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PREFACE

IF the reason be demanded for the appearance of another book

on Field Astronomy when there are already published several

excellent works on the subject, it may be stated as follows:

That although any one of them may serve very well as a text

for a comparatively extended study, the author has been unable

to find one sufficiently concise to fit the short time usually al-

lowed for the work in a civil engineering course which would still

provide enough of the fundamentals of the subject to enable

the reader to make, intelligently, the observations and accom-

panying computations required in the practice of general engineer-

ing and surveying. Something is needed more complete than

the usual 'chapter in books on surveying and less extensive than

most texts on field astronomy. This need, which is acknowledged

by other teachers to exist, it is hoped to fill; and at the same
time it has been attempted to provide a book which will be of

service to engineers and surveyors whose practice requires that

they occasionally make astronomical observations.

To this end the discussion of fundamentals has been made

brief, but it is thought sufficiently thorough for the purpose.

Special attention has been given to the matter of measurement

of time, because it is believed that this causes more difficulty

for students in general than any other part of the subject.

In the selection of the methods described for the determina-

tion of latitude, azimuth, time, and longitude, care has been

taken to choose those which are believed to be most capable
of producing results when used with field instruments under

ordinary field conditions. Realizing that the determination

of azimuth is more frequently required than any other obser-

vation, more methods have been given for this than for the

other problems.
Each observation has been presented essentially as follows:

The work of which the observation consists is first stated briefly,

followed by the relations and theory on which it depends, ac-

companied by such explanation as seems necessary. The pro-

cedure is then outlined, step by step, under the general headings:

o rr rr ,io A



IV PREFACE

"
Computations Preceding Field Work,"

"
Field Work/' and

"
Computations Following Field Work." This outline is supple-

mented by a copy (near the back of the book) of the field-notes

and computations of a similar observation.

It is hoped that this method of presentation will commend
itself not only to the student but to the engineer in practice.

The "
Summary of Observations" in- Chapter XI should be

useful in selecting an observation or in determining whether

sufficient data are at hand to permit an observation which is

under consideration.

In Appendix A are given the derivations of the formulas of

Spherical Trigonometry which are needed in the work, and in

Appendix B is a brief discussion of the theory and use of the
"
Solar Attachment "

for the engineer's transit.

No excuse is made for the omission of refinements of either

theory or practice which are not required in work done with

an engineer's transit or a sextant.

While preparing the manuscript the author has studied several

of the existing works on field astronomy, and this book has

profited thereby, acknowledgment being made in the body of

the book whenever anything has been copied. No claim is made
to having produced anything new; but merely to having put
well-known facts in a new, and it is hoped useful, form.

The thanks of the author are due to Messrs. W. and L. E.

Gurley and the Bausch & Lomb Optical Company, who have

furnished cuts for the book
;
to the Superintendent of the U. S.

Coast and Geodetic Survey, who has permitted the use of tables

from Government publications, to friends who have given advice

and suggestions, and among these particularly to Mr. R. B.

Kittredge, Assistant Professor of Railroad Engineering in the

College of Applied Science of the State University of Iowa, who
has read the entire manuscript, very much to its improvement.

A. H. HOLT.

IOWA CITY, IOWA, November, 1916.



NOTATION
= Latitude.

X = Longitude.
Zn = Azimuth, referred to true north.

Zs Azimuth, referred to true south.

t Hour angle.

RA = Right ascension.

h = Altitude.

5 = Declination.

Z = Interior angle of the astronomical triangle at the

zenith.

P = Interior angle of the astronomical triangle at the

pole.

S Interior angle of the astronomical triangle at the

star.

z = Co-declination or polar distance, 90 5.

p = Co-altitude or zenith distance, 90 h.

s = Co-latitude, 90 -
<j>.

k = lA(s+p+z) = y2 [270
-

(</> + h + )].

Sid. T = Sidereal time.

Std. T = Standard time.

LMT = Local mean time.

LA T = Local apparent time.

A = Right ascension of the mean sun.

An Right ascension of the mean sun at local mean noon.

E = Equation of time.
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A MANUAL OF FIELD
ASTRONOMY

CHAPTER I

INTRODUCTORY

1. Field Astronomy. Practical Field Astronomy for the engi-

neer consists of the theory and practice of the determination by
observations on the sun and the stars of: (1) Latitude, (2) Longi-

tude, (3) Azimuth, and (4) Time. Occasionally observations

are made on the moon, but those on the sun and the stars are

the most important.

The engineer is not concerned with much that goes to make

up the science of Astronomy. He makes measurements of the

directions of the heavenly bodies; but takes no account of their

distances, their actual movements in space or their physical

characteristics. They are to him simply objects of known posi-

tions from which he can make measurements to determine his

position on the earth's surface or to orient the courses of his

survey.

2. The Celestial Sphere. Since only the directions of the

sun and stars are to be considered, it is convenient to regard

them all as being situated on the surface of a sphere of infinite

radius, called the celestial sphere, with its center at the center

of the earth. For most of the work the earth (having a finite

radius as compared with the infinite radius of the celestial

sphere) is considered to be a point. That there is no appre-

ciable error in this is apparent from the fact that the ratio of

the radius of the earth to the distance to the nearest fixed star is

about 1 to 7,000,000,000.

It should be noted that since the radius of the celestial sphere
is assumed to be infinite, all parallel planes which are separated

by any finite distance may without appreciable error be con-

sidered to cut its surface in the same circle; and all parallel

lines may be assumed to pierce it in the same point. Also,

1



Z INTRODUCTORY

any plane through the earth will cut the surface of the celestial

sphere in H great circ've. (Since it is assumed to pass through
the center of the sphere.)

3. Apparent Motion of the Heavenly Bodies. Due to the

daily rotation of the earth about its axis, all of the 'stars and

the sun appear to be traveling from the east toward the west

along circles on the surface of the celestial sphere, making one

revolution a day. The earth's axis, produced, would pass

through the centers of these circles and would be perpendicular
to their planes. Due to the earth's eastward motion in its

orbit around the sun, once a year, we see the sun at different

times from different places in the orbit, and therefore in ap-

parently different positions. This apparent motion of the sun

is eastward along a great circle on the celestial sphere whose

plane passes through the earth and makes an angle of about

23 27' with the plane of the equator; and it amounts to one

revolution around the earth in one year.

In astronomy the terms "east" and "west" are often used

to indicate directions of rotation instead of in the sense with

which we are familiar in plane surveying. The reason for this

will be apparent if one considers two persons standing on opposite

sides of the earth and both pointing east (or west). They would

actually be pointing in opposite directions, but they would be

indicating the same direction of rotation.

The student should become accustomed to thinking of relative

positions and motions of objects on the celestial sphere from

both an inside and an outside point of view. It is usually easier

to visualize these things if one imagines himself outside, with

a general view of the whole situation; although, of course, they

will actually have to be viewed from an inside position.

If one imagines himself outside the celestial sphere and di-

rectly above the north pole, on line with the axis of rotation of

the earth, an eastward rotation of a celestial object will appear

to be counter-clockwise, while a westward rotation will appear
to be clockwise.

In general, we shall study apparent and not real motions;

and therefore, whether considering one's self at the center of the

sphere or outside and above the north pole, the earth is usually

assumed to be standing still and the other bodies to be moving
around it.

4. Definitions. The following are some of the terms used in







INTRODUCTORY 3

astronomy in connection with defining the positions of celestial

objects. The letters are references to Fig. 1.

The direction of the plumb-line at any place is called the

vertical for that place. If the direction of the vertical be pro-
duced indefinitely, both up and down, it will intersect the surface

of the celestial sphere in two points, called the zenith and the

nadir, respectively (Z andZ').

/-/-* -A-N

South

W

'

>

*'^--~.

Z'

FIG. 1. THE CELESTIAL SPHERE.

A plane through the earth perpendicular to this direction will

cut the surface of the celestial sphere in a great circle, called

the horizon for that place (HWH').
If the axis of rotation of the earth be produced indefinitely

it will pierce the surface of the celestial sphere in the north and

the south celestial poles (P and P'). A plane perpendicular to

this axis at the center of the earth will cut the surface of the

earth in the terrestial equator and the surface of the celestial

sphere in the celestial equator (EVE'A).
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Vertical circles (ZSMZ') are great circles on the surface of

the celestial sphere, passing through the zenith and the

nadir.

Hour circles (PSRP') are great circles through the celestial

poles.

The meridian of the observer (PZP'Z') is a great circle through
the zenith and the celestial poles. It is at the same time a

vertical circle and an hour circle. The projection of this meridian

upon the earth is the meridian used in plane surveying.

The prime vertical is the vertical circle whose plane is perpen-
dicular to the plane of the meridian. It cuts the horizon in the

east and west points. The meridian cuts the horizon at the

north and the south.

The great circle on the celestial sphere which the sun's center

appears to describe in its (apparent) yearly motion around the

earth is called the ecliptic (Q'VQA), and the angle which its plane

makes with the plane of the equator (about 23 27') is called the

obliquity of the ecliptic. The points at which the ecliptic inter-

sects the equator are called the equinoxes. The one at which the

sun appears to cross the equator, going northward, about March

21 of each year, is called the vernal equinox (F); and the one at

which it crosses, going southward, about September 22, is called

the autumnal equinox (A).

The latitude of a place may be defined as the angular distance

of the place north or south of the* equator; or more exactly, as the

angle which the vertical at the place makes with the plane of the

equator. Its limiting values are zero and plus or minus ninety

degrees. North latitudes are considered plus and south latitudes

minus.

The longitude of a place is the angular distance (expressed in

either degrees or hours) of the place east or west of some arbi-

trary reference meridian, usually the meridian of Greenwich,

England. More exactly, it is the angle between the planes of the

reference meridian and the meridian of the place. Its limits are

zero and 180 (or 12 hours) east, and zero and 180 (or 12 hours)

west.

Fig. 1 illustrates the relative positions of the lines and

points defined above.



CHAPTER II

SYSTEMS OF CO-ORDINATES AND THE
ASTRONOMICAL TRIANGLE

5. Spherical Co-ordinates. The work of field astronomy

requires that we shall be able to define the positions, or more

exactly, the directions of the heavenly bodies. For this purpose
four systems of spherical co-ordinates are used. These systems
have several characteristics in common. They are all systems

FIG. 2.

of polar co-ordinates, with the earth at the center or pole. In

each system the direction of the point in question is located by
means of two angles, or arcs. One is measured along a primary
circle from some starting-point to the foot of a secondary circle

through the point to be located. The other is measured along
the secondary circle from the primary circle to the point to be

located. The plane of the secondary circle is always perpen-
dicular to the plane of the primary circle.

In Fig. 2 the direction of point C is determined by the angle

AOB, or the arc AB measured from A along the primary circle

ABD to B, and the angle BOC, or the arc BC measured along

5



6 CO-ORDINATES AND ASTRONOMICAL TRIANGLE

the secondary circle from the primary circle to point C. The

plane of the arc BC is perpendicular to the plane of the arc AB.
Note that only the direction of the point is determined; no
account is taken of its distance of the length of the radius.

This method of locating points is common to the four systems.
Of the four we shall use three.

6. The Horizon System. System I, sometimes called the

Horizon System, has for its primary circle the horizon, and for

its secondary circle a vertical circle through the point to be

located. The primary co-ordinate, azimuth, is measured from

the point of intersection at the south of the observer's meridian,
and the horizon, westward (clockwise) along the horizon to the

foot of a vertical circle which passes through the point to be

located. The secondary co-ordinate is altitude, and is measured

along the vertical circle from the horizon to the point.

Fig. 3 shows the location of a star, S, by its azimuth, HM,
and its altitude, MS.

In some special cases it is more convenient to measure the

azimuth from the north instead of from the south, and it is

occasionally so measured.

7. The Equator Systems. Systems II and III both have for

their primary circle the celestial equator, and for their secondary
circle an hour circle through the point to be located,
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In System II the primary co-ordinate, hour angle, is measured

from the point of intersection at the south of the observer's

meridian and the celestial equator, westward (clockwise) to the

foot of the hour circle through the point. The secondary co-

ordinate is declination, measured along the hour circle from the

celestial equator to the point. It is considered plus if measured

toward the north celestial pole and minus if toward the south.

In System III the primary co-ordinate is called right ascen-

sion. It is measured from the vernal equinox eastward (counter-

clockwise) along the celestial equator to the foot of the hour

circle through the point to be located. The secondary co-ordi-

nate is the same as that of System II. The limiting values of

hour angle and of right ascension are in each case hours and

24 hours. The limiting values of declination are zero and plus

or minus ninety degrees.

Fig. 4 illustrates the location of a point by System II, and

Fig. 5 shows the use of System III.

Some attention should be given to fix in mind the full meaning
of the term " hour angle." It is the value in hours (15 per

hour) of the spherical angle EPS (Fig. 4) or of the arc ER.

Remembering that the point S is traveling westward (clockwise)

along a circle whose plane is parallel to the plane of the equator,

it will be seen that the hour angle represents the number of

hours since the point crossed the meridian of the observer.



8 CO-ORDINATES AND ASTRONOMICAL TRIANGLE

For the fourth system of spherical co-ordinates we shall have
no use in practical field astronomy.

Systems I, II, and III are summarized in the following table,

and this summary should be thoroughly memorized:

8. Uses of the Three Systems. Each of the three systems

possesses certain characteristics in which the others are lacking

which give it a place in the work o"f field astronomy.

System I is the system most used in field measurements of

the positions of the heavenly bodies. The reason is that its

co-ordinates, the azimuth and altitude of the point in question,

may both be measured directly with the engineer's transit. On
the other hand, because of the rotation of the earth, the azimuth
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and altitude of a given point are continually changing; and

these co-ordinates also depend on the position of the observer.

This system is therefore undesirable for permanent records of

the positions of the heavenly bodies.

In System II the first of these difficulties is done away with.

The celestial equator, from which the secondary co-ordinate

(declination) is measured, lies in a plane normal to the axis of

rotation of the earth; and is therefore independent of that

rotation. Since the equator is also independent of the observer's

position, the declination of a fixed point, such as a fixed star, is

independent of the time (i.e., of the rotation of the earth) and

of the observer's position. It is very nearly a constant quantity.

Any variation may be computed, so that the declination of a

heavenly body at a given time may be regarded as a permanent
record. The primary co-ordinate of System II (hour angle)

increases uniformly with the time, and may therefore be meas-

ured with a watch or chronometer.

In System III the point of reference from which the primary
co-ordinate is measured shares in the apparent rotation of the

celestial sphere, so that the right ascension of a fixed point does

not change with time. There are some slight changes in the

right ascensions of the fixed stars, due to a slight movement of

the vernal equinox. The amounts of these slight variations

may be computed; so that the right ascension of a fixed point,

once determined, may always be regarded as a known quantity.

Since both co-ordinates of this system are independent of the

time and of the observer's position and are nearly constant

(the amount of any variation being obtainable), they are suit-

able for use as permanent records of the positions of the heavenly

bodies; and they are so used in the "American Ephemeris and

Nautical Almanac" and similar works. Here are tabulated the

right ascensions and the declinations of the sun, planets, moon,
and several hundred of the fixed stars.

9. Relation between the Systems. Since all three systems
of co-ordinates have their uses in the work of field astronomy,

_i+ is essential that we be able to translate from one system to

another. It is in this connection that the assumption, that the

heavenly bodies are situated on the surface of a celestial sphere

comes into play; for if arcs of great circle are considered drawn

through the proper points, forming a spherical triangle, most

of the problems in transformation of co-ordinates become simply

problems in spherical trigonometry. This spherical triangle is
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always formed (see Fig. 6) by an arc of the meridian of the

observer (PZ), an arc of a vertical circle through the point
to be located (ZS), and an arc of an hour circle through that

point (PS).

This triangle is so much used in the work of field astronomy

that it is called the astronomical triangle; or sometimes, from

the letters at its vertices, the "SPZ" triangle.

It is essential that we become thoroughly familiar with the

quantities that go to make up the parts of this triangle. In

the northern hemisphere the vertices are always at the north

celestial pole, the observer's zenith, and the star or other point

whose co-ordinates are under consideration.

The angle P at the pole is always the hour angle of the star

S if the star is on the western side of the meridian, as shown in

Fig. 6; or it is equal to 24 hours minus the hour angle if the

star is on the eastern side of the meridian, as in Fig. 7.

The angle Z at the zenith is equal to (180 Z3) if the star

is on the western side of the meridian, as in Fig. 6; or to (Zs

180) if it is on the eastern side as in Fig. 7.

The angle S at the star is called the parallactic angle. It is

very little used.

The arc ZE is
; by definition, the observer's latitude; and
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therefore the arc PZ, or s, is equal to (90 0), and it is called

the co-latitude.

The arc MS is the altitude of the star, so that the arc SZ,
or p, is equal to (90 h), and is called the co-altitude, or

sometimes the zenith distance.

The arc RS is the declination of the star, and therefore the

FIG. 7.

arc PS, or z, is equal to (90 5) and is called the co-declination,

or sometimes the polar distance.

Thus each part of the astronomical triangle, with the exception
of the angle at the star, may be expressed in terms of the

observer's position on the earth's surface (latitude) or the

co-ordinates of the star.

