^

= 16396,9 inch-pounds = 1366,4 foot-pounds.

2) If under the piston of a steam-engine, whose area is i^ = tt .
8' =

201 square inches, there is a quantity of steam 15 inches high and at a ten-

sion of 3 atmospheres, and if this steam, in expanding, moves the piston

forward 25 inches, the energy restored and transmitted to the piston is, if

we assume Mariotte's law to be true for the expansion of steam,

(15 -t- 25\

^^
\ = 132961,5 Z

-I

= 132961,5 . 0,98083 = 130413 inch lbs. = 10866 foot-lbs.,

and the mean force upon the piston is, when we neglect the friction and
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P =
130413
~35 = 5217 pounds.

§ 389. Pressure in the Different Layers of Air.—The air

enclosed in a vessel has a different density and tension at different

depths ; for the upper layers compress those below them, upon
which they rest ; the density and tension are tlie same in the same

horizontal layer only, and both increase with the depth. In order

to find the law of this increase of the density from above down-

wards, or of the decrease from below upwards, we make use of a

method similar to that employed in the foregoing paragraph.

Let us imagine a vertical column A E, Fig. 662, whose cross-

section A B = 1 and whose height A F = s. Putting the heavi-

ness of the lowest layer = y and its tension = p, and

the heaviness of the upper layer E F^— y^ and its

tension = «], we have -^ = ^.
y V

If G denotes the height E E, of the layer E, F, its

weight, which is the decrease of the tension corre-

sponding to G, is

hence by inversion we obtain

p V
rt — -±_

Fig. 663.

or, as in the foregoing paragraph.
y Px

(l +^)=-^[^(/^i ^v)-lp\p_

y \ ihi y
Ifwe substitute in it for p^ successively p^ + v, p^ + %v,p^ -\- ^ v,

etc., up to /? = ^1 + {n — 1) V and add the corresponding heights

of the layers of air or values of o, we obtain, exactly as in the fore-

going paragraph, the height of the entire column of air

or also

= fKi) = ^.30.^i.,.(|),

when b and b^ denote the tensions and p and p^ the corresponding

heights of the barometer in A and F
Inversely, if the height s is given, the corresponding tension

and density of the air can be calculated. We have
«y sy

p r P P

J?x

—
Ti

— e. , or 7i y e
3
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in which e = 2,71828 denotes the base of the Naperian system of

logarithms.

Remakk.—This formula is employed for tlie measurement of heights

by means of the barometer, a subject which is treated in the " Ingenieur,"

page 273. If we neglect the temperature, etc., we can write as a mean value

s = 60346 log. (^^ feet.

Example 1) If we have found the height of the barometer at the foot

of a mountain to be 339 and at the top 315 lines, the height of the moun-

tain given by these observations is

s = 60346 log. (flf) = 60346 . 0,031889 = 1924 feet.

2) For the density of the air at the top of a mountain 10000 feet high,

we have

^9- ^ - mn = 0,165711, whence j- = 1,465 and^ =
1^65

= ^'^^^'

its density is therefore 68^ per cent, of that of the air at its foot.

§ 390. Stereometer and Volumeter.—Mariotte's law finds

a practical application in the determination of the volumes of pul-

verent and fibrous bodies, etc., by means of the so-called stereometer

and volumeter.

1) Say's Stereometer.—If the glass tube CD, which is immersed

in mercuryHD R and at the same time is in communication with

the closed vessel A B, Fig. 663, I, is

raised up without being drawn entirely

out of the mercury (II), then, in conse-

quence of the expansion of the enclosed

air, a column C E oi air enters into the

tube and a column of mercury D E will

remain behind in the tube, by the aid

of which the diminished tension of the

enclosed air balances the pressure of the

atmosphere.

Now if V^ is the volume of the space

A B C, V^ the required volume of the

body K, which is placed in it, V the

volume of the column of air O E^h the

height of the barometer and li that of

the column of mercury D E, we have,

according to Mariotte's law^, since the same quantity of air occupies

the volume V^ — V^, when the tension is J, and the volume V^ —
Fj + F, when the tension is b — h.

Fig. 663.
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v.- V, h-h

hence the required volume of the body is

r. = r. - f^) v.

If we know the Yolume V^, and if, when making the experi-

ment, we draw the tube so far out of the water that the length and

consequently the Yolume V of the column of air in the tube CD
becomes a certain definite one, and if we observe also the height h

of the barometer and that h of the column of mercury D E, we can

calculate by means of this formula the volume Fi of the body K.

2) Regnaulfs Volumeter.—If the space A B CD, Fig. 664, which

is filled with atmospheric air and which contains also the body X,

whose volume V^ is to be determined, is shut off

by the cock C from the exterior air, and if, by

opening the cock B, we let out so much mercury

from the tube D E that its level descends from

M to N, we can again employ (according to

Mariotte^s law) the above formula

F„-F, h-n

Fig. 664.

Fo- F + F h '

in which we denote the volume of the space

A B C D\)j Fq, that of the mercury drawn off

by F and the height MN oi the same by h. It

follows, exactly as in the above case, that the

volume of the body in A is

F (^)--

until it

In order to fill the tube D E with mercury

again for the purpose of making a new measure-

ment, we put that tube D E m communication

with the reservoir of mercury G JI hj turning

the cock E.

3) Xopp's Volumeter.—The pressure of the

air enclosed in the space A B C D, Fig. 665, is

the same as that of the exterior air, when the

surface of the mercury D G touches the lower

opening B of the manometer B E. If by means

of a piston P we press the mercury into D G,

rises to a certain height and its surface reaches the point
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Fig. 666.

S, the enclosed air will be compressed and the mercury will rise a

certain distance h in the manometer, which distance can be read off

upon the scale. If again V\ is the volume A B (7 /> of the air,

Fi the required volume of the body placed in it and V the volume

of the mercury, which has been pressed into the air-vessel, we have

in this case

and, therefore, the required volume of the body

The constant volumes V^ and Fj are determined for each par-

ticular instrument by filling them with mercury alid weighing the

quantity which they hold.

§ 391. Air Pump.—(Fr. machine pneumatique ; Ger. Luft-

pumpe.) If we raise the piston E, Fig. 666, of an air pump when
the stop-cock is in the position (I) and

push it down when the stop-cock is in

position (II), it acts as an exhausting or

rarefying jjump ; if, on the contrary, we

raise the piston when the stop-cock is in

position (II) and depress it when it is in

position (I), it acts as a compressing or

condensing pump. In the first case the

air in the receiver A is more and more

rarefied by the reciprocating motion of the

piston K in the cylinder C D, and in the

latter case it is rendered more and more

dense.

1) Tlie Exhaust Pump.—If F is the

volume of the receiver, measured to the

cock H, Fi the clearance between H and

the lowest position of the piston, and C the volume described by

the piston E, which is also measured by the product i^ 5 of the

surface i^of the piston and the space s described by it, the pressure

h of the air originally contained in the receiver becomes, according

to Mariotte's law, at the end of a single stroke of the piston

Since upon the return of the piston the clearance remains filled

with air at*the pressure of the exterior air h, if the pressure of the
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air in the receiyer at the end of the second stroke is denoted by h^,

we will have

V h V V b
= TTTvra + v^viTc + ^^ ^' ^^"^^^

VV,b V,h
^^ =

( r^TTT c) ^ +

In like manner for the tension b^ at the end of the third stroke

we find

(F+ F, + C) h = Vh + V, b, and therefore

h =

+

V \' . V'V.h VV,h
V h 4- ^ ^^ ^

.

F + -F, + (7/ ' ( F + Fi + cy {V + v,+ cy

V+V,-\- c (f+ F, + 67 ^ ^l(f+ Fi+C/
F_ -1 F, fe

F+F, +(7"^ J F+F, +C"
and from the foregoing we see that the pressure h^, after n strokes,

will be

r / ^
V~' / F \"-^ -| Fi6

+ IVf+Fi+C7 "^ \f:+f/+(7/
"^•••"'~ Jf+Fj + C*

F F
If we denote ^ ^ ^ ^^ by ^ and y ^y ^g by §', we will have

^n = ;-?" ^ + (1 + i? + i?' + . . . 4- JO"-' )^ h,

or, since the sum of the geometrical series in the parenthesis is

= — — ^j
—^- (see Ingenieur, page 82), the required final

tension is simply

For 7i — 00 ,
jr?" becomes = 0, and consequently the smallest possi-

ble tension is

^« " i-j» ~ (7+ f;

2) 77ze Condensing Pump. If we adopt the same notations as

for the exhaust pump, we have here for the tension of the air at

the end of the first single stroke

(F + FO Ji = (F + F, + (7) b, whence b, = (Z^A+_^) j;

and for that b^ at the end of the second stroke
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(F + V,) b,= Vb, + (Fi + C) b, whence

In like manner the tension at the end of the third stroke is

found to be

(V +V,)h=Vh-V{V,-\- C) h, and therefore

or putting

F -F, + (7

FTTi^^^"^^ fTf;^^^^
^3 = [i^l' + (1 + i?l + i?i') ^i] J.

In general, we have for the tension at the end of the wth stroke

of the piston

^« = VV\ + (1 + Ih + i?i' + . . . + 'p^~^) 5',] l, or, since

For ^ =r cx>
, j9i" = and

1 - i?i Fi

This is of course the greatest tension that can be produced by

this condensing pump.

If the clearance Fi were = 0, we would haye for the exhaust

pump g = 0, whence

2 v "

and, on the contrary, for the condensing pump pi = 1 and —
,

-•- Pi
= n, and consequently

b^= (l+nq,)b = [l i-ny) b.

Example.—If the volume of the receiver of an air pump is F = 1000

cubic inches and the clearance is 10 cubic inches, while the volume of the

cylinder is 300 cubic inches, the tension of the air after 20 strokes is

1) when rarifying, since

1000
P=t^ = ^''^6836 and
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&n = &30 (0,76336'» + i-^S • ''"'>''''') '

= (0,0045143 + 0,0321126) d = 0,076269 &;

on the contrary,

2) when condensing, in which case

310
Qi =^^ = 1010 = ^'^^^^^'

= d^o = ^0,9901- + Yrz-^^QQoT • ^'^^^^7 ^

= (o,81954 +p^ . 0,30693) 5 = 6,414 &.

§ 392. Gay-Lussac's Law.—The heat or temperature of

gases has an important influence upon their density and tension.

The more the air enclosed in a vessel is warmed, the greater its

tension becomes, and the more the temperature of a gas, contained

in a vessel closed by a piston, is raised, the more it will expand and

drive the piston before it. Oay-Lussac^s experiments, repeated

more recently by Eudberg, Magnus and Eegnault, have shown that

for the same density the tensions, and for the same tensions the

volume, of one and the same quantity of air increases with the

temperature. We can place this law by the side of that of Mariotte

and call it Gay-Lussac^s Law. According to the latest researches

the increase of the tension of a given volume of air, when heated

from the freezing to che boiling point of water, is 0,367 times the

original tension, or if its temperature is raised that much, the vol-

ume of a given quantity of air is increased 36,7 per cent., when the

tension remains constant. If the temperature is given by the cen-

tigrade thermometer, in which the distance between the freezing

and boiling points of water is divided into 100 degrees, the expan-

sion for each degree is = 0,00367, and for the temperature f it is

— 0,00367 t\ or if, on the contrary, we use Reaumur's division of

the same space into 80 degrees, we have the expansion for each de-

gree = 0,00459, or for a temperature of f, = 0,00459 t.

In England and America the Fahrenheit thermometer is gene-

rally used, in which the boiling point is 212° and the freezing

point is 32° ; hence the increase for each degree is = 0,00204, and

for f it is 0,00204 (t - 32).

This ratio or coefficient of expansion 6 = 0,00367 or = 0,00204

is strictly correct for atmospheric air alone; its value for other

gases is generally smaller, and it varies slightly with the tempera-

ture for atmospheric air.
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If a mass of air, originally of the volume F^, is warmed from

the freezing point to t degrees without changing its tension, its

volume becomes

F = (1 + 0,00367 t) F, =r [1 + 0,00204 (t ~ 32°)] F„,

and if it reaches the temperature t^, the volume becomes

F = (1 + 0,00367 U) F„ = [1 + 0,00204 \t, - 32")] F^;

hence the ratio of the volumes is

F _ (1 + 0, 0367 t
) __ 1 + 0,00204 {t - 32°)

^

F;
~

(1 + 0,00367 t,)
~

1 -r 0,00204 {t^ - 32°)

'

on the contrary, the ratio of the densities or heavinesses is

Z - Zl - 1 + 0,00367 t, _ 1 + 0,00204 {t, - 32°)

y,~^ F "
1 + 0,00367 ^^

~ 1 + 0,00204 {t - 32°)'

or generally

X = Jj = l±Ah = 1 + (^ (t, - 32°)

yi
~ V ~ 1- + dt~ 1 + 6 {t - 32°)*

When a change in the tension also occurs, if p^ is the tension at

the freezing point, 7:* that at the temperature t and pi that at ^1, we
have

F= (1 + 0,00367 — ^0.

F, = (1 + 0,00367 t,) ^° Fo,

F _ 1 + 0,00367 t p, ,

Fa
"~

1 + 0,00367 A* i?'

y 14- 0,00367 t, p
yi 1 + 0,00367 iJ

* p,'

y __ 1 + 0,00367 t, h

J,
~ r+ 0,00367^ -T ^' "^^^^ ^'

p__ h^_ 1 + 0,00367 ^^ 2
^1
~

^1
~

1 + 0,00367 t,
' y;

When t is given in degrees of Fahrenheit's thermometer, we must

substitute in the latter formulas for 0,00367 t, 0,00204 {t - 32°).

Example.—If 800 cubic feet of air, at a tension of 15 pounds and

at a temperature of 50° Fahrenheit, are brought, by means of the blow-

ing engine and warming apparatus of an iron furnace, to a temperature

of 392° and to a tension of 19 lbs, its volume will be

^ 1 + 0,00204.(392-32) ^^ ^^^ 1,734 12000 _^^ ,. _ .

^^ - r+ po2or.-(5o^2i •^ •
^^^ = i;o367 • -19- = ^^^^ ^^^^^ ^^^^

Eemark.—The formula

y_^V^^ 1 + <^^i ^ l + 6(t^- 32)

y^~ V ^ 1 + 6t 1 + (J (i — 32)
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can be employed for solids and for some liquids ; but for every solid we

must substitute a different coefficient of expansion, e.g.,

Centigrade. Fahrenheit.

for cast iron, 6 = 0,0000336 = 0,0000187,

for glass, 6 = 0,0000258 = 0,0000143,

for mercury, 6 = 0,0001803 = 0,0001001.

§ 393. Heaviness of the Air.—By the aid of the formula

at tli.e end of the last paragraph, we can calculate the heaviness y
of the air for a given temperature and tension. Eegnault, by his

recent weighings and measurements, found the weight of a cubic

meter of atmospheric air, at the temperature 0° of the centigrade

thermometer and at a tension corresponding to height of 0,76

meters of the barometer, to be = 1,2935 kilograms. Since a cubic

foot (Enghsh) = 0,02832 cubic meters and 1 kilogram = 2,20460

pounds English, the heaviness of air under the given conditions is

= 2,20460 . 0,02832 . 1,2935 = 0,08076 pounds Enghsh.

If the temperature \s = t° centigrade, we have for the French

measure 1,2935 , .,

and for the English system of measures and Fahrenheit's ther-

mometer _ 0/)8076
^ ~ 1 + 0,00204^ - 32")*

If the tension differs from the mean tension, or if the height of the

barometer is not 0,76 meters, but b, we have

_ 1,2935 b _ 1,702 . d

^ - rro;00367 t
• 0,76

~
1 + 0,0"03677

^^^^g^^^^'

or, since in England and America the height of the barometer is

generally given in inches, and since 0,76 meters = 29,92 English

inches

0,08076 b 0,002699 b '

,,y =z . zz: ~ — Ins
^ 1 + 0,00204 (t - 32°) 29,92 1 + 0,00204 {t - 32°)

Very often we express the tension by the pressure p upon the

square centimeter or inch, and then we must introduce the factor

YTw^T/^r or -rf^' ^^y tloing which we obtain

1,2935 p 1,2514 p , .,
"' — — kilograms, or

1 + 0,00367 t 1,0336 1 + 0,00367 t

- 0,08076 _p_ _ 0,005494 p
^ ~ 1 + 0,00204 {t - 32)

' 14,7
~

1 + 0,00204 {t - 32) ^'

For the same temperature and tension, the density of steam is

about f of that of atmospheric air ; hence for steam we have
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y =

y

0,8084

0,00367 t
'

0,050475

1,0336

1 + 0,00204 {t - 32)

0,7821 7^ ,,^= 1^0;003G7l
kilograms, or

p _ 0,003434 /j

14,7
~ pounds.

l-h0,00204(f-32;

Example— 1) AVliat is the weight of the air contained in a cylindrical

regulator 40 feet long and 6 feet wide, when it is at a temperature of 50°

and its tension is 18 pounds ? The heaviness of this air is

_ 0,005494 . 18 _ 0,098893
^ ~ M367 ~~ i;036f

= 0,09539 pounds,

and the capacity of the reservoir is

F = TT .
3-

. 40 = 1131 cubic feet;

hence the air enclosed in it weighs

Vr= 0,09539 . 1131 = 107,9 pounds.

2) A steam-engine uses per minute 500 cubic feet of steam at a temper-

ature of 224,6° P. and at a tension of 39 inches = 0,4913 . 39 = 19,161

pounds ; bow mucb water is needed to produce this steam ? The heavi-

ness of the steam is

0,003434.19,161 0,06580 ^^,^ ,

hence the weight of 500 cubic feet of steam is

F7 = 500 . 0,04724 = 23,62 pounds.

§ 394. Air Manometer.—From the results obtained in the

Fig 667 ^^^^ paragraphs, the theory of the air or closed manofn-

efer can be deduced. It is composed of a barometer

tube A B, Fig. 667, of regular calibre, the upper part

of which IS filled with air and the lower part with

mercury, and of a cistern C E R, which also contains

mercury and is put in communication with the gas or

vapor. From the heights of the columns of air and

mercury in A B, the tension can be calculated in the

following manner. The instrument is generally so

arranged that the mercury in the tube and in the

cistern are upon the same level, when the tempera-

ture of the enclosed air is ^ = 10° Cent. = 50° Fahr.

and the tension in the space JEJ R is equal to the

mean height of the barometer ^ = 0,76 meter == 29,92

inches.

If, when the height of the barom«ter is b, a column

of quicksilver rises from the cistern B R into the

tube to a height A,, and if the length A S of the re-

maining column of air is — h^, the tension of the

latter is
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h, + h,\

and, therefore, the height of the barometer of the air in U R

b, = h,+z = h, + (^') b.

Now if a change of temperature takes place, i.e., if the tem-

perature at the time when hi and h.2 were observed, was not as in

the beginning — t, but = ti, we have for the tension of the column

of air A S
_ 1 + 0,00204 {t, - 32) /hj_+Jh\

^ " 1 + 0,00204 (^ - 32)' \ h, ) '

and, therefore, the required height of barometer is

h - h 4-
1 + 0,00204 (j^,-

3

2) hi + A^

^ - hi + ^ ^ 0,00204 {t - 32)
*

h.

For b = 29,92 inches and t = 50° Fahr.

bi=hi + 28,86 [1 + 0,00204 (ti - 32)] ^,

h = hi + hi denoting the total length of the tube, measured from

its upper end A to the surface R R of the mercury. From the

height of the barometer b inches we obtain the pressure upon each

square inch (English)

= 0,4913 hi + 14,179 [1 + 0,00204 {ti - 32)]y lbs.

„ , , . 1 + 6 (ti - 32) , .
'

P^**^^^ r-TdTT—32)
= ^' ^^ ^^^^'

(61 — hi) ill ~ hi) — \i h b, and therefore

By the aid of this formula we can calculate the values of the

divisions of a scale, upon which the pressure b can be read off from

the height of the manometer.

Example.—If a closed manometer 25 inches long, at a temperature of

69,8° Fahr., shows a column of air 13 inches long, the corresponding height

of barometer is

&i ::= 25 - 12 + 28,86 (1 + 0,00204 .37,8) ff = 13 + 28,86 . 1,07707 . f|
= 18 + 64,76 = 77,76 inches, and the pressure on a square inch is

p^ = 0,4913 . 77.76 = 38,20 pounds.

§ 395. Buoyant Effort or Upward Thrust of the Air.—
The law of the buoyant effort of water against a body immersed in
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it, discussed in § 364, can of course be applied to bodies in the air.

If V is the Yoliime of the body and y the heaviness of the air, in

which it is placed, the buoyant effort, according to this law, is

P = V y; if the body has the apparent weight G (in the air), its

true weight (in vacuo) is

G,= G + Vy,

If, further, yi is the hea^dness of this body, we have also

Gi = V yi, and therefore

P
V — — , so that we can put

G. y
G^ — G ^ or G^ (yi — y) = G y^^ whence it follows that

G^ = (-y^^ G.
\yt - y/

If the body is weighed upon a scale by a weight 6^2? whose

heaTiness is yo, the following equation

\y, - y/

holds good; if we divide the last two equations by each other, we

iobtain the ratio of the weights

^1 ^ Ti 72 - y ^ Ts

G, y/ y, - y
i _ ll

Yi

• or, approximatively, and generally accurately enough,

G, yi 72 Vyi y/
< or also

1 = ^- (e, e,r

e, ei, and £3 denoting the specific gravities of the air, of the body

weighed, and of the weight itself

€ e
In manv cases — and — are such small fractions that they can

£1 £2

be neglected and the true weight can be put equal to the ap-

parent one.

Remark.—The law of the buoyancy of the air can be employed to de-

termine the force, with which, and the height, to which an air-lalhon

(Fr. aerostat; Ger. Luftballon) A B, Fig. 668, will rise. If Fis the vol-

ume of the balloon, G its total apparent weight, including the car, etc., y^

the heaviness of the external and y^ that of the enclosed air, we have the

buoyant effect

P = F yj = F 72 + G^, and therefore
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the necessary volume of the balloon is

Fig. 668. r =
7i - 72

and the heaviness of the external air, when
the balloon attains the greatest height, is

G
7i = 72 + Y'

From this heaviness, by means of the

formula

found in § 389, we can determine the great-

est height s, to which the balloon will rise,

by substituting for y the heaviness of the

air at the point of beginning, which must

be calculated according to § 393.

Example 1.—What is the ratio of the

true weight of dry hard wood to its appa-

rent weight, when it is weighed by means of brass weights at a tempera-

ture of 32° and when the height of the barometer is 39 inches. The den-

sity of the air is, according to § 393,

y = 0,002699 . 29 = 0,07827 pounds, that of the wood

7i = 0,453 . 62,425, and that of brass

yg = 8,55 . 62,425 (see § 61),

consequently the ratio required is

^1 _ 0,07827

^ ~ *" '62^25"

Tlius we see that one thousand pounds of wood lose about 2^ pounds

in consequence of the buoyancy of the air.

ExAi-iPLE 2.— If the diameter of a spherical balloon is 30 feet and the

heaviness of the matter with which it is filled is y^ = 0,017 pounds, and

if the weight of the balloon with the car and load is G = 500 pounds, the

heaviness of the air at the place, where the balloon ceases to rise, is

G Q G 3000
7t=72 + Y = y, + -^. = 0,017 + ^^30^

= 0,017 + 0,03537

= 0.05237 pounds.

Now if the density of the exterior air at the starting-point is 0,0800

(A^, - ^-'^ = 1 + 0,001254 . 2,091 = 1.00263.
\0.453 8,o5/

pounds, we have

(B-~
/8000\

\5287/
0,4948,

and if we assume the ratio of the pressure per square foot to the heaviness of

P
the air, i.e., - = 26210, we obtain the maximum height to which the balloon

will rise

7 \7xl
36210 . 0,4948 = 12969 feet.



SEVENTH SECTION.

DYNAMICS OF FLUIDS.

CHAPTER I

THE GENERAL THEORY OP THE EFFLUX OF WATER FROM
VESSELS.

§398. Efflux.—The theory of the efflux (Fr. ecoulement

;

G-er. Ausfiuss) of fluids from vessels forms the first grand division

of hydrodynamics. We distinguish, in the first place, the efilux of

water and the efflux of air, and, in the second place, efflux under

constant and under variable pressure. We will begin with the

efflux of water under constant pressure. We can regard the pres-

sure of water as constant, when the same quantity of water enters

the vessel as is discharged from it, or when the quantity of water

discharged is very small, compared with the capacity of the vessel.

TJie principal problem to be solved is to determine the quantity of

water or the discharge (Fr. depense ; Ger. Wassermenge), which

passes through a given aperture or orifice (Fr. orifice ; Ger. Oeff-

nung) under a given pressure and in a given time.

If the discharge per second = Q, we have the discharge m
t seconds, when the pressure is constant,

V=^Qt.

But if we wish to find the discharge per second, we must know
the size of the orifice and the velocity of the effluent molecules of

the water. To simplify our researches, we assume that the mole-

cules flow in parallel straight lines, and, consequently, form a pris-
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matic stream, vein or jet of water (Fr. veine, courant de fluide

;

Ger. Wasserstralll). If F is the cross-section of the stream and v

the velocity of the water, or that of every one of its molecules, the

discharge Q per second forms a prism, whose base is F and whose

height is /', and, therefore, we have

Q — F V units of volume
and

G — F V y units of weight,

y denoting the heaviness of the effluent water or liquid.

Example—1) If water flows through a sluice gate, the cross-section of

which is 1,7 square feet, with a velocity of 14 feet, the discharge per

second is

^ = 14 . 1,7 = 23,8 cubic feet,

and the hourly discharge is

= 33,8 . 3600 = 85680 cubic feet.

2) If 264 cubic feet of water are discharged in 3 minutes and 10

seconds through an orifice, the area of which is 5 square inches, the mean

velocity of the liquid is

V 264 264 . 144

Ft
144

.190
5. 190

40 feet.

Fig. 669.

A B
R

§ 397. Velocity of Efflux.—Let us imagine a vessel A C,

Fig. 669, which is full of water, to be provided with an orifice F,

which is rounded upon the inside and is

very small, compared to the surface H R oi

the water, and let us put the head of water

F G (Fr. charge d'eau ; Ger. ' Druckhohe),

which is to be regarded as constant during

the efflux, = li, the velocity of efflux = v,

and the discharge per second = Q, or its

weight = Q y. The work, which this quan-

tity of water can perform while sinking

through the distance Ji, i^ = Q h y, and tlie

energy stored by the discharge, whose weight

is Q y, in passing from a state of rest to the

velocity v, is ^r— § y (§ 74). If no loss of mechanical effect takes

place during the passage through the orifice, the quantities of work

are equal to each other, or h Q y = ^r— Q y, i*

^9

n =

51
^/
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and inversely

in meters
V = V2gh,

h = 0,0510 v' and v = 4,429 Vh,

and in feet (English),

h == 0,0155 v' and v = 8,025 Vh.

The velocity of the effluent water is the same as that of a body

which has fallen freely through a height which is equal to the head of

water.

The correctness of this law can also be shown by the following

experiment. If in the vessel A C F, Fig. 670, we make an orifice

directed uj)wards, the jet FK will rise verti-

cally and will nearly reach the level H R oi

the water in the vessel, and we can assume

that it would actually reach it, if all impedi-

ments (such as the resistance of the air, the

friction upon the sides of the vessel, the dis-

turbance caused by the falling back of the

water upon itself, etc.) were removed. Since

a body which rises vertically to the height h

has an initial velocity

V =: V%g h,

it follows that the velocity of efflux must be

V — V2g h.

For another head of water hi the velocity

of efflux is

Vi^\^2ghi,

hence we have

V : Vi = Vh : i^ h^;

the velocities of efflux are, therefore, to each other as the square roots

of their heads of water.

Example— 1) The discharge per second through an orifice whose area

is 10 square inches, under a head of water of 5 feet, is

Q = Fv = l().12 V¥7A=120 . 8,025 Vs = 963 . 2,236= 2153 cubic inches.

2) In order that 252 cubic inches of water shall pass in one second

through an opening of 6 square inches, the head of water must be

'0' 1 / V \* u,uioo /'^o'>i\^ 0,0155

37
1 / Q\' 0,0155 /252\'^ 0,0155 ,_ ^ ^^ . ,
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§ 398. Velocities of Influx and Efflux.—If the water flows

in with a certain velocity c, we must add to the mechanical effect

^•^

h Qy the energy ^c— Qy, possessed by the influent water and cor-
'^ 9

&
responding to the height A, = -—, due to the velocity ; hence we

must put

iji + ^^)Qy = ^gQy,oYh + h, = ^
and the velocity of efiiux

V = V2 g {h i- 1h) = V2gh -\- c\

If the vessel is maintained constantly full, the quantity of the

mfluent water is equal to tlie discharge Q, and we can put G c =
F V, in wiiich G denotes the area of the cross-section H R (Fig.

F
669) of the water that is flowing in. Putting c = -^ ^, we obtain

2g \g} 2g-\}~ XGlhg"
whence

V2gh
V =

'' ' (J)'

According to this formula, the velocity increases with the ratio

p
j^ of the cross-sections, and it is a minimum and — V2g h, when

the cross-section F of the orifice of discharge is very small, com-

pared with that G of the orifice of influx, and it approaches nearer

and nearer to infinity, the smaller the difference between the two

orifices becomes. If i^ = 6^ or -^ = 1, we have v = -—-^— = oo,
(t

and also c = oo ; this infinite value must be understood
Fig 671

• thus : if a vessel A C, Fig. 671, is without a bottom, water

^;!lS'i'|'^ must flow in and out with an infinitely great velocity or

lot]! the stream of liquid G F will not fill the orifice of exit

Gc
CD. Putting ?; = -—, we obtain

l::;';li h = \(-^) — 1 ^r— , and therefore F =
ill LVi^^ -"^^

i/i + 2^*'
u lire .

r ^ + -;r
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which expression shows that the cross-section F of the discharging

stream is always smaller for a finite velocity of influx than that G
through which the water flows in, and that it therefore does not fill the

orifice of efflux, when the latter is larger than

/1 +
2gk

Remabk.- -The correctness of the formula

which was first established by Daniel Bernoulli, was afterwards much
disputed. I have endeavored to prove in the " Allgemeinen Maschinen-

encyclopadie," by Hulsse, in the article " Efliux" (Ausfluss), how unfounded

were the representations, which were made.

Example.—If water flows from a vessel, whose cross-section is 60 square

inches, through a circular^ orifice in the bottom 5 inches in diameter under

a head of water of six feet, its velocity is

^ _ 8,025 V6 _ 8,025 . 2,449 _ 19,653 _ 19,653

V"l - (0,327)^ VpM
/-(S-;y

0,945
20,79 feet.

§ 399. Velocity of Efflux, Pressure and Heaviness.—The

formulas, which we have found, hold good so long only a^ the pres-

sure of the air upon the surface of the water is the same as that

upon the orifice of efflux ; but if these pressures differ, these formulas

must have an addition made to them. If the sur-

face R R, Fig. 672, is pressed upon by a piston K
with a force Pj, as occurs, e.g., in fire engines, we
can imagine this force to be replaced by the pres-

sure of a column of water. If Ai is the height

L K Qii this column and y the heaviness of the

liquid, we can put

P,= GJi, y.

Substituting for h the head of water h + hy= h +
P . . P

-7-—^, which has been increased by hi — -^, we ob-
G y ^

- Gy
tain for the velocity of efflux

= ^2,(7. -f-i-),

F
when we assume -^ to be very small. If we denote the pressure

upon each unit of the surface G by jt?„ we have more simply
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Pi

G Pi>

and therefore

v = \/%g{h +
?:^y

Finally, if we denote the pressure of the water at the orifice of

efSux by j9, we can put

A + — = -, whence
r r

Hence the velocity of efflux is directly proportional to the square

root of the pressure upon the unit of surface and inversely to the

square root of the density or heaviness of the liquid. When the

pressure is the same, a liquid four times as heavy as another dis-

charges one-half as fast as the latter. Since air is 770 times

lighter than water, it would, if it were inelastic, flow out under the

same pressure VTTO = 27| times faster than water.

This theory is also applicable to the case where the effluent

water is subjected to the pressure of a column of another liquid.

If above the level H Roi the water HER
in a vessel A C B, Fig. 673, there is still

a column of liquid H Ri, whose height

G Gi = h and whose heaviness = y^, while

that of the water is = y, we can replace

the latter by a column of water whose

Ti
height is— hi without changing the pres-

sure upon II R or causing the velocity v

of the water, which is passing through the

opening F, to vary. Hence if h is the

head B G of water, i.e., the height of the

surface of separation IIR above the orifice F, we have the height

due to velocity

Ti

^g
= h + -^h,,
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and therefore

[§ 399.

^ = l/^^t^ + -y4

Fig. 674.

Now if yi < y or ^ + — Ai < ^ + ^1, the jet F K, which rises

vertically, will not reach the level H^ Ri Zjof the surface of the

liquid.

If the surface of separation H B, Fig. 674, is not above, but a

certain distance B F = h below the

orifice F of the vessel ADC, while the

surface IIi R^ of the liquid H^ D R is

at the height G G^ — 7h above the sur-

face of separation JI R, we have

and therefore the velocity of the jet

M

mm

^/^gl^^. - 4
mi • Ti , ^ ^1 y
This supposes -^ Jh > A, or — > -

.

y h y,

From this it is easy to see that the jet

F K, which is projected vertically up-

wards, can rise above the surface H^ R^ of

the liquid H,D R. li G M = ^ h, is

y
the head of the liquid, reduced to that of water, M gives the level

to which the jet will nearly reach.

If the water does not discharge freely, but under ivater, a dimi-

nution of the velocity of efflux takes place owing to the opposite

pressure. If the orifice F of the vessel A C,

Fig. 675, is at a distance F G — li below the

upper level H R oi the water and at a dis-

tance F Gx — li\ below the lower level H^ R^,

we have the pressure from above downwards

p = 7iy,

and the opposite pressure from below up-

wards

p, = h,y;

hence the force, which produces the efflux, is

P — Pi = {^^ - ^i) 7

Fig. 675.

A B
iiiiaij

M ;(J itJ,
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and the velocity of efflux is

807

^^V^9(^-^)=^^9{^-h),

When water discharges under water, we must regard the differ-

ence of level h — hi between the surfaces of water as the head of

water.

If the water at the orifice of efflux is pressed

upon with a force p and at the surface or ori-

fice of influx with a force p^, we have in general

x/,g(niP^).
This case occurs when water flows from one

closed vessel ABC into another closed one

D E, Fig. Q1^. Here h is the height F G oi

the surface of the water H R above the orifice

F, px the pressure of the air m A H R and p
the pressure of the air or the steam in D E,

Example—1) If the piston of a fire engine is 13

inches in rliameter and it is pressed down in the

cylinder with a force of 3000 pounds, and if there are

no resistances in the pipes and hose, the water will

^ass through the nozzle of the hose with a velocity

|/2^^ = /2^|-^ =8,025 |/;
3000

8,025 y 64|/

e

I
• 62,5

3
62,74 feet

;

if the stream is directed vertically upwards, it will reach a height

A = 0,0155 .
'«^ = 61,007 feet.

2) If water flows into a space in which the air has been rarified, e.g.,

into the condensei; of a steam engine, while its upper surface is pressed

upon by the atmosphere, we must employ the last formula for the velocity

of efflux, viz..

= /.,(. +
^-Y^).

If the head of water is ^ = 3 feet, the height of the barometer of the exte-

rior air 29 inches and that of the enclosed air 4 inches, we have

^^ ~^ = 29 — 4 = 25 inches = 2,083 feet of mercury

= 18,6 . 3,083 = 28,33 feet of water,
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hence the velocity of the water flowing into the space, which is filled with

rarefied air, is

V = 8,025 V3 + 28,33 = 8,025 V31,33 = 44,92 feet.

3) If the water in the feed-pipe of a steam boiler stands 12 feet above

the level of the water in the boiler and if the pressure of the steam in the

latter is 20 pounds and that of the exterior air is 15 pounds, the velocity

with which the water enters the boiler is

8,025 ^12 + ^'' -
f )

•
^^ = 8,025 ^12 -

5 . 144

62,5 ' '' 62,5

= 8,025 Vl2 - li;52 = 5,56 feet.

§ 400. Hydraulic or Hydrodynamic Head.—If the water

in a vessel is in motion, it presses less against the sides of the ves-

sel than when it is at rest. We must, therefore, distinguish the

hydraulic or hydrodynamic from the hydrostatic head of water.

If j9i is the pressure upon each unit of the surface of the water

Hi Ri = Gi, Fig. 677, p the pressure at the orifice F and h the

head of water F G^, we have the velocity of efQux

or

h + v-am-'
now if in another section H.^ i?2 = ^2> which is at a distance

F G.2 = hi above the orifice, the pressure is

Fig. 677. _
p_^^ ^g hdbve in like manner

If we subtract these two equations from each

other, we obtain

or, if we denote the head o!* water G^ G^ of the

layer H.2 B^ = Go by ho, we have for the hydro-

dynamic head at ff^ Ez

=»-f-[©'-(i)']f:-
Fv .

But -y^- is the velocity t\ of the water at the upper surface G^,

Fv .

*

and -^- the velocity va of the water in the cross-section G^, we

can, therefore, put
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Pi

r

£1 + h.
V2 ^ 2 qI'

The hydraulic head — at any position in the vessel is equal to

the hydrostatic head — + h^, diminished by the difference of the

heights due to the velocities of the water at this point and at the inlet

orifice. If the free surface G-^ of the water is very great, we can

neglect the velocity of influx and put

2l= P
y y
^ = ^ + A, -

hence the hydraulic head is less than the hydrostatic head hy an

Q/mount equal to the height due to the velocity of the imter. The
quicker the water moves, the less it presses upon the sides of the

pipe. For this reason pipes often burst or leak for the first time,

when the motion of the water is checked, when the pipes clog, etc.

By means of the apparatus A B C D, represented in Fig. 678,

the difference between the hydraulic and

the hydrostatic head can be ocularly dem-

onstrated. If from the cross-section G^

we carry a tube E R upwards the latter

will fill with water, which will rise above

the levelH Rot the water, when G^ > G^ or

^2 < "2^1 ; for, since the pressure p^ upon

the surface of the water is balanced by the

pressure of the air upon the mouth of the

tube, we can put the height, which meas-

ures the pressure in G^,

y " \2a 2 cil'

and ic is > ^2 when ^ <
V,'

9 2^y

If, on the contrary, the cross-sec-

tion Gz < G^, the water flows more rapidly through Gj, and we
have for the height of column of water in the tube E^, inserted at G^,

y = h

which is less than 7^3, so that the water does not rise to the level

R R of Gi. If, finally, G^ is very small and the corresponding ve-
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locity very great,
V4 — ~ can be > h^, and the corresponding
2 g ^^ g

r &

Fig. 679.

hydraulic head z will be negative, i.e. the

pressure of the air on the outside will be

greater than that of the water within.

Hence, if a tube is carried downwards and

its end placed under water, a column of

water B^ A" will rise in it, which, together

with the pressure of the water, will bal-

ance the atmospheric pressure. If the

tube is short, the water in the vessel X,

which, in this experiment, should be col-

ored, will rise in the tube, enter the reser-

voir A B C D and flow, with the other

water, out at F.

Remark.—If the vessel AGE, Fig. 680, consists of a reservoir A C and

of a narrow vertical tube C E, the hydrodynamic bead is

negative in all parts of this tube. If we do not regara the

pressure of the atmosphere ^j, the pressure of the water at

the orifice of eSiux is = ; for htre tlie entire head of water

is expended in producing- the velocity v = ^ 2<jli\ on the

contrary, for a position D E, which is at a distance G^ O =
Aj under the water level, the hydraulic head is

= 7i^ — 7i = — iji — h^),

or negative ; if, then, a hole were bored in this tube, no water

would escape, but. on the contrary, air would be sucked in

and discharged at F. This negative pressure is a maximum
directly under the reservoir, since Ti^ is here a minimum.

§ 401. Rectangular Lateral Orifices.—By the aid of the

formula

Fig.

Q = Fv = FV-Zgh,

the discharge per second can be calculated only w^hen the orifice is

horizontal, since in that case the velocity is uniform in the whole

cross-section F', but if the cross-section is inchned to the horizon,

if, E.G., the opening is in the side of the vessel, the molecules of

water at diffarent depths flow out with difierent velocities, and the

discharge can no longer be regarded as a prism ; hence the formula

Q = F V = F V'Z g h cannot be applied directly. The general for-

mula is

Q ^ F.V'Zgh,^ F.V^Zg h, + F^ V2 g h + . .

.

= V2~g {F, Vh + F, Vh, ^ F,Vh,-\- ,, .),
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the heads

Fig. 681.

in which F^, F.^, Fs . . . denote the areas and 7i„ h^, Ih

of water of the various portions of the orifice.

The simplest case is that of efflux through a notch in the side,

weir or overfall, Fig. 681. The notch D F G II m the wall, through

which the efflux takes place, is rec-

tangular; let us denote its width

D F ^ G Hhj b and its height

D H ^ F G \)jh. If we decom-

pose this surface h h, by horizontal

lines, into a great number n of hor-

izontal strips of equal width, we can

consider the velocity to be constant

for each of them. Since, if we pro-

ceed from above downwards, the

heads of water of these strips are

h 2h Zli
J i 1 etc.,

n n n

we have for the corresponding ve-

locities

/3</-- y ^9 A/ 2 (7 . — , etc.,

and. since the area of each of these strips is = 5 .

the corresponding discharges

bh
, we have

-^V ^ff'7j—V 2 ^ .

—
-, — y ^ff'-—, etc.;

n ' " n' n ' " n

hence that of the whole section is

n Vn
{Vi + VY-h t^+ .. . + \^),

Since (as is given in the Ingenieur, page 88)

or

1^ + 2* + 3* + . . . + n* =
>' + i

1 -f-^

— 2— 3 n^ =z ^ nV n.

it follows that the required discharge is
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e-
hhS/'lgh

^ Vn
V~n = lhhV%g h=:lh V%gh\

If vw understand hy the mean velocity v that velocity, which must
exist at all points of the overfall, when the sam£ quantity of water

passes through the whole cross-section ivith a uniform velocity as does

pass through with the variable velocity, ive can put

Q = I h V, whence it follows that

V = § V2jh,
I.E. the mean velocity of water flowing out through a rectangular

notch in the side of a vessel is | the velocity at the sill or lower edge

of the notch.

If the rectangular orifice K G, Fig. 682, with the horizontal

base G H, does not reach to the level

of the water, we find j^he discharge

through it by regarding it as the dif-

ference between two notches in the

' side D E G II^vl^B E L K. If h,

is the depth E G of the lower and

h^— E L that of the upper edge, we

have for the discharges through these

notches

Fig. 682.

ihV^gh,\
and

I'bV^gh';^',

hence the discharge through the rec-

tangular opening G H K L\%

I V^YK -
i h VTgT} = f J V¥g {hfi - hPj,

and the mean velocity of ef&ux is

= lX^2l ^''^

/ij — ^2

h, +
-, or the depth of

1) {h, - A,)

If h is the mean head of water E M
the centre of the orifice below the level of the water, and a the

height KH— L G = h^ — hc^oi the orifice, we can put

V = I 4/2^ .
, or approximatively

[l-.'o(|)>^.A.
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Example.—If a rectangular orifice of efflux is 3 feet wide and 1^ feet

high and the lower edge is 2f feet below the level of the water, the dis-

charge is

Q = I . 8,025 . 3 (2,751 - 1,51 ) = 16,05 (4,560 - 1,837)

= 16,05 . 2,723 = 43,7 cubic feet.

According to the approximate formula
.

^ = [l - ^V (^)] • 8,025 V2a25 = (1 - 0,0036) 11,698

= 11,698 — 0,042 = 11,656 feet,

and the discharge is, therefore,

Q = d.i. 11,656 = 43,710 cubic feet.

Remakk.—If the notch in the wall is inclined to the horizon at an

4 — A

sin. 6
angle (5, we must substitute for the height of the orifice ~—j^ instead of

A
J
— ^2, and therefore we must put

If the cross-section of the reservoir, from which the water is dis-

charging, is not much larger than the cross-section of the orifice, we must

F
take into account the velocity of approach i)^ = -^ v oi the water and put

§ 402. Triangular Lateral Orifice.—Besides rectangular lat-

eral orifices, triangular and circular ones also occur in practice.

We will next discuss the discharge through a triangular orifice

D E G, Fig. 683, with a horizontal base E G and with its apex D
at the level of the water H R. If we put the base

Fig. 683. E G = 1) ^n^ the height i> ^ =: ^ and if we divide— the latter into n equal parts and pass through these

divisions lines parallel to the base, we divide the

entire surface into small strips, whose areas are

b k 2b h db h ^ ,, . . ^- . -, — . -, — . -, etc., and whose heads of
n n n n n n

water are -, — , — , etc. The discharges througti them are

bh,/^ h 2bh ./^ 2h Sbh .A Sh ^

by summing these we obtain the discharge of the whole triangular

orifice
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n'

= ^=^— (II + 21 + 31 . . + ^t),

-^ —
j

IT I Til,

If the base Z) IT of the orifice D G K lies in the surface of the

water and the apex G is at the depth h below it, we have the cor-

responding discharge, since that through the rectangle D E G K
isiih VYgh,

Q^^bh VTfJi-lbh. V'lgh^ j%b7i VYpi.
The discharge through a trapezium A B C D, Fig. 684, whose

upper base A B — bi lies in the surface of the water, whose lower

base is (7 Z> = Z*, and whose height is I) B = h, is found by com-

bining the discharge through a rectangle with those through two

triangles, and it is

Q = lKh VYgh + /^ {b^~ l.^ h VYg~h
=

-f-, (2^1 + 3b,)hV2gh.

Fig. 684. Fig. 685.

HA E r BR WA OHA BR

Furtlier, the discharge through a triangle C D E, Fig. 685,

whose base is D E = bi, whose altitude is M = h^ and whose

apex C is situated at a depth C = h below the level R R of the

water, is Q = discharge through ABC minus that through A E
= S^^ 4/171 _ -2^ (2 J + 3 b,) h, VYgT,

Since the width A B = b is determined by the proportion

J) : bi : : h : (h — h-^, it follows that

_ 2VYg . b ,
/2A {hi - k,l)

^ ~ 15 ~ I
Fig. 686.

2V2g .b, (2h

- 3 h^

~~
15 \ h — h^

Finally, we have for the discharge through a

triangle A C D, Fig. 686, whose apex lies above

its base,
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A,l) - 2V2g . b, /2M-5hh,^ + 3 M
15

+ 2h^

h — Aj
'^

>15 V h-h.
Example.—What is the discharge through the square orifice A B C I),

Fig. 687, whose vertical diagonal A C=l foot, when the comer A reaches

to the level of the water ? The discharge through the upper half of the

square is

§ = f & VsTX^ = f . 1 . 8,025 Vf = 1,605 . 0,7071 = 1,135 cubic feet,

and that through the lower half

_ 2dV2~g /2M-5hhJ + B hj \

2 . 8,025
H

Fig. 687.

A

\
\

15

32,10
"15"

'2 - 5 (i)f + 3 (|)f

(2 - 1,7678 + 0,5303)

Fig. 688.

= 2,14 . 0,7625 = 1,632 cubic feet,

consequently the total discharge is

Q = 1,135 + 1,632 = 2,767 cubic feet.

§ 403. Circular Lateral Orifices.—The discharge for a cir-

cular aperture A B, Fig. 688, can only be determined by means

of approximate formulas obtained in the follow-

ing manner. Let ns decompose the circular ori-

fice by concentric circles into small rings of

equal width and let us consider each ring to be

composed of elements, which may be regarded as

parallelograms. If r is the radius, h the width

and n the number of elements of one of these

2 rr /•
.

rings, —'— is the length of one of these elements
n

and its area is

2Tcrl

Now if h is the depth C G of the centre C below the level of the

water H R and </> the angle A C K, which measures the distance of

the element K from the highest point A of the ring, we have for

the head of water of this element

^iY= C G - C L = n- r COS. <p,

and therefore the discharge through this element

2 TT r b /-—

—

-T-= V2 g {h — r cos. (p).
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But

V h — r COS.
(f)

= Vllh - l^ COS.0-1 (j) cos.^ + . . .]

= VI [l - 1 ^ COS. Ct>
- y^g (~j (1 + COS. 2 0) + . .

.],

and therefore the discharge through this element is

= ^f^ ^^ b - i -r"'-*
~ " (Jj

(1 + C0S.Z4,) + ...]

The discharge through the whole ring is found by substituting

in the parenthesis instead of 1, ^^ . 1 = 7i, and instead of cos. </> the

sum of all the cosines of </> from = to </> = 2 tt, and instead of

COS. 2 (p the sum of all the cosines of 2 from 20 = to 20 = 4 tt.

Since the sum of all the cosines of a full circle is equal to 0, these

cosines disappear, and we have the discharge through the ring

2nrbViigh[l-J,(^^J-...'j.

T . T 2 T 3 T
If, instead of b, we substitute — , and instead of r, —,— , — tom m m m

mr
m '

we obtain the discharge through each of the rings, which form

the entire circle, and finally the discharge through the entire circu-

lar aperture is

$=3,rri^p(^(l+3 + 3+... +m)-Js^(r + 2' + 3=+... +?»))

or more exactly

If the circle reaches to the level of the water, we have

Q = tW? ^ ^' V2yh = 0,964 F V¥Jh,
when F — -n r'' denotes the area of the circle.

Moreover, it is easy to understand that in all cases, where the

head of water at the centre is equal to or greater than the diameter

of the orifice, we can put the value of the entire series = 1 and

q = FV2jh.
This rule can also be applied to other orifices and also to all
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cases, where the depth of the centre of gravity of the orifice below

the level of the water is as great as the height of the aperture ; we
can then regard the depth h of this point as the head of water and

put Q =F V¥Jh.
If we consider that the mean of all the cosines of the first

2
qimdrant is = - and that of all those of the second quadrant is

2—
, or that the mean of the first and second quadrant; = 0, the

discharge for the upijer semicircle, determined in the manner

ghown above, is

and that through the lower semicircle is

in which F denotes the area of the aperture.

The formulas for ft ft and Q^ hold good also for elliptical

orifices with horizontal axes ; for the discharges, when the other

circumstances are the same, are proportional to the widths of the

apertures and the width of an ellipse is proportional to the width

of an equally high circle (see Introduction to the Calculus, Art. 12).

Example.—What is the hourly discharge through a circular orifice 1

inch in diameter, when the level of the water is one line above the top of it ?

Here we have

^ = |;hence(Q'=|| =0,735,

and 1 - ^ (^0 = 1 - 0,023 = 0,977,

and consequently the discharge per second is

^ !LiJl^
, 12 . 8,025 i/rlr • 0,0977 = ^ • 8,025 . 0,977 V7= 16,29 c. inches,

4 ' r 144 4 '

per minute = 977,4 cubic inches, and per hour = 33,94 cubic feet.

§ 404. EflElux from a Vessel in Motion.—The velocity of

efflux changes when a vessel, originally at rest or moving uni-

formly, is set in motion, or when a change in its condition of

motion takes place, since in this case every molecule of the water

acts upon those surrounding it not only by its weight, but also

by its inertia. 52
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If the vessel A C, Fig. 689, is moved toith an accelerated motion

vertically upwards, while the water flows through an opening F in

the bottom, the velocity of efliux is

augmented, and if it descends with an

accelerated motion, the velocity is dimin-

ished. If the acceleration is p, every

molecule M of the water presses not

only with its weight M g, but also with

its inertia M p, and in the first case we
must put the force of each molecule

equal to (g + p) M, and in the second

case equal to {g — p) M, or instead of

g, g ± P' Hence it follows that

= {9^P)K

and that the velocity of efflux is

V =^ V^ {g ± p) h.

If the vessel rises with the velocity g, we have

V = V2T2gli = 2 VgJ,

and the velocity of efflux is 1,414 times as great as it would be if

the vessel stood still. If the vessel falls by its own weight or

with the acceleration g, v is = Vo — and no water runs out. If

the vessel moves uniformly upwards or downwards, v remains =
4^2 g A, but if its rise is retarded, v becomes — ^^ {g — p) K and if

its fall is retarded, v h = V^ {g + p) h.

If the vessel, from which the water flows,

is moved horizontally or at an acute angle

to the horizon, the surface (see § 354) be-

comes oblique to the horizon and a varia-

tion of the velocity of efflux is the result.

If a vessel A (7, Fig. 690, is caused to

revolve about its vertical axis X X, its sur-

face will assume, according to § 354, the

shape of a parabolic funnel A B, and at

the centre M of the bottom the head of

water M is smaller than near the edge,

and the water will flow more slowly through

an orifice at the centre than through any

other equally large aperture in the bottom.

If h denotes the head of water M at the centre M, the velocity
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of efBlux through an aperture at that point will he = V2 g h
; but

if y denotes the distance M F = NF oi an aperture F from the

axis XX and w the angular velocity, we have, since the subtan-

gent TN of the arc P ol the parabola is equal to twice the abscissa

Nf the corresponding elevation of the water above the centre

X= i TX= i P N.tang. NP T,

consequently if we substitute tang. N P T — tang, (j)
=

ff

^ (see

§ 354) and denote the angular velocity o) h oi F by w, we can put

OK 10'

g 2g 2g
^

Hence the velocity of efflux through the orifice F is

v = V%g(h + f\ = V^gh + w\

This formula holds good for a

vessel of any shape, even when it

is closed on top, like A C, Fig. 691,

in such a manner that the fun-

nel DOC cannot be completely

formed. Here also h is the depth

M oi the orifice below the vertex

of the funnel and v the velocity

of rotation of the aperture. It will

be employed repeatedly in the dis-

cussion of reaction wheels and tur-

bines in another part of the work.

Example—1) If the vessel A (7, Fig. 689, which when filled with water

weighs 350 pounds, is drawn upwards by a weight G of 450 pounds by
means of a cord passing over a pulley, it rises with an acceleration

_ ^5Q — ^50 _ 100 _
^

^ ~ 450 + 350 • ^ ~ 800 ' ^ ~ ^ ^'

and the velocity of efflux is

« = V2 {g + p)h = ^2 .^gh = y/fgh.

Now if the head of water were h = 4 feet, the velocity of efflux would be

V = V97^= 3 V32,2 = 17,03 feet.

2) If the vessel A (7, Fig. 691, which is filled with water, makes 100

revolutions per minute and if the orifice ^ is 2 feet below the level of the

water at the centre and at a distance from the axis XX, = 3 feet, the

velocity of efflux is

= 1/64,4V = ^/2gh + 2 +
/3 . TT . looy

I 30 /
V128,8 + 100 . 7r»

= Vl28,8 + 987 = Vl 115,8 = 33,4 feet.

If the vessel stands still, we have v = Vl28,8 = 11,35 feet.
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CHAPTER II.

OF THE CONTRACTION OF THE VEIN OR JET OF WATER WHEN
ISSUING FROM AN ORIFICE IN A THIN PLATE.

§ 405. CoefiEicient of Velocity.—The laws of efflux, deduced

in the last chapter, coincide almost exactly with the results ob-

tained in practice, so long as the head of water is not very small,

compared to the width of the aperture, if the orifice of efflux is

gradually widened inwards and joins bottom or sides without

forming an angle or edge. The experiments made with polished

metal mouth-pieces by Michelotti, Eytehvein and others, and also

by the author, have shown that the real effective discharge is from

96 to 99 per cent, of the theoretical one. The mouth-piece A D,

Fig. 692, which is represented in one-half its natural size, gave

under a pressure of 10 feet 98 per cent.,

Fig, 692.
^ under a pressure of 5 feet 97 per cent., and

under a pressure of 1 foot 96 per cent, of

the discharge calculated theoretically (Ex-

periments with large orifices, see Unter-

suchungen in dem Gebiete der Mechanik

und Hydraulik, Zweite Abtheil.). If the

efflux through such a mouth-piece is to be

as free from disturbance as possible, the

rounding must not be in the form of a

circle, but in that of a curve A D — B C,

the curvature of which gradually decreases from within outwards

(from A towards B). Since in this case the stream has the same

cross-section F as the orifice, we can assume that the diminution

of the discharge is caused by a loss of velocity arising from the

friction of the water upon, or its adhesion to, the inner surface of

the mouth-piece and from the viscosity of the water. Hereafter

we will call the ratio of the real or effective velocity to the theo-

retical velocity v — V^ gh the coefficient of velocity (Fr. coefficient

de Vitesse ; Ger. Geschwindigkeitscoefficient) and we will denote

it by (p. Thus the effective velocity of efflux in the simplest case ia

^?J
=

(f>
V —

(f)
V2 g h,
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and the effective discharge is

Q = Fv,=:(}>Fv = (l>FV2gh.

Substituting for its mean value 0,975, we obtain (in English

feet)

Q = 0,975 ,FVYfh = 0,975 . 8,025 F V7i ^ 7,824 F VJi.

The vis viva of a quantity Q of water, issuing with the velocity

y
v-^, is -— . Vi', by virtue of which it can perform the mechanical

v^
effect Q y . ^. But since the weight § y in descending from the

v'^ v"
height h — -— performs the work Qy .li— Q y -—, it follows that

the loss of mechanical effect of the water during the efflux is

v^L = 0,049 . X—, or 4,9 per cent.
Z g

The water, which issues from the vessel, will therefore perform

4,9 per cent, less work by virtue of its vis viva than by virtue of its

weight, when falhng from the height A.

Remark.—The author has tested the law of efflux, expressed by the

formula « = V2*^ h, under very different heads, viz., from the very great

head of 100 meters to the very small one of 0,02 meters. A well rounded

mouth-piece 1 centimeter wide gave for the heads

h = 0,03 meters . . . 0,50 meters 3,5 meters 17 meters 103 meters

<l>
= 0,959 0,967 0,975 0,994 0,994

See Civilingenieur, New Series, Vol. 5, first and second numbers.

§ 406. Coefficient of Contraction.—If the water issues from

an orifice in a thin plate (Fr. orifice en mince parol ; Ger. Miin-

dung in der diinnen Wand), and if the other circumstances are the

same, a considerable diminution in the discharge takes place. This

diminution is due to the fact that the directions of the molecules

of the water, which are passing through the orifice, converge and

produce a contracted stream, or vei7i (Fr. veine contractee ; Ger.

contrahirter Wasserstrahl). The measurements of the stream, made
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by several experimenters and more recently by the author himself,

have shown that the stream, at a distance from the orifice equal to

half its width, experiences its maximum contraction, and that its

thickness is 0,8 of the diameter of the orifice. If i^i is the cross-

section of the contracted vein and F that of the orifice, we have

therefore

F = 0,8' F = 0,64 F.

The ratio -^ of these cross-sections is called the coefficient of

contractiofi (Fr. coefficient de contraction ; Ger. Contractionscoeffi-

cient;, and is denoted by a ; from what precedes we see tliat its

mean value for the efifiux of water through an orifice in a thin

plate is a = 0,64.

So long as we have no more accurate knowledge of the law of

the contraction of the stream, we can assume that the stream flow-

ing through a circular orifice A A, Fig. 693, forms a solid of rota-

tion A E E A, whose surface is generated by the revolution of the

arc ^ ^ of a circle about the axis C D of the stream. Putting the

diameter ^ ^ of the orifice = d
Fig. 693. ^nd the distance C D oi the con-

tracted section EE from the orifice

= -^ d, we obtain the radius

M A = ME ^

r

of the generating arc ^ ^ by means

of the equation

lir ; i ; ; i : : i : i8

'ma/A:

!11/l

A N'' = E N(% ME-E N)
(F a L d\

^'SrS from which we obtain

r = 1,3 d.

The velocity of efflux through orifices of this kind is about

V, = 0,97 V,

The contraction of the stream of water owes its origin to the

fact that not only the water immediately above the orifice flows

out, but also that the water all around flows in and is discharged

with it. The filaments of water begin to converge within the

vessel, as is shown in the figure, and the contraction of the stream

is caused by the prolongation of this convergence. We can con-

vince ourselves of this fact by employing a glass vessel and putting

into the water small bodies, ,such as saw-dust, bits of sealing-wax,
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etc., of nearly the same specific gravity as the water, and allowing

them to flow out with it.

§ 407. Contracted Vein of Water.—If the water flows

through triangular, quadrangular, etc., orifices in a thin plate, the

stream assumes particular forms. The most striking phenomenon
is the inversion of the stream or the change in position of its cross-

section in reference to the cross-section of the orifice, in conse-

quence of which a corner of the former cross-section comes into

the same position as the middle of one of the sides of the orifice.

Thus the cross-section of the stream, issuing from a triangular ori-

fice A B C, Fig. 694, is, at a certain distance from the latter, a

three-pointed star D E F\ that from a square orifice A B G D,

Fig. 695, is a four-pointed star E F G H\ that from a pentagonal

Fig. 697.

orifice A B C D E, Fig. 696, is a five-pointed starE G HK L, etc.

The cross-sections are very difibrent at different distances from the

orifice ; they decrease for a certain distance and then increase again,

etc. ; the stream consists, therefore, of ribs of variable width and

forms, as can be best observed when the pressure is very great,

bulges and nodes similar in form to the cactus plant. If the ori-

fice A B C D, Fig. 697, is rectangular^ the cross-section at a small

distance from the aperture forms also

a star or cross, but at a greater dis-

tance it assumes more the form of an

inverted rectangle E F.

Bidone observed the discharge

from various kinds of orifices ; Pon-

celet and Lesbros have made the

only accurate measurements of the

stream issuing from square orifices

(see the Allgemeine Maschinenency

klopadie, article "Ausfluss"). The
last measurements have led to a small

coefficient of contraction 0,563.
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Measurements of tlie water discharged through smaller openings

have given greater coefficients of contraction ; they indicate that

the coefficients are greater for oblong rectangles than for rectangles,

which approach the square in form.

§ 408. CoeflELcient cf Efflux.—If the effective velocity of

water issuing from an opening in a thin plate was equal to the

^theoretical v = V2g A, we would have for the effective discharge

Q =z a Fv = a FV%gh,
a F denoting the cross-section of the stream at the point of maxi-

mum contraction, where the molecules of water move in parallel

lines ; but this is by no means true. It appears, from experiment,

that Q is smaller than a F V2 g h and that we must multiply the

theoretical discharge F V2g A by a coefficient smaller than the co-

efficient of contraction, in order to obtain the real discharge. We
must therefore assume that, when water issues from an orifice in a

thin plate, a certain loss of velocity takes place, and consequently

a coefficient of velocity must also be introduced; hence the effec-

tive velocity of efflux is

Vi = (j) V = (p V2 g h.

The effective discharge is

Q, =zFi.v, = aF,(l)v = a(l)Fv = a(pF V2g h.

Let us call the ratio of the real discharge Qx to the theoretical or

hypothetical discharge Q the coefficient of efflux (Fr. coefficient de

depense; Ger. Ausflusscoefficient) and let us denote it hereafter

by At ; then we have

Q,^fzQ = fiFv = fiFV2i7i,

and therefore

[JL = a
(f),

I.E. the coefficie7it of efflux is the i^roduct of the coefficient of velocity

and the coefficient of contraction.

Repeated observations, and particularly the measurements of

the author, have led to the conclusion that the coefficient of efflux

IS not constant for all orifices in a thin plate, that it is greater

for small orifices and small velocities of efflux than for large

orifices and great velocities and that it is much greater for long,

narrow orifices than for those whose forms are regular or circular.

For square orifices, whose areas are from 1 to 9 square inches,

under a head of from 7 to 21 feet, according to the experiments of
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Bossut and Miclielotti, the mean coefficient of efflux is /-^ = 0,610

;

for circular orifices from h to 6 inches in diameter and under a head

of from 4 to 21 feet, it is jt^ = 0,615 or about -^^3. The values, which

were obtained by Bossut and Michelotti from their observations,

differ materially from each oflier ; but they do not appear to de-

pend upon the size of the orifice or upon the head. According to

the experiments of the author, under a head of 0,6 meters, the co-

efficient of efflux is for a circular orifice

1 centimeter in diameter fi — 0,628

2 centimeters " = 0,621

3 " " =0,614
4 " " ....... =0,607.

On the contrary, under a head of 0,25 meters, with the same orifice,

1 centimeter in diameter, he found . . , . /x = 0,637

2 centimeters " ''
. , , . = 0,629

3 " '^ " .... =0,622
4 " " "

. . . . = 0,614.

We see from these results of experiment that the coefficient of

efflux increases when the size of the orifice and the head of water

diminish. If we assume as mean values ft = 0,62 and a = 0,64,

we obtain the coefficient of velocity for efflux through an orifice in

a thin plate ^^^^09^^
a

or about the same as for efflux through mouth-pieces rounded in-

ternally.

Remark—1) Experiments made by Buff (see Poggendorff 's Annalen,

Vol. XLVI) show that the coefiicients of velocity for small orifices and

small heads or velocities are considerably greater than for large or medium
orifices and velocities. An orifice of 2,084 lines in diameter gave, under a

head of 1| inches, // = 0,692 and, under a head of 35 inches, /j. = 0,644.

On the contrary, an orifice 4,848 lines wide, under a head of 4|- inches,

gave fx = 0,682 and, under a head of 29 inches, fj.
= 0,653. The author

also obtained similar results.

2) For efflux under water, according to the experiments of the author,

the coefficients of velocity are nearly 1^ per cent, smaller than for efflux

into the air. \

§ 409. Experiments.—The coefficient of efflux jj, correspond-

ing to a certain mouth-piece can be determined, when we know the

discharge F, which passes through the known cross-section F of

the orifice under a head of water A in a certain time t ; here we

have
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F== II FV^g h.ty

li =
and inversely

^ i • VTg^h

In order to find its two factors, viz. : the coeflScient of contrac-

tion and that of velocity, it is necessary to measure either the cross-

section F^ = a F of the stream or to determine the velocity of

efflux ?'i
= (p V = (p V2 g h by means of the range of the jet.

Neither measurement can be made with sufficient accuracy unless

the stream is thin and the cross-section is circular.

The circular cross-section Fi of a jet can be determined very

simply by means of the apparatus represented in Fig. G98. It is

composed of a ring and four sharp-pointed set-

screws A, By C, D, which screw in towards each

other. The screws are directed towards the

centre of the cross-section of the stream and are

turned until their points touch its surface ; the

ring is then removed from the stream and the

distance between the opposite points of the

screws is measured ; the mean d^ of these two

distances is assumed to be the diameter of the

stream. Now if d is the diameter of the cross-section of the orifice,

we have F^
" = -¥

and therefore a
4> = z'

m-

If we measure the range B (7 = 5 of a jet ^ B, Fig. 699, which

issues horizontally from the mouth-piece S A, which is at a certain

height A C — a above the ground, we have, according to § 36, the

-"^ocity of efflux

Fig. 699.
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VI
and since v^ = (p v = (p V2 g h, we obtain

whence _ f^ _ 2 V~a7i

(p fJL b '

The determination of v is more certain when, instead of a and

1), we measure the horizontal and vertical co-ordinates of three

points of the parabolic axis of the stream; for the axis of the

mouth-piece may have an unknown inclination to the horizon.

The most simple method of proceeding is to stretch a horizontal

thread D F above the stream and to hang three plumb-lines from

three points D, E, and F, which are at equal distances from each

other ; we then measure the distances B G, E H, and FK oi the

axis of the stream from D F. If i) i^ = a; is the horizontal dis-

tance of the extreme points from each other, if the vertical dis-

tances D G, E H, and FK — z, z^, and 0., and if we take G as the

origin of co-ordinates, we have the co-ordinates for the point H
x,=GL = DE=^DF=^2.ndiij,=LH=EH-D G = z,-z,

and for the point X
x,= GM=EFr=xsiTid^, = 3fK= FK- D G^z,-z.
According to § 39, if a denotes the angle of inclination of the

axis of the stream at G,
CI T

"^

Vi = Xx tana, a + -—4~ \ ? and also
•^ '^

"2 Vi COS. a

(J x^
^2 = ^'2 tang, a + -

—

% 3—, or^ "^
2 Vi COS. cb

a X ^

Vi — Xi tang, a = -—^-^^— , and^ *^ 2 v,^ COS.- a'

y.2 — Xo tang, a = gx,'

2 t'l' COS. a

whence, by division, we obtain, since x^ = 2 a:,,

——-^-'—r —— = i, and therefore tana, a = -^ ^\
y-i
— 2-2 tang, a ^' -^ x

If in one of the foregoing formulas, instead of ^— , we put 1 +
COS. o>

tang? a, and for tang, a we substitute the last expression, we obtain

the required formula for the velocity of efflux
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,^ ^ i/ £^ ^ |/( ^ + tang.o:')iix'
'

2 (^2 — ^ tang, a) cos.^ a ' 2 (2 y^ — 4: y^)

' ^ 4.{y,-^y,) '

Hence the coefficient of velocity is

J^ ^ l\ ^ /X' + {^y,-y,f

Example 1) The following measurements of an uncontracted stream,

which issued from a well-rounded orifice 1 centimeter wide, were made :

X = 2,480 meters,

y^ =:z^ —z = 0,267 — 0,1135 = 0,1535 meters,

y,^=z^-z = 0,669 - 0,1135 = 0,5555 ''

and the head of water w^as h = 3,359 meters. From these data we find

the coefficient of velocity to be

^ / 2,48- + 0,059^ _ / 67185 _
^ ^ 8 . 3,359 . 0,2485 > 26,872 . 0,2485 ' '

Since no contraction took place, a = 1 and therefore /u = (p. The results

of measurements given in the remark to § 405 agree well with this value.

