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PBEFACE.

The aim of this work is to make Descriptive Geometry an

integral part of a course in Mechanical or Engineering Drawing.

The older books on Descriptive Geometry are geometrical rather

than descriptive. Their authors were interested in the subject as a

branch of mathematics, not as a branch of drawing.

Technical schools should aim to produce engineers rather than

mathematicians, and the subject is here presented with the idea

that it may fit naturally in a general course in Mechanical Drawing.

It should follow that portion of Mechanical Drawing called Line

Drawing, whose aim is to teach the handling of the drawing instru-

ments, and should precede courses specializing in the various

branches of Drawing, such as Mechanical, Structural, Architectural,

and Topographical Drawing, or the " Laying Off " of ship lines.

The various branches of drawing used in the different industries

may be regarded as dialects of a common language. A drawing is

but a written page conveying by the use of lines a mass of informa-

tion about the geometrical shapes of objects impossible to describe

in words without tedium and ambiguity. In a broad sense all these

branches come under the general term Descriptive Geometry. It

is more usual, however, to speak of them as branches of Engineer-

ing Drawing, and that term may well be used as the broad label.

The term Descriptive Geometry will be restricted, therefore, to

the common geometrical basis or ground work on which the various

industrial branches rest. This ground work of mathematical laws

is unchanging and permanent.

The branches of Engineering Drawing have each their own
abbreviations, and special methods adapting them to their own
particular fields, and these conventional methods change from time

to time, keeping pace with changing industrial methods.

Descriptive Geometry, though unchanged in its principles, has

recently undergone a complete change in point of view. In

changing its purpose from a mathematical one to a descriptive one,
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from being a training for the geometrical powers of a mathematician

to being a foundation on which to build up a knowledge of some

branch of Engineering Drawing, the number and position of the

planes of projection commonly used are altered. The object is now
placed behind the planes of projection instead of in front of them,

a change often spoken of as a change from the " 1st quadrant " to

the "3d quadrant," or from the French to the American method.

We make this change, regarding the 3d quadrant method as the

only natural method for American engineers. All the principles of

Descriptive Geometry are as true for one method as for the other,

and the industrial branches, as Mechanical Drawing, Structural

Drawing, etc., as practiced in this country, all demand this method.

In addition, the older geometries made practically no use of a

third plane of projection, and we take in this book the further step

of regarding the use of three planes of projection as the rule, not

the exception. To meet the common practice in industrial branches,

we use as our most prominent method of treatment, or tool, the use

of an auxiliary plane of projection, a device which is almost the

draftsman's pet method, and which in books is very little noticed.

As the work is intended for students who are but just taking up

geometry of three dimensions, in order to inculcate by degrees a

power of visualizing in space, we begin the subject, not with the

mathematical point in space but with a solid tangible object shown

by a perspective drawing. ]STo exact construction is based on the

perspective drawings which are freely used to make a realistic ap-

pearance. As soon as the student has grasped the idea of what

orthographic projection is, knowledge of how to make the projection

is taught by the constructive process, beginning with the point and

passing through the line to the plane. To make the subject as

tangible as possible, the finite straight line and the finite portion of

a plane take precedence over the infinite line and plane. These

latter require higher powers of space imagination, and are therefore

postponed until the student has had time to acquire such powers

from the more naturallv understood branches of the subject.

F. W. B.

T. W. J.

March, 1910.
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CHAPTER I.

NATURE OF ORTHOGRAPHIC PROJECTION.

1. Orthographic Projection.—The object of Mechanical Draw-

ing is to represent solids with such mathematical accuracy and

precision that from the drawing alone the object can be bnilt or

constructed without deviating in the slightest from the intended

shape. As a consequence the "working drawing" is the ideal

sought for, and any attempt at artistic or striking effects as in

" show drawings " must be regarded purely as a side issue of minor

importance. Indeed mechanical drawing does not even aim to

give a picture of the object as it appears in nature, but the views

are drawn for the mind, not the eye.

The shapes used in machinery are bounded by surfaces of mathe-

matical regularity, such as planes, cylinders, cones, and surfaces

of revolution. They are not random surfaces like the surface of a

lump of putty or other surfaces called " shapeless." These definite

shapes must be represented on the flat surface of the paper in an

unmistakable manner.

The method chosen is that known as
ft
orthographic projection"

If a plane is imagined to be situated in front of an object, and

from any salient point, an edge or corner, a perpendicular line,

called a " projector," is drawn to the plane, this line is said to

project the given point upon the plane, and the foot of this perpen-

dicular line is called the projection of the given point. If all

salient points are projected by this method, the orthographic draw-

ing of the object is formed.

2. Perspective Drawing.—The views we are accustomed to in

artistic and photographic representations are " Perspective Views."

They seek to represent objects exactly as they appear in nature.

In their case a plane is supposed to be erected between the human
eye and the object, and the image is formed on the plane by sup-

posing straight lines drawn from the eye to all salient points of
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the object. Where these lines from the eye, or " Visual Kays," as

they are called, pierce the plane, the image is formed.

Fig. 1 represents the two contrasted methods applied to a simple

object, and the customary nomenclature.

An orthographic view is sometimes called an " Infinite Perspec-

tive View," as it is the view which could only be seen by an eye at

an infinite distance from the object. " The Projectors " may then

be considered as parallel visual rays which meet at infinity, where

the eye of the observer is imagined to be.

Projector

Perspective Vie w. Orthographic View.
Fig. 1.

3. The Regular Orthographic Views.—Since solids have three

" dimensions," length, breadth and thickness, and the plane of the

paper on which the drawing is made has but two, a single ortho-

graphic view can express two only of the three dimensions of the

object, but must always leave one indefinite. Points and lines at

different distances from the eye are drawn as if lying in the same

plane. From one view only the mind can imagine them at dif-

ferent distances by a kind of guess-work. If two views are made

from different positions, each view may supplement the other in

the features in which it is lacking, and so render the representa-

tion entirely exact. Theoretically two views are always required

to represent a solid accurately.

To make a drawing all the more clear, other views are generally

advisable, and three views may be taken as the average requirement

for single pieces of machinery. Six regular views are possible,

however, and an endless number of auxiliary views and " sections
"

in addition. For the present, we shall consider only the " regular

views.
7 '' which are six in number.
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4. Planes of Projection.—A solid object to be represented is

supposed to be surrounded by planes at short distances from it, the

planes being perpendicular to each other. From each point of

every salient edge of the object, lines are supposed to be drawn

perpendicular to each of the surrounding planes, and the succes-

sion of points where these imaginary projecting lines cut the planes

are supposed to form the lines of the drawings on these planes.

One of the planes is chosen for the plane of the paper of the actual

drawing. To bring the others into coincidence with it, so as to

have all of them on one flat slieet, they are imagined to be unfolded

from about the object by revolving them about their lines of inter-

section with each other. These lines of intersection, called " axes

of projection," separate the flat drawing into different views or

elevations.

Pig. 2.
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Fig. 2a.

Fig. 2 is a true perspective drawing of a solid object and the

planes as they are supposed to surround it. This figure is not a

mechanical drawing, but represents the mental process by which

the mechanical drawing is supposed to be formed by the projection

of the views on the planes. In this case the planes are supposed

to be in the form of a perfect cube. The top face of the cube shows

the drawing on that face projected from the solid by fine dotted

lines. Eemember that these fine dotted lines are supposed to be

perpendicular to the top plane. This drawing on the top plane is

called the " plan." On the front of the cube the " front view " or

" front elevation n
is drawn, and on the right side of the cube is
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the " right side elevation." Three other views are supposed to be

drawn on the other faces of the cube, but they are shown on Fig.

2 a, which is the perspective view of the cube from the opposite

point of view, that is, from the back and from below instead of

from in front and from above.

This method of putting the object to be drawn in the center of

a cube of transparent planes of projection is a device for the im-

agination only. It explains the nature of the "projections/ 7
or

" views/' which are used in engineering drawing.

5. Development or Flattening Out of the Planes of Projection.—
Now imagine the six sides of the cube to be flattened out into one

plane forming a grouping of six squares as in Fig. 3. What we
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B OTTO
View

M

have now is a description or mechanical drawing of the object

showing six " views." The object itself is now dispensed with and
its projections are used to represent it. These six views are what
we call the "regular views/' With one slight change they cor-

respond to the regular set of drawings of a house which architects

make.

2
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The set of six " regular " projections would not be altered by

passing the transparent planes at unequal distances from each

other, so long as they surround the object and are mutually per-

pendicular. They may form a rectangular parallelopiped instead

of a cube without altering the nature of the views.

It will be noticed also that views on opposite faces of the cube

differ but little. Corresponding lines in the interior may in one

case be full lines and in the other "broken lines." Broken lines

(formed by dashes about ^" long, with spaces of -3V') represent

parts concealed by nearer portions of the object itself. All edges

project upon the plane faces of the cube, forming lines on the draw-
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ings, the edges concealed by nearer portions of the object forming

broken lines.

6. The Reference Planes and Principal Views.—In drawings of

parts of machinery six regular views are usually unnecessary. The

three views shown in Fig. 2 are the " Principal Views/' and others

are needed only occasionally. The planes of those views are the

" Eeference Planes/'

These views, when flattened from their supposed position about

the object into one plane, give the grouping in Fig. 4.

Another arrangement of the same views, obtained by unfolding

the planes of the cube in a different order, is shown in Fig. 5.

These two arrangements are standard in mechanical drawing, and

are those most used.
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7. The Nomenclature.—The nomenclature adopted is as follows

:

The " Keference Planes,", or three principal planes of projection,

are called from their position, the Horizontal Plane, or ff, the

Vertical Plane, or Y, and the (right) Side Plane, or g. The plane

g is by some called the " Profile Plane." The point (Fig. 2),

in which they meet, is the " Origin " of coordinates. The line

OX, in which H and V intersect, is called the " Axis of X" or

" Ground Line." The line OY, in which ff and g meet, is called

the "Axis of Y" and the line OZ, in which V and S meet, is

called the " Axis of Z" The three axes together are called the

" Axes of Projection."

Since drawings are considered as held vertically before the face,

it is considered that the plane V coincides at all times with the

Plane of the Paper." In unfolding the planes from their posi-

tions in Fig. 2 to that in Fig. 4, it is considered that the plane f\

has been revolved about the axis of X (line OX), through an angle

of 90°, until it stands vertically above V- In the same way S is

considered to be revolved about the line OZ, or axis of Z . until it

takes its place to the right of V-
The arrangement in Fig. 5 corresponds to a different manner of

revolving the plane g. It is revolved about the axis of Y (OY)
until it coincides with the plane Jfl, and is then revolved with J-fl,

about the axis of X, until both together come into the plane of the

paper, or V-
The three other faces of the original cube of planes of projection

are appropriately called ff
f

, Y', and g'. On account of the simi-

larity of the views on them, to those on ff, V and g, they are but

little used, g' alone is fairly common since a grouping of planes

M? V and g' is at times more convenient than the standard group

U, V and g.

8. Meaning of " Descriptive Geometry."—The aim of Engineer-

ing or Mechanical Drawing is to represent the shapes of solid

objects which form parts of structures or machines. It shows

rather the shapes of the surfaces of the objects, surfaces which are

usually composed of plane, cylindrical, conical, and other surfaces.

In the drawing room, by the application of mathematical laws and
principles, views are constructed. These are usuallv Plan, Front
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Elevation, and Side Elevation, and are exactly such views as would

be obtained if the object itself were put within a cage of trans-

parent planes, and the true projections formed.

It is these mathematical laws or rules which form the subject

known as Descriptive Geometry. A drawing made in such a way

as to bring out clearly these fundamental laws of projection, by the

use of axes of projection, etc., may be conveniently called a " De-

scriptive Drawing."

In the practical application of drawing to industrial needs,

short-cuts, abbreviations, and special devices are much used (their

nature depending on the special branch of industry for which the

drawing is made). In addition, the axes of projection are usually

omitted or left to the imagination, no particular effort being made

to show the exact mathematical basis provided the drawing itself

is correct. Such a drawing is a t}^pical "Mechanical Drawing."

By the addition of axes of projection and similar devices, it may

be converted into a strict " Descriptive Drawing."

9. The Descriptive Drawing of a Point in Space.—The imagi-

nary process of making a descriptive drawing consists in putting

the object within a cube of transparent planes, and projecting

points and lines to these planes. In practice the projections are

formed all on a single sheet of paper, which is kept in a perfectly

flat shape, by the application of rules of a geometrical kind de-

rived from the imaginary process. The key to the practical pro-

cess is in these rules. The first subject of exact investigation

should be the manner of representing a point in space by its pro-

jections and the fixing of its position as regards the "reference

planes " by the use of coordinate distances.

Figs. 6 and 7 show the imaginary and the practical processes of

representing P by its projections.

Fig. 6 is a perspective drawing showing the cube of planes, or

rather the three sides of the cube regularly used for reference

planes. The cube must be of such size that the point P falls well

within it. The perpendicular projectors of P are PPh, PPV and

PPS - The origin and the axes of projection are all marked as on

Fig. 2.
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In Fig. 7 the " field " of the drawing, that part of the paper

devoted to it, is prepared by drawing two straight lines at right

angles to represent the axes of projection, lettering the horizontal

line XOYs and the vertical one ZOYjt . This field corresponds to

that of Fig. 4, the outer edges of the squares being eliminated

since there is no need to confine each plane to the size of any par-

ticular cube. If more field is needed, the lines are simply ex-

tended. It must be remembered that these axes are quite different

from the coordinate axes used in plane analytical geometry, or

graphic algebra. These divide the field of the drawing into four

K
E

x :e

\z

+-.

x
9

z

V

Fig. 7.

quadrants, of which three represent three different planes, mutu-

ally perpendicular, the fourth being useful only for the purposes

of construction.

Usually the upper left quadrant, the " North-West," represents

H ; the lower left quadrant, or " South-West," represents V? and

the lower right quadrant, or " South-East," represents S-

On occasion the axes may be lettered XOZ s horizontally and

ZvOY vertically, to correspond to Fig. 5, the upper right quadrant

now representing g.

10. Coordinates of a Point in Space.—A point in space is

located by its perpendicular distances from the three planes of

projection, that is to say, by the length of its projectors. These
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distances are called the coordinates of the point, and are designated

by x, y and z. In the example given, these values are 2, 3 and 1.

In Fig. 6 PPS, the 3 projector of P, is two units long, or x—2.

The perpendicular distance to the plane V? the V projector, PPV,

is three units long. ^=3. In the same way PPh, the H projector,

is one unit long. z=L
In describing the point P, it is sufficient to state that it is the

point for which x= 2, y=3, and z= l. This is abbreviated con-

veniently by calling it the point P (2, 3, 1), the coordinates, given

in the bracket, being taken always in the order x, y, z.

The projectors, the true coordinate distances, are shown in Fig.

6 by lines of dots, not dashes.

If in each plane ff, V and S> perpendicular lines are drawn

(dashes, not dots) from the projections of P to the axes, we shall

have the lines Pne and P%f, Pve and Pvg, Psg and Psf. These lines

meet in pairs at e, g, and f, forming a complete rectangular paral-

lelopiped of which P and are the extremities of a diagonal. The

other corners of the parallelopiped are Ph, Pv, Ps , e, f and g.

Each coordinate, x, y and z, appears in four places along four

edges of the parallelopiped, as is marked in Fig. 6.

The distances x, y and z are all considered positive in the case

shown.

In Fig. 7, the descriptive drawing of the point P, P itself does

not appear, being represented by its projections,, Pn, Pv and P«.

The true projectors (shown in Fig. 6 by lines of dots) do not

appear, but in place of each coordinate three distances equal to it

do appear, so that in Fig. 7 x, y and z each appear in three places

as is there marked. Thus x appears as Phfn, eO, and Pvg. As all

these are measured to the left from the vertical axis, ZOYh, it

follows that Pnepv is a straight line, or Pn is vertically above Pv .

It is often said that Pv " projects vertically " to P),. In the same

way Pv " projects horizontally " to Ps . The distance y appears as

ePn, Ofh, Ofs, and gPs . The point / appears double due to the

axis of Y itself doubling. To represent the original coincidence of

fn and fs , a quadrant of a circle with center at is often used to

connect them. .
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11. Three Laws of Projection for ff, V and g.—The three rela-

tions shown by Fig. 7 amount to three laws governing the pro-

jections of a point in the three views, and must always be rigidly

observed. They may seem easy and obvious when applied to one

point, but when dealing with a multitude of points it is not easy

to observe them unfailingly.

They may be thus tabulated

:

(1) Pu must be vertically above Pv .

(2) Ps must be on the same horizontal line as Pv .

( 3 ) Ps must be as far to the right of OZ as Pn is above OX.
From these laws it follows that if two projections of a point are

given, the third is easily found. In Fig. 7, if two of the corners

of the figure PnfnfsPsPv are given, the figure can be graphically

completed. Much of the work of actual mechanical drawing con-

sists in correctly locating two of the projections of a point by plot-

ting or measuring, and of finding the other projection by the appli-

cation of these laws or of this construction. Constant checking

of the points between the various views of a drawing is a vital prin-

ciple in drawing.

On the drawing board the horizontal projection of Pv to Ps is

naturally done by the T-square alone, and the vertical projection

of Pn to Pv by T-square and triangle. There are two methods of

carrying out the third law in addition to the graphical construc-

tion of Fig. 7. Fig. 8 shows a graphical method which makes use

of a 45° line, OL, in the construction space, instead of the quad-

rant of a circle. It is easier to execute, but the meaning is not so

clearly shown. The third method is by the use of the dividers

directly to transfer the x coordinate from whichever place it is

first plotted, to the other view in which it appears.

12. Paper Box Diagrams.—When studying a descriptive draw-

ing, such as Fig. 8, imagine as you look at Pv that the real point P
lies oack of the paper, at a distance equal to ePj,.

Whenever figures in the text following seem hard to grasp, carry

out the following scheme. Trace the figure on thin paper, or on

tracing cloth. Using Fig. 8 as an example, and supposing it to

have been traced on semitransparent paper, hold the paper before

you and fold the top half back 90° on the line XOYs . Then, view-
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ing Ph from above, imagine the true point P to lie below the paper

at a distance equal to ePv, in the same way as yon imagine P to

lie back of Pv at a distance equal to eP]
t .

After flattening the paper, fold the right half back 90° on the

line ZOYn, and, viewing Ps from the right, imagine P to lie back

of Ps a distance Pvg. Finally, crease the paper on the line OL,
OL itself forming a groove, not a ridge, and bend the paper on all

Fig.

the creases at once, so that Jf and S fold back into positions at

right angles to V an(i to each other at the same time.

The "construction space " YhOYs is thus folded away inside

and OYk and OYs come in contact with each other. Fig. 9 shows

the final folding partly completed.

ISTo diagram, however complicated, can remain obscure if studied

from all sides in this manner.

To have a convenient name, these space diagrams may be called

" Paper Box Diagrams."
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Figs. 4 and 5 make good paper box diagrams, while Fig. 3 may
be traced and folded into a perfect cube which, if held in proper

position, will give the exact views shown in Figs. 2 and 2 a, omit-

ting the solid object supposed to be seen in the center of those

figures.

13. Zero Coordinates.—Points having zero coordinates are some-

times perplexing. If one coordinate is zero, the point in question

is on one of the reference planes, and indeed coincides with one of

its own projections. Since x is the length of the orthographic

projector of the point P upon the plane S> if %=0, this projector

disappears and the point P and its S projection Ps coincide. If

Fig. 9.

the point Q (0, 3, 1) is to be plotted it will be found to coincide

with Ps in Fig. 6. The descriptive drawing will correspond with

Fig. 7 with all lines to the left of ZOYh omitted, and with the let-

tering changed as follows: For Ps put Q s (and Q), for fh put Qh,

for g put Qv . The student should make this diagram on cross-

section paper and should study out for himself the similar cases for

the points Q' (2, 0, 1) [Pv in Fig. 6] 'and Q" (2, 3, 0) [Ph in Fig.

6] and should proceed from them to more general cases, assuming

ordinates at will, using cross-section paper for rapid sketch work
of this kind.

If two coordinates are zero, the point lies on one of the axes,

on that axis, in fact, which corresponds to the ordinate which is not

zero. Thus the point R (2, 0, 0) is the point e of Fig. 6. Rh and

Rv are at e, and R s is at 0.



Fig. 10.



Fig. 10a.
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Wire-mesh Cage.

If possible, it is very desirable to have cages similar to Fig. 10,

formed of wire-mesh screens, representing the planes ff f V; S and

S'. On these screens chalk marks may be made and the planes,

being hinged together, may afterward be brought into coincidence

with V> as represented in Fig. 10a,

In order to plot points in space within the cage, pieces of wire

about 20 inches long, with heads formed in the shape of small

loops or eyes, are used as point markers. They may be set in holes

drilled in the base of the cage at even spaces of 1" in each direc-

tion, so that a marker may be set to represent any point whose x

or y coordinates are even inches. To adjust the marker to a re-

quired z coordinate, it may be pulled down so that the wire projects

through the base, lowering the head the required amount, z may
vary fractionally.

In Fig. 10 a point marker is set to the point P (11, 4, 6), and

the lines on the screens have been put on with chalk, to represent

all the lines analogous to those of Fig. 6.

Fig. 10a represents the descriptive drawing produced by the

development of the screens in Fig. 10. It is analogous to Fig. 7.

Several points may be thus marked in space and soft lead wire

threaded through the loops, so that any plane figure may be shown

in space, and its corresponding orthographic projections may be

drawn on the planes in chalk.

Problems I.

1. Plot by the use of the wire markers the three points, A, B
and C, whose coordinates are (5, 12, 11), (3, 3, 3), and (12, 4, 8),

and draw the projections on the screens in chalk. By joining point

to point we have a triangle and its projections. Use lead wire for

joining the points, and chalk lines for joining the projections.

2. Form the triangle as above with the following coordinates:

(11, 3, 2), (12, 6, 12) and (14, 12, 7).

3. Form the triangle as above with the following coordinates:

(7,0,11), (9,9,0) and (2,2,3)."

4. Form the triangle as above with the following coordinates:

(0,11,13), (14,3,3) and (14,13,0).
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(The following examples may be solved on coordinate paper, or

plotted in inches on the blackboard.)

5. Make the descriptive drawing of a triangle in three views by

plotting the vertices and joining them by straight lines. The

vertices are the points A (1, 10, 8), B (5, 6, 8), C (9, 2, 4).

6. Make the descriptive drawing as above nsing the points

A (12,2,5), B (0,8,6), C (4,6,0).

7. Make the descriptive drawing as above nsing the points

A (3,4,2), B (13,8,10), (5,10,14).

8. The fonr points A (3, 3, 3), B (3, 3, 15), C (15, 3, 15), and

D (15, 3, 3) form a square. Make the descriptive drawing. Why
are two projections straight lines only? What are the coordinates

of the center of the sqnare ?

9. The four points A (12,2,12), B (2,2,12), C (7,14,12),

and D (7, 6, 2) are the corners of a solid tetrahedron. Make the

descriptive drawing, being carefnl to mark concealed edges by

broken lines.

10. Make the descriptive drawing of the tetrahedron A (2, 3, 2),

B (9,8,3), C (4,8,9), D (1,3,6), marking concealed edges by

broken lines.

11. Make the descriptive drawing of the tetrahedron A (3, 2, 4),

B (6,8,2), C (8, 1, 8), D (2,7,8).

12. Plot the points A (12,7,7), B (8,13,5), C (2,9,2), and

D (6, 3, 4). Why is the V projection a straight line?

13. Make the descriptive drawing of the tetrahedron A (13, 5, 3),

B (1, 5, 3), O (7, 2, 6), D (7, 8, 6). To which axis is the line AB
parallel? To which axis is CD parallel?

14. Plot and join the points A (11, 3, 3), B (3, 3, 3), O (7, 9, 7),

and D (15, 9, 7). Do AC and BD meet at a point or do they pass

without meeting?



CHAPTER II.

ORTHOGRAPHIC PROJECTION OF THE FINITE STRAIGHT
LINE.

14. The Finite Straight Line in Space : One not Parallel to any
Reference Plane, or an " Oblique Line."—A line of any kind con-

sists merely of a succession of points. Its orthographic projection

is the line formed by the projections of these points,

In the case of a straight line, the orthographic projection is

itself a straight line, though in some cases this straight line may
degenerate to a single point, as mathematicians express it.

Fig. 11

To find the ff. V and g projections of a finite straight line in

space, the natural course is to project the extremities of the line

on each reference plane and to connect the projections of the ex-

tremities by straight lines. We shall not consider this as requir-

ing proof here. It is common knowledge that a straight line cannot

be held in any position that will make it appear curved, and ortho-

graphic projection is, as shown by Fig. 1, only a special case of

perspective projection. The strict mathematical proof is not ex-

actly a part of this subject.
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The projectors from the different points of a straight line form

a plane perpendicular to the plane of projection. This " projector-

plane/7
of course, contains the given line. If the straight line is

a limited or finite line the projector-plane is in the form of a

quadrilateral having two right angles. Thus in Fig. 11 the ff

projectors of the straight line AB form the figure AA hBnB, having

right angles at A h and Bh . These projector-planes AA hBnB,

AA SBSB, and AA VBVB are shown clearly in this perspective draw-

ing, in which they are shaded.

Fig. 12 is the descriptive drawing of the same line AB which has

been selected as a "line in space," that is, as one which does not

obey any special condition. In such general cases the projections

are all shorter than the line itself. As drawn, the extremities are

A (1,1,5) and B (5,4,2).

-I—I—I—I—

h

^~%

As Bs

S
Fig. 14.

15. Line Parallel to One Reference Plane, or Inclined Line.—
A line which is parallel to one reference plane, but is not parallel

to an axis, appears projected at its true length on that reference

plane only.

Figs. 13 and 14 show a line five units long, connecting the points

A (1, 2, 2) and B (5, 5, 2). A hBn is also five units in length but

A VBV is but four and A SBS is three. The projector-plane AA^BnB
is a rectangle.

The student should construct on coordinate paper the two simi-

lar cases. For example: the line G (4, 2, 1), D (1, 2, 5) is parallel

to Y;E (2,1,2), F (2,5,5) is parallel to g.
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16. Line Parallel to One of the Axes and thus Parallel to

Two Reference Planes.—If a finite straight line is parallel to one

of the axes of projection, its projection on the two reference planes

which intersect at that axis, will be equal in length to the line

itself. Its projection on the other reference plane will be a simple

point.

Fig. 15 is the perspective drawing and Fig. 16 the descriptive

drawing, of a line parallel to the axis of X, four units in length.

