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PREFACE.

XT may be necessary briefly to state the arrangement
of the present Treatise.

In the first Chapters, 1 have explained, in a general

way, certain of the obvious Phenomena of the Heavens ;

and then, with a view of affording the Student the means

of distinctly apprehending the methods, by which, those

Phenomena are observed, and their quantities and laws

ascertained, I have described, although not minutely,

some of the principal instruments of an Observatory.

By an attentive consideration of the means, by which,

in practice, right ascensions and latitudes are estimated

and computed, a more precise notion of those quantities

may, perhaps, be obtained, than either from the tc*ms

of a definition, or from their representation in a geome-
trical diagram.

But, an observation expressed by the graduations

of a quadrant, or the seconds of a sidereal clock, cannot

be immediately used for Astronomical purposes. It must

previously be reduced or corrected. To the theories,

then, of the necessary corrections, I have very soon

called the attention of the Student : since, without a

knowledge of them, he would be unable to understand
b



the common process of regulating a sidereal clock, or

that, by which, the difference of the latitudes of two

places is usually determined.

The corrections are five ; Refraction, Parallax, Aber-*

ration, Precession, and Nutation. The two latter, al-

though they may be investigated on the principles of

Physical Astronomy, are yet, in the ordinary processes

of Plane Astronomy, equally necessary with the pre-

ceding.

To the Theory of the fixed Stars, which includes,

as subordinate ones, the theories of the corrections

that have been enumerated, succeed, the Solar, Planetary,

and Lunar Theories. Of these, the last is, by many
degrees, the most difficult. And, since, in its present

improved state, it is not made to rest solely on obser-

vation, I have been compelled, in endeavouring to

elucidate it, slightly to trespass on the province of Phy-
sical Astronomy.

The Equation of Time, which, essentially, depends
on the Sun's motion, is placed immediately after its

Theory.

On the same principle of arrangement, Eclipses are

made to succeed the Solar and Lunar Theories. The me-

thod of computing them is that, which M. Biot has, in the

last Edition of his Physical Astronomy, adopted, probably,

from a memoir of Delambre's* on the passage of Mercury

* Mem, Inst. torn. III. p, 392. (1802.)
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over the Sun's disk. The traces of this method, may
be discerned in a Posthumous work*, of the celebrated

Tobias Mayer, on Solar Eclipses.

The method just noticed is as extensive as it is

simple. For, it equally applies to Eclipses, Occultations of

fixed Stars by the Moon, and the Transits of inferior

Planets over the Sun's disk. And this circumstance has

determined the places of the two latter subjects, which

are immediately after that of the former.

In the last Chapters are discussed, the methods of

computing Time, Geographical Latitude and Longitude,

and the Calendar.

Such is the arrangement of the present Treatise,

And, since it could not be entirely regulated by the

necessary connexion of the subjects, it has, occasionally,

been so, by certain views, of what seemed, their proper

and natural sequence. It so happens, therefore, that

the more difficult investigations are not invariably pre-

ceded by the more easy. The methods, for instance,

of computing the Time, Geographical Latitude and Lon-

gitude, follow the Lunar Inequalities, Eclipses, Occul-

tations, and Transits ; but, since they do not follow by
strict consequence, the latter, if it SQ suits the convenience

of the Student, may, in a first perusal, be omitted.

I have been solicitous to supply every part of the

Treatise with suitable Examples. For, they are found to

*
Mayer, Ofera Inedita. vol. I. p. 23.
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be in Astronomy, more than in any other science, the

means of explanation.

They become the means of explanation for reasons

different from those which operate in other cases. For,

Astronomical Examples are not always the mere trans-

lations of a rule, or an algebraical formula, or a geo-

metrical construction, into arithmetical results. But,

frequently, they are of a different description, and

require the aid of certain subsidiary departments of Astro-

nomical Science not then the subjects of consideration.

For instance, the difference of the latitudes of two

places is equal to the sum or the difference of the zenith

distances of the same Star. This rule cannot be applied

according to its strict letter ; for, when we descend into

its detail, we may be obliged to reduce the observed zenith

distances by four corrections. Consequently, we ought

either to have previously established, or we must proceed

to investigate, the theories of those corrections. This

instance will also serve to shew, what frequently happens,

that a rule shall possess a seeming facility in its general

enunciation, which vanishes when we become minute

and are in quest of actual results.

There is, in fact, scarcely any thing in Astronomical

science single, or produced, at first, perfect by its processes.

No series of
propositions, as in Geometry, originating

from a simple principle and terminating in exactness of

result. But, every thing is in connexion ; when first
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disengaged, imperfect, and advanced towards accuracy

only by successive approximations.

Consider, for instance, the Sun's Parallax. That

essential element is determined by no simple process,

but is, as it were, extricated by laborious calculations

from a phenomenon in which, at first sight, it docs not

seem involved. Again, the common method of deter-

mining the Longitude at Sea rests on whatever is most

refined in theory and exact in practice : on Newton's

system in its most improved state, and on the most

accurate of Maskelyne's observations.

The preceding remarks, besides their proper purpose,

may perhaps serve to shew that an Astronomical Treatise,

with any pretensions to utility, cannot be contained

within a small compass. It ought to teach the Principles

of Astronomy ; but, it cannot well do that, except by de-

tailing aud explaining its best methods: that is, by ex-

plaining methods such as are practised, and as they are

practised. Now, the methods of Astronomy arc very

numerous, and the details of several of them very

tedious.

There are methods merely speculative ; such as cannot

be practised, although founded precisely or\ the same

principle as other methods that are practised. For in-

stance, the separation of the Sun from a Star, in a given

time, is equally certain and of the same kind, as the sepa-

ration of the Moon from a Star, but since, in practice^
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it is not so ascertamable, it cannot be made the basis,

as the latter is, of a method of finding the Longitude.

The exclusion then of methods merely curious, and of

no practical utility, has been one mean of contracting

the bulk of this Treatise. Another I have found, in

omitting to explain the systems of Ptolemy and of Tycho
Brahe. These do not now, as formerly, require confu-

tation. The spirit of defending them is extinct. They

are not only exploded but forgotten. And, were they not, it

would be right to divert the attention of the Student, from

what is foreign, fanciful, and antiquated, to real inven-

tions and discoveries of more modern date, and purely

of English origin.

The present Treatise is not intended to explain

Physical Astronomy and the system of Newton. But,

the discoveries and inventions of Bradley and Halley are

within its scope. Their numerous and accurate obser-

vations and their various Astronomical methods, would

alone place them in the first rank of illustrious Astro-

nomers, But, they have an higher title to prereminence.

In point of genius, they are, after Newton, unrivalled. The

first, for his two Theories of Aberration and Nutation :

the last, for his invention of the methods of determining

the Sun's Parallax from the Transit of Venus, and the

Longitude from the Lunar motions.

This Lunar method of determining the Longitude

was jiot reduced to practice by its author. That it, has
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been since, is owing to Hadley and Maskelyne. The first,

by his Quadrant, furnishing the instrumental, the latter,

by the Nautical Almanack, the mathematical means.

This last-mentioned Astronomical Work, for such

it is, and the most useful one ever published, is alone a

sufficient basis for the fame of its author. Besides its

results, it contains many valuable remarks and precepts.

It is a collection of most convenient Astronomical Tables,

and should be in the hands of every Student who is de-

sirous of learning Astronomy ; and who, for that end,

must be conversant with Examples and Tables.

But, mere precepts and instances will not effect every

thing. In order to remove the imperfection necessarily

attached to knowledge, acquired solely in the closet, in-

struments must be used and observations made. The

means of doing this, however, are not easily had ; and, it

is to be regretted, they are not afforded to the Students of

this University. An Observatory is still wanting to its

utility and splendor.
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ASTRONOMY.

CHAP. 1.

Certain Phenomena of the Heavens explained by the

Rotation of the Earth.

IN an Elementary Treatisef on Plane Astronomy, two objects

are required to be accomplished : 1st, The description and gene-

ral explanation of the heavenly phenomena. 2dly, The establish-

ment of methods for exactly ascertaining and computing such

phenomena. Our attention will be first directed to the former of

these two objects.

If, on a clear night, we observe the Heavens*, they will appear

to undergo a continual change. Some stars will be seen ascending
from a quarter called the East, or rising; others descending

towards the opposite quarter the West, or setting. In some

intermediate point, between the East and West, each star will

reach its greatest height, or, will culminate : The greatest heights

of the several stars will be different, but they will all appear to

be attained towards the same part of the Heavens 5 which part

is called the South.

If we now turn our backs to the South and observe the

North, the opposite quarter, new phenomena will present' them-

*
Exposition du Systems du Monde, p. ,
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selves. Some stars will appear as before, rising, reaching their

greatest heights, and setting 5 but besides, other stars will be seen

that never set, moving with different degrees of velocity j and

some, to appearance, nearly stationary. About one of these

stationary stars, the other stars that never set appear to revolve,

or describe circles : that stationary star is called the Polar Star :

the stars revolving round it, Circumpolar.

The Polar Star, that which is to be seen in the Heavens, is

not, when nicely observed, stationary ;
it is not the place of the

Pole, which is an imaginary point, but in which a star, if situated,

would appear perfectly quiescent.

Almost all the stars in the Heavens retain towards each other

the same relative position ; there is no mutual approach or

recess : and accordingly they are called Jlxed stars. There are,

however, certain stars, called Planets^ not under the above con-

4itions, but, which continually change their places. The Sun and

Moon also, the two celestial objects of the greatest interest, are

from (J#y to day varying their place in the Heavens.

Tne figure of the Earth is nearly that of a spheroid of small

^xcentricity, that is, not much differing from a sphere. If at

the place of a spectator we conceive a tangent plane to the

spheroid indefinitely extended on all sides, such plane is called

the spectator's Horizon : and an imaginary line drawn from the

spectator perpendicularly to the plane, will tend upwards to a

point in the Heavens called the Zenith : The opposite point in the

line's direction continued downwards is called the Nadir.

This plane, called the Horizon, will bound the spectator's view:

stars are said to rise when they first appear above it
; and to set,

when they sink beneath it.

This is nearly, but not exactly true : for, since the spectator by
his stature is elevated a little above the Earth's surface, he will be

able to see an object a little beneath the horizontal plane, that is

extended at his feet. In other words, a line drawn from his eye
and a tangent to the Earth's surface, falls beneath the plane of

the horizon. And, if his horizon were defined to be that in

which such lines should continually be found, it would be a conical

superficies,
the vertex being in the eye of the spectator.

The tangent plane, in which aAb [see Fig. in opposite page]

lies, has been (failed by Astronomers the Sensible Horizon : but,
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parallel to this, they imagine, for the purposes of calculation,

another plane, such as HCh, passing through the center of the

Earth : to which, they have given the name of Rational Horizon.

It is plain, that both the sensible and rational horizon are

merely relative, that is,- will change with the change of the

spectator's place. To a spectator at A, ab perpendicular to CAT*

is the sensible, and Hh parallel to ab the rational horizon ; and Z is

his zenith. To a spectator at B> ^perpendicular to CJBZ'is the

sensible, and H'K parallel to ed the rational horizon : and Z' is

his zenith.

It has been said that stars reach their greatest heights towards

the same part of the Heavens, In fact, if we conceive the places

of the greatest altitudes of any two stars to be joined by the arc of

a circle, in that circle will the greatest altitudes of all stars

happen. It must pass through the zenith, which is the point of

the greatest altitude of a star that passes directly over our heads :

and through the pole which is the place of a quiescent star.

This circle is called the Meridian.

The meridian cuts the plane of the horizon in two points

South and North. The bounding line of the horizon is feigned

to be a circle, which being divided into 360 parts, the North and

South points are distant from each other 180, and exactly inter-

mediate to these are the East and "West points.

The phenomena of the Heavens will now admit of an

adequate, if not a just explanation. Let aRr represent th*



4 Phenomena of the Heavens

Earth, a a spectator, H'h' the sensible and Hh the rational horizon,

Z the zenith, P the pole : Let through P and C, the center of the

Earth, a line PCp be drawn.

Now if the Earth be quiescent, and the sphere PHpZ revolve,

in 24 hours, in the direction qCQ> round the imaginary axis Ppt

the appearances described in the preceding pages will take place ;

a star will rise at j- *, ascend through / S'm to m its greatest height.

In the opposite quarter, a star t will ascend to its greatest height /'',

then descend to its lowest point /', and again ascend : another star

u, will, like the preceding, never set, but being nearer to P will

move more slowly \
and a star situated at P would be quiescent.

A star at h
f
will just appear above the horizon: another at

H 1

will be 21? hours above the horizon : a third at C, will be as

long (12 hours) above as below the horizon.

* sis meant to be the projection of a point as far distant froin a as

h' is, Hh and H'h' are represented as separate; but relatively to all mea-

surement and calculation of angular distance, they must be considered

**as comcident. In fact to a spectator at a, HH' subtends no angle*
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The circles *'/", sS'w, in which the stars appear to move being

parallel to CQ (the equator) are called Parallels.

Since the sphere is supposed to revolve uniformly, the point b

will be transferred to a in a time proportional to the magnitude of
a b\ for instance, if ab= 1, CQ containing 90, the time from b to a

willbe~th of the time from C to Q, and therefore will be ~th

|)f 6 hours : in the same time s will be transferred to /, jY being

53

Jess than ba, as the sine of Ps is less than radius; and, since ab

measures the angle aPb> or s'Psy the time through ss
f

is propor-

tional to the angle aPbi and similarly the times through aQ>

bQ, Cb are proportional to the angles aPQ, bPQ> bPCy which

on that account are called Hour Angles.

Noon is determined by the Sun being on the meridian ;

therefore bince CPQ is 90 J

, it will be 6 hours before noon,

that is, six in the morning, when the Sun is at C, or at n.

This happens if the sphere PHpZ be supposed to revolve

round Pp in the direction CQ9 from the east towards the west,

the Earth remaining quiescent; but, the same, with regard to the

appearances, will also happen, if the sphere remain at rest, and

the Earth Rra revplve round an axis Rr, in an opposite direc-

tion, in the direction wC, [see Fig. p. 4.] from the west towards

the east. The first supposition is the antient one, and the revo-

lution of the sphere was denominated that of the primum mobile.

Either of these two hypotheses will account for the phenomena
that have been described : but, the latter, that of the rotation of the

Earth, and of the quiescence of the Heavens, is assumed to be the

true one, as being the more simple : for if, instead of the Earth,

the Heavens be carried round in 24? hours, the stars which are
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immensely distant must move with a most prodigious velocity.

But, besides this reason, which is not indeed conclusive, there

are others which will be subsequently explained, that render pro-

bable the assumed hypothesis.
In the figure which has been drawn for illustrating the phe-

nomena, PmQp is the meridian : and on a plane passing through

this, that is, on the plane of the meridian, the sphere and its

lines arc supposed to be projected : Hh> for instance, is drawn

a line, and is intended for the projection of the circular boundary
of the horizontal plane : QCq> likewise, is meant to represent a

circle, the plane of which passes through C, and to which a right
line PCp, is perpendicular. The plane of the meridian PmQq
divides the sphere into two parts one called the Eastern, the

other the Western hemisphere, and the present diagram is

intended as the representation of lines, &c. drawn on the former.

This mode of representation, imperfect as it is, is adopted for

convenience, and to avoid the confusion of lines which an attempt
to represent solids as they ought to appear, might introduce.

PCp is perpendicular to the plane of the circle QCq, and

consequently PQ9 Pq are quadrants containing 90 degrees, and

also, if Pap [see Fig. p. 5,] be a circle of which the diameter is Pp,
Pn,pn arc quadrants. The circle QCq is called the Equator, and

any great circle such as Pap is called a secondary to the equator :

and the general definition of a secondary to a great circle is,

that it is also a great circle passing through the poles of the

former. Accordingly, a great circle passing through Z and any

point in Hh would, be a secondary to the horizon, which secon-

daries however are further distinguished by the name of vertical

circles. The altitude of an heavenly body is its angular distance

from the horizon, measured in a vertical circle passing through
the body. The complement of the altitude is a zenith distance.

In the diagram PQp (p. 4*,) C is the center of the Earth, and P9p9

are the two poles in the Heavens : no determinate distance, how-

ever, is intended to be represented by CP : for, the astronomical

computations involving angles merely, do not depend on it. Still,

it is supposed to be very great 5 so great, that the Earth's radius

bears no proportion to it, and that the sensible and rational

horizon may be considered as coincident.

Hitherto the poles and the imaginary circles that have been

spoken of have been referred to the Heavens : but the Earth
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also is made to have its poles and equator. In the Figure,

[p. 4.] the former are R, r and the latter is Cio, the plane

of which is perpendicular to RCr, and consequently in the

plane of the celestial equator. The Earth is divided into two

hemispheres, the northern Raw Cu> the Southern r//Cw, by
the equator <wCu.

The more distant a place on the Earth's surface is from its

equator, the greater latitude it is said to have. And latitude

defined is the angular distance of a place from the equator : hence

of a place a, the latitude is aCtv, measured by aw, or, in

degrees, by ZQ* : that is, it is the angle between its zenith

and the celestial equator.

Since PQ is a quadrant, PZ is the complement of ZQ ' hence

ZP may be called the co-latitude of a place. If a person
were to proceed northwards, that is, towards R, he would per-

ceive the polar star situated near P to be more and more elevated

above the horizon ; in other words, P would approach his

zenith Z, or the co-latitude ZP would diminish. If he possessed

the means, therefore, of measuring an angular distance,

he would be able to determine the successive latitudes of the

places he arrived at : for, the zenith point Z is determined by
the direction of a plumb-line ; and the polar star is very near

the pole. If it be assumed for the pole, the co-latitude

will be determined nearly : and, by a method which will be

hereafter described, we shall find that by the aid of the polar

star and certain appropriate tables, the latitude may be deter-

mined with the greatest exactness.

On principles the same as the preceding, the angular distance

between any known star on the meridian and the zenith will serve

to determine the difference of the latitudes of places. For, the

angular distance of a fixed star from the pole remaining the

same, but the distance of the zenith from the pole, varying with

the change of latitude, the latter must vary as the zenith distance

of the star varies. For instance, the star called y Dracoms

is 2' 24". north of the zenith of Greenwich Observatory :

* ZQ measures the angle ZaQ or ZC2: for the difference is

the angle C&a which may be neglected, since Ca is incomparably
less than C2. See p. 4. Note.
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but 19' 23".3, South of the zenith of Blenheim Observatory J

therefore the difference of the latitudes of the two observatories

is 21'47".3-, and since the latitude of Greenwich is 51 28' 40",

the latitude of Blenheim is 51 50' 27".3

In the diagram, (p. 5,) Z, Z' are the zeniths of the two obser-

vatories, and ZZ'~Zy+Z'y, y being the star between the two

zeniths.

The distance of a place from the terrestrial equator, we have

seen, is called its latitude : but, the angular distance of a star

from the celestial equator is not called its latitude but its De-

clination ; in the diagram, if m be the star or sun, on the meridian,

it is mQ: and since Pm+mQ = a quadrant, Pm is its <:<?-

declination, or, which is now the more usual term, its North

polar distance. Hence, as in the case of the latitude, if we pos-
sessed the means of measuring angular distances, we could, since

we have two objects, the star and the polar star, determine the

north polar distance, and consequently the star's declination.

The means of measuring angular distances will soon claim our

attention \ as soon as, by the aid of two or three short chapters

of general explanation, we shall have sufficiently enabled the

Student to proceed with us in our course.

Several lines have been already described, :\nd terms defined,

as the process of explanation required ; others, during the course

of the Work, will be similarly so, when the necessity of their

introduction arises,



CHAR II.

On the proper Motions of the Earth, Moon, and Planets.

IN the preceding Chapter several of the common phe-

nomena have bren accounted for on the simple hypothesis of the

rotation of the Earth round its axis. There are, however, other

phenomena not so explicable : such arc the continual changes of

place which the Sun, the Moon, and the Planets undergo.
There is no need of instruments to ascertain these changes.

They are obvious to every spectator of the Heavens. If we

observe, on any particular day, a star setting soon after the Sun,
then on each successive day, its setting will more nearly follow

that of the Sun, till its proximity to the Sun will become so

close, that the effulgence of the latter will overpower the feeble

light of the star and prevent it from being seen. Some days
after this has happened, if we direct our view towards the

rising Sun, we shall perceive the star first, as it were, emerging
from the Sun, and on succeeding mornings, still preceding, in

its risings, the Sun, by greater and greater intervals.

The phenomenon of the star just rising before the Sun is

called its heliacal rising : and it was by such observations that

the rude nations of antiquity recognised the seasons, and regu-
lated the labours of the year*.

'.Hie mere hypothesis of the rotation of the Earth, or of

that of the Heavens, will not explain this phenomenon. The
Sun has evidently a proper and peculiar motion. He moves
towards stars that set after him, and from stars that rise before

him. In other words, amongst the fixed stars he moves from the

west towards the east: that is, to a spectator, in our hemisphere,

facing the south, from the right hand to the left.

This fact of a motion of the Sun from the west to the east

will adequately explain^ why certain remarkable stars and groups
of stars, called Constellations, are seen in the south at different

hours of the night during the year. For the hour depends

solely on the Sun : it is noon, when he is in the south ; sfar$

* The Egyptians looked for the Inundation ot the Nile at the time of the hebacaj

using of Sinus, or, as they called it, of Thotlt the Watch-dog,
B



10 On the proper Motions of the

directly opposite to him are therefore, by the rotation of the

Earth, brought on the meridian at midnight : but the stars on the

meridian at 12 one night, cannot again be there, at the same hour,
on the succeeding night : for the Sun having shifted his place
a little to the east, the stars before opposite to him are now opposite
a part of the Heavens to the west of the Sun : that is, they must

corne on the meridian a little before midnight : and on succeeding

nights more and more before midnight ;
so that, in the course of

the year, they are in the south, though, by reason of the Sun's

brightness, not always seen, at all hours of the four and twenty.

By observations like those that have been described, imperfect

indeed, but sufficiently exact to ascertain the fact, the Moon is found

to move, amongst the stars, from the west towards the east ; and,

more rapidly, that is, by greater changes of place, than the Earth.

The planets, if they be observed on successive nights, will be

perceived also to have proper motions, and to change their places

amongst the stars. Viewed from the Earth, indeed, they will

not always appear to move towards the east; but sometimes

towards the west, and at other times, for several nights together,

they will appear nearly stationary.

It will be seen hereafter that the planets, as to the direction of

their motion, form no exception to the Earth and Moon. Viewed

from the Sun, their motion is from the spectator's west to his

cast, never in the contrary direction, or retrograde, and, never

stationary. The two latter phenomena are merely optical \ and,

in a certain sense illusory, arising from the combination of the

Earth's motion with that of the planet.

The motions from west to cast that we have spoken of, take

place, and must be combined with, the diurnal motion from east

to west that arises from the rotation of the Earth. This latter

motion is so great, that, as it were, it overpowers the former, and,

with an inattentive spectator, prevents it from being observed.

Even the Moon, which of all the planets has the swiftest proper

motion towards the east, shifts her place in the course of a day

by not more than 1 3 ; whilst, by the rotation of the Earth, she

is seemingly carried in the same time though 360 ; yet, there

are conjunctures when we cannot but recognise her proper
motion ; when, for instance, the Moon is near a star previously to

an occultation : for moving over a space equal to her diameter in

an hour she then visibly approaches the star,
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The Earth's motion and the Sun's have both been spoken of ;

but only one, that of the former, really takes place. The Sun
is at rest and the Earth moves round him. Yet we may consider

the reverse to be the true case : for, if a spectator at E sees the

Sun 5 opposite to a star or a point in the heavens H; moving
on to e, he sees the Sun at T. But, the same appearances would

be observed if the spectator should be quiescent at Ey and the Sun

should move from X to T.

According to the solar system, as now established, and called from

its inventor the Copernicany the Sun is in the center. Round it, in

their order, revolve Planets called, Mercury, Venus, the Earth,

Mars, Juno, Ceres, Pallas, Jupiter, Saturn, the Georgium Sidus,

or, as the French call it, Uranus ; and Astronomers are ac-

customed to designate these, as well as the Sun and Moon, by

appropriate symbols:

The Sun

Mercury 5
Venus 9
The Earth

Mars g
Juno /

Ceres ?
Pallas

<J

Jupiter... *

Saturn T?

Georgium Sidus ^
The Moon D

These Planets, considering the Earth as one, have proper

motions of their own round the Sun and in the same direction.

Such motions will account for their changes of place ; as the

diurnal rotation of the Earth accounts for the more obvious

phenomena of the risings and settings of the Sun, Stars, and

Planets.



CHAP. III.

On the Vicissitude of Seasons, and of Day and Night.

IN the preceding Chapter it has been stated, that the Earth

revolves in an orbit round the Sun ; and the latter being always

seen opposite to the Earth, seems in the course of a year to describe

a circuit in the Heavens. This orbit, or circuit, is called, the

Ecliptic.
To the plane of the ecliptic the Earth's axis is not

perpendicular,
but inclined, (so it is determined by observation)*

ut an angle of 23 28'. From these two facts or circumstances

of the Earth's revolution in an orbit round the Sun, and the

inclination of the axis of diurnal rotation, at an invariable angle,

to the plane of the annual orbit, the vicissitude of seasons may
be explained.

Let S be the Sun, E the Earth in three positions 1,2,3,

of her orbit ; let also Pp be the Earth's axis, E Q the equator,

\Z

and PAQp must be conceived to be a section of the Earth per-

pendicular to the plane passing through the orbit EEE\ so that

PA Qp will be opposite to the Sun, and to u spectator at A
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will be a meridian*. The axes Pp are drawn parallel to each

other in the three positions.

Let us first consider the position 1, A [see the Figure in the

preceding page] is the place of the spectator. Z is his zenith, and

Hh> parallel to a tangent at A> his rational horizon [see pp. 3, 4 ].

The Sun (as it appears by inspection) is below the equator

JEQ: its zenith distance is Z, and its altitude above the

horizon is SEH. In the subjoined diagram, which, like that in p. 4,

is intended to represent the phenomena of diurnal rotation,

let M be the Sun's place on the meridian (the angle MEH

being ^ SEH in Fig. [p. 12.] ) then Mm is the parallel de-

scribed by the Sun in 12 hours ; whilst he describes 2 Mv he is

above the horizon, and whilst he describes 2vm, below; hence, the

day, in the corrmion acceptation, is shorter than the night : and

*
Diagrams in Astronomy are not only impi rfcct representation?,

since solids are to be represented in phmo, but with regard to pro-

portion, preposterous representations. The first is a real e\il, the

latter none; for, the demonstration in the text is equally clear whether

EQ be the half or the double of what it is in Figure, p. 12. it is in facf,

independent of the represented relative proportion of E to SE ; yet,

the former is to the latter, in fact, as I to 2298't, and not, as in the

Figure, as I to about 3 or 4. The first evil, however, if we do not

recur to schemes of soltd representation, admits of no remedy, except

from the student's attention. The orbit 1, 2, 3, must be conceived

as viewed obliquely, and then PAHp to be perpendicular to it. Or,

if the orbit be conceived coincident with the plane of the paper on

which it is drawn, then the plane passing through PAHp is perpen-
dicular to the paper.
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half the difference is 2..vP, or c*Et *
: and v/ill equal (in latitude

51 52'), 4h 28 Bft
.

c

34% if the position (1) is meant to represent

the Earth in Winter, when the Sun is most below the equator :

as will appear by the following computation :

By Napcr f , r x sin. Et tan . /v x tan. lat.

log. tan. tv [23 28'] 9.63761

log. tan. lat. [51 52'] 10.10510

10 + log. sin. Et 19.74271

*\ log. sin. Et ~ 9 . 74271 ; /. Et = 33 i> 34' 20", or, in

time, = 2 h 14m 17 s
; .-. 2 Et = 4h 28 ra 34'.

In this position it is plain the Sun, rising at v, rises between

the east point E and the south point H of the horizon ; and,

in the above instance, rises at 40 9' 25" from the east point i

which is thus shewn:

By Napcrf, r x sin. tv = cos. lat. X sin. Ev
log. r + log. sin. 23 28' - - - - 19.60011

log. cos. 51 52'- - - - 9.79063

log. sin. -Ev=- --9. 80948

.. Ev = 40 9' 25".

In the position (3), as before, Z is the zenith : but now the

Sun is above the equator Q : its zenith distance is SEZ, and its

height above the horizon SEH : transferring therefore, as before,

the place of the Sun to N in the scheme of diurnal rotation,

p. 13, N is the parallel which he describes in 12 hours, and he

is above the horizon, or it is day whilst describing 2 Nu : below,

or it is night, whilst describing 2 nu : hence the day is longer than

the night, and half the excess is 4h 28m 34% if the position (3)

be opposite to that of (l)j or if it represents the Earth in

Summer.
The Sun rises at u between h the north and E the east point j

and 40 9X 25" from the east.

The instances taken have been those, when the Sun is most

below and most above the horizon : but the scheme will serve

for other positions of the Earth : and, the computations for the

* See p. 5. f Trigonometry, p. 105.
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lengths of day and night, and for the distance from the east will

be similar : since, instead of 23 28' we have only to substitute

some other number of degrees, representing the declination.

In the position (2), the Sun is neither above nor below the

equator, but in its plane produced. Transferring its place to the

diagram, p. 13, Q would be it: and the parallel described in 12

hours would be Qqy and EQ being ~ Eq>* the days and nights

would be equal. The position (2) represents the Earth in Spring.
In what has hitherto preceded, the spectator was placed at

Ay between the pole and the equator. If we suppose him placed
in the latter, then his zenith will be EQ produced, and, perpen-
dicular to EQ must be his rational horizon ; that is, his hori-

zon must be Ppi hence the diagram, p. 13, for representing the

daily phenomena, must be slightly altered : we must make Q and

Zy P and // coincident : it must be as it is here represented ;
in

which Figure, it is evident that the parallels Mm, Nn, are all

bisected by Pp or Hh : and consequently, the days and nights

must be always equal wherever the Sun be ; whether in the

equator, or above it, or below it : in other words, to a spec-
tator in the equator the days and the nights are equal throughout
the year.

If we place the spectator at P, then his zenith is in EP
produced -f, and his rational horizon will be the equator. If the

Sun is above the equator at N, then Nn J is his parallel, which

*
q is omitted (Fig. p. 13.) in the point where QE produced cute

the circle.

t *ig. p. 12. {Fig. p. 16.
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being parallel also to the horizon, the Sun during the 24 hours
is always at the same distance above the horizon : that is,

the 24- hours consist of day alone and no night. If the Sun be
at M9 then the 121- hours consist of night alone. What is true

for 7V and M is true aleo for all points between N and (), and

for all between M and Q : consequently during half the Earth's

revolution, or half the year, the Sun is constantly above, and

in the other half, constantly below the horizon.

If in the position (1) which is intended to rcpi^sent the Sun ar

its greatest declination below the equator, or in its greatest

southern declination, we draw Ea perpendicular to SE and the

plane of the ecliptic, a will be the extreme point illuminated by
the Sun, and Ra the section of the bounding circle of light and

darkness. Since, at the greatest declination, SEQ -- 23" 28', PEa,
or Pa = 23' 28' ; for Z. PEa -f Z- aJRQ 9 \_^PEQz right angle!,

a right angle], =
, SEQ 4- taEQ; and .'. z PEa

If from /7, a small circle, parallel to the equator QE, be

described, such a parallel is called the Arctic Circle, P being

supposed to be the north pole. A similar small circle about p
the south pole is called the Antarctic Circle.

The vicissitudes of seasons, inasmuch as they are shewn by
the varying lengths of day and night, have been made apparent

by combining the annual revolution of the Earth with its diurnal

rotation. With regai d to the variation of heat, or of temperature,

at the different seasons, that is accounted for by the greater

or less obliquity of the Sun's rays, combined indeed with the
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duration of day- In the position (1) the Sun is distant from

the zenith of the spectator A> by the angle SEZ \ in the posi-

tion (3), by an angle less than the former, by twice the angle SEQ9

or 2 x (23 28') > hence his rays in the first position fall much
more obliquely than in the third : consequently, for the same

portion of time they would in position (1) less warm the

regions of the Earth near the spectator A\ and besides, the

duration of their action, as we have seen [p. 13.] is less.

CHAP. IV.

On the Phases and Eclipses of the Moon*

IF phenomena were arranged according as they were the

more obvious, and excited greater curiosity, the Moon would
have claimed our attention before the proper motions of the Sun
and the Planets ; these latter are not immediately nor very readily

detected. The variations of the appearances of the Moon, on

the contrary, continually force themselves on our notice.

According to what is stated in p. 1 1, the Earth moves round the

Sun ; and the Moon moves round the Earth ; but the two orbits or

paths in which they move lie not in the same plane. If we add

to this, that the Sun illuminates the Moon, and that spectators at

the Earth perceive the effects of that illumination, we shall have

the means of explaining, why sometimes the whole face or disk

of the Moon is luminous, and why at other times only portions

of her disk : in other words, we shall be able to explain die

Phases of the Moon.

Thus, let My M'y M"> &c. be different positions of the Moon
in her orbit, which is not in the plane represented by the dotted

line, and in which the Earth's orbit, or the ecliptic, is supposed
to lie. E is the Earth, Ss the direction of rays of light coming
from the Sun very distantly situated. Now a plane perpendicular

to r, and passing through the center of the Moon, will divide
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her into two hemispheres, one illuminated, the other dark : let

this plane pass through Mm. A spectator at E will see an

hemisphere of the Moon, to be determined by drawing through
the Moon's center a plane perpendicular to a line drawn from

E to the center of the Moon : hence, it is plain, in the position

Af, a spectator at E will see only a small portion of the Moon's

illuminated disk : and if the Moon were at r, that is, in a line

joining E and 5, the dark part would be entire!) turned towards

him ; but, in the position M, he will see nearly half the Moon's

illuminated disk : and at M"> he will see the whole.

The Moon at c is said to be a new Moon, at M" ^full Moon,
at M) if half her disk should be illuminated, she would be said to

be dichotomized ; hence from the Moon's departure from c to her

return to the same place, in a period of about 29 days, her disk

exhibits to a spectator at E all her Phases; the narrowest

crescent near d> and a full orb at M" : thence she becomes deficient^

or wanesy till reaching a line joining the Earth and Sun she turns

her dark side entirely to the spectator.

When the Moon is new at c, she comes on the meridian

with the Sun, or at noon : when advanced to the position M%

the Earth revolving from east to west, she comes on the meridian

after the Sun, and it is her western limb which the spectator

sees illuminated. At Af", at her full, she comes on the meridian

at midnight : and when past M f

9 and beginning to wane, she

becomes deficient on her western side. The Moon's orbit is

elevated above the plane of the ecliptic, and is supposed to intersect
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it in the line Nn : now the line Nn shifts its position
*

: it may
come into the position M"Ec* What then would happen if the

Moon arrived at the extremities of this line ?

In this case, the Moon, Earth,

and Sun are in the same plane :

and to ascertain what happens, we
must no longer put points for these

bodies, but must, insome sort,repre-

sent their magnitudes : let Ss then

represent the Sun. M the Moon
at n. Eef the Earth : now, it is

plain, that a portion of the Sun's

light will be stopped by the inter-

position of the body M; in other

words, the Sun will be eclipsed by
the Moon ; or, a Solar eclipse will

take place.

Let now the Moon be at the

other extremity N, or be at her

full : then the Earth's shadow will

fall on the Moon, and eclipse her ;

or a Lunar eclipse will take place.

This does not, as we have said,

always happen, since it depends
on the position of the line Nn : in

general, the Earth's shadow falls

above or below the Moon. Yet

that an eclipse may happen, it is

not requisite that Nn should lie

exactly in the direction of a line

joining the Earth and Sun : if

nearly in that direction, an eclipse may happen, as will be more

fully explained in a subsequent Chapter.

To be hereafter shewn.



CHAP. V.

On the garths its Figure and Di?tiension$.

TH E enquiry into the figure and dimensions of the Earth is

of considerable Astronomical use, and, if conducted to exactness,

of very great difficulty. Here, however, it is intended to shew

merely on popular grounds and for probable n-^ons, the roundness

of the Earth, and then, its magnitude, supposu^ h *o h spherical.

The EJarth i$ probably round from the r-Ji^'or."-^ which

we may observe at sea. A ship first comes m .sil by slewing
us the tops of the masts. Then, as it approach':**,

w r
: '-? more

and more of the masts, and at last, the hull. &.vi <l" c

pheno-
menon is also so discernible, whatever be the quarter

it appears

jn 5 whether it be north, south, east, or west.

The Earth also is, probably round from the circumstance of

Navigators, who by constantly leaving the port they departed
from more and more behind them have at last arrived at it.

They must therefore have surrounded, or girded toe Earth.

We may infer afso the rpundness of the Earth from the

seemingly circular boundary of its shadow on the face of the

Moon during a lunar eclipse : for, if the Earth be a sphere, its

$hadow will be conical, and a section perpendicular to the axis,

will be a circle.

Thes,e arguments tend to shew that the Earth is round : it

certainly cannot be flat like a plane, nor concave like the inside

of a bowl. But if rpund, why not spherical ? this it was at

first supposed to be, since of round bodies, the sphere is the

most simple. Observation, however, has proved this supposition

to be erroneous. And, yrhjch is worthy of notice, the same body,
the Moon, tha|t has been employed to shew the roundness of the

Earth, has been employed to establish its
wotf-sphericity. This

will be subsequently shewn.

The Earth, however, although not exactly, is very nearly, a

sphere.
And if we assume it to be such, its dimensions may be

computed by the following method. By Chap. I. p. 7, by observa-

tions on the height
of the polar star3 or of the zenith distances of
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the same star, the latitudes of places may be determined. Suppose
the difference of the latitudes of two places on the same meridian*

to be 1: let the linear and actual distance of those places be

measured : which will be found to be about 69 \ miles : suppose it

exactly such : then since the Earth's circumference, supposed to

be circular, contains 360, it will be equal to 360 x 69. 5, that

is, 25020 miles j and its diameter will be about 7960.

From this very method of determining the Earth's magnitude,
its defect from perfect sphericity may be ascertained. If the Earth

were a sphere, then between two places on the same meridian, and

differing in their latitude by 1, the same linear distance of 69;
miles ought always to be found, at whatever distance from the

equator the places were situated. This, however, is found not

to be the case ; between two places differing in latitude by 1, in

latitude about 66' the linear distance is 122-157 yards. Between

two places near the equator, the linear distance is 121027 yards :

the former distance being 69; miles -f 137 yards, the latter,

69^ miles 1293 yards. And similar measurements establish

as a general fact, that degrees, that is, their linear values, increase

as we move from the equator towards the pole.

But, if not spherical, what is the Earth's form ? It probably,
does not differ considerably from that of a spheroid. If we

suppose it such, and, from 2 degrees, the one measured at the

equator, the other at the pole, determine the eccentricity
of the ellipse that would generate it, it will be found to be

nearly
~

, and the polar *nd equatorial diameters will be

to one another as 335 to 336.

If the Earth be not a sphere, the direction of gravity, which

is no other than the direction of a plumb-line, will not generally,
that is, in all latitudes, tend towards the Earth's center. If

we measure a degree at the pole, the two plumb-lines that are

inclined to each pther at 1, will meet in a point of the polar

diameter beyond the center. If, at the equator, in a point of the

equatorial diameter between the center and the part of the

equator where the measurement is made. In other situations,

the directipns of the plumb-lines will not meet in a diameter drawn
to the point where the arc is measured.

*The method of determining when two places are on the same me-

ridian^
or have the same longitude, will be given in a

subsequent Chapter.
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The Earth's radius, stated at nearly 4000 miles, seems consider-

able ; yet, compared with other quantities with which Astronomy
is conversant, it may from its relative smallness be neglected.
The distance of a fixed star, for instance, is infinitely greater : it

is so great, that no proportion can be assigned between it and
the Earth's radius. The method of ascertaining this may be
here described.

Let s be a star : when the Earth is at E, let the angle sEL
be determined by observation and computation : and half a year

after, let s E'L be also determined. Now, it is found, that the

angle sEL n angle sE'L : consequently the angle EsE' must be
said to be nothing : s therefore is so immensely distant, that EE
the diameter of the Earth's orbit, bears no proportion whatever
to Es or E's : a fortiori, therefore, the Earth's radius which is

to EE as 1 to 4-5968, bears no proportion to Es *.

The inference hence intended to be drawn is this : The
sensible and rational horizon, may, when we treat of the angular
distances of stars from the equator or ecliptic, be considered as

coincident, and in the first Chapter, p. 4, it was so asserted. The
zenith distance of a star s is to an observer at A% the angle sAZ%

equal to the angle sCZ (see Fig. p. 23.) : since, by what has pre-

ceded, the angle CsA is too small to be ascertained by observation.

The same holds for angular distances from the equator and ecliptic.

* If the star 5 were near the pole of the ecliptic, and Es to ES as

200000 to 1 : the angle EsE' would be 2". But, since no such angle
or difference of latitude can be detected, Es must be to the Earth's
radius in a greater proportion than that of 4569800000 to l

f
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Hence in the diagram, p. 4, we may reduce the radius Ca to

a point at C, and compute accordingly. And here is a great

a

distinction between the computations for fixed stars and Planets*

With the latter, the angle CsA is of assignable magnitude,
and then the sensible and rational horizons cannot be esteemed

coincident.

What has preceded relates merely to the general explanation

of phenomena. Angular distances, (and such are latitudes and

declinations,) have been spoken of ; but, no methods given of

exactly ascertaining and computing them. Yet, on such methods,

Astronomy, as a theory that will account for every phenomenon,

essentially rests. Our attention therefore, must chiefly be

directed towards them. From popular explanation we must

proceed to exact methods : first, to the extrication and determi-

nation of Astronomical elements, and then, to their combination

in a system.
Of such methods, the first in order and of essential importance,

are the Instrumental methods ; and, it fortunately happens that

the instruments by which the most important and necessary
observations are made, are few in number and easy to be under-

stood. This advantage arises from the wonderful simplicity of

modern observations. Formerly, indeed, Astronomers thought,

that the instruments most proper for observation were those

that imitated the celestial sphere : that were formed in cceli
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n: hence their astrolabes and armillary spheres. Now,
Astronomers do not follow a star from the east to the west, but

wait for it in the south. Their instruments, therefore, are fixed

in the plane of the meridian. By these are determined merely
the height of a star in that plane, and its passage or transit over

it. From such simple observations they deduce all the Elements

of the Solar System.
The observations spoken of are those which are essential and

important ; such as are practised in the observatories of Europe.
To these, at first, the attention of the Student should be confined :

it may afterwards be directed to other observations made out

of the plane of the meridian j and for which appropriate instru-

ments have been constructed.

CHAP. VI.

Description and Uses of the Astronomical Quadrant : Of the

Circle: Of the Transit Instrument.

THE first instrument to be described is the Astronomical

Quadrant. AB is a quadrantal arc of brass equally divided

into 90 degrees : each degree into smaller equal divisions : the

number of divisions plainly depending on the size of the instru-

ment. Tt is a Telescope moveable about a center at T: Vv is
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a plumb-line, that is, a chord or fine wire with a weight attached

to it, and hanging in the direction of gravity, or
perpendicularly

to the Earth's surface.

Suppose, the plane of the instrument, by proper adjustments,
to be made coincident with the imaginary plane of the meridian,

and that the
"

plumb-line is brought exactly over the division

marking 90 ; or, technically speaking, that it bisects such division :

then, it is plain, if the telescope Tt be directed towards any
star in the plane of the meridian, the number of degrees between

A and T, will mark the Star's height or altitude in the meridian :

and the number of degrees between T and By will mark its zenith

distance ; the imaginary quadrant of the meridian being

supposed to be similarly divided to the instrumental quadrant, and

between the horizon and zenith to contain f)0 degrees. If the

star be in the horizon, the telescope will be parallel to, or coin-

cident with AV\ if in the zenith, with Vv : and in the Figure, the

telescope is directed towards a star having an altitude of about 42".

The quadrant may be placed out of the meridian, in the

plane of any other vertical circle, and then [see p. 6.] it will

measure altitudes in such vertical circle.

When the quadrant is fixed to the side of a vertical wall in

the plane of the meridian, it is called a mural quadrant. Such
are the quadrants in the Observatory at Greenwich.

The above explanation is not intended to describe accurately
the nice construction of the instrument, but merely the principle

of its operation ; and it is perhaps sufficient for the purpose of

this Treatise. The improved state of this instrument, however,

may be briefly described ; and the improvement principally
consists in putting together four quadrants, and in forming a

circular instrument.

Let the graduated Figure [p. 26.] represent the circle, with its

telescope TV, not as before, moveable on the limb of the circle, but

attached to that limb, and moving only when the circle itself moves.

The motion of the circle and telescope is round an horizontal

axis, not represented in the Figure, but which may be imagined
to lie in the direction of a line drawn through C perpendicularly to

the plane of the instrument. M^ my are two microscopes,

directly opposite each other, detached from the limb of the circle,

and not moving with it, but having a proper motion of their

own s Vv is the plumb-line.

D
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Suppose, as before, by means of proper adjustments, the

plane of the instrument to be in the plane of a vertical circle, and

besides, Vv to bisect 0, when the telescope is horizontal ; then, if

the microscopes were in the horizontal position such as the

Figure represents them to be in, M would be opposite 90, and

m 90 (for the rim is graduated into two 180 degrees). Let

now, the circle and telescope be moved till the latter is opposite

a star, then the division bisected by M denotes the star's zenith

distance : so does that bisected by m.

One use, then, of the two microscopes, is, that instead of one

we have two readings off>
as they technically are called: the

mean of the two, then, if they happen to differ, is more likely to



of the Circle, and of the Transit Instrument. 27

give a true result, than one would furnish. But, the microscopes
need not occupy their horizontal position : they have a proper
motion of their own : by means of it, suppose them to be in

the position Z), dy these points being the extremities of a diameter ;

then, the plumb-line as before being made to bisect 0, M and m will

not be opposite to 90, but to 65
; and, when the telescope is again

directed to the star, M and m will be opposite 10 and 10, and the

star's altitude will be 65 10, or 55, and its zenith distance 35 ;

and, similarly, if we put the microscopes into any other position.

The use of this last change of the microscope's place consists

in this, that, should the instrument be unequally divided, which

must take place to a certain extent, the errors of division will,

probably, less affect the result. Suppose in the two positions we
have described, the readings off to have been

35 0' 3", 35 0' 2", 35 0' 4", 35 0' 2". 5.

the mean altitude would be 35 0' 2".875.

The primary position of the circle previous to an observation,

may be determined either by a plumb-line, or spirit level : But,

for ascertaining mere differences of altitudes, the microscope
alone is sufficient. For instance, suppose, when the telescope is

opposite the star j-, the microscope to be opposite to the division

33 14}' 25", and afterwards to be opposite to the division 85

31' 7", the telescope being directed towards another star /: then,

the difference of the altitudes of the two stars is

(85 31' 7")
- (33 14' 25") == 52 16' 42"

and, upon this principle, it has been proposed to find the north polar
distances of stars without the intervention of the plumb-line.

Since the instrument will measure any, it will measure, meri-

dian altitudes. But, to put the plane of the instrument in the

plane of the meridian, a new adjustment is requisite. This is

thus effected : we have seen [p. 2], that there are certain

stars called circumpolar stars that never set, but apparently
describe circles round the Pole ; and consequently, in one

point of their circuit are nearest to the horizon, and in another, the

opposite point, are most remote from it. Now, this phenomenon
has been accounted for, [p. 4.] on the hypothesis of the Earth's

rotation round its axis : if we add to that hypothesis, the cir-

cumstance or condition of an equable motion of rotation, it will
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follow, that a circumpolar star will appear to move from the

lowest point of its circuit to the highest, in the same time exactly

as it descends from the highest to the lowest : but the highest and

lowest points are in the plane of the meridian : for Z/ is <% /, and

Z/'is >Zcr. Hence, when the instrument is so placed, that a

star being observed at /' and /, the time of describing /'//,

bhall be found equal to the time of describing Sss", we may be

certain that the telescope moves in the plane of the meridian : for,

by adjustments already made, it moves in a vertical circle, and if

it moved in one such as Z/cr*;/, it is plain, that trs"ts is greater
than the remainder s<r of the circuit, and consequently, the

interval of time between the star observed at er and s cannot be

half the time of the star's apparent revolution *.

This adjustment is a most important one : for, almost all the

calculations in Astronomy are founded on observations made in

the meridian.

When the circular instrument does not exceed a certain mag-
nitude, it is so contrived, that its horizontal base, is made to

revolve in an horizontal plane. The whole instrument also

moves, but the vertical pillar still remains vertical, and the

axis round which the circle moves, remains horizontal. This

horizontal motion of the instrument is called a motion in

azimuth (.

* In Wollastoa's Fasciculus, Appendix, p. 74-, there is a formula

for correcting the error of a meridian telescope by the observation of

any circumpolar star above and below the Pole.

f The complement to azimuth, or the distance from the east or the

\Tctst point of the horizon is amplitude^ a term unnecessarily introduced.
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The term azimuth formally defined is, the angular distance of

a star or object from the north or south point of the horizon ;

and if the star, or other object, be not in the horizon, it must

be referred to it by a vertical circle : thus, [see Fig. above] hm
is the azimuth of a ppint in ; it is also the azimuth both of s

and <7.

The graduated rim AZ in Fig. p. 26, is intended to measure

the quantity of the azimuth motion. Thus, if the microscope
or index L has been translated from to the division 25 over

which it is represented, the instrument has been moved through
25 of azimuth. A great advantage is derived from the azimuth

motion of the instrument ; for, it enables the observer to deter-

mine the zenith distance of stars without the spirit level, or

plumb-line. Suppose, in the above Figure, when the telescope
is in the position Tt 9 directed to a star s, that the division on the

circle opposite to the microscope is 83 41' 15". Now, if the

telescope were directed to a star in the south, the face of the in-

strument which we may be supposed, in the Figure, to look on,
will be towards the east. But, if the whole instrument by means
of the horizontal motion in the plate AZ> (which is graduated
like the limb of the circle) be turned through 180 of azimuth ;

the face before opposite the east, will now be opposite the west :

and the position of the telescope will be 7Y: consequently in

order to be directed towards /, that is, in order to assume a

position parallel to its former one JY, /' must move through an arc

t'ty which is plainly equal to 2/'Z, or 2/Z, that is, twice the

zenith distance : consequently, if in the second position we should
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read off by the microscope 7 11' 23", then, we should have the

zenith distance half 76 29' 52", or 38 14/ 56".

By these means also, a certain instrumental error called the

error of the line of Collimation^ is avoided : Now, this line is an

imaginary one, extending from the center of the object glass to

the focus, where the middle of the cross wire is : when the index

of the instrument points to 0, it ought to be horizontal, or directed

towards an object in the horizon : suppose it not to be so, but

slightly slanting upwards at a small angle, 34" for instance : then,

a star at that altitude 34>", would, by the instrument, seem to be

horizontal : another star at an altitude of 50 21' 52", would, by
the instrument, seem to be at 50 21' 18". Turn now the instru-

ment half round in azimuth, by which, the face originally towards

the east is turned towards the west ; then the telescope Tt will

occupy the position TV : and the upper side of the telescope

denoted by the dotted line, will still remain so : but, when the

telescope is turned from the position JY, and again directed to

the star, the dotted line will become the lower line, and accord-

ingly if the index pointed to 0, the line of collimation would be

slightly slanted downwards at an angle of 34/' : and the former

star at the altitude of 50 21' 52'% would, by the instrument, seem

to be at 50 22' 26" : half the sum therefore of the two altitudes,

taken in the manner above described will be the true altitude : for

if E be the error of the liile of collimation, and A the true altitude,

and half the difference of the two altitudes will be the error of

the line of collimation, for

, =
\ [(A + .)

- (A -
,)].

We will illustrate this by two examples :
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Altitudes.

Gth Sept. Star Rigel, position E* - - 30' 21' 36". 25

position W. - - 30 20 22 . 05

sum rr 60 41 58.30

. true altitude = 30 20 59. 15

difference == 1 II. 20
error of collimation = 37 10

Again, J Sagittarii W. - - 8 56' 45" .8

E. - - 8 58 7.1

sum - - 17 54 52.9
true altitude - - 8 57 26 . 4-5

difference - - 1 .21 . 3

error of collimation - - 40 . 65

If great accuracy be required, the above operations are repeated
with several stars, and the mean of the whole taken for the error

of collimation : thus,

Error of C'ollimation.

Rigcl 37". 05

Sirius 40 . 05

2 Sagittarii 40 . 06

X 42 .

Capellrc 39 . 45

37 . 12

y 37 . 35

* 37 . 87

8)310. 95

Mean error of collimation. 38 . 87

By the same principle, may the error of the line of collimation

be corrected in circular instruments, which are too large to admit

of an apparatus for the azimuth motion. For, the instrument may

* Position E, position W, denote respectively the graduated side of

the circle turned towards the east and west. Rige), Sinus, 0, yt &c -

Capellae, are the names of certain known stars.
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be lifted out of the angles of bearing, and again placed with

the extremities of its axis reversed.

The instrument which has been described is adapted to mea-

sure any, but principally meridian altitudes, and when fixed in

the plane of the meridian it is called a Declination Circle ; for,

the declinations of stars are known, from their meridian and

greatest altitudes, and the latitude of the place of observation.

But, the instrument may be made to serve other Astronomical

purposes : it may be used as a Transit instrument : that is, the

presence of a star on the meridian may be ascertained by it

with sufficient accuracy. Whether, however, it is expedient to

use the same instrument for two purposes, declinations and transits,

it is not our business now to consider : general explanation is, at

present, only aimed at
;
and it sufficiently appears, that the instru-

ment which has been described, will shew the object when on

the meridian, and also, its elevation on the same meridian *.

The accurate description of the several parts of the instru-

ment must be learnt from other treatises : to the preceding

general and imperfect one, it may here be added, that several

line wires arc placed in the field of view : one horizontal, and

running through the center and line of collimation, when the

instrument is to be used as a declination circle : several (in

general five) vertical, when it is to be used as a transit instrument :

and when the star covers either the horizontal or one of the

vertical wires, it is technically said to be bisected.

To determine the altitude of a star, the star must be bisected

by the horizontal wire : but, this operation cannot take place with

bodies that have disks ,
the Sun and Moon, for instance. To deter-

mine their altitudes, the horizontal wire must be brought into

contact cither with their upper or their lower limb, and then

to the number of degrees denoted by the instrument, the semi-

diameter, if known, must be either subtracted or added : and the

* The common and usual transit instrument, is, to appearance, a

very simple one. It is a telescope attached to an horizontal axis,

with sonic simple contrivance for elevating the telescope tolerably near

to any proposed altitude. The nice operation with this instrument is.

the making the telescope to move in the plane of the meridian. For
this purpose, several adjustments are necessary, and contrivances pre*

pared.
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result is the height of the center. Or, if the altitudes both of

jthe lower and upper limb are observed, and added together, half

their sum will be the altitude of the center : for instance,

NOV. lp. Altitude of the Sun's upper limb* 18 39' 39"

Altitude of the Sun's lower limb 18 7 13

Sum 36 46 52

[Difference . 32 26 ]

/. half Sum, or altitude of the Sun's center t... 18 23 26

By the same observation we have the Sun's diameter. It is

the difference pf the heights of the upper and lower limb, and ac-

cordingly equals 32' 26".

Having now explained the instruments by which observations

an be made in the plane of the meridian, we will proceed to shew,

how, by means of them, the Sun's motion may be detected, and

pertain inferences drawn relatively to its nature and law.



CHAT. VII.

Suns Motion. Path. Ecliptic. Obliquity of Ecliptic.

IF by the instrument and method described' in the preceding

Chapter, the altitude of the Sun's center be observed from day to

day, it will be found continually to vary. For instance, in the

four first days of the year 1810 the altitudes were,

Altitudes. Differences.

1810, Jan. 1 14 44' 40"

2 14 49 44

3 14 55 15

4 15 1 13

5' 4*

5 31

5 58

Hence the Sun during these four days was ascending in the

meridian, but not by equal increases of altitudes, as appears by
the column of differences. Again, the altitudes of the Sun on

four successive days in March and June, were

Altitudes.

Mar. 19. ..37 5' 46"

20. ..37 29 27

21. ..37 53 8

22. ..38 16 47

Diff.

23' 41"

23 41

23 39

Altitudes.

June 20. ..61 14' 32"

21 ...61 15 1

22. ..61 15 5

23...61 14 44

Diff.

29"

4

Hence during the four days in March, the Sun was continually

ascending, and by increments of ascent very nearly equal : in June

it was still higher, and on the twenty-second at its greatest altitude;

for, on the succeeding day, its altitude was diminished by twenty-
one seconds. Its increments of altitude, as appears by the column

of differences, are, like those in January, unequal.

Thus far it appears then ; the phenomenon of the Sun's

continually varying altitude cannot be accounted for, by sup*

posing the Sun to have an equable motion in the meridian ; ascend-i

ing for half the year from December 1809 to June 22, 1810,
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and then descending : let us next consider whether an adequate

explanation of the phenomenon is to be expected from attributing

to the Sun an unequal motion in the meridian *.

If the Sun had a motion merely in the meridian, then, since

the Earth's rotation is supposed to be equable, the intervals of

successive transits over the meridian would always be equal,

one with another, and besides, would be equal to the intervals

of the transits of a fixed star; that is, of a star which, by its

definition, has neither a motion in the meridian nor transversely

to it : now neither of these conditions take place ;
for on Aug. 21,

1810, a Reguli was on the meridian 1 minute 20 seconds before

the Sun was: but on the succeeding day 5 minutes 2 seconds:

on the next, or twenty-third, 8 minutes 44 seconds: so

that it is plain the Sun must have shifted away from the

meridian, and moved transversely towards the east of it. Hence,
to account for the phenomena, two motions must be attributed to

the Sun ; one in the meridian, the other transverse to it : or what

amounts to the same thing, by the doctrine of the composition of

motions, an oblique single motion.

From the preceding instance it appears, that the Sun moves to

the east of the meridian, and of a fixed star, through an angle

which, in time, is equal to 3 minutes 42 seconds : but this

angle, or its value the time is not constant : if, for instance, one

of the stars of Sagittarius was, with the Sun, on the meridian

January 2, 1810, the next day the Sun would come later, than

the star, to the meridian, by 4 minutes 24 seconds; on

January 4th, later by 8 minutes 48 seconds ; on the 5th, by
13 minutes 12 seconds, &c. Hence, the Sun's motion perpen-

dicular to the meridian is not equable, neither, as it has appeared,

is his motion in the meridian. These are the two resolved parts

of the Sun's oblique motion.

* In proving the Sun's motion in the meridian not uniform, we have

supposed, what is not strictly true, the intervals between his successive

transits over the meridian to be equal. But the result will be the same,

that is, his motion will be found to be unequal, if we correct the sup*

position, and allow for the inequalities between successive transits
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The following Table exhibits the Sun's meridian heights oil

the 22d days of the several months of the year 1810.

From this Table it is easy to determine, in a general way, the

form of the curve in which the Sun may be supposed to move,

For, if MM' be taken to represent the whole space from

March 18JO to March 1811, and perpendiculars be erected re-

spectively equal to the Sun's meridian altitudes, the curve drawri

through their extremities will be ESWE'. If E be the Sun'*

at'

place on March 20, e, e> on the two successive days, then

me, m'e
r must be taken respectively proportional to 37 29' 27V$

37 53' 8", 38 16' 47" [see p. 34]. The intervals Mm, mm>, &a
are not exactly equal, since they are the spaces through which

the Sun retires each day, from his place on the meridian the pre-

ceding day [see Note, p. 35.] i and in the present case they are

respectively equal, in degrees, &c. to 54' 33", 54' 31". 5, 54' 31",

The spaces te, t'e', &c , or the increments of the Sun's altitude

in the meridian, are respectively equal to
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23' 41", 23' 39"-,

ftnd the motions, in these directions, combined with the transverse?

motions in the directions Ety et', compound, ad it has been before'

Remarked, [p. 35,] the oblique motions Ee, ee
f

, Sec.

In the Figure ESE', there are two altitudes #S, rW> one the

greatest, the other the least, which for the year 1810, [seep. 34],

would happen on June 22d, and December 22d, and the mean of

these two altitudes is

\ [(61 15' 5") -f (14 19> 42")] c 37 57' 28". 5,

which is, very nearly, the Sun's altitude (ME) on March 21, of

Kk his altitude, Sept. 22*.

Now, it is to be remarked, that these mean altitudes ME)
Kk are equal to the altitude of the imaginary circle called the

equator [see p. 6,] whatever be the place of observation. In

the preceding instance the place has been supposed to be

Cambridge, of which the latitude is 52 1 2' 36" : but, the

latitude [see p. 7,] is the distance of the zenith from the equator:
the distance of the zenith from the horizon is a quadrant, or 90 :

consequently, the meridian height of the equator above the horizon

is the complement of the latitude, or, as it may be called the

co-latitude.

The method of determining the latitude has already [p. 7,]

been pointed out. By the instrument described in Chap. VI. the

height of the polar star (the a Polaris of Astronomical Catalogues)

is to be observed : then, from such observed height, and by certain

appropriate tables, the latitude may be computed. This relates

to the best practical method of determining the latitude : but in

a general way, the latitude may be said to be determined by the

mean between the greatest and least altitudes of Polaris, or of

any other circumpolar star; for Polaris is one, since its north

polar distance in 18 10 was 1 42' 1 9''. 64. Thus, Fig. p. 4; if v> <u'

are the two places of a circumpolar star on the meridian, since

Pv = Pv'

PH=. 1 [Hv +Pv + Hv'- Pv']=^[.Hv -f Hv'].

But PH -f PZ = HZ = a quadrant = PZ -f ZQ ;

* The greatest and least altitudes (nS, rW) are supposed to happen
tin the noons of Juiie> and of Dec. 22 ; which is not exactly true. See

taext page, line 14.



38 Sun's Motion. Path. Ecliptic. Obliquity of Ecliptic.

.*. PH = ZQ = the latitude, accordingly

the latitude ~ ~ [Hv -f Hv'] ;

and the co-latitude equals half the sum of the greatest and least

zenith distances- Thus, by observations made at Blackheath,

corrd . least zen. dist. Ursa min. Bod. 4 - - 37 35' 55"

cOrrd
. greatest zen. dist. - - - - * * 39 27 57

~)77 3 52

co-latitude of Observatory
- - - 38 31 56

Again,
corrd

. least zen. dist. o Cephei
- - - * - 15 35' 21

corrd
. greatest zen. dist. ------ 61 28 31

"

^)77
3 52

co-latitude - - - 38 31 56

By these means we should be able to recognise that twice in

a year, in March and September, the Sun was in the equator.

But, if the latitude were determined accurately, we should find

that no meridian altitude of the Sun was exactly equal to the

co-latitude : for instance, in the former cases, the place of obser-

vation was Cambridge *,
its latitude by observations on the polar

Star, is 52 12' 36"
-,

its co-latitude, 37 47' 24" : now amongst
the altitudes stated in p. 34, there is no one exactly equal to

37 47' 24" : the altitude on March 20th is too small, that on

the 21st too large : the reason of this is, that when the Sun was

exactly in the equator, he was not on the meridian of the

observer's station. There is some place to the east of Cambridge,
at which the Sun was on the meridian when in the equator : and

this place may easily be determined.

We may now pass from the Sun's tabulated place, obtained by

daily observations of his meridian altitudes, to the explanation

of the changes of places, as originating from his oblique motion.

The line MM' [see Fig. p. 36,] is intended to represent the

aggregate of the angular distances through which the Sun recedes

each day from a fixed star, that was with him on the meridian when

he was at E. This aggregate is 360*, and MK=z KM'> more*

* This part being intended for general explanation only, thej>re-
ccssion of the equinoxes is not taken account of*
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over ME = Kk == M 'E' is the height of the equator, and a line

EkE' containing 360 J

may represent it when extended on a plane.

Reversely, the lines EkE'y ESkE' may be conceived wound round

a sphere, the line EkE', coinciding with QEq> &c *., ESkE' with

ESsy c., and the points Et e, e' Sec. in Fig. p. 36, with the points

in Fig. p. 39, denoted by the same letters. Suppose now the Sun
in the equator at E, then by the revolution of the sphere, the

point E and the Sun, would be transferred to the meridian at

the point Q, and
//<2
= ME will be the height : next let the Sun

recede through the space Ee the point e and the Sun will be on

the meridian at/i and/7* = me [Fig. p. 36,] will be the meridian

altitude : on the succeeding day let the Sun, having still farther

receded through the space ee'> be at /; then his place on the meridian

will bey*', and his meridian altitude f'h~m'S [Fig. p. 36 J: and

similar circumstances will take place till the Sun has receded

through the space E$ (JES a quadrant) when his place on the

meridian will be at g, and his meridian altitude gh-=nS [Fig. p. 36]
then the greatest : after this the meridian altitudes will decrease.

By supposing therefore the Sun to move in the curve 5, &c.

from E towards 5, whilst the sphere revolves in the opposite

direction, from E towards <, a^ tne phenomena indicated by
observation admit of an adequate explanation. And, as the

diurnal phenomena were shewn [p, 5,] equally explicable
either by supposing the whole celestial sphere to revolve, the

Earth being quiescent, or, the Earth to revolve in a contrary

The e in the diagram ought to have been



40 Sun's Motion. Path. Ecliptic. Obliquity of Ecliptic.

direction, the Heavens being at rest ; so, these latter phenomena
may be accounted for, either by supposing the Sun to move in

an orbit such as ESs, &c., and the Earth to be at rest, or the

Earth to move, but in a reverse direction, in an orbit similar to

JSS whilst the Sun remains at rest.

The above explanation does not depend, on the realform of the

orbit ESs, which may be either circular or elliptical, or of any
figure, provided it lies in the same plane. For the Sun is conT

tinually seen in the direction of a line drawn from him to the

Earth
, but, whatever be his place in that line, he will always be

transferred to the imaginary concave spherical surface of the

Heavens.

This imaginary path of the Sun in the Heavens is called the

Ecliptic: the points E> Ef

> [Fig. p. 36,] where it intersects the

equator, are called the Equinoctial points : they are the nodes of the

equator 3 the points 5, W> those of the greatest and least elevations

above the horizon, or, where the Sun is respectively at his greatest
northern and southern declinations, are called the Solstitial points.

The points of intersection of the equator and the ecliptic have
been called the nodes of the former ; they can be so called, only
by likening the equator to the orbit of a revolving body ; for,

generally, nodes are defined to be the intersections of the orbit of a

planet or other revolving body, with the plane of the ecliptic.
The planes in which the ecliptic and equator lie, are inclined

to each other : and the angle of their inclination is, for distinction,
called the Obliquity of the Ecliptic: the angle of the inclination

of the planes is the same as the angle made by two tangents, at the

point E, to the arcs Ee, Eq*. [see Fig. p. 39.]
If from 5 a solstitial point, a great circle P/S be drawn per-,

pendicular to the ecliptic, and uS be taken equal to a quadrant,
then n is the pole of the

ecliptic f.

The circle Gg, a tangent to .the ecliptic a,t the solstitial point ,

and consequently parallel tp the equator (and therefore a parallej

pf declination) is called a
Tropic. A similar one touches the

^cliptic at the other solstitial point.

The small circle describe4 round P in the circumference

* Woodbouse's Trigonometry, p. 9.

f Ibid. P. 89. 1,2. from bottom. This pole is situated ifi the

jfiragon between the stars S and f, but nearer the latter.
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of which the pole of the ecliptic is always found, is called a

Polar Cjrcje : sometimes the Arctic Circle [p. 16]; and a similar one

about the Earth's opposite pole is called the Antarctic Circle,

4- secondary [see p. 6], to the equator, passing through JB,

the equinoctial point, is called the Equinoctial Colure ; one passing

through 5, the Solstitial Colure.

Astronomers have divided the ecliptic into twelve equal parts

called Signs: consequently each sign contains
thirty degrees.

Their names and characteristic symbols are,

Northern, Southern.

Aries - - - - f
Taurus - - - - #
Gemini - - - n
Cancer * * <* ~ <&

Leo ------ ft

Virgo - - - T - np

Libra -..--,-- &>

Scorpio ---,.- HI

Sagittarius -,.--.
Capricornus

^ - - - vy

Aquarius - - - - -

Pisces - - T - f r M

These signs are situated within an imaginary belt called the

Zodiac, extending eight degrees on each side of the ecliptic.

To each of the signs, certain clusters, or groups of stars,

called [see p. 9.] Constellations*, are appropriated. But the

signs, astronomically, serve merely to denote a certain number of

degrees : thus, in the Nautical Almanack, the Sun's longitude for

July i, 1810, is stated at 3 signs, 8 degrees, 54} minutes, 19

seconds; equivalent to 98 degrees, 54 minutes, 19 seconds.

The kttgitude is also sometimes expressed by means of the

symbols of the constellations of the Zodiac. Thus, in Flamsteed's

catalogue of the fixed stars, the longitude of y Draconis is ex?

pressed by :

$ 23 42' 48"

* These groups of stars, or constellations, are by fancy imagined to

form the outlines of the figures of animals and instruments, and are de-

signated by their names. Thus, one group forms the figure of a Bear,

another of a Lion, a third of a Dragon,, a fourth of a tyre. So there are

stars in the tail of the Bear, the head of the Dragon, the heart of the

Lion : which are farther distinguished by Greek characters. In the Cata?

}oues we find, v Ursa majoris, y Draconis, a Lyres, ft Leonis, &c.
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which, since Sagittarius, represented by *, is the 9th sign whose

first point from that of Aries is accordingly distant by 8 X 30, or

24-0% denotes the longitude of y Draconis to be

263 42' 48".

The term Longitude, which has been introduced, means

angular distance measured or computed along the ecliptic, and

from one of the intersections of the equator and ecliptic : which

intersection is called the First Point of Aries.

After having passed through the 30 J of Aries, the Sun

enters Taurus, then Gemini, and successively the signs accord-

ing to the order in which they were enumerated fp. 41]. The

motion of the Sun according to this order is said to be direct,

or In consequentia ; any motion in the reverse direction is said to

be retrograde, or in antecedentia.

What longitude is with respect to the ecliptic, right ascension

is with respect to the equator. It is angular distance, from the

first point of Aries, [see L 8,] measured along the equaror.

And what declination is relatively to the equator, latitude is to

the ecliptic : it is, angular distance from the ecliptic, measured

by that arc, of a secondary to the ecliptic passing through the star,

which lies between the star and the ecliptic. Thus if T be the

first point of Aries, or denote the intersection of the equator and

ecliptic, and St be perpendicular to the part ft of a great circle :

St, Tt are respectively the latitude and longitude S, if r / be part

of the ecliptic : or, they are respectively the declination and right

ascension of S, if ft be part of the equator. The Sun being

always in the ecliptic has no latitude : at the first point of Aries,

* The particular stars of a constellation also are usually symbolically

represented : thus a y means the first or principal star in Taurus or

the Bull
;
* $, one of the inferior stars in Aquarius ; ijf , a star of the

second magnitude in Virgo; y:, a star of the third magnitude in

Libra.
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his declination, longitude, and right ascension, are nothing : at the

X

solstitial points, his declination is the greatest, and his longitude
and right ascension 90, or 270.

The longitude of the Sun varying, in the year, from to 360,
becomes successively during that period, equal to the several

longitudes of the stars. The longitude of a Arietis being in 1809,
1 s 4 59' 31", that of the Sun is equal to it on April 25th. The

longitude of Regulus being 4 s 27 10' 27", that of the Sun is

equal to it on August 20ih. When this happens, that is, when
the Sun has the same longitude as the star, he is said to be in

conjunction with the star. And, for conciseness of expression,

Astronomers have invented another term called Opposition^ which

happens, when the longitude of the Sun differs from that of the star

by 180, or 6 signs. The symbol for conjunction is (5, for opposi-

tion 8 - Both the preceding terms are comprehended under a

third called Syzygy. Thus, the Sun having on Oct. 28th, a

longitude of 7 s 4 39' 54", he is during that day in
opposition to

a Arietis. On April 25th then, he is in conjunction with a Arietis9

on Oct. 28th, in opposition, and on both days in Syzygy with that

star.

The Sun was stated to be in conjunction with a Arietis on

April 25th. But, the exact time was not specified j that however,

may be found by a formula given in the Appendix : or very

nearly by a simple proportion. Thus,

long
6
. Apr. 25 - r= 1 s 4 49' 58'' - - - 1

s 4
n

49' 58"

Apr. 26 - = 1 5 48 15 long, of *V I 4 59 21

Inc. of long, in 24h - - - 58 17 diff. of long. --9 33

.-. 58' 17" : 9' 33" :: 24h
: 3 h 55m 57 s

;

consequently the conjunction was April 25th, 3
1 55 n 57 s

without
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estimating the precession of the equinoxes by which the star's longi-

tude Was increased.

"the Sun is said to be in quadrature with a sitar, or planet,

when the difference df their longitudes is 90, or 270
-,

that is,

3 s

, or 9 s
: for Instance, the Sun is in quadratures with c& Arieth

when his longitude is either 4 s 4 59' 31", or 10* 4" 59' 31":

that is, either on July 28tl^ or January 24th. In quadratures
with Regulusy when his longitude is either I 3 27 10' 27", or

1 s 27 10' 27" : that is, either on Nov. 19th, or May 18th. The

symbol for quadratures is Q , Thus D a Aquila denotes the

Sun to be in quadratures with the first star in the Eagle.

fn the preceding Figure, if 5 should he the Sun, yS, the ecliptic

and ft the equator, we could by the solution of a right-angled

spherical triangle determine the longitude T S, if the right as^

tension ft, and the obliquity were known. But hitherto, no

methods of observation or computation have been given, for deter-

mining these latter quantities* We will first shew how the

obliquity may be determined. By p. 34, 1. 14, the meridian

altitudes of the Sun at Cambridge, on four successive days,

61* 14' 32", 61 15' 1", 61 15' 5", 6l 14' 44",

and since the co-latitude of Cambridge is 37 47' 24" the corres-

ponding declinations of the Sun, were

23 27' 8 V, 23 27' 37", &3 27' 41", 23 27' 20>'.

If the greatest of these, that is, 23 27' 41", represented the Sun's

greatest declination, it would measure the obliquity : for when
IT 5, ft are each equal to a quadrant, St is the measure of the

spherical angle at y^*. But it plainly does not represent trie

greatest declination, since, if it did, the two adjacent declinations

woiild be equal, which they are not : the greatest declination

then must have happened sometime between the noons of June

2 1st, and June 22d, but nearer to the noon of the latter day. It

is a quantity somewhat greater than 23 27' 41', certainly not

differing from it by four seconds. For, assume it to be the greatest

declination, then, in fact, we assume the Sun's longitude to be

(what it is at the Solstice) 3 signs or 90 : now, this latter assump-

* Woodhouse's Trigonometry, p* 00*
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tion cannot err from the truth 30', for the change in the Sun's

longitude for 1 2 hours is not quite equal to that quantity : but,

suppose it to be 30', that is, in the Figure, let X be the true place
of the solstice, and SX= 30', or TS n 89 30', then by Naper's
rule *,

rad. x sin. St = sin. y* x sin. S T
and rad. x sin. Xy~ sin. Y" X sin. Xy ;

consequently, eliminating sin. T, there results [since sin. yTT~l]
sin. St sin. St

cos.

/. log. sin. Xy == 10 -f log. sin. 23 27' 41" log. cos. 30',

but, 10 -f- log. sin. 23 27 X 41" - - - = 19 . 6000260

log. cos. 30' ..*-.. = 9. 9999835

9 . 6000425

.'. Xy = 23 27' 44". 5.

But since in the case we have taken, the error in longitude
must be less than 30', the real obliquity must be some quantity
between 23 27' 41", and 23 27' 44". And if the error in

longitude instead of being 30' were only 3', the error in decima-

tion instead of being 3". 5 would be only 3". 5 ,
- -

, or .035" f.

In the present instance the former error is about 20', and therefore

the lattet is 1''.5 nearly, and consequently the obliquity differs

very little ffom 23 7' 42V
.5.

* Woodhouse's Trigonometry, p. 105.

f Tor the variation;: in declination near the solstice, are nearly, as

the square of the variation in longitude : for, in the former Figure,

r X sin.p = sin. T- sin. /
[/ rr Sf, p = Si]

4\ r.dp.vos* p s= d/.sin. Y\ cos. / [taking the differentials.]

.'. dp- .^-^ cos. /= .tan. f. cos. /[since at sols..p= T nearly,!
r cos. p r r J J

.*. cty= tan, T. sin. (90-0= tan > V. sin. d/ = tan. V,

since at the solstice l~9Q dl nearly,
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In the preceding illustration, the instance taken has been

that of the Summer solstice : the declination of the Sun at the

Winter solstice may be similarly found ;
and then the mean of

the two declinations will give, more exactly, the obliquity of the

ecliptic.

Thus, by observations made at Blackheath, 1807,

Winter solstice zenith distance - - - - 74- 55' 56". 02

Summer - ---..-28 8. 68

2)46 55 47.34

Mean obliquity of ecliptic
- - - 23 27 53 . 67

On the footing of mere theoretical explanation, it is suffi-

ciently exact to say, that the oblLjiiity of the ecliptic is equal to

half the difference of the greatest and least meridian altitudes or

zenith distances of the Sun. But, as it is very unlikely to happen,
that the Sun should be on the meridian of the place of observation,

when at his greatest declinations, or since there is only one longi-

tude or terrestrial meridian at which the greatest declinations can

be observed, the practical difficulty is to infer and compute the

really greatest declination from the greatest observed one. One
method of effecting this has been already given : but, there is

perhaps a better that requires the previous determination of the

time at which the Sun comes to the solstice : this latter method,

however, requires the Sun's longitude to be known ; which can

indeed be, from the declination and right ascension, by the solution

of a right-angled spherical triangle [see Fig. p. 43]. But, since

as yet no method of ascertaining the latter of these quantities has

been given, the second way of determining the obliquity must be

postponed.

There is some calculation necessary, so it has appeared, to

determine the Sun's greatest declination, but the common decli-

nation is very readily determined, when the latitude is known,
for instance,
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1810, 20th June, . ILL* 61 29' 16"

L. L. 61 46

2) 122 30

Altitude of Sun's (center - - - - 61 15 1

Co-latitude of Cambridge - - - 37 47 24

Sun's decimation ....... 23 27 37

In this Chapter, has been shewn the use that may be made

of the meridional altitudes of heavenly bodies, observed

either by the quadrant or circle. The height of the equator,

the equinoctial points, the obliquity of the ecliptic, have been

determined. But, the methods of using observations and of

determining these points, must, for the present, be considered

rather as roughly sketched than as accurately described. No
mention has been made of corrections to the observations Hitherto

the observer has been supposed to be, in an atmosphere not re-

fracting, at the center of the E^rth, and without motion. Yet,

these suppositions, although erroneous, will be continued in

the two succeeding Chapters ; for, the principle of things therein

to be determined will not depend on the theory of corrections,

although the detail and process may.

*
(7. X. L. L, denote the Sun's upper limb and lower

limb.



CHAP. VIII.

Transit of Stan over the Meridian. Right Ascension. Sidereal

Day. Mean Solar Day. Year. -Longitude of the Sun.

Latitude and Longitude of thefixed Stars. Angle of Position,

ALMOST all Astronomical computation is founded, as it has

been already observed, on observations made on the meridian.

The method of making one class of these observations, that of

meridian altitudes and zenith distances, has been already explained.

But, the place of a star in the Heavens depends not solely on
his height in the meridian, but also on its lateral angular distance

from some point, by convention, made a fixed point ; if this

latter point be to the east of the star, it will come to the meridian

of the observer after the star, by a certain interval of time. The
measure of this interval depends on the value of the angle con-
tained between two secondaries to the equator, one passing

through the star, the other through the fixed point. For instance,

if the angle be 30, the interval will be i-th of the whole interval
12

between two successive transits of a star over the meridian : if

the whole interval were called 24? hours, it would be 2 hours,

Hence, it appears, that the lateral angular distance of a star from
a fixed point, or from another star, may be expressed in time : and

hence, arises the necessity of marking the exact time of the transit

of stars over the meridian. On this second class of observations in

the meridian, depends the right ascension of a star. That term,

formally defined, is the angular distance, of a star referred to the

equator by a secondary passing through the Star, from the inter-

section of the equator and ecliptic.

For the purpose of marking the transits of stars, there are, as it

has been mentioned, in the field of view of the telescope, several

equidistant vertical wires, in number, usually five. The instant at

which the star is on the middle wire, is the time of transit i
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when on either of the two wires to the left of the middle one,
the time precedes the time of transit exactly by as much as it

is after when the star is on the corresponding wire that is

to the right of the middle one : hence, if the several times at

which the star is successively on the 5 wires be added together
and the mean taken, it will be the time of transit.

Thus, by the Greenwich observations,

Regulus*

Here the mean of the transits of

Regulus is ^ [49
n 45m 33 8

] = 9h 57m 6 s
. 6,

and of Aldebaran
| [21 58 57 . 9] = 4 23 47 . 58 :

the first differing from the transit at the middle wire by 1 of a

second, the latter by jjth *.

The time of the transit is to be marked by a clock or chrono-

meter f. But how is the clock to be adjusted and regulated?
If we say its index or hand ought to perform an exact circuit in

the course of a dayy we may farther enquire what portion of time

that term is meant to denote ? The natural and obvious portion
seems to be, that which is contained between, two successive transits

of the Sun over the meridian, or, two successive noons ; and accord-

ingly, clocks were originally constructed to measure it, and were

supposed to go right if they agreed with the Sun. But, by the

* In Fig. p. 5, ab, and ss' are passed over in equal times, but $&' is

less than ab in the proportion of cosine of sb to radius; therefore the

time of describing a space rz ab on the parallel asm is to the time of

describing the same space on C& the equator as radius to cosine of sb, or

as radius to cos. declination. Now, analogous to the equal spaces ab,

is the constant interval of the vertical wires ; therefore, the times of

passing that interval by different stars arc inversely as their cosines of

declination : hence, from the times we may determine the declination,

and hence the cos. declination of Regulus is to the cos. declination

of Aldebaran as 38". 1 to 37".5 : which by the above Obs', line 9, 1O. are

the times of the passages of those stars cross the intervals of the wires.

f This is the third essential instrument of an observatory. The

transit instrument, the quadrant, the clock, are, as Robison well ex-

presses it, the capital furniture of an observatory.

O
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improvements in machinery, these time-keepers were soon made so

nicely and accurately, as to indicate an irregularity in the Sun's

diurnal motion : they seemed to shew that Solur days were une-

qual : for the more nicely constructed the clock, the more plainly

did it indicate the inequality. Solar days then being variable in

their duration, it became necessary to seek for some other means

of regulating clocks : such were found in the intervals of the

transits of fixed stars: these intervals, in other words, Sidereal

days, are equal, on the supposition of the Earth's uniform motion

of rotation ;
which supposition is, at least probable, since neither

observation nor theory indicate any thing to the contrary.

Sidereal days, then, are equal ; and, a clock regulated by the

transit of fixed stars, or adapted to sidereal time, would plainly in-

dicate real solar days to be unequal. A mean solar day, however,
is invariable : for that, as its name imports, is divested of irre-

gularity. It is a portion of time not marked by any phenomenon,
but merely fictitious : exceeding a sidereal day by a constant

quantity.

A Tear is the time elapsed between the departure of the Sun,

from, a certain part of the Heavens, or, a fictitious point in the

Heavens, and his return to the same. If the elapsed time be be-

tween the Sun's leaving a star and his return to it, the year is called

Sidereal : if between his entering the equinoctialpoint or first point

of ArieS) and his return to the same point, (which is not fixed,) an

Astronomical year : let this latter year be supposed to be divided

into as many portions as there are days, and one of the divisions is

a mean solar day.

By observation it appears that in the time between the

Sun's leaving the first point of Aries and his return to it, 365

days and about ^th
of a day elapse ; in other words, the Sun

has passed the meridian of the observer 365 times, and, if he was on

the meridian when he first left the equinoctial point, had, besides,

passed the meridian nearly 6 hours when he returned to it : hence,

if all the solar days were equal, the increase [seep. 35.] of the

Sun's right ascension every day, or the additional angle which the

Earth, having performed a complete rotation, must move through,

again to bring the Sun, moving equably, on the meridian of the

obServer,is= =59' 8". 2.
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A clock or chronometer then, the index of which performs an

exact circuit whilst the Earth, or, what is the same thing, the

meridian of the observer, moves through an angle equal to

360 59' 8". 2, is said to be adjusted to mean solar time.

A sidereal day is the interval between two successive transits

of a star over the meridian, and is completed when the meridian

of the observer has moved through 360 : it is less than a mean
solar day in the proportion of 360 to 360 59' 8''.

LZ ; and conse-

quently, expressed in the hours, minutes, seconds, of mean solar

hours h m

time, is equal to
o y/>g

X 24 = 23 56 4.098.

The transits of fixed stars are used for regulating clocks, and,
since we now know the value of a sidereal day [23

h 56m 4s
. 098],

they maybe used for regulating clocks adapted to mean solar time.

But, in practice, the clocks of observatories are adapted to sidereal

time ; in such time, the right ascensions of stars are expressed,
and certain tables are calculated, from which, with little

difficulty, sidereal time may be converted into mean solar time.

The right ascension of the Sun, is always expressed, in the

Nautical Almanack, in sidereal time.

If the index of a sidereal clock were at when the first point of

Aries [see pp.42, 47-] were on the meridian, then, the times indi-

cated by the clock, when other stars were on the meridian, would

express the right ascensions of such stars : for instance, a clock

set, as we have described, would in the year 1810, thus indicate

the times of passage over the meridian,

Andromeda ..... O h 28m 39'. 02

Aldebaran ------ 4 24 51.50

Spica Virginis
- - - - 13 15 11.48

which times are the right ascensions.

In this method we must know the time, when the ima-

ginary intersection of the equator and ecliptic, or the first point

of Ariesy is on the meridian : now, there being no star in that

point, we can only determine it, by ascertaining when the

Sun enters the equator; that is, by ascertaining the time at

which, if on the meridian, his height above the horizon would

equal the co-latitude of the place of observation * : and here the

* See pp. 37, 38.
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practical difficulty is, of the same nature, as that which occurs in

finding the solstitial declination [see p. 44], For instance, the

co-latitude of Cambridge is 37 47' 24'': but [see p. 34,] on

March 20, 1810, the Sun's altitude was 37 29' 27", on March 21,

37 53' 8" : the one too small, the other too great : at some inter-

mediate time then, the Sun was at the altitude 37 47' 24", or in

the equator. In order to find it, we must use this formula* :

y = a + Jx 4- d'*(*~ l) + 8cc.

in which dy d'y &c. are the 1
st

, 2
rt

, differences of ay by cy &c. which

represent the declinations on the 19 th
, 20 th

, 21 st
, 22

J of March :

that is,

1st Difference

a = 41' 38''

b == - 17 57
~ 23 41

23 41

23 39

2d Difference

Ott Al
r = 4- 5 44

e = + 29 23

Hence, putting y = 0, (the declination of the Sun in the

equator) we have nearly, rejecting the third term,

= - 41' 38" + 23' 41". A?;

23 X 604-41

Hence, March 20 th
, at 18 hours 11 minutes 23 seconds, mean

solar time, the first point of Aries was on the meridian.

If therefore, at this time, a sidereal clock be adjusted to

Qh Qm Q^ it wj|i shew the right ascensions of stars that pass the

meridian at subsequent hours. But the clock may not move

equably : its rate of going must be ascertained by the transits of

fixed stars : their right ascensions therefore must be known j that

is, right ascensions must be supposed to be known to regulate

that, which was described as determining right ascensions. This

seems to be something like arguing in a vicious circle : and in

fact, there is no independent and original method of determining
the right ascensions of stars : they are ascertained only by methods

tentative and approximate, and by successive corrections : and can

be supposed to be known, only after a long series of accurate

observations. The Astronomers of Greenwich, from Flamsteed to

* Sec Trigonometry, p. J93.
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Maskelyne, have been employed in fixing, with still increasing

degrees of precision, those important elements of Astronomy, the

right ascension of stars. [See Appendix. ~\

The right ascensions of thirty-six principal stars are now
ascertained with considerable precision, and have been registered
in a table by Dr. Maskelyne. These are used to regulate the

sidereal clock : and the latter for ascertaining the right ascensions

of the Sun and Moon, of planets, and of any star the place of

which may be considered as not settled with sufficient accuracy.
It was said [p. 51,] that the index-hand of the sidereal clock

should be when the first point of Aries is on the meridian. But

it will easily be seen, that this condition is not necessary, and

was introduced only for simplicity of explanation. When one of

the principal Stars is used for regulating tjie clock, the latter may
indicate any time. For instance, suppose, on Nov. 26, 1810, the

sidereal clock to indicate 3 h 12m 15 s

, when Arietis, whose

right ascension is l
h 56m 32 S.75 was on the meridian, then the

right ascension of a Star on the meridian, when the clock indi-

cated 14h 29m 55 .65, would be 13'
1 14m 138

.4 : since the clock

by the first comparison is too fast by l
h 15m 42

s

. 25. It is not ne-

cessary, then, that the sidereal clock should immediately indicate

the right ascension of stars : neither is it necessary, that it should

move at the same rate as the Stars ; that is, the seconds which it

beats may be either less or greater than the real seconds of sidereal

time : the sole important i-equisite is, that it should gain or lose

equably. That circumstance taking place, the corrections for its

variation from true sidereal time are easily made : thus, suppose

by comparison with certain of the 36 fixed Stars previously men-

tioned, it appeared at 6 h 40m, that the clock was 3 s
. 123 too fast,

and 16 hours afterwards by comparison with other fixed stars

3\095 too fast; then, in 16 hours the clock had lost 3 N 123

3
S
.095 or .028

s

: therefore, if it lost equably, in 8 hours it would

lose .014' in 4 hours .007-, &c. ; or, at 10 h 40m the clock would

be too fast 3 .123 007, or 3M 16 ; at 8 h 4081 too fast 3M23
.0035

s

, or 3<. 1195.

When the right ascensions of stars are known, it is easy to

determine at what time of the day they will be on the meridian.