It may be convenient to note for use in future solutions of

the astronomical triangle for hour angle or for azimuth, that if

t is less than 12 h, or 180, Zs is less than 180; and if t is greater

than 12 h, or 180, Zs is greater than 180.
The values of the five parts of the astronomical triangle defined

above are summarized in the following equations:

s = 90 -
. . . .

p = 90 - h . . . .

z = 90 - 5 . . . .

Z = 180 - Zs ...
or

- Zs
- 180 .

(14)

(15)

(16)

(17)

(17a)
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P = t ........ (18)

or

= 360 - t ...... (18a)

10. Relation between Systems I and II. If the latitude of the

place is known, and it is required to change from System I

to System II, the problem becomes:

Given, in the astronomical triangle: s, p, Z.

Required: P, z.

Three parts of the spherical triangle being given, it may be

solved for the two parts required; using equation (1) (from

Appendix A), to find the side z, and then Equation (3) to find

the angle P.

If it is required to change from System II to System I, the

problem is:

Given, in the astronomical triangle: s, z, P.

Required: p, Z.

Again three parts of a spherical triangle are known, and the

triangle may be solved for the two required, obtaining first the

side p and then the angle Z by the two equations mentioned

above.

Solution for Zs and h from
<f>, t, and 5 may be made directly

by means of the following formulas from Chauvenet's "
Spherical

and Practical Astronomy," Vol. I, Article 14:

cos M . tan t

tan Zs
= - - .... (19)

sin (< M)

tenh-
Z' .... (20)
M)

where M is such an angle that :

tan
tan M =

cos

11. Relation between Systems H and III. Since in the second

and third systems the secondary co-ordinates are the same

(i.e., declination in each case), the problem of changing from

one system to the other becomes merely one of changing hour

angle to right ascension, or vice versa.

Recalling the definitions of these quantities and referring to

Fig. 8, we see that the arc ER is the hour angle of the body S,

and that the arc VR (V being the vernal equinox) is its right

ascension.
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The arc EV may be regarded as the hour angle of the vernal

equinox, or read in the direction VE, as the right ascension of

the meridian. It is evident that the arc ER plus the arc VR
is equal to the arc EV. This relation always holds true, no

matter what the position of the point S may be; provided that

when necessary we add 24 hours (or 360) to the hour angle of

the vernal equinox.
It is a very important principle that:

The right ascension plus the hour angle of any body is equal
to the hour angle of the vernal equinox, or to the right ascension

of the meridian.

We shall learn a little later that the hour angle of the vernal

equinox is called "Sidereal Time"; and having studied the

measurement of time it will be apparent how this important

principle comes into play, not only in the transformation of

co-ordinates but in a large share of the problems that we
shall have to solve.

If changes between Systems I and III are desired they may
be made through the medium of System II.

12. Some Common Solutions of the Astronomical Triangle.

Two problems which occur so frequently in the work as to de-

serve special mention, and which call for solutions of the as-

tronomical triangle, are:
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(1) Knowing the latitude, and having given the declination

and altitude of a body, to find its hour angle and azimuth.

For computing the angle P of the astronomical triangle, from

which the hour angle may be obtained, any one of the following

formulas (from Appendix A) may be used:

. cos (k +</>). cos (k + 5)
sin -r* = \ . . (5)

cos
<f>

. cos 5

P sin k . cos (k + h)
cos = \ .... (7)

2 \ cos < . cos 5

cos (k + </>) cos (k H- S)
tan "

== X '

sin k . cos (k + h)

For computing the angle Z, from which to obtain the azimuth,

Zs or Zn, any of the following (from Appendix A) may be used :

,

cos (k + <ft) . cos (k + h)
sin -7-

=
\l . . (4)

cos . cos h

Z_
I sin k . cos (k + 5)

2 \ cos <t> . cos h

rn.Q fir 4- h)
. . (8)

sin k . cos (k + 6)

When selecting a formula from which to determine an angle

it should be remembered that if the angle is near 90 the value

may be found more accurately through its cosine, while for a

small angle the sine gives the greater precision. More precise

than either, because of the rapid variation of the function, are

the tangent formulas.

(2) The second solution of the astronomical triangle to be

noted here concerns circumpolar stars.

If the co-declination or polar distance of a star is less than

the latitude of the observer the star will not at any point in

its daily rotation go below his horizon; but would, if the light

of the sun were not so bright as to obscure it, be always visible.

Such a star is called a circumpolar star.

The circle which any circumpolar star appears to follow in its

daily motion is at two points tangent to vertical circles. See
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Fig. 9. These points are the ones at which the star appears
farthest east (at S in Fig. 9) and farthest west (at S

f

). These

two positions are called the points of greatest elongation.

In these cases the astronomical triangle is right-angled at

S (or S')j and the formulas from which the azimuth and hour

angle for this position of the star may be obtained are (from

Appendix A) :

sin Z =

cos P =

COS </>

tan </>

tan d

(12)

(13)



CHAPTER III

MEASUREMENT OF TIME

13. The Unit of Measurement. The unit of measurement of

time is based upon the period of rotation of the earth about its

axis. It is not known that this period is invariable; but the

variations, if any exist, are too small to be measured, and the

rotation is considered uniform. The differences between the

several methods of measuring time arise from the different

methods of counting these rotations. This much is common
to all: that the counting of the periods of rotation is done by
noting successive passages of some reference point over the

meridian of an observer.

Every point on the celestial sphere crosses any given meridian

twice during each period of rotation of the earth. The instant

when any point is on the same half of the meridian as the zenith

is called the upper transit or upper culmination of the point.

The instant when it is on the opposite half of the meridian is

called the lower transit or lower culmination of the point . Except
in the case of the circumpolar stars, which never go below the

horizon, the upper transit is the only one visible; and unless

otherwise stated it is the one that is meant when the transit

of a body is mentioned.

14. Apparent Solar Time. The most common methods of

measuring time are based on the use of the sun as a reference

point in counting the rotations of the earth. The interval be-

tween two successive upper transits of the sun's center over

the meridian of an observer is called an apparent solar day, and

the system of measurement of which this interval is the unit

is called apparent solar time. The instant of transit at any

place is apparent noon for that. place, and the apparent solar

time at any instant is the hour angle of the sun's center at that

instant; i.e., the number of hours since the sun's center crossed

the meridian. It is the time as given by a sun-dial.

Because of the earth's motion around the sun in the same
direction as its rotation about its own axis, the direction of the

reference point is continually changing; .and the interval be-

tween two successive transits of the sun's center is not the true

period of rotation of the earth. Moreover, since the rate of

16
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motion of the earth in its orbit is not constant, the change in

direction of the reference point is not constant; and therefore

the lengths of apparent solar days are different at different

times of the year.

16. Mean Solar Time. To avoid the inconvenience of a unit

of variable length, use is made of the convention of a fictitious

mean sun. This fictitious "sun" is assumed to have a motion

around the earth, the summation of which amounts in a year

to exactly the same as the apparent motion of the real sun

to one complete revolution. The essential difference is that

while the apparent motion of the real sun takes place along

the ecliptic at a varying rate, the assumed motion of the mean
sun takes place along the celestial equator at a constant rate.

A mean solar day is the interval between two successive

transits of the mean sun over the same meridian. It is a con-

stant unit and is equal in length to the average of all the apparent
solar days in the year.

Mean noon at any place is the instant of upper transit of the

mean sun at that place.

The mean solar time at any place is the hour angle of the

mean sun at that place at the given instant.

16. Relation between Apparent and Mean Solar Time
The Equation of Time. The two chief causes of the irregularity

of the apparent motion of the sun, which in turn causes the

difference between apparent and mean solar time, are as suggested

above: the variable rate of motion of the earth in its orbit

around the sun, and the inclination of the plane of this orbit

to the plane of the equator.

The earth's orbit is elliptical in shape, and in order that the

earth may obey the laws of gravitation in its motion viz., that

the line joining it at any point in its path to the sun shall sweep
over equal areas during equal intervals of time it is necessary

that its rates of motion at different times should be different.

In the winter, when the sun is nearest the earth, the rate of

angular motion of the "radius" is faster; and therefore the

apparent solar days are longer at that time of the year. In

the summer, for a similar reason, they are shorter.* The maxi-

* The relative length of apparent solar days at different times of the
1

year is

not to be confused with the relative length of the periods of daylight at these
seasons. The inclination of the earth's axis of rotation to the plane of its orbit
is such that in the winter when the earth is actually nearest the sun the latter

has its greatest southern declination; i.e., it is farthest south of the equator,
so that the period between sunrise and sunset in the northern hemisphere is

shortest. Since the rays from the sun strike the surface of the northern hemi-
sphere so obliquely at that time, we have our coldest weather.
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mum difference between apparent and mean time due to this

cause alone is about eight minutes, plus or minus. Due to the

second cause mentioned there may be a maximum difference of

about ten minutes.

The maximum combined effect of these two causes is a little

over sixteen minutes; and this difference between apparent and

mean time, varying in amount from zero to the maximum, is

called the equation of time. It is continually changing, but

its value for any given instant may be computed. Data for

this computation are found in the
"American Ephemeris and

Nautical Almanac," to which reference has already been made,
and which will be described more fully in Chapter IV.

To change from apparent to mean time or vice versa, it is

only necessary to add or to subtract the equation of time for

the instant at which the change is to be made, addition or sub-

traction being determined by the time of year and the direction

of change.

Reference to Fig. 10 may help to make clear the process of

changing from apparent to mean solar time, or vice versa.

Let S and S' represent the real sun and the fictitious or mean

sun, respectively. Both are traveling westward, clockwise, in

their daily rotation the mean sun on the equator and the real
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sun on a path which is above and nearly parallel to the equator,

and which might be likened to one turn of a spiral or to one

turn of a helical spring.

Local apparent solar time the hour angle of the real sun,

the number of hours since the real sun crossed the meridian

is the arc ER. Local mean solar time the hour angle of the

mean sun, the number of hours since the mean sun crossed the

meridian is the arc ES'. Either the mean sun or the real

sun might be in advance, depending on the time of year. The

equation of time, the amount by which one is in advance of

the other, is the arc RSf
.

Since we are able to compute the value of the equation of

time for any desired instant, it is obvious how if either local

apparent time or local mean time is known we may obtain

the other.

The determination of the instant of time in one system of

measurement corresponding to a given instant in another system
is always a matter of comparing the positions of the reference

points in the two systems. Stated in other words, the problem
is: Having given the hour angle of the reference point of one

system, it is required to find the hour angle of the reference

point of the other system.

Examples of changing from apparent to mean time and vice

versa will be given after we have learned more about the "Ameri-

can Ephemeris and Nautical Almanac," in Chapter V.

17. Astronomical and Civil Time. For astronomical purposes
the mean solar day is divided into twenty-four hours, beginning
at the instant of mean noon; and the hours are subdivided into

minutes and seconds.

For ordinary purposes the mean solar day is divided into two

periods of twelve hours each: P.M. (post meridiem), beginning
at mean noon and continuing until twelve o'clock, midnight;
and A.M. (ante meridiem), from midnight until mean noon of

the next day. The civil day is considered to extend from mid-

night to midnight. The astronomical day begins at mean noon
on the civil day of the same date.

Astronomical time as well as civil time may be either apparent
or mean.

For changing from one scheme of division of the solar day
to the other the following rules may be used:

To change Astronomical Time to Civil Time:
If less than 12 hours call it P.M.
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If greater than 12 hours subtract twelve hours, add one day
to the date, and call it A.M.

To change Civil Time to Astronomical Time:

If A.M. add 12 hours, drop one day from the date and drop
the A.M.

If P.M. drop the P.M.

For instance:

July 6, 8 h., astronomical time = July 6, 8 P.M., civil time.

May 11, 4 A.M., civil time = May 10, 16 h., astronomical time.

18. Standard Time. Since local mean solar time at any in-

stant is the hour angle of the mean sun at that instant, it is

evident that all places not on the same meridian will have

different local mean times. To avoid confusion from this source,

a uniform system of time was established in the United States

in 1883. The country was divided into belts, each 15 or one

hour of longitude wide, each belt to use as standard time the

local mean time of a central meridian. There are four such

belts across the country, using the times of the 75th, 90th, 105th,

and 120th meridians (west of Greenwich). Local mean time

of the 75th meridian is called Eastern Time
;
of the 90th, Central

Time; of the 105th, Mountain Time; of the 120th, Pacific

Time. Some of the eastern provinces of Canada use the local

mean time of the 60th meridian, called Atlantic Time.

The theoretical boundaries of these time belts have been

shifted to suit local convenience, and the boundaries now depend

largely on the location of cities and railroads; but the difference

in time between one belt and the next is always one hour.

For instance, when it is noon at Greenwich, England, it is

7 A.M. by Eastern Time, 6 A.M. by Central Time, 5 A.M. by
Mountain Time, and 4 A.M. by Pacific Time.

To change from Standard Time to Local Mean Time at any

place :

Express the difference in longitude between the standard

and local meridians in units of time, and if the place is east of

the standard meridian add this difference to the standard time;

if west, subtract.

To change from Local Mean Time to Standard Time at any place :

The procedure is exactly the reverse.

To determine whether to add or to subtract a "correction," it

is only necessary to remember that : The farther east a place is

the later it is by local mean time at any instant. Standard

time is simply local mean time at a standard meridian. .
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Examples of the conversion of local mean to standard time,

and vice versa, are given in Chapter V.

19. Sidereal Time. So far we have studied methods of

measuring time which are based on the use of the sun as a refer-

ence point for counting the rotations of the earth about its axis

i.e., solar time and these are the methods in common use

for most purposes. But since the sun appears to make one

revolution a year around the earth, causing successive transits

of the sun's center over the same meridian to occur at slightly

different points in the earth's rotation, the intervals between

successive transits are not a true measure of the period of that

rotation.

For astronomical purposes a more precise determination is

needed, and sidereal time is used. The sidereal day is the in-

terval between two successive upper transits of the vernal equinox
over the same meridian, and the sidereal time at any place is

the hour angle of the vernal equinox at that place at the given

instant.

If the vernal equinox were a fixed point the sidereal day would

be an exact measure of the period of the earth's rotation. The

equinox has a slow westward movement, but it is so slight that

the length of a sidereal day differs from the true period of one

rotation by only about 0*01; and as sidereal time is not used

over long intervals (dates are always kept in solar time) cumu-
lative errors are avoided; and

the sidereal day as defined above

is the one actually used, without

correction.

20. Relation between Sidereal

and Mean Solar Intervals of

Time. It has been mentioned

that to the apparent motion of

the sun around the earth is due

the difference between sidereal

and solar time. Reference to

Fig. 11 may help to make this

relation between the two more
clear. Let the large circle rep-

resent the celestial equator, along which the mean sun is

assumed to move at a uniform rate; and let the small circle

represent the earth. Let an observer be at O on the earth

when the sun is on his meridian at S. Now, while the earth is

FIG. 11.
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making one revolution in the direction indicated by the arrow,
the mean sun is also moving in the same direction; so that its

next transit over the observer's meridian takes place when the

observer's position has revolved through nearly 361 to Of

,
and

the mean sun is at S'. At the next transit the observer is at 0"
and the mean sun at S". In one year the sun has apparently

completed one revolution around the earth and is again at S,

so that in that time one rotation of the earth has not been

counted. In the meantime the vernal equinox, having remained

practically a fixed point, has registered the exact number of

rotations that have taken place. There are, therefore, one

less solar than sidereal days in a year.

The length of the "
tropical year"* has been determined to be

365.2422 mean solar days, and since there are one more sidereal

than solar days the relation between the two is given by the

following equations:

365.2422 mean solar days = 366.2422 sidereal days . . (21)

1 mean solar day = 1.0027379 sidereal days . (22)

1 sidereal day = 0.9972696 mean solar days . (23)

Tables I and II are arranged for conversion of sidereal into

mean solar intervals, and vice versa; and are more convenient

to use than formulas.

Tables II and III of the "American Ephemeris and Nautical

Almanac" (near the end of the book) are for the same purpose.
It will be convenient to remember that a mean solar hour

is about ten seconds longer than a sidereal hour, and that a

mean solar day is about 3 min. 56 sec. longer than a sidereal

day.
It must be kept clearly in mind that the difference between

the units of the two systems sidereal and solar is simply this :

A sidereal hour as a unit of time is the interval of time re-

quired for the vernal equinox to pass over 15 or one " hour" of

arc. A mean solar hour as a unit of time is the interval of time

required for the mean sun to pass over 15 or one " hour" of arc.

The difference arises solely from the different rates of apparent
motion of the two reference points. It is a difference between

two intervals of time not between two unit angles or arcs.

That is, an hour angle, for instance, is not measured in "sidereal

hours" or "solar hours " but simply in "hours" twenty-fourths
of a circumference or in degrees, 15 per hour.

* The tropical year is the interval of time between two successive passages
of the sun through the vernal equinox.
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It must also be carefully noted that the relation between

solar and sidereal intervals of time, as discussed in this article,

is simply a comparison of units. It must not be confused with

the relation between mean solar and sidereal time at a given

instant, discussed in the next article. The one has to do with

the relative sizes of the units of measurement, the other concerns

the relative positions of the mean sun and the vernal equinox
at a given instant.

21. Relation between Sidereal and Mean Solar Time at a

Given Instant. We have learned (Art. 11, page 12) that the

right ascension of any body plus its hour angle is equal to the

hour angle of the vernal equinox, and (Art. 19, page 21) that

the hour angle of the vernal equinox is sidereal time. It follows,

then, that:

The sidereal time at any instant is equal to the right ascension

plus the hour angle of any body at that instant, or

Sid. T = R A + t (24)

This is probably the most used and perhaps the most im-

portant of all the equations needed in field astronomy.
If the mean sun is the body under consideration the following

equation is true:

Sidereal Time = Right Ascension of Mean Sun -f Hour Angle
of Mean Sun.