2) The measurements of a perfectly contracted stream, which passed

through a circular orifice in a thin plate, were, for a head of water h =
3,396 meters, the following :

X = 2,70 meters,

y^=z^~ z = 0,2465 — 0,1115 = 0,1350 meters,

^g = Sg — 2 - 0,6620 — 0,1115 = 0,5505 "

whence it follows that

^ " > 8 . 3,396 . 0,2805 ~ ^ 27,168 ."0,2805 ~ '

From the measurement of the discharge [x was calculated to be = 0,617
;

hence the coefficient of contraction was a = - = 0,631, w^hich agreed verv
9

well with the measurement of the cross-section of the stream.

§ 410. Rectangular Lateral Orifices.—The most accurate

experiments npon efflnx through large lateral rectangular orifices

are those made at Metz by Poncelet and Lesbros. The width of

these apertures were 2 and in some cases 6 decimeters and their

heights w^re different, varying from 1 centimeter to 2 decimeters.

In order to produce a perfect contraction, the orifice was made in a

brass plate 4 millemeters thick. From the results of these experi-

ments, these savants have calculated, by interpolation, the tables,

wiiich are given at the end of this paragraph, and which can be

employed for the measurement or calculation of discharges.

If h is the width of the orifice K L, Fig. 700, and if Ih and Ih
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are the heights E G and E L oi the level of the water above the

lower and upper horizontal edge of the orifice, we have, according

to § 401, the discharge

e := f 5 i/27 {h% - h^y

If we introduce the height of the orifice G L = a = hi — h^

and the mean head of water EM = h — -^—-^, we have approxi-

matiyely
^ ^ ^^

_ _^j ^ ^
^_

and, therefore, the effective discharge is

Fig. 700.

-'

C

If we put

a"
\

96W^ ^i>

we have more simply

/"

Q^ = lj.iab y2 g h,

and as it is more convenient to employ

this simple formula for the discharge,

the values of /Zj, and not those of /a

are given.

Since the water in the neighborhood

of the orifice is in motion, it stands

higher immediately in front of the

wall, in which the aperture is made

;

for this reason two tables are given,

one to be used, when the heads of w^ater are measured at a distance

from the orifice, and the other, when they are measured directly at

the wall of orifice. "We see from both these tables that, with some

exceptions, the less the lieight of the orifice and the head of water

is, the greater the coefi[icient of efflux is.

If the width of an orifice is different from those given, we
must employ these coefficients to calculate the discharge, as we
have no other experiments to base our calculations upon. That

we are not liable to great error can be seen by comparing the co-

efficients for the orifices, whose widths are 0,6 meters, with those,

whose widths are 0,2 meters, for the same head of water. If

the apertures are not rectangular, we determine their mean height

and width and substitute in the calculation the coefficient corre^

spending to these dimensions. It is always better to measure thei

head of water at a great distance from the orifice and to employ
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the first table than to measure it immediately at the orifice, where

the surface of the water is curved and less tranquil than at a dis-

tance from it.

Example—1) What is the discharge through an orifice 2 decimeters

wide and 1 decimeter high, when the surface of the water is 1^ meters

above the upper edge ? Here we have

d = 0,2, a = 0,1, h = ^J-|^^ = y_+i'^ ^ 1^55 ij^eters,

and, therefore, the theoretical discharge is

Q = 0,1 . 0,2 V2g Vl,55 = 0,02 . 4,429 . 1,245 = 0,1103 cubic meters.

But Table I gives for a = 0,1 and ^2 = l?^?
/"i
— 0,611, hence the

real discharge is

^ = 0,611 . 0,1103 = 0,0674 cubic meters.

2) What is the discharge through a rectangular orifice in a thin plate,

whose height is 8 inches and whose width 2 inches, under a head of water

of 15 inches above the upper edge ? The theoretical discharge is

^ = I .
1

. 8,025 Vf = 0,8917 . 1,1547 =: 1*0296 cubic feet.

But two inches is about 0,05 meters and 15 inches about 0,4 meters,

we can therefore take the value /u^ = 0,628, corresponding to a = 0,05 and

Ag = 0,4, and put the required discharge

Q^ = 0,628 . 1,0296 = 0,647 cubic feet.

3) If the width is 0,25 meter, the height 0,15 and the head of water

Ag = 0,045, we have

Q = 0,25 . 0,15 . 4,429 V0,"i2 = 0,166 . 0,3464 = 0,0575 cubic meters;

the height 0,15 corresponds, for Ji^ = 0,04, to the mean value

f^i

0,582 + 0,603
~ 2 ~ 0,5925,

and, for Ag — 0,05, to

0,585 + 0,605

2
0,595.

Now since h = 0,045 is given, we substitute the new mean

0,5925 + 0,5950 — 0.594
2

-^--

as coefficient of efiiux, and we obtain the required discharge

Q^ = 0,594 . 0,0575 = 0,03415 cubic meters.

Remark.—The coefiicients of velocity do not change sensibly for a rec-

tangular orifice, when we change the height into the width or vice versa,

as is demonstrated by the following experiments of Lesbros (see his '' Ex-

periences Hydrauliques, Paris, 1851").

An orifice 0,60 meters wide and 0,02 meters high, under a head of water

from 7i = 0,30 to 1,50 meters, gave

fx^ = ju = 0,635 to 0,622,

and, on the contrary, when it was set on edge, or when the height was 0,60

meters and the width 0,02 meters,

fi^ = 0,610 to 0,626 and

fx = 0,638 to 0,627.
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TABLE I.

The coefficients of efflux of water issuing from rectangular orifices in a thin

vertical plate^ according to Poncdet and Leshros.

(The heads of water are measured above the orifice at a point where the

water can be considered as still. The values below the asterisk (*) are de-

termined only by interpolation.)

i>^?=s 1

/ater

or

di

the

level

r

above

tl

dge

of

tl

11

meters.

HEIGHT 3F THE ORIFICE, IN METERS.

width of the orifice = 0,2 meters.
Width of the orifice

= 0,6 meters.

Head

of

V

tance

of

the

wate

upper

e

orifice,

ii

0,20 0,10 0,05 0,03 0,02 0,01 0,20 0,02

0,000
u (( " u u a u u

0,005
(( u a u u 0,705 it u

0,010
u ii

0,607 0,630 0,660 0,701 a 0,644

0,015
a 0,593 0,612 0,632 0,660 0,697 a 0.644

0,020 0,572 0,596 0,615 0,634 0,659 0,694 u 0.643

0,030 0,578 0,6dt) 0,620 0,638 0,659 0,688 0,593 0,642

0,040 0,582 0,603 0,623 0,640 0,658 0,683 0,565 0,642

0,050 0,585 0,605 0,625 0,640 0,658 0,679 0,5<;7 0,641

0,060 0,587 0,607 0,627 0.640 0,657 0,676 0,5e9 0,641

0,070 0,588 0,609 0,628 0,639 0,656 0.673 0,600 0,640

0,080 0,589 0,610 0,629 0,638 0,656 0,670 c,eoi 0.640

0,090 0,591 0,610 0,629 0,637 0,655 0,668 0,601 0,689

0,100 0,592 0,611 0,630 0,637 0,654 0,666 0,602 0,689

0,120 0.593 0,612 0,630 0,636 0,653 0,663 0,6C3 0,638

0,140 0,595 0,613 0,630 0,635 0,651 0,660 0,6C3 0,687

0,160 0,596 0,614 0,631 0,634 0,650 0,658 0,604 0,637

0,180 0,597 0,615 0,630 0,634 0,649 0,657 C,6C5 0,686

0,200 0,598 0,615 0,630 0,633 0,648 0,655 o,ec5 0,685

0,250 0,599 0,616 0,630 0,632 0,646 0,653 c.eco 0,684

0,300 0,600 0.616 0,629 0,632 0,644 0,650 C.6G7 0,683

0,400 0,602 0,617 0,628 0,631 0,642 0,647 0,607 0,631

0,500 0,603 0,617 0,628 0,630 0,640 0,644 0,607 0,680

0,600 0,694 0,617 0,627 0,630 0,638 0,642 0,607 0,629

0,7C0 0,604 0,616 0,627 0,629 0,637 0,640 0.607 0.628

0,800 0,605 0,616 0,627 0,629 0,636 0,637 0,606 0,628

0,900 0,605 0.615 0,626 0,628 0,634 0,685 0,6C6 0.627

1,000 0.605 0,615 0,626 0,628 0,683 0,632 0,605 0.626

1,100 0,604 0,614 0,625 0.627 0,631 0,629 0.604 0,626

1,200 0,604 0,614 0,624 0,626 0,628 0,626 0,604 0.625

1,300 0,603 0,613 0,622 0,624 0,625 0,622 0,603 0,624

1,400 0,603 0,612 0,621 0,622 0,622 0,618 0,603 C.€24

1,500 0.602 0,611 0,620 0,620* 0,619* 0,615* 0.602 0,628

1,600 0;602 0,611 0,618 0,618 0,617 0,613 0,602* c:e23

1,700 0,602* 0.610* 0,617 0,616 0,615 0,612 0,602 C;£22

1,800 0,601 0,609 0,615* 0,615 0,614 0,612 0,602 0,621*

1,900 0,601 0,608 0,614 0,613 0,612 0,611 0,602 o,en
2,000 0,601 0,607 0,613 0,612 0.612 0,611 0,602 0,620

3,000 0,601 0,603 0.606 0,608 0,610 0,609 0,601 0,615

Similar tables for the Prussian system of measures are to be found in

the Ingenieur, page 433.



832 GENERAL PRINCIPLES OF MECHANICS. [§ 410.

TABLE IL

The coefficients of efflux of water issuing from rectangular orifices in a tliin

vertical plate, according to Poneelet and Lesbros.

(The heads of water were measured directly at the orifice. The values

above and below the asterisks (*) are determined by interpolation only.)

:er

or

dis-

le

surface

er

above

:dge

of

the

neters.

HEIGHT OF THE ORIFICE, IN METERS.

Width of the

^^l-c Width of the orifice = 0,2 meters. orifice

= 0,6 meters.

"3 =2 ^-
SS'S-S 3
X 0,20 0,10 0,05 0,03 0,02 0,01 0,20

0,000 0,619 0,667 0,713 0,776 0,783 0,795 0,586

0,005 0,597 0,630* 0,668* 0,725* 0,750* 0,778* 0,587

0,010 0,595 0,618 0,642 0,687 0,720 0,762 0,589

0,015 0,594 0,615 0,639 0,674 0,707 0,745 0,590

0,020 0,594* 0,614 0,638 0,668 0,697 • 0.729 0,591

0,030 0,593 0,613 0,637 0,659 0,685 0,708 0,592

0,040 0,593 0,612 0,636 0,654 0,678 0,695 0,594*

0,050 0,593 0,612 0,636 0,651 0,672 0,686 0,595

0;060 0,594 0,613 0,635 0,647 0,668 0,681 0,596

0,070 0,594 0,613 0,635 0,645 0,665 0,677 0,597

0,080 0,594 0,613 0,635 0,643 0,662 0,675 0,598

0,090 0,595 0,614 0,834 0,641 0,659 0,672 0,599

0,100 0,595 0,614 0,634 0,640 0,657 0,669 0,600

0,120 0,596 0,614 0;633 0,637 0,655 0,665 0,601

0,140 0,597 0,614 0,632 0,636 0,658 0,661 0,603

0,160 0.597 0,615 0.631 0,685 0;651 0,659 0,602 1

0,180 0,598 0,615 0,631 0,634 0,650 0,657 0,603

0,200 0,599 0,615 0,630 0,683 0,649 0,656 0,603

0,250 0,600 0,616 0,630 0,682 0,646 0,653 0,604

0,300 0,601 0,616 0,629 0,682 0,644 0,651 0,605

0,400 0,602 0,617 0,629 0,631 0,642 0,647 0,606

0,500 0,603 0,617 0,628 0,680 0.640 0,645 0,607

0,600 0,604 0,617 0,627 0,680 0,638 0,643 0,607

0,700 0,604 0,616 0,627 0,629 0,687 0,640 0,607

0,800 0,605 0,616 0,627 0,629 0,636 0,637 0,607

0,900 0,605 6,615 0,626 0,628 0,634 0,635 0.607

1,000 0,605 0,615 0,626 0,628 0,633 0,632 0,606

1,100 0,604 0,614 0,625 0,627 0,631 0,629 0,606

1,200 0,604 0,614 0,624 0,626 0,628 0,626 0,605

1,800 0,603 0,613 0,622 0,624 0,625 0,622 0,604

1,400 0,603 0,612 0,621 0,622 0,622 0,618 0,603

1,500 0,602 0,611 0,620 0,620* 0,619* 0,615* 0,603 i

1,600 0,602 0,611 0,618 0,618 0,617 0,613 0,602
i

1,700 0,602* 0,610* 0,617 0,616 0,615 0,612 0,602

1,800 0,601 0,609 0,615* 0,615 0,614 0,612 0,602

1,900 0,601 0,608 0,614 0,618 0,613 0,611 0,602

2,000 0.601 0,607 0,614 0,612 0,612 0,611 0,602

3,000 0,601 0,603 0,606 0,608 0,610 0,609 0,601
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D

§ 411. Overfalls.—If the water flows through an overfall, weir

or notch (Fr. deversoirs; Ger. Ueherfalle) in a thin wall, as, e.g., F B,

Fig. 701, the stream is contracted

Fig. 701. on ihree sides and a diminution

of the discharge is produced. The
discharge through this orifice is

Here the head of water EH — h

is to he measured, not at the edg«,

but at least three feet from the

wall in which the notch is cut ; for the surface of the water is de-

pressed immediately behind the orifice, and the depression increases

continually towards the orifice, and in the plane of the orifice its

value G R\^ from 0,1 to 0,25 of the head of water F R, so that the

thickness F G of the stream is but 0,9 to 0,75 of the head of water.

Many experiments have been made upon efflux of water through

notches in a thin plate, and the results, although very multifarious,

do not agree as well as could be desired. The following tables con-

tain the results of the experiments of Poncelet and Lesbros.

1. TABLE OF COEFFICIENTS OF EFFLUX FOR OVERFALLS
TWO DECIMETERS WIDE, ACCORDING TO PONCELET AND
LESBROS.

Head of water A
in meters.

0,01 0,02 0,03 0,04 0,06 0,08 0,10 0,15 0,20 0,22

Coefficient

of efflux 0,424 0,417 0,412 0,407 0,401 0,397 0,395 0,393 0,390 0,385

TABLE OF THE COEFFICIENTS OF EFFLUX FOR OVERFALLS
SIX DECIMETERS WIDE.

Head of water h
in meters. 0,06 0,08 0,10 0,12 0,15 0,20

0,395

0,30 0,40 0,50 0,60

0,390

1

Coefficient

1 of efflux

1
/^i-l/^.

0,412 0,409 0,406 0,403 0,400 0,391 0,391 0,391

Hence for approximate determinations we can put f.ii = 0,4.

53
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Eytelwein found, by his experiments with oYerfalls of great width,

the mean value of /^i tohe = % i^
= 0,42, and Bidone fti = 5 0,G2

= 0,41, etc. The most extensive experiments were made by d'Au-

buisson and Castel. Erom these d'Aubuisson concludes that for

overfalls, whose width is not greater than | that of the canal or of

the wall in which the weir is placed, we can put ^ = 0,G0 or f /i —
0,40 ; that, on the contrary, when the overfall extends across the

whole wall or has the same width as the canal, we must take j.i =
0,665 or /-*! = 0,444; that, finally, when the relations between the

width of the notch and that of the canal differ from the above, the

coefiicient of efflux is very varied, the extremes being 0,58 and 0,66.

The experiments made in 1853 and 1854, at Hanswyk, upon over-

falls 3 to 6 meters wide under a head of 0,1 to 1,0 meters gave

ju = 0,64 to 0,65 or f jLt = 0,427 to 0,433. (see the " Zeitschrift des

Archit- und Ingen-Vereins fiir Hanover, 1857"). The researches

made by the author upon the efflux of water through overfalls re-

fer the variation of these coefficients of efflux to certain laws, which

will be noticed further on (§ 417).

Example—1) The discharge per second of an overfall, 0,25 meters

wide under a head of water of 0,15 meters is

Q = 0393 . & h \/2gli = 0,393 . 4,429 . 0,25 (0,15)? = 0,435 . 0,0581

= 0,02527 cubic meters.

2) What must be the width of an overfall, which under a head of water

of 8 inches will discharge 6 cubic feet of water ? Here we have

^ "
'f^W^ff^

^
0,4. 8,025 V(^ = 3;210T0,5443 = ^'^^^ ^'^*-

If according to Eytelwein we take //i = 0,42, we have

^ = 3,37 . 0,5413 = ^'^'^^•

§ 412. Maximum and Minimum Contraction.—When wa-

ter flows through an orifice in a plane surface, the axis of the ori-

fice is at right angles to the w^all of the vessel and we have a me-

dium contraction ; if, however, the axis of the orifice or of the

stream forms an acute angle with the portion of the wall of the

vessel containing the aperture, the contraction is smaller, and if

the angle between this axis and the inner surface of the vessel is

obtuse, the contraction is greater. The first case is represented in

Fig. 702 and the second in Fig. 703. This difference of contrac-

tion is, of course, due to the fact that in the former case the

molecules of the water, which are flowing towards the orifices, are
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deviated less, and in the latter case more, from their primitive di-

rection, while passing through this aperture and forming the vein.

The contraction is a minimum, i.e., null, if, by gradually con-

tracting the wall surrounding the orifice, the water is prevented

from flowing in upon the side and, on the contrary, a maximum
when the direction of the wall is opposite to that of the stream, so

that certain molecules must describe an angle of 180 degrees in

Fig. 703. Fig. 705.

order to reach the orifice. Both cases are represented in Figures

704 and 705. In the first case the coefiicient of efflux is nearly 1,

viz. : 0,96 to 0,98, and in the second case, according to the measure-

ments of Borda, Bidone and of the author, its mean value is = 0,53.

In practice, variations of the coeflflcients of efflux, produced by
convergent walls, often occur, particularly in the case of sluices,

which are inclined to the horizon, as is shown in Fig. 706. Pon-
celet found for such an orifice the coefiicient of efflux fi = 0,80,

when the gate was inclined at an angle of 45°, and, on the contrary,

H is only =^ 0,74, when the inchnation is 63^ degrees, i.e., for a

Fig. 706. Fig. 707.

A %B ^ B

H

>.GJ^=^

'^^^^^^^^^^^w^^^^'l

slope of one-half to one. For the overfall, represented in Fig. 707,

where, as in Poncelet's sluice, contraction takes place upon one

side only, the author found jii = 0,70 or fi^ = f fj,
= 0,467 for an

inclination of 45°, and fi = 0,67 or [i^ = 0,447 for an inclination

of 63A degrees.

According to M. Boileau (see his Traite de la mesure des eaux
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courantes) we can put for anoyerfall, which is inclined upwards

in such a way that the horizontal projection is ^ the yertical, or

that the angle of inclination is 71^ degrees, the coefficient of efflux

= 0,973 times the coefficient of efflux for an overfall with a vertical

wall. We also find from the experiments of Boileau that, for ver-

tical overfalls placed at an angle to the direction of the stream, we
must put, when the angle is 45°, the coefficient of efflux = 0,942

and, when the angle is 65°, only 0,911 times the coefficient of efflux

for the normal overfall ; the whole length of the edge, over which

the water flows, being of course considered as the length of the

orifice.

Example.—If a sluice gate, which is inclined at an angle of 50 degrees

and closes a trough 2i feet wide, is raised i foot and if the surface of the

water then stands permanently 4 feet above the bottom of the trough, the

height of the orifice is

a = ^sin. 50" = 0,3830,

the head of water is

A = 4 - 1 . 0,3830 = 3,8085 feet,

and the coefficient of velocity i& /u. = 0,78, hence the discharge is

Q = 0,78 . 2,25 . 0,3830 . 8,025 V3,8085 = 10,52 cubic feet.

§ 413. Scale of Contraction.— TJie 7nore the direction oftTie

water which floivs in from the sides differs from that of the stream,

the greater is the contraction of the vein.

When a stream flows through the orifice C, Fig. 708, in a plane

thin plate, the angle S, formed by its axis or direction of motion

Fig. 708.

with that of the molecules of water which flow in from the side, is

a right angle
( ^ )

; when the orifice A is formed by the thin edge

of a tube, this angle 6 is two right angles ( tt
) ; when we have

a conical divergent mouth-piece B, 6 is between A tt and n;

when the discharge takes place through a conical convergent
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mouth-piece, 6 is between and - ; and when a cylindrical mouth-

piece E well rounded off internally is used, it is = 0.

In order to discover the law, according to which the contraction

diminishes with the angle d, the author made a series of experi-

ments with a great number of mouth-pieces 2 centimeters wide and

under different pressures (from 1 to 10 feet) ; the results of these

experiments are given in the following table

:

6 1800 157|o 1350 112^0 90° 67^0 450 22|-« lli° 5fo 00

fJ- 0,541 0,546
i

0,577 0,606 0,632 0,684 0,7530,882 0,924 0,949 0,966

This table gives, it is true, only the eoefficieaits of ef9.ux li corre-

sponding to different angles of deviation c5; the coefficients of

contraction are from 1 to 2 per cent, greater, since a small loss of

velocity always takes place during the efflux. In order to prevent

any loss of ^ds viva, when the water enters the mouth-pieces D and

E, the latter are rounded off at the entrance. The friction, to be

overcome by the water in passing along the walls of the mouth-

piece, will be determined in the following chapter.

Remark,—According to the calculations of Prof. Zeuner fsee Civilin-

genieur, Vol. 2d, page 55) of the results of the above experiments, we can

put
fi^= ,i,^{l + 0,33214 [COS. df + 0,16672 {cos. 6y)

H^ ^ denoting the coefficient of efflux for an orifice in a plane thin i^late,

for which the maximum deviation ofthe elements of the water during efflux

is= |-7r=90°, and //g,on the contrary, denoting the coefficient of efflux for

an orifice in a conical thin plate, where the maximum deviation of the

elements of the water upon entering is 6.

§ 414. Partial or Incomplete Contraction.—We have as

yet studied only the case, where the water flows in from all sides of

the opening and forms a stream contracted upon all sides ; we must
now consider the case, where the water flows in from but one or

more sides to the orifice, and consequently produces a stream which
is incompletely contracted. In order to distinguish these condi-

tions of contraction from each other, we will call the case, where
the stream is contracted on all sides, complete contraction, and the

case, where the stream is contracted upon a part only of its

periphery, partial or incomplete contraction (Fr. contraction incom-
plete ; Ger. unvollstandige or partielle Contraction). Incomplete

contraction occurs whenever an orifice in a thin pla7ie plate is
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surrounded upon one or more sides by a plate placed in the

direction of the stream. In Fig. 709 there are represented four

orifices a, i, c, d of equal magnitude in the bottom A C of 2b vessel.

The contraction of the water flowing through the orifice a in the

middle of the bottom is complete, for in this case the water can

flow in from all sides ; the contraction of the stream in passing

through b, c ov d is incomplete, for the water in these cases can

flow in from only three, two or one side. In like manner,

when a rectangular lateral orifice extends to the bottom of the

yessel, the contraction is incomplete ; for that upon the side of the

base is wanting ; if further the opening extend to the bottom and

sides of the trough, there will be contraction upon one side only.

Incomplete contraction manifests itself in two ways. First, it

gives an inclined direction to the stream ; and secondly, it causes a

greater discharge.

Fig. 709. Fig. 710.

c

lillli

iyiii Hi 'J

^^^^xZ^y;

If, E.G., the lateral orifice F, Fig. 710, reaches to the bottom

C D, so that no contraction can take place there, the axis F G oi

the stream will form an angle H F G oi about 9 degrees with the

normal F H to the plane of the orifices. This deviation of the

stream becomes inuch greater when two adjoining sides are con-

fined. If the orifice has a border upon two opposite sides, the con-

traction at those points is thereby prevented, and this deviation of

the stream does not take place, but at a certain distance from the

orifice the stream becomes wider than it would have done, if it had

not been confined upon those sides. Although a greater discharge

is obtained when the contraction is incomplete, yet it is generally to

be avoided, since it is always accompanied by a deviation in the

direction and by a great increase in the width of the stream.

Experiments upon the efflux of water, when the contraction is

incomplete, have been made by Bidone and by the author.
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Their results show that the coefficient of efflux increases very

nearly with the ratio of the length of the border to the entire peri-

phery of the orifice ; but it is easy to perceive that this relation is

different, when the periphery is nearly or entirely surrounded by a

border, in which case the contraction is almost or totally done away

with. If we put the ratio of the portion with a rim to the entire

periphery = n and denote by k an empirical quantity, we can put,

approximatively, the ratio of the coefficient /i.„ of efflux for incom-

plete contraction to the coefficient ji^ for complete contraction

t^ — \ -\~ K n, and consequently [i^ = il + k n) jjl^.

Bidone^s experiments gave for small circular orifices tc = 0,128,

and for square ones k = 0,152 ; those of the author gave for small

rectangular orifices «::= 0.134, and for larger ones (Poncelet's mouth-

pieces) 0,2 meter wide and 0,1 meter high k = 0,157 (see the Maga-

zine ^'der Ingenieur," vol. 2d). In practice rectangular orifices

with rims are almost the only ones employed ; we will assume for

them, as a mean value, ic = 0,155, and consequently put

//„=(! + 0,155 n) fi,.

For a rectangular lateral orifice, whose height is a and whose

width is L we have n = x-7 tt, when there is no contraction
2 (a -f i)

upon the side b, if, e.g., this side is upon the bottom ; w = ^, when

one side a and one side i are provided with rims : and n = r-7 7^,^ '
2 (a -{- h)

when the contraction is prevented upon the side b and upon the

two sides a, the latter case occurs, when the orifice occupies the

entire width of the reservoir and extends to the bottom.

ExAJiPLE.—What is the discharge through a vertical sluice 3 feet wide

and 10 inches high, when the head of water is li^ feet above the upper

edge of the orifice and the lower edge is at the bottom of the trough, so

that there is no contraction upon that side ? The theoretical discharge is

Q = if . 3 . 8,025 VI,o + T2- = f • 8,035 Vi;9166 = 27,77 cubic feet.

According to Poncelet's table for perfect contraction fi = 0,-304, but

we have
3 9

2 (3 + if) 18 + 5

hence for the present case of incomplete contraction

//„ := (1 + 0,155 . ^) . 0,604 = 1,060 . 0,604 = 0,640

and the effective discharge is

Q = 0,640 Q = 0,640 . 27,77 = 17,77 cubic feet
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§ 415. Imperfect Contraction.—The contraction of the vein

depends also upon this fact, yiz. : whether the water is sensibly at

rest in front of the orifice or whether it arrives there with a certain

velocity ; the faster the water approaches the orifice of ef&ux, the

less the stream is contracted, and consequently the greater is the

discharge. The various relations of contraction and eiflux, given

and discussed m what precedes, are applicable only where the ori-

fice IS m a large wall, in which case we can assume that the water

arrives at the orifice with a very small velocity ; we must now
investigate the relations of contraction and efSux, when the cross-

section of the orifice is not much smaller than that of the approach-

ing water, in which case the water arrives with a velocity, which is

not negligable. In order to distinguish these two cases from each

other, let us call the contraction which occurs, when the water

above the orifice is at rest, perfect contraction and that which

occurs, when the water is in motion, im'perfect contraction (Fr con-

traction imparfaite ; Ger. unvollkommene Contraction). The

contraction during efflux from the vessel A C, Fig. 711, is imper-

fect ; for the cross-section F of the orifice is not
Fig. 711. much smaller than that G of the water approach-

A B ing it or the area of the wall . (7 i), in which this

jp[liili.L. li l Jl ,k,„ ,M orifice is placed. If the vessel was of the form

A B Ci Z>i and the area of the base Ci Dy was

,
, J/,

much greater than that of the orifice F, the

%' r //
'

^ffl^^ would take place with perfect contraction.
"^

^1 : The imperfectly contracted stream Is distm-

* 1'Jf^'"^4 guished from the perfectly contracted one not
t~l only by its size, but also by the fact that it is not

so transparent and crystalline as the latter is.

If we denote the ratio of the area F of the orifice to that G of
XT

the wall in which it is situated, or -^, by n, the coefficient of efflux for

perfect contraction by ii^ and that for imperfect contraction by jti„,

we can put with great accuracy, according to the experiments and

calculations of the author,

1) for circular orifices

i^„ - ^0 [1 + 0,04564 (14,821« - 1)],

2) and for rectangular orifices

11^ = ^0 [1 + 0,0760 (9" - 1)].
*̂

Experiments upon the imperfect contraction of water, etc., Leip2ag, 1843.
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In order to facilitate the calculations which are required in

practice, the corrections — of the coefiBcient of efflux in con-^
• Mo

sequence of the imperfect contraction have been arranged in the

following tables

:

TABLE I.

The corrections of the coefficients of effiuxfor circular orifices.

n 0,05 0,10 0,15 0,20 0,35 0,30 0,35 0,40 0,45 0,50

Hn — Uo
0,007 0,014 0,023 0,034 0,045 0,059 0,075 0,092 0,112 0,1 34

j

i

n 0,55 0,60

-

0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00

i

U^ — Ho

^0

0,161 0,189 0,223 0,260 0,303 0,351 0,408 0,471 0,5460,631

TABLE II.

The corrections of the coefficients of effiuxfor rectangular orifices.

n 0,05 0,10 0,15 0,20 0,25
i

0,30 1 0,35 0,40 0,45 0,50

Un — Uo 0.009 001<) nORO 042 05fi 0,071 0,088 0,107 128
1

1 .fi;?,
1

f^o

, |.,..-^..,..^.,..,...,._.

n 0,55 0,60 0,65 0,70 0,75 0,80

i

0,85 0,90 0,95 1,00

Hn -Ho
0,178 0,208 0,241 0,278 0,319 0,365 416 rt ^"^s 0,537 0,608

^0

The upper lines in these tables contain various values of the

F
ratio -^ of the cross-sections, and immediately below are the corre-

sponding additions to be made to the coefficient of efflux on account

of the imperfect contraction, e.g., for the ratio n = 0,35, i.e., for

the case, where the area of the orifice is 35 hundredths of the area

of the entire wall, in which the orifice is made, we have for a cir-

cular orifice iii„ — ii.

Mo
0,075,

and for a rectangular one = 0,088 ; the coefficient of efflux for
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perfect contraction must be increased in the first case 75 thou-

sandths and in the second 88 thousandths, when we wish to obtain

the corresponding coefficient of efflux for imperfect contraction.

If the coeflacient of efflux were = 0,615, we w^ould have in the

first case

fi,,,= 1,075 . 0,615 = 0,661

and in the second case

/^o.35 = 1,088 . 0,615 = 0,669.

Example.—What is the discharge through a rectangular lateral orifice

F, which is li feet wide and ^ foot high, when it is cut in a rectangular

wall C Z>, Fig. 712, 2 feet wide and 1 foot high, and when the head of

water FH = h, where the water is at

rest, is 2 feet. The theoretical dis-

charge is

Q = 1,25 . 0,5 . 8.035 V2
= 5,0156 1.414 = 7,092 cubic feet,

and the coefiicient of efflux for perfect

contraction is according to Poncelet,

,u, = 0,610,

but the ratio of the cross-sections is

F 1,25 . 0,5

G 2,1
and for n = 0,312 we have, according to Table 11, page 841

0,312,

0,071 + ^ (0,088 — 0,071) = 0.071 + 0,004 = 0,075;

hence the coefficient of effl.ux for the present case is

^0,312 = 1.075)^V„ = 1,075 ^ 0,610 = 0,6557,

0.6557 . 7 092 = 4,65 cubic feet.

and the effective discharge is

Q^ = 0,6557 . Q

§ 416. Efflux of Moving Water.—We have heretofore

assumed that the head of ivater was measured in still water; we
must now discuss the case where the head of water can be meas-

ured only m water, which is approaching the orifice with a certain

velocity. If we assume the orifice to be rectangular and denote

the width by h, the head of water in reference to the two horizon-

tal edges by Ih and lu and the height due to the velocity of ap-

proach c oi the water by k, we have the theoretical discharge

This formula cannot be directly employed for the determination

of the discharge, since the height due to the velocity

k =
^9 ^9\Q Kg)
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Fig. 713.

depends also upon Q, and, if we transform it, we obtain a compli-

cated equation of a high degree ; it is much simpler, therefore, to

put the effective discharge

Q^ = fi^ a b V2 g h

and to understand by ^^ not a simple coefficient of efiSux, but a co-

efficient depending principally upon the ratio of the cross-sections.

This case is often met with in practice, e.g., when we wish to

measure the quantity of water which passes through a ditch or

canal ; for we can seldom dam up the water by means of a trans-

verse wall B C, Fig. 713, to such a height that the area F of the

orifice, through which the water

is discharged, will be but a small

fraction of the cross-section of the
^ stream which approaches it, and

it IS only m the latter case that

the velocity of approach is very

j\,.,,, —-^-^r,r'-^7?7iC ^<;\Vv small compared to the mean ve-

locity of efflux.

In the experiments made by the author with Poncelet's orifices

the head of water was measured 1 meter back from the plane of the

orifice , they gave

F
7^ r= — denoting the ratio of the cross-sections, which should not

be much greater than 4, fJ'^ denoting the coefficient of efflux for

perfect contraction, taken from Poncelet's table, and ii„ the coeffi-

cient of efflux for the present case. Let b be the width and a the

height of the orifice, J, the width and ai the depth of the stream

of water and h the depth of the upper edge of the orifice below the

level of the water, then we have the effective discharge

^
= 0,641 {^) = 0,641

Q,=l^.ab[l + 0,641 (^J] V^h + |).

The following table is useful in abridging calculations n practice.

n 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50

f^ — f^
0,002 0,006 0,014 0,026 0,040 0,058 0,079 0,103 0,130 0,160

Example.—In order to find the amount of water brought by a ditch 3

feet wide, a transverse wall, containing a rectangular orifice 2 feet wide and
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1 foot high is put in it, and the water is thus raised so that, when its level

becomes constant, it is at a distance of 2i above the bottom and If feet

above the lower edge of the orifice. The corresponding theoretical dis-

charge is

Q = ah ^2gh = 1,2. 8,025 VT,25 = 16,05 . 1,118 = 17,94 cubic feet.

As the coemcient of efflux for perfect contraction is 0,602 and the ratio

of the cross-sections is

^ «

*

1.2 ^ „^^
^ = ^ = «7^ =272573 = ^'^^^'

we have the coefficient of efflux in the present case

fi„= (1 + 0,641 . 0,296^) ^, = 1,056 . 0,602 = 0,6357,

and the effective discharge

Q^ = 17,94 . 0,6357 = 11,4 cubic feet.

§ 417. The contraction is also imperfect when water is dis-

charged through overfalls (like that m Fig. 714), if the cross-

Pj^ i-,^^ section i^of the stream pass-

ing over the sill (7 is a notable

fraction of the cross-section G
of the approaching water. The
overfall may extend over but

y\^llS^SrS;^:—

U

'^'

}r^^V\\J^ a portion or over the whole of

the canal or ditch. In the

latter case, as there is no contraction upon tlie sides of the orifice,

the discharge is greater than through orifices of the first kind.

The author has made experiments upon these cases of efflux and

deduced from the results obtained formulas, by means of wdiich the

coefficient of efflux can be calculated with sufficient accuracy, when

the ratio n = 77- of the cross-sections is known.
tr

Let h be the head of ^vater E H above the sill of the overfall,

a-t, the total depth of water, h the width of the overfall, and hi that

of the approaching water ; we have then

F hh
n = -^ = -^, and

Cr tti Oi

1) for Poncelefs overfall

^"^^lZJ^H = 1^718 [^J= 1,718 n';

on the contrary,

2) for an overfall occupying the ivhole ividth of the ditch or trough

^"~^" = 0,041 -V 0,3693 n'
',

^0
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hence the discharge in the first case is

and in the second case,

h\'
Q, = ifi,.b [l,041 + 0,3693 (— ) ] V2jT%

h denoting the head of water UH above the sill F of the overfall,

measured at a point about one meter back of it.

In the following tables the corrections — ? for the simplest

values of n are given.

TABLE I.

Corrections of the coefficients of effluxfor PonceleVs overfalls.

n 0,05 0,10 0,15 0,20 0,25 0,80 0,35 0,40 0,45 0,50

1^— /^o

^0
0,000 0,000 0,001 0,003 0,007 0,014 0,026 0,044 0,070 0,107

TABLE n.

Corrections for overfalls extending over the entire width^ or without lateral

contraction.

n 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50
j

Phi — /(i„

0,041 0,04210,045 0,049 0,056 0,064 0,074 0,086 0,400 0,116 0,133

Example.—In order to determine the amount of water carried by a

canal 5 feet wide, we place in it a transverse partition with the ujDper edge

beveled outwards and we allow the water to flow over this. After the

upper water had ceased to rise, the height of its surface above the bottom

of the canal was 3i feet and above the sill \^ feet ; the theoretical dis-

charge was therefore

Q = f . 5 . 8,025 (Vf= 49,14 cubic feet.

h 15
The coefficient of efflux is in this case, since — = ^ = ^ and /^^ = 0,577,

a^ o,«D

//, = [1,041 + 0,3693 (ff] . 0,577 = 1,110 . 0,577 = 0,64,

and therefore the effective discharge is

Qi = 0,64 . Q = 0,64 . 49,14 = 31,45 cubic feet.
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§ 418. Lesbros'o Experiments.—We are indebted to Mons.

Lesbros for a great number of experiments upon the efflux of water

through rectangular orifices in a thin plate; the orifices, being

provided internally and externally with rims, afforded examples of

both partial and incomplete contraction (see his " Experiences hy-

drauliques sur les lois de Tecoulement de Teau"). We will give

here only the principal results of his experiments with a rectangu-

lar orifice 2 decimeters wide. The orifices, which were surrounded

with borders of different kinds, are distinguished from each other

in Fig. 715 by the letters Ay B, C, etc.

Fig. 715.

ii
|gi}!i't"''i'^';i;'ii^'l:i'ljj^il

A denotes the ordinary mouth-piece without any rim or border

(as in § 410)

;

B denotes a similar mouth-piece with a vertical wall upon the

inside perpendicular to the plane of the orifice and at a distance

- of 2 centimeters from one side of it

;

C denotes the first mouth-piece enclosed on the inside by two

such walls

;

D the orifice A, provided on the inside with two vertical walls,

which converge towards each other at an angle of 90° and cut

the plane of the orifice at an angle of 45° and at a distance of

2 centimeters from the side of it

;

E the orifice A with a horizontal wall, which passes across the

reservoir and reaches exactly to the lower edge of the orifice

;

F the orifice B,

G the orifice C, and

H the orifice D with a horizontal rim or wall, as in E, which

completely prevents the contraction at the lower edge of the

orifice.
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TABLE OF THE COEFFICIENTS OF EFFLUX FOR FREE EFFLUX
THROUGH THE ORIFICES A, B, G, ETC.

Head

of

water

above

the

upper

edge

of

the

orifice,

measured

back

from

the

plane

of

the

orifice.

1

Coefficient of efflux for the orifices, |

A B C D E F G H
Meters. Meters.

1

0,020 >v r 0,572 0,587 .

— 0,589 0,599 — 1

0,050 0,585 0,593 0,631 0,595 0,608 0,622 — 0,636

0,100 0,592 0,600 0,631 0,601 0,615 0,628 — 0,639

0,200 0,598 0,606 0,632 0,607 0,621 0,633 0,708 0,643

0,500 > 0,200 - 0,603 0,610 0,631 0,611 0,623 0,636 0,680 0,644

1,000 0,605 0,611 0,628 0,612 0,624 0,637 0,676 0,642

1,500 0,602 0,611 0,627 0,611 0,624 0,637 0,672 0,641

2,000 0,601 0,610 0,626 0,611 0,619 0,636 0,668 0,640

3,000

1

^ ^ 0,601 0,609 0,624 0,610 0,614 0,634 0,665 0,638

0,020 >^ f 0,616 0,627 0,647 0,631 0,664 0,663 0,678

0,050 0,625 0,630 0,646 0,632 0,667 0,669 0,690 0,677

0,100 0,630 0,633 0,645 0,633 0,669 0,6740,6880,677

0,200 0,631 0,635 0,642 0,633 0,670 0,6760,6870,675

0,500 0,050- 0,628 0,634 0,637 0,632 o,668'o,676 0,682 0,671

1,000 0,625 0,628 0,635 0,627 0,6660,672 0,680 0,670

1,500 0,619 0,622 0,634 0,621 0,665 0,670 0,678 0,670

2,000 0,613 0,616 0,634 0,615 0,6640,670 0,674 0,669

3,000 ^ - 0,606 0,609 0,632 0,608 0,662 0,669 0,673 0,668
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IL

TABLE OF THE COEFFICIENTS OF EFFLUX THROUGH THE ORI-

FICES A, B, C, ETC.,

With external shoots or uncovered canals of the same dimensions as

the orifice (Fr. canaiix de fuite ; Ger. aussere Ansatzgerinnen).

The shoots fitted the orifice exactly, and consequently the bev-

eling of the sides and bottom of the mouth-piece was done away

with. They wxre either horizontal and 3 meters long or (in the

experiments marked with *) inclined ^^ of their length, which was

but 2,5 meters.

alcove

the

the

orifice

k
from

the

rifice. Coefficients of efflux for the orifices.

)f

water

edge

01

ured

bac

of

thee

Head

c
uppei

meas
plane

A B C E ^* F JT^* G ^*
1H

Meters. Meters.

0,020 0,480 0,489 0,496 0,480 0,527 — — — — 0,488

0,050 0,511 o,5i7|0,53i 0,510 0,553 0,509 0,546 0,528 — 0,520

0,100 0,542 0,5450,563 0,538 0,574 0,534 0,569 0,560 0,593 0,552

0,200 0,574 0,5760,591 0,566 0,592 0,562 0,589 0,589 0,617 0,582

0,500 0,200- 0,599 0,602 0,621 0,592 0:607 0,591 0,608 0,591 0,632 0,613

1,000 0,601 0,6090,628 0,600 0,610 0,601 0,615 0,601 0,638 0,623

1,500 0,601 0,6100,627 0,602 0,610 0,604 0,617 0,604 0,641 0,624

2,000 0,601 0,610 0,626 0,602 0,609 0,604 0,617 0,604 0,642 0,624

3,000 J ^
0,601

0,488

0,609

0,555

0,624

0,557

0,601

0,487

0,608

0.585

0,602

0,483

0,616

0,579

0,602

0,512

0,641 0,622

0,4*940,020 -| r

0,050 0,577 0,600 0,603 0,571 0,614 0,570 0,611 0,582 0,625 0,577

0,100 0,624 0,625 0,628 0,605 0,63210,609 0,628 0,621 0,639 0,616

0,200 0,631 ""^^33 0,637 0,617 0,645:0,623 0,6430,637 0,649 0,629

0,500 0,050- 0,625 0,630 0,635 0,626'0,6520,630 0,65010,647 0,656 0,636

1,000 0,624 0,627 0,635 0,628'0,651 0,633 0,6510,649 0,656 0,638

1,500 0,619 0,622 0,6340,627! 0,650 0,632 0,651 0,647 0,656 0,637

2,000 0,613 0,616 0,6340,623 o,65o'o,63i o,65i'o,644 0,656 0,635

3,000 ^
0,606 0,609

i

o,632'o,6i8o,649'o,628 0,65
1
'0,639 o,656<3,632
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Example.— What is the discharge through an orifice 2 decimeters

wide and 1 decimeter high, when the lower edge is 0,35 meters below the

level of the water and upon a level with the bottom of the vessel, 1) for

free efflux, and 2) for efflux through a short horizontal shoot ? We have

in this case the orifice E^ and the head of water above the upper edge is

= 0,35 — 0,10 = 0,25 meters. Table I gives, when the head is = 0,20 and

the height of orifice = 0, 20, the coefficient of efflux fi = 0,621, and, on

the contrary, when the height of the orifice is = 0,05 meters, fi = 0,670

;

hence for the first case of the problem we can put

0,6^1 + 0,670
fx = ^ = 0,645.

Table II gives, on the contrary, by iuterpolation, for a head of water

0,25 meters above the upper edge of the orifice, the following values for fi.

0,566 + ^ (0,592 — 0,566) = 0,570, and

0,617 + ^ (0,626 - 0,617) = 0,619; ,

hence in the second case we can put

0,570 + 0,619
fi = 2 = ^'^^^•

The cross-section of the orifice is

F = ad = 0,20 . 0,10 = 0,020 square meters;

the mean head of water is

h = 0,350 - 0,050 = 0,300 meters

;

and, consequently, the theoretical discharge is

Q = F ^/¥gh = 0,02 V2 . 9,81 . 0,3 = 0,02 Vs^SSS

= 0,02 . 2,425 = 0,0485 cubic meters.

The effective discharge is in the first case

Q^ = fz^ Q = 0,645.0,0485= 0,0313 cubic metere,

and, on the contrary, in the secx)nd case, i.e., when a shoot is added,

Q = fi^ Q = 0,594 . 0,0485 = 0,0288 cubic meters.

According to the formula //„ = (1 + 0,155 n)
ij,^

of § 414, we can put for

efflux with partial contraction //„ = fiy = (1 + 0,52) n^ = 1,052 /u^, since

^ — ^ of the periphery of the orifice is surrounded by a border. But for

such an orifice with complete contraction we have, according to Table I,

page 831, /u„ = 0,616 ; hence

fi, = 1,052 . 0,616 = 0,648,

and the discharge is

Q^ = fi,Q = 0,648 . 0,0485 = 0,0314 cubic meters,

I.E., a little greater than that obtained by employing Lesbros's table.

§ 419. M. Lesbros has also experimented upon efflux through

overfalls, employing the same orifices A, B, C\ etc., but not allow-,

ing the water to rise to the upper edge of the orifice. The principal

results of these experiments are to be found in the following tables.

54
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TABLE I.

[§419.

Table of the coefficients of efflux {I ii) for free efflux through

overfalls or notches.

Head of water Coefficients of efflux for the orifices.

above the sill,

measured where
the water is still. A B c D E F G

Meter

0,015 0,421 0,450 0,450 0,441 0,395 0,371 0,305

0,020 0,417 0,446 0,444 0,437 0,402 0,379 0,318

0,030 0,412 0,437 0,435 0,430 0,410 0,388 0,337

0,040 0,407 0,430 0,429 0,424 0,411 0,394 0,352

0,050 0,404 0,425 0,426 0,419 0,411 0,398 0,362

0,070 0,398 0,416 0,422 0,412 0,409 0,402 0,375
0,100 0,395 0,409 0,420 0,405 0,408 0,405 0,382

0,150 0.393 0,406 0,423 0,403 0,407 0,407 0,383
0,200 0,390 0,402 0,424 0,403 0,405 0,408 0,383

0,250 0,379 0,396 0,422 0,401 0,404 0,407 0,381

0,300 0,371 0,390 0,418 0,398 0,403 0,406 0,378

TABLE IL

TaUe of the coefficients of efflux (| jt/) for efflux through weirs loith

short shoots or open canals.

Head of wa-
ter above the

Coefficients of efflux for the orifices.

ed where Ihe
water li still. A B C D E P G H

Metei.

0,015 — 0.375 0,388 0,400 — — — —
0,020 0,196 0,368 0,383 0,395 0,208 0,201 0,175 0,190

0,030 0,234 0,358 0,373 0,385 0,232 0,228 0,205 0,222

0,040 0,263 0,351 0,365 0,379 0,251 0,250 0,234 0,250

0,050 0,278 0,346 0,360 0,375 0,268 0,267 0,260 0,272

0,070 0,292 0,343 0,352 0,371 0,288 0,289 0,285 296
0,100 0,304 0,340 0,345 0,369 0,302 0,304 0,299 0,313

1

0,150 0,315 0,335 0,340 0,367 0,314 0,316 0,313 0,327
' 0,200 0,319 0,331 0,338 0,366 0,323 0,322 0,322 0,335
0,250 0,321 0,328 0,336 0,364 0,329 0,326 0,329 0,341
0,300 0,324 0,326 0,334 0,361 0,332 0,329 0,332 0,345

A comparison of the coefRcients in Table I and Table II shows

that the discharge through orifices pro^aded with shoots is smaller

than that through those without them, and that the difference is

greater, the smaller the head of water is ; we also see, by comparing
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the columns G and C*, E and ^*, F and i^*, and G and 6^* in the

tables of the last paragraph, that the inclined shoot creates less dis-

turbance in the efflux than the horizontal one.

Remark 1.— A different theory of the eflBLux of water is advanced by G-.

Boileau in his " Traite sur la mesure des eaux courantes." According- to

it the velocity of the effluent water is the same at all parts of the cross-sec-

tion and depends upon the depth of the upper limiting line of the vein at

the plane of the orifice below the level of the water in the reservoir.

Boileau employs the same formula for overfalls, in which case he must

know of course the height of the stream in the plane of the orifice. Later,

in the 12th volume of the 5th series of the Annales des Mines, 1857, M.

Clarinval has given another formula for efflux through overfalls in which no

empirical number // ai)pears, but instead of f a* he substitutes the factor

Vi-I
—=^, in which h denotes the head of water and a the thickness of

V2 (A" — a')

the stream above the sill of the overfall. See the " Civilingenieur," Vol.

5th. I consider the hypothesis upon which this formula is based to be

incorrect.

Remark 2.—Mr. J. B. Francis gives in his work " The Lowell Hydraulic

Experiments, Boston, 1855," the following formula for efflux through a

wide overfall or weir.

Q = 3,33 (Z — 0,1 7i A) English cubic feet,

in which h denotes the head of water above the sill of the weir, I its length,

and n either or 1 or 2, according as the contraction of the vein is pre-

vented upon both, one or none of the sides. Since for the English system

of measures

^/2~g = 8,025,

we have

«'' =S = «."«•

The experiments, upon which this formula is based, were made with

weirs 10 feet wide and under heads of water from 0,6 to 1,6 feet. The edge

of the weir was formed of an iron plate beveled down stream, the reservoir

was 13,96 feet wide, and the sill was 4,6 feet above its bottom. See the

Civilingenieur, Vol. 2, 1856.

Bakewell's experiments upon efflux through weirs or overfalls give

results differing in some respects from the above. (See Polytech. Central

Blatt, 18th year, 1852.)

Remark 3.—At the sluice-gate of the wheel at Remscheid, Herr Ront-

ehen found
fj.
= 0,90 to 0,93. See Dingler's Journal, Yol. 158.

A new edition of Mr. J. B. Francis' work has been recently published by

D. Van Nostrand, New York.—[Tr.]
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CHAPTER III

OF THE FLOW OF WATER THROUGH PIPES.

§ 420. Short Tubes.—If we allow the water to discharge

through a sliort tube^ or ;piye, called also an ajutage, (Fr. tuyau

additionel ; Ger. kurze Ansatzrohre), the condition of affairs is

entirely different from that existing, when the water issues from

an orifice in a thin plate or from an orifice in thick wall, which is

rounded off on the outside. If the short tube is prismatic and 2^
to 3 times as long as wide, the stream is uncontracted and non-

transparent and its range and consequently its velocity is smaller

than when it issues, under the same circumstances, from an orifice

in a thin plate. If, therefore, the tube K L has the same cross-

section as the orifice F, Fig. 716, and if the head of water is the

Fig. 716.

Fig. 717.

same for both, we obtain at E L Si troubled and uncontracted or

thicker stream and at i^^ a clear and contracted or thinner one
;

we can also see that the range F R
is smaller than the range D H.

This condition of efflux exists only

when the length of the tube is the

given one ; if the tube is shorter,

E.G. as long as wide, the vein K R,

Fig. 717, does not touch the sidas

of the tube, the latter has then no

influence upon the efflux, and the

stream issues from it as from an

orifice in a thin plate.

Sometimes it happens, when the length of the tube is greater,
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that the stream does not fill it ; this occurs when the water has

no opportunity of coming in contact with the sides of the tube
;

if in this case we close for an instant the outside end of the tube

with the hand or with a board, the stream will fill the tube and we
have the so-called discharge of a filled tube (Fr. a gueule bee;

Ger. voUer Ausfluss). The vein is contracted in this case also, but

the contracted portion is within the tube. We can satisfy our-

selves of this by employing glass tubes like K L, Fig. 718, and by

throwing small light bodies
Fig. 718.

I^^^-q ^\^q water. Upon so do-

ing, we observe that near the

entrance K there is a motion

of translation in the middle of

the cross-section t\, but that,

on the contrary, at the peri-

phery of the same the water

forms an eddy. 'It is, however,

the capillarity or adhesion of

the water to the walls of the tube, which causes it to fill the end F

L

of the tube completely. The pressure of the water discharging

from the tube is that of the atmosphere, but the contracted cross-

section 'i^i is only a times as great as that F of the tube ; the

velocity v^ at that point is therefore - times as great as the velocity

of efflux V and the pressure of the water at F^ is smaller than that

at the end of the tube, which is equal to the pressure of the atmo-

sphere. If we bore a small hole in the pipe near F^ no water will

run out, but air will be sucked in and the discharge with a filled

tube ceases, when the hole is enlarged or when several of them are

made. We can also cause the water in the tube A B to rise and

flow through the tube K L hj making it enter the latter at F^.

The discharge with a filled tube ceases for cylindrical tubes, when

the head of water attains a certain magnitude (see § 439, Chap. IV).

§ 421. Short Cylindrical Tubes.—Many experiments have

been made upon the efflux of water through short cylmdriccd tubes,

but the results obtained difier quite sensibly from each other. It

is particularly Bossut's coefficients of efflux which difier most from

those of others by their smallness (0,785). The results of the ex-

periments Michelotti with tubes 1:! to 3 inches in diameter, under

a head of water varying from 3 to 20 feet, gave as a mean value
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fjb
=r 0,813. The results of the experiments of Bidone, Eytelwein

and d'Aubuisson differ but little from those of the latter. But,

according to the experiments of the author, we can adopt for short

cylindrical tubes as a mean value \i — 0,815. Since we found this

coefficient for an orifice in a thin plate = 0,615, it follows that,

when the other circumstances are the same, %\% = 1,325 times as

much water is discharged through a short pipe as through an ori-

fice in a thin plate. These coefficients increase, when the diameter

of the tube becomes greater and decrease a little, when the head

of water or the velocity of efifiux increases. According to some

experiments of the author's, made under heads varying from 0,23

to 0,6 meters, we have for tubes 3 times as long as wide

When the width is 1 3 3 4 centimeters.

11 = 0,843 0,833 0,821 0,810

According to this table the coefficients of effiux decrease sensi-

bly as the width of the tube increases. In like manner Buff found

with a tube 2,79 lines wide and 4,3 lines long that the coefficient

of efifiux increased gradually from 0,825 to 0,855, when the head

of water decreased from 33 to 1^ inches.

For the efifiux of water through short parallelopipedical tubes

the author found the coefficient to be 0,819.

If the short tube K L, Fig. 719, is partially surrounded hy a

border or rim in the inside of the vessel, if, e.g., one of its sides

is flush with the bottom CD of the vessel and if partial contrac-

tion is thus produced, according to the experiments of the author,

the coefficient of efflux is not sensibly increased, but the water

Fig. 719. Fig. 720.

3
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moyes with different velocities in different parts of the cross-sec-

tion, viz., upon the side C more quickly than upon the opposite one.

If the face of the tube is not in the surface of the plate but

projects into the vessel, like E, F, G, Fig. 720, it is then called an

interior short tiihe. If the face of the tube is at the least 5 times as

wide as the bore of the tube, as at E, the coefficient of efflux remains

the same as if the face were in the plane of the wall, but if the

face of the tube is smaller, as at F and G, the coefficient of efflux

is smaller. According to the experiments of Bidone and of the

author, if the face is very small, it is 0,71, when the stream fills the

tube ; on the contrary, it is = 0,53 (compare § 113), when it does

not touch the internal surface of the tube. In the first case (F)

the streaba is troubled and divergent like a broom, but in the

second {G) it is compact and crystalline.

§ 422. Coefficient of Resistance.—Since the stream of water

issues from a short prismatical tube without being contracted, it

follows that the coefficient of contraction of this mouth-piece a =
unity and that its coefficient of velocity (/> = its coefficient of efflux /x.

The vis viva of a quantity of water Q, which issues with a velocity

Oy . v^
V, is —- v"", and its energy is ^r— ^ y (see § 74). But the theoreti-

9 ^9
V

cal velocity of efflux is — , and therefore the theoretical energy of

1 f'
the water discharged is —^ . ^- . Q y. Hence the loss of energy

of the quantity Q of water during the efflux is

For efflux through orifices in a thin plate, the mean value of

is 0,975 ; hence the loss of energy is

for efflux through a short cylindrical pipe, on the contrary, </> =
0,815, and the corresponding loss of energy is

i]|^Gy = o,505|^er,

I.E., nearly 10 times as much as for efflux through an orifice in a

thin plate. Consequently if the vis viva of the water is to be made
use of, it is better to allow it to flow through an orifice in a thin

plate than through a short prismatical tube. If, however, we

LI 0,815/
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round off the edge of the tube, where it is united to the interior

surface of the vessel, so as to produce a gradual passage from the

vessel into the tube, the coefficient of efflux is increased to 0,96

and at the same time the loss of energy is reduced to 8] per cent.

For short tubes or ajutages, which are rounded off or shaped inter-

nally like the contracted vein, we have ii — xp — 0,975, and the

loss of mechanical effect is the same as it is for an orifice in a thin

plate, viz., 5 per cent.

The loss of mechanical effect (?-') ^g
Q y corresponds to a

head of water (^ — 1 ) ^r— ; we can therefore consider that the loss

of head due to the resistance to efflux is (-^ — 1 1
?—- and we can

\f J 2g
assume that, when this loss has been subtracted, the remaining por-

tion of the head is employed in producing the velocity.

This loss z — (^ — 1 ) 2^—, which increases with the square

of the velocity, is known as the height of resistance (Fr. hauteur

1
de resistance ; Ger. Widerstandshohe) and the coefficient

0^
1,

by which the head of water must be multiplied in order to obtain

the height of resistance, is called the coefficient of resistance. Here-

after we will denote this coefficient, which also gives the ratio of

the height of resistance to the head of water, by ^ or the height

of resistance itself by ^ = ^ . ^r—. By means of the formulas

1
^ = 0^

1 and

0-
Vl-]- ^

we can calculate from the coefficient

of velocity the coefficient of resistance,

or the latter from the former.

If the velocity of efflux v is the

same, the head of water of an orifice

K, Fig. 721, whose coefficient of resist-

ance is
(f>,

is h = - and the head
2gr

ofwater of the orifice L, through which

the water flows with this theoretical
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velocity, is hi = —, consequently the first orifice must lie at a dis-

tance K L = z = h — lh = {- - ij —- = ^ —- below the second
' ly if

one. This distance z is called the height of resistance. If they

have the same cross-section F and there is no contraction at either

orifice, the discharge Q = F v is the same for both.

Example— 1) Wliat is the discharge under a head of water of 3 feet

through a tube 2 inches in diameter, whose coefficient of resistance is

< = 0,4. Here

i>
= = 0,845 ; hence

Vl,4

V = 0,845 . 8,025 Vs = 11,745 feet;

F = {^y TT = 0,02182 square feet,

and consequently t^e required discharge is

Q = 0,02182 . 11,745 = 0,256 cubic feet.

2) If a tube 2 inches wide discharges under a head of 2 feet 10 cubic

feet of water in a minute, the coefficient of efflux or velocity is

^ = —S^ = ^ =^_ = 0,673,
F^/2gh 60 . 0,02182 . 8,025 V 2 1,05 V 2

the coefficient of resistance C = (tto^) — 1 = 1'208,

and the loss of head, caused by the resistance of the tube, is

S=C|^ = 1,208.^ = 1,208. 0,0155(1)'=: 0,0187.--^ = 1,092 feet.

§ 423. Inclined Short Tubes or Ajutages.—AVhen the

tubes are applied to the vessel in an inclined position or when
they are cut ofl" obliquely to the axis, the discharge is less than

when they are inserted into the vessel at

right angles or cut off at right angles to

their axis; for in this case the direction of

the water is changed. The author's extended

experiments upon this subject have led to

the following conclusions. If 6 denotes the

angle L KN, formed by the axis of the tube

K L, Fig. 722, with the normal ^ JV to the plane A B of the

orifice, and if ^ denotes the coefficient of resistance for tubes cut

off at right angles, we have for the cotfficient of resistance of in-

clined tubes

^, = ^ + 0,303 sm. d + 0,226 sin.' 6.

Assuming for ^ the mean value 0,505, we obtain
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for 5° = 10 20 30 40 50 60 deg.

the coefficients of

resistance ^i =

the coefficient of
efflux ^ll

-

0,505

0,815

0,565

0,799

0,635

0,782

0,713

0,764

0,794

0,747

0,870

0,731

0,937

0,719

Hence, e.g., the coefficient of resistance of a short tube, the

angle of deviation of whose axis is 20°, is ^1 = 0,635 and the coeffi-

cient of efflux is

II, =
1/1,635

= 0,782,

and, on the contrary, when the deviation is 35°, the former is

= 0,753 and the latter = 0,755.

These inclined tubes are generally longer than those we have

previously considered, and they must be longer when they are to

be completely filled with water. The foregoing formula gives only

that part of the resistance due to the short tube at the inlet

orifice, that is, three times as long as the tube is wide. The resist-

ance of the remaining part of the tube will be given further on.

Example.—If the plane of the orifice A B of the discharge-pipe K L,

Fig. 723, as well as the inside slope of the dam, is inclined at an angle of 40°

to the horizon, the axis ofthe tube

will form an angle of 50° with

that plane ; hence tlie coefficient

of resistance for efflux through

the entrance of this pipe is C =
0,870, and if the coefficient of re-

sistance for the remaining longer

portion is 0,650, we have the coefficient of resistance for the entire tube

C = 0,870 + 0,650 = 1,520,

and therefore the coefficient of efflux is

Fig. 723.

= 0,630.
'^ ~ V 1 + 1,520 V2,520

If the head of water is 10 feet and the width of the pipe 1 foot, the

discharge is

Q = 0,630 .
~

. 8,025 VlO = 12,56 cubic feet.

§ 424. Imperfect Contraction—If a short tube K L, Fig.

724, is inserted in a plane wall, whose area G is but little larger

than the cross-section F of the tube, the water will approach the
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mouth of the short tube with a velocity, which we cannot neglect,

and the stream which enters it is imperfectly contracted ; hence

the velocity of efflux is greater than

when the water can be considered to

be at rest at the mouth of the tube.

F

Fig. 724

Now if n is the ratio of the cross-

section of the tube to that of the wall

and //„ the coefficient of efflux for perfect

F
contraction, in which case we can put -— = 0, we have, according

(x

to the experiments of the author, for the coefficient of efflux with im-

perfect contraction, when we put the ratio of the cross-sections = n,

= 0,102 n + 0,067 n' + 0,046 n% or

IJ'n = jt^o (1 + 0,102 n + 0,067 n' + 0,046 n').

If, E.G., we assume the cross-section of the tube to be one-sixth

of that of the wall, w^e have

fi^ - /x„ (1 + 0,102 . 1 + 0,067 . 3^ + 0,046 . . j^)

= fi^{l -^ 0,017 + 0,0019 + 0,0002) = 1,019 fi„

or putting fi„ = 0,815

fi, = 0,815 . 1,019 = 0,830.
a

The values — of the correction are given in the following

tables, which are more convenient for use.

TABLE OF THE CORRECTIONS OF THE COEFFICIENTS OF
EFFLUX, ON ACCOUNT OF IMPERFECT CONTRACTION, FOR
EFFLUX THROUGH SHORT CTLINDBIGAL TUBES.

n 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50
1

f^n — fJ-

0,006 0,013 0,020 0,027 0,035 0,043 0,052 0,060 0,070 0,080

n 0,55 0,60 0,65 0,70 0,75
1

0,80 0,85 0,90

0,181

0,95

0,198

1,00

0,227
^0

0,090 0,102 0,114 0,127 0,138 0,152 0,166
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When the water is discharged through sliort parallelopipedical

tubes, these corrections are about the same.

The principal applications of these corrections are to the efflux

of water through compound tubes, as, e.g., in the case represented

in Fig. 725, where the short tube KL
is inserted into another short tube

G K, and the latter into the vessel

A C. Here, when the water enters

the smaller from the larger tube, the

stream is imperfectly contracted, and

the coefficieut of efflux is determined

by the last rule. If we put the coef-

ficient of resistance corresponding to this coefficient of efflux = C,

the coefficient of resistance for its entrance into the larger tube

from the reservoir = ^, the head of water = h, the velocity of

F
efflux = V and the ratio -^ of the cross-sections of the tube = n,

(jr

or the velocity of the water in the larger tube = n v, we have the

formula

A = (1 -\- n"" C, ^ ^i) -— , and therefore
.

^ 9

Example.—What is the discharge from the vessel represented in Fig.

725, when the head of water is A = 4 feet, the width of the narrow tube 2

inches and that of the larger one 3 inches ? Here

n = (|)= = I, whence «, = 1,069 . 0,815 = 0,871

«nd the corresponding coefficient of resistance

Ci = (o"871
)'~

^ " ^'^^^
'

^"^^ "^^ ^^^®

C = 0,505 and ti^ C = M • O^^O^ = 0,099,

whence it foUows that

1 + ^z- C 4- Ci = 1 + 0,099 + 0,318 = 1,417,

and the velocity of efflux

8,025 . Vi 16,05

/1,417 Vi,417
= 13,48.

Finally, since the cross-section of the tube is i^ = TTi~ 0,02182 square feet,

it follows that the discharge is

Q = 13,48 . 0.02182 = 0,294 cubic feet.
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Fig. 726.

§ 425. Conical Short Tubes or Ajutages.—The discharges

from co7iical mouth-pieces or short conical tubes are different from
those obtained from cylindrical or prismatic ones. They are either

conically convergent or conically divergent. In the first case the

outlet orifice is smaller than the

inlet, and in the second case the

inlet is smaller than the outlet.

The coefficients of efflux through

the former tubes are greater and

those of efflux through the latter

smaller than for cylindrical tubes.

The same conical tube discharges

more water when we make the

wider end the orifice of discharge, as in K, Fig. 726, than when
we put it in the wall of the reservoir, as is represented at L in the

same figure ; but the ratio of the discharge is not as great as that

of the openings. When authors such as B. Venturi and Eytelwein

give greater coefficients of efflux for conically divergent than for

conically convergent tubes, it must be remembered that the smaller

cross-section is always considered as the orifice. The influence of

the conicalness of the tubes upon the discharge is shown by the

following experiments, made under heads of from 0,25 to 3,3

meters, with a tube A D, Fig. 727, 9 centimeters long. The width

of this tube at one end was D E = 2,468,

at the other A B =^ 3,228 centimeters,

and the angle of convergence, i.e. the angle

A B, formed by the prolongation of the

opposite sides A E and B D of d, section

through the axis of the tube, was =40° 50'.

When the water issued from the narrow opening, the coefficient of

efflux was = 0,920 ; but when it issued from the wider opening, it

was = 0,553. If we substitute in the calculation the narrower

orifice as cross-section, we find it = 0,946. The stream, in the first

case, when the tube was conically convergent, was but little con-

tracted, dense and smooth ; in the second case, where the mouth-

piece was conically divergent, the stream was very divergent and

torn and pulsated violently. Venturi and Eytelwein have experi-

mented upon efflux through conically divergent tubes. Both these

experimenters also attached to these conical tubes cylindrical and

conical mouth-pieces, shaped like the contracted vein. With a

compound mouth-piece, like the one represented in Fig. 728, the

Fig. 727.
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diverging portion K L of which was 12 Hnes in diameter in the

narrowest place and 21^ lines at the widest, and 8j| inches long,

and whose angle of convergence was 5° 9', Eytelwein found y. =
1,5526, when he treated the narrow end as the orifice, and, on the

contrary, fi = 0,483 when, as was proper, he treated the larger end

1 5526
T7t« 72S as the orifice. However, -^tptt^ = ^j5 times as muchX ACT. 1,4.0. 0,615
^^^—= water is discharged through this compound mouth-

piece as through a simple orifice in a thin plate, and

1 5526
' = 1,9 times as much as through a short

cylindrical pipe. When the velocities and the angle of divergence

are great, it is not possible to produce a complete efflux, even by at

first closing the end of the moutli-piece.

The author found with a short conically divergent mouth-

piece 4 centimeters long, whose minimum and maximum widths

were 1 and 1,54 centimeters and whose angle of divergence was
8° 4', under a head of 0,4 meters, i^l = 0,738 when the internal edge

was rounded off, and ft = 0,395 when it was not.

