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PREFACE.

THE application of the elastic theory to the analysis of the stresses
in arches, particularly in the case of the fixed or hingeless masonry
arch, is exceedingly limited, notwithstanding the acknowledged fact
that it is the only exact and reliable method of procedure. The
reason is that, as usually presented, its application to the solution
of a problem involves much labor, and the practi ing engineer finds
it difficult to devote the time and the concentrated study which its
use demands.

This book is presented to the engineering profession as an expo-
sition of a new system of treating the subject. By its use the stresses
are obtained with absolute certainty, and the process of application
is so clear and simple that the author is confident it will be found
preferable to the forms of analysis now in general use.

Two steps are preliminary to its application:

The first is the special graphical construction employed in defining
the exterior forces, their relations to each other, and their combina-
tion into force diagrams. This makes possible a clear conception of
the problem as applied to each element of the arch. It is a marked
advance over the usual procedure, as it presents to the eye a picture
of the exterior forces, and shows clearly all the features of the analy-
sis and their mutual dependence.

The second step is due to the discovery that there is a character-
istic common to all arches of the same type, this characteristic
being expressed by the intersection locus and the tangent curves
used for the resolution of the exterior forces into their components.
This makes possible an investigation to determine how the char-
acteristic changes with the change in the form of the arch; and little
effort is then required to present this relation in a graphical form,
from which conclusions applicable to the solution of the problem can
readily be derived. The serond step in the solution is derived from
the algebraic equations which define the elastic theory, and it would
be difficult to express anything new thereon, or to put it in a clearer
form than the one in which it has been presented by such scientistd
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as Winkler, Mohr, Miiller-Breslau, Weyrauch, Sternberg, Grashof,
Melan, and others. The author can only lay claim to a simple defini-
tion of the elastic theory as applied to the crescent-shaped arch, which
compares favorably with the expressions for this same type of bridge
given by the above-mentioned authorities. All these analytical
expressions are compiled in the Appendix.

Where the author’s method materially differs from those now
generally used is, in the first place, in the graphical construction
which defines the forces. He presents a method which applies to all
problems, and which at the same time retains all the axiomatic truths
of the elastic theory, without the necessity of approximations and
assumptions that would throw doubt on its conclusions. This, how-
ever, was but one step in advance, and another was still necessary
before the application of the elastic theory could attain that sim-
plicity of execution so requisite for efficient designing.

It may generally be said that the stresses in the arch are defined
by an intersection locus and tangent curves; when these are once
found, the special graphical method is readily applicable.

All arches have their own loci and tangent curves; the author
found, in addition, that they have a property in common, namely,
the area enclosed by the arch axis and the straight line joining its
ends. All changes in the form of the arch can be expressed in terms
of this characteristic. This led at once to the conclusion that the
characteristic, or the elements expressed by it, viz., the intersection
locus and the tangent curves, could be reduced to a standard, and
that any changes in form could be reduced to factors which referred
to this standard.

The characteristic selected by the author is the parabola, since
the expressions for its ordinates, its area, and its center of gravity
are all in the simplest terms. All other forms of arches are expressed
with reference to this standard. The manner in which this is done
is fully explained in the book and analyzed in the Appendix, the
only deviation being in the case of the spandrel-braced arch. The
reason for this, as explained in Chapter III, Arts. 7 to 14, is that the
arch axis is not well defined in such a structure. To surmount this
difficulty the author had recourse to the laws of Maxwell, Castigliano,
and others, as applied to the displacement theory, and with this
assistance he was able to bring this arch within the scope of the
standard method.

Chapter I discusses the various forces in the arch, and is in the
nature of an introduction to prepare the reader for a clear under-
standing of the succeeding chapters.

Chapter II explains the special combinations of the forces, and, to
interest the student, this explanation has not been put in algebraic
form, but is demonstrated by computing graphically the stresses in
three-hinged arches of various forms and materials.

Chapter IIT deals with two-hinged arches of various forms, Arts.
7 to 14- relating to the application of the displacement theory, and
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Arts. 18 to 21 to the application of the elastic theory in its general
form. This application is demonstrated by an analysis of the stresses
in the Douro Bridge, showing the reasoning which guided the author
in working out his method. '

Chapter 1V is devoted to what is known as the “stiff,” or ‘‘fixed,”
arch, or, more properly, in the opinion of the author, as the ‘““hinge-
less” arch.

The application of the elastic theory to the computation of stresses
in this type of arch, and especially the masonry arch, is now recog-
nized as the only reliable method. This opinion has been repeatedly
expressed by many authorities on the subject; for instance, Mr. -
David A. Molitor, in the Transactions of the American Society of
Civil Engineers, No. 834, July, 1898, says:

“In matters pertaining to the design of fixed (hingeless) masonry
arches, it is safe to say that the method based on the theory of elas-
ticity is the only one entitled to full confidence, and permitting of an
analysis corresponding in accuracy with the knowable properties of
the material. All other methods are too approximate to admit of
close designing, such as the modern status of engineering science
would generally demand.

“This modern and most exact method, however, is not free from
criticism. While the fundamental principles of the theory are almost
axiomatic, their final application to the solution of stresses is extremely
complicated, so much so that few engineers can be credited with the
patience and earnest endurance to master either the method or the
solution of a problem to which it is applied.

“Therefore, unless the masonry arch can be so treated as to com-
bine clearness, simplicity, undoubted accuracy, and economy in design
with faultless construction, the field of usefulness of this class of
structure will remain restricted, and such monuments as the Cabin
John Bridge will continue to remain curiosities of rare production.

“This is not what the'masonry arch deserves in view of its prac-
tically everlasting life, nominal cost of maintenance and naturally
esthetic form, which latter should be a prime factor, though rarely
given much consideration, in the choice of a bridge.”

To this the author would add that, where natural conditions are
favorable, an arch of masonry, and especially of reinforced concrete,
can successfully compete with a steel structure as regards cost of
construction. The cost of maintenance of the former is practically
nil, and its life is measured by centuries, where that of the latter 1s
only counted by years.

By the use of the method demonstrated in this book, the elastic
theory as applied to masonry arches has been reduced to the simplest
and clearest form for analyzing the stresses. For this purpose a
masonry arch has been used as an example. The application of the
elastic theory in its general form has been demonstrated by analyzing
the stresses in the masonry arch over the Syra Valley, near Plauen,
Saxony.
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Chapter V treats of the distribution of the stresses in an arch rib
of metal, stone, or reinforced concrete. Formulas have been appended
to this chapter dealing with the stresses in columns of steel, stone and
reinforced concrete, and with the stresses in reinforced-concrete
beams and slabs. This part of the chapter is more in the nature of
a memorandum than a treatise on these subjects, and for further
information the reader is referred to the authorities cited.

Chapter VI (also in the nature of a memorandum) deals with
wind stresses, the forces acting on the arch, and the good and bad
qualities of the various types of arches. In preparing the latter,
Sctaffer and Melan were frequently consulted. No arch should be
designed without a consideration of the principles presented in Arts.
6 and 7. In addition, some recommendations have been made
regarding the stresses in piers and abutments, and at the end of the
chapter tables have been added giving the standard loading of bridges
according to American practice.

The Appendix (Chapters VII, VIII, and IX) is devoted to the
algebraic deductions and expressions of the elastic theory as applied
to arches, and (Chapter X) to the displacement theory.

JosepH W. BALET.

NEw York, November, 1907.
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ANALYSIS OF ELASTIC ARCHES.

CHAPTER L.
THE ARCH RIB.

THE EXTERIOR FORCES OF THE ARCH. APPLICATION OF THE
ErasTic THEORY.

The Exterior Forces of the Arch.—A curved beam is generated by
moving the center of gravity of a plane figure along a curve of simple
curvature, the plane maintaining a.position at right angles to the
curve during the motion. This curve will be called the axis of the
beam, and the exterior forces must be located in the same plane in
which the curve lies.

If the exterior forces are known, the interior forces in any section
of the beam are known.

In Fig. II AB represents a portion of this curved beam. The
origin of the coordinates is at the point A, and all abscissas meas-
ured to the right of 4, and all ordinates measured upward from the
line AB, are positive.

The angle which the tangent to the curve at any point (z, y)
makes with the horizontal, or which the plane of section at this point
makes with the vertical, is indicated by a®°.

In Fig. I the curve ACB is the axis of the beam, which is assumed
as capable of angular movement at the points A and B. This beam
supports the single vertical load K. In Fig Ia a force polygon has
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been drawn for the load K, and in Fig. I the reciprocal, or moment
polygon, ADB, has been drawn, viz., AD| ad, and DB] ab.

From a well-known principle in graphics, the triangle ADB rep-
resents the moment polygon of a beam freely supported at A and B,
and sustaining the single load K. At a point distant z from the
support A this bending moment is equal to

M=y,H.
For the point (z, y) of the curved beam the moment is

M=y,H=y,,H—yH,
or
M=9n—yH.

In Fig. I the segments AD and DB of the moment polygon are
the components K’ and K” of the force K; they are held in equilib-
rium by the reactions R, and R, and the exterior forces may be
replaced by the reactions R, and R,, without disturbing the equi-
librium of forces.

It is a well-known law in graphical statics that each segment of
a closed moment polygon is the resultant of all the exterior forces.
Fig. I1 shows on a large scale a portion of the arch from the support
A to the point (z, y), the force R, of Fig. I corresponding to the sec-

\/
\ng. 1.

tion-point (z, y) of the arch. This force R, may be resolved into a
force P parallel to the tangent of the curve at the point (z, y), and a
force S at right angles to this tangent; the force S is the shearing
force. Or, the force R may be resolved into the vertical force V, which
is equal to the vertical reaction at A, and the horizontal force H, which
is equal to the horizontal thrust at A. The computation of these
forces has been made in Fig. Ila, and, measured with the scale of
forces, the lines P and S, and H and V,, give the intensity of these
forces.
Also, from Fig. 1la,

H=R,cosa® and S=R,sind,
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and from Fig. II,

c=y,cosa’;
and
Hc=Rgccosa®, or Hy,cosa’=R,ccosa’;
or Hy,=Rc.
Similarly,
Pp=Ry,
and

Rlc=Hyl=Pp=M‘ e o o e o s o (1)
Fig. 1la further gives
P=Hcosa+V,sina,

=~Hsina+V,cosa.

}......(2)

THE APPLICATION OF THE ErasTic THEORY.

The application of the elastic theory to arches is based on the
assumption that an arch is a constrained curved beam, its ends being
connected with rigid supports. These connections may be so made
as to allow an angular movement at the points of connection, as in
the ‘“two-hinged arch,” or the connection may be rigid, as in the
‘‘hingeless arch.”

These two forms of arches belong to the class of girders whose
stresses cannot be computed by the ordinary method of statics alone,
as the equilibrium between the exterior forces and the interior stresses
in the arch is dependent in part on its change of form; in other words,
the interior stresses are dependent on the static equilibrium of the
fon;les, the elastic equilibrium of the material, and the form of the
arch.

When a third hinge is introduced, usually at the crown of the
arch, this static indeterminateness ceases, the arch then being trans-
formed into two curved beams, each
freely supported at two points.

To illustrate the above let
ACB, Fig. 111, be the axis of an
arch which can pivot around B
and slide at A. This is equivalent
to a beam freely supported at the
ends. Let L be asingle force acting f
on the beam. Under the influence of this force a pivotal motion
will take place at B, a sliding motion at A, and a bending moment
will be caused in the beam, which, for the point (z, y), will be

im=—§.tL—glL.. B )
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The vertical reaction caused at A will be

Vl = ‘lgLo e o o o o o o o o o (4)

4

No other exterior force is caused at A.
At B a vertical reaction will be caused

= V2=L sin d—Vl,
and in addition a horizontal force
Hy=L cosd.

In a two-hinged arch no sliding motion can take place at A, and
to change the beam into a two-hinged arch, a force H should be applied
at A to push that end back into its former position.

The vertical component of this force is

V,,=Hsine.
The horizontal component is

sin e
cos e

H,=Hcose, and V,=H, =H, tane.

And the bending moment in the arch at the point (z, ¥) will be

M=':m—yH1
when V1=—9L+H1tanc,
L B ()
V2=Lsind—V1,
and Hy=Lcosd+H,.

When the force L acts as indicated in Fig. III, Lcosd is positive
and H, may be negative.

If no hinges were provided at the supports, no angular movement
could take place at A and B; and to change the two-hinged arch into
a fixed arch, its ends should be bent back into their original positions,
which requires a pair of forces at each support, each pair forming a
moment (M, and M, Fig. IV).

These two moments act simultaneously on the arch and cause
———M' @ :1;)+M2x, and the total
bending moment in the arch at the point (z, y) is

M.(1—2)+ Mz _
Z

a bending moment at the point (z, y)=

Mz=mz + ?IHI, . . . . (60)
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when V1=-2-’L+M2—74£+H, tane,
V2=Lsin d— Vl’ . « o o o (6b)
and Hy=H,+Lcosd.
________ . J—
V2
V. PR \ ¢
. // B8 (]

) Hi
d |/ F1g. IV
]
lg

Ce

b )

When more than one force acts on the arch, the equations (6a) and
(6b) may be expressed in the general form:

M(l—z)+Myz
l

My—
U

M, =, + -yH,, . . . . (6)

V1=ll-2'",qL+ +H tane, . . . . (7)

Va=2¢Lsind=Vy, . . . . . . . . . (8
Hy=H,+3}Lcosd,. . . . . « . . . (9)'
Ve=2%Lsind=V;, . . . . . . . . . (10)

H,=Hy+3Lcosd; . . . . . . . . (1)

and when the values of H, M;, and M, are known, the resultant
of the exterior forces for any point (z, y) of the arch can be found;
from this the values of P and S in equatlons (2) are obtained, and
from these the normal and shearing stresses in the arch may be com-
puted.

In equations (6) to (9) the only known quantity is 9., and for
the fixed arch the three statically indeterminate quantities, M;, Mz,
and H ., have to be ascertained.
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For the two-hinged arch the values of M, and M, are equal to
zero, and the statically indeterminate quantity H remains to be
solved:

M,=,—yH,. . . . . ... (12

When the arch is also provided with a hinge at the crown, the
bending moment at the center hinge caused by H is zero. For this
same point the bending moment caused by the exterior forces is zero,
the arch cannot resist bending at the hinge, and all the statically
indeterminate quantities disappear:

M.=Hy. . . . . . . . . . (13

With the supports A and B at the same elevation and all the
loads acting in a vertical direction, the equations (7) and (11) change
into
M>,—M,

l ’

V"leé"” Hy=H,=H,.. . . (14

When all the loads act vertically, 9 ,, of equation (6), can be repre-

sented by a reciprocal polygon. This polygon should be drawn from

a force polygon which has a pole distance equal to H, (see Fig. IV),

and the end segments of the reciprocal polygon should intersect the

Yierticals through A and B at a distance ¢ above or below the point
, Viz., .

M
cl=ﬁi,..........(15)

and above or below B at a distance
C2=5F==3F. . « « « « « . . (16)

The vertical ordinates of this reciprocal polygon, measured from the
chord AB of the arc and multiplied by H;, are equal to

:m,+M‘(l_?+M"’z.

The bending moment at the point (z, y) of the arch is equal to the
product of H; multiplied by the difference between the ordinate 30
of this reciprocal polygon and the ordinate y of the arch axis. Both
ordinates are measured from the chord AB of the arc.

This law was first established by Winkler. (The analyses for the
determination of the values H, M, and M, are given in the Appendix.)
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CoMPONENTS, AXIAL FoRrcE, SHEARING FoRCE.

Components.—For a load the reactions at the-supports and
their points of application are known, and the axial force and its posi-
tion in relation to the section-point (z, y) of the arch can be computed;
when the graphical method is applied, the two segments of the recip-
rocal polygon (see Appendix) can be drawn in their proper positions
relative to the arch axis. These two segments are the components
of the load, and their point of intersection is on the load line. It
- should be observed that each component is held in equilibrium by a
force (the reaction) acting at the support in a direction opposite to
that of the component.

Axial Force.—In computing the stresses in an arch at a point
(z, y) an imaginary section is made through the point, the portion of
the arch to the left of the section is removed, and the forces are then
found which will hold the remaining portion in equilibrium when acted
on by a load.

The resultant of these forces is in equilibrium with the interior
stresses of the arch. One of these forces acts parallel to the tangent
to the arch at the point of section, and this is the axial force P,
previously mentioned.

Shearing Force.—The other force acts at right angles to the said
tangent, and is the shearing force S,.

Let the section be located between the left support and the load,
and let the portion of the arch to the left of th section be removed
(see Fig. IV). The remaining portion of the arch may be considered
as a free body in equilibrium acted on by the load L or its components.
Of these the right component is balanced by the right reaction, which
is equal in magnitude and opposite in direction. The only forces re-
maining are the left component and the stresses in the arch, and the
body can be in equilibrium only when this component is the resultant
of the stresses in the arch. _

Let the section be located between the load and the right support,
and the portion of the arch to the left of the section be removed. The
same reasoning will prove that in this case the right reaction is the
resultant force which balances the stresses in the arch.

This reasoning applies in the same manner to a number of loads,
and it should be observed that the resultant force or forces which
balance the stresses in the arch are those forces which are intersected
by the plane of section. For this reason these forces are always referred
to as the ‘“forces in the section.”

LINE OF PRESSURE.

A number of loads will form a reciprocal polygon, and, according
to the properties of this polygon (which are demonstrated in any text-
book on graphics), each of its sides is the resultant of all the exterior
forces; and a curve drawn tangent to these sides is called the *line of
pressure.”
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LINE oF RESISTANCE.

Each side is resolved into its axial force P, and its shearing force
S.; and the axial forces form a polygon which is tangent to a curve
called the “line of resistance.”

Where there is no shearing force the line of pressure and the line
of resistance coincide.

Every arch has three lines which indicate the action of the ex-
terior forces upon it, viz., the axis of the arch, the line of pressure,
and the line of resistance.

From the foregoing paragraphs it will be seen that the line of pres-
sure is defined by the exterior forces alone, and that this line repre-
sents the static equilibrium of the exterior forces mentioned at the
beginning of the chapter. The position of the line of resistance in
relation to the line of pressure is defined by the exterior forces and
the curvature of the axis of the arch, and the positions of the line of
pressure and the line of resistance in relation to the axis of the arch
are defined by the curvature of the arch and the shape and material
of the arch section; this is the meaning of the expression, ‘“the
elastic equilibrium of the material and of the form of the arch,” at the
beginning of this chapter.

INTERSECTION Locus.

In a previous paragraph it was shown that a force can be resolved
into its components, and that the intersection of the components must
be on the load line. By giving different positions to the load a
series of intersection points of the components is obtained, and a
line drawn through these intersection points is called the ‘‘inter-
section locus.”

TANGENT CURVES.

It has been shown above how the components of a force intersect
the verticals through the points of support at a distance ¢ above or
below the points of intersection of the arch axis with these vertical
lines. For each position of the load there is a corresponding point of
intersection on the locus, and a point of intersection on the verticals.
When the corresponding points of‘intersection on the locus are united
with those on the verticals, a series of sides is obtained which form
a polygon, and this polygon is tangent to a curve called the ‘‘tangent
curve.” For two- and three-hinged arches these tangent curves con-
tract to a point which is the center of the hinge. The intersection
locus of the three-hinged arch is defined by two straight lines, the
prolongation of each passing through the abutment hinge and the
crown hinge.

From this it follows that the direction and location of the com-
ponents of a force may be obtained by drawing tangent lines to the
two curves from the intersection point which the load line makes
with the intersection locus (see Fig. IV).
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Referring to the figure and equations (13) and (14),

M M
cl:Fl! and 02=y2+H—:. A ¢ 1))

Further, for any point of the left-hand component,

Vi M, +Vz
cx=cl +}_1_1I=_‘T“- « e *« o o (18)

For any point of the right-hand component,

V My +Hyy,—Vo(l—
cz=02—17§(l—z)= 2t 23’}{2 Gl (19)
And from equations (16) and (17) when z=g,
_M\+Vig_ Mz+Hyy,—Vy(l—g)
zO—Hl— T, B 1))

For the two-hinged arch, M;=M;=0, and therefore ¢, =0, Ca=1Ys,
the components pass through the hinges, and the tangent curves
contract to a point which is the center of the hinge. The equations for
the components are:

Vi
2z <g™ Ex, ® o s+ e e e e e o & o (180)

_Haya—Vs(l-2)

2z>¢ "—1_12—, s e e e o o o (190)
. 14 Hoys—Va(l—
and, if z=g, z0=171g=-ﬂfr2(—i). C e e .. (2a)

MaxiMuM AND MINIMUM STRESSES.

From equations (3) of Chapter V it follows that the normal stresses
in a section of the arch rib are greatest in those fibers which are
farthest from the axis of the arch.

This same chapter describes the meaning and value of the “core,”
the ‘‘core points ” and the “core lines ” in an arch rib. In Fig. V,
let AB be an arch rib, the stresses of which are to be investigated for
a section XX. The line 0,0, is the intersection locus, and the lines 7'
and T are the tangent curves. At this section N, and N, are the core
points. Any force passing between the points N; and N, exerts com-
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pression in all the fibers. Any force passing through N exerts com-
pression in the lower fibers, but exerts no stress in the upper fibers.
Any force passing below N; exerts
compression in the lower fibers and
tension in the upper fibers.

The core point N, divides the .
section area similarly, but in an
opposite sense. .

To obtain maximum com-
pression in the upper fibers, only
the forces passing above the core
point N, should be considered,
and to obtain maximum tension
in the upper fibers, only the forces passing below the core point N,
should be considered.

In a previous paragraph it was shown that the resultant of all the
forces in the section balances the stresses in the arch rib. In Fig. V,
to the left of the plane of section XX, all the reactions of the loads are
in the section, this being indicated by an arrow on the line G2B;. For
all loads to the right of the section XX, all the components are in the
section.

Now, for all loads placed between G2 and the section line X, all the
reactions in the section pass above the core point N,.  For all the
loads placed between the section line XX and the point G, all the
components pass above the core point Na.

To obtain the maximum compression in the upper fibers of the
arch rib at the section XX, the arch should be loaded only between
G, and Gs.

The reactions of all loads between O; and G, pass below the core
point Na. For all loads between G and O, the components pass below
the core point No.

To obtain the maximum tension in the upper fibers of the arch
rib at the section XX, the arch should be loaded from O, to G2 and from
@, to O3, the space between the points G; and G being left unloaded.

DivisioN LINEs.

The lines G1 A, and G2B; divide the intersection locus into the dis-
tances which separate the two forms of loading which produce maxi-
mum and minimum stresses in the upper fibers; these two lines are
called “division lines.”

To obtain the maximum and minimum stresses in the lower
fibers, the core point N, is the point at which the division lines should
intersect.

Maximum Shear.—In Fig. VI AB is the arch rib, 0,0, the
intersection locus, and UU a tangent to the axis of the arch at the
section X. The line A;@, is a tangent to the curve T and is drawn
parallel to the line UU. From the equations at the bottom of page 2 it
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follows that the shear S=Rsinc. In this case R is either the compo-
nent or the reaction of a load placed on the arch, and the angle ¢ is the
angle which either force makes with
the tangent to the axis of the
arch. The sine of any angle which %[~~..____________ o] B
is measured upward from a line
parallel to this tangent is positive,
and when measured downward is
negative.

In Fig. VI the reactions of any
load placed between O, and G are
in the section, and the components
are in the section for any load
placed between G and O,.

Now the sine is positive for the angle which the components make
with the tangent, for any load which is placed between G and G, ; and
to obtain maximum compressive shear the arch should be loaded from
" the point G to the point G,.

The sine is negative for the angle which the components make with
the tangent, for any load placed between G, and Og; the sine is also
negative for the angle which the reactions make with the tangent,
for any load which is placed between G and O;.

To obtain maximum tensile shear the arch should be loaded from
0, to G and from G, to O, and the stretch from G to G, should be left
unloaded.

—4Oa

-

Loaping WHICH CAUSES MAXIMUM AND MINIMUM STRESSES IN THE
MEMBERS OF A FRAMED ARCH.

The foregoing is applicable to the framed arch as well as to the
archmb. "~ - - T
=~ TaFig. VII the line AB is the arch axis, the line 0,0 is the inter-
section locus, and the lines 7
and T, are the tangent curves.
To find the loading which will
cause maximum or minimum
stresses in the members, an im-
aginary section XX is drawn,
which intersects the members
24, 4-5, and 5-7, and the por-
tion of the arch to the left of
the section is supposed to be
removed. As Fig. VIla shows,
the forces 2-4, 4-5, and 5-7
should balance the exterior
forces in the section.
According to the moment theory of Ritter, the center of moments
for the member 5-7 is at the intersection of the other two forces in the
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section, or the point 4. Around this point as a fulerum the moments
of the forces 24 and 4-5 are equal to zero. The moment of the
member 5-7 around this fulcrum must then be in equilibrium with
the moment of the exterior forces in the section around this same
fulerum.

The moments of all the exterior forces passing above the point 4
are negative, and the moments of all the exterior forces passing below
4 are positive.

The point 4 must therefore be the point through which the divi-
sion line passes, and in Fig. VII this line is drawn from the point 4 as
a tangent to the tangent curve 7.

This division line intersects the intersection locus at Gy, and all
forces situated between O, and @, will cause compression in 5-7, all
forces between G, and O; causing tension in the same member.

Similarly for the stresses in 24 and 4-5, the lines 5-G2> and aG;
being their respective division lines.

It will be understood that the point a is the point of intersection
of the two forces 5-7 and 24.

To find the fulerum for the diagonal 4-7, the two chords 4-6 and 5-7
are prolonged to a point of intersection b.

When the two chords are parallel and cannot intersect, the method
explained in connection with Fig. VI is to be applied.



CHAPTER II.

THREE-HINGED ARCHES.

1. Three-Hinged Braced Arch.—SINGLE Loap oN ArcH.—REso-
LUTION OF Loaps.—A three-hinged braced arch with parabolic lower
chord and horizontal upper chord is shown in Fig. 1. The hinges
are located at A, B, and C, the end hinges A and B being at the
same elevation.

Suppose this arch, which for the present is assumed weightless,
to be loaded with a single load, II, at panel point 5. As is well
known, the reactions produced at A and B must pass through the
hinges (A and B-C respectively) and must intersect on the load
line 1I.

The reactions, then, are R, at A, and R’ at B, and in value they are
equal and opposite to the components 2 and 2’ of the load II. These
components, of course, are found by a simple triangle of forces (heavy
lines in Wig. 1a).

StressEs.—In order to find the stresses which this load produces in
any member of the frame, a section is passed through the member in
question, cutting the arch into two separate parts. The line aa
represents such a line of section, cutting the three members 3-5, 34,
and 2-4. Consider now the right-hand part of the arch as a free
body in equilibrium. The external forces on it are:

1, the load II, or in place thereof its components 2 and 2’;

2, the reaction R’5, and

3, the three stresses in the members cut by the section aa.

13
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Now, load component 2’ and reaction R’; are equal and opposite;
hence they balance. The remaining forces are: the load component
2 and the stresses 3-5, 3-4, and 2—4. These four forces are in equi-
librium. The force 2 and stress 3-5 intersect at b, while 34 and 2—4
intersect at 4; then these two pairs of forces have equal and opposite
resultants acting in the line b4. Fig. la shows how this well-known
principle gives graphically the three unknown stresses. Drawing
b4 and 3-5 parallel to their action lines, tkeir directions result as
shown in Fig. la. Then, taking the reversed direction of b4 as the
resultant of 2-4 and 34, these latter two forces are similarly found in
direction and intensity.

Or, instead of pairing the force 2 with stress 3-5, we may combine
it with one of the other stresses. Thus, 2 and 3-4 intersect at d, while
3-5 and 2-4 intersect at e. Then the equal and opposite resultants
are on the line de, and this (instead of b4) may be used in Fig. la
to determine the unknown stresses (see line de in Fig. la).