For instance, at the vernal equinox the first point of Aries

and the Sun are on the meridian together : or it is noon

when a star whose right ascension is is on the meridian. A star

situated in the solstitial colure has a right ascension either equal
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to 90, or to 270, therefore at the time of the equinox comes on

the meridian, either at six in the evening, or at six in the morning,

y Draconis is nearly on the solstitial colure, its right ascension

being [in 1800] 267 59' 40" : and accordingly in March comes

on the meridian at six in the morning : in June, the opposite part

of the solstitial colure being on the meridian at noon, y Draconis

comes on the meridian about midnight. But, in December the

Sun and the Star are on the meridian together *.

We may now be supposed to understand the methods of

determining, from observation, two of the most important ele-

ments in Astronomy, the declinations and right ascensions of

Stars : on these the places of celestial objects depend : longitudes

and latitudes are not observed, but, from the former, computed.
The Sun's longitude is computed either from his observed decli-

nation and right ascension ; or, from his declination and the

obliquity of the ecliptic ; or, from his right ascension and the

obliquity : thus, let T S be part of the ecliptic, and Vt part of the

equator, and let St be part of a circle of declination : and let the

Sun's longitude Nov. 28, 1810, be required, his declination being
21 16' 4-'', and right ascension 16 h 14m 58 8

.4, or in space,

4-3 44' 36".

By Naper's rule, r x cos. T& = cos. ft x cos. St ;

/. log. cos. T t or log. cos. 243 44' 36" = 9 .6458083

log. cos. S /, or log. cos. 21 16 4 == 9.9693672

10 + log. cos. r S 19.6151755

* Seethe Appendix for a simple Table for determining the tirnr

of a given Star crossing the meridian.
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=s 245 39' 10'' the longitude required ;

or = 8 s 5 39' 10''.

2dly, Required the Sun's longitude Nov. 29, from his decli-

nation = 21 26' 35'', and obliquity = 23 27' 41".3.

By Naper, r x sin, st sin. yS X sin. 5 V/;

/.log, r 4- log. sin. 21 26' 35" = 19.5629781

log.sin.23 2741.3 = 9.6000276

log. sin. TS = 9.9629505

.-. longitude = 246 40' 6'', or 8 s 6 40' 6''.

3dly, Required the Sun's longitude Nov. 30, from his R. A.=
16'

1 23m 34s

, and the obliquity of the ecliptic
= 23 a 27' 42 /x

.3.

By Naper r x cos. SyV = cotan. ST xtan. y/;
/. log. r +log. cos. 23 <27

7 42^.3 = 19.9625237

log. tan. 16h 23m 34M = 10.3492191

log. cotan. T S == 9.6133046

.-.longitude =247 40' 56/x

,

or =8 S 7 40' 56'',

The longitude in these examples is computed from the right as-

cension and declination, conditions given by observation. But, in

the construction of the Nautical Almanack, the reverse operation
takes place. The Solar Tables give the Sun's longitude : thence,

and from the
obliquity of the ecliptic, the right ascension and

declination are computed, by trigonometrical operations, similar to

the preceding.

The latitudes and longitudes of stars also aro computed from
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their observed declinations and right ascensions and the obliquity
of the ecliptic. In Fig. p. 55, if E S, el are quadrants, St is the

measure of the angle at E *. or the measure of the obliquity : but,

Pt> wS, being quadrants, are equal; .'. PK = St ; .-. Pie is the

measure of the obliquity ; hence, if we conceive an oblique

angled spherical triangle sPw9 s being the star, P and TT the poles

of the equator and ecliptic, we have given Ps the complement
of declination, or north polar distance, PIT the obliquity, sPie

the complement of the right ascension, in order to determine

J-TT the complement of the latitude. The determination of the

latitude of a star s then, is reduced to the solution of this trigo-

nometrical problem : given tho two sides Pir9 sP and the included

angle j-Pn-, it is required to determine sir.

Let sic = r, Ps = #, P^r = b, sPw = C,

then assuming a subsidiary angle 6, such, that

_ --- sin. a sin. 3.ver. sin. C .

[tan. 9]
J =-:

--- t>u
ver. sm. [a b\

there results

2 [sin. *~Y ver sin. [a ^] [sec. 6]
a

for the determination of r, the complement of the Star's latitude.

For the determination of the angle j-vrP, the complement of

the Star's longitude, we have (c being found)

sin. svP, or cos. of the Star's long% =
sin - ^" sin C

sm. c

or, independently of the latitude, the longitude may be deter-

mined by means of Naper's analogies J.

Trigonometry, p. 91.
(

Ibid. p. 129. t Ibid. 12U.

EXAMPLE
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EXAMPLE I.

Required the latitude of y Draconis, its right ascension being

[1726] 267 33' 44" : its north polar distance [0] 38* 28' 1 1", and

the obliquity [] being 23 28' 18".

= 38 28' 11" -log. sin 9.79386

b = 23 28 18 -
log. sin 9.60020

f270 267 33' 44"] C = 2 26 16 -
log. ver. sin. 6.65556*

26 . 04962

0- = 14 59 53 -
log. ver. sin 8. 23132 [1]

2 log. tan. 17.81830

log. tan. 6 - - - - 8.90915

.-.29=4 38' 16" j log. sec. - - - - 20.00285

[1.] 8.23132

28.23417

.'. log. 2 4- log. sin. |, or, log. ver. sin. =8.23418

.-. r, or the complement of Star's latitude 5= 15 2' 55".

In order to find the longitude, we have from the logarithmic

expression of the preceding formula, p. 56,

log. sin Ps 9.79386

log. sin. C 8.62874

18.42260

log. sin. vs - - - - - 9.41436

log. sin. svP - - - - 9.00824 = log. sin. [180- (5 50' 58")]

.*. longitude
= 90 + 174 9' 2"= 264 9' 2".

* The numbers in this Example, as in that p. 59. 1. 18, were taken

from M. Meudoza's Tables : in which the log. ver. sines are diminished

by log, 2. [see Trig. p. 32.]
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EXAMPLE II.

Required the latitude and longitude of u Ursa majorls.

[1725] right ascension = 204 10' 8"

North polar distance [a] 39 J8 5 - - - sin. ,..9.8016778

Obliquity of theecliptic [] 23 28 18 - - - sin....9.6002054*

270>-204 I
7 8"= - - 65 49 52 - - ver. sin.,9.7712730

29.1731562

[a b] 15 49 47 - - ver. sin. 8.5788920

2)20.5942642

log. tan. 10.2971321

.-. 2 log. sec. 0= 20.6927580

log. ver sin. [ b~\ 8.5788920

29.2716500

log, v -f- log. 2 10.3010300

2)18.9706200

log. sin. I
9.4853100

.-. <:, the complement of latitude, is equal to 35 36' 7", and the

latitude accordingly is 54 23' 53". For the longitude,

sin. 39 18' 5'' 9.8016778

sin. 65 49 52 9.9601579

19.7618357
sin. 35 36 7 9.7650353

9 9968004

.-. the longitude is 90* -f 83 3r
13'

x

, or 173 3' 13".

When through a Star great circles are drawn respectively from the

poles of the equator and ecliptic, they form at the Star an angle

called the Angle ofPosition : P and w, being the poles, it is the angle

PSK : which may be computed from the obliquity [Pw] and from the

star's complements of latitude and declination v /, Ps \ or, from the

obliquity Pv> north polar distance [Ps] and right ascension [sP*].
The value of the angle will evidently vary according to the posi-
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tion of the star. If s be situated in P* produced, it will lie in

the solstitial colure [see p. 41.], and then Psv = 0, as indeed

the formula for the value of the cosine of PS if shews : for since

in t{iis case

vs = Pit + Ps,

~~* Z> cos * PV cos Ps cos * if* r TT ~~ -.cos. rsn z=-:
--

:
- [see Trtg. p. 99.1

n. Ps sin. TTJ-
L ^ r J

PJ-] -COS.

sin. Pj-.sin.

:
--

:

sin. Ps sin.

COS. [vs PJ-] -COS. PJ .COS.
"

sin. wj.sm. JTS= - -
;

= 1 J

sm. Ps . sin. ITS

consequently, PSK = 0.

This angle of position is employed in several Astronomical

computations : we shall perceive its use in the theory of the aber-

ration of light: it there performs the office of an involved ex-

pression, or of an undeveloped function of the obliquity, right
ascension and declination.

If we wish to calculate the angle of position of y Dracoms^

we have, sin. angle position
= sin. obliquity x !

m '

. :

sin. Ps

. by logarithmic computation,

log. sin 23 28' 18" 9.6002O

log. sin 2 (26 16 8.62874

18.22894

log. sin 15 2 55 9.41436

angle of position = 3 44 28 8.81458

Angle of position of >j Ursa majoris [see p. 58]

log. sin 23 28' 18" 9.6002054

log. sin 65 49 52 9.9601579

19.5603633

log. sin 35 36 7 9.7650353

log. sin. angle of position .9.7953280

.-. angle of position is 38 37' 26".

By such methods, then, may the angles of position, the latitudes

and longitudes of stars, be computed. But, these latter are of much
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less use, to the practical Astronomer, than the right ascensions

and declinations of Stars ; and accordingly they are rarely inserted

in the catalogues of the fixed Stars. Flamsteed's contains them,

and Lalande's, but not Bradley's, nor Lacaille's, nor Mayer's Still

however, the latitudes and longitudes of Stars and the angles of

position
* are useful results : for instance, in the theory of the

aberration of light, in which they enter into the composition

of the formulae. And, in the ensuing Chapter, we shall have an

additional instance of their use, in the computation of the

precession of the equinoxes.

* M. Lalande, Astron. 2d Edit. vol. I. p. 488, has given a table of fhe

angles of position of stars, with their variations (from the effect of pre-

cession). Thus,

In the Connoissance des Terns for 1 804, there is also inserted a catalogue

of the latitudes, longitudes, and angles of position of stars.



CHAP. IX.

Precession of the Equinoxes. Solar or Tropical Year. Its

Length. Sidereal and Anomalistic Years. Their Itengths^ and

the Methods of computing them.

IN the former Chapter, methods have been given for com-

puting the time of the Sun's coming to the equator in the equi-
noctial point ; the interval between the Sun leaving that imaginary

point, usually called the first point of Aries, and his return to the

same : that is, the interval between the meridian altitudes, equal
to one another, and to the complement of the latitude of the place
of observation, is the length of the Astronomical year ; now, in

this interval, the Sun has returned to the meridian 365 times, and

besides, has gone through, nearly, one fourth of his diurnal re-

volution : that is, the Astronomical year is not exactly equal to

365 days, but to 365d 5 h 49ra 0\53.

From this imaginary intersection of the equator and ecliptic,

the longitudes of Stars are measured : if the point of intersection

remain fixed, that is, if this year and the next, it be at the same
distances from two fixed Stars, the longitudes of stars will remain

unaltered. But it may change \ that is, the Sun, after the interval

of a year, may return to the equator at a point different from
that in which he quitted it. When his declination is nothing, his

distances from two fixed Stars, may not be the same as they were,
at the beginning of the year. In such case, the longitudes of

stars will be changed. If this latter be the fact, by what means,
can it be ascertained?

We have already seen how to compute the time of the

Sun's entering the equinox, even if his declination should not be

nothing, when he is on the meridian [see p. 52.] A sidereal

clock will note that time, and on the same day will note also the

right ascension of a certain fixed Star ; its declination may bo,

observed : and thence (the obliquity of the ecliptic being known)



62 Precession of the Equinoxes.

its longitude may be computed. The same process may be re-

peated at the end of the year : then, if the longitude last deter-

mined does not differ from the former, the equinoctial point, or

the first point of Aries* (the imaginary intersec tionof the equator
and ecliptic,) has not changed. But, the fact is otherwise \ the

two resulting longitudes, are different : that at the end of the year
is found to be the greater : consequently, since the star is sup-

posed to be fixed, or not to have varied its place, the point of

intersection, or the first point of Aries, must : and its place, to

account for an increase of longitude, must have shifted to the

westward, or in a direction contrary to the order of the signs.
It is this westerly motion of the imaginary intersection of the

ecliptic and equator, that is called the precession of the equinoxes.

An instance may illustrate this curious Astronomical fact : by
computation from the meridian heights of the Sun in 1809,
on March 19, 20, 21, the Sun entered the equinox March 20th,
at 12h 14m : suppose the sidereal clock at that time to

have been set to O'
1

: then, the Star Aldebaran being on the

meridian, it indicated 4 h 24m 5;. ; this was Aldebaratfs right as-

cension : his declination observed was 16 6' 2": therefore taking
the obliquity of the ecliptic

= 23 27' 44". 8, his longitude by cal-

culation [see p. 56. J will be found to be 9
s

7 fi' 59 5" : again, by
a similar method, Ahlebaratis right ascension March 20, 1810,
was shewn by the clock to be 4 h 25'

n
1

s

.5, and his observed

declination was 16 6' 10"; consequently by calculation, his lon-

gitude is 2 1

7 7' 49".8 the difference of these two quantities shews
that the equinoctial point has moved to the right of Aldebaran*
or to the west, about 50 seconds

This is the method of ascertaining the precession as an Astro-

nomical fact : and every part of such method, whether of obser-

vation, or of computation, has been already explained.
The intersection of the equator and ecliptic (always called

the first point of Aries*] continually varying, the right ascensions

and longitudes of stars which are reckoned from that point must
also continually vary. Hence, a catalogue of fixed stars, if it

merely expressed their right ascensions would be useless, except
on the year for which it was constructed : but, it expresses

besides, the yearly change, or annualprecession in right ascension :

by means of which, the right ascension and declination of a star

from the year for which it is tabulated, may be reduced to a pre-
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ceding, or brought up to a succeeding year. Celestial Atlases also,

or maps of the Heavens, although exact in their representation for

one epoch only, since allowance can be made for the changes in-

troduced by precession, do not cease to be commodious to the

Astronomer.

In order to ascertain the quantity of the precession to a greater

exactness, we ought to compare the longitude of a star, not, at the

interval, of a year, but, of several years : since any error committed

in the observation will, in that case, less affect the result : for

instance, if two longitudes of the same star are compared together,

after an interval of 100 years, and the error of observation and

computation be 5", the corresponding error, in the quantity of the

annual precession, will be only ^55,
or. 05". It is, in fact, diffused

over the number of years. But, Astronomers have taken a greater
interval than 100 years : M. Lalande in his Astronomy has com-

pared an observation of Hipparchus made 128 years before

Christ with an observation made in 1750 : thus

128. A. C. longitude of Spica Virginis == 5" 24 0'

In 1750 ..................................... = 6 20 21

Augmentation of longitude ......... m '26 2 1

Oft
15

<?]/
/. the mean annual precession = 1 ^_~_ = 50" 30'", &c.

J 8/8

The same author, by a great number of like comparisons, found
the secular precession, that is, the accumulated precessions of

100 years to be 1 23' 54?''*: and consequently the mean annual

precession, that is, the precession, supposing its quantity to be the

same every year of thfe hundred, to be 5O".34<. In the new French

Solar Tables, however, the precession is stated at 50''. 1. The
secular precession- of 1 23' 54*"9 gives nearly 1 for the pre-
cession in 7 1-j- years: and about 2574s5 years, for the period in

which the precession moves through 300 degrees : or 25869

years, if we take the precession at 50y. 1 .

The precession may be geometrically exhibited : let P be the

* 2d Edition, p. 392
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pola of the equator T2, * the pole of the ecliptic TL ; irP, the

distance of the two poles, being the measure of the obliquity of the

ecliptic. Now if T, the intersection, shifts by a retrograde
motion to If', Q the solstitial point, distant from T 90 degrees,
shifts to q : consequently, the pole P is transferred to a point p
in a circle Ppk described round ie as a pole for although

rhe intersection of the planes of the equator and ecliptic varies, the

inclination docb not, and therefore nP = <np.

,_ 50 t , ^ p^
-

n seconcis of the circle Pp ,= 50". 1 : but,

in seconds of a great circle,= 50. 1 X sin. 23 28' |>P:=23o.28] =
19''.9. Since Pp is described in one year, the whole circum-

ference of Ppk is described by P in 25869 years.

This principle of finding the annual error, by taking the ac-

cumulated error of several years, and then dividing by the number
of years, has been applied to the determination of the length of the

solar year : thus, by observations made at Paris (where the latitude

is 48 50' 14?" and the co-latitude accordingly 41 9' 46".)

March <2O, 1672. meridian altitudes . U. L. was 41 43' O"

March CO, I?l6 .......... 41 27 10

March 21, 1716 .......... 41 51

Now the difference of declination, between the two first ob-

servations, is 15' 50'': between the two last, 23' 50//
: and
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since 24 hours is due to this latter change of declination,
we have the time, due to the change of 15' 50", equal to

15' 50"
. x 24 11

, or 15h 56m 39 s
: consequently, March 20, 1716,& 3 O\J

15 h 56m 39 s the Sun's declination, was the same as on March 20,
1672 : now, the number of intervening years is 44, that is,

[365 x 34 4. 366 x 10 *] days, or 16070 days: hence, the

whole interval of time between the equal declinations is

I6070d 15" 56in 39 s
. But, by the definition of an Astronomical, or

solar year, an exact number of years must have elapsed betweenthese
two observations

;
which number is 44 : consequently, the mean

length of each year must be
lfi 7

J 15"
5ffl

' 39
,

44
or 365d 5 h

49m 0' 53'".

This is the length of the solar year according to the observations

that have been recorded, and, deduced from such observations, it

is called the apparent solar year, in order to distinguish it from
the mean solar year, which M. Lalande f, by the comparison of

the most exact observations, has determined to be 365d
5 h 48 rn

48'.

The reason of the distinction between the apparent and mean solar

year will be hereafter shewn.

In the precept given, p. 61, for finding the length of the year,
the interval elapsed between two appearances of the Sun in the

equator, that is, between two meridian altitudes, each equal to

the co-latitude of the place of observation, was directed to be

computed 5 but, in the preceding instance, the interval elapsed was
between two equal declinations near the equinoctial point : the

principle of this latter computation, however, is plainly the same

as that of the precept. The length of the year may also be

similarly computed, from the interval of time elapsed between

two appearances of the Sun in the solstices, or, from two equal
declinations near the solstices. And, M. Cassini, p. 233 of

his Element ffAstronomic, states that there are some peculiar

advantages belonging to the latter method. It does not require the

latitude to be known, nor the actual altitude of the Sun to be

* Ten leap years amongst the forty-four.

f- Abregt d y

Astron, pp. 35, 120. Also, Mem. sur la veritable dwei

de V annet solaire*

I
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exactly assigned by the instrument. It is sufficient to observe the

Sun when it is lowest or highest : and this operation, to a certain

extent, is independent both of parallax and refraction.

The year thus computed, from observations of the Sun near

the solstices, and, consequently [see p. 40.] near the tropics, is

called the Tropical Year.

Since the imaginary intersection of the equator and ecliptic

may be conceived to have a westerly motion, and seemingly to move,

in order to meet the Sun before he has completed an entire

circuit of the Heavens, the solar or tropical year must be less

than the interval of time due to such an entire circuit
;
that is, less

than the interval elapsed between the Sun's quitting a star and

his return to the same star; or, less than the interval between

two successive situations of the Sun and a star, when the re-

spective differences of their longitudes are equal. This latter

interval Astronomers have denominated a Sidereal year.

The length of the sidereal year is easily found : for the solar

year is 3S5d 5 h 48m 48 s
: in that time, the Sun describes 360

minus the precession (50".34) : in a sidereal year he describes

360: hence,

360 - 50".34 : 360 :: 365 tl 5 h 48m 48 5
: 3(>5d 6h 9m II 5

-,

the fourth term 365 J 6 h 9
m 11 s

, is the length of a sidereal year.

The length of a sidereal year (an element of little or no impor-
tance in Astronomy) has been determined from the ascertained

quantity of precession : but, it may be determined independently,
and on principles the same as what have been already stated :

for instance,

1669, April 1, at Oh
3 47': difference of the long, of

and Procyon 3 8 59' 36".

1745, April 2, at ll
h
10

TO
45

S

the same difference: hence, in this

interval of 76 y I9
d

ll h 6 58% or 27759'1

ll h 6
m

58 s

, by the

definition of a sidereal year, an exact number of such years had

elapsed : but, that number can be only 76 :

consequently, the

length of one year = ^^
** = 365 d 6 h 8- 47.

The common civil year consists of 365 days : every fourth year,

however, it consists of 366 days : and there are other regu-
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lations prescribed by the Calendar which will be explained here-

after. But, it may be now observed that the Calendar is con-

structed solely with reference to the solar or tropical year. On
that the seasons depend. For, ceterls paribtis^ at the same place,
the temperature, or the degree of heat, will depend on the Sun's

declination. When the declination is greatest and northern, it will

be, to an inhabitant of the northern Hemisphere, the height of

Summer ; it will be the time of the Summer solstice : when the

greatest and southern, the depth of Winter, or the time of the

Winter solstice, [see Chap. III. p. 16.]

As it does not require very exact instruments *, nor very nice

observation, to ascertain the two days of the year, when the meri-

dian altitudes of the Sun are respectively the greatest and the least,

the Antients easily discovered that the year consisted of days, the

number of which was neither less nor greater than 365. And,

conjecturing the simplest theory to be the true theory, they ex-

pected that this number of days was the exact time of the year :

or, in other words, that the Sun would return to the equator,

after he had passed the meridian an exact number of times.

Many years, however, passed away, before observations, sufficiently

accurate, proved this not to be the case : and still more accurate

observations were requisite, to determine the exact excess of time

above 365 days, that was necessary for the return of the Sun to

the equator, in that part of the Heavens which he had quitted at

the beginning of the year.

The length of the year depends on a mere Astronomical fact ;

the return of the Sun, after an interval of about 365 days, to the

same meridian altitude: for, it is meridian altitude which is

observed. If we take the altitude at noon on March 20, 1809,

then, on March 20, 1810, the altitude will be less, on March 21,

greater : consequently, if the observer would see the second meri-

dian altitude that is equal to the first, he must, on the same

parallel of latitude, travel towards the East through 89 30' of

longitude, and March 2 1 , near the Albany River in America, would

observe the Sun at the same meridian height above the horizon,

as at Greenwich the preceding year. The necessity of this second

observation, is, as it has been explained [p. 52.] superseded by an

The shadow of a stile would be almost sufficient for this purpose.
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easy process, by which the difference of time (about 5 h 58 m
) is com-

puted for the Sun's defect of declination, on the noon of March 20,

1810, from his declination on the noon of March 20, 1809.

Previously to observation, the bias of the mind is towards a

belief in the simplicity of theories. We feel inclined to sup-

pose the simplest hypothesis to be the true one. Accordingly, the

return of the Sun to the equinoxes after a complete circuit of the

Heavens, and, after an exact number of days, are circumstances,
which antecedently to experience, we should conceive as likely to

happen. But, observation shews that this nice adjustment of cir-

cumstances is not preserved. The Sun, at the end of the tropical

year, has still a little farther to move before he has completed
his revolution amongst the stars : and has passed the meridian of

the observer nearly 6 hours, if he were on the meridian at the be-

ginning of the year. Perceiving, therefore, this departure from

simplicity, the Student might be led to enquire, whether the wes-

terly motion of the equinoctial points, were uniform, or whether
the Precession* as it is technically called, were each year the same :

he might also enquire whether each year were exactly the same

length: for, anomalies introduced into one part of the theory,

may affect the whole.

It must be obvious, that the only satisfactory answer to these

enquiries must be drawn from observation : and that proves the

precession, each year, not to be invariably the same : and besides,
the length of each year to be subject to an inequality or variation.

Both these points are established by taking at different intervals,

by the methods given in pp. 63, 65, the quantity of the pre-
cession, and the length of the year. This latter point, the length
of the year, if followed, would lead into discussions of a nice and
intricate nature : mere observation, indeed, seems hardly able to
solve their difficulties. If we estimate the interval of time elapsed
between the Sun entering the equator on March 20, 1809, and
his return to the same on March 21, 1810, by the definition, that
interval is a real solar year. If we estimate the interval between
two equal declinations, near the equinox, that happened in 1672,
and 1716, by the method given in p. 64-, then we get the

length of a solar year, supposing each of the 44 years to be equal :

such is the mean length of one of those years. But, which may
seem strange, such length is not the length of a mean solar year. As-
tronomers intend something different by the term Mean solar year :
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and they have agreed to call the former Apparent solar year. And
the reason for the distinction is this ; the real path of the Sun is

an ellipse, in which he moves with a variable velocity : now it

happens, that the part of the curve in which he is moving when
he comes to the equinox, is not the same as that in which he will

be moving at the end of the year; consequently, since his velocity

is continually varying, he must then move with a different

velocity.

In the Figure, supposing FtQ be the intersection, of the solar

ellipse PVAOj and of the equator, for the year 1 809 ; then, the

next year, the point V, the vernal equinox, will have shifted to a :

in other words, the Sun will be at a when he enters the equator :

but, from the properties of elliptical motion, the velocity at a is

greater than the velocity at V: the year following, 1811, the

intersection will again have shifted to , and at , the Sun will

move with greater velocity than he did at a. This is the statement

of the fact, and its farther developement and explanation is re-

served for a subsequent part. But, we may use what has been

just shewn, to explain the length of a mean solar year. At the be-

ginning of an aera, suppose the equinoctial point to be at V then,

after this point has moved through a, b, P, O, to V again, that is,

when the line PEAy called the axis major, shall have, round E as

a center, moved through 360, the aera will be finished, and all

the variations of velocities will have taken place, and will again

begin to recur, similarly through an equal sera : hence, if we could

estimate the interval of time due to such an aera, and divide it by
the number of years, we should obtain the length of a mean solar

year : this, theoretically, is the length : but since there can be no
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observations so far distant * as to give the interval, Astronomers, by
the aid of theory, have endeavoured to supply the deficiency of

real observations.

Two kinds of years, the Solar or Tropical, and the Sidereal, have

been defined and determined. There is, besides, another, like the

latter, of no essential use, called by Astronomers, the Anomalistic

year. At a certain time of the year the Sun's diameter, if measured

instrumentally, would be found to be the least ; at that same time,

the Sun would be seen in a part of his orbit called his Apogee \

for, since his disk is smallest, he must then be most distant from

the spectator \ this point in the Figure [p. 69,] is A : it is one of the

extremities of the major axis of the solar ellipse. Now, if at the

end of an interval, nearly a year, from a first observation of the

Sun's least diameter, a second were made, and the Sun were seen

towards the same part of the Heavens, (at the same distance, for

instance, from two known stars,) then would the Sun have moved

from A through QPV in the time of a sidereal year. But, the

Astronomical fact is different. The Sun, at the end of the inter-

val, if apparently of the least diameter, will not be seen towards A>
the place of the first observation, but, at a point (A') f between A
and O : consequently, the interval, the anomalistic year, must be

greater than a sidereal year, and greater by as much time, as is re-

quisite to describe the space AA', the progression of the apogee A :

or, greater than a solar year, by as much time as is requisite to move

through the precession^ together with the progression (with regard
to the stars) of the point A : or, which is still the same thing,

greater than a solar year, by as much time, as is requisite to

describe the increase of the longitude of the apogee ; for longitude
is ever measured from the intersection of the equator arid ecliptic.

The progression of the apogee is found as the precession of the

equinoxes was found [p. 63] : Thus,

According to Flamsteed in 1690. Long. apogee 97 34' 59*

According to Delambre 1780 -----99 819

Increase in 90 years
- - - 1 33 20

* The period would be more than 25740 years,

f The point A 1

, in Fig. p. 69, must be conceived to be, between A
and Of and near to A.
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or the annual increase in longitude is equal to I' 2".2 : but

since the precession, which is a regressive motion, is 50''.34, the

annual sidereal progression is 1' 2".2 -50". 34=: 11".86.

The time of describing ll".86 added to the length of a sidereal ^

year, will compose an anomalistic year, and, since the Sun near his

apogee, moves in longitude about 58' in 24? hours *, the time

will be about 4m 50 s
: hence the length of the anomalistic year

= 365 d 6 h 9 m 11 s

4- 4m 50 s s= S65
U

6 h 14m 1
s
.

*
By computation [see p. 54.] Sun's longitude June 21 2 s 29 8' 32"

June 22 3 5 48

Increase in 24 hours - - 57'



CHAP. X.

On the Corrections necessary to be made to the observed Right
Ascensions and Declinations of Stars. Refraction. Pa-
rallax. Aberration. Precession. Inequality of Precession.

Nutation.

IN the preceding pages have been given the methods of

finding the most important of all Astronomical elements, the

right ascensions [p. 48,] and declinations [p. 32,] of stars , which

have been determined from observations made on the meridian.

From these, by calculations, have resulted the latitudes

[p. 56, 57.] and longitudes of Stars. By observations made
also on the meridian, with the aid of certain simple processes of

computation, the obliquity of the ecliptic [p. 44,] and the pre-
cession of the equinoxes [p. 62,] have been ascertained. But,
what has hitherto been done, has been, on the simplest suppo-
sitions. The declinations and right ascensions have been stated

as if they could be immediately used in Astronomical computa-
tion

;
in short, as if they wanted no corrections : as if, for instance,

we could assign for the declination of a Star merely the differ-

ence between his observed, or instrumental meridian altitude arid

the co-latitude of the place [p.32] : for the right ascension, merely
the time as noted by the sidereal clock [p. 51], and then proceed
to compute the latitude and longitude [p. 56]. But, corrections

exist, not only many in number, but relatively to their value, dif-

ficult to be ascertained, and besides, connected with certain most
curious and

interesting theories. These corrections, and their

connected theories, form no inconsiderable part of Astronomical

science. Or, it may be said, the science is not complete and
exact without them.

It is intended, in the present Chapter, to enumerate the several

corrections which must be made to the observed declinations and

right ascensions of stars, in order to reduce them, to the condi-

tions of true Astronomical elements. Some slight and general
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the explanation of their causes will be added ; but in the sequel,

a separate Chapter will be appropriated to the fuller explanation
of each cause.

A star, or other heavenly body, is seen in that direction in which
a ray of light enters the spectator's eye. But, such direction

may not coincide with a straight line drawn between the star and

the spectator : the ray of light in its passage from the star may,
from physical causes, be deflected from its original direction

;

and, if deflected, we should wrongly assign the true place of

the star, if we assigned it to be in the direction of its light.

Hence would arise a source of error : an inequality affecting the

observation, and the necessity of a correction to compensate the

Inequality.
In the second place, at the time of an observation, to all ap-

pearance, we are at rest. But, if the solar or Copernican system
be right, the Earth and the observer are really in motion. If so,

may not the latter, by moving transversely to the line of the

light's progress, refer the star to a point in the Heavens different

from the true place ? And, if so, a second inequality would arise,

affecting the observation at the very time it is made, and depending
on the direction of the observer's motion : and hence also, as

before, the necessity of a second correction, to compensate this

new inequality.

The above corrections arise from inequalities that may be

said to be apparent and illusory ; and when applied to obser-

vations, would enable the observer to refer the heavenly body
to its true place : true, however, solely with respect to the

observer, situated on the surface of the Earth, and in a particular

part of that surface : but, if the place is to be rendered true to

all observers, wherever situated, then, some common point, to

which all are similarly related, must be selected
; and, such will

be the center of the Earth. Observations, therefore, seen at the

surface, must be reduced to the center : that is, the star's place

must be assigned, such as it would be seen in, if we could put a

spectator in the Earth's center. The reduction of the star's place

seen from the surface, to the center, or the requisite correction^

cannot be said to arise from any inequality as a cause, but is a

correction invented for the sake of simplicity and the convenience

of Astronomical computations.
What precedes, relates to the correction of observations at the

time of making them. But, many Astronomical processes depend
K



74 Refraction.

on the comparison of observations distant from each by consi-

derable intervals. In such intervals, may not the pole of the

Earth have changed its situation ; or, which is the same thing,

may not certain stars be more or less distant from the zenith of

the spectator ? And if so, in order to institute a comparison,
we must so correct the observations that they be reduced to the

same point of time. Hence, new corrections would arise of a

different class from the preceding.

We have attempted to indicate the causes of inequalities

which are now known to exist, and distinguished by the titles of

Refraction, Aberration, Parallax, Precession, Nutation. But, if these

inequalities exist, how can they be ascertained and made ap-

parent ? We will begin with the first correction, arising from a

cause called Refraction, by which a star, to appearance, is elevated

above its true place ; the elevation taking place in a vertical

circle passing through a star : the effect of this, may be easily
ascertained ; thus, take at Cambridge, (the latitude of which is

52 13' 24-'') the distance of y Andromeda and Polaris (which is

about 47 degrees) first, when the former is nearest the horizon
;

next, when most remote and near the zenith : and the difference

of these two distances will be about 1O minutes, the excess of the

latter over the first distance. If the same observations were made
at Paris, where the latitude is 48 50' 14'', the difference instead of

being 10, would be 30 minutes. And this deviation is clearly con-

nected with the different heights of the stars above the respective

horizons of Cambridge and Paris.

The effect of refraction may be shewn also by the following
instance :

If at Cambridge, 1810, the meridian altitude of Spica Virginis\>z

observed, it would by the instrument appear to be 27 39' 17";

and, if the latitude were sought from the height of the pole star,

it would appear to be 52 13' 20"
;
and consequently the apparent

co-latitude would be 37 46' 40'': whence by the rule [p. 8,]

the apparent declination of Spica Vtrginis, or the difference of these

quantities, would be 10 7' 23". If, however, at a place 10

degrees north of Cambridge the same operations were made,
we should have

Co-latitude ---------- 27 46' 54"

Meridian altitude of Spica Virginis 17 40 27

Apparent declination of star - - - 10 6 27



Refraction. 75

Now, since the declination remains the same, the two results

representing it ought to be the same : but they differ nearly by
one minute ; and this difference can be accounted for, if we sup-

pose a star to be the more elevated by refraction, the greater its

zenith distance, but, in a higher proportion than the increase of

that zenith distance ; in fact, to be elevated proportionally to the

tangent of its zenith distance : thus, if the elevations, from re-

fraction, were according to the following Table :

Apparent Altitudes. Elevations by Refraction. True Altitudes.

27 39' 17" 1' 47" 27 37' 30''

52 13 20 44 52 12 36

17 40 27 2 57 17 37 30

62 13 6 30 62 12 36

then, since the true co-latitudes would be 90 (52 12' 36")

90' -(62 12' 36*) -, or, 37 47" 24", 27 47' 24", respectively,
we should have, according to the rule for the declination, either

37 47' 24"-27 37' SO'
7

, or 27 47' 24"-17 37' 30", which

are evidently the same.

The effect of refraction is also made apparent by observing
the distance between two stars, at different times : for, their dis-

tance when they are near to the horizon, becomes less at a greater

elevation : the effect of refraction being, as we shall hereafter

see, to elevate bodies in a vertical circle.

The effect of refraction, is also to be recognised in determining

the latitude from the greatest and least heights of circumpolar

stars : for, half the sum of those heights, which, if they were the

true heights, ought to be the latitude, is not always the same

quantity, but varies with different circumpolar stars.

This correction may be said to arise from a physical cause;

it takes place in a vertical circle, and consequently will affect the

determination of the declinations, but not of the right ascensions

of heavenly bodies, when such determination is made from obser-

vations taken in the plane of the meridian.

We will now turn our attention to the correction arising from a

cause called Parallax *. Observations are made on the surface of

the Earth ; but, Astronomers wish to fix the position of stars, as

* This is now taken in the second place, which in the former enume-

ration [p. 73,] was taken in the third.
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if they were seen from its center. A star /, therefore, seen by a

spectator at Ay whose zenith is Z, in the direction Asn, at an

angular distance ZAs from the zenith, is, if we suppose a spectator

at C, seen in the direction Csm : the difference of the two places,

m n, to which the star is referred, or the angle ms n is called the

Parallax*

Although this correction has been said to be one merely of

computation, yet, there are certain circumstances which strongly
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suggest its necessity ;
and the same circumstances enable us to re-

cognise its existence. If B and A are two places on the Earth's

surface, and the meridian altitudes of a fixed star (xjsx) be respec-

tively observed, and from such altitudes and the latitudes of the

places, its declination [see p. 8,] be computed, it will appear
to be the same both from the observation at B> and from that

at A. The same would happen with S, if S were a fixed star :

and accordingly the difference of the declinations of XSE and S, or

what is the same thing, the difference of their zenith distances,

would be the same, whether observed at A or at B. If this con-

dition took place, whatever were the celestial body that was

observed, there would be no occasion for introducing parallax.

But, with certain celestial bodies, the Sun, the Moon, and the

planets, the condition does not take place. If S, for instance,

were Mars, the difference of the zenith distances of S and A,

seen from A> would not equal the difference seen from B. Here

then, is a material circumstance of distinction j since the apparent

declination of a body like Mars would depend, which it ought
not to do, on the place of the observer : it becomes necessary

then, to feign an observer in the center of the Earth, whence all

declinations would be seen as they ought to be, and to reduce

to him, observations made on the surface. To effect this, is the

object of the theory of parallax.

The third inequality arising from the Aberration of light, can-

not, by the test of any simple observations, be easily ascertained

and detected. The method of detecting it will be hereafter

shewn. At present, we must be content with expatiating a little

farther on its probable cause.

The two preceding corrections are totally independent either

of the rest, or the motion of the spectator. But, if light should

not instantaneously come from the star to the eye; in other

words, if it should be propagated ; and if the spectator should be

moving transversely or obliquely to the light's direction, may not

the light seem to come from a place different from the star's true

place ? And if so, from these causes, that is, the motion of the spec-

tator and the propagation of light, there must arise a correction to

"be applied, in addition to the preceding corrections, in order to

determine from the apparent instrumental place, the true place :

which correction also, with the same star, must vary with the

change in the direction of the spectator's motion : or, in other
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words, will not be the same, whether the spectator move directly
towards the star, or transversely to a line between him and the
star. Now, it can be shewn, independently of this phenomenon of

aberration, that light does not come instantaneously to the eye from
a star, but is propagated: suppose then, a ray of light to be de-

scending in the direction ssf
s
f/

; when at /, a spectator at *, would
see it in the direction a j <r, or would refer it to a point <r ; when at

/', the spectator at a' would see it in the direction a's'v", when at

N C a" a'

/'', the spectator translated to a7, in the direction a'YV, &c. ;

consequently, with reference to the line aN> he constantly sees it

at the angle saN, for as9 a's, &c. are parallel: but, if stationary
at /, or at #, he would see the star at an angle st N, or raNi the

difference, of these two angles, then, stN jraN, orastis the

Aberration.

Of the corrections enumerated, that of parallax, which
is arbitrary and scientific, depends with a given star, solely
on the star's altitude, if the Earth be supposed spherical 5

if, (as it is,) spheroidical, then conjointly on the star's altitude

and the spectator's latitude. Refraction also depends, with a given
state of the atmosphere, solely on the altitude of the body ; and,
those two conditions remaining the same, is the same, at what-
ever part of the day (the 24 hours) the observation is made.

Aberration, on the contrary, depends neither on the state of

the atmosphere, nor on altitude, merely as altitude, but,

only inasmuch as it is connected with declination ; nor on the

spectator's latitude 5 and consequently with the same star will be

the same, whether the spectator be at 50, or 60 degrees of latitude.
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But, it will vary according to the time, or hour of observation,

supposing, as is always the case, such observation to be made on
the meridian.

The preceding corrections enable us to reduce the apparent

place of a star to its true and Astronomical place at the time

of the observation. We come now to those which, as we stated

in p. 74, form a separate class ; which enable us to connect distant

observations ; and, from a star's place computed for one point of

time, to assign it at any other, previous or subsequent. Cor-

rections of this kind occur in various Astronomical processes ;

and, we shall, in a subsequent page, exemplify them and shew

their use, in determining the latitudes of places, and in regulating
the Astronomical clock. The causes of the corrections or the

theories on which they depend, will be treated of in the following

order, Precession^ Ineqtiality of Precession^ Nutation.

The first of these, Precession^ has been already explained, but

explained merely as an Astronomical fact, that of a difference of

about 50 seconds between two successive places of the Sun in

the equator after the interval of a year, [see p. 62], And this

view of the precession would be sufficient, if we wanted only to

know the alterations of precession in the right ascensions

and declinations of stars, that took place in complete years : for

instance, the precession being 50", the right ascension of Sinus

would in one year be changed 40'. 18
;
in 2 years 2' 20". 36

;
in

10 years 6' 41".8, &c. the right ascension of Regulus would in

one year be changed 48".39 ; in 3 years 2'25".17; in 10 years
8' 3".9, &c. But, it may be necessary to know the right ascensions

for intervals of time, which are not expressed by any number of

complete years : in such case, we must understand by the pre-
cession of the equinoxes something more than the mere Astro-

nomical fact.

We have already said [pp. 40, 42.] that the equinoctial point may
be conceived to be the intersection of the equator and ecliptic : and,

if we so conceive it, we may also conceive the point of intersection

to move gradually, day by day, through the whole arc (50") of

the precession. In such case, if the motion were uniform, the

equinoctial point would have moved to the west, or have been

regressive, in half a year, about 25" ;
in three quarters of a year

about 37'', &c. ;
so that, for 2 years and an half the precession in
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the right ascension of Sinus would be (!' 20". 36) + 20",09, or

V 40". 45.

This would be the case if the precession of the equinoxes

during the year were uniform
; but it is not, being subject to an

inequality, called the Inequality of the precession. This must be

briefly explained.

We have already passed from the consideration of the pre-

cession as an Astronomical fact, to that of the intersection of the

ecliptic and equator endowed with a regressive motion, and de-

scribing gradually the whole arc of the precession. We may now

go a step farther, and consider the cause of this regressive

motion : if the cause be variable, the effect will ; or, the regressive

motion, though it may be gradual, cannot be equable : and this is

the case ; and the cause of it is the action of the Sun and Moon
on the bulging equatorial parts of the terrestrial spheroid : which

action varies, from the varying situation of each of the two bodies,

the Sun and Moon : and accordingly, an inequality (requiring an

equation,) will arise due to each
; one, varying with the Sun's

declination, called the Solar inequality of Precession ; the other,

due entirely to the variable action of the Moon, as it depends on

the inclination of her orbit, to the plane of the ecliptic, and called

the Nutation.

Not only from the two preceding causes, an inequality will

arise in the precession of the equinoxes,
* but the obliquity of the

ecliptic will be also affected.

Hitherto has been given a general explanation of the causes of

the several corrections. Their importance, in practice and in

theory, claims for each a separate Chapter. In practical

Astronomy, a knowledge of the quantities or values of all the

corrections is essential. Without it, the business of an obser-

vatory would be at a stand. From physical Astronomy are

derived, the laws of the variation of the latter corrections. Then,
from the expressed laws, or formula?, Tables are formed. The

registered results of these Tables are at once applied to obser-

vations and confirmed by them. Thus, by a reciprocal operation

practice is made exact, and theory is elucidated.

-.-.---'-. _
1 1

* Dr. Maskelyne, in his Tables, separates the Nutation into two equa-
tions : one called the Equation of the Equinoxes; the other Drriatian in

right ascension, and Deviation in North Polar distance.
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Refraction. Bradley's Formula. Application of ity as a Cof-

rection of Observations.

IT is a law of Optics, established by experiment, that a ray of

light passing, from a rarer, into a denser medium, is refracted to-

wards the denser. For instance, if Mpm, should be the boundary

between two media, then a layof light spy insteadof pursuing its di*

rection spx> is deflected in the direction pa, that is, towards a per-

pendicular Pjp drawn at^?, to Tt a tangent at p. Similarly, if Nn
should be a similar boundary, that is, should separate the rarer

medium contained betweenMm, Nn, from the densermedium con*

tained between Nn, Go, the ray of light instead of pursuing its new
direction pay, is again deflected into the direction ab: and like

circumstances must take place, if more media and their boun-

daries are added : hence, the course of the ray instead of being
rectilinear and continued, is broken into portions pa, ab. It, &c.

inclined to each other at the angles pab, a be, &c : and if, accord**

ing to the principles of the Infinitesimal Calculus, we suppose the

number of media to be indefinitely increased, and their boundaries

indefinitely to approach, the portions fa, ab, &c. will become
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curvilinear elements, and the course of the ray instead of being

polygonal will be a curve concave towards the denser medium ; and

the representation of the media, and of the course of the ray, will

be more adequately exhibited in the subjoined Figure.

By this last step, the medium is no longer parcelled out into

different strata, or shells, of variable density, but becomes a

medium of a density continually varying. Such an one is the

Earth's atmosphere, most dense at its surface, and rarer, the higher

the region. A ray of light then, will, in its passage through the

atmosphere, be deflected into a curve, concave towards the Earth's

surface, exactly as we have seen that it must be, in the preceding

case : for the medium, there imagined, and the atmosphere, are

alike.

If c be the place of the spectator, and s 9 of the star, and if we

suppose a plane, perpendicular to the Earth's surface, to pass

through c and /, the refraction can only happen in such a plane,

that is, in the plane of a vertical circle : for, at the same distance

from the Earth's center, on each side of that plane, the atmo-

sphere is supposed to be of equal density, and probably is j

therefore, there is no reason to be assigned, why the ray should

be deflected towards one side of the plane, rather than towards

the other ; which amounts to this, that it will be deflected to-

wards neither.

The ray of light entering the spectator's eye, in the direction

of the tangent to cb> the star must appear to be in that direction ;



the Star's Altitude, fyc. 83

and consequently to be at j-': and if Hch be horizontal, or a tan-

gent at the point r, to the circle cef> a section of the Earth, the

apparent elevation of s above the horizon, that is, the altitude of

,r will be s'ch : whereas the true altitude is sch\ and the refrac-

tion, accordingly, is the angle scs'.

Hence, by refraction, a star is elevated ; and, as we have just

seen, in the plane of a vertical circle : now the plane of the

meridian is vertical ; consequently, the declination of a body,
as determined by its meridian altitude, will be affected by the

whole quantity of refraction : but its right ascension, determined

by its transit over the meridian, will not be at all affected.

If a star were at Z, the zenith of the observer, its light would

suffer no refraction ; the parts to the right and left of the per-

pendicular line cZ, at equal distances from the surface, being

equally dense : at h> or in the horizon, it will suffer the greatest
refraction.

Between the zenith and the horizon, refraction takes place

through all its degrees. The greater the star's zenith distance,

the greater the refraction
j but it is not simply proportional to the

zenith distance. It depends, however, on the zenith distance,

and it becomes an object of mathematical investigation, to express

the refraction in terms of the zenith distance.

The refraction then depends on the zenith distance : but thik

supposes the medium or atmosphere to remain the same : if

the density be changed, the refraction will : but if the density of

the air be changed, its weight or pressure is : and the common
barometer indicates, by its variations, the changes of weight :

hence, the refraction depends on the star's altitude, and on the

state of the atmosphere with regard to its density : or, it may be

said to depend on the star's altitude, and on the height of the

barometer.

The quantity of refraction, so it appears by experiment, in a

medium of a given density, will vary with a change of temperature :

hence, the refraction depends, on the star's altitude, barometer,

and the air's temperature : or, since the thermometer indicates

changes of temperature, the refraction may be said to depend, on the

star's altitude, and the heights of the barometer and thermometer,

A formula involving these three conditions, would in specific

instances, assign the quantity of refraction : or, would be imme-
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diately subservient to the construction of a table of refractions j

and, the skill and labour of Mathematicians have succeeded

in assigning the following:

Refraction= ~^~~ X tan. (*
- 3 r) x 57" X

4
- *.

29.6
v '

350 4- h

in which a = altitude of barometer in inches,

z = zenith distance,

r = 5?''. tan. 2,

h = height of Fahrenheit's thermometer,

29.6 is the mean standard height of the barometer.

This formula, undoubtedly of great elegance, probably was

not derived by a direct mathematical process : but, was rather

the result of many trials, conjectures, and experiments. The

refraction, varying, in the space of a quadrant, through all its

degrees, from nothing to its maximum, the simplest hypothesis

suggested to the mind, would be, the diminution of the quantity of

refraction with that of the zenith distance. Observation having
overthrown this hypothesis, and shewn the refraction to be dimi-

nished in some higher ratio, the next, in point of simplicity, would

be the variation of the refraction according to the tangent of the

zenith distance. But, nature does not accommodate herself to

mathematical simplicity : and this latter hypothesis, although

nearer the truth than the former, was found not to give results

exactly conformable with observation : at length, Bradley inferred

the law, such as is expressed in the preceding formula.

In settling the law, Bradley availed himself of the existing

tables of refraction \ of results obtained on grounds purely ma-

thematical ; and of his own observations, and, nearly, according
to the following description,

By numerous observations on Polaris and other circumpolar

stars, he deduced the zenith distance rp] of the pole. This was

the apparent distance, on account of refraction, and therefore

less than the true zenith distance. By observations also of the

Sun at the equinoxes, when the Sun had the same zenith distance,

* See Dr. Maskely tie's Explanation and Use of the Tables, p, 5.

Dr. Brinkley, Phil. Trans. 1810, Part IJ. p. 20*, suggests this

formula ; 7-^-7: X tan. [z 3.2r] 56 .9 X ' ^? -. .
29 . o 450 + h
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but opposite right ascensions, he deduced the height of the

equator. This also was the apparent height on account of re-

fraction, and therefore greater than the true height ; and conse-

quently, the apparent zenith distance [Q], was less than the true :

hence, the sum of the two zenith distances of the pole and equator,
which, if the true ought to equal 90, would be less than 90

by the sum of two refractions, due respectively to the zenith

distances P and Q : let the two refractions bc^t? and q, then

P + Q;

= 90 -
[p + y],

and [p + j]= 90 - [P + Q],

and consequently, since P and Q were given by observation,

p -f- q would be known. Again, by the best Tables of refraction

then extant, it appeared, that q p was equal to about two

seconds : hence, from

q+p = 90 - [P + Q],

and q p = 2"

q = 45o 0' 1" -
| [P + Q]

p = 44 59' 59"-
I [P + Q].

According to Bradley's observations, P was 38 30' 35",

and Q 51 27' 28" : in which case q = 59".5, and p = 57".5:

but this being only an approximation, in order to obtain a more

exact result, Bradley separated the sum of/; and qy that is, V 57'',

into two parts, p' and q'y which should be to one another as the

tangents of the zenith distances ; accordingly,

p' : q' :: tan. 38 31> 3a'.5 : tan. 51 28' 27''.5,

, / _ r / . /n tan. 38 3l' 32".fr .w ence, p _ \p -f- q j
tan . 38 3^3^ 5+tan 5l o 28/ 2 7//<5

,' _ I-
' -L n tan. 51 28' 27/x

.5
.

^ ~~ ^ q J
tan. 38 3 1' 32'

7

.5+tan. 5 1 28' 27" .5
*

and, by this new operation, (since p
1

4- q
f

zzp -J- q = I
7

57")

there results

y = 457
.5 refraction due to the zenith distance 38 31 X

20".5,

q = V 11". 5* - - - to ------ 51 28' 39".5.

* The observation being made at Greenwich, and S being =
27' 28", &-rY=5i 28' S9".5 , the latitude of the observatory.
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Taking these, as the true quantities of refraction, at the zenith

distances of the equator and pole, Bradley deduced the refractions

for zenith distances less than that of the equator, by assuming them
to vary as the tangents of the zenith distances ; and he deduced the

quantities of refraction for greater zenith distances, or lower

altitudes, by means of circumpolar stars. Thus, suppose v, v

to be the true places of a circumpolar star at its least and greatest

altitude, then, since Zi/, by correcting the observed distance, is

known, and ZP also is known, Pv' is : next, the apparent zenith dis-

tance of the star at v is observed, and, subtracting ZP, the apparent
distance from P is known : this is less than the true distance Pi>,

which is known, since it equals P*/: consequently, the difference

between the true and apparent distances from P is the refraction

due to the zenith distance Zv. For instance, by observation, the

zenith distance of * Cassiopeia when at the greatest altitude was

13 48' 12". 5; but the refraction being 14-", the true zenith

distance was 13 48' 26". 5 ; and since the zenith distance of

the pole was 38 31' 20".5, the north polar distance of the star

[P*/, or Pv\ was 24 4*2' 54". Again, by observation, the star

being at its least altitude above the horizon, the zenith distance
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was found to be 63 13' 21".8 , therefore, the apparent distance from

Pwas 63 13' 2i".8 - 38 31' 20".5, or, 24 42' 1".3 ;

consequently, the refraction was 24 42' 54" 24 42' 1".3, or,

5<2"/7.

By like operations, Bradley determined the refractions for other

altitudes ; and when he had tabulated the results, by examining

them, he found that the law of the refraction [r] instead of being

represented by
m

,

r rr tan. z,
n

could be more exactly represented by

r = 2? tan. [2
- 3 r] ;

and deducing from observations the values of m and n y he ob-

tained the formula which was given in p. 84, and from which

the Table, in the Appendix, was computed.

It has not yet been explained, why Bradley assumed the re-

fraction to vary as the tangent of the zenith distance, which indeed,

is nearly the law of its variation. Let the angle of incidence of a

ray of light be ZEs* 9 the angle of refraction ZEs
; then since

the arc or angle sEs* is small (being only 57" when ZEs=4>5)
the side // may be considered to be rectilinear: consequently,

r? s
rn s'n ,

SS* = Es X oc -
; but,Em Em

since the sines of incidence and refraction are in a given ratio, or

s' t m , , .
* \ s'n in ;/ ,

since = - (m and n given quantities,) =
, or, s'n ocsm

sm n sm n

,t
t

sm sin. ZEs ,,-, .

consequently, // oc - oc 7=-=^- oc tangent ZEs oc tangentEm cos, Zhs
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of the zenith distance. This part of Bradley's method is purely

mathematical.

Suppose now, that it was required to compute, from the pre-

ceding formula, for the refraction at the altitude of 30 above the

horizon. Here z = 60 ; .-. r s= 57". tan. 60 = 57" x 1.7320=

1' 38".7 for a first approximation
-

y .'. 3r r= 4' 56", and corrected

value of r = 57". tan. [59 55' 4"] = 57" X 1.7263 = 1' 38''.4 :

and if greater accuracy were required, the last value might be

substituted for r in 57" tan. [z 3r], and a still nearer value

obtained.

By a similar process, for the altitudes 27 39' 17", 62 13' 6"

(quoted in page 61), the refractions

1st Approx, r~57" X tan. 62 20' 43"

= 57''x 1,908

= 108". 756

= 1' 48". 75

2d Approx. /= 57 V
tan. [62 15']

rr57'' x L9006

r = 57" tan. 27 46' 54"
~ 57" x .5268

= 30". 027

^= 57" X tan. 27 45' 24"

= 57" x .5262

= 29". 99 .

= 1' 48". 3

The quantity 1' 38".4, is deduced on the supposition

that the barometer is at 29.6 inches, and the thermo-

meter at 50 of its degrees; for, then, -

a
~- x --zzi, and

the refraction, in this case, is called the mean refraction. The Table

is computed on the same supposition.

If the refraction is required for other states of the thermometer

and barometer, then, the mean refraction must be multiplied

by L x ; thus, suppose the refraction to be required
-
ft

for an altitude of 30, the barometer being 29 . 85, and the ther-

mometer, at 65 degrees of temperature : here a being 29.85,

and //, 65, the multiplier is ~?-'
8g

X 75 or, .9716, and the

refraction therefore is 1' 38'
x
.4 X.9716 = l

x 35;
.6.

Having now obtained a formula and Table of refractions,

that enable us to make the first of the corrections enumerated
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in page 74?, the process for finding the Sun's declination, or a

star's, instead of being as in page 47, will be after the following
manner ;

EXAMPLE.

Alt. 's. Upper limb ---------. 61 29' 16''

Lower limb ---------- 61 46

2)122 30

Apparent alt. of the 's center ------6115 1

Refraction
........ ----- 31.28

True alt. of the 0's center ------61 14 29.72

Co-latitude of Cambridge ------- 37 47 24

Decimation of the 23 27 5.72

In the next Example, a correction for the error of collimation

[see pp. 29, 30, &c.], as well as one for refraction is introduced,

's Upper limb 62 30' 30".5

Error of collimation ----- --- 34,5

62 29 5(>

Apparent zenith distance ------- 27 30 4

Refraction 29

27 30 33

Semi-diameter of the ------- 15 46

27 46 19

Latitude of place of observation (Paris)
- 48 50 14

Declination of the --------- 21 3 55

The refraction in this last Example is added to the zenith

distance , an operation, equivalent to that of subtracting it from

the altitude.

The formula and table of refractions are found to answer very

well, for all altitudes, greater than ten degrees. At less altitudes,

the refraction is very inconstant. The light from a star s

near the horizon, is obliged, as is plain from the Figure, to pass

slantingly through a considerable portion of the lower strata or

M
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laminse of the atmosphere : and the lower strata, in parts remote

from the observer, are subject to great variations, which are not

expressed by the thermometer and barometer at the place of

observation.

For the mere purposes of Astronomical observation, the

Table of refractions is sufficient. But, the principle of refraction

may be employed in successfully explaining certain celestial phe-

nomena. For instance, the refraction varying very rapidly near the

horizon, the lower limb of the Sun when setting, will be much

more elevated than the upper : and accordingly, the figure of the

Sun, instead of being circular will be oval
5 the fattening taking

place in the direction of a vertical circle. Again, a star v below the
horizon Hh> the course of its light being by refraction bent into
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the curve vivc, will appear at vf above the horizon: and ac-

cordingly, it is possible to see both the Sun and Moon above

the horizon, at the time of a central lunar aclipse : for, if the Sun
be just elevated above the plane of the horizon, the Moon diame-

trically opposite will be beneath, but so little beneath, that the

refraction will make her appear above. This phenomenon was
observed at Paris on July 19, 1750 *.

Since the quantity of refraction at 10 degrees of altitude

amounts to upwards of 5 minutes, it is an object of very consi-

derable moment, in practical Astronomy, to possess an exact for-

mula of refraction ; that is, exact in the variable part that ex-

presses the law, and in the constant part that expresses the

numerical value of the coefficients. For, the declinations of stars

are deduced from meridian altitudes, and, consequently, would

partake of their errors: and so it might happen, that cer-

tain smaller corrections, belonging, either to inequalities that arise

from peculiar motions in the stars themselves ; or, to some change
in the position of the poles of the Earth ; or, to causes merely
visual and optical, would not be discerned, but be lost, and

absorbed amongst the uncertain errors of refraction.

Bradley, as we have partly seen, paid particular attention to this

subject, and in his researches, united observation with theory.
The formula which he deduced, is found to be very exact : some,

although no great, alteration has, since his time, been made in it.

It is, however, most exact for altitudes above 10 degrees, at

which the refraction seems to depend, almost entirely, on the

pressure of the atmosphere, and on its temperature at the place
of observation. For altitudes below 10 degrees, the formula is

less to be relied on; but, fortunately for Astronomy, none of

the more nice observations, from which its elements are computed,

require to be made at such low elevations.

In an observatory, almost all observations that are important,
(as it has been more than once said,) are made on the meridian.

On such the methods hitherto explained are founded, and, as it

has appeared, the calculation of the quantity and law of refrac-

tion by Bradley. But, it ought not to be unnoticed, that the

refraction may, very conveniently, be computed from observations

*
Pliny records a similar fact, Book II. Chap, 13.
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made out of the plane of the meridian by the instrument de-

scribed in Chap. IV. p. 26.

That instrument has an azimuth motion ; and by direct obser-

vation of a star, its azimuth distance may be determined. Now,
refraction takes place entirely in a vertical circle : and such

circle is perpendicular to the horizon, along which azimuth is

reckoned ; consequently, the azimuth of a star is not at all affected

by refraction ; and therefore, the instrument which, by one ope-

ration, determines the altitude and azimuth of a star, determines

the latter truly, although not the former, which is greater from

refraction than it ought to be : hence, if the altitude of a known
star be observed, we have

PM [b~\
the north polar distance,

PZ [a] the co-latitude,

*PZM[B] the azimuth;

N

hence, if / PMZ = A, and ZM = c,

we have sin. A = sin. B x '-

;

sin. b

and by Naper's Analogies, [see Trigonometry^ p. 137.]

c i r/ . -,
cos.

\ (B -f A]
tan. = tan. * [b -f a] - Ll : .

2
cos. \[B~A]

For instance, in latitude 51 31 X

north, the observed altitude

and azimuth of a known star (declination = 23 28') were ob-

served to be respectively 18 13' 5", and 74 53' 30".

* PZ, ZM, PM are the ouly linfes in the Figure that are wanted

for the demonstration.
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To find A.

sin. 74" 53' 30" --------- 9.9847229
sin. 38 29----- 9.793990?

19.7787136
sin. G6 32--- -- 9.9625076

sin. ^/ - - - -----..-. 9.8162060

... A := 40 54' 56"

since, #*----= 74 53 30

I (B + A) =57 54 13

I (B - A) = 16 59 17

To find .

tan. 52 30' 30" --------- 10.1151503
cos. 57 54 13 9.7253768

19.8405271
cos. 16 59 17 9.9806240

tan. i 9-8599031

.-. I
= 35 54 X 53".5

tf== . -.-.-..--_.. -71 49 47
.*. true altitude ---------18 10 13

but observed altitude ------=18 13 5

,-. difF. or the refrac. ------z=0 2 52



CHAP. XII.

On Pamllax.

IF s be a star, C the center of the Earth, Z the zenith of

the spectator, then the observed zenith distance of s is the

/ ZAs: and the difference of this angle and the angle ZCs> is

\m

/ As C, called the angle of parallax, [see p. 76],

By Trigonometry
r d

sin. CsA = sin. CAs X~ = sin.
j

C* / C J*

hence, if C^, C/, remain unaltered, the sine of CsA> that is, the

sine of parallax, varies as the sine of the star's zenith distance.

P. 16.
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Hence, the parallax must be greater, the greater the zenith

distance ; it must therefore be the greatest, when the zenith

distance is 90, that is, when the star is in the horizon : let p
represent the common parallax, P the greatest, called the Hori-

zontal parallax, and let z be the zenith distance ; then,

CA CA CA
sin.p,=r- X sin. z, and sin, P rr x sin. 90 = -.:

C,f GJ* Ls

and consequently, sin. p
~

sin. P x sin. Z.

Since the zenith distance can be observed, p and P would be

known if the radius of the Earth [C A\ and the star's distance

[Cx] were known, or their proportion. But, hitherto no method
has appeared of finding these quantities' : we must therefore

either investigate such method, or seek some other means of deter-

mining the actual parallax.

Let Ay By be two places on the same meridian of the Earth's

surface, that is, which contemporaneously have the same

noon : suppose by the methods described in p. 38, their lati-

tudes to be exactly determined. When 5 is on the meridian,

let its zenith distances ZAS |>], Z'BS JV] be respectively ob-

served ,
then since ACB, the sum or difference of the latitudes (ir*

the diagram, the sum) is known, we have
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t. ASB = 360 [180
- z + 180 z' +

= z 4- *' - ACB
;

hence the angle ASB, (sometimes called the parallax, being the

angle which a chord AB subtends at $,) is known : call this angle

Ay and the angles CSB, CSA,p',p, respectively.

A is not the angle [see the former Figure] we are seeking : it

is, either the angle CSB (p
f

) or the angle CSA (p}. Now
.

,
.

,
CB

1
. CA . CB

sin. p = sin. z ,
~

, and sin. p = sin. z, - sin. z ~
:

C o Co C o

hence, sin. // or, sin. (-^ )=sin. #.~~ , and expanding*
sin- z

. ... sin. z'
sin. A . cos. p cos. A .sin. p = sin. -- :^

sin. z

whence dividing by sin. ^. sin. p9 and transposing,

cot. p =. cot. A -f .

sin. z . sin. A
This formula may be thus adapted to logarithmic computation :

Sm '

cot. p = cot. A 1 + .

.

'

-
;

sin. z .cos. A

let .

Sin ' 2/-
7 = [tan. 6p ; .-. 001.71= cot. ^.[sec. 0]

2

;

sin. z. cos. ^f

and consequently,

log. cot. p = log. cot. -^ + S log. sec. CO
;

6 being determined from

log. tan. =
<j [30 -f log. sin. z' log. sin. z log. cos. A}.

From this formula may p be computed , but since, in point

of fact, the parallax of all heavenly bodies that are observed is

very small, a much simpler formula, and accurate enough for

computation, may be exhibited : thus, A> p>p'y being very small>

are therefore nearly equal their sines
; hence, instead of

sin. [A 2?]
= sin. p .-^H: , We may write

sin. z

* sin. zf ,A p = p .
~- : whence^ ^
sin. z

__ -^ sin. z
~~

sin. 2 -f sin. zf
'
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or, if we wish tp express the horizontal parallax, since

sin. p = sin. P . sin. z, or p = P. sin, z,

97

= __ .

sin, z 4- sin. z'

and, if we restore the value of A, making Z. ACE ~ L + Lf

P= z + z> - ^ z/3
sin. z + sin. z'

As an example to this formula, we may take the observations

of Lacaille, at the Cape of Good Hope, and of Wargentin, at

Stockholm :

1751, Oct. 6.

At the Cape, zen. dist.[z]of <J 25 2r 0" - - - sin. znr.4331

At Stockholm, zen. dist. [%'] 68 41 6 - - - sin. z'= .9287

- 93 16 6 sin. 2 f sin. z'~ 1.35 18,

Lat. [Z,] of the Cape (South)
- - - 33 55' 5"

Lat. [Z/J of Stockholm ...... 59 CO 30

jL +L' - 93 15 35
= 31''.-. z + z' -

.-. P, the horizontal parallax, =

This Example is, in appearance, solved somewhat differently

by Lacaille : instead of computing the latitudes, he immediately
N
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computes the angle A; thus, if a star xss, were on the meridiar!

with Mars [5], Mars would appear below * to an observer

at B, or Stockholm
; below, in this case by 1' 26" : it would also

appear, to an observer A at the Cape, below *zs, and by
1' 57"-, and the difference of V 57" and 1' 26" is 31" the

angle A.

*XZ> whose declination in 1751 was about 8 50', in fact, was

not on the meridian with Mars
-, therefore, Lacaille says,

" Mars
was below the parallel of xsx" : now, where this parallel crossed

the meridian, he could easily ascertain by observing the decli-

nation of A ; it was simply the place of x on the meridian.

The two places of observation are the Cape of Good Hope
and Stockholm : now, the longitudes of these two places are,

respectively 18 23' 7" E., 18 3' 51"E.
; consequently, they are

not under the same meridian
; therefore, a condition of the method

[see p. 95. 1. 14?.] is not preserved : and indeed it is not essen-

tially necessary to preserve it
; for, the difference of longitude

19' 16'', in time, answers to l
m 17 s

: accordingly, Mars would be

on the meridian of the Cape l
m

17% before he had been on that

of Stockholm. If, in that interval, his declination had not altered,

no correction would be necessary : but, if in 24 hours his decli-

nation should have altered 1 minute, then the change of decli-

60" 77''
nation due to l m 17 s would be X 77, or-

24. X 60 X 60 Z4.x60

or .0534/' ;
that is, if Mars had been on the meridian at the Cape

when observed at Stockholm, the zenith distance instead of being
25 2' 0'' would have been 25 2' 0"^. 0534/': hence it appears

that it is of no use, in an example like the preceding, to notice

the very small correction arising from a difference of longitudes :

it also appears that the method itself is applicable, even if the

difference of longitudes should be greater than in the example.

By the result of the computation [p. 97. 1. 18,] the parallax of

Mars was found to be about 23 seconds. For- planets more

distant than Marsy the parallax must, it is plain, be less. Hence,
for such planets, the above method, although in theory very exact,

can practically be of little use. It cannot be relied on : for,

when the parallax does not exceed 10 or 12 seconds, the

probable errors of observation will bear so large a proportion to

it, as materially to affect the certainty of the result. Hence, the
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method cannot be successfully applied to the Sun, whose parallax
is less than 9 seconds : neither to Jupiter> Saturn, nor the Georgian
Planet.

The Moon, however, whose parallaxes are considerable,the great-
est being 61' 32", the least 53' 52", and the mean, (or rather the

parallax at the mean distance,) 57' 11".4> is a proper instance

for the method. Yet, with the Moon, the method requires some

modification. We must take into consideration, the spheroidical

figure of the Earth.

Suppose the meridian AJEE not to be circular ; then, the pro-
duced radii CA, CB, are not necessarily perpendicular to it, and

consequently, Z, Z'are not the zeniths of the observers at yf and B :

but, if XAx, TByy be perpendicular to the meridian, or vertical,

or in the direction of a plumb-line, then X, Y are the true zeniths,

and the angles SAX> SBY, are the observed zenith distances : now

CA
sin. ASC, or, sin. p = ~ x sin. CAS =

Co
r A

x sin. [SAX - ZAX;}Co

.*. if z still represents the angle SAZ> it will equal the difference

of the zenith distance and the angle contained between the

radius and vertical. Hence,

CA . .
.,

. . CB .

sm. p = . sin. z, similarly sin. f* = ^ . sin. z' ;

Co Co

and hence, if we take, instead of sin. /;, sin.//, p and p
f

,

, ,
. C-^sin. 2 + C^.sin. 2'.

p -f /, or A = ,

and since P, the horizontal parallax -*-^B > [p.95.J
(.; O

p = rad. X A
CA . sin. z -f CB . sin. x'

Let us take, as an example to this method, the observations

of Lacaille and Wargentin, see Mem. Acad. dcs Sciences. Paris

1761 :

1751, Nov. 5.
Correct.

At the Cape, zen. dist. D'S north, limb 56 39' 4O7 13' 54^

Parallel of y more north than D - 1 46 32.8

At Stockholm zen. dist. 3) 's limb - - 38 4< 52 .14 M
Parallel ofb more north than D - 18 37.2
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Hence [see p. 98,] the difference of the quantities in the

2d and 4th line being 1 27' 55".6,

A = 1 27' 55". 6.

Now to find z, z', we must from the zenith distances subtract the

corrections 13' 54", it' 14", which are the angles between the

vertical and the radius. Accordingly,

z =i 56 25' 46" sin. z zz .8332

z'= 37 50 38 sin. z' =: ,6135

sin. z + sin. z' = 1.4467

Hence if we suppose CA, CB equal, we shall have [p. 99. 1. 25]

1 27X 55"
the horizontal parallax = = 1 0' 46": the only

1.4467

difference, between this and the preceding method, consisting in

the reduction of the zenith distances.

The reduction, or the value of the angle of the vertical, is

taken from one of Lalande's Tables, computed for an ElKpticity

~
, and is, in fact, too large.

The expression or formula, from which the table just alluded

to is computed, may be easily deduced. It is only requisite to

investigate the angle contained between the normal and radius

vector, in an ellipse of small eccentricity.

In a sphere, the horizontal parallax P =
C
~^ , and conse-
C S

quently the distance CS remaining the same, the horizontal paral-
lax, whatever be the place of observation, would be the same.
In a spheroid,

P = A . x rad.

CA sin. 2 -f CB sin. z'
'

consequently, the horizontal parallax observed at different places
would be different. And with the Moon this is found to be the
case : so that, (and there is something curious in the circumstance),
this planet which, by her eclipses, shews, in a general way, the
Earth to beround, by her parallaxes, proves the Earth not to be

spherical [see p. 20].
The preceding method, by which the parallaxes of Mars

and the Moon have been determined, is not sufficiently accurate



Use of Parallax in determining the Distances of Planets. 101

in practice, to determine the Sun's. But that, since it is in As-

tronomy a most important element, requires the most exact

determination: and this it has received from the labour and

skill of Dr. Maskelyne, by means of the transit of Venus ; a method

of determination, not immediate and direct, but which infers the

quantity required, on the supposition that the planetary motions

are known to a very considerable degree of exactness *. The

method, then, although very refined and important, would not, in

this part of the Treatise, find a proper place.

It is the distance of an heavenly body, as it is clear from

pages 22, 95, that causes its parallax to be small : and the Sun's

tance is so great, that its parallax, equal to 8". 75, [8" 81, according

to Laplace] cannot accurately be determined by the preceding
method [p. 95]. The same method therefore, will not apply
to bodies more distant from us than the Sun ; neither to Jupitery

nor Saturn, nor the Georgian Planet.

Observation, indeed, shews these bodies to have parallax,

but, what are called, fixed Stars to be destitute of it
; or, which

is the same thing, shews their distance to be infinitely great,

[see p. 22.]

The smaller the parallax of a body, the greater is its distance :

and if we take, which we may do by reason of its smallness, the

parallax for its sine, the mathematical relation between the parallax

and distance (W), is

rf=
rad *

This last expression is not, as it stands, fit for computation.

rad. (1)
It was deduced from sin. P = -' : .-- , in which the radius is

supposed 1. But to a tabular radius r, [see Trig, p; 11,]

rin.f^nd.e.

* It is with this, as with many other parts in Astronomy, described

in the following passage by the Abbe Lacaille :
<( Dans PAstronornie

on ne parvient a donner unc certaine precision a quelque theoiie qu'cn

revenant incessament sur ces pas et en rcmaniant tous les Calcujs, a

mesure que Ton decouvre quelque nouvel element, qui y devoit entrer,

on que 1'on perfectionne quelqu'un de ceux qui se compliquent avec les

autres." Mem. de I'Acad. 1757, p. 108.
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d= -^- x rad. , or = ~ X rad. .

Sill i JL XT

Now, if we wish to compute from this latter expression, since

P is to be expressed in degrees, minutes, seconds, &c.

we must express the radius r also, in degrees, minutes, &c : and

since to a radius 1, the circumference = 2 [3. 14159], we have

2 [3.14*159] ; 360 :: 1 : r = -- = 57. 2957795.
L 3.14159

Hence, the last of the two expressions for d> becomes

, 57. 2957795 ,

d =- - x rad.

and from this or the former, d = -r^~ X rad. , may the dis~
sin. P

tances of heavenly bodies be computed.

If we express the radius r, in degrees, minutes, &c. of

French measure (Trig. p. 2.), we shall have

, 63. 6619 - ^
d =- x rad. .

Hence, for the Sun, if P8''.8l, or, In French measure,

= 27^.2,

For Marsy P = 24-" . 624, or in French measure, = 76'
r

,

57, 2957795 , ^ 63.6619 , ^
s -

<24".624
-

the distance of Mars from the Earth at the time of observation.

For the Moon, P=57' ll".4, or in French measure,= l . 059,

-=

Hence the mean distance of the Moon is about 60 radii of the

Earth.

Here, the greatest and least distances are, respectively

63. 6619 , ^ . 63. 6619 f ^_ 7̂
rad. 0, and --- rad. 0, or,
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63 . 94145 x rad. Q), and 55.98725 rad. 0*.
The general use of parallax, is then, to determine the distances

of heavenly bodies : but the special object for which it has been
here introduced, is the reduction or correction, which must be

made, by means of it, to the observed place of a body ; to prepare,
for instance, an observed altitude of the Moon, for the deducing
its declination. Now since, by the principle of the reduction, we

imagine a spectator in the center of the Earth, it is plain, from

the inspection of the Figure, p. 94, that the place of a planet
seen from the surface, must be lower, that is, nearer to the hori-

zon than its place seen from the center : but, this last is assumed to

be the true place, or, it is made the place in Astronomical com-

putations : and accordingly, a body seen from the surface must
be said to be below its true place, or to be depressed by parallax.

This depression takes place in a plane passing through, the

center of the Earth, the spectator, and the observed heavenly

body ; it takes place, therefore, in the plane of a vertical circle.

Now, the meridian is a vertical circle ; the declination of an hea-

venly body then, as determined by its meridian altitude [see p. 32,]

will be affected by the whole quantity of parallax ;
but its right

ascension, as determined by the time of transit over the meridian,

will not be at all affected.

The Example of page 89, may now be still farther corrected,

in which, since the zenith distance is employed, the parallax

must be subtracted', in the second Example, it is added to the

altitude.

*
It is plain from the above instances, that it is shorter to compute

by the French than by the English expression : for, in the former,

we may immediately divide the numerator (G3.6619) by the deno-

minator ; which we cannot do in the latter.
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EXAMPLE I. [see p. 89.]

Altitude of Sun's upper limb - - - 62 30' 30". 5

Error of collimation ------ 34 . 5

62 29 56

Apparent zenith distance - - - - 27 30 4 sin. .4017

Refraction 29

27 30 33

[8" | x .4617] Parallax 4

27 30 29

Semi-diameter of the Sun - ---- O 15 46

27 46 15

Latitude of place of observation - - 48 50 14

Declination of the Sun ------21 3 59

EXAMPLE II.

Altitude of 2>
?

s upper limb - - - 51 11' 24"

Refraction -----------0 45

51 10 39

[55' 24" X. 6246] Parallax 34 36.2

Ji 45 r^
Semi-diameter - - - - 15 8.8

Altitude of D's center ------ 51 30 6.4

Co-latitude of Greenwich -----38 31 20

Declination of the Moon 12 58 46,4

In this case, the horizontal parallax for Greenwich is taken

= 55' 24" ; and the multiplier .6246 is the natural sine of

38 39' 18, which is the zenith distance 38 49' 31" diminished

by 10' 3", the value of the vertical angle [see p. 99.]

55' 24" represents the horizontal parallax for Greenwich,

being the parallax on a spheroid at the latitude 51 28' 40", de-

duced from, what is called, the Equatoreal parallax ; which is the

difference of the Moon's place in the Heavens seen from the

equator and the Earth's center : the Moon being in the horizon
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of the spectator. But this equatoreal parallax is deduced from

the equatoreal parallax at the mean distance of the Moon *, which

according to Mayer, is 57' 1 1''.4. There is, therefore, the equa-
toreal parallax at the mean distance ;

the horizontal equatoreal at

any distance
; the horizontal for any latitude, and the common

parallax for any altitude : and, in observations of the Moon and

in calculations from them, all these circumstances must be

attended to.

The quantity of parallax has been computed [see p. 95.] by
means of observations made in the meridian ; but it may also be

computed, as refraction was [p. 92,] by observations out of the

plane of the meridian ; for in these latter, parallax causing to

vary the right ascension, its quantity may be computed from

that of the variation. Thus, let M be a planet in its true place,

N

?/i in its apparent place, Mm lying in a vertical circle

[see p. 103.] Now, m being the place instead ofMy the time from
the passageover the meridian, will be represented by the angle ZPm,
instead of the angle ZPM : the change therefore, in the time, or in

the apparent right ascension of the planet, caused by parallax, is re-

presented by the angle FPv ;
and this change may be thus estimated:

IfM were a fixed star, Mm would be nothing, and there would be
no parallax affecting the time, or the right ascension : two fixed stars

then, that crossed the vertical wire of a telescope in the plane of

the meridian, after an interval of t seconds, would also cross the

vertical wire of the telescope in a plane, not that of meridian,

after the same interval / : but if, instead of one of the fixed

x The MOQII'* greatest parallax is 6i' 32"; her least 3' 52".
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stars, we take a planet having parallax, then if the above-men-*

tioned interval were t seconds on the meridian (where parallax

does not affect the right ascension,) it could not be t seconds out

of the meridian, but, as the figure shews, something more -

9
for

instance, t+e seconds : now is reckoned, or known, by means of

a chronometer ; and thence, the horizontal parallax [P] may be

computed from this formula

P *5 Xs x c s. dec.

cos. lat. X sin. hour angle

which may be thus proved :

Vv = Mn . sec. VM = Mm . sin. ZMP . sec. VM
= P. sin. ZM.s'm. ZMP. sec. VM
= P. sin. ZP. sin. ZPM. sec. VM

[for sin. ZM.s'm. ZMP = sin. ZP . sin. ZPM Trig. p. 102.]

Hence, P =
sin ZP .An. ZPM. sec.

or, since 360 : 24 h
:: #V : B

; and since sin. ZP cos. latitude,

bin. ZPM= sin. hour angle (//) sec. VM =-==^ =- ,
-

&
cos. VM cos. dec.

15 .e . cos. dec.

cos. lat. x sin. hour angle

This expression applies to the case when the planet and star

are observed first on the meridian, and afterwards when they have

passed it : if they are observed before they are on the meridian,

then a similar expression would obtain for a line V vf

analogous

to Vv j and we should have

Jr P cos. lat. sin. h 1

y fjj' z^Z -> %

cos. dec.

Hence if the difference & belongs to two observations of the

star and planet, the one made to the east, the other to the west of

the meridian, we have

, rrf , ,
P cos. lat. sin. //

,
P cos. lat. sin. k'

Vv + V'v 9 or E x 15 = h 3 ,
cos. dec. cos. dec.

and accordingly,

p __. x 15 cos. dec.

cos. lat. x [sin. h -f- sin. //]

E X 15 x cos. dec.

(A\
2 cos. lat. An. --\ cos.
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In the preceding investigation it has been supposed, that &

arises solely from parallax : but since, during the observations,

the planet will have moved either from, or towards, the star, the

noted difference of time, or excess above / seconds, will be com-

pounded of the effect of parallax, and of the time due to the

planet's motion, during the interval of the observations.

EXAMPLE.

Aug. 15, 17 19. Paris. By the observations of M. Maraid i

at 9 h 18m, Mars passed the vertical wire 10m 17 3 after a small

star in Aquarius / and, 7 hours being elapsed, 10m 1 s
after.

But in this interval (7 hours) Mars had approached the star

by 14 seconds $ that is, had there been no parallax, the former

difference of passage, which was 10m 17 s

, would have been re-

duced to 10m 17 s

14% or, 10m 38
: but by the second obser-

vation, the difference of passage is only 10m 1
s

, consequently,
the effect of parallax is (10

m 3 s

)
- (10^ l s

)> or 2 s
: and this is

the value to be substituted for c in the preceding expression :

and since, by observations at the time, it appeared that

Declination = 15 0' 0" log. cos. - - 9.9849438

// = 56 39 [log. 15 - -
1,1760913]

//= 49 15

*f = 52 57 log. sin. - - 9 . 9020628

A
~^.. = 3 42 log. cos. - - 9.9990938
Z

Latitude of Parisrr 48 50 12 log. cos. * ~ 9.8183630

We have, from the logarithmic formula qf p. J06,

log. P = log. 15 4- 20 -f log. cos. 15

-
[log. cos. 48 50' 12"+log. sin. 52 57'+log. cos. 3 42']

= 1.4415155;

/. P, the horizontal parallax of Mars, is 27".638 [See Mem>
deVAcad. 1722

-,
and Lalande's Astron. torn. II. p. 356],



CHAP. XIII.

On Aberration.

TN Chapter X, p. 78, some explanation was given of

this inequality, which was there shewn to arise from the motion of

the Earth and the propagation of light. A ray of light descending

in the direction ///', whilst the spectator moved from a through

ad, a'd'y &c. would, to such spectator, appear in a direction

parallel to a a.

;\

As the brief explanation given, in Chapter X, of the prin-

ciple, may not be thought entirely free from objection : and, as,

indeed, the principle, however established, is somewhat of a re-

fined nature, and remote from common apprehension, it may be

proper to elucidate it by one or two illustrations.

That of Clahraut's *, is ingenious and
satisfactory. Suppose,

G to be one of many drops of rain falling rapidly in the direction

Mm. de VAcad. 1737, p. 207.
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GA. How ought a tube to be held, by a person walking from

C towards A and Z>, so that the drops shall descend down its

axis ?

It cannot be held in the direction AG, for then, whilst it was

moved from C to A, the drop would come in contact with the

hinder side of the tube. That side of the tube, therefore, must

be withdrawn from the direction of the falling drop ; and, the

quantity through which it must be withdrawn, or its change of

inclination from that of AG, is to be determined by drawing GH
parallel and equal to CA, and by completing the parallelogram
CGHA

; then, CG is the direction in which the tube must be

held.

The spectator is supposed to move from C to A, whilst the

drop at G falls through GA. CA, GA, therefore, are the relative

velocities of the spectator and the drop. Now, if two equal and

contrary motions be conceived to be communicated to G, the

drop G will not be affected by them. But, conceive them com-

municated separately, their quantities being respectively -f GH,
and GH : then, if the latter GH, that is, an impulse from

H towards G be communicated, this combined with the motion

GA, will cause the drop to take the direction GC. By the remain-

ing part -f GH, the drop will be translated from G through GH ;
but

the spectator is transferred through an equal space CA, in the same

time. Since the parts of the system, then, are affected with the

same motion and towards the same parts, the drop G will fall as if

the spectator and tube were at rest , but then it falls, as it has

been shewn, in the direction GC.
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The explanation of the phenomenon has also been attempted,

by analogy, from the law of the composition of forces. Light is

likened to matter, and conceived to impinge on the eye, and its

direction to be determined by the resulting one of impact.

If therefore, the eye at A, suffers impact, from the light's
force

represented by GJ9 and the force of its own motion represented

by AC, and in that direction, the direction of the resulting force

or impact will be AHy or CG; according to which direction

light will be judged to come.

If the principle then be assumed as established, this must follow.

The light of a star, from ry (Fig. p. 108.) instead of the direction

ra> will appear, to a spectator moving from a towards N, to have

proceeded in the direction sa and if a plane be conceived to be

drawn through ra, aN, the Aberration will take place in such

plane, and the angle, its measure, will be ras. Hence, if aN
meant as a tangent to the Earth's orbit, be called the Earth's

way, then, if the spectator move from a to iV, or towards the

star, the direction of the star's light, will, by reason of aberration,

appear to form with the Earth's way, an angle saNless than ra JV;

or the star may be said to be depressed towards aN : but, the

contrary will happen, or the star will seem to be elevated from

the line a AT, the Earth's way, if the spectator move from the

star, or from N towards a.

But, since a star's place is determined from its right ascen-

sion and declination, the main object of explanation is, to shew,

how the preceding circumstances will affect and modify observa-

tions made in the plane of the spectator's meridian. With this

object in view, we will begin with the illustration of a simple

instance.

Let S be the Sun, E9 E', E'> "', four positions of the Earth,

when the Sun is in the signs, 7% yf , & 25 ; that is, positions at

the vernal and autumnal equinoxes, and the two solstices. Let <r be

a star, and suppose the Earth to revolve round the Sun according to

the orderE E' E" E fff
* Now, in the position Ey (the Vernal equi-

nox,) the Sun is in the equator [see p. 15.]; therefore if Pmp
be a meridian passing through the pole of the equator and the

pole of the ecliptic, Pmp will coincide with the solstitial colure,

and a line drawn from 5 to E will be perpendicular to the plane

passing through Pmpn : therefore, if the plane of the ecliptic
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EE'E" be conceived to lie in the plane of the paper, that of

Pmpn must be perpendicular to it. SE [conceived to be drawn

between S<r and J5,] is perpendicular to the tangent Tt (the Earth's

orbit being supposed to be circular) ;
and consequently, the line

Tt lies in the plane of the meridian P mpn.
The Earth being supposed to turn round its axis in the direc-

tion nEm, and SE being perpendicular to the plane Pmpn, the

meridian Pmpn was opposite to the Sun six hours before it oc-

cupied the position represented in the Figure : in other words,

Pmpn is the position at six in the evening. A star a- therefore,

situated in the solstitial colure, with aright ascension = 18 hours,

comes on the meridian at six in the evening : Ji<r, since it lies in

the solstitial colure, lies, in this case, in the plane of the meridian ;

so does, Tet the Earth's way. But, by what has preceded [p. 110,]

the aberration lies, in a plane passing through Er, Et, therefore,

in the plane of the meridian ; and, since the Earth moves from
the star <r, <?' the apparent place will be above a- the true place :

that is, will be elevated towards P
;
and if P be the north pole,

will to a spectator appear to the north of its true place. More-

over, since the aberration takes place in the plane of the meridian.
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in which plane declinations are estimated, the whole effect of aber-

ration will be to increase the declination of the star, or to lessen

its north polar distance.

In the opposite position E'\ at the Autumnal equinox, the

aberration, as in the preceding case, will take place entirely in

declination
; but, since the Earth and spectator are moving towards

the star <r, the star will appear depressed towards Tf'E f/

t", or from
the north pole P" ; in other words, the star will be seen to pass
the meridian more southerly : its declination will be lessened, or

its north polar distance increased. Since P'rm"p"
* must revolve

through 90 before it is brought opposite the Sun, that is, before

noon, the star will be on the meridian at six in the morning.
Since the star in this last position was depressed, and in the

former (E) elevated, the star will be more northerly in the posi-
sition Ey than in the position J5", by the sum of the two aber-

rations, at E and Eff
.

In the second position E'> at the Summer solstice, the

star will come with the Sun on the meridian P'm'j/> that is,

will be on the meridian at 12 o'clock. In this position, T'E't'

will be perpendicular to the plane of the meridian
; therefore,

since the aberration takes place in a plane passing through Ef&

and T'E't') it will take place in a plane perpendicular to that of

the meridian P'm'p', and towards E't'> that is, to the right or

the west of the meridian. But, the aberration being in a plane

perpendicular to the meridian, the declination of the star, which
is estimated in such plane, will not be at all affected, but solely
the right ascension, which will be lessened.

In the opposite position at E'"> at the Winter solstice, the

aberration, as in the preceding case, will take place entirely in right

ascension, which will be increased. In this last position, the star

comes on the meridian at midnight.

Hence, recapitulating, a star situated in the solstitial colure

with a right ascension equal to 270, or 1 8 hours, passes, March 20,
the meridian about six in the evening ; and, the aberration is

wholly in declination, which is increased.

June 2 1
, it passes the meridian about noon, and the aberration

is wholly in right ascension, which will be lessened.

* m'y m" (not expressed in the Figure,) like the point m, are inter*

sections of the small circle, representing the section of the Earth, and of

diameters perpendicular to the axes P'p', P''{/'.
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September 23. The star passes the meridian about six in tjhe

morning, and the aberration is wholly in declination, which is

diminished.

December 23. The star passes the meridian about midnight,
and the aberration is wholly in right ascension, which is

increased.

A star situated very nearly, as the imagined one, in the pre-

ceding illustration, is y Dfaconis, whose right ascension in 1800

was l7 h 52m .

In the preceding illustrations, for the sake of simplicity, a

particular star, and particular positions of the Earth, were assumed:

and, in such, the aberration was either entirely in declination, or

entirely in right ascension. But, in positions intermediate be-

tween those that have been assumed, and with the same star, the

aberration will not take place in a plane, either coinciding with

that of the meridian, or perpendicular to it. In other words, the

aberration will be partly in declination and partly in right ascen-

sion j or, if we take a star not situated, like the one quoted in the

preceding illustration, in the solstitial colure, then, when such a

star comes to the meridian, either at six in the morning, or at

six in the evening, the aberration is not entirely in decimation ;

and, when it comes, at noon or midnight, the aberration is not

entirely in right ascension. Although this may easily be inferred

from what will be proved in a general way, in a subsequent

part of this Chapter, yet it may aid the Student in his conception

of the theory, to establish, by a separate proof, the truth of

one of the preceding assertions.