But the hour angle of the mean sun is local mean solar time,

therefore :

Sid. T = A + LMT (25)

LMT = Sid. T - A . . . . (26)

Granting that we can obtain the value of A for the desired

instant, these equations will enable us to obtain the sidereal time

corresponding to any given instant of local mean solar time, or

to find the local mean solar time corresponding to any given in-

stant of sidereal time.

The right ascension of the mean sun is entirely independent
of the location of the observer, and is dependent only on the

absolute instant of time. At some instant about March 22 of

each year the mean sun is at the vernal equinox, and its right

ascension is zero. Leaving the vernal equinox, it moves east-

ward along the celestial equator at a constant rate; and there-

fore A is equal to zero at some instant about March 22 of each

year and ijicreases, constantly, to 24 hours (or hours) at some
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instant on March 22 of the next year. The value of A for the

instant of mean noon at Greenwich for each day in the year is

given in the "American Ephemeris and Nautical Almanac." To
find the value of A for any instant, it is necessary to find the

interval of time that has elapsed since the last preceding mean
noon at Greenwich, determine the increase in the right ascension

of the mean sun during that interval, and add that increase to

the value taken from the tables for the instant of Greenwich

mean noon preceding.

This constant increase in the right ascension of the mean
sun is simply the gain of the apparent motion of the vernal

equinox over that of the sun during the interval considered, and

it is therefore equal to the difference between sidereal and mean
solar time for that interval. In other words, it is the difference

between the number of sidereal units in the interval of time

and the number of mean solar units in the same interval. This

increase, or "correction," may therefore be taken directly from

Tables I and II at the back of this book or from Tables II and

III at the back of the
"
Nautical Almanac."

Problems in changing from sidereal to mean solar time and

from mean solar to sidereal time will be solved in Chapter V.

Changes from apparent solar time to sidereal time and vice

versa may be made by first changing to mean solar time in each

case.



CHAPTER IV

THE AMERICAN EPHEMERIS AND
NAUTICAL ALMANAC

22. The Ephemeris. The "American Ephemeris and Nautical

Almanac "
is published yearly, three years in advance, by the

Nautical Almanac Office of the United States Naval Observatory,
at Washington, D. C., and is sold by the Superintendent of

Documents. (See note on page 28.) It contains data of use to

surveyors, navigators, and others for astronomical calculations,

made up from the results of observations with large instruments

at the principal observatories, and from calculations.

These data comprise ephemerides* of the sun, moon, planets,

and stars, the equation of time, semi-diameters, and horizontal

parallaxes of heavenly bodies, convenient tables for conversion

of units, etc., as well as a great deal of data in regard to eclipses

and other phenomena of more interest to astronomers than to

surveyors. Many of these quantities vary with the time, so

their values are given for regular intervals of time for the meridian

of Greenwich or of Washington.
The Almanac is divided into three parts. Part I is an "

Ephem-
eris for the Meridian of Greenwich." The data in Part I of

most interest to surveyors is the ephemeris of the sun. There

is also an ephemeris of the moon which may be of occasional

use. In the ephemeris of the sun there are given for the instant

of mean noon at Greenwich for each day in the year: The sun's

apparent right ascension and declination with the hourly variation

in each, its semi-diameter and horizontal parallax, the equation
of time with its hourly variation and with the proper algebraic

sign for changing from mean to apparent time (the opposite sign

would be used in changing from apparent to mean), the sidereal

time, or right ascension of the mean sun. Note that this last

quantity is the sidereal time at Greenwich mean noon, or the

right ascension of the mean sun at Greenwich mean noon; i. e.,

the instant when the mean sun is on the meridian of Greenwich.

All the above-mentioned data are tabulated on successive left-

* By "ephemeris" is meant a catalogue of the positions of a celestial body
at equidistant intervals of time, usually given in terms of the body's right
ascension and declination.

25
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hand pages, beginning on page 2. On the right-hand pages are

given other data for the corresponding dates; but only the last

column, which gives the mean time of sidereal noon for each

day (i.e., the Greenwich mean time when the vernal equinox
is on the meridian of Greenwich), is likely to be of use to the

surveyor.

Of the data in Part II,
"
Ephemeris for the Meridian of

Washington/' the following are of use to the surveyor: An
ephemeris of the sun for the instant of Washington apparent
noon for each day, ephemerides of thirty-five circumpolar stars

for the instant of upper transit at Washington on each day,

and ephemerides of 825 other stars for the instant of upper
transit at Washington at intervals of ten days.

The ephemeris of the sun gives the right ascension and declina-

tion of the sun at the instant of Washington apparent noon with

their hourly variations, the equation of time with its hourly

variation and with the proper algebraic sign for changing from

apparent to mean time, the semi-diameter of the sun, the sidereal

time required for the semi-diameter of the sun to pass the merid-

ian, and the sidereal time of mean noon at Washington for each

day in the year.

The table of which each page is headed, "Apparent Places of

Stars, 19
, Circumpolar Stars," gives for the time of upper

transit at Washington for each day in the year the right ascen-

sion and declination of thirty-five circumpolar stars. The table

of which each page is headed, "Apparent Places of Stars, 19 ,"

gives for the time of upper transit at Washington at intervals of

ten days the right ascension and declination of each of 825 other

stars. ^

It will be seen upon examination of the tables that the right

ascensions and declinations of these stars change so slowly

that, though they have been computed for the instants of upper
transit of the stars at Washington, there will be no appreciable

error in any work for which a surveyor is likely to need the

data if these values are used for the upper transit on the cor-

responding date at any place in the United States. The dates

in the column at the left of each page of the star ephemerides
are in mean solar time; and each contains a decimal, as April 3.7,

July 17.1, etc. The decimal part of the date indicates the

approximate time, in tenths of twenty-four hours, from mean
noon of the day indicated by the integral part of the date to

the time of upper transit of the star.
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Part III,
"
Phenomena," is of no direct use in practical field

astronomy.

Following Part III is a table giving the latitude and longitude
of (in 1916) 252 places on the earth's surface, and tables num-
bered I to VII, for the convenient conversion of units, etc.

Following the tables, and immediately preceding the general

index, is a useful
" Index to Apparent Places of Stars."

A comparatively small, paper-covered book, called the "Ameri-

can Nautical Almanac," is also published by the Nautical

Almanac Office. (See note on page 28.) It contains, arranged
in slightly different form from that in which the same data

are given in the larger book, tables which are sufficient for the

work of practical field astronomy; though it is often convenient

in preparing for observations for time to have the longer lists

of stars from which to choose. The arrangement and use of

the tables will be understood upon examination, and need no

explanation here.

Reprints of portions of the
"
Nautical Almanac " which are

published by the different instrument-makers are useful chiefly

in connection with the solar attachments for transits. The use

of these attachments is discussed briefly in Appendix B.

23. Interpolation. If the right ascension or the declination

of the sun or the equation of time is desired for a given instant

of local mean time it is necessary to add (algebraically) to the

corresponding quantity given in the tables for the instant of

Greenwich mean noon preceding, the hourly change or variation

multiplied by the number of hours that have elapsed between

the instant of Greenwich mean noon and the instant for which

the quantity is desired. The interval between Greenwich noon
and local noon is equal to the longitude of the place expressed
in units of time. The interval between Greenwich noon and
noon by standard time is equal to the longitude of the standard

meridian, and therefore to some number of whole hours.

If the sun's right ascension or declination or the equation
of time at some instant of local apparent time is desired it may
be obtained most exactly from the ephemeris for Washington

apparent noon in a manner similar to that outlined above. The
interval between Washington noon and local noon is equal to

the difference, expressed in units of time, between the longi-

tude of Washington (5
h
08
m

15
S
.78 west of Greenwich) and the

longitude of the observer.

The work of making these interpolations is illustrated in the
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course of the solution of the problems in conversion of thxe,

given in Chapter V.

It is usually assumed that the rate of variation of any quantity

is constant between any two tabular values. This is not always

quite true, however; and the variations per hour are not, in

general, tabular differences but rates of change for the instants

for which they are given differential coefficients. Somewhat
more precise results may therefore be obtained by interpolating

from the nearer of two tabular quantities.

NOTE. The "American Ephemeris and Nautical Almanac" and thd "Amer-
ican Nautical Almanac" are two of the "Astronomical Papers" which in turn
constitute a part of the Public Documents of the United States. As is true of

the greater number of Public Documents, they may be obtained from the

Superintendent of Documents, payment in advance being required. The

price charged is only enough to cover the cost of printing, binding, paper, etc.

The "American Ephemeris and Nautical Almanac" is sold for one dollar, and
the "American Nautical Almanac" for thirty cents. Price List 57, giving the
titles and prices of all the Astronomical Papers, will be sent free on request by
the Superintendent of Documents.
The following instructions are copied from that list:
" Remittances should be made to the Superintendent of Documents, Govern-

ment Printing Office, Washington, D. C., by postal money-order, express-order,
or New York draft. If currency is sent, it will be at sender's risk.

"
Postage stamps, coins defaced or worn smooth, foreign money, and uncer-

tified checks will not be accepted.
"No charge is made for postage on documents forwarded to points in the

United States, Alaska, Guam, Hawaii, Philippine Islands, Porto Rico, Samoa,
or to Canada, Cuba, Mexico, or Shanghai. To other countries the regular
rate of postage is charged.**



CHAPTER V

PROBLEMS IN CONVERSION OF TIME

24. To Change Local Mean to Local Apparent Time.

Problem: What was the local apparent time at a place

whose longitude is 91 31' 30" W when the local mean time was

8 o'clock A.M., on March 4, 1916?

Read Art. 16, page 17.

Solution: We must first find the equation of time, E, for

the instant of 8:00:00.0 A.M., LMT in longitude 91 31' 30" W
on March 4. The first step is to change the civil time to astro-

nomical time. Using the rules given in Art. 17, page 19, it is

found that the instant of astronomical time corresponding to

March 4, 8:00:00.0 A.M. is March 3, 20:00:00.0. The second

step is to find the interval that has elapsed since the last pre-

ceding mean noon at Greenwich. Twenty hours have elapsed

since mean noon of March 3 at a place 6*06<n06(9131'30" -^15)

west of Greenwich; and therefore 26 h 06 m 06" have elapsed

since mean noon of March 3 at Greenwich, or 2 h 06 m 06 s since

mean noon of March 4.

The equation of time for the instant of mean noon of March
4 at Greenwich (taken from page 4 of the "American Ephemeris
and Nautical Almanac") is 11 m 53 s

.64; and the negative sign

indicates that the difference between apparent and mean time

is negative; that is, that the amount of the equation of time

must be subtracted from mean time to obtain apparent time.

Comparing with the value for the preceding day, we see that the

equation of time is decreasing, numerically; so that the product

of the hourly variation, 0.546, by 2.10 hours since noon is to

be subtracted from the value at noon.

The equation of time for the instant at which the change
is to be made, then, is: 11- 53.64 - 2.10 X 0*.546 = 11- 52.5,

to be subtracted from mean time. The local apparent time is,

therefore, 20^ 00- 00*. - 11- 52*.5 = 19* 48- 07*.5, on

March 3, 1916.

The following is a convenient form for the solution of this

problem :

29
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1916

LMT, 91:31:30 W, civil, March 4 A.M. 8^ 00<* OO'.O

LMT, 91:31:30 W, astronomical, March 3 20 00 00.0

Longitude west of Greenwich 6 06 06

Since Greenwich mean noon, Mar. 4 . 2 06 06

E = - (llm 53s.64 - 2.10 X 0*.546) = - 11 52 .5

LAT, 91:31:30 W, March 3 19> 48 07*.5

25. To Change Local Apparent to Local Mean Time.

Problem: What was the local mean time at a place whose

longitude is 91 31' 30" W when the local apparent time was
17" 46* 09".4 on March 8, 1916?

Read Art. 16, page 17.

Solution: The same process is followed as in the preceding

problem except that the equation of time may be taken from

the Washington ephemeris, where it is given for the instant of

Washington apparent noon of each day.
The longitude west of Greenwich, 6 h 06 m 06", minus 5 h 08 ^

15 8.78 (the longitude of Washington west of Greenwich) gives

the longitude of the place as O h 57 m 50 s .2 west of Washington.
The equation of time for an instant which is 17 h 46m 09 s.4 + 00 h

57*>50s.2 = 18^43^598.6 after the instant of Washington ap-

parent noon on March 8 may best be obtained from the value of

the equation of time for March 9, given on page 515 of the

"American Ephemeris and Nautical Almanac." (We interpolate

from the value for March 9 rather than from the one for March 8

because the former is the nearer.) It will be equal to 10m 39 s.35

+ 5.27 X 0".636 = 10m 42<.7; and the positive sign indicates that

the difference between mean and apparent time is positive,

that is, that the amount of the equation of time must be added

to apparent time to obtain mean time. (This relation is shown

by the heading of the column: " Mean App.")
Had we used the Greenwich ephemeris and assumed the value

of the equation of time as given for mean noon of March 9 to

be the proper value for apparent noon of the same day, we should

have obtained (following the method of the preceding article

and interpolating from the nearer of the two values) the value

of the equation of time to be: 10*> 42-.S. In this case the

error is 0".l, and in no case is it likely to be greater than about

8.2 an amount that is of little account in work done with

ordinary field instruments, This error could be reduced by a
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second computation to an amount negligible in any work of

field astronomy.
In the "American Nautical Almanac" (the small paper-

covered edition) no ephemeris for apparent noon for any place
is given, but it is seen from the example above that the one for

mean noon may be used as for apparent noon without appre-
ciable error.

The following form of computation is convenient for the

solution of the problem above:

1916

LAT, 91:31:30 W, March 8 17" 46* 09*.4

Longitude west of Washington. . . 00 57 50.2

Since Wash. app. noon, Mar. 8. . . 18 43 59.6

E = + (10m 39*.35 + 5.27 X 0*.636) = + 10 42.7

LMT, 91:31:30 W, astronomical, March 8 17* 56 52U
LMT, 91:31:30 W, civil, March 9 A.M. 5 56 52 .1

26. To Change Standard to Local Mean Time.

Problem : What is the local mean time in longitude 88 30' 00"

W when the standard time is 7:31:15 A.M.?

Read Art. 18, page 20.

Solution : The meridian at which local mean time is required
is 1 30' 00" east of the standard meridian for the Central time

belt. Therefore, following the rules of Art. 18, we must add

the difference in longitude, expressed in units of time, to standard

time to get local mean time.

Std. T (Central) , .A.M. 7* 31 15-

Longitude correction, standard to local + 6 00

LMT, 88:30:00 W A.M. 7* 37- 15"

27. To Change Local Mean to Standard Time.

Problem: What is the standard (Central) time in longitude
91 31' 30" W when the local mean time is 8:15:27 P.M.?

Solution: The meridian at which the local mean time is

given is 1 31' 30", or O h 06 m 06
,
west of the standard meridian

for the Central time belt. Therefore, following the rules of

Art. 18, we must add the difference in longitude, expressed in

units of time, to the local mean time to get standard time.

LMT, 91:31:30 W P.M. 8* 15- 27*

Longitude correction, local to standard + 6 06

Standard time (Central) P.M. 8* 21 33*
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28. To Change Standard to Local Apparent Time.

Problem: What was the local apparent time at a place
whose longitude is 91 31' 30" W when it was 8:00:00.0 A.M.

by standard time (Central), on August 27, 1915?

Read Arts. 16 to 18, pages 17 to 20.

Solution: The procedure is almost exactly that used in

Art. 24, page 29. The reason for the slight difference will be

self-evident if we remember that standard time in longitude

91 31' 30" W is simply the local mean time at longitude

90 00' 00" W.

1915

Std. T, 91:31:30 W, civil, August 27 A.M. 8> 00 (XKO

LMT, 90:00:00 W, astronomical, August 26. . 20 00 00.0

LMT, 91:31:30 W, astronomical, August 26. . 19 53 54 .0

Longitude west of Greenwich 6 06 06

Since Greenwich mean noon, Aug. 27 . 2 00 00

E = - (1m 42'.02 - 2.00 X 0.704) = - 1 40 .6

LAT, 91:31:30 W, August 26 19 fa 52^ 13-.4

29. To Change Local Apparent to Standard Time.

Problem: What was the standard (Central) time when the

local apparent time at a place whose longitude is 91 31' 30" W,
was 16fa 08^ 17s.4 on February 2, 1916?

Read Arts. 16 to 18, pages 17 and 20.

Solution: The procedure is just the reverse of that of the

preceding article, with the exception that the equation of time

is obtained from the ephemeris of the sun for Washington appar-
ent noon. Interpolation is made from the nearer of two tabular

values of the equation of time.

1916

LAT7

,
91:31:30 W, February 2 16" 08* 17-.4

Longitude west of Washington. ... 57 50 . 2

Since Wash. app. noon, Feb. 2. . . 17 06 07.6

E = + (13- 53.48 - 6.90 X 0*.297) = -f 13 51 .4

LMT, 91 :31 :30 W, astronomical, February 2. . 16^ 22- 08*.8

LMT, 90:00:00 W, astronomical, February 2. . 16 28 14 .8

Std. T, Central, February 3 AM. 4 28 14 .8
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30. To Change Local Mean Solar to Sidereal Time.