Or, again, taking moments about the intersection of two of the
four forces, say about point 4, the moment of load component 2 must
be equal and opposite to the moment of 3-5. This determines 3-5
at once, without involving the determination of the other two forces.
To find 2—4 the center of moments would be at 3, and to find 3—4 the
center of moments would be at e.

All of these methods give the same result. The first is the most
convenient for computing the stresses in the chords, the second for com-
puting the stresses in the web members, and the third is of value where
the intersection of the forces with the member to be computed falls
outside the drawing-board.

The principles above explained may be applied to any number of
loads just as conveniently as to a single load. The procedure, in case
of more than one load, appears to the author to be novel, and to

. have value because of its simplicity, especially as it treats partial
loading (live loads) very much more simply than do the graphical
methods hitherto used.

Consider first the usual case of dead load, i.e., the structure fully
loaded with equal loads at all panel points.

(@) DEAD-LOAD STRESSES.—Fig. 2 shows the same arch, loaded
at all panel points with equal loads: O, I, II, . . . X. [Each load is
resolved into its two components, as was done with the single load of
Fig. 1. One diagram, Fig. 2a, gives all the components. It should
be remembered that there is a reaction equal and opposite to each
of these components.

In Fig. 2b these components are added graphically by drawing
the load components 0 to 9 from F to D, parallel to their lines of action
and equal to their values as found from Fig. 2a. Note that load
component 10 equals zero, since 10 is vertical. It is then obvious that
the straight line #D  resents the left-hand reaction, in intensity
and direction; also th line ED is the horizontal thrust. If the
broken line FD is followed from F towards D, it represents the various
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components which are held in equilibrium by the reactions at the left-
hand hinge A. The right-hand half of the diagram in Fig. 2b is sym-
metrical with the left half; but it is convenient to let the right half
represent the right-hand reactions, while the left half represents the
left-hand load components. The arrows used in Fig. 2b correspond
to this convention.

Now, to find the stresses in any member, as in the bottom-chord
section 4-6, pass a section aa to cut this member, and suppose the
left-hand portion removed, so that the portion shown in full lines is
to be considered as a free body. The forces acting on this body are:

1, the loads III to X, or their components, 3, 3’, to 10, 10’,

2, the reactions R'g to R’;o, and

3, the stresses in the members cut—5-7, 5-6, and 4-6.

It will be seen that the .0ad components 3’ to 10’ are balanced by
the equal and opposite reactions R’ to R’jg, s0 that the only forces
to be considered are: load components 3 to 10, reactions R'gto R’s,
and the unknown stresses. Referring to Fig. 2b, it appears that
load components 3 to 10 and reactions R’y to R’;form a continuous line
in the load diagram, so that their resultant is given by closing line
GH in Fig. 2b. It is now necessary to find where this resultant acts
in Fig. 2.

- - Since the load components 3 to 10 all pass through the left-hand
hinge A, their resultant must also pass through A. But the direc-
tion of this resultant is given by line DH in the force diagram; there-
fore AJ, parallel to DH, is its line of action. Also R’; and R’ act
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on the line BC in Fig. 2. The combined resultant GH then acts at the
intersection of AJ and BC, that is, at the point b, and has a direc-
tion parallel to GH, viz., bd in Fig. 2.

The three unknown stresses are in equilibrium with the force GH
acting on the line bd. But Fig. 2 shows that bd coincides with member
4-6. Hence the stress in 4-6 equals GH and is opposite in direction,
that is, 4-6 is in compression. The stresses in 5-7 and in 5-6 are each
equal to zero.

It will be remembered that a parabolic line is the curve of equi-
librium for uniform vertical loading. A three-hinged arch, whose.
lower chord is on a parahola passing through the hinges, will there-
fore have no stress in the web members, under a uniform dead load.
This checks with the result just found, that the dead-load stresses

in 5-7 and 5-6 are zero.

The dead-load stresses in all the other members of the structure
are found in exactly the same manner and require no further explana-
tion. One diagram, Fig. 2, suffices for all members, obviously.

The proper selection of the forces acting on the section in each
case can be made by the following rule: ‘“All load components
directed toward the section, whether belonging to the portion of the
structure which was removed or on the portion retained, will be used
in Fig. 2b to obtain the resultant. Those lying on the portion retained
are used in their proper direction as load components; those on the
portion removed are used in the opposite direction as reactions.”

The_procedure for finding live-load stresses is precisely the same,
only that for each member it must be preceded by the determination
of the position of loading which gives maximum stress in that member.
The method of ascertaining this position is well known. The following
summary of the determination of typical live-load stresses therefore
omits detailed explanations, and gives only the successive steps in the
procedure.

(b) Live-LoAD STRESSES.—PosSITION OF Loaps.—For members
5-7, 56, and 4-6, the section aa (Fig. 3) is used, as before; the
left-hand portion of the truss is supposed to be removed.

For member 5-7 the fulerum is at panel point 6. The “forces in
the section ”” * for a fully loaded bridge are 1/, 2/, 3, 4, 5, . . . 10;
of these, 1/, 2/, 3 and 4 (1’ and 2’ being considered reversed) have a
negative moment around 6; while 5, 6, 7, 8 and 9 have a positive
moment. Then the loadings for the maximum and minimum stresses
in 5-7 are:

5.7 % Max. compression, I to IV loaded.
Max. tension, V to IX loaded.

* This term is used to denote the forces directed towards the section, as by
the rule above given. In accordance with that rule 1’ and 2’ will be mentioned
when R’, and R’; are meant.
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For member 5-6 the fulcrum is at d, Fig. 3. The forces 1/, 2/, 5,
6, . . . 9 have positive moment around d, while 3 and 4 have negative
moment. Then the loading for 5-6 is:

{Max. tension, III and 1V loaded.
Max. compression, remaining panel points loaded.

For member 4-6 the fulcrum is at painel point 5. Since 1’ and 2’
have negative moment, while 3 to 9 have positive moment, the loading
is:

46 { Max. tension, I and II loaded.
Max. compression, III to IX loaded.

As an example of stress in a vertical, 4-5 is considered. The
section for this purpose is on bb, the fulcrum at d. The “forces in
the section” are different from those for section aa, being now 1/,
and 2 to 9. Here 2, 3, and 4 have negative moment, while 1’ and 5
to 9 have positive moment. Then the loading is:

45 Max. tension, I,V, and VI to IX loaded.
Max. compression, II, I1II, IV loaded.

StrEsseEs.—For stressesin 5-7, see Figs. 3and 3a. I, II, ITI, IV are
loaded, and the forces in the section are 1/, 2/, 3, 4. Forces 3 and 4
have the resultant DE, passing through hinge A, line AJ; forces
1’ and 2’ pass through hinges B and C. Hence the resultant acts at
the intersection e of AJ and BC. In Fig. 3a draw 1’ and 2’ to scale
as line FD; then FE is the desired resultant in direction and intensity,
acting on line ef in Fig. 3. The resultant ef is in equilibrium with
5-7, 56, and 4-6. It intersects 5-7 at g, while-‘5-6 and 4-6 intersect
at 6; then the resultant of ef and 5-7 acts on line g6. Drawing
FG in Fig. 3a parallel to g6 gives EG as the maximum compression
in 5-7.

For maximum tension, V to IX are loaded, and the forces are
5, 6, 7, 8, 9, whose resultant HD in Fig. 3a passes through hinges A
and C. Line AC intersects 5-7 at h, and line h6 is the resultant of
HD with 5-7. Then HK, parallel to k6, gives DK as the maximum
tension in 5-7. It will be observed that

DK=EQG,

hence with the bridge fully loaded the stress in 5-7 is zero.
This fact has been noted before, and checks the computation.
STRESS IN 5—6.—Maximum tension, III and IV loaded; forces in
the section are 3 and 4. Their resultant (see Figs. 4 and 4a) is D E,
acting through hinge A, hence on line AJ parallel to DE. AJ inter-
gects 5-6 at k, while 5-7 and 4-6 intersect at d. Then dk is the direc-
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tion of the resultant of DE with 56, and FE (parallel to dk) gives
FD as the maximum tension in 5-6.

For maximum compression I, II, and V to IX are loaded, and
the forces in the section are 1/, 2/, 5, 6 to 9. Their resultant is GD.
Since 1’ and 2’ act on BC in Fig. 4, and 5 to 9 act on AC, the resultant
passes through their intersection C and has the direction CK, parallel
to GD. CK intersects 56 at m, while 46 and 5-7 intersect at d.
Their joining line md is the direction of the resultant of GD with the
stress 5-6; then GF parallel to dm gives DF as the maximum com-
pression in 5-6. As for the preceding member, the maximum live-
load stresses are equal and opposite.

STrESS IN 4-6.—For maximum tension, I and II are loaded, and
the forces in the section are 1’ and 2/, both of which act on the line
BC. BC intersects 46 (prolonged) at n (Fig. 5), while 5-7 and 56
intersect at 5; hence 75 is the direction of their resultant. In Fig.
5a, ED is the external force, and FD parallel to nb is the resultant
of this force with 4-6. Then FE parallel to 46 gives the maxi-
mum tension in 4-6.

For maximum compression III to IX are loaded, and the forces
in the section are 3 to 9, all of which act through hinge A. Their
resultant DG in Fig. 5a must also act through hinge A, hence acts
on line AJ, intersecting 4-6 (prolonged) at p. But 5-6 and 5-7 inter-
sect at 5, so that p5 is the direction of the resultant of DG with
4-6. Drawing HG parallel to p5, and HD parallel to 4-6, determines
point H, which gives HD as the maximum compression in 4-6.

For this member, of course, the live-load stresses are not equal
and opposite, since the full-load stress is not zero, but equals line GH
in Fig. 2b.

The computation for a web vertical, such as 4-5, is precisely
similar to the above; it is to be remembered that in the web verticals
the full-load stress is not zero, but equal to a panel load, so that the
maximum live-load stresses must differ by that amount.

Attention may be called to the fact that for maximum stress
in 8-10 the bridge is to be fully loaded; but for maximum stress in
9-10 the bridge is loaded on one half only. In finding the live-load
stress in 9-10, the resultant force on the section is to be resolved along
8-10 and 9-10. Since only two members are cut, the four-force
method of resolution employed in the preceding does not apply, but
the simple triangle of forces is sufficient.*

(c) AnaLyTicaL CarcuraTionN. —Though every calculation de-
seribed in the preceding paragraphs has been executed graphically,
the method is convenient also for analytical computation, being
much simpler than any of the systems hitherto employed. Thus, in
Fig. 1, the locations of the points 4, B, C, O, I, II, etc., are known,
and from them the horizontal and vertical angles of deflection of the

*Up to this point the chapter consists of an article by the author, pub-
lished in Engineering News, Oct. 20, 1904.
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load components 0, 1, 2, etc., and 07, 1/, 2/, etc., may be calculated.
The amount of each component may then be computed and the broken
line of the force diagram (Fig. 2) may be calculated in the same man-
ner as the line of a survey, calling F the origin, and assuming the line
FE as the north line. Each of the successive points of the broken
line may then be defined by latitude and departure, and any one con-
versant with the methods pursued in plotting and computing a survey
will find no difficulty in computing the stresses.

(d) To compute the deflections of the arch under a load, see the
computation of the ‘ Deflections of the Two-Hinged Spandrel-Braced
Arch,” Art. 13, Chap. III.

The three-hinged spandrel-braced arch makes a stiff bridge;
the deflections caused by the live load and changes in temperature,
however, are considerably larger than those of the two-hinged braced
arch, but the slight excess of metal necessary for its construction is
well compensated for by its superior rigidity. (See further explana-
tion under “ Two-Hinged Spandrel-Braced Arch,” Chap. III.)

2. Three-Hinged Braced Roof-Truss.—This is a favorite form_of
arch for roof-trusses of long span. i

Fig. 1A shows such a roof-truss, which has been built for the
Pennsylvania R.R. trainshed in Jersey City, N. J. Its span from
A to B is 253 feet, and its rise is 90 feet.

The dead-load was assumed as 30 pounds per square foot.
The wind pressure (vertical projection) 35 ¢¢ LU ““
The snow-load (horizontal projection) 17  *¢ - ‘“

A two-hinged -crescent-shaped roof-truss has been analyzed in
detail in Chapter III, and these paragraphs will only point out where
the computations of the stresses in these two types of arches differ;
for that part where the computation is the same for both arches, the
author refers to Art. 17, Chap. III.

Assume a horizontal force G to act on the arch. The portion CB
of the arch acts as a simple beam, supported at C and B. The support
at C is not direct, being given by the curved column AC which is
hinged at A. Now, any reaction (caused by the force G) at C must
pass through the hinge A, and the component of the force G must
then act in an opposite direction to this reaction. This component
intersects the load line at D, which is the point where the components
intersect. For the same reason a force J acting on the half-truss
AC will produce the point D’ as the point of intersection of the
components J’ and J”.

MaxiMuM AND MiINIMum.—Suppose the dotted portion of the
arch to the left of the section-line a-a to be removed.

The wind acts at an angle to the horizorital, and the wind pressure,
acting at a panel point, is resolved into a horizontal force, such as ¢
or J, and a vertical force, such as g or j; each of these forces can be
resolved into its components, as the drawing indicates.

The load IV represents a snow load concentration, and 4 and 4’
are its components. The components of all the loads indicated on
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the drawing are in the section. For the top chord 46 the panel
point 7 is the fulerum and Am is the division line. Now, all vertical
forces similar to IV acting to the left of m will have components or
reactions (like 4) which tend to turn in a negative direction about 7
as a fulcrum, or they will have negative moments. The components
of the forces J and j will have negative moments, but those of Gand ¢
will be positive. The components of a snow load to the left of m and
those of the wind pressure from left to right have the same sign, but
a snow load to the right of m and the wind pressure from right to
left will cause moments of an opposite sign.

The fulerum for the bottom chord 5-7 is at the panel point 4, and
the fulecrum for the diagonal 4-7 is at the point of intersection n of the
two chords 4-6 and 5-7. The foregoing is sufficient to indicate the
conditions of maximum and minimum loading for these members, and
that the variation in the stresses must be large.

Fig. 14 shows a double system of web members. To find the
stresses, the framework should be separated into its two single systems,
viz.,, 4, 1, 0, 3, 2, etc., and 4, 0, 1, 2, 3, 4, etc. Each system resists
one-half of the load, and the stresses should be added; or, the sup-
position can be made that the diagonals resist only tensile stresses,
and when compressive stress is found in a diagonal, it should not be
considered, the opposite diagonal being computed in its stead. The
first method is usually preferred for roof-trusses, their web members
being shaped to resist either compression or tension.

With this introduction and the detailed example of the compu-
tation of stresses in the braced arch, it should not be difficult to com-
pute the stresses in the roof-truss. (See Art. 17, Chap. III.)

When the arch is supported on rollers at A4, and the points A and B
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are held in position by a tie-rod, the stress in this rod can be measured
directly from the force diagrams (as in Fig. 2b, etc.) for different
forms of loading.

3. Three-Hinged Steel Arch Rib.—Fig. 6 represents the outline
of a solid-rib arch, of parabolic form, hinged at crown and springing
line, and subject to loading at the panel points O, I, II, . . . X,
which are spaced 10.45 ft. apart. The arch has a span of 107 ft. c. to
c. of end hinges, and a rise of 16.6 ft. c. to c. of hinges. These dimen-
sions and the panel length have been so chosen as to bring the end
panel points O and X a short distance within the hinges, in order to
illustrate the effect of such a condition. The rib consists of a plate
web with flanges of two angles and cover-plates. Its depth, as repre-
sented in Fig. 6, is 3.6 ft. between centers of flanges.

It is desired to find the flange stresses and the transverse web-
shear at various sections of the rib, under such a distribution of loading
as will give the maximum stresses at these sections.

The dead load on the arch amounts to 8 tons per panel, the live
load to 8.5 tons per panel.

Using the latter for the graphical work, the resolution diagram
Fig. 6a is drawn, which gives the components of each load acting along
the lines passing through the hinges. These components are shown
in Fig. 6 by 1 and 1’ for load I, 2 and 2’ for load 1I, etc., the right-
hand components being reversed to represent the reactions at hinge
B, as explained in the preceding chapter for the three-hinged braced
arch. v

In Fig. 6b half of these components are brought together in proper -
sequence to form a force diagram.

(@) FLaNGE STRESSES.—By means of the latter diagram the flange
stresses are found in the manner described generally in the previous
article.

As an example, the procedure for finding the flange stresses in
section ZZ will be given, as follows:

For the bottom-chord section 2—4 (Fig. 6) the center of moments
is at the top-chord point 3. The ‘‘forces in the section ’’ are 0/, 1/, 2,
3, ... 10. Of these, the forces 0/, 1’, 2, and 3 have negative moment
and produce tension in 2-4, while the forces 4,5, . . . 10 have positive
moment and produce compression in 2-4. Hence, for maximum
tension in 2-4, load O, I, I1, and III; for maximum compression, load
v,v,... X.

For the top-chord section 1-3 the fulcrum is at the bottom-chord
point 4 (the same line of section being used). Forces 0’, 1/, 2, 3, and
4 have negative moment, ete., and .

For maximum tension in 1-3, O, 1, I1, 111, and IV should be loaded;

For maximum compression, load V, VI, . . . X,

Stresses in 2-4.—For tension, load O, I, I1, and III, giving as forces
in the section 0/, 1/, 2, and 3. In Fig. 7a, the forces 0’ and 1’ are
drawn from the upper end of force 3, and the closing line HF repre-
gents their resultant. Now, the resultant of 2 and 3 (line JF) must act
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through the hinge A in the arch diagram, Fig. 7, while the resultant
of 0’ and 1’ (line HJ in Fig. 7a) must pass through the hinges B and
C. The intersection of these two lines (point ¢ in Kig. 7) is in the line
of action of the resultant HF, whence this force acts on the line ca
drawn parallel to HF. The resultant ca intersects the line of flange
2-4 produced at a. Since panel point 3 is the fulcrum, and the force
ca is in equilibrium with the stress in 2-4, their resultant must pass
through panel point 3 and hence must act on the line a3 in Fig. 7.
Then, in Fig. 7a, drawing FK parallel to a3 and HK parallel to the
member 2—4, the intersection K is found, and HK is the tension in
flange 2-4.

The graphical work for finding the compression in 24 is shown
in Figs. 7 and 7a; the work for finding the stresses in 1-3 is shown in
Figs. 8 and 8a.

The resulting stresses are:

in Fig. 7a, max. compression in 2-4=length JM;
in Fig. 8z, max. tension in 1-3=length JM;
max. compression in 1-3=length FA.

A check on the work up to this point for full load gives:

Bottom-flange stress= —76.5+40.8= —35.7 tons
Top-flange stress =—-62.14+23 =-39.1 *

Total thrust = —74.8 tons

This must check with the line FG in Fig. 6b, which gives directly the
total force for full load.

The dead-load stresses in the chords are, of course, full-load stresses,
and they may be found from the values just tabulated by reducing the
stresses —35.7 and —39.1 in the ratio of the dead-load panel load to
the live-load panel load—in this case 8 : 8.5 tons. This gives

Dead-loa.d compresslon in bottom chord = —33.6 tons
‘‘ top chord =-36.8

Total= —70.4 tons

The maximum and minimum chord stresses at section Z-Z are then:

Bottom chord, —33.6—76.5= —110.1 tons
and —-33.6+408=4 72 ¢
Top chord, —36.8—-62.1=— 989 ¢
and —36.8+23 =— 13.8 ‘¢

The stresses in all the chord members of the arch are summarized
in Table I, page 27.
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It will be seen that the dead-load compression is greater in the
top chord than in the bottom chord, which indicates that the line
of pressure in the arch does not coincide with the neutral axis. (See
line ab, section Y'Y, Fig. 6.) This may seem surprising, in view of
the fact that the parabola is the curve of equilibrium for uniform
vertical loading. It is apparent from Fig. 6, however, that the
loading is not uniform horizontally, since full panel loads come on the
arch at O and X, points which ‘are not directly over the hinges, and
therefore introduce the effect of loading beyond the springing lines.
As a result, the line of pressure touches the neutral axis only at the
hinges, and lies above it at all points between the abutments and
the center hinge. -

(b) WEB StrEssES.—Shear is the force tending to buckle the web.
Its value at right angles to the neutral axis is desired.

In the graphical work for determining shear, the tangents to the
neutral axis at the various sections are required. These lines may
be obtained in various ways, but it is most convenient if they have
already been found in drawing the line of the neutral axis. This pro-
cedure, in case of a parabolic rib, is illustrated in Fig.9. A, B,and C

G
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are the known locations of the hinges. Draw DE=2XDC. Then
EA and.EB are tangents to the parabola at A and B. To obtain
the tangent at any point ¢, which divides the span into the parts G
and H: halve the distances G and H and drop verticals at the middle
points intersecting EA and EB at ¢’ and c”, respectively. Connect
¢’and ¢”’; this is the desired tangent to the parabola at c, and any other
tangent may be drawn in a similar manner. The construction for
four intermediate tangents in the half-arch is shown in Fig. 9, omit-
ing some of the elementary construction lines. Note that, for uni-
form spacing of the panel points a, b, ¢, d, the construction points
a’, V', ¢, d’ are uniform subdivisions of Ae’=3AE, and a”’, b”, ¢”, d”’
are uniform subdivisions of Ee”’=3EB.

In Fig. 10 the line ZZ represents a section passed through the arch
near the panel points 1 and 2. It is desired to find the shear in this
section. The load components are, as hefore, 0 and 0/, 1 and 1’, etc.
In the case of section ZZ, the “‘forces in the section ”” are 0/, 1, 2, 3,
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... 10. By drawing a line a’a” (see also Fig. 9) parallel to the
tangent at panel point 1-2, it becomes evident at once which of the
forces act downward along the section and which upward. It will
be seen that forces 1, 2, and 3 produce positive shear, whereas 0’, 4, 5,
. . . 10 produce negative shear. Hence (see Fig. 6),

For maximum positive shear, load I, II, ITI.
‘ “ negative ‘. ‘“ O,IV,V,...X

In the force diagram (Fig. 10a), draw through point E the line
DF parallel to the tangent to the arch at panel point 1-2. For
maximum positive shear, the ‘‘forces in the section’ are 1, 2, and 3;
their axial component is, evidently, DE, and their shear component
‘is DG (acting on the free end of the right-hand arch portion in a direc-

tion opposite to that shown in Fig. 10a). For maximum negative
shear the ‘forces in the section ”’ are 0/, 4,5, . . . 10, their axial com-
ponent is EF and their shear component is FH. The shears thus
found (10.8 tons positive shear—compression in the hypothetical
member 1-2, Fig. 10, and 7.2 tons negative shear—tension in 1-2)
combine to give a full-load shear of 3.6 tons.

Reduced by the ratio 8:8.5, this gives a dead-load shear of 3.4
tons (compression in 1-2).

The maximum dead- and live-load shears on the section in question
are then:

Positive. ........ -10
Negative........ + 7.

¢
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In the force diagram, Fig. 10a, are drawn all the lines necessary to
carry out this shear analysis for the four sections 1-2, 34, 56, and
7-8. The results are included in Table I.

If the arch rib has an open web in place of the solid plate, the
procedure needs only very slight modification. If, in Fig. 10, the
web system at panel 1-2 consists of the diagonal 1f and the vertical
1-2, the line Gf in Fig. 10a, drawn parallel to member 1f, and
intersecting the line DE at f’, gives Gf as the maximum tension in
member 1f, and Hf’ is the maximum compression. The stresses in
member 1-2 are those already found.

In general, if the web is an open one, the most unfavorable loading
must be determined separately for each member by drawing the
imaginary line of section and noting carefully the ‘“forces in the sec-
tion” and their direction with respect to the axis. Thus, if the web
diagonal 1f were replaced by one of opposite slope, the analysis above
described for the stress in member 1-2 would be changed, as the line
of section would then have to pass to the right of panel point 1.

If the chords are not parallel, as in Fig. 14, the chords in the
imaginary section are brought to an intersection, and this point of
intersection forms the fulcrum for the lever-arm of the web members
in the section. Joining this point of intersection to the abutment
hinge produces a line, and the process for finding the stresses is
exactly that described -and shown in Figs. 5, 5a, etc.

7A8LE ] Summary of Stresses in the THREE-HINGED-RIB ARCH BRIDOE.
Outline of Arch Paradolic; Span 107/t ctoc; Risel6.6ft.ctoc ; Panel length 10.45/¢.
Dead-Load Panel-load 8tons; Live-Load Panel-load 8.5 tons
CHORQ STREISLS
Ziveload Jiresits  O-2 1-3 3-8 5-7 7-9
roP- ax. |-s2.2 -6y -62.4 T2
cHORD min. s/0, »r23. +28.3 L
toad = e2.8 =390 =368 =368 | =378
0-2 2-4 4- 6-8 8-10
Borron x. -643 - 76.5 -68/ -81.8
CNORD E:n +27.8 #4008 +33.7 47129
71 loed)| =365 -387 -368 ~I3€ =3L8
Read-load Jresses
ToRcHORD -39.7 -36.8 -34.6 -342 -35.3
Borrorscnoro =343 -336 -33°3 -31.6 -29.7
combined Stresaed,
ToPCHORD -9.9 -9%09 -96.7 -7%6 -72.8
BOTTOIE-CHORD -90.6 |+ 722 ar-110.1 -102.4 -83/ -622
Live-Lead Stresses 1-2 e 5-6 7-8
max. -/08 -8.2 ~33 -7
min. » 722 »42 v8. v e
ﬁ:llloadl -36 -4 -3 -4.3
2ead Loag Stresaes . -394 -30 -4 -4/
combined Stresaes,
max. -142 =12, -3¢ ~/%.8
min. l v 38 04 s+ 09 +33

(c) The deflections in the three-hinged arch rib caused by live
loads and temperature changes are proportionately larger than those
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in either the two-hinged arch rib or the three-hinged braced arch, and
where rigidity is specially desired, any of the other types of arches

should receive the preference.

following paragraphs and in Chapter III.
In Art. 5, Chap. II1, another method for finding the stresses is given,
which can also be applied to the arch described in Art. 3 of this

This subject is specially treated in the

chapter.
TasiLe .
Lave-load Stresses

Topchorat| memder 0-/ -3 3-5 3-7 7.9
mervmam | - 4097, -S36t -56.07 -9907.. . -,

Shesses|, . . : ot 38.40
[wwimimerme | ¢ 103 o v16.0 . 209, /03 r37 .
fuullload 3068 360t 3052 ~345r -34.7¢

Bottomclerd momber 0-2 2-4 4-6 6-8 &8-/0
|masimum | ~62.0 -637¢ ~619¢ -48.87 -2t .

Slreases
[menimum | 2249 o ?249 o »239 . vi128., ~13.6 o
il tloadt ~v09 -300 . -3 . 6. |7 -s4e .

The odove figures ovy for live load only ,anat for the dead Joae the [igs in Ghe 27 ¢oluins shonla b reatneea by

Oten +08.50n Dead-load Siresses
top thorat -36.3¢ -386r -Jeer -3247 -3267
dot chord -38.5 . -3¢ . -357 . - =339 . . =327 .