With a view to this end, we will now shew, that the

effect of aberration on a star not situated in the solsdtial colure,

at six o'clock, either evening or morning, is partly in declination

and partly in right ascension.

Conceive c 5Wa to be the horizon *, and cb a the ecliptic

elevated above it ; also S to be the south, W the west, P the

pole of the equator, and the Sun at six in the evening, above

the horizon, and consequently to the north of the point W.
Draw T a tangent to the ecliptic, and ER representing the

* See Figure in p. 114.
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Earth's way parallel to it, and in the plane of the ecliptic cBQa:

P

then if ^ be the star, the aberration [see p. 110,] will take place

in a plane passing through E&1 ER.

Now, if the star were in the solstitial colure, then, when on

the meridian at six o'clock, the Sun would be in the horizon,

and the ecliptic, instead of being as in the Figure, would pass

through WV in that case also WE would be perpendicular to a line

ER f

y and since it is perpendicular to JSv, it would be so also to a

plane passing through E<?y ER' : but, EW is perpendicular to

the plane of the meridian ; consequently in this case, the

plane of the meridian, would coincide with that passing through

E<r> ER'y in which the aberration takes place, and accordingly as

it has been before shewn fp. 111. 1. 19.] the aberration would

take place wholly in the meridian. If, however, be to the

north of W, E @ will not be perpendicular to the plane of the

meridian, and the plane passing through E<r, ER, instead of co-

inciding with the plane of the meridian passing through E<ry ER',
will be withdrawn from it towards the east. But, the aberration

takes place in such plane, and any line representing its effect, may
be resolved into two others, one perpendicular to the plane of

SE(r 9 representing the aberration in right ascension, the other in

that plane and representing the aberration in declination.

The aberration therefore of a star, not in the solstitial

colure, which passes the meridian at six o'clock, is not wholly in

declination.

There is, however, during the Earth's diurnal rotation, a point

of time, at which, the aberration of a star in declination, although
not wholly in that direction, would, if on the meridian, be a max-

imum ; another, at which it would equal nothing. There is
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also, whatever be the star, a day during the Earth's annual revolu-

tion, at which the star's aberration in declination (although it may
not be wholly in that direction) is a maximum, and another, at

which it is equal to nothing. And the like may be affirmed of

the aberration in right ascension.

We will now proceed to demonstrate these latter points, and

to establish general formulae, from which the quantity of aber-

ration may be computed.

Let S be the Sun, E the Earth; Efg its orbit 5 ZTT that

orbit extended to the fixed stars, and in which the signs are

supposed to lie ; ET a tangent to the Earth's orbit at E ; the

place of S amongst the fixed stars, or in the ecliptic as seen

from E the Earth \ the place of E the Earth in the ecliptic,

as seen from the Sun 5 ;
a- a fixed star; <rT the arc of a circle,

(of which the center is E) passing through <r and T : then, by
what has preceded [p. 110] the aberration of a star o- takes place

in a plane a-EJ1

, passing through <rE and J5T; and the Earth

moving according to the order Efg, and towards ET, the aber-

ration may be represented by <r E &'.

The circle oT, in the Figure, is not a great circle; it would

be one, if E coincided with S. Now this latter condition may be

conceived to take place ; for, [see p. 22.] the annual parallax of th?
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Earth's orbit is insensible ; in other words, the radius SJZ of its

orbit, with regard to SZ, or ST, (the radius of the imaginary
concave in which the stars are conceived to be placed) may, by

reason of its smallness, be neglected,

If E then be considered as coincident with S, the arc <rT

measures the angle c-ET: hence, since

sin. <rEc' : sin. cET :: vel/. of the Earth: vely . of light j

and, since the velocities of the Earth and of light may be consi-

dered as constant ;

sin. <rJS<r', or aEa' [&(?' being very small] oc sin. 0T9

or, the aberration oc sin. &T : consequently, the aberration is the

greatest,
when sin. crTis, that is, when <?T equals a quadrant,

or when <r is in TT the pole of the ecliptic.

By observation, the greatest effect of aberration is about

20". Hence generally,

The aberration = 20" sin. *T.

The Earth's orbit being nearly circular, SJS is nearly perpen-
dicular to ET: and T is a quadrant, or Tis 90U

degrees before

the Earth's place seen from the Sun : and if Y represents the

first point of Aries> the longitude of T is Y T', and the longitude

of the Sun, which, by a spectator on the Earth's surface, is re-

ferred to 0, is Y = T T + 90 i\

The aberration <ra-' is made in the circular arc <r T: but, except
in particular instances (such as were stated in pp 1 10, 1 II ,) obser-

vations are not made in the plane <*E T> nor in one perpendicular

to it. An observer, who notes the heights of stars in the plane of

the meridian, and their transits over it, discerns only the resolved

parts of the aberration <rcr': one part, resolved in the plane

of the meridian, and, the other, in a direction perpendicular

to it. These are the parts that affect the declinations and right

ascensions of stars ; and consequently, the enquiry is naturally

directed to their investigation.

Let, as before, cr be the star, v the pole of the ecliptic CTL,
f the pole of the equator, jfEQ, and a-T the arc of the circle, m
the plane of which, aberration takes place. Then, if a-T co-

incide with TT Z, or with Pa> there is, respectively, no aberration

perpendicular to TT Z, or none perpendicular to Pa : in other words,

there is no aberration in longitude, or none in right ascension. If
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<r7*be perpendicular to nZ, or to Pa, there is no aberration in the

plane of TrZ, or none in that of Pa, iri other words, there is

either no aberration in latitude, or none in declination. And the

determination, on these principles, of the several positions of the

point T when the respective aberrations are ^qual to nothing,

is preparatory to the investigation of the formulae that generally

expound the laws of the aberration.

Investigation of tlie Position of tlie Point T when the Aberration in

Declination = 0.

Let Do<r be perpendicular to Per a: then D is the place of

T when the aberration in declination is 0. Now T is always 90^

before the Earth [p. 116]: let the place of the Earth corresponding
to Do, be J > then D d = 90 : now, jD <rZ (as the Figure is

drawn) is 7 90 j /. D Z is 7 90' [see Trig. p. 91] ; .-. d is be-

tween Z and D : and in order to compute d Z3 (since the angle at

Z is a right one) we have, by Naper's rule,

r X sin, <r8 = cot. D^crZ X tan. D Z

= cot. [90 + P<rvr~\ X tan. [90 -f dZ]

tan.

Now the angle Pw is called [seep. 58,] the angle of position

[P] and since o-Z is the star's latitude, we have, for computing

dJZ> the Earth's distance from syzygy, this expression
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* tan. daZ = r ._- -r- , C 1 1
sin. star s

Formulafor the Aberration in Declination. (Fig. p. 117.)

Draw <r'n perpendicular to Pva> then <rn is the aberration

and we have -// = <r<r' .cos. <r<r'

= o-o-' . sin. D (rT

20". sin. o-T.sin. D <rr [p. 116.]
= 20" . sin. A^- sin. TZ> <r [THg. p, 102.]

But, D <rZ is a right-angled triangle; .'. by Naper's rule,

1 x cos. Do <*Z> or, 1 x sin. P^TT = sin. TD <r x cos. X> S
= sin. TD <r x sin. r/ 2

consequently, <r//, or ^ a= 20". sin. D
o
T x !

m '

.

sm* w ^/

Hence, A is a maximum [JWJ when D T= 90^

A M = 2o^.4^i, [2]
sin. ^,Z

and -\ A M . sin. >o r. [3]

Investigation of the Position of the Point T, when the Aberration in

Right Ascension zr 0.

If o-r coincide with P<r, then^ is the corresponding position

JP

of the point T: and /? [^ ^a being = 90] that of the Earth.

Now, by Naper,

* This is Bradley's Rule, See Phil. Trans. No. 406, p. 650. See also

Clairaut Mem de VAcad. 1737, p. 213, and T. Simpson's Essays, p. 14.

f See Bradley, Phil. Trans. No. 406. p. 650. Clairaut, Mem. Acad.

1737, p. 213, and T. Simpson's Essays, p. 16.
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1 X sin. <rZ = tan. A Z x cot. Pa-rr

= cot '..JL = cot * P
cot, A Z tan. aa Z

Hence, tan. a Z = ~-CO*' P
. . . [4]

sin. star s latitude

Formula for the Aberration in Right Ascension.

Draw c-'n perpendicular to P a- A^ ; then the aberration in

right ascension \a\ equals the angle /iJfco-' ;
therefore

H(r
f

__ fl'a-' <*<rf

~~ ~~
sin. Par

~~
cos. dec.

GO", sin. T .

Sin ' n(T(T
'

: but, [r^>. p. 102.]GO, . .

cos. dec.

sin. <rT X sin. n<r<r
f = sin. ^ T X sin. TAjr

and by Naper,

1 x cos. P = cos.^ 2 x sin. ZAQ
v

rz cos. A*Z X sin. TA<r.

TT ^ sin. ^,T cos. P
Hence, a = 20X/ -~^ x-~ ---

,
cos. dec. cos. AZ

consequently, a is a maximum (tn) when AT = 90 j

.-. m = 20/;
. -C-^-^-3-=* [5]
cos. dec.xcos. A Z

and f = m . sin. ^ T. [6]

* The method used for finding the expressions for the aberrations in

declination and right ascension, very nearly resembles one given by
M. Lalande, Astron. torn. Ill, 2d Edit. pp. 199, c. His formulae

too are similar : instead of [5] he deduces [p. 206.]

cos. 23 28'
m = 20//

.
-

-3

-
;

-T :

cos. dec. X cos. dec. Ao

but which is immediately transmutable into [5],

cos. P cos. 23 28'
since -r-z, = --i

--r .

cos. AQ^ cos. dec. /J

f See Clairaut, Mem. de 1'Ac.ad. 1737, p. 225 : also T. Simpson'^

Essays, pp. 17, 18, If).
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Investigation of the Position of the Point T 'when the Aberration in

Latitude = 0.

Draw <rK perpendicular to wo-, a secondary to the ecliptic ;

then <r7, is the position of 0T, and K of T, when the aber-

ration in latitude is = 0.

Now jK" Z is perpendicular to w 2' ; and since K <r is drawn so,

jfo see 2>/gr. p. 90] is the pole of the circle v Z ; s. Kn Z is a

quadrant; .*. since jfif is 90 brfore the corresponding place of

the Earth, the Earth is at Z9 or is in syzygy with the star.

Formulafor the Aberration in Latitude.

Draw <y
fm perpendicular to vZ', then <rm [= K ] is the aber-

ration in latitude,

and <r w, or K = <*<*'. cos. wcro-'

= 20". sin. o-r.sin. T*K9

= 20^. sin. /i:or.si

But, since K is the pole of wZ, the angle TJT tr is measured

by o-2, the star's latitude. Hence,

K = 20" . sin. J5Tor X sin. star's latitude.

Hence, K> the aberration, is a maximum (N) when JK T is equal

90 j that is^ when Jis in Z or 180 distant from it 5 or when the
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j_

Earth is in quadratures [see p. 44,] with the star ; the formula
become then

N = 20" . sin. star's latitude [7]

K = N.sin.K^T [8]

Investigation of the Position of the Point T ivhen the Aberration in

Longitude rr 0. [See Fig. in p. 120-]

This must happen, when a T coincides with or Z : or, when T
falls in Z : that is, since T is 90 before the corresponding place

[] f the Earth, when the Earth is in quadratures with the

star.

Formula for the Aberration in Longitude.

rrrL i , /T\ . . niv r
O-<T

/

. sin. ,C a jtThe aberration (k) =
sin. w*r cos.

sin. <r T . sin. o- J1

cos. Z<r

But, since Z<r T is a right-angled spherical triangle, by Naper's

rule, we have

1 x sin. ZT rr sin. a-T X sin. Z^T

. ^ = mn _sin. ZT = 2(y, ,___c?_s:._^_.
'

cos. star's latitude
"

cos. star's latitude
"

Hence k is a maximum (;;) when cos. Z is the greatest, that is

when Z either = 0, or 180 : in other words, when the Earth,

or Sun, is in syzygy with the star :

OQ//
hence the maximum, or n =--

;
: r , [9]

cos. star s latitude

and k ^ n.cos. Z. [10]

The preceding formula? are the foundation of those rules

which Clairaut has given at the end of his Memoir in the Mem.

de VAcad. des Sciences for 1737 ; which same rules also, are in-

serted inThomas Simpson's Essays, as communicated by Dr. Bevis*.

*
Simpson's Essays were published subsequently to C'lairaut/s

Memoir, which Simpson himself (Preface, p. (3,) acknowledges.

Clairaut, therefore, must beheld as the author of the Rules. Mr. Vince,

in the first Volume of his Astronomy, has, without their proof, inserted

e.sg Rules, and erroneous! v attributed them to Dr. Maskelyne.
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The preceding formulae also, numerically expounded for

particular instances, contain the complete explanation of those

phenomena of aberration which Bradley (Phil. Trans. No. 406,)

has recorded. This, after the solution of certain examples, will

be made manifest.

EXAMPLE f,

// is required to find the time when the Star y Draconis had no

Aberration in Declination. [For the Longitude, Latitude, and

Angle of Position of this Star, see pp, 57. 59.]

The formula of computation is [1] p. 118, and, logarithmically

expressed, is

log. tan. dZ =r 10 + log. tan. P log. sin. star's latitude

10 + log. tan. P, or 10 + log. tan. 3 44' 28" - - 18.815495

log. sin. star's latitude, or log. sin. 74 57 5 - - 9 984844

log. tan. J Z - - - 8.820651

.-. </ Z = lf 5,' 25".

But the star's longitude is 264" 9' 22"; .'. the longitude of

dQ is 268 V 47", or 8 s 28 1' 47": consequently, when the

Sun's longitude is either 8' 28 <J

1' 47'', or & 28 V 47", there

is no aberration in declination. These two longitudes of the

Sun answer to Dec. 20th, and to June 20th.

By p. 118, the maximum (M) of the aberration in decli-

nation happens when D T = 90, or = 3'
; that is, when the

Earth is at D j or its longitude is 1 1
s 28 I' 47", or 5 s 28 1' 47" :

or, adding six signs, when the Sun's longitude is 5 s 28 V 47",

or 1 1*
C28' 1' 47" : which longitudes correspond to Sept. 21, and

March 19.

EXAMPLE II.

Let it be required to find the Quantity of the Maximum of Aber-

ration in Declination of the same Star.

By formula [2] p. 118,
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log. 20" .......... 1.3010300

log sin. 3 44' 28" ...... 8.8145693

10.1155993

log. sin. d Z, or log. sin. 3 52' 25" - - 8.8296625

.'.log.M = 1.2859368

/. Jlf = 19". 31.

EXAMPLE III.

It is required to find the Aberration {A) of the same Star at atiy

proposed time ; Dec. 3, for instance.

By formula [3] p. 118, A = M . sin. D T. Now, Dec. 3,

the Sun's long*, was 8 9 10 28'; .-. that of T was 5 s 10 28';

/. Z)o r=: 11 s 28 I' -
[5

s 10 28'] s= 6 s 17 33': and the

natural sine of 6 5 17 33X
is .3015 nearly ; consequently,

A = 19". 31 X .3015 =: 5". 8 nearly.

EXAMPLE IV.

// is required tofind the Time at which the Aberration of y Draconis

in Right Ascension is = 0.

By formula [4] p. 119, tan aQZ = r x -.
-~

, r >7 L j r 3 o sm star
,
g ]atltuje

log. r + log. cot. P, or 10 + log. cot. 3 44/ 28" * - 21.184504

log. sin. star's latitude, or log. sin. 74 57 5 - - 9.984844

log. tan. aZ --- 11.1Q966O

.'. aZ = 86 23 7
13".

But, the star's longitude is 264 9' 2", .*. the longitude of the

point <* is 177 457
49", or 5 s 27 45' 49"; .'. when the Sun's

longitude is either II 9 27 45X

49", or 5 s 27 45' 49", that is,

either on March 18, or Sept. 21, the aberration of y Draconis in

right ascension is = 0.

* The angles of position of y Draconis and of -Q Ursa majoris have

[p. 59,] been computed for 1725, the time of BiacHey's ob,scr\atioii<.

and purposely with the view of explaining and illu^rating thonu
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By p. ] 19, the maximum (m) happens when A T = 90, or

3 s

, that is, when the Earth is in A , the longitude of which point

is 8 s 27 45' 49X/

; .-. when the Sun's longitude is either

2 27 45' 49", or 8 s 27 45' 49V
;
that is, either on June 19, or

Dec. 19, the aberration in right ascension of y Draconis is a

maximum.

EXAMPLE V.

It is required to find the Maximum (m) of the above Star.

By formula [5] p. 119,

m z= 20" . f
>COS

:

P _
, [supplying the radius]

cos. dec, x cos. At l y 6 J

log. r + log. 20 11.3010300

log. cos. P, or log. cos. 3 44' 28X/ - 9.9990736

21.3001036 [*]

log. cos. dec"., or log, cos. 51 31' 49" - 9.7938609

log. cos. A Z, or log. sin. 86 23 13 - 9.9991359

19 7929968 \V\

.-. log. m = 1.5071068 []-[*]

.. w = 32 /;

.145, or in time = 2.14, nearly.

EXAMPLE VI.

// is required tofind the Aberration in Right Ascension ofthe same Star.

By formula [6] p. 119, a = m . sin. AT

Longitude of the Sun, Dec. 3, is 8 s 11 30;

.. longitude of the point r-----511 30

But (see above) longitude of A<> - - - 8 27 45

.'. A T - - - 8 13 45natJ.8in=.96

/. a = 32". 145 x .96 = 30". 8 nearly, or in time = 2s
. 05 :

which, as it tends to lessen the right ascension, or to bring the

star on the meridian before it would come, if there were no aber-

ration, is subtractive and to be noted by
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EXAMPLE VII.

// is required to find the Time when y Ursne majoris has no Aber-

ration in Declination. [For the Latitude, Longitude, and Angle
of Position of this Star, see p. 58, 59.]

By formula [1] p. 1 18, tan. d Z = r
a "

. r .
7 L J r

sin. star s latitude

log. r + log. tan, P, or 10 + log. tan. 38" 37' 26"- 19.9025318

log. sin. star's latitude, or log. sin. 54< 23 53 - 9.9101338

.-. log. tan. JZ = - 9 .9923980

.-. ff
l}
Z = 44 G9' 55''

but, the star's longitude-- 173 3 15

.-. the longitude of // =r217 33 10, or 7
s

7 33' 107/

-,

/. when the Sun's longitude was cither 1
s 7 33' 10", or

7 s 7 33' 10"; that is, either on April 28, or Oct. 31, the aber-

ration in declination was = 0.

Since the aberration in declination is a maximum when ) T
is 90% or 3' : that fact will happen, either when the Sun's longitude

is 4 B 7 33' 10", or 10s 7 33' 10"; that is, either on July 31,

or Jan. 28 : on the latter day, it will be most southerly ; on the

former, most northerly.

EXAMPLE VIII.

It is required to find the Maximum (M) of Aberration of Declination

in *? Ursae majoris.

By formula [<2] M = 20". f
1

"'/!,,sin. d *

log. 20 - 1.3010300

log. sin. 38 37' 26" 9 .7953275

11.0963575

log. sin. 44 29 55 9.8456511

log. M = 1.2507064

.-. M r= 17".81 nearly.
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EXAMPLE IX.

// // required to Jind when * Ursae majoris has no Aberration in

Right Ascension.

By formula [4]

tan. aQZ r ~
Cot '

_
. r , [supplying the radius r]

sin star's latitude
L rr ; &

log. r + log. cot. 38 37' 26" 20 . 0974682

log. sin. 54- 23 53 - ~ - 9.9101338

.-. log. tan.rfoZ = 10. 1873344

/. a Z 57 nearly ;

but the star's longitude =173 3' 15";

/. the longitude of a 116 3 15, or 3' <26
()

3' 15";

.-. when the Sun's longitude is either 9 s 26 3' 15", or 3 s 26 3' 15",

that is, on Jan. 26, or July 19, there will be no aberration in right

ascension.

These numerical results, with the previous theoretical illus-

trations, completely explain the phenomena observed by Bradley.

According to the first example [p. 122,] y Draconis had no

aberration in declination, that is, with respect to its height in

the meridian, was stationary, on Dec. 20. Bradley says (Phil.

Trans. No. 406, p. 639,) that on the 5th, llth, and 12th, there

appeared
' no material difference in the place of the star.' But

this is according to the old stile ; and the days therefore would

now answer to the 16th, 22 d,and 23d
. Again, pp. 122, 123, the

maximum of aberration happened in March 19, and its quantity
was 19".368. Bradley says (p. 640,) "about the beginning of

March (old stile) the star was found to be more southerly than

at the time of the first observation. It now indeed seemed to

have arrived at its utmost limit southward.
"

Again, by p. 122,

the second time at which the star has no aberration is June 20.

And, Bradley (p. 640,) says,
f about the beginning of June

(old stile)
c
it passed at the same distance from the zenith as it

had done in December/

Again, with regard to D Ursa majoris. By Exam. VII, p. 125,

if appears that the maximum of declination happens on Jan. 28 :

on that day the star is most to the south of its true place.
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Bradley, p, 658, says it was c farthest south about the 17th of

January ;
that is, according to the new stile, the 28th of January.

It has been shewn (p. Ill, 112), and without the aid of the

formulae [ 1 ], [2], &c. that a star situated in the solstitial colure, is

farthest north and south, or is at its maxima of declination,

when the Sun is in the equinoxes. At that time of the year,

such star passes at six o'clock. And this result would follow

from the formulas j for, in

, ~ tan. P
tan. d^

sin. star's latitude

P = 0, /. d,Z = 0, or = 180. But the maximum happens
when Z>,, T = 90 ; that is, when the Sun or Earth is in quadra-
tures with the star. The star therefore being in the solstitial

colure, the Sun must be in the equinoxes.

When a star is situated in the solstitial colure, the aberration in

right ascension is 'nothing, when that in declination is a maximum.
This nearly happens with y Draconis : for its aberration in right

ascension is on March 18, (see Example IV, p. 125,) and

its aberration in declination is a maximum on March 19. The
reason of this is, the proximity of y Draconis to the solstitial

colure*. But, fora star, such as *? Ursa majoris, not situated near

the solstitial colure, the aberration in right ascension is = on

July 19, [see Example IX, p. 12(i,] and the aberration in

declination a maximum on July 31, [see Example VI T, p. 125.J

As far as instances prove then, the aberration in declination

is not necessarily a maximum, when that in right ascension is

nothing. And, it is no difficult matter to prove the same

thing generally.

A star situated in the solstitial colure is farthest north, when
it passes the meridian at six in the evening, and farthest south

when it passes at six in the morning, y Draconis is nearly
in this predicament. But, other stars are not ; * Ursa majority
for instance, has a right ascension = 204 10' 8": subtract 90;
therefore, (equal to 6 hours,) and 114? 10' 8" is the Sun's right

* In 1725, when Bradley made his observations, it was distant

ftom the solstitial colure about 2 26'.
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ascension, when the star passes at six in the evening : add 90%
and 294 10' 8" is the Sun's right ascension when the star

passes at six in the morning : these right ascensions of the Sun

answer to July 15, and Jan. 12, respectively ; but, by Example VII,

[p. 125,] the star was farthest north, July 31, and farthest south,

Jan. 28 : that is, was not farthest north and south when it passed
at six in the evening and six in the morning. This is agreeable

to what Bradley says, p. 644. * I have since discovered, that the

maxima in most of these stars do not happen exactly when they
come to my instrument at those hours/

The time, at which a star is on the meridian when its aberration in

declination is a maximum, is easily determined : thus, with u Ursa

majoris the maximum happens July 31, and Jan. 28. On those

days, the Sun's right ascension was 8 h 38 m 53 s

, and 20h 40m 40" ;

but the star's right ascension is 204 10' 8", or 13h 36m 40s

;

/. since 13h 36m 40 s

(8
h 38 53 s

) = 4'
1 57m 47 3

,

and 20 40 40 -
(13 36 40) = 7 4*

The star D Ursa majoris passed farthest north July 31, in the

evening at 4h 57m 47 3
: and Jan. 28, farthest south, in the morn-

ing about 4h 57m before noon, or about 3 minutes after

7 o'clock.

No Examples have been given to the formula; [7], [8],

[9], [10J, of the aberrations in latitude and longitude: and

indeed the formula1 themselves might have been omitted.

They have been inserted rather because they are usually given in

Astronomical Treatises, than from any perception of their

utility. The practical Astronomer, who wants corrections for his

observations, has little need of them ; for the latitudes and longi-

tudes of stars are not observed t, but computed (see p. 56,)
from right ascensions and declinations. The Tables of aberration

are accordingly adapted to correct these latter quantities.

The Arguments of these Tables (the quantities with which you
must enter the Tables to find the numbers sought) are the Sun's

right ascension (or the day of the year) the star's declination and

right ascension. Now, the formulae [1], [2], &c. do not ex-

* These results are not exact; but sufficiently so, for the purpose lor

which they are intended.

f Except such stars be in the solstitial colure.
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pound the aberrations by those quantities; therefore, they are

not so proper for the construction of tables, as the formulae of

Delambre and Cagnoli.

These latter formulae express the aberration in terms of the

right ascension and declination. But, to balance this advantage,

they are rather difficult of investigation, and not neatly expressed.

Those which we have used [p. 118,] are indebted for their com-

pactness, principally, to the angle of position P ; which, analyti-

cally speaking, is an involved expression, or an undeveloped function

of the right ascension and declination. But, as we have seen, in

order to compute the quantity of aberration, we must, as a previous
and preparatory step, compute P : the same cause, therefore, that

gives to the expressions analytical neatness, impedes their nume-
rical exhibition.

In the formula, the numerical coefficient 20" has been used,

and [p. 116,] that was said to be the value of the greatest aberration,

or the aberration of a star situated in ?r the pole of the ecliptic.

In fact, however, Bradley did not determine such quantity of

aberration, by actual observation of a star situated in the pole of

the ecliptic, but, otherwise, thus : In formula [2],

M = 20"
Sin> P

'sin. </ Z*

instead of 20", substitute x an unknown quantity, and to be

determined ; then,

- M ?in -.4
z*- M '

sin. P
'

Now M is known by actual observation, and sin. rf Z, sin. P
may be computed [see pp. 59, 117] ; .*. x may be determined; for

instance, by observation, the greatest aberration of y Draconis,

from the most northward to the most southward point, was found

to be 39'' : and since this is double the aberration from the true

place,
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Hence, since

log. 39 1.5910646

log. sin. S 52' 25" - - - - 8.8296625

10.4207271

log. sin. 3 44' 2S" - - - - 8.8145693

.'. log, 2*=: 1.6061578

.'. 2* = 40".3, and * = 20". 15.

And, after this manner, from the observed maxima of the

aberrations in declination of other stars, Bradley found the mean

value of x to be nearly 20" : as appears from the following Table i

The first and principal star in Bradley's observations was

7 Draconis ; and, the reason of its selection was its proximity,
when on the meridian, to the zenith of the observatory. A star

observed, as it was, within 2 or 3 minutes of the zenith, would

be scarcely at all (by a small fraction of a second) affected by re-

fraction : which, in zenith distances beyond 36, would exceed

the whole quantity of the aberration, and consequently, would,

by being mixed and confounded with it, have considerably im-

peded the disentangling the quantity and law of the latter in-

equality.

The history of this discovery, one of the most curious and

interesting in Astronomical science, resembles the histories of

many other discoveries. It was not soon found out, nor immediately

suggested. Many fruitless trials and erroneous conjectures pre-
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ceded it. Bradley devised several hypotheses for the explanation
of the phenomenon he had discovered. A Nutation of the Earth's

axis, or an inclination of its position, naturally suggested itself.

In September y Draconis was more northerly, that is, nearer to

the north pole, than it had been in the preceding June : might
not then the pole P have shifted its place from P to p ? if it

had so shifted, then this must happen : the north polar distance of

a star , situated also in the solstitial colure, but in an opposite

part of it, that is, differing from it in its right ascension by 180,

would, instead of being P, be increased top^ and precisely by
the quantity Pp. Now what was the fact ? The north polar

distance of , or P, was found to be increased, but not by the

quantity Ppy that, by which the north polar distance of y had been

diminished, but, by about half that quantity. This, therefore,

was quite decisive against the hypothesis of a nutation of the axis,

or of a shifting of the pole from P to p.

But, on Bradley's last hypothesis, that which has been pro-

pounded as the true one, is the phenomenon, just mentioned, ex-

plicable ? The star f was one in the constellation of Camelopardalus,

with a north polar distance equal to that of y Draconis ; its co-

latitude, therefore was equal to the obliquity of the ecliptic -f north

polar distance, that is, it was about 62 (>

, and its latitude accord-

ingly, would be 28. Therefore since the latitude of y Draconis

[see p. 57.], is 74: and the maximum (N) = 20" x sin. star's

latitude : hence,
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N (y Draconis) : N (f Camclopardali} :: sin. 74 : sin. 28

:: 9612 : 4694

:: 2.04, &c. : 1

which result agrees with the observed phenomenon ;
and ac-

cordingly, Bradley's theory explains it.

It seems scarcely necessary to mention that the principle of

aberration will affect the apparent places of the Sun and planets

as well as those of the fixed stars. The Sun, for instance, must

always appear behind his true place by the same quantity of

aberration, which is 20'' * : hence, that the computed place may
agree with the observed, we must compute the 'former not for

the instant of observation, but for that which precedes it, by the

time elapsed during the passage of light, from the Sun to the

Earth.

k ^fw^Sun has been said to be constantly behind his true place

by ^he same quantity 20''. This is not strictly true, except the

arth's velocity be constant, which it is not. A small correction

refore is due to the variation of the velocity, or, (as it is ex-

pressed in Astronomical Tables) to the eccentricity of the Earth's

orbit ; for, if there were no eccentricity, the velocity would be

constant.

The principle of aberration having now been explained, and

the law of its variation expounded by formula?, we proceed to

shew its use and application as a correction to Astronomical obser-

vations.

Certain stars, it has been observed, [p. 53.] (those, which
situated near the equator, move most quickly) are used to correct

and regulate Astronomical clocks and chronometers. When a star,

a, Serpentis, for instance, is on the meridian, the clock denotes a

certain time. If the clock denoted time truly, it would express
the right ascension of <*

Serpentis. By previous observations and

computations founded on them, this latter quantity is known.
Tables are constructed, which, after the application of certain cor-

20/x

For n, formula [9] p. 121= ,

,

and k, formula [10] p. 112, = n X cos. 180 = n = !JO".
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rections, assign the star's mean right ascension. But, the star ob-

served on the meridian is in its apparent place. It is affected by
aberration. In consequence of that, it may seem to be on the

meridian before it really is, or after it has passed it. The time of

the year regulates that circumstance. Hence, to compare the

observed right ascension, which the clock denotes, with the com-

puted, we must make, either, both to be mean, or both to be

apparent. We must either add the aberration to the mean tabu-

lated right ascension, or subtract it from the observed and apparent.

The former is the usual mode, and Tables are constructed accord-

ingly : that is, besides the corrections (such as precession, nuta-

tion, &c.) due to the real change of the star's place, they express
the correction due to the aberration, which is an optical inequality :

so that, in fact, the star's right ascension computed from the

Tables is the apparent right ascension at the time of observation.

The following instance will illustrate the preceding explanation :

April 30, 1810,

a Serpentis* by obser. on the merid. at 15 h 35m 55 s - - - -
[1]

right ascension of a Serpentis, by Tables - - - 15
h 34m 55'.45

Aberration in right ascension on April 30 - - 00 1 .25

.-. apparent right ascension on April 30 - - 15 34 56.7 [2]

[1] [2]
- 58.3

consequently, the error of the clock is 58% 3.

As the preceding instance was intended solely to illustrate the

use of the aberration in right ascension as a correction, other cor-

rections, such as precession, nutation, &c, are not specified in it.

We will now explain the use of the aberration in declination

in correcting observations.

The difference of the distances of the same star from the

zeniths of two places, is the difference of the latitudes of those

places, if the star be either north or south of both zeniths

[see p. 7.]. If north of one, and south of the other, then the sum
of the distances is the difference of the latitudes. If the star be

observed on the same day by two observers, then, since the aber-

ration would equally affect each observation, no corrrection,

beyond that of refraction, would be necessary. The zenith dis-

tances might be immediately added or subtracted. But, which

generally is the case, if we make an observation in one place, and
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avail ourselves of an observation made previously in another, then

this latter will need correction. In the interval between the two

observations, or, in the interval between the actual observation,

and the epoch at which the star's place is registered in Tables, the

star with respect to the pole, and consequently to the zenith,

will have changed its mean place : it must therefore, by the means
of Tables be brougltt up from its tabulated place, to its mean place
at the time of observation. But, at that time, from the effect of

aberration, the observed star is either seen to the north or the

south of its true place. The quantity of deviation therefore, or

the aberration in declination, must be either added to or subtracted

from the place of the observed star
; or, subtracted from and added

to the place of the tabulated star. The latter is the usual mode, by
which, accordingly, the apparent and not the mean zenith distances

of stars are compared. The following instance will illustrate

the preceding explanation :

May 10, 1802, Blenheim Observ. apparent zenith

distance (north) of y Draconis - 019' 4*4t''.59

1802. Greenwich mean zen. dist. (south) 2 16.65

Aberration to May 10 --------- .-0 12.58

May 10, 1802, Apparent zenith distance of y Draconis

at Greenwich - 2 4.07

.-. sum of zen. dist. or difference of latitudes* - J 21' 48".66

and since latitude of Greenwich Observatory 51 28 40

Latitude of Blenheim ----------51 50 28,66

In a similar way, may the difference of the latitudes of places

be determined, if, instead of a recorded observation and one

actually made, we use two recorded observations. Thus, we

may determine the difference of the latitudes of Cambridge and

Greenwich, by means of a zenith distance of y Draconis made, in

the former place, June, 3, 179O, and of a zenith distance of

the same star made in the latter, Jan. 5, 1797. The two ob-

servations, by applying, with other corrections, that of aberration

* The aberration is additive to the north polar distance ; .'. since y
Draconis is north of the zenith, subtractire of such zenith distance*
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may be reduced either to June 3, 1790, or to Jan. 1797, or both

may be reduced to some other; for instance Jan. 1, 1790, or

Jan. 1, 1800.

In the two preceding instances, the selection ofproper stars is

regulated by different principles. In the first, where the error of

the clock was to be detected, a Serpentis was chosen ;
because

that star is situated near the equator, and moves with considerable

velocity : in the second, where the latitude was to be determined,

y Dracorns was chosen, because that star, ywhen on the meridian,

is near the zenith, and consequently, little affected by refraction.

In the preceding explanation and deduction of formulae no re-

ference has been made to the form of the apparent path, which

a star may, by aberration, seem to describe. Whatever that

form be then, it is no condition in the investigation. The law

of the variation of aberration, whether in right ascension, or in

declination, is not founded on it ; which law in a certain sense,

therefore, is independent of the form : that is, in order to be ex-

pressed or expounded, it does not require the form to be either

circular, or elliptical. Yet, connected with the law, is the form :

the former being established, the latter cannot be varied at plea-

sure : still, the enquiry into the form, since the theory is complete
without it, is one of pure curiosity and speculation : but, which,
on those grounds, will lead us to one or two theorems of singular

geometrical elegance and beauty.

By p. 110, the aberration always takes place in a plane

passing through <rE, ET^. But, T in the course of a year is

carried through the circle ZTY
; therefore, if we conceived <r to

remain parallel to itself, (which it may be conceived to do, by
reason of the relative smallness of ES) E</, will in a year gene-
rate round E<r a conical surface.

Draw ro- parallel to ET\ then, by p. 116,

rer : E<r ;: velocity of the Earth : velocity of light.

Now, the latter is assumed to be constant, and if the first be, then

re is so also
;

that is, during the revolution rv will describe a

Fig, in next page.
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circle, parallel to the plane in which ET is, or parallel to the

plane of the ecliptic. This circle may be considered as the base

of the conical surface described by JEr.

Since E<r is not necessarily perpendicular to the plane of the

ecliptic, and consequently not so to the plane of the circle de-

scribed by r<r9 the generated surface belongs to that species of

cone which is called oblique.

This is merely geometrical: the spectator sees no circle.

The star always appears to him in the direction of AV, and he

constantly refers a-' to the imaginary concave surface of the

heavens to which Ev is perpendicular: consequently, since the

intersection of the oblique cone by the concave surface, or by a

tangent plane at o-, is an ellipse *, the star, during the year, will

constantly appear to be in the circumference of such curve.

In one case, when a- is situated in TT the pole of the ecliptic,

the star's apparent path will be circular, for, then, E <r will be per-

pendicular to the plane of the ecliptic, and the conical surface

* The intersection of an oblique cone by a plane not parallel to

the circular base of the cone, and not a sub-contra*y section, is af

ellipse.
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generated by E<rr
, will belong to a rijit cone, or a cone of

revolution.

This is sufficiently plain, if <M* be constant, or if the Earth's

velocity be constant. But, if we suppose, which is the case in

nature, the Earth's velocity to vary, what then will be the ima-

ginary curve which cr describes, or, what will appear to be the

curve of aberration of a star situated in TT the pole of the ecliptic ?

It is a curious result, that, in this, as well as in the preceding

simple case, the curve is a circle.

Let E be the Earth, in her elliptical orbit ; S the Sun in one

focus, and let H be the other
,jfocus,

HZ a perpendicular to

a tangent at E. Draw from <r the star, <r// parallel to Bb,
and <rr to TEt 5 and take <rr proportional to the Earth's velocity

at E.

Since the Z_ h<rr = mtT / ZTH\ /.the complement
of k<rr, or z.r<rV~ / THZ, the complement of ZTH, in other

terms, <rr, HZ make equal angles with aVy HT. More-

over, the Earth's velocity varies inversely as a perpendicular
from S on the tangent TEt, or, by Conies, directly as HZ :

but, <rr varies, as the Earth's velocity, and therefore as

HZ. Hence, <rr varying as HZ, and revolving towards <rV

with the same angular velocity as that with which HZ revolves

towards HT, r and Z must describe similar curves : but [Vince's

Conies, p. 17. Edit. 1781.] Z describes a circle, consequently r does.

s
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At the point A> HZ is the least, and the angle THZ = ;

therefore in the line <rT, the aberration <rd is the least, and con-

sequently there perpendicular to the circle. In the opposite part

of the line <re is the greatest and also perpendicular to the circle.

Hence the center of the circle is in the line de> and its dis-

tance from o- is equal to -*
~ *

.

These latter propositions, in some treatises, are first established,

and then become the foundation of the formulae of aberration.

According to the view which we have taken of the theory,

they are not essential to it, of no use to the practical Astro-

nomer, an4 are merely speculative and mathematical. Their

excellence, however, as such, has been the cause of their pre-

sent introduction.



CHAP. XIV.

Precession of the Equinoxes.

ACCORD i NO to the order observed in the preceding pages,

the precession of the equinoxes was first considered as an Astro-

nomical fact, and afterwards as an effect arising from a physical

cause.

In this latter view, the intersection of the equator and

ecliptic is continually regressive ; or, from day to day, is moving
towards the west, that is, contrary to the order of the signs.

This mode of conceiving the precession is essential to Astro-

nomical purposes ; since, without it, observations of the decli-

nation and right ascensions of stars would not receive their

proper corrections. Thus, let ?r be the pole of the ecliptic

T/i, P the pole of the equator r Qw> and T T' the pre-

cession for any time *
; then vJ'Q, which passes through the poles

of the equator and ecliptic, is the solstitial colure : but when,

in Consequence of the precession, T'<7 becomes the position of

the equator, then p is its pole, and irpq the solstitial colure, the

pole P having moved through an arc Pp> subtending the angle

Pirp the measure of which is TIT'. Now, TT remaining the

same, the latitude of a star <r is not altered by the precession :

its longitude is increased by TV'j its right ascension also is

increased, since, instead of YQ<w it is f'^f 5 the north polar

distance, instead of P<r becomes p<r, and according to the

construction of the diagram, is increased.

Hence, it is plain, that if, as in the Examples of pp. litt

* See Fig. in following page.
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we employed the tabulated right ascensions and declinations of

stars, without correcting them for the effect of precession, we
should have erroneous conclusions.

We must now, from the quantity of precession, and an in-

variable obliquity, or inclination of the planes of the equator
and ecliptic, compute the variations in right ascension and decli-

nation.

Precession vi North Polar Distance.

pr [= /><r P<r
nearly]

= Pp . cos. Ppr
= Pp .sin. qps
= ^ i* up . sin. TT P , sin. qps
= r IT', sin. TrP.sin, qps.

Now, the measure of the angle qps, is qs = Y'qs T 'q
= "^'s

right ascension 9O", and vp [see p. 6-1,] is the measure of

the obliquity [7J Hence, if r V ' = 50 //

.34., we have

the annual precession in north polar distance

= 50''.34 sin. / x cos. ifc's right ascension
5

and if we suppose the precession to be equably generated, or to be

proportional to the time (/], we have, putting for T Y'y 50X/ 34 /,

the precession= oO". 34 / x sin. /x cos. ^-'s R. A.

In this expression, / is a fraction : for instance, in finding the

precession from January 1 to April SO, t =2
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In the Figure, as constructed, the star's right ascension is 7 90%
and then cos. right ascension is negative ; therefore cos. right
ascension is positive ; consequently jyr, the quantity by which the

north polar distance is increased, is positive. The same happens
if the star's ght ascension greater than 90U

,
or 6\ be less than

270 , or 18*.

Hence, in the form of Rules,

When the right ascension (R. A.) is between 90, and 270, or

expressed in tsme, between 6 and 18 hours, the north polar distance

(N.P.D.) is increased by the effect of precession.

When the right ascension of % i s between O
11

and 90^, or be-

tween <270 and 3(iO' ; that is, expressed in time, between ()*>

and 6 h
, or between 18 !l and 24 h

, the north polar distance is dimi-

nished.

Since pr = 50". 34? X / X sin. 7. cos. R. A. \ef]

the precession in N.P.D. is greatest, (and = '20") when cos.

right ascension is j that is, when R. A. = 0, or 180'; that is,

when the star is situated in the equinoctial colure : and least,

when 11. A. = 90, or 270 : that is, when the star is situated

in the solstitial colure.

Precession in Right Ascension.

By the effect of the precession TV', the right ascension

instead of being T Qiu becomes Y'qs: now

r'qs = T'v -f vt + ts

consequently, the change, or variation in right ascension, i

= r'v + ts.

Now Y'v-T r'cos. /=50'/
.34 /xcos. /~50v

.34/xcos. 23 28 X

,

, T, sin. s<r , cos. P(r Pr
and ts = Pr x -r = Pr X -.-^- = -5-

sin. jPcr sin. Pa- tan. Ptr

,, , . r sin. %'s . R. A.
-50'.34 /xsm, / x-

, , XT p ^ .

tan. * s N. P. D.
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Hence, the whole precession in right ascension, is

_,, _. r T . r sin. %'s R. A. "i= 50' . 34 / cos. 7-f sin. 7 X . , xT _ I

L tan. *'s N. P. D.J'

or f since tan. N. P. D. = cotan. dec". = ^
L tan,dec n .J

= 50''.34 / [cos. 7 -f sin. 7. sin. ifc's R. A. X tan. %'s dec,]

In which expression, the first part, 50".34 / cos. 7 ( the value of

If' v) is common to all stars.

If / = 1, the formula represents the annual precession in

right ascension.

If the star be situated in the equator, the declination and its

tangent
=

; consequently the annual precession in right ascen-

sion equal to

50". 34. cos. 23 28', that is, 46". 17

is reduced to that part which is said to be common to all stars.

The preceding Figure is so constructed, that the sfar <r is

nearer to the pole of the equator than to that of the ecliptic ;

consequently it is situated within the first 180, or 12 h
, of right

ascension. For a star situated in the last 180, or 12h
, the con-

struction will be similar, but is will be subtractive : the second

term of the preceding formula, then, must be subtractive, or

affected with a negative sign.

When the second term is negative, it may exceed the first, and

then the annual precession in right ascension will be negative.
This cannot happen with any of the 36 principal stars in

Dr Maskelyne's Catalogue ; for, amongst the last 20 stars whose

right ascensions exceed 12 !l

, the star of the greatest declination is

* Lyra. Its decimation is 38 36' 25", and consequently, the

tan. decl\ <rad. < 1 : therefore since cos. 7> sin. 7,

50".34? [cos. 7 sin. 7. sin. ifc's right ascension tan. decl".J

cannot be negative, even if we were to put an extreme case, and

make sin. ^'s right ascension = 1 . The sine of a Lyra's right

ascension differs very little from 1 (radius), being the sine of

18 h 30m 13 s
; and this circumstance, joined with the magnitude

of its declination, is the cause why its precession in right ascen-

sion is less than that of any of the other 35 stars. [See Catalogue
in Appendix.]
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In Wollaston's Catalogue of Circumpolar Stars, there are

abundant instances of stars, whose annual precessions in right

ascension are negative.

, But, if there are some stars with positive precessions in right

ascension, and others with negative, there must be certain stars

either so exactly, or nearly so, situated, as not to be affected in

their right ascensions by the precession of the equinoxes. With

such stars then cos. I- sin. Jx sin. K. A. X cot. N. P. D. must 0,

or sin. right ascension n tan. north polar distance x cot. /, and

consequently, the angle of position must equal a right angle.

For let, in a spherical triangle Pair (where P, K are the poles
of the equator and ecliptic, and <r the star), the angle of position,

P<rw = 90" j then, by Naper's rule,

r X cos. trPTF = tan. <rP X cot. or P
;

that is, r X sin. R. A. = tan. N. P. D. x cot. obliquity.

Hence, it is easy to assign the relative longitudes and lati-

tudes of such stars, as are not affected in their right ascensions,

by the precession of the equinoxes. For, by Naper,

r . cos. Po-w = cot. PK x tan. O-TT,

or, r . sin. longitude = cot. 23,28' x cot. latitude.

For instance, take the longitude = 10 ; then,

log. r + log. sin. 10 0' --- = 19.2396702

log. cot. 23 28 ---- J 0.3623894

log. cot. lat<v = 8.8772808

.. latitude = 85 41'; and by a similar computation the following

Table of the relative longitudes and latitudes is formed :

Long". 0, 10 0', 20 0', 30 0', 50 Q', 70 O, 90 0'

Latc
. 90 85 4-1, 81 34, 77 44, 71 36, 67 47, 66 32.

The precession in right ascension (as we have just seen) is

nothing, when the angle of position is a right angle ;
it is also

positive, when that angle is acute, and negative, when obtuse.

For, by the relation subsisting between the sides a% cy and the

angles A, , of a spherical triangle, we have (see Trig. p. 1 16.),

cot. = ^4 [cot . - SL^
,
1

sm. B L tan. c J
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and making A = <LP<T7r, a~Pv (/), JS=90- R. A. *=N. P. D.

D sin. NP.D. T , r sin. R. A.
*|

C0t' / P *~
COS.R.A. L

COt - 7 -
tan.N.P.D. U

hence, if cot. .P<r~ be negative, that is, if P<nr be obtuse,

cot. / is

cession is negative: and the contrary takes place, if Po-w be

acute.

The introduction of the angle of position enables us concisely
'to state a rule relative to the sign affecting the precession: but,

since the angle of position is known only by actual computation, we

gain by such rule, nothing more than we can ascertain by consi-

derations like those stated in p. 14?2.

We will now give Examples to the formula?, [p. HI, &c.] for

the precessions in right ascension, and north polar distance.

Requiredthe Annual Precession of the Right Ascension ofy Pegasi ;

its R.A. (in 1800) = Oh 2 56^.79, and N.P. Z). = 75 55' 44".

Here, since the precession for a year is required, t =3 1 .

Computation of 50" . 34 cos. /

log. 50.34 ............ 1.7019132

log. cos. 23" C8/ ---.-----. 9.9625076*

1 1 .

.-. (taking away) 1O, the log. rad. 1.6644208 = log. 46^.177 \

:. the precession = 46". 177, or in time =. 3 S.07.

Computation of 5O".34 sin. /xsin. right ascension tan. x decl
1

.

log. 50.34 ---------.- 1.7019132

log. sin. 23 28' - - - 9.6O01181

log. sin. 2m 56 9 8.107l6'69

log cot. 75 55' 44V 9.3990620

28.808G6'02

/. (taking away 30 the log. r',) 2.8082602 = log. 0643",

Hence, adding the two parts together, we have the annual

precession
= 46/7

.241, or in time, = 3".99
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If the precession, instead of 50".34, be taken equal to 50". 1,

the result will be 46".02, or in time 3 s
. 07.

EXAMPLE II.

Required the Annual Precession in North Polar Distance of the

same Star.

log, 50".34 1701913(2

log. sin. 23 28' _-..----- 9.6001181

log. cos. 2m 56 s 9.9999644

21.3019957

take away 20, and 1.301^957 = log. 20*.044 ; /. (since the

right ascension is > 0, and < 90) 20''.044, is the precession in

N.P.D.

EXAMPLE III.

Required the Annual Precessions in Right Ascension and North

Polar Distance of a Serpentis, its Right Ascension (in 1800) =
15 h 34m 25\2, and North Polar Distance = 82 56' 9" .2.

Computation of 50".34 sin. /xsin. right ascension x tan. dec.

log. 5O".34 1.7019132

log. sin. 23 '28' 9-6001181

log. sin. 15 h 34m 25 s 9.9057696

log. cot. 82 56 9 -------- 9.093302O

30.301 1029

take away 30 (0 log. rad.) and .3011029 == log. 2".0004.

Now, since the right ascension is > 12h
, this number 2" 0004

must be taken from the common part (50''.34 x cos. /) before

computed, that is, from 46V . 1/7; consequently, the precession
= 44'/

.l76, or in time, = 2 s
,93

If instead of 50".34, the precession be taken equal to 50". 1,

the res,ult will be 43".96 in space, or in time, 2 s
.92.

Computation of 50/x
.34 sin. /xcos. right ascension.

log. 50V.S4 1.70ICIIS2

log. sin. 23 28' 9.6001181

log. cos. I5 h 34m 25s

9-77:)3128

2l.{/75344l
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take away 20 (log. r)> and 1 . 0753441 = log. 1 l".89 ; there-

fore the annual precession in north polar distance of a Serpentis,

is 11 ",89 and -f, since its right ascension is > 90 and <?0.

If instead of 50".34 the precession be taken equal to 50". 1,

the result will be 11".837.

EXAMPLE IV.

It is required tofind the Annual Precession in North Polar Dis~

tance of y Draconis, its Right Ascension being, in 1800, =
C67

U
59' 51".

log. 50".34

log. sin. 23 28' - -

log. cos. 267 59' SI'
7

1.7019132

9.6001181

8.5433595

19.8453908"

take away 20 (log. r*)> and 1.8453908 = log. .7004 ;

therefore the annual precession of y Draconis may be put

down at .7 with sufficient exactness, and + .7, since the

right ascension > 90, and <270.
In 1727, the time of Bradley's observations, when the right as-

cension of this star was only 267 50', the annual precession in

north polar distance was .85. In the year 2146, when it will

be on the solstitial colure, its precession in north polar dis-

tance will be nothing.

These annual precessions in right ascension and declination are

inserted in the Tables of the fixed stars, and, by the side of the

right ascensions and declinations : thus,

There are also certain general Tables, from which, the
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annual precessions, and the precessions to any day of the year,

may very easily be computed.

We may now be able to perceive the use and application

of Precession, as a correction in Astronomical processes. In

the Example, p. 133, the right ascension of a,
Serpentis up to

April 30, 1810, is put down at J5
h 34m 55 8

.4. Now, this

right ascension was obtained from a Table (of which the above is

a specimen) in which the right ascension of the star was regis-

tered for Jan. 1800: and the process of computation was as

follows :

Jan. 1800. Right ascension of a Serpentis
- - 15

h 34m 25 S
.

Precession for 10 years
------ o 29-3

Jan. 1810. Right ascension --- ..... 15 34 54.5

Precession from Jan. to April 30 - - 00 .94

/. right ascension on April 30, 1810- - - 15 h 34m 55 5.44.

This is very nearly the right ascension given in p. 133 : but not

exactly so, since the last quantity added, viz, .94 == x 2S
.93

365

was obtained, by supposing the precession proportional to the

time ; or, in other words, to be uniformly generated : which it is

not
;
but the reasons of this, and the mode of allowing for the

inequality of'theprecession ,
must be reserved to the ensuing Chapter.

We have a similar illustration of the use of the precession

in north polar distance in the second Example of the pre-

ceding Chapter, p. 134, 1. 19. In that, the zenith distance of

y Draconis for Jan. 1802, at Greenwich, is, expressed by 2' 16".6;

but was thus obtained from Tables :

Jan. 1800. North polar distance y Draconis - - 38 28' 53"

Precession for 2 years
- (2 X .7)

- - 1.4

Precession to May 10 ...... 00 0.234?

Nuta". to May ,10, (a cor
n

. to be hereafter explained) 9.42

.'. May 10, 1802. North polar distance y Draconis 38 29 4.054

Co-latitude of Greenwich Observatory
- - - 38 31 20

2 15.946
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In this process, the precession to May 10 has been stated at .234?

Now the number of days elapsed from Jan. to May 10, is 130 5

.*. if the precession were proportional to the time, that is, were

equably generated, it would equal
^ X.7 to [see p. 140,]

365

or .252 : hence, some correction and subtractive, has been applied

to this mean quantity [.252] the explanation of its cause must

also be deferred to the ensuing Chapter,



CHAP. XV.

On the Solar Inequality of Precession.

THE Earth is not a perfect sphere, but an oblate spheroid,

protuberant in the parts about the equator. The action, or the

attractive force, of the Sun and Moon, on such protuberance,

causes the precession of the equinoxes 5 that is, a continual

regression of the intersection of the equator and ecliptic, or of

the Nodes of the equator [see p. 40.] whilst the inclination of its

plane to that of the ecliptic remains the same. Now, the pre-

cession depends on the distance of the Sun and Moon from the

equator j there would be none, if each luminary continued in its

plane. Its mean quantity, which has been stated at 50". 34-, is

that which is produced in a whole year. But, it cannot have

been equably produced. For, the Sun is sometimes in the

equator, when its force in causing precession is nothing ;
at other

times, more than 23 degrees distant, when its force is greatest.

Hence (not at present regarding the Moon's action) the Sun's

action in producing precession must continually vary, from the

equinox in March to the solstice in June : in other words, there

must be an. inequality ofprecession dependent on the Sun's position,

or on the day of the year.

The precession, therefore, for any number of days is not pro*

portional
to that number : for 61 days, it is not necessarily equal

to -~ X 50".34, or 8''.56 : it may, or it may not be : it is nearly

<jual
to that quantity from Jan. 1, to March 3: but, from
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March 1, to May 1, it is equal only to 6".5, and from May 1,

to July 1, it becomes equal to 10''. Hence to the expression

50". 34? x / for any time /, or, to the precession in north polar

distance for the same time, which precession [see p. 140,] is =
50//

,S4 X* X sin. 23" 28' . cos. %'s right ascension

we must apply a correction due to the solar inequality^ or in

other words, an Equation*', according to the day of the year,

either additive or subtractive, to the mean quantity of the pre-

cession. The equation spoken of, arising solely from the Sun, is

called by Astronomers the Semi-Annual Solar Equation. ^

The law of this inequality, or the formula for the computing
the equation must be sought for on mechanical principles, in other

words, it belongs to physical Astronomy to assign its expression.

That department of science, however, is beyond the purpose of

the present Tract. Yet, it may be observed, that if the ine-

quality of the precession were known, that of declination and

right ascension might be computed from the preceding formulae :

since y
xT/

may as well represent the error, or the inequality

of the precession, as the precession itself.

The existence of the solar inequality is the reason why, in

the former Example [p. 147,] we expressed the precession in

north polar distance of y Draconis up to May 1 0, by .34, and

not by the mean quantity .252. This latter, which is the mean,

is made equal to the true by means of the equation .018.

On the principles of physical Astronomy a formula has

been investigated, from which, any equation such as .018

may, (a specific case being proposed) be computed. The

formula numerically expounded for all cases becomes, a Table

for finding the semi-annual solar equation in north polar distance.

[See Wollaston's Fasciculus* Appendix, p, 54.]

*
Equation, Astronomically used, is something to be added to, or

subtracted from, a mean quantity, to make it equal to a true quantity :

it is the correction of an inequality.

( Semi-Annual, because the equation is the same in corresponding

points .<tf the $vin's halfyear's passage from Aries to Libra, as it is from

Libra to Aries.
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If we separated the mean precession in north polar distance,

from its equation, in the last Example, p. 147, it would stand

thus:

Jan. 1800. N. P.D. of y Draconis - - 38 28' 53"

Precession for 2 years
----- 1,4

Meatt precession to May 10---- 00 0.252

Semi-annual solar equation to May IO - 0.018

Nutation [see p. 147,] 00 9.42

N. P. D. of y Draconis ----- 38 C9 4.054

For stars situated like y Draroms, we must find the precession
after the preceding process. But, of the 36 principal stars

which are constantly used by Astronomers in correcting their

clocks, &c. the corrections both in north polar distance and in

right ascension are inserted in special Tables for every tenth day
of the year. The corrections include those of precession, solar

inequality and aberration. Thus, in the Tables alluded to, the

corrections in north polar distance for Serpentis, and Capella
are stated for April 30, to be, respectively 1O".4, and 0".5 :

which are to be separated into their component parts, as

follows :

a, Serpentts.

Precession [ll".89 X ,32] 3".8

Solar inequality
- - 0.16

Aberration - - - 6.7 1

1O35

Capella.

Precession [ 3". 1 1 x 32]- K.63

Solar inequality
- - .002

Aberration - - 3.41

-5.04

The precession in right ascension will, like that in north polar

distance, be affected by the solar inequality, and will require a

correction : but, however, is not effected by a Table similar to

the one for [p. 150,] the precession in north polar distance;

but more simply, by a change in the multiplier of the annual pre-
cession. Thus, for a SerpentiS) the annual precession in right as-

cension is 2 3.935 : the proportional mean quantity to April 30, would

be T^h: x 2'-935, or .32 X 2 S.Q35 (.32 being the multiplier)vb5

now this is too large : the mean precession, by reason of the solar

inequality^ is unequal to the true : but, instead of correcting
the inequality^ an equation (as in the former instance of y Dr
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the multiplier .32 is reduced to .30 : and accordingly, the pre-
cession in right ascension, inclusive of the semi-annual equation
of precession, is .8805. [See Wollaston's Fasciculus, Appendix,

p. 42.]

This relates to stars not included amongst the 36 principal ones

previously mentioned. For those latter stars, as we have said,

Tables arc calculated which at once for every tenth day express
the result of the several corrections of aberration, precession
and solar inequality.

The solar inequality affecting all stars, would affect all stars

situated in the ecliptic : it must affect then the Sun's place : and

for this reason, amongst the new French Tables, there is one en-

titled Solar Nutation.

The solar inequality may be represented by the following con-

struction :

Let *r, P, as before, be the poles of the ecliptic and equator,

then, by reason of the precession, P will move in a circle

and in that order, which is contrary to the order of the signs ;

and, in a year, it will move through a space such as Pk = (in
seconds of that circle) 50".34. Now, on account of the solar

inequality, the true pole will be sometimes, nearer to w, some-
times farther, from r, than the mean 5 sometimes to the right, and
at other times, to the left.

Let nowj0 be the mean place of the pole after the lapse of any
time /. Round/?, as a center, with a radius =0".434<5 describe a
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a small circle*. Take the Z.apv = 2.0's longitude, then v is

the true place of the pole, the pole having been at b [Pb = pa"]

when the Sun was at Y\

For instance, on April 30, the mean regressive motion of the

40
pole being = - x 50".34 X sin. 23 28', set off Pp equal to

that quantity: and the Sun's longitude being 1 s 8 IT, the angle

apv must be taken equal to 2' 16 22', that is, 76 22'.

About May 5, when the Sun's longitude is 1
s 15, take the

angle apv = 3, and the point v, the place of the true pole, will

fall in the circle Ppk9 and will be at the same distance from w,

that the mean pole^p is.

Again, June 19, take Pp = .25 X 50".34 X *in. 23 28',

and the angle apv' [the 's longitude being 2s 27 28'] =
5 s 24 56' = 174 56': then the JrUe place of the pole is at i/,

very near to the upper point of intersection of the small circle,

and the secondary (vpa) to the ecliptic.

On Sept. 22, the 's longitude being 6*, the Z apv will

= 12", and the true place of the pole will be at the lower inter-

section of the small circle, and of the secondary vpa, but not in the

same place in which it was in March when the Sun was in T,
and his longitude nothing, since, in the interval [half a year], the

mean place/; of the pole has regressed through |
53x/.34 Xsin. 23.

Since the point ay the true pole, is carried in the direction av9

that is, according to the order of the signs, whilst the center
JP,

* In mathematical demonstration^ it is of no consequence (as we

have before remarked, p. 13,) that the geometrical signs should bear,

as to magnitude, any proportion to the things signified : if it were, the

preceding results would be entirely vitiated ; since the proportion as

geometrically represented is preposterous ; for, the real proportion be-

tween p a, and IT &, is as 1 : 648000*
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the place of the mean pole, is carried from P to p> contrary to

that order, the true pole will move in an epicycloid, lying be-

tween the points b and v.

The equation of precession^ due to the solar inequality, may
easily be computed by the aid of the preceding construction.

Thus, if the precession had been uniformly generated, P would

have been transferred to p> and the solstice from L to a point /,

where a secondary vpa continued would cut the ecliptic. But,

owing to the inequality of precession, the true pole, instead ofbeing

at/?, is at v, and the solstice, instead ofbeing at /, is at some point

A, where a secondary passing through n and v cuts the ecliptic :

the defect from the mean place then, or the equation^ is measured

by /A ; and

/A = X sin. apv*

0".4345 xsin. Q's long
e

.~
sin. 23 28'

= l".l X sin. 2 <5)'s longitude, nearlv.
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EXAMPLES.

By means of these equations, adding or subtracting them, we
can always assign the quantity of the true precession for any

day of the year
*

: and accordingly, by substituting such quan-

tity in the two expressions pp. 14? I, 142, at once compute the

precessions in north polar distance and right ascension.

If we call irp the mean obliquity, then, the true pole being at

v, the difference between the true and mean obliquity, in other

words, the correction of the obliquity, is the difference between the

arc of a great circle that will lie between v and vy and the

arc ftp.

Now this difference, or equation, or correction

== pi) X cos. apv =, 0''.4345 x cos. C 's longitude

EXAMPLES.

* la the Table of the Precession for every day of the year, the Solar

equation is included. See Vince's Astronomy, vol. II. p. 23.
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The changes in the place of the solstice and in that of the

pole, constitute two equations that arise from the solar ine-

quality, and might, with propriety, have been termed, Equations
of the Solar Nutation* But, under this latter title, there is a table

in the new Solar Tables ofDelambre (see Tables du So/cH, tab. XIII>

and Vince, vol. III. pp. 41, 88.) containing one column under the

head Longitude, for the equation of precession due to the inequa-

lity of the Sun's action, where the results agree with those de-

duced from the formula, p. 154, 1. 14 : but, the second column,

under the head Obliquity^ does not contain equations arising from

the inequality of the Sun's action, but of the Moon's. The equa-

tions due to the former inequality are given (combined with the

secular diminution of the obliquity) in a Table inserted in the

Introduction. (See Tables du oleil> and Vince, vol. III. p. 7.)

The radius pa -=. 0".4345, is the greatest equation of the

obliquity arising from the solar inequality. And, since in the

space of a quarter of a year, the pole will move from a to the

opposite end of the diameter of the small circle, the whole change

in that time, of its place, and, consequently, of the obliquity
is 2 X 0".4345, or Y.869.

The correction of the obliquity is, very nearly, the correction for

the precession in north polar distance of a star situated in the

solstitial colure. Thus, for the star f Cams majoris, whose right

ascension in 1800 was 6 h 13* the semi-annual solar equations in

north polar distance, are as follow :
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If, instead of 0".4345 the radius pa of the small circle

had been assumed equal to 0".5 (which it used to be before

the publication of Delambre's Tables), the equations would

have been respectively (/Ml, - 0".05, 0".47 : which, how-

ever, as well as those in p. 156, 1.28, &c., since they are cor-

rections of north polar distances, must be written with contrary

signs.



CHAP. XVI.

On Nutation. Bradley 's Explanation of it. Formula for the

Effects of Nutation in North Polar Distance, and in Right
Ascension. Obliquity of the Ecliptic affected by Nutation.

Use of Nutation as a Correction to Observations.

THE precession of the equinoxes arises from the action of

the Sun and Moon on the equatoreal parts of the Earth ; and

for its production, it is necessary that these bodies should be

out of the plane of the equator. In the preceding Chapter, we
have considered the inequality of the precession arising from

the varying distance of the Sun from the equator. The Sun's

action is always producing precession, but not equably ; and

the mean precession for a year, is the aggregate of the unequal

daily parts. But, since the Sun's force is greater, the more

distant it is from the equator, if, on the latter of two successive

years, the Sun were constantly more distant from the equa-

tor, each day, than on the corresponding day of the former

year, it would constantly produce greater parcels of precession :

and their sum, which is the annual precession, would be greater.

This circumstance of a greater distance from the equator

would happen, if the inclination of the plane of the ecliptic to

that of the equator were increased.

Now, the variation of the obliquity of the ecliptic is not,

within short periods, sufficient to cause any sensible effect in the

quantity of precession : but, the Moon is in like predicament with

the Sun; her action in causing precession varies with her
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change of distance from the equator : and the annual mean eiTect

would be increased, if the inclination of her orbit to the equa-
tor were increased.

This latter circumstance really takes place, and in a

sensible degree : consequently, solely from the Moon's action,

the precession of one year must differ from that of the preced-

ing. Or, in other words, the mean precession of the equinoxes

arising from the action of the Sun and Moon, will constantly

be unequal to the true precession : and must therefore be made

equal to the latter, by the application of an equation ; called, for

distinction, the Equation of the Equinoxes : and which equation must,
it is clear, depend on, or have tor its argument, the inclination of

the Moon's orbit to the equator, or, some quantity involving, or

significant of, the inclination.

Of the solar inequality, as we have seen, an equation in

the precession is not the sole effect : besides that, there is a

variation produced in the distance between the poles of the

equator and ecliptic : in other words, the obliquity of the ecliptic

is made to vary. The variation is explained in p. 155, and

its expression is 0''.434-5 X cos. 2 Sun's longitude. This variation

is technically called the Correction of the Obliquity of the Ecliptic for

days of the year, in order to distinguish it from the equation of

the obliquity arising from nutation. Similar effects take place

from the inequality of the Lunar action. Not only the motion of

the precession becomes unequable, but the inclination of the equator
to the ecliptic is varied. The change of place in the pole of the

equator, is called, for distinction, Nutation.

The pole of the Earth then, from the inequality of the

Moon's action in causing precession, is affected with a motion in

the circumference of the circle, and besides, with a motion to,

or, from TT the pole of the ecliptic. What will be the compound
effect of these two motions ? or, can any curve be, either ana-

lytically expressed, or geometrically described, in which, for any

assigned time, the true pole of the equator shall be found ?

Bradley, the discoverer of Nutation, in the first instance, affirmed

the curve, (the locus of the pole) to be a circle.

Let TT be the pole of the ecliptic, and P the mean place of the

pole of the equator. Describe round P a small circle, with a

radius PA == 9'',6. Let -^be the true pole of the equator, when
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the ascending node [see p. 40,] of the Moon's orbit is at Y\

Let A move, contrary to the order of the signs, and, by an equable

retrograde motion, let it describe the circumference of the small

circle, in a period equal to that of the Moon's nodes, that is, of

18 years 7 months : then if the angle APO be taken equal to the

distance of the Moon's node from T the first point of Aries> O
will be the true place of the pole of the equator.

This is the mode of geometrically representing the law of

the nutation that was first given by Bradley *. But, towards the

end of his Memoir, he suggests that a more exact mode might be

obtained, by substituting, instead of the circle ABCD, an ellipsis,

the transverse axis AC and the conjugate DB being nearly 18",

and 1 6" respectively. Not perfectly satisfied, however, with this

alteration, he refers to theory, for the more accurate determination

of the locus of the true pole.

Theory has verified Bradley's suggestions^ and shewn the

locus of the pole to be an ellipse, with some slight alterations,

however, in its proportions. Instead of AC being equal to IS",

it must be made equal to 19".2 ;
and the minor axis of the ellipse

must be made equal to 15". The axes are to be to one another

in the proportion of the cosine of the obliquity (23 28') to the

Phil. Tram. No. 485. p. 3.5.
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cosine of twice the obliquity. And, APO being taken, as in the

former case* equal to the distance of the ascending node of the

Moon's orbit from T, a line (Of) drawn from O perpendicular

to PAy will cut the ellipse in a point which is the true place of

the pole ; that is, in the Figure, p will be the true place, the true

place having been at A when the node of the Moon's orbit was

at r.

This construction being admitted, we may easily calculate the

nutations, or the
effects of nutation in right ascension and north

polar distances, and by a method very nearly the same as that

which was employed in calculating the effect of precession.

Effect of Nutation in North Polar Distance.

Conceive a perpendicular to be let fall from P on <rp (pro-

duced, or riot, according to the position ofp) : in the Figure, let

u be the point in which the perpendicular cuts <rp, then the

effect of nutation in N.P. D. is = P<r pa- = + pu, nearly.
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Now, pu = Pp . sin.pPu = Pp. sin . (APu APp)
'=Pp.*m.(<rPu-<rPA- APp)

=P/7.sin. (90 -<rPA APp)
=P/;.sin. [90 ~(*'sR.
= P/7.sin. [180 (*'sR.

^Pjtf . sin. (*'s R. A. + APp) -,

,-. effect of nutation in N. P. D.= Pp . sin. (%'s R. A.+APp*)

Effect of Nutation in Right Ascension.

The right ascension of the star * is changed, by the effect

of nutation, from yw into ^'ts. And fts = V'v + vx = y'v

4- yw + //; in which expression, as in the case of precession,

[see p. 14>2,] the part V'v is common to all stars. Now,

fQO T

r'v= r r' xeos. 1= L/xcos. / ^pix-r-^Pp. sin. ^Po cot./;r
sin. / r ^

and, /x = P -
.

^-=Pxtan. dec. ~Pp. cos. Pxtan. dec,
sin. 0^7

^ ^

= PJ^ . cos. [180 -
( *'s R. A. -f ^P/?)] tan. dec,

= - Pp . cos.
( *'s R. A. -f- ^Pp) tan. dec.

In order to exhibit the preceding expressions for the effects

of nutation in north polar distance and in right ascension, under

a more commodious form, we must, from the properties of the

ellipse, investigate the values of P/7, and of the angle APp.

Pp sec. APp r7, . 1Al cos. APO ,

Fo
= s^^ = [r^- p - 10'] -^- :but'

^fPO = 12 s -
longitude of Moon's ascending node, and accord-

ingly,

Pp = PO x
cos ' long- ^ ?s ^ - 9 //.6 x

cos. long
c
, D

?
s 51

^
cos. ^Pju

*

cos. APp
Again,

tan. ^Pw pt . c , Prf 15"-^57S = 7^ = [by property of the ellipse] -- ~
tan. APO Oi L ; r r 7 r J

/. tan. -rfP/?=
-

1^
x tan, long, j

?

s ft= - ~ Xtan. long. J 's
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Substituting in the two former expressions, we have

the nutation in N. P. D. that is, Pp . sin. (*'s R. A. -f APp) =
Q// />

.
r_- .cos. long. })'s SI [sin. *'s R. A. cos. APp

cos. ALJ
p

4- cos. ^'s R. A. sin. APp] =

9".6 cos. long. 2>'s SI sm * >s R- A.

f 9".6 cos. long. J> 's a xcos. *'s R. A. tan. ^P/?.

The last term, substituting for tan. APp> becomes

7
;
'-5 sin. long. 3) 'a SI .cos. ifc's R. A.

substituting now for the products of the sine and cosine, their

equivalent expressions [see Trig. p. 18.] we have

nutation in N. P. D. =
4" . 8 x sin. [long. 3)

?

s Si + *'s & A.]

4" .8 x sin. [long. })
7
s a ~ *' R. A.]

- 3 . 7 x sin. [long. J's ft 4- *'s R. A.]
- 3.7 X sin. [long, j's SI *'s R. A.]

= 1". I X sin. [long, j's a + *'s R. A.]
8x/

'5 X sin. [long, j's SI
- *'$ R. A.]

or, = 1". l.sin. [%'sR.A. 4- long. D'S i|]

+ 8^.5. sin. [*'sR.A. -
long. D'sfl,-]

If in this last formula, we substitute, instead of ifc's R. A.

180 + %'s R A. the expression for the nutation in N. P. D.

of a star, with an opposite R. A. to the former, will be

I'M sin. [180 + %'s R. A. + long. J's a]
+ 8".5 sin. [180 + %'s R. A. - long. D's SI]

= -l".l sin. [^s R. A. + long, j
'

8 a]
-8".5 sin. [ *'s R. A. - long. J 's a]

that is, equal in quantity to the former, but in a different

direction (see Phil. Trans. No. 485, pp. 12, 13.) The preceding

formuja, numerically expounded, furnishes corrections to be

applied to the apparent^ in order to deduce the mean N. P. D. : if

we wish to deduce the apparent from the mean, we must employ
the formula, and its numerical results, with contrary signs.

When the star is in the equinoctial colure, that is, when its

R. A. is either = 0, or = 180%
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Nutation in N. P. D. = + 7".5 sin. long. D'S ft,
where the upper sign is to be used in deducing the mean
N. P. D. from the apparent ; the lower, in the reverse process.

When the 3) 's SI is either in OB, or in W,
the nutation in N.P.D. = 7''.5.

When the star is in the solstitial colure, and its K. A. = 90,
nutation in N. P.D. = 9".6 cos. long 2) 's 1

When its R. A = 270,
nutation in N. P.D. = T 9".6 cos. long. J)'s SI

in which expressions, the former rule, with regard to the signs,
is to be observed.

When the D 's SI is at T, the true pole (see Fig. p. 161) is at

A, and then the correction to the north polar distance is + 9". 6.

When the Moon's node is in the first point of Aries, that is,

when long, j 's Si = 0, the nutation in N. P. D. of a star situa-

ted in the solstitial colure is the greatest (= + 9". 6) ; but,
the nutation in N, P. D. of a star in the equinoctial colure is

nothing.
In the regress of the Moon's node from y to vf , the mean

north polar distance of a star in the solstitial colure would change,
by the effect of nutation, from

, 9". 6. cos. to 9''. 6. cos. 270; that is,

from 9", 6 . to - - 0.

In the same period of regress, the mean N.P.D. of a star

in the equinoctial colure would change, (but in a contrary direc-

tion) by the effect of nutation, from

7". 5. sin. to 7". 5 sin. 270, that is,

from to 7". 5-

Hence, from 1727 to May 1732, during Bradley's observa-

tions, and in the above stated regress of the Moon's node, the

N.P. D. of y Draconis (which is near the solstitial colure) would
have changed, from precession (see p. 146.), and nutation

4.5 x.8"- 9". 6 nearly,

the N.P.D. of y Ursa majoris, 18". 24 x 4.5 + 7".5 nearly \

that is, according to Bradley's words,
" Some of the stars near the

solstitial colure, had changed their declinations 9" or 10" less than

a precession of 50 would have produced, whilst others near the

equinoctial colure had altered their's about the same quantity
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more than a like precession would have occasioned ''. [Phi/. Trans.

No. 48, p. 11.]

Effect of Nutation in R. A.\ the Part (see p. 162.)

Pp. cos. [*'s R. A. + APp] tan. dec. =
9". 6

cos< lon - 5
'
s & COS ' *'s R ' A - cos '

cos. APp
'

sin. *'s R. A. sin, APp] tan. dec.

the latter term, substituting for the tangent of APp, becomes

25
9// *6X

32
X sin * lon * ^ >s ft* s *n * *'s R'A- tan. dec.

Hence, the variable part of the nutation in R. A. =
9''. 6 tan. dec. cos. long. D's ft X cos. ifc'sR.A.

+ V".5 tan. dec. sin. long. J 's ft xsin. ifc's R. A.

=
[Trigonometry, p. 18.]

i 9". 6. tan. dec. CQS. [long. 2)'s SI - *'s R. A.]

+ ~ 9 /x
.6. tan. dec. cos. [long. J

f
s Si + *'s R. A.]

+ I 7
/x
.5. tan. dec. cos. [long, j's Si - *'s R. A.]

- i 7
x/
.5. tan. dec. cos. [long. J)'s ^l + %'s R. A.]

= 8". 5. tan. dec. cos. [long. J's il - %'s R. A.]

+ I'M. tan. dec. cos. [long. ])'s SI + *'s R. A.]

The part y'v (common to all stars) = Pp sin. APp . cot. / =
9X

'. 6 . cos. long. 3) 's A tan. ^P/? . cot. 23 28 X =

9".6 X ~ x 2.3035. sin. long. J's SI =- l7
f/.2 . sin. long. J's St 3

.-. the whole effect of nutation in R. A. V 'v 4- /fx

= 8/
' 5 tan - dec * cos * n ns* ^ ?s ^ ~~ ^*s R - A-3

+ I'M tan. dec. cos. [long. })'s fl -f ^ f
s R. A.]

+ I7
x/.2.sin. long. D

?

s ft.

It is plain, from inspection of the Figure, that this part Y'v

is common to all stars, or, is the sole effect of nutation on a star

situated in the equator : the same also appears from the preceding

analytical expression of the nutation : for, that expression, when

the declination, and consequently its tangent, is nothing, is

reduced to

17". 2. sin. long. J's ft.
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The above expression for the effect of nutation in R. A. of

a star situated in the equator, is technically distinguished by the

title of the Equation of the Equinoxes in Right Ascension *.

It is this equation of the equinoxes that is used in correcting

the mean longitude of a fictitious Sun moving in the equator

as the regulator of mean solar time. (See Chap. On the Equa-
tion of Time.)

Examples to the preceding Formula in pp. 163, 165.

EXAMPLE 1.

Required the quantity of Nutation in N. P. D. of y Draconis on

May 10, 1802. (Seep. 151.)

iong. j's a 11 s
17 4.3'

#'s R. A. - 8 28.

Long. 3)'s a + *'s R. A. - - - 8 15 43 - sin. = .96909,

Long. D's 1 - *'s R. A. - - - 2 19 43 - sin. = .98394;

.-. [seeform
a
. p. 163], nutation in N.P. D.= - l".66-8".36=

-9". 42.

EXAMPLE II.

Required the Nutation in R. A. of a, Serpentis on April 30,

1810.

*'sdec. 0' 7 4' tan. = .12397,

Long. J's ft
- - - -

.

6 13 31 sin. = .23373,

*'s R. A. -
long. D'sSl 1 10 7 cos. = .76473,

*'s R. A. + long, j 's ft - - - 2 7 7 cos. = .38886 ;

.-. by formulae, p. 165, nutation in R. A. =
17".2 x .23373 - [8". 5 x .76473 + l

x/
.l x .38886] x. 12397

= 3/x
.16, or, in time, = s

. 2, nearly.

The results of computations, like the preceding, registered

and arranged, form tables for the effects of nutation in N. P. D.

and in R. A. The arguments of the tables must be (as it is plain

* See Maskelyne's Tables, p. 2. and Explanation of the Tables,

p. 3.; also Vince, vol.11, p. 368, and Wollaston's Fasciculus,

dix, p. 49.
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from the formulae, p. 163,) the right ascension of the star, and the

longitude of the Moon's ascending node. To the thirty-si* prin-

cipal stars, however, special tables are assigned : and in these, one

argument, the longitude of the Moon's node, is sufficient ; the

other, the right ascension, is, in fact, included in the particu-

larization of each star.

In the general tables of nutation for N. P. D., the numbers

are taken out, by means of the two arguments, from the same

table. In those for the nutation in R. A., the numbers must be

taken out from two separate tables, one appropriated to the

analytical expression for //, the other, to that for Y'v the num-

bers corresponding to the values for //, must, besides, be multi-

plied by the tangent of the star's declination.

The small ellipse, which, during a revolution of the Moon's

nodes, the true pole [p~\ of the equator describes, represents, at

once, the effects of nutation and of the inequality of precession *.

The meaning of which is this : from the varying action of the

Moon, as from that of the Sun, an inequality of precession
would arise. Such inequality alone, would cause to vary both

the right ascensions and declinations of stars, even if the pole
of the equator deviated neither from, nor towards, the ecliptic.

But, the pole does deviate, by reason of a motion, properly

speaking, of nutation. The right ascensions and declinations of

stars, then, from this latter, as well as from the former cause,

will be made to vary. But, both variations, relatively to their

combined law and quantity, are represented by the small ellipse

AdC> of which the dimensions have been assigned.

We have already seen how to compute from the small ellipse,

the formulae of nutation in N. P.D. and in R. A. ; and we may
conveniently avail ourselves of the same curve, and the connected

construction, to explain, in a general way, the effects of nuta-

tion.

The change in the obliquity of the ecliptic is one of the

chief effects of nutation. When the ascending node of the

Moon's orbit is in Aries (at Y") the pole is at A and the obliquity

is equal to wA : when the node has regressed to Capricorn, or

* See Figure in p. 161.
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Cancer, to the 10th, or to the 4th sign, the pole of the equator
will be at d, or in the opposite point in which dP cuts the

ellipse : and in this case, the obliquity, instead of ifA, will be equal

to ird) or, to TrP, nearly; and, vrP being the mean, the increase

at Ay or, as it is technically called, the Equation of the Obliquity

of the Ecliptic, [see Maskelyne's Tables, XXXII.] will be equal

to PA, equal, accordingly, to 9".6. This equation of the ob-

liquity is applied to the mean place (P) of the pole j conse-

quently, it will have a different sign, when the node of the

Moon's orbit is in Libra, and the pole at C, from what it had

when the node was in Aries, and the pole at A. The sum of

the two equations, or the total difference of the obliquity corres-

ponding to the two positions of the pole at A and C, is AP+PC
= 19". C2. This change in the obliquity happens after an interval

of time equal to half the period of the revolution of the Moon's

nodes ; which period is equal to about 1 8 years 7 months.

The equation of the obliquity in other positions of the Moon's

nodes, is, generally, + 9" .6 cos. long. J> 's SI, and, in practice,

is found by the aid of an appropriate Table. [See Maskelyne,
Table XXXII.]

When the Moon's node is in y% and the pole in A, the decli-

nations of all stars situated in the solstitial colure will be af-

fected nearly by the whole quantity of nutation : but, the decli-

nations of stars situated in the equinoctial colure will not be

altered. When, however, the node of the Moon's orbit ap-

proaches vf, or SB, the pole will be in d, or in the opposite

corresponding point ;
and consequently, will approach the stars

that are situated in the equinoctial colure
; and, the declinations

of such stars will be changed by a quantity nearly equal to 7".5

[see p. 164?.]

The stars in the equinoctial colure are most affected, in their

decimations, by precession [seep. 141]: the annual change
= 50". 1 x sin. 23 28' amounting to about 20"; hence, since

the change in 4 years and an half, (in which time nearly the

node of the Moon's orbit regresses from T to Yf) would

amount to 90", the change of 7'
A.5 might, with regard to the

numerical result, have been accounted for, by substituting, for

the precession, instead of 50". 1, some larger quantity, 55% for

instance : but then, such larger precession, instead of accounting
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for the changes in the north polar distances of stars near the sol*

siitial colure, would afford results more widely differing from obser-

vation, than the common and less quantity of precession : since

these stars, in Bradley's words,
*

appeared to move, during the same

time, in a manner contrary to what they ought to have done by
an increase of precession.' [See Phil. Trans. No. 485, p. 12.]

Since the nutation does not at all influence the ecliptic, It

cannot change the distances of stars from that circle : in other

words, the latitudes of stars are not affected by nutation.

Since, however, the change in the place of the pole of the equa-
tor alters the position oi the solstitial colure, and, consequently, the

two places of the intersections of the equator and ecliptic, from one

of which (the first point of Aries) the longitudes of stars are reckon-

ed
;
the longitudes of stars will, by nutation, be changed, and, by

die quantity Y r'j [see Fig. p. 168,] which quantity is denomi-

nated the Equation of the Equinoxes in Longitude. [See Maskely lie's

Tables, Tab. XLIIL]

This equation YT'y or LI [see Fig. p. 168,] is when
the pole is in A, or in C ; and consequently, when the Moon's

node is either in 7", or in ; it is greatest when p is at d, or

in the opposite corresponding point ;
and its value then, is equal

Pd
to .

sin. 23 28'

The line LI (the general representative of the equation of the

equinoxes in longitude,) is =

p t _ Pp . sin. A Pp __ Pp . sin, long. J>
?

s Si

sin. 23 28' sin. 23 28'"
"~ "~

sin. 23 28'
'

(nearly.)

We may now, which is a main object of the Treatise, shew

the uses of the theory, formulae, and Tables of nutation, in com*

jpleting the preceding Examples of pages 14<7> 151-
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EXAMPLE. [See p. 147.]

// is required tofnd y Draconis's North Polar Distance on May 10,

1802, from Its tabulated North Polar Distance on Jan. 1800.

Jan. 1800. N.P.I), y Draconis 38 28' 53"

Precession for 2 years ('2 x .7) 1.4

Precession to May JO, inclusive of the solar inequa\ .2J4

Nutation to May 10, [see p. 1()0',]
----- 9.42

38 129

In tins 1Example, the mean place of the star is brought up
from the beginning of 1800 to May 10, 1802. In the following

we will reduce or carry back the observed zenith distance of

y Draconis on May 10, 1802, to its mean place on the begin-

ning of the same year :

May 10, 1802. At Blenheim Obser-

vatory', zen. distance y Draconis - - 53' 30''. 1 north

Aberration ----- 12.68

Precession _-,------- () O 0.253

Semi-annual solar equation
- __-.~o .018

Nutation .....-.- () O 9.42

Mean place of y Drac. at the begin, of 180 .53 52.334

Here the corrections of aberration, precession, nutation,

applied to ^preceding point of time, are, relatively to the N. P. D.

sultractme> but relatively to the zenith distance (since the star

is north of the zenith) additive*

The uses of the zenith distances of such stars as y Draconis

have been already [p. 134,] shewn in finding the latitudes of

places.

To exemplify the use of nutation in right ascension, we will

complete the instance of the observation of * Serjwntis made for

the purpose of correcting the clock :

* This instance is taken from the Phil. Trans. 1803 ; the observa-

tion is quoted iu p. 4 1-6 ; and the place reduced from the obsenation

in p. 470 : the results differ by about half a second, o\ving probably to

the nutation in the text being taken larger than Colonel Mudge took it.



and "Examples of the Formula of Nutation. 171

April 30, 1810. a, Serpcntis, by observations on

the meridian at - - ..... - - - -- 15h 35m 55 s

Tt.A. of * Seventh, by Tables ...... 15 34? 25.51

April 30. Abern
., precess

11

., inequal. of precess". 2.16

Nutation ----------------O O 0.2

15 34 27.87

.'. difference of the R. A. shewn by the clock and the tabulated

R. A. is <27M3, or the clock is too fast by that quantity.

a, Serpetrtis is one of the 36 principal stars, and its aber-

ration, precession, and semi-annual equation, are not taken se-

parately from the general tables appropriated to these cor-

rections, but their sum or result is at once set down in special

Tables : so is its nutation, the sole argument of the nutation

being the longitude of the Moon's ascending node.

We have now explained the cause of nutation ; deduced formulae

expounding its quantity and law
; applied those formulae to in-

stances ;
and shewn the practical use of the numerical results

from the formula?, in the correction of Astronomical obser-

vations. It may be proper, however, before we dismiss the

subject, to make a few observations 011 the different loci, which

the pole of the equator has been supposed to describe, by
reason of the three causes of, precession, the inequality of pre-

cession, and nutation.

In consequence of the first of these, precession, the mean

pole f describes round 9 the pole of the ecliptic, a small circle
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&c. in a period of about ^25869 years; and, annually, art

arc equal to 19".9 in a direction contrary to the order of the

signs. By reason of this motion, or translation of the pole P9

the longitudes, right ascensions, and declinations, but not the

latitudes, of stars, are changed.

In consequence of the second, the inequality of precession, the

true place of the pole differs from the mean place ; and de-

scribes round the latter as a center which we may suppose to

be py a small circle a wvf

, according to the order of the signs, and,

in a period of half a year. Now, since the true pole is supposed
to move round p, whilst /> itself moves, it is plain, that the true

pole must describe some curve arising from these two compound
motions : and if b were the pole's place when p coincided with P9

then, after the description of Pp, the curve traced out by the

true pole will be an epicycloid lying between b and <u. By
reason of this inequality in the translation of the pole along
the circle Ppk, the precessions of stars in longitude, right as-

cension and declination, are, at different times of the year,

slightly and variously affected.

In consequence of the third inequality, nutation, the true

pole would describe round the mean pole, as n center, a small

ellipse, contrary to the order of the signs, and in a period equal
to that of the revolution of the Moon's nodes [18

y 7m ] ; the major
axis of the small ellipse coincides with the solstitial colure.

This imaginary description of the ellipse, is supposed to pro-
ceed whilst the mean pole, the center of the ellipse, is, from
the effect of precession, regressing : consequently, as in the

case of the solar inequality, the true pole, by the combination

of the above circular and elliptical motions, will describe an

epicycloidal curve.

The epicycloidal curve will be described, if we abstract the

consideration of the small circle described in consequence of the

solar inequality of precession : but, in nature, the three causes

operate together ; hence, the real path of the true pole will be a

curve described, by virtue of three motions simultaneously ex-

isting, one elliptical, the other two circular.