Problem: What was the sidereal time at 6:00:00.0 A.M.,

local mean time, in longitude 91 31' 30" W on October 20, 1915?

Read Art. 21, page 23.

Solution: Since the increase in the value of the right ascen-

sion of the mean sun during any interval is equal to the gain of

the apparent movement of the vernal equinox over that of the

mean sun during that interval i.e., it is equal to the difference

between the number of sidereal units and the number of solar

units in the interval it is convenient in working problems to

apply this increase in the following manner:

Determine the value of the right ascension of the mean sun

for the instant of local mean noon. This quantity will be

called An . It may be found by adding to the value of the sun's

right ascension, A, for the instant of Greenwich mean noon of

the same date (i.e., in west longitudes) the increase in right

ascension during a solar interval equal to the longitude of the

place. This increase may be taken directly from Table II

at the back of this book or from Table III in the " Nautical

Almanac." For any given longitude this increase or correction

for reducing the sun's right ascension at Greenwich mean noon

to its value for local mean noon is a constant which may be

used for all similar problems. It is the amount by which the

distance traveled by the vernal equinox (expressed in hours)

exceeds the distance traveled by the sun during the interval that

the sun has occupied in coming from the Greenwich meridian

to the local meridian.

To this value of AM add the local mean time expressed in

sidereal units, i.e., the sidereal interval since mean noon the

distance expressed in hours that the vernal equinox has traveled

since mean noon. This change from solar to sidereal units

may also be made by aid of Table II.

This sum the right ascension of the sun at local mean noon

plus the sidereal interval since local mean noon will be the

sidereal time.

For the problem above: First change 6:00:00.0 A.M.,

October 20 to 18* 00 00".0, October 19. The value of A for

Greenwich mean noon of October 19 is (from the "American

Ephemeris and Nautical Almanac") 13 h 47 30 9.95. The in-

crease for 6h 06 06" west longitude is, from Table II, 1*> 00*.15

(or, from Table III of the " Nautical Almanac," lmOO<>.140),

making An equal to 13* 48 31*.l. 18*00 00.0 LMT ex-
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pressed in sidereal units isjfrom Table II, or Table III of the

"Nautical Almanac") 18* 02*> 57*.4. This is the sidereal in-

terval since local mean noon, or the number of hours of arc that

the vernal equinox covered while the mean sun was passing over

18 fc 00*> (XKO of arc.

The sidereal time is therefore 13^ 48 3K1 plus 18 * 02m 57 s.^
or (after subtracting 24 hours) 7 h 51 m 28 8.5.

The following form of solution may be used:

1915

LMT, 91:31:30 W, civil, October 20 A.M. 6* 00 00.0

LMT, 91:31:30 W, astronomical, October 19. . 18 00 00 .0

Correction, solar to sidereal + 2 57 .4

Sidereal interval since mean noon 18 > 02 57*.4

A, at Greenwich mean noon,
October 19 13 47 30.95

Increase due to longitude 1 00 . 15

An 13 48 31.1

Sidereal time on October 19, solar (astr.) date. SI* 51 28.5

or 7 51 28.5

31. To Change Sidereal to Local Mean Solar Time.

Problem: What was the local mean time on October 19, 1915,

(astronomical date) in longitude 91 31' 30" W when the sidereal

time was 7>>30 27 .5?

Read Art. 21, page 23.

Solution: The solution is much the same except that the

order is reversed as that of the preceding problem, the increase

in the right ascension of the mean sun being taken care of in

the same way.
From the given sidereal time subtract A n (first adding 24

hours to the sidereal time if necessary for the subtraction). The
difference is the sidereal interval since local mean noon. Change
this sidereal interval to the corresponding solar interval by use

of Table I (or Table II of the " Nautical Almanac") and the

result is local mean time.

Stated in other words, the result of the subtraction is the

number of hours of arc which the vernal equinox has covered

since local mean noon. From this result is computed the number
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of hours of arc which the mean sun has covered since local mean

noon; i.e., the local mean time.

It should be clearly understood that adding 24 hours to, or

subtracting 24 hours from, the hour angle of the vernal equinox
does not in any way affect the date; for the date bears no relation

to the hour angle of the vernal equinox i.e., to the sidereal time

but is dependent only on the sun. In other words, dates are

always solar dates.

The following form of solution may be used for the problem
above:

1915

Sidereal time, 91:31:30 W, Oct. 19, astr. date. . 7*> 30 27".5

A, at Greenwich mean noon,

Oct. 19 13 47 30.95

Increase due to longitude 100. 15

An 13 48 31 .1

Sidereal interval since mean noon 17 h 41 ^ 56 8.4

Correction, sidereal to solar 2 54 .0

LMT, astronomical, 91:31:30 W, Oct. 19 17" 39* 02-.4

LMT, civil, 91:31:30 W, Oct. 20 A.M. 5 39 02 .4



CHAPTER VI

OBSERVATIONS CORRECTIONS TO OBSERVATIONS

32. Objects Observed. Methods of Naming Stars. Obser-

vations are to be made on the sun and on the stars. The moon
and the planets are sometimes used as objects for observations,

especially for longitude; but these observations more properly
form a part of geodetic work of greater refinement than is herein

contemplated, and their discussion will be omitted.

The stars are distinguished according to the following scheme :

The sky is divided into irregular areas, usually such that the

stars in a given division seem to form a natural group; and all

the stars within that area form a constellation, which receives a

name. The individual stars of a constellation are sometimes

distinguished by receiving a special name, and usually by a

Greek letter or a number also. The letters of the Greek alphabet
are usually assigned to the stars of a constellation in descending
order of brightness; a. to the brightest, /3 to the next, and so

on. A star is then named by stating its letter followed by the

name of the constellation to which it belongs in the Latin genitive

form. Thus the "pole-star" has the special name "
Polaris,"

and since it is the brightest star in the constellation
" Ursa

Minor," it is also called "a Ursse Minoris." Sometimes two

stars which are apparently very close together are given the

same letter; in which case a small number is placed over their

letter, as a1
,
a2

, etc., to distinguish them and to indicate the order

in which they cross the meridian.

The brightness of a star is designated by a number from a

numerical scale of magnitudes. In this scale the numbers in-

crease as the magnitudes decrease. Stars of the fifth magnitude
are about as dim as can be seen under favorable conditions with

the naked eye. Polaris is of the second magnitude.

33. Circumpolar Constellations. Stars whose co-declination

or polar distance is less than the latitude of the observer do

not go below his horizon at any point in their diurnal circles,

and are called circumpolar stars. Those circumpolar stars

which are near the pole are of most importance to the surveyor.
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1

Ursa Major

(Mizar)

Ursa

Minor

Poleo

"^(Polaris)

Some of the more im-

portant of these are

here shown in Fig. 12.

The one most used of

all because it is the

nearest the pole is the

brightest star in the

constellation "Ursa

Minor," or the "
Little

Dipper." It is Polaris,

or a Ursse Minoris. It

is about 1 08' from the

pole (1916) and is ap-

proaching the pole at

the rate of about 0'.3

per year. There is no
star exactly at the pole.

No other bright star is

near Polaris which is

likely to be confused

with it; and it is easy
to find by reference to

two stars inthe constella-

tion Ursa Major, or the
" Great Dipper," on the

opposite side of the pole.

The two brightest stars

in this constellation, the

ones which form the

side of the "bowl "
op-

posite the "handle" of

the Dipper, are called

the "
Pointers." A line

drawn through them and

produced falls very near

Polaris.

The star f Ursse Ma-
joris, at the bend in the

handle of the Great Dipper (see Fig. 12), is of some use to the sur-

veyor because it falls very nearly on the same hour circle as Polaris

and 5 Cassiopeise. Cassiopeia is a constellation on the opposite
side of Polaris from Ursa Major, the five brightest stars of which

Cassiopeia

Polaris at Lower Culmination.

FIG. 12.

SOME OF THE ClRCUMPOLAR
CONSTELLATIONS

(At the North Celestial Pole.)
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form a rather awkward " W". 5 Cassiopeise is at the lower left-

hand corner of the W. The position of Polaris in its diurnal

path around the pole may be estimated quite accurately by the

relative positions of these three stars: Polaris, Ursa3 Majoris,
and 5 Cassiopeise. If they are in a vertical line with 5 Cas-

siopeise above, Polaris is at upper culmination; if Ursse

Majoris is above, Polaris is at lower culmination. If they are

in a horizontal position with 5 Cassiopeise at the right, or east,

Polaris is at eastern elongation; while a reversed position in-

dicates western elongation of Polaris.

j8 Cassiopeise, at the upper right-hand corner of the TF, has

a right ascension very nearly equal to zero; i.e., it is on an

hour circle which passes very near the vernal equinox. There-

fore, the hour angle of this star is closely equal to local sidereal

time. This hour angle, and thereby local sidereal time, may
be estimated fairly well by remembering that when the star is

vertically above Polaris it is practically hours, when it i?

vertically below it is 12 hours; and that the points half-way
between these two positions on the left and right correspond to

6 hours and 18 hours, respectively.

In the determination of latitude and of time we shall find use

for some of the stars in other constellations than those men-

tioned, but we can identify them as needed by means of their

co-ordinates (taken from the "American Ephemeris and Nautical

Almanac," in terms of right ascension and declination, and con-

verted into other co-ordinates for use) and they will not be

discussed further at present.

34. Parallax. The co-ordinates of a celestial object should be

referred to the center of the celestial sphere as the pole or origin.

This center is at the center of the earth; and an altitude of any

body nearer than the fixed stars such as the sun which has

been measured from the surface of the earth, is less than the

altitude referred to the center of the earth as the origin of co-

ordinates by an amount called the parallax, and must be reduced

to the value for the center by applying a parallax correction. If

the earth is assumed to be a sphere, wrhich is sufficiently

accurate for practical purposes, the effect of parallax is

to decrease the altitude of a body without affecting the

azimuth.

Referring to Fig. 13, the angle H'AS is the measured altitude

of a point, S, obtained by an observation from A, a point on the

surface of the earth; and HOS is its altitude as referred to the
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center of the earth, O. The difference between the two, or

the angle ASO, is the parallax correction.

In the triangle AOS,
OA

sin ASO = sin OAS . . . . (a)Go

where the angle OAS is equal to 90 plus the measured altitude,

tz

FIG. 13

OA is the radius of the earth, OS is the distance from the center

of the earth to the center of the body observed.

When the observed body is at the zenith it is evident that

the parallax will be zero; and when it is on the horizon, as

observed from the surface of the earth (i.e., at S'), its parallax
will be a maximum. This maximum is called the horizontal

parallax.

For this case, where angle OAS' is equal to 90:

OA
(b)

Let: cp
= parallax at any position of the body.

Cp = horizontal parallax.

h' = measured altitude.

Since OS = OS', Equation (b) may be written:

OA
smC, =

.
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Substituting this value for OA/OS in Equation (a), and

remembering that sin OAS = cos h'
y
we obtain:

sin Cp
= sin Cp . cos In! (c)

Since cp and CP are very small angles we may without ap-

preciable error substitute the angles for their sines, and Equation

(c) then becomes:

c"p = C"p . cosh' . . . . . (21)

in which cp and CP are both expressed in seconds of arc.

For the sun the mean value of Cp is 8".8. For the moon
and for the planets it is much larger. For the stars it is too

FIG. 14.

small to be measured, because of their great distance from

the earth. There is, therefore, no parallax correction to measured

altitudes of the fixed stars.

The parallax correction, when needed, is always to be added

to observed altitudes.

Parallax corrections to measured altitudes of the sun are

given in Table IV.

35. Refraction. When a ray of light passes from one medium
to another of different density it is bent, and this bending is

called refraction. As a ray of light comes from a celestial body
to the eye of an observer it passes through successive layers of

atmosphere of increasing density, and is therefore bent down-

ward in a curve, as shown in Fig. 14.
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If an observer on the surface of the earth, at 0, is looking at

a star which is actually at S, it will appear to him to be at some

point above $, as at $'; OS' being a tangent at to the curve

AO. The angle which must be subtracted from the measured

altitude, HOS'
t
to obtain the altitude of S is called the refrac-

tion correction.

A convenient rule for the amount of this correction, derived

by application of the laws of physics after some simplifying

assumptions have been made, is that the refraction correction

in minutes is equal to the natural co-tangent of the observed

altitude. This is sufficiently accurate for all altitudes greater

than about ten degrees which have been measured with ordinary

field instruments transit or sextant. Differences in tem-

perature and in barometric conditions cause differences in the

amount of the refraction correction, but they are too slight to

require attention in work of this character.

Table III gives the amount of the refraction correction to be

applied to observed altitudes for a mean barometric pressure

and temperature.
The refraction correction is always to be subtracted from an

observed altitude.

36. Semi-diameter. The sun's disc, as seen through a tele-

scope, is circular, and measurements are usually made to its

edge, or limb, rather than to its center. Such measurements

must be corrected by the amount of the angle subtended by the

semi-diameter of the sun to reduce them to the proper values

for the center. As has been mentioned, the amount of this

angular semi-diameter is given for each day in the year in the

"Nautical Almanac"; and may be taken therefrom for use

in reducing observations.

Values of the sun's semi-diameter for the first of each month
in the year are given in Table IV at the back of this book. Inter-

polations from this table are sufficiently accurate for most work

with field instruments.

37. Instrumental Errors. Though it would be well if an

instrument in perfect adjustment could be used for all astro-

nomical observations, it is not always possible; and care should

taken to eliminate, so far as may be, the effect of any in-

of adjustment or construction.

Considering first the transit: When it is in use care should

be taken to make the plates truly horizontal. If the plate

bubbles are not in good adjustment this can still be accomplished
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by leveling up, turning the plates 180, and by means of the

leveling screws bringing each bubble half-way back to the center

of its tube. When the plates are level both bubbles should

remain in the same positions in the tubes throughout a complete
revolution of the plates.

Whenever possible horizontal angles should be repeated at

least doubled making half of the measurements with the

telescope direct and half with it inverted. The average of the

results is then free from the effect of errors in the line of sight

or in the height of standards, and should be of greater precision

than any one reading.

Vertical angles cannot be repeated; but whenever time permits
at least two readings should be taken, one with the telescope

direct and one with it inverted, releveling if necessary after

reversing the instrument. This, of course, presupposes the use

of a transit with a full vertical circle. The mean of the two

readings should be free from the effect of errors in adjustment
in line of sight, standards, telescope level, and index error. If,

because the instrument does not have a full vertical circle or

because of lack of time, the above method cannot be used, care

must be taken to see that the axis of the telescope level is parallel

to the line of sight; and the index error must be determined and

proper correction made. The index error is the reading of the

vertical arc or circle when the line of sight is horizontal.

It may be convenient to remember that for use with vertical

angles read above the horizontal, if the zero of the vernier is to

the right of the zero of the vertical arc when the telescope is

horizontal the index correction is positive; while if the zero of

the vernier is to the left of the zero of the vertical arc when the

telescope is horizontal the index correction is negative.

Concerning the sextant: The sextant is not adapted to the

measurement of horizontal angles between objects at different

elevations; but vertical angles may often be measured with

greater precision with the sextant than with the transit, on

account of the greater radius and finer graduation of the limb.

There is usually an index error, whose amount should be deter-

mined and the readings properly corrected.

The amount and sign of the index error may be determined

in the following manner: Using an artificial horizon, bring

the direct and reflected images of the sun externally tangent to

each other in each of the two possible positions, and read the

vernier, at each setting. It will be noticed that it is necessary
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to consider the numbering of the divisions on the vernier reversed

when making the reading to the right of the zero of the main

limb. Call the reading to the left minus and that to the right

plus. Half the algebraic sum of the two readings is then the index

error, with the proper algebraic sign. It should be remembered

that the index correction will have the opposite sign.

38. Sequence of Corrections. Corrections to observed alti-

tudes should be made in the following order:

(1) Instrumental corrections.

(2) Refraction correction.

(3) Semi-diameter correction.

(4) Parallax correction.

The chief and probably the only instrumental correction that

can be applied if ordinary field instruments are used will be the

index correction. Care should be taken to give it the proper

sign.

The algebraic sum of the refraction and parallax corrections

is often applied as a single correction.

When applying a refraction correction to an observed altitude

of the sun, the correction for the limb observed not for the

center should be used. Because they are at different altitudes

the values of the corresponding corrections would differ con-

siderably if the altitudes were small.

39. Suggestions for Observing. When making astronomical

observations greater care is necessary in the instrumental work
than is often exercised in ordinary surveying.

Considering first the use of the transit:

A good, -firm "set-up" should be secured; and the two plates

of the leveling head should be nearly parallel when the instru-

ment is leveled. The leveling screws should be turned to just

the proper degree of tightness not too loose so as to allow the

instrument to rock, nor so tight as to bind and later spring the

plates from a horizontal position. So far as possible the effect

of instrumental errors should be eliminated by the method of

observing.

Extra care is needed in reading angles at night; that is, in

determining the reading of the vernier at a given setting. A
lantern or better, an electric flash-light should be held beside

and rather back of the head of the observer. It will be noticed

that there is greater likelihood of getting a wrong reading because

of not looking squarely down on the vernier than by daylight.