Max load| tap chorat | -90.9 -3630-85.2¢. -s0.2¢ ~s0.0r. 7721 -70.4¢

Stresses |dot.chord |-62.8-308~1013 . ~100.2 . -97.6 . -827. -67.5,

Sheard live load /-2 . 31 $-6 76 970

- ~38¢ -2t -3¢ cnre xrr

monrmnm | £0 , a2 [ X5 IS 77 . 07

— —_— pdi N pR2A 27
. |futt teow -9t -4 -0 -4 ¢ -ar
ahod lond] tRe00pg0~3.0 . -20 . . ~30 . -3.8 , -38 .
Max.lood [wesimnm |- 2.0-3.00-13.67 -nat -3er ~157¢ 1678,
Shear |mimimem |+ 28.00.02 . vos . *13 . +39. e,

7ascelll. .
Stresses foran assumed horizontal thrust of 10Tons Mt-16 Slons Hs.476ns
o~ 0-2 ,-3 2-¢ | 3-8 +-6 7 5-8 7-9 8-10

In the Chorely ad luu X1 63 Fave I’"' L eos I» s0. - o l; 5.2
Shoarr ~2 .40 39 -a 5629 78 -/8 10 -06

87re3303 /rom ovod beett- 343 305 | Sas s e 357 | s2e 339 Fee | o327

. . |09 628 L 636 |e6sr L see Less | eee 0 300 | 300

SIXMS 210 lompershre]- 20.9 e - 02 L sos b so.s

[Sor #7470 loodSoes |- 68 110 [ i27 piro Li76 praz [sse Pass [ 193 [paer
Zéral Fiipg Fsex tueer E Lidog |258 |iser possa tiese Lase
wodt load 0.8 L s6 8 L 257 330 Py
e . 2.9 b 209 b 23,9 b 120 /36
Frmporature! 3350 p 526 p oo e e 728 lr 763
loast Nresa 1”0 p 170 222 y 235 r 20/
Total 208 b e b 708 b 7¢.9 b 52/

WShears hievoved 13 122 <30 157 ~167

.7 - z8 -0 .26 -0

-23 19 -9 .00 ~'_v_!

] -22.9 -39 -19.0 -191 -7

203 832 780 79 sty
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4. The Three-Hinged Arch Rib of Masonry, Concrete or Rein-
forced Concrete.—This type of arch owes its origin principally to the
difficulty thus far experienced in computing the stresses in the hinge-
less arch with absolute certainty. The stresses in this arch are static-
ally defined, and no recourse need be had to the elastic theory or to
any empirical method of computation. With the application of the
author’s method for the computation of stresses in the hingeless
arch, however, this particular advantage is lost.

One advantage which it does possess is that a yielding of the
abutments does not materially affect the stresses in the arch, and, in
a case where this is to be expected, the use of this arch is to be
recommended.

(a) In astructure of this kind, the maximum and minimum stresses
are found somewhat differently from the method followed for a plate-
girder rib. The live load is only a small fraction of the dead load, and
a reversal of stresses rarely takes place; but a large variation in the
stresses of the extreme fibers of the arch rib may occur.

In Fig 11 is shown an arch rib of concrete, in which the full line AC
represents the center of pressure in the arch resulting from the dead
load. Now, assume the portion to the left of Z-Z to be removed.

(In Chapter V it is shown that the points b and ¢, at one-third
and two-thirds respectively of the height ad, are the core points, and
any force applied in b does not cause stress in the extreme fibers of the
arch at d.) ;

The center of pressure in the arch rib is at e, the force K being the
resultant of all the dead-load components of the arch at that point.

This point e is situated in this case within the middle third, and the
force K will exert compression in every fiber of the arch rib. This
compression is greatest at a and least at d. To change the compres-
sion at a into tension, this force K should shift downward from e to
a point below ¢. -

This can only be accomplished by some form of application of the
live load; the live load, however, is small compared with the dead load,
and in this case no form of loading can produce such a reversal of stress
in a. Moreover, any force passing below ¢ will diminish the stress
at a which the computation will prove.

Any force passing above the point ¢ will exert compression at a, and:

1. Any component or reaction passing above c¢ increases the
compression at a.

Any force passing above b will exert tension at d. To reduce the
stress at d to zero, the point of application e of the force K should
shift to b, and if by some form of loading it could shift upward above
b, tension would result at d.

2. Any component or reaction of the live load passing above b
causes the center e to shift and may produce a reversal of stress at d.

(b) StressEs IN THE THREE-HINGED CONCRETE ARCH RiB.—
Such an arch has three hinges, viz., one at the crown, and one at each
abutment. All these hinges are located in the axis of the arch and,
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except in special cases, the arch is symmetrical with respect to
the crown hinge, and the abutment hinges are situated in the same
horizontal plane.

In Fig. 11 the left half of such an arch rib is shown; its span from
center to center of abutment hinges is 106 feet, and the rise of the
axis is 11.7 feet.

This half-arch is divided into eight vertical strips having the same
width, and all figures are for an arch ring 1 foot wide.

The dead load of each strip, including the weight of the rib, the
filling, and the paving, is represented by the forces I, II, 111, etc.,

1 n Mg, N v v vt yp e

=1

Fiu

which forces pass through the centers of gravity of their particular
strips.

The live load is assumed as 100 pounds per square foot, which
makes the panel loads at I, II, ITI, ete., 700 Ibs. In addition to this
a 16-ton road-roller is assumed to produce an equivalent concentrated
load of 3,000 Ibs., which load is so placed that it produces meximum
or minimum stresses in the arch.

To find the line of pressure, the same method may be used which
is described for the three-hinged braced arch; but the relation between
the live and dead loads is not a constant ratio; for instance, at I the
dead load is 14,200 Ibs. and the live load 700 Ibs., and at VIII these
values are 3,500 lbs. and 700 lbs. respectively; and this method would
be more laborious than the one which follows.

In Fig. 11a the forces I, II, etc., are drawn to scale in their proper
sequence, and a trial pole P’ is assumed.
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The reciprocal polygon must pass through thc hinges, and one
starting point A of same is known. With the trial pole P’ the dotted
line AC’is drawn in Fig. 11, viz., AI parallel to P’f, I-1I parallel to Pg
..., VIII C’ parallelto P’n. The lines Al and VIIIC’ are drawn to
an intersection at D’, which is the point through which the resultant
of all the parallel forces from I to VIII passes. The pole P’ in Fig. 11a
may be shifted to the right or to the left, and each new location of P’
will produce a reciprocal polygon AC’. The end rays AI and VIIIC’
of all these polygons intersect on the line D’D.

Amongst all these polygons is one which passes through the points
A and C. The end ray VIIIC of this polygon is known; it is parallel
to P'n of Fig. 11a and passes through the point C, and, drawing this
line, it is found to intersect the line DD’ at the point D. The other
end ray must then be the line AD, and, drawing in Fig. 11a a line Pf
parallel to this line, the intersection point P of the two lines fP and
nP must be the true pole of the force polygon.

With this pole a new reciprocal polygon AC is drawn in Fig. 11,
viz., Al parallel to Pf, I-II parallel to Pg . . . , VIII C parallel to Pn.
Measuring the rays Pf, Pg, etc., in Fig. 11a with the scale of forces gives
the pressure in the arch in Fig. 11 from A4 to I, from I to II, ete.
The location of the line of pressure can also be obtained from Fig. 11.

The line AC thus obtained may deviate considerably from the neu-
tral axis of the arch rib, and corrections in the form of the arch should be
made until the line AC practically coincides with the neutral axis.

In Fig. 11 the upper and lower thirds of the arch rib are cross-
hatched, and the middle third is left blank to show clearly the line of
pressure.

(¢) Maximum aAND MiniMUuM STRESSES CAUSED BY THE LIVE
Loap.—In Fig. 12 the middle third of the half-arch AC is shown.
The straight lines EC and AC pass through the hinges, and a live load
of 700 Ibs. is placed at each panel point I, II, . . . XVI. The loads
from IX to XVI are not shown, their components all coinciding with
the line AC, and the reactions of these loads not being used in the com-
putation of the stresses. As previously indicated, the live-load forces
I, 1I, etc., are resolved into their components and reactions in Fig.
12a, and the broken line of forces FGH is drawn in Fig. 12b.

The arch is to be investigated at the section line ZZ, at which
section the point b is in the upper and the point ¢ in the lower side of
the middle third of the arch rib (the core points).

Any force passing below the point c exerts tension in the extreme
upper fibers of the arch, and, conversely, any force passing above this
point exerts compression.

In the section are the reactions 1’ and 2’ and the components 3, 4,
5,. . . 16; of these forces, 1/,2’, 3, 4, 5, and 6 pass above the point c.
In the section is also the dead-load force P’K’, which is equal to the
ray between II and III in Fig. 11.

Concentrated Load.—That position for the road-roller load of
3,000 Ibs. is to be found which will produce maximum compression in
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the upper fibers. If a load were placed at I, its reaction would be in
the section and its relative value would be equal to 1/, Fig. 12b. If it
were placed at II, its relative value would be 2’, both of these forces
passing at the same distance above the point ¢; and the maximum
value 18 obtained when the load is placed at II. If the load were placed
at III, its component would be in the section, its equivalent value
would be 3, Fig. 12b, and its distance from the point ¢ would be less
than that of 2. Now, as to the magnitude of the forces, the com-
ponent 3 is nearly three times as large as the reaction 2’, while the
distance of 2’ from c is about two and one-half times as great as the
distance of 3 from c.

If the load is shifted to the right of II, the distance of the reaction
from the point ¢ remains the same, and the magnitude of the force
increases very little; therefore, shifting to the right of II will not pro-
duce a maximum stress.

If the load is shifted to the left of 1II, the magnitude of the com-
ponent will not increase, but its distance from ¢ will increase, and the
farther the load is shifted to the left of III, the greater will be the
stresses in the upper side of the arch resulting from this load. There
is, however, a limit to the shifting of the load to the left, because, if
the load is shifted so far that its reaction is in the section, the stress
in the upper fibers of the arch will not be a maximum.

To obtain the maximum stress in the upper fibers the concen-
trated load is placed at an infinitely small distance to the right of the
section, or, in practice, at the section.

The concentrated load of 3,000 Ibs. placed at the section will pro-
duce a component of 3,100 Ibs.

Now, the forces in the section are:

1, the reactions 1’, 2/, and the components 3, 4, 5, and 6;

2, the dead-load force P’'K’;

3, the component (=3,100 Ibs.).

In Fig. 12b the resultant of the components 3, 4, 5, and 6 is equal
to the line LM, and the line Ad in Fig. 12, drawn parallel to LM,
intersects the reactions 1’ and 2’ at d. At the top of the line LM in
Fig. 12b are drawn the forces 1’, 2, equal to MN, and the line LN
is the resultant of forces 1/, 2, 3, 4, 5, and 6. The line de in Fig. 12 is
drawn parallel to LN in Fig. 12b, its magnitude being 3,900 lbs.

This line intersects the concentrated-load component at the point
e (Fig. 12), through which the resultant of all the live-load forces
passes. The computation has been made in Fig. 12 and the line ef
is this resultant (parallel to €’f’). This force ef intersects the dead-
load force P’K’ (prolonged) at g, and this is the point through which
the resultant of all the forces passes.

Fig. 12c is of similar construction to Fig. 11a, and the ray PK is
equal to the magnitude of the force P'K’ of Fig. 12. At the point K
in Fig. 12c the force KF is added by drawing this line parallel to gf
of Fig. 12, and the line PF in Fig. 12¢ is then the resultant of all the
forces (=106,200 Ibs.). Drawing in Fig. 12 a line gF’,.parallel to
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PF of Fig. 12¢, gives the point of intersection F’ with the section line
ZZ. This point F” is located above the upper-third part of the arch
rib, and tensile stresses will result in its extreme lower fibers.

Mazximum Tension in the Extreme Lower Fibers of the Arch.—To
obtain this, the point b (Fig. 12) is the core point, and all forces pass-
ing above this point will produce tension in the lower fibers.

These forces are the reactions 1/, 2/, the components 3, 4, and 5,
and the road-roller.

The difference between this form of loading and the former onc
is the component 6, and the computation will show a very slight
increase in the eccentricity of the force gF’, and a reduction in this
force or in PF of 1,200 Ibs. The net result is a very slightly in-
creased stress in the extreme lower fibers.

Mazimum Compression in the Extreme Lower Fibers of the Arch.—
To obtain this stress, the point b is the core point, and all forces
passing below this point will exert compression in the lower fibers,
viz., the components 6, 7, .. . . 16.

Road-Roller.—The farther the component passes below the point b
and the greater its intensity, the greater will be the stress in the lower
fibers.

The maximum possible distance from b to the component occurs
when this component passes through the hinges A and C, and a com-
parison with Fig. 12b shows that the components 8 and 9 are the
greatest of all the components. Consequently, maximum compression
in the lower fibers results when the concentrated load is placed at
the hinge C.

In Fig. 12 the resultants of the components 6, 7, . . . 16 and of
the load at C all pass through the hinge:A. In Fig. 12b all these forces
are added and their resultant is the line OQ; and in Fig. 12 the line
hi 18 drawn through the hinge A and parallel to 0Q of Fig. 12b.

The force P’K’ (prolonged) intersects the force hi at k, and through
this point passes the resultant of all the forces. In Fig. 12¢ the
resultant OQ of Fig. 12b is added to PK, viz., KR, and the line PR is
the resultant of all the forces.

A line drawn parallel to PR through the point k in Fig. 12 gives
the line AS intersecting the section-line ZZ at S.

The figure shows that this point is situated well inside the middle
third.

To complete the foregoing the distribution of the stresses over the
section is computed according to the explanation and analysis given
in Chapter V, Art. 3 et seq.

(@) CoMPUTATION OF THE STRESSES ON THE ARCH RiB.
The height of the arch rib =35 ins.
The force gF’ =106,200 lbs.
Distance from the top  =9.56 ins.
Distance above the center =7.94 ins.
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The force hS =116,800 lbs.
Distance from the top  =21.94 ins.
Distance below the center=4.44 ins.

Area of section=35X12 =420 sq. ins,

The force gF’=106,200 lbs.
If the force acted at the center of the section,

the pressure per square.inch would be

106,200 - 420 =253 lbs.
The distance of the force from the axis of the

arch is 7.94 ins., or, reduced to the height

of an arch equal to unity, %1 =(0.233 unit.
Extreme fiber compressive stress in units=

(0.233%X6)+1
Extreme fiber unit tensile stress=2.40-2
Maximum compression in upper fibers=2.40

0.40 unit tension.

X253 =607 lbs. per sq. in.
Maximum tension in lower fibers=0.40X253=101 lbs. per sq. in.

The force hS=116,5800 lbs.
Unit pressure persq. in. = 116,800 +- 420 =278 lbs.
Eccentricity, in units, = 44 =0.127

35
Maximum fiber stress= (0.127X6) +1 (com-
pression) - =1.762 units.
Minimum fiber stress (compression) =2—1.762=0.238 unit.
Maximum compression in lower fibers=

1.762X278 =490 Ibs. per sq. in.

Minimum compression in upper fibers=0.238
X278 =66 lbs. per sq. in.

35

2.40 units compression.

These figures show that the stress in the extreme upper fibers of
the rib varies from 607 lbs. to 66 lbs. (compression), and in the

extreme lower fibers from 490 lbs. compression to 101 lbs. tension.

A special chapter is devoted to the theory of stresses, and rein-
forced concrete, as employed in arches, is fully described and analyzed

in the chapter dealing with the hingeless arch.

The ahove-described arch would not be a safe structure, and

its dimensions should be increased or reinforcing bars put in.

Compare these stresses with those of the fixed solid-rib arch of
the same span and rise, and also with those of this same arch’ after

the axis has been changed.



CHAPTER III
THE TWO-HINGED ARCH.

1. The Standard Diagram.— As was shown in Chapter I, the
stresses in the two-hinged arch are not statically defined. In the
Appendix the two-hinged arch is analyzed and the conclusion reached
that the stresses are dependent on

(1) The manner in which the forces are applied. (When the
intensity, location, and direction of these forces are known, their
resultant is defined by the static law.)

(2) The curvature of the arch axis.

(3) The form of the arch rib (the moment of inertia and the area
of the arch rib).

Factors (2) and (3) are elements of the arch and are independent
of the manner of loading; they define its flexibility and can be ex-
pressed as follows:

“The stresses in the two-hinged arch are defined by the static
law governing the exterior forces and the elastic law governing
the form and material of the arch.”

From this it follows that the stresses in the arch are not only
dependent on the exterior forces, but that a change in the curvature
or a change in the sectional area of the arch rib influences them,
and that each particular curvature of the axis, or each particular
form of the arch rib, requires its own analysis for the determination
of its stresses. .

Many scholars have defined the relation between these factors in
algel-rai> form, and it is due to the efforts of Winkler, Mohr, Miiller-
Breslau, Melan, and others that at the present time this relation
is known with absolute certainty and precision; their results in
connection with those of the author have been compiled in the
Appendix.

As stated in the Preface, the algebraic forms expressing this
relation are complex and laborious, and their comprehension and
application require a special education; their use is therefore very
limited. In the following articles the author explains this rela-
tion in such a manner that it can be easily comprehended by any
engineer.

The description of the three-hinged arch has shown that the com-
ponents of a force are determines! when their point of intersection

36



THE TWO-HINGED ARCH. 37

on the load line is known. The same is true of the two-hinged arch.
The line on which this point of intersection is located in the three-
hinged arch is composed of two straight lines, each passing through
an abutment hinge and intersecting at the crown hinge; or, concisely
stated: the intersection locus of the three-hinged arch is defined by
the hinges. The intersection locus of the two-hinged arch is defined
by the hinges, the curvature of the axis, and the form of the arch rib.

As previously stated, each arch will have its own algebraic expres-
sions defining this line. There is, however, a relation between the
intersection-locus lines of different two-hinged arches, and this rela-
tion can be expressed in algebraic form or by simple graphical con-
struction.

This reduces the application of the elastic theory from intricacy
to simplicity, because, if by a simple construction the intersection
locus of one arch can be changed to satisfy the conditions of another
arch, a standard diagram of the intersection locus may then be drawn
which, by means of correction, may he made to satisfy the conditions
for any arch.

As the Appendix shows, and as specially demonstrated in Arti-
cle 18 of this chapter (which deals with the general method for com-
puting the intersection locus as applied to the Douro Bridge), the
change in the moment of inertia of the arch must be very considerable
to influence the intersection -locus. Except in special cases, which
are described under separate articles in this chapter, the inter-
section locus of the standard diagram may be applied to the two-
hinged flat arch without appreciable error.

The influence of a change in the curvature of the axis upon the
intersection locus is more pronounced. Still, the change of the
standard diagram to satisfy this condition is very simple.

The standard diagram refers to a two-hinged arch whose axis
is a parabola.

The rise of this axis=1, and

One-half the span of the axis=1.

The moment of inertia of the arch rib increases from the crown
to the hinges in the same ratio as the secant of the angle which the
arch axis makes with the horizontal.

A two-hinged arch which satisfies these conditions is chosen
for this purpose, because its algebraic deductions are the simplest, and
its analysis is given in the Appendix (Art. 2, Chap. VIII).

For a vertical force [see equation (85) of the Appendix]

8 l
20 = 5 m. . . . . . . . . . L) (].)

For a horizontal force [see equation (88) of the Appendix]

ro=5B0-k-2e 44 -8k ] . . . . (o)
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The standard diagram for the vertical forces is shown in Fig. 14,
and for the horizontal forces in Fig. 13.

TWO-HINGED ARCH:
INTERSECTION LOCUS FOR
THE HORIZONTAL FORCES.
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(@) To correct the diagram of Fig. 14 for an arch axis which is not
a parabola, the following method will be sufficiently accurate:

Compute the area enclosed by the axis of the arch and the X-axis.
Then compute the rise of a parabola having the same area and same
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span. Use this parabola in conjunction with equation (85) of the
Appendix, or with the ordinates of Fig. 14 to compute the ordinates
of the intersection locus. This intersection locus is then to be used
with the actual arch (not the substituted parabola), to find the worst
positions of load and the maximum stresses.

The stresses thus found will be in error by an amount not exceed-
ing three parts in one thousand for an arch whose rise is not greater
than onc-tenth of the span; in other words, the method is exact for
nearly all practical purposes.

If greater accuracy is required where the rise exceeds one-tenth
of the span, the following method may be used (see Fig. 14a): Com-
pute the intersection locus ach for a parabola of equal area, as just
described. Draw this parabola A’CB’ to coincide with the actual
arch ACB at the crown. Deduct from each ordinate of the inter-
section locus the difference between the ordinates of the actual arch
and the parabola (de=d’e’), where the latter lies Lelow the arch
curve; or, add the difference where the parabola lies aktove it. If
this corrected intersection locus a’ch’ is used in connection with the
actual arch ACB to find the stresses, the results will be correct within
6 parts in 1,000, even for a semicircular arch.

(b) The intersection locus for the horizontal forces (see Fig. 13)
can also be used for a two-hinged arch whose axis is not a parabola.

A correction may be made to the intersection locus in the same
manner as that described for the vertical forces; this, however, would
be a refinement which is not necessary. Horizontal forces are caused
by either the conjugate pressure of a spandrel filling, in case such
a construction is followed (the author does not know of any example),
or the wind pressure. As elsewhere mentioned, the intensity and
direction of these forces is rather indefinite, and the error resulting
from this indefinite knowledge will he very much greater than that
resulting from the slight inaccuracy of the intersection locus. This
point is clearly demonstrated in Art. 18 of the present chapter. (See
also Art. 2 (h), Chap. VIII.)

2. Stress Analysis of the Two-Hinged Arch Rib.—After the
intersection locus has been found, the procedure for finding the pcsi-
tions of loading and the stresses is practically identical with that
described for the three-hinged arch. One or two slight differences
occur, but these will cause no difficulty. The resolution of the loads
into their reaction components (as in Fig. 6a for the three-hinged
arch) cannot be done by a single diagram, but is best effected by a
triangle of forces drawn directly on the load line (see Figs. 15 and
15a) where it cuts the intersection locus. In drawing the force
diagram, Fig. 15a, the right-hand portion of the curve will form a
broken line, instead of a straight line as for the three-hinged arch.
In all other respects the work follows exactly the procedure already
described.

3. Temperature and Secondary Stresses.—The stresses pro-
duced in a two-hinged arch by changes of temperature and by the
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shortening due to compression may be treated together, since their
effects are analogous, the shortening due to compression being of
nearly the same kind as that due to lowered temperature.

If the ends of the arch were free to move, no stresses would be
caused by a change of temperature; the ends, however, are held
by the hinges A and B, which will cause a horizontal pull with a

decrease in temperature, and a horizontal thrust with an increase in
temperature.
The horizontal thrust caused by temperature changes * is

15ETwt
H.——sz—,........(2)

where E =coefficient of elasticity of material;
I=average moment of inertia of arch rib;
t=degrees above or below normal temperature;
w=coefficient of linear expansion of material for a change of
temperature of one degree;
f=rise of arch.
The horizontal thrust caused by compression t is

15n1
,.=——8f—2-,........(3)'

in which n=axial thrust per sq. in. in arch above the normal
(if the arch is erected so as to have the calculated dead-load stresses
under dead load, then n=axial thrust caused by the live-load tem-
perature and compressive stresses).

* See Equation (93), Chapter VIII. 1 See Equation (92), Chapter VIII.
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It should be remembered that the latter stress can be largely
obviated by erecting the arch longer than the span and springing
it into place, thus creating in the arch a compensating initial stress
equal to the one caused by the live load.

The moment of inertia should be computed at different points of
the arch and the average result used. The stresses caused by the
live load should be computed at different points, using the maxi-
mum stresses, and the average result should be used.

The best method is to obtain the stresses in the various sections
of the arch rib for a horizontal thrust of 10 tons, and by means of
the slide-rule transform these to the actual horizontal reactions;
it will require two or more trials before the true value for H, is
obtained.

The procedure for finding the stresses caused by H=10 tons in
any section of the arch is shown in Figs. 16 and 16a, as follows:

The chords (3-5 and 4-6) are brought to an intersection with
H, and H is the resultant of 3-5 and a-6. In Fig. 16a draw FH

parallel to a—6 in Fig. 16, and KH parallel to 3-5 in Fig. 16—both on
a base FK=10 tons. Then KH=237.4 tons (tension for an increase
in temperature and compression for a decrease in temperature) is
the stress in 3-5 due to a thrust of 10 tons. The same computation
is performed for 4-6, and joining G and H gives the shear in the web.
This is also a means of checking the calculation, since GH should
be at right angles to FG and KH.

In Table III all these stresses are tabulated, and, combined with
the live- and dead-load stresses of Tabhle 11, they give the maximum
and minimum stress in each member.

Comparison of Tables I1 and III will render further explanation
unnecessary. _

ANALYTICAL CaLcuraTiON.—See Art. 1 (¢), Chap. II, for a con-
venient method. :

Hori1zoNTAL Forces.—The two-hinged arch rib as described in
the preceding paragraphs is seldom used for roof-trusses. This
chapter, however, would bhe incomplete if it did not indicate a method
for finding the stresses in the arch caused by horizontal loads, and in
Fig. 13 is shown the intersection locus CDB for the horizontal forces
acting on the right half CB of a paraholic arch ACB. The moment of
inertia of this arch increases from the crown to the hinges directly
as the secant of the angle which the curve makes with the horizontal.
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For an arch of any other curvature the same reductions can be made
that are described for Figs. 14 and 14a.

(@) Tue STRESS ANALYSIS FOR HORIZONTAL FORCES is explained
in Arts. 16 and 17 of this chapter, which are devoted to the two-hinged
crescent-shaped arch. (See foot-note, page 280.)

4. Deflections.—This subject is specially treated in Art. 20.
The following is a simple and approximately correct method for
computing the deflection of the crown of an arch:

Assume the camber to be computed for the purpose of erection.

Find the sectional areas and the stresses in the arch at different
points, and from these compute an average stress and an average area:
from the data thus obtained determine the amount of shortening of
the arch axis, and thus the length of the arch axis when the falsework
is removed.

The length of the parabola=

s=§l[l+§-(£l) z(i{—l) etc.].

For all practical purposes it is sufficiently accurate to assume

i3]

Find the value of s from this equation, add the shortening of the
arch axis as found above, and call this length 8’ (s’=8+ 4s).
Substituting 8’ for 8 and solving for f,

38’ 3
P=iyT —3

and is the rise of the arch axis when the arch is resting on the false-
work. With this rise compute or draw a new parabola which will be
the axis for the arch when resting on the falsework.

5. Two-Hinged Arch Bridge Made by Bending a Rolled Steel
Shape.—Though the caption may indicate a repetition of former
paragraphs, the method used for the computation of stresses differs
from the one previously employed.

By bending an I-beam a graceful arch may be cheaply obtained
for spanning a small opening. For computing the stresses in such
an arch rib the method previously described is only partially applicable.
In such an arch rib there are no fulcrums for the chords or the weh
members, and the stresses in the arch rib are determined by the
position of the line of pressure and the intensity of the forces, as
shown in Chapter I and applied in Chapter II. Article 4.

(@) In Chapter I all stresses caused by vertical loads were found
by assuming these loads to be concentrated at panel points; in the
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following paragraphs the live and dead loads will be considered as
uniformly distributed loads, the dead load being taken as a permanent
load and the live load as a moving load. The computation of the
stresses is made with the same facility with this form of loading as
with panel loads; but before entering into a description of the method,
an introductory explanation is necessary to determine the point of
intersection with the intersection locus of a uniformly distributed
load.

In Fig. 17 the line AB represents the deck of a bridge, and the
points I, II, III, etc., are the panel points.

Now, suppose that a uniformly distributed load extends from
A to B, and that this load is subdivided into the portionsa, b, ¢, and d,
said subdivisions corresponding to the panel lengths. The portion a
of the load causes reactions in I and II. Now, the sum of these
reactions is equal to the load a, and the resultant, which is in equi-
librium with these reactions, is a force p, equal to a; the point of
application of this resultant coincides with the center of gravity
of the load. The same is true of the loads b, ¢, etc. Also, the force P,
which passes through the center of gravity of the full load from 4
to B, must be the resultant of the reactions at I, I1, I1I, etc., and these
reactions may he replaced by this single load P for the purpose of
computing the reactions at the abutments.