Since then, the small ellipse of nutation can be supposed to be

described, only by abstracting the perturbation of the pole's place
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ai'ising from the solar inequality of precession, are not the formulae

of nutation [pp. 163, 165,] deduced from such ellipse, erroneous ?

In theoretical strictness, they are erroneous
; but, in practice and

numerical exhibition, erroneous to so small a degree, that, without

any danger of vitiating Astronomical computation, they may
be considered as exact. For the radius of the small circle, de-

scribed in consequence of the solar inequality, is only 0".4<34<5.

The investigation then of the nature of the curve described,

by the pole of the equator, in consequence of the real motions

impressed on it, is of no essential practical use, but rather one

of curiosity. If indeed the curve were mathematically deter-

mined, then, from such curve, we might deduce expressions for

the corrections of the right ascensions and north polar distances

of stars ; which corrections, must, as it is plain, include the three

corrections of precession, the inequality of precession, and the

nutation : but nothing, in effect, would be gained by this ; for the

above mentioned expressions would not consist of a single term,
but would be separated, or expanded, into several ; each of

which would be equivalent to a separate correction, and nume-

rically expounded, require a separate Table.

"We have already advanced through a tolerably long Chapter
on the subject of a small correction, amounting to a few seconds

only, and which the instruments in Flamsteed's time were unable

to detect. Still, the smallness of the correction is no test of its

want of importance. And, that of nutation is peculiarly in-

teresting and important, by reason of the. elucidation and confir-

mation it bestows on Newton's system of Gravitation. On this

account, we shall still continue the subject, in the ensuing
Chapter, and there speak of the means used, by Bradley, in de-

tecting the inequality of nutation, and in disengaging it, from
the other inequalities, with which, under the form of an obser-

vation, it was combined,
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On the means by which Bradley separated Nutation from the

Inequalities of Precession and Aberration. On the successive

Corrections applied to the Apparent Place of a Star. (Jn the

Secular Diminution of the Obliquity.

AN treating of the several inequalities of precession, aberration,

and nutation, it is necessary, in order to avoid being perplexed by
the mere words of a theory, to recur to the simple facts of obser-

vation. Now, the observations of Bradley were on the Declinations

of Stars, or, what amounts to the same thing at a given place,

on their zenith distances *
: and, the phenomena of his observations,

were changes in the observed zenith distances of the same stars ;

happening sometimes, at different parts of the same year, and at

other times, at corresponding seasons of different years.

The star y Draconis, passing the meridian very near his zenith,

and being, consequently, little affected by refraction, was the

chief star of his observations. This star (see p. ICG.) in March

passed more to the south of the zenith by about 39" than it did
,

in September : that is, whatever was its mean place, the difference

of its two zenith distances, or of its declinations, was, in half a

year, observed to be about 39". Other stars, also, changed their

*
Bradley's observations were made with a Zenith Sector, which,

strictly speaking, is a declination instrument: adapted, however, to

measure the small portions, or minute differences of declination, and of

zenith distances, near the zenith.
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decimations. The changes of declination of a small star in Camelo~

pardaluS) with an opposite right ascension to that of y Draconis^

were observed at the same times as those of the latter star : then,

Bradley argued, if these phenomena (changes of declination)

arise from a real nutation of the Earth's axis, the pole must move

as much towards y Draconis^ as from th star in Camelopardaltis^

but, (see p. 131.) this not being found to be the case, the hypothesis

of a nutation of the Earth's axis would not account for the ob-

served phenomenon : more strictly speaking, it would not com-

pletely account for it, for, in fact, some part of the observed

changes of declination was due to the effect of nutation.

Bradley, as we have seen, (p. 132.) solved the above pheno-
mena by the theory of aberration. Now, if such theory, with

the known one of precession, would account for all observed

changes of zenith distances, or, of north polar distances, then,

there could be no changes but what arose from precession and

aberration. Hence, since [p. 1(22.] the aberration is the same, at

the same season of the year, the distance of y Draconis^ in Sep-
tember 1728, ought to have differed from his distance, in Sep-
tember 1727, only by the annual precession in N. P. D. : the

distance, in September 1729, from the distance, in September
1727, by twice .the annual precession in N. P.D.; and so on.

Now, this was not the observed fact. In 1728, after the effect

of precession had been allowed for, y Draconis was nearer the

north by about 0".S than in 1727. In 1729, nearer than in

1727, by 1".5. In 1730, by 4/'.5. In 1731, by nearly 8",

Here then was a new phenomenon, a change of north polar

distance, indicating an inequality not yet discovered.

Bradley observed other stars besides y Draconis ; amongst
others, the small star above-mentioned [p. ISl.^QiCamdopardalus :

and, it is not a little worthy of notice, this same star, which, in

the case of the former inequality, (that of aberration) directed him
to reject the hypothesis of a nutation of the Earth's axis, here

determined him to adopt it. For, within the same periods, the

changes in north polar distance of y Draconis and of the star in

CamelopardalitS) were equal and in contrary directions : that is,

whilst the former, through the years 1728, 1729, 1730, 1731,
was approaching the zenith, and consequently, the pole, the latter

by equal steps, receding from the zenith, and consequently
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from the pole. These phenomena then of the changes in north

polar distances, which (not like those of aberration that take place
in different parts of the same year, and recur in the corresponding

parts of different years) were observed, through a term of years,

could adequately be explained by supposing, during that term,

a nutation in the Earth's axis, towards y Draconis> and, from
the small star in Camelopardalus.

After 1731, Bradley observed contrary effects to happen;
that is, y Draconis receded from the zenith and north pole, and

the star in Camelopardali4s> by equal steps, approached those

points; and this access and recess continued till 1741 : (a period
of more than nine years) after which, the former star again

began to approach the zenith, and the latter to recede from it.

These phenomena, then, that took place between 1731 and 1741,

could be adequately explained by supposing, during that term,

a nutation in the Earth's axis, from y Dracoms and towards the

small star in Camelopardalus.

The mere hypothesis of a nutation, or vibratory motion in the

Earth's axis, would have found little reception amongst men of

science, if no arguments had been adduced to render such nutation

probable : that is, if some physical cause, likely to produce it, had

not been suggested. Previously, however, to the suggestion of

the real and immediate physical cause, Bradley enquired, whether

this seeming nutation of the Earth's axis was connected with any
concomitant circumstance, or phenomenon : and such circum-

stance he found to be the position of the nodes of the Moon's

orbit.

The star y Dracoms was (after the effects of precession had

been allowed for) most remote from the pole when the Moon's node

was in Aries, and least, when in Libra : and after a complete revo-

lution of the Moon's nodes, the distances of all the observed stars,

at the end, differed from the distances at the beginning, by the

effect of precession only. Hence, the phenomenon of a nuta-

tion, and the longitude of the Moon's node were connected.

But, the inclination of the Moon's orbit varies with the longitude

of the node : the former is greatest, when the latter is equal to

nothing 5 least, when the latter is six signs. Hence, the nutation

and inclination were connected together. But, the Moon's

action, on the bulging equatoreal parts of the Earth, is greater
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the more distant the Moon is from the equator ; and her niean

action greater, the greater the inclination of her orbita and

besides, her mean action varying with a variation of the inclina-

tion. Hence, the phenomenon of the nutation was connected,
with the variable action of the Moon in causing precession ; and
this last connexion made nutation the effect, and the variation of

the Moon's action the cause. And this was the physical cause

which seemed to Bradley to afford an adequate solution of the

phenomenon he observed : and subsequent researches have con-

firmed the sagacity of his conjectures.

The real distance oi* any star (7 Draconis for instance) from

the north pole of the equator, is increased continually and con*

stantly, by the effect of precession only. The variations in that

distance from aberration and nutation are periodical, and recur,

the former in the space of a year, the latter in the time of a,

revolution of the Moon's nodes* Hence, although, as it was

asserted in p. 175, in any phenomenon of a change in the north

polar distance of a star, the effects of several causes may be

blended together and compounded j yet the method is plain, by
which we may disengage and separate them. For instance, since

the revolution of the Moon's nodes is completed in about 1 8 years,

and since the aberration and the solar inequality are the same, at

the same time of the year, the north polar distance of y Draconis

in 1745, ought to differ from its north polar distance in 1727

almost solely by the effect of precession : that is, since the latter

N. P. D. was 38 28' 10".2, [see p. 5?.] and the precession

[seep. 146.] 0".8, the N. P. D. in 1745 ought to have been

38 27' 56'' : and this difference was, by Bradley's observations^

[see Phil. Trans. No. 485, p. 27.] found very nearly to exist,

Again, between September 6, 1728, and September 6j 1730,

the aberration and solar inequality being the same, the respective
north polar distances of y Draconis at those periods ought t

x
p differ,

by twice the annual precession in N. P. D , and by the effect of

nutation : and hence the effect of nutirtioii in an interval! of

two years, between two known positions
of the Moon's ascending

node, would be known.

Again, between September 6, 1728, and March 6, J739j the

solar inequality being the same, the respective north po)af (lis*

tances of y Draconis ought to differ by the precession
in $f. f

1
, J).
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due to half a year, by the nutation for the same time, and [see

p. 122.] nearly by the sum of the greatest aberrations in N. P. D. ;

and the whole difference would consist almost entirely of aberration,

since the precession and nutation together would not amount to

a second.

Again, the Moon's ascending node being, March 28, 1727,

in Aries} and July 17, 1736, in Libra
-,

the respective N. P.D.

of y Draconis would differ by the precession due to 9 years

3 months, by the solar inequality of precession, by aberration,

and by the sum of the two maximum effects of nutation. But,

between March 28, 1727, and March 28, 1736, (since then the

solar inequality and the aberration would be the same) the north

polar distances would differ by the effect of precession, (a known

quantity) and nearly the sum of the two maximum effects in nuta-

tion. Hence, it would be easy to disengage, and numerically

exhibit, a material element, the maximum effect of nutation.

By examining various and numerous observations and by dis-

criminating from amongst them, those that happened at particular

conjunctures, Bradley found abundant confirmation of the truth of

his two theories, aberration and nutation. During a period of

more than twenty years, he accounted for the phenomena of

observation, that is, the changes in the declinations of various

stars, by making those changes or variations consist of three parts -,

the first due to precession ; the second to aberration ; and, the

third to nutation : the quantities and laws of the two latter,

being assigned on the principles and by the formulas of his

theories.

We cannot sufficiently admire the patience, the
sagacity, and

the genius of this Astronomer, who, from a previously unob-

served variation not amounting to more than 40 seconds, extricated,

and reduced to form and regularity, two curious and beautiful

theories.

The following Table exhibits the coincidence of his theories

with observations. [See Phil. Trans. No. 485, p. 27.]
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A brief explanation will suffice for this Table. The apparent

place of a star is deduced from the wean, by applying to the latter

the several corrections : or, the mean is deduced from the ap-

parent, by applying the same corrections with contrary signs.

If therefore y Draconis were, at the beginning of any period,

a certain number of seconds, south of the zenith, or south of

any particular division in the zenith sector; it would, at the

end of the period, be really farther from the zenith by precession ;

really farther or nearer, by nutation 5 and apparently nearer

or farther by aberration. By the mean distance of the star from
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the division 38 25' of the zenith sector (see last column in

jpreceding Table), Bradley means the distance on March 27, 1727,
Which would have been, had there been neither nutation, nor

aberration. But in that year, the nutation, (the node of the

Moon's orbit being in Aries] was the greatest. Hence, in

September 1727, (see the first horizontal row of the preceding
Table) the observed or apparent distance of y Draconis would

differ from the mean, by the effect of precession \~ x .8] in half

a year, by the maximum effect of aberration (see p. 122), and

by nearly the greatest effect of nutation. The apparent distance

then of the star being 70".5, the mean (according to Bradley)
Would be

Vcy'.S 0".4 -f i9"><2 - 8''.9 = 80".4j.

Again, reversing the process. If 80'' were the mean distance,
then on March 6, 1729, the star would appear by aberration

farther distant about 1<J".3 : would really be more distant by the
effect of two years precession in N. P. D. (2 x .8 ;) and, would

really be more distant than it would be if the Moon's orbit were
at its mean inclination (the ft being either in < or in yp ) by the

effect of nutation (7".4-). The apparent* distance therefore

Would be

80" + 1".6 + 19''.3 + 7".4 = 108".3

The mean distances deduced according to the preceding ex*

planation, by means of corrections, from Efradley's two theories

of aberration and nutation, and from the known effect of pre*
Cession, ought, if the theories be true, to be

invariably the same :

and their very near equality (see last column in Table, p. 179,)
establishes, almost beyond doubt, the truth of those theories.

The division in the zenith sector, from which, as a fixed

point, Bradley measured the distances of y Draconis, and the
north polar distance of which he calls 38 25', is not the division

corresponding to the 2enith of the observatory at Wansted,

* There is some violation of the propriety of language in calling
that apparent, which depends on real causes, viz. the changes of the

place of the pole from precession and nutation. In strictness, apparent
should have been confined to aberration, refraction.
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and consequently, not the co-latitude of the place. If it had

been, the apparent north polar distances of y Draconis on Sept. 3,

1727, and on March 6, 17-9, would have been respectively,

38" 26' 10".5, and 38 26' 487
.3.

The formulae for the computation of the variations of the

north polar distances of stars in precession, aberration and nutation,

are determined by theory, and by processes purely mathematical ;

the numerical coefficients of the formulae from numerous and

accurate observations.

More exact instruments and multiplied observations, may*

perhaps, indicate new inequalities in the north polar distances, and

right ascensions of stars. If such should exist, they may be

detected by the method pursued by Bradley in the case of the in-

equalities of aberration and nutation. Suppose, for instance, that

the star y Draconisy should, from the year 1810, during years,

be observed ; then, if the several observed north polar distances

reduced, by the corrections of precession, aberration, and nuta-

tion [see p. 179,] to the beginning of 1810, always gave, as a

result, the same mean north polar distance, the laws and quan-
tities of the several corrections would seem to be right, and,

there would apear no inequality, requiring an explanation.

But, if the mean north polar distance should not result the

same from every observation, then, either the laws and quan-
tities of the common corrections would require some alteration :

or, if these were held to be exact, the errors of the resulting mean

distances, would appear as new inequalities, as phenomena
without an explanation, as effects with unassigned causes.

The comparison of numerous observations indicate, in several

stars, inequalities of the latter description, which cannot be ac-

counted for, by altering, either the laws, that is, the analytical ex-

pressions, or the numerical coefficients of the formulae of the

corrections. An alteration adapted to one star would not suit

others. The above inequalities, then, following no general law,
are attached and appropriated, as peculiar errors, to the several

stars , and, in the Tables, are classed, as proper motions. (See

Maskelyne's Table of the principal Stars for 1802 ; also Wol-
laston's Fasciculus^ Appendix, p 25 )

These unaccounted for deviations in the places of stars may
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arise from proper motions, truly such, or, as Dr. Herschell sup-

poses, from some translation of the solar system. They cannot

be accounted for, by supposing the observations to be inaccurate,

the instruments deranged, or, the formulae of corrections er-

roneous. For, these causes of irregularity, if they existed, would

equally affect two contiguous stars. Now, the relative position

of Arcturus and of a small contiguous star marked b (in the

Celestial Maps) was during the last century considerably changed.

The proper motion of Arcturus is, relatively to other stars,

very considerable both in right ascension and in north polar dis-

tance. That of Antares, and of a Herculis in right ascension

nothing. (See Maskelyne's Tables, Tab. X.)

The obliquity of the ecliptic, can be observed from year to

year (see p. 46,) like any other Astronomical phenomenon ; for

instance, the north polar distance of a star. Now, the obliquity is

subject to two periodical inequalities : one (see p. 155,) arising

from the solar inequality of precession, and passing through all

its degrees of variation, in the space of half a year ; the other

(see p. 167,) arising from nutation, and passing through all its

degrees of variation, in the space of half a period of the revo-

lution of the Moon's nodes. The observed or apparent obliquity,

then, must, by means of the corrections due to the preceding in-

equalities,
be reduced to the mean. Now, by an examination of

the several successive mean obliquities, resulting from this method,

it appears that the mean obliquity of the ecliptic does not remain

invariable. During a great number of years, it appears to have

been slightly
and gradually diminishing. The diminution in

100 years, which is called the secular, is stated to be 52". And,
on the supposition that it proceeds equably and gradually, the

diminution, from any proposed epoch is proportional to the

numbers of years elapsed. Thus, the mean obliquity of the

ecliptic being, for the beginning of the year 1800, 3 27' 57",

for the beginning of 1810 it would be 23 27' 57'', 10 xO''.52,

that is, 23 27' 51''.8 : for the year 1794, 23 27' 57"+6 x 0"5<2,

that is, 23 28' 0".12.

If, however, the apparent obliquity were required for April 1,

1810, t hen, besides the proportional part for the secular diminu-
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tion, we must correct for the solar inequality of precession and

for the nutation ; and the/ operation would stand thus ;

1800. Mean obliquity
- - 23 27' 57'

Secular diminution for 10 years
------ 0-5.2

Proportional secular diminution to April 1 - - . 1 3

* Solar inequality due to April 1 ----- 0+.4
Nutation -8.76

1810, April 1, Apparent obliquity
----- 23 27 43.3.

This secular diminution of the obliquity of the ecliptic is not,

like the inequalities called the proper motions of stars, without

an assignable cause. It arises, (so it is proved on the principles

and by the processes of physical Astronomy) from the attractions

of the planets ;
which attractions cause not the equator, but the

ecliptic to vary : that is, they cause the apparent path described

by the Earth, amongst the fixed stars, to vary. But, the investi-

gations that prove the diminution of the obliquity, assign also its

limits : which being attained, the obliquity would begin to be

increased. [See Euler, Mem. de FAcad. Berlin, 1754, p. 296.]

This change in the obliquity, arising from a change in the

ecliptic itself, must affect the latitudes of stars, which (as we
have seen in pp. 139, 169,) remain unaltered by the inequalities of

precession and nutation. The latitude of Regu/us, for instance,

in 100 years would be increased by 20''.5 : and, accordingly, its

annual variation of latitude would be -f 0".205. In the Catalogue

of the 9 principal stars, which Dr. Maskelyne used to insert at

the end of the Nautical Almanack, the last column expresses

the variations of latitudes arising from the diminution of the

obliquity of the ecliptic.

* In the new French Tables, and in Mr. Vince's, vol. III, p. 7,

Introduction, the proportional diminution, and the solar inequality
are included under a single Table. The analytical expression for the

obliquity, is

"

+ 0".4S4-5 x cos.2+ 9". 63 x cos. AT,

E being the obliquity at the beginning of the year, and N the supple*
ment of the node.
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The same cause, the attraction of planets on the Earth, that

produces a change in the obliquity, will produce one in the pre-
cession of the equinoxes. Hence, besides the variations in the

longitudes of stars already enumerated, one will arise from

this cause.

If the regressive motion of the equinoctial points be subject
to any secular equation, the length of the tropical year will.

This motion is now about 0".S8() faster than it was at the

beginning of the Christian ./Era 5 and, on that account, the

secular diminution of the length of the tropical year has been

about half a second. And the above is one of the causes that

render difficult, as we stated in p. 68, the consideration of the

length of the mean solar year.

In the instances given in pages 55, 57, where exemplification

of method and illustration, and not extreme accuracy, were re-

quired, the obliquity was stated in degrees, minutes, &c., without

any great attention to its exact values at those times. If, how-

ever, great accuracy should be required, (as in deducing the

right ascension of the Sun from his longitude resulting from solar

tables) then, the obliquity must be determined by the method

given in p. 183, 1. 3.

The knowledge of the places of the fixed stars has been

properly said to be the foundation of all Astronomy ; and, the

places cannot be determined independently of the preceding cor-

rections. These, as we have seen, are naturally separated into

two distinct classes : one, consisting of refraction, parallax, and

aberration, applied to an observation at the instant at which it is

made, and entirely independent of physical Astronomy ;
the

other, consisting of precession, the solar inequality of precession,

and of nutation : corrections not intended to divest an observation

of any optical or illusory inequality, but to allow for the real

change in the place of the pole of the equator that has happened
between two observations, either a present and a past recorded

observation ; or, two preceding recorded observations. These

corrections are dependent on physical Astronomy for a knowledge
of their causes, and for the expressions of their laws.

We may perceive then in what way or manner the fixed

gtars, although beyond the influence of the disturbing forces of

the solar system, require, for the determination of their positions,
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the aid of physical Astronomy. Their place, indeed, is not

changed, but that of the observer is.

If we turn our attention from fixed to wandering stars or

planets, still more, and for a two-fold cause, will our researched

require the aid of physical Astronomy. For, in the interval be-

tween observations, both the place of the observer and that of the

observed body will be changed. Here then a new field of en-

quiry is opened. We may use the settled places of the fixed stars,

for the purpose of determining those of a planet, at certain

epochs. But the places thus determined will be only certain

elements in the planet's theory. The return of the planet after

any period, to the same, or nearly the same place j the times of

moving from one position to another; these, and other points,
must depend on the real curve described by the planet, and on
the laws of its curvilinear motion. And, although observation

will be the main support of the enquiry, still alone it will not be

sufficient. We must guide it by aid derived from the discoveries

of Kepler, and the inventions of Newton.

In this new class of investigations, the form and elements of

the Earth's orbit, and the laws of its motion, first claim our

attention.

A A



CHAP. XV11I.

ON THE SOLAR THEORY.

On the Orbit: described by the Earth. The Laiv of its Motion.

Kepler's Problem. Its Use.

BY computations founded on the observed right ascensions

jand declinations of the Sun, its longitude may be determined

[see p. 55]. Conversely, if by the knowledge of his real motion his

longitude were known, then, by the simple rules of spherical Tri-

gonometry, and from the obliquity of the ecliptic, we could com-

pute his right ascension and declination ; and afterwards, by direct

observation, ascertain the accuracy of the computation. Accord-

ing to this latter method, the Sun's place is said to be determined

by Solar Tables.

If the Earth really moved uniformly in a circle, the daily

increments of the Sun's longitude would be equal ; and, the

merely registered observations of his longitude, each day on any
one year, would themselves constitute Solar Tables : since, on all

succeeding years,
at the same distance of time from the equinox,

the longitude would be always the same, as also would the right

ascension, if the obliquity of the ecliptic remained invariable.

In this case, therefore, the sole enquiry, of any difficulty, would

be concerning the exact time of the equinoxes.

But, the Earth certainly does not move uniformly in a circle,

the Sun being in its center. Observations, of the simplest kind,

are sufficient to shew this. For instance, by computations founded

on the Sun's observed right ascension and declination, the follow-

ing results were obtained :
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1, 0's longitude -------3* 8 38' 44"

2. 3 9 35 57

Increase of longitude, or daily motion - - - 57' 13"

Again,
Jan. 1, 's longitude 9 s 10 IS' 56"

S. -9 11 15 7

Increase of longitude, or daily motion - - - 1 1' 11"

Here the daily motions, instead of being equal, are to one

another as 3671 to 3433.

But, may not the Earth move uniformly in a circle, the Sun

not being, indeed, in the center, but situated elsewhere within

the circumference ? For, the increases of longitudes, or daily

motions, are merely angular spaces, and may at different distances

correspond to equal real spaces. If such be the case, that is, if the

Earth move uniformly, then, since an angle varies as its subtend-

ing arc directly, and as its radius inversely, the above daily motions

ought to vary inversely as the respective distances of the Sun from

the Earth on July 1, and January 1 : since, the subtending arcs,

the described parts of the Earth's orbit, are supposed to be equal.

Now, it happens, that we possess easy means of ascertaining the

ratio of the distances of the Sun from the Earth : for, his apparent
diameter varies as the real diameter directly, and the distance in-

versely ; therefore, since the real diameter is invariable, as the

distance inversely. By instrumental measurements, the apparent
.diameters of the Sun in July and January were respectively
31' 31", and 32' 35".6 ; in the ratio, therefore, of 1 to 1.0339.

But the daily motions have been shewn to be as 3671 to 3433,
that is, nearly as 1 .0693 : 1 ; consequently, the real arcs described

by the Earth are not equal, or the Earth does not move uniformly
in a circle, whether the Sun be supposed to be situated in or out

of the center.

The above is not the exact description of Kepler's reasonings.

But, by methods, not very dissimilar from those which have been

stated, that great Mathematician first examined and then rejected
his original hypothesis of the Earth's motion in a circle, the Sun not

being in the center ; and afterwards examined and established the

last and true one, that of the Earth's motion in an ellipse, the Sun being

situated in one of the foci.
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This important truth was not soon found out : there was no

analogy to suggest it : and no direct process could lead to it ; for,

physical Astronomy was unknown. It was the fruit of conjecture,
of trial, and of unwearied research.

In point of history, it was preceded by another truth, nearly
of equal importance ; which is, that the areas or spaces which may
be conceived to be described by a line joining the Sun and Rarth.y are

proportional to the times of description.

Kepler did not establish this generally, but for those portions
of the ellipse that lie contiguous to the extremities of the axis

major : the aphelion and perihelion of the orbit, the Earth revolv-

ing j or, the apogee and perigee of the solar ellipse, the Sun being

supposed, for Astronomical convenience, to revolve round the

Earth. [Seep. 11.]

If we take two arcs (A, a) at the greatest and least distances

(D, d) of the Earth from the Sun, then, by Kepler's discovery of

the equable description of areas,

consequently,

5 5
- ' ' "

Hence yr ,
-

, which are the measures of small angles

described about the Sun
; or, the exponents of the angular velo-

cities ; or, as they were called in p. 187, the daily motions and

increments of longitudes, are not inversely as the distances, (which

they would be, if their inequality arose from merely an optical

cause,) but, inversely as the squares of the distances.

In p. 187, 1. 28, the proportion of the daily motions, (or angu-
lar velocities,) was stated to be as 1 : 1 .0693 ; that of the

distances, to be as 1 : 1.0339. Hence, according to the result

in the preceding paragraph, this proportion ought to be true :

I
2

: (1.0339)' :: 1 : 1.0693-,

and, on trial, it will be found to be nearly true.

By observation, Kepler's law of the equable description of

areas is found to be true ; not only at the extremities of the

major axis, but at all points of the ellipse. Newton, on mecha-
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nical principles, shewed that it must be true. [See Principia,

Prop. I. Sect. 2.]

These two discoveries, of the elliptical orbit of the Earth,
and of the equable description of areas, enabled Kepler to make
a grand step towards the assigning the Sun's place at any pro-

posed time ; or, towards the construction of Solar Tables. If the

Sun be in the apogee on the first day of July, where will be his

place, at the end of the month ? This question would be

resolved by setting of the area AEP proportional to the time,
or to 30 days : that is, since the whole ellipse is described in

365 \ days, by so drawing EP, that the area AEP = whole

30
area of ellipse x

I)

The cutting off an elliptical, area proportional to the time be-

came then, the main object of enquiry : and the problem in which

this is effected, from the importance of its investigation, and the

celebrity of its proposer, has, for distinction, been called Kepler's

Problem.

The difficulties of the problem are not inconsiderable. Various

means and mathematical artifices have been resorted to, in order

to lessen them. Hence have resulted many excellent solutions ;

the best indeed, not established by obvious and direct processes,

but, by processes found, after many trials, to be the most

commodious. Since it would be wide of our present purpose,

historically to trace the problem through its several stages of

successive solution, we shall proceed, first, to deduce the equa-
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tions that contain the exact solution of the problem, and next,

to lay down a method, approximate indeed, but leading, by

easy and certain steps, to results sufficiently exact for all practical

purposes.
If we suppose a fictitious body to revolve uniformly in the

circle ADMB, completing its revolution in the same period in

which P, representing the real body, and following the law of

its elliptical motion, describes the entire ellipse : thenj if after any

assigned time (/) the former body is at M, and the latter at P,
the angle ACM is the meany and the angle AEP the true

anomaly.
The problem will be as effectually solved by finding the

angle AEP proportional to the time, as by cutting off the

area AEP proportional to the time: and since ACM> (AM
being described uniformly,) is proportional to the time ; the pro-
blem announced, in formal terms, is this : It is required tofind tfa

true anomaly in terms ofthe mean.

The two bodies are supposed to set off from the apside> or

with reference to the Sun, the aphelion A ; consequently, the placeM of the body in the circle must be before that of P : for,

since (p. 188, 1. 19,) the angular velocity varies inversely as

the square of the distance, and the distance EA is the greatest,
the angular velocity, of the body in the ellipse at A, is the least,

less certainly therefore than the mean angular velocity, with
which the body in the circle constantly revolves.

Besides the mean and true, another anomaly called the

Eccentric, represented by Z DCA, has been invented, and, spe-

cially, for the purpose of facilitating the solution of the problem.
It is made a mean term between the true and mean anomaly ;

one equation connects the true and eccentric : a second, the ec-

centric and mean anomaly. In order to deduce the second, that

is, to express the eccentric anomaly in terms of the mean:
Let t =: time of describing AP%

P= periodic time in the ellipse,

a = CA,
ae~ EC,
i} = z PEA,
u = DCA

; (/. ET, perpendicular to DT^ECx sin. it

v =3. 14159, &c.;

then, by Kepler's law of the equable description of areas,
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p
areaofellip. area

j j 1= [> sin. -f ] : hence, if we put - = -
,

2 TF 2 vr n

we have
f = * . sin. u + u [a]9

an equation connecting the mean anomaly ntt and the eccentric u.

In order to find the other equation, that subsists between the

true and eccentric anomaly, we must investigate, and equate, two

values of the radius vector $, or EP.

First value of
$,

in terms of v the true anomaly j

.(i-0
*

1 - * . cos. v L J

second, in terms of u the eccentric anomaly

For, c
* =

= (ae + a . cos. u)
J + a 2

(sin. it)* . (I**
7

)

= a" [^+ 2* . cos. u +(cos. )*]-f 0*. (1 **) (sin. )*

= <r* [1 -f- 2<? . cos, + ^
2

(cos. )
a

]

Hence, extracting the square root,

^
= a (1 + e . cos. //.)

Equating the expressions [1], [2], we have

(1 f) m (1 * . cos. v) . (1 4- <? cos. u)j whence,

cos v. = E-
> an expression for v in terms of

1 + e . cos. u

u \ but, in order to obtain a formula fitted to logarithmic compu-

tation, we must find an expression for tan. ^: now, [see Trig.

* Yitice's Conic*, p. 15. 4-th Ed. f Ibid. p. 23. Bridge, p. 93.
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rn tin
v - * /H- cos, in /m -*)(i- cos. K)1W Un< 2~ V Ll+ cos. J

= V L(1 +.)(!+ Cos.)J

tan..
l + e 2

These two expressions [a] and [b'\ } that is>

/ = t . sin. u + u

analytically resolve the problem, and, from such expressions, by
certain formulae belonging to the higher branches of analysis may
v be expressed in the terms of a series involving /// *.

Instead, however, of this exact but operose and abstruse

method of solution, we shall now give, as we proposed (p. 190,)

an approximate method of expressing the true anomaly in terms

of the mean.

MO is drawn parallel to DC. (1.) Find the half sum of

the angles at the base of the triangle CM, from this ex-

pression,

tan. i [CLEAT CME] = tan.
| [OEM -j- CME] x

yj-;i

[see Trig. p. 27,] in which, CEM + CME = ACM, the

mean anomaly,

(2.) Find CEMby adding | [CM+CM] and ^[C^ CM]
and use this angle as an approximate value to the eccentric

anomaly DCA, from which, however, it really differs by Z.EMO.
- - - ..... _

* The following is the series for v in terms of nt ;

v = nt

43 1 . nos . 4.51
e -- e'- sin - 3 "' + >c '

rj 097 1223 "1
"""

L555"
**" Sin * 3W/+ "^0

C
*

\

Sin * 6??/
'
in which the approximation

is carried to quantities of the order t?
6

,
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(3 ) Use this approximate value of z DCA = <L EOT in

computing ET which equals the arc DM : for, since [see p. 188,]

p
t = x DEA, and (the body being supposed to revolve in the

area

circleADM)= . x ACM; .-. area AED = area ACM,
area

or, the area DEC + area ACD = area DCM + area ACD ;

consequently, the area DEC = the area DCM,
and, expressing their values,

ET x DC DM x DC , n/sr= _ and /. ETDM.
Having then computed ET~ DM, find the sine of the resulting
arc DM, which sine = OT: the difference then, of the arc and

sine (ET - OT) gives EO.

(4*.) Use EO in computing the angle EMO, the real difference,
between the eccentric anomaly DCAy and the z MEC : add

the computed / EMO to z MEC, in order to obtain z DCA.
The result, however, is not the exact value of z DCA, since

Z EMO, has been computed only approximately ; that is, by a

process which commenced by assuming Z MEC, for the value

of the z DCA.
For the purpose of finding the eccentric anomaly, this is the

entire description of the process, which, if greater accuracy be

required, must be repeated ; that is, from the last found value of

Z DCA= z ECT, ET, EO, and z EMO must be again computed.

(5.) A sufficiently correct value of the eccentric anomaly (u)
B B
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being found, investigate the true (v), from the formula

p. 192, that is,
"

"1

EXAMPLE I.

77tf Eccentricity of the Earth's Orbit being .01691, and the Mean

Anomaly = 30, */ /> required to find the Eccentric and the

true Anomalies.

(1) Log. tan. 15 9.4280525

Log. (
1 -*), or log. .98309 - - T.9925933

Arith.Comp. F+*, or of 1.0169 1 F.9927218

Log. tan.
\ (CEM-CME) - - 9-4 1 33(37(5 =log. tan. 14 SI' 22".

(2.)
~ (GEM- CME) = 14 3 1

7 22"

i(CM+ CME) = 15
L2

CEM = 29 31 22. 1
st

approx
c
. ralue of

(3.) Log. sin.29 31' 2^' --- 9.6926438

Log. .01691 ....... '1.2281436

+ Log. (arcrrrad
3

.)
..... 5.3144251

Log. DM in seconds --- 3.2352125 = log. 1718.7.

= 28/ 38/x

.7, and its sine expressed in seconds differs from

the arc DM by less than half a second.

(4.) The operation prescribed in this number [see p. 193, 1. 12.]

ISL, in this case, needless, since the correction for the angle EMC
is so small, that the first approximate value of the eccentric

anomaly may be stated at 29 3 1' 22".

(5.) Log. tan. ~
, or log. tan. 14 45X 41" - - - - 9.4207651

| log. (!-*)> or
5 tog. .98309 ....... 4.9962966

glog. (!+*)> or 1
log. 1.01691 ...... 4.9963608

Log. tan. - - 9.4134225
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= log. tan. 14 31' 28"
,

.. the true anomaly=29 2' 56".

The difference of the mean and true anomalies, or, as it is

called, the Equation of the Center, equals 57' 4".

If the eccentricity had been assumed n .016813, or .016*791,

the equation of the center would have resulted 56' 46".4, or

= 56' 41". 4, respectively.

EXAMPLE II.

Instead of .01691, suppc-w the Eccentricity of the EartWs Orbit be

taken at .016803 *, ami the Mean Anomaly> reckoningfrom Perigee,

according to the Plan in the new Solar Tables, be 10s 12 22' 12".4.

Taking out 6 signs, we have the mean angular distance from

apogee = 4s 12 22' 12".4.

(1.) Log. tan. 66 11'6".2 10.3552029

Log. .983197 T.992G406

Arith. comp. 1.016803 7.9927645

10.3406080.-=: log. tan. 65 27' 5G//
.4.

(2.)
1 (CEM-CME) 65 W Bff'A

\(CEM+CME) 66 11 6.2

13 1 39 2.6 approx
6

. value of CDA (w)

(5.) Log. tan.
|,

or log. tan. 6,5 49' 31 /x
.3 - - - 10.3478640

I log. .983197 4.9963203

~ arith. comp. 1.06803 4.9963816

Log. tan.
~ 10.3405659 ;

/. ^=65 27' 49".2, and v ^ 49 10 55' 38".4;

/. the true anomaly, reckoning from perigee,= 103 10 55' 38".4,

and difPerence of the mean and true anomaly =1 26' 34".

* In 1750, the eccentricity was 0.016814, and, the secular varia-

tion being .00004-5$ 7 2, in 1800, ti was 0.016791.
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This difference, or Equation of the Center, is stated, for 1300,
in Lalande's Tables, vol.1. Astron. ed. 3. p. '23, at 1 26' 38".6;

but, in the new Tables, Vince, vol. III. p. 38, at 1 1
s 28 32' 44".4.

Now the difference of this, and of 12 signs, is 1 7' 15.6,

which is still greater than Lalande's result by 45". But, it i&

purposely made greater; for these 45" are the sum of the

maxima of several very small equations. [See the explanation in

Delambre's Introduction, and in Vince's, p. 6.]

In the two preceding Examples, it appears that, by reason of

the small eccentricity of the Earth's orbit, the true anomaly and

equation of the center are found by an easy and short process ;

no second approximation being found necessary. It appears

also, by the results, that a small change in the eccentricity makes

a variation of several seconds in the equation of the center. Thus

arranging the results in the preceding Examples :

Now, by observation and theory, it appears, that the eccen-

tricity of the Earth's orbit is diminishing. Hence, Tables of the

equation of the Earth's orbit, computed for one epoch, will not

immediately suit another : but, they may be made to suit, by

appropriating a column to the secular variation of the equation of

the center. Thus, in Lalande's Tables, torn. I. ed. 3. p. 18,

the equation of the center is stated to be 56' 41".2, and in a

column by the side, the corresponding secular diminution to be

9".36. Now Lalande's Tables were computed for 1800*: (when
the eccentricity of the Earth's orbit was .016791) consequently,

for the preceding epochs of 1750, 1550, the equations of the

center would be 56' 41".2 + 4" .68, and 56' 41".2 + 23".44, that

is, 56' 45" .9, and 57' 4".6 respectively. These are nearly the

results previously obtained in p. 194, which they ought to be,

* Delambre states, that Lalande's Tables answer better to the

epoch of 1809, or 1810, than to 1800. See Introduction to hi

new Tables.
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since, the secular diminution of the
eccentricity being .000045572,

the eccentricities corresponding to 1750 and 1560 will be, nearly,

.016813 and .0161)10.

By this mode we may also reconcile the two results in Ex-

ample 2, in p. 195; for the equation of the orbit in Lalande's

Tables is 1 26' 30", (that is, for an eccentricity, .016791) there-

fore, for 1760, when the eccentricity was .016803, the equation
will be, the secular diminution being 13".9, equal to

1 26' 30".6 + 3"A, that is, 1 26' 34".

EXAMPLE III.

The Eccentricity of tlie Orbit (that of Pallas) being 0.259, the

Mean Anomaly 45 : *'/ is required to find the Eccentric and true

Anomalies.

(1.) Log. tan. 22" 30' - - 9.6172243

Log. tan. .741 - - - H8698182

Arith. comp. 1.259 - - 9.8999743

Log. tan. i (CEM-CME) 9.3870168 = log, tan. 13 42' 3".S.

(2.) 5 (CEM- CM)= 13 42' 3''.3

I (CEM+CME)=22 30

.-. CJSM36 12 3 .3=lstapprox
e.valueof tCDA

and CME = 8 47 56.7.

(3.)Lg- sin - 36 W s//-3 - - - 9.7713071

Log. .259 T.4132998

Log. (arc = radius) - - - - 5.3144251

Log. DM in seconds - - - 4.4990320 = ^31552.4;
.-. DM=31 552^.4= 8 45' 52^4;

/. log.sin. 9-1829067

Log. (arc = rad.)
- - - - 5.3144251

4.4973318"= log. 31429;

.-. since DM= 31552.4

and sin. DAf= 31429

EO 12?A.
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(4) |>] Log. .2/;<) ---------- T.4 132998

Log. sin. 4.3 ----- 9.H494850

9.2627848

Log. sin. 8" 47' 5G".7 - ------ 9.1845968

.0781880

5.3144251

5.3926131

Log. *>------------]<)
Log. 123.4 C2.0913I52

12.0913152

|>] Log. (arc = radius) -f log. EM - - - 5.3926131

Log. sin. JBJIfO 6.6987021

.-. EMO= V 43".l.

Hence, since CDJ = 36 12' 3x/.3

and EJMO= 1 43.1

corrected value of CZM ^=36 13 46.4, the eccentric anomaly,

Log. tan. 18 & 53''.2 - - 9.5147282

5 log. .741 4.9349091

iarith. comp. 1.259 - - - 4.9499871

Log. tan. - - - - - 9-3996244= log. tan. 14 5' 19'';

.-. the true anomaly is 28 10' 38".

The eccentric and true anomalies being determined, the

radius vector p may be computed from either of the two ex-

pressions, [1] [2] p. 191, but most conveniently from the

latter.

EXAMPLE IV.

Required the EartJfs Distance from the Sun, tlie Mean Anomaly

(reckoningfrom Aphelion} being 4
s 12" 22' 12".4, and the Eccen-

tricity
= .016803. See Ex. 2. p. 194.

P = 1 4-* . cos. w, if a= 1,

and u = 131 3
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Log. cos. 131 39' <2".G ..... - - - g.82'25523

Log .016803 ........... IF.22.J3868

Log. .011167 ........... 8.0479391

(since cos. is -), f>
= 1-. 011167 = -988833.

EXAMPLE V.

Required tlie Distance of Pallas from tlie Sun, in the conditions

of Ex. III.

Log. cos, 36 13' 46V ........ 9.90G()'881

Log. 0.0,59 - ----- ..... 7.413G998

Log. .'2089(2 - --------- -
{>.:)] 99879

.*. distance l.<20892.

The knowledge of these distances is useful *:

, us we shall

hereafter sec, in computations of the heliocentric longitudes and

latitudes of planets. But, in such computations, the logarithms of

the distances arc required, Those can, indeed, be immediately found

from the computed distances, bymeansof the common Tables; with

more brevity and facility of computation, however, by taking out,

during the process of finding the true anomaly, when the log, sine

is taken out, the log. cosine of the eccentric anomaly.

Assume then, e . cos. = cos. 6, or, log. cos. = log e+ log. cos. // ;

thence is known : and, lastly,

log./) = log. (1 -f *.cos.)
- 10 = log.^L -f cos. 6)

- 10

- log. C.
(cos. -

-^log. 2 + 2 log. cos. 3-GO=C log. cos. - - 19.6989700.

The sole object of this latter method, is compendium of

calculation.

By means of the preceding rule, f.,e pp. 192, 193,] the true

anomaly (as in the Examples) may always be computed from the

mean, which is known, by a single proportion from the time.

* The Nautical Almanack expresses the logarithm of the Sun'*

distance for every Glh da^ of the year.
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The difference of the true and mean anomalies, is the equation of

the center, or the equation of the orbit. And, the Solar Tables

assign to the mean anomaly, as the argument
l

, this latter quantity,

instead of the true anomaly. It serves then as a correction or

equation to the mean anomaly, by means of which the inequality

between the mean and true places of a planet, at any assigned

time, may be compensated. It is additive or subtractive, ac-

cording as the mean is less or greater than the true anomaly :

subtractive, therefore, whilst the body P moves, from A the

aphelion to E the perihelion, or, through the first 6 signs of mean

anomaly, (reckoning anomaly from the aphelion) arid additive,

whilst P moves, from B to A, or, through the last 6 signs of

mean anomaly.

These circumstances, Lalande's Tables (ed. 3.) used to ex-

press, in the common way, by the algebraical signs and +.
But the new Solar Tables, [see Dclambre's Tables, and Vince's

Astronomy, vol. III.] adapted to the operation of addition only,

when the mean anomaly exceeds the true, express not the equation

of the center^ but its supplement to 12 signs (360'). The

12 signs, therefore, must be subsequently struck out of the

result. This is not the sole difference in the construction of the

Tables. In Delambre's last*, the mean anomaly is reckoned

from the perihelion, and the equations of the center are increased

by 45 ', the sum of several small inequalities : an arrangement
made for the same purpose as the former, 1, 18 5 that of avoiding

the operation of subtraction.

The greatest equation of the center% it is plain, can mean nothing

else than the greatest difference between the true and mean ano-

malies ; and that must happen when the body P moves with its

mean angular velocity. For, if we conceive a body to move

uniformly in a circle round E as a center, with an angular velo-

city, the mean between the least of P at A, and its greatest at B>
and such, that departing with P from AE the line of the apsides,

it shall, in the same time, attain to it, together with P ; then, it

is plain, at the commencement of the motion, the first day, for

instance, P moving with its least angular velocity, describes

round E a less angle than the fictitious body does : the next day,

* Both Tables were constructed by Delanibre.
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a greater angle than on the first> but still less than the angle

described by the fictitious body : similarly for the third, fourth

day, &c. : so that, at the end of any assigned time, the two

angular distances of the two bodies from the aphelion, will differ

by the accumulation of the daily excesses, of the angular velocity

of the fictitious body, above that of the body P. And this accu-

mulation must continue, till P, always moving till it reaches B
with an increasing angular velocity, attain its mean angular

velocity, or, that velocity with which the body moves in the circle j

then, this latter body can, in its daily rate, no longer gain on

P ; and past this term, it must lose : exactly at that term, then,

the difference of its angular distance from A, or from the line of

the apsides, must be the greatest.

The point in the elliptic orbit is easily determined ; it must

be the intersection of the circle, in which the body moves with

the mean angular velocity, and the ellipse : let x be the radius,

then, since the circle and ellipse are described in equal times,

by Kepler's law, (see p. 188,) the areas must be equal : hence

9TA,'
2 .= TT x semi-axis major x semi-axis minor,

consequently, x V (semi-axis major x semi-axis minor)

= * (1
- O*

From the above value of the radius vector, may the true and

eccentric anomalies, at the time of the greatest equation, be

computed; and by the expressions [1], [2J, p. 191, viz,

, e = a( 1 + e . cos. u)* ^ ^ J
1 - e. cos. v

Hence, the mean anomaly (n t) is known by the expression

nt = u + * sin. u

and finally there results the greatest equation of the center =
(v /,)

EXAMPLE.

In the Earth's orbit, e being very small (= .016814)

since (1 e*y* = 1 -f- * . cos u

1 --= 1 + e . cos. u j .*. cos. u =s --
,

e* 3
fcnd 1 -

7 = (1 *a) (1 + e cos. v) j .'. cos. v = -*;
4?

c q
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/. by the series for the arc in terms of the cosine, and by

neglecting the powers of e,

nt = quadrant + - + c

i> = quadrant
- e \
4

Q -

.*. nt v, (the greatest equation) = 2<?, and consequently,
T

in the Earth's orbit, the eccentricity = 1 the greatest equa-

tion.

This is the method of computing the greatest equation,
but it is usually determined from observations. For that pur-

pose we must observe the longitude of the body when its

angular velocity is equal to its mean angular velocity 5 thus, ac-

cording to Lacaille,

1751. Oct. 7, 's longitude - - - - 6
s 13 4-7' IS".?

1752. Mar. 28, -----.--.. 08 9 25.5

Difference of the two longitudes
- - - - 5 24 22 11,8

The mean motion proportional to the

interval of time was - - - - - - 5 20 31 43.2

The difference, double of the greatest equation 3 50 28,6

Hence, the greatest equation of the center in the Earth's

orbit is 1 55' 14/'.3 : more nearly, by correcting the above

calculation 1 55' 33".

The difference of the longitudes of the two points in the

orbit, at which the real motion nearly equals the mean, is equal
to 5 s 24 22' 11", or 174 22" 11''. This is a very obtuse angle
formed by two lines drawn from the two points to the focus of

the solar ellipse. The two points then are not very remote

from the extremities of the axis minor , they would be exactly

there, if the angle were 180. Hence, the greatest equation

happens when the body is nearly at its mean distance.

In the Example that preceded, the Sun's longitude was
taken on October 7, and March 28; because, at those times,

his daily motions or increases of longitudes were equal to his

mean motion. That circumstance was ascertained by taking
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his longitudes on two successive days, and then the difference,

which is his angular motion. The mean angular motion is

nearly 59' 8'' : the greatest, about the beginning of January, being
r V 10"

-,
the least, about the beginning of July, being 57' 11".

We shall perceive the use of this greatest equation of the

center, when we treat of the equation of time. Astronomers

have also used it in determining the eccentricity of the orbit*.

jf
If E be the greatest equation, and

5?0 2957795
be put = ^

then the eccentricity, or

_K 11 X3 587 JC* &*
2 3.2"

"*"

3,5,2
t6

' f

Hence in the case of the Earth's orbit, the eccentricity of which
is very small, we have, retaining only the first term of the series,

and taking
= 1 55' 33",

_ K 1 55' 33" _ mfifMvy* -
I

5*
flx57%957795-

-016807 '

If -She taken=1 55' 36".5, the greatest equation in 1750,

* = . 016814.

If E be taken = 1 55' C6''.8, the greatest equation in 1800,

e = .016791.

From these two Examples, the diminution of the greatest

equation for 50 years appears to be 9".7 : and, consequently the

* See Lacaille, Mem. Acad. 1757, p. 123.

f This scries was invented by Lambert. The reverse series foi

the greatest equation is

ae +33T'' +!&* + **

In a Note to page 192, we gave the series expressing the true

anomaly in terms of the mean and the eccentricity. The following is

Delambre*s expression for the equation of the center, for the year

1810, in terms of the greatest equation and of the mean anomaly 2

reckoned from the perigee :

1 55" 26/,352 sin. z + I' 12".679 sin. 2z+l".0575 sin. 3z

+ 0*.pl8 sin. 4s.
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secular diminution to be 19".4. Lalande, in his Tables, states it

to be 18".8.

In the case of the orbit of Saturn, E =s 6 26' 42''

.

57.^957795

and * = .056243 .000031 = .056218.

The whole of this Problem of Kepler
* whether we regard

the analytical solution, or the approximate method, is extremely
artificial. On account of its importance in the theory of the

Sun and the planets, Mathematicians have taken great pains
with it. The results of their labours have been, formulae of great

analytical compactness, and very commodious rules of solution.

But these, not being obtained by obvious and direct processes,
from the conditions of the Problem, are apt, in some degree, to

perplex the Student.

But, it may be asked, may not the preceding formulae and

rules of solution be superseded by merely registering, from ob-

servation, each day, the Sun's longitude ? Will not at the same
distance of time from the equinox, the Suu's longitude be the

same in 1810 as it was in 1800 ? This Would be the case, if the

longitude of the aphelion, from which the true anomaly is reckoned,
continued invariable. But, the contrary is. the fact j and, each

year, the place of the aphqUon is changed. Hence, the inter-

section of the equator and ecliptic continually corresponds to a

different point in the solar ellipse: at that point, then, the

Sun is moving, year after year, with a continually varying velo-

city ; and if his velocity at the equinox in 1800, were less than

at the equinox in 1810, then, one month after the equinox of

* The reverse Problem, that of finding the mean from the true

anomaly, being of little use, has not been introduced into the text. Its

solution is very easy ; find u from v by means of the expression

and then the mean anomaly (nt) from

n t = e sin. u -f- u.
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the former period, his longitude would be less, than at the same

distance of time from the equinox of 1810.

Although Kepler's Problem, then, is of essential importance,
still it cannot be applied to the determination of the Sun's place,

except we previously know the situation of the apsides of the

solar orbit. The enquiry therefore, is naturally directed to the

determination of their longitude.



CHAP XIX.

On the Place and Motion of the Aphelion of an Orbit. Dura-

tion of Seasons. ^Application of Kepler * Problem to the de-

termination of the Sim's Place.

IT follows from what was remarked in p. 187, that, the Sun in

his perigee being at his least distance, and in his apogee, at his great-

est, his apparent diameter in those positions would be respectively

the greatest and least. If therefore, we could, by means of in-

struments, measure the Sun's apparent diameter with sufficient

nicety, so as to determine when it were the least, the Sun's longi-

gitude computed for that time, would be the longitude of the

apogee.*

Or if, computing day by day, from the observed right ascen-

sion and declination, the Sun's longitude, we could determine

when the increments of longitude were the least, the Sun's lon-

gitude, computed for that time, would be that of the apogee :

for, the Sun's angular motion in that point is the least

(see p. 187.)

The difference of two longitudes thus observed, after an in-

terval of time (/,) would be the angle described by the apogee in

that interval. And, if the longitudes were not accurately those

of the apogee, still, if they belonged to observations, distant from

each other by a considerable interval of time, the motion of the

*
Apogee, if the Sun be supposed to revolve, Aphelion, if the Earth 5

and, although, in reality, it is the latter body which revolves, yet, since

it affects not the mathematical theory, we speak sometimes of one revolv-

ing, and sometimes of the other ; and, with a like disregard ofprecision,
we use the terms apogee and aphelion.
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apogee would result with tolerable exactness j since the error

would be diffused over a great number of years.

Thus, by the observations of Waltherus,

1496. Longitude of the apogee - - - 3 s 3 57' 57"

In 1749, (by Lacaille) 3839O
"

progressive motion in 253 years - - - 4 41 3

whence the mean annual progression
* results V 6" : differing,

however, from the result of better observations and methods, by
4". Lalande states the annual progression to be I

7
2''.

The more accurate method, however, of determining the

progression of the apogee rests upon a very simple principle.

Let Sr be a right line, and draw TEt making with the

A

axis major AE of the ellipse, an angle TEA = SEA:
now, the time through rBtS is less than the time through
the remaining arc SATr: for, the equal and similar areas

SEt, TEr, are described in equal times, but the area rEt
is <area SET; .'. by Kepler's law (p. 188,) it is described in less

time; .*. rEt -f SEt, that is, the area SErtS> is described in

less time than SET -f TEr, which compose the area SErTS;
.*. the body moves through the arc rBtS in less time than

through STrJB. And this property belongs to every line drawn

through JE, except the line AEB, the major axis, or, the line of

*
Progression is here meant to be used technically: a motion in

consequently, or, according to the order of the signs.
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the apsides, that which -joins the aphelion and perihelion of the

orbit.

Hence it follows, if, on comparing two observations of the

Sun at 5 and at f, that is, when the difference of the longitudes
is 6 signs or 180 degrees, it appear that the time elapsed is not

half a year, we may be sure, that the Sun has not been observed

in his perigee and apogee. If the interval should be exactly, or

nearly half a year, then we may as certainly conclude, that the

Sun was at the times of observation, exactly, or very nearly, in

the line of the apsides,

If the interval of time be nearly half a year, (which is the case

that will occur in practice,) then we must find the true position

of the apogee by a slight computation, which shall be first alge-

braically stated, and then exemplified.

The time from r to S rr the time from r to B + the time

from B to A the time from S to A \

,\ time from B to A time from r to 5 n: [#]

time from S to A time from r to B.

Now the first difference is known, being the difference between

half an anomalistic year [see p. 70,] and the observed interval

of observation : and of the second difference, the second term

may be expressed by means of the first : thus, let the first term
csr /: then by Kepler's law, [see p. 188,]

r A T> area r EB
time from r to B = t x -77-,

area SEA

= / X TT-. [r and S being near the apsides]

_ f
rB~ X EB

angular velocity at A r ,,irt . ^_= / X -S-:-- r-i-
-j. [see p. 188, 1 20.]

angular velocity at B J

Now, the angular velocities at A and By or the increments of

the Sun's longitudes at the apogee and perigee, being known
from observation [seep. 187,] and the time from r to B being

expressed in terms of those velocities and of /, the quantity / is

the only unknown quantity in the equation [a\ 1. 17, and ac-



Method of determining the Progression of the Apogee. 209

cordingly may be determined from it. Having obtained / then,

we can determine the exact time when the Sun (S) is at the

apogee A: and his longitude, computed for that time, is the

longitude of the apogee.

EXAMPLE.

1743. Dec. 30, 0*> 3m 7
s

's longitude
- 9* 8 29' 12".5

1744. June 30, 030 38 51 1.5

.-. difference of 2d and 1st longitudes
- - 6 21 49

.. at the 2d observation June 30th, the Sun was past S. In order

to find when he was exactly at 5, that is, when the difference of

the longitudes was exactly 6 s

\ or (supposing the perigee to have

been progressive through 31"), when the difference of longitudes

was 6 s 0' 31", we must find the time of describing the dif-

ference of 21' 49", and 31", that is, 21' 18": now this time,

since on June 30, the Sun's daily motion in longitude was 57' 12",

equals
21 ' 18"

x 24h
, equals 8 h 56ra

1 3 s
: take this then from

the time [June 30, Oh 3 in

] of the second observation, and there

results, June 29, 15 h 6m 47s
, for the time when the difference of

the longitudes of the Sun at r and near 5 was 180 O' 31".

The interval between this last time, and Dec. 30, Oh 3m 7,
the time of the first observation, is 182d 15h 3m 40s

, nearly
the time from r to -S : but, this time is less than half an anoma-

listic year, which is 182 d 15 h
7
m

1
s *: and see [a] p. 208, 1. 17,

t - time from r to B = 3 ra 21 s
.

* In this method which is to determine accurately the given place

of the apogee, the motion of the latter, and the length of the ano-

malistic year are supposed to be known to some degree of accuracy.
The one is stated to be 62"; the other, 365 d Oh 14m 2s

. But, if both

be supposed unknown, if we take the difference of the longitudes of r

and S to be simply 6% and the elapsed time to be half the tropical year,

still the method will give the place of the apogee very nearly, which

may serve as a first approximation to the true place.

D D
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But, see the same page, 1

the time from r to B = t x

But, see the same page, 1. 24,

57' 13*

61' 12''
'

.*., substituting, t x ~ ~ = 3m 21 s

, and consequently,

t = 47m 54?%

Add this to the time, June 29, 15 h 6m 47 9
, when the Sun was at

S, and we have, June 29, I5 h 54m 41 s for the time when the Sun

was in the apogee.

The Sun's longitude at that time must be less than his

longitude (V 8 5V l".5) on June 30, O h 3m by the difference

due to the difference of the times, which is 8 h 8m 19 s

, equal,

(since the increase of longitude in 124- hours was 57' 12")

81 8 " ^
x 57' 12"= 19' 21";

24"

hence the longitude of the apogee 3 3 8 51' 1".5~ 19' 21 // =
3 s 8 31' 40''.,5, or 98" 31' 40".5, or 8 3 1

7
40".5, past the

summer solstice.

By the preceding method* the longitude of the apogee is found,

and, in the Example, for the year 1744. Find similarly the lon-

gitude for another year, 1810 for instance, and the difference of

the longitudes, divided by the time intervening, will give the pro-

gression of the apogee [see p. 207.]

The above method f of determining the place of the apogee
is due to Lacaille. That author, on the grounds of simplicity

"* On most (KJcuMoiis, iho nearly circular forms of the orbits of the

Earth and the planets a rev, with respect to facility of calculation, very

advantageous circumstances
;
on other occasions, when, for instance,

the eccentricities and apheha are to be determined, disadvantageous. For
the orbits being circular, the observed body moves nearly as in a circle,

in which there is neither apside nor eccentricity. The
dilliculty hence

arising, does not consist in the prescribing an exact geometrical method,
but in executing a tolerably exact practical one.

f The method is explained, with singular clearness, by Dalembert,

jn the historical part (L'Hisloire) of the Memoirs of the Academy of
Sciences for 1742.
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and uniformity, suggested the propriety of reckoning the anoma-

lies from the perihelia of orbits, since, in the case of Comets, they
are necessarily reckoned from those points. In the new Solar

Tables of Delambre this suggestion is adopted, [see Introduction :

also Vince's Astronomy, vol. II L Introduction, p. 2.]

In these new Tables the progression of the perigee, and conse-

quently that of the apogee, is made to be about 61 ".9; and the

mean longitudes of the perigee for 1750, 1800, 1810, arc re-

spectively stated at 9 s 8 37' 28"-, 9
s

9' W 3"; 9 3 9" 39' 22".

The longitude of the v/inter solstice is 9 s

; therefore in 1810

the perigee was 9 39' 22" beyond it; at this time, the daily

motion of the Sun was 61 f
1 1" ; therefore, the solstice happening

on Dec. 22, the Sun would be in his perigee about nine days

after, or about Dec. 31.

From the longitude for any given epoch, and its annual

progression, the position of the apogee and of the axis of the

solar ellipse, may, by simple proportions, be found for any other

epoch. Suppose, for instance, it were enquired when the axis of

the solar ellipse was perpendicular to the line of the equinoxes ?

This, in other words, would be to enquire, when the longitude of

the perigee was 270, or 9'- Now, its longitude, in 17,30, was

9 s 8 37' 28": the number of years therefore requisite to describe

the difference, or 8 37/

28", taking the annual progression at

GO
Qflt OQ't

62", equals
-

> r about 500 years ; that is, the major axis
62

was perpendicular to the line of the equinoxes in the year 1250.

The epoch when the axis coincided with the line of the equi-

noxes is a remarkable one : this, since the longitude of the

g s go 0*7' 28"
perigee was 180% or 6 s

,
and since '. .*

/y
,

is nearly 5720

years, happened about 4000 years before the Christian aera, at

which time, Chronologists have fixed the beginning of the world.

The knowledge of the place of the perigee is necessary to

determine the durations of seasons ; which are perpetually

varying from its progression. If W> S> in the Figure, represent
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the winter and summer soltices, V and O the vernal and autumnal

equinoxes, PEA the axis of the solar ellipse ; then, in the year 1250,

P coincided with W\ and, on that account, the time from the au-

tumnal equinox O to the summer solstice W was equal to the time

fromW to the vernal equinox V. Past that year, P, by reason

of its progressive motion, began to separate from W\ and in

1800, the separation, measured by the angle PEW> was 9 9' 3".

By means of this separation, those parts of the elliptical orbit in

which the Earth's real motion is the quickest, being thrown

O

nearer to V and away from O, the time from the autumnal equinox
O to the solstice W> became gradually greater than the time

from Wto the vernal equinox : and the time from V to S became

less than the time from 5 to O. In 1800, the following were nearly

the lengths of the seasons :

V to 5 92^ 21 h 44m 28s

S to O 93 13 34? 47

O to W 89 16 47 20

/FtoT * - - 89 1 42 23

This motion of the perigee also, as will be shewn in a sub-

sequent Chapter, continually causes to vary the equation of time.

What has been said concerning the duration, and change of

duration, of the Seasons, is, in some degree, digressive ; the

mai'i object of the Chapter being to explain the method of finding

the '^lace, that is, the longitude of the perigee, in order that

Kepler's problem might be applied to the determination of the

Sun's place"
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By Kepler's problem, we are enabled, from the mean anomaly,
to assign the true anomaly, or true angular distance, reckoning
from perigee*. The mean anomaly of the Sun, is his mean

angular distance computed from perigee : in the Figure, if b be

the 's mean place, it is z.PEb. Now,

and, if V be the first point of Aries>

/. PEV^z 12 s mean long, perigee,

and / VEb=z 12 s - mean long. .

Hence, the mean anomnly is the difference between the mean

longitudes of the Sun and of the perigee. And the Solar Tables

assign the mean anomaly by assigning these longitudes. And
then, in the same Tables, the mean anomaly is used as an argument
for finding the equation of the center. The process may be

illustrated by specimens from the Tables, and their application to

an Example.

* The mean anomaly is stated to be reckoned from perigee, since

die succeeding extracts are from Delambre's new Solar Tables.
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Suppose now the Sun's longitude were required for 1810,

Nov. 13, 2 h 3"> 23
.

Table I. 1st. the mean longitude for the

beginning of 1810, is - - - - 9* 10 28' 30".2

Table IV. Nov. 13. 10 11 27 52 .3

r 2 h O 4 55 .7

Table V. 1 3m 7 .4

2s OOO .1

Rejecting 12s

, mean long, at time required [a] 7 22 1 25.7

The longitude of the perigee is had from the same Tables ;

thus :

Table I. Long, at beginning of 1810 - - 9 s 9 39' 22"

Table IV. Nov. 13. - - O 53.6

Longitude of perigee at the time required - - 9

Subtract this from [a] increased by 12 signs, 7

there results the mean anomaly
10

9 40 15.6

12 21 10.1
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With this mean anomaly enter Table Vll, and there results

the equation to the center - - - - 11 s
28" 32' 42''.2

Add to this the mean longitude [a]
- - 7 C!<2 1 25.7

7 20 34 7.9

This result, 7 s 20 34?' 7".9, is (if no other corrections are re-

quired to be performed) the true longitude reckoned from the mean

equinox. But, as it has been shewn [pp. 149, 158.], the place of

the equinox varies from the inequalities of the Sun's action, and

the Moon's action in causing the precession. Two equations, there-

fore, must bo applied to the above longitude, in order to compen-
sate the above inequalities, and so to correct the longitude, that

the result shall be the true longitude, reckoned from the true

place of tlte equinox. Now, it happens, by mere accident, that, in

the above instance, the lunar and solar nutations are equal to 1",

but affected with contrary signs. These corrections, therefore,

affect not the preceding result. The correction for aberration

[see p. 132,] has, in fact, been applied j for, since that, in the case

of the Sun, must be nearly constant, (and it would be exactly so, if

the Sun were always at the same distance from the Earth) the

Solar Tables are constructed so as to include, in assigning the

mean longitude, the constant aberration (20"). The variable

part of the aberration (variable on account of the eccentricity of

the orbit) is less than the 5th of a second. Let us see then,

whether the longitude that has been determined, from a know-

ledge of the place of the perigee, and from Kepler's problem,

expressed by means of Tables, be a true result :

By the Nautical Almanack for 1810 ; we have

Nov. 13, @'s longitude ------ 74 i>o 29' 8"

Nov. 14, ----- - 7 21 29 36

Increase in 24 hours ------- o 1 28

Now the Sun's longitude is expressed in the Nautical Alma-
nack for apparent time : and the equation of time being

15m 33% the mean time is ll h 44m 27s
. Hence, we must

find the increase proportional to 2h 18m 35% which is about

V 47"; consequently the Sun's longitude, on Nov. 13, 2h 3 2%



Sun's Longitude taken outfrom the Solar Talks.

(mean time) was 7
s 20 34-' 55", which differs from the pre-

ceding result, p. 215, 1. 4, by about 47''; consequently, Kepler's

problem is not alone sufficient to determine the Sun's place, but

some other corrections are requisite to compensate this error of

47 seconds.

Such corrections are to be derived from a new source of

inequality ; the perturbation of the Earth caused by the attracting

force of the Moon and planets ; the nature of which will be

briefly explained in the ensuing Chapter.



CHAR XXL

On the Inequalities of ike Earth's Orbit and Motion, caused by

the Disturbing Force* of the Moon and the Planets.

IT was originally proved by Newton (see Princ. Sect. 3.)

that a body projected from A> perpendicularly to E49 a line

joining A and a body placed at E9 (the latter body attracting

according to the law of the inverse square of the distance,)

would describe an ellipse round E.

The body placed at E is supposed to exert a centripetal force,

or attraction, proportional, at a given distance, to its mass, or to

the number of particles which it contains.

If in EA produced, we place, at an equal distance from A>
another body of equal mass, arid, accordingly, of equal attractive

force with the body at JG, and again suppose the body at A to

be projected ; then, since it is equally urged to describe an ellipse

round the new mass, as round that originally placed at JE, it can

s
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describe an ellipse round neither, but must proceed to move in

a direction perpendicular to EA.

In this extreme case, the elliptical orbit, and the law of

elliptical motion would be entirely destroyed.

If now we suppose the mass of the new body to be dimi-

nished, or its distance from A to be increased \ or, if we suppose

both circumstances to take place, then, the derangement, or per-

turbation, of the body that is to revolve round /i, will still con-

tinue, but in a less degree. An orbit, or curvilinear path, concave

towards E in the commencement of motion, will be described
;

but, neither elliptical, nor of any other class and denomination.

In this latter case, the new body, being supposed less than

the body placed at Ey may be called the disturbing body ; Disturb-

ing, indeed, by no other force than that of attraction, with which

the body at E is supposed to be endowed ; but which latter,

from a difference of circumstance merely, is denominated a Cen-

tripetal force. In the first supposition, of an equality of mass

and distance in the two bodies, from the similarity of circum-

stance, either body might be pronounced to be attracting or

equally disturbing.

The disturbing body, whatever be its mass and distance, will

always derange the laws of the equable description of areas, and

of elliptical motion. If its mass be considerable, and its distance

not very great, the derangement will be so much as to render

the knowledge of those laws useless in determining the real orbit,

and law of motion, of the disturbed body. In such case, Kepler's

problem would become one of mere curiosity ; and the place of

the body would be required to be determined by other means.

If, however, the mass of the disturbing body be, with refer-

ence to that of the attracting body, inconsiderable, then the

derangements, or perturbations, may be so small, that the orbit

shall be nearly, though not strictly, elliptical j and the equable

description of areas, nearly, though not exactly, true. Under
*uch circumstances, Kepler's problem will not be nugatory. It

may be applied to determine the place of the revolving body,

supposing it to revolve, which is not the case, but is nearly so, in

an ellipse. The erroneous supposition, and consequent erroneous

results, being afterwards corrected by supplying certain small
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equations^ that shall compensate the inequalities arising from the

disturbing body.

In the predicaments just described, are the bodies of the

solar system. The mass of the Sun, round which the Earth

revolves, is amazingly greater than that of the Moon % which

disturbs the Earth's motion : greater also, than the masses of the

planets, which, like the Moon, must cause perturbations. The

Earth, therefore, describes very nearly an ellipse round the

Sun.

As a first approximation then, and a very near one, we may,
as in the last Chapter, determine the Sun's, or Earth's place, by
means of Kepler's Problem ; and subsequently correct such

place, by small equations due to the perturbations of the Moon,
and of the planets.

But, how are these small corrections to be computed ? By
finding, for an assigned time, an expression for the place of a

body, attracted by one body, and disturbed by another; the

masses, distances, and positions, of the bodies being given \ that

is, by solving what, for distinction, has been called the Problem

of the thret bodies.

The consideration of three bodies is sufficient: for suppose,

by the solution of the problem, the equation, or correction, for

the Sun's longitude, to be expressed, by means of the Sun's and

Earth's masses, distances, &c., and of other terms denoting the

mass, distance, &c., of a third body ; then, substituting, for

these latter terms, the numbers that, in a specific instance, belong

to the Moon, the result will express the perturbation due to the

Moon. Instead of the Moon, let the third body be Jupiter :

substitute, as before, the proper quantities, and the result ex-

presses the perturbation due to Jupiter : and similarly for the

other planets. The sum of all these corrections, separately com-

puted, will be the correction of the longitude arising from the

action of all the planets.

The above corrections are what are necessary to complete

the process of finding the Sun's longitude, in p. 215, of the pre-

ceding Chapter ; and to supply the deficiency there noted of

* The Sun is 1300000 times greater than the Earth, and the Earth

more than 68 times greater than the Moon.
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several seconds, from the true longitude. The number of cor-

rections which it is necessary to consider, and which the latest

Solar Tables enable us to assign, is five j arising from the per-

turbations of the Moony Venus^ Marsy Jupiter^ and Saturn. Those

of Mercuryy the Gcorgium Sidtts, Ceresy Juno> and Pallas, are

disregarded.

No attempt will here be made to compute the perturbations,

by solving the problem of the three bodies. That problem pre-

sents great and peculiar difficulties : so great, that, instead of

a complete and general solution, Mathematicians have been

obliged to content themselves with an approximate one : yet,

even by what we have seen, the problem is essential. Newton's

theory is incomplete without it. The perturbations caused by
the planets are as much a consequence of his principle of uni-

versal attraction, as their elliptical motion round the Sun ; and

when, computed according to that principle and its law, by long

and intricate processes, they are found to be verified in the

cxactest manner by observation, they present, although not the

most simple, yet, the most irrefragable proof of its truth,

Observation, it is plain, must furnish numerous results, before

the formulae of perturbations can be numerically exhibited, or,

what is the same thing, be reduced into Tables. The positions

and distances of the planets must be known : for, without any
formal proof, we may perceive, that, according to the position

of a planet, the effect of its disturbing force may be to draw the

Earth either directly from, or towards, the Sun, or, in some

oblique and transverse direction. In fact, the heliocentric longitudes

of the Earth and the planets form the arguments in the Tables of

perturbations.

Having thus explained, in a general way, the theory of per-

turbations, we will complete the Example of p. 2 14, by adding

certain corrections, computed from that theory, to the Sun's

longitude.



Example.

By p, 215, 0's longitude
- - - - - . 7 <20a 34' s".2

Correction due to}) -------00 05.5

to 9 ....... 000 17.49

to <J
....... 000 4.32

to ^ .---.-.-000 12.7

to F> --..-. -OOO 0.65

.-. Nov. 13, 1810. '2
h

3'n '; 0's true long .
- 7 SO 34 48.86*

By computations like these carried on by the aid of Tables

(see pp. 213, &c.,) the Sun's longitude is computed for every day
in the year, and then registered ; in the Nautical Almanack of

Great Britain, the Connoissance des Terns of France, and in the

EpJiemerules of Berlin and other cities. The use of registering the

Sun's longitude is explained in the Nautical Almanack, p. 146.

Here terminates the exposition of the Solar Theory ; and, that

of the Planetary, might, with propriety, immediately commence.

But, the subject of the equation of timey is too important to be

either omitted or postponed ;
and it could not, without anticipating

processes and results, have preceded the method of determining
the Sun's longitude. It is now therefore introduced as being

strictly dependent on the solar theory, and not as forming any

link, or connection, between that and the planetary theory.

* This determination of the Sun's longitude is Jess by about 7 seconds

than the longitude as stated in the Nautical Almanack. But, this latter

was computed, (see Preface to the Nautical Almanack) from Lalande's

Tables, inserted in the 3d Edition of his Astronomy : which differ by a

few seconds from Dclumbre's last Solar Tables (Vincc% vol. Ill,) and

from which the numbers in the text were taken.



CHAP. XXII,

On the Equation of Time.

THE two preceding Chapters having enabled us to compute
the true longitude of the Sun, we can now proceed to the expla-

nation of the Equation ofTime9 and to the mode of computing it.

The term Equation has, in this case, its usual Astronomical

meaning ; it is a correction to be applied to the mean, in order

to make it equal to the true time.

The noon of true time is marked by a phenomenon : the

actual presence of the Sun's center on the meridian, which can

always be ascertained either by a transit telescope, or by a quadrant,

or other Astronomical instrument, which determining generally the

altitude, determines, consequently, the greatest altitude of an hea-

venly body.

The interval between two successive noons is a natural day.

But, this interval, in different parts of the year, is a variable

quantity. The index of a clock moving equably, which, on the

second of November, should perform an exact circuit, or mark

precisely 24> hours, in tl*e interval between two successive noons,

would, between the reainoon of the 13th, and that of the 14th,

perform more than a circuit. Between the real noons of the

1st and 2d of March, it would perform less.

A clock then constructed to move equably, could never be

adjusted so as to agree with the Sun : that is, always to denote

twelve hours when his center was on the meridian. Still, how-

ever, the Sun being the natural and obvious regulator of the

civil day, it is desirable so to adjust a clock, that it shall differ

as little as possible from the Sun : and that, agreeing with him
at a particular point of time, it should, at least, again agree
after the lapse of a year.
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For this purpose, Astronomers have feigned an imaginary

time, called Mean Solar Time, marked indeed by no phenomenon,
but the noon of which, we may conceive, to be marked by a fic-

titious Sun moving in the equator, with the mean motion in right

ascension of the real Sun. This mean daily motion in right

ascension is 59' 8". 3. For, the Sun in 365 (l 5 h 48 m 48 s moves

through 360, and consequently, in one day, if he moved equably,

through

365 d 5 h 48m 48 3 3(J5.24222 r

J, &c.
= 59' 8".3

The difference of time, between the passages of the real and

fictitious Sun over the meiidian, is called the Equation of Time.

This interval may be marked by a sidereal clock ; and since

that, if duly adjusted, denotes the true right ascensions of

heavenly bodies on the meridian, [see p. 49,] the difference of

the true right ascensions of the real and fictitious Suns, must re-

present the equation of time.

This, however, is merely a mode of explaining the subject.

The presence of the fictitious Sun on the meridian, or its distance

from it, cannot be marked, as the very terms import, by any

phenomenon. The defect of a phenomenon, therefore, must be

supplied by calculation. We must so correct, by means of an

equation, the true right ascension of the real Sun, indicated by
the phenomenon of his presence on the meridian, that the result

shall be the right ascension of the fictitious Sun.

The main reason why we are able to assign the time, at

which, the Sun marking mean solar time would be on the meri-

dian, is, that we can determine the true right ascension of the

real Sun, both by observation and computation. The true right

ascension of the real Sun may be computed from hC* true longi-

tude by Naper's rules : or, in practice more expeditiously, by the

aid of a Table entitled the Reduction of the Ecliptic to the

Equator [see Vince, vol. II, p. 352, and Maskelyne's Tables,

tab. XXXIII]. The true longitude, as we have seen (p. 169,) is

measured not from the mean but the apparent^ or equated place of

the equinox : and the true right ascension must be computed from

such true longitude, and the apparent obliquity [see p. 183.]

The mean equinox differs from the apparent, and the mean ob-

liquity from the apparent, by reason of the effect of nutation
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[pp. 168> &c ] We will, however, first abstract the consideration of

this cause, and then examine after what manner its introduction

modifies the results, in the computation of the equation of

time.

If there were no nutation, the longitude of the real Sun would

be measured from the mean place of the equinox, and its right

ascension, computed from the longitude and the mean obliquity

of the ecliptic, would, consequently, be reckoned from the same

mean place of the equinox.

If there were no nutation, the right ascension of the fictitious

mean Sun could only be reckoned from the same mean place of

the equinox : and the difference in the transits, cross the meridian,

of the two Suns, or, in other words, the equation of time, would be

the difference of the two right ascensions (reckoned from the

same point of the mean equinox,) converted into time, at the

rate of 15 for one hour.

The fictitious Sun is supposed to move with the real Sun's

mean motion in right ascension. That motion, for 24 hours is

59' 8".3 (p. 0,23). The same quantity also expresses the mean

daily increase of the Sun's longitude. Hence, in n days the ac-

cumulation of the daily motions in R. A., or the R. A. of the fic-

titious Sun (r:59
/
8".3 X/*) is equal to the mean longitude of the

real Sun. We may therefore vary w
the preceding expression for

the equation of time, and state it to be the difference of the right

ascension of the real Sun and of the mean longitude of the real

Sun.

Since the equinoctial point (the first point of Aries) must,

when we abstract nutation, regress equably, the right ascension of

the mean fictitious must increase by equal quantities : and the

intervals, between its successive transits over the meridian, must

be equal portions of absolute time. A clock, then, whose index

should always point to 12
h when the center of the Sun was on

the meridian of a given place, would be an exact time-keeper.

Let us now consider the effect of nutation. By reason of

that, the mean pole is transferred to its true or apparent place,
the mean place of the equinoctial point to its apparent place, and

the mean equator is changed into the apparent. P is the mean,
and p the apparent pole 5 Y the mean, and T '

the apparent
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equinoctial point ; r w the mean, and T'vt the tnw* QT Apparent
equator.

1T

The rotation of the Earth is supposed to remain unaltered by
nutation. But, by its effect, P being transferred to py and the

secondary P<rt passing through a star <r, into the position /?/,
a star a- will, by the effect of nutation, be brought, sooner or

later, to the meridian of a given place, by the difference of two

angles formed respectively by <rP, <r/7,
with a given meridian :

and, this difference in the Figure is ts.

Now ts (pp.69, 161,) is equal to Pp . cos. pPu , tan. decl".,

consequently, when o- is in the equator, where the fictitious

mean Sun is supposed to be situated, since tan. decl". =0*, the

value of ts is = 0.

Hence it follows, that the absolute time of the mean Sun's

return to the meridian is not affected by nutation, and conse-

quently, since the mean Sun in the mean equinoctial, by the

interval of its passages over the meridian, marks out exactly

equal portions of time, it must continue to do so, when the mean

* By the oscillation of the equator, the mean Sun would
x

acquire

declination from the true equator, but so minute, as to give no sensible

value to Pp . cos. pPu .tan. dec.

F F
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equator* by*'the eflFect of nutation, is changed into the true

or apparent.

The absolute time of the real Sun's return to the meridian

is affected by nutation
-,
and when most affected, by the maximum

value of ts y that is, by <)".fi X tan. 23 28' j (making Pp = 9".6,

and the declination = 23 28') which quantity, in time, is about

^
of a second.

But the change in the absolute time of the real Sun's return

to the meridian is of no consequence in this enquiry. The

difference
of time between the transits of the real and imaginary

Sun over the meridian must always, in a given state of the poles

and equator, be proportional to the difference of their right

ascensions, reckoned from the same point.

Now, the state of the poles and equator is that which is

assumed in consequence of nutation, which is almost always

operating. In such disturbed state, the Sun is observed on the

meridian, or at a given distance from it. His right ascension,

therefore, ought to be reckoned, not from the mean, but the true

equinoctial point, or, it ought to be computed from his longitude,

reckoned from that same true point, and the apparent obliquity.

The right ascension of the fictitious mean Sun must be mea-

sured from the same true equinoctial point. It will, therefore,

be greater or less than its right ascension, measured from the

mean equinoctial point, by the quantity T'v. [See Fig. in

p. 225.]

The distance of the fictitious Sun from the mean equinoctial

point, or his right ascension computed from the same point, can

only arise from the accumulation of the daily mean motions in

R. A. attributed to him. It must, therefore, in n days be equal
to 59' 8". 3 x n. But, the same quantity numerically expounds
the Sun's mean longitude [p. 2C3]. Hence, using the latter

term, the right ascension of the fictitious Sun is equal to the

mean longitude of the real Sun, plus or minus the quantity y'v.

The quantity y 'v is called [seep, 166] the equation of the

equinoxes in right ascension. In deducing the right ascensions of

stars from the Tables, it is used as a correction, to compensate
the deviation of the equinoctial point from its mean place. It

is [see p. 163] the sole correction in nutation, of a star situated
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in the equator. We may call it then a correction to the right
ascension of the mean Sun, and accordingly state the right ascen-

sion of the mean fictitious Sun to be equal to the mean longitude
of the real Sun, corrected by tJie equation of the equinoxes in R. A.

The equation of time, then, is equal to the
difference of the

Sun's true right ascension^ and of his mean longitude^ corrected by the

equation of the equinoxes in right ascension.

There is a practical convenience in this last mode of ex-

pressing the equation of time. For, amongst the collection of

Astronomical Tables, there is one for finding the equation of the

equinoxes in R. A.; and, in finding the Sun's true longitude,

(preparatory to the finding of the true right ascension) the

mean longitude, and under that denomination, is one of the

results.

If the obliquity be called, ----/,
f . fr , * -n. Pp sin. Ion. }>

?

s H
cquat. of equinoxes, v\Ll

in Fig. p. 225 =- sm^3o o8/
-

J

the Sun's true right ascension - - - A
the mean longitude ------- M.

Then, since T'v = *. cos. /,

the equation of time, in space, = A M-~ v . cos. 1

, . . AM v . cos. /
and, in time, -_ ----r-r

--
and>

1N
(since cos. /= cos. 23 28'= ~fi^

= ^ > "early) =--
The expression for the equation of time, may be still farther

resolved into its component parts. Thus, let

5 = Sun's true longitude

E = equation of the center

P = equations due to the planetary perturbations [Seep. 219.]

then, [see p. 231 ], 5 = M + E + P + v.

Now, A (as it has been observed in p. 223,) may be deduced

from S and the apparent obliquity (/ + 9".6 cos. long. D 's Si) by
the solution of a right-angled spherical triangle, or, which is the

usual way, by the application of a correction, called the Reduc*

tion : let R express that reduction ; then,
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A=S+R^M+E + P + R + *

Hence, if T denote the true time, and / the mean,

the equation of time, or,

A M * * cos. /--
E + P + R + v - v cos ' 1

15

E + P + R + 2 v . sin.* I
___2~

15

If we do not consider the effect of nutation, the

Sun's longitude = M + E + P,
his right ascension = .ftf+E + P + jR';

and consequently, since the right ascension of the mean Sun

is M,

the equation of time = E + p
^+

R/

Now R is the reduction, when the longitude is 5, and by suppo-

sition, JR', when the longitude is S v \ hence,

(S < A) R = A - 5

and ' = ^ - v cos. / (5 - J ;

consequently, R' = 7? + cos. /,

and the equation of time = E + P + R + " "" y cos ' J
,

15

the same expression, as before 1. 5. Hence the equation of time

is the same quantity, whether we consider the effect of nu-

tation, or not : or, is the same, whether we compute the right as-

censions of the two Suns from the true or mean equinoctial point ;

and the same conclusion may be obtained independently of

calculation.

In the preceding reasonings, for the sake of
simplicity, we

have supposed the noon of mean time to be determined, by the

aid of the noon of true or apparent time marked by the pheno-
menon of the real Sun on the meridian. But, if by means of

* For the computation of E} P, &c., see Explication et Usage des

Tables du Soleil, by Delambre.
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the Sun's altitude observed out of the meridian, and a knowledge
of his declination and of the latitude of the place, or by other

means we compute the hour angle measuring the time from ap-

parent noon, we may, as easily as in the preceding case, compute
the equation of time for such time, and thence deduce the cor-

responding mean solar time.

Ex AMPLK.

Required the Equation of Time, Nov. 13, 1810, <2
b 3 ra 2'

By page 22, the Sun's true longitude

or, S (= M + E + P -f ,)
- - - 7' 20 34-' 48".86

Reduction, (R) - 2 26 36.36

True R. A. (A) -------- 7 18 8 12.5~

Sun's mean longitude (M) p. 214?, - - 7 CC 1 26

Equation of equinoxes in R. A. (v cos. /) - 00 0.9

S un's mean longitude corrfl

. (M+ v cos. /) 7 22 1 26.9

,. equation of time, or,
-./) = _ 3- 53' 14".*

15. 15

= - 15m 33% nearly.

What has preceded contains the principle and the mode of com-

puting the equation of time ; all, therefore, that concerns the

practical Astronomer,, But if, for the purpose of new and farther

illustration, we continue our speculations, we shall find that the

equation of time, relatively to its causes, depends on two cir-

cumstances ; tlie obliquity of the ecliptic to tlie equator , and the un-

equal angular motion of the Sun in its real orbit.

The Sun moves every day through a certain arc of the ecliptic :

which, in other words, is his daily increase of longitude. If we

suppose two meridians to pass through the extremities of this arc,

they will cut off, in the equator, an arc which is the daily in-

crease of the Sun's right ascension. This latter arc will not

remain of the same value, even if the former, that of the ecliptic,

be supposed constant. At the solstice it will be larger than at the

equinox: the reason is purely a geometrical one: let 5 IT be the
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ecliptic, and fy the equator, then by Naper's rule, if /be the obli-

quity,
/ the longitude, A the right ascension, D the decimation

1 x cos. /= cotan. rS x tan. yv ~ tan * ^
tan. /

hence, tan. / x cos. / = tan. A, and, taking the differential,

.. cos. 7 dA
dl *

(ToTTp
=

(cos. A)-
> r> Since COS ' l = COS ' A X cos ' D

dl. cos. /= dA (cos. D)\ or dA dl. cos, /. (sec. D)*.

Hence /being the same, dA varies, if dl be given, as (sec. ))* ;

.'. is least at the equinoxes and greatest at the solstices, and its

value is
easily estimated at the former, f >r since D 0, dA =

r//.cos. /; at the latter, since sec. D ~ ^=- = i
, (dA\^

dl
-

cos. D cos. 1 ^ } cos./

.'. dA [equinox] : dA [solstice] :: (cos. /)* : 1

:: (cos. 23 28')
a

: P
:: 84-14 : 10000.

Hence, even on the hypothesis of the Sun's equable motion
in the ecliptic, the true right ascension will not increase equably -,

but since, by the very definition of the term, the mean longitude
does, the equation of time, which is the difference of the true right
ascension and the mean longitude (disregarding the equation of the

equinoxes) would be a quantity, throughout the year, continually
varying, and vanishing at the solstices.

The hypothesis, however, of the Sun's equable motion is con-

trary to fact
; the Sun moves in an ellipse, and consequently, does

not move uniformly, or equably in it. If a fictitious Sun, moving
with the Sun's mean angular velocity, be supposed to leave, at

the same time with the real Sun, the apogee 5 they will again
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come together at the perigee : but in the interval, the fictitious

Sun would constantly precede the real Sun : the latter therefore,

would be first brought on the meridian ; true noon therefore,

would precede the noon of mean time, supposing now, mean time

to be measured by the imaginary Sun moving uniformly in the

ecliptic.

If therefore, we hypothetically annul the first cause of the

equation of time, by supposing the ecliptic to coincide with the

equator, still from the second, (the elliptical motion of the Sun,)

there would exist a difference between true and mean time; in other

words, an equation of time, continually varying ; vanishing,

however, at the apogee and perigee.

But, both causes in nature exist j the Sun moves unequably,
and not in the equator. From their combination then, the actual

equation of time must depend. It cannot be nothing at the

solstices, except the solstitial points coincide with those of the

apogee and perigee, but, (see p. 210,) in the solar orbit, there is

no such coincidence.

At what conjunctures then, will the equation of time be

nothing ? We have already, for the purposes of explanation,

introduced two fictitious Suns, one moving equably in the ecliptic,

the other in the equator ;
let the former be represented by S'1, and

the latter by S'", and the true Sun, that which moves unequably in

the ecliptic, by S ; then, true time depends on *S', and mean time

on S'" ;
and consequently, when the meridian passing through one,

passes also through the other, then is mean time equal to the true,

therefore no equation is requisite, or the equation of time is

nothing. Let us suppose the two fictitious Suns S", S'" to move

from the autumnal equinox towards the perigee ; S'", in this case,

must constantly precede 5'', till they arrive at the solstice, where the

meridian that passes through one will pass through the other *.

* We shall frequently use the expression of Sf

rejoining S/ft
, or,

coinciding with it. Nothing, however, farther will be meant by such

expression, than thattjie meridian, which passes through the former in

the ecliptic, passes through the latter in the equator; and when S' is

said to precede &'", nothing more is meant, than that the point in the

equator in which a meridian through S' cuts it, i& beyond the place

')f S'", or, to the eastward of it.
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Hence, the real Sun S', which coincided with S" at the apogee, being

constantly behind it [see pp. 190, <200,] till their arrival at the

perigee, must certainly be behind it, at and before the solstice, which

is previous to the perigee (seep. 210). Hence, before the winter

solstice, the order of the Suns is

'
S" S'".

< 97/ }
At the solstice $'

J $ f ; for S" then ceases to be preceded by

S'". Immediately after the solstice, S" takes the lead of S'":

therefore, then, the order is

S' S'" S".