When observing at night the cross-hairs must usually be
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illuminated in order to be seen. A reflector made by an instru-

ment-maker is sometimes used. It is simply a cylinder to be

put on the telescope in place of the sunshade, from the side of

which a large "notch" has been cut. This notch is framed with

brightly polished metal, so placed as to reflect light down the

barrel of the telescope from a lantern held beside it.

If such a reflector is not at hand one which will serve equally
well may be made from a piece of white paper three or four

inches wide and long enough to wrap around the objective end
of the telescope, where it is held in place by a rubber band.

A crescent-shaped cut in the side of the paper cylinder thus

formed will produce a flap which may be pushed inward to act

as the reflector.

Before attempting to
"
find

" a star with the telescope the eye-

piece should be properly focused on the cross-hairs and the

objective focused on a distant object, such as a distant light,

and then they should not be disturbed; as it is difficult to find

a star if the telescope is not properly focused. This focusing,

especially that of the eye-piece, may profitably be done before

dark. The star may be found by sighting first along the telescope

and then through it before a light is brought near the instrument.

When the star is clearly visible as a point of light the lantern

should be gradually brought nearer the reflector until the cross-

hairs may be seen distinctly, but not so close as to make the

field so bright that the star cannot be plainly seen. The star

will not appear any larger or brighter through the telescope

than when seen by the naked eye.

Suggestions in regard to "lining in" a point at night, or

establishing a reference-mark from which horizontal angles

may be measured at night, are given in connection with the

work in which these operations are required; namely, at the

beginning of Chapter VIII on " Observations for Azimuth."

The methods of lining in a stake and tack serve equally well to

suggest methods of sighting on a stake already set.

When making observations on the sun the eye-piece of the

telescope must be covered with a piece of dark glass to protect

the eye. For measuring altitudes greater than fifty or sixty

degrees a prismatic eye-piece must be used, fastened on over

the regular eye-piece. When using this attachment in making
observations on the sun it should be remembered that the prism
turns the image upside down, but not right for left. If either

the colored glass or the prismatic eye-piece is not at hand when
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needed the following scheme may be used, provided the telescope

has an erecting eye-piece:

Draw the eye-piece nearly out and the objective nearly in

by means of the focusing screws. If now the telescope is pointed

toward the sun and a white card held below and three or four

inches from the eye-piece, the images of the sun and of the cross-

hairs may both be focused on the card by slight manipulations of

the focusing screws; and a pointing may be made quite .ac-

curately without actually looking through the telescope. If the

eye-piece is non-erecting this method cannot be used.

Concerning the use of the sextant:

For the theory, adjustments, and general method of use of the

sextant the reader is referred to any standard text on surveying.*

The method of determining the index error has been given in

Art. 37, page 42.

As has been noted, the sextant is not adapted to the measure-

ment of horizontal angles between points not at the same eleva-

tion; so that its use in the work described in this book will be

limited to the observation of the altitude of the sun or of a star.

Measuring the altitude of a celestial body with a sextant con-

sists in measuring the angle between the object itself and its

reflection from a surface called an "artificial horizon."

FIG. 15.

In Fig. 15, A represents the position of the eye of the observer,

B the artificial horizon, and SA and S'B rays from the same

celestial object to the eye and to the artificial horizon, respec-

tively. S'B is reflected along the line BA. A H is a horizontal

*See, for instance, Raymond's "Plane Surveying," Second Edition, page
393; or Breed and Hosmer, "Principles and Practice of Surveying," Volume
II, page 274.
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line through the eye of the observer, and EH' is a horizontal

line as determined by the surface of the artificial horizon. It

is evident that all the angles marked a in the figure are equal;

and that the measured angle, SAB, is therefore equal to twice

the apparent altitude of the body S. The angle is measured

by observing through the transparent portion of the horizon

glass of the sextant the image reflected from the artificial horizon,

and bringing into coincidence (or tangency) with it the image
of the object as reflected from the index glass.

When measuring the altitude of the sun, using either no

telescope or an erecting telescope, if the apparent lower limb of

the sun as reflected from the index glass is brought into contact

with the apparent upper image seen in the artificial horizon, the

angle measured is twice the altitude of the sun's lower limb.

If the telescope is an inverting one, the angle measured by this

method is twice the altitude of the upper limb. The index

correction should be applied before the measured angle is divided

by two to obtain the altitude.

A shallow dish of mercury is usually considered most satis-

factory for an artificial horizon, but a dish of molasses will

answer nearly or quite as well. Whatever is used, it should

be protected from disturbance from the wind or other causes

during the observations. A roof-shaped cover with glass windows

is usually provided for use with the mercury horizons. This is

satisfactory if the two faces of each piece of glass are parallel

planes. A cover of fine mosquito netting will serve the purpose

quite well, and introduce no error from refraction.

A good deal of care and considerable practice are required to

obtain accurate results from the use of the sextant; but because

of its finer graduation, which is made possible on account of the

greater radius of the limb as compared with a transit (sextants

are commonly graduated to read to the nearest ten seconds, or

at least to the nearest half minute), it is capable of giving very

precise results. Because of its portability it is adapted for use

in places where a transit could not be used. Since sights to

both objects which determine the angle to be measured are

taken at the same time it is not necessary that the sextant have

a firm support, such as is required for the transit. It is the

instrument used for astronomical observations at sea; in which

case the sea horizon instead of an artificial horizon is used from

which to measure altitudes, requiring a correction for the "dip"

of the apparent below the true horizon.
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There is usually furnished with the sextant a special telescope

for astronomical work. There are several colored glasses at-

tached to the frame which may be turned into the line of sight

to protect the eye when the sun is the object observed. It is a

good plan to use one color in front of the horizon glass and a

different color in front of the index glass, so that the two images

may be of different color and be more easily distinguished.

One final suggestion which applies equally well, no matter

what instrument is used or what the observation may be, is :

Before going into the field the observer should have clearly

and definitely in mind exactly what things he is to do, and

exactly how and when and in what order he is to do them. This

is important.



CHAPTER VII

OBSERVATIONS FOR LATITUDE

40. Latitude by a Circumpolar Star at Culmination. This

observation consists in measuring the altitude of a circumpolar
star at upper or lower culmination, when its altitude is a maximum
or a minimum, and from this measured altitude and known
data computing the altitude of the north celestial pole, which is

the latitude of the place. Any circumpolar star may be used,

but Polaris is the best, because it is the brightest.

Referring to Fig. 16, let the circle represent the meridian of

the observer, who is at 0. Let HH' and EE' represent the

projections of the horizon and celestial equator, respectively,

upon the plane of the

meridian. Let Z repre-

sent the zenith and P the

north celestial pole.

By definition, the arc

EZ (the angular distance

of the observer from the

equator) is the observer's

latitude. It is obvious

that the arc H'P is equal
to the arc EZ, and that

therefore the observer's

latitude may be defined

as the declination of his

FIG. 16. zenith (EZ} or as the

altitude, with respect to

his horizon, of the celestial pole (H'P).
Let S and S' be the two positions of a circumpolar star when

it is on the meridian of the observer, at upper and lower culmina-

tion, respectively. Considering first the case of upper culmina-

tion, the declination of the star is ES
t
and its altitude is H'S.

Also:

H'P = H'S - PS
= H'S - (90 - ES)

or = h - (90
-

5) (28)

48
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For the case of lower culmination, when the star is at S'
t
the

declination is E'S', the altitude is H'S'
y
and:

H'P = H'S' + PS'

or 4>
= h + (90 -

6) (29)

If Polaris is the star used it is not strictly necessary that the

exact time of culmination be known, for the altitude of Polaris

changes but very sligktly for several minutes before and after

culmination. The time of culmination may be taken from

Table V (in which case the declination may be taken from

Table VI), or it may be computed more exactly by the following

method. This method applies equally well to any circumpolar
star.

At the instant of upper culmination the hour angle, t, of any
star is equal to zero, and at the instant of lower culmination it

is equal to 12 hours. The right ascension of the star for any
desired date may be found in the "American Ephemeris and

Nautical Almanac." We may therefore compute the sidereal

time of culmination by the following equation:

Sid. T = R A + t (24)

This sidereal time may be changed to standard time by the

methods of Arts. 31 and 27, pages 34 and 31; thus giving the

standard or watch time of culmination.

The longitude of the place may be obtained with sufficient

accuracy for this or any similar computation by scaling from

one of the government's topographical sheets or any other re-

liable map, even if drawn to a very small scale. An error of

half a degree in longitude represents only about two minutes'

error in computed time of culmination, and the altitudes of any
of the close circumpolar stars change but slightly for several

minutes before and after culmination.

If no tables or means of computation are at hand the approxi-
mate time of upper or lower culmination of Polaris may be

estimated by the relative positions of Polaris and 5 Cassiopeise.
See Art. 33, page 38, and Fig. 12. Beginning some little time

before culmination, the motion of Polaris may be followed by
the tangent screw of the vertical motion of the transit, bisecting
the star with the horizontal cross-hair, until it has reached its

highest or lowest position and appears to have only a horizontal

motion. Its altitude should then be read.

It is, of course, unnecessary that the instrument be centered

over any definite station during this observation, as a difference
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of a minute in latitude corresponds to about 6080 feet on the

ground. Either an engineer's transit or a sextant and artificial

horizon may be used in this observation if the time of culmina-

tion has been computed.

Outline of Observation:

Computations Preceding Field Work:

Compute time of U. C. or of L. C. of star.

From Table V (for Polaris only), or, more accurately,

Sid. T = R A + t (24)

R A from " Nautical Almanac."

t = Oh for U. C., t = 12" for L. C.

Change Sid. T to Std. T.

Field Work:

(A) Using a sextant:

Make several measurements of double altitude of

star within three minutes of time of culmination

Determine index error of sextant.

(B) Using a transit with vertical arc:

Beginning several minutes before computed time

of culmination, follow star with tangent screw to

limit of star's vertical motion, bisecting it with

horizontal cross-hair.

Read the vertical arc, and determine index error.

(C) Using a transit with vertical circle:

With telescope direct, read altitude of star two or

three minutes before culmination.

Reverse instrument quickly and read altitude of

star with telescope inverted.

Computations Following Field Work:

(A) Apply index correction to measured angle.

Divide result by two for apparent altitude.

Subtract refraction correction from apparent altitude,

thus obtaining true altitude, h.

(B) Correct vertical arc reading for index error and refrac-

tion, thus obtaining true altitude, h.

(C) Subtract refraction correction from mean of two read-

ings, thus obtaining true altitude, h.

Having true altitude, h, apply equation:

= h =F (90 -
5) (28), (29)
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Use sign for U. C.

Use + sign for L. C.

Obtain d from Table VI (for Polaris only),

or, more accurately from the "Nautical

Almanac."

An example of the computations and field-notes of this ob-

servation is given on pages 106 and 107.

41. Latitude by Meridian Altitude of a Southern Star. This

observation consists in measuring the altitude of a southern

star when it is on the ob-

server's meridian i.e., at

upper transit and from

this measured altitude

and known data comput-

ing the declination of the

observer's zenith, which is

his latitude.

Referring to Fig. 17, a

southern star may cross

the meridian between the

equator and the zenith, as

at S, or below the equator,

as at S'. The lower

transit of a southern star,
17*

assuming the observer to

be in the northern hemisphere, is always invisible.

Considering the first case, the declination, ESt
is positive; and

EZ = 90 - (HS - ES),
or <f>

= 90 -
(h
-

6) (30)

If the star is at S' the declination, ES', is negative, and the

equation may be written:

EZ = 90 - HS' - (- ESf

)

That is, if 6 is always substituted with its proper algebraic

sign the equation derived above is general, viz.:

<j>
= 90 -

(h
-

6) (30)

The sidereal time at which the star will cross the meridian

may be computed from the equation:

Sid. T = R A + t (24)
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the right ascension of the star for the proper date being taken

from the "American Ephemeris and Nautical Almanac," and

the hour angle, t, for the instant being equal to hours. The

sidereal time thus computed may be changed to standard time

by the methods of Arts. 31 and 27, pages 34 and 31.

One objection to this observation is the difficulty in identifying

the southern stars. If the direction of the meridian and the

approximate latitude are known, the methods of identification

of Art. 48, page 68, may be used.

Outline of Observation:

Computations Preceding Field Work:

Compute time of transit of star.

Sid. T = R A + t 7 -r (24)

R A from " Nautical Almanac."

t = hours.

Change Sid. T to Std. T.

Field Work:

(A) Using a sextant:

Make several measurements of double altitude of

star within two or three minutes of time of transit.

Determine index error of sextant.

(B) Using a transit with vertical arc :

Beginning several minutes before time of transit,

follow star with tangent screw to limit of star's

vertical motion, bisecting it with horizontal cross-

hair.

Read the vertical arc and determine index error.

(C) Using a transit with vertical circle:

With telescope direct, read altitude of star two or

three minutes before transit.

Reverse instrument quickly and read altitude of

star with telescope inverted.

Computations Following Field Work:

(A) Apply index correction to measured angle.

Divide result by two for apparent altitude.

Subtract refraction correction from apparent altitude,

thus obtaining true altitude, h.

(B) Correct vertical arc reading for index error and refrac-

tion, thus obtaining true altitude, h.

(C) Subtract refraction correction from mean of two read-

ings, thus obtaining true altitude, h.
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Having true altitude, h, apply equation:

= 90 -
(h
-

5) (30)

Obtain 8 from " Nautical Almanac," and

substitute it with proper algebraic sign.

An example of the computations and field-notes of this obser-

vation is given on pages 108 and 109.

42. Latitude by Meridian Altitude of the Sun. The methods

and equations of the preceding article may be applied to the

sun as well as to a southern star. The altitude of one edge, or

limb, of the sun instead of the altitude of the center is usually

measured. (See Arts. 36 and 38, pages 41 and 43.)

The watch (standard) time of transit of the sun's center may
be obtained by changing hours local apparent time to standard

time by the method of Art. 29, page 32. If the direction of the

meridian is known, the meridian altitude may be obtained by
use of a transit without computation of the time of transit of

the sun, by setting the instrument so that the telescope revolves

in the plane of the meridian and reading the altitude of one

limb of the sun when its center crosses the vertical cross-hair.

To make the telescope revolve in the plane of the meridian, set

up the transit over one of two stakes which mark the direction

of the meridian and sight on the other. The line of sight will

now revolve (about the horizontal axis of the telescope) in the

plane of the meridian. In order to eliminate the effect of in-

strumental errors so far as possible, it is well to set over the

farther north of the two stakes and sight on the south stake.

The declination of the sun at the instant at which the obser-

vation is to be made (local apparent noon) may be obtained, by
interpolation, from the " Nautical Almanac" or from one of

the instrument-makers' reprints from the " Nautical Almanac."

The longitude, for use in making the interpolation, may be

obtained by scaling from some reliable map, such as one of the

government's topographical sheets. This value of the longitude
should also be sufficiently accurate for use in the conversion of

time mentioned above.

Outline of Observation:

Computations Preceding Field Work:

Compute the standard time of transit of the sun's center.

Change Ohours, local apparent time,to standardtime/

Obtain longitude by scaling from a map,
other data from " Nautical Almanac."



54 OBSERVATIONS FOR LATITUDE

Field Work:

(A) Using a sextant:

Measure double altitude of lower limb of sun at com-

puted time of transit. (See Art. 39, page 43, for

method of using sextant.) Determine index error.

(B) Using a transit:

Follow the sun with tangent screw of vertical mo-
tion as long as it rises, keeping the horizontal

cross-hair tangent to the sun's lower limb. (See

Art. 39, page 43, for suggestions in regard to

sighting on the sun.)

Take the reading of the vertical arc (or circle) cor-

responding to the greatest altitude of the sun.

(Should occur practically at computed time of

transit.)

Determine index error.

Computations Following Field Work:

(A) Apply index correction to measured angle.

Divide result by two for apparent altitude of lower limb.

. Apply refraction, semi-diameter, and parallax correc-

tions, thus obtaining true altitude, h.

(B) Correct vertical arc (or circle) reading for index error,

refraction, semi-diameter, and parallax, thus obtain-

ing true altitude, h.

Having true altitude, ft, of the sun's center, apply

equation :

= 90 -
(h
-

5) . . . '. . '. (30)

Obtain 6 for the time of observation

from the " Nautical Almanac" (using

longitude scaled from a map for inter-

polation), and substitute it with proper

algebraic sign.

An example of the computations and field-notes of this obser-

vation is given on pages 110 and 111.



CHAPTER VIII

OBSERVATIONS FOR AZIMUTH

For the engineer in general practice the determination of true

azimuth is probably the most important part of the work of

field astronomy.
In the discussion of all observations for azimuth it will be

assumed that the transit is carefully set up and centered over a

point which marks one end of a line whose azimuth is desired.

This position of the instrument will be called simply the "station."

In some observations it will be most convenient to line in

another "point" a stake and tack in the direction of a star

which has been sighted, and whose azimuth at the instant of

sighting can be computed; in other observations it will be best

to measure the angle from the star or the sun to a signal. In

any case, the true azimuth of a line on the ground, one end of

which is the station and the other a stake or signal, is obtained.

From this reference line we may then determine the azimuth of

any other line which passes through the station, or we may
determine the direction of the meridian through the station.

It is customary to call the angle between the true north and the

direction of a circumpolar star the azimuth of the star, without

regard to whether the star is east or west of the true north.

This azimuth is the angle Z of the astronomical triangle.