Its extremities are the points A (1,2,2) and B (5, 2, 2). In fi

X

e

I
' ' '

!

' O

v
z

Fig. 16

ys

A.&B,

and V its projections are four units long. The projector-planes

AAfiBnB and AA VBVB are rectangles. The g projector-plane de-

generates to a single line BAA S . It will be seen that the coordi-

nates of the extreme points of the line differ only in the value of

the x coordinate. In fact, any point on the line will have the

y and z coordinates unchanged. It is the line (x variable, 2, 2).

The student should construct for himself descriptive drawings

of lines parallel to the axis of Y and the axis of Z, using prefer-

ably " coordinate paper " for ease of execution. G-ood examples

are the lines (1, 1, 1), D (1, 5, 1) and E (3, 1, 1), F (3, 1, 4).

Points on the line CD differ only as regards the y coordinate. It

is a line parallel to the axis of Y. EF is parallel to the axis of Z
and z alone varies for different points along the line.
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17. Foreshortening.—The projection of a line obliqne to the

plane of projection is shorter than the original line. This is

called foreshortening. The f$, V and S projections of Fig. 12,

and the V and S projections of Fig. 14, are foreshortened. It is

a loose method of expression, but a common one, to say that a line

is foreshortened when it is meant that a certain projection of a

line is shorter than the line itself. When subscripts are omitted

and AixBk is called AB, it is natural to speak of the line AB as

appearing "foreshortened" in the plan view or projection on ff.

This inexact method of expression is so customary that it can

hardly be avoided, but with this explanation no misconception

should be possible.

18. Inclined and Oblique Lines.—The words Inclined and Obli-

que are taken generally to mean the same thing, but in this subject

it becomes necessary to draw a distinction, in order to be able to

specify without chance of misunderstanding the exact nature of a

given line or plane.

A line will be described as

:

Parallel to an axis, when parallel to any axis. As a special case a

line parallel to the axis of Z may be called simply vertical.

Inclined, when parallel to a reference plane, but not parallel to an

axis. The line AB, Fig. 13, is an illustration.

Oblique, when not parallel to any reference plane or axis. The
typical " line in space " is oblique. AB, of Fig. 11, illustrates

this case.

19. Inclined and Oblique Planes.—A plane will be called:

Horizontal, when parallel to ftf. The V projector-plane in Fig. 15

is of this kind.

Vertical, when parallel to V °r S- The ff projector-plane in Fig.

15 is of this kind.

Inclined, when perpendicular to one reference plane only. The
fl-fl

projector-plane of Fig. 13 is of this kind.

Oblique, when not perpendicular to any reference plane. Planes

of this kind will appear later on.

The surface of the solid of Fig. 2 is composed of vertical, hori-

zontal, and inclined planes (but no oblique plane). Its edges are

3
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lines, parallel to the axes of X, Y and Z; and inclined lines (be-

cause parallel to S) ; but no oblique lines.

20. The Point on a Given Line.—It is self-evident that if a

given point is on a given line, all the projections of the point must

lie on the projections of the line.

If the middle point of a line AB is projected, as C in Fig. 17, its

projections Cv, and C s bisect the projections of the line. The

reason for this appears when we consider the true shape of the

projector-planes, all three of which appear distorted in the per-

spective drawing, Fig. 17, and which do not appear at all on the

descriptive drawing, Fig. 18. In Fig. 17 AA hBhB is a quadri-

lateral, having right angles at An, and Bj,, it is therefore a trape-

zoid. CCh is parallel to AAu and BBn, and since it bisects AB at C,

it must also bisect AitBn at (7». The result of this is that in Fig.

18, where the projections which do appear are of their true size.

Ch bisects A%B%9 C bisects AVBV, and C s bisects A SB S .

This principle applies to other points than the bisector. Since

all ff projectors are parallel to each other, if any point divides AB
into unequal parts, the projections of the point will divide the

projectors of AB in parts having the same ratio. A point one-
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tenth of the distance from A. to B will, by its projections, mark

off one-tenth of the distance on AjJBn, AVBV, etc.

The points illustrated in Pigs. 17 and 18 are A (2, 3, 1),

B (5, 5, 5) and C (3^, 4/3). It will be noticed that the x coordi-

nate of C is the mean of those of A and B, and the y and z coordi-

nates of C also are the mean of the y and z coordinates of A and B.

Unless all three of the projections of a point fall on the pro-

jections of a line, the point is not in the given line. If one of the

projections of the point be on the corresponding projection of the

line, one other projection of both point and line should be ex-

amined. If in this second projection it is found that the point

does not lie on the line, it shows that the point in space lies in one

of the projector-planes.

Thus the point D in Fig. 18 has its V projection on A VBV, but

its ff and S projections are not on A%Bn and A SBS . D is not a

point in the line AB but is on the V projector-plane of AB, as is

clearly shown on Fig. 17.

In the case illustrated, Dv bisects BVCV . The plotting of the V
projection of a point is governed only by its x and z coordinates.

Dv bisects BVCV because its x and z coordinates are the means of

the x and z coordinates of B and 0. The y coordinate of D, how-

ever, has no connection with the y coordinates of B and C.

21. The Isometric Diagram.—A device to obtain some of the

realistic appearance of a true perspective drawing without the

excessive labor of its construction is known as " isometric " draw-

ing.

A full explanation of this kind of drawing will follow later,

but for present purposes we may regard it as a simplified per-

spective of a cube in about the position of that in Figs. 2, 6, 11,

etc., but turned a little more to the left. Vertical lines are un-

changed. Lines which are parallel to the axis of X, and which in

the perspective drawing incline up to the left at various angles, are

all made parallel and incline at 30° to the horizontal. In the

same way lines parallel to the axis of Y are drawn at 30° to the

horizontal, inclining up to the right.
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Fig. 19 shows the shape of a large cube divided into small unit

cubes. In plotting points the same scale is used in all three direc-

tions, that is, for distances parallel to all three axes. Fig. 19a

shows the point P (2, 3, 1) plotted in this manner, so that the

figure is equivalent to the true perspective drawing, Fig. 6.

It is not intended that the student should make any true per-

spective drawing while studying or reciting from this book. If any

of the space diagrams here shown by true perspective drawings

Fig. 19. Fig. 19a.

must be reproduced, the corresponding isometric drawing should

be substituted.

For rapid sketch work, especially ruled paper, called " isometric

paper," is very convenient. It has lines parallel to each of the

three axes. With such paper it is easy to pick out lines correspond-

ing to those of Fig. 19.

An excellent exercise of this kind is to sketch on isometric

paper the shaded solid shown in Fig. 2, taking the unit square of

the paper for 1" and considering the solid to be cut from a 10" cube,

the thickness of the walls left being 2", and the height of the tri-

angular portion being 6". The solid may be sketched in several

positions.
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Problems II.

(For solution with wire-mesh cage, or cross-section paper, or on

blackboard.)

15. A line connects the points A (5,2,6) and B (5,12,6).

What are the coordinates of the point C, the center of the line?

What are the coordinates of a point D on the line, one-tenth of

the way from A to B?
16. Same with points A (6, 6, 2) and B (6, 6, 12).

17. Draw the line AB whose extremities are A (2, 7, 4) and

B (14, 2, 4). On what view does its true length appear? What is

this length? What are the coordinates of a point C on the line

one-third of its length from A f

18. With the same line A (2,7,4), B (14,2,4), state what is

the true shape of the Jf-J projector-plane. Give length of each edge

and state what angles are right angles. Same for V projector-

plane.

19. Same as Problem 18, with line A (4, 2, 2), B (4, 11, 8).

20. With the line of Problem 19, state what is the true shape of

the ff and S projector-planes, giving length of each edge, and

state which angles are right angles.

21. Same as Problem 17, with line A (0, 4, 8), B (9, 4, 1).

22. The ff projection of C (8, 2, 6) lies on the ff projection of

the line A (10, 1, 9), B (2, 5, 2). Is the point on the line?

23. Same as Problem 22, with line A (2, 1, 8), B (8, 10, 5), and

point C (4,4,7).

24. A triangle is formed by joining the points A (6,3,1),

B (10,3,10) and C (2,3,10). In what view or views does the

true length of AB appear? In what view or views does the true

length of BC appear? Mark the center of the triangle (one-third

the distance from the center of the base BC to the vertex A) and

give its coordinates.

25. Same with points A (5, 9, 6), B (5, 3, 1) and C (5, 3, 12).

26. Same with points A (10, 1, 4), B (7, 10, 4) and C (1, 4, 4).

27. The V projections of the points A (8, 1, 2), B (10, 3, 8),

C (4, 3, 10) and D (2, 1, 4) form a square. Draw the projections

and connect them point to point. What are the coordinates of the

center where AC and BD intersect?
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28. Plot the parallelogram A (11, 3, 3), B {3, 3, 3), C (7, 9, 7),

D (15, 9, 7). The diagonals intersect at E. Give the coordinates

of E. Describe the ff projector-planes of AB, AC, CD, giving

lengths of sides of each quadrilateral. Is the plane of the figure

inclined or oblique? Is AC an inclined or oblique plane?

29. Plot the quadrilateral

A (11,10,3), B (3,10,11), C (7,2,7), D (11,4,3).

Is the plane of the figure horizontal, vertical, inclined or oblique ?

Is the line AB horizontal, vertical, inclined or oblique?

Is the line BC horizontal, vertical, inclined or oblique ?

Is the line CD horizontal, vertical, inclined or oblique?

Is the line DA horizontal, vertical, inclined or oblique?



CHAPTEE III.

THE TRUE LENGTH OF A LINE IN SPACE.

22. The Use of an Auxiliary Plane of Projection.—To find the

true length of a " line in space/ 7
or oblique straight line, an auxil-

iary plane of projection is of great value, and is constantly used

in all branches of Engineering Drawing.

A t}rpical solution is shown by Figs. 20 and 21. The essential

feature is the selection of a new plane of projection, called an

Fig. 20.

auxiliary plane, and denoted by \J, which must be parallel to the

given line and easily revolved into coincidence with one of the

regular planes of reference.

This auxiliary plane is passed parallel to one of the projector-

planes. In Fig. 20 the plane S' of . the cube of planes has been

replaced by a plane \j, parallel to the ]H[ projector-plane, AA ltBhB.

Like that plane, UJ is also perpendicular to f\, and XM, the line

of intersection of \] and \\, is parallel to A nBn. The distance of

the plane \] from the projector-plane may be taken at will and
in the practical work of drawing it is a matter of convenience,

choice being governed by the desire to make the resulting figures

clear and separated from each other. In Fig. 20 the auxiliary
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plane \] has been established by selecting a point X in ff for it

to pass through. U is an " inclined plane," not an " oblique plane."

23. Traces of the Auxiliary Plane HJ.—The auxiliary plane U
cuts the plane V in a line XN, parallel to the axis of Z. The
lines of intersection of HJ with the reference planes, are called the

" traces " of \J. Since there are three reference planes, there may
be as many as three traces of \]. In the case illustrated in Fig. 20,

there are, however, but two traces. Only one of these three possible

traces of \] can be an inclined line. In Fig. 20 the trace XM alone

is an " inclined " line.

We shall see later that the auxiliary plane may be taken per-

pendicular to V or to S as alternative methods. In every case

there is but one inclined trace, that on the plane to which \] is

perpendicular. It 'is this trace which has the greatest importance in

the process. For the sake of uniformity, M and N will be assigned

as the symbols for marking the traces of an auxiliary plane of

projection.

24. The U Projectors.—A new system of projectors, AAU, BBU ,

etc., project the line AB upon the plane HJ- These projectors,

being perpendicular distances between a line and a plane parallel to

it, are all equal, and the projector-plane AA UBUB of Fig. 20 is in

reality a rectangle. A UBU is therefore equal in length to AB, or

AB is projected upon U without foreshortening.

25. Development of the Auxiliary Plane \J.—The descriptive

drawing, Fig. 21, is the drawing of practical importance, which is

based on the perspective diagram, Fig. 20, which shows the mental

conception of the process employed. In practical work, of course,

Fig. 21 alone is drawn, and it is constructed by geometrical reason-

ing deduced from the mental process exhibited by Fig. 20.

In the process of flattening out or " developing " the planes of

projection, \] is generally considered as attached or hinged to the

" inclined trace," XM in this example. In Fig. 21 HJ has been

revolved about XM, bringing it into the plane of H ;
the trace XN

having opened out to two lines. N separates into two points and is

marked Nu as a point in U and Nv as a point in V> analogous to

Yn and Ys in the development of the reference planes. The space

NUXNV, like YnOYs, may be considered as construction space.



The True Length of a Line in Space 29

26. Fourth Law of Projection—that for Auxiliary Plane, HJ.

—

It will be seen from Pig. 20 that AAneAv is a rectangle and that

eAv is equal to AiA. On the descriptive drawing, Fig. 21, these

two lines, &A V and eAn, form one line perpendicular to OX. This

is in accordance with the first law of projection of Art. 11.

As the plane \] is perpendicular to ff we have the same rela-

tion there, and AAjJcA u, Fig. 20, is a rectangle. TcA u is therefore

equal to AnA, and in the development, Fig. 21, Auh and hA h form

one line AJcAn perpendicular to XM .

If from Au and Av, Fig. 20, perpendiculars are let fall upon the

intersection of \] and V ("the trace XN) they will meet at the

common point I, both TcAJX and XlA ve being rectangles. In the

descriptive drawing, Fig. 21, AJ is perpendicular to XNU, lu lv is

the arc of a circle, center at X, and lvA v is perpendicular to XNV .

The following law of projection governs the position of Au in

the plane flj:

(4) From the regular projections of A draw perpendiculars

to the traces of \]. These lines continued into the field

of UJ intersect at Au . One of these lines is carried across

the construction space by the arc of a circle whose center

is the meeting point of the traces of HJ-

27. The Graphical Application of this Law to a Point.—The

procedure for locating the projection A u on the descriptive drawing,

Fig. 21, after the location of the plane \] has been determined, is

as follows : From the adjacent projections of the point draw lines

perpendicular to the traces of the plane \J. Continue one of these

lines across the trace. Swing the foot of the other perpendicular

to the duplicated trace, and continue it by a line perpendicular to

this trace to meet the line first mentioned. Their intersection is

the projection of the point on \J. In Fig. 21, this requires AiJcA u

to be drawn perpendicular to XM, and the line A vlv luA u to be

traced as shown.

28. The True Length of a Line.—The procedure for finding the

true length of a line consists in first drawing, Fig. 21, a line paral-

lel to one of the projections of the line to act as the trace of the

auxiliary plane. Where this trace intersects an axis of projection

perpendicular lines are erected, one perpendicular to the axis, one
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perpendicular to the trace. These lines are the two developed

positions of the other trace of the plane \J. Then locate the ex-

tremities of the given line on the auxiliary plane {jj. The line

joining the extremities is the required projection of the line on |J,

and is equal in length to the given line.

29. Alternative Method of Developing the Auxiliary Plane, \J.
—

A modification of this construction is shown in the descriptive

drawing, Fig. 22, in which the plane U has been revolved about

the vertical trace XN until it coincides with the plane V- XM
separates into two lines, XMn and XMU . h, of Fig. 20, becomes

Ten and Tcu, and the space M%XMU is construction space. A is on

Fig. 22.

a horizontal line drawn through A v . A hhi is perpendicular to XMn.
Icjjcu is the arc of a circle having X as a center, and TcuAu is per-

pendicular to XMU . A u is thus located.

This method of development of the planes is much less common
in practical drawing than the other, because, as a rule, it is less

convenient than the first method. In such cases as occur it offers

no particular difficulty. Both Pigs. 21 and 22 are solutions of

the problem of finding the true length of the oblique line AB by

projection on an auxiliary inclined plane, \J.

30. Alternative Positions of the Plane HJ.—We saw that the

exact position of the plane \J, so long as it remained perpendicular

to fi and parallel to AnBn, was left to choice governed by practical
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considerations. QJ itself, however, may be taken perpendicular to

V and parallel to AVBV, or it may be taken perpendicular to S and

parallel to A SBS . To get an entire grasp of the subject the student

is advised to trace Fig. 21 on thin paper, or plot it on coordinate

paper, points A, B, and X being (6,6,2), (10,10,8) and

(11, 0, 0), and fold the figure into a paper box diagram, the con-

struction spaces NUXNV and YnOYs being creased in the middle

and folded out of the way. Fig. 22 will serve equally well. The

final result will be a paper box exactly similar to Fig. 20.

The variation in which \] is perpendicular to V m&y be plotted,

passing the new inclined trace of U (lettered YM) through the

point (0, 0, 3) parallel to A VBV . Fold this figure into a paper box,

the paper being cut along a line YN perpendicular to YM.
The other variation may be plotted with the inclined trace of \]

on the plane S> parallel to A SBS and passing through the point

(0,0,6) (/. of Fig. 21). Letter this trace YSM and draw YSN
perpendicular to it, inclining up to the right. The paper must be

cut on this line to enable it to be properly folded.

31. The Method Applied to a Plane Figure.—The special value

of this use of the auxiliary plane is seen when one operation serves

to give the true length of a number of lines at once, and thus

shows a whole plane figure in its true shape.

In Fig. 23 the polygon ABODE is shown by its projection, the

point A alone being lettered. It is noticeable that in V the edges

all form one straight line. The V projector-planes of the various

edges are therefore all parts of the same plane, and the polygon

itself is a plane figure placed perpendicular to V- It may be said

the polygon is " seen on edge " in V.
An auxiliary plane HJ has been taken parallel to the plane of the

polygon, and therefore perpendicular to V- The trace XM being

parallel to the V projections of the edges, this auxiliary plane serves

to show the true length of all the edges at once. The projection on

U is the true shape of the polygon ABODE. In the case illustrated,

the U projection discloses the fact that the polygon is a regular

pentagon, a fact not realized from the regular projections, owing
to the foreshortening to which they are subject.
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This figure is well adapted to tracing and folding into a paper

box diagram.

Fig. 23.

32. The True Length of a Line by Revolving About a Projector.

—A second method of finding the true length of a line seems in a

way simpler, hut proves to be of much less value in practical work.

The method consists in supposing an oblique line AB to be revolved

about a projector of some point in the line until it becomes parallel

to one of the planes of reference. In this new position it is pro-

jected to the reference plane as of its true length.

In Fig. 24 the V projector-plane of the line AB has been shaded

for emphasis (A is the point (1, 1, 5), and B is the point (5, 4, 2) )

.

The projector AA V has been selected at will, and the V projector-

plane (of which the line AB is one edge) has been rotated about

AA V as an axis until it has come into the position AVB'VB'A. In

its new position, AB' projects to ff as AjiB'n. This is the true

length of the line. During its rotation the point B has moved to

B', but in so doing it has not revolved about A as its center, but

about the point h on A VA extended. bA v is equal in length to BBV .
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Bv moves to B'v, revolving about A v as a center. In Fig. 25, the

corresponding descriptive drawing, the original projections are

shown as full lines and the projections of the line after the rota-

tion has occurred are shown by long dashes.

In V? A vBv swings about A v as a pivot until in its new position

AVB'V it is parallel to OX. In J-fl, Bh moves in a line parallel to

OX (since in Fig. 24 the motion of B takes place entirely in the

plane of IBB', which is parallel to V), and as B\ must be verti-

cally above B'v the motion terminates where a line drawn vertically

Fig. 24

up from B'v meets the horizontal line BnB'h . Joining An and B\,

the new ff projection is the true length of the given line. The g
projection is of no interest in this case. The fffl and V projections

of Fig. 25 show the graphical process corresponding to the theory

of this rotation. In V, Bv moves to B'v, whence a vertical pro-

jector meeting a horizontal line of motion from Bh determines B\,

the new position of Bh . A nB'h is the true length of the line. The
arrow-heads on the broken lines make these steps clear.

33. Variations in the Method.—The method is subject to wide

variations. The same projector-plane AA VBVB, Fig. 24, revolving

about the same projector AA V, might start in the opposite direction

and swing to a position parallel to g. The graphical process of

Fig. 25 would then confine itself to V and g instead of V and ff.
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In addition, the rotation might have been about BBV as an axis

or about the V projector of any point in AB or AB extended.

Finally, the Jf-fl projector-plane or the S projector-plane might

have been selected and made to revolve into position. There are

six distinct varieties of the process, each one subject to great modifi-

cations.

This method can be applied to a plane figure which appears " on

edge" in one of the regular views. In Fig. 26 a polygon lies in a

plane perpendicular to V- There are two varieties of the process

applicable in this case. Choosing the V projector of the point A
for the axis of rotation, the whole polygon may be rotated up par-

allel to \\, thence its true shape projected upon f\, or it may be

revolved down until parallel to S, thence its true shape projected

upon S- Both methods are shown, though of course in practice one

at a time should be enough.

34. A Projector-Plane Used as an Auxiliary Plane.—The two

processes for rinding the true length of a line differ in this respect.
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In one the line is projected on a plane which is revolved into

coincidence with one of the reference planes, by revolving about a

line in that reference plane. In the second process, a projection

plane is itself revolved about a projector, that is, about a line

perpendicular to one reference plane, to a position parallel to a

second reference plane. The line in its new position is projected

on the latter plane.

A method which is a modification of the first process is in many-

cases very simple. A projector-plane is itself used as an auxiliary

plane, and is revolved into coincidence with the plane to which it is

perpendicular by rotation about its trace in that plane. In Fig. 23,

for example, instead of passing XM parallel to AVCV, AVGV would be

extended to the axis of X, and used itself for the inclined trace of

the auxiliary plane. XN would be moved to the right and other

slight modifications made.

As in the second method, a projector-plane is here rotated; but

it is not rotated about a projector, but about a projection (its

trace), and the real similarity of the process is with the first

method, that of the auxiliary plane of projection. It is but a

special case of this kind.

In practical drawing, it rarely happens that one of the projector-

planes can be thus used itself with advantage as an auxiliary plane

of projection. It leads usually to an overlapping of views and it

will not be found so useful as the more general method.

For the continuation of this study, all these methods should be

at the students' finger ends.

35. The True length of a Line by Constructing a Right Tri-

angle.—These methods of finding the true length of a line are

generally used for the true lengths of many lines in one operation,

or for the true shape of a plane figure. When a single line is

wanted, the construction of a right triangle from lines whose true

lengths appear on the drawing is sometimes resorted to. In Fig. 24
the triangle ABb is a right triangle, AB being the hypotenuse and
AbB the right angle. In the descriptive drawing, Fig. 25, A VBV

is equal in length to Ab of Fig. 24, and A hb is easily found, equal

to Ab of Fig. 24. These lines may be laid off at anv convenient
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place as the sides of a right triangle, and the hypotenuse measured

to give the true length of AB. Mathematically the hypotenuse is

the square root of the sum of the squares of the sides. In the case

illustrated A VB V is 5 (itself the square root of Avc
2 +Bvc

2

, or

V3 2+ 42
) and Ahb is 3. The length AB is therefore V5 2 + 3

2

= V34=5.83.

Problems III.

(For use with wire-mesh cage, cross-section paper, or blackboard.)

30. A square in a position similar to the pentagon of Fig.

26 has the corners A (10,12,2), B (2,12,8), C (2,2,8) and

D (10, 2, 2). Find its true shape by the use of an auxiliary plane.

31. A square is in a position similar to the pentagon of Fig. 23.

The corners are A (9,3,3), B (9,13,3), C (3, 13, 11), and

D (3, 3, 11). Find its true shape by revolving into a plane par-

alel to ff.

32. Plot the triangle A (11, 3, 2), B (12, 6, 12), C (14, 12, 7).

Find its true shape by the use of an auxiliary plane perpendicular

to M.
33. Plot the triangle A (13,14,8), B (10,10,0), O (7,6,8).

Show the true shape of the triangle by revolving it about AAn
until in a plane parallel to S- Find the true shape by projection

on a plane UJ perpendicular to H, whose inclined trace passes

through the point (0, 16, 0) . (With the wire-mesh cage turn plane

S' to serve for this auxiliary plane U-)

34. Same with triangle A (9, 7, 8), B (12, 11, 13), C (15, 15, 2).

35. Plot the right triangle A (14, 4, 3), B (14, 10, 3), C (6, 4, 9)

.

Revolve it about BBV into a plane parallel to H and project its

true shape on ff. ("With the wire-mesh cage put markers at points

A, B, C and C, the new position of C.)

36. Plot the right triangle A (9, 3, 6), B (9, 3, 0), O (15, 11, 6).

Revolve it about AB until in a plane parallel to V and plot C, the

new position of the vertex. Revolve it about the same axis into a

plane parallel to S; and plot C", the new position of the vertex.

(With the wire-mesh cage put point markers at A, C, C and G".)
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37. Plot the square A (14,8,2), B (10,2,7*), (10,14,7*),

D (8, 8, 12|). The diagonal is 12 units long. Revolve it about

AAV into a plane parallel to ff, and project its true shape on fl-fl.

(With, wire-mesh cage put point markers at A, B, C, D, B', C,

and D f

.)

38. Plot the triangle A (12,2,14), B (2,2,14), C (7,7,2).

Revolve it about ABA S into a plane parallel to ff, and project the

true shape on V- (With wire-mesh cage put markers at points

A, B, C and A'. On coordinate paper or blackboard show true shape

by projection on an auxiliary plane \J perpendicular to g, through

the point (0,8,0).)

(For use on coordinate paper or blackboard, not wire-mesh cage.)

39. The triangle A (3,7,11), B (13,2,13), C (5,2,1) is a

triangle in an oblique plane. Find its true shape as follows : BO
appears at its true length in V- Draw AVDV perpendicular to BVCV .

AD is an oblique line, but it is perpendicular to BC since its V
projector-plane AAVDVD is perpendicular to BC. Find the true

length of AD by any method. On V extend A VDV to Ev, making

DrEv equal to the true length of AD. EVBVCV is the true shape of

the triangle ABC.



CHAPTER IV.

PLANE SURFACES AND THEIR INTERSECTIONS AND
DEVELOPMENTS.

36. The Omission of the Subscripts, li, v, and s—In a descriptive

drawing a point does not itself appear but is represented by its

projections on the reference planes. This fact has been emphasized

in the previous chapters. In the more complicated drawings which

now follow it will save time and will prevent overloading the figures

with lettering, to omit the subscripts h, v, and s, and to refer to a

point and its projections by the same letter. Thus " A v
" or " the

point A in V " are expressions which call attention to the projec-

tion of A on V; but a diagram will show only the letter A at that

place. If at any time it is necessary to be more precise the sub-

scripts may be restored. They should be used if any confusion is

caused by their omission.