But, at the perigee, S'must rejoin S" : it cannot effect that, except

by previously passing S''' : the moment of passing it, is that in

which true time is equal to mean time, in which, in other words

the equation of time is nothing.

The equation of time then is nothing, between the winter

solstice and the time of the Sun's entering the perigee : for the

year 1810, (when the longitude of the perigee was 9 s 9 39' 22")

between Dec. 21, and Dec. 30. By the Nautical Almanack the

exact time was Dec. 24 at midnight : since the equation for the

noon of that day is 15", and for the noon of the succeeding

day + 15\

In the year 1250, when the perigee coincided with the winter

solstice [seep. 211,] the equation of time was nothing on the

shortest day.

Immediately after the passage of the perigee, S', the true

Sun, moving with its greatest angular velocity (seep. 188,) pre-

cedes S" ; therefore, (since up to the vernal equinox S" precedes

S'",) the order is

S'" S" & ;

and this order must continue up to the equinox ; consequently,
S'" and S' cannot come together : and therefore between Dec. 24,

(for 1810,) and March 21, the equation of time cannot equal

nothing.

After the vernal equinox, S'" precedes S", and the order is

S" S'" S',

S", and S' are then, (see p. 202,) near the point of their greatest

separation, but S" and S'" begin to separate and reach the point
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of their greatest separation *, about 46 14' from the equinox
that is, about the 8th of May. Now, this greatest separation, or,

technically, greatest equation, is 2 28' 20", or in time 9m 52s

,

whereas the greatest equation of the center, being only 1 55' 33'',

[p. 202,] the greatest corresponding separation in the equator

cannot exceed 2* 6'f, and that is already past. Hence, before S"

is at its greatest separation from S'"} it is impossible that the order

S" S" S'

should not have been changed. S' must have become nearer to

S" than S'" is : consequently, S"' must have passed 5' : but

at the moment of passage, mean and true time are equal, that

is, the equation of time is nothing : and this must happen between

*
1 x cos. /= tan. A . cot. I, by Naper, or cos. 7x tan. 7 = tan. A ;

.'. 17 A; .-. if Y be supposed the place of &'"', so that, Y Y= TS,
Y is beyond t, and the separation is t Y (since on that the difference

solely depends.)

To find tY, is a common problem, (see Simpson's Fluxions, vol. II,

p. 551. Viiice's Fluxions, p. 27.) Since tY~ r F r t = / A\

V tan> ^~" tan - ^ __ tan. A . fsc-r. I 1)
.\ tan. / r

i+tan. /.tan. X
"~

1 +(tan. yij
a

. sec. /'

Hence^ since rf(^F) == J tan. tY. (cos. jF)
2
, which must n ; if we

take the differential of the quantity equal to it, make it = 0, and

reduce it, there results

tan. A v'cos. /= v'Ccos. 23 27' 58")
-4=43 43' 50", and / (from equation, 1. 2 of Note)=4.0 14/,

and J A (in its greatest value) = 2 28' 20".

f By p. 230, it appears that the arc of the equator included be-

tween two meridians passing through the extremities of a given arc in

the ecliptic, is greatest when the latter arc is at the solstice. The arc

of the equator measures the separation of th> Suns Sf/
, S"f

. Hence,

putting in the formula of p, 230, dl = 1 55' 33", and D = I, which
it is at the solstice, we have, very nearly,

dA = 1 55' 33" X sec. 23 27' 58" = 2 5' 55*.

The two common problems then of the maximum equation of

time, 'are not merely mathematical problems, exercises for the skill of

the Student, or Examples to a fluxionary rule, but of use in the dis-

cussion of the real problem of nature.
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March 21, and the end of April- In the year 1810, it happened,

according to the Nautical Almanack, on April 15, ll
h

12m .

This second point, at which the equation of time is nothing,

being passed, the order of the Suns will become

S" Sr
S'".

At the solstice, S" must rejoin S'" : but, previously to the solstice,

it cannot effect that by passing S' : since S" does not rejoin S' till

their arrival at the apogee, which point is more distant than the

solstitial : the coincidence of S" and S'" then can only take place,

by S' previously passing 5/x/
: but, as before, the moment of

passage, is the time when the equation of time is nothing : that

circumstance therefore, must happen, before the summer solstice :

therefore, between the middle of April and June 22 : and, in 1810,

according to the Nautical Almanack, it happened on June 15, 14\

In the year 1250, the equation of time was nothing on the

longest day.

After this third evanescence of the equation of time, the order

of the Suns will become

S" S'" S'.

At the solstice on June 22, S" will rejoin Sw : immediately

afterwards, the order becomes

S"' S" S',

which will continue to the time of the Sun's enfering the apogee :

then, S" rejoins S' : and immediately after, S" moving with

greater angular velocity than S' will precede itt and the order

becomes

S'" S' S".

Now S' cannot rejoin S" till their arrival at the perigee : but

S' will rejoin $'" at the autumnal equinox, consequently previously
to that time, it must pass S' : but, as before, the moment of

passage is, wlicn the equation of time is nothing. It must

happen then, between the time of the apogee and the autumnal

equinox : between (for 1810) June 30, and September 24; and,

by the Nautical Almanack, it happened August 31, 20h
.

It is plain, from the preceding explanation, that the days of

the year in which the equation of time is nothing depend on the

position, or the longitude of the perigee and apogee : and
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sequently, since those points are perpetually progressive, the

equation of time will not be nothing on the same days of any

specified year, as it was, of preceding years : nor, when not

nothing, the same in quantity, on the corresponding days of

different years.

The preceding statement (beginning at p. 229,) is to be re-

garded merely as a mode of explaining the subject of the equation

of time. It is not essential, and might have been omitted j for,

the two causes of inequality are considered and mathematically

estimated, in the processes of finding the true longitude and

true right ascension. But, it has been inserted, since it serves to

illustrate more fully, and, under a different point of view, a

subject of considerable difficulty and importance.

With regard to results, very little is effected by the preceding

statement. Four points are determined, at which, mean time

is equal to apparent : in other words, four particular values

(evanescent values) of the equation of time. But, according to

the process in p. 229, we are enabled to assign its value for

every day in the year : and accordingly, in constructing Tables of

the equation of time, the above four particular values would be

necessarily included amongst the 365 results.

If the question were, merely to determine when the equation

was nothing, it would certainly be an operose method of reso-

lution, to deduce all the values of the equation of time, and

then, to select the evanescent ones. In such case, it would be

better to have recourse to considerations like the foregoing

(pp. 230, &c.). But, both these methods would be superseded, if,

which is not the case *, the equation of time could be expressed

by a simple analytical formula.

The mere inspection of such formula, or some easy deduction

from it, would enable us to assign the times when the equation

of time vanished.

Instead of a formula, we must use a process consisting of

*
Lagrange, however, although by no direct process, has succeeded

in assigning a formula for the equation of time. See Mem. Berlin, 1772

So also has M. Schulze, Mem. Berlin, 1778, p24&
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several distinct and unconnected steps, for computing the equa-
tion of time. And, in point of fact, the process is quite as

convenient as a formula could be
;
since the concern of the

Astronomical Computist is not with special, as such, but with

the general values of the equation of time.

If special values are sought after, it must be principally on the

grounds of curiosity The method of ascertaining four such

values, independently of direct computation, has been already ex-

hibited. And, on like grounds, a similar method might be used

in the investigation of other special values : in determining,
for instance, when the equation of time is of a mean value ; or,

when minute, the two causes of inequality counteracting each

other; or, when large, the two causes co-operating. We will con-

fine ourselves to two instances.

After the evanescence of the equation of time between the

winter solstice and the perigee, the order, as we have seen,

(p. 231<,) is

S'" S' S",

but S' is gaining fast on S" in order to rejoin it at the perigee,

and S'', after parting with S'" at the solstice, is preceding it, by
still greater and greater intervals. Consequently, both causes of

inequality conspire to make mean time difter from the true, and

the equation of time goes on increasing till the Sun is about 40"

distant from the vernal equinox, that is, past the point, at which

the equation arising from the obliquity is a maximum, (see p. 233,)
and before the point at which the equation from the Sun's ano-

malous motion is a maximum. For the year 1810, the time would
be about Feb. 10, and the maximum of the equation is 14?

m S6\

About the Summer solstice, on the contrary, between that

and the apogee, the order is

/// $* /

S"' is indeed separating from S", but S" is approaching S' to

reach him at the apogee : consequently, the two causes of in-

equality, in some degree, counteract each, and the equation between

the two periods at which it is successively nothing, (June 15,

and August 31, for 1810,) never attains to the value of seven

seconds.

In a similar way, we may form a tolerably just conjecture of
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the limits of the quantity of the equation of time, for other

parts of the year.

The greatest quantity of the real equation of time can never

reach the sum of the greatest equation arising from the separate

causes. It must therefore be less than

2 28' 29" + 2" V, or 4 3V 29",

or in time less than 18
m

15* of mean solar time.

The equation of time computed for every day in the year, ac-

cording to the method given in p. 2 9, or, by some equivalent

method, is inserted in the Nautical Almanack ; and, for the purpose
of deducing mean solar, from apparent time. In order to regu-
late its application, the words additive and subtractive are interposed

into the column that contains its several values. And, there will

be no ambiguity belonging to that application, if we consider, that

the equation is to be applied to a certain time marked by some

phenomenon : which phenomenon is the real Sun on the meridian:

determined to be so, either by a transit telescope, or by a quadrant,
or declination circle that enables us to ascertain, when the Sun

is at its greatest altitude. Apparent time, then, is what is instru-

mentally determined ; and to such time, the equation, with its con-

comitant sign, must be applied, in order to deduce mean time,

which, it is plain, is indicated by no phenomenon.

Thus, Dec. 31, 1810, the equation of time in the Nautical

Almanack is stated to be 3m 12 S .7 additive \ therefore, when the

Sun was on the meridian, at its greatest height, on that day the

mean solar time was 12h 3m 12\7. Again, Nov. 13, 1810, the

equation is stated at 15m 33.2 snbtractive \ therefore, on that

day, the Sun was at its greatest height at 12 h 15m 33S

.2, that

is, ll
h 44 in

26".8, mean solar time.

Independently of computation, very simple considerations will

shew that this procedure is just. In the first instance, the true

Sun precedes the mean ; that is, is more to the east, or more

to the left hand of a spectator facing the south : consequently, by
the rotation of the Earth, from west to east, the meridian of

the spectator must first pass through the hinder Sun, which, in

this instance, is the mean Sun \ 1 2h therefore of mean time happens
before the meridian has reached the true Sun, when it does reach it,

then, the time is, in mean time, 12" + the difference of right
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ascensions, or 12 h
,fthe equation of time. In the second instance,

the true Sun is behind the fictitious? : therefore the meridian of

the spectator first passes through the former: true noon there-

fore, or 1& hours apparent time, happens before the meridian

has reached the fictitious mean Sun 5 before therefore the noon

of mean solar time. The time consequently is not 1 2 hours, but

12 hours- some quantity, which quantity is the equation of time.

We may now proceed to the consideration of the planetary

theory ;
a subject of the same kind, in essential respects, with

the solar, and naturally following it ; yet, presenting greater

difficulties, and requiring in many points, new considerations and

methods.



CHAP. XXIIL

ON THE PLANETARY THEORY.

On the Phases of the Phmets : their Points of Stations,

Retrogradations, Sfc.

XH E simple hypothesis of the rotation of the Earth accounts

for several of the phenomena of the fixed stars : their risings,

settings, and the different degrees of velocity in their apparent

motions. If we combine with this, the hypothesis of the Earth's

revolution round the Sun> we become possessed of the means of

explaining all the phenomena of the change of place and variation

of motion, which the latter body exhibits. Something more

however, is still requisite to account for the phenomena of the

planets. Their risings and settings can indeed be explained by the

first hypothesis, but, they change their place amongst the fixed

stars, and therefore are endowed with a proper motion.

If the motion be one of revolution, what is tho point or body
round which they revolve ? It cannot be the Earth, for then the

motion would always take place and seem to take place in one and

the same direction. If the Sun, will the combination of the

planets' motion round it, with that of the Earth and spectator, ex-

plain the anomalous retrogradations and quiescences of the planets ?

(see p. 10.)

It will be the object of this and the succeeding Chapters to

explain the latter and other phenomena of the planets, on the

principle of the combination of their motion and of the Earth's

round the Sun. But, first we wish, by describing some of the

obvious appearances, to shew the probability of the hypothesis,

of the planets' revolution round the Sun.

We will begin with the planet Venus :

This brilliant star when seen in the west setting soon after
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the Sun, is known by the name of the Evening Star. If observed

on several successive nights, it will be found to vary its distance

from the Sun ; increasing that distance, till it becomes equal to

about 45. Past that term, it approaches the Sun, till its prox-

imity becomes so close, th it the effulgence of the latter prevents
its appearance. It then ceases to be an evening star. But, some

days being elapsed, if we turn our attention to the east, we shall

perceive Venus rising just before the Sun, and becoming the

Morning Star. On successive mornings, Venus will rise still

sooner : will continue separating from the Sun, till having reached

an angular distance of about 45, she will again approach, and

finally rejoin the Sun. She then ceases to be the morning star :

but soon after, she again becomes the evening -ar, and the same

appearances, in the same order, are renewed.

These appearances prove, not decisively, that Venus describes

an oval, or a circle about the Sun, but that, at least, she

oscillates about the Sun : they prove too, that her orbit can

neither be round the Earth, as its center, nor inclusive of

the Earth ; for, she is never seen in opposition ;
that is, in the

production of a line drawn from the Sun through the Earth.

To the naked sight, or to unassisted vision, the disk of Venus

appears circular and nearly of the same magnitude. But, the

telescope and its micrometer* prove both appearances to be de-

lusive. Viewed through the former, Venus, when the evening

star, at her greatest separation from the Sun, assumes the form of

a crescent, the points or horns being opposite the Sun. As she

approaches the Sun, the crescent diminishes. Having passed
the Sun, she appears as the morning star, and the crescent is

turned the other way. Day after day, the crescent increases, till

it is changed into a full orb, just at the time when Venus is about

to rejoin the Sun.

In this last situation the disk of Venus9 though most illumi-

nated, is least in magnitude. It is greatest in magnitude, when
the disk is least illuminated, and Venus is about to rejoin the Sun,

ceasing to be the evening star. These latter circumstances, relative

to the magnitude of the disk, are determined by the micrometer.

* An instrument for nit.feimng small angle*, and rom^nonly attached

to the telescope
1
.
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This last-mentioned instrument enables us to determine the

greatest and least apparent diameters of Venus to be about 2' 46",
and 26".

If we now enumerate the circumstances relative to Venus, they
are as follow :

Venus, whatever be the Sun's place in the ecliptic, always
attends on him, and is never separated by a greater angle of elon-

gation, (technically so called) than 45.

Venus is continually at different distances from the Earth : when
at her greatest, that is, <vhen her apparent diameter is the least,

she shines with a full orb : when seen at her least distance, that is,

when her apparent diameter is the greatest, her crescent is very
small ; and there are conjunctures, when Venus eclipses part of

the Sun's disk, and passes over it like a dark spot.

Venusy when the evening star and separating from the Sun,
moves from west to east ; or according to the order of the signs,

or, as the phrase may still be varied, in consequentla. Returning
towards the Sun, from her greatest elongation, she moves to-

wards the west, that is, in antecedent'ia, contrary to the order of

the signs. And, in like manner, she moves, when the morning
star, alternately, according and contrary to, the order of the

signs.

These are the phenomena of observation, that are proposed
for explanation, on the grounds of two hypotheses : the first, that

Venus is an opaque spherical body illuminated by the Sun : the

second, that Venus revolves in an orbit round the Sun, and interior

to the Earth's orbit.

If Venus be a sphere, only half of it can be illuminated by the

Sun. And the illuminated hemisphere, called, for distinction,

the Hemisphere of Illumination, is thus to be determined. From
the center of the Sun, to that of Venus, conceive a right line to be

drawn
; perpendicular to this line, and passing through the center

of Venus, conceive also a plane to be drawn ; then, such plane will

divide the body of the planet into two hemispheres,the oneluminous,
the other dark.

But, a spectator, whatever be his distance from a sphere, can

never see more than half of the same. The hemisphere which
H u
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he sees, called the Hemisphere of Visional* thus to be determined:

Conceive the eye of the spectator and the center of the planet

to be joined by a right line ^ a plane perpendicular to this line,

passing through the center of the planet, divides its body into two

hemispheres j the one towards the spectator, is that of vision.

The two hemispheres, and their boundaries, the circles of illu-

mination and of vision, do not necessarily coincide : indeed, they can

coincide onlywhen the Sun, which illuminates the planet, is between

it and the spectator on the Earth's surface. In every other situation,

part of the planet's illuminated hemisphere is turned away from the

spectator ; and, when the planet is between the Sun and spectator,

wholly turned away : in other words, the planet's disk can either

not be seen, or must appear as a dark circle or spot on the Sun's

face.

When the spectator, Sun, and Venus (for of that planet we
are now speaking) lie not in the same right line, the delineation

of the illuminated disk, or phase, is reduced to a very simple

proposition in orthographic projection. On the plane of projection
which is always perpendicular to a line joining the eye of the

spectator and the center of the planet, it is required to delineate

the ellipse into which the circular boundary of light and darkness

will be projected. The minor axis of the ellipse, will, as it is

well known, bear that proportion to the major, which the radius

bears to the cosine of the inclination of the planes. The inclination

is equal to the angle formed by two lines, one drawn from the

Sun to the center of Venus^ the other, from that same center di~

A

rectly from the spectator . Hence, if AFBA represent the disk,

and we take CF \ CE :: rad. : cos. planet's inclination, then de-

* rn is the half of the projection of the circle of illumination, xu
of vision, and

Lrux = Z Fux Z Fiirss 90 - zFz<r=90 [zSwr Z Sw FJ
cc go [90 SF] Z = Z SuF.
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cribing with the semi axes <ACy CE> the semi-ellipse AEB> we
shall have the illuminated disk represented by AFBEA.

If KVuL be the orbit of Venus, S the Sun, E the Earth,;

then, the angle of inclination of the planes of illumination, and

vision at F", is the angle SVFy and at , the angle S u F. In the

latter, the angle is acute, in the former, obtuse ; consequently, if CE

in Fig. p. 242, be taken to represent the cosine of the acute angle, to

the right of the line AB> Ce must be taken to the left of the same

line, in order to represent the cosine of the obtuse angle SVF. At
j,when (seep. 43,) the planet is in superior conjunction", the angle

* An inferior planet is in superior conjunction, when it lies in the
direction of a line drawn from the Earth to the Sun, and produced
Jbeyond the Sun.
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SVF is equal to two right angles ; consequently, the cosine (with a

negative sign) becomes equal to radius, and the point j, falls in F \

or the whole orb is illuminated. At L, when the planet is in

inferior conjunction, the angle, such as SuF, becomes nothing ;

therefore the cosine becomes equal to radius, and the point
falls in F: or the whole orb is dark. From K to L, in the in-

termediate points, Venus exhibits all her varieties of phases ; the

full orb, near/f; the half illuminated orb atN9 where

and then the crescent diminishing, till its extinction at L *.

These phenomena that would happen if Venus an opaque sphe-
rical body be illuminated by the Sun, and revolve in an orbit round
him, are

strictly conformable to the phenomena that are observed,
and have been described in pp. 239, &c..

* The phases \\hich Venus at F, A', and u t exhibits to a spectator
at E,are icpresented by ihv small circular Figures that are, respectively,
to the loft of the points Vt N, and n [si-o p. 2KJ.]
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Thus far then the hypothesis of Venus' j* revolution round the

Sun is probable, and seems to involve no contradiction ;
it will be

still farther confirmed, if we can shew, that it affords an adequate

explanation of the other phenomena which the planet exhibits.

Suppose emd to be the Earth, and two tangents dsky es'iy to

the points d and e, to represent the respective horizons to a spec-

tator at d and e % Then, if the Earth's rotation be according to

the order emdy when the horizon dsk of the spectator at d shall

touch the Sun's disk, the Sun will set to that spectator ; the moment

after, by the rotation of the Earth, the point k will be transferred

to some point between / and V, the line dsk will no longer touch

the Sun's disk, or, the Sun will be below the horizon. But,

Venus, if at V, will be above the line of the horizon, andabove

as an evening star, till the Earth, by its farther rotation, shall

have so transferred the line dsk, that its extremity k shall be in

some point between V and U. In the interval between this and the

next night, V will have moved forward in its orbit to some point

iv, therefore, the line dsk, after leaving the Sun's disk, must re-

volve through a greater angle than it did the preceding evening,
before it reaches V at w. The planet therefore, is now separated
from the Sun by a greater angle of elongation : and the

elongation on succeeding nights will still continue, till V
reaches a point T, where a line drawn from E touches her orbit.

Hence from superior conjunction at k, to the greatest elongation
at T, Venus is continually separating or elongating from the Sun ;

and if we refer her place to the fixed stars, will seem to move

amongst them in a direction k V<wT, that is, according to the order

of the signs.

From T to L the inferior conjunction, the line dsk, after quit-

ting the Sim's disk, will reach the planet after the description of

still less and less angles, and the planet will be found approaching
the Sun : but, referred to the fixed stars, will be found to change
its place amongst them in a direction from T towards L, contrary

to the direction of the former change of place, and contrary to

* In the explanation, intended only lo be general, Venns's orbit

and the Earth's equator cmd, are supposed to be projected on the plane

of the ecliptic, (represented by the plane of the paper,) and, the spec-

tutor is supposed to be placed in the equator.
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the order of the signs. In other words, the planet is now

retrograde, (seep. 42.)

Suppose now the planet to have passed the inferior conjunc-

tion at L. Day breaks to a spectator at e% when the line es'I9 re-

presenting his horizon, touches the Sun's disk. But, before this

has happened, the line es'l has passed the planet, or the planet is

above the horizon, and has risen as the morning star : on suc-

ceeding mornings, the planet having moved forward in its orbit

from L towards ty will rise before the Sun by greater and greater

intervals ;
will continue, to appearance, separating from him, till

its arrival at its greatest elongation /. From L to /, the planet

will, as from T to L, still continue retrograde. From / to /, it

will again approach the Sun, and move according to the order of

the signs.

These phenomena then, that would happen if Venus revolve

either in a circular or elliptical orbit round the Sun, are in strict

conformity with the phenomena that are observed, and which

have been described in p. 23<), &c.

In the preceding explanation of the phases and retrogradations

of Venus
,
we have, for the sake of simplicity, supposed the Earth

to be at rest at E. But, there is one phenomenon, that of

the seeming quiescence of Venus during several successive days,

which cannot be explained, except we depart from that supposition,

and combine, according to the actual state of things, tbe motion

of the Earth with that of Venus.

If Venus be at /,, and the Earth at ey and both describe in the

same time (24 hours for instance), two small arcs of their orbits,

such arcs will be nearly parallel to each other, if they were

equal, then during their description, Venus would be referred by
a spectator on the Earth, to the same point in the heavens. But,
Venus revolving round the Sun according to the laws of planetary
motion (see p. (247,1. lG,) describes a greater arc than the Earth does

in the same time. She must, therefore, at the end of the 24 hours

be referred by a spectator on the Earth, to a point in the heavens

situated to the right of her former place. But, as Venus advances

from L towards t in her orbit, the arcs of her orbit (or tangents
to them) will become more and more inclined to the arcs of

,the Earth's orbit. There will then be somewhere between L and
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/ an arc pq (see Fig. p. 243,) such that, its obliquity compensating
its greater length, two lines/?'/, qb> drawn to the contemporane-

ously described aic ab of the Earth's orbit, shall be parallel ; when
that happens, Venus must appear stationary.

We may determine the exact time when that happens, by

computing the angle bXq> which is, in the same time, the excess

of the angular motion of Venus above that of the Earth *.

It is plain that Venus will be retrograde whilst moving through
an arc such as NLty whether the Earth be supposed to be at rest,

or to be in motion. The case however, is different with a superior

* bSq may be thus computed : (see Fig. p. 213.)

Draw from p ami b
; pn, bm perpendicular to the parallel lines qb,

pa, then/m = bm: call Sb, r, and Sq, /';

then pn = pq.sm.pqn = pry. cos. Syft,

&?# = & . cos. w&# =z ab . cos. Sbq ;

cos. Sqb ab vel. \/ ?
y _ TT

/. -7-= = r^r = ~T (Newton, Sect. II. Prop. 4. Cor. 6:)
cos. Sbq pq vel. *i */ r

.*. C0i,.
a
S^^y = cos* Sqb X ^ .

But, sin.* Sbq = sin.* S<y x -5- (Trigonometry, p. 16,)

.*. adding these two latter equations, and putting for cos.
2

1 sin.
2
Sqb,

r

j^

i
- c. L

and sin. Sy 6=

Hence, sin. Sl> 9 = . ! /

The two angles S</&, Sbq, being thus determined, bSq~ ISO

(Sqb -}- S/y) is known ; and thence the time from conjunction at L.

Thus, the mean daily motions of Venus and the Earth being 1 36' 7 X
'.8,

and 59' 8". 35, the daily excess is 3ov 59^.5 : therefore, if the angle

13

bSq be 13, the time from conjunction will be
-^ ^ f, ^

, or about 21

days.
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planet *, which can only be shewn to be retrograde by combining

with its motion, the Earth's. Thus, let ab, be, cd, be three equal

arcs in the Earth's orbit, afb', b'c', c d\ three equal arcs in Jupiter s

(for instance,) contemporaneously described, but less (see p. 247,

1. 1 6,) let also A, B> C, D, be four points in the imaginary sphere of

the fixed stars, to which a', b'> </, d' are successively referred by a

spectator at a, by c, d. Now, if ABC be according to the order

of the signs, the body in the orbit a'b'c'd'^ is transferred in that

direction or is progressive ;
whilst the spectator moves from c to dy

and the planet from c' to </', the latter, amongst the stars, is trans-

ferred from C to D towards B and A, that is, contrary to the

order of the signs. During the description then of the interme-

diate arcs c by
c'b

f

, the planet must have been stationary. The retro-

gradation will continue from c through opposition, where it will

be the greatest, to a point /, situated similarly to c ; that is, such

* A superior planet includes within its orbit, the Earth's; an in-

ferior planet's orbit is included within that of tbe Earth's
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that the angle made by two lines joining f'f^fs shall a= the angle

c'cS. From/through conjunction to c, the planet will move ac-

cording to the order of the signs.

Here then is a material circumstance of distinction, in this

part of their theory, between inferior and superior planets. In

the explanation of the quiescences and retrogradations of the

former, the Earth's motion is not an essential circumstance ;

it merely modifies their extent and duration. But, with superior

planets, the Earth's motion is an indispensable circumstance.

The very nature of the explanation depends on its combination

with that of the planets.

In speaking of the stations and retrogradations of the planets,

we have been obliged to use a language and phrases by no means

descriptive of the observations by which those phenomena are as-

certained. But, the Student must be reminded upon this, as upon
other occasions, to attend to the simple facts of observations.

When a planet is stationary, the fact of observation is, that the

right ascension continues the same : when retrograde, that the

right ascension diminishes. The right ascension being determined

by the hour, minute, &c. at which the observed body comes on

the middle vertical wire of a transit telescope.

Jupiter, in treating of his retrogradations, has been assumed to

be a superior planet. One proof of his being such, as well as that

Mars, Saturn, and the Georgium Sidus are, is to be derived from

their phases; which have not as yet been described.

Now, Mars exhibits no such variation of phases as Venus does ;

he is seen indeed, sometimes a little gibbous, but never in the

shape of a crescent, nor as a black spot on the Sun's disk. If we
add to these circumstances, that he is seen at all angles of elon-

gation from the Sun, we may presume that Mars revolves in an

orbit round the Sun inclusive of the Earth's ; that he is there-

fore a superior planet. He certainly cannot revolve round the

Earth, for then he would never be stationary, nor retrograde ; nor

can his orbit pass between the Sun and Earth,

Jupiter, Saturn, and the Georgium Sidus do not appear gibbous,
but shine, almost constantly, with full orbs.

These phenomena can be accounted for, by supposing Mars,

Jupiter, Saturn, and the Georgium Sidus, to be opaque spherical
i i
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bodies illuminated by the Sun ; and Mars to be the least distant :

and if not very distant (relatively to the Earth's distance), his

illuminated disk may, in some situations, be so much averted

from the spectator, as to give him the appearance of being a

little gibbous; and, he will be most gibbous in quadratures:

where, however, the breadth of the illuminated part will be to

that of the whole disk as 175 to 200.

If we were to increase the distance of Mars, the above pro-

portion would approach more nearly to one of equality. Hence
the reason, why Jupiter, Saturn, and the Georgium Sidus, much
more distant from the Sun, than Mars, do not appear gibbous,
even in quadratures.

From what has preceded, we may draw this conclusion ; that,

the adequate explanation of the phases, the stations, and the re-

trogradations of the planets, on the hypothesis of their revolution

round the Sun, renders, at least, that hypothesis probable. But,

since the explanation has been one, of obvious and general appear-

ances, and not of phenomena precisely ascertained by accurate ob-

servations, the mere fact of a revolution has alone been rendered

probable, without any determination of the nature of the curve

of revolution. It may be either circular or elliptical.
The

system of Copernicus, therefore, is rather proved to be true, than

Kepler's laws, or Newton's theory. Their truth, however, is

intended to be shewn, and, that the planets revolve round the

Sun in orbits very nearly elliptical : the deviations from the exact

elliptical forms, being what would result from the mutual dis-

turbances of the planets computed according to the law of gra-

vitation. For this end, phenomena of a different kind from the

preceding, must be selected and examined, and explanation,

instead of being general, must be particular, and proceed by cal-

culation. The elements of the orbits and the motions of the

planets must be deduced from observations \ arranged in Tables ;

again compounded according to theory ; and, in this last state,

as results subjected to the test of the nicest observations.

The elements of the orbits of planets depend on certain dis-

tances, linear and angular, measured from the Sun. But, the ob-

servations, from which these elements are to be deduced, are made

at the Earth. The first step then, in the succeeding inves-

tigation, must be towards the invention of a method, for trang-
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muting observations made at the Earth, into observations that

would be made by a spectator supposed to be placed in the

Sun ; in technical language, for converting geocentric into

heliocentric angular distances.

This method is necessary for the extrication of the elements.

For the examination of the system founded on those elements,

the reverse method is required ;
in other words, we must be

possessed of the means of converting heliocentric into geocentric

angular distances.



CHAP. XXIV.

On the Method of reducing Observations made at the Earth to

Observations that would, at the same time, be made by a

Spectator situated in the Sun.

LET S be the Sun; E,e, two positions of the Earth;

P the planet in its orbit, of which ATP is part ; P?r, part of a circle

of latitude, *r being a point in the ecliptic, and JW part of the

imaginary great circle lying in the plane of the ecliptic ;

IV, a point of intersection of the planet's orbit with the ecliptic,

called the node ; 7" the first point of Aries.

Now, the points JE, e
y S, V", N, w, lie in the same plane,

which is that of the ecliptic , but the point P lies in the orbit

JVP, the plane of which must be supposed to lie below or above

the plane of the ecliptic.

The angle PTT is the latitude of the planet to a spectator at
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JB 5 it is the geocentric latitude, not immediately observed, but

computed (see p. 56,) from the observed right ascension and

declination.

The angle contained between *E and a line directed from JE

towards V, is the geocentric longitude.

The angle PS it is the heliocentric latitude, and the angle con-

tained between S* and S V the heliocentric longitude ;
and these

two latter must be deduced from the two former, which, by ob-

servation and computation (p. 56,) are known.

It is required to determine tfic Heliocentric Longitude of a Planet.

Suppose that, the Earth being at E, observations are made and

registered of a planet at P, and, after a lapse of time equal to one,

two, or more periods of the planet ; that the planet isagain observed

nearly in the same point of its orbit, the Earth being at e : then,

by computing from observation, the geocentric longitudes, and

the Sun's longitudes, we can determine the angles Sv, Sen;
and, from the solar theory and Tables we know, the angle ESe,
and the distances ES, eS (pp. 1Q2, 198). Hence, we have

Given. To be determined.

ES, eS, / ESe - - - - -r -
JSV, z SEe, SeE

then,

/ SEe, z SeE, z S&, tSen - ^ * E c, z * e E,

next,

Ee, /. irEe, /.veE ----- E, vfp

lastly,

SE, Ev, t SE* / ES W, and STT.

Hence, since the angle between ES and ST is known, we
can determine the angle between Sir and ST, and consequently,

the heliocentric longitude of the planet.

By the preceding method, besides the z E Sir, Sw, called the

Curtate Distance, (distance accourcie) is determined. If we

suppose, what is nearly true, that S w remains constant, then, for

any other time, and consequently, generally, we can determine

the heliocentric longitude : for, we can determine an angle such

as ES TT, from SE v, and from the proportion of SE to S v

The angle formed by two lines drawn from the Earth respec*
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tively, to the Sun and the reduced pkcc of the planet in the

ecliptic, is called the Angle of Elongation. In the Figure, it is

the angles ye .E S.

If two lines be drawn from E and S to V, they may be

considered as parallel. Hence,

z TrE r - / SET = /. *ES,

or, geocentric longitude of planet long. = z elongation.

The angle EnS is called the Angle of Commutation. We
now proceed to the second Problem, in which

// is required tofind the Heliocentric Latitude.

By Trig, in the triangle PEn, we have *, PW=ETTX tan. / PE w

in the triangle P&r, - - - - Pw= Sw X tan. / PS*

By equating these two expressions for Par, and reducing,

tan. *PS= tan. ^P* x ~ =tan.
*

Sin. / OJ&TT

From this expression may Z. P$?r, the heliocentric latitude, be

computed. For there arc known z PE K the geocentric latitude,

determined by computation (p. 56,) from the planet's observed

right ascension and declination \ / ES *, determined in the pre-

ceding problem, p. 255, 1. 3, and / S&r, the angle of elonga-

tion : see 1. 2.

If we wish to exhibit, under the form of a proportion, the

preceding expression, (1. 14,) then,

tan. heliocentric latitude : tan. geocentric :: sin. diff. long
c

. of

Earth and planet : sin. planet's elongation.

The heliocentric latitude being determined by the preceding

method, and the curtate distance w, by the method of the former

problem, (p. 253, 1. 23,) we have the real distance, or, P=
Sw x sec. zP6V. In other terms,

rad. vect. of planet's orbit = curtate dist. x sec. helioc. lat.

If from N we take, in the plane of the planet's orbit, an arc

A = dist. of N from T> then A + NP is called the Longitude of

* Planet on its Orbit. Now, the inclination of the planet's orbit (the

* On account of the supposed smallness of the inclination of the

planet's orbit PTT, instead f the arc of a great circle, is assumed to

be a straight line.
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spherical angle at N) being known, andJVir [= y'Nw rJV], being
determined by the preceding methods, NP may be computed by
means of Naper's Rules, or, as it usually is, by a table of Reduc-

tions (see p. 22?,) and then, from JVP, and A*, A+NP the

longitude of the planet on its orbit is known.

Kepler, in his progress towards one of his grand discoveries,

the elliptical form of the planetary orbits, followed, nearly, the

preceding methods. He investigated three heliocentric longitude*

and three distances of the star Mars. From these, as data, an

ellipse can be described. If the ellipse, belonging to three lon-

gitudes and three distances deduced from observation, was the

true orbit of Mars, then in such ellipse rJl the other places of

the planet ought to be f; on trial, Kapler found this to be the

case, and thence concluded that CAars revolved in an ellipse, round

the Sun placed in one of die foci.

We will proceed to solve the Problem, in which,

// is required, from Three given Distances and Longitudes^ to

describe an Ellipse.

Let APP', &c. be the ellipse, a the semi axis-major, ae the

eccentricity. Let SP, A'P', >SP' , be represented respectively by

<", ASP, PSF, PSP" by x, 0,

* If we can find, generally, the longitude of a planet, we can find

the longitude of the node, since that is the longitude of a planet when

its latitude is equal to nothing.

f What amounts to the same as this, is, the same ellipse ought to result,

whatever be the three distances and three heliocentric longitude* that

are selected.
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then, by the property of the ellipse,

. - (1-
[]]

1 + e .cos. x

*
1 + e . cos. (0 + *)

tf
g . (1 g

2
) r

g
-i

*
~~

I + e. cos. (p + #)

Hence, by the [1] and [2],

$ + $* cos. # =
{' + e'* . cos. (0 -f A;)

and * = -fl- , [4]
cos. x g . cos. (9 + #;

similarly, by [1] and [3],

. cos. x " .cos. (<p + AT)

Hence, equating[4] and [5], and making {'=', ^
//

g= JR
7

',

J' ? . cos. * J5'^''. cos, (?>+A:) = R" % cos. A: Rrr
. %' . cos. (6 + #).

Hence, expanding, cos. (<?+A?), cos. (0-r^v,) and dividing by cos. A;,

5 s ' T I s
"

i ' ^

f- jR^^sin. fi .tan. *,

, .-^'^-C-R'^cos (p~7ZV-co5.fi)
whence, tan. x = ^ -

n/ , x
. ^ ^

y
. .*

jR'Y.sm. 0- jR'g^.sm. <p

Now, the three heliocentric longitudes, that is, the three angles

TSP9 TSP', T$P" are given ; therefore, G= / rSF' /. YSP9

and ^ = / VS'P" / T'S'P, are known j and, since
^, ^, ^, are

also known, tan. #, the tangent of the angular distance of the

planet at P from perihelion, may be computed. Also e, the ratio

of the eccentricity to the semi axis-major maybe computed, either

from the expression, [4], or [5] 5 and the semi axis /?, either

from[l], [2], or [3].

The preceding is an important problem in determining some
of the elements of a planet's orbit. Its use, however, in the

practice of Astronomy, depends entirely on that other problem,

by which geocentric longitudes are converted into heliocentric.
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Now, if we examine this lajt-mentioned problem, we shall find,

that although the angle of elongation (SEn) can be easily deter-

mined from one observation of the planet's right ascension and

declination, yet the angle ESwy and the ratio of ES to S
T

9r, cannot,

except by two observations, separated from each other by an in-

terval equal to the periodic time of the planet. Henco, if the above

were the sole method of determining the ratio of E'* to Sw9 after

one observation of a planet, we should be compelled to abide

a lapse of time equal to its period, before we could proceed to

compute the elements of its orbit. The Georgian! huhts, then,

would have still been truly a wandering star ;
and since its period

is 83 years, its discoverer must have died ignorant whether or not,

it formed an exception to Kepler's laws.

The fact, however, is that the above planet was discovered

in 1781, and we have already Tables of its motions. Its right

ascension, declination, &c. arc regularly inserted in the Nautical

Almanack. And, even so near the time of its discovery as 1782,

we find, in the Memoirs of the Academy of Paris for that year %
the elements of its orbit computed by M. Lalande. We have a

practical proof, then, that some other method than what was

given in p. (253, must have been resorted to.

The method used by Lalande was one of trial and conjecture.
He was possessed of three geocentric observations of the planet

made, respectively, April 25, 1781, July 31, 1781, Dec 12, 178],

and, in order to reduce them to heliocentric, ho assumed for the

radius vector (SP\ a number which he conjectured to be nearly
its true value. With this assumed value, he computed the angle
E SV [see Fig. p. C52,] fur the times of the first and third observa-

tion (April 25, and Dec. 12.) Corresponding to such assumption
and computation, there resulted the difference of two heliocentric

longitudes, in the interval between April 25, and Dec. 12. This

difference, was, in fact, the angle (A) described round the Sun in

the same interval of time (T). Hence, supposing the orbit to be

circular, the period of the planet's revolution would result from this

proportion,
A : 360 ;: T : period.

*This volume appeared in 1782, but is said to be for the year 1779.

Mr. Robison, in tin; 1st vol. Edin. Trans, has investigated the elements

of the orbit-.
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Having thus obtained a value for the periodic time of the

planet, the truth of the original assumption for the distance, could

be examined by the test of Kepler's law, which states the squares

of the periodic times of planets revolving round the Sun to be as

the cubes of their mean distances *. Hence, supposing the Earth

to be one planet, and the Georgium Sidus the other, there

results

(Period)* = (365'
1

.250384)* X (assumed rad. $'s orbit)',

[taking the Earth's radius =1]. Now, if the period thus obtained

had been the same, as the value of the period resulting from the

preceding proportion, it would have been proved, that the original

assumption of the value of the distance (SP) was a right one.

But, on trial, the two values differing from each other, M. Lalande

was obliged to amend his first assumption 5 to assign partly

by conjecture, and partly by the guidance of the first trial, a new
value for the distance, and then to examine that, as the former,

by the preceding process. By repetition of like trials and examina-

tions, a radius vector at length resulted, which agreed, to a sufficient

degree of accuracy, with all observations.

This method of M. Lalande's, is akind of sample and exemplar
of almost all Astronomical processes. In these, at first, nothing
is determined exactly. Approximate quantities are assumed and

substituted, the results derived from them, examined and compared,
and then other approximations probably nearer the truth, sug-

gested. Astronomy leans for aid on Geometry \ but the preci-

sion of Geometry does not extend beyond the limits of its theorems.

In Astronomy scarcely one element is presented simple and un-

mixed with others. Its value when first disengaged, must partake
of the uncertainty to which the other elements are subject ; and can

be supposed to be settled to a tolerable degree of correctness,

* The sidereal revolution of Jupiter is 4-332d.60228 ; that of Mercury
87 d

. 969255, aud the squares of these numbers are as 2425.7 : 1. In the

same proportion, nearly, (as 24-27.9 : l) are the cubes of the numbers

5.20277S, 0.3871, which, respectively denote, on the assumption of 1

for the Earth's mean distance, the mean distances of Jupiter and

Mercury from the Sun.
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only after multiplied observations, and many revisions. There are

no simple theorems for determining at once the parallax of the

Sun, the right ascension of a star, or the heliocentnc latitude of

a planet.

We have already seen in Problem, p. 2,j5, the method of

determining some of the elements of a planet's orbit. But, others

still remain to be determined, before we can construct Tables of

the planet's motion, by means of Kepler's Problem, and subject the

accuracy of such Tables to the test of observations. What are

usually called the elements of a planet's orbit, are in number seven,

of which the following is the enumeration :

The longitude of the ascending node of the orbit.

The inclination of the planet's orbit to the plane of the ecliptic.

The mean motion of the planet round the Sun.

The mean distance of the planet from the Sun.

The eccentricity of the orbit.

The longitude of the aphelion.

The epoch at which the planet is in the aphelion.

We shall proceed in the next Chapter, to determine these

elements.



CHAP. XXV.

Delcnuination of the Elements of the, Orbit* of Planet*.

TH E latitude of a planet arises from the plane of its orbit

being inclined to that of the ecliptic. In consequence of the in-

clination, the orbit considered to be of an oval form, must intersect

the plane of the ecliptic in two points, denominated (see* p. 40,)

Nodes. The imaginary line connecting them, is called the Line

of the Nodes. The node, which the planet quits when rising from

the ecliptic towards the north pole 3 is called ascending^ and its

symbol is SI. The other, from which the planet (seeming to de-

scend from our hemisphere) moves towards the south pole de-

scending, and its symbol is 1?, the reverse of the former.

Method ofdetermining the Nodes of a Planefs Orbit.

The Astronomical phenomenon indicating the node, is the planet

in the plane of the ecliptic : at that time, its latitude is nothing.

From amongst the latitudes, then, resulting, by computation,
from the observed right ascensions and declinations, select that

of which the value is nothing, or nearly so *, and then compute,

according to the metliod of the preceding Chapter, the corres-

ponding heliocentric longitude of the planet. The result will be,

the longitude of the planet in the ecliptic, or, the longitude of

the node.

* The geocentric latitude is computed from observations made on

the meridian. It will, therefore, probably happen, that.thc latitude is

not exactly nothing, when the planet is on the meridian. Jn that case

the time when the latitude iszzO, must be computed on the same

principles, as the time of the equinox was in p. 52.
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econd method of determining the Longitude of tlie Node.

Let \ be the place of the node, nN m a portion of the ecliptic.

a,

aNb a portion of the planet's orbit, am, b n, two heliocentric

latitudes reduced from their geocentric. Now, by Naper's Rules,

rad. x sin. N m cot. / N X tan. am>
rad. x sin. Ntt cot. z N X tan. bn\

.*. eliminating the cot. z N,

sin. ^7 w- sin. (/ Nn) _ tan.
*

_
sin. JV w

' *

sin. oV// tan.

and, by reduction,

tan.

i XT sin. m n x tan. bn
whence, tan. Nn = ~ .

cos. wftxtan. 0//+tan. am

In this expression, bn, a ;//, the two reduced latitudes, are known :

also, /////, the difference of the two longitudes in the interval of

the observations, and, accordingly, //.V is known, or, the difference

of the longitudes of ;/ and Ar

; the longitude of , then, being

known, the longitude of the node N is.

Method of determining the Inclination of a Plane?s Orbit.

This is deducible from the preceding method : for, in that,

;/ N was determined 5 and since b n is known, the spherical angle
at N) the measure of the inclination, may be obtained from this

expression,

tan. bn
tan. / Af = r x

sin. iV

Second method of determining the Inclination.

From the geocentric longitudes and latitudes deduce the
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heliocentric latitudes (see pp. 25J, 254). Then the latter, (if a

period of time sufficiently large has been taken) will form a series of

terms increasing for a time, and then decreasing : amongst these,

the greatest term, or the greatest latitude, is the measure of the

inclination (see Trigonometry, p. 90.)

Method of determining the Periodic Time, and mean Motion of

a Planet.

Observe (see p. 260,) the planet in its node, and again, when
it returns thither \ the interval elapsed is nearly the period, but

not exactly, by reason (amongst other things) of the retrogradation

of the nodes.

Second Method of determining the Periodic Time*.

Observe the planet in opposition, then its place, with regard

to longitude, is the same as if the observation were made at the

Sun. Amongst succeeding oppositions note that, in which the

planet is in the same part of the heavens, as at the time of the

first opposition. The interval between the two similar oppo-
sitions is nearly the periodic time of the planet.

Since the planet, at the last of the two similar oppositions,

will not be exactly in the place in which it was at the time of

the first, the errory or deviation^ must be corrected and accounted

for, by means of a slight computation, similar, in principle, to

several preceding computations, and the nature of which will be

sufficiently explained by an Example.

Sept. 16, 1701, 2h V long, in 8 353 21' 16" S. lat. 2 27' 45//

[2] Sept. 10, 1730, 121 ' 27 m V* long- in 8 347 53 57 S. lat. 2196
Interv. 29y - 5 d

13h 33m, difF. of long. 5 27 19.

Hence, it is plain, we must find the time of describing this

difference 5 27' 19" : and the means of finding it may be drawn

from other observations of the planet made in September 1731.

* The periodic times of planets are important elements, and admit

of being very exactly determined ; and when determined, become the

best means of determining the mean distances, which by parallax,
or other methods, are very inaccurately found.
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[3] Sept. 23, 1731, 15 h 51 m T/s long, in 30' 50" S. lat. 2 36' 55"

Interval betw. [3] and [2] F 13d 3h 2lm, clift'. of long.= 12 36' 53"

Hence,

1<2 36' 53" : 5 27' 19" :: l
r
13

J
3 h 24m : time required,

which time = 163
d

12 h 41 m.

Hence, adding this time to the former interval between op-

position and opposition, we have

29 V
7

<l Oh O 11

[7 Bissex.]

. ,. . 1 4 163 12 41
s periodic time =

<( _ 5 } 33

9 164 23 8 in

And consequently, Saturn's mean motion for one year, or

mean annual motion zr 360 X
gcj> i(M?d 23n 8m

=

12 13' C3^ 50"'.

If the major axis of Fatunfs orbit be, like that of the Earth's,

progressive, then the above determination of the periodic time

will not be very exact. And indeed, it ought rather to be re-

garded as a first approximation, and as the means of obtaining

the true value of the periodic time more exactly. Using it

therefore as an approximation, we may, by comparing oppositions of

the planet, distant from each other by so large an interval of

time, that the inequalities of the several revolutions will be

mutually balanced and compensated, determine the periodic time

to much greater, and indeed, to very great exactness. Thus,

228 A. C. March 2, l
h

T?'s long, in g 98 23
'

0" N. lat. 2 50"

[2] Feb. 20, 17H<, fl* 1.V" T? 's long, in 3 97 5fj 40 N. lat. 2 3

* Interval 19 13' IQj 1

7
h
15, difK oHung. 20 14.

In order to find the time of describing 26' 14'
7

, as before,

1. 1, 2, &c.

[3] March 11, 1715, I6
h
55

m
T?*s long, in 11 1 3' 14" N. lat. 2 25'

Interval betw. [2] and [3] 378 11

8'
1

40
m

; difK of long. 13 0' 23X'

*
1 1 days are subtracted, in order to reduce it to the stile of the first

observation, and 485 days added on account of the Bissextiles,
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26' 4"
.-. time of describing 26' 4" = 378d

8'
1 40'" X ----.,-== 13d 14 ?

.

Adding this to the former interval, we have 1943* 118'
1 2 1'

1

15'"

for the interval, during which, Saturn must have made a complete

number of revolutions. Now, if the periodic time (29
V
164* 23 l1 8m )

previously determined, had been exactly determined, then, dividing

the interval by the periodic time, the result would have been an

integer, the exact number of revolutions. But, the period

having been only nearly determined, the result of the division

(the quotient) will be an integer and some small fraction : still

the number of revolutions which can only be denoted by an

integer, must be denoted by that same integer. And in the case

before us, it will be 66. The number of revolutions then being

exactly 66, the exact time of one revolution

lfi
' a

= gg' 162" 4" 27".
66

Hence, according to this more correct value of the periodic

time, the mean annual motion is 12* 1,7 35" 14"', and the mean

daily 2 /

.0097.

In the preceding method of determining th.* periodic time, Saturn

was reduced to the same longitude. And longitude is measured from

the first point of Aries, which point is continually moving westward

50". 1 annually, and therefore, in 29> 162' 4
1 '

27'" moves through
24?' 35''. The period, then, of Saturn, which has been determined

(29' 162' 4 h

27") belongs to his tropical revolution, and is shorter

than that of his sidereal, by the time requisite to describe 24-' 35'',

that is, about l'2
l

7
h

. Hence, Saturn s period of sidereal revo-

lution will be 2<j
v 174 J

II
1 ' 27 1B

.

It is equally easy to determine, directly from observations, the

period of the sidereal revolution. Since, instead of
redttcing

Saturn to the same longitude, we should have so to reduce his

place, that it should be at the same distance from a lixed star at

the end, as it was ac the beginning of the period.

By similar means may the periods of Mars, Jupiter, and the

Georgiwn Hidus be determined. The periodic times of Venus and

Mercury are to be determined by observations of their con*

junctions.
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MetJiod of determining the Major Axis of a Planet's Orbit.

26,5

Having, by the last method, found the periodic time of a planet,
its major axis may be determined by Kepler's law (see p. 2 58,)
thus making the Earth's sidereal periodic time = p, and Saturn*s

= Py and the Earth's mean distance from the Sun (half its major

axis) =1, we have

Vs mean distance =
\ \

x 1.

Since the sidereal periods can be determined to great exactness,

this is the best method of dcinrmining the mean distance.

Second method of determining the Major Axis.

By the expression in p. 256,

P (1 4- e . cos. #)
a = __ ,

and, x, e, being determined by the process described in p. 256,

a is known.

Method of determining the Eccentricity of a Plane?s Orbit.

The eccentricity (e) may be determined from the expression

[4], in p. 256, or by means of the greatest equation (see p. 203.)

Now, the greatest equation is to be obtained by ascertaining that

heliocentric longitude of the planet at which it is moving with

IT*

its mean angular velocity. Thus, by the preceding Example^
L L
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Saturn's mean annual motion is about 12 13' 35", and his mean

daily motion about 2'.0097. From Feb. 26, 1714, to March 1 1,

1715, (p. 263,) that is, in 378 days he moved through 13 J
6' 28";

at that time, then, he was moving with, very nearly, his mean

motion. At that time, letM represent his place (nearly, see p. 202,

the place of the mean distance,) then the greatest equation is

equal to the mean anomaly (proportional to the time from M
to A} minus the angle AEM\ or, if m be, on the opposite

side of the orbit, a point situated similarly to M, the angle pro-

portional to the time through MAm minus the angle MEm3 i

equal to twice the greatest equation.

Method of determining the Aphelion ofa Planet's Orbit.

The longitude of the aphelion may be determined from the

expression given in p. 256, 1. 15; for the quantity #, is its

angular distance from one of the observed places of the planet.

Second method of determining the Place of the Aphelion.

This method supposes the greatest equation of the center to be

known. Let the planet be observed near A \
if it should happen to

be there exactly, that circumstance would be known, by the mean

angle, proportional to the time from Mto A, minus the difference

of the observed longitudes atM and A, being equal to the greatest

equation. But, suppose it less, and, by the quantity e ; then the

planet is at some point S : make a second observation, and now

let the difference of the true and mean motions be greater than

the greatest equation, and, by the quantity e' : then, the planet is

at Tj past the aphelion. Now, the longitudes of S and T are

known; consequently, the difference, /.SET; and also, the in-

terval between the two observations : then, the points S and T

being supposed to be very near to A,

c+e> : L SET :: e : /.SEA.

Add therefore, the L SEA to L SEM, and the angle ME A,

or the angular distance of the aphelion (A) from M is known.
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Method of determining the Epoch at which the Planet is in the

Aphelion.

Since the interval (/) between the two observations at S and

T are known, and the z SEA has been determined j we have

e + e' : e :: / : time from S to A\

which time, thus determined, added to the time of the observation

at S, gives the time at which the planet was in the aphelion of

its orbit.



CHAP. XXVI.

On the Formation of Tables of the Planets
9

Motions, $r , The

Variation of the Elements ofthe Orbits. Method ofdeducing

the Place of a Planet from Tables.

TABLES of the Planets are formed, precisely on the same

principles as Tables of the Sun, and by means of the same prob-

lems ; Kepler's, and that of the three bodies [see pp.
(
213,

62<21 .]

In a theoretical point of view, there is no difference between

the Earth revolving in an elliptical orbit round the Sun, and Jupiter

revolving round the same body in a similar orbit 5 between the

Earth disturbed in her elliptical motion by the action of Venus, and

Jupiter disturbed in his elliptical motion, by the action of Saturn.

In order to apply Kepler's Problem, the mean motion, the ec-

centricity, and the place of the aphelion must be known; the

two former are, by the methods in the preceding Chapters. By
those methods also are known, the true longitudes of the aphelion

and node, and the inclination of the planet's orbit. By the solu-

tion, then, of a spherical triangle, or, as it is usually effected, by a

Table of Reduction (see Appendix) the longitude of the
apjielion

in the orbit, (which is the condition requisite in the application

of Kepler's Problem,) may be determined.

In order to apply the problem of the three bodies, the masses

and distances, angular as well as linear, of the bodies, must be

known. The theory of their motions, therefore, must be known.

We seem then to require to know that, which it is our object to

investigate.
There is, however, in the actual computation, no

arguing in a circle. For, the corrections due to the perturbations are



Mercury's Longitude found by means of Tables. 269

very small, and result, nearly of the same value, whether or not,

in the theory of the planets' motions, account is made of the

perturbations. The problem of the three bodies then can be

applied, without requiring the motions of the planets to be most

exactly known.

The process for computing the planet's heliocentric longitude
is similar to that by which (p. 213,) the Sun's longitude was com-

puted. To the mean anomaly, the equation of the center, for

distinction called the first Inequality, and computed by Kepler's

problem, must be applied as a correction, and then, other smaller

corrections, due to certain disturbing forces and computed on

Newton's Principle of Gravitation.

On merely mathematical considerations, Mercury and Venus,

with respect to the theory of perturbations, are precisely under

the same predicament, as the Earthy Mars, Jitpittr, Saturn, and the

Georginm Sidtis. But, in point of fact, their perturbations, when

numerically expounded, are so insignificant, that they have not

been inserted in Tables. The Tables, then, of Mercury and

Venus are constructed solely by the aid of Kepler's problem, and,

by reason of their simplicity, give, very readily, the longitudes of

those planets. Thus, suppose it were required to find Mercury's

longitude on his orbit, June 3, 1793, at 5
h

:

Here the mean longitude of the planet minus that of the aphelion,
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gives the planet's mean anomaly : from the mean anomaly is de-

duced the equation of the center ;
the equation of the center is

applied to the mean longitude, and the final result is the longitude

required.

This simplicity of process does not extend to the other planets.

They require, like the Earth, several corrections for perturbations.

Jupiter and Saturn remarkably affect each other. Their mutual

perturbations are so considerable, that the expressions of them are

separated into several terms, which become, in other language,
so many equations. Lalande's Tables of Jupiter and Saturn

contain no other corrections than what are due to the mutual

perturbations of these planets.

If we examine the preceding process for finding the longitude
of Mercury, we shall perceive, in the right hand column, the

addition of 24?" to the longitude of the aphelion at the beginning
of the year. And, in fact, the aphelia of all planets, like the

Earth's are perpetually progressive ; the progression arising from

phnetary perturbation , In the system of two bodies alone, the Sun
and a planet, for instance, an accurate ellipse would be described,

and its major axis would be ever quiescent.

The method of finding the progression of the aphelion of a

planet's orbit, requires merely the repetition of the method for

finding the place of the aphelion itself. The difference of the

longitudes of the aphelion at two observations, is its progression
in the interval between the observations. If the interval be n

years, and the difference dy the annual progression is equal to

- and the secular to 100 x -.
n n

The progression of the aphelion being known, the planet's ano-

malistic year may be determined (see p. 70.)

In the planetary system, and almost in all parts of it, every

thing is in perpetual change. The nodes of orbits, like the

aphelia, are in motion, but, not like the aphelia, according to the

order of the signs. They are regressive ; and their regression is to

be found by a process similar to that which has just been de-

scribed for finding the progression of an aphelion. Or, both motions

may be investigated on the principles of Physical Astronomy.

The eccentricities and inclinations of the orbits of planets are
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also, from like causes, subject to variations, and which, by similar

methods, may be investigated.

We shall conclude this Chapter by an Example, in which the

longitude and latitude of Mars is found ; and which differs from

the former (p. 269,) by the introduction of certain small equa-

tions arising from the theory of perturbations, and by the re-

duction of the longitude on the orbit, to the true ecliptical longitude.

Required the Heliocentric Longitude and Latitude of Mars>

Nov. 13, 1800, 11 h 8m 20'.

In this process, e, the sum of the equations, contains, besides

the equation of the center (=: 10 13
X

13''.5) three small equa-
tions arising from the perturbations of Venus, the Earthy and

Jupiter. The sum of these three equations is 13".4, which added

to the equation of the center make e.

The reduction 2".2, applied to the longitude on the orbit,
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gives the heliocentric longitude, measured along the ecliptic, and

from the mean equinox. If this result be corrected for the effect

of nutation, (by applying the equation of the equinoxes) there

will be obtained, the longitude measured from the apparent

equinox.

The longitude (A) of the node, taken away from (A-\-NP)
the longitude of the planet on the orbit, gives (NP) the distance

of the planet from the node
-,
this is technically called the Argument

of the Latitude ; since it is the quantity, by means of which the

latitude may, either be computed (see p. 254?,) or, be taken out

of the Tables.



CHAP. XXVII.

On the /node of examining, l>y Observations, the Tables of the

Motions of Planets. Heliocentric Longitude* and Latitudes

reduced Lo Geocentric.

IT has been attempted, in the preceding Chapters, to explain

the methods of extricating, from geocentric observations, the

elements of the orbits and motions of planets, and then of com-

bining such elements according to the laws of planetary motion.

The combinations that result are heliocentric longitudes and

latitudes. But these are of no immediate use to the observer,

whether he wishes to find the planets in the heavens, or to ex-

amine the accuracy of the Tables. They must therefore be

transformed into corresponding geocentric longitudes j and such

transformation is the object of the ensuing problem.

It is required to determine, from the Heliocentric^ the Geocentric

Longitude and Latitude of a Planet.

The heliocentric longitude of the planet, and the longitude of

the Earth (from the Solar Theory and Tables) being known, that

is, the angles formed by v S, ES, with Sy, Ev being known, the

angle jES-a-, the angle of commutation, is known.

Again, from the heliocentric latitude / P&r, and SP, given

by the Planetary Theory, (see p. 198,) the curtate distance 6V

may be computed, and from the expression,

SK = SP x cos. PS*.

But, SE is also known by the Solar Theory (see p. 197,) there-

fore to determine / SEv9 the difference of the heliocentric

and geocentric longitudes, we have ^ ESir, # and Sir.

M M
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The angle SEv may be thus determined :

Assume (see Trig. p. 28, &c.) an angle 6, such, that

tan. = r X |^ = r X
8P ^ fSg

, then (see Trig. p. 29, 30,)
S' xi /Szi.

/SETT S It E\ A ES 7T ,- * ro \
r x tan. f-

J
= tan.- tan. (0

- 4-5 ,)

\ 2 / 2

from which formula SE w SvE may be computed, and

SEir + XwE being known, the separate angles &AV, SV may
be determined.

The angle #>, the angle of elongation, is the difference

(see p. 254,) of the geocentric, and of the Sun's longitude.

Hence,

geocentric long, planet =
longitude of -f / elongation.

The geocentric latitude may be thus determined,

n PIT Sir |>c sill. Z SEir 1t &
tan. PEv = -=- = -=- .tan. PS IT _.--. -tan. Z.PS*

hir ETT Sill. / j&6'w

or,

tan. geocentric ht. ^ - ----sJ. x tan. heliocentric lat.
sm. z commut 11

.

EXAMPLE.

The Heliocentric Longitude and Latitude of Jupiter leing%
on July 1 J ,

5" 48n 39
s

, 1800, 6' 29 9' 14.
x/

.3, and 1 13' 42" r^-

spectiveli/y required the corresponding Geocentric Longitude and

Latitude.

Heliocentric long, T/. 6 s 29 9
; 14". 3

(From Solar Tables) long. 3 19 62 28.3

L ESw - 3 9 16 46

.'.
-!,
ESw 1 19 38 3

Computed from tan, 6 = r^ cos. heliMat
L
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From Tables of >
5p

the planet. 3

Log. cos. helioc
. lat. - - - 9.9999001

Arith. comp. S E - - - - 9.9928989

(log. tan. 79 24' 48") - - 10.7283811 (reject'. 10)

.-. =. 79 24' 48"
- 45"= 34 24 48 - -

log. tan. - - 9.8367262

= 49 38 23 - -
log. tan. - -10.0706464

19,9063726

therefore rejecting 10, 9.9063726 = log. tan.

.-.

S'*-S* E = 33 52' 16",

But ""nro*^ = 4g 38 23 .

.-. Sen = 88 30 39 = 2 s 28 30' 39"

But [p. 274, 1.2,] long.
- - = 3 19 52 28.3

.-. [p. 274, I. 11,] geocen. long. =6 18 23 7.3

To fnd the Latitude (from the expression, p. 274, 1. 14,)

Log. sin. z elon. (S E * = 88 30' 39
; 9.99985

Ar.comp. sin. /com. (&*= 99 16 46) 0.00573

Log. tan. heliocentric lat. (= 1 13 42) 8.33126

.-. log. tan. geocentric lat. = 8.33684 (reject. 10
4

*

/. geocentric latitude = 1 J4 ;

39
/x

,



CHAP. XXVIJl.

On the Si/nodical Revolutions of Planets. On the Method of

computing the Returns of Planets to the same Point oj their

Orbit. Tables of the Elements of the Orbits of the Planch.

JN the preceding pages, the conjunctions and oppositions of

planets have been spoken of, but hitherto no method has been

given of computing the times between successive conjunctions, or

successive oppositions,

In the method also of determining the mean motions of planets

(see p. 262,) directions were given for observing the planet in the

same, or nearly the same point of its orbit, but no process or

formula given, of computing the time at wh-< h such event would

take place.

Towards these points then our attention will be now directed :

we shall find that they depend on the same principles, and require,

in the business of computation, nearly the same formulae.

The time between conjunction and conjunction, or between oppo-

sition and opposition, is denominated, a Synodical period. Supposewe

assume at a given instant, the Suny Mercury and theEarth to be in the

same right line : then after any elapsed time (a day for instance,)

Mercury will have described an angle ;, and the Earth an angle

My round the Sun. Now, /// is greater than M (p. 24-7,) there-

fore at the end of a day, the separation of Mercury from the

Earth (measuring the separation by an angle formed by two lines

drawn from Mercury and the Earth to the Sun) will be m - M :

at the end of two days, (the mean daily motions continuing the

same,) the angle of separation will be 2 (m J\I) , at the end

of tbree days,
S (;/*

-
JU) ; at the end of / days, / (m M).
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When the angle of separation then amounts to 360, that is,

when s (m M) = 360, the Sun, Mercury and the Earth must
be again in the same right line, and, in that case,

Where s denotes the time of a synodicai revolution, m and

M were taken to denote the mean daily motions, and / to

denote the number of days ; but, as it is plain, m and M may
denote any portions, however small, of the mean motions, and s will

still be the corresponding time, however reckoned, whether by

days, or hours, or seconds.

Let P and p denote the periodic times of the Earth and the

planet j then, since l fl
: M :: P ; 3()0",

and 1 : m :: p : 360,

M 360
,

360 . . .M = _- and m = -
j / . substituting

/ p

_ 360 _ Pp

and from either of these expressions, [1], [2,] the synodicai
revolution of the planet may be computed.

For instance, let the planet be Mercury> then p = 87 d
.969,

and P = 365d .256 ; /.from expression [2]

In the case of the Moon, m 13M763, and M= 59' 8".S

f = 360' = 29d 12h nearly4
12. 1906 7

It is upon this synodicai revolution of the Moon, that its

phases depend.

therefore, from the Earth's period (P) known, and the synodic

(s) observed, we can determine the periodic time (P) of the planet.

This method will not be accurate, if only one synodic period be
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observed, since that will be affected with all the deviations of the

planet's real from its mean motion. The return of the planet then,

to a conjunction nearly in the same part of its orbit, where a pre-

vious one was observed, must be noted, and then the interval of

time divided by the number of synodical revolutions will give the

time of a mean synodical period. For in this case there will take

place, very nearly a mutual compensation of the inequalities arising

from the elliptical form of the planet's orbit.

By the above method, the sidereal periods of Mercury and

Venus may be accurately determined.

One reason already assigned for the necessity of knowing those

particular conjunctions at which the planet will be nearly in the

same part of its orbit, is the mutual compensation that will pro-

bably take place of the inequalities (relatively to mean motion)

arising from the planet's elliptical motion. Another reason is,

that on such conjunctions depend observations of great importance
in Astronomy ; the transits of /

'

enus and Mercury over the Sun's

disk. This will be manifest, if we consider that Venus to be seen

on the Sun's disk must not only be in conjunction, but near the

node of her orbit: at the next conjunction, after one synodical

revolution, she cannot be near her node
,
ind can only be again

near, (supposing the motion of the nodes ii t to be considerable,)

when she returns to the same part of her orbit as at the time of

the first observation. The importance of knowing these particular

conjunctions then is manifest, and we shall be possessed of the

means of knowing them, by modifying the formulae of p. 227,

by which the times between successive conjunctions may be

computed.

The time (/) of a synodical revolution = p~~ -

A t - ~ A p , fAt the times T- L ,
*

, -=~- and JL
; therefore thep p P p P p Pp

planet is still in conjunction : it will, therefore, be for the first

time in conjunction, and the Earth and planet will be in the same

part of therr orbits, when ~ L :=:/*, or when, ^f
,

1 -
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o ___

Now, ;/ must be a whole number, but- may not be a

P
whole number j

in such case therefore, after one revolution of the

Earth, the planet cannot be in conjunction, or if viewed, about

that time, in conjunction, it cannot be in the same part of its

orbit.

But, the conditions of the planet in conjunction, and in the

same part of its orbit, although they cannot take place in 1 or 2 or

3 years (P =: 1 year), yet they may take place in m years: and if

such conditions take place, then must

and the question now is purely a mathematical one, that of deter-

mining two integer numbers m and /;, such, that
7
2 = P

.

n P p

Thus, in the case of Mercury, whose tropical revolution is

87-i 23 h Hm 32- (= 87.968,)

m _ 87.968 _ 87.968
^

n
~~

3(J5.256 87.968
~~

'J77.288
'

consequently, in 87968 periods of the Earth, in which will happen
277283 synodic revolutions, Mercury will be observed in con-

junction, and in the same part of his orbit. But, this result is,

on account of the length of the period, practically useless : we
O*"T QJO

must find then the lowest terms of the fraction -
, and

277.288
'

if the lowest terms still give periods too large, we must inves-

tigate some integer numbers, which are very nearly in the ratio

of 87968 to 277288 ; so that we may know these periods at which

the conditions required, will nearly take place.

Now -J7968 - * _. 1W'

277288 27728H
~

13384
'

87908 8796B
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T
.5726

1 +
7664

and, by continuing the operation, there is at last obtained a re-

mainder equal nothing, and the greatest common measure is 8,

and the fraction in its lowest terms is - - - *, which result, for
34661

obvious reasons, is of no practical use : we must therefore find

two near integer numbers j and this we are enabled to do by the

preceding operation, which, as we take more and more terms of the

continued fraction, affords fractions alternately less and greater than

the proposed -=~ 1 but continually, approximating, nearer

and nearer, to its true value. Thus, the first approximation is

: or, in one year, in which happen 3 synodical periods, the planeto

will not be very distant from conjunction, nor from those parts
of his orbit in which he was first observed. Again, the second

approximation is - = _-, or in 6 ye*, i, in which happen

19 synodical revolutions, the planet will be less distant than he

was before, from conjunction, and from those parts of his orbit

in which he was in the former instance. The third approximation

is -- ___
, or, in 7 years, in which happen 22

* The operation in finding the continued traction U-i initiates, and gives

a greatest common measure, because, since great accuracy is not requisite,

S7 (38
we took

^

' ~ to represent, which it doe^ nearly, but not exactly,

the ratio of the mean motions of Mercury and the Earth. If\ve had
taken a fraction more ex^ct to the true value, then the operation woulrl

not have happened to terminate.
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synodical revolutions, the planet will be nearer to conjunction
than he was at either of the two preceding points of time, and so

on. This follows from the very nature of the process, by which
the successive approximations are formed from the continued frac-

tion [see Euler's Algebra, torn. II, p. 410, Ed.1774] ; but it may
be useful to exemplify its truth by means of the instance before

us. Thus, at the end of 1 year, since the diurnal tropical motion

of Mercury is 4 5' 32".5 = 4.092 nearly, the angle described

by that planet is

365.25 x 4.092 == 1494.6 nearly

= 4 X 360 + 54.6, and consequently, Mercury at the end of

1 year, is elongated (reckoning from the Sun) from the line

joining the Sun and Earth, and beyond that line, by an angle
= 54 .6 ; again, at the end of 6 years, the angle described by
the planet is equal to

(4 x 360 + 54.6) x 6 = [rejecting 24 circumferences] 327.6 ;

or at the end of 6 years, Mercury is elongated from the line join-

ing the Earth and Sun, and not up to that line, by an angle
= 3 C2.4.

At the end of 7 years, the angle described by Mercury is

[4 X 360 -f 54.6] x 7 = (rejecting 29 circumferences) 22.2:
or Mercury is then beyond the line joining the Earth and

Sun, by that angle. At the end of 13 years, Mercury, (re-

jecting 54 circumferences,) is separated from the line joining the

Earth and Sun, and not up to that line, by an angle = 10.<2.

The series of fractions, formed as those in p. 280 were

formed, is

3* 19
'

22' 4T* J04'~l45
J

The denominators denote the number of synodical revolutions,

corresponding to the number of years denoted by the numerators :

the number of periods of the planet must evidently be

3 + 1, 6 4- 19, 7 + 22, 13 -f 41, &c.

that is, 4, 25, 29, 54, &c.

N N
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and therefore the series of fractions, in which the denominators

are the number of periods of Mercury, will be

1 -1 7 11 &c-- ' * -'
, v*. \t

4 2.5 29 54

If we form u series of fractions to ascertain the probable

transits of Venus, assuming ^ to represent the ratio of
TrOOOUOTc .7 2t

her annual movement to that of the Earth, and making the de-

nominator to represent the number of the periods of Venus
;
then

o

its two first terms will be and -
: which, it is plain, are

13 473

quite sufficient, since they give the probable transits for three

centuries to come.

Since the transit may probably happen (taking the above

instance) in 8 years, and more probably in '291, it may happen
in 291 8, or 283 years j in 291 - 2 x 8, or in 275 years-,

in 291 7 X 8, or in 235 years j and generally in 291 +m X 8

years, m being an integer.

By the preceding methods, we ascertain the separation of the

planet from the line joining the Earth and Sun, when the Earth

is in the same point, or nearly so, of its orbit , and, from such

ascertained separation, it is easy to determine the exact time of

the planet's conjunction : thus, at the end ^f 13 years, Mercury
not having reached the line joining the Earth and Sun, by an angle
= 10.2, will, since the respective daily motions of the planet

and Earth are 4 5' 32".5, and $Q' 8".3 arrive at conjunction in about

3 days. At this time, however, Mercury will not be in the

same point of his orbit as at the time of the first observation.

If at the time of the first observation, there happened a transit

of Mercury over the Sun's disk ; then, at the end of 13 years, and

about 3 days, Mercury will be nearly in the same part of his

orbit, at nearly the same distance from his node, and consequently,
another transit may be expected. To determine whether one

will happen, compute for the time of conjunction, his geocentric

atitude ; then, if such latitude be less than the Sun's apparent dia-

meter, a transit will happen.

This is the only method to be pursued ; a method evidently
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of trial and some uncertainty. The numerators of the fractions,

(see p. 280,) inform us when certain conjunctions are likely to

take place : the exact times of the conjunctions must be computed

from the Tables of the planets ; and, from the same Tables, the

geocentric latitudes. By these means Lalande computed the

following Table for the transits of Venus :

Tears.

[at SI of Venus s orbit]
- - - - 1631 - - - Dec. 6,

[at ft, 8 added] 1639 - - - Dec. 4,

[at 15,] 1761 - - - June 5,

[at 13, 8 added] 1769 - - - June 3,

[at Sly 235=291 -7x8 added to 1639] 1874 - - - Dec. 8,

[at Sly 235 added to 1769J - - - 2004 - - - June 7.

We now subjoin Tables of the elements of the orbits of

planets, principally taken from Laplace, and reduced from the

new French measures which he has adopted.

Sideyea! Periods of the Planets *.

Mercury
- 87 d

.969258

Venus 224.700824

The Earth 365.256384

Mars 686.979619

Vesta 1335.205

Juno ------ 1590.998

Ceres 1681.539

Pallas -.-.-- 1681.709

Jupiter 4332.596308

Saturn 10758.969840

The Georgian Planet --..- 30688.712687

* The tropical periods may l>e deduced from the sidereal, by de-

ducting the times which the several planets require respectively, for

the description of an arc of longitude equal to the precession.
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Mean Distances, or Semi-Axes of tlie Orbits.

Mercury - -
x

~ 0.387098

Venus 0.723332

The Earth 1.000000*

Mars 1.52^694

Vesta ---- 2.373000

Juno 2,667163

Ceres 2.767406

Pallas 2.767592

Jupiter
-- -- 5,202791

Saturn Q.538770

The Georgian Planet - ig.183305

Ratio of the Eccentricities (ae) to the Semi-Axis at the beginning oj

1801 : with the Secular Variation of the Ratio, (see p, 196).

The sign indicates a diminution.

Secular Variation.

- 0.000003867
- 0,000062711
- 0.000041632
- 0.000090176

not ascertained.

- 0.000159350

- 0.000312402

- 0.000025072

* The Earth's distance is here assumed as a standard and = 1 :

its distance from the Sun, in statute miles, is reckoned to be

f)3, 720, 900,
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Mean Longitudes at the beginning of 1801
;
reckoned from the Mean

Equinox> at the Epoch of the Mean Noon of January \ y 1801,

Greenwich.

Mercury 166 0' 48".2

Venus ---------- 11 33 16.1

The Earth 100 39 10

Vesta - - - 267 31 49
Juno 290 37 16

Ceres - - - - 264 51 34

Pallas - - - - 252 43 32

Jupiter ----------H215 7

Saturn ---- 135 21 32

The Georgian Planet - - ----- 177 47 38

Mean Longitudes of the Perihelia, for the same Epoch as the above
,

with the Sidereal and Secular Variations.

Long. Perihelion. Sec. Var.

Mercury - - - - 74 21' 46" - - 9' 43".5

Venus - - - - 128 37 0.8 - -4 28

The Earth - - - 99 30 5 - - 19 39

Mars 332 24 24 - - 26 22

Vesta ----- 249 43 (A

Juno ----- 53 18 41 f ^ 4
. ,

> not ascertained.
Ceres 146 39 39 f

Pallas ----- 121 14 l}

Jupiter
----11 8 35 --11 4

Saturn - - - - 89 8 58 - - 32 17

The Georgian Planet 167 21 42 - 4
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Inclinations of Orbits to the Ecliptic at the beginning of 1801, with

the Secular Variations of the Inclinations to the true Ecliptic.

Secular Variation

- - - 19".8

- - - -4.5

- 1.5

S. not ascertained.

- - -23
- - - 15.5

The Georgian Planet 46 26 - - - - 3.7

Longitudes of the Ascending Nodes on the Ecliptic, at the beginning

of 1801, with the Sidereal and Secular Motions.

Longitude of SI. Secular and Sidereal Variation.

The Georgian Planet' 72 51 14 - - -5957

The use of the secular variation of the eccentricity has been

already explained (see p. 196.) The secular variations of the

longitudes of the perihelia and the nodes are sidereal :
consequently,

they cannot be immediately applied to find a longitude at an epoch,
different from that of the Tables ; but first, the precession of the

equinoxes must be added, and then the result will be a variation

relatively to the equinoxes, or tropics. Thus, the secular sidereal

variation of the longitude of the perihelion of Mercurtfs orbit is
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stated to be 9' 43".5 ; therefore, if we take the annual precession
at 50". I, and consequently the secular at 1 23' 30", the secular

variation with regard to the equinoxes, is 1 33' 13".5-, and, ac-

cordingly, the longitude of the perihelion of Mercury's orbit, for

the beginning of 1901, will be

74 21' 46" + 1 33' 13".5 = 75 54' 59".o.

For the beginning of 1821, will be

74 21' 46'' -f 18' 38".7 =: 74 40' 24''.7.

Again, the sidereal secular variation of the perihelion of Venus

is stated to be 4' 28" ( indicating the motion of the perihelion

to be contrary to the order of the signs) -,
therefore the variation

with regard to the equinoxes, ib

1 23' 30" - 4' 28" = 1 19' 2" ;

and accordingly the longitude of the perihelion for the begin-

ning of 1811, is

128 37' 0".S -f 7' 54''.5 = 128" 44' 55".3 ,

and for the beginning of 1781,

128 37' 0".8 - 15' 49" = 128 21' 11".8.

It is easy to see that, both for the nodes and perihelia, a

column of the tropical secular variations might be immediately
formed from the sidereal by the simple addition of 1 23' 30".

The motions of the aphelia and nodes in Lalande's (vol. I. p. 117,

&c.) and Mr. Vince's Tables, (vol. III. p. 17, &c.) are motions

relative to the equinoxes.



CHAP. XXIX.

On the Satellites of the Planets. On Saturn's Ring.

THE planet Jupiter is always seen accompanied by four

small stars, which are denominated Satellites, and sometimes,

Secondary planets, Jupiter being called the primary.

The satellites of Jupiter were discovered in 1610, by Galileo

they are discernible by the aid of moderate telescopes, and are

useful in Practical Astronomy. Saturn also, and the Georgian

Planet, are acompanied by satellites, not however, to be seen

except through excellent telescopes, and of no practical use to the

observer. The number of Saturn's satellites is seven, and of the

Georgians six.

The satellites are to their primary planet, what the Moon is

with respect to the Earth : they revolve round him, cast a shadow

on his disk, and disappear on entering his shadow : phenomena

perfectly analogous to solar and lunar eclipses, and which

render it probable that the primary and their secondary planets

are opaque bodies illuminated by the Sun.

That the satellites when they disappear, are eclipsed by passing

into the shadow of their primary, is proved by this circumstance :

that the same satellite disappears at different distances from the

body of the primary, according to the relative positions of the

primary,
the Sun, and the Earth, but always towards those parts,

and on that side of the disk, where the shadow of the primary

caused by the Sun ought, by computation, to be. When the

planet
is near opposition the eclipses happen close to his disk.

There is an additional confirmation of this fact. The third
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and the fourth of Jupiter's satellites disappear and again appear

on the same side of the disk ; and the durations of the eclipses are

found to correspond exactly to the computed times of passing

through the shadow.

The motions of Jupiter's satellites are according to the order

of the signs. The satellites are observed moving sometimes to-

wards the east, and at other times towards the west : but when

they move in this latter direction they are never eclipsed 5 when
the eclipses happen, the satellite is always moving eastward;

when the transits over the disk, the satellite is always moving
westward : the motion therefore towards the east, or, according
to the order of the signs, must be the true motion.

By the same proof it is ascertained, that the satellites of

Saturn perform their motions, round their primary, according to

the order of the signs. But the satellites of the Georgian Planet

may be thought to form an exception, at least, the direction of their

motions is ambiguous , for, motions performed in orbits perpen-
dicular to the ecliptic (and such, nearly, are the orbits of the

satellites of the Georgian) cannot be said to be either direct or

retrograde.

The mean motions and periodic times of the satellites are

determined by means of their eclipses, and, most accurately, by
those eclipses that happen near opposition.

The middle point of time between the satellite entering and

emerging from the shadow of the primary, is the time when the

satellite is in the direction, or nearly so, of a line joining the

centers of the Sun and the primary. If the latter continued sta-

tionary, then the interval between this and the succeeding central

eclipse would be the periodic time of the satellite. But, the

primary planet moving in its orbit, the interval between two suc-

cessive eclipses is a synodic period (see p. 277). This synodic

period, however, being observed, and the period of the primary

being known, the sidereal period of the satellite may be computed *.

Instead of two successive eclipses, two, separated from each other

by a large interval, and happening when the Earth, satellite, and

primary, are in the same position (in the direction of the same
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right line, for instance,) are chosen, and then the interval of time

divided by the number of sidereal periods, will give, to greater

accuracy, the mean time of one revolution.

The mean motions of the satellites do not differ considerably

from their true motions. Hence, the forms of the orbits, must

be nearly circular. The orbit, however, of the third satellite of

Jupiter has a small eccentricity : that of the fourth, a larger.

The distances of the satellites from thek primary are ascer-

tained by measuring those distances, by means of a Micrometer , at

the times of the greatest elongations*.

The distance of one satellite being determined, the distances

of others, whose periodic times should be known, might be deter-

mined by means of Kepler's law, namely, that the squares of

the periodic times are as the cubes of the mean distances.

In order to obtain such results, we suppose Kepler's law to be

true. But we may adopt a contrary procedure, and by ascertaining

the periodic times and distances of all the satellites according to

the preceding methods, determine the above-mentioned Law of

Kepler to be true. See Principia Phil. Natur'. lib. 3 thls

p. 7, &C.

Ed, La Settr, &c.

The eclipses of Jupiter's satellites are useJ in determining the

longitudes of places, and, on account of this, their practical use-

fulness, have been studied with the greatest attention. Thence

has resulted the curious and important discovery of the Suc-

cessive Propagation of Light, which is the basis of the theory of aber-

ration (see pp. 77, 108, &c.) The phenomenon that led to the

discovery of the propagation of light, was, that an eclipse of a

satellite did not always happen according to the computed time,

but later, in proportion as Jupiter was farther from the Earth.

If, for instance, an eclipse happened, Jupiter being in opposition,

exactly according to the computed time, then about six months

afterwards, when the Earth was more distant from Jupiter by
a space nearly equal to the diameter of its orbit, an eclipse would

happen about 16 minutes later than the computed time. And by
similar observations it appeared, that the retardation of the time

of the eclipse was proportional to the increase of the Earth's

distance from Jupiter. This fact, the connexion of the retarded

eclipse with the Earth's increased distance from Jupiter* was first
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noted by Roemer, a Danish Astronomer, in 1674 : who sug-

gested as an hypothesis, and as an adequate cause of the retardation,

the successive propagation of light.* Subsequent observations

accord so well with this hypothesis, that it is impossible to doubt

of its truth : and it receives an additional, although an indirect,

confirmation from Bradley's Theory of Aberration which is founded

thereon.

The following Table, from Laplace, exhibits the mean distances

and sidereal revolutions of the satellites of Jupiter, Saturn, and

the Georgium Sidus.

# Light is propagated through a space equal to the diameter of the

Earth's orbit in 16
m

26\
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On the Ring of Saturn.

Besides his seven satellites, Saturn is surrounded by a flat and

thin ring of coherent matter. Dr. Herschell has discovered that

the ring instead of being entire is divided into two parts, the two

parts lying in the same plane.

The ring is luminous, by reason of the reflected light of the Sun ;

it is visible to us therefore, when the faces illuminated by the

Sun are turned towards us: invisible, when the opposite faces;

invisible also, when the plane of the ring produced passes through

the center of the Earth ; since then no light can be reflected to

us j invisible also in a third case, when the plane of the ring pro-

duced passes through the center of the Sun ; since, in that case, it

can receive no light from that luminary. The plane of the ring is

inclined to that of the ecliptic in an angle of about 31 24', and re-

volves round an imaginary axis perpendicular to its plane in

10h 29m 16 s
: and, which is worthy of notice, this period is that

in which a satellite, having for its orbit the mean circumference of

the ring, would revolve according to Kepler's law *.

* The squares of the periodic times varying as the cubes of the

mean distances, is frequently called, the Third law of Kepler.



CHAP. XXX.

ON THE Ll-NAR THEORY,

On the Phases of the Moon. Us Disk. Its Librations9
in

Longitude^ in Latitude, and Diurnal.

OF all celestial bodies, the Moon is the most important, by
reason of its remarkable and obvious phenomena : the intricacy

of the theory of its motions ; and, the usefulness of the practical

results derived from such theory*

Some of the phenomena admit of an easy explanation, and re~

quire no great nicety of computation. Such are the phases of

the Moon. Others, with regard to their general cause, admit

also of an easy explanation 5 but, with regard to the exact

time of their appearance and recurrence, require the most accurate

knowledge of the lunar motions. Of this latter description, are

the eclipses of the Moon.

If therefore with a view to simplicity, we arrange the subjects

of the ensuing Chapters, we ought first to place the phases of the

Moon, next, the elements and form of the orbit, then, the lunar

motions and their laws, and
lastly,

the lunar eclipses.

The explanation of the phases of Mercury and Venus was founded

on the hypotheses, of their being opaque bodies illuminated by
the Sun, and, of their revolution round the Sun. A similar ex-

planation, on similar hypotheses, will apply to the Moon. We
shall perceive the cause of its phases, if we suppose the Moon
to shine by the reflected light of the Sun, and to revolve round

the Earth : and, as m the case of the two inferior planets, the
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explanation does not require a knowledge of the exact curve in

which the revolution is performed.

The Moon moves through 12 signs, or 360 degrees of lon-

gitude, in about 27 days. This is ascertained by observing each

day, on the meridian, her right ascension and declination, and
thence deducing, by calculation, (see p. 56,) the corresponding
latitude and longitude. Hence, in a period somewhat more than

the preceding, the Moon is on the meridian at all hours of the day,
and the angle, formed by two lines drawn from the Moon to the

Earth and Sun
respectively, passes through all degrees of magni-

tude. The exterior angle therefore, (see p. 242,) on the magni-
tude of which, the visible illuminated disk depends, passes also

through all degrees of magnitude: and the Moon accordingly,
like Fenusy must exhibit all variety of phase; the crescent
near conjunction -,

the half Moon in quadratures j and the entire

orb illuminated, orfull Moon in opposition.

Venus revolves round the Sun, and the Moon round the

Earth : but this difference of circumstance, in no wise affects the

principle on which the phases depend : they are regulated by the
inclination of the planes of the circles of illumination and vision :

and their magnitude depends, as it was shewn in p. 242, on the
versed sine of the exterior angle at the planet : that is, in Fig.
p. 243, on the versed sine of the angle SuF.

The angle, analogous to SuF in the annexed Figure, will be

M

contained between a line Ss drawn to the center of the Moon at
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jjf, and a line drawn from E and produced through the same
center. This angle, by reason of the parallelism of the lines drawn
from E to the Sun, will equal the interior angle continued be-

tween cE and a line drawn from E to the center of the Moon ;

which angle, in other words, is the angle of elongation.

Hence, in delineating the Moon's phases, we may use a simpler

expression, and state the visible enlightenedpart to vary as the versed

fine of the Moon's elongation.

This is nearly true ; not exactly, because the radius of the

Moon's orbit subtends some, though a small, angle at the

Sun ; or, which is the same thing, because lines drawn from

the Sun to the several points of the Moon's orbit are not

strictly parallel.

The period of the Moon's phases, or the interval of time

which must elapse before the phases, having gone through all

their variety, begin to recur, must depend upon the return of the

Moon to a situation similar to that which it had, at the beginning
of the period. If we date then the beginning of the period from

the time of conjunction, (the time of new Moon,) the end of the

period must be when the longitudes of the Moon and Sun are

again the same,. Now the longitude of the Sun is continually

increasing ; when the Moon therefore has made, from its first

position, the circuit of the heavens, it will be distant from the

Sun, by the angular space through which, during the Moon's

sidereal period, the Sun has moved. In order to rejoin the Sun

then, and to be again in conjunction, it must move through this

space, and a little more j and when it does rejoin the Sun, a

synodic
revolution is completed. And the period therefore of the

Moon's phases is a synodic period. From the inequality of the

Moon's motion, this synodic period, or lunation, is not always of

the same length.