In Chapter II (Art. 4) the core points in an arch rib and their
use have been mentioned, and in Chapter V [Art. 1 (a)], an analysis of
their value and meaning has been given. In Fig. 18 an arch rib CD
is shown, at the section ZZ of which the point d is the upper, and
the point e the lower, core point. As previously demonstrated, any
force passing below d exerts compression in the lower fibers of the
arch, and any force passing above d exerts tension in these fibers,
the line Cf representing the division line. All forces passing below
this line exert compression in the lower fibers of the arch, and to
obtain the greatest compression all forces to the right of f should
be considered in the computation.

The points e and g are located on the line dividing the forces which
cause maximum compression in the upper fibers.

In Fig. 17 the line CA represents the line Cf of Fig. 18, and JJ’
is the intersection locus. A small portion a’ of the moving load will
causc panel loads or reactions at 1 and II, whose resultant will be
equal to p’. Now, the panel load I can be resolved into its components,
and IC represents the left-hand component of load I, IIC being
the left-hand component of the load II. A’C is the resultant of the
components IC and II C, and this resultant component passes below
AC and will cause compression in the lower fibers of the arch. The
smaller a’ becomes, the nearer the resultant component A’C will ap-
proach AC, and when a’ becomes infinitely small, the component
A’C will coincide with AC. Therefore, to obtain maximum com-
pression in the lower fibers of the arch, the load should extend from
the point A to the right-hand support. This is true in both cases,
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viz., where the load acts directly on the arch, and where this action
is transferred at the panel points to the arch.

The next step in this discussion is to establish the fact that the
resultant of any number of vertical, equidistant, and equal forces,
such as V, VI, VII, VIII, and IX (see Fig. 1R), intersects the inter-
section locus at the same point as the resultant of the components of
these forces. This is true when these forces are all located on the
right side or on the left side of the axis of symmetry, which in this
case is a vertical line passing through the point A.

The necessity of this last condition is self-evident. Thus, assume
two parallel vertical forces, respectively located at the same uistance
to the right and to the left of the point . The figure then instantly
shows that, though the resultant of these two forces passes through
the point k of the intersection locus, the resultants of their components
intersect on the same vertical hne, but above the point h.

(0) In proof of the fact stated above the following computation,
which will be readily understood, affords an example of the analytical
computation of a force dmgram similar to Fig. 15a.

A load p placed at V (Fig. 18) is resolved into its components V C
and VD, and the horizontal thrust b’ and the vertical reactions a’
and ¢’ are to be computed.

From two equal triangles

a:b=a’:b, and a:(I-b)=c":b'..
Now b=H or k=7, and a'+c'=p.

Substituting these values and reducing the above equations gives

=p(1-k), ¢’ =pk, b’——a—b

These equations are sufficient to compute the diagram Fig. 18a.
Ezample—In Fig. 18 the rise of a paraholic arch is assumed as
equal to 0.5, and the span {=2 units of length; and the computation
is to be made for a load of one unit weight at each of the panel points
V, VI, VII, VIII, and IX.
The ordinates of the intersection locus JJ’ are obtained from
Fig. 14 and the following table is arranged:

-1 a b k a’ c .4
A\ 2 0.6735 0.5 0.25 0.75 0.25 0.5581
VI 2 0.661 0.6 0.3 0.7 0.3 0.6487
VII 2 0.6526 0.7 0.35 0.65 0.35 0.7119
VIII 2 0.645 0.8 0.4 0.6 0.4 0.7442
IX 2 0.6415 0.9 0.45 0.55 0.45 0.7716

.25=A; 1.75=A’; 3.4345=B.
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With these results the force diagram of Fig. 18a is plotted, in which
A is the vertical reaction at C, A’ the vertical reaction at D, and B the
horizontal thrust. When these forces are plotted in Fig. 18, the sum
of the resultants of the horizontal and vertical reactions at each
support intersects the locus at VII. To prove this:

d':E=A:B, d’:l-E=A’:B;
_ AAl
" B(A+A4)

In place of resolving each of the forces from V to IX into its com-
ponents and drawing the force diagram of Fig. 18a, all these forces
may be replaced by one force at YII, which force is equal to the
sum of the five forces, and its intersection with the locus line will at
once produce the resultant components.

In computing the components of a uniformly distributed live
load, stress is laid once more on the requirement that all the load
must be located either on the right or on the left of the center line.
When a load overlaps this line, it should be divided into two loads,
each reaching to the center line; the components of each load should
be computed separately, and the components thus obtained should be
~ combined to obtain the resultant component.

Another point which requires special notice is that in a paneled
structure one-half of the load on the panels ad joining the abutments is
directly supported by the hinge and the abutment, and for loads reach-
ing to the abutments this length should be reduced by one-half of
a panel length.

With this explanation the computation of stresses should present
no difficulty. To relieve all uncertainty the foregoing explanation
is illustrated by an example. It hardly needs mention that this’
method is also applicable to the three-hinged arch, or the two-hinged
arch described in Article 2 of this chapter. The first step in the
computation is to determine the curvature of the arch axis, and then
the influence of the live load and the changes in temperature.

If desired, the secondary stresses may be considered, but in a
small arch, like the one illustrated in the following example, the
stresses in the material may not reach such considerable values as
in larger arches; because, the mass in the bridge being relatively
small as compared with that of the live load, safety dictates a large
allowance for the impact of the live load, and this allowance will be
sufficient to provide for the secondary stresses.

6. Example.—Computation of Stresses in a Two-Hinged Arch
Rib of Parabolic Form.—The arch rib is formed of a 2C-in. Pencoyd
I-beam having the following properties: weight per foot, 68.4 Ibs.;
gross sectional area, 19 sq. ins., net area, 17.7 sq. ins.; moment of
inertia, 1,146; radius of gyration, 7.76.

The span of the arch from hinge to hinge is 50 ft., and the rise
of the neutral axis is 10 ft.

or d =0.6525, E=07
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The deck of the bridge is composed of buckle-plates and granite
paving. Dead load =140 Ibs. per sq. ft.

For the live load the tables of Chapter VI are used, and the com-
putation is made for the heaviest highway traffic—class A=112.5
lbs. per sq. ft. for a span of 50 ft.

The impact coefficient = 1.5, making a total of live load and impact
=170 Ibs. per sq. ft.

The I-beams are placed 6 ft. c. to c., making the dead load per
running foot of beam=840 lbs. and the live load per running foot
of beam =1,020 lbs.

In Fig. 18 an arch of the above dimensions is drawn, and for the
computation of stresses the core points only are of interest. The
beam is to be investigated (see Fig. 18b) at a distance of (.2 of the
span from the supports, that is, at 10 ft. from the support A, and the
upper and lower core points are indicated by the letters d and e.

Dead-Load Stresses.—In Fig. 18b the arch is omitted, as it is
unnecessary for the computation of stresses and its lines would only
lead to confusion; the core points d and e alone are shown.

The line of pressure for a uniformly distributed dead load is a
parabola which coincides with the neutral axis of the arch. (For
construction, see Fig. 9.)

In the center of the span twice the rise of the neutral axis (20 ft.)
is plotted, which produces the point C, and the lines AC and BC
are tangents to the curve at A and B.

[Figs. 11 and 1la show that the lines Pn and Pf (Fig. 11a) are
narallel to the lines of pressure in the arch (Fig. 11) between AI and
VIIIC; and the intersection of these two lines produces the point
D, which point is also the point of intersection of the resultant of
all the vertical forces from I to VIII.]

In Fig. 18b these two lines are known, viz.: one is the tangent
AC (or the line PD in the force diagram, Fig. 18¢); the other is a
horizontal line which is tangent to the axis at the crown of the arch,
or the line PE parallel to the same in Fig. 18c. The length of the
line DE must then represent the dead load of the arch from the hinge
A to the center of the span in Fig. 18b. The dead load for one-half
of the arch is 25X840=21,000 Ibs. In Fig. 18¢ the point P is the
pole of the force polygon, the line PE is the horizontal thrust, and
the line DE is the vertical reaction caused by the dead load. As
previously shown by Fig. 9, the points @’ and a’”” on the end tangents
in Fig. 18b are points of the tangent a’a”. This tangent is also
the location and direction of the line of pressure at the section aa,
and its magnitude is found by drawing a line parallel to it in Fig. 18,
viz., the line PF. Summing up the results obtained, The line a’a”
1s the location of the line of pressure of the dead load at the section aa,
and the line PF represents its magnitude.

Live-Load Stresses. (Maximum compression in the lower fibers
of the arch rib.) —The arch is loaded from the point f to the sup-
port B, and the left-hand components of any portion of this load
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are in the section aa. This distance is indicated by a heavy
line and is equal to 31.4 ft. This length overlaps the half-span by
6.4 ft.. and the total load can be replaced by a load of 6.4X1,020 lbs.
=6,530 lbs. at g, and 25X1,020=25,500 lbs. at b. These two loads
are resolved into their components p’’ and p, the two components
are added together, and a line which unites the points b and c is then
equal to the magnitude and direction of the resultant of these two com-
ponents, its point of location being at the hinge A. The line a’a”
was found to be the line of pressure of the dead load, and, prolonging
the line a‘a” and drawing a line AJ parallel to the line cb, the live-
and the dead-load resultant components will intersect at the point
J. At the point c a line ch is drawn parallel to PF of Fig. 18¢, and
ch is measured from c equal to the line PF. A straight line joining
the points k and b will be equal in direction and magnitude to the
resultant of the live and dead loads, and a line Jk drawn parallel to
- hb will give the location of this resultant.

15ETwt

8P

the horizontal thrust caused by temperature changes. In this equa-
tion

(@) TEMPERATURE STREssEs.—The equation H;= gives

E=29,000,000;
I-=1,145;
t=60° above or below normal;
w=0.000007 for 1° F.;
f=120 ins.;
and H,=1,820 lbs.

This horizontal thrust is exerted at the hinge A.

Increasing or Decreasing Temperature.—The line bh is equal to
the resultant of the live and dem;)eli)ads, and in Chapter V (Arts. 2
and 3) it is explained that there are two causes which will in-
crease the stresses in the extreme fibers, viz., an increase in the
eccentricity of the force, or an increase in the force itself.

With an increase in the temperature a force will be exerted in the
arch acting from right to left, that is, in the same general direction
as the resultant due to the live and dead loads, and an increase
in temperature will increase the magnitude of this resultant.

As regards eccentricity, the live- and dead-load resultant falls
below the dead-load resultant Ja’’ (this dead-load resultant is at the
same time a tangent to the curve at the section aa), and an in-
crease in the angle which a’J and Jk make at J will increase the
eccentricity. This occurs when k¢ is added to bk in a direction
towards the left of h. But this is also the direction of the force
when the temperature increases, and an increase in temperature
not only increases the force, but it also increases the eccentricity
of the force; and a line which joins the points b and 7 determines
the magnitude and direction of the resultant of the live load, the
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dead load, and the temperature stress. (For a full discussion of
the effect which increasing eccentricity of a force has on the stresses
in a beam, see Chapter V.)

The live- and dead-load resultant Jk intersects the horizontal
thrust at k, and a line k! drawn parallel to b: gives the location of
the final resultant. Its magnitude is 56,300 lbs., and its eccentricity
below the neutral axis of the arch at the section aa=13.5 ins.

This is the force which causes maximum compression in the lower
fibers. It will not produce maximum tension in the upper fibers
of the arch, bec¢ause all components passing between the points d
and e exert compression in the upper fibers, the line Aeg being the divi-
sion line. All the forces to the right only of the point g should enter
in the computation. In this case, however, the stress variations
in the upper fibers are not nearly as large as they are in the lower
fibers, and for this reason their computation may be omitted.

Mazximum Compression in the Upper Fibers—For this case the
line Ag is the division line, and all tﬁe loads to the left of this line
cause maximum compression. Part of the load is to the left of the
section aa, and its right-hand reaction is in the section.

The live load is divided as follows:

10 (ft.) X 1,020 Ibs.=10,200 Ibs. (1)

and 11.9 (ft.)X1,020 Ibs.=12,140 lbs. (2)
The reaction of (1) =7/,
The component of (2) =n" .

and the two forces intersect at the point ¢’’/, which is the point of
intersection of the resultant of these two forces. The reaction
¢’cv, which is equal to the force p’, is added to the component b’c”,
and a line joining the points b’ and ¢ gives the direction and mag-
nitude of the resultant of these two forces, or the resultant of the live
load. A line ¢’”’J’ drawn parallel to b’cv through the point ¢’” gives
the location of this resultant, which intersects the dead-load resultant
at J’. To the line b’cv is added the line ¢!VA’, which is parallel to
PF of Fig. 18¢ and of the same magnitude. Drawing J’k’ parallel
to b’h’ gives the location of the resultant of the dead and live loads.
This resultant intersects the temperature thrust at &/, and, as the
figure shows, this force has an eccentricity above the neutral axis of
the arch at the section under consideration.

Now, an increase in temperature will increase the magnitude of
the resultant, but it will decrease the angle formed at J’ between
the line J’k’ and the arch axis J’a’. (The tangent to the arch axis
and the line of pressure of the dead load coincide, as demonstrated
at the beginning of this article.) A decrease in temperature will
decrease the magnitude of the resultant, but it will increase the
angle, and consequently the eccentricity; and, in this case, the
increased eccentricity will cause a maximum fiber stress in the
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upper fibers of the arch. The horizontal thrust 2’7’ is added from
left to right to the resultant b’A’, and a line parallel to b7’ is
drawn through the point ¥/, producing the line k’l’, which is the
location of the force causing maximum compression in the upper
fibers of the arch at the section aa. The magnitude of this force is
42,500 lbs., and its eccentricity above the neutral axis is 14.5 ins.

What was said in regard to the former system of loading is also
true in this instance. Ineach case where the dead load is considerably
less than the live load, four systems of loading should be investi-
gated.

(b) DisTRIBUTION OF THE STRESS OVER TAE CROSS-SECTION.
A special article in Chapter V is devoted to this subject, but the fore-
going calculation would not be complete without a computation of
the stresses in the section, and it is therefore given here, referring for
explanation to the chapter mentioned.

Force = 56,300 lbs.
Eccentricity =13.5 ins.

In Fig. 18d the height of the I-beam (=20 ins.) is measured off
and the neutral axis A4 is drawn through its center; a vertical axis
BB’ is also drawn, making O the point of origin.

To obtain the core points of the beam the radius of gyration
(=7.76 ins.) is set off on the neutral axis to the right of the point O,
and the core points @ and a’ can be found either by computation
or graphically, viz.:

(Oc)?,
=00’

or, a right-angled triangle is drawn, which has for its hypothenuse the
line ab’ and for its height the radius of gyration Oc.

This method is very simple, and the construction lines are omitted
for the sake of clearness.

The net area of the beam 17.7 sq. ins., and, if the load be
uniformly distributed, the compression per square inch will be

56.300
77 =3,180 lbs.

This 3,180 Ibs. is measured off by the scale of forces, viz., Od, and
a stralght line is drawn through the core point a and the point d,
intersecting the force at e; another line is d-awn through the point d
and the core point a’ to an intersection with the force at f.

rpendiculars ee’ and ff’ through the points e and f cut off the

dxstances b’¢’ and bf', equal respectively to the maximum compression
and the maximum tension in the extreme fibers.

The same construction is employed for the force 42,500 Ibs., and no
further description is necessary.

In order to check the computation the right-angled triangle Bcg
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has been drawn, giving the zero point g. The zero point ¢’ is found
in the same manner, and these points must be located on a straight
line which connects f* with ¢’ and A’ with #/. The points ¢ and ¢ are
neutral points in the beam where no stress occurs for the respective
positions of the force.

This diagram shows that the stress in the upper fibers varies from
7,420 lbs. compression to 2,100 lbs. tension, and in the lower fikers
from 8,460 lbs. compression to 2,620 Ibs. tension.

Magnitude of the Error Involved.—The locus of Fig. 14 is for a
parabolic arch whose moment of inertia increases from the crown to
the abutments in the same ratio that the secant of the angle which
the axis makes with the horizontal increases from the crown to the
abutment. In an arch with a uniform cross-section, if the section
is sufficient to resist the stresses near the abutments, it is larger than
is necessary at the crown. This is equivalent to diminishing the
flexibility of the arch, making it more rigid than is needed; but the
error is on the safe side. (See also the influence of the moment of
inertia on the intersection locus, Art. 18.)

The forces k'’ and kl in Fig. 185 should also be resolved into
shear and axial stresses; such resolution has no material effect on the
result, as the figure shows that the shear is very small. To investigate
the beam for maximum and minimum shear, see Figs. 10 and 10q,
Chapter II.. The lateral bracing will strengthen the web sufficiently
to withstand the shear, and any such computation is superfluous
in this case. .

Every pair of I-beams, however, should be connected by lateral
bracing ‘to make the structure rigid. But this belongs to the duties
of the designer and it is not a subject for present considera-
tion.

7. The Two-Hinged Spandrel-Braced Arch.— Among all the
framed structures the two-hinged spandrel-braced arch is one of
the most rigid, and, when the conditions of the locality provide
natural abutments, it is at the same time the most economical.

Live loads and temperature changes will cause deflections, but,
as compared with those of the three-hinged spandrel-braced arch,
they are considerably less.

For spanning valleys the two-hinged spandrel-braced arch is one
of the best forms of bridges that can be built, uniting beauty, rigidity,
economy, and facility of erection. Though in many such localities
this type of bridge has been built, there are numerous examples in
existence where preference has been given to the cantilever, the
suspension, or the truss bridge. when the arch, and especially the
two-hinged spandrel-braced arch, should have been selected.

The reason for this neglect must be ascribed to the difficulty
or the uncertainty in the determination of the stresses in arches of
this type.

In the following paragraphs a method of computation will be
illustrated which unites certainty with facility of application. It




52 ANALYSIS OF ELASTIC ARCHES.

is a combination of the elastic theory and the displacement theory.
The elastic theory is used to compute the stresses in the structure,
but the intersection locus is obtained by correcting the standard
diagram of Fig. 14 by an empirical method which is derived from
the application of the displacement theory. The temperature stresses
are obtained by means of the displacement theory alone. (For the
analysis of the displacement theory see Chap. X, Art. 1.)

To compute the stresses in an arch according to the elastic theory,
the curvature of the arch axis should be known.

In other chapters it has been demonstrated that small devia-
tions in this curve do not materially alter the intersection locus.
In some arches the axis is not well defined. In such cases an axis
must be assumed in order to make the computation of stresses possible,
and this assumption may be considerably in error, resulting in the
design of a defective arch.

The two-hinged spandrel-braced arch is of this character. The
axis is not defined and the assumed axis may differ very considerably
from the true one.

The following paragraphs will show how this difficulty is to be
avoided:

The first point to be considered is the erection of the arch.
The spandrel-braced arch is especially adapted for erection with-
out falsework, the arch being built out as two cantilevers from the
sides of the valley until the ends meet in the center. The top chord
and the last diagonal of each projecting portion form the top chord
of the cantilever during erection.

When the cantilevers meet, only the bottom chords are con-
nected, after which all fastenings which were used to hold the
cantilevers in place may safely be removed.

In this position the bottom chord will be flexible at the crown,
ana the arch will be a three-hinged spandrel-braced arch.

In case the bottom chord should be too rigid to allow sufficient
movement at the crown, special provision should be made, by pro-
viding a temporary hinge and making the chords continuous after
completion of the bridge.

Now, all lateral and wind braces and the floor system can be
put in place, and the bridge can be completely finished except the
connection of the top chord at the crown.

In this condition the arch will still be a three-hinged spandrel-
braced arch, supporting its full dead load, and without temperature
stresses.

When the top-chord connection is made, all the stresses in the
arch will still be those caused by the dead load in a three-hinged
arch. Now, however, temperature changes will cause stresses in the
arch also the live load will exert itself (the bridge being completed),
and therefore temperature stresses and live-load stresses are exerted
in a two-hinged spandrel-braced arch.

This division can be adhered to in the computation of stresses,
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and will simplify the method and reduce possible errors to a mini-
mum.

In an arch of long span the dead load exerts the greatest stresses
in the members, and these can be computed for a statically defined
structure.

In addition a curve may be found for the neutral axis of the
bottom chord of the arch, which coincides with the line of pressure
in the arch resulting from the dead load. Then all the dead-load
stresses in the arch will be resisted by the bottom chord, and only
temperature changes and the live load will cause stresses in the
web members and in the top chord.

No great error is committed when the dead load is assumed to
be uniformly distributed over the arch; and to satisfy the condition
of the previous paragraph, the axis of the bottom chord must be a
parabola.

Usually the dead load increases slightly towards the abutments,
and when this increase is known, or can be estimated, the bottom
chord may be as easily designed with such a loading as if the latter
were uniformly distributed.

Before taking up the computation of stresses, it will be necessary
to consider the Williot Diagram, and also the construction of de-
flection angles in connection with their resultant force- and re-
ciprocal-polygons. These will not only show the reader the method
followed for obtaining the intersection locus, but they will assist
him in the computation of stresses in special cases.

8. The Williot Diagram.—In Fig. 194 the bars AB and AC
are two members of a truss. The point B of the bar AB is subject
to a displacement from B to B’, and the bar is subject to compression
which shortens it by the length A’ A’'g. .

The point C of the bar AC is subject to a displacement to C’,
and the bar is subject to tension which lengthens it by A’¢c A”¢.

It is now assumed that the bars move parallel to themselves,
their new positions being B’A’g and C’A’c. The changes in length
result in bringing the point A’g to A’’g, and the point A’¢ to A”¢.

The two bars, however, are united at the point 4, and the new
position of the point A must be at the intersection of two arcs, one
being drawn from the point B’ as a center and with the radius B’A"'p,
and the other from the point C’ as a center and with the radius C’A"¢;
the point of intersection of the two arcs is at A’’/, and the new posi-
tion of the two bars is B’A”’C".

The displacements of the bars, as well as their elongation or con-
traction, are so small as compared with their length that there is
no significant difference between the arc and the tangent to the
arc; the line A’””4”¢ is therefore taken as perpendicular to A”/¢(C’,
:)11' to AC, and the line A””A’’p perpendicular to A’gB’, or to

B.

In the .figure the polygon A’’A”¢A’cAA’gA’’gA’’" represents

the various movements of the point A, as just described, and forms
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a figure which can be drawn independent of the length of the bars.
This affords a means of representing these movements on a greatly
exaggerated scale, and it can then be applied to determine the move-
ments or deflections of the panel points of any framed structure.

Fig. 198 shows one-half of a braced arch, which is supported on
rollers at A and is equivalent to a simple beam. Now, a vertical load
placed on this arch will slide the point A toward the left, and if
a horizontal force of sufficient intensity be applied at A, it will slide
this point back into its former position. From Maxwell’s theorem
(see Appendix) a vertical load =1 applied, for instance, at the panel
point 5 will cause a horizontal displacement at A, which is equal
to the vertical displacement at the panel point 5 which would be
caused by a horizontal force=1 applied at the point A.

This theorem may be used to compute the horizontal thrust
caused by a vertical load.

The displacement thecory provides the means of computing the
changes in the lengths of the members of the truss. and the Williot
Diagram is one of many methods for computin the displacement
of the truss at the panel points caused by these changes in length;
while Maxwell’s law can be used to define the relation between the
horizontal thrust and the deflectio = caused by any load.

Fig. 19 shows the arch. In Fig. 19d the distance ab represents a
horizontal force (=1) which is applied at 4, and the Cremona Dia-
gram of Fig. 19d is drawn which gives the stresses in the members of
the arch caused by the force ab=1.

A table isnow made similar to IV (Art. 14). The first column gives
the index figures of the members; in this column each member is
indicated by its two panel points and by a letter. The letter is used
to indicate the elongation or contraction of each member in the
Williot Diagram, and the figures indicate the panel points in said
diagram.

The second column gives the length (s) of each member in inches.

The third column gives the sectional area (F') of each member in
square inches.

The fourth column gives the stress (u’) in each member caused
by a horizontal force=1. These stresses are measured from the
Cremona Diagram of Fig. 19d.

The fifth column gives the change in length of each member,

the equation Egs=2L 7 bemg derived from equations (175) and

(176) of the Appendix. In this case P=0, and H is equal to the
horizontal force=1. W hen the force is equal to 1 ton, then E =14.500
(ton-inches) and the changes in length of the members should be
divided by 14.500 to obtain the actual change

(@) The Williot Diagram in Fig. 19 is drawn to a scale of 1 in.
=200 ins.. and to determine the actual deflections, those obtained
from the diagram should be multiplied by 200 and divided by 14,500,
or the deflections shown in the diagram are 72.5 times larger than
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the actual deflections which are caused by a horizontal thrust of
1 ton.

In Fig. 198 the vertical at the crown of the arch does not con-
tribute anything to the deflection, and for this reason it does not
appear in the computation.

The panel point 10 is made the starting point of the diagram.
The top chord a stretches 67.3 ins.+14,500 (see Table IV). This
14,500 is a common divisor to all the members, and for convenience
the figures of the table will be mentioned as if they were the actual
changes in length. (See Fig. 19€.)

This stretch of 67.3 ins. is measured in the direction of the top
chord and to the left of 10.

The contraction of the diagonal b is 16.55 ins. and is measured
in the direction of the diagonal to the right of 10. (Observe that +
or tension is measured to the left or downward, and — or compressmn
is measured to the right or upward.)

Perpendiculars are erected at the ends of a and b, which per-
pendiculars intersect at 9 in Fig. 19C, and the location of 9 with
reference to 10 shows the relative dlsplacement of these two points.

MeMBERS ¢ AND d.—The member ¢ contracts 24.35 ins., and
this contraction is plotted to the right of 10. The member d elon-
gates 2.29 ins., and is plotted downward from 9; again, perpendiculars
are erected at the ends of these two lines, which perpendiculars
intersect at the point 8, and the position of 8 with reference to 10 gives
the relative dlsplacement between these two points, etc. (In Fig.
192 the panel points 2 and 3 of the Williot Diagram have been shown
on a larger scale.)

Finally. the panel points 1 and 0 are reached, and the location of
these points with reference to 10 gives their relative displacements,

The line 410 is the center line, and a diagram for the right half
of the arch would be similar to the one in Fig. 19¢ were the plane
in which the latter lies revolved through 180° on the axis 410.

If the full diagram were drawn, the relative horizontal displace-
ment of the right-hand support with reference to the panel point 10
would be represented by a line equal to Ao measured to the left
of A, and the displacement of the point A with reference to the right-
hand support would then be equal to twice the length of the line
Ao=2X3K=K.

The vertical upward deflection at the panel point 3 caused by
the horizontal load =1 will be equal to the vertical ordinate of the point
3 above XX.

The vertical upward deflection at the panel point 5 will be equal
to the vertical ordinate of the point 5 above XX, etc.

(b) Now a load equal to 1 placed at the panel point 3 will cause
a horizontal displacement at A eaual to the vertical ordinate X3.
A horizontal force equal to 1 applied at A will cause a horizontal
displacement at A equal to twice Ao=K.

To prevent the horizontal displacement at the point A which is
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caused by the vertical force=1 placed at 3, a horizontal force of
sufficient intensity should be applied at A to push 4 back a distance
equal to X3.
The magnitude of this force H must then be equal to }%
In the same manner it can be proved that the horizontal thrust

caused by a vertical load placed at 5 is equal to —K—D

Construction of the Intersection Locus.—In Fig. 19% the ordinates
X3, X5, X7, etc., have been plotted on the corresponding verti-
cals I, I, III, cte. (the scale for these ordinates has been reduced
to one-fourth of that of Fig. 19€), and these ordinates are equal
to the horizontal thrust. The line K is then the unit force, and
A’B’ is the horizontal thrust curve.