§ 426. The most extensive experiments upon the efflux of

water through conically convergent tubes are those made by d'Au-

l)uisson and Castel. A great variety of tubes, which differed in

length, width and in the angle of convergence, were employed.

The most extensive were the experiments with tubes 1,55 centi-

meters wide at the orifice of efflux and 2,6 times as long, i.e., 4 cen-

timeters long ; for this reason we give their results in the follow-

ing table. The head of water was always 3 meters. The discharge

was measured by a gauged vessel, but in order to determine not

only the coefficient of efflux, but also the coefficients of velocity

and contraction, the ranges of the jet corresponding to the given

heights were measured, and from them the velocities of efflux were

calculated.

V
The ratio — of the effective velocity v to the theoretical

one s/% g h gave tlie coefficient of velocity 0, the ratio of
^ V2gh

the effective discharge Q to the theoretical discharge F V2 g h the

coefficient of efflux jit, and, finally, the ratio of the two coefficients,

I.E., -, determined the coefficient of contraction a.
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This determination is not accurate enough, when the velocities

of efflux are great; for in that case the resistance of the air is too

great.

TABLE OF THE COEFFICIENTS OF EFFLUX AND VELOCITY FOR
EFFLUX THROUGH CONICALLY CONVERGENT TUBES.

Angle of Coefficient of Coefficient of Angle of Coefficient of Coefficient of

convergence. efflux. velocity. convergence. efflux. velocity.

o°o' 0,829 0,829 13° 24' 0,946 0,963

I" 36' 0,866 0,867 14° 28' 0,941 0,966

3° 10' 0,895 0,894 16° 36' 0,938 0,971
/

4 10 0,912 0,910 1

19° 28' 0,924 0,970

5° .6' 0,924 0,919
1

21° 0/ 0,919 0,972

7° 5^' 0,930 0,932
1

23° 0' 0,914 0,974

8' 58' 0,934 0,942 1 29° 58' 0,895 0,975

10° 20' 0,938 0,951
1

/

40 20 0,870 0,980

12° 4' 0,942 0,955 48° 50' 0,847 0,984

According to this table, the coefficient of efflux attains its maxi-

iQum value 0,946 for a tube, whose sides converge at an angle of IS^^,

6hat, on the contrary, the coefficients of velocity increase continu-

ally with the angle of convergence. How the foregoing table is to

"be employed in practice, is shown by the following example.

Example.—What is the discharge through a short conical mouth-piece

i^ inches wide at the orifice of efflux and converging at an angle of 10°, when

the head of water is 16 feet ? According to the author's experiments, a

cylindrical tube of this width gives // = 0,810, d'Aubuisson tube, however,

gave {J. = 0,829, or 0,839 — 0,810 = 0,019 more ; now, according to the

table, for a tube converging at 10°, //= 0,937 ; it is therefore better to put

for the given tube fi = 0,937 — 0,019 = 0,918 ; whence we obtain the

discharge

Q = 0,918 . -j-^ . 0,825 VI6 = ^'^^^ • 8^025jr ^ ^^^^^^ ^^^.^ ^^^^
4. 8 64

§ 427. Resistance of Friction.—The longer prismatical or

cylindrical pipes are, the greater is the diminution of the discharge

through them ; we must therefore assume that the walls of the

pipes by friction, adhesion or by the water's sticking to them resist

the motion of the water. As we might suppose, and in accordance

with maiiy observations and measurements, we can assume that
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this resistance of friction is entirely independent of the pressure,

that it is directly proportional to the length / and inversely to the

diameter ^ of the pipe, i.e., it is proportional to the ratio -^. It has

also been proved that this resistance is greater when the velocities

are great and less vrhen they are small, and that it increases, very

nearly, with the square of the velocity v. If we measure this

resistance by a column of water, which must afterwards be sub-

tracted from the total head h, in order to obtain the height neces-

sary to produce the velocity, we can put this height, which we will

hereafter call the height of resistance offriction, y\. -^-l

C denoting here an empirical number, which we can style the co-

efficient offriction. Hence the loss of head or of pressure in conse-

quence of the friction of the water in the pipe is greater, the greater

the ratio -^ of the length to the width 'and the greater the height

due to the* velocity ^r— is. From the discharge Q, and the cross-

section of the tube

we obtain the velocity ""^
._
l ^ ;f jjii^^^^.

and, therefore, the height of resistance of friction

^ ^' d ' 2g\nd'l ~ ^ ' 2g '

\7t/ ' d''

If we wish to conduct a certain quantity Q of water through a

pipe with as little loss of head or fall as possible, we must make
the pipe as short and as wide as we can. If the width of the pipe

is double that of another, the friction in the former is (J)^ — s'o

that in the latter.

If the cross-section of the pipe is a rectangle, whose height is a

and whose width is &, we must substitute

1 _ J
7T d _ J

periphery _^ 2 (a -{- b) _ a + i

d~ ^ ' \^r ~ ^ • Sr^a^ ~ 4" • ^ ~ '2a/b'

whence we have

^ ^ * ~2aV ' 2g'
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By the aid of these formulas for the resistance of friction in

pipes, we can find the discharge and the velocity of ef&ux of the

water conveyed by a pipe of a given length and width, under a

given pressure. It is also of no consequence whether the tube K L,

Fig. 729, is horizontal or inclined upwards or downwards, so long

as we understand by the

Fig. 739. head of water the depth

j^^msz:s| R R L oi the centre L of

the mouth of the pipe

below the level H oi

the water in the reser-

voir.

If h is the head of water, hi the height of resistance for the ori-

fice of influx, and h^ the height of resistance for the remaining part

of the tube, we have
v^ if

h ~ {hi + h) = ^r—, or h = \- hi -i- h^.

"^ 9 ^9
If ^0 denotes the coefficient of resistance for the orifice of influx

and C, the coefficient of resistance of friction of the rest of the tube,

we can put

2^'

or

and

1)^=
(1 + ^0 + ^

1/ 2i/

2) V = V2gh

/1+^0 + ^.

From the latter formula we obtain the discharge Q = Fv.

For very long tubes 1 + ^o is very small, compared with

and we can write more simply

h = ^ -^ . jr— , or inversely,
d 2 g ^

.

4

2gh,

§ 428. The coefficient of friction, like the coefficient of efflux,

is not perfectly constant ; it is greater for low velocities than for

high ones, i.e. the resistance of friction of the water in tubes does

not increase exactly with the square, but with another power of the

55
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velocities. Prony and Eytelwein have assumed that the head lost

by the resistance of friction increases with the simple velocity and

with the square of the same, and have established for it the formula

h= (av + (iv')^-^,

in which a and i3 denote constants determined by experiment. In

order to determine these constants, these authors availed themselves

of 51 experiments made at different times by Couplet, Bossut, and

du Buat upon the flow of water through long tubes. Prony de-

duced from them

n = (0,0000693 V + 0,0013932 v')
|,

Eytelwein,

h = (0,0000894 V + 0,0011213 v') ^
d'Aubuisson assumes

h = (0,0000753 V + 0,001370 v'') ~ meters.

The following formula, proposed by the author, coincides better

with the results of observation ; it is

and is founded upon the assumption that the resistance of friction

increases at the same time with the square and with the square

root of the cube of the velocity. We have, therefore, for the coeflB-

cient of resistance

(^

Vv

and for the height of resistance of friction simply

^="-^•527-

For the determination of the coefficient of resistance ^ or of the

auxiliary constants a and j3 the author availed himself of not only

the 51 experiments of Couplet, Bossut, and du Buat, employed by

Prony and Eytelwein, but also of 11 experiments made by himself

and one by a M. Gueymard, of Grenoble. The older experiments

were made with velocities of from 0,043 to 1,930 meters, but by the

experiments of the author this limit has been extended to 4,648

meters. The widths of the pipes m the older experiments were

27, 36, 54, 135, and 490 millimeters, and the newer experiments
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were made with pipes 33, 71, and 275 millimeters in diameter. By
the aid of the method of least squares, the author found from the

63 experiments

0,0094711
i; = 0,01439 S-

Vv
or

, /nm^Qo _^ 0,0094711W v' ,

h — (0,01439 H -—— 1 - . ^- meters.
4/^ I d %g

or for the English system of measure

, = (0,01439 + 5^^^)^,.^.

Remark—1) If we take into consideration some other experiments made
by Professor Zeuner with a zinc tube 2|^ centimeters wide, and with a ve-

locity of from 0,1356 to 0,4287 meters, we obtain

C = 0,014312 +
0,010327

ti being given in meters.

2) Newer experiments uj)on the flow of water with great and very great

velocities were made by the author in 1856 and 1858 (see the " Civilinge-

nieur," Vol. V, Nos. 1 and 3, as well as Vol. IX, No. 1). The results of

these experiments are contained in the following table :

Nature of the tubes.

Narrow glass tubes . . . . .

Wider glass tubes

Narrow brass tubes

The same made shorter....
The same under very great pressure

Wider brass tubes

The same made shorter....
The same under very great pressure

Wider zinc tubes

' The same shorter

The same still shorter ....
The same still shorter ....

Width
tubes

of the

1,03 ctm.

1,43
u

1,04
u

1,04
u

1,04
u

1,43
u

1,43
11

1,43 u

2,47
((

2,47
u

2,47
u

2,47
u

Mean velocity of
the water in the
tubes (v).

8,51 meters.

10,18 ''

8,64 "

12,32 "

20,99 "

8,66 "

12,40 "

21,59 "

3,19
"

4,73
"

6,24 "

9,18 "

Coefficient

of friction ^.

0,01815

0,01865

0,01869

0,01784

0,01690

0,01719

0,01736

0,01478

0,01962

0,01838

0,01790

0,01670
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The values in the last column again show that the coefficient of resist-

ance C for the friction of water in tubes decreases not only as the velocity

(v) increases, but also, although more slowly, as the width (d) of the pipe

becomes greater. However, for high velocities, the formula

^^..o. 0,0094711
C = 0,01439 + '

wv

agrees tolerably well with the numbers found by experiment, e.g., for

V = 9 meters

C = 0,01439 + 0,00316 = 0,01755

and for «j = 16 meters

C = 0,01439 + 0,00237 = 0,01676.

These coincide very well with the values in the last table, which corre-

spond most nearly to them.

Remark 3.—M. de Saint -Venant found that the well-known formula

for the resistance of water in tubes agrees better with the results of experi-

ment, when we assume the height due to the friction to increase not with

v^ or T— , but with «V. (See his " Memoire sur des formules nouvelles pour

la solution des problemes relatifs aux eaux courantes.") According to him

we must put

h = ~. 0,00029557 vV = 0,00118228 ^ . vV = 0,023197 i)-? . 3 ^.d ' d ^ d 2g
The assumption of a fractional exponent for v is not at all new ; Woltmann

put vl mstead of v^ and Eytelwein proposed vU instead of -y' (see the

author's article upon Efflux [Ausfluss] in the '* allgemeine Maschinenency-

clopadie " of Hiilsse.

Remark 4.—New and very extended experiments upon the motion of

water in pipes have been made by Monsieur H. Darcy (see the report to

the Academy of Sciences at Paris in the Comptes rendus, etc., Tom. 38,

1854, " sur des recherches experimentales relatives au mouvement des

eaux dans les tuyaux "). Mons. Darcy deduces from these experiments,

where the velocity is not less than 2 decimeters, the formula

0,00000647\ I
,h = (0,000507 + ^^)

L^.^r.^ 0,0005078\ « »' ,= ^0,01989 + ^^^ )-^^gm<^r.;

hence the coefficient of resistance should be

^....^ 0,0005078
C = 0,01989 + -^—, .

a

This formula, however, is not sufficiently accurate for small velocities.

§ 429. To facilitate calculation the following table of the

coefficients of resistance has been arranged. We see from it that the

variation of this coefficient is not insignificant, since for a velocity
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of 0,1 meter it is = 0,0443, for one of 1 meter, = 0,0239 and for

one of 5 meters, = 0,0186.

TABLE OF THE COEFFICIENTS OF FRICTION OF WATER.

Decimeters.

V 1 2 3 4 5 6 7 8 9

1

1

2

3

4

00

0,0239

0,0211

0,0199

0,0191

0,0443

0,0234

0,0209

0,0198

0,0191

0,0356

0,0230

0,0208

0,0197

0,0190

0,0317

0,0227

0,0206

0,0196

0,0190

0,0294

0,0224

0,0205

0,0195

0,0189

0,0278

0,0221

0,0204

0,0195

0,0189

0,0266 0,0257

0,0219 0,0217

0,0203 0,0202

0,0194 0,0193

0,01880,0188

0,0250

0,0215

0,0201

0,0193

0,0187

0,0244

0,0213

0,0200

0,0192

0,0187

We find in this table tlie coefficients of resistance correspond-

ing to a certain velocity by searching for the whole meters in the

vertical columns and for the tenths of a meter in the horizontal

column and then moving horizontally from the first number and

vertically from the last, until we arrive at the point where the two

motions meet. e.g. for v = 1,3 meters, ^ = 0,0227 ; for t; = 2,8,

^ =z 0,0201.

For the English foot we can put

V 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

C 0,0686 0,0527 0,0457 0,0415 0,0387 0,0365 0,0349 0,0336 0,0325

V 1 n n 2 3 4 6 8 12 20

c 0,0315 0,0297 0,0284
1

0,0265 0,0243 0,0230 0,0214 0,0205 0,0193 0,0182

Remark.—A more extensive and more convenient table is to be found

in the Ingenieur, pages 442 and 443.

§ 430. Long Pipes.—In considering the motion of water in

long pipes or combinations of pipes, the three principal questions

to be solved are the following.

1) The length I and the width d of the pipe and the quantity

Q of water to be conducted may be given and we may be required

to find the necessary head. In this case we must first calculate

the velocity
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and then search in one of the last tables for the value of the coef-

ficient of friction ^, corresponding to this value, and finally we

must substitute the values d, I, v, ^ and ^^ (<^^ denoting the coeffi-

cient for the orifice of influx) in the first principal formula

2) The length and width of the pipe and the head of water

may be given and the discharge may be required. The velocity

must be found by means of the formula

VYfh

/1 + ^0 + ^

V —
l_

d

Now as the coefiicient of resistance is not perfectly constant,

but varies somewhat with v, we must first find v approximatively

in order to be able to calculate ^ from it.

From V we determine

Q = '^v = 0,7854 d' v,

3) The discharge, the head of water and the length of the pipe

may be given, and we may be required to determine the necessary

width of the pipe.

Since V — —^ or y = (
—--

) . -^., we have

... = (i...4)(V')-]r°'
or

hence the width of the pipe is

(4 V-j = 1,6212 and 1 + ^„ as a mean = 1,505 and for

the Enghsh system of measures ^— = 0,0155, we can put

d = 0,4787 1/(1,505 . d + a) ^ feet.

This formula can only be used to obtain approximative values;



§430.J THE FLOW OF WATER THROUGH PIPES. 871

for not only the unknown quantity d, but also the coefficient ^,

4
which depends upon the velocity v — -^^, occurs in it.

Example 1) What must the head of water be, when a set of pipes 150

feet long and 5 inches in diameter is required to deliver 25 cubic feet of

water per minute ? Here we have

25 12^
« = 1,2732 -^~- = 3,056 feet,

and therefore we can make ; = 0,0243 ; hence the head of water or total

feu of the pipes must be

h = (l,505 + 0,0243 . 15^^^ . 0,0155 . 3,056«

= (1,505 + 8,748) 0,0155 . 9,339 = 1,484 feet.

2) What is the discharge through a set of pipes 48 feet long and 3

inches in diameter, under a head of 5 feet ? Here

8,025 V5 17,945

/ , _^ ,
48 . 12 Vl,505 + 288 . C

1,505 + C.
2

For the present, assuming C = 0,020, we obtain

17,945 17,945
V = — = ~rw- = 6,6 ;

V7,26 3,7

but » = 6,6 gives more correctly C = 0,0211, and therefore we have

17,945 ^^M^ = ,^,2feet.

Vl,505 + 388 . 0,0211 V7,582
and the discharge

Q = 0,7854 r^Y 6,52 = 0,142 cubic feet = 245,4 cubic inches.

3) What must be the diameter of a set of pipes 100 feet long, which are

to discharge one half of one cubic foot of water per second under a head

of 5 feet ? Here

d = 0,4787 V (1,505 d + 100^).^. (^f = 0,4787 Vo,075 d + 5^
Assuming for the present f = 0,02, we obtain

d = 0,4787 V 0,075 c^"+~0,100, or approximatively

d = 0,4787 Vo,100 = 0,30 ; hence we have more accurately

d = 0,4787 V0,0225 + 0,100 = 0,4787 Voa225
= 0,3145 feet = 3,774 inches.

This diameter corresponds to the cross-section

F= 0,7854 . 0,3145^ = 0,0777 square feet;

the velocity is consequently

' = w = (if77 = ^'"^^ '^^*'

and the coeflBcient of resistance C =,0,212. Substituting the latter nk/*«

correct value, we obtain

d = 0,4787 V0^285 = 0,318 feet = 3,82 inches.
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Remakk 1.—Experiments made by the author with ordinary wooden
pipes 2i and 4|- inches in diameter gave coefficients of resistance 1,75 times

greater than those for metal pipes, given in the tables in the foregoing par-

agraph. While we have, when the velocity is 3 feet, for metal pipes C
—

0,0243, forwoodenpipes its value is = 0,0243 . 1,75 . 0,042525 ; in example 1

we found for a metal pipe 150 feet long the head to be 1,484 feet, but for a

wooden pipe under the same circumstances it would be

7i = (1,505 + 0,042525 . 360) 0,0155 . 9,339 = 16,81 . 0,1448 = 2,43 feet.

According to D'Arcy's Experiments, the coefficient of resistance ^ in-

creases very considerably with the roughness of the walls of the pipe, and

if the walls are very rough it is doubled or even trebled. The author

foimd more recently the same result.

Remark 2.—The temperature also has an important influence upon the

resistance of water in pipes. Experiments have been made upon this sub-

ject by Gerstner (see his " Handbuch der Mechanic," Vol. II), and more

recently by Geh. Rath Hagen (see his " Abhandlungen iiber den Einfluss

der Temperatur auf die Bewegung des Wassers in Rohren," Berlin, 1854).

The experiments of the latter, made, it is true, with very narrow tubes

{d = 0,108 to 0,227 inches), have sho^n that under the same circumstances

the velocity of the water in pipes does not decrease indefinitely with the

temperature, but that for every tube there is a certain temperature for

which this velocity is a maximum. For the experiments without this

maximum, Hagen finds the following formula

:

h = ml T-^'^^ .
y^'''^ and

m = 0,000038941 - 0,0000017185 V7,

in which the temperature t is expressed in degrees of the Reaumur ther-

mometer, and the head h, the length Z, the radius of the tube r and the

velocity v in inches (Prussian).

(§ 431.) Conical Pipes.—The resistance of friction in a conical

pipe A D, Fig. 730, can be found in the following manner. Let us

denote the semi-angle of convergence of the walls of the
Fig. 730. pipe A C L = B C Lhj d,i\iQ diameter of the inlet

C orifice by d^, that of the outlet by d^^ the length K L
/i\ of the pipe by I, and the velocity of efflux at D ^ by v.

I

W

At a distance KM= x from the outlet of the tube

/ i \ the diameter of the tube is

E'E \d
J^0 = y = DF+2KMtanc/.S = d, + 2xtanff.6,

Mrl hence for the velocity w at that point, since

urBi-Mn — = -^> we can put

y (l.'itan.s)
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For an element N P R oi the tube, whose length is

COS. o cos.o'

the height of resistance of the friction is

d X tu^ ^ d X v^
dh = ^. ^ .^=^.

^
y COS. 6 \1 + — tang. 6\ ^

_ d X v^
^

«2 COS. il + — tang, oj '^ *

hence the height of resistance of friction for the whole tube is

^ ~ ^'"^gdjo (. ,

^x
, X :^ (1 + -^ tang. d\ cos. 6

But
r d^

(1 + -7- fang, d) cos. 6

2 sin.

/.:

o sm
d x

-A-f (1 4- ^- tang, d] , whence we obtain

(1 + -^ tang. 6) cos. d

* _ ^2 r. _ /ii\~'l ^ ^2 n _ (d,yi
S sin. 61 \dj J %sin.6l \dj }

since d<i + ^l tang. 6 expresses the diameter di of the inlet orifice.

Consequently the required height of resistance is

h^^. V - (in2 ^ 6^2 8 sin. 6

If the inlet orifice is much larger than the outlet orifice, we can

(d V
-j\ — 0, and consequently

h = ^ ——7 .
-— = ^ (^ cosec. o .

-—:
^ sin. 6 % g 8 ^

2 ^

'
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the resistance of friction in this case does not depend at all upon
the length of the tube.

Example.—If the angle of convergence of the outlet portion of the

nozzle A K, Fig. 731, of a fire-engine is 2 (5 = 5°, that of the inlet portion

A B,2 6^ = 18°, the width of the outlet d^ = 7 lines, and the width of the

inlet d^ = 1^ inches = 18 lines, and if its whole-lengthAK=l = Q inches

= 72 lines, what is its coefficient of resistance ? Putting the length of the

outlet portion B K = l^ and that of the inlet portion A B = Zg, we have

I = l^ + Zg and Zj tang. 6 + l^ tang. J, = d..

or in figures

I

Fig. 731.

J + Zg = 72 and l^ tang. 2|° + l^ tang. 9° = V-, or

0,04362 Zj + 0,15838 l^ = 5,5.

Hence l^ = 51,54 and l^ = 20,46 lines and the width at B,

where the conical surfaces meet each other, is

^3 = 6^3 + 2 ?! tang. 6 = 1 + 2. 51,54 . 0,04362 = 11,53 lines.

Since this place is rounded off, we can put d^

hence for the outlet piece

1

13 lines;

['-&i sm.

and for the inlet portion

^ = [1 - (tV)1 . oosec. 21°

= 0,9159 . 22,926 = 21,08,

cosec. 6^ =: [1 — (1^)*] . cosec. 9'

= 0,7795 , 6,392 = 4,

Therefore the height of resistance for the entire nozzle is

=
g
[21,08 + 4,98.y J

^- = ai,6.|.^-^

1

= 0,0155 and assume f = 0,02, we haveif we substitute

2^

h = 0,054
37

I.E. about 3^^ the height due to the velocity, which result coincides very well

with the results of experiments with such a nozzle.

§ 432. Conduit Pipes.—The outlet at the end of a system

of pipes is either under water or in the air. Both cases are repre-

sented in Figures 732 and 733. In the first case we must regard

as the head h the difference of level 7? (7 of the two surfaces of

water, and in the second case the vertical distance E of the out-

let orifice below the level If of the water in the reservoir. If the
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tube is everywhere of the same width d, the formulas found in

§ 430 can be applied directly ; but if the tube is enlarged or nar-

FiG. 733. Fig. 733.

: BLtaitUlll;-^

rowed at any point, we will have several different velocities in the

pipe, and therefore the resistance of friction for each portion of

the pipe must be calculated separately. Such a case is presented

by the pipes in Fig. 733, which lead to a fountain or jet d'eau, in

which case the mouth-piece is narrower than the pipe B L M,
which conveys the water. If we put, as we generally do, the ve-

locity of efflux = V, the width of the orifice of efflux = cl, the

width of the pipe = d^, we have the velocity of the water in the pipe

and if we denote by I the length of the pipe B L M and by Ci the

coefficient of friction, we have for the corresponding height of

friction _ I, v,' _ y h_(^V J^^''~^' d,2c/-^' dAdJ' 2g
Now if ^0 is the coefficient of friction for the miet orifice K and

^ that for the outlet orifice 0, it follows that the loss of head caused

by the first is

K

and, on the contrary, that occasioned by passing through the

second Is

^9'
hence we have the entire head

and inversely the velocity of efflux

2g h

1 +

If we wish the jet to rise to the greatest height, the orifice or

mouthpiece must not only cause as little resistance as possible, but

also allow the water to issue from it with its fibres nearly parallel,

so that they may form, while rising, a stream which will hold to-
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/

gether as long as possible, and consequently be less disturbed by

the air than a stream which was more or less torn when it left the

orifice. For this reason we prefer a short, cylindrical or slightly

conical mouth-piece, with the orifice of influx rounded off, to an

orifice in a thin plate or to the orifices of the form of the con-

tracted stream, although the former cause a greater loss of velocity

than the latter. The nodes and bulges, which a stream which has

passed through the latter orifices forms or tends to form, give the

air a much better chance to penetrate it than a cylindrical stream.

§ 433. Jets of Water.—So long as the stream K L N, which

flows vertically downwards through a horizontal orifice K, Fig. 734,

remains continuous and is not broken up

by the air, its cross-section L decreases

more and more as the distance K L = x

from the orifice increases. If c is the ve-

locity of efflux and v the velocity at i, we
/ have

v^ = '^ g X + c"

,

denoting by F the cross-section of the ori-

fice of efflux and by Y that of the stream

at X, we have the following equation

Fc = YvoT F' c' = Y'v\
from which we deduce the equation

Y'{c' •{-2gx) = Fc\ov

F^ c"

~
(f + 2gx

for the form of the cataract ofNewton (see

Newton's Principia Philosophic, Vol. II,

Sect. VII). If the cross-section of the

orifice F is a circle, whose diameter is d,

the cross-section at L forms a circle, whose

diameter is y and for which we can put

c'd*

& + 2gx'

d

or

V1 +
2 gx

Experiments upon the internal consti-

tution of falling streams of water have
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been made by Savart. See Poggendorff's Annalen der Physik,

Vol. 33.

The cross-section of a stream MS, which rises vertically

from a horizontal orifice M, increases gradually with its distance

M = X from the orifice M-, for here the velocity of the water

at is

V = Vc^ — 2 g X, and therefore

c'-2gx'

hence we have for the diameter of the cross-section at

c'd' d
f 2gx'

org

/•
2gx

Denoting the height due to the velocity— by hy we have sim-

ply and generally
d

V1 ±
h

This formula becomes incorrect at its limits ; according to it,

E.G. in the rising stream ioY x — li or at the apex S, the diameter

of the stream would be

d
y = I

Vi

d— = - = 00

1

Fig. 735.

This, however, is not the case ; for the various fibres of water,

of which the stream is composed, are not really at rest at the

highest point, but possess a small velocity radially outwards. If

the stream of water

A C, Fig. 735, is in-

clined to the horizon,

this formula

_ d

is still applicable, when
we substitute instead

of X the vertical projec-

tion N oi the stream

A 0. If the jet flows
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out of the orifice at an angle v to the horizon, its maximum height

B (7 is

e^ (sin. i^Y ^ , . ^ , ^ ^ ,

a = —^-^ ^ = h {sm. vy (see § 39).

Therefore its diameter (at the vertex C) is

d d d

.A a ^1 — (sin. vY Vcos. v

In the descending portion CD of the stream, y becomes gradually

smaller and smaller, and when the stream reaches the horizontal

plane A D, from which it started, y becomes again = d, if the air

has produced no disturbance in the motion of the stream.

§ 434. The height s, to which a vertical jet of water will rise,

is approximatively equal to height due to the velocity h = -— , only
Z g

when the velocity of efflux {c) is small. From the experiments

made by the author (see the experiments upon the height of rise

of jets of water with different mouth-pieces in the 5th vol. of the

Zeitschrift des Vereins deutscher Ingenieure), the following facts

* concerning jets of water were ascertained.

1) The resistance of the air for small velocities of efflux, viz.,

'from 5 to 20 feet, or for heights of rise of from 1 to 6 feet, is so

•small that the height of rise of the jet may in this case without

appreciable error be put equal to the height due to the velocity -^r—

.

Zg

2) If the height due to the velocity does not exceed 75 feet or

the velocity of efflux 56 leet, the ratio of the height of rise to the

height due to the velocity can be expressed by the formula

5 _ ^1

h ~ a + (3 h + y 7r'

in whitih a, /3 and y denote empirical coefficients to be determined

for each mouth-piece.

3) For jets, which issue from orifices in a thin plate, the con-

stant a can be put = 1 ; hence we can assume that the resistance

during the passage through the orifice is almost null, when the

velocities are small, and that it is measurable only when the

velocities are great. The coefficient of resistance for these orifices

is therefore not constant, but increases from zero gradually with
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the velocity ; the value ^ — 0,97, given in § 408, can only be con-

sidered as a mean one.

4) For the same velocity of efflux the height of rise increases

with the thickness of the stream, or with the width of the orifice

;

consequently the resistance of the air is smaller for thick than for

thin streams. The height of rise increases, therefore, not only with

the head, but also with the thickness of the stream.

5) Under the same circumstance a stream, issuing from a circu-

lar orifice, rises higher than one discharged from an aperture of a

different shape (square, etc.)

6) If the velocities of efflux and the widths of the orifices are

the same, those streams which are not contracted rise higher than

those which are, not only because the former are thinner, but also

because the latter, in consequence of their contractions and expan-

sions, oppose less resistance to the penetration of the air.

If the other circumstances and relations are the same and if the

velocities of efflux are not very small, the jets issuing from short

cone-shaped and longer conical tubes or ajutages with an internal

rounding off attain the greatest height.

Mariotte concluded from his experiments upon the height of

rise of jets of water (see Meining's Translation of Mariotte's Prin-

ciples of Hydrostatics and Hydraulics) with orifices in a thin plate

4 to 6 lines in diameter and under heads of from 5^ to 35 feet that

the head or height due to the velocity, necessary to produce the rise

s, must be

h = s + --— Paris feet,

whence

-="1+Q^ = 1 + 0,003333 s,
s ok)\)

The very extensive and varied experiments of the author, made
under heads of from 3 to 70 feet, give, on the contrary, for circular

orifices in a thin plate, when their diameter was

1) 1 centimeter

-^ = 1 + 0,0035305 h + 0,00005406 h\ and when it was
s

2) 1,41 centimeters

^ =r 1 + 0,00237191 h + 0,00005609 h\

h being given in English feet.
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Fig. 737.

With a conical month-piece ABC, Fig. 736, 15 centimeters

long and 1 centimeter wide at the outlet

C and 3 centimeters wide at the inlet

orifice A, which was well rounded off, the

following result was obtained

:

8) - = 1,0453 + 0,0001137 h
s

+ 0,00007981 h\

and, on the contrary, with the truncated

mouth-piece A B, Fig. 737, whose width

was 1,41 centimeters at the outlet B, the

result was

4) - = 1,0216 + 0,0007294 h
s

+ 0,00003036 h\

By the aid of these formulas the follow-

ing table of the heights of jets has been

calculated.

Height due to velocity h

Height of jet according to (1)

" " " (3),

" " " (4)

10

9,61

9,715

9,48

9,69

20

18,31

18,69

18,53

25,98

26,75

26,77

28,02

40

32,58

33,77

33,97

36,39

50

38,12

39,72

39,98

44,09

60

42,66

44,63

44,79

70

46,30

48,58

48,47

57,31

Example.—If the pipe conducting the water to a fountain is 350 feet

long and 2 inches in diameter, and if the conical orifice is ^ inch wide, how
high would the jet rise under a head of 40 feet, provided all the resist-

ances, except the friction, are small enough to be neglected ?

Here if we put

C, = 0,025, f„ = 0,5,(|-)*= (i)* =^ and A = ^^ = 2100,

the height due to the velocity of efflux is

h„ 40h=.^
^ff

40

(0,5 + 0,025 . 2100) .^

and therefore the height to which the jet will rise in still air is
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33,14
s =

1,021() -f 0,0007Ji94 h + 0,00008036 h^

^""'^^ = 30,71 feet.

1,0216 + 0,02417 + 0,03334

1,0791

§ 435. Piezometer.—The head, lost by the water which is

passing through a set of pipes A B C D E, Fig. 738, in conse-

quence of contractions in
Fig. 738.

^j^g conduit, friction, etc.,

can be measured by means

of the columns of water

maintained in the vertical

tubes BE, CM, DO which

are attached to the pipe

;

when they serve for this

purpose only, they are called

piezometers (see § 386).

If V is the velocity of the water at the point B, Fig. 738, where

a piezometer is inserted, I the length and t? the width of the por-

tion A B of the pipe, h the head of water or depth of the point B
below the level of the water, ^^ the coefficient of resistance for the

entrance of the water from the reservoir into the pipe and ^ the

coefficient of friction, we have the height of the piezometer, which

measures the pressure in B,

. = A-(i + ?. + f9^^.

On the contrary, if the length of the portion B C of the pipe is

Z, and the fall is h^, we have the height of the piezometer at C

Hence the difference of the heights of the piezometer is

and, inversely, the height of resistance of the portion B C of the

pipe is

^
--J

. r— = hx -¥ z — z^ = fall of this portion of the pipe plus

the difference of the heights of the piezometers.

We see from this example that the piezometer can be employed

to measure the resistances, which the water has to overcome in

passing through the pipes. If any obstacle, if, e.g., a small body

sticks fast in the pipe, its presence will be shown immediately by.

the sinking of the column of water in the piezometer, and the dis-
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tance it sinks will indicate the amount of this resistance. The re-

sistances occasioned by regulating apparatuses, such as cocks, valves,

etc. (a subject which will be treated in the following chapter), can

also be expressed by the height of the piezometer. Thus the

piezometer at Z> is lower than at C not only on account of the fric-

tion of the water in the portion CD of the tube, but also on ac-

count of contraction in the pipe .produced by the valve gate S. If,

when the valve-gate is completely open, the dijBFerence iV^ of the

heights of the piezometers = Ai and if, when the gate is pushed in

a certain distance, it is = h^, the difference, or sinking, h^ — Ji^,

gives the height of resistance due to the passage of the water

through the valve gate.

Finally, the velocity of efflux of the water can be calculated

from the height of the piezometer. If the height of the piezometer

F Q = z, the length of the last portion of the tube D E = I and

the width of the same = d, we have

z=^ 2r— and therefore the velocity of efflux is

%g_z

.l_

d

VI
2gz

Example.—If the height of the piezometer P Q = z upon the system

of pipes in Fig. 738 is f feet, if the length of the pipe I) E^ measured from

the piezometer to the outlet orifice, is Z = 150 feet and if the diameter of

the tube is 3|^ inches, it follows, when the coefficient of resistance ^ = 0,025,

that the velocity of efflux is

V = 8,025 y
and the discharge

0,75

150 . 12 0,025

3,5
8,025 . 0,2415 = 1,94 feet.

e = I
. (^ . 1,94 = 0,129 cubic feet.

Remark.—The motion of water in a pipe BOB, Fig. 739, can easily

Fig. 739.

be disturbed by air, which may be given off from the water or enter the

pipe from without. In order to prevent either case from occurring, we must
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take care that the pressure at every point shall be positive,- or rather that

it shall exceed the atmospheric pressure, or that there shall be a column

of water C Bin eyeiry piezometer. The height of this column is

z =

. C Oat (7,Zithe

the water in the

A. > (l + Co + ('^

h^ denoting the head C at C.l^the length of the portion B C of the pipe

and V the velocity of the water in the tube. It is, therefore, necessary that

that, E.G., the head of water in the receiving reservoir shall at least exceed

the height due to. the velocity of the water in the pipe. Otherwise the

pipe may suck in air in an eddy.

i + c, + 4
We can also put/^j > j- 7i, h denoting the entire fall HK

l+C.-fg

of the pipe and I its entire length BCD.
If we wish to prevent the air from accumulating in the pipe, we may

lay the pipe in such a position that it will rise slightly in the direction in

which the water is moving. The air will then be carried along with the

water.

C HAP TE R IV

RESISTANCE TO THE MOTION OF WATER WHEN THE CONDUIT
IS SUDDENLY ENLARGED OR CONTRACTED

V/ §436. Sudden Enlargement.— Changes in the cross-sectio7i

of a pipe or any other conduit produce a change of velocity. The

velocity is inversely proportional to the cross-section of the stream

;

the wider the vessel is, the smaller is the velocity, and the narrower

the vessel is, the greater is the velocity of the water flowing through

it. If the cross-section of a vessel changes suddenly, as, e.g., that

of the tube A C E, Fig. 740, does, a sudden change of velocity,

P^^ „.^ accompanied by a loss of vis viva

and a corresponding diminution

of pressure, takes place. This

loss is calculated in exactly the

same manner as the loss of me-

G chanical effect occasioned by the

impact of inelastic bodies (see § 335). Every element of the water,
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which passes out of the narrower tube B D into the wider one D G,

impinges against the more slowly moving current in this pipe and

after the impact moves forward with it. Exactly the same phe-

nomena occur when solid inelastic bodies collide ; these bodies

also move forward after the impact with a common velocity. Now
we have found that the loss of mechanical effect occasioned by

the impact of inelastic bodies is -^ C ^

J _ {v. - v.y G, G, }J^^
%g 'G, + g: yi"

and since in this case the impinging element G^ is infinitely small

compared to the mass of water G^ impinged upon, we can put

and consequently the corresponding loss of head is

'-
^9

•

Hence, hy the sudden change of velocity, a loss of head is caused,

which is measured by the height due to this change of velocity.

Now if the cross-section of the one pipe AC, — F^, that of the

other pipe C E, which is united to it, = F, the velocity of the water

in the first tube = v^ and that in the other = v, we have

Fv

and therefore the loss of head in passing from one tube to the

other is

"'(i.- ) f,
and the corresponding coefficient of resistance, which was first

found by Borda, is

<={5-)'
The head

^-S i).
2/

which we have just found, cannot of course be lost without pro-

ducing any effect; we must rather assume that the mechanical

effect corresponding to it is employed in separating and communi-

cating a vibratory motion to the elements of the water, which before

formed a continuous mass, and in forming the eddies W, W.

The experiments made by the author confirm this theory. If
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the tube DGisto be maintained full of water it must not be very

short or much wider than the tube

A C. The loss is done away with

when, as in Fig. 741, the edges are

rounded off so as to cause a gradual

passage from one tube into the other.

Example.—If the diameter of one of the portions of the compound

pipe, Fig. 740, is twice that of the other, then -^ = (tT— ^i ^he coefficient

of resistance C = (4 — 1)^ = 9 and the corresponding height of resistance

for the passage from the narrower to the wider tubes is = 9 . —. If the

velocity of the water in the latter pipe is = 10 feet, it follows that the

height of resistance is = 9 . 0,0155 . 10' = 13,95 feet.

§ 437. Contraction.—A sudden change of velocity also takes \y^
place, when the water passes from a vessel A B, Fig. 742, into a

narrower pipe D G, particularly if at the place of inlet CD there

is a diaphragm with an opening, whose cross-section is smaller than

the cross-section of the pipe D G. If the area of this orifice = F^ and

if a is the coefficient of contraction, we have the cross-section of the

contracted stream Fc^ = a Fx\ and if, on the contrary, F is the

cross-section of the pipe and v the velocity of efflux, we find the

velocity of the water at the contracted cross-section i^2 by means

of the formula
F

hence the loss of head in passing from F^ to F or from Vc^, to ?; is

_ {v.-vy _{ F V jf_

and the corresponding coefficient of resistance is

Fig. 743. Fig. 743.

W^^N^^^^v^x-^^^^^sSN^s^~v^v^^^v-^^^^^^^ v

B B

If the diaphragm is absent, we have a common short pipe. Fig.

743, and then F = F^ and
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<=(^')'

1 + V;
Assuming a = 0,64, we obtain

<=(^f)'= «*>=«.»••

C is increased by the resistance at the entrance into the tube and
by the friction of the water in the exterior portion of the tube to

0,505 (§ 422).

From experiments made with a sJiort tube, the inlet orifice of
which was contracted as is represented in Fig. 742, the author has

been led to the following conclusion : The coefficient of resistance

for the passage of the water through the diaphragm and into the

wider tube can be expressed by the following formula

:

but we must put
<'C4,--'^

for§ = 0,1 0,3 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

1

a = 0,616 0,614 0,613 0,610 0,607 0,605 0,603 0,601
1

0,598|0,596

1

and consequently

1

231,7 50,99 19,78 9,613 5,356 3,077 1,876 1,169 0,734 0,480

J

If, E.G., the narrow cross-section is half that of the pipe, the co-

efficient of resistance is C = 5,256, IE. the passage through this

contracted orifice occasions a loss of head 5| times as great as the

height due to the velocity.

Example.—What is the discharge through the apparatus represented

in Fig. 743, when the head is 1^ feet, the diameter of the contracted circu-

lar orifice 1|^, and that of the pipe C E, = 2 inches ? Here we have

-^ =
(-|J

= (1)2 = ^Bg = 0,56 and therefore a = 0,606, and

/ 1^ y_ /16 - 5,454y _ /10,546y _
^ ~\9. 0,606

~
/
~

\ 5,454 / ~ \ 5,454 /
" '*'^**

i
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Now if we put A = (1 + — , we obtain the velocity of efflux

V2^A 8,035Vl,5 , ^,
® = .

= —7-^=— = 4,51,
VlT^ V4,74

and consequently the discharge is

^ = ^- «? = ^ . 4 . 12 . 4,51 = 54,13 . tt = 170 cubic inches.

§ 438 Influence of Imperfect Contraction.—In the case

considered in the last paragraph, where the water comes from a

large vessel, the contraction can be considered as perfect ; but if

the cross-section of the vessel, or that of the stream which arrives

at the narrow orifice, is not very great compared to the cross-sec-

tion Fx, Fig. 744, of that orifice, the contraction is imperfect, and

the coefiicient of resistance is consequently smaller than in the case

just considered. If the notations previously employed are retained,

we have again the height of resistance or the head lost in passing

through Fi

* = (^, - h
but we must substitute variable values for a, which increase with

Fi
the ratio 77- of the cross-section of the narrow orifice to that of the

pipe, which conducts the water to it. If a diaphragm is placed in

Fig. 744.

.,
A

Fig. 745.

^^^^^W
B

B C G

a pipe A G, Fig. 745, of constant diameter, the same reasoning

holds good ; but the coefficient a depends upon ^
According to the author's experiments, we must substitute in

the formula for the coefficient of resistance

^=(A-)-
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for| = 0,1 0,3 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

«1 = 0,624 0,632

1

0,643 0,659 0,681

1

0,712 0,755 0,813 0,892 1,000

whence it follows that

C = 225,9 47,77 30,83 7,801 3,753 1,796 0,797 0,0600,000

If by rounding off the edges the contraction is diminished or

prevented, the loss of head be-

comes smaller, and it can be done

away with, almost entirely, by in-

troducing into the pipe a piece,

which widens gradually and is

shaped hke M N, Fig. 7^46.

Example.—What head is necessary, if the apparatus represented in Fig.

747 is required to deliver 8 cubic feet of water per

minute ? Let the width of the diaphragm F^ be =
1^ inches, the width of the discharge-pipe D G, =2
inches, and the width of the vessel J. (7, = 3 inches,

then we have

Fig. 747.

^ = I -„ 1 =1^, whence a = 0,637 ; now

F / 2V

and the coefficient of resistance

16

TT ^2 60 . TT (^)

smd, therefore, the required head is

Hence it follows that the velocity of efflux is

— — = 6,112 feet,

A = ( 1 + A^ = 4,207 . 0,0155 . 6,112^^ = 2,43 feet.

Fig. 748.

439. Relations of Pressure in Cylindrical Pipes.—By
the aid of Borda's formula we
can calculate the various rela-

tions of the pressure in a dis-

charge pipe, the diameter of

which is not constant. Let pi

be the pressure and v^ the ve-
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locity of the water at F^, and p the pressure and v the velocity of

the same at F, then we have

^ + ^ + ^^ ^ = ^ + ' and therefore

Pi p v^ — Vx + {vx — vY p (vx — v)v
^^ = - H ^r—^^ = - — -'^ —, or
7 7 %g 7 9

V
7 7 \Fx )g'

But the total head is

hence we have also

2{Vx- v) V

V' + (Vx

When a stream of water, whose cross-section is F, flows into the

P '

free air, - is — to the height h of the water harometer, and there-

fore the height of the piezometer at Fx is

y
^

(F A^
^{t.-^1

So long as p remains positive, the water will discharge at F G
with the cross-section F filled; if, on the contrary, p becomes

negative, the supposed condition of efflux ceases to exist and the

water flows through the exterior tube C F, as if it were not there,

with the theoretical velocity Vx = V% g h.

In order to have a full discharge at E G, it is necessary that

s^
(S-)

If, then, the limits of the head h, given by this formula, are sur-

passed, the discharge with a full cross-section ceases.



890 GENERAL PRINCIPLES OF MECHANICS. [§439.

These formulas are also applicable to the case of the pipe C E,
Fig. 742, with a diaphragm ; but here we must substitute instead

i^„ tti F^ ; hence, for efiiux with a filled tube, we must have

I

(A -
')

agm, we
hence tv

i - ^

If we remove the diaphragm, we have a simple short pipe C E,

Fig. 743, and then F^ — F\ hence we must put

7 1 +

2 G->)
If we substitute a — 0,84 or 1 = 0,5625, we obtain the

limit of discharge with filled cross-section through these pipes

A 1 + 0,3164 A

If we assume Z* = 34 feet, it follows that when the head is

greater than 1,17 . 34 = 39,8 feet, the efiiux with a full cross-

section through a short pipe ceases.

The results of the author's experiments coincide perfectly with

the above conclusions (see the article upon the efiiux of water under

great pressure m the 9th volume of the ^' Civilingenieur").

This limit is reached more quickly, when the water discharges

into rarefied air ; for in that case J is less than 34 feet. If, e.g., the

height of the water barometer in this space was three feet, the

efiiux with filled cross-section for a short pipe would cease when
the head became A = 1,17 . 3 = 3,51 feet.

If the water flows through a pipe ACE, Fig. 749, which is

gradually enlarged, the height of the piezometer at the inlet

portion ^ ^ is

consequently, if we put - = l,

y
^ ='-[{!;)-]-

We must have, therefore,

©•- '
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when the efflux takes place with a filled cross-section. If we put

- = 1,17 or - = 0,8547, we obtain the ratio of the cross- section, for

which, under a head Ji = 39,8 feet, the efflux with filled cross-

section ceases, viz.
•

^ = Vl + 0,8547 = 1,362.

§ 440. The Relations of Pressure in Conical Pipes.—The
relations of efflux and pressure in a cylindrical pipe C E, with or

without diaphragm, undergo the following modifications, when an-

other mouth-piece or another tube E G H K, Fig. 750, is added to

the former. Let F denote the
Fig. 750.

cross-section, v the velocity and p
the pressure of the water at the

iC G u outlet H K, F^ the cross-section of

Y ^TF - --" Y.
-~ -- W''

^^^ inlet, a F^ that of the con-
' ^ "^ ^ **" g~ tracted stream of water, v^ the ve-

^
\ locity and p^ the pressure of the

B water in the latter ; in like man-

ner let F.2 be the cross-section of the tube, where the stream of

water again touches the wall, f 2 the velocity and 2h the pressure

of the water at that point. Then we have

^ =z^ -\ -, and therefore

y y ^g

y - 7 "
^ r ^9 9

__p v' + V.2 _ ^\jh —P±. ^^ ~ ^ ^^ ^2 + '^^

~
y

"^
"'Y^g 9 ~ y ^9

or, since we can put a F^v^ = F^v^ = F v, or

Fv , Fv^,=_^and..= -^,

7 ~
y ^ L aF,F, \fJ ^^g

Now the head necessary to produce the required velocity of

efflux IS

from which it follows that
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(f P

1 +
/ F _ F\
\a F, fJ

+
F, aF\F, "^

F,^

P
I.E. Zx = - —

y

F
2

aF,

1^ /I IV
^'^ \a F, fJ

1 F, \F,
"^

F,^)

n,

'^'^XaF^ Fj
h '

F
or, when the water is discharged into free air,

2 _ /JL^ J_\

i^2
"'" L i^i f)

If the efflux takes place with, full cross-section, we must have,

according to what precedes,

— /
^ _ JlV

h ^ F' "^ \aF, Fj

a/'^i^s \F'^ FiJ

F' ^ \a F, F, F.N h \a F, Fj'
By the aid of the foregoing formula the relations of the efflux

through the conical tubes A B D E, Figs. 751 and 752, can be

Fig. 751. Fia. 753.

H^;::::»»« C

given by substituting for F^ the cross-section of the pipe, where the

stream touches the wall. If (5 denotes the semi-angle of diver-

gence A C B of one, or the semi-angle of convergence of the other

tube, and if we assume that the length Fi F2 of the eddy is equal to

the width A B = f/ of the orifice, we have the width of pipe, where

the stream reaches its wall,

dst = dx ^ 2 di tang, ^J = (1 ± 2 tang. 6) d^

I
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and therefore the ratio of the cross-sections

in which the positive sign is to be employed for the divergent pipe

in Fig. 751 and the negative sign for the convergent one in Fig.

752, E.G. for S — 2.1 degrees, 2 taivj. ^ = 0,0875 and

^ .= (1 ± 0,0875)' either = 1,1827 or 0,8327

;

hence the velocity of efflux in the first case is

1,1827/ Vi^i

and, on the contrary, in the second

1 +

The corresponding coefiBcient of efflux

1
u =

Vl + 0,514 §J
for the divergent tube is, of course, considerably smaller than the

coeflBcient of e&Lux
1

Vl + 0,1308
[yj

of the convergent tube.

If, E.G., the tubes were three times as long as wide at the inlet

orifice, we would have in the first case

(^)'= (1 + 6 tang. 6)* = 1,2625^ = 2,5405 and

fjL =: — - = 0,659, and, on the contrary, in the second case

^
V 2,306

{j,)= (1-6 tang. 6)' = 0,7375* = 0,2958 and

fi = '„
_ = 0,981 (compare § 425).

V 1,0387

If the efflux through these pipes takes place with filled cross-

eection, we must have
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h
1 +

<

/ F _ FV
UTf, fJ

a F,

or in the first case, when

F 1,5939

a Jb X
r ^ L \r <^l J

F
a F, 0,64

2,4906 and ^ = 1,5939

F, 1,1827
^ 1,3477,

h 1 + 1,1429^

h ^ 6,7112 2,8163

and the head h must be less than 34

2,3062

"3,8949

0,592 --

= 0,592,

= 20,1 feet.

§ 441. Elbows.—A particular kind of impediment is opposed

to the motion of water in pipes, when the latter are 1)6711 or form

elhoivs. These resistances cannot be determined with safety by

theory and must, therefore, like so many of the phenomena of

efflux, be studied by experiment. If a pipe A C B, Fig. 753, forms

;an elbow, the stream separates itself from the inner surface of the

•second branch of the pipe m consequence of the centrifugal force
;

when this piece is short, the efflux with full cross-section ceases,

and the discharge is, therefore, smaller than from an equally long

straight pipe. If the exterior portion C B of the elbow A C B,

Fm. 753. Fm. 754

E
^^

Fig. 754, is longer, an eddy S is formed beyond C, and, when the

tube is again filled, the velocity of efflux v is smaller. Tliis dimi-

nution of the velocity of efflux must be treated exactly in the

same manner as the resistance produced by a contraction in the

pipe. If i^is the cross-section of the tube and F^ that of the con-

tracted vein, we have the coefficient of contraction of the latter

F

and, therefore, the corresponding coefficient of resistance

%
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<
= (S - ')•-

(I -
)•

The coefficient of contraction a, and consequently the corre-

sponding coefficient of resistance ^, depends upon the semi-angle of

deviation d=zACD=BCU=iBCF, Fig. 753, and accord-

ing to the experiments of the author, made with a tube 3 centi-

meters in diameter, we can put

^ = 0,9457 si7i.' 6 + 2,047 sin* 6.

The following table contains a series of coefficients of resistance,

calculated for different angles of deviation.

6'= 10 20 30 40 45 50 55 60 65 70

0,046 0,139 0,364 0,740 0,984 1,260 1,556 1,861 2,158 2,431

We see from this table that the vis viva of water in pipes

is considerably diminished by the elbows. If, e.g., the elbow

makes a right angle or 6 = 45°, we have the loss of head occa-

sioned by it

or nearly as much as the height due to the velocity.

When the pipes are narrower, ^ becomes considerably greater,

•E.G., for an elbow 1 centimeter in diameter and with an angle of

deviation of 90°, Cwas found = 1,536. See the author's ^' Fxperi-

mentalhydraulikr

If to one elbow A C B, Fig. 755, another elbow is joined, as is

shown in Fig. 756, and Fig. 757, a peculiar, but at the same time

Fig. 755. Fig. 756. Fig. 757.

easily explicable, phenomenon of efflux is observed. The second

elbow B D E, Fig. 756, which turns the stream to the same side

as the first one A C B, produces no further contraction of the
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stream, and, therefore, for efflux with full cross-section ^ is no

greater than for a simple elbow A C B. But if the elbow B D E,

Fig. 757, turns the stream to the opposite side, the contraction is

a double one, and the coefficient of resistance is consequently twice

as great as for a single elbow. If, finally, B I) F is so joined to

A C B that I) E stands at right-angles to the plane A B B, ^ then

becomes about 1^ times as great as for the single elbow A C B.

EXAMPI.E.—If a system of pipes K L N^ Fig. 758, 150 feet long and 5

inches in diameter, which should

Fig. 758. discharge 25 cubic feet of water,

contains two elbows, the required

head will be

A II

h = (1,505 + 8,712 + 2 . 0,984)

= 12,185 . 0,1448 = 1,76 feet.

(Compare Example in § 430.)

2g

§ 442. Bends.—Curved pipes, when the other circumstances

are the same, cause much less resistance than elbows. They also

cause, in consequence of the centrifugal force of the water, a par-

tial contraction of the stream ABB, Fig. 759, so that, when the

bend is not terminated by a long straight pipe, the cross-section

Fi of the stream at its outlet is smaller than that F of the pipe.

But if the bend ABB, Fig. 760, is terminated by a long straight

Fig. 759. Fig. 760.

A

pipe B E, an eddy F is formed and an efflux with filled cross-sec-

tion again takes place at the expense of the yis viva of water. If

the coefficient of contraction ^ == a, we have for the coefficient

of resistance of the bend.

^=(^-)'

The coefficient of contraction a depends upon the ratio - of the

radius B M = E M = a, Fig. 759, of the pipe to its radius of cur-
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vature C M — r, and it can be determined approximatively in the

following manner. • If v is the velocity of the water upon entering

the bend and l\ that of the contracted vein, we have v^ F^ .— v F,

F
wnciice i\ — 77 V, and, therefore, the head which measures the

pressure in B B is

This hciglit, multiplied by 1 and y, gives the pressure of the stream

of water in all directions upon the unit of surface at F

Since the centrifugal force of the water acts upon the convex

side in opposition to the pressure jt?, it is possible that it may bal-

ance the latter completely. But in this case the exterior air would

enter and separate the stream entirely from the convex side, as is

shown in Figs. 759 and 760. The centrifugal force of a prism of

water, whose length is B F = 2 a and whose cross-section is 1, is,

when the radius of curvature is CM — r,

q = — .2 ay.
g r

Now if we put p = q,we have the condition of separation of the

stream from the wall of the pipe

Jl _ 1 - t^

and consequently the coefficient of contraction

a = V—i—

;

^ r + 4:a^

hence the coefficient of resistance for efflux with a fall pipe is

= (/^-^ -
1)

•

As this calculation is based upon a mean velocity and a mean
radius of curvature, it will, of course, give but an approximate

value of a and C
From his own experiments and from the results of some obser-

vations made by Du Buat, the author has deduced the following

empirical formulas for the coefficients of resistance of water in

passing through bent pipes

:

1) for bends with circular cross-sections

^.= 0,131 + 1,847 (^)S

57
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2) for bends with rectangular cross-sections

^ = 0,124 + 3,104 0)1

The following tables are calculated according to these formulas:

TABLE I.

Coefficients of the resistance due to the curvature ofpipes with circular cross-

sections.

a

T
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

1,978c = 0,131 0,138 0,158 0,206 0,294 0,440 0,661 0,977 1,408

Coefficients of the

TABLE n.

? resistance due to the curvature of pipes with rectangular

cross-sections.

a

r
~ 0,1 0,3 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

C = 0,134 0,135 0,180 0,250 0,398 0,643 1,015 1,546 3,271 3,328

From the above tables we see that for a circular pipe, whose

radius of curvature is twice the radius of its cross-section, the coef-

ficient of resistance = 0,294, and that for a pipe, whose radius of

curvature is at least 10 times the radius of the cross-section, the

coefiQcient = 0,131.

In order to check the contraction of the stream of water in a

bend A B D, Fig. 761, the cross-section of the pipe must be grad-

ually diminished in such a manner that the ratio of the cross-sec-

tion D H ^ F,of the outlet orifice to that ^ £^ = i^of the inlet

shall be a = — -.

V^+1
Fig. 761. Fig. 762. Fig. 763.

A 'A . A
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If one bend B D, Fig. 762, is terminated by another, wliicli

turns the stream further in the same direction, if, e.g., the axis of

the pipe forms a semicircle, Hke B D E, Fig. 763, the contraction

is not changed and a and ^ have the same values as for the pipe in

Fig. 762, which forms but a quadrant. If, on the contrary, a bend

D E, Fig. 764, which turns the stream in the opposite direction, is

attached to the first one, an eddy F\s formed between the two and

a second contraction of the stream takes place, by which the resist-

ance (s") is nearly doubled.

Fig. 764 Fig. 765. Fig. 766.

A A A

The resistance to water flowing through bends can be dimin-

ished by enlarging the cross-section of the pipe, as in ^ i> E, Fig.

765, or by inserting in it a thin partition, like S in B I) E, Fig.

766 ; for in the first case the velocity v, and in the second the ratio

- is smaller, and consequently the coefficient of resistance C is ren-

dered less.

Example.—If the system of pipes B L if, Fig. 767, in the second ex-

ample of § 430, contains 5 bends

each of 90°, and if the radius of

curvature of each is 2 inches, we

have

and according to the first of the

foregoing tables, the correspond-

ing coefficient of resistance C, =
0,294 ; consequently for the 5

Fig. 761

bends 5 C =

instead of

1,47 ; hence the velocity of the water issuing from the pipe,

iMi5 = 6,52 feet, is

V7,582

17,945

V 7,582 + 1,47

17,945

V9,052
= 5,964 feet,
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so that the discharge per second is now
Q = 0,7854 . ^V . 5,964 = 0,1301 cubic feet = 224,81 cubic inches.

§ 443. Valve-Gates, Cocks, Valves.—In order to regulate

the discharge of water from pipes and vessels, we employ various

kinds of apparatus, such as cocks, valve-gates, and valves, by means
of which we produce a contraction in the pipe, which occasions a

resistance to the passage of the water, the value of which is deter-

mined in the same manner as the losses of head in the foregoing

paragraph. As the stream of water is subjected to changes of

direction, is divided, etc., the coefficients a and ^ can only be

determined by experiments made for that purpose. Such experi-

ments have been made by the author,* the principal results of

which are given in the following tables

:

TABLE L

The coefficients of resistance for the passage of water through valve-gates

or slide valves (Fr. tiroirs ; Ger. Schieber or Schubventile) in parallelo-

pijpes.

Ratio of the cross
TP

sections ~ =
-t

1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3

1

0,2
1

0,1

Coefficient of re-

sistance C =
0,00 0,09 0,39 0,95 3,08 4,02 8,12 17,8 44,5 193

TABLE II.

The coefficients of resistance for the passage of water through valve-gates

or slide-valves in

Relative Height of opening
s = i 1 1 i 1 1 .i

Ratio of the cross-sections

=

1,000 0,948 0,856 0,740 0,609 0,466 0,315 0,159

Coefficient of resistance C= 0,00 0,07 0,26 0,81 2,06 5,52 17,0 97,8

* Experiments upon the efflux of water through valve-gates, cocks, clacks,

and valves, made and calculated by Julius Weisbacli, or under the title "Un-
tersuchungen jm Gebiete der Mechanik und HydrauUk, etc.," Leipzig, 1842.
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TABLE m.

The coefficients of resistance for the passage of water through a cock (Fr.

robinet ; Ger. Hahn) in paralUlojpipedical pipes.

Angle that the cock is

turned 6 =
5° 10°

0,849

15'

0,769

0,88

20°

0,687

1,84

26°

0,604

3,45

30°

0,520

6,15

35°

0,436

11,2

40°

0,352

20,7

45°

0,269

41,0

50°

0,188

95,3

55°

0,110

275

66||

Ratio of the cross-sec-

tions = 0,926

Coefl&cient of resist-

ance = 0,05 0,31 J

TABLE IV.

The coefficients of resistance for the passage of water through a cock in a
' pipe.

Angle that the cock is turned 6 = 5° 10° 15° 20° 25°

0,613

30° 35°

Ratio of the cross-sections = 0,936 0,850 0,772 0,692 0,535 0,458

Coefficient of resistance = 0,05 0,29 0,75 1,56 3,10 5,47 9,68

Angle that the cock is turned d = 40° 45° 50° 55° 60° 65° 82^°

Ratio of the cross-sections = 0,385 0,315 0,250 0,190 0,137 0,091

Coefficient of resistance = 17,8 31,2 52,6 106 206 486 oo

TABLE V.

The coefficients of resistance for the passage of water through throttle-valves

(Fr. valves; Ger. Drehklappen or Drosselventile) in po/rallelopipedical

Angle that the valve is turned 6 = 5° 10° 15° 20° 25° 30° 35°

Ratio of the cross-sections = 0,913 0,826 0,741 0,658 0,577 0,500 0,426

Coefficients of resistance = 0,28 0,45 0,77 1,34 2,16 3,54 5,7
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Angle that the valve is

turned 6 = 40° 45° 50°

!

55° 60° 65° 70° 90°

Ratio of the cross-sec-

tions = 0,357 0,293,0,234

1

0,181 0,134 0,094 0,060

Coefficients ofresistance = 9,27 15,07 24,9 42,7 77,4 158 368 00

TABLE YI

Coefficients of resistance for the passage of water through throttle-valves

cylindriad pipes.

Angle that the valve is turned (5= 5°

•

10° 15° 20° 25° 30° 35°

!
Ratio of the cross-sections =

1

0,913,0,826

i '

1

0,74i;o,658

i

0,577 0,500 0,426

6,22Coefficient of resistance
.
= 0,24 0,52 0,90 1,54 2,51 3,91

Angle that the valve is

turned 6 = 40°

0,357

45° 50= 55°

1

60° 65° 70° 90°

Ratio of the cross-sec-

tions = 0,293 0,234 0,181 0,134 0,094 0,060

751 00Coefficient of resistance = 10,8 18,7 32,6 58,8i 118 256

§ 444. With the aid of the coefficients of resistance, given in

the above tables, we can find not only the loss of head for a certain

position of the valve-gate, cock or valve, but also the position we
must give to these apparatus in order to produce a certain velocity

of efflux or a certain resistance. Of course, such a determination

will be more accurate, the more the regulating apparatus resembles

that used in the experiments. Besides, tlie values given in the

above tables are not correct, when the water, after passing tlie con-

tracted orifice produced by the apparatus, does not fill the pipe

again. In order that the efflux with a filled cross-section shall take

place, it is necessary, when the contraction is great, that the pipe

shall have a certain length. The cross-section of the parallelopiped-

ical pipe was 5 centimeters wide and 21 centimeters high, and the

diameter of the cylindrical pipe w^as 4 centimeters. With the slide'
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valve or valve-gate, Fig. 768, the cross-section is merely narrowed,

and its shape in one pipe is a simple rectangle F^, Fig. 769, and in

Fig. 768.

K

A w ^

£.
—I

the other a crescent F^, Fig. 770. When cocks are employed, as in

Fig. 771, there are two contractions and two changes of direction,

and the resistance is therefore in this case very great. The cross-

FiG. 772.

A 1)

sections of the maximum contractions have very peculiar forms.

The stream is divided by the throttle-valve (or disc and pivot valve).

Fig. 772, into two parts, each of which passes through a contracted

orifice. The cross-sections of the contracted openings are rec-

tangular in parallelopipedical pipes and crescent-shaped in cylin-

drical ones. The following examples will sufficiently e5;,plain the

use of the foregoing tables.

Example—1) If in a system of cylindrical pipes 3 inches in diameter

and 500 feet long a valve-gate is introduced, and if it is raised | of the

entire height, so as to close | of the diameter, what will be the discharge

through it under a head of 4 feet ? According to what precedes we can

put the coefficient of resistance for the entrance of the water into the pipe

Co= 0,505 and the coefficient Ci of resistance of the pipe according to

Table II, § 443, = 5,52, whence it follows that the velocity of efflux is

8,025 V4 8,025 . 2 16,05

/^
1 V7,025 + 500'. 4 C V7,025 + 2000 C

1,505 + 5,52 + C^

If we put the coefficient of friction C = 0,025, we obtain

2,125 feet.
16,05

V57,025
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But the velocity i) = 2,135 feet corresponds more accurately to C = 0,0265,

hence we have more correctly

"•- '''^' =2,07 feet,

V60,025
and the discharge per second is

§ = ^ . 9 . 12 . 2,07 = 55,89 n = 176 cubic inches.

2) A system of pipes 4 inches in diameter discharges under a head of

5 feet 10 cubic feet of water per minute ; at what angle must a throttle

valve, placed in them, be turned to cause a discharge of 8 cubic feet per

minute ? The initial velocity is

- ^^-^
-^-lOlfcct

and that after turning the valve

= t'o • 1,91 = 1,528 feet.

The coefficient of efflux in the first case is

-^- =-^ = 0,107

;

^/2gh 8,025 V5
hence the coefficient of resistance is

= 7 ~ ^

" o;io7"^ ~ ^

"
^^'^*'

and the coefficient of efflux in the second case is

= A -0,107 = 0,0856;

hence the coefficient of resistance is

= 0;08T6^
~ ^ = ^^^'^'

and the coefficient of resistance of the throttle valve

C= 185,5 - 86,34 = 49,16.

Now Table VI, § 443, gives for the angle d = 50°, C = 32,6 and for the

angle 6 = 55°, C = 58,8 ; we can, therefore, assume that, when the valve

16,56
is placed at an angle of 50° +

^^ ^
.
5° = 53° 10', the required quantity

of water will be discharged. If we take into consideration the fact that

the coefficient of friction changes from 0,0268 to 0,0283 when the velocity

decreases from 1,91 to 1,528, we have more correctly

C = 135,5 - 86,34 —^ =^ 135,5 - 91,2 = 44,3,

and consequently the angle that the valve must be turned

.5 = 50° + ^4 5° - 52° 14'.

26,2

§ 445. Valves.—The knowledge of the resistance produced by

valves (Fr. soupapes ; Ger. Ventile) is of the greatest importance.

Experiments have also been made by the author with them.

Those most commonly employed are the puppet valve and the

I
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clach valve, which are represented in Figs. 773 and 774. In both

cases the water passes through an aperture in a ring R G, which

Fig. 773. Fig. 774.

A T. 3? A T? D

]i ^ C

is called the seat. The puppet valve K Z, Fig. 773, is provided

with a spindle, which runs in guides and which permits the valve

to move only in the direction of its axis ; the clack K L, Fig. 774,

on the contrary, opens by turning like a door. We see that in

both apparatuses not only the ring, but also the valve are obstacles

to the motion of the water.

The ratio of the aperture in the seat of the puppet valve, with

which the experiments were made, to that of the pipe was 0,356,

and, on the contrary, the ratio of ring-shaped surface around the

open valve to the cross-section of the pipe was = 0,406, hence we
F

can put as a mean ^ = 0,381. By observing the efflux for differ-

ent positions of the valve it was found that the coefficient of resist-

' ance decreased with the lift of the valve, but that this decrease was

very inconsiderable, when the lift exceeded one-half the width of

the orifice. Its value for this position was ==11, and the height

of resistance or loss of head was

v denoting the velocity of the water in the full pipe. This num-
ber can be used to find the coefficients of resistance corresponding

to other relations of cross-section. If we put in general

we obtain for the case observed

-J
= 0,381andf=y^-iy=ll,

and therefore

And finally the general expression for the coefficient of resistance
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If, E.G., the cross-section of the aperture is one half that of the

pipe, the coefficient of resistance becomes

= (1,645 . 2 - 1)^ = 2,29=^ = 5,24.

* In the experiments with clack-valves the ratio of the cross-

section of the aperture to that of the pipe, le., -^, was = 0,535.

Tlie following table shows how the coefficients of resistance de-

crease as the opening increases.

TABLE OF THE COEFFICENTS OF RESISTANCE FOR
CLACK-VALVES.

Angle of opening 15"

90

20°

62

25°

42

30°

30

35"

20

40°

14

45"

9,5

50°

6,6

55°

4,6

60°

3,2

65°

2,3

70"

1,7Coefficient of resistance..

By the aid of this table the coefficient of resistance for clack-

valves can be calculated approximatively, when the relations of the

cross-sections are different. We must adopt the same method as

we did for puppet valves.

Example.—A force-pump delivers every time the plunger descends in

4 seconds 5 cubic feet of water, the diameter of the column pipe in which

the puppet-valve is placed is 6 inches, the interior diameter of the valve-

ring is 3|- inches, and the maximum diameter of the valve is 4|- inches

;

what resistance is to be overcome by the water in passing through this

valve ? The ratio of the cross-sections for these apertures is

and the ratio of the ring-shaped contraction to the cross-section of the

tube is = 1 - (i^)' = 1 - (1)^ = 0,44;

hence the mean ratio of the cross-sections is

F, _ 0,34 + 0,44 _
-F - ~^2 ~

' '

and the corresponding coefficient of resistance

=(g^-y=«'-="-^-
The velocity of the water is

5

^'i-(^y

20= — = 6,37 feet,
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the height due to the velocity is = 0,630 feet, and consequently the height

of resistance is = 10,4 . 0,630 = 6,55 feet. The amount of water raised in

a second weighs f . 62,5 = 78,135 lbs. ; the mechanical effect consumed

by the passage of the water through the valve in that time is therefore

= 6,55 . 78,125 = 511,73 foot-pounds.