If the projections of two points coincide, it is sometimes advis-

able to indicate which point is behind the other in that view by

forming the letter of fine dots. Referring back to Fig. 14, the

projections of A and B on g coincide. On this system subscripts

are omitted and the letter B (on 5 only) is formed of dots,

as in Fig. 27.

37. Intersecting Plane Faces.—Many pieces of machines and

structures which form the subjects of mechanical drawings, are

pieces all of whose surfaces are portions of planes, each portion or

face having a polygonal outline.

In making such drawings there arise problems as to the exact

points and lines of intersection, which can be solved by applying

the laws of projection treated of in the preceding chapters. How
these intersections are determined from the usual data will now
be shown.

38. A Pyramid Cut by a Plane.—As a simple example let us

suppose that it is required to find where a plane perpendicular to

V, and inclined at an angle of 30° with J-fl, intersects an hex-
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agonal pyramid with axis perpendicular to ff. Fig. 27 is the

drawing of the pyramid, having the base ABCDEF and vertex P.

The cutting plane is an inclined plane such as we have used for an

auxiliary plane, and its traces are therefore similar to those of an

auxiliary plane. KL is the inclined trace on V and KK' and LL'.

are the traces parallel to the axis of Y. The problem is to find the

shape of the polygonal intersection abcdef in ff and g, and its

true shape.

The method of solution of all such problems is to take into con-

sideration each edge of the pyramid in turn, and to trace the points

where they pierce the plane. Thus, the edge PA pierces the given

plane at a, whose projection on V is first located; for the given

plane is seen on edge in V> and- PA cannot pierce the plane at any

other point consistent with that condition, a, once located in V?
can be projected horizontally to the line PA in g and- vertically to

PA in ]fi.

The true shape of the polygon abcdef may be shown on an aux-

iliary plane, \J, whose traces are ZM and ZN. In Fig. 27 the

projection of the pyramid on \] is incomplete. As it is only to

show the polygon abcdef the rest of the figure is omitted.
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39. Intersecting Prisms.—As an example of somewhat greater

difficulty let it be required to find the intersection of two prisms,

one. the larger, haying a pentagonal base, parallel to H ; and the

other a triangular base, parallel to S- The axes intersect at right

angles, and the smaller prism pierces the larger.

Fig. 29.

The known elements or data of the problem are shown recorded

as a descriptive drawing in Fig. 28. It shows the projection of

the pentagon on ff, of the triangle on g, and of the axes on V-
The problem is to complete the drawing to the condition of Fig.

29, shown on a larger scale. The corners of the pentagonal prism

are ABCDEF and A'B'G'D'E'F' and its axis is PP. The corners

of the triangular prism are FGH and F'G'H' and its axis is QQ'.

40. Points of Intersection.—The general course in solying the

problem of the intersection of the prisms is to consider each edge

of each prism in turn, and to trace out where each edge pierces the

various plane faces of the other prism. "When all such points of
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intersection have been determined,, they are joined by lines to give

the complete line of intersection of the prisms.

To determine where a given edge of one prism cuts a given plane

face of the other prism, that view in which the given plane face is

seen as a line only, or is " seen on edge/ 7
as is said, nmst be re-

ferred to. Taking the hexagonal prism first, the edges AA', CC,
and DD' entirely clear the triangular prism, as is disclosed by the

plan view on ff where they appear " on end " or as single points

only. They, therefore, have no points of intersection with the

triangular prism and in V and S these lines may be drawn as

uninterrupted lines, being made full or broken according to the

rule at the end of Art. 5. BB', as may be seen in f-fl, meets the

small prism. This line when drawn in S* where the plane faces

FF'G'G and FF'H'H are seen on edge, meets those faces at ~b and

1)'. From S these points are projected to V- The edge BB' con-

sists really of two parts, Bb and b'B'' . BE' meets the same two

faces at points e and e' determined in the same way.

FF', when drawn in ff, is seen to pierce the plane face AA'B'B

at / and AA'E'E at f. These points, located in H, are projected

vertically down to V- GG' in ff pierces BB'C'C at g, and EE'D'D
at g'. h and K' on the line HE' are similarly determined first in

ff and are projected down to V-
41. Lines of Intersection.—Having found the points of inter-

section of the edges, we determine the lines of intersection of the

plane surfaces by considering the intersections of plane with plane,

instead of line with plane. BB' is one line of the plane AA'B'B,

and pierces the plane FF'G'G (seen on edge in §) at 6. & is there-

fore a point of both planes. FF' is a line of the plane FF'G'G, and

it pierces the plane AA'B'B (seen on edge in Jf) at /. / is also a

point common to both planes. Since these two points are in both

planes, they are points on the line of intersection of the two planes.

We therefore connect I) and / by a straight line in V; but do not

extend it beyond either point because the planes are themselves

limited.

By the same kind of reasoning 5 and g are found to be points

common to BB'C'C and FF'G'G, and are therefore joined by a

straight line, bg in V- gh also is the line of intersection of two
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planes, and the student should follow for himself the full process

of reasoning which proves it. e, f, and g are points similar to ~b, f,

and g. Since the original statement required the triangular prism

to pierce the pentagonal one, gg', ff, and lih' are joined by broken

lines representing the concealed portions of the edges GG', FFV
, and

HE' of the small prism. Had it been stated that the object was

one solid piece instead of two pieces, these lines would not exist on

the descriptive drawing.

42. Use of an Auxiliary Plane of Projection.—To find the inter-

section of solids composed of plane faces, it is essential to have

Fig. 30.

views in which the various plane faces are seen on edge. To obtain

such views, an auxiliary plane of projection is often needed.

Fig. 30 shows the data of a problem which requires the auxiliary

view on U in order to show the side planes of the triangular prism

" on edge/' (These planes are oblique, not inclined, and therefore

do not appear "on edge " on any reference plane.) Fig. 31 shows

the complete solution, the object drawn being one solid piece and

not one prism piercing another prism, b and d are located by the

use of the view on \J. In this case and in many similar cases in

practical drawing, the complete view on HJ need not be constructed.
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The use of HJ is only to give the position of b and d, which are then

projected to V- The construction on \] of the square ends of the

square prism are quite superfluous, and would be omitted in prac-

tice. In fact, the view JU would be only partially constructed in

pencil, and would not appear on the finished drawing in ink.

After the method is well understood, there will be no uncertainty

as to how much to omit.

43. A Cross-Section.—In practical drawing it often occurs that

useful information about a piece can be given by imagining it cut

by a plane surface, and the shape of this plane intersection drawn.

In machine drawing, such a section showing only the material

actually cut by the plane and nothing beyond, is called a " cross-

H

m.

o* \
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Fig. 32

Ys

section/' In other branches of drawing other names for the same

kind of a section are used, The " contour lines " of a map are of

this nature, as well as the "water lines" of a hull drawing in

Xaval Architecture.

44. Sectional Views.—The cross-section is used freely in ma-
chinery drawing, but a " sectional view,'

7 which is a view of a cross-

section, with all those parts of the piece which lie beyond the plane

of the section as well, is much more common.
These sectional views are sometimes made additional to the

regular views, but often replace them to some extent. Fig. 32 is a
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good example. It represents a cast-iron structural piece shown by

plan, and two sectional views. The laws of projection are not

altered, but the views bear no relation to each other in one respect.

One view is of the whole piece, one is of half the piece, and one is

of three-quarters of it. The amount of the object imagined to be

cut away and discarded in each view is a matter of independent

choice.

In the example the projection on V is a view of half of the

piece, imagining it to have been cut on a plane shown in ff by the

line mn. The half between mn and OX has been discarded, and the

drawing shows the far half. The actual section, the cross-section

on the line mn, is an imaginary surface, not a true surface of the

object, and it is made distinctive by "hatching.' 7 This hatching

is a conventional grouping of lines which show also the material

of which the piece is formed. For this subject, consult tables of

standards as given in works on Mechanical Drawing. This pro-

jection on V is not called a " Front Elevation/' but a " Front Ele-

vation in Section," or a " Section on the Front Elevation."

The view projected on g is called a " Side Elevation, Half in

Section," or a " Half-Section on the Side Elevation." Since a

section generally means a sectional view of the object with half

removed, a half-section means a view of the object with one-quarter

removed. If, in ff, the object is cut by a plane whose trace is np

and another whose trace is pq, and the X. E. comer of the object

is removed, it will correspond to the condition of the object as seen

ing.
Sections are usually made on the center lines, or rather on central

planes of the object. When strengthening ribs or " webs " are seen

in machine parts, it is usual to take the plane of the section just

in front of the rib rather than to cut a rib or web which lies on the

central plane itself. This position of the imaginary saw-cut is

selected rather than the adjacent center line.

"When the plane of a section is not on a center line, or adjacent

to one, its exact location should be marked in one of the views in

which it appears " on edge," and reference letters put at the ex-

tremities. The section is then called the " section on the line mn."

The passing of these section planes causes problems in intersec-

tion to arise, which are similar to those treated in Articles 37-42.
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45. Development of a Prism.—It is often desired to show the

true shape of all the plane faces of a solid object in one view,

keeping the adjacent faces in contact as much as possible. This

is called developing the surface on a plane, and is particularly

useful for all objects made of sheet-metal, as the development forms

a pattern for cutting the metal, which then requires only to be bent

into shape and the edges to be joined or soldered.

Development is a process already applied to the planes of pro-

jection themselves when these planes were revolved about axes until

all coincided in one plane. The same operation applied to the

surfaces of the solid itself produces the development.

The two prisms of Fig. 29 afford good subjects for development.

Fig. 33 shows the developed surface of the triangular prism, the

lines g-g and g'-g' showing the lines of intersection with the other

prism. In this figure it is considered that the surface of the

triangular prism is cut along the lines 6767', 67.F, G'F, GH, and



46 Engineering Descriptive Geometry

G'H'': and the four outer planes unfolded, using the lines bound-

ing FF'H'H as axes, until the entire surface is flattened out on the

plane of FF'H'H.

Fig. 34 shows the development of the large prism of Fig. 29,

with the holes where the triangular prism pierces it when the two

are assembled. The surface of the prism is cut on the line AA',

and on other lines as needed, and the surfaces are flattened out by

unfolding on the edges not cut.

The construction of these developments is simple, since the sur-

faces are all triangles or pentagons whose true shapes are given;

or are rectangles, the true length of whose edges are alreadv known.

In Fig. 33 the distances Gg, G'g', Ff, F'f are taken directly

from V in Fig. 29. The points 5 and e are plotted as follows:

The perpendicular distance N to the line GF is taken from V>
Fig. 29, and Gl is taken from Gl in S, Tig. 29. The other points

are plotted in the same manner.

46. Development of a Pyramid.—Fig. 35 shows the development

of the point of the pyramid, Fig. 27, cut off by the intersecting

plane whose trace is EL. The base is taken from the projection

on \], where its true shape is given. Each slant side must have its

true shape determined, either as a whole plane figure (Art. 31),

or by having all three edges separately determined (Art. 28 or

Art. 32) In this case Pa and Pel are shown in true length in V.*

Fig. 2T, and it is only necessary to determine the true lengths of

Ph. and Pc (or their equivalents Pf and Pe) to have at hand all the

data, for laying out the development. The face Pef may be con-

veniently shown in its true shape on an auxiliary plane W? Fig. 2?,

perpendicular to S and cutting § in a trace YSN as shown.
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Problems IV.

(For use with wire-mesh cage, or on cross-section paper or

blackboard.)

40. Plot the projections of the points A (9, 3, 16), B (6, 3, 16),

C (6, 8, 16), D (9, 18, 16), and E (0, 3, 4), F (0, 3, 8), G (0, 8, 8),

H (0,8,4). Join the projections A to E, B to F, C to G, etc.

(With wire-mesh cage use stiff wire to represent the lines AE, BF

,

etc.) Show how to find the true shape of every plane surface of

the figure contained between the 4 lines, and the planes S and fl-fl'.

On cross-section paper or on blackboard show how to draw the

development of the surface of the solid.

41. Same as Problem 40, with points A (10, 8, 0), B (8, 10, 0),

C (12, 14, 0), D (14, 12, 0) on H and E (10, 8, 16), F (6, 12, 15),

67 (6, 14, 15), H (12, 10, 14) on W-
42. Draw the tetrahedron whose four corners are A (16,2,1.3),

B (6, 2, 13), C (11, 14, 13) and D (11, 7, 1). It is intersected by

a plane perpendicular to V cutting V hi a trace passing through

the origin, making an angle of 30° with OX. Draw the trace of

the plane on V- Where are its traces on ff and S '• Show the Jfl

and S projections of the line of intersection of the plane and

tetrahedron.

43. A solid is in the form of a pyramid whose base is a square

of 10", and whose height, is 8". The comers are A (16,2,10),

B (10,2,2), C (2,2,8) and D (8,2,16) and the vertex

E (9,10,9). It is intersected by a plane perpendicular to Jf-J,

whose trace on ff passes through the origin making an angle of

30° with OX. Draw the V and g projections of the intersections

of the pyramid and plane. Where is the trace of the cutting plane

on V?
44. A plane ff

r

is parallel to ff at a distance of 16 inches. A
square prism has its base in H, points A (8,2,0), B (3,7,0),
C (8, 12, 0), D (13, 7, 0). Its other base is in M', points A'B'C'D'

having same x and y coordinates and z coordinates 16.

A plane §' is parallel to S at a distance of 16". A triangular

prism has its base in S, points E (0,5,8), F (0,13,2),
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G (0, 13, 14) : and its other base in g', points E', F', G' having x

coordinates 16, and y and z coordinates unchanged.

Make the drawing of the intersecting prisms considering the

triangular prism to be solid and parts of the square prism cut away

to permit the triangular one to pass through.

(For use on cross-section paper or blackboard, not wire-mesh

cage.)

45. A sheet-iron coal chute connects a square port, A (2,4,2),

B (2, 12,2), G (2,4,10), D (2,12,10), with a square hatch,

E (14,6,16),^ (14,10,16), G (10, 10, 16), H (10,6,16). The

corners form lines AE, BF, CG, DH and the side plates are bent

on the lines AH and BG. Draw the development of the surface.

46. Draw the development of the tetrahedron in Problem ' 42

with the line of intersection marked on it.

47. Draw the development of the pyramid in Problem 43 with

the line of intersection marked on it.

48. Draw the development of the square prism of Problem 44

with the line of intersection marked on it.

49. Draw the development of the triangular prism of Problem

44 with the line of intersection marked on it.



CHAPTEE V.

CURVED LINES.

47. The Simplest Plane Curve, the Circle.—The geometrical

natures of the common curves are supposed to be understood. De-

scriptive Geometry treats of the nature of their orthographic pro-

jections. The curves now considered are plane curves, that is,

every point of the curve lies in the same plane. It is natural,

therefore, that the relation of the plane of the curve to the plane of

projection governs the nature of the projection.

Fig. 36

The simplest plane curve is a circle. Tigs. 36 and 37 show the

three forms in which it projects upon a plane. In Fig. 36, a per-

spective drawing, we have a circle projected upon a parallel plane

of projection (that in the position customary for V). The pro-

jectors are of equal length and the projection is itself a circle ex-

actly equal to the given circle.

On a second plane of projection (that in the position of g) per-

pendicular to the plane of the circle the projection is a straight

line equal in length to the diameter of the circle, AC. The pro-

jectors for this second plane of projection form a projector-plane.
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In Fig. 37 the circle is in a plane inclined at an angle to the

plane of projection. The projectors are of varying lengths. There

must he one diameter of the circle, however, that marked AC,

which is parallel to the plane of projection. The projectors from

these points are of equal length, and the diameter AC appears of

its true length on the projection as AVCV .

The diameter BD at right angles to AC. has at its extremity B
the shortest projector, and at the extremity D the longest projector.

On the projection, BD appears greatly foreshortened as B VD C ,

though still at right, angles to the projection of AC and bisected

by it.
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Fig. 38.

The true shape of the projection is an ellipse, of which AVCV is

the major axis and B VD V is the minor axis. Xo matter at what

angle the plane of projection lies, the projection of a circle is an

ellipse whose major axis is equal to the diameter of the circle.

For convenience the two planes of projection in Fig. 36 have

been considered as V and S? and the projections lettered accord-

ingly. The plane of projection in Fig. 37 has been treated as if

it were V? and the ellipse so lettered. It must be remembered that

the three forms in which the circle projects upon a plane, as a

circle, as a line, and as an ellipse, cover all possible cases, and the

relations between the plane of the circle and the plane of projec-

tion shown in the two figures are intended to be perfectly general

and not confined to V and g alone.
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48. The Circle in a Horizontal or Vertical Plane.—Passing now

to the descriptive drawing of a circle, the simplest case is that of

a circle which lies in a plane parallel to Iff, V or g. The projec-

tions are then of the kind shown in Fig. 36, two projections being

lines and one the true shape of the circle. Fig. 38 shows the case

for a circle lying in a horizontal plane. The true shape appears in

]J-f. The V projection shows the diameter AC, the g projection

shows the diameter BD.

N,

Fig. 39.

49. The Circle in an Inclined Plane.—Fig. 39 shows the circle

lying in an inclined plane, perpendicular to V, and making an
angle of 60° with H- The V projectors, lying in the plane of the

circle itself, form a projector-plane and the V projection is a

straight line equal to a diameter of the circle. As the plane of the

circle is oblique to H and g, these projections on fl-fl and g are

ellipses whose major axes are equal to the diameter of the circle.

Of course, for any point of the curve, as P, the laws of projection

hold, as is indicated. The true shape of the curve can be shown by
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projection on any plane parallel to the plane of the circle. It is

here shown on the auxiliary plane \J> taken as required. If the

drawing were presented with projections Ji, V and S; a s shown,

one might at first suspect that it represented an ellipse and not a

circle ; but, if a number of points were plotted on HJ, the existence

of a center 0' could be proved by actual test with the dividers.

50. The Circle in an Oblique Plane.
—"When a circle is in an

oblique plane, all three projections are ellipses, as in Fig. 40. The

noticeable feature is that the three major axes are all equal in

leng-th.

When an ellipse is in an oblique plane, its three projections are

also ellipses, but the major axes will be of unequal lengths. The

proof of this fact must be left until later. The fact that the three

projections have their major axes equal must be taken at present as

sufficient evidence that the curve itself is a circle.

51. The Ellipse: Approximate Representation.—The ellipse is

little used as a shape for machine parts. It appears in drawings

chiefly as the projection of a circle. Some properties of ellipses

are very useful and should be studied for the sake of reducing the

labor of executing drawings in which ellipses appear.

An approximation to a true ellipse by circular arcs, known as the

" draftsman's ellipse," may be constructed when the major axis 2a

and the minor axis 2&, Fig. 41, of an ellipse are known.
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The steps in the process are shown in Fig'. 41. The center of the

ellipse is at 0. The major axis is AC, equal to 2a. The minor

axis is DB, equal to 2b. From C, one end of the major axis, lay

off CE, equal to b. The point E is at a distance equal to a— b from

and at a distance equal to 2a— b from .4. This last distance is

the radius of a circular arc which is used to approximate to the

flat sides of the ellipse. It may be called the " side arc." Setting

the compass to
r.the distance AE and using D and B as centers,

points H and G are marked on the minor axis, extended, for use

as centers for the " side arcs/''" These arcs are now drawn (passing

through the points D and B), as shown in the 2nd stage of the

process.

i——o+Mr^CA:— -o

J sf Stage 3rd Stage
THE DRAFTSMAN'S ELLIPSE.

Fig. 41.

By use of the bow spacer, th'e distance OE is bisected and the

half added to itself, giving the point F (distant f (a— b) from 0).

F is the center of a circular arc which approximates to the end of

the true ellipse. With F as center, and FC as radius, describe this

arc. If this work is accurate, this " end arc " will prove to be

tangent to the side arcs already drawn, as shown in the 3rd stage

of the process. If desired, the exact point of tangency of the two

arcs, K, may be found by joining the centers E and F and extend-

ing the line to K. F is swung about as center by compass or

dividers to F' , for the center of the other " end arc." In inking

such an ellipse, the arcs must be terminated exactly at the points

of tangency, K and the three similar points.

This method is remarkably accurate for ellipses whose minor

5
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axes are at least two-thirds the length of their major axes. It

should always be used for such wide ellipses, and if the character

of the drawing does not require great accuracy, it may be nsed

even when the minor axis is but half the length of the major axis.

For all narrow ellipses, exact methods of plotting should be used.

52. The Ellipse: Exact Representation.—The true and accurate

methods of plotting an ellipse are shown in Figs. 42, 43, and 44.

Fig. 42 is a convenient method when the major axis AC and minor

axis BD are given, bisecting each other at 0. Describe circles with

centers ot 0, and with diameters equal to AC and BD. From
draw any radial line. From the point where this radial line meets

the larger circle draw a vertical line, and from the point where it

cuts the smaller circle draw a horizontal line. Where these lines

D' I 2. 3 E'

A_

Fig. 43.

meet at P is located a point on the ellipse. By passing a large

number of such radial lines sufficient points may be found between

D and C to fully determine the quadrant of the ellipse. Having

determined one quadrant, it is generally possible to transfer the

curve by the pearwood curves with less labor than to plot each

quadrant.

With the same data a second method. Fig. 43, is more convenient

for work on a large scale when the T-square, beam compass, etc.,

are not available.

Construct a rectangle using the given major and minor axes as

center lines. Divide BE into any number of equal parts (as here

shown, 4 parts), and join these points of division with C. Divide

DO into the same number of equal parts (here, 4). From A
draw lines through these last points of division, extending them to

the first svstem of lines intersecting the first of the one svstem with
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the first of the other, the second with the second, etc. These inter-

sections, 1, 2, 3, are points on the ellipse.

The third method, an extension or generalization of the second, is

very useful when' an ellipse is to be inscribed in a parallelogram, the

major and minor axes being unknown in direction and magnitude.

Lettering the parallelogram A'B'C'D' in a manner similar to the

lettering in Fig. 43, the method is exactly the same as before, D'E'

and D'O being divided into an equal number of parts and the lines

drawn from C and A'. The actual major and minor axes, indicated

in the figure, are not determined in any manner by this process.

53. The Helix.—The curve in space (not a plane curve) which

is most commonly used in machinery, is the helix. This curve is

described by a point revolving uniformly about an axis and at the

same time moving uniformly in the direction of that axis. It is

popularly called a " cork-screw " curve, or " screw thread/' or even,

quite incorrectly, a " spiral."

The helix lies entirely on the surface of a cylinder, the radius of

the cylinder being the distance of the point from the axis of rota-

tion, and the axis of the cylinder the given direction.

Fig. 45 represents a cylinder on the surface of which, a moving

point has described a helix. Starting at the top of the cylinder, at

the point marked 0, the point has moved uniformly completely

around the cylinder at the same time that it has moved the length

of the cylinder at a uniform rate. The circumference of the top

circle of the cylinder has been divided into twelve equal parts by

radii at angles of 30°, the apparent -inequality of the angles being due

to the perspective of the drawing. ' The points of division are marked
from to 11, point 12 not being numbered, as it coincides with

point 0. The length of the cylinder is .divided into twelve equal

parts on the vertical line showing .the numbers from to 12, and

at each point of division a circle, parallel to the top base, is de-

scribed about the cylinder. The helix is the curve shown by a

heavy line. From point 0, which is the zero point of both move-
ments, the first twelfth part of the motion carries the point from
to 1 around the circumference, and from to 1 axially downward,
at the same time. The true movement is diagonally across the

carved rectangle to the point marked 1 on the helix. This move-
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ment is continued step by step to the points 2, 3. etc. In the posi-

tion chosen in Fig. 45, points 0, 1, 2, 3, 4, 12 are in full view,

points 5 and 11 are on the extreme edges, and the intermediate

Fig. 45.

points (from 6 to 10) are on the far side of the cylinder. The

construction lines for these latter points have been omitted, in order

to keep the figure clear.
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54. Projections of the Helix.—The projection of this curve on a

plane parallel to the axis of the cylinder is shown to the left. The

circles described about the cylinder become equidistant parallel

straight lines. The axial lines remain straight but are no longer

equally spaced, and the curve is a kind of continuous diagonal to

the small rectangles formed by these lines on the plane of projec-

tion. .

The projection of the helix on any plane perpendicular to the

axis of the cylinder is a circle coinciding with the projection of the

cylinder itself. The top base is such a plane and on it the projec-

tion of the helix coincides with the circumference of the base.

55. Descriptive Drawing of the Helix.—The typical descriptive

drawing of a helix is shown in Fig. 46. The axis of the cylinder is

perpendicular to fl-fl, and the top base is parallel to H- The helix

in f\ appears as a circle. In V it appears as on the plane of pro-

jection in Fig. 45, but this view is no longer seen obliquely as is

there represented.

This V projection of the helix is a plane curve of such import-

ance as to receive a separate name. It is called the " sinusoid."

Since the motion of the describing point is not limited to one com-

plete revolution, it may continue indefinitely. The part drawn is

one complete portion and any addition is but the repetition of the

same moved along the axial length of the curve. The proportions

of the curve may vary between wide limits depending on the rela-

tive size of the radius of the cylinder to the axial movement for one

revolution. This axial distance is known as the "pitch" of the

helix.

In Fig. 46 the pitch is about three times the radius of the helix.

In Fig. 47, a short-pitch helix is represented, the pitch being about

| the radius, and a number of complete rotations being shown.

The proportions of the helix depends therefore on the radius and

on the pitch. To execute a drawing, such as Fig. 46, describe first

the view of the helix which is a circle. Divide the circumference

into any number of equal parts (12 or 24 usually). From these

points of division project lines to the other view or views. Divide

the pitch into the same number of equal parts, and draw lines per-

pendicular to those already drawn. Pass a smooth curve through
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the points of intersection of these lines, forming the continuous

diagonal. In Figs. 45 and 46 the helix is a "right-hand helix/'

The upper part of Fig. 47 shows a left-hand helix, the motion of

rotation being reversed, or from 12 to 11 to 10, etc. The ordinary"

Fig. 46

screw thread used in machinery is a very short-pitched right-hand

helix. It is so short indeed that it is customary to represent the

curve by a straight line passing through those points which would

be o-iven if the construction were reduced to dividing the circum-



Curved Lines 59

ference and the pitch into 2 equal parts. This is shown in the

lower part of Fig. 47, where only the points 0, 6 and 12 have heen

used.

The concealed portion of the helix is then omitted entirely, no

broken line for the hidden part being allowed by good practice.

56. The Curved Line in Space.—A curve in space may some-

times be required, one which follows no known mathematical law,

but which passes through certain points given by their coordinates.