These ordinates have also been plotted in Fig. 198 on the axis
AC, viz., A3=X3, A5=X5, etc., and verticals have been erected
through these points. The line K has been plotted from 4 to D,
and the line CE=4K. .

The line DE cuts off ordinates on the verticals I, II, etc., which
are equal to the reactions at A when the load K is placed respectively
at I, 11, ete. '

These reactions have been transferred to the verticals erected at
3. 5, 7, etc., giving the points a’, b’, ¢/, etc. The line Aa’ is then
the component for a load placed at I, and I is a point of the inter-
section locus; Ab’ is the component for a load placed at II, and I1
is a point of the intersection locus, etc. The line FG which passes
through all points similarly determined is the intersection locus.

The line F'G’ is the intersection locus which is plotted from the
standard diagram (Fig. 14) for a parabola with a rise equal to CC’.

9. Correction of the Standard Intersection Locus.—Fig. 198
shows that these two intersection loci coincide at the center of the
span, and that the difference between their ordinates at A is equal

to 1915X1.3f=115f, or to the depth of the arch at the crown divided

by the depth of the arch at the abutments, this quotient heing mul-
tiplied by 1.3 (which is a factor of the structure), and by £, or the
rise of the bottom chord.

In Fig. 19F the differences between the ordinates of the two
lines FG and FG' have been plotted from the straight line AB, and
are bounded by the dotted line BC. The line BC is so nearly straight
that no material error is made in assuming it to be such. Applying
this result to Fig. 198, the correction of the standard diagram for
the purpose of computing the stresses in a two-hinged spandrel-
braced arch is very simple, as may be seen from the following:

Plot the intersection locus of the standard diagram (Fig. 14) for
an arch having a rise equal to that of the axis of the bottom chord.
When the bottom chord does not form a parabola, first find the
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equivalent parabola, and plot the intersection locus for a rise equal
to that of the equivalent parabola (see Fig. 14). If necessary, this
line may be corrected as described and shown in Fig. 14a.

Plot 5—)(1.3[ of Fig. 198 as an ordinate from a straight line AB

in Fig. 197, in which AC=2X13f (=#f in this case). Draw the

straight line BC, and plot the ordinates of the line BC upwards fron
the intersection locus G’F’ in Fig. 198; this will produce the int.
section locus GF, which is to be used for the computation of th.
stresses in the arch.

All spandrel-braced arches for bridges are very similar in form,
and the foregoing construction is generally applicable in the deter-
wmination of the intersection locus. Its advantage is evident: it
enables the designer to compute the stresses in the arch from the
start, and with great accuracy. Any other method includes in its
application the unknown quantity F, viz., the sections of the mem-
bers, for which assumptions have to be made; and the computation
has to be repeated until the assumptions and the results correspond.
Any one who has computed the stresses in the spandrel-braced arch
knows how laborious this operation is.

After the foregoing explanation the computation of the tem-
perature stresses should be readily understood.

10. Computation of the Temperature Stresses.—When one end
of the bridge is free to move horizontally, there will be no tempera-
ture stresses in the arch, and sliding will occur at A. When A4 is
pushed back in place by a horizontal force, this force will represent
the horizontal thrust caused by the change in temperature.

From this it follows that the computation of the temperature
stresses requires the same procedure that was described in the fore-
going paragraphs. Its application, however, differs slightly.

The construction of the Williot Diagram, like the construction of
the Cremona Diagram, is subject to unavoidable errors in execution.
In the computation of the intersection locus these errors are not
serious so long as they are confined exclusively to the execution of
the drawing. The purpose of the computation is to find the relation
between the vertical deflections of the panel points and the horizontal
displacement of the point of support, and the same errors will prac-
tically obtain in both, and therefore balance each other.

For the computation of temperature stresses, however, the actual
displacements determine the stresses in the members. For this
reason the magnitude of these displacements should be determined
with great accuracy, and for this purpose the analytical method is
better adapted.

The method of finding the temperature stresses is not a direct one.

First, the horizontal displacement is found which is caused by
a unit horizontal force, say 10 tons.
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The actual displacement of the support caused by a tempera-
ture change is computed under the supposition that the arch is a simple
girder, free to move at .A4; then the ratio between the displacements
is the same as between the forces. To illustrate: If the displace-
ment caused by 10 tons=D, and that caused by a rise in tempera-
turc=d, then :

H:10 tons=d:D.

Taking the arch in Fig. 19 as an example, the distance ab of
Fig. 19d is then equal to 10 tons, and all the stresses of column IV
should be multiplied by 10. This has been done and the stresses
are inserted in column VI Table IV.

From equation (179a) of the Appendix,

—E4ql=22Pu.

There are no vertical forces in this case causing horizontal thrust;
there is only a horizontal force causing stresses P in the members.
4
Now zu=3%-f, the value of which was found before; these stresses
are given in column V, and multiplying the figures in column V
’

by those in column VI will give iu—-'?. These products are inserted

F
in column VII, and the sum of all the figures in column VII=J Z’_};_@;
for one-half the span, or for the whole span,
’
21%2 11,247X2=EAl.

Now E in inch-tons=14,500, and 4]/=22,494--14.500=1.556 ins. is
the horizontal displacement caused at A by a horizontal force of
10 tons.

Here the Williot Diagram can be checked, viz.: The line Ao (Fig.
19€), which is 72.5 times as large as one-half the displacement of
the support A caused by a horizontal force of 1 ton, gives

72.5

%10 =5.64 ins.

1.556 ins. X

The maximum temperature above or below the normal is assumed
to be 75° F.

The coefficient of linear expansion for steel per degree F.=0.000007.

The length of the bridge=105X12=1,260 ins.

If the bridge were free to move at A the horizontal displacement
would be

0.000007 X75%1,260=0.662 in.
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The horizontal thrust caused by a change in temperature of 75°
will be
0.662

To obtain the stresses in the members caused by this horizontal
thrust, the stresses of column VI of Table IV (which are for a hori-

zontal thrust of 10 tons) should be multiplied by :11%5

These stresses are inserted in column VIII of Table IV, and it
will be understood that these stresses are for an increase in tem-
perature of 75°. :

For the computation of the temperature stresses it is necessary
to assume the sections of the members.

In connection with this it should be remembered that the stresses
caused by the dead and live loads can be accurately obtained from
the computation. v

The best method to follow is to compute the necessary areas
of the members from the stresses caused by the dead and live loads,
and to make the following additions:

To the sections of the top chord ............... 1109,
o ‘6 ¢ ¢ bottomchord........... 9%
o ¢ ¢ ¢ diagonals. .............. 80%,
o €6 4 ¢ verticals. . ...l 25%,

With the sections thus obtained the temperature stresses should
be computed, and the final results should be compared with these
assumptions, corrections being made if necessary.

One trial will be found sufficient for computing the correct tem-
perature stresses.

11. Two-Hinged Spandrel-Braced Arch with Curved Upper
Chord.—The foregoing method will give accurate stresses in the
two-hinged spandrel-braced arch with a horizontal upper chord.
Roof-trusses and bridges, however, are often built in which the upper
chord is curved. In this case three methods may be used for the
correction of the intersection locus.

First Method.—When the hinge is located in the axis of the arch,
the correction of the intersection locus may be made as illustrated
and described in Article 1 of this chapter; the increase in the moment
of inertia from the crown towards the abutments is neglected in
this case, and as Article 18, etc. will show, this is an approximation
which will produce an error in the stresses of the arch averaging
from 0.5 to 49, on the side of safety. This error is distributed over
the arch as follows: At the crown the stresses are slightly too large,
and their increase toward the abutments depends on the ratio of
increase in the height of the arch rib.
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For the arch rib with parallel chords the error will be zero.

For the arch rib with a horizontal upper chord the error will
reach its maximum value (99)) at the abutments, and for a curved
upper chord the error must lie somewhere between zero and 99%,.

It will be seen from the foregoing paragraphs that the error in-
volved is not objectionable from the standpoint of practical engi-
neering. _

Second Method.—This should be preferably used for arches with
a curved upper chord when the hinges are located in the axis of the
bottom chord; it may, however, also be applied in place of the first
method. Divide the height of the arch rib at the crown by its height
at the hinges, this height in both cases being measured radially (not
along the vertical ordinates); multiply this quotient by 1.3 times
the rise of the arch (when the hinges are in the axis of the bottom
chord take the rise of the bottom chord; when the hinges are in
the axis of the arch, take the rise of the arch axis), and proceed
according to Article 9 and Figs. 198 and 19F.

This method yields somewhat closer results than the one first
described, but the stresses found are also too high. A correction of
the intersection locus can be developed, similar to that shown in Fig. 38,
for the stiff arch, but the author believes that the foregoing methods
are sufficiently accurate for all practical bridge designing and that
any further refinement would be superfluous.

The horizontal forces which result ordinarily from wind pressure
can be resolved into their components by the use of the standard
diagram of Fig. 13; this will give stresses that are in error, but the
error will not exceed 5%,. The wind pressure, however, is a factor
which is based on assumptions that will vary a great deal more than
7%, from the actual conditions, and for this reason any correction
of the standard diagram is unnecessary.

Third Method.—The intersection locus for the vertical and hori-
zontal forces may be obtained by the method described in Article 8
of this chapter. This method should preferably be employed in
special cases, and then the use of deflection angles will give results of
greater accuracy.

12. The Use of Deflection Angles for the Computation of the
Intersection Locus.—The construction of the Williot Diagram may
give sufficiently accurate results for the computation of deflections.
but it is, nevertheless, subject to a cumulative error which may be as
large as 12%. It should not be understood, however, that its use
would result in an error in the computation of stresses equal to 129%,.
As was previously pointed out, the computation of the intersection
locus is based on the ratio which exists between the vertical deflec-
tions of the panel points and the imaginary horizontal displacement
of the support, and even a larger error than 129, in the deflections
may give an accurate ratio.

The following is a more accurate method, but its use involves a
much greater amount of labor:
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From previous paragraphs and Figs. 198 and 19€ it is seen that
the horizontal thrust is derived from the deflections of the panel
points where the forces are applied; this line of deflection may also
be obtained from the angular deflections and the changes in length
of the members.

If in Fig. 192" the top chord 1-3 and its deflection angle were
plotted, and to this were joined the top chord and the deflection
angle of 3-5, etc., the deflections at the panel points would he repre-
sented by a curve which is tangent to the polygon thus obtained.

Instead of using the top chord, the deflection angles 1, 2, 3, etc.
of the web members may be plotted, and the resulting panel points
will be located on the same deflection curve which was obtained by
plotting the angular deflections of the top chord.

. In proof of this (see triangle ABC, Fig. 199) assume the angle
A to increase to A4-da, and the angle B to B+db; then the angle C
must decrease and it will become equal to C— (da +db), and (da +db)
will be the deflection angle of the bar AC. If the bar AC be hori-
zontal in its original position, it will deflect upward from a horizon-
tal line drawn through A, and the deflection angle will be equal
to (da +db).

These deflection angles can be obtained very accurately and on
a greatly exaggerated scale. In Fig. 19¢ the three bars AB, BC, and

AC form a closed polygon. The bar AC shortens under compression
the distance AA’¢, the bar BC shortens the distance BB’¢, and the
bar AB elongates the distance B’B’4. First conceive the bar AB
to be moved parallel to itself, assuming the position A’¢cB’, and then
that the elongation of this bar takes place; the new position of B
after these two displacements will be B’,.

The bar BC shortens, and the new position of the point B on
the bar BC will be the point B’c. These two bars are connected,
and to find the final position of the point B, an arc should be described
with the bar A’¢cB’4 as a radius and the point A’c as the center.
In the same manner the bar B’gC describes an arc around C as a
center, and the intersection of these two arcs gives the point B”;
and the new position of the bars is then indicated by the figure

 A’cB”C. As before explained, the arcs and the tangents coin-
cide, B’y B’ is perpendicular to AB, and B’¢B’ is perpendicular
to BC. It is clear from the figure that the arc (or perpendicular)
B’ ,B’” measures the angular displacement of the bar A’¢B’, (or of
the bar AB), and that the angle which it subtends is negative; the
figure shows that the angle at A has become smaller. The projection
of this deflection angle on the har BC is then equal to the line B’4b.

The figure shows that this angular displacement may be
obtained without drawing the bars, the polygon B’¢BB’B’ b being
all that needs to be plotted.

To determine the angular deflection at the panel points of a frame-
work, this polygon is drawn at the point where the angular deflection
is to be computed, viz., at A, and the polygon Acde completes the



62 ANALYSIS OF ELASTIC ARCHES.

computation. The lines Ag and ef are perpendiculars on BC, and
gf = B’Ab.

[For the analytical computation of the deflection angle at A,
let the changes in length of the bars be da’, db’, and dc’:

dA =4V = (da’—dc’) cot (a’c’) + (da’ —db’) cot (a’d’).

Scale for Measuring the Angle.—Assume the line Ak to be the unit
radius for measuring the angle gAf; then, if the side Af of the angle
is prolonged and a perpendicular 1s erected on Ak at kA which inter-
sects Af at the point 7, the line k¢ will be the measure of the de-
flection angle gAf at the unit radius Ah.

The same arch shown in Fig. 19 is redrawn in Fig. 194, The
computation of the deflection angles for the web members is prefer-
able, because it saves labor, and by drawing a simple moment polygon
the horizontal displacement at A is also obtained, which is the unit
of measurement for the deflections.

The angular deflections are first computed and two force polygons
are drawn, in one of which the deflections are considered as hori-
zontal forces, and in the other as vertical forces; reciprocal polygons
are then drawn from these force polygons. The ordinates of these
reciprocal polygons give the horizontal displacement at A and the
vertical deflection at the panel points, and adding to these the
change in the length of the bars completes the computation, all
according to equation (181) of the Appendix:

IK.g:a+4dl
Jaa

H=

The use of angles and lines as forces in drawing force and moment
polygons is explained in the Appendix (see two-hinged arch, page
261, etc., and also in Art. 10 of this chapter—Douro Bridge).

In Fig. 194 the angular deflections of the web members are
computed, and the change in the length of the bars for computing
these deflections is again taken from column V of Table IV.

In plotting the changes in the length of the bars the scale used
is 1in.=40 ins. )

The computation needs no further explanation, but the positive
and negative deflections should be carefully noted. In Fig. 19¢
the deflection obtained is negative and is measured toward the right
of the perpendicular which is drawn from the panel point A on the
bar BC. If the deflection angle were positive it would be measured
to the left of this line. This is a convenient way in which to deter-
mine the sign of the angle, and applying same to Fig. 194 it is seen
that all the deflection angles are negative except 5 and 7.* (In
this figure p” is the unit radius.)

* The author wishes to lay stress on the fact that the sign of the deflection
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In Figs. 19 and 19V the deflection angles have been added in the
two force polygons, ihe deflections V and VII being positive, and
with the pole distance p’ the reciprocal polygons of Figs. 19" and
19" have been drawn. The arch being svmmetrical with respect
to the center line, only one-half of these polygons need be drawn.

Scale.—For the purpose of comparison, it is desirable 10 have
the same scale for Figs. 19%, 19, and 19V,

The Williot Diagram is drawn to a scale of 1in.=200 ins. The
figures of column V, Table IV, are computed for a unit of 1 ton,
or E=14,500; and the ordinates of Fig. 19¥ are one-fourth thase of
Fig. 19€, or to a scale of 1 in.=800 ins.

In Fig. 19 the changes in the length of the members are plotted
to a scale of 1 in.=40 ins., and p” is plotted equal to 50 ins. on a
scale of 1 in.=40 ins.

When p’’ is the unit of measurement for the angles, and the pole
distance p’ is made equal to p’’, then the ordinates of the reciprocal
polygon of Fig. 197, divided by E, give the deflections at the panel
points, expressed in the same units as those of Fig. 194, viz.,, 1 in,
=40 ins. The ordinates of Fig. 19 are measured with a unit of
1 in.=870 ins., and if in Figs. 19 and 19/ the pole distance
p’ =892 Xp"”, then the ordinates of Fig. 19" can be measured with
the same scale as the ordinates of Fig. 19€. Figs. 19/ and 19/
would be too large for the illustration, and for this reason they have
been considerably reduced.

In Fig. 199" AB is the horizontal-thrust curve when the force=1
=ab of Fig. 197,

This curve includes only the angular deflections, and the changes
in the lengths of the bars should be added. To compute these a simple
Williot Diagram (Fig. 19X) of the web members only has heen drawn,
the changes in the lengths of the bars being again taken from
Column V, Tablc IV. Only one-half of the diagram is to be drawn,
as the diagram for the whole bridge is symmetrical with respect to
the center line 410", ‘

This diagram is drawn to a scale of 1 inch=40 inches, and that
of Fig. 199 to a scale of 1 inch=800 inches. The ordinates of
Fig. 19X measured from the line XX to the panel points 10’, 9, 7,
etc., should be divided by 20 and the quotients added to the ordinates
of the line AB; this will give the horizontal-thrust curve AB’.

To the horizontal force ¢’,, should be added one-tenth of the
line A0 (this is only one-half the displacement of the point of sup-
port), which is equal to g’/ 44, making the unit force K=ab+bc.

angles 5 and 7 of Fig. 19H’ is opposite to the sign of all the other deflection
angles, because authorities state as a law that the deflection angles of the web
members all have the same sign, and they partially base further deductions
on this assertion.

Though the error resulting from such an assumption may be small, its em-
ployment, ncvertheless, is confusing to the practising engineer, who has no
time to investigate it.
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There is a difference of ahout 79, between Figs. 1958 and 197";
but there is the same difference between the unit forces of these two
figures, and both will give the same intersection locus.

The angular-deflection method commends itself for the accurate
results it gives, though the first method is sufficiently precise for
the computation of the intersection locus. The author would advise
that the Williot Diagram be drawn two or three times in order to
reduce the possible error.

When the arch is not symmetrical with respect to the center
line, the diagrams of Figs. 19¢, 19¥, and 19X should be plotted in
full. When the hinges of the arch are not in the same plane, the
lines 2, 4, 6, etc., of Fig. 19/ are to be drawn parallel to the chord
which unites the two hinges of the arch; and in Fig. 19/ the deflec-
tion angles are plotted as forces on a line which is parallel with this
chord of the arch. In this case the lines drawn through the top-
chord panel points in Fig. 19" do not coincide; the construction of
the reciprocal polygon of Fig. 19, however, remains the same.

In this figure the segments of the reciprocal polygon come so
close together that only one line is drawn where two segments should
be shown; this would, however, make the figure unintelligible. Its
appearance is worse than its result, as a high degree of accuracy may
be obtained.

The method for obtaining the horizontal thrust in an arch by means
of deflections is applicable to a framed arch of any shape. To apply
the method the sectional areas of the members should be known;
but the object of the computation is to find the sectional areas of
the members, and this is the very factor which is assumed as known
in this method! Various methods and approximations can be em-
ployed to simplify the preliminary computation; notwithstanding
this, it remains laborious and complicated.

The author does not discuss these various methods, as the one
which he presents for the correction of the intersection locus is
simple and gives, in nearly all cases, results which are accurate
or very nearly so, and in every instance as accurate as those obtained
by employing the methods referred to in the preceding paragraph.

He would recommend, however, that a final computation be
made by the method of angular deflections, which will not only be
a check on the work, but will furnish diagrams which can be used
to comnute temperature deflections, the camber to be given to the
bridge for erection purposes, and also the deflections caused by the
live load.

Tlhesge applications of the diagrams are explained in the following
article.

13. Deflection of the Two-Hinged Spandrel-Braced Arch.—The
deflections in the arch can be easily computed. (For analysis see
Chapter X.) In the foregoing paragraphs the ratio between the
horizontal thrust and the vertical load which causes this thrust was
found from the deflections. This same process can be reversed to
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find the deflections of the arch under a given loading, viz.: First
find the deflections caused by a load acting on the arch when the
assumption is made that the arch is a simple beam. TLen find
the deflections caused by a horizontal thrust at the support, this
horizontal thrust being caused by the load.

The difference between these deflections must be the deflection
of the arch. .

The deflections caused by the horizontal thrust are given in
Figs. 192 and 19¥’, and the unit of measurement needs only to be
determined.

To find the deflections caused by a vertical load, assume in Fig.
10L" a vertical upward reaction=1 ton at 4,’and draw the Cremona
Diagram of Fig. 19X. . When the arch is symmetrical, one-half of
the diagram is sufficient. In Table IV, Column IX, the stresses
obtained from Fig. 19X have been inserted.

To find the stresses in the members caused by a load of 1 ton
which is placed, for instance, at 7: The reaction at A=0.7 ton, and
that at B=0.3 ton.

The stresses to the left of the line XX are equal to those in
Column IX (above the horizontal lines) multiplied by 0.7, and the
stresses to the right of XX are equal to those in Column IX mul-
tiplied by 0.3; for example, the stress in 3-4=+1.358 tons, and
that in 3’'-4’=+40.582 ton; the stress in 7-9=7-9’=0.3X —9.02
= —2.71 tons; the stress in 6-8= +3.47 tons, and in 6-8 = +1.50
tons, etc.

In Fig. 19L” the deflection angles for the web members have been
computed by using the values in Column X of Table IV (which are
derived from Column IX, as explained in the preceding article for a
load of 1 ton at the crown), and have been inserted in Column XI.
The unit radius is the same as that in Fig. 194,

To find the deflection angles for a load placed at 7, the reaction
at A= 0.7 ton and that at B=0.3 ton.

The angles 1, 2, 3, 4, 5, and 6, as obtained from Column XI,
should be multiplied by 0.7, and the angles 8, 9, 10, 9, 8", ..., 1
should be multiplied by 0.3.

The angle 7 is the only angle to be computed, and the sides of
the triangle which affect it are 6-7, 6-8, and 7-8. Now, the changes
in length of 6-7 and 6-8 are obtained by multiplying the values
given in Column X by 0.7, and that of 7-8 by multiplying by 0.3.

In the example which is illustrated in Fig. 19’ it is assumed
that a load of 1 ton is applied at the crown of the arch. From the
thrust curve of either Fig. 19€ or Fig. 19, it follows that H=1.306
tons, viz.: the ordinate CB’ of Fig. 197" divided by the ordinate ac
of Fig. 197,

For a load of 1 ton at the crown the reaction at A=} ton, and to
construct the force polygon the values in Column XI should be
divided by two.

The thrust curve of Fig. 19 was found for a unit horizontal
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thrust=1 ton, the horizontal thrust caused by the load placed at the
crown=1.306 tons, and the ordinates of Fig. 19’ should be mul-
tiplied by 1.306; or, the pole distance of Fig. 19¥ should be 1.306
times smaller than that of Fig. 19, or the figures of Column XI,
Table 1V, should be divided by 2X1.306. The last course has been
followed in Fig. 19¥, which is drawn an the same reduced scale
used in Fig. 197. .

From this force polygon has been drawn the reciprocal poiygon
AB,

In Fig. 19¥ a simple Williot Diagram has been drawn for the
changes in length of the web members, and, in order that the scale
may correspond to that of Fig. 19V, the figures of Column X, Table
IV, have been divided by 2X1.306.

The ordinates of this diagram have been divided by 20 (see ex-
planation of Fig. 19X) and have been added to the ordinates of the
thrust curve AB of Fig. 19¥’, producing the line AB’. The line
AB" is the same as the line AB’ of Fig. 19V, and in Fig. 19#’ the
ordinate B’B’’ is the deflection of the arch at the crown caused by
a load of 1 ton.

Scale of Measurement.—The ordinates of Fig. 19" or the line
AB” of Fig. 19¥’ give the deflections in inches caused by a hori-
zontal force of 1 ton, when they are divided by 18.125 (= l;’(s;))o)

The horizontal thrust caused by the load of 1 ton at the crown
=1.306 tons and the ordinates of Fig. 19’ give the deflections in
inches when they are multiplied by the ratio 118;3;0265=0.072.

The ordinate B’B’’=1.58 ins. and the deflection at the crown
=1.58%X0.072=0.114 in.

Figs. 19L to 19V give the following results:

In Fig. 19L” the elongations of the hars are plotted from Column
X, Table IV, on a scale of 1 in.=40 ins. The unit force is 1 ton,
or E=14,500; the reaction due to a load of 1 ton at the crown=
4 ton.

The unit radius p’ is 50 ins. measured on a scale of 1 in.=40 ins.

The pole distance p’ of the force polygon is plotted=1,000 ins.

4

on a scale of 1in.=40 ins,, or p—,,=20.

The horizontal thrust is 1.306 tons, and the deflection angles are
plotted to a scale of 1 in.= (40 ins.+1.306).
The deflections are then measured in inches multiplied by

40;: ;?:6-X2O=0.072, and the deflection at the crown is obtained

as before=0.114 in.

For a load placed at 7 in Fig. 19¥ it is necessary to draw the
full force polygon, Fig. 19, the full reciprocal polygon, Fig. 19¥,
and the full Williot Diagram, Fig. 19¥.
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The deflections can also be computed by the application of equa-
tion (189), Chapter X.

The computation of the horizontal displacement of the crown,
or of any other part of the arch under a vertical loading, may be
performed according to the method set forth in a later article. [See
equation (192), Chapter X.]

(@) DeFLEcTIONS CAUSED BY A CHANGE IN TEMPERATURE AND
BY A YIELDING oF THE ABUTMENTs.— Yielding of the abutments
affects the arch in the same manner as a reduction in temperature,
consequently only the temperature changes need be described.

According to Art. 10, a change in temperature of 75° I'. causes
a thrust of 4.25 tons, and the ordinates in Figs. 19€ or 19Y, when

()
multiplied by ;:—IiB’ will give the deflections in inches. (The ordi-

nates are for a horizontal thrust of 1 ton.)

14. Deflections of the Three-Hinged Spandrel-Braced Arch.
(For the analysis and explanation of the principle underlying the
following computations, see Chapter X.)

Suppose a load of 1 ton is again placed at the crown of the arch.
From equation (195) it follows that the angular displacement a

at the crown hinge is equal to (3¢.— H ,)‘(L‘f.

Now 3¢, is the horizontal thrust in the three-hinged arch which
is defined by the ordinates of a triangle having its apex on the vertical
line through the crown, and, from equation (21), Chapter VII,

l
JC——KZ-)-,.

Now K=1 ton, I=105 ft., and 4f=62 ft.;

) 105
R ~—6—2-=1.695.

H, is the horizontal thrust in the two-hinged arch, and is equal
to 1.306 (see Art. 13). In Fig. 19¥’ the ordinates of the line AB”
represent H . the ordinates of the line AB’’’ represent JC., and the
difterence between the ordinates of these two lines is equal toJe,— H .

The value of g, should now be found.

For a horizontal thrust of 1 ton, g,=ac of Fig. 19", =K of Fig.
19E, and 1.306 XK =g¢,.

f=15.5 ft.=186 ins., p”’ of Fig. 19L”=50 ins., and

1R *
B"B™_a, or ac=B”B”’Xl67.

*k (=1.306) is a factor of the diagram, as explained in Art. 13.
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Now, B”’B’” measures 0.95 in. actual length in Fig. 19%,
the pole distance p’ of Fig. 19M is 1.000 ins.; consequently

a,=0.95X l,OOOX%X 1.306 =334,

and a, is the angular deflection of the crown hinge when measured
with the scale used in Figs. 19" and 19¥,

To compute the deflections in the three-hinged spandrel-braced
arch:

First compute the thrust curve in a two-hinged arch for a ver-
tical load=1 placed at the panel point of which the deflection is
desired. (When this load is placed at the crown the line AB’ of Fig.
19’ will be this curve.)

Next compute the horizontal-thrust curve for the horizontal
thrust caused by this vertical load (=1) in the three-hinged arch,
but as if this thrust were acting in the two-hinged arch.

The difference between the ordinates of these two curves gives
the partial deflection (or the deflection of an arch in which the
abutments could approach each other a distance equal to a, of the
preceding article).