§ 446. Compound Vessels,—The foregoing theory of the re-

sistance due to the passage of water through contractions, is also

applicable to the discharge from compound vessels. The apparatus

A jD, represented in Fig. 775, is divided by two walls, which contain

the orifices 7^ and 1*1, into three communicating

vessels. If the dividing walls were absent and

the edges at the passage from one vessel to the

other rounded off, we would have, as in the case

of a simple vessel, the velocity of efflux

in which 7i denotes the depth of the orifice below

the level of the water and ^^ the coefficient of re-

sistance for the passage of the water through the orifice I^.

But since when the water has passed through the orifices F^ and

i<^ the cross-sections a F^ and a F^ change suddenly into the cross-

sections 6^1 and G^ of the vessels C D and B C, and according to

§ 437 the resistances thus produced are

and

^'^g~\aF, I \ G f ^ g
~ \F, G )' 2g

^'2g \aF, I \ G, J 2 g \F, G, /
' 2 g'

we have

/-. rx^^' >-
?'.' y ^'/ r. y 1^ a FV (F a Fy-\ v""

g '^g '^g

whence we obtain the velocity of efflux

V = V2gh

./ ^ /F aFV IF aFV
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Fig. 776.

In the compound vessel, represented in Fig. 776, from which

the water is discharging, the same conditions exist, but perhaps

we must here consider the fric-

tion of tlie water in the com-

municating tube C E. Let I he

the length, dt\\e diameter, ^the

coefficient of friction of this

tube, and i\ the Telocity of the

water in it, then we have for

the head lost by the water in

passing from A C to G L

''-['M^')'-4]f>
or, since the velocity i\ —

a F
V,

Jh ['-e->)'*<a(T)'^-
If we subtract this height from the total head h, there remains the

head in the second vessel h.. = h — h^ ; hence the velocity of

efflux is

_ V2 g lu V2gh

,/i.«[..e-.)V4](^)'
This determination becomes very simple when the apparatus is

hke the one represented in Fig. 777

;

for in this case we can assume the

cross-sections G, G^, G'^ to be infi-

nitely large, compared to the cross-

sections of the orifices F, F^, F^,.

The first difference of level IT, or

the height of resistance for the pas-

sage through F^, is

^'~ 2q\aJ~ \a, fJ ' 2 (g \ a/ \ai ^j/ '^ g
and in like manner the second difference of level Oi H^ or the

height of resistance for the passage through F^ is

- ilZ\ ill

-~\ZyJ'2g'
in which a, a^ and Oo denote the coefficients of contraction for the

orifices F, F^ and i^^. Hence
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VfgJi
V = —=^ —=^>

'>/ 1
+ Ely

+

CttJ
and the discharge is

a F V2ghQ- ^

It is easy to see that under the same circumstances compound
vessels, or reservoirs, discharge less water than simple ones.

Example.—If in the apparatus, Fig. 776, the total head or the cleptli

of the centre of the orifice F below the level of the water in the first vessel

is = 6 feet, if the orifice is 8 inches wide and 4 inches high and if the

reservoirs are united by a pipe 10 feet long, 12 inches wide and 6 inches

high, what will be the discharge ?

The mean widtli of the trunk is

, 4.1.0,5 „^ ,
I 3.10

a = -^—3-^— = f feet, hence -^ = —-— = 15.
2 . 1,5 ^ ' d 2

Putting the coefficient of friction C = 0,035, we obtain

I

^- = 0,025 . 15 = 0,375,

and adding ^^ = 0,505, the coefficient for the entrance into prismatical

pipes, we have

a F 0,64 .8.4
Since -^^ = -^-r^—^— = 0,2845, it follows that the coefficient of resist-

J^
^

L/ii , D

ance for the entire pipe is = 1,88 . 0,2845^ = 0,152, and if we put the

coefficient of resistance for the passage through F^ = 0,07, we obtain the

velocity of efflux

- «'«^5^ - »'»^^
^J = 17,78 feet.

0.375

Vl,07 + 0,152 V 1,222

The contracted cross-section is 0,64 . 1 . |^ = 0,32 square feet, and there-

fore the discharge is

Q = 0,33 . 17,78 = 5,69 cubic feet.
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CHAP T ER V

OF THE EFFLUX OF WATER UNDER VARIABLE PRESSURE.

§ 447. Prismatic Vessels.—If a vessel, from which water is

issuing through an orifice in the side or bottom, receives no sup-

ply of water from any other source, the level of the water will

gradually sink, and the vessel will finally become empty. Now if

the discharge Q into the vessel is gTeater or less than that

\i F V2 g h from it, the water level will rise or sink, until the head

becomes li — —— (—^) -> and afterwards the head and velocity of

efflux will remain constant. Our problem now is to determme the

dependence upon each other of the time, of. the rising or sinlcing of

the surface of the water and, if it occurs, of the emptying of the

mssel, lohen the latter has a given form and size. The most simple

case is that of efflux through an orifice in the bottom of a prismatic

vessel, which receives no supply of water. Let x be the variable

head F P, F the area of the orifice and G the cross-section of the

vessel A C, Fig. 778, then the theoretical velocity of efflux is

Fig. 778.
v = V2 g x,

^ '^ and the theoretical velocity of the sinking surface

of the water is

p -p

and the effective velocity

V2gx.

In the beginning x — F — h, and at the end of the efflux

a; = 0, the initial velocity is therefore

and the final velocity

c, = 0.

We see from the formula

.. = ^/,(>^)\.,
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that the motion of the surface of the water is uniformly retarded,

(a I*^V

7^ I ^ ; we also know (§ 14)

that this velocity will be = and that the efilux will cease after a

time.

^-
p - a

I.E.

2 GVk
z

We can also put

- ^ ^^ _ 2 Gh __ 2V
~f^^V2rh~~ Q ~ Q'

and consequently we can assume that a volume V = G h of water

will be discharged through an opening I^ in the bottom under a

head decreasing from A to in double the time that it would, if the

head were constant and equal to /i.

As the coefficient of efflux jj. is not perfectly constant, but in-

creases when the head diminishes, we must employ a mean value

of this coefficient in our calculations.

Example,—In what time will a parallelopipedical box, whose cross-

section is 14 square feet, empty itself through an orifice in the bottom,

which is circular and 2 incli«s in diameter, when the initial head is 4 feet ?

Theoretically the time required would be

, =^^_^ = -^"i^l'— =5^ = 319",9 = 5 min. 19,9 sec.

8,025. ^,gy
' '

At the end of half the duration of the efflux the head is = (^f h —
i

. 4 = 1 foot, but the coefficient of efflux for an orifice in a thin plate,

corresponding to a head = 1 foot, is fi = 0,613 ; hence the real duration

of the efflux is

319" 9= ^ ^.'- = 521",8 = 8 minutes 41,8 seconds.
0,613

§ 448. Communicating Vessels.—Since for an initial head

hi the duration of efflux is

^
^ 2 GVh,

'~liFV2~g
and for an initial head As the duration is

2 GVh,
U=^

II F, V2g
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it follows that b}^ subtraction we obtain the time during which the

head changes from hi to J1.2, or the level of the water sinks a dis-

tance /^l
— ho ; its value is

or, when the dimensions are expressed in feet,

t = 0,249 ^{fh, - Vh.).

On the contrary, when the duration of the efflux is given, we
determine the distance s — hi — h.. that the surface of the water

sinks by means of the formula

^. = (,/^^_^--^),or

The same formulas are applicable to flie case oP a vessel CD,
Fig. 779, filled from another vessel A B, in which the level of the

Fig. 779. water is constant. If the cross-section

£ ^

of the commanicating pipe or orifice
^' ^" ^iili^ = ^ tliat of the vessel to be filled = G

and initial difference of level Oi of

the two surfaces of water = h, we have,

since in this case the level of the water

in the second vessel rises with a uni-

B "" P formly retarded motion, the time re-

quired to fill it or the time in which the second surface of the

water rises to the level H R oi the first

2 G Vh

^A

f --

ft F . V2 g
and in like manner the time in which the distance Oi = hi be-

tween the surfaces of the water becomes 0.. — h., or during

vrhich the level of the water rises a distance 0, Oo =^ s =^ h^ — //,,,

}i F . r 2 .<7

Example 1) How much does the sniface of the water in the last exam-

ple (§ 447) sink in 2 minutes ? Here we have

^=4.f = 2.60 = 120,|. = -j™.
and if we assume also u — 0,605, it follows that

h - i f-r /o- ^ A' i^ 0.605 . 8,025 . TT . 120\

«
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= ^2 - 0,605 . 8,035 - j^Y= 1,546= = 2,3901 feet,

and that the required distance that it sinks is

s = 4 — 2,3901 = 1,6099 feet.

2) AVliat time does the water require to rise in a pipe C D, Fig. 780, 18

inches in diameter, so as to overflow, when the

pipe communicates with a vessel A B by means

of a short pipe 1^ inches in diameter, and when
the surface of the water G is in the beginning

at a distance JS = 6 feet below the constant

level of the water J. and at a distance = 4^
feet below the top C of the pipe. We must

substitute in the formula

2 G / _ _\- (VA, - VAJ,
IX v'2 g

4,5 = 1,5,

t =

Ai = 6, ^3 = 6

144
(V-6 _ Vir5) = ^'^

= 0,81 ; thus we obtain

1,2248 = 54,3 seconds.

Fig. 781.
A

0,81 . 8,025 ' ' 0,81 . 8,025

§ 449. If the. first vessel A B, Fig. 781, from which the water

passes into the second, receives no water, and if its cross-section G^

cannot be considered as wfinitel^ great,

compared to the cross-section G of the

other vessel C D, we must modify our cal-

culation. If the variable distance Gi Oi of

the first surface of the water above the

level R E, at which the water in both ves-

sels stands after the efflux, = x and the

distance G of the other surface of the

water below the same plane = y, the

variable head will be x + y and the corresponding velocity of

efflux will he V = V2 ff {x -^ y), or, since the quantity of water

G^x= Gy,

SH c

l^^^^^o^mf
I
^—=^^-—- -

TWW
i- - r-
fy

B D

.^/2.(l+|) y-

The velocity with which the surface of the water rises in the sec-

ond vessel is u F f^ ^ iA /-. Gf\

hence the corresponding retardation is

58
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and the duration of efflux is

2 GWy

y ('<?)(-!)'

Substituting instead of x and y the initial difference of level liy

1 + —
j ^ = ^, we obtain

1 +

and the

level is

time in which the two surfaces of water come to one

t = 'i GVh % G G,Vl

^^(l+|)V2, l^FiG+G.)V^y

The time during which the difference of level changes from h

to /h is, on the contrary,

2 G G,{Vh- VT,)
~ liF{G + G,) VY~g

ExAMPiiE.—If the cross-section G^ of the vessel, from which the water

flows into the other, is 10 square feet and the cross-section G of the vessel

receiving the water is 4 square feet, if the initial difference of level be-

tween the two surfaces of water is 3 feet, and if the cylindrical pipe which

forms the communication is 1 inch in diameter, the time in which the two

surfaces of water will reach the same level is

2 . 10 . 4 . VS 320 . 72 . Vs
t = = 276 seconds.

0,82 . 8,025 .
J4 0,82 . 8,025 . 7 tt

4' 144

§ 450. Notch in the Side.—If the water issues through a

notch, overfall or weir D E from a prismatic vessel ABC, Fig.

Fig. 782. 782, into which there is no water dis-

charged, the duration of the efflux is

found in the following manner. Let us

denote the cross-section of the vessel

by G, the width ^ i^ of the notch by I,

and the heightD E by A, and let us di-

vide the whole orifice of efflux into

small strips, the length of each being
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h and the height -. If the head is constant, the discharge per sec-

ond is

dividing the contents of a layer of water by the latter, we ob-

tain the corresponding duration of the efflux

_ Gh^

for which we will write . h~k

In order to obtain the duration t of the efflux of a quantity

G {k — hi) or to determine the time during which the level of the

water above the sill sinks from D E — h to D E^ — Aj, let us put

Jix = — A, I.E. let hx consist of m parts, and let us substitute in the
n

last equation, instead of li -^, successively

and then add the results found. In this manner we obtain the re-

quired time

_ _l^ UraK_Y + (-"^ A~'' + • • • + (-)"']
2 unbV 2 g ^^ ^^ ^ ^ ^ ' \n I A

^ G h Ti~^ r 3 / -. \ 3 -K-,= , .
—

,
[m-t- 4- (m + l)-t + . . . + ^-11

2fJ,nI)V 2g ^-^

= —- ^ ^'~^^_
[
(1-t + 2-§ 4- 3-§ + . . . + ^-i)

2(Mn-ibV2g
'- (1-1 + 2-1 + 3-^ + . . . -I- m-l) I

or, according to the Ingenieur, page 88,

_ 3 Gh-i / n-"- + ^ _ m-^ + 1 \

~
2fJLn-iI) V2~g \- I + 1 - I + 1/

iti 5 1/2 (/
LV ^ / J ^ J |/2 y V |/ Ai t^ /^ /

If we put hi = 0, we obtain —= and also i = cc; hence the
y hi

time required for the water to sink to the level of the sill will be

infinitely great.
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\V"0;5 VT;2I/
~

/^ • 8,025 ^V2 - V|)
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Example.—If the water issues from a reservoir 110 feet long and 40

feet wide, through an overfall 8 inches wide, in what time will the level

of the water fall from 15 inches above the sill to 6 inches above it? Here

we have

_ 3 . 110 . 40 /I 1 \ 19800
^ ~ ;;'."^78,025

19^0^ /1AIA0' nQQAA^ 19800 0,5198 1282,5= ^^7T^5^ (1,4142 — 0,8944) = --— = seconds.
8,025 // 8,02a // fx

If we assume as the coefficient of efflux // = 0,60, we have for the real time

of discharge

1282,5
t = —TT^"" = 2137,5 seconds = 35 minutes 37,5 seconds.

Remakk.—For a rectangular orifice in the side we can put approxima-

tively

2 a
t = ((V h, _ VT3) - ^ (V A, -3 _ VV^)),

in which F and G denote the cross-sections of the orifice and of the vessel,

a the height of the orifice, h^ the initial head, and h^ the head when the

discharge ceases. If ^3 =7:^ the orifice becomes a notch and the formula

for overfalls must be employed.

§ 451. Wedge-Shaped and Pyramidal Vessels.—If the

vessel A B F, Fig. 783, from which the water is discharged, forms

a horizontal triangular prism, the time in
Fig. 783. which it will empty itself is found in the

following manner. If we divide the height

C E — li into n equal parts and pass hori-

zontal planes through the points of divi-

sion, the whole mass of water will be

divided into equally thick horizontal layers,

whose common length is^ i> = /and w^hose

width diminishes from the surface down-

wards. If the wddth D B of the upper layer = i, the width D^ B^

of another layer situated at the distance C E^ — x above the orifice

X
F, which is located at the lower edge of the prism, is y — - b,

7i h I X
and its volume is yl .- = . But the discharge in the unit

of time is

Q:=,y,FV^gx',

hence the small time, duriug which the water sinks a distance -,

T = : u FV2 gx = — —= . x^.
n "^

niiFV^g
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7

Finally, since the sum of all the x^ from a; = - to a; = —^ is
n n

(.) I =«•"".

we have the time of discharge of the whole prism of water

hi . , , . hi , , _ 4
\hl h

n^ FV2g
7lJli = I

J

liFV^g

V

.U = -i

liFV%g K
, I.E.

in which V
'\iFd

hh Ih denotes the total volume of the water and

Fig. 784.

c = V2g h the initial velocity. In this case it requires I more

time to empty the vessel than if the velocity c were constant.

If the vessel A B F, Fig. 784, forms an upright paraholoid, we

have the ratio of the radii KM — y and

CD = h'

y _ ^x
^

hence the ratio of the horizontal section

<xi through K to the base A D B = 6^ is

~ = 4^ := -, and therefore

the volume of the layer of water is

_ ^ h _ G-x
^ ' n n

'

As this expression coincides exactly with that found for the trian-

gular prism, we can put here, also

^ ^ ^' _±Gh_

or, since V = 1 Gh {% 124, Example),

This formula can also be employed in many other cases for the

approximate determination of the duration of efflux, e.g., for de-

termining the time required to empty a dam. It is applicable,

whenever the horizontal sections increase in the same ratio as the

distances from the bottom.
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Fig. 785. If, finaUj, we haye a pyramidal vessel

A B F, Fig. 785, to deal with, then

G x"
Gx'. Q — x^ \ ¥, and, therefore, Gx = —r^

;

the volume of the layer H^ Bx is

Gx li _ G^
n ~~ n h'

and the time necessary to discharge the latter is

a F V%gx — j^^
——= . x\.^ -^ n^Fli^^g

But since the sum of all the x}- from a; == - to a; = — is
n n

we have the time necessary to empty the entire pyramid

G .. ,, o__^^_^ _i_^^.inM
nfiFh^2g '

or, putting \ G li — V,

^ ~ '^'
[i Fc

Since in this case the initial velocity gradually diminishes from

c to 0, the duration of the efflux is i greater than if the velocity

remained invariable and equal to c.

ExA^iPLE.—What time ^ill a dam, the area of whose surface is 765000

square feet, require to empty itself, when the discharge pipe enters at the

deepest place and is 15 inches in diameter and 50 feet long, and when the

depth is 15 feet ? Theoretically

V ,
765000 . 15 19584000

t =

I-©-'.025 ^15
TT . 8,035 V15^V3^

= 200568 seconds.

But the coefficient of resistance f(^r the entrance of the water into the

pipe, which is cut off at an angle of 45°, is

C = 0,505 + 0,327 (see § 423) = 0,832,

and the resistance of friction for the pipe is

50
0,025 ^ . ^^

= 0,025 . ,

hence the complete coefficient of efflux for the same is

U = —===::== = = 0,094,
Vl + 0,832 + 1 V'2,832

and the required duration of efflux is

t = 200568 : 0,594 = 337655 seconds = 93 hours 47 minutes 35 seconds.
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Fig. 786.

452. Spherical and Obelisk Shaped Vessels.—By the

aid of the formulas, deduced in the foregoing

paragraph, we can find the duration of the

efflux from spherical, obelisk shaped, pyrami-

dal, etc., vessels.

1) The time required to empty a segment

of a sphere A F B, Fig. 786, which is filled

with water, whose radius A = C F = r and

whose height F G = h, is

_ 1
^/^' _ _2_ (10 y - 3 h) M

or, if an entire sphere is to be emptied, in which case h — 2 r,

16 TT r' V¥r

14 TT T^ Vt
and for a hemisphere, where h = r, t = —^ ^——=.lofiF^

Here the horizontal layer H^ R^ = G^J corresponding to the

depth F Gx — X, is

,^ . h 2 n r h X rr h x'^— 7T X (2 r — X) - = ;

n n n
hence, if the velocity of efflux is

discharge will be
2 TT r h . n h

X^ ^—:= . Xi.

V2 g X, the duration of the

^/^^ V2~g"^ '^ H'^ V2g
Since the first part of this expression coincides with the formula

for the empt}dng of prismatic vessels and the second part with

that for the emptying of p3rramidal vessels, if we in the first

case substitute 2 n r h for b I and in the second n h^ instead of G,

we obtain by the aid of the difference of times required to empty a

prismatic and a pyramidal vessel

. o ilh , . „ Gh

Fig. 787.

^ ,
and#=|. ^ ,

i"^ V2gh ""

l'
F ^^gi

the time, in which a segment of a sphere

will empty itself, as was found above.

2) For a vessel A C K, Fig. 787, shaped

like an ohelish or a pontoon, we can employ

the above formulas ; for we can consider it

to be composed of a parallelopipedon A EK,

of two prisms BEN and DEN and of a

pyramid C E N (compare § 121). Let i be
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the width A I) of the top, hi that X L of the bottom, I the length

A B of top, Zi that K N of the bottom and li the height F of

the yessel. Then we have the surface A C of the water

bl = bih -rbiil- k) + ?i (5 - h,) + (Z - I,) (h - 5i),

in which hi k is the base of the parallelopipedon A E K,hi {I — li)

and li {h — hi) the bases of the prisms BEN and D E K and

(Z - li) {h - hi) that of the pyramid C EK
Fig. 788. j^q^ the time required to empty the paral-

lelopipedon is

t - ^ ^1 ^1 ^
' ~ ^ -^ V2~g

that required for the triangular prisms is

. _ 2 [^1 (^ - ?0 +l{h- hi)-] Vl

and finally that required to empty the pyra-

mid is

hence the time required to empty the e^itire vessel is

r= ?i "T fg ~r f^3

= [30 hi ii + 10 hi{i-ii) + 10 ii (h-hi) + 6 (z- zo (5-^0] .n J: r—

= [^hl^^hili+2{hli + hil)-] --^-^L^,

When —^ = z- the vessel is a truncated pyramid. Putting in
il I

this case the base hi = G and the base hi li = Gi, we obtain

t = {^ G + ^Gi + ^ VG^i) ?—^.
l^^iF V2g

It is easy to see that this formula will hold good for any trian-

gular or polygonal pyramid.

Example.—An obelisk-shaped reservoirisSfeetlong and 3 feet wide on

top and at a depth of 4 feet, where a short pipe 1 inch in diameter and 3

inches long is inserted in it, it is 4 feet long and 2 feet wide ; how long a

time will be required for the water to sink 2| feet ? The time required to

empty it is, assuming fi = 0,815, _

^=[8.4.2 + 3.5.3 + 2(3.4 + 5.2)]
^

15. 0,815. ^.(^J. 8,025
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153 . 4 . 4 . 144

15.0,815.8,025. 7

At the level 4-2^

= 153
2304

12,225 . 8,025 tt

14 feet above the tube 1=1

= 153.7,475:= 1144 sec.

+ I-
- 4| and

h = h + 2f feet ; hence the time required to empty the vessel, when
it is filled to that height, is

^, =[8.4.2 + 3.^.i^ + 2(2.^ + 4.Y)].

= 603 seconds.

1152 Vl,5

15 . 0,815 . 8,025 tt

The difference of these times gives the time (541 seconds) in which the

surface of the water will sink 2^ feet from the top.

§ 453. Irregularly-shaped Vessels.—If we are required to

find the duration of efflux for an irregularly-shaped vessel H F R,

Fig. 789.

A

Pig. 789, we must employ some method of approximation, such as

Simpson's Eule. If we divide the whole quantity of water into 4

equally thick layers and denote the heads corresponding to the

different horizontal sections G^, G^, G^, Gz, G^, by h^, li^, 7^2, /?3, h^,

we obtain., according to Simpson's Rule, the duration of the efflux

,_ h,-h_/G,
.

4(7, ,
2 6^,

.
4 6^3

.
G,

+
12 nFV2g^Vh, V\ VJ, Vh

+
Vh/

f = Ge

If we divide it into six layers, we have

K - h_ / G^^ 4.G^^ 2G,
^

46^3
,

2 G,
^

4g,
^ ^

18 ^ FV2g ^Vh, Vli, VTo Vhz VTi, V h, Vli,

The discharge in the first case is

h,-li.

r-
12

K - h
18

- (6^„ + 4 G^i + 2 6^o h 4 6^3 + G^), and in the second

{G, + 4. G, + 2 G, + ^ G, + % G, + 4. G, + G,).

If the form and size of the reservoir is not known, we can cal-

culate the discharge V by observing the heights h^, Ji^, etc., of the

water at equal intervals of time. If t is the whole duration of the

efflux, we have for orifices in the side and bottom

V = l±I^l ( |/T„ 4- 4 Vi; + 2 1/X + 4 lOa 4- VT,),

and for overfalls or notches

F = I ^- V¥g{ VV + 4 t^^ + 2 1/^"^ + 4 i/lH' + Vh,').
J./i



a^ = 495000 u

G^ = 410000 u

G^ = 325000 u

G^ = 265000 n
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Example.—In what time will the surface of the water of a dam sink 6

feet, when the discharge-pipe is a semi-cylinder 18 inches wide, 9 inches

high, and 60 feet long, and when the cross-sections of the surfaces of the

water are

for a head of 20 feet, G^ = 600000 square feet,

" " 18,5
''

" " 17,0 "

" " 15,5 "

" " 14,0 " (^4 = 265000 " ?

TT 9 TT

Now F = -^ . ay = ^^ = 0,8836 square feet. If we put, as in the Ex-

ample of § 451, the coefficient of resistance for the entrance of the water in

the pipe = 0,832 and that of the friction, = 0,025 -, = 0,025 . 60 . 1,091 =

1,6356, we obtain the coefficient of efflux

. u = - =— = 0,537, and
Vl + 0,832 + 1,6356 V3,4685

f^ F^2g = 0,537 . 0,8836 . 8,025 = 3,808.

Now we have

^ = m^^l = 134170,^ = ^1^0 = 115090,
V^ V2() V^i Vl8,5

^ = ll^i* = 99440,^ = ??^ = 82550.
V^g Vl7 V^3 Vl5,5

G^ 265000

Va^ V14
= 70830 : hence the duration of the efflux is

t ^ —- (134170 + 4 . 115090 + 2 . 99440 + 4 . 82550 + 70830)
12 . 3,808

1194440= — = 156833 seconds = 43 hours 33 minutes 53 seconds.
7,616

The discharge is

V= -^. (600000 + 4 . 495000 + 2 . 410000 + 4 . 325000 + 265000)

4965000 ^oOOrrAA U- -C 4.= = 2882500 cubic feet.
2

§ 454. Influx and EfElux.—If, while water is flowing out of

the vessel, other water is flowing into it, the determination of the

time in which the level of the w^ater will rise or sink a certain dis-

tance becomes much more complicated, and we are generally obliged

to content ourselves with an approximate result. If the discharge

per second into the vessel Q^y fji FV2 g h, the water will rise, and

if Qi < f^ F V2 g h, it will sink. But the level of the water be-

comes constant, when the head is increased or diminished, until it

becomes equal to ^ = ^ ( -^ 1 . The time r, during which the
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variable head x is increased a small quantity |, is determined by the

equation Gi ^ = Qi r — fi F V2 ff x . r,

and, on the contrary, the time, in which the surface of the water

sinks a distance I, is determined by the equation

G,^ = [i FVYg'x .T - Q,T.

Hence we have in the first case

^

, and in the second
Q,- fiFV2gx

\iF V2gx - Q,

By employing Simpson's Rule, we obtain the time of discharge,

during which G^ becomes successively G^, G.^, etc., and the head h^

becomes /ii, Ih, • • •?

12' ^11 F VJg h, ~ Q, [xF VWfii -Qi l^F V%i]i, - ft

4 6^3 G,3 ^
liFV^glH- Q, fiFV2gh~ ft

}

or if we denote ——^—=r by V Jc , we have more simply
fi F V2 g

t
= ^^0 - ^^ r G,

_^
_4 G, ^ ^ JG,

12 II F V2g L VT^ - VT V~h, - VT V~h,- Vic*

+ J^' ^ + _^- 1
Vh- Vk Vh^- Vk^

If the vessel is prismatic and its cross-section is constant

and = G, we have (see the author's " Experimentalhydraulik,"

§9, XII)

for the time, m which the head h changes to Ih.

^ , -, VI- sHc Vli - Vh
Since for li^ = k, ——

^

— = ^ = oo,

Vh- Vk
it follows that the level of the water becomes permanent after an

infinite time has elapsed.

For a notch in the side we have the following formula

G k I {VI- Vly (h + ^^TiJ> 4- k)

( Vh, - VkY (^ + VTk + ^)

,
^/TK.

, {
Vh-\%) Vl2k n

^^^l^tang.
3 ^ + (2 Vh+^VWi^ Vh,+ VD^
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in which h
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and I denotes the Naperian logarithm

and tayigr^ y the arc whose tangent is y.

According as ^ ^ A or the discharge into the vessel

ft 5 I i^ ^ ^Wh%
a rising or a sinking of the water in the vessel takes place. The
state of permanency occurs, when Ih — ^% but in this case the cor-

respondmg time t becomes = oo

.

Example.—In what time will the water in a parallelopipedical box

12 feet long and 6 feet ^vide rise 2 feet above the sill of a notch in the side

^ foot wide, when the discharge into it is 5 cubic feet per second ? Here

we have A = and consequently more simply

'

G-Tc v-Ti^ + ^/hji^ + lc
^ .^^ . -Vsi;

t = --—
I I \ _—i \- 12 Umg. -—~ 1_

Now G^ = 12 . 6 = 72 feet, Q^ = ^^Ji^ = 2,1 = ^, ji = 0,6, and

^ "^
Vf. 0,6 ."^.8,025

/hJ

2,133 ;

hence the time required is

72 . 2,1330 r, 4,1330 + V4,2660

3. 5

10,238 1 I

L (1,4142

6,1984

- Vl2 ta7uj-' (^--

V6

1,4605)

0,002144
- ""^ '"^^-^ {lM5-^]

10,238 (7,969 — 1,776) = 10,238 . 0,193 = Qd^ seconds.

4142 + 2,9210)]

§ 455. Locks and Sluices.—We can make a useful applica-

tion of the principles just enunciated to the filling and emptying

of looks and sluices (Fr. ecluses-; Ger. Schleusen). We distinguish

two kinds of locks, name-

ly, the single and the

double. The single lock

consists of a chamber B,

Fig. 790, w^hich is sepa-

rated from the water in

the liead lay A by the

gate HF and from that

in the tail hay C by the

gate R 8. The doiihle

lock, Fig. 791, on the

contrary, consists of two

chambers with an upper

gate K L, a middle one

HF, and a low^er one R S.
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1) If we put the mean horizontal cross-section of the chamber

of a single lock = G, the distance Oi of the centre of the open-

ing in the upper gate below the surface H R oi the water in the

head bay = h^, its distance 0^ O. above the water in the tail bay = Aa

and the cross-section of the orifice in the gate = F, we have the

time necessary to fill the lock to the middle of the orifice, during

which the head is constant,

ti = Gh

and the time necessary to fill the remaining space, during which

there is a gradual diminution of head,

- ^ (^h

hence the time required to fill the whole lock is

If the orifice in the lower gate is entirely submerged, the head

decreases gradually during the emptying from Or, = Ji^ + h.. to

zero, and the time of emptying the lock is, therefore,

, _2G Vh, + h.

H'J^ V,2g

But if, on the contrary, a part of the orifice lies above the

lower water level, we have to consider two quantities of water, one

discharged above and the other below the water. Putting the

height of the portion of the orifice above the water = ai, the height

of that below the water = a.2 and the width of the orifice = b, we
obtain the duration of the efiiux by means of the formula

,
2 G (Ih + h)

z — ~
•

2) In the double lock (Fig. 791) the head in the upper cham-

ber which is cut off from the head bay gradually diminishes during

the efflux into the second chamber. If G is the horizontal cross-

section of the first chamber, and if the initial head Oi = h^

is diminished to X 0, = x, while the water in the lower chamber

rises to the middle of the orifice in the gate a distance Oi Oo = K,

wc have the time corresponding to it

2G
'^ = /^^vf^(^-^)-

But the discharge is
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G (^1 — X) — G-ihi\ hence

G
X = h^ — -p^h^ and

*
^^

( /^ 4/7, ^^M

The time in which the water in the second chamber rises to a

/evel with that in the first, or in which the water in the two cham-

bers assumes a common level, is, according to § 449,

_ 2<y^i^^ _ 2 G^'iG \^Gli, -G,h,
^'- f^F(G+G,)V2~g~ liF{G+G,)VTg '

and the whole time required to fill it is

Example.—What time is necessary to empty and fill a single lock of

the following dimensions : mean length of the lock = 200 feet, mean width

= 24 feet or G^ = 200 . 24 = 4800 square feet ; distance of the centre of

the orifice in the upper gate from both surfaces of water = 5 feet, width

of both orifices = 2|- feet, height of the orifice in the upper gate = 4

feet, and height of the orifice (entirely submerged) of the lower gate = 5

feet .? Substituting in the formula

^ ^ (2 h^ + h,)_a^

fi Fy2 gh
h^:=5,h^ = 5, G = 4800, fx = 0,615, i^ = 4 . 2| = 10 and s/^g = 8,025,

we have for the time required to fill it

_ 3.5.48j^ ^ _11^__^ ^ 652^ sec. = 10 min. 52^ sec.~
6,15 . 8,025 V5 1,23 . 8,025 VS

If we substitute in the formula

t = -^
G^h^^h^^

Q. ^ 4800, h^ + Ag = 10, i^ = 5 . 2^ = 12,5, we have

fi F V2 g

the time necessaiy to empty the lock

/ :
^- = 492 seconds = 8 minutes 12 seconds.~ 0,615 . 12,5 . 8,025

§ 456. Apparatus for Hydraulic Experiments.—By means

of the apparatus represented in Fig. 792, we can not only show by

more than 100 experiments the most important phenomena of

efflux, but also prove in figures the most important of its laws-

The apparatus consists of a discharging vessel ABC, which is

provided with three orifices F^, F^, i^s, whose centres are at dis-

I
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tances from the mean level of the water, which are to each other

as the squares 1, 4, 9. To these orifices various mouth-pieces and

pipes can be applied, and in order to do this without being dis-

FiG. 792.

A A

turbed by the water, we close the orifice by means of a particular

kind of valve Hj, H^, to which is attached a rod passing through a

stuffing box in the back of the apparatus. In the upper and wider

part A B of the apparatus two pointers Z^ and Zc^, which are

directed upwards, are placed. These serve as fixed points, the one

marking the beginning and the other the end of the experiment.

The water which is discharged is caught in a vessel, which before

each experiment is placed on top the discharging reservoir, into

which its contents are emptied by opening an orifice that is gen-

erally closed by a stopper.

In order to find by the aid of this apparatus the coeiBBcient of

efflux \i for different mouth-pieces and tubes, we must observe by

means of a good stop-watch the time t, in which the water-level

sinks from one pointer to the other, or within which the head li^

becomes li^^ if, then, i^is the cross-section of the orifice and G the
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area of the sinking surface of the water, we have the coefficient of

efflux (see § 448)

_ %G(Vh,- Vh,)^~
FtV¥~g

'

and the corresponding mean head

^^l 2 )'

This apparatus is provided with a collection of mouth-pieces and

tuhes, viz., square, rectangular, circular and triangular orifices in a

thin plate with or without an internal rim, short cylindrical and

conical tubes, long straight tubes of different diameters, elbows,

bends, etc., which can be inserted in the different openings i^i, F.^,

F^. By means of an apparatus with the above accessories we can

show in a few hours all the phenomena and laws of efflux ; with it

we can study not only the perfect and imperfect and complete and

incomplete contraction, but also the different degrees of the con-

traction of the jet, and we can make ourselves acquainted with the

resistance of friction, with that of elbows and bends, and also, by

observing jets of water and the sucking up of water, with the

positive and negative pressure of water. We will always find

results which agree pretty well, and sometimes extraordinarily

well, with the coefficients given by experiment (f*, 0, a, ^). In our

apparatus G == 0,125 square meters, the usual diameter of the

orifices and tubes is 1 centimeter, and for the lower orifice

Ai — 0,96 meters and li^_ = 0,84 meters. (A detailed description of

this apparatus and of the experiments, etc., which can be made

with it, is given in the author's " Experimentalhydraulik.")

The following example shows how well observations with this

apparatus agree with the well-known experiments on a large scale.

With a short cylindrical tube placed in the lower aperture, t was

= 33, and with a long glass tube, for which the ratio -% = 124, t

was found to be = 56 ; from this we deduce in the one case

!h = 0,815 and Ci = ^ - 1 ^ 0,504,
H'

and in the other

0,480 and 4-0 = -^ - 1 = 3,332;
^2

hence

^2 - ^, = 3,332 - 0,504 = 2,828,

1
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and therefore the coefiicient of friction for the tube is

? = ^(^,_f,) = ^^ = 0,0238.

According to the first table in § 429, for the mean velocity v —
1,8-1 maters, with which the water was discharged from the tube,

^ = 0,0215; the results agree, therefore, very well. By means

of these experiments, we can satisfy ourselves that the velocity of

efflux of the water does not depend at all upon the inclinafcion of

the tube, but upon the head of water above the orifice of discharge.

The duration of efiSux is the same, no matter whether the long tube

is inserted in the lower or middle opening, provided its orifice of

discharge is at the same depth below the surface of the water in the

reservoir.

This apparatus has recently received many additions, so that we
can now make with it experiments upon the efflux of water under

constant pressure, upon the efflux of air, and also upon the pressure,

impact, and reaction of water.

Closing Remark.—A very complete list of the works upon the subject

of efflux of water and upon the motion of water in tubes is given in the

" Allgemeine Machinenencyclopadie," Vol. I, Art. '' Ausfluss." We will

mention here, among the later works, Gerstner's " Handbuch der Me-

chanik,^' Vol. 2, Prague, 1832 ; d'Aubuisson's " Traite d'Hydraulique ^

Tusage des Ligenieurs," II edit. 1840 ; Eytelwein's " Handbuch der Me-
chanik fester Korper und der Hydraulik," 3d edition, 1842; Scheffler's

" Principien der Hydrostatik und Hydraulik," Braunschweig, 1847. The
older works of Bossut and du Buat upon hydraulics are always of value on

account of their practical treatment of the subject. " Die Experimental-

hydraulik, eine Anleitung zur Ausfiihrung hydraulischer Versuche im
kieinen," by J. Weisbach, Freiberg, 1855, is particularly adapted for teach-

ing and for the practical study of hydraulics. Kiihlmann's " Hydrome-
chanik" is also to be recommended. The more recent works of Lesbros,

Boileau, Francis, etc., have been mentioned before (§§ 378, 380 and 387).

We can also recommend Eankine's " Manual of Applied Mechanics," as

well as Bresse's " Cours de Mecanique Appliquee," II. But two parts of

the hydraulic experiments of the author have as yet appeared, and they are

1) " Experiments upon the efflux of water through valve-gates, cocks,

clacks, and valves ;" and

2) "Experiments upon the incomplete contraction of water during

efflux, etc., Leipzig, 1843."

Several new treatises by the author upon hydraulics are contained in

the " Civilingenieur," the " Zeitschrift des Deutschen Ingenieurvereines,"

etc.

59
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CHAPTER VI.

OF THE EFFLUX OF THE AIR AND OTHER FLUIDS FROM VESSELS
AND PIPES.

§ 457. Efflux of Mercury and Oil.—The general formula

V = VfgJ (see § 397)

for the velocity v of efflux of water under a pressure, measured hy

the head h, holds good (see § 399) also for other liquids, such as

quicksilver, oil, alcohol, etc., and can also be employed for the ef-

flux of air and other aeriform fluids, when the pressure is not very

great. If y denotes the heaviness of the fluid and p its pressure

upon the unit of surface, we have in like manner h =^ and

therefore

V = y2ff

If we measure the pressure by means of a piezometer, filled with

a liquid whose density is yi, the height of the column of liquid is

hence p = hi yi, and therefore

V = \/2g^h = V2j7J„

in which ^i = — denotes the ratio of the heaviness of the liquid in
r

the piezometer to that of the fluid which is being discharged.

This agreement of the laws of efflux for difi'erent fluids is not

confined to the velocity alone, but extends to the contraction of

the fluid vein. Streams of mercury, oil, air, etc., when passings

through an orifice in a thin plate, are contracted in almost exactly

the same manner as a stream of water. Some experiments made

by the author upon the efflux of mercury, oil and air, have shown

conclusively this agreement (see the Polytech n. Centralblatt, year

1851, page 386). These experiments gave

1) With a circular orifice in a thin plate 6,5 millimeters in di-

I
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ameter, under heads of 91,5 millimeters and 329 millimeters, the

coefficients of ef&ux

For water. Mercury. Rape-seed oil.

fi = 0,709 0,670 0,674

From the above table it appears that the contraction of streams

of mercury and rape-seed oil is a little greater than that of a stream

of water.

2) With a short, well-rounded, conoidal mouth-piece, whose di-

ameter d was 6,6 m. m. and whose length was double the diameter

{I = 'H d), the following values were found

For water. Mercury.

Rape-seed oil.

At a temp. i2i° C. At a temp. 39° C.

11 = 0,942 0,989 0,430 0,665

3) A short cylindrical pipe, which was not rounded off inside,

whose diameter was d = 6,76 millimeters and which was three

times as long as wide {I = d d), gave the following values

:

For water. Mercury.

Rape-seed oil.

At a temp. 12^° C. At a temp. 39° C.

a = 0,885 0,900 0,363 0,604

From these experiments we find that mercury flows through

short mouth-pieces and pipes but little faster than water, and that,

on the contrary, the velocity of rape-seed oil increases visibly with

the temperature and is less than that of water. The great differ-

ence between the velocity of water and oil is due to the greater ad-

hesion of the oil to the walls of the pipe.

4) The following values of the coefficient of resistance C were

obtained with a glass tube 6,64 millimeters in diameter and 86

times as long as wide (I) and with an iron tube 6,78 millimeters in

diameter and 85 times as long as wide (II).
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1

For water. Mercury.

Rape-seed oil.

At a temp. i2|° C. At a temp. 39° C.

I. ^ = 0,0271 0,0277 39,21 2,722
1

II. ^ = 0,0403 0,0461 54,90 5,24

Fig. 793.

M

' According to this last experiment the coefficient of resistance

of mercury in an iron or glass tube is a little greater, and, on the

contrary, that of rape-seed oil many times greater than that of

water. We also see from these tables that the coefficient of resist-

ance of the rape-seed oil diminishes as the temperature or degree of

fluidity increases. These experiments also show that the coefficient

of resistance for the iron tube is much greater than for the glass

tube, which is due to the greater smoothness of the latter.

§ 458. Velocity of Eiilus: of Air.—If we assume that the

air does not change its density during the efflux, the weU-known
formula for the efflux of water from vessels can also be applied to

the efflux of air. If p is the pressure of the

exterior air and pi and jx the pressure and

heaviness of the air inside the vessel A B,

Fig. 793, we can put for the velocity of ef-

flux of the latter (see § 399)

But (according to § 393), if^ is the pressure in kilograms upon

a square centimeter of surface, y the weight of a cubic meter of air,

and r its temperature

I - 1 + 0.00367 . T

y
~

1,2514 '

or, lip is referred to a surface of one square meter,

~ = fl^ (1 + 0^00367 t) = 7991 (1 + 0,00367 r)

;

hence it follows that
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V~ = y^=: Vmi Vl + 0,00367 r,

or replacing 0,00367 by 6

y^ = 89,39 Vl + 6^,andv = 89,39 \/2g(l + d r) ll - ^\

= 396 /(I + d r) (1 - |-),

or for the English system of measures

V = 161,9 1/2 ffil + d r) (1 - ^\

= 1299 y{l + 6r) ll - ^\

d in de

3ight

eter {M),we have also

Pi h ^

and consequently the velocity of the issuing air

P^

T being expressed in degrees of the centigrade thermometer.

If b is the height of the barometer and h that of the manom-
e ;

p h ^ p h=
1 7? or 1 — ^^ = -. =-,

Pi h + h' joi h + h'

z; — 396 1/(1 + 6r) meters

= 1299 i/(l + 6r) -A^ feet,

or approximatively, when the height of the manometer is small, by

putting

n

/
1 -

1 +
1-

~
^^'

V = 396 (1 -^ r(l + ^ '^)

I
meters

= 1299(1- A)y/(i + ,5,)|feet.

Remaek.—On account of the ordinary humidity of the atmosphere, it is

advisable in practice to take 6 = 0,004.

§ 459. Discharge.—If F is the cross-section of the orifice, we

have the effective discharge, measured at the pressure in the reser-

voir, pi OT b -^ hf
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y
E.G., for atmospheric air

Q, = 396 FV^^4^ cubic meters

= 1299 F /(ii:-^4li cubic feet.

If we reduce this quantity of air to the pressure of the exterior

air p or ^, we obtain

Y P p,

E.G., for atmospheric air

Q = 396 F y {1 + dr) (l +^^ cubic meters.

Q = 1299 F \/{l + ^ ^) (l +
^) ^ cubic feet.

Example.—^The air in a large reservoir is at a temperature of 120° C
and at a pressure corresponding to a height of the manometer of 5 inches,

while the barometer marks 29,2 inches ; what will be the discharge through

an orifice 1^ inches in diameter ?

The theoretical velocity of efflux is

/
~

5 /l 4404 5
V = 1299 |/ (1 + 0,00367 . 120) -^ = 1299 |/ - ^^^' = 596 feet, and

the cross-section of the orifice is

-^ = ^r = 4 •

(

D' = 256 = "'"^^^^ ^1""'^ ^'"" '

hence the theoretical discharge, measured at the pressure in the reservoir, is

^^ = i^^ = 596 . 0,01227 = 7,313 cubic feet,

and, on the contrary, at the exterior pressure the volume is

Q = ^li Q = ^h^, 7,313 = 8,565 cubic feet.

§ 460. Efflux according to Mariotte's Law.—If we suppose

that the air does not change its temperature during the discharge,
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we can assume that it expands according to the law of Mariotte

(see § 387), and therefore that the quantity of air Q in passing from

the pressurep to the pressure pi performs the work Qp I (— ). If

we put this work equal to the energy ^^ Q y stored by § y during

the efflux, we obtain the following formula

hence the velocity of efflux is

-i/^^f^(f)^
Now, as in the foregoing paragraph, for the metrical system of

measures - = -^-t^^^tt- ; hence we have here also
y 1,2514

V = 396 y (1 + 6r)l i^\ = 396 j/(1 + d r) I (^-) meters,

and

V = 1299 |/(1 + d r) I (^^\ = 1299 |/(1 + 6 r) I (^-^) feet,

in which h denotes the height of the barometer in the exterior air

and h the height of the manometer for the confined air, r the tem-

perature of the latter in degrees centigrade and 6 = 0,00367 the

well-known coefficient of expansion of air. Now the theoretical

discharge per second is

Q = Fv = F\/2gfl[fj

= 1299 F \/{l + (5 r) / (*-y-^) cubic feet,

or, when reduced to the pressure of the air in the reservoir.
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If the excess of pressure of the air in the reservoir, or ^j is very

small, we can put

(see the Ingenieur, page 81), and therefore, approximatively,

<^=-Mi^-m'

e=v..f(i.i)f

y
while according to the first formula for the efiSux (see § 459)

|i + vl
r

We see that if we assume that* air in flowing out expands

according to Mariotte's law, we obtain a smaller discharge than

when we consider that the air acts exactly like water and does not

expand at all. This difference diminishes with p and in both cases

for very small values of y» we have

Q = FY^g^,
I
= 1299 F \/{1 + 6 r) | cubic feet.

§ 461. Work Done by the Heat.—The logarithmic expres-

sion, found in § 388, for the work done during the compression or

expansion of air is correct only, when we assume that, while the

change of volume or density is taking place, the temperature of

the air does not alter ; but this is correct only, when the change

takes place so slowly that the heat in the confined air has time

enough to communicate any excess to the walls of the vessel and

to the exterior air. But if the change of density takes place so

quickly that it is accompanied by a change of temperature, when
the air is compressed, the temperature is elevated and when it is

expanded, it is lowered. Under these circumstances the tension

cannot change according to the law of Mariotte alone. If p and

Pi are the pressures, y and yi the heavinesses and r and Tj the tem-

peratures of the same air, we have, according to § 392, the formula

p 1 + ^ r * y

'

Now if during the sudden change of pressure the temperature

varies in the ratio

1 + (5t, ^ / y,\*

l + dr Vy/'

«
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we can put

or

''H-m'-iff-

Fig. 794.

If in a cylinder A C, Fig. 794, a prism of air, whose initial

height is U B = Sy whose initial tension is p
and whose heaviness is y, is cut off by a piston

E F, and if, by suddenly raising the piston a

distance rr, we cause the density of this mass

of air to become y and its tension to become

z, we have, according to the last formula,

p \yl \s — xl'

and therefore

i—i\s + x! V-

In order to move the piston, whose area

we will for simplicity put equal to the unit

of surface, through an element a of its path

the work, which must be done, is

% G = (— )'

\s — xl
-\ p a = p G si {s — xy

Substituting instead of x successively 1 a, 2 (t, 3 (T . . . and put-

ting s = n G and the height of the prism of air, when the piston

has described the space E E^, Ei B = Si = m g, we have for the

work done by the piston in moving the distance E E^

Ai=p G 5'- [s-? + {s — (y)"'^ + (s — 2 tT)-l + . . . + (5 — m (7)-t]

((T)-f + (2 (7)-§ 4- (3 (7)-§ + ,.. + (n (t)-! )

[(G)-i + (2 ct)-I -f (3 (T)-f 4- . . . + (m g)-1] \

__ p^ j
1-t + 2-t + 3-t + . . . 4- m-' + . . . + n-' )

~"
"(T* ( - (1-t + 2-t + 3-t + . . . + wz-t) r

Now, according to page 88 of the Ingenieur, when m and n are infi-

nitely great numbers, we have

and



938 GENERAL PRINCIPLES OF MECHANICS. [§461.

1-1 + 2-1 4- 3-1 + . . . + w-l = - -^

;

hence

If by raising the piston another distance s we wish to force the

compressed mass of air A E^ into a space R, where the pressure is

the work to be done will be

A - —P^^

the exterior air presses upon the piston during the whole of its

course with a force p and transmits to it the mechanical effect

A^ — 2) s. Hence the total mechanical effect necessary to compress

the volume of air (1 . s) and force it into the space R is

and consequently the work done in compressing a volume of air

from the pressure p to pi is

while, according to Mariotte's law, we should put

and for perfectly incompressible fluids we have

If, on the contrary, the quantity Fj yi of air at the pressure jh

is brought back by sudden expansion to the pressure p and the

density

or to 'ithe volume

the work done by air is
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Example.—If a blowing engine converts per second 10 cubic feet of

air at a pressure & = 28 inches of the barometer into a blast at the pressure

b + h = SO inches, it requires, according to the formula,

since the pressure per square foot is

p = 14A. 0,4913 5 = 144 . 0,4913 . 28 = 1981 pounds,

the mechanical effect

^ = 30
.
1981 (yll - i) = 59430 (y ^~A = ^^^^

•
^'^^^^

= 1382 foot-pounds.

The logarithmic formula (see Example 1, § 388) gives A = 1366,7 foot-

pounds, and that for water

A = Vp (^^ - l) = 19810 (^-1^ = ^^ = 1415 foot-pounds.

§ 462. Efflux of Air, when the Cooling is taken into

consideration.—The energy A = 3 ^i^j>i 1 — (—) i which is

restored during the sudden expansion of Qi to Q, can be put equal

to the work Qi ji . ^r— done in overcoming the inertia of the mass

Q y-^-^ of air when the latter assumes the velocity v»

From the equation

«.r4 = 3^...[i-(j/}

we deduce the following formula for efllux

:

f = ^-Ilh- (m or

hence we have in meters

^ = ^^^-'irl'-&}'

= 154,8 /2^(1 + <}t)[i- (|-)*]

= 685,8 '/(l7rfT)[l-g-)*]

and in English feet

= 280,4 4/2^(1 + <J^)[l -
(f)']

= 2250-1/(1 +d t) [1 - /^V] feet.
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The tension of the issuing air is-that of the exterior air^j; its

heaviness is / px^

and its temperature is

and the theoretical discharge from an orifice, whose area is F, is

= 280,4: FY 2 ^ (1 + c5 t) [l - /^V] cubic feet,

in which p^, y^ and Tj denote the pressure, heaviness and tempera-

ture of the confined air.

Eeduced to the pressure in the reservoir, this discharge is

*=f:-«-(l;)'*=^©v^».3|[i-(|y}
and, finally, reduced to the pressure of the exterior air and to the

temperature of the air in the vessel or to the heaviness y =

.(Ait.

K we put — = —7—, in which b denotes the height of the ba-

rometer in the exterior air and h + h that of the barometer in the

confined air, we obtain

^ = ^/^^f?W[f?M

= mo F /(l + dr)(^^)*[(^'i)*-l] cubic feet

In most cases t is very small, and we can put

{^')~'^-~'h~^\V ^"VJ* T - -i ; + R^i
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rj[l-ij + 3^t(^)}

and therefore

,=V^,^.f[i.,^-,(fyj[x-,|.,,g]

In the application of this formula to fans, blowing engines, etc..

in which cases ^ < h ^^^ theoretical discharge, measured at the ex-

terior pressure and the interior temperature, is simply

q = f/^^
= 89,39 F\/2g(l -i- 6 r)^ = 396 F y {1 + d r) | cubic meters

= 161,9 Fy2g{l + 6r)^= 1299 F\/{1 + ^ ") r cubic feet.

Example.—^In the case treated in the Example of § 459, where h = 29,2,

7i = 5 inches, r = 120° and F = -j- = 0,01227 square feet, we have the

discharge according to the last formula, measured at the pressure of the

external air,

/ 5~

Q = 1299 F y 1,4404 . —^ = 1299 F Vo,2466

= 645,1 F = 645,1 . 0,01227 = 7,915 cubic feet,

while previously (§ 459) we found, according to the formula for water,

Q — 8,565 cubic feet, and according to the logarithmic formula in § 460,

we have

Q = 1299 F V 1,4404 Z^ = 1299 i^ V0,2277
' 2t7,^

= 619,9 . 0,01227 = 7,606 cubic feet.

§ 463. EflElux of Moving Air.—The formulas for efflux

already found are based upon the supposition that the pressure p
or the height h of the manometer is measured at a place, where the

air is at rest or moving very slowly ; but if we measure pi and h^

at a point, where the air is in motion, if, e.g., the manometer Jf,

is in communication ^yith the air in a pipe C F, Fig. 795, we must
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take into consideration, in determining the velocity of efflux, the

vis viva of the approaching air. If c be the velocity of the air pass-

ing the orifice of the manometer, we must put

<>.r.,^=..r,f^.3,.,[i-(|-y]

If F denotes the cross-section of the orifice and G that of the

tube or of the stream, which passes the orifice of the manometer,

the discharge of air is §i yi = G cy-^ — F vy^y hence

c_ _ Fy^ ^ F^

V Gy~G &' and

*v.[.-©'V]|='*4'-©'].
and the required velocity/ of efflux is

'or approximatively, when pi is not much greater than p.

V = 'fb-m
-(f)

= 2250 F-&
feet.

Fig. 795.

Here, as in the case of the efflux of water, the velocity of efflux

F
increases with the ratio -^ of

the cross-section of the ori-

fice to that G of the pipe or

mo^dng stream of air. We see

from this that, under the same

circumstances, the height p^

of the manometer decreases

as the diameter of the tube

diminishes, or as the velocity of the air in the pipe increases.
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If we denote by 11 ^ the tension in tlie reservoir, where the air is

at rest, we have also

2^ r, L VVJ'
and if we eliminate v from the two expressions, we obtain

iTTfy
" ^ " (f

)^

(J)^
Wroximatively = 1 - (J/

If h denotes the height of the barometer in the free air, Ti that

of the manometer connected with the reservoir and i^the area of

the orifice of efflux, we have, finally, the theoretical discharge,

measured when its heaviness is

' Ti

Example.—The height of a quicksilver manometer, which is placed

upon a pipe 3i inches in diameter through which air is passing, is 2|^ inches,

while the air is discharged through a circular orifice 2 inches in diameter

at the end of the pif)e : what is the velocity of discharge, assuming the

barometer in the external air to stand at 27|- inches and the air in the pipe

to be at a temperature of 10° C ? Here

Vl + dr = VT,0367 = 1,018, y -^
= 4f^ = V^ = 0,3015 and

F = irr'' = 3,141 : 144 = 0,02181 and

f /^y_ V49^ - 16^ 46,314

49 49
= 0,9452

;

hence the discharare is

Q = 1299 F .
Ml?-?'!^ = 421,8 F = 9,20 cubic feet.

0,94o2 ' '

For the corresponding tension p^ in the reservoir, we have

=^S = 0,03212; hence
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^ = 0,90788,^0 = 1,103 j9 and I + \ = 1,103 h

and consequently the height of the manometer in the reservoir is

\ = 0,103 l = 0,103 . 27,5 = 2,83 inches.

§ 464. CoefBcients of EfElux.—The phenomena of contrac-

tion, which we have studied for the efflux of water, are also met
with in the efflux of air from vessels. If the orifice of efflux is in

a thi?i plate, the stream of air has a smaller cross-section than the

orifice, and the effective discharge Qi is consequently smaller than

the theoretical Q, or the product i^i? of the cross-section i^ of the

orifice and the theoretical velocity v. This diminution of the dis-

charge is owing principally, as we can observe in a stream of

smoke, to the contraction of the stream of air, and we can, there-

fore, as in the case of water (see.§ 406), call the ratio a = —
- of

the cross-section F^ of the stream of air to that F of the orifice

the coefficient of contraction,

the ratio = — of the effective velocity %\ to the theoretical v

(see § 408)
the coefficient of velocity.

and the ratio ii = j^ = -~-^ = a of the effective discharge Qi

to the theoretical discharge Q
the coefficient of efflux.

As in the case of water the coefficient of velocity </> for the ef-

flux of air through an orifice in a thin plate is nearly = 1, and

therefore, so long as we have no measurements of the stream of air,

we must put the coefficient of efflux jj, = a cp equal to the coefficient

of contraction a. The older experiments upon the efflux of air

through orifices in a thin plate vary very considerably from each

other. The experiments of Koch, calculated according to the

formula for water by Buff, gave for circular orifices from 3 to 6

lines m diameter, when the height of the water manometer was

from 0,2 to 6,2 feet, f.i = 0,60 to 0,50 ; on the contrary, the expen-

ments of d'Aubuisson, calculated in the same way, give for circular

orifices 1 to 3 centimeters in diameter, when the height of the

water manometer is between 0,027 and 0,144 meters, fi = 0,65 to

0,64. Poncelet also found, upon calculating the experiments of

Pecquevir by the same formula, for an orifice 1 centimeter in diam-

eter, under an excess of pressure of 1 atmosphere, or of a column
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of water 10 meters high, fx = 0,563, and for a similar one 1,5 cen-

timeters wide, |Li = 0,566. The more extended experiments of the

author, calculated according to the last formula

i-d^-my'^i
gaye the following results:

1 ) When the diameter of the orifice d = 1 centimeter and the

ratio of the pressures was

Pi 5 + h
1,05 1,09 1,43 1,65 1,89 2,15

11 = 0,555 0,589 0,692 0,724 0,754 0,788

1

2) When the diameter of the orifice d — 2,14 centimeters, for

b + h
1,05 1,09 1,36 1,67 2,01

11 = 0,558 0,573 0,634 0,678 0,723

3) When the diameter of the orifice d — 1,725 centimeters, for

b-^ h

b
1,08 1,37 1,63

11 = 0,563

. !

0,631 0,665

4) When the diameter of the orifice 6? = 2 centimeters, for

b + h

b
1,08 1,39

11 = 0,578 0,641

The coefficient of contraction for ef9.ux through an orifice in a

thin plate increases sensibly with the head. But if the formula for

water is employed, there is much less variation ; this formula gives

^ nearly y—, e.g. for ^ = 2; V^ = 0,707 times as great as the
P P
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last formula. According to the first table, ior d = 1 and 2,

fi = — ^r—

^

= 0,771 ; hence, according to the water formula,

^ — 0,707 . 0,771 — 0,555, which is nearly the same value as Pon-

celet found.

For efiSux through a circular orifice 1 centimeter in diameter,

situated in a conically convergent imll, the angle of xjonvergence

being 100 degrees, the author found for

1,31 1,66

fj,
= 0,752 0,793

In like manner with the same orifice in a conically divergent

wall, the angle of divergence being 100 degrees, the author obtained

for

1,30 1,66

1

0,589 0,663

§ 465. The variability of the coefi&cient of contraction a = fi

for the efflux of air through an orifice in a thin plate also affects,

according to the weU-known formula

fi = cl> = -^^4= = — \ (see § 422),
Vl + ^ *mf^

the coefficient of efflux for short pipes. According to the experi-

ments of Koch, cited above, we have for such tubes 3 to 4 lines

in diameter and from 4 to 6 times their diameter in length, when
the pressure is 0,3 to 6,2 feet of the water manometer, // = 0,74 to

0,72, while, on the contrary, d'Aubuisson gives for similar tubes, 1

to 3 centimeters in diameter, 3 to 4 times as long as wide, and

under a pressure equal to 0,027 to 0,141 meters of the water ma-
nometer, fi = 0,92 to 0,93; and Poncelet found for cylindrical

pipes 1 centimeter in diameter and from 2^ to 10 centimeters long,

under twice the atmospheric pressure, fi = 632 to 0,650.

The experiments made by the author, on the contrary, have led

to the following results

:

•I
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1) A short cylindrical tube or ajutage, 1 centimeter in diameter

and 3 centimeters long, gave for

h ^h
1,05 1,10 1,30

11 = 0,730 0,771 0,830

2) A similar tube, 1,414 centimeters in diameter and three times

as long as wide, gave for

h + h
1,41 1,69

fi = 0,813 0,822

3) A similar pipe, 2,44 centimeters wide and three times as long,

gave for

^-j^ = 1,74,/x = 0,833.

The increase of the coefficient of efQux as the pressure increases

is explained by the simultaneous increase of the coefficient of

contraction.

The short pipe (1), when its inlet orifice was slightly rounded

off, gave as a mean value for its coefficient of efflux fi = 0,927,

which is much greater than that for a similar pipe which is not

rounded off.

4) A short pipe, with its inlet orifice well rounded off, 1 centi-

meter wide and 1,6 centimeters long, gave for

b + h

b
1,24 1,38 1,59 1,85 2,14

1

1

fi = 0,979 0,986 0,965 0,971

1

0,978

The advantage of the formula for efflux

Q = fi Fy 2 g ^ - over the others

is shown by the fact that this coefficient approaches very nearly

(as it should do) unity.

The older formula gives of course for great pressures much
smaller values for

fj>.
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On the contrary, the logarithmic formula (see § 460) gives much
greater values which may sometimes even exceed unity.

A short conical pipe, rounded off at the inlet orifice, gave nearly

the same values for n, and a short conical tube, which was not

rounded off, and which was 1 centimeter in diameter and 4 centi-

meters long, and whose angle of convergence was 7° 9', gave for

I -vh
1,08 1,27 1,65

\l — 0,910 0,922 0,964

Koch and Bufffound with a similar tube, whose exterior diam-

eter was 2,72 lines and the angle of convergence of whose sides was
6°, under a head of 0,3 to 6,2 feet of the water manometer \i — 0,73

to 0,85, and according to d'Aubuisson a similar pipe, whose orifice

was 1,5 centimeters in diameter, gave under a pressure measured

by a height of from 0,027 to 0,144 meters of the water manometer,

/i =: 0,94. The old or water formula was employed in the calcu-

lations.

The complete nozzle A C, Fig. 736, § 434, consisting of a

conical tube with an angle of convergence of 6°, which was 14,5

centimeters long, 1 centimeter wide at the outlet and 3,8 centi-

meters wide at the inlet, which was well rounded off, gave for

h + h

b
1,08 1,45 2,16

11 = 0,932 0,960 0,984

By experiments upon the influx of air into vessels, Saint-

Venant and Wantzel found for a short mouth-piece, rounded off

internally in the form of a quarter of a circle, when the calcula-

tions were made according to the new formula, ii = 0,98, and /or

an orifice in a thin ptlate, \i — 0,61.

If the pressures are small, as is the case in the ordinary fan,

where ^ < I, we can substitute, according to what precedes, when

we employ the new formula for ef&ux

Qr= II F Y2g — '1 = 1299 fi F y (1 + 0,004 r) ~ cubic feet,

as a mean

1) for an orifice in a thin plate, ft = 0,56,
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2) for a short cylindrical pipe, ^ = 0,75,

3) for a well rounded off conical moutk-piece, [i = 0,98,

4) for a conical pipe, whose angle of convergence is about 6°,

\i = 0,92.

Example.—If the sum of the areas of two conical tuyeres of a blowing
machine is 3 square inches, the temperature in the reservoir is 15°, the

height of the manometer in the regulator is 3 inches and the height of the

barometer in the exterior air is 39 inches, we have the effective discharge,

measured at the pressure of the exterior air,

Q = 1299 /i F \ {\ + 0,004 r) \

1299 . 0,92 . /(1 + 0,004 . 15) = 24,9 y-,06 .3

29144 r ^- '
"' / 39

= 24,9 . 0,331 = 8,242 cubic feet.

§ 466. CoefEcient of Friction of Air.—If air moves through

a long pipe C F, Fig. 796, it has, like water, a resistance offriction

Fm. 796.

to overcome, and this resistance can be measured by the height of

a column of air, which is determined by the expression

_ I v'

in which, as in the case of water pipes, I denotes the length, d the

diameter of the pipe, v the velocity of the air, and ^ the coefficient

of resistance of friction, to be determined by experiment.

Girard's experiments upon the movement of air in pipes gave a

coefficient of resistance ^= 0,0256, those of d'Aubuisson, as a mean,

^ — 0,0238, while according to the experiments of Buff the mean
value of ^ = 0,0375. Poncelet, on the contrary, found from the

data furnished by the experiments of Pecqueur, when the ratio of

pressure is ^ = 2, /^ = 0,0237.
p

The experiments of the author, calculated according to the new

formula, gave the following results:

1) A Irass tube, 1 centimeter wide and 2 meters long, gave for
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velocities of from 25 to 150 meters ^ gradually decreasing from

0,027260 to 0,01482.

2) A glass tule of the same length, when the yelocities were

about the same, gave s ^ 0,02738 to 0,01390.

3) A brass tube, 1,41 centimeters wide and 3 meters long, gave

C = 0,02578 to 0,01214

4) and a similar glass tube, ^ = 0,02663 to 0,009408.

5) Finally, a zinc tube, 2,4 centimeters wide and 10 meters

long, gave, for velocities of from 25 to 80 meters, ^ — 0,2303 to

0,01296.

From what precedes we may conclude that it is only when
velocities are about 25 meters or 80 feet, that the coefficient of re-

sistance ^ can be put = 0,024, and that it becomes smaller and

smaller as the velocity of the air in the pipe increases.

Approximatively we can write, when the velocity is expressed

in meters, C = -^-— or when it is expressed in feet ^ = -^—
-. The

general relations of the flow of air in pipes are very similar to those

of water.

The resistance, caused by elbows and bends, is to be treated in

the same way as in the case of water.

In the author's experiments a rectangular elbow, 1 centimeter in

diameter, gave ^ = 1,61, and a similar one, 1,41 centimeters in

diameter, gave ^ = 1,24, and a pipe like the former, when bent in

the shape of a quarter of a circle, gave ^ = 0,485, and one hke the

latter, bent in the same way, gave s = 0,471.

§ 467. Motion cf Air in Long Pipes.—By the aid of the

coefficient ^ of the resistance of friction of a pipe B F, we can cal-

culate the velocity of efflux and the discharge for a given length

and width of the pipe.

If lie, is the height of the manometer M^_ at the end of the pipe

C F, Fig. 797, directly behind the mouth-piece F, whose coefficient

Fig. 797.

M

Ml **

-Si. m*
jfe

of resistance is ^ = -^ — 1, and if d deaote the diameter of the
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pipe and dx that of the orifice, whose area is therefore F^ — --—
^, we

have, according to what precedes, the discharge

or, inversely, for the height ^2 of the manometer

^ ^ = Tl - (^\'^ 1- I ^ V

But the height of the manometer at the entrance of the pipe is

I denoting the length of the pipe between J/i and M^, and v the

velocity of the air in this pipe; hence we have

substituting v = (-7^) ^'1 and v^ = ~,

hence the discharge is

/ (1 + ^^)x-= 1299^ / ^-;—, ;—— cubic feet.

/ [-(§)*],-- *i(i)*
If, finally, the height h of the manometer M in the reservoir

^ ^ is known, we have, when we denote the coefficient of resist-

ance for the entrance Cloj ^^ and substitute —^ = l+^i, since at
Ml

the entrance into the pipe the head ^^
;— is lost,

^•h[(<.-4)(l)'--<.]r,(|)'.
and consequently the discharge
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= 1299 -X^ I / -. -^-^fTT^ cubic feet.

If the point wliere the air enters the pipe is a distance s Mow or

above the point where it is discharged from it, we must subtract

from or add to the quantity — . ^ in the numerator under the rad-

ical sign a quantity s.

Example.—The height of a quicksilver manometer, which is placed

upon a regulator at the head of a system of air pipes 320 feet long and 4

inches in diameter, is 3,1 inches, the height of the barometer in the free

air is 29 inches, the width of orifice in the conically convergent end of the

pipe is d^ =2 inches, and the temperature of the compressed air in the

regulator is r = 20° C. ; what quantity of air is delivered through these

pipes ?

Here (1 + 0,004 t) ^ = 1,08 . ^ = 0,11545,

0,75=^ 9 9
Co = -,- 1 = ;r^ - 1 = -n- - 1 = H = ^,™.