If we conceive a plane passing through the center of the Moon
and perpendicular to a line drawn from the Earth to the Moon,
then on such plane the Moon's face will be seen projected*

This, since the Moon has ever been an object of the attention of

Astronomers, has been delineated, and a map made of its seeming

Seas, Mountains, and Continents. But, one map of the same
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hemisphere, has always served to represent the Moon's face : in

other words, the same face of the Moon is always turned towards

us. This is a curious circumstance, and the immediate inference

from it is, that the Moon must revolve round its axis, with an

angular velocity equal to that with which it revolves round the

Earth, For % suppose in the position (1) a to be on the verge
of the disk, then, if in the position (2) we still see the point #,

in the verge, and in the same position, it must have been trans-

ferred, by rotation, through an arc a! a\ since, in the case of

no rotation, V, parallel to bay would have been the position

of ba. Now, a being seen on the verge of the Moon's disk,

Z Em'a = a right angle = z Etna' -f / af m' a. But since

EPm' is a right angle z Em'P + z PEm' is one also :

consequently,

Z Em' a -f / a'm'a = zw'P(z Em' a) + / PEm^
/. Z a'ma = z PEm y

and the angle dm a measures the rotation of the Moon round

her axis that has taken place since it occupied the position (1),

* In the Figure, acb is supposed to represent the Moon's equator,

and (which is not strictly true) to lie in the plane of the orbit : the

axis of rotation, then, is perpendicular at m to that plane : perpendicular,
for instance, to the plane of the paper, if the latter be imagined to re-

present that of the Moon's orbit.
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and the angle PJSm', the angular motion of the Moon round E
from the same position.

If the angle PJSm', the measure of the Moon's true angular
distance from one of the apsides of its orbit, increased uniformly,
and the Moon's rotation round her axis were uniform, the above

result would always take place, that is, the same face of the Moon

ought always to be turned to the spectator : and such phenomenon

ought constantly to be observed. But since, which is the case,

the Moon's true motion differs from the mean, and the angle
PE m f

does not increase uniformly, the preceding result will not

be precisely true, if we suppose, (which is a probable supposition,)
the Moon's rotation round her axis to be uniform. If after any
time, 3 days for instance, tnEm' should measure the Moon's

angular distance from the position (1), then, by reason of the

Moon's elliptical motion, in 6 days twice the angle mEm' will cer-

tainly not measure the Moon's angular distance : but, on the sup-

position of the Moon's uniform rotation, twice the angle of m' a

would measure the quantity of rotation in 6 days. Hence, if

the Moon's angular velocity should be diminishing from the

position at
(

I ), at the end of 6 days the point a previously seen

on the verge of the Moon's western limb would have disappeared,
and some points towards the verge of the Moon's eastern limb

would be brought into view
;
and such, by observation, appears

to be the case, and the phenomenon is called the Moon's Libra-

tion in Longitude.

Since this libration in longitude arises from the unequal angular
motion of the Moon in her orbit, it must depend on the difference

of the true and mean anomalies, in other words, on the equation
of the center, or equation of the orbit 5 and would be proportional
to that equation^ and its maximum value would be represented by
the greatest equation [6 18' 32''] in case the axis of the Moon's

rotation were perpendicular to the plane of its orbit.

In the preceding reasonings, we have supposed the section

be a, representing the Moon's equator, to be coincident with mm'd
the plane of the orbit : in other words, the axis of rotation to be

perpendicular to the same plane. Now, the axis is not perpen-
dicular but inclined to the plane at an angle of 5 8' 49"; the

preceding results therefore will be modified by this circumstance.

For, take the extreme case, and suppose the axis of rotation to

be parallel to the plane of the orbit, andin the position (1) to be
p P
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represented by ce*: then it is plain, we should at position (1)

see the pole c, and the hemisphere, projected upon a plane passing

through Ita perpendicular to the orbit ; and, half a month after, at

d, we should see the opposite pole e, and the opposite hemisphere,

notwithstanding the equality between the Moon's revolution round

the Earth, and her rotation round her axis. In intermediate in-

clinations then of the Moon's axis of rotation, part of this effect

must take place, or must modify the preceding results (p. 297).

If in the position (l) the Moon's axis being inclined to the

plane of her orbit, we perceive, for instance, the Moon's
north pole and not her south, we shall in the opposite position at

d, after the lapse of half a month, perceive the Moon's south, and

not her north pole ; and, this effect is precisely of the same nature,

as that of the north pole being turned towards the Sun at the

Summer, and of the south pole at the winter solstice, (see p. 12.)

The perpendicularity therefore of the axis of rotation to the

plane of the orbit is a condition equally essential, with that of

the equality of rotation and revolution, in order that the same
face of the Moon should be always turned to the spectator.

This second cause, preventing the same face of the Moon from

being always seen, is called, with some violarion of the propriety
of language, the Libration in Latitude. For, it is plain, from the

preceding explanation, that there are properly and physically no

librations, but librations only seemingly such.

There is a third libration, discovered by Galileo, and called the

Diurnal Libration. If the two former librations did not exist, the

same face of the Moon would be turned, not to a spectator
on the surface, but, to an imaginary spectator placed in the

center of the Earth. Now, two lines drawn respectively from
the center and the surface of the Earth to the center of the Moon,
(the directions of two visual rays from the two spectators) form, at

that center, an angle of some magnitude ; and, when the Moon is

in the horizon, an angle equal to the Moon's horizontal parallax.

Hence, when the Moon rises, parts of her surface, situated towards
the boundary of her upper limb, are seen by a spectator, which

*
e, omitted in the Figure, ought to have been where cm pro-

duced cute the circle cba.
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would not be seen from the Earth's center. As the Moon

rises, these parts disappear : but as the Moon, having passed the

meridian, declines, other parts, situated near that boundary, which,
whilst the Moon was rising, was the lower, are brought into view,

and which would not be seen by a spectator placed in the center

of the Earth. The greatest effect of this diurnal libration will

be perceived, by observing the Moon first at her rising, and then

at her setting.

This last libration, like the two preceding, is purely optical.



CHAP. XXXT.

On the Elements of the Lunar Orbit ; Nodes ; Inclination ; Mean

Distance; Eccentricity; Mean Motion; Apogee; Mean Lon-

gitude at a given Epoch.

IN what has hitherto preceded, no attention has been paid to

the actual form and position of the Moon's orbit. It has been

sufficient for the purposes of general explanation to suppose the

Moon describing a great circle situated, like the ecliptic, in the

imaginary concave of the heavens.

If, however, we wish to form Tables of tho Moon's motions

in order to predict, at future periods, its exact positions in the

heavens, we must proceed with greater accuracy, and, as in the

case of the planets (see p. 259,) we must determine the elements

of its orbit and motion,

It is necessary to determine, the longitude of the nodes ; the

inclination of the plane of the orbit to that of the ecliptic ; the

major axis of the orbit (supposing it to be elliptical) ; the eccen-

tricity , the mean motion
; the place of the apogee ; and the

Moon's mean longitude at an assigned epoch.

Position of the Nodes of the Moons Orbit.

The longitudes of the nodes are determined, as in the case

of a planet. From the Moon's observed right ascensions and decli-

nations, the corresponding latitudes and longitudes are computed :

when the latitude is equal nothing, the Moon is in the ecliptic ; in

the intersection therefore of the ecliptic and its orbit : in other
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words, in its node (see p. 260) : the longitude corresponding to

such latitude [= OJ is the longitude of the node.

If from two series of observations we deduce two latitudes, each

equal to nothing, the difference of the two corresponding longitudes

will give the motion of the node. This motion is, as in the

case of the planets, a regressive one ; and, what is remarkable,

the regression is so rapid, that it passes through 360 in

about 19 years. This is most surely determined by computation.

But, there are certain phenomena which very plainly indicate the

regression and its quickness. For instance, the star Regulus

situated nearly in the ecliptic, fits latitude is about 27' 35",) was

eclipsed by the Moon in 1757 : the Moon therefore, must have

been nearly in the ecliptic, and consequently, in its node. But, a

few years after, the Moon instead of eclipsing Regulus passed at the

distance of 5 degrees from the star. Again, if the Moon be ob-

served at a certain time in conjunction with a star, and passing

yery near it, after the interval of a month, it will pass the star at

a greater distance ; after two months, at a still greater distance ;

and having reached a certain point, it will, in its conjunctions with

the star, again approach it, and, at the end of about 19 years,

pass it at the same distance, as at the beginning.

If we take the difference of two longitudes of the same node,

we shall have, corresponding to the interval of time, the regression
or motion of the node : if the interval be 100 years, the result

will be the secular motion of the node. But, the mere difference

of the two longitudes will not give the whole motion of the node,
since the node may have regressed through several entire circuits

of the heavens. For instance, in 100 years the mere difference

of two longitudes is 4 15 14 1 l
x 15" : but, since the revolution of

the Moon's nodes is performed in about 18 y 7
m

, in 100 years,

besides this angle of 4s 14 1 V 15", 5 circumferences must

have been described by the node : the proper exponent^ therefore,

of the secular motion of the node is

5 X 360+ 134 11' 15":= 1934 11' 15", [= 1934.1875.]

Hence, the tropical revolution of the node

36000

1875
= 6798^.54019 = 6798* 12h 57" 50'.6,
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And since the equinoctial point in that time has regressed

through 15' 34", the sidereal period is less than the former by

nearly five days.

The annual regression of the node has been stated to be

19. 341 875. This, as is plain from the mode of deducing it,

is the mean regression. It will differ from the true annual re-

gression, that which belongs to any particular year, 1810, for

instance, by reason of several inequalities to which it is subject.

And, as we shall hereafter see, the regression, besides its periodical

inequalities, is affected with a secular inequality, by which its

mean motion is, from century to century, retarded

Inclination of the Plane of the Moon's Orbit.

Amongst the latitudes computed from the Moon's right as-

censions and declinations, the greatest, at the distance of 90

from the node, measures the inclination of the orbit. This,

sometimes, is found nearly equal to 5 : at other times, greater

than 5. For instance, the greatest latitude of the new and full Moon,
when at 90 from the node, is found equal to 5 nearly ; but the

greatest latitude when the Moon is in aadrature, and also 90

from the node, is found equal to 5 18'. B>nce the inclination

of the Moon's orbit is variable : it i* greatest m quadratures and

Jeast in syzigies.

Major Axis of the Moon's Orbit.

The Moon's distance is to be determined by her parallax.

The method of Lacaille, described in Chap. XII, p. 95, (which

is inapplicable, in the case of the Sun, on account of his great

distance,) applied to the Moon, affords practical results of great

exactness.

The degree of exactness is known by knowing the probable

error of observation, and the consequent error in the resulting

distance : now, a variation of I'
7 in the parallax would cause

a difference of about 67 miles in the determination of the dis-
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tance *
: therefore, as the Moon's parallax can certainly be de-

termined within 4?", the greatest error in the resulting distance

cannot exceed 280 miles, out of about 240000 miles.

Since, generally, the Moon's distance can be determined, her

greatest and least may : and consequently, supposing her orbit to

be elliptical, the major axis of the ellipse.

Eccentricity of the Moon's Orbit*

This is known from the greatest and least distances of the

Moon, the apogean and perigean. Or, it may be determined

from the greatest equation (see p. 203 Its quantity, according
to Lalande, (dstronomy, torn II, p. 312,) is 0.055036 : which

gives for the greatest equation 6' 18' 32'/.076 (see p. 203.)

M. Laplace however, states the eccentricity for 1800 to be

0.0548553, which gives the greatest equation of the center,

6 IT 54

The Moon's Mean Motion.

By p. C7?, the time (T) of a synodic revolution equal*

- - . Hence, if T be computed from observation, since P the
J p
Earth's period is known, p, the Moon's, may be computed from

the expression

- Pr
p __ --

.

*
Letp = 3) 's parallax, then, see p. 101, D 's dist. ac 32:

*

. Let

c be the error of parallax, then the corresponding error in the Moon'*

QVs rad. 0*s rad. ^f)
J

s rad. |~
Jlstance = __ ___. = ___

^
- -

P
YS rad.~

(rejecting the terms involving c*, &c.) Hence, if c = \"t and p = 1,

and-^
S '

ar/
, the D 's dist. = 240,000 miles, the error = X

p oO.OO

240,000 = 67 miles nearly* In the case of Mars, an error of 1" in-

cludes in the distance an error of 4O,000 miles.

[1
_ I j- ~ I = : ' -

nearly,
PJ P LPJ

J
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If the Moon and Earth revolved equably in circular orbits,

the above method would give accurately the Moon's period , but

since the Moon and Earth are subject to all the inequalities of

a disturbed elliptical motion, the result obtained, by the above

process, from one observed synodic revolution, would differ con-

siderably from the mean period. In order, therefore, to obtain a

mean period, we must observe and compute two conjunctions, or

two oppositions, separated from each other by a long interval of

time; and then, the interval divided by the number of synodic re-

volutions will give nearly the length of a mean synodic period, and

very nearly indeed, if the Moon's apogee at the time of the second

conjunction or opposition should be nearly in the same place in

which it was, at the time of the first conjunction or opposition.

From this mean value of the synodic period (T), the mean period

(p) may be computed from the expression in p. 303, 1. 21.

Now the phenomena of eclipses are very convenient for as-

certaining the times of oppositions at which lunar eclipses must

happen, (see Chap, IV, and p. 43.) And great certainty is ob-

tained by their means. For, the recorded time of an eclipse by
an antient Astronomer must be nearly the exact time of its hap-

pening 5 whereas, the assigned time of a conjunction or opposition

happening long since, might, from the imperfection of instru-

ments and methods, be erroneous, to a very considerable

degree.

If we use two oppositions indicated by two eclipses, separated

from each other by a short interval, we may deduce, but with

no great exactness, (as has been already observed in this

page,) the time of a synodic revolution. Thus, according to

Cassini, a lunar eclipse happened in Sept. 9, 17 1 8, 8 h 4m ;

another eclipse in Aug. 29, 1719, 8 h 32m . The interval be-

tween the two eclipses was 354d Oh 28 m : and in the interval,

12 synodical revolutions had taken place *, consequently, the mean

<

length of one of these 13, is equal to-
, equal to

29 1 12 h 2m .
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This result cannot be exact : it is affected by the inequalities

of the Moon's elliptical motion : for, independently of other

causes, the place of the apogee of the Moon's orbit at the time

of the second observation is distant from its place at the first by
about 40.

In order to obtain a true mean result we must employ

eclipses very distant, in time, from each other. Such are, an

eclipse recorded by Ptolemy to have been observed by the Chal-

deans in the year 720 before Christ, March 19, 6h
1 lm (mean

time at Paris, according to Lalande,) and an eclipse observed at

Paris in 1771, Oct. <23, 4 h 28m , The interval between the

eclipses, is 910044? days minui, l
h 43m, and expressed in seconds,

78627795420s
. In this interval 30817 synodic revolutions had

happened ;
the mean length of one of these, then,

= 786C2
!!!

54<2 5

= 29
f' 12 h

44<* 2 3
.2. Substituting this

.308 ly

value in the expression, p. 303, 1. 21, we may obtain the value

of p.

The synodic period, if computed from different observations,

does not always result of the same magnitude. Its mean length
therefore is subject to a variation, arising from a cause called the

Acceleration of the Moon's Mean Motion, which will be hereafter

explained.

According to M. Laplace, the mean length of a synodic revo-

lution of the Moon for the present time, is

29
d 12h 44m 2*.8032 (= 29 d

.530588).

The periodic revolution of the Moon computed from the

expression of p. 303,

365.242264 X 39.530588_~~
365.25 + 29.530588

r= 27 d 7 h 43m 4 3 .G848.

= 27 J.321582

This is the tropical revolution of the Moon, or the revolution

with respect to the equinoxes, since for P was substituted
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365.242264 *, which expresses the Earth's tropical revolution.

The diurnal tropical movement of the Moon

360

7.321582
= 13. 17636 = 13 1(X 34/'.896.

The sidereal revolution of the Moon differs from the tropical,

for the same reasons, (see p. 66,) as the sidereal year differs from

the tropical : and the difference must be computed on similar

principles : thus, the mean precession of the equinoxes being 50''. 1

in a year, or about 4" in a month, the sidereal revolution of the

Moon will be longer than the tropical, by the time which the

Moon, with a mean diurnal motion of 13. 17636, takes up in

describing 4" : which time is nearly 7 s
. The exact length of a

sidereal revolution is 2? d
7
h 43m 1P.510, [= 27 d

.32l66l.] t

* In pages 05, 223, the mean length of the solar year was stated to

be 3o'5 d 5 h 48m 4S 3 (= 365.2422221) : which length was adopted by
Delambre when lie inserted his Tables in Lalande's Astronomy. But,

alter a new examination, Delambre has found the mean length of the

tropical year to be 3(>5
d

5
h 48m 5 1

3
. 6 = 3 65''.24-2264- : which is the

number employed in the text.

f We may easily deduce a formula of computation : thus, iety> be

the Moon's tropical revolution (=27
d
.32l582,) and x the sidereal period

to be investigated ; then, the arc of the precession described in the

50". I x x
time =

305.25

and the time of the Moon's describing it = x X x.
365.25

A
360*

TT P 5O". I

Hence, x = p + : .. Ov X ~ x x, and thence
JOiJ.^vJ oOU

, P

365.25 360

=: (expanding)

,, fi -4-
p x 5211 + (~JL_\ x /'

50"-'Va. * 1
'

L
+

3CJ5.25
X

30(T
+

V30J.25/ \3W>} + &Cl
J
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Since the equinoctial point (from which longitudes are mea-

sured) regresses, the Moon departing from a point, where its

longitude is = 0, returns to a point at which its longitude is

again = 0, before it has completed a revolution amongst the

fixed stars. In like manner, the node of the Moon's orbit re-

gressing, and faster than the equinoctial point, the Moon quitting
a node, will return to the same before completing a revolution

amongst the fixed stars, and in a period less than the tropical.

This period may be thus found
;
the diurnal tropical movement

of the Moon is 13 10' 34".896, and that of the node (see p, 301,)

l Q S41 ft 7 %* " - 3/ 10"6386. Hence, the diurnal separation,

which is the sum of the above quantities, since the node regresses,
= 13 13'45 //.535*: and consequently,

13 13'4o".535 : 360 :: l
a

: 27
tl

5" 5m 35 S

.6,

the revolution of the Moon with respect to its node.

This latter revolution may also be found by the aid of the

formula given in the Note to p. 306.

By like processes, from the ascertained quantity of the apogee
of the Moon's orbit, we may determine the anomalistic revolution

, . , . p 50". l . n
in which, since --' X - - is a very small quantity, two term*

oOD.^C) j(>()
v

will be sufficient to give a value of x sufficiently near.

The same series may be used for determining the length of tin;

sidereal from the tropical year, by substituting lor p, 365 rt

.!25 : in that

case, the length of the sidereal year ~

365.25 |~1 + ~ +&C.1
L 3o(T

r
J

and a like series would serve to determine the length of an anomalistic

year, substituting instead of 50". 1, the quantity expressing the pro-

gression of the apogee.
* The Moon's motion with regard to its node may be found from

eclipses ; for, when these are of the same magnitude, the Moon is at the

same distance from the node. Hipparchus, by comparing the eclipses

observed from the time of the Chaldeans to his own, found that in 5458

lunations, the Moon had passed 5923 times through the node of

its orbit : thence he deduced the daily motion of the Moon with regard

to its node, to be 13 13' 45" 39'" |. See Lalande, torn. II, p. 189.
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of the Moon, M. Lalande (Astronomic, torn. II, p. 185,) states it

to be 27
d
13" 18m 33 3

.9499, but M. Delambre, 27
d
13

h
18m 37'.44

[= 27d
.5546.J

There is another revolution, of some consequence in the Lunar

Theory, called the Synodic Revolution ofthe Node : this is completed

when the Sun departing from the Moon's node first returns to the

same. It is to be computed as the preceding periods have been.

Thus, since the mean daily; increase of the Sun's longitude is

59' 8".33, and the daily regression of the node is 3' 10".638, the

sum of these quantities, which is the separation of the Sun from

the node in a day, is 1 2' IS".96. Hence, 1 # 18".96 : 360 ::

18'' 28m 16'.032 (= 346d
.61963 *.)

We will now exhibit, under one point of view, the different kinds

of lunar periods and motions :

Synodic revolution - - - 29'
1

12
h 44

m
2 S .S032 = 29 <1

.5305SS

Tropical
...... 27 7 43 4.6848 ......27.321582

Sidereal ------ 27 7 43 11.5101 ......27.321661

Anomalistic - - - - - 27 13 18 37.44 ..........27.5546

Revol'
1

. in respect of node 27 5 5 35.6 ..... , ......27.212217

Tropical revolun
. of node 6798* 12

h

57 m 5CK-M6 6798.54019

Sidereal ..... 6793 10 6 29-95:. ,..6793.42118

J> 's mean tropical daily motion - - - - 13 10' 34" 896

J) 's sidereal daily motion- ----- 13 10 35.034

j 's daily motion in respect to the node - 13 13 45,531?

Place of tlie Apqgec.

The Moon's diameter is least at the apogee, and greatest in

* This and the preceding periods are frequently found on like princi-

ples, but by different expressions, from the values of the secular motions,

Thus, in 100 Julian years, each consisting of 365
d

. 25, the secular motion

of the Sun is 3(3000 45' 45" (36000.762i.998) and the secular motion

of the node (see p. 301,) 1934. 1875 : and the sum of these is37934-.y5

nearly: thence 37934.95 : 3GO :: 100 : period =



Epoch of the Moon's Mean Longitude. 300

the perigee : and since the diameter can be measured by means

of a micrometer, or can be computed from the time it takes up
in passing the vertical wires of a transit instrument, the times of

the least and greatest diameter, or the times when the Moon is

in her apogee and perigee, can be ascertained. Instead of endea-

vouring to ascertain when the Moon's diameter is the least, Lalande,

Astron. torn. II, p. 162, says, that it is preferable to observe the

diameters towards the Moon's mean distances when the diameter

is about 31' 30". If two observations can be selected when the

diameter is of the same quantity, then we may be sure that, at these

two observations, the Moon was at equal distances from the apsides

of its orbit. The middle time 'hen between the two observations

is that in which the Moon was in her apogee.

By finding the places of the apogee, according to the pre-

ceding plan, and comparing them, it appears that the apogee of

the Moon's orbit is progressive : completing a sidereal revolution

in 3232'
1

ll
h

1 l
ni 39 S

.4, and a tropical, in 3231<* 8" 34
m
57M.

Laplace states the sidereal revolution of the apogee to be 3232d

.579,

that is, 3232 d 13 h 53 m 45 S 6\ (See Exposition du SysUme du

Mondey Edit. 2. p. 20.)

Mean Longitude of the Moon at an assigned Epoch.

By observations on the meridian, the right ascension and de-

clination of the Moon are known ; thence may be computed, the

Moon's longitude. This resulting longitude is the true longitude,

differing from the mean by the effect of all the inequalities, ellip-

tical, as well as those that arise from the perturbations of the Sun

and planets. The mean longitude therefore, is the difference of

the true longitude and of the sum (mathematically speaking) of

the equations due to the inequalities. In order to be determined,

then, the Lunar Theory must be known to some degree of exactness.

Any new inequality discovered will affect the previous determi-

nation of the mean motion : and accordingly, keeping pace with the

continual improvements in the Lunar Theory, repeated alterations

have been made in the quantity of the mean longitude. In the

last Lunar French Tables, the epoch of the mean longitude for

Jan. 1, 1801, midnight at Paris, is 3 s 21 36' 30".6 ; which for

Greenwich, Jan. 1 at noon, is 3 s 28 16' 56". 1.



CHAP. XXXII.

On the Secular Equations that affect the Elements of the

Lunar Orbit.

AHE correction, which is called a Secular Equation, is strictly

speaking periodical, but requiring a very large period, in order to

pass through all its degrees of magnitude before it begins to recur.

Its quantity, in general, is very small, and usually expounded by
its aggregate in the space of 100 years.

The nodes, the apogee, the eccentricity, the inclination of the

Moon's orbit, the Moon's mean motion, are M1 subject to secular

inequalities. And the mode of detecting these inequalities is nearly

the same in all.

If we subtract the longitude of the Moon's node now, from what

it was 500 years ago, the difference (see p. 301,) is the regression

of the node in that interval : the mean annual regression is the differ-

ence divided by 500. If we apply a similar process to an observation

of the Moon's node, made now, and to one made 1000 years

ago, the result must be called, as before, the mean annual re-

gression of the node 5 and this last result ought, if the regression

were always equable, to agree with the former : if not, as is the

case in nature, the difference indicates the existence of a secular

inequality^ requiring for its correction, a secular equation.

By a similar method the motion of the perigee of the Moon's

orbit is found to be not, strictly, a mean motion, but subjectto a

secular inequality.

But the most remarkable inequality is that which has been
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detected in the Moon's mean motion, and which is now known

by the title of the Acceleration of the Mooons Mean Motion. The
fact of such acceleration was first ascertained by Halley, from the

comparison of observations : the cause of the acceleration has been

assigned by Laplace*. Although the method of detecting the

existence of these inequalities does not differ in principle, from

methods just described, yet, on account of its importance, we will

endeavour to explain it more fully.

As we have before remarked, eclipses are a species of obser-

vations on which we may rely with great certainty ; quite distinct

from merely registered longitudes which must partake of all the

imperfections of methods iibed at the times of their computation.

Now, in the year 721 before Christ, with a specified day and

hour, Ptolemy records a lunar eclipse to have happened. The
Sun's longitude then being known, the Moon's, which must at the

time of the eclipse differ from it by G signs, is known also. The
Moon's longitude however, computed for the time of the eclipse,

and by means of the Lunar Tables, does not agree with the former
*{-.

In some part or other, then, the Tables are defective, or without

some modification, are not applicable to ages past.

The Moon's place computed from the eclipse is advanced

beyond the place computed from the Tables by 1 26' 24"
j
an error

too great to be attributed to any inaccuracies in the coefficients

of the equations belonging to the periodic inequalities, and which

would seem rather to be the aggregate, during many years, of a

small error in some reputed constant element, such as the Moon's

mean motion.

On the hypothesis then of an acceleration in the Moon's

motion, that is, if we suppose the Moon now to move more

rapidly than it did 2000 years ago, the error of 1 26' 24'' can

be accounted for. With a mean motion too large, we should

throw the Moon too far back in its orbit. And, with the same

motion, but for a point of time less remote than the preceding, we

ought, if the hypothesis of the acceleration be true, to throw the

* See Laplace, Exposition du Syst. du Monde, Edit. 2, pp, 20, 214, &c.

also Mcc. Celeste, pp. 17.5, &c. Lilande, torn. II, p. 185 : HalJey, Phil.

Trans. Nos. 20 1, and 218, Newton, p. 481, Ed. 2.

f The true longitudes are not compared, but the mean.
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Moon less far back in her orbit : for that would produce an error

of the same kind as the one already stated, (p. 31 1, 1. 22). Now
this is the case, and has been ascertained to be so, by means of an

eclipse observed at Cairo by Ibn Junisy towards the close of the

tenth century.

The acceleration of the Moon's motion therefore, discovered

by Halley, may be assumed as established : or, in other words, in

the former estimates of the quantity of the Moon's motion, a

large secular inequality was included, and which it is now ne-

cessary to deduct, in order that what remains may be truly a

mean motion.

The variation in the mean motion of the Moon, will, it is plain,

affect the dufations of its synodic, tropical, and sidereal revolutions.

With this secular equation in the Moon's mean motion,
the equations in the motions of the nodes and of the apogee are

connected. The latter are subtractive, whilst the former is positive;

and, according to Laplace, (Mes. Celeste^ torn. Ill, p. 236,) the

secular motions of the perigee, the nodes, and mean motion, are

to each other, as the numbers 3.00052, 0.735452, and 1.

The mean anomaly of the Moon, which is the difference of her

mean longitude and the mean longitude of the apogee, must be

subject to a secular equation, which is th^ difference of the secular

equations affecting the longitudes of the Moon and of the apogee.

All quantities, in fact, dependent on the Moon's mean motion,

the apogee and nodes, must be modified by their secular

equations.

The Moon's distance from the Earth, the eccentricity and in-

clination of her orbit, are, according to M. Laplace, also affected

with secular equations connected with that of the mean motion.

But, the major axis is not.



CHAP. XXXIII.

On the Parallax and apparent Diameter of the Moon.

IN the preceding Chapter, it was asserted that the apogean
and perigean lunar distances, and, accordingly, the major axis

of the Moon's orbit, might be computed from observations of

the Moon's horizontal parallaxes.

The same may be effected by Astronomical measurements of

the Moon's apparent diameters. And, there is, at the same place,

and at the same time, a constant ratio subsisting between the

Moon's horizontal parallax ( P) and her apparent diameter (D).

For, since the former is the angle which the Earth's radius subtends

at the Moon, we have

P

and since, D =

2) 's dist. from
*

I> 's real diameter

}) 's dist. from ()
'

, u P rad.
there results ~- ~-

r~^ .D 3> s real diameter

This ratio remains constant, if the Earth be supposed a

sphere, for then the radius is invariable ;
it is also a constant ratio

at the same place, whatever be the Earth's figure.

If we suppose P a= 57' 4".16844, and ~ = 31' 7".7304,

Pi D
then ~- = .

, -; ,
and ~ = .27293 = nearly (by the method

JLf d4't)DO *A

R R
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Q
of continued fractions)

~ . Hence, from the Moon's apparent

semi-diameter, we may deduce the corresponding horizontal paral-

lax, by multiplying the former by : and vice versa.
o

The horizontal parallax of the Moon is the Bangle subtended

by the Earth's radius at the Moon. Hence, the Earth not being

spherical, the horizontal parallax is not the same, at the same instant

of time, for all places on the Earth's surface. One proof that the

Earth is not spherical, is by reversing this inference, namely, that

the horizontal parallaxes computed for the same time are found

not to be the same. Hence, in speaking of the horizontal parallax

it is necessary to specify the place of observation. The Moon's

parallax computed for Greenwich is different from the equatoreal

parallax* Several corrections therefore, must be applied to an

observed parallax, in order to compute, at the time of the ob-

servation, the Moon's distance from the center of the Earth.

For, that distance, it is plain, ought to result the same, whatever

be the latitude of the place of observation.

The greatest and least horizontal parallaxes of the Moon,

computed from observations at Paris, are, according to Lalande,

(Jstroti. torn. II, p. 197,) 1 1' 28".99<J2, md 53' 49".7<28, and

the corresponding pcrigenn and apogean distances respectively,

G3.SU 9, o,*>.<)H)4. The corresponding apparent diameters are

33' Jl", and W 2'2
//

.

The mean diameter, that which is the arithmetical mean be-

between the greatest and least, is 3 V 2fj".5; but, the diameter

at the mean distance is smaller and equal to 3 V 7''.

Whatever be the quantity, which is the subject of their inves-

tigation,
Astronomers are accustomed to seek for a constant and

mean value of it, from which, the true and apparent values are

perpetually varying, or, about which, they may be conceived to

oscillate* In the subjects of time and motion, they search for

mean time and mean motion, and by applying corrections or equations

deduce the true. The Moon's parallax not only varies in one re-

volution, from its pcrigean to its apogean, but the parallaxes which

are the greatest and least in one revolution, remain not of the

SAme value,, during successive revolutions : they may not be the

greatest and least compared with other perigean and apogean
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parallaxes. But, all may be conceived to oscillate about one fixed

and mean parallax, which has been designated by the title of

Constant Parallax (la Conftante de la Parallaxe}.

We should obtain no standard of its measure, if we assumed

it to be an arithmetical mean 'between its least and greatest values.

For, the eccentricity of the lunar orbit varying, and consequently,

the apogean and perigean distances, from the action of the Sun's

disturbing force, the greatest parallax, if increased, would not be

increased by exactly the quantity of the diminution of the least

parallax j
the mean of the parallaxes, therefore, would not altoayg

be the same constant quantity.

The constant parallax is assumed to be that angle, under which

the Earth's radius would be seen by a spectator at the Moon, the

Moon being at her mean distance and mean place : such, as would

belong to her, abstracting all causes of inequalities. But then,

even by this definition, the constant parallax would be represented

by the same quantity only at the same place ; for although the

Moon's distance remains the same, the radius of the Earth, sup-

posing it spheroidical, would vary with the change of latitude in

the place of observation.

In order therefore, to rescind the occasion of ambiguity which

might be attached to the phrase of constant parallax, Astronomers,

in expressing its quantity, have stated also the place for which it

was computed. Thus, the equatoreal diameter being greater than

the polar, the constant parallax under the equalor (as it is termed) is

greater than the constant parallax under the pole : the former,

Lalande, by taking a mean of the results obtained by Mayer and

Lacaille, states it to be 57' 5", the latter ,06' 5 J''/2
;
the same author

also, states the constant parallaxes for Paris, and for the radius of

a sphere, e(jual in volume to the Earth, to be respectively

56' 58" 3, and 57' 1" (see Astron. torn. II. p. 315).

M . Laplace, however, proposes to deduce the several constant

parallaxes from one alone : and to appropriate the term constant,

to that parallax, belonging to a latitude, the square of the sine of
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which, is ~ *. This parallax, by theory, he has determined to
<j

be 57' 4/M6844, the corresponding apparent semi-diameter of the

Moon being 31' 7".7304, (= 57' 4".16844 x .27293.)

This parallax being reckoned the mean parallax, the true

parallax is to be deduced from it ; if analytically expressed to be

so, by a series of terms : if arithmetically computed, by the appli-

cation of certain equations ; the terms and equations arising, partly,

from mere elliptical inequality, and partly, from the perturbation
of the Sun.

The terms due to the first source of inequality are easily com-

puted : for, if we call P the horizontal parallax to the mean

distance (a) y then since we have any distance (%) in an ellipse ex-

pressed (see p. 191,) by this equation,

_a.(l-S)_
1 + e . cos.

* *

and since, the parallax x = P x ay we have the parallax =
1 + ^.cos. , .. ,. .

/* X , and expanding as far as the terms containing
i -

to, &c. = P [ 1 + e . cos. + A]
The terms due to the theory of pertut^ation are not easily

computed. In the extent of mathematical science, there is no

computation of equal importance and greater difficulty t-

The formula for the parallax, in which the constant quantity

is 57' 4''.16844, belongs to a latitude, the square of the which is - .

The corresponding formula for any other latitude is to be deduced

by multiplying the former by ~, or by applying a correction

*
Laplace chose this parallel, since the attraction of the Earth on

the corresponding points of its surface, is very nearly, as at the distance

of the Moon, equal to the mass of the Earth, divided by the square of

its distance from the center of gravity. Laplace, Mec. Cel. Liv. II,

p. 118.

f The difficulty belongs equally to the formulae for the latitude and

longitude. See Lalande, torn. II, pp. 180. 193. 314.
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proportional to r r f

; r and / being the radii corresponding to

two latitudes, and computed on the supposition that the Earth is

a spheroid with an eccentricity
= -

. [See Tables XLV,
OV/Lr

and XLVI ;
in the collection

(
1 806) of French Tables, and the

Introduction. See also Vince, vol. Ill, p. 50.]

The Moon's horizontal parallax and apparent semi-diameter, for

Greenwich, are inserted in the Nautical Almanack, and, for every
12 hours ; the former is computed by the formula that has been

mentioned (p. 316): the latter, by multiplying the parallax by
.27293.

The Moon's distance may, as it has been already noted, be de-

termined from her parallax ;
her greatest and least distance from

her least and greatest parallax ; and her mean distance from her

mean parallax , and, taking for the value of the latter that de-

termined by Laplace, we shall have

:= 60.23799 x rad.
; therefore, if we assume the Earth's

mean radius to be 3964 miles, the Moon's distance will be about

238783 miles.

The distances of the Sun and of the Moon from the Earth are

inversely as their parallaxes. Hence, if the parallax of the former

be considered equal to 8".7, the distances will be to each other,

nearly, as 394 : 1.

The comparison of their respective mean parallaxes shews

the Sun's distance from the Earth to be much greater than the

Moon's : the comparison of the respective ratios of the greatest and

least parallaxes will shew the variation of the Moon's distance to

be much greater than that of the Sun, or, what amounts to the

san\e, the Moon's orbit to be more eccentric than the Sun's.

Thus,

2) 's greatest parallax 1 1' <28".99{)2 _
3) 's least parallax

*
53' 49''.728

' *

, <.
's greatest parallax , ,^ . .

but, ^-i - (see p. 187,) = 1.0339.
0s least parallax

r

Lacaille's method of determining the distance from the parallax

applies successfully to the Moon, on account of her proximity to
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the Earth. It fails, with regard to the Sun, by reason of his

distance. That distance is more than 24090 radii of the Earth :

consequently, a radius of the Earth bears a very small proportion
to it. The Sun's apparent diameter then seen from the surface of

the Earth, is nearly the same, as if it were seen from the center ;

and his diameter on the meridian cannot be sensibly larger than

his horizontal diameter. But, with the Moon, the case is different :

since her distance is not much more than 60 radii of the Earth, her

apparent diameter at its surface will be one 60th part greater than

her diameter viewed from the center : and as she rises from the

horizon, and approaches the spectator, her apparent diameter

will increase and be greatest on the meridian. It is easy to assign
a formula for its augmentation.

Let / be the Moon, p the parallax represented by the angle

msn> D the D's apparent distance from the zenith, A the }'t

diameter viewed from the Earth's center, a the augmentation of the

diameter, then

J)'s real diameter -- A X C s (& + a) x 4*1
A + ft

__ Cs __ sin. CAs __ sin. D
A

~~
As

~~
sin. AC s

"""

sin. (D p)
*

A . sin. I) A . sin. () v)
Hence, a =

: -^ r
*-

sin. (D p)

* A
[sin.

*. cos.
(2>-

(see Trig. p. 18.)

sin. (D p)
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From this formula, in which p = P . sin. D, (P the horizontal

parallax) a may be computed ;
but in practice, more easily from

a formula, into which, by the known theorems of Trigonometry,
the preceding may be expanded. (See Table XLIV, in Delambre's

Tables ,
and the Introduction : also Vince, vol. Ill, p. 4-9 )

When the Moon is in the horizon, p = P, and D = 90 ;

A [1 cos. PI
f r n

.-. a = !=
J = A .[sec. P 1].

cos. Jr

Hence, the J 's horizontal diameter is greater than the diameter

[A] seen from the center, in the proportion of the secant of P to

radius, that is, if we assume P = 1", in the proportion of

L0001523 : 1.

With the preceding value of the parallax (1) the diameter<(A)

see p. 3113, will ^ <2
U ^ .27 2|j3 ^ W W.9 nearly, and ac-

cordingly the augmentation =. 3'L
f

49
x

.y x (sec. l

r '

1)

= 32' 4J/'.J) X .0001523

=. 0^.3 nearly.

It is plain, independently of any computation, that the Moon'*

horizontal diameter must appear larger than it would do, if seen

from the center: since the visual ray, in the latter case, is the

hypothenuse, in the former, the side of a right-angled triangle.

In order to find how much the Moon must be depressed, so that,

if it could, it would be seen under the same angle, as when viewed

from the Ivarth's center, draw a line from the bisection of the

radius joining the spectator and the Earth's center, perpendicularly
towards the Moon's orbit: the intersection with the orbit is the

Moon's place, and the depression, below the horizon, is, as it is

plain, half the Moon's horizontal parallax.



CHAP. XXXIV.

On the Inequalities affecting the Moon's Orbit. The Evection.

Variation. Annual Equation, %c. The Inequalities of
Latitude and Parallax.

-By a comparison of the Moon's longitudes, and of her dis-

tances deduced from her parallaxes, it appears that the lunar

orbit is nearly an ellipse with the Earth in one of the foci. It

appears also, that the Moon not only wanders from the ellipse

which may be traced out as her mean orbit, and transgresses the

laws of elliptical motion, but, that the ellipse itself is subject, in

its dimensions, to continual variation : at one time, contracted

within its mean state, at another, dilated beyondit.

In strictness of speech, neither the Earth's orbit nor the Moon's

are to be called ellipses. If they are considered as such, it is

purely on the grounds of convenience. It is mathematically com-

modious, or it may be viewed as an artifice of computation, first,

to find the approximate place of each body in an assumed elliptical

orbit, and then to compensate the error of the assumptions, and to

find a truer place, by means of corrections, or, as they are

astronomically called, Equations.

In a system of two bodies, when only forces, denominated

centripetal, act, an accurate ellipse is described by the revolving
round the attracting body > and, in such a system, the apsides, the

eccentricities, the mean motions, &c., would remain perpetually

unchanged. The introduction of a third, or of more bodies, and

the consequent introduction of disturbing forces, destroys at once

the beautiful simplicity of elliptical motion, and puts every
element of the system into a state of continual mutation. Yet,

the change and the departure from the laws of elliptical motion,

are less in some cases than in others. The Earth's orbit ap-
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preaches much more nearly to the form of an ellipse than the

Moon's: the Sun's longitude, as we have seen in p. 215, computed

by Kepler's Problem, did not differ from the true place by more

than seven seconds : and that quantity, in those circumstances,

represented the perturbations of the planets ; and, the equations

representing the perturbations were only four. But, in the case

of the Moon, one inequality alone will require an equation nearly

equal to two degrees, and the number of equations amounts to ^8.

The quantity of perturbation, and the difficulty of computing

it, depend less on the number than on the proximity of the dis-

turbing bodies. In the cnse of the Sun, one equation suffices

for the perturbation of Venus> and another for that of

Jupiter. But, all the equations compensating the inequalities in

the Moon's place, arise from different modifications of the Sun's

disturbing force. It is not, however, solely the proximity, but

the mass of the disturbing body, that gives rise to equations.

The strictly mathematical solution of the problem of the three bodies,

(see Chap. XXI.) is equally difficult, whatever be the mass

of the disturbing body. The practical difficulty of merely ap-

proximating to the true place of the disturbed body, is very

considerably lessened by supposing the mass to be small.

If we consider the subject merely in a mathematical point of

view, the Moon's place, at any assigned time, results from the

compound action of the Earth's centripetal force and the Sun's

disturbing force 5 and the deviation from her place in the exact

ellipse, arises entirely from the latter. We are at liberty to call

the deviation, or error, one uncompounded effect : yet, since the

quantity of the deviation cannot be computed from one single

analytical expression, but must be so, by means of several terms,

we may separate and resolve the effect into several, (analogous
to the above-mentioned terms,) and the causes of some of which

we may distinctly perceive and trace in certain simple resolution**

and obvious operations of the Sun's disturbing force.

Long before Newton's time, and the rise of Physical Astro-

nomy, this separation, or resolution of the error of the Moon's

place from her elliptical place was, in fact, made. And, the

error was said to arise from three inequalities, distinguished by
the titles of Ejection, Variation , and Annual Equation.
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These three inequalities were noted because they rose, under

certain circumstances, to a conspicuous magnitude; and, were

distinguished from each other, because they were found to have an

obvious connexion with certain positions of the Sun and Moon and

of the elements of their orbits. Although their real physical

cause was not discovered, yet the law of their variation was as-

certained.

The other Lunar inequalities have not, like the three preceding,

been distinguished by titles. This is owing principally to their

want of historical celebrity j and they were not detected like the

others, by reason of their minuteness, and the imperfection of

antient instruments and methods.

Some explanation has already been given, (Chap. XVII,

p. 174,) of the principles and mode of detecting and decom-

pounding inequalities. The difference between an observed and

computed place, indicates the operation of causes either not

taken account of, or, not properly estimated in the previous

computation.

Take, for instance, the Moon : her mean place computed
from her mean motion, differs from her observed place ; and

the difference, if we suppose her to move n an elliptical orbit,

is the equation of the center, or, of the orbit, called, the first

Lunar Inequality.

Compute the Moon's place from a knowledge of her mean

motion and of the equation of the center, and then compare the

computed, with the observed, place. In certain situations, a great

difference will be noted between the places, ascending in its

greatest value to nearly 1 18' 3". This difference is chiefly

owing to the Ewction discovered by Ptolemy, and named the

second Lunar Inequality.

In like manner, we may conceive the third Lunar Inequality to

be discovered. But, we will now proceed to consider more par-

ticularly the second inequality ; the mode of ascertaining its max-

imum ; its general effect
;
the formula expressing the law of its

variation ; and its cause, reckoning as such, some particular

modification of the Sun's disturbing force.
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Evertion.

This inequality has a manifest dependence on the position

of the apogee of the Moon's orbit. Let us suppose, the Moon to

quit the apogee, the line of the apsides to lie in syzigy, and, that

we wish to compute the Moon's place 7 days after her departure

from syzigy, that is, when she will be nearly in quadratures.

The Moon's place computed by deducting the equation of the

center *, (then nearly at its greatest value and = 6 37' 54//

.492,)

from the mean anomaly (see Chap. XV III.) will be found before

the observed place by more than 80 minutes ; in other words,

the computed longitude of the Moon is so much greater than

the observed longitude. But, if we suppose the apsides to lie

in quadratures, then the Moon's place, 7 days after quitting her

apogee, computed, as before, by subducting the equation of the

center from the mean anomaly, will be found behind the observed

place by more than 80 seconds ; in other words, the computed

longitude of the Moon is so much less than the observed.

It is an obvious inference, then, from these two instances,

that some inequality, besides that of the elliptic anomaly, and,

having a marked connexion with the longitude of the lunar apogee,
affects the Moon's motion.

What, from the two preceding instances, would be an obvious

inference to an Astronomer acquainted solely with the elliptic

theory of the Moon ? In the first case, the computed place being

before the observed, it would seem that the equation of the center,

to be subducted from the moan anomaly, had not been taken of

sufficient magnitude ;
in the latter case, it would seem that the

equation of the center had been taken too large.

Let us take another case : suppose, instead of comparing the

computed with the observed place, that it was intended to deduce

the quantity of the equation of the center fiom an observation

of the Moon in syzigy. In that case, the equation of the center,

reckoned as the difference of the true and mean longitudes,
would result too small a quantity. And, this circumstance has

really happened. For, the antient Astronomers who determined

the elements of the lunar orbit by means of eclipses, when the

Moon is in syzigy, have assigned too small a quantity to the

equation of the center.

The anomaly is here supposed to be reckoned from apogee.
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In the preceding instance, when the Moon is in syzigy and

the apsides in quadrature, the determination of the equation

of the center would be too small by the maximum value of the

Evection [1 20' <29''.5l. But, in other positions of the apsides,

the effect of the evcction is to lessen, though not by its whole

quantity, the equation of the center.

Astronomers, having found that the augmentation and diminution

of the equation of tbe center arose from an inequality, soon

ascertained the inequality to be periodical ;
in other words, that,

after passing through all its degrees of magnitude, from to its

maximum value, it would recur. Now, of such recurring quan-
tities the cosines and sines of angles are most convenient repre-

sentations j
for instance, -j-

K . sin . E is competent to represent

the evectiori : its maximum value is JT, when E = 90 : and it is

nothing, when E is. If then, the value of K could be assigned

and the form for .#, the numerical quantity of the evection could

be always exhibited. After the comparison of numerous obser-

vations, and after many trials, it was found that

K = 1 20' 29".$, and E = 2
( D

-
)
- A,

A representing the mean anomaly of the Moon, and J)

signifying the angular distance of the Sun and Moon, or, the

difference of their mean longitudes viewed from the Earth.

In the equation 1" 20' 29 ''. 5. sin. [2 (D -
) A],

1 0' <29".5 is called the
coefficient, and 2 (J> Q) A the

argument*

If we represent the equation of the center by
(6 17' 54".49) sin. A,

in which, the coefficient 6' 17' 54".49, is the greatest equation,
and A (the mean anomaly) the argument, the Moon's longitude

expressed by means of the two equations, that of the center *,

and the evection, would stand thus :

J> *s longitude =
})'$ mean long. (6 17' 54".4<}) sin. A

-
(1 CO' 2<)'.5) sin. [2(3) -

)
- A\ >

* If A be the mean anomaly, the equation of the center cannot be

represented by a single tc-im such as a sin. J, but is, by a series of

terms, such as a sin. A + 6 sin. 2 A + c s\n.$A + &c. in which,

however, the coefficients &, c, &.c, decrease very fast.
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now in syzigies 3> ~0~0 ;
.-. sin. [2 (D - 0)-^]= sin. A\

consequently, in this case, the former expression becomes

3) 's longitude =

J> 's mean long.
-

(6* 17' 54".4<J) sin. A + (1 GO' <29".5) sin. yf,

in which, the argument for the cvection assumes that form,

which is the general one of the equation of the center 5 and on

this account, the former is sometimes said to confound itself with

the latter, in syzigies. It also seems to lessen it, since the pre-

ceding expression may be put under this form,

^ *s longitude =
3>'s mean long.

-
[6

r

,7' 54''. -1 9 1 <20' 9".5] sin. A,
in which, the coefficient of sin. A would be the difference of the

two coefficients (j 17' .'H".<19, and 1" '20' 129" r
> > and, accord-

ingly, A being the argument of the equation of center, that

equation would appear to be lessened.

The evection itself, and, very nearly, its exact quantity, were

discovered by Ptolemy in the first century after Christ, but the

cause of it remained unknown till the time of Newton.

That great Philosopher shewed that it arose from one kind

of alteration which the Moon's centripetal force towards the

Earth receives from the Sun's perturbation. Let us see how it

may be explained :

When the line of the apsides is in syzygics, the equation

of the center (p. ;>23,) is increased. The equation of the

center depends on the eccentricity \ (see pp. 196, 303.) an

increase therefore in the former would indicate an increase

in the latter. Hence, if it can be shewn that the Moon's

orbit will, when the line of the apsides is in syzigies, be made

more eccentric, by the action of the Sun's disturbing force, an

adequate explanation will be afforded of the increase of the equation
of the center above its mean value, and which increase is stiled

the Evection.

Again, when the line of the apsides is in quadratures, the

equation of the center, is lessened: the
eccentricity therefore

(see expression, p. 203,) is lessened : and now, in order to afford

an explanation, it is necessary to shew that, in this position

of the line of the apsides, the Sun's disturbing force
necessarily

renders the orbit less eccentric.
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The Sun's disturbing force admits of two resolutions, one in

the direction of the radius vector of the Moon's orbit : the other in

the direction of a tangent to the orbit. The former sometimes

augments, at other times, diminishes the gravity of the Moon to-

wards the Earth, and always (see Newton, Sect XI, Prop. 6(>,)

proportionally to the Moon's distance from the Earth. When
the Moon is in syzigy it diminishes ; consequently, in the first

case, when the line of the apsides is also in syzigy, the perigean

gravity, the greatest, (since it varies inversely as the square of

the distance) is diminished, and by the least quantity 5 the apogean

gravity, the least, is also diminished, but by the greatest quantity:
the disproportion therefore between the two gravities is aug-
mented ; the ratio between them becomes greater than that of

the inverse square of the distance : the Moon, therefore, if

moving towards perigee, is brought to the line of the apsides in

a point between its former and mean place, and the Earth : or,

if moving towards apogee, reaches the line of the apsides in a

point more remote from the Earth than its former and mean place.

The orbit then becomes more eccentric; the equation of the

center is increased ; and, the increase is the Evectlon.

Thus is the first case accounted for: in the second, the

Sun's resolved force increases the gravity of the Moon towards

the Earth, and, as it has been said, proportionally to the distance.

The perigean gravity, therefore, the greatest, is increased by
the least quantity ; the apogean, the least, is also increased, and

by the greatest quantity. The disproportion, therefore, between

these two gravities is lessened ; the ratio between them is les*

than that of the inverse square of the distance. The Moon,
therefore, if moving towards perigee, meets the line of the apsides,

in a point more remote from the Earth than the mean place of

the perigee : if moving towards the apogee, in a point between

the tarth and the mean place of the apogee. The orbit, by these

means, becomes less eccentric ; the equation of the center is

diminished, and, the diminution is the Ejection.

We will now proceed to consider the third inequality called,

The Variation.

By comparing the Moon's place computed, from her mean
motion, the equation of the center, and the evection, with her ob-

served place, TychoBrahe, in the sixteenth century, discovered that

the two places did not always agree, They agreed only in oppo-
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sition and conjunction, and varied most, when the Moon was

half way between quadratures and syzigies, that is, in Octants.

At those points the new inequality seemed to be at its maximum
value [35' 41".6].

It appeared clearly from the observations, that this new in-

equality was connected with the angular distance of the Sun and

Moon : and that its argument must involve, or, be some function

of, that distance. At length, it was found, that the equation
due to the inequality, was

(35' 41''.6) .sin. 2(D O)

35' 41''.6 being the coefficient, and 2
( D 0) the argument.

According to the above form, the variation is in syzigies

and in quadratures, and at its maximum (3 3' 41".(J) in octants.

If now, by means of this new equation, we farther correct

the expression (p. 32^,) for the Moon's place, we shall have

2) 's longitude
~

2>'s mean longitude (6 1?' 5J/'.49) sin. A
-

(1 20 129-5) .sin. [2(2 - 0)- -<]

+ (sy 4l".(J).sin. 2(J 0).

We will now proceed to Newton's explanation of the cause

of this inequality.

One effect, from one resolved part of the Sun's disturbing

force, we have already perceived in the evcction. The variation

is occasioned by the other resolved part, that which acts in the

direction of a tangent to the Moon's orbit. This latter force will

accelerate the Moon's velocity in every point of the quadrant
which the Moon describes, in moving from quadrature to con-

junction. The force will be greatest in octants and nothing in

conjunction ; and, when the Moon is past conjunction, the tan-

gential force will change its direction, and retard the Moon's

motion. The greatest acceleration therefore, of the Moon's

velocity must happen in syzigy: exactly at the termination or

cessation of the accelerating force. At that point, therefore,

the Moon's velocity must differ most from her mean, or, rather

from that velocity which she would have, if the effect of the

accelerating tangential force were abstracted. When the Moon
moves from that point, her place at the end of any portion of
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time, a day, for instance, will be beyond her mean place, or

beyond the place of an imaginary Moon endowed with a motion

from which the effect of Variation is abstracted. At the end of

the second portion of time, the real Moon will have described a

space less, by reason of the retarding force (see p. 327,) than the

space described in the first, but still, greater than the space de-

scribed by the imaginary Moon ; so that, at the end of the second

portion of time, the two Moons will be distant from each other,

by the effect of two separations \ and, for succeeding portions
of time, the real Moon will still continue describing greater

angular spaces than the imaginary Moon, and the separation of

the two Moon's, which is the accumulation of the individual

excesses, will continue, till the retarding force, by the conti-

nuance of its action, and the increase of its quantity, shall have

reduced the Moon's velocity to its mean state ; at that term

which is the octant, the separation will cease to increase, and,

be at its greatest. And this greatest separation, 35' 41".6, is the

maximum effect of the Variation : and the separation, previously

described, in any point between conjunction and octants, is its

common effect.

The preceding reasoning is precisely similar to that which
was used in p. 200, on the subject of the greatest equation of

the center. At the apogee, the mean velocity differs most from

the true, and then the two Suns are together ; and, they are

most separated, when the real Sun moves with its mean angular

velocity.

We will now proceed to a fourth inequality called,

The Annual Equation.

The two former inequalities, of which the periods are short,

may be ascertained by observing the Moon during one revolution.

But, in order to detect this fourth inequality, it is necessary to

compare similar positions of the Moon, computed according to the

theory of the three preceding inequalities, in different months of

the year. If the computed place agreed with the observed place
in January, it would not in March, and it would most differ in

July. The inequality \va* soon found to have a connexion with
the Earth's distance from the Sun, and its equation was at length
found to be
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II7 11".97 x sin. 's mean anom.

11' 11",97 being the coefficient, and 's mean anomaly the

argument.

According to the preceding form, the maximum (11' 11'>.97)

of the annual equation happens when the Sun's mean anomaly
is = 90, or '270. The equation is nothing, either when the

Earth is in the aphelion or perihelion.

If now, by means of this new equation, we farther correct

the expression for the Moon's longitude, we shall have

))'s longitude
=

2's mean longitude (6 17' 54".49) sin. A
(1

Q
20' 29".5) sin. [2(3) - 0) -

A~\

+ (35' 41".6) sin. 2(2) - 0)
+ (IV 11 ".97) sin. Q's mean anom.

We will now proceed to an explanation of the cause of this

inequality.

The variation has been explained from the effect of that

resolved part of the Sun's disturbing force that acts in the direction

of the tangent ; the evection, from the effect of the resolved part
in the direction of the radius vector, and which effect alters

the ratio of the perigean and apogean gravities from that of the

inverse square of the distance. The present inequality depends
not, on any immediate effect, cither of the one, or of the other

resolved part j but on an alteration in the mean
effect

of the

disturbing force in the direction of radius \ and, which mean
effect lessens the gravity of the Moon towards the Earth.

By the mean effect, that is intended which is the result of the

disturbing forces in the direction of the radius in one revolution.

The disturbing force does not always diminish the Moon's gravity
to the Earth ; it does in opposition and conjunction, but it aug-
ments the gravity in quadratures (see Newton Sect. XI

; prop. 66.)
The augmentation however, is only half the diminution (Newton

Prop. 66, Cor. 7). In the course therefore of a synodic revolution,

there results, what may be called a mean force tending to diminish

the Moon's gravity to the Earth, the measure of the mean force

being equal to (see Newton, Prop. 6'6.)

's mass x rad. })'s orbit

cube 's dist. from
T T



330 Annual Equation.

By reason of this diminution, the Moon is enabled to preserve

a greater distance from the Earth, than it could do, by the influence

of gravity alone. But, since the disturbing force acts in the direc-

tion of the radius, the equal description of areas is not altered (see

Newton, Prop. 66). The area however varying as the product

of the radius vector and the arc (the measure of the real velocity)

and the former (see 1. <2.) being increased, the real velocity must

be diminished : so also must the angular, which varies inversely as

the square of the distance.

These results are derived from that effect of the disturbing force

of the Sun, which is a mean effect diminishing the Moon's gravity.

If this mean effect of diminution be increased, similar results will

follow, but in an enlarged degree ; the Moon's angular velocity will

be still more diminished and her distance from the Earth increased:

now the measure of the mean effect is

f-Vs mass x rad. J) 's orbit

cube (/s distance from

which v ill be increased, by diminishing the denominator : and is,

therefore, in nature, increased when the Earth approaches the

Sun. That happens in winter. In winter, therefore, the Moon's

gravity to the Edith is more diminished, by the Sun's disturbing

force, than in summer. Her angular velocity therefore is more

diminished. A greater time is requisite to tho description of a

complete revolution round the Earth : in other words, a periodic

month is longer in winter than in summer. Now, as the Earth

approaches the Sun, its velocity increases. An acceleration there-

fore of the Earth's motion, is attended, by reason of this new

inequality, with a retardation of the Moon's, and reversely. On
this -account it is, that the annual equation is said to resemble the

equation of the Sun's center. For, supposing the Sun to be

approaching his perigee, then his place (reckoning from apogee and

neglecting the peituvbations of the planets) is equal to the mean

anomaly the equation of the center ( ft,) E decreasing as the Sun

approaches the perigee *,
if in be the Moon's place independently

of the tuinthd ctjimiku (?) then her place, correcting by that

is ;;/ + e > c increasing (since it varies as sin. 0's mean anomaly,)
and affected with a contrary sign.

When the annual equation is -f (IT 11".976) sin. 's mear

anomaly, the corresponding equation of the center, for the Sm
is (1 55' 26".374S) sin. Q's mean anomaly.
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We have now gone through the explanation of the three

principal lunar inequalities, which were discovered before the

time of Newton and the rise of Physical Astronomy. These

inequalities were, by renson of their magnitude, fished ont, (as

a late writer has significantly expressed n) from the rest. The

discovery of the rest, in number 25 *, is entirely due to Physical

Astronomy. Without the aid of this latter science, it would

have been, perhaps, impossible, from mere observation and

conjecture, to have assigned the forms of the arguments.
These latter being ascertained, it is the proper business of

observation to assign the numerical value of their coefficients

The three equations thai have been explained are, with regard
to magnitude, eminent above the rest ; but, it must not be forgot-

ten, that the other equations, on the footing of theory, are of

equal importance, and in practice, considering the use that is

now made of the Lunar Tables, of very essential importance.

The three equations, with all the others, arc derived from

theory by the same process. And, as we have seen, the causes

of the former may, independently of any formal calculation, be

discerned in certain modifications of the Sun's disturbing force.

The causes of the other equations are not so easily discernible :

yet, the source of some of them may be pointed out in certain

changes, which the conditions or circumstances belonging to

the three principal equations must necessarily undergo.

For instance, suppose the Moon and the line of the nodes to

be in syzigies ; then, the Sun's disturbing force, represented by

part of a line joining the Sun and Moon, lies entirely in the plane
of the Moon's orbit

;
and two resol utions of it, one in the direction

of the radius, the other of the tangent, are sufficient. But, the

riodes are regressive ; in a subsequent position of them, then,

the line representing the Sun's disturbing force, will be inclined

to the plane of the Moon's orbit : consequently, a threefold reso-

lution of the force is requisite, the third being in a direction

perpendicular to the plane of the Moon's orbit ; consequently,

*
Strictly speaking there arc more than 25. But Astrnnojiicis have

confined themselves to this number, since other equations, that ana-

lytically present themselves, never rise to a numerical value worth

considering.
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if the line representing the absolute quantity of the disturbing

force> be supposed to be the same, the resolved parts in the

directions of the radius and of the tangent, must be less than

they were before. The inequalities caused by them must there-

fore be less, and less, according to the position of the nodes.

Hence, if the equation of the evection

1' 20' 29".5 x 2 sin. [( J>
-

) A]
were adapted to the first position of the nodes, it could not

suit the second, since the longitude of the nodes forms no part

of the argument [2(D Q) A]. For this reason, therefore,

a correction would be wanting for the evection, that is a new

equation, the argument of which should depend on the position

of the nodes * The same cause, the change in the Sun's dis-

turbing force from being more or less inclined to the Moon's

orbit, must introduce new corrections, that is, new equations,

belonging to the variation and annual equation.

Again, the annual equation arises from the change in that

mean effect of the Sun's disturbing force by which the Moon's

gravity is diminished. In adjusting therefore the value of the

coefficient of the annual equation, the Moon's gravity must

be supposed to be of a certain value : consequently, the Moon
must be assumed to be at a certain distance from the Earth.

When therefore the Moon is at a different distance, the equation,

if adjusted for the previous distance, cannot suit this : a small

correction, therefore, or a new equation will be necessary, the

argument of which must involve or contain, in its expression, the

Moon's distance, or her mean anomaly, or some term connected

with these quantities -)-.

Again, the argument for the variation involves simply the

angular distance of the Sun and Moon ; and its coefficient must
be supposed to be settled for certain values of the Moon's gravity
and the Sun's disturbing force ; and consequently, when the Sun
and Moon are at certain distances from the Earth. The changes
therefore in those distances which are continually happening,

* The equation in Lalandr, p. ISO, is

GO'',* x sin. 2 clist. 3> 's ft from 0.

f The supplementary equation, according to Mayer, is

42* sin. [J)*s mean anom. Q's mean anom.]
^ hich however is not the sole correcting equation due to this cause. Sea

Lalande, Astron, torn. II, p. 178.
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must render necessary two corrections, or two new equations : one
for the approach of the Sun to the Earth, the other for the elon-

gation of the Moon from the Earth. Generally, any equation
furnished with its numerical coefficient on the supposition of the

Sun and Moon revolving round the Earth in circular orbits, will

require new supplemental or subsidiary equations due to the real

and elliptical forms of the orbits*.

Again, the inclination of the Moon's orbit is variable
; there-

fore any equations adjusted to a mean state of inclination will

require subsidiary equations, to correct the errors consequent
on changes in that state.

From considerations Lite the preceding, the existence of

the smaller inequalities is established : and by an attentive consi-

deration of the circumstances tha: occasion them, the forms of

their arguments may be detected ; with much less certainty how-

ever, than by the direct investigation of the disturbed place of

the Moon.

It is one thing to prove the existence of an inequality^ and
another to establish the necessity of its corresponding equation.
Whether it is expedient to introduce the latter, is a matter of

mere numerical consideration. The correction of a correction,
the subsidiary equation to a principal equation, is, in the lunar

theory, very minute : and some equations, arising from the

causes that have been enumerated, are so minute, as to be disre-

garded by the Practical Astronomer.

We have at present considered only the inequalities that

affect the Moon's longitude : but the Sun's disturbing force

causes also inequalities in the Moon's latitude and in herparallax.
The inequalities of the latitude and of the parallax have

nothing peculiar in them, nor distinct, (whether we regard their

physical cause or the mode of ascertaining the laws of their vari-

ation,) from the inequalities of longitude. It is not necessary there-

fore to dwell on them, since the latter have been explained. We

* The evection, for instance, is variable from the variation of the

distances of the Sun from the Moon and Earth : and for the purpose of

correcting the evection, there are 4- subsidiary, or, as Lalande calls them,

accessory equations, which in his Tables are "the 5th, 6th, 7th, antl

9th. See Astron. torn. II, p. 177.
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will only mention, that the principal inequality in latitude, and

its law, were discovered by TycJiO Brahe, ,uid by the comparison
of observations of the greatest latitudes of the Moon, at different

epochs, and when that planet was differently situated, relatively

to the nodes of its orbit. Th;i equation is

(8' 47". 15). cos. 2 Q)'s dist. from }; 's Sl>

[See Lalando, torn TI, p. lf)3. Mayor, Tin via Lttfi<r^ p. 57.

Laplace,
< CL. Ccl. Liv. VII, p. 128.1, &c. French Tables, Intro-

duction .]

If tho Moon's orbit coincided with the plane of the ecliptic,

the Sun's disturbing foicc resolved into the direction;) of a tangent

to the Moon's orbit and of n radius vector, could only, by the

first resolution, alter the law of elliptical angulir motion, and, by
the second, the length of the radius vector (such as it would be

in an ellipse) ; in other words, it could only produce inequalities

in longitude and in parallax, for the parallax varies inversely

as the radius vector. But, the Moon's orbit being inclined to the

ecliptic, the* Sun's disturbing force (represented by a line drawn

from the Moon towards the Sun) cannot be entirely resolved into

the two former directions : a third resolved part will remain per-

pcndicul.ir to the plane of the Moon's orbit, which will cause the

Moon to deviate from that plane ; in other wi'vds, will cause in-

equalities in the Moon's latitude.

In order to correct these inequalities in the Moon's latitude,

eleven equations are necessary, according to Lalande, (see Astron.

torn. II, p. 193.) In the New French Tables an additional one

is added.

The formula * for the parallax in Lalande (see torn. II, p. 314,)

consists of 19 terms, but most of which have very small coefficients :

and, in practice, three tables suffice to contain the necessary

equations, (see Tables 40, 41, 42, in the New French Tables.)

The nature of the present Work obliges us here to terminate

the explanation of the Lunar theory; a subject of great extent,

*
J) 's parallax: ,57' 1 l''.4< 3' 7 ".7 . cos. J) \s auom.+ lO". cos. 2

J)'s anom. 37".3 cos. ang. evcction + 2(/'. cos. '2 ( J) 0) &c,

none of the coefficients of the othet equations exceed 2".
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difficulty, curiosity, and practical utility. The lunar motions

being ascertained, eclipse s may be computed, and, for assigned

times, the distances of the Moon from the Sun and certain

fixed stars. From such, computations, either the one or the

other, the longitudes of places may be determined. The latter,

however, are most useful, since they are subservient to a com-

modious and sufficient],y exact method of computing the lon-

gitude of a ship at sea.. The determination of the longitudes of

places on the Earth's s orfacc is a matter rather of curiosity than

of essential use.

Eclipses of the Moon arc of no groat use in determining the

longitudes of places ; air! this happens, not from any defect

of computation, but from the difficulty of marking the

exact times when the phases
* of an eclipse commence and

terminate. Yet, since lunar eclipses are phenomena of great

interest, of celebrity in the history of Astronomy, and of

importance in settling certain of the lunar elements -\ , it is

incumbent on us to state some of their principal circumstances,

and to explain, generally at least, the modes of computing their

magnitudes and epochs.

"x" Phase of an e< lipse, or appearance of the I\Ioon^ di.sk eclipsed,

varying with the (juantity eriipsrd.

f The urn erlainty of the time of an eclipse, to the amount of one

minute, \\onld muler the determination ot'thu longitude of |>!a
-es by

means of the eclipse little to be reified on; but, the same enorofone,

minute would IK; of little consequence, when eclipses distant i'lom each

by several centuries, are employed in determining an element in the

lunar theory, such as, for instance, the Moon's mean motion.
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On Eclipses of the Moon.

IN Chapter IV, an eclipse of the Moon was shewn to arise

from the interposition of the Earth between the Moon and Sun,

and from the falling of part of the shadow of the former, on

part, or on the whole, of the Moon's disk.

An opaque body interposed, between the Sun and Moon,
at a given distance, does not necessarily cause an eclipse : if its

diameter should be below a certain magnitude, its shadow could

not reach the Moon.
The existence of eclipses then must depend on the relative

magnitudes of the diameters of the Sun nnd Earth, supposing
the mutual distances of the Sun, Earth ,ind Moon, to be

assigned.

When the Moon is in opposition and at her mean distance,

the apparent diameters of the Sun and Earth seen from the

Moon's center are tfl' 59".<)8, and 1 55' 8". Now, at the

extremity, or conical point of the Earth's shadow, the apparent
diameters of the Sun and Moon are the same. The Moon
therefore must be considerably removed towards the Earth, from

the extremity of the shadow; or, what amounts to the same,

the length of the shadow must be greater than the Moon's

distance from the Earth ; and, by computation, it is found to be

four times as great.

If the preceding result were established relatively to any
distance of the Moon from the Earth, either the mean or the least,

since the eccentricity of her orbit is only 0.0548553, it might be

inferred almost certainly, without calculation, that the Earth's

shadow would, in all cases, extend far beyond the Moon. With

$ie aid of calculation, however, the following results are obtained.
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Length of Axes of Shadow.

In perigee 212.896 rad. &
at mean distance - - - 216.531

in apogee
----- 220.238.

Hence, the least length of the shadow is more than 212 radii of

the Earth, whereas the Moon's distance from the Earth never

exceeds 64? radii.

Hence it appears, that a lunar eclipse must always happen
whenever the Earth is interposed between the Sun and Moon 5

understanding, by such expression, the Earth's center to lie in

a line joining the centers of the Sun and Moon and between

those centers. In this latter situation of the three bodies, the Moon
is in opposition. In such kind of opposition then, an eclipse

must always happen, and there would be only that kind, if the

plane of the Moon's orbit coincided with that of the ecliptic.

The Moon's orbit being inclined to the ecliptic, and, oppo-
sition (see p. 43) meaning nothing more, than the difference, in

longitude, of a semi-ci/cle, or of 180, the Moon may be in

opposition, and still either directly above or below the right line

joining the centers of the Sun and Earth ; and, consequently,

may either be above or below the conical shadow, the axis of

which lies in the direction of the above-mentioned line.

Since the inclination of the Moon's orbit, (see p. 302,) is

about 5 9', if the Moon in opposition should be either in its

greatest northern or southern latitude, that is, 5 9/ above or below

the ecliptic, no eclipse can take place, since the greatest section

of the Earth's shadow at the Moon never exceeds 64-'. But, in

the next succeeding opposition, after the lapse of a synodic period,

the Moon cannot be again in her greatest latitude, since (see p. 302,)
the nodes of her orbit would have regressed through about 1 35',

and during succeeding oppositions, the nodes still regressing, the

Moon in opposition would approach nearer and nearer to the

ecliptic, till at length an opposition would occur, in which the

Moon would be either, exactly, or very nearly, in its node : and

if in its node, then it would be in the ecliptic, and in such case,

(see 1. 14?,) an eclipse must happen.

An eclipse may happen, if the Moon be near the node of

her orbit ; and, the least degrees of proximity, are called the

Lunar Ecliptic Limits.
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These limits are
easily determined from the inclination of the

Moon's orbit, the Moon's apparent diameter, and the apparent
diameter of a section of the Earth's shadow at the Moon. The
two former conditions may be supposed to be known by pre-

vious methods, (see pp. 302, &c.) and it is the latter only that

now requires to be
investigated.

Apparent Diameter ofa Section of the Earth's S/iaJow at the Moon.

Let 5 represent the Sun's center, E the Earth's, and let the

circles described round the centers 5, E represent sections of

those bodies. Draw AtC> at'C> tangents to the circular

sections of the Sun and Earth, then the triangular space in-

cluded within t C, /' C, will represent the section of the conical

shadow of the Earth. Let m M mf be part ot the Moon's orbit,

then the section of the Earth's shadow at the Moon is m Mm'9

and its apparent semi-diameter at the Earth, which we have to

estimate, is the angle mEM*.

/ m KM = L Emt ~
t. ECm,

= L Emt -[/ AES - L EAt]

* We have, more than once, adverted to the necessary defect

which diagrams in Astronomy arc subject to, in representing distance*

and magnitudes according to their true proportion in nature. The,

Figure in the page is an instance of it. The Earth's radius is there

made not less than one third of the Sun's, whereas it is about

110
th part. But, if it had been so drawn, then we should have had a
\

*

most inconvenient diagram, in which it would have been difficult to

discern the lines and angles, which are the subjects of investigation*
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Now, z E m t, the angle subtended by the Earth's radius at

the Moon, is the Moon's horizontal parallax (P),

/: AEB is the Sun's apparent semi-diameter f

z EAty the angle subtended by the Earth's radius at the Sun,
is the Sun's horizontal parallax (p).

Hence,

The apparent semi-diameter of 's shadow = p + P --
.

2i

Hence, the distance of the centers of the Moon and of the

Earth's shadow, when the Moon's disk just touches the shadow,

will be the preceding expression plus the Moon's apparent semi-

r~ /n
diameter M~ tnat is y

If we take P = 57' 1'', p = 8".8, and = 16' l.3

we shall have

The mean apparent semi-diameter of 's shadow = 4?!' &".5t

which is nearly three apparent semi-diameters of the Moon-

Hence, since the Moon in the space of an hour moves over a space

nearly equal to its diameter, the Moon may be entirely within the

shadow, or a total eclipse may endure, about two hours.

In order to find the greatest value of the preceding expres-

sion, we must take the greatest parallax of the Moon, and the

least of the Sun : for since there is a constant ratio between the

Sun's horizontal parallax and his apparent semi-diameter, when
the former is the least, the latter will be : and although in the ex-

pression the parallax is additive, yet its diminution below its

mean or even its greatest quantity is trifling, relatively to that

of its apparent diameter.

Hence, since the J's greatest horizontal parallax is IV 29"

and the Q's least semi-diameter ----._ 15 4,5.48

the corresponding parallax of the ----- 8.6

We have

the greatest semi-diameter of the 's shadow = 4.5
7

59", nearly,

and the diameter 1 31 X 44 //
.

*
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Precisely after this manner, and by the same formula,

\p -f P 1 may the apparent diameters of the Earth's

shadow be computed, for other distances of the Sun and the Moon.

Thus,

Apparent Diameter of

g's
Shadow.

r D ill apogee ------ii,y 24?".3036

in perigee. 3 at mean distance - - - 1 23 2-31

in perigee ------ i 30 40.3164

c J in apogee
------ 1 15 56.8656

at mean \
at mean distance 1 03 34.872

distance.
in perigee 1 31 12.8784

J in apogee 1 16 28.2936

in apogee. 3 at mean distance - - - 1 24 6.3

in perigee 1 31 44.3064

In p. 337, the length of the Earth's shadow was expressed

in terms of the Earth's radius : this was obtained from the

value of the angle ECt, which is (see p. 339, J. 5,) p.

For then,

Et rad. ffi

sin. L ECt . , _
sin f

Since there is a constant ratio (see p. 313,) between the

Sun's semi-diameter and horizontal parallax, which ratio is that

of the radius of the Sun to the radius of the Earth, and in

numbers, as 1 10 : 1 nearly, the denominator of the preceding
fraction may be expressed either, in terms of the semi-diameter,

or of the parallax ; thus,

Length of shadow =
.-

ra '

,&
sin. (109 p)

"
or = rad '

sin. !2P-5
'

220

But to return to the investigation of the extreme cases in which

eclipses can happen. To the greatest apparent semi-diameter
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of the Earth's shadow (see p. 338,) add the greatest apparent semi-

diameter of the Moon, and the result will be the greatest apparent
distance of the Moon's center from the ecliptic, at which an

eclipse can happen. Thus, in the Figure, if Ne be part of the

ecliptic, /V m part of the Moon's orbit, e the center of a section

of the Earth's shadow; if we take (see p. 339,) e ay in its

greatest value, equal to 45' 52", and m f> the greatest apparent

semi-diameter of the Moon, = 16' 45".5 9 then m e = 62' 37".5,

is the greatest distance of the Moon at which an eclipse can

happen. If the distance be greater, there can be no eclipse, if

less, and less within certain limits, there may or may not be an

eclipse ; its happening depending on the relative proximities of

the Earth to the Sun and Moon.

The ecliptic
limit N e, corresponding to the greatest value of

m c, may be thus computed :

By Naper's Rules,

rad. X sin. me = sin. Ne X sin. /

.-. taking m e = 62' 38", and the inclination of the Moon's orbit,

what it generally is, in these circumstances, equal to 5 17',

we have

10 -f log. sin. 62' 38"

log. sin. 6 17'

/.log. sin. Ne

18.2605076

8.9641697

9.2Q63379

.-. Ne ......... 11 25' 4-0" nearly.

The species of eclipse represented in the above Figure,
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where the two circular sections of the Moon and shadow are in

contact, is called an Appuhe.

The opposition of the Moon must have happened soon before

this appulse, if the direction of the Moon's moti^i be supposed
from m towards jiV. For, the Moon moving more quickly* than

the Sun, and consequently, than the cencer (e) of the shadow,

cannot long have quitted a point o> such that the corresponding

position of the center of the shadow would be at c. And in these

positions of the Moon and shadow, the former (see pp, 43, 337,)

is in opposition.

In the computation of eclipses there are several expedients

employed for abridging its labour. Eclipses are to be expected
when the Moon is near her node, and in opposition. But the

labour of a direct and formal computation may frequently be

spared, by roughly ascertaining certain limits, beyond which, it is

useless to expect an eclipse. Thus, as we have seen in the pre-

ceding page, if Ne be greater than 11 '26', no eclipse can

happen. But N e is the difference of the true longitudes of the

center of the 's shadow and of the J> 's ft at the time of the

appulse ;
the time of appulse differs a little from the time of true

opposition, and therefore, for two causes, from the time of mean

opposition. The mean longitude of the center of the Earth's

shadow differs from the true longitude, by reason of the equa-

tion of the center, and other small equations. If therefore, we com-

pute the mean longitude of the Farth's shadow at the time of mean

opposition, it will differ from the longitude of e
y (see Fig. p. 34 1,)

at the time of appulse for three causes ; the difference, of the

times of appulse and of true opposition, of the times of mean

and true opposition, and of the mean and true longitudes. But,

notwithstanding these sources of inequality, the consequent error

in the value of N e computed, from the mean longitude of the

Earth, and for the time of mean opposition, is within certain

limits ; and accordingly M. Delambre states that if Ne be

> )2 36', there cannot be an eclipse, if < 9, there must be

one. Between 9% and 12 36', the happening of the eclipse is

doubtful, and the doubt must be removed by a more exact cal-

The diurnal motions of the Moon and Sun are respectively
13 l(V 3 5". 027, and 59' 8".33.
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dilation. The time of mean opposition may be computed from

the Tables of the Sun and Moon. But, the computation is

facilitated by means of a Table of Exacts. The Epact for a year,

meaning the Moon's age at the beginning of the year, the age

commencing from the last mean conjunction ; and the Epact for

any month, meaning the Moon's age at the beginning of the

month, supposing the age to have begun from the beginning
of the year. Delambre in his Astronomical Tables has given

a new method of computing the probable times of the happening
of eclipses. (Sec Vince, vol. III. Introduction, p. 56.)

In the preceding explanations we have supposed an eclipse to

begin when the M oon enters the Earth's shadow at /;/. A spectator

at the Moon in any point within ;//' and m, (see Fig. p. 338.)

would, by reason of the intervention of the Earth, be unable to

see any part of the Sun's disk. But, before and after this eclipse,

properly so called, the Moon's light would be obscured ; or, what

amounts to the same thing, the spectator, on the Moon's surface,

before being entirely deprived of the Sun's light, would lose sight of

portions of his disk. In order to determine, when this obscuration

first begins, and when it ends, draw two tangents AC 1

q/, a Gp /,

to the Sun and Moon , then, the moment the Moon enters /'/,

part of the Sun's light is stopped ; or, a spectator at the Moon
situated any where between I' m' sees part only of the Sun's disk.

Entering m'm, the spectator loses sight of the Sun entirely ;

emerging from in' m, he recovers, in his progress through m /,

the sight of successively greater portions of the disk, and
finally,

emerging from ml, he again sees the full orb of the Sun.

The space included within the lines/;/, ql\ is the section of

what is, properly enough, denominated the Penumbra \ and its

angle is/C'/'.

jingle of the Penumbra,

= / AES + L EAC',

= 's apparent semi-diameter + Q'shor. parallax,

Hence, may be deduced,
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Tfo Apparent Semi-diameter of a Section of the Penumbra at the

Moons Orbit.

For, L IEC = z EIC' + /

= 3) 's hor. par*. + ^ -f p (p. 343, 1. 34-,)

From this formula, as in the case of the umbra (p. 340, 1. 4,)

the several values of the apparent semi-diameter of the penumbra,

corresponding to certain positions of the Sun and Moon, may be

computed.

Since the apparent semi-diameter of the Moon's penumbra
is

the distance of the Moon's center and of the center of the

shadow, when the Moon first enters the penumbra, is

d representing the Moon's apparent diameter.

In the preceding investigations we have supposed, the cones

of the umbra and penumbra to be formed by lines drawn from

the Sun and touching the Earth's surface. This, probably, is

not the exact case in nature ; for, the apparent diameter of the

Earth's shadow is found, by observation, to be somewhat greater

than what would result from the preceding formula. This cir-

cumstance is, with great appearance of probability, accounted

for, by supposing those solar rays, that, from their direction,

would glance by and rase the Earth's surface, to be stopped and
absorbed by the lower strata of the atmosphere. In such a case,

the conical boundary of the Earth's shadow would be formed by
certain exterior rays, and be larger.

This is not the sole effect of the atmosphere in eclipses ; but,

another, totally of a different nature, results from it. Certain of

the Sun's rays, instead of being stopped and absorbed, arc

bent from their rectilinear course, by the refracting power
of the atmosphere j and, so form a cone of faint light interior

to that cone which has been mathematically described as the
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Earth's shadow. The effect of this, or the phenomenon of

which the preceding statement is presumed to be the expla-

nation, is a reddish light visible on the Moon's disk, during an

eclipse.

We may now proceed to shew how the time, duration and

magnitude, of a lunar eclipse, may be computed.

Let N qM represent part of the Moon's orbit, vEN the

ecliptic, AT the node.

Suppose the Moon to have been in opposition when at q,

p being the corresponding place of the center of the Earth's

shadow, and the latter to have described p E> whilst tin-

Moon's center was describing q M. Let also

m = 3) 's motion in longitude,

n = J) 's motion in latitude,

s = 's (or, the shadow's center's,) motion in longitude,
^ = }) >s latitude when in opposition at q y

t = time from q to M,
c = distance of M from E (ME) ;

then, in the time f, the 1) 's motion in longitude = nit [v/?],

in latitude = ;;/ \Mv pq]
the 's motion in longitude = st \JSp]^

consequently, M v=.pq+ nt=*+nt) and Evpv />/;=/ / // ;

/. ^
z

(^If7i
a
) =z 31 v< -f VA = (x + n t)

* + (//-/ /)S

which expression expanded produces a quadratic equation, of

which / is the quantity to be determined, and the value of which

will depend on that of c ; or, if we assign to c such values as belong
to the different phases (see p. 335,) of an eclipse, the results will
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be intervals of time between the happening of such phases, and

the time of opposition, which latter time may be computed from

the Tables of the Sun and Moon.

If we expand the preceding expression for/*, and substitute in

it, instead of ---
, tan. 0, there will result,m - s

ttV* + 2 A n sin? x / = (c
1

A 2
) sin.* 0,

and if from this, by the Rule for the solution of a quadratic

equation, we deduce the value of t,

t -
[ A sin.5 9 sin. 9 ^/(^ A* cos.* 0)],

from which expression, as it has been stated, may be deduced

values of the time corresponding to any assigned values of c.

For instance, if we wish to determine the time, at which

the Moon first enters the Earth's penumbra, we must assume

(see p. 344,)

/ has two values, and the second value will denote the time at

which the Moon quits the penumbra If we wish to determine

the time at which the Moon enters the umbri, we must assume,

(see p. 339,)

fss i>+ P +
d
- ..
'2 2

If we wish to determine the time when the whole disk has

just entered the shadow, we must subduct d from the preceding

value, and make

- PJ.
d D

' - P + P ~
2
~

and similarly for other phases.

The two values (*', t") of / are

f I
[ x sin.

2
9 -f sin. 9 v (**

~ x* co$-* e )j

/" = -
[
- x sin.* - sin. d ^/(r*

- x> cos.* 0)],

which values can never equal each other, except the quantity

under the radical sign, or, x* <* cos.* = j
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in which case, the value of which is equal to^ *, ,

represents the middle of the eclipse, when the distance of the

centers (c) is = A cos, 0.

This value (* cos. 0) of c that corresponds to the middle

of the eclipse, is the least distance, or, the nearest approach of

the centers of the Moon and shadow. For, if by the rules for

finding the maxima and minima of quantities, we deduce from

the expression, p. 346, 1. 6, the value of/, it will be found equal to

x Qin "*
ft-:

j which (see 1. 1,) is the value of t, when
n

c x cos. 9.

The nearest approach of the centers being known, the mag-
nitude of the eclipse is easily ascertained. Thus, on the sup-

- atposition that* cos. 0, is less than the distance ( P+p+
(

-- -

which the Moon's limb just touches the shadow, some part of

the Moon's disk is eclipsed j
and the portion of the diameter of

the eclipsed part is

p + 2, + __x Cos. 0.

C 2

The portion of the diameter of the non-eclipsed part, is the

Moon's apparent diameter (d) minus the preceding expression, and
therefore is

A COS. 9+^ + 5- p- p .

If this expression should be equal nothing, the eclipse would
be just a total one. If the expression should be negative, the

eclipse may be said to be more than a total one, since the upper

boundary of the Moon's disk would be below the upper boun-

dary of the section of the shadow : and the distance of the two
boundaries would be the preceding expression.

The preceding formulae for the parts eclipsed, which are parts

of the Moon's diameter, are usually expressed in twelvths of that

diameter -

9 which twelvths are, v/ith no great propriety of language,
called Digits. Thus, if the part eclipsed should be 24' 52", the

Moon's diameter being 33' 18"; then, the part eclipsed
OA/ r^f)t> Digits. DigiU.-* JZ =
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By p. 346, the second root of the quadratic, or

t" = - i j> sin.* 6 + sin. VV ~ *a
cos.* fi)]

which is negative with respect to the other value /' ,
that is,

if the first be previous to opposition, the latter is subsequent to it :

hence the whole duration of that part of the eclipse which takes

place between equal values of the distance of the centers is the

sum of the two times, and therefore =
' + (- *") = r sin. */ [r - x* cos.* 0.]

If in this expression we substitute that value of c, which

is P + p + - -
> (see p. 346,) the expression

- sin. ^/' [S x* cos.2 0], denotes the time from the Moon's

first entering, to her finally quitting the shadow or umbra. And,

if we substitute for c, P + p + - + -> (see p. 346,) the re-

sulting expression denotes the whole time of an eclipse, from the

Moon's first entering, till her finally quitting the penumbra.

EXAM IM.E.

Of the Eclipse
r

, which happened on March 17, 1764, it is required

to calculate the beginning, middle, and the end : also the number of

Digits eclipsed.

By the Lunar and Solar Tables it appears that the epoch, or

the time of true opposition, happened on the 18th of March 1764*,

at Oh 6 in 12 s

, mean solar time at Paris (reckoned from midnight).

By the above-mentioned Tables the following numerical results

were obtained.

3) 's lat. at the time of opposition
- A = J8' 42 ;/ N.

$ 's horary motion in latitude - - n = 3 26
(lat, decreasing)

}) 's horary motion in longitude - m = 37 23

Q's horary motion in longitude - s = <2 29

3) 's apparent diameter -----</ = 33 ]g

3) 's corresponding hor 1

. parallax - P = 6 1

'@*s apparent diameter D = 32 10

0's corresponding hor
1

parallax - p = 9.
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Hence, (see p. 346,)

* _ j*l_6" _ _ -06
tan - -

m __ ,- 34' 54"
-

0094

.'. = 5 37' 6".5.

Hence, (see p. 347, 1. 1,) the middle of the eclipse, or,

_ * sin/ tf = ^1^ x sin.* [5" 37' 6".5] = 6" 129 s
.

n "06

Now this is the time reckoned from the epoch of opposition,

which is March IS, Oh 6" 12% consequently, the middle of

the eclipse was March IS, O h 12m 41\ Now, in order to find

the times when the Moiii first entered and when it finally

quitted the shadow, we must first compute, (see p. 348,) the

corresponding values of c> and accordingly

* = 5-
J

5 + /' + p = 61 ' 43">

or, adding (see p. 344, 1. 2,) V 40" for the effect of the Earth's

atmosphere,
c = fi3' 23",

which value being substituted in

n

there result for the two values of /,

(end of eclipse) t" = 6m 29 1 + l
h 26"

11 8 = l
h 32^ 37 s

(beginning) /' r^. 6 29 -
I 26 8 = -

1 19 39

and consequently, the duration of the eclipse
- 2h 52m 16".

Since ^ = l
h 19 n

3|)
3 is negative, the commencement of

the eclipse happened before the time of opposition, therefore at

Paris, l
h

19'
n 39 s before March 18, Oh 6m 12% that is, on

March 17, 22 h 46m 33% and the eclipse terminated l
h 32m 37 s

after the time of opposition March 18, O f 6m 12% that is, on

March 18, l
h 38m 49 s

.

Since the preceding times are computed, as is the usage of

French Astronomers, from midnight, and since, at the time of

opposition the Moon was nearly on the meridian, it is plain that

the whole of this eclipse must have been seen at Paris, and could

not have been seen on the hemisphere opposite to that, on which

Paris is situated.
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The distance of the centers corresponding to the middle of

the eclipse, and to the greatest phase, that is, to the greatest

quantity of eclipsed disk, or

x cos. = 38' 3 1".