The top chord is then assumed to be parted in two at the crown,
and this increases the deflection. (This is equivalent to forcing the
abutments back into their original positions, as a result of which
the crown sinks.) To obtain this:

Compute the horizontal-thrust curve for this same arch as a two-
hinged arch, and also the horizontal-thrust curve of the three-hinged
arch (these two lines are given in Fig. 19¥’, viz., AB” and AB').

Now, for illustration, assume the line AB’ of Fig. 194’ to be the
deflection curve of the three-hinged arch with the top chord g¢’
in position. The angular deflection at the crown hinge is found as
described on a previous page. In Fig. 190 this angular deflection
has been plotted as the force of a force polygon with the same scale
and pole distance p’ as that of Fig. 194. From this force polygon
of Fig. 190 is drawn the reciprocal polygon (see Fig. 19¥’), and the
ordinate measured from the line AB™ to the line AB’ gives the
deflection of the three-hinged arch at the crown.

(a) * For a full, uniformly distributed load when the hinges are
located in the axis of the bottom chord, the deflection can be com-
puted with sufficient accuracy for practical purposes by finding an
average cross-section of the bottom chord and the average stress
in this chord caused by the load. From these the modulus of con--
traction of the chord can be computed, and, assuming the two
straight lines uniting the crown hinge with the abutment hinges to
contract in the same ratio as the bottom chord, the problem resolves

* This method applies to the three-hinged spandrel-braced arch as well as
to the three-hinged arch rib.
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itself into determining one side of a right-angled triangle, having
given the hypothenuse and the remaining side. The hypothenuse is
the contracted straight line uniting the crown and abutment hinge,
and the known side of the triangle is equal to one-half the span;
the remaining side is the rise of the loaded arch; and this deducted
from the rise of the unloaded arch gives the deflection.

Temperature deflections can be obtained in the same manner.

In the three-hinged spandrel-braced arch the deflections caused
by single panel loads may be computed direct from the stresses in
the members by drawing a Williot Diagram, or by computing the
deflection curve from the deflection angles. This, however, necessi-
tates the computation of the values of u and s/, and also the de-
flection angles for each position of the load. In applying the method
described in earlier paragraphs these values need be computed but
once; they are then reduced according to the procedure given in
Art. 13.

15. Example.—The arch shown in Fig. 1 is used, but without
the center hinge.

In Fig. 19 one-half of the arch is shown, its span between the
end hinges being 105 ft., its rise 15.5 ft., and its height at the crown
4 ft. The top chord is horizontal and the hinges are in the same

lane.
P In Fig. 19a¢ the same arch is shown and the intersection locus is
drawn by correcting the standard diagram of Fig. 14, the correc-
tion being shown in Fig. 198 (see also Art. 9).

For the sake of clearness in illustrating the following compu-
tations, the intersection locus has been drawn farther above the
top chord at the crown of the arch than the true locus.

In Fig. 19a the panel points have been indicated by short lines,
indexed O, I, II, etc.

The line OC (Fig. 19a), which is the line of pressure in the arch
caused by the dead load, must coincide with the neutral axis of
the lower chord.

The panel loads resulting from the dead load are 8 tons per
panel, and in Fig. 19b these loads are measured off in their proper
order (it should be borne in mind that the reactions are each equal
to 4.5 panel loads).

In the equilibrium polvgon OC (Fig. 19a) the points O and C
are known, and, as was described and illustrated in Figs. 11 and 11a,
a trial pole P’ is chosen in Fig. 19b and a trial polygon is drawn,
from which the true pole P in Fig. 19b is found; this pole P will

produce the polygon OC in Fig. 19a (as previously described).
) The tangent method should not be used to obtain the neutral
axis of the bottom chord, because the member 0-2 is not the direc-
tion of the end tangent, but is a tangent to the parabola at the center
of the panel.

(a) Live-Loap StressEs.—The live load is 8.5 tons per panel,
or 0.81 ton per ft.
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Maximum and Minimum Stresses (Fig. 19f)—Stress in 4-6:
For this member the fulecrum is at 5 and the line A5 intersects the
intersection locus at E. The section line is at ZZ. All loads to
the left of E will have their reactions in the section, and all loads
to the right of £ will have their components in the section. All
loads to the left of £ cause tension in 4-6, and all loads to the right
of E cause compression. The perpendicular through E divides
the span in two lengths, one of 25.8 ft. and the other of 79.2 ft. The
latter length overlaps the half-span by 26.7 ft. One-half of the load
on each end panel is directly transmitted to the supports 4 and B,
and the lengths of the loads which cause stresses in the arch are
then 20.55 ft., 26.7 ft., and 47.25 ft.; and bisecting each of these
lengths gives the points F’’, F’, and F, through which points pass
the resultants of the respective loads. .

For maximum compression in 4-6 the point F’ is loaded with
26.7X0.81=21.63 tons, and the point F with 47.250.81 =38.27 tons.
The left-hand components of these two forces are equal to F'G’ and
FG and intersect at 4, through which point their resultant passes.
To obtain the magnitude and direction of this resultant, the com-
ponent F’G’ is added to FG, viz.,, G¢’, and the line uniting g’ with
F gives the magnitude and direction of the resultant; and a line
drawn parallel to ¢’F through the point A gives the location of this
resultant, which intersects 4-6 at the panel point 6. This resultant
is resolved into a force directed toward the fulerum 5, and the stress
in 4-6. This resolution is effected as follows:

FD is drawn parallel to 5-6 and ¢’D parallel to 4-6; the stress
in 4-6 equals 68.2 tons compression. That the resultant intersects
at the panel point 6 is accidental.

For maximum tension in 4-6 the load F’’h’’ is resolved into its -

reaction F/G’’, which is in the section and intersects the prolonga-
tion of 4-6 at the point E’. This reaction is resolved into a force toward
the fulerum 5, viz., E’5, and the stress in 4-6. This resolution
has been effected, D’’F”’ being the stress in 4-6, and equal to 3.8
tons tension. For a fully loaded bridge the stress from the live
load would be —68.2-+3.8=64.4 tons compression. Now, the dead-
load stress is 70.6 tons compression, and the ratio of live load to

dead load is as 8.5:8, or %éx70.6=75 tons compression. The

above figures give only 64.4 tons compression, which indicates that
the center of pressure passes above 4-6, the difference between the
two stresses being taken up by the top chord. It also indicates
that the equilibrium polygon for the live load does not coincide
with the equilibrium polygon of the dead load, and that a fully loaded
bridge will have stresses in the top chord. In the three-hinged
arch it was seen that a full load did not cause stresses in the top
chord.

Stress in 5-7. (Fig. 199).—To find the stresses in this member
the fulcrum is located at the panel point 6, and a straight line passing



72 ANALYSIS OF ELASTIC ARCHES.

through A and 6 intersects the intersection locus at E; this point
divides the span into two lengths—50.5 ft. and 54.5 ft. The section-
line passes through the center of the third panel and is indicated
by ZZ. Allforces to thesleft of ZZ have their reactions in the section,
and all forces to the right of ZZ have their components in the section.
All the components to the right of £ have a positive moment around
the fulerum 6, and all components or reactions to the left of £ have
a negative moment around this fulcrum.

To obtain maximum tension in 3-5 the bridge is loaded from
E to B’ with [(50.5—5.25) X().81=] 36.66 tons, and the resultant of
this force passes through the point F, which bisects the distance
EB’ minus one-half of the end panel. Its component is equal to
the line GF, which intersects the prolongation of the member 5-7
at the point a. The component is resolved into a force a6—which
passes through the fulecrum 6—and the stress in 5-7; and drawing
a line GD parallel to a6 and a line FD parallel to 5-7 gives the
stress in 5-7 which is equal to 17.5 tons tension.

To find the maximum compression in 5-7 the bridge is loaded
from A’ to E, that is, for a distance of 54.5 ft., which overlaps the
half-spanby 2ft. Of the remaining 52.5 ft. for the first (26.25—4.25=)
22 ft. the reaction is in the section; for the remainder of the load
the component is in the section (22X0.81=17.82 tons), and its
resultant passes through the point F”’.

Next to be considered is a load of 21.27 tons, having its com-
ponent in the section and its resultant passing through the point
F’”’. Following this comes the load on the adjoining half of the
span, viz., 2X0.81=1.62 tons, the resultant of which passes through
the point F’. The order of combining these two components with
the reaction to find the resultant is not the hest to follow. It is
better to first combine the two components, and then combine the
resultant thus found with the reaction. This order of combining
the forces, however, would bring them too close together to be clearly
indicated in & diagram.

The component G’F’ prolonged intersects the reaction F’'G’
at the point b, and measuring these forces in their respective direc-
tions from the point b gives bd, which is equal to F”/G’’, and bc=F'G".

The line de is equal to the resultant of these two forces, and its
point of application is the intersection point b, through which point
a line be is drawn parallel to the line dec. This resultant intersects
the component F’’’G’"’ at the point e, and measuring again the two
forces in their respective directions from the roint e gives eg equal
to F’”’G"", and ef equal to dc. Joining the points g and f gives the
magnitude and direction of the resultant of the three forces, and the
intersection point ¢ is the location of this resultant.

Through e a line parallel to gf gives the line er, which is made
equal in length to the line gf. The prolongation of e: intersects
the member 5-7 at h, and the resultant is resolved into a force h6—
which passes through the fulerum 6—and the stress 5-7; and drawing
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the line 7j parallel to A6 and the line e¢j parallel to 5-7 gives the
stress in 5-7, which is equal to 30 tons compression.

From the one form of loading the stress was found= +17.5 tons

From tvhe Othel' X (5 [ (43 ¢ (X1 ¢ =__30‘ (X9

And for a full live load the stress is = —12.5 tons,
which is the equivalent of the discrepancy that was found in the
bottom chord.

Stress in 5-6.—A section-line through 5-6 (see ZZ in Fig. 19)
cuts the members 5-7 and 4-6, and they intersect each other at D
(see Fig. 19¢). This point of intersection is the fulerum for 5-6.
The hne which passes through the hinge A and point D cuts the
intersection locus at E, and the line which passes through B and D
intersects the locus at £’/. The section line passes somewhere between
5 and 7.

Mazimum Compression in 5-6.—The reactions of the loads between
A and E’ have a positive moment around the fulerum D, and the
components of the loads between E and B also have a positive
moment around the fulerum D. The farther the section line is
shifted to the right, the greater will be the load between the point
of support 4 and the section line; and, consequently, the greater
will be the resultant reaction of this load.

The section line cannot be shifted any farther than the panel
point I{I; if it were shifted still farther to the right it would cut
the members in the next panel. Therefore to obtain maximum
compression in 5-6, the bridge should be loaded from O to III, and
from E to X.

The resultant of the loads from E to X passes through the point
F, its magnitude is [0.81(44.4—5.25)=] 31.71 tons, and its com-
ponent is represented by the line FG.

The resultant of the load from O to ITI passes through the point
F’, its magnitude is [0.81(31.5—5.25)=] 21.27 tons, and its reaction
is given by the line F'G’.

The component FG and the reaction F'G’ intersect at the point
g, through which their resultant passes. The length of the line F'G”
is plotted from ¢ as f'g, and the length of the line FG is measured
from g as fg; then the line joining f and f’ gives the magnitude and
direction of this resultant, and the point g is its location. A line
drawn parallel to ff’ through the point g intersects the diagonal 5-6
at 6, and this line is resolved into a force 6D, toward the fulerum
D, and the stress in the diagonal. To avoid confusion this resolution
of forces has been made in Fig. 19¢’, the line f’f being in direction
and magnitude equal to the resultant. From the point f a line
is drawn parallel to 6D, and from f a line parallel to the diagonal;
the stress in 5-6 eauals 10.6 tons compression.

Mazimum Tension in 5-6.—To obtain this stress the remainder
of the bridge is loaded from III to E (Fig. 19¢). This has been
shown in Fig. 19¢, and the length of the load is equal to 21 ft. on
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one side of the center line and 8.1 ft. on the other. The loads are
respectively (21X0.81 ton=) 17.01 tons and (8.1X0.81 ton=) 6.55
tons, and the resultants of these loads pass through the points F’
and F respectively. The fulerum for 5-6 is again the point D,
and, after the foregoing description, the figures require no explana-
tion; the stress in 5-6 equals 10.6 tons tension.

Stress itn the Vertical 4-5.—To obtain the stresses in 4-5 the sec-
tion-line cuts the members 3-5, 4-5, and 4-6. The members 3-5
and 4-6 intersect again at D, and D is the fulcrum for 4-5 (see Fig.
19¢). The same method of obtaining the maximum stress in 5-6
(which was given in the preceding paragraph) holds good for the
member 4-5; and maximum tension is caused in 4-5 when the
bridge is loaded from O to II and from E to. X.

The reaction is equal to F”’G”” and the component is equal to FG.
The two forces intersect at ¢/, and their magnitudes are measured
off from ¢’ in their proper directions, viz., ¢'f” and ¢’f”’; and their
resultant is equal to the line f/f"”’.

A line drawn through the point ¢’ parallel to f’f”’ intersects
‘the vertical 4-5 at the point k, and the resultant is resolved into a
force kD toward the fulecrum and the stress in the vertical 4-5. The
computation has been made in Fig. 19¢”/, and the stress in 4-5 equals
4.3 tons tension. The stress caused by the other form of loading
equals 11.6 tons compression and is indicated in Fig. 19e.

For a fullv-loaded bridge the stress caused by the live load= +4.3
—11.6="7.3 tons compression.

Stress in the Vertical 4-5:

Minimum. :
Fromdeadload ........................ — 8 tons

Fromliveload ......................... + 4.3 ¢
Total minimum stress in 4-5= — 3.7 tons
Maximum.
Fromdeadload ........................ — 8 tons
Fromliveload ........... ............. —-11.6 ¢
Total maximum stress in 4-5= —19 6 tons

Stressin the diagonal 56=+410.6 tons—11.6 tons
Stressin the top chord 5-7=+17.5 tons—30 tons
Stress in the bottom chord 4-6=(—68.2—70.6) = —138.8 tons

(b) The temperature stresses helow are taken from Column VIII
of Table IV, and are added to the above stresses to give maximum
total stresses:

Highest Temp. Lowest. Temp.
5-7,topchord . ................LL, +13.9 tons —13.9 tons
4-8, bottom chord . . - 9.1 ¢ + 9.1 ¢
4-5, vertical ....... . — 2.6 ¢
56, diagonal .. ................... + 4.9 ¢
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And the maximum combined stresses in the members are:

-3 -13.9
57, (or T29.5713.0) e rrreeeenee + 31.4 tons —43.9 tons
46, (—138.8 —9.1). 1. .uueiiinnnn ~147.9 “
4-5,(~ 19.6 —2.6) ... .. 11111l —22.2 «
56, (+ 10.6 +4.9)....00 111111 +15.5 “ ~1615 «

In the arch of Fig. 19 the top chord has a uniform cross-section
consisting of two 8-in. channels (13.5 Ibs. per ft.), the bottom chord
is made from two 12-in. channels (40 lbs. per ft.), and the web members
are two 6-in. channels (10 lbs. perft.). While a small saving in material
can be obtained by varying the sections at different points according
to the stresses, the uniform sections adopted admit of simple connec-
tions, result in lower unit prices, and enhance the beauty of the
structure.

For long spans this uniformity is not economical; a discussion of
this subject, however, does not belong in this book.

The intersection locus obtained in Fig. 198 can be used for the
computation of the dead-load stresses as well as for those of the
live load.

The advantages, however, of following the division used in the
foregoing example are self-evident.

One, moreover, that is worthy of special mention is that the com-
puted stresses and the actual stresses in the structure will closely
correspond when the bridge is mounted as two cantilevers and
completed as a three-hinged arch.

16. Two-Hinged Arch with Variable Moment of Inertia.—
The foregoing articles have described an arch which might be placed
under this head; the spandrel-braced arch, however, is not an arch
rib in the true sense of the word, but a framework.

In many structures in which the arch rib is composed of chords
and web members, the chords are anchored to the abutments. The
rib may also increase in height from the crown to the abutments, and
such an arch has the decided advantage of great rigidity as compared
with the two-hinged type of the same dimensions. This has been

‘ specially described in the chapter dealing with the hingeless arch.

(a) Structures exist, however, in which this arch has been built
with two hinges.

When, in such an arch, the hinges are located in the axis, the stresses
can be computed by the application of the elastic theory, using
the standard diagram of Fig. 14, and making such corrections as are
necessary according to the method of Article 1, Chapter II. In
this case the center line of the arch rib is the axis of the arch.

Also the correction of the intersection locus may be made accord-
ing to the rules given in Article 11 of the same chapter.

The latter method, however, results in greater accuracy when
applied to an arch having the hinges in the axis of the bottom chord.
In making the correction the axis of the bottom chord should be
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considered as the axis of curvature. Either of these methods may
be used to compute the stresses in the structure, and the general
method described in Article 18 may be applied as a check to the
sections thus obtained.

(b) There is, however, a two-hinged arch which is very rigid, and
which, in contradistinction to those thus far described, increases
‘ts moment of inertia from the hinges to the crown.

- The crescent-shaped arch is of this type and is much favored for
bridges, and particularly for roofs.

The analysis of the two-hinged arch is given in Chapter VIII,
and in Article 18 of this chapter the application of this analysis
is described.

In Article 2 (d) of Chapter VIII the analysis has been developed
for such an arch when special conditions (there enumerated) are
satisfied, and in Art. 18 it has been shown that, notwithstanding
such special conditions, equations (95a¢) and (98) are general in
their application.

These equations are [see Art. 2 (d), (e), Chap. VIII]:

ﬁy d:c=j:ydx

for vertical forces; when the arch axis is a parabola, equation (96)
applies: 2o=4f for vertical forces, and equation (98), zo=k(3 +k2—6k)
for horizontal forces.

With the last two equations the standard diagram of Fig. 20
is drawn for an arch in which the rise=1 unit and the span=2 units.
Multiplying the ordinates of this diagram by one-half of the span
and by the rise of the arch axis will give the intersection loci for the
horizontal and vertical forces.

As stated before, the point of intersection of the load line with
the intersection locus is also the point where the components of the
load intersect.

The method described for the computation of stresses in Chapter
II, Article 1, may be used, and each member of the structure may
be investigated independently. In the case of a roof-truss the wind
should be considered as pressing on either the full right half or the
full left half of the truss; to treat the wind pressure as a moving
load which may come on any one or more panels, but not on all,
is in this case a refinement which has no place in practical engineer-

ing.

g (¢) If the arch is supported on rollers at one hinge, and the hinges
are held in position by a tie-rod, the stress in this rod can be
measured directly from the force diagrams for different forms of load-
ing, as will be seen below.

As an example a roof-truss has been selected, and the method
of computing the stresses can be applied to either the three-hinged
or the two-hinged arched roof.
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17. Example: Crescent-Shaped Roof-Truss.—Fig. 21 shows
a roof for a railway station. Its axis is a parabola. The span
from A to B is 110 ft., and the rise of the axis at C above ABis 36 ft.
The depth of the arch rib at the crown is 8 ft. 3 ins., or

The trusses are placed 25 ft. apart. '
Wind pressure=35 lbs. per sq. ft., its direction making an angle
with the horizontal=15° This produces a pressure per sq. ft. of

i | 0 §

TION-LOCNY 08 TwE ronces

Crescent-shaped
lwohinged arch.

horizontal projection=9 lbs., and a pressure per sq. ft. of vertical
projection=34 lbs.
Dead load =30 Ibs. per sq. ft. of honzontal pro;ectlon.
qnow load 17 (X1 “’ ¢ ¢ (X1
and the stresses are computed for three cases:
The snow covering the roof (1) from 7 to the center;
(2) from the center to 7’;
(3) from 7 to 7’.
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The weight of the trusses is 115 Ibs. per lin. ft.

With the above data the panel loads are computed and the re-
sults indicated in Fig. 21.

The locus for the vertical forces is JJ’ (1.33X36=48 ft.).

The locus CB for the horizontal forces is obtained by multiplying

S
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the horizontal ordinates in Fig. 20 by 55 ft., and the vertical ordinates
by 36 ft.

(@) STrEssES CAUSED BY THE DEAD Loap.—The dead loads at
the panel points I, II, ..., XV are resolved into their components
1, 2, etc. The components toward B are omitted, as they are not
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required in the computations. It should be remarked that the
components toward A of the loads from IX to XV are equal to the
components toward B of the loads from I to VIII, and therefore that
the resolution into components need only be made for the loads
from I to VIII.

These components toward A are added in Fig. 21a, forming the
broken line DE, and the straight line DE is equal to the resultant
R of all these components, as previously explained. The reaction
R at A is equal to this resultant, its direction being indicated by
an arrow.

A section ZZ is made in Fig. 21, and the portion of the truss
to the left of this section is removed. The forces in the section are
R (the reaction) and the stresses in A1 and A2; these three forces
are in equilibrium, and R must be the resultant of Al and A2. The
computation has been performed in Fig. 2la, and the directions
of the arrows indicate that the forces in Al and A2 are exerted
against the portion ZZB of the truss and cause compression.

The remaining members of the truss have been computed in a
similar manner in Fig. 2la, which is known as the “ Cremona Dia-
gram,” and the results are entered in Table V.

In Fig. 21a the line DF is equal to the horizontal thrust caused
by the dead load, and, using the point D as a pole, the reciprocal
polvzon A ...C is drawn with a solid line in Fig. 21. The dotted
line is the center line of the arch, and the distance between these
two lines indicates how the center of pressure shifts above and below
the neutral axis. This shows, for example, that the compression
in 3-5=19,700 lbs., in 2-4=34,400 lbs,, and in 4-6=31,000 Ibs.
It also affords a means of checking the Cremona Diagram by the
moment method, as previously explained.

Another check upon the computation consists in independently
determining the stress in any given member by the method described
in Art. 1, Chap. II, for the three-hinged braced arch.

When the hinge A is supported on rollers and the hinges A and
B are united by a tie-rod, the stress in this rod is equal to the line
DF measured by the scale of forces.

(b) StrEssEs CAuseEDp BY THE SNow Loap.—Where the roof has
an inclination which makes an angle with the horizontal of more
than 45°, no snow will rest; the snow loads are distributed as shown
n Fig. 21.

Snow Covering the Roof from Panel Point 7 to the Center.—In the
<ame manner as described for the dead load, the resultant DE in
Fig. 21b for the snow load has heen computed, and a Cremona Dia-
gram has been drawn with these loads (see Fig. 21b).

The results are entered in Tahle V under the heading ‘Left Half.”

Snow Covering the Roof between Panel Points 7 and 7’.—The re-
sultant DE of the left-hand components (see Fig. 21c) is obtained
according to the previously described method, and the Cremona
Diagram is drawn.
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The results are entered in Table V under the heading “Total.”

Snow Covering the Roof from the Center to 7'.—These stresses
are the differences between the stresses caused by the snow load on
the left half and the total snow load. The computation of these
stresses resolves itself into a simple deduction, and they are entered
under the heading ‘‘Right Half ”’ in Table V.

(c) STRESSES CAUSED BY A CHANGE IN TEMPERATURE AND BY THE
SECONDARY STREsSEs.—To obtain the temperature stresses, the
horizontal thrust caused by changes in temperature must be com-
puted [see equation (100), Art. 2 (f), Chap. VIII].

H,=3twEk2F *
where ¢t=change in temperature=+60° F.;

. . 7
w=coefficient of elongation for 1° F.= 1,000,000 H
E=modulus of elasticity of steel=29,000,000;
k=}i=8'—25=0.229; k2=0.0525;

y 36

F =sectional area of one chord at the crown=8.5 sq. ins.

Then
H,=2,720 Ibs. (or, roughly, 2,800 Ibs.).

For the secondary stresses [see equation (101)],
H,= —3ink?F,

where n=stress per sq. in. of gross section caused by live-load, tem-
perature, and secondary stresses =1,300 lbs. (assumed
for the purpose of illustration);
k and F as before. Then

H,=$%1,300X0.0525 X 8.5=280 Ibs.

In these two equations F and n are values which are obtained
from the final results of the computation; the value 280 Ibs.
can be obtained only by trial, for which reason the Cremona Diagram
of Fig. 21d is drawn for a horizontal thrust equal to one unit. When
the intensity of the horizontal thrust which is caused by a change
in temperature or by the secondary stresses is computed, the stresses
obtained from Fig. 21d are multiplied by these horizontal thrusts.

In the example the horizontal thrust caused by a temperature
change of 60° is 2,800 lbs., and the stresses caused in the members
by this thrust are inserted in Table V.

The secondary stresses are also inserted in this table.

* See Art. 20 (b) before applying this equation.
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(@) StrEssEs CAuseD BY WiND PREssuRE.—In Fig. 21e the wind
is assumed to blow from right to left, and the vertical and hori-
zontal pressures are considered independently in order to compute
the reactions at A and B.

The points of intersection of the horizontal and the vertical
forces with the intersection loci are indicated by black circles, the
loci being left out to avoid confusion.

The vertical loads are resolved into their components: d in 9
and 9/, e in 10 and 10’, etc. The components 9, 10, 11, etc., are
drawn in their proper sequence in Fig. 21f, forming the broken line
KM; also the components 9/, 10, etc., are drawn, forming the broken
line KL. As a check on the computation Ll (the vertical reaction
at A) plus IM (the vertical reaction at B) should be equal to the
sum of all the vertical loads de...j. It should be specially noted
that the directions of the forces are indicated by arrows, and great
care should be exercised in this, as an error would produce extremely
faulty results.

The horizontal loads are resolved into their components: D
into 9 and 9/, E into 10 and 10/, etc.

The components 9, 10, 11, etc., toward B are added together
in their proper sequence in Fig. 21f, forming the broken line MN;
and to obtain the resultant of NM and KM the forces must follow
in the same direction.

In the same manner the components toward A (as 9’, 10, ete.)
are drawn in their proper sequence in Fig. 21f, forming the line LO,
and, as before, their direction must be a continuation of the broken
line LK. And the line NK represents in magnitude and direction the
tesultant of all the components toward B of all the vertical and
horizontal forces, and similarly the line OK is the resultant
toward A. .

As a check on the computation the line Nm, which represents the
vertical reaction at B, must be equal to the line On, which is the
vertical reaction at A of the horizontal forces.

Computation of the Stresses.—The reaction at B must be equal
and opposite to the force NK, and the reaction at A must be equal
and opposite to the force KO. These two reactions are added in
their proper sequence in Fig. 21g, and a line which would unite the
points N and O would be the resultant of these reactions, and would
also be the resultant of the forces IX, X, ... XV in Fig. 21e. This
condition is indicated in Fig. 21g and forms a check on the com-
putation, and the Cremona Diagram in Fig. 21g gives the stresses
in all the members. '

The drawing of this diagram furnishes another check on the
computation, because, if the diagram is commenced at B with the
reaction NK, it must meet the point O of the reaction OK at A4, and
any deviation from this point O shows the computation to be de-
fective.

With the wind acting from left to right the Cremona Diagram
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will be the reverse of Fig. 21g, and the stresses 5’-7’, 7’-9’, 6’-8’,
8'-9, ete., will become equal to 5-7, 7-9, 6-8, etc.

If the arch shown in Fig. 21 is used for a highway or railroad
bridge, as, for instance, the bridge over the Douro, the maximum
and minimum stresses are obtained in the same manner as are those
for the two-hinged spandrel-braced arch, and the interscction locus
for the forces is obtained from Fig. 20.

For the maximum and minimum stresses of Table V, the cross-
sections are determined by adding together the larger stress and
§ of the smaller stress and allowing 16,000 Ibs. per sq. in. of net
section in the member for the combined stresses. This shows that
the cross-sections of the chords increase very closely in the same
ratio as does the secant which the arch makes with the horizontal;
and with the variable loading shown in Figs. 21 to 21g the accuracy
resulting from this assumption is striking.