For example, in Fig. 48, four points, A (12,1,9), B (5,4,6),

Fig. 48.

C (2,4,4) and D (2,5,1), were taken as given and a "smooth
curve," the most natural and easy curve possible, has been passed

through them. It is fairly easy to pass smooth curves through the

projections of the 4 points on each reference plane, but it is essen-

tial that not only should the original points obey the laws of pro-

jection of Art. 11, but every intermediate point as well. The
views must check therefore point by point and the process of trac-

ing the curve must be carried out about as follows : The projec-

tions of the 4 points on V and S are seen to be more evenly ex-

tended than those on ff, and smooth curves are made to pass

through them by careful fitting with the draftsman's curves. The
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view on £5 cannot now be put in at random, but must be constructed

to correspond to the other views. To fill in the wide gap between

A h and Bh an intermediate point is taken, as Ev on A VBV . By a

horizontal line E s is defined. From E v and E s the ff projection

(En) is plotted by the regular method of checking the projections

of a point. As many such intermediate points may be taken as may
seem necessary in each case.

To define the sharp turn on the curve between Cn and D h , one

or more extra points, as Ft, should be plotted from the V and S
projections. Thus every poorly defined part is made definite and

the views of the line mutually check. The work of " la}ring out "

the lines of a ship on the " mold-loft floor " of a shipbuilding plant

is of this kind, with the exception that the curves are chiefly plane

curves, not curves in space.

Problems V.

(For blackboard or cross-section paper.)

50. Make the descriptive drawing of a circle lying in a plane

parallel to S, center at C (3, 6, 7) and radius 5.

51. Make the descriptive drawing of a circle lying in a plane

perpendicular to V? making an angle of 45° with ff (the trace in

H passing through the points (18,0,0), and (0,0,18)). The

center of the circle is at C (9, G, 9), and the radius is 5. (Make

the V projection first, then a projection on an auxiliary plane \J.

From these views construct the If-fl
and S projections, using 8 or 9

points.

52. Make the descriptive drawing of a circle in a plane perpen-

dicular to ff, the trace in ff passing through the points (12, 0, 0)

and (0,16,0). The center is at (6,8,10) and the radius 8.

(Draw plan and auxiliary view showing true shape first, and from

those views construct projections on V an(i S-)

53. An ellipse lies in a plane passing through the axis of Y,

making angles of 45° with ff and S- The ff projection is a circle,

center at (10, 10, 0) and radius 8. Prove that the S projection is

also a circle and find the true shape of the ellipse by revolving the

plane of the ellipse into the plane ff.
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54. An ellipse lies in a plane passing through the axis of Y,

making an angle of 60° with Jfl and 30° with g.' The H projec-

tion is a circle., center at (8, 8., 0), radius 6. Find the true shape

of the ellipse. Construct the view on § by projecting points for

center and for the extremities of the axes of the ellipse. Pass a

draftsman's ellipse through those points. Show that no appreci-

able error can be observed.

55. Construct a draftsman's ellipse, on accurate cross-section or

coordinate paper, with major axis 24 units, and minor axis 12 units.

Perform the accurate plotting of the true ellipse on the same axes

by the method of Fig. 43, using 6 divisions for BE and EC. Note

the degree of accuracy of the approximate process.

56. On coordinate paper, plot an ellipse by the method of Fig.

43, the major axis being 16 units long and the minor axis 8 units.

Plot another ellipse whose major axis is 18 and whose minor axis

is 12. (To divide the semi-minor axis of 6 units into 4 equal parts,

use points of division on the vertical line CE instead of OD. OE
being twice as far from A as OD, 12 units must be used for the

whole length, and these divided into 4 parts.

)

57. On isometric paper pick out a rhombus like the top of Fig.

19, but having 8 units on each side. Inscribe an ellipse by plotting

by the method of Fig. 44.

58. Make the descriptive drawing of a helix whose axis is per-

pendicular to g through the point (0,7,7). The pitch of the

helix is 12, and the initial point is (2, 5, 2). Draw the H and V
projections of a right-hand helix, numbering the points in logical

order.

59. Connect the 4 points A (10, 8, 10), B (8, 10, 6), C (6, 9, 4)

and D (2, 2, 4) by a smooth curve, filling out poorly defined por-

tions in 5 from the ff and V projections.



CHAPTER VI.

CURVED SURFACES AND THEIR ELEMENTS.

57. Lines Representing Curved Surfaces.—To represent solids

having curved surfaces, it is not enough to represent the actual

corners or edges only. Hitherto only edges have appeared on de-

scriptive drawings, and it has been a feature of the drawings that

every point represented on one projection must be represented on

the other projections, the relation between projections being strictly

according to rule. ATe now come to a class of lines which do not

appear on all three views, lines due to the curvature of the surfaces.

The general principle, called the " Principle of Tangent Projec-

tors/' governing this new class of lines is as follows : In projecting

a curved surface to a given plane of projection (by perpendicular

projectors, of course) all points, and only those points, whose pro-

jectors are tangent to the curved surface should be projected. A
good illustration of this principle is shown in Fig. 45, where the

cylinder is projected upon the plane of projection. The top and

bottom bases are edges, and project under the ordinary rules, but

along the straight line 0, 1, 2, . . . ., 12 the curved surface of the

cylinder is itself perpendicular to the plane of projection. If from

any point on this line a projector is drawn to the plane of projection

(as is shown in the figure for the points 1, 2, 3, etc.), this projector

is tangent to the cylinder. The whole line therefore projects to

the plane of projection. The projection of the cylinder on a plane

parallel to its axis is therefore a rectangle, two of its sides repre-

senting the circular bases and the two other edges representing the

curved sides of the cylinder.

58. The Right Circular Cylinder.—The complete descriptive

drawing of a cylinder is therefore as shown in Fig. 49. This cylin-

der is a right circular cylinder. Mathematicians consider that the

cylinder is " generated " by revolving the line AA' about PP', the

axis of the cylinder. The generating line in any particular posi-
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tion is called an " element " of the surface. Thus AA! , BB'', CC,

etc., are elements.

When the cylinder is projected upon V, AA' and CC are the

elements which appear in V because the V projectors of all points

along those lines are tangent to the cylinder, as can be seen from

the view on ff. The elements which are represented by lines on

S are BB' and DD'.

The right circular cylinder may also be considered as generated

by moving a circle along an axis perpendicular to its own plane

through its center.

Fig. 50.

In Fig. 45 consider the top base of the cylinder to be moved

down the cylinder. Each successive position of the circle is a " cir-

cular . element " of the cylinder. The circles through the points

1, 2, 3, etc., are simply circular elements of the cylinder taken at.

equal distances apart.

59. The Inclined Circular Cylinder.—Fig. 50 shows an inclined

circular cylinder. It has circular and straight line elements as

before, though it cannot be generated by revolving a line about

another at a fixed distance, but can be generated by moving the

circle ABCD obliquely to A'B'CD', the center moving on the axis

PP'. The straight elements are all parallel to the axis. The cross-

section of a cylinder is a section taken perpendicular to the axis.
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In this case the cross-section is an ellipse, and for this reason the

Inclined Circular Cylinder is sometimes called the Elliptical Cyl-

inder.

60. Straight and Inclined Circular Cones.—If a generating line

AP, Fig. 51, meets an axis PP' at a point P, and is revolved about

it, it vill generate a Straight Circular Cone. The cone has both

straight and circular elements, the circular elements increasing in

size as they recede from the vertex P. The base ABCD is one of

the elements.

The Inclined Circular Cone (Fig. 52) has straight and circular

elements, but it is not generated b}r revolving a line about the axis.

The circular elements move obliquely along the axis PP' and in-

crease uniformly as they recede from the vertex P.

61. The Sphere.—The Sphere can be generated by revolving a

semicircle about a diameter. Each point generates a circle, the

radii of the circles for successive points having values varying

between and the radius of the sphere. Since the sphere can be

generated by using any diameter as an axis, the number of ways in

which the surface can be divided into circular elements is infinite.

62. Surfaces of Revolution.—In general, any Hue, straight or

curved, may be revolved about an axis, thus creating a surface of

revolution. Every point on the "generating line" creates a "cir-
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cular element " of the surface, and the plane of each circular ele-

ment is perpendicular to the axis of the surface.

The straight circular cylinder is a simple case of the general

class of surfaces of revolution. To generate it a straight line is

revolved about a parallel straight line. The different points of the

generating line create the circular elements of the cylinder, and

Fig. 54.

the different positions of the generating line mark the straight ele-

ments. The cone and the sphere are also surfaces of revolution, as

they are generated by revolving a line about an axis.

If a circle be revolved about an axis in its own plane, but en-

tirely exterior to the circle, a solid, called an "anchor ring," is

generated. A small portion of this surface, part of its inner surface,

is often spoken of as a "bell-shaped surface," from its similarity

to the flaring edge of a bell.

Any curved line may create a surface of revolution, but in de-
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signs of machinery lines made up of parts of circles and straight

lines are most frequently used. Figs. 53 and 54 show two exam-

ples which illustrate well the application of the Principle of Tan-

gent Projectors. The generating line is emphasized and the cen-

ters of the various arcs are marked.

Any angular point on the generating line, as a (Fig. 53), creates

a circular edge on the surface. This edge appears as a circle on the

plan (as ad onfi), and as a straight line, equal to the diameter,

on the elevation (as aa! on V)- See also the point h (Fig. 54).

In addition, any portion of the generating line which is perpen-

dicular to the axis, as 1) (Fig. 53), even if for an infinitely short

distance onl}r

? creates a line on the side view, as W on V? but no

corresponding circle on H. A V projector from any point on the

circular element created by the point b is tangent to the surface,

and therefore creates a point on the drawing, but an ff projector

is not tangent to the surface, e is a similar point, and so also is

/ of Fig. 54.

Any point, as c, Fig. 53, where the generating line is parallel to

the axis for a finite, or for an infinitely small distance, generates

a circular element, from every point of which the H projectors are

tangent to the surface, but the V projectors are not. A circle cc'

appears, therefore, on the plan for this element of the surface of

revolution, but no straight line on the side view, d is a similar

point, as are also / and g, on Fig. 54. •

63. The Helicoidal Surface.—If a line, straight or curved, is

made to revolve uniformly about an axis and move uniformly along

the axis at the same time, every point in the line will generate a

helix of the same pitch. The surface swept up is called a Heli-

coidal Surface.

The generating line chosen is usually a straight line intersecting

the axis. The surfaces used for screw threads are nearly all of

this kind. Fig. 55 gives an example of a sharp V-threaded screw,

the two surfaces of the thread having been generated by lines in-

clined at an angle of 60° to the axis. Fig. 56 shows a square

thread, the generating lines of the two helicoidal surfaces being

perpendicular to the axis. Any particular position of the straight

line is a " straight element " of the helicoidal surface.
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64. Elementary Intersections.—In executing drawings of ma-

chinery it is often necessary to determine the line of intersection of

two surfaces, plane or curved. The simplest lines of intersection

are such as coincide with elements of a curved surface. They may

Fig. 55. Fig. 56.

be called " Elementary Intersections." An elementary intersection

may arise when a curved surface is intersected by a plane, so placed

as to bear some simple relation to the surface itself.

In Fig. 49, any plane perpendicular to the axis of the cylinder

intersects it in a circular element of the cylinder, and any plane

parallel to the axis of the cylinder (or containing it) intersects
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it (if it intersects it at all) in two straight line elements of the

cylinder.

In Fig. 50 any plane parallel to the base of the cylinder inter-

sects it in a circular element and any plane parallel to the axis,

or containing it, intersects it in straight elements of the cylinder.

In Fig. 51 or 52 any plane parallel to the base of the cone inter-

sects it in a circular element, and any plane containing the vertex

of the cone (if it intersects at all) intersects the cone in straight

elements.

In Fig. 53 or 54 any plane perpendicular to the axis of the sur-

face of revolution intersects it in a circular element.

In Fig. 55 or 56 any plane containing the axis of the screw inter-

sects the helicoidal surfaces in straight elements. The plane per-

pendicular to J-fl, cutting H in a trace PQ, and cutting V in a

trace QR, cuts the helicoidal surfaces at each convolution in straight

elements. Only ab and a'b are marked on the figure.

Problems VI.

(For blackboard or cross-section paper or wire-mesh cage.)

60. Draw the projections of a cylinder whose axis is P (6,2,6),

P' (6, 16. 6), and radius 5. Draw the intersection of this cylinder

with a plane parallel to ff, at 4 units from ff y
and with a plane

parallel to V; 10 units from V-
61. An inclined circular cylinder has its bases parallel to S- Its

axis is P (2, 7, 7), P' (14, 7, 13). Its radius is 5. Draw the V
and S projections and the intersections with a plane parallel to S?

6 units from S> ancl with a plane parallel to V? 3 units from V*
62. Draw a cone with vertex at P (4,8,8), center of base at

P' (16,8,8), and radius 6, base-line in a plane parallel to S-

Draw the intersection with a plane parallel to S> 12 units from S>
and with a plane perpendicular to S? whose trace in 3 passes

through the points (0, 8, 8) and (0, 14, 0).

63. An oblique cone has its vertex at P (16, 8, 4), its base in a

plane parallel to ff, center at P' (8, 8, 16), and radius 5. Draw
the intersection with a plane parallel to ff, 12 units from jf-J, and

with a plane containing the axis and the point (16, 0, 16).
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64. A cone has an axis P (8,2,2), P' (8, 14, 10). Its base is in

a plane parallel to Y, 10 nnits from V and its radius is 6 units.

Draw the intersection with a plane containing the vertex and the

points (0, 14, 12) and (16, 14, 12).

65. A surface of revolution is formed by revolving a circle whose

center is at (12, 8, 8) and radius 3 units, lying in a plane parallel

to V; about an axis perpendicular to ff at the point (8, 8, 0). It

is cut by a plane parallel to H at a distance of 6 units from ff.

Draw the intersections.

66. A sphere has its center at (8, 8, 9) and radius 5 units.

Draw the intersection with a cylinder whose axis is P (8,8,0),

P' (8, 8, 16), and whose radius is 4 units, its bases being planes

perpendicular to its axis.

67. A sphere has its center at (8, 8, 8) and radius 5 units. Find

its intersection with a cone whose vertex is P (0, 8, 9), center of

base is (16, 8, 8), and radius of base 6 units, the base being in a

plane S' parallel to g.

68. In Fig. 53 let the generating line Pabode be revolved about

ee' as an axis. Assume any dimension for the line and draw the

V and S projections of the surface of revolution thus formed.

Draw the intersection with a plane parallel to S just to the right

of d.

69. In Fig. 54 let the generating line Pfgh be revolved about

Till' as an axis. Assume any dimensions for the line and draw the

V and g projections of the surface of revolution formed.
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INTERSECTIONS OF CURVED SURFACES.

65. The Method of the Intersection of the Intersections.—The

determination of the line of intersection of two curved surfaces (or

of a curved surface and a plane), when not an " Elementary Inter-

section," is of much greater difficulty and requires a clear under-

standing of the nature of the curved surfaces themselves, and some

little ingenuity in applying general principles.

The method generally relied upon for the solution is the use of

auxiliary intersecting, planes so chosen as to cut elementary inter-

sections with each of the given surfaces. These elementary inter-

sections are drawn and the points of intersection of the intersec-

tions are identified and recorded as points on the required line of

intersection. This method is spoken of as " finding the intersec-

tion of the intersections." When a number of auxiliary planes

have been used in this way, a smooth curve is passed through the

points on the required intersection of the surfaces, as described in

Art. 55. It should not be necessary, however, to interpolate points

to fill out gaps as was done in Fig. 48 for E and F. This can be

done better by the use of more auxiliary intersecting planes. Ex-

amples of this method will make it clear.

66. An Inclined Circular Cylinder Cut by an Inclined Plane.—
In Fig. 57 an inclined cylinder, axis PP'', is cut by a plane perpen-

dicular to V; and inclined to fff. The traces of this plane are I

J

in H, JK in V, and XL in g.

It is an Inclined Plane (see Art. 19), not an Oblique Plane.

Having the descriptive drawing of the cylinder and the traces of

the plane given, the problem is to draw the line of intersection of

the surfaces. It is well-known that in this case the line of inter-

section is an ellipse, but the method of determining it permits the

ellipse to be plotted whether it is recognized as such or not. No
use is to be made of previous knowledge of the nature of the curve
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of intersection of any of the cases treated in this and the next

chapter.

Two variations of the method are applicable in this case. In the

first method, auxiliary intersecting planes may be taken parallel to

the axis of the cylinder. The simplest method of doing this is to

take auxiliary planes parallel to V, since the axis itself is parallel

to V- Let R'R be the trace on ff, and RR" the trace on 5 of a

plane parallel to V- We may call this plane simply " R."

Let e and / be the points where R'R cuts the top base of the cyl-

inder. Project these points from ff to V an(i in V draw ee' and

ff parallel to PP'. These straight elements of the cylinder are the

lines of intersection of the auxiliary plane with the cylinder. As

a check on the work, e' and /', where R'R in ff cuts the bottom

base of the cylinder, should project vertically to e' and f in V-
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The auxiliary plane cute the given plane JK in a line of inter-

section Avhose projection on V coincides with JK itself.

The points j and Tc, where ee and ff intersect JK, are the " inter-

sections of the intersections/' and are therefore points on the line

of intersection of the cylinder and the plane K. Project / and Tc

to R'R on ff and to RR" on g. These are points on the required

curves in Iff and S- By extending in ff the projecting lines of

j and Tc as far above the axis PP' as j and Tc are below it, /' and Tc',

points on the upper half of the cylinder, symmetrical with / and Tc

on the lower half, are found. The construction is equivalent to

passing a second auxiliary plane parallel to PP' at the same dis-

tance from PP' as R, but on the other side.

By passing a number of planes similar to R, a sufficient number

of points are located to define accurately the ellipse abed in fff

andg.
The true shape of this ellipse is shown in \J, a plane parallel to

JK, at any convenient distance. In the example chosen, the plane

JK has been taken perpendicular to PP', so that the ellipse abed is

the true cross-section of the cylinder. Nothing in the method de-

pends on this fact and it is perfectly general and applicable to any

inclined plane.

A variation may be made by passing the auxiliary planes per-

pendicular to V and parallel to PP'. ee' in V may be taken as the

trace of such a plane. The intersections of this auxiliary with both

surfaces should be traced and the intersection of the intersections

identified and recorded as a point of the curve required. j and f
are the points thus found. This method indeed requires the same

construction lines as before, but gives a different explanation to

them.

67. A Second Method Using Circular Elements of the Cylinder.—
A plane parallel to the base of the cylinder and therefore, in this

case, parallel to Iff;, will cut the cylinder in a line of intersection

which is one of the circular elements of the cylinder. Let T'T and

TT", in Fig. 58, be the traces of a plane " T " parallel to H- The

axis of the cylinder PP' pierces the plane T at p. p is therefore

the center of the circle of intersection of the auxiliary plane T with

the cylinder. Project p to H, and using p as a center and with a

radius equal to pt, describe the circle as shown.
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The planes T and JK are both perpendicular to V °r " seen on

edge " in V- Their line of intersection is therefore perpendicular

to \, or is " seen on end " in V> as the point j. Project j to ff,

where it appears as the line jf. This line is the intersection of the

two planes.

The points / and j', where this line of intersection jf meets the

circular intersection whose center is at p, are the " intersections of

the intersections/*' and are points on the required curve.

N I

Planes like T, at various heights on the cylinder, determine pairs

of points on the curve of intersection on ff. From ff and V the

points may be plotted on 3 by the usual rules of projection, thus

completing the solution.

68. Singular or Critical Points.—It is nearly always found that

one or two points on the line of intersection may be projected di-

rectly from some one view to the others without new construction

lines. In this case a and c in V? Fig. 57, may be projected at once
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to ff and S« They correspond theoretically to points determined

by a central plane, cutting
fl-fl

in a trace PP'. & and d may also be

projected directly, as they correspond to planes whose traces in

H are BB' and DD\ These critical points should always be the

first points identified and recorded, though usually no explanation

will be given, as they should be obvious to any one who has grasped

the general method.

69. A Cone Intersected by an Inclined Plane.—Fig. 59 shows

the descriptive drawing of a right circular cone intersected by an

inclined plane whose traces are JK and XL. Two methods of solu-

tion are shown.

A plane B, containing the axis BP', and therefore perpendicular

to ff, is shown by its traces B'B and BB". It intersects the cone

in the elements Bj and Bl\ From f\ project these points j and h

to V? and draw the elements in V- The V projection of the inter-

section of B with the plane JK is the line JK, and the points e and

f are the intersections of the intersections, e and f are now pro-
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jected to the plan, where they necessarily lie on the line RR" . Sym-

metrical points e' and f are also plotted and all four points trans-

ferred to the side elevation.

A plane T perpendicular to the axis PP' whose traces are T'T

and TT" may be used instead of R. Its intersection with the cone

is a circle, seen on edge in the front elevation as the line lili'. Its

center is g, and radius is gh. Draw this circle in the plan. The

Fig. 60.

intersection of T with the plane JK is a line, seen on end, as the

point f of the front elevation. Draw ff in ff as this line. The
points f and f are the intersections of the intersections.

70. Intersection of Two Cylinders.—Fig. 60 shows the inter-

section of two cylinders. Since they are right cylinders, and their

axes are at right angles, planes parallel to any one of the three

reference planes will cut only straight or circular elements of the

cylinders. By the solution, Fig. 60, auxiliary planes parallel to V
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have been chosen, the traces of one being R'R and BE". This plane

intersects the vertical cylinder in the lines IcW and W, and it inter-

sects the horizontal cylinder in the lines mm' and nn. The inter-

sections of these intersections are the points marked r.

If the axes of the cylinders do not meet but pass at right angles,

no new complication is introduced. If the axes of the cylinders

meet at an angle, and one or both cylinders are inclined, the choice

of methods may be greatly reduced, but one method is always pos-

sible. To discover it, try planes parallel to the axes of both cylm-

ders, or parallel to one axis and to one plane of reference; or in

some manner bearing a definite relation to the nature of the sur-

faces.

71. Intersection of a Cylinder and a Sphere.—In Fig. 61 a

sphere is intersected by a cylinder, whose axis PP' does not pass

through the center of the sphere at Q. In the solution, Fig. 61,
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auxiliary planes parallel to V have been chosen, the traces of one of

them being R'R and RR" . The plane R cuts the sphere in a circle

whose diameter is eg, as given by the plan. This circle is described

in V- The intersections of this circle with the elements of the

cylinder hlc' and IV are the points marked r, points on the required

curve of intersection.

In this case the points are first determined on .the front elevation

and then projected to the side elevation. Solutions by planes par-

allel to Iff or to S may be made, requiring however different con-

struction lines.

B
/

Tp ' 5
s

Fig. 62.

72. Intersection of a Cone and a Cylinder: Axes Intersecting.—
In Fig. 62 a cone and a cylinder intersect at right angles. The
solution chosen is by horizontal planes, as T.

An alternate solution is by planes perpendicular to S> an(i con-

taining the point P. The planes must cut both surfaces, and their

traces, where seen on edge, as PR, Fig. 62, must cut the projections

of both surfaces. These two solutions hold good even if the axes

do not meet but pass each other at right angles.
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If the axes are not at right angles, modifications must be made,

and the search for a system of planes making elementary intersec-

tions with both surfaces requires some ingenuity and thought.

73. Intersection of a Cone and Cylinder: Axes Parallel.—

A

simple case is shown in Fig. 63. Two methods of solution are avail-

able. In one, horizontal planes are used. Each plane, such as T,

Fig. 63.

makes circular intersections, with both cone and cylinder, the inter-

sections intersecting at points t and t. A second method is by

planes perpendicular to ftf, containing the axis PP' . One plane
" R " is shown by its traces R'R in fff and RR" in g, this plane

being taken so as to give the same point t on the curve and another

point f. In the execution of drawings of this class it is natural to

take the auxiliary planes at regular intervals if the planes are

parallel to each other, or at equal angles if the planes radiate from

a central axis.
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Problems VII.

70. An inclined cylinder has one base in ff and one in a plane

parallel to H- Its axis is P (11,8,0), P' (5,8,16). Its radius is

4 units. It is intersected by a plane perpendicular to V> its trace

passing through the points (5,0,0) and (11,0,16). Draw the

three projections and show one intersecting auxiliary plane by con-

struction lines.

71. A cone has its vertex in ff at (6,6,0) and its base in a

plane parallel to ff, center at (6, 6, 12), and radius 5. It is inter-

sected by a plane containing the axis of Y and making angles of

45° with ff and S- Draw the projections.

72. A cone has its vertex at (2, 14, 16) and its base is a circle

in 5i, center at (8, 8, 0), and radius 6. Find its intersection with

a vertical plane 4 units from S-

73. A right circular cylinder has its base in S> center at (0, 8, 8),

and radius 4. Its axis is 16 units long. Another right cylinder

has its base in ff, center at (8, 8, 0), radius 5, and axis 16 units

long. Draw their lines of intersection, the smaller cylinder being

supposed to pierce the larger.

74. A right circular cylinder has its base in S, center at (0, 7, 8),

and radius 4. Its axis is 16 units long. Another right cylinder

has its base in H, center at (8, 9, 0), radius 5, and axis 16 units

long. Draw their line of intersection, the smaller cylinder being

supposed to pierce the larger.

75. Two inclined circular cylinders of 3 units' radius have their

bases in ff and in fi' (16 units from ]fi). The axis of one is

P (4,8,0), P' (12,8,16), and of the other is Q (12,8,0),
Q' (4,8,16). Prove that their line of intersection consists of a

circle in a plane parallel to H and an ellipse in a plane parallel

to g.

76. A sphere has its center at (8, 9, 8), and radius 6 units. A
vertical right circular cylinder has its top base in ff, center at

(8, 6, 0), radius 4, and length 16 units. Find the intersections of

the surfaces.

77. A right circular cylinder, axis P (0,8,9), P' (16,8,9),
radius 5, is pierced by a right circular cone. The base of the cone
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is in a plane 16 units from ff, center at Q (8, 18, 16), and radius

6. The vertex of the cone is at Q (8, 8, 0) . Find the lines of inter-

section.

78. An inclined cylinder has an oblique line P (0,11,5),

P' (16, 5, 11) for its avis. The radius of the circular base is 4

units and the planes of the bases are g, and g' parallel to g at 16

units* distance. The cylinder is cut by a plane parallel to V at 7

units' distance from V- Draw the three projections of the cylinder

and the line of intersection.