4 = ^'^^^ . 320 . 3 = 23,04, (^^^'=
(^^J

= ~~ = 0,0625,

hence the required discharge is

(2 = 1299.0,021817 /-
'''''^'

(0,778 + 28,04) 0,0625 + 1,330

11545
= 28,84 Y f48^-f33o = ^^'^4 V0,040954 = 5,735 cubic feet.

§ 468. Efflux when the Pressure Diminishes.—If there

is no influx of air into a reservoir, from which an uninterrupted

discharge of air is taking place through an orifice in it, the density

and tension gradually diminish, and consequently the velocity of

efflux becomes less and less. The relations of this diminution to

the time and to the discharge can be determined in the following

manner.
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Let the volume of the reservoir be V, the initial height of the

manometer be = h^, and its height at the end of a certain time t be

= hi, and let that of the barometer in the free air be = ^ ; then

the quantity of air originally in the reservoir, reduced to the

pressure of the exterior air, is

. _ Vjb + K)
I

and at the end of the time t it is

_ F (5 + h,)

hence the discharge in the time t, reduced to the external pressure,

is F (Z> + 7^) F (^> + K) _ VJK-h,)

But we have also

X denoting the mean height of the barometer during the time t of

efflux ; hence

t
= V{K-h) ^ ^ V (K- h)_

^^^_^^

Now if we put ho — 771 o and h-^ — riG, we have the mean value

{x)-^ =^^ (1-^ + 2-i + . . . + m-i) - (1-^ + 2-^ + . . . + n-h)
m—n^ ' '

= M
m-

_ 2 ( VT, - ^) _ 2 ( FT„ - V\)
m—n \ A ^ / m — n V a ^ a J

(see Ingenieur, p. 88);{m — 7i) G h^ — hx

iience'the required time of efflux is

_ 2F(F1„- VX) _ 2V
I
/K _ ,/M

J ^ ~ / vS ^ ^f
fiFy2ff^-b (iFy2g^

This determination is sufficiently correct only when the reser-

voir (F) is large, or when the orifice of efflux, as well as the

pressure, is small, in which case the cooling of the air in the reser-

voir is very slight.

Example.—A cylindrical regulator 50 feet long and 5 feet in diameter is

filled with air at a pressure corresponding to the height h = 10 inches of

the manometer and at a temperature of 6° C. Now if the air issues from

an orifice 1 inch in diameter into a space where the barometer stands at

27 inches, the question arises, in what time will the manometer sink to 7
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inches and what will be the discharge in that time ? The volume of the

regulator or boiler is

5V 50 = 1250 .

J
= 981,75 cubic feet, and

& '^ 27 ^ 27

1299 Vl + 0,00367 . r == 1299 Vl,02202 = 1313 and

. y^2y — Krya — 0,005454 square feet.

Now if we put the coefficient of efflux ju = 0,95, we have the req^uired

duration of the efflux

2.981,75.0,09942
* = 0;9-5:^0-05454:-i313 = ^^'^^ ^^^«^^^-

Eemark.—A more general theory of the efflux of air and steam will be

given in the second volume.

Festal Remark.—Experiments upon the efflux of air have been made
by Young, Schmidt, Lagerhjelm, Koch, d'Aubuisson, Buff, and more re-

cently by Saint Yenant, Wantzel, and Pecqueur. In reference to the ex-

periments of Young and Schmidt, see Gilbert's Annalen, Yol. 22, 1801, and

Yol. 6, 1820, and Poggendorf's Annalen, Yol. 2, 1824 ; for those of Koch

and Buff, see the " Studien des Gutting'schen Yereines bergmannischer

Freunde," Yol. 1, 1824; Yol. 3, 1833; Yol. 4, 1837; and Yol. 5, 1838

;

also Poggendorf's Annalen, Yol. 27, 1836, and Yol. 40, 1837. See also

Gerstner's " Mechanik," Yol. 3, and Hiilsse's "Algemeine Maschinenency-

klopadie," Article " Ausfluss." Lagerhjelm's experiments are discussed in

the Swedish work "Hydrauliska Forsok af Lagerhjelm, Forselles och

Kallstenius," 1 Delen, Stockholm, 1818. The experiments of d'Aubuisson

are to be found in the " Annales des Mines," Yol. 11, 1825 ; Yol. 13, 1826

;

Yols. 3 and 4, 1828; and also in d'Aubuisson's " Traite d'Hydraulique."

The experiments of Saint-Yenant and Wantzel are to be found in the

" Comptes rendus hebd. des seances de 1'Academic des Sciences, a Paris,

1839." The latest French experiments are discussed by Poncelet in a

" note sur les experiences de M. Pecqueur relatives a I'ecoulement de Pair

dans les tubes, etc.," which is contained in the Comptes rendus, and an

abstract of it is to be found in the Polytechnische Centrall)latt, Yol. 6,

1845. From these experiments Poncelet concludes that air follows the

same laws of efflux as water. The greater number of these experiments

were made with very narrow orifices, for which reason they scarcely fulfill

the requirements of practice. Unfortunately these experiments do not

agree as well as could be wished, and the coefficients found by d'Aubuisson

differ very sensibly from those calculated from Koch's experiments. Com-

parative experiments upon the efflux and influx of air and upon the efflux

of water are given in the author's " Experimental-Hydraulik." The re-

sults of the latest experiments of the author, which were made upon a

large scale, are given in the 5th volume of the Civilingenieur.
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CHAPTEU YII.

OF THE MOTION OF WATER IN CANALS AND RIVERS.

§ 469. Running Water.—The tlieory of the motion of water

in canals and rivers forms the second part of hydrauhcs. Water

flows either in a natural or in an artificial hed (Fr. ht ; Ger. Bett).

In the first case the channel is a river, creek, rivulet, etc., in the

second case it is a canal, ditch, race, trough, etc. In the theory of

the motion of running water this difference is of but little im-

portance.

The hed of the stream consists of the tottom of tlie cliannel

(Fr. font du lit ; Ger. Grundbett or Sohle) and of the two hauTcs

or shores (Fr. bords ; Ger. Ufer). If we pass a plane through the

stream of water at right angles to the direction, in which it is

flowing, we obtain a transverse section (Fr. section ; Ger. Quer-

schnitt). The line bounding this section is the tranverse profile

which is composed of tlie icater p)'t^ofile or ivetted perimeter and of

the air profile. A vertical plane in the direction of the stream

gives us the longitudinal section or profile (Fr. profil ; Ger. Profil)

of the latter. The slope of the stream (Fr. pente ; Ger. Abhang) is

the angle formed by its surface with the horizon. The relative

slope is the fall in the unit of distance. The slope is determined

for any definite distance by the fall (Fr.

chute ; Ger. Gefiille), which is the vertical

distance of one of the extremities of a cer-

tain portion of the stream above the other.

In the portion A D = I, Fig. 798, B is

the bottom of the channel, D H = h the

fall and the angle D A H = (5 is the slope. The relative slope is

sin. 6 =
J,

or approximatively ^ = j-

Remark.—The fall of creeks and rivers varies very much. The Elb

falls in a German mile (44 English miles) from Hohenelbe to Podiebrad

57 feet, from there to Leitmeritz 9 feet, from there to Miihlberg 2,5 feet.

Mountain streams fall from 8 to 80 feet per mile. For particulars see

" Vergleichende hydrographische Tabellen, etc., von Stranz." The fall in

canals and other artificial channels is much smaller. The relative slope is

generally less than 0,001, it is often 0,0001 and even less. More details

upon this subject will be found in the second part.

A

Fig. 793.

B1" -^C
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§ 470. Different Velocities in a Cross-section.—The ve-

locity of the water is far from being uniform in all points of the

same transverse section. The adhesion of the water to the bed of

the channel and the cohesion of the molecules of water cause the

particles of water nearest to the sides and bed of the channel to be

most hindered in their motion. For this reason, the velocity

decreases from the surface towards the bed of the channel and it is

a minimum at the shores and bottom. The maximum velocity in

a straight river is generally found in the middle or in that portion

of the surface, where the water is the deepest. That portion of the

river, where the water has its maximum velocity, is called the line

of current or axis of the stream and the deepest portion of the bed

is called the mid-channel.

When the stream bends, the axis of the stream is general near

the concave shore.

The mean velocity of the water in a cross-section, according to

§ 396, is

_ Q _ Discharge per second

F Area of the transverse section*

We can also determine the mean velocity from velocities c^, c,, c^,

etc., in the different portions of the transverse section and the

areas F^, F.^, F^, etc., of the latter. We have here

Q = F,c, + F,c, + F,c., ^ .,.

and, therefore, also

_ F, c,-VF, c,-¥..,
^

F, -^ F,+... '

Besides the mean velocity we introduce the mean depth of ivater,

I.E., that depth a, which a transverse section would have, if its

area was the same and the depth was uniform instead of being

variable and equal to a^, «2j ct^, etc. Here we have

_ F _ Area of the transverse section

b Width of the transverse section'

If the widths of the elements corresponding to the depths «,, «2,

as, etc.. Fig. 799, are b^, b^, h, etc., we
Fig. 799. ^ave

i^, i^i ^ ^h y bs ^^ F ^ a,b, + a,b, + ,, .,

ML%
i 4^ I ^;3,<^W ^'^^ consequently

^HLJ 1 i .^^^ Cl\ b] + ^2 ^2 + • • .

"-^^^^^ b, ¥ h + ...
^"^

Finally, the mean velocity is
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_ ttibx Ci + 0^2 ^2 ^2 + • • •

""

«i ^1 + «2 ^2 + . . . '

and, wlien the widths hx, h^, etc., of the portions are the same,

^l Ci + 6?2 ^2 + • • •

c == .

«1 + «2 + . • .

A river or creek is in a state of permanency (Fr. permanence
;

Ger. Beharrnngszustande) or it has a fixed regimen, when the same

quantity of water passes through each of its cross-section in the

same time, i.e., if Q or the product F c of the area of the cross-

section and the mean yelocity is constant for the whole length of

the portion of the river under consideration. Hence we have the

simple law : when the motion of the water is permanent the mean

velocities of two transverse sections are to each other inversely as the

areas of these sections.

Example—1) In the transverse section A B G I), Fig. 799, of a canal,

we have found the widths of the divisions to be

\ = 3,1 feet, §3 = 5,4 feet, Jg = 4,3 feet,

the mean depths to be

a^ = 2,5 feet, a^ = 4,5 feet, a^ = 3,0 feet

and the corresponding mean velocities to be

Cj = 2,9 feet, c^ = 3,7 feet, Cg = 3,2 feet.

Here we can put the area of the section

i^ = 3,1 . 2,5 + 5,4 . 4,5 + 4,3 . 3,0 = 44,95 square feet

and the discharge

Q = 3,1 . 2,5 . 2,9 + 5,4 . 4,5 . 3,7 + 4,3 .3,0 . 3,2 = 153,665 cubic feet,

from which we obtain the mean velocity

Q 153,665 „,_,
^ = |--^4;95--^'^i^^^^*-

2) If a ditch should carry 4,5 cubic feet of water with a mean velocity of

45
2 feet per second, we must make the area of its transverse section -^ = 2,25

square feet.

3) If the same river is at one place 560 feet wide and as an average 9

feet deep, and if it moves with a mean velocity of 2^ feet, the mean velocity

at another place, where it is 320 feet wide and as a mean 7,5 feet deep, is

§ 471. Mean Velocity.—If we divide the depth of the water

at any poiut into equal parts and lay off the corresponding veloci-

ties as ordinates, we obtain a scale A B, Fig 800, of the velocities

of the stream. Although it is very probable that the law of this

scale, or of the change of velocity, is expressed by a curve, as
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EG. according to Gerstner, by an ellipse, etc., yet without risking

a yery great error we can substitute a
Fig. 800.

straight line, i.e., assume that the velocity

^fo diminishes regularly with the depth ; for

this diminution of the velocity is always

slight. According to the experiments of

Ximenes, Briinnings and Funk, the mean
velocity in a perpendicular line is

c^ = 0,915 Co,

Co denoting the maximum velocity or that of the surface of the

water. The diminution of the velocity from the surface to the

middle M is therefore

c,-Cr. = (l- 0,915) c, = 0,085 c,,

and we can put the velocity at the bottom, or at the foot of the

perpendicular,

c„ = Co - 2. 0,085 c„ = (1 - 0,170) c, = 0,83 c,.

If the total depth is a, we have, if we assume the scale of velocity

to be represented by a straight line, for a depth A I^ = x below

the water the velocity

v = c,-{c,- c„)
I
- (l - 0,17

I)
«..

Now if Co, C], Cs are the velocities at the surface of a profile,

whose depth is not very variable, we have the corresponding veloci-

ties at the mean depth

0,915 c-o, 0,915 Ci, 0,915 Cg,

. and therefore the mean velocity in the whole transverse section

, = 0,915
e. + c. + c.+.-. + e,

^

n + 1

If, finally, we assume that the velocity diminishes from the line

of current or axis of the stream towards the shores in the same

manner as towards the bottom, we can put the mean superficial

velocity Cp + Ci + . «

.

+ Cn _ ^.^.^

thus we obtain the mean velocity of the tvhole transverse section.

c = 0,915 . 0,915 . Co = 0,837 Co,

I.E., 83 to 84 per cent, of the maximum velocity.

Prony deduced from the experiments of du Buat, which, how-

ever, were made in small ditches, the following formula,' which is

perhaps more correct in such cases,

, - (W^.±IA meter - H'^^ + 'A c feet
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Hence for mean velocities of 3 feet we liave

Crr, = 0,81 Co.

If the flow of the water is impeded by a contraction of the

transverse section, the level of the water will be raised, and c^ be-

comes still greater.

ExAJViPLE.—If the velocity of the water in the axis of a river is 4 feet,

and if its depth 6 feet, we have the mean velocity in the corresponding

perpendicular

Cm = 0,915 . 4 = 3,66 feet,

the velocity at the bottom

= 0,83 . 4 = 3,32 feet,

the velocity 3 feet from the surface

«) = (1 - 0,17 . f) 4 = (1 - 0,057). 4 = 3,772 feet

and, finally, the mean velocity of the entire transverse section

e = 0,837 . 4 = 3,348 feet

;

on the contrary, according to Prony, we would have

11,78 , 23,56 „^^, ,

^ = i4;34-^-^iy = ^'^^^^^*-

Remark:.—This and the following subjects are treated at length in the

Allgemeine Maschinenencyklopadie, Article " Bewegung des Wassers."

New experiments and new views upon the same subject are to be found in

the following work :
" Lahmeyer, Erfahrungsresultate uber die Bewegung

des Wassers in Flussbetten und Canalen, Braunschweig, 1845." Accord-

ing to Baumgarten's observations (see Annales des Fonts et Chaussees,

Paris, 1848, and also polytechnisches Centralblatt, No. 14, 1849) the values

given by this formula, when the velocities are great (above 1,5 meters), are

too large and we must? put in such cases

_ /2,372 + Cq
]

l3,153 + cj ' '

Owing to the resistance of the air the maximum velocity of the water is

to be found a little below the surface of the water. From this point of

maximum velocity the velocity diminishes as the square of the depth ; hence

the scale of velocity corresponds to a parabola. In like manner, according

to Boileau (see his Traite sur la mesure des eaux), the velocity decreases

as the square of the distance from the axis of the stream. If c^ denotes the

velocity in the axis of the stream, the velocity at the horizontal distance x

from it will be
C, = Cg — // «%

in which fi denotes an empirical number, which is different for different

streams.

§ 472. Most Advantageous Transverse Profile.—The
resistance, offered by the bed of the stream in consequence of the

adhesion, viscosity and friction of the water, is proportional to

the surface of contact, and consequently to the wetted perimeter
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p, or to that portion of the profile which forms the hed. Now since

the number of filaments of water passed by any transverse section

increases with its area, the resistance to each filament is inversely

proportional to the area, and consequently to the quotient ^ of the

wetted perimeter divided by the area F of the entire transverse

section. In order to have the least resistance from friction, we

must give the profile such a shape that -—, shall be as small as pos-

sible, I.E., that the wetted perimeter p shall be a minimum for a

given area, or that the area shall be a maximum for a given wetted

perimeter p. When the apparatus which conducts the water is

closed on all sides as in the case of pipes, j) is the perimeter of the

entire transverse section. Now among all figures of the same

number of sides, the regular one, and among all the regular ones,

the one with the greatest number of sides has the smallest perim-

eter for a given area; hence in conduits closed on all sides the

resistance is smaller the more regular the shape of their transverse

section is, and the greater the number of sides is. Since the circle

is a regular figure of infinite number of sides, the resistance of

friction is the smallest when the transverse section is of that form.

When the aqueduct is open on top, the case is difierent; for the

upper surface is free, or in contact with the air alone, which, so

long as it is still, offers little or no resistance to the water. We
must, therefore, in determining this resistance of friction, neglect

the air profile.

In practice we employ in canals, ditches, troughs and flumes

only rectangular and trapezoidal profiles. A horizontal line E F,

Fig. 801, passing through the centre M of the square A C, divides

Fig. 801. the area and perimeter into two equal parts, and

D, ,Q what has been said of the square is true for these

I

halves; hence, among all rectangular profiles,

|f '''? the half square A E, or that which is tivice as

% f
wide as high, is the one which causes the smallest

^ I resistance of friction.

,.,_,> In like manner, the regular hexagon ACE,
Fig. 802, is divided by a horizontal line C F into two equal trape-

zoids, each of which, like the entire hexagon, has the greatest

relative area, and consequently among all trapezoidal profiles, the

half of the regular hexagon, or the trapezoid A B C F, with the
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angle of slope B C M = 60°, is the one which causes the least

resistance of friction.

In like manner, the half oi a regular octagon A D E, Fig. 803,

the half of a regular decagon, etc., and finally the half circle A D B,

Fig. 80-4, are, under the proper circumstances, the most advan-

FiG. 803. Fig. 804.

tageous profiles for canals, etc. The trapezoidal, or half hexagonal,

cross-section causes less resistance than the half square or rec-

tangle, the ratio of whose sides is 1 : 2 ; the relative perimeter of

the hexagon is smaller than that of the square. The half decagon

offers still less resistance, and with the semicircle the latter is a

minimum. The circular and square profiles are employed only

for troughs made of iron, stone, or wood. The trapezoid is em-

ployed in canals, which are dug out or walled up. Other forms

are rarely used, owing to the difficulty of constructing them.

§ 473. When canals are not walled up, but only dug in the

earth or sand, an angle of slope of 60° is too great or the relative

slope cotg. 60° = 0,57735 too small; for the banks would not be

sufficiently stable ; we are therefore compelled to employ trapezoi-

dal transverse profiles, in which the incHnation of the side to the

base is smaller than 60°, perhaps only 45° or even less. For a trapezoi-

dal cross-section A B C D, Fig. 805, which has the same area and

perimeter as the half square, the relative slope is = |, and the

angle of slope is 36° 52'. If we divide the height B E into three

equal parts, the bottom B C is equal to two of them, the parallel

top A D \^ equal to 10 and each side A B = C I) is = b parts.

In many cases we make the relative slope = 2 ; in which case the

angle is 26° 34', and sometimes it exceeds even 2.

In any case the angle of slope B A E = 6, Fig. 806, or the slope

A E——- =r cotang. B is to be considered as a given quantity, dependent
B Jb

upon the nature of the ground in wliich the canal is excavated,

and therefore we have only to determine the dimensions of the pro-

61
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file which will offer the least resistance. Putting the width B G oi

Fig. 805. Fig. 806.

A E F D

A JP

the bottom = Z>, the depth B E = a and the slope -jr~^ = '^y ^^

have the wetted perimeter of the profile ^ = f \
A B + B C -\- (7i>^6 + 2 Var+'^~^' =\h \- .% a Vl + v\j

and the area of the same -x^

F ~ ah 4- V a a =^^a{b + v a)\

or inversely -^ I

h — V a.
a

whence the ratio

|, = l + |,(34/yT-i-.)..

Substituting instead of «, <3j + x, in which ic is a small quan-

tity, we have

V _ (a 4- X)
(2 y 2^^ + 1 - v)F a + X

a\ a al F ^
\

In order that this value, not only for a positive but also for ia

negative value of x, shall be greater than the first value

a^ F
or that ^ shall be a minimum, it is necessary that the members

with the factor x shall disappear or that

2 Vv^~+~1 - V 1 _ ^

whence the required depth of the canal is

F
^ "^ 2 Vv-" + 1 - V

or, since v = cotang. 6 and Vv^ + 1 = —^—

^
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, _ F sin,

^ ~ 2 - COS. e:

Hence for a given angle of slope d and for a given area, the

most advantageousfonn for the transverse profile is determined by

the formulas

• J Fsin. .. F ^ .
a = y p: and b = a cotanq, 6,

^ 2 — cos. d a ^

Consequently the width A D of the top is

F
'b^ = J)-\-%va — \- a cotang. 0,

and the ratio

Z. _ A _?JL_ - 1 (2 - cos. 6) a _ 2

F ~ F ^ F sinTd ~ a
'^ F sin. ~ a

Example.—What dimensions should be given to the transverse profile

of a canal, when the angle of slope of its banks is to be 40° and when it is

to carry a quantity Q = 75 cubic feet of water with a mean velocity of

3 feet.

Here
75

JP' = — = — = 25 square feet, and therefore the required depth is

, / 25 sin. 40° ^ ,/ 0,64279 „ ^^^ , .

" = V 2^^40- = 5 V i^^, = 3,609 feet,

the width at the bottom is

25
J) =--

g^og
— 3,609 cotang. 40° = 6,927 - 4,301 = 2,626 feet,

the horizontal projection of the slope of the shore is

va = a cotang. 6 = 3,609 cotang. 40° = 4,301,

the width on top is

h^ =1) + 2a cotang. 6 = 6,927 + 4,301 = 11,228 feet,

the wetted perimeter is

^ = ^ + J^ = ^'«^« +M- = i»'«^^ '"^'^

and the ratio which determines the resistance of friction is

» 2 2

f = « = pos = «'^^^^;

We have for a transverse profile in the shape of the half of a regular

hexagon, where 6 = 60°, a = 3,80 feet, 6 = 4,39, i^ = 8,78 and^ — 13,16

feet, and therefore p 13,16
-^ = -35- - 0,526.

§ 474. Table of the Most Advantageous Transverse

Profiles.—The following table gives the dimensions of the most

advantageous transverse profiles for different angles of slope iand for

given transverse sections

:
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DIMENSIONS OF THE TRANSVERSE PROFILES.

Angle of
slope e.

Relative
slope V.

Quotient

/ m
Depth a.

Width of bot-
tom ^.

Horizontal pro-
jection of slope
V a.

Width at the
Xo^b-\-2v a.

90° 0,707 vy 1,414 ^^ 1,414 ^y
2,828

60° 0,577 0,760 Vf 0,877 ^^ 0,439 ^^ 1,755 ^<^
2,632

45° 1,000 0,740 Vj^ 0,613 v:f 0,740 \^ 2,092 t^
2,704

Vf

40° 1,192 0,722 VF 0,525 1^ 0,860 \^ 2,246 '^
2,771

36' 52' h333 0,707 Vf 0,471 ^^ 0,943 1/7^ 2,357 ^^
2,828

Vf

35° 1,402
1 0,697^
1

0,439^ 0,995 '^P 2,430 ^y
2,870

30° 1,732 0,664 ^^ 0,356 v:^^ 1,1504/^ 2,656 l<^^
3,012

26° 34' 2,000 0,636 Vf 0,300 vy 1,272 l<^ 2,844 ^^
3,144

Vf
Semi-

circle
— 0,798 VJ" — 1,596^ 2,507

P 4.

and

We see from the above table that the quotient ^7 is a minimum

2,507

Vf
for the semicircle, that it is greater for the half

hexagon and still greater for the half square, and for the trapezoid

with its sides sloping at an angle of 36° 52', etc.

Example.—What dimensions are to be given to a transverse profile

whose ^-rea is to be 40 feet, when the banks are to slope at an angle of 35"

According to the foregoing table

the depth is a = 0,697 ViO = 4,408 feet,

the lower breadth is & = 0,489 ViO = 2,777 feet,

the horizontal projection of the slope v a= 0,995 V40 = 6,293 feet,

the upper breadth l^ = 15,363,
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and the quotient is

. f = ^-^» = 0,4538.F V40

§ 475. Uniform Motion.—The motion of water in channels

is for a certain distance either uniform or variable ; it is uniform,

when the mean velocity in all the cross-sections is constant, and, on

on the contrary, it is variable, when the mean velocity and also the

area of the cross-sections change. We will now treat of uniform

motion.

When the motion of water is uniform for a distance A D = I,

Fig. 807, the entire fall h is employed in overcoming the friction

upon the bed, and the water flows away
with the same velocity, with which it

arrived, I.E., a height due to a velocity is

neither absorbed nor set free. If we meas-

ure this friction by the height of a column

of water, we can put the latter equal to

the fall. The height due to the resistance of friction increases

with the quotient ^, with I and with the square of the mean ve-

locity c (§ 427) ; hence the formula

holds good, in which ^ is an empirical number, which is called the

coefficient of the resistance offriction.

By inversion we have

To determine the fall from the length, the transverse profile

and the velocity, or inversely, to determine the velocity from the

fall, the length and the transverse profile, it is necessary to know
the coefficient of friction ^. According to Eytelwein's calculation

of the 91 experiments of du Buat, Briinings, Funk and Woltmann,

^ == 0,007565, and therefore

Ji = 0,007565 . ^ . ^.F 2g
If we put g = 9,809 meters or 32,2 feet, we obtain for the

metrical system

h = 0,0003856 ^4r ' c" and c = 50,9 y--j>
' F pi
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and for the English system of measure

h = 0,00011747 -^ c' and c = 92,26 i/^.

I p
For conduit pipes -~ = t^-H^ = -^ ; hence the formula for^ ^ F ^ Tvd d

pipes is

7i = 0,03026 ^ . ^—,d 2/
while we found more correctly (§ 428) for medium velocities in

the same
7 7,2

h = 0,025 -, . —

.

d 2g
The friction upon river beds is, therefore, as might be expected,

greater than in metal conduit pipes.

Example—1) How much fall must a canal, whose length is Z = 2600

feet, whose lower width is 5 = 3 feet, whose upper width is 5^ = 7 feet

and whose depth is a = 3 feet, have in order to carry 40 cubic feet of

water per second ? Here

p = d + 2 V2^ + 3^ = 10,211, F = ^^L±^^ = 15 and c = ff = f

;

hence the required fall is

. ......... 2600 . 10,211 ,^,, 0,305422 . 10,211 .64 , ,^ ,
h = 0,00011747 .

--^
(I)'

= —-—^ = 1,48 feet.
lo Id . y

2) What quantity of water will be delivered by a canal 5800 feet long,

when the fall is 3 feet, its depth 5 feet, its lower breadth 4 feet and its

upper breadth 12 feet ? Here

p 4 + 2 VS^TI"^ 16,806

F = 5-.^— = -40- = ^'^^^^^ '

hence the velocity is

:^.nn ./ ^ 92,26 92,36

^ 0,42015.5800 V0,14005 . 5800 v'812;29

=U = 3,287feet,

and the quantity delivered is^~ Q = i^c = 40 . 3,237 = 129,48 cubic feet.

§ 476. Coefficients of Friction.—The coefficient of friction,

for which we assumed in the foregoing paragraph the mean value

0,007565, is not constant for rivers, creeks, etc., but, as in the case

of pipes, increases slightly, when the velocity diminishes, and

decreases, when the velocity increases. We must therefore put

, = ,(l.«)o.,(t.^=)

or to some similar formula.
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The author in the article quoted in the remark of § 471 found

from 255 experiments, most of which were made by himself, for

English measures

f = 0,007409 (l + ^),
and for the metrical system of measures

+f= 0,007409(1
«-«5«^^^

We see that this formula gives for a velocity c = 8| feet the

above-quoted mean value ^ = 0,007565. In order to facilitate cal-

culation, the following tables for the metrical system have been

prepared

:

Velocity c = 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0795

0,9 meters.

Coefficient of re-

sistance C = 0,0
1175 0958 0885 0849 0828 0813 0803 0789

Velocity c = 1 1,2 1,5 2 3 4 5 meters.

Coefficient of resistance

c = o,o
0784 0777 0771 0763 0755 0752 0750

For English system of measures we can employ the following

table.

;Velocity c = 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 U 2 3 5 7 10 15 feet.

Coefficient of re-

sistance ^ = 0,0
1215 1097 1025 0978 0944 0918 0899 0883 0836 0812 0788 0769 0761 07551 07504

These tables are directly applicable to all cases, where the velo-

city c is given and the fall is required, and when formula No. 1 of

the foregoing paragraph is employed. If the velocity c is unknown,

or if that is the required quantity, the tables can only be employed

directly when we have an approximate value of c. The simplest

way to proceed is to determine c approximatively by one of the

formulas

.= 50,9'/^
/'^^

meters or c — 92, 26 y —^ feet.

])!
^ ^''"

' pi
then find ^ by means of the table, and substitute the value so found

in the formula
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From the velocity c we determine the quantity of water Q = F c.

If the quantity of water and the fall are given, as is often the

case in laying out canals, and it is required to determine the trans-

verse profile, we must substitute~ = —= (see table, § 474) and
^ vf

c = ^ in the formulaF
n = 0,007565^ . ^, and put

m I Q^
h = 0,007565 77

—

—Tf from which we obtain2gF^

F = (o,007565 ^ ^

^\\ I.E. in meters

F = 0,0431
{ ^l^y , and in English feet

^^0,0268(^)1
Prom this we obtain the approximative value

^- F'
if we take the corresponding value of ^ from the table, we can cal-

culate more accurately

/ mlQy
9

from which we deduce more correct values for

c = ^ and p ~m V^,

as well as for a, l, etc.

Example—1) What must be the fall of a canal 1500 feet long, whose

lower breadth is two feet, whose upper breadth is 8 feet, and whose depth

is 4 feet, when it is required to convey 70 cubic feet of water per second ?

Here

^ = 3 + 2 V4* + 3^ = 12, i^ = 5 . 4 = 20, c = If = 3,5 ;

hence

C = 0,00784 and

^^A«^i 1500 . 12 3,52 86,436 , „, ^ ,
h - 0,00784 ^TTT— . -^ = --^~~ = 1,34 feet.

' 20 2g 2g '
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2) What quantity of water is carried by a creek 40 feet wide, whose

mean depth is 4| feet, and wliose wetted perimeter is 46 feet, when it falls

10 inches in 750 feet ? Here we have approximative!

y

/40,5~ir 93,26
. = 92,26 y^-^^.^-:^ = ;^=- = 6,1 feet;

hence we can assume C = 0,00765.

We have now more correctly

c^ FJi 4,5.40.10 1

27 = T77 = 0,00765.46.750712 = 1/7595 = ^'^^^^ "^^^ = ^'^^ ^^^*-

The quantity of water carried is

Q = Fc = 4,5 . 40 . 6,05 = 1089 cubic feet.

3) It is. required to excavate a ditch 3650 feet long, which, with a total

fall of one foot, shall carry 12 cubic feet of water per second. What must

be the dimensions of the transverse section when the form is a regular hex-

agon ? Here m = 2,632 (see table, § 474) ; hence we have approximatively

F = 0,0268 (2,632 . 3650 . 144)1 = 7,66 square feet, and

12

- ^=-7:66 = '''''•

Here we must take C = 0,0083, and, therefore,

,0083 . 2,632 . ^^^f^^)'= 7,95 square feet.

From this we obtain the depth

a = 0,760 V^ = 2,14, the lower width

h = 0,877 VF = 2,47, and the upper width

&i=2. 2,47 = 4,94.

Remabk—1) According to Saint Venant, we can put accurately enough

h = 0,000401 -^ . vn = 0,000401 . 2 g . ^t\ . — .^ meters;
J? J: a Q

hence the coeflBcient of resistance is

C = 0,000401 . 2 ^ . %-h = 0,007887 v-^,

E.G. for «) = 1 meter

C = 0,007887
and for t) = i meter

; = 0,007887 'Vi = 0,007887 . 1,134 = 0,008945.

(Compare § 428, Remark 3.)

2) A table, which abridges these calculations, is given in the Ingenieur,

pages 460 and 461.

§ 477. Variable Motion.—The theory of the varialle motion

of water in channels can be referred to the theory of uniform mo-

tion, when we consider the resistance of friction upon a small por-

tion of the length of the river to be constant and put the corre-

sponding head

F= (o,(
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We must also take into consideration the vis viva corresponding to

the change of velocity.-

Let A B C D, Fig. 808, be a short portion of the channel of a

river, whose length A D = I, and whose fall D H ^ h] let v^ be

the velocity of approach and Vj that with which the water flows

away. If we apply the laws of efflux to
Fia. 808. ^^ element D at the surface of the

water, we have for its velocity v^

^ "^
but an element E, which is situated

. below the water, has on one side, it is

true, a greater head A G = E H, but it is pressed back by the

water below it with a head D E\ hence the effective fall, which

produces motion, is only D II — EH— ED, and consequently

the following formula holds good for any element

:

A H

^9
'

if we add the resistance of friction, we obtain

in which j?, F and v denote the mean values of the wetted perim-

eter, the transverse section and the velocity. If F^ denote the area

of the upper and F^ that of the lower transverse section, we can put

F — —^——' and Q = F^v, = F^ v^, whence

F F, 4- F, \F; "^ F,y F^ + F^
from which we obtain

2)^- ^"^
J \ 1_ Ip /I _1_\

\ p. -^. + ^ F,+ F, \f:
"^

f;^}

Bv the aid of formula 1) we can calculate from the quantity of

water carried, the length and transverse sections of a section of river
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or canal the cf)rresponding fall h, and by the aid of formula 2) from

the fall, length and cross-section the quantity of water carried. In

order to obtain greater accuracy we should calculate these for sev-

eral small portions of the channel of the river and then take the

arithmetical mean of the results. If the total fall only is known,

we must substitute this value instead of h in the last formula and

instead of

1 1_ 1 1^

F,' f;' f: f^'

in which F^ denotes the area of the last cross-section, and instead of

"" F,^- F, \f: ^ F.^r

the sum of aU the similar values for the different portions of the

channel of the river.

Example.—A creek falls 9,6 inches in 300 feet, the mean value of its

wetted perimeter is 40 feet, the area of its upper transverse section is 70

square feet, and tbat of its lower is 60 square feet. Required the discharge

of this brook. Here

8,025 Vp"
~
a/^ i n r.r.r>^n^ ^00 .40/1 T^'
4/— h 0,007565 .

I {- -—

\

y 602 703 ^ ' 130 \602 ^ 70V
7,178 7,178 ^^,, ,. . ^' ' = 354^ cubic feet.

V0,0000731 + 0,0003365 V0,0004096

The mean velocitv is -=—^=- = -— = 5,45 feet ; hence it is more cor-
^ Fq + F^ 130

'

rect to put C = 0,00768 instead of 0,007565,

and therefore we have more accurately

Q
'^'^'^^ _ 352 5.

V0,0000731 + 0,0003416

If the same stream has at another place the same amount of water in it

and falls 11 inches in 450 feet, acd if the area of its upper transverse section

is 50 and that of its lower 60 feet, the mean length of its wetted perimeter

being 36 feet, we have

\^ 8,025 VpieT"

/I 1 450 . 36 / 1 1 \

V 6P - 50^ + '^'^''^
' -iW- (eP + W^l

= 8,025 i/ ^^^"^^'^-^^TT^i^^TT^ = 3054 cubic feet.°'" '^ T _ 0,0001222 + 0,0007549
^

The mean of the values is

« = §51t±-?^ = 330 cubic feet:
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§ 478. In order to obtain the formula for thd depth of tlie

loater, let us put the upper depth = a^ and the lower = a^, the slope

of the bed = a, and consequently the fall of the bed — I sin. a.

The fall of the stream is then

h = a^ — ax + I sin. a
;

hence we have the equation

whence we deduce

_ (1 1_\ ^
, _ ^:

""' W F:l%g

By the aid of this formula we can determine the distance I,

which corresponds to a given change a^ — a^ in depth. If the in-

verse problem is to be solved, we must resort to the method of

approximation, i.e., we must calculate first the lengths Zi and 4 cor-

responding to the assumed changes a^ — a^ and a^ — a^ of depth,

and then we must find by a proportion the change of depth corre-

sponding to the given length / (see Ingenieur, Arithmetic, § 16,

V, page 76).

The formula can be simplified, when the width h of the stream

is constant. In this case we can put

/I 1 ^ Q^ _ f:- F,^ Q^ ^ (F, - F,) {F, + F, ) vl
\f,' F; ) 2g F,' F; ' 2g F,' ' 2g

^ (a^-jt^^J^ ^ ,^i^,tively = 2 i^"^ . ^,

and in like manner
Q^ p {f: + F,^) v:

F, + F, \F: ^ F,^) 2^ {F, + F,)Fr2g
v V

approximatively = —y . ^, from which we obtain

<••-*' ('-I/ 6)

and consequently

a, -a. =

^ .—T ' ^ Sin. a
a,h 2g

^.-^. ^ -sin. a
a,b 2g

I
1 _ 2 .;

#
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By the aid of this formula we can obtain directly, for a given

distance Z, the corresponding change (a^ — «i) of depth of the stream.

Example.—A horizontal ditch 800 feet long and 5 feet wide is required

to convey 30 cubic feet of water per second ; 'the depth of water at the

entrance is 2 feet, what will be its depth at the end of the ditch ? Let us

divide the entire length of the ditch into two equal sections and determine

by the last formula the fall for each of them.

Here sin. a = 0, Z = -— = 400 and & = 5 ; for the first section, v„ =
30

5—- = 3 ; hence C= 0,00813 and a^ — 2; now since p = 8|, it follows that

-—-,--^ . 400 = -^^ == 0,183 feet.

2' 2g I

Now for the second section ^^ = 3 — 0,183 = 1,817 and p is about

20
8,3, v^ = = 3,301 ; the fall in the second section will be

0,00812 . ^^ .
—— .

^
a,-.a,=\ _^__/- 1 . 400 = ^^- = 0,340;

^ ~ i;8i7 • "^7"

hence the entire fall is

= 0,183 + 0,240 = 0,433

and the depth of water at the lower end is

= 3 - 0,433 = 1,577 feet = 18,93 inches.

§ 479. Floods and Freshets.—When the water level in

rivers or canals changes, it is accompanied by changes in the ve-

locity and in the quantity of water carried. A rise of the water

level not only increases the cross-section, but also causes a greater

velocity and, therefore, for a double reason a greater discharge ; in

like manner a fall of the water level causes both a diminution of

velocity and of cross-section, and consequently a two-fold diminu-

tion of the quantity of water. If the original depth = a and the

present one = a^ and the upper width of the canal = h, we can

put the increase of the cross-section = h (ai — a) ; hence the

cross-section, when the water level has risen a distance ai — a, is

Fi = F + b {tti — a) and consequently '

F-^-^ F '

and we can put approximatively

Vi-^ _ -,
h (a, - a)

F " '^ ^F '
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If the original wetted perimeter = ^, the present one = pi and
the angle of slope of the banks = 6, we have

2 (tti — a) ,

£l = l_,^;=:^and
p p sm. 6

|/Z; = 1 + ?^14 or
p p sm, 6r

\/l 1 - a.

Px p sin. d

Now the Telocity for the original depth of water is

c = 92,26 y—j, and for the present depth it is c,= 92,26 |/— .

j ;

hence

^ = i/^ i/j^ = (^ 4. U^^^SzA] (i _ ^1 - ^
\

c ^ F '^
p, V "^ ^F }\ p sin. e)

= ! + (.. -«)(A^ -^4^),
and the relative change of velocity is

1) ?i^£ = («, _ „) (_^ - ^^).
On the contrary, the ratio of the quantity of water carried by

the river is

I = 5? - {' - ^-] [' - <- - " (A - ji.)]

and the relative increase in the quantity of water is

2)ei^ = («.-«)(|4 L_).
Q ^ \2 F p sm. 6/

We can put less accurately, but in many cases, particularly for

•wide canals with little slope, sufficiently so, F = a b and neg-

lect—;—7:, in which case we have more simply
psin.d' ^^

j^\ — c _ ai — a , Qx—Q_^ax — a— w ana —-7^— — 5 —

.

c "^ a Q -^ a

According to these formulas the relative change in the velocity

is half as great and that in the quantity of water | as great as the

relative change in the depth of the water.

The foregoing formulas are only applicable, when the motion
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of the water in its cliaymel is permanent, in which case the depth

of the water is constant, but they do not hold good when the depth of

the water is variable. The mean velocity in the same transverse sec-

tion IB greater, yfhQU. the water is rising, and smaller, ^hen the

water is falling than when the depth of the water is constant

;

hence in the first case more water and in the second case less water

passes through than when the motion is permanent.

Example—1) If the depth of the water increases -Jg, the velocity is in-

creased ^ and the quantity of water ^ of its original value.

2) If the depth decreases 8 per cent,, the velocity is diminished 4 per

cent, and the quantity of water 13 per cent.

3) By the aid of the more accurate formula

Q - ^^1 - ^^ \2i^ p sin. ep

we can construct a water-level scale iTilf, Fig. 809, .upon which we can

read off the quantity of water passing in a canal for any depth K Z, when

we know the quantity of water for a certain mean
Fig. 809. ^epth. If 5 = 9 feet, 5^ = 3, a = 3, and 6 = 45°,

we have

ro + 3^ 3F = - =18 square feet,

p = S + 2.3.V2=: 11,485, and

dn. e = VJ = 0,707 ; hence

--Q— = (14 - iMss^oiTor) ('^^ - "^^ = (O'^^" - «'i^«) ("> - '')

= 0,627 (a J - a).

If the quantity of water corresponding to the mean water level is Q =
40 cubic feet, we have

§, = 40 + 40 . 0,627 («i
- a) = 40 + 25 (a^ - a).

If a^ — a = 0,04 feet = 5,76 lines, Q^ = 41 cu. ft. ; if a^ — a = 0,08

feet = 11,52 lines, Q^ = 42 cu. ft. ; \fa^-a = — 0,04 feet, Q^ = 39 cu. ft.,

etc., a scale, whose divisions are L M ^= L N ^ 5,76 lines apart, would

give the quantity of water to a cubic foot. The accuracy of course di-

minishes as the difference of the depth of water from the mean depth in-

creases.

Remark.—The construction of mill-races, canals for bringing water, as

well as the location of dams, weirs, etc., will be treated of at length in the

second volume.

Final Remark.—The author has discussed at length the subject of the

motion of water in canals and rivers in the Allgemeine Encyklapadie,

Vol. IT, Article '' Bewegung des Wassers in Canalen und Fliissen," and has

given there a list of the treatises upon this subject up to 1844. Rittinger's

tabulated synopsis of the experiments upon the motion of water in canals

is contained in the " Zeitschrift des osterreichischen Ingenieurvereins,"

year 1855.
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CHAPTER VIII

HYDROMETRY, OR THE THEORY OF MEASURING WATER

Fia. 810.

§ 480. Gauging.—The discharge of a running stream within

a certain time is measured either by gauged vessels, by a dis-

charging apparatus, or by hydrometers. The most simple method

is that by means of gauged vessels, but this is only applica-

ble to small quantities of water. The vessel is most frequently

composed of boards, and is therefore parallelopipedical in form, and

to increase its strength, it is generally bound with iron hoops. The

manner of calculating the exact contents of this vessel is given in

the Ingenieur, page 208. The water is brought to the vessel by a

trough E F, rig. 810, at the end of which is placed a double clack,

by means of which the water can

be made to flow into the vessel or

alongside of it. In order to deter-

mine accurately the depth of the

body of water, we employ a scale

K L. If, before we begin the

measurement, we lower the pointer

Z until it touches the surface of

the water, which, perhaps, may
only cover the bottom, and read

off on the scale the depth of the

water, we obtain the depth Z Z^ of the water to be measured by

subtracting the former reading from that given by the scale, when

the pointer Z, after the completion of the observation, is brought into

contact with the top of the water. The clack must of course be so

arranged before the experiment that water shall discharge alongside

of the vessel. If we are satisfied that the influx into the trough

has become constant, we observe the time upon a watch held in the

hand and turn the clack around so that the water will discharge into

the vessel; when the vessel is full, or partially so, we observe again

upon the watch the time and return the clack to its original posi-

tion. Erom the mean cross-section F and the depth Z Zi — s of

the body of water, we calculate the total discharge V — F s, which,
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when divided by the duration of the influx, which is the difference

t of the two times observed upon the watch, gives the discharge per

second

Remark.—If we wish to know at any time the discharge of a variable

stream of water, we can employ the apparatus represented in Fig. 811,

which is often met with in salt

Fig. 811. works. Here there are two meas-

uring vessels A and 5, which are

alternately filled and emjitied. The
water, which is brought to them

by the pipe F, passes through a

short tube G G^ which is rigidly

connected with the leverDE which

turns about C. If one of the ves-

sels, as, E.G., A^ is filled, the water

flows through a small trough H.

and fills the little bucket if, which

then draws the lever down and the

pipe C G comes into such a position as to carry the water into B. The

valves and P are opened by cords passing around pulleys and attached

to the lever. The opening of the valves is assisted by iron balls, which

give the last impulse to the lever when it is descending. The buckets M
and iV^ contain small orifices, through which they empty themselves after

the lever has turned. A counter attached to the apparatus gives the num-

ber of strokes, which can be read oflF at any time. Other apparatuses of

the same sort, which were employed by Brown, are described in Dingler's

Polyt. Journal, Vol. 115. In reference to a new apparatus for measuring

water by Noeggerath, see Polyt. Centralblatt, 1856, No. 5. Compare also

the works of Francis, Lesbros, etc., which have been cited. See also further

on, § 506.

§ 481. Regulators of Efflux.—Very often small and medium
discharges are measured by causing them to pass through a hnown

orifice under a known head. From the area F of the orifice and

the head 1) we determine, by the aid of the coefi&cient of efflux, the

discharge per second

Q = fi F V2gh.
Poncelet's orifices are the best for this purpose; for their coeflS-

cients of efflux are known (§ 410) Tvith great accuracy for different

heads, but they are only applicable, when the discharge is a medium
one. The author employs in his measurements of water four such

orifices, one 5, one 10, one 15 and one 20 centimeters high and all

62
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20 centimeters wide. These orifices are cut out of brass plates,

which are placed upon wooden frames such as A C, Fig. 812, and

these frames can be fastened to any wall by means of four strong iron

screws. But in many cases we must employ much
larger orifices for which the coefiicients of efflux have

not been determined so certainly ; and very often we

can only employ overfalls or notches, which are even

less accurate. But in any case we should endeavor

to produce both perfect and complete contraction.

Hence, if the orifice is in a thick wall, we should bevel it off upon

the outside. The corrections to be applied for partial and incom-

plete contraction have been sufficiently explained in §§ 416, 417.

In order to measure the quantity of water in a trough, we first

put the mouth-piece in its place and then wait until the head

becomes permanent. In order to measure the head, we can em-

ploy either the fixed scale K L with a pointer. Fig. 813, or the

movable one E F^ Fig. 814. If we wish to observe the efilux directly

5'i»!:T:HI!i,'H|i'illl!lll|i|ll,iiii?)

« C

Fia. 814.

Fig. 815.

at the sluice gate, it is advisable to attach to the guides two brass

scales B C and D E, Fig. 815, with the pointers i^ and G by means

of which we are able to read off with more cer-

tainty the height of the orifice. It is always bet-

ter, when measuring water, to employ a new
sluice gate and new guides which are properly

beveled outwards.

The most simple way of measuring the water

in a trough is to place a hom^d C F, Fig. 701,

leveled at the top, across it and to measure the

overfall which is produced. If the ditch or trough is long and

nearly horizontal, considerable time will elapse before the flow be-

comes permanent, and it is, therefore, advisable before beginning
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Fig. 816.

the measurement to put in another board, which will prevent for

some time the efflux of the water and thus hasten its rise to the

height necessary for a permanent flow.

In order to measure the discharge of a creek, we can construct

a dam A B, Fig. 816, of hoards and

allow the water to flow through an

opening C in it, or we can employ a

simple overfall or weir (this subject

will be treated more at length in the

second volume).

Remark,—The most simple method

of determining the head is to observe the

position of the pointer, first, when its point touches the surface of the

water, while the flow is permanent, and secondly, when it touches the sur-

face of the still water which is on a level with the top of the sill. The

difference of the two observed heights is the head of water or the height

of the water above the sill. We must be careful in observing the last

height of the poin^ter to pay attention to the action of the capillary attrac-

tion, in consequence of which the level of the water may be 1,37 lines

above or below the sill, before efla.ux over the latter will begin (see § 380).

§ 482. We can easily measure the quantity of water carried by

a oanal or trough A B, Figs. 817 and 818, in the following raan-

FiG. 818.

Fia 817.

v^s^^^^'^.^^^^^^^s^^s^^^^^^^\\^\\^\\^

ner : a board, the lower edge of which has teen beveled^ is inserted

in the trough in such a manner as to leave an opening between it

and the bottom of the latter, through which the water will pass.

This method has an advantage over that in which overfalls are

employed, viz. : the water, which is dammed back, comes to rest

better, and we can, therefore, measure the head more accurately.

When it is possible to have a free efflux, as in Fig. 817, we should

prefer it, since greater accuracy can be obtained, but when the
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quantities of water are large, it is not possible to prevent the water

from rising, and we are obliged to be satisfied with an efflux

under water, such as is represented in Fig. 818. If the trough

ends but a short distance from the orifice, i.e., if it forms a shoot,

the water flows through it almost freely and we have one of the cases

of Lesbros' experiments (§ 418). If a denote the height and h the

width of the orifice, Ji the head measured to the middle of the ori-

fice and II the coefficient of efflux, taken from Table 11, § 418, we
have the discharge

Q = fiah V2g h.

If, on the contrary, the trough is long, or if the water, which is

flowing away, is so obstructed that its surface becomes horizontal,

the water will pass all portions of the cross-section of the orifice

with the same velocity, which is that corresponding to a head equal

to the difference of level of the water A above and the water B
below the orifice, and we have only to substitute in the latter

formula for 7i the difference of level.

If the water flows into the air, or if the surface of the lower

water, as in Fig. 817, does not rise above the upper edge of the

orifice, we must substitute for an orifice with beveled or with

rounded edges

fi = 0,965,

and consequently, when the depth of the stream is a and its width b,

Q = 0,965 a h Vfgh,
or more accurately, when a^ is the depth of the approaching water

and a that of the water flowing away (see § 398),

Q = 0,965 a h |/^Zl_.

When the efflux takes place under water, in which case the lower

surface of the water is above the upper edge of the orifice (see Fig.

818), an eddy is formed behind the wall of the orifice, by which the

efflux is considerably interfered with. According to several experi-

ments of the author, for an orifice with a sharp edge we must put,

as a mean value, n = 0,462,

and, on the contrary, when the edge is rounded off in the shape ofa

quadrant, fi = 0,717.

Example.—^In order to find the discharge of a trough A B, Fig. 818, a

sharp-edged board CD was placed in it and an efflux under water was

thus j)roduced ; the following observations were then made. Width of

orifice or trough 5=3 feet, height of orifice or distance (7 ^ of the edge G
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Fig. 819.

of the board above tbe bottom of the trough a = Q inches, length of the
pointer Z above the orifice Ji^ = 0,445 feet, length of the pointer Z^ below
the orifice h^ = 1,073. Hence the difference of level is

h = h^-\ = 1,073 - 0,445 = 0,628 feet,

and the required discharge is

q = 0,463 . 8,035 . 3 . 0,5 -Jji^ - h^ = 5,5Q Vo;628 = 4,40 cubic feet.

§ 483. If the coefificient of efflux were always the same for sim-

ilar cross-sections, the triangular or two-sided notch ABC, Fig. 819,

would have a great advantage over the notch with a horizontal sill

;

but this assumption, as we have seen in the

case of circular apertures, is not correct for

small orifices, and only approximatively so for

large ones. Professor Thomson, of Belfast,

recommends such notches as useful for measur-

ing water. From the width A B = b and the

height CD = li, we obtain the discharge

e = A^ ^'sTA (see § 403),

and ifwe put, with. Prof. Thomson, the coefficient of efflux [i = 0,619,

Q = 0,33 %- V2gh = 0,132 d h' cubic feet.

Orifices, so shaped that the discharge through them shall be

proportional to their height, are useful in measuring water. If they

are provided with a sluice-gate the height of the opening is the

measure of the discharge. Let the head above the upper edge of

such an orifice A B C D, Fig. 820, 'bQ A = h, the length of this

edge \)Q A B = h, that of the lower edge.
Fig. 820. q j) ^ ^^^ and the height of the orifice,

A D ^^ a. Horizontal lines at the distance;.0

^^^ —

1

|

- from each other will divide this orifice
n

M into' strips of equal height, and the dis-

charge— through each of them should be

the same. For the upper strip, whose width

is h and for which the head is h, we have

n n

and, on the contrary, for another strip at a distance M — x be-

low the surface of the water, whose width MN = y.

= i^V2iI,
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n n ^ ^

equating these two values of—, we obtain

y Vx — h Vh, or

! = /|-
The curve B JV C, which bounds the orifice on the side, belongs

to one of the system of curves discussed in Article 9 of the Intro-

duction to the Calculus; its asymptotes are the horizontal line

Fand the vertical one X.

Erora Q, h and a we obtain

1) the upper width of the orifice i = ——
,

2) the width of orifice at the depth x, y =^ b y —

,

3) the lower width of the orifice i
. = W-'h + a

The area of the orifice is

F= 2h(Vh(h + a) - Ti),

and consequently the mean head is

^g^P! V vn (h + a)- iJ
2'

If the orifice is provided with a sliding gate, when it is raised a

distance D M = a^, it gives an orifice of efiSux M C, the discharge

through which is §i = — §.

§ 484. Prony's Method.—As considerable time often elapses

before the flow of the water, which has been dammed back, be-

comes permanent, the following method, i^oidosed hy Prony, can

often be employed with advantage. We begin by closing the

orifice completely by means of a sluice-gate, and we wait until the

water has risen to a certain height, or as high as circumstances

will permit ; we then open the gate enough to allow more water to

be discharged than is arriving, and we measure the height of the

water at equal intervals of time, which should be as small as pos-

sible ; finally, we close the orifice again perfectly and observe the

time ti in which the water rises to its former height. Now during

the lapse of the time t + tx the same quantity of water has of

course arrived and been discharged ; hence the quantity of water

which arrives in the time ^ + ^i is equal to the discharge in the
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time t. If the heads, while the level of the water was sinking, were

Ki ^M ^hy ^3j f^nd hi, we have the mean velocity

V = ^-~ ( /I^ + 4 Vi; + 2 VT, + 4 I/T3 + ^'X) (see § 453),

and if the area of the opening of the sluice is F, the discharge in

the time Hs •

F=^^?^(/X„ + 4/^ + 2|/T, + 41/T3+ l/X,);

hence the quantity of loater arriving in a second is

Example.—In order to measure the quantity of water in a brook, which

we wish to employ to turn a water-wheel, the stream was dammed up by a

wall of boards, as is represented in Fig. 816, and after opening the rec-

tangular orifice in it, we made the following observations: initial head, 3

feet; after 80", 1,8 feet; after 60", 1,55 feet; after 90", 1,3 feet; after 120",

i,15 feet; after 150,", 1,05 feet; and after 180", 0,9 feet; width of the ori-

fice = 2 feet, height = ^ foot, time required for the water to rise to former

level 110". In the first place the mean velocity is

© = ?^(V2 +4:^/1^ + 2^1^5 +4Vi;3 + 2 Vi;r5 +4Vi;05 + Vp)
= 0,4458 (1,414 + 5,364 -1- 2,490 + 4,561 + 2,145 + 4,099 + 0,949)

= 0,4458 . 21,022 = 9,372 feet. '

But F — 2 . I = 1 square foot, the theoretical discharge is, therefore,

= 9,372 cubic feet. If we assume that the coefficient of efflux = 0,61, we
obtain the required quantity of water

0,61 . 180
Q =

^3Q ^ -^-^Q
. 9,372 = 3,548 cubic feet.

§ 485. Water-inch.—When we are required to measure small

quantities of icater, we often allow it to discharge under a given

head through circular orifices in a thin plate, which are one inch

in diameter. We call the discharge through such an orifice, under

the smallest pressure, i.e. when the surface of the water is one line

above the uppermost part of the orifice, a water-inch (Fr. pouce

d'eau ; Ger. WasserzoU or Brunnenzoll). The French assume that

a water-inch (old Paris measure) corresponds to a discharge in 24

hours of 19,1953 cubic meters, or

in 1 hour, 0,7998 cubic meters, and

in 1 minute, 0,01333 cubic meters

;

but the older data, given by Mariotte, Couplet, and Bossut, differ

considerably from the above. According to Hagen, the water-inch

(for Prussian measure) discharges 520 cubic feet in 24 hours, or

0^3611 cubic feet in a minute. Prony's double water modulus (or
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Fig. 821.

" nouveau pouce d'eau"), which corresponds to an orifice 2 centi-

meters in diameter, under a pressure of 5 centimeters, and which

discharges 20 cubic meters in 24 hours, has not been adopted gen-

erally.

The observations can be made with more certainty when we
have a greater head ; it is simpler to make this head equal to the

diameter 1 inch of the orifice. According to Bornemann and E6-

ting, such a water-inch passes daily 642,8 cubic feet (Prussian) of

water (see the Ingenieur, page 463).

The apparatus, by which we measure the water with the aid of

the water-inch, is represented in Fig. 821. The water to be meas-

ured is discharged from the

pipe A into a box B, from

which it passes through

holes, made in the parti-

tion C D below the level

of the water, into the box

E; from it the water is

discharged through circu-

lar orifices F one inch in

diameter, which are cut

out of sheet iron, into the

reservoir G. To preserve the level of the water 1 line above the

top of the orifice we must have a sufficient number of holes, a por-

tion of which are closed by stoppers. We employ for more accu-

rate determinations in addition the orifice F^ which allows ^, \ of

a water-inch to pass through. When the quantity of water is very

great, we divide it into several portions and measure in this way

but one portion, as, e.g., a tenth. This division is easily accom-

plished by conducting the water into a reservoir with a certain

number of orifices on the same level and catching the water deliv-

ered from one of the orifices only in the above apparatus.

Remark.—We can also employ cocks and other regulating apparatuses

for measuring water, when we know the coefficients of resistance corre-

sponding to every position. If h is the head, F the cross-section of the pipe

and ^i the coefficient of efflux for the cock, when fully open, we have the

discharge

or inversely

q = tiF-sJ^gli^

II —
^V2"71

1 IFV



§ 486.] HTDROMETRY, ETC. 985

Now if we put the coefficient of resistance for a certain position of the

cock, which may be taken from one of the tables given previously, = C,

we have the corresponding discharge

Qx=F

Q

vrr /^^c vr + /*'^C

/^-(ly

= 269,64 1/^-—^-^ cubic inches,

2 gJi

We can construct from the above formula a convenient table, and we
have only to glance* at it when we wish to know the discharge correspond-

ing to a certain position of the cock. If, e.g.,
fj,
= 0,7 and F^ = 4 square

inches, we have

= 0,7 . 4 . 12 . 8,025 VA

Vl + 0,49 C

or, if A is constant and = 1 foot,

_ 269,64

~
ViT~o;49l:*

Now if the cock is turned 5°, 10^ 15°, 20°, 25°, etc., the coefficients of

resistance are 0,057, 0,293, 0,758, 1,559, 3,095, and the corresponding dis-

charges are 266, 252,1, 230,2, 203, 170 cubic inches.

§ 486. In order to regulate the efflux through an orifice F,

Fig. 822, we employ either a cock or valve A, Fig. 822, which is

Fig. 822. Fig. 823.

regulated by means of a lever and a float K, so that the same quan-

tity of water is discharged through B as through F.

The discharge of water from a reservoir B D E, Fig. 823,

through a lower orifice or tube D can be regulated by means of a

wide overfall B, since a moderate change in the quantity of water,

discharged through A, will produce but a slight change in the

height of the water above the sill B ; hence the augmentation of

the head of the orifice of efflux will be inconsiderable.

Let F denote the area of the orifice D, li the height of the sill

of the overfall above the middle of the orifice and hi the height of
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the surface of the water above the same sill. We have the dis-

charge through D
Q = lJLFV2g{li VK),

when the coeflScient of eiSux is jjl. Substituting the head h-^ above

the weir, which can be determined from the discharge Qy, the width

5i and the coefficient of efflux ix^ by means of the equation

^1 zz:
I n^ 5i V'2 g 7ii% or by the formula

we obtain the expression

, = ,^1^777(^1
from which it is easy to see that Q varies less with Qi, the greater

the value of h is and the greater the width h^ of the overfall is.

The width I? of the overfall can be easily increased by giving it

a curved form like BOB, Fig. 824. The discharge through the

orifice I) is then almost
^^' Q^^- constant, although the

.^iMMMBEi quantity of water flow-

A-T^^===^^ ~-—"~^ n ing in may be very va-

^- -z^-~S7^fc^- - '

liable ; for the height of

the water above the long

I
" ~

"

curved sill is always

) — small compared with the

// >^'-----=^^^=^^^^^^^^^^=^-'^=^— '^ height of this sill above

the orifice of efflux.

Remabk.—Such an apparatus for dividing the water was constructed

of sheet iron for the Wemergrdben at Freiberg by Oberlcunstmeister Schwam-

krug. It discharges through a rectangular orifice D, which is 5 feet long

and 1 foot high, almost invariably 40 cubic feet of water per second, while

the remaining water passes over the overfall, the sill of which lies 2 feet

above the upper edge of the orifice, and flows on in the ditch to where it

is wanted.

§ 487. Kydrometric Goblet.—We can employ to measure

small quantities of running water the small vessel, represented in

Fig. 825, which I have called the liydrometric goblet. This instru-

ment consists of a tube B, 12 inches long and 3 inches in diameter

with a funnel-shaped mouth -piece A, and of a vessel A 6 inches

high and 6 inches wide, which is united to B by an intermediate
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Fig. 825.

conical piece C. This vessel has an orifice L L in the side, in

which we can insert mouth-pieces containing different sized circu-

lar orifices in a thin plate. The instrument is held by means of

the handle H under the water S, which is being discharged, e.g.,

from the pipe E, and the water thus caught

is allowed to discharge itself through the ori-

fices L L. In order to tranquilize the water

in the vessel a fine sieve or wire gauze is

placed in the reservoir D, and in order to ob-

serve the head of the water a glass tube P,

which is placed close to a brass scale and ends

a half an inch from tlie bottom of the vessel,

is added to it. From the observed head, the

known cross-section of the orifice and the

corresponding coefficient of efflux, we can cal-

culate the discharge by means of the formula

Q = fi F V¥gli.

If we prepare a small table, we can spare

ourselves this calculation and the only opera-

tion, which we are required to perform, is a

simple interpolation between the values in the

table. If d is the diameter of the orifice,

F z^
T:d'

and therefore

4
gh

flTC

%g .d' Vh.

The discharge Q is double, when the cross-section or d'^' is double,

or when the head is four times as great. If we so arrange the in-

strument that the maximum head shall be four times the minimum

;

if, E.G., the former is 12 and the latter 3 inches, and if v/e employ a

series of orifices whose diameters form the geometrical series

d,\^d,%d,'ZV^ d,4.d, etc.

I.E. d, 1,414 d, 2 d, 2,828 d, 4 d, etc.,

we obtain a means of measuring all discharges from the minimum
given by the smallest orifice with the diameter d under the smallest

head, to the maximum, given by the largest orifice with the diam-

eter Vn . d under the greatest head 4 h.
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If we assume for

[§ 487,

I. 11. TIT lY. V. VL m
<z = i

= 0,1250

1- V2
= 0,1768 = 0,^2500

iV2
= 0,3535 = 0^000

1- V2
= 0,7071

1 inch
= 1,0000

.= 0,690 0,675 0,660 0,647 0,635 0,627 0,620

we can calculate the following useful table.

Table of the hourly discharge in culyicfeetfor thefollowing orifices.

Head h in inches. I. 11. III. IV. V. VI. VIL

3 0,85 1,66 3,25 6,37 12,51 24,70 48,85

4 0,98 1,92 3,75 7,36 14,44 28,52 56,40

5 1,10 2,14 4,19 8,23 16,15 31,89 63,06

6 1,20 2,35 4,60 9,01 17,69 34,93 69,08

7 1,30 2,54 4,96 9,73 19,10 37,73 74,61

8 1,39 2,72 5,31 10,41 20,42 40,33 79,77

9 1,47 2,88 5,63 11,04 21,66 42,78 84,60

10 1,55 3,03 5,93 11,65 22,84 45,09 89,18

11 1,63 3,18 6,22 12,20 23,95 47,30 93,53

12 1,70 3,32 6,50 12,74 25,01 49,40 97,69

13 1,77 3,46 6,77 13,26 26,04 51,42 101,68

The manner of using this table is shown by the following

example. v

Example.—In order to determine the quantity of water furnished by a

spring, the water from it was caught in a hydrometric goblet, and it was

found that a state of permanency occurred when the efflux took place

through the orifice V (one half inch in diameter) under a hiead of 10,4

inches. According to the table for A = 10 inches

Q — 22,84 cubic feet per hour,

and for ^ = 11 inches

Q = 23,95 cubic feet,

consequently the difference for one inch is 1,11 cubic feet, and for 0,4 inches
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0,4 . 1,11 = 0,444, Hence the discharge under the head h — 10,4 inches is

Q = 23,84 + 0,444 = 23,384 cubic feet.

§ 488. Floating Bodies.—The discharge of large creeks,

canals and rivers can only be measured by means of hydrometers,

which indicate the velocity. The simplest of these instruments are

floating bodies (Fr. flotteurs ; Ger. Schwimmer). We can use any

floating body for this purpose, but it is safer to employ bodies of

medium size and of but little less specific gravity than the water

itself. Bodies whose volumes are about j^ of a foot are quite large

enough. Very large bodies do not easily assume the velocity of the

water, and very small bodies, particularly when they project much
above the level of the water, are easily disturbed in their motion by

accidental circumstances, such as the wind, etc. A simple piece of

wood is often employed, but it is better to cover the wood with a

light-colored paint; hollow floats, such as glass bottles, sheet-

iron balls, etc., are better; for we .can fill them partially with water.

Floating balls are, however, most generally employed. They are

made of sheet brass and are from 4 to 12 inches in diameter; to

prevent their being lost sight of, they are covered with a coat of

light-colored oil paint. Such a floating hall A, Fig- 826, gives the

velocity at the surface only, and often only that in the axis of the

stream. By uniting two balls A and B, we can find also the

velocity at different depths. In this case one ball, which is to be

submerged, is filled with water, and the other contains enough to

prevent more than a small portion of it from projecting above the

level of the water.
Fig. 836. Fm. 837. rj.^^ two balls are

united by a string,

wire or thin wire

chain. We first de-

termine by a single

ball the superficial

velocity c^, and we

then determine the

mean velocity c of the two connected balls ;
now if we denote the

velocity at the depth of the second ball by Ci, we can put

c = ^° ^ ^\ and, therefore, inversely, c, = 2 c - c,.

If we unite the balls successively by longer and longer pieces

of wire, we obtain in this way the velocities at greater and greater
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depths. The mean velocity of a perpendicular is determined by

allowing the second ball to swim near the bottom and putting

''-
2 '

it is more accurate, however, to take the mean of all the observed

velocities m the perpendicular as the mean velocity.

To obtain the mean velocity m a perpendicular, a floating staff

A-^ B^, represented in Fig. 828, is often employed, and it is very

convenient, when it is used for meas-

urements in canals and ditches, to have

it made of short pieces which can be

screwed together. The one used by

the author is composed of 15 hollow

pieces, each one decimeter long. In

order to make it float nearly perpen-

dicularly, the lower part is filled with

enough shot to prevent more than the

head from projecting above the water.

The number of pieces to" be screwed together depends, of course,

;upon the depth of the canal.

We observe, when using the floating staff and the connected

balls, that, when the movement of water in channels is not impeded,

the velocity at the surface is greater than that at the bottom ; for

the top of the staff and the uppermost ball are always in advance.

It is only when the channel is contracted, as, e.g., by piers of

bridges, that the opposite phenomenon is observed.

Remark.— Generally, and particularly with large floating bodies such

as ships, etc , the velocity of the floating body is somewhat greater than

that of the water; this is owing less to the fact that the body, in jQoating,

slides down an inclined plane formed by the surface of the water, than to

the fact that it does not participate, or at least only partially so, in the ir-

regular internal motion of the water, this variation is, however, so slight,

•when the floating bodies are small, as to be negligible.