If a stake is to be lined in at night it may be conveniently
done in the following manner:

First line in a lantern. Then hold in front of the lantern an
oiled paper screen, and in front of the screen a stake. (A suit-

able screen may be made by tacking some heavy paper to four

sticks nailed together to form a rectangular frame, and pouring
some kerosene or other oil over the paper; or a handkerchief

will do fairly well in place of a screen.) The stake can then be

seen, black against the bright screen, and lined in in the ordinary
manner. The cross-hairs of the transit can often be seen against
the screen, thus avoiding the necessity of otherwise illuminating

them. The stake should be driven where a pencil held on the

top can be seen, to be lined in for the exact point. The screen

is not necessary, but it furnishes a larger, more uniformly lighted

area against which to see the stake than does the lantern alone.

55
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A suitable signal, or "azimuth mark," from which to measure

an angle to a star, may be made from a wooden box large enough
to hold a lantern. A hole should be bored in the front of the box

at the height of the blaze of the lantern, the size of the hole

depending on the distance from the station at which the box

is to be set, and on the strength of the light behind it. These

factors should be so adjusted that the appearance at night will

be that of a point of light not unlike a star. If an ordinary
kerosene lantern is used, a hole half an inch in diameter in a box

a quarter of a mile or so away will give a suitable mark to sight

on. The distance from the station should be great enough so

that the focus of the telescope will not have to be changed
when sighting first at the signal and then at a star. A vertical

line through the hole which can be used as a sight from the

station in the daytime should be painted on the box. The box

should be covered to prevent the lantern being blown out; and

it should be nailed to a tree or to stakes driven firmly in the

ground approximately north of the station, and where an un-

obstructed view of it may be had from the instrument.

It is a good plan to line in a stake between the station and

the mark and near the latter, so that its direction will not be

lost if the box is destroyed.

43. Azimuth by a Circumpolar Star at Elongation. This

method is probably under ordinary conditions the most reliable

means of determining true azimuth.

The observation consists in measuring the angle from a circum-

polar star at elongation (eastern or western) to an azimuth mark,
and from the measured angle and the computed azimuth of the

star at the instant of elongation computing the azimuth of the

mark from the station. If desired, instead of measuring the

angle to an azimuth mark, a stake and tack may be lined in in

the direction of the star. Any circumpolar star may be used,

but Polaris is the best. If Polaris is used the time of elongation

may be taken from Table V; or it may be more accurately com-

puted by the following method, which applies to any circumpolar

star.

The sidereal time of elongation may be obtained from the

equation:
Sid. T = R A + t (24)

The right ascension for the proper date may be taken from

the "Nautical Almanac," and the value of t found by a solution
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of the astronomical triangle. See Art. 12, Solution (2), page 14,

and Art. 9, pages 9 to 12. The sidereal time thus obtained may
be changed to standard time by the methods of Arts. 31 and 27,

pages 34 and 31.

If no tables or means of computation are at hand, the approxi-

mate time of elongation of Polaris may be estimated by the

relative positions of Polaris and 6 Cassiopeise (see Art. 33, page 38,

and Fig. 13) and the motion of Polaris followed with the tangent
screw of one of the horizontal motions of the transit (bisecting

the star with the vertical cross-hair) until it ceases to move east

or west as the case may be, and appears to be moving vertically.

The azimuth of Polaris when at elongation may be taken from

Table VII, or it may be more accurately computed by Formula

(12), Art. 12, page 15; the declination being taken from the
" Nautical Almanac," for the proper date and the latitude

being known from a previous observation or from an accurate

map.

Outline of Observation:

Computations Preceding Field Work:

Compute time of elongation of star eastern or western.

From Table V (for Polaris only), or more accurately,

Sid. T = R A + t (24)

R A from " Nautical Almanac."

t = P (western elongation) or

t == 24 h P (eastern elongation).

cos P = ^^ (13)
tan 5

4> from a previous observation or from a

map .

6 from "Nautical Almanac."

Change Sid. T to Std. T.

Field Work:

Sight on azimuth mark with plates set at zero.

Turn to star with upper motion of transit and follow star

with upper tangent screw, bisecting star with vertical

cross-hair.

V. Three or four minutes before time of elongation, when star

appears to move vertically, read the horizontal angle

between mark and star.

Double the angle.
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Field Work (Continued):

Reverse the instrument quickly and double the angle
with telescope inverted.

Computations Following Field Work:

Compute azimuth of star at elongation.

From Table VII (for Polaris only), or more accurately,

COS0

5 from " Nautical Almanac."

<f> from a previous observation or from a map.
From computed azimuth of star and mean of measured angles

between star and azimuth mark, compute the azimuth of

the mark.

Or, if desired, the field work may be done as follows:

Field Work:

Sight on star and follow it with tangent screw of either

horizontal motion of transit until two or three minutes

before elongation, when star appears to move vertically.

Plunge telescope down and line in a stake and tack

several hundred feet away.
Reverse instrument quickly, sight on star with telescope

inverted, and line in another point beside the first.

The mean of these two points should be in the direction

of the star at elongation.

Computations as outlined above.

An example of the computations and field-notes of this obser-

vation is given on pages 112 and 113.

44. Azimuth by Polaris Near Elongation. If the observation

described in the preceding article is made on Polaris within thirty

minutes of elongation, the azimuth of the star at the instant of

each sight may be obtained from the computed azimuth at

elongation by the following formula:

C = 3600 X 112.5 X sin V X tan Ze X T2
. (31)*

where T is the interval in (sidereal) minutes between the instant

of elongation and the instant of sighting.

* The demonstration of this formula may be found in more complete works

on field astronomy; for instance, Doolittle's
" Practical Astronomy."
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Ze is the azimuth of Polaris at elongation, to be computed.
C is the correction in seconds of arc, to be subtracted

from azimuth at elongation.

Table VIII gives the values of
" C "

of the above formula for

each minute (of the interval between the instant of elongation

and the instant of sighting) up to thirty minutes, and for values

of Ze from 1 10' to 2 10'. The corrections are also given in

Table Va near the back of the " Nautical Almanac."

This observation is a convenient one to use when the time

of elongation of Polaris comes a few minutes before (or, in the

morning, after) it is dark enough for the star to be seen through
the telescope. The work of this observation is practically the

same as that outlined in the preceding article, with the addition

that the time of each pointing of the telescope at the star must
be taken at least as accurately as to the nearest minute in

order to obtain the interval
" T" of Formula (31) between time

of elongation and time of sighting. Though T should theoreti-

cally be a number of sidereal minutes, no appreciable error will

result from using T as the number of solar minutes, as obtained

directly from the computed time of culmination and the watch

readings.

Outline of Observation:

Computations Preceding Field Work:

Exactly as outlined in Art. 43, page 57.

Field Work:

As near time of elongation as practicable, sight on azimuth

mark with plates set at zero.

Measure the angle from the mark to the star four times by
the method of repetition (the final reading on the plates

should be four times the value of the angle), twice with

the telescope direct and twice with it inverted. Read
the plates at the first and fourth settings on the star.

Take the watch reading (standard time) to nearest half-

minute at each setting on the star.

Computations Following Field Work:

Compute azimuth of star at elongation as outlined in

Art. 43, page 58.

Using computed time of elongation and mean of watch

readings, compute
"
T."
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Computations Following Field Work:

Using the computed azimuth at elongation and the correc-

tion "C" from Table VIII, compute the azimuth of

the star corresponding to the mean of the watch read-

ings. (Subtract "C" from azimuth at elongation.)

Using this computed mean azimuth and the mean angle

from the mark to the star, compute the azimuth of the

mark.

An example of the computations and field-notes of this obser-

vation is given on pages 114 and 115.

45. Azimuth by a Circumpolar Star at any Hour Angle. This

observation is one of the most precise methods for the deter-

mination of azimuth. The difficulty in its use in practice under

ordinary conditions is in obtaining the standard time with

sufficient accuracy. Its advantage over an observation at

elongation is that the number of observations may be increased

indefinitely, thereby securing greater precision.

The observation consists in measuring a series of angles be-

tween an azimuth mark and a circumpolar star, taking the time

of each pointing of the telescope at the star; and from the mean
of the measured angles and the azimuth of the star computed for

the mean of the recorded times, computing the azimuth of the

mark. In work done with great precision with large instruments

several corrections need to be introduced which are too small

to be considered in work done with an engineer's transit. Any
of the close circumpolar stars may be used for the observation.

Polaris is the best.

The mean of the recorded times of setting, read in standard

time as accurately as possible, correct within a very few seconds

may be changed to sidereal time by the methods of Arts. 26

and 30, pages 31 and 33, and Equation (24), from Art. 21,

page 23, applied:

Sid. T = R A + t (24)

The right ascension of the star having been obtained from

the "Nautical Almanac," this formula may be used to compute
the hour angle of the star at the mean of the recorded times of

setting.

The latitude being known, the declination of the star having
been obtained from the " Nautical Almanac," and the hour

angle having been computed, the astronomical triangle may be
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solved for the azimuth of the star by the following formula

(from Appendix A) :

sin t
tan Z =- -

. . (10)
tan 5 . cos

<f> sin </>
. cos t

If the latitude of the station is not known the altitude of the

star may be read at the beginning and at the end of each set of

readings of horizontal angles one set being taken with telescope
direct and one with telescope inverted and the mean of these

four altitudes, corrected for refraction, may be used in solving
the astronomical triangle for azimuth by the following formula

(from Appendix A) :

sin t . cos 5
sin Z = - .... (11)

cosh

Outline of Observation:

Computations Preceding Field Work:

None.

Field Work:

By method of repetition read two sets of three or four

angles each from azimuth mark to star, one set with tel-

escope direct, and one with telescope inverted; reading
the watch (Std. T) at the instant of each pointing at the

star. Only three readings from the transit plates need

be made: the value of the first angle and the reading at

the end of each set.

If it is desired to solve the astronomical triangle by the sec-

ond method suggested above (latitude unknown), the alti-

tude of the star should be read at the beginning and
end of each set.

Computations Following Field Work:

Compute hour angle of star at mean of observed times.

t = Sid.T-RA ........ (24)

Sid. T from mean of watch readings (Std. T),

changed to Sid. T.

R A from " Nautical Almanac."

Compute azimuth of star at mean of observed times.

tan Z =-- -
(10)

tan 5 . cos sin < . cos t
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t from computation above.

5 from " Nautical Almanac."
< from a former observation or from an ac-

curate map.

Compute azimuth of mark, using mean azimuth of star

from above computation and mean of observed hori-

zontal angles.

An example of the computations and field-notes of this obser-

vation is given on pages 116 and 117.

46. Azimuth by an Altitude of the Sun or of a Star. This

observation consists in taking a series of sights on the sun at

each of which the time, the sun's altitude, and the horizontal

angle between the sun and a reference mark are read. From
the mean of the observed times, the mean of the altitudes and
data either known or given in the "

Nautical Almanac," the

mean azimuth of the sun may be computed. This mean azimuth

FIG. 18.

combined with the mean of the measured angles between the

sun and the reference mark will give the azimuth of the mark.

The setting of the cross-hairs tangent to the sun's disc may
be conveniently done in the following manner:

The transit having been centered over the station, sighted

at the reference mark with the plates set at zero, the upper clamp

loosened, and the telescope turned toward the sun: If the

observation is being made in the forenoon the sun's disc should

first be brought into the position shown in Fig. 18 and the

horizontal and vertical motions clamped. The arrow shows the

direction of the sun's apparent motion. The vertical cross-

hair should be kept tangent to the sun's disc by use of the tangent
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screw of the upper horizontal motion of the transit until the

upward motion of the sun has brought the disc tangent to the

horizontal cross-hair. At this instant the time should be noted,

and the horizontal and vertical circles read. This operation

should be repeated quickly, and then the same number of settings

should be made with the sun in the diagonally opposite quadrant,
as shown in Fig. 19.

This time it will be convenient to keep the horizontal cross-

hair tangent with the tangent screw of the vertical motion of

the transit, letting the horizontal movement of the sun bring

the disc tangent to the vertical cross-hair.

It is evident that the mean of the four altitudes and of the

four horizontal angles will not have to be corrected for semi-

diameter of the sun. If the transit has a full vertical circle the

telescope should be inverted between the two sets; if not, index

correction must be made. The instrument should be very

carefully leveled for this observation. Care should be taken

not to use one of the stadia wires for the middle cross-hair.

One of the schemes for protecting the eye from the sun which

are suggested in Art. 39, page 44 covering the eye-piece with

either a colored glass or a prismatic eye-piece which has a colored

glass or projecting the image on to a card may be used.

It should be remembered that if a non-erecting telescope is

used the direction of the sun's apparent motion will be reversed;

and that if a prismatic eye-piece is used the sun's image will be

turned upside down, but not left for right. However, this need

not complicate matters, since it makes no difference in which

quadrants the sun's image is placed if only the same number of

settings is made with the sun in each of two diagonally opposite

quadrants. If the observation is being made in the afternoon

the relative positions of the sun's image and the cross-hairs a

few seconds before becoming tangent should appear through
an erecting eye-piece, as shown in Fig. 20. The procedure should

be obvious.

The approximate longitude being known (scaled from a map),
the sun's declination for the instant of the mean of the watch

readings may be obtained by interpolation from the
" Nautical

Almanac." The mean of the observed altitudes, corrected for

index error if necessary and for refraction and parallax, gives

the altitude of the sun's center at the mean of the observed

times. These, with the latitude (from a previous observation

or from a map), furnish data for the solution of the astronomical
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triangle for azimuth by one of the formulas of Art. 12, page 13.

If the latitude is not known, the hour angle of the sun's center

may be obtained by changing the mean of the watch readings

(standard time) to local apparent time, and used instead of the

latitude in the solution of the triangle by Equation (11), (from

Appendix A) . Under ordinary field conditions this latter solution

is likely to give less accurate results than the use of the latitude.

FIG. 20.

The mean azimuth of the sun thus computed, combined with

the mean of the readings from the horizontal circle of the transit,

will give the azimuth of the reference mark.

For good results this observation should not be made within

two hours of noon or when the sun's altitude is less than 10 or 15.

The methods of this observation may be applied equally well

to an observation on a star, the star's image being bisected at

each setting by both horizontal and vertical cross-hairs. The
declination of a star changes so slowly that it may be considered

constant for the day, so the exact time of each setting need not

be taken. Of course, no parallax correction need be applied

to the altitude of the star.

Outline of Observation:

Computations Preceding Field Work:
None.

Field Work:

Sight at reference mark with plates clamped at zero.

Loosen upper clamp and turn telescope toward sun.

Make two settings of cross-hairs tangent to right and lower

limbs of sun's disc (if in A.M.); recording at each setting:
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(1) watch reading, (2) horizontal circle reading, (3) vertical

circle reading.

Repeat the settings (with telescope inverted if instrument

has a full vertical circle), making the cross-hairs tangent

to the left and upper limbs.

If instrument has only a vertical arc determine index

correction.

Turn back to reference mark and check back-sight.

Computations Following Field Work:

Compute azimuth of sun's center at instant of mean of watch

readings:

Formula from Art. 12, page 14, preferably:

cos (k + 0) . cos (k + h)

sin k . cos (k -f- 5)

<f> from a previous observation or from a map.
h from mean of observed altitudes, corrected for

refraction and parallax, and for index error if

necessary.

5 for instant of mean of watch readings by inter-

polation from " Nautical Almanac."

k = J [270 -(</>+ h + 5)].

From computed mean azimuth of sun and mean of horizon-

tal circle readings, compute azimuth of reference mark.

It should be remembered that Z in the above formula is not

always the azimuth, but is an interior angle of the astro-

nomical triangle.

An example of the computations and field-notes of this obser-

vation is given on pages 118 and 119.

47. Azimuth by Equal Altitudes of a Star. This observation

consists in marking by a stake and tack, set several hundred

feet from the station, the direction of a star two or three hours

before its transit (upper or lower), the altitude of the star being

noted; and then marking by another stake and tack the direction

of the same star at the instant when it reaches the same altitude

on the opposite side of the meridian. The bisector of the angle
between these two directions is the true meridian through the

station.

The chief advantages of this observation are that no tables

or computations and no information as to standard time are
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necessary; and a high degree of precision is attainable by a

sufficient number of repetitions. It is inconvenient in that the

two series of observations must be made at an interval of at

least four to six hours.

Instead of bisecting the star with the horizontal and vertical

cross-hairs and attempting to read the vertical circle during
the first series of sights (before transit); it is probably better

to set the vertical circle at some exact minute, so that the

horizontal cross-hair is just below the star if it is moving down
or just above it if it is rising, and to follow the movement of the

star with the tangent screw of one of the horizontal motions

(bisecting the star with the vertical wire); so that when the

vertical motion of the star has brought it to the horizontal cross-

hair it will be exactly at the intersection of the two. If the

instrument has a vertical circle the first series of observations

should be made with the telescope direct and the second series

with it inverted. The refraction correction need not be con-

sidered, since its effect on the two series of observations is exactly

compensating.

Any star may be used which is at a convenient altitude two

or three hours before the time of its transit, and which will come
to the same altitude on the other side of the meridian (four to

six hours later) before daylight interferes with the observation.

One of the stars of Cassiopeia or of Ursa Major may ordinarily

be used.

Outline of Observation:

Computations Preceding Field Work:
None.

Field Work:
Set the vertical circle or arc to read some exact minute

so that the star selected is approaching the horizontal

cross-hair.