79. An inclined cylinder has an oblique line P (0,11,5),

P' (16, 5, 11) for its axis. The radius of the circular base is 4

units, and the planes of the bases are g and g' parallel to g at 16

units' distance. The cylinder is cut by a plane perpendicular to

V- its trace passing through the points (2.0,0) and (14.0,16).

Drav the three projections.



CHAPTER VIII.

INTERSECTIONS OF CURVED SURFACES; CONTINUED.

74. Intersection of a Surface of Revolution and an Inclined

Plane.—In Figs. 64 and 65 a surface of revolution is shown. It is

Fig. 64. Fig. 65.

cut by an inclined plane perpendicular to H in the first case, and

by one perpendicular to V in the second case. The planes are

given by their traces, and the problem is to find the curves of inter-

section. Both solutions make use of cutting planes perpendicular

to PP', the axis of revolution of the curved surface.
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In Fig. 64 a plane T, taken at ^ ill perpendicular to PP', cuts

the surface of revolution in a circular element seen as the straight

line at' in V- a is projected to H and the circle ait' drawn. The
inclined plane whose traces are JK and KL is intersected bv the

plane Tina line whose horizontal projection is the line KL itself.

t and f (on H) are therefore the intersections of the intersections

and are projected to the front elevation, giving points on the re-

quired line of intersection. A system of planes such as T defines

points enQugh to fully determine the curve, mtt'n.

In Fig. 65 the given plane has the traces IX and XZ. The plane

T intersects the surface of revolution on the circle atcf. and it

-V

intersects the plane in the line W, seen on end in V as the point t.

t and t' in ff are points on the required curve of intersection, mtt'n.

The point of this surface of revolution APC has been given a

special name. It is an " ogival point."' The generating line AP
is an arc of 60°, center at C, and conversely the generating line PC
has its center at A. The shell used in ordnance is usually a long

cylinder with an ogival point. A double ogival surface is produced

by revolving an arc of 120° about its chord.

75. Intersection of Two Surfaces of Eevolution: Axes Par-

allel.—This problem is illustrated in Fig. 66, where two surfaces of
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revolution are shown. A horizontal plane T cuts both surfaces in

circular elements. These elements are drawn in ff as circles abed

and efgli. t and t' are the intersections of the intersections. From

H t and if are projected to V and g. The problem in Art. 73 is

but a special case of this general problem. In addition to the solu-

tion by horizontal planes another solution is there possible, due to

special properties of the cone and cylinder.

V *

?^k
\{\ i 11

11 j

67.

76. Intersection of Two Surfaces of Revolution: Axes In-

tersecting.—An example of two surfaces of revolution whose axes

intersect is given by Fig. 67. A surface is formed by the revolution

of the curve ww' about the vertical axis PP', and another surface

by revolving the curve uQ about the horizontal axis QQ'. The in-

tersection of the axes PP' and QQ' is the point p. The peculiarity
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of this case is that no plane can cut both surfaces in circular ele-

ments. However, a sphere described with the point of intersection

of the axes as a center, if of proper size, will intersect both surfaces

in circular elements. V is parallel to both axes and on this pro-

jection a circle is described with p as center representing a sphere.

The radius is chosen at will. To keep the drawing clear, this

sphere has not been described on plan or front elevation, as it would

be quite superfluous in those views.

The sphere has the peculiarity that it is a surface of revolution,

using any diameter as an axis. The curve ww' and the semicircle

mabn are in the same plane with the axis PP'. When both axes

are revolved about PP', a and b, their points of intersection, gene-

rate circular elements, which are common to the sphere and to the

vertical surface of revolution. Therefore, these circles are the in-

tersections of the sphere and the vertical surface. The ff and S
projections of these circles are next drawn.

The curve uQ and the semicircle qcdr are in the same plane with

the axis QQ'. Yfhen both axes are revolved about QQ' , their inter-

sections, c and d, generate circles which are common to both sur-

faces, or are their lines of intersection. The circle generated by c

is drawn in ff and S? but that generated by d is not needed.

The three circles aa' , bb'', and cc' appear as straight lines on V>
but from them the points t and s, the intersections of the intersec-

tions, are determined. These are points on the required curve in

v.
The circle aa! appears as a circle ata't' in ff, and as a line W

in S- The circle cc' appears as a circle ctc't' in S; and as a line ee'

in ftf. These circles intersect in H at t and f, and in g at t and t'

and s and s'. These are points on the required curves in
fl-fl

and S-

For the complete solution, a number of auxiliary spheres, differ-

ing slightly in radius, must be used.

77. Intersection of a Cone and a Non-Circular Cylinder.—

A

non-circular cylinder is a surface created by a line which moves

always parallel to itself, being guided by a curve lying in a plane

perpendicular to the generating line. This curve, called the direc-

trix, is usually a closed curve. The cross-section of such a cylinder

is everywhere similar to the directrix.
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This fact may be utilized to advantage in some cases. In Fig.

68, an oblique cone and a non-circular cylinder intersect. The

directrix of the cylinder is a pointed oval curve, abed in ff. Hori-

zontal planes, as T'T, intersect the cylinder in a curve identical in

shape with its directrix, so that its projection on ff coincides with

the projection of the directrix on ff. The intersection with the

cone is a circle, mt'tn, and the intersections of the intersections are

the points t.

78. Alteration of a Curve of Intersection by a Fillet.—In Fig.

69 a hollow cone and a non-circular cylinder, abed in ffl, intersect.

On the left half the unmodified curve of intersection is traced by

the method of the preceding article, no construction lines being

shown however, as the case is very simple. On the right half the

curve is modified by a fillet or small arc of a circle which fills in

the angular groove. The fillet whose center is at g modifies that

point of the line of intersection marked c. The top of the circular

arc marks the point where an ff or § projector is tangent to the

surface.

7
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The corresponding crest to the fillet at other positions on the

curve of intersection is traced as follows : If a line drawn through

A- and parallel to PG, the generating line of the cone, is used as

a new generator it will by its rotation about PP' create a new

cone, on the surface of which the required line of the crests of the

Fig. 69.

fillets must lie. If a line mn, parallel to cc', the generating line of

the cylinder, is moved parallel to cc', and at a constant distance

from the surface of the non-circular cylinder, it will generate a

new non-circular cylinder on the surface of which the required

path of the point h must lie. The directrix of this new cylinder is

drawn in f\, the line rms, as shown. The intersection of these two
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Fig. 70.
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new surfaces, found by the method used above (or by planes per-

pendicular to ff through the axis PP'), is the required path of k

or the line which appears on V and S- The line rms, representing

the same path on ff, is not properly a line of the drawing and is

not inked except as a construction line.

79. Intersection of a Helicoidal Surface and a Plane.—In Fig.

70 there is shown a long-pitched screw having a triple thread, such

as is often employed for a " worm." To the left is shown a partial

longitudinal section giving the generating lines. In V the con-

cealed parts of the helical edges are omitted, except in the cases of

one of the smaller and one of the larger edges. The plane whose

trace on V is KL is perpendicular to the axis, and terminates the

screw threads. The intersection of this plane with the screw

threads is the curve of intersection to be drawn on fi. It is deter-

mined by passing planes containing the axis of the worm. One of

these is shown by its traces PR and RR'.

From points a and & in the plan corresponding points are plotted

on the front elevation, a falling on the helix of small diameter

(extended in this case), and & on the helix of large diameter. This

element ab of the helix is seen to pierce the plane KL at 1c. This

point Tc is projected to the plan and is one of the points on the

required curve mien.

Problems VIII.

(For units, use inches on blackboard or wire-mesh cage, or small

squares on cross-section paper.)

80. An anchor-ring is formed by revolving a circle of 6 units'

diameter about a vertical axis, so that its center moves in a circle

of 10 units' diameter, center at Q (8,8,8). The anchor-ring is

intersected by a plane parallel to V through the point A (8, 6, 8)

and by another plane parallel to V through the point B (8, 4, 8).

Draw the projections of the ring, the traces of the planes and the

lines of intersection.

81. The same anchor-ring is intersected by a plane perpendicu-

lar to V, having a trace passing through the points C (0, 0, 2) and

D (8, 0, 8). Make the descriptive drawing and show the true shape

of the lines of intersection.
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82. The same anchor-ring is intersected by a right circular

cylinder, axis P (12,8,0), P' (12, 8, 16), and diameter of 4 units.

Make the descriptive drawing of the anchor-ring, imagining it to

be pierced by the cylinder.

83. An anchor-ring has an axis P (0,8,8), P' (16,8,8). Its

center moves in a plane 10 units from S describing a circle of 8

units' diameter. The radius of the describing circle is 3 units. It

is intersected by an ogival point whose axis is a vertical line

Q (7, 8, 3£), Q' (7, 8, 16). The generating line of the ogival point

is an arc of 60°, with center at (0, 8, 16), and radius 14 units, so

that the point Q is the vertex and point Q' is the center of the circu-

lar base of 7 units' radius. The axes intersect at P (7, 8, 8) . Draw

the projections and the line of intersection, front and side eleva-

tions only.

84. The line P (4, 13, 8), P' (16, 8, 8) is the chord of an arc of

45°, whose radius is 13 units. The arc is the generating line of a

surface of revolution of which PP' is the axis. Draw the projection

on ff. Draw the end view on an auxiliary plane \] perpendicular

to PP', the trace of U on H intersecting OX at (16, 0, 0). The

surface is intersected by a plane perpendicular to ff and contain-

ing the line PP'. Draw the line of intersection in V-
85. The same surface is intersected by a plane perpendicular to

H whose trace in ff passes through the points (4, 10, 0) and

(16, 5, 0). Draw the line of intersection on V-
86. The line P (3, 8, 8), P' (13, 8, 8) is the chord of an arc of

60°, radius 10 units. It is the axis of revolution of a surface of

which the arc is the generating line. It is intersected by a right

circular cone having its vertex at Q (8, 8, 2), and center of base at

Q' (8, 8, 12), radius of base 6 units. Draw the line of intersection.

87. A non-circular cylinder has its straight elements, length 16

units, perpendicular to ff, passing through the points of a smooth

curve through the points A (14,6,0), B (12,4,0), O (10,4,0),

D (8, 5, 0), E (5, 8, 0), F (2, 13, 0). It is pierced by a cylinder

whose base is in V, whose axis is perpendicular to V at the point

(8,0,8), and whose radius is 5 units and length 14 units. Find

the line of intersection in K.



90 Exgixeerixg Descriptive Geometry

88. The line P (8, 8, 2), P (8, 8, 14) is the axis of a right cir-

cular cylinder of 6" diameter. Projecting from the cylinder is

an helicoidal surface, of 12 units' pitch, of which G (5, 8, 2),

Gr (1,8,2) is the generating line. The helicoid is intersected

by a plane perpendicular to fl-fl
whose trace in

fl-fl
passes through the

points (5,0,0) and (16,11,0). Draw the plan and front eleva-

tion of the cylinder and helicoid and plot the line of intersection

with the plane.

89. The helicoidal surface of Problem 87 is intersected by a right

circular cylinder whose axis Q (12. 8, 2). Q' (12. 8. 11) is parallel

to PP'. The radius of the cylinder is 3 units. Draw the line of

intersection.



CHAPTEE IX.

DEVELOPMENT OF CURVED SURFACES.

80. Meaning of Development as Applied to Curved Surfaces.—
Many curved surfaces may be developed on a plane in a manner

similar to the development of prisms and pyramids explained in

Articles 45 and 46. By development, is meant flattening out,

without stretching or otherwise distorting the surface. If a curved

surface is developed on a plane and this portion of the plane, called

" the development of the surface," is cut out, this development may

Fig. 71

be bent into the shape of the surface itself. The importance of

the process comes from the fact that many articles of sheet metal

are so made. If a sheet of paper is bent in the hands to any fan-

tastic shape, it will always be found that through every point of

the paper a straight line may be drawn on the surface in some one

direction, the greatest curvature of the surface at this point being

in a direction at right angles to this straight line element through
the point. The surfaces which can be formed by twisting a plane

surface without distortion are called surfaces of single curvature.

The curved surfaces, therefore, which are capable of development
are only those which are surfaces of single curvature and have
straight line elements, but not by anv means all of these. All forms
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of cylinders and cones, right circular, oblique circular, or non-

circular, ma}' be developed. The helicoidal surfaces, illustrated by

Figs. 55 and 56, though having straight elements, cannot be de-

veloped, nor can the hyperboloid of revolution, a surface generated

by revolving a straight line about a line not parallel nor intersect-

ing. Figs. 71 and 72 are perspective drawings showing the process

of rolling out or developing a right circular cylinder and a right

circular cone.

81. Rectification of the Arc of a Circle.—In developing curved

surfaces it frequently happens that the whole or part of the cir-

cumference of a circle is rolled out into a straight line. Since the

surface must not be stretched or compressed, the straight line must

be equal in length to the arc of the circle. This process of finding

a straight line equal to a given arc is called rectifying the arc. Xo

This angle not
to exceed 60

Fig. 73. Fig. 74.

absolutely exact method is possible, but methods are known which

are so nearly exact as to lead to no appreciable error. These have

the same 'practical value as if geometrically perfect.

In Fig. 73, AB is the arc of a circle, center at C. For accurate

work the arc should not exceed 60°. It is required to find a

straight line equal to the given arc. Draw AH, the tangent at one

extremit}', and draw AB, the chord. Bisect AB at D. Produce the

chord and set off AE equal to AD. With E as a center, and with

EB as a radius, describe the arc BE, meeting AH at F. Then

AF= arc AB, within one-tenth of one per cent.

In this figure, and in the two following ones, the arc and the

straight line equal to it are made extra heavy for emphasis.
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82. Rectifying a Semicircle.—A second method, applicable par-

ticularly to a semicircle, was recently devised by Mr. George Pierce.

In Fig. 74 the semicircle AFB is to be rectified. A tangent BC,

equal in length to the radius, is drawn at one extremity. Join AC,

cutting the circumference at D. Lay off DE—DC, and join BE,

producing BE to the circumference at F. Join AF. Then the

triangle AEF, shown lightly shaded, has its periphery equal to the

semicircle AFB, within one twenty-thousandth part. The peri-

phery may be conveniently spread into one line by using A and E
as centers, and with AF and EF as radii, swinging F to the left to

G and to the right to H on the line AF extended. GH is the recti-

fied length of the semicircle.

83. To Lay Off an Arc Equal to a Given Straight Line.—This

inverse problem, namely to lay off on a given circle an arc equal to

£ ,This anale. 7tot

V^i-Jo exceed 60°

La
AD B

Fig. 75.

a given straight line, frequently arises. In Fig. 75 a line AB is

given. It is required to find an arc of a given radius AC equal to

the given line AB. At A erect a perpendicular, making AC equal

to the given radius," and with C as a center describe the arc AF.
On AB, take the point D at one-fourth of the total distance from
A. With D as center and DB as a radius, draw the arc BF, meet-
ing AF at F. AF is the required arc, equal to AB.

This process is also accurate to one-tenth of one per cent if the

arc AF is not greater than 60°. If in the application of this process

to a particular case the arc AF is found to be greater than 60°, the

line AB should be divided into halves, thirds or quarters, and the

operation applied to the part instead of to the whole line.
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84. Development of a Straight Circular Cylinder.—In Fig. 60

let the intersecting cylinders represent a large sheet-iron ventilat-

ing pipe, with two smaller pipes entering it from either side. Such

a piece is called by pipe fitters a " cross/' The problem is to find

the shape of a flat sheet of metal which, when rolled up into a

cylinder, will form the surface of the vertical pipe, with the open-

ings already cut for the entrance of the smaller pipes. Before

developing the large cylinder, it must be considered as cut on the

straight element BB'. After the pipe is formed from the develop-

ment used as a pattern, the element BB' will be the location of a

longitudinal seam.

A rectangle, Fig. 76, is first drawn, the height BB' being equal

to the height of the cylinder and the horizontal length being equal

to the circumference of the base BCDA. (This leng-th may be best

found by Mr. Pierce's method, which gives the half-length, BD.)

On the drawing, Fig. 60, the base BCDA must be divided into

equal parts, 24 parts being usually taken, as they correspond to

arcs of 15°, which are easily and accurately constructed with the

draftsman's triangles. Only 6 of these 24 parts are required to be

actually marked on Fig. 60, as the figure is doubly symmetrical

and each quadrant is similar to the others. On Fig. 76 the line

BCDAB is divided into 24 parts also, the numbering of the lines

of division running from to 6 and back to for each half-length

of the development. In V of Fig. 60, draw the elements corre-

sponding to the points of division. The elemnt //' already drawn

corresponds to Xo. 4. and BB' and CC correspond to Xcs. and 6.

The others are not drawn in Fig. 60. to avoid complicating the

figure, but would have to be drawn in practice before constructing

the development. On the four elements which are numbered 4 on

the development. Fig. 76, lay off the distances //• equal to //• in

Fig. 60. On the two elements. Fig. 76, numbered 6, lay off Cc or

Aa equal to Cc of Fig. 60, and imagine the proper distances to be

laid off on elements numbered 3 and 5. Smooth curves through

the points thus plotted are the ovals which must be cut out of the

sheet of metal to give the proper-shaped openings for the small

pipes.

When it is known in advance that the surface of such a cvlinder
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as that in Fig. 60 must be developed, it is often possible to so

choose the system of auxiliary intersecting planes used to define

the curve of intersection as to give the required equally spaced

straight elements for the development.

The smaller cylinder may be developed in the same way. A new

system of equally spaced straight elements would probably have to

be chosen for this cylinder.

85. Development of a Right Circular Cone.—The cone of Fig.'

63 has been selected for this illustration. Imagine it to be cut on

the element PB and flattened into a plane. The surface takes the

Fig. 77.

form of a. sector of a circle, the radius of the sector being the slant

height of the cone (or length of the straight element), and the arc

of the sector being equal in length to the circumference of the base

of the cone. Several means of finding the length of the arc of the

sector are available.

The most natural method is to rectify the circumference of the

base and then, with the slant height as radius, to draw an arc and

to lay out on the arc a length equal to this rectified circumference.

In Fig. 63 suppose that the semi-circumference ABC (in M) has

been rectified by Pierce's method. In Fig. 77 let an arc be drawn

with radius PB equal to PB in 5, Fig. 63, and from B draw a

tangent BE equal to one-half the rectified length of the semi-cir-

cumference. Find the arc BO equal to BE by the method of Art.
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83, Fig. 75. BC is one-fourth of the required arc, and corresponds

to the quadrant BC in ff, Fig. 63. Divide the arc BC and the

quadrant BC into the same number of equal parts, numbering

them from to 6, if 6 parts are chosen. Eepeat the divisions in

the arc CD (equal to BC), numbering the points of division from

6 clown to 0, this duplication of numbers being due to the symmetry

of the H projection of Fig. 63, about the line ABC. In Fig. 63,

as in Fig. 77, the points to 6 are all supposed to be joined to P,

the only straight elements actually shown there being P0, P4, and

P6.

On the elements P4 of the development lay off the true length

of the line Pt (and the true length of the line Pt' also). Pt is an

oblique line, but if its \\ projector-plane (Pt in H? Fig. 63) be

revolved up to the position Pm, the point Hn V moves to m, and

Pm is the true length of Pt. The distance Pg (V, in Fig. 63) is

laid off on P6 of the development.

When the proper distances have been laid off on the elements

P2, P3 and P5, a smooth curve may be drawn through the points.

The sector, with this opening cut in it, is the pattern for forming

the cone out of sheet iron or any thin material.

If the ratio of PA to P'A in V- Fig. 63, can be exactly deter-

mined, the most accurate method of getting the angle of the sector is

by calculation, for the degrees of arc in the development are to the

degrees in the base of the cone (360°) as the radius of the base of

the cone is to the slant height. In this case P'A is f PA. The

sector in Fig. 75 subtends fx 360°, or 216°. In the use of this

method a good protractor is required to lay out the arc.

Problems IX.

90. Draw an arc of 60° with 10 units
7
radius. At one end draw

a tangent and on the tangent lay off a length equal to the given

line. On the tangent lay off a length of 8 units, and find the length

of arc equal to this distance.

91. An arc of 12 units
7
radius, one of 9 units7

radius, and a

straight line are all tangent at the same point. Find on the tan-

gent the straight line equal in length to 45° of the large arc. Find

the length on the other arc equal to this length on the tangent and

show that it is an arc of 60°.
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92. Kectify a semicircle of 10 units' radius and compare the

length with the calculated length, 31.4 units.

93. A rectangle 31.4 units by 12 units is the developed area of a

cylinder of 10 units' diameter. A diagonal line is drawn on the

development, which is then rolled into cylindrical form. Plot the

form taken by the diagonal and show that it is a helix of 12 units'

pitch.

94. A right circular cone has a base of 10 units' diameter, and

a vertical height of 12 units. Its slant height is 13 units. Calcu-

late the angle of the sector which is the developed surface of the

cone. Find this angle by rectifying the circumference of the cone,

and by finding the arc equal to the rectified length. (This last

operation must be performed on one-third or one-quarter of the

rectified length, to keep the accuracy within one-tenth of one per

cent.)

95. A semicircle, radius 10 units, is rolled up into a cone. What
is the radius of the base ? What is the slant height ? What is the

relation between the area of the curved surface of the cone and the

area of the base ?

96. A right circular cylinder, such as Fig. 49, is of 6.367 units'

diameter, and 12 units' height. It is intersected by a plane per-

pendicular to V through the points C and A'. Draw plan, front

elevation and the development of the surface.

97. A right circular cone, like that of Fig. 51, has its front ele-

vation an equilateral triangle, each side being 10 units in length.

From i„ a perpendicular is drawn to PVCV cutting it at E. If this

line represents a plane perpendicular to V? draw the development

of the cone with the line of intersection of the cone and plane traced

on the development.

98. A right circular cylinder, standing in a vertical position, as

in Fig. 49, diameter 7 units, and length 10 units, is pierced from

side to side by a square hole 3^ units on each edge, the axis of the

hole and the axis of the cylinder bisecting each other at right

angles. Draw the development of the surface.

99. A sheet of metal 22 units square with a hole 11 units square

cut out of its middle, the sides of the hole being parallel to the

edges of the sheet, is rolled up into a cylinder. Draw the plan,

front and side elevations of the cylinder.



CHAPTEK X.

STRAIGHT LINES OF UNLIMITED LENGTH AND THEIR

. TRACES.

86. Negative Coordinates.—TVe have dealt only with points hav-

ing positive or zero coordinates, and the lines and planes have been

V
>**ten<ied

limited in their extent, or, if infinite, have extended indefinitely

only in the positive directions. As it becomes necessary at times

to trace lines and planes in their course, no matter if they cross

the reference planes into new regions of space, the use and meaning

of negative coordinates must be explained. The value of the x

coordinate of a point is the length of the S projector or perpen-

dicular distance from the point to the side reference plane g. (See

Figs. G and 7, Art. 9.) If this value decreases gradually to zero,
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the point moves towards g until it lies in g itself. If this value

becomes negative, it is clear that the point crosses the side reference

plane into a space to the right of it.

For example, a point P, having a variable x coordinate, but hav-

ing its y coordinate always equal to 4 and its z coordinate equal to

2, is a point moving on a line parallel to the axis of X. If x de-

creases to zero, it is on g at the point marked Ps in Fig. 78. If

the x coordinate decreases further, reaching a. value of — 3, it

moves to the point P in that figure. Fig. 78 is the perspective

drawing of a point P ( — 3,4,2). The y and z projectors cannot

project the point P to Jf and V in their customary positions, but

H

X

V

M,ext.j\ E

and J>

\extended

X
* :tt

V.

Fig. 79. Fig.

[vp-

H
Yc X' e
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f %
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Fig. 81.

project it upon parts of those planes extended beyond the axes of

Y and Z , as shown. In Fig. 79, the corresponding descriptive

drawing, it must be understood that the plane H? extended, has

been revolved with \\, about the axis of X, into the plane of the

paper, V, and S has been revolved as usual about the axis of Z,

coming into coincidence with V, extended. This " development

"

of the planes of reference is exactly as described in Art. 7. It is

noticeable that the x coordinate of P is laid off to the right of the

origin instead of to the left. Ph lies, therefore, in the quadrant

which usually represents no plane of projection, and Pv lies in the

quadrant which usually represents S. Ps lies in its customary

place, since both y and z, the coordinates which alone appear in g,
are positive.
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It is evident that the laws of projection for f§, V an(l S> Art.

11, have not been altered, but simply extended. Ph and Pv are in

the same vertical line; Pv and Ps are in the same horizontal line;

and the construction which connects Ph and Ps still holds good.

In Fig. 79 the space marked g represents not only S but V
extended as well.

In Fig. 80 is represented a point P (3, —2, 3), having a negative

y coordinate. The point is in front of V> at 2 units' distance, not

behind V- The projection on ff, instead of being above the axis

of X a distancee of 2 units, is below it by the same amount. So also

the projection on S is to the left of the axis of Z, a distance of 2

units, instead of the the right of it. After developing the reference

planes in the manner of Art. 7, plane ff, extended, has come into

coincidence with V, and plane S? extended, has also come into co-

incidence with V- Thus the field representing V represents also

the other two reference planes, extended.

In Fig. 81 a point P (2,2,-3) having a negative z coordinate

is represented. The point is above ff 3 units, instead of below ff,

at the same perpendicular distance. P projects upon V on V
extended above the axis of X. After developing the reference

planes, plane ff comes into coincidence with V extended. Ps is

on S extended above the axis of Y, and therefore after develop-

ment it occupies the so-called " construction space."

Points having two or three negative coordinates may be dealt

with in the same manner, but are little likely to arise in practice.

It is evident that subscripts must be used invariably, to prevent

confusion whenever negative values are encountered.

87. Graphical Connection Between P and P 8 .—In Figs. 79, 80

and 81, Ph and P s are connected by a construction line PhfhfsPs in

a manner which is an extension of that shown by Fig. 7, Art. 9.

Note that the quadrant of a circle connecting P ;, and Ps must be

described always on the construction space or on the field devoted

to V; never on the fields devoted to ff or S-

88. Traces of a Line of Unlimited length, Parallel to an Axis.—
A straight line which has no limit to its length, but extends in-

definitely in either direction, must necessarily have some points

whose coordinates are negative. In passing from positive to nega-
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tive regions the line must pass through some plane of reference

(having one of its coordinates zero at that point);, and the point

where it pierces a plane of reference is called the trace of the line

on that plane of reference, the word trace being used to indicate a

" track " or print showing the passage of the line.

Lines parallel to the axes have been used freely already. An fl-J

projector is simply a vertical line or line parallel to the axis of Z.