§ 489. Determination of the Velocity and of the Cross-

section.—We find the velocity of a floating ball by observing by

means of a good watch with a second-hand or by means of a half-

second pendulum (§ 327) the time t, in which it describes the dis-

tance A B — s, Fig. 829, which has been previously measured and

staked off on the shore. The required velocity of the sphere is then

c = '^. In order that the time t shall correspond exactly to the
t
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Fig. 829.

c
^
[D

mm =:^.fi^-.,^-^^

r^=^ -«_ I^^^-^^^^^==r=^
-

distance measured on the shore, it is necessary to put two rods C
and I), by means of a suitable instrument, in such a position upon

the other side of the river that the

lines C A and D B shall be peqoen-

dicular to A B. Placing ourselves

behind A, we note the instant the

float K, which has been placed in the

water some distance above, arrives at

the line A C, and then passing be-

hind B, we observe upon the watch the instant that the float ar-

rives at the line B I); hj subtracting the time of the first observa-

tion from that of the second, W3 obtain the time t, in which the

space s is described. In order to determine the discharge Q = F c,

we must know, besides the mean velocity c, the area F of the cross-

section. To find this area, it is necessary to know the width and

the mean depth of the water. The depth is measured by a gradu-

ated sounding-rod A B, Fig. 830, the cross-section of which is

elongated and the foot of which is formed by board ; when the

depth is gi-eat, we can make use of a soiinding-chaiii, to the end of

which an iron plate is attached, which, when the measurement is

being made, lies upon the bottom. The width and the abscissas or

distances from the shore corresponding to the depths measured are

Fig. 880. Fig. 831.

: C

easily found for canals and small creeks E F G,

Fig. 831, by stretching a measuring chain A B or

laying a rod, etc., across the stream. When the

river is wide, we make use of a plane-table 31,

placed at a proper distance A from the cross-

section F F, Fig. 8c 2, to be measured. If a o

upon the plane-table is the reduced distance A
T'f the fixed points A and from each other, and if we have placed

a 'in the direction A 0, and thus made the direction a f of the

width, which had been drawn, previously to putting the plane-table

in position, parallel to the fine A F to be measured off, each line

of sight towards the points E, F, G, etc., in the transverse profile

cuts off upon the table the corresponding points e, /, g, and
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Fig. 832.

a e, af^ a g, etc., are the distances A E, A F, A G, etc., upon the

reduced scale. When using the sounding-rod to measure the

depth, it is, therefore, not necessary to measure the distance of

the correspondmg points from the

shore ; for the engineer, who is at

the plane-table, can sight at the

sounding-rod, when it is placed in

the Hne E F.

Now if the width E F, Fig. 831,

of a transverse profile is made up

of the portions ^1, §2, h^ etc., and

if the mean depths of these por-

tions are ai, a^, a-i, and the mean velocities c^, c^, Cz, etc.^ we have

the area of the cross-section

F = a^hx + fl^2 ^2 + «53 ^3 + . . .,

the discharge

Q — axh^Cx + «2 ^2 Ci H- «3 ^3

and finally the mean velocity

Q «] 'bx Cx 4- ^2 ^2 Co

F

Cz +

as hx + a^ h.2 -\- . . .

Example.—Upon a pretty straight and constant portion of a river the

following observations were made :

Feet. Feet, Feet. Feet. Feet.,

At the centre of the divisions of the width

the depths were

the mean velocities were

5

3

1,9

12

6

2,3

20

11

2,8

15

8

2,4

7

4

2,1

The area of the cross-section is

i^ = 5 . 3 -f 12 . 6 + 20 . 11 + 15 . 8 + 7 . 4 = 455 sqnare feet,

the discharge is

Q = 15 . 1,9 + 72 . 2,3 + 220 . 2,8 + 120 . 2,4 + 28 . 2,1 = 1156,9 cubic feet,

and the mean velocity is

1156,9
c =

455
2,54 feet.

§ 490. Woltmann's Mill or Tachometer.—The best hy-

drometer is }VoUmami''s tachometer or Woltmann^s Mill {¥i\ Moulinet

de Woltmann ; Ger. hydrohietrisches Flligelrad von Woltmann),

Fig. 833. It consists of a horizontal shaft A B with from 2 to 5
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surfaces or vanes F, inclined to the direction of the axis ; when
immersed in water and held opposite to the direction of motion, it

Fig. 833.

indicates by the number of its revolutions the velocity of the run-

ning water. To enable us to count the number of revolutions the

shaft has cut upon it a certain number of threads of an endless

screw (?, which work into the teeth of a cog-wheel D, which indi-

cates, by means of a pointer and figures engraved upon the wheel,

the number of revolutions of the wheel F. As we often wish to

register a great number of revolutions the shaft of the cog-wheel

carries a pinion, wdiich takes into another cog-wheel E, upon which

we can read off, as upon the hour-hand of a watch, multiples

(e.g., five or tenfold) of the number of revolutions of the vanes.

If, for example, both cog-wheels have 50 teeth and the pinion has

10, the second wheel will turn one tooth, while the first moves five,

or the shaft of the vane wheel makes five turns. When the pointer

of the first wheel is at 27 = 25 + 2 and that of the second at 32,

the corresponding number of revolutions of the vane-wheel is

= 32 . 5 + 2 = 162.

The entire instrument with a sheet iron vane is screwed to a

63
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pole, so that it may easily be immersed and held in the water. In

order to prevent the gearing from turning except during the time

of the observation, its shafts run in bearings placed upon a lever

G 0, which is pressed down by means of a spring, so that the teeth

of the first cog-wheel do not take into the endless screw except

when the string G B is drawn upwards. The number of revolu-

tions in a given time is not exactly proportional to the velocity of

the water ; hence we cannot put -v = a . u, in which u is the num-
ber of revolutions, v the velocity and a an empirical number, but

we must put

V = v^ + a u,

or more accurately

V = v^ + a u -{- (i u^ , . ,,

or still more accurately

V = a u -h Vv^' + fi u\

in which v^ denotes the velocity of the water, when it ceases to

move the vanes, and a and /3 are numbers to be determined by

experiment. The constants i\, a, /3 must be determined for each

particular instrument. By their aid a single observation gives the

velocity, but it is always safer to make at least two and then take

their mean value as the true one.

Example.—If for a tachometer «„ = 0,110 feet, a = 0,480 and /? = 0,

then «) =: 0,11 + 0,48 u, and if we have found the number of revolutions

of the fan to be 310 in 80 seconds, the corresponding velocity of the

water is

210
v = 0,11 + 0,48 .

-— = 0,11 + 1,26 = 1,37 feet.
ov

Remark 1.—The constants v^, a and /? depend principally upon the

angle of impact, i.e., upon the angle formed by the surface of the vanes

with direction of the motion of the water and also with the direction of

the axis of the wheel. If we wish to make, when the velocities are small,

pretty accurate observations, it is advisable to make the angle of impact

large, i.e., about 70". It is also desirable to have vane-wheels of different

sizes and of different angles of impact, so that when the depth or velocity

of the water is greater or smaller we can employ one or the other.

Remark 2.—If the tachometer had no resistance to overcome in turn-

ing, the vanes A B, Fig. 834, would describe the space C C^ = CD
tang. G D G^ while the water describes G D; hence, if we denote by v

the velocity of the water and by cJ the angle of impact G B = G I) G^^
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we have under this supposition the mean velocity of rotation of the vane-

wheel
FiG.„ 835. v^ ='D tang, d,

from which it is easy to see that,

when r denotes the mean radius of

the vane-wheel, the number of revo-

lutions is

_ 'Vi Z) tang. 6

^ ^ 2Vr ^ 2 Trr '

and that, consequently, it is directly

proportional to the velocity v of the

water and to the tangent of the angle

of impact and inversely to the mean radius of the vane-wheel.

Remark 3.—In order to determine the superficial velocity of water we
also employ a small wheel made of metal, like the one represented in Fig.

835, and we allow only the lower jDart to be immersed in the water. The
number of revolutions is given by a train of wheels, exactly as in the

tachometer.

§ 491. In order to determine the constants or the coefficients

of a tachometer, it is necessary to hold the instrument in running

water, the velocity of which is known, and to observe the number
of revolutions. Although only as many observations as there are

constants are required, yet it is safer to make as many observa-

tions as possible, particularly with very different velocities, and

to employ the method of the least squares (see Introduction to the

Calculus, Art. 36) and thus do away with the accidental errors

of observation. The velocity of the water may be determined by a

floating sphere, or we may catch the water in a gauged vessel and

divide the quantity of water caught by the cross-section. If the

floating sphere is employed, the air must be still and the water must

move uniformly and in a straight line. The vane-wheel must be

immersed at several points along the path described by the floating

sphere, and to insure perfect accuracy, the diameter of the sphere

should be about equal to that of the vane-wheel.

The second method of determination by catching the w^ater, in

which the mill is immersed, in a gauged vessel possesses many
advantages. For this purpose, and for adjusting hydrometers

generally, it is very desirable to have at one's disposition a

hydraulic observatory, which consists of a gauged vessel, a trough,

and a discharging vessel or reservoir. We can then give the

water any desired velocity; for we can regulate not only the

entrance of the water into the trough, but also, by inserting boards,
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we can regulate at will the velocity in it. In making the ' observa-

tion, we have but to insert the tachometer at different parts of the

cross-section of the trough, to measure the depth of this section by

a scale, and then to gauge the quantity of water, which has passed

through in a given time (§ 480). The area of the cross-section is

obtained by multiplying the mean depth by the mean width, and

the discharge Q is calculated from the mean cross-section of the

receiving reservoir and the depth of the water, which has flowed

into it, by means of the formula

^ -
t

'

finally, from Q and F we deduce the mean velocity of the water

F Ft
The corresponding number u of revolutions of the vane-wheel

is the mean of all the revolutions observed when we inserted the

instrument in different parts of the transverse profile.

If by experiment we have determined a series v^, v^, v^, etc., of

mean velocities and the corresponding numbers of revolutions, we

obtain, by substituting them in the formula

V = v^ -\- a u,

or in the more accurate one

V = a u -}- VvJ' + i3 u%

as many equations of conditions for the constants v^, a, (3, as we

made observations, and we can find from them the constants them-

selves either by employing the method given in Art. 36 of the In-

troduction to the CalculuE!, or by dividing these equations into as

many groups as there are unknown constants, and combining them

by addition into as many equations of condition as are necessary

for the determination of v^, a and /3.

If we assume the passive resistances of the instrument to be

small enough to be neglected, we can put v = a tc and determine

a by moving the instrument forward in still water and observing

the number n — u t oi revolutions made in describing the space

s — V t\ then

_ "^ _ "^ ^ _- ^

u ut n

Remark—1) If we employ the simple formula with two constants, we

can put, according to the method of least squares,

_ 2 (y'^) 2 {X) -2fa y)2(y) _ 2 (a;^) 2 (y) - Z (.^; y) 2 (a;)
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1 u
in which x = - and y = ~, and the sign 2 denotes the sum of all the

values of the same kind as that which follows it, e.g.

,1 1 1
2 ^aj) = — + — + — + .. .,

«^l «^2 «3

1 (xy) = — . — + — .
-- + — .

-^ + . .

.

^1 «i '^2 ^2 ^3 ^3

Example.—We have observed -with a small tachometer that for the ve-

locities

0,163, 0,205, 0,298, 0,366, 0,610 meters

the number of revolutions per second were

0,600, 0,835, 1,467, 1,805, 3,142,

and we wish to determine the constants corresponding to this instrument.

By the aid of the formula given in the Remark, we obtain, since

^^^)-o-i + o;^5 + --- = ^^'^^^'

, , 0,600 0,835

^(^)-0-;i63 + o!205 + --- = ^^'^^^'

^ ^''^ = ((u\-3)^+ (0^05)^+ •'= ^^'^^^'

2 (y^) = 105,233, and

^^ y^ ~ (0,163)2
^

_ 105,233 . 18.740 - 80,961 . 22,759 _ 129,5
"*> ~ 82,846 . 105,233 - (80,9617 ~ "2162

hence the formula for this instrument is

« =r 0,060 + 0,1703 u.

Substituting u = 0,6, we obtain

t) = 0,060 + 0,102 = 0,162

u — 0,835 gives
?7 == 0,060 + 0,142 = 0,202

u = 1,467,

V = 0,060 + 0,249 = 0,309

u = 1,805,

^ = 0,060 + 0,307 = 0,367;

and finally, u = 3,142,

v = 0,060 + 0,535 = 0,595.

The calculated values therefore agree very well with the observed ones.

Remark—2) We can also, according to Lapointe, insert the tachometer

in a cylindrical pipe, and thus obtain the velocity of the water flowing

through it. The counting apparatus can be placed outside of the pipe

and connected with the vane-wheel by means of a shaft. Lapointe calls

this instrument une tube jatigeur (see " Comptes rendues," T. XXV, 1848

:

, , 0,600 0,835
^(^^>- (o;i63/ + To;2057 + --- = ^^'^^i'

= 0,060 and
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also Polytecbn. Centralblatt, 1847). Fig. 836 gives an ideal represeniation

of the tachometer in a pipe. The vane-wheel in

this case also puts a shaft D E m rotation by-

means of an endless screw ; the former passes out

of the pipe B H, in which the water to be

measured flows, through a stuffing-box F into

the case G Hof the counting apparatus, the ar-

rangement of which may be very varied.

Remark—3) The French have but lately be-

gun to give sufficient attention to the tacliometer.

A complete treatise upon this instrument, by

Baumgarten, is to be found in the " Annales des

ponts et chaussees," T. XIV, 1847, and an abstract

of it in the "Polytechnisches Centralblatt, 1849." Baumgarten recommends

a screw-wheel and adds several remarks, which agree very well with our

experiments, made many years ago. A new tachometer, without wheels

and with a long screw, is described by Boileau in his " Traite de la mesure

des eaux courantes."

Fig. 837.

§ 492. Pitot's Tube.—The other hydrometers are more im-

perfect than the tachometer ; for they are either less accurate or

more difficult to use. The simplest instrument of this kind is

Pitot's tube (Fr. la tube de Pitot; Ger. Pitot'scheKohre). It con-

sists of a bent glass tube ABC, Fig. 837, which is held in the

water in such a manner that the lower part is

horizontal and opposite to the motion of the

water. By the impulse of the water a column

of water will be forced into the tube and held

above the level of the water, and this rise D E
is proportional to the impulse or to the velo-

city of the water which produces it ; this rise

or difference of level can therefore serve to

measure tlie velocity of the water. If the height

D E above the exterior surface of the water

li and the velocity of the water = v, we can put

h =

in which fi is an empirical number, or inversely

V — II V2 g h, OT more simply

V = ip Vh,
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Fig.

In order to find the constant ^|), we hold the instrument in the

water where the velocity is known to be v^ ; if the rise is = h^, we

have the constant ip = —=? which can be employed in other cases,
V hi

where the velocity is to be determined by this instrument.

In order to facilitate the reading off of the height h, the instru-

ment is composed of two tubes A B and G D, as is represented in

Fig. 838 ; from one of the tubes a pipe proceeds in the direction of

the stream, and from the other two pipes F and F^ at right-angles

to that direction, but by means of the same cock

both tubes can be closed at once. If we draw the

instrument out of the water, we can easily read off

the difference of height K L = h of the columns

of water upon the scale placed between them. In

in order to prevent the water from oscillating in the

ll tubes, it is necessary to make their mouths narrow

;

and in order that the cock may be shut quickly and

certainly, it is provided with a crank and a rod

H S, which is represented in the figure principally

I '-^ i '^ by a dotted line and terminates near the handle of

the instrument.
I

Remark—1) Although Pitot's tube is not so accurate

as tbe tachometer, yet, on account of its simpUcity, it

can be highly recommended. The author has discussed

L this instrument at length in the " Polytechmsches Cen-

tralblatt, 1847," and gives there a series of numbers, de-

termined by experiment, and the values of the coefficient

tp deduced from them. With fine instruments, when the

velocities were between 0,32 to 1,24 meters, we found

V = 3,545 V/i meters.

2) Duchemin recommends Pitot's tube with a float.

Since the latter must be pretty wide, it dams the water

back to a certain extent, so that it cannot be employed for narrow canals

(see Duchemin: " Recherches experim. sur les lois de la resistance des

fluides"). Boileau describes in his work, cited in § 412, a new kind of

Pitot's tulje, which is provided with a small gauged vessel ; the velocity

is measured by the quantity of water i^ressed above the surface of the

water.

§ 493. Hydrometric Pendulum.—The Jiydrometric pendu-

lum (Fr. pendule hydrometrique ; Ger. Stromquadrant or hydro-
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metrisches Pendel) was principally employed by Ximenes, Michelotti,

Gerstner, and Eytelwein to measure the yeloeity of running water.

This instrument consists of a quadrant
Fig. 839. ^ ^^ -p^^^ 339^ divided into degrees and

C^^tsaB -P^^'^^ ^^ ^ degree, and of a string attached

||\" B to its centre C, at the other end of which is

I \k^ fastened a metal or ivory ball JT, 2 or 3

Ax^^^^ inches in diameter. The velocity of the

iL ~z^̂ ^^~ water is given by the angle ACE formed

^:^~'^=iZr.l^''"^ by the stretched string with the . vertical,

^:—^. „ " - when the j^lane of the instrument is placed

in the direction of the stream, and the

ball is immersed in the water. Since the angle cannot easily exceed

40°, this instrument often has the form of a right-angled triangle,

and the graduation is then marked upon the base. In order to

place the zero hne vertical, we can either place a level upon the

mstrument or we can employ the ball itself by allowing it to hang

out of the water and then turning the instrument until the string

corresponds with the zero line. For velocities less than 4 feet we
can employ an ivory ball ; for greater velocities, however, we must

use heavy balls of metal. On account of the \ibrations of the ball,

not only m the direction of the motion of the water but also m
that at right angles to it, it is always difficult to read off the angle,

and the result is never free from uncertainty; this instrument

cannot therefore be considered to be a perfect one.

The dependence of the angle of deviation, for a ball that is not

deeply immersed, upon the velocity of the water can be determined

in the following manner. The weight G of the ball and the im-

pulse of the water P = ft F v', which increases with the cross-

section F of the ball and the square of the velocity v, give rise to

a resultant R^ which is counteracted by the string and is deter=

mined by the angle of deviation 6, for which we have

tang. 6 z= — = —^,
or inversely

, G tang, d . a/ ^ ^n x
V — -^— and V = Xf —^ . \tanq. o,

u F ^ \iF ^ '

I.E.,

V = ip Vtang. cJ,

in which i/^ is an empirical coefficient, which must be determined
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in the maimer stated above (§ 491) before the iiistrunient can be

used.

§ 494. Rheometer.—The remaining hydrometers, such as

Lorgna's water-lever, Ximenes' water-vane, Michelotti's hydrauhc

balance, Brunning's tachometer and Poletti's rheometer, etc., are

difficult to use and partially uncertain. The principle of all of

them is the same; they consist of a balance and of a surface,

which is subjected to the impact of the water; the former serves

to measure the impulse P of the water against the former, but

since the impulse \s, = \i F v"^, we have inversely

in which -0 is an empirical constant, dependent upon the magni-

tude of the surface subjected to the impulse of the water.

The Rheometer, which has been lately proposed by Poletti, does

not differ essentially from Michelotti's balance and consists of a

lever A B, Fig. 840, movable about a fixed axis C, and of a second

arm CD, upon which a surface, or, according to

Poletti, a simple rod, which is to be subjected

to the impact, is screw^ed. In order to balance

the force of impact of the water, shot or weights

are put into the sheet iron box, which is sus-

pended at A upon the lever, and to balance

the empty apparatus in still water, weights

are hung at B, the extreme end of the arm

C B. From the weights added at G and the

arms of the lever C A — a and C F = b, we

obtain by means of the formula P l — G a the

impulse

P = ^ 6^ and t; = /"^ = /"^ = V>^
I ^ \i F ^ ml F ^

in which i/^ denotes an empirical constant.

A hydrometer constructed upon the same principle, in which

the impulse of the water is balanced by the force of a spring (hy-

drometre dynamometrique) is described by Boileau in his treatise

upon the measurement of water.

Remaek 1.—The last-mentioned hydrometers are discussed at length in

Eytelwein's " Handbuch der Mechanik," Vol. II, in Brunning's " Abhand-

lung \iber die Geschwindigkeit des fliessenden Wassers," in Venturoli's
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" Element! di Meccanica e d'Idraulica," Yol. II. Concerning Poletti'a

Rheomefcer, see Dingler's Polytechn. Journal, Vol. XX, 1826. Stevenson's

hydrometer is Woltmann's tacliometer, see Dingler's Journal, Vol. LXV,
1843. The water-meters and gas-meters constructed like reaction wheels

will be treated in the following chai)ter.

Remakk 2.—A work to be particularly recommended for practical

purposes is the " Hydrometrie oder practische Anleitung zum Wasser-

messen von Bomemann, Freiberg, 1849." Boileau's work has already been

mentioned several times (see § 412, etc.).

CHAPTER IX

OF THE IMPULSE AND RESISTANCE OF FLUIDS.

Fig. 841.

iiiiiiiiiiiniiilay

§ 495. Reaction of Water.—The total pressure of the still wa-

ter in a vessel is, according to § 362, reduced to a vertical force equal

to the weight of the mass of water ; but if the vessel A F, Fig. 841,

has an opening F, through which

the water issues, this force under-

goes a change not only because a

portion of the wall of the vessel is

absent, but also because the water,

which issues from the orifice, like

every other body, which changes

its conditions of motion, reacts by

virtue of its inertia. The change

in the motion of a body may consist

either of a change of velocity, or

of a change of direction, and, there-

fore, the reaction (Fr. reaction ; Ger. Eeaction) of the issuing water

may be due not only to an acceleration but also to a constant

change in the direction of the water, which is approaching the

orifice.

We can make ourselves acquainted with the complete reaction

of the water in a discharging vessel in the following manner.

Let c be the velocity of the water, which is issuing from the

orifice F^ Cx the relative velocity of the water at the surface A^
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G the area of this surface and h the head of water A D 2ii the ori-

fice. Then we have

and the discharge

Q = Fc= Gcx.

If we imagine the vase A F, Fig. 841, to move forward in a

horizontal direction with a velocity v, we must put for the absolute

velocity d of the water entering the vessel

C' = c' + v\

and if the angle of inclination of the axis of the stream to the

horizon i% E F c = a, we have for the absolute velocity w of the

efiiuent stream

w"" = c^ -{- v"^ — '^ c V cos. a.

Now the actual energy of the water before efflux is

^-(ft-')«^H'-=^H-')« r
\ ^ y /

and that after efflux it is

T ^^^ ^ (o^ + v" — % c V COS. a\ _.

^'=2^«>'=( ~¥-g j^''-'

hence the energy withdrawn from the water and transmitted to

the vessels is
'

X = i, - i, = (£L^^i+_li^^- + n)Qy.

T- c V COS. a _

The horizontal component of the reaction of the water is

^^ L c cos. a _H = — = Q y.
V g

Since Q = F c, vfQ ha^e also

H = — F y COS. a = ^ .
—- Fy cos. a = 2h F y cos. a,

g ^g
and therefore, when the direction of the stream is horizontal, as in

Fig. 842,

H = "IhFy.

Therefore, the reaction of a horizontal stream is equal to the

weight of a column of icater, ivhose cross-section is that of the stream

and whose height is double that (2 h) due to the velocity.
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Remaek.—Mr. Peter Ewart, an Englishman, has recently made experi-

ments to prove the correctness of this law (see " ]\Iemoirs of the Manchester

Philosophical Society," Vol. 11, or the " Ingenieur, Zeitschrift fur das ge-

sammte Ingenieurwesen," Vol. I). He hung

the vessel H R F upon a horizontal axis C,

Fig. 842, and measured the reaction by a bent

lever ABB, upon which the vessel acted by

means of a horizontal rod A G, which pressed

against the vessel exactly opposite to the ori-

fice F. For efflux through an orifice in a thin

plate, he found

2g
K we put the cross-section

F^ = 0,64 F
and the effective velocity of discharge

«?! = 0,96 V

(see § 405), we obtain by the theoretical formula

«.' „ »...„...«' ^ . .. «'

With an orifice shaped

P= 2 .
'

. F^y = 2. 0,96^ . 0,64 .^Fy = 1,18 ^^ F y,

or about the same that was given by experiment.

like the contracted stream, he found P = 1,73 -r— F y, and the coefiicient
2 g ''

of efflux or velocity = 0,94. Since in this case F^ = i^and v^ = 0,94 o,

we have theoretically

P = 2. 0,942 —-ii"7 =, 1^7 , F 7,

Fig. 843.

2g ' ^ 2 ^

which agrees very well with the result of the experiment.

§ 496. If we imagine the discharging vessel A F, Fig. 843, to

be moved vertically upwards with a velocity v, we have for the

absolute velocity of the water which

enters it

c^ = V — Ci,

and, on the contrary, for that of the

water issuing from it (the same no-

tations iDcing employed as in the

foregoing paragraph)

w'' = 0' ^- v"" + "Z cv COS. (90° ¥ a)

=. c" -^ v^ — 2 c v sin. a.

Hence the total energy of the

volume of water Q per second is

iv-cf
• - f ^g

+ h) Q r,

and, on the contrary, that of the water discharged is

Li — (c^ -r v"" — 2 cv sin. a) Q:2 g
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consequently the mechanical effect imparted by the water to the

vessel is

c^ — c^ + 2 cv sin. aL^ L,
/2 V Cx

2^-
+ a) g y.

or, since ^ = ^ -
|^
^ ic sin. a — Ci) V ^

and the corresponding vertical force is

^ L (c sin. a — cA ^ / . F\ c ^

/ F\ c"" I F\— [sin. a — —I — F y —\sin. a — —I .% h F y.

If the orifice of efflux is small, compared to the surface G, we
F

have— = 0, and, therefore, the vertical component of the reaction

V — %h Fy sin. a.

According to the foregoing paragraph the horizontal compo-

nent of this force was
H = %hFy COS. a

;

hence the total reaction of the water is

R = VV + H' = 2h Fy,
and its direction is exactly opposite to that of the motion of the

effluent water.

If F = G, I.E., if the water flows through a pipe of uniform
F

width, we have —- = 1, and therefore
(r

V = {sin. a - 1) .%hFy = ^ {1 - sin. a) .^hFy,
in this case V does not act upwards but downwards, and the total

reaction is

R =W + W = Vcos. a' + (1 - sin. of .%hFy
Fig. 844 = ^2 (1 - sin. a) .%h Fy

= 4:hFy sin. ^45° -
|).

For a = — 90°, i.e., when the pipe forms a

semicircle, R = 4:h Fy

If a — + 90°, we have the case represented in

Fig. 844, where H = and

if
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consequently, for
G 0, we have

The total weight of the water in the vessel will be diminished

that much, when the water is allowed to flow out.

§ 497. Impulse and Resistance of Water.—Water or any

other fluid, when ifc impinges upon a solid body, imparts a force or

impulse to it, and thus produces a change in its state of motion.

The resistance (Fr. resistance; G-er. Widerstand), which water

makes to the motion of a body, is not essentially difierent from im-

pulse. The examination of these two forces constitutes the third

chief division of hydraulics. We distinguish from each other first,

the impaot of an isolated stream (Fr. choc d'une veine de fluide

;

Ger. Stoss isolirter Wasserstrahlen) ; secondly, the impact of a

hounded stream (Fr. choc d'un fluide defini; Ger. Stoss im be-

grenzten Wasser oder Gerinne) ; and thirdly, the impact of an unlim-

ited stream (F. choc d'un fluide indefini ; Ger. Stoss im unbegrenz-

iten Wasser). Impact of the first sort takes place when a stream

discharged from a vessel encounters a body, as, E.G., the bucket of

an overshot water-wheel ; impact of the second sort occurs, when
the water in a canal or trough strikes against a body which en-

tirely fills the cross-section of the latter, as, e.g., the float of an

under-shot water-wheel. Finally, impact of the third kind occurs,

when running water strikes upon a body immersed in it and the

cross-section of the latter is but a small part of that of the stream,

as, E.G., the float of a wheel in an open current.

We distinguish also impact against lodies at rest and todies in

motion, against curved and plane

surfaces ; the latter may be either

direct or oblique.

We will now consider a more

general case, viz. the impact of an

isolated stream against a surface

of revolution, moving in the direc-

tion of the motion of the stream,

which coincides with the direction

of the axis of the surface.

§ 498. Impact ofan Isolated

Stream.—Let B A B, Fig. 845, be

Fig. ,845.
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a surface of revolution, A P its, axis, and F A o, stream of water

moving in the direction of the axis of the latter and impinging

against it ; let us put the velocity of the water = c, that of the

surface = v, and the angle B T P, which the tangent £> Tto the

end B of the generatrix or each fibre B B of the stream of water,

which leaves the surface, makes with the direction B B of the axis,

= a, and let us assume that the water does not lose any vis viva in

consequence of the friction while passing over the curved surface.

The water impinges upon the surface with the velocity c — v and

then passes over the surface with that velocity and leaves it in a

tangential direction T B, T B, etc., with the same velocity. From
the tangential velocity B D =^ c — v and from the velocity B E
=z V m the direction of the axis, we obtain the absolute velocity

B G ~ c^of the water, after it has impinged upon the surface, by

the well-known formula

Ci = V{c — vY + 2 {c — v) V COS. a + v"".

]!^ow a discharge Q can produce by its vis viva a mechanical

effect ij— . C 7, when it loses its entire velocity c ; hence the energy

remaining in the water is = ^ . Q y, that transmitted to the sur-

face is

_ [c'' — (c — vY — 2 {c — v) V cos, ^ — •^T ^

%cv — ^v^— %(c — v)v cos, a _= ^—^ Q r, I.E.

Pv = {\- COS, a) {L:zA1 Q y^

and the force or impulse in the direction of the axis is

P = (1 - cos, a) ^^^ Q y.

If the surface moves with a velocity v, which is in the oj^posite

direction to that of the water, we will have

P = (1 - cos. a) ^^i^ Q y,

and if the surface does not move or if 2; == 0, the impulse or hydrau-

lic pressure in the direction of the axis is

P = (1 - cos, a)-.Qy.
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From this it follows that the impulse of one and the same 7nass

of zuater, ichen the other circumstances are the same, is proportional

to the relative velocity c T v of the water.

If the area of the cross-section of the stream is F, the volume

of the impinging water is F (c =p v) ; hence

or for V = 0,

(1 — COS. a) ^^ '-

(1 — COS. a) — Fy.
9

If the cross-section of the stream remains the same, the impulse

against a surface at rest increases with the square of the velocity of
the tuater.

§ 499. Impact against Plane Surfaces.—The impulse of

the same stream of water depends principally upon the angle a, at

which the water moves off from the axis after the impact; it is

null when this angle = 0, and, on the contrary, a maximum and

when this angle is 180° or when its cosine = — 1, in which case, as is

Fi. 846. Fig. 847.
represented in Fig. 846,. the

water quits the surface in a di-

rection opposite to that in which

it struck it. In general the im-

pact is greater against concave

than against convex surfaces;

for in the former case the angle

is obtuse and its cosine negative

and 1 — COS. a becomes 1 + cos. a.

Usually the surface is, as is represented in Fig. 847, plane and

therefore a = 90° or cos. a = and the impulse

When the surface is at rest, we have

F = - Q y = — F y = 2 . -^- Fy = 2 F h y.

9 9 ^9
The normal impulse of water against a plane surface is equal to

the weight of a column of luater, the cross-section of tvhose base is

equal to the cross-section of the stream, and whose height is twice

that due to the velocity \2 h — 2 . j-\.
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The results of the experiments made upon this subject by

Micheioin, Vince, Langsdorf, Bossut, Morosi and Bidone were

about the same, when the cross-section of the impinged surface was

at least 6 times that of the stream

and when this surface was at a

distance not less than twice the

thickness of the stream from the

orifice. The apparatus employed

consisted of a lever like Poletti's

Rheometer (§ 494), upon one end

of which the stream impinged,

the impulse was balanced at the

other end by weights. The ap-

paratus employed by Bidone is

represented in Fig. 848. B C is the surface subjected to the action

of the stream, G the scale-pan for receiving the weights, D the axis

of rotation, and K and L are counter weights.

Remark.—The most extensive experiments upon the impulse of water

were made by Bidone (see " Memoire de la Reale Accademia delle Scienze

di Torino," T. XL, 1838). They were made with a velocity of at least 27

feet and with brass plates of from 2 to 9 inches in diameter. Bidone gen-

erally found the normal impulse against a plane surface somewhat greater

than 2 Fh j; but this increase is to be ascribed to the increase of the arm

of the lever, in consequence of the falling back of the water. See Duchemin :

Recherches experimentales sur les lois de la resistance des fluides (translated

into German by Schnuse). When the impinged surface was very near the

orifice, Bidone found F to be only 1,5 F h y. Wlien the impinged surface

was of the same size as the stream, in which case the angle of deviation a

is acute, according to du Buat and Langsdorf, P is only = Fhy. Bidone

and others have found that the impulse during the first instant was nearly

twice the permanent impulse. Comparative experiments upon the impukc

and reaction of water ha^e been made by the author with a reaction wheel.

See his " Experimentalhydraulik" and the " Civilingenieur," Vol. I, 1854.

By more recent experiments upon the impact of isolated streams of air

and water (see Civilingenieur,Vol. VII, No. 5, and Vol. VIII, No. 1), the

author found the effective impulse of an isolated stream of air or water

against a normal plane to be 92 to 96 per cent, of the theoretical force P =

-^, that, on the contrary, the impulse of such a stream against a hollow

surface of rotation by which the direction of the stream is made to deviate

an angle 6 = 134°, is but 83 to 88 per cent, of the theoretical force P =

C (1 - C08. d)^.
'

64
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§ 500. Maximum Work done by the Impulse.—The me-

chanical effect

Pv= {1- cos, a) i^-^)^ Q y

depends principally upon the velocity v of the impinged surface

;

E.G. it is null not only for v — c, but also for t; = 0; hence it fol-

lows that there must be a velocity, for which the work done by the

impulse is a maximum. It is evident that this is the case when
yo — v) V is, 2i maximum. If we consider c to be half the periphery

of a rectangle and v to be its base, we have its height = c — v and

its area — (c ~ v) v, now the square is that rectangle, which has

the greatest area for a given periphery ; hence (c — ^>) v is a maxi-

mum, when (c — v) — v, I.E., v =-, and we obtain the maximum

mechanical effect of the impulse, when the surface moves in the

direction of the stream with half the velocity of the latter ; the

work done is then

P V := {1 — COS. a) , h , — . Qy = (1 — cos. a) . 4 Q hy.
Zg

Now if a = 180°, I.E., if the motion of the water is reversed by

the impact, we have the work done

but if a = 90°, I.E., if the stream strikes against a plane surface,

the work done is but I Qhy, in this case the water transmits to

the surface but one-half of its actual energy, or but one-half of the

mechanical effect corresponding to its vis viva.

Example—1) If a stream of water, the area of whose cross-section is 40

square inches, delivers 5 cubic feet per second and strikes normally against

a plane surface, which moves away with a velocity of 12 feet, the impulse ia

P = fejZ^ Qy^ (^^ - '^A • ^'^^1 • ^ • ^^'^ = ^ • ^'^^^ • ^^^»^

= 58,125 pounds,

and the mechanical effect transmitted to the surface is

Pv = 58,125 . 12 = 697,5 foot-pounds.

The maximum effect is obtained, when

^ 5 . 144 ^ . ^

and it is

L = ^.^ . § 7 = -^ . 18- . 0,0155 . 5 . 62|^ = 81 . 0,155 . 63,5 = 784,6875

foot-pounds

;

the corresponding impulse or hydraulic pressure is

P=!?!f!£ = 87,19 pounds.
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2) If a stream FA, Fig. 849, the area of whose cross-section is 64 square

inches, impinges with a velocity of 40 feet upon an immovable cone,

whose angle of convergence B A B z= 100°, the
Fig. 849. hydraulic pressure in the direction of the stream ia

cos, a)-Qy

64
- COS. 50°) . 40 . 0,031 . , -j-r . 40 . 63,5

' 144 '

= (1-0,64279). 1,24. i^"

= 0, 35721 . 1377,8 = 492,16 pounds.

§ 501. Impact of a Bounded and of an Unlimited
Stream.—If we surround the periphery of a plane surface B By

Fig. 850, with borders B D, B D (Fr. rebords ; Ger. Leisten), which

project beyond the surface struck by the water, the

water will be deviated from its course at an obtuse

angle as in the case of concave surfaces, and the

impulse is greater than when the surface is plane.

The action of this impact depends principally upon

the height of the border and upon the ratio of the

cross-section of the stream to that of the enclosed

surface. In an experiment, where the stream was

one inch thick and the cylindrical border 3 inches in diameter and

3^ lines high, the water flowed from the surface in nearly tlie oppo-

site direction and the impulse was

3,93 ^i^r;
^9

In all other cases this force was smaller.

attain the theoretical maximum value 4

It is impossible ever to

2<?
i^ y in consequence

Fig. 851.

of the friction of the water upon the surface and upon the border.

In the case of the impact of the bounded stream F A B, Fig.

851, there is also a border ; it is, however, only partial and includes

but a portion of the periphery; it

limits, moreover, both the stream and

the impinged surface. The imping-

ing stream is turned in the direction

of the portion of the periphery, which

has no border, and is therefore de-

viated 90° from its original direction ,*

hence the formula, which we found for the isolated stream,
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(c- v)
Qr r-r) cFy,

9 ^9
holds good here. K the surface B B, Fig. 847, against which the

stream strikes, moves away with a velocity «; in a direction, which

forms an angle 6 with the original direction of the stream, the ve-

locity of this surface in the direction of the impact is

Vi — V COS. d
;

hence the impulse is

^ (c-v cos, 6)

9
^^

and the work done by it per second is

T Ti (c — V COS, 6) V COS. 6 ^L = Pv,=^ ^ -^ Q y.

The principal application of this formula is to the impact of an

unlimited stream, in which case

Q z=L F ic — V COS. d), and therefore

p ^ {c -vcos.dy ^
9

§ 502. Oblique Impact.—There are several cases of oblique

impact, viz. : where the water after impact flows away iii one, in

two or in more directions. If, as in the case of the impact of a

bounded stream, the surface A B, Fig. 852, has a border upon

three sides so that the water can flow away in one direction only,

we have the hydraulic pressure of the water against the surface in

the direction of the stream

r-

P = (1 — COS. a)

Fig. 852.

But if the impinged plane B C, Fig. 853, has a border upon

two opposite sides only, the stream divides itself into two unequal

parts, the angle of deviation a of the larger part Q^ is less than

that 180° — a of the smaller part Q^ and the total impulse in the

direction of the stream is

P = (1 — COS. a)

.

§, y 4- (1 + COS' o)
c — V

Q^y
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= l^^^) [(1 - ^»^- «) Ci + (1 + COS, a) ej y.
^ if

But the conditions of equilibrium of the two portions of the

stream require that the pressures

^^ ^ (1 — COS. a) Q, y and -^ ^ (1 + cos. a) Q^ y
y y

shall be equal to each other ; hence

(1 ~ cos. a) §1 = (1 4- COS. a) Q^,

or, since Q = Qi + Q.^, we can put

(1 - COS. a) gi = (1 + COS. a)(Q— Q,), i.e.

^ /I + COS. a\ /I — COS. a\
Qi =

[
2"— j Q and Q, = ^ j Q,

so that the total impulse in the direction of the stream is

D (^ — ^) o /1 \ (1 + COS. a) QP = — . 2 (1 — COS. a) ^ ^-^ y
g

^ 2 '

= -^^ (1 - COS. a) Q y, i.e.

^ c — V . „ ^
sin. a Qy.

9
Dividing the work done by the impulse in a second

L — P V — V sm. a. Qy
_ 9

by the velocity A v^^ v^^^ v sin. a, with which the surface recedes

in a normal direction, we obtain the normal impulse

,^ (c — v)v sin.'' a ^ ic — v) . ^N = -^ ' Qy = sm. a. Qy,
g V sm. a ^ '

g
which consists of the parallel impulse

r. AT • (c — v) . ^ ^Fz=z js sm. a = -5^ sm. a . Uy,
g

and of a lateral impulse

a HT {C — V) . ^ C —V..^
S = Ncos. a = ^ sm. a cos. a. Qy = -r:— sm. 2 a Qy.

g ^ ' 2g
The normal impulse is proportional to the sine, the parallel im-

pulse to the square of the sine of angle of incidence, and the lateral

impulse to the sine of double this angle.

If, finally, the oblique surface, which is struck, has no border,

the water can flow away in all directions and the impulse is still

greater ; for a is the smallest angle which the fibres of water can

make with the axis ; hence every fibre which does not move in the

normal plane exerts a greater pressure than those which do. If we
assume that the angles of deviation of one portion Q^, which corre-
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Fig. 854.

sponds to the sectors A B and DOE, Fig. 854, ore C F = a

and = 180° — a, that those ofthe other portion Qc^, which cor-

responds to the sectors A E
mdBOD,siTeCOK=OOff
= 90°, and that the two por-

tions produce equal parallel im-

pulses, we can put

P = §1 y sm. a
9

c — v

9
Q^Jy

and that the total parallel impulse is

and, since ^i sin."^ a = Q^ and

Q = Q,-^ §„ it follows that

$1 (1 + sin.' a) = ft

_ /c — v\2Qy sin."" a _ 2 ^

~
\ a / 1 + sin.' a 1 +

2 sin.' a c
• Qr-

g / I + sin.' a i ± sm.' a g

Although this assumption is only approximatively correct, yet

the results of the latest experiments by Bidone agree very well

with it.

Remark.—Prof Brock, in his Mechanics, page 614, fibads for oblique

impact against a circular surface

-P = U — a) tan^. a (—T") Q >» a^^d

N= tang, a I. cotg.

Ci-^)
^7-

§ 503. Impact of Water in Water.—If a certain quantity

Q of water discharges with a velocity A c = c into a vessel D E,

Fig. 855, which is moving with a velocity Av = v, a part only

Fig. 855.

Qc'
Xi = -—- y of its actual energy L^

^9

01
^9

y will be expended in producing

and maintaining the eddy A B,

which is due to the loss of velocity

Ci. Ifwe denote by a the angle v Ac,
made by the direction of the stream

with that of the motion of the ves-

sel, we have

Ci = c* \-v' — 'Hcv COS. a,
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and, therefore, the mechanical* effect lost in consequence of the

eddy r Q (c^ + v"^— 2 c v cos. a)

^'
=

^9
•

As the volume Q of water participates in the motion of the vessel,

its velocity v is the same as that of the latter, and the energy,

Q v"
which it still possesses, is L^ = -~— y; hence the energy which is

^ 9
transmitted to the vessel and expended in moving it forward, is

L = L^ — Li — Li

(c^ — {& ^ v^ — ^Icv COS. o) — v\ ^ 2cv COS. a— 2 v^\ ^ Zcvcos. a—'Zv' ^
\ ^9 n- ^g
(ccos.a— v)v ^

9
and the force with which the vessel is urged forward in the direc-

tion of its motion by the water which flows into it is

Now the discharge per second, which impinges against the

vessel, \% Q = F c, F denoting the cross-section of the stream at

its entrance ; hence we have

p ^ (ccos.a-v)c ^
9

and for the case when the vessel is at rest, or when v = 0,

P = '— Fy = 2 -r— Fy cos. a = 2 Fh y cos. a,

9 ^g
&

in which Ji denotes the height -— due to the velocity.

The mechanical effect is a maximum for ^; = ^ c cos» a and it is

^m = i
—w^-— Qy = i Qhycos.'a.

<> 9
If the direction of the stream is the same as that of the motion

of the vessel, a = 0, and we have

^ (c — v)v ^ ,L = ^— Q y and
9

L^=iQhy^
In this case but half the total energy Q h y of the water is utilized

(compare § 500).

§ 504. Experiments with Reaction Wheels.—The best

method of proving the above theory of the impact and reaction of

.

water is to make use of a reaction wheel A A B, Fig. 856, with ^
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vertical axis of rotation C D (see the author's " Experimental- Hy-
draulik," § 48, etc.). The water which turns the machine enters

into the receiver A A of the wheel nearly tangentially through two

Fig. 8

lateral canals E, E, and is discharged through two lateral orifices

F, F in the ends of the revolving tubes R, R. In order to maintain

the efaux of water constant and the rotating force invariable, the

pipe which conveys the water to the reservoir G is provided with a

cock H\ from the reservoir the water is conveyed by the pipe K L
to the chamber E E, into which the canals E, E open. While the

machine is in operation, the cock H must be turned in such a

manner that the surface of the water in the reservoir G shall

always touch the end of the pointer Z.

When we wish to determine the reaction of the effluent water.
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a thin string S, to one end of^ which a weight is attached, is passed

over a pulley and then wrapped round the central tuhe E. The
quantity of water discharged is measured in the reservoir, from

which the water flows into the pipe with the cock H, by observing

the area A of the surface of the water and the distance a which it

sinks during the experiment. If the duration of the observation is

= tf we have the discharge per second

^-
i

'

and if the fall, I.E. the vertical distance between the surface of the

water in the reservoir G and the orifice of discharge of the wheel

= hf the total energy of the water discharged per second is

L = Qhy = —^.
Now if the machine has raised the weight G a distance s in the

time t, the work really done by the wheel m a second is

Xl - -^,

and we can now compare these two values, the second of which is

always the smaller.

§ 505 Theory of the Reaction Wheel.—The total fall h

in such a wheel consists of the fall Jii from the surface of the water

to the point E, where the water enters the wheel, and of the fall

^2 from the latter point to the orifice, by w^hich the water leaves the

wheel. From li^ we calculate, by means of the formula c, = V^ gh^,

the velocity with which the water enters the wheel, and from h..,

according to § 304, by means of the formula

c=:V^gh, + V^ - V,'

the velocity with which it quits it, when the velocities of rotation

Vi and V of the wheel at the points of entrance and exit are known.

Since the direction of this reaction of the water, which acts as the

rotating force, is opposite to that of the velocity of discharge, the

absolute velocity of the water upon leaving the wheel is

qjU
— c — V,

and its square

w'' = c^ — ^cv {- v"" = %glh - ^cv {- 2v' - v,^',
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hence the energy of the effluent watfer is

T n ^' nil. {c — v) V Vi\

The water, which enters the wheel with the relative velocity

Wi = Ci — v^y loses (according to § 436) by the impact the energy

and consequently of the total energy

only the portion

r ^ /7 T ^ \ i-» /(<^ ~ ^) ^ ^1M ^ /(c—v)v CiVAL=Qy{7i - h,-h,) + Qy \^-—^+^-j= Qy^^ ^ + -^-^j

is transmitted to the wheel.

In order to obtain the greatest amount of work from the wheel

we must have ^ = or z; = c and iVi — otv^ — Ci, and therefore

—Lz=zh^orvi = V2 g hc^, as well as

^ =z hi or Vi = V2 a h^.

In this case, therefore, h-^ = h.2 = } h and the corresponding

maximum effect of the machine is

y y
I.E., equal to the total energy of the water.

If r, denotes the distance of the point of entrance and r that of

the orifice of exit of the wheel from the axis, we have

— = —, whence v^ = — v,
V r r

and, in general, the rate of work of the wheel

BO that the rotating force, measured at the distance r, is

V g \ r I

If the arm of the suspended weight or load is a, which in the ap-

paratus represented is very nearly the radius of the central tube B,

we have G a — P r, and, therefore, the weight to be attached and

to be raised during the rotation of the wheel is

6^ = - P == ^^ [(c - t;) r + c, r,l
a g a '

or for c ^= V and c^ = t^i,
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G = Qy Qy
g a g a

If F denote the area, of the orifices of eflSux and F^ that of those

of influx. we have

Q = Fc = Fx Cj, and therefore

F ==
c

F,= 1-
Cx

Q _^|/ ^gh.

V^gh, + v' -- Vi"
)i g hi -^ v^ -v,^

For?; = c and Vi -= Ci, in which case hi = h^ = ^ h, we have

Q = Fv. and therefore

P = Qhy
V

= Fhy',

on the contrary, ^oy v = 0, Q — F V2 g h.2, and therefore

g \ r J

If we allow the water to enter the wheel slowly, we can puii

Ci = and h^ = Q and the force of the reaction in the last case

becomes

g %g
as we found above.

Since in these calculations we neglected the passive resistances,

the experiments with the machine represented do not give the

values for the force found above, but values which are a few per

cent. less. However, the results of experiments carefully made

with such a wheel agree very well with the theory just demonstrated.

When we wish to make use of this machine to test the theory

of the impact of water, we begin by removing the chamber B F so

as to allow the water to enter near the centre without any velocity

of rotation, and we then fasten opposite' to the orifices in the re-

volving tubes the plates 0, 0, small vessels, etc., which are sub-

jected to the impact of the water discharged. The rotating force

is then equal to the difference between the reaction within the

wheel and the impulse without it. We find, in accordance with

the theory, that the wheel stands still, when the stream issuing

from it impinges upon a plane plate at right angles to the direction

of the water, or when it flows into a vessel filled with water. If the

stream strikes obliquely against plane-plates or against convex sur-

faces, the wheel moves in the direction of the reaction, and if it is

received by a concave surface, the wheel turns in the direction in

which the water issues from the orifice.



1020 GENERAL PRINCIPLES OF MECHANICS. [§ 506.

§ 506. Water-meters. — More recently water-meters (Fr.

compteurs hydrauliques ; Ger. Wassermesserj have been much
used for measuring running water. They are put in motion by

the reaction of the water discharged, and consist essentially of a

reaction wheel or turbine. An ideal representation of the cross-

section of such a wheel is given in Fig. 857. The water to be

measured flows through a tube A into the centre of the wheel B B,

and passes through 4 ca-

FiG.857. nals (7^, (7^...tothe
exterior circumference,

where it is discharged

into the case D E, from

which it is conveyed

away by a tube E F. The
shaft W of this wheel

carries a pointer Z, or

rather a train of wheel-

work, which indicates the

number of revolutions

of the wheel, and by it

the volume of the *water,

which flows through it in any given time ; for this volume is pro-

portional to the number of revolutions. If h denotes the height of

a column of water which measures the loss of pressure of the water

in passing through the wheel, Q the discharge per second, c the ve-

locity of efflux, and v the velocity of the wheel in the opposite

direction, we have c' — ^^* = 2 ^ h, and the rate of work of the

wheel
{c - V)

9
-V §y(see § 505).

If R is the resistance of the wheel, in consequence of the fric-

tion on the bearings, etc., we can put L = R v, and from it we

obtain the formula

R = (-i-V-
or, if F denotes the sum of the areas of all the orifices of efdux, so

that Q = F c or c = -r-, WQ can put
I'

R Qy(^ — V \~—^^ from which we obtain
\F J g

^

F Qy
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If R were null, or at least very small, we could put v
Q

or

assume the velocity v of rotation to be proportional to the discharge

Q, which indeed it should be. If, on the contrary, i? = i/^ v, or if

the resistance of the wheel increase with v, we will have

V +
ipffv Q= -^, or

V = Q
Qy P'

approximatively = -^ (1 — yTi.Qy)

If, then, the resistance E of the wheel is not very small, the

Telocity of rotation of the vrheel is less than when E is null or

negligible, and the instrument indicates too small a discharge.

If we put t' = 0, we obtain for a discharge Q^ the correspond-

ing velocity of efi&ux

_ lE^

and we can then put, approximatively at least,

V = c — c^ and

Q = F{v + c,) = --3Q— + Qo = f^u+ §0,

r denoting the radius of the wheel, u the number of its rotations

and fM a coefificient to be determined by experiment.

Within the last few years Siemens's water-meter has come into

very general use; its principal parts are represented in cross-

section in Fig. 858. The water which enters from A passes

Fig. 85a
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Fig. 859.

through the pipe B B into the wheel C C and is carried by the

revolving tube D D into the case E E, from which it is carried off

by the pipe F. The shaft W of the wheel passes upwards through

a stuffing-box and sets a train of wheel-work in motion by means

of an endless screw fastened to its end. The wings h, k upon the

ivheel assist in regulating its motion of rotation by the resistance

f^hich they experience in moYing in the water.

The reaction wheel can be constructed in such a manner that

every time it makes a revolution it will allow a certain quantity of

water to pass through. To accomplish this object, the wheel B A B,

Fig. 859, is partially immersed in water,

so that, when turning, the spiral tubes

are alternately filled with air and water.

Here also the water is conducted by a

pipe into the centre of the wheel, and

from thence by spiral pipes into the

free space of the case E F, from which

it flows away through the pipe F. The
surface of the water in the interior of

the wheel is at a distance h above that

of the water in the case ; hence, if the

wheel turns in the direction indicated

by the arrow, as soon as the orifice D
arrives at the level of the water in the

interior, the water begins to discharge, and in so doing reacts with

a certain force P, by which the rotation of the wheel is main-

tained. If Fis the volume of the water contained in one of the

spiral pipes, and n the number of these canals, the discharge per

second, when the number of rotations per minute of the volume of

n II V
the water is re, is Q =

60

Remark.—An account of Siemens' water-meter is given in the " Zeit-

schrift des Vereines cleutscher Ingenieure," Vol. I, 1857, in which Jopiing's

water-meter (in which the water is gauged) is also described. See also the

paper :
" Siemens and Adamson's Patent Water Meter." A very peculiarly

constructed water-meter of the nature of a reaction wheel is described in

the "Genie industrielle," Tome XXI, No. 126, 1861, under the name:
' " Compteur hydraulique pour la mesure d'ecoulement des liquides par

Guyet." Two "water-meters are described in the English work " Hydrau-

iia,"" by AV. Matthews. A compteur hydraulique used at the railroad station

at Chartres is described in the " Bulletin de la Societe d'encouragement,"

51 year (1852) Uliler's apparatus for measuring fluids is treated of in
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Dingler's Journal, Vol. 161. A description of an apparatus for measuring

the quantity of spirit made in distilleries is contained in the " Mittheilnn-

gen des Gewerbevereines for Hannover," new series, 1861.

For a description of several kinds of water-meters, see " The Transac-

tions of the Institution of Mechanical Engineers," 1856 (Tr.).

§ 507. G-as-meters.—The so-called wet gas-meters (Fr. comp-

teurs a gaz ; Ger. Gasmesser or Gasuliren) are, like certain water-

meters, small wheels with spiral canals, which are more than one-

half immersed in water and are put in motion by the reaction of

the gas passing through them ; each spiral canal transfers a certain

volume of gas from the inside to the outside. The essential parts

of such a gas-meter are shown in the two sections of Fig. 860.

The gas, which arrives,

F^^"- ^^^' enters bj a bent pipe A
into the interior of the

measuring wheel B B,

in which it depresses

the surface of the water

a certain distance h,

which depends upon
the tension of the gas

passing through the in-

strument. From this

central chamber it enters successively the spiral canals, fills them
almost entirely and, finally, passes out through the orifices at the

circumference into the case G G, from which it is conducted by a

pipe H to the point, where it is to be nsed. As we wish every

spiral canal of the measuring wheel to carry over a certain definite

Cjuantifcy of gas at each revolution, we must so arrange the appa-

ratus that at least one of the orifices of a canal shall always be

under water ; for in that case, when the gas is filling the canal,

there is no efflux, and during the efflux no gas can enter it. The
volume of gas V, passed by one spiral canal, is consequently a defi-

nite one, and we can, therefore, put the discharge per minute

„ _ ?^ w V
^ ~ ^"60"'

when the wheel makes n revolutions per minute. If we denote the

height of the barometer in the gas leaving the machine by 5, that

in the gas entering it is 5 + 7^, and, therefore, according to Ma-
riotte's law, the quantity of air in one spiral canal, measured at the

pressure of the gas after it has left the measuring wheel, is
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-.

=

m -•

consequently the qnantitj^ of gas, which passes from the wheel into

the exterior case when the outlet of one of the spiral canals risjs

from the water, is

When this quantity streams into the case the mechanical effecfc

set free is ^ t^ 7 /^ + ^\

(see § 388), and since ^ is small, w^e can put

m-'(-t)=i-.
hence, if the heaviness of the suhstance, with which the manometer

is filled, is y, we have j) — (b + ]i) y = hy, and therefore A — V h y.

One portion of this mechanical effect is expended in turning

the wheel, and the rest in producing an eddy. The first portion

is determined by the expression

_ (c - V) V h

in which h denotes the mean height of the manometer, c the mean
velocity of efflux, v the velocity of the wheel at its circumference

and yi the heaviness of the gas discharged. If R is the resistance

of the wheel, reduced to its circumference, and r its radius, we
have the required mechanical effect

2 q-

r

Ai = R

.

, and therefore we can put
n ^

(c - v)v h ^ 2-r j^ . _ 60 V
^^ i—

. - F y, = R, or smce 2 77 r == ——

,

g h n . u '

c — V n ^^ 60 R
. ^ — y y :r:z '

g ' h n It
^

hence it follows that the velocity of rotation, corresponding to the

distance h between the two surfaces of water, is

gb QOR
V — c — j^— .

h V yi n u

and that the number of revolutions of the meter per minute is

30 / mql)R\
TT ?' \ 71 u V 11 y,/

Approximatively we have c — y 2 g—-, when y denotes the
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heaviness of the substance with which the manometer is fllleii

The volume of gas passing per minute is

and it is proportional to the number of revolutions u.

§ 508. Newer Gas-meters.—Instead of placing the spiral

canals of a gas-meter in a plane perpendicular to the axis, we can

wind them round it like the thread of a screw. The action of

such a gas-meter is shown by the two sections I and II, Fig. 861, in

which I) D represents the surface of the water at the front and EE
Fig. 861.

j0^^K:^^^^^^^^^^^^^-^-=rp

that at the back of the measuring wheel, which is a horizontal

drum. The orifice A of the spiral canal A B opens into the

chamber, which is in front of the drum, and receives the gas, which

is arriving ; the orifice B, on the contrary, delivers the gas into

the chamber at the back of the drum, from which it is carried oflf

by a pipe. In Fig. 861, I, the different positions of a spiral canal,

viewed from in front of the wheel, are represented. Fig. 861, II,

on the contrary, represents the various positions of the canal as

seen from the rear of the wheel. In consequence of the rotation

of the Avheel, in the direction indicated by the arrow, around the

horizontal axis C, the inlet orifice A in (I, 1) is just emerging from

the water in front, while the outlet B is just entering the water in

the rear, in (I, 2) and (I, 3) the arcs A 0, A of gas have entered

through the orifice A, and in (I, 4) the orifice has re-entered the

water, so that after a certain quantity V has been received into the

canal, the entry of the gas is cut off. Shortly afterwards the orifice
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B rises, as is represented in (II, 1), from the water in the rear of

the drum and the discharge of the gas, which had previously been

taken in, begins, and it is in full operation in the positions (II, 2)

and (II, 3). When a new revolution begins, B re-enters the

water in the rear of the drum, as is represented in (II, 4), and the

gas again begins to fill the canal. During half a revolution of the

spiral canal A B, an arc of gas A {1, 4), which is at the greater

tension 5 + 7z, enters the former and during the second half of

the same it is transferred to the space beyond the wheel, where the

pressure is less. In passing from the greater pressure to the less,

the mechanical effect A —VJi y is, set free; a portion of this is

expended in moving the wheel, as was shown in the foregoing

paragraph. The general arrangement and action of such a gas-

meter can be better understood from the ideal representation in

Fig. 862. The gas is first introduced by means of a bent tube A
into a chamber B B, which communicates in the middle around

the axis of rotation 6^ with the water in the case E F G, but upon

the exterior circumference, where the spiral tubes enter it, it is air-

tight. The drawing shows the spiral canal HK to be receiving

gas from B B and the canal L M, which a short time before had

received a certain volume of gas, to be discharging it at M into the

upper space in the case E F G, from which it is carried away by

the pipe F, By this arrangement of the meter the gas in the first

chamber is cut oif entirely by the water from that in the rear

chamber, and, therefore, the packing, which causes great loss of

force, is rendered unnecessary. The other end D of the axis C D
of the wheel has a couple of turns of a screw cut upon it, by means

of which the train of wheels of the counting apparatus is set in

motion.
Fig. 862. Fia. 863.

G r-.-.- i.-.,-^.-..-.:Si F Ba
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Fig. 864

Crossley's gas-meters, which have come into very general use,

are constructed according to the principles explained above ; but

their spiral canals are not tube-shaped, but real chambers or cells

with spiral partitions and with triangular inlet and outlet orifices,

which are made by bending out the end surfaces. Fig. 863 is a

perspective view of such a wheel with the cover removed ; it con-

sists of 4 pieces of sheet iron like that represented in Fig. 864

ylj, A.^, A3, ^4 are the inlet orifices, B^, Bo . , . the outlet orifices

and (7i, Q.2, C^ . . . the partitions of the measuring wheel which

turns around the axis I) D. Fig. 865 is an elevation of the gas-

meter with the exterior drum or case ; we observe at K the bent

tube, which conducts the gas into the chamber, and at Z the pipe,

which carries off the gas

from the u]3per space A A
of the case of the meter.

The gas does not flow di-

rectly into K, but the pipe

Scarries it first into a cham-

ber F, from which it passes

through the conical valve /'

into the chamber G, where

it enters the upper part of

the vertical pipe H, througli

which it is conducted into

the bent tube K. The sur-

face of the water in the

chamber G reaches exactly

to the top of the pipe H,

through which the super-

fluous water overflows into

a reservoir L. In order, on

the other hand, to prevent

the water from sinking too

low, a float is placed in the

chamber, which, w^hen it

sinks, carries the valve i with

it and closes the opening,

when the float has sunk a

certain distance. The dis-

charge of gas then ceases en-

tirely, and we are thus noti-
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fied that it is necessary to fill the meter with water through an

orifice i/, that opens into a chamber iV, which communicates, at

the bottom only, with the water space.

Fig. 866 is transverse eleyation of the front of such a meter, in

which are to be seen not only the chamber JV with the orifice Jf,

but also the clockwork of the counting apparatus, which is set in

motion by an endless screw upon the axle of the drum and a ver-

tical shaft with a cog-wheel upon it.

An important resistance to the motion of Crosley's gas-meter is

that occasioned by the entry and exit of the water through the

narrow triangular orifices. We can calculate from the area F of

an inlet or outlet orifice and from the discharge per second, which

can be put equal to the volume Q of the gas, the velocity of exit

Fig. 866.

and entrance v, ^, and consequently the corresponding loss of
F

mechanical effect per second

(OX Qy
\fI g

Remark.—Particulars upon the subject of gas-meters can be found in

Schilling's " Ilaudbuch der Steinkohlengasbeleuchtung," and Heeren's

article " die Einrichtung der Gasuhren " in the " Mittheilungen des Ge-

werbevereins fiir das K. Hannover," year 1859. A new gas-meter by Han-

sen is described in the " Journal der Gasbeleuchtung," 1861.



509.] THE IMPULSE AND RESISTANCE OF FLUIDS. 1029

§ 509. Action of Unlimited Fluids.—If a body has a mo-
tion of translation in an unlimited fluid, or if a body is placed in a

moving fluid, it is subjected to a pressure, which is dependent upon
the form and size of the body as well as upon the density of the

fluid and the velocity of one or other of the masses ; in the former

case it is called the resistance and in the latter the impulse of tlii'

fluid. This hydraulic pressure is principally due to the inertia of

the water, whose condition of motion is changed when it comes

into contact with a rigid body, and also to the force of cohesion of

the molecules of water, which are partially separated from and

moved upon each other.

If a body A C, Fig. 867, is moved in still luater, it pushes a

certain quantity of water, the pressure of which is increased, before

it. As the body progresses the quantity of water on one side is

increased, while upon the other it is constantly flowing away, and

the particles lying immediately contiguous to the surface A B

Fig. 867. Fig. 868.

assume a motion in the direction of this surface. If a stream of

water encounters an obstacle A C, Fig. 868, which is at rest, the

pressure of the water in front of it is increased, the molecules of

water are diverted from their original direction and move along

the front surface A B. When the particles of water have reached

the edges of the front surface, they turn and follow the sides of

the body, until they arrive at the back surface, where they do not

immediately reunite, but assume first an eddying motion. AVe see

that the general relations of the motion of the molecules, which

surround the body, are the same for the impulse of water as for the

resistance to a body moving in the water ; but there is a difference

in the eddies, when the body is short ; for in the latter case the

eddies occupy less space than in the former. The velocity of the

molecules of water increases gradually from the centre of the front

surface to the edges, where a contraction generally takes place and

where the velocity is a maximum, it decreases as th.e water passes

along the sides and becomes a minimum when the water arrives

at the back surface and begins its eddying motion.
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§ 510. Theory of Impulse and Resistance.—The normal

pressure of still or moving water upon a body moved or immersed

in it is very different at different pomts of the body. This pres-

sure is a maximum at the centre of the front surface and a mini-

mum in the centre of the rear surface and at the beginning of the

sides ; for at the first point the water flows towards the body, and

at the latter points it flows away from it. If the body is, as we
will suppose in what follows, symmetrical in reference to the

direction of motion, the pressures at right angles to this direction

balance each other, and we must, therefore, consider only the

pressures in the direction of the motion. But since the pressure

upon the rear surface acts in an opposite direction to those upon
the front surface, it follows that the resulting impulse or resistance

of the toater is equal to the difference between the pressures upon the

front and hach surfaces.

Although we cannot determine a priori the intensity of this

pressure, yet, as the circumstances are very similar to those of the

impact of an isolated stream, we can at least assume that the gen-

eral law of the impact of an unlimited stream does not differ very

much from that of an isolated stream. If F is the area of surface

w^hich an unbounded stream, whose heaviness is y and whose velo-

city is V, encounters, we can put the corresponding impulse or hy-

draulic pressure „ ^ v"^
t-i

in which ^ denotes an empirical number dependent upon the shape

of the surface. This formula can be applied not only to the front,

but also to the rear surface. But in the latter case, where the

water tends to separate itself from the body, the expression becomes

negative. Now if i^^ y is the hydrostatic pressure (§ 690) against

the front and against the back surfaces of a body, the total pressure

against the front surface is

and that against the back surface is

P, = Fhy->;,.~Fy;

hence the resulting impulse or resistance of the water is

when we put (^, + <^2 = (^.

This general formula for the impulse and resistance of an un-

limited stream is also applicable to the impulse of wind and to the
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resistance of tlie air. Here, however, besides the differeii ^ of the

aerodynamic pressures upon the front and rear surfaces, a difference

in the aerostatic pressure also exists, which is due to the fact that

the air at the fi'ont surface has a greater heaviness (y), in conse-

quence of its greater tension, than that at the rear surface. For
this reason, at least when the velocities are great, as in the case of

musket and cannon balls, the coefficient of resistance of the air is

greater than that of water.

Remark.—A peculiar phenomenon attends the impulse and resistance

of an unlimited medium (water or air), viz., a certain quantity of water or

air attaches itself to the body, the influence of which is shown by the vari-

able motion of the body, which, e.g., is very evident in the oscillations of

a pendulum, The quantity of air or water which attaches itself to a sphere

is 0,6 the volume of the sphere. For a prismatic body, moving in the di-

rection of its axis, the ratio of these volumes is

'\l'¥= 0,13 4- 0,705 -p,

in which I denotes the length and F the cross-section of the body. This

ratio, which was first determined by du Buat, has been fully confirmed by

the later experiments of Bessel, Sabine and Bailly.

§ 511. Impulse and Resistance against Surfaces.—The

coefficient ^ of resistance, or the number by which the height —

—

due to the yelocity must be multiplied, in order to obtain the height

of the column of water which measures the hydraulic pressure, is

very different for bodies of different form ; it is determined approx-

imatively only for plates, which are placed at right angles to the

stream. According to du Buat's experiments and those of Thi-

bault, we can put for the impulse of water and air against a plane

surface at rest ^ = 1,86, while, on the contrary, we can assume with

less certainty for the resistance of the air and water to a plane sur-

face in motion ^ = 1,25. In both cases about two-thirds of the

action is upon the front and about one-third upon the rear surface.

The values, found for the resistance offered by the air to a body re-

volving in a circle by Borda, Hutton, and Thibault, vary much
from each other. The latter found with a rotating plane surface,

the area of which was 0,1 square meter, the resistance

P = 0,108 Fv% whence

C = 0,108 .
^-^ = 0,108 .

^-^ = 1,70.

y 1,25

This coefficient is, according to these experiments, almost con-
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stant, when the angle a formed by the surface with the direction

of the motion is not less than 45°. When the angle is less than

45°, the coefficient diminishes with this angle of impact, and for

a = 10°, ^ is only — 0,53. According to the researches of Didion,

etc., we have for the resistance of rotating plane surfaces, whose

areas are 0,2 . 0,2 = 0,04 square meters,

^ = (0,1002 + 0,0434 V-') .^ = 1,573 + 0,681 ir\

in which v must be given in meters.

For a plane surface, whose area was one square meter, Didion

found, when the motion was vertical, the coefficient of resistance

^ = (0,084 + 0,036 V-') .
?^ =: 1,318 + 0,565 v-\

while Thibault, on the contrary, found for such surfaces, when
their area was 0,1 to 0,2 square meters,

^ = (0,1188 + 0,036 V-') . ^ = 1,865 + 0,565 v-\

The foregoing formulas hold good only when the motion of the

surface is uniform ; if the motion is variable, they require an ad-

dition. If the velocity of a body which is moving in a resisting

medium changes, the quantity of the fluid moved by the body or

carried along with it varies ; the resistance is, therefore, dependent

upon the acceleration p. According to the experiments of Didion,

etc., with a surface whose area was 1 square meter, and with one

whose area was \ square meter, which were moved in a vertical line,

the resistance was

P = (0,084 v' + 0,036 4- 0,164 ji?) F; hence

^ = [0,084 + (0,036 + 0,164: p)v-'] .
^

= 1,318 + (0,565 + 2,5U)v-\

We must also remember that for variable motion the mean
square of the velocity is different from the square of the mean
velocity.