The eclipsed part, or

- - 5 + p + /^~x cos. = - 23' 12'',
<6 U

or (see p. 344-,) accounting for the effect of atmosphere - '24' 52,"

Digit*. o^/ 9/f Digiw.

and expressed in digits = 12 x
~ ^ ~ 8.96.* *
33' 18"

In deducing the equation that involves the time () we sup-

posed the Moon to describe the spaee M q, whilst the center of

the shadow described Kp : and, expressed by means of the horary

motions, the line pv was = tnt*, and the line, which is the dif-

ference of M u and p q, was n t. According to this notation,

therefore, the tangent of the inclination of the Moon's orbit

(which
= -^

) = . Now the Moon approaches the
Afv/ mt m **

shadow for two reasons, the motion in latitude (n t) and the excess

(mt s t) of its motion in longitude abov- that of the shadow.

Hence, its approach to the shadow would evidently be the same, if

we suppose the center of the shadow to be quiescent, the Moon to

move with its proper motion in latitude (/), and besides with

imaginary proper motion, in longitude, equal to the relative one,

mt s t \ with such an hypothesis the equation (see p. 345,)

<r* = (x + /)* + (m -
-O

l

f
s

>

would equally result, and the same conclusions relative to

/, &c. would also equally result. In this case, since we suppose
the shadow to be at rest, and the two motions of the Moon
to be ///, and (m J-) /, the Moon must move towards the

shadow along an imaginary orbit, the tangent of whose inclination

would be , or , an inclination greater there-
(m - s) t m - s

*>

fore than that of the real orbit.

* The Reader must observe that mt, nt, &c. are not lines likepy,
&c. but the products o< two algebraic al symbols, m, t and n, t.
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This imaginary orbit, (which originates by a species of trans-

lation of the equation involving /,) has, for the purpose of gra-

phically representing the phases of an eclipse, been invented by

Astronomers, and been termed the Moon's relative Orbit. If we

prolong the line pq, below Nq M, till it equals pq + n x *, or

*+?//, and then, from the extremity of the prolonged line, draw a

line parallel to p v, towards M> and equal to (m s) /, and

lastly, join p and the extremity of the line parallel to p v 5 then,

the joining line will represent a portion of the relative orbit, and

be equal to ME (r).

The relative orbit is a mere mathematical fiction, convenient

enough for representing the phases of an eclipse, but not essential

to their computation, as the very fact of the preceding computa-

tions, made without reference to it, sufficiently proves. If, however,

by independent reasonings, it be established and laid down as

the basis of investigation, then may all the preceding results re-

lative to the duration and quantity of an eclipse be obtained.

It may not be improper to note, that the artifice of computation

which substitutes tan. instead of , when geometricallym s

exhibited, introduces the relative orbit.

In the preceding computations of the duration, &c. of a lunar

eclipse, we have supposed the motion of the Sun in longitude,
and the motions of the Moon in longitude and latitude to be uniform.

This, during the short continuance of an eclipse, is nearly, but

not exactly, true. The error of the supposition, however,

may be corrected by means of the Lunar and Solar Tables, which

give the true motions of the Sun and Moon for every instant of

time, and then the eclipse may be computed to the greatest
exactness.

Since the computation of eclipses, and especially, of solar, is

attended with considerable difficulties, it is natural to search for

expedients that may lessen them. Now, an eclipse depends on
two circumstances, the syzigy of the Moon, and, the prox-

imity to the node of her orbit. The first circumstance, whether
it be an opposition or a conjunction, recurs after a synodic

period, or, 29- But, at the end of this period, the proximity
of the Moon to the node of her orbit cannot be the same, in

degree, as it was at the beginning. It must, according as the



352 Period of (he Recurrence of

Moon is approaching or receding from the node, be less or

greater. This arises from the regression of the nodes. But,

the nodes still regressing, before they have performed a circuit

of the heavens, an opposition or conjunction must happen, in

which the Moon would be either exactly, or very nearly, at the

same distance from the node, as it was at the beginning of the

period. If, for the sake of illustration, we suppose the synodic

period to be 30 days and the Sun after quitting the node of the

Moon's orbit, to return to the same after 330 days, then at the

end of this latter period, and after eleven lunations, if the Sun and

Moon were in conjunction, or opposition, at the beginning, they

would be again so, and besides the Moon would be in the same

degree of proximity to the node. But, if the return of the Sun

to the node should not be performed exactly in 330 days, but in

.'530 days 12 hours, then at the end of <;6 I days, after two revo-

lutions with re-pec t to the node and 60 lunations, the JVJoon

would be in syzigy with the Sun, and at the same distance

from the node, as it was at the beginning. Now, if the Moon,
at different periods, be in syzigy with the Sun, and at the same

distance from the node, the same phases of an eclipse must be

always seen at those periods (supposing the mutual distances of

the Moon, Sun, and Earth, not to alter). Hence, an eclipse com-

puted for one period would serve for other periods, and, eclipses

could be predicted j since, after the lapse of a certain number

of days, they would recur.

A lunation, and the Sun's period with regard to the node

of the Moon's orbit, are not of the values, which, in the pre-

ceding illustration, we have supposed them to be. The former

is C29
a 12" 44m 2\S, (29.530.388) the latter :M(i

d 14 h
5<2

m 16-.032

(346.61963). But, with these true values, the period of the

recurrence of the Moon to the same position, relatively to the

Sun and the node of its orbit, is to be determined on the same

principles, which indeed, are those which have been previously
used on the occasion of the transits of Vetws and Mercury over

the Sun's disk, (see p. 278). We must find two numbers in

the proportion of '29.530588 to 346.619(33 : if not exactly, nearly

so, employing the method of continued fractions, (see p. 280).
Now two numbers, nearly so, are 19 and 1223 ; the Moon's node,

therefore, after 223 lunations has, relatively to the Sun, returned

19 times to the same position. And accordingly at the end of 223



Period ofthe Recurrence of Eclipses. 353

lunations, that is, of 1 8 years 1 1 days *, there are the same con-

ditions requisite for an eclipse, as at the beginning ; after such

interval, then eclipses, solar as well as lunar, will recur, and in

the same order. If we know, therefore, previous, we can predict

subsequent eclipses.

This simple method of predicting eclipses was known to the

antient Astronomers. It, however, is not exact, since 19 to '223,

is only an approximate ratio : even were it exact, still the lunar

inequalities, the periodical and secular, would prevent the Moon
from being at the end of IB5

I l
a
, or of 36y ? C

2'\ &c. precisely at

the same distance from the node, as at the beginning.

The method, however, may, with advantage, be used for ascer-

taining, very nearly, the happening of eclipses 5 after which, the

exact times may be calculated by means of the Astronomical

Tables.

By means of the period of (22 fi lunations, called by the

Chaldean Astronomers, the Saros, eclipses may be predicted ;

bur, independently of this, there is, for finding directly those

syzigies at which eclipses may happen, the method of Astronomical

Epacts, (see p. 343).

* More exactly, 18? I0
tl

7
h 43, or 1S> 1 l

d
7
h 43M , accordingly

as four or five years happen in the interval of 2'23 lunations.



CHAP. XXXVI.

On Sola?' Eclipses.

AN eclipse of the Sun, (see p. 1Q,) is caused by the in-

terposition of the Moon between the Sun and Earth j by reason

of which, the whole, or part of the Sun's light is prevented from

falling on certain parts of the Earth's surface.

A spectator deprived of the whole of the Sun's light is in-

volved in the Moon's shadow j deprived of part, in the

penumbra.

There is one material circumstance of distinction, between

lunar and solar eclipses : the former are seen, at the same time,

by every spectator above whose horizon the Moon is. The latter

may be seen by different spectators at different times ; or may
be seen by one spectator and not by another. The passage of

the Moon's shadow across the Earth's surface, during a solar

eclipse has been properly likened to that of the shadow of a

cloud.

In the case of the Moon, it was shewn, that, if that body
were within certain limits of distance from the node of her

orbit, an eclipse must happen in opposition ; because, (see p. 337,)

the shadow of the Earth, in all distances of the Moon and Sun,

extends far beyond the lunar orbit. The length of the Moon's

shadow must be determined as that of the Earth's has, on the

same principles, and, by similar formulae. But, the result, in

certain respects, will be different. The Moon's shadow will

never extend far beyond the Earth, and sometimes will fall short

of it. Hence, the happening of a solar eclipse, will depend not

solely on the ecliptic limits, but also on the relative distances of

the Sun, Moon, and Earth.
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Since, (see p. 317,) the Moon is nearly th nearer a place00

when on its zenith than when on the horizon, and since a solar

eclipse depends so much on the condition ofdistance^ a spectator may,
or may not see it, according to the altitude of the Sun above his

horizon.

In order to determine the length of the Moon's shadow, we,

may use the Figure of page 338.

Now, by p. 340, 1.18, CE^

Et
sin. (tAES _ /iEAt)

Here then E must represent the Moon, and accordingly

y is the apparent semi-diameter of the Sun seen from the

^ equal, therefore, to

apparent semi-diameter seen from x ~~^Ll
m
^,rr dist. O from })

and, the angle EAt is the Sun's horizontal parallax for the Moon,

equal therefore, to

_, , .
, 11 r /TV ^ 2)'srad. dist. from

0s horizontal parallax for y? X ^ X .. .-, -^
r 0s rad. dist. from })

Hence, calling the radii of the Moon and Earth, r, Ry and

the distances of the Sun from the Moon, and Earth, I, K
respectively, there results

r

length of Moon's shadow =
=rg j

sin.
L.

X - -j

sm.

~ R J D R K P
For, since p = ^ , and P = -^-^

- = F~
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By means of this formula, we have

Length of
Shadow. J'S

in apogee, D in perigee
.... 50.730

j

55.902

in perigee, J> in apogee
- - - - 57.760

|

63.862

And this latter case is one of those mentioned in p. 354,

and in which the Moon's shadow never reaches the Earth-

The formula for the length of the Earth's shadow has been

adapted, so as to express the length of the Moon's shadow.

Similar alterations may be applied to the other formulae. For

instance, (see p. 338,)

the appa
1
. semi-diameter of

Jsshadow= z Emt( AES
Now we have already shewn (p. 355, 1, 2C,) that

and L Emt, (the Moon being at Ey and the Earth at M,)

equals the 2 's apparent semi-diameter (~ j .

Hence,

the appa
r

. semi-diam r

. of I''s shadow = - ( ~ wJT i
-

11
12

^ 2
y R/ P - p

d r\ d-D P/
(
smce see 011

p. 311,
;/?

= - = __

Hence, when the Moon's apparent diameter (d) equals the

Sun's (D) 3 the apparent semi-diameter of the Moon's shadow is

equal nothing ; or, the vertex of the conical shadow just reaches

the Earth.

When the Moon's apparent diameter (d) is less than

the Sun's ()), the expression for the apparent diameter of a

section of the Moon's shadow is negative; in other words, the

shadow never reaches the Earth.

In a similar manner may the formulae for the penumbra of

the Earth be transformed, and adapted to the case of the Moon.

In order to find the distance of the centers of the Moon's

shadow and of the Earth, when the Earth's disk just touches the

section of the Moon's shadow, we must add to the expresssion,

1. 17, the apparent semi-diameter of the Earth, seen from the
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Moon, which, in other words, is the Moon's horizontal parallax

(P). Hence (see p. 339,)
j r-\

-p

distance = P H ^ X _
-

.

From this expression the solar ecliptic limits may be computed,

precisely as the lunar were (see p. 341,) and they will be found

equal to 17 21' <!".

The same diagram and formula?, as we have seen, apply

equally to solar as to lunar eclipses ; and, to a spectator placed
in the Moon, our solar eclipses must appear, precisely, as lunar

eclipses appear to us ;
the fictitious spectator too, might com-

pute the duration, and magnitude, of an eclipse caused by the

shadow of the globe on which he insists, by processes like those

which have already been used, (p. 345,) in the case of lunar

eclipses. The forms of the resulting equations, and the steps of the

process, would be the same in, each case. It would be only

necessary to make such slight alterations as we have already

made. And, under this point of view there is no difference

between lunar and solar eclipses. The computation of the one

is as easy as that of the other. But, still the fact is, that the

subject of solar, is much more difficult than that of lunar eclipses.

There is then some material circumstance of difference between

them, which it is now necessary to point out.

In the preceding computations relative to lunar eclipses, no con-

sideration was had of any particular parts of the Moon's disk which

might either be covered by, or approach within a certain distance

of, the Earth's shadow. In the ingress, for instance, merely the

time of contact was determined, and nothing said concerning the

position of the point of contact relatively to any fixed point in the

Moon's equator. The lunar latitude and longitude of the point of

contact is a matter of indifference to the observer on the Earth's

surface. But, to an observer at the Moon the case is quite differ-

ent : to such an one, the eclipse does not begin when the Earth's

shadow comes in contact with the Moon's disk, but when it begins

to obscure his station. Now, in the predicament of this fictitious

observer at the Moon, during what to us is a lunar eclipse, is

an observer at the Earth during a solar eclipse. It is necessary
for him to know when, and how long, the shadow of the Moon
will obscure a station of an assigned longitude and latitude.
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Solar eclipses then are more difficult of computation because

more is required to be done in them, than in lunar eclipses. If in

the investigation of the latter, there had been solved a problem, in

which it was required to determine the time when a particular

point on the Moon's surface was eclipsed, then from such solution

we should possess the means of determining, what it is essential to

determine, in solar eclipses.

The method, however, of computing lunar eclipses (given

in pp. 34-5, Sec.) may be adapted to solar ; and, in such a manner as

to determine the times of the happening of the latter at an assigned

place. This we will endeavour to explain.

First, that method may (making such substitutions as have

-already been made in pp. 355, &c.) be employed in computing the

time and duration of a solar eclipse with reference to the whole disk

of the Earth
-,
that is, the eclipse being supposed to begin, at the

first contact between the Moon's shadow and any part of the Earth,

and to end at the last contact.

At any time (/) included within the duration (T) of such an

eclipse, we are able to compute the apparent distance of the centers

of the Sun and Moon, supposing the spectator to be placed in the

center of the Earth. The problem is precisely the same as the

one in p. 345, relative to a lunar eclipse. Corresponding to the

time t, the solar and lunar Tables, will furnish us with the longitude

of the Sun, the longitude and latitude of the Moon, &c. ; such

quantities in fact, as *, m, & &c.
', and, involving these quantities

precisely as they were in pp. 345, &c., an equation exactly similar to

the one of p. 34(j, would result: and from its solution, since t is

supposed to be given, c would result \ but, if c be assigned, then is

t the resulting quantity.

If, instead of a spectator in the Earth's center, we suppose one

on the surface, in what respects and degree ought the conditions

of the preceding problem to be changed ? The latitudes and longi-

tudes (/, x) computed for the former spectator, cannot belong to the

latter, because angular distances (and such are latitudes and longi-

tudes) seen from the center are not the same as when seen from

the surface. But, they differ solely by parallax. If therefore the

true longitudes and latitudes at any time be diminished by parallax,

the resulting longitudes and latitudes
(/', V) will belong to a
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spectator on the Earth's surface, for the same time. These latter

being substituted as in page 34?5, the equation

V + 2 >! n sin.
z 0X* = (c*

-
x'*) sin.* 0,

will express the relation between t and r.

In finding therefore the time, at which, the apparent distance of

the centers of the Sun and Moon should be of an assigned mag-
nitude, or in finding the magnitude for an assigned time, the chief

thing that is required to be done, is to diminish the angular dis-

tances, which the Astronomical Tables furnish us with, by the

effects of parallax in the directions of those angular distances.

The angular distance-, as we have seen (p. 358,) are measured

along the circles of latitude and longitude. What we require then,

are formula for computing the parallaxes in longitude and latitude.

The investigation of such formula is the chief object of the en~

suing Chapter.

That Chapter is on the Occupation offixed Stars by tlie Moon.
A subject which, equally with solar eclipses, requires the aid of

formulae for computing the parallax in longitude and latitude.

The investigation of those formul-e might h^ve been introduced

into the present Chapter, but it was judged right to defer it to the

next, because its subject may mathematically be viewed in the light

of the simplest case of a solar eclipse For, if from this last we
make abstraction of all the ordinary phenomena, the two cases are

similar. In the one, we have to find the apparent distance of the

centers of the Sun and Moon, in the other, the apparent distance

of the center of the Moon and a fixed Star. In each we must take

the latitudes and longitudes from the Tables, and then correct such

for parallax ; but, the latter case is somewhat the more simple,
because it is necessary to compute the parallax in latitude and lon-

gitude for one body only, the Moon; the other, the fixed Star,

having no parallax.

There is a third phenomenon, The Transit of an inferior Planet

over the Sun's Disk, which is nearly similar to an occultation and a

solar eclipse in its general circumstances, and exactly so in its

mathematical conditions. In the two latter phenomena, the Moon

by its interposition obscureb the light of the Sun, or suddenly ex-

tinguishes that of the Star : in the former, the planet successively

darkens parts of the Sun's disk ; this effect then, like an occultation,
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is a species of eclipse. But, without any forced analogies or vio-

lation of the proprieties of language, it is a sufficient reason for

classing these phenomena together, that it is mathematically con~

venient so to do. To each, the same equations and formulae apply ;

and, as we shall hereafter perceive, they may all be employed in

attaining the same object, the longitudes of places.

The next Chapter will put us in possession of the means of

computing the apparent distance of the centers of the Sun and

Moon. If that distance be the sum of the semi-diameters of those

bodies, their disks will be just in contact, and the corresponding

time will be that of the beginning or the end of an eclipse. Such,

considering the practical use of solar eclipses in determining the

longitudes of places, is the essential problem ; and to that we shall

restrict ourselves : still, it must not be forgotten that it is only one

out of many that may be proposed on the same subject.

The times of the beginnings of solar eclipses can be exactly

noted : it is that circumstance which gives them utility and dis^in-

guishes them from lunar. In order therefore that the observer may
be prepared to note the times of the phases of an eclipse, he ought to

know them approximately at least, by previous computation. This

he may do, by computing for the several times included within the

whole duration of the eclipse, the apparent -listances of the centers

of the Sun and Moon : and then, from such results he may deter-

mine nearly (which is all he wants) the time when the distance shall

be equal the sum of the semi-diameters of those bodies.
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On the Occupation offixed Stars by the Moon.

PARALLAX enters as a condition into almost all Astronomical

calculations ; because, we agree to reckon from the center of the

Earth, observations which we must make on its surface. The

parallax in its greatest value (the horizontal,) being the greatest

angle under which the Earth's radius can be seen at an heavenly

body, is less, the more distant the body. Fixed Stars are so

distant that they have none. Hence, if the Moon were conceived

to be equally distant, her center, or any point of her disk, would be

seen at the same angular distance from a fixed Star, whether

viewed from the Earth's center or surface. If her disk therefore

were in contact with a fixed Star, the contact would be seen, at

the same instant of time, by an imaginary spectator in the Earth's

center, and by all spectators (to whom the Moon should be visible)

on its surface. The same instant of time, however, would be dif-

ferently reckoned by different spectators, according to the situation

of their meridians. If 3h
at Greenwich, it might be 7,

h
at a place

to its east, or noon at a place to its west. And, in this case, the

mere differences of the reckoned times of the happening of the

phenomenon would be the angular distances of the several

meridians, or the differences of the longitudes of the stations of the

several observers.

The Moon, by reason of her great relative proximity, is more

affected by parallax than any other heavenly body. Suppose in

the Figure (which is intended subsequently to illustrate the transit

of reniu) V'VOU &c. to be the Moon's disk, WtTthe Earth *, then

* P and the lines V [J, V /', &c. are of no use in the present

illustration.

z 7.
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a spectator at IV would see a Star % in apparent contact with the

point O in the Moon's disk, and (if the Moon's center be supposed

moving towards WO) in the instant immediately previous to an

w

occultation. A spectator at T would see the Star % separated

from the Moon's disk ; so would a spectator in E, the Earth's

center, but separated by a less angle. To these latter spectators

the instant of contact, immediately preceding an occultation, would

not have arrived. Hence, it is plain, that the absolute time of an

occultation would be different to different observers ; and, accord-

ingly, the mere difference of the reckoned times of the happening
of the phenomenon, would not, in all cases, give the difference of

the longitudes of the places of observation. Account must be

made of that difference in the absolute time, which would be

nothing, were it not for the effects of jyrallax.

The effects of parallax in longitude and latitude cannot be

computed except by a process of considerable length, involving
several subordinate ones. These latter, so many distinct steps in

the investigation, may be proposed as independent problems. And,
on such occasions, authors have been accustomed so to treat a

complicated process. They resolve it into its parts, and propose
such for solution under the form of problems, and towards the

beginnings of their treatises. The object in view, in this arrange-

ment, is the accommodation of the student, who, it is intended,

should thus separately subdue the parts of a formidable calculation.

But then he must be content to learn the solutions of problems,
without discerning the objects of their application. He must take

them on trust, and consider that, although, not of independent
and immediate, they may be of subsidiary and future use.

It is now intended to resolve the process for computing the

parallax in longitude and latitude into its several parts ; previously
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to propose such parts as problems for solution
; and then imme-

diately to proceed to their use and application. On this plan,

therefore, we are required to find

The right ascension of the mid-heaven, or of the Medium Coe/i.

The altitude of the Nonagesimal.

The longitude of the Nonagesimai.

1st. The Right Ascension of the Mid-Heaven.

The right ascension of the mid-heaven at any time is the right

ascension of a point of the equator on the meridian at that same

time : if at the time assigned or required, a Star were on the meri-

dian, its right ascension would be that of the mid-heaven. If the

Sun, either the true, or the imaginary mean, Sun, then the true right
ascension of the former, or the mean longitude of the latter, would

be the right ascension of the mid-heaven. Suppose, the Star, or

the Sun, to have passed the meridian and to be to the west of it,

then the right ascension of the mid-heaven must be the right as-

cension of the Star, or of the Sun, plus the angular distance of the

Star or Sun from the meridian, that is, plus the hour or horary

angle (see p. 5) of the Star or Sun. If the true Sun be used, the

right ascension of the mid-heaven will be the

's true right ascension + true time from meridian [A~]

If the mean Sun, then the right ascension required is

's mean longitude + mean time.

The Altitude of the "Nonagesiwal.

The Nonageslmal is that point of the ecliptic, which, at any

assigned time, is highest above the horizon. If Hh be the horizon,

o

ONE a portion of the ecliptic, then, if ON be taken = 90, the
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point N is the nonagesimal, and its height is Nn ; N n being the

continuation of a vertical circle passing through N and the zenith

Z.

Nn the height of the nonagesimal is (see Trig. p. 91) the

measure of the spherical angle EOPI, the inclination of the ecliptic

to the horizon.

Ifwe continue NZ top, the pole of the ecliptic, then, since/? N
and Z n are each equal to a quadrant, by taking away the common

part ZN, we have

p Z
(
= Nn) the height of the nonagesimal,

which is accordingly the measure of the inclination of the ecliptic

to the horizon.

In order to find p Z, take P the pole of the equator ;
then

in the triangle Pp Zy we have

PZ the co-latitude of the place,

Pp the obliquity of the ecliptic,

L f PZ = 270 right ascension of the mid-heaven.

For the right ascension of E is clearly the same as the right ascen-

sion of the mid-heaven.

This case then is that of oblique spherical triangles, in which,

from two sides and an included angle, it ^ required to find the

third side
-,

a problem of the same kind as that of the latitude of a

Star to be determined from its right ascension and north polar

distance (see p. 52) and which we shall similarly solve by the aid

of a subsidiary angle (0) (see Trig. p. 129).

Assume then such, that

tan.3 =
sin.obly.xcos.lat. xver. sin. (90 + R. A. of mid-heaven)

ver. sin. (co-latitude
-

obliquity)
*

then, ver. sin. pZ = ver. sin. (co-lat. obliquity) x sec.* 0*

n **
1

or, sin. (~ = sin. -
(co-lat. obliquity) x sec. 6

*
Examples to these several method* will he given under that

belonging to the general problem of '
the distance of two bodies/
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and in logarithms,

*7 \

log, sin. -rrlO+log. sin. ~(co-lat obliquity) log. cos.
& &

The complement of the altitude (p Z) of the nonagesimal is

ZA7
, sometimes called the Latitude of tlie Zenith.

Longitude of the Nonagesimal

This longitude is the longitude of the pole P (which is 90)

plus the angle Pp Z. It is necessary therefore to find this latter

angle, which may be fcrnd either from

sin. PpZ= . si-/^*cos.lat.
sin. height or nonageiiimal

or from this expression, (see Trig. p. 118,)

cos.- i PpZ = ---4-:-- X
2 sin. p& . sin./?/'

[sin.i (pP +pZ + PZ).sin.
| (/>

P + />Z-. P2
]

.

And, in certain cases, it will be expedient to compute the

angle Pp Z by this latter expression, (for the reasons of which,

see Trig. pp. 38, 123.)

From the right ascension of the mid-heaven have been found the

height and longitude of the nonagesimal ; and from these latter

we may proceed to, what are the objects of search, the parallaxes

in longitude and latitude.

Parallax in Longitude.

Let M be the true place of an heavenly body, ;;; the apparent

place depressed, in a vertical circle ZMmt by parallax, (see

Chap. XII,) then the parallax in longitude is the angle Mpm%

the measure of which, since Mm is small, is very nearly the

fluxion, or the differential of the angle ZpM\ and such we
shall assume it to be. Now, let
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L, /, be the latitudes of jlf, /, (= 90 - p M, 90* p w,)

/f, I the angles 7*p M, Zp m>

h> (p Z) the height of the nonagesimal,

p, the common parallax, P (= p . sec. alt.) the horizontal,

, the parallax in longitude ; the parallax in latitude,

Zt z, the zenith distances ZM, Z m.

Now, by Trigonometry, p. 11G, 1. 9> we have

cot. 2 . sin. h = cot. . sin. pZ m -f cos. // . cos. / pZ m.

Of this equation take the differential
or fluxion, then, since

is constant, and dk or k = > and ^ 2, orz=/7, there

sin. //
___ sin^_z /?

"sin/ z
"" "

sin/

results

But, (Trigonometry, p. 102.)

rr T sin. ;w .
7 cos. /

sin.pZm = sin. >fe X - v = sin. k x -r- ;
sin. ^ ;;/ sin. z

I 11-1-1 /? sin. // . sin. k
.*. , the parallax m longitude, == x ,

sin. .-3 cos. /

sin. // . sin k . + ^.= P-.- (very nearly).
cos. L

In this expression /^JT + ^.K'+a; .-.a the quantity

sought, is contained in the formula that is meant to express its

value. That we may not argue therefore in a circle, we must

approximate to the value of a, by supposing, in the first case, k to

equal K : thus, first find a value (e) of a from this expression

f \ n sin. 7* . sin, K
a \ ) = * -*- )

cos. L
then

investigate a nearer value of , from

_ sin. // sin. (K 4- e)
ct, x i .

,

cos.i

and if this last value is not sufficiently accurate, the above process
must be repeated.
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Parallax in Latitude.

By a formula similar to that which we have just used, and

which differs from it only, in the angle k being used for p Z w,

/ for z, &c., we have

in A Zp m> tan. / sin. /* = cot. p Z m . sin. k + cos. h . cos. k,

in A ZpM, tan. L sin. // = cot. p Zm sin. K + cos. // . cos. K,

eliminate, from these two equations, cot.p Z m, and there results

sin. h (tan. .L.sin. k - tan. /.sin. 7)=cos. h (sin. k cos. K- cos. .sin. K)

=cos. h x sin. (k K.)

Now, k K = , and sin. ( A') = sin. * = a (nearly) =

p sin * * ' sm>
-

: substituting /. and dividing by sin. h x sin. ,

cos.

.sin.T ^ .

tan. x, tan. / r
sin. k cos,

r A i r>COS. A . /fi Sm *

/. tan. L tan. / = P-~ - tan. 71 --:

cos. L L sin.

cos. // tan. / r . . . ^T-- --. -
[sin. k sin. K].

cos. L sin. k

Now, (ZV/. p. 22, bottom line) tan. L tan. 7 = sm - (
~

)

cos. JL. . cos. 7

and (p. 19,) sin. k sin. 7iT=2 .cos.

i
I

rr

and since, /f K = a,
~ = -^+ | : substituting therefore,

$2 J

sin. (L-l) = p cos.* _ Stan. / T
(X + s) sin. fj

cos. Z,. cos. / cos. Z, sin. k L \ 2/ 2J

But sin. (L -
7) =s sin. rf7 ~ sin. d = ^, nearly, and sin. 5=5

_ P sin. ^ sin. ^r

2 cos. Z,
"

.-.J, the par. inlat.,=Pcos. A.COS./ P.sin. Asin.7xcos.(jK'+

f

-)> ^^

* See Mc?n. Gottingen, torn.
II, p. 108 ; where Mayer has given, very

nearly, the same expressions ; also Lalandc, torn. II, p. 305. Edit. 3.
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This expression, since / = Z, -
J, is under the same pre-

dicament as the former one, (p. 366,) and must be treated in

the same manner , that is, we must iind a value of 2 by sup-

posing / -=. L) and then a nearer value. Since the Moon's latitude

is never very large, and at the time of an eclipse (for computing
which the above expressions are useful) is always very small,

(and consequently sin. / is very small) we may assume, as a first

step in the approximation,

$ = V cos. // cos. JL (~ f suppose,)

and then the second step may be made by computing $> from

J = P cos. // cos. (L /) - P sin. // sin. (L - /) . cos .

amHhe investigation continued, will give more exact values of J,

the parallax in latitude *.

The formulae for computing the parallaxes in longitude and

latitude, have been deduced by, what has technically been called,

the Method ofthe Nonagesimal. This method, of no recent invention,

naturally suggested itself, as Lalande observes, to the mind of

Kepler. For, since the parallax takes place in the direction of a

vertical circle, if the heavenly body were situated in a vertical

circle, such as (pZNn) passing through A7
, the nonagesimal point,

then in such circle, parallax taking place, its effect would be en-

tirely in latitude and be nothing in longitude : since ON, the

ecliptic, is perpendicular to p ZN. Again, if the Moon, always
near the ecliptic at the time of an eclipse, should also be near the

nonagesimal, then the greater its altitude the less would be the

parallax in latitude, (see Lalande, torn. II, p. 291 )

Distance of t/te' Moon and a Star at the time of an Occupation.

Computing by the preceding formulae the parallaxes, we must

apply them, with their proper signs, to the true longitudes and

latitudes furnished by the Tables, or by observation, and the results

will be the apparent longitudes and latitudes of the center of the

Moon and of the star. Suppose these to be /, /', k, ', respectively j

* The expressions for the parallaxes in right ascension and decli-

nation may easily be deduced from the preceding processes. We must

then consider p to be the pole of the equator.
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then, in order to find the distance (Z)), we have (in a triangle such

asM/;///, Fig. p. 363), the two sides 90 -/, 90 /' (analogous
to Mp, mp), and the included angle, kkf

(analogous to Mpm) ;

and D is the side opposite to the angle k k' : therefore, (Trig
1

,

pp. 100, 129, 131),

cos. D = cos. /. cos. /' cos. (k k') -f- sin. /. sin. /',

and substituting for cos. Z), c. 12 sin.* -
, &c. there

2i

results

D .
, // - /'\ . . _ /k - '\

sin/ ~ = sin/ ( -- 1 -f cos. / . cos. / . sin/ I - I ,
2, ^ 2t

* x ^J -^

whence J9 may be deduced, and most conveniently, by means of a

subsidiary angle, (see the pages just referred to.)

The preceding method is not confined to the case of an oc-

cultation, but is equally applicable to the finding of the distances

of the Sun and Moon during a solar eclipse, and of the Sun and

an inferior planet during a transit. And, in all the cases, since

the distances are small, a more simple formula for computing D
may be introduced. For, D may be considered as the hypo-
thenuse of a right-angled triangle, the sides of which are / /', and

(k k') cos. / ', and then

D* :=r (/
- /O* + (k A7

)* - COS.* /

= ('-'>' ['
+ (TTT)*

cos -' '
] >

.-. >=(/-- A). sec. 0,

k /;'

making tan. 6 =
~j ^

. cos, /.

The latter expression (1. 22,) for the value of D is easily
D / /'

deducible from the former, by substituting in it,
-~

, &c.

instead of their sines, which may be done with inconsiderable

error, by reason of the smallness of those angles, during the

contiguity of the JVloon and star, c.

* For k k' is the arc on the great circle, (k k?) . cos. /, on the

parallel; for instance, in Fig. p. 5, if ab = / a Pb (k A')

ts = a b . cos. * l> --= (k k') cos. sb.

3 A
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The first term of the expression for sin.
a -

, (see p. 369>)

(
7 .~

Now /, I', are the apparent latitudes, there-

fore if , y, were the parallaxes, we should have

/ /' = A -f $ ( A = difference of the true latitudes.)

Suppose one of the bodies (that to which the latitude /' belongs)

to have no parallax in latitude, but the other to have a parallax

equal to J ^> then, still as before,

/_ /'
_ A + ($

_ y),

and a similar result will hold good with regard to sin.* - ~
;

t

therefore, if the coefficient of this latter term, instead of being

cos. / . cos. /', were a constant quantity 0, for instance, (or in-

volved merely the difference of the parallaxes), from

D
sin.* - = sin/

the distance D would result precisely of the same value, if

instead of assigning to each body its proper parallax, we supposed
one to be entirely without, and attributed to the other an ima-

ginary parallax in latitude and longitude, equal to the difference of

the real parallaxes. And in this case, the lule given by Astro-

nomers, (see Lalande, 434, torn. II, and Cagnoli^ p, 463,) would

be proved to be true. Since however, the coefficient cos. /. cos. I',

is not a constant quantity such as 0, but [since it equals
-

[cos. (/ /') + cos (^ + ^)]j involves, besides the difference, the

sum of the parallaxes, the rule is not perfectly exact. It, how-

ever, is nearly so, since sin/ , which is multiplied into

cos. / . cos. 1', is a very small quantity.

We have spoken of the general case of the Problem, when the

distance of the centers of two heavenly bodies is to be found.

But, if we speak of each particular case, then the rule is slightly

inaccurate in a solar eclipse and in a transit, but exact in an

occultation, since one of the bodies, the fixed star, is devoid of

parallax.

The Distanct of the Centers is the last step in the mathematical
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process belonging to the subject of the occupation of a fixed star

by the Moon ; and since the process is somewhat complicated,

we will endeavour to illustrate it, and its subordinate methods,

by an Example.

Required the Apparent Distance of Antares from tlic Center of the

Moon at tlie instant of Immersion^ which *uas observed at Paris

in Aprils, 1749, 13 h
l
m

20', Apparent Time. *

(1 .) Right Ascension of the Mid-Heaven*

Converting the time into degrees, and taking from the Tables

the Sun's longitude, we have (see p. 363,)

R. A. of Mid-heaven (A) = 15 58' + 195 20'

= 211 18'

Since, 15 58' = 0's R. A,

and 195 20 = 13h
\
m

20*.

(2.) Altitude of the Nonagesimal> (see 1
st Form p. 364,)

log. sin. 23 28' 22" (obliquity)
- - - 9.60022 f

cos. 48 38 50 (lat. cor. see p. 99,) 9.82000

ver. sin. 301 18 (90 + A) - - 9.68167

29.10189

ver. sin. 17 52 48 (co-lat. obliquity) 8,68395 -
[a]

20.41794= 21og.tan.fl

2. sec. 58 16 54 (0) 20.55845

0] - - - - - B.C8395

20 -f log. ver. sin.pZ = 29.24240

/. p Z (A) the altitude of the nonagesimal is 34 23' 9".

*
Lalande, torn. II, pp. 437, &c.

f Five decimals are sufficient : more, such is the nature of the pro-
cess, would not add to the accuracy of the result.



(3.) Longitude of the Nonagerinial, (see Form p. 365,)
*

p Z (h)
- - 34 23' 9" - - -

log. sin. = 9.75186

Pp - - - 23 28 22 - - - - sin. 9.60022

PZ - - - 41 21 10 (b) 18-35208

Sum = 99 12 41

\ Sum 49 36 20.5 - -
log. sin. 9.88172

- Sum- Pw 41 21 10 - - - - sin. 9.15697

(20 added) 39-03869

(b) 18.35208

2 log. cos. Pp Z - T9J6866 1

.-. Pp Z = 91" 36' 30", and consequently, (see p. 365,)

the longitude of the nonagesimal = 181 36' 30".

Hence, since by the Lunar Tables the longitude of the*

Moon was 245" 31' 42".4, A", or the Moon's distance from the

nonagesimal, (sec Fig. p. G63,)

is 245
l)

01' 42".4 181* 36' 30" ~ 63 55' 12".

(40 Parallax in Longitude , (see p. 366,)

log. 57' 1G''J2(J>9 from Tables) 3.53608
-j __

log. sin. 34 23 9 (A) - - - - 9.75186 (
SU1

^
""

Ar.com. cos. 3 47 58.7 (L D 's true lat.) 0.000963
13^88^

sin. 64 10 f (# + )
- - 9-95427

(rejecting 10) - - - 3.24317 = log. 29' 10"

* The angle /*
/>
Z being nearly 00, is the reason, why it is ex-

pedient to tise the seeoivl, (see p. 365,) of the formula?, which, in the

first instance, gi\cs only half the angle Pp Z For a more full expla-

nation of this point consult Trig. p. 38, &c,

t Ar

(see 1. !<).) = <3'1 55' 12", and, since a is some small

quantity,
it is conjectural/^ taken, in the first trial, equal to 14' 48",

which added to A', makes A' + a = (j4- 10'.
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/. e, or the first approximate value of a, is 29' 10", and

K 1 + t
~ 64 24' 22",

log. sin. 64 '2V 20" (# + - - 9-95515

Sum (see p. 372, 1. 19,) rejecting 10 3.38890

(rejecting 10) 3.24405 = log. 29' 14/.1 ;

,*. , the parallax in longitude, is 29' 14".l.

(5.) Parallax in Latitude* (see p. 367,)

Computation of the first part of the expression,

log. P ....... 3.53608 ? ,o,^>~*

log. cos. 34 23' 9" (*)
- - 9.91059 *

SUm = ^^
cos. T> 4758.7(1,)- - 9.99903

(rejecting 20) 3.45170= log. 47' 9" = first

approximate value of ,

Again,

log. cos. 4" 35' 8".7 (L + ) 9.99861

log. P + log. cos. h - - 3.45267

(rejecting 10) 3.45128-log.47
/

6".7,2'valueof A

Computation of the second part of the expression, (p. 367,)

log.
P x sin. // (see p. 372, 1. 19, 20,) - 3.28794

log. cos. 64 9' 47"
(jC + ~)

- - - - 9.03929

sin. 4 35 8.7 (D*s latitude) - - - 8.9O283

(rejecting 20) - - - - 1.83006= log. 1' 9"

Since the Moon's latitude was south, this last part (!' Q") of the

parallax in latitude must be added 5 consequently, the whole

parallax in latitude () 47' 6".7 + 1' 9" = 48' 15" nearly.

Hence, applying the parallaxes thus found, to the true longitude
and latitude,

I) 's apparent long. =245 31' 42".4 +29' 14".1=240 56'
7
.5

3) 's apparent lat. = 3 47 58.7 +48 15 = 4 30 13.7.

(0.) Apparent Distance of the Moon and Antares^ (see p. 369.)

Long, of Antares(k'} - 246y lO
x

19'
x
.2 - lat. (/') 4 32' 10".5

D's longitude (/)
- 240 56.5 - lat. (/) 4 36 13.7

A"'
- k - 15 22.7 - / - /' 4 3.2
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.-. log, cos. 4 34' 12'YL-A . . 9.9986171
X s

log.
- 15 22.7 2.9650605

Ar.comp.log.O 4 3.2 - ... 7.6140364*

10.5777 140 = log. tan.

log. sec. 75 11 21 (0)
- - - - J 0.5923906

Ar.comp.log.O 4 3.2 7.6140364

log. 951".38 = 2.9783542

therefore the distance required is 15' 51",38.

Thus has been found in an occupation, the distance of a

fixed star and the Moon's center. And a like process will give

the distance of the Sun and Moon in a solar eclipse, and of the

Sun and an inferior planet in a transit. And the only difference

between these two latter cases and the former, is pointed out in

the rule (p. 370,) which directs us to suppose one body to be

without parallax, and the other to be endowed with a parallax

equal the difference of the parallaxes of the two bodies.

The parallaxes in longitude and latitude being known, it is

evident we may deduce the true longitudes and latitudes from

the apparent, as we have the apparent from the true ; and thence,

similarly, deduce the true distance of the star and Moon. And

according to some methods, the true distance is made sub-

servient to the same end, which we shall shew the apparent to

be, namely, the determination of the longitude of the place of

observation. (See Vince, vol. I, pp. 534.)



CHAP. XXXVIII.

On the Transits of I'~wus and Mercury over the Sun's Disk.

WE have already stated in p. 359, that the phenomena of

eclipses, occultations, and transits are very nearly alike in their

general circumstances, and exactly alike in their mathematical

theories. In these theories, the essential problem which is to be

solved, is the apparent angular distance of two heavenly bodies, in

apparent proximity to each other, to a spectator on an assigned

station on the Earth's surface.

In an eclipse and occultation, the Sun's parallax is supposed to

be known . were it supposed to be known in a transit, then there

would be an additional circumstance of similarity between its

theory and those of the former phenomena : for, they would have

same object, and would equally serve to the determination of the

longitudes of places. And, in point of fact, this is the prc sent

state of the case. One transit of Venus has already answered a

special purpose, that of determining the parallax of the Sun, and

future transits may be either used, in confirming the accuracy of

that determination, or for the general purposes which eclipses, in

their extended signification, (see p. 359,) are made subservient to.

It is the object of the present Chapter to explain the use that

has been made of the transit of Venus ; to shew the special use of

that phenomenon in determining the important element of the Sun's

parallax.

The Sun's parallax is the angle subtended at the Sun by the

Earth's radius ; that angle can be found, if another subtended by
a chord, lying between two known places, can. And to find this

latter angle is the object of the method given in Chap. XII, p. 9,5.



3?6 Mode of computing Parallax.

The angle ASB, is the object of investigation. Now, in the

instrumental measurement of that angle an error of three or four

seconds maybe committed ; which, in the case of the Moon, whose

parallax is about 1, is of little consequence but a probable error

of that magnitude in the case of the Sun, whose parallax is less

than nine seconds, would render the result of the method so un-

certain, as entirely to vitiate it.

Preserving the principle of the method, Astronomers have

sought to correct its error, by computing instead of instrumen-

tally measuring an angle such as ASB> or an angle from which
it may be immediately deduced.

Suppose, for the sake of illustration, S to be a point in Venus's

disk, and J5S' continued to be a tangent to the Sun's disk:

then the direction of a line AS would be to the left of the Sun's

disk. In other words, the moment of contact or ingress would be

present to a spectator at By but to a spectator at A would not

have arrived. It would arrive some minutes after, when by the

retrograde motion (see p. 246) of Venus^ the line AS, always a tan-

gent to the disk of Venu* , should become one to that of the Sun . Sup-
pose AS in this latter direction (to the right of its present position)
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to intersect U.y produced in some point .S
v

situated in the Sun's

disk : then, the angle SAS' is proportional to the time elapsed
between the contacts at B and A : that time is known from obser-

vation and the ascertained difference of longitudes of the places B
and A : suppose it t, and let h be the horary approach of Venus to

the Sun (about 240'') ; then,

1 : t :: h : ht, the angle #/fV,
which is by these means computed.

HAtf being known, SS' A, or AS' B, may be determined from

the known ratio between SA and SSf
. (See Chap. XXIV.)

The preceding is a very imperfect description of the method
that was actually used in the problem of the transit of Venus. But
it shews the principle of the method and the reason of its superior

accuracy : for, since the time of contact can be observed as nearly
as two seconds, or since the limit of the error in time is two seconds,
and since the excess of the horary motion of Venus above the

i '/

Sun's is 240'', that is, X' in I'
11

, or in r, an error of 4^
!.>

(2
s

at each place of observation) would only cause an error of

4"
? in the estimation of the angle SAS', and an error in the esti-

1 5

mation of SS' A, (on which the parallax depends; less in the pro-

portion of SA to 5 5', that is, in the case of Venus> of one to two

and a half nearly.

The imperfection of the method, as it has been described,

consists in this ; that it requires to be known, what it is very
difficult to determine, the difference of the longitudes of the

places A and B. For, t (see p. 361,) is the difference of actual or

absolute time, which depends on the reckoned time at each place

of observation, and the difference of the longitudes of those

places. If the contact was observed at Greenwich at 3 h 40m, and

at a place 15 east of Greenwich, at 4 h
41'

n
, the difference

in absolute time would be only l
m

;
since l

h
, in the reckoned,

is entirely due to the difference of the meridians.

The longitude of the Cape of Good Hope, which had been

long the station of an European colony, and where the transit of

176 1 was observed, was known to a considerable degree of accuracy.
That of Otaheite, where it was expedient to observe the transit of

3 B
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1769, Was not known. And, from the difficulty of ascertaining
with sufficient precision this nice condition of the longitude, Astro-

nomers, by modifying their process of calculation, have got rid of it

entirely. Instead of observing the mere ingress, they observe the

duration of the transit, and from the difference of durations, at dif-

ferent places, deduce the quantity of the Sun's parallax.

The difference in the durations of transits does not amount

to many minutes. To make it as large as possible, it is ex-

pedient so to select the places of observation, that, at one, the

duration should be accelerated, at another, retarded beyond the

true time of duration, which is supposed to be that which would

be observed at the Earth's center.

If P were Venus, e the Earth, W a place towards the north

pole (Wardhus for instance) and T (Otaheite) towards the south,

and b'V, &c. the Sun's disk, then the true line of transit, seen

from the center would be VU : from W, v u would be the line ;

from J, V U'. If T should be the true duration of the transit.

<or the time of describing VU, then the time of describing v u

nearer to the Sun's center than VU, would be T -f / : of describing

V U' more remote than VU from the Sun's center, T t
f

: and

accordingly the difference of the durations of the transits seen from

T and W, would be T-f- 1 - (T *')
= * + t'. This, as it i*

plain, is entirely the effect of parallax.

We now purpose to enter farther into the mathematical process

of the subject ; and to shew, how from T, /, and t
f

computed, the

Sun's parallax may be determined.

In this process we shall have a proof ofwhat we have more than-

once asserted, namely* the similarity of the mathematical theories of

eclipses, occultations, and transits. For, T, T H- /, T tf will be
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computed by means of the formula employed in Chap. XXXV,
p. 345. And the only difference in the computation of Tand of T-\-t

consists in assuming in the former, the angular distances seen from

the Earth's center and given by the Astronomical Tables, and in the

latter, those angular distances corrected for the effects of parallax

in longitude and latitude.

In the above-mentioned formula, the time and the apparent an-

gular distance of two heavenly bodies were involved. And the

diagram employed on that occasion will suit the present*. Instead

of E and M representing the centers of the Earth's shadow and

the Moon, let them represent the centers of the Sun and Venus ;

then, EM will represent the distance of their centers previous to,

or after a transit : and, the Tables of the Sun and of the planets,

will, as in an eclipse (see p. 345,) furnish us with quantities ana-

logous to x, my HJ &c. Suppose then, at the time of conjunction,

2's lat. - - - A - - -
horary motion in lat. - - n

\

2 's long. ---/.-- horary motion in long.
- - m

's horary motion in long.
- - j*

then, forming an equation, precisely as the one in p. 34?,3, was

formed, we have

V + <2*nt. sin.
2

== (S A2
) . sin/

whence, / = -i
[ x sin.

2
sin. (** *2 cos.

2

6)]

* The same diagram will serve for an occultation, M being tlio

Moon, and E the star.
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t being the time from conjunction, and c the distance of the

centers.

Substitute in this equation, instead of c9 the sum of the appa-
rent semi-diameters of the Sun and Venus> and the resulting time

will be that of the first or last exterior contact : substitute the dif-

ference, and the resulting time will be that of the first or last interior

contact. The duration of a transit is the difference between the

times of the last and first exterior contacts, and is to be found

exactly as the duration of an eclipse was in pp. 348, &c.

The times which we have mentioned as resulting from the

preceding equation, would be noted by a spectator in the Earth's

center : they belong to the points Vy J7, and the line VU. But to

a spectator at T, for instance, the contact instead of V would

appear to take place at V' ; and, it would appear to happen at a

time, different from T the computed time of its happening at V\
at T -f t', for instance, f being a small quantity and entirely the

effect of parallax.

The latitude and longitudes of Venus and the Sun perpetually

altering, those quantities at the time T' + /' from conjunction
would be different from what they were at the time T' : their

change would be proportional to t'. The time T' being computed
from the preceding equation, the latitudes and longitudes may
be taken from the Tables, or easily computed from their values

at the time of conjunction. At this latter time, we have sup-

posed the latitude of Venus to be A. It is convenient for us to

use that symbol (\) to denote the latitude at the time J' of

contact ; let also the corresponding longitudes of Venus and the

Sun be /, /'
; and the horary motions w, ;/, s : then (see p. 345,)

at the time I* from contact,

9 's long. / -f mtr - - 7 's Int. - - - \ + // /,

Q's long.
- -

-/'-(-. /'.

And accordingly, the distance of the centers (such as EM) would
be the hypothonusc of a right-angled triangle, of which the sides

respectively, are (/ -f mtf
) (/' + j-f), and ^ -f /; /'.

These angular distances belong to the center of the Earth ; but

when they arc diminished, as in the cat>e of an occultation, (see

p. 3e'8,)by the parallaxes in longitude and latitude, they will belong
to A spectator on the Earth's surface. Let the parallaxes in longitude
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be , a
;
in latitude o,

'

; then, the sides of the right-angled

triangle are

(/ + m t
'

)
-

(/' + /*' - a'), and x + n t
r - 3 + f9

or / - /' + (m j-X - (* 0i and x -f nt> -
($
- y).

The hypothenuse is the distance of the centers. But, the

time is that at which a contact of the limbs of the Sun and Venus

is seen ; if the contact therefore be an internal one, (when the

whole of Venus's disk is just within the Sun's,) the distance will

be the difference of the semi-diameters of Venus and the Sun :

let it equal A, then,

A*= [/-/'H- (m -
s)t' + <*' ]* + !> + nt' (*

-
$0]*.

In which expression, a -

a', 2 ^, and /' are very small quan-
tities

; rejecting therefore their squares and products in the ex-

pression expanded ;

A* = (/ /T + <2(7 /') X (i _,)/' 2 (/ OX (
-

*')

0] +x* + 2xf 2A() -
y).

But, since by hypothesis, (see p. 380, 1. 2?,) /, /', &c. are the lon-

gitudes, &c. at the time of contact seen from the center, we have

^ ^ (/- /'V +x%
thence deducing /' from [/?],

In this expression, /, /', x, *;;, /, ;/, are to be computed from the

Tables, and the parallaxes in longitude and latitude, (a, a', $, y)

from the expressions in pages 3()(>, IJ()7, that is, if P, P7

represent

the horizontal parallaxes of Venus and the Sun,

P , sin. h . sin. k
, __ Pf

'. sin. // . sin. ^
~~

cos. lat. V 1

^ = P cos. // . cos. V 's app. lat. P sin. // . sin. ? 's app. lat. X

cos

^ = Pf
cos. A (since Q's apparent latitude is nearly = 0.)

At the time of a transit, Vtnus** latitude is very small, and her

longitude nearly equal to that of the Sun's, the coefficients of P, P',

therefore, in the expressions for , a', and for J, ^, must be nearly

equal. Let these coefficients be a, Jy b, V respectively, then
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(I f)(m -J) -I- *
'

or, since a P - '

P' = a' (P P') + (0
-

a') P, and (a
-

') P,
as well as ( V) P, are very small quantities and may be

therefore neglected, we have,

From this equation, if t' should be known from observation,

P P', the excess of the parallax of Venus above that of the Sun,

(which is the object of investigation,) could be determined. We
must consider therefore, by what means f may be ascertained.

The Astronomical Tables, from which the quantities, /, /', &c.

are supposed to be taken, are computed for Greenwich. For

such a place, let the time of the conjunction of Venus and the

Sun be T$ then at any place to the west of Greenwich and by a

longitude M (expressed in time) the reckoned time, at which the

conjunction would be seen from the center of the Earth would be

T M ; the time of internal contact, seen also from the center,

would be T M + T' \
and the time, at which the contact would

be seen from the place of observation (whose longitude is M)
would be

T- M + T' + t'.

Now, the observer by means of his regulated clock is able to

note this time j suppose it //', then

f = H f - T + M + J/, and consequently,

,

(/
/ ) (m

= /(P - PO, / representing the coefficient of P - P'.

From this equation P P' could be determined, if My the

longitude of the place, were known. But, for the reasons alledged

in p. 378, we must seek to dispense with that condition. This

is simply effected by observing the last interior contact, that is,

the one immediately preceding the egress of Venus's disk from the

Sun. Let the quantities analogous to T', H' belonging to this last

contact be T", H"> and the coefficient of P~P' (analogous to/)

be/'-, then,
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H' - T + M - T' = / (P P')

#" - r + M - r" = /' (P - P')

consequently,

(H'~H") (Z" T") = (/ /') (P P) [A]

This expression is deduced by observing at the same place the

times of ingress and egress. If we take a second place of obser-

vation, then there will result an equation similar to (/*), that is,

a;
-

H,, = T> - T =
(/; -/j P -

P',

and subtracting this from the former (//),

whence results P P' : a value obtained from the difference of

the durations of the transit.

The parallax is inversely as the distance ; but, by observation

and the Planetary Theory, (see Chap. XXIV,) ths, ratio of the

distances of the Earth from Venus and the Sun, is known, and there-

fore the ratio of P to P/
5 let it be as g : 1 , and let the coefficient

of P P' in (//) be q, the right hand side being
= A

;
then

and P=

This is the value of Pr when the Sun is at some distance

from the Earth. At the mean distance (1)

0's horizontal parallax (nearly his mean) = P'.

The preceding formula, applied to the transit of Venus which

happened in 1769, would give

P P'~
;-

H/ 16//
x 1":=21

65.72962

* This last operation, although unnecessary in the preceding simple

statement, is not so in practice : since, by means of it, the errors of the

Tables introduced into the calculation a* arbitrary quantities are got
rid of.



384 Transit of Venus.

And the Astronomical Tables, at the epoch of the obser-

vations, gave

's distance from
(?)

- - - - 1.01515

9 '$ distance from .7CG19

and therefore P- 1 =r ~
, and5 28896

P'the Sun's parallax = 31 ''.5 128 X ^^ = 8
7
.572lr

72619

and (see p. 383, 1. 20,) the Q'shor. par.= 8' .57 I x 1.015I3=8 x/.70l7

In the fraction - -L.
( P P/) the numerator is ob-

6.3.7

tained from observations on the times of contact. If that nume-
rator had been 1416 6

%

o.72962, then the quotient, instead of

being 21".5428, would have been 20".5428. In other wofds, a

difference of 65 3.?2962, made in noting the times of the transit,

would have produced an error of one second only in the difference

of the parallaxes, and consequently, an error in the Sun's patfallax

less in the ratio of 28896 to 72619, or (of 2 to 5 nearly). Of,
what amounts to the same thing, it would require ati error in

time equal to 164 s (= 65.7 x ~) to have produced an error

of I" in the value of the Sun's parallax.

The special Astronomical use of the transit of Venus is, as it

has been observed, the determination of the Sun's horizontal

parallax. But, that important element being once determined, the

transit of an inferior planet, even with regard to its use and object,

may be made to enter the class of eclipses and occultations, and

like them be made subservient to the determinatiori1 of tha longi-
tudes of places.

That a transit may be adapted to this latter purpose, is evident

from the equation of p. 382, namely,

H' T + M -f T =f. (PP')>
for in that, if P P' be supposed to be known, M, the longitude
of the place of observation, is the only unknown quantity.

Transits, however, are phenomena of such rare occurrence,
that their use, in this latter respect, is very inconsiderable.
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The fixed stars, the Sun, the planets, and the Moon, with their

peculiar and ^nnected theories, have already been treated of.

There is another class of heavenly bodies, called Comets, which

ought not to be passed over. Yet their strictly mathematical

theory is so difficult, that, instead of attempting to put the Student

in possession of it, we shall content ourselves with acquainting
him with some of its general circumstances, and with referring

him to ampler sources of information.



CHAP. XXXIX.

On Comets.

COMETS are bodies that occasionally are seen in the heavens,

with ill-defined and faint disks, and usually accompanied with a

eoma or stream of faint light in the direction of a line drawn from

the Sun through the Comet.

Comets resemble the Moon and planets in their changes of

place amongst the fixed Stars : but, they differ from them in never

having been observed to perform an entire circuit of the heavens.

There are also, other points of difference ; the inclinations of the

planes of their orbits observe not the limits of the Zodiac, as the

planes of the orbits of the Moon and planets do ; and, the motions

of some of them are not according to the ord-r of the signs.

Comets, like planets, move in ellipses, but, of such great eccen-

tricity, that thence has arisen a ground of distinction, and Comets
are said to differ from planets, because they move in orbits so eccen-

tric. The eccentricities of those that have been observed have
been found so great, that, it has been found, parabolas would

nearly represent them.

What are called the elements of a Comet's orbit are less in

number than those of a planet's ; they are only five. It is impossible
from the observations made, during one appearance of a Comet, to

compute the major axis of its orbit and its period, and conse-

quently the area described by it in a given time : what Astronomers
seek to compute, and what they with difficulty compute, are the

perihelion distance-, its place, or longitude; the epoch of that

longitude 5 the longitude of the ascending node, and the inclination

of the orbit.

The elements of the orbits of planets are capable of being deter-

mined by observations made on the meridian : by longitudes and
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latitudes computed from right ascensions and declinations. But,

Comets require observations of a different kind : by the rotation of

the Earth they are brought on the meridian, but, (from their prox-

imity to the Sun whilst they are visible,) not during the night, when
alone the faintness of their light does not prevent them from being
discerned. They must therefore be observed out of the meridian j

and, in that position, the differences between their right ascensions

and declinations and those of a known contiguous Star must be

determined.

It is difficult to make these latter observations with accuracy

by reason of the doubtful and ill-defined disk of the Comet ; and

a small error in the observations, will materially affeit the elements

of the orbit.

The rigorous solution of the problem of the elements of a

Comet's orbit requires three observations only. But then, the

solution is attended with so many difficulties, that in this, as in

other like cases, Astronomers have sought, by the indirect methods

of trial and conjecture, to avoid them. If, what always happens,
more than three observations are obtained, the redundant ones are

employed in correcting and confirming previous results.

The periodic time, as we have observed, cannot be determined

from observations during one appearance of a Comet. If known, it

can only be so, by recognising the Comet during its second appear-
ance. And the only mode of recognising a Comet, is by the

identity of the elements of its orbit with those of the orbit of a

Comet already observed. If the perihelion distance, the position
of the perihelion and of the nodes, the inclination of the orbit,

are the same or nearly so, we may presume, with considerable

probability, that the Comet we are observing, has been previously
in the vicinity of the Sun ; and that, after moving round by the

aphelion of its oval orbit, it has again returned towards its peri-
helion distances.

Comets not having been formerly observed with great accuracy,
it so happens, that the period of one alone, that of the Comet
observed in 1682, 1607, and 1531, is known to any degree of

certainty. Its period is presumed to be about 76 years. Assuming
the Earth's mean distance to be unity, the perihelion distance of

the Comet was 0.58, and the major axis of the orbit 35.9. The
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inequalities which are noted in its period are supposed to arise

from the influence of some disturbing forces *.

The chief business of the present Treatise, hitherto, has been

with calculations founded on observations made on the meridian.

But, there are many important processes dependent on angular
distances observed out of the meridian : such, for instance, as those

for ascertaining the latitude and longitude of a ship at sea. The
nature of the observations, in these cases, require a peculiar instru-

ment ; which, besides being adapted to the measuring of angular
distances out of the meridian, may be held in the hand of the

observer, and used by him, even when made unsteady by the motion

of the vessel. The description and use of such an instrument will

be explained in the ensuing Chapter.

* On the subject of Comets, see Laplace, Mec. Celeste^ Liv. II, p. 20,

&c. Biot, torn. Ill, Add. p. 180, Englefield : Cagnoii, p. 429, Newton,
Arith. Univ. Sect. 4, Chap. II, Prob. xxx.



CHAP. XL.

On Hartley's Quadrant and the Sextant.

THE larger figure i? intended to represent a Sextant, as it is

usually fitted up, with its handle //, the telescope J, the micro-

scope M moveable afyout a center, and capable of being Adjusted so

as to read g^the divisions on the graduated limb AB. The less

Figure is intended as a sketch of the larger and for the purpose of

explaining its properties.

LCG and IV (in the large Figure) must be supposed to repre-
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sent the edges of two plane reflectors ; the planes of which are

perpendicular to the plane of the instrument in which the gra-

duated limb and the connecting bars He. The upper part of the

reflector JV, which is fixed, and called the Horizon glass, is transparent

and free from quicksilver, as in /; (in the small Figure) which is

represented as N appears when viewed through the tube of the

telescope T; the other reflector LCG (the index glass) is attached to

the limb and index /, and with them moveable round a center

placed near C. Now, the instrument is so constructed that, when
the index I is moved up to A, and points to o on the gra-

duated arc, the planes of the two reflectors LCG and N are

exactly parallel to each other. In the small Figure, lg represents

this position of LG.

In this position of the index / and the reflector LG, if the eye
at E (small Figure) look through the upper part of the horizon

glass at N9 and perceive a distant object such as a Star (^k), it will

also perceive the image of the same Star reflected from the under

and silvered part of N. For, by hypothesis, the reflectors are

parallel : and since the Star is extremely distant, two rays from it

(aN,bg) falling on N and LG must be parallel j therefore the

latter ray, after two reflections, the first at LG, the second at JV,

must proceed towards the eye in the direction of a N produced.

Suppose now, the
(eye still looking through the telescope at the

same object (the ^c), the index /, the limb GI, and with them the

reflector LCG, to be moved from A towards B (LGI is their

position in the small Figure) ; then, the Star ^ can no longer be

seen by two reflexions, but some other object such as the }) may :

and if so, two objects, the ^ and I> , would be seen nearly in con-

tact ; the former in the upper part of the horizon glass N, the

latter on the lower silvered part.

In consequence then of this translation of the index / from A
where it was opposite o, to another position between A and B ;

two objects ( % and J> ) inclined to each other at a certain angle

(bgc in small Figure) are brought into contact. If, therefore, the

arc moved through (AI in the small Figure) bore any relation to

the angular distance of the two objects, and we could ascertain

such relation, we should then be able by measuring AI, or by

reading off its graduations, to determine the angular distances of
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the two observed objects.
This relation we will proceed to

investigate.

2)

I

In the first position (G) both the direct and the reflected rays

from >k are seen in the direction of the telescope (T) ; the direct

ray from % is always seen in the same direction : but, in a new

position, the reflected ray (in order that J> may be seen) must also

be seen in that direction ; therefore, the ray must come from the

under part of N in the same direction : and therefore, since N is

fixed, the ray must always be incident on N in the same direction,

and consequently be always reflected horn LCG in the same direction.

What we have to determine then, is reduced to this. Tofind the

inclination of two incident rays, sitchy that the position of the reflector

(from LG to \^for instance^) being changed^ each shall be reflected

into the same direction.

Let the first incident ray (and consequently the reflected ray) be

inclined to the reflector at an angle = A : let the reflector be

moved through an angle = 0, and towards the reflected ray : (for

instance, from the position g I to GL in small Figure), then the angle

between the reflected ray and the plane in its new position = A 6

between the first incident ray and the plane - - = A .4- 0.

But, by the laws of reflection, the second incident ray must form

with the reflector, an angle equal to that which the reflected ray

does ; an angle, therefore, = A 0. Now, the difference be-

tween the angles which the incident rays form with the same

position of the plane, is no other than the inclination of the in-

cident rays, equal therefore,

(A -f 0) - (A 0), or, 2 0.
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This is the important principle in the construction of the in-

strument. For, suppose the arc AB to be one sixth part of a

circle, and the index /, when the two objects are seen in contact,

be one third of the way between AB ; then, the inclination of the

two reflectors (for the reflector N is always parallel the first

position lg) would be one third of one sixth of SCiO
3 or 20 : and

accordingly the angular distances of the two objects would be 40.

Instead of dividing AB into a number of degrees proportional to

its magnitude (60 for instance, ifAB~ ~th circumference), it is

usual to divide it into twice that number ; then, the number of

degrees, minutes, &c. intercepted between o and the index will at

once determine the angular distance of the two objects.

The objects must be brought into contact : in the case of a

Star and the Moon, the former must be made just to touch the

limb of the latter : in the case of the Sun and Moon, their two
limbs must be made to touch.

For the sake of illustration, we have supposed the two objects
to be a Star and the Moon : and in practice, those are frequently
the observed bodies : but, the instrument is capable of measuring
the angular distance of any two objects and lying in any plane :

the Sun and Moon, for instance, and in such cases there are

certain darkened glasses, nearN9 and between N and L (see Fig.)

contrived for the purpose of reducing the Sun's light to that

of the Moon's, or the Moon's to that of a Star's.

The upper and lowest points in the disks of the Sun, or of the

Moon, may be considered as two objects; therefore, their distances

which are the diameters of the Sun and the Moon, may be mea-
sured by the described instrument. Instead of the points in the

direction of a vertical circle, we may observe two opposite points
in an horizontal direction ; and accordingly, we can measure the

horizontal diameters of the Sun and Moon.

If we make a Star, or the upper or the lower limb of the Sun
or Moon, one object, and the point in the horizon directly beneath
the other, we can measure their angular distance, which, in these

cases, is either the altitude of the Star, or the altitude either of the

upper or the lower limb of the Sun and Moon. In this observation,
the horizon is viewed through the upper part of the reflector N,
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which is the reason why that is called the A0rz'z0-glass. At sea,

where the horizon is usually defined with sufficient accuracy, the

altitude of the Sun or of a Star may be taken, by the above method ;

but at land, the inequalities of the Earth's surface oblige us to have

recourse to a new expedient, in the contrivance of what is called a

a False Horizon. This, in its simplest state, is a bason either of water,
or of quicksilver : to the image of the Sun or other object seen there-

in we must diuvf- the telescope T, and view it directly through
the upper part of JV, and then rr?T^

; backwards, or forwards the

limb and index, till by th^ louMe reflexion, the upper or the under

limb of the reflected St ?o brought into contact, or exactly made to

touch the under or rhe upper limb of the image of the Sun seen in

the False Horizon. The angle shewn, by the instrument is double

either of the altitude of the Sun's upper or under limb : subtract

or add the Sun's diameter, divide by two, and the result is the

altitude of the Sun's center : all other proper corrections, instru-

mental as well as theoretical, being supposed to be made.

It is evident from the preceding description, that the plane of

the instrument must be held in the plane of the two bodies whose

angular distance is required : in a vertical plane, therefore, when

altitudes are measured; iu an horizontal, when, for instance, the

horizontal diameters of the Sun and Moon are to be taken. In the

management of the instrument, this adjustment of its plane, or the

holding it in the plane of the two bodies, is the most difficult part.

The instrument is to be held by the handle Hy and generally is,

in the left hand of the observer : his right being employed in moving
and adjusting the index, its connected limb, and the reflector

LCG. Its great and eminent advantage is, that it does not require

to be fixed, nor that the observer using it should himself be steady.

It is the chief instrument in Nautical Astronomy : since by its

means alone, the position of a vessel at sea may be determined.

The instrument represented and described in this Chapter is,

the sextant : which is an improvement on the quadrant, called, from

its inventor, Hadleifs Quadrant. Besides these, on the same prin-

ciple, but of better contrivance, there is the refecting circle *
:

* Invented by Mr. Troughton : for a description of it, see

Encyclopedia, new edit. Art. Circle.
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also, Borda's reflecting repeating circle, on the principle of Mayer's,

(See Mem. Gottingen, torn. II, also Tabula Motuum, &c. 1770).

We subjoin two instances :

Angular Distance of the Surfs Center, and of the Horizon (at Sea,)
'

or (sec p. 392.) Altitude of the Surfs Center.

Alt. 0's lower limb 49 10' 0" ^
0]0's semi-diameter 15 51 Distance of Eastern andl

West, limbs, or Q's(3l
49 25 51

* Refrac. (Chap. XL) 43

true alt. 's center 49 25 8

horizon1
.. semi-diam.J

[0] Q's semi-diameter 15 51

Altitude of the 0V Center, by means of*thefalse Horizon, (seep 393,)

By inst. 0's upper limb 100 Of 47"

Apparent altitude .--. 50 1 23.5

[] 's semi-diameter -------. 015 50

49 45 33.5

Refraction - 00 43

True alt. 0's center 49 44 50.5

's horizontal diameter .......31' 40"

[t] @'s semi-diameter -------- 15 50

* The Nautical Tables of Refraction include within their results the

correction for the Sun's parallax.



CHAP. XLI.

On the Mode of computing Time and the Hour of the Day ; ly

lite Suit ; ly the Transit of Slftrs ; by equal Altitudes; by the

Altilude. of the Sun or of a Star.

WE will begin with those methods which depend on ob-

servations made on the meridian.

Transit of the Sun over the Meridian.

When the Sun's center is on the meridian, it is true or appa-

rent noon. It is determined to be there, by means of a transit

instrument, (see Chap. XV.) With this, observing the contacts of

the Sun's western and eastern limbs with the middle vertical

wire (see p. 48,) note, by means of the clock, the interval of

time, and half that interval added to the time of the contact

of the western, or subtracted from that of the eastern, will give

the time at which the Sun's center is on the meridian. For

greater accuracy, the times of contact of the Sun's limbs with

the vertical wires to the right and left of the middle one may be

noted.

The time thus determined is apparent noon ; in order to

deduce the mean time, apply the equation oftime, (see Chap. XXII.)

For instance, the equation on Nov. 8, 1808, is stated in the

Nautical Almanack to be 16m 3 S

,7, therefore when the Sun's

center on that day was on the meridian, the mean solar time

was 12h - l6m 3 3

.7, or 11^ 43 n
56', 3 ,

J2 h

being supposed to

denote the time when the center of the mean Sun is on the

meridian.
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Transit of a fixed Star; of the Moon ; of a Planet over the

Meridian.

The mean Sun leaves a meridian and returns to the same in

24-
h
, describing 36CT 59' 8".3

;
59' 8".3 being the increase of his

mean right ascension in that time. Since the mean Sun, by
ks definition, moves equably, the time from mean noon must

be always proportional to the Sun's distance from the meridian.

If a star then, were on the meridian, the time would be pro-

portional to the Sun's angular distance from the star ; it would

be proportional therefore, to the difference of the right ascensions

of the star and the Sun, at the time when the star is on the

meridian.

The Sun's right ascension in the Nautical Almanack is

expressed solely for noon, that is, when his center was on the

meridian of Greenwich ; and since that right ascension is con-

tinually increasing, it will be greater when the star comes on

the meridian, and the Sun is more to the west, than it was at

noon. In the interval between the transits of the Sun arid Star,

the former will have moved to the east, and towards the latter,

by an increase of right ascension proportional to the interval.

The angular distance therefore of the Star am! Sun, or the dif-

ference of their right ascensions, when the former is on the

meridian, is

sfc's R. A. O's R. A. at preceding noon increase of 's R. A.

and, to this angular distance is the time proportional.

The time from noon is nearly proportional to the >jc's right

ascension 's right ascension at noon ; therefore the increase

of O's right ascension is nearly proportional to that angle. If

a therefore denote the increase of the Sun's right ascension in

C4' h we have, the time =

*'s R. A. - e's R. A, x a.
24

[making D = *'s R. A. - 's R. A.]
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EXAMPLE.
A Star in Capricorn wtiose R. A. = 20h 30m 7 w^ <w the Meri-

dian at Greenwich, Nov. 8, 1808. Required the time.

sfc's R. A. --------- <2O
h 30m 7*

By Naut. Aim. o's R. A. (noon of Nov. 8.) 14 53 52*

*'s R. A. o's R. A. (D) ....... 5 36 15

0's R. A. Nov. 9...... 14 57 53*5*

8. ----- 14 53 52

4 1.5

* The Sun's right ascension is expressed in time, the Moon's in de-

grees, and to be expressed in the hours, minutes, &c. of sidereal time, must

be converted into such at the rate of 15 for l
h

; for ~ = -i .

3uO 1 5

For facilitating this operation and its reverse, appropriate Tables are

provided ; but, it may be, nearly with asmuch ease, effected by dividing
and multiplying by 4. Thus, to conVert7 h 2lm 5(5\2l=7 h 2lm 56* 12'"

into degrees, kc. begin with the minutes, and take the fourth of them,

then, of the seconds, c. reckoning the minutes of the quotient as

degrees, the seconds as minutes, &c. thus:

4)21
m 50s

12"'

5 29' 3"
But 7

h = 105

110 29

For the reverse operation, multiply by 4, reckoning the seconds of
the product as thirds, the minutes as seconds, &c.

Thus - - 3o>0 8' 34." 30"' - [36 = 30 + 6 = 2h+ G]
4

2h 24m 34s
1 3" "o

or dividing 18'" by G to reduce it to a decimal, the product is

2h 24m 34'.3.

The reasons of the two operations are these ; in the first we ought

to multiply by 15, or, which is the same thing, by ? therefore we

may divide by 4- and dispense with the multiplication by 60, by merely
raising the denomination of the quotient 5 for CO X 1" == 1'. In
the second case, we ought to divide by 15, or which is the same

thing-,
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.. the apparent time =
rt ^ n , M 5" 36m 15 ?

. = 5" 35'"

and the mean time =
5h 35m 19

S
.3 - 16m 2s

(the equation of time) =5h
!Q
m 17\3

Since the increase of the Sun's mean R. A. is 59' 8''.3 in

24 hours, a meridian of the Earth describes, in that time,

360
360 59' 8".3 j therefore it describes 360 in, 24h x ^7^l-o>'o^Q >ooLf <oy o .c>

or in 23h 56m 4/'.09 ; this is the time of the Earth's rotation, or the

length of a sidereal day, expressed in mean solar time. If the Sun,
therefore, and a Star were together on the meridian on a certain

day, on the succeeding one, the Star would return sooner, or more

quickly, to the meridian by 3m 5,/.9 of mean solar time ; on this

account, stars are said to be accelerated. The acceleration on mean
solar time therefore, when the Star and Son arc distant by
360, or by 24h

of sidereal time, is 3"' 55\909 j when distant

by 180% or by lCh
of sidereal time, it is l

m
57".955 ; when distant

by 60, or 4h
, it is 39\388, and generally the acceleration is

*'s R. A. - 's R. A.--" m

This is only another mode of expressing the rule given in p. 396 ;

instead of the increase of the Sun's mean it. A., in 24 hours of

mean solar time, we took then the real increase between two ap-

parent noons.

There are Tables constructed for the acceleration of stars on mean

solar time, which render the computation of the hour, by means
of the transit of a fixed star, very easy ; the rule is, the time =

*'s R. A, 's R. A. - acceleration.

Thus, in the former instance,

jfc's R. A. - - - - - 20h 30m 7
X'

Nov. 8. O's mean 11. A. - - - 15 9 57.3

5 20 9.7
Acceleration - - 59.3

Meantime ----- 5 19 17.4

1 4-

thing, we may multiply by ~ or
-j

; therefore, we may multiply

solely by 1, and dispense with the division by GO by merely lowering
j/

the denmiination of the product; for ^- = l
x
'.

oO
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The right ascensions of the Sun and of tlxe stars, are always

expressed in sidereal time ; and, care must be taken to distinguish

the hours, minutes, &c. of that time, from the hours, minutes, &c.

of mean solar time. If we subtract, from an angle expressed in

the symbols of sidereal time, the acceleration, the remainder is

expressed in mean solar time. Thus,

A star is to the east of the meridian 30 30', or 2h
Q' 0"

The acceleration, or the Sun's motion in 2h
Of - 19.99

2 1 40,01

therefore in2h
l
m

4?0
S
.01 of mean solar time, the star will be on

the meridian.

The time is proportiona
1
to a less angle than the difference

of the right ascensions of the Star and the Sun ; or, stars are

accelerated, because the Sun, in the interval between his transit

and that of the Star, moves towards the latter. In the case of the

Moon then, the time must be proportional to a greater angle

than the difference of the Sun's right ascension on the pre-

ceding noon, and the Moon's 5 or, the Moon must be retarded;

because, in the interval between the transit of the Sun and

that of the Moon, the latter by her greater motion in right

ascension, has increased her angular distance from the former.

It would be easy, as in the former case, to compute the hour

from the Moon's transit over the meridian, (or what is the same

thing, to find the hour of the Moon's transit), but instead of

it, we will give a formula applicable to all cases :

Let the increment of Q's R. A. in 24?
h be - - - a

of a % , or of the J , or of a planet
- - - - A

Let also the difference between the R. A. -\

of the heavenly body and that of the Sun atl - - t

the preceding noony expressed in sidereal time, bej

then, if a = A> the hour of transit will be proportional to /

if a > Ay
----- to some less angle

- / T

if a < - - .---to some greater
- / +T

Hence in the first case, which can only happen with a planet,

the time of transit is proportional to / ; that is, if the Sun's right

ascension when on the meridian be 30 3(y, or 2h 2m less than

that of the planet, the latter will be on the meridian at 2h V*

of solar time.
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In the second case, a > A
A * ~ A

24 : a A ;: tr : r; .-. r = t X ^ + a _^
In the third case a < A

A - a
24> : A - a :: t {- r : ?; .-. T =: t x ,777;

-

^t ~r" <* -""* *

Hence, in the second case, the time of transit ^= / ^ x 7

, i A ft ft A
in the third, t + t x =r.-r > or, t t x ^2b +a~ A y y 2

therefore, in both cases,

the time of transit / 1 -r -
-,

L 24 -ffl-y/J

r, a-di/a-A^ Sa~A\ "1

(expanding) =*
^i^_.

+
(^r ^) -( ) +&c.J

Hence in the case of a fixed star, when A = 0, the

*rf / /z \ a

time of %'s transit=^ ^ -h V^^y t &c.

in which the two first terms (which are sufficient) give the rule

of computation used in p. 396, 1. 28.

In the case of the Moon, a is < Ay therefore all the terms are

additive, and

A a /A a\
the time of }) 's transit = t H--^p * + (

~
04} )

*t + &x\

In the case of a planet, # may be less or greater than A ;

if equal, then the time of transit = /, as before, p. 399, 1. 34.

There is one case which has not been mentioned, that in which

a planet is retrograde (see Chap. XXIII). In this case, the

approach of the Sun and planet is greater than that of the Sun and

a star, and the same, as if, instead of the Sun having a motion in

R. A. equal to 0, we suppose him endowed with a motion equal to

a+ A ; substituting therefore in form, p. 400, 1. 9, a+ A instead of a

time of the planet's transit s= j *
~^r

. / -4- < (
^M-

J * .t~ &c.

When the planet is stationary* its hour of passage is

evidently the same as that of a fixed star which has the same

right ascension.
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EXAMPLE.

Let it be required tofind the time of the Moon's passing the Meridian

of Greenwich, June 13, 1791.

June 14, 3) 's R.A. . 15 h 43m 32 s 0's It. A. .5h 30m 38>

13, ditto 14? 42 32 ditto 5 26 29.1

1 1 0=^f 4 8.9=0

June 13, D'sR.A.. 14 42 32 A . . . I I

G'sR.A.. 5 20 29.1 a . . .0 4 89

9 16 2.Q=* 56 5\.lA-

x. time
'

^of }) 's transit

A a 9h
16m 2S

.9
'

~~24T~'
r

24 X

Q 38 49 7- Sti11
9 38 49.7^

This last result (in apparent time) is sufficiently exact for

Astronomical purposes.

9h I6m 29 3

The second additional term 2 l
m 549

.7 = ^ x 56 m
51M,

Is evidently the proportionalpart
* of 56ra 51 8

.1, corresponding to

9
h 16m 29 s

',
the third additional term, 49*. 8, =

24 ) ft =
24

X 24
' ""

241"

5 x 56ra 51M is evidently the proportional part pf

Tables are Computed for facilitating these operations,

3 E



402 77/f Time determined, by the Sidereal Clock,

56m 51M, corresponding to the time 21 m 54 S
.7. This is the

explanation of the rule, as it is sometimes given by Astrono-

mers, which directs us to find a first, and a second proportional,

and to add them to the approximate time of the Moon's transit,

in order to find a more correct time. (See Nautical Almanack,

1811, pp. 154, 155. Also Wollaston's Fasciculus, Appendix, p. 76)

The hour, or the mean solar time, may be determined or

computed from the transit of a fixed star ; and, much more exactly,

than from the transit of the Moon or of a planet. With regard

therefore to these two latter, the object of the preceding methods is

to determine from Astronomical Tables, the times of their transits,

or passages over the meridian, rather than the hour of the day
from the transits.

Time determined by the Sidereal Clock.

If we can determine the time from the transit of a fixed star,

it is an immediate inference that we can determine it from the

sidereal clock. For, the clock is regulated by the observed

transits of stars, and when regulated, we may suppose it always
to indicate the right ascension of some imaginary star: Thus,

July 1, 1790, time by sidereal clock - - - - 13h 20m 15 s

's mean longitude (by Tables) ---- 6 54 35.86

6 25 39-14

(Maskelyne, Tab. XXI.) - - - 1 3.1

Mean solar time - - - - 6 24 36.04

The preceding computations of transits, &c, have been

made for Greenwich, for which place our Astronomical Tables,

and the Nautical Almanack are constructed. For any other place,

we must account for the difference of longitude. Thus, to

find, on July 9, 1808, the Sun's R. A. at noon, at a place

35 (2
U 20m) cast of Greenwich, we have only to find the

Sun's R. A. 2h 20m previous to noon time at Greenwich :

which is easily done by subtracting from the 11. A. at noon the

proportional increase of R. A. in 2h 20m : thus,

* The Acceleration is the Sun's mean motion in JR. A., and by
this latter title it is called by Maskelync in the Table referred to. See

Wollaston's Fasciculus, Appendix, p. 69.
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July 10, o's R. A. 7
h

17
m 48\5

9, ditto 7 13 4-3.2

Increase o f R. A. in 24h 4 5.3

Proportional increase in 2h 20m - 33

.'. Sun's R. A., at noon, at the required place,=7
h

17
m

15*.5,

A similar method must be used to find the Moon's right

ascension, or longitude, &c. at noon, at any given place, with

this difference, however, that the change of R. A. will not be

simply proportional to the time, but must be computed more exactly(v 1 \
a -f xd? + x.qd!' -f &c.y

See Trigonometry, p. 1 93.

We now proceed to the methods of determining the time, by
observations made out of the meridian.

Method of equal Altitudes.

By the instrument described in pp. 66. &c., or by the

Sextant in Chap. XXIX, take an altitude of the Sun before noon,

and wait till the sun descends to an equal altitude in the afternoon ;

then, half the interval of time elapsed is nearly the time of noon,

from the first or last observation.

If the Sun did not alter his declination, the time of noon would

be determined exactly by this method : it must therefore be

determined very nearly at the solstices, and least exactly, at

the equinoxes. It is plain the change of decimation must affect

the accuracy of the method ; for suppose the north declination

to be increasing, then the Sun, after passing the meridian, will be

longer in descending to the proper altitude in the west, than

it was in rising to the meridian from the equal altitude in the

east : half the interval therefore would throw the meridian too

much to the west. Since, however, the method is a good

practical one, it has been made exact by means of corrections

computed from a formula which we will now investigate.

In a triangle ZPS, where Z is the zenith, P the pole, S the

Sun, the angle ZPS measures the time (s ) from noon, and

by Trigonometry> p. 100,



404 Correctionfor the Change of Declination.

cos. - X sin. ZP x sin. PS = cos. ZS cos. ZP x cos. jPS-,
i

Now, -T being the exact time from noon, if PS remain constant,

we have to ascertain the variation in 3, from the variation in

PS : for that purpose, it will be sufficient to deduce the proportion

between the differentials
or fluxions of these quantities ; accordingly,

taking the differential of the above equation,

- ~
. sin. ~

. sin. ZP sin. PS + d(PS) cos. PS cos ~
. sin. ZP =

* ^

rf.(PS).sin. PS cos. ZP,
it

or putting ^
=

, </(PS)=$, and reducing,

i =
Qtan.

decl", X cot. ~ tan. lat. x cosec. %

Time determined from an observed Altitude of the Sim.

The altitude of the Sun is to be observed and corrected as

It was in page 394 ; then, we have to find the angle ZPS
(7i), from ZS (90 A} thus determined, from the Sun's north

polar distance (p) given by the Tables, and from the latitude (L)

of the place, known or previously determined by observation.

Then, by Trig. pp. 99- UH. cos. ZPS (cos. h]

__
cos. Zfl cos. ZPxcos. PS sin. y/sm. L. cos./? .""

sin, ZP. sin. PS =
cos. L. sin. p

*

.
h cos L. sin. 4-sin L cos. sin. A

/. ^2 . sin.
a = 1-cos. 7z= -^--

j s
--

^ cos. JL. sm.p.

_ sin. (p+L) sin. A
"""

cos. L. sin.o

. p. 19.)

and in logarithms, 2 log. sin. - = 20 -h

'og cos.i(p+i+ -4)+log. sin. ^(/7-j-i -rf; log. cos, Z,~log. sin.jp.

EXAMPLE.

2Xr Sif'/ Altitude being 39 5' 28",- Jits North Polar Distance,

from Nautical Almanack, 74 5V 50", and the Latitude of Place,

S2<> 19! 42"; it is required to deduce the Time*
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L = 5<2 12' 42" cos. = 9.7872806

p=z 74 51 50 sin. = 9,9846660

4= 39 5 C8 7^7719466 [*]

sum 166 1O SO

sum 83 5 cos. = 9.0807189

| sum A 43 59 32 --sin. = 9.8417102

38.9224291

[>] 19-7719466

2) 19

log. sin. ~ = 9,57594 12 -log. sin. 22 5'

.*. 7;=44 10' 40" * = (in time,) 2h 56ra 43s

nearly.

This is the time for Greenwich ; for any other place, we must

correct p9 taken from the Nautical Almanack, by adding to it, or

subtracting from it, the change in the Sun's north polar distance,

proportional to the difference of longitude between Greenwich,
and the place of the observed altitude. The process is like that

given in p. 403,

Time determined from an observed Altitude of a fixed Star.

The altitude is to be observed as in the former instance : the

latitude is supposed to be known from previous observation,

and, the Star's north polar distance from his mean north polar

distance (contained in Tables) corrected for the several inequalities

of precession, aberration, and nutation, (see Chapters XIII, XIV,

&c.) Then, the computation of the angle ZPSy or of //, will

be exactly the same as in the preceding case. That angle will

be the Star's angular distance from the meridian 5 therefore, since

the Star's right ascension is known, the right ascension of a point

of an imaginary Star, then on the meridian, is known. But, the

right ascension of a Star on the meridian being known, the

hour of the day is (see p. 397).

All stars on the meridian at the same time have the same

right ascension ; therefore, we may place the imaginary Star

on the equator, and then (see p. 363.) its right ascension will

be that of the Mid-Heaven ; consequently we may give the

rule for finding the time under the following form :
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sfc's R. A, h r= R. A. of mid-heaven,

R. A. of mid-heaven 0's R. A. acceleration time (see p. 398.)

EXAMPLE.

April 14, 1780. In Latitude 48 ,56', LongitudeW =66 (4
h 24m)

the Altitude of AldebararuV* M* West> was observed^ZQ, 20' 8".

Required the Time.

L = 48 56' 0" cos. ~ 9.8175235

p = 73 56 59 sin, 9,9827322

A = 22 17 50 (refrac. = 2' 18") 19.8002557

2)145 10 49 20

l sum = 72 35 24 cos. 9.47597-22

2sumJ=50 17 34 ------ sin. 9-8861065

39-3GC0787

2)1 9-56 18'2.
n
.O

log. sin. -, ?= 9-7809U5

[= /sin. 37 8' 3<J
V
.75 ;

.-. A = 74- 17
X

19".5

%'s R. A. =r= 65 49 49 5 (by Tables)

*'s K. A. + A ^ 140 7 9 = R- A. of mid-heaven.

But, April 14, o's U. A = l
h 31 ra

1
s

April 15 - - - = 1 34 42

Increase in 24h - - - = 3 41 .".prop
1
. inc e

. in 41124^40',

Hence, R. A. of mid-heaven (140 7
7

9
/;

) = 9
h 20m 28\6

's R. A. (^z l
h 31m 1

s
-f 40s

) ---=13141
7 48 47.6

Acceleration (see pp. 398. 402.) -----0 1168
.-. apparent time = 7 47 30.8

This method, as a practical one, is inferior to the former 5 partly,

by reason of the greater length of the computations, but chiefly
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from the
difficulty of exactly ascertaining the altitude of a star by

the sextant. The errors of the Solar Tables affect both methods.

Those of observation, however, are lessened by the plan of ob-

serving several successive altitudes, at nearly equal small intervals

of time, and by taking the mean of these as the true observed

altitude. This operation, with the sextant, is attended with some

difficulty, from the necessity of reading 0^*the divisions at the end

of each observation. But, with Borda's reflecting Circle of Repe-

tition^ there is no such necessity. Since with this, we may take

successively ten altitudes (for instance,^ and at the end, read off

the sum of all. One tenth of these, if made at equal intervals, or if

not, reduced to -~qual intervals, is to be assumed as the true

altitude,

In an observatory, where the instruments are fixed in the plane
of the meridian, the time of apparent noon is easily determined.

It may be also ascertained by a sextant, which (see p. 392,) is

adapted to measure altitudes : for when the Sun is in the meridian,

it is also at its greatest altitude. But, the altitude of the Sun,
when near the meridian, varying very little, it is difficult to as-

certain by a sextant the precise time of the greatest altitude, and

consequently, that of apparent noon. Out of the meridian, the

variations of altitude are quicker : where they are most quick

then, there an error in the altitude (and such there will always
be in an observation with a sextant) must be of the least conse-

quence, since it least affects the time j which would be truly corn-

computed, by the preceding method, if the altitude were rightly

observed.

Since the altitude changes most slowly, when the star is near

the meridian, either towards the south or the north, it seems pro-

bable, that it would change most rapidly, half way between the

north and south
;
and this is the case, as we shall prove in the

solution of a problem, which is usually thus announced :

Given the Error in Altitude ; it is required tofind where the corres-

ponding Error in Time will be the least.