Any perspective figure showing a point P and its horizontal pro-

jection Ph will serve as an illustration of this line, as PPh in Fig.

6, Art. 9.

Fig. 82.

Imagine PPi
x to be extended in both directions as an unlimited

straight line. Then Ph is the trace of the line on ff. In Fig. 7,

the point Ph itself is the
fl-fl

projection of the line. Pve, extended

in both directions, is the vertical projection and Psfs is the side

projection. Thus it is seen that a vertical line has but one trace,

that on the plane to which it is perpendicular. PPV may be taken

as an illustration of a line parallel to the axis of Y, and PPS of one

parallel to the axis of X. A better example of this latter case is

shown in Figs. 15 and 16, Art. 16. The line BAA S ,
perpendicular

to S, lias its trace on S at A s .
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89. Traces of an Inclined Straight Line.—An inclined line such

as AB in Figs. 82 and 83 pierces two reference planes as at A and

B, but as it is parallel to the third reference plane, g, it has no

trace on S- The peculiarity of the descriptive drawing of this line,

Fig. 83, is the apparent coincidence of the ff and V projections

as one vertical line. The g projection is required to determine the

traces A and B.

90. Traces of an Oblique Straight Line : The ff and V Traces.—

An oblique line, if unlimited in length, must pierce each of the

reference planes, since it is oblique to all three. Any line is com-

Fig. Fig. 85. Fig. 86. Fig. 87,

pletely defined when two points on the line are given. If two

traces of a straight line are given, the third trace cannot be assumed,

but must be constructed from the given conditions by geometrical

process. It will always be found that of the three traces of an

oblique line one trace at least has some negative coordinate.

As the complete relation between the three traces is somewhat

complicated, the relation between two traces, as, for instance, H
and V traces, must be considered first. Two cases are shown, the

first by Figs. 84 and 85, and the second by Figs. 86 and 87. The

line AB is the line whose traces are A (5,0,4) and B (2,4,0).

The line CD is the line whose traces are C (7, 0, 5) and D (2, 4, 0)

.



Lines of Unlimited Length: Their Traces 103

From the descriptive drawing of AB, Fig. 85, it is seen that the

ff projection of the line cuts the axis of X vertically above the

trace on V? and that the V projection cnts the axis of X vertically

nnder the trace on H- It may be noted that the two right triangles

A hBBv and BvAAn have the line A lx
Bv on the axis of X as their

common base. From the descriptive drawing of the line CD, Fig.

87, it is seen that the effect of the vertical trace C having a nega-

tive z coordinate simply puts C (on V) above Cn, instead of below it.

The two right triangles ChDDv and DvCCh have the line CnDv on

the axis of X, as their common base, but the latter triangle is above

the axis instead of in its normal position.

91. Traces of an Oblique Straight Line: The V and S Traces.—
Figs. 88 and 89 show two lines piercing V and S-
The line AB pierces V at A and g at B. The two right triangles

A SABV and BVBA S have their common base A SBV on the axis of Z.

The line CD pierces V at C and g extended at D, the point D
having a negative y coordinate. The right triangles CSCD V and

DVDC S have their base DVCS in common on the axis of Z, but in the

descriptive drawing DVDCS lies to the left of the axis of Z instead

of to the right, owing to the point D having a negative y coordinate.



104 Engineering Descriptive Geometry

92. Traces of an Oblique Straight Line : The ff and g Traces.—
Figs. 90 and 91 show two lines piercing ff and g.

The line AB pierces ]fi at A and g at B. The triangles A sABh

and BnBAs have their common base A sBn on the axis of Y, Fig. 90,

but in the descriptive drawing the duplication of the axis of Y
causes this base A sBn to separate into two separate bases, one on

OYh and one on OYs . Otherwise, there has been no change.

The line CD pierces ff at C and g extended at D, the point D
having a negative z coordinate. In Fig. 90 C sCD h and D hDC s have

their common base CsD h on the axis of Y, but in the descriptive

drawing CsDn appears in two places. The triangle DnDC s lies above

S in the " construction space," or on g extended, since D has a

negative z coordinate.

93. Three Traces of an Oblique Straight Line.—Figs. 92 and 93

show an oblique straight line ABC piercing V at A, ff at B, and

S extended at C. Since the line is straight, the three projections

of the line ABVCV , A SBSC and A-hBCn are all straight lines. In the

perspective drawing, Fig. 92, part of the V projection is on V ex_

tended and part of the S projection on g extended.
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In the descriptive drawing, Fig. 93, the relation between A and

B is the same as that in Fig. 85, as shown by the two triangles

AnABv and BvBAh, or the quadrilateral AkABvB. The relation

between A and C, as shown by the quadrilateral A SACVC, is the

same as that between A and B, Fig. 89, as shown by the quadri-

lateral A SABVB. The relation between B and C, Fig. 93, as shown

by the two triangles BsBCh and CnCBs , is the same as that between

C and D of Fig. 91, as shown by the triangles C8CDn and D^DC*.

No new feature has been introduced.

94. Paper Box Diagram.—To assist in understanding Figs. 92

and 93, a model in space should be made and studied from all

sides. The complete relation of the traces is then quickly grasped.

Construct the descriptive drawing, . Fig. 93, on coordinate paper,

using, as coordinates for A, B and G, (15,0,12), (5,12,0), and

(0,18, —6). Fold into a paper box after the manner of Fig. 9,

Art. 12, having first cut the paper on some such line as mn, so that

the part of the paper on which C is plotted may remain upright,

serving as an extension to g. It will be found that a straight wire

or long needle or a thread may be run through the points A, B and

C, thus producing a model of the line and all its projections.
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95. Intersecting Lines.—If two lines intersect, their point of

intersection, when projected npon any plane of reference, mnst

necessarily be the point of intersection of the projections on that

plane. For example, a line AB intersects a line CD at E. Project

E npon a plane of reference, as ff. Then En mnst be the point of

intersection of A^Bn and Cj,Dh. In the same way Ev mnst be the

point of intersection of AVBV and CVDV, and E s of A SBS and CSD S .

To determine whether two lines given by their projections meet

in space or pass without meeting, the projections on at least two

reference planes mnst be extended (if necessary) till they meet.

Then for the lines themselves to intersect, the potnts of intersec-

tion of the two pairs of projections mnst obey the rules of pro-

jection of a point in space (Art, 11). Thus if Aj
tBh and Cj,Dh are

given and meet at a point vertically above the point of intersection

of A VB V and CVDV, the two lines really meet at a point whose pro-

jections are the intersections of the given projections. If this con-

dition is not filled the lines pass without meeting, the intersecting

of the projections being deceptive.

96. Parallel Lines.—If two lines are parallel, the projections of

the lines on a reference plane are also parallel (or coincident).

For, the two lines make the same angle with the plane of pro-

jection; their projector-planes are parallel; and the projections

themselves are parallel.

Thus if a line AB is parallel to another line CD, then AhBn must

be parallel to CnDn, A VBV to CVD V , and A SB S to C SD S . If the two

lines lie in a plane perpendicular to a plane of projection—for

example, perpendicular to ftf—then the J-f projector-planes coin-

cide and the ftf projections also coincide. The V and S projections

are parallel but not coincident.

If two lines do not fill the conditions of intersecting or of parallel

lines, they must necessarily be lines which pass at an angle without

meeting.
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Problems X.

100. Plot the points A (8,6, -±), B (7, -3,5), C (-7,0,12).

101. Plot the points A (6, -10, 3), £ (0, 0, -5), C ( -6, 5, 4).

102. Make a descriptive drawing of a line 26 units long through

the point P (—8, 4, 9), perpendicular to S- What traces does it

have ? What are the coordinates of its middle point ?

103. A line is drawn from P (12,5,16) perpendicular to ff.

Make the descriptive drawing of the line, and of a line perpen-

dicular to it, drawn from Q {0, 0, 8). What is the length of this

perpendicular line, and where are its traces?

104. A straight line extends from A (8,12,0) through D
(8, 6, 8) for a distance of 20 units. Make the descriptive drawing

of the line. Where are its traces and its middle point?

105. A straight line pierces H at A (8,6,0) and V at B
(8, 0, 12). Draw its projections. Where is its trace on g? What
are the coordinates of D, its middle point?

106. A straight line extends from E (15, 6, 16) through A
(3, 6, 0) to meet S- Make the descriptive drawing and mark the

traces on fff and S-

107. Draw the lines A (16, 11, 8), B (4, 8, 2) ; C (12, 5, 10),

D (0,2,4); and E (11,3,0), F (5,15,16). Which pair meet,

which are parallel, and which pass at an angle? What are the

coordinates of the point of intersection of the pair which meet?

108. The points .4 (8, 0, 12), B (0, 8, 6) and O (-8, 16, 0) are

the traces of a straight line. Make the descriptive drawing of the

line.

109. The points A (8, -4,0), T) (4,4,6) and E (2,8,9) are

on a straight line. Find the trace B where it pierces V and the

trace C where it pierces S-



CHAPTER XL

PLANES OP UNLIMITED EXTENT: THEIR TRACES.

97. Traces of Horizontal and Vertical Planes.—The lines of

intersection of a plane with the reference planes are called its

traces. Planes of unlimited extent may he of three kinds, parallel

to a reference plane, inclined, or oblique. Unlimited planes of the

first two classes have been dealt with already, but for the sake of

precision may be treated here again to advantage.

A horizontal plane is one parallel to ff, and the trace of such a

plane on V is a line parallel to the axis of X, and the trace on S
is a line parallel to the axis of Y. These traces meet the axis of Z
at the same point and appear on the descriptive drawing as one

continuous line. There is of course no trace on ff. In Fig. 58,

Art. 67, the plane T, represented by its traces T'T on V and TT"
on S; is a horizontal plane. These traces are not only the intersec-

tions of T with ff and S,» but T is " seen on edge " in those views.

Every point of the plane T, when projected upon V, lies somewhere

on the line T'T, extended indefinitely in either direction.

A vertical plane parallel to V lias for its traces a line on ff

parallel to the axis of X, and on§ a line parallel to the axis of

Z, with no trace on V- These traces meet the axis of Y at the

same point, and appear on the descriptive drawing as two lines at

right angles to this axis, the point on Y separating into two points

as usual. In Fig. 57, Art. 66, a vertical plane R, parallel to V? is

represented by its traces R'R on ff and RR" on S-

A vertical plane parallel to S lias for its trace on ftf a line paral-

lel to the axis of Y, and for its trace on V a line parallel to the

axis of Z, with no trace on S- These traces meet the axis of X at

the same point and appear on the descriptive drawing as one con-

tinuous line.

98. Traces of Inclined Planes.—Inclined planes are those per-

pendicular to one reference plane, but not to two reference planes.

The auxiliary planes of projection have been of this kind. In
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Fig. 20, Art. 22, the plane \J, perpendicular to ff, has the line

MX for its trace on ff, and XN for its trace on V- In the de-

scriptive drawing, Fig. 21, MX and XNV are these traces.

If in Fig. 20 both U ail(I S are imagined to be extended towards

the eye, they will, intersect in a line parallel to OZ. This S trace

will be on S extended, and every point of it will have the same

negative y coordinate. Of the three traces of \], two are vertical

lines, and one only, MX, is an inclined line. The plane in Fig. 64,

Art. 74, may be taken as a second example of an inclined plane

perpendicular to ftf. The trace on S is not a negative line in this

case, but is a vertical line on S to the right of the axis of Z at a

distance equal to OJ.

In Fig. 57, Art. 66, IJ, JK and KL are the three traces of an

inclined plane perpendicular to V- In every case of an inclined

plane the inclined trace is on that reference plane to which it is

perpendicular, and shows the angles of the inclined plane with one

or both of the other reference planes.

\
M

Fig. 95.

99. Traces of an Oblique Plane: All Traces " Positive."—The
general case of an oblique plane is shown in Fig. 94. The plane

P is represented as cutting the cube of reference planes in the lines

marked PR, PV and PS. These lines are the traces of the plane

P, and may be understood to extend indefinitely, the plane itself

extending in all directions without limit. They are shown limited

in Fig. 94 in order to make a more realistic appearance. PH, PV
and PS are used to define the three traces.
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Where PH and PY meet we have a point common to three planes,

P. ff and V- Since it is common to ff and V it is on the line of

intersection of ff and V.- or in other words it is on the axis of X.

This point is marked a. In the same way PH and PS meet at b

on the axis of Y, and PY and PS meet at c on the axis of Z.

The descriptive drawing, Fig. 95. is obvious from the explana-

tion of the perspective drawing. From Fig. 95 it is evident that

if two traces of a plane are given the third trace can be determined

Fig. 96. Fig. 97.

by geometrical construction. Thus, if PH and PY are given, PS
may be defined by extending PH to b on the axis of Y and extend-

ing PY to c on the axis of Z . The line joining be is the required

trace of the plane on S- If any two points on one trace are given,

and any one point on a second trace, the whole figure may be com-

pleted. Thus any two points on PH define that line and enable a

and b to be found. A third point on PY. taken in conjunction

with a, defines PY, and enables c to be located, be, as before,

defines the trace PS. This is an application of the general prin-

ciple that three points determine a plane.
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100. Traces of an Oblique Plane : One Trace " Negative."—In

Figs. 94 and 95 the plane P has been so selected that all traces have

positive positions. These are the portions usually drawn. Of

course each trace may be extended in either direction, points on

the trace then having one or more negative coordinates. Any
trace having points all of whose coordinates are positive, or zero,

may be called a positive trace.

In Fig. 96 a plane P is shown, intersecting ff and V in the.

" positive " traces PH and PV. The third trace, PS, in this case,

has no point all of whose coordinates are positive. In the descrip-

tive drawing, Fig. 97, the two positive traces, meeting at a on the

\
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X l-\ ya ys

\ > /'.

\y/ M^?

V z

{
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Fig.

axis of X, are usually considered as fully representing the plane P.

From these lines PH and PV, alone, the imagination is relied upon

to " see the plane P in space," as shown by Fig. 96.

In Fig. 98, the plane Q is represented. Ordinarily the positive

traces QV and QS, meeting at c on the axis of Z, are the only

traces shown in the descriptive drawing, Fig. 99, and are considered

to indicate perfectly the path of the plane Q.

101. Position of the Negative Trace.—The negative trace PS,

in Fig. 96, is shown as one of the edges of the rectangular plate

representing the unlimited plane P. This line PS has been de-

termined by extending PH to meet the axis of Y (extended) at
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b, and by extending PV to meet the axis of Z (extended) at c.

The line joining b and c is the trace PS. It will be noted that in

finding the location of PS in Fig. 97, PV has been extended to cut

the axis of Z (extended up from ZO) at c and PR has been ex-

tended to cut the axis of Y (extended down from YO) at b. b

has been rotated 90° about the origin, and the points b and c thus

plotted (on S extended) have been found to give the line PS.

Every step of the process and the lettering of the figure have been

similar to those used in finding PS from PR and PV in Art. 98.

In Fig. 98, the negative trace is QR, the top line of the rect-

angular plate representing the unlimited plane Q. QR has been

determined as follows: QV extended meets the axis of X extended

at a, and QS extended meets the axis of V extended at b. The line

ab is therefore the trace on J-|, or QR. In the descriptive drawing

the same process of extending QV to a and QS to b determines the

line QR, a line every point of which has some negative coordinate.

Of course QR must be considered as drawn on parts of the plane

W extended over V> S; and the so-called construction space. In

finding the negative traces, it is imperative to letter the diagrams

uniformly, keeping a for the intersection of the plane with the axis

of X, b for that with the axis of Y, and c for that with the axis of

Z. With this rule b will always be the point which is doubled by

the separation of the axis of Y into two lines, and the arc bb will

always be described in the construction space or in the quadrant

devoted to V> never in those devoted to ff and S-

102. Parallel Planes.—If two planes are parallel to each other,

their traces on ff, V and g are parallel each to each. This prop-

osition may be proved as follows: If we consider two planes P
and Q parallel to each other and each intersecting the plane ff, the

lines of intersection with fl-fl (PR and QR) cannot meet, for, if

they did meet, the planes themselves would meet and could not then

be parallel planes. PR and QR must therefore be parallel lines

described on ff. Thus, if a plane P and a plane Q are parallel,

then PR and QR are parallel, PV and QV are parallel, and PS
and QS are parallel.

The method of finding the true length of a line by its projection

upon a plane parallel to itself, treated in Chapter III, is really the
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process of passing a plane parallel to a projector-plane of the given

line. Thus in Fig. 21, Art. 25, the auxiliary plane \] has its hori-

zontal trace XM parallel to AhBn, and the vertical trace of the ff

projector-plane, if drawn, would he parallel to XNV .

103. The Plane Containing a Given Line.—If a line lies on a

plane, the trace of the line on any plane of reference (the point

where it pierces the plane of reference) must lie on the trace of the

plane on that plane of reference. Thus, if the line EF, Fig. 100,

lies on the plane P, then A, the trace of EF on ff, lies on PR, the

trace of P on ff ; and B, the trace of EF on Y, lies on PY, the

trace of P on V-

Fig. 100. Fig. 101.

From this fact it follows that to pass a plane which will contain

a given line it is necessary to find two traces of the line and to pass

a trace of the plane through each trace of the line. As an infinite

number of planes may he passed through a given line, it is neces-

sary to have some second condition to define a single plane. For

example, the plane may be made also to pass through a given point

or to be perpendicular to a reference plane.

In Fig. 100, if only the line EF is given and it is required to pass

a plane P, containing that line, and containing also some point,

as a, on the axis of X, the process is as follows : Extend the line

EF to A and B, its traces on ff and V- Join Ba and aA. These
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are the traces of the required plane P. In the descriptive drawing,

Fig. 101, the corresponding operation is performed. A and B
must be determined as in Art. 90, and joined to a. These lines

represent the traces of a plane containing the line EF and the

chosen point a.

To pass a plane Q containing the line EF and also perpendicular

to H (Figs. 100 and 101), the trace of Q on ftf must coincide with

the projection of EF on Jf, for the required plane perpendicular to

H is the ff projector-plane of the line. Its traces are therefore

ABn and BhB.

The traces of a plane containing EF and perpendicular to V are

BAV and AVA.

104. The Line or Point on a Given Plane.—To determine whether

a line lies on a given plane is a problem the reverse of that just

treated. It amounts simply to determining whether the traces of

the line lie on the traces on the plane. Thus, in Fig. 101, if PV
and PH are given, and the line EF is given by its projections, the

traces of EF must be found, and if they lie on PH and PV the line

is then known to lie on the given plane P.

To determine whether a given point lies on a given plane is

almost as simple. Join one projection of the point with any point

on the corresponding trace of the plane. Find the other trace of

the line so formed, and see whether it lies on the other trace of the

given plane. Thus in Fig. 101, if the traces PH and PV and the

projections of any one point, as E, are given, select some point on

PH, as A, and join Ei,A and EVA V . Find the trace B. If it lies

on PV, the point E itself lies on P.

To draw on a given plane a line subject to some other condition,

such as parallel to some plane of reference, is always a problem in

constructing a line whose traces are on the traces of the, given

plane, and which yet obeys the second condition, whatever it may be.

105. The Plane Containing Two Given Lines.—From the last

article, if a plane contains two given lines, the traces of the plane

must contain the traces of the lines themselves. The given lines

must be intersecting or parallel lines, or the solution is impossible.

In Fig. 102 two lines, AB and AC, are given by their projections.

They intersect at A, since Aj„ the intersection of the ff projections,
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is vertically above Av, the intersection of the V projections. Ex-

tend the lines to E, F, G and B, their traces on ff and V- JoirL

the H traces, E and G, and produce the line also to a on the axis

of X. Join the V traces, B and E, and extend the line BE also

to a. Em and aB are the traces of a plane P containing both lines,

AB and AC. The meeting of the two traces at a is a test of the

accuracy of the drawing.

This process may be applied to a pair of parallel lines, but not of

course to two lines which pass at an angle without meeting.

Fig. 102.

106. The Line of Intersection of Two Planes.—If two planes

P and Q are given by their traces, their line of intersection must

pass through the point where the ff traces meet and the point

where the V traces meet. Thus, in Fig. 103, PB and QB meet

at A and PV and QV meet at B. A and B are points on the

required line of intersection of P and Q, and since A is on \\ and

B is on Y, they are the ff and V traces of the line of intersection.

ABh and BA V are therefore the projections, and should be marked

PQn and PQV .
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107. Special Case of the Intersection of Two Planes: Two Traces

Parallel.—The construction must be varied a little in the special

case when two of the traces of the planes are parallel. In Fig. 104

the traces PV and QV are parallel. In carrying out the construc-

tion as in Fig. 100, it is necessary to join A v with B. But the

point B is the intersection of PV and QV, which are parallel, and

therefore is a point at an infinite distance in the direction of those

lines, as indicated by the bracket on Fig. 101. To join A v with B
at infinity means to draw a line through A v parallel to PV and QV.

phM \

<w X
r-\ \p^ A \

X
PQv

O
\a^ %

^fp%PV A S
QV y z

Fig. 105.

From B, at infinit}^ a perpendicular must be supposed to be drawn

to the axis of X, intersecting it at Bn. Bn is therefore at an infinite

distance to the right on the axis of X (extended). To join the

point A with the point Blt means, therefore, to draw a line through

A parallel to the axis of X. These lines are the required projec-

tions of PQ.

108. Special Case of the Intersection of Two Planes: Four

Traces Parallel.—Another special case arises when the four traces

(on two planes of projection) are parallel. It is then necessary to

refer to a third plane of projection. In Fig. 105 the planes P and

9
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Q have their four traces on H and V all parallel. The planes are

inclined planes perpendicular to £5* and if their traces are drawn

on S; their intresection is the line PQ. In S both P and Q are

" seen on edge," so their line of intersection is " seen on end."

From PQ S, PQv and PQn are drawn by projection.

109. The Point of Intersection of a Line and a Plane.—The

simple cases of this problem have been previously explained and

used. If the plane is horizontal, vertical or inclined, there is

Fig. 106.

always one view at least in which it is seen on edge. In that view

the given line is seen to pierce the given plane at a definite point

from which, by the rules of projection, the other views of the point

of intersection are easily determined. Thus in Fig. 27, Art. 38,

the point a, where PA pierces the plane XL, is determined first in

V and then projected to H and g.

The general case of this problem may be solved as in Fig. 106.

A plane P is given by its traces PH and PV. A line AB is given

by its projections. It is required to find where AB pierces P. The
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solution is as follows : Let a plane perpendicular to V be passed

through the projection A VBV . According to Art. 103 the traces of

this plane are BVFV and FVF. Draw the line of intersection of this

plane with the plane P (Art. 106) as follows: BVFV and PV in-

tersect at E. F and E are the traces of the line of intersection of

the two planes. Complete the drawing of the line of intersection

in H, as FE*.

Referring to the horizontal projection, AnBn is seen to intersect

FEh, the H projection of the line of intersection, at Wk. Since

both FE and AB are lines which lie in the vertical projector-plane

through AB, this point of intersection, Wn, is the projection of the

true point of intersection, W, of those two lines. From Wn project

to Wv for the other projection of W. This point W which lies on

P and is on the line AB is the required point.

Problems XI.

(For blackboard or cross-section paper or wire-mesh cage.)

110. Plot the point A (4,7,9). Pass a horizontal plane P
through the point A } and draw the traces of P. Pass a vertical

plane Q, parallel to \, &&& draw its traces. Pass an inclined plane

R, perpendicular to ff, making an angle of 45° with OX.
111. Plot the line A (8,2,4), B (2,6,16). Pass an inclined

plane P perpendicular to \\ through this line and draw the traces

of P. At C, the middle point of AB, pass a plane Q perpendicular

to P and to ff, and draw QH and QV.

112. The plane P cuts the axes at the points a (10,0,0),

b (0, 5, 0) and c (0, 0, 15). Pass a plane Q parallel to P, through

the point a' (6,0, 0).

113. A plane P has its trace on ff through the points

A (12, 12, 0) and & (0, 6, 0). Its trace on V passes through the

point c (0, 0, 12). Draw the three traces. Draw three traces of a

plane Q, parallel to P through the point c' (3, 0, 0).

114. An indefinite line contains the points A (11,2,6) and

B (5,6,0). Pass a plane P perpendicular to H containing this

line and draw the traces PPL, PV and PS: Pass a plane Q con-

taining this line and the point a' (2,0,0). Draw the traces QH
and QV. Draw the negative trace QS on S extended over ff.
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115. A plane P cuts the axis of X at a (4, 0, 0), the axis of Y
at & (0, 6, 0), and the axis of Z at c (0, 0,-12). Draw its traces.

Draw the V and S traces of a plane Q parallel to P and containing

the line A (1, 4, 11), B (4, 1, 14).

116. An inclined plane, perpendicular to ff, has for its V and

S traces lines parallel to OZ at positive distances of 15 and 5 units.

An inclined plane Q perpendicular to ff has its V and S traces

parallel to OZ at distances of 12 units and 8 units. Draw all three

traces and the projection of PQ, their line of intersection.

117. Draw the traces of a plane P, containing the points

A (8, 1,.3), B (4, 5, 1) and (2, 4, 3). Does the point D (4, 1, 5)

lie on this plane ?

118. The traces of a plane P are lines through the points

a (10,0,0), b (0,15,0) and E (14,0,6). A plane Q has its

traces through the points a! (2, 0, 0), E, and F (7,5,0). Draw
the projections of their line of intersection, PQ.

119. The plane P cuts the axes at a (12, 0, 0), & (0, 12, 0) and

c (0, 0, 12). Where does the line E (1, 5, 12), F (5, 3, 6) pierce

the plane?



CHAPTER XII.

VARIOUS APPLICATIONS,

110. Traces of an Inclined Plane Perpendicular to an Oblique

Plane.—One of the most general devices used in the drafting room

is the auxiliary plane of projection, and it is often advantageous

to pass this plane perpendicular to some plane of the drawing in

Fig. 107. Fig. 108. Fig. 109.

order to get the advantage of showing that plane " on edge." Thus

in Fig. 31, Art. 42, the plane U has been taken perpendicular to

the long rectangular faces of the triangular prism, in order to

show clearly where BB' and DD' pierce those planes. The manner

of passing the plane HJ was fairly clear in that case from the

simplicity of the figure. However, as it is not always clear how to

pass a plane perpendicular to an oblique plane, the general method

may well be explained here. In Fig. 107 the plane P, previously

shown in Fig. 94, is represented, and an auxiliary plane \], per-

pendicular to it and to ff, is shown. The traces of P are PH, PV
and PS as before, and the traces of \] are UH and US. It must



122 Engineering Descriptive Geometry

be understood that the ff traces of these planes. PH and UH, are

perpendicular to each other, as this condition is essential if P and

HJ are to be planes perpendicular to each other.