(e) Tie-Rops.—When the hinges are kept in position by a tie-
rod, the stress in this rod caused by the wind pressure acting on
the right of the roof is equal to the line Ln (Fig. 21f) =26,400 lbs.

It is assumed that the hinge A4 rests on a roller bearing.

Now, the stress in this tie-rod (caused by the dead load) is 36,150
Ibe. tension (=DF of Fig. 21a), and the stress in the rod will be
27,600 + 36,150 =63,750 lbs. tension.

When the wind exerts pressure on the left side of the roof it causes
17,790 lbs. compression (line mM of Fig. 21f), and the stress in the
rod will be 18,360 lbs. tension.

Also a full snow load causes a tension in the rod equal to the
line DF of Fig. 21¢~=16,250 lbs.

When the condition of the roof-truss assumed for the computation
is that at normal temperature and with the dead load, any change in
the stresses or the length of the tie-rod will alter the span of the arch.

When the tie-rod is equally exposed to the changes in temperature
with the roof, there will be no temperature stresses; but when the
tie-rod is placed under the station platform, it is safe to assume
that its temperature does not change, and the temperature stresses
as previously computed can then be used.

The change in the length of the tie-rod caused by the variation
in its stresses will influence the stresses in the arch.

When the stress in the tie-rod above or below the normal=P

and its ai'ea=F, its change in length will be equal to Al:l%; from
equation (99), Chap. VIII,

2HI Pl
4= EeF " FE

and
Pk2

9

H=






Fig. 21 £.
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Now the wind will cause an additional stress of 27,600 Ibs. tension
or 17,790 lbs. compression, and a full snow covering will add an
additional tension of 16,250 Ibs. Or, with the wind blowing on the
left side, the stress in the rod will be 17,790 Ibs. below the normal stress.

With the wind blowing on the right side and a snow covering
from 7 to 7/, there will be an increase of 27,600+ 16,250=43,850 Ibs,
tension, and substituting these values for P in the above equation
gives (when k=}}),

H=-9351hs. and H=+42,290 lbs.,

which act respectively in the same manner as a rise or a drop in

temperature. Multiplying the stresses obtained from the diagram

(Fig. 21d) with the above values will give the stresses in the members,
[For deflections see Art. 4, Chap. 1II; also Art. 20 (b) et seq.]

Tadle V.
Two-HINGED CRESCENT-SHAPED Roor-TRuss N
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THE DOURO BRIDGE, OPORTO.

18. Computation of the Intersection Locus for the Two-Hinged
Arch.—General Method.—In Arts. 1 to 14 of this chapter the hori-
zontal thrust is computed from an intersection locus which is drawn
for a two-hinged parabolic arch rib whose moment of inertia in-
creases from the crown to the hinges in the same ratio as the secant
of the angle which the arch axis makes with the horizontal.” In
Art. 2 (h), Chap. VIII1, the principle is explained on which is based
the correction of this intersection locus for an arch of any other
curvature.

Special cases, however, may present themselves in practice,
and, as an example of such a case, the author has chosen the crescent-
shaped arch bridge over the Douro, at Oporto, Portugal.

The conditions which are set forth in Art. 2 (d), Chap. VIII,
are not satisfied in this arch, and it is specially adapted for démonstrat-
ing the influence of a variation in the moment of inertia upon the
intersection locus.

A description of this bridge by T. Seyrig, its designer, may be
found in ‘‘Mémoires et Comptes Rendus des Travaux de la Société
des Ingenieurs Civils,” Sept., 1898.

Fig. 22 is an elevation of this bridge, in which the span is 160
meters and the risc of the neutral axis 42.65 meters. (All dimen-
sions given are in meters.) The bridge deck is supported by the
arch at the points D, E, F, and G. In Figs. 22a and 22b the mo-
ments of inertia and the sectional areas of the arch have been plotted
from the above description in the metric system. These figures show
that the moment of inertia near the hinges is 0.246 m.4, at the crown
4.696 m.4, and that the sectional area near the hinges is 0.293 m.2,
and at the crown 0.228 m.2.

The ordinates of the line GJ (Fig. 22a), measured from the axis
GL, represent the moments of inertia of the arch, and are seen
to vary widely. The line GL is equal to AC, or one-half the length
of the arch axis, and the abscissas of the points on the line GJ corre-
spond to the points z, y, of the arch axis measured along the curve.

The analysis of the two-hinged arch is given in Art. 1, Chap. VIIIL.

In applying equations (71) and (72) of the Appendix the

approximation v,,.=1—°y,,. (70) is sufficiently correct, and the panel
m

lengths are all assumed to be equal to dy. The ordinates of Fig. 22a
represent the values of I,; and Io, or the average moment of inertia,
should be computed. The graphical method is specially adapted
for this purpose. (See Fig. 22c.) The computation is based on
the principle of reducing the figure abc...h to a triangle having
the same area and the same base; then one-half the height of the
triangle is the desired average. Let ab be the axis and cdefg he the
line uniting the ordinates, which are plotted in their proper sequence.
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The average ordinate ak should be found. TUnite e with g and draw
fh (parallel to eg) to an intersection h with the line ia. The triangles
egh and egf have the same base and the same height, and must there-
fore have the same area. The figure has now been changed into
abedeh, having the same area as the original figure. The same
method is applied to the points d, e, h, etc., until finally the triangle
ab: is obtained, and one-half its height is equal to ek. (To make
the computation only the intersection points on the line a? are marked:
no other lines should be drawn, as they only confuse the computer.)
This method has been applied in Fig. 22a; GLM is the desired triangle,
and the distance NL is the average moment of inertia=1I,.

In the same manner the average area Fy of the arch is obtained
in Fig. 22b, the line GM representing the side of the equivalent tri-
angle, and OG= Fy.

Construction of the Horizontal-Thrust Curve.—Vertical Forces—
Equation (62) of the Appendix gives the horizontal thrust

ban
/ -Tyds +EwtB cosa—E4l
H-°

y2ds _B_ oottt
o 1 +F0cosa

(624)

Equation (71) gives

P do= [ Yy, oy 4
j: yda= [ iz =R, . . . (T14)

and substituting for v, the approximate value v,,.=§—°y,,. gives
m

bm _do 1] Io
o l—yds = —I;zommi;'ym-

In the same manner is obtained

by2ds  d
A’T=ﬁ23ymPMo e e e e s s (724)

The interpretation of these summations is given in Chap. VIII,
Art. 1.

In equation (624) the term EwtB cos a represents the influence
of the temperature, the term EJI the influence of a turning or shift-

ing of the abutments, and the term f—,cosa the influence of the

()
change in length of the axis of the arch (in this book termed ‘‘the
secondary stress’’).
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Neglecting the influence of temperature and shifting of the abut-
ments, equation (624) may be written

I
41122. lmm—’ym P 'fmml—°ym

H_

=. zoy,,.v,,. B cos a 2‘ oYm¥m +B 3?: g ;:’)

and if the denominator of this expression is made the unit of measure-
ment, then

I
H"_" zt‘)mmﬁnym.

The computation, either graphically or analytically, is very
easily performed; it consists in either drawing a reciprocal polygon, or
computing the bending moment of asimple beam supporting the loads.
The graphical method is here given, with an incidental explana-
tion of the analytical method.

(@) Equation (73) of Chap. VIII gives the value of

m?, 1 — 20V,
z;sn,,.v,,.=K[(z—g)zg’T"' +gz,',‘—l—"')”‘]. (734)

In Fig. 22d the axis ACB of the arch is shown and equation (734)
is interpreted as follows with reference to this figure:

It is desired to find the horizontal thrust caused by a load K
placed at 5.

The arch is divided into twenty equal panels whose centers are
indicated by 1, 2, 3, etc.

Now, the ﬁrst part of equation (734) means that loads v, s,
V3, V4, and v5, placed on a simple beam supported at A and B, will
z'n'vm

cause a reaction at B which is equal to 2'J , and this reaction

will cause a bending moment in the beam at 5, which is equal to
(l-x)zg’"';’"'.

The second part of this equation gives in the same manner the
bending moment in the beam for all the loads from vg to v,,, and

the sum of these two bending moments is the total bending moment
in the beam.

v,,.=§qym, and from Fig. 22a, Iy= ordinate GO.
m

To facilitate the computation Fig. 22a should be so changed
that the value of I,, is given to correspond with the panel centers
1, 2, 3, etc. For this purpose the lengths Aa, ab, be, etc., of the
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axis in Fig. 22d are plotted on the line GL in Fig. 22a, and perpen-
diculars are erected through these points intersecting the line GJ
at the points a’, b, ¢/, etc.; and drawing lines through these points
parallel to GL and to intersections with their corresponding panel
centers, will determine the points 1,2, 3,etc. The ordinate of the point
1 to the axis GL is the average moment of inertia for the panel 1; and
the ordinate of the point 2 to the axis GL is the average moment
of inertia for the panel 2, etc.

The ratio 53 should now be computed. To make this division -

any arbitrary unit may be selected—in Fig. 22a the unit taken is
equal to two panel lengths, or he=1.

'{‘he line e8 is drawn and gf parallel to it, and from equal tri-
angles

i—g=’-¥; now, gh=1I,, and h8=1In;
.o _
. T;,—hf'

The next step is to compute the values of vy,:

Io

V= 1 Ym-
m

For this purpose the point f of Fig. 22a is transferred to f in
Fig. 22d, a line is drawn uniting the points e, and 8, and the line
Fg, is drawn parallel to €’8, and to an intersection with the panel
center 8.

Now, h8=ym, h,f,=‘;lm (for the unit he,), and from similar

triangles
h,f Iy
h,=h'8 X =y, X2,
gl (] h/e/ Jm Im

The same procedure is followed for each panel center, and the
ordinates so obtained define the line DE.

The foregoing explanation shows the simplicity of the compu-
tation and the special adaptability of the graphical method for that
purpose.

The next step is to obtain the value of equation (734). For this
the ordinates a’a’’, b’b’’, c’c’’, etc., are plotted as the forces of a force
polygon in Fig. 22e (a’a’”’=1, b'd"’=2, etc.), and a pole distance is
chosen. .

The best results are usually obtained by making the pole distance
p equal to about $Xv,. In Iig. 22¢ a reduction in the scale of the
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figure has been required for illustrative purposes; in practice no
such reduction is necessary.

With the pole P and the forces 1, 2, etc., the reciprocal polygon
(in this case the moment polygon) ACB is drawn in Fig. 22E in
the well-known manner, and the ordinates of this curve, measured
from the axis AB, are equal to the horizontal thrust; for example,
when the load K acts at the panel center 5, the ordinate H equals
the horizontal thrust, and when the unit of measurement is established
the problem is solved.

As stated on a preceding page, the unit of measurement is the
value of the denominator, viz.:

z:)‘.’/mvm +_B (;;): a%-

This value is composed of two terms, and the second may be
assumed as a constant. .

The first term is the bending moment of a cantilever supporting
the forces vm, which act at the distance ym from the point of support.

In Fig. 22e the forces 1, 2, etc., are equal to the ordinates » at
1, 2, etc. For the purpose of clearness these forces are shown on
F@ reduced to one-fitth their values.

To obtain the moment of the horizontal forces v the same force
polygon with the same pole distance p has been reproduced in Fig.
22¢’, but with this difference: the forces v act horizontally.

" From this force polygon the reciprocal polygon A’C’B’ has been
drawn in Fig. 22E’, and the line A’B’ is the moment of all the
forces v, and is equal to 2 5y,,.v,,.. ‘

The constant should now be added. For this it should be remem-
bered, from the graphical properties of the moment polygon, that
the moment is equal to the ordinate of the moment polygon multi-
plied by the pole distance of its force polygon, and that the distance
BB Bcosal,

DPu= F()P do’
Now, B=185 m. (meters);
cos a=0.525;
Ip=2.78 m4 =0G of Fig. 22a;
Fp=0.235 m2=0G of Fig. 22b;
p=275 m.;
do=y!=8 m.

Also, B,B,= 0518
AB,=570

AB, =575+
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and A,B,, is the unit with which to measure the ordinates of Fig. 22E,

27
or H—ET.SXK—O.47K.

To obtain the intersection locus it is necessary to find the points
of intersection of the component on its respective load line for suc-
cessive positions of the load. This construction has been shown in
Fig. 22d. : '

gThe distance FB equals K of Fig. 22E’, and the points F and A
in Fig. 22d are joined by a straight line; the line LG=line NM is
equal to the reaction at B caused by the load K placed at 3’. The
horizontal thrust caused by the load K is equal to MN of Fig. 22E.

This horizontal thrust has been plotted in Fig. 22d from the
point B, viz., MB, and a perpendicular erected through the point
M. A line LN is drawn through the point L and parallel with the
line M B, and the intersection point N and the hinge B are two points
of intersection of the component; and prolonging the line BN to an
intersection with the load line 3’ gives a point of the intersection
locus.

(b) The heavy solid line OP is the intersection locus for the verti-
cal loads.

Figs. 22 to 22E’ are for the purpose of illustrating the method
of computation, and no especial pains have been taken to obtain
accurate results, the original scale being 1 inch=20 meters. To
show the great degree of accuracy which can be obtained by the
graphical method, even with this scale, the author gives below the
results obtained by Seyrig and also those obtained from the figures
above mentioned.

TasLE VI.
E?u.tion uatio! ): 4 H
85). (95a). (SBeyrig). (Figs. 22-22E).
JoadatD.......... 0.370K 0.370 0.370K 0.368K
“OCE. .. 0.645K 0.590 0.592K 0.603K
o .. 0.695K 0.640 0.631K 0.642K
LA ¢ 0.730K 0.670 0.650K 0.658K

Equation (95a) of Chap. VIII gives for the ordinates of the
intersection locus: f y'dz= f ydz. The intersection locus is the

straight dash-and-dot line O,P, in Fig. 22d, and as a means of com-
parison, the horizontal thrusts obtained by its use have been in-
serted in the foregoing table under the head “Equation (95a).”

The heavy dotted line O””P” is the intersection locus obtained from
equation (85) and the standard diagram of Fig. 14. A comparison
of the values in the table shows that for practical purposes equa-
tion (95a) gives accurate results for the arch under consideration.
This is of great importance in designing the crescent-shaped arch,
as it enables the engineer to make his computations with absolute
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certainty from the start, while the methods described in Figs. 22
to 22E’ involve a great deal of labor and require in advance knowl-
edge of the dimensions of the arch at various sections. The com-
putation, however, is for the very purpose of determining these
sections, from which it follows that preliminary assumptions have
to be made by means of which computations may be effected; the
results form a basis for further computations, upon which to make
a second computation, and so on until the final result is in sufficient
agreement with the assumptions. Thisis a laborious operation which,
even with the graphical method here described, involves a great deal
of time for an arch of the dimensions of the Douro Bridge.

The values in the table due to equation (85) are obtained by
means of the intersection locus of a parabolic arch, whose moment
of inertia increases from the crown to the supports in the same ratio
as does the secant of the angle which the axis of the arch makes
with the horizontal. This line O’/P”’ is indicated by heavy dots
in Fig. 22d.

The table shows that this intersection locus causes an error in
the center of the arch of 129 ; this error is on the side of safety, but
it is entirely too large to be incorporated into a design.

At the same time the table shows that the variation in the moment
of inertia must he very large to have any appreciable effect on the
horizontal thrust; and, with the exception of a few special cases,
of which the Douro Bridge is an example, the intersection locus of
Fig. 14 and equation (85), with the corrections as described in con-
nection with Fig. 14a, give sufficiently accurate results for all prac-
tical purposes.

19. Horizontal Forces.—The graphical method described in Art.
18 not only gives the horizontal thrust for vertical loads, but also
for horizontal loads.

From equation (75), Chap. VIII,

I
. ~23m',.v,.+0-ﬁ% )
,,—2‘” : +qcosa10' . . o« . (754)
0 mYm Fodo

In this equation the denominator is the same as in the equation
for vertical forces, and its value is equal to the line A, B,, of Fig. 22E’.
From equation (76),

T o= Q[ 24— 2)0m = 5a= 0w |- . . (764

As explained in Chap. VIII, llf (')( l—z)v,, is the vertical reaction

at A of a beam of the span ! which is loaded with the vertical
forces v,.

——————— e —
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-lq-z (‘)(l—::)v,,.= the moment caused by this force when it acts in
a horizontal direction (see Fig. 22I).
Z5(g—Yy)vm=the negative moment caused by the forces v, acting

in a horizontal direction on the beam between the support A and the
panel center 5 (Fig. 22d), or the whole expression is represented by
the difference between the lines 4,,C’ and DC” in Fig. 22E’.

To this should be added the value of 1% Now
Fodop

Iy=2.78 m.4;
=36 m.;

Fy=0.235 m2;

do=8 m.;
p=275 m.

F{:fup =(.1935, a value so small that it disappears in the drawing.
0

The horizontal thrust is then equal to H; when 4,B,, is the unit
of measurement in Fig. 22E’.

21.7
Hl —m—0.38Q,

and to obtain the abscissa OR of the intersection locus,
0.38X160=60.8 meters. (See Fig. 22d.)

The heavy line COB is the intersection locus thus computed for
the horizontal forces.

The heavy dash-and-dot line is the intersection locus for the
crescent-shaped arch of Fig. 20 and equation (98) of Chap. VIII.
This gives '

H1=0.361Q,

which contains an error of 4} per cent. and is a maximum at this
point; towards the crown and the hinges it decreases to zero. For
H, the reverse is the case and the average error is about 14 per cent.

Horizontal forces are usually caused by wind pressure, which
is a force subject to wide variations in direction and intensity, and
a 1} per cent. error is insignificant when compared with the error
that may be made in assuming a particular intensity for the wind
pressure on & roof.
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- The heavy dotted line is the intersection locus of equation (88)
of Chap. VIII, or of Fig. 13 of the standard diagram. Even this
intersection locus may he used for the computation of wind stresses
and yet produce sufficiently accurate results.

20. Deflections Caused by Vertical Forces (General).—Equa-
tions (111), (113), (114), (115a), (112a), (113a), (114a), (116), and
(117) of Chap. VIII are:

Iy Iy, (P e 4
MI—,+1m(F'_Ewt)—°’ e .. (1114)
z' ] z,
—Elydy="= oo(l—::)dz—[ o(z,—z)dz+C,; (1134)
Yy ] . z,
E'Io.l:c='—li A o(l—:t)dz—‘/;(y,—y)d:c-i-Cz; . (1144)

C) =Io(;{—,o—Ewt)y,;

. (11544)
Ca= —Io(%—EWt)x/;
Elpdag=Da, . . - + » . . (112.4)

—Eldy=Mos+Cy. . . . . . (113.4)

Eldz=Moy+C2; . . . . . (114,4)

°=H[(§_!—n—y);—‘:+c]; A 0 § (1)

c= (l _EFI"{)M)FO rlgosa when P=H. . . (1174)

When the values of ¢ are assumed to be forces acting on a beam,
1
then 17 o(l—z)dz is the vertical reaction 4 of these forces at

0
the support 4.

x—l' lo(l—:c)dz is the bending moment in the beam caused by
0
this reaction 4.
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z,
A o(z,—z)dz is the negative bending moment caused by the

forces o which act between the support A and the point z,. C,is a
constant.

The whole expression of equation (1134) is then the bending
moment at the point z, of a simple beam supporting the loads o.

Equation (1144) has the same significance when 9,4 and o are
considered as acting in a horizontal direction, and when the values
of the forees o are known, the problem resolves itself into the simple
construction of a moment polygon.

Equation (1164) is composed of two parts:

M Iy . .. M

0)) 78 ++c¢, in which 78
and is drawn from a force polygon with the pole distance H. The
ordinates of this moment polygon are to be multiplied by the ratio

;_o’ and to the ordinates thus obtained the value of ¢ is to be added.
/

is the moment polygon of a single load

(2) This part, yﬁ—o, has been obtained before, heing=1,, of Art.
/4

18(a), and is represented by the ordinates of the line DE in Fig. 22d.
In substituting the two values of o0 in equation (1134) or (1144)

there results for each equation two moment polygons, and the deflec-

tion is the difference of the ordinates between these two polygons.

The substitution of the value y;—° [Art. 18 (a)] in equations (1134)

and (1144) produces the horizontal-thrust curves of Figs. 22e,
22E, 22¢’, and 22E’, and their coustruction is fully described in
the article mentioned.
The value of g]@ ?— should now be found.
/4
Suppose the deflections of the arch are required for a vertical
load K, acting at the panel center 5 [Art. 18 (@)]. When the value of
K isequal to A,B,, of Fig.22F’, its horizontal thrust is equal to H in
Fig. 22E, and the force polygon has been drawn in Fig. 22f, from
which the moment polygon ABC has been drawn in Fig. 22F;
the ordinates of this polygon measured from AB to the line ACB

are equal to the bending moment =zl—n.

Next, the value of 5—; ;—0 should be determined.
/

The points f and e of Fig. 22a are reproduced on the axis AB
of Fig. 22F, and a line fg is drawn parallel to a line uniting the points
e and 8; from similar triangles,

o
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Now, k8 =2,—E, hi =;—°, as formerly obtained, and he=1;
/,

o hg=T 1o
o =T 1

All the panel centers are similarly computed, and the ordinates
so obtained determine the line DE of Fig. 22F.

The value of ¢ should be added to these ordinates (c= lo );
For cosa

the effects of temperature changes will not be considered at this
time. -
Substituting in this equation,

_ 2.78
~0.235X96.5X0.525

c =0.24 (approx.);

and this value is nearly constant for all the ordinates and should
be added to those of Fig. 22F by drawing a line parallel to AB and
above it at a distance =0.24; this distance, however, is so small that
it is unnoticeable in the scale of the drawing.

The ordinates of the line DE of Fig. 22F have been plotted in
Fig. 22g. For the purpose of clearness this figure has been drawn
to a scale which is one-fifth of that for Fig. 22F. For the force
polygon the same pole distance is used as that in Fig. 22, and with
this force polygon the moment polygon AC’B has been drawn in
Fig. 22E. ’

The ordinates included between the curves ACB and AC’B repre-
sent the vertical deflections of the arch caused by the load K, when
measured with the proper scale. Not only this, but from the law
of reciprocal action, the deflection at 5 is known for any position of
the load; for instance, when a load is placed at D, the deflection
at 5 will be upward and equal to Dd. For a load placed at E the
deflection at 5 will be downward and equal to Ee, etc., and the line
AC’B may be termed the influence line of the deflections.

(a) HorizonTAL DispLACEMENT CAUSED BY VERTICAL FoRrCES.—
To obtain the horizontal displacement caused by the vertical load K,
Fig. 22g is reproduced in Fig. 22¢’; the moment polvgon A’C’’’B’
has been drawn in Fig. 22E” and requires no further explanation.

Unit of Measurement.—The differences between the ordinates of
the moment polygons as obtained from the figures are equal to El 4y
and Elgdz [(113,4) and [(114,4)]. For the load at 5 the ordinate H
of Fig. 22E 13 equal to the horizontal thrust when 4 B,, (in Fig. 22E")
is the intensity of the load. To obtain the tending moment, the
ordinates of the moment polygon should be multiplied by the pole
distance of the force polygon from which the moment polygon origi-
nated; the panel lengths are=d,.
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To obtain the actual deflection for a unit load, say 1 ton, the

ordinate should be reduced by the ratio }%-l‘lp
0

Now, H=0.47, dg=8 m. (meters), p=275 m., E (for steel) =
22,000,000 tons per sq. m., and J;=2.78; consequently the ratio

0.47 X8X275
_W—W—O.OOOOW&

For example, at 5 the vertical deflection measured by the scale
of the drawing is 6.5 m., or 6,500 mm. X0.0000173=0.112 mm. is the
deflection caused at 5 by a load of 1 ton placed at 5; and when the
left half of the bridge is loaded with a load of 24 tons at each panel
point, the vertical deflection at 5 is equal to the sum of the ordinates
from 1 to 10 between the two polygons, viz., 43.5 m., or

43,500 X240.0000173 =18.06 mm.

For the same form of loading the horizontal displacement of the
point 5 towards B will be the sum of the differences between the two
polygonal lines A’C’ and A’C”” in Fig. 22E’, or

37,000<X240.0000173 =15.36 mm.

(b) DeFLEcTIONS CAUSED BY SECONDARY STRESSES.—To the
above values the value of the constant C should be added. From

equations (115,4),
ueCo_IoHy, _Hy,
Y=FI,"EI,F, EFy

and the deflections caused by the secondary stresses are propor-
tional to the ordinates of the axis of the arch. As an example,
assume & load of 1 ton at panel center 5, when

H=0.47,
E=22,000,000 (tons per sq. m.),
and Fy=0.235; then
deflection === ;(’ ;27 1{)60000 =0.000000091y,;
z=36 m. and y,=30.5m,,
or 4y=0.003276 mm.

and dz= —0.002775 mm.
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The deflections caused by the secondary stresses are very small,
—about 39, of the deflections caused by the impressed load—and
can usually be neglected.

21. Deflections Caused by Horizontal Forces.—These deflec-
tions are also given by the differences of the coordinates of two
moment polygons, and equation (1164) applies when the value
of M’ is substituted for that of M.

According to equation (76), Chap. VIII,

g q zm=]
M =y—z and M'=(-2z)= .
1 |z=0 l Jemu

Substituting these values in (1164) gives for the first part of the
equation:

2 Zv -l
3_'!_’1_0.}.0:2“3/ xll—o+ g_z)_l!_o{_c
.H/ Il 1 11 u Hl I/ )

0 ’

The second term of this equation (1164) is again=yil’ and is the

same horizontal-thrust curve ACB of Fig. 22E which has been re-
produced in Fig. 22h.

In Fig. 22/ the arch axis ACB has been reproduced and it is de-
sired to find the deflections caused by a horizontal force Q acting at
the panel center 5 (where maximum value of z=u).

q
l

AB and the line AD, and those of —yz% by the ordinates of the
arch axis measured from the line AD.

The values of > are measured by the ordinates between the axis

The values of (l—-x)% are simply the ordinates measured from the

line AB to the line D”’B. The multiplication of these ordinates by
the ratio II—° is accomplished as before, viz., the point f is reproduced
from Fig. 2% in Tig. 221, etc., and the lines ED’ and D”’B define
the ordinates of these products.

The horizontal-thrust curve was produced by an equation of
which the denominator was equal to Q of Fig. 22E’ (see earlier para-
graphs).

The denominator of the first term of equation (1164) is H,,
and to draw the two polygons so that they will correspond, the pole

distance of the latter should be reduced to p’= p%‘. This has been
done in Fig. 22j.
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The ordinates 1-1/, 2-2’, 3-3’, etc., of Fig. 22I are plotted as
forces 1, 2, 3, etc., in Fig. 22¢. For the sake of clearness the scale
of this figure is reduced to one-half that of Fig. 221.

With the pole distance p’ (see also Fig. 227) the moment polygon
AC’B has been drawn in Fig. 22k, and the differences of the ordinates
indicate the horizontal displacements caused by :the horizontal
force @ acting at 5; for example, the panel center 3 will move the
distance Dd toward B, and the point 5’ will move the distance Fj
toward B.

Again, from the laws of reciprocal action, a horizontal force applied
at 5 will move the point 5 the distance fF toward A, and a force
applied at 7 will move the point 5 the distance Gg toward B.

Unit of Measurement.—The load unit is equal to H,=%=0.3SQ,

and the ratio for the reduction of the deflections to the scale of the

.. Hdop
drawing is Elp -

Now, H,=0.38, d=8 m., p=275 m., E=22,000,000 (tons per
sq. m.), and Ip=2.78.

.. k42=0.00001374z,

and when Q=1 ton and ¥=7,200 mm., the displacement at 5 toward
B will be 7,200<0.0000137 =0.099 mm.