The impulse.and resistance of an unlimited medium is increased

when the surfaces are hollowed out or provided with borders ; but

we have as yet no general data concerning the subject.

For a parachute, whose cross-section was 1,2 square meters and
whose mean diameter was 1,27 meters and whose depth was 0,430

meter, Didion, etc., found for an accelerated motion, during which
the hollow surface was in front,

P ^ (0,163 v' + 0,070 4- 0,142 p) F, whence

^ --= 2,559 + (1,099 + 2,229 p) v-\
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§ 512. Impulse and Resistance against Bodies.—The im-

pulse and resistance of water against prismatical bodies, whose axis

coincides with the direction of motion, decrease when the lengths

of the bodies increase. According to the experiments of du Buat

and Duchemin, the impulse upon the front surface is constant, and
the action upon the rear surface alone is variable. The coejBftcient

<^i
= 1,186 corresponds to the former; but when the relative

lengths are ^ _ ^ i 9 q— -0, 1, 2, 3,

the total action is

^= 1,86; 1,47; 1,35; 1,33.

If the ratio between the length and the mean width V^ be-

comes greater, the coefficient ^ again increases in consequence of

the friction of the water upon the sides of the body. The reverse

is true of the resistance of the water. In this case, according to

du Buat, the constant action against the front surface is ^1 = 1, and

the total action for

-j=: - 0, 1, 2, 3, is

VF
C=: 1,25; 1,28; 1,31; 1,33;

so that for a prism three times as long as wide the impulse of the

water is the same as the resistance.

The experiments of Newton, Borda, Hutton, Vince, Desaguil-

liers and others with round and angular bodies leave much uncer-

tain and undetermined. It appears that for moderate velocities the

coefficient of resistance of spheres can be put = 0,5 to 0,6. But

when the velocities are greater and the motion takes place in the

air, we can put, according to Robins and Hutton, for the velocities

V = 1, 5, 25, 100, 200, 300, 400, 500, 600 meters,

C = 0,59 ; 0,63 ; 0,67 ; 0,71 ; 0,77 ; 0,88 ; 0,99 ; 1,04 ; 1,01.

Duchemin and Piobert have given particular formulas for the

increase of this coefficient of resistance. According to Piobert the

resistance to a musket ball in the air is

P = 0,029 (1 + 0,0023 v) F v' kilograms, whence

<• = 0,451 (1 + 0,0023 v).

For the impulse of water against a ball, Eytelwein found

^ = 0,7886,

while, on the contrary, according to the experiments of Piobert,

etc., made with cannon balls 0,10 to 0,22 meters in diameter, the

resistance to the balls in water is

F = 23,8 F v" kilograms ; hence we can put

C= 0,467.
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The coefficients of resistance for bodies j^ccrtially immersed are

different from tliose for bodies entirely surrounded by water. For

di> floating prismatic Jjody five to six times as long as wide and mov-

ing in the direction of the axis, ^ should be put equal to 1,10. If

the body is sharpened in front by two vertical planes like ABC,
Fig. 869, s increases with the angle A C A — 0, and we have

for i8 = 180° 156° 132° 108° 84° 60° 36° 12°

^- 1,10 1,06 0,93 0,84 0,59 0,48 0,45 0,44

If, on the contrary, the rear portion A C B, Fig. 870, is sharp-

ened, and if the angle B C B = 13, v^e have

Fig. 869. Fig. 870.

for^ = 180° 138° 96° 48° 24°

^- 1,10 1,03 0,98 0,95 0,92

When both front and rear portions of the floating body are

sharpened, ^ becomes still smaller. For river steamboats, ^ = 0,12

to 0,20 and for large ocean steamers, ^ = 0,05 to 0,10.

Remark.—This subject is treated at length by Poncelet in his "Intro-

duction" cited above, and by Duchemin and Thibault in their " Recherches

experimentales, etc." The subject of the resistance to floating bodies, par-

ticularly ships, and also that of the impulse of the wind against wheels,

will be treated in the second and third volumes.

Example.—If, according to Borda, we put the resistance and impulse

at right angles to the axis of a cylinder |- that against a iDarallelopipedon,

which has the same dimensions as it, we have the coejEcient of resistance

f = 1
. 1,28 = 0,64

and the impulse against the same

=
I-

. 1,47 = 0,735.

If we apply these values to the human body, the area of the cross-

section of which is 7 square feet, we find the resistance and impulse of the

air against it

and
P = 0,G4 . 0,0155 . 1 . 0,086 v^ = 0,00597 v'

P = 0,735 . 0,0155 . 7 . 0,086 v^ = 0,00686 v\
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For a velocity of 5 feet, the resistance of the air is, therefore, only

0,00597 . 25 = 0,1492 pounds, and the corresponding work done per

second is = 5 . 0,1492 = 0,746 foot-pounds
;
for a velocity of 10 feet, the

resistance is 4 times and the expenditure of mechanical effect 8 times as

great, and for a velocity of 15 feet the resistance is 9 times and the work done

27 times greater. If a man moves with the velocity 5 feet against a wind,

whose velocity is 50 feet, he has to overcome a resistance 0,00686 . 55^ =
20,75 pounds, which corresponds to a velocity of 50 + 5 = 55 feet, and

to perform an amount of work equal to 20,75 . 5 = 103,75 foot-pounds.

§ 513. Motion in Resisting Media.—The laivs of the mo-

tion of a body in a resistmg medium are not very simple ; for the

force in this case is variable, increasing with the square of the

velocity. From the force P, which is drawing the body onwards,

and from the resistance P^ — ^ .
-— F y, offered by the medium,

we obtain the motive force

but since the mass of the body is M = —, its acceleration is

.„ , ^ ^i^y , 1
,
./2yP ,

or it we denote =, by —r, or put V ^ „ - = w, we nave
2 g P -^ w ^ ^ ^ F y

'=['-(vnj'-
The maximum velocity which the body can- assume is

^ - ^^ = r jY^
If the motive force P is constant, the motion approaches grad-

ually a uniform one; for the acceleration becomes smaller and

smaller as v increases.

Now the velocity v increases, when the acceleration is^A in an

element of time r a quantity k = p r, hence we can put

'^ "" [^ ~ (
?'^)'] qT^''^^ inversely

G K
r =

[^ -m
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In order to find the time, corresponding to a given variation of

velocit}^, let us divide the difierence z?„ — t', between the initial and
the final velocities in 71 parts and put such a part

n
and then calculate from it the velocities

vi = -2^0 + «j ^2 = -^0 + ^ «, ^3 = Vo + 3 K, etc.,

substituting these values in Simpson's formula, we obtain the

required time, when we assume four divisions,

^)^=F-'%f'
—^--- +

?(r
2 4 1 \

\wl \wl \io} '

The space described in an element r of time (§ 19) is

o = V T, or smce we can put t = -^

V
V K

or

G —

P
V K G

1 - (^y

By employing Simpson's rule we find the space described, while

the velocity changes from v^ to v„, to be

2) S-- ^'" ~ '"°

/
"^ + ^^'^

+

The calculation is of course more accurate when we make 6, 8,

or more divisions. This formula allows us to take into account

the variability of the coefiicient of resistance, which is necessary for

high velocities. For the free fall of a body in air or water P — G,

the apparent weight of the body, and for motion in a horizontal

plane P = 0, or more correctly, equal to the friction / G. Since

this is a resistance, it must be introduced as a negative quantity in

the calculation ; hence we must put
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Po = - (P + P,) and

Since in this case there can be no question of an increase, but

only of a decrease of velocity, we must substitute v^ — v^ in the

above formulas instead of v„ — v^.

When a body is impelled by a force, such as its own weight, the

motion approaches more and more to a uniform one, and after a

certain time it may be considered as such, although it never will be

really so. The acceleration p becomes = 0, when ^ —- Fy = P„

or when

A body falling freely in air approaches more and more to this

result without ever attaining it.

Example.—Piobert, Morin and Didion found for a parachute whose

depth was 0,31 times the diameter of the opening, the coefficient of resist-

ance ^ = 1,94 . 1,37 = 3,66. From what height can a man weighing 150

pounds descend with such a parachute weighing 10 pounds and with a

cross-section of 60 feet, without assuming a greater velocity than that he

attains when he jumps down 10 feet ? The latter velocity is t? = 8,025 V 10

= 25,377 feet, the force P = (? = 150 + 10 = 160 lbs., the surface ii^ = 60

feet, the heaviness y = 0,0807 pounds and the coefficient of resistance

C = 3,66, hence

1 _ 2,66 . 60 . 0,0807 _ 1,33 . 3 . 0,0807 _
w" - 64,4.160 '- 64^74 -0,00125

and -V = 0,00135 . 25,377^^ = 0,805.

If we assume six divisions, we obtain

1 - —, = 0,977639 ; 0,91055 ; 0,79875 ; 0,64222 ; 0,44097 ; 0,195,

and ^ = 0; 4,326; 9,290; 15,886; 26,343; 47,958, and 130,138;

1-—
hence, according to Simpson's rule, we have the mean value

= (1.0+4. 4,326 + 2 . 9,290 + 4 . 15,886 + 2 . 26,343

474 084
+ 4 . 47,958 + 1 . 130,138) : (3 . 6) = -—^— = 26,338

;

lo

and the required space, through which he can fall, is

^ ^ "0 35 377
« = — times the mean of ~ ^ = \o o 26,338 = 30,76 ft

g ^ ^ V Oi^A

vr
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The corresponding duration of the fall, since the mean value of
1— — IS

1
i

'

= (1.0 + 4. 1,023 + 2 . 1,098 + 4 : 1,252

+ 2 . 1,557 + 4 . 2,268 + 1 . 5,128) : 18 = 1,589, is

t = -'^^ . 1,589 = 1,25 seconds.

Remakk.—If the coefficient of resistance is constant, we obtain by the

aid of the Calculus for the case of a body falling freely

G
7

\ 4 ei^i / 2 g \ 4e/*< J CFy
_ , / w^ \ w^
~ U' - ^V ' 27'

in which

and e denotes the base of the Naperian system of logarithms and I the Na-
perian logaritbm.

§ 514. Projectiles.—We have already studied the motion of

projectiles in vacuo and found in § 39 the path or trajectory to be

Fig. 871. ^ parabola. We can now investigate this

motion in a resisting medium, e.g., the

motion of a body projected in the air.

The path of a body projected through

air is certainly not a parabola, as is the case

when it is projected in vacuo, but an un-

syminetrical curve ; the portion of the tra-

jectory, where the body is rising, is not so

steep as that where it is falling, as can be

seen from what follows. During the instant r the body, wliich is

rising with a velocity v in the direction A T, Fig. 871, describes,

in consequence of its inertia, the space

A = s = V r,

and, in consequence of gravity, the vertical space

and the first space is diminished by the resistance C— F y of
2/7

the air an amount, which can be determined by the expression
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OQ G
FyK we put 4*
^TTr — i"' ^^ ^^^® more simply

0Q = ^^,
The fourth corner i2 of the parallelogram P Q R, constructed

with P and Q, gives the position which the body occupies at

the end of the time r, while P is the place which the body would

have occupied at that moment, if the air offered no resistance.

The path A R oi the projectile passes, therefore, below the para-

bola, which the body would have described in vacuo.

In like manner we have for a body descending with the initial

velocity v in the direction A T, Fig. 872, the spaces described si-

multaneously in the time r

A = V r

OP^g and

Q = fiv'

and from the above we obtain again the position R occupied by the

body at the end of this time, and the position P which it would
have occupied, if its motion had taken. place in vacuo. The path A R
described in this case passes also below the parabolic path A P,

which the body would have followed, if the air opposed no resistance.

If the angle of inclination, at which a body rises with the initial

Fig. 873.

velocity v from A, is T A X = a, Fig. 873, the initial co-ordinates

or velocities in the direction of the axes are
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u = V COS. a and

w = V sin. a,

and we have for the position B of the moving body, after an instant

r, the abscissa

A M = X = A Q COS. a = Iv r — j cos. a

= 11 —j V T cos. a,

and the ordinate

M R = y = A Q sin. a — Q R = (l — ^^^^) v r sin. a — -^.

The velocity in the direction of the abscissa is

R Ui = Ui= V COS. a — fi v^ r cos. a = (1 — fj,
v r) v cos. a,

and that in the direction of the ordinate is

R Wi = Wi = v si7i. a — [iv"^ r sin. a — g r =(1 — fi v r) v sin. a—g r.

From the two velocities we obtain the angle of inclination

TiR X^ = a^ of the path at R by means of the formula

tang, a^ — — = tang, a — — ^—
(1 — fiv r) v COS. a'

and the velocity in the direction of the curve is

Rvi=Vi— Vu^'+w^= V{1 —fi V t)^v'— 2 {l-}JiVT)vgr sin. a +g'' r^

By repeated application of this formula, we can find the course

of the whole trajectory of the projectile. If, e.g., we substitute in

the above formulas for x and y, instead of a and v the values for a,

and Vx obtained from the last equation, we obtain the co-ordinates

2*1 and yi of a new point referred to R, etc.

Example.—A massive cast-iron cannon-ball, whose diameter is 2 r = 4

inches, is projected at an angle of elevation a = 25° with a velocity v ~
1000 feet ; required the position of the same after Jg^, ^, -^-^^ of a second, etc.

Since the weight of a cubic foot of air is 0,080728 pounds and that of a

cubic foot of cast iron is 444 pounds, we have

Fy nr'^y y ' 0,080728
f = ^-^= 8 ^/ C = |-^C=f- 6. \.. C = 0,000409094 C,

•2 Cr f^r r'7j ^7i 444 '

and, therefore, for v = 1000 feet, for which C = 0,9 (see § 512), we have

fi = 0,0003682.

If we take t = 0,1 seconds, we obtain

x = (l- 0,0003682 . 1000 . 0.05) 100 cos. 25° = 0,98159 . 90,63 = 88,96 feet,

y = 0,98159 , 100 »in. 25° - 32,2 . -|^ =0,98159 . 42,26 - 0,16=41,32 feet,

and
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33 2 01 3 22
Ur^. a, = tang. 25° -

^^ _ o,o3682) . 906,3
= ^'^^^^^ -

0;96318TT06;3

= 0,46631 - 0,00369 = 0,46262

;

hence the angle of elevation is

a = 24° 50',

and the velocity in the curve is

v^ = v\(),96318 . 1000)^ - 2 . 0,96318 . 1000 . 32,3 . 0,04226 + (3,22)^

= V927716 — 3621 + 10 = V92510"5 = 961,82 feet.

If we again take r = 0,1 second, we have, since for v = 962 feet, C =
0,88, and consequently // = 0,88 . 0,000409094 = 0,00036,

x^ = {l- 0,00036. 961,8 . 0,05) . 96,18 cos. 24° 50'

= 0,9827 . 96,18 . 0,9075 = 85,77 feet,

y^ = 0,9827 . 96,18 dn. 24° 50' - 0,161 = 39,53 feet,

and
3 23

tan^. a, = tang. 34° 50' - ^^^^^---^^^^
= 0,46277 - 0,00382 = 0,45895,

whence
a = 24° 39' and

= V(0,96537 . 961,8)^ - 2 . 0,96537 . 961,8 . 32,3 . 0,04200 + (3,22)"

= V862099 - 2511 + 10 = V859598 = 927,14 feet.

Assuming once more r = 0,1 and t> = 927 feet, we have C = 0,87

fi = 0,87 . 0,000409094 = 0,0003559,
and therefore

ajg = (1-0,0003559 . 937 , 14 . 0,05) . 93,71 co8. 34° 39' =0,9835 . 93,71

.

0,9089

= 83,87 feet and

y^ = 0,9835 . 93,71 dn. 34° 39' - 0,156 = 37,87 feet.

The position of the projectile in reference to the point of beginning is

determined after 0,3 seconds by the co-ordinates

a; + a?! + ajg = 88,96 + 85,77 + 83,87 = 357,60 feet and

y j^y^^ y^ = 41,33 ^ 39,53 + 37,87 = 118,73 feet.

If the air offered no resistance and gravity did not act, we would have

x + x^+x^ =ctco8. a = 1000 . 0,3 . COS. 35° = 300 . 0,9063 = 371,89 feet and

y + yi + y2= ^*^^^- « = 300 . sin. 35° = 300 . 0,4336 = 126,78 feet.

If we neglect the resistance of the air only, we have

X -\- x^ + X2 = 371,89 feet and

V + yt+y2 = 126,78 -—- = 123,78 - 33,2 .^ = 126,78-1,449

= 135,33 feet.



APPENDIX.

THE THEORY OF OSCILLATION.

(§ 1.) Theory of Oscillation.—A body has an oscillatory or

vibratory motion (Fr. mouvement oscillatoire ; Ger. schwingende

Bewegung) or is in oscillation or vibration (Fr. oscillation ; Ger.

Scliwingung), when it describes repeatedly the same path backwards

and forwards in equal times. We meet with many examples of

oscillatory motion in nature besides that of the pendulum. The

most general cause of such a motion is a force which attracts or

impels the oscillating body towards a certain point. Thus, e.g.,

gravity sets the pendulum in oscillation. If a body, previously at

rest, can yield without impediment to the action of the force, which

impels it towards a certain point, the oscillation takes place in a

straight line ; otherwise it will oscillate in a curve, as a pendulum

does, where the action of gravity is continually interfered with,

the body being united to a fixed point. In like manner, if the

direction of the initial velocity of the body is different from that

of the motive force, the oscillations will also take place in curved

lines.

The simplest and most common case is that where the force is

'proportional to the distance of the bodyfrom a certain point C. Let

C, Fig. 874, be the seat of the force, i.e.

the position of the body when the force

is = 0; let ^ be the point where the

motion begins, and letM be the variable

position of the body. If we denote the

distance C Mhj x, and by ju a constant,

determined by experiment, we have the

acceleration of the body at M
p = fix,
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and since x decreases an amount d x, when the space A M is in-

creased by the same quantity, we have for the velocity v of the

body (see § 20, III)

v^ = — I p d X = — II XI. - ^, ^^^ - r- , -- -^ -
2

d X = — ^—h Con

But at A, V — and 2; is a definite quantity C A = a; we have,

therefore,

= — ^-^ + Con., and

or the \elocity itself

V = V iJL {a" — x').

When the body arrives at (7, a; = and v is a maximum, and

its value is then

Upon the other side of C, v gradually decreases, and at the dis-

tance X = (j B — — a from C it becomes again — ; the body

then returns with an increasing velocity to C. This return takes

place in accordance with exactly the same law as the first motion

;

at C, ^; = — c, ana a>t A, v = 0. Thus the motion repeats itself in

the space A B = 2 a, which for this reason is called the amplitude

of the oscillations (Fr. amplitude des oscillations ; Ger. die doppelte

Schwingungsweite).

(§ 2.) The time in which the oscillating body describes a certain

space A M = x^, Fig. 875, can be determined in the following

manner. If in the element d t of the time the element of the path

MN = d Xi = — d xis described, we have (§ 20, I)

d Xi = V d t, I.E. d X = — Vii {a' — x') d t,

and, therefore, inversely

dx
dt =

Vfi {a' - x')

Now if we describe upon A B, with a radius C A — C B = a,

a circle ABB, Vd^ — x" will be represented by the ordinate M
= y, and, therefore, we will have

, , dxdt= —
.

V^. y
If we put the arc D 0, corresponding to the abscissa CM — x^

equal to s, and its differential Q = — d s, we have, in conse-

quence of the similarity of the triangles Q R and C M,m
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ds,M = y, and C = a, the pro-which R^- dx,OQ
portion

-^— = -, and, therefore,
ds a

d X _
V~
dt =

d
; hence it follows that

d s
-, and

M N P C

/ ds
+ Con.

V^i , a Vfi . a
But at the point A, where the motion begins, ^ = and s is

equal to the quadrant DA = ^ n a; consequently

= - i^ + Con.,
V^i .a

and the time required by the body to come from A to if is

Vji .a VJl , a~ Vjx ^ w
*

The period of half an oscillation, i.e. the time required by the

body to pass from the point A to the position of rest C, for which

S = 0, is . 7T

t

t^
^V~^'

and the period of a complete oscillation, or the time required to

describe the whole distance AB = ^a,is,

t = ^_

After the time
t =

2 77

the body has made a double oscillation and returned to the point A.

The time required by the body to describe the space 2 A B =
4 a is the same, no matter from what point M we begin to count

;

for the time in which the body goes from MtoB and back is

_ arc OB
V}i . a

and that in which it goes from J/ to A and back is

_ arc 0^— 4 .
———

;

Vjii. a

consequently the time required to describe the space 2 MB +
2MA is
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= 2 ^^^ (OS + OA) 2jr

We see that the period of an oscillation does not depend upon
the amplitude. If we start from the point C, we can put the time,

which corresponds to the distance CM = x.

t =
Vfjb . a

or, smce s=a sinr

t = -— sinr^ -, and inversely

X — a sin. {t Vii), and

v=Vy, ^a'-a'[sin. (t V^)Y=z Vfi,a ^1 - [sin. {t Vfj.)]'

= Vfi . a COS. (t Vfi).

Remark.—The foregoing theory of oscillation is applicable to the cir-

cular pendulum G M, Fig. 876, if the arcs in which it oscillates are small.

At A the acceleration of the point, which is oscil-

lating in the arc A M B, is

DA
p = g sin. A CD = CA g-

or, since for small displacements we can put B A
= MA,

DA
P = MA'

If we denote C Ahj r andMAhjx, we obtain

P =
gx_

and by comparing it with the foimula jp = |!/ ic, we find

Hence the period of an oscillation is

TT

t =
Vii

^ y — (compare § 321).

(§ 3.) Longitudinal Vibrations.—The most common cause

of oscillatory motion, which is then called vibration, is the elasti-

city of bodies. The most simple case is that presented by a rod,

string or wire C, Fig. 877, stretched by a weight G. If we move

this weight from its position of rest C a certain distance C A = a

in the direction of the axis of the string and abandon it to itself
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then, in consequence of the elasticity of the string, etc., it will be

raised to C, where it arrives with a velocity c and above which it

ascends, by virtue of its vis viva, to a point B, from
Fig. 877. -v^hich it falls again, etc. When at rest, the weight Gr

^ is balanced by the elasticity j FE (see § 204) of the

rod, and consequently the motive force is

}, P =^'~ FE - G .= 0.ot'^ FE = G.jFE - G .= 0, or
J
FE

But if the weight 6^ is at a lower point JV, whose

distance from C is CN— x, the motive force becomes

FE
FE-G^jFE-\-^ FE— G

and if it is at a higher point Q, this force is

P .= G - X
G - ^ FE + jFE FE

I I
'

I I

If we neglect the mass of the rod, the acceleration, with which

the weight G returns towards (7, is

P FE

FE g
Gf

YTT 9 ^' ^1^^ consequently we have

fi =

when we put p —
ii x and denote the length of the rod by /, its

cross-section by F and its modulus of elasticity by E. As this

formula corresponds to the case treated in the foregoing paragraph,

the period of a simple vibration is

Vil
^ FEg V7,

^ FE-

If instead of F we substitute the weight of the rod G^ — Fly
E

and instead of E the modulus of elasticity L = —, expressed in

units of length, we obtain



§4] THE THEORY OF OSCILLATION. 1047

If, on the contrary, we observe the period t of the simple vibra-

tions, we can calculate the modulus of elasticity by putting

^ it' Gl ^ ttT G
^=g-f'-F''^ = Yf'G;

These formulas also hold good, when the vibrations of the rod

are produced by simply attaching the weight (at B) ; in this case

the semi-amplitude on each side of C is

' G ,

""--^^ = 1^^'
while in the other case we assumed a <, X.

A complete vibration is a double oscillation.

—

[Tr.]

Example.—If an iron wire 20 feet long and 0,1 inch thick is put in

longitudinal vibration by a weight G = 100 pounds and if the period of

a complete vibration is ^ of second, we have t = -^^ and consequently the

modulus of elasticity

£J = 0,031 . TT^ . 18^ .
-^^^-— = 0,031 . 800000 . 18V tt

(0,1) . 77

= 24800 . 324 . 77 = 25000000 pounds.

(§ 4 ) The foregoing formula is also applicable to the case,

where the weight acts by compression upon a stijff prismatical rod.

It. also holds good, when the weight applied at the end of the rod

has an initial velocity v. According to the principle of mechanical

effect, when the height of fall of G is h, we have

Gh + G^ = ^ FE. ^ = ?^ . Ji\ and, therefore,
2 g I 2 2 1

FE ^ \F El FE ' 2g
After the weight 6^ has described this space, it has l^st all its

velocity, and in consequence of the elasticity it rises again to A,

where it arrives with the velocity v. In consequence of its vis

viva G ——, it compresses the rod and rises to a height h^ before

returning and beginning a new vibration. For this second dis-

tance we have
v^ FE

G -—=Ghi-\- ^ , III', and, therefore,
2 g 2 1

7, _ ^ ^ ./(Giy 2GI v'
^'- ~Ye"^ ^ \Fe) '^TE'2g

By adding Ji and Ti^ we obtain the total amplitude of the

vibration

2« = A + 7..= 2j/(|^-y
2GI f_

'^ FE' 2g'
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hence the simple displacement is

mi 2GI ^
FE ' %g

FE
Since in this case also p = -^rj g x = [i x, we have as above

Or (/

for the period of an oscillation or simple vibration

If the initial velocity v of the weight G^ is caused by a falling

weight G (Fig. 878), we have the case treated in § 348. If the

weight G strikes with the velocity c, and if we suppose
Fig. 878. j^^q impact to be inelastic, we have the initial velocityof

4 ^ + ^1 Gc
' = -G^Gl

hence the maximum displacement is

- v^-^^1 2 GU
+

(G + G,)FE' %g'

and the period of a simple vibration is

B The elements of the rod also participate in the vibra-

tions of 6^ or 6^ + (ri, but their amplitude decreases as

the position of the element approaches the point of suspension.

For an element Ci, Fig. 877, situated at a distance C^ = x from

the point of suspension, the amplitude is

^ X

while the period of its vibration is the same as that of G ; for it

does not depend upon y or a. Hence the vibrations of all the ele-

ments of the rod are isochronous, but their amplitudes decrease

gradually from C towards 0.

§ 5. Transverse Vibrations.—The elasticity of flexure and

of torsion cause vibrations of the same nature as those just treated.

If a rod or spring C (Fig. 879) is fixed at one end and deflected

at the other (7 by a weight G, we have, according to § 217, the

deflection

UP ~- P^
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inversely the force, with which the rod is bent, is

P

1049

Fig. 879.

3 WE a

Now if this force is re-

placed by a weight G, at-

tached at C, and if a is in-

creased or diminished a dis-

tance C A = C B = X, we
have the force, with which

the rod will be driven back to its position of rest by its elasticity

_, dWE{a + x) ^ ^WE{a + x) SWB SWEP =
f

--^-
f

j~a = -^~x',

hence the acceleration is, when we consider the mass of G alone,

P 3 WE , .

ry 73 ff ^? ana,smce jt? = fi x,P = -^9

II =
3 WE
Gr

The relation between p and x allows us to employ the formulas

of (§ 2), consequently the period of an oscillation or simple vibra-

tion is
/ _ ''^ _ '" 4/ Gf

3 WE'
If the rod H 0, Fig. 880, is supported at both ends and loaded

in the middle C with a weight G, we have, according to § 217,

^ _ p r
Fm. 880.HBO, a =

48 }VE'
and, therefore, the duration

of a simple vibration

|/^ ^ 48 WE'
If we take the weight G^ of the rod into consideration, we must

substitute in the first case, Fig. 879, instead of 6^, 6^ + ^ G^, and

in the second case. Fig. 880, instead of G, G -}- ^ G^.

From the observed duration of an oscillation or simple vibra-

tion we can calculate the modulus of elasticity, in the first case by

the formula „ /^V /G + I G^^E = (T)(m-')^
or, ifn = j denotes the number of simple vibrations per second,

^-(-^y{^^)'
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Example.—A pine rod 1 centimeter square is supported at two points

100 centimeters apart, and its centre is deflected a distance, a = 3,2 centi-

meters by a weight G = 1,37 kilograms. According to this experiment

the modulus of elasticity of pine is

P P 1,37 . 1000000E = = 107031 kilograms,
4:8Wa~ 48.3V- 3,2

while in the table on page 370 we find E = 110000.

The rod was tlien firmly fixed at one end, was loaded at the other with

a weight G = 0,31, and put in vibration. It was found that the number

of simple vibrations in 35 seconds was 100. The weight of the rod was

G^ — 0,044 kilograms ; hence G + I G^^ = 0,321 kilograms and

= 80,57

.

dgW
1281000

321000

081

981
= 105260 kilograms,

or about the same value of E as was found by the experiment upon flexure.

Fig. 881.

§ 6. Vibrations Due to Torsion.—The formula t = —- can

also be applied to the torsion balance or torsion 7'od (Fr. balance de

torsion ; Ger. Torsionspendel), i.e. to a thread or rod D 0, Fig.

881, oscillating about its axis, in consequence of its torsion. Gen-

erally the rod is provided with a loaded

arm C (7„ by means of which the origi-

nal torsion of the thread is produced,

by bringing this arm from its position

of rest C Ci into the position A A^.

The torsion drives the arm back to

C (7,, and the latter, by virtue of its in-

ertia, moves further on until it comes

into the position B B^, from which it

returns to C C^ and A A^, etc. "We

found previously (§ 262) the moment
of torsion of a prismatic body to be

a W c

we know, therefore, from this formula, that it is inversely propor-

tional to the length D — Z of the rod and directly proportional

to the angle of torsion MD C = a ; now if — ¥ is the moment of

¥ G
inertia of the arm CD (7,, —^ — is the mass Ji" reduced to the ends

' a' g
G and Cx of the arm, and the acceleration of this point is

P« =
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^ =
aWc F G aaW C g

M la ' a'g GFl
If we denote the arc QM — a a, corresponding to the length

of the arm D A — D C = a and to the variable angle of displace-

ment CD M = a, by x, we obtain the expression

WGg
P

fi =

GkU
WGg

X, and we can again put p = ^x,ot

GFV
The period of an oscillation or simple vibration is, therefore,

V^i, Vg^ W G '

no matter whether the amplitude A GB = A^GiBi is large or small.

Inversely, we have

WG=: ^,GFl,
gf

and, therefore, the moment of torsion

Pa=^^,.aGh\
gf

Remakk.—The above formulas for the vibrations produced by the

elasticity of rigid bodies are not correct unless the displacement during

the vibration is within the limit of elasticity. Great care should be

taken to avoid as much as possible vibrations in the .various parts of

machines; for the energy expended upon them is lost to the machine.

For this reason the parts should be united to each other with precision,

and what is known as lost motion is to be avoided, as it gives rise to con-

cussions and vibrations.

§ 7. Density of the Earth.—The
theory of the torsion-rod can be directly

applied to the determination of the mean

heaviness or specific gravity e of the earth.

If we cause a heavy sphere K to approach

the weight G, which is fastened upon the

end of the arm A D A„ Fig. 882, the

latter will be attracted towards the former

a certain distance A M = x; the attrac-

tion R ofK balances the force of torsion

P, when G occupies the position if ; one

of the above forces can, therefore, be de-

termined from the other. Now if we re-

move the heavy sphere IC and allow the

Fig. 883.
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torsion-rod to vibrate, we can observe the period of the vibrations,

and from it we can calculate the force of torsion. According to

the foregoing paragraph, the period of a simple vibration is

_ TT _jt? _ force of torsion _ P a^

~
4//^' X mass of torsion-rod ~ G ¥^^

when G Ic^ denotes the moment of inertia and a the length of the

arm of the torsion-rod ; inversely, the twisting or attractive force is

_ Gie p _ \iG¥ X _ ^ G¥ X _ 7T^ GF a
~ g a' ~ go" ~ gf a" ~ gf' a

'

and the moment of torsion corresponding to the angle of torsion a is

Fa=.^,.aGh\
gt

Now if the forces, with which the bodies attract each other, vary-

directly as thQiY masses and inversely as the squares of their distances

(see § 302, Example 3), we can compare the attraction P, exerted

upon the body by K, with the weight Q of the small body which is

placed upon the torsion rod; for the weight is the measure of

attractive force of the earth ; thus we obtain

P ^Kis'
Q ~ Eir-"'

in which s denotes the distance MK of the centres of the two

masses G and IC from each other, r the radius of the earth and E
its weight. If we solve the above equation, we obtain the latter

weight _ KQr'

and if we substitute U = | tt r^ . £ y, we have the mean heaviness

of the earth

_ _ SB _ d KQ r' _ 3KQ _ SXQ g f a'

^' ~^'^ ~
4:7T r'

~ 4:n Pr' s'
~ 4:nPrs' ~ 4:7Trs'' n' GFx'

or if we introduce the length of the second pendulum I = -^ (see

§323), _ 3KIt^ Qa\
y'-'-y-^^^rxs^'Gh''

hence the mean specific gravity of the earth is

_ 3 Klf Qa'
^ ~ ^Tirxs'' GFy

If we put approximatively G ¥ = Q «^ we obtain more simply

e = 3 -All-
'* TT r X s'^ y

Cavendish found in the first place with the torsion rod, or

Coulomb's torsion balance, as it is called, e = 5,48 ; or, according to

Hutton's revision, e = 5,42.
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Reicli found afterwards, with the aid of the mirror apparatus of

Gauss and Poggendorff, e — 5,43. Baily, on the contrary, found

by experiments upon a larger scale, e = 5,675.

When Reich repeated his experiments he found e= 5,583. (See

" Neue Versuche mit Drehwage, Leipzig, 1852.") The mean
density of the earth is, therefore, according to these experiments,

about equal to that of specular iron.

Remark.—The following works may be consulted in reference to the

manner in which the density of the earth was determined :
'' Gehler's

physikal. Worterbuch," Bd. Ill ; the treatise of Reich " Versuche iiber die

mittlere Dichtigkeit der Erde. Freiberg, 1838 ;" and that by Baily, " Ex-

periments with the Torsion Rod for Determining of the Mean Density of

the Earth, London, 1843."

§ 8. Magnetic Needle.—The torsion-balance may also be

employed to find the directing force or the moment of rotation of a

magnet or of a magnetic needle (Fr. aiguile aimantee , Ger. Magnet-

nadel). If we replace the transverse arm of the balance by a

magnetic needle or by a bar magnet M D M^, Fig. 883, it will as-

FiG 883 sume a position in which the directing force is

A
-J,

balanced by the twisting force. If the non-mag-

1 / /N netic arm, when at rest in ^ ^i, forms an angle

1 // A D N = a with the magnetic meridian N Sy

1 // and if the bar magnet M J/i assumes such a posi-

BO ^^^^ ^^^^^ ^^^ '^^^^ forms an angle M D N = 6

with the meridian N S, we have R^ = E sin. 6, in

which formula R^ denotes the component of the

directing force R, which is parallel to JV S. This

component tends to turn the needle, and is bal-

' ^ anced by the force of torsion. The latter force

P, on the contrary, is proportional to the angle of torsion MD A =
a — 6, and we can, therefore, put

P = F,{a-d);
hence we have R sm. 6 z=: p (^a — S), and consequently

when the variation or angle of deviation S is small..

Now according to the foregoing paragraph the force of torsion

is expressed by the formula

P - ^ ^K^ _ ^ ^ ^^ a{a - ^) _ TT^ G k' (a - 6)

~ gf ce ~ gf a' ~gt" a

and we can calculate from the period t of an oscillation, etc., of the
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non-magnetic torsion-rod the directive force of the magnetic needle

by the formula

^ -\ 6 ;
^' - T - '~6~

' Jf ' -cT'
The moment of this force, when we assume that it is applied at

a distance D M =^ a from the axis of rotation and when the varia-

tion \Q MD N = 6, i^ Bi a = E a sin. 6, approximatively, for

small variations,

= E a d := (a - 6) . ^^ . G F.

This moment {E a sin. 6) is a maximum and = E a tor

sin. 6 = 1, I.E., when the magnetic needle is at right angles to the

magnetic meridian, and, on the contrary, a minimum and = 0,

when 6 = 0, i.e., when the axis of the maguet needle coincides with

the magnetic meridian.

§ 9. Magnetism.—Since the directive force of the magnetic

needle causes no pressure upon the axis, I.E., the needle has no

tendency to move forward, but only a tendency to turn, when its

.axis does not coincide with the magnetic meridian, it follows that

the entire action of the earth upon the magnet must consist of a
7? 7?

couple — , — —, the maximum moment of which is E a. Now

since every couple —, — — can be replaced by an infinite number

of other couples ( --, ^\\ "o"?
~~

o"' )' ^^^-^ whose moments

E «, Ex a^, Ei «.2, etc., are equal to each other, it follows that nei-

ther E nor a, i.e., neither the directive force nor the point of appli-

cation, but only the moment E a i^ determined. This tivisting

moment depends, in addition, upon two factors, lUi and S, i^i corre-

sponding to the magnetism of the earth and S to that of the bar or

needle ; hence we can put

E = fjii S and E a = fix S a.

The measure ftj of the magnetism of the earth for a needle

vibrating horizontally (the case under consideration) is only the

horizontal component of the intensity
f^

of the entire magnetism

of the earth ; for the vertical component fio is counteracted by the

support of the needle. If t is the angle of dip or incUfiation or the

angle formed by the magnetic axis of the earth with the horizon,

we have the horizontal component

fi^ = fji cos. t
;

on the contrary, the vertical one

jUj = j[i sin. I,



§10.] THE THEORY OF OSCILLATION. 1055

and, finally, the twisting moment of a magnetic needle is

R a sin. 6 = fi cos. l , S a sin. d,

the maximum value of which is

R a = II S a COS. l,

§ 10. Oscillations of a Magnetic Needle.—We can calcu-

late the moment of rotation of a magnetic needle from the period

of its oscillations. If we move the suspended needle M D M^, Fig.

884, from its position of rest^ where the force oi torsion and the

directive force of the magnet are in equilibri-

um, so that its new position shall make a small

angle M D C ^ <^ with its former one, either

the magnetic directing force R is increased by

R and the force of torsion Pi is diminished

by Pi 0, or the reverse takes place ; in either

case their resultant

/// (P + PO
/ /

I

or its moment
{R ^ P,) ^ a = {R ¥ Pi) it-

drives the needle back to its position of resK

If G ¥ is the moment of inertia of the needle, the acceleration,

corresponding to this force, is

(P \- P^ax

if we put it = |t^ ir, we obtain

/P + P,\

and the period of an oscillation is

Gie

Vji (P + P,)ag

~^y (R + Pi) «'

P 6
or, if V denotes the ratio ^

—
P -6 of the force of torsion to the

magnetic force.

GF
^/ {l + v) Ra

If we have found t by observation, we can find by inversion the

moment of rotation of the needle, which is
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R a = gf'l-hv
If the force of torsion is small, i.e., if the position of repose

nearly coincides with that of the magnetic meridian, we cair

neglect v and put

t = —- y -^— and
Vg Ra

-Ra^-~.G¥.

We can also substitute for R a its yalue, which has been given

aoove, and express the moment of rotation by the formula
_.2

ji 8 a COS. I — ^—^ . G ¥.

For a dii^'ping needle, which oscillates in the plane of the mag-

netic meridian, we Iiave, on the contrary,

_2

\i 8 a — ~-.. Glc",
ge

and for a needle, whose axis Hes in the magnetic meridian and

which, therefore, tends to place itself in a vertical position we have
_.2

u 8 a sin. i = —-, . G ^*^

gf

In the formula fi 8 a cos. i = —r^ . G h'^, f.i 8 a cos. i is a product
^'^

of four factors ; however, since the inclination l can be determined

by observing a magnetic needle, and since 8 a cannot be decom-

posed into two definite factors, we have to only resolve the product

^i 8 a into the factors \i and 8 a. How this can be done by ob-

sen^ng the declination of the needle will be shown m the sequel.

§ 11. Law of Magnetic Attraction.—The forces, with which

the opposite poles of two magnets attract and the similar poles

repel each other, are inversely proportional to the squares of their

distances from each other. We can convince ourselves very easily

of this fact by observing a small magnetic needle, which has been

set in oscillation near a large bar magnet. The bar magnet is

placed m a horizontal position and in the plane of the magnetic

meridian, its north pole being directed to the north and the soutli

pole towards the south ; we then place a small variation compass

in the prolongation of the axis of the bar magnet. If the distance

5 of the pivot of the needle from one pole of the bar magnet is



§13.] THE THEORY OF OSCILLATION. 1057

much less than its distance from the other pole, we can disregard

the action of the latter upon the needle and we can assume that,

in consequence of the action of the nearer pole, the coefficient ^ of

the magnetic force of the earth is increased a certain amount k^ or

/Cg. If the period of the oscillations of the needle is = t, when the

bar magnet is removed, and, on the contrary, if it is = ^, when
the nearer pole of the bar magnet is at a distance Si from the pivot

of the needle, and — t^, when the latter distance is = Sg? we have

g t g t g ti

whence we obtain by division

resolving the last two equations, we obtain

/^i = I
—T^j f^i and ft-g = I

—

TT^j i"i? and, finally,

_ f - t,' f - t^

or, if we substitute instead of t, t^ and ^2 the number of oscillations

60" 60" ^ 60"
n — —r-, fii = —- and 71-2 - —-,

t t\ ^2

Ki'. K.i — n^ — ifi^ : n.2 — ^^

If the action of the bar magnet upon the magnetic needle is

inversely proportional to the square of the distance, we must have

also

Ki : /Cg = 5/ : s^, and therefore

n^ — n" S.2

Ui — n"

which is confirmed by the observations.

§ 12. The actions of a bar magnet N S upon a magnetic needle

n s are simplest, when the bar magnet is placed at right-angles to

the magnetic meridian in such a manner that the pivot of the

compass n s, Fig. 885, lies either in the prolongation of N S or in i\\Q

line which is perpendicular to .W S, Fig. 886, and passes through

its middle C. If for the present we put the force, with which a

pole of iV^ ;S^ acts upon a pole of n s, when their distance apart is

unity, = X, we have in the first case. Fig. 885, when a denotes the

length iV S and e the distance C cl between the centres C and d

of the two bodies N S and n s, the force, with which the north

pole n is attracted by S,

67
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P = , approximatively = -. —-^,

and the force, with which 71 is repelled by N, is

Fig. 885. Fig. 886.

P,^

K

hence the resultant of P and P^ is

-i«)7

(^ + i aY {e -iay
2ae K

or, if ^ a is small compared to e,

^ ~ e' ~ e'~'

In like manner we find the resultant of the attraction and

repulsion of the south pole s

n — - ^±K^ - ^3 ;

hence the moment of the couple, formed by these forces, is

_ 2 al K

when I denotes the distance between the two poles of the needle.

For the second case (Fig. 886), on the contrary, the attraction

and repulsion at s are

Pi =

hence the resultants are

K

K

K

, and those at n are

8n' Nn"



13] THE THEORY OF OSCILLATION. 1059

G. = 2.^.p,
a P a K

and Q
a K

Ns Ns js^s'
~ Nn'

Now if i a and { I are considerably smaller than e, we can sub-

stitute for N s = S s and N n = S n the mean value N d = S d

and for the latter the approximate value C d = e; thus we obtain

Q = Q. = ^,
and, therefore, the moment of the couple, formed by Q and ft,

I.E., it IS one-half as great as in the foregoing case, a result which

is perfectly corroborated by observation.

But the force K is itself a product of the intensity tc of the

magnetism of n s and the intensity S of JV S, i.e., IT — k S; hence

we have in the first case

Q — ——^— , and m the second case Q = —^.

Fig. 887.

§ 13. Determination of the Magnetism of the Earth.—
If in both the above-mentioned cases the magnetic needle n s \^

abandoned to the action of the larger magnet, the former will

assume a new position n s, Fig.

887, in which the force Q, with

which the bar magnet acts upon

the needle, is balanced by the

force B, due to the magnetism of

the earth. If 6 is the variation

]V d n = S d s of the needle from

the magnetic meridian, we have

for the components of Q and By

which balance each other,

Q COS. 6 and R^ — R sm. d
;

Q COS. d = R sin. S and

Q
R'

or, if we put, according to the last paragraph, either

Q

e.

hence

6 =

2 K S a ^ K Sa—:i— or g = -J-,

and, according to § 9 of the Appendix, R = ^i^ k, we obtain either
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. 2 tc S a 2 Sa ^ _ S a
tang, o — r^ = -, or tang. 6 = —-.

By inversion we obtain the ratio of the magnetic moment of the

bar to the intensity of the magnetism of the earth ; for in the first

case we have

— — \ e^ tang. c5, and in the second case, — — e^ tang. (5.

By observing the period of the oscillations of the bar magnet,

we obtain (according to § 10) the product

gf
by combining the two equations, we deduce the

of the bar, which is

ic moment

either

gr

S a — TT/~ ^i G Ic' &" tang. 6

8a — T7/=- ^ G- U e^ tang. (5,

and the measure of the horizontal component of the magnetism of

the earth, which is either

TT ^/ 2 G ¥ cotang. d -n . / GTc' cotang,

6

fl, = —-::. y ~ ^— or = -— V -i——,
ts/ g

^ tV g e

the first formula being applicable to the case represented in Fig.

885, and the second to the case represented in Fig. 886. If we
divide by the cosine of the angle of dip or inclination {l), we obtain

the total intensity of the magnetism of the earth

COS. t

In order to obtain a clear idea of the coefficient or measure }l of

the magnetism of the earth, we must put in the formulas

n 81 aR a — \i 8 a and Q I -, a = I = e = 1,

and also k = 8 =1 ; thus we obtain E a = fi and Q I = 1; hence

1) the measure jtt of the intensity of the magnetism of the earth

is that moment, with which a magnetic needle, whose magnetic mo-
ment is = unity, will be turned by the magnetism of the earth ; and

2) the magnetic moment of a magnetic needle is = unity when
that: needle communicates to another similar and equally powerful

magnetic needle, placed in the position represented in Fig. 886 at

the unit of distance from it, a moment = unity (1 millimeter-milli-
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gram). According to Weber, if the acceleration of gravity were

1 millimeter, we would have

in Gottingen f^ = 1,774 millimeter-milligrams,

in Munich (m = 1,905 " "

in Milan fi = 2,018 " "

but, since the acceleration of gravity in Central Europe is 9810

millimeters, the true values are 4^^9810 = 99 times less.

Remark.—We would recommend to those who wish to make a more

extended study of magnetism, besides Miiller-Pouiilet's " Lehrbuch der

Physik ;" Lamont's " Handbuoh des Erdmagnetismus" (Berlin, 1849), and

Gauss and Weber's " Resultate aus den Beobachtungen des magnetisclien

Vereins," Gottingen and Leipzig, 1837 to 1843; also tlie " Experimental-

physik" of Quintus Julius, and Mousson's '' Pliysik auf Grundlage der

Erfahrung," etc.

§ 14. Waves.—In discussing the longitudinal and transverse

vibrations of prismatical bodies, we have heretofore (§ 3, 4 and 5)

neglected the mass of these bodies and considered only that of the

,

weight, which produced the strain in the bodies. Hereafter, on the

contrary, we will not consider any such weight, but suppose that

the body is put in vibration by a sudden blow or by a force, which

acts for an. instant only ; we must, therefore, take into account the

inertia of the vibrating body alone. As the most simple case is

that offered by longitudinal vibrations, we will, therefore, treat that

first.

From what precedes, we know that all the parts of a prismatical

rod B M4, Fig. 888, are put in vibration, when this body is extended

or compressed by a force P, acting in the direction of its axis. Not
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only the element 31 at the end, but also every other element

Jfi, M.2, J^a . . . . of the rod vibrates back and forth in a certain

space B D, B^ D^, Be, D^ . , , which is called the amplitude of the

vibration j we can also assume, when the rod is very long, that this

space is the same for all the elements. Although the time in

which an element makes a vibration is the same for all parts of the

rod, we cannot, therefore, assume that all these elements i/, i/j, i/^,

etc., are simultaneously in the same phase of motion, e.g., that they

are all at the same time m the middle of a vibration, but we should

rather suppose that time will be required to communicate the mo-

tion proceeding from M to the succeeding elements, and that the

farther an element is situated from the origin F of the motion, the

later it will enter upon the same phase of motion. It is, therefore,

possible that at the instant, when the element M has made a com-

plete vibration B D forward and back, the element M^ has made

but one-half of its forward movement and has arrived at C^, and

that the element M^, is just beginning a vibration. The latter will

therefore vibrate isochronously with M. The velocity with which

the same phase of motion advances in the body is called the velocity

of propagation (Fr. vitesse de propagation; Ger. Fortpflanzungs-

geschwindigkeit) of the vibrations of the body. The aggregate of

all those elements between M and M^, which are in the different

phases of a complete vibration or which are included between two

elements i)lf and M^, which are in the same phase, are called a wave

(Fr. ondulation ; Ger. Welle) of the vibrating body, and the dis-

tance M Mi is called the length of the wave. A wave consists of a

back part B Do which contains the returning elements, such as

Ml, M.J . ,. . and of the tuave front D^ B^, which comprehends the

advancing elements M^, J/4 ... ; B D^ is also called the rarefied

and D.2 B^ the condensed portion, since all the elements in B D^ are

extended and those in D^ B4 are compressed.

§ 15. The 2jhases of the motion and of the velocity in a wave can

be very well represented by serpentine lines, such as F d G^ C3 H^

and B M^ A A^s B^, Fig. 889, I and IL At the moment when M
begins a neAV vibration at B, its displacement is a maximum and

its velocity is = ; at the same time M^ is in the position of rest,

and consequently its displacement is = and its velocity is a max-

imum ; both of these facts are shown by the above curves ; for the

first curve (that of the displacement) (I) passes at ^ at a distance

equal to the amplitude B F — B C above the axis B A and cuts
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this axis at Ci, while, on the contrary, the second curve (that of the

velocity) (II) cuts the axis at B and at C\ passes at a distance

d M^, equal to the maximum velocity, above the axis. At the

same moment the element M.^ is upon the other side of the position

of rest 0.2 and at the maximum distance from it, and its velocity,

like that of M,is — ; this is also shown by the two curves ; for

one passes at A at a distance equal to the amplitude Dg G^ below

the axis, and the other cuts it at that point, so that the ordinate

which corresponds to the velocity is = 0. In hke manner the

phases of the motions and of the velocities of the elements M^, M^,

etc., are represented by these curves. Since, E.G., the first curve

cuts the axis at C^ and the second passes below that point at a dis-

tance equal to the maximum value C^ iVgj.we know that the ele-

ment 3/3 at this moment passes through the position of rest with

the maximum velocity in the positive direction. If we wish to

know the phase of the motion of any other element Jfg, situated

between M, J/j, i/4, etc., at the moment when the element J/"„ be-

gins a new vibration, we have only to let fall from it a perpendicu-

lar upon the corresponding curve. The portion R S of this per-

pendicular lying between the curve and the axis corresponds to the

displacement of this element, and the portion T U, between the

second curve and its axis, gives its velocity. Since both ordinates

are directed downwards, we know that both the displacement and

the velocity are positive, i.e. their direction is that of the velocity

of propagation.

If the element M were at Z>, i.e. about to begin its return mo-
tion, the displacements of the other elements of the wave would be

represented by the dotted Hne J Cx K2 Cz L^, and their velocities

Fig. 889.
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by the ordinates of the dotted curve D 0, B, Q., D^. The period

of a double oscillation or that of a complete vibration, i.e. the time

t, in which the space B D + D Bi^ described, is equal to the time

in which a vibration is propagated through the length M M^ = I

of a wave ; if, therefore, c is the velocity of propagation, we have
the total length of the wave

BB^=^l = c.%t = '^ct.

The length of the back part of the wave is

B D^ = I, = B B^ + B^ D, = c t + X,

and that of the wave front is

D, B^ = U = D, D, - B, D^ = c t - X,

in which X denotes the amplitude of a vibration.

Remark.—The pheuomena accompanying the interference of waves can

be shown by the aid of the curves of vibration. Let us consider two sys-

tems of equal waves, which are advancing in opposite directions, and let

ABODE and F G HI K, Fig. 890, be the curves, whose ordinatei rep-

FiG. 890.

resent the displacements. The displacements of an element, which be-

longs to two waves, produce a mean displacement, which is determined in

exactly the same manner as the resultant of tw^o motions (see § 28), that is,

by adding algebraically the two component displacements. Hence at the

two points if and iV, where the two curves meet each other, the ordinates

are doubled, and, on the contrary, at the points and Q, where the curves

pass at equal distances from, but on opposite sides of the axis A E^ the or-

dinates cancel each other, and the resultant of the two wave curves is a

third curve F B B E 8 D Q K^ whose ordinates give the displacements

of all the elements in the axis A E. While the two systems of wavesABC
and F G Rare moving towards each other, the position of the wave-curve

F R B 0, etc., of course changes; but it is easy to understand that the

points of no motion and Q do not change ; for the ordinates of these

points of the two component curves are always equal and opposite. These

points are called the nodes.

(§ 16.) Velocity of Propagation.—The velocity of propaga-

tion of waves can be determined in the following manner. Let us

imagine the vibratmg body B 0, Fig, 891, to be composed of an

infinite number of elements, the cross-section of each being A and
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its length B C — C D = d x, and let us assume that the phase of

the motion of an element B C — A dx is propagated completely

to the following C D ~ A d x
Fig 891. in the elementary time d t, or

^ (^ J) MKNN o that the phases of the motion

T
I I

^
{ ITI T ^^^ propagated in the direc-

tion of the axis of the body

d X
with the velocity c = jj. Let us assume that the elements B O

and C D oscillate from to JV m the time t, and thus come into

the position 3f JSf = d Xy and N — d x.,, and let us denote the

corresponding displacement ]\^ by y. If the surface of separation

of the two elements, which .before d t seconds was at iVi, comes

after d t seconds to Hr,, the corresponding spaces described by these

elements are

N Nx = d y, and N N^ = d y^,

and their velocities are

., _ 'ill and 7;
-^y^'

hence the retardation is

^ ^^ «^ ^ d yx -dy,
^ di df '

Since d t seconds before the moment, when the elements B C
and C D occupied the positions MN and N 0, N^ was in the same

phase as now is, we have C N^ — D 0\ and since d t seconds

later N^ is in the same phase as J/, it follows also that C iVj = B M.

From these two equations we obtain

N,0 = DO-DN,^DO- {ON, - C D) ^ CD and

MN,= ON, - CM= ON, - (BM- B C) = B C; hence

NJSTr^dy, = jSr,0- N0= CD.- N0 = dx- ^.T^and

. NN,^dy, = MN, - MN^ B (J- MN= dx - dx,.

The element d y of the space is equal to the compression

d x — d X.2 of the element N 0, and the element d y., of the space

is equal to the compression d x — d .r, of the element M N. If

we denote by E the modulus of elasticity of the vibrating rod, the

strains of the elements 3/i\"and J\^ produced by this compression

are ^ (dx — dx\ . „ dy^ . ri j
Si = I—^

] A F = -^- . A E and
\ dx I a X

\ dx I dx
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If we subtract the former from the latter, we obtain the retard-

ing force

P = ^, _ ^, = (lll^) J E,
\ a X I

If y is the heaviness of the elements B C, C D, etc., of the rod, or

A d X .J the weight, and ^^-
- the mass of such an element, its

acceleration at N^ is

P _ Idy, -dyA g _ gE^ dy,-dy,^^~ M~\ dx I Adx.y" y ' d x'
'

equating the two values of^, we obtain

dy,-dy^ ^ g_E
_
dy.--dy

,_ ^^^^^
d t y dx'

dx" gE
,

gE
dt- y y

hence the velocity ofpropagation of the waves (velocity of sound) is

y^l^E

in which formula L denotes the modulus of elasticity expressed in

units of length.

Example.—If we assume the modulus of elasticity of spruce wood to be

E = 1870000 pounds and the weight of a cubic foot of it to be = 30

pounds, we obtain the velocity of propagation in it

c = |/ Jii:_i5Z^^
^ ^ ^ V48 . 187000 . g = 17000 feet,

I.E. about 15 times as great as in air.

Remark.—This formula for the velocity of propagation is applicable

not only to a stretched string, but also to water and to the air. If p de-

note the pressure of the air upon the unit of surface, we have, according

to Mariotte's law, the tensions corresponding to the ratios of compression

^-^ and ^^^-^

dx dx '

pdx pdx pd.x pdx
Oo = -^— = -^ 5— and o* = —^— = -^ 7"

^ dx^ dx — dy^ ^ dx^ dx — d\ '2

and, therefore, the motive force upon an element, whose cross-section is A, is

^-^{^2 ^i) - i^Ax-dy,){dx-dy,y

now since -^— is a small fraction, we can put {dx — dy^idx — d y^) =
dx^ and

p= (^^1 -dy^) Ap
dw
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This expression agrees exactly with the former one when we substitute

p instead of JE; hence the velocity/ of sound in air is

|/^--^-c

7

"When the theory of heat is discussed in the second volume, it will be

shown that a coefficient must be added to this formula in consequence of

the change of temperature, which necessarily accompanies the change of

density of the air. Since the heaviness of the air is proportional to the

pressure p^ they both disappear from the formula and the temperature

alone remains. We generally assume for air

c = 333 Vl + 0,00367 . r = 1092,5 Vl + 0,00367 . r feet.

Example.—If (according to the Remark of § 351), when a column of

water is compressed by a force of 14,7 pounds, its volume is diminished

0,000050 of its original volume, its modulus of elasticity is

and the velocity of sound in water is

, / 294000 .144 / 1693440
c = j/ 32,2 . -^p-,^ = V 32,2 . ^^^^ = 4673 feet,

or about 4,3 times that in air.

(§ 17,) Period of a Vibration.—We can now find the period

of a vibration by obtaining the equation, vvhicli expresses the de-

pendence of the amplitude of the vibration upon the time and
upon the abscissa .t, winch determmes the position of the vibrating

element when it is at rest. Now y is certainly a function of t as

well as of X ; we can, therefore, put y = (p (^t) and y = ip (x).

By differentiating the first equation, we obtain the variable ve-

locity of vibration dy
, ,,.

^ = 51 = ^' (0,

and in like manner, by a second differentiation, the corresponding

acceleration dv , ,,.

in which </>! (t) and 02 (t) denote other functions of t (compare § 19).

The second function gives the ratio

which determines the strain ; from it we obtain the latter

S= AE.p- = AE.xp,{x)\
dx T \ ,,

hence the motive force of the element of the mass d M = A d x^ is

9
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ax a X

and the corresponding acceleration is

in which o/^i (x) and i/^., {x) denote other functions of x.

If we equate the two values of ;j, we obtain

02 (0 = • ^-^ (•'^)? or, since "^^— = &,

The integral of this differential equation is

y = ^>{f) ^ y\>{x) =^ F(c t + x) + f{ct - x),

in which F and/ are undetermined functions of the quantities con-

tained in the parentheses ; for

^^ (^) = ^Ml =:cF,(ct+x) +Cf,{ct- X\

02 (0 =
^^"^"^aT^

= c' F,{ct + x) + c\U (cf-x)

= & \F, {ct -V X) + f,{ct - x)\ and

0j {x) = ^ij^- ^ F,(ct + x) -f,(ct-x) and

0,(^) = ^^i^ = /^,(,^ + ^) +/,(,^-^),

and, therefore, we have really •

0. (0 = 0'
• V^2 (^tO-

Although the function

y^F{ct^x)-^f(ct-x)
is an indeterminate one, j^et, when we have more definite data in

regard to the vibrating body, it can be employed to determine the

period of the vibrations. A few examples of how this may be done

Avill now be given.

Re:mark.—If we eliminate d t from the formulas d y — 'c dt and d x —
d y 1) d y

c d t, we obtain the expression -^— = -, or since ^— expresses the conden-

sation a of the vibrating element of tlie body, we have a ^= -y the simul-

taneous condensation at every point of the vibratmg rod is proportional to

the velocity of vibration of that point.
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(§ 18.) Determination of the Modulus of Elasticity.—Let

us assume that the vibrating body, whose length is- /, is fixed at

hoth ends. In this case we have not only for x ~ ^, but also for

X = I, y — 0', hence

F{ct) +f{ct)=^Q^n^F{ct + I) +f(ct-l)^0.
From the first equation w^e obtain f — — F, which, when sub-

stituted in the second equation, gives

f{ct + T) -f{ct ~ I) = 0,i.^,f{ci + I) =fict - 0,

or, if we put c t — I = c ti,

f{ct, + 2l)=f{ct,).

The function, therefore, assumes the same value when c ty is in-

2 I

creased by 2 Z or when the time is increased by ^i = — ; hence the
c

period of a complete vibration or double oscillation is

t,-
^
-^^y gE'

If, in the second place, we assume the body to be free at both,

ends, we have for ^ — and x — I, S = and -01 (a;) = ; hence

^1 {o t) -f {ct)=0 and F,{ct -{- I)
- f{ct - I) = 0.

We have, therefore,

f^F.andfict + I) =f{ct - I) , orf{ct, +21) =f{ct,),

and consequently the period of a complete vibration is

t,- ^.

If the body is free at one end andfixed at the other, we have for

X = (),y = 0, and ioY x = I, 8 — 0', hence

F{ct) + f{c t) = ^ and F,{ct + I) - f{ct - T) = 0,

from which it follows that f = — F and/i = — F^, and therefore

/i {ct + 1) + f{ct-l) = Q, or/i {ct^+2 I) = -f(c t,).

We see from the latter formula that the body, after the time t^ —
2 /—, will assume the opposite state of motion, and that it will con-
c

sequently make a complete vibration in double that time, 2 ty =
4 Z— . The period of the complete vibration is, therefore.

^ _ii-4Zi/-Z-

or double that in the first two cases.
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By means of these formulas we can calculate from the period t

of a complete vibration or from the number n of vibrations, which

a prismsrfcical body makes in a given iime, the modulus of elasticity

E — \—r\' -? aiid the velocity of propagation or the velocity of
\ 1 1 g

sound m it, c — —,

ExAMPL-E.—An iron wire, which was 60 feet long and was fixed at both

ends, was put in longitudinal vibration by means of friction in the direc-

tion of its axis. The number of complete vibrations was 1637 in a second

;

what was the modulus of elasticity of the wire and what was the velocity

of propagation in it ? According to one of the above formulas, we have

for the modulus of elasticity, expressed in units of length,

and if a cubic inch of this iron weighs 0,28 pound, the modulus of elasti-

city, expressed in pounds, is

E = 99870000 . 0,28 = 27960000 pounds (compare the table, § 213).

The velocity of propagation, or the velocity of sound in it, is

c = Mg L = V32,2 . 99870000 . ^-V = V 16,1 .16645000 = 16370 feet,

or, assuming the velocity of sound in the air to be c = 1092 feet, we have

16370 ,^
^ = T092- = ^"-

If the vibrating wire is very long, the period of a vibration depends

upon the length of the wave or upon the distance I between two nodes,

21
and it is always t^ = —. This time determines the pitch of the note pro-

duced by the vibrating wire ; the greater or smaller t^ is, the lower or

higher the note is. The intensity of the sound, on the contrary, increases

with the amplitude of the vibration. For spherical waves, in which sound

'propagates itself in air and water, c and t remain unchanged, and it is only

the amplitude of the vibration, or the intensity of the sound, which

diminishes.

(§19.) Transverse Vibrations of a String.—The transverse

vibratioyis of a string or elastic rod can be treated in tlie same

manner as the longitudinal ones. As the simplest case is that of a

stretched string (Fr. corde ; Ger. Saite), we will discuss that first.

Let ABB, Fig. 892, be any position of the vibrating string, A
and B the two fixed points, I — A B the length of the string, G its

weight and 8 the tension, which is to be regarded as constant.

Now HA N—X and iV^O = 2/ be the co-ordinates of any point of
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the string, and if we resolve the tension S at it into two components

K and P, one parallel to A B, and the other perpendicular to it,

Pi

Fig. 89

........ s
3-

J^
I ..--^i
,--*^ V ---..^^^^

T U Ki ^^^"*>v^

i^^ ^N^
i^

"p.... .^.....-'•""

we can regard the latter as the motive force a one end of the

element Q. If the arc ^ = 5 is increased by the element

Q = d s, and if the corresponding increase of the ordinate y is

Q T = d y, P, S, d y and d s are the homologous sides of two sim-

ilar triangles OPS and Q T 0, and we can put

dy^

d s

^_QT__dy^
8 ~ OQ ~ ds'

8.

But another force Pj = R V
8 = dy,

8, which is one of the
Q E' ds

components of the opposite tension, acts in the opposite direction

upon the same element Q ; hence the motive force, which moves

the element Q back to the axis A B,h

P^P^ = (lM^)s.

The mass M of this element is proportional to its length

Q = d s; now if we suppose the amplitude y of the oscillation

to be small, we can assume that the mass is proportional to the

d X
element T — Q U = d x of the abscissa, or thatM — —~ . —

.

. . /
If we make this assumption, we have the acceleration with which

the element approaches its position of rest A B
P - Pr _ dy - dy, g 81
W^ ~~ds.dx ' a 'V

or, if we put d s = d x,

d y dij.

d x^

ds . d X

' G
•

Now y is some function of x, e.g. ip (x) ; hence -~ is another
dx

function xp^ (x) and
d y — d y, _ d dy _ d [0i {x) ]

d x' d x'

function ^^ (^) of this quantity, and

d X
is a third
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Since y is also a function of the time t, i.E. y — (^), the ve-

locity with which the element Q returns to its position of rest is

d y
V ~ -~ = (t>i (t), and the corresponding acceleration is

_ d(l>,(t)

P </>2

If we equate these two values of ;;, we obtain, as in § 17 of the

Appendix, the differential equation

g SI
(p-2 (t) = V'S (^) G

= & i)2 (^),

and we can put here, as we did there,

y = (l){t) = ip (x) z^ F{ct + x) + f(ct - x) and

V = c[F, (ct + x) + f, (ct ~ x)].

Since here also for x = and x = I, y and ^; = 0, we
again/ = - F smd. f {c t + =f{et-l), or/ {c t^ -{- ^

f {c ti) ; hence the period of a complete vibration or double oscil-

lation is

ti = — = 2 I y —TTv ^^> if "^^ P^t G = A ly,

have

;, = 2? ^ ffS-

The period of vibration of a string is therefore directly propor-

tional to the length I and to the square root of the iveight of the unit

of length, and it is inversely proportmial to the square root of the

tension S of the string.

Example. —Since half the period of the vibration corresponds to that

of the next octave, a string will give, according to this formula, the octave

of the fundamental tone, when it is shortened one-half or supported in the

middle, or when it is stretched four times as much, or when it is replaced

by another whose unit of length weighs one-fourth as much as that of the

first one.

(§ 20.) Transverse Vibrations of a Rod.—The period of vi-

bration of an elastic rod or spring

A B (Fr. lame ; Ger. Stab), Fig.

893, which is fixed at one end,

can be determined in the follow-

ing somewhat circuitous man-

ner. According to § 226, if r

denotes the radius of -curvature

of the rod at a certain point 0,

ct

Ym. 893.

N-----—
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determined by the co-ordinates CN =Xi and N = yx, the moment
of flexure of the arc A — s^ is

M = .

r

If we put the force, with which an element Q, which corre-

sponds to the co-ordinates C R = x and R Q = y^ approaches the

axis or position of rest C B, = P d x, or its moment

= N R . P d X = (xi — x) P d x,we obtain

— j {xi — x) P d X,

But / {xx — x) P d X — P x^dx — I P xdx

= x^ P dx — P xdx,
CO t/

or, if we put / P dx — P^, and therefore

/P x d X — I P dx . X = P^Xi — I P^dx,

/{Xi — x) P dx = / Pidx; hence we haye also
1/

/ P,dx.
WE
r 'Jo

ds'
Now we know that r = — ,„-,,, -^ (see Art. 33 of the In-

dx d {tang. a)
^

troduction to the Calculus), or, since we can put, when the deflec-

tion is small, d s = d x,

d X ,

r = — -j-r, r; hence
d (tang, a)

- WE d {tang, a)

d^ f'p.dx.

by differentiating which, we obtain

_. .

, / ^ J dy
,

, . d {tang, a)
If we put ^ = V {^), ta.ng. a = -^ = ^p, (x), ^

^^

z= i/jg (x) and d (-
^ f'
—-) = ips {x), we obtain the equation

P, = -WE.ip,{x\
by differentiating which again, we find

dP,= - WE dip, {x),i.B. P dx = - WE dip, {x\ or

F= - WE^-^^^= - WEip,{x).
CL X

68
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In order that tlie spring shall vibrate symmetrically, we can as-

sume that P is proportional to y, or that P = — K y\ hence we

have

WIJip^ (x) = Ky, or '04 {x) = -^r^- ^ = ^'y,

when we denote ttT^ ^J ^^'

This differential equation ip^ (x) = h'^y corresponds to the equa-

tion y = ij) {x) — A COS. {k x) + B sin. (h x) + C e''" \- D e"^"',

for by successive differentiations we obtain

%\)^ {x) — Ic \^— A sin. {7c x) + B cos. {h x) + Ce'^ — D e'''^

iP, (x) = F[-A cos. {kx)- B sin. {k x) + C e^^ + D e-'%
t/)3 {x) = F [A sin. (k x) — B cos. {k x) + C ^"^ — D e~*^], and

i/>4 \x) = ¥ \^A COS. {kx) + B sin. {k x) + C e"" \- D e~''%

so that we have really

,p, {x) = ¥ y.