Fig. 108 is the descriptive drawing corresponding to the per-

spective drawing, Fig. 107. At some point h on PH a line 31dh

has been drawn perpendicular to PH. This line is the inclined

trace of a plane UJ perpendicular to jf-J. The other traces of UJ are

parallel to the axis of Z (Art. 98). One of these, the trace on S,

is shown by the line dsNs, parallel to OZ, d lx and ds being two

representations of the same point d in Fig. 107, just as bn and b s

represent the point b, duplicated. Mdh may be called TJH and dsNs

may be called US. TJH and US are the traces of an inclined plane

ILL perpendicular to the oblique plane P.

The proof that P and \] are perpendicular to each other is as

follows: If, in Fig. 107. a line lili' is drawn perpendicular to ff

at the point h, it will lie in the plane ILL The angle ahh' will

then be an angle of 90°, and by construction the angle ahd is also

90°. Thus the line ah is perpendicular to two intersecting lines de-

scribed in the plane \] and is therefore perpendicular to UJ itself.

The plane P contains the line PH and is thus perpendicular to \J.

111. An Auxiliary Plane of Projection Perpendicular to an

Oblique Plane.—To utilize the inclined plane UJ as an auxiliary

plane of projection, its developed position must be shown by drawing

djtNu perpendicular to TJH. This line is the duplicate position of

dsNs or US. In developing the planes, U is first revolved on UH
as an axis into the plane of Hi as shown in Fig. 109, and then with

H into the plane of the paper, V- The trace of P on \J, or PU, is

the line of intersection of the planes, and is shown clearly in Fig.

107. This line passes through li where PH and UH meet, and

through s where PS and US meet. In Fig. 108, d lts is laid off on

dj,Nv , equal to dss, and the line lis is the required trace of P on HJ,

or PU. The actual line PU, in Fig. 108, is only that part of PU,

in Fig. 107, which is between h and s, shown as a broken line.

The important part in this process is that U is taken perpen-

dicular to P, so that P is " seen on edge " on U- By this process

the plane P, which is oblique when ff, V and g are considered,
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becomes an inclined plane when only ff and \] are considered.

As it is easier to deal with inclined than with oblique planes, we

Fig. 110.

may now treat P as inclined to ff and perpendicular to \] in

further operations.

Fig. 108 is well adapted to making a paper box diagram which,
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when folded, will give most of the lines of Fig. 107. To reconstruct

Fig. 108, plot the points a (18,0,0), 1) (0,18,0), c (0,12,0),

d (0, 6, 0), h (6, 12, 0) and s (0, 6, 8). The line d hNu is at an

angle of 45° with ZOYh and the construction space YsOdhXu can

be folded away inside by creasing or cutting it on several lines.

112. Intersection of an Oblique Plane and a Cylinder.—An ex-

ample of the use of an auxiliary view on which an oblique plane is

seen on edge is shown in Fig. 110. An inclined cylinder is inter-

sected by an oblique plane P given by its traces PR, PV and PS.

It is required to describe on the cylinder the curve of intersection

of the plane and the cylinder. The solution is as follows: An
auxiliary plane HJ, perpendicular to P and to ff, is chosen, and

PU is drawn upon HJ as in Fig. 108. PV is the view of P " seen on

edge " in \J. Auxiliary cutting planes parallel to H are used for

the determination of the required line of intersection. The traces

of one of the planes are drawn, as TT in V, TT" in g, and T"T"
in U- This latter trace is parallel to djJH (or TJII), because T is

parallel to H, and the distance dhT" is equal to d sT" in g. T"T"
cuts the axis of the cylinder at p. p is projected to H, and the

circular element described in H? with p as a center, is the inter-

section of the auxiliary plane T and the cylinder. In HJ the planes

P and T are both seen " on edge," intersecting in a line seen on end.

This point projected to ff gives this line of intersection of P and T
as tif.

The intersections of the intersections are therefore the points t

and f, where the circle and the straight line meet.

113. The Angle between Two Oblique Lines.—This problem of

finding the angle between two oblique lines is shown in Fig. 111.

Let two lines AB and A C, meeting at A, be given by their ff and

V projections. It is required to find the true angle between them.

By the process of Art. 105, Fig. 102, the traces of the plane con-

taining AB and AC are found and the lines are all lettered accord-

ing to Fig. 102.

An auxiliary plane of projection, \J, is passed perpendicular to

PV, and therefore perpendicular to both P and V? anô is revolved

into the plane V- The projections of AB and AC on this plane
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fall in the single line A uCuB t P, the plane of the lines, is

" seen on edge " on \J. A portion of the plane P is now revolved

about the HJ projector of the point A into a position parallel to

XM. In U, Cu moves to C'u and Bu to B'u, revolving about A as

their center. In V, Bv moves to B'v and Cv to C'v, both parallel to

XM. This is the process of finding the true length of a line by

Fig. 111.

revolving about a projector, as in Art. 32. A VB'V is the true length

of AB; A VC'V is the true length of AC; and B'VAVQ'V is the true

angle between the lines.

This process makes it possible to find the true shape of any

figure described on .an oblique plane.

114. A Plane Perpendicular to an Inclined Line.—It is often

advantageous to pass a plane perpendicular to a line in order to

use the plane as a plane of projection, on which the given line will

be seen on end as a point. The method of passing a plane perpen-
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dicular to an inclined line is shown in Fig. 112. Let AB be an

inclined line, lying in a plane parallel to V, so that A hBh is parallel

to the axis of X. It is required to find the traces of a plane P

perpendicular to AB. The essential point is that the traces of the

plane must be perpendicular to the corresponding projections of

Fig. 112.

the line. Thus, choose some point p on the inclined projection of

the line, in this case on AVBV, and through p draw a perpendicular

to A VBV, to serve as the trace of P. At a, where this trace PV
meets the axis of X, erect a perpendicular to PH. These lines PV
and PR are the traces of an inclined plane perpendicular to AB
and to V- It is noticeable that the inclined trace of the plane is
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on that reference plane which shows the inclined projection of the

line.*

115. Application of a Plane Perpendicular to a Line.—In Fig.

113 an application of an inclined plane perpendicular to an in-

clined line is made for the purpose of finding the line of intersection

between an inclined cone and an inclined cylinder whose axes do

not meet.

If from P, the vertex of the cone, a line Pp is drawn parallel to

QQ', as shown, any plane which contains this line and cuts both

* A proof that P is perpendicular to AB is as follows : AB
is the line of intersection of its own ff projector-plane, and its

own V projector-plane. P is perpendicular to both these projector-

planes. For, P is perpendicular to V an(i therefore to the ff pro-

jector-plane, which is parallel to V; the V projector-plane is per-

pendicular to V, so that it is seen on edge on V just as is P itself;

apAv is therefore the true angle between these two planes, and by
construction is a right angle. P is therefore perpendicular to both
projector-planes and therefore to the line AB, which is their line

of intersection.
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surfaces will cut only simple elements of the surfaces. For such

a plane contains the vertex of the cone, and therefore, if it cuts

the cone, will cut it in straight elements; and such a plane is

parallel to QQ', and therefore, if it cuts the cylinder, cuts only

straight elements. Xo other planes can be found which cut simple

elements and can be used to determine the line of intersection.

If a plane HJ is passed perpendicular to Pp at any point p, and

is used as an auxiliary plane of projection, Pp will be seen on end

as the point P, and any plane R through P seen on edge in \], as

RR', will cut only straight elements on the two curved surfaces.

The complete projections of the cone and cylinder have been shown

on \J, and the plane R cuts the bases at a, t), c and d. These points

projected to V enable the elements to be drawn there, and the

intersections of the intersections are the four points marked r.

From V these points are projected to Jf and g. Two of these

points r have been projected to the other views to show the neces-

sary construction lines.

116. A Plane Perpendicular to an Oblique Line.—To pass a

plane perpendicular to an oblique line, it is only necessary to draw

the traces of the plane perpendicular to the corresponding pro-

jections of the line. In Fig. 114, let AB be an oblique line. At
any point on A^Bn draw a perpendicular line PH. From a, where

PH meets the axis of X, draw PV perpendicular to AB*
A paper box diagram traced from Fig. 114, or constructed on

coordinate paper, using the coordinates A (10, 4, 4) and B (6, 8, 2),

C (2, 12, 0) and D (14, 0, 6), and a (8, 0, 0), will assist materially

in understanding the problem.

The oblique plane P is not serviceable as an auxiliary plane of

projection.

117. The Application of Axes of Projection to Mechanical

Drawings.—Descriptive Geometry is a geometrical science, the

science dealing primarily with orthographic projection, while Me-

chanical Drawing is the art of applying these principles to the

* The proof of this construction is more difficult than in the

corresponding case of an inclined line, but it depends as before

on the line AB being the intersection of its Jf and V projector-

planes, and these planes themselves being perpendicular to P.
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needs of engineers and mechanics in the pursuit of industries.

Mechanical Drawing includes therefore many abbreviations and

conventional representations, which seek to curtail unnecessary

work and often to convey information as to methods of manu-

facture and other such commercial considerations foreign to the

strict scientific study.

Fig. 114.

In Mechanical Drawing many lines necessary to the strict execu-

tion of a descriptive drawing are omitted as unnecessary to the

application of the principles, when once the principles have been

fully grasped. A noteworthy omission is the axes of projection,

which, though absent, still govern the rules for making the draw-
ing. Instead of measuring distances from the axes for every point
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on the drawing, the "center lines" of the different views (which

really represent central planes) are laid off and distances from

these center lines are thereafter nsed. This is the regular pro-

cedure in drawing-room practice. That this difference is purely

one of omission is clear from the fact that axes of projection may
always be inserted in a mechanical drawing. If two views only of

a piece are presented, any line between them (perpendicular to the

lines of projection from one view to another) may be selected as

the axis of X, and any convenient point on that line as the origin

of coordinates.

If three views are given, as, for example, Fig. 32, Art. 44, sup-

posing the axes to be there omitted, a ground line XOYs may be

selected at will, dividing the fields of ff and V- The other line

must be determined as follows : By the dividers take the vertical

distance from OX to the center line mn, and lay off this distance

horizontally to the left from the center line of the side elevation.

The line ZOYj, may be drawn. All y coordinates of points will

now check correctly, measured parallel to the two axes' of Y, if the

original drawing itself is accurate.

It is thus evident that in applying Descriptive Geometry to prac-

tical mechanical drawing we may fall back upon the use of axes of

projection whenever the lack of them is felt.

118. Practical Application of Descriptive Geometry.—Many
draftsmen have picked up a knowledge of Descriptive Geometry

without direct study of the science. This is largely due to the fact

that, till very recently, all books on Descriptive Geometry were

based on a system of planes of projection which are analogous to

the methods of practical drawing in use on the continent of Europe,

but which are little used in England, and hardly at all in the United

States of America. It will be found, however, that in American

drafting rooms all the usual devices of draftsmen are applications,

sometimes almost unconscious applications, of the principles covered

in the preceding chapters. The favorite device is the application

of an inclined auxiliary plane of projection, suitably chosen; next

in importance is the rotation of the object to show some true shape
;

while other applications are used less frequently. The methods of

determining lines of intersection of planes and curved surfaces are

exactly those described in Chapters IV, VII and VIII.
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Problems XII.

(For use on blackboard, with cross-section paper or wire-mesh

cage.)

120. The plane P has its traces through the points a (14, 0, 0),

b (0> 14, 0) and c (0,0,7). Pass a plane Q, perpendicular to P
and to ff, through the point A (5, 7, 0). If Q is to be used as an

auxiliary plane of projection, draw the trace of P on Q when Q has

been revolved into coincidence with ff.

121. Draw the traces of a plane P cutting the axes at the points

a (12,0,0), b (0,8,0) and c (0,0,12). Draw the traces of an

auxiliary plane, \], perpendicular to PH at the point A (3, 6, 0).

Is the point B (6, 1, 4J) on the plane P?
122. The

Jf-fl
trace of a plane P passes through the points

A (12, 5, 0) and B (6, 2, 0) . Its V trace passes through C (9, 0, 6)

.

Pass an inclined plane perpendicular to ff and perpendicular to

P, through the point D (5, 9, 7).

123. Of a plane P, HP, the horizontal trace, passes through the

points A (5,3,0) and B (13,9,0), and VP passes through

C (12, 0, 11). Complete the traces of P and draw the traces of a

plane perpendicular to VP at the point D (8, 0, 8) . Prove that the

line E (9, 6, 1), F (6,3,2) lies on the plane P.

124. A sphere of radius 7 units has its center at C (8, 8, 8). A
plane P cuts the axes of projection at a (26, 0, 0), b (0, 13, 0) and

c (0,0,13). Pass an auxiliary plane of projection \J, perpen-

dicular to ff and to P, cutting the axis of X at d (16, 0, 0) . Draw
the trace of P on U- The circle of intersection of the sphere and

the plane P is seen on edge on \].- Show the elliptical projection

of this circle, on ff, by passing auxiliary cutting planes parallel

to U- (If this problem is solved by use of wire-mesh cage, the

point a is inaccessible, but PH passes through E (16,5,0), and

PV through F (16,0,5). The plane S' can be turned to serve

asUO
125. Find the true shape of the triangle A (3,2,6), B (9, 6, 2),

C (8, 0, 0). Find the traces of two of the sides of the triangle and

pass the plane \] perpendicular to the plane of the triangle and

perpendicular to
fl-fl, and through the point D (0,7,0).
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126. Find the true shape of the triangle A (7, 6, 1), B (4, 2, 9),

C (10,2,3). Find the traces of two of the sides of the triangle

and pass the plane \] perpendicular to the plane of the triangle

and perpendicular to Jf, and through the point D (0, 1, 0).

127. Draw the traces of a plane P perpendicular to V and to

the line A (2, 6, 9), B (8, 6, 5) at (11, 6,3). If this plane is

used as an auxiliary plane of projection, what is the projection of

AB on it r

128. Draw the traces of a plane P perpendicular to ff and to

the line A (3, 9, 6), B (13, 4, 6), at C (17, 2, 6), a point on AB.

(If wire-mesh cage is used for the solution, turn g' to serve as U
and draw on it the view of A UB„.)

129. Draw the three traces of a plane P perpendicular to the

oblique line A (8, 12, 5), B (14, 3,' 7). Show that all three traces

are perpendicular to the corresponding projections of AB.



CHAPTER XIII.

THE ELEMENTS OF ISOMETRIC SKETCHING.

119. Isometric Projection.—There is one special branch, of

Orthographic Projection which is of peculiar value for represent-

ing forms which consist wholly or mainly of plane faces at right

angles to each other. Ordinary orthographic views are projec-

tions upon planes parallel to the principal plane faces of the object,

as shown in Fig. 2, Art, 4. If, however, instead of the regular

planes of projection, the object is projected upon a new plane of

projection, making the same angle with each of the regular planes,

an entirely different result is obtained, called an "isometric pro-

jection/' This view has the useful property that it has all the air

of a perspective and may, with certain restrictions, be used alone

without other views as a full representation of the object.

In Art. 21 the method of converting the perspective drawings

of this treatise into isometric sketches was explained in a rough

and unscientific way. In this chapter there is explained the method

of making isometric sketches from models, as a step to making

orthographic drawings or isometric drawings.

120. Isometric Sketches of Rectangular Objects.—Figs. 19 and

19a are the isometric drawings of a cube. Since the line of sight

from the eye to the point makes equal angles with fl-fl, V an(i S?
the three planes must subtend the same angle at 0. XOY, YOZ
and XOZ are each 120°. though representing angles of 90° on the

cube. Since opposite edges of H are parallel, it follows that each

face of the cube is a rhombus and that the cube appears as a regular

hexagon, all edges appearing of exactly the same length. This

fact is the basis of the name " isometric," meaning " equal-

measured."

Figs. 115, 11G and 117 are sketches of other objects, all of whose

corners are right angles. The angles at these corners appear there-

to
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fore like those of the cube, either as 60° or 120° on the isometric

sketch.

In making the isometric sketch from a model having rectangular

faces, the first step is to put the object approximately in the iso-

Brick

Fig. 115.

Half Joint Mortise &, Tenon Joint

Fig. 116. Fig. 117.

Position for
Orthographic
Projection .

Fig. 118.

Turned 4-5°
about a verti-
cal dxis.

Fig. 119.

Tilted 35°-l4
about an hori-
zontal axis.

Fig. 120.

metric position. At an}- projecting corner imagine a line to project

from the corner so as to make equal angles with the three edges

which meet at the given corner. View the object by sighting along

this imaginary line and begin the sketch from that view.
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If there is any difficulty in finding this line of vision directly,

the object may be turned horizontally through an angle of 45 ° and

tilted down through an angle of 35° 44'. This operation is the

basis of the method of finding the " isometric projection."

Figs. 118, 119 and 120 show the steps in passing from the ortho-

graphic position to the isometric position, the model used being a

rectangular block with a lengthwise groove cut in one face.

121. Isometric Axes.—It will be noticed in the previous iso-

metric figures that all lines are drawn in one of three general direc-

tions. One of these directions is usually taken as vertical and the

other two directions make angles of 120° with the vertical. These

three directions are known as the isometric axes. In this sense

the word axis means-a direction, not a line.

In plotting points from a selected origin, the x coordinates are

plotted up and to the left, the y coordinates up and to the right,

and the z coordinates vertically downward, as in Fig. 19a.

122. Isometric Paper.—Paper ruled in the direction of the iso-

metric axes is called isometric paper, and is of great assistance in

making isometric sketches. The lines divide the paper into small

equilateral triangles.

In sketching, the sides of these equilateral triangles are taken to

represent unit distances, exactly or at least approximately. Thus,

if the model shown in Fig. 120 is a block 3" X 3" X 8", with a 2" X 1"

groove lengthwise along one face, some point a on the paper is

selected, and from it distances are taken along the isometric axes,

so that each unit space represents one inch.

From a three units are counted vertically downward, eight up,

and to the right, and one unit, followed by a gap in the line of one

unit, and then a second unit, up to the left. Thus all lines of the

sketch follow the ruled lines as long as the dimensions of the model

are in even inches.

An isometric sketch made in this manner, particularly if spaces

have been exactly counted off according to the dimensions of the

piece, is practically an isometric drawing. If fully dimensioned, a

sketch on plain paper proportioned by the eye is nearly as good as

one in which spaces are counted exactly. Such sketches serve all
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purposes, though of course more difficult to make than those on

isometric paper.

<c ~y^ ^x^ ~^i<f ^k" "yK
>

>k' >ic
v

>k" ^k^ ^k? ^k^\^>^ ^jk ^ <

;: ^>q ^ <
/ ^cK<^>c^>r%c^^^'^^ <x^b^i p^^>< N(r>\ / \ / \ > \ T^ \ / \ .>^\ / \ -^ \ / \ / ^i. J\^*^ sf \/ \ / ^1/

Fig. 121. Fig. 122.

123. Non-Isometric Lines in Isometric Sketching.— Objects

which have a few faces and edges oblique to the principal plane

faces may still be shown by isometric sketching. In such cases it is

always well to circumscribe a set of rectangular planes about the

Fig. 123

oblique parts of the object to aid the imagination. Dimension

extension lines should be used for this purpose. In using isometric

paper this squaring up is done by the lines of the paper.
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Figs. 122, 123 and 124 are good examples of oblique lines and

faces. Figs. 123 and 124 show also the circumscribed isometric

lines which " square up " the oblique parts.

124. Angles in Isometric Sketching.—In isometric sketching

angles do not, as a rule, appear of their true magnitude. Thus the

90° angles on the faces of the brick appear in Fig. 115 as 60° or

120°, but not as 90°. In general, the lengths of oblique or inclined

lines depend on position, and are not subject to measurement by-

scale.

The lines which square up oblique parts are useful in giving the

tangent of the angle of an oblique surface. Thus in Fig. 124, the

angle a differs in reality from the angle as it appears in either place

marked, but the tangent of a is ii . In Fig. 123, (9= tan"1 — . In
v n

practice angles are often given by their tangents. Thus the slope of

Fig

a roof is given as " one in two " or the gradient of a railroad as

" three per cent."

125. Cylindrical Surfaces in Isometric Sketching.—In ortho-

graphic drawings circles appear commonly on planes parallel to the

three planes of projection. To illustrate the position and appear-

ance of circles in isometric drawing in the three typical cases, Fig.

125 represents the isometric sketch of a cube, having a circle in-

scribed in each square face.

Each of the faces of the cube is perpendicular to the isometric

axis given by the intersection of the other two faces. Thus the

square ABCD is perpendicular to the edge BF. The circle abed,
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inscribed in the square ABCD, appears as an ellipse, whose minor

axis, ef, lies on the diagonal BD of the square, BD appearing as a

continuation of the edge FB. In all three cases, then, the minor

axis of the ellipse lies in the same direction, on the sketch, as that

isometric axis to which the plane of the circle is in reality perpen-

dicular.

The major axis is necessarily perpendicular to the minor axis,

and lies on the other diagonal of the square.

Since the cylinder is the surface most used in engineering, the

rule may be applied to cylinders as follows: The ellipse which

represents the circular base of any cylinder must be so sketched

that its minor axis is in line with the axis or center line of the

cylinder. Fig. 126 is an isometric sketch of a piece composed of

cylinders. All the ellipses are seen to follow this rule.

In sketching cylindrical parts of objects, it is necessary to im-

agine them squared up by the use of isometric lines and planes.

Thus the first steps in sketching the piece of Fig. 126 are shown

in Fig. 127. The circumscribing of a square about a circle in the

object corresponds to circumscribing a rhombus about the ellipse

in the isometric sketch. It now remains to inscribe an ellipse in

the rhombus. This ellipse must be tangent to the rhombus at the

middle of each side. To sketch the ellipse, as for example the small

end in Fig. 12 T, draw the diagonals of the rhombus to get the

directions of the major and minor axes, and find the middle points

of the sides (by center lines, through the intersection of the diagon-

als) . It is now easy to sketch the ellipse, having four points given,

the direction of passing through those points, and the directions of

the major and minor axes.

126. Isometric Sketches from Orthographic Sketches.—A good

exercise consists in making isometric sketches from orthographic

sketches or drawings. The three coordinate directions, x, y and z,

must be kept in mind at all times. Fig. 128, as an example, is most

instructive. From the orthographic sketches, Fig. 128, the iso-

metric sketch, Fig. 129, is to be made. A point a is selected to rep-

resent a point a on the orthographic views. The line ab is an x

dimension and is plotted up to the left; ac is a y dimension, and is

plotted up to the right: while ad is a z dimension, and is plotted
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vertically downward. The semicircle is inscribed in a half-rhombus,

tangent at b, e and /.

- y%f^>oo
32Q<

- ^ k cSp<
£ 22o<^ JL^gO
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Pig. 128. Fig. 129.

The cross-section lines of Fig. 128 and the isometric lines of Fig.

129 are represented as overlapping between the figures. Some iso-

metric paper is ruled in this manner, so that it may be used for

both purposes.
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Problems XIII.

(For blackboard or isometric paper.)

130. Make an isometric sketch of the angle piece, Fig. 130, using

the spaces for 1" distances.

-:.._ 4 —

-- — k -3-

• - '

s

\

Fig. 130. Fig. 131.

131. Measure the tool-chest, Fig. 131, and make a bill of ma-

terial, tabulating the boards used, and recording their sizes, giving

dimensions in the order: width, thickness, length, thus:

Mark. Name. Size. Number.

A. Top of Chest. 14" x 1" x 24". 2.

132. A parallelopiped, 9" X 6" X 3", has a 3" square hole from

center to center of the largest faces, and a 2" bore-hole centrally

from end to end. Make an isometric sketch.

133. Let Fig. 3, Art. 5, represent a model cut from a 12" cube

by removing the center, leaving the thickness of the walls 3". Let

the angular point form a triangle whose base is 12" and altitude 8".

Make an isometric sketch.
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134. A cube of 10" has a 6" square hole piercing it centrally from

one side to the other, and a 4" bore-hole piercing it centrally from

side to side at right angles to the larger hole. Make an isometric

sketch.

135. A grating is made by nailing slats f"xi"xl2", spaced £"

apart, on three square pieces, 1£" square, 22" long, spaced 4r|" apart.

Make an isometric sketch.

136. Make orthographic sketches of the bracket, Fig. 122. Views

required are plan and front elevation. (On cross-section paper use

the unit distance for the unit of the isometric paper. On black-

board let each unit of the isometric paper be represented by a dis-

tance of 2".)

137.. Make isometric sketches of Fig. 11, Art. 14, and Fig. 24,

Art. 32.

138. Make isometric sketches of Fig. 13, Art. 15, and of Fig. 82,

Art. 89. In Fig. 82 let A be the point (9, 8, 0) and B the point

(9,0,12).

139. Make an isometric sketch of Fig. 71, Art. 84, the diameter

of the cylinder being 7 units and the length 14 units.

140. Make an isometric sketch of Fig. 92, Art. 93, using the

coordinates given in Art. 94.



CHAPTEE X1Y.

ISOMETRIC DRAWING AS AN EXACT SYSTEM.

127. The Isometric Projection on an Obliqne Auxiliary Plane.—
The sketches previously considered have generally had no exact scale.

Those drawn on isometric paper have a certain scale according to

the distance which one unit space of the paper actually represents.

If the isometric projection is derived from an orthographic draw-

ing of the usual kind by the laws of projection, the isometric projec-

tion so formed has of course the same scale as the original drawing.

In Fig. 132 an isometric projection of a cube is derived from the

orthographic drawing by the use of an inclined plane of projection,
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U, and an oblique auxiliary plane of projection "VV- The aim is

to produce the projection on a plane making the same angle with all

three edges of the cube meeting at any one corner. This plane must

be perpendicular to a diagonal of the cube. In Pig. 132 this di-

agonal is the line EC, a true diagonal, passing through the center of

the cube, not a diagonal of one face of the cube.

The first, or inclined, auxiliary plane \] is taken parallel to the

V projection of EC, and therefore perpendicular to V and making

an angle of 45° with ff and S- The projection of EC on \] shows

its true length.

The second, or oblique, auxiliary plane 'VV is taken perpendicular

to EC. It is oblique as regards ff and V* but, as EC is a line par-

allel to \], and W' is perpendicular to EC, W' is perpendicular to

U- As regards V an(l U> W is an inclined plane, having its in-

clined trace MN on \J, the trace on V being a line MLV,
perpendic-

ular to ZM, the trace of U on V- The construction of this second

projection is therefore according to the usual methods. Any point,

as F, is projected by a perpendicular line across the trace MN and

the distance nFw is laid off equal to mFv .