Record this reading.

Bisect the star with the vertical cross-hair and follow

it with the tangent screw of one of the horizontal

motions of the transit until it is at the intersection of

the cross-hairs.

Line in and center a stake three or four hundred feet

from the station.

Repeat this operation two or three times at intervals of

ten or fifteen minutes, marking the successive stakes

"A," "B,""C,"etc.
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When the star is approaching the same altitude on the

other side of the meridian, set the vertical circle or arc

to read the last altitude used. (If the transit has a

vertical circle, have the telescope inverted.)

Bisect the star with the vertical cross-hair and follow it to

the intersection of the cross-hairs as before.

Set and center a stake three or four hundred feet from

the station, marking it to correspond with the last

stake set.

Using the altitudes used in the first series of observations

in the reverse order from that in which they were ob-

tained, set as many stakes as in the first series, marking
them ***

"C," "B," "A."

Bisect the angle "A-station-A," and set and center a broad-

topped stake three or four hundred feet from the station.

Bisect each of the other angles (B-station-B, C-station-C,

etc.) and set points on the broad-topped stake beside

the first.

All of these points should coincide, and a line through the

station and the point of coincidence should be the

meridian. If they do not coincide, the mean of their

positions should be used.

Computations Following Field Work:
None.

An example of the field-notes of this observation is given on

pages 120 and 121.



CHAPTER IX

OBSERVATIONS FOR TIME

48. Time by Transit of a Star. This observation consists in

noting the watch time of transit of a star over the observer's

meridian. The sidereal time of transit of a star may be obtained

from its right ascension (taken from the "
Nautical Almanac,"

and substituted in the equation: Sid. T = R A -f- 1) and

changed to standard time. The difference between this standard

time and the watch reading at the instant of transit is the watch
correction.

Stars to be used for the determination of time should move

rapidly, and should therefore be those which are as near as

practicable to the equator. Without a prismatic eye-piece
which is inconvenient for night work stars at altitudes greater

than 50 or 55 can not easily be seen with a transit; and it is

not well to try to use stars whose meridian altitudes are less

than 15 01 20, if indeed the topography (surrounding mountains,

etc.) does not make a higher minimum necessary.

Smaller stars than those of the fifth magnitude should not

be selected as they are too difficult to observe with the ordinary
transit telescope

Before going into the field the observer should prepare a list of

suitable stars, the list giving the name of the star, its magnitude,
the local mear time of transit, and its approximate meridian

altitude. Standard time may be used in place of local mean
time if the longitude of the place is known as accurately as re-

sults are desired. If, for instance, it is desired to make the

observations between eight and nine o'clock, P.M., on a certain

date, these two hours changed into sidereal time (at least the

approximate longitude being known) will give the limiting

values of right ascension. This comes from the relation:

Sid.T =RA + t (24)

t being equal to hours at the time of transit.

The limiting altitudes, considered with the latitude of the

observer, will determine the limiting values of declination.

Having determined the limiting values of right ascension,

68
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declination, and magnitude, the stars may be selected from the

lists given in the
" Nautical Almanac," and times of transit

and approximate meridian altitudes computed. Refraction

may be neglected in computing the approximate altitudes.

If the line of sight is now put in the plane of the meridian,

and the approximate altitude of one of the stars the first on

the list to pass the meridian set oft
7 on the vertical arc, the star

may be identified because it will cross the field of view following

very nearly along the horizontal cross-hair. If the watch is

keeping approximately local mean time, or if it is keeping ap-

proximately standard time and the longitude of the place is

known so that approximate local mean time may be computed
from the watch reading, it will assist in the identification and

shorten the time of waiting.

If the transit has a vertical circle, half the observations should

be made with the telescope direct and half with it inverted, the

mean of the determined watch corrections being accepted. In

any case, great care must be used in leveling the instrument,

especially in a direction parallel to the horizontal axis. A striding

level may be used to good advantage.

Outline of Observation:

Computations Preceding Field Work:

Prepare a list of four or six stars of at least fifth magnitude
with meridian latitudes between 10 and 55, and with

convenient times of transit.

Meridian altitude of a southern star from:

h = 90 -
< + 5 (32)

Substitute 5 with proper algebraic sign.

Local mean time of transit from:

Sid.T =RA+t . (24)

R A from " Nautical Almanac."

t = hours.

Change Sid. T to LMT.
Field Work:

Having the meridian marked by two stakes, set the transit

over one and sight on the other. The line of sight should

now revolve (about the horizontal axis) in the plane of

the meridian.

Set off on the vertical arc the approximate meridian

altitude of the first star on the list (arranged in order

of transit).
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Field Work:
Note and record the watch reading at instant of transit

of star across vertical cross-hair.

Repeat the operation for the other stars on the list, if pos-
sible making half the observations with telescope direct

and half with it inverted.

Computations Following Field Work:
Determine the difference between the computed local

mean time of transit and the watch reading at the instant

of transit for each star observed.

Take the mean of the computed differences for the watch
correction to local mean time.

An example of the computations and field notes of this obser-

vation is given on pages 122 and 123.

49. Time by Transit of the Sun. This observation consists in

noting the watch times of transit of the west and east limbs of

the sun and comparing the mean of these two watch readings
with the instant of local mean time corresponding to hours,

local apparent time the time of transit of the sun's center.

The difference is the watch correction to local mean time. As
in the work of the last article, the correction to standard time

instead of to local mean time may be determined if the longitude
of the place is accurately known.

Under ordinary conditions, this observation is not likely to

give quite as accurate results as that of the preceding article.

Outline of Observation:

Computations Preceding Field Work:

Compute local mean time of transit of sun's center.

Change hours, LAT, for the given date, to LMT
by method of Art. 25, page 30.

Field Work:
Set transit over one of two stakes which mark a meridian,

sight on the other, and turn telescope to approxi-

mately the meridian altitude of the sun.

Note the watch reading at the instant that each limb

crosses the vertical cross-hair.

Computations Following Field Work:

Compute watch correction to local mean time by comparing
mean of watch readings (taken at instants of transit

of west and east limbs of sun) with computed time

of transit of sun's center.
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An example of the computations and field notes of this obser-

vation is given on pages 124 and 125.

The watch correction might be obtained, though probably less

accurately, by solving the astronomical triangle for the hour

angle of the sun's center from the data obtained as described

in Art. 46, page 62, and comparing this (after having changed it

from local apparent to local mean time) with the mean of the

watch readings.



CHAPTER X

OBSERVATIONS FOR LONGITUDE

50. Longitude by Transportation of Timepiece. Since the

difference in longitude between two places is simply the differ-

ence in local mean time, the most practicable means for deter-

mining longitude with field instruments is to compare the local

mean time at one of the places (determined by one of the obser-

vations described in the last chapter) with the reading of a

reliable watch or chronometer which is set to the local mean
time of the other place.

If the watch is keeping standard time the local mean time

at a "standard " meridian the difference between the watch

reading and local mean time as determined by observation is

the difference in longitude of the standard and local meridians.

The longitude of the standard meridian with respect to the

meridian of Greenwich being known, that of the local meridian

may be obtained.

This method involves an approximation of the longitude for

use in changing the sidereal time of transit of the stars (assuming
that local mean time is to be determined by star transits, as

outlined in Art. 48, page 68) to local mean time; but the error

produced in this computation by a relatively large error in

assumed longitude is so small that it is not likely to be of ap-

preciable amount in work of this class. If it is in any case

sufficiently large to be considered, a second determination,

using for the longitude in the second computation the value

obtained from the first observation, will eliminate this difficulty.

In precise geodetic work, the local mean time at two stations

whose difference in longitude is being determined is compared
by the electric telegraph, elaborate apparatus being used.

It is possible to determine the longitude usually with rather

indifferent precision by an observation of the time of transit

of the moon; but this method has little apparent advantage over

that described above of transportation of timepiece, and its

discussion is left to more complete works on field astronomy.
The necessity for the determination of longitude arises very

seldom in general practice of engineering, for a locality must
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ordinarily be very remote whose longitude can not now be

obtained from some map as accurately as it can be determined

with ordinary field instruments. From a map on which dis-

tances can be scaled to the nearest mile, longitude can be ob-

tained to the nearest minute of arc, and a determination with

field instruments which is accurate to the nearest half-minute of

time (seven and one half minutes of arc) is exceptionally good
work.



CHAPTER XI

SUMMARY OF OBSERVATIONS

The observations which have been described in the foregoing

chapters are restated here in order to summarize, for convenient

reference when selecting a method of observation, the data

required for each, and to state briefly some of their relative

When stating the books, etc., required for use, it is assumed

that the observer has at hand a set of logarithmic and trigono-

metric tables.

51. Observations for Latitude.

Latitude by a Circumpolar Star at Culmination. This is one

of the most precise and convenient methods of determining
latitude. If Polaris is used, this book furnishes all necessary

data. If any other circumpolar star is used, either the "American

Ephemeris and Nautical Almanac" or the "American Nautical

Almanac" will be needed from which to obtain its right ascension

and declination, and in this case an approximate value of the

longitude will be needed.

Latitude by Meridian Altitude of a Southern Star. The pre-

cision attainable by this method is equivalent to that of the

preceding observation, but it is usually more difficult to identify

a southern than a circumpolar star. (See Fig. 12, page 37.)

Either the "American Ephemeris and Nautical Almanac" or the

"American Nautical Almanac" will be needed for the right

ascension and declination of the star. The longitude should be

known approximately.
Latitude by Meridian Altitude of the Sun. The precision of

this observation is probably rather inferior to that of the two

preceding. It is more convenient in that it may be done in

the daytime. Either the "American Ephemeris and Nautical

Almanac," or the "American Nautical Almanac," or one of the

pocket ephemerides published by instrument-makers, will furnish

all the required data not given in this book. The longitude

should be known within a few minutes of arc.

52. Observations for Azimuth.

Azimuth by a Circumpolar Star at Elongation. This is one
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of the most satisfactory methods of determining true azimuth

under field conditions. Polaris is the best star to use unless (for

a short time in the Spring and again in the Fall) its elongations

occur during daylight. If Polaris is used, all necessary data,

with the exception of the latitude, may be obtained from this

book. For any other circumpolar star the "American Ephemeris
and Nautical Almanac" or the "American Nautical Almanac"
will be needed. The latitude of the station should be obtained

to the nearest minute either from a reliable map or from a

previous observation, and in case another star than Polaris is

to be used, the longitude should be known approximately.
Azimuth by Polaris Near Elongation. This is a good observa-

tion to use when Polaris can not be seen at elongation, but can

be seen within a half-hour of elongation. All necessary data

may be obtained from this book, with the exception of the

latitude, which should be obtained to the nearest minute from

a map or from an observation, as above.

Azimuth by a Circumpolar Star at Any Hour Angle. This is a

very precise method if standard time, correct within a few

seconds, can be obtained. It permits a greater number of

measurements of the direction of the star than either of the two

preceding, and may therefore be made more precise. Either

the "American Ephemeris and Nautical Almanac" or the "Ameri-

can Nautical Almanac" will be needed to obtain the right as-

cension and declination of the star, and the latitude must be

obtained from a map or a previous observation. An approxi-

mate value of the longitude will be needed in computing the

sidereal time.

Azimuth by an Altitude of the Sun. This method has the

advantage that it may be made in the daytime and during the

progress of a survey. Its precision is probably inferior to that

of the observations on the stars. Either the "American

Ephemeris and Nautical Almanac," or the "American Nautical

Almanac," or one of the pocket solar ephemerides (preferably

for Greenwich mean noon) published by the instrument makers,
will furnish the required declination of the sun. The latitude

and longitude should be obtained, the former to the nearest

minute from a map or a previous observation, the latter less

accurately from a map. Any other required data will be found

in this book.

Azimuth by Equal Altitudes of a Star. This observation may
be made to give a very high degree of precision, and no tables
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or data whatever are required. It is inconvenient in that it

requires two series of observations to be made at an interval

of from four to six hours.

63. Observations for Time.

Time by Transit of Star. This is one of the simplest and best

methods of determining local time. Data from the
"American

Nautical Almanac," or preferably from the "American Ephemeris
and Nautical Almanac," are required. The latitude and longi-

tude should be known approximately. It is necessary that the

direction of the meridian should be marked on the ground.
Time by Transit of Sun. This method is probably inferior in

accuracy to the preceding, but it is more convenient in that it

may be made in the daytime. Either the "American Ephemeris
and Nautical Almanac," or the "American Nautical Almanac,"
or one of the pocket solar ephemerides (preferably for Greenwich

mean noon) published by instrument-makers, will furnish re-

quired data. The longitude must be known approximately.

64. Observations for Longitude.

Longitude by Transportation of Timepiece. Since the deter-

mination of longitude by this method consists essentially in

the determination of local mean time, the remarks above in

regard to observations for time apply here as well.

It should be apparent that if a determination of latitude,

longitude, azimuth, and time were to be made at a station where

all four were entirely unknown, values of some of the quantities

would have to be approximated in making observations for the

others and the values obtained from the observations used for

a closer approximation, until by a series of observations the

values of all were obtained to the required degree of refinement.



APPENDIX A

SPHERICAL TRIGONOMETRY

Derivation of Formulas Required in Field Astronomy

A portion of the surface of a sphere bounded by arcs of three

great circles is called a spherical triangle.

If the vertices of the spherical triangle be joined by straight

lines to the center of the sphere, a triedral angle is formed. The

face angles of the triedral angle measure the sides of the spherical

FIG. 21.

triangle, and the diedral angles of the triedral angle are measures

of the angles of the spherical triangle. Both sides and angles

of a spherical triangle are usually measured in degrees.

The fundamental formulas required for the solution of spherical

triangles may be derived by the methods of analytic geometry,
as follows:

In Fig. 21:

Let: ABC be a spherical triangle on the surface of a

sphere whose center is at 0.

Then: OA = OB = OC = r.
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Assume:

Draw:

APPENDIX A

as origin of rectangular coordinates.

OX through vertex A.

OF in plane of AOB.
OZ perpendicular to plane of AOB.

CP perpendicular to plane of OX and OF.
PS perpendicular to OX.
CS.

Then : Coordinates of C are :

x = OS, y = PS, z = PC.

By construction:

Angle CSP = spherical angle A,

Angle COS = side b.

Then: x = r cos &, y = r sin b cos A,
z = r sin b sin A.

FIG. 21a.

Leaving OZ unchanged, revolve OX and OF to positions

OX' and OF' (Fig. 21a) i.e., until OX'

passes through vertex B.

Now, if from P a line were drawn perpendicular to OX', and

its point of intersection with OX' were

joined to C, we should have:

x' = r cos a, 2/'
= r sin a cos B,

2' = r sin a sin B.

The equations of transformation of coordinates in this case are :

x' = y sin c + z cos c, y'
= y cos c # sin c, 2' = 2.
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Substituting in these equations the values of x, y, z, 2', y', z',

and dividing by r, we have:

cos a = cos b cos c + sin b sin c cos A
sin a cos B = cos b sin c sin b cos c cos A
sin a sin B = sin b sin A

which are the three Fundamental Laws of Spherical Trigonometry.
Since we are at present con-

cerned with solutions of the astro-

nomical triangle, lettered as shown
in Fig. 22 and in other figures

which show the celestial sphere,

it will be convenient to have

the notation of the formulas

changed to correspond, as

follows: ,-,

FIG. 22.

cos s = cos p cos z + sin p sin z cos S . . . (1)

sin s cos P = xx>s p sin z sin p cos z cos S. (2)

sin s sin P = sin S sin p (3)

From these fundamental formulas others may be derived

which are more convenient for special solutions of the astronomi-

cal triangle.