(§ 21.) The period of vibration t of the elastic rod is found, as

force
above, by substituting p = (p^ {t) = . But the force acting

mass
upon an element is

= P dx = - Ky dx= — WBk* ydx,

and, when the cross-section is i^and the heaviness is y, the mass is

y—Fd X -^
; hence

9
. ... g WE¥
^^ (^) = - Fy ' -y^-^y*

I. A 4. ^i. '
gWEk\ ,when we denote the expression -—

^ by /x\

This differential equation corresponds to the simple formula

y =:
(f)

(t) =z sin. {[J^ t + r),

in which r expresses any arbitrary time of beginning ; for by dif-

ferentiation we obtain

d 11

V = -j-^ = (ji^ (t) = fi , COS. (ft t + r) and

d V *

p = ^ =
(f)^

(t) = — fi^ , sin. (fJ' t + r), I.E.,

(f),
(t) == - fi' y.

If in the equation y = sin. (fi t + r) we take r = 0, we obtain

y = sin. (fi t) ; hence £oy (Jt t = 0, tt, 2 tt, etc., y = 0, and conse-

quently
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^1 = — is the period of a simple vibration and
/^

^

2 7r 2 TT / Fy
t =— = — y ~^w~p ^^ ^^^^ period of a complete vibration.

In order to calculate the period of a vibration, we must know

not only the quantity k, but also the ratio -=^

If the rod is cylindrical and its radius = r, we have

' - = 4 (see § 231),W 4 77 r* r

and if it is a parallelopipedon, whose width is h and whose height

is y^, F hh 1^ / o oo«\

We have, therefore, for the first rod

and for the second

The quantity k is found in the following manner from the

equation

y = A COS. {k x) + B sin. (k x) -\- C e^"^ + D e~^^

.

If we substitute in this formula the corresponding values x ~l
and 2/ = 0, we obtain

1) = ^ COS. (k I) + Bsin. [k T) + C e'^' + D e'^^K

If we perform the same operation in the equation

tang, a = ~- =: tp^ {x), we obtain

2) = - ^ sin. {k T) + Bcos. (k I) + Ce^' ^ B e'^'K

Since the moment of flexure at the end A of the rod — and

consequently the radius of curvature r = qo , or i/^a (:r) = and

03 {x) = 0, it follows that

= - ^ cos. - B sin. +Ce' + B e-% i.e., - A -h C -h B =
and

= ^ sin. 0- B cos. + C e° - B e-% i.e., -B-hC-B==0,
whence 3) A = C + B and

4) B = - B.

If we eliminate A and B from these four equations, we have

(C + B)cos. (kl) + (G- B)sin. {k I) +Ce^^ + i)e-*=' = 0, and

-{G+ D) sin. {kl) + (C-B) COS. (kl) -^ Ce^' - B e''^' = 0;
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from which we obtain by addition

Ccos.(kl) - Dsin.{]cl) + Ce^''=0,

and by subtraction

Dcos. {hi) + C sin. (Jcl) + De'^^ = 0, or

C [cos. (k I) + e^^] — D sin. (Jc I) and

D [cos. {k I) + e-^^ = -C sin. (Jcl);

hence we have by division

COS. (h I) + e^^ sin. {h I)

sin. {hi) COS. {h I) -r e~^^

2 + COS. {h I) {e^^ + e-^^) = 0, or

COS. {hl)= -
^,, . ^_-^'

, whence

e"' -\- e~

The smallest of the different values, which correspond to the

different tones that the rod can give out and which depend upon

the number of nodes, is ^ Z = 1,8751 ; the greater are, on the

contrary, nearly 7.7_37t577 77t

If we are required to find from the observed period t of the

complete vibration the modulus of elasticity B, we have generally

to consider but the smallest value ; we must, therefore, put

1,8751 ^ ,„ 3,516
^- and h' = —,-^—

;

I I'

hence for a cylindrical rod

^~g Vr¥~t) -
ff \3MQVt)

- ^^'^^*
ff ?-f'

and for a parallelopipedical one

^ _ X fA!LV_ y (J^LL^X- 4 2579 ^ il-
dg\hkU/ ~ 3g \3,516 h tJ

~ ' ^ * g h'f
Remark 1.—^If we compare with each other the formulas

i = —^ j/-^ and i, = 2 Z, |/-^
for the transverse and longitudinal vibrations of one and the same rod, we
obtain the proportion

l^ 3,516, P r^^.r..-,t:t.=— : -^— L, I.E., t:t.= — : 0,5596 l^.

Wertheim found by experiment that this proportion was correct for

cast steel and brass.

Remark 2.—The transverse vibrations of an elastic rod are discussed

by Seebeck in a " Abhandlung der Leipziger Oesellscliaft der Wissenschaften ,''^

Leipzig, 1849, and also in the " Programme der technischen Bildungsan-

stalt in Dresden," for the year 1846. Wertheim's experiments upon the

elasticity of the metals and of wood by means of transverse and longitu-
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dinal vibrations are discussed at length in " Poggendorflf's Annalen,"

Erganzungsband II, 1845.

Remark 3.—The period of vibration or rather the number of vibrations

of a rod in a given time cannot generally be determined directly on

account of their rapidity ; we must, therefore, employ various artifices to

do it. We can determine it either, as Chladni, Savart, etc., did, by the

pitch of the note produced by the vibration, or we can employ the method

first proposed by Duhamel, which consists in causing the rod to describe

by means of a small point a wave-line upon a revolving glass plate, which

is covered with lamp-black. A chrorwmetric appa/ratus^ to which a Jlying

pinion, such as used in the striking works of town clocks, is attached, is

employed to produce a regular motion of rotation. An account of this

apparatus is to be found in Morin's " Description des appareils dynamo-

metriques, etc., Paris, 1838," as well as in his " Notions fondamentales de

mecanique.'' Wertheim determined the number of vibrations in a given

time by allowing another body, such as a tuning-fork, whose number of

vibrations was known, to vibrate at the same time with the rod to be ex-

amined. If we cause both bodies to trace wave-lines upon the lamp-black

and then count the number of waves corresponding to the same central

angle, the ratio of these numbers will give the ratio of the numbers of

vibrations. The longitudinal vibrations are generally accompanied by

small transverse ones; the rod describes, therefore, a corrugated wave-

line. By counting the small waves contained in one large wave of the

main wave-line, we can easily compare the number of longitudinal vibra-

tions with the number of transverse ones.

§ 22. Resistance to Vibration.—The forces, which cause the

vibrations of a body, are very often accompanied hj passive resist-

ances, whose influence must be examined more particularly. If

such a resistance is constant, as, E.G., the friction of a pendulum

upon its axis or that of a magnetic needle upon its pivot, it has no

influence upon the period of the oscillations, but their amplitude

is diminished at every stroke. For the case in § 1 (Appendix), in

which the motive force is proportional to the distance x from the

position of rest or centre C of the motion A B, Fig. 894, we can put

p = fj,x = ^{a — Xi),

in which Xi denotes the space A M de-

scribed. If we take into consideration

the diminution h of this space, in con-

sequence of the friction, we have, when

the body is describing the first half

A C of its path,

p z=
fji {a — Jc — Xi),
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and when it is describing the second half C B

the influence of the friction h consists, therefore, in this alone,

that for one-half of the path a niusfc be replaced by « — Ic and for

the other by a + ^, and that the whole space described in one

oscillation must be changed from 2 o^ to 2 « — 2 /I-, i.e. the ampli-

tude of the oscillation will be diminished a certain quantity 2 h at

each oscillation. Finally, since the amplitude does not enter into

the formula
/ _ T

h can have no influence npon the period of the oscillations.

The case is difi'erent with the resistance of the air. The latter,

when the velocities, as in the case of the pendulum, are small, is

more nearly proportional to the simple velocity than to its square,

as was shown by Bessel's researches upon the length of the simple

pendulum (Abhandl. der Akademie der Wissensch. zu Berlin, 1826).

This is explained by the fact that this resistance is increased prin-

cipally by the condensation and rarefaction of the air in front and

behind the vibrating body, which increase with the velocity v of

the body (see § 510 and Appendix, § 17, Eemark). In accordance

with this assumption, we can put the acceleration of the vibrating

body
p = — {nx + vv) OY p -Vvv+iix^Oy

when we assume the body to be moving from the point of repose

and measure the space from that point.

If we put

* =/ W' ^ =S =/ (') ^""^P = Pt ^f' ('^'

we can write also /a {t) + '^
f\ {t) + ^if {t) = 0, which corresponds

to the integral equation

X =[b COS. (i/) t Vfi) + di sin. {ip t V//)] e~T,

in which b and bi denote constants to be determined and ip =

J ^
\ \ — -T-. Now ioY t = ^, X — 0, whence 5=0; hence we have

more simply

X = 1]^ sin. {xp t Vfj) e~ 2 .

Since this value becomes = 0, when ip t Vfi — -n, the period of

an oscillation or simple vibration is
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V'V/z
I.E. - = 1

V^- ^
4 ^

4: fJ,

times as great as if the resistance of tlie air were not present.

Remark.—It is easy to explain wby bodies which are set in vibration

make smaller and smaller oscillations and finally come to rest. This effect

is due to two causes, the resistance of tbe air and the imperfect elasticity

of the vibrating body ; in consequence of the latter fact, the contraction

and expansion of the body, particularly within a short space of time, is not

proportional to the forces acting ujDon it.

§ 23. Oscillation of Water.—The simplest case of the tcavs

motion of water is that presented by its oscillations in two communi-
cating tubes A B D, Fig. 895. Let us assume that both have

the same cross-section, and let us imagine

the surface of the water in one leg to be

raised a certain distance II A = x above the

position it occupies when at rest, and that in

the other leg to be depressed an equal dis-

tance R D = X. We have here the motive

force

P = A.2xy,

and if I denotes the entire length A B CD

Fig. 895.

— HB C R of the water, the mass moved is 31 = Aly
; hence the

acceleration with which the surface of the water rises or falls is

_ P _2Axy _ 2gx
^ ~M~ Aly ^~~~r'

Since this formula corresponds exactly to the law of oscillation

p = fj,
X, discussed in § 1 and § 2 of the Appendix, we have for the

period of an oscillation

—-, = -n y —-.

Since the period ofthe oscillations of the simple pendulum, whose

length is ^, is

t =

f
l_

the oscillations of the water in the communicating tubes are iso-

chronous with those of this pendulum.

If both legs of the tube A B D, Fig. 896, are inclined, i.e. if
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tlie axis of one of the tubes forms an angle a and that of the other

an angle (i with the horizon, the space A H — D R — x, which

the surface of the water describes upwards in one and downwards

in the other leg, corresponds to the difference of level

z = x sin. a -\- X sin. jS — x {sin. a + sin. (3)
•

hence the force is

Fig. 896. P = Ay x {sin. a + sin. (3),

the acceleration is

_ g {sin. a + sin. (3) .x *

P -
J

,

and the period of the oscillations is

^ g {sm. a + sin. (3)

'

If, finally, the tubes are of different ividthSy the determination of

the period of the oscillations becomes much more complicated. Let

A be the cross-section and I the length of the middle tube, aj, Ai

and /i the angle of inclination, the cross-section and the length of

one lateral tube, and as? ^2 and 4 the angle of inclination, the cross-

section and the length of the other; finally, let us suppose that the

surface of the water in the axis of one tube has risen a distance x

and that the surface of the water in the axis of the other has sunk

a distance x^. We have then

Ai Xi — A2 X2, whence x^ =z -^ x,

and the motive force, reduced to ^1,

F = Ai {xi sin. tti + X2 sin. a^ y = -~- (^2 sin. a-^ \- A-^ sin. a^ x^.

The mass of the water in the middle tube is constant and equal

A I y
to -f and, since the ratio of its velocity to that of the force is

—-, the mass reduced to the point of application is

The mass of the water in the first leg is

= —^ ^, and that in the second
9

__ Ac, (Za — x^) y

9
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or reduced to the point of application of the force

Finally the mass moved by P is

^1

9

1
9

A;^yrl

I k + X\

U ' A,

(I li

[a^a.^

A, )

A,

AiXi>

r I li k /I 1 \ < 1

and the acceleration is

M

(sin. «! sin. a^

f 1 to

\A,'
~ ^,^)^^^^

If the cross-sections of the two tubes were the same, we would

have Ai = Ao, and therefore

sin. tts) g Xx_ {sin. ai + sin. a^) gx^ _ {sin. a^ -

^ ~
I

I ,lx + k\ . ~ Aj
lT + ~2r/^ "AT

and the period of the oscillations

k + k

A {k + k)

g A [sm. «! + siy.. a^)

Remark.—In consequence of tlie friction and of the resistance due to

the bend in the tube, these fonnulas must, of course, be modified (com-

pare Appendix, § 25).

§ 24. Elliptical Oscillations.—If a body, which is driven with

an acceleration^ — ii z — \Ji . C M towards a fixed point C, Fig. 897,

possesses an initial velocity c, whose

direction differs from that of the

force, the oscillations no longer take

place in a straight line, but in an

ellipse, as we will now proceed to

prove. Let the direction of the mo-

tion at the point of beginning A be

at right angles to the distance C A
— « and let the corresponding ve-

locity be = c. If we pass the co-ordi-

nate axes through C, one upon and the other at right angles to
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C A, and denote the co-ordinates CK and KM \)'^ x and y, we

have for tlie components q and r of ^ = /x 2, which are parallel to

the axes, since - == -^ and - = -.

p z p z

q = fi X and r = fi y.

If u and V are the components of the velocity w of the body if,

which are parallel to the axis, we have, according to § 1 of the

Appendix,

u = Vjj, {d" — x')
;

and at the same time

c^ — v^ = z I rdy=2filydy = fj'y% whence v = i^c^ — fi y\

Since for y = h, v — 0, it follows that

= c"" — [Ji ¥ ; hence c = b Vfj, and v = Vjj, {b' — y"),

fl X d 11

But now u = -T-: and 2; = -^^f, and therefore
dt dt

u d X ./a^ —

V ~ dy~^ h' -
x^ d X—X or _ d 11— -^

, I.E.,

y Va' - a;^ n- - f'

'© '(f)

i/'-(i )• y'l- ©'

hence (according to Al't. 26, V, of the Introduction to the Calculus)

. ,x
sm.~^ -

a

• 1 y= sm.-' ^ +
a

Con.

or, since for x = a, y = 0,

. , a
sm. -

«5

= sm.~' T + Con., or

sin.~'^ 1 = sin.~' + Con., i.e., — = Cow. and
<)

,x . .y IT

sin.~^ - = sm.~^ ~ -\- -r-, or
a I? 2

« b 2

When the difference of two arcs is —, the sine of one is equal

to the cosine of the other, i.e..
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Since this is the equation of an ellipse, it follows that a point,

which is impelled or attracted towards C with an acceleration ii z,

will describe an ellipse, whose semi-axes are C ^ = a and C B ~h.

We liave also

dt——— ~
; hence the time is

= y -sin. ^ -L or inversely,

y = b sill, {t Vfji) and x = a cos. {t VJi).

The time, in which the body will describe a quadrant of the ellipse,

is fonnd by putting y — h, and it is

ti = y - sm. ^ ~ = y - sm. ^ 1 = -——

.

The time, in wliicli the body describes half the ellipse, is

and the period of a complete revolution or of a complete vibration is

or exactly the same as it would be, if the motion were a rectilinear

reciprocating one. It follows also that

u = VfJL (a' — x'') = ^n {a" — a" [cos. {t i^^)]'^) = /^ a sin. {t Vfi)

and

V — Vfi {¥ — y"") — III cos. {t Vfj.) ;

hence the velocity of revolution is

w = Vii' -\- v' = fi ^{a sin. t Vfi)"- + {b cos. t Vfj,y.

Finally, we can put

X = —-— COS. (t V[i) -{ — COS. {t V]j) and

y = -^— sin. {t Vii) ^ si7i. {t Vfi) ;

now since the first members

—
^
— COS. (t Vfi) and—-— siii. {t Vfl)

correspond to a uniform motion in a circle, whose radius is —^r—

,

and since the two other members correspond to an opposite uni-
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form motion in a circle, whose radius is —-— , we can also assume

that the elliptical motion of the point is composed of two circular

ones, I.E., that the point describes uniformly a circle, whose radius

is —-—, while the centre of the latter moves uniformly in a circle,

whose radius is

If J = 0, the oscillation takes place in a straight line, out we
can imagine it to be composed of two equal opposite circular

motions.

§ 25. Waves of Water.—According to the accurate obser-

vations of the Weber brothers, an example of elliptical oscillation

is presented by the motion of waves of water (Fr. ondes ; Ger.

Wasserwellen). Not only every particle on the surface, but also

every particle below it describes in the wave motion an ellipse.

On account of the resistance on the bottom the ellipses below the sur-

face of the water are smaller than those at it, and in general they de-

crease with the distance from that surface. The different elements

in the surface of the water, as well as those in any other plane

parallel to it, are at the same moment in different phases of mo-

tion ; while an element A, Fig. 898, is beginning its path at (0),

Fig. 898.

au element B is already at (1), a second C is at (2), a third D
at (3), a fourth E at (4) ; at this moment the vertical section

of the surface of the water is a cycloidal or troclioidal curve

A B C D E F G H J. Before the wave motion began, the ele-

ments were at the centres K, L . . . N of their trajectories and

formed the horizontal surface KN oi the water ; during the wave

motion, on the contrary, part of the elements are above and part

are below this line, and all have, of course, a tendencv to return to
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their positions of rest K, L , . . N. Tlie oscillations are, however,

elliptical so long only as the waves remain unchanged ; if they de-

crease gradually in magnitude, the path of each element becomes

narrower and narrower and no longer forms an ellipse, but a spiral

line. On the other hand, wdien the waves are forming or increas-

ing in size, the elliptical trajectory is formed gradually from a

spiral line.

After one instant A has moved in its trajectory to (1\ B to (2),

C to (3), etc., and the wave-form has been moved forward in conse-

quence through the horizontal distance iTZ between tw^o elements

;

after a second instant A is at (2), B is at (3), C is at (4), and the

wave-form has again advanced the distanco K L = L M\ thus, as

the elements of the water revolve, the wave-form advances more

and more, and when an element has made a complete revolution,

the wave has advanced its own length K N. When an element has

made half a revolution, as is shown in Fig. 899, the place of the

Fig. 899.

ivave-crest is occupied by a trough or sinus, and that of the latter

by a crest. This advance of the wave-form does not, of course,

consist in any particular motion of the water, but in the forward

motion of the same phase, e.g., in the 'forward motion of the crest

J (Fig. 898) of the wave to 0, P, etc. If the period of a revolu-

tion t of an element of the water and the length ^ / = s of a wave

are known, w^e can calculate the velocity ofprojmgation by means of

the formula c = ,

.

The height of a wave, or the sum of the height of the crest and

th^ depth of the trough is equal to the vertical axis 2 J of the

ellipse, in which the elements of the water revolve ; the length C G
of the trough exceeds the half length of the wave by the length 2 a

of the horizontal axis of the ellipse, and the length of the crest is, of
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course, that much shorter than half the wave length. Hence the

cross-section of the trough of a wave is larger than that of the wave-

crest ; now since this is impossible in consequence of the invariabil-

ity of the volume of the water, the centre of the elliptical trajectory

must be somewhat above the surface of the water when it is at rest.

§ 26. Webers' Experiments.—According to Webers' experi-

ments, the path described by a particle of the water at the surface

of a wave is a slightly compressed ellipse ; according to Emy, on

the contrary, the particles of water in sea-waves describe upright

ellipses. Both axes of the elliptical path decrease as the depth

below the surface increases, and according to Weber the horizontal

axis decreases more rapidly than the vertical one. The wave ap-

pears not to be propagated in a vertical direction ; elements verti-

cally below each other are, according to the observations of the

Weber brothers, in the same phase at the same time ; on the con-

trary, those situated in a horizontal line form a complete series of

the different phases of the motion. From the experiments cited

S/bove, it appears that the period of revolution of an element, or the

time in which a wave is propagated its own length, depends prin-

(Cipally upon the ratio of the two axes of the path. The greater

the ratio of the horizontal axes 2 a to the vertical one 2 ^, the

greater is the period of revolution. The particles, which lie deeper,

describe their paths more quickly than those at the surface ; from

this we must conclude that the wave length diminishes towards

the bottom.
s

The velocity of propagation c = - of a wave depends, since the
t

time of revolution t increases with the ratio ^j not only upon the

length s, but also upon the height d. If a wave is propagated be-

tween two parallel walls, e.g. in a canal, its width remains con-

stant, its height b diminishes and its length increases in such a

manner that the only change in the velocity of propagation is that

resulting from the friction of the water upon the walls. If, on the

contrary, a wave can propagate itself freely in all directions, and if

it forms a wall which recedes into itself, its length and width are

both increased at the expense of its height, and the wave becomes

gradually flatter and flatter until in a short time the eye is no longer

able to distinguish it. If such a wave is not originally circular it

will gradually approach the circular form as it advances. Accord-

ing to Webers' experiments, the height diminishes in arithmetical
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progression when the wave advances in geometrical progression.

The velocity of propagation of such a wave diminishes gradually,

the farther the wave is propagated. If, on the contrary, a wave is

propagated from without inwards and is contracted more and more
in consequence, its height, length and velocity gradually increase.

There is, therefore, a great difference between the waves of water

and those of sound. In the latter the velocity of propagation de-

pends upon the elasticity and density of the medium alone ; in the

former, on the contrary, it is a function of the length and height.

If the undulations of the water are produced by a force Avliich acts

almost instantaneously, e.g., by the immersion and quick with-

drawal of a solid body, the particles of the water describe elliptical

paths which gradually decrease, or rather spiral lines, which draw

themselves together more and more, and the periods of revolution

become smaller and smaller. The origin of a whole series of waves,

which become smaller and smaller, is to be attributed to these rela-

tions of motion. As the waves are propagated farther and farther,

those which follow are increased in size by those which have pre-

ceded them, and those most in advance in a short time become so

flat as to be invisible. This running together of the waves gives

rise to systems of small waves, which present themselves like teeth

upon the front surface of the main wave. These small w^^ives or

teeth advance, according to Poisson and Cauchy, with uniformly

accelerated motion.

§ 27. Hagen's Experiments.—According to the latest in-

vestigations of Geh. Oherhaurath Hagen (see the " Seeufer-und

Hafenbau von G. Hagen, Berlin, 1863," 1 Vol., which forms the

third part of that author's " Wasserbaukunst ;" also his treatise

upon waves in water of uniform depth ; Berlin, 1862), the particles

of water of waves in deep water describe with constant angular

velocity circles, whose diameters decrease as the depth increases, and

at the bottom they are infinitely small. A filament of water, which

when at rest is vertical, will oscillate, in consequence of the wave

motion, backwards and forwards about this vertical line, its base

remaining fixed very much as a stalk of wheat is moved by the

wind. The line of the wave or the curve which unites the points,

which are in the same phase of revolution and which, when the

water is at rest, is a straight line, is therefore a prolate cycloid,

that becomes more and more prolate as the depth increases ; at

the bottom it is nearly a straight line and at the surface it ap-
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proaches the common cycloid. From the radius r of the common
cycloid, whose value for high sea-waves rises to 50 feet, we obtain

the length of the wave / = 2 tt r, its velocity of propagation

|/2 gy. l/^.

the period of a wave

Til

c ' g ' g

and the angular velocity with which the molecules of water describe

their elliptical paths,

The centre of the circle, in which a particle which is situated

lower down revolves, is determined from the radius z of this circle

and from its distance y from the centre of the first circle, whose

radius is r, by means of the formula

rl {'.)

By inversion we obtain z = r e~~ , in which e = 2,71828 de-

notes the base of the Naperian system of logarithms. We can

easily understand from this that the circles of oscillation decrease

very rapidly with the depth ; for r = 10 feet, at the depth ^ = 50

feet, ^ = 10 . e-°'' = 3,50 feet, and at the depth y ^ 200 feet,

-= 10 . e-«'°= = 0,15 feet.

When the waves are of small constant depth, as Mr. Scott

Eussel had already remarked, the horizontal motions of the parti-

cles of water, which lie above one another, are equally great ; tlie

filament of water, which was originally vertical, remains so during

the wave motion, but its length and thickness vary. The different

particles describe closed curves of equal horizontal diameters and

of variable vertical ones, which decreases gradually with the depth
;

they are, however, elhpses only when we suppose that the height

of the wave is infinitely small compared to the depth of the water.

When the depth of the water is finite and the height of the

waves is great, the laws of the motion of the waves are very com-

plicated.

§ 28. Interference of Waves of Water.—If two water-

tcaves cross each other, the same general phenomena occur as in

the case of waves of air and other fluids ; after they cross each other,

each wave continues its motion as if they had not met ; but accord-
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ing to Weber's observations, it is accompanied by a small loss of time,

so that a wave requires a little more time to pass from one point to

another when it passes through another wave than when it is prop-

agated freely. If two crests come together, a crest twice as high as

the first is produced, and in like manner when' two troughs meet, a

third, twice as deep, is formed. According to Weber's experiments,

the ratio of the height of the simple wave to that of the compound
one is 1 : 1,79. When two waves interfere, or when a wave-crest

coincides with a trough of a wave, the two counterbalance eacli

other, and the point where this occurs remains at the same leve] as

the surface of the still water. The paths of the single particles,

when two waves meet, become straight lines, which are vertical at

the crest, but at a distance from it their positions are such that

they are inclined towards the crest.

If a wave of water imjnnges against a solid wall, it will be re-

flected by it as if it came fi-om a point as far behind the w^all as

that from which the wave started is in front of it, and the reflected

wave will pass through the one wl:iich is arriving exactly in tlie

same manner as any two waves, w^hich cross each other, do.

In Fig. 900, 1, n to V, the phenomena, which are presented

Fig. 900.

when a wave A B CD E h reflected by a rigid wall M N, are re-

presented. In I the crest C D E of a wave is arriving at the wall

69
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MN and the reflection begins in the form of a ware C^ D^ E^ \ in

II the top of the crest D of the wave has arriyed at the wall and

has combined with the half Dx E^ of the reflected crest of the wave

;

half a crest C G of almost double the height is thus produced. In

III the trough ABC of the wave has just reached the wall, while

the reflected crest Cj B^ E^ is passing over it; an interference is

thus produced which causes the wave to disappear entirely. In IV
hj bottom B of the trough of the approaching wave coincides with

the bottom B^ of the trough of the reflected wave ; a trough A S
of double the depth is thus formed. Finally, in V the approaching

wave A B C D Eis reflected completely by the wallM JV and thus

changed into the wave Ai Bi C^ D^ E^, which moves in the oppo-

site direction.

Fig. 901.

When the waves are reflected by a wall, the paths of the mole-

cules undergo the same changes as when two waves cross each

other; here also, in the neighborhood of the wall, the horizontal

component of this motion is more and more balanced, and, on the

contrary, the vertical one is increased more and more, so that near

the wall the path becomes a vertical line, and farther from it an

inclined one. If the wave strikes obHquely against the wall, it will

be reflected, like every elastic body, at the same angle at which it

struck. If a wave strikes but partially against an obstacle, the
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phenomena of inflexion are produced, new waves being formed at

the extreme ends of the obstacle.

Finally, stationary waves of water, like those of a string or any

other solid body, are formed when two waves of the same length,

which originate at two points situated at a distance apart equal to

1, 3, 5, 7 . . . times the fourth part of the length of a wave, cross

each other. LetABCDUFGR, Fig. 902, 1 and II, be one, and

AiBi Ci Di E^ Fi Gi Hi the other wave. At the points X, L, M, iV,

where the two systems of waves are at the same distance from, but

on opposite sides of the middle line, the motions counteract each

other and fixed points of interference are produced; on the con-

trary, above and below the points 0, P, Q, R, where the two wave-

lines cut each other and the paths are therefore doubled, the tops

of the crests and the bottoms of the troughs are alternately formed.

Fig. 902.

Remark.—The most complete treatise upon the motion of waves is the

following : " Wellenlehre auf Experimente gegnindet, etc.," by the brothers

G. H. Weber and W. Weber, Leipzig, 1825. A good abstract of it is con-

tained in the " Lehrbuch der Mechanischen Naturlehre," by August. Miil-

ler's " Lehrbuch der Physik und Meteorologie," Vol. I, can also be con-

sulted. The treatises of Laplace, Lagrange, Flaugergues, Gerstner and

Poisson are reviewed and criticised in Weber's work. Cauchy's " Wellen-

Theorie" and Bidone's " Versuche " are discussed at length in " Gehler's

Physikalisches Worterbuch," Art. " Wellen." Emy's wave theory has been

translated by Wiesenfeld and published under the title " Ueber die Be-

wegung der Wellen und iiber den Bau am Meere und im Meere," Vienna,

1839. Hagen's work has already been cited, § 27. The theory of water-

waves has been treated by Airy in an article upon " Tides and Waves," in

the Encyclopadia Metropolitana.
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O INCE the last German edition of the present volume was issued

the author has published in the ''CiviUngenieur" several articles

upon subjects, which have been treated in the foregoing pages.

As they contain much valuable information and give the results

of a very great number of very careful experiments, a brief abstract

of the matter contained in some of them will be given here. Those

which will first be noticed are three articles upon the efflux of

water, viz.

:

(1) the different methods of experimenting upon the efflux of

water under a constant head (Die verschiedenen Methoden der

Versuche liber den Ausfluss des Wassers unter constantem Drucke.

X Band, 1 Heft)

;

(2) experiments upon the efflux of water under a very small

head (Versuche iiber den Ausfiuss des Wassers unter sehr kleinem

Drucke. X Band, 3 und 4 Heft)

;

(3) the relations of compound efflux, considered theoretically

and illustrated by experiment (Die zusammengesetzten Ausfluss-

verhaltnisse theoretisch entwickelt und durch Versuche erlautert.

XI Band, 2 und 3 Heft).

Article No. 1 begins with a description of the various methods

adopted by different experimenters to maintain a constant head in

the main or discharging reservoir. Smeaton returned the water,

which was discharged, to the reservoir by a hand-pump and thus

maintained the water level constant in the former. Christian em-

ployed a large weighted cask, which was suspended by a rope ; as

the water was discharged from the reservoir, the cask was allowed

to sink so as to displace exactly the same quantity of water as had

flowed out of the reservoir. In Prony's experiments the escaping

water was caught in a vessel, which was connected with two paral-
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lelopipedical cases (made of slieet-metal). The latter floated upon
the water in the main reservoir, and the apparatus was so arranged

that the increase in weight of the vessel caused the floats to dis-

place exactly the same quantity of water as had been discharged.

The impulse of the escapmg water will interfere with the working

of this apparatus, unless proper precautions are taken. Hachette

(see his " Traite elementaire des Machines ") passed a hollow tube

through the bottom of the reservoir; by sliding the tube up or

down the level of the water in the reservoir could be changed. If

the volume of the w^ater, which entered the reservoir, exceeded the.

discharge, the excess escaped over the top of the tube. A slight

variation of level, of course, took place. The author tried several

difierent methods of obtaining the same result. The first, which

to a certain extent resembles Smeaton's, was to feed the discharg-

ing reservoir from the main reservoir by means of a pipe, in which

an ordinary code was placed. An assistant is stationed at the cock,

by turning which he maintains the surface of the water in the

discharging reservoir at a constant level, which is marked by a

fixed pointer in the reservoir. The second method he employed

was Christian's. He used a hollow float made of sheet-metal ; its

weight could be regulated by filling it partially with sand. By
allowing the float to sink as the water was discharged, the surface

of the water v\^as maintained at a constant letel, which was indi-

cated by a pointer. The volume of the float gives the discharge.

This method is not so accurate as that last described (by means of a

cock), and it is not so simple as it appears at first sight ; for the

size of the float must vary with that of the orifice. The jloating

syplion gives more accurate results than Prony's apparatus, de-

scribed above. It consists essentially of a T-shaped syphon with

two lateral pipes, by which the water enters, and of a larger central

pipe, by which it leaves the apparatus. Each of the lateral pipes

passes through a water-tight cylinder of sheet-metal, which is open

on top and floats upon the water. These two floating cylinders

support the syphon ; by filling them partially with water we can

immerse the inlet orifices of the syphon as deep as we please, and

the outlet orifice can be brought to any desired distance below the

level of the surface of the water in the reservoir- As the surface

of the water in the reservoir sinks, the whole apparatus descends

with it, and the head or distance of the outlet orifice below the

level of the water remains constant.

The author has also applied the principle of Mariotte's flask to
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maintaining a constant head, or constant velocity of efflux. The
discharging reservoir is a cylindrical vessel, which is provided with

two orifices or openings, but which is in all other respects air-tight.

One of these openings is in the top and the other is npon the side

near the bottom. A tube or pipe, w^hich is open at both ends, fits

in the orifice in the top by means of an air-tight ground joint, in

which it can slide up and down. The orifice in the side was so

arranged that mouth-pieces of various kinds and sizes could be

inserted in it. The vessel is first filled with water through the

upper orifice and the pipe is then inserted and pushed down a cer-

tain distance, depending upon the head we wish to have ; the ori-

fice of efflux is then opened and the water in the tube sinks until

air begins to pass under the bottom of the tube and rise to the top

of the vessel. The head is now constant and is measured by the

difference of level between the orifice of efflux and the bottom of

the tube. In order to prevent the air, which enters through the

tube, from causing too much disturbance, the bottom of the tube

is surrounded by a cylinder of wire-gauze. A glass tube, which is

open on top, enters the vessel at • the bottom and is turned ver-

tical upwards, serves to measure the pressure. The same principle

can be applied in another form. An air-tight vessel, which is

filled with water, has a pipe inserted in the side near the bottom

;

this pipe passes below the level of the water in the discharging

vessel. Another pipe, which is smaller and is made principally of

India-rubber, enters the air-tight vessel near the top, and the other

end of it is placed so as just to touch the surface of the water in the

discharging reservoir. If the level of the water in the latter sinks,

air enters the tube and water is discharged from the air-tight ves-

sel, in consequence of which the surface of the water in the dis-

charging reservoir rises and seals the mouth of India-rubber tube

and the flow of water into the main reservoir ceases. The objec-

tion to this method Is the unsteadiness of the surface of the water,

which renders it difficult to measure the head with accuracy. In

order to render it more steady Geh. Oherbaurath Hagen had two

small holes made in the side of the large tube just above the outlet

and in addition employed an intermediate vessel.

A series of experiments, made with the aid of the different ap-

paratus just described, gave the following results. The water was

discharged through an orifice in a thin plate 1 centimeter in

diameter.
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TABLE.
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Nature of the head.

j

Gradually decreasing.

Constant

Description of the apparatus.

Author's ordinary ap-

paratus for experi-

ments upon efflux . .

Level maintained by
a cock

Level maintained by
a floating body . . .

Level maintained by
Mariotte's flask . . .

Level maintained by
apparatus last de-

scribed. '

Average of the above five experiments

Head in meters. Value" of ^.

1

7i, =0,1700
^2 = 0,0500 0,6647

h = 0,100 0,6776

u 0,6576

u 0,6518

(( 0,6654

0,6634

By the aid of one of the above-described apparatus, experiments

upon efflux with constant influx can be made. The formula to be

employed (see page 923) is

{Vh - Vlh-\- Vhl

The discharging reservoir which was used in these experiments

was the apparatus represented upon page 927 ; by means of Mari-

otte's flask, the discharge per second into the former was main-

tained constant during each experiment. In these experiments

the surface of the water in the discharging reservoir either rose or

fell. By preliminary experiments, the coefficients of efflux for the

orifices m both vessels were determined.

In the first experiment the surface of the water in the discharg-

ing reservoir rose. The observed duration of efflux was t = 170,25

seconds ; that calculated by the above formula from the data given

by the experiment was t — 170,5 seconds.

In the second experiment the surface of the water sank ; the

observed time was t = 213,2 seconds, the calculated was 213,9

seconds.

Another case, which often occurs in practice, is that represented

in Fig. 776, page 908, when the reservoir ^ 6' is very large com-

pared to G L, The water passes from the large reservoir A
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througli a pipe, into the reservoir G L, from which it is discharged

through the orifice F into the. air. By prolonging the discharge

pipe of Mariotte's flask so that it will reach below the surface of

the water in the discharging reservoir (Fig. 792), the level of which

surface is variable during the experiment, we obtain an example

of this case. The formula for the duration of efQ.ux, which must

be employed, is

=z (fiF[2{Vh-i^) +
l{l,Fy + {li,F,Y]V2g\ L

in which G denotes the cross-section of the main discharging res-

ervoir, F the area of the orifice in the main reservoir, ft its coeffi-

cient of efflux, Fi the cross-section of the outlet orifice of Mariotte's

flask, fii its coefficient of efflux, hi the height of the surface of the

water in the main reservoir above the orifice in it, h the height of

the constant water level in Mariotte's flask above the variable one

in the main reservoir, x what h becomes in the time t, y what hi

becomes in the time U, and h^ — h \- h^ — x -{ y\ Ic \^ the value

of ic, when the flow becomes permanent, i.E.

and
^1 = Aq — Tc,

In the first experiment the surface of the water in the main

reservoir sank; the observed value of ^ was 116,33 seconds and the

calculated value was 116,67 seconds. In the second experiment

the level of the water rose ; the observed time was t = 157,5 seconds,

and the calculated value of t was 158,18 seconds.

No. (2.) Experiments upon the Efflux of Water under
a very small head.—From previous experiments by tlie author

and others, we know that for an orifice in a thin plate one centi-

meter in diameter,

1, when the head is 103,578 meters, [i = 0,600

2, " " 13,574 " M = 0,632

3, " « 0,909 « a = 0,641

4, « « 0,101 " \i^ 0,665,
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and that for a brass tube 1 centimeter in diameter and 2 meters

long, the coefficient of resistance

1, when the velocity is v = 20,99, is C = 0,01690

2, " " V = 12,32, is C = 0,01784

3, « " V = 8,64, is^-^ 0,01869'

4, " " V = 2,02, is ^ = 0,02725

5, " " V = 0,57, IS ^ = 0,03646
;

but we have no experiments which show how the coefficient of

efflux increases, when the head is very small (e.g. 1 to 2 centime-

ters). It is also important to know how ^ increases, when the

velocity of the water is very small (e.g. 0,1 meter). In the above-

mentioned article the author gives a detailed description of a very

extended series of experiments, undertaken for the purpose of dis-

covering the above relations. The discharging reservoir was a

wooden trough 2,25 meters long, 0,45 meters wide, and 0,190" me-

ters deep. It was necessary to make the reservoir as long and wide

as possible ; for the surface of the water could, of course, sink but

a very short distance during the experiment. The author then

gives a description of the various methods and apparatus employed

to determine with accuracy the cross-section of the orifices and the

head of water. This portion of the article, although of the greatest

interest, would be out of place here.

The table on page 1098 gives the results of the experiments

with orifices in a thin plate and mth other mouth-pieces.

The temperatureof the water was between 15° and 18° Centigrade.

From the 8 experiments with orifices in a tliin plate (Xo 1 to

No. 5), whose diameters varied from 0,405 to 2,529 centimeters, we

see that the contraction diminishes, when the head is small, as it

does when the head is large, not only with the liead, but also with

the diameter of the orifice.

From the data given in the table on page 1098 and at the be-

ginning of the article, the following table has been arranged.

Head A 0,020 0,101 0,909 13,574 103,578

Coefficient of efB.ux ;t 0,711 0,665 0,641 0,683 0,600

The experiments under Nos. 6 and 7 show that in this case also

the coefficient of contraction for an orifice in a thin conically con-

vergent wall is greater than that for an orifice of the same size in a
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fcliin plate, and that it is less for an orifice in a conically divergent

wall than for the latter. In experiment No. 18 a free contracted

stream could not be obtained. The efflux took place with a filled

tube and the stream pulsated quite violently.

It was also observed that the discharge was not increased as

much by rounding off the inlet orifices of the ajutages, when the

head was small as w^hen it was great.

The table on page 1100 contains the results of experiments with

long tubes made of glass, brass and zinc. Preliminary experiments

were made to determine the coefficients of resistance of the inlet

and outlet mouth-pieces combined. By subtracting the coefficients

thus found from those obtained for the long tube and inlet and

outlet mouth-pieces together, the author deduced the coefficient of

resistance for the tube alone.

These experiments showed the coefficient of resistance ^ of the

water to be very great, when the velocity is small. This coeffi-

cient ^ is nearly the same for glass and brass tubes.

To the table

for V =. 20,99, ^ = 0,01690

" = 12,32, ^ = 0,01784

« = 8,64, 4" = 0,01869

" = 2,02, C = 0,02725

" = 0,485, (; = 0,03453,

we can now add
for V -.= 0,2028, ^ = 0,0587

" = 0,0890, ^ = 0,1420.

The third portion of the article is devoted to an account of a

series of experiments upon the flow of water through bends and

elbows under a very small head. The coefficient of resistance for

the inlet and outlet portion was first determined as in the experi-

ments, the results of which are given in the last table. The table

on page 1101 contains the coefficients of resistance for the flow of

water through elbows and bends under small heads.

We see from the last table that the coefficients of resistance of

elbows are much greater than those for bends of the same diameter,

when both cause the direction of the motion of the water to change

90° and when the radius of curvature of the axis of the bend is

equal to the diameter of the tube.

The third article (No. 3), which is cited above, is very long,

covering 68 columns of the Civilingenieur. As it would be impos-

ible to condense the matter contained in it in the limited space
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which is at our disposal, we will content ourselves with an enumer-

ation of the subjects treated. They are

—

(1.) The simultaneous discharge of water through two orifices,

when the head diminishes.

(2.) The variable discharge of water from one vessel into a sec-

ond, in which the orifice is submerged, while a constant quantity

of water is continually discharged into the first vessel.

(3.) The variable efflux of water through a notch, either with or

without influx.

(4.) Efflux of water from a prismatical vessel, with free influx

into the latter from another prismatical vessel.

(5.) Efflux of water from a prismatical vessel, with influx under
water from another prismatical reservoir.

These cases are treated at length ; the formulas are first deduced

and then tested by very careful experiments. Any one interested

in the subject of hydrauhcs will find this article worthy of his

most attentive perusal.

We would also call attention to the following articles by the

.author upon subjects connected with hydraulics.

"Hydrometric experiments upon the application of the formulas

of Daniel Bernouilli (page 804) and Charles Borda (page 884), as

well as upon the use of a new water-meter; also upon the friction

of water in conical pipes and upon the play of jets d'eaii" ("Hydro-

metrische Versuche iiber die Anwendung der Formeln von Daniel

Bernouilli und Charles Borda, so wie iiber den Gebrauch eines

neuen Wassermessers (einer Wasseruhr) ; ferner iiber die Reibung

des Wassers in conischen Rohren und iiber das Spiel von springen-

den Wasserstrahlen," Civilingenieur, Band XIII, 1 Keft). " Com-
parative hydrometric measurements by means of a tachometer, a

large rectangular orifice of efflux and a large overfall extending

across the whole wall," (" Vergleichende hydrometrische Messungen

mittels eines hydrometrischen Elligelrades, einer grosseren rec-

tangularen Ausflussmlindung und eines grosseren iiber die ganze

Wand weggehenden Uberfalls," Civilingenieur, Band XIII, 5 and 6

Heft).

The latter article contains an account of Schwamkrug's loater-

divider, mentioned upon page 986.

I. " The quicksilver difierential piezometer and its application

to the determination of the difierence of the pressure of the water

in a set of conduit pipes."
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TI. "The water piezometer with a micrometer, as well as its

application to the determination of the pressure of gas in pipes,

etc."

III. "A supplement to the article cited above upon the differ-

ent methods of experimenting upon efiiux under a constant head."

("I. Das Quecksilber-Differentialpiezometer, etc. 11. Das Wasser-

piezometer mit Mikrometer, etc. III. Eine Erganzung der Ab-
handlung iiber die verschiedenen Methoden der Ausflussyersuche

unter constantem Drucke." Ci^ilingenieur, Band XV, 2 Heft.)

The translator would also call attention to two articles by the

author upon " experimental mechanics," which form a part of a yet

unpublished work upon that subject. The titles of the articles are

:

(1.) "Experiments to accompany lectures upon the elasticity

and strength of solid bodies " ("' Versuche bei Vortragen iiber Elas-

ticitiit und Festigkeit fester Korper," Civilingenieur, Band IX,

5 Heft), and

(2) "Experiments to accompany lectures upon Mechanics"

("Versuche bei Vortragen iiber Mechamk," Civilingenieur, Baud
XIV, 6 Heft).

The first article contains a description of the apparatus used

by the author in experimenting before the students at Freiberg

upon flexure and torsion. By means of this apparatus, which is

very simple and easily constructed, the professor can show to the class

almost all the phenomena of flexure and torsion. He can also de-

termine the moduli of rupture and of elasticity not only by observ-

ing the deflection and angle of torsion, but also by allowing the

body to be experimented upon to vibrate and counting the number
of vibrations. The modulus of resilience and that of fragility can

also be determined. No. (2) contains an account of some modifi-

cations of the above apparatus, by means of whicli experiments

upon the theory of couples (including their composition and de-

composition) can be made. This is followed by the description of

a simple reversable pendulum, by means of which the value of g
can be determined in the lecture-room with little difiiculty. The

author then takes up the subject of the elasticity of rigid bodies.

He discusses four cases of double flexure : first, that of a prismati-

cal rod of a rectangular cross-section, bent by a force, whose direc-

tion forms an angle 6 (which is not 90°) with one of the sides of

the cross-section ; secondly, that when the cross-section of the rod

is a right-angled triangle and the direction of the force is perpen-

dicular to the base of the triangle ; thirdly, that when the rod is
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acted upon by two forces, whose lines of action do not lie in the

same plane ; and fourthly, that when the beam is bent in thg shape

of an elbow and loaded at the extreme end with a weight (the

crank is an example of this case). The article closes with an ac-

count of some experiments with compound girders.

Those engaged in teaching will find the last two articles full of

valuable information ; but a translation of them would occupy too

much space here.

In conclusion, we would mention an article upon " the flexure

of a homogeneous prismatical measuring rod, supported in two

points, as well as the shortening of its length, produced by it, dis-

cussed in as elementary a manner as possible " (" die Biegung eines

in zwei Punkten unterstiitzten homogenen prismatischen Mess-

stabes, sowie die durch dieselbe hervorgebrachte Verkiirzung seines

Langenmaasses, auf moglichst einfache Weise ermittelt von Julius

Weisbach," Civilingenieur, Band XII, 4 Heft).
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Aberration of the stars, 15^.

Abscissas, 34.

Acceleration, 108, 113, 124.
" along the abscissas, 146.
" " " ordinates, 146.

normal, 143, 607.

of gravity, 113, 159.

Adhesion, force of, 163, 762.

plates, 762.

Aerodynamics, aerostatics, 165.

Aggregation, state of, 162.

Air balloon, 798.
" efflux of, 932, 934, 939.
" heaviness of, 795.
" layers of, 787.
" manometer, 796.
" pressure of the, 777.
" pump, 790.

Amplitude of an oscillation, 649, 1043.

Angular acceleration, 576.
" velocity, 576.

Antifriction pivots, 349.

Aperture of efflux, 800.

Apparatus for hydraulic experiments,
926.

Application, point of, 163, 192.

Arc, leng+h of an, 85.

Archimt , principle of, 757.

Areomet c*, hydrometers, 758.

Arithmetical mean, 97.

Arm of the lever, 195.

Ascension, vertical, 116.

AsjTnptote, 49, 51, 52.

Atmosphere, pressure of the atmo-
sphere, 777, 787.

Attraction, he law of magnetic, 1056.
Atwood's aachine, 599.
Axes, free, 624

' prin Jipal, 624.

Axis, neutral, 410.
'• of a couple, 205.

Axis of revolution or rotation, 306,
248, 573, 629.

Axis, pressure upon the, 250.

Axles, friction on, 311, 316.

B.

Balance, hydrostatic, 756.

torsion, 1050.

Ballistic pendulum, 693.

Barometer, 776.
" measurement of heights

with the, 788.

Beam, 418, 422, 427, 430.
" subjected to a tensile force, 559.

Bed of a river, 955.

Bending, flexure, 400.
" rupture by, 452.

Bends, curved pipes, 896.

Bent lever, 256.

Binomial function, 57.
" series, 57.

Bodies, material, 154.

of uniform strength, 387, 498,
504, 539.

" rigid, flexible, elastic, 280.

Boilers, thickness of, 738.

Bottom of the channel, 955.
" pressure on the, 721.

Brachystochronism, 659.

Brittle, 372.

Buoyant effort, upward thrust, 743,

797.

c.

Capillarity, 762.

Capillary tubes, 772.

Cataract, 876.

Catenary, 293 ; common catenary, 29fll

Central impact, 667, 669.

Centre of gravity, 213.
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Centre of mass, 213, 574.
" " oscillation, 661.
" " parallel forces, 205.
« " percussion, 637, 692.
" " pressure of water, 725.

Centres, 349.

Centrifugal force, 608.
" of water, 719, 720.

" " work done by, 610.

Centripetal force, 608.

Chain bridge, 292.
" friction, 358, 361.

Cinematics, 154.

Circle, 34.
" centre of gravity of an arc of

a, 216.
" osculatory, 87, 142, 415.

Circular functions, 70.

Cistern barometer, 776.
" manometer, 779.

Clack valves, 900, 905.

Cloistered arch, 243.

Cocks, 900, 903.

Cohesion, 371, 762.

force of, 163.

Collar bearings, 347.

Columns, proof load of, 532.

Combined elasticity and strength,

373, 547.

Communicating pipes, 723, 761.

Components, 129, 174, 177, 1071.

Component velocities, 129.

Composed forces, 174.
'* motions, 126.

Composition and decomposition of ve-

locities and accelerations, 131, 132.

Composition and decomposition of

forces, 174, 177, 179, 195, 207.

Composition and decomposition of

couples, 202.

Compound discharging vessels, 907.
" pendulum, 661.

Compressed air, work done by, 783,

936.

Compression and extension, 374.
"

elastic and permanent,
376.

strength of, 872, 373.

Concavity, 39, 55.

Conduit pipes, 874.

Conical pivots, 347.
" tubes or pipes, 87^.
" valves, 905.

Connecting rod, 537, 573.

Constant factors, 41, 61.

force, 166.
" members, 41. 61.

quantities, 33, 41.
j

Contracted vein or stream of water,

821, 823.

Contraction, coeflBcient of contraction,
822, 944.

Contraction, complete and incomplete
or partial, 837.

Contraction, perfect and imperfect, 840.
858, 887.

Contraction, scale of, 836.
Convexity, 39, 55.

Coordinates, 34.
"

oblique, 79.

Cosine and cotangent, functions of, 71.
Couple, 200, 412.

*' axis of a, 205.

Crank, 121.

Cross-section, 376, 676, 801, 955.
" weak, dangerous, 495.
" sudden variation of, 883.

Curvature, radius of, 87, 142, 413.

Curve, elastic, 414, 417.

Curved surfaces, 40.

Curves, convex, concave, 39, 44, 54
" quadrature of, 78.
" rectification of, 85.

Curvilinear motion, 141, 145, 189.

Cycloid, cycloidal pendulum, 655, 656.

Cylinder, hollow, 443.

Dam, 732.

Daniel Bernouilli, 804.

Decomposition and composition of
couples, 202.

Decomposition and composition of
forces, 174, 177, l';9, 195, 207.

Decomposition and composition of

velocities and accelerations, 131, 132.

Density of bodies (specific gra\dty), 161.

Dependent variable, 33.

Deviation, angle of, 895.

DiflPerential, 38.
" ratio or quotient, 39.

Directive force of the magnetic needle,

1053.

Discharge, 800, 933.

Discharge-pipe of a dam, 858, 922.

Displacement, angle of displacement*

530, 649.

Diving-bell, 783.

Ductility, 372.

Dynamics, 155, 165.

E.

Earth, magnetism of the, 1054, 1059.

Efflux, coefficient of, for water, 824.
" " air, 944.

" from moving vessels, 817.
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Efflux of air from vessels, 932, 934,

989 941
" of different fluids, 805, 930.
" of moving water, 843.
" of water under water, 806.
" of water from vessels, 800.
" imder variable pressure, 910,

952
" velocity of, 800.
" with filled tube, 853.

Elastic curve, 4l4, 417, 522.
'' extension, 375, 404.
" fluids, 712.

Elasticity, 163. 371, 1045.

limit of, 371, 376.

modulus of, 378, 407, 1049.

Elbows, 894.

Elevation, angle of, 136.

Ellipse, 50, 284.

Ellipsoid, 594.

Elliptical oscillation, 1081.

Emptying of a vessel, 910.

Energy, 168.
" of discharging water, 801.

Envelope, 139.

Equality of forces, 156.

Equilibrium, 155.

kinds of, 249, 250, 264.

indifferent, 250. 266.

Evolute, 88.

Expansive force of steam, 35.

Expansion by heat, 798.
" coeflBcient of, 793

of the air, 781
Exponential function, 63.

Extension, elastic and permanent, 375,

394.
" experiments upon, 393.

F.

Fall of a stream, 955.
" of bodies, 35, 113, 639, 659.

Pilling and emptying locks, 924.

Final velocity, 108.

Flexure, 409.

strength of, 373, 450.

moment of, 412, 414, 432, 436.

Flotation, axis of, plane of, 746.

Floating, depth of floatation, 745, 749,

756.
" bodies, floating spheres, 989.

staff; 990.

Fluids, 162, 712.

Force, direction of a, 163.
Force, living, 171, 173.

Forces, measure of, 158.
** moment of, 195, 414
" normal, 143, 607.
'* tensile, 374.

Forces, 154, 155, 163,205.
" equality of, 156.

Fragility, modulus of, 383, 453.
Free axes, 624.

Freshet or flood, 973.

Friction, resistance of friction, 309.
angle of, 314.

balance, 317.
" coefficient of, 313.
" coefficient of, of air in pipes,

949.
'' coefficient of, of water in pipes,

864.
" coeflBcient of, of water in riv-

ers, 965.

cone of, 314.
" height of resistance of, 864.

kinds of, 310.
" laws of. 311.

of axles, 311, 316.

rolling, 353.
" upon inclined plane, 323.

wheels, 336.

work done by, 313, 335.

Fulcrum, 256.

Function (rr"), 44.

Functions, 33.

Funicular machine, 280.
" polygon, 280.

G.

Gases, aerifoi-m bodies, 776.

Gas-meters, 1023.

Gauging, 976.

Gay-Lussac's law, 793.

Geostatics, geodynamics, geomechan-
ics, 165.

Girder, 418, 422, 427, 430, 464.
" hollow and webbed, 437, 477.

Goblet, hydrometric, 986.

Gram, kilogram, 157.

Graphic representation, 34, 122.

Gravity, 113, 154, 163.

centre of, 213.
" determination of the centre of,

214
" plane of, line of gravity, 213.
" specific, 161.

Gudgeons, 311.

Guldinus, properties of, 241.

Gyration, radius of, 581, 608.

H.
Hard, 373.

Hardness, 676.

Head of water, height of water, 722
801, 809.
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Heat, force of, 163.

Heat, work done by, 936.

Heaviness, 160.

mean, of the earth, 1051.
" of air, 795.

" steam, 795.
" water, 160.

Height dae to the velocity, 115, 809.

of rise, height of fall, 116, 878.

Horizontal and vertical pressure, 732,

736, 742.

Hydraulic observatory, 995.

Hydraulics, 165.

Hydrometers, Hydrometry, 976, 989.

Hydrometric goblet, 986.

pendulum, 999.

Hydrostatic balance, 757.

Hydrostatics, hydrodynamics, 165.

Hyperbola, 51, 80.

Impact, different kinds of, 667, 668.

direct, 667.
" duration of, 668.
" elastic, 668.
'•' friction of, 685.
" imperfectly elastic, 680.

line of impact, 667
oblique, 668, 683.

strength of, 702, 705.

Impulse, 1002, 1006.

of air or wind, 1030.
" water, 1006, 1011, 1029.

Incidence, angle of, 6S4.

Inclination, angle of, 314, 639.

Inch, water, 983.

Inclined plane, 272, 274, 639.

Inertia, 157.

force of, 157, 163, 574.

moment of, 576.

Inflexion, 1091.
" point of, 55, 424.

Integral, integral calcqlus, 60.

formulas, 73.

Integration by parts, 76.

Intensity of a force, 164.
" the earth's magnetism,

1060.

Interference of waves, 1064, 1089.
Interpolation, 98.

Isochronism, 640, 658, 659.

J.

Jets of water, 876.

Journals, trunnions, gudgeons, axles,

305, 311, 345.

E.

Eater's pendulum, 665.

Kilogram, 157.

Knee lever, 257.

Knife edges and points, 352.
Knots, 281.

L.

Law of Gay-Lussac, 793.
" " Mariotte, 37, 780.

Laws of nature, 35.

Length of a wave, 1064, 1085.
Lesbros' experiments, 846.

Lever, arm of, 195.
" bent, 257. .

" kinds of, 255, 256, 343.

Limit of elasticity, 371, 376.

Line of current, mid-channel, 956.
" " gravity, 213.
" " impact, 667.
" " rest, 743.
" " support, 743.

Load, proof, 379.
" eccentric, 480.

Locks, 924.

Logarithm, 64.

Longitudinal vibration, 1045.

Loss of mechanical effect in impact,

674. 883.

MacLaurin's series, 57.

Magnetic force, 163, 1056.

needle, 1053.

Magnetism, 1054, 1059.

of the earth, 1054
Malleability, 372.

Manometer, 776, 778.

Mariotte's law, 37, 780.

Mass, 158.
" moment of, 577.

Material pendulum, 661.
" point, 165.

Matter, 156.

Maximum and minimum, 53.
" " contraction,

834.
" " tension, 515.

Mean, arithmetical, 97.

" harmonic, 675.

Mechanical effect, 168, 187, 209.
" " loss of, during im-

pact, 674, 883.
" " of compressed air,

783, 936.
" of friction, 313, 335.
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Mechanical effect of heat, 936.
" of inertia, 171, 577.

" " of the centrifugal

force, 612.

Mercury, efflux of, 930.

Metacentre, 751.

Metal springs. 506.

Method of least squares, 95.
" " interpolation, 98.

Mid-channel, line of current, 956.

Modulus of elasticity, 378, 407, 1049.
" " logarithms, 65.

" proof strength, 380, 457,

539.
" " resilience and fragility,

383, 453.
" " rupture, or of ultimate

strength, 380, 452.

Molecular action, 762.

Molecules, molecular forces, 163, 762,

Moment, magnetic, 1054, 1060.

of a couple, 200, 201.
" inertia, 577.

" " parallel forces, 207.

statical, 195.

Momentum of a body, 670.

Motion, absolute and relative, 1C5, 149.
" accelerated, retarded, 106.

curvilinear, 141, 145, 189.
" in resisting media, 1035.
" kinds of, 573.
" of air in pipes, 950.
" " water in channels, 955, 969.
" " water in pipes, 869.
*' " translation, 573.

phases of, 1062.
" rectilinear and curvilinear,

105.
" simple and composed, 126.
" uniform and variable, 106.

N.

Naperian logarithms, 64, 80.

Natural philosophy, 154.

Nature, laws of, 35.

Neil's parabola, 86.

Neutral axis, surface, 410.

Nicholson's hydrometer, 759.

Normal, 87.
" acceleration, 143, 607.

force, 189, 607.
Notches, overfalls, weirs, 811, 914.

Numbers, natural series of, 59.

0.

Obelisk, efflux from an, 919.

Obelisk, centre of gravity of, 234.

Oblique coordinates, 79.

Observatory, hydraulic, 995.

Oil, efflux of, 930.

Ordinates, 34.

acceleration along the, 146.
" velocity along the, 145.

Orifices in a thin plate, 821, 930, 944.
" inlet and outlet, 875, 880.
" of efflux, 800.
" rectangular, 812, 828, 842, 846.

Oscillation, 649, 1042.

amplitude of an, 649, 1043.

centre of, 661.

period of an, 649, 1043, 1067.
" of a pendulum, 649.
" of the magnetic needle,

1055.
" of water, 1079.

Overfalls, notches, weirs, 811, 833, 844,

849, 914.

Parabola, 3, 87, 133, 291, 302.

Parabolic motion, 134, 141.

Paraboloid, 591, 720.

Parallel forces, 199.

plates, 770.

Parallelogram of accelerations, 132.
" " forces, 17V.
" " motions, 127.
" " velocities, 128.

Parallelopipedon of velocities, 132.

Pendulum, ballistic, 693.

bob of a, 591.

compound, 649, 661.

hydrometric, 999.

Kater's, 665.
" oscillation of a, 649.
" reversable, 665.
" rocking, 665.
" simple, mathematical, 648,

661.

Perfect fluids, 712.

Percussion, centre of. 637, 692.

point of, 692.

Period, periodic motion, 106, 121.

Permanency, state of, of running w&
ter, 957.

Permanent extension or set, 375, 394.
Phoronomics, 105, 154.

formulas of, 119.

Piezometer, 779, 881.

Pile driving, 698.

Pipes, Jong, 863.

thickness of. 738.
Piston rod, 538, 573. .

Pitot's tube, 998.

Pivots, friction of, 345.
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Plane, inclined, 273, 323.
'• ol revolution, 348.

Pneumatics, 165.

Point of application, 163, 192.
" " intlesion, 54
" " suspension, 349, 664.

Polyhedron, centre of gravity of, 331.

Poncelet's orifice of efflux, 828.
" theorem, 341.

Position, 105, 150.
" relative, relative motion, 150.

Pound, 157.

Powers, natural series of, 64.

Pressure, hydraulic, hydrodynamic,
808.

hydrostatic, 713, 733, 734.
" in water, 734.

of the atmosphere, 777, 787.
" on the bottom, 731.
"

vertical, horizontal, 733,

Principal axes, 634.

Principle of equal pressure, 713.

Profile, longitudinal and transverse,

955.
" transverse, of running water,

955.

Projectile, path of a, 1038.

Projectiles, height attained by, range
of, 136.

" motion of, in the air, 136.
" motion of, in vacuo, 1038.

Prony's method of measuring water,

983.

Proof load, proof strength, 379. 451.
" moment of, 451, 472.

Proof strength, modulus of, 380, 457,

539.

Propagation, velocity of, 1063, 1085.

Properties of Guldinus, 341.

Prosaphy and synaphv, 763.

Pull, traction, 156, 374.

Pulley, fixed and movable, 303, 304,

368, 601.

Puppet valve, 905.

Quadrature of curves, 78.

Quantities, constant and variable,

Quicksilver, efflux of, 930.

Quotient ^, 93.

differential of a, 43.

R.

Radius of curvature, 87, 143, 413.
" gyration, 581, 609.

Ram, 698.

33.

Reaction, 164.

of effluent water, 1003.

I

" wheel, 1015.

Rectification of curves, 85.

Reduction of a force, 355.
" " masses, 578.
" " the moment of flexuie,

433.
" " the moment of inertia,

580.

Reflection, angle of, 684.

Regulating apparatus, 900.

Representation, graphic, 84, 123.

Resilience, modulus of, 3^3, 453.

Resistance, coefficient of, 856, 884.

height of, 856.

of water, 1028.
" to buckling or breaking

across, 5S5.
" to compression, 376, 393.

Resistances, 155, S09.
'' passive, 1077.

Rest, absolute, relative, 1C5.

Resultant, 174, 177, 194
Revolution, axis of, 305, 248, 573, 629.

-
" plane of 348.
"

solids and surfaces of, 238,

241, 242, 593, 626.

Rheometer, 1001.

Rigidity of cordage and chains, 861, 363.

of hemp and wire ropes, 364,

366.

River, bed of a, 955.

Rocking, rocking pendulum, 665.

Rod, vibration of a, 1072.

Rolling down an inclined plane, 646.

friction, 853.
" of bodies, 605.

Rotary motion, 210, 211.

Rotation, axis of, 205, 248, 573, 69^.

plane of. 248.

time of, 609.

Running water, 955.

Rupture by breaking across, 535.

modulus of, 881, 452.
" plane of, cross-section of. 495

Scale of velocities of a stream, 957.

Set, permanent extension, 375, 394

Sheering force, 412, 510.

strength of, 373, 406. '!-,

Shoots, efflux through, 848, 850. ,.

Short pipes, conical. 861, 891.
" " conical convergent, Sf^),.^

" " conical diversfent. 8<f[* ,.,/
" " cylindrical, 853, 88^3fg..c>r

" efflux through, 853. ' ^
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Short pipes, inclined, 857.
" " interior, 855.

Simpson's rule, 81.

Sine, curve of, 7l.
" fuMction of the, 70.

Sliding, 310, 639.
" down an inclined plane when

friction is considered, 643.

Slope of a stream, 955.

Soft, 373.

Sound, velocity of, 1066.

Sounding rod, sounding chain, 991.

Specific gravitv, 161, 755.

Sphere, 227, 236, 588, 605, 646, 747, 918.

Spheroid, 237, 588.

Springs, spring dynamometer, 506.

force of, 163.

Statics, 155, 165.

Stability, 250, 264, 269.
" ' of floating bodies, 750.

Steam, expansive force of, 35.
" heaviness of, 795.

Steel springs, 506.
" tempered and annealed, 402.

Stereometer, 788.

Straight line, 49.

Strength, 372.
" of buckling or breaking

'

across, 535.
I

ultimate, 379, 380.
j

String, vibrations of a stretched, 1070. :

Subnormal, 87.

Subtangent, 40, 66, 292.

Surface, neutral, 410.

of water, 719.

Surfaces, curved, 40.

Symmetrical bodies, 215.

Symmetry, axis of, plane of, 215.

Syphon manometer, 778.

T.

Tachometer, Woltmann's, 992.

Tangent, tangential angle, 39, 47, 146.
" function of, curve of, 71.
" plane, 40.

Tangential acceleration, 144.

force, 189.
" velocity, 146.

Tantochronism, 659.

Temperature, 793.

Tendon, 281, 775, 776, 793.

horizontal and vertical, 287.

Tht )rem, Poncelet's, 341.

Thickness of boilers and pipes, 738.

TV ttle-valve, 901, 903
1 .10.

1 .n, 372, 523.

angle of, 524.

Torsion balance, 1050.

elasticity of, 373, 523.
" moment of, 524.
" pendulum, vibrations due t«

torsion, 1050.

strength of, 373, 528.

Traction, pull, 156, 374.

Tractrix, 350.

Translation, motion of, 573.

Transverse vibrations, 104^, 1070.
profile of running water,

955, 959.

Trigonetrical functions, 70.

lines, 72.

Twisting couple, 564.

Tubes, conical, c'bnvergent, 861.
" " divergent. 862.
" short, efflux through, 853, 854

" conical, 861, 891.
" cylindrical, 853, 888.
" inclined, 557.

" " interior, 855.

long or pipes, 863.

Ultimate strength, modulus of, ^80,
45'2.

Unguents, 310.

Uniform motion, 106.

Uniformly accelerated, uniformly re-

tarded motion, 107, 108,

112.

varied motion, 107.

Unit of weight, 157.
" " work, 169.

Upward thrust, buoyant eflfort, 743,

797.

Valve-gate, 900, 903.

Valves, 776, 779, 904.

clack, 900, 905.
" puppet, 905.

throttle, 901, 903.

Variable, variable quantity, 33.
" dependent, 33.
" independent, 33.

motion, 106, 117.
" " of running watei;

969.

Velocity, 107.
" along the abscissas, 146.
" along the ordinates, 146.

coefficient of, 824, 944.

final, 108.

height due to the. 115, 809.
initial, 108.
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Velocity, mean , 121, 124, 956.
of propagation, 1062, 1085.

" of running water, 956.
of sound, 1066.
sudden variation of, 885. •

virtual, 187, 209, 212, 275.
Viblation of a stretched string, 1070.

" of an elastic rod, 1072.
Virtual velocity, 185, 209, 212, 275.
Vis viva, principle of, 171, 174.
Volume, 156.

Volumeter, 789.

W.

Water, apparatus for measuring, 976.
" efflux of, 800.
" heaviness of, 160.
" height of in communicating

tubes, 723, 761.
" hydraulic pressure of, 808.

hydrostatic pressure of, 722.
" inch, 983.
" jets of, 138.

meters, 1020.
" running, 955.
'^ stream of, 801, 821.
" surface of, 718, 765, 767.

Water, waves of, 1084.
Waves, 1062.

crest and trough of, 1085.
height of, length of, 1085.
of water, 1084.

Web, 478, 479.
Wedge, 277, 329, 496.
Weight, absolute, 156, 159, 161.

unit of, 157.
Weir, overfall, notch, 811, 833. 844

849, 914.
'

> ,

Wheel and axle, 305, 567, 595.
Work done by a force, mechanical ef-

fect, 168, 187, 209.
" " friction, 313, 335. •

" " heat, 936.
" " inertia, 171, 577.

unit of, 169.

Working load, 380.

X.

Ximenes' experiments on friction, 318i
water vane, 1001.

ZoBij, 593.
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