By p. 4<H,

cos. h = sin-^ sin. L.cos/>
cos. L . sin. /?



408 Error in Time least on the Prime Vertical.

Take the differential or fluxion of this equation, and put dh = ,

dA = <* thendA = <*, then

but Tr/g-. p. 102, sin. h X sin./? =sin. P2S x cos.

, cos. A
sin. h = a _

cos. L . sin.

"
sin. Ptf x cos. L '

consequently, if J/ and , the error in altitude, be given, E is least,

when sin. PZS is the greatest, that is, when PZS = 90, or the

azimuth, (see p. 28,) is 90, or the body is on the Prime Vertical :

which is that vertical circle which passes through the east and west

points.

The above is the reason of the precept given by Dr Maskelyne
at. p. 152, Nautical Almanack, in which he directs the altitude to

be observed near the west and east points. To this precept may be

added another j that those stars should be selected for obser-

vation, which move most quickly ; those, therefore, which are

situated near the equator.

Besides the error of altitude, there may be an error in the

assumed latitude. For between the observation which determines

the latter from the Sun's meridian altitude, and the observation of

the altitude, the observer, if on board a ship, may have changed
his place, and, if so, has probably changed his latitude. The re-

lation between its error and that of the time may be determined

exactly as the relation between e and $ was in p. 404. Instead

of making PS to vary, we must make 25, (90 L) ; let' * be the

variation of L, then,

=r x I
tan. dec. x cos. sec. -- tan. lat. x cot. -

.

L- 2 2J

By means of an observed altitude, the time from noon is deter-

mined. But, this is not its sole use. The watch or chrono-

meter is always adjusted and regulated by it. One observation

will determine the real error, in time, of the chronometer
\ two,

its rate, that is, whether it gains or loses : three or more will

determine whether it gains or loses equably. With this mode of

ascertaining, and allowing for, its degree of
inaccuracy, the chro-
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nometer is relied on, during short intervals of time, for determining
the distance of the ship from the last observations.

There are several methods and instruments used to ascertain,

in the interval between observations, the situation of the ship.

Dating from a latitude and longitude astronomically determined,

navigators carry on a latitude and longitude by account. This

they are enabled to do, by the chronometer, by the Log (by which

instrument they ascertain the ship's velocity,) and by the Mag-
netic Compass, which shews the direction in which the ship is pro-

ceeding.

The Needle of the magnetic compass, is a thin bar of steel,

moveable about a center, in a plane nearly horizontal, and in dif-

ferent parts of the Earth pointing to different parts of the horizon.

In scarcely any place, is its direction true north and south. The

Magnetic North, almost always, differs from the true. And the

difference is, technically, called the Variation of the compass, dif-

fering in degree at different places, and not remaining the same

at the same place* Navigators are provided with charts of this

Variation ; therefore, if they know, nearly, the situation of their ship,

they know also nearly the Variation. And, since they are enabled,

independently of the Charts, to ascertain the variation, they are

also enabled to examine their accuracy, and to correct them if

wrong.

The magnetic north is always known from the direction of

the magnetic needle. The true north may be computed from the

Sun's azimuth, at the time of his rising, or from his observed

altitude at any other time. The azimuth is the angle PZS> the

computation of which is exactly similar to that of the hour angle

ZPS () in p. 404.

Let the declination and zenith distance of the Sun be dy z,

then,

D ~ cos. PS cos. ZP . cos. ZS sin. d sin. L cos. z
COS. JrZS = :

-
: = =

7 : r-

sm. ZP . sin. ZS cos. L . sin. z

when the Sun rises, or is on the horizon, z = 90 ;

.*. cos. = 0, and sin. z =; 1,

SF



410 Sun's Amplitude and Azimuth computed.

and cos. PZS, or sin. amplitude
* = sm *

_ .r
cos. L

PZS
In other situations, deducing 2 log, sin. 1

, exactly as
A

2
log. sin. -

was, in
p. 404, we have

2 log. sin. azimuth = 20 + log. cos. (Z, -f 2; -f J) +
log. sin. i (Z + z -~ d) lg' cos - -^ ^g sin ' *

Example to the First Method.

In Lat. 51 5^ JV. M^ Saw^ Declination being 23 23' JV.

Required the Amplitude, in the Morning.

</=2328' ----- sin. 9.6001181
L- 51 52 cos. 9.7906325

9.8094856= log. sin. 40 9/ S6^

.-. the Sun's distance from the east point = 40 9' 26''.

Example to the Second Method.

In Lat. 51 32', the Sun's Declination being 23 28', and Ins

Altitude correctedfor Refraction 46 20X

. Required the Azimuth.

L = 51 32' - - - cos. = 9-7938317

2 = 43 40 - - - sin. = 9.8391396

d = 23 28 19.6329773 [a]

Sum -118 40 20

| Sum =. 59 20 - - - cos.^ 9.7076064

9.7678242

39^754300

[a] 19.6329713

2)19.8424593

9.9212296= log. sin. 56 31' 28"

* The amplitude is frequently appropriated to signify the comple-

mint of the azimuth> when the star rises or sets*.
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.'. the Sun's azimuth = 56 31' 28".

The first of these methods is evidently the simplest for deter-

mining the point of the true north, since the mariner can easily

ascertain the angular distance between the point in the horizon to

which the magnetjf needle points, and that in which the Sun

rises.

In Nautical Astronomy, the determination of the time is an

essential operation, that of the azimuth, an occasionally useful

one. For this reason the methods of finding them have been in-

serted : but, for a like reason, other methods, and the solutions of

many curious problems, but of doubtful utility, are excluded.

One or two however, are subjoined, chiefly for the purpose of

shewing the great extent of the application of that formula which

expresses the cosine of a spherical angle, in terms of the sines

and cosines of its sides. Thus, (see p. 404,) the time at any
altitude of the Sun, is to be obtained from this expression,

7 cos. z sin. L cos. p
cos. // = -

: ,
cos. L . sin. p

when the Sun rises or sets, z = 90 , .'. cos. z = ;

, sin. L . cos. #
/.cos. = =: :

cos. L . sin.p
= tan. L . co-tan, p,

the negative sign indicating (if p be < 90) that h is > 9(K

Twilight is the light of the Sun, when below the horizon, faintly

reflected by the atmosphere ; and, by computation, it is found to be

just sensible when the Sun is within J8 of the horizon 5 or, when
z = 118; and we may find the time, therefore, of twilight's

beginning or ending, by substituting in the preceding expression,

or in that which is immediately deduced from it, (see p. 404,)

instead of A (= 90 z), 18.

The duration of twilight, is the interval of time due to the

Sun's ascending or descending through 18, it is, therefore, equal

to the difference of the last expression, and that, 1. 20, which

expresses the time of the Sun's rising or setting.



412 Length of the Day.

The boundary of twilight, a small circle parallel to the hori-

zon, and 18 from it, is called the Almacanter.

The length of a day, in its common acceptation, is the interval

of time between the rising and setting of the Sun , therefore, equal
to twice the angle h, estimated from that expression of cos. h> in

which A = 0, that is, it is equal to 2 . tan. L . co-tan, p.

At the equinoxes,/ the 0'sN.P. D. = 90 ;

.*. cot.jp = j .'. cos. h = , .*. h = 90 = (in time) 6h
;

.-. the length of the day = 12h.

At the solstices, p> either, = 90 23 28', or 90+23 28';

therefore, the lengths of the longest and shortest day at Green-

wich are to be computed from this expression,

cos. h = + Q tan. 51 28' 39".5 x tan. 23 98',

the upper sign for the longest day, denoting h to be > 90,
and the lower sign + for the shortest, h being taken < 90, and

equal to the supplement of the former.

If we wish to investigate the latitude in which the Sun's

center, in its greatest depression, just reaches, but does not

descend below, the horizon, then h will equal 180,

and cos. 180 = - I = tan. L . cot.p =
t^J^

;

tan. p

.*. tan. L = tan. p, and L = p> or = 90 declination,

or, the co-latitude of the place equals the Sun's decimation.

In a similar way, and still using the expression for cos. //, we

may express the relation between the latitude and the Sun's de-

clination, when there is just twilight all night ; thus, z being the

zenith distance, since

y cos. z sin. L . cos. p
cos. h =-= :

-
,

cos. L . sm.p

i r. cos. 1 18 sin. L . cos. p
cos. 180 = 7 :

-
cos. L . sin.p

.'.sin.jLcos./? cos. Lsin.jp, orsin. (L -jt?),=cos. 118= -sin. 18;

/. L -
/>
= 18, or L -

(90 - O's dec.) = - 18;
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/. o's declination = (90 L) 18.

If L therefore be given, search in the Nautical Almanack for

that declination, which equals the difference of the co-latitude

and 18.

Since, L = p 18, and the least value of p9 is 66 32' j

therefore the least value of L is 48 32' ; or in latitudes less than

48 32', there never can be twilight all night.



CHAP. XLII.

On Geographical Latitude.

LATITUDE of places at land, (see p. 7.)

1st. Method by the Altitudes of Circumpolar Stars.

This method has been already described in pp. 37, 38. An-

other instance of it is subjoined, in which, the circumpolar star is

that particular one, which, for distinction, is called the Pole Star,

(the
oe, Polaris of Astronomical Catalogues, sec p, 37).

By means of an Astronomical Circle, (see Chap. IV,) the fol-

lowing zenith distances (Z..D) were observed at Dublin Observatory
on Aug. 23, 1808 :

Greatest Z. D. 38 18' 59". 1

Refraction (barom. 29. 97, thermom. 67,) - 44 . 01

Corrected Z. D. - 38 19 43.iT

Least Z. D. of Polaris 34 53' 10". 1

Refraction, (barom. 29, 99> thermom. 58,) .- 39 . 45

Corrected Z. D. 34 53 49^5

38 19 43. 1)

2)73 13 32.66

.*. co-latitude of Observatory, see p. 38, - 36 36 46.33

.-. latitude is 53 23' 13".67.

2dly, Method by the Zenith Distances of Stars near the Zenith.

This method determines merely the difference of latitude

by means of an instrument, (the zenith sector) capable of mea-
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smring small zenith distances with great exactness. We have had

already (pp.7. 117.) specimens of it, and we here subjoin
another,

EXAMPLE.

By observation, at the College of Mazarin, (Mem. Acad. 1755.)

Z. D. of y Draconis reduced (see p. 134. ; to Jan. 1750, 2 40' 15'

At Greenwich Z. D. reduced to the same epoch - 3 4.5

(The star is to the north of both zeniths) diff. lat. - 2 37 10.5

Hence, if the latitude of Greenwich be - - -51 28 39.5

Latitude * of observatory, at College of Mazarin - 48 ,51 29

It is essential, as it has been fully explained in pp. 134, 135. 170,

that, for finding the difference of latitudes, by this operation,

the zenith distances of the star observed at different epochs,

should be reduced to the same. If, however, we should be pos-

sessed of two observations of the same star, made on the same

day, of the same year, then, since the corrections of aberration,

precession, and nutation, (see Chap. XIV, XV, XVI, XVII.)
would be the same in each observation, it would be necessary

merely to apply the corrections for refraction, before we sub-

tracted or added (see p. 7.) the zenith distances.

This method of determining the latitude, and capable of great

accuracy, was employed in the Trigonometrical Survey of England.
See Phil. Trans. 1803, pp. 483, &c.

3dly> Method by Observations of Altitudes made near the Meridian

and reduced to the Meridian.

This operation, as it is plain, cannot be made by the Astro-

nomical Quadrant or Circle, if fixed in the plane of the meridian :

but it may be, if they are endowed with an azimuth motion ac-

cording to the contrivance described in p. 28.
; still, however, in-

conveniently, from the necessity (see p. 407,) of reading off the

altitude at the end of each observation. In Borda's Circle of

* See Phil. Trans. 1787, pp. 168, &c.
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Repetition*, the necessity of these successive and intermediate

readings off' is superseded. The last result alone of the instrument

is examined. If, after n observations, the index> having made m
revolutions, points to d degrees, the mean of the observations is

m x 360 -f d

n

In a series of altitudes successively observed at very small in-

tervals of time, the mean of them would, very nearly, be the mean
altitude. For, the increment of the altitude would vary nearly as

that of the time. But, near the meridian this law does not obtain.

The decrements or increments (according as the passage of the Sun
or star is a superior or an inferior one, that is, above or below the

pole) vary in a higher ratio than that of the times from the passage
of the meridian ; and to the investigation of this higher ratio we
must now turn our attention.

Taking, as usual, the triangle ZPS, and calling ^, k', the horary

angles, z, z', the zenith distances, d the declination, and L the

latitude, we have, (see p. 404,)

T cos. % sin. L . sin. d j. cos- z' sin. L sin. d
COS. h = 7 3 , cos. ft = p j ;

cos. L . cos. a cos. L . cos. d

i jj COS. Z COS. Z
f

.'. cos. h - cos. ft =
j r ;

cos. L . cos. a

and, (Trig. p. 19-) sin. \ (H + h) . sin. \ (V h) =
1

[sin.
1

(z' + z) . sin. (z'
-

*)],
cos. L . cos. d

let h = 0, in other words, let its corresponding zenith distance

Z) be taken on the meridian ; then,

sin. -
. sin. ~ =c*-

f
- -

[sin. (z' -f- z) . sin* i (z'z)]% 2 cos. L . cos. d 2 ^ /J

if z' - z = J,

then, sin. (z' z) = sin. - = ~
, nearly, = - x *^~~

,

and sin. \ (z' + z) = sin. z, nearly , therefore,

J (the reduction to the meridian)^ -JL. Xsin.
a x

cos ' /cos -

^ A .

sm. 1
A 2 sin. z

* The Circle of Repetition differs from the Astronomical Circle

(p. 26.) in the principle of repetition; and, the Reflecting Circle of

repetition, from the Sextant, or Troughton's Reflecting Circle, by the

same principle.
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Hence, if z', z", &c. z
x , z^ , &c.

be zenith distances to the east and west of the meridian, and if

A/, h" , &c. A
N , Au , & c .

y, r, &c. *
v , a

XN , &c .

be the corresponding times and calculated corrections, the true

or corrected meridional zenith distances will be (if the passage of

the Star be above the pole,)

3' ^, !B"-J", &C, *,-<> 2^-*u* &C.

and, the true mean meridional zenith distance will be

x'y -f g"-r 4- &c. + g v
-

*, + g,-*, + &c.

and the computation, in instances, is made according to this last

form.

, , 2 . o# cos. < cos. L
, .

In the formula, * =
jrj--p

X sm. a

g f

-^^- , rf is

known from the Tables 5 A' must be determined by means of a

time-keeper \ for Z,, the approximate value of the latitude may be

taken, arid for z, the meridional zenith distance. The
latitude L is to be determined to the greatest accuracy, by
means of the correction , when computed j but, in com-

puting $, which will always be a very small quantity, we
. . T . , , f cos. d. cos. L

ma'y, in assigning to L its value, in the factor-:
-

,
sin. z

introduce an error of several seconds, without any danger of

vitiating the practical accuracy of the computation. Now, L may
be determined within a few seconds, by taking half of the greatest

and least zenith distances corrected for refraction. Z, therefore,

if not known by other means, may be taken of that approximate
value so determined, and be employed in computing the

correction $.

For like reasons, in computing the several corrections ^ ,
'
,

&c., the same value of z, that of the meridional zenith distance,

may always be used: for the values of z', z
7'

, &c. cannot

differ much from it 5 since, the observations are separated from

each other by a very small interval of time, generally, (though this

circumstance must vary with the skill of the observer,) by
about half a minute.
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EXAMPLE, (from Blot's Astronomy.)

By observations, at Dunkirk, Dec. 19, 1802.

Half the sum of greatest and least Z. D. of a Polaris, 38 57' 55"

By Tables of the fixed Stars, N. P. D. of the *, - I 42 18 .5

% = 37 15 36.5

.'.log. (
COS

S^' s

8

**)=log.sm.
38 57' 55"+log.sin. 1 42' 18".5

log sin. 37 15' 36''.5 = 8.4900862 ; which is the logarithm
of the constant factor in the formula for $. In the other part

h
of the formula, the several values of - were determined by the

2

clock : thus, the passage of the Star over the meridian being
Oh 24ra 44 s

: when the clock denoted 23h
57

m 28

, the horary

angle (//) was Oh 24m 44s - 23h 57 in 2s = 2Vm 42 s

; when
23h 58 rn

18
s

, the corresponding value of the horary angle was
Oh 24m 44s 23h 58ni 18 s ~26m 26s

, and so on. These values

being substituted for h' , h" , &c., the corresponding values of

o, Ji
f

.

p-
. sin,

a - were computed, and arranged in a Table according

to the subjoined specimen.
Values of
Q tif

Times by the Clock. Values of h'. smTP'
sin *

a

3*

23h 57m 2s 27m 42 s
1504''.?

58 18 26 26 1370.4

59 6 25 38 1288.8

&c. &c. &c.

The number (n) of observations was 26 : the sum of the 26

numbers in the last column was 24811.8 : hence,

log. (
CO* 4' CQ*- L

) ..... 8.4900862o V sin. 2 /

correction for retardation of pendulum .0006986

8

)=log.24811.8~log26, 2.9796885

1.4704733=log. 29".55

Hence, since the mean of the zenith distances, increased by refraction;
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or

and mean of reductions, or

Meridional Z. D. of a Polaris - - - - 37 15 37.75

but, N. P. D. (from Tables,) 1 42 18. 59

Co-latitude - --,.-.-....-38 57 56.34

and latitude is, 51 2' 3".66.

In this Example, the latitude is determined by means of the

north polar distance of a Polaris, taken from the Tables ; but,

if we find the meridional greatest zenith distance of the star

as we have found the least, then the co-latitude will equal half

the sum of the zenith distances, and, the north polar distance of

a Polaris will be half the difference.

This method of determining the latitude was used by the

French Astronomers, in their last great operation of measuring an

Arc of the Meridian ; and, since they consider it as convenient

and capable of great accuracy, they have computed Tables to

facilitate its application.

None of the preceding methods can be practised at sea,

where the motion of the vessel renders useless the level and

plumb-line. The instrument that must be resorted to is the

sextant
; and by that, and the aid of the Solar and other Tables,

the latitude may be determined to within 30 seconds, or about

half a mile : an accuracy quite sufficient for practical purposes,

but very inferior to what may be obtained by the last method,
which is capable of determining the latitude to within the fraction

of a second *.

* The preceding method is useful in determining the meridional

altitudes of the Sun when near the solstices : then, by a similar method,

the meridional altitudes observed near the solstice may t^e
reduced to

the solstice. And by these means, the obliquity of the ecliptic may be

determined to great exactness. (See pp. 45, &c.)
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LATITUDE OF A VESSEL AT SEA.

Method by the Meridional Altitude of the Sun.

If the latitude and the declination be of the same deno-

mination, that is, either both north, or both south, then, the

latitude
~ Z. D,0 -f decl.

or = decl. - Z. D. , if decl. > lat.

If the latitude and declination be of different denominations

then, the latitude = Z. D. decl. .

EXAMPLE.

July24t 9 1783. Longitude 54 (3
h 36m) Weft of Greenwich, the

Altitude of the Suns Lower Limb was observed by the $extant to be

59 1 6' . Required the Latitude*

Altitude of Sun's lower limb - - - ~ 5Q 16' O"

Refraction [Chap. XL] 34

Parallax [Chap. XII.] + 4

Sun's semi-diameter -.-----0 15 48

True alt. of Sun's center ----- 59 31 18

.-. Z. D. ...... 30 28 42

Sun's decl. (found as in p. 403,) - - - 19 51

.-. latitude (N) - - - 50 19 42

By the Meridional Altitude of a fixed Star.

March 29, 1783. South latitude, the Meridional Altitude of T?rocyon

was* 77 27' 15": the Height of the Observer's Eye> 22 Feet

above the Surface of the Sea. Required the Latitude.

Meridional alt. of Procyon
- - - - 77 27' 15'

Refraction 013
Dip of the horizon - ----- 4 28

True alt. of * -> - 77 22 34

.-. true zen. dist. --**---- 12 37 26.S

Decl. of Procyon (from Tables) - - - 5 46 17 N

,-. (see I. 8.) latitude 6 M 98
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In this Example, a correction called the Dtp, and not before

mentioned, is made. That correction atises from the increase of

the apparent altitude occasioned by the elevation of the observer

above the surface of the sea.

By the Meridional Altitude cf the Moon.

March 26, 1810. Longitude 40 47' West of Greenwich, the

Altitude of the Moon's Upper Limb was observed to be 46 14' 19".

Required the Latitude.

Alt. of Moon's upper limb 46U 14 19''

Horiz. i diam. - 16' 6" \

Augmentation (see p. 318.) ia $semi-diam.
16 18

Apparent alt, of Moon's center ----- 45 58 I

[Horiz. Parallax 59' 7"] Parallax (p. 95.) - - 41

Refraction -------.-.. 55

True alt. Moon's center 46 38 6

Declination S. 17 42

Alt. of equator, or co-latitude ------ 64 CO 6

/. latitude - - - - <25 ?9 54. N

The difference of the parallax and refraction is given as one

result in Astronomical Tables, (See Tab. VIIL of the Requisite
Tables : also Tab. VIII. of Mr. Mendoza's.)

Of these three methods, the first, in which the altitude of

the Sun is observed, is most commonly used : the second, very

rarely, by reason of the difficulty of observing the Star's altitude

with a sextant : the third, as it is plain, can only be used in

certain parts of the month ; and, since in all, the observed body
must be on the meridian, clouds may prevent any of the three

from being used. A subsidiary method, therefore, is provided,

in which the latitude may be computed from two observed alti-

tudes of the Sun, and the interval of time between the obser-

vations.
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Method tffinding the Latitude by t*wo Altitudes of the Sun and

the Time between.

We have already used a triangle ZPS9 and we will now intro-

duce another, ZPs9 exactly similar to it : in which s is a position

of the Sun, separated from that of S9 by the angle SPs, and, in

time, by the interval t. Conceive the places S, s (S being nearest to

the meridian) to be joined by the arc S j- of a great circle
; then

we have given

ZS, Zs9 (a, a') the observed altitudes,

PS, Ps (p9jp9 ) equal N. P. D. of the Sun,

and Z SP s (t) measuring the interval between the observations.

Now the investigation will consist of several steps, which all

tend to the finding of the angle Z s P ; for, that being found, we
have given Zs9 P s9 and the included angle Zs P, to find ZP
the co-latitude. The steps for finding Z s P are according to the

following order. First,

S s is found j then /. P s S ;
next / Z s S, and last,

Z Z.rP = / P/ S - z ZsS

S s found.

Cos. Ss = cos. SPs. sin. SP . sin. sP -f cos. SP. cos. sP

(Trigonometry, p. 100.)

.-. 1 cos. S s9 or, 2 sin.
a - = 1 cos.

2
^ cos. / sin."

1

p

= sin.
2

/? 2 . sin.
2 ~

; and in log
5
.

rt j.

log. sin. ~ =s log. sin.
j9 -f log. sin- ~ 10.

Angle S s P found.

. D sin. p . sin. t %
Sin. Ss P = -A --

,
*

sin. >S j-

* The angle might be deduced from this expression ; but the last in

practice, is more convenient, since, by taking out the log. sin. -
, we can,

without turning over the leaves, take out the log. cot. -
.
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rt cos. p (1 cos. Ss)
cos. 5 s P = . : 5^ ;

sin. p . sin. S s

... tan. S,P= sin, f. sin." p = -
.

sin, f. sin.* p
?

cos.^(l- cos. 6.) 2 .cos.,p.8in.'p.Mn.i

cos. p
In logarithms,

log. tan. Ss P = 10 + log. cot. ~
log. cos/.

~
COS. Z / S =

Angle Z s S found.

cos. S cos. 5 /cos. r sin. # sin. 0' cos.

sin. Ss . sin. Zs cos. ^ . sin. Ss

i form exactly similar to the one in p. 404? ,

.*. sin.
2
\ . Z s S =

sln.S/cos.*
[COS ' *(*'+' + -> sin - * (*' + ' -

-)1

and in logarithms, 2 log. sin. ^ Z s S =
20 -f log. cos. i

(S s + af + <a) -f log. sin. | (5 / +a' ^)

log. sin. S s log. cos. a ;

hence, z ZsP~ z S s P /. ZsS, is known.

ZP, f^ Co-latitude, found.

This Problem, in which from two sides and the included

angle the third side is required, is exactly like three that have

been already solved in pages 56. 364, 369. Assume, therefore5

such, that

a __ cos. (/ . sin.p . ver. sin. Z s P
"""

"ver. sin. (90 a' p)
*

, . ZP . 90 a1 pand sm. = sin. ~ - x sec. ;

2

and in logarithms,

P
log. sin. ^~ = 10 + log. sin. (90 a

x

/?) log. cos 0.
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ZP may be also found by a different subsidiary angle (See, Trig.

p. 131).

This direct method, requiring considerable computation, may

happen to be beyond the skill of the mariner
;
and it is, in fact,

seldom resorted to. Instead of it, Dr. Brinkley and Mr. Mendoza

have given approximate methods and facilitated their application

by means of appropriate Tables. (See Nautical Almanack, 1797,

1798, 17Q9, 1800, and Mendoza's Tables on Nautical Astronomy.)

It is evident, the preceding methods (pp. 420, &c.) which are

the only ones that can be practised at sea, may be practised at

land,) when the sextant is used with an artificial horizon, (see

p. 393). But then, they are to be used only when no great ac-

curacy is required, and in default of better instruments. The

errors of observation with the sextant, and those of the Solar

Tables, must always be presumed to be of some magnitude ; and,

of both of these errors, the above-mentioned methods necessarily

partake.



CHAP. XLIII.

On Geographical Longitude.

JTHE Earth revolves round its axis in 23 h 56m 4s
.091 of mean

solar time
; but, a meridian passing through the Sun returns to it

after the lapse of a greater time, viz. 24 h
, and consequently, after

describing a greater angle than 360. This arises from the in-

crease of the Sun's right ascension in the time of the Earth's

rotation ; the mean value of which increase is 59' 8".3 : and con-

sequently, the angle, through which a meridian revolves in a

mean solar day of 24 hours, is 360 59' 8V.3.

If we suppose a number of meridians to be drawn at equal in-

tervals, that is, forming successively with each other, equal angles

at the poles, then in the course of 24 hours, each of these meri-

dians (supposing their planes produced) will pass through the

Sun : and, since both the Earth's rotation, and the Sun's mean

motion in right ascension, are supposed to be uniform, at equal

intervals of time. If the meridian of a given place passed through
the Sun at the beginning of the 24 hours, it would again pass

through it at the end ; 24 hours then of mean solar time would

correspond to 360 degrees of longitude ; for, the whole scale of

longitude must be comprehended between the eastern and western

sides of the meridian of the same place. At places situated on

the meridian opposite that on which the Sun was at Oh
, or, in

civil reckoning, at 1C at noon, the time would be J2h
, or

12 at night; and 12 h would correspond to 180 degrees of lon-

gitude. At places situated on the meridian, at right angles to

the former, the time would be 6h or 18h
; or, in civil reckoning,

6 in the morning, or 6 in the evening ; and accordingly, 6 and

18 hours of mean solar time, would correspond to 90, or 270

of longitude ;
and similarly for intermediate meridians.

SH
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The selection of a meridian, from which the longitudes of all

other places are to be reckoned, is entirely arbitrary. The English

have selected that which passes through the Royal Observatory at

Greenwich : it is called the First Meridian, and its longitude is

catfed O
h
. The French use a different one : their Premier Meridisn

passes through the observatory at Paris, and is 9
m 21 s east of

the former.
'

If then at Greenwich, (and consequently at all places

through which its meridian passes) the Sun were 7 30' to the

west of the meridian, or the time were O
h
30m ,

at places, the

meridians of which should be 15, 30, 45, &c. distant from that

of Greenwich and to the east, or which should have, respectively,

J5, 30 45, &c. of east longitude, the times, or the reckoned

hours of the day, would be, respectively, l
h 30m,

h 30m
,
3h 30m,

&c. At places, 10, 20, 30, &c. of -west longitude, the times would

be respectively, 23h 50m, 23h 10m
,
22 h 30m, &c. or in civil

reckoning, 1 l
h 50m,

1 l
h 10m, 10 h 30m, &c. in the morning.

Now, some of the methods of determining the longitude, depend

solely on the reverse of this ; that is, they find the differences

between the reckoned time at a given place and at Greenwich,
and thence deduce the difference of longitude, or, (since that of

Greenwich is 0), the real longitude, converting the time into

degrees at the rate of 15 for each hour.

The methods that depend solely on the difference of the reck-

oned times, are those which are connected with phenomena that

happen and are observed at the same point of absolute time.

Such phenomena are the eclipses of the Moon and of the satellites

of Jupiter. There are other methods, however, which depend

partly on the difference of the reckoned, and
partly on that of

the absolute times. Such are founded on the phenomena of solar

eclipses, of occupations, and of transits, which are not observed,
at the same point of absolute time, at all parts of the Earth's

surface. (Seep- 361)

This may be illustrated by an instance, Berlin is 44m 10 ?
east

of Paris ; therefore, if an eclipse of one of Jupiter s satellites were
observed to happen at the latter place at 13 h

l
m

20% it would be

reckoned to happen at the former at IS 11 45m 30 J
: for, since die
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phenomenon takes place by the actual falling of the shadow on the

satellite, the observer at Berlin must see it at the same point of ab-

solute time, as the observer at Paris. But, theoccultation of Antares

by the Moon, (see p. 37 1,) was observed at Paris at 13h
l
m 20s

, and

at Berlin, at I4h 6m 19 s
. The difference (l

h 4m 59
s

) of the reckoned

times, then, is not entirely due to the
difference of meridians (44

IU

10s

), but partly to that, and partly to the difference in the absolute

times of the observations of the phenomena : which latter differ-

ence, equal to
rn

49% is entirely the effect of parallax. In the

former case, the satellite was obscured by the shadow of Jupiter,

in this latter, the star is concealed by the interposition of the Moon.

The methods of finding the longitude, then, naturally arrange
themselves into two classes : one belonging to phenomena of the

first description, the other, to phenomena of the second. The
methods of the former being very simple in their application, but

not very accurate in their results ; the latter requiring tedious

computations, but capable of great exactness. We will^ however,

first shew ho\v to determine

The Longitude^ by a Chronometer or Time-keeper.

Suppose a chronometer to be adjusted to mean solar time at

Greenwich ; then, if its motion were equable and of the proper

rate, we should always know, whatever the place, the time at

Greenwich. By one of the methods given in pp. 3Q6, &c., we
could compute the apparent, and by means of the equation of time,

the mean time, at the place of observation. The difference be-

tween this latter time, and that shewn by the chronometer, would

be the longitude, east or west of Greenwich.

A chronometer, however nicely constructed, must always be

subject to some irregularities j even if in given instances, it should

happen to be entirely free from them, still, if we had no means of

ascertaining its accuracy, we could never rely and act on it. On
this account it is not entirely relied on. It is trusted to for

short intervals of time; and the degree of trust can always
be appreciated, since it is subjected to continual examination and
correction by the strictly Astronomical methods of

estimating the

time.
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Longitude by an Eclipse of the Moon.

By means of a perfect chronometer we could always, and

in all places, determine the longitude. By Lunar eclipses which

are rare, we can determine the longitude, only occasionally and at

particular conjunctures ; but, when such occur, by the following

method. The times at which eclipses happen, at the place of ob-

servation, are to be computed, by one of them ethods given in

pp. 396, &c., or, which is commonly the case, may be known by a

chronometer previously regulated by observation. The times at

Greenwich, previously computed, are inserted in the Nautical

Almanack, or may be computed by the observer from the Lunar

Tables. The difference of these times is the longitude.

Since the Lunar Tables are not exact, the comparison of

the same eclipse, actually observed at two different places, will

give the difference of their longitudes much more accurately than

the comparison of the eclipse observed at one place, and com-

putedfor another.

EXAMPLE.

1729, Aug. 28. Ey observations of Catsini at Paris (Mem. Acad.

1779). and of Mr. Stevenson at Barbados (Phil. Trans.

N416. p. 441.)

At Paris, Imm. 3) 12h 19m 13" Emer. D - - 13h 59m

At Barbados, Imm. --8 11 Emer. --- 9 51

4 8 13 , 48

By the mean of the two, the difference of longitude is, 4 h 8m

69
.5 or 62 1' 30" : that is, Barbados is 62 I' 30" west of

Paris.

This method of determining the longitude is rarely used,

since, by reason of the penumbra, it is difficult to ascertain the

exact time of contact of the Earth's shadow with the Moon's

limb. The time is uncertain, to the extent of 2m, or 30'. It has

been proposed to amend the method, by observing the contact

of the Earth's shadow with some remarkable spots in the Moon's
disk. ( See Phil. Trans. 1 786. pp. 415, &c.)
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Longitude by the Eclipses of Jupiter s Satellites.

This method is practically better than the preceding, for two

reasons ; first, the eclipses of the Satellites are of frequent
recurrence 5 and, secondly, the times of immersion and emersion

can be noted with much greater precision, than those of the

contacts of the Earth's shadow with the Moon's limb.

EXAMPLE.

At the Cape of Good Hope, May 0, 1 709,

Emer. 1st Satellite 10 h 46m 45*

At Greenwich, by computation (Naut. Aim.) - - 9 33 12

Difference of meridians, 1 13 33

or the Cape is 18 23" 15" to the east of Greenwich. The
remark which was applied to the former case, applies to this. If

we use the emersion observed at Greenwich, instead of the emersion

computed for Greenwich, we shall avoid the errors of the Tables of

Jupiter's Satellites, and obtain a more exact value of the longitude.

The errors of the Tables are not the only things to

be guarded against. The observer must take care that his tele-

scope be of proper power : for, otherwise, he will perceive an

emersion later, and an immersion sooner than he ought to do.

If there are two observers at different places, then, in order to

determine the difference of their longitudes, with as much exactness

as the method is capable of, they ought to be provided with

telescopes of the same power and goodness. They ought also

to observe both the immersion and emersion and to take the mean

of their results. (See Nautical Almanack, p. 151.)

We now proceed to the methods of determining the longitude

by means of phenomena of the second class ; those, which are

not seen by all spectators at the same point of absolute time.

TJie Longitude determined by an occupation of a jfixed Star by the

Moon.

In pp. 371, &c. the apparent distance of Antares, from the

Moon was computed, for the instant previous to its occultation,

and found equal to 15' 51". 38. The place of observation was
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Paris: the hour or apparent time 13 h
I
m 209

(the mean time

I3 h 3m 32 s

. 8): and the formula for the computation of the

distance, was

Da = (/-/0
s + (*

- VY. cos.1 / (a)

In this formula, /, k
y are the apparent latitude and longitude

of the Moon, obtained, by adding to the true, (see p. 373,)

the computed parallaxes in longitude and latitude.

The true longitude and latitude of the Moon were taken,

from Lunar Tables computed for the meridian of Paris, and for

13h
,
3m 32 s

. 8 mean solar time at Paris: and were found,

respectively, equal to 9 s 5 31' 42". 4 and 3 47' 58''. 7.

(See p. 373.)

If then the Lunar Tables be correct, D would result from the

preceding formula (a) exactly of it's proper value, such as the

Tables would assign, or (since D is, in this case, the Moon's

semi-diameter) such as might easily be ascertained by observation.

But, if D computed from the formula (a} should differ from the

value of the Moon's semi-diameter assigned by the Tables, then

that circumstance would be a proof of the existence of errors in

the Tables. And, the difference between the two values of Z),

would enable us to deduce an Equation between the corresponding
errors in the Moon's latitude and longitude. In this case, an

occultation would serve to correct the errors of the Lunar Tables.

But, there is another method of correcting the Lunar Tables.

On the day of observation, let the Moon's declination and right

ascension be observed, and thence, let her latitude and longitude
be computed. The respective differences between these, and her

latitude and longitude computed from the Lunar Tables, will

give, for that day, their errors.

Since we have the means then of ascertaining the errors, w.e

will suppose the Lunar Tables to be perfectly correct. Let us

now see, by what means, D is to be computed, in a place of

observation, for the Meridian of which) there are no Tables constructed.

In such a place, the observer must use Tables computed for

another meridian : either, for the meridian of Greenwich, or for

that of Paris : either the Nautical Almanack, or the Connois-



Occultation of Star. 431

same des Temps *. By these, he must compute /, and k> and

accordingly, previously must compute the Moon's true latitude

and longitude, that is, the latitude and longitude that belong to

the center of the Earth, The values of these latter depend on

the time for which they are computed, and, on the time as it is

reckoned either at Greenwich or Paris. Now, although (see pp. 396,

See.) the time, at the place of observation, can be exactly known,
that, at the place for which the Tables are computed, cannot, except

by a knowledge of the longitude of the former place.

This is easily illustrated : The occultation of Antares was

observed -t Berlin at 14h
7
m 31 s

, mean solar time. The observer

at that place in order to compute, by the French Tables, the Moon's

true longitude, must know the corresponding time at Paris. If

he assume Berlin to be 44<
m

east of Paris, the corresponding mean

time, at the latter place would be, 13h 23m 3 1
3

: and the Moon's

true longitude computed for 13h 23m 31 s

, would be 8 s 5 43' 16".

But, if he assume the difference of longitude to be 39m 49s

, the

corresponding time at Paris will be 14h 27 ln 42s
: and the

Moon's true longitude computed for 14h
27m 42s

, will be

8 s 5 45" 35". The computations for the Moon's true latitude

will be similiarly affected by a change in the hypothesis of the

longitude of Berlin.

A small error in that hypothesis will very little affect the

computation^ of the parallaxes in longitude and latitude : those

depend chiefly on the hour angle ; consequently, since the apparent
differ from the true longitudes and latitudes, solely by the

parallaxes, the change, or error in the hypothesis of the difference

of meridians, will produce the same difference in the apparent, as

in the true longitudes and latitudes of the Moon.

* These Ephemerides may be considered a species of lunar and

solar Tables, in which certain results, most commonly wanted in

practice, and computed from the general Tables, are inserted. Such
.results are the Moon's right ascension, declination, longitude, latitude,

parallax, and semi-diameter, for noon and midnight.

f If we examine the formula? of computation, (1), (2), (3), &c. in

pp. 371, Sec, we shall peiceive that the parallaxes depend principally

pn the hour-angle which is not changed by altering the hypothesis of

the longitude.
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Hence it follows, that an error in the assumed longitude
of Berlin (that being still the place used for illustrationj will

produce errors in the computation of /, k j and consequently, in

the computation of D from,

>*= (/- /')'+ (k Vyw*? I (a)

there must be an error in the resulting value of Z).

Now, the principle of finding the longitude of Berlin, consists

in correcting the assumed longitude, by means of the error in D.

The correction is thus made.

The Moon's latitude and longitude (/, /:,) being supposed
to be erroneous, let their true value be l-\-nty k -\-rnt ; //, ///being

the Moon's horary motions in latitude and longitude, and /, as an

an unknown quantity, representing the time, or the error of the

hypothesis of the difference of the meridians \ then, if A be the

Moon's true semi-diameter, we have

^ =
(/ + nt - /')" + (k + mt A')*. cos.

2
/ (b)

and from this and the preceding equation (a), t is to determined.

If we suppose, what will always be the case in practice,

the longitude of the place of observation to be nearly known,
and consequently, the hypothesis of its value to differ but little

from the true value, / will be a bmull quantity ; and, if we

neglect its square in the expansion of (b\ we shall have

A 1 = (/
-

/')'+ '2 nt. (I
--

/') + [(* //)
: + <lmt (k

-
A')] cos-* '

Subtracting (a) from this,

v- ir= vt [n (i /'; + M.
(fc
- /O cos

*

i]

and consequently,__ __~~
2

[
n (I

-
/') + m (k /;'). cos/ I]

This value of /, (an approximate one) is the correction to the

assumed longitude : suppose, the longitude = 7", then its corrected

value is T t
\ and, if a still more correct value be required,

compute again by means of this corrected'hypothesis of the difference

of the meridians (Tt) 9
the true latitudes and longitudes of the

Moon ; thence deduce correcter values of /, , and find a new ap-

proximation (?) from the expression (c). The longitude, after this

second correction, will be Tttl

*.
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This method, from an assumed approximate value, is capable

of determining the true value of the longitude, to the greatest

exactness. And, we need not be solicitous concerning the nearness

of the first approximation to the truth. An eclipse of one of

Jupiter s satellites, which is easily observed, will afford us a first

value of the longitude, we might almost say, more than sufficiently

near. For, we may even take as a first value, the difference of

the reckoned times of the occultation at the two places which in the

preceding illustration was l
h 5m, and which (see pp. 427, &c.) is

considerably different from the true value.

We have already illustrated the method, by supposing the

occultation to have been observed at Berlin, and the Moon's

longitude and latitude to have been computed by Paris Tables.

We will now attempt to exemplify the mode of computing the

Correction (/), by supposing the occultation to have been observed

at Paris, and the Moon's longitude and latitude to be computed

by Tables adapted to the Meridian of Greenwich.

The immersion (see p. 371,) was observed at Paris at 13 l
m

20s
. In order to find the corresponding time at Greenwich*

suppose the latter to be 9m west of the former \ then, the reckoned

time would be 13h
l
m 20s

9m, or 12 52m 20s

;
for this time, com-

pute the Moon's longitude 5 the simplest mode of effecting which,

now, would be, to take from the Nautical Almanack the Moon's

longitudes on April ()th at midnight, and April 7th at noon ; to

find their difference, and then to add to the former that part of the

difference which is proportional to 52 ra 20\ The result would

be the Moon's true longitude at 12 h 5 62
m GO8

. (See pp. 403, &c.)

Compute in the same way the Moon's latitude : suppose them
to be exactly of those values which are assigned to them in the

Example of pp.371, &c. ; then, the parallaxes, &c., being

computed exactly as in that Example, the Moon's semi-diameter

will be found (see p. 374,) equal to 15' 51".3. If the Tables be

perfectly correct, and the longitude be rightly assumed, that

computed value of the semi-diameter ought to be equal to

the semi-diameter assigned by the same Tables. But, the latter

is found to be 15' 37". 7. The difference or error 13". 6, assuming
the Tables to be correct, must arise then solely from an error in the

hypothesis of the longitude : computing that error from

3 I
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2 \n (/
-

/') + m (k k') cos." /J

in which A = 15' 37". 7, ---- / V'= 4' 3". 2

D = 15 51.3, ---- k1 = 15 22 . 7

/=4 36', and ;/ and m are the hourly motions* ; t will be found

nearly
= 2->

9
. The corrected longitude of Paris then is 9m 25',

and a repetition of the process will give a value still more correct.

Since the illustration of the method of correcting the assumed

longitude was our chief object, we have supposed, the Lunar

Tables to be correct. But, in practice, their errors, which are

frequently considerable, must be always attended to.

If the occupation be observed under a known meridian, such

as that of Greenwich or of Paris, then, it may be made subservient

to the correction of the Lunar Tables. For such an end, Mayer
has employed the immersion and emersion of Aldebaran f . And,
it is easy to see, since the errors in the computation of the

Moon's distance from the Star, can be only three J (those of the

Lunar longitude and latitude and of the assumed longitude of the

place of observation,) that three observations, of an immersion, at

a place of an ascertained longitude, and of an immersion and

an emersion at a place whose longitude is required, will furnish

three equations sufficient to correct the three errors above-

mentioned. (See Cagnoli, Trig. pp. 470, &c.)

In page 374, allusion was made to a method, of deducing
the longitude from an occultation, in some respects the reverse of

the preceding. In the method alluded to, the true latitude and

longitude of the point of occultation are deduced by correcting

* To obtain n, m, the hourly motions, compute the Moon's apparent
latitudes and longitudes, for 12h 51m 40', and for 13h 5l m 40': and

the respective differences of these quantities will be the hourly motions

in latitude and longitude. In the computation they were assumed to

be V 54' and 30' 31"; which are not, however, their exact values.

f Mayer's Lunar Tables, 1770, pp. 39, 40.

t The Moon's serni -diameter, on the day of the occultation, may be

measured or computed by means of an observation, and accordingly,

tfiiy error, in it's value assigned by the Tables, corrected.
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the apparent latitude and longitude of the Star from the effects

of parallax. The true latitude of the Moon is taken from the

Nautical Almanack. The true distance Z), or the semi-diameter

of the Moon may be taken from the same source, or may be

determined by observation : and thence, may the Moon's longitude
be determined ; for, supposing in the equation (p, 3G9*)

JD* = (/
-

/')> + (t k')\ cos.
2

/,

that, /, /;, &c. represent the true latitudes and longitudes : if D9

/, /', are known, k k
f

may be determined; and, since &', or the

true longitude of the point of occultation is known, k the longitude

of the Moon's center is.

Suppose, then, that by these means, and separate calculations,

we obtained, from an occultation, at two different places, the

following results :

Greenwich, long. J's center - - 67 23' 2(j".l - - hour=8 h 37
m

36'.8

Dublin ~ 67 18 43 .3 84 51..5

3 42 .8 30 45.3

then, ,7 42''.8, is the difference between the Moon's true longitudes

at the absolute times of the observed occultation: and if the

Moon's horary motion be 30' 9"'2, the difference, would corres-

pond to 7m 23 s
.3, in time. The occultation therefore at Green-

wich really happened later than the occultation at Dublin by
7m 233

.3 : but, it is reckoned to happen later at the former by
32 ra 45 J

.3 : part of this then, or that part which remains after

7 n 23 S
.3 is subducted, is solely due to the difference of the

longitudes of the two places : Dublin therefore is east of Green-

wich, 25m 22'.

The Longitude determined ty means of a Solar Eclipse.

This method, in all its parts, is like the preceding. The

distance (D) which is to be computed, instead of being the Moon's

semi-diameter, will be the sum of the semi-diameters of the Sun

and Moon. The immersion of the Star will correspond to the

first exterior contact of the limbs of the Sun and Moon, the

emersion to the last. Thence will result, two equations for

correcting, if the Lunar and Solar Tables be correct, the hypo-

thesis (see p. 434.) of the assumed longitude, But, since we
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can also observe other Phases of the eclipse, that, for instance, of

the nearest approach of the centers (see pp. 347. 356), we may
deduce equations sufficient to correct both the errors of the

Tables and the error of the assumed longitude of the place of

observation.

We will now proceed to the description of an excellent method

for finding the longitude, which cannot be ranged under either of

the two preceding classes.

Method ofdetermining the Longitude by means of the Passage of tlie

Moon over the Meridian*

Let us suppose the meridian of a given place produced to the

heavens to pass through the Moon, the Sun, and a fixed Star.

In the next instant, the Sun by its motion in R. A. will separate
itself from the Star ; the Moon by her greater motion in R. A. both

from the Star and Sun, and the meridian by the rotation of the

Earth, from the Star, Sun and Moon. In other words, in the instant

of time (whatever be its magnitude) after that on which the three

bodies were on the meridian, the Star will be most to the west of

the meridian, the Moon least, and the Sun will be in an inter-

mediate position.

The meridian after quitting these bodies, will approach to-

wards them with different degrees of velocity, and will reach them

after different intervals of time. It will again pass through the

Star, after describing 360, in 23h 56m 4\09 ; through the Sun,
after describing 360 59' 8".3, in 24h

; and, through the Moon,
after describing an angle equal the sum of 3f)0, and the increase

of the Moon's right ascension in 24 h
, and in a time equal to

the sum of 24 hours, and of the Moon's retardation (see p. 399,)

in 24 hours.

This takes place in the interval between two successive transits

of the Moon over the same meridian. A spectator on a different

meridian must note similar effects \ but less in degree, and less

proportionally to the distance of his, from' .he first, meridiar. Ht,

will note an increase in the Sun's right ascension, (or a separation

of the Sun from the fixed Star) but less than 59' 8".3 : an increase

in the Moon's right ascension (or a separation of the Moon from

the Star), but less than its increase between two successive transits ;

and consequently, an excess of the increase of the Moon's right

ascension above that of the Sun's, but less than the excess that takes
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place between two successive transits of the Moon over the first

meridian.

Hence, if the spectator, on this second meridian, knows, or is

able to compute, the respective increases in right ascension of the

Moon and Sun, that take place between two successive passages
of the Moon over the first meridian, then, since he is able, by
actual observation, to ascertain at the times of their passages, the

right ascension of the Sun and Moon, he may, by simple pro-

portion, determine his longitude ; and in fact, he has three ways
of effecting it : either with the Sun and Star ; or with the Moon
and Star ; or with the Moon and Sun. Since, however, the first

method by reason of the slow motion of the Sun, is not convenient

and practically useful, we shall not notice it, but consider only the

two latter.

Let E be the increase of the }) 's right ascension during two

successive transits at the first meridian, e the difference between

3) 's right ascension at the Moon's first passage at the first meri-

dian, and her right ascension at the passage over the second me-

ridian, then,

E : e :: 360 : 360 X ~ = difference of the meridians.E
This is the case with the Moon and Star : and, with the Moon

and Sun, there is this only difference, that E (E )
must denote the

excess of the increase of the Moon's right ascension above that of

the Sun between two successive transits of the Moon ; and e (S)

the difference between the hours of Moon's passages over the

second and first meridian : for the hour of the Moon's passage is

proportional to the angular distance which then exists between the

Sun and Moon.

We must now endeavour to render the above formula more

convenient for computation, so that (which ought in practical

Astronomy to be our constant aim) we may avail ourselves

of the facilities of the Nautical Almanack.

E is the increase of right ascension between two successive

transits of the Moon over the first meridian
j it is, therefore, equal to

the increase of right ascension in twenty-four hours, plus the in*

crease of right ascension due or proportional to, the Moon's retar-

dation (see p. 399.) in twenty-four hours. We have therefore this

rule in the case of the Moon and Star >
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Find from the Nautical Almanack, (see p. 403,) the increase

of the Moon's right ascension in twenty-four hours.

Compute also by the rule in p. 155, of the Nautical Almanack,

(or from the expression in this Treatise, p. 400,) the Moon's re-

tardation in twenty-four hours.

To the increase (A\ of the the 3> 's right ascension in 24h add

the increase proportional to the retardation : call the sum E.

Then, substituting in p. 437, 1. 20, 24h instead of 260, we hays

log. longitude == log. 24 -f log. e log. E.

In the case of the Moon and Sun, the rule is somewhat more

simple . for E' converted into time in the case of the Moon, is the

Moon's retardation, and e' is the proportional retardation between

the transits at the first and second meridian. The third step,

therefore, in the preceding rule, in this case, need not be

made.

The above rule is adapted to the Nautical Almanack. But, it

is easy to substitute, instead of it, a general formula of computation

expressed in symbols. Thus, let A^ ay be the respective increases

of the right ascensions of the Moon and Sun in twenty-four
hours ; then, since the interval between two successive passages of

the Moon over the meridian is

(since in this case / = 24h
, see p. 400, L 16.) the retardation in 24h

must equal

2 4- ftc.

and the increase of A due to the retardation must equal
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In the case of the Sun,

E'^A~a+
g

+ _. &c.

and e' = E, where expresses the Star's acceleration^ (see p. 398,)

proportional to the time corresponding to the difference of meri-

dians. Hence, the longitude ==

24 x (,
-

)

Since e e t A a :: e : A> it is plain, the two expressions

are, as they ought to be, equal.

The Moon's right ascension is expressed in the Nautical

Almanack for every 12h
. Instead therefore of the difference of the

increases of right ascension (A a) in 24 hours, we may employ

the difference (- j in 12 hours : and accordingly in theV 2t s

Rule, (p. 438, 1. 1, &c.) and in the two expressions [1], [2],

we must use 12h instead of 24h
.

The denominators of the expressions, [1], [2], are, strictly

speaking, infinite series , but, in practice it will be
sufficiently ac-

curate to take the sums of three of their terms.

In the application of the rule (p. 434,) to Examples, there

would be occasion scarcely for any computation, if the passages
of the Moon over the meridian at Greenwich, were more accu-

rately expressed in the Nautical Almanack. For then, the re-

tardation in 24h would be immediately obtained by merely taking
the difference between two successive passages. But, the times

of the passages are expressed only as far as minutes. For this

reason, it becomes necessary to compute them as far as seconds,

from the Moon's right ascension, either by the expression of p. 400;

or, by the rule given in the Nautical Almanack, p. 155. 1812,

and after the Example of p. 401.

This, however, is not the description of the whole of the

process of computation. For, since the Moon's right ascension

is expressed in the Nautical Almanack, only as far as minutes of
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space, it becomes necessary to compute it, from the declination,

latitude and longitude : which two latter quantities are expressed
in degrees, minutes, and seconds. This, however, it is requisite

to do, only when great accuracy is required.

EXAMPLE.

April 8, 1800. By observation at Greenwich,

Right ascension of Moon's center - - - 12 h 36m 26 s
. 6

On a meridian to the west, ------12 47 56. 7

<?= 1 i 30 . 1

By computation from Naut. Almanack (see p. 403, 1. 5, 8tc.)

Increase of J) 's right ascension in 24h
, or A - - - 52m 61

of 's,
------ or a --- 3 39.3

-a= 48 26.7

Moon's retardation in 24h
, or time proportional "j

to the description of A a (see p. 400, ? - - 50 7.8

also Nautical Almanack, p. 155.)
- - 3

Proportional increase of 52S

.6, in 50rn 7V8 - - - 1 48.8

.-. E (=52m 6 8 +l in

48'.8) ....... 53 54.8

Hence, by the rule, p. 438,

log. 24 ..... 1.3802112

log. llm 30M - - - 2.8389120

log. 53 54.8 - - - 3.5098474

0.7092758 = log. 5. 12007 i

therefore the longitude = 5 h
. 12007= 5h

7
m 12s

. 25.

We will now solve the same Example, by the second method,
which is founded on the difference between the hours of the

Moon's passages over the meridian, instead of the difference of her

right ascensions at those passages. We will also use 12 instead

of 24 hours (see p 439, * 10.)
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EXAMPLE.

Moon's passage at Greenwich - - - - IP 26m 4?
s
. 82

at the place of observation - - - 1 1 37 29 . o

<r'or, <- e= 10 41 .68

Moon's retardation, or.----- 25 3.9

Hence, log. 12 1.0791812

log. 10m 4P.68 - - .8073185

3.8864997

log. 25 3. 9 - - 3,1772190

.7092807 = log. 5.1201

.. longitude = 5h
. 1201 = 5 !l 7m 12 8

.3().

The results are expressed as far as decimals of a second,

merely for arithmetical exactness, and with no view of signifying

that, in practice, any such exactness is attainable. The method

is an excellent one, if it will determine the longitude within

10 seconds : and its original author Mr. Pigott, does not think

it capable of a greater degree of accuracy. (See Phil. Trans.

1786, p. 419.)

The method, indeed, in a point of view strictly theoretical,

cannot be minutely accurate. For the Moon's motion is conti-

nually variable, and the increase of its right ascension in 24 hours,

will not be 24 times the increase in one hour. But if, from the

strict laws of the Lunar motions, we corrected the method, we
should probably obtain an exactness of no practical value

; since,

we might only get rid of errors much less than the almost

unavoidable errors of observation.

Any means, however, of rendering the method more accurate

and simple, are not to be neglected. And, on the ground of

accuracy, we shall probably gain something, by employing, instead

of the Sidereal clock, one o the Stars that regulate it : and, tJiat

Star, which shall happen to be nearest the Moon in right ascension

and declination. Let both observers note the right ascensions of

this Star and of the Moon, at the times of their transits over their
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meridians; then since, in a short interval, the clocks will not

err much, the difference of the differences
in right ascension^ on

which the method depends, will be given with sufficient accuracy
for its successful application.

Again, the method will be rendered more simple, if instead of

computing the transit of the Moon's center, we are content to note

merely the transit of one of her limbs. This we may do, with

little error, if the required longitude be not great. For, the error,

if there be any, can arise, solely from a change in the Moon's

semi-diameter during the interval between the transits over the

two meridians.

EXAMPLE (See Vince's Astronomy, p. 533.)

June 13, 1791. At Greenwich, difference of >
Oft

R. A. of }) 's first limb, and of a Serpentis J
"

Difference, at Dublin -------- 27 24 .74

1 3
'

1 6.44=^

By Nautical Almanack,
i

a ^

a
2 **

^ 28 25.6

Retardation, (see p. 440.) ------ 29 35.2

Increase of ~ proportional to retardation - - - 1 15.2

/. (=30 SO 9 + l
m 15 3

.2) 31 45.2

Hence, log. 12 - - - - 1.0791812

log. l
m 6 S.44 - - 1.8224296

2.9016108

log. 3lm 45 J.2 - - 2.2799406

0.6216702 = log. .418475
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.. the longitude = 25m 6 S .5.*

The methods of finding the longitude by an occultation and

the eclipses of the Sun and Moon, would, even if they could be

practised, be of no use at Sea, by reason of the rare occurrence of

the phenomena on which they depend. A voyage might be

completed before any eclipse happened. The mariner, who

continually changes his place, requires a constant method of

determining the change of longitude ; a method, accordingly,

depending on phenomena, continually occurring. Now, such

phenomena the passages of the Moon over the meridian, and

the eclipses of Jupiter's Satellites, must be reckoned. But, of

neither of these can he avail himself : for the method founded

on the former requires a nice observation with a telescope adjusted

to move in the plane of the meridian : which is an operation

evidently impracticable on board a ship. And the other method,
on trial, has been found to be equally impracticable. Yet all

that is wanted, for its success is, a contrivance that shall enable

the observer to direct, with steadiness, a telescope of sufficient

power, towards Jupiter. (See Naut. Aim, p. J51.)

From the defect, however, of the preceding methods, has

arisen one of singular simplicity and ingenuity, in which the sole

instrument employed is the Xextant. This we shall now proceed
to describe and illustrate.

MetJtod of determining the Longitude by the Distance of the Moon

from a fixed Siar, orfrom the Sun.

1. By means of the sextant (see Chap. XL.) observe the distance

between a Star and one of the limbs of the Moon ;
or between

* The principle of the preceding method is to be found, m a

letter from Mr. Pigott, to Dr. Mnskelyne, inserted in the Philosophical
Transactions for J786, pp. 417, &e.

;
and the method was used by the

former in determining the Jongitnde of York. The rule, however,

p. 417, given by its author, is inaccurate: immaterially so, with

regard to a place of so small a longitude as York, but to the extent,

nearly, of 3 degrees, if we should seek to determine, by it, the longitude

of a place that exceeds 5 h
. This inaccuracy, as well as those of

other authors, (see Vince's Practical Astronomy, p. 91. Wollaston's

Fasciculus, Appendix, p. 76) who have adopted Mr. Pigott's method>
were first pointed out in the Phil. Mag. Vol. XV.
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the limbs of the Sun and Moon
; then, by adding or subtracting

in the former case, the Moon's semi-diameter, and in the latter,

the sum of the semi-diameters of the Sun and Moon, there will

result either the distance between the Moon's center and the

Star, or between the centers of the Sun and Moon.

2, If there be two observers besides the one, who takes the

above distance, let them, at the instant that distance be taken,

observe the altitudes of the tVioon and Star, or of the Moon and

Sun. If there be only one observer, he must take the altitudes

immediately before and after the observation of the distance, and

endeavour to allow for the changes of altitude, that may have

taken place in the intervals between their observations and that of

the distance.

3, These observations being made, the true altitudes must be

deduced from the apparent and observed, by correcting the latter

for parallax and refraction, (see Chap. XI, XII.). This in practice,

is to be effected by means of Tables.

4, The observed distance is also an apparent one : it must be

reduced to a true distance, or, (as it is technically expressed,)

must be cleared of the effects of i.arallax and refraction. This

must be effected in every case, by a distinct computation from

;i proper formula.

/>. The true distance being obtained, find the hour, minute, &c.

of Greenwich time corresponding to it. This is to be effected by

appropriate Tables, previously computed and inserted in the

Nautical Almanack. In these Tables the Moon's distances from

certain Stars are inserted for every 3h
: and thence, by an easy

calculation, the time corresponding to an intermediate and

distance may be found.

6. Compute the time at the place of observation from the

corrected altitude of the Sun or Star, the Sun's or Star's north

polar distance (furnished by Tables), and the latitude.

7. The difference between this latter time and the time at

Greenwich, is the longitude.

The first thing ,in the preceding statement that requires our

vttontion, is the



Formula for charing the Moon's Distance.

Formulafor deducing the Truefrom the observed Distance.

Conceive 8, M to be the true places of the Star andMoon in

two vertical circles SZ, MZ, forming at the zenith Z, the angle

MZS ; then, since (see Chap. XI, XII.) both parallax and re-

fraction take place entirely in the directions of vertical circles, some

point j- above S, in the circle Z S', will be the apparent place of the

Star, and m below M, (since, in the case of the Moon, the de-

pression by parallax is greater than the elevation by refraction) will

be the apparent place of the Moon : let

D (SM) be the true, d (sm) the apparent distance,

jf9 a (90 ZM, 90 ZS) the true altitudes,

H> h (90 - Zm> 90 Zs) the apparent altitudes ;

then, see Trig. pp. 99, &c.

nrw/t r? TUT cos. D - sin. A . sin. a
in A SZM, cos. SZM = : ,

cos. A . sm. a

_ cos. </ sin. H. sin. h
in A J Z w, cos. s Z m (= S&M) = =7 = ,' v

cos. //.cos.//

and Z) is to be deduced by equating these two expressions.

Hence,
rr . . cos. .// . cos. a . A -

cos. D = (cos. rf sm. H . sin. h} ?= r-f- sm. jf.tma,
^ COS. /Z . COS. ft

(Trigonometryy p. 18.)

= fcos. J+cos. (fT+/i) -cos. H. cos. A]
~: ^'^"f+sin. ^.sin. .

L v COS. /I . COS. //

7 TV i / rr . 7 j\ * C s -^ COS a
= *.*.l(H + k + i).cM.t(H+k-4'- t!MtHtCotfkt

.*.

(cos. A cos. - sin. A sm. a.)

But the last term = cos. (A + (i)\ subtract both sides of the

equation from 1 \ then, since

1 cos, D = . sin,* , and 1 + cos. ^+/rt=2 . cos/ i^.
,

* Cos. l
(rf H - A) if d he > II + h.
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i ,. .,. t ^ i i- r^ cos, -</ . cos* a
we have, dividing by 2, and making F to represent --7=--. >

t> r
cos. Jfi.cos. A

sin.* ^ =cos.a
^ (.<#+<)- [cos. (H+h+ct) cos. (#+/i -//)] x J

"*"

fl
- C08.A(^* + rf)^08.i(

L *

cos.* (A + a)

and if we make the fraction, on the right-hand side of the equa-

tion, = sin.
3
6, we shall have

sin.3 - = cos.* \ (A + rt).cos.
a

G,
Q

and sin. ,- = cos. ^ (A -f a) . cos, 0.
2

Hence, in logarithms, the rule of computation is

1st, 2 . log. sin. 0=log. cos- A (T-f//+</)+log. Cos. >-(H+h-d}

+ log. cos- ^ -J- log. cos. rt + ar. com. log. cos //

+ ar. com. log. cos. // 2 log. cos. ^ (A + #),

and Gndly, log. sin. - = log. cos. ^ (-^ + tf)+log. cos. 10*

The other parts (1,) (2), &c. p. 444, of the statement f have

* This formula of compulation is liorda's. If in p. 44-5, 1. 205 instead

of substituting for sin. Hsln. h, cos. J/.cos. A cos. (// + k), we sub-

stitute cos. (H //) cos. H. cos. //, we may deduce the formula,

which is the basis of Dr. Maskelyne's Rule inserted in the Introduction

to Taylor's Logarithms, pp. CO, &c.

J

1 The distance (see p. 444, 1.26.) between the Moon and a fixed

Star is easily computed from their latitudes and the difference of their

longitudes, the proper formula is

sin.*-? = sin.
5

C~~) + cos. / . cos. /' . sin.* ^^
f

(see p. 366 : also Trig. pp. 129. 131.) /, /', k, k't representing, in this

case, the true latitudes and longitudes.

The Moon's latitude and longitude being computed and inserted in

the Nautical Almanack, for noon and midnight, the Moon's distances

from
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have either already received explanation, in the preceding pages
of this Treatise, or are so plain as to need none. We proceed
therefore to an Example.

EXAMPLE.

June 5, 1793, about an hour and an half after noon, in

10 46' 40" south latitude, and 140 longitude, by account (see

p. 409)> by the mean of several observations, it appeared, that

Distance of nearest limbs of and D - - 83 26' 46"

Altitude of lowest limb of - - - - 48 16 10

Altitude of upper limb of J>
- - - - 27 53 30

Here see
(1) p. 443, we must add to the distance, the semi-

diameters of the Sun and Moon, taking them from the Nautical

Almanack.

The apparent distance of limbs of J> and 83 26' 46''

semi-diameter of - . - 15 40

of })
- - - 14 54

Augmentation proper
1
, to altitude, (see p. 318,) 7

Apparent distance (d) of centers - - - - 83 57 33

from certain stars are computed, by tho above formula, for those times ;

and, the distances for the intermediate times, at 3h , (5
h

,
&c. are deter-

mined by interpolation, or by the aid of the formula in p. 52, 1. 8.

The latitudes and longitudes of the stars, are either to be computed,

(see p. 56.) from their right ascensions and declinations, or to be imme-

diately taken from certain Tables. (See Lalande's Tables, Nautical

Almanack, 1773, Connois. des Terns, an. 12). This method is prefer-

able to the computation of the distance from the declinations and dif-

ference of right ascensions of the Moon and Star, because the right

ascension of the Moon is not computed, in the Nautical Almanack, as

far as seconds, which the longitude and latitude are.
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Reduction of the Apparent to the True Altitude. (See [3] p. 444.)

Altitude of Sun's lower limb - - - - 48 16' 10"

Dip (seep. 421.) 0- 4 24

48 11 46

Semi-diameter --------- 01546
Apparent altitude of Sun's center (//)

- - 48 27 32

Refr. Par. correct, forTherm. see p. 88. 43

True alt. of Sun's center (a) - - - - 48 26 49

Altitude of Moon's upper limb - - - - 27 53' 30"

Dip ..... ------- o 4 24

27 49 IF

Semi-diameter --------- 015 1

Apparent altitude of Moon's center (H) - 27 34 5

Par.-Refr. -f- corr. forTherm. - - - - 46 43

True altitude of Moon's center (A) - - - 28 20 48

Reduction of the Apparent to the True Distance.

(See [5] p. 444, and Formula, p 446.)

d 83 57' 33"

h 48 27 32 ar. co. cos. == .1783835

H 27 34 5 ar. co. cos. = .OJ23390

Sum 159 59 10

Sum 79 59 35 - cos. = 9.2399686

rf-|Sum3 57 58 - cos. = 9.9989587

a 48 26 49 - cos. = Q.8217187

A 28 20 48 - cos. = 9.9445275

64? 37 39.2358960

38 23 48 2 log. cos. 1().7883324

2)19.4475636

log. sin. 0=9.72378 18-log. sin. 31 57' 53"

Hence, log. cos. 31 57 53 9.9285875

log. cos. 38 23 48 9.8941662

(10 taken away) 9.8227537 =log, sin. 41 40' 27"4
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.-. ^=4,1 40' 27"

and, D = 83 20 55, nearly

Time fit Greenwich computed* (See [5] p. 4-44.)

By Nautical Almanack, (p. 70.)

^. ^ Catl5 h --83 & 1"--Z> = 83" 20' 55"
Dist. D from <'

(at 18 --84 28 26--atl5h 83 6 \

Increase of dist. in 3 h = 1 22 23 14 54

Hence,
1 22' 25" : 14' 54" :: 3* : time corresponding to the increase 14' 54"

* Hence, log, 3 = .4771213

log. 894''= 2.9513375

3.4284588

log. 4945" =i 3.6941663

1.7342925=log. Oh.5425=log. 32m 33

Hence, the time at Greenwich = 15h 32m S3 3
.

Time at the Place of Observation computed. [See (6) p, 444.

also, pp. 404, 405.J

L (Lat.) 10 16' 40/x- - cos, 9.9929749

p - 113 22 48 - - sin. 9-9627922

a - 48 26 49 J 9.9557671

Sum 172 6 17

A Sum 86 3 8.5 - cos. 8.8378712

flS/ 36 19.5 - sin. 9.7854864

(20 added) 38.6233576

19-9557671

2)18.6675905

9.3337901 =log. sin. 1227/ 17x'i

* As this is a frequent operation in Nautical Astronomy, it is

facilitated by means of approximate Tables of Proportional Logarithms,
in which the log. 3h = I. See Requisite Tables, Tab. XV. also

Mendoza's Tables, Tab. XIV.
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.-. hour angle (see p. 404?.) = 24 54' 35"

(and in time, by Rule, p. 397.) = 1* S9
m 38 9

.3

Hence, see (7) p. 444?,

Time at Greenwich, 15h 32m 33*

at place of observation - - - - 1 39 38.3

Long, from Greenwich reckoning by the west 13 52 54.7

.-. longitude east of Greenwich 10h 7
m 4S

.3.

The process for finding the longitude from the distance of

the JV1 oon from a Star, will be similar to the preceding : in deducing
the true from the observed altitude, somewhat more simple ; but,

more tedious in the computation of the time from the altitude.

This latter computation, it is desirable to supersede, by reason,

(see p. 4()7.) of the probable errors that will be made in

observing the Star's altitude. And it may be superseded, by

finding the time and regulating the chronometer by a previous
or a subsequent observation of the Sun's altitude : by allowing
for the change in longitude (see p. 409.) during the two

observations ; and then by computing the Star's altitude, from its

north polar distance, the latitude, and the estimated time.

The proper formula of computation for this occasion is one

that has repeatedly occurred, (see pp. 52. 364. 569-) If L be

the latitude, jp the north polar distance, h the estimated hour

angle (see. p. 404.) and a the altitude, then,

sin. a = sin. jL cos./? -f cos. L sin./? . cos. //,

whence, a may be computed by means of a subsidiary angle.

(See Trig. pp. 129, 130, 131.)

Hence, the process for finding the longitude, (see p. 443.)

although it does not essentially require the chronometer, is

rendered more easy and accurate by its aid.

This is not the sole use of the chronometer. It enables the

observer to use the mean of several observed distances of the

Moon from a Star, or the Sun, instead of a single one* For, he

cannot, without error, take the mean, except he know the several

intervals of time that separate the successive observations. The
chronometer enables him to ascertain these intervals.
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Since the finding of the longitude is the most important and

most difficult operation, in Nautical Astronomy, several expedients

have been devised for facilitating it. The distance has been

cleared, (see p. 444.) by a formula different, from that which has

been given in (p. 445.) although derived from the same fundamental

expression. Instead of a logarithmic computation, one proceeding

solely by addition, and furnished with appropriate Tables, has

been substituted. But, for a satisfactory explanation of the means

and artifices, by which, on this occasion, the labour of computation
is abridged and expedited, we must refer to the treatises that

contain them. .'See Requisite Tables: their explanation and use.

Mendoza's Treatise on Nautical Astronomy : Brinkley ;
Irish

Transactions^ 1808 : Connoissance des Terns for 1808, and for

years 121 and 14? : Mackay, On the Longitude.}

If we 'wish to reduce, to one of the classes (see p. 427),

the preceding method of finding the longitude, we shall find

that it belongs to the second. The principle on which it rests,

is, indeed, precisely the same as that which forms the basis of

the second method (see p. 435.) of finding the longitude from

an occultation \ For,

Analogous to the distance!) 83 20' 55", at l h 39m 38

is the 3) 's longitude at Dublin, 67 18 43.3, at 8 4 51.5

Analogous to the distance - 84 28 26 , at 18 (Greenwich)

is the Moon's longitude
- - 67 22 26.1, at 8 37 36.8

(for the Moon's longitude is a species of distance, being the

distance of her place referred to the ecliptic from rj- And

the reduction of 84 28' 26" to 83 20' 55" by taking away

1 T 31", corresponding to 2 h 27m 27s
, is analogous to the

reduction of 67 22' 26".l to 67 18' 43".3, by taking away

3' 42".8, corresponding to 7m 233
.3 ; 1 22' 25", being, in

the former case, the change of the Moon's distance in 3
11

and

30' 9". '2, in the latter, the change of the Moon's longitude in

l
h

: that is, in other words, the Moon's horary motion in longitude.

The problems then of deducing the longitude from an

occultation, and from the distance of the Moon from a Star,

are the same in principle ; but the former is more difficult in
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its process, because, in clearing the observation of parallax,

it is necessary to compute its resolved parts in the directions of

longitude and latitude ; whereas, in the latter, the entire effects

of parallax, which take place in altitude, are alone considered.

The former, as a practical method of determining the longitude,

is exceedingly more accurate than the latter* 5 because, we are

enabled to mark the distance, which is the Moon's semi-diameter,

and the corresponding time, which is that either of the immersion

or emersion, with much greater precision, than we can measure

the distance by means of a sextant, and compute the time from

an observed altitude. But, as it has been observed in p. 443, the

degree of accuracy does not alone determine the adoption of

a method
;
we arc obliged, in finding the longitude at sea, by the

exigencies of the case, to rely solely on, what is called technically,

the Lunar Method.

In finding the longitudes of places at land, circumstances also

must determine which of the preceding methods must be adopted.
Several have been proposed, not as if they might be indifferently

used, but that observers may select from them, what are suited to

their several wants, means, and opportunities. If the observer, fur-

nished with a telescope and chronometer, wishes readily and soon

to determine the longitude of the place where he is, he may use

the method of the eclipses of Jupiter's Satellites, (see p. 429,) and

obtain a result probably within 30 or 40 seconds of the truth. If

he has the means of adjusting a telescope to move nearly in the

plane of the meridian, the method of the transits of the Moon and

of a fixed Star, (see p. 436,) will afford a more accurate result,

and with an error, perhaps, not exceeding 10 seconds. But, if

great accuracy be required, and expedition be not, then the observer

* " For the present, I infer, we may take the difference of meridians

(Greenwich and Paris) 9m 20s
, as being within a few seconds of the

truth, till some occuhations of fixed stars by the Moon, already observ-

ed, or hereafter to be observed, in favourable circumstances, and

carefully calculated, shall enable us to establish it with the last exact"

ness." Maskelyne, On t.\e Latitude and Longitude of Greenwich, &c, PhlL

Trans. 1787, p. ISQ. See also Phil. Trans. 1790, p. 230.
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must wait for the opportunity of a Solar eclipse, or, what is

better, of an occultation *, and thence compute the longitude f.

The several methods have their peculiar advantages and dis-

advantages : the last, which is the most accurate, requires com-

putations of considerable length and nicety; the first probably
inaccurate to the extent of th of a degree, requires scarcely any.
The second is more accurate, and may constantly be used, and

therefore, on the whole, it is perhaps the readiest and best prac-

tical method.

The Lunar method, which is the least exact, is yet founded on

the most refined theory, and the most complicated calculations.

It depends, for its accuracy, entirely on previous computations.
We cannot, in applying it, compare, as in the case of an occul-

tation, (pp. 429, Sec.) actual observations of the same phenomenon,
or give accuracy to the result, by correcting (see p. 434,) the errors

of the Tables. But, the mariner must be guided by the result,

such as it comes out at the time of the observation, and which,

a few hours after, will have lost all its utility.

In page 437, it was mentioned, that, in a merely theoretical

point of view, the longitude ought to be afforded as a result, from

the separation, during a given interval, of the Sun from a Star; but

that the slow motion of the former, deprived the method of all

* An occultation affords a more exact practical result than a Solar

eclipse, because, in the former, the instant of immersion can be marked

with greater precision, than the instant of contact in the latter.

The recurrence of occultations may be found as those of eclipses were,

p. 352, We must find two numbers in the proportion, or nearly so, of

27
d.321661 (the Moon's sidereal period) to 67 93*.421 18 (the sidereal

revolution of the nodes) : which numbers are 4227, and 17 : and the

period of recurrence is 316y 72
u
.l (= 4227 X 27.321661).

f In speaking ofthe errors in the determination of the longitude, we

have supposed the mean, of several observations accurately made with

excellent instruments, to be taken. The errors of single observations

will be much greater than what have been assigned to them. With the

first satellite of Jupiter it may amount to 3m 44s

according to Mr. Short.

(See his Paper in the Phil. Trans. 1763, p. 167, for determining the

difference of longitude between Greenwich and Paris, from the transits of

Mercury over the Sun's disk).
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practical utility. Now, the material circumstance that confers,

what accuracy it possesses, on the Lunar method) is the Moon's quick

change of place. Were the change greater, the method would

be more accurate. For instance, the Moon now moves through
1 in about 2 hours, and therefore, an error of 1', in observing

and computing her distance, causes an error of 2 minutes of time,

or of 30' of longitude. But, if she moved through the same

space (1) in \ hour, then the error of I' would cause only an

error of 30' of time, and of 7' of longitude.

Hence it follows, that the first satellite which moves round

Jupiter in less than two days, (see p. 291,) must enable the inha-

bitants of that planet to determine very exactly the longitude : as

exactly, as we can determine the latitude.



CHAP. XLIV.

On the Calendar.

THE Sun naturally regulates the beginnings, ends, and dura-

tions of the seasons (pp. 12, 212) -, and, the calendar is constructed

to distribute and arrange the smaller portions of the year.

The calendar divides the year into 12 months, containing 305

days ; and, it is desirable that it should always denote the same

parts of the same season by the same days of the same months,

that, for instance, the Summer and Winter solstices, if once hap-

pening on the 21 8t of June and 21 st of December, should, ever

after, be reckoned to happen on the same days ; that, the date of

the Sun's entering the equinox, the natural commencement of

Spring, should, if once, be always on the 20th of M arch. For

thus, the labours of agriculture, which really depend on the

situation of the Sun in the heavens, would be simply and truly

regulated by the calendar.

This would happen, if the civil year of 365 days were equal

to the astronomical
; but, (see p. 6,5,) the latter is greater ; there-

fore, if the calendar should invariably distribute the year into 365

days, it would fall into this kind of confusion j that, in progress

of time, and successively, the vernal equinox would happen on

every day of the civil year. Let us examine this more nearly.

Suppose the excess of the astronomical year above the civil to

be exactly 6 hours, and, on a certain year, on the noon of March

20th, the Sun to be in the equinoctial point ; then, after the lapse

of a civil year of 365 days, the Sun would be on the meridian, butnot
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in the equinoctial point \ it would be to the west of that point 5

and would have to move 6 hours in order to reach it, and to

complete (see pp.65, Sec.) the astronomical or tropical year.

At the completions of a second, and a third civil year, the Sun

would be still more and more remote from the equinoctial point :

and, would be obliged to move, respectively, for 12 and 18 hours,

before he could rejoin it, and complete the astronomical year.

At the completion of a fourth civil year, the Sun would be

more distant, than on the two preceding ones, from the equi-

noctial point. In order to rejoin it, and to complete the astro-

nomical year, he must move for 24 hours, that is, for one whole

day. In other words, the astronomical year would not be com-

pleted till the beginning of the next astronomical day ; till, in

civil reckoning, the noon of March 21st.

At the end of four more common civil years, the Sun would

be in the equinox on the noon of March 22. At the ends of 8

and 64? years, on March 23, and April 6, respectively : at the end

of 736 years, the Sun would be in the vernal equinox on

September 20. And, in a period of about 1508 years, the

Sun would have been in every sign of the Zodiac on the same

day of the calendar, and in the same sign on every day.

If the excess of the astronomical above the civil year, were

really, what we have supposed it to be, 6 hours, this confusion of

the calendar might be, most easily, avoided. It would be neces-

sary merely to make every fourth civil year to consist of 366 days ;

and, for that purpose, to interpose, or to intercalate a day in a month

previous to March. By this intercalation what would have been

March 21st is called March 20th ; and accordingly, the Sun would

be still in the equinox on the same day of the month.

This mode of correcting the calendar was adopted by Julius

Caesar. The fourth year into which the intercalary day is intro-

duced was called Bissextile : it is now frequently called the Leap
year. The correction is called the Julian correction, and the length
of a mean Julian year is equal to 365d

.25.

The astronomical year (see p. 306.) is equal to 365 d

.242264,

and, accordingly, is less than the mean Julian by Od.007736. The
Julian correction^ therefore, itself needs a correction. The
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calendar, regulated by it, would, in progress cff time, become

erroneous, and would require reformation.

The intercalation of the Julian correction being too great,

its effect would be to antedate the happening of the equinox.

Thus, to return to the old illustration, the Sun at the completion
of the fourth civil year, now the Bissextile, would have passed
the equinoctial point, by a time equal to four times Od

.007736 *

at the end of the next Bissextile, by eight times
(1

.007736 : at

the end of 129 years, nearly by one day. In other words, the

Sun would have been in the equinoctial point 24> hours previously^

or on the noon of March 19th.

In the lapse of ages, this error would continue and be increased.

Its accumulation in 1292 years would amount, nearly, to 10 days,

and then, the vernal equinox would be reckoned to happen on

March 10th.

The error into which the calendar had fallen, and would

continue to fall, was noticed by Pope Gregory in 1582. At
his time, the length of the year was known to greater precision,

than at the time of Julius Cicsar. It was supposed equal to

365 d
,5
h 49m 168

.23. Gregory, desirous that the vernal equinox
should be reckoned on or near March 21st, (on which day it

happened in the year 32|>,
when the Council of Nice was held,)

ordered that the day succeeding the 4th October 1582, instead

of being called the 5th, should be called the 15th; thus,

suppressing 10 days, which, in the interval between the years
325 and 1582, represented, nearly, the accumulation of error

arising from the excessive intercalation of tlie Julian correction.

This act reformed the calendar : in order to correct it in

future ages, it was prescribed, that at certain convenient periods,

the intercalary day of the Julian correction should be omitted.

Thus, the centenary years, lYOO, 1800, 1900, are (as every

year divisible by 4* is) according to the Julian correction,

Bissextiles, but on these it was ordered that the intercalary

day should not be inserted : inserted again in 2000, but not inserted

in 2100, 2200, 2300 ; and so on for succeeding centuries.

This is * most simple mode of regulating the calendar. It

corrects the insufficiency of the Julian correction by omitting,
in the space of 400 yearsj 3 intercalary days. And, it is easy to

3 M
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estimate the degree of its accuracy. For, the real error of the

Julian correction is .007736 in 1 year, consequently, 4 x .7736,

or 3d.09M in 400 years. Consequently, Od

.0944, or, 2
11

15m 36 9.16

in 400 years, or 1 day in 423 7 years is the measure of the degree

of inaccuracy in the Gregorian correction. Against such, it

plainly is not worth the while to make any formal provision in

the mode of regulating the calendar.

The calendar may be thus examined and regulated, without

the aid of mathematical processes and formulae. Yet, on

this subject, the method of continued Fractions* is frequently

employed. This, however, is to use an instrument too fine for

the occasion. The results have a degree of exactness, beyond
vrhat we require, or can practically avail ourselves of. The only

thing, in the correction of the calendar, that requires a high

degree of mathematical science, is the determination of the length
of the astronomical year. Had this been known, to a greater

exactness, by the Astronomers of the time of Julius Caesar, the

Julian correction would, probably, have superseded the necessity

of the Gregorian.

* Since the excess of the tr^piral year above the civil is

Od.242264, the exact interctlalioii ;< that of 242204 days, in

1000000 years. But, since this intercalation would be of no

practical use, we must find numbers nearly in the ratio of 242204 to

1000000 : which may be effected by the method of continued fractions,

as in pages 279, 280, &c. See on this subject, Euler's Algebra.

Addition, pp. 4-26, &c. edit. 1774.
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TABLE I. The mean Right Ascensions of 36 principal Fixed

Stars, to the beginning of 1802 ; with their Annual Precessions, and

Annual Proper Motions, from the latest Observations.
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[

TABLE I. continued. The North Polar Distances of 30 principal Stars,

to the beginning of 1802; with their Annual Precessions, and

Annual Proper Motions, from the latest Observations.
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TABLE IL

The mean Astronomical Refractions.

Barom. 29.6. Thermom. 50. See Chap. IX.

TAB. III.

The 's Paral*.

in Altitude.
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TABLE IV.

Table for determining, nearly, the Times when the Principal

Stars are on the Meridian. (See pp. 54-. 396, &c.)
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TABLE V.

Epochs of the mean Longitude of the Moon's ascending Node-
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TABLE VI.

Retrograde Motion of the Moon's Node to every Day in the

Year. Subtract from the Longitude of the Epoch.

Iti tliu Months Jan. and Feb. in Leap-Year, take out for the Day
preceding the given Day,

3 N
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GENERAL TABLES OF ABERRATION.

TABLE VII.

Argument, the Sun's true Longitude.
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TABLE VIII.

Argument, the Sun's Longitude plus or minus the Declination.
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GENERAL TABLE OF NUTATION.

TABLE IX.

Argument, the mean Longitude of the Node.
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USE OF THE TABLES.

TAB% I. Required the Right Ascension and North Polar Distance

of a Cygni,~<w Dec* 17, 1807.

R. A. in 1802, 10" 8* 40' 13".7 - Precession - 30".63

Preces.forGyears 003 3-78 6

.'. R. A. required 10 8 43 17.48 3 3-78

N. P. D. in 1802, 45 25' 16''.4 - Precession - 12''.53

Precess. for 6 years i 15.18 6

N. P. D. required 45 24 1.22 -1 J5.18

.'. Declination= 44 S5 58.78

The interval between Jan. 1, 1802, and Dec. 17, 1807, is

nearly 6 years : if instead of Dec. 17, the time had been June 17,

1807, then, the annual precessions instead of being multiplied by
6, would have been multiplied by 5.5 : and, like alterations must

be made for other cases*

TAB. V. VI. Required the Longitude (Si) of the Moon's ascending

Node on Dec. 1 7, 1807.

Tab. V. Epoch 8< 17 54'

Tab. VI. Dec. 17. 18 35

These Tables are introduced as being subsidiary to the

Table of Nutation.

TAB. VII. VIII. These Tables are constructed by M. Gauss, and

inserted in the Connoissance des Tents for 1810. Instead of 20"

(see p. 129,) M. Gauss used 20".255 to express the major axis

of tJie Circle of Aberration ; and9 in this he agrees luiih

M. Delambre.

The expressions from which these Tables are constructed, are

Aberration in R. A. (^)=-
cos - "- cos -

x
cos ' f 4

v '
cos. (o + .v) cos. D
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Ab, in de,m=-"^"-<-
- - . sin. . cos. (o + D) - ~ sin. * cos. (0

-
D),

2 2

in which, = 20\255, * = obliquity,
= Sun's longitude,

^= ijc's R. A, D = 4:'s dec. and* is to be determined from

taUt (o + ^) = tan. . sec. *> : ^
;

in the Tables, represents the

COS. w . COS.
coefficient

cos, ( + #)

EXAMPLE, Required the Afarrattorn in Right Ascension and

Declination of a Cygni, on Dec. 17, 1807,

(From the Nautical Almanack) ~ - - - O = 8s 25 9'

Tab. VII. - - - - - * =

+ * = 8 25 33

(see p. 469, 1. 6.) A 10 843

(See p. 469, 1- 10.) D = 1 14 35.58

Tab. VII, log. a - - 1-3063
j

log.
1.3063

log. cos. (O + x ~ A) 9.8629 log. sin. (O + x - A} 9.8351

Ar. com. log. cos. D 0*1475

... log. (<W)
- - - TJJ67

,-. dA'Sz-*

Iccj. sin. ) - - - 9.8464

\log. w - - * - 0.9878 +

.-.w= +9.72

Again, O + D == 10s
9^> 45^ Tab. VIII, 2.58

O - D 7 10 33 Tab. VIII. - - - +3.06

.-. (d D) - +10.2

TAB, IX, This Table also is constructed by M. Gauss. The ex-

pressions, from which the Tables are constructed, are

Nutation in R. A, = ^'
c '

.

. cos, (SI
- B- A] tan.D,

cos. (SI x>)

Kutation in declination=
fl
'-

c

?^'
i . sin, (ft- 5 J).

cos. (1 JD)
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EXAMPLE.

Required the Nutation in Right Ascension and Declination of

Cygni, on Dec. 17, 1807.

See p. 469, 1. 20.

Tab. IX.

(see p. 469, 1. 6.)

Tab. IX, log. b,
- 0.8976-

log.cos.(a-JS~^) 9.3426 -f

log. tan. D - - 9.9939

log.- 1.71=0.2341 -
Tab. IX. ^+14.23

Nut. in R A. + 12.52

-
SI =7 3

9 19'

- - B = ^ 7 5^

a - B = ~21 26"
- - ^ = 10 8 43

43

log.* - - - -

log. sin. (ft B- .

- 0.8976

99892

="08868

Nut.indec.=+7".705



INDEX,
PRINCIPALLY OF THE TERMS.

Almacanter, 412.

Amplitude, 28, 416.

Anomalistic, 70.

Anomaly, 190, ^cc.

Antecedentia, 42.

Appujse, 342,

Argument, 128.

Aries, first point of, 42.

,Artic, Antartic, circles, 16,41.

Ascension, Right, &c. 48.

Azimuth, 28, 410.

Aphelion, 188.

Colatitude, 7, 37.

Colu res, 41.

Collimarion, 29.

Commutation, angle of, 255.

Conjunction, 43.

Consequents, 42.

Constellations, 41.

Culminate, 1.

Curtate distance, 253.

Day, sidereal, 49, 50.

solar, 51.

Declination, 8.

Digit, 347.

Dichotomised, 18.

Eclipse, 19, 336, &c.

Ecliptic, 12, 40.

Elongation, 255.

Equations, 150, 159.

Equator, 6, 37.

Equinoctial points, -40.

Equation of the Center, 199, &c.

Heliacal rising, 9.

Horizon, 2.

Latitude, of a Star, 42.

of a place, 7, 414.

Longitude, of a Star, 56,

of a place, 425.

Nadir, 2.

Nodes, 40.

Nonagesimal, 363, &c.

Opposition, 43.

Pole, 2.

Position, angle of, 59, &c
Precession, 60.

Quadrature, 44.

Secondary, 6.

Signs, 41.

Solstice, 40-

Syzigy 43.

Transit Instrument, 42.

Tropic, 40.

Zenith distance, 2.

Zodiac, 41.
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