To express the sines, cosines, and tangents of the half-angles

of the astronomical triangle in terms of functions of the sides:

From (1) :

cos z = cos s cos p + sin s sin p cos Z
Whence:

cos z cos s cos p
cosZ =

sin s sin p
(a)

Subtracting both sides from 1 :

1 - cos Z = I -
cos z cos s cos p

sm s - sin p

sin s - sin p + cos s - cos p cos z

sin s sin p

From plane trigonometry:

cos ( A B )
= cos A - cos B + sin A sin 5

and: 2 sin2 A/2 = 1 - cos A
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Substituting:
Z cos (s p) cos z

2 sm2 =
; ;

2 sm s sm p

From plane trigonometry :

A + B
.
A - B

cos B cos A = 2 sm sm . . (b)
i 2i

Whence:
Z 2 sin 3/ [z + (s p)] sin %[z (s p)]

2 sin2 =
:

2 sm s sm p

Z sin y^ (z + s p) sin K (z + P)
sm2 =

: :

2 sm s sm p

Let: 2k = s + p+z = 270 -
(0 + h + 5)

Then: z + s - p =
(s + p + z)

- 2p = 2k - 2p

z - s + p =
(s + p + z)

- 2s = 2k - 2s

Substituting:

Z sin (k s) sin (k p)
sm2 = -

sin s sin p

Z I sir

'T
= \-

~ sin (k s) sin (k p) , ,sm = \ r- . (c)
sm s sm p

Substituting <j>
= 90 -

s, h = 90 -
p, d = 90 -

z, in Equa-
tion (c):

Z cos (k + 0) cos (k -j-h)
sin = A . . (4)

cos cos h
In like manner:

P /sir

T =
\-Jsin

(/c s) sin (k z)
: :

sm s sm z

P I cos (k
L T =

\ ;

</>)
" cos (k + 3)

cos <f>
cos 8

Adding both members of Equation (a) to 1 :

cos z cos s cos p
cos Z = 1

sm s sm p

cos z (cos s cos p sin s sin p)

sin s sin p
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From plane trigonometry:

cos (A + B) cos A cos B sin A sin B

A
and 2 cos2 = 1 + cos A

4B

Substituting:

Z cos z cos (s + p)
2 cos2 =

: :

2 sin s sin p

Whence, by equation (b) :

Z 2 sin K (s + P + z)
- sin Y2 (s + p - g)

2 cos2 =
;

2 sin s sin p

Again putting 2k = s + P + 2, whence: s + P 2 = 2k 2z:

Z sin k sin (fc z)
cos2 =

: ;

2 sin s sin p

cos
Z / sin k sin (k z)

2 if sin s sin p

Z I sin k cos (k + a) ,flNor cos = \-" .... (6)
2 \ cos cos h

In like manner:

P / sin k sin (k p)
cos = \l

-
;

-
:

-
2 \ sin s sin z

P / sin k cos (k + h)
or cos =

-\l
""

1
-" .... (7)

2 \ cos cos 8

Dividing (4) by (6) :

Z I cos (k + </>) cos (k + h) I cos <f>

- cos h

2 \ cos </> cos /i \ sin fc cos (& + 6)

Z
|
cos (k + 0) cos (k + h)^"~ A I

^^~^~"~~""~~'^^^
. (o

2 Af sin k cos (k + 5)

tan

In like manner:

tan .
2 \ sin k cos (k + h)
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A convenient formula for computing the angle Z when the

known data are t, <, and 6, may be derived as follows:

From (3):

sin p sin Z = sin P sin z . . . . (d)

From (2):

sin p cos Z = cos z sin s sin z cos s cos P . (e)

Dividing (d) by (e):

sin P sin z
tan Z =

cos z sin s sin z cos s cos P

sin P
cos z sin s cos s cos P

sin t

or tan Z =
. . (10)

tan d - cos $ sin cos t

A formula for computing Z when 5, t, and h are known, may
be derived directly from (3) :

sin p
'

sin Z = sin P . sin z

Whence:
sin P sin z

sinZ
sin p

sin t cos 5
or sin Z = (11)

cos h

The formula for Z when the astronomical triangle is right-

angled at S, comes directly from (3) :

sin s sin Z = sin S sin z

Since S = 90, sin S =
1, and:

. sin z
sin Z =

sin s

cos 8
or sin Z = (12)

cos

The formula for P under similar conditions (S = 90) may
be derived as follows:

From (2) :

sin s cos P = cos p sin z sin p cos z cos S

Since S = 90, cos S =
0, and:

sin s cos P = cos p sin z
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Whence:
cos p sin z

cos P = -. (f)
sin s

From (1):

cos s = cos p cos z + sin p sin z cos S

Since S = 90, cos S =
0, and:

cos s = cos p cos z

Multiplying the numerator of (f) by (cos s), and the denominator

by its equal (cos p cos z) :

cos p sin z cos s
cos P =

sin s cos p cos z

tan z

tan s

or cosP = ...... (13)
tan 5
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SOLAR ATTACHMENTS FOR TRANSITS

The Solar Attachment is a device which is mounted upon or

beside the telescope of an engineer's transit, and is used chiefly

for direct determination of the true meridian by an observation

on the sun. By its use the astronomical triangle is solved me-

chanically, and at the end of an observation the line of sight

through the transit telescope should lie in the plane of the

meridian.

There are several different forms of the solar attachment

made, but they are all alike in principle and differ only slightly

in method of use. The essential features of all are: a polar

axis which is perpendicular to the plane defined by the horizontal

axis of the transit and the line of sight of the transit telescope;

a small telescope, called the solar telescope, which is so mounted
as to revolve about the polar axis, and which may also be set

at any desired inclination to the plane of the horizontal axis

and line of sight of the main telescope; and a declination arc

or other means of measuring this inclination.

In one well-known form the Burt Solar Attachment, shown
in Fig. 23, page 85 the solar telescope is replaced by a small

lens and a silver screen on which the sun's image may be thrown,

thus defining a line of sight to the sun. On this form of the

instrument there is a declination arc on which may be set off

any desired inclination of the line of sight to the sun with respect

to the plane defined by the horizontal axis and telescope of

the transit.

Another common form of the attachment is that shown in

Fig. 24, page 86. It has a telescope for determining the line

of sight to the sun; but the inclination of this line of sight to

the plane of the transit telescope and horizontal axis is deter-

mined by means of the small level tube which is mounted on

the solar telescope, used in connection with the vertical arc or

circle of the transit. This inclination may be set off in the

following manner:

84
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FIG. 23. THE BURT SOLAR ATTACHMENT.
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First bring the solar and transit telescopes into the same
vertical plane by sighting both at a distant point.

Set off the desired inclination on the vertical circle, applying
index correction if necessary, and make the solar telescope
horizontal by means of its own level.

The angle between the two telescopes is now equal to that

set off on the vertical circle.

The objective end of the telescope should be depressed if an

inclination of the line of sight of the solar telescope above the

FIG. 24. THE SAEGMULLEB SOLAR ATTACHMENT.

plane defined by the transit telescope and horizontal axis is

desired (as for north declinations), and should be elevated for

inclinations below that plane (as for south declinations).

To understand the principle on which the use of the solar

attachment is based, refer to Fig. 25, page 87. Suppose the

transit telescope to be so inclined that the plane denned by the

line of sight and the horizontal axis of the transit coincides with

the plane of the equatoi, and the transit to be turned so that

the line of sight lies in the plane of the meridian. The polar axis

will now coincide with the axis of rotation of the earth, produced;

i.e., it will point toward the north celestial pole. Now, assuming
for the moment that the sun's declination remains constant for
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a day, and that the solar telescope is inclined to the plane of the

equator by an amount equal to this declination, the sun's motion

may be followed by the solar telescope by simply revolving the

latter about the polar axis, without disturbing the rest of the

instrument. Since the declination of the sun does change, its

motion cannot be followed throughout the day without changing

North I *South

the inclination of the solar telescope; but it can be practically

followed for twenty or thirty minutes, even at the seasons of

most rapid change in declination in June and December.

This cannot be done unless the polar axis coincides with the

axis of the celestial sphere (points, in the northern hemisphere,
to the north celestial pole) and the telescope lies in the plane
of the meridian. This condition furnishes the principle on

which the work of an observation is based.

The declination of the sun, computed for the time at which

the observation is to be made, must be corrected for refraction.

The accuracy with which the declination can be set off does not
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warrant the use of a parallax correction. To obtain the "ap-

parent" from the computed or true declination, the refraction

correction is always added algebraically, regarding north declina-

tions as plus and south declinations as minus. The amount of

this correction may be obtained from Table III, page 91,

using as the altitude the approximate measured altitude of the

sun; or it may be obtained more easily from tables such as are

published by the different instrument-makers for use with solar

attachments; in which the .refraction corrections are given for

various latitudes, declinations, and hour angles of the sun (before

or after transit).

The observation for azimuth with the solar attachment may
now be outlined as follows:

Set up the transit over a centered stake.

Incline the solar telescope to the plane of the transit telescope

and horizontal axis by an amount equal to the declination of

the sun "
corrected

"
for refraction computed for the day

and hour of the observation.

Make sure that the transit is accurately leveled.

Without disturbing the relative inclination of the two tele-

scopes incline the transit telescope by an amount equal to the

co-latitude of the place (making the polar axis point toward the

north celestial pole); applying index correction, if necessary, to

obtain the proper setting for the vertical arc or circle.

By revolving the transit about its vertical axis and the solar

telescope about the polar axis, bring the sun's image into the

center of the square formed by the four cross-hairs of the solar

telescope or by the four lines on the silver plate of the attach-

ment which has no telescope. Finish the setting with the

tangent screws. A magnifying glass should be used in check-

ing the position of the image on the silver plate.

Only one position can be found in which this setting can be

properly made. When this position is found it should be pos-

sible to follow the motion of the sun for several minutes, keeping

the image in the little square, by simply turning the solar tele-

scope about the polar axis, and without otherwise disturbing

the instrument.

The line of sight of the transit telescope should now be in the

plane of the meridian; and a stake may be lined in and centered,

which, with the stake under the instrument, will define the direc-

tion of the meridian.

Also, the approximate local apparent time should now be
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indicated on a graduated circle which is near the base of the

polar axis on some types of the instrument, and is perpendicular
to the polar axis.

Most of the companies making solar attachments publish

yearly a little pamphlet containing, in addition to a solar

ephemeris and other useful tables, detailed directions for the

adjustment and use of their own instruments. Some com-

panies publish these directions in a pamphlet or book separate
from their solar ephemeris. The reader is referred to these

publications for more particular information in regard to the

several solar attachments now on the market.

Observations for latitude and for time may be made with the

solar attachment, but it is believed that its use in these observa-

tions presents but little advantage over the methods given in

Chapters VII and IX.

The chief advantage of the solar attachment in observations

for azimuth is that the direction of the meridian may be obtained

directly, at any time of day when the sun is visible and with a

minimum of computation. For good results, however, observa-

tions should not be made when the altitude of the sun is less

than 10 or 15 or within an hour of noon.

The solar attachment may also be used in a series of observa-

tions for running lines by true bearings much as a compass is

used for running lines by magnetic bearings. This work is

explained in the publications of the instrument-makers and in

most texts on plane surveying.
In regard to the accuracy attainable, it is claimed by some

that results accurate within a quarter of a minute may be

obtained in observations for azimuth with the solar attachment.

It is believed, however, that the nearest minute of arc represents
about as high a degree of accuracy as is likely to be consistently

realized.
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TABLE I

CONVERSION OP SIDEREAL INTO MEAN SOLAR TIME

Corrections to be Subtracted from a Sidereal Time Interval
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TABLE II

CONVERSION OF MEAN SOLAR INTO SIDEREAL TIME

Corrections to be Added to a Mean Solar Time Interval
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TABLE III

MEAN REFRACTION

Corrections to be Subtracted from Apparent (Observed) Altitudes

Barometer: 29.6 inches Temperature: 49 F.

For temperatures other than 49 F., the mean refraction may be multiplied

by the following factors:

For 20: 1.060, for 40: 1.017, for 60: 0.978, for 80: 0.942, for 88: 0.929.

These mean refractions are based on Bessel's
" Refraction

Tables."
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TABLE IV

SUN'S PARALLAX AND SEMI-DIAMETER

SUN'S PARALLAX

SUN'S SEMI-DIAMETER
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TABLE V

LOCAL MEAN (ASTRONOMICAL) TIME OF THE CULMINATIONS
AND ELONGATIONS OF POLARIS IN THE YEAR 1915

With Corrections for Referring the Tabular Quantities to Other Years

(Computed for latitude 40 north and longitude 90 or 6 h west of Greenwich)

Corrections on pages 98 and 99
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A. To refer the above tabular quantities to years other than

1915:

For year 1916,

1916,

1917,

1918,

1919,

1920,

1920,

1921,

1922,

1923,

1924,

1924,

1925,

1926,

1927,

1928,

1928,

add

subtract

subtract

add

add

add
add

add
add

add

add

add

add

add
add

add

add

m
1.6 up
2.3 on

0.7

0.9

2.5

4.0 up
0.1 on

1.6

3.1

4.5

5.9 up
2.0 on

3.3

4.6

5.9

7.2 up
3.3 on

to March 1

and after March 1

to March 1

and after March 1

to March 1

and after March 1

to March 1.

and after March 1.

B. To refer to any calendar day other than the first and
fifteenth of each month, subtract the quantities below from the

tabular quantity for the preceding date.

Continued on page 99
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C. To refer the table to Standard time and to the civil or

common method of reckoning:

(a) Add to the tabular quantities four minutes for every

degree of longitude the place is west of the standard meridian

and subtract when the place is east of the standard meridian.

(b) The astronomical day begins twelve hours after the civil

day, i.e., begins at noon on the civil day of the same date, and

is reckoned from zero to twenty-four hours. Consequently, an

astronomical time less than twelve hours refers to the same civil

day, whereas an astronomical time greater than twelve hours

refers to the morning of the next civil day.

It will be noticed that for the tabular year two eastern elonga-

tions occur on January 14 and two western elongations on

July 13. There are also two upper culminations on April 14

and two lower culminations on October 14. The lower culmina-

tion either follows or precedes the upper culminating by 11 h

58 -.0.

D. To refer to any other than the tabular latitude between

the limits of 10 and 50 north:

Add to the time of west elongation Om.10 for every degree

south of 40 and subtract from the time of west elongation O m.16

for every degree north of 40. Reverse these operations for

correcting time of east elongation.

E. To refer to any other than the tabular longitude:

Add O m.16 for each 15 east of the ninetieth meridian and

subtract Om.16 for each 15 west of the ninetieth meridian.

Table V and the accompanying supplementary tables and

rules have been kindly furnished for this book by the Superin-

tendent of the United States Coast and Geodetic Survey.
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TABLE VI

MEAN DECLINATIONS OF POLARIS

For January 1 of the Years from 1915 to 1928

The above table is based on data obtained from the "American

Ephemeris and Nautical Almanac." The apparent declination

of Polaris for any day in the year may be taken from the
"Am-

erican Ephemeris and Nautical Almanac" or from the "American

Nautical Almanac." For 1916 the apparent declination de-

creases from 88 51' 50".80 on January 1 to 88 51' 21".57 on

June 27, and then increases to 88 52' 10".50 on December 31.

When a possible error of about half a minute in declination is

too large to be allowed the apparent declination should be

obtained from the Almanac for the given date.
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TABLE VII

AZIMUTH OF POLARIS WHEN AT ELONGATION

For Any Year Between 1915 and 1928

Continued on page 102 Corrections on page 103
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TABLE VII Continued

AZIMUTH OF POLARIS WHEN AT ELONGATION

For Any Year Between 1915 and 1928

Corrections on page 103
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The preceding table was computed with the mean declination

of Polaris for each year. A more accurate result will be had by

applying to the tabular values the following corrections, which

depend on the difference of the mean and the apparent place of the

star. The deduced azimuth will, in general, be correct within 0'.3.

Table VII and the accompanying supplementary table have

been kindly furnished for this book by the Superintendent of

the United States Coast and Geodetic Survey.



104 AZIMUTH OF POLARIS NEAR ELONGATION

TABLE VIII

CORRECTIONS FOR OBTAINING AZIMUTH OF POLARIS WHEN
NEAR ELONGATION FROM AZIMUTH AT ELONGATION
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GREEK ALPHABET

s
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INDEX
Almanac, The American Nautical, 27 Index error, 42

Altitude, defined, 6

Apparent motion, 2

solar time, 16

Artificial horizon, 45

Astronomical time, 19

triangle, 10

triangle, solutions of, 13

Atlantic time, 20

Autumnal equinox, 3

Azimuth, defined, 6

determination of, 55

mark, 56

Burt solar attachment, 84

Celestial equator, 3

sphere, 1

Central time, 20

Circumpolar stars, 14, 37

Civil time, 19

Co-latitude, 11

Constellations, 36

Co-ordinates, systems of, 6

summary of, 8

Corrections to observed altitudes, 43

Culmination, 16

Declination, 7

Eastern time, 20

Ecliptic, 3

Elongation, 15

Ephemeris, The American, and Nau-
tical Almanac, 25

Equation of time, 18

Equator, celestial, 3

systems of co-ordinates, 6

Equinoxes, 3

Errors in observations, 41

Horizon, 3

artificial, 45

system of co-ordinates, 6

Hour angle, 7

circle, 3

Interpolation, 27

Latitude, defined, 3

determination of, 48

Local apparent time, 16

mean time, 17

Longitude, defined, 4

determination of, 72

Magnitudes, 36

Mean sun, 17

time, 17

Meridian, defined, 3

determination of, see "Azimuth"

Motion, apparent, 2

Mountain time, 20

Nadir, 3

Nautical Almanac, 25, 27

Obliquity of the ecliptic, 3

Observations, suggestions for, 43

Orbit of the earth, 17

Pacific time, 20

Parallactic angle, 10

Parallax, 38

horizontal, 39

Pointers, 37

Polar distance, 11

Pole star (Polaris), 37

Poles, celestial, 3

Primary circle, 5

Prime vertical, 3

Refraction, 40

Relation between systems of co-

ordinates, 9

Right ascension, 7

Rotation of the earth, 2

Saegmuller solar attachment, 84, 86

Secondary circle, 5

Semi-diameter, 41
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Sextant, 42, 45

Sidereal time, 21

Solar attachments, 84

time, 16, 17

Spherical co-ordinates, 5

summary of, 8

trigonometry, 77

Standard time, 20

Stars, naming of, 36

circumpolar, 14, 37

magnitudes of, 36

Sun, apparent motion of, 2, 17

mean, 17

Time, apparent solar, 16

astronomical, 19

civil, 19

conversion of, 29

determination of, 68

mean solar, 17

Time, sidereal, 21

standard, 20

unit of measurement of, 16

Transit, 16

engineer's, use of, 41, 43

Trigonometry, spherical, 77

Tropical year, 22

Vernal equinox, 3

Vertical circle, 3

line, 3

Washington, longitude of, 27

Watch correction, 68

Year, tropical, 22

Yearly motion of the sun, 2, 16, 17

Zenith, 3

distance, 11
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