Fig. 22h shows that horizontal forces acting on one-half of the
span cause maximum horizontal deflections.

(@) TEMPERATURE STRESSES CAUSED BY A TEMPERATURE CHANGE
oF 1° C.—From equation (110) of the Appendix,

Hy= +273 IoB cos a
' o I,Bcosa’
402 0YmVm +—F0—'

The denominator of this equation is equal to the line A’B” of
Fig. 22E’ multiplied by the pole distance p and the panel length dy,
and

2.78X0.525 X185

SXOTEX5T5 0925 ton.

Hg= :k273

(b) DerLEcTioNs CAUSED BY A CHANGE IN TEMPERATURE.—
From equation (120), Chap. VIII,

Elydy=Hm, +2(Ewt— %,) Loy,
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where m_ is the moment caused by the loads y§—° on a beam of the
4

length I. The values of y%? are the ordinates of the line DE in Fig.
22d, and the values of m, aTe the ordinates of the horizontal-thrust
curve ACB of Fig. 22E. For the crown of the arch, m,=FfXpXd,,
k=Ff (Fig. 22E) =385, p=275, dy=8, ¢=30°C., Ewt=8,190,
Hy=0.525, Fo=0.235, 1o=2.78, y=42.65, and E =22,000,000;

Hm, ( H, Yy

=2 | o(8 100—2t) Y

dy="g1, t 7)E
_ (2,200% +1,505.5y)¢
22,000,000 X2.78

_[(2,200X38.5) + (1,505.5 X 42.65)130
22,000,000 X2.78

=0.073 meter.

The crown, therefore, will rise or sink for a difference in tempera-
ture of 30°C.,

‘ dy="73 mm.
Equation (93), which neglects the secondary stresses, gives
15 273X2.78
Hg = -§X —42.—6—5-2— =0.795 ton.

Special equation (110) (see previous article) gives
) H,=0.525,

and it is thus seen that in the crescent-shaped arch the temperature
stresses are only two-thirds of those in an arch rib in which the moment
of inertia increases from the crown to the hinges as the secant which
the axis makes with the horizontal.

Special equation (100) of Chap. VIII, for the crescent-shaped
arch, gives

H,=3}Ewtk?F.

In the arch of Fig. 22, k averages about } and F=0.228 (see Fig.
22b), or

H,=23—723x0.228= 1.95 tons.

This shows that the equation should only be used when the con-
figuration of the arch satisfies the conditions on which the equation
is based, viz., h=ky and F=F, sec a.
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"To apply equation (100) in this case the value of % should be
substituted in equation (99), which will result in equation (93)
when $h2F =1,

To compute the temverature stresses in a crescent-shaped bridge-
truss, it is better to use two-thirds of the value obtained from equa-
tion (93) for the preliminary computation, and then for the final
computation to use equation (120).

In the preliminary computation of the secondary stresses in the
crescent-shaped arch, equation (101) of Chap. VIII may be used.

(c) STrEssES AND DEFLECTIONS CAUSED BY YIELDING OF THE
AsurMENTS.—To obtain the stresses caused by a sliding or yielding
of the abutments which causes an increase in the span: Equation
(1100) of the Appendix gives

H —EJll,
ly ,,  IoBcosa’
S Bt g

In this equation the denominator is equal to the line A4,B,, of
Fig. 22E’ and is equal to Qpd,.

(Q=57.5, p=275, do=8, I,=2.78.)

Assume that abutment slides 0.05 m.; then

~ —22,000,000X0.05X2.78

H= 57 55275 X3 =24.15 tons.

To obtain the deflection of the crown caused by the shifting of
the abutments: Equation (121) of the Appendix gives
4l

1
dy=——7; <m3—2—°y).
ﬁyz ds +IOB cosa Fy
(] Fy

In this equation the denominator is again the length of the line
AB,, of Fg. 22E’,=Qdyp, and m,, is again the ordinate of the hori-
zontal-thrust curve at the center of the span, =k;

o m,=kpdo. p=275, d0=8,
41=0.05, A’B’’=575, m,=38.5X275X8, Ip=2.78,
F¢=0.235, y=[=42.65;

0.05 2.78

=0.033 meter.



CHAPTER 1V,
HINGELESS ARCHES.

1. Introductory.—As compared with the other types of arches,
the hingeless arch is the most rigid, and often the most economical
as regards cost of construction. It has been built in metal, stone,
and reinforced concrete, and with few exceptions it can be safely
stated that the stone arch is built as a hingeless arch.

The advantages which the stone arch possesses over every other
form of bridge are its nominal cost of maintenance and its durability;
many examples existing of arches now in use which were built more
than 1,800 years ago.

Combine with these advantages its ability to stretch over wide
spaces with a single span, and that it can often compete success-
fully with the steel arch as regards the first cost of construction,
and the question presents itself forcibly, why is its adoption limited,
even for bridges of moderate size?

The uncertainty which exists in determining its stresses gives
the answer to this question.

"It is generally admitted that the analysis of the stresses according
to the elastic theory is the only reliable one, but few have the time,
the training, or the patience to grapple with its intricacies. In the
following articles the author has not only unravelled these, but he
also presents the elastic analysis of the stresses in the hingeless arch
as the clearest and simplest of all methods. Moreover, this is done
without sacrificing anything on the part of accuracy and without
making assumptions which would cast doubts upon the results obtained.

Before entering into a discussion of the method, however, an
introductory explanation is advisable for the purpose of preparing
the reader for a clear understanding of the subject.

In Chapter I the meanings and uses of the intersection locus and
the tangent curves have been defined; the Appendix deals with the
analysis of the elastic theory as applied to arches, and the following
articles are devoted to its practical application.

The ordinates of the intersection locus and of the tangent curves
are dependent on (I) the curvature of the axis of the arch, and (II)
on the form of the arch rib at the various planes of section.

100
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1. The Curvature of the Arch Axis.—This is not arbitrarily deter-
mined. A relatively small change in the curve will afiect the stresses
in the arch very materially, from which it follows that for an arch
of given span, rise, and form of loading there must be a curve the
adoption of which will result in minimum stresses, and therefore in
maximum strength and economy.

A change in the curvature of the arch axis can be relatively large
before it causes an appreciable change in the intersection locus or
the tangent curves, provided the area enclosed by the arch axis and
its chord does not alter. This is demonstrated later in the chapter
and also in the Appendix.

I1. The Form of the Arch Rib at the Various Planes of Section
varies according to the stresses. The steel arch rib is usually of uni-
form depth, and consists of a web plate with flange angles and flange
plates; and changes in the section are made by increasing or de-
creasing the size or numter of the flange plates, or both. An altera-
tion thus made in the section of the arch rib produces a change in its
moment of inertia. The relative change in the moment of inertia
of such an arch rib is small as compared with that of a solid arch.
Any change in the section of the rib increases or decreases its depth,
and comparatively small changes in depth influence the moment of
inertia materially. For instance, a solid rib whose depths at three
planes of section show increases of 109;, 209, and 309} respec-
tively. will have corresponding increases in the moment of inertia
of 339, 73%, and 1209.

In the computation of the Douro Bridge (Chapter II, Article 18)
it was shown that the moment of inertia in a two-hinged arch must
change considerably to influence the intersection locus. This is also
true for the hingeless arch.

In the two-hinged arch all components pass through the hinges;
in the hingeless arch the components are tangents to curves, and a
change in the moment of inertia influences these curves.

Special attention is given to this subject in Art. 5 et seq.; it
suffices here to say that the ‘‘character’” of the variation in the
moment of inertia 1s also a factor to be considered. This means that
a large increase in the depth of the arch rib near the abutments
will not influence the tangent curves materially, provided the re-
mainder of the arch rib has no large changes in depth. For example,
in a flat arch the moment of inertia may increase from the crown
towards the abutments in the same ratio as does the secant of the
angle which the arch axis makes with the horizontal. This ratio
of increase may extend over a distance equal to seven-tenths of the
span, and for the remaining length the increase may he more rapid.
In such a case the tangent curve is only influenced near the abut-
ments by this variation. But those are the regions where a change
in the tangent curve does not materially affect the positions of the
components or the stresses in the arch.

Flat arches closely satisfy the above conditions, and this, taken
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in connection with the characteristic of the intersection locus and
tangent curves described under 1I, leads to the conclusion that for
flat arches the intersection locus and tangent curves may be plotted
from a standard diagram.

When once these locus and tangent lines are known, the compu-
tation of the stresses in the arch is simple.

This, however, would confine the application of the elastic theory
to special cases. The manner in which the standard diagram has
been made general in its application is specially dealt with in Art. 7,
which treats of the Correction of the Intersection Locus and Tangent
Curves.

The author has divided the subject of hingeless arches into three

arts:

The first deals with the application of the elastic theory to a
special case, viz., the stresses in a flat arch of 105 ft. span and 11.7 ft.
rise.

The second deals with the application of the elastic theory in
its broadest sense—and without special conditions—to the computa-
tion of stresses in the hingeless arch, and is exemplified by a dis-
cussion of the Syra Valley Bridge, which is a masonry arch of 300 ft.
span and 55 ft. rise.

The third is a comparison between the first and the second cases,
from which the correction of the standard diagram is derived. De-
flections and their influence on erection are also treated in this

art.
P In computing the stresses in a hingeless arch by the use of the
standard diagram, as analyzed in Chap. IX of the Appendix, the
arch axis is assumed to be a parabola.

The axis of a well-designed stone arch is never a parabola, its
rise in proportion to the span being less. There is, however, a relation
between the two curves, viz.: when the area enclosed by the arch
axis and its chord is equal to the area enclosed by thke parabola and
its chord, when the difference in the ordinates of the two curves is
relatively small, and when the two curves are so placed that their
chords coincide, they will have the same intersection locus and tan-
gent curves. This parabola is always referred to as the equivalent
parabola.

The stresses in the arch are caused by vertical and horizontal
forces. .

The vertical forces are the dead load and the live load.

The horizontal forces are caused by changes in temperature and
the conjugate pressure of the spandrel filling. The latter can be
neglected in flat arches.

In the designing of masonry arches the first steps in the com-
putation are the determination of the curvature of the arch axis,
and the dimensions of the arch rib. These two factors determine
the dead load, which in turn fixes the position of the line of pressure
in relation to the axis of the arch; and the form of the arch in which
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these two lines most closegt approach each other is the best that
can be designed.

Live ioads and temperature changes exert stresses; these, how-
ever, vary, and cause either an increase or a decrease in the stresses,
as the case may be; as the curvature of the axis can only be defined
for one form of loading, and the dead load is large as compared with
the live load, it can be stated as a rule that ‘“‘the dead load defines
the curvature of the arch axis.”

The dead load is also defined by the dimensions of the arch rib,
and the rule just given may be extended to state that ‘ the dimensions
of the arch rib also define the curvature of the arch axis.”

The dimensions of the arch rib, however, are also controlled by
the live load and temperature changes, and under their influence no
part of the arch should be subjected to excessive stresses.

Though all these factors affect either directly or indirectly the
curvature of the arch axis, there is a difference in the magnitude of
their influence.

Relatively. large changes in the dimensions of the arch rib exert

t influence on the stresses in the arch, but, as compared with
the distribution of the dead load, these changes are comparatively
small—in fact, in most instances, too small to influence the line of
pressure or the curvature. This fact facilitates considerably the
determination of the curvature of the arch axis.

Another factor which should be considered is the conjugate pressure
of the spandrel filling in arches with a large rise. How the curvature
of the arch axis is defined by this pressure is for the present neglected;
it will be considered in the article dealing with the ‘“Influence of
Horizontal Forces on the Arch.”

The first step in the computation of stresses is then to find the
line of pressure caused by the dead load alone, and to determine
from this line that curvature of the arch axis which approaches
the nearest to the line of pressure. (See The Law of Winkler, in
Appendix.)

The intensities of the secondary stresses depend largely on the
dimensions of the arch rib. In a flat arch these stresses should not
be neglected; to include them, however, in the computation of the -
curve of the arch axis is difficult and inconvenient. Up to this point
the only assumptions made concerning the dimensions of the arch
rib have been for the purpose of determining the dead load. An
error in these assumptions can be considerable before it materially
influences the line of pressure in the arch,

It is not so with the secondary stress, as the moment of inertia
is one of the factors which determines its intensity, and, as previously
mentioned, though a slight change in the depth of the arcE rib may
not appreciably change the dead load, it will change the moment of
inertia.

For this reason the secondary stress is treated as a decrease in
temperature.
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When the arch axis has been determined, very close assumptions
can be made for the dimensions of the arch rib. )
From this the secondary stress can be computed, and then those posi-
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tions of the live load are to be determined which, in com-
bination with secondary and temperature stresses, will
produce maximum and minimum stresses in the arch rib.

Before illustrating the application of the foregoing
method, a brief digression will be made in the following
paragraphs for the purpose of demonstrating the distinct
features of the computation.

(@) In Fig. 24 the standard intersection locus and
tangent curves are shown for a parabolic arch with a
rise equal to 1 and a half-span equal to 1. (See
equations (152) and (153) of Appendix.) To obtain the
intersection locus and tangent curves for any other arch
whose axis is a parabola, multiply the vertical ordinates
of vhe diagram by the rise of the arch axis, and the
horizontal ordinates by one-half the span of the arch.

For a flat arch whose axis is not a parabola, first
find the area enclosed by the arch axis and its chord;
wleoss  from this compute the height of a parabola having the
’ same area (the equivalent parabola), and this height
multiplied by the vertical ordinates of thé diagram will give the
ordinates of the intersection locus and the tangent curves.

The line of action of the temnrerature and secondary stresses in
this case is to be found in the following manner:

The area encloscd Fetween the arch axis and its chord is reduced
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to a parallelogram whose length equals the span; its height is then
the distance above the chord of the arch axis where these forces act
(for the parabola this distance is equal to two-thirds of the rise of
the axis).

Any corrections to these curves should be made according to the
method of Art. 7 (d) and Figs. 38 and 38a.

The graphical methods of determining the area of any plane
figure are shown and described in Art. 18 of the previous chapter
and Fig. 22¢.

(b) The first step in the computation of stresses is to assume
a curve for the arch axis and the dimensions of the arch rib; from
these the dead load is computed.

The experience of the designer is the most important factor in
making these assumptions, for there are no rules or equations to
guide him.

Various empirical equations have been developed for the deter-
mination of the depth of the arch rib at the crown, and though the
results obtained may be sufficiently accurate for small arches, they
are not so for large spans, and at hest yield only dimensions upon
which assumptions may be based for preliminary designs.

For this reason those equations which are simplest in form and
yield at the same time close results, recommend themselves.

There are fifteen or more of these equations which may be found
in pocket-books, etc., to which the reader is referred.

For small arches with circular or elliptic intrados the following
rule gives satisfactory dimensions:

Find the radius of a circular arc which most closely coincides
with the intrados; add to this radius one-half of the span and take
the :quare root of the sum. Divide this result by 4 and add
0.2 ft.

The dimension thus obtained is for good masonry; for inferior
masonry, rubble or brick, the depth thus obtained should be mul-
tiplied by from 1} to 1} (Trautwine).

The empirical equation which the author uses in his practice
is very simple in form. It was developed by Schwartz and gives
satisfactory dimensions upon which to base preliminary estimates,
even for large arches.

For arches with a rise of less than one-third of the span,

L Wi,

1,008 s ;’

for arches with a rise of more than one-third of the span,

1 W

336 f

* These equations are correct for arches with spans not exceeding 100 ;txi

for longer spans the value of d obtained from these equations should be redu
29, for each additional 11 ft. of span.

d=3.333n+

d=3.333n+
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d=depth of arch at the crown in feet;
W =weight in Ibs. of one-half of the arch, including paving and a fill
of less than 3.5 ft. in depth at the crown;
8=stress in the arch in Ibs. per square inch;
{=length of span in feet;
f=rise of the arch axis in feet;
n=a coefficient which is usually assumed for bridges=0.2.*

The first equation is applied to the arch shown in Fig. 25,
The maximum stress allowed in the arch is 600 lbs. per square inch,
and assuming that there will be no tensile stresses in the arch, and
the minimum stress does not drop below zero, the average stress
in the arch is assumed to be, for the preliminary computation,

600:2=300 Ibs. per sq. in.
The rise of the axis= 11.7 ft.
The span =105 ft.

The total dead load of one-half the span=>56,700 Ibs. for an arch
ring 1 ft. wide. '
1 56,700 , 105

d=3.333X0.2 +mx—wxl—ﬁ=235 ft.,

which is the depth for the arch rib at the crown to te assumed for a
good quality of concrete or stone.

This figure can be increased for an inferior quality of material,
or it may be decreased 159, for a reinforced-concrete arch.

The additions or deductions to be made cannot te expressed
by any equation; experience combined with good judgment will
decide these.

For the semicircular arch the rise of the arch can be substituted
for #, which is then measured from the springing line to the intrados.

en the dead loads have been computed for each panel, a pre-
liminary force polvgon, like Fig. 27, may be drawn, 1. II, etc., being
the panel loads, and the point a being assumed as a trial pole.
ith this pole a trial polvgon AI, I-II, etc., may be drawn, as
in Fig. 26. This will enable the designer to check the accuracy of
his assumptions, and corrections can then be made accordingly.
The experienced designer can dispense with this process and in-
stantly commence his computations.

2. Computation of Stresses: Vertical Loads.—In Fig. 25 is
shown a reinforced-concrete arch highway bridge of 105 ft. span
and 16.5 ft. rise. The loads are as follows:

* There are many more equations, among which those developed by Low
and by Tolkmitt give close results. These forms, however, are not as simple
as the one given above, and none enters into the curvature of the arch axis
as a factor; still, this is of great importance in the distribution of stresses in
the arch, as this chapter will show.
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Live load, 100 Ibs. per sq. ft.

For a 16-ton road-roller an equivalent concentrated load of
3,000 Ibs. per.foot width of the arch is assumed.

Concrete, 150 Ibs. per cu. ft.

Earth-fill, 120 lbs. per cu. ft.

Pavement, 150 Ibs. per cu. ft. (1 ft. thick).

All calculations are for an arch rib 1 ft. wide.

In Fig. 25 the earth-fill has been reduced to an equivalent weight
of concrete, and the total dead load for one-half of the span is repre-
sented by the area abed.

The half-arch is divided into eight panels of equal length. The
line ef is a line midway between ab and cd, and on this line the centers
of gravity are located.

The distance gk=1j, and jl=gh; the points k£ and ! are united
by a straight line, and at its intersection with mn the center of gravity
is located. This is a well-known construction for determining the
center of gravity of a trapezoid. Multiplying kh by one-half the
height of the trapezoid and by 150 Ibs. gives the weight of this panel
of the arch for a width of 1 ft.

The rise of the axis of the arch is 11.7 ft., and the axisis assumed to
be aparabola. The intrados of the arch is composed of three parabolas,
one with its main axis vertical at d and the other two with their main
axes horizontal at the springing line ¢.

This combination gives a.pleasing elliptical curve to the arch.

In Fig. 26 the arch is drawn with its locus LM and its tangent
curves J’K’ and JK for a rise of 11.7 ft.; the points of application
for the live and dead loads are at I, IT, ... XVI.

(a) The dead loads are resolved into their components and these
are added in Fig. 27, in the same manner as described for the three-
hinged braced arch 'in Chapter 1. The broken line abc. .. p repre-
sents the left-hand components, aq the horizontal thrust, and pg
the vertical reaction at A (Fig. 26).

It may not be superfluous to point out that though the com-
ponents are tangents to the curve JK, Fig. 26, yet the resultant
of two or more components is not tangent to this curve.

To find the resultant, for example, of 1, 2, and 3: first find the
resultant of 1 and 2 in Fig. 26 by bringing 1 and 2 to an intersection
at r, and drawing through this point the line ac parallel with a line
uniting @ and ¢ in Fig. 27; then intersect component 3 with ac in
Fig. 26 and draw a line through the intersection point s parallel
to ad in Fig. 27, etc. These resultants may be drawn at the same
time with the broken line of Fig. 27.

This method may sometimes he useful for making a preliminary
computation with a full load, but as it does not give the resultant
of the components of a partlal load, it is not general in its character.

When the location of the resultant of all the components from
1 to 16 is computed, the starting point A in Fig. 26 of an
equilibrium polygon is found, which polygon is the reciprocal of a
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force polygon with a pole distance equal to the horizontal thrust
aq, Fig. 27, viz.: ap parallel to AI, Fig. 26; a-I-II, Fig. 27, parallel
to I-11, Fig. 26, etc.

(b) GENERAL METHOD FOR FINDING THE LocATION OF THE REk-
SULTANT OF THE COMPONENTS.—A pole P is chosen arbitrarily in
Fig. 27, and a reciprocal polygon is drawn in Fig. 26 between the
components 1 to 16, viz., Pa, Fig. 26, parallel to Pa, Fig. 27; Pb,
Fig. 26, parallel to Pb, Fig. 27, etc.

The intersection of the end rays Pa and Pp in Fig. 26 produces a
point through which passes the resultant of all the components from
1 to 16, and a line is drawn through this point parallel to ap of Fig.
27. The resultant thus found is the same as the one found by the
former method.

This method is general in its application, and in dealing with
maximum and minimum stresses its use will be further described.

(c) AnavLyTicaL CompuTaTION.—If it is desired to treat the arch
analytically, the point of intersection A in Fig. 26 may be found by
computing the ordinates c¢o, ¢;, and ¢z from
the equations (152) and (153) of the Appen-
e dix; the horizontal thrust for each of the
forces I, II, etc., may then be measured
from Fig. 27 or may be computed (see Fig.
23).

The values of a, b, d, and e are given;
b+d=Ilength of span, and a and e are obtained from the equations
for ¢; and cq; €+a’=the force P, and g is the horizontal thrust
caused by P.

a’:a=g:b,
and d:e=g:d; also ¢=P—a'.
.o P—a’:e=g:d,

or a’'= _‘%g_,
and this substituted in the first equation gives
Phd

v horizontal thrust of P.

An arbitrary point is now assumed, the most convenient one
being L in Fig. 26, and the horizontal thrust multiplied by its dis-
tance from I is computed for each force I, II, etc.; these products
are added and the total is divided by the sum of all the horizontal
thrusts of the forces from I to XVI, the resulting quotient being
the distance from L at which the total horizontal force is applied,
viz., the point A; from this as a starting point the polygon may be
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drawn or computed. For a complete analysis see Appendix; for an
analytically computed example see ‘‘Syra Valley Bridge,” in the lat-
ter part of this chapter. .

If the analytical method is to he applied throughout, Fig. 27 gives
all the data necessary. The location being known of the points p
and ¢ and of all the intermediate points of the forces from I to VIII
on the line pg in relation to the pole @, if the same methods which
are applied in computing a survey are followed, the intersection points
(of Fig. 26) on the vertical forces from I to VIII will be determined.

From the foregoing explanation it will be clear that the line of
pressure in the arch 18 not an arbitrary line passing through the middle
third of the arch, or which is drawn according to any other arkitrary
assumption, but is a true line of pressure defined by the static law
of forces and the elastic law governing the material.

For the analytical computation of the starting point A4 in Fig. 26,
the horizontal thrusts of the forces I, II, etc., are preferably used,
because they are parallel forces. These parallel forces can also
be employed in the graphical method, but their use involves two
sources of inaccuracy, viz.: the horizontal thrusts of all the forces from
V to XVI are located closely together on the drawing, and the hori-
zontal thrusts of the forces I and II are Jocated outside of the draw-
ing; the first of these will produce an inaccurate reciprocal polygon,
and the second makes its starting point and end rays indeterminate.

When the left-hand components are used, as shown in Fig. 26,
the resultant component 1... 16 can be found with great accuracy.

In using the reciprocal polygon in the following computations,
no intersection of its lines, such as Pa and Pp, should be obtained
by prolonging these lines in Fig. 26, except for a point of location;
and Fig. 27 should always be referred to for the direction of these
lines. -
(d) Live Loaps (Figs. 28 and 29).--In Fig. 29 the components
1 to 16 and the reactions 1’ to 8 of the live load are added. as ex-
plained in Chapter 1I. To obtain their magnitude a larger unit of
forces should be taken than is used for the dead load. (A good ratio
to use is a unit for the live load which is five times as large as that
for the dead load.) With the pole P’ the reciprocal polygon of the
live-load components is drawn, as previously explained, and with
the pole P” the reciprocal polygon of the live-load reactions may
be constructed; in most cases, however, this is not necessary. (The
letters and numerals in Figs. 28 and 29 correspond.)

Mazximum and Minimum Stresses.—The distribution of the stresses
in the arch rib when the position and magnitude of the resultant
component are known, has been already partially treated, and Chapter
V is specially devoted to this subject. In Fig. 26 the lines of pressure
in the arch (from the dead load) are shown as rays of a reciprocal
polygon, viz., AI, I-11, 1I-111, ete.

Now, at the sections A and I. the center of pressure is at the
greatest distance (eccentricity) below the axis of the arch, and at
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D the maximum eccentricity is above it; these are the weakest
sections, and any forces which tend to displace the center of pressure
farther down at A and I and farther up at D, will increase this weak-
ness.

Section at A (Fig. 26).—Here f indicates the upper third of the
arch rib and g the lower third; any force passing below f will increase
the pressure in the arch at k, and any force passing below g will exert
tension at <.

In Fig. 30 a tangent has been drawn through the point f to the
curve JK, which tangent intersects the intersection locus LM at the
point Af. All the components to the left of this point pass below
| and will increase the compression at h, and the points I to VII
are loaded. The point Ag is the separation point for the point g
at the section A4, etc.

Road-Roller.—With the road-roller placed at III in Fig. 28, its
component will pass the farthest below either f or g, and the magni-
tude of the component will be the largest. (In order to avoid con-
fusion, the tangent is not drawn in Fig. 28.)

Maximum Compression.—I to VII Loaded with Live Load.—In
Fig. 29 the resultant of the components 1 to 7 is ak; in the re-
ciprocal polygon Tig. 28 the rays P'a and P’h intersect at ¢/, and
a line is drawn through this point parallel to ah in Fig. 29. In Fig. 28
this line is drawn to an intersection with the component of the dead
load Al

In the same manner the resultant for the loads at I... VI has
been obtained by drawing a line through the point ¢’’ in Fig. 28 parallel
to the line ag in Fig. 29.

From Fig. 26 the resultant AI of the dead-load components
1 to 16 has been transferred to Fig. 28a, and also the live-load re-
sultant of the components from 1 to 7; the magnitude and location
of the following forces are then known:

The dead-load resultant, AI;

The live-load resultant (of 1, 2, 3, 4, 5, 6, and 7);

The road-roller.

In Fig. 27 from the point p is drawn a line ps parallel to the line
ah in Fig. 29. In Fig. 27 from the point s is drawn a line rs parallel
to the component 3 in Fig. 28a (representing the road-roller com-
ponent), and the line connecting p with r in Fig. 27 is equal to the
resultant. of the live load and the road-roller combined. In Fig. 28a
the resultants of the live load and the road-roller intersect at p, and
this point of intersection happens to be also a point of intersection
of the dead-load resultant AI.

In Fig. 27 the dead-load resultant is equal to ap, and a line con-
necting the point a with the point r is equal to the resultant of the
live load, the road-roller, and the dead load; and a line ps in
Fig. 2Ra drawn parallel to ar gives the location and direction of this
resultant. This line ps has been left out of the drawing to avoid
confusion.
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(¢) TEMPERATURE AND SECONDARY STRESSES.— In an earlier
article it was explained how the compression in the arch tends to
shorten it and consequently has the same effect as a decrease in
temperature.

The horizontal thrust caused by temperature changes acts in a
horizontal line at two-thirds of the rise of the axis (for analysis
see Appendix, equations (164a) and 164b)], and its magnitude is
expressed by the equation

45EItw
H = T .
The secondary stress ‘
45nl
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