The projection on ^/ is the isometric projection of the cube and

is full-size if the plan and front elevation are full-size projections.

The edges are all foreshortened, however, and measure only yVo" of

their true length.

128. The Angles of the Auxiliary Planes.—The plane \] makes

an angle of 45° with the plane ff. The plane W^ makes an angle

of 35° 44' with g, or (90° -35° 44') with V- If the side of the

cube is taken as 1, the length of the diagonal of the face of the cube

is V% and the length of the diagonal of the cube is \/3. The

first angle is that angle whose tangent is —- , or whose sine is—=

.

The second angle is that angle whose tangent is —-= and whose sine
a/2

. V2
ls vr

129. The Isometric Projection by Rotating the Object.—In Fig.

134 is shown a method of deriving the isometric projection by turn-

ing the object. The plan, front, and side elevations are drawn with
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the object turned through an angle of 45° from the natural posi-

tion (that in which the faces of the cube are all parallel to the

reference planes) . The side elevation shows the true length of one

diagonal of the cube, AG. Some point on AG extended, as K, is

taken as a pivot, and the whole object is tilted down through an

angle of 35° 44', bringing AG into a horizontal position, A'G'. The

new projection of the object in V is the isometric projection. This

process of turning the object corresponds to the turning of the

object in isometric sketching, as shown in Figs. 118, 119 and 120.

The isometric projection of the cube has all eight edges of the

same length, but foreshortened from the true length in the ratio of

VS to V2.
Any object of a rectangular nature may be treated by either

process to obtain the isometric projection.
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130. The Isometric Drawing.—To make a practical system of

drawing capable of representing rectangular objects in an unmis-

takable manner in one view, the fact that all edges are foreshort-

ened alike is seized upon, but the disagreeable ratio of foreshorten-

ing is obviated by ignoring foreshortening altogether.

An isometric drawing is one constructed as follows: On three

lines of direction, called isometric axes, making angles of 120° with

each other, the true lengths of the edges of the object are laid off.

These lengths, however, are only those which are mutually at right

angles on the object. All other lines are altered in shape or length.

An isometric drawing is distinct from an isometric projection, as

it is larger in the proportion of 100 to 83 ( V3 : V2) . The iso-

metric drawing of a 1" cube is a hexagon measuring 1" on each

edge.

131. Requirement of Perpendicular Faces.—An isometric draw-

ing, being a single view, cannot really give " depth," or tell exactly

the relative distances of different points of the object from the eye.

It absolutely requires that the object drawn shall have its most

prominent faces, at least, mutually perpendicular. The mind must

be able to assume that the object represented is of this kind, or the

drawing will not be " read " correctly. Even on this assumption,

in some cases isometric drawing of rectangular objects may be

misunderstood if some projecting angle is taken as a reentrant one.

Thus in Fig. 133 we have a drawing which might be taken as the

pattern of inlaid paving or other flat object. If it is taken as an

isometric drawing and the various faces are assumed to be perpen-

dicular to each other, it becomes the drawing of a set of cubes.

Curiously enough, it can be taken to represent either 6 or 7 cubes,

according as the point A is taken as a raised point or as a depressed

one. In other words, it even requires one to know just how the

faces are perpendicular to each other to be able to take the drawing

in the way intended.

This requirement of perpendicular faces limits the system of

drawing to one class of objects, but for that class it is a very easy,

direct, and readily understood method. Untrained mechanics can

follow isometric drawings more easily than orthographic drawings.
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132. The Representation of the Circle.—In executing isometric

drawings, the circle, projected as an ellipse, is the one drawback to

the system. To minimize the labor, an approximate ellipse must

be substituted for an exact one, even at the expense of displeasing

a critical eye. The system, if used, is used for practical purposes

where beauty must be sacrificed to speed. In Fig. 125 the rhombus

ABCD is the typical rhombus in which the ellipse must be inscribed.

The exact method is shown in Fig. 43, but requires too much time

for constant use. The following draftsman's ellipse, devised to be

exactly tangent to the rhombus at the middle point of each side, is

reasonably accurate. From B, one extremity of the short diagonal

of the rhombus, drop perpendiculars Bd and Be upon opposite

sides, cutting the long diagonal at Jc and I. With B as a center and

Bd as a radius, describe the arc dc. Similarly, with D as a center,

describe the arc la. With Jc and I as centers, and Ted as a radius,

describe the arcs ad and cb. The resulting oval has the correct

major axis within one-eighth of 1 per cent, and has the correct

minor axis within 3^ per cent.

This draftsman's ellipse is exact where required, namely, on the

two diameters ac and db, which are isometric axes, and it is prac-

tically exact at the extremity of the major axis.

133. Set of Isometric Sketches.—Fig. 135 is a set of isometric

sketches of the details of the strap end of a small connecting-rod,

from which to make orthographic drawings. The isometric sketch

is much clearer than the corresponding orthographic sketch, and

the set shows clearly how the pieces are assembled.

The orthographic drawing of the assembled rod end is much
easier to make than the assembled isometric drawing. It is in fact

clearer for the mechanic than the assembled isometric drawing-

would be, for the number of lines would in that case be quite con-

fusing. It illustrates well the fact that isometric sketches and

drawings should be limited to fairly simple objects.

Another noteworthy fact is that center lines, which should always

mark symmetrical parts in orthographic drawings, should be used

in isometric drawing only when measurements are recorded from
them.

The sketch as given is taken directly from an examination paper

used at the U S. Naval Academy for a two-hour examination. On
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account of the shortness of the period, only one orthographic view,

the front elevation, is required, but if time were not limited, a plan

also should be drawn.

The following explanation of the sheet is printed on the original

:

" Explanation of Mechanism.—The isometric sketches represent

the parts of the strap end of a connecting-rod for a small engine.

In assembling, A, B, C, and D are pushed together, with the thin

metal liners, G, filling the space between B and C. The tapered

key, E, is driven in the f" holes of A and D, which will be found to

be in line, except for a displacement of ^" which prevents the key

from being driven down flush with the top of the strap D. The two

bolts, F, are inserted in their holes, nuts H screwed on, and split

pins (which are not drawn) inserted in the £" holes, locking the

nuts in place. In time the bore of the brasses B and C wears to

oval form. To restore to circular form, one or two liners would be

removed and the strap replaced. The key driven in would then

draw the parts closer by the thickness of the liners removed,

"Drawing (to be Orthographic, not Isometric).—On a sheet

14" X 11" make in ink a working drawing of the front elevation of

the rod end assembled, viewed in the direction of the arrow. Put

paper with long dimension horizontal. Put' center of bore of

brasses 4" from left edge of paper and 5" from top edge. No
sketch, no legend, no dimensions."

Problems XIV.

140. An ordinary brick measures 8" X 4" X 2-|". Make an ortho-

graphic drawing and an isometric projection after the manner of

Fig. 132, Art. 125. Contrast it with the isometric drawing, Art.

128.

141. Make the isometric projection of the brick, 8"x4"x2V'.

turning it through the angles of 45° and 35° 44'. as in Fig. 133,

Art. 127.

142. From Fig. 135 make a plan and front elevation of the

strap D.

143. From Fig. 135 make a plan and front elevation of the stub

end A.

144. From Fig. 135 make a plan and front elevation of the

brass C.



SET OF DESCRIPTIVE DRAWINGS.

The following four drawing sheets are designed to be executed in

the drawing room to illustrate those principles of Descriptive

Geometry which have the most frequent application in Mechanical

or Engineering Drawing.

The paper used should be about 28" x 22", the drawing-board of

the same size, and the blade of the T-square 30".

To lay out the sheets find the center, approximately, draw center

lines, and draw three concentric rectangles, measuring 24"xl8",

22"xl6", and 21"xl5". The outer rectangle is the cutting line

to which the sheets are to be trimmed. The second one is to be inked

for the border line. The inner one is described in pencil only as a

"working line," or line outside of which no part of the actual

figures should extend. The center lines and other fine lines, in-

cluding dimensions, may extend beyond the working line. In the

lower right corner reserve a rectangle 6" X 3", touching the working

lines, for the legend of the drawing.

In making the drawings three widths of line are used.

The actual lines of the figures must be " standard lines " or lines

not quite one-hundredth of an inch thick. The thin metal erasing

shield may be used as a gauge for setting the right-line pen, by so

adjusting the pen that the shield will slowly slip from between the

nibs, when inserted and allowed to hang vertically. Visible edges

are full lines. Hidden edges are broken lines; the dashes -|" long

and spaces ^" long.

The extra-fine lines are described with the pen adjusted to as fine

a line as it will carry continuously. The axes of projection are

fine full lines. The dimension lines are long dashes, |" to 1" long,

with -|" spaces. The center lines are long dashes with fine dots

between the dashes, or are dash-dot lines. The construction lines

are long dashes with two dots between, or are dash-dot-dot lines.

When auxiliary cutting planes are used, one only, together with its

corresponding projection lines, should be inked in this manner.

11
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The extra-heavy lines are about two-hundredths of an inch thick,

and are for two purposes : for shade lines, if used ; and for paths of

sections, or lines showing where sections have been taken, as rip,

Fig. 32. These paths of sections should be formed of dashes

about ¥ long.

SHEET I: PRISMS AND PYRAMIDS.

La}r out the sheet and from the center of the sheet plot three ori-

gins : The first origin 5^" to the left and 4§" above the center of the

sheet ; the second 8" to the right and 1-|" above the center ; and the

third 4" to the left and 4" below the center. Pass vertical and

horizontal lines through these points to act as axes of projection.

First Origin: Pentagonal Prism and Inclined Plane.

Describe a pentagonal prism, the axis extending from P (2",

If", 1") to P' (2", If", 2i"). The top base is a regular pentagon

inscribed in a circle of 1-J" radius, one corner of the pentagon

being at A (2", J", \") . Draw three views of the prism. Draw the

traces of a plane P, perpendicular to V? its trace on V passing

through the point c (0", 0", 2-|") and making an angle of 60° with

the axis of Z. Draw on the side elevation the line of intersection

of the prism and the plane P. Show the true shape of the polygonal

line of intersection on an auxiliary plane HJ, perpendicular to V',

its traces on V passing through the point (0", 0", 4|"). On HJ

show only the section cut by the plane. Draw the development

of the surface of the prism, with the line of intersection described

on it. Draw the left edge of the development [representing

A (2", i",
i"), A' (2", i", &§")] as a vertical line J* to the right of

the axis of Y, and use the top working edge of the sheet as the top

line of the development.

Second Origin: Octagonal Prism and Triangular Prism.

Describe an octagonal prism, the axis extending from P (2^",

If" i") to P' (2i", If", 4i"). The octagonal base is circumscribed

about a circle of 2\" diameter, one flat side being parallel to the
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axis of X. Describe a triangular prism, its axis extending from

Q (Or 52, If", 1-H to Q' (3?98, If", 3£"), intersecting PP' at its

middle point and making an angle of 60° with it. The triangular

base is in a plane perpendicular to QQ' and is circumscribed about

a circle of 1" diameter. One corner is at J (1"', If", 0'.'38). Draw

the ff, V? an(i S projections of the prisms and a complete pro-

jection on a plane ILL taken perpendicular to QQ', and whose trace

on V passes through the point (6", 0", 0"). Draw the triangular

prism as if piercing the octagonal prism.

Third Origin: Hexagonal Pyramid and Square Prism.

Describe an hexagonal pyramid, vertex at P (If", 2",
-J"),

center

of base at P' (If", 2", 3") . The hexagonal base is in a plane parallel

to ff and is circumscribed about a circle 2-J" in diameter, one

corner being at A (If", 0'.'5G, 3"). Projecting from the sides of the

pyramid are two portions of a square prism, whose axis is Q (£",

2", H")> Q'
(
3i"> 2"> 2i")- Tne square base is in a plane parallel

to S and measures 1" on each edge, and its edges are parallel to the

axes of Y and Z. Letter the edges GG', HH', etc., the point G
being (i", If, If"), H {I", 2|", If"), etc. Draw the object as if

cut from one solid piece of material, the prism not piercing the

pyramid.

The views required are plan, front elevation, and side elevation,

and also an auxiliary projection on a plane U, perpendicular to If-fl.

The ff trace of HJ makes an angle of 120° with the axis of X at

the point X (2|", 0", 0").

Draw also the developments of the surfaces. Place the vertex of

the developed pyramid at a point J" to the right and 3^" above the

origin, and the point A V to the right and 0'.'56 above the origin.

Mark the line of intersection with the prism on this development.

Between the side elevation and the legend space, draw the de-

velopment of the square prism, placing the long edges, GG', HH',

etc., in a vertical position. Describe the line of intersection on the

development. Let the edge which has been opened out be GG', and

let the middle portion of the prism, which does not in reality exist,

be drawn with construction lines.
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General Directions for Completing the Sheet.

In inking the sheet show one line of projection for the determi-

nation of one point on each line of intersection. Shade the figure,

except the developments.

In the legend space make the following legend

:

SHEET I. (.Block letters 15/32" high.)

DESCRIPTIVE GEOMETRY. (AH caps 3/16" high.)

PRISMS AND PYRAMIDS. (All caps 9/32" high.)

Name (signature). Class. (Caps 1/8" high, lower case 1/12" high.)

Date. (Caps 1/8" high, lower case 1/12" high.)

SHEET II: CYLINDERS, ETC.

Lay out cutting, border, and working lines, and legend space as

before.

Plot four points of origin as follows : First origin, 6" to the left

and 4" above the center of the sheet; second origin, 4§" to the right

and 4J" above the center; third origin, 6£" to the left and 3^"

below the center; fourth origin, 6^" to the right and 4^" below the

center.

First Origin: Intersecting Right Cylinders.

Draw the three views of two intersecting right cylinders. The

axis of one is P (2-T, 2", %"), P' (2%", %", 3±"), and its diameter is

3". The axis of the other is Q {¥, If", 2"), Q' (4f', If", 2"), and

its diameter 2f". Determine the line of intersection in V by planes

parallel to V at distances of f", 1", 11", etc.

Second Origin: Inclined Cylinder and Inclined Plane.

Draw three views of an inclined circular cylinder, cut by a plane.

The axis of the cylinder is P (3.73", If", f), P' (2", If", 3f )•

The base is a circle, diameter 2-J-", in a plane parallel to ff. The

plane cutting the cylinder is perpendicular to V> and its trace in

V passes through the middle point of PP\ and inclines up to the
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left at an angle of 30° with OX. Plot the intersection in f\, \,
and S aud find the true shape of the ellipse by an auxiliary plane

of projection perpendicular to V through the point (3", 0", 4").

Third Origin: Right Circular Cone and Inclined Plane.

Draw a right circular cone, vertex at P {2", If", -|"), center of

base at P' (2"', If", 4"), diameter of base 3". The cone is inter-

sected by a plane perpendicular to S; having its trace in S parallel

to the extreme right element of the cone and through the point

(0", 2^", 4"). Draw the line of intersection in plan and front

elevation, and show the true shape of the curve by projection on an

auxiliary plane HJ perpendicular to Sj its trace passing through

the point (0", 2±", 0").

Fourth Origin: Ogival Point, Vertical Plane and Inclined Plane.

Let S lie to the right of f\ and make no use of V- The problem

is to draw two views of a 3^" ogival shell, intersected by two planes.

The ogival point is generated by revolving 60° of arc of 3^" radius

about an axis perpendicular to ff at the point (2", If", 0"). The
initial position of the generating arc is as follows: The center is

at D (0", 3^", 3-§"), one extremity is at B (0", 0", 3^"), and one is at

P (2", If", 0.46"). The cylindrical body of the shell extends from

the ogival point to the right in the side elevation, a distance of f".

Two planes, T and R, intersect the shell. T is parallel to and 1-|"

from S- R is perpendicular to g, and its S trace passes through

the origin, and makes angles of 45° with the axis of Y and the

axis of Z. Draw: The traces of T and Rj the side elevation; the

line of intersection of T with the shell ; and, on the plan, the line

of intersection of R with the shell.

General Directions for Completing the Sheet.

In inking the sheet show one cutting plane for the determination

of each line of intersection, and show clearly how one point is de-

termined in each view of each figure. Shade the figure except the

developments.
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In the legend space make the following legend

:

SHEET II. (Block letters 15/32" high.)

DESCRIPTIVE GEOMETRY. (All caps 3/16" high.)

INTERSECTIONS OE CYLINDERS, ETC. (All caps 9/32" high.)

Name (signature). Class. (Caps 1/S" high, lower case 1/12" high.)

Date. (Caps 1/8" high, lower case 1/12" high.)

SHEET III: SURFACES OF REVOLUTION.

Lay ont center lines, cutting, border and working lines, and

legend space as before.

Plot five points of origin as follows : First origin, 6f" to the

left and 3f" above the center of the sheet; second origin, 1-J" to

the right and 6" above the center ; third origin, 8f" to the right and

of" above the center; fourth origin, 5^" to the left and 4§" below

the center; fifth origin, 7f" to the right of the center of the sheet

on the horizontal center line.

First Origin: Sphere and Cylinder.

Draw a sphere pierced by a right circular cylinder. The center

of the sphere is at (2", 2", 2"), its diameter 3-|". The axis of the

cylinder is P (2", 1£", $"), V (2", If, 3£"). Draw the sphere and

cylinder in ff, V and g, and determine the line of intersection by

passing planes parallel to V at distances of V'', f", 1£" and If".

Second Origin: Forked End of Connecting-Rod.

The forked end of a connecting rod has the shape of a surface of

revolution, faced off at the sides to a width of 1$", as shown in Fig.

136. The centers a, b, and c are points (2", 1", 0"), (2", 0", f"),

and (2", 0", 1"). The arc which has d as a center is tangent at its

ends to the adjacent arc and to the side of the 1" cylinder.

Determine the continuation of the line of intersection of the

plane and surface at w, by passing planes parallel to H at distances

from H of 2\", 2f", U", 2f" and 2f". Draw no side view.
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Third Origin: Stub End of Connecting-Rod.

The stub end of a connecting-rod is a surface of revolution faced

off at the sides to a width of If, and pierced by bore-holes parallel

to its axis as shown in Fig. 137. Centers are at a (If-", 1", 0"),

I (3", 1", 0"), c (I", 1", 0"), d (3f", 0", If"), and e (§", 0", If).
Determine the continuation of the line of intersection at w by pass-

ing planes parallel to \\ at distances from ff of 1 ff, If, 1TV'>

Fig. 136. Fig. 137.

If, and 1-gV'. Draw also the side view and determine the ap-

pearance of the edge marked u, where the large part of the bore-hole

intersects the surface of revolution, by means of the same system of

planes with two additional planes.

Fourth Origin: Right Circular Cylinder and Cone.

A right circular cone is pierced by a right circular cylinder, the

axes intersecting at right angles, as in Fig. 62, Art. 72. The axis
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of the cone is P (2J", &f* J"), P' (2±", %%', 2f"). The base, in a

plane parallel to ff, is a circle of 3f
" diameter. The axis of the

cylinder is Q (|", 2|", If"), Q' (4", 24* If"), and its diameter is

H".
Draw three views of the figures, determining the line of inter-

section by planes parallel to ff. It is best not to pass these planes at

equal intervals, but through points at equal angles on the base of

the cylinder. Divide the base of the cylinder in 3 into arcs of 30°,

and in numbering the points let that corresponding to F, in Fig. 62,

be numbered and let H be numbered 6. Insert intermediate

points from 1 to 5 on both sides, so that the horizontal planes used

for the determination of the curve of intersection are seven in

number, the lowest passing through the point 0, the second through

the two points 1, the third through the two points 2, etc. Determine

the curve of intersection by these planes.

Draw the development of the surface of the cylinder, cutting the

surface on the element 00' (or FF' in Fig. 62). Place this line of

the development vertically on the sheet, the point being 1" to the

left and 7^" below the center of the sheet, and 0' being 1" to the

left and 3§" below the center of the sheet.

Draw the development of the surface of the cone ISTote that the

radius of the base, the altitude, and the slant height are in the

ratio of 3 : 4: 5. To get equally spaced elements on the surface of

the cone, divide the arc corresponding to BC in ftf, Fig. 62, into

five equal spaces. Number the point B and C 5, and the inter-

mediate points in series. Since the cone is symmetrical about two

axes at right angles, one quadrant may represent all four quadrants.

Put the vertex of the developed surface 5" to the left of the center

of the sheet and 1" below it, and consider it cut on the line P0 or

PB. Locate the point 5" to the left of the center of the sheet and

4-J" below it. Divide the development into four quadrants and then

divide each quadrant into five parts, numbering the 21 points

0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0.

Fifth Origin: Cone and Double Ogival Point.

In this figure a right circular cone pierces a double ogival point.

The cone has a vertical axis, PP', the vertex P being at (3", IV,
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^"), and P', the center of the base, at (3", 1-J", 3-|"). The base is a

circle of 2%" diameter lying in a horizontal plane.

The ogival point has an axis of revolution, Q (§", ±%", 2"),

Q' (5§", 1^", 2"), 5|" long. The generating line is an arc of 4"

radius of which QQ
f

is the chord, and in its initial position the arc

has its center at (3", IV, 5 '.'02). Draw three views of the cone

piercing the double ogival surface, and determine the line of inter-

section by means of three auxiliary cutting spheres, centered at p,

the intersection of PP1 and QQ'. Use diameters of 2-|", 2\", and

2 j^g-". This curve appears on the U. S. Wavy standard 3" valve.

General Directions for Completing the Sheet.

In inking the sheet show one cutting plane or sphere for the

determination of each line of intersection, and show clearly how
one point is determined in each view of each figure. Shade the

figures, except the developments.

In the legend space record the following legend

:

SHEET III. (Block letters 15/32" high.)

DESCRIPTIVE GEOMETRY. (All caps 3/16" high.)

INTERSECTIONS OE SURFACES OF

REVOLUTION". (All caps 9/32" high.)

Name (signature). Class. (Caps 1/8" high, lower case 1/12" high.)

Date. (Caps 1/8" high, lower case 1/12" high.)

SHEET IV: CONES, ANCHOR RING AND HELICOIDAL

SURFACES.

Lay out center lines, cutting, border, working lines, and legend

space as before.

From the center of the sheet plot origins as follows : First

origin, 3|" to the left of the center and 3f£" above the center;

second origin, 5-|" to the right of the center and 3" above the center

;

third origin, 10-|" to the right of the center and 4^" above the center

;

fifth origin, 3" to the right of the center and 6" below the center.
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First Origin: Intersecting Inclined Cones.

Draw two intersecting- inclined cones. The first cone lias its

vertex at P {!", If", f), and the center of its base at P' (2\±-">

If"; 4f"). The base is a circle of 3§" diameter, lying in a plane

parallel to ff. The second cone has its vertex at Q (5", If", 2%"),

and the center of its base at Q' (%", If", 3f). The base is a circle

of 3" diameter lying in a plane parallel to S- Draw plan, front

elevation, side elevation, and an auxiliary projection on a plane \J,

perpendicular to the line PQ, the trace of \J on V? passing through

the point M (7f, 0", 0") . Determine the line of intersection of the

cones by auxiliary cutting planes containing the line PQ, and treat

the problem on the supposition that the cone PP' pierces the cone

QQ'-

Second Origin: Helicoidal Surface for Screw Propeller.

A right vertical cylinder, 1-|" in diameter, has for its axis

P (2V, H", ¥), P' (W, H"> W)- Projecting from the cylinder

is a line .4 (3f, U", V), B (h>", %%', %"). This line, moving

uniformly along the cylinder, and about it clockwise, describes one

complete turn of a helicoidal surface of 3" pitch. Draw plan and

front elevation of the figure. This helicoid is intersected by an

elliptical cylinder of which the generating line is perpendicular to

Hi and the directrix is an ellipse lying in ff, having its major axis

C (2", U", 0"), D (£", 2f, 0"), and minor axis E (11", 3", 0"),

F (If, 2", 0"). Find the intersection of the two surfaces. Ink in

full lines only the circular cylinder and the intersection. This

portion of a helicoidal surface is similar to that which is used for

the acting surface of the ordinary marine screw propeller, of 3 or

4 blades.

Third Origin: Worm Thread Surface.

A worm shaft is a right cylinder, If in diameter, its axis being

P (If, If, f), P' (If, If, 8f ). A triple right-hand worm
thread, of the same profile as in Fig. 70, projects from the cylinder

along the middle 6" of its length. The pitch of the thread is 4f

,
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so that each thread has more than a complete turn. The outside

diameter of the worm is 3". Make a complete drawing of the plan

and front elevation, as in Fig. 70, letting the worm thread begin at

any point on the circumference.

Fourth Origin: Anchor Ring and Planes.

An anchor ring, R, is formed by revolving a circle of 1\" diameter,

lying in a plane parallel to V and with its center at A (14", 2f",

£"), about an axis perpendicular to ff and piercing ff at the point

B (2f", 2f", 0"). Draw plan, front elevation, right side elevation

(to the right of \\), and left side elevation (to the left of H) on a

plane S', 4f" from S- A plane B, parallel to S at f" from S? cuts

the ring. Draw the trace of B on ff, and the intersection of B and

the ring on S- A second plane B', parallel to S at 14" distance,

cuts the ring. Draw the trace P'H and the intersection B'R on S-

A third plane Q is parallel to V at If" distance from V- Draw the

trace QH and the intersection QR on V- A fourth plane, Q' , is

parallel to V at 2" distance. Draw the trace Q'H and the inter-

section Q'B on V- An inclined plane T is perpendicular to S and

S', its trace on §' passing through the point C (4f", 21", f"), and

inclining down to the right at such an angle as to be tangent to the

projection on S' of the generating circle when its center is at

D (21", 1J
W
,
$"). Draw the trace of T on S', and the intersection

TR on ff. Find the true shape of TR by means of an auxiliary

plane of projection flj perpendicular to S', cutting <§' in a trace

parallel to TS' through the point on §' whose coordinates are

E (4f",0",ir).

General Directions for Completing the Sheet.

Ink the sheet uniform with the preceding sheets, and in the

legend space record the following legend:

SHEET IV. (Block letters 15/32" high.)

DESCRIPTIVE GEOMETRY. (All caps 3/16" high.)

CONES, ANCHOR RING AND HELICOIDS. (All caps 9/32" high.)

Name (signature). ClaSS. (Caps 1/8" high, lower case 1/12" high.)

Date. (Caps 1/8" high, lower case 1/12" high